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SYNOPSIS

Rare earth sesquioxides (RES) are known tarbenportant materiawing to the
wide spreadhpplications in many of the fields like solid state lasers, solid oxide fuel cells,
control rods in nuclear reactors, phosphevaye guidesscintillating materials and so
on’. They are also fundamentally interesting materials due to their existence in different
polymorphic structures. Depending on the cation size, RiESgown to exist in any of
the three polymorphic structures at ambient temperature anduggre@sTPY 2. The
sesquioxides with small cation size dDy) follows the Gtype (cubic) structure whereas,
the large cation sized RES dNd) adopts the Aype (hexagonal) structure. Depending
on the thermal history, the medium cation sized RES Gcrystallizes either in the-B
type (monoclinic) or in the @pe. In addition to these structure types, they do shew X
type (cubic) and Hype (hexagonal) structures at very high temperatures. A systematic
investigation revealing the evolution of theseisture types as a function of cationic radii
is scarce. Hence, it is necessary to do a precise structural characterization with a smooth
variation in cationic radii.

Although the cationic radii in the RESincreasen the sequence ALBA A, the
molarvolumeis observed to be decreasing in the same secu€mesidering this fact, a
structural sequence ofACBA A is expected to occur under high pressure (HP). In RES
with small cation size, the -Gpe structure is found to be transforming to thaype
through the intermediate-8pe. But the medium size RES do not obey this sequence
and instead go through a direcA@ transitior?>. In this case, the B/pe structurds
identified as HP and high temperature (HT) phagke systematic study on the pressure
effect on the solid solutions, having a smooth variatiogaionic radii, of intermediate
and small cation sized RES can reveal substantial information about the phase structure

and transition boundaries oACA and CA B. In general, the Aype structure is known to
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be stable under pressurddenceit hasreceived éss attention. The report on the,Qa
showed a transition to a nov&lperlatticestructure near 8 GPa whereas, a novel distorted
monoclinic phasés predictedor Nd,Os at around 27 GPd. However, no transitionsre
reportedfor CeOs°. A recent investigation on -fype NgOs; hasshownan anomalous
compression behavior and is reported asiraficative of an isostruairal electronic
transition as observed in the HP hexagonal phase #£d’. It shows that, the reports

on the HP behavior of Aype sesquioxides are inconsistent and neduetovestigated
more carefully and precisely. Ake all, across the rare earth series, the transition
pressure increases with decreasing cationic radii. Despite this increasing trend, HP studies
reported a comparatively lower transition pressure for thyp€ TmOs% Further
investigation is necesry to remove this ambiguity.

The present thesis is aimed to understand the cation size depleigtiaptessure
behavior of various RES. In order tounderstand the phase behavior, simple RES-of C
type, Btype and A-type will be investigatedat high presures. Further to address the
simultaneous dependence of cationic radii and pressure, the solid solutions of RES with
similar structure andmalldifference in cationic radii and the solid solutions of RES with
dissimilar structure and significant diffel@in cationic radii will be investigated both at
ATP and at high pressures.

The thesids dividedinto seven chapters. The content of each chaptbriefly
describedelow:

Chapter 1. This chapter of the thesis will give a brief introduction about tignporphic
structure of RES and their stability witmcreasédecrease of cationic radii and
temperature. A brief discussion about the electronic structure of RES shown by different

polymorphic structure typealso formsthe content of this chapter. The WBhaviourof
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small, medium and large cation sized RES Wwél discusseth detail by reviewing the
available literature. The objective of the thasialso statedt the end of this chapter.
Chapter 2: This chapter déa with the HP experimental techniques, characterization
tools and analysis methods followed for the works mentioned in the thesis. The
generation of high pressure using the Ml type diamond anvil cell (DAC), alignment

of DAC, sample assembly insidéet DAC, pressure calibration methods whiate
adoptedfor the present thesis workre discussed in detail as subsections to the
experimental tools. The details of the instruments/technidjgessynchrotron XRD,
laboratory XRD, Raman scattering and SEMA2Dused tocharacteris¢ghe samples and

the basic principle behind these toalg also discussdtere. Finally, in the last section,
the basic concepts and details about the Rietveld structure refinemeiatb anio
density functional theoris providedin brief.

Chapter 3: A short account of the novel experimental technique developed for carrying
out HPXRD studies is given in chapter 3. Here, the detaitdesign development and
successful testing of a novel internalrdy slit assembly to carry ol&boratory based
HPXRD experiments in a Mao Bell type Diamond anvil aslldescribed In this
assemblya tiny sheet of lead with & 0 0 helarimmediately below the diamond table
acts as an Xay slit. The resolution and statistics of acquired aetee @mparedwith

the older slit. This novel slit assembly has two major advantages i) eliminates
cumbersome and thlengthy procedure usually adopted for alignment efay slit ii)
provides high flux and improved resolution due to the comparatively low beam
divergence and effective utilization of the maxima of the beam profile. This novel slit
assembly is highly beneficial for the HP studies using the laboratoay Xources.

Chapter 4: In this chapter, @ype TmOs, B-type EyOs and Atype LaOs, each from

the small, medium and large cation sized RES respectively are studied at high pressures.
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The HP synchrotron XRD and HP Raman studies revealed the irreversible natdy&of C
structural phase transition in 5@ at ~12 GPa.This is in contradiction with the
available literature but fits best to the trend observed in th€RES. A bulk modulus

of 149(2) GPa and 169(2) GPa for the cubic and monoclinic phase respectively is
determined from the experiment and is in good agreement with the values obtained from
theab initio DFT calculations, 146 GPa{ype) and 151 GPa (B/pe). Raman modes for

the Btype phase of TpD; are measured and reported for the first time. The mode
Grineisen parameter of different Raman modes for betyp€ and Btype structure of
Tm,O3 has alsdeen determinedrhe experimental resulése correlatedvith changes in

the DOS near the Fermi level which are indicative of structural instabilities in the parent
cubic structure.

HP laboratory XRD is carried out for thetipe EuOs. A reversible structural
phase transition from B A is observedt 4.3 GPa. A bulk modulus of 159(9) GPa and
165(6) GPa is reported for-Bype and Atype structure respectively. In thetfpe phase,
the axial compraessh hbAhomalous ldite Icdmpressibilitis
observedor the HP Atype structure, characterized by pronounced hardening alorg the
axis above 15 GPa. The observed incompressible nature of the hexagonsin the
pressure range 12 GPa is found tdbe compensatedy doubling the compressibility
along thec axis.

To shed light on the anomalous compressibility observed for thg@ structure,
high pressuresynchrotron baseXRD is carried out for the Aype LaOs; The Atype
structure is found to be stable up to 26.5 GPeea axisis found to be compressing up to
a critical pressure of 9.7 GPa and then expands in the region 9.7 GPa < P <19.8 GPa. The
Rietveld structure refinement in conjunction with the Stepleamsotropic strain model

indicatesthe onset of this anomaly at an earlier pressure of 5.6 GPa, where an atypical
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bond compression behavig observed A significant increase in the intensity ©00
reflectionand a clear decrease in the intensityl08 reflections under HP suggests a
plausible movement of thieaO layers in the opposite direction. Hence, the pressure is
engaged in moving these layers rather than compressing aloa@ti®resulting in the
observed anomalous compressio@inaviour A bulk modulus value oBy= 102(5) GPa in
the region B=019773¢GP&Pandn tihobtameéd gi on P O 2
The results of this chapter provide a basic understanding of the HP behavior of
simple RES.
Chapter 5: This chapter is intended to wrdtand the simultaneous effect of cationic
radii and HP on the RES. The synthesis(BfyxH0,).03, (00 OL), solid sol t
having a smooth variation in cationic radii, by ttemiedoucemethod, characterization
of these solid solutions using the XRD and Raman scattering will form the first part of
this chapter. A single phase solid solutions are obtained for the entire range of
compositions. Evolution of crystal structure parameters ghiinge in cationic radii, fg,
is obtained by employing the Rietveld structure refinement. A random cationic
distribution in the two crystallographic sites and a translational motion of the RE ion in
the 24 site was observedHardening of Raman modes the high frequencyrange
reveals anincreasingbond strength, hence an increasing structural rigidity with the
decrease of average cationic radiegR
In order tounderstand the effect of cationic radii, HP behavior of these solid
solutions was investigded using the isitu angle dispersivehigh pressureX-ray
diffraction technique. Studiesn various compositions of the mixed oxid&ow that
when the average cationic radiugeR is equivalent to or below 0.916% the system
prefers a cubic to monoclm transition as a function of pressure, whereas average

cationic radii equivalent to or above 0.9220 A prefers a transition from cubic to
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hexagonalln the composition rangé . 4% 00 0. 6 f ol |l owing trend
modulus goes up after a drasteduction atx=0.4, whereas, the transition pressure
decreasesThis is identifiedas a consequence of timereasingnternal pressure induced
by the doping. A pressure concentration phase diagram fexHiBy).O3z upto a pressure
of 15 GPa is constructed based on lingh pressurestructural investigations. Average
cationic radii 0.9164A < R< 0.9220A is observed to form the phase boundary between
cubic to hexagonal and cubic to monoclinic phase transitions.

The resuls of this chapter provide a systematiwderstandingf the dependence
of rare earth cationic size and pressure on different structure type in the region ef small
medium cation size.
Chapter 6 : The objective of this chapter is to understand the phdsaviourof solid
solutions of medium and large cation sized RES underSd8id solutions, (EiklLay)20s3
has been prepared by tbkemie doucenethod The compositions are verified using the
energy dispersive spectroscopy (EDS). The scanning electron scopy (SEM)
revealed the irregularly shaped particles in the submicron size. Structural pararesters
obtainedthrough Rietveld refinement of the Angle dispersive XRD (ADXRD) data. A
structural phase transition from cubic-{fgpe) to monoclinic (Btype) and subsequently
to the hexagonal (Aype) structure halseen observedith increasingsubstitution of La.
A detailed analysis on the transition boundameserms oftheir average cationic radii,
Rre, shows that, the onset ofACB transition is at Re=0.980 A whereas B A is at
Rre=1.025 A. A biphasic region of cubic and monoclinic struciarebserved or 0. 2
xO 0 andithat of themonoclinicand hexagonal structui@ observed or x@®O05 G. | t
found that, the micro straininduced by the diffeance in the size of the rare earth ions
introduces a substitutional disorder in the crystal structure which is a plausible cause for

the observed phase transitions in these oxides.

XXiil

O



The structural stability and compressibehaviourof these solid solutionare
investigated using the HP ADXRD. rd<lO®8 cubi c s
A prefers a @ A transition with increasing pressure. For the biphasic region of cubic
and monoclinic gt102%A aC€/B A tradsitionB prerredunder
pressure. In the biphasic region of thenoclinicand hexagonal skructur e,
<1.055 A, the B phase is found to be progressimgardsthe hexagonal A phase under
pressure. The pure A phkaB el.iisGtraghyallystablgi on, 1.
under HP. Theompressibilitydata shows amonotonous decrease in the bulk modulus of
the hexagonalstructure with the increasingsR except forx=0.2 and 0.6A pressure
concentration (FX) phase diagranup to a pressure of 25 GHa constructedrom the
HPXRD investigation on (EByLay)20s.

The results of this chaptegstablishthe role of microstrain in driving the
CA BA A transition.Also, it providesa systematiainderstandingf the phase structure
of RES in the region of larg@edium cation size under HP.

Chapter 7 : This chapter gives aoverallsummaryandthe salient features of the thesis

work along with the scope for the future works.
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Chapter 1

Structural phase transitions in rare earth sesquioxides

1.1. Introduction
Rare earth sesquioxides (RESE REO; type compounds, where RE stands for

the rare earth atom. All the rare earth atoms together with the oxygen atoms can form
stabke sesquioxide structure. Theplay a vital role in many of the technologically
important applications in the field of solid state lasers, solid oxide fuel cells, radiation
detectors, wave guides, scintillating materials, random access memory (RAM) devices
and sensing*®. The entire lanthanide oxide series has been founletmtrinsically
hydrophobic in nature. They sustain hydrophobicity even after exposure to harsh
environments of higltemperature and abrasion leading to the wide spread applicability as
robust hydrophobic surfac€s Improving the properties of materiasd implementing

them to the large scale industrial applicatidvave always been a challenging task in
terms of both fundamental and technological aspects. It has been demonstrated that
doping of materials to the pristine samples is a promising way poowe the desired
physical properties of materials. Higlower solidstate lasers based on r&ath doped
sesquioxides, LiD3, S¢O;3, and Y;03, as well as different mixed sesquioxidesqY .

)203 have been found to be highly efficiefit An increase in the eleatal conductivity

and activation energy with a decrease in the mole percentage of {0ew@d observed

in the Bixy HOGAO1 5 used as an electrolyte for solid oxide fuel cell applicatfons
Moreover, an enhancement in the Luminescence properties gfh@s®een observed by
lanthanide dopin. However, most of the differences in the physical propertiase

known to be structure dependent.
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1.2. Polymorphism in rare earth sesquioxides
The capability of existing in different structure type for a given compound brought

the RESsunder the category ahe compounds showing PolymorphisrAt ambient
temperature andressure (ATP)depending on the cationic radRESs are known to

exist in the cubic (&ype), monoclinic (Btype) and hexagonal ¢fype) polymorphic
structure¥’. These polymorplai structures are shown Fig. 1.1. A complete structural
description of the binary rare earth oxide phases known to exist, along with their
structural and thermodynamic characteristics, including symmetry types and inter
relationships is available elsewhere in the literattif® A brief description about each of

the known structure types are given below.

Fig. 1.1 The polymorphic structure types of rare earth sesquioxajeGtype cubic structurey)
the octahedral environment in thetype structure cB-type monoclinic structure ard)
A-type hexagonal structur&he rare earth i@arerepresented blargespheres ofreen
colour whereas the oxygen is small in size and red in colthe. REO6 or RE-O7
polyhedral arrangements centered at the RE cation sitemdicated with different
colours




Chapter 1 Polymorphism in rare earth sesquioxides

Gtype Cubic structure
The Cubic structure of RES crystallizing in the space group (B&) is

conventionally designated astgpe. This structure can be related to the cubic fluorite
type Cal; structure (SGFm3n). Doubling the cubic unit cell of CaRlong the three
crystallggraphic axes will result in eell in close resemblance with the unit cell otype

RES In Cak, the Fluorine atoms are in cubic (8)a@alination with Calcium atoms. The
C-type structure can be obtained by removing a pair of anions along the bodyadliagon
and face diagonal of the -@rdination cube in an ordered WayAs a result, this will
form a distorted octahedral environment of oxygen anions around the catien.
structure thus obtained is known as the defect fluorite structure and is same as that of C
type cubic structure. The unit cell oft@pe RES consist®f 16 formula units with 32
cations distributed overb8(with site symmetry &) and 24l (with site symmetry ¢
crystallographic sites/Wyckoff positions. The cations ltaBd 24l are in octahedral
coordination with oxygen atoms, sitting ated@eneral site. The octahedron &t Ste is
made up of a single bond length, designated as BE8whereas three different bond
lengths, designated as RE@41, RE(241)-O2 and RE(2d)-O3 forms the octahedron

at 24 site. This structure is adopted by most of the RES with small cation size(8m

B-type monoclinic structure
The Monoclinic structuref RES crystallizing in the SG Q#/is conventionally

known as Btype. The unit cell is composed of 6 formula units with 12 cations distributed
over three differentidWyckoff positions. The oxygen atoms reside over fauartl one

2b position. In this stucture, cations are in 6 and 7-calination with the oxygen atoms.
This structure is the stable form of intermediate cation sizeanEWO; and GdOs3)

RES, when it is quenched back to ATP from 800°C, 1200°C and 1400°C resp&ttively
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A-type hexagonal structure
The hexagonal structure of RES crystallizing in the 5@nlis conventionally

known as Atype. The unit cell is composed of a single formula unit with 2 cations
occupying the symmetrically equivalerd &ite and the oxygen ions are distributed over
the Wyckoff positions, 4 and 2I. Here, the cations are in 7-oodination polyhedral
environment comprised of three different bond lengths. These are designated as RE
O1(Ad), REO2(A) and REO1(1a). This structure belongs to the large cation sized RES
(La-Pm).

Apart from these three structure types there are two leigipeérature structures
reported for the RES®, Htype and Xtype. The former is a hexagonal structure with
lattice parameters close to that ofyjpe but with a different S@6/mmcwhile the later

is a cubic structure with SiEn-3m

1.3. Electronic structure of RES
RESs are typicaf -electron systems for which the highly localiZestates play

an important role in determining their chemical and physical prop@rtigsually, thef
electrons do not participate in bonding and electronic conduction but they are available
for optical absorption and can establish strong magnetic?drdampically, itinerantspd

states and highly localizefl states are present in such systems. fledectrons are
assumed to be highly correlated and they do interact with the itinerant states. The
difficulty in treating both localizedral itinerantcharacteof these electronic states on the
same footwork is a major challenge to the current theoretical approaches, like in the
density functional theory (DFT). The electronic band structure of RES has been
investigated by several grodp®’. Irrespective of the polymorphic structure in which
they belong, the band structure of a particular compound is shown to have similar

characteristicS. The valece band is majorly populated with2p contribution, whereas
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RE-5d contributes more to the conduction band. In general, the occlimtdes fall
below the G2p conduction band whereas, the unoccumadsfall in betweenthe G2p
valence band and RBEd conduction band. However, thenergy of occupied and
unoccupied bands are different in different phases. Moreover, the band structurs ahow
noticeable peak splitting due to the difference in the locairdmation and ymmetry?®.
The features in the band structure oftype monoclinic structure around to be a
mixture ofthose observed inC-type and Atype.

The investigations on the valee state of RE&aveshown that, trivalent ground
state configuration is the most fawable valace statefor majority of theRES> 24,
However, the degree of trivaley increases from G@; to G&Os, then decreases slightly
at ThhOs to increase again through £)s to Ho,O3. Leaving the extra stability shown by
the half filled f orbitals, the increasing tendency to form a trimtlstate has a clear
relation to the increasing localization of thelectrons withincrease iratomic numbéf.
This extra stability combined with the positionfdbands in the electronic structure has
shown tohave a major role in deciding the band gap of the ®ERhe experimentally
determined band gap of all the RES were summarized and a detailed report is available in
the literaturé® . The band gap varies from 2.4 eV for,Ogto 5.5 eV for LaOs;
indicating a more or less insulating nature of all the RES. Minimum values were observed
at the beginning (Ce and Th) and at the end of the tweeh@Eu and Yb) of the rare
earth series. The reduction for Ce and Tb is attributed tqibsence of states in
between the €p state and the REd states whereas, a smalkrergygap between the
valence and conduction band is responsible for the reduction f@sEind YO, If
the f band is present in the forbidden regidrd gap will determine the band gap

otherwise theposition of O-2p state and the REd states will determinéhe band gap®
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1.4. Stability of rare eath sesquioxide
The 14 elements from Lanthanum (Z=5@ ) titetium (Z=71) in the periodic table

of elements are classified as rare earths or commonly Lantharfitleg. have an
electronic ground state configuration of the form [X&] 8d ! 6s 2 where n stands for the
number off electrons.The primary member, Lanthanum is characterized by an enpty 4
shell whereas, a fully occupiedlghell isthe characteristics of the entember, Lutetium.

As the atomic number (Z) increases, more and mordrefecwill start occupying the
localized 4 shell rather than the valee orbitals, §and5p. As the f electron occupay
increases, the effective screening of nuclear potential reduces. This is due to the poor
shielding power of the f4orbitals. This eféctively increases the coulomb attraction
between the nucleus and the vale electrons resulting in a constant decrease of ionic
radii of the lanthanides. This effect is the well known lanthanide contraction. The effect
of cationic radii on the molar vahie of the RES with different structure types were
summarized by Zinkevicf and are reproduced in thég. 1.2a It is clear that, molar
volume follows a linear dependence on the cationic radius. Asdleetron occupancy
increases, A BA C is the preferred structure type. Even though the cationicisrad
increases in the £BA A sequence, the molar volume found to be decreasing in the same
ordef. Hence, a transition from ACBA A is expected under pressure. A volume
reduction of ~8% and 2% is expected during thl 8 and BA A phase transitions
respedtwely.

Inorder to understand the dependance of the cationic radii on the structural
stability, several studies were carried out on the solid solutions ofsRH®e first
comprehesive study on the phase relations between trivalent rare earth ion ofRds,
RE"),0s, systems were reported by Schneiledingle phase, C, B or A, solid solutions

have been observed in thehole range of compositions for those systems with similar
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structure and very smal |anddREfwWhereae thosewith ( PRE)
significant d aré found ®nfarne di/triphasicpi@dions with different
compositions and depending ¢me parent strcucture of BBs; and RE,Os The (RE-
RE),O;systems with still | arger REM®Berowskitee f ou |
type structure. In a recent review by Zinkevich, the phase stability of some of thése (RE
RE"),0; systems withmolar concentration and temperature were calculated using the
solution approximation method and a comparison was made with the experimentaly
obtained thermal analysis d&taAt anmbient conditions, diphasic regions of A+B and
A+C have been predicted for the (BE),O; (RE= Sm, Gd, Dy and Ho) solid solutions
whereas a pure -Bhase or a C+B diphasic region was not obtained in any of the
composition range studied. All the three polyptac modifications hee been predicted
for (Nd-Yb),0O3; and (NdY).0O3 systems in different molar concentratiofhe phase
structure of (EtLa),O; solid solutions are not investigatétl date. Hence, a systematic
study on this solid solutions will be benificial.

Fig. 1.2b represents the stability of all the RES at high temperature anc@imbi
pressure, reproduced fromferencé’. The RES LuOs exists only in the @ype structure
up to melting point and YA&r found to have a stable-tyipe structure at elevated
tempeatures. The @ype structure of H®; shows a transition from ALABA H whereas
for Dy-Tb it further transforms to the-¥/pe before the melting point. The medium cation
sized RES, G&bm, are the only compounds which shows all the five polymorphic
structures. In this case, the transition take a pa@A BA AA HA X with the ingeasean
temperature. For the large cation sized RES] Bdthe Atype is the stable structure at
ATP and they transform to-Bpe and further to Xype with increasing temperature. In
all the observed transitions, the transition temperature is foune toadoeasing with

decreasing cationic radii.
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Fig. 1.2 a)The effect of cationic radii on the molar volume of RES with different structure.types
Reproduced from refereriéeb) The phase stability of all the RES at high temperature
and ambient pressurReproduced from refererice

1.5. High pressurebehavior of RES
Effect of pressure on the structural stability of RES wdsnsively studied by

several group of researchefs we have seen in the previous section the phase transition
induced by temperature is dependent on the cationic radii of the RES. A similar
dependence is observed when these materials are subjected to high pressure. The
following subsections will describieow the behavior of the RES differentwhen they

are subjected to extreme conditions of pressure.

1.5.1. Phase structure of argecation size RES
High pressure studies on the large cation sized RES are scarce. Reports on the

high pressure study of RES showathhexagonal is the extreme structure and they
undergo no structural phase transition fuftfef. Probably this could be the reason for
drawing less attention towards the hexagonal structure of large cation sized RES. Even
though pressure induced super lattice formation has been observed in@hatlaround

8 GPa, nosuchsuper ldtice reflectionshave beerobserved in the case of isostructural
Ce0O; and NdO:®°. A structural transition from hexagonal i to a distorted
monoclinic structure lebeen proposed by Pandey ét.Alonetheless, it has not been

confirmed. Recently, an anomalous lattice expansion in the2ZD0GPa pressure range
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has been reported for b@s °. The same has been confirmed using Raman spectroscopy;,
in which the Ag and B4 stretching modeare statedo have different compressibibs

Our own investigation on the highrgssure hexagonal phase of,8y (section4.3 of
Chapter 4 and other work on G@3 and Er: GdOs has reported this anomaly prior to the

one in NdOs '® %8, In the majority of the available repts, the reason for the observed
anomalous behavian hexagonal structure of RES is associateth the isostructural
electronic transitioh > ?°. However, the electronic structucalculations on the Aype

RES has not predicted any isostructural electronic transitions in the pressure regions
where the anomaly is obserfef 3. These reports indicate the necessity of addressing

the anomaloukigh pressuréehaviorof the hexagonal RE$h detail.

1.5.2. Phase structure of medium cation size RES
The medium cation sizeREScan be foundt ATP either inthe C-type or the B-

type structure depending on their thermal histd?yessure induced structural phase
transition from @ BA A is expected due to the observed decreasing trend of molar
volume in the same sequehcdowever, the medium size RES do nbey this sequence

and instead go through a direcA@ transition>. Such a pressure inducedh @
transition in EbO3 has been observed at 5.2 GPa, without the presence of ttmeddiate
monoclinic phas"e Similar transition is oferved for GgD; and SmO; at a pressure of

7.2 GPa and 4.2 GRaspectively *2. The reason for the absence of intermediate phase in
these medium rare earth sesquioxides is not fully understood and the preference of a
particular structure type over the other is still under delateport on the high pressure
transitions of GgD3 revealed that the monoclinic phase of this intermediate RES is a high
pressure (HP) and high temperature (HT) phasesupport of this argumenthe DFT
calculations showed that, the monoclinic phase has the highest lattice energy and is

associated with the HT phase and the transition frofnBCcannot be obtained by
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pressure alone at low temperatdreStudies on high pressure hexagonal phase of
intermediate cation sized RES &4 and Er: Gd,O; have shown that, there exist an
anomalous lattice compression beyond a certain pressure feffloihe hexagonah

axisis shown to have an expansion in fxessure regio20.1-28.1 GPa inthe case of

Gd0O3 and it has resulted in a slight discontinuity of the unit cell volume compressibility.
This observation was later confirmed in the parent hexagonal structure,©§’Nd@he
description of the mechanism of these structural phase transitions either AA&noC

CA BA A is scarce or unknown. The structural correlation betwed¢ypB and Atype

are described Igewhere in the literatute®® **. Even though the hexagonal-tgpe
structure is known to be a distorted form of the monoclinityf®2 structure, a clear
picture describing the possible distortions in these RES under pressure that could lead to
the observed phase transitions is not considered in detail anywhere. The high pressure
energy dispersive studies ontype EuO; revealed a phase transition from monoiclito
hexagonal (BYA) at 4.7 GPa, while in a | umi
reported at 4 GPa *. In addition, in both these studies the behavior of high pressure
hexagonal phase was given much lessate and a reinvestigation would give a better
understanding. B A phase transition in Sf®; and GdOs is also reported earlier.

SmpO; found to transform at a pressure of-3.2 GPa, while it was 6.2 GPa for &4>

32,37

1.5.3. Phase structure of small cation size RES
Pressure inducedACB structural phase transition has been observed in the small

cation sized RES of Dy, H&Er, Tm, Yb and L& *¥*%. Among them, a & BA A
transition is observed only for D®; and HeO3 probably due to the limited pressure
range covered in those experiments. Asraon pressuieof 7.7 GPa, 8.9 GPa, 9.9 GPa,

7 GPa,13 GPa and 12.7 GPadhbheen reported for theACB transition of DyOs, Ho,O3

10
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, EnOs;, TmyOs, Yb,O3; and LyO; respectivel§ ¥4, Discarding thelower transition
pressure reported for TAs, this clearly indicates that, the ACB transition pressure is
increasing from Dy0Os; to Lu,Os. This is attributed to the nature of increasomyalent

bond due to the increasing bond strength with decreasing cationfé.radiking at the
general trenaf cation size dependance on the transition pressure across the lanthanides,
such a lower transitiopressure of TaO;3 is surprising. The transition pressure reported

for the TmO; (7 GPa) is much less comparedttoneighbouring RESs ED; and YBOs.

2, Hence, a reinvestigation is necessary to remove the ambiguity in the transition pressure.
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Fig. 1.3 The general phase diagram of RESs across the Lanthanides constructed using the
literature in which the high pressurery diffraction measurements are reported for the
bulk powder samples. The data is @akfrom other measurements wénegr Xray
diffraction data is not available.

A general phase diagram of RESs describing theBCCA A and CA BA A
structural phase transitions along with the maximum experimental pressure achived in

each of the RES is shown in tieg. 1.3. It is clear that,the transition pressure is
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increasing with decreasing cationic radii. This is due to the increasing strength of covalent
bonding with the decreasing cationic radir@ss the LanthanidésAs a consequence of
this increasing degree of covalency, an increase in bulk medublso observed across

the lanthanides.

1.6. Objective of the thesis
Investigation of crystal structure and phase transitions of the RESs under high

pressures forms the central theme of the present thesiobjdwives of the thesis are

subdivided into the following three parts:

1. Investigate the structure of small(C-type), medium (Btype) and large (A

type) cation size rare earth sesquioxides under high pressures

In order to understand the phase behavior of simplesRES structural stability
and phase transitions of representatives froityp@, Btype and Atype RES will be
studied under pressure. To address the issue of ambiguity in the transition pressure,
Tm,O3, representative of the-type RES, is planned to study in the present thesis.
Among the Btype RESSs, the high pressure behaviors efJzwill be studed in detail as
this information is not available anywhere in the literaturecdmparethe behavior of
high pressure hexagonal structure efyBe EuOs, the Atype LaOs will be investigated.

2. Investigate the effect of cationic radii and pressure on theolid solutions of
RESswith similar structure and small difference in cationic radii

Solid solutions of ExO; (medium cation size) and KO3 (small cation size)
crystallizing in the @ype structure and having a cationic radii difference of 0.0%66A
selected to address this objective. B8y shows a @, A structural phase transition

whereas HgO; shows a @, BA A transition. Hence solid solutions, (E#o).0s[ 0. 0 O

xO 1.0], of these two are desirable candi

phase structure at high pressures.

12
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3. Investigate the effect of cationic radii and pressure on the solid solutions of
RES with dissimilar structure and significant difference in cationic radi

Solid solutions of ExO; (medium cation size), crystallizing in the-tgpe
structure, and L#; (Large cation size) crystallizing in the Atype structure, with the
difference of cationic radii 0.15 Aare opted to address this objeaivEyOs, as
mentioned earlier, shows aAQA\ structural phase transition whereas,@ashows no
structural phase transition. Hence it is expected that, studies on the solid solutigns, (Eu
La)03 [ 0. RO O1. 0], may provi de sthebcatibnicrsizei a |
dependence of different polymorphic structure types and their high pressure hehavior

These three objectives are addressed in the Ckdpteand6 of the thesis.

13
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Chapter 2
Experimental methods and analysis tools

2.1. Introduction
This chapter deals with the experimental and analysis methods adopted for the

high pressure studies mentioned in the present thesis. The chapter is divididemto
parts. The various experimental tools used for generating high pressures and their
alignment, sample assembly and pressure calibration methods will be described in the
first part. The second part describes thaito high pressurX-ray diffraction usinghe
laboratory and synchrotron sources and Raman spectroscopy which were used as
characterization techniques. The third part consists of the details regarding the Rietveld

refinementcomputational methodand the equation of statepted for the data alysis.

2.2. Diamond anvil cell (DAC) for the generation of high pressuse
The static pressures on materials can be generated by either using a piston

cylinder apparatus or by an opposed anvil device. Tungsten carbide pistons against a
cylinder made up of hightength steel was the major component of the piston cylinder
apparatus. A maximum pressure of ~5 GPa can be achieved in tifs Wty opposed
anvils devices work on the principle of massive support. In this device, a large pressure
is generated oasmaller area (working area) by applying a massive load at the larger area
(loading face). Bridgman opposed anvil device and diamond anvil cell are the two major
variants of this type. In Bridgman opposed anvil device two symmetrical assemblies of
anvils areplaced one above the other and an electrically powered hydraulic pump is used
to apply load to the anvit§ Even though the upper pressure limit is ~10 GPa, a large
sample size of the order of several millimeters can be studied in this type of cells.
Diamond anvil cell (DAC) is an excellent tool to generate the high pressure of the

order of giga Pascals in the laboratory. In a typical DAC assembly, the sample is

15
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squeezed in between two opposing anvils, made up of diamonds, which are driven
together by a external force. The first DAC was designed and fabricated in 1958 by two
different groups of researchers simultaneously. One for-fiigbsureX-ray powder
diffraction study by Jamieson, Lawson, and Nachffieind the other was used for infra
red spectrasopic studies of powdered calcite up to a pressure of 3°GRair in 1960
redesigned his DAC in order tarry out the crystallographic studies of materials at high
pressuré. Development of a metal foil gasket technique to confine lgjiridide the
DAC helped in collecting powder diffraction patteins hydrostatic environmefr the
sampled’. With this, several organic and inert fluidsould be used as pressure
transmitting mediuff *°. Pressurén the cellwasestimateceither from equation of state
data of NaCl orfrom the shift of R1 and R2 fluorescent lis®f ruby crystal with
pressuré” *°. Presentlydiamond anvil cell has established itself as a tool par excellen
which could be used with several probes from microwave to gamma ratfiation

Even though the basic principle behind the DAGhis same, various kirglof
DACs have beendesigned and fabricatefor a variety of probes used and pressure
ranges. The variations in the DAC are maifitym the different ways in which the force
is generated and the mechanism designed for-ahgiiment. Based on this, five types of
DACs havebeendeveloped andire being used. NBS cell, Bassett cell, MBell cell,
SyasserHolzapfel cell, MerrillBassett cell are the five types of DAEsSeveral simple,
inexpensive and compact modified versions of DAGsnow commercially available.
Miniature Merrill Bassett cellfour-post cryogenic cell, compact cylinder cell ete
some of therff. Membrane DAC in whictthe force on the piston is generated by
pressurized helium, which pushes an annular membrane is a major variant among the new

comers®. Among all these a MaBell type DAC was designed and fabricated in our

16
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laboratory, IGCAR, which is used for the high pressure and high temperature experiments

54-56

2.2.1. Principle of MaoBell type DAC
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Fig. 2.1 Schematics representation of a) the opposed diamond anvilsX)réyecollimator used
in our laboratoryc) a MaeBell type DAC with labeled parts and d) a photograph of
home built (IGCAR) MaeBell type DAC used for the studies mentioned in the present
thesis.
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Mao-Bell type DAC works on the principle of massive support coupled with the
lever arm mechanismotgenerate force. In order to achieve maximum pressure, the
working area (diamond face or culet) of the anvils are reduced to micron size=igThe
2.1a-c shows the schematic of the opposed DAC assembly and th@&allatype DAC.

The photograph of the home built M8&ell type DAC used for the studies described in
the present thesis is also shown infing 2.1d. Here, gem quality diamonds with a culet
(diamond face) dimension of ~500 micron and a table dimension of 2 mm mimics the
anvils. Diamonds of approximately equal dimensions were mounted twenhispherical

and cylindricaltungsten carbideockers whichcan be fixedby the screw mechanism

provided, to the cylinder (1) and piston (2) respectively. The samples under investigation
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are confined to the culet area with the help of a gasket. The piston cylinder assembly is
supported by a pressure cell holdey §d is in touch with the thrust block (3) of the
lever arm (5). The Belleville spring (8) loaded leaem (5) exerts force on the long
cylinderpiston assembly by the mechanical driving of the screws (7). A maximum

pressure of 100 GPa can be achiewenlir home built DAC.

2.2.2. Alignment of MaoBell type DAC
In order to limit the anvil and gasket failure, three different alignments are

necessary prior to the high pressure experiment using theBelatype DAC.

Axial alignment: In this procedure, diamondseamoved laterally to align them along the
axis of the piston cylinder assembly. This is achieved by viewing through a microscope
and rotating the piston inside the cylinder. Any axial deviation can be corrected using the
4 screws provided to hold the pistoocker. This alignmens necessary for the effective
conversion of applied force to obtamaximumpressurelong the axial directian

Lateral/ horizontal alignment: In this alignment, thediamonds on thepiston and
cylinder are mated together witheiir culets facing each other. Culet has to be laterally
matchedwithin 10% uncertainity. This is achieved by the translational movement of the
rocker in the xy plane perpendicular to the axis of the piston using the same 4 piston
screws. This is necessaty deliver maximum pressure and helps to avoid breakage of
diamonds at high pressufég. 2.2a shove the schematic of laterally misaligned culets.

Tilt alignment: A wedge in between the two diamond faces can cause breakage of
diamond at HP due to the concentration of applied foraestmall part of the culets in
contact. Thediamonds on th@iston and cylinder are kept face to face and a source of
white light is passed through the bottom of the cylinder. The datstis observed
visually through the piston and if the wedge is present an optical interference fringe

( Newt onds rings) can be seen. Thi s fri
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hemipherical cylinder rockeFig. 2.2b is a schematic representation of the formation of

fringes due to the presence of wedge between the culets.

Fig. 2.2 a)The schematic representation of laterally misaligned culets. b) Schematic representation
of the formation of fringes due to the presencea@fedge between the two diamond
culets. Image taken from refeas'.

Collimating X-ray beam to the sampleThe whole cell assembly with the collimaisr
kept on the sample stage anerays are passed through the diamond culet and ensured
the passage using a GM counter. The piston cylinder assésnilgde ligh-proof with
electrical tape around the access ports. A photo graphic film of suitable dimé&nsion
placed in between the two culets. A slight presssiepplied to get the culet impression
on the film. This assembly is exposed teray for 10 sec. The @osed fiimsare
developed in dark room. The collimator control screaws aligned according to the
photographic image. This procedusaepeated until the Xay spot is at the centre of the
culet. Optical imagesof the film in which the collimator is mifgned and aligned

precisely with respect to the culet impressawashown in the~ig. 2.3.

Fig. 2.3 Optical image of the developed photographic film afterXhmy exposure of 10 sec. a)
Collimator is misaligned and thée-ray spot(dark spot) is jusbutsidethe culet region. b)
X-ray spot at the centre of the culet showing a precisely aligned collimator.
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