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SYNOPSIS 

Rare earth sesquioxides (RES) are known to be an important material owing to the 

wide spread applications in many of the fields like solid state lasers, solid oxide fuel cells, 

control rods in nuclear reactors, phosphors, wave guides, scintillating materials and so 

on
1
. They are also fundamentally interesting materials due to their existence in different 

polymorphic structures. Depending on the cation size, RESs are known to exist in any of 

the three polymorphic structures at ambient temperature and pressure (ATP)
1, 2

. The 

sesquioxides with small cation size (Dy-Lu) follows the C-type (cubic) structure whereas, 

the large cation sized RES (La-Nd) adopts the A-type (hexagonal) structure. Depending 

on the thermal history, the medium cation sized RES (Sm-Gd) crystallizes either in the B-

type (monoclinic) or in the C-type. In addition to these structure types, they do show X-

type (cubic) and H-type (hexagonal) structures at very high temperatures. A systematic 

investigation revealing the evolution of these structure types as a function of cationic radii 

is scarce. Hence, it is necessary to do a precise structural characterization with a smooth 

variation in cationic radii.  

Although the cationic radii in the RESôs increase in the sequence CĄBĄA, the 

molar volume is observed to be decreasing in the same sequence
2
. Considering this fact, a 

structural sequence of CĄBĄA is expected to occur under high pressure (HP). In RES 

with small cation size, the C-type structure is found to be transforming to the A-type 

through the intermediate B-type. But the medium size RESôs do not obey this sequence 

and instead go through a direct CĄA transition
3-5

. In this case, the B-type structure is 

identified as HP and high temperature (HT) phase
5
. A systematic study on the pressure 

effect on the solid solutions, having a smooth variation in cationic radii, of intermediate 

and small cation sized RES can reveal substantial information about the phase structure 

and transition boundaries of CĄA and CĄB. In general, the A-type structure is known to 
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be stable under pressure. Hence it has received less attention. The report on the La2O3 

showed a transition to a novel superlattice structure near 8 GPa whereas, a novel distorted 

monoclinic phase is predicted for Nd2O3 at around 27 GPa
6, 7

. However, no transitions are 

reported for Ce2O3
8
. A recent investigation on A-type Nd2O3 has shown an anomalous 

compression behavior and is reported as an indicative of an isostructural electronic 

transition as observed in the HP hexagonal phase of Gd2O3
9, 10

. It shows that, the reports 

on the HP behavior of A-type sesquioxides are inconsistent and need to be investigated 

more carefully and precisely. Above all, across the rare earth series, the transition 

pressure increases with decreasing cationic radii. Despite this increasing trend, HP studies 

reported a comparatively lower transition pressure for the C-type Tm2O3
2
. Further 

investigation is necessary to remove this ambiguity. 

The present thesis is aimed to understand the cation size dependant high pressure 

behavior of various RESôs. In order to understand the phase behavior, simple RES of C-

type, B-type and A-type will be investigated at high pressures. Further to address the 

simultaneous dependence of cationic radii and pressure, the solid solutions of RES with 

similar structure and small difference in cationic radii and the solid solutions of RES with 

dissimilar structure and significant difference in cationic radii will be investigated both at 

ATP and at high pressures. 

The thesis is divided into seven chapters. The content of each chapter is briefly 

described below: 

Chapter 1: This chapter of the thesis will give a brief introduction about the polymorphic 

structure of RES and their stability with increase/decrease of cationic radii and 

temperature. A brief discussion about the electronic structure of RES shown by different 

polymorphic structure types also forms the content of this chapter. The HP behaviour of 
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small, medium and large cation sized RES will be discussed in detail by reviewing the 

available literature. The objective of the thesis is also stated at the end of this chapter. 

Chapter 2: This chapter deals with the HP experimental techniques, characterization 

tools and analysis methods followed for the works mentioned in the thesis. The 

generation of high pressure using the Mao-Bell type diamond anvil cell (DAC), alignment 

of DAC, sample assembly inside the DAC, pressure calibration methods which are 

adopted for the present thesis work are discussed in detail as subsections to the 

experimental tools. The details of the instruments/techniques like synchrotron XRD, 

laboratory XRD, Raman scattering and SEM EDAX used to characterise the samples and 

the basic principle behind these tools are also discussed here. Finally, in the last section, 

the basic concepts and details about the Rietveld structure refinement and ab initio 

density functional theory is provided in brief. 

Chapter 3: A short account of the novel experimental technique developed for carrying 

out HPXRD studies is given in chapter 3. Here, the details of design, development and 

successful testing of a novel internal X-ray slit assembly to carry out laboratory based 

HPXRD experiments in a Mao Bell type Diamond anvil cell is described. In this 

assembly, a tiny sheet of lead with a 100 ɛm hole immediately below the diamond table 

acts as an X-ray slit. The resolution and statistics of acquired data were compared with 

the older slit. This novel slit assembly has two major advantages i) eliminates 

cumbersome and the lengthy procedure usually adopted for alignment of x-ray slit ii) 

provides high flux and improved resolution due to the comparatively low beam 

divergence and effective utilization of the maxima of the beam profile. This novel slit 

assembly is highly beneficial for the HP studies using the laboratory X-ray sources. 

Chapter 4: In this chapter, C-type Tm2O3, B-type Eu2O3 and A-type La2O3, each from 

the small, medium and large cation sized RES respectively are studied at high pressures.  
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The HP synchrotron XRD and HP Raman studies revealed the irreversible nature of CĄB 

structural phase transition in Tm2O3 at ~12 GPa. This is in contradiction with the 

available literature but fits best to the trend observed in the C-type RES. A bulk modulus 

of 149(2) GPa and 169(2) GPa for the cubic and monoclinic phase respectively is 

determined from the experiment and is in good agreement with the values obtained from 

the ab initio DFT calculations, 146 GPa(C-type) and 151 GPa (B-type). Raman modes for 

the B-type phase of Tm2O3 are measured and reported for the first time. The mode 

Grüneisen parameter of different Raman modes for both C-type and B-type structure of 

Tm2O3 has also been determined. The experimental results are correlated with changes in 

the DOS near the Fermi level which are indicative of structural instabilities in the parent 

cubic structure.  

HP laboratory XRD is carried out for the B-type Eu2O3. A reversible structural 

phase transition from BĄA is observed at 4.3 GPa. A bulk modulus of 159(9) GPa and 

165(6) GPa is reported for B-type and A-type structure respectively. In the B-type phase, 

the axial compressibility follows ɓa > ɓc > ɓb. Anomalous lattice compressibility is 

observed for the HP A-type structure, characterized by pronounced hardening along the a 

axis above 15 GPa.  The observed incompressible nature of the hexagonal a axis in the 

pressure range 15-25 GPa is found to be compensated by doubling the compressibility 

along the c axis. 

To shed light on the anomalous compressibility observed for the A-type structure, 

high pressure synchrotron based XRD is carried out for the A-type La2O3. The A-type 

structure is found to be stable up to 26.5 GPa. The a axis is found to be compressing up to 

a critical pressure of 9.7 GPa and then expands in the region 9.7 GPa < P < 19.8 GPa. The 

Rietveld structure refinement in conjunction with the Stephans anisotropic strain model 

indicates the onset of this anomaly at an earlier pressure of 5.6 GPa, where an atypical 
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bond compression behavior is observed. A significant increase in the intensity of 100 

reflection and a clear decrease in the intensity of 103 reflections under HP suggests a 

plausible movement of the LaO layers in the opposite direction. Hence, the pressure is 

engaged in moving these layers rather than compressing along the a axis resulting in the 

observed anomalous compression behaviour. A bulk modulus value of B0 = 102(5) GPa in 

the region P Ò 9.7 GPa and B0 = 177(3) GPa in the region P Ó 22.3 GPa is obtained.  

The results of this chapter provide a basic understanding of the HP behavior of 

simple RES. 

Chapter 5: This chapter is intended to understand the simultaneous effect of cationic 

radii and HP on the RES. The synthesis of (Eu1-xHox)2O3, (0 Ò x Ò 1), solid solution, 

having a smooth variation in cationic radii, by the chemie douce method, characterization 

of these solid solutions using the XRD and Raman scattering will form the first part of 

this chapter. A single phase solid solutions are obtained for the entire range of 

compositions. Evolution of crystal structure parameters with change in cationic radii, RRE, 

is obtained by employing the Rietveld structure refinement. A random cationic 

distribution in the two crystallographic sites and a translational motion of the RE ion in 

the 24d site was observed. Hardening of Raman modes in the high frequency range 

reveals an increasing bond strength, hence an increasing structural rigidity with the 

decrease of average cationic radii, RRE.  

In order to understand the effect of cationic radii, HP behavior of these solid 

solutions was investigated using the in-situ angle dispersive high pressure X-ray 

diffraction technique. Studies on various compositions of the mixed oxide show that 

when the average cationic radius, RRE   is equivalent to or below 0.9164 Å the system 

prefers a cubic to monoclinic transition as a function of pressure, whereas average 

cationic radii equivalent to or above 0.9220 Å prefers a transition from cubic to 
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hexagonal. In the composition range 0.4 Ò x Ò 0.6 following trend is observed: the bulk 

modulus goes up after a drastic reduction at x=0.4, whereas, the transition pressure 

decreases. This is identified as a consequence of the increasing internal pressure induced 

by the doping. A pressure concentration phase diagram for (Eu1-xHox)2O3 upto a pressure 

of 15 GPa is constructed based on the high pressure structural investigations. Average 

cationic radii 0.9164Å < Rr < 0.9220Å is observed to form the phase boundary between 

cubic to hexagonal and cubic to monoclinic phase transitions.  

The results of this chapter provide a systematic understanding of the dependence 

of rare earth cationic size and pressure on different structure type in the region of small-

medium cation size.  

Chapter 6 : The objective of this chapter is to understand the phase behaviour of solid 

solutions of medium and large cation sized RES under HP. Solid solutions, (Eu1-xLax)2O3 

has been prepared by the chemie douce method. The compositions are verified using the 

energy dispersive spectroscopy (EDS). The scanning electron microscopy (SEM) 

revealed the irregularly shaped particles in the submicron size. Structural parameters are 

obtained through Rietveld refinement of the Angle dispersive XRD (ADXRD) data.  A 

structural phase transition from cubic (C-type) to monoclinic (B-type) and subsequently 

to the hexagonal (A-type) structure has been observed with increasing substitution of La. 

A detailed analysis on the transition boundaries in terms of their average cationic radii, 

RRE, shows that, the onset of CĄ B transition is at RRE=0.980 Å whereas BĄA is at 

RRE=1.025 Å. A biphasic region of cubic and monoclinic structure is observed for 0.2 Ò 

xÒ0.4 and that of the monoclinic and hexagonal structure is observed for 0.5Ò x Ò0.6. It is 

found that, the micro strain induced by the difference in the size of the rare earth ions 

introduces a substitutional disorder in the crystal structure which is a plausible cause for 

the observed phase transitions in these oxides. 
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The structural stability and compression behaviour of these solid solutions are 

investigated using the HP ADXRD. The cubic structure in the region 0.95 ¡ Ò RRE < 0.98 

Å  prefers a CĄ A transition with increasing pressure. For the biphasic region of cubic 

and monoclinic structure, 0.98 ¡ Ò RRE < 1.025 Å,  a C/BĄA transition is preferred under 

pressure. In the biphasic region of the monoclinic and hexagonal structure, 1.025 ¡ Ò RRE 

<1.055 Å, the B phase is found to be progressing towards the hexagonal A phase under 

pressure. The pure A phase in the region, 1.055 ¡ Ò  RRE  Ò 1.10 ¡, is structurally stable 

under HP. The compressibility data shows a monotonous decrease in the bulk modulus of 

the hexagonal structure with the increasing RRE except for x=0.2 and 0.6. A pressure-

concentration (P-x) phase diagram up to a pressure of 25 GPa is constructed from the 

HPXRD investigation on (Eu1-xLax)2O3.  

The results of this chapter establish the role of microstrain in driving the 

CĄBĄA transition. Also, it provides a systematic understanding of the phase structure 

of RES in the region of large-medium cation size under HP.   

Chapter 7 : This chapter gives an overall summary and the salient features of the thesis 

work along with the scope for the future works. 
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Chapter 1 

Structural phase transitions in rare earth sesquioxides 

1.1. Introduction  

Rare earth sesquioxides (RES) are RE2O3 type compounds, where RE stands for 

the rare earth atom. All the rare earth atoms together with the oxygen atoms can form 

stable sesquioxide structure. They play a vital role in many of the technologically 

important applications in the field of solid state lasers, solid oxide fuel cells, radiation 

detectors, wave guides, scintillating materials, random access memory (RAM) devices 

and sensing
11-16

. The entire lanthanide oxide series has been found to be intrinsically 

hydrophobic in nature. They sustain hydrophobicity even after exposure to harsh 

environments of high-temperature and abrasion leading to the wide spread applicability as 

robust hydrophobic surfaces
17

. Improving the properties of materials and implementing 

them to the large scale industrial applications have always been a challenging task in 

terms of both fundamental and technological aspects. It has been demonstrated that 

doping of materials to the pristine samples is a promising way to improve the desired 

physical properties of materials. High-power solid-state lasers based on rare-earth doped 

sesquioxides, Lu2O3, Sc2O3 , and Y2O3, as well as different mixed sesquioxides (LuaScbYc 

)2O3 have been found to be highly efficient
11

. An increase in the electrical conductivity 

and activation energy with a decrease in the mole percentage of the Gd2O3was observed 

in the Bi1-x-y HoxGdyO1.5, used as an electrolyte for solid oxide fuel cell applications
12

. 

Moreover, an enhancement in the Luminescence properties of CeO2 has been observed by 

lanthanide doping
18

. However, most of the differences in the physical properties are 

known to be structure dependent. 
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1.2. Polymorphism in rare earth sesquioxides 

The capability of existing in different structure type for a given compound brought 

the RESs under the category of the compounds showing Polymorphism. At ambient 

temperature and pressure (ATP), depending on the cationic radii, RESôs are known to 

exist in the cubic (C-type), monoclinic (B-type) and hexagonal (A-type) polymorphic 

structures
19

. These polymorphic structures are shown in Fig. 1.1. A complete structural 

description of the binary rare earth oxide phases known to exist, along with their 

structural and thermodynamic characteristics, including symmetry types and inter-

relationships is available elsewhere in the literature
19, 20

. A brief description about each of 

the known structure types are given below. 

  

Fig. 1.1 The polymorphic structure types of rare earth sesquioxides: a) C-type cubic structure, b) 

the octahedral environment in the C-type structure c) B-type monoclinic structure and d) 

A-type hexagonal structure. The rare earth ions are represented by large spheres of green 

colour whereas the oxygen is small in size and red in colour. The RE-O6 or RE-O7 

polyhedral arrangements centered at the RE cation sites are indicated with different 

colours. 
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C-type Cubic structure  

The Cubic structure of RES crystallizing in the space group (SG) Ia-3 is 

conventionally designated as C-type. This structure can be related to the cubic fluorite 

type CaF2 structure (SG: Fm3m). Doubling the cubic unit cell of CaF2 along the three 

crystallographic axes will result in a cell in close resemblance with the unit cell of C-type 

RES. In CaF2, the Fluorine atoms are in cubic (8) co-ordination with Calcium atoms. The 

C-type structure can be obtained by removing a pair of anions along the body diagonal 

and face diagonal of the co-ordination cube in an ordered way
20

. As a result, this will 

form a distorted octahedral environment of oxygen anions around the cation. The 

structure thus obtained is known as the defect fluorite structure and is same as that of C-

type cubic structure. The unit cell of C-type RES consists of 16 formula units with 32 

cations distributed over 8b (with site symmetry C3i) and 24d (with site symmetry C2) 

crystallographic sites/Wyckoff positions. The cations at 8b and 24d are in octahedral 

coordination with oxygen atoms, sitting at 48e general site. The octahedron at 8b site is 

made up of a single bond length, designated as RE(8b)-O, whereas three different bond 

lengths, designated as RE(24d)-O1, RE(24d)-O2 and RE(24d)-O3 forms the octahedron 

at 24d site. This structure is adopted by most of the RES with small cation size (Sm-Lu). 

B-type monoclinic structure 

The Monoclinic structure of RES crystallizing in the SG C2/m is conventionally 

known as B-type. The unit cell is composed of 6 formula units with 12 cations distributed 

over three different 4i Wyckoff positions. The oxygen atoms reside over four 4i and one 

2b position.  In this structure, cations are in 6 and 7 co-ordination with the oxygen atoms. 

This structure is the stable form of intermediate cation size (Sm2O3, Eu2O3 and Gd2O3) 

RES, when it is quenched back to ATP from 800°C, 1200°C and 1400°C respectively 
21

. 
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A-type hexagonal structure 

The hexagonal structure of RES crystallizing in the SG P-3m1 is conventionally 

known as A-type. The unit cell is composed of a single formula unit with 2 cations 

occupying the symmetrically equivalent 1a site and the oxygen ions are distributed over 

the Wyckoff positions, 1a and 2d. Here, the cations are in 7 co-ordination polyhedral 

environment comprised of three different bond lengths. These are designated as RE-

O1(2d), RE-O2(2d) and RE-O1(1a). This structure belongs to the large cation sized RES 

(La-Pm). 

Apart from these three structure types there are two high temperature structures 

reported for the RESôs, H-type and X-type. The former is a hexagonal structure with 

lattice parameters close to that of A-type but with a different SG, P63/mmc while the later 

is a cubic structure with SG Im-3m. 

1.3. Electronic structure of RES 

RESôs are typical f -electron systems for which the highly localized f-states play 

an important role in determining their chemical and physical properties
22

. Usually, the f 

electrons do not participate in bonding and electronic conduction but they are available 

for optical absorption and can establish strong magnetic order
23

. Typically, itinerant spd 

states and highly localized f states are present in such systems. The f electrons are 

assumed to be highly correlated and they do interact with the itinerant states. The 

difficulty in treating both localized and itinerant character of these electronic states on the 

same footwork is a major challenge to the current theoretical approaches, like in the 

density functional theory (DFT).  The electronic band structure of RES has been 

investigated by several groups
22-25

. Irrespective of the polymorphic structure in which 

they belong, the band structure of a particular compound is shown to have similar 

characteristics
26

. The valence band is majorly populated with O-2p contribution, whereas 
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RE-5d contributes more to the conduction band. In general, the occupied f states fall 

below the O-2p conduction band whereas, the unoccupied ones fall in between the O-2p 

valence band and RE-5d conduction band. However, the energy of occupied and 

unoccupied f bands are different in different phases. Moreover, the band structure shows a 

noticeable peak splitting due to the difference in the local co-ordination and symmetry
26

. 

The features in the band structure of B-type monoclinic structure are found to be a 

mixture of those observed in C-type and A-type. 

The investigations on the valence state of RES have shown that, trivalent ground 

state configuration is the most favourable valence state for majority of the RES
23, 24

. 

However, the degree of trivalency increases from Ce2O3 to Gd2O3, then decreases slightly 

at Tb2O3 to increase again through Dy2O3 to Ho2O3.  Leaving the extra stability shown by 

the half filled f orbitals, the increasing tendency to form a trivalent state has a clear 

relation to the increasing localization of the f electrons with increase in atomic number
24

. 

This extra stability combined with the position of f bands in the electronic structure has 

shown to have a major role in deciding the band gap of the RESôs. The experimentally 

determined band gap of all the RES were summarized and a detailed report is available in 

the literature
23, 25

. The band gap varies from 2.4 eV for Ce2O3 to 5.5 eV for La2O3 

indicating a more or less insulating nature of all the RES. Minimum values were observed 

at the beginning (Ce and Tb) and at the end of the two halves (Eu and Yb) of the rare 

earth series. The reduction for Ce and Tb is attributed to the presence of f states in 

between the O-2p state and the RE-5d states whereas, a smaller energy gap between the 

valence and conduction band is responsible for the reduction for Eu2O3 and Yb2O3
25

. If 

the f band is present in the forbidden region, f-d gap will determine the band gap 

otherwise the position of O-2p state and the RE-5d states will determine the band gap 
23, 

25
.  
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1.4. Stability of rare earth sesquioxide 

The 14 elements from Lanthanum (Z=57) to Lutetium (Z=71) in the periodic table 

of elements are classified as rare earths or commonly Lanthanides. They have an 

electronic ground state configuration of the form [Xe] 4f 
n 
5d 

1 
6s 

2
 where n stands for the 

number of f electrons. The primary member, Lanthanum is characterized by an empty 4f 

shell whereas, a fully occupied 4f shell is the characteristics of the end member, Lutetium. 

As the atomic number (Z) increases, more and more electrons will start occupying the 

localized 4f shell rather than the valence orbitals, 5s and 5p. As the f electron occupancy 

increases, the effective screening of nuclear potential reduces. This is due to the poor 

shielding power of the 4f orbitals. This effectively increases the coulomb attraction 

between the nucleus and the valence electrons resulting in a constant decrease of ionic 

radii of the lanthanides. This effect is the well known lanthanide contraction. The effect 

of cationic radii on the molar volume of the RES with different structure types were 

summarized by Zinkevich
19

 and are reproduced in the Fig. 1.2a. It is clear that, molar 

volume follows a linear dependence on the cationic radius. As the f electron occupancy 

increases, AĄBĄC is the preferred structure type. Even though the cationic radius 

increases in the CĄBĄA sequence, the molar volume found to be decreasing in the same 

order
2
. Hence, a transition from CĄBĄA is expected under pressure. A volume 

reduction of ~8% and 2% is expected during the CĄ B and BĄ A phase transitions 

respectively.  

Inorder to understand the dependance of the cationic radii on the structural 

stability, several studies were carried out on the solid solutions of RESôs. The first 

comprehensive study on the phase relations between trivalent rare earth ion oxides, (RE
i
-

RE
ii
)2O3, systems were reported by Schneider

27
. Single phase, C, B or A, solid solutions 

have been observed in the whole range of compositions for those systems with similar 
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structure and very small difference, (ȹRE), between RE
i 
and RE

ii
, whereas those with 

significant difference in ȹRE are found to form di/triphasic regions with different 

compositions and depending on the parent strcucture of RE
i
2O3 and RE

ii
2O3. The (RE

i
-

RE
ii
)2O3 systems with still larger ȹRE were found to crystallize in RE

i
RE

ii
O3 perovskite 

type structure. In a recent review by Zinkevich, the phase stability of some of these (RE
i
-

RE
ii
)2O3 systems with molar concentration and temperature were calculated using the 

solution approximation method and a comparison was made with the experimentaly 

obtained thermal analysis data
19

. At ambient conditions, diphasic regions of A+B and 

A+C have been predicted for the (La-RE)2O3 (RE= Sm, Gd, Dy and Ho) solid solutions 

whereas a pure B-phase or a C+B diphasic region was not obtained in any of the 

composition range studied. All the three polymorphic modifications have been predicted 

for (Nd-Yb)2O3 and (Nd-Y)2O3 systems in different molar concentration. The phase 

structure of (Eu-La)2O3 solid solutions are not investigated till date. Hence, a systematic 

study on this solid solutions will be benificial.  

Fig. 1.2b represents the stability of all the RES at high temperature and ambient 

pressure, reproduced from reference
19

. The RES Lu2O3 exists only in the C-type structure 

up to melting point and Yb-Er found to have a stable H-type structure at elevated 

temperatures. The C-type structure of Ho2O3 shows a transition from CĄBĄH whereas 

for Dy-Tb it further transforms to the X-type before the melting point. The medium cation 

sized RES, Gd-Sm, are the only compounds which shows all the five polymorphic 

structures. In this case, the transition take a path of CĄBĄAĄHĄX with the increase in 

temperature. For the large cation sized RES, Nd-La, the A-type is the stable structure at 

ATP and they transform to H-type and further to X-type with increasing temperature. In 

all the observed transitions, the transition temperature is found to be increasing with 

decreasing cationic radii. 
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Fig. 1.2 a)The effect of cationic radii on the molar volume of RES with different structure types. 

Reproduced from reference
19

. b) The phase stability of all the RES at high temperature 

and ambient pressure. Reproduced from reference
19

. 

1.5. High pressure behavior of RES 

Effect of pressure on the structural stability of RES was intensively studied by 

several group of researchers. As we have seen in the previous section the phase transition 

induced by temperature is dependent on the cationic radii of the RES. A similar 

dependence is observed when these materials are subjected to high pressure. The 

following subsections will describe how the behavior of the RES is different when they 

are subjected to extreme conditions of pressure. 

1.5.1. Phase structure of large cation size RES 

High pressure studies on the large cation sized RES are scarce.  Reports on the 

high pressure study of RES show that, hexagonal is the extreme structure and they 

undergo no structural phase transition further
6, 8, 9

. Probably this could be the reason for 

drawing less attention towards the hexagonal structure of large cation sized RES. Even 

though pressure induced super lattice formation has been observed in the La2O3 at around 

8 GPa, no such super lattice reflections have been observed in the case of isostructural 

Ce2O3 and Nd2O3
6-9

. A structural transition from hexagonal Nd2O3 to a distorted 

monoclinic structure has been proposed by Pandey et.al
7
. Nonetheless, it has not been 

confirmed. Recently, an anomalous lattice expansion in the 10.2-20.3 GPa pressure range 
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has been reported for Nd2O3 
9
. The same has been confirmed using Raman spectroscopy, 

in which the A1g and E1g stretching modes are stated to have different compressibilities. 

Our own investigation on the high pressure hexagonal phase of Eu2O3 (section 4.3 of 

Chapter 4) and other work on Gd2O3 and Er: Gd2O3 has reported this anomaly prior to the 

one in Nd2O3 
10, 28

. In the majority of the available reports, the reason for the observed 

anomalous behavior in hexagonal structure of RES is associated with the isostructural 

electronic transition
9, 10, 29

. However, the electronic structure calculations on the A-type 

RES has not predicted any isostructural electronic transitions in the pressure regions 

where the anomaly is observed
8, 30, 31

. These reports indicate the necessity of addressing 

the anomalous high pressure behavior of the hexagonal RES in detail. 

1.5.2. Phase structure of medium cation size RES 

The medium cation sized RES can be found at ATP either in the C-type or the B-

type structure depending on their thermal history. Pressure induced structural phase 

transition from CĄBĄA is expected due to the observed decreasing trend of molar 

volume in the same sequence
2
. However, the medium size RES do not obey this sequence 

and instead go through a direct CĄA transition
3-5

. Such  a pressure induced CĄA 

transition in Eu2O3 has been observed at 5.2 GPa, without the presence of the intermediate 

monoclinic phase
4
. Similar transition is observed for Gd2O3 and Sm2O3 at a pressure of 

7.2 GPa and 4.2 GPa respectively
5, 32

. The reason for the absence of intermediate phase in 

these medium rare earth sesquioxides is not fully understood and the preference of a 

particular structure type over the other is still under debate. A Report on the high pressure 

transitions of Gd2O3 revealed that the monoclinic phase of this intermediate RES is a high 

pressure (HP) and high temperature (HT) phase
5
. In support of this argument, the DFT 

calculations showed that, the monoclinic phase has the highest lattice energy and is 

associated with the HT phase and the transition from CĄB cannot be obtained by 
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pressure alone at low temperatures
5
. Studies on high pressure hexagonal phase of 

intermediate cation sized RES Gd2O3 and Er: Gd2O3 have shown that, there exist an 

anomalous lattice compression beyond a certain pressure region
10, 28

. The hexagonal a 

axis is shown to have an expansion in the pressure region 20.1-28.1 GPa in the case of 

Gd2O3 and it has resulted in a slight discontinuity of the unit cell volume compressibility. 

This observation was later confirmed in the parent hexagonal structure of Nd2O3
9
. The 

description of the mechanism of these structural phase transitions either from CĄA or 

CĄBĄA is scarce or unknown. The structural correlation between B-type and A-type 

are described elsewhere in the literature
1, 33, 34

. Even though the hexagonal A-type 

structure is known to be a distorted form of the monoclinic B-type structure, a clear 

picture describing the possible distortions in these RES under pressure that could lead to 

the observed phase transitions is not considered in detail anywhere. The high pressure 

energy dispersive studies on B-type Eu2O3 revealed a phase transition from monoclinic to 

hexagonal (BŸA) at 4.7 GPa, while in a luminescent spectroscopic study the same was 

reported at 4 GPa
35, 36

. In addition, in both these studies the behavior of high pressure 

hexagonal phase was given much less attention and a reinvestigation would give a better 

understanding. BĄ A phase transition in Sm2O3 and Gd2O3 is also reported earlier. 

Sm2O3 found to transform at a pressure of 2.5-3.2 GPa, while it was 6.2 GPa for Gd2O3
5, 

32, 37
.  

1.5.3. Phase structure of small cation size RES 

Pressure induced CĄB structural phase transition has been observed in the small 

cation sized RES of Dy, Ho, Er, Tm, Yb and Lu
2, 38-43

. Among them, a CĄBĄA 

transition is observed only for Dy2O3 and Ho2O3, probably due to the limited pressure 

range covered in those experiments. A transition pressures of 7.7 GPa, 8.9 GPa, 9.9 GPa, 

7 GPa,13 GPa and 12.7 GPa have been reported for the CĄB transition of Dy2O3, Ho2O3 
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, Er2O3, Tm2O3, Yb2O3 and Lu2O3 respectively
2, 38-43

. Discarding the lower transition 

pressure reported for Tm2O3, this clearly indicates that, the CĄB transition pressure is 

increasing from Dy2O3 to Lu2O3. This is attributed to the nature of increasing covalent 

bond due to the increasing bond strength with decreasing cationic radii
24

. Looking at the 

general trend of cation size dependance on the transition pressure across the lanthanides, 

such a lower transition pressure of Tm2O3 is surprising.  The transition pressure reported 

for the Tm2O3 (7 GPa) is much less compared to its neighbouring RESs Er2O3 and Yb2O3. 

2
. Hence, a reinvestigation is necessary to remove the ambiguity in the transition pressure.  

 

Fig. 1.3 The general phase diagram of RESs across the Lanthanides constructed using the 

literature in which the high pressure X-ray diffraction measurements are reported for the 

bulk powder samples. The data is taken from other measurements wherever X-ray 

diffraction data is not available.   

A general phase diagram of RESs describing the CĄB, CĄA and CĄBĄA 

structural phase transitions along with the maximum experimental pressure achived in 

each of the RES is shown in the Fig. 1.3. It is clear that, the transition pressure is 
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increasing with decreasing cationic radii. This is due to the increasing strength of covalent  

bonding with the decreasing cationic radii across the Lanthanides 
2
. As a consequence of 

this increasing degree of covalency, an increase in bulk modulus is also observed across 

the lanthanides.  

1.6. Objective of the thesis 

Investigation of crystal structure and phase transitions of the RESs under high 

pressures forms the central theme of the present thesis. The objectives of the thesis are 

subdivided into the following three parts:  

1. Investigate the structure of small (C-type), medium (B-type) and large (A-

type) cation size rare earth sesquioxides under high pressures 

In order to understand the phase behavior of simple RESs, the structural stability 

and phase transitions of representatives from C-type, B-type and A-type RES will be 

studied under pressure. To address the issue of ambiguity in the transition pressure, 

Tm2O3, representative of the C-type RES, is planned to study in the present thesis. 

Among the B-type RESs, the high pressure behaviors of Eu2O3 will be studied in detail as 

this information is not available anywhere in the literature. To compare the behavior of 

high pressure hexagonal structure of B-type Eu2O3, the A-type La2O3 will be investigated. 

2. Investigate the effect of cationic radii and pressure on the solid solutions of 

RESs with similar structure and small difference in cationic radii  

Solid solutions of Eu2O3 (medium cation size) and Ho2O3 (small cation size) 

crystallizing in the C-type structure and having a cationic radii difference of 0.056 Å are 

selected to address this objective. Eu2O3 shows a CĄA structural phase transition 

whereas Ho2O3 shows a CĄBĄA transition. Hence solid solutions, (Eu1-xHox)2O3 [0.0 Ò 

x Ò 1.0], of these two are desirable candidates to study the cation size dependence of 

phase structure at high pressures. 
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3. Investigate the effect of cationic radii and pressure on the solid solutions of 

RES with dissimilar structure and significant difference in cationic radii  

Solid solutions of Eu2O3 (medium cation size), crystallizing in the C-type 

structure, and La2O3 (Large cation size), crystallizing in the A-type structure, with the 

difference of cationic radii 0.15 Å are opted to address this objective. Eu2O3, as 

mentioned earlier, shows a CĄA structural phase transition whereas La2O3 shows no 

structural phase transition. Hence it is expected that, studies on the solid solutions, (Eu1-

xLax)2O3  [0.0 Ò x Ò 1.0], may provide substantial information about the cationic size 

dependence of different polymorphic structure types and their high pressure behavior. 

These three objectives are addressed in the Chapters 4, 5 and 6 of the thesis. 
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Chapter 2 

Experimental methods and analysis tools 

2.1. Introduction  

This chapter deals with the experimental and analysis methods adopted for the 

high pressure studies mentioned in the present thesis. The chapter is divided into three 

parts. The various experimental tools used for generating high pressures and their 

alignment, sample assembly and pressure calibration methods will be described in the 

first part. The second part describes the in-situ high pressure X-ray diffraction using the 

laboratory and synchrotron sources and Raman spectroscopy which were used as 

characterization techniques. The third part consists of the details regarding the Rietveld 

refinement, computational methods and the equation of states opted for the data analysis. 

2.2. Diamond anvil cell (DAC) for the generation of high pressures 

The static pressures on materials can be generated by either using a piston-

cylinder apparatus or by an opposed anvil device. Tungsten carbide pistons against a 

cylinder made up of high strength steel was the major component of the piston cylinder 

apparatus. A maximum pressure of ~5 GPa can be achieved in this way
44

. The opposed 

anvils devices work on the principles of massive support. In this device, a large pressure 

is generated on a smaller area (working area) by applying a massive load at the larger area 

(loading face).  Bridgman opposed anvil device and diamond anvil cell are the two major 

variants of this type. In Bridgman opposed anvil device two symmetrical assemblies of 

anvils are placed one above the other and an electrically powered hydraulic pump is used 

to apply load to the anvils
44

. Even though the upper pressure limit is ~10 GPa, a large 

sample size of the order of several millimeters can be studied in this type of cells.  

Diamond anvil cell (DAC) is an excellent tool to generate the high pressure of the 

order of giga Pascals in the laboratory. In a typical DAC assembly, the sample is 
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squeezed in between two opposing anvils, made up of diamonds, which are driven 

together by an external force. The first DAC was designed and fabricated in 1958 by two 

different groups of researchers simultaneously. One for high-pressure X-ray powder 

diffraction study by Jamieson, Lawson, and Nachtrieb
45

 and the other was used for infra 

red spectroscopic studies of powdered calcite up to a pressure of 3 GPa
46

. Weir in 1960 

redesigned his DAC in order to carry out the crystallographic studies of materials at high 

pressure
47

. Development of a metal foil gasket technique to confine liquids inside the 

DAC helped in collecting powder diffraction patterns in a hydrostatic environment for the 

samples
47

. With this, several organic and inert  fluids could be used as pressure 

transmitting medium
48, 49

. Pressure in the cell was estimated either from equation of state 

data of NaCl or from the shift of  R1 and R2 fluorescent lines of ruby crystal with 

pressure
47, 50

. Presently diamond anvil cell has established itself as a tool par excellent 

which could be used with several probes from microwave to gamma radiation
51

. 

Even though the basic principle behind the DAC is the same, various kinds of 

DACs have been designed and fabricated for a variety of probes used and pressure 

ranges. The variations in the DAC are mainly from the different ways in which the force 

is generated and the mechanism designed for anvil-alignment. Based on this, five types of 

DACs have been developed and are being used. NBS cell, Bassett cell, Mao-Bell cell, 

Syassen-Holzapfel cell, Merrill-Bassett cell are the five types of DACs
52

. Several simple, 

inexpensive and compact modified versions of DACs are now commercially available. 

Miniature MerrillïBassett cell, four-post cryogenic cell, compact cylinder cell etc are 

some of them
48

. Membrane DAC in which the force on the piston is generated by 

pressurized helium, which pushes an annular membrane is a major variant among the new 

comers
53

. Among all these a Mao-Bell type DAC was designed and fabricated in our 
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laboratory, IGCAR, which is used for the high pressure and high temperature experiments 

54-56
 

2.2.1. Principle of Mao-Bell type DAC 

 

 

 

Fig. 2.1  Schematics representation of a) the opposed diamond anvils b) the X-ray collimator used 

in our laboratory c) a Mao-Bell type DAC with labeled parts and d) a photograph of 

home built (IGCAR) Mao-Bell type DAC used for the studies mentioned in the present 

thesis.  

Mao-Bell type DAC works on the principle of massive support coupled with the 

lever arm mechanism to generate force. In order to achieve maximum pressure, the 

working area (diamond face or culet) of the anvils are reduced to micron size.  The Fig. 

2.1a-c shows the schematic of the opposed DAC assembly and the Mao-Bell type DAC. 

The photograph of the home built Mao-Bell type DAC used for the studies described in 

the present thesis is also shown in the Fig. 2.1d. Here, gem quality diamonds with a culet 

(diamond face) dimension of ~500 micron and a table dimension of 2 mm mimics the 

anvils. Diamonds of approximately equal dimensions were mounted on the hemispherical 

and cylindrical tungsten carbide rockers which can be fixed, by the screw mechanism 

provided, to the cylinder (1) and piston (2) respectively. The samples under investigation 
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are confined to the culet area with the help of a gasket. The piston cylinder assembly is 

supported by a pressure cell holder (6) and is in touch with the thrust block (3) of the 

lever arm (5). The Belleville spring (8) loaded lever-arm (5) exerts force on the long 

cylinder-piston assembly by the mechanical driving of the screws (7). A maximum 

pressure of 100 GPa can be achieved in our home built DAC. 

2.2.2. Alignment of Mao-Bell type DAC 

In order to limit the anvil and gasket failure, three different alignments are 

necessary prior to the high pressure experiment using the Mao-Bell type DAC.  

Axial alignment: In this procedure, diamonds are moved laterally to align them along the 

axis of the piston cylinder assembly. This is achieved by viewing through a microscope 

and rotating the piston inside the cylinder. Any axial deviation can be corrected using the 

4 screws provided to hold the piston rocker. This alignment is necessary for the effective 

conversion of applied force to obtain a maximum pressure along the axial direction.  

Lateral/ horizontal alignment:  In this alignment, the diamonds on the piston and 

cylinder are mated together with their culets facing each other. Culet has to be laterally 

matched within 10% uncertainity. This is achieved by the translational movement of the 

rocker in the xy plane perpendicular to the axis of the piston using the same 4 piston 

screws. This is necessary to deliver maximum pressure and helps to avoid breakage of 

diamonds at high pressure. Fig. 2.2a shows the schematic of laterally misaligned culets. 

Ti lt alignment: A wedge in between the two diamond faces can cause breakage of 

diamond at HP due to the concentration of applied force to a small part of the culets in 

contact. The diamonds on the piston and cylinder are kept face to face and a source of 

white light is passed through the bottom of the cylinder. The culet face is observed 

visually through the piston and if the wedge is present an optical interference fringe 

(Newtonôs rings) can be seen. This fringe is eliminated by tilt adjustments of the 
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hemispherical cylinder rocker. Fig. 2.2b is a schematic representation of the formation of 

fringes due to the presence of wedge between the culets. 

 

Fig. 2.2 a)The schematic representation of laterally misaligned culets. b) Schematic representation 

of the formation of fringes due to the presence of a wedge between the two diamond 

culets. Image taken from reference
57

. 

Collimating X-ray beam to the sample: The whole cell assembly with the collimator is 

kept on the sample stage and X-rays are passed through the diamond culet and ensured 

the passage using a GM counter. The piston cylinder assembly is made light-proof with 

electrical tape around the access ports. A photo graphic film of suitable dimension is 

placed in between the two culets. A slight pressure is applied to get the culet impression 

on the film. This assembly is exposed to X-ray for 10 sec. The exposed films are 

developed in dark room. The collimator control screws are aligned according to the 

photographic image. This procedure is repeated until the X-ray spot is at the centre of the 

culet. Optical images of the film in which the collimator is misaligned and aligned 

precisely with respect to the culet impression are shown in the Fig. 2.3.  

 

Fig. 2.3 Optical image of the developed photographic film after the X-ray exposure of 10 sec. a) 

Collimator is misaligned and the X-ray spot (dark spot) is just outside the culet region. b) 

X-ray spot at the centre of the culet showing a precisely aligned collimator. 


