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This doctoral work deals with the development of a new computational method, the modified
exponential time differencing (ETD) method with improved quasi static (IQS) model, for the estimation of
reactor transient and associated dynamic uncertainty and sensitivity analysis. Using this new computational
method, the transient can be estimated with good accuracy using large time step. Both the transient
estimation as well as the dynamic sensitivity analysis can be performed simultaneously using this
computational method. This new computational method is applied to estimate the transients of (i) 3D
homogeneous reactor (ii) 3D TWIGL heterogeneous benchmark reactor (iii) 3D LMW heterogeneous
benchmark reactor and (iv) CANDU 3D-PHWR (AECL-7236) benchmark reactor. The estimated transients are
compared with standard codes. The results are found to be in good agreement. The uncertainty in reactor
transient, arising from the uncertainty in macroscopic cross section, is discussed. Both static and dynamic
uncertainty and its associated sensitivity analysis are discussed. The sensitivity analysis is performed for (i)
3D homogeneous reactor and (ii) 3D TWIGL heterogeneous benchmark reactor. In the case of static
sensitivity analysis, the sensitivity of neutron multiplication factor for various uncertainties in the
macroscopic cross section is analyzed and the more influential factor (macroscopic cross section) affecting
the neutron multiplication factor is determined. The dynamic uncertainty in transient, arising from the
uncertainty in the macroscopic cross section, is estimated by incorporating the IQS model in the forward
sensitivity analysis procedure (FSAP). While incorporating the IQS model in FSAP, a new kind of point
kinetics equations is developed and its solution with the shape function gives the dynamic uncertainty in
transient. The new kind of point kinetics equation is solved using the modified ETD method. In the FSAP
with 1QS model, only one time scale (single time scale) is adopted to estimate the dynamic uncertainty in
reactor transient. The estimated dynamic uncertainty and the results of dynamic sensitivity analysis are
found to be in good agreement with the direct solution method. Using this new computational method, the

estimation of reactor transient as well as the dynamic sensitivity analysis can be performed simultaneously.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Energy availability is important for human development and it is the prime factor for
economic growth. With increase in population, the economic growth continues to increase and
the demand for energy further rises. The rise in demand for energy can be met by burning fossil
fuels or from nuclear reactors. The fossil fuels, i.e. coal, gas, oil, will produce large amount of
carbon dioxide, which causes environmental pollution. Fossil fuel plants require large amount of
coal and gas. With a complete combustion, approx. 8 kWh of heat can be generated from 1 kg of
coal, approx. 12 kWh from 1 kg of mineral oil and around 24,000,000 kWh from 1 kg of
uranium-235. Thus, 1 kg natural uranium corresponds to nearly 10,000 kg of mineral oil or
14,000 kg of coal and enables the generation of 45,000 kWh of electricity. In contrast to fossil
fuel plants (coal, oil and gas), nuclear power plants do not produce any carbon dioxide, methane,

or other toxic emissions, which are major contributors to the greenhouse effect.

Compared to other forms of energy, the nuclear energy is cost effective and economical.
During the recent decades the nuclear energy has become an essential part of safe and cost
effective mode of energy worldwide. The nuclear energy has the potential to support the growing
energy need of the industries in the world. Nuclear power currently provides about 11% of the
world’s electricity, with 12 countries using nuclear power for at least 30% of their national
electricity generation. According to International Atomic Energy Agency (IAEA), as of today,
there are 449 operational nuclear power reactors in 30 countries, with 56 others under

construction in 15 countries. The production of nuclear energy from nuclear reactor is not limited



to power generation only. The production of a wide range of radioactive isotopes for medical and
industrial applications, research and development in basic sciences depend on the effective
utilization of neutron flux from nuclear reactors. Energy production from nuclear reactor is not
free from risk. Ensuring a safe and reliable operation of every nuclear reactor at its rated power

over the desired core life is the combined responsibility of suppliers, utilizers and regulators.

The safe and efficient operation of nuclear reactor requires a thorough knowledge of the
underlying physical processes taking place in nuclear reactors. The physical process taking place
in nuclear reactor is obtained by mathematical modeling and simulation. The principal tools used
in this task consist of various numerical methods to estimate the neutron behaviour in the reactor

core and understand the space and time dependent physical processes occurring in the core.

1.2 Need for time dependent neutron diffusion equation

A major class of analysis in the reactor core design is the estimation of spatial neutron
flux distribution under normal operating and postulated accidental conditions. All nuclear
reactors must be designed against postulated initiating events (PIE) and design basis accidents
(DBA), which may refer to operational error, reactor start-up accident, sudden ejection of control
rod etc. A perturbation in the reactor core due to DBA, during start-up or at steady state, may
lead to creation of transient. Sometimes the transient may be detected immediately following the
perturbation and in some cases the transient may not be detected immediately. In large reactor
cores, a minor perturbation in any localized area may remain unnoticed due to neutron
decoupling and this may lead to reactor accident. The power transients taking place in nuclear

reactors depend on the kind of reactivity perturbation acting on the reactor and also the power



level at which the reactor is operating. The exact prediction of reactor transient is done by
solving the neutron diffusion equation in space and time (space-time Kkinetics). Accurate
estimation of transient will give information about the core power, fuel temperature and hot
channel factors. The hot channel factors will in turn give information about the safety margins.
But uncertainty always exists in the core output parameters. It is equally important to predict the
uncertainty involved in the estimation of reactor transient and other parameters. The prediction
of uncertainty in the transient will give information in fixing the hot channel factors and safety
margins deterministically. Hence for safe operation of nuclear reactors, the information about the
temporal distribution of neutron flux with uncertainty is important. However, the transient can
also be predicted using the space-independent reactor model, i.e. the point reactor model,
generally known as the point reactor kinetics. But the point reactor model adopts the
fundamental mode approximation on space and hence the temporal variation in reactor power
and core reactivity, are not very accurately estimated [1]. The point reactor model is applicable
for small reactors. In the case of large reactors, due to loosely coupled nature, the neutron flux
behaviour during the transient is well studied using the time dependent neutron diffusion
equation. In large reactors, a very local perturbation will obviously affect the neutron flux in the
immediate vicinity of the perturbation. The distribution of flux, following the perturbation, will
give accurate information about the hot channel factors which in turn will determine the limit on
core power. Hence for large reactors the estimation of spatial distribution of neutrons is
important and this is the reason why the space-time kinetics calculation is widely adopted in the
analysis of large reactor cores. Generally the solution of time dependent neutron diffusion
equation can be broadly classified into two categories, i.e. direct solution method and indirect

solution method. These methods are well described by Sutton and Aviles [1]. In direct method of



solution, the reactor volume is divided into finite meshes and the flux in each mesh is obtained
by direct integration or using polynomials ([2]-[4]). The flux factorization method is an indirect
method of solving the neutron diffusion equation. Compared to direct methods, the indirect
solution methods are faster. The improved quasi static (IQS) model is an indirect method of
solving the neutron diffusion equation and it has high efficiency. Due to its high efficiency, the
IQS model is adopted in several codes to analyze the transients in large reactors ([5]-[7]). Jain
and Gupta [8] developed 3D FAST code based on IQS model to analyze the super-delayed
transients in reactors. Several improvements were introduced in the IQS model to estimate the
transients in a more effective way. Dahmani et al [9] introduced the theta method in the IQS
model to solve the precursor concentration equations and this is adopted in MINOS-CRONOS-
3D code. The space-time analysis codes DIF3D [7] and KIKO3D [10] were developed based on
IQS model. In this work, we develop a new computational method, the modified exponential
time differencing method with IQS model, to estimate the transient and its uncertainty and

perform the associated dynamic sensitivity analysis.

1.3 Motivation and organization of the thesis

The computer programs or codes that solve the neutron diffusion equation, both static and
dynamic, are generally quite complex and are frequently the result of many years of extensive
development. Modern nuclear reactor design depends heavily on efficient computer codes and
mathematical models of the reactor core. The motivation for the development of computationally
efficient numerical method to solve the neutron diffusion equation and its implementation to
realistic reactors is always on the rise. In this regard we develop a new computationally efficient

method, the modified exponential time differencing method with improved quasi static model, to



solve the neutron diffusion equation in space and time and analyze the transients. The novelty of
this computational method is that the transients can be estimated with good accuracy using large
time step thereby reducing the computation time. This new computational method is capable of
analyzing the transients in highly heterogeneous reactors. This new computational method is
applied to estimate the transients of few international benchmark reactors. The benchmark
reactors, considered here, have varying degrees of heterogeneities. The estimated transients are
found to be in good agreement with the standard results. The effect of space part in estimating
the transient is also discussed. This computational method is also used to perform the dynamic
sensitivity analysis in reactor transient. This method adopts one time-scale only (single time
scale) to perform the dynamic sensitivity analysis. It serves as one of the fastest and efficient
method in analyzing the dynamic uncertainty and sensitivity in reactor transient. The estimation
of transient as well as the dynamic sensitivity analysis can be performed simultaneously by using

it.

The thesis is organized as follows. Chapter 2 deals with the different types of techniques
to solve the time dependent neutron diffusion equation. It provides discussion on direct method
of solution and indirect method of solution. In the indirect solution method, the modal expansion
and the flux factorization methods are discussed. It gives detailed discussion on Improved Quasi
Static (IQS) model, adopted in the flux factorization technique. Two approximations adopted in
the IQS model, i.e. the adiabatic method and the quasi static method are also discussed. Transient
estimation methodology adopted in the IQS model is described. Chapter 3 discusses the
development of the modified exponential time differencing (ETD) method to solve the point
kinetics equation. The applicability of modified ETD method to solve the point kinetics

equations for various kinds of reactivity perturbations are discussed in this chapter. This method



is found be an efficient method to solve the point kinetics equations for different kinds of
reactivity insertions, i.e. step and ramp. This method is applied to Indian Prototype Fast Breeder
Reactor (PFBR) to predict the transient for longer duration of time. Using this method, the
transient can be estimated with large time step. Its smooth coupling into the IQS model is
discussed. The applicability of this method to solve the inverse point kinetics equations to
estimate the reactivity from the observed noisy transient, (transient with background noise) is
discussed. This method is applied to estimate the temperature coefficient of reactivity of Indian
PFBR from the observed power transient with various background noise levels. Chapter 4 deals
with the estimation of transient using the modified ETD method with IQS model for few
international benchmark reactors and the accuracy of this new computational method is
discussed. The transients in CANDU 3D-PHWR (AECL 7236) benchmark, 3D LMW
benchmark, 3D TWIGL benchmark and 3D homogeneous reactors are estimated using this
method. In CANDU 3D-PHWR, the transients, following LOCA, are estimated for various micro
and macro time steps and the accuracy of this computational method is discussed. The flux
distribution and power tilts in CANU 3D-PHWR during the transient are discussed. The
importance of space part in estimating the transient is discussed. It is observed that the effect of
space part is more pronounced when the reactor size is large as well as when the perturbation in
the cross section is localized, i.e. within confined area. It is observed that when the space part is
neglected, the error in the estimation of core power becomes large as the transient duration is
increased. In the case of 3D LMW benchmark, the transient, following the control rod ejection
accident (REA), is analyzed for longer duration of time. Similarly in 3D TWIGL and 3D
homogenous reactors, the transients following the perturbation in macroscopic cross section are

analyzed. The error in the estimation of peaking factors, when the space part is neglected during



the transient, is also discussed. Chapter 5 deals with the uncertainty quantification and
sensitivity analysis in reactor transients. Both static and dynamic sensitivity analysis are
discussed here. The propagation of macroscopic cross section uncertainty with time and its
impact on core power, peak mesh power and peaking factor during the transient is discussed. In
the case of static sensitivity analysis, the sensitivity of neutron multiplication factor with respect
to uncertainty in the cross section is analyzed. A linear relation between the sensitivity
coefficient and the uncertainty in the cross section is established. The dynamic sensitivity
analysis is discussed in detail. The dynamic uncertainty in reactor transient and its associated
sensitivity analysis are performed using forward sensitivity analysis procedure (FSAP) with 1QS
model. While incorporating the IQS model in FSAP, a new kind of point kinetics equation is
arrived at and its solution is obtained using the modified ETD method. The dynamic
uncertainties in core power, total peaking factor and peak mesh power, during the transient, are
analyzed with respect to uncertainty in the cross sections and the dynamic sensitivity coefficients
are estimated. The accuracy of dynamic sensitivity coefficient, estimated using FSAP with 1QS
model is discussed. Simultaneous estimation of transient and its uncertainty is discussed in this

chapter. Chapter 6 gives the conclusions.



CHAPTER 2
SOLUTION OF TIME DEPENDENT NEUTRON DIFFUSION EQUATION
2.1 Introduction
The neutron transport equation deals with the time-dependent angular distribution of

neutrons in reactor. The transport equation characterizes the overall reactor behavior and can be

obtained by setting up the neutron balance equation [11]. Consider a differential element dV at

location 'r'in space as shown in Fig. 2.1.

Fig. 2.1. Differential volume dV at location 'r’

We denote the angular neutron number density N (7, E, Q, t) to represent the number density of
neutrons at time ¢, in unit volume around position r, unit energy interval at E and unit solid

8



angle in the direction (.. The neutron balance equation in the differential volume dV is written

as

Rate of change of neutrons (indV ) =

rate of production of neutrons — rate of destruction of neutrons (2.1)

The rate of change of neutrons in a volume element dV at r, within dE at E, within dQ at {, and

at time t can be written as
Rate of change of neutrons = WdVdE dQ (2.2)

Neutrons will be removed from the volume element dV by leaking out through the surfaces or by
colliding. We use the operator L(r, E, Q, t) to represent the neutron destruction process (removal
process) in dV at time t and it is given as

L(r,E,Q,t)vN(r,E,Q,t)dVdEdQ =

v.Q.VN(r,E,Q,t)dVdEdQ + 2.(r, E,Q,t).vN(r,E, Q, t)dVdEdQ (2.3)
where the first term on the right hand side (RHS) represents the leakage rate and the second term
represents the neutron collision rate. Here, X; is the total cross section of the material in volume
dV and v is the neutron speed. Meanwhile, in the volume dV, the neutrons are scattered into
dQdE from dQ'dE' and the scattering process is denoted by the operator S and it is given as
S(r,E,Q,t)vN(r,E,Q,t)dVdEdQ =

[T dq [ dE 5(r,E' > E, Q' - Q,¢)v'N(r, E', @', t)dVdEdQ (2.4)
Most importantly, neutrons are generated from fission reactions in dV and it is represented by the
operator F as

F(r,E,t)vN(r, E,Q, t)dVdEdQ = — [T dQ [ dE vEL(r, E', VN (r, E', @, t)dVdEdQ (2.5)

9



where v is the average number of fission neutrons released per fission. In a typical fission
reaction, most of the fission neutrons are released promptly within 10~ 1%s, e.g.

U235 +nf - Br% + Ln'® + 3nl +y

These neutrons are called prompt neutrons. There is also a small fraction of fission neutrons, less

than 1%, which are released from fission products after beta decay, e.g.

B decay
(55s)
Br87 ———

(kr87)* - kr86 + n}

These neutrons are called delayed neutrons and their release time is determined by the half-life
of the beta decay process, ranging from less than a second to a minute. Fission products which
produce delayed neutrons are called the delayed-neutron precursors. For a nuclear fission
reaction, a multitude of delayed-neutron precursors are produced. For convenience, they are
grouped into six groups according to their half-lives. The fraction of neutrons generated per
fission, for the i*" precursor group, is denoted as f3; and S ( X; B;), is the total fraction of delayed
neutrons generated from all precursors per fission. Therefore, the neutron production rate in dV
at time t, with delayed neutrons, can be written as

Rate of production of neutrons =

S(r,E,Q,t)vN(r, E,Q,t)dVdEdAQ + (1 — B)x, (E)F(r,E,t)yN (1, E, Q, t)dVdEdQ +

Yo Xai(E)NCi(r, )dVAEdQ + Q(r, E, Q, t)dVdEdQ (2.6)

where y,, is the prompt neutron spectrum, and y,; is the delayed-neutron spectrum for the it

precursor group. We introduce C; as the number density of the i*" precursor group with decay
constant A;, and Q as the external source. Finally, the continuous neutron transport equation can

be written using Eqgs. (2.1)-(2.6) as

10



ON(r,E,Q,t)

dVdEdQ
ot

= —v.Q.VN(r,E, Q,t)dVdEdQ — 2,(r,E, O, t).vN(r, E, Q,t)dVdEAQ
41T e}

+ f aq’ f dE'.Z¢(r,E' > E,Q - Q,0).v'N(r,E',Q',t)dVdEdQ
0 0

(1 - :B)Xp 4

e dQ’ J dE' vE(r,E', )v'N(r, E', ', t)dVdEdQ

+ Z X (E)NC(r, ©AVAEAQ + Q(r, E, Q, t)dVAEdQ

(2.7)
After cancelling dVdEdQ on both sides, we get the neutron transport equation, i.e. Boltzman

transport equation as

ON(r,E,Q,t)

o +v.Q.VN(r,E, 0, t) + Z(r, E,Q, ¢t )vN(r,E, Q, t)

4T [e]
=f dQ’f dE'Z4(r,E' > E,Q' - Q,0)v'N(r,E', 0, t)
0 0

(1 ﬁ)xp A

yo dq’ j dE'vi(r,E',)v'N(r,E', Q1)

6
+ ZXd,i(E) AiCl'(r) t) + Q(rr E: ﬁ; t)
i=1

(2.8)
The above equation (Eq. (2.8)) contains derivatives as well as integrals and hence it is also called
as integro-differential equation. The neutron transport equation (Eq. (2.8)) provides an exact
description of the neutron angular distribution (say in the energy group 'g’) within the reactor.
The solution of Eq. (2.8) yields the angular neutron density N (r, E, Q, t), which contains all the

information which we desire. For a complete description of neutron behaviour in nuclear
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reactors, Eq. (2.8) must be solved for each neutron energy group 'g’. We denote the angular

neutron flux, in the energy group 'g’ as ¢,(r,E, Q,t) = v,Ny(r,E,Q,t), Ny(r E Q)

represents the angular neutron density in the energy group 'g’, and v, is the neutron velocity in
!

the energy group ‘g’. The angular current density is represented by

j(r E,Q,t) = Q.¢y(r,E,Q,0)

The neutron diffusion equation is obtained from neutron transport equation by assuming
few approximations. First we make the assumption that we are interested only in angle integrated

flux rather than angular flux. In other words we transform ¢4(r,E,Q,t) to ¢4(r,E,t) by
integration, i.e. qbg (r,E, t) = f:n qbg (r,E,Q,t)dQ. We also denote the neutron current density,
in the energy group ‘g’ as E(r, E,t)= f:nj(r, E,0,t)dQ, and ¢g(r,E,t) = vgN,(r, E, t).

With these assumptions, the neutron transport equation in the energy group g’ i.e. Boltzman

transport equation, Eq. (2.8) is integrated with respect to angle and it is given as

1 0P — N ,
= V.(g) ~ T 0@ + S X (r 0@ + (L= Bxg B vEF (r 0@ +
X3 MG t) +Q (2.8a)

In the above equation, @, = ¢4 (1, E, t), Etg is the total cross section in the energy group 'g’,
28 78 is the scattering cross section from group g’ — g, vEfg is group fission cross section, @
r,E,t)) is the external neutron source in the ener roup 'g’. Using transport theory, the

gy group g g p y

neutron current density, ]:;, is approximated as ]:; = —Dg(r)v)cbg [11]. Under these

assumptions, the neutron transport equation becomes the neutron diffusion equation and it is

given as
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1 oD - - LN 12
Ea_tg = V.(DgV®g) — Zf(r, ) @g + X9/ Z5 T8 (r, )P + (1= By Xgioy VEE (1, 0)Pg +

X MG(r ) +Q (2.8b)

In terms of operators, the neutron diffusion equation (2.8b) becomes

00
- e + qu)g = qu)g + (1 - ,B)XpF"chg + Zi6=1Xd,i }\ici + Q (29)

vg Ot

In the above equation (Eq. (2.9)), 'Ly’ (Ly = —V. (DgV) + Xgg) represents the neutron
destruction operator, 'S;" represents the production operator by scattering, 'F;" (F; =
Zg,(vf,fgr)) represents the production operator by fission, A;C; denote the delayed neutron

source and 'Q’, is the external source. The above equation has to be coupled with the precursor
concentration equations, which give delayed neutrons. The precursor concentration equations are
given by

ac;(r,t) !
o = BiXgvE (0% — A 2.10)

The detailed description of neutron transport theory and diffusion equation can be found in [11]-

[14].
2.2 Direct Solution Methods

The neutron diffusion equation (Eq. (2.9)) can be solved directly as well as indirectly.
According to direct method, the solution to time-dependent neutron diffusion equation (one
group) is written as (from Eq. (2.9))

100 _ 10" -}
== TLe+ SO+ (1= P FP + Xy xai MiCi + Q 2.11)

In the above equation @!*! is the neutron flux at i*" mesh at time 't + 1’ and &/ is the neutron
flux at i*"® mesh at time 't’. From the above equation, the time-dependent neutron flux can be
estimated as
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ot = of + vAt(—LDf + SPf + (1 — BIxpFDf + Y-y Xai LiCi + Q) (2.12)
The constants involved in the RHS are evaluated at 't’. Since the neutron velocity in thermal
reactor is of the order of ~10° cm/s, the time step At has to be chosen of the order of ~107° or
even less. Using such a small time step for solving the neutron diffusion equation will consume
more computation time of the order of several hours and it will introduce lot of round off and
truncation errors. For this reason this method is generally not used. Nevertheless this method is

the simplest method and using this method the time dependent neutron flux can be obtained.
2.2.1 Frequency Transform Method

It is also another form of direct solution method. This method is widely used in the
solution of time dependent neutron diffusion equation. The codes SCOPE2, PARCS, AETNA
and SIMULATE3-K adopt this method [15]-[18]. The frequency transform method assumes that
in the case of transient, the flux evolves exponentially with time. Under this assumption, the

neutron flux can be modeled as
9y(r,6) = By (r, Dexp (w(r, ) (2.13)

Using this assumption, the neutron diffusion equation (Eq. (2.8b)) becomes

109 (r,0) >
ga—tg = exp (—w(r, t)t) (V. (D,Vo,) — [Ztg(r, t) + “’Urg ] D+ X7, 28 TE (1, ) Dy +

(1~ DXL S8, VEE (1, 0P + S8y 2 NG ) + Q) (2.14)

The above equation can be solved using explicit or implicit scheme. The solution of Eq. (2.14)
gives the time dependent neutron flux. The detailed information about the solution procedure can

be obtained from the works of [19].
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2.3 Indirect Solution Methods

2.3.1 Modal Expansion Method

To reduce the computational burden and estimate the time dependent neutron flux with
reasonable accuracy, indirect methods were devised. Modal synthesis method (or Modal
Expansion Method (MEM)) and Improved Quasi Static (IQS) Method come under this category.
The key concept in modal expansion method [20]-[22] is that the space-time flux can be
factored into a finite sum of spatial shape functions. These shape functions are the spatial
modes weighted by a set of time dependent modal amplitudes. The calculation of the
space-time flux then reduces to calculating these time-dependent weight factors, which
constitute the coupled generalized point kinetics equations. Generally the modes, chosen for
the expansion, are the set of A modes (k-eigen values) or static modes, which are generated
from the steady state of reactor before the start of the transient. Higher order lambda modes
are generated using subtraction method or filtration method [23]. The detailed calculation of
higher order lambda modes can be found in the works of [24]. The accuracy of the time
dependent neutron diffusion equation mainly depends on the number of lambda modes chosen
for the expansion. As the number of modes increases, the accuracy of the solution will increase.

According to modal synthesis method, the neutron flux, @, (r,t), corresponding to a
perturbation in the core properties, is expanded as a weighted series of fixed number of 4
modes which are linearly independent and it is given as [22], [25]

@y (r,t) = TiLo (O ¥ (1) (2.15)
where ll’lg (r) is the [*"static eigen function corresponding to the eigen value 'A;’, for a particular
group 'g’. The functions a;(t)are the amplitude functions or weight functions which are to be

evaluated. In principle the choice of shape functions is arbitrary; with the only restriction that the
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functions must satisfy the static neutron diffusion equation and they must be linearly
independent.

Consider the time dependent neutron diffusion equation (Eq. 2.8b))

10® R ’
= V(DY) — ZE(r P + B ZE E ()P + (1= B)xg T VEE ()P +
Yo xg MG ) +Q (2.16)

Let the perturbation in the cross section be assumed as Dy = Dg + 6Dy, 2 = 23 + 6%, and
VIp = VZ]? + 6(vZs). This leads to perturbation in the operators as L = Lo+ 6L and M =
My + M.

Substituting Eq. (2.15) into Eq. (2.16) and integrating over the volume of reactor after pre

multiplying with steady state adjoint flux ¥,;,, we get

d
{VilAml % = (pm - IB)Nmam + (1 - .8) Z{VilA%lal - ?ilAl;nlal + Zﬁ:llicmk (2-17)
dCpm
—E = BiNmam + B ZiZo A — il (2.18)

In the above equations, (Egs. (2.17)-(2.18)) the constants are given as (following inner product

notation)

pro = 2k (2.19)
At = (Fy 1) (2.20)
AL = (@, SLY)) (2.21)
AM = (W, M) (2.22)
Coke = Wy X3 Ci (7, 1)) (2.23)

In Egs. (2.20)-(2.23), ¥, denotes the steady state adjoint flux corresponding to mt"® mode. The

adjoint flux is obtained by solving the adjoint neutron diffusion equation. The adjoint flux is
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referred as the importance function which gives the asymptotic increase or decrease in the
neutron flux (in the energy group ‘g’) when a single neutron is introduced at location 7. Solution
of Egs. (2.17)-(2.18), gives the amplitude coefficients a;. The detailed derivation can be found in
[25]. The amplitude coefficients, a;, along with the static mode eigen functions can be used to
determine the time dependent neutron flux, ®,(r,t) = XLy a;(t) w9 (r). This method may be

adopted for control studies of large pressurized heavy water reactors [26]-[28].
2.3.2 Flux Factorization Method

This is an indirect method of solving the neutron diffusion equation. The flux
factorization method is an efficient computational method for solving the time dependent neutron
diffusion equation [29]. The motivation behind the use of the flux factorization method is
that in many instances the spatial flux (shape function) is weakly dependent on time and as
a result it may not be necessary to re-compute it at every time step. Since the estimation of
the shape function is typically very computationally expensive, while computation of the
amplitude function is relatively inexpensive, the space-time factorization method can often yield
accurate results using far less computer resources than direct methods using a similar spatial
treatment.

According to this method the neutron flux of energy group, ®4(r, t), is factored into time
part and space part. The time part is called the amplitude function and the space part is called the
shape function. The time dependent flux is written as
Dy(r,t) = T()¥,(r,t) (2.24)
T(t) is the amplitude function and ¥, (7, t) is the shape function. The amplitude function T'(¢) is

dependent on time only and the shape function ¥, (r,t) weakly depends on time. This method
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has two approximations, (i) the adiabatic approximation and (ii) the quasi static approximation.
The improved quasi-static (IQS) method is an improvement of quasi static approximation and
gives accurate solution to the time dependent neutron diffusion equation. Hence the IQS method
is adopted by several core calculation codes [5]-[9], [30]. The improved quasi static method does
not involve any approximation. Substituting Eq. (2.24) into Eq. (2.8b) we get (neglecting

external source Q)

10Y, N ’
== (D,VY¥,) — 2E(r, 0¥, + 2§,=lz§ Er, % + (1 —Bxy Z§,=1v21§ (r, O, +
Ly 99 . _ g 10T(®)

70 Zi=1 X MG ) — s o= (2.25)

2.3.2.1 Adiabatic Method

In adiabatic method, [29], [31], [32], it is assumed that during the transient, the reactor is
assumed to be in steady state in each successive time interval during the transient. Let T be the
transient duration and ¢4, t,, t3 etc. be any time during the transient time interval, i.e. 0 < t; <
t, < t3 <T.At't,’, the reactor is assumed to be in steady state; hence in this case (t = t;) the

. . . . . 09 . . . . .
time derivative of flux is zero, i.e. a_tg = 0. With this assumption, Eq. (2.25) is rewritten as

' X '
V.(DgV¥) = ZE(r 0% + Bg oy 5T (n D% + ZE R0 VEF ()% = 0 (2.26)

The parameters in the above equation are evaluated at t = t;, t,, t; etc. The above equation is
solved to get the shape function ¥, (,t). Using the shape function ¥, (r,t), obtained from Eq.
(2.26), the parameters in the point kinetics equations are estimated and the point kinetics
equations are solved to get the amplitude function i.e. T(t). The product of amplitude function

and the shape function gives the actual flux.
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2.3.2.2 Quasi Static Method

It is a slightly improved form of adiabatic method. In this method [14], [22], [29], [32]
0¥y GE
the delayed neutron source is taken into account. Here ? = 0 rather than ? 0. The
equation to be solved, in this case, is given below

V.(D,VY¥,) —2E(r, ¥, + Dt 125 TErO¥ + (1 - By Zg,zlvz;‘é (r. 0¥, +

1

Y ¥y 197(®)
T(t)

C1Xq MG t) — 70— ==0 (2.27)

The above equation has to be solved along with the point kinetics equations. The product of T (t)

and ¥, (, t) gives the actual flux.

2.3.2.3 Improved Quasi Static (1QS) Method

The improved quasi static (IQS) method [21], [28], is an effective method for solving the
time dependent neutron diffusion equation. It is an improved form of quasi-static model. In the
IQS method, the flux consists of two functions, i.e. amplitude function and shape function. The
amplitude function describes the fast time evolution of neutron flux in the reactor. The shape
function slowly evolves with time. The IQS method has good computational efficiency to predict
reactivity initiated transients. Many numerical space-time codes adopt the IQS scheme to
estimate the transients in nuclear reactors. Predictor corrector method can also be employed in
the IQS method [33]-[35] to estimate the transients.

Consider the time dependent multi-group neutron diffusion equation (external source

Q = 0) with delayed neutron precursor groups (Egs. (2.9) & (2.10))

L2000 Dby (r,£) = Sy (1, 6) + x5 (1 — By (r, ) + XM i G, ©) (2.28)
ac; (r 6 _ ﬂLFd)g (r,t) — Ci(r, ) (2.29)
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where L= —V. (Dg 17) + Xy is the removal operator and F= Zg,(vZ'fgr) is the fission
operator (neutron production operator). In the above equation Xy, is the removal cross section
and other symbols carry usual meaning. The removal operator L and the fission operator F are
determined by the material properties of the reactor. According to IQS scheme, the time
dependent flux, ¢4 (7, t), is written as

Gg(r,t) =T(E)y(r,0) (2.30)

Substituting Eq. (2.30) into Egs. (2.28) and (2.29), we get the amplitude function (equation) as

[32]
T = [ ro + e (2.31)
aci(t i(t)

20 = BO7(6) - G0 (2.32)

and the shape function as

1 0YPg(rt)
Vg ot o

V. (DgVihg(r, ) = Zrgg(r, ) + xg (1 — B) TGy VEr gy (r, ) + Tgreg Zgiogthyr (r 1) +

1 hg(rt) aT(e)

1 xahi G, ) = - =g (2.33)

1
T(t)
The amplitude function, along with the precursor concentration, is known as the point kinetics

equation (Egs. (2.31) and (2.32)). The kinetics parameters p(t), f(t) and A are calculated using

the weight function 1T and they are given as [32]

o RN~ Dy
@ Py )

WH(BF) Yy (r. 1))
Wt ({xg J)wg (r, )

pi(t) =
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Z
A= =
W (V) e (r0))

The weight function is taken as the adjoint flux. To arrive at the amplitude function, we have

used the normalization condition (1 (é) W) = [yt (i) w(r, )V = Z(constant). The
kinetics parameters p(t), B;(t) and A are estimated using the adjoint neutron flux T. The
adjoint neutron flux is obtained from the solution of adjoint neutron diffusion equation. As
described in section 2.3.1, the adjoint flux is known as the importance function which gives
information about the asymptotic neutron flux when a single neutron is introduced at location 7.
When a small change in the neutron flux is introduced at 7 in the reactor, the asymptotic increase
or decrease in the flux is estimated by making use of adjoint flux. Hence the worth of control
devices and other kinetics parameters are estimated using adjoint flux. The shape function Eq.
(2.33) can be numerically solved using implicit scheme with large time step. The detailed

description of IQS method is given by [32], Mohideen Abdul Razak [36] and Rakesh Kumar

[30].

In IQS model, one has to solve the point kinetics equations and shape functions. The
point kinetics equations alone can predict the transient satisfactorily in medium sized thermal
reactors as well as in tightly coupled fast reactors. The point kinetics equations are stiff
differential equations. A major difficulty in numerically solving the point kinetics equations
arises from the stiffness term, which necessitates the requirement of choosing very small time
step to solve the equation numerically. In this work, the modified exponential time differencing
(ETD) method is used for solving the point kinetics equations with multi group of delayed

neutrons and it is coupled in the IQS model to calculate the shape function.
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2.4 Transient estimation methodology in the IQS scheme

The transients are estimated by solving the amplitude function and the shape function at
two different time scales. Since a fine time step (micro time step, At) is required to solve the
amplitude function and a large time step (macro time step, AT) may be used to solve the shape
function, two different time scales are adopted in this method [36], [30]. This is shown in Fig.
2.2. Generally the macro time step will be an integral multiple of micro time step. An initial
guess about the shape function at macro time step is assumed. With the assumed shape function,
the kinetics parameters and dynamic reactivity are calculated. Using these parameters, the
amplitude function is solved using the modified exponential time differencing method. At the
end of the micro time step, the shape function is calculated. With the calculated shape function,
the dynamic reactivity is checked for convergence. This process is repeated till the dynamic
reactivity converges. After the convergence, the shape function is calculated for the next macro
time step and so on. In this way the shape function is calculated for the full length of the transient
time. The product of amplitude function and shape function gives the actual neutron flux in the

reactor.

AT

Fig. 2.2. The micro time step (At) and the macro time step (AT) adopted in the IQS model. T,

T,, T, denote the macroscopic time at which the shape functions are calculated.
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2.5 Steps adopted to estimate the transient in the IQS scheme

The macro time steps at which the shape functions are calculated are denoted as T, Ty,
T,, T3, etc. in Fig. 2.2. The amplitude function is solved using micro time step At. The flowing

steps are adopted to estimate the transient in the IQS scheme:

Step 1: The transient is assumed to start t = T,. At macro time Ty, the shape function is taken as

the initial flux (steady state) and the amplitude function is taken as 1.

Step 2: At Ty, the reactor state is obtained; i.e. position of the control devices, change in the
cross section etc. At this time the shape function is assumed to be as that corresponding to Tj,.
Using the shape function, the kinetics parameters, i.e. the dynamic reactivity, neutron generation

time and delayed neutron fractions are calculated.

Step 3: Using the kinetics parameters, the point kinetics equation is solved using micro time step

At (Fig. 2.2) and the amplitude function is obtained at T;.

Step 4: Using the amplitude function, the shape function is calculated at T; and the delayed

neutron precursor equation is solved at Tj.

Step 5: With the shape function, the kinetics parameters, i.e. the dynamic reactivity, neutron

generation time and delayed neutron fractions are recalculated.

Step 6: The kinetics parameters are checked for convergence.

Step 7a: If the kinetics parameters have converged then proceed for the calculation of the shape

function for the next macroscopic time t = T, and so on.
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Step 7b: If the kinetics parameters have not converged then repeat the steps 3-6 till convergence

1s obtained.

2.6 Summary

Different solution techniques for solving the time dependent neuron diffusion equation
are discussed. The solution of neutron diffusion equation using modal expansion method and
flux factorization method are discussed in detail. Two approximations in the flux factorization
method are described. From the flux factorization technique, the equation governing the
amplitude function (point kinetics equation) and shape function are discussed. The concept of
micro time step and macro time step are discussed. The transient estimation methodology and the

steps adopted in the IQS model are described.
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CHAPTER 3

POINT KINETICS MODEL

3.1 Introduction to Point Kinetics Equations

The point kinetics equations represent the time evolution of power in small reactors. The
point kinetics equations are stiff differential equations and special techniques are used to handle
the stiffness term while solving the equations. There are different kinds of methodologies
available in the literature to solve the stiff point kinetics equations. Hennart and Barrios [37]
applied the Pade and Chebyshev type approximation to solve the point kinetics equations. One
can use the third order Hermite Polynomial Method (HPM) [38] to solve the point kinetics
equations. Hongqiu and Dapu [39] introduced the end floating method (EFM) for solving the
point kinetics equations. Aboanber and Nahla [40], [41] developed the analytical inversion
method for solving the point kinetics equations with multi-group delayed neutrons. Li et al. [42]
introduced a numerical integral method using the better basis function (BBF) for solving the
point kinetics equations and investigated the power transients caused by various types of
reactivity insertion in thermal reactors. Recently Nahla [43] applied the Taylor series method

(TSM) to solve the point kinetics equations.

Here we develop the modified exponential time differencing (ETD) method for solving
the point kinetics equations [44]. The advantage of the modified ETD method is that the point
kinetics equations can be solved using large time step with good accuracy and the size of the
time step can be chosen by satisfying certain criteria. It is proved in this section that this method
is capable of estimating the power transients for various types of reactivity perturbations. Its

smooth coupling to IQS model is presented to estimate the reactor transients. This method is also
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applied to solve the inverse point kinetics equations to estimate the reactivity from the observed

power transient with noise.

3.2 Modified exponential time differencing (ETD) method

The Exponential Time Differencing (ETD) methods are time integration techniques that
provide accurate solutions to stiff differential equations. The exponential time differencing
(ETD) method was originally proposed in the field of computational electrodynamics [45] to
solve stiff differential equations. The modified exponential time differencing method is
developed by integrating the point kinetics equations over a single time-step using an integrating
factor. The power and precursor concentrations in the equations are expanded as a polynomial in
derivatives and then integrated. The coefficients of the polynomial, i.e. the ETD coefficients, are
obtained from integration of simple function and a recurrence relation between them is also
obtained. The recurrence relation is used to determine higher order ETD coefficients. In this
method the stiffness term is not involved explicitly in the numerical solution and hence the
power transient may be estimated using large time-step. This method is validated to estimate the
power transients of thermal reactors as well as the power transients of the 500 MWe Indian
Prototype Fast Breeder Reactor (PFBR).

Consider the following stiff differential equation

%= cu+ F(u,t) (3.1

In the above equation ‘c’ is the stiffness constant which may be large and F(u,t) may be a
nonlinear term. To numerically solve this kind of stiff differential equation, one should be able to

handle the stiffness constant ‘c’, by properly choosing the time-step 'h’. To solve Eq. (3.1) using
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the exponential time differencing method, it is multiplied by an integrating factor e~°¢ and
integrated over a single time-step, fromt = t, tot = t,,,1 = t, + h, to get

the1 d —ct _ (tn+ —ct
ftn " (ue=tdt = ftn F(u,t)e ctdt (3.2)
After integrating, we get (use change of variableast =t — t,,)
u(tyr) = u(t,)e + et fohe‘”F(u(tn + 1), t, + T)dt (3.3)

where T =t — t,,. The purpose of transforming Eq. (3.1) into Eq. (3.2) is to remove the explicit
dependence of the stiffness constant ‘¢’ in Eq. (3.1). In the numerical solution, i.e. Eq. (3.3), the
stiffness constant appears only in the exponential term. By removing the explicit dependence of
the stiffness constant, the solution to Eq. (3.3), may be obtained using large time-step 'h’.
Another major critical step in Eq. (3.3) lies in choosing a proper approximation for the integrand
F(u,t) in the interval t,, < t < t,, + h. If F(u, t) is known a priori for t < t,,, then F(u, t) in the
interval t, <t <t, + h may be obtained using interpolation with its previous values and the
integral expression in Eq. (3.3) can be evaluated [46]-[47]. In case if F(u,t) is not known a
priori, then F(u, t) in the time interval t,, < t < t,, + h can be obtained from the Taylor series
expansion of F(u, t,,).

Now consider the point kinetics equations given by

LU = () p(6) + Ty 4 Gi() (3.4)
“i= (B)p@©) - 46 =1,2..6) (3.5)

In the above Egs. (3.4)-(3.5), p is the power, A is the prompt neutron generation time, f3; is the
effective fraction of the i" group of delayed neutrons, 3 is the total effective fraction of delayed
neutrons (8 = Y%_, f;), 4; and C; are the decay constant and precursor concentration of the it"
group of the delayed neutrons respectively. The initial conditions of the point kinetics equations
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):ﬁi

are chosen as p(t =0) =p,, c;(t=0 o

Do, Do 1s the steady state power before the

occurrence of transient. The neutron generation time, A, is of the order of ~10~°s for thermal
reactors and it is of the order of ~1077s for fast reactors. Here the stiffness constant appears as

%. To solve the point kinetics equations by the modified ETD method, Egs. (3.4)-(3.5) are

t
multiplied by the integrating factor eA and integrated over a single time-step from t = ¢, to

t =tnhs1 = t, + h, toget

¢ t
J‘tn+1 (p e )dt fi;n+1 (P(t) ﬁ)p /\dt n f n+1 ?:1 2, C;(t)endt _I_%fttnnﬂp endt (3.6)

tn

ftn+1 d (C 6/\) dt = ffn+1 ﬁlp e/\dt +( — 1 )ffn+1c (t)e/\dt (3.7)

tn

After integrating and rearranging Eqs. (3.6)-(3.7), we get (use change of variable as t =t — ¢,,)

h‘rh

p(thsr) = p(tn)e/\ +f eh M p(t, +r)d1’+( )f e N p(t, +1)dr +
p I=h
Jo €7 Xio1 2 Ci(tn + D)dr (3.8)

hoBieh TR 1 h Th
Ci(ths1) = Ci(ter + Xfo e p(t, +1)dt+ (X — /L-) Jy €7 Ci(ty +)dr (3.9)
Here, in the above Egs. (3.8)-(3.9), we expand p(t,, + t) and C;(t, + T) as a polynomial in

derivatives using Taylor series expansion of order ‘S — 1°. They are expanded as
k
p(tn +7) = T VFp(tn) (3.10)
k
Ci(tn +7) = TRz VFCitn) (3.11)

ak . . .
where V<= e The reason for expanding the power and precursor concentrations using

Taylor’s series is that it only requires the present value of power and its derivatives and does not
require previous power history. The local truncation errors in the Taylor series expansion of

p(t, + 7) and C;(t,, + 7) are termed as R, (p) and R, (C;) respectively and they are given as
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Ri(p) = S5es Vip(t) = (3.12)

Ry(C) = SfesVeCi(t) S (3.13)

Substituting Egs. (3.10)-(3.11) into Egs. (3.8)-(3.9), we get

S—-1
-h 1 (" =h Tk
p(tn+1) = p(tn)e A+ K,l; e A p(tn + T) (kzzo Vkp(tn) F) dr

+(1_ )f eTh<ZV"P“n)ku>dT+Z fh Th(sivkc(t")k')dT

(3.14)
Bi wh (O Tk
Ci(tns1) = Ci(tple N 7 + /\l e A (kzzo Vep(t,) F) dt
1 “n (X
+ (K - Ai)f eh (Z k(L) k,> dr
(3.15)
After interchanging the order of summation and integration in Egs. (3.14)-(3.15) , we get
= 1 5-1 1-8 s—-1
Pltnss) = plEEN +75 > Tp(t)alo) +(—-) D V¥peudo)
k=0 k=0
6 S-1
. kce.
+ ; A 2" Ci(tulk)
(3.16)
_— 5-1 1 5-1
Ciltns) = Cilt)e T +50) Tp(ta)ul) + (7= 4) DV (tauch)
k=0 k=0
(3.17)

where q(k) is given as
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h I=h Tk
qk) = [, e p(ty +r)zdr (3.18)

and the ETD coefficient u(k) of order 'k’ is given as

h Thok
u(k) = [, en o dt (3.19)
Egs. (3.16)-(3.17) provide the numerical solution to the power transient and precursor
concentrations using the Taylor’s series expansion of p(t,,;) and C;(t,,.1) upto order 'S — 1'.

Substituting k = 0 in Eq. (3.19) we get
—h
u(0) = (1 R ) A (3.20)
The recurrence relation of the ETD coefficient u(k) (Eq. (3.19)) is given as
ARK
u(k) = T /\U(k - 1), k>1 (321)

3.3 Error analysis of the modified ETD method and convergence of solution

The final global errors involved in the numerical solution of the power transient (Eq.
3.16) and the precursor concentrations (Eq. 3.17) are determined as follows. By increasing the
order of the Taylor series expansion of p(t,, + 7) and C;(t,, + 7), Egs. (3.16)-(3.17) are rewritten

as

5—-1

5-1
- 1 1—
pltas) = PR +3 > PpE)al) +(—10) D Pp(tuth)
k=0

k=0

1 _ oo
3 ) TGt yu(k) + —Z Vpat) + (—8) Y VEptuto
k=S

[%%)
=

+

'Mm

1l
=
&

I
o

4

6
D

i=1

s

VECi(tu(k)

&
1]
%)

(3.22)
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S—1 s—1
Cltus) =GR +50 Pp(t ) + (5 2) Y V4Gt uth)
k=0 k=0

+ %; Vep(t)ulk) + (% — Ai) kz:s VECi(tulk)

(3.23)
The final global errors €; (p) and €,(C;), involved in the computation of the power transient and

precursor concentrations, (Eq.(3.22)-(3.23)) are given as

&) = %i Vp(t,)at) + () Z Vet yulk) + Z A i vyt u(h)
k=S

i=1 k=S

(3.24)

e2(Cy) = %i Vep(t)udl) + (% - 1) i VEC, (e (k)
k=S k=S

(3.25)
These global errors €;(p) and €,(C;) arise due to the truncation errors R;(p) and R,(C;). For

step (constant) and slowly varying reactivity insertions, Eqgs. (3.22)-(3.23) are further simplified

k
as follows. In this case q(k)~ p(t,,)u(k), u(0) ~ A and u(k)~ Akil for k > 1 (since (%) > 1

and ANk « 2 ) Substituting g (k) and u(k) into Egs. (3.22)-(3.25), we get

6
ptns) = plt)e + (1~ ﬁ+p<tn>)2vkp<tn> +/\Z kacan) K e
(3.26)
Citns) = ci(tn)e%hlevkp(t) + - AA)kacan) +e(C)

(3.27)
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and the final global errors €;(p) and €,(C;) are given as
o hk 0 hk
e(0) = (1 =B+ pty) Ties VEp(t,) ot ANZo1 A Xies VECi(tn) o (3.28)

&(C) = BiERs Vp(t) o+ (1= M) SR VEC(t) (3.29)
Egs. (3.26)-(3.27) represent the numerical solution to the power transient and the precursor
concentrations for step and slowly varying reactivity insertions. Egs. (3.28)-(3.29) represent the
global errors involved in the computation of power transient and the precursor concentrations.
The numerical solution of the power transient p(t,,+;) and precursor concentrations C;(t,41),

(Egs. (3.26)-(3.27)), converge if the global errors €, (p) and €,(C;), (Egs. (3.28)-(3.29)), become
k
small as the order of the ETD coefficients is increased, i.e. limy_q Vkp(tn)% - 0 and

k
limy_,o VXC;(t,) % — 0. At a first glance, the global errors €;(p) and €,(C;) can be made to

approach zero by choosing h < 1. However the time-step h and its upper bound are determined
as follows. For step and slowly varying reactivity insertion, V¥p(t,,) and V¥C;(t,,) can be written

in matrix form as

32



Vip ) |
vke )
vke, )
viesa,)
viey,)
viesa,)
vic, ()

PP G a A A A A
-4, 000 00
0-4,0 0 0 0
0 0-4,0 0 0
00 0-4,0 0

000 0-40

0000 0-24,

S OISR AR

k-1
vViep@,)

vEle )

vEle, @)
vilese,)
vi-le, e,

vilegw,)

k-1
vHIC ()

By making use of Eq. (3.4)-(3.5), Eq. (3.30) is rearranged as

Vi) |
vk,

vk,
vkes,)
vke, )
vkes,)
VIC( )

and

'O;Aﬁﬂq/izﬂ?&‘ A A
A 000 00
P91 00 0 0
Ao 0-200 0
i 90 0-40 0
B9 00 0-40

i 9000 0-2

k

ol

pliy) |
C1(to)
Cs(tg)
C3(1p)
Cy(tp)
Cs(tg)

o)
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_ R A A i
Vip(@ )
" P 000 0O i ]
k A p(ty)
via ) o
vke A 0-4,0 0 0 0 1)
2(t) A Cy (1)
k n B h*
VEC () |[Jr=| 20 040 0 0 || C30)
k C,(tn)
Vi Cy(ty) P90 0-4,0 0 40
k A CS(Z())
ViCs(ty) B C (t,)
chs(fn) e 0 00 0-40 L 76V07 |
) _ Po 9000 0-2
A (3.32)
Eq. (3.32) is rewritten in matrix form as
v )= B )], (3.33)

wmwk%M4WmmVT@»ngnmamvwwgwamnmumrg,

h k
[P nl=[pe) Cit) Cott)) Cott) Cut) Colt) €))7 B =A"( k,l/kj
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PP g a4 A A A
-2, 000 00
0-4,0 0 0 0
and A= 0 0-40 0 0
00 0-20 0

00 0 0-4 0

> > > > >R >

0000 0-2,
(3.34)

For convergence of the numerical solution to the power transient and precursor concentrations,
[Y¥(t,)] » 0ask — oo. In other words, limj,_ .[Y*(t,)] = 0 if lim B¥ — 0. This is
possible if the magnitude of the largest eigen value of B < 1. Let y4,V2,¥3, Y4, Vs Ve, V7be the

eigen values of A and let the magnitude of the largest eigen value of A be

: h :
Ymax = max {|yal, [v2l, lvsl, [val, lvsl, [vel, ly71}. Since B:AW’ the largest eigen value

of B 1S Ymax (,(.)me Hence convergence is possible if )/max(k!)Ll/k < 1. So the time-step h is

chosen as

h <( L )(k!)l/k (3.35)

Ymax

The upper bound for the time-step 'h’ is given as

h= (L) (k1)L/* (3.36)

Ymax
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where k > S — 1. With this time-step, the global errors €; (p) and €,(C;) = 0 ask = o i.e. both

k k
Vep(t,) % and V¥C;(t,,) % — 0 as k — o. The detailed description of modified ETD method is

given by Mohideen Abdul Razak [44].

3.4 Application to thermal reactors

The modified exponential time differencing method is applied to solve the point kinetics
equations with six groups of delayed neutrons for both thermal and fast reactors. The power
transients for step and ramp reactivity perturbations are computed and the results are discussed.
In all the power transient computations, discussed here by this method, the time-step is chosen to
satisfy Eq. (3.35).
3.4.1 Power transients of thermal reactor caused by step reactivity

The modified ETD method is applied to estimate the power transients of the thermal
reactor described by Nahla [43]. The decay constants of the neutron precursors and the delayed
neutron fractions for the thermal reactor are given as A; = 0.0127s71, A, = 0.0317s71,
A3 =0.115s71, 2, =0311s71, A =14s"1, A,=3.87s"1, B, = 0000285 pB,=
0.0015975, 3 = 0.00141, 5, = 0.0030525, 55 = 0.00096, B, = 0.000195, and A = 5.0 X
107*s. An external step reactivity p, = —1$ is applied and the resulting power transient is
analyzed. Table 3.1 shows the values of the power transients obtained from modified ETD
method using a time-step h = 0.1s. Table 3.1 also shows the power transients obtained from the
Taylor Series Method (TSM) along with the exact values given by Nahla [43]. The relative
errors, | (Xcar — Xexact)/Xexact|» are shown in brackets in Table 3.1. The comparison is made till
Is as the exact values are available till 1s only. From the comparison of results in Table 3.1, the

accuracy of this method is assured.
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Consider another example of thermal reactor described by [42] with the following
parameters. 4; = 0.0127s71, 1, = 0.0317s71, A; = 0.11557%, 4, = 0.311s7 %, Ag = 14571,
A¢ =3.87s71, B, = 0.000266, B, = 0.001491, p; = 0.001316,8, = 0.002849, pBs =
0.000896, B, = 0.000182, andA = 2.0 X 107 >s. A step reactivity p, = 0.003 is inserted and
the power transient is computed using the modified ETD method (h = 0.01s,S = 7) (Eq. 3.36).
The results are compared with the Taylor Polynomial Method (TPM), the better basis function
method (BBF) and the End Floating Method (EFM) referred by [42]. The results are shown in
Table 3.2. The relative errors are shown in brackets in Table 3.2. It is observed from Table 3.2
that the power transient computed by this method is more accurate. In this case also the
comparison is made till 1s as the exact values [42] are available till 1s only. The point kinetics

equations can also be solved using finite impulse response (FIR) filters [48].

3.5 Application to Indian Prototype Fast Breeder Reactor (PFBR) transients
3.5.1 Step reactivity insertion

As an example of fast reactor, consider the 500 MWe Indian Prototype Fast Breeder
Reactor (PFBR) at Kalpakkam [49]. The decay constants of the neutron precursors and the
delayed neutron fraction for the PFBR are given as A; = 0.0129s7 %, A, =3.12s71 A; =
0.1344s™%, 1, = 0.3448s71, Ac = 13922571, A, =3.7491s71, B, = 0.00008246, B, =
0.00076817, B; = 0.00066296,5, = 0.0012849, (s = 0.00057615, [¢ = 0.00017213,
and A =4.1x1077s. A step reactivity of 50 pcm is inserted in the PFBR. Assuming the
maximum order of ETD coefficient is 5, (§ = 6 in Egs. (3.26)-(3.27)), in this case, the upper
limit for the time-step (Eq. 3.36) is found to be h = 3.5 X 107* By choosing h = 0.0001, the
power transient is computed using the modified ETD method and the Cohen’s method [50] for

an initial period of 100s. The results are given in Table 3.3. The power transient computed by
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this method is in good agreement with the Cohen’s method. This ensures that the modified ETD
method is capable of estimating the power transient with good accuracy for longer duration of
time for a typical fast breeder reactor. The power transients obtained using the modified ETD
method and the Cohen’s method are shown in Fig. 3.1. A maximum relative error of 1.18E-4 is
observed during the transient time. The modified ETD method can be used to estimate the

transients with feedback also [51].

3.5.2 Ramp reactivity insertion

Consider another power transient of the Indian PFBR, caused by a ramp reactivity of
Ipcm/s. Table 3.4 shows the power transient computed using the modified ETD method and the
Cohen’s method for an initial period of 100s. The relative errors are also shown in Table 3.4. The
power transient estimated by this method is in good agreement with the Cohen’s method. A
maximum relative error of 1.83E-04 is observed during this transient time. From Table 3.4 it is
observed that this method is capable of estimating the power transient for fast reactors with ramp
reactivity input for longer duration of time. Fig. 3.2 shows the power transients computed using
the modified ETD method and the Cohen’s method. This method can also be used to estimate the

transients of typical PFBR for oscillatory reactivity insertion [44].

From the comparison of results, it is established that the modified ETD method can be

used to solve stiff point kinetics equations with good accuracy and this shows that it can be

smoothly coupled in the IQS model to estimate the transients.
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Table 3.1. The power transient of thermal reactor computed by the modified ETD method and

the TSM method [43] (p, = —1$). The relative errors are shown in the parenthesis.

Time (s) Exact Values Modified ETD TSM
h =0.1s h =0.1s
0.0 1.0000000 1.0000000 1.0000000

0.1 0.5205643 0.5205643(0.0) 0.5206784 (2.2E — 4)

0.2 0.4880113 0.4880113(0.0) 0.488022 (2.25E —5)

0.4 0.4702262 0.4702262(0.0) 0.470226 (2.10E — 7)

0.6 0.4562794 0.4562794(0.0) 0.4562793 (2.2E — 7)

0.8 0.4441506 0.4441506(0.0) 0.4441505 (2.3E - 7)

1.0 0.4333335 0.4333335(0.0) 0.4333334 (2.3E —7)

Table 3.2. The power transient of thermal reactor computed by the modified ETD method and

other methods [42] (py = 0.003). The relative errors are shown in the parenthesis.

Time (s)  Exact Values Mod. ETD TPM BBF EFM
h =0.1s h =0.1s
0.0 1.00000 1.00000 1.00000 1.00000 1.0000
0.2 1.851268 1.851268 1.851246 1.851250 1.851252
(0.0) (1.2E-6) (9.7E-6) (8.6E-0)
0.4 1.947593 1.947593 1.947581 1.947585 1.947586
(0.0) (6.2E-6) (4.1E-6) (3.6E-6)
0.6 2.037922 2.037922 2.037915 2.037917 2.037918
(0.0) (3.4E-6) (2.5E-6) (2.0E-6)
0.8 2.124832 2.124832 2.124827 2.124829 2.124829
(0.0) (2.4E-6) (1.4E-6) (1.4E-6)
1.0 2.209841 2.209841 2.209838 2.209839 2.209839
(0.0) (1.4E-6) (9.1E-7) (9.1E-7)
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Table 3.3. The power transient of the Indian Prototype Fast Breeder Reactor (PFBR) computed

by the modified ETD method and the Cohen’s method [50] (step reactivity = 50 pcm).

Time (s) Mod. ETD Method Cohen Relative Error
h =0.0001s h =0.0001s

0.0 1.000000 1.000000 0

10.0 2.451082 2451120 1.55E-05
20.0 4.522973 4.523096 2.72E-05
30.0 8.237472 8.237786 3.81E-05
40.0 14.926962 14.927707 4.99E-05
50.0 26.986656 26.988310 6.13E-05
60.0 48.736440 48.739983 7.27E-05
70.0 87.969711 87.977112 8.41E-05
80.0 158.746774 158.761943 9.55E-05
90.0 286.434427 286.465074 1.07E-04
100.0 516.798131 516.859342 1.18E-04

Table 3.4. The power transient of the Indian Prototype Fast Reactor (PFBR) computed by the

modified ETD method and other method [50] for positive ramp reactivity of 1pcm/s.

Time (s) Mod. ETD Method Cohen Relative Error
h =0.0001s h =0.0001s

0.0 1.000000 1.000000 0.0

10.0 1.102048 1.102051 2.72E-06
20.0 1.353823 1.353832 6.65E-06
30.0 1.860535 1.860560 1.34E-05
40.0 2.895502 2.895566 2.21E-05
50.0 5.189995 5.190173 3.43E-05
60.0 10.939190 10.939743 5.05E-05
70.0 27.769447 27.771452 7.22E-05
80.0 87.199901 87.208655 1.00E-04
90.0 348.924903 348.972575 1.37E-04
100.0 1839.603459 1839.939691 1.83E-04
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Fig. 3.1. The power transient of the Indian Prototype Fast Breeder Reactor (PFBR) computed by
the modified ETD method (solid line) and the Cohen’s method [50] (dot) for step reactivity

p(t) = 50 pcm.

3.6 Inverse point kinetics equations — Solution by modified ETD method

The modified exponential time differencing (ETD) method is tested to solve the inverse
point kinetics equations to estimate the reactivity from the observed power transient with noise.
The inverse point kinetics equations are stiff differential equations. The solution of inverse point
kinetics equation is helpful in estimating the reactivity, feedback reactivity and the temperature
coefficient of reactivity from the observed power transient. Generally background noise
interferes in the measurement of the power transient and in real-time scenario, it becomes
equally important to solve the inverse point kinetics equation with feedback and background

noise to estimate the kind of reactivity acting on the reactor.
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Fig. 3.2. The power transient of the Indian Prototype Fast Breeder Reactor (PFBR) computed by

the modified ETD method (solid line) and the Cohen’s method [50] (dot) for positive ramp

reactivity of 1pcm/s.

The solution of inverse point kinetics equation requires the discretization of integral term
associated with the precursor concentration. This discretization requires the power history [52]-
[54]. One can use discrete Laplace transform technique to solve the inverse point kinetics
equation [55]. Hamming method [56] can also be used to solve the inverse point kinetics

equation without requiring power history.

Here we apply the modified ETD method to solve the inverse point kinetics equations
with noise and estimate the reactivity required for the desired power transient in thermal as well
as in Indian Prototype Fast Breeder Reactor (PFBR). This method is used to estimate various
types of reactivity perturbations from the observed power transient. This method is also applied

to estimate the temperature coefficient of reactivity from the power transients of thermal and
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simulated power transient of Indian PFBR. In the case of Indian PFBR, the temperature
coefficient of reactivity is estimated from synthetic power transients with various background
noise levels. It is observed that as the background noise level is increased in the measurement of
power transient, the accuracy in the estimation of temperature coefficient of reactivity is reduced
and it is a natural phenomenon. But even in high background noise also, the temperature
coefficient of reactivity can be accurately estimated by beamforming [57] the power transients
from different channels. Beamforming is done by summing the signals from different channels
with appropriate time delay. In the case of Indian PFBR, the synthetic power transients with high
background noise levels are beamformed and the beamformed power transient is used to estimate
the temperature coefficient of reactivity. While beamforming the power transients from different
channels, it is assumed that there is no time delay between the channels. The estimated
temperature coefficient of reactivity of the Indian PFBR, after beamforming, is found to be in
good agreement with the reference value. It is also shown that as the number of channels in the
beamforming is increased, the accuracy in the estimation of temperature coefficient of reactivity
is improved. From the comparison of results, it is established that the modified ETD method can
be used to estimate the feedback reactivity and temperature coefficient of reactivity to a good
accuracy from the observed power transients in thermal as well as simulated transients in fast

reactors with high background noise.

The reactivity p(t) necessary for causing the desired power transient P(t) can be

obtained from the inverse point kinetics equation as [11]

A dP(t) A

PO =B+ "o 714G (3.37)

aci(®) _ B0

” o P(t) —AG(), j=1,2,3..6 (3.38)
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Solution of Egs. (3.37) and (3.38) gives the reactivity required for the desired power transient

P(b).

Consider the thermal reactor described by Daniel Suescun Diaz et al [55]. The kinetic
parameters of the reactors are given as A; (0.0127, 0.0317, 0.115, 0.311, 1.4 and 3.87 s™1), pB;
(0.000266, 0.001491, 0.001316, 0.002849, 0.000896 and 0.000182) and A = 2.0 X 107> s. The
desired power transient is assumed to be P(t) = exp(wt), w = 0.12353. The reactivity required
for this power transient is calculated using the modified exponential time differencing (ETD)
method and it is shown in Fig. 3.3a. The reference solution is taken from Daniel Suescun Diaz et
al., [56]. Fig. 3.3b shows the relative error (%) in the estimation of reactivity. Fig. 3.4a shows the
reactivity computed for the power transient P(t) = exp(wt), w = 11.6442 using modified ETD

method. Fig. 3.4b shows the relative error.

Consider the 500 MWe Indian Prototype Fast Breeder Reactor (PFBR) at IGCAR,
Kalpakkam [49]. The decay constants and delayed neutron fractions of the PFBR are given as 4;
(0.0129, 3.12, 0.1344, 0.3448, 1.3922 and 3.7491s71), B; (0.00008236, 0.00076817,

0.00066296, 0.0012849, 0.00057615 and 0.00017213) and A = 4.1 X 1077 s. The reactivity

required for the desired power transient, P(t) = 1.44836 X exp( ) —0.16335, 0t <

17.06302

50s, [44], is calculated using the modified ETD method and it is shown in Fig. 3.5a. The relative
error in the estimation of reactivity is shown in Fig. 3.5b. The estimation of reactivity from

power transient can also be performed using Haar wavelets [58].
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Fig. 3.3. (a) The reactivity computed using modified ETD method for the desired power transient
P(t) = exp(wt) with w = 0.12353. (b) The relative error (%) between the reference solution

[56] and the solution obtained using modified ETD method.

3.7 Estimation of temperature coefficient of reactivity of thermal reactor

In this case, the inverse point kinetics equation is solved with feedback using modified
ETD method and the temperature coefficient of reactivity is estimated. Consider the supercritical
process in a pressurized water reactor [59]. This reactor is modeled by one group of delayed
neutron precursor and the kinetics parameters are given as f = 0.0065, [ = 1.0 X 10™*s,
A =10.07741s"1 s. In this reactor the supercritical process is initiated by giving an external step

reactivity, pe, = g The temperature rise in the reactor is assumed to follow the relation [59]

=0 = k() (3.39)
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Fig. 3.4. (a) The reactivity computed using modified ETD method for the desired power transient

P(t) = exp(wt) with w = 11.6442. (b) The relative error (%) in the estimation of reactivity.

In the above equation n(t) is the neutron density and K, is the inverse of thermal capacity of
reactor [59] and it is given as K. = 0.05 °K/MW's. Before the start of supercritical process, the
reactor is assumed to be in the steady state of initial power of 10 MW. Following the step
reactivity, the increase in neutron density (power) and temperature are given Figs. 3.6 and 3.7

[59].

From the observed neutron density (Fig. 3.6) and temperature (Fig. 3.7), the inverse point
kinetics equations are solved using the modified ETD method to obtain the net reactivity,
feedback reactivity and temperature coefficient of reactivity. The estimated net reactivity is
shown in Fig. 3.8. The feedback reactivity is calculated as pgp, = Prer — Pexe and it is given in
Fig. 3.9.
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Fig. 3.5. (a) The reactivity computed using modified ETD method for the desired power transient

t
17.06302

P(t) = 1.44836 X exp ) —0.16335, 0 <t < 505 for Indian PFBR. (b) The relative

error (%) in the estimation of reactivity.
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Fig. 3.7. The variation of temperature with time.

Table 3.5. The temperature coefficient of reactivity (%) obtained using the modified ETD
method along with the reference [59]

Parameter Reference modified ETD method

Temperature coefficient —5.0%x 1075 —5.0284 x 107°

... (Ak/K
of reactivity (—C/)

From Figs. 3.7 and 3.9, the temperature coefficient of reactivity, %, is estimated and it is given

in Fig. 3.10.
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Fig. 3.9. The variation of estimated feedback reactivity (pgp) with time.
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Fig. 3.10. The variation of feedback temperature coefficient of reactivity, i.e. (%) with time.

The linear fit is also shown.

From Fig. 3.10, it is observed that the temperature coefficient of reactivity is independent of time

in this case and it can be linearly fitted as

dp

The parameters of the fit, C; and C,, are found using least square error minimization technique

and they are found to be C; = —5.0284 x 107> (%) and C, = 1.47659107° (%) The

o

constant, C;, gives the temperature coefficient of reactivity and it is given in Table 3.5.

From Eq. (3.40) the adiabatic feedback reactivity with temperature can be written as (neglecting

C2)

prp = —5.0284 x 1075(T — T,)
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where T, is the initial temperature. The estimated temperature coefficient of reactivity, i.e.
—5.0284 x 107> is found to be in good agreement with the reference value. The estimation of

reactivity can also be performed using Haar wavelets [60].

In the recent years, wavelet approach has become an important field in the numerical
solution of differential equations. Different types of wavelets and approximating functions can be
used in numerical solution of initial and boundary value problems [61], [62]. Wavelets are basis
functions, constructed from translation and dilation of mother wavelet. Haar wavelets are
effective in solving ordinary and partial differential equations [63]. The Haar wavelet approach
can be adopted in solving the inverse point kinetics equation for reactivity calculation. The Haar
wavelet transforms the inverse point kinetics equations into a set of linear equations and these

equations can be solved easily [60].

3.8 Estimation of temperature coefficient of reactivity of Indian Prototype Fast Breeder

Reactor (PFBR) from simulated transient with various background noise levels

Here we apply the modified ETD method to solve the inverse point kinetics equations to
estimate the temperature coefficient of reactivity of Indian PFBR from simulated transient with
background noise. Consider the Indian Prototype Fast Breeder Reactor (PFBR) at IGCAR,
Kalpakkam [49]. The decay constants of the delayed neutron precursors and the delayed neutron
fraction of the Indian PFBR are given as A; = 0.0129s71, 1, = 3.12571, 1; = 0.1344s71,
Ay = 03448571, g = 13922571, A, =3.7491s7 1, B, = 0.00008246, B, = 0.00076817,
B3 = 0.00066296, B, = 0.0012849, fs = 0.00057615, S = 0.00017213, and A = 4.1 X

107 7s. In this case, first, synthetic power transients with temperature feedback are generated by
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applying a step reactivity of 50 pcm for various background noise levels. The rate of variation of

temperature with power and the feedback reactivity of the Indian PFBR are given as [64]

20 = (0130005 ——) p(t) (3.41)
ag% = —1.835pcm/°K (3.42)

In the above equations, (Egs. (3.41)-(3.42)), 'T' is the temperature, ‘P’ is the power and
Prp 1s the feedback reactivity. The synthetic power transients with the above temperature
feedback are generated by solving the point kinetics equations using the modified ETD method.
At the beginning of simulation process, the initial temperature is assumed to be 673°K. During
the simulation process, the background noise in the power transient is incorporated as

p) = p(t)(1 +aS(T)) (3.43)

In the above Eq. (3.43), p(t) is the true power transient (without noise), a is the
percentage of noise ie. a = 0, 1%, 2%, etc., and s(t) is the background noise. The
background noise is simulated by generating random numbers of uniform distribution in the
interval [—1, 1]. Here the simulation is performed for various noise levels i.e. « = 0, 2%, 4%.
The simulated power transients (§(t)) for 4% noise, for five different channels (CH1-CHS5), are
shown in Fig. 3.11. From Fig. 3.11, it is obvious that the noise present in different channels is
different. First the inverse point kinetics equations are solved using the modified ETD method
with simulated power transients (p(t)) with no noise (@ = 0%), to estimate the temperature
coefficient of reactivity. The simulated power transient (¢ = 0%) and temperature rise are
shown in Figs. 3.12 and 3.13. Using the simulated power transient and temperature (Figs. 3.12
and 3.13), the net reactivity and the feedback reactivity (@« = 0%) are estimated and they are
shown in Figs. 3.14 and 3.15 respectively. From Figs. 3.13 and 3.15, the temperature coefficient

of reactivity is estimated and it is shown in Fig. 3.16. The curve shown in Fig. 3.16 is linearly
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fitted and the constants of the linear fit are found using least square error minimization
technique. The slope of the linear fit is 2.352 x 1078 and the intercept is —1.8195 X 107>, The
‘y’ intercept of the fit gives the temperature coefficient of reactivity and it is found to be
—1.8195 pecm/°K(a = 0%) which is in good agreement with —1.835pcm/°K [64]. In a
similar manner, various background noise levels are incorporated in the power transient (Eq.
(3.43)) and the inverse point kinetics equations are solved to estimate the reactivity and
temperature coefficient of reactivity. The estimated temperature coefficient of reactivity for
various background noise levels is given in Table 3.6. With 4% noise, the temperature
coefficient of reactivity is found to be —2.2166 pcm/°K, which has an error of 20.8%. The error
in the estimation of temperature coefficient of reactivity can be reduced by beamforming the
power transients from different channels and the beamformed power transient can be used in
solving the inverse point kinetics equations. With 4% noise and with five-channel and ten-
channel beamforming, the temperature coefficient of reactivity is estimated and it is given in
Table 3.6. With 4% noise and with five-channel beamforming (5CH-BF), the error in the
estimation of temperature coefficient of reactivity is found to be 11.6% and with ten-channel
beamforming (10CH-BF), the error is found to be 1.79%. This is given in Table 3.6. By
increasing the number of channels in the beamforming, the error in the estimation of temperature
coefficient of reactivity can be reduced. The detailed description of estimating the reactivity

from power transient of Indian PFBR for various background noise levels can be found in the

work of [60].
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pcm
°K

Table 3.6. The temperature coefficient of reactivity ( ) of the Indian PFBR, obtained using

the modified ETD method for various background noise levels with beamforming. The reference

value [64] is also given.

Parameter Reference Noise level(a)
0% 2% 4% 4% 4%
*NBF *NBF 5-channel 10-channel

beamforming | beamforming

Temp.coeff. | —1.835 | —1.8195 | —1.6825 —2.2166 —-1.6218 —1.8021

of reactivity

(%)

*NBF- No beamforming

3.0
2.5 4
———
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Fig. 3.11. The synthetic power transients at different channels with 4% background noise.
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Fig. 3.12. The power transient following a step reactivity of 50 pcm, 0 < t < 0.3s, is shown in

trace ‘a’. The power transient 0.3s < t < 5.0s is shown in trace ‘b’. Trace ‘b’ is the continuation
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Fig. 3.13. The variation of temperature with time.
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Fig. 3.16. The estimated variation of the feedback temperature coefficient of reactivity, a—i, with

time (no noise). The linear fit is found to be y = —1.8195 x 107° + (2.352 X 107%)t. The

feedback temperature coefficient of reactivity is found to be —1.8195 pfm.

3.9 Summary

The modified exponential time differencing (ETD) method for solving the point kinetics
equations is described in detail. A novel technique to choose the time step for solving the point
kinetics equations is established. The modified ETD method is applied to estimate the power
transient in few thermal reactors for different types of reactivity perturbations and the results are
discussed. The results indicate that using the modified ETD method, the transient can be
estimated with good accuracy with large time step. The applicability of modified ETD method to
estimate the transient of typical fast reactor is also discussed. The transient of 500 MWe Indian
PFBR, estimated by this method is discussed. The applicability of this method to estimate the

temperature coefficient of reactivity from the simulated transient with background noise is also
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discussed. As the modified ETD method is capable of estimating the transient for various types
of reactivity perturbations, this method can be safely coupled with the improved quasi static IQS)

method to estimate the space effects in the transients.
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CHAPTER 4

MODIFIED ETD METHOD WITH 1QS MODEL
4.1 Introduction

As discussed in chapter 2, the transients are estimated by solving the amplitude function
and the shape function. The amplitude function is solved using the modified exponential time
differencing (ETD) method and the shape function is solved using the implicit scheme. The
implicit scheme is given by

aPp(r,t)  P(r,t) —p(r,t —6t)
ot 8t

Since the shape function is a slowly varying function of time, a large time step (macro time step)
can be used to solve the shape function. The product of amplitude function and shape function
gives the actual neutron flux in the reactor. The methodology to estimate the transient using the
1QS model is described in chapter 2. Here we apply the modified ETD method with 1QS model

to estimate the transients of the following reactors.

4.2 3D Homogeneous Reactor Transients

It is a three dimensional homogeneous reactor of cubic size of length 200 cm [65], [66].
The material composition is uniform throughout the core. The material composition is given in
Table 4.1. Flux zero boundary conditions are used while solving the neutron diffusion equation.
Here the reactor is subjected to two independent perturbations. First the reactor is subjected to a
perturbation in the thermal absorption cross section given by AX,,(t) = —0.369 X 10™%. The
perturbation remains constant in time and the perturbation is applied throughout the reactor. The

fast and thermal flux, following this perturbation, are estimated by the modified ETD method
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with IQS model and they are given in Table 4.2. The transients are estimated till 0.4s as the
results are available till 0.4s only [65]. The second perturbation is caused by increase in thermal
absorption cross section given by AX,,(t) = 0.369 X 10™*. The second perturbation also
remains constant in time and it is applied throughout the reactor. The fast and thermal flux,
following this negative reactivity perturbation, are estimated by this method and they are given
in Table 4.3. Here also the transients are estimated till 0.4s only as the results are available till
0.4s [65]. The micro time step for calculating the amplitude function was chosen as described in
chapter 3 (Eq. (3.35)). Since this reactor has one group of delayed neutron, the matrix A (Eq.
(3.35)) assumes the dimension of 2 X 2. Assuming that the order of Taylor series expansion is
taken up to 3, (S = 3), the largest eigen value (in magnitude) of the matrix A is found to be 2.467
in the case of positive reactivity perturbation. Using the relation (Eq. (3.35)), the micro time step
in this case is found to be h < 0.7. Similarly in the case of negative reactivity perturbation, the
dynamic reactivity remains constant and the largest eigen value is found to be 18.224 and hence
the micro step is found to be h < 0.1 in this case. Since the results (Table 4.2 and 4.3) are
available at a time interval of 0.05s, we have taken the micro time step as well as macro time
step as 0.05s (At = AT = 0.5s) for estimating the transient under positive and negative
reactivity perturbations. The fast and thermal flux estimated by this method and other standard
codes [65] are given in Table 4.2 and 4.3. The fast and thermal flux, computed by this method,
are in good agreement with other standard codes. The significance of space part (shape function),
in estimating the transient, is determined as follows. For both perturbations, the core power is
estimated with space-time kinetics and point kinetics. The relative error (%) in the core power,
when space part is neglected, is estimated and it is given in Fig. 4.1 and Fig. 4.2 for positive and

negative reactivity perturbations. It is observed, during the transient, that a maximum error of
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0.12% is observed in the case of positive perturbation (Fig. 4.1) and a maximum error of 0.18%
is observed in the case of negative perturbation (Fig. 4.2). The relative error is found to increase

with time for both positive and negative perturbations.

The total peaking factors (3D peaking factor) are calculated for positive and negative
perturbations and they are given in Table 4.4 and 4.5 respectively. When the space part is
neglected, the error in the estimation of peaking factors is observed to be small during the
transient. This is shown in Table 4.6 for positive and negative perturbations. This may be due to
the reason that the perturbations are applied throughout the reactor. The total peaking factor is
found to be 3.68 (corrected to two decimal places). For a bare homogeneous cubic reactor, the
theoretical value of total peaking factor is 3.88 (corrected to two decimal places), whereas in this
example the peaking factor is found to be 3.68. The reason for this is as follows: here a mesh size
of 20 cm is taken [65], [66] to estimate the transient. Under this condition, the flux shape will not
exactly match with the theoretical cosine function. But as the mesh size is reduced, the flux
shape improves and approaches the cosine function and the total peaking factor also approaches
the theoretical value of 3.88. A case study was performed to estimate the total peaking factor for
various mesh sizes and it is given in Table 4.7. From Table 4.7, it can be observed that as the

mesh size is reduced, the peaking factor approaches the value of 3.88.
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Table 4.1 Two group constants for 3D Homogeneous Reactor

Group 1 Group 2
D; =135cm D, =1.08cm
2, = 0.001382 cm™? 2, = 0.0054869 cm™?
v =241 v =241
Zr1 =0.00242 cm™! Y, = 0.00408 cm™!
X1, = 0.0023 cm™? 2, =00cm™?!
vy =3.0x 107 cm st v, =22x10°cms™t
A =008s"1 = 0.0064

Table 4.2 The fast and thermal flux estimated by the modified ETD method with 1QS model at
the centre of 3D Homogeneous Reactor for positive reactivity perturbation. The fast and thermal

flux computed by other standard codes [65] are also given.

Time Fast flux Thermal flux
v AMF NT-FMM NT-AM Modified AMF  NT-FMM NT-AM  Modified
ETD+IQS ETD+IQS
0.0 2229 2229 2.229 2.229 0.816 0.816 0.816 0.816
0.05 3.071 3.071 3.071 3.074 1.127 1.127 1.127 1.127
0.10  3.830 3.828 3.830 3.835 1.407 1.406 1.407 1.408
0.15 4516 4510 4.516 4.524 1.660 1.658 1.660 1.662
020  5.138 5.124 5.137 5.147 1.890 1.885 1.889 1.892
030 6.216 6.176 6.215 6.232 2.287 2.273 2.287 2.292
040 7.118 7.033 7.116 7.139 2.620 2.589 2.619 2.626
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Table 4.3 The fast and thermal flux computed by the modified ETD method with IQS model at
the centre of 3D Homogeneous Reactor for negative reactivity perturbation. The fast and thermal

flux computed by other standard codes [65] are also given.

Time Fast flux Thermal flux
v AMF NT-FMM NT-AM Modified @ AMF  NT-FMM NT-AM  Modified
ETD+IQS ETD+IQS
0.0 2229 2229 2.229 2.229 0.816 0.816 0.816 0.816
0.05 1.645  1.645 1.645 1.671 0.601 0.601 0.601 0.612
0.10  1.409 1.409 1.409 1.431 0.514 0.514 0.514 0.522
0.15 1.313  1.312 1.313 1.326 0.478 0.478 0.478 0.483
020 1273 1.271 1.273 1.280 0.464 0.463 0.464 0.466
030 1.247 1.243 1.247 1.248 0.454 0.453 0.454 0.454
040 1.240 1.234 1.240 1.239 0.451 0.449 0.451 0.451

Table 4.4. Total peaking factor (3D peaking factor) during transient for positive reactivity

perturbation
Time Total peaking factor Total peaking factor
(Space-time Kinetics) (Point kinetics)

0.0 3.688562 3.688562

0.05 3.688604 3.688562

0.1 3.688590 3.688562

0.15 3.688580 3.688562

0.2 3.688577 3.688562

0.25 3.688572 3.688562

0.3 3.688570 3.688562

0.35 3.688569 3.688562

0.4 3.688566 3.688562
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Table 4.5. Total peaking factor (3D peaking factor) during transient for negative reactivity

perturbation
Time Total peaking factor Total peaking factor
(Space-time Kinetics) | (Point kinetics)

0.0 3.688562 3.688562

0.05 3.688749 3.688562

0.1 3.688733 3.688562

0.15 3.688702 3.688562

0.2 3.688665 3.688562

0.25 3.688634 3.688562

0.3 3.688614 3.688562

0.35 3.688597 3.688562

0.4 3.688586 3.688562

Table 4.6. Error in the peaking factor during the transient

Time | Relative error in total peaking factor | Relative error in total peaking
(positive perturbation) factor (negative perturbation)

0.0 0 0

0.05 1.14E-3 0.00507

0.1 7.59098E-4 0.00464

0.15 4.87993E-4 0.00380

0.2 4.06661E-4 0.00279

0.25 2.71108E-4 0.00195

0.3 2.16886E-4 0.00141

0.35 1.89775E-4 9.4887E-4

0.4 1.08443E-4 6.5065E-4
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Fig. 4.1 The relative error in reactor core power when the shape function is neglected (in the case

of positive reactivity perturbation).
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Fig. 4.2 The relative error in reactor core power when shape function is neglected (in the case of

negative reactivity perturbation).

65



Table 4.7. Total peaking factor for various mesh sizes. The theoretical value is 3.88.

Mesh size (cm) Total peaking factor
(Space-time kinetics)

20 3.68

10 3.82

5 3.85

4.3 3D TWIGL Benchmark Reactor Transients

It is an extension of original 2D TWIGL Benchmark [67] problem in 3D geometry. It is
also one of the widely studied problem [19], [65], [66], [68]. It is a three dimensional
heterogeneous cubic reactor. It is a seed blanket reactor and has side length of 160 cm. One
quadrant of the reactor core is shown in Fig. 4.3. An axial blanket of 24 cm thickness is present
at the top and bottom of the core. The material composition of the core is given in Table 4.8.
Two neutron energy groups and one delayed neutron group are assumed here. Flux zero
boundary conditions are applied while solving the diffusion equation. The k.f; value for the
unperturbed state of reactor is computed and it is given in Table 4.9 along with the reference
[69]. Four regions containing the fuel material 1 (Fuel-1) are perturbed by a linear ramp followed

by step perturbation in the thermal absorption cross section and it is given as [66]

0.0045
AL, () = — t, 0<t<02s
0.2
AL, (6) = —0.0045, t>0.2s

Here the perturbation in the cross section occurs only in some confined area. The thermal flux,
following the transient, is estimated by this method at different location of the reactor and it is
given in Table 4.9. The thermal flux computed by other standard codes is also given in Table
4.10 [65], [66]. The thermal flux is calculated till 0.3s as the reference results are available till

0.3s only. From Table 4.10, it is observed that the thermal flux obtained by this method is in
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good agreement with other standard codes. The core power is estimated with space part and
without space part (point kinetics). The relative error in the core power when the space part is
neglected is shown in Fig. 4.4. It is observed from Fig. 4.4 that an error of 10% is observed in the
core power, at t = 3.0s, when the space part is neglected. The axial power profile (radially
integrated axial power) is estimated with space part as well as without space part and it is given
in Fig. 4.5. From Figs. 4.4 and 4.5, it is observed that the space part (shape function) has
significant role in estimating the core power. In 3D TWIGL reactor, the effect of space part, in

estimating the transient, is more pronounced.

X (cm) =
0 24 56 80
Y (cm)
l
Fuel-3 Fuel-2
24 Fuel-3
=0
Fuel-2 Fuel-1
56
Fuel-3
80
$=0

Fig. 4.3. One quadrant of 3D-TWIGL reactor. The different fuel regions and boundary

conditions are shown.
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The total peaking factors are also calculated during the transient and they are given in Table
4.11. It is observed that the variations in the peaking factors are observed when the space part is
neglected while computing the transient. The error in the estimation of peaking factors when
space part is neglected in given in Table 4.11. It is to be noted that a maximum error of 1.4 %
observed in the total peaking factor during the transient time when the space part is neglected.
The 10% error in the core power and 1.4% error in the peaking factor may arise due to the reason
that the perturbation in the cross section is localized; and it implies that in such cases, the

significance of space part is more important.

Table 4.8. Two group constants for 3D TWIGL Reactor at different regions

Region No. Group 1 Group 2
1&2 Di=14cm D, =04cm
23 =0.01cm™t 22 =015cm™t
v=24 v=24
Ty = 0.0035cm™ Zr =01cm™
2, =001cm™?! X1, =00cm™?
v; =1.0x 107 cms™?! v, =20x10°cms~?!
3 D; =13cm D, =05cm
21 =0.008cm™! 2 =0.05cm™t
v=24 v=24
Zr1 = 0.0015cm™! T =0.03cm™
2, =001cm™?! X1, =00cm™?
v, =1.0%x 10" cms™! v, =2.0%x10°cm st
A=008s"1 8 = 0.0075
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Table 4.9. Comparison of k¢ ¢

Parameter Estimated Reference [69]
Kery
kesr 1.06371 1.06398

Table 4.10. The thermal flux of 3D TWIGL reactor, estimated by modified ETD+IQS method

and other standard codes [65] for positive reactivity perturbation.

Time Method Thermal flux at different locations

(s) (0,80,16) (40,40,16) (0,80,80) (40,40,80) (0,80,44) (40,40,144)

0.0 3DKIN 0.347 0.244 1.279 0.421 0.347 0.244
AMF 0.347 0.244 1.279 0.421 0.347 0.244
NT-FMM 0.347 0.244 1.279 0.421 0.347 0.244
NT-AM 0.347 0.244 1.279 0.421 0.347 0.244
Modified 0.347 0.244 1.279 0.421 0.347 0.244
ETD+IQS

0.05  3DKIN 0.398 0.284 1.467 0.496 0.395 0.283
AMF 0.400 0.284 1.478 0.498 0.401 0.285
NT-FMM 0.396 0.281 1.461 0.492 0.396 0.282
NT-AM 0.396 0.281 1.461 0.492 0.396 0.282
Modified 0.401 0.282 1.477 0.491 0.400 0.284
ETD+IQS

0.10  3DKIN 0.483 0.349 1.780 0.616 0.479 0.348
AMF 0.487 0.350 1.800 0.621 0.488 0.352
NT-FMM 0.479 0.345 1.769 0.610 0.479 0.345
NT-AM 0.479 0.345 1.769 0.610 0.479 0.345
Modified 0.490 0.345 1.802 0.607 0.489 0.351
ETD+IQS
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0.15

0.20

0.25

0.30

3DKIN
AMF
NT-FMM
NT-AM
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ETD+IQS

3DKIN
AMF
NT-FMM
NT-AM
Modified
ETD+IQS

3DKIN
AMF
NT-FMM
NT-AM
Modified
ETD+IQS

3DKIN
AMF
NT-FMM
NT-AM
Modified
ETD+IQS

0.619
0.626
0.610
0.610
0.633

0.867
0.882
0.841
0.841
0.891

0.994
0.997
0.980
0.980
0.997

0.991
1.008
1.004
1.004
1.010

0.454
0.457
0.445
0.445
0.446

0.643
0.651
0.621
0.621
0.622

0.737
0.736
0.724
0.724
0.706

0.735
0.745
0.741
0.741
0.720

2.284
2.319
2.255
2.255
2.320

3.197
3.269
3.109
3.109
3.257

3.666
3.686
3.623
3.623
3.630

3.655
3.727
3.710
3.710
3.681

0.809
0.820
0.797
0.797
0.793

1.162
1.184
1.126
1.126
1.131

1.330
1.333
1.311
1.311
1.270

1.326
1.348
1.342
1.342
1.295

0.615
0.629
0.610
0.610
0.630

0.860
0.887
0.841
0.841
0.888

0.987
0.998
0.980
0.980
0.987

0.984
1.009
1.004
1.004
1.006

0.452
0.459
0.445
0.445
0.458

0.640
0.656
0.621
0.621
0.653

0.734
0.737
0.724
0.724
0.732

0.732
0.745
0.741
0.741
0.745
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Relative error (%) in core power
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Fig. 4.4. The relative error (%) in core power (3D TWIGL) when the space part is neglected.

Table 4.11. Total peaking factor estimated with space-time kinetics and in the absence of space

part. The error in the peaking factor, when space part is neglected, is also shown.

Time Total PF Total PF Relative error (%) in
(Space-time Kinetics) (Point kinetics) Total PF

0.0 3.914752 3.914752 0

0.05 3.905088 3.914752 0.24747

0.1 3.894653 3.914752 0.51607

0.15 3.883672 3.914752 0.80027

0.2 3.872078 3.914752 1.1021

0.25 3.865069 3.914752 1.28544

0.3 3.859865 3.914752 1.42199
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Fig. 4.5. The variation of axial power (radially integrated) profile at t = 0.4s.
4.4 3D LMW Benchmark Reactor Transients

The Langenbuch, Maurer and Werner (LMW) problem simulates an operational transient
involving control rod movement [9], [17], [19], [70], [71]. In this benchmark, the control rod
ejection accident (REA) is analyzed and the transient following the REA is estimated for longer
duration of time. The control rod ejection accident is a design-basis accident which must be
evaluated as part of deterministic safety analysis. This problem is a 3D transient benchmark
without thermal-hydraulics feedback. The core dimensions are given as 200cm X 200cm X
160cm. The core is composed of two kinds of fuel assemblies. One quadrant of the core is
shown in Fig. 4.6. The control rod positions before and after the transient are shown in Fig. 4.7

and 4.8. There are axial reflectors with 20-cm width. Here the number of neutron energy groups
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is two and the number of delayed precursor groups is six. The macroscopic cross section data
and the delayed neutron precursor data are given in Table 4.12 and 4.13. This problem is widely
studied for the cusping effect of control rod movement [17]. Before the transient, one bank of
control rods is inside the core while the second bank of control rods is located in the reflector.
The transient is caused by withdrawal and insertion of two control rod banks. The control rods of
group 1 are inserted from the upper water reflector to the axial mid-plane of the core, and the
control rods of group 2 are set in the upper axial reflector in the initial state. The transient is
initiated by withdrawing the control rods of the rod group 1 at a constant speed of 3 cm/s until
they are fully withdrawn. At 7.5 s into the transient, the control rods of the rod group 2 starts
moving inside at the same speed and continue to move in for 40 s. The transient is initiated by
withdrawing a bank of four partially inserted control rods at the rate of 3 cm/s over the
time interval from 0 to 26.7 s. The second bank of control rods is inserted at the same
rate over the time from 7.5 to 47.5s The transient is followed for 60 s. These complicated
control rod motions lead to significant shape changes and large cusping effects. The detailed
description of control rod movement can be obtained from the works of [17], [19]. The
numerical solution of this problem had been obtained using several nodal computer codes [1],
[20]. The computed k.¢s is given in Table 4.14 along with the reported values. The reported
values are taken from [17], [19], [68]. The core power following the transient is given in Fig. 4.9.
In Fig. 4.9, the core power is compared with the SKETCH code [72]. It is observed that during
the transient the core power increases, reaches a maximum and then starts decreasing. The core
power is also estimated by neglecting the space part and it is given in Fig. 4.10. The relative
error in the estimation of core power, when the space part is neglected, is given in Fig. 4.11. It is

observed from Figs. 4.10 and 4.11 that the effect of space part is significant in computing the
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power. The power density (K) is computed for various micro and macro time steps and they

are given in Table 4.15. The power density is compared with that of SKETCH code (Table 4.15).
It is observed from Table 4.15 that as the micro and macro time step is varied, the change in the

power transient is observed to be small.

The total peaking factors are calculated during the transient and they are given in Table
4.16. The error in the estimation of peaking factors when the space part is neglected is given in
Table 4.16. It is to be noted that a maximum error of 3.26% is observed in the total peaking

factor during the transient, when the space part is neglected.

Table 4.12. Material composition for LMW Benchmark reactor

Material Zone | Energy group D (cm) T,(em™1) Vs L2

1 1 1.423913 0.01040206 | 0.006477691 | 0.01755550
2 0.356306 0.08766217 | 0.112732800

2 1 1.423913 0.01095206 | 0.006477691 | 0.01755550
2 0.356306 0.09146217 | 0.112732800

3 1 1.425611 0.01099263 | 0.007503284 | 0.01717768
2 0.350574 0.09925634 | 0.137800400

4 1 1.634227 0.00266057 | 0.0 0.02759693
2 0.264002 0.04936351 | 0.0
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Fig. 4.6. One quadrant of the LMW core. The boundary conditions are also shown. The control

rods and fuel material composition numbers are shown in the inset.

Table 4.13. Delayed neutron precursor data

Group no. Bi A,(s™Y) Group no. Bi A,(s7H)
1 0.0002470 0.0127 4 0.0026455 0.3110
2 0.0013845 0.0317 5 0.0008320 1.4000
3 0.0012220 0.1150 6 0.0001690 3.8700
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Table 4.14. Estimated k¢ along with the reference [17], [19], [68].

S.N Parameter | Estimated | Reference-1 | Reference-2 | Reference-3 | Reference-4
k. ff QUANDRY SPANDEX SIMULATE | CONQUEST
1 kess 0.99981 0.99974 0.99971 0.99974 0.99966
Z [cm] ‘
200 Z fom! ‘
4
180 200
4
180
2 2 3
100 o0 2 2 3
60 1
60
]
0 | 0 I
XY XY

Fig. 4.7. The axial position of control rod

before transient
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Fig. 4.8. The axial position of control rod

at the end of transient.




Table 4.15. Comparison of core power density with SKETCH code [72]. Power density (%)

for various macro and micro time steps along with the SKETCH code.

Time (s) 0 10.0 20.0 30.0 40.0 50.0 60.0

Power density ( w ) 150 201 257 207 122 76 58

cm3

(SKETCH  CODE,
[72])

Modified ETD+IQS method

At=1.0E -3 150.00 | 200.57 | 251.68 |204.02 | 124.38 |80.44 | 63.04
AT = 0.5

At =2.0E -3 150.00 | 200.57 | 251.71 |204.06 | 124.38 |80.48 | 63.07
AT = 0.5

At=2.0E -3 150.00 | 201.82 | 254.69 | 205.06 | 123.86 | 79.87 | 62.64
AT =1.0

At=2.5E -3 150.00 |202.99 |258.72 |206.89 |123.02 |80.07 | 63.24
AT =1.0

At =5.0E -3 150.00 | 201.83 | 254.72 | 205.07 | 123.83 | 79.83 62.60
AT =1.0

At=1.0E -2 150.00 | 201.84 | 254.70 |205.04 | 123.83 | 79.83 62.59
AT =1.0
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Fig. 4.9. The core power density (W /cm3) with time. The reference data is taken from SKETCH

code [72].

Table 4.16. Total peaking factor during the transient. The relative error in the estimation of total

peaking factor when space part is neglected.

Time | Space-Time Kinetics | Point Kinetics Relative error (%)
Total PF Total PF in Total PF

0.0 3.312788 3.312788 0

10 3.308672 3.312788 0.1244

20 3.308173 3.312788 0.1395

30 3.300141 3.312788 0.38323

40 3.208119 3.312788 3.26263

50 3.210680 3.312788 3.18026

60 3.210717 3.312788 3.17907
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Fig. 4.10. 3D LMW core power estimated with space-time kinetics and point kinetics.

20 -
5
(0]
=
o)
S 45
o o
o o
o o
(0] ..
= K
£ 104 pod
S y
= ®
o o
o o
(0]
=
S
(0]
¥ o4

T T T T T T T
0 10 20 30 40 50 60
Time (s)

Fig. 4.11. Relative error (%) in the estimation of core power when the space part is neglected.

79



4.5 CANDU 3D-PHWR (AECL 7236) Benchmark Transients

It is a benchmark reactor transient proposed by ATOMIC ENERGY OF CANADA
LIMITED [73]. It is a realistic 3D CANDU PHWR space-time kinetics benchmark problem [73]
in Cartesian geometry. This is one of the widely studied benchmark problem [8], [28], [30], [74].
The geometrical description of the CANDU core is as follows: This core contains two radial fuel
zones (inner core and outer core) surrounded by heavy water reflector as shown in Fig. 4.12. The
axial length of the core in the horizontal Z direction is 600 cm. Along the horizontal direction (Z
axis) the material distribution is uniform. The height and width of the core are 780 cm. The core
is divided into a total of 18 X 18 X 10 meshes. It has reflective symmetry in all XY, YZ and XZ
planes passing through the centre of the reactor. The vertical cross section (0 < Z < 300 cm) of
the core is shown in Fig. 4.13. The horizontal cross section of the core at Y = 390 cm is shown
in Fig. 4.14. The vertical cross section for 300 < Z < 600 cm is shown in Fig. 4.15. The core
composition is given in Table 4.17. Under normal operating conditions, the fissile component in
the inner core is slightly less than that of the outer core. The two group cross section data for the
core are given in Table 4.18. The decay constants of the delayed neutron precursors and the
delayed neutron fractions are given in Table 4.19. Here the transients are modeled using two
energy groups and zero flux boundary condition is assumed. The keff value is estimated and it is
given in Table 4.20 along with the reference values. One can follow the sub-space iteration
scheme to estimate the eigen value (mode) and other lower modes [74]. The eigen value can also

be obtained using Orthomin(1) algorithm [75].
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4.5.1 LOCA simulation in CANDU 3D-PHWR

Here the transient is caused by the occurrence of LOCA. The LOCA is simulated by
decreasing the thermal absorption cross section in regions 5, 6, 10, 11, 17, 18, 22 and 23 (Figs.
4.13 and 4.15). The rate of decrease of thermal absorption cross section is given by [73]

0%, _ {—1.0 x 107*(cms)™?! fort< 04s
ot  1-8.88889 x 10~¢(cms)™! fort > 0.4s

To arrest the positive reactivity insertion, shut down devices are inserted asymmetrically and the

insertion of shut down devices creates an incremental thermal absorption cross section [73],

given by
AZ, = 6.15 x 10~*cm ™!
X - dimension (cm)
0 780
————

C- Reflector
J—‘ B- Outer Core \—L

A- Inner Core

y - dimension (cm)

Fig. 4.12. Vertical cross section of CANDU 3D-PHWR
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X - dimension (cm)
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I I o
go L ’J ‘f\ L‘
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- L
3901 5 11 8 3

y - dimension (cm)

570~

630 j 6 7 ’7
690 \—‘ ’J
780 A\

Fig. 4.13. Vertical cross section (at Z = 0) of CANDU 3D-PHWR. The shaded regions indicate

the area where the absorber is inserted.

X - dimension (cm)
0 90 210 390 570 690 780

300 ———

Z- dimension (cm)

13

600

Fig. 4.14. Horizontal cross section (at Y = 390 cm) of CANDU 3D-PHWR. The shaded regions

indicate the area where the absorber is inserted.
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Fig. 4.15. Vertical cross section of CANDU 3D-PHWR at Z = 600 cm. The shaded regions

indicate the area where the absorber is inserted.

Table 4.17. Material composition of CANDU 3D-PHWR at different regions

Region Name Material Composition (Fresh fuel)

A-Inner core & Fuel: natural UO, at 600° C

B-Outer core Coolant: 99.7% D,0 at 270° C
Moderator: 99.7% D,0 at 60° C

C-Reflector 99.7% D,0O at 60° C
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Table 4.18. Two group constants for CANDU 3D-PHWR

Region D, Vi, 2 21
No.

1,2,3,4,13, D; =13100cm v = 0.0 2, =1018x107% 1.018E-2
14,15,16 D, = 0.8695 cm vZp, = 0.0 X, =2117x10"*

5-10, D; = 1.2640 cm vz = 0.0 Y, =8154x107% 7.368E-3
17-22 D, =09328cm vy, =4723x107% X, =4.014x 1073

11,12, D; = 1.2640 cm vz = 0.0 Y, =8154x10"% 7.368E-3
23,24 D, =09328cm  vi;, =4562x1073 X =4.100 x 1073

Table 4.19. Delayed neutron fractions and precursor decay constants

Delayed neutron B; A (s™H
group no.

1 4.17E-04 1.244E-2

2 1.457E-3 3.063E-2

3 1.339E-3 1.139E-1

4 3.339E-3 3.079E-1

5 8.970E-4 1.198E+0

6 3.200E-4 3.212E+0

v, = 1.0 X 107 cm/s, v, = 3.0 X 10° cm/s

The incremental thermal absorption cross section is created in the regions 2, 4 7, 9, 12,
14, 16, 18, 19 and 21-24 (Figs 4.13-4.15). The regions where absorbers are inserted are shown as
shaded areas in Figs. 4.13-4.15. The absorber insertion starts at 0.6s with a constant velocity of

520 cm/s in the Y direction. The moving absorber boundary is parallel to the XZ plane. The
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change in cross section is additive whenever the perturbations overlap. The transient lasts for

2.5s.
4.5.2 Transient estimation and discussion

The combined effect of LOCA and asymmetric insertion of shutdown devices create
super delayed transients. This benchmark problem was initially solved using the CERKIN code
[73] and it is taken as the reference. The initial k.ff is found to be 1.003555 and other reported
kesr values are given in Table 4.20. A micro time step of 0.1ms is adopted here to solve the
amplitude function and the shape functions are estimated at macro time steps 0.0125s, 0.250s,
0.5s and 0.1s. The relative core power, following the transients, is estimated for the full length of
the transient for each macro time step using the modified ETD with 1QS model. The estimated
relative core power is compared with that of benchmark result [73]. The relative core power
computed with the macro time step 0.0125s is shown in Fig. 4.16 along with the benchmark
result. A relative error of 2.02% is observed in the computation of peak power. Fig. 4.17 shows
the relative power estimated using the macro time step 0.025s. A relative error of 1.53% is
observed in the estimation of peak power. Figs. 4.18 & 4.19 show the relative powers for the
macro time steps 0.05s and 0.1s and the relative errors are found to be 0.94% and 0.98%
respectively. The variation of normalized thermal flux in the XZ plane at Y = 360cm, Z =
270cm at T = 2.5s is shown in Fig. 4.20. From the comparison of results, it is observed this
method is capable of estimating the transient to a good accuracy. The error in the estimation of
core power, when different macro time steps are used, is given in Fig. 4.21. The core power is
estimated with space part and without space part. The relative error (%) between them is
computed and given in Fig. 4.22. The detailed description of the transient, estimated using

modified ETD method with IQS model is given by Mohideen Abdul Razak [36].
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Table 4.20. Comparison of initial k,f with other standard codes

Parameter Estimated Benchmark [73] TRIKIN [30] Modak and
k eff Jain [74]

kerr 1.003555 1.003550 1.00355119 1.0035548

4.5.3 Flux distribution and power tilts in CANDU-PHWR during transient

The thermal flux distribution at 270 < Z < 300 before the transient is shown in Fig. 4.23a.
As the transient takes place, the flux distribution starts changing and this causes the power tilt.
The thermal flux distributions at t = 0.5s, 1.0s, 1.5s, 2.0s and 2.5s, in the plane 270 < Z < 300,
are shown in Figs. 4.23b-4.23f. In a similar manner the fast flux distribution before the transient
(270 <Z <300) is given in Fig. 4.24a. The fast flux distributions at t = 0.5s, 1.0s, 1.5s, 2.0s and

2.5s, in the plane 270 < Z <300, are shown in Figs. 4.24b-4.24f.

—m— CERKIN
404 —e— Modified ETD+IQS
3.5+
3.04

o 2.5

(0]

z

o

Q 20

(]

=

©

< 1.5+

0'd
1.0 H
0.5
0.0 —

0.0 0.5 1.0 1.5 2.0 2.5

Time (s)

Fig. 4.16. Relative Power of CANDU 3D-PHWR computed with macro time step 0.0125s.
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Fig. 4.17. Relative Power of CANDU 3D-PHWR computed with macro time step 0.0250s.
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Fig. 4.18. Relative Power of CANDU 3D-PHWR computed with macro time step 0.05s.

87



—a— CERKIN
4.0+ —o— Modified ETD+IQS

3.5

Relative power

0.0 0.5 1.0 15 2.0 25
Time (s)

Fig. 4.19. Relative Power of CANDU 3D-PHWR computed with macro time step 0.1s.
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Fig. 4.20. Normalized thermal flux in XZ plane, atY = 360 cm, Z = 270cm, T = 2.5s.
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Fig. 4.21. The relative error (%) in core power for various macro time steps.
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Fig. 4.22. Relative error (%) in core power (modified ETD+IQS) when space part is neglected.
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The power tilt is computed as

powerinupper part — powerinlower part

Power tilt (top to bottom) =
totalpower

powerin left side — powerin right side

Power tilt (side to side) = fotalpower

powerin front part — powerin back part
totalpower

Power tilt (front to back) =

The initial power tilt is observed to be

Power tilt (top-bottom) (%) = 7.4947502E-04

Power tilt (side-side) (%) = 2.7080099E-03

Power tilt (front - back) (%) = 2.1282263E-03

The variation of power tilt during the transient is given in Figs. 4.25-4.27.
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Fig. 4.23a. The thermal flux distribution (270 <Z < 300) in CANDU PHWR at t = 0s.
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Fig. 4.23b. The thermal flux distribution (270 <Z < 300) at t = 0.5s. The flux tilt is seen
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Fig. 4.23d. The thermal flux distribution (270 <Z < 300) at t = 1.5s.
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Fig. 4.23f. The thermal flux distribution (270 < Z <300) at = 2.5s
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4.6 Summary

The transient in 3D homogeneous reactor is estimated using the modified exponential
time differencing (ETD) method with improved quasi static model (IQS). The transient is
estimated for two independent perturbations in the cross sections. The estimated transient is
found to be in good agreement with the reference. In this case the effect of space part is found to

be small in the estimation of transient.

The transient in 3D TWIGL benchmark reactor is estimated and the results agree well
with the reported values. Here the perturbation in the cross section is localized. Here the effect of
space part is found to be significant (~10%) in the estimation of transient. It may be due to the

reason that the perturbation in the cross section is localized.

The transient in 3D LMW benchmark following control rod ejection accident is analyzed
for longer duration of time. This benchmark contains complicated control rod movement. The
transient is estimated for various micro and macro time steps and the results agree well with the

reference. Here the space part contribution is found to be more in the estimation of transient.

The transient in CANDU 3D PHWR benchmark (AECL 7236) is analyzed following
LOCA. The asymmetric insertion of control rod banks creates super delayed transients. The
transient is estimated for various micro and macro time steps. The estimated transient is found to
be in good agreement with the CERKIN code. It is observed that using the modified ETD
method with 1QS model, the transient can be estimated using large time step without losing the

accuracy. Here the effect of space part is found to be more in the estimation of transient.

These results clearly indicate that the modified ETD method with IQS model can be used
to estimate the transient for various types of reactivity insertions. The transient can be estimated
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using large time step without losing the accuracy. This computational method is found to be
stable in the sense that a small change in the micro time step or macro time step does not affect

the accuracy very much.
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CHAPTERS

DYNAMIC UNCERTAINTY QUANTIFICATION AND SENSITIVITY

ANALYSIS IN REACTOR TRANSIENTS

5.1 Introduction to uncertainty quantification and sensitivity analysis in reactor transients

The uncertainty analysis deals with assessing the uncertainty in the output of physical
systems resulting from imprecisely known input variables or change of models or combination of
both. Sensitivity analysis deals with the study of impact of input parameter-uncertainty in the
output. The study of behaviour of reactor core to various types of input perturbations (cross
sections, geometry etc) is important for the safe operation of research reactors as well as
commercial nuclear reactors. Generally the safety requirements and licensing of commercial
nuclear power plants are based on conservative approach [76]. Sometimes the conservative
approach on safety analysis may be inaccurate [77]. The nuclear safety analysis using best
estimate plus uncertainty (BEPU) analysis is in use since 1990 [77]-[79]. The study of safety
analysis is important for quantifying the safety margins during reactor operation and accident
scenarios. For example in the case of any postulated accidental scenario, the sudden rise of core
power will lead to fuel temperature rise, cladding temperature rise, moderator density change etc.
and if the rise in temperature or any parameter change is predicted with uncertainty, then the
safety margins can be fixed more accurately. Generally a conservative error or uncertainty in the
output parameter, (i.e. power, peaking factor, etc.) is assumed and based on this conservative
error, the safety margins are fixed. But if the conservative error or uncertainty is evaluated in a
more deterministic way, then the nuclear safety margins can be fixed in a high confidence level

and the safety factors become more reliable than the conservative approach.
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In any Nuclear Power Plant (NPP), it is essential to know the reactor behaviour when the
input parameters are perturbed around their best estimate value. The best estimate plus
uncertainty (BEPU) analysis method [78] has been developed for uncertainty quantification in
support of regulatory rulemaking changes of safety analyses in the nuclear industry [80] and it
has been applied to loss-of-coolant accidents (LOCA) [78], [79], [81], [82].

The reactor core behaviour is estimated by solving the neutron diffusion equation.
Several computer codes exist to solve the neutron diffusion equations. The reactor physics
parameters such as neutron multiplication factor (keff), core power, neutron flux, delayed neuron
fractions, etc. are estimated using computer codes. The code prediction of reactor physics
parameters is prone to several sources of errors or uncertainties in the input parameters as well as
the methods adopted to calculate them. Some input parameter uncertainty may be more
influential in affecting the multiplication factor, rector power, peaking factor etc. and some
parameter may be less influential in affecting them. The aim of the uncertainty analysis is to
identify and quantify all potentially important input parameters with uncertainty, their range of
variation, and their effect on core response and safety margins. Using this uncertainty analysis,
the factors which are more influential may be identified and these factors may be estimated in a
more accurate way. Based on uncertainty analysis, the upper limit for fuel temperature, clad
temperature, can be set in a highly reliable way. The uncertainty and sensitivity analysis can be
performed for any reactor physics parameter such as control rod worth, B.r¢, korr, A etc. [83],
[84]. Some input parameter uncertainty may not be influential as time progresses; but some
uncertainty may be influential with time. The propagation of input parameter uncertainty with

time may affect the reactor transient and in this case it is important to examine its effect on
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uncertainty in reactor core power, peak mesh power, peaking factor etc. during transient to fix

the safety margins. Here both static and dynamic sensitivity analysis is discussed in detail.

The sensitivity is defined as the change in the output response of some physical parameter
with respect to change in the input parameter. The response of nuclear reactor may be taken as
reactor power, reaction rate, production rate of isotopes, ratio of two reaction rates, etc. If 'R’ is
the response of reactor, i.e. reactor power, then the sensitivity is estimated by computing the

Gateaux [85], [86] differential of the response 'R’ as
6R = ltirr(}R(é + th) — R(é)

In the above equation, € is function of flux and cross section and h is a function of perturbed flux
and cross section. Following sensitivity, the sensitivity coefficient is defined as the ratio of
relative change in the output response to the relative change in the input parameter and it is given
as

(6R/R)

Sensitivity coef ficient = (62/%)

In the above equation, 'R’ refers to response; the response may be either directly measurable
output parameter or any function involving the output parameter and §R refers to change in the
output response. In the above equation, 'E’ refers to any input parameter and 6% is the input
uncertainty. For a given model, the change in the response arises due to uncertainty in the input.
The sensitivity coefficient may be estimated for many input parameters. Generally the sensitivity
is further classified as local sensitivity and global sensitivity. In the case of local sensitivity, it
refers to the factors affecting the behaviour of physical system (reactor core) in and around a

localized area (confined area) within large system. In the case of global sensitivity it refers to the
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factors affecting the complete system behaviour (whole reactor). In the present work the
uncertainty and sensitivity analysis is performed with respect to the uncertainties in material
properties (macroscopic cross sections) of reactor core and the uncertainties in reactor geometry
and dimensions are not considered here. In this work, the local sensitivity is referred to peak
mesh power in the reactor and the global sensitivity is referred to reactor power and total peaking

factor, i.e. 3D peaking factor (3D PF).

5.2 Types of uncertainty analysis

The uncertainty analysis can be performed using (i) statistical method and (ii)
deterministic method. Statistical methods are employed for conducting sensitivity analysis on
large computational models. The statistical methods in fact depend on sampling approaches like
(a) Simple random sampling (SRS), (b) Stratified importance sampling (¢) Latin Hypercube
sampling (LHS) [87]-[92]. Statistical methods for sensitivity analysis depend on number of
iterations for each random sample. As the number of iterations or executions is large, better
accuracy in the output parameter is obtained. Moreover these statistical methods are also subject
to some drawbacks [93]. The major bottleneck in statistical methods for sensitivity analysis is
that it is computationally expensive for even small systems and therefore they are also found
impracticable for large time dependent systems. For time dependent systems, the statistical
methods consume large computation time to estimate the results and in such cases deterministic

approach is adopted.

In the case of deterministic approach, the exact equation governing the physical systems

is solved with uncertainty in the input and the uncertainty in the output is estimated. In
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deterministic approach, the following different kinds of methods are adopted for uncertainty

analysis:

(a) Brute Force method
(b) Adjoint Sensitivity Analysis Procedure (ASAP)

(c) Forward Sensitivity Analysis Procedure (FSAP)

Both static and dynamic uncertainty analysis can be performed using the above methods. In brute
force method, the neutron diffusion equation is solved with perturbed input parameter and the
perturbed output parameter is estimated. From the perturbed output parameter (i.e. flux) the
uncertainty is estimated. In static (time independent) adjoint sensitivity analysis procedure
(ASAP), the uncertainty in the output parameter is directly estimated without calculating the
uncertainty in the flux. The static ASAP is the same as the first order perturbation theory [22] in
estimating the uncertainty in the output parameter. In forward sensitivity analysis procedure
(FSAP), the uncertainty in the input parameter is directly incorporated in the neutron diffusion
equation and the uncertainty in the output is estimated. The detailed description of FSAP and

ASAP is given by [85].

In this chapter, we first discuss the time-independent (static) uncertainty and sensitivity
analysis using brute force method, ASAP and FSAP briefly. We then discuss the development of
a new computational method to estimate the dynamic (time dependent) uncertainty in reactor
transient by incorporating the improved quasi static (IQS) model with FSAP. From dynamic
uncertainty, we perform the dynamic sensitivity analysis of reactor transients. The dynamic

sensitivity analysis is performed for (i) 3D homogeneous reactor transient and (ii) 3D TWIGL
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benchmark reactor transient. The above reactors are described in chapter 4. Both static (time

independent) and dynamic sensitivity analyses are performed for the above mentioned reactors.

In the case of static sensitivity analysis, the uncertainty in the multiplication factor
(kegg), for various levels of uncertainties in the macroscopic cross sections (input parameters) is
analyzed. It is observed that the sensitivity coefficient varies linearly with the uncertainty in the
macroscopic cross section in the range 0.05%-0.5%. It is also observed that the more influential
factor in affecting the multiplication factor is found to be the thermal fission cross section for the

above mentioned reactors.

The dynamic sensitivity analysis is performed, for the above mentioned reactors, using
FSAP. The uncertainty in the output parameter (i.e. flux) can be estimated by solving the FSAP
directly (FSAP-direct) or by incorporating the IQS model in it (FSAP+IQS). In the case of
dynamic sensitivity analysis, both local and global dynamic sensitivity analysis is performed for
various levels of uncertainties in the input parameters (macroscopic cross sections). In the case
of local dynamic sensitivity analysis, the sensitivity of peak mesh power with respect to
uncertainty in cross sections is estimated. In the case of global dynamic sensitivity analysis, the
sensitivity of reactor power and total peaking factor (3D Peaking Factor) is estimated. It is
observed that in the case of dynamic sensitivity analysis in 3D homogeneous reactor, the
uncertainty in total peaking factor is very small as the transient evolves with time. It is also
observed to be true in the case of 3D TWIGL reactor. Since the results of dynamic sensitivity
analysis are not available for the above mentioned reactors in the literature, the dynamic
sensitivity analysis is also performed by directly solving the neutron diffusion equation with
uncertainty (FSAP-direct) for the above mentioned reactors and the results are compared. For
this first we quantify that the error between the two methods (FSAP + 1QS model and FSAP-
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direct) is negligible. To quantify this, the transients (without any uncertainty in cross sections) in
the above mentioned reactors were estimated by the two methods and the relative error between
the methods was found to be less than 0.2%. Since the relative error was found to be small (<
0.2%), the two methods are considered to be similar. Hence any uncertainty that arises in the
output is considered to be entirely due to the uncertainty in the input parameters (cross sections).
The uncertainty and the sensitivity coefficient obtained using the FSAP with IQS model is found
to be in good agreement with that of direct solution method (FSAP-direct). The dynamic
uncertainty analysis using direct solution method is highly time consuming. On the other hand,
the FSAP with IQS model is found to be less time consuming and this method serves as one of
the fastest ways to perform the dynamic sensitivity analysis in transient with good accuracy. It is
shown that the FSAP with IQS model can be used with large time step to perform the dynamic
sensitivity analysis in reactor transients. This method can be simultaneously applied to perform
the sensitivity analysis along with the transient estimation. The simultaneous estimation of

reactor transient and its uncertainty is discussed in the following section.

5.3 Brute Force Method

It is a direct method of estimating the uncertainty and sensitivity. Both static and dynamic
uncertainty can be estimated using this method. Here a direct solution of the equation governing
the physical system with perturbation in the input parameter is obtained. The equation, governing
the physical system, has to be solved with perturbation in the input. From the solution, the
uncertainty and the sensitivity of the desired parameter can be estimated. Multiple perturbations
in the input parameters can also be used here. Consider the time independent neutron diffusion

equation (two-group, the constants carry usual meaning)
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1
DiVEp; — 24101 — 1001 + (@) (VIp @1 +vER@,) =0 (5.1)

D2V2(p2 —Za2@2 + 21201 =0 (5.2)

In matrix form, the above equations (Eqgs.(5.1) & (5.2)) are written as

1 PN

Fo (5.3)
kefr

Ap =

A is the neutron destruction operator, F is the neutron production operator and k, £y 1s the eigen
value. In the present case, our interest is that if some input parameter (macroscopic absorption or

fission cross section) is perturbed, how it is affecting the multiplication factor (k.fr). With

perturbed input parameter, (i.e. £, = X',q) the resulting neutron diffusion equation is written

as

ﬁ'(p'z L ﬁ'(p' (5.4)
kierf

where A’ contains the perturbed input parameters (cross sections, A=A+ AA), F' contains
perturbed fission cross sections (F' = F + AF), ¢’ is the perturbed flux (¢’ = ¢ + A@) and K'err
is the new eigen value (k'qrf = korr + Akgsr). Solution of Eq. (5.4), will give new k'f and
the uncertainty in the multiplication factor can be estimated. The brute force method is applied to
estimate the static uncertainty and sensitivity coefficient in 3D homogenous reactor as well as in
3D TWIGL benchmark reactor. Consider the 3D Homogeneous reactor in steady state condition.
The detailed description of 3D homogeneous reactor is given in chapter 4. Here the uncertainty
in the input parameters, Dy, Dy, 2,1, 242, 21, etc. is assumed to be 0.1% and the uncertainty in
the eigen value is estimated. It is to be noted here that the uncertainty in the cross section is

applied throughout the reactor. The sensitivity coefficient is calculated as
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(eerr)

()

different macroscopic cross sections with 0.1% uncertainty and the results are given in Table

Sensitivity coef fcient = . The sensitivity coefficients of kef f are calculated for

5.1a. The sensitivity coefficient, when the perturbation is negative, i.e. -0.1% is shown within the
parenthesis in Table 5.1a. It is to be noted that whether the perturbation is positive or negative,

keeping the magnitude same, the sensitivity coefficient almost remains constant.

It is observed from Table 5.1a that the thermal fission cross section (VXf,) is more

influential in affecting the eigen value (keff) and the second more influential factor affecting

the eigen value is found to be the thermal absorption cross section (£_,). This fact remains true

as the uncertainty in the input is varied from 0.05% to 0.5%.

Table 5.1a. Uncertainty in kef f and the sensitivity coefficient for 3D Homogenous reactor

S.N | Parameter | Uncertainty Brute Force Sensitivity
Akeff %) coefficient
keff
1 AD, 0.1% 2.122E-2 0.212
Dy | (-0.1%) (2.124E-2) (0.212)
2 AD, 0.1% 1.083E-2 0.108
D_z (-0.1%) (1.089E-2) (0.108)
3 AX gy 0.1% 2.952E-2 0.295
pI (-0.1%) (2.954E-2) (0.295)
4 AX g, 0.1% 7.521E-2 0.752
a2 (-0.1%) (7.518E-2) (0.751)
5 A(WZs) | 0.1% 1.386E-2 0.138
Vs (-0.1%) (1.386E-2) (0.138)
6 A(WZsz) |0.1% 8.602E-2 0.860
vIf, (-0.1%) (8.602E-2) (0.860)
7 A%y, 0.1% 3.678E-2 0.367
X (-0.1%) (3.681E-2) (0.368)
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The uncertainty in the input parameters, Dy, Dy, 2,4, 242, and X;_,, is varied from 0.05%

to 0.5% for the 3D homogeneous reactor and the sensitivity coefficient is estimated using Brute

Akeff
force method. The linear fit relating the sensitivity coefficient (S (ke Ffr Z) = %) and the

(3)
uncertainty in the input parameter is given below (Eq. 5.5a-5.5g). The constants in the linear fit

are estimated by least square error minimization technique.

S(kess, Dy) = 0.21209 + (0.1714) * (ADl) [0.05% < (ADl) < 0.5%] (5.52)
S(kess, Dy) = 0.10866 + (0.0960) * (ADZ) [0.05% < (Alfl) < 0.5%] (5.5b)
S(kesfr Sq1) = 0.2957 + (0.2166) * (AE‘”) [0.05% < (A;aall) < 0.5%) (5.5¢)
S(kesfr Zq2) = 0.7519 + (0.1507) (“““) [0.05% < (A;a“;) < 0.5%) (5.5d)
S(kegsr VEp1) = 0.1393 + (0.1374) * ( ) [0 05% < ( f1> <0. 5%] (5.5¢)
S(kess, VEps) = 0.8606 + (0.78705) * ( ) [o 05% < ( o ) < 0.5%] (5.50)
S(kess, T12) = 0.3684 + (0.1734) » (Azlz) 0.05% < (A;;Z) < 0.5%] (5.5¢)

The variation of sensitivity coefficient with the uncertainty in the thermal absorption cross

section and thermal fission cross section are shown in Figs. 5.1 and 5.2 respectively.
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Fig. 5.1 The variation of sensitivity coefficient with uncertainty in Z,, for 3D homogeneous
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As a second example, consider the 3D TWIGL benchmark reactor. Its description is
given in chapter 4. It is a two-group neutron problem. Here also the uncertainty in the input
parameters Dy, D,, X,1, 242, and Z;_,, is assumed to be 0.1%. The uncertainty is applied
throughout the reactor. For 0.1% uncertainty in the input, the uncertainty in the eigen value
(keff) and the sensitivity coefficient are estimated and they are given in Table 5.1b. The
sensitivity coefficient, when the perturbation is -0.1% is also given in Table 5.1b within the
parenthesis. It is to be noted that whether the perturbation is positive or negative, keeping the

magnitude same, the sensitivity coefficient almost remains constant.

Table 5.1b. Uncertainty in kef f and sensitivity coefficient for 3D TWIGL reactor

S.N | Parameter | Uncertainty | Brute Force Sensitivity
Akk:f]; f %) coefficient
1 AD;  10.1% 8.584E-3 8.584E-2
Dy (-0.1%) (8.66E-3) (8.66E-2)
2 AD,  [0.1% 1.008E-4 1.008E-3
D, (-0.1%) (2.57E-4) (2.57E-3)
3 Ay 0.1% 4.433E-2 0.443
a1 | (-0.1%) (4.45E-4) (0.445)
4 ATpz [ 01% 6.837E-2 0.683
Zaz | (-0.1%) (6.855E-2) | (0.6855)
5 A(WEy) | 0.1% 3.146E-2 0.314
VIf1 | (-0.1%) (3.12E-2) (0.312)
6 A(VEf) |01% 6.865E-2 0.686
Vifz | (-0.1%) (6.857E-4) | (0.6857)
7 A%y, 0.1% 2.166E-2 0.216
212 | (-0.1%) (2.16E-2) (0.216)
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It is observed from Table 5.1b that the thermal fission cross section is more influential in

affecting the eigen value (keff) and the second more influential factor affecting the eigen value

is found to be the thermal absorption cross section.

The sensitivity analysis was carried out for 3D TWIGL heterogeneous reactor by varying

the uncertainty in Dy, D,, X;1, 242, 212, €tc. from 0.05% to 0.5%. The sensitivity analysis was

carried out using Brute force method and the variation of sensitivity coefficient with the

uncertainty in the input parameter is given below (Eq. 5.6a-5.6g).

S(kery)

S(kegs,

S(kery)

S(kery)

S(kers)

S(kegs

S(kerys)

D) = 0.08567 + (0.0694) * (ADl)
1

D;) = 0.0017 + (0.00198) * (22),

D,

1) = 0.4444 + (0.2324) (AZ‘”),

(ll

Saz) = 0.6845 — (0.0341)  (£2),

(lZ

vZs;) = 03137 + (0.3248) (Mfff)

VEs;) = 0.6862 + (0.7230) * (Mf 2)
Zfz

%,,) = 0.2163 + (0.1182) * (”12),
12

[0.05% < (ADl) < 0.5%]
[0.05% < (ADZ) < 0.5%]
0.05% < (ADZ) < 0.5%]

0.05% < (Alfz) < 0.5%]

0.05%s( )<05%

~

szl

-

0.05% < (M”
| - VZfz

0.05% < (Mf :
| —\ v

f2

) < 0.5%

) < 0.5%

(5.6a)

(5.6b)

(5.6¢)

(5.6d)

(5.6¢)

(5.6f)

(3.6g)

The variation of sensitivity coefficient with the uncertainty in the fast fission cross section and

thermal fission cross section are shown in Figs. 5.3 and 5.4 respectively.
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5.4 Static Adjoint Sensitivity Analysis Procedure (ASAP)

In static ASAP, the uncertainty in the output parameter can be directly estimated without
calculating the uncertainty in the flux, i.e. A@;and A@, (two-group neutron energy). This method
is the same as the first order perturbation theory. To estimate the uncertainty in the output
parameter, we solve the adjoint diffusion equation and estimate the adjoint flux. Consider the

adjoint neutron diffusion equation (for the unperturbed system)

Atot= (5.7)

where A t is the adjoint operator for A and ¢ 1 is the adjoint flux. Now introducing the
uncertainties in the operators and following the inner product notation, we get the neutron

diffusion equation as (using Egs. (5.3) & (5.4))
(@ 1, (A+24)(p + D)) = ———— (¢ 1, (F + AF) (¢ + Ag)) (5.8)
Kepfthkers

(p 1, (Ap + AL + Ay + AAgp)) = (o 1,(Fp + FAp + AFp + AFA@))  (5.8a)

k ff+Ak eff

Keeping only first order terms, the above equation (Eq. (5.8a)) can be re-written as

(9 1, (04)p) = —<<p 1, (AF)p) + ( e”) (o 1, (F)p) (5.92)

Eq. (5.92a) can be further simplified as

(0, (4 1)g 1 = (o, (AF 1o ) + (-3 eff) (0, (FHo 1) (5.9b)

From Eq. (5.9b) the uncertainty in the multiplication factor is computed as

~ 1 ~

Kerr @«p,(ﬁﬂwﬂ

(5.10)

and the sensitivity coefficient of multiplication factor with respect to input parameter X is

computed as

el @ (55 )on--to (55 )et

S(k.sr,2) = eff =3 5.11
( eff ) Z %((P’(FT)(PT) ( )
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The uncertainties in the cross section are absorbed in the operators AA and AF. In Eq. (5.11), the
known quantities are A, AA, AF, F, ¢ and ¢ . It is to be noted here that the uncertainty Ak, £ 18

estimated without the requirement of Ag.

5.5 Forward Sensitivity Analysis Procedure (FSAP)

In Forward Sensitivity Analysis Procedure (FSAP), the uncertainty in the input parameter
is directly incorporated in the neutron diffusion equation and the uncertainty in the output is
directly estimated. Consider the time independent neutron diffusion equations (5.1) and (5.2).
Here the uncertainty in the input parameter is defined as ¥ - X, + AX and it is introduced in the
neutron diffusion equation. X, represents the unperturbed cross section and AX represents the
uncertainty in the cross section. Here the neutron diffusion equation is split into unperturbed part

and perturbed part and it is written as

~ ~ 1 ~ ~
(A+ 24) (¢ + Ap) = i F AR (0 + 80) (5.12)

In the above equation, A is the unperturbed removal operator, F is the unperturbed production
operator, AA and AF are the perturbed operators, ¢ is the unperturbed flux, A is the perturbed
flux and Ak,f is uncertainty in k,¢r. The solution of Eq. (5.12) will give the uncertainty in the
output parameter, i.e. Ak.sr and the uncertainty in the flux, Ag. Both time independent and time

dependent uncertainty and sensitivity analysis can be performed using this method. Detailed
description of time independent FSAP can be found in [85]. The time dependent uncertainty in
the neutron flux, caused by uncertainty in the input parameters (macroscopic cross sections) is

estimated by solving the time dependent neutron diffusion equation with uncertainties. Here we
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make use of the improved quasi static (IQS) scheme for solving the uncertainty in the flux. The

details are discussed in the following section.

5.6 Dynamic uncertainty and sensitivity analysis in reactor transient - Forward Sensitivity

Analysis Procedure (FSAP) with IQS method

In this section we first discuss the dynamic (time-dependent) uncertainty in reactor
transient. We then discuss the development of a new computational method to estimate the
dynamic (time dependent) uncertainty and perform the associated sensitivity analysis in reactor
transients by incorporating the IQS method in FSAP. The uncertainty in the input parameter may
propagate with time and it may affect the reactor core power, peak mesh power, peaking factor
etc. during transient which in turn may affect the safety factors. The sensitivity coefficient
estimated in the static case (time independent) may not remain constant during the reactor
transient. Hence for safe operation of nuclear reactor, it is essential to do the dynamic uncertainty
and sensitivity analysis during transient and evaluate the safety factors. Based on the results of
dynamic sensitivity analysis, the safety margins must be fixed. A direct solution of time-
dependant neutron diffusion equation, with uncertainty in the input parameters, will give the
uncertainty in the flux. But the direct solution of neutron diffusion equation will consume more
time and one will encounter large round-off and truncation errors. Unless the time step is chosen
very small, one may encounter stability issues in the solution. To overcome this difficulty, we
develop a new computational method by incorporating the improved quasi static (IQS) method in
FSAP and perform dynamic uncertainty and sensitivity analysis in reactor transient. For this we
solve the time-dependent neutron diffusion equation with uncertainty using the IQS method. The
solution of FSAP with IQS method will give the dynamic uncertainty in the flux. Using this

computational method the dynamic uncertainty and sensitivity analysis can be performed in a
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much faster way with good accuracy. Consider the following time independent neutron diffusion

equation (in operator form)
A 1 -~
Aopo = = FoPo (5.13)

A, is the unperturbed neutron removal operator, F, is the unperturbed neutron production
operator and ¢, is the unperturbed neutron flux. Now small uncertainties are introduced in the
removal and production operators and the perturbed neutron diffusion equation (time

independent) is given as

~ 1 a1

Ao = kO+AkF 1) (5.14)

where A" = Ay + AA, F' = Fy+ AF, ¢’ = @, + 8¢, AA is the perturbation in the removal
operator, AF is the perturbation in the production operator, d¢ is the uncertainty in the flux and
Ak is the perturbation in k,. Let P, be the power in the unperturbed state and P, + AP be the
power in the perturbed state, AP being the uncertainty in power. Subtracting Eq. (5.13) from Eq.
(5.14), the dynamic uncertainty in the flux can be written as (two-group neutron energy, ko = 1,

Ak < 1 and Ak is neglected)

3(5¢,
1901 _ (6D)V?@q + D1V?(8¢1) — (6Z41)P1 — Za1(891) — (8Z152) 91 — Z152(691) +

v, ot
a- ﬁ))(g ((5V2f1)<ﬁ1 +vZ6 (61) + (6VvEg) @, + szz(&Pz)) + (—5ﬁ))(g VZpq +
Vi @,) + Zixfi’_i (62)C; + Zixfi’_i 2;(6Cy)
(5.15)
%% = (6D2)V?@y + DoV (892) — (8Za2) 2 — Za2(8¢2) + (821.2)p1 + Z1.2(8¢1)

(5.16)
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(8¢
% = ﬁi((&’zﬂ)(h +VZ51(691) + (6VEg) @, + szz(&Pz)) + 0B (Vi1 + VER Q) —

A;6C; — 64;C; (5.16a)
The constants, D; X,1,24,,0,4; etc. in the above equations carry usual meaning and they
correspond to unperturbed state. )(g denotes the fast neutron spectrum in the energy group ‘g’
and ng,i denotes the delayed neutron spectrum in the energy group 'g’ for the it precursor. The

time dependent uncertainty in the fast and thermal flux are denoted as §¢; and &6¢,. The
uncertainties in the input parameters are denoted as 6D; 8X,q, 6X4,, 8B, 64; etc. and ¢, and
@, are the unperturbed fast and thermal flux. Equations (5.15) and (5.16) represent the time
evolution of the uncertainty in flux. Eqs. (5.15)-(5.16a) represent the FSAP to estimate the
dynamic uncertainty in the flux. As described earlier, Egs. (5.15)-(5.16a) can be solved either
directly (FSAP-direct) or by making use of IQS scheme (FSAP+IQS). Here Egs. (5.15)-(5.16a)
are solved subject to the following conditions: it is assumed that the uncertainties in the input
parameters (6D;, 6D,, 62,4, 8%, etc.) come into effect only during the transient and under
steady state conditions their effect is negligible. It is also assumed that the uncertainty in the
neutron velocity is zero.

Egs. (5.15) - (5.16a) can be solved, subject to the above conditions, if the initial
uncertainty in the flux (8¢|;=) is known. The initial uncertainty in the flux (§¢|:~) can be
obtained in many ways. But here the initial uncertainty in the flux (§¢|;~) is obtained from the
initial uncertainty in the steady state power. The initial uncertainty in the steady state power is
assumed to be 1% of initial power. The dynamic uncertainty in the fast flux and the thermal flux

are written as (using IQS method)

8¢, = P1(8T) + (69)T (5.17)
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8¢, = P,(6T) + (692)T (5.18)

In the above equation, T is the amplitude function, ¥ is the shape function corresponding to
unperturbed state, 6T & d are independent unknown quantities which are to be determined. The
uncertainty in the flux can be uniquely determined from the knowledge of either 6T or 6y or
both. For the sake of simplicity we assume 61, = 6, = 0 and hence the Egs. (5.17) and

(5.18) can be written as
5o = P1(t)(8T) (5.19)
8¢, = P, (t)(8T) (5.20)

Differentiating Egs. (5.19) & (5.20) we get

2000 = (21a®) 0T + (£6D)pu® (5.200)

2602 = (3:12(0) 8T + (£:GT) ) $2(0) (5.200)

Since % is slowly varying with time (in the IQS method) and 8T is small, the factors (%) *

6T and (aa%) * 0T are neglected. Hence Eqgs. (5.20a) and (5.20b) are re-written as

000 = (£6D)® (5200)

2002 = (£6D)p,© (5.20d)
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Substituting Egs. (5.19)-(5.20d) in Egs. (5.15), (5.16) & (5.16a) and following the improved
quasi static (IQS) method, described in chapter 2, we get a new kind of point kinetics equation,

for calculating the uncertainty 8T, as

20D = (ZE) 67 + %2 (5 + | (F52E) T+ B 2k (582G (5.21)
L = (B ot — a6 + | () T - (820 (5.22)

In the above Eqn. (5.21) & (5.22) p, 8, A and T carry usual meaning (Egs. (2.34)-(2.36)) and 8T
is denoted as the uncertainty in the amplitude function, §C; is denoted as the uncertainty in the

precursor concentration and Ap and Af are given as

Wh({xg J 6F-5L)wg(r0))
Ap = 5.23
P @t ({x8 }F)wgCre) (5-23)
W ISBF)+(BISF] g ()
AB; = 5.24
bi ({5 JF Jwgrtn (5-24)
AB = X AB; (5.25)

The operators F and L in Egs. (5.23) and (5.24) are defined in chapter 2. Equations (5.21) and
(5.22) constitute a new kind of point kinetics equation and these equations are solved using the
modified ETD method. The solution of Egs. (5.21) & (5.22) along with the shape function will
give the dynamic uncertainty in the fast flux and thermal flux. It is to be noted here that the new
kind of point kinetics equations are solved only at macro time steps as described below and it is

shown in Fig. 5.5.
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5.6.1 Estimation of dynamic uncertainty in flux during transient

At macroscopic times T,, T;, T, etc. the solution of amplitude function and shape
functions (T & W) are made available. At macroscopic times Ty, Ty, T,, the solution of new kind
of point kinetics equation is solved using the modified exponential time differencing method.
The solution will give the uncertainty in the amplitude function, §T. The product of ¥ (t) and
ST (t) will give the uncertainty in the flux, i.e. 6@ (t) = Y(t)ST(t) (both fast and thermal, in the
case of two group neutron diffusion equation) and the uncertainty in the flux is available at
macroscopic times only. Since the time dependent neutron diffusion equation does not contain
any feedback with uncertainty, it is sufficient that the dynamic uncertainty in the flux is
estimated only at macroscopic times. In this way, the reactor transient as well as the dynamic
uncertainty in the flux can be estimated simultaneously using this method. This method does not
require any additional computation time for uncertainty estimation because only the new kind of
point kinetics equation alone is to be solved (Egs. (5.21) and (5.22)). This is schematically

shown in Fig. 5.5.
At

AT — ¥, T)
L (8T, 5C;)

— 8¢ =(¢t) * (8T)
v

Fig. 5.5 Simultaneous estimation of reactor transient and dynamic uncertainty in flux. At denotes

the micro time step and AT denotes the macro time step.
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5.6.2 Dynamic uncertainty and sensitivity analysis in 3D Homogeneous reactor transient

Consider the 3D Homogeneous reactor (chapter 4). The transient in the reactor is created
by decreasing the thermal absorption cross section (Eqgs. (4.2)-(4.6)). Now small uncertainties are
introduced in the macroscopic cross sections and the initial uncertainty in the flux is estimated.
Here the uncertainty in core power, during transient, is estimated corresponding to uncertainty in
the scattering cross section. One can also estimate the uncertainty in core power with respect to
uncertainty in other cross sections. The uncertainty in AX;_,,is assumed to be 0.1%, 0.5% and
1.0%. The dynamic uncertainties in peak mesh power (local dynamic uncertainty), core power
and 3D peaking factor, (global dynamic uncertainty) are estimated using FSAP with IQS method

as well as with direct solution method. The results are compared.

As described earlier, before comparison of dynamic sensitivity results, it is shown that
the error between the methods, FSAP with 1QS model and direct solution is very small, i.e.
< 0.2%. For this, the transient in 3D homogeneous reactor is estimated without any uncertainty
in the input parameter and it is given in Table 5.2a. The relative error is also shown. The relative
error is found to be < 0.2% and hence the error between the methods is considered to be
negligible. The uncertainty in core power during transient, estimated using FSAP with 1QS
method and direct solution method is given in Table 5.2b. It is observed from Table 5.2b, that the
results agree to a good accuracy. The relative error in the estimation of uncertainty, between the
two methods, is found to be small. From the comparison of results, it is observed that the new
computational method, FSAP with 1QS model is capable of estimating the dynamic uncertainty

in transient to a good accuracy.
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The time evolution of uncertainty in core power is given in Figs. 5.6 for AZ,_, = 0.1%,
0.5% and 1.0%. The dynamic sensitivity coefficient is given in Fig. 5.7. It is observed here that
as the uncertainty is increased, the uncertainty in the reactor power increases and the sensitivity
coefficient also increases. In a similar manner the uncertainty in the total peaking factor (3D
Peaking Factor) is also estimated for various levels of uncertainties and it is given Table 5.3. It is
observed that the uncertainty in the total peaking factor (3D peaking factor) is found to be of the

order of 1.0E-6.

The uncertainty in the peak mesh power (PMP) is also estimated using the FSAP with
IQS model and it is given in Table 5.4. The sensitivity coefficient, for peak mesh power,

estimated from FSAP with 1QS model and direct solution method agree to a good accuracy.

Table 5.2a Comparison of transients (without uncertainty)

S.N | Time | Core power Core Power % Error between
(s) (Direct Soln.) Modified ETD+IQS two models
1 0.05 | 1.564859 1.566676 0.11611
2 0.10 | 1.952930 1.956036 0.15904
3 0.15 |2.303640 2.307676 0.17520
4 0.20 |2.621380 2.626111 0.18048
5 0.25 [2.910100 2.915305 0.17886
6 0.30 |3.173212 3.178775 0.17531
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Fig. 5.6 The variation of AP /P with time for the various levels of uncertainty in %.
12

Table 5.2b.Dynamic uncertainty (%) in core power (global uncertainty) in 3D Homogeneous
reactor (Initial power = 1.13444, AP|,—o= 1.34E-02). The uncertainty in core power
(AP/P) is estimated using FSAP with IQS model and direct solution method. The uncertainties

are compared and the percentage error is also shown in the table.

S.N | Parameter | Uncertainty | Time FSAP FSAP with Absolute
(s) (Direct soln.) | 1QS model | Error between
AP/P AP/P two models

1 AXq, 0.1% 0.05 | 3.4005E-02 3.4100E-02 | 9.5000E-5
212 0.10 | 5.2348E-02 5.2463E-02 | 1.1500E-4
0.15 | 6.7985E-02 6.8122E-02 | 1.3700E-4
0.20 | 8.2005E-02 8.2162E-02 | 1.5700E-4
0.25 | 9.4895E-02 9.5072E-02 | 1.7700E-4
0.30 | 0.1069160 0.1071095 1.9350E-4
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2 A%y, 0.5% 0.05 | 0.1300493 0.1305024 | 4.5310E-4
212 0.10 |0.2217723 0.2223161 5.4380E-4
0.15 | 0.2999649 0.3006125 6.4760E-4
0.20 | 0.3700656 0.3708138 | 7.4820E-4
0.25 |0.4345179 0.4353645 8.4660E-4
0.30 | 0.4946195 0.4955485 9.2900E-4
3 AXq; 1.0% 0.05 |0.2501040 0.2510049 | 9.00900E-4
212 0.10 | 0.4335530 0.4346324 | 0.0011
0.15 | 0.5899397 0.5912250 | 0.0013
0.20 |0.7301412 0.7316276 | 0.0015
0.25 | 0.8590469 0.8607289 | 0.0017
0.30 | 0.9792493 0.9810973 0.0018
—&— FSAP-direct
1 | e FSAP+IQS AX J2,,=01%
—A— FSAP-direct AL /S =05%

1004 | —w— FSAP+IQS

—<— FSAP-direct
1 |—»— FSAP+IQS

80
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12712
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Fig. 5.7 The sensitivity coefficient with time for the various levels of uncertainty in 2—12
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Table 5.3. The uncertainty in total peaking factor (3D peaking factor) for 3D Homogeneous

reactor transient for various uncertainties in input parameters. (Initial power = 1.13444, AP|;_,=

1.134E-02)

S.N | Parameter | Uncertainty | Time (s) FSAP FSAP with
Direct soln. 1QS model

1 A%, 0.1% 0.05 1.2315E-06 1.2418E-06

212 0.10 1.6561E-06 1.1467E-06

0.15 3.6077E-06 3.9506E-06

0.20 2.5665E-06 2.3463E-06

0.25 2.9704E-06 2.4795E-06

0.30 4.5458E-06 4.2381E-06

2 A%y, 0.5% --do-- 8.6461E-06 8.8014E-06

212 1.2752E-05 | 1.1595E-05

1.7258E-06 1.0739E-05

7.8773E-06 7.7501E-06

1.2793E-05 1.8185E-05

6.6591E-06 6.2112E-06

3 A%y, 1.0% --do-- 1.1277E-05 1.6301E-05

212 6.3350E-06 6.0000E-06

2.2395E-05 2.9123E-05

3.0640E-05 3.2678E-05

1.2448E-05 1.2366E-05

1.1670E-05 1.8439E-05
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Table 5.4. The uncertainty in peak mesh power (PMP) for 3D Homogeneous reactor for various

uncertainties in input parameters. (Initial power = 1.13444, AP|;—,= 1.134E-02))

S.N | Uncertainty in | Time FSAP FSAP with Sensitivity Sensitivity
Parameter (s) | Directsoln. | IQS model Coeft. Coeft.
A(PMP) A(PMP) (FSAP-Direct) | FSAP+IQS
PMP PMP
1 12 _ 104 0.05 | 3.4005E-2 | 3.405E-02 34.005 34.05
12 0.10 | 5.2348E-2 | 5.239E-02 52.348 52.39
0.15 | 6.7986E-2 | 6.803E-02 67.986 68.03
0.20 | 8.2005E-2 | 8.207E-02 82.005 82.07
0.25 | 9.4896E-2 | 9.497E-02 94.896 94.97
0.30 | 0.10691 0.1070137 106.91 107.01
2 A%, — 0.5% 0.05 | 0.13005 0.1305012 26.010 26.100
12 0.10 |0.22177 0.2223104 44.354 44.462
0.15 |0.29996 0.3006018 59.992 60.120
0.20 | 0.37006 0.3707985 74.012 74.159
0.25 |0.43452 0.4353459 86.904 87.069
0.30 | 0.49462 0.4955284 98.924 99.105
3 AZq, —1.0% 0.05 |0.250107 0.2510048 25.010 25.100
212 0.10 | 0.433555 0.4346285 43.355 43.462
0.15 | 0.589943 0.5912181 58.994 59.121
0.20 | 0.730140 0.7316205 73.014 73.162
0.25 | 0.859051 0.8607253 85.905 86.072
0.30 |0.979253 0.9811012 97.925 98.110

5.6.3 Dynamic uncertainty and sensitivity analysis in 3D TWIGL Benchmark reactor transient

Consider the 3D TWIGL heterogeneous reactor (chapter 4). The transient in the reactor is

caused by decreasing the thermal absorption cross section. Here the uncertainty in the core
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parameters is estimated with respect to uncertainty in scattering cross section. The uncertainty in
the scattering cross section is assumed to be 0.1%. The uncertainties in core power (global
uncertainty), total peaking factor (3D Peaking factor) and peak mesh power (PMP) (local
uncertainty) are estimated using FSAP with IQS model and direct solution method. The results
are given Table 5.5-5.7. It is observed that the results agree to a good accuracy. The relative error
between the two methods is also found to be small. The results indicate that the FSAP with IQS
model is capable of estimating the dynamic uncertainty and sensitivity coefficient to a good
accuracy in heterogeneous reactor. The dynamic uncertainty and sensitivity coefficients for core

power are computed and they are given in Figs. 5.8 and 5.9.

Table 5.5. Dynamic uncertainty in core power in 3D TWIGL reactor transient (Initial power =
1.13444, AP|;—o= 1.134E-02). The results are compared and the percentage error between the

two methods is also shown in the table.

S.N | Parameter | Uncertainty | Time FSAP FSAP with Absolute Error
(s) Direct soln. 1QS model between two
AP/P AP/P models

1 A%y, 1.0% 0.05 | 0.34537 0.3421439 0.0032
X152 0.10 |0.42183 0.4150250 0.0068
0.15 |0.54328 0.5282437 0.0150
0.20 | 0.76075 0.7223969 0.0384
0.25 | 0.87556 0.8591789 0.0164
0.30 | 0.88965 0.8793930 0.0103
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Fig. 5.8 The variation of AP /P with time for the various levels of uncertainty in A;J.
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percentage of uncertainty is given in the inset.
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Table 5.6. Dynamic uncertainty in total peaking factor (3D PF) in 3D TWIGL Reactor for 1.0%

uncertainty in the scattering cross section (Initial power = 1.13444, AP|;—,= 1.134E-02).

S.N | Parameter | Uncertainty | Time FSAP FSAP + 1QS model
(s) Direct soln. A3DPF .
%)
A3DPF 3DPF
%
3DPF

1 AXq, 1.0% 0.05 | 1.145783E-5 1.7881E-05
212 0.10 | 6.154134E-6 5.9604E-06
0.15 | 1.709759E-6 1.4267E-06
0.20 | 1.668029E-6 1.4149E-06
0.25 | 4.146789E-6 3.9781E-06
0.30 | 5.045297E-6 5.4923E-06

Table 5.7. Dynamic uncertainty in peak mesh power (PMP) in 3D TWIGL reactor for 1.0%

uncertainty in the scattering cross section (Initial power = 1.13444, AP|,_,= 1.134E-02).

S.N | Parameter | Uncertainty | Time FSAP FSAP with | Absolute error
(s) Direct soln. 1QS model between two
A(PMP) A(PMP) models
PMP PMP

1 AXq, 1.0% 0.05 | 0.345066 0.3421438 0.0029
212 0.10 |0.421043 0.4150250 0.0060
0.15 |0.539337 0.5282437 0.0111
0.20 | 0.758517 0.7223970 0.0361
0.25 | 0.873785 0.8591789 0.0146
0.30 | 0.891265 0.8793930 0.0119
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5.7 Summary

The uncertainty in neutron multiplication factor is estimated for various uncertainties in
the macroscopic cross sections for 3D homogeneous and 3D TWIGL benchmark reactor. The
sensitivity coefficient for neutron multiplication factor is found to follow a linear law. This linear
fit can be used to estimate the uncertainty in the neutron multiplication factor for a given
uncertainty in the macroscopic cross section.

A new computational method is developed for estimating the dynamic uncertainty in the
flux during reactor transient. This computation method is developed by incorporating the 1QS
model in forward sensitivity analysis procedure (FSAP). Using this method, the dynamic
uncertainties in core power, peak mesh power and total peaking factor are estimated for 3D
homogenous and 3D TWIGL heterogeneous reactors. Here the dynamic uncertainties are
estimated corresponding to uncertainty in the scattering cross section. The dynamic uncertainties
are also estimated by directly solving the FSAP and the results are compared. The results agree
to a good accuracy. The uncertainties in the core power, peak mesh power and total peaking
factor match to a good accuracy. This study shows that this computational method can be used to
estimate the uncertainty in the flux during transient with good accuracy. Use of large time step,
in this method, in estimating the dynamic uncertainty saves computation time. Another
advantage of this computational method is that the dynamic sensitivity analysis can be performed
simultaneously along with the transient estimation. The methodology to simultaneously estimate
the dynamic uncertainty along with the transient is described. This method can be used to
perform the dynamic uncertainty analysis by applying multiple uncertainties simultaneously.
This method serves as one of the fastest method to estimate the dynamic uncertainty in the flux

during transient.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

6.1 Conclusions

A new computational method, the modified exponential time differencing method with
improved quasi static (IQS) model, is developed for analyzing the transients in reactors and
performing the sensitivity analysis in transients. Using this computational method the transient
can be estimated with good accuracy using large time step. This method serves as one of the
fastest and efficient method in analyzing the dynamic uncertainty and sensitivity in transient.
According to this method, the time dependent neutron flux is split into two parts, i.e. the
amplitude function and the shape function. The equation governing the amplitude function, i.e.
point kinetics equations, is a stiff differential equation and it describes the fast time evolution of
power. The shape function is a slowly varying function of time. The amplitude equation is solved
using the modified exponential time differencing (ETD) method and the equation governing the
shape function is solved using implicit scheme. Using the modified ETD method, the stiffness
factor is efficiently handled and the point kinetics equation can be solved with large time step.
The modified ETD method is capable of solving the point kinetics equation for different kinds of
reactivity insertions, i.e. step, ramp and oscillatory. It is capable of estimating the transients for
longer duration of time also. For constant and slowly varying reactivity perturbations, a scheme
to choose the micro time step for solving the point kinetics equation is discussed and applied
here to estimate the transients. This method is applied to estimate the transients of the well
known CANDU 3D-PHWR kinetics benchmark, 3D LMW kinetics benchmark, 3D TWIGL
kinetics benchmark and 3D homogenous reactor transients. These reactors have varying degrees

of heterogeneities and the reactivity perturbations are also different.
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The transients in CANDU 3D-PHWR, following LOCA, are estimated by this
computational method for various micro and macro time steps. The transient estimated by this
method is found to be in good agreement with the benchmark results [73] (CERKIN code). The
relative errors in the estimation of peak power are found to be 2.02%, 1.53%, 0.94% and 0.98%
while using the macro time steps 0.0125s, 0.025s, 0.05s and 0.1s. The effect of space part in
estimating the transient is also discussed and is found to be more pronounced here. The error in
the estimation of core power when the space part is neglected is also discussed. It is observed
that an error of 33.87% is observed at peak power when the space part is neglected in estimating

the transient.

The 3D LMW kinetics benchmark transient is analyzed using this method. Here the
transient is created by control rod ejection accident (REA). This benchmark involves
complicated control rod movements. Here the transient lasts for longer duration of time, i.e. 60s.
It is observed that during the transient, the core power increases, reaches a maximum and then
starts decreasing. The core power estimated by this method is found to be in good agreement
with reference code. From the comparison of results it is established that this new computational
method is capable of estimating the transients for longer duration of time. Here also the effect of
space part in estimating the transient is analyzed. When the space part is neglected, an error of
7.6% is observed at peak power and an error of 20% is observed in the core power at the end of
the transient. Here the effect of space part in estimating the transient is more pronounced.
Similarly the maximum error in the estimation of total peaking factor is found to be 3.30% when

the space part is neglected while estimating the transients.

The transients in 3D TWIGL heterogeneous and 3D homogeneous reactors are estimated

by this new computational method. The estimated flux is found to be in good agreement with
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other standard codes. In 3D TWIGL reactor the effect of space part, in estimating the transient, is
found to be significant. A maximum error of 10% is observed in the estimation of core power
when the space part is neglected. In the case of 3D homogeneous reactor, the error in the
estimation of core power, when space part is neglected, is observed to be < 0.10% for both

positive and negative reactivity perturbations.

From the results it is established that this new computational method, the modified
exponential time differencing method with improved quasi static (IQS) model, is capable of
estimating the transients to a good accuracy. Large time step can be used to estimate the
transients without compromising the accuracy and this method serves as one of the fastest

method in estimating the transients.

The static and dynamic sensitivity analysis associated with the transient is performed
using this new computational method. Using this method, the uncertainty and sensitivity analysis
can be carried out efficiently. The static and dynamic sensitivity analysis is performed for (i) 3D
homogeneous reactor and (i) 3D TWIGL reactor. In the case of static uncertainty and sensitivity
analysis, the uncertainty in the neutron multiplication factor is estimated for various uncertainties
in the input parameters (macroscopic cross sections). It is observed that the thermal fission cross
section is more influential in affecting the multiplication factor and the second more influential
factor is found to be the thermal absorption cross section for the above reactors considered here.
It is also shown that the sensitivity coefficient is found to follow a linear law when the input
uncertainty lies in the range 0.05%-0.5%. The sensitivity coefficient can be estimated using the

linear law if the input uncertainty falls between 0.05% and 0.5%.
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The propagation of macroscopic cross section uncertainty with time (dynamic
uncertainty) and its impact on reactor transient is discussed in detail. The effect of macroscopic
cross section uncertainty on core power, peak mesh power and total peaking factors during the
transient is analyzed. The dynamic sensitivity analysis during transient is performed by
incorporating the IQS model in forward sensitivity analysis procedure (FSAP). While
incorporating the IQS model in FSAP, a new kind of point kinetics equations is developed. The
new kind of point kinetics equations is solved using the modified ETD method. The solution of
the new kind of point kinetics equation with the shape function gives the uncertainty in the flux.
From the uncertainty in the flux, the uncertainties in core power, peak mesh power and peaking
factor are estimated. The dynamic uncertainty and sensitivity analysis is performed for (i) 3D
homogeneous reactor transient and (ii) 3D TWIGL reactor transient. Both local and global
dynamic sensitivity analyses are performed using FSAP with IQS model as well as directly
solving FSAP equations (FSAP-Direct). The results are compared and they are found to be in
good agreement. The advantage of FSAP with 1QS model is that the dynamic uncertainly and
sensitivity analysis, during transient, can be performed in a much faster way without losing the
accuracy. Using this new computational method, both the estimation of transient and the
dynamic sensitivity analysis can be performed simultaneously. In the case of local dynamic
sensitivity analysis, the sensitivity of peak mesh power with respect to macroscopic cross section
uncertainty is estimated. In the case of global sensitivity analysis, the sensitivity of reactor core
power and total peaking factor (3D peaking factor) are estimated for various macroscopic cross
section uncertainties. The uncertainty in total peaking factor (3D PF) is found to be small during

the transient in these reactors.
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This study establishes that the FSAP with IQS model is capable of estimating the
dynamic uncertainty in flux during the reactor transient to a good accuracy. This new
computational method serves as one of the fastest method in performing dynamic sensitivity
analysis during transient. It is also shown that both the transient analysis and dynamic sensitivity
analysis can be performed simultaneously. The results clearly indicate that this method serves as
one of the efficient method in evaluating the dynamic uncertainty deterministically. Using this
computational method, the uncertainty in the core characteristics can be estimated and safety

margins can be fixed more realistically.

6.2 Scope for further research

The modified exponential time differencing (ETD) method can be used to solve the burn-

up equation and estimate isotope depletion and production.

The modified exponential time differencing method with IQS model can be applied to estimate
the transient with thermal hydraulics feedback. The forward sensitivity analysis procedure
(FSAP) with IQS model can be used to analyze the uncertainty in transient arising from the
delayed neutron data. This method can be used to quantify the uncertainty in the core
characteristics from multiple uncertainties in the macroscopic cross sections. This method can be

used to estimate the uncertainty in the isotope production and depletion during fuel burn-up.
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