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Abstract

Body centred cubic (bcc) iron is the base material of Oxide Dispersion Strengthened

(ODS) ferritic steels. ODS steels are considered as the primary candidate for structural

application in future nuclear fission and fusion reactor. These modern steels are

multicomponent alloys (with about 20 components: Fe, C, Mn, P, Si, Ni, Cr, Mo, V, Ti,

Co, Cu, Al, B, W, Zr, N, O, Y) made up of Fe-Cr ferritic matrix in which a homogeneous

dense distribution of small precipitate particles is created by ball milling and subsequent

consolidation process involving either hot extrusion or hot isostatic pressing. These

ODS steels have superior creep resistance and stability under irradiation attributed to

the finest oxide particles densely dispersed in the ferritic matrix with high dislocation

density.

Formation of precipitates is governed by diffusion kinetics of solute atoms in

the solvent matrix. Formation and binding energies of atomic defects are important

parameters controlling the diffusion of solute atoms hence nucleation, growth,

and coarsening of precipitates. Due to this, several researchers have studied the

interactions of solute elements with point defects in bcc iron employing first-principles

computational methods based on the electronic Density Functional Theory (DFT). But

these prior studies lack consistency among themselves in terms of specifications of the

computational method, models of Fe with atomic defects, and the degree of structural

relaxation included in the study.

In this thesis, a comprehensive and systematic calculation of the solute formation

energies, solute-solute and vacancy-solute binding energies in bcc iron is reported for

an extended set of 53 different solute elements, with atomic numbers 1 to 54, in

bcc ferromagnetic iron using DFT total energy calculations. From the analysis of our
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calculated energetics of atomic defects, the following results have been obtained. (1)

Formation energies of solutes from fourth and fifth periods vary with their atomic

numbers such that they reach maxima near the ends of the periods and a minimum

in between, with a local increase near Cu and Ag (like a quasiparabolic valley). Solutes

from second and third periods show similar trend like the elements near the ends of the

fourth and fifth periods. (2) The size factors of the solutes also show similar variation

with their atomic numbers like their formation energies. These trends corroborate the

relatively smaller formation energies and size factors of the common alloying additions

to Fe (such as 3d, 4d, and sp elements) as compared to solutes that lack solubility

(such as Li, Na, K, Rb, He, Ne, Ar, Kr, Xe, F, Cl, Br, I, Mg, Ca, Sr, Ag, Cd, In, Y). (3)

The solubilities estimated from our formation energies are found to be in reasonable

agreement with those from the phase diagram database. (4) Solute-solute and vacancy-

solute binding energies are found to vary with the atomic number of the solutes in a

manner inverse to solute formation energies and solute size factors, reaching strong

binding energies near the ends of the periods which generally include the insoluble

elements. (5) Another trend revealed by our work is that the size factors of isoelectronic

sets of solutes increase down the groups with associated increase of formation energies,

and strength of solute-solute and vacancy-solute binding energies. (6) A significant

correlation is found between our vacancy-solute binding energies of 3d and 4d elements

and the corresponding diffusion coefficients from literature whereby solutes with strong

binding energies have higher diffusion coefficients and vice versa.

In addition to atomic defects, the stability of oxide particles embedded in the

iron matrix have been studied. For the oxide nanoparticles in ODS steels, various

compositions and structures have been discussed in the literature. These studies indicate

that the B1-type TiO is also a potential dispersion for ODS steels. Despite this, no

study has directly investigated the stability of B1-type oxides in bcc iron. In order

to improve our understanding on the structure and stability of the B1-type oxides as

dispersions, we carried out calculations of formation energies of 31 different oxides

in bcc iron matrix using DFT total energy calculations. The stability of various NaCl

B1-type oxides in bcc ferromagnetic iron were investigated in terms of their relaxed
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structure and formation energy. Several of the oxides, including MgO, AlO, ZrO and

YO are found to remain structurally intact in the iron matrix as the initial M4O4 units.

AuO and HeO are unstable. SiO tends to relax to respective Si-O pairs. Relaxed bond

lengths show that the Fe matrix is expanded around the embedded oxide clusters.

Formation energies of the oxides show a correlation with the equilibrium volumes of

the oxide embedded iron. Bulk moduli of the oxide embedded iron show an inverse

correlation with their equilibrium volumes. Further, formation energies of the oxides

show an inverse correlation with the bulk moduli of the oxide embedded iron systems.

This work predicts that the oxides, namely SnO, MgO, ScO, ZrO, AlO, MnO, TaO, ZnO, YO

and CdO are stable in the iron matrix without degrading its bulk modulus significantly.

Iron matrix with such oxides are expected to resist dislocation motion and thermal

expansion. Most of the MO oxides derive their mechanism for the endothermic or

exothermic formation energies from the degree of overlap between d density of states

of M and Fe atoms. That is, the M’s with exothermic formation energy for MO, such as

NiO and RhO, exhibit strong overlap of their d density of states with the Fe d density of

states while the M’s with endothermic formation energy for MO, such as YO and ZrO,

exhibit weak overlap with the Fe density of states.
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1
Introduction

Solids are known for their resistance to external stress compared to liquid and gaseous

phases. This high resistance to deformation is due to the uniform atomic structure

and the strong interaction between the atoms in the solids. However, each solid type

has its definite threshold of resistance; any small increase beyond threshold can lead

either to their destruction or change of phase, i.e., to liquid or gas. For instance, when

a piece of iron is subjected to mechanical load, it may break apart or crushed into

segments; but when exposed to very high temperatures, it starts to melt. Thus, the

knowledge of the temperature threshold of materials enables to identify their use in

the day-to-day life. The critical question here is why some materials can withstand very

high temperature while others cannot. The answer lies in their composition, structure

and bonding strength. Material science research aims to discover new materials with

desired properties through a thorough understanding of the interrelations among their

composition, structure and chemical bonding.

Globally, coal and natural gas are the primary sources of electrical energy. These

non-renewable energy sources emit carbon dioxide to the atmosphere, which results

in climate change. However, renewable energy sources such as solar and wind are

not commercially feasible due to the restrictions on land availability and other

environmental conditions. To meet the energy demand without causing damage to

environment, nuclear power reactors are the promising alternative. The search for high-

temperature materials is of paramount importance to construct safe and efficient nuclear

reactors.

1
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1.1 Structural materials characteristics in high-temperature

environments

Typical high temperature materials are stainless steel, refractory metals, superalloys and

ceramics. At high temperature, materials lose their strength and also undergo oxidation

and corrosion. High temperature applications requires these materials to be strong and

resist oxidation and corrosion. In addition to these features, in the nuclear environment,

the materials should possess strong mechanical properties against irradiation. The

maximum operating temperature of high temperature materials used in the nuclear

industry and its effective neutron cross section are listed in Table 1.1.

Table 1.1: Structural materials with operating temperature and effective neutron cross section[1].

Material Operating temperature Effective neutron absorption
(◦C) cross section with respective

to Zr alloys

Zirconium alloy 400 1
FM stainless steels 500 15
Austenitic stainless steels 600 15
ODS alloys 700 15
Nb-1Zr alloy 800 20
ZrC 900 0.20
SiC 900 0.10

• Zirconium alloy

Zirconium and its alloys are being used as fuel cladding in the nuclear reactor for

its high melting point, low absorption cross-section for thermal neutrons, excellent

corrosion resistance in water, and good mechanical characteristics at operating

temperatures of nuclear reactors. But its mechanical properties and the corrosion

resistance are not satisfactory at very high temperatures[1, 2]. These alloys react

with cooling water and forms zirconium dioxide (ZrO2) along with the release

of hydrogen gas. This reaction gets out of control during nuclear accidents with

explosive hydrogen gas release[3]. Thus, it is needed to develop new Zr alloys with

improved corrosion resistance at an operating temperature above the conventional

Zr alloy, i.e., 400 ◦C, along with high creep and radiation resistance[2,4,5].
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• Stainless steel

Austenitic stainless steels exhibit good creep and corrosion/oxidation resistance;

thus, it is being used as cladding materials. But the operating temperature

of austenitic stainless steel is up to 600 ◦C[1]. Though it shows good creep

resistance, its resistance towards void swelling is poor. In addition to void swelling,

other radiation damages such as creep on irradiation, He embrittlement and

microstructural instability also occurs even at a moderate neutron irradiation dose

in austenitic steel[1,6–8]. Researchers have taken steps to prevent void swelling by

means of the introduction of precipitation of dispersed phases, cold deformation,

and alloying with trace elements. But the challenges remain unfulfilled[8–12].

In contrast to the features of austenitic steel, the characteristics of ferritic steel

are low thermal expansion and high thermal conductivity, better void swelling

and helium embrittlement resistance. This excellent feature of ferritic steels is

due to its BCC/BCT crystal structure and its tempered martensitic microstructure,

along with the presence of high density of irradiation-defect sink[1, 8]. However,

the microstructure instability of ferritic steel occurs at high temperature and

irradiation affect both the mechanical and corrosion properties. Therefore, both

types of steel do not suit the fast reactors. One approach to develop new ferritic

steel is the introduction of the highly stable oxide particles into the matrix, called

Oxide Dispersion Strengthened (ODS) steel[1,13].

• Oxide Dispersion Strengthened steel

Oxide Dispersion Strengthened (ODS) steels are multicomponent alloys with 20

different components such as Fe, C, Mn, P, Si, Ni, Cr, Mo, V, Ti, Co, Cu, Al, B, W, Zr,

N, O, and Y. This steel is made of Fe-Cr ferrite matrix with uniform distribution of

highly stable dense oxide nanoparticles[ONP] of titania (Ti2O3) and yttria (Y2O3).

In ODS materials, rare earth oxide such as yttria (Y2O3) was introduced because

of its high melting point and its low solubility in steels. As the oxygen solubility in

ferrite is very low, various types of oxides can form in the presence of other solute

elements. In steels, the oxides can be composed of aluminium, yttrium, titanium,

lanthanum, cerium, chromium and so on. Thus, the microstructure becomes
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complex with various oxides of different composition and size. These ONPs

obstruct the dislocation motion and sliding of the grain boundary. Thus, it leads to

the stability of microstructure at high temperatures[9,14–21]. ONP acts as sinks to

radiation induced defects, provides good radiation damage resistance[8,9,22,23].

ODS steels shows good mechanical properties up to the temperature of 800 ◦C.

The development of ODS steel is carried out by a mechanical alloying, which

is accomplished by ball milling followed by consolidation processes such as hot

extrusion or hot isostatic pressing. Figure 1.1 depicts various process involved in

the production of ODS steel. In Sodium cooled Fast Reactor (SFR), it is known that

there is no effect on the corrosion and mechanical properties by liquid Na up to

700 ◦C. Thus, ODS steel is best to suit for SFR[1,24].

Figure 1.1: Production of ODS steel: (A) ball milling; (B) Mechanical Alloying and canning
powders; (C) consolidation (hot extrusion); (D) hot rolling; and (E) fabricate to tube and plate
form[13].

• Refractory alloys

The melting point of these alloys is above 1850 ◦C, but the neutron absorption

cross section of most of them are very high. So they can not be used as fuel

cladding. Although refractory metals possess good creep and oxidation resistance,

they show average radiation resistance, high cost and fabrication problems.

Niobium alloy shows the advantage of fabrication, high ductility and melting

temperature and low ductile to brittle transformation temperature and neutron
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absorption cross-section. But their strength is very low and its oxidation resistance

is poor. So it requires special care during its fabrication[1].

• Ceramic materials

After the Fukushima-Daiichi nuclear reactor accident, ceramics are investigated

as an alternative to Zr alloy. These materials can withstand an accident that

occurred during a natural disaster in the reactor. SiC is considered as a potential

cladding material for Lead cooled Fast Reactor (LFR), has good high-temperature

corrosion resistance, good high-temperature strength and low effective neutron

cross-section[1]. The issues with SiC are brittle behaviour, undergoes oxidation

and stress corrosion cracking.

1.2 Point defects in materials

No metal exist in perfect order and purity; some foreign atoms are always present in

it. The elements which ruin the metal’s property are termed as impurities while the

elements added intentionally to enhance the properties are known as alloying elements.

These foreign atoms, existing in the metal matrix as either interstitial or substitutional

elements, results in the formation of a solid solution[25]. The addition of foreign atoms

to metals will improve its mechanical strength and corrosion resistance. It also plays an

essential role in the nucleation, evolution, and kinetics of larger defects, which controls

the deformations and failure in the metals[26]. Generally, it increases the strength of

metals and decreases the ductility by hindering the dislocation motion. In addition

to this, an understanding of atomic defects is vital to characterize/suppress radiation

damage. The effect of the addition of alloying elements in iron, which is the base of

structural steels, on its mechanical properties is listed in Table 1.2.
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Table 1.2: Effect of addition of alloying elements in iron

Element Effect

Aluminum Deoxidizes and restrict grain growth[27]

Boron Increases hardenability[27–29]

Carbon Increases hardenability[29] and strength[27]

Chromium Increases corrosion resistance, hardenability and wear

resistance[27]

Lead Increases machinability[30]

Manganese Increases hardenability[31] and counteracts brittleness from sulfur

Molybdenum Deepens hardening[27,29], raises creep strength[32]

and hot-hardness, enhances corrosion resistance[27]

and increases wear resistance[33]

Nickel Increases strength and toughness[27]

Phosphorous Increases strength, machinability, and corrosion resistance[27]

Silicon Deoxidizes[27], helps electrical and magnetic properties,

improves hardness and oxidation resistance

Sulfur Increases machinability[27], but damages hot

forming characteristics

Titanium Forms carbides[27], reduces hardness in stainless steel

Tungsten Increases wear resistance[34] and hot strength and

hot-hardness[27]

Vanadium Increases hardenability[27]

The formation of atomic defects in metals is generally an endothermic

process. These atomic defects are produced by growth and synthesis, thermal and

thermochemical treatments, plastic deformation, ion implantation and irradiation.

Electron paramagnetic resonance provides information about impurity concentrations,

lattice environment of impurity, and chemical identity. But this technique requires best

practitioners. Other techniques such as photoluminescence and Hall measurements,

gives information on how the optical and electric properties affected by the atomic

defect, but it fails to provide the nature of defects. For these reasons, the first principles

calculations serve as the best option to determine the atomic and electronic structure of

point defects with more accuracy.
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1.3 Modelling of point defects

Vacancies are important defects in the metal. In 1953, Pochapsky measured a vacancy

formation energy of 1.17 eV in Aluminum using heat capacity and residual resistivity

technique while, in 1975, Triftshäuser found 0.66 eV using positron annihilation

experiment[35, 36]. The difference between these values leads to a difference in the

equilibrium vacancy concentration by a factor of 1000. Thus, the calculation of this value

employing theoretical methods is an essential alternative. The theoretical methods used

for the calculation of point defect property are as follows:

• Elastic methods[37–39]

• Calculation using empirical interatomic potential[40–42]

• Density Functional Theory (DFT)[43–45]

Among these methods, DFT gives more accurate data. Using the DFT technique, the

formation energy of vacancy in the transition elements have been calculated[46, 47].

Figure 1.2 shows the vacancy formation energies of 5d (lower panel), 4d (central panel),

3d (upper panel) transition metals as a function of atomic number (Z). It is observed

that the vacancy formation energy of all the transition elements lies between 1 to 3 eV,

and also they follow parabolic trend across each transition element row in the periodic

table. Grimvall pointed out the interesting fact that the ratio of melting point to vacancy

formation energy is from 8 to 13 for most of the metals[49].

The data of interaction of atomic defects with the solute, which influence the

microstructure of materials and its evolution, can also be accurately obtained from first

principles calculation[50]. These data are then introduced to higher scale models to

predict the diffusion properties. The calculation of solute-vacancy binding energies in Fe,

Zr, W, Mg, Al, Ti, Co and Ni had been carried out using density functional theory[50–61].
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Figure 1.2: Vacancy formation energy as a function of atomic number (Z)[48]
.

1.4 Motivation

The interaction of solute atom with point defect is responsible for the diffusion of

solute in the solvent matrix, which in turn responsible for microstructure evolution and

modification in the mechanical properties of the material. The experimental data for

the point defect - solute interactions are challenging to measure and also scarce. First

principles electronic structure calculations help to obtain these data. Body centered

cubic (bcc) iron is the base material for all types of ferritic steels, which are widely

used in energy industry. But systematic study of energetics of point defects in bcc iron

is absent in the literature. One of the motivations for this thesis is therefore to provide
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a systematic study using first principles calculations. For this, the formation energies,

vacancy-solute and solute-solute binding energies in bcc Fe have been computed for

an extended set of 54 solute elements with atomic numbers 1 to 54. These results are

analyzed to elucidate their trends.

Dispersion strengthening is an effective way to increase the strength of the material

at high temperature by introducing fine and uniform distribution of dispersoid particle,

which are insoluble in the matrix. Oxide Dispersion Strengthened (ODS) steel is one

such alloy prepared through dispersion of stable oxides. But for the choice of the

oxide particles, no guidelines have been established through systematic studies. Several

oxide candidates, including B1 type TiO, have been observed by the researchers. Our

motivation here is to investigate the stability of B1 (NaCl) type oxides with the aim of

identifying stable oxides to obtain improved ODS steel. For this, we have investigated

the structure and stability of 31 different B1-type oxide dispersion in bcc ferromagnetic

iron in terms of their relaxed structure and formation energy obtained from density

functional theory calculations.

1.5 Thesis outline

The contents of the thesis are organized as follows:

• Chapter 2 describes the theoretical methods used for the electronic band structure

calculations such as Hartree-Fock and Density Functional Theory (DFT). Some

important practical issues for the application of DFT, namely, k-point sampling,

energy cutoff and pseudopotential approximation are discussed.

• Chapter 3 presents the results of point defect properties such as the formation

energy, concentration of solute at thermal equilibrium and the size factor for an

extended set of 53 different solute elements with atomic numbers from 1 to 54

in bcc ferromagnetic iron. The analysis of how the solute formation energies and

solute size factors are correlated is also presented.

• Chapter 4 presents the results of vacancy-solute and solute-solute binding
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energies as these variables gives information on the mechanism in which the solute

moves in the solvent matrix and forms the precipitate. The trends of these variables

across the periodic table and the correlation among them are analysed.

• Chapter 5 focuses on DFT study on the stability of B1-type oxides in bcc

ferromagnetic iron. Analysis of stability of oxides was performed based on the

equilibrium structure and formation energy of the embedded oxides. The results

of bulk modulus of the oxide embedded bcc iron and their correlation with the

formation energy, and the mechanism behind the exothermic and endothermic

formation energies through the density of states analysis has been discussed.

• Chapter 6 summarizes the salient results of the present study and the scope for

future work.



2
Theoretical background

2.1 Introduction

This chapter describes the theory behind the first principles or ab-initio method of

electronic structure calculations. The term "first principles" refers to obtaining the

electronic properties of the system with the atomic number as the input. We begin with

the approximation made to bring down from many electrons-nuclei problems to a many

electron problem. And then, we discuss the two different approaches of many electron

problem namely Hartree-Fock and Density Functional Theory (DFT). As the Plane Wave

(PW) DFT is more suitable for the supercell study of point defects in solids, we discuss

some practical issues that needs to be taken care when using PW-DFT.

2.2 Quantum mechanics of many body system

2.2.1 Many body Schrödinger equation

The Schrödinger equationHψ = Eψ is the basis for quantum mechanics which is used to

study about the electronic structure of a material. Here, H is the Hamiltonian operator,

E is the energy eigenvalue, and ψ is the wave function. The Schrödinger equation

describes the energy of the electron and nuclei in a material. The Hamiltonian for a

system containing M nuclei and N electrons can be written as

Ĥtot = −
1

2

N∑
i=1

∇2i−
1

2

M∑
I=1

1

MI
∇2I−

N∑
i=1

M∑
I=1

ZI
riI

+

N∑
i=1

N∑
j>i

1

rij
+

M∑
I=1

M∑
J>I

ZIZJ
RIJ

(in a.u) (2.1)

11
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where the index I and J runs over the M nuclei while the index i and j runs over the N

electrons in the system. The first term corresponds to the kinetic energy of the electrons

and the second term corresponds to the kinetic energy of nuclei. The other three terms,

in order, represent the attractive electrostatic interaction between the nuclei and the

electrons, repulsive potential due to the electron-electron interaction and repulsive

potential between nuclei, respectively.

The ground state of a given system is obtained by solving the time independent many

body Schrödinger equation,

ĤtotΨ(RI, ri) = EΨ(RI, ri) (2.2)

Here, Ψ is the total wave function of the system which depends on all the coordinates

of nucleus, R and electron, r . Solving Eq. 2.2 gives the ground state energy E0 and

the ground state wave function ψ0. In practice, it is impossible to solve Eq. 2.2. The

analytical solutions are available only for one electron systems, like hydrogen atom and

H+
2 molecules while exact numerical solutions are limited to atoms and small molecules.

This difficulty arises due to the fact that the wave function is a function of 3(M + N)

degrees of freedom.

2.2.2 Born-Oppenheimer approximation

The many body Schrödinger Eq. 2.2 can be solved by decoupling the electronic and

nuclear degrees of freedom. This separation of electronic and nuclear coordinates is

called Born-Oppenheimer (BO) approximation. The BO approximation is based on the

fact that the nuclei are much heavier than the electrons and that one can assume that

electrons instantaneously change its position with respect to change in nuclei’s position.

Thus, the electronic Hamiltonian is given by

Ĥelec = −
1

2

N∑
i=1

∇2i −
N∑
i=1

M∑
I=1

ZI
riI

+

N∑
i=1

N∑
j>i

1

rij
(in a.u) (2.3)
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The solution of the Schrödinger equation with Ĥelec is the electronic wave function ψelec

with the electronic energy Eelec. The total energy Etot is the sum of Eelec and the constant

nuclear repulsion term Enuc.

Ĥelecψelec = Eelecψelec (2.4)

To solve this equation using the discretisation technique, it requires a vast number of

grid points. As the grid points increase, the computation time and memory requirement

will also increase. But the variational method helps to solve the Schrödinger equation in

a very effective way[62]. The variational technique is used in all quantum mechanical

approaches including Hartree-Fock and Density Functional Theory for solving the

Schrödinger equation to get the one-electron wave function[63].

2.2.3 Variational method

The expectation value of the energy for stationary state ψ is given by

E[ψ] =

〈
ψ|Ĥ|ψ

〉
〈ψ|ψ〉

(2.5)

where 〈
ψ|Ĥ|ψ

〉
=

∫
ψ∗ Ĥψdx

The variational principle states that the energy computed from a guessed ψ is an upper

bound to the true ground-state energy E0, i.e.,

Eψ ≥ E0 (2.6)

Full minimization of the functional E[ψ] with respect to all allowed N-electrons wave

function will give the true ground state ψ0 and energy E[ψ0] = E0; that is

E0 = minψ→NE[ψ] = minψ→N 〈ψ|T̂ + V̂Ne + V̂ee|ψ
〉

(2.7)
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For a system with N electrons and given nuclear potential Vext, the variational principle

defines a procedure to determine the ground state wave function ψ0, the ground-state

energy E0[N,Vext], and other properties of interest.

In the following sections we will discuss the two different approaches to the many

electron problem: The Hartree-Fock theory and Density Functional Theory. These two

theories are the modified and simplified versions of the full problem of many electrons

moving in a potential field.

2.3 Hartree-Fock theory

In the Hartree-Fock (HF) theory, the interaction of each electron with all the others

is approximated as the interaction with the mean electronic field due to all other

electrons. Therefore, this theory is termed as mean field theory. This approximation

can be obtained by assuming the many electron wave function in a Slater determinant

form of orbital function ψ,

Ψ(r1, r2, ..., rn) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ2(r1) · · · ψN(r1)

ψ1(r2) ψ2(r2) · · · ψN(r2)
...

...
...

ψ1(rN) ψ2(rN) · · · ψN(rN)

∣∣∣∣∣∣∣∣∣∣∣
(2.8)

The Slater determinant form ensures that the electron wave function is antisymmetric.

On substituting Eq. 2.8 and Eq. 2.3 into Eq. 2.4, we will obtain the following HF

eigenvalue equation for each orbital ψi:−∇2
2

+

M∑
I=1

ZI
riI

+
1

2

N∑
j

∫
dr

′ |ψi(r
′
)|2

|r − r ′
|

ψi(r) − 1

2

N∑
j

∫
dr

′ψj(r)ψ∗j (r
′
)ψi(r

′
)

|r − r ′
|

= εiψi(r)

(2.9)

Applying the variational principle and setting the constraint to the set of eigenvalue

equation, Ψ can be solved through self consistent approach. That is, we will start with

initial guess for the set of orbitals ψi and solve HF equation, then construct the wave

function Ψ from the new set ψinew and solve HF equation again to get Ψ. Finally,

determine the δE which is the energy difference between the new and previous value.



2. Theoretical background / 15

If the δE is more than the prescribed value, then the process will continue. Each cycle

through this process is called self consistent field loop.

This method include the exchange interaction term of the potential via

antisymmetric wave function, thus, it lowers total binding energy of atom due to the

separation of the parallel spin electrons. However, it neglects the correlations in the

motion between two electrons with anti-parallel spins.

2.4 Density Functional Theory

2.4.1 Thomas-Fermi-Dirac approximation

In 1927, Thomas[64] and Fermi[65] proposed the model for the electronic structure

calculation. In this model, electron density n(r) is used as the basic variable instead

of the wave function and it gives the idea of how the density functional theory works.

The kinetic energy of the system of electrons is approximated as a functional of electron

density and exchange and correlation terms are ignored. The total energy of the system

in an external potential is written as a functional of the electron density n(r) as:

ETF[n(r)] = A1

∫
n(r)5/3dr +

∫
n(r)Vext(r)dr +

1

2

∫∫
n(r)n(r

′
)

|r − r ′
|
drdr

′
(2.10)

The first term is the kinetic energy of the non-interacting electrons in a homogeneous

electron gas which is obtained by adding all the free electron energy state ε = k2/2 up

to the Fermi vector kF with A1 = 3
10(3π

2)(2/3) and it is given as:

t0[n(r)] =
2

(2π)3

∫kF
0

k2

2
4πk2dk (2.11)

The second term corresponds to classical electrostatic energy of the nucleus-electron

Coulomb interaction and the third term is the classical repulsive energy between the

electrons. In 1930, Thomas-Fermi model was extended by including exchange term,
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thus it becomes Thomas-Fermi-Dirac (TFD) model. Now, the ETF is written as:

ETFD[n(r)] = A1

∫
n(r)5/3dr+

∫
n(r)Vext(r)dr +

1

2

∫∫
n(r)n(r

′
)

|r − r ′
|
drdr

′
+A2

∫
n(r)(4/3)dr

(2.12)

where the value of A2 is − 3
4(3/π)

(1/3). The ground state density and energy can be

obtained by minimizing ETFD[n(r)] for all electron density n(r) which is subject to the

constraint on the total number of electrons

∫
d3rn(r) = N (2.13)

By using the Lagrange multiplier’s method, the solution can be found in the stationary

condition:

δ{ETFD[n(r)] − µ(
∫
n(r)dr −N)} = 0 (2.14)

where the Lagrange parameter, µ is the chemical potential. After the minimization, we

obtain the Thomas-Fermi-Dirac equation as:

5

3
A1n(r)(2/3) + Vext(r) +

∫
n(r

′
)

|r − r ′
|
dr

′
+
4

3
A2n(r)(1/3) − µ = 0 (2.15)

On solving this equation, we will get the ground state density and energy. This TFD

model gives many problems as the approximation made for the kinetic energy term

is not accurate enough. The major problem is that the theory fails to incorporate the

bonding between the atoms, so the formation of molecules and solids are not possible

in this theory[66]. This model does not describe the electrons in the system but the idea

of using electron density as the fundamental variable demonstrate the manner in which

DFT works.

2.4.2 Hohenberg-Kohn theorem

Density Functional Theory is based on two theorems first proved by Hohenberg and

Kohn[67].
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The first theorem is as follows:

• For any system of interacting particles in an external potential Vext(r), the potential

Vext(r) is determined uniquely, except for a constant, by the ground state charge

density n(r).

The second theorem is given as:

• A universal functional for the energy F[n(r)] in terms of the density n(r) can be

defined, valid for any external potential Vext(r). For any particular Vext, the exact

ground state energy of the system is the global minimum value of this functional, and

the density n(r) that minimizes the functional is the exact ground state density.

2.4.3 Kohn-Sham equation

The Kohn-Sham (KS) equation uses the Hohenberg-Kohn theorems and make the DFT

calculation possible. The Kohn-Sham equation maps the many body interacting system

to a fictitious non-interacting system with an effective single-particle potential VKS(r).

The Hamiltonian for the independent particle system is

ĤKS = −
1

2
∇2 + VKS(r) (2.16)

For a system of N independent electrons, the ground state is obtained by solving the

N-one electron Schrödinger equation

[
−
1

2
∇2 + VKS(r)

]
ψi(r) = εiψi(r) (2.17)

Then, the density of non-interacting system is constructed from the following equation:

n(r) =
N∑
i=1

|ψi(r)|2 (2.18)

which is subjected to the constraint of total number of electrons

∫
n(r)dr = N (2.19)
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The universal functional F[n(r)] is the sum of kinetic energy of the non-interacting

independent particle Ts, classical electrostatic energy (Hartree) of the electrons EH[n(r)]

and exchange and correlation energy EXC[n(r)], i.e.,

F[n(r)] = Ts[n(r)] + EH[n(r)] + EXC[n(r)] (2.20)

Here,

Ts[n(r)] = −
1

2

N∑
i=1

∫
ψ∗i (r)∇2ψi(r)dr

EH[n(r)] =
1

2

∫∫
n(r)n(r

′
)

|r − r ′
|
drdr ′

EXC[n(r)] = T [n(r)] − Ts[n(r)] + Eint[n(r)] − EH[n(r)]

Where EXC contains the difference between the exact and non-interacting kinetic energy

and also the non-classical contribution to the electron-electron interaction, of which

the exchange energy is a part. The KS theory is approximate because of unknown

EXC[n(r)]. It is important to know the accurate EXC[n(r)] in order to describe the realistic

condensed matter system. The most widely used approximation for the XC potential are

the Local Density Approximation (LDA) and the Generalized Gradient Approximation

(GGA). By minimizing the energy functional E[n(r)] = F[n(r)] +
∫
n(r)Vext(r)dr, which

is subject to the conservation condition, we will obtain the ground state energy of many

body electron system.

δ

[
F[n(r)] +

∫
n(r)Vext(r)dr − µ(

∫
n(r)dr −N)

]
= 0 (2.21)

Then, the resulting equation is

µ =
δF[n(r)]
δn(r)

+ Vext(r)

=
δTs[n(r)]
δn(r)

+ Vks(r)
(2.22)
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where

Vks(r) = Vext(r) + VH(r) + VXC(r)

= Vext(r) +
δEH[n(r)]
δn(r)

+
δEXC[n(r)]
δn(r)

(2.23)

The KS equation must be solved self consistently because VKS(r) depends on the density.

To calculate the density, N number of KS equations have to be solved unlike the one

equation in the case of TF method. However, the problem is still less difficult because

we just need to solve the increased number of single electron equations.

The KS eigenvalues have no physical meaning. Therefore, the total energy cannot

be simply obtained by doing the sum of all the eigenvalues of the occupied states, i.e.,

Etot 6=
∑occ
i εi. The eigenvalue is the derivative of the total energy with respect to

occupation of state.

εi =
dEtotal
dni

=

∫
dEtotal
dni

dn(r)
dni

dr
(2.24)

2.4.3.1 Exchange-Correlation functional

There are variety of approximations made to obtain the exchange-correlation energy,

EXC. Depending upon the functional dependence on one or more quantities such as

local density (n(r)), gradient of the local density (∇n(r)), the Laplacian of the density

(∇2n(r)) and the kinetic energy density (τ =
∑
i(∇ksi )2), the EXC can be classified

as LDA, GGA, meta-GGA and hybrid functionals. Lets see how the various functional

depends on the above mentioned quantities.

ELDAXC (r) = ELDAXC [n(r)]

EGGAXC (r) = EGGAXC [n(r),∇n(r)]

Emeta−GGAXC (r) = EGGAXC [n(r),∇n(r),∇2n(r), τ]

E
hybrid−GGA
XC (r) = axEexactHF + EGGAXC [n(r),∇n(r)]

(2.25)
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(where EexactHF is exact Hartree-Fock energy) Although many approximations are made

to get accurate results, it fails to describe the chemical systems and their properties

accurately. Say, for example, B3LYP, which is a popular hybrid functionals, is suitable

for describing molecules but not for solids[68–70]. On the other hand, PBE[71], a

GGA funtional, suits to describe the periodic systems like solids and surface but fails

to describe the molecular properties[68].

LDA overestimate the bond strength in solids and cohesive energy by 1% while

GGA underestimate the bond strength hence bulk moduli, phonon frequencies and

magnetic moment. Both GGA and LDA underestimate the energy gap in semiconductor

and insulator[70].

GGA predicts the correct ground state for magnetic transition metals whereas LDA

fails to do so[72]. LDA incorrectly predicts that the most stable ground state structure

of Fe to be non-magnetic hexagonal close-packed structure[73,74] while GGA correctly

predicted it to be ferromagnetic body-centered cubic structure[75]. Another example

for the accurate magnetic structure prediction of GGA is body-centered cubic Cr, in this

case, LDA wrongly predicts bcc Cr is non-magnetic but GGA correctly predict it to be

antiferromagnetic[76].

2.4.4 Solving Kohn-Sham equation

With the help of independent-particle method, KS equations helps us to find the exact

density and ground state energy of the systems. As the effective single-particle potential,

VKS is closely related to electron density n(r), the KS equation has to be solved self

consistently. Figure 2.1 shows the flow chart of self consistent iterations carried out

numerically. The process begins with the initial guess of electron density, for example,

superposition of atomic electron density, after which the effective potential VKS is

calculated and then KS equation is solved, followed by a calculation of new electron

density from the new KS wave function ψKSi . Then, the difference of total energy

between the new iteration and the old one is found. If this difference is less than assigned

small value, then the process terminates and the quantities such as total energy, force,

stress, eigenvalues, electronic density of states, electronic band structure, etc.. can be
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calculated. If the difference is greater than assigned value, then the iteration continue

with the new charge density derived by mixing the current charge density with those

from the previous iteration.

Figure 2.1: Flow chart of self consistent iteration scheme[77].

2.4.5 Basis set

In variational method, the wave functions are represented as a linear combination of

basis functions. The accuracy of wave function representation depends on the numbers

of basis functions included in the expansion and on the features of the original function.

For a given number of terms in the expansion, smoother functions are represented more

accurately than discontinuous functions.

Different basis sets are used to represent the wave function but the exact choice

depends on the system of interest. For the molecular systems, the wave functions are

expressed in terms of molecular orbitals basis functions which in turn expressed in

terms of atomic orbitals. This method is called Linear Combination of Atomic Orbitals-

Molecular Orbitals. In the case of solids and surface systems, which are periodic in
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nature, the wave function of electrons are expressed in terms of plane wave basis sets.

2.4.5.1 Localised basis sets

Let us consider hydrogen atom. To represent it’s single 1s electron, one Slater-Type

Orbital (STO) is adequate whereas two STO’s are required to represent the bonding and

anti-bonding orbitals of hydrogen molecules. STOs basis sets are difficult as the integrals

in the secular determinant are difficult to evaluate. This issue could be resolved if the

Gaussian-Type Orbitals (GTO) are adopted as basis sets. Both the STOs and GTOs are

popular choice for the atoms and molecules as their orbitals are highly localized around

each atom. For a single atom to be represented in this local basis set, it requires 10-20

basis functions. Because of local nature of this basis, accuracy of the results is limited.

Since the metals have long-range interactions, it cannot be represented in this local basis

set. The basis set superposition error exists in both STO and GTO basis set. Because of

this error, the calculated interaction energy of dimer is found to be higher than the

correct value while the equilibrium bond length is underestimated.

2.4.5.2 Plane waves

Plane waves (PW) are non-local and span the entire space. The advantages of using a

plane waves basis are the evaluation of Hamiltonian is simple due to the orthogonality

nature of plane waves and basis set superposition error can be avoided. As it covers the

whole space, the number of plane waves required to represent the vacuum region is the

same as the atoms. A higher number of plane waves are needed to describe the rapid

oscillation of the valence electron orbital near the nucleus in the PW basis set. With

the help of the pseudopotential approach, the representation of the rapid oscillation

is however circumvented. VASP, Quantum ESPRESSO and ABINIT are some of the

popular DFT packages. DFT calculations carried out for our research work have been

performed using the Vienna Ab initio Simulation Package (VASP) which implements DFT

using plane-waves and pseudopotentials[78–80]. In the following section, we discuss the

plane-wave based DFT in detail, and also the parameters need to be taken care of while

performing the calculations.
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2.4.6 Plane wave DFT

2.4.6.1 Bloch theorem

The free electrons in the solid are represented by the plane waves. Since, the electrons

in the solids are subjected to a periodic potential, the wave function can be written as

the product of the plane wave, exp(ik.r) and the cell-periodic part uk(r), i.e.,

ψk(r) = exp(ik.r)uk(r) (2.26)

This is called Bloch’s theorem. The cell periodic part uk(r) can be written as the linear

combination of the plane waves with the reciprocal lattice vectors G as the wave vector.

i.e.,

uk(r) =
∑
G

Ci,Gexp(iG · r) (2.27)

Combining the above two equations, the electronic wave function can be written as the

sum of plane waves.

ψk(r) =
∑
G

Ck+Gexp[i(k + G) · r] (2.28)

The Bloch wave function ψk(r) help to overcome the two difficulties namely calculation

of infinite number of wave function and the requirement of infinite number of basis

functions for the expansion of wave function[81].

2.4.6.2 k-point sampling

Due to periodicity nature of crystals, Bloch’s theorem transform the problem of

calculating the infinite number of electronic wave functions to the finite number of

wave functions at infinite number of k-points in Brillouin Zone (BZ). The occupied state

at a k-point contribute to the electronic potential. To compute this potential, an infinite

number of calculations are required. However, the electronic wave function at k-point

that are very close together will be same. Therefore, the electronic wave function over

a region of k-space is reduced to finding wave function at a single k-point. Thus, only a

finite number of k-points is required to find the electronic potential and hence the total
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energy of the system[81].

The physical quantities such as total energy and charge density are calculated by

integrating the integrand, g(k) in the reciprocal space (k). The property of the system

in the plane wave basis can be written as

g(r) =
Vcell
(2π)3

∫
g(k)dk (2.29)

Computationally, the integrals over all possible values of k in the BZ becomes summation

over a chosen set of k-points so as to achieve convergence of the property.

g(r) =
∑
j=1

P(nj)wj g(kj) (2.30)

A special set of k-points called the Monkhorst-Pack grid[82] is used in the plane-wave

calculation.

2.4.6.3 Energy cutoff

In the PW DFT, infinite number of PWs are used to represent the electronic wave

function. As the solution with lower energies are more important than those with large

kinetic energy, the PW series can be truncated. Thus, a cutoff is set for the energy of

PW, so that the plane waves with energy less than this assigned cutoff can be included

to represent the electronic wave function. The cutoff energy Ecut is defined as

Ecut ≥ 1/2(k + G)2 (2.31)

The cutoff energy is system dependent and it is required to perform calculations with

different higher cutoff energy until the convergence is achieved. Now, the PW expansion

of the electronic wave function becomes

ψk(r) =
∑

|k+G|cut

Ck+Gexp[i(k + G).r] (2.32)
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Let us find the relation between the number of plane waves, NPW required to describe

the wave function and the energy cutoff, Ecut. The volume of the sphere containing all

PWs is given as

Vsphere =
4π

3
G3max (2.33)

And the volume occupied by one PW is

VPW =
(2π)3

Vcell
(2.34)

Then,

NPW × VPW = Vsphere

NPW ≈
1

2π2
ΩG3max

∝ E3/2cut

(2.35)

It is noted here that the number of k-points is reduced by k-point sampling. Similarly,

the number of G-vectors is reduced by assigning the energy cutoff[81]. Thus, the PW

expansion approach becomes tractable.

2.4.6.4 Pseudopotential

When the atoms are brought together to form a solid, the core electrons in each atoms

stick tightly to their nuclei in a deep potential well due to the strong Coulomb potential

by nuclei. They are so localized and their participation in bonding is minimal. The

valence electrons are the ones which give major contribution to bonding in solids, being

ionized, conducting electricity in metals, forming bands, and performing other atomic

activities. To ease the calculation, the core electrons are removed from the picture and

deal with only valence electrons. This is called frozen core approximation.

When a valence wave function passes by the highly localized core region, it oscillates

rapidly with many wiggles to be orthogonal to the core states. The representation

of the valence electronic wave function with many nodes is very tedious task. It is

not easy to represent in simple function as well as difficult to solve computationally.
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Figure 2.2: The schematic representation of the all-electrons (blue) and pseudo-potentials (red) and
corresponding wave functions[83].

Within the frozen core approximation, the valence electrons becomes low lying states

and there is no core electrons underneath with which to be orthogonal. So, the wave

function of the valence electrons and their potential with ions can be replaced with

smoother wave function and effective potential in the core region defined by cutoff

radius rc, where no oscillations are present. This procedure is called pseudization

which is shown schematically in the Fig. 2.2. The replacement by nodeless wave

function reduces the number of basis functions needed and it does not affect the

calculation results much as only the core part is replaced. There are various ways

of constructing the pseudopotential. In the norm conserving pseudopotenial[84] the

pseudo and all electron charge densities within the core are constructed to be equal.

Ultrasoft pseudopotentials[85] are not only eliminate the radial node but also shift

the peak position of a wave function to a bigger rc with reduced peak height so it

can be easily expanded with a small number of PWs. In 1994, Blochl proposed the

Projected Augmented Wave (PAW)[86] method. This method possess both accuracy and

efficiency. In this method, the core region is expanded by a set of localized atomic-like

basis function and the valence part is expanded by a smooth pseudo wave function.

The region where the atomic basis functions should be expanded is defined by the

augmentation sphere around each atom. PAW method gives all electron charge density
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of valence orbitals which cannot be obtained by other pseudopotentials.

2.4.6.5 Smearing

There is a difficulty in calculating the integral in k-space. That is, the function such as

charge density which changes discontinuously from 0 to 1 at the Fermi surface in the

case of metal, needs a large number of k-points to get converged result. So to overcome

this issue, two popular methods namely smearing method and tetrahedron method

have been proposed. In the smearing method, the discontinuous function which has

to be integrated is replaced with continuous function by smearing out the discontinuity.

Both the extreme cases of smearing, i.e., too large/small, does not help to resolve this

problem of requirement of more k-points. Small smearing need more k-points thus it

slow down the calculation speed while large smearing gives wrong total energy. Thus,

the proper balance is necessary[87]. The effect of smoothening the step function is

similar to introduction of fictituous electronic temperature to the system as well as

the introduction of the partial occupancies which contribute the entropy to the system.

The electronic temperature introduced to the system can be taken back to 0 K by

extrapolation after the calculations are done with the smearing technique. The smearing

function used in this method are Gaussian-type δ function, Fermi-Dirac distribution

function, and the method developed by Methfessel and Paxton[88] which uses much

complicated function than the simple Fermi-Dirac function. In the tetrahedron method,

the Irreducible Brillouin Zone (IBZ) is divided into tetrahedrons and the function to

be integrated is defined in each point of the tetrahedron using interpolation. After the

interpolation, the integration of the function has been carried out all over the space

instead of special k-point in IBZ. Blochl interpolation method improves the results of

metal than the simple linear interpolation. This tetrahedron method is suitable for

transition metals and rare earth where Fermi surfaces requires a higher resolution.
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3
Point defect formation energy and solubility in bcc

ferromagnetic iron

3.1 Introduction

Stainless steels are the predominant structural material in nuclear power plants. Ferritic

and ferritic martensitic steels are known for better dimensional stability than austenitic

steels under neutron irradiation. These steels are however limited to operate below

600 ◦C[15, 89]. Oxide Dispersion Strengthened (ODS) steels have been developed to

achieve higher operating temperatures. These modern steels are multicomponent alloys

(with about 20 components[15] Fe, C, Mn, P, Si, Ni, Cr, Mo, V, Ti, Co, Cu, Al, B, W, Zr,

N, O, Y) made up of Fe-Cr ferritic matrix in which a homogeneous dense distribution

of small precipitate particles is created by ball milling and subsequent consolidation

process involving either hot extrusion or hot isostatic pressing. These ODS steels have

superior creep resistance and stability under irradiation attributed to the finest oxide

particles densely dispersed in the ferritic matrix with high dislocation density. These

nanoprecipitates have been the subject of many characterization studies. They are found

to be very stable even at high temperatures close to the solidus of the ferritic matrix.

Stability of the microstructure of these steels under irradiation also is important for

their long-term service in nuclear power plants. Some experimental studies suggest that

the nanoparticles are stable under irradiation but other studies report their dissolution.

Thus the evolution of size and population of these dispersed nanoparticles is not well

understood[90].

29
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But formation of precipitates is governed by diffusion kinetics of solute elements

in the solvent matrix. Vacancy and solute formation energies and solute-solute and

vacancy-solute binding energies are important parameters governing the diffusion of

solute elements hence nucleation, growth, and coarsening of precipitates[91–95]. First-

principles electronic structure calculations offer the most accurate means to develop

an atomic level understanding of the interactions of solutes and point defects in

solids[91, 96]. Fu et al. have shown that the unusual high solubility of oxygen atoms

and nucleation of stable oxygen enriched nanoparticles in defect containing Fe is

determined by the formation and binding energies of vacancies, oxygen, and other

solutes present in iron[97]. Modelling studies of clustering of atomic defects and

swelling also suggests that accurate characterization of the interactions of solutes with

point defects is important[96,98–103].

Given these connections between formation and binding energies of atomic defects

and diffusion kinetics and hence evolution of microstructure and mechanical properties

of steels, several researchers have studied the interactions of solute elements with

point defects in bcc iron employing first-principles computational methods[53, 54, 104]

based on the electronic Density Functional Theory (DFT). These studies have however

considered mainly sp and transition elements. Further, the specifications of the DFT

calculations are not consistent among themselves. Olsson et al. and You et al. have

carried out their DFT total energy calculations under constant volume conditions[53,

104]. Gorbatov et al. have done the DFT calculations by Green function method with

atomic sphere approximation which precludes relaxation of ionic coordinates. They

themselves have indicated that the vacancy-solute binding energies of certain solutes

(Sc, Ti, Mo) are extremely sensitive to the extent of structural relaxation included in

the calculations[54]. Partly relaxed or unrelaxed calculations can thus give different

results[50,105–108].

Here, using DFT total energy calculations with complete relaxation of structural

degrees of freedom (ionic coordinates, shape and size of the unit cell) and uniform

specifications of k-mesh, plane wave basis set cut off energy and size of the simulation

cell, I go beyond the set of solute elements considered in the previous works and
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make a large database of predictions of solute formation energies, solute-solute, and

vacancy-solute binding energies for an extended set of 53 different solute elements,

with atomic numbers 1 to 54, in bcc ferromagnetic iron. I then analyze the results of

these calculations to identify physical trends in the formation and binding energies of the

solutes. I note here that the results of formation energies and volumes of point defects

and their analysis are presented in this chapter. Binding energies of vacancy-solute and

solute-solute pairs and their correlations with solute size factors and formation energies

are presented in the next chapter.

I also would like to note here that though the alkali metals and noble gas atoms

do not generally alloy with iron, knowledge of their energetics in iron matrix will be

useful to see trends in the solution behaviour of atoms in iron. Further, fission products

(including those from molten salt reactors) include elements from alkaline earth, alkali,

halogen and noble gas elements. For modelling the interactions of these fission products

with steel cladding as well as for modelling nuclide distribution between steelmaking

phases upon melting of sealed radioactive sources hidden in scrap, knowledge of their

formation energies are useful[109, 110]. Furthermore, oxygen and yttrium atoms are

practically immiscible in Fe but ODS steels are produced through mechanical alloying.

Similarly, ion beam mixing is used to mix immiscible Ag, In and Na in Fe[111,112]. Ion

implantation is also used for similar purposes[113,114]. For modelling of such alloying

approaches, energetics of these solutes will be useful.

I note further that interactions of self-interstitial atom defects with vacancies and

solute elements are also important for a robust understanding of atomic transport in

steels. I do not however consider self-interstitial atom defects in this work.

3.2 Computational method

We have considered all elements with Z=1 to 54 as solute atoms in bcc Fe. H, C, N, and

O were considered as interstitial solute atoms and other atoms as substitutional solutes.

Among the interstitial solute atoms, H has been considered as a tetrahedral interstitial

solute while the other atoms as octahedral interstitial solutes in accordance with their
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site preference[115–120]. In order to create point defects in bcc iron we have used

supercell method. Point defects were introduced into the supercell by adding and/or

removing appropriate atoms. An isolated vacancy was created by removing a Fe atom

at a given lattice site. Substitutional atom defects were created by replacing a single Fe

atom with a solute atom. This is illustrated in Fig. 3.1. In this figure, we also define

point defect pair configurations which are studied in the next chapter.

Figure 3.1: BCC 3 × 3 × 3 supercell with labeled atoms to define atomic defect configurations.
Labels 1, 2 and 3 represent substitutional sites. Labels 4 to 12 represent octahedral interstitial sites.
Solute-solute nearest neighbor pair configuration was obtained by substituting the Fe atoms at sites
1 and 2 with the given solute atoms. Vacancy-solute first and second nearest neighbor pairs were
formed by placing the given solute atom at site 2 or 3, respectively, while site 1 is made vacant. A
single interstitial atom defect was formed by placing the atom at site 4. Configurations of pairs of
interstitial atoms were created by placing them at pairs of sites 5-6, 5-7, 5-8, 5-9, 5-10, 5-11, and
5-12, respectively, in accordance with Domain et al.[117]. Vacancy-interstitial pairs were formed
by removing the atom at site 1 and placing an interstitial atom at site 4 or 5, respectively, for 1nn
and 2nn configurations[117]. Tetrahedral interstitial sites are not indicated.

The formation energy of a defect is a measure of the amount of energy needed

to form the defect. The vacancy and solute formation energies were computed from

the following expressions[53, 121]. The formation energy for a vacancy, E�
f , (where �
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denotes a vacancy) in bcc iron is calculated from[53]

E�
f = E(FeN−1�1) −

N − 1
N

E(FeN) (3.1)

where E(FeN−1�1) is the total energy of an iron supercell with N lattice sites containing

a single vacancy and (N-1) Fe atoms. E(FeN) is the total energy of bcc iron supercell with

N lattice sites without vacancy defect.

The expression for the formation energy of a substitutional solute, EX
f , (where a

solute atom is denoted by X) is given by[121]

EX
f = E(FeN−1X1) −

[
N −

(
1 + m

n

)]
N

E(FeN) −
1
n

E(FemXn) (3.2)

where E(FeN−1X1) is the total energy of the iron supercell with N lattice sites containing

a solute X and (N-1) Fe atoms. FemXn is the reference phase in our calculation of

solute formation energy. It is the second phase with which the solid solution phase

is in equilibrium (with a common boundary in the phase diagram). It can be a

compound phase, elemental crystal, molecules or atoms. Information regarding the

second phases in the Fe-X binary systems were obtained from ASM Alloy Phase Diagrams

Database[122–124]. E(FemXn) is the total energy of FemXn. For an interstitial solute

(denoted again by X), the expression for EX
f is the same except that (N-1) and (1 + m

n )

are replaced by N and (m
n ) respectively.

In addition to chemical interactions, the size of the solute atoms also influences the

interaction energies of the atomic defects. Therefore, the size factor of solute, SF(X), in

bcc iron has been computed using the definition from Hepburn et al.[96]:

SF(X) =
∆V
Vave

=
VX − Vave

Vave
. (3.3)

where Vave = V(FeN−1X1)
N and VX = V(FeN−1X1) −

N−1
N V(FeN). V(FeN−1X1) and V(FeN) are

calculated equilibrium volumes of FeN−1X1 and FeN supercell systems respectively. Size

factors of interstitial solutes are defined in a similar manner.

The total energies required in the calculations of formation and binding energies
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defined above were computed using 3 × 3 × 3 bcc supercells of 54 lattice sites.

Previous DFT works on this topic indicates that 3 × 3 × 3 supercell is generally

adequate[53, 107, 115, 120, 125, 126]. The DFT total energy calculations have been

performed using the Vienna Ab initio Simulation Package (VASP)[78, 80]. Projector

Augmented Wave (PAW) potentials[79,86] were used for all the elements considered in

this work. For exchange-correlation functional, the generalized gradient approximation

by Perdew, Burke, and Ernzerhof (PBE)[71] was used. All the total energy calculations

were fully relaxed with respect to volume as well as all cell-internal and cell-external

degrees of freedom, converged to 10−8 eV. Methfessel-Paxton order 1 smearing[88] of

the Fermi surface was used with a smearing width of σ=0.2 eV. It is known that the

spin-unpolarized (nonmagnetic) state of bcc Fe is higher in energy than the magnetic

state and spin-polarized calculations are necessary to establish its ferromagnetic ground

state[107]. The energy difference between the spin-unpolarized and spin-polarized state

of Fe can influence the formation and binding energies of solute atoms. Therefore,

spin-polarized calculations have been performed for all supercells representing pure bcc

ferromagnetic iron and bcc iron matrix with vacancy, solute, solute-solute and vacancy-

solute defects. A cutoff energy of 500 eV was used for the plane wave expansion of

the electron wave functions. Extensive tests of k-point sampling has indicated that an

extremely dense grid of k-points is required for converged atomic defect calculations.

Therefore, a 8 × 8 × 8 k-point mesh generated using the Monkhorst-Pack scheme was

used to sample the Brillouin zone. In addition to the total energy of the system, spin-

polarized calculations provide the local magnetic moments of the atoms which can be

used to establish the accuracy of our calculations.

With these specifications, the lattice parameter and magnetic moment of bcc

Fe were predicted to be 2.84 Å and 2.23 µB/atom respectively. These values are

in good agreement with the experimental values of 2.86 Å and 2.2 µB/atom[127].

Further the vacancy formation energy E�f =2.18 eV obtained from our calculation is

in good agreement with the previously published theoretical values of 2.18 eV[128] and

2.17 eV[115] as well as with the positron annihilation experimental value of 2.0±0.2

eV[129].
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3.2.1 Reference systems

For the calculation of solute formation energies (also known as heat or enthalpy of

solution) in bcc Fe, as defined in Eq. 3.2, total energies of the elemental solutes (X)

or Fe-X binary compounds, whichever is in equilibrium with the solid solution phase

(Fe), known as reference states or systems, are required. For this, we performed a

set of high-precision calculations for the ground-state structure of all the pertinent

elements and compounds. The crystal structures of the elements and compounds include

body centered cubic (bcc), face centered cubic (fcc), hexagonal close packed (hcp),

tetragonal, orthorhombic and trigonal symmetries with nonmagnetic, ferromagnetic,

or antiferromagnetic orders. The ground state crystallographic parameters were

determined through full relaxation of the unit cell and atomic positions. To ensure that

the total energies and lattice parameters were determined accurately, we used a plane

wave cutoff energy of 500 eV, a high-density Monkhorst-Pack k-points grid to sample the

Brillouin zone, and an energy tolerance of 10−8 eV. We tested convergence with respect

to k-points mesh for each system beginning with a coarse mesh, and k-points meshes

used for all the systems are listed in Table 3.1. With these settings the lattice parameters

of most of the elements and compounds were reproduced within ±2% of experimental

lattice parameters which are also listed in Table 3.1.

For H, F, Cl, and Br, the spin polarized electronic energy of their free diatomic

molecules have been used as their reference state energy. We have performed these

free molecular calculations by placing a single diatomic molecule in a 7 Å cubic cell and

optimizing the bond length. Optimized bond lengths (0.75, 1.42, 1.99, 2.32 Å) were

found to be in good agreement with their respective experimental bond lengths (0.74,

1.41, 1.99, 2.27 Å).
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Table 3.1: Calculation details for the ground state total energy of elemental (X) and binary Fe-X
phases considered as reference systems for the formation energy of solutes (X) in bcc Fe. Space group,
magnetic order, lattice parameters (a, b, c) (Å), k-mesh and valence electron configurations of the
solutes (X) in their respective VASP-PAW potentials are listed. Space groups are given along with
space group numbers in parentheses. Labels NM, FM and AFM denote nonmagnetic, ferromagnetic,
and antiferromagnetic orders, respectively. Calculated equilibrium lattice parameters are compared
with experimental values given in parentheses. Measured crystal structure data of the elements and
Fe-X binary compounds were taken from Pearson’s Handbook of Crystallographic Data[123] and
Pauling file[124]. The size of the simulation box used for free atom and free molecule systems is
also denoted by ‘a’.

Phase Space group Magnetic Lattice parameter k-mesh Valence

order shell of X

H Free molecule NM a=7 1× 1× 1 1s1

He Free atom NM a=12 1× 1× 1 1s2

Li Im-3m(229) NM a=3.440(3.510) 17× 17× 17 2s12p0

FeBe2 P63/mmc(194) FM a=4.175(4.212) 7× 7× 7 2s22p0

c=6.794(6.853)

Fe2B I4/mcm(140) FM a=5.054(5.117) 9× 9× 9 2s22p1

c=4.236(4.252)

Fe3C Pnma(62) FM a=5.021(5.078) 11× 11× 11 2s22p2

b=6.740(6.733)

c=4.480(4.519)

Fe4N Pm-3m(221) FM a=3.795(3.795) 7× 7× 7 2s22p3

FeO Fm-3m(225) AFM a=4.312(4.321) 17× 17× 17 2s22p4

F Free molecule NM a=7 1× 1× 1 2s22p5

Ne Free atom NM a=12 1× 1× 1 2s22p6

Na Im-3m(229) NM a=4.200(4.290) 17× 17× 17 3s13p0

Mg P63/mmc(194) NM a=3.200(3.210) 17× 17× 17 3s23p0

c=5.200(5.210)

Fe3Al Fm-3m(225) FM a=5.744(5.800) 7× 7× 7 3s23p1

FeSi P213(198) FM a=4.450(4.484) 9× 9× 9 3s23p2

Fe3P I-4(82) FM a=9.051(9.107) 4× 4× 7 3s23p3

c=4.382(4.460)

FeS P63/mmc(194) AFM a=3.410(3.448) 15× 15× 15 3s23p4

c=5.710(5.744)

Cl Free molecule NM a=7 1× 1× 1 3s23p5

Ar Free atom NM a=12 1× 1× 1 3s23p6

K Im-3m(229) NM a=5.30(5.33) 17× 17× 17 3p64s1

Continued on next page
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Table 3.1 – continued from previous page

Phase Space group Magnetic Lattice parameter k-mesh Valence

order shell of X

Ca Fm-3m(225) NM a=5.53(5.58) 17× 17× 17 3s23p64s2

Fe2Sc P63/mmc(194) FM a=4.920(4.937) 9× 9× 7 3s23p64s2

c=8.066(8.038) 3d1

Fe2Ti P63/mmc(194) AFM a=4.705(4.757) 7× 7× 5 3p63d34s1

c=7.811(7.829)

FeV P42/mnm(136) FM a=8.987(8.965) 5× 5× 9 3p63d44s1

c=4.580(4.633)

Cr Im-3m(229) AFM a=2.88(2.91) 17× 17× 17 3p63d54s1

Mn I-43m(217) NM a=8.57(8.91) 6× 6× 6 3p64s23d5

Fe Im-3m(229) FM a=2.84(2.86) 17× 17× 17 3p64s13d7

FeCo Pm-3m(221) FM a=2.846(2.856) 17× 17× 17 3d84s1

FeNi P4/mmm(123) FM a=2.520(2.533) 17× 17× 17 3d84s2

c=3.581(3.582)

Cu Fm-3m(225) NM a=3.63(3.61) 17× 17× 17 3d104s1

Fe3Zn10 I-43m(217) FM a=8.976(8.978) 5× 5× 5 3d104s2

Fe3Ga Pm-3m(221) FM a=3.658(3.679) 17× 17× 17 4s24p1

Fe3Ge P63/mmc(194) FM a=5.142(5.160) 9× 9× 9 4s24p2

c=4.224(4.210)

Fe2As P4/nmm(129) AFM a=3.635(3.634) 6× 6× 3 4s24p3

c=5.920(5.985)

FeSe P4/nmm(129) FM a=3.600(3.710) 13× 13× 9 4s24p4

c=5.880(6.010)

Br Free molecule NM a=7 1× 1× 1 4s24p5

Kr Free atom NM a=12 1× 1× 1 4s24p6

Rb Im-3m(229) NM a=5.59(5.67) 17× 17× 17 4p65s1

Sr Fm-3m(225) NM a=6.02(6.08) 17× 17× 17 4s24p65s2

Fe17Y2 P63/mmc(194) FM a=8.481(8.462) 5× 5× 5 4s24p65s2

c=8.257(8.282) 4d1

Fe2Zr Fd-3m(227) FM a=7.043(7.017) 9× 9× 9 5s24d15p1

Fe2Nb P63/mmc(194) AFM a=4.774(4.840) 9× 9× 9 4p65s14d4

c=7.793(7.895)

Fe2Mo P63/mmc(194) FM a=4.675(4.745) 9× 9× 9 4p65s14d5

c=7.797(7.734)

Continued on next page
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Table 3.1 – continued from previous page

Phase Space group Magnetic Lattice parameter k-mesh Valence

order shell of X

FeTc P42/mnm(136) FM a=9.105(9.130) 5× 5× 9 4p65s14d6

c=4.885(4.788)

Ru P63/mmc(194) NM a=2.73(2.71) 17× 17× 17 4p65s14d7

c=4.32(4.28)

FeRh Pm-3m(221) FM a=3.016(2.989) 17× 17× 17 4p65s14d8

FePd P4/mmm(123) FM a=2.738(2.722) 17× 17× 17 5s14d9

c=3.751(3.715)

Ag Fm-3m(225) NM a=4.160(4.080) 17× 17× 17 5s14d10

Cd P63/mmc(194) NM a=3.050(2.980) 17× 17× 17 5s24d10

c=5.700(5.620)

In I4/mmm(139) NM a=3.33(3.25) 17× 17× 17 5s25p1

c=4.96(4.95)

FeSn P6/mmm(191) AFM a=5.290(5.297) 7× 7× 7 5s25p2

c=4.430(4.481)

FeSb P63/mmc(194) AFM a=3.980(4.060) 15× 15× 15 5s25p3

c=5.028(5.130)

Fe1.12Te P4/nmm(129) AFM a=3.679(3.812) 5× 5× 3 5s25p4

c=6.505(6.251)

FeI2 P-3m1(164) AFM a=4.015(4.040) 7× 7× 5 5s25p5

c=7.108(7.375)

Xe Free atom NM a=12 1× 1× 1 5s25p6

We would like to note that Grindy et al. have discussed diatomic energy correction for

improving the DFT calculated formation energies of oxides, nitrides, hydrides, fluorides

and chlorides formation with reference to experimental results[130]. We consider this

corrections in our work for solutes like H, N, F and Cl but the resultant formation

energies for H2 appear to deviate more from experiment than without correction.

Therefore, the diatomic correction schemes are not considered in this work.

For noble gas atoms, the spin polarized electronic energy of their free atoms have

been used as their reference state energy. These free atom calculations were performed

by placing a single atom at the center of a 12 Å cubic cell.

Spin polarized calculations were performed for all the crystalline systems with
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ferromagnetic or antiferromagnetic order. For FeO, FeS, Fe2Ti, Fe2As, Fe2Nb, FeSn,

FeSb, and Fe1.12Te, antiferromagnetic calculations have been performed in accordance

with their respective literature[131–138]. For Cr, commensurate antiferromagnetic spin

structure has been assumed[139]. Specifying the AFM unit cell of FeI2 in the DFT

calculation is not straightforward. Therefore, calculation was performed with the FeCl2-

type AFM order[140]. For Mn, a nonmagnetic calculation in the bcc structure with 58

atoms (α-Mn) was performed. The total energy of Mn was then corrected by 28 meV,

the energy by which its antiferromagnetic state is reported to be more stable than the

nonmagnetic state[96].

Further, the second phases are not always line compounds. FeBe2, FeO, Fe3Al, FeS,

Fe2Ti, FeV, FeCo, Fe3Zn10, Fe3Ga, Fe3Ge, Fe2Zr, Fe2Nb, FeTc, FeRh, FePd, FeSb, and

Fe1.12Te all exhibit significant homogeneity range. Some of them also have complex

magnetic structure and multiple or partial site occupancies. Total energies of these

phases were computed for the crystallographic details given in the literature[123,124].

Determining the minimum energy composition of these phases over their respective

homogeneity range is beyond the scope of this work.

3.3 Results and discussion

3.3.1 Solute formation energies

Solute formation energies are useful to understand solid state solubility and alloying

behavior. In Table 3.2, we have collected the results of our computations of solute

formation energy (EX
f ) in bcc iron for solutes with atomic numbers 1 to 54 along

with their size factors (SF(X)) and magnetic moments (µB). For comparison, Table 3.2

includes also results from literature, within parentheses, wherever available. We first

examine the solute formation energies, EX
f .

We would like to emphasize a point here: It is a common practice in DFT calculations

of formation energy of solute atoms in iron to choose the perfect crystal of the solute

element as the reference system[53,96,104,126]. But this choice is pertinent only if the

pure solute element is actually the second phase existing in equilibrium with the solid
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solution phase.

Table 3.2: Formation energies EX
f of solute atoms (X), solute size factor SF(X), and magnetic

moment of solute X µB in bcc iron. The energies are given in eV. For comparison, results from the
literature are given within parentheses wherever available.

X EX
f SF(X) µB

H 0.194(0.21)[115] -0.65 -0.023(-0.05)[141]

He 4.350(4.19)[142] 0.104 0.010(0.05)[142]

Li 0.982 0.075 -0.078

Be 0.395 -0.144 -0.138

B 1.694 -0.31 -0.14

C 0.471 -0.063 -0.146(-0.24)[143]

N 0.210 -0.022 -0.111(-0.14)[143]

O 1.236(1.24)[104] 0.176 0.044

F 0.75 0.377 0.17

Ne 5.706(5.76)[144] 0.62 0.018

Na 3.435 0.63 -0.04

Mg 0.971 0.466 -0.053

Al -0.100 0.205 -0.077

Si -0.160 -0.021 -0.089

P 0.460 -0.095 -0.054

S 0.760 0.068 0.02

Cl 2.546 0.603 0.138

Ar 7.819(8.03)[144] 1.047 0.175

K 6.963 1.427 0.059

Ca 3.251 1.008 -0.116

Sc 1.122 0.591 -0.407(-0.25)[54]

Ti 0.054 0.323(0.32)[53] -0.797(-0.65)[53]

V -0.286 0.223(0.15)[53] -1.273(-1.21)[53]

Cr -0.162(-0.14)[53] 0.219(0.15)[53] -1.803(-0.16)[53]

Mn 0.182(0.21)[53] 0.234(0.02)[53] -2.015(-0.40)[53]

Co -0.033 0.102(0.03)[53] 1.699(1.72)[53]

Ni 0.176 0.266(0.15)[53] 0.890(0.88)[53]

Cu 0.722(0.72)[53] 0.211(0.15)[53] 0.116(0.11)[53]

Zn 0.353 0.319 -0.085

Ga 0.138 0.331 -0.182

Ge -0.086 0.301 -0.121

Continued on next page
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Table 3.2 – continued from previous page

X EX
f SF(X) µB

As -0.271 0.286 -0.070(-0.05)[145]

Se 0.930 0.397 -0.019

Br 2.738 0.719 0.064

Kr 8.158 1.165 0.194

Rb 7.928 1.623 0.05

Sr 4.884 1.473 -0.075

Y 2.171 1.196 -0.302(-0.20)[54]

Zr 1.128 0.889(1.05)[53] -0.715(-0.53)[53]

Nb 0.231 0.679(0.79)[53] -0.775(-0.70)[53]

Mo 0.036 0.521(0.52)[53] -0.804(-0.75)[53]

Tc 0.084 0.436(0.48)[53] -0.558(-0.52)[53]

Ru 0.293(0.32)[53] 0.426(0.40)[53] 0.326(0.33)[53]

Rh 0.062 0.542(0.58)[53] 0.690(0.70)[53]

Pd 0.483 0.732(0.81)[53] 0.470(0.40)[53]

Ag 1.802(1.93)[53] 0.906(0.92)[53] 0.106(0.01)[53]

Cd 1.768(1.88)[96] 0.921(0.95)[53] -0.067(-0.06)[96]

In 1.146(1.24)[104] 0.935 -0.234

Sn 0.62 0.895 -0.201(-0.08)[145]

Sb 0.261 0.837 -0.092(-0.07)[145]

Te 0.857 0.833 -0.07

I 3.002 0.933 -0.029

Xe 8.267(15.45)[146] 1.405 0.132

This is indeed true for systems such as Fe-Li, Fe-Na, Fe-Mg, Fe-K, Fe-Ca, Fe-Mn, Fe-Cu,

Fe-Rb, Fe-Sr, Fe-Ru, Fe-Ag, Fe-Cd and Fe-In[122]. But for systems such as, Fe-Be, Fe-B,

Fe-C, Fe-N, Fe-O, Fe-Al, Fe-Si, Fe-P, Fe-S, Fe-Sc, Fe-Ti, Fe-V, Fe-Cr, Fe-Co, Fe-Ni, Fe-Zn,

Fe-Ga, Fe-Ge, Fe-As, Fe-Se, Fe-Y, Fe-Zr, Fe-Nb, Fe-Mo, Fe-Tc, Fe-Rh, Fe-Pd, Fe-Sn, Fe-Sb,

Fe-Te and Fe-I, second phases, other than the solute elements, exist[122]. For these

systems, solute formation energies obtained using pure crystals as reference system can

give unphysical equilibrium solubility[121]. For instance, the solute formation energies

of Ti, V, Zr, Nb, Al, Si, P, Ga, Ge, and As from Olsson et al.[53], You et al.[104] and Murali

et al.[126] give unphysically huge equilibrium concentration of these solutes. Regarding

the estimation of the equilibrium concentration of solutes, please see Eq. 1 in Ravi et
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al.[121] and Eq. 6 in Murali et al.[126] and their discussion. Therefore, in our work, we

have obtained the formation energies of solute atoms with respect to the second phases

wherever they are pertinent.

We have compared our formation energies of solutes with literature where the

reference state used is the same as in our work. The literature data are often from

computational methods. Experimental data of energetics of atomic defects in iron are

generally scarce and a comparison of our results with experiments is made wherever

possible. We see from column 2 in Table 3.2 that our solute formation energy of H

(0.194 eV) is in good agreement with prior DFT result of 0.21 eV[115] and experimental

result of 0.30 eV[147]. For He atoms, the agreement between our work and literature

(4.35 eV vs. 4.19 eV[142] and 4.30 eV[148]) is again very good. For solutes O, Ne, Ar,

Cr, Mn, Cu, Ru, Ag, Cd, and In also, our formation energies are in good agreement

with literature (within 15%). Only for Xe, our formation energy deviates appreciably

from literature. The difference is likely due to the approximate Lennard-Jones empirical

potential used in the literature. Although formation energies of other solutes are

reported in the literature, they generally correspond to elemental crystal reference states

rather than the second phases. Therefore, they are not compared with our solution

energies.

3.3.2 Solubility

In order to see whether our solute formation energies predict reasonable solid state

solubility, we have computed the equilibrium percentage of the solute atoms Ceq by

using their formation energies (EX
f ) in the ideal solution expression for solubility

Ceq = exp(−EX
f /kBT)[121,126]. Here kB is the Boltzmann constant and T is temperature,

set to 800 K. The results are listed in Table 3.3. Table 3.3 lists also the solubility read

from phase diagrams[122]. It should be noted that accurate solubility can be expected if

EX
f in the above expression is replaced by respective free formation energies(accounting

to avoid the double counting of the mean field configurational entropy). Calculating the

entropic contributions of electrons, phonons, magnons and configurational degrees of

freedom of the solid solution and the second phases to obtain the free formation energy
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Table 3.3: Equilibrium percentage of solutes (Ceq) in bcc iron obtained from our formation energies
listed in Table 3.2 compared with corresponding concentrations from ASM alloy phase diagrams
(PD) database[122] (Ceq(PD)).

X Ceq Ceq(PD) X Ceq Ceq(PD) X Ceq Ceq(PD)
H 0.060 0.05 K 0.000 0.00 Sr 0.000
He 0.000 Ca 0.000 0.00 Y 0.000 0.00
Li 0.000 0.00 Sc 0.000 0.00 Zr 0.000 0.00
Be 0.003 1.00 Ti 0.450 0.70 Nb 0.040 0.00
B 0.000 0.00 V 57.600 25.00 Mo 0.600 1.00
C 0.001 0.00 Cr 11.000 15.00 Tc 0.295 0.00
N 0.050 0.20 Mn 0.080 2.50 Ru 0.014 2.00
O 0.000 0.00 Co 1.610 30.00 Rh 0.410 8.00
F 0.000 Ni 0.080 5.80 Pd 0.001 0.05
Ne 0.000 Cu 0.000 0.00 Ag 0.000 0.00
Na 0.000 0.00 Zn 0.006 5.00 Cd 0.000 0.00
Mg 0.000 0.00 Ga 0.140 15.00 In 0.000 0.00
Al 4.260 20.00 Ge 3.500 20.00 Sn 0.000 2.00
Si 10.100 28.00 As 49.40 5.00 Sb 0.023 2.00
P 0.001 0.05 Se 0.000 0.00 Te 0.000 1.50
S 0.000 0.00 Br 0.000 I 0.000 0.00
Cl 0.000 Kr 0.000 Xe 0.000
Ar 0.000 Rb 0.000

for all the 53 Fe-X binary systems is beyond the scope of this work. In Table 3.3, solubility

is left blank for systems for which phase diagrams are not available.

The important result from our calculation of solute formation energies computed

with reference to the corresponding second phases, rather than with respect to pure

crystals of solute elements, is that the unphysically huge solubility predicted for certain

solutes is now avoided/corrected (Ti, V, Zr, Nb, Al, Si, P, Ga, Ge, As). We see further from

Table 3.3 that, except for V, As, and Tc, the solubility predicted by our solute formation

energies are generally an underestimation compared to those from phase diagrams.

This is reasonable because our solubility formula assumes the infinite dilution limit

(small solubility limit and negligible interaction between the solute atoms) and ignores

entropic contributions to solution free formation energy[121, 126]. Overestimation of

solubility of V and Tc can be related to the fact that the corresponding second phases

(FeV and FeTc) are the Frank-Kasper σ phases which are difficult to model. We have
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used one of the likely site occupancies reported for the σ-FeCr phase[149] to model FeV

and FeTc phases. The reason for overestimation of As solubility is not clear. We have

performed total energy of Fe2As in its antiferromagnetic structure in accordance with

literature[134]. Our calculated lattice parameters of Fe2As match with experimental

values.

Figure 3.2 displays the formation energies of solute atoms (EX
f ) in bcc Fe. We see that

H
Li
Na
K
Rb

Be
Mg
Ca
Sr

Sc
Y

Ti
Zr

V
Nb

Cr
Mo

Mn
Tc

Fe
Ru

Co
Rh

Ni
Pd

Cu
Ag

Zn
Cd

B
Al
Ga
In

C
Si
Ge
Sn

N
P
As
Sb

O
S
Se
Te

F
Cl
Br
I

He
Ne
Ar
Kr
Xe

0

1

2

3

4

5

6

7

8

F
o
rm

at
io

n
 e

n
er

g
y
 o

f 
so

lu
te

 (
eV

) Z=1-2
Z=3-10
Z=11-18
Z=19-36
Z=37-54

Figure 3.2: Formation energies of solute atoms (EX
f ) in bcc Fe. The curves are guides to eye. The

dashed horizontal line is a guide to eye delineating negative and positive formation energies.

the formation energies of solute elements from fourth and fifth periods vary with their

atomic numbers such that they reach maxima near the ends of the periods and minima in

between, with a local hump near Cu and Ag (like a quasi-parabolic valley). Solutes from

second and third periods show similar trend like the elements near the ends of the fourth

and fifth periods. Solute formation energies of H and He are lowest in the respective

groups. We see further that the substantially positive formation energies of alkali (Li,

Na, K, Rb), noble gas (He, Ne, Ar, Kr, Xe), alkaline earth (Mg, Ca, Sr) and halogen (F,
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Cl, Br, I) atoms are in accord with their immiscibility in bcc iron[150]. Se, Ag and Cd

too are immiscible in bcc iron[150]. In agreement with this, our calculation predicts an

appreciably large endothermic formation energies for these solutes. For elements Al, Si,

V, Cr, Co, Ge, and As, our calculations predict negative solute formation energies. This

is in line with their large solid state solubility in Fe[150]. For other elements H, Be, B,

C, N, O, P, S, Sc, Ti, Mn, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, In, Sn, Sb and Te,

our calculations predict moderately positive solute formation energies. Among these,

solutes with appreciable solubility such as H, Be, N, P, Ti, Mn, Ni, Zn, Ga, Mo, Ru, Rh,

Pd, Sn, Sb and Te have generally relatively lower formation energies than solutes with

negligible solubility such as B, C, O, S, Sc, Cu, Y, Zr, Nb, Tc and In.

3.3.3 Size factors of solutes

The interaction among atomic defects in a host matrix can have different components.

The solute formation energy, presented above, represents the chemical component

which is usually the dominant component. The other component that is considered

along with the chemical component is the strain component[50, 53, 96]. The strength

of the interaction due to the strain component is to a first approximation proportional

to the size factor of the solute atoms in the solvent matrix. Therefore, we computed

the size factors of the solute atoms (SF(X)) in bcc Fe using Eq. 3.3, adopted from

Hepburn et al.[96]. Column 3 of Table 3.2 lists these size factors. Comparison

of size factors of 3d and 4d transition metal solute atoms from our work with

literature[53] is generally satisfactory. For the other 37 solute atoms, size factors are

not available in the computational literature and our work provides them for the first

time. Measured size factors of substitutional elements are reported[151]. Qualitative

agreement is seen between our calculated and the measured size factors, including the

negative size factors for Be, P and Si, despite the significant difference in the solute

concentrations involved. Following is the list of measured[151] size factors SF(X)/100:

Al(0.128), Be(-0.262), Co(0.015), Cr(0.044), Cu(0.175), Ge(0.165), Mn(0.048),

Mo(0.275), Nb(0.176), Ni(0.046), P(-0.132), Pd(0.622), Ru(0.199), Sb(0.364), Si(-

0.079), Sn(0.677), Te(0.086), Ti(0.144), V(0.105), Zn(0.211).



3. Point defect formation energy and solubility in bcc ferromagnetic iron / 46

Figure 3.3 displays the size factors of the solute atoms. We see that, like formation

energies, the size factors of elements from fourth and fifth periods vary with their atomic

numbers such that they reach maxima near the ends of the periods and broad minima

in between, with a local hump near Ga and In. Size factors of solutes from second and

third periods show similar trend like the solutes near the ends of the fourth and fifth

periods. Size factors of H and He are lowest in their respective groups. Size factor of B

deviates from this trend. We performed additional calculations of the solute formation

energy and size factor of B considering it as an octahedral interstitial solute. While the

formation energy is found to be almost same (slightly lower) as that of substitutional

B, size factor is changed significantly (−0.009 for −0.31). With this size factor, the

deviation of B is thus corrected. But this change in size factor is not useful to improve the

correlations considered in the later sections. Therefore, we proceed with substitutional

B.
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Figure 3.3: Size factors of solute atoms [SF(X)] in bcc Fe. The curves are guides to eye.
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It is further evident that majority of solute atoms have positive size factors. That

is, the effective size of these solute atoms in iron matrix is larger than that of iron

atoms. This is in agreement with the increase in the lattice parameter of bcc iron with

the addition of 3d solute elements[107]. Further, the elements that are identified to be

immiscible according to their solute formation energies (He, Li, B, C, O, F, Ne, Na, Mg, S,

Cl, Ar, K, Ca, Sc, Cu, Se, Br, Kr, Rb, Sr, Y, Zr, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe) also generally

have relatively large size factors. He, Li, C, and S are exceptions. These elements are

immiscible in iron despite their relatively small size factors. Al, Ti, V, Cr, Mn, Ni, Zn,

Ga, Ge, As, Nb, Mo, Ru and Rh form another set of exceptions. These elements exhibit

appreciable solubility though their size factors are relatively large.

3.3.4 Magnetic moments of solutes

Knowledge of magnetic moments of solute elements in iron will be useful for selecting

alloying additions with desired magnetic properties. Therefore we have collected the

local magnetic moments of all solute atoms considered in this work. Our calculated

magnetic moments of solutes (µB, Bohr magnetron) are listed in column 4 of Table 3.2.

For 3d and 4d transition metal elements as well as for H, He, C, N, Sc, As, Y, Sn, and

Sb, our calculated local magnetic moments are found to be in good agreement with

literature[53, 54, 96, 141–143, 145]. For other solute elements our work provides their

magnetic moments for the first time. Figure 3.4 displays the magnetic moments of

solutes in bcc iron. We see that the local magnetic moments are not quite significant

for solutes from first, second and third periods (Z=1 to 18). Solutes from fourth and

fifth periods (Z=19 to 36 and Z=37 to 54) have similar magnetic coupling with host

Fe. The 3d and 4d transition metal solutes to the left of Fe in the periodic table

show antiferromagnetic coupling while those to the right of Fe show ferromagnetic

coupling with host Fe[152]. Magnetic moments of 3d solutes are relatively stronger

than those of 4d solutes. Further it is found that the impurity moments of Ti, V, Cr,

Mn, Co, Ni, and Cu obtained from our calculations are in good agreement with neutron

scattering experiments and first principles calculations[152]. Rahman et al. have given

a mechanism for the antiferromagnetic and ferromagnetic coupling of solute moments
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with the host moment for 3d transition metal atoms[107]. Through comparison of

the spin-unpolarized and polarized impurity-site-projected local density of states (as

well as spin density contour plots), they have shown that all 3d electrons from Sc to

Cr impurities occupy local minority spin bands (minority spin eg states) to achieve

charge neutrality and consequently to align antiferromagnetically to the host magnetic

moments. Additional 3d electrons (from Co, Ni, Cu, Zn impurities) are forced to enter

the t2g majority spin states and couple ferromagnetically to the host Fe atoms[107].

While this trend appears to hold for other elements on the left side of the respective

periods, it does not hold for solutes on the right side. Rather, solutes from Mg to Ar, Zn

to Kr, and Cd to Xe appear to form another group of elements with magnetic coupling

similar to 3d or 4d elements with Fe though with weaker moments.
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Figure 3.4: Local magnetic moments of solute atoms (µB) in bcc Fe. The curves are guides to eye.
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3.3.5 Correlation between solute formation energies and size factors

To see whether the size factor of solutes affects its formation energy, we have plotted

solute formation energy as a function of their size factor in bcc iron, which is shown in

Fig. 3.5. The horizontal dotted line at the solute formation energy of 1 eV is a guide to

eye separating data points below and above 1 eV. The vertical dotted line at size factor

1 separates data points below and above 1. The solute atoms that form alloys with iron

generally have size factor below 1 and formation energies below 1 eV whereas elements

that do not normally alloy with iron (Li, Na, K, Rb, He, Ne, Ar, Kr, Xe, F, Cl, Br, I, Mg, Ca,

Sr, Ag, Cd, In, and Y) [150] generally have solute formation energies above 1 eV. Many

of the later also have size factors above 1. That is, a correlation between solute formation

energies and size factors exist for some elements but is absent for other elements. For

example, the size factor of solutes He, Li, S, and Co are near 0.1. But their formation

energies change from about 4 eV to about −0.003 eV.
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Other trends also emerge from Fig. 3.5. By comparing isoelectronic sets of solutes

(i.e., solutes in the same column or group of the periodic table, H/Li/Na/K/Rb,

Be/Mg/Ca/Sr, Sc/Y, Ti/Zr, V/Nb, Cr/Mo, Mn/Tc, Fe/Ru, Co/Rh, Ni/Pd, Cu/Ag, Zn/Cd,

B/Al/Ga/In, C/Si/Ge/Sn, N/P/As/Sb, O/S/Se/Te, F/Cl/Br/I, He/Ne/Ar/Kr/Xe), one

can see a clear trend that the size factor increases down the group with an associated

increase in the solute formation energy, indicated by dashed lines drawn as a guide to

the eye. Solutes H, B, C, N, and O are exception to this trend. This graph shows that the

solute size factor and its influence on the solute formation energy are quite appreciable

along the group rather than across the periods. Another physical trend that may be

noticed is that the rate of increase of solute formation energy with the size factor is

less along V/Nb, Cr/Mo, Mn/Tc, Co/Rh, and Ni/Pd groups compared to alkali, alkaline

earth, halogen, and noble gas atoms. The higher rate of increase of solute formation

energies with size factor, for instance, for alkali elements or noble gas atoms, is likely

because the strain component (size factor) of the interaction is more dominant than the

chemical component. This also indicates, for instance, that the solubility of He in iron

will increase appreciably with high pressure compared to the solubility of Nb or Mo.

3.4 Conclusions

In order to understand the atomic level properties of steels, we have performed an

extensive set of first principles electronic structure calculations of the formation energies

of atomic defects in ferromagnetic bcc iron. An extended set of solute elements with

atomic numbers from 1 to 54 have been considered. Our calculations reveal several

trends in the formation energies of solutes and their size factors. (1) It is found that

the formation energies of solutes from fourth and fifth periods vary with their atomic

numbers such that they reach maximum near the ends of the periods and minimum in

between, with a local hump near Cu and Ag (like a quasi-parabolic valley). Solutes from

second and third periods show similar trends like the elements near the ends of the

fourth and fifth periods. The common solute additions to Fe (3d, 4d, sp elements) are

found to possess moderate formation energies. Large endothermic formation energies
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are obtained for solutes that lack solubility in Fe (alkali, halogen, noble gas, alkaline

earth, Se, Ag, and Cd atoms). (2) Like formation energies, the size factors of the solute

elements also vary with their atomic numbers such that they reach maximum near the

ends of the periods and minimum in between. The majority of the solute atoms have

positive size factors, i.e., their effective sizes in the iron matrix are higher than that

of iron atoms. Immiscible solute atoms generally possess relatively large size factors.

(3) The size factors of isoelectronic sets of elements increase down the groups with

an associated increase of the formation energies. (4) Solubilities estimated from our

formation energies are found to be in reasonable agreement with those from phase

diagram database.
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4
Binding energies of atomic defects in bcc

ferromagnetic iron

4.1 Introduction

In an alloy, solute atoms can move randomly in all directions. When they encounter

one another, the interaction can be attractive or repulsive which would cause either

precipitation or segregation. Therefore, it is useful to obtain the binding energies of

pairs of solute atoms in iron. As stated in the previous chapter section 3.1, first principles

electronic structure calculations offer the most accurate means to develop an atomic

level understanding of the interactions of solutes and point defects in solids. In this

chapter, we describe our first principles study of the binding energies of solute-solute

and vacancy-solute pairs in bcc iron.

4.2 Computational method

Creation of different point defects in bcc iron matrix for our modelling study have been

described in Fig. 3.1 in the previous chapter. Substitutional solute-solute pair defects

were formed by replacing a pair of nearest-neighbor Fe atoms with a pair of solute

atoms. Substitutional vacancy-solute pairs were created by removing a Fe atom at a

given site and replacing a Fe atom with a solute atom at a nearest-neighbor (1nn) or a

next-nearest-neighbor (2nn) site. Interstitial solute-solute pairs were formed by placing

them at nearest-neighbor or further neighbor interstitial sites. Vacancy-interstitial atom

pairs were formed by removing a Fe atom at a given site and placing the solute at a

53
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nearest or next-nearest octahedral interstitial site. A similar procedure is followed for

tetrahedral interstitial solute H.

The binding energy of substitutional solute-solute (X-X) pair configuration, Ex−xb , is

defined as

Ex−xb = [E(FeN−2X2) + E(FeN)] − 2[E(FeN−1X1)] (4.1)

where E(FeN−2X2) is the total energy of the iron supercell with N lattice sites containing

a pair of substitutional solutes X and (N-2) Fe atoms. Similarly, the binding energies of

pair of interstitial solutes is given by

Ex−xb = [E(FeNX2) + E(FeN)] − 2[E(FeNX1)] (4.2)

where E(FeNX2) is the total energy of the iron supercell with N lattice sites containing

a pair of solutes at interstitial sites and N Fe atoms. E(FeNX1) is the total energy of the

iron supercell of N lattice sites containing N Fe atoms and a solute X at an interstitial

site.

For the vacancy-solute(� − X) interaction, the binding energy of a substitutional

solute configuration is given by

E�−x
b = [E(FeN−2X1�1) + E(FeN)] − [E(FeN−1X1) + E(FeN−1�1)] (4.3)

where E(FeN−2X1�1) is the total energy of the iron supercell of N lattice sites containing

a substitutional solute X, a vacancy (�) and (N-2) Fe atoms. For an interstitial solute,

the vacancy-solute binding energy is given by

E�−x
b = [E(FeN−1X1�1) + E(FeN)] − [E(FeNX1) + E(FeN−1�1)] (4.4)

where E(FeN−1X1�1) is the total energy of the iron supercell of N lattice sites containing

a vacancy at a substitutional site, a solute at an interstitial site and (N−1) Fe atoms. With

these definitions, negative values of Eb denote binding configurations. DFT calculations

of the total energies have been performed in the same manner as in chapter 3 with the

similar specifications.
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4.3 Results and discussions

4.3.1 Solute-solute binding energies

The binding energies are a measure of strength of attractive or repulsive interaction.

Generally, 1nn solute-solute interactions are dominant compared to further neighbor

interactions for substitutional solutes[53, 104]. Therefore, second and further neighbor

solute-solute interaction energies for these solutes have been omitted in our calculations

so as to reduce the demanding computational requirements. For interstitial solutes C,

N, and O, we have considered their binding energies in seven different configurations.

Column 2 of Table 4.1 lists nearest neighbor solute-solute binding energies (EX−X
b ) for

all the solutes along with results from literature. For 15 solutes Li, Be, F, Na, Mg, Cl, K,

Ca, Br, Kr, Rb, Sr, Cd, I, and Xe, solute-solute binding energies are not available in the

literature and our work provides them for the first time. For the remaining 38 solute

atoms, solute-solute binding energies are available in the literature. For 18 of these 38

solutes, our calculated binding energies are in good agreement with literature (within

15%). For the remaining 20 elements (He, B, C, N, O, Ne, Si, Sc, Mn, Ni, Ga, Y, Zr, Nb,

Tc, Rh, Pd, Ag, In, Sn), the difference is more than 15%. Out of these 20 solutes, the

literature for He-He and Sc-Sc pairs correspond to different configurations compared

to our work. Our work considers a pair of substitutional He atoms whereas literature

corresponds to a pair of interstitial He atoms[144]. Similarly, our Sc-Sc pair corresponds

to substitutional Sc atoms in bcc iron matrix modeled with a 3 × 3 × 3 supercell while

literature corresponds to a pair of Sc atoms in a fixed free 22-atoms cluster based on bcc

structure[153] studied using the Korringa-Kohn-Rostoker Green function method.

Next, we analyze the source of the discrepancy for the remaining 18 systems (B, C,

N, O, Ne, Si, Mn, Ni, Ga, Y, Zr, Nb, Tc, Rh, Pd, Ag, In, Sn). For these systems, as well as

for systems where the comparison is satisfactory, the difference between our work and

literature is that we have performed the calculations using a 54-atoms supercell with

zero-pressure condition using finer k-mesh (8 × 8 × 8) and higher plane wave energy

cutoff (500 eV) but in the literature the calculations have been generally done using

128-atoms supercell with constant-volume condition using coarse k-mesh (3× 3× 3)
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Table 4.1: Binding energies of solute-solute, Ex−x
b , and vacancy(�) -solute, E�−X

b , pairs at
nearest(1nn) and next nearest neighbour (2nn) positions in bcc iron. All the energies are in
eV/defect pair. For comparison, results from the literature are given within parentheses wherever
available.

X EX−X
b E�−X

b (1nn) E�−X
b (2nn)

H -0.026(-0.03)[154] -0.565(-0.57)[115] -0.094

He -1.140(-0.37)[144] -0.784(-0.80)[148] -0.573(-0.50)[148]

Li -0.208 -0.235 -0.032

Be -0.085 -0.134 -0.158

B -0.127(-0.05)[118] -0.236(-0.20)[118] -0.382(-0.39)[118]

C 0.672(0.94)[117] -0.521(-0.41)[119] -0.052(0.16)[119]

N 0.882(1.19)[117] -0.786(-0.74)[119] -0.244(-0.17)[119]

O 0.272(0.40)[18] -1.535(-1.41)[119] -0.945(-1.02)[119]

F -0.821 -1.11 -1.24

Ne -1.464(-0.75)[144] -1.118(-5.41)[144] -0.396

Na -0.6 -0.672 -0.013

Mg -0.142 -0.445 0.06

Al 0.087(0.09)[104] -0.307(-0.31)[104] 0.017(0.02)[104]

Si 0.290(0.24)[104] -0.292(-0.29)[104] -0.118(-0.11)[104]

P 0.209(0.21)[104] -0.367(-0.37)[104] -0.256(-0.25)[104]

S -0.490(-0.51)[104] -0.535(-0.53)[104] -0.359(-0.34)[104]

Cl -1.124 -1.184 -0.6

Ar -1.287(-1.25)[144] -1.688(-5.83)[144] -0.745

K -1.484 -1.819 -0.843

Ca -0.51 -1.276 -0.31

Sc 0.159(0.35)[153] -0.641(-0.41)[54] 0.171(0.10)[54]

Ti 0.237(0.24)[53] -0.236(-0.23)[53] 0.188(0.18)[53]

V 0.227(0.23)[53] -0.052(-0.05)[53] 0.102(0.09)[53]

Cr 0.256(0.24)[53] -0.043(-0.06)[53] 0.001(-0.01)[53]

Mn 0.035(-0.06)[53] -0.192(-0.19)[53] -0.096(-0.14)[53]

Co 0.045(0.04)[53] 0.031(0.03)[53] -0.101(-0.11)[53]

Ni -0.001(-0.02)[53] -0.086(-0.12)[53] -0.204(-0.21)[53]

Cu -0.224(-0.25)[53] -0.237(-0.27)[53] -0.181(-0.16)[53]

Zn -0.148(-0.14)[153] -0.320(-0.33)[52] -0.091

Ga 0.065(0.12)[104] -0.382(-0.39)[104] -0.080(-0.06)[104]

Ge 0.270(0.28)[104] -0.435(-0.44)[104] -0.128(-0.15)[104]

Continued on next page
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Table 4.1 – continued from previous page

X EX−X
b E�−X

b (1nn) E�−X
b (2nn)

As 0.283(0.29)[104] -0.510(-0.52)[104] -0.202(-0.22)[104]

Se -0.121(-0.11)[104] -0.636(-0.62)[104] -0.281(-0.30)[104]

Br -0.717 -0.914 -0.379

Kr -1.156 -1.562 -0.554

R -1.305 -1.947 -0.818

Sr -0.743 -1.839 -0.772

Y -0.097(0.20)[18] -1.325(-0.78)[54] -0.225(-0.02)[54]

Zr 0.226(0.32)[53] -0.699(-0.67)[53] 0.121(0.06)[53]

Nb 0.299(0.38)[53] -0.331(-0.32)[53] 0.192(0.13)[53]

Mo 0.256(0.28)[53] -0.144(-0.13)[53] 0.153(0.10)[53]

Tc 0.056(0.08)[53] -0.100(-0.11)[53] 0.080(0.02)[53]

Ru 0.070(0.08)[53] -0.077(-0.09)[53] 0.018(-0.02)[53]

Rh 0.124(0.16)[53] -0.114(-0.12)[53] -0.070(-0.07)[53]

Pd -0.015(0.02)[53] -0.232(-0.25)[53] -0.160(-0.16)[53]

Ag -0.403(-0.33)[53] -0.448(-0.47)[53] -0.201(-0.20)[53]

Cd -0.366 -0.6 -0.141

In -0.110(-0.06)[104] -0.646(-0.68)[104] -0.071(-0.10)[104]

Sn 0.285(0.39)[104] -0.690(-0.71)[104] -0.051(-0.09)[104]

Sb 0.601(0.64)[104] -0.675(-0.71)[104] -0.095(-0.10)[104]

Te 0.577(0.68)[104] -0.746(-0.76)[104] -0.138(-0.18)[104]

I 0.181 -0.865 -0.234

Xe -0.611 -1.24 -0.433

and lower plane wave energy cutoff (300 to 350 eV)[18,53,104,117,118,144]. In order

to verify whether the discrepancy in the binding energies is due to the size of the

supercell, we have performed additional calculations for the oversized alkali and noble

gas atoms(Li, Na, K, Rb, He, Ne, Ar, Kr, Xe) as their elastic strain fields are expected to

extend beyond the 3×3×3 supercell. Y, Zr, Pd and B are also included in this calculation

of supercell size convergence test. Table 4.2 lists these binding energies.

It is evident that for Li, Na, He, Ne and Ar pairs, the binding energies from 54-atoms

supercell are converged to within about ±0.1 eV with those obtained from 128-, 250-

and 343-atoms supercells. But for K, Rb, Kr and Xe pairs, this table indicates that one

should use at least 128-atoms supercell to achieve similar convergence. Nevertheless,
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Table 4.2: Solute-solute binding energies (EX−X
b ) of selected solute pairs for four different supercell

sizes (54, 128, 250, 343 atoms). Calculations with 128- 250- and 343-atoms supercells were
performed with 6× 6× 6, 3× 3× 3 and 1× 1× 1 k-points meshes respectively.

X-X 54 128 250 343
Li-Li -0.208 -0.193 -0.197 -0.228
Na-Na -0.681 -0.650 -0.628 -0.678
K-K -1.486 -1.333 -1.280 -1.220
Rb-Rb -1.309 -1.056 -1.020 -1.026
He-He -1.183 -1.172 -1.174 -1.138
Ne-Ne -1.463 -1.500 -1.485 -1.477
Ar-Ar -1.285 -1.216 -1.161 -1.158
Kr-Kr -1.155 -1.000 -0.895 -0.858
Xe-Xe -0.611 -0.365 -0.355 -0.341
Y-Y -0.097 -0.101 -0.045
Zr-Zr 0.226 0.240 0.261
Pd-Pd -0.016 0.017 0.032
B-B -0.125 -0.109 -0.106

the difference in the binding energies between 54- and 343-atoms supercell calculations

is still less than 0.3 eV. For Y, Zr, Pd, and B pairs also similar convergence is seen. Further,

the order of the alkali-alkali and noble gas-noble gas binding energies remain similar

between results from 54- and 343-atoms supercells.

Next we consider the binding energies of interstitial solutes C, N and O. Since

C, N and O are important interstitials in steel and since previous calculations of C-

C and N-N binding energies have been generally performed at constant-volume and

lower plane wave cutoff energy[117, 143], we have calculated these binding energies

at zero-pressure condition. We have included all the seven configurations considered

previously for the pair of interstitials[117] which are illustrated in Fig. 3.1. The results

are listed in Table 4.3. We compare our binding energies of C-C, N-N and O-O pairs

with the corresponding binding energies from literature. (The C-C and N-N interaction

energies from literature are presented here without minus sign so as to be consistent

with the convention used in this work.) For C-C pairs, our calculations predict repulsive

interaction up to third neighbor separation and attractive interaction beyond this

separation, unlike Domain et al. where the interaction is repulsive even at 6th neighbor
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Table 4.3: Binding energies (EX−X
b ), in eV, between pairs of C, N and O atoms. The calculations

were done using 54-atoms supercell. The distances between the two solute atoms, d(X-X), are in
units of the equilibrium lattice parameter (a). Configuration labels such as “5-6” means that the
atoms are placed at sites labeled 5 and 6 in Fig. 3.1. For the C-C and N-N pairs, our binding energies
are compared with Domain et al.[117], given in parenthesis. For O-O pair, literature value is from
Jiang et al.[18].

Configuration C-C N-N O-O d(X-X)
5-6 0.672(0.94) 0.882(1.19) 0.272(0.4)

√
2/2

5-7 0.021(0.42) 0.148(0.55) -0.292
√
3/2

5-8 1.616(2.28) 1.514(3.03) 1.277 1
5.-9 -0.206(0.17) 0.028(0.27) -0.402 1
5-10 -0.120(0.14) -0.029(0.28) -0.028

√
5/2

5-11 -0.226(0.20) -0.150(0.29) -0.244
√
2

5-12 -0.247(0.09) -0.294(0.12) -0.301
√
3

separation. It may be noted that Bhadeshia has studied C-C interactions in iron[155].

One of the conclusions of this study is that the formation of stable clusters of carbon

atoms in bcc Fe cannot be ruled out when the distance between pairs of carbon atoms

is greater than the near neighbor separation. N-N pairs also show attractive interaction

from fourth and farther neighbor separations unlike Domain et al. where the interaction

is predicted to be repulsive up to 6th neighbor distances. In the case of O-O pair,

our binding energy at nearest neighbor distance (0.272 eV) and that from literature

(0.4 eV)[18] both suggest repulsive interaction. This interaction becomes attractive from

second neighbor distance unlike C-C and N-N pairs where attractive interaction begins

at fourth neighbor distance.

Thus, besides the nature of interactions, we see that the magnitude of our interaction

energies also shows some difference with respect to literature. Since the interstitials are

additional atoms in the iron matrix, they can be expected to have long ranged strain

fields. Therefore, we repeated the C-C and N-N binding energy calculations with 4×4×4

supercells for configuration “5-12” (see Fig. 3.1) as it is reported to be stable[117].

These calculations give binding energies of −0.11 eV and −0.12 eV respectively. The

corresponding binding energies from Domain et al. obtained using 4 × 4 × 4 supercell

are −0.16 eV and 0.03 eV respectively. This shows that the binding energies tend to
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converge with 4 × 4 × 4 supercell calculations. The remaining difference is likely due

to the constant-volume condition and the lower plane wave cutoff energy (≤ 290 eV)

employed in their work.

Further, the large difference in binding energy of 5-8 and 5-9 configuration with the

same separation, d (1 Å) can be understand as follow: Point defect induces a long-range

perturbation of the host lattice, leading to an elastic interaction with other structural

defects. Solute-solute interaction energy is obtained from the elastic and chemical

interaction. In the literature[156], it is shown that beyond the second nearest-neighbor

distance, the elastic strain energy alone is able capture the interaction energy properly.

At closer distances the elastic strain energy and the total strain energy diverge with the

chemical interaction between carbon atoms causing the interaction energy to become

large and positive(repulsive interaction) while the elastic interaction alone prefers, at

short distances, that the carbon atoms sit on top of one another. In both the 5-8 and

5-9 pairs, the two octahedral sites containing the foreign interstitial atoms are on top

of each other at the same distance. But there is a presence of an Fe atom at the centre

of 5-8 pair. Due to this Fe atom, the elastic interactions is more in the case of 5-8 pair

relative to 5-9 pair[117].

Figure 4.1 depicts the solute-solute binding energies listed in column 2 of Table 4.1.

We see that the binding energies show a similar but inverse variation with respect to the

atomic numbers like the solute formation energies in Fig. 3.2. That is, strong binding

energies occur for solute pairs at the ends of the periods and weak binding energies

for pairs from the middle of the periods. Further, the relatively strong binding energies

(<−0.2 eV) obtained for the alkali Li, Na, K, Rb, alkaline earth, Ca and Sr, halogen F, Cl

and Br, noble gas elements He, Ne, Ar, Kr, Xe, and Cu, Ag, Cd and S atoms suggests that

the driving force for their segregation rather than remaining in solution is quite high,

which is in agreement with their immiscibility or limited solubility in bcc iron[150].

Molecular dynamics simulation of He clustering and bubble formation in bcc Fe has

shown that isolated He atoms are highly mobile and they aggregate into clusters[157].

Our EHe−He
b indeed suggests clustering of He atoms in Fe.

Our results of solute-solute binding energies further suggests that pairs of 3d and 4d
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Figure 4.1: Solute-solute binding energies (EX−X
b ) in bcc Fe at nearest-neighbour position (1nn).

The curves are guides to eye.

atoms from Ti to Ni and Zr to Pd show a tendency to repel each other while Cu, Zn, Ag

and Cd have a tendency to cluster, in agreement with previous theoretical studies[53,

92]. Among Al, Si, P, and S, S is less soluble in bcc Fe[150]. Accordingly, we obtain an

attractive S-S binding energy while repulsive binding energies for Al, Si and P pairs. You

et al. have predicted that S, Se, and In with attractive EX−X
b tend to phase separate. Al,

Si, P, Ga, Ge, As, Sn, Sb, Te, with repulsive EX−X
b tend to be distributed uniformly in the

matrix[104]. Our EX−X
b values confirm both the predictions. We also observe that EX−X

b

are small for H, Be, Al, Mn, Co, Ni, Ga, Y, Tc, Ru and Pd. Several of these solutes (Al,

Co, Ni, Ga) are known to form extended solid solution in bcc Fe.
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4.3.2 Vacancy-solute binding energies

As mentioned earlier, vacancy-solute binding energy is one of the important factors

controlling diffusion and solubility of solutes and hence clustering or nucleation of

precipitates[50, 97, 158, 159]. In other words, diffusion coefficients of solute atoms

depend on their binding energies with vacancies through migration energies[118, 120,

160, 161]. Vacancy-solute binding energies are also useful for modeling and predicting

mechanical behavior of steels under irradiation[162]. Therefore we have computed the

binding energies of vacancy-solute (�-X) pairs inserted in bcc Fe matrix at 1nn and

2nn positions. These energies are listed respectively in columns 3 and 4 in Table 4.1.

There are reports of vacancy-solute interaction energies for 38 of the 53 solute atoms

considered in this work[52–54,104,115,118,119,144,148]. For the other 15 solutes, i.e.,

Li, Na, K, Rb, Be, Mg, Ca, Sr, F, Cl, Br, I, Kr, Xe, and Cd, our work provides their binding

energies for the first time. For H, Ne, Ar, and Zn, only 1nn pair E�−X
b are available from

literature. Our work provides both the 1nn and 2nn E�−X
b .

For C, N, and O, our computed E�−X
b are in good agreement with Barouh et al.[119]

as well as with experimental binding energy of −0.41 eV for �-C pair[163]. We find

further that the binding of these interstitial solutes becomes stronger progressively from

C to N to O (−0.521 eV, −0.786 eV, −1.535 eV) which is in agreement with Fu et al.[97].

For the other elements also, the comparison of E�−X
b between our work and literature is

quite satisfactory except for Ne, Ar, Sc, Co, Y and Pd.

We would like to note that for Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Pd and Sb, E�−X
b in bcc

Fe are available from Muon Spin Rotation experiments (−0.185 to −0.400, −0.230,

−0.160, <−0.105, <−0.105, −0.150, −0.140, −0.215, −0.140, −0.210, −0.455 eV

respectively[164,165]. A minus sign is included to these binding energies to make them

consistent with the convention in our work). For these solutes, the comparison between

our binding energies and experiments is very good except for Cu. Our calculation[52,53]

overestimates E�−Cu
b compared to measurements. We also note that experimental E�−X

b

is largest for Sb among the solutes listed above. Our computed E�−X
b values reproduce

this trend exactly. Among Si, P, Cr, Mn, Ni, and Cu, Messina et al. have shown that

E�−X
b is strongest for P and weakest for Cr[158]. Our results (Table 4.1) are in accord
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with this. Further, between Cr and Mo, the E�−X
b is predicted to be relatively strong and

attractive for Mo in agreement with Olsson et al.[53] and Garbatov et al[54]. These

results are confirmed by a study of defects in iron-based binary alloys by Mossbauer and

positron annihilation spectroscopies[166]. For Co and Ni, E�−X
b from literature shows

that their 2nn interaction is stronger than 1nn interaction[53, 158, 159]. Our binding

energies reproduce this trend exactly.

Now consider binding energies of Ne, Ar, Sc, Co, Y, and Pd to vacancy where the

comparison is less satisfactory. For Sc and Y, the discrepancy between our binding energy

and literature[54] is possibly due to the Green function method with atomic sphere

approximation used in their work which precludes relaxation of ionic coordinates. But

the trend that E�−X
b is strong for Y than for Sc is retained. For Ne and Ar, we have

verified our binding energies with calculations using a 128-atoms supercell. Binding

energies from these calculations (−1.063 and −1.616 eV respectively) are found to be

in agreement with those obtained using a 54-atoms supercell. We think the discrepancy

between our work and literature[144] for these solutes is due the lower plane wave

cutoff energy (350 eV) and PW91, rather than PBE, exchange-correlation functional,

and the constant volume condition used in their calculations.

Figures 4.2 and 4.3 show the binding energies of vacancy-solute pairs at 1nn and 2nn

positions in bcc Fe respectively. We see that, like solute-solute binding energy in Fig. 4.1,

binding energies of vacancy-solute pairs show an approximately inverse variation with

respect to the atomic numbers of the solutes compared to the solute formation energies

in Fig. 3.2. It is evident that both 1nn and 2nn E�−X
b show similar variation with atomic

numbers of the solutes. We also note that 1nn binding energies of elements from fifth

periods are generally stronger than those of elements from fourth period, whereas the

2nn binding energies of 3d and sp elements from fourth period are generally stronger

than those of corresponding elements from fifth period. We further see from Figs. 4.2

and 4.3 that the E�−X
b at 1nn is attractive (exothermic) for all solutes except Co while

the 2nn E�−X
b have become repulsive (endothermic) for some solutes (Al, Mg, Sc, Ti, V,

Cr, Zr, Nb, Mo, Tc, Ru).
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Figure 4.2: Vacancy-solute binding energies (E�−X
b ) in bcc Fe at nearest-neighbour positions (1nn).

Comparison of Fig. 4.2 with 4.1 also shows that E�−X
b at 1nn is attractive for all solutes

unlike EX−X
b which are repulsive for many solute pairs.

Figure 4.3 shows that the 2nn E�−X
b is repulsive for early transition metal solutes and

attractive for late transition metal solutes in agreement with literature[53]. We see that

the strongest vacancy-solute binding occurs for solutes K, Rb, Sr, Ar, Kr, Ca, O, Y, and

Xe, and weakest binding for solutes V, Cr, Co, Ni, and Ru. This suggests that the solutes

K, Rb, Sr, Ar, Kr, Ca, O, Y and Xe, when present in bcc Fe matrix, will trap vacancies

strongly. This is known to be true for O and Y[97,167].
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Figure 4.3: Vacancy-solute binding energies (E�−X
b ) in bcc Fe at next nearest-neighbour positions

(2nn).

Figure 4.4 is a graph of 1nn E�−X
b for 3d and 4d transition metal atoms from our

work plotted with respect to their corresponding calculated diffusion coefficients by

Messina et al.[159]. It is interesting to note that our E�−X
b of 4d solutes show an inverse

parabolic variation to their calculated tracer diffusion coefficients at 1100 K[159] (see

their Fig.9). For the 3d transition metal solutes also, similar correlation is evident. This

observation suggests that E�−X
b of other solutes predicted in our work would provide a

guide to judge their diffusion coefficients.

Gorbatov et al. have earlier considered E�−X
b and diffusion in iron. They have

identified that the attractive 1nn E�−X
b of most of the solutes correlate well with the

experimental data on impurity diffusion coefficients, which are systematically higher

than Fe self-diffusion coefficient[54]. Our E�−X
b for an extended set of solute elements

show that the attractive 1nn vacancy-solute interactions is generally retained. This
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appears to corroborate with the observation that in iron even the oversized solute

atoms have higher diffusion coefficients than self-diffusion coefficient as well as with

the suggested absence of slow diffusers among the common solute additions to bcc

Fe[91,167].
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Figure 4.4: Vacancy-solute binding energies of 3d and 4d transition metal atoms in bcc Fe at
nearest-neighbour positions from our work plotted against the corresponding calculated diffusion
coefficients from Messina et al.[159].

4.3.3 Correlation between vacancy-solute binding energies and solute size

factors

Figure 4.5 is a graph of vacancy-solute binding vs. solute size factor in bcc iron (E�−X
b

vs. SF(X)). The horizontal dotted line at E�−X
b =−0.8 eV is a guide to eye separating data

points below and above −0.8 eV. It is evident that the common alloying elements in

steel have their vacancy-solute binding energies above −0.8 eV and size factors within

−0.25 and 1. The relatively weak vacancy-solute binding energies of thesesolute atoms

are likely due to their strong bonding with the Fe atoms. Because of this strong X-Fe

bonding, it is unfavorable for a solute atom to be placed near a vacancy, since this will

result in fewer X-Fe bonds. The data points with binding energies below about −0.8 eV

include solutes O, F, Ne, Cl, Ar, K, Ca, Br, Kr, Rb, Sr, Y, I, and Xe. Several of these solutes

also have large size factors.
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Figure 4.5: Vacancy-solute binding energy vs solute size factor [E�−X
b vs. SF(X)] in bcc Fe. The

dashed lines indicate trends along the groups. Similar trends can be seen along the other groups
also.

The strong E�−X
b with associated SF(X) seen for some of these solutes (Ar, Kr,

Xe, K, Rb, Ca, Sr, Y), in an overall sense, may be understood by a simple physical

argument: Placing large impurity atoms in the Fe matrix induces a significant strain on

the surrounding Fe atoms. A vacancy next to this large impurity allows the impurity to

relax towards the vacancy and hence away from the other neighboring Fe atoms. Thus,

a vacancy in a 1nn position to a large impurity helps to relieve the strain, producing

an energy lowering of the �-X pair, and hence a stronger binding energy. However, this

mechanism is inadequate to explain the relatively small E�−X
b of solutes with relatively

large size factors such as Ag, Cd, In, Sn, Zr and Sb, and the large binding energies of O

and F with relatively small size factors.

Figure 4.5 reveals other correlations as well. Isoelectronic sets of solutes (i.e.,

H/Li/Na/K/Rb, Be/Mg/Ca/Sr, Sc/Y, Ti/Zr, V/Nb, Cr/Mo, Mn/Tc, Fe/Ru, Co/Rh,

Ni/Pd, Cu/Ag, Zn/Cd, B/Al/Ga/In, C/Si/Ge/Sn, N/P/As/Sb, O/S/Se/Te, F/Cl/Br/I,

He/Ne/Ar/Kr/Xe) reveals a clear trend that the strength of vacancy-solute binding
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energies increases with increasing size factor down the columns, indicated by dashed

lines. We see also that the rate of increase of vacancy-solute binding with size factor

is less along V/Nb, Cr/Mo, Co/Rh and Ni/Pd groups. Solutes H, B, C, N, and O are

exceptions. Mn/Tc, halogen and noble gas atoms (F, Cl, Br, I, He, Ne, Ar, Kr, Xe) also

show deviations from this trend. For halogen and noble gas elements, E�−X
b increases

initially (from F to Cl, and from He to Ar) with the size factors and then decreases

with further increase in the size factors (Cl to I, and Ar to Xe). This may be understood

as follows: These atoms behave more like hard spheres in the iron matrix (unlike, for

instance, alkali elements with a strong tendency to loose electrons). The size factors

of F and Cl as well as He, Ne and Ar are relatively smaller that they can relieve their

stresses by relaxing to the nearby vacancy site. But this is not effective for solutes with

size factors beyond certain limit (Br and I as well as Kr and Xe) which manifests in

the reduction of �− X binding. The deviation of Mn/Tc is likely due to the complex

magnetic property of Mn which is missing from our DFT calculation. We will consider

the vacancy-interstitial solutes interaction later.

4.3.4 Correlation between vacancy-solute binding energies and solute

formation energies

Figure 4.6 is a graph of vacancy-solute binding energy versus solute formation energy

(E�−X
b versus EX

f ). The vertical and horizontal lines are guides to eye. It is apparent that

E�−X
b is correlated to EX

f , similar to E�−X
b vs. SF(X) (Fig. 4.5). It is further evident that

most of the common alloying elements have their solute formation energies below 1 eV

with vacancy-solute binding energies between 0.1 and −0.8 eV. Insoluble solute atoms

with large formation energies such as He, Li, Ne, Na, Cl, Ar, K, Ca, Br, Kr, Rb, Sr, Y, Ag,

Cd, In, I, and Xe have strong binding energy with vacancy. O and F are also insoluble

in iron but their EX
f are moderate like those of common alloying elements. Nevertheless

their binding energies with vacancy are strong like those of insoluble atoms. H, B, C, N,

O, Mn/Tc, halogen and noble gas atoms are exceptions. We relate the deviations seen

with the later elements to the same reasons discussed in the previous paragraph. The

recurrent exceptions of interstitial solute atoms with respect to the several group-wise
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correlations considered above remains to be explained. On the other hand, experimental

solution enthalpy and size factor of C in bcc Fe (solution enthalpy 0.60 to 0.78 eV and

1.10 eV as reported in Ref.[106, 120] respectively, and size factor 0.781 as reported

in Ref.[168]) leads to further deviation of C from the group-wise correlation (in

Fig. 3.5). Comparison of experimental size factors of C, Si, Ge, Sn (0.781, -0.078, 0.165,

0.677)[151,168] also leads to similar conclusion. That is, the deviations of H, B, C, N and

O from the group-wise trends is real. Thus our computed energetics of atomic defects

in bcc Fe reveal several fundamental trends and will be useful for identifying solutes or

combination of solutes with desired diffusion property that can be used to optimize the

coarsening kinetics and creep strength of steels.
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Figure 4.6: Vacancy-solute binding energy versus solute formation energy (E�−X
b vs. EX

f ) in bcc Fe.
The dashed lines are drawn to indicate the correlations between E�−X

b and EX
f along the groups.
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4.4 Conclusions

Our calculation of binding energies of atomic defects pairs (solute-solute and vacancy-

solute pairs) in ferromagnetic bcc iron reveal the following trends. (1) The solute-solute

and vacancy-solute binding energies vary with the atomic number of the solutes in

a manner inverse to the formation energies and size factors. That is, strong binding

energies occur for solute-solute or vacancy-solute pairs at the ends of the periods

and weak binding energies for pairs from the middle of the periods. We also find

that the 1nn solute-solute binding is repulsive for many solute pairs while vacancy-

solute binding is always attractive. (2) The strength of the solute-solute and vacancy-

solute binding energy increases with the size factors of solutes down the groups. (3)

Comparison of our predicted vacancy-solute binding energies of 3d and 4d transition

elements with their corresponding calculated diffusion coefficients from literature shows

a significant correlation whereby solutes with strong binding energies possess higher

diffusion coefficients and vice versa. This in turn indicates that our predicted vacancy-

solute binding energies of other solutes are useful to estimate their diffusion coefficients.



5
Stability of B1-type oxides in bcc iron

5.1 Introduction

Oxide Dispersion Strengthened advanced ferritic steels are studied for fuel clad and

wrapper core components in fast spectrum reactors[24]. Oxide Dispersion Strengthened

(ODS) ferritic steels have very good strength and resistance against irradiation damage,

high temperature creep and corrosion. These steels are generally produced through

mechanical alloying and subsequent extrusion or forging. The resistance of the ODS

steels to degradation by high temperature and irradiation is attributed to the oxide

nanoparticles dispersed in the steel matrix. These highly stable densely dispersed

oxide nanoparticles obstruct the dislocation motion and grain boundary sliding leading

to stable microstructure at elevated temperatures[9, 14–21]. Sustaining the superior

performance of the steels in the severe reactor environment under long-term service

is important for the efficient operation of the nuclear power plants[9].

Therefore, the characterization of these oxide nanoparticles in ODS steels have been

an important research topic[19–21, 169–176]. A large number of transmission electron

microscopy (TEM) studies have shown that most of these oxide nanoclusters in ODS

steels with proper amounts of Y, Ti and O are near-stoichiometric Y2Ti2O7 pyrochlore

oxides[13]. Ribis et al. have studied the response of the nano-oxides in ODS steels to

neutron and ion irradiation[174]. This work shows that irradiation cause an increase

in size and a decrease in density of the Y2Ti2O7 particles. Lu et al. have studied a 9Cr

ODS steel using heavy ion irradiation and TEM to understand the relationship between

its swelling resistance and the stability of the oxide dispersion. They have shown, in

71
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contrast, that the average size of the oxide particles decrease dramatically and their

density increases sharply with irradiation damage. This work further shows that the

oxide dispersion observed after irradiation has no distinct lattice structure and they are

not Y2Ti2O7,Y2TiO5, or Y2O3[175]. Thus, it is desirable to identify better dispersion

capable of retaining/improving the strength and stability of the ODS steel. In view of

this, Takahashi and Tanaka have studied the formation energy of 29 different A2B2O7

pyrochlore-type oxides in bcc iron matrix and their influence on the bulk moduli of

the iron matrix through first principles calculation and data mining[177]. They have

predicted that Y2Zr2O7 and Y2Ti2O7 are good candidates as stable and suitable oxide

dispersion for ODS steel.

On the other hand, Hirata et al. have shown that the oxide nanoclusters in ODS steel

are defective TiO particles with NaCl (B1-type) structure[20]. The chemical composition

and structure of the oxide dispersions have actually been a matter of debate[13].

Brandes et al. have reported that these fine oxide particles lack an identifiable crystal

structure [169]. From atom probe tomography characterization of the chemistry of the

nanoclusters in ODS steels, Boutard et al. have determined YO,TiO, and O2 clusters with

a mean composition of YTiO2, unrelated to any stoichiometric compound[178]. These

studies thus indicate that the B1-type TiO is also a potential candidate dispersion for

ODS steel. This view is further supported by several studies on improving the properties

of ODS steels where B1-type oxides (MgO, CaO, BaO, SrO) have been included in the

investigation of their ability to trap He atoms in the iron matrix, influence on mechanical

and micro-structural properties and resistance to irradiation[170–172]. Despite this, no

study has directly investigated the stability of B1-type oxides in bcc iron.

Further, Siska et al. have studied the strengthening mechanisms of different oxide

particles in 9Cr ODS steel at high temperatures[179]. Oono et al. have studied the

precipitation of various oxides in ODS ferritic steels[180]. Dou et al. have studied the

effects of Al, Zr, and Ti content on the crystal and metal-oxide interface structures of

the oxide particles in several ODS steels by high resolution TEM for understanding

the formation, transformation and irradiation tolerance of various kinds of oxide

dispersions[176]. However, the list of oxides to be investigated as dispersion in ODS
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steels have not been well established.

In view of this, and in order to gain a comprehensive insight on the structure

and stability of the B1-type oxide dispersions, we compute the formation energy of

31 different B1-type oxides in bcc iron and the bulk moduli of the oxide embedded

iron matrix. We refer these B1-type oxides as MO oxides with M substituted by the 31

different elements. We show that oxides, such as TaO, MnO, AlO, SiO, ZrO, ScO, ZnO,

MgO and SnO constitute stable oxides in the iron matrix, which tend to retain the bulk

modulus of the iron matrix. Whereas, oxides, such as TiO, VO, CrO, FeO, CoO, NiO, MoO,

RuO, RhO, HfO, WO, ReO, OsO, and IrO are chemically less stable in the iron matrix

though the bulk modulus is retained. This chapter is organized as follows. After the

introduction in Section 5.1, the computational scheme is outlined briefly in Section 5.2.

In Section 5.3, we present the equilibrium structure of the embedded oxides, their

formation energies, the bulk moduli of the oxide embedded bcc iron, and discuss the

mechanism behind the exothermic or endothermic formation energies and the variation

in the bulk moduli. Section 5.4 gives summary of the salient results.

5.2 Computational method

We model the B1-type oxides in iron by placing a M4O4 cluster in a 4×4×4 bcc Fe

supercell with 128 sites. This M4O4 cluster is created by replacing 2 nearest neighbor Fe

atoms with 2 M atoms each on two adjacent (110) planes and by placing an O atom at

the nearest octahedral interstitial sites to each of the 4 M atoms. The pair of M atoms

on the given (110) plane is rotated by 90◦ with respect to the other pair on the adjacent

(110) plane. When these 4 M and 4 O atoms are linked, they form a simple tetragonal

cell resembling the simple cubic cell with 4 Na and 4 Cl atoms placed alternatively at

its corners constituting one eighth of the conventional B1-type NaCl unit cell. This is

illustrated in Fig. 5.1. Thus the M4O4 unit is placed in the bcc Fe supercell such that

the M’s substitute Fe and O’s occupy the associated octahedral interstitial sites in the

same manner as all Cl atoms occupy the octahedral holes in the bcc Na to give the B1-

type NaCl crystal structure. This work considers 31 different elements for M. Table 5.1
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Figure 5.1: Our supercell model of the B1-type MO oxide in bcc iron. It is created by placing a
M4O4 oxide cluster in a 4×4×4 bcc Fe supercell. The M4O4 cluster is created by replacing 2 nearest
neighbor Fe atoms with 2 M atoms each on 2 adjacent (110) planes and by placing an O atom at
the nearest octahedral interstitial sites to each of the 4 M atoms. When these 4 M and 4 O atoms
are linked, they form a simple tetragonal cell resembling the simple cubic cell with 4 Na and 4 Cl
atoms placed alternatively at its corners constituting one eighth of the conventional NaCl (B1-type)
unit cell. This work considers 31 different elements for M. M atoms are in blue and O atoms are in
yellow colors.
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collects the crystallographic data of these MO oxides.

Table 5.1: Crystallographic data of the MO oxides. For most oxides, the crystallographic information
were taken from the online database SpringerMaterials[124]. The structural informations of ScO,
YO, and ZrO were taken respectively from the ASM Alloy Phase Diagram Database, Kaminaga et al.,
and Nicholls et al.[122,181,182]. The angles α, β, and γ are given in degrees. In the last column,
fu is abbreviation for formula units.

Oxide Space group a(Å) b(Å) c(Å) α β γ Volume(Å3)
AlO
AuO
BaO Fm-3m(225) 5.52 5.52 5.52 90 90 90 168.5(4fu)
CaO Fm-3m(225) 4.81 4.81 4.81 90 90 90 111.2(4fu)
CdO Fm-3m(225) 4.69 4.69 4.69 90 90 90 103.5(4fu)
CoO I4/mmm(139) 3.01 3.01 4.25 90 90 90 38.6(2fu)
CrO
CuO C1c1(9) 4.69 3.43 5.14 90 99.54 90 81.5(4fu)
FeO Fm-3m(225) 4.30 4.30 4.30 90 90 90 79.5(4fu)
HeO
HfO
IrO
MgO Fm-3m(225) 4.21 4.21 4.21 90 90 90 74.8(4fu)
MnO Fm-3m(225) 4.44 4.44 4.44 90 90 90 87.8(4fu)
MoO
NbO Pm-3m(221) 4.21 4.21 4.21 90 90 90 74.6(3fu)
NiO Fm-3m(225) 4.18 4.18 4.18 90 90 90 73.1(4fu)
OsO
ReO
RhO
ScO Fm-3m(225) 4.45 4.45 4.45 90 90 90 88.1(4fu)
SiO F-43m(216) 5.45 5.45 5.45 90 90 90 161.9(4fu)
SnO P4/nmm(129) 3.80 3.80 4.84 90 90 90 69.9(2fu)
SrO Fm-3m(225) 5.14 5.14 5.14 90 90 90 135.8(4fu)
TaO
TiO Fm-3m(225) 4.18 4.18 4.18 90 90 90 73.3(4fu)
VO Fm-3m(225) 4.10 4.10 4.10 90 90 90 68.92(4fu)
WO
YO Fm-3m(225) 4.94 4.94 4.97 90 90 90 121.2(4fu)
ZnO P63 mc(186) 3.22 3.22 5.20 90 90 120 46.7(2fu)
ZrO Fm-3m(225) 4.62 4.62 4.62 90 90 90 98.6(4fu)

The formation energy (Ef) of the M4O4 oxide in the bulk bcc iron is calculated from

the following expression[177]:

Ef(M4O4) = E(Fe124M4O4) −
124
128

E(Fe128) − E(M4O4) (5.1)



5. Stability of B1-type oxides in bcc iron / 76

where E(Fe124M4O4) and E(Fe128) are respectively the total energies of the supercells

containing the oxide cluster M4O4 and pure bcc Fe. E(M4O4) is the total energy of

the free M4O4 cluster. The formation energy in this work thus represents the energy

related to dissolving M4O4 as a single entity in the bcc iron matrix. It is similar to the

formation energy of elemental solutes in a crystal[183]. It does not represent dissolving

M4O4 unit into elemental M’s and O’s in the iron matrix. Positive formation energy

represents endothermic reaction of M4O4 with Fe matrix while negative formation

energy represents exothermic reaction.

For the calculation of the total energies required in Eq. 5.1, we used the Vienna

Ab initio Simulation Package[78, 80] which implements the density functional theory

using pseudopotentials and plane waves. The Projected Augmented Wave (PAW)

method was used for the electron-ion interaction[79, 86]. Perdew-Burke-Ernzerhof

(PBE) approximation was used for the exchange and correlation interactions[71]. Spin

polarized calculations were performed for all the systems considered in this work as

bcc Fe is a ferromagnetic substance. Initial magnetic moments for M’s were specified in

accordance with their magnetic alignment in bcc Fe[183]. The Kohn-Sham orbitals were

expanded in plane waves with cutoff energy of 450 eV. For all the bulk calculations, a

4×4×4 special k-points mesh generated using the Monkhorst-Pack scheme was used to

sample the Brillouin zone. All structural degrees of freedom, i.e., ionic coordinates, size

and shape of the simulation cell, were allowed to relax in these calculations.

We note here that the convergence of the self consistent field (SCF) iteration have

not been straightforward for several of the Fe124M4O4 systems. For these cases, the total

energy calculations were performed in several steps. First, with the given k-points mesh

(2 × 2 × 2), plane wave kinetic energy cutoff (400 eV) and total energy convergence

criterion 10−4 eV, the ionic positions were allowed to change with fixed cell shape

and volume. Then, along with the ionic position, the cell shape was also allowed to

change with the fixed cell volume. After this, all the structure degrees of freedom(ionic

positions, cell shape and volume) were allowed to change, first at the cutoff of 400 eV

then at 450 eV. Next, the total energy convergence criterion was increased gradually

from 10−4 eV to 10−7 eV. Finally, the k-points mesh was increased from 2 × 2 × 2 to
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3 × 3 × 3 to 4 × 4 × 4. We note further that, for some systems, the self consistent field

iterations were unstable and did not converge when the cutoff was increased to 500 eV.

Hence, the convergence with respect to cutoff was tested with systems where the SCF

iteration were stable from 450 to 600 eV in steps of 50 eV. These calculations showed

that the total energies were converged within 0.12 eV/Fe124M4O4. Therefore, all the

calculations have been performed with 450 eV cutoff energy.

The total energy of the free M4O4 clusters were calculated by placing them in a fixed

15 Å cubic box and solving their Kohn-Sham equations. For magnetic oxides, MnO, FeO,

CoO, and NiO, spin polarized calculations were performed. These Γ k-point calculations

allow relaxation of the positions of all the atoms. The free M4O4 clusters were initially

made in the form of a cubic cell resembling the simple cubic cell with 4 M and 4 O atoms

placed alternatively at its corners constituting one eighth of the conventional NaCl (B1)

unit cell. Besides formation energies, we have also calculated the bulk modulus of the

oxide embedded iron by fitting their E(V) data to the Vinet equation of state[184]. Both

the oxide formation energies and bulk moduli of the oxide embedded iron are measures

of the stability of ODS steel[177].

The bulk modulus,B0, is defined as[185]

B0 = −V0

(
∂P

∂V

)
(T,V0)

(5.2)

where V is the volume of the solid, P is an external pressure, V0 is equilibrium volume

at zero pressure, T is the temperature and the negative sign is used because the volume

decreases when a positive external pressure is applied. The equilibrium volume at zero

pressure V0, bulk modulus B0, and pressure derivative B
′
0 of the bulk modulus B0 were

estimated by fitting our calculated E(V) data to the isothermal Vinet equation of state

(EOS)[186]

P(V) =
3B0x

(1− x)2
eηx (5.3)

where x = 1−
(
V
V0

)1/3
and η = 3

2(B
′
0 − 1). Integration with respect to volume, the Vinet
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EOS yields an expression for the energy variation upon an isothermal volume change,

∆E(V) = −

∫V
V0

P(V)dV (5.4)

E(V) = E(V0) +
9B0V0
η2

[1+ eηx(ηx− 1)] (5.5)

5.3 Results and discussion

5.3.1 Structure of relaxed MO oxides in bcc iron matrix

Before analysing the structure of the M4O4 clusters placed in the iron matrix, we

examined their relaxed structure without the iron matrix. It is found that most of the

relaxed free M4O4 clusters remain intact as a single entity though distorted relative to

the initial cubic form. The free He4O4 and Os4O4 clusters are not intact. The He4O4

cluster relaxes into two O2 clusters and 4 isolated He atoms. The Os4O4 cluster relaxes

to Os2O4 and two isolated Os atoms. Table 5.2 gives the calculated equilibrium bond

lengths in each of the 31 M4O4 free clusters. First row gives the initial bond lengths

which corresponds to the experimental values in B1-type TiO. We see that, in most

cases, the calculated M-O, M-M, and O-O bond lengths are somewhat reduced relative

to their respective experimental values wherever available. As noted above, the He-He

relaxed bond length is significantly large compared to the initial M-M bond. For OsO,

the listed bond lengths correspond to Os2O4 cluster.

In the initial cubic cluster, M-M and O-O bond lengths are same. Therefore, the

difference between the M-M and O-O relaxed bond lengths are an indication of the

distortion of the M4O4 clusters from the cubic form. Comparison of the differences

between M-M and O-O bonds shows that majority of the O-O bonds are expanded

relative to the M-M bonds.

Next we inspected the structure of all the Fe124M4O4 systems. The positions of M,

O and the surrounding Fe atoms and the associated bond lengths are found modified in

the relaxed systems. Table 5.3 lists the relaxed bond lengths. For reference, initial bond

lengths are listed in the first row of the table. The two bond lengths under the different

category of bonds correspond to the first and second neighbor bonds. They are listed
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Table 5.2: Calculated equilibrium bond lengths in free M4O4 clusters. M-O, M-M and O-O bond
lengths are listed. The last three columns give respective experimental bond lengths of oxides whose
crystallographic data are given in Table 5.1. For reference, initial bond lengths in TiO are listed in
the first row.

Oxide M − O(Å) M − M(Å) O − O(Å) M − O(Å) M − M(Å) O − O(Å)
MO 2.09 2.96 2.96
AlO 1.87 2.66 2.63
AuO 2.24 3.01 3.33
BaO 2.45 3.69 3.19 2.76 3.91 3.91
CaO 2.16 3.12 3.00 2.40 3.40 3.40
CdO 2.23 2.99 3.32 2.35 3.32 3.32
CoO 1.90 2.38 2.92 2.13 3.01 3.01
CrO 1.96 2.76 2.78
CuO 1.96 2.56 2.96 1.95 2.88 2.62
FeO 1.95 2.35 2.95 2.15 3.04 3.04
HeO 2.75 5.34 1.23
HfO 2.10 2.75 3.17
IrO 2.04 2.87 2.91
MgO 1.96 2.63 2.92 2.11 2.98 2.98
MnO 1.94 2.57 2.86 2.22 3.14 3.14
MoO 2.06 2.47 3.25
NbO 2.09 2.63 3.22 2.11 2.98 2.98
NiO 1.93 2.49 2.77 2.09 2.96 2.96
OsO 1.72 2.29 2.43
ReO 2.06 2.50 3.24
RhO 2.03 2.80 2.93
ScO 2.00 2.92 2.65 2.22 3.14 3.14
SiO 1.86 2.76 2.48 2.36 3.85 3.85
SnO 2.16 3.26 2.82 2.25 3.74 2.72
SrO 2.30 3.40 3.11 2.56 3.63 3.63
TaO 2.10 2.61 3.26
TiO 1.98 2.39 2.98 2.09 2.96 2.96
VO 2.03 2.40 2.98 2.05 2.90 2.90
WO 2.08 2.50 3.29
YO 2.18 3.25 2.77 2.47 3.49 3.49
ZnO 2.00 2.60 3.03 1.95 3.20 3.20
ZrO 2.00 2.63 3.00 2.31 3.26 3.26

together since the difference between them is small in bcc lattice. It is evident from

columns 6 and 7 of the table that the relaxed supercells remain cubic for most systems

with a small deviation within 3%. This deviation from cubic form is slightly higher

than 3% for Sr4O4 and Y4O4 embedded supercells. Further, similar to the free clusters,
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the calculated M-O, M-M, and O-O bond lengths are generally comparable or reduced

with reference to their respective experimental values. Some of the O-O bonds in CuO

and MnO show appreciable increase and decrease respectively relative to experimental

values. Compared to the initial M-O bond lengths, respective relaxed nearest and next

Table 5.3: Structural parameters of the relaxed M4O4 embedded iron systems. M-O, M-M and O-O
bond lengths, lattice parameter a and c/a ratio of the supercell are listed. The two bond lengths
under M-O, Fe-O, M-M and O-O columns correspond to the first and second neighbor bonds. For
reference, initial bond lengths are listed in the first row.

Oxide M − O(Å) Fe − O(Å) M − M(Å) O − O(Å) a(Å) c/a
MO 1.47, 2.08 1.47, 2.08 2.55, 2.94 2.55, 2.94 11.45 1.00
AlO 1.83, 2.02 1.88, 2.14 2.99, 3.02 2.39, 2.64 11.57 0.98
AuO 2.55 1.81, 2.02 2.82, 2.91 4.78, 6.11 11.58 1.00
BaO 2.42, 2.58 1.86, 2.00 3.42, 3.46 3.60, 3.87 12.00 0.97
CaO 2.11, 2.24 1.86, 2.03 3.08, 3.14 3.00, 3.23 11.81 0.97
CdO 2.14, 2.37 1.86, 1.98 3.27, 3.44 2.94, 3.36 11.77 0.98
CoO 1.90, 2.20 1.84, 1.98 3.14, 3.21 2.57, 2.97 11.62 0.98
CrO 1.90, 2.11 1.85, 2.08 3.14, 3.17 2.48, 2.70 11.66 0.97
CuO 1.93, 2.30 1.84, 1.93 3.12, 3.30 2.69, 3.23 11.57 0.99
FeO 1.92, 2.13 1.84, 2.01 3.02, 3.14 2.57, 2.92 11.62 0.98
HeO 1.95 1.80, 1.80 1.83, 2.26 3.11, 3.89 11.48 0.99
HfO 2.05, 2.15 1.88, 2.16 3.24, 3.24 2.66, 2.76 11.77 0.97
IrO 2.02, 2.44 1.88, 1.99 3.51, 3.60 2.65, 3.18 11.67 0.98
MgO 1.91, 2.06 1.85, 2.05 2.88, 2.96 2.64, 2.90 11.65 0.98
MnO 1.90, 2.21 1.86, 2.00 3.16, 3.22 2.55, 2.96 11.61 0.98
MoO 2.03, 2.19 1.85, 2.15 3.33, 3.43 2.54, 2.67 11.73 0.97
NbO 2.06, 2.19 1.86, 2.13 3.30, 3.35 2.63, 2.76 11.77 0.97
NiO 1.89, 2.31 1.84, 1.93 3.18, 3.29 2.64, 3.19 11.59 0.98
OsO 2.01, 2.31 1.87, 2.10 3.49, 3.55 2.50, 2.80 11.67 0.98
ReO 2.03, 2.20 1.84, 2.21 3.38, 3.55 2.44, 2.52 11.67 0.98
RhO 2.05, 2.38 1.85, 1.95 3.31, 3.44 2.79, 3.27 11.69 0.98
ScO 2.00, 2.12 1.87, 2.08 3.04, 3.09 2.72, 2.92 11.72 0.97
SiO 1.68, 2.56 1.95, 1.99 3.34, 3.52 2.49, 3.36 11.49 1.00
SnO 2.07, 2.32 1.90, 2.15 3.50, 3.53 2.59, 2.90 11.72 0.98
SrO 2.26, 2.39 1.87, 2.02 3.29, 3.31 3.26, 3.45 12.05 0.95
TaO 2.04, 2.15 1.87, 2.19 3.30, 3.37 2.55, 2.63 11.74 0.97
TiO 1.96, 2.08 1.85, 2.08 3.04, 3.10 2.59, 2.80 11.68 0.97
VO 1.92, 2.09 1.84, 2.09 3.13, 3.13 2.50, 2.70 11.68 0.97
WO 2.04, 2.17 1.85, 2.23 3.34, 3.48 2.47, 2.53 11.70 0.98
YO 2.15, 2.26 1.88, 2.10 3.28, 3.29 2.95, 3.10 11.90 0.96
ZnO 1.94, 2.27 1.85, 1.97 3.11, 3.29 2.65, 3.15 11.59 0.98
ZrO 2.09, 2.20 1.87, 2.12 3.26, 3.27 2.77, 2.92 11.81 0.97

nearest neighbor bond lengths for most of the systems are increased by up to 46% and

12% respectively. For Au-O, Ba-O and Sr-O, the increase in the first neighbor bond length
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reaches to 70%. Corresponding increase in second neighbor bond length is higher than

12%. First and second neighbor bonds of O with Fe atoms of the surrounding matrix,

i.e., Fe-O bonds, are also expanded by up to 32% and 6% relative to the respective initial

bond lengths. In some systems, the second neighbor Fe-O bonds are either comparable to

the initial values or reduced slightly (MgO, NiO, TiO, VO). First and second neighbor M-

M bond lengths (except He-He bond) are increased by up to 37% and 22% respectively.

Generally, first and second neighbor O-O bond lengths are expanded by up to 28% and

14% respectively. The increase in the O-O bond lengths in Au4O4 is exceptionally large.

Some of the second neighbor O-O bond lengths are reduced relative to the initial values

(WO, AlO, MoO). Nevertheless majority of the (i) M4O4 units remain intact with M and

O atoms bonded as in the beginning of the structural optimization, since the changes

in bond lengths described above are towards their experimental values in the respective

oxides as discussed in the previous paragraph.

In Table 5.3, we have two bond lengths for M-O, M-M and O-O bonds whereas they

are single values in free M4O4 clusters in Table 5.2. This is because our M4O4 placed in

the iron matrix is tetragonal while free M4O4 is cubic. That is, the two values for M-O,

M-M and O-O bonds are measures of tetragonal distortions of the M4O4 clusters. If these

two bond lengths for each of the M-O, M-M, and O-O bonds become same or comparable

after relaxation, with the difference between M-M and O-O bonds are reduced, it is an

indication that the embedded M4O4 units tend to transform from the tetragonal form to

the cubic form. Comparison of these pairs of bond lengths shows that most of the oxides

tend to transform to the cubic form from the initial tetragonal form but the difference

between the average M-M and O-O bond lengths keep them deformed. We note here

that the oxide nanoparticles in 14YWT ODS steel, as mentioned earlier, is reported to

have NaCl (B1-type) structure[20]. The same authors subsequently reported that the

oxide nanoparticles rather have TlI-like structure which can be regarded as a deformed

NaCl structure[187]. In Ca4O4 and Sr4O4, the transformation from tetragonal to cubic

form is almost complete. We also note that the M-M bonds are generally larger than

the O-O bonds for most of the oxides. Whereas, in BaO, CaO, and SrO, the M-M bond

lengths are less than or equal to the respective O-O bond lengths.
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He4O4, Au4O4 and Si4O4 are exceptions. In the former two systems (ii and iii), He

and Au atoms stay close to their respective substitutional positions. Whereas the O atoms

detach from He and Au atoms and attach with neighboring Fe atoms. Correspondingly,

the Fe-O bond lengths are relatively shorter in these systems. Further, while the O

atoms from He4O4 are still located near their original octahedral interstitial sites after

relaxation, the O atoms from Au4O4 are relaxed to the next tetrahedral interstitial sites.

O atoms detaching from He and Au atoms and attaching with neighboring Fe atoms

may be understood as follows: Noble elements He and Au with negligible reaction with

O atoms allow them to leave them. Fe atoms react readily with O atoms to produce Fe-

O oxides hence attachment with Fe atoms. Si4O4 (iv) relaxes to four SiO pairs, located

approximately at their respective initial positions. This is because the difference between

the first and second nearest neighbor Si-O and O-O bond lengths have become larger

than the initial lengths. These 4 different patterns of relaxation (YO, HeO, AuO, SiO) are

shown in Fig. 5.2. Thus, majority of the MO clusters including

MgO, AlO, TiO, MnO, NiO, YO, ZrO and HfO remain intact as M4O4 units in Fe matrix

with some amount of distortion from the cubic form. Analysis of relaxed bond lengths

further shows that the Fe matrix surrounding the M4O4 clusters is expanded.

We note here the Erhart has studied the energetics of helium

atoms at the oxide-iron interfaces, considering various oxides

(Al2O3,TiO2,Y2O3,YAlO3,Y3Al5O12,Y4Al2O9,MgO,CaO,BaO,SrO) to identify

better oxides to make swelling resistant ODS steels for application in the fusion

environments[170]. Brodric et al. have studied the mechanism for irradiation damage

resistance in Y2O3 dispersion strengthened steels through the energetics of 4 distinct

Y2O3-Fe interfaces. They have shown that these interface act as strong traps for both

interstitial and vacancy defects, facilitating recombination without altering interface

structure. This catalytic elimination of defects is considered to be the mechanism

behind the improved performance of ODS steels with respect to irradiation creep and

swelling[188]. Our work shows that the degree of distortion of the M4O4 clusters

embedded in the iron matrix span over range. Thus, it will be interesting to investigate

the helium trapping capability of these oxide-iron interfaces.
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Figure 5.2: Relaxed structure of Fe supercell with embedded M4O4 B1-type oxides depicting 4
different patterns of relaxations of the oxide clusters. Structure with label YO represents the
relaxation pattern where the M4O4 unit remains intact. Majority of MO belong this category.
Structure with label HeO represents the relaxation pattern where the displacement of O atoms
toward neighboring Fe is significant though remain related to their respective original positions.
He atoms relax toward each other inward. Structure labeled AuO represents relaxation where the
displacement of O atoms away from Au is significant that they are rather close to the next tetrahedral
interstitial positions. Structure labelled SiO represents relaxation pattern where the M4O4 unit
relaxes to 4 separate MO units though remain close to their respective original positions.
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5.3.2 Formation energies of B1-type MO oxides in bcc iron matrix

The formation energies of MO oxides in bcc iron are collected in Table 5.4. Equilibrium

volumes, bulk moduli and their pressure derivatives for all the Fe124M4O4 systems are

also collected in Table 5.4. Atomic radius of elements M from WebElements[189] are

included in Table 5.4 for comparing the equilibrium volumes. Figure 5.3 shows the

formation energies as a function of relaxed volume of each of the 31 MO embedded

iron systems. The formation energy of the oxides are related to their ability to resist the

motion of dislocations in the iron matrix.

Endothermic interaction between the oxide particles and the iron matrix is

considered to keep the oxide particles undissolved in the iron matrix. Undissolved oxide

particles are viewed to be more effective to pin dislocations[177]. We see from Fig. 5.3

that the oxides such as BaO, SrO, YO, CaO, SnO, CdO, ZrO, ScO, MgO, ZnO, SiO, AlO,

MnO, and TaO with endothermic formation energies, are potential oxides to remain

intact in the Fe matrix. Further, the formation energy of YO(10 eV), for instance, is

higher than that of Y2Ti2O7(4.33 eV)[177] suggesting that YO dispersions would be

more stable against dissolution than the pyrochlore. We see further that the oxides

such as IrO, HfO, WO, NbO, RhO, ReO, MoO, OsO, TiO, CoO, VO, CrO, NiO, CuO,

and FeO, are less stable in the iron matrix since their exothermic formation energies

are manifestation of reaction between MO and Fe where exchange of M for Fe or

nucleation of M-Fe-O oxide is favourable. The endothermic formation energy of MgO

and the exothermic formation energy of TiO are similar to their interface energy with

iron matrix[190]. We also find that some of these exothermic oxides such as HfO, WO,

MoO and ReO remain intact though they are not observed experimentally. This is likely

because the iron matrix enhances the M-O bonding in these oxides. The other oxides

such as NiO, NbO, TiO, VO, CoO, and CuO, which are observed experimentally, are

calculated to have exothermic formation energies. This may be because the transition

metals Ni, Nb, Ti, V, Co, Cu and Cr bond appreciably with the surrounding Fe as is

evident from their intermetallic phases[122]. Elements such as Zr, Cd, Y, Sr and Ba have

large endothermic formation energies in bcc iron[183] consequently their oxides (with

endothermic formation energy) are highly stable in the iron matrix.
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Table 5.4: Thermophysical properties of MO embedded bcc Fe for 31 different MO oxides. Formation
energy Ef, volume of relaxed supercells, volume/atom, atomic radius (r) of M, bulk modulus (B) of
oxide embedded iron and its pressure derivative (B

′
) are listed. Experimental volume of 128 atoms

supercell of bcc Fe, i.e., V(Fe128), is 1501.12 Å3. The corresponding DFT volume is 1456.25 Å3. DFT
thus underestimates the volume of Fe by 3% and lattice constant by 1%.

Oxide Ef(eV) Volume(Å3) Volume/atom(Å3) r(Å) B(GPa) B
′

AlO 1.90 1500.15 11.36 1.18 161 6.4
AuO -8.75 1542.65 11.68 1.74 156 4.1
BaO 27.43 1619.67 12.27 2.53 123 5.2
CaO 14.68 1551.98 11.75 1.94 140 5.8
CdO 5.57 1549.89 11.74 1.61 145 6.2
CoO -3.65 1500.49 11.37 1.52 161 5.9
CrO -2.08 1503.00 11.39 1.66 162 5.8
CuO -2.96 1503.48 11.39 1.45 154 6.3
FeO -2.05 1501.34 11.37 1.56 161 6.1
HeO 5.11 1490.32 11.29 0.31 137 6.0
HfO -1.65 1539.90 11.67 2.08 158 6.2
IrO -10.15 1531.07 11.60 1.80 158 5.6
MgO 5.07 1509.41 11.42 1.45 151 6.5
MnO 1.24 1502.02 11.38 1.61 161 6.5
MoO -2.96 1523.10 11.54 1.90 167 5.6
NbO -2.96 1531.85 11.60 1.98 164 5.7
NiO -3.15 1500.29 11.37 1.49 157 6.0
OsO -2.49 1524.35 11.54 1.85 164 5.7
ReO -8.08 1522.34 11.53 1.88 170 5.4
RhO -5.62 1526.86 11.57 1.73 157 5.7
ScO 3.89 1528.23 11.58 1.84 154 6.1
SiO 2.00 1499.77 11.35 1.11 160 6.3
SnO 12.41 1548.05 11.69 1.45 151 6.0
SrO 21.64 1586.54 11.57 2.19 133 5.0
TaO 0.42 1530.56 11.60 2.00 165 5.6
TiO -1.28 1511.53 11.45 1.76 163 6.1
VO -2.45 1504.23 11.40 1.71 166 6.1
WO -7.32 1528.22 11.58 1.93 172 5.0
YO 10.18 1568.30 11.88 2.12 124 3.4
ZnO 1.43 1508.26 11.42 1.42 154 6.4
ZrO 1.41 1545.98 11.71 2.06 155 5.5

It may be noted that, in Table 5.4, HeO is listed to be endothermic though He

and O atoms do not stay together as a cluster in the iron matrix. Thus the formation

energy of HeO do not correspond to a single He4O4 entity embedded in the iron matrix

rather corresponds to separate He and O atoms dissolved in the iron matrix which is



5. Stability of B1-type oxides in bcc iron / 86

1500 1525 1550 1575 1600 1625

Volume(Å
3
)

-10

0

10

20

30
Fo

rm
at

io
n 

en
er

gy
(e

V
)

MgO

ZnO

TiO

MoO

OsO

ReO WO

IrO

ScO
CdO

HfO

AuO

SnO

CaO

NbO

SrO

ZrO

YO

BaO

RhO

TaO

CrO
VONiO

CuOCoO

MnO
SiO AlO

FeO

Figure 5.3: Formation energy of B1-type oxides in bcc iron versus volume of the oxide embedded
bcc iron. The lines are guides to eye.

endothermic perhaps because He assume apparently large size (as evident from the

He-He bond length in iron matrix) which cause tensile stress on the matrix leading to

increase in the total energy of Fe124He4O4. Thus the idea of endothermic formation

energy(known as dissolution energy by Takahashi and Tanaka) for the stability of

embedded oxide against dissolution[177] is valid only if the oxide cluster remains intact.

For AuO also, the formation energy corresponds to Au and O atoms separately dissolved

in the iron matrix rather than single Au4O4 units. Therefore, HeO and AuO are omitted

from the subsequent discussions. But we would like to note that, in ODS steel under

irradiation, O and He atoms are very likely to encounter each other. This work suggests

that the tendency of O to trap He or vice versa is weak.

Another observation from Fig. 5.3 is that the formation energies exhibit a correlation

with the radius of the M atoms (see Table 5.4) of the oxides when we consider BaO, SrO,

YO, HfO, ZrO, TaO, CaO, NbO, WO, MoO, ScO, OsO, TiO, VO, and FeO. Oxides such as



5. Stability of B1-type oxides in bcc iron / 87

MgO, SiO, MnO and IrO show appreciable deviation from this relation. We show later

in Section 5.3.5 that the oxides that deviate from this correlation are those in which

the hybridization between the valence orbitals of M and Fe are either weak or strong

relative to those in other oxides.

5.3.3 Bulk modulus of B1-type MO oxide embedded bcc iron

The bulk modulus is a measure of the ability of a substance to withstand changes in its

volume by compression. The bulk modulus is related inversely to the thermal expansion

coefficient of solids[191]. Thus the bulk modulus of oxide embedded iron will be a useful

indicator to identify the oxides for ODS steel that resist compression or expansion.

Moreover, DFT calculation of the bulk modulus of oxide embedded iron is

rare though common for elemental and compound crystals[192, 193]. Therefore we

computed the bulk modulus of all the 31 oxide embedded iron systems by fitting their

E(V) data to the Vinet equation of state[184]. Table 5.4 lists the calculated equilibrium

volumes, bulk moduli and their pressure derivatives for all the Fe124M4O4 systems.

Figure 5.4 shows the E(V) equation of state for all these systems. Smooth curves indicate

that Vienna Ab initio Simulation Package gives E(V) for Fe124M4O4 systems in the same

manner as it gives for elemental and compound crystals. It is evident from Table 5.4

that the relaxed equilibrium volumes of all the systems, obtained by fitting the E(V) in

Fig. 5.4, are increased with reference to pure Fe. This increase in volume is generally

from 3 to 5% except for CaO, SrO, BaO, YO, ZrO, HfO, CdO, and SnO embedded

systems for them the increase is between 5 to 11%. Estimates of volumes of M4O4 from

their respective atom sizes show that the increase in the volumes of the supercells are

generally more than that contributed by M4O4 units.
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It is further evident from Table 5.4 that the bulk modulus of oxide embedded iron is

generally reduced compared to the PAW-PBE bulk modulus of pure iron (185 GPa)[194].
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Figure 5.4: E(V) equation of state for B1-type oxide embedded bcc iron supercells Fe124M4O4.

This reduction in bulk modulus correlates with the increase in the equilibrium volumes

of the oxide embedded iron as can be seen from Table 5.4 and Fig. 5.5. The reduction in

bulk modulus of bcc iron due to the oxide particles appears to be in agreement with the

reduction in bulk modulus and increase in lattice parameters of bcc iron with alloying

elements Al, Si, V, Cr, Mn, Co, Ni, and Rh[195] as well as with the reduction in bulk

modulus of bcc iron with embedded A2B2O7 oxide particles[177]. We also see from

Fig. 5.5 that the oxides such as CaO, SrO and BaO, with relatively higher contribution

to equilibrium volumes, have reduced the bulk modulus of bcc iron appreciably. The
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reduction in the bulk moduli of oxide embedded iron with the associated increase in the

volumes compared to pure iron is further in accordance with the reduction in melting

point and density of ODS steels compared to pure iron[189, 196]. Compared to ScO

embedded iron, the bulk modulus of WO embedded iron is appreciably higher though

their volumes are comparable. Correspondingly, it is found that the Fe-W bond lengths

(2.32 Å) are shorter than Fe-Sc bond lengths (2.48 Å) indicating that the Fe-W bonding

is relatively strong.
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Figure 5.5: Bulk modulus versus relaxed equilibrium volumes of oxide embedded bcc iron. The line
is a guide to eye.

5.3.4 Correlation between the formation energy and the bulk modulus of

the oxide embedded bcc iron

Figure 5.6 plots the calculated formation energies of the oxides in bcc iron and the

bulk moduli of the oxide embedded bcc iron. ODS steels with higher bulk moduli and

endothermic formation energies for the oxide particles are considered to be able to

resist thermal expansion and stop dislocation motion leading to stable microstructure

at elevated temperatures[177]. In this connection, Fig. 5.6 indicates that ZrO, AlO, SiO,
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Figure 5.6: Formation energy of B1-type oxides in bcc Fe versus bulk modulus of the oxide embedded
bcc Fe. The lines are guides to eye.

MnO, and TaO have endothermic formation energies with relatively higher bulk moduli

for respective oxide embedded bcc iron, making them suitable candidates as dispersions

in ODS iron alloys. It is also evident that oxides such as, YO, CdO, SnO, MgO, ZnO, and

ScO constitute stable oxides in the iron matrix though they cause a reduction of the

bulk modulus. The other oxides, such as, TiO, VO, CrO, FeO, CoO, NiO, MoO, RhO, HfO,

WO, ReO, OsO, and IrO, retain or enhance the bulk modulus of the iron matrix, but

their exothermic formation energies indicate that they are chemically less stable. This

work thus show that TiO stays intact in the bcc iron matrix but it is not the most stable

oxide. Figure 5.6 further shows that the formation energies of the oxide particles have

a correlation with the bulk modulus of the respective oxide embedded iron. We also see

that CaO, SrO, and BaO are quite stable against dissolution, but they cause considerable

reduction of bulk modulus of the iron matrix.

It is evident that most of the oxides predicted to be stable in the iron matrix (except

AlO and TaO) are observed experimentally (see Table 5.1). Whereas, many of the oxides,
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which are unstable in the iron matrix, are not observed experimentally (AuO, CrO,

HfO, IrO, MoO, OsO, ReO, RhO, WO. It is noted here that Hf-O precipitates with Hf:O

ratio close to 1 has been reported in Fe-14Cr-0.22Hf alloy fabricated by spark plasma

sintering[197]). Inspection of Iron-binary phase diagram[122] show further that the

majority of the M’s of exothermic MO oxides (Ir, Rh, Ni, Co, Cr, V, Mo, Nb, and Re) form

extended solid solution with Fe unlike M’s of endothermic oxides (Ca, Sr, Ba, Y, Cd, Sn,

Mg, Sc, Zr, Mn and Ta).

We have also seen that the oxides with endothermic formation energies, which

tend to retain the bulk modulus of the iron matrix, are potential candidates for the

development of improved ODS steels. Comparison of our bulk moduli of the MO

embedded iron with those of the A2B2O7 embedded iron by Takahashi and Tanaka[177]

indictes that the MO oxides are better candidate to retain/improve the bulk modulus of

the iron matrix. Thus the MO oxides, such as, SnO, MgO, YO, CdO, ScO, ZrO, AlO,

SiO, MnO, TaO, and ZnO, are predicted to be suitable candidates to be investigated as

dispersion in ferritic matrix. We note that, among these oxides, MgO has been already

studied as an alternative dispersion in ODS steels[171,172].

5.3.5 Electronic density of states of B1-type MO oxide embedded bcc iron

We have seen that the formation energies are endothermic for some oxides and

exothermic for other oxides. Since the formation energies are manifestation of bonding

between Fe, M and O atoms, we analyzed the projected electronic density of states of

the oxide embedded iron to gain more insight into the origin of the exothermic and

endothermic formation energies. Figure 5.7 shows the projected density of state of s or

d electrons of M, d electrons of nearest Fe and the p electrons from O atoms. We see

that the p density of states are placed almost over the same energy range with similar

hybridization with the Fe and M density of states.

Whereas the s or d density of states from M’s exhibit distinguishable degrees of

overlap with the d density of states from nearest Fe. That is, the M’s with exothermic

formation energy for MO, such as NiO, RhO, and IrO exhibit strong overlap with the Fe d

density of states while the M’s with endothermic formation energy for MO, such as MgO,
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YO and ZrO, exhibit weak overlap with the Fe density of states. We also see from (a),(b),

and (c) panels of Fig. 5.7 that the hybridization between Mg-s and Fe-d is negligible

compared to that between Y-d and Fe-d, and between Zr-d and Fe-d states. This leads to

relatively large positive formation energy for MgO, which makes it to deviate from the

correlation between the formation energy and volume in Fig. 5.3. Looking at the DOS

in the (d), (e), and (f) panels of Fig. 5.7, we see that the hybridization between Ir-d and

Fe-d over -6 to 0 eV is strong compared to that between Ni-d and Fe-d, and between Rh-d

and Fe-d. (Ir-d band width and the area under Ir-d occupied DOS are more compared to

those of Ni-d and Rh-d DOS). This strong hybridisation between Ir and Fe states leads

to relatively large exothermic formation energy for IrO in the iron matrix, causing it

deviation from the correlation in Fig. 5.3. We note further that most of the MO’s derive

their mechanism for the endothermic or exothermic formation energies from the degree

of overlap between valence electronic density of states from M and Fe atoms.

5.4 Conclusions

Stability of the oxide dispersion against dissolution is important for the reliable long-

term performance of the ODS steel core components. Therefore, the stability of the

oxide dispersion and the associated properties of ODS steels have been studied actively.

For the oxide nanoparticles, various compositions and structures have been discussed

in the literature. B1-type TiO nanoparticles have been observed in certain ODS steel.

The B1-type oxide is considered to have great chemical flexibility[20]. To improve our

understanding on the structure and stability of the B1-type oxides as dispersions in ODS

ferritic steel, we carried out calculations of formation energies of 31 different oxides

in bcc iron matrix and their bulk moduli using DFT calculations. The calculations were

performed with Fe124M4O4 systems modeled on 4× 4× 4 bcc supercells.

Analysis of the relaxed structures from our work show that many of the oxides

embedded in the iron matrix remain structurally intact with some amount of distortion

from the cubic form. Formation energies of these oxides show a correlation with the

equilibrium volumes of the oxide embedded iron. Bulk moduli of the oxide embedded
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iron show an inverse correlation with their equilibrium volumes. Further, the formation

energies of the oxides in the iron matrix exhibit an inverse correlation with the bulk

moduli of the oxide embedded iron. The degree of hybridization between the valence

states of M and the surrounding Fe atoms is found to be the mechanism for the

endothermic or exothermic formation energies of the oxides in the iron matrix. That

is, the M’s with exothermic formation energy for MO, such as NiO, RhO and IrO, exhibit

strong hybridization of their d density of states with the Fe d density of states while the

M’s with endothermic formation energy for MO, such as MgO, YO and ZrO, exhibit weak

overlap with the Fe density of states.

Endothermic formation energy is related to the resistance of the oxide particle

against dissolution into constituent atoms. Oxide embedded iron with relatively higher

bulk moduli are considered to resist dislocation motion and thermal expansion better.

Our work predicts that oxides, namely YO, CdO, SnO, MgO, ScO, ZrO, SiO, AlO, MnO,

TaO and ZnO, with endothermic formation energy in the iron matrix combined with

better bulk moduli, have the potential to improve the properties of ODS steels. This work

also indicates that B1-type MO oxides retain/improve the bulk modulus of iron matrix

better compared to A2B2O7 pyrochlore-type oxides. MgO has been already studied as an

alternative dispersion in ODS steels. AlO, CrO, MoO, TaO, WO and ReO dispersions are

predicted to enhance the bulk moduli of the iron matrix and remain structurally intact

though they are not observed experimentally. This indicates that the iron matrix confine

these oxides to remain intact.



6
Summary and future scope of the work

6.1 Summary

In order to understand the atomic level properties of steels, we have performed an

extensive set of first principles electronic structure calculations of the formation and

binding energies of atomic defects (vacancy, solute atoms, solute-solute, and vacancy-

solute pairs) in ferromagnetic bcc iron. An extended set of solute elements with atomic

numbers from 1 to 54 have been considered. Our calculations reveal the trends in the

solute formation energy and solute size factor. It is found that the formation energies

of solutes from fourth and fifth periods vary with their atomic numbers such that they

reach maximum near the ends of the periods and minimum in between, with local hump

near Cu and Ag (like a quasi parabolic valley). Solutes from the second and third periods

show similar trends like the elements near the ends of the fourth and fifth periods. The

common solute addition to Fe (3d, 4d, and sp elements) are found to possess moderate

formation energies. Large endothermic formation energies are obtained for solutes that

lack solubility in Fe (alkali, halogen, noble gas, alkaline earth, Se, Ag, and Cd atoms).

Like formation energies, the size factors of the solute elements also vary with their

atomic numbers such that they reach maximum near the ends of the periods and

minimum in the middle. The majority of solute atoms have positive size factor, i.e.,

their effective size in the iron matrix are higher than that of iron atoms. Immiscible

solute atoms generally possess relatively large size factors. Solubilities estimated from

our formation energies are found to be in reasonable agreement with those from the

phase diagram database.
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The solute-solute and vacancy-solute binding energies vary with the atomic number

of the solutes in a manner inverse to the formation energies and size factors. That is,

strong binding energies occur for solute-solute or vacancy-solute pairs at the ends of the

periods and weak binding energies for pairs from the middle of the periods. We also find

that the 1nn solute-solute binding is repulsive for many solutes, while the vacancy-solute

binding is always attractive. The size factors of isoelectronic sets of elements increase

down the groups with an associated increase of the formation energies. The strength

of the solute-solute and vacancy-solute binding energy increases with the size factors of

solutes down the group. Comparison of our predicted vacancy-solute binding energies of

3d and 4d transition elements with their corresponding calculated diffusion coefficient

from the literature show a significant correlation whereby solutes with strong binding

energies possess higher diffusion coefficient and vice versa. This, in turn, indicates that

our predicted vacancy-solute binding energies of other solutes are useful to estimate

their diffusion coefficients.

In addition to atomic defects, the stability of oxide particles embedded in the iron

matrix have been studied. The stability of the oxide dispersion against dissolution is

important for the reliable long-term performance of the ODS steel core components.

Therefore, the stability of the oxide dispersion and the associated properties of ODS

steels have been studied actively. The improved properties of ODS ferritic steels are

related to the densely dispersed fine oxide nanoparticles in the iron matrix. B1-type TiO

nanoparticles have been observed in certain ODS steel. The B1-type oxide is considered

to have great chemical flexibility. To improve our understanding on the structure and

stability of the B1-type oxides as dispersions in ODS ferritic steel, we carried out

calculations of formation energies of 31 different oxides in bcc iron matrix and their

bulk moduli using DFT calculations. The calculations were performed with Fe124M4O4

systems modeled on 4× 4× 4 bcc supercells.

Analysis of the relaxed structures from our work show that many of the oxides

embedded in the iron matrix remain structurally intact with some amount of distortion

from the cubic form. Formation energies of these oxides show a correlation with the

equilibrium volumes of the oxide embedded iron. Bulk moduli of the oxide embedded
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iron show an inverse correlation with their equilibrium volumes. Further, the formation

energies of the oxides in the iron matrix exhibit an inverse correlation with the bulk

moduli of the oxide embedded iron. The degree of hybridization between the valence

states of M and the surrounding Fe atoms is found to be the mechanism for the

endothermic or exothermic formation energies of the oxides in the iron matrix. That

is, the M’s with exothermic formation energy for MO, such as NiO, RhO and IrO, exhibit

strong hybridization of their d density of states with the Fe d density of states while the

M’s with endothermic formation energy for MO, such as MgO, YO and ZrO, exhibit weak

overlap with the Fe density of states.

Endothermic formation energy is related to the resistance of the oxide particle

against dissolution into constituent atoms. Oxide embedded iron with relatively higher

bulk moduli are considered to resist dislocation motion and thermal expansion better.

Our work predicts that oxides, namely YO, CdO, SnO, MgO, ScO, ZrO, SiO, AlO, MnO,

TaO and ZnO, with endothermic formation energy in the iron matrix combined with

better bulk moduli, have the potential to improve the properties of ODS steels. This work

also indicates that B1-type MO oxides retain/improve the bulk modulus of iron matrix

better compared to A2B2O7 pyrochlore-type oxides. MgO has been already studied as an

alternative dispersion in ODS steels. AlO, CrO, MoO, TaO, WO and ReO dispersions are

predicted to enhance the bulk moduli of the iron matrix and remain structurally intact

though they are not observed experimentally. This indicates that the iron matrix confine

these oxides to remain intact.

6.2 Future scope of the work

• Study of defect formation and binding energies in Fe-Cr alloys.

• Investigate experimentally the predicted oxides (SnO, MgO, YO, CdO, ScO, ZrO,

AlO, SiO, MnO, TaO, and ZnO) are suitable candidates as dispersion in ferritic

matrix.

• Modelling the yield strength of the steel.
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