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Abstract

Controlled transfer of photonic qubits is essential for implementing quantum infor-

mation protocols in cavity arrays. A basic requirement for effecting such a transfer is

to tailor the system parameters such as the cavity frequencies, couplings, detunings,

etc. Moreover, cavities containing atom or nonlinear medium can be considered that

have additional control parameters, namely, the atomic state and nonlinearity. Con-

trolled dynamics of photon transfer in a cavity array by appropriate choices of these

parameters is established in this thesis.

Perfect transfer of a single photon in an array is not possible if the cavity couplings

are homogeneous. A duality relation between two systems, namely, N − 1 photons

in two coupled cavities and a single photon in N cavities is employed to arrive at

the required coupling strengths and nonlinearities in the array so that controlled and

perfect photon transfer is possible between any two cavities in the array. Every tran-

sition in the two-cavity system has a dual phenomenon in terms of photon transport

in the array. The condition for perfect transfer of photon enables transfer of photonic

qubit between any two cavities in the array. Possibility of high fidelity generation of

generalized NOON states in the two coupled cavities, which are dual to the Bell states

of the photon in the cavity array, is established.

If the cavity array has more number of photons, localization and delocalization of

photons are possible. These two features are analogous to the bunching and an-

tibunching of photons. Occurrence of localization and delocalization of photons in

linear cavities are explained via quantum interference. The role of the relative phase

and entanglement in the initial superposition is discussed. Complete localization and

delocalization of product states, which are absent in linear cavities, is possible in Kerr

nonlinear cavities. Dynamics of photon transfer in dissipative structures is another

topic discussed in this thesis. A system of two coupled cavities connected between two
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thermal reservoirs is considered. Embedding a dispersively interacting single atom in

any one of the cavities brings a controllable flow of heat energy through the array. The

thermal current through a system of two coupled cavities containing a single atom

depends on the atomic state. By switching the state of the atom from its excited state

to the ground state, the system changes from a thermal conductor to an insulator.

In addition, by properly tuning the atomic state and system-reservoir parameters,

direction of current can be reversed, thereby violating the second law of thermody-

namics. It is shown that a large thermal rectification is achievable in this system by

tuning the cavity-reservoir and cavity-atom couplings. Partial recovery of diffusive

heat transport in an array of N cavities containing one dispersively coupled atom is

also established.
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Chapter 1

Cavity quantum optics

Quantum theory is presently the best description of nature. Formulated to under-

stand the atomic spectrum, it is believed to be the formalism that can be used to

understand nature at all scales, from the substructure of elementary particles to the

entire universe. On the pragmatic side, many technological marvels such as the semi-

conductor devices, lasers, quantum-interference devices, etc are direct applications of

quantum theory. The formalism continues to inspire new ideas. Quantum information

processing is a recent example which promises features such as the teleportation, un-

breakable codes, exponentially faster computation, etc which are not possible within

the ambit of the classical physics [1]. An essential ingredient in all these is the ability

to control the evolution of the system to achieve the desired result. Many experiments

have been performed to show that it is indeed possible to design the evolution to gain

control over the dynamics of atoms, ions and photons [2–6]. Apart from the practical

applications, fundamental issues of quantum theory can also be addressed using these

controllable systems. This thesis focuses on photon transfer in coupled cavities with

a view to show the possibility of quantum control in such systems.

This chapter provides a review of the canonical field quantization in a cavity, various

properties of cavities and cavity arrays. States of the electromangetic field such as

the number states and thermal states are introduced. Cavities containing material

medium or atom, in particular, Kerr medium and two-level atoms, are discussed.

Inclusion of Kerr medium provides for control of quantum evolution of the cavity

1
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field. Dissipative processes are important as they are unavoidable. A review of some

of the formalisms used in the study of dissipation in quantum systems is included.

1.1 Electromagnetic field

Space-time evolution of the electromagnetic field in vacuum is described by the Maxwell’s

equations, which are

~∇ · ~E(~r, t) = 0, (1.1a)

~∇ · ~B(~r, t) = 0, (1.1b)

~∇× ~E(~r, t) = − ∂
∂t
~B(~r, t), (1.1c)

and ~∇× ~B(~r, t) = µ0ε0
∂
∂t
~E(~r, t), (1.1d)

where µ0 and ε0 are respectively the permeability and the permittivity of the free

space. A consequence of these equations is that the electric and magnetic fields satisfy

~∇2 ~X(~r, t) =
1

c2

∂2

∂t2
~X(~r, t), (1.2)

where ~X(~r, t) can be ~E(~r, t) or ~B(~r, t). These equations imply that the electromag-

netic wave propagates in free space with speed c. Another consequence of the Eqns.

1.1(a − d) is that the fields ~E and ~B are transverse, i.e., ~E, ~B and the direction of

propagation are mutually perpendicular to each other. These equations can be modi-

fied to include source terms as well. If boundary conditions are imposed on the fields,

these equations can describe fields in confined geometry as well.

An important case is the description of the electromagnetic field between two perfectly

conducting plates separated by a length L (cavity) as shown in Fig. 1.1. In the limit

of large L, the field corresponds to the electromagnetic field in free space. The field

is assumed to be propagating along z-direction and the electric field is polarized in

2



Chapter 1: Introduction Chapter 1

x-direction, i.e., ~E(r, t) = êxEx(r, t), where êx is the polarization direction.

Figure 1.1 – Two parallel conducting surfaces located at z = 0 and z = L, forms a
cavity. Electromagnetic field is propagating along z-axis and polarized along x-axis.

As the walls are perfectly conducting, the electric field vanishes at the boundaries

at z = 0 and z = L. In order to write the explicit form of ~E for the cavity field,

consider the fundamental modes of the electromagnetic field. Fundamental modes are

the eigenfunctions of the spatial part of the wave equation. Any arbitrary distribution

of the electric field inside the cavity can be expressed as a linear combination of these

fundamental modes [7],

Ex(z, t) =
∞∑
j=1

Ajqj(t) sin(kjz), (1.3)

where qj is the amplitude of the jth fundamental mode with the dimension of length

and kj = jπ/L is the magnitude of the wave vector. The amplitude qj plays the role of

the canonical position for an oscillator. The expansion coefficient Aj =
(

2ωj
V ε0

) 1
2

where

ωj is the frequency of jth fundamental mode and V is the modal volume. These

modes satisfy the orthogonality relation

ˆ L

0

sin(knz) sin(kmz)dz =
L

2
δnm. (1.4)

3
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Boundary conditions on the electric field restrict the possible frequencies to

ωj =
jπc

L
. (1.5)

These are the resonance frequencies of the cavity. Separation between two successive

resonance frequencies is πc/L, which is negligible if L is large.

Similarly, the magnetic field inside the cavity is

By(z, t) =
∑
j

Aj

(
pj(t)ε0µ0

kj

)
cos(kjz). (1.6)

Here pj(t) = q̇j(t) is analogous to the canonical momentum for a particle in the Hamil-

tonian dynamics.

The Hamiltonian for the electromagnetic field is

H =
1

2

ˆ
dV

[
ε0E

2
x(z, t) +

1

µ0

B2
y(z, t)

]
, (1.7)

which is the energy of the field. Using the expressions for Ex and By respectively from

Eqn. 1.3 and 1.6, the total Hamiltonian is

H =
1

2

∑
j

(
p2
j(t) + ω2

j q
2
j (t)
)
. (1.8)

The Hamiltonian has the same structure as that for a set of independent harmonic

oscillators. In essence, each fundamental mode of the electromagnetic field is equiv-

alent to an oscillator. The electric field and the magnetic field are equivalent to the

position and the momentum respectively.
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1.2 Quantization of electromagnetic field in cavity

Many experiments in optics are explainable by treating the electromagnetic field

as classical [8]. However, there are a few notable experimental outcomes such as

the black-body spectrum, spontaneous emission, lamb shift, resonance fluorescence,

squeezed states, etc., that require quantization of the electromagnetic field [7]. As the

cavity field is equivalent to a harmonic oscillator, quantization of the electromagnetic

field is straightforward. Quantization provides an elegant way of understanding the

classical wave picture of the field in terms of quantum picture. This indicates that

the field is made up of field quanta which can be created and annihilated.

It can be inferred from the wave equation given in Eqn. 1.2 that the respective

amplitudes, namely, q and p of the electric and magnetic fields obey the classical

equations of motion of a harmonic oscillator. The canonical variables q(t) and p(t) are

represented by self-adjoint operators q̂ and p̂ which satisfy the commutation relation

[q̂, p̂] = i~I. For further analysis, it is advantageous to define

âj =
1√
2~ωj

(ωj q̂j + ip̂j),

â†j =
1√
2~ωj

(ωj q̂j − ip̂j), (1.9)

which satisfy [âj, â
†
k] = Iδj,k. The operators âj and â†j are called the creation and

annihilation operators respectively. In terms of these operators, the Hamiltonian for

the quantized electromagnetic field is

Ĥ =
∑
j

~ωj
(
â†j âj +

1

2

)
. (1.10)

The term 1/2~ωj corresponds to the energy of the vacuum of the jth mode.

5
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The electric and magnetic field operators are

Êx(z, t) =
∑
j

(
~ωj
ε0V

)1/2

(âj + â†j) sin kjz,

and B̂y(z, t) =
∑
j

µ0

kj

(
ε0~ω3

j

V

)1/2
1

i
(âj − â†j) cos kjz, (1.11)

respectively.

1.3 Quantum states of electromagnetic field

As noted in the previous section, each mode of electromagnetic field inside the cavity

is equivalent to a harmonic oscillator. These independent modes are described in their

respective Hilbert spaces. The collection of modes is described in the tensor product

space of the respective Hilbert spaces corresponding to the modes. A single mode

electromagnetic field has specific spatial distribution of the electric field decided by

the geometry of the cavity and the boundary conditions. The amplitude of the shape

function is subjected to canonical quantization as described in the previous section.

1.3.1 Number states

The Hamiltonian for a single mode field is

Ĥ = ~ω
(
â†â+

1

2

)
. (1.12)

The eigenvalue equation for this Hamiltonian is

Ĥ |n〉 = En |n〉 , n = 0, 1, 2, 3, ... (1.13)

where En = (n+ 1/2)~ω is the energy of the nth excited state of the field. The state

|n〉 corresponds to the eigenstate having n photons with total energy (n + 1/2)~ω.

These eigenstates are called number states as they correspond to states of definite

6
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number of photons. Being the eigenstates of the self-adjoint operator Ĥ, the number

states {|n〉} form a complete basis for the Hilbert space associated with the single

mode field. Consequently, these states satisfy the completeness relation

∞∑
n=1

|n〉 〈n| = I. (1.14)

Any state of that single mode field can be expressed as a superposition of the number

states.

The action of the creation and annihilation operators on a number state |n〉 is

â |n〉 =
√
n |n− 1〉 , â |0〉 = 0,

â† |n〉 =
√
n+ 1 |n+ 1〉 . (1.15)

The reason for naming â as annihilation operator is that it changes a n-photon state

to (n−1)-photon state. Similarly, the creation operator â† changes the n-photon state

to (n+1)-photon state. Expectation value of operator â†â in a number state gives the

number of photons in the electromagnetic field, i.e., 〈n| â†â |n〉 = n. Hence, n̂ = â†â

is called the number operator.

The expectation value of the electric field in the number state is

〈n| Êx(z, t) |n〉 ∝ 〈n| (â+ â†) |n〉 = 0, (1.16)

and the fluctuation in the electric field is

∆Ex =

√
〈Ê2

x(z, t)〉 − 〈Êx(z, t)〉2 =
√

2

(
~ω
ε0V

)1/4

| sin kz|
(
n+

1

2

)1/2

. (1.17)

Interestingly, fluctuation is non-zero even if n = 0. This is the vacuum fluctuation
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which is responsible for various effects such as the spontaneous emission, Lamb-shift,

Casimir force, etc [9]. The fluctuations of the electric field in a number state are

non-zero due to the fact that the electric field operator Êx does not commute with

the number operator â†â. They satisfy the uncertainty relation [10]

∆n̂∆Êx ≥
1

2

(
~ω
ε0V

)1/2

| sin(kz)||〈â† − â〉|. (1.18)

This uncertainty bound implies that the state of the electromagnetic field does not

lead to a well localized point in the phase space. However, it is useful to define

two dimensionless quadrature operators analogous to the position and momentum

operators, in order to describe the phase space properties of the field. Quadrature

operators are defined as X̂1 = (â+ â†)/2 and X̂2 = (â− â†)/2i. The uncertainties in

X̂1 and X̂2 for the state |n〉 are

〈(∆X̂1)2〉 = 〈(∆X̂2)2〉 =
1

4
(2n+ 1), (1.19)

which increase with n. Note that the vacuum state |0〉 minimizes the uncertainty as

〈(∆X̂1)2〉 = 〈(∆X̂2)2〉 =
1

4
. (1.20)

1.3.2 Thermal states

The electromagnetic radiation from an object at a non-zero temperature is called

thermal light. The density operator for the single mode electromagnetic field inside a

cavity at temperature T is

ρ̂th =
exp(−Ĥ/kBT )∑
n exp(−Ĥ/kBT )

, (1.21)

where Ĥ = (1/2 + â†â)~ω.

8
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In the number state representation, the density matrix for thermal state is

ρ̂th =
1

1 + n̄

∞∑
n=0

(
n̄

1 + n̄

)n
|n〉 〈n| , (1.22)

where the average number of photons in the cavity field is the Bose-Einstein (BE)

distribution

n̄ =
1

exp(~ω/kBT )− 1
. (1.23)

According to the statistical distribution of the occupation of the energy levels, the

probability of finding n quanta in the mode is

Pn =
exp(−En/kBT )∑
n exp(−En/kBT )

, (1.24)

where En = (n+1/2)~ω for harmonic oscillator and Boltzmann constant kB = 1.38×

10−23J/K. This probability can be expressed as

Pn =
n̄n

(1 + n̄)n+1
, (1.25)

in terms of the mean photon number. Thus, temperature and mean photon number

are equivalent parameters for the equilibrium distribution.

Photon number fluctuation in the thermal state is

〈(∆n)2〉 = n̄+ n̄2, (1.26)

which is larger than the average number of photons in the field.

9
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1.4 Cavity

A cavity is an arrangement of mirrors that confines light of certain resonance frequen-

cies. The electromagnetic field inside the cavity satisfies suitable boundary conditions

such as the vanishing of the electric field at the mirrors. The resonance frequencies

given in Eqn. 1.5 for a planar cavity are dependent on the cavity length (L) which

can be adjusted by using a shear piezo-actuator [11]. The tunability of the cavity res-

onance frequency allows to realize active tunable devices such as the microdisk lasers,

modulators, optical switches, filters for optical communication etc. [12, 13]. A cavity

containing a suitable material medium such as a two-level atom or Kerr medium offers

a wide range of potential applications.

For understanding the basic properties of a cavity, consider a planar cavity consisting

of two mirrors M1 and M2 with reflectivities R1 and R2 respectively. This arrangement

is also known as Fabry-Perot cavity. A schematic diagram of a single Fabry-Perot

cavity is given in the Fig. 1.2.

Figure 1.2 – A Fabry-Perot cavity of length L with two parallel mirrors M1 and M2.
The refractive index of the medium inside the cavity is n.

The mirrors are separated by a distance L. The cavity can be empty or filled with a

medium of refractive index n. The properties of the cavity are determined by shining a

light of wavelength λ and collecting the transmitted light. In the absence of absorption

and scattering losses, the transmittivity of the cavity is [14]

T =
1

1 + (4F 2/π2) sin2(φ/2)
, (1.27)
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where φ = 4πnL/λ is the round-trip phase shift. Quality of the cavity is measured

by its finesse F defined as

F =
π(R1R2)1/4

1−
√
R1R2

. (1.28)

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

L/λ

T

Figure 1.3 – Transmission profile of a Fabry-Perot cavity as a function of L/λ for
reflectivities of the mirrors R1 = R2 = 0.9 (black) and R1 = R2 = 0.99 (red). The
refractive index of the medium inside the cavity is taken as n = 1.

Transmission profile of a Fabry-Perot cavity is shown as a function of L/λ in Fig.

1.3. There is complete transmission if the cavity length is a half-integral multiple of

λ, i.e., φ = 2πm, where m is an integer. The finesse of the cavity can be calculated

from the full-width at half-maximum of the spectrum peak,

F =
2π

∆φFWHM

=
2π(m+ 1)− 2πm

∆φFWHM

. (1.29)

Hence, finesse is also defined as the ratio of the separation between two adjacent max-

ima to the half-width which parametrizes the resolving power or spectral resolution of

the cavity. For an ideal cavity, i.e, R1 = R2 = 1, the full-width at half-maximum be-

comes zero. This, in turn, means that the finesse is infinity. The transmitted light will

have a sharp resonance frequency and its integral overtones. This is an ideal condition.
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Deviation from this ideal condition amounts to leakage of photons/energy from the

cavity. This is quantified by the cavity loss rate γ defined as

γ =
ω

Q
, (1.30)

where Q is the quality factor of the cavity (Q-factor). The Q-factor is the ratio of the

energy stored in the cavity to the energy loss per round-trip. Essentially, Q-factor

of a cavity characterizes the capability of storing the energy. A cavity with large

Q-factor stores photons for a long time. Such a high Q cavity is a suitable physical

system for generating, storing and manipulating the states of the electromagnetic field

[15]. Any state of the electromagnetic field is achievable from the vacuum state of

the cavity by a sequence of operations [16]. The state of the field can be manipulated

either by external driving or embedded atoms [17–19, 19–21]. By suitably tailoring

the external driving or atom-field coupling strengths, cavity state can be evolved to a

desired target state [22]. Experimental realization of these theoretical ideas requires

ultrahigh-Q cavities. Such cavities are fabricated in various configurations such as

the Fabry-Perot [23, 24], pillar [25], whispering gallery resonators [26, 27], photonic

crystal [28, 29], etc [30–32]. These cavities are being used for realizing strong atom-

field coupling [33], imaging of atoms beyond diffraction limit [34, 35], atom-cavity

microscope [24], controlling light pulse propagation [36], atom-field entanglement [37],

bio-sensor [38, 39], optical sensor [40], etc.

1.5 Coupled cavity modes

Many of the quantum information protocols, for instance, quantum state transfer,

quantum dense coding and quantum cryptography involve transfer of a qubit through

a quantum channel. Qubits can be realized with photons [41], spins [42], atoms [43–

45], phonons [46], etc. Of these, photons have several advantages due to their transfer
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speed and absence of mutual interaction. Transfer of photonic qubit requires a quan-

tum channel that should allow controllability and high fidelity transfer. Coupled

cavities as quantum channels are suitable for realizing the aforementioned protocols

[43, 47–50]. Technological progress in the fabrication of high finesse cavities has ren-

dered it possible to couple several cavities to build an extended quantum network

[29]. Coupling of cavities is established by different mechanism such as the evanescent

wave [51, 52], inductive coupling and capacitive coupling [53], wave guide coupling

[54], etc. Coupling leads to energy exchange between them. The rate of exchange of

energy depends on the coupling strength (J), which in turn, depends on the overlap

of the spatial profiles of resonant modes [55] as depicted in Fig. 1.4.

Figure 1.4 – Two coupled cavities with their spatial profile of resonant modes. The
overlap of modes decide the coupling strength J .

The interaction energy for the cavities coupled via evanescent wave is [56, 57]

Hint =

ˆ
εE1E

∗
2dV, (1.31)

where ε is the relative permittivity profile for the coupled cavities.The range of in-

tegration extends over the coupled cavities. The two cavities are considered to be

non-ideal in the sense that their electric field distributions extend beyond the cavity

boundaries. Here E1 and E2 represent the electric fields of these cavities. If the cav-

ities are ideal then the electric fields are confined within the respective cavities and

the interaction energy vanishes.

The single mode electric field of the individual cavities in terms of the creation and
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annihilation operators is

Êj =

√
~ωj

2ε0εrjVj
(âj + â†j)uj(z), j = 1, 2 (1.32)

where uj(z) is the mode function of the jth cavity in the absence of other cavity. Here

εrj is the relative permittivity of the medium present and Vj is the mode volume of

the jth cavity respectively.

The interaction Hamiltonian becomes

Ĥint =

√
~ω1

2ε0εr1V1

√
~ω2

2ε0εr2V2

ˆ
ε(a1 + a†1)(a2 + a†2)u1(z)u∗2(z)dV,

=J(â1 + â†1)(â2 + â†2), (1.33)

where

J =

√
~ω1

2ε0εr1V1

√
~ω2

2ε0εr2V2

ˆ
εu1(z)u∗2(z)dV. (1.34)

The total Hamiltonian for the coupled cavities is

H = ~ω1â
†
1â1 + ~ω2â

†
2â2 + J(â1 + â†1)(â2 + â†2). (1.35)

The evolution equations for the annihilation operators in resonant case (ω1 = ω2 = ω)

are [58]

 â1(t)

â2(t)

 = MAM

 â1(0)

â2(0)

+MBM

 â†1(0)

â†2(0)

 , (1.36)

14



Chapter 1: Chapter 1

where

M =
1√
2

 1 1

1 −1

 ,

A =

 α2
xe
−i
√
ω2+2Jωt − β2

xe
i
√
ω2+2Jωt 0

0 α2
ye
−i
√
ω2−2Jωt − β2

ye
i
√
ω2−2Jωt

 ,

B =

 −2iαxβx sin
√
ω2 + 2Jωt 0

0 −2iαyβy sin
√
ω2 − 2Jωt

 .

Here

αx =

√
ω2 + 2Jω + ω

2
√
ω(ω2 + 2Jω)1/4

, αy =

√
ω2 − 2Jω + ω

2
√
ω(ω2 − 2Jω)1/4

, βx =

√
ω2 + 2Jω − ω

2
√
ω(ω2 + 2Jω)1/4

,

and βy =

√
ω2 − 2Jω − ω

2
√
ω(ω2 − 2Jω)1/4

.

If 2J/ω << 1, then βx ≈ 0 + O(2J/ω), βy ≈ 0 + O(2J/ω), αx ≈ 1 + O(2J/ω) and

αy ≈ 1 + O(2J/ω). Therefore, in the first order approximation, B becomes a null

matrix and

A =

 e−i(ω+J)t 0

0 e−i(ω−J)t

 . (1.37)

Now, the equations of motion given in Eqn. 1.36 become

a1(t) ≈ e−iωt[cos Jt a1(0)− i sin Jt a2(0)], (1.38)

a2(t) ≈ e−iωt[cos Jt a2(0)− i sin Jt a1(0)]. (1.39)

These evolution equations are identical to the ones generated by the Hamiltonian

Ĥ = ~ωâ†1â1 + ~ωâ†2â2 + J(â†1â2 + â1â
†
2). (1.40)
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Hence, in the limit 2J/ω << 1, the dynamics generated by the Hamiltonian given in

Eqn. 1.35 is similar to the dynamics generated by the Hamiltonian given in Eqn. 1.40.

In other words, the counter rorating terms do not affect the dynamics significantly[59].

In the non-resonant case, the equations of motion for the annihilation operators (using

the Hamiltonian given in Eqn. 1.35) are

d

dt
a1 = −iω1a1 − iJ(a2 + a†2),

d

dt
a2 = −iω2a2 − iJ(a1 + a†1). (1.41)

In the weak coupling limit, i.e., 2J/ω1, 2J/ω2 << 1, the annihilation operators evolve

as

a1(t) ≈ a1(0)e−iω1t and a2(t) ≈ a2(0)e−iω2t. (1.42)

Therefore,

〈âiâj〉t ∝ exp(−i(ωi + ωj)t)〈âiâj〉0,

〈â†i â
†
j〉t ∝ exp(i(ωi + ωj)t)〈â†i â

†
j〉0,

and 〈âiâ†j〉t ∝ exp(−i(ωi − ωj)t)〈âiâ†j〉0, (1.43)

where i, j = 1, 2. In the near resonant case, i.e., ω1 ≈ ω2, the terms 〈âiâj〉t and

〈â†i â
†
j〉t oscillate many times during a single oscillation of 〈âiâ†j〉. As a result, time

averages of 〈âiâj〉 and 〈â†i â
†
j〉 are small compared to 〈âiâ†j〉 [58]. Neglecting these

highly oscillating terms from the Hamiltonian given in Eqn. 1.35 is known as the

rotating wave approximation (RWA). In this approximation, the Hamiltonian given

in Eqn. 1.35 becomes

Ĥ = ~ω1â
†
1â1 + ~ω1â

†
2â2 + J(â†1â2 + â1â

†
2). (1.44)

Due to the coupling between the cavities, photons in any one of the cavities propagate
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to other cavity [50, 60, 61]. One way of controlling the coupling strength J is by

altering the distance between the cavities [29, 51, 62].

The Hamiltonian given in Eqn. 1.44 describes many physical systems such as the

coupled phonic crystal cavities [29], coupled whispering-gallery cavities [51], coupled

superconducting strip line resonators [53], driven optomechanical cavity in red de-

tuned regime [63], single photon scattering from microsphere resonator in subwave-

length limit [64] and a pair of trapped ions [65]. Photonic crystal cavities are coupled

via evanescent wave field [29]. The overlap of cavity mode functions allow exchange

of energy [55].

In the case of superconducting stripline resonators, coupling occurs via mutual induc-

tance and mutual capacitance. The coupling strength between two superconducting

strip line resonators is [53]

JSR =
ω0

2

√
C2

(1 + C)(1 + 2C)

(
1 +

1

ν

C2

1− C2

)
− ω0

2ν

L

1− L2

√
1 + C

1 + 2C

ν(1− L2)

ν(1− L2) + L2
.

(1.45)

The first term arises due to capacitive coupling and the second term corresponds to

inductive coupling. The quantities C and L are proportional to conductance and in-

ductance of the resonator respectively, ω0 is the frequency of both the resonators and

ν is a geometric factor.

In case of optomechanical system, an optical field is coupled to a mechanical resonator

via radiation pressure[63]. In this case coupling strength is

Jopt =
ω

L

√
Pin
~ωd

√
γ

γ2 + 4δ2
, (1.46)

where ω is the resonance frequency, L is the length of the cavity and γ is the decay

17



Open quantum system Chapter 1

Table 1.1 – Experimental parameters

Systems
Resonance
frequencies
(Hz)

Coupling
strengths(Hz)

Q-factor Ref.

Photonic crystal cavity 3.33×1014 1.3×1012 2500 [29]
Photonic crystal cavity 1.169×1014 1.1×1010 105 [52]

Superconducting resonator 6.65×109 1.2×109 104 − 106 [53, 66]
Optomechanical cavity 65×106 1.6× 106 4.33 [67]

rate of the cavity. Laser input power is Pin and its frequency is ωd. The detuning

between the cavity and the laser is δ = ω − ωd.

Currently achievable values of resonance frequencies, Q-factors and coupling strengths

are listed in Table. 1.1.

1.6 Open quantum system

An ideal system is characterized by its complete isolation from all possible influences

of the environment. Its dynamics is governed by a unitary transformation. The total

energy of an isolated system remains constant during time evolution. However, com-

plete isolation of a system from its surrounding is not possible. Interaction between

a system and the environment which has large number of degrees of freedom (envi-

ronment) leads to a dissipative dynamics of the system. Such systems are called open

quantum systems.

Consider a damped harmonic oscillator whose equations of motion are

q̇ =
p

m
,

ṗ = −mω2q − γp, (1.47)

where q and p are position and momentum of the oscillator. The natural frequency
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of the oscillator is ω. The damping rate in the system is γ. Equivalently, q satisfies

q̈ + γq̇ + ω2q = 0. (1.48)

To see the problem of describing the damped oscillator quantum mechanically, the

classical variables q and p are replaced by the operators q̂ and p̂ satisfying [q̂, p̂] = i~.

The Heisenberg equations of motion for q̂ and p̂ are similar to those of the classical

equations of motion given in Eqn. 1.47. On using the solutions of the Heisenberg

equations, the commutation relation between q̂ and p̂ satisfies

[q̂(t), p̂(t)] = e−γti~. (1.49)

For t > 0, the commutation relation deviates from the canonical commutation be-

tween q̂ and p̂. An immediate consequence is that the Heisenberg uncertainty relation

becomes

∆q̂∆p̂ ≥ 1

2
~e−γt. (1.50)

This is erroneous as quantum mechanics limits the product of ∆q̂∆p̂ to be greater

than or equal to ~/2. Hence, replacing the classical variables by operators is not a

suitable prescription to quantize the damped oscillator.

There are several approaches for incorporating dissipation in quantum systems. For

instance, quantum master equation and Monte-Carlo wavefunction are the most used

approaches. The results produced in this thesis are based on the master equation

method. A review of this approach is presented here.
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1.6.1 Master equation method

One of the most commonly used approaches in the description of open quantum sys-

tems is the quantum master equation [68]. In this method, the evolution equation for

the reduced density matrix of the system is obtained by tracing over the variables of

the reservoir. Two versions of quantum master equations, one due to Redfield [69] and

another due to Lindblad [70] are known. An important characteristic of the Lindblad

approach is that it preserves the positivity of the density matrix of the system.

In order to derive the evolution equation for the reduced density matrix, consider the

Hamiltonian of the system and reservoir,

Ĥ = Ĥs + Ĥr + Ĥsr, (1.51)

where Ĥs and Ĥr are the Hamiltonians for system (S) and reservoir (R) respectively.

Interaction between the system and the reservoir is Ĥsr. By incorporating the reser-

voir variables, the canonical commutation relation between q̂ and p̂ is preserved during

time-evolution [71].

Let the density matrix of (system+reservoir) be ρ. Its evolution equation is governed

by the quantum Liouville equation

d

dt
ρ(t) =

1

i~
[Ĥ, ρ]. (1.52)

This evolution is unitary as (system+reservoir) is closed. Tracing over the reservoir

variables gives the reduced density matrix for the system:

ρs = Trr(ρ). (1.53)
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Expectation value of a system observable is calculated as

〈Ô〉 = Trs(Ôρs). (1.54)

Hence, it is necessary to derive an evolution equation for the reduced density matrix.

The density matrix ρ in interaction picture is defined to be

ρ̃(t) = e−i/~(Ĥs+Ĥr)tρ(t)ei/~(Ĥs+Ĥr)t, (1.55)

which satisfies

d

dt
ρ̃(t) =

1

i~
[Ĥ ′sr(t), ρ̃], (1.56)

where Ĥ ′sr = ei/~(Ĥs+Ĥr)tĤsre
−i/~(Ĥs+Ĥr)t.

The equivalent integral form is

ρ̃(t) = ρ(0) +
1

i~

ˆ t

0

dt′[Ĥ ′sr(t
′), ρ̃(t′)], (1.57)

which is more suited for the present purpose. Substituting this in Eqn. 1.56,

d

dt
ρ̃(t) =

1

i~
[Ĥ ′sr(t), ρ(0)]− 1

~2

ˆ t

0

dt′[Ĥ ′sr(t), [Ĥ
′
sr(t

′), ρ̃(t′)]]. (1.58)

The system and reservoir are initially uncorrelated so that

ρ̃(0) = ρ(0) = ρ̃s(0)ρ̃r(0). (1.59)

On tracing over the reservoir variables, Eqn. 1.58 gives the following evolution equa-
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tion for the reduced density matrix of the system

d

dt
ρ̃s = − 1

~2

ˆ t

0

dt′Trr{[Ĥ ′sr(t), [Ĥ ′sr(t′), ρ̃(t′)]]}, (1.60)

where Trr{[Ĥ ′sr(t), ρ(0)]} = 0 due to the assumption Trr(Ĥsrρr) = 0. In the Born

approximation,

ρ̃(t) = ρ̃s(t)ρr, (1.61)

which amounts to saying that the state of the system evolves due to the interaction of

the system with the reservoir while remaining uncorrelated. Additionally, neglecting

the higher order terms in Ĥsr yields

d

dt
ρ̃s = − 1

~2

ˆ t

0

dt′Trr{[Ĥ ′sr(t), [Ĥ ′sr(t′), ρ̃s(t′)ρr]]}. (1.62)

Note that the state of the system at time t depends on the state at earlier times.

Under the Markov approximation, the state ρ̃s(t
′) under the integral is replaced by

ρ̃s(t). With this substitution, the above equation becomes

d

dt
ρ̃s = − 1

~2

ˆ t′

0

dt′Trr{[Ĥ ′sr(t), [Ĥ ′sr(t′), ρ̃s(t)ρr]]}. (1.63)

which is the master equation for ρ̃s.

Consider a single harmonic oscillator interacting with a reservoir. The later is a

collection of oscillators. Hamiltonians for the system and the reservoir are

Ĥs = ~ωâ†â, Ĥr =
∞∑
j=0

~ωj b̂†j b̂j, (1.64)
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respectively and the interaction between them is

Ĥsr =
∑
j

~(kj â
†
j b̂+ k∗j âj b̂

†
j). (1.65)

Here â is the annihilation operator of the system and its adjoint is â†. The annihila-

tion (creation) operator for the jth mode of the reservoir is b̂j(b̂
†
j).

The state of the reservoir in thermal equilibrium at temperature T is

ρr =
∏
j

e−i~ωj b̂
†
j b̂j/kBT (1− e−i~ωj/kBT ). (1.66)

Assuming a delta correlated reservoir, i.e.,

〈b̂i(t)b̂j(t′)〉r ∝ δ(t− t′), (1.67)

the master equation given in Eqn. 1.63 for the harmonic oscillator is

˙̃ρs = −i~ω[â†â, ρs] +
γ(n̄+ 1)

2
(2âρsâ

† − â†âρs − ρsâ†â) +
γn̄

2
(2â†ρsâ− ââ†ρs − ρsââ†),

(1.68)

which is the Lindblad equation for ρ̃s. The average number of photons n̄ in the

reservoir is

n̄ =
1

e~ω/kBT − 1
. (1.69)

The coupling constants kj are related to the decay rate γ through the relation [72]

γ = 2π
∑
j

k2
j δ(ωj − ω). (1.70)

First term in the expression given in Eqn. 1.68 corresponds to the unitary evolution
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(no dissipation and decoherence) of the quantum state ρs. Second term refers to the

energy dissipation from the system to the reservoir and the last term corresponds to

absorption of energy by the system from the reservoir [68].

1.7 Two-level atom inside a cavity

A single atom in the free space interacts with a continuum of modes of the electro-

magnetic field. On de-excitation from one of its higher energy levels to a lower energy

level, the atom emits a photon to this continuum. This is an irreversible process. The

rate of emission is decided by the density of modes of the field. In three dimensions,

the density of modes is proportional to ω2 where ω is the frequency of electromag-

netic field (appendix C of ref. [14]). Interaction between the atom and the field can

be tailored by modifying the mode density, which is possible in a cavity. For instance,

both the direction and rate of spontaneous emission from an atom in a cavity can

be controlled [73]. The rate of spontaneous can be controlled by tuning the cavity

resonance frequency and atom-field coupling strength, known as Purcell effect [74].

Strong light-matter interaction is achieved by increasing the finesse (Q-factor) of the

cavity [43, 75, 76]. Cavity mitigates the effect of dissipation on atoms so that atom-

photon entanglement is possible [77]. Control of spontaneous emission has been used

for quantum encryption [78], quantum computation [79], etc.

A cavity with a two-level atom provides an exceptional setting for understanding light-

matter interaction [80–82]. The Hamiltonian of an electron of charge −e interacting

with an external field is

Ĥ =
1

2m
[P̂ + eÂ(~r, t)]2 − eΦ(~r, t) + V (r). (1.71)

Here V (r) is the Coulomb interaction potential between the nucleus and the electron

separated by a distance r = |~r|. Further, Â(~r, t) and Φ(~r, t) are the vector and
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scalar potentials respectively. Under the dipole approximation, i.e., wavelength of the

electromagnetic field is much larger than the atomic size, the Hamiltonian becomes

H =
1

2m
P̂ 2 + V (r)− d̂ · Ê(t). (1.72)

Here d̂ = er̂ is the dipole moment and the electric field Ê(t) = ∂Â/∂t.

Let |e〉 and |g〉 represent the excited and ground states respectively for the atom. The

raising and lowering operators for the atomic system are σ̂+ = |e〉 〈g| and σ̂− = |g〉 〈e|

respectively. The energy operator for the atom is σ̂z = |e〉 〈e| − |g〉 〈g|. Using the

expression for electric field operator Ê from Eqn. 1.11 and d̂ = d |e〉 〈g| + d |g〉 〈e|

where d is real, the Hamiltonian becomes

Ĥ =
1

2
~ω0σ̂z + ~ωâ†â+ g(σ̂+ + σ̂−)(â+ â†). (1.73)

The atom-field coupling strength is g = −deg(~ω/ε0V )1/2 sin kz where deg is the ma-

trix element of dipole moment operator that represents the strength of the dipole

transition. This Hamiltonian, known as the quantum Rabi Hamiltonian [10], contains

the energy non-conserving terms σ̂+â
† and σ̂−â. However, as these terms are fast os-

cillating their time-averages are vanishingly small. Therefore, the Hamiltonian given

in Eqn. 1.73 becomes

Ĥ =
1

2
~ω0σ̂z + ~ωâ†â+ g(σ̂+â+ σ̂−â

†). (1.74)

This is the Jaynes-Cummings Hamiltonian to describe atom-field interaction when

the coupling strength g is weak (g << ω, ω0) and ω0 ≈ ω [82]. The excitation number

operator N̂ = σ̂z + â†â is a conserved quantity. The Hilbert space naturally splits into

distinct invariant subspaces corresponding to different excitation numbers. Therefore,

the unitary dynamics of the system is restricted to subspace corresponding to a given
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number of excitations in the initial state.

In the dispersive limit, i.e., (ω0 − ω) >> g, the above Hamiltonian becomes [83]

Ĥ =
~ω0

2
σ̂z + ~ωâ†â+ χ(σ̂+σ̂− + σ̂zâ

†â). (1.75)

Due to large detuning, the atom and the field do not exchange energy. However, the

presence of the atom shifts the cavity resonance frequency [83]. There are several ad-

vantages of nonresonant atom-field interactions than the resonant one. For instance,

generation of cat states [83, 84], controlled superposition of number states [85], pho-

ton number-dependent phase gate [20], optical nonlinearity [86], etc. are possible with

nonresonant interaction.

Coupled cavity array can be a conduit for transmitting photons. Embedding an

atom in a cavity affects the propagation of photons in the array [87–89]. The trans-

mission and reflection probabilities depend on the atomic resonance frequency and

atom-cavity coupling strength. If there is an atom in each of the cavities in the ar-

ray, the system becomes strongly correlated [90]. Such a system is useful to explore

the equilibrium and nonequilibrium phase transitions. An interesting feature of this

system is the interplay between the atom-field coupling strength and the inter-cavity

interaction strengths [90], making it possible to study interesting phenomena such as

the transition from Mott insulator phase (excitations localized on each site) to super-

fluidity (excitations delocalized in the array) phase [91–93], localization-delocalization

of excitations [94, 95], etc. In this system, by properly tuning the atom and cavity

resonance frequencies, transfer a superposition of polaritonic states is possible which

may be useful for quantum information processing [96].
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1.8 Kerr medium inside a cavity

Energy levels of the quantized electromagnetic field in an empty cavity are equi-spaced.

Anharmonicity in the levels arises on incorporating a nonlinear medium, especially,

Kerr medium inside the cavity. The cavity with Kerr nonlinearity is to be referred as

‘Kerr cavity’ in subsequent discussions. The energy of the electromagnetic field in a

Kerr cavity is proportional to the square of number of photons. This anharmonicity

gives rise to many interesting phenomena such as the photon blockade [86, 97–101],

bunching and antibunching of photons [102, 103], quantum phase transitions [104],

slow light [105], etc. The feature that is responsible for the aforementioned phenomena

is the strong photon-photon interaction which is possible in the presence of nonlin-

earity [86]. This strong interaction requires extra energy to populate n photons in a

Kerr cavity than in an empty cavity.

Consider a driven cavity containing a nonlinear dispersive medium. Polarization of

the medium is

P = χ(1)Ê + χ(2)ÊÊ + χ(3)ÊÊÊ + · · · , (1.76)

where χ(n) is (n+ 1)th rank susceptibility tensor. The energy of the electromagnetic

field inside the cavity is

H =

ˆ
V

d3r
1

2
( ~D · ~E + ~H · ~B), (1.77)

where V is the mode volume, ~D = ε0 ~E + ~P and ~H = 1/µ0
~B. If the field is

propagating along z-direction and polarization is along the x-direction, then ~E =

(E(z, t), 0, 0), ~B = (0, B(z, t), 0), ~H = (1/µ0B(z, t), 0, 0) and the electric flux density

~D = (ε0E+P, 0, 0). If the medium is centro-symmetric and the driving is intense then

27



Kerr medium inside a cavity Chapter 1

the third-order nonlinearity is larger than the linear
(
χ(1)
)

and second-order
(
χ(2)
)

susceptibilities. With this assumption, the Hamiltonian given in Eqn. 1.77 becomes

[106]

H =

ˆ
V

d3r
1

2

[(
ε|E|2 +

1

µ0

|B|2
)

+ χ(3)|E|4
]
. (1.78)

Under the rotating wave approximation, the corresponding quantum Hamiltonian is

[107]

Ĥ = ~ωâ†â+ ~χâ†2â2, (1.79)

where

χ ≈ 3~ω2χ(3)

4ε0ε2r

ˆ
|u(r)|4 d3r =

3~ω2χ(3)

4ε0Veffε2r
, (1.80)

is the strength of Kerr nonlinearity. The effective cavity mode volume V −1
eff =

´
|u(r)|4 d3r

[108]. The mode function u(r) satisfies
´

[u∗(r)(1 + χ(3)/ε)u(r)]d3r = 1.

Recently, Fushman et. al. achieved large Kerr coefficients by embedding quantum

dots in photonic crystal [109]. The achieved value χ(3) = 2.4 × 10−10m2/V2 is many

orders of magnitude larger than the optical nonlinearities in solids. The lowest mode

volume that has been achieved so far is ∼ 10−23m3 [109]. Using the experimental

values ω ≈ 1014Hz, χ(3) = 2.4× 10−10m2/V2, Veff = 10−20m3, εr = 13.1 (for GaAs), the

Kerr nonlinear strength is calculated from Eqn. 1.80 to be χ ≈ 1.2× 1013Hz.

The Hamiltonian for an array of N cavities, each containing a Kerr medium, is

ĤKerr =
N∑
j=

ωj â
†
j âj + χj â

†2
j a

2
j +

N−1∑
j

Jj(â
†
j âj+1 + âj â

†
j+1). (1.81)

Here ωj and χj are the resonance frequency and Kerr strength of jth cavity. The
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strength of coupling between the jth and (j + 1)th cavity is Jj.

1.9 Motivation and outline

Array of coupled cavities is considered suitable for implementing quantum information

protocols, generation of non-classical states of the electromagnetic field, testing the

foundational aspects of quantum theory, etc. Cavity arrays provide desirable features

such as scalability and control, in addition to being a system that can sustain photons

for sufficiently long duration without being lost due to dissipation. What are the con-

trol parameters that can be made available in an array to steer the transfer of photons?

It is known that in the case of identical cavities with uniform inter-cavity coupling,

transfer of photon beyond three cavities does not happen with high probability. This

is a serious impediment if cavity arrays are to be used for practical applications. In

this thesis, it is shown that it is indeed possible to have array configurations wherein

the restriction on the number of cavities is not necessary.

The thesis is organized into six chapters. A brief introduction to the contents of the

chapters is presented below.

Perfect transfer of a single photon between any two cavities in an array is discussed

in Chapter 2. The conditions that determine the suitable values of the coupling

strengths and Kerr nonlinear strengths are derived by using a duality relation. The

duality relation is established between “N − 1 photons in two coupled cavities” and

“single photon in an array of N cavities”. Single photon transfer also means that it is

possible to transfer states of the form α |0〉+ β |1〉.

Chapter 3 discusses the two photon localization and delocalization in a linear cavity

array. The emergence of localization and delocalization of photons is shown to be the

consequence of quantum interference. Importance of entanglement and relative phase

present in the initial state to bring about localization and delocalization is discussed.
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Studies on the localization and delocalization dynamics in Kerr nonlinear cavities with

intensity-dependent couplings are presented in Chapter 4. State switching condition

which relates the nonlinear strength and cavity detuning is derived for evolving a

localized product state to a delocalized state.

Controlled transfer of heat through two coupled cavities containing a single atom

is discussed in Chapter 5. The thermal current in the cavity array is shown to be

controllable by the atom. Atom acts as a switch for controlling both magnitude and

direction of heat current. By proper choices of the system parameters and atomic

state, large thermal rectification is possible. Violation of the Fourier’s law of heat

conduction and its partial recovery are also discussed.

Summary of the results and possibility of further exploration of the present work are

discussed in Chapter 6.
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Controlled transfer of photon in
cavity array

2.1 Introduction

Photons are excellent information carriers as they do not interact with each other

and fairly resilient under decoherence [104]. Currently available technology already

allows photons as elementary units in quantum information processing protocols such

as the quantum teleportation [110], quantum state transfer [47, 50, 111], quantum

dense coding [112], quantum cryptography [113], etc. at the laboratory level. An out-

standing challenge is to achieve a process for controlled, perfect and coherent transfer

of photons in order to realize the aforementioned protocols. In addition, availability

of such a process will help in designing experiments for understanding subtilities of

quantum phase transition [91, 93, 114], generating entangled states [115–117], simu-

lating many-body systems [55, 104, 118], etc. A coupled network is a basic building

block to realize these ideas mainly due to the controllability of couplings, scalability,

addressability.

Cavities provide insulation against environment induced decoherence. By and large,

the requisite conditions for controlled transfer of photon can be achieved by tailoring

the cavity resonance frequencies [119, 120] or coupling strengths [121] in cavity arrays.

Controllable transport of photons is also possible by including suitable medium inside
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the cavities. For instance, photon transport can be controlled by embedding two-level

or three-level atoms in the cavities [87–89]. Essentially, the resonance frequencies of

the filled cavities are different from the empty cavities which affect the reflection and

transmission of photons. Also, the magnitude of atom-cavity coupling dynamically

changes the transport properties [60]. Embedded atoms in the array provide for a

controllable transport of photon. Inclusion of Kerr medium inside the cavities leads

to photon-photon interaction even at a few photons level [86, 122]. This offers a wide

range of possibilities for realizing various interesting phenomena such as the photon

blockade [86, 123], quantum phase transition [55, 104, 124], bunching and antibunch-

ing of photons [94, 125], etc.

This chapter discusses about perfect and controlled transfer of a photon in a cavity

array. An array with homogeneous coupling forbids perfect transfer of a single photon

due to the nonlinear dispersion in the array. One way of realizing a perfect transfer

is to choose the coupling strengths and resonance frequencies. Appropriate choices

of the coupling strengths and resonance frequencies are derived via a duality relation

between two systems, namely, “N − 1 photons in two coupled cavities” and “single

photon in N coupled cavities”. This provides a condition which relates the parameters

of one system to those of the other. This modification in the coupling strengths and

resonance frequencies allows transfer of a single photon between two symmetrically

located cavities. In order to steer the perfect transfer between any two cavities in the

array, Kerr nonlinearity is included in each cavity. Duality holds for the nonlinear

cavities too. This is employed to arrive at a state switching condition which ensures

a perfect transfer of photon between any two cavities. Further, this condition enables

perfect transfer of quantum states of the form α |0〉 + β |1〉, where |0〉 and |1〉 are

respectively the vacuum state and single photon state. Generation of NOON-type

states is possible in the system of two coupled cavities with N − 1 photons.
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This chapter is organized as follows. Transfer of a single photon in a homogeneously

coupled cavity array is discussed in Section. 2.2. Duality between “N − 1 photons

in two coupled cavities” and “single photon in N coupled cavities” is established in

Section. 2.3. Controlled transfer of a single photon between any two cavities in the

array is discussed in Section. 2.4. Generation of NOON type states is presented

in Section. 2.5. A protocol for quantum state transfer is introduced in Section. 2.6.

Experimental feasibility of the scheme and the chapter summary are given in Sections.

2.7 and 2.8 respectively.

2.2 Coupled cavity array

Consider a system of an array of N linearly coupled cavities. The Hamiltonian for

the system is

Ĥ =
N∑
l=1

ω̃lb̂
†
l b̂l +

N−1∑
l=1

J̃l(b̂
†
l b̂l+1 + b̂lb̂

†
l+1), (2.1)

where ω̃l is the cavity resonance frequency of the lth cavity, b̂l and b̂†l are respectively

the annihilation and creation operators. The coupling strength between the lth and

(l + 1)th cavities in the array is J̃l. All the coupling strengths and frequencies are

expressed in terms of frequency of the first cavity. In the plots, the frequency of the

first cavity is set to unity.

Consider the simplest situation where all the coupling strengths J̃l are equal (= J)

and the cavities are identical, i.e., all the resonance frequencies are equal (= ω). This

array is said to be homogeneous. In this case, the Hamiltonian conserves the number

of excitations as [Ĥ,
∑N

l=1 b̂
†
l b̂l] = 0. Hence, the Hamiltonian can be diagonalized in

the subspace corresponding to different excitation numbers. Normal mode operators
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for the cavity array are

ĉk(t) =
N∑
j=1

b̂j(t)S(j, k), (2.2)

so that the inverse transformation is

b̂j(t) =
N∑
k=1

ĉk(t)S(j, k). (2.3)

The transformation matrix S(j, k) is

S(j, k) =

√
2

N + 1
sin

(
jπk

N + 1

)
. (2.4)

Using the orthogonality relation

N∑
j=1

sin

(
jπk

N + 1

)
sin

(
jπm

N + 1

)
=
N + 1

2
δkm, (2.5)

the Hamiltonian for an array of resonant cavities with homogeneous coupling is

Ĥ =
N∑
k=1

Ωkĉ
†
kĉk, (2.6)

where ĉk and ĉ†k are the creation and annihilation operators for the kth normal mode.

The Hamiltonian in the normal mode coordinates corresponds to a collection of inde-

pendent oscillators. The normal mode frequencies are

Ωk =

(
ω + 2J cos

πk

N + 1

)
. k = 1, 2, 3, ...., N (2.7)

The evolution equation for kth normal mode operator is

d

dt
ĉk = i[Ĥ, ĉk] = i

[
N∑
n=1

Ωnĉ
†
nĉn, ĉk

]
= −iΩkĉk. (2.8)
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The solution of the above equation is

ĉk(t) = e−iΩktĉk(0). (2.9)

Using inverse transformation given in Eqn. 2.3, the annihilation operator for the jth

mode is

b̂j(t) =
N∑
l=1

N∑
k=1

e−iΩktb̂l(0)S(l, k)S(j, k). (2.10)

The average number of photons in the j-th cavity at time t is given by

〈nj〉t = 〈b̂†j b̂j〉t =
N∑
l=1

|Gjl|2〈b̂†l b̂l〉0, (2.11)

where

Gjl =
2

N + 1

N∑
k=1

e−i(ω+2J cos( πk
N+1

))t sin

(
jπk

N + 1

)
sin

(
lπk

N + 1

)
. (2.12)

In order to investigate the photon transfer properties, consider a single photon in the

first cavity which implies 〈b̂†l b̂l〉0 = δ1,l. Then

〈nN〉t = 〈b̂†N b̂N〉t = |GN1|2 =

∣∣∣∣∣ 2

N + 1

N∑
k=1

e−i(ω+2J cos( πk
N+1

))t sin

(
Nπk

N + 1

)
sin

(
πk

N + 1

)∣∣∣∣∣
2

,

(2.13)

is the average photon number in the last cavity. Perfect transfer of a photon to the

end cavity corresponds to having 〈nN〉t = 1 at some time t.

Time evolution 〈nN〉 for arrays with N =3, 4, 5 and 10 cavities respectively are shown

in Fig. 2.1. From the figure it is clear that complete transfer occurs if the array has

three cavities. Maximum of |GN1|2 decreases with increasing number of cavities. This

is inferred from Eqn. 2.12 on noting that for large N , sin(Nkπ/N + 1) ≈ sin(kπ) = 0
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Figure 2.1 – Average number of photon in the end cavity as a function of ωt in homo-
geneous cavity array. Number of cavities in the array is N =3 (solid line), 4 (dashed), 5
(dotted) and 10 (dot-dashed). All the cavities are identical and homogeneously coupled
with coupling strength J/ω = 0.01.

and GN1 tends to zero. What happens in the limit of large N is that during the time

evolution a single photon is shared by all the cavities. Hence, detecting the photon in

any of the cavities with unit probability is not possible.

It is to be noted that the dispersion relation is linear if the array contains less than

four cavities. For two cavities, the normal mode frequencies are Ω1 = ω + J and

Ω2 = ω − J which lie on a straight line. Similarly, the normal mode frequencies for

three cavities are Ω1 = ω+
√

2J,Ω2 = ω, and Ω3 = ω−
√

2J . These are also collinear.

In order to understand the inhibition of complete transfer of single photon in array

having more than three cavities, the normal mode frequencies are shown in Fig. 2.2

for N = 4 and N = 10. Due to this nonlinear dispersion relation, any propagating

wave undergoes dispersion. Consequently, complete transfer does not occur if the

homogeneous array has more than three cavities.
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Figure 2.2 – Normal mode frequencies Ωk as a function of k for (a)N = 4 and
(b)N = 10. Here ω = 1 and J = 0.1.

2.3 Duality between two coupled cavities and an

array of cavities

Prefect transfer of a single photon from one end to the other end in an array with

homogeneous coupling is prohibited by the nonlinear dispersion. Complete transfer of

a single photon demands a correct combinations of the coupling strengths and cavity

resonance frequencies of the cavities. In order to derive the conditions for a perfect

transfer, a duality relation between“N−1 photons in two coupled cavities”and“single

photon in N cavities” is established.

The concept of duality has been extensively discussed in various branches of physics

to facilitate understanding of nontrivial aspects of one system in terms of easily acces-

sible features of the other [126]. One of the simplest examples that can be considered

is the distribution of N photons in g levels for deriving the Planck’s blackbody spec-

trum. The indistinguishable nature of photons requires that the number of photons

and the number of levels to be occupied by them are considered together. The number

of possible ways of distributing is (N + g − 1)!/N !(g − 1)!. It is interesting to note
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that the result is the same if there are g−1 photons and N +1 levels. This possibility

of interchanging the roles of the number of particles and the number of levels is a

duality. Another example of duality is the Euler characteristic V −E +F = 2, where

V,E and F refer to the number of vertices, edges and faces respectively of a convex

solid. In this expression the roles of V and F are interchangeable.

Consider a system of two linearly coupled cavities described by the Hamiltonian

ĤA = ω1â
†
1â1 + ω2â

†
2â2 + J

[
â†1â2 + â1â

†
2

]
. (2.14)

Here ω1 and ω2 are the resonance frequencies of the respective cavities and J is the

coupling strength. Suffix A has been used to refer to this system of two coupled

cavities. Here â1(2) and â†1(2) are the annihilation and creation operators for the first

(respectively, second) cavity. Let |n+1〉 represent the bipartite state |N −1−n, n〉 of

the two cavities corresponding to N −n− 1 photons in the first cavity and n photons

in the second cavity. The total number of photons in the two cavities is N − 1. If the

number of photons is N − 1, the Hamiltonian is

ĤA =
N−1∑
n=0

Ωn+1 |n+ 1〉 〈n+ 1|+
N−2∑
n=0

Jn+1(|n+ 1〉 〈n+ 2|+ |n+ 2〉 〈n+ 1|), (2.15)

where Ωn+1 = [(N − 1− n)ω1 + nω2] and Jn+1 =
√

(n+ 1)(N − 1− n)J .

At resonance (detuning ∆ = ω1 − ω2 = 0), the eigenvectors of ĤA are

|Xn〉 =
1√

2N−1

N−1−n∑
k=0

n∑
k′=0

(−1)k
′ N−1−nCk

nCk′

√
N−1Cn
N−1Cr

|N − r, r〉 , (2.16)

with corresponding eigenvalues En = (N−1)ω+(N−1−2n)J . The index r = n+k−k′.
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Now, consider the Hamiltonian for N coupled cavities

ĤB =
N∑
l=1

ω̃lb̂
†
l b̂l +

N−1∑
l=1

J̃l(b̂
†
l b̂l+1 + b̂lb̂

†
l+1). (2.17)

Suffix B has been used to refer to this array of N cavities.

For a single photon in the array, the possible states are |l〉〉 which represents one

photon in the lth cavity while the other cavities are in their respective vacuua. Then

the Hamiltonian is

ĤB =
N∑
l=1

ω̃l |l〉〉〈〈l|+
N−1∑
l=1

J̃l(|l〉〉〈〈l + 1|+ |l + 1〉〉〈〈l|). (2.18)

Duality between the two systems described by ĤA and ĤB respectively is identified if

J̃l =
√
l(N − l)J,

ω̃l = [(N − l)ω1 + (l − 1)ω2], (2.19)

and l = n + 1. This is termed as the duality condition. With this identification the

two systems are equivalent. It is easy to see that the states

|Xn〉〉 =
1√

2N−1

N−1−n∑
k=0

n∑
k′=0

(−1)k
′ N−1−nCk

nCk′

√
N−1Cn
N−1Cr

|r + 1〉〉, (2.20)

are the eigenvectors of ĤB with eigenvalues En = (N − 1)ω + (N − 1− 2n)J , where

r = n+ k − k′.

The transition |N − 1− n, n〉 → |N − 2− n, n+ 1〉 in the system of two cavities cor-

responds to photon transport from |n + 1〉〉 → |n + 2〉〉 in the array. In essence,

transitions in the two-cavity system are equivalent to transport of a photon across the

cavities in the array.
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As the total number of photons is conserved by ĤA, the subspace of states corre-

sponding to a given number of photons is an invariant subspace. If the initial state

belongs to the invariant subspace, the time-evolved state also belongs to the same

subspace. Therefore, the Hamiltonian is finite dimensional as far as evolution within

the invariant space is concerned.

If the initial state of the two cavity system at resonance is |N − 1− n, n〉, it evolves

to

e−iĤAt |N − 1− n, n〉 =e−i(N−1)ωt

N−1−n∑
k=0

n∑
l=0

(
N − 1− n

k

)(
n

l

)
(cos Jt)N−1−(k+l)

× (−i sin Jt)k+l

√(
N − 1

n

)
/
(
N − 1

p

)
|N − 1− p, p〉 ,

(2.21)

at time t, where p = n+k−l. It is worth noting that the time-evolved state represents

an atomic coherent state [127]. At t = π/2J , the time-evolved state is |n,N − 1− n〉

corresponding to swapping the number of photons in the cavities. Time evolution

of the respective probabilities for |N − 1, 0〉 to become |0, N − 1〉 corresponding to

N = 2, 4 and 6 are shown in Fig. 2.3.

Complete transfer of photon between the end cavities of the array corresponds to

|N − 1, 0〉 → |0, N − 1〉 transition in the coupled cavity system. By the duality

between ĤA and ĤB, the profiles shown in Fig. 2.3 also represent the probability

of transferring a photon from one end to the other in an array of 2, 4 and 6 cavi-

ties respectively. It may be noted that the probabilities attain their peak value of

unity corresponding to perfect transport of a photon between the end cavities at time
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Figure 2.3 – Time evolution of probability for the coupled cavities to be in |0, N − 1〉
on evolution from the initial state |N − 1, 0〉, with J/ω = 10−2π. By duality, these
profiles show the probability of detecting a single photon in Nth (end) cavity in the
cavity array. Different curves correspond to N = 2 (continuous), 4 (dashed) and 6
(dot-dashed).

t = π/2J . This comes from the fact that the site dependent couplings make the

dispersion relation linear which resulting in dispersionless transport.

It is to be further noted that complete transition is possible only between the states

|N − 1− n, n〉 and |n,N − 1− n〉 of the coupled cavities. Analogously, complete

transfer of a single photon occurs only between (n + 1)th and (N − n)th cavities

in the array. The choice for the coupling strengths given in Eqn. 2.19, therefore,

allows perfect transfer of a photon between two symmetrically located cavities.

2.4 Quantum state engineering

Complete transfer of a photon between two symmetrically located cavities is possible if

the system parameters of the array satisfy the duality relation given in Eqn. 2.19. This

is equivalent to the transition between the states |N − 1− n, n〉 and |n,N − 1− n〉

in the coupled cavity system. Transferring a photon between any two arbitrary cav-

ities in the array requires the transition between the states |m,n〉 to |p, q〉, where

m + n = p + q = N − 1. With linear coupling, it is not possible to achieve perfect
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transition between two arbitrary states.

To see if nonlinearity helps in steering the evolution of states to achieve perfect transfer

and complete transition, Kerr-type nonlinearity is considered. Analysis of two coupled

nonlinear cavities is presented here. The Hamiltonian for the system is

Ĥ ′A = ω1â
†
1â1 + ω2â

†
2â2 + χ1â

†2
1 â

2
1 + χ2â

†2
2 â

2
2 + J

[
â†1â2 + â1â

†
2

]
, (2.22)

which describes two linearly coupled Kerr cavities. The term â†2i â
2
i corresponds to the

Kerr nonlinearity in ith cavity with Kerr strength χi.

If it is required to evolve from |m,n〉 to |p, q〉, consider the superposition |X±〉 =

1/
√

2(|m,n〉 ± |p, q〉). These two states become approximate eigenstates of Ĥ ′A if

J << χ1, χ2, ω1, ω2, and

∆ =
(p(p− 1)−m(m− 1))χ1 + (q(q − 1)− n(n− 1))χ2

m− p
. (2.23)

This condition is equivalent to

〈m,n|Ĥ ′A|m,n〉 = 〈p, q|Ĥ ′A|p, q〉. (2.24)

This equality of average energies in the two states is another way of stating the

requirement that the states |X±〉 are approximate eigenstates of Ĥ ′A. In the discussion

that follows it is assumed that χ1 = χ2 = χ > 0 and the condition Eqn. 2.23 simplifies

to

∆ = 2χ(n− p). (2.25)

If the initial state is |m,n〉 = 1/
√

2(|X+〉 + |X−〉), the state of the system at a later
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time is

|ψ(t)〉 ≈ [cos (θat) |m,n〉 − i sin (θat) |p, q〉] , (2.26)

with θa = (λas − λan)/2. Here λas and λan are the eigenvalues of Ĥ ′A corresponding to

the approximate eigenvectors |X+〉 and |X−〉 respectively. The expressions for these

eigenvalues λas and λan up to first order correction are

λas = (m+ p)ω1 + (n+ q)ω2 + (m(m− 1) + n(n− 1) + p(p− 1) + q(q − 1))χ

+
J

2
[
√
p(q + 1)δm,p−1δn,q+1 +

√
q(p+ 1)δm,p+1δn,q−1]

+
J

2
[
√
m(n+ 1)δp,m−1δq,n+1 +

√
n(m+ 1)δp,m+1δq,n−1],

λan = (m+ p)ω1 + (n+ q)ω2 + (m(m− 1) + n(n− 1) + p(p− 1) + q(q − 1))χ

− J

2
[
√
p(q + 1)δm,p−1δn,q+1 +

√
q(p+ 1)δm,p+1δn,q−1]

− J

2
[
√
m(n+ 1)δp,m−1δq,n+1 +

√
n(m+ 1)δp,m+1δq,n−1]. (2.27)

At t = π/(λas−λan), the time-evolved state is |p, q〉. This is the minimum time required

to switch from |m,n〉 to |p, q〉, referred as the state switching time (Ts). Thus, the

state switching (SS) condition given in Eqn. 2.25 ensures that there is perfect transfer

from the initial state |m,n〉 to the desired final state |p, q〉.

It is immediate that the detuning ∆ and the nonlinear coupling strength χ can be

properly chosen for a given value for n − p. As the value of n is specified in the

initial state |m,n〉, the two parameters ∆ and χ fix the number of photons (s) that

can be transferred so that the target state is |p = m± s, q = n∓ s〉. It needs to be

emphasized that for given values of ∆ and χ satisfying the SS condition, not more

than two states have their average energies equal as shown in Fig. 2.4. Once these

parameters are fixed, probability of transition to any state other than the target state
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Figure 2.4 – Average energy 〈m,n| Ĥ ′A |m,n〉 as a function of m, with ∆/ω1 =
0, χ/ω1 = 0.1 (Left) and ∆/ω1 = 0.4, χ/ω1 = 0.1 (Right).

is negligible. Hence, ∆ and χ provide the requisite control to steer the system from

the initial state |m,n〉 to the final state |p, q〉.

In Fig. 2.4, 〈m,n| Ĥ ′A |m,n〉 is plotted as a function of m keeping m + n = 28.

From Fig. 2.4(a), it is seen that every state has only one partner state with equal

average energy in the resonant case. So, SS can occur between these partner states.

It is observed from Fig. 2.4(b) that not every state has a partner state with equal

average energy in the nonresonant case. Essentially, states without partner states

are approximate eigenstates of Ĥ ′A and, therefore, do not evolve. This brings out

another control aspect available in the system, namely, the possibility of inhibiting

the evolution of certain states with properly chosen values of the control parameters

χ and ∆.

Consider the initial state of the coupled cavity system to be |50〉. In Fig. 2.5, the

probability of detecting the system in the state |14〉 at later times is shown when

the required SS condition is satisfied. The values have been generated from the ap-

proximate evolved state |ψ(t)〉 and also by exact numerical solution for the evolution

due to Ĥ ′A. It is seen that photons are exchanged periodically, driving the system

between |14〉 and |50〉, while transfer to other states is insignificant. In order to effect
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Figure 2.5 – Probability of detecting the state |14〉 from |50〉 as a function of ω1t.
Detecting other states are practically zero. Continuous black (dashed) and continuous
green (dot-dashed) line corresponds to P50 and P14 calculated numerically (approximate
analytical solution |ψ(t)〉). Here ∆/ω1 = −0.2, χ/ω1 = 0.1, J/ω1 = 0.035.

transition to other states from the initial state |50〉, the value of ∆ has to be different.

The maximum probabilities of detecting the target state |p, q〉 with p = 1, 2, 3, 4, 5

and p+ q = 5 from |50〉 are shown in Fig. 2.6 as a function of ∆. The value of χ has

been chosen to be 0.1. Depending on the value of detuning, exchange of photons is

precisely controlled to reach different target states.

The discussion so far has been to steer the coupled cavities in an initial state |m,n〉 to

a desired target state |p, q〉 using the Kerr nonlinearity in the cavities. But its duality

relation with the cavity array points to the possibility of transferring a photon from

any cavity in the array to any specified target cavity without populating the other

cavities in the array.

A duality relation of the two cavity system with the cavity array system is possible

in this nonlinear case too. Consider the nonlinear cavity array Hamiltonian

Ĥ ′B =
N∑
l=1

ω̃lb̂
†
l b̂l + χ̃l(b̂

†
l b̂l)

2 +
N−1∑
l=1

√
l(N − l)J(b̂†l b̂l+1 + b̂lb̂

†
l+1), (2.28)
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Figure 2.6 – Maximum probability of detecting quantum states |p, q〉 during the time
evolution as a function of ∆/ω1 for χ/ω1 = 0.1 and J/ω1 = 0.01 from the initial state
|5, 0〉. Note that complete switching occurs from |5, 0〉 to |41〉 (blue), |32〉 (magenta),
|23〉 (green), |14〉(red) and |05〉 (black) at ∆ = −8χ, ∆ = −6χ, ∆ = −4χ, ∆ = −2χ
and ∆ = 0 respectively satisfying the relation given in Eqn. 2.25.

which includes Kerr nonlinearity in each cavity of the array and there is only one

photon in the array. This is dual to Ĥ ′A if ω̃k+1 + χ̃k+1 = (N − 1− k)ω1 + kω2 + [(N −

1−k)(N−2−k)+k(k−1)]χ. With this identification, transitions among the levels in

the two coupled Kerr cavities is mapped to transfer of photon in the Kerr cavity array.

In particular, transition from |N − 1− n, n〉 to |N − 1− q, q〉 in the coupled cavities

corresponds to transferring a photon between (n + 1)-cavity to (q + 1)-cavity in the

cavity array. The condition to realize the perfect transfer between these cavities is

〈〈n+ 1|Ĥ ′B|n+ 1〉〉 = 〈〈q + 1|Ĥ ′B|q + 1〉〉 whose dual relation for the coupled cavities

is given in Eqn. 2.24. For the Hamiltonian Ĥ ′B, this condition yields

χ̃k+1 + ω̃k+1 = (N − 1)ω1−2kχ(n+ q + 1−N)

+ [(N − 1− k)(N − 2− k) + k(k − 1)]χ, (2.29)

which realizes perfect transfer of photon between the cavities. On employing cavity-
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dependent nonlinearity χ̃l, controlled transfer of photons between selected cavities is

achievable. Such site-dependent nonlinearity has been realized recently by embedding

quantum dots in photonic crystal cavities [128–130].

In the limit of weak coupling strength J , 1√
2
(|n+ 1〉〉 ± |q + 1〉〉) are eigenstates of

Ĥ ′B and the corresponding eigenvalues are denoted by λbs and λbn. The expressions for

these eigenvalues up to first order correction are

λbs = ωn+1 + ωq+1 + χn+1 + χq+1 +
J

2
(δn,q+1 + δn+1,q),

λbn = ωn+1 + ωq+1 + χn+1 + χq+1 −
J

2
(δn,q+1 + δn+1,q). (2.30)

The initial state |n+ 1〉〉 evolves under Ĥ ′B to

|ψ(t)〉〉 ≈ cos (θbt) |n+ 1〉〉 − i sin (θbt) |q + 1〉〉, (2.31)

where θb = (λbs − λbn)/2. It is seen that the photon is exchanged periodically between

(n+1)th and (q+1)th cavities. An important feature of this process is that the other

cavities in the array are not populated to any appreciable extent during the evolution.

This conclusion is based on the observation that the states other than |n+ 1〉〉 and

|q + 1〉〉 do not contribute appreciably to |ψ(t)〉〉.

For the purpose of illustration, consider a single photon transfer probability from

the 1st cavity to 5th cavity in an array of six cavities. Choosing ω1 = 0.185 and

χ = 0.01538, the SS condition in Eqn. 2.29 gives the nonlinear parameters χ̃1/ω̃1 =

0.077, χ̃2/ω̃1 = 0, χ̃3/ω̃1 = 0.0307, χ̃4/ω̃1 = 0.0615, χ̃5/ω̃1 = 0.077, χ̃6/ω̃1 = 0 for a

given set of resonance frequencies ω̃2/ω̃1 = 0.985, ω̃3/ω̃1 = 0.92, ω̃4/ω̃1 = 0.92, ω̃5/ω̃1 =

1, ω̃6/ω̃1 = 1.23 . With these values, probability for a single photon transfer is shown

in Fig. 2.7. Note that the probability of detecting the photon in 5th cavity is unity.
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Figure 2.7 – Single photon detection probability in 1st and 5th cavities in an array
of six cavities as a function of ω1t. At time t = π/(λbs − λbn), photon transferred from
1st cavity to 5th cavity with nearly unit probability. Black solid(dashed) and green
solid(dot-dashed) line corresponds to P1 and P5 calculated numerically(approximate
analytical state evolution |ψ(t)〉〉). Here Pm is the probability of finding the single
photon in mth cavity. Setting J/ω1 = 0.006.

2.5 Entangled state generation

In the context of coupled cavities, generation of states of the form

|Ψ〉 = cos θ |m,n〉+ eiφ sin θ |p, q〉 , (m+ n = p+ q = N) (2.32)

is possible if the initial state is |m,n〉 and the target state is |p, q〉. If m 6= p and

θ 6= 0,±π/2, then |Ψ〉 is entangled. These states are useful in the context of quantum

metrology and imaging [131]. Additionally, if m, q = N and θ = π/4, the resultant

state is

|Ψ〉 =
1√
2

(|N0〉+ eiφ |0N〉), (2.33)

the generalized NOON state.

In order to generate NOON-type states given in Eqn. 2.32, consider the coupling term
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in the Hamiltonian Ĥ ′A to be J
[
eiηâ†1â2 + e−iηâ1â

†
2

]
, where the coupling constants are

complex. Then the initial state |m,n〉 evolves to

|ψ(t)〉 ≈
[
cos (θat) |m,n〉 − ie−i(q−n)η sin (θat) |p, q〉

]
. (2.34)

The evolved state becomes |Ψ〉 given in Eqn. 2.33 if θ = θat and φ = −(π/2+(q−n)η).

This comes from the fact that the state switching condition given in Eqn. 2.25 ensures

that transition occurs between the two states |m,n〉 and |p, q〉 only. No other state

gets populated appreciably. Duality implies that in the case of the cavity array this

is equivalent to generating the Bell state |ψ〉〉 = cos θ |n+ 1〉〉+ eiφ sin θ |q + 1〉〉.

2.6 Quantum state transfer

Quantum state transfer is essential for transferring information encoded in quantum

states. A qubit is sent by a sender to a receiver via a quantum channel. Sender

prepares the quantum state |ψ〉 which encodes the information to be communicated

to the receiver. Receiver reads out the state for the information. In the context of

quantum state transfer in a cavity array, sender and receiver possess two different

cavities in the array. The sender prepares the state |ψ〉 in his/her cavity which is to

be transferred to the receiver cavity. The state of the system is

|Ψ〉 = |ψ〉S |0〉 |0〉 .... |0〉 |0〉R |0〉 |0〉 ..., (2.35)

where the state of the sender’s cavity is |ψ〉 and the other cavities are in their respective

vacuua. Here ‘S’ stands for sender and ‘R’ stands for receiver. On evolution under a

suitable Hamiltonian Ĥ, if the state of the system after time t is

|Ψ(t)〉 = |0〉S |0〉 |0〉 .... |0〉 |ψ〉R |0〉 |0〉 ..., (2.36)
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the quantum state transfer is realized.

Perfect transfer of a single quantum between any two cavities in the array can be used

for perfect transfer of quantum states. Consider the initial state of the cavity array

to be

|ψin〉 = α|vac〉〉+ β |n+ 1〉〉,

where

|vac〉〉 = |0〉1 |0〉2 .... |0〉N ,

|n+ 1〉〉 = |0〉1 |0〉2 .... |1〉n+1 ... |0〉N .

The state |ψin〉 corresponds to the (n + 1)-th cavity in the superposition α|0〉 + β|1〉

and the other cavities are in their respective vacuua. If the SS condition is satisfied,

the time-evolved state is

|ψ(t)〉 = α|vac〉〉+ βe−iλt[cos(θbt) |n+ 1〉〉 − ie−iη(q−n) sin(θbt) |q + 1〉〉], (2.37)

where λ = (λbs + λbn)/2. At t = π/2θb, the state of the (q + 1)-th cavity is the

superposition α|0〉 + β|1〉 and the other cavities are in their respective vacuua for

the suitable value of η. Thus, the SS condition ensures the state of the field in the

(n+ 1)-th cavity is transferred to the (q + 1)-th cavity which signals perfect transfer.

2.7 Experimental feasibility

It is possible to implement the above scheme for photon transport and state transfer

in arrays of high quality photonic crystal cavities (PCC) [132]. Typical values for

the cavity resonance frequencies of PCC are in the range of mega-Hertz to tera-Hertz.
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Other advantages of PCC are their highQ-values and low modal volume. The Q values

of PCC are of the order of ∼ 106 [133]. High value of Q implies that the dissipation

is less. Kerr nonlinearity in PCC is realized by embedding two level atoms (quantum

dots) in the cavities. The realizable nonlinearity is much larger compared to the optical

nonlinearities in solids [109]. For these typical values, the effect of dissipation on the

photon transport and state transfer is negligible. For the purpose of demonstration,

an array of six identical cavities of resonance frequency 62.5 THz has been considered.

The Kerr nonlinearity parameters χ̃l are determined using the relation given in Eqn.

2.29 for χ = 1.25 THz and ω1 = 12.5 THz. The coupling strength is chosen to be

J = 70 GHz which is readily achievable in PCC [29]. The effect of dissipation is

quantified by the fidelity between the state realized at the target cavity (penultimate

cavity in this study) with and without considering dissipation. The state of the target

cavity has been determined numerically by solving the Lindblad evolution equation

and the estimated fidelity is 0.98. This clearly shows that the choice of the inter-cavity

couplings and Kerr nonlinearities given by the duality principle is robust enough to

achieve near perfect transfer with the currently available technology. Similar results

are possible with other platforms such as the Josephson junction arrays [134–136].

2.8 Summary

Perfect transfer of a single photon in an array of homogeneously coupled cavities is

forbidden if the array has more than three cavities. A duality relation between a

system of single photon in an array of N linearly coupled cavities and another system

of N − 1 photons in two linearly coupled cavities identifies the correct combination

of the coupling strengths and resonance frequencies for perfect transfer of a photon

between two symmetrically located cavities in the array. In particular, the coupling

strengths are required to be inhomogeneous. With this identification, transfer of a

photon in the array is dynamically equivalent to the problem of sharing N−1 photons
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between the two linearly coupled cavities. Duality is extendable even if the cavities

are of Kerr-type. This extended duality has identified the correct combination of the

coupling strengths and local nonlinearities in the cavity array for complete photon

transfer between any two selected cavities in the array. Additionally, this transfer is

effected without populating the other cavities so that the transfer cannot be viewed

as a contiguous hopping of photon from one cavity to the other. Another interesting

result of the analysis is the possibility of perfect transfer of superpositions of the form

α |0〉+β |1〉 using a combination of Kerr nonlinearity and complex coupling strengths.

This feature is important in the context of encoding and transfer of information. High

fidelity generation of entangled states of the form cos θ |m,n〉 + eiφ sin θ |p, q〉 in cou-

pled cavities is another advantage of incorporating Kerr nonlinearity. Equivalently,

Bell states in the cavity array are achievable with high fidelity. These results are

pertinent in the context of quantum information processing in cavity arrays as they

are scalable. The ideas presented here are applicable to coupled spin chains as well

to achieve controlled transfer of states between any two spins in the chain.
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Quantum interference induced
photon localization and
delocalization

3.1 Introduction

Superposition principle is important in quantum mechanics [37]. Quantum interfer-

ence, which is a consequence of superposition principle, is expected to arise when there

is coherence in the state. The phenomenon of interference is almost ubiquitous. Oc-

currence of interference patterns in the Young’s double slit experiment, lasing without

inversion [137], electromagnetically induced transparency [138, 139], coherent popu-

lation trapping [140], Hong-Ou-Mandel interferometery [141] and interference dip in

neutron-nucleus scattering cross-section are some of the consequences of interference

between transition amplitudes. In fact, interference between the multiple scatter-

ing of electron/photon in a disordered lattice leads to Anderson localization wherein

the wavefunction of the particle gets spatially localized [142]. Localization of non-

interacting particles such as photons is well understood in terms of the Anderson

localization [143–146] which was originally formulated for non-interacting particles

[147].

Localization and delocalization of photons in a linearly coupled cavity array are dis-

cussed in this chapter. An array of cavities containing two photons is considered.
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If the two photons are detected in one of the cavities, it corresponds to two photon

localization (TPL). If the two photons are detected in two different cavities, it is

two-photon delocalization(TPD). The localization in this case does not arise due to

any disorder unlike the Anderson localization. The occurrence of TPL and TPD is

understood in terms of interference between various transition amplitudes, without

requiring any disorder. It is seen that the relative phase and entanglement in the

initial state are the factors responsible for the emergence of TPL and TPD. In the

context of coupled cavities, TPL is analogous to the photon bunching while TPD

corresponds to antibunching [148].

The organization of this chapter is as follows. The Hamiltonian for two coupled

cavities and the dynamics generated by it are discussed in Section. 3.2. Importance

of the relative phase in the initial state and inter-cavity detuning in the context

of TPL and TPD is studied in Section. 3.3. Effects of dissipation and dephasing

on TPL and TPD are explored in Section. 3.4. In Section. 3.5, localization and

delocalization dynamics in an array of N cavities is discussed. Role of the array size

on the delocalization process is investigated in Section. 3.6. Results are summarized

in Section. 3.7.

3.2 Coupled cavities

Consider a system of two linearly coupled cavities whose resonance frequencies are ω1

and ω2 respectively. The Hamiltonian for the system is

Ĥ = ω1â
†
1â1 + ω2â

†
2â2 + J

[
â1â

†
2 + â†1â2

]
. (3.1)

Here ~ = 1. The annihilation and creation operators for the two cavities are âm and

â†m (m = 1, 2). The first two terms in Ĥ correspond to two uncoupled linear cavities.

The last term containing the coupling constant J describes the interaction between
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the two cavities. All the coupling strengths and frequencies are expressed in terms of

frequency of the first cavity. In the plots, the frequency of the first cavity is set to unity.

For this Hamiltonian, the excitation number operator N̂ = â†1â1 + â†2â2 is a conserved

quantity, i.e., [Ĥ, N̂ ] = 0. The unitary dynamics due to Ĥ is restricted in an invari-

ant subspace corresponding to a given number of excitations. Therefore, Ĥ can be

diagonalized within the invariant subspace.

The eigenvalues of the Hamiltonian given in Eqn. 3.1, by restricting the total number

of photons to be 2, are

λ1 = ω1 + ω2,

λ2 = ω1 + ω2 −
√

∆2 + 4J2,

λ3 = ω1 + ω2 +
√

∆2 + 4J2, (3.2)

where ∆ = ω1 − ω2.

To discuss the occurrence of TPL and TPD, consider the state

|ψ(0)〉 = C1(0) |20〉+ C2(0) |11〉+ C3(0) |02〉 , (3.3)

where the probability amplitudes satisfy condition |C1(0)|2 + |C2(0)|2 + |C3(0)|2 = 1.

Each of the superposed states in the initial state has two quanta. Therefore, the initial

state belongs to the subspace spanned by the eigenstates of N̂ corresponding to the

eigenvalue 2. As a consequence, the time-evolved state also belongs to the invariant

subspace.
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The initial state |ψ(0)〉 evolves in time to

|ψ(t)〉 =
e−i(ω1+ω2)t

Ω2
[C1(t) |20〉+ C2(t) |11〉+ C3(t) |02〉], (3.4)

where

C1(t) = −[(4ω2
1 + 2J2)C1(0) +

√
2J(3ω1 + ω2)C2(0) + 2J2C3(0)]L1

− i[2ω1C1(0) +
√

2JC2(0)]L2 + C1(0)L3, (3.5)

C2(t) = −[
√

2J(3ω1 + ω2)C1(0) + (4J2 + (ω1 + ω2)2)C2(0) +
√

2J(ω1 + 3ω2)C3(0)]L1

+ i[
√

2JC1(0) + (ω1 + ω2)C2(0) +
√

2JC3(0)]L2 + C2(0)L3, (3.6)

C3(t) = −[(4ω2
2 + 2J2)C3(0) +

√
2J(ω1 + 3ω2)C2(0) + 2J2C1(0)]L1

− i[2ω2C3(0) +
√

2JC2(0)]L2 + C3(0)L3. (3.7)

Various terms occurring in the coefficients are

L1 = 1− cos Ωt, (3.8)

L2 = [2(ω1 + ω2)(1− cos Ωt)− iΩ sin Ωt)] , (3.9)

L3 =
[
(ω1 + ω2)2(cos Ωt− 1) + i(ω1 + ω2)Ω sin Ωt+ Ω2

]
. (3.10)

Here Ω =
√

∆2 + 4J2.

Choosing C1(0) = cos θ, C2(0) = 0 and C3(0) = eiφ sin θ for the initial state, so

that

|ψ(0)〉 = |θ, φ〉 = cos θ |20〉+ eiφ sin θ |02〉 , (3.11)

makes it a TPL state. Upon detection, both the photons will be in one of the two

cavities if θ 6= 0 or π/2. Note that the state given in Eqn. 3.11 is a NOON-type state

with N = 2.
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For use in the subsequent discussions, define

|+〉 = |θ = π
4
, φ = 0〉 = 1√

2
(|20〉+ |02〉),

and |−〉 = |θ = π
4
, φ = π〉 = 1√

2
(|20〉 − |02〉). (3.12)

It may be noted that the state |+〉 is symmetric under the exchange of photons, while

|−〉 is antisymmetric. Both |+〉 and |−〉 are entangled states.

3.3 Localization and delocalization dynamics

To discuss in quantitative terms about TPL and TPD, relevant probabilities are de-

fined: the probability of detecting the system to be in |02〉 or |20〉 is the localization

probability P|20〉+|02〉 and the probability of detecting the system in the state |11〉 is

the delocalization probability P|11〉. Perfect localization corresponds to the probabil-

ity being unity for detecting both the photons in one of the cavities and zero for the

other.

The time-evolved state given in Eqn. 3.4 is used to calculate the required probability

amplitudes. With θ = π
4
, probability for TPD is

P|11〉(t) =
|C2(t)|2

Ω4
=
J2

Ω4
|i∆(1− eiφ)(1− cos Ωt)− Ω(1 + eiφ) sin Ωt|2. (3.13)

If the relative phase φ = 0, thereby implying |ψ〉=|+〉, then P|11〉 is

P|11〉(t) =
4J2

4J2 + ∆2
sin2 Ωt, (3.14)

which varies between 0 and 1 periodically if the cavities are resonant (∆ = ω1−ω2 =

0).

57



Localization and delocalization dynamics Chapter 3

On the other hand, if φ = π, i.e., |ψ〉=|−〉, then Eqn. 3.13 becomes

P|11〉(t) =
4J2∆2

(4J2 + ∆2)2
(1− cos Ωt)2. (3.15)

In the resonant case, P|11〉 vanishes, irrespective of coupling strength J . In Fig. 3.1,

the amplitudes of P|11〉 given in Eqn. 3.14 and 3.15 are shown as a function of ∆/ω1.

These amplitudes correspond to the maximum values of P|11〉 that can be achieved

during time evolution.

In essence, for the state |+〉 (φ = 0), constructive interference between the two transi-

tion amplitudes C|20〉→|11〉 and C|02〉→|11〉 enhances the probability of transition to |11〉.

For the state |−〉 (φ = π), the destructive interference between the two amplitudes

makes the probability of detecting the system in |11〉 zero. It is to be pointed out that

the initial state |−〉 is an eigenstate of Ĥ under resonance. As a consequence, the

state does not change during evolution apart from acquiring an overall phase factor.
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Figure 3.1 – Maximum achievable value of probability of delocalization P|11〉 during
time evolution is plotted as a function of cavity detuning ∆/ω1. The two curves cor-
respond to two different initial states, namely, |+〉 (dashed line) and |−〉 (continuous).
Here J/ω1 = 0.01.

If ∆ 6= 0, the maximum value of the delocalization probability P|11〉 for the state |+〉
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is

max(P|11〉) =
4J2

4J2 + ∆2
, (3.16)

which decreases with increasing detuning as seen from Fig. 3.1. However, the state

|−〉 evolves to become a completely delocalized state, i.e., P|11〉 = 1 due to constructive

interference if |∆| = 2J , as seen from Eqn. 3.15. In Fig. 3.2, the maximum value

of the delocalization probability for the state |−〉 is shown as a function of detuning

for different choices of the coupling strength J . It is observed that the delocalization

probability is unity for |∆| = 2J and less than unity if |∆| 6= 2J .
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Figure 3.2 – Maximum of P|11〉 during time evolution is shown as a function of cavity
detuning ∆/ω1 for the state |−〉. Complete delocalization occurs at ∆/ω1 = ±0.02,
±0.03, ±0.04 for J/ω1 = 0.01, 0.015 and 0.02 respectively.

The discussion so far has been in the context of the entangled states |+〉 and |−〉.

Considering the initial state to be one of the product states |ψ〉 = |20〉 or |02〉 obtained

by setting θ = 0 or π/2 in Eqn. 3.11 respectively, the corresponding delocalization

probabilities are
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P|11〉(θ = 0) =
2J2

Ω4
|[i∆(1− cos Ωt)− Ω sin Ωt]|2 ,

and P|11〉(θ =
π

2
) =

2J2

Ω4
|[i∆(1− cos Ωt) + Ω sin Ωt]|2 . (3.17)

From Eqn. 3.17, the minimum time required to achieve the maximum value of delo-

calization probability (P|11〉) is T = 1
Ω

cos−1(−∆2/4J2) if |∆| ≤ 2J . The maximum

value that P|11〉 can attains is 1/2, and independent of ∆. However, if ∆ > 2J , min-

imum time to attain the maximum value of P|11〉 is T = π/Ω and the corresponding

maximum value is 8J2∆2/(4J2 + ∆2)2. In Fig. 3.3, variation of the maximum delo-

calization probability is shown as a function of the detuning parameter ∆ for the case

θ = 0. It is seen that the maximum value of P|11〉 remains constant for |∆| ≤ 2J in

each case: J/ω1 = 0.01 (continuous), 0.015 (dashed), 0.02 (dot-dashed). In short, for

the initial state which is a localized product state, localization is dominant if |∆| > 2J .
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Figure 3.3 – Maximum of P|11〉 during time evolution is shown as a function of cavity
detuning ∆/ω1 for the state |20〉. TPD probability starts decreasing at ∆/ω1 = ±0.02,
±0.03, ±0.04 for J/ω1 = 0.01, 0.015 and 0.02 respectively. It is clear that for |∆| > 2J ,
TPL dominates over TPD.
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3.4 TPD in presence of dissipation and dephasing

An ideal cavity evolves unitarily if it is completely isolated from the influences of the

environment. In reality, there are unavoidable influences from the environment leading

to dissipation and decoherence or dephasing. The dominant mechanism of dissipation

is photon leakage. Dephasing is another aspect of system-environment interaction

which leads to the decay of the off-diagonal elements of the density operator as the

system looses its quantum coherence.

3.4.1 Effect of dissipation on TPD

Effects of dissipation are studied by coupling the system (coupled cavities) to zero

temperature reservoirs and analyzing the master equation for the density operator of

the system. In the presence of dissipation, the previously considered invariant subset

of the Hilbert space is inadequate as the number of photons is not fixed. However, since

the dissipative process does not increase the number of photons, only states with lower

number of photons than what is contained in the initial state are to be considered. To

facilitate writing down the master equation, relevant states are relabeled as follows:

|00〉 → |1〉〉, |10〉 → |2〉〉, |01〉 → |3〉〉, |20〉 → |4〉〉, |11〉 → |5〉〉, |02〉 → |6〉〉, where

double angular brackets are used to represent the various bipartite states of the two

cavities. Using these as the basis states, the elements of the density operator are

obtained by solving the master equation [149–152]

∂ρ

∂t
= −i[Ĥ, ρ] +

2∑
i,j=1

γij
2

(2âjρâ
†
i − â

†
i âjρ− ρâ

†
i âj). (3.18)

Here γ11 and γ22 are decay rates of the first and second cavities respectively and, γ12

and γ21 are the cross-damping rates arising due to interference of transition ampli-

tudes.
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If γ12 = γ21 = 0 and γ11 = γ22 = γ, the localization probability is

P|20〉+|02〉(t) =
e−2γt

Ω4
(|C1(t)|2 + |C3(t)|2). (3.19)

The result shows that the TPL probability decreases exponentially in time at a rate

that is twice the decay rate of the cavities. The suffix |20〉 + |02〉 indicates that the

probability corresponds to the case when the state of the system subsequent to mea-

surement is a localized two photon state.

To bring out the effects of cross-damping, the master equation is solved numerically

to get ρ44 and ρ66, where ρij = 〈〈i| ρ |j〉〉. Referring to the convention given in the

beginning of the subsection, it is immediate that ρ44 and ρ66 are the respective proba-

bilities for detecting the system in |20〉 and |02〉. Therefore, ρ44+ρ66 is the localization

probability when system evolves to a mixed state due to dissipation. The evolution

equations for density matrix elements in the product basis |m,n〉 are

∂ρm,np,q

∂t
= U +D + C; (3.20)

where

U =− i[(m− p)ω1ρ
m,n
p,q + (n− q)ω2ρ

m,n
p,q + J

√
m
√
n+ 1ρm−1,n+1

p,q

+ J
√
n
√
m+ 1ρm+1,n−1

p,q + J
√
p
√
q + 1ρm,np−1,q+1 + J

√
q
√
p+ 1ρm,np+1,q−1],

D =
γ11

2
[2
√

(m+ 1)(p+ 1)ρm+1,n
p+1,q − (m+ p)ρm,np,q ]

+
γ22

2
[2
√

(n+ 1)(q + 1)ρm,n+1
p,q+1 − (n+ q)ρm,np,q ],

C =
γ12

2
[2
√

(n+ 1)(p+ 1)ρm,n+1
p+1,q −

√
m(n+ 1)ρm−1,n+1

p,q −
√
q(p+ 1)ρm,np+1,q−1]

+
γ21

2
[2
√

(m+ 1)(q + 1)ρm+1,n
p,q+1 −

√
n(m+ 1)ρm+1,n−1

p,q −
√
p(q + 1)ρm,np−1,q+1],

where ρg,hi,j = 〈g, h| ρ |i, j〉. Here m+ n ≤ 2 and p+ q ≤ 2. Here U corresponds to the
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unitary part, D is the damping part and C is the cross damping part.

The explicit form of the evolution equations for ρ44 = 〈20| ρ |20〉 and ρ66 = 〈02| ρ |02〉

are

ρ̇44 = −i[
√

2J(ρ54 − ρ45)]− 2γ11ρ44 −
γ12√

2
ρ54 −

γ21√
2
ρ45, (3.21)

ρ̇66 = −i[
√

2J(ρ56 − ρ65)]− 2γ22ρ66 −
γ12√

2
ρ65 −

γ21√
2
ρ56. (3.22)

It is to be noted that the evolution of localization probabilities depends on evolution

of off-diagonal elements. A typical evolution equation for an off-diagonal element, for

instance, ρ45 is

ρ̇45 = −i[∆ρ45 +
√

2J(ρ55 − ρ44 − ρ46)]

−
(

3γ11

2
+
γ22

2

)
ρ45 −

γ12√
2

(ρ55 + ρ44)− γ21√
2
ρ46, (3.23)

which indeed depends on the cavity frequencies. Hence, the evolution of ρ44 and ρ66

depend on the cavity frequencies also. Temporal evolution of TPL probability for the

initial state |+〉 in the presence of dissipation is shown in Fig. 3.4. Resonant (∆ = 0)

and non-resonant (∆ 6= 0) cases have been considered. In the resonant case, due

to interference between the various transitions shown in Fig. 3.5, the probability of

localization does not completely vanish. In non-resonant case, detuning renders the

average energies 〈20|H |20〉, 〈11|H |11〉 and 〈02|H |02〉 unequal, thereby making the

transition amplitudes unequal in magnitude. As a result, perfect interference does

not occur and localization probability decays to zero.

The above features differ if the initial state is |−〉 which is an eigenstate of Ĥ. The

localization probability decays ∼ e−2γt as shown in Fig. 3.6. Also, the localization

probability decays to zero for any non-zero detuning due to unequal magnitudes of

the transitions amplitudes between various states.
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Figure 3.4 – Probability of localization P|20〉+|02〉 = ρ44 +ρ66 is shown as a function of
ω1t for the initial state |+〉. Here J/ω1 = 0.05 and γ/ω1 = γ11/ω1 = γ22/ω1 = γ12/ω1 =
γ21/ω1 = 0.005. Dashed curve corresponds to ∆/ω1 = 0 and the continuous line for
∆/ω1 = 0.3.

Figure 3.5 – Energy levels are labeled by the expectation value of the Hamiltonian Ĥ
in the respective states. The inter-state decay rates are denoted by γ with appropriate
suffixes. Here ∆ = ω1 − ω2.

In dissipative systems, energy decreases if there is no suitable external forcing. So, it

is important to study the corresponding situation for the present system. Using the

master equation given in Eqn. 3.18, the evolution equation for the expectation values

of the relevant operators are obtained. These equations can be cast in the following
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Figure 3.6 – Probability of localization P|20〉+|02〉 = ρ44 +ρ66 is shown as a function of
ω1t for the initial state |−〉. Values used are J/ω1 = 0.05,γ/ω1 = 0.005 and ∆/ω1 = 0.
Here γ = γ11 = γ22 = γ12 = γ21.

form

d

dt



〈â†1â1〉

〈â†1â2〉

〈â1â
†
2〉

〈â†2â2〉


=



−γ −iJ
~ −

γ
2

iJ
~ −

γ
2

0

−iJ
~ −

γ
2

−γ 0 iJ
~ −

γ
2

iJ
~ −

γ
2

0 −γ −iJ
~ −

γ
2

0 iJ
~ −

γ
2

−iJ
~ −

γ
2

−γ





〈â†1â1〉

〈â†1â2〉

〈â1â
†
2〉

〈â†2â2〉


. (3.24)

Here γ = γ11 = γ22 and γ12 = γ21 =
√
γ11γ22 [153] and 〈Ô〉 = Tr[ρ(t)Ô]. The matrix

differential equation is solved to get the average number of photons in the first and

second cavities. The resultant expressions are is

〈â†1â1〉t =
1

4
[X1(t)〈â†1â1〉0 +X2(t)〈â†1â2〉0 +X3(t)〈â1â

†
2〉0 +X4(t)〈â†2â2〉0], (3.25)

〈â†2â2〉t =
1

4
[X4(t)〈â†1â1〉0 +X3(t)〈â†1â2〉0 +X2(t)〈â1â

†
2〉0 +X1(t)〈â†2â2〉0]. (3.26)
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where

X1(t) = 1 + 2e−γt cos 2Jt+ e−2γt, (3.27)

X2(t) = −1 + 2ie−γt sin 2Jt+ e−2γt, (3.28)

X3(t) = −1− 2ie−γt sin 2Jt+ e−2γt, (3.29)

X4(t) = 1− 2e−γt cos 2Jt+ e−2γt. (3.30)

For the initial state |ψ〉 = cos θ |20〉+ eiφ sin θ |02〉,

〈â†1â1〉t =
1

2
[2e−γt cos 2Jt cos 2θ + 1 + e−2γt], (3.31)

〈â†2â2〉t =
1

2
[−2e−γt cos 2Jt cos 2θ + 1 + e−2γt]. (3.32)

It is clear from the expression that the evolution of the mean photon number is

independent of the relative phase φ. If θ = π/4, then

〈â†1â1〉t = 〈â†2â2〉t =
1

2
[e−2γt + 1], (3.33)

which saturates at 1/2 for large t. Thus, quantum interference stabilizes the average

number photons at a non-zero value in spite of dissipation. If the initial state is

|ψ+〉 = 1√
2

[|10〉+ |01〉], then

〈â†1â1〉t = 〈â†2â2〉t =
e−2γt

2
. (3.34)

The average number of photons in the cavities decays to zero as t increases. Both the

cavities lose energy at the same rate, a consequence of assuming resonance and equal

damping.

If the initial state is |ψ−〉 = 1√
2
(|10〉 − |01〉), the average number of photons in the
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cavities are

〈â†1â1〉t = 〈â†2â2〉t =
1

2
, (3.35)

which is independent of time. The average values do not decrease to zero as the rela-

tive phase in the initial state is π which leads to destructive interference between the

amplitudes corresponding to |10〉 → |00〉 and |01〉 → |00〉. In the present context,

the initial state is either the symmetric state |ψ+〉 or the antisymmetric state |ψ−〉.

The former decays at a rate 2γ while the later does not decay. This is analogous to

the superradiance and subradiance that occur in the interaction between a three-level

atom and the electromagnetic field [152]. Due to interference, the average photon

number saturates at 1/2 though dissipation is present. It implies that quantum inter-

ference makes it possible to retain nonzero number of photons in the cavities in spite

of dissipation.

3.4.2 Effect of dephasing on TPD

As seen in the previous section, the relative phase in the initial state plays a crucial

role in TPD. In the presence of dephasing, the relative phases in the time-evolved state

are randomized. It is natural to expect dephasing to affect TPD whose occurrence is

sensitive to the relative phase. The master equation described in the previous section

can be modified to incorporate dephasing by including the Lindblad term γd
2
D(â†â)ρ

[98, 154], where D[ô]ρ = 2ôρô† − ô†ôρ− ρô†ô. The master equation becomes

∂ρ

∂t
= −i[Ĥ, ρ] +

γd
2
D[â†1â1]ρ+

γd
2
D[â†2â2]ρ. (3.36)

The Lindblad term accounts for the dephasing which leads to the decay of the off-

diagonal elements in the density operator.

Evolution equations for the density matrix elements for the dephasing case can be
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expressed as

d

dt



ρ44

ρ45

ρ46

ρ54

ρ55

ρ56

ρ64

ρ65

ρ66



=



0 B 0 −B 0 0 0 0 0

B A B 0 −B 0 0 0 0

0 B C 0 0 −B 0 0 0

−B 0 0 A∗ B 0 −B 0 0

0 −B 0 B 0 B 0 −B 0

0 0 −B 0 B A 0 0 −B

0 0 0 −B 0 0 C∗ B 0

0 0 0 0 −B 0 B A∗ B

0 0 0 0 0 −B 0 B 0





ρ44

ρ45

ρ46

ρ54

ρ55

ρ56

ρ64

ρ65

ρ66



, (3.37)

where A = −i∆− γd, B = iJ
√

2, C = −2i∆− 4γd.

To understand the effect of dephasing on delocalization, numerically obtained time-

dependence of P11 = ρ55, the probability of delocalization, is shown in Fig. 3.7 for the

initial states |−〉 and |+〉. If the initial state is |−〉, the time evolved state is partially

delocalized as ρ55 is less than unity. In the absence of dephasing, complete localization

is possible due to destructive interference between the amplitudes corresponding to

the transitions |20〉 → |11〉 and |02〉 → |11〉 in Section. 3.3. But dephasing randomizes

the relative phases during time-evolution and suppresses the destructive interference.

Generally, in the presence of dephasing, the initial coherence is expected to vanish

resulting in a steady state density operator. The steady-state solutions for the evo-

lution equation given in Eqn. 3.37 are obtained by equating the time derivatives to

zero. The first and last rows of the matrix in the above equation have two non-zero

entries. This yields ρ45 = ρ54 and ρ56 = ρ65 respectively in the steady state. The
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Figure 3.7 – Probability of delocalization ρ55 as a function of ω1t for (a) |−〉 and (b)
|+〉. Curves correspond to different values of decay rate: γd/ω1 = 0 (continuous), 0.005
(dot-dashed) and 0.05 (dashed). For all the cases, J/ω1 = 0.05 and ∆/ω1 = 0.

remaining steady state equations are

[−i∆− γd]ρ45 − i
√

2J(ρ55 − ρ44 − ρ46) = 0, (3.38)

[−2i∆− 4γd]ρ46 − i
√

2J(ρ56 − ρ45) = 0, (3.39)

[i∆− γd]ρ45 + i
√

2J(ρ55 − ρ44 − ρ64) = 0, (3.40)

[−i∆− γd]ρ56 − i
√

2J(ρ46 + ρ66 − ρ55) = 0, (3.41)

[2i∆− 4γd]ρ64 + i
√

2J(ρ56 − ρ45) = 0, (3.42)

[i∆− γd]ρ56 + i
√

2J(ρ64 + ρ66 − ρ55) = 0. (3.43)

Using the Cramer’s rule for solving a system of linear equations, with the constraint

ρ44 + ρ55 + ρ66 = 1, the steady state solutions are

ρ44 =
1

3
, ρ45 = 0, ρ46 = 0, ρ55 =

1

3
, ρ56 = 0, ρ64 = 0, ρ66 =

1

3
, (3.44)

which are independent of ∆. It is also clear from Fig. 3.7(a) that the curves indeed

saturate at 1/3. The initial state |+〉 also evolves to steady state density matrix in

presence of dephasing as shown in Fig 3.7(b) .
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The probabilities of TPD for different values of detuning are shown in Fig. 3.8 for the

initial state |−〉. Comparing the profiles corresponding to the different values of ∆, it

is clear that the rate of attaining steady state values is slow as ∆ increases. Detuning

slows down the process of attaining the steady state. Similar conclusion holds for the

state |+〉 as the initial state.
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Figure 3.8 – Delocalization probability as a function of ω1t for |−〉 with various
values of detuning. Continuous line for ∆/ω1 = 0, dot-dashed line is for ∆/ω1 = 0.3
and dashed line correspond to ∆/ω1 = −0.5 with J/ω1 = 0.05 and γd/ω1 = 0.05.

3.4.3 Role of coherence on delocalization

For a better appreciation of the role of coherence, consider the realistic situation where

an initial pure state is prepared with probability ε and a related random state (noise)

with probability 1− ε. The total density matrix to represent the initial TPL state |ψ〉

and the added noise M is [155]

ρ = ε |ψ〉 〈ψ|+ (1− ε)M, (3.45)
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where

|ψ〉 = cos θ |20〉+ eiφ sin θ |02〉 , (3.46)

M = cos2 θ |20〉 〈20|+ sin2 θ |02〉 〈02| . (3.47)

This is a mixed state for all ε < 1. The state interpolates between the TPL state |ψ〉

(ε = 1) which has coherence and the state M (ε = 0) which has no coherence. Thus,

ε measures the degree of coherence in the state ρ. To bring out the effect of initial

coherence in the state given in Eqn. 3.45, the variation of the maximum of TPD

probability as a function of ε is shown in Fig. 3.9. The value of θ is chosen to be π
4

which makes the superposition coefficients in the initial state to be of equal magnitude.

The curves shown in the figure correspond to two values of φ, namely, 0 and π. In the

later case, as ε increases the peak value of TPD probability ρ55 decreases and vanishes

at ε = 1. This is due to the destructive interference between the amplitudes for the

two transitions, namely, |20〉 → |11〉 and |02〉 → |11〉. In the former case, the peak of

TPD probability increases with ε due to constructive interference.
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Figure 3.9 – Maximum value of probability of delocalization ρ55 that can be achieved
during time evolution is shown as a function of ε. Continuous line corresponds to state
|−〉 and dotted line corresponds to |+〉. Other parameters are J/ω1 = 0.05, ∆/ω1 = 0.
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3.5 Linearly coupled cavity array

In the context of two coupled cavities, |11〉 is the only one delocalized state. By

including more number of cavities, number of delocalized states increases. In fact,

the number of delocalized states is much more than the number of localized states

for a large array. Hence, it is interesting to study the roles of the relative phase and

entanglement on the localization-delocalization dynamics in an array of N cavities.

Hamiltonian for a chain of N linearly coupled identical cavities is

Ĥ = ω

N∑
j=1

â†j âj + J
N−1∑
j=1

(â†j âj+1 + âj â
†
j+1). (3.48)

Here âj and â†j are respectively the annihilation and creation operators corresponding

to the field mode in jth cavity. The coupling between two adjacent cavities is J . The

time evolved annihilation operator for the jth cavity mode is

âj(t) =
∑
l

Gjl(t)âl(0), (3.49)

where Gjl(t) =
∑N

k=1 e
−iΩktS̃(j, k)S̃(l, k), the normal mode frequency Ωk = ω +

2J cos
(
πk
N+1

)
and the transformation matrix element S̃(j, k) =

√
2

N+1
sin( jπk

N+1
). With

these results, time-evolution of any physical quantity expressible in terms of the cre-

ation and annihilation operators can be determined.

Coupling, linear or otherwise, among the cavities leads to transport of photons from

one cavity to another in the array. But realization of TPL or TPD is dependent on the

initial state as well. In order to investigate the role of entanglement and relative phase

in the initial state on the localization- delocalization phenomenon, consider states of
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the form

|ψ〉 = cos θ |2〉r |0〉s + eiφ sin θ |0〉r |2〉s . (3.50)

The notation |p〉r |q〉s stands for p photons in the r-th cavity and q photons in the s-th

cavity. Other cavities are in their respective vacuua. Here r and s vary from 1 to N .

Hence, the probability of detecting two photons in the r-th and s-th cavities are cos2 θ

and sin2 θ respectively. This is a two photon localized state according to the defini-

tion given earlier. The relative phase φ does not influence the measurement outcomes.

To study delocalization in the context of two photons, it is prudent to calculate the

coincidence detection probability Pmn:

Pm,n(t) = 〈a†n(t)a†m(t)am(t)an(t)〉, (3.51)

is the probability of detecting one photon each in two different cavities (m 6= n) at

time t. As the number of photons is restricted to 2, the values of Pm,n ranges from

0 to 1 for m 6= n. Here 〈..〉 refers to expectation value in the initial state. The

time-developed operators used in Eqn. 3.51 are defined in Eqn. 3.49. Therefore,

Pm,n(t) = 2 | cos θGmr(t)Gnr(t) + eiφ sin θGms(t)Gns(t)|2. (3.52)

The diagonal elements with a proportionality constant of this correlation matrix give

the probability of localization and the off-diagonal elements represent the probability

of delocalization. Degree of TPD, defined as

S = 1− 1

2

N∑
n=1

Pn,n(t), (3.53)

is essentially the probability of detecting the photons, one each in two different cavities.
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If S = 0 then the state is TPL state, and S = 1 corresponds to TPD state.

If there are two photons in the array, states of the form |1〉r |1〉s (r 6= s) or their super-

positions are delocalized states. The initial state given in Eqn. 3.50 is an entangled

state. To study the influence of initial entanglement on the localization-delocalization

dynamics, the entanglement is quantified in terms of negativity. For any density

matrix ρ, negativity N is

N (ρ) =
∑
i

|λi| − λi
2

, (3.54)

where λi are the eigenvalues of ρPT , the partial transposition of ρ [156]. For the state

|ψ〉, N = sin θ cos θ which is independent of the relative phase φ in the initial state.

If entanglement in the initial state is the only indicator of the degree of delocalization

achievable [157], then S should be independent of φ. However, Pm,n has an explicit

dependence of φ which, in turn, implies that S depends on φ.

Time evolution of degree of delocalizations for different initial states are shown in

Fig. 3.10. This clearly shows that the degree of TPD or TPL during time-evolution

is dependent on the entanglement as well as the relative phase in the initial state.

To bring out this feature more clearly, it is noted that the entanglement in state |ψ〉

depends on θ as indicated earlier. The maximum achievable S during time evolution

has been shown as a function of θ for an array of two cavities in Fig. 3.11 (a) and for

eight cavities in Fig. 3.11(b). Different curves correspond to different values of the

relative phase φ in the range of 0 to π. It is seen that the delocalization probability

not only depends on θ (entanglement) but also relative phase φ (interference).

3.6 Role of system size on TPD

It is to be noted from Fig. 3.11 that for a given initial state the maximum achievable

degree of delocalization (S) is different for different sizes of the array. This indicates
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Figure 3.10 – Time evolution of degree of two photon delocalization S for different
initial states with J/ω = 0.05. Here N = 29.
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Figure 3.11 – Plot shows the maximum achievable value of degree of delocalization
in time evolution is plotted as a function of θ for various values of φ for (a) N = 2 and
(b) N = 8. Values used are J/ω = 0.05. Here r = N/2 and s = r + 1.

that the strength of delocalization depends also on the size of the array, apart from θ

and φ. The maximum achievable S as a function of N for different choices of φ and θ

is shown in Fig. 3.12. For φ > π/2, the maximum of S increases with N . If φ < π/2,

the maximum S is nearly unity and remain practically at the same value. If the size of

the array is large, localized states completely delocalize during time evolution. This is

consistent with the fact that the number of delocalized states is more than the number

of localized states if N is large.
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Figure 3.12 – Maximum value of S during time evolution as a function of number of
cavities in the array (N) for various values of θ and φ. Here J/ω = 0.05, r = N/2 and
s = r + 1.

As an aside, an example of a state that never delocalizes during time evolution is

|χ〉 =
1√
N

N∑
n=1

(−1)n |2〉n , (3.55)

where |2〉n refers to two photons in the nth cavity and no photons in the other cavities.

This state is a localized eigenstate of Ĥ given in Eqn. 3.48. Consequently, it will never

delocalize during time evolution under Ĥ.

3.7 Summary

Emergence of localization and delocalization of photons in an array of cavities is a con-

sequence of quantum interference between various transition amplitudes. An initially

localized entangled state remains localized or evolves to a delocalized state depending

on the relative phase present in the initial state of the two coupled cavities. Localiza-

tion occurs if the interference between the transition amplitudes is destructive whereas

constructive interference delocalizes the state. On the other hand, a product state

does not delocalize completely as there is no interference. Localization probability

dominates over delocalization if the detuning between the cavities is larger than twice
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the coupling strength.

Dissipation leads to loss of energy and decay of localization probability. However,

even in the presence of dissipation, localization probability does not vanish to zero

due to quantum interference if the initial state is chosen properly.

Decoherence due to interaction with the environment reduces the magnitude of tran-

sition from localized states to delocalized states. This is consistent with the fact that

the process of decoherence randomizes the relative phases which are very crucial for

the interference of probability amplitudes.

Localization and delocalization probabilities depend on the entanglement and relative

phase present in the initial localized state. This is true also for an array containing

more than two cavities. If the array size is large, photons tend to delocalize rather

than localize.
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Photon localization and
delocalization in nonlinear cavities

4.1 Introduction

Cavities filled with nonlinear medium have become the workhorses to investigate quan-

tum phenomena such as the photon blockade [86, 97–101], bunching and antibunching

[102, 103], quantum phase transitions [104], etc. Strong interaction between individ-

ual photons is possible in the presence of nonlinear medium [86, 122]. Kerr cavities

are useful as quantum scissors to truncate coherent states to generate finite super-

positions of number states [158]. Often, optical nonlinearities are significant only at

high intensities. Recently, several ways of generating optical nonlinearities in solids,

even at the level of individual photons, have been proposed [86, 108, 109, 159, 160].

Interaction between two systems allows exchange of energy between them. Nonlinear-

ity in the system strongly affects the exchange that may lead to localization of energy

[147, 161–163]. The localization-delocalization dynamics of photons in the presence

of nonlinearity provides a better understanding of some quantum many-body systems

[164]. It is of interest to understand how nonlinearity and quantum interference affect

the localization and delocalization process. Coupled cavity dynamics studied in the

literature are mostly in the context of linear interaction between the cavities [60, 165]

which contain non-linear Kerr medium [61]. As a generalization, intensity dependent
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coupling between the cavities is considered. This is the quantum equivalent of nonlin-

early coupled classical nonlinear oscillators. A deformed algebra appears as a natural

choice in studying the dynamics of the system.

The organization of this chapter is as follows. The Hamiltonian for two nonlinearly

coupled cavities and the dynamics generated by it are discussed in Section. 4.2.

Role of the nonlinearity on TPL and TPD is studied in Section. 4.3. Delocalization

dynamics is explored in the presence of dissipation and dephasing in Section. 4.4.

In Section. 4.5, localization and delocalization dynamics in an array of N nonlinear

cavities is discussed. Results are summarized in Section. 4.6.

4.2 Nonlinearly coupled cavities

In this section, a system of two nonlinear cavities is described. The Hamiltonian for

the system, setting ~ = 1, is

Ĥ = ω1â
†
1â1 + ω2â

†
2â2 + χ1â

†2
1 â

2
1 + χ2â

†2
2 â

2
2

+ J

[√
1 + kâ†1â1â1â

†
2

√
1 + kâ†2â2 + â†1

√
1 + kâ†1â1

√
1 + kâ†2â2â2

]
.

(4.1)

Here âm and â†m are the annihilation and creation operators for the two cavities

(m = 1, 2). The first two terms correspond to two independent linear cavities. The

next two terms which depend on χ1 and χ2 account for the Kerr nonlinearity in the

cavities. The interaction between the cavities is assumed to be intensity-dependent

with coupling strength J . Such interaction terms have been considered in the context

of intensity-dependent atom-field coupling [166–168]. In this work, the parameter k

which describes the intensity dependent interaction is non-negative and limited to

one. This ensures that the vacuum state is the only state annihilated by the deformed

annihilation operator. All the coupling strengths, nonlinear strengths and frequencies
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are expressed in terms of frequency of the first cavity. In the plots, the frequency of

the first cavity is set to unity.

The purpose of studying the system described by Ĥ is that many other well known

interactions are special cases of Ĥ. If k, χ1 and χ2 vanish, Ĥ is the Hamiltonian for

two linearly coupled cavities,

ĤL = ω1â
†
1â1 + ω2â

†
2â2 + J(â1â

†
2 + â†1â2). (4.2)

If k〈a†a〉 >> 1, then

ĤBS = ω1â
†
1â1 + ω2â

†
2â2 + χ1â

†2
1 â

2
1 + χ2â

†2
2 â

2
2

+ J

[√
kâ†1â1â1â

†
2

√
kâ†2â2 + â†1

√
kâ†1â1

√
kâ†2â2â2

]
, (4.3)

which is the Buck-Sukumar Hamiltonian [169]. In the opposite limit k〈a†a〉 << 1,

ĤKerr = ω1â
†
1â1 + ω2â

†
2â2 + χ1â

†2
1 â

2
1 + χ2â

†2
2 â

2
2 + J(â1â

†
2 + â†1â2), (4.4)

which describes a Kerr interaction [158, 170–172].

To discuss the general case, consider the following deformed operators:

K̂m =

√
1 + kâ†mâmâm,

K̂†m = â†m

√
1 + kâ†mâm, (4.5)

where m = 1 and 2 correspond to the first and second cavities respectively. These

deformed operators satisfy [K̂m, K̂
†
m] = 2K̂0m, with K̂0m = kâ†mâm + 1

2
which becomes

the identity operator when k = 0. Thus, these operators form a closed algebra, with
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Heisenberg-Weyl algebra and SU(1,1) algebra as the limiting cases when k → 0 and

k → 1 respectively [168]. The action of these operators on the number states is as

follows:

K̂m |n〉m =
√
n
√

1 + k(n− 1) |n− 1〉m ,

and K̂†m |n〉m =
√

1 + kn
√
n+ 1 |n+ 1〉m , (4.6)

where |n〉m represents the state of mth cavity with number of photons n.

With χm = ωmk, the Hamiltonian Ĥ given in Eqn. 4.1 is re-expressed in terms of the

deformed operators to yield

Ĥd = ω1K̂
†
1K̂1 + ω2K̂

†
2K̂2 + J(K̂1K̂

†
2 + K̂†1K̂2). (4.7)

The deformations considered here are analogous to the Holstein-Primakoff realiza-

tion of deformed boson operators to represent spin operators in the context of ferro-

magnetism [173]. The form of the intensity dependent interaction considered in the

Hamiltonian in Eqn. 4.1 is not readily achievable. However, it allows to express the

nonlinear Hamiltonian in a form that resembles the Jaynes-Cummings Hamiltonian.

Though the Hamiltonian includes intensity-dependent interaction as well as Kerr non-

linearity, it is still possible to identify a constant of motion, namely, the operator cor-

responding to the number of quanta N̂ = â†1â1 + â†2â2 so that [Ĥ, N̂ ] = 0. Existence

of this constant of motion implies that there are invariant subspaces for the unitary

dynamics generated by Ĥ. The Hamiltonian can be diagonalized in the subspace of

a given number of excitations.
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Consider the initial state

|ψ(0)〉 = C1(0) |20〉+ C2(0) |11〉+ C3(0) |02〉 , (4.8)

where |C1(0)|2 + |C2(0)|2 + |C3(0)|2 = 1. Unitary evolution under Ĥ evolves the state

|ψ(0)〉 to

|ψ(t)〉 = C1(t) |20〉+ C2(t) |11〉+ C3(t) |02〉 , (4.9)

where

C1(t) = −[((2ω1 + 2χ1)2 − 2(1 + k)J)L1 − i(2ω1 + 2χ1)L2 + L3)C1(0)

+ (
√

2(1 + k)J(3ω1 + 2χ1 + ω2)L1 − i
√

2(1 + k)JL2)C2(0)

+ 2(1 + k)J2L1C3(0)], (4.10)

C2(t) = −[(
√

2(1 + k)J(3ω1 + 2χ1 + ω2)L1 − i
√

2(1 + k)JL2)C1(0)

+ ((4(1 + k)J2 + (ω1 + ω2)2)L1 − i(ω1 + ω2)L2 + L3)C2(0)

+ ((
√

2(1 + k)J(3ω2 + 2χ2 + ω1)L1 −
√

2(1 + k)JL2)C3(0)], (4.11)

C3(t) = −[((2ω2 + 2χ2)2 − 2(1 + k)J)L1 − i(2ω2 + 2χ2)L2 + L3)C3(0)

+ (
√

2(1 + k)J(3ω2 + 2χ2 + ω1)L1 − i
√

2(1 + k)JL2)C2(0)

+ 2(1 + k)J2L1C1(0)]. (4.12)

Various terms occurring in the coefficients are

L1 =
eλ1t

(λ1 − λ2)(λ1 − λ3)
+

eλ2t

(λ2 − λ1)(λ2 − λ3)
+

eλ3t

(λ3 − λ1)(λ3 − λ2)
, (4.13)

L2 =
eλ1t(λ2 + λ3)

(λ1 − λ2)(λ1 − λ3)
+

eλ2t(λ3 + λ1)

(λ2 − λ1)(λ2 − λ3)
+

eλ3t(λ2 + λ1)

(λ3 − λ1)(λ3 − λ2)
, (4.14)

L3 =
eλ1t(λ2λ3)

(λ1 − λ2)(λ1 − λ3)
+

eλ2t(λ3λ1)

(λ2 − λ1)(λ2 − λ3)
+

eλ3t(λ2λ1)

(λ3 − λ1)(λ3 − λ2)
, (4.15)

where λ1, λ2 and λ3 are the eigenvalues of −iĤ in the two photon subspace. If ∆ = 0
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and χ1 = χ2, then these eigenvalues are

λ1 = −i(2ω + 2χ), (4.16)

λ2 = −i(2ω + χ−
√
χ2 + 4(1 + k)J2), (4.17)

λ3 = −i(2ω + χ+
√
χ2 + 4(1 + k)J2). (4.18)

For the nonresonant case (∆ 6= 0) with ω1, ω2 >> χ, the approximate eigenvalues are

λ1 ≈ −i
(
ω1 + ω2 + 2χ− χ∆2

N1(1 + k)J2

)
, (4.19)

λ2 ≈ −i
(
ω1 + ω2 + 2χ−R− χ(∆−R)2

N2(1 + k)J2

)
, (4.20)

λ3 ≈ −i
(
ω1 + ω2 + 2χ+R− χ(∆ +R)2

N3(1 + k)J2

)
, (4.21)

where

N1 = 2 +
∆2

2(1 + k)J2
,

N2 = 1 +

(
R(R−∆)

2(1 + k)J2
− 1

)2

+
(R−∆)2

2(1 + k)J2
,

N3 = 1 +

(
R(R + ∆)

2(1 + k)J2
− 1

)2

+
(R + ∆)2

2(1 + k)J2
,

and R =
√

∆2 + 4(1 + k)J2.

Assuming C1(0) = cos θ, C2(0) = 0 and C3(0) = eiφ sin θ, the initial state is

|ψ(0)〉 = |θ, φ〉 = cos θ |20〉+ eiφ sin θ |02〉 , (4.22)

which is a TPL state. On detection, both the photons will be in one of the two

cavities if θ 6= 0 or π/2. In the next section, the delocalization features of this state

are discussed.
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4.3 Nonlinearity and delocalization

Considering the state |ψ(0)〉 given in Eqn. 4.22 and choosing θ = π
4
, the probability

for TPD is

P|11〉(t) = |C2(t)|2,

= J̃2|
{

(1 + eiφ) [L2 + iL1(ω1 + ω2)] + 2iL1(ω1 + χ1 + eiφ(ω2 + χ2))
}
|2, (4.23)

where J̃ =
√

(1 + k)J .

This probability evolves in time as L1 and L2 are time-dependent. In the context of

localization and delocalization, the quantity of interest is the maximum value attained

by P|11〉 during time evolution. If φ = 0, the initial state is |ψ(0)〉 = |+〉 = (|20〉 +

|02〉)/
√

2. In Fig. 4.1, the maximum value of P|11〉 is shown as a function of the

nonlinear strength χ(= χ1 = χ2) for the resonant case (ω1 = ω2 such that ∆ = 0).

Dashed line in Fig. 4.1 corresponds to k = χ/ω. To allow for independent variation of

χ, maximum of P|11〉 during time evolution is shown (continuous) in Fig. 4.1 for a fixed

value of k = 0.1. The deviation between the two curves is insignificant. Hence, the

condition χ = kω is not restrictive. However, it allows for expressing the Hamiltonian

Ĥ given in Eqn. 4.1 as a deformed JC model.

It is noted that the maximum value decreases with increasing nonlinear strength. This

comes from the fact that the cavity nonlinearity makes the average energies in the

states |20〉 , |11〉 and |02〉 unequal as shown in Fig. 4.2. This energy difference between

states affects the transition from localized states to delocalized state.

On the other hand, if φ = π, i.e., |ψ(0)〉=|−〉,

P|11〉(t) = 4∆2J2(1 + k)|L1|2. (4.24)
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If the two cavities are resonant, i.e., ∆ = 0, then P|11〉 is 0 during time-evolution,

independent of χ and k. Hence, the state |−〉 never delocalizes during time evolution.

It is of interest to note that the state |−〉 is an eigenstate of Ĥ given in Eqn. 4.1 if

the cavities are resonant. As a consequence, the state does not evolve.
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Figure 4.1 – Maximum achievable value of probability of delocalization P|11〉 during
time evolution is plotted a function of nonlinear strength χ/ω for the initial state |+〉.
Parameters chosen are ∆/ω = 0 and J/ω = 0.03. Continuous line corresponds to
k = 0.1 and dashed line corresponds to k = χ/ω.

Figure 4.2 – Energy levels are labeled by the expectation value of the Hamiltonian Ĥ
in the respective states. The inter-state decay rates are denoted by γ with appropriate
suffixes.

If the initial state is a localized product state |20〉 or |02〉, obtained by setting θ = 0
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or π/2 in Eqn. 4.22 respectively, the corresponding delocalization probabilities are

P|11〉(θ = 0) = 2(1 + k)J2|(iL1(3ω1 + 2χ1) + ω2) + L2)|2, (4.25)

P|11〉(θ =
π

2
) = 2(1 + k)J2|(iL1(3ω2 + 2χ2) + ω1) + L2)|2. (4.26)

A condition to achieve complete delocalization starting from the product states |20〉

and |02〉 is derived. This condition ensures that the probabilities for the transitions

|20〉 → |11〉 and |02〉 → |11〉 become unity. For the Hamiltonian given in Eqn. 4.1,

the average energies in |20〉 and |02〉 shift by ∆ + 2χ1 and −∆ + 2χ2 respectively from

the average energy in the state |11〉 as shown in Fig. 4.2. For perfect transition to

occur, the average energy levels must be same (degenerate). The average energies of

the localized state (|20〉 or |02〉) and delocalized state (|11〉) are the same if

∆ = −2χ1, for |20〉 ,

and ∆ = 2χ2, for |02〉 . (4.27)

These are the state swiching conditions which ensure perfect delocalization from the

states |20〉 and |02〉. When the system is detuned for one of the transitions, the other

transition does not occur. For example, if the detuning is appropriate for the transition

|20〉 → |11〉,i.e., 〈20|H |20〉 = 〈11|H |11〉, transition to |02〉 does not occur as the

average energy in the state |02〉 is detuned by 2(χ1 +χ2) from |20〉 and |11〉. Thus, in

the presence of Kerr nonlinearity, detuning can be used as a switch to block |20〉 → |02〉

transition. The time evolution of probabilities P20, P11 and P02 are shown in Fig. 4.3

for the two localized states |20〉 and |02〉 as the initial states. The probability of

delocalization is unity if the parameters satisfy the state switching condition given in

Eqn. 4.27 for the corresponding initial state.

If the initial state is the delocalized state |11〉, the probability of localization P20+02
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Figure 4.3 – The probabilities P20 (dashed), P11(continuous) and P02(dot-dashed) are
plotted as a function of ω1t for the initial state (a) |20〉 with χ1/ω1 = 0.02, χ2/ω1 = 0.015
and ∆/ω1 = −0.04 and (b) |02〉 with χ1/ω1 = 0.015, χ2/ω1 = 0.02 and ∆/ω1 = 0.04.
Other parameters are J/ω1 = 0.003 and k = 0.001.

is non-zero during time evolution in linear cavities. In the nonlinear case under con-

sideration, transitions from |11〉 to |02〉 or |20〉 and vice-versa are nearly forbidden if

χ1, χ2 >> J and ∆ = 0. The time evolution of P20, P11 and P02 are shown in Fig.

4.4 for two different values of χ(= χ1 = χ2) when the initial state is |11〉. Note that

if the nonlinear strength χ is larger than the coupling strength J , then the state |11〉

is an approximate eigenstate of Ĥ. As a consequence, it does not evolve to be a lo-

calized state. What happens in this limit is that the presence of a photon in a cavity

blocks the inflow of photon from the other cavity, analogous to the photon blockade

phenomenon in a driven cavity [86]. It is the Kerr nonlinearity which leads to the

blockade, thereby stabilizing the delocalized state |11〉.

Now, the delocalization aspects of the superposition of the localized states |20〉 and

|02〉 are considered. In particular, the symmetric and the anti-symmetric combinations

(|+〉 and |−〉 respectively) are studied. If |+〉 or |−〉 is the initial state, then the

evolved state does not have complete overlap with |11〉 for any detuning. The states

do not delocalize completely. Essentially, the average energies of these localized states

cannot be equal to the average energy of |11〉 for any values detuning in the presence

of Kerr nonlinearity.
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Figure 4.4 – The probabilities P20 (dashed), P11(continuous) and P02(dot-dashed) are
plotted as a function of ω1t for the initial delocalized state |11〉 for (a)χ/ω1 = 0.03, k =
0.03 and (b)χ/ω1 = 0.05, k = 0.05. The detuning and coupling strength are set to be
∆/ω1 = 0 and J/ω1 = 0.005.

4.4 Dissipative nonlinear cavities

As discussed in the previous section, Kerr nonlinearity shifts the energy levels of the

cavities which, in turn, implies that the interference cannot be perfect. This feature

has been used to explain the two-photon localization-delocalization in the coupled

cavities. Yet another feature to be considered is dissipation. Interplay between the

nonlinearity and interference when the system is subjected to dissipation (coupled

with zero temperature reservoirs) is discussed in this section.

The evolution equations for the density matrix is obtained using the master equation

∂ρ

∂t
= −i[Ĥ, ρ] +

2∑
i,j=1

γij
2

(2âjρâ
†
i − â

†
i âjρ− ρâ

†
i âj). (4.28)

Here γ11 and γ22 are decay rates of the first and second cavities respectively and, γ12

and γ21 are the cross-damping rates arising due to interference of transition ampli-
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tudes. The evolution equations for density matrix elements are

∂ρm,np,q

∂t
= U +D + C; (4.29)

where

U =− i[(mω1 +m(m− 1)χ1)ρm,np,q + (nω2 + n(n− 1)χ2)ρm,np,q

+ J
√
m(1 + k(m− 1))

√
(n+ 1)(1 + kn)ρm−1,n+1

p,q

+ J
√
n(1 + k(n− 1))

√
(m+ 1)(1 + km)ρm+1,n−1

p,q

− (pω1 + p(p− 1)χ1)ρm,np,q − (qω2 + q(q − 1)χ2)ρm,np,q

+ J
√
p(1 + k(p− 1))

√
(q + 1)(1 + kq)ρm,np−1,q+1

+ J
√
q(1 + k(q − 1))

√
(p+ 1)(1 + kp)ρm,np+1,q−1],

D =
γ11

2
[2
√

(m+ 1)(p+ 1)ρm+1,n
p+1,q − (m+ p)ρm,np,q ]

+
γ22

2
[2
√

(n+ 1)(q + 1)ρm,n+1
p,q+1 − (n+ q)ρm,np,q ],

C =
γ12

2
[2
√

(n+ 1)(p+ 1)ρm,n+1
p+1,q −

√
m(n+ 1)ρm−1,n+1

p,q −
√
q(p+ 1)ρm,np+1,q−1]

+
γ21

2
[2
√

(m+ 1)(q + 1)ρm+1,n
p,q+1 −

√
n(m+ 1)ρm+1,n−1

p,q −
√
p(q + 1)ρm,np−1,q+1],

where ρg,hi,j = 〈g, h| ρ |i, j〉. Here m+n ≤ 2 and p+q ≤ 2. Here U,D and C correspond

to unitary, damping and cross damping parts.

The evolution equations for localization probabilities ρ44 = 〈20| ρ |20〉 and ρ66 =

〈02| ρ |02〉 are

ρ̇44 = −i[
√

2(1 + k)J(ρ54 − ρ45)]− 2γ11ρ44 −
γ12√

2
ρ54 −

γ21√
2
ρ45, (4.30)

ρ̇66 = −i[
√

2(1 + k)J(ρ56 − ρ65)]− 2γ22ρ66 −
γ12√

2
ρ65 −

γ21√
2
ρ56. (4.31)

The evolution of matrix elements ρ44 and ρ66 depend on the off diagonal elements.

Evolution of these off diagonal elements depend on frequencies (ω1, ω2) and nonlinear
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strengths (χ1, χ2). Therefore, evolution of ρ44 and ρ66 are also dependent on these

parameters.

Temporal evolution of TPL probability in the presence of dissipation for the initial

state |+〉 is shown in Fig. 4.5. Linear (χ1 = χ2 = 0) and nonlinear (χ1 = χ2 = 0.1)

cases are considered. Due to interference between the various transitions shown in

Fig. 4.2, the probability of localization does not completely vanish in the absence of

nonlinearity. Including nonlinearity (χ 6= 0) leads to complete decay of the state |+〉.

Therefore, localization probability reduces in time. Essentially, nonlinearity reduces

the transition amplitudes from |20〉 and |02〉 to |11〉. As a result perfect interference

does not occur.
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Figure 4.5 – Probability of localization P|20〉+|02〉 = ρ44 + ρ66 is shown as a function
of ω1t for the initial state |+〉. Values used are J/ω1 = 0.05,γ/ω1 = 0.005, k = 0.05
and ∆/ω1 = 0. Here γ = γ11 = γ22 = γ12 = γ21. Dashed curve corresponds to
the linear case χ1/ω1 = χ2/ω1 = 0 and the continuous line for nonlinear case with
χ1/ω1 = χ2/ω1 = 0.1.

The above features differ if the initial state is |−〉. The localization probability decays

as ∼ e−2γt, independent of χ, which provides the best fit for the numerical result.

This decay pattern is shown in Fig. 4.6 for two different χ values. The curves

corresponding to different χ values overlap, leading to the conclusion that the decay

rate is independent of χ. As the state |−〉 is an eigenstate of Ĥ given in Eqn. 4.1, the

transition from |−〉 to |11〉 is forbidden and interference does not occur between the
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various transition paths. This leads to the complete decay of the localized state |−〉.

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

ω
1
t

P
2

0
+

0
2

 

 

χ/ω
1
=0.1

χ/ω
1
=0

Figure 4.6 – Probability of localization P|20〉+|02〉 = ρ44 + ρ66 is shown as a function
of ω1t for the initial state |−〉. Here J/ω1 = 0.05,γ/ω1 = 0.005, k = 0.05 and ∆/ω1 = 0.
Here γ = γ11 = γ22 = γ12 = γ21. Dashed curve corresponds to the linear case χ/ω1 = 0
and the continuous line for nonlinear case with χ/ω1 = 0.1.

Another consequence of interaction between a system and environment is the decoher-

ence. Dephasing results in the decay of off-diagonal elements of the density operator.

Essentially, dephasing affects the amplitudes of various transitions. As seen earlier,

nonlinearity modifies the strength of TPL and TPD transition. It is of interest to

understand the combined effect of dephasing and nonlinearity on delocalization.

Evolution equations for the density matrix elements can be obtained by using master

equation

∂ρ

∂t
= −i[Ĥ, ρ] +

γd
2
D[â†1â1]ρ+

γd
2
D[â†2â2]ρ, (4.32)

where D[ô]ρ = 2ôρô† − ô†ôρ− ρô†ô.
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Evolution equation for density matrix elements is

d

dt



ρ44

ρ45

ρ46

ρ54

ρ55

ρ56

ρ64

ρ65

ρ66



=



0 B 0 −B 0 0 0 0 0

B A B 0 −B 0 0 0 0

0 B C 0 0 −B 0 0 0

−B 0 0 A∗ B 0 −B 0 0

0 −B 0 B 0 B 0 −B 0

0 0 −B 0 B D 0 0 −B

0 0 0 −B 0 0 C∗ B 0

0 0 0 0 −B 0 B D∗ B

0 0 0 0 0 −B 0 B 0





ρ44

ρ45

ρ46

ρ54

ρ55

ρ56

ρ64

ρ65

ρ66



, (4.33)

where A = −i(∆ + 2χ1)) − γd, B = iJ
√

2(1 + k), C = −2i(∆ + χ1 − χ2) − 4γd,

D = −i(∆− 2χ2)− γd.

The probability of TPD ρ55 for different values χ(= χ1 = χ2) are shown in Fig. 4.7.

Comparing the results corresponding to different values of χ, it is clear that the rate of

attaining the steady state density matrix is slow in the presence of Kerr nonlinearity.
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Figure 4.7 – Delocalization probability as a function of ω1t for |−〉 for various χ.
Continuous line is for (χ/ω1 = 0 ,k = 0), dot-dashed line is for (χ/ω1 = 0.1, k = 0.1) and
dashed line is for (χ/ω1 = 0.3, k = 0.3) with J/ω1 = 0.05, ∆/ω1 = 0 and γd/ω1 = 0.05.
Non-linearity slows down the process of attaining steady state density operator.
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The first and last rows of the matrix given in Eqn. 4.33 have two non-zero entries.

This makes ρ45 = ρ54 and ρ56 = ρ65 respectively in the steady state. The remaining

steady state equations are

[−i(∆ + 2χ1)− γd]ρ45 − iJ
√

2(1 + k)(ρ55 − ρ44 − ρ46) = 0, (4.34)

[−2i(∆ + χ1 − χ2)− 4γd]ρ46 − iJ
√

2(1 + k)(ρ56 − ρ45) = 0, (4.35)

[i(∆ + 2χ1)− γd]ρ45 + iJ
√

2(1 + k)(ρ55 − ρ44 − ρ64) = 0, (4.36)

[−i(∆− 2χ2)− γd]ρ56 − iJ
√

2(1 + k)(ρ46 + ρ66 − ρ55) = 0, (4.37)

[2i(∆ + χ1 − χ2)− 4γd]ρ64 + iJ
√

2(1 + k)(ρ56 − ρ45) = 0, (4.38)

[i(∆− 2χ2)− γd]ρ56 + iJ
√

2(1 + k)(ρ64 + ρ66 − ρ55) = 0. (4.39)

Using the Cramer’s rule for solving the above of linear equations, with the constraint

ρ44 + ρ55 + ρ66 = 1, the steady state solutions are

ρ44 =
1

3
, ρ45 = 0, ρ46 = 0, ρ55 =

1

3
, ρ56 = 0, ρ64 = 0, ρ66 =

1

3
, (4.40)

which are indeed independent of nonlinear strengths.

4.5 Array of nonlinearly coupled cavities

In this section, localization and delocalization of two photons in an array of Kerr

cavities is considered. All the cavities are in resonant. The Hamiltonian given in Eqn.

94



Chapter 4: Chapter 4

4.1 can be generalized to an array of N cavities. The Hamiltonian is

Ĥ =
N∑
j=1

ωâ†j âj + χâ†2j â
2
j

+ J

N−1∑
j=1

[√
1 + kâ†j âj âj â

†
j+1

√
1 + kâ†j+1âj+1 + â†j

√
1 + kâ†j âj

√
1 + kâ†j+1âj+1âj+1

]
.

(4.41)

Here âj and â†j are the annihilation and creation operators for the jth cavity. The

photon hopping strength between two adjacent cavities is J . All the cavities are having

equal Kerr strengths χ. In order to investigate the role of nonlinearity, consider states

of the form |ψ〉 = cos θ |2〉r |0〉s + eiφ sin θ |0〉r |2〉s. The notation |p〉r |q〉s stands for

p photons in the r-th cavity and q photons in the s-th cavity. Other cavities are in

their respective vacuua. Here r and s vary from 1 to N .
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Figure 4.8 – Maximum achievable value of S during time evolution as a function of
nonlinear strength χ/ω for the initial states |+〉(circle), |20〉(star) and |−〉(triangle).
Here J/ω = 0.05, k = χ/ω, N = 6, r = N/2 and s = r + 1.

The maximum achievable value of the degree of TPD (S), defined in Eqn. 3.53, is

shown as a function of the nonlinear strength χ in Fig. 4.8 for an array of six cavities.

It is seen that delocalization probability decreases if the strength of nonlinearity in-

creases. This comes from the fact that nonlinearity localizes the energy (photons), so

that |20〉, |02〉 and their superpositions are more probable. If the initial state is |−〉,

the evolved state is more localized compared to the state evolving from |+〉. Hence,

95



Summary Chapter 4

degree of delocalization S depends on the relative phase present in the initial state in

the nonlinear case too.

4.6 Summary

In this chapter, dynamics of localization and delocalization due to intensity-dependent

coupling of two Kerr cavities has been studied. As in the linear case localization and

delocalization probabilities depend on the entanglement and relative phase present in

the initial state.

Due to nonlinearity, the energy levels of the cavities are anharmonic (unequally

spaced) and the average energies of the localized and delocalized states are differ-

ent. As a consequence, transition from localized state to delocalized state is blocked

if the cavities are resonant. For transition to occur from a localized product state to

a delocalized state, the average energies in these states are to be nearly equal which

is achieved by adjusting the strength of nonlinearity and detuning. If the initial state

is the delocalized state |11〉 then transition to localized states can be forbidden, anal-

ogous to photon blockade, by suitably choosing the nonlinear strength.

The entangled state (|20〉+ |02〉)/
√

2 does not achieve complete delocalization in the

presence of nonlinearity. The state (|20〉− |02〉)/
√

2 remains localized independent of

the strength of nonlinearity. Essentially, the average energies of the localized entangled

states and delocalized state are not equal for any value of detuning in the presence of

nonlinearity.
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Atomic switch for control of heat
transfer in coupled cavities

Dynamics of an isolated system is unitary and the total energy of the system is con-

stant. In practical situations, interaction of system with environment is unavoidable.

Simplest of this situation corresponds to coupling the system to a reservoir at ab-

solute zero temperature. This implies that the reservoir cannot transfer energy to

the system while the system can transfer to the environment. As a consequence, the

system suffers an irreversible dissipation. The dissipative dynamics studies presented

in the previous chapters are based on the interaction of the cavities in the array and

reservoirs at zero temperature. However, if coupled to reservoirs at non-zero absolute

temperatures, cavities can exchange energy with the reservoirs. In this context, a

linear array of cavities whose ends are connected to two reservoirs is considered. This

array forms a conduit for energy transport between the two reservoirs [174–177]. For

a conventional bulk material, steady state heat transport is governed by

J = −κ∇T, (5.1)

which is the Fourier’s law of heat conduction. Here J is the thermal current density

and ∇T is the temperature gradient. The proportionality constant κ is the thermal

conductivity which is positive for bulk matter. This law is valid if the system is

close to its equilibrium, in which case linear response theory is applicable [178–182].
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A system away from equilibrium may violate the Fourier’s empirical law [179, 180].

There is no universal theory of heat transfer applicable to all nonequilibrium systems.

A chain of coupled oscillators is known to violate the Fourier’s law of heat conduc-

tion in the sense that the thermal current is independent of system size and the heat

transport is ballistic [176, 179, 183]. Diffusive transport can be recovered by including

anharmonicity and dephasing [114, 176, 184, 185]. Another interesting phenomenon

is thermal rectification which is essential for realizing thermal diodes and transistors

[186, 187]. A system shows thermal rectification if it possesses structural asymmetry

for allowing higher thermal current in one direction. Thermal rectifiers based on nan-

otubes [188], quantum spin chains [189–191], anharmonic oscillators [192], two-level

systems [193], etc. have been proposed in the literature.

In this chapter, heat transfer in a system of two coupled cavities containing a single

atom is discussed. The system-reservoir interaction is assumed to be of Lindblad type

[70]. Both magnitude and direction of current are shown to be controllable by suit-

ably choosing the atomic state and the system-reservoir coupling parameters. The

system exhibits large thermal rectification for proper choices of the cavity-reservoir

and cavity-atom couplings.

The present chapter is organized as follows. In Section. 5.1, details of the system

and its theoretical model are discussed to arrive at an expression for heat current.

Also, various special cases of importance are indicated. Based on the dependence

of the current on the reservoirs’ temperatures and coupling parameters, violation of

second law of thermodynamics is established in Section. 5.2. Thermal rectification in

the system is explored in Section. 5.3. Generalization to N cavities is discussed in
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Section. 5.4. Results are summarized in Section. 5.5.

5.1 System and its model

Consider a system of two linearly coupled cavities (right and left, for brevity) and a

two-level atom in one of the cavities. The resonance frequencies of the cavities are

ωL and ωR respectively. The cavity coupling strength is J . The right cavity interacts

dispersively with the two-level atom embedded in it. The coupling strength between

the atom and the cavity field is g. The atomic transition frequency is ω0. In the

dispersive limit, i.e., ∆ = (ω0 − ωR) >> g, the Hamiltonian is [83, 194]

Ĥ =
ω0

2
σ̂z + ωLâ

†
LâL + ωRâ

†
RâR + χ(σ̂+σ̂− + â†RâRσ̂z) + J(â†LâR + âLâ

†
R), (5.2)

where χ = g2/∆ is assumed to be positive. Here ~ = 1. The states |e〉 and |g〉

are respectively the excited and ground states of the two-level atom. The operators

σ̂+ = |e〉 〈g| and σ̂− = |g〉 〈e| are the raising and lowering operators for the atom.

The energy operator for the atom is σ̂z = |e〉 〈e| − |g〉 〈g|. The Hamiltonian Ĥ con-

serves the respective total excitation numbers for the cavity fields and the atom, i.e.,

[â†LâL + â†RâR, Ĥ] = 0 and [σ̂z, Ĥ] = 0. As a consequence, the atom and the field can-

not exchange energy in the dispersive limit [194], they independently conserve their

respective number of quanta.

The system is coupled to two reservoirs, each modeled as a collection of independent

oscillators [68]. The reservoir Hamiltonian is taken to be

Ĥx =
∑
j

ωxj b̂
†
xj b̂xj, (5.3)

where x = L, R is the index referring to the left reservoir and the right reservoir re-

spectively. The creation and annihilation operators of the reservoirs obey the bosonic
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commutation relation [b̂xj, b̂
†
yk] = δjkδxy. The arrangement of the cavities and reser-

voirs is shown in Fig. 5.1. The interaction Hamiltonian for the cavity-reservoir com-

ponent is

ĤI =

(∑
j

gLj (â†L + âL)(b̂Lj + b̂†Lj) +
∑
j

gRj(â
†
R + âR)(b̂Rj + b̂†Rj)

)
, (5.4)

where gLj(gRj) is the coupling strength of the left (right) cavity to jth mode of the

left (right) reservoir.

Figure 5.1 – Schematic representation of system of coupled cavities with a two-level
atom embedded in the right cavity. The cavities are also coupled with their respective
reservoirs.

Under the Born-Markov and rotating wave approximations [68], the reduced joint

density matrix for the two cavities (traced over the reservoirs) obeys

∂ρ

∂t
= −i[Ĥ, ρ] +DL(ρ) +DR(ρ), (5.5)

where the Lindblad operators are defined as

Dx(ρ) =
Γx(n̄x + 1)

2
(2âxρâ

†
x − â†xâxρ− ρâ†xâx) +

Γxn̄x
2

(2â†xρâx − âxâ†xρ− ρâxâ†x),

(5.6)
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for x = L,R. The parameters ΓL and ΓR are related to the coupling strengths as [72]

Γx = 2π
∑
j

g2
xjδ(ωxj − ωx). (5.7)

The two terms in Eqn. 5.6 correspond to energy flow from the system to the reservoir

and vice-versa respectively. The dynamics generated by the master equation satisfies

the detailed balance condition and gives the correct steady state if the different com-

ponents of the system are weakly coupled [195–198]. The reservoirs RL and RR are

assumed to be in thermal equilibrium at temperatures TL and TR respectively. The

density operators of the reservoirs are

%x =
e−Ĥx/kBTx

Tr
(
e−Ĥx/kBTx

) , (5.8)

with mean photon numbers n̄x = 1/[exp (ωx/kBTx) − 1], where x = L,R. The dy-

namics of the system can be understood from the temporal evolution of expectation

values of suitable operators. The expectation values satisfy

d
dt
〈â†LâL〉 = iJ(〈âLâ†R〉 − 〈â

†
LâR〉)− ΓL〈â†LâL〉+ ΓLn̄L, (5.9a)

d
dt
〈â†RâR〉 = −iJ(〈âLâ†R〉 − 〈â

†
LâR〉)− ΓR〈â†RâR〉+ ΓRn̄R, (5.9b)

d
dt
〈â†LâR〉 = i∆c〈â†LâR〉 − iJ(〈â†LâL〉 − 〈â

†
RâR〉)− iχ〈â

†
LâRσ̂z〉 − γ〈â

†
LâR〉, (5.9c)

d
dt
〈âLâ†R〉 = −i∆c〈âLâ†R〉+ iJ(〈â†LâL〉 − 〈â

†
RâR〉) + iχ〈âLâ†Rσ̂z〉 − γ〈âLâ

†
R〉,(5.9d)

d
dt
〈â†LâLσ̂z〉 = iJ(〈âLâ†Rσ̂z〉 − 〈â

†
LâRσ̂z〉)− ΓL〈â†LâLσ̂z〉+ ΓLn̄L〈σ̂z〉, (5.9e)

d
dt
〈â†RâRσ̂z〉 = −iJ(〈âLâ†Rσ̂z〉 − 〈â

†
LâRσ̂z〉)− ΓR〈â†RâRσ̂z〉+ ΓRn̄R〈σ̂z〉, (5.9f)

d
dt
〈â†LâRσz〉 = i∆c〈â†LâRσ̂z〉 − iJ(〈â†LâLσ̂z〉 − 〈â

†
RâRσ̂z〉)

−iχ〈â†LâR〉 − γ〈â
†
LâRσ̂z〉, (5.9g)

d
dt
〈âLâ†Rσ̂z〉 = −i∆c〈âLâ†Rσ̂z〉+ iJ(〈â†LâLσ̂z〉 − 〈â

†
RâRσz〉)

+iχ〈âLâ†R〉 − γ〈âLâ
†
Rσ̂z〉, (5.9h)
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where γ = (ΓL + ΓR)/2 and ∆c = ωL − ωR. Here 〈Â〉 = Tr[ρÂ], where ρ satisfies

the master equation given in Eqn. 5.5. The operators in Eqn. 5.9(a− h) collectively

represent the energies of the various components, coherences and interaction energies.

As [σ̂z, Ĥ] = [σ̂z,DL(ρ)] = [σ̂z,DR(ρ)] = 0, the evolution equation for 〈σ̂z〉 is d〈σ̂z〉/dt =

0. This indicates that the value of 〈σ̂z〉 remains constant during time evolution as a

consequence of the fact that the atom is dispersively coupled with the cavity field.

Steady state current is defined via the continuity equation

d

dt
〈Ĥ〉 = 0, (5.10)

which expresses the conservation of total energy of the system. With 〈Ĥ〉 =Tr[ρĤ]

and using Eqn. 5.5 for evolving ρ, the continuity equation given in Eqn. 5.10 yields

0 = Tr[ĤDL(ρ) + ĤDR(ρ)] =: IL + IR. (5.11)

Here Ix = Tr[ĤDx(ρ)], x = L,R. Further, IL refers to the thermal current from the

left reservoir RL to the system and IR indicates the current from the right reservoir

RR to the system. Using Eqn. 5.5, the steady state heat current from the left reservoir

to the right reservoir through the system is

IL = Tr[ĤDL(ρ)] = ΓL(Ind − Icoh). (5.12)

Here Ind = (n̄L − 〈â†LâL〉ss)ωL is the current due to the average excitation number

difference between the left reservoir and the left cavity, Icoh = 1
2
J(〈â†LâR〉ss+〈âLâ

†
R〉ss)

is the current due to the total coherence in the system. The steady state expectation

values are represented as 〈·〉ss. A similar expression for the steady state heat current
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from the right reservoir to the left reservoir is

IR = Tr[ĤDR(ρ)] = ΓR(n̄R − 〈â†RâR〉ss)(ωR + 〈σ̂z〉χ)− ΓRIcoh. (5.13)

Steady state solutions obtained by equating the time derivatives in Eqns. 5.9(a− h)

to zero are

〈â†LâL〉ss = C(ΓLn̄L+ΓRn̄R)+ΓLΓRn̄L
C(ΓL+ΓR)+ΓLΓR

, (5.14a)

〈â†RâR〉ss = C(ΓLn̄L+ΓRn̄R)+ΓLΓRn̄R
C(ΓL+ΓR)+ΓLΓR

, (5.14b)

δN = 〈â†LâL〉ss − 〈â
†
RâR〉ss = ΓLΓR(n̄L−n̄R)

C(ΓL+ΓR)+ΓLΓR
, (5.14c)

〈â†LâR〉ss = −J χ〈σ̂z〉+∆c+iγ
χ2−∆2

c+γ
2−2iγ∆c

δN, (5.14d)

with

C = 2J2γ
∆2
c + χ2 + 2∆cχ〈σ̂z〉+ γ2

(χ2 −∆2
c + γ2)2 + 4γ2∆2

c

.

Using these steady state solutions in Eqn. 5.12 yields

IL = J2δN

ΓLχ〈σ̂z〉(χ2 −∆2
c + γ2) + (ωLΓR + ωRΓL)(∆2

c + γ2)
+ χ2(2ωLγ + ∆cΓL) + 4∆cχ〈σ̂z〉ωLγ

(χ2 −∆2
c + γ2)2 + 4γ2∆2

c

. (5.15)

In the absence of inter-cavity coupling (J = 0), the cavities equilibrate with their

respective reservoirs with mean photon numbers n̄L and n̄R. The currents IL and IR

vanish since energy cannot flow from one cavity to another as J = 0. If the coupling

is non-zero and the reservoirs are at different temperatures, energy flows from one
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reservoir to the other through the cavities.

Interestingly, expression in Eqn. 5.15 shows that the current through the system

explicitly depends on 〈σ̂z〉 which, in turn, depends on the state of the atom. This

dependency arises as the atom modifies the cavity resonance frequency as well as the

coherences 〈â†LâR〉ss and 〈âLâ†R〉ss. By proper choice of the atomic state, 〈σ̂z〉 can be

tuned from +1 corresponding to the atom in its excited state to −1 if the atom is

in its ground state. This feature can be used to control the energy flow (current)

between the reservoirs.

Consider the cavities to be coupled (J 6= 0) and resonant, i.e., ωL = ωR = ω, so that

∆c = 0. In the absence of the atom, the total coherence 〈â†LâR〉ss + 〈âLâ†R〉ss given in

Eqn. 5.14d vanishes under steady state condition. The current through the cavities

is

IL =
4ωJ2ΓLΓR

(4J2 + ΓLΓR)(ΓL + ΓR)
(n̄L − n̄R), (5.16)

which is proportional to the difference in the mean photon numbers. Equivalently,

current is proportional to the temperature difference between the two reservoirs for a

fixed system size, which is like the Fourier’s law.

If the temperatures of the two reservoirs are equal (n̄L = n̄R = n̄), the system equili-

brates with the reservoirs and no current flows through the system. The mean number

of photons in the cavities are 〈â†LâL〉ss = 〈â†RâR〉ss = n̄. Also, the states of the cavity

fields satisfy the zero coherence condition, namely, 〈â†LâR〉ss = 〈â†RâL〉ss = 0. To know
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the states of the fields in the cavities, the fidelity F (ρth, ρx),

F (ρth, ρx) = Tr

(√√
ρthρx

√
ρth

)
, (5.17)

between the thermal field and the cavity field is calculated. Here

ρth =
1

1 + n̄

∞∑
n=0

(
n̄

1 + n̄

)n
|n〉 〈n| , (5.18)

is the single mode Gibbs thermal state; ρx(x = L,R) are the steady state reduced

density matrices for the left- and right-cavities respectively. The steady state fidelity

F (ρth, ρx) is numerically calculated to be unity. Therefore, the respective states of the

cavity fields are Gibbs thermal states. The zero-time delay second order correlation

function

g(2)
x (0) =

Tr(ρxâ
†2
x â

2
x)[

Tr(ρxâ
†
xâx)

]2 , (5.19)

in the steady state ρx is numerically estimated to be 2, same as that of the thermal

state. This confirms that the cavity states are indeed the thermal states ρth.

If the reservoirs are at different temperatures, the high temperature reservoir is the

source of energy to the system and the low temperature reservoir is the sink for the

energy to establish a steady state. As a consequence, heat continuously flows from

the high temperature reservoir to the low temperature reservoir. The system reaches

a non-equilibrium steady state with effective mean photon numbers 〈â†LâL〉ss and

〈â†RâR〉ss in the left- and right- cavities respectively. Analytical expressions for these

mean photon numbers are given in Eqn. 5.14a and Eqn. 5.14b.

In the presence of an atom in one of the cavities as shown in Fig. 5.1, the expression
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for current obtained from Eqn. 5.15 is

IL =
ΓLΓR

c̄(ΓL + ΓR) + ΓLΓR

c̄

γ

(
γω +

ΓL
2
χ〈σ̂z〉

)
(n̄L − n̄R), (5.20)

where c̄ = 2J2γ/(χ2 + γ2).

For ΓL = ΓR = Γ and finite J , an alternate expression for the current is

IL =
(IL − IR)

2
,

=
Γ

2

[
(n̄L − 〈â†LâL〉ss)ω − (n̄R − 〈â†RâR〉ss)(ω + 〈σ̂z〉χ)

]
. (5.21)

On substituting the steady state values from Eqns. 5.14a and 5.14b,

IL = 2J2 Γ

4J2 + χ2 + Γ2

(
ω +

χ

2
〈σ̂z〉

)
(n̄L − n̄R). (5.22)

Scaled current IL/ω
2 as a function of Γ/ω is shown in Fig. 5.2. Maximum current flows

through the system if Γ =
√

4J2 + χ2. This special value
√

4J2 + χ2 corresponds to

the Rabi frequency of the oscillation of the mean number of photons when the cavity

detuning is χ and the cavities are not coupled to the reservoirs. The detuning between

the cavity frequencies arises due to the atom in one of the cavities. The competition

between the cavity-reservoir energy exchange rate Γ and the cavity-cavity energy

exchange rate
√

4J2 + χ2 affects the current through the system. If the two rates are

equal, then

IL =
J2√

4J2 + χ2

(
ω +

χ

2
〈σ̂z〉

)
(n̄L − n̄R), (5.23)

which is the maximum current. If Γ >>
√

4J2 + χ2, the cavities and their respective

reservoirs exchange energy faster than the inter-cavity exchange. In the opposite

limit, the cavities exchange energy with each other faster than with their respective
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reservoirs. This mismatch between the energy exchange rates reduces the current.

From Eqn. 5.22, it is seen that for small Γ, IL ∝ Γ and for large Γ, IL ∝ Γ−1.
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Figure 5.2 – Current IL/ω
2 shown as a function of reservoir coupling strength Γ/ω

for different atom-cavity coupling strengths χ/ω = 0 (continuous), 0.1 (dashed) and
0.2 (dot-dashed). The system-reservoir parameters are J/ω = 0.05, n̄L − n̄R = 0.5 and
〈σ̂z〉 = 1.

5.2 Switching action of atom

According to the Fourier’s law given in Eqn. 5.1, current density is proportional to

temperature gradient. Using the fact that δN ∝ (n̄L − n̄R) as given in Eqn. 5.14c,

the expression for IL in Eqn. 5.15 is written in the form

IL = κ̃(n̄L − n̄R), (5.24)

for comparing with the Fourier’s law. Here κ̃ is the effective thermal conductivity. It

is to be noted that thermal conductivity can be tuned by choosing the atomic state.

Two important cases corresponding to the atom being in the excited state and the

ground state are considered, i.e., 〈σ̂z〉 = ±1. The corresponding currents are

IL = J2δN
Ω

(χ2 −∆2
c + γ2)2 + 4γ2∆2

c

((∆c ± χ)2 + γ2). (5.25)
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where Ω = ωLΓR+ΓL(ωR±χ). For subsequent discussion, it is assumed that n̄L > n̄R,

i.e., δN > 0 without loss of generality. Under this assumption, IL and Ω have the

same sign. If the atom is in its ground state, sign of Ω is changeable by properly

choosing the ratios ΓR/ΓL and (χ − ωR)/ωL. Consequently, direction of current can

also be changed. It is to be pointed out that ωR−χ is the resonance frequency of the

right cavity modified by the atom. If the atom is in its excited state, i.e., 〈σ̂z〉 = +1,

IL is always positive, meaning that the thermal current flows from the high temper-

ature reservoir to the low temperature reservoir (conventional flow) and reversal of

current is not possible.

In order to exhibit the switching action by the atom, consider χ > ωR. If the system-

reservoir parameters satisfy

ΓR
ΓL

>
(χ− ωR)

ωL
, (5.26)

to make Ω > 0, then the thermal current flows from the high temperature reservoir

to the low temperature reservoir, independent of the atomic state.

If the ratios are equal, i.e.,

ΓR
ΓL

=
(χ− ωR)

ωL
, (5.27)

and the atom is in the ground state, so that Ω = 0, then the thermal current vanishes

even if the reservoirs are at different temperatures. The system completely blocks

the heat flow like a thermal insulator. On driving the atom to its excited state, the

system changes from a thermal insulator to a thermal conductor.
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Table 5.1 – Conditions for positive and negative thermal currents.

〈σ̂z〉 = +1 〈σ̂z〉 = −1

α > 1 IL > 0 IL > 0

α = 1 IL > 0 IL = 0

α < 1 IL > 0 IL < 0

If the atom is in its ground state and the system-reservoir parameters are such that

ΓR
ΓL

<
(χ− ωR)

ωL
, (5.28)

then Ω < 0 and the direction of thermal current reverses, i.e., current flows from the

low temperature reservoir to the high temperature reservoir (unconventional flow).

This phenomenon has been interpreted to be a violation of the second law of ther-

modynamics [199–201]. Alternatively, the thermal conductivity of the system can be

interpreted to be negative in which case heat flows from the low temperature reser-

voir to high temperature reservoir. On driving the atom from the ground state to its

excited state, the unconventional flow of thermal current switches to the conventional

flow. Thus, the atom acts as a thermal switch which brings about a controllable cur-

rent flow through the cavities.

To summarize, defining

α =
ΓR/ΓL

(χ− ωR)/ωL
, (5.29)

the three conditions given in Eqns. (5.26-5.28) are equivalent to setting α greater

than, equal to or less than unity respectively. The signs of the respective currents

established in the system are indicated in Table. 5.1.

Scaled current IL/I0 for the case of the atom in its ground state is shown as a function
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Figure 5.3 – Scaled currents IL/I0 shown as a function of χ/ωL for different cavity-
reservoir coupling ratio ΓR/ΓL = 0.1 (continuous), 0.3 (dashed) and 0.6 (dot-dashed).
The system-reservoir parameters are J/ωL = 0.05, n̄L − n̄R = 0.5, ωR/ωL = 0.8 and
〈σ̂z〉 = −1. Scaled current in the system is shown in the inset for the same values of the
parameters and 〈σ̂z〉 = +1.

of χ/ωL in Fig. 5.3 for three different values of the cavity-reservoir coupling ratios

ΓR/ΓL : 0.1 (continuous), 0.3 (dash) and 0.6 (dot-dash). Here I0 is the magnitude of

current flowing through the system when χ = 0. The inset figure shows the scaled

current in the system when the atom is in its excited state. Note that the current is

always positive if the atom is in the excited state (inset figure). If the system and

reservoir parameters satisfy Eqn. 5.27, then the current vanishes. Negative current

occurs at different values of χ/ωL depending on the ratio ΓR/ΓL that satisfy Eqn. 5.28.

From Eqn. 5.12, it is seen that if the contribution from the coherence part Icoh is

more than the current due to mean excitation number difference Ind, then IL becomes

negative. Dimensionless quantities Ind/ω
2
L, Icoh/ω

2
L and IL/ω

2
L are shown in Fig. 5.4 as

a function of the atom-field coupling strength χ/ωL. If the parameters are chosen to

satisfy Eqn. 5.27, in which case Ind = Icoh, the system completely blocks the current

which corresponds to the intersection of zero current axis and IL/ω
2
L in Fig. 5.4. Cur-

rent reverses its direction from the low temperature reservoir to the high temperature

reservoir when Icoh > Ind. In this sense, the coherence in the system drives energy to
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flow to the high temperature reservoir.
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Figure 5.4 – Dimensionless currents IL/ω
2
L(continuous), Ind/ω

2
L (dashed) and Icoh/ω

2
L

(dot-dashed) shown as function of χ/ωL. Here ΓR/ΓL = 0.3, J/ωL = 0.05, n̄L − n̄R =
0.5, ωR/ωL = 1 and 〈σ̂z〉 = −1.

5.3 Thermal rectification

A system exhibits thermal rectification if thermal current depends on the direction of

heat flow. Symbolically,

I(∆n) 6= −I(−∆n), (5.30)

Figure 5.5 – Reverse configuration of system-reservoirs. reservoir temperatures and
the system-reservoir coupling strengths are interchanged.
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where ∆n = n̄L− n̄R is the difference in the average number of photons in the left and

right reservoirs. This means that by swapping the thermal reservoirs, current changes

its sign and magnitude.

If the system is symmetric under the exchange of cavities so that I(∆n) = −I(−∆n),

then thermal rectification is not possible. If the system is asymmetric, thermal rectifi-

cation is a possibility. In the system under discussion, symmetry is broken due to the

presence of the atom in one of the cavities. Thermal rectification arises by interchang-

ing the reservoirs and system-reservoir coupling strengths. The reverse configuration

is shown in Fig. 5.5. The relevant Lindblad operators for the reverse configuration

are

DL(ρ) =
ΓR(n̄R + 1)

2
(2âLρâ

†
L − â

†
LâLρ− ρâ

†
LâL)

+
ΓRn̄R

2
(2â†LρâL − âLâ

†
Lρ− ρâLâ

†
L),

and DR(ρ) =
ΓL(n̄L + 1)

2
(2âRρâ

†
R − â

†
RâRρ− ρâ

†
RâR)

+
ΓLn̄L

2
(2â†RρâR − âRâ

†
Rρ− ρâRâ

†
R). (5.31)

The atom is taken to be in its ground state so that 〈σz〉 = −1. Steady state solu-

tions for the expectation values of the operators are obtained by the transformations

ΓL −→ ΓR, n̄L −→ n̄R and vice-versa in Eqns. 5.14(a− d).

Current from the left reservoir RL to the right reservoir RR in the system shown in

Fig. 5.1 is called forward current. The expression for the forward current is

If (∆n,ΓL,ΓR) = J2δN
(ωLΓR + ΓL(ωR − χ))

(χ2 −∆2
c + γ2)2 + 4γ2∆2

c

((∆c − χ)2 + γ2). (5.32)

On exchanging (n̄L,ΓL) with (n̄R,ΓR), reverse current from the right reservoir RR to
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Figure 5.6 – Normalized forward current If (continuous line) and reverse current Ir
(dashed line) as a function of χ/ωL for ΓR/ΓL = 0.3. Currents are normalized with their
respective values at χ = 0. The system-reservoir parameters are J/ωL = 0.05, n̄L−n̄R =
0.5, ωR/ωL = 1 and 〈σ̂z〉 = −1.

the left reservoir RL in the configuration shown in Fig. 5.5 is

Ir(−∆n,ΓR,ΓL) = −J2δN
(ωLΓL + ΓR(ωR − χ))

(χ2 −∆2
c + γ2)2 + 4γ2∆2

c

((∆c − χ)2 + γ2). (5.33)

The reverse current is negative as the direction of flow is opposite to the forward

current.

The currents If and Ir, normalized with their corresponding values for χ = 0 and

∆c = 0, are shown as functions of the atom-field coupling strength χ in Fig. 5.6.

For non-zero χ, the magnitudes of the forward and reverse currents are different.

Therefore, the system shows thermal rectification. Importantly, if the parameters

satisfy the condition given in Eqn. 5.28, the forward current changes the sign. As a

result, both If and Ir flow in same direction.

Thermal rectification of a system is quantified in terms of its rectification coefficient
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Figure 5.7 – Rectification R as a function of ΓL/ω for ΓR/ω = 0.5. Here χ/ω = 1.5
and 〈σ̂z〉 = −1.

R defined as

R = −If
Ir
. (5.34)

If R = 1, there is no rectification. For the system under consideration

R =
ωLΓR + ΓL(ωR − χ)

ωLΓL + ΓR(ωR − χ)
. (5.35)

If ΓL = ΓR or ωL = |ωR − χ|, the rectification coefficient R becomes unity. Rectifi-

cation coefficient R is shown as a function of ΓL/ω in Fig. 5.7 for the resonant case

(∆c = 0). Rectification is positive, zero, or negative depending on the parameters.

The system shows large rectification if

ΓL
ΓR

=
χ− ωR
ωL

, (5.36)

as seen in Fig. 5.7. This comes from the fact that if Eqn. 5.36 holds then the atom

completely blocks the current in one direction (thermally insulating) and allows in the

other direction (thermally conducting) so that R becomes unbounded. Even though

the system size is finite, rectification becomes infinity, theoretically. If ΓL/ω is in-
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creased from values less than that satisfying Eqn. 5.36 to higher values, R jumps

from negative values of large magnitude to large positive values. Thus, R is very sen-

sitive to changes in the parameters in that region. Asymmetry can also be introduced

with non-resonant cavities without an atom (χ = 0) in any of the cavities. In this

case,

R =
ωLΓR + ΓLωR
ωLΓL + ΓRωR

, (5.37)

obtained from Eqn. 5.35. The denominator cannot be made arbitrarily large. So,

large rectification is not possible if atom is not present.

5.4 Heat transport in cavity array

In the case of linearly coupled, homogeneous arrays, heat current does not depend on

the number of cavities in the array. However, size dependent current can be realized

by embedding atoms in the cavities. It would be interesting to study the steady state

heat transfer in N coupled cavities containing a two-level atom in one of the cavities.

The Hamiltonian for the system is

H̃ =
ω0

2
σ̂z + ω

N∑
j=1

â†j âj + J

N−1∑
j=1

(â†j âj+1 + âj â
†
j+1) + χ(σ̂+σ̂− + â†mâmσ̂z). (5.38)

The atom is embedded in the mth cavity and considered to dispersively interact with

the cavity-field. The right most and left most cavities in the array are coupled with

two thermal reservoirs RL and RR respectively. The density matrix ρ̃ of the system

obeys

∂ρ̃

∂t
= −i[H̃, ρ̃] +DL(ρ̃) +DR(ρ̃), (5.39)

where
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DL(ρ̃) =
ΓL(n̄L + 1)

2
(2â1ρ̃â

†
1 − â

†
1â1ρ̃− ρ̃â†1â1)

+
ΓLn̄L

2
(2â†1ρ̃â1 − â1â

†
1ρ̃− ρ̃â1â

†
1),

and DR(ρ̃) =
ΓR(n̄R + 1)

2
(2âN ρ̃â

†
N − â

†
N âN ρ̃− ρ̃â

†
N âN)

+
ΓRn̄R

2
(2â†N ρ̃âN − âN â

†
N ρ̃− ρ̃âN â

†
N). (5.40)

Here n̄L and n̄R are the mean number of photons in the reservoirs RL and RR respec-

tively. Without loss of generality, assume n̄L > n̄R.

Using Eqn. 5.39, the equation of motion for expectation values of operators is ex-

pressible as

d〈G〉
dt

=
d

dt
Tr(ρ̃G) = i[M1, 〈G〉] + {M2, 〈G〉}+M3, (5.41)

where 〈G〉 = 〈A†A〉 is the matrix whose elements are the expectation values of the

operator elements of A†A. Here

A = Row(â1, â2, ...âN , â1σ̂z, ..., âN σ̂z), (5.42)

A† = Column(â†1, â
†
2, ...â

†
N , â

†
1σ̂z, ..., â

†
N σ̂z). (5.43)

Further [M1, 〈G〉] = M1〈G〉 − 〈G〉M1 and {M2, 〈G〉} = M2〈G〉 + 〈G〉M2. The trans-
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formation matrices are

M1 =I2×2 ⊗Hc + σx ⊗X, (5.44)

M2 =I2×2 ⊗Diag

(
−1

2
ΓL, 0, ...0,−

1

2
ΓR

)
N×N

, (5.45)

M3 =I2×2 ⊗Diag (ΓLn̄L, 0, ...0,ΓRn̄R)N×N

+ σ̂x ⊗Diag(ΓLn̄L〈σ̂z〉, 0, ...0,ΓRn̄R〈σ̂z〉)N×N , (5.46)

where I2×2 is the identity matrix of dimension 2, σx is the Pauli matrix,

Hc =



ω J 0 . . . . . . 0

J ω J . . . . . . 0

...
...

. . .
...

...

0 0 . . . ω J

0 0 . . . J ω


N×N

,

and (X)N×N is a matrix whose elements vanish except the element Xm,m which is

equal to χ.

Using H̃ given in Eqn. 5.38 in the continuity equation (refer Eqn. 5.10), the expression

for current in the array is

IL = ΓL

[
(n̄L − 〈â†1â1〉ss)(ω + χ〈σ̂z〉δm,1)− J

2
(〈â†1â2〉ss + 〈â1â

†
2〉ss)

]
. (5.47)

Here δm,1 is Kronecker delta. If there is no atom in the array, the coherence term

〈â†j âj+1〉 is purely imaginary [176]. The contribution of the coherence term to the

current vanishes as Icoh = J
2
(〈â†1â2〉ss + 〈â1â

†
2〉ss) = 0. Consequently, current in the
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Figure 5.8 – Ratio of currents IL/I0 as a function of N for χ/ω = 0.15 (circle)
and 0.1 (triangle). The atom is embedded in the last cavity (m = N). Here J/ω =
0.05, n̄L − n̄R = 0.5, 〈σ̂z〉 = −1,ΓL/ω = ΓR/ω = 0.15. Enlarged view of current in the
array for N = 4 and 5 is in inset for χ/ω = 0.15 to show size dependence of current.

cavity array is

IL(χ = 0) = I0 =
4ωJ2ΓLΓR

(4J2 + ΓLΓR)(ΓL + ΓR)
(n̄L − n̄R). (5.48)

Note that the current I0 is independent of the size of the array, in violation of the

Fourier’s law. This feature is similar to the system-size independent current in the

case of ballistic transport [176, 202, 203]. This comparison indicates that the mean

free path of the photons scales in proportion to the number of cavities N .

If there is no atom in the array, then a photon travels across the array without getting

scattered. The length of the array is the mean free path of the photon. However, the

mean free path is different from the array size if an atom is embedded in one of the

cavities. In the present case, the atom is embedded in the last cavity of the array,

i.e., m = N , to keep the mean free path as close to the size of the array. This helps in

understanding the emergence of diffusive character if there is a single scatterer. The

normalized current IL/I0 as a function of the size of the array (N) is shown in Fig.

5.8 for a fixed temperature difference (n̄L − n̄R). On increasing the size of the array,

118



Chapter 5: Chapter 5

2 3 4 5 6 7 8 9 10 11
0.425

0.43

0.435

0.44

0.445

0.45

0.455

0.46

j

〈 n
j 〉

2 3 4 5
0.425

0.43

0.435

0.44

0.445

0.45

0.455

0.46

j

〈 n
j 〉

(a) (b)

Figure 5.9 – Steady state mean photon number in the intermediate cavities for arrays
of length (a)N = 6 and (b)N = 12. The atom-field coupling strength is chosen to be
χ/ω = 0.1. Here J/ω = 0.05, n̄L − n̄R = 0.5, 〈σ̂z〉 = −1,ΓL/ω = ΓR/ω = 0.15.

the steady state current significantly decreases and asymptotically approaches a con-

stant value. Hence, current is size dependent for smaller array as the atom is able to

introduce diffusive character in the heat transport. It saturates with further increase

in size and becomes nearly size independent as in the case of ballistic transport. This

is not consistent with Fourier’s law.

The transition from diffusive to ballistic transport as size of the array increases is

understood by calculating the mean photon numbers 〈n̂j〉 = 〈â†j âj〉 (known as local

temperature [176]) of the respective cavities in the array. The steady state mean

photon number 〈nj〉 in the intermediate cavities in arrays containing 6 and 12 cavities

are shown in Fig. 5.9(a) and (b) respectively. Gradient in the mean photon number is

noticed in Fig. 5.9(a). This implies that the transport is diffusive [183, 184]. For larger

size array, for instance N = 12, the gradient in mean photon number approaches zero

and the current is independent of the system size. Essentially, the change in mean

free path in the presence of a single scatterer at the end of the array is insignificant

in a large array and the transport is almost ballistic.
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5.5 Summary

Mesoscopic systems offer interesting possibilities when it comes to thermal properties.

A system of two coupled cavities connected between thermal reservoirs provides a

conduit for heat flow between the reservoirs. Many of the transport properties can

be modified by dispersively coupling an atom to any one of the cavities. The heat

current in the system depends on the state of the atom. For instance, the system

changes from a thermal insulator to a conductor on driving the atom from its ground

state to excited state. In addition, if the atomic state changes from the excited state

to the ground state, current through the system becomes zero or reversed depending

on the system-reservoir coupling strengths and the cavity frequencies. The vanishing

current in the system corresponds to a thermally insulating phase. Reversal of current

demonstrates the violation of second law of thermodynamics in this system.

The presence of atom provides a structural asymmetry. As a consequence, the mag-

nitude of the current changes by exchanging the reservoirs along with the coupling

strengths. This makes it possible to achieve thermal rectification. Large rectification

is possible if the parameters are chosen to make the system thermally insulating.

In an array of N linearly coupled resonant cavities, current is independent of the

array size which is characteristic of ballistic transport. If the array contains a two-

level atom in one of the cavities, the magnitude of current depends on the number of

cavities. This size-dependence indicates that the thermal current through the array is

analogous to the diffusive heat transport. With only one atom in a large sized array,

it is not possible to completely recover diffusive transport. One atom does not provide

enough dephasing to recover the diffusive character.
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Summary and future directions

6.1 Summary

The main focus of the this thesis is to study controlled transfer of photons in coupled

cavity arrays. The results obtained in the thesis are expected to be of relevance in

realizing quantum information processing, study of quantum-classical divide, etc. A

brief review of the basic facts relevant to the thesis such as the field quantization,

quantum states of the electromagnetic field, physics of microcavities and arrays, open

quantum systems is presented in the first chapter.

Analysis of controlled transfer of photons is carried out in Chapter 2. Homogeneously

coupled cavities do not allow perfect transfer if there are more than three cavities

in the array. This is a serious limitation if arrays are to be used as conduit for

photon transport. It has been established that a suitable choice of inhomogeneity in

terms of inter-cavity couplings and resonance frequencies can overcome the limitation

in the homogeneous case. An apt choice for these parameters is determined on the

basis of a duality relation between an array with one photon and a system of two

coupled cavities with suitable number of photons. These values for the parameters

enable perfect transfer between any two symmetrically located cavities in the array.

To further improve the controllability so that photon transfer can happen between

any two cavities, Kerr cavities are considered. By extending the duality notion to an

array of coupled Kerr cavities containing a photon and a system of two coupled Kerr
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cavities sharing a suitable number of photons, condition for the perfect transfer of a

photon between any two cavities in the array has been established. With this, perfect

transfer a photonic qubit which is realized on superposing the vacuum and the one

photon state is also shown to be possible.

Localization of particles due to scattering in a random medium is a well known effect.

In the case of two coupled cavities, a pair of photons can be either localized in a cavity

or distributed (delocalized) in the two cavities. The main interest is to identify the

factors that affect the delocalization and localization. This is the focus of the third

and fourth chapters. In the third chapter, two linearly coupled cavities are considered.

It is argued that the relative phase and entanglement in the initial state are the

important factors that dictate the emergence of localization and delocalization. These

two phenomena are understood in terms of quantum interference. Constructive and

destructive interference among the quantum amplitudes for the transitions between

the levels of the two-cavity two-photon system is related to the occurrence localization

and delocalization.

In continuation of discussion presented in third chapter, nonlinearity is incorporated in

the cavities to bring forth additional controllability in the system. Two new features

that emerge are the possibility of photon blockade and delocalization of localized

product state which is not possible in linear cavities. These two are particularly

interesting in the context many-body physics and quantum information processing.

Interaction between a quantum system and environment also needs to be controlled

for effective utilization of cavity network. In chapter five, the possibility of configuring

two coupled cavities as a thermal rectifier is discussed. The system consists of two

coupled cavities, where each one connected to its own independent thermal reservoir.

The two reservoirs are taken to be at two different temperatures. The system has to

be asymmetrical to ensure that the thermal current is not the same when the reser-

voirs are exchanged. This is accomplished by embedding a dispersively interacting
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atom in one of the cavities.

Interestingly, thermal current in the system depends on the atomic state. By choosing

the atomic state properly, the system is made either thermally insulating or conduct-

ing. If the atom is in its ground state, the direction also can be reversed making the

current flow from the low temperature reservoir to the high temperature reservoir,

a clear violation of the second law of thermodynamics. The magnitude of the ther-

mal current changes on exchanging the reservoirs and the cavity-reservoir couplings.

The parameters in the system, namely, the atomic state, detuning and coupling co-

efficients, can be chosen so that the system allows thermal current in one direction

and blocks in other direction. This leads to thermal rectification. As the coupled

cavity system transports energy between the reservoirs, the nature of the transport

has been analyzed in the array of N cavities. The transport is not entirely ballistic as

there is an atom in one of the cavities. It is not entirely diffusive since a single atom

is inadequate to introduce enough dephasing of the scattering amplitudes. In short,

this simple system has been shown to exhibit many interesting features: violation of

the second law of thermodynamics, thermal rectification and a mix of ballistic and

diffusive modes of thermal transport.

6.2 Future directions

Some issues that could be pursued are presented here. The focus so far has been

on cavity arrays in one dimension. It is desirable to identify the right choice of

the system parameters so that controlled transfer of photon can be accomplished in

two-dimensional and three-dimensional networks. Extending the duality notion to

these higher dimensional arrays is an interesting approach. This is a pertinent issue

as any realistic configuration for quantum information processing will require higher

dimensional networks. Design of suitable networks to implement specific quantum
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algorithms is another topic worth pursuing.

An enigmatic question in physics is the quantum-classical divide. While quantum

theory is considered to be universally applicable, most of the macroscopic proper-

ties are well described by classical physics. On the other hand, microscopic systems

wholly need a quantum approach. It is believed that mesoscopic systems, which

are between the microscopic and the macroscopic, are the best candidates to study

quantum-classical divide. Cavity arrays of suitable size belong to this mesoscopic cat-

egory. Incorporating nonlinearity allows one to explore quantum aspects of classically

nonlinear systems.

Many quantum information protocols involve quantum operations on qubit. Super-

position of the vacuum state and a single photon state is used as qubit. Another class

of qubits is being considered as a better allternative. These are the cat states, which

involve superposition of coherent states with opposite phases. Superposition of cat

states are desirable as they decohere much lesser compared to the conventional pho-

tonic qubits. Hence, generation and maneuvering of superposed cat states in cavities

are of interest.
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B 82, 100507 (2010).

[95] F. Lombardo, F. Ciccarello, and G. M. Palma, Phys. Rev. A 89, 053826 (2014).

[96] S. Bose, D. G. Angelakis, and D. Burgarth, Journal of Modern Optics 54, 2307

(2007).

[97] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J.

Kimble, Nature 436, 87 (2005).

[98] J. Tang, W. Geng, and X. Xu, Scientific Reports 5, 9252 (2015).

[99] H. Z. Shen, Y. H. Zhou, and X. X. Yi, Phys. Rev. A 91, 063808 (2015).

[100] A. Miranowicz, J. c. v. Bajer, M. Paprzycka, Y.-x. Liu, A. M. Zagoskin, and

F. Nori, Phys. Rev. A 90, 033831 (2014).

[101] A. Miranowicz, J. c. v. Bajer, N. Lambert, Y.-x. Liu, and F. Nori, Phys. Rev.

A 93, 013808 (2016).

[102] Y. Zhang, J. Zhang, and C.-s. Yu, Scientific Reports 6, 24098 (2016).

[103] C. Gies, F. Jahnke, and W. W. Chow, Phys. Rev. A 91, 061804 (2015).

[104] M. Hartmann, F. Brandao, and M. Plenio, Laser & Photonics Reviews 2, 527

(2008), ISSN 1863-8899.

[105] T. N. Dey and G. S. Agarwal, Phys. Rev. A 76, 015802 (2007).

[106] H. Azuma, Journal of Physics D: Applied Physics 41, 025102 (2008).

[107] P. D. Drummond and D. F. Walls, Journal of Physics A: Mathematical and

General 13, 725 (1980).

[108] S. Ferretti and D. Gerace, Phys. Rev. B 85, 033303 (2012).

132



[109] I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković,
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