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SYNOPSIS 

 

Recently various charged particle accelerator projects, related to linear colliders for leptons 

and FELs are being pursued. All of them are designed to deliver electron pulses with a very 

short bunch length either for high power, high frequency RF generation or for luminosity 

enhancement or to achieve high intensity in emitted radiation. For obtaining a very short 

bunch length, all these facilities at one or another stage include bunch compressors. Therefore 

in last one or two decades the beam dynamics studies and optimization for the bunch 

compressors has been an active area of research. 

Electron beam bunch compressors are used to compress the electron bunch using RF 

manipulation followed by a magnetic optics. This compression is therefore a two step 

process. In the first step, a correlation is established between the momentum spread and 

longitudinal position through the RF system (RF system changes momentum of an electron as 

a function of its longitudinal position) and the second step is passing this bunch through a 

magnetic optics, which generates a correlation between the longitudinal position and 

momentum spread via dependency of path length on momentum deviation.  The thesis work 

is related to second step i.e. in the thesis I have carried out magnetic optics studies and its 

optimization for the bunch compressors with a case study of CTF3 (CLIC Test Facility 3) 

transfer line (TL-2) bunch compressor at CERN. 

In a co-ordinate system, which is used for studying the beam dynamics in an accelerator or a 

beam transport system, the beam propagation direction is known as the longitudinal direction. 

The plane in perpendicular direction to the beam propagation axis is known as transverse 

plane. The origin of this co-ordinate system moves in a fashion that a particle with correct 

momentum, which lies initially on the design trajectory i.e. no transverse displacement and 

angle with respect to design trajectory, always remains on the origin. This reference particle 

is known as a synchronous particle. Any other particle's state at a given instant is designated 
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by six parameters in this co-ordinate system. Transverse displacement (x, y) and angles with 

design orbit (x', y') are four transverse co-ordinates out of these six co-ordinates. Along the 

longitudinal direction, the parameters describing particle's state are distance (or time) from 

the origin (reference particle) and fractional change in momentum with respect to design 

momentum (generally known as momentum offset). In beam dynamics, each magnetic 

element is represented by a map, which relates the co-ordinates of a particle at exit of this 

element from the particle's co-ordinate at the entry of this element. This map can be 

represented by matrices (known as transfer matrix). A charged particle optics is governed by 

a suitable arrangements of different types of magnets and the overall map of this optics is a 

composition of maps of individual magnets. In designing and in optimization of a bunch 

compressor, the elements of a map (transfer matrix), related to longitudinal plane become 

very important. These matrix elements provide a relation for path length (hence time of 

flight) of a particle traversing the element in terms of its initial co-ordinates and momentum 

offset. Among these elements, pure chromatic elements i.e. elements which relate path length 

to momentum offset play the most significant role. These elements are termed as R56, T566, 

U5666 etc for the linear, second order and third order maps, respectively. The path length 

relation with momentum for a particle in dipole magnet including higher orders (above 

mentioned matrix elements) provides the actual achievable bunch length in magnetic optics. 

The basic beam dynamics useful in understanding the magnetic optics with emphasis on 

bunch compression is provided in Chapter 1. This chapter also includes a brief introduction 

of different types of optics usually employed for the bunch compressor. 

The main focus among the bunch compressors in this thesis is on the CTF3 Transfer Line-2 

(TL-2) bunch compressor, which has a very wide tuning range of R56. The compressed bunch 

is used to generate a high frequency, high power RF for the CTF3 project at CERN. CTF3 is 

a test facility for the upcoming CLIC (Compact Linear Collider) at CERN. This test facility is 
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used to demonstrate the high frequency, high power RF generation using a drive beam as well 

as to test RF components of CLIC. Chapter 2 contains some information on the CLIC and 

CTF3 projects of CERN. 

In CTF3, bunches of an electron beam, extracted from Combiner Ring is transferred to CLEX 

area (CLIC Experimental Area) through Transfer Line-2 (TL-2), where these bunches 

generate high frequency RF power in the PETS (Power Exchange Test Structure). In this 

transfer of bunches, TL-2 compresses the bunch length and matches the optical parameters at 

the entry of optics just before the PETS. TL-2 bunch compressor is designed in a modular 

structure in which there are three modules. First module is an achromatic arc formed by two 

extraction septa of CR and one dipole magnet. Second module provides proper matching 

between first and last modules as well as accommodates a vertical achromat, required to 

overcome the building constraint. The last module is a R56 tuning arc and is the most 

important module of this line. Tuning of R56 is carried out by shaping the dispersion curve in 

this achromatic module. Three quadrupole triplets and four dipole magnets form the R56 arc. 

After this arc, in this module, there is a quadrupole doublet to match the Twiss parameters at 

the exit. This transfer line bunch compressor was to be installed in the already available 

building. Some of the magnets were also available. Thus there were magnetic and geometric 

constraints in designing the beam optics for this line. Under these constraints a symmetric 

optics design is not possible i.e. Twiss parameters are not symmetric in R56 arc and therefore 

optical optimization poses a challenge. Being a test facility, the tuning range is also very wide 

i.e from -0.30 m to +0.30 m. Therefore bunch length can be compressed from 8.3 ps to 1.5 ps 

for a wide range of initial distribution of electrons in the longitudinal phase space. Chapter 3 

summarizes the geometry, modules and optics optimization for wide range of R56 in this line. 

At a very short bunch length of 1.5 ps, the higher order optics also becomes important and 

second order longitudinal dispersion term T566 plays effective role in deciding the bunch 
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length. Thus, in the entire range of R56 tuning, second order term T566 has to be suppressed. 

For suppressing this term, sextupole magnets are included in the line. Due to optically 

asymmetric beam line, second order correction with sextupoles brings detrimental effects on 

the transverse phase space and transverse emittance blows up. Due to asymmetry in optical 

functions and very wide tuning range of R56, standard sextupole correction scheme, like 

identity transformer in which two sextupole magnets are kept at  betatron phase apart, is not 

suitable. Therefore a new technique for optimizing the sextupole magnets is evolved and 

applied successfully in this line, in which T566 is controlled and there is very small emittance 

growth in the transverse plane. This is described in Chapter 4. 

When relativistic electron bunch passes through a dipole magnet, it emits synchrotron 

radiation due to curvature in the path. When the bunch length becomes very small, the 

emitted radiation has significant coherent synchrotron radiation (CSR). This CSR generally 

has significantly adverse effects (sometimes larger than higher order effects, described in 

chapter 4 and 5) on the transverse emittance and on the momentum spread (which changes 

the bunch length in dispersive section). In last one decade this problem drew significant 

interest in beam dynamics. Although, the bunch length in TL-2 of CTF3 is not compressed to 

a very short length (i.e. sub-ps or shorter), nevertheless it is always essential to quantify the 

effects of CSR in a bunch compressor. Using computer code ELEGANT, we have carried out 

studies of CSR and its effect on CTF3 bunch compressor, which is summarized in Chapter 

5. 

For compressing a bunch to a very short length in a magnetic optics with a reasonable values 

of R56, the RF system has to generate a large momentum spread. At a very short bunch length 

with large momentum spread even the higher order terms (more than 2
nd

 order) can have 

detrimental effects in longitudinal plane. Control on bunch length depends mainly on the 

dipole magnets, employed in an optics through the path length variation as a function of 
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momentum in dipole magnets. Thus there is a need to make a higher order model of a dipole 

magnet. Presently the available models are based on the Hamiltonian methods by making Lie 

operators up to higher orders and also using perturbation techniques in the equation of 

motion, in which the Green's function for driving terms for higher orders are used to solve the 

problems. But these techniques are complex in nature and increasing order one by one in 

computation may be a tedious job. Computer codes for obtaining results up to higher orders 

are also available, but numerical integration does not provide a good insight into the problem 

as well as increasing order of computation also pays a cost of computation time. On the basis 

of geometrical arguments, in this thesis, we obtained analytical expression of maps for hard 

edge dipole magnets which are exact. The single analytical term encompasses all the orders 

and thus is useful in quick analysis. Approximation used in numerical computation (i.e. 

truncation of map up to 2
nd

 or 3
rd

 order in computer codes) brings deviation mainly in 

longitudinal plane from the accurate results, obtained using the analytical map derived in the 

thesis. Therefore this analytical formulation has more importance for bunch compressors, 

where higher order effects on bunch length can be estimated accurately. The analytical results 

for a single magnet as well as for a bunch compressor are compared with code MAD8 and 

ELEGANT. The model and results are presented in Chapter 6.  

At the end, the work carried out is summarized in this paragraph. Transfer Line-2 (TL-2) has 

been designed for a very wide tuning range of longitudinal dispersion R56, satisfying all the 

requirements which include utilization of available magnets and installation of the line in an 

already existing building with several geometrical constraints. Second order longitudinal 

dispersion T566 is corrected in the entire range of R56. A new sextupole scheme is evolved for 

this correction with minimum dilution of transverse emittance and applied successfully on 

this bunch compressor transfer line. Effects of CSR on the beam in TL-2 is quantified and 

found that there are no significant detrimental effects on the bunch length and transverse 
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emittance in the operating domain of this line.  An exact map for hard edge dipole magnets is 

obtained analytically and it is applied on a chicane type bunch compressor to estimate the 

bunch length and emittance accurately. A comparison of analytical results with tracking 

codes is presented, which shows the deviation in the results of longitudinal plane obtained 

using tracking codes due to approximations of truncation of maps up to third order in these 

codes. 
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CHAPTER 1 

INTRODUCTION 

 

 The electron beam bunch compressors, which are charged particle beam optical 

systems for compressing the electron bunch length, are nowadays an integral part of various 

accelerator programmes, such as high power high frequency RF generation (CLIC, CERN), 

linear colliders (CLIC, ILC) and FEL projects [1-8]. The interest in short bunches emanates 

from the requirement of achieving high efficiency of RF power generation in RF structures, 

high luminosity in colliders and increasing peak intensity of the emitted radiation in FELs. In 

last one or two decades, there is a vast advancement in understanding and optimization of 

such bunch compressors and it became an active area of studies. The goal of a bunch 

compressor is to bring the head and tail of a bunch closer to each other. This bunch 

compression process comprises of two steps. First is the establishment of correlation between 

the momentum of an electron in a bunch and its position (time) with respect to the bunch 

centre. This is achieved by a suitable RF system, which changes the momentum of an 

electron in a bunch depending on its position from the bunch centre. The second part is the 

utilization of this correlation to compress the bunch length by passing this bunch through a 

magnetic optics, in which the path length of an electron is correlated to its momentum [9-11] 

i.e. path length changes according to momentum of an electron in a bunch. In this thesis, we 

have focused on the second part i.e. optical design and optimization of a magnetic optics for 

the bunch compression. The optical design of CTF3 (CLIC Test Facility 3) Transfer Line-2 

(TL2) bunch compressor is presented with details. 

It is essential to know the effects of a magnetic field on the motion of a charged particle and 

to obtain a suitable arrangement of magnetic elements to achieve the goal of a controlled 
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transfer of charged particles i.e. designing a charged particle optical system for beam 

transport. Therefore in this first chapter, the basics of beam dynamics under different 

magnetic field configurations, which are useful for understanding the charged particle optical 

systems are reviewed. In Section 1.1, accelerator co-ordinate system, equation of motion in 

this co-ordinate system and different magnetic field configurations are described. In next 

section, solution to this equation of motion in particular field configurations (dipole and 

quadrupole magnets) are provided. The solution for an off momentum particle is discussed in 

next section. Then the parameterization of charged particle optics and beam is described in 

brief. Next section is focused on how to utilize this charged particle magnetic optics for the 

bunch compression. In last section, some commonly employed optics for bunch compressors 

are summarized. 

 

1.1 Equation of motion 

Any charged particle, passing through a magnetic field, experiences Lorentz force, given by 

                  [1.1] 

Here      is the velocity of the charged particle, q is its charge,      is the applied magnetic field 

and      is the force on the charged particle. In any accelerator or beam transport system, there 

is a design path i.e. a particle of correct energy with initial positions and angles exactly on 

this path, will follow this trajectory under the design magnetic fields. It is always convenient 

to make this design trajectory as a reference for defining the charged particle's co-ordinates. 

Therefore, in accelerator physics, a local co-ordinate system is chosen in a way, so that its 

origin moves and moving origin defines the design trajectory. A reference particle is also 

defined such that it has precisely the desired momentum (in accelerator jargon it is known as 

on-momentum particle), lies exactly on the design trajectory or path or orbit (i.e. neither 
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displaced nor having any angle with this trajectory). This particle, which also moves with the 

origin of co-ordinate system, is also known as synchronous particle. Fig. 1.1 depicts such 

curvilinear co-ordinate system. 

Fig. 1.1 Co-ordinate system in accelerator physics 

The direction of design trajectory (beam propagation direction) is designated by s, the 

direction opposite to the centre of radius of curvature (locally) is designated by x and third 

direction is in the vertical direction to the plane formed by x-s in right hand sense. Generally 

in accelerators or beam transport systems, the bending takes place horizontally and therefore 

x-s plane is known as horizontal plane (also known as median plane) and y-s plane is known 

as vertical plane. Plane x-y is known as transverse plane. This co-ordinate system is a well 

known "Frenet-Serret co-ordinate system" [12, 13]. 

Fig. 1.2 shows such co-ordinate system for a more complex design trajectory which is bent 

by two separate magnetic fields. In this figure, the co-ordinate system is shown at four 

different locations A, B, C and D. As shown in this figure, both the magnets bend beam 

trajectory in opposite sense, thus if one magnet is assigned positive bending angle, the other 

one is assigned negative bending angle.  
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Fig. 1.2 Co-ordinate system defined locally according to bend in the design trajectory 

In synchrotrons or cyclic accelerators, in general a closed path is formed by only one type of 

magnets and chosen sign of bending is positive. However in a beam transport system 

including bunch compressors, both types of magnets may be present. In Fig. 1.2, it is shown 

that a constant magnetic field (region bounded with black bold lines in Fig. 1.2) 

perpendicular to the plane of trajectory and curvature defines the desired design path. 

Therefore, a dipole magnet is used to define a desired design trajectory in accelerators or 

beam transport systems. For a horizontal dipole magnet (which bends beam horizontally), the 

horizontal and vertical components of field are      and      , respectively. Here B0 is 

the desired constant magnetic field. 

Charged particle beam is an ensemble of particles, which has finite extent in space and time. 

Here in the above figure, only design trajectory is displayed, while in a beam, many particles 

may deviate from the design trajectory and may also have some angles with respect to this 
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trajectory. For confining this beam along and near to beam propagation axis, there is a need 

for a focusing force, which would try to bring back the deviated particles towards the design 

trajectory. This focusing action is obtained using a quadrupole magnet. Fig. 1.3 shows a 

quadrupole magnet. 

 

Fig. 1.3 A quadrupole magnet 

The field of a quadrupole magnet is zero at the centre (x=0, y=0) and increases as distance 

increases from the centre in the transverse plane. The horizontal and vertical components of 

the quadrupole field are       and      , respectively. Here g is the field gradient 

(  
   

  
 ) of the quadrupole magnet and is a constant parameter for a given quadrupole 

magnet at some defined pole tip field.   

Therefore the minimum requirement for making a beam transport system is to have dipole 

magnets (if desired design trajectory is curved) and quadrupole magnets. There will be some 

space between these magnets, known as drift space. Using Eq. 1.1 in accelerator co-ordinate 

system, retaining only linear terms for an on-momentum particle, one gets Hill's equation for 

the motion of the charged particle under the dipole and quadrupole magnetic field (field has 

only vertical component in the median plane) [13-16] i.e. 
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[1.2] 

Here independent variable is 's' instead of time 't' and K(s) is the strength (magnetic strength 

or normalized strength) of the magnet and is a function of s. If we define   
 
    then in 

the case of a dipole magnet,  K(s) is    
    and for a quadrupole magnet, K(s)=k. For a 

dipole magnet, k is non-zero only if magnet has some gradient in the field along transverse 

direction i.e. it has a quadrupole component and      represents the geometrical focusing 

term of a dipole magnet. Term B is known as the magnetic rigidity and is directly 

proportional to momentum (p) of the beam i.e. B=p/q. Normalizing the strength with beam 

rigidity allows the description of an optics independent of beam momentum. K(s) is different 

for different magnets along 's' and is zero in a magnet free region i.e. drift space. Within a 

magnet also, it varies along 's' due to fringing of the magnetic field at edges of a magnet. For 

a single magnet, using concept of 'effective length', the strength can be made constant inside 

this magnet and the parameter K becomes a step function at edges of this magnet. This model 

in accelerator physics is known as 'hard edge model' and solution of the equation obtained 

using this approximation is known as 'piece-wise solution'. In each piece, Hill's equation 

becomes similar to that of a simple harmonic oscillator. The effective length of a magnet is 

chosen in such a way, that the integration of strength parameter along 's' considering fringing 

for a magnet becomes equal to KLeff. The concept of effective length is shown in Fig. 1.4.  
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Fig. 1.4 Effective length and hard edge model of a magnet 

 

1.2 Solution of Hill's equation: Transfer matrix 

Discussion of the previous section reveals that the motion of a charged particle in a field of a 

particular magnet is characterized by its magnetic strength and effective length. A particle 

trajectory in one plane can be described by x and dx/ds (=x) i.e. displacement from the 

design path and the angle of motion with the design path. Here, the prime denotes the 

differentiation of x with respect to s and a dot over symbol will be used for differentiation 

with respect to time. Each magnet is characterized by a map (represented by a matrix in linear 

dynamics), which transforms the input co-ordinates of a particle (xin, xin) to the co-ordinates 

at the exit of a magnet (xout, xout). The elements of this matrix (this matrix is known as 

transfer matrix) are the principle solutions of Hill's equation. The theory is general in nature 

i.e. xin and xout need not be exactly entry and exit point of a magnet, even these points can be 

located within the magnet itself, only one has to consider the matrix between these two 

points. A similar matrix can be defined for the other plane i.e. y-s plane considering the co-

ordinates (yin, yin) and (yout, yout) .  

S 

By Real field distribution 

Hard edge approximation 

Leff 
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The transfer matrices for commonly used magnets are given below. The complete and 

detailed derivation can be found in Refs [13-18]. 

1. Drift space (i.e. magnetic field free region) of length L  

Here the transfer matrix for horizontal plane is given below. The same matrix is valid for the 

vertical plane also. 

           
  
  

  [1.3] 

 

2. Quadrupole magnet 

In the focusing plane, a quadrupole magnet of strength k and effective length L has 

trigonometric functions in the solution of Hill's equation, which shows a bounded oscillatory 

motion. Using the principle solution of Hill's equation, transfer matrix of a focusing 

quadrupole (focusing in horizontal plane, also known as F-quadrupole) is constructed as 

follows 

                  
        

        

    

                     

  

[1.4] 

 

In defocusing plane (vertical plane), the particle goes away from the design trajectory and 

instead of trigonometric functions, matrix elements contain hyperbolic functions. This gives 

an unbounded motion i.e. defocusing. 

                  
         

         

    

                      

  

[1.5] 
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If the focal length of a quadrupole magnet is much larger than the thickness of the magnet, 

then magnet can be approximated as a thin lens, which changes only the angle of a particle 

(x) but leaving displacement from the design trajectory unchanged (x). Thus a magnet in thin 

lens approximation, changes the particle trajectory with some angle. This approximation is 

often valid in practical situations and provides a powerful tool for initial handy calculations. 

In this approximation, the matrix of a quadrupole magnet becomes 

                

  

 
 

 
   

[1.6] 

 

Here f is the focal length, given by  f=1/|k|L. In defocusing plane, 1/f appears in matrix 

instead of -1/f. The change in angle of the direction of motion by a magnet (known as kick) 

under thin lens approximation is given by 

   
      

  
 

In case of a quadrupole magnet, this kick becomes 

   
      

  
 

Here KLeff is the integrated strength of the quadrupole magnet. Now onwards, the subscript 

'eff' with L will be omitted and in case of a magnet, L will always refer to the effective length. 

3. Sector type dipole magnet  

The geometry of this type of magnet is a sector of a circle, in which the design trajectory 

enters and exits perpendicular to the edges of the magnet. In a bending plane, the matrix is 

given by 
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[1.7] 

Here  is the design bending radius and  is the bending angle. In the other plane, this dipole 

magnet acts as a drift space of length L=. 

4. Parallel edge dipole magnet (rectangular dipole magnet)  

In this type of dipole magnets, design trajectory enters and exits at the half of bending angle 

with respect to centre axis of the magnet along the length (angle of /2- with edges) and 

both the magnet edges are parallel. Due to this geometry, the dipole magnet acts as a drift 

space in bending plane and acts as a focusing quadrupole in other plane (due to virtue of co-

ordinate system). For bending in horizontal plane, the matrices are given by 

            
      
  

  [1.8] 

 

            

         

 
    

 
    

  

[1.9] 

 

Here horizontal and vertical matrices are shown separately. Combining both the matrices and 

ignoring horizontal to vertical coupling of motion, a 44 matrix of the following form can be 

constructed 

       
            
            

  
[1.10] 

Here       is a null matrix that shows the horizontal motion is not coupled with the vertical 

motion. It is not always true. If a magnetic field of a quadrupole magnet has a non-vanishing 

component of magnetic field in the median plane (i.e. field is not exactly perpendicular to the 
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median plane due to rotation of the quadrupole magnet around the beam propagation 

direction), then horizontal and vertical motion are coupled and instead of having null matrices 

in above equation, some non-zero element will be present and above matrix in this case will 

show a coupled transverse matrix [19].  

A beam is a large collection of charged particles having a certain momentum spread around 

the central momentum. Effect of magnet on motion of a charged particle also depends on the 

momentum, therefore with the co-ordinates (xin, xin, yin, yin), one more co-ordinate has to be 

introduced i.e. p/p (=) which is a fractional offset in momentum from the central 

momentum p. In next section, the dependence of co-ordinate on momentum offset is 

discussed. 

 

1.3 Off momentum particle 

Particles with different momenta experience different forces under the magnetic field of a 

dipole magnet. A dipole magnet therefore generates different trajectories for particles with 

different momenta. In Fig. 1.5, trajectories of three particles, having different momenta are 

shown, which are on the same trajectory before entering the magnet. The magnet bends less 

(smaller bending angle) a higher momentum particle and bends more (larger bending angle) a 

particle with a lower momentum. 

Considering momentum deviation in Hill's equation, the transfer matrices for dipole magnets 

are given by following expressions [15-18] 
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Fig. 1.5 Trajectories in dipole magnet due to momentum spread 

 

1. Sector type dipole magnet (horizontal bending)  

 
 
  
 
 

   

  

                  

 
    

 
        

   

  
 
  
 
 

  

 

 

[1.11] 

The last row ensures that  does not change in a dipole magnet.  

2. Rectangular type dipole magnet (horizontal bending): 

 
 
  
 
 

   

  

               

      
 

 
   

  
 
  
 
 

  

 

 

[1.12] 

The deviation in a trajectory with respect to the design trajectory due to a momentum offset, 

is quantified as 'dispersion' and can be written as (in first order of ) 

            [1.13] 

Here xd is the deviation in an off momentum trajectory from the design trajectory and D(s) is 

the dispersion. This is first order dispersion. The angle of this deviated trajectory can be 

written as 
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            [1.14] 

Here D is the derivative of D with respect to s. Above two equations reveal that the 

dispersion follows same transfer matrices as followed by transverse co-ordinates x and x'. 

Therefore, the transfer matrix for dispersion vector for a sector type dipole magnet is given 

by 

 
 
  
 
 

   

  

                  

 
    

 
        

   

  
 
  
 
 

  

 

 

[1.15] 

Similarly matrix for a rectangular dipole magnet is following 

 
 
  
 
 

   

  

               

      
 

 
   

  
 
  
 
 

  

 

 

[1.16] 

 

The dipole magnet generates a dispersion in the plane of bending i.e. horizontal bending 

magnet generates a horizontal dispersion, which is mostly the cases with all accelerators. A 

vertical dipole magnet generates a vertical dispersion. 

This deviation in trajectory also brings a change in total path length travelled by an off-

momentum particle as compared to length of the design trajectory. This path length 

dependence on momentum is the key parameter used in designing a bunch compressor. 

Similar to a dipole magnet, an off-momentum particle experiences a different kick from a 

quadrupole magnet and therefore, focal length of a quadrupole magnet becomes momentum 

dependent. Considering first order in momentum deviation, this chromatic effect of a thin 

quadrupole magnet can be expressed as follows 

                   

Here k is the effective quadrupole strength for an off-momentum particle. 
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1.4 Motion in longitudinal plane 

A particle may also lead or lag behind the synchronous particle (origin of moving co-ordinate 

system) and therefore time (or distance along s) from the origin (or synchronous or reference 

particle) is also needed to specify the particle's state. By introduction of this time co-ordinate, 

now there are six co-ordinates. Using these 6 co-ordinates, complete state of a particle for 

accelerator optics is described. In full 6-D, mapping (matrix equation) of the co-ordinates 

looks like the following 

                [1.17] 

Here, subscripts 'in' and 'out' refers to co-ordinates of the particle at the entry and exit of the 

optical element (or an optical section). Matrix      is the transfer matrix of the magnet (or 

optical element), describing a 6-D linear map. Here      and       is the column vector (61) 

of co-ordinates for a particle.  

         

 
 
 
 
 
 
 
  
 

  
  
  
 
 
 
 
 

      

 

 
 
 
 
 
 
  
  
  
  
  
   
 
 
 
 
 

      

 

 

[1.18] 

Here new symbols xi's are introduced for co-ordinates. Note here that time is the fifth co-

ordinate and momentum offset is the sixth co-ordinate, although we introduced these two co-

ordinates in reverse order. Sometimes 'z' (distance from synchronous particle along s) is taken 

as the fifth co-ordinate, instead of time difference from synchronous particle (t). An element 

of the transfer matrix Rij gives the dependence of i
th

 co-ordinate of the particle at the exit on 

the j
th

 co-ordinate of the particle at the entrance of the optical element. 

The dynamics of longitudinal co-ordinates t and  decides the bunch length and therefore 

the evolution of these co-ordinates in a given optics is very important in designing and 

analysing the bunch compressors. Magnets do not change momentum offset () of a particle 
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(if we ignore radiation emission during bending of a charge particle). In accelerators, for 

energy manipulation of the beam, RF cavities are used, which changes this momentum offset. 

When a charge particle passes through this cavity, the electric field manipulates the energy of 

this charge particle, hence its momentum offset changes. In magnetic optics, path length, 

hence time of flight of a particle depends on momentum offset. In this way, RF cavity 

changes momentum offset  on the basis of particle's position in a bunch and magnetic optics 

changes t on the basis of its momentum offset. Combination of RF cavity with magnetic 

optics can change both the longitudinal parameters and bunch length can be controlled. Now 

in following sub-section, we obtain the longitudinal map of a dipole magnet and an RF 

cavity. 

1. Longitudinal map of a dipole magnet 

A dipole magnet does not change the momentum offset of a particle and therefore R65 and R66 

is zero and one respectively. These two elements R65 and R66 establish a relation of out with 

tin and in, respectively.  Now we compute the path length dependence on momentum offset 

in a dipole magnet. Fig. 1.6 shows two trajectories inside a small section of a dipole magnet. 

 

Fig. 1.6 Trajectories in a small section of a dipole magnet 
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In this figure curve AB depicts the design trajectory and another deviated trajectory (due to 

momentum offset) at a distance of x, is shown by the curve A1B1. The length of these 

trajectories are 'ds' and 'ds', respectively and  is the design bending radius. In first order 

approximation, the length of the deviated trajectory can be written as [15] 

               
 

 
        

  

 
    

[1.19] 

Thus change in path length between these two trajectories over this small arc section is 

          
   

 
  

[1.20] 

Integration of this quantity over the complete optics of length L, gives a total change in path 

length. Change in path length for unit momentum offset is the R56 element of the transfer 

matrix. Using the above equation, R56 is given by 

    
  

 
  

    

 

 

 

   
[1.21] 

This change in path length is translated in a change in time of flight for an off-momentum 

particle and thus total travel time of a particle in optics becomes a function of its momentum.  

In general the higher momentum particle (positive momentum offset) follows a longer path, 

hence a general optics has a positive R56 and in the thesis, this sign convention is followed. 

Computer program MAD8 [20], which has been extensively used in design and optimization 

of CTF3 Transfer Line-2 (TL-2) bunch compressor, has opposite sign convention i.e. in the 

above case it gives a negative R56.  Evaluating the integration of Eq. 1.21 for a particular type 

of magnet provides the explicit expression of R56 for that magnet.  

If an on-momentum particle enters a dipole magnet with non-zero x or x', this changes the 

path length even for an on-momentum particle also. But for beam with smaller size and 

divergence, these effects are negligible. These contributions in path length gives non-zero 
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element R51 and R52. Now we can write full 66 linear map (matrix) for a horizontal dipole 

magnet as following [21-23] 

      

 
 
 
 
 
 
   
   
 
 
   
 

   
   
 
 
   
 

 
 
   
   
 
 

 
 
   
   
 
 

 
 
 
 
 
 

   
   
 
 
   
  
 
 
 
 
 

 

 

[1.22] 

 

2. Longitudinal map of an RF cavity 

Let a sinusoidal RF variation of voltage at a frequency f  with a peak value of V in a cavity. 

Synchronous phase be s i.e. RF phase at which synchronous particle arrives in an RF cavity. 

A particle enters the cavity at a phase  (i.e. a phase deviation of  from the synchronous 

phase) with a momentum offset in. The energy of this particle at time of entering in the 

cavity is [9-11] 

                 [1.23] 

Here 'Es,in' is the energy of the synchronous particle at the time of entering the cavity. 

Similarly, after exit from this cavity, the energy of the synchronous and off momentum 

particle become 

                     [1.24] 

                                     [1.25] 

Combining above three equations (1.23, 1.24 and 1.25), yield 

                                         [1.26] 

This gives 

     
                         

             
   

[1.27] 
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[1.28] 

For a high energy beam, the ratio 
  

     
   and thus retaining only linear terms of this ratio, 

we get 

           
  

     
       

  

     
      

  

     
           

[1.29] 

The phase deviation  is       , where krf is the magnitude of RF wave vector and zin is the 

distance of the particle from the synchronous particle. Using this value of , above 

expression reduces to  

           
  

     
       

  

     
                       

[1.30] 

 

If particle's deviation from the synchronous phase is small, then keeping linear terms in the 

above equations,  provides us the following expression 

           
  

     
          

     

     
      

[1.31] 

Considering cavity as a thin lens, it does not change relative distance (zin) of a particle from 

the synchronous particle. Thus transfer matrix of a cavity for the longitudinal plane can be 

written as 

 
      
      

   
    
    

   
  
      

  
     
     

  
[1.32] 

Under thin lens approximation,  R55=1 and R56=0. The other elements of above matrix are as 

following  
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[1.33] 

and 

      
  

     
      

[1.34] 

Above transfer matrix of an RF cavity provides a quantified information of the change in 

momentum offset of a particle, passing through a cavity, as a function of its position.  

 

1.5 Transfer matrix for a combination of elements (optical section) 

In the above sections, expressions of linear map for different types of elements used in beam 

optics are presented. After an optical element, we can write 

                

 

   

 

[1.35] 

In a beam transfer line or an accelerator, there is a series of elements, through which a 

particle passes during its course of motion. The overall map of the optics is a composition of 

maps of individual elements i.e. the overall transfer matrix for this transfer line or accelerator 

can be obtained by successive multiplication of individual transfer matrices of elements. For 

a transfer line or cell of n-elements, this complete transfer matrix can be written as following 

                                [1.36] 
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1.6 Parameterization of charged particle optics 

1.6.1 Twiss parameters  

A map provides a way to obtain the trajectory of a particle which passes through the optics 

with certain initial conditions. The optics (in linear domain) can be characterized by another 

equivalent method and this method is more comprehensive for understanding the optical 

system and behaviour of the complete beam rather than the individual particle. This method 

is presented in this section in brief. Details are provided in various books and reports on 

accelerator physics [13-18]. 

The solution of Hill's equation (Eq. 1.2) can be written as [13-18] 

                        [1.37] 

Here amplitude        is s-dependent and A is a constant. The function (s) is called 'beta 

function' and µ(s) is the 'betatron phase'. This solution shows that particle exhibits a kind of 

oscillatory motion, known as 'betatron oscillation'. Similar oscillation occurs in y-direction 

also. Distribution of beta function depends on the magnetic (mainly focusing-defocusing 

elements) arrangement (location and strength) in the optics i.e. distribution of K(s) of Hill's 

equation. Differentiating twice the Eq. 1.37 with respect to s and then putting these values in 

Hill's equation, gives 

                                       [1.38] 

This expression gives the invariant of motion. Here two more parameters are introduced, 

which are the following 

      
 

 

     

  
 

[1.39] 
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[1.40] 

The expression for a constant of motion is the equation of an ellipse with an area of A
2
 and 

therefore area of the ellipse is invariant of motion, also known as 'Courent-Synder invariant'. 

These three parameters ((s), (s) and (s)) are known as Twiss parameters. Solution of Hill's 

equation gives the maximum displacement at any location s for a particle as following 

               [1.41] 

Similarly, maximum angle of a particle trajectory with the design trajectory at any location is 

given by 

                [1.42] 

These relations show that Twiss parameters (s) and (s) provide an information of the beam 

size and beam divergence at any location (s) in a magnetic optics. The parameter (s) 

provides a correlation between displacement and angle. Fig. 1.7 shows an ellipse at a 

particular location. Similar ellipse will be formed in the vertical plane (y-y') and parameters 

of this ellipse will be defined by (s), (s) and (s) in vertical plane at that location. 

 

Fig. 1.7 Phase space ellipse in x-x' plane 
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The plane formed by x and x' (similarly y, y' and another plane by t, ) is the plane in phase 

space. At different locations, due to change in Twiss parameters, the size of major, minor 

axes and rotation of this ellipse may change, but area remains constant. 

In presence of dispersion, the displacement of betatron oscillation becomes 

                              [1.43] 

At high dispersion point, displacement of a particle increases as well as displacement for a 

particle with momentum offset is larger as compared to on-momentum particle.  

It is evident that the dipole magnet generates the dispersion, but at various downstream 

locations in a transfer line, there may be a requirement for a dispersion free region, especially 

placing some subsystem etc. To suppress the dispersion downstream, there is a need to 

enforce dispersion and its derivative (D'(s)) to vanish at some location, from where, in 

downstream there will be availability of a dispersion free region, at least in linear theory. 

Using a second dipole magnet and quadrupole magnet, we can achieve the goal. The section 

of charged particle optics, in which there is finite dispersion and outside of it (before entrance 

and after exit), there is no dispersion, is known as 'achromat'. 

1.6.2 Beam emittance 

A beam is a large collection of particles, distributed in phase space. For each initial x, x' there 

is an associated ellipse with constant area. Now the beam size can be defined either by 

standard deviation of positions of particles or choosing particle whose ellipse encompasses 

90% particles or 95% particles etc as shown in Fig. 1.8. Such an ellipse defines the beam size 

and beam divergence. 
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Fig. 1.8 Ellipses encompassing ~67% and ~95% particles from a beam, distributed in 

phase space 

The area of the ellipse, which is the invariant of motion is known as 'beam emittance'. It is 

one of the most important parameters to describe the quality of the beam. Beam emittance, 

beta function, dispersion and momentum spread of a beam decide the beam size in a beam 

transport system or in an accelerator. Due to s-dependence of beta function and dispersion, 

beam size is also a function of 's'. Beam size and divergence are defined by 

            [1.44] 

 

             [1.45] 

 

Here  is the beam emittance and A
2
=. Larger emittance means larger beam sizes and 

divergence and vice versa. In case of a linear system, the propagation of beam size, 

divergence and emittance through a magnetic optics can be described by another approach 

using 'beam matrix'. Beam matrix is provided in Appendix A.  

Beam transfer lines and accelerators are not perfectly linear dynamical system. Instead of 

this, there are sextupole magnets, incorporated in optics to compensate the chromatic 

aberrations generated by quadrupole magnets and also there are higher order multipole errors 
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in the dipole and quadrupole magnets. These make the system nonlinear. In this case, 

problem becomes difficult to find out the invariant of motion and the distribution of beam 

cannot be characterized by an ellipse. In this case, the beam emittance is defined by 

considering the second moments of beam distribution in positions and angle. This definition 

of emittance is statistical emittance, also known as RMS emittance [24]. 

                         [1.46] 

Similar expression exists for other two planes also. Here f is a factor, which depends on the 

distribution. For Gaussian distribution, it is 1/4. The physical significance of this factor is to 

match the RMS emittance definition for a well defined distribution with emittnace defined 

geometrically (i.e. area of ellipse). In most of the literature, this factor is often omitted, as the 

RMS emittance is generally used to quantify the relative change, rather than an absolute 

value. 

Often emittance is normalized by relativistic parameters  (=v/c) and  ( 
 

     
)to make 

emittance energy independent. This is known as normalized emittance. 

A bunch of charged particles has certain finite length along s-axis (i.e. in time). If we pick the 

particles from a bunch for a very short time slice, we can define the transverse emittance of 

that slice. In this way, we separate the bunch in short slices and projection of all the slice 

emittances provide the emittance, measured by a detector. The slice emittance has importance 

when one looks the effect of wake field induced by one part of the bunch on the other part of 

this bunch. 

1.6.3 Twiss parameters and transfer matrix 

Twiss parameters and map (transfer matrix in linear theory), both describe the same optical 

system. Therefore, these two descriptions are connected. We can define a matrix of a magnet 
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or a section of an optical system, which maps the Twiss parameters at entry to exit and 

element of this matrix are the function of elements of the transfer matrix of that magnet or 

optical section. The matrix for mapping the Twiss parameters in horizontal is given below 

 
 
 
 
 

     

  

   
 

       
   
 

        
             

        

   
 

       
   
 

  
 
 
 
 

    

 

 

[1.47] 

 

For vertical plane, R11, R12, R21 and R22 will be replaced by R31, R32, R41 and R42 respectively 

in above relation. 

Similarly a transfer matrix based on Twiss parameters and betatron phase advance can be 

made and this matrix transforms, co-ordinates of the particle from one location (say 1) to 

another location (say 2). This matrix relation is given by [15-17] 

 
 
  
 
 
 

 
 
 
 
 
 

 
  
  
                         

 
      

     
                   

  
  
               

 
 
 
 
 
 

 
 
  
 
 
 

 

[1.48] 

 

Similar relation holds for vertical plane too. 

 

1.7 Second order map  

Above theory is based on the linearization of the equation of motion, hence    matrix maps 

co-ordinates of a particle at the exit of an element (or optical section) from co-ordinates at the 

entry point in a linear fashion. If the equation of motion is expanded up to second order, the 

solution (i.e. co-ordinates of particle) can be written down using perturbation techniques as 

follows 
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[1.49] 

Here Tijk represents the second order transfer map. It shows a dependence of co-ordinates at 

the exit on a combination of two initial co-ordinates. Detailed expressions for second order 

transfer map for a dipole magnet, quadrupole magnet and sextupole magnet are derived in an 

elegant way using perturbation technique in the classic work of Brown [23]. Element T655 of 

RF cavity, which provides a functional relationship between momentum offset (x6) and 

position squared of particle within the bunch (x5
2
) and element T566 of magnetic optics that 

relates the path length (x5) with square of momentum offset (x6
2
) are important second order 

parameters for a bunch compressor.  

Here, we obtain the second order element T655 of an RF cavity. We extend Eq. 1.29 up to 

second order [9] as follows. 

           
  

     
       

  

     
              

 

 
   
         

   
[1.50] 

 

This gives  

      
 

 

  

     
   
       

[1.51] 

 

This element of second order map shows how the momentum deviation depends on the 

square of distance of a particle from the synchronous phase in an RF cavity. Generating 

correlation in momentum and position (i.e. chirping) using an RF cavity, the nonlinear term 

T655 brings a curvature in momentum spread curve with respect to the position. In case of the 

synchronous phase of 0 or , second order term T655 becomes zero. Another transverse 

elements of second order map, which are important in the present study will be discussed in 

Chapter 4. 
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1.8 Bunch compression 

In the following sub section, it will be shown that using above theory, presented so far, how a 

bunch of electrons can be compressed. Next sub-section discusses the different types of 

magnetic optics usually employed for the bunch compression. 

 

1.8.1 Bunch length control 

An electron bunch, generated from a thermionic electron source, has a distribution in 

longitudinal phase space as depicted in Fig. 1.9A. In this distribution, higher and lower 

momentum particles are almost uniformly distributed throughout the bunch length. The 

spread in momentum is un-correlated. For compressing the bunch length, head and tail of the 

bunch must be bought closer to each other for which time of flight for the particles, which are 

ahead (head of bunch) of the bunch centre (synchronous particle), must be longer and 

similarly, time of flight must be shorter for the particles which are lagging behind (tail of 

bunch) the synchronous particle. In case, where electron beam is highly relativistic (this is the 

case studied in this thesis, where electron beam energy is 300 MeV), the velocity of electrons 

remains almost constant and is nearly equal to the speed of light (therefore in this thesis 

effects of velocity will always be ignored). Therefore, time of flight depends on the path 

length only, i.e. if the path length is longer, time of flight will also be longer and vice versa. If 

a magnetic optics is tuned to a certain value of R56 (say positive R56), then path length for 

higher momentum particles will be longer. In above mentioned bunch (Fig. 1.9A) higher 

momentum particles are in the head as well as in the tail of the bunch. Thus higher 

momentum particles, which are in head will reach closer to bunch centre, while which are in 

tail, will become farther from bunch centre. Similar will be the case for lower momentum 

particles. For this type of bunch, optics only redistributes the particles within the bunch, but 



40 
 

bunch length is not changed. So R56 setting (control of path length due to momentum) alone 

cannot compress such bunch. But if there is some correlation in momentum and time in the 

particles of a bunch, such as depicted in Fig. 1.9B, then particular R56 setting of a magnetic 

optics can be used to compress the bunch. Now in this correlated bunch, higher momentum 

particles are almost in tail and lower momentum particles are almost in head. An optics with 

certain R56, in which higher momentum particles take shorter path can be used to compress 

this type of bunch. Therefore, before passing a bunch through a magnetic optics for 

compression, a correlation in momentum and position is generated using R65 element of an 

RF cavity.  

 

(A) 

 

(B) 

Fig. 1.9 Longitudinal phase space, showing a bunch 

Now we see the effects on the longitudinal co-ordinates of an electron, when it passes 

through an RF cavity and then through a magnetic optics. 

 
    
    

   
    
  

 
      

 
  
      

 
      

 
   
   

  
[1.52] 

 

 
    
    

   
              

      
  
   
   

  
[1.53] 

If cavity is not intended to change the central energy of the beam, but only to generate a 

correlation between momentum and position i.e. for chirping, the synchronous phase s is 

either zero or . In this case R66 becomes 1. Thus we have [9-11] 
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                          [1.54] 

With this expression, we get overall bunch length (RMS averaged on all electrons) 

                    
     

    
  

[1.55] 

Thus for a given uncorrelated momentum spread in, the minimum bunch length is possible 

when R56=-1/R65. In this case, the final bunch length is given by out,min=R56in. If optics is 

designed for very small R56, then for achieving shorter bunch, the magnitude of R65 will be 

very large and the correlated momentum spread becomes larger. For smaller values of R65 i.e. 

lower correlated momentum spread, the required R56 is large in the optics for producing 

shorter bunches, hence very large dispersion is needed to be generated in magnetic optics. 

Thus R56 and R65 should be chosen judiciously for designing a bunch compressor. The same 

conclusion is arrived using another approach (beam matrix in longitudinal plane) and is 

discussed in Appendix A. 

This discussion can be extended up to second order in a straight forward way. Let the 

electron passes through an RF cavity. After passing through a cavity, the momentum offset of 

the electron is modified as follows 

                             
  [1.56] 

Now this electron passes through a magnetic optics. Thus final position of the electron after 

the magnetic optics is given by 

                                           

 

     

 

[1.57] 

In most of the practical cases of bunch compressors, the transverse emittances are small and 

thus pure transverse geometric effects and chromatic added with transverse geometric effects 

can be neglected as compared to pure chromatic effects. Under this approximation, above 

equation reduces to 
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  [1.58] 

 

Using out,rf from Eq. 1.56 in the above expression, we get 

                                       
            

 

                     

 

[1.59] 

 

Using two RF systems (one fundamental and one higher harmonic), R65 and T655, both can be 

controlled. In a magnetic optics, T566 can be controlled using sextupole magnets. When 

synchronous phase is 0 or , R66, becomes 1 and T655 vanishes. In this case, the above 

equation reduces to 

                                 
                    [1.60] 

 

Thus a finite T566 generates a curvature in longitudinal phase space distribution as well as an 

unwanted correlation in z and . The electron density shows a sharp peak and using sextupole 

magnets, T566 is suppressed in bunch compressors. However instead of zero, obtaining 

different values of T566 with sextupole magnets can shape the density distribution of electrons 

in a bunch along the propagation direction [25]. 

 

1.8.2 General optics for bunch compressors 

In this section, a discussion on some commonly employed optics for bunch compressors is 

presented. We will discuss only those achromatic optics in which the beam at the exit of 

optics is either parallel to incoming beam or is on the same axis as of incoming beam i.e. exit 

beam with some lateral displacement or without displacement from the incoming beam (Fig 

1.10). 
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(A) Beam at the exit, without lateral 

displacement from the incoming beam 

 

(B) Beam at the exit, with lateral displacement 

of X from the incoming beam 

Fig. 1.10 Schematic of incoming and exit beam in two cases of bunch compressors 

Therefore, in all the optics, which are discussed in this thesis, dipole magnets with opposite 

nature of bending angles will be present. The type of optics in which beam at the exit is on 

the same axis as of incoming beam, is formed by a chicane and its variants or a wiggler based 

bunch compressor. Another type of optics, in which there is a finite lateral displacement in 

beam at the exit, is formed either by a dog-leg optics or an arc and their different variants. In 

following sub-sections, we discuss these types of optics. 

1. Chicane 

This is the simplest optics for bunch compression, in which the exit beam and incoming beam 

are on the same axis. A chicane is formed using four dipole magnets, in which two dipole 

magnets bend the beam in positive direction, while other two dipole magnets bend the beam 

in negative direction keeping the overall resultant bending angle zero. This chicane generally 

known as C-chicane, is shown in Fig. 1.11. It consists of four rectangular dipole magnets of 

equal length (Lbm). The separation between first and second dipole magnets and that between 

third and fourth dipole magnets is L12. 
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Fig. 1.11 Layout of a C-Chicane optics 

In this optics, in the first dipole magnet, beam enters at the right angle to the edge of the 

magnet and therefore, the magnet behaves as the sector magnet at the entry. The exit beam 

makes an angle of  (bending angle) with the edge. In this orientation the higher momentum 

electron in this magnet has a shorter path length, which gives negative R56 for this magnet. 

The matrix of this magnet can be obtained by the matrix of a sector magnet and the matrix for 

edge focusing. Second magnet is just the reverse of this first magnet i.e. edge and then sector 

magnet. In Fig. 1.11, dashed line shows a trajectory for the lower momentum electron and 

bold continuous line shows design trajectory. The trajectory of an off-momentum electron 

meets the design trajectory at the exit i.e. optics is achromatic. Symmetry in an optics helps in 

suppressing the higher order aberrations [26, 27] and the chicane optics is achromatic up to 

all orders. Using simple geometry, approximate value of R56 for this optics can be obtained 

and is given by the following expression [28] 

             
 

 
     

[1.61] 

and 

             
 

 
      

 

 
    

[1.62] 

R56 can be obtained using two methods or approaches namely geometrical approach and 

matrix approach. In the geometrical approach, the path lengths taken are the lengths of the 
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trajectory in actual length of the magnets. Thus path lengths of the trajectory of an off- 

momentum electron with a positive momentum deviation in a C-chicane are shorter than the 

design trajectory and equal to each other in all dipole magnets, giving negative R56 for the 

chicane optics (see appendix-B for details). In the matrix approach, the dipole magnets are 

considered as sector magnets and edge angle effects are taken care of with thin lenses at their 

edges. Due to this assumption, the second and third dipole magnet contribute larger and 

negative R56, while first and last dipole magnet contribute smaller and positive R56, making 

overall a negative R56 for the chicane. The final value of R56 for the chicane is same from 

both the approaches. 

For very small magnets (Lbm   L12), the approximate values of R56 and T566 are -2a2
 and 

3a2
, respectively (here 'a' is the distance from the first magnet centre to the second magnet 

centre). More accurate expression of R56 for a chicane geometry, based on actual transfer 

matrices of all the elements (including drifts) is given in Ref [29]. There may be different 

variations in this geometry which include asymmetric chicane, in which first and second 

dipole magnets are different from the third and fourth dipole magnets and distance between 

first and second dipole magnets may be different from the distance between third and fourth 

dipole magnets. By removing fourth dipole magnet, a mirror optics is added to the chicane to 

form an S-chicane, which is another variant of this geometry. These variants are discussed in 

Ref [30]. One interesting variant, in which beam at the exit is in opposite direction to the 

incoming beam by inclusion of a -bend ("Bates bend") is discussed in Ref [29]. 

All these variants of optics provide a fixed value of R56. Inclusion of quadrupole magnets in 

chicane can make the tuning of R56 possible. In general, a chicane is used to describe the 

optics, without quadrupole magnets, but in this section we also analyze the chicane optics 
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with quadrupole magnets. Fig. 1.12 shows such an optics, in which tuning of R56 is possible 

while fulfilling the first order achromatic condition also. 

 

Fig. 1.12 Chicane geometry including quadrupole magnets 

In all the cases of optics considered, we will discuss only the bending plane, which decides 

the value of R56. In an actual beam transport system design, one has to take care of another 

plane also, that is the plane vertical to this bending plane. In the present discussion, ignoring 

dynamics in vertical plane is justified, because here, the purpose is only to discuss using 

approximate results, the general behaviour (i.e. R56 tuning, R56 variation with momentum 

offset etc.) of these optics not the detailed studies of Twiss parameters, beam distribution etc. 

Nevertheless, this discussion is useful to understand the optical behaviour from the bunch 

compression point of view as the R56 is decided by the motion in bending plane. In the optics, 

shown in Fig. 1.12, quadrupole Q1 is used to vary the dispersion or its derivative at the 

entrance of the second dipole magnet, which tunes the optics at the desired value of R56. 

Second quadrupole magnet Q2, placed at mirror symmetry location, ensures the achromatic 

condition of this optics. Using simple geometry and considering quadrupole magnet as thin 

lens, approximate value of R56 for this optics can be obtained and is given by 

           
    
 

        
          

   
 
      

   
 
    

[1.63] 
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Here K1 is the integrated strength of the quadrupole magnet Q1. L1q is the distances from the 

first dipole exit to the first quadrupole magnet and Lq2 is the distance between first 

quadrupole magnet and entrance of second dipole magnet (see Fig. 1.12, these distances are 

along the direction of incoming beam). Complete derivation of this expression is provided in 

Appendix B. This expression reveals that even the positive R56 can be obtained for this optics 

after inclusion of the quadrupole magnet (K1 is negative for a focusing quadrupole magnet in 

the above expression). For a particular optics (Table 1.1 provides parameters of the chosen 

example optics), this tuning in R56 with quadrupole strength is shown in Fig. 1.13A. In Fig. 

1.13B and 1.13C, dispersion distribution for positive and negative R56 is shown. For making 

large positive R56, required excursion in dispersion becomes larger in order to produce a large 

positive dispersion at the second dipole magnet. 

Table 1.1: Parameters of the example optics for chicane 

Dipole magnet length 0.90 m 

Bending angle of dipole magnet 17.25 

First dipole end to first quadrupole distance (L1q) 0.51 m 

First quadrupole magnet to second dipole start (Lq2) 0.55 m 

Total distance between first dipole end to start of second dipole (L12)* 1.06 m 

Second dipole magnet end to second quadrupole magnet (L2h) 0.7 m 

*The distance L12 is chosen for R56=-0.30 m without quadrupole magnets and dipole length and angles are 

chosen from one of the types of dipole magnet, used in the optics of TL-2 
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(A) Tuning of R56 with quadrupole strength K1 
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(B) Dispersion for tuning at R56=0.25 m (K1 = 0.364 m
-1

). 

Rectangles (boxes) represent dipole magnets and vertical 

line segments show focusing quadrupole magnets. 
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(C) Dispersion for tuning at R56=-0.25 m (K1 = 2.945 m
-1

) . 

Rectangles (boxes) represent dipole magnets and vertical 

line segments show focusing quadrupole magnets. 
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(D) Path length with momentum offset for R56 = -0.25 m 
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(E) Displacement from design trajectory with momentum 

offset at the exit for first order chromatic effect of 

quadrupoles at R56 = -0.25 m 

Fig. 1.13 Different plots, showing the behaviour of a chicane optics 
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To ensure the achromatic condition of the optics, the required integrated strength of the 

second quadrupole magnet Q2 can also be obtained and is given by 

   
    

    
      

[1.64] 

Here q1 is the kick by the first quadrupole magnet and xq2 is the deviation of the off-

momentum trajectory from the design trajectory at the location of second quadrupole magnet. 

These parameters are given by the following expressions 

      
    

   

 
  

   
        

 

   
      

        
 

      
    

 

 
   

 

 

[1.65] 

 

           
 

      
       

 

   
       

     

   

        
       
     

        
   

   
        

        
 

 
 

 

[1.66] 

A quadrupole magnet kick depends on the momentum offset i.e. a quadrupole magnet 

generates chromatic effect, which leads to a non-zero second order dispersion. Considering 

this chromatic effect of quadrupole magnets, the path length obtained for a particular value of 

K1 also depends on the chosen momentum offset. This variation in path length deviation from 

the design path length with momentum offset is plotted for the optics (after last dipole 

magnet) under consideration in Fig. 1.13D. For obtaining this curve, the displacement of 

electrons from the design trajectory for different momentum offset is obtained at the entrance 



50 
 

of second dipole magnet under the first order chromatic effect of quadrupole magnet. 

Initially, all these electrons were launched on the design trajectory. The parameter x'bm2/  is 

quantified as the derivative of the dispersion and path length is computed considering the 

derivative of the dispersion for each electron. The final lateral displacement of an off-

momentum trajectory should vanish for an achromatic condition. However, above mentioned 

chromatic effect of all the quadrupole magnets (two magnets of Q1 type and one magnet of 

Q2 type) makes the lateral displacement non zero and it becomes a function of the 

momentum offset i.e. optics is only first order achromatic. The variation in lateral 

displacement with momentum offset is depicted in Fig. 1.13E. In drifts and dipole magnets, 

second order dispersion approximately follows the first order dispersion with opposite sign, 

however quadrupole magnet brings an extra term in second order dispersion due to above 

chromatic effect [7]. Due to different focusing for first and second order dispersion, optics 

remains only first order achromatic. In order to tune the optics for large positive R56, required 

strength of quadrupole magnets also becomes higher (for R56 = -0.25 m and +0.25 m, it is 

0.36 m
-1

 and 2.94 m
-1

 respectively). The stronger quadrupole magnets produce larger 

chromatic effects in optics, making second order achromatic condition worse in the case of 

positive R56. The ratio of T566 to R56 in this optics also depends on the quadrupole strength.   

2. Dog-leg optics 

This optics uses two dipole magnets with opposite bending angles and is the simplest optics 

for providing a lateral displacement (X) in the beam with a particular value of R56. Fig. 1.14 

shows this type of optics. 
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Fig. 1.14 Layout of a dog-leg optics 

Inclusion of quadrupole magnets are essential to make the optics achromatic for a dog-leg 

beam transport system, made by rectangular dipole magnets. The one complete wave of 

dispersion (2 phase advance) is needed to form the achromat due to opposite nature of 

bending magnets and hence, requires at least two quadrupole magnets. Both the dipole 

magnets provide same sign of R56 and in a symmetric optics, the vale is also same. The R56 up 

to second order of bending angle is given by 

    
   
 

   
[1.67] 

The advantage of this optics is its simplicity, less number of magnetic elements and its 

compactness. A discussion on dog-leg optics can be found in Ref [31] with correction of 

second order longitudinal dispersion. If two dog-leg optics are joined in succession with a 

quadrupole doublet in between and considering complete optics as a single achromat, tuning 

in R56 can be obtained similar to that of chicane with quadrupole magnets. The quadrupole 

doublet in between these two dog-leg optics will assure achromatic condition. Such possible 

variation in this optics is shown in Fig. 1.15. 
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Fig. 1.15 Two dog-leg optics in succession with a quadrupole doublet in between 

Here quadrupole magnet Q1 is used to tune the value of R56. Again this optics can be tuned 

for  positive to negative R56. Tuning in R56 with quadrupole strength K1 (integrated strength of 

quadrupole Q1) is shown in Fig. 1.16A. Here the parameters (dipole magnets and distances) 

are chosen the same as in the example of the chicane optics. Similar to the chicane, in this 

optics, quadrupole magnets bring chromatic effects. The change in path length deviation with 

momentum offset due to chromatic effect is depicted in Fig. 1.16B and Fig. 1.16C shows a 

deviation in the orbit from the design orbit as a function of momentum offset at the exit of 

this optics. Due to strong quadrupole K2 (integrated strength of quadrupole Q2) to make the 

achromat and absence of leaver arm made by opposing dipole magnets, the chromatic effects 

are more prominent in this optics than the chicane. 
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(A) Tuning of R56 with quadrupole strength K1 
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(B) Path length with momentum offset for R56 = -0.25 m 
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(C) Displacement at the exit from design trajectory with 

momentum offset for first order chromatic effect of 

quadrupoles at R56 = -0.25 m 

Fig. 1.16 Different plots, showing behaviour of an arc formed by two dog-leg optics 

 

3. Wiggler based optics 

This is another optics for bunch compressors, in which orbit wiggles around design trajectory 

and final beam at the exit is on the same trajectory as of incoming beam i.e. without lateral 

displacement [28]. This optics is generally employed when large R56 is required. The wiggler 

based optics is shown schematically in Fig. 1.17. 
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Fig. 1.17 Wiggler based optics for bunch length manipulation 

In this optics, if there are N periods (each period consists of two dipole magnets), the R56 is 

given by [28] 

           
   
 
          

   
 

 
[1.68] 

Here each dipole magnet in the wiggler has a length of 2Lbm with a bending angle of 2, 

separated from each other by a distance of 2L. This optics is an achromatic optics. 

 

4. S-arc 

In this optics, for making a symmetric optics, four dipole magnets are used and TL-2 tuning 

arc is a variant of this type of optics. Here, first two dipole magnets bend the beam in positive 

direction and last two dipole magnets bend the beam in negative direction. This type of optics 

is discussed in Section 3.2.3, where optics for tuning arc of TL-2 is also presented. 
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CHAPTER 2 

CTF AND CLIC AT CERN 

 

 In this thesis, the focus is the study of optics design for Transfer Line-2 (TL-2) bunch 

compressor of CTF3 (CLIC Test Facility) at CERN. It is appropriate to discuss briefly about 

the CTF and the CLIC before presenting the work on Transfer Line-2. CLIC is an upcoming 

Lepton collider at CERN. Presently, at CERN, LHC is operational, which is a Hadron 

collider. Hadrons have composite structure of quarks, hence hadron collision is a complex 

phenomenon. Therefore, LHC is known as discovery machine. Leptons are fundamental 

particles and do not have composite structure. So in future, to quantify precisely the 

parameters of physics, lepton colliders are needed. To reach a very high energy for electrons 

in a circular accelerator is practically unfeasible due to a huge loss of energy in form of 

synchrotron radiation on the bending of electrons on a curved path. Synchrotron radiation 

loss for a given bending radius increases with beam energy in fourth order [32]. Therefore as 

the energy is increased, the loss increases many folds. Due to this reason, future lepton 

colliders are planned to be based on linear accelerators, such as TESLA, CLIC and ILC, in 

which synchrotron radiation loss is insignificant. In linear accelerators, reaching higher 

energy means increase in accelerator length. To make length shorter, one needs a very high 

frequency, high gradient field in cavities (RF structures). CLIC will be a collider with a 3 

TeV centre of mass energy [33]. CLIC is adopting the path of normal conducting RF 

structures, working at very high frequency (12 GHz) with very high gradient (100 MV/m) to 

make the accelerator length shorter. To generate, such a high frequency, high gradient field, 

the concept of drive beam is used [34]. In this method, a very high current beam is passed 

through an RF structure to generating EM field (and thus power) in this structure. The 
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generated power is transferred to the main accelerating structure, in which by utilizing this 

field, low current main colliding beam is accelerated to a high energy. This is known as two-

beam acceleration scheme. In following section, we outline briefly about CLIC and in next 

section an introduction to CTF is presented. 

 

2.1 CLIC (Compact LInear Collider)  

The future project of CERN, namely CLIC, will be an electron-positron linear collider with a 

centre of mass energy 3 TeV. The CLIC study of two beam acceleration begun in 1996 [35]. 

The original idea of two beam acceleration was proposed by A. Sessler. Later, this idea for 

CLIC was proposed by W. Schnell using superconducting cavities and single bunch 

operation. Going further to enhance the luminosity, multi bunch operation was proposed and 

thus instead of superconducting cavities, normal conducting cavities were proposed. This 

approach seems feasible and also cost effective. 

The scheme proposed can be summarized as follows: 

1. Using a 973 MHz RF system, accelerate high current electron drive beam, in which 

bunches are separated by 64 cm (bunch repetition frequency is half of the RF Frequency).  A 

pulse of 130 ns, consists of bunches separated by 64 cm can be accelerated using the 

available linac technology. 

2. The goal in this acceleration is to utilize the linac RF power with very high efficiency 

( > 95%), employing a travelling wave structure and the operation with full beam loading 

must be achieved [36].  

3. Then bunch spacing is reduced in steps, first spacing reduced by two fold in a Delay 

Loop (DL) and then it is reduced by four fold in first Combiner Ring (CR) and again four 
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fold in next Combiner Ring, making final bunch separation of 2 cm. This separation 

corresponds to a frequency of 30 GHz. This process is known as 'frequency multiplication' 

[37]. 

4. Length of the individual bunch is also compressed in bunch compressors to increase 

the peak intensity and to obtain a better bunch form factor for generating RF power. Ideally a 

delta pulse have bunch form factor of 1 and increasing the bunch length reduces bunch form 

factor continuously [38]. Fig. 2.1 shows the RF power generation efficiency with RMS bunch 

length. This generated RF power can be transferred to the main linac of collider. 

 

Fig. 2.1 RF power generation efficiency with RMS bunch length (taken from Ref [39]) 

In nutshell the input RF power at 973 MHz is converted into RF power at 30 GHz which is 

used for beam acceleration. In the process of frequency multiplication, the pulse train 

separation becomes ~4.2 µs (i.e. 130 ns  2  4  4). Fig. 2.2 shows a schematic of the CLIC. 

Later on after some test on 30 GHz components, a decision was taken to change the 

frequency to 12 GHz. Now CTF3 studies are focused on 12 GHz RF power production. 
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Fig. 2.2 Schematic layout of CLIC 

 

2.2 Brief introduction to CTF (CLIC Test Facility) 

The CTF was conceptualized to demonstrate the idea of two beam acceleration. Here, a high 

charge electron beam is to be generated and after that frequency multiplication and bunch 

compression has to be achieved. This beam will pass through PETS (Power Exchange 

Transfer System) and will generate the desired RF power. This facility will also be used for 

testing the RF components of CLIC. This test facility has three different phases of 

development i.e. CTF1, CTF2 and CTF3. In following sections, we briefly outline different 

phases of CTF with an emphasize on 3
rd

 phase i.e. CTF3. 

2.2.1 CTF1 

The construction of CTF1 launched in 1988 [39, 40]. The main aim of this phase was to 

develop an RF photocathode gun to produce a very high charge for generating 30 GHz RF 

power and to test the beam position monitors. In a single bunch, 35 nC charge is produced 
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and in a train of 48 bunches total charge of 450 nC is generated. At the beam energy of 92 

MeV, 76 MW RF power was generated by de-accelerating the beam in the PETS [41]. 

2.2.2 CTF2 

In CTF2, with generated RF power, a low charge probe beam was accelerated i.e. CTF2 

achieved two beam acceleration, but without frequency multiplication. A pre-accelerated 

probe beam of 45 MeV was accelerated to 55 MeV in two RF structures. Drive beam 

generated a very high gradient of 290 MV/m in structures. All the results of measurements 

agreed remarkably with the expected values. 

2.2.3 CTF3 

CTF3 is a complete test facility based on the concept of two beam acceleration, including 

frequency multiplication and bunch compression. Therefore, CTF3 can be considered as a 

small scale CLIC. CTF3 has been completed through an international collaboration. This 

thesis has a central theme of TL-2 optics design, which was carried out under DAE-CERN 

collaboration (Indian collaboration with CERN).  

The schematic layout of CTF3 is given in Fig. 2.3. A drive electron beam is first generated 

and accelerated to a maximum energy of 300 MeV (nominal energy of 120 MeV) in a 70 m 

long linac. For reducing the cost of project, the acceleration is done in a 3 GHz linear 

accelerator rather than in 973 MHz accelerator as the various components of 3 GHz RF were 

available.  

A train of 187.5 ns length is filled with even buckets of the linac and next adjacent train has 

bunches in odd bucket of linac [37]. Thus two successive bunches in a train is separated by 

1.5 GHz (i.e. 666.67 ps). All the bunches of one train passes through a 42 m long Delay Loop 

and next train bypasses the Delay Loop. Thus two trains each of 187.5 ns are interleaved and 
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total length remains 187.5 ns (with an extra bunch separated with 3 GHz, so more accurate 

bunch length is 187.8 ns) with a bunch separation of 3 GHz. Thus a frequency multiplication 

of 2 occurs. Now such four trains are combined in a 84 m long Combiner Ring through 

injection using RF deflectors. Thus after the Combiner Ring, the frequency is multiplied by 4. 

So total frequency is multiplied by 8 and thus bunch separation becomes 83.3 ps, which 

corresponds to a frequency of 12 GHz. Thus in CTF3, only two stage frequency 

multiplication is achieved while in CLIC three stage multiplication is planned. Initial pulse 

current of 3.7 A increases to 30 A through this process. In a train of 187.5 ns, there are ~281 

bunches and after interleaving total bunches in a train becomes 2250. Each of these bunches 

have a bunch length of ~8.3 ps (accelerated by 3 GHz structure). After compressing this 

bunch length to ~1.5 ps in TL-2 transfer line, this beam generates a gradient of ~100 MV/m 

at 12 GHz in PETS structures. Main parameters of the drive beam in CTF3 and CLIC are 

given in Table 2.1. 
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Fig. 2.3 Schematic layout of CTF3 
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Table 2.1: Main parameters of drive beam in CTF3 and CLIC 

Parameter CTF3 [42] CLIC [33] 

Drive beam energy 300 MeV maximum, nominal 150 MeV 2.371 GeV 

Pulse length from Linac 1.5 µs 140 µs 

Pulse current 3.7 A 4.2 A 

Bunch separation 666.67 ps 2 ns 

Charge per bunch 2.33 nC 8.4 nC 

Delay Loop multiplication 2 2 

Combiner Ring-1 multiplication 4 4 

Combiner Ring-2 multiplication No 3 

Pulse length after multiplication 187.5 ns 240 ns 

Pulse current after multiplication 30 A 101 A 

Bunch separation after multiplication 83.3 ps 83.3 ps 

Repetition rate 5 Hz 50 Hz 

Main RF frequency generated 12 GHz 12 GHz 
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CHAPTER 3 

LINEAR OPTICS FOR TRANSFER LINE-2 BUNCH COMPRESSOR 

 

 In Transfer Line-2 (TL-2), a drive electron beam with a maximum energy of 300 MeV 

is transferred from the extraction point of the Combiner Ring (CR) to CLEX area (Fig. 2.3). 

This transfer line constitutes the last stage, where bunch length can be manipulated. After this 

transfer line, the beam is delivered to the experimental area via a very short optical section of 

quadrupole magnets, known as TL-2'. In this  experimental area, the electron beam generates 

RF power of the required high frequency and a high gradient. In CTF3, being a test facility, 

there is a requirement to control the bunch length over a wide range and also there may be a 

change in parameters of upstream linac and therefore, this line must be able to compress the 

bunch length with different chirping, provided by the upstream RF system of linac, i.e. for a 

wide range of initial parameters, the line should able to control the bunch length. So most 

important requirement of the optics design of this line is the possible tuning for a wide range 

of R56 parameter. The bunch length from the Combiner Ring is 8.3 ps and it should be 

compressed to lower than 1.5 ps. The required R56 tuning range is -0.30 m to +0.30 m. 

CTF3 is installed in already available building of LEP pre-injector and thus geometry of TL-2 

is constrained by the building layout. Some of the magnets were also available at CERN and 

this poses a second constraint of using the available magnets for designing this line. Optics 

design for a wide range of R56 under these constraints is a challenge. Table 3.1 and Table 3.2 

show the important parameters to be achieved by design and parameters of the already 

available magnets, respectively. 
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In this chapter, the design philosophy of the line, basic geometry and linear optics studies are 

presented. The subsequent chapter describes the sextupole scheme for this line and nonlinear 

studies. 

The pre-existing building of LEP injector and CLEX area have different floor height and 

therefore there is a requirement to send the beam vertically upside also. Thus the functions of 

this line can be summarized as follows [43]: 

 1. Tuning of R56 in a wide range i.e. from -0.30 m to +0.30 m. 

 2. Matching of Twiss parameters at the entry point of TL-2' in CLEX area. 

 3. Sending the beam vertically upside due to floor height mismatch between two 

building floors.  

 4. In the entire range of R56 tuning, second order aberration T566 has to be 

corrected. 

 5. Transverse emittance growth should be less than 10% due to this T566 

correction. 

 6. Accommodating the line within the building and using the available magnets. 

For easy handling of R56 tuning, an achromatic arc for tuning the R56 seems a better choice. 

For avoiding coupling, vertical dispersion should be zero except the point where the beam 

has to be shifted vertically up. In this section, horizontal dispersion must be zero. After the 

tuning arc, there must be a provision of required matching of Twiss parameters at the exit. In 

this chapter the linear optical design of this line is presented. 
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Table 3.1: Parameters for the Transfer Line-2 (TL-2) bunch compressor [43] 

 

CR extraction 

Reference point in 

CR as provided by 

CERN (center 

quadrupole Q540) 

CLEX injection 

Reference point half way in wall 

separating CR and CLEX 

buildings 

Maximum beam energy 300 MeV 300 MeV 

Nominal beam energy 150 MeV 150 MeV 

Nominal bunch charge 2.33 nC 2.33 nC 

Bunch spacing 83.4 ps 83.4 ps 

Train duration 140 ns 140 ns 

H 4.23 m <20 m in entire separation wall 

H 2.76 not specified 

H (normalised, 1) 100  mm mrad <110  mm mrad 

V 7.79 m <20 m in entire separation wall 

V -2.47 not specified 

V (normalised, 1) 100  mm mrad <110  mm mrad 

D 0 m 0 m 

D’ 0 0 

P/P (1) 1% 1% 

Height of beam-line above ground 1.35 m 0.85 m 

 

In section 3.1 a geometrical layout of the line is described and in next section, beam optical 

design is presented. In section 3.3, alternative optical solutions of some selected R56 are 

presented, in which the horizontal dispersion is kept at very lower magnitude. This mode of 

optics is suitable from commissioning point of view, but due to a low dispersion, second 

order aberration T566 cannot be corrected with the available strength of sextupole magnets.  
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Table 3.2: Parameters of the available magnets [43] 

Magnet Type Strength/ 

Bending 

angle 

Effective 

Length 

(mm) 

Mechanical 

Length 

(with coils) 

(mm) 

Mechanical 

width 

(mm) 

Aperture 

(full) 

(mm) 

Dipole Short 6-17.5 268 520 794 10045 

 Long 12-35 518 770 794 10045 

 Sector 6 470 597 276 70 

Quadrupole Slim 8.0 T/m 300 384 340 100 

 Standard 5.4 T/m 380 592 819 184 

 TSL 10.6 T/m 295 430 650 101 

 Q3L 11.2 T/m 226 287 282 58 

Sextupole Short 180 T/m
2
 100 160 420 108 

 Long 44 T/m
2
 246 350 420 167 

 

3.1 Geometrical layout of TL-2 

In Fig. 3.1 the building of LEP pre-injector is shown in which TL-2 has to be installed (see 

Fig. 2.3 also). The extraction septum (point E in the figure) of Combiner Ring sends the 

beam horizontally towards the wall AB and the exit point of TL-2 is the point D on the wall 

BC. 
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Fig. 3.1 Layout of the building, where TL-2 is installed (measurements are in m) 

There is a requirement to steer (and transfer parallel to the wall AB) the extracted beam from 

the CR, which is coming towards the wall AB. In order to reach the exit point D, again there 

is a requirement to steer that beam in the direction away from the wall AB after (or near) the 

point F. Thus this line design can be broken in three modules. The first module is from the 

extraction point to the point where line becomes parallel to wall AB. This is a small 

horizontal achromat. The second module is from point E to F, where line runs parallel to wall 

and third module again bends the beam trajectory and sends the beam to the exit point D. 

Now we present the design details of each optical module of this line in the following section. 

 

3.2 Modules and optics of TL-2 

3.2.1 Module-1 

Module-1 of the line begins from the extraction septum of CR and this module is upto the 

first dipole magnet of TL-2. Extraction septum (two in number) and dipole magnet bend the 

beam horizontally in opposite direction with an angle of 11. This module is achromatic. 

Due to opposite nature of bending, in order to make an achromat there is a necessity of a full 

ECR

AB

C

D

F
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wave of dispersion and therefore there is a requirement of minimum two focusing quadrupole 

magnets to match the dispersion and its derivative. This achromat has a dog-leg optics, 

discussed in Section 1.8.2. For controlling the vertical motion of electrons, one more 

quadrupole magnet, focusing in vertical plane is needed. Therefore a quadrupole triplet, 

consisting of two focusing and one defocusing quadrupoles, is used to form an achromat. The 

schematic layout (not to scale) of this module is shown in Fig. 3.2. 

 

Fig. 3.2 Schematic layout of Mudule-1 

There is a requirement to keep a minimum distance between Septum-2 and first quadrupole 

magnet (Q0A), so that there is no any mechanical interference of this magnet from the 

Combiner Ring components as well as there is a sufficient space to install this magnet. In a 

similar fashion, the last quadrupole magnet cannot be moved nearer to first dipole magnet. 

The third quadrupole magnet between these two quadrupole magnets, is placed at a optimum 

distance, so that for matching the Twiss parameters, the required strength do not reach a very 

high magnitude. By considering the geometry, two slim type quadrupole magnets (Table 3.2) 

are used in this modules. The strength of first two quadrupole magnets to form the achromat 

for a fixed maximum strength of TSL type quadrupole magnet varies with the distance of the 

second quadrupole magnet from the Septum-2 magnet as shown in Fig. 3.3. 

Septum-1 
Septum-2 

Q0A, Slim type 

Q0B, Slim type 

Q0C, TSL type 

BM-1 

Combiner Ring 

Beam 

direction 

Beam 

direction 
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Fig. 3.3 Combination of first two quadrupole strengths (magnitude) for making the module 

as an achromat for a fixed strength of third quadrupole magnet 

3.2.2 Module-2 

Module-2 is from the end edge of the first horizontal dipole magnet (end of Module-1) to the 

beginning of the second horizontal dipole magnet. It is horizontally a straight module i.e. no 

horizontal dipole magnet is there. Fig. 3.4 shows a schematic diagram (not to scale) of this 

module. Module-2 of the line is designed by keeping various points in view. As stated earlier 

that the floor of CLEX area is higher than the LPI building, this module consists of a vertical 

achromatic dog-leg, formed by two sector type dipole magnets, each of 6 bending angle. To 

match the vertical dispersion, this achromat has a quadrupole triplet. In LPI building, there is 

an emergency exit. As per safety requirement, there should not be any magnetic element in 

front of this emergency exit. There is also a requirement of nearly 4 m clear space in line to 

place a tail clipper. Therefore, in this line a clear space of nearly 6 m is available in the 

design to serve both of these purposes. This module also serves as a matching optics between 

Module-1 and Module-2.  
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Fig. 3.4 Schematic layout of Module-2 

In this module, at the beginning there is a quadrupole triplet, which controls the beta function 

at the location of tail clipper. The two defocusing quadrupole magnets out of the quadrupole 

triplet in vertical achromat are used to match dispersion and its derivative. A quadrupole 

doublet just before the vertical achromat is used to control the beta functions inside the 

vertical achromat as well as for providing Twiss parameters in a suitable range, so that the 

last quadrupole triplet can match the Twiss parameters within the available magnetic 

strengths at the entrance of Module-3. In this module, horizontal dispersion is zero and thus 

quadrupole magnets can be tuned to match Twiss parameters, without disturbing the R56 

parameter. 

3.2.3 Module-3 

This module consists of an achromatic arc with a provision to tune the R56 in a wide range. 

An achromatic optics with a lateral displacement and possible tuning of R56 is discussed in 

Section 1.8 by joining two dog-leg optics in succession and by an S-arc. In making the arc of 

Module-3, there are four dipole magnets of two different types and the plan of LPI building is 

the main driving factor to decide the arrangement of the magnets. For making an achromatic 

optics with a variable R56, an S-arc is formed for this module. Following sub-section contains 

a general description of the S-arc followed by the design of such an arc for Module-3.   

QB1 QB2 QB3 QB4 QB5 Q1V Q1V Q2V QB6 QB7 QB8 

Vertical Achromat 

Stnd. type Stnd. type TSL  type TSL type 

Beam direction 

Front of 

Emergency exit 

Place for 

Tail clippers 
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1. S-Arc 

A possible optics (considering only bending plane) of an achromatic S-arc is shown in Fig. 

3.5 (dotted line shows a trajectory of a higher momentum electron). Here two different types 

of dipole magnets are used (keeping the direction of beam propagation the same as in the 

previous layouts related to TL-2 optics in this chapter, here the beam direction is also kept 

from right to left). The third and fourth dipole magnets bend the beam in the direction 

opposite to first and second dipole magnet. First and last dipole magnets have same bending 

angle while second and third dipole magnet have same bending angle and arc is thus mirror 

symmetric. 

 

Fig. 3.5 Layout of an achromatic S-arc with possibility to tune the R56 

In this optics, quadrupole magnet Q1 changes the dispersion and its derivative at the entrance 

of the second dipole magnet and therefore R56 contribution for this magnet changes and 

tuning becomes possible. Quadrupole doublet Q2 ensures the achromatic condition. Inclusion 

of one more quadrupole magnet in first and last straight section enables a control on both, 

dispersion and its derivative at the entrance to second dipole magnet. It is shown in Fig. 3.6. 
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Fig. 3.6 Layout of an achromatic S-arc with possibility to achieve a value of R56 with 

different combination of strength of Q1 and Q2 quadrupole magnets 

Using simple geometry and thin lens approximation, as done in Section 1.8, approximate 

value of R56 for this optics can be obtained and is given below 

                     

 

         

 

   

 

[3.1] 

 

Here P0, Pi and Pij are fixed coefficients for a given optics. A complete derivation of above 

expression is provided in Appendix B. Here R56 is a function of strength of the quadrupole 

magnets Q1, Q2 and Q3. Magnet Q3 is used to make the arc as an achromat. Same value of 

R56 can be obtained using different sets of K1 and K2 and thus it adds another degree of 

freedom for controlling the lattice parameters. Using this degree of freedom, a suitable optics 

can be tuned for obtaining a given R56, in which required betatron functions are also not very 

high. Sets of different K1 and K2, producing same R56 are plotted in Fig. 3.7A (i.e. contours of 
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R56). Tuning of R56 with quadrupole strength K1 and K2 is shown in Fig. 3.7B. The parameters 

of this example optics are provided in Table 3.3. 

Table 3.3: Parameters of the example optics for S-arc 

First and last dipole magnet Length 0.90 m, angle 30.75 

Second and third dipole magnet Length 0.85 m, angle 17.25 

First dipole magnet exit to first quadrupole magnet (L1q) 0.70 m 

Distance between quadrupoles of first doublets (Lqq1) 0.50 m 

From second quadrupole to second dipole magnet entrance (Lq2) 0.70 m 

Second dipole magnet to third quadrupole magnet (L2q) 0.80 m 

Distance between quadrupoles of second doublet (Lqq2) 0.50 m 

* The distances are kept close to TL-2 (although in TL-2, instead of doublet, there is triplet) and dipole magnets 

are also same as of TL-2 

 

In Fig. 3.7C and Fig. 3.7D, the dispersion distribution for R56 = -0.25 m and +0.25 m (for 

some selected K1 and K2) are shown. The selected set of K1 and K2 for producing the required 

R56 is chosen by keeping constraints on maximum dispersion and beta function in the optics. 

For R56 = -0.25 m, K1 and K2 are 0.6 m
-1

 and 1.6 m
-1

, respectively. For R56 = +0.25 m, the 

chosen strength of K1 and K2 are 0.8 m
-1

 and 3.0 m
-1

, respectively. On these settings of optics, 

maximum dispersion is below 2 m as well as beta functions in both the planes are also below 

20 m. The arc has tuning for positive R56 with low dispersion, while for negative R56, 

quadrupole strength is much higher and large dispersion is generated. Fig. 3.7E shows the 

path length variation with momentum offset due to chromatic effect of quadrupole magnets 

and Fig. 3.7F shows the effects of this chromatic term on the final lateral displacement in the 

beam as a function of momentum offset. This figure shows that such an arc has a larger 
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chromatic effect of quadrupole magnets, which generates higher magnitude of nonlinear 

dispersion. 
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(A) Sets of strength K1-K2 for tuning of R56 

 
 

 

(B) Tuning surface for R56 with K1 and K2 
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(C) Dispersion curve for R56=-0.25 m 
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(D) Dispersion curve for R56=0.25 m  
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(E) Path length with momentum offset for R56 = -0.25 
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(F) Displacement at the exit from design trajectory 

with momentum offset for first order chromatic effect 

of quadrupoles at R56 = -0.25 m 

Fig 3.7 Different plots, showing the behaviour of an S-arc 
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2. Optics of S-arc of Module-3 

The tuning arc of Module-3 is based on the optics discussed in the above sub-section. In TL-

2, second order longitudinal dispersion T566 has to be corrected in entire tuning range of R56, 

for which a sufficient magnitude of dispersion is required at the location of T566 correcting 

sextupole magnets. Therefore, one more control parameter is essential in the optics to achieve 

a particular value of dispersion at this location, so that with the available strength of 

sextupole magnets, T566 can be controlled. Keeping this point in view, a defocusing 

quadrupole is placed between the quadrupole doublet of the first and last section. At middle 

point of arc, where dispersion is zero, a defocusing quadrupole magnet is added to have a 

control on vertical betatron function. Due to zero dispersion at this quadrupole magnet, its 

strength does not affect the setting of R56. This optics of arc is shown in Fig. 3.8. 

 

Fig. 3.8 Layout of the optics of an S-arc, on which tuning R56 arc of Module-3 is based 

In this optics, QD1 increases dispersion and if sextupole magnet is placed just before Q2, a 

large dispersion can be generated at the sextupole location. 
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3. Design of Module-3 

In designing of this part of TL-2, there is a very little scope to vary its geometry and different 

distances are fixed according to the building plan. After the arc, the distance up to exit wall is 

very small and therefore, a quadrupole doublet, using "Q3L" type quadrupole (smallest 

mechanical length among the available quadrupole magnets; Table 3.2) is placed. This 

doublet is used to match the required beta function at the exit of wall. Two more sextupole 

magnets are placed in middle arc to suppress the T566. Locations of sextupole magnets are 

chosen by considering the correction of T566 in entire range within the available strength. 

Including all these magnetic elements, the layout of the optics for Module-3 (not to scale) is 

shown in Fig 3.9. 

 

Fig 3.9 Schematic layout of Module-3 of TL-2 

Dispersion distribution inside this arc is symmetric with respect to quadrupole magnet QC5. 

This scheme shows that the arc quadrupole magnets are engaged in shaping the dispersion 
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and these magnets cannot be used to control the Twiss parameters. Therefore the control of 

Twiss parameters is obtained by matching values of Twiss parameters at the beginning of 

Module-3 in such a way, that there is no any undesired values of Twiss parameters in the arc 

as well as the last quadrupole doublet (outside the arc, formed by QD1 and QD2) can ensure 

the beta function less than 20 m in both the planes in entire separation wall of LPI building 

and CLEX area. The initial values of Twiss parameters also depend on the correction of T566 

by sextupole magnets and will be discussed in next chapter. 

 

3.3 Twiss parameters 

General purpose accelerator physics code MAD8 [20] is used extensively in design and 

matching of the line. MAD8 uses either simplex or least square minimization method [44] to 

match the parameters of optics. These methods require a good initial guess of quadrupole 

strengths to converge on an optimal solution [45]. Even considering thin lens approximation, 

the calculations for good initial guess for such a line can be a tedious work for each value of 

R56. Thus a computer code in MATLAB is developed for this purpose, which provides initial 

values using thin lens approximation on the basis of theory outlined in Section 1.8 and 

Section 3.2, including vertical plane also for obtaining a good initial guess to reach a desired 

shape of dispersion distribution [46]. These matched values of optics are used to fine tune the 

optics with MAD8, considering non-zero length of quadrupole magnets. 

The optimal lattice parameters on each tuned value of R56 are shown in Fig. 3.10. Parameters 

in horizontal and vertical plane are shown in black and red colours, respectively. The beta 

function in the arc is kept below 40 m and dispersion is increased to ~2 m to correct the T566 

in the entire range of R56. These values give beam sizes up to 3 well below the aperture of 

the vacuum chamber. 
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The chamber aperture is not same throughout the line and is different in different modules. 

Table 3.4 given below gives dimensions for aperture of vacuum chamber of this line. 

Table 3.4: Vacuum chamber aperture of the line [43] 

Module Type of chamber Aperture full (mm) 

Module-1 Racetrack 9040 

Module-2 Round 40 

Module-3 Racetrack 9040 

The RMS beam sizes up to n in a line is given by  22  Dn  ; where   
           

  
 

[15-17]. In the expression of emittance,  and  are the relativistic parameters. By taking 

normalized emittance 100 mm-mrad for 1, the beam sizes in the dispersion free region up 

to 3 (at 150 MeV, considering beta function 40 m) will be 10.95 mm and with 1% 

momentum offset, the RMS beam size with almost 2.5 m dispersion function (in horizontal 

plane in Module-3) will be 25.06 mm. Fig. 3.11 shows the beam size for 1% momentum 

offset at R56 = -0.30 m, 0.00 m and +0.30 m. The maximum beam sizes are ~18 mm and ~10 

mm in horizontal and vertical planes, respectively. In horizontal plane, this maximum beam 

size reaches in Module-3. This shows that beam sizes are well below the aperture limit. Table 

3.5 shows the quadrupole settings for the different R56 tuning. Here, one can note that there is 

a smooth transition of quadrupole settings of R56 up to -0.30 m to +0.25 m, while at the 

extreme point (on R56  = +0.30 m), there is abrupt changes in settings. To keep the dispersion 

and maximum beta function within the limits, this is required as continuation of the smooth 

transition to R56 = +0.30 m results in the maximum beta function reaching ~60 m and 

maximum dispersion  becoming  ~3.5 m. To reach the R56 = +0.30 m, higher strengths of 

QC3 and QC4 are required resulting in rapid increase in phase advance in the optics and  

higher beta and dispersion function. 
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Table 3.5A: Quadrupole strength (g/B in m
-2

) for different R56 settings of TL-2 

Quadrupole & 

Type 

R56 (m) 

0.30 0.25 0.20 0.15 0.10 0.05 0.00 

Q0A [Slim] 5.499300 

-4.889800 

4.528500 

Q0B [Slim] 

Q0C [TSL] 

QB1    

[Standard] 

3.874428 

 

-2.947592 

 

0.6759084 

QB2    

[Standard] 

QB3    

[Standard] 

QB4    [TSL] 3.656300 3.602400 3.723600 3.745300 3.736400 3.721600 3.686929 

QB5    [TSL] -6.018900 -5.772700 -6.001800 -6.152800 -6.082400 -6.077500 -6.115232 

Q1V [Standard] -4.93990 

3.24745 Q2V [Standard] 

QB6    [TSL] -1.631300 -2.239000 -0.091000 -0.059200 -0.000200 -0.425200 -0.055980 

QB7    [TSL] 3.526200 4.962300 3.783300 4.010000 3.923400 4.237600 3.941288 

QB8    [TSL] -0.844800 -3.856800 -3.778200 -4.570700 -4.507300 -4.690100 -4.403360 

QC1 [TSL] 4.392000 Off 0.520900 1.591602 1.594800 1.635900 2.002300 

QC2 [TSL] -6.309200 -8.147613 -8.127300 -7.165900 -7.273400 -7.180000 -7.616500 

QC3 [TSL] 5.092700 7.667834 7.730600 7.441400 7.635000 7.771300 8.015500 

QC4 [TSL] 0.004100 9.104372 8.721900 8.569588 8.101671 7.741651 7.436591 

QC5 [TSL] -2.358400 -5.018986 -4.786600 -4.665504 -4.627374 -4.523026 -4.639579 

QD1 [Q3L] -4.552400 -6.750623 -8.082500 -8.945800 -8.904300 -10.121200 -7.861000 

QD2 [Q3L] -5.606900 6.926099 8.061600 7.141900 7.064500 7.993200 7.181300 

Here negative sign of strength shows a quadrupole, defocusing in horizontal plane. 
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Table 3.5B: Quadrupole strength (g/B in m
-2

) for different R56 settings of TL-2 

Quadrupole & Type R56 (m) 

-0.05 -0.10 -0.15 -0.20 -0.25 -0.30 

Q0A [Slim] 5.49930 

-4.88980 

4.52850 

Q0B [Slim] 

Q0C [TSL] 

QB1    [Standard] 3.874428 

-2.947592 

0.6759084 

QB2    [Standard] 

QB3    [Standard] 

QB4    [TSL] 3.694465 3.709042 3.720976 3.686929 3.720538 3.71460 

QB5    [TSL] -5.940875 -6.000374 -5.994994 -6.115232 -6.117621 -6.29940 

Q1V [Standard] -4.93990 

3.24745 Q2V [Standard] 

QB6    [TSL] -0.6103124 -0.3429193 Off Off -0.6947597 -0.000400 

QB7    [TSL] 4.297115 4.116014 3.886963 3.755000 4.301927 3.904900 

QB8    [TSL] -4.268515 -4.308398 -4.334767 -4.273200 -4.364285 -5.064100 

QC1 [TSL] 1.989700 2.153567 2.813288 3.189962 4.8462 5.009872 

QC2 [TSL] -7.934264 -7.924808 -8.037459 -8.089192 -8.504432 -8.401705 

QC3 [TSL] 8.262446 8.429037 8.642021 8.881988 9.531533 9.964513 

QC4 [TSL] 7.217666 7.000154 6.723196 6.504467 5.943693 5.789055 

QC5 [TSL] -4.468653 -4.521916 -4.288874 -4.229013 -4.088262 -4.053587 

QD1 [Q3L] -7.043518 -7.452513 -8.136665 -8.883000 -8.290177 -10.57458 

QD2 [Q3L] 5.803209 6.259339 6.520035 8.436400 6.754256 8.581195 

Here negative sign of strength shows a quadrupole, defocusing in horizontal plane. 
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Fig. 3.10A Dispersion and beta functions @ R56 = +0.30 m (Black: horizontal, Red: 

Vertical) 
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Fig. 3.10B Dispersion and beta functions @ R56 = +0.25 m (Black: horizontal, Red: 

Vertical) 
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Fig. 3.10C Dispersion and beta functions @ R56 = +0.20 m (Black: horizontal, Red: 

Vertical) 
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Fig. 3.10D Dispersion and beta functions @ R56 = +0.15 m (Black: horizontal, Red: 

Vertical) 
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Fig. 3.10E Dispersion and beta functions @ R56 = +0.10 m (Black: horizontal, Red: 

Vertical) 
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Fig. 3.10F Dispersion and beta functions @ R56 = +0.05 m(Black: horizontal, Red: 

Vertical) 
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Fig. 3.10G Dispersion and beta functions @ R56 = 0.00 m(Black: horizontal, Red: Vertical) 
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Fig. 3.10H Dispersion and beta functions @ R56 = -0.05 m (Black: horizontal, Red: 

Vertical) 
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Fig. 3.10I Dispersion and beta functions @ R56 = -0.10 m (Black: horizontal, Red: 

Vertical) 
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Fig. 3.10J Dispersion and beta functions @ R56 = -0.15 m (Black: horizontal, Red: 

Vertical) 
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Fig. 3.10K Dispersion and beta functions @ R56 = -0.20 m (Black: horizontal, Red: 

Vertical) 
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Fig. 3.10L Dispersion and beta functions @ R56 = -0.25 m (Black: horizontal, Red: 

Vertical) 
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Fig. 3.10M Dispersion and beta functions @ R56 = -0.30 m (Black: horizontal, Red: 

Vertical) 
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Fig. 3.11A Beam size (considering 1% momentum spread) for R56=+0.30 m (Blue: 

horizontal, Red: vertical) 

 

Fig. 3.11B Beam size (considering 1% momentum spread) for R56=0.00 m (Blue: 

horizontal, Red: vertical) 
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Fig. 3.11C Beam size (considering 1% momentum spread) for R56=-0.30 m(Blue: 

horizontal, Red: vertical) 

 

3.4 Alternative optics 

The optimum solution of optics has large dispersion in R56 arc, so that T566 can be corrected 

using feasible strength of already available sextupole magnets. Therefore, the strength of 

quadrupole magnets is higher and optics is sensitive to alignment and gradient errors. In the 

initial run for commissioning, due to unforeseen errors, these sensitive optics may be difficult 

to commission. Thus at four different values of R56, low dispersion mode of optics is also 

optimized, so that during commissioning, under unforeseen errors, beam can be transmitted 

easily and elements and errors can be characterized. Due to low dispersion mode, T566 cannot 

be corrected in this mode in the given strength of sextupole magnets. 
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Table 3.6: Quadrupole strength (g/B in m
-2

) for different settings of R56 of alternative 

optics for TL-2 

Quadrupole & Type R56 settings (m) 

0.30 0.25 0.00 -0.30 

Q0A [Slim] 5.499300 

-4.889800 

4.528500 

Q0B [Slim] 

Q0C [TSL] 

Q1    [Standard] 3.668100 3.874428 3.668100 3.843000 

Q2    [Standard] -3.876300 -2.947592 -3.876300 -3.801100 

Q3    [Standard] 1.950700 0.6759084 1.950700 1.637200 

Q4    [TSL] 3.836500 3.612900 3.836500 3.810100 

Q5    [TSL] -6.240200 -5.839600 -6.240200 -6.323200 

Q1V [Standard] -4.939900 

3.247453 Q2V [Standard] 

Q6    [TSL] -0.9445672 -1.899700 -0.734800 -0.671300 

Q7    [TSL] 4.320893 4.980700 4.085400 3.885500 

Q8    [TSL] -2.760655 -2.694100 -2.855600 -2.699187 

QC1 [TSL] 3.840300 5.085700 5.121500 6.421631 

QC2 [TSL] -0.460300 -2.117900 -0.411500 -0.1912914 

QC3 [TSL] 0.452900 OFF 0.437400 0.181764 

QC4 [TSL] 4.226300 4.806300 4.025500 4.162491 

QC5 [TSL] -3.877169 -4.725600 -3.761000 -3.729488 

QD1 [Q3L] -1.846345 -5.756300 -4.360100 -4.426516 

QD2 [Q3L] 1.489854 9.791100 5.957600 5.440047 

Here negative sign of strength shows a quadrupole, defocusing in horizontal plane. 
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Fig. 3.12A Dispersion and beta functions @ R56 = +0.30 m (Black: horizontal, Red: 

Vertical) 
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Fig. 3.12B Dispersion and beta functions @ R56 = +0.25 m (Proposed nominal operating 

point; Black: horizontal, Red: Vertical) 
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Fig. 3.12C Dispersion and beta functions @ R56 = 0.00 m (Black: horizontal, Red: Vertical) 
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Fig. 3.12D Dispersion and beta functions @ R56 = -0.30 m (Black: horizontal, Red: 

Vertical) 
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CHAPTER 4 

SEXTUPOLE OPTIMIZATION FOR TRANSFER LINE-2 

 

 In the previous chapter, geometry and linear optical design and optimization of TL-2 

is described. In a bunch compressor, even if R56 and R65 are well optimized, second order 

longitudinal dispersion T566 can lead to a curvature in longitudinal phase space and thus, 

effective bunch length may increase and longitudinal density distribution of electrons along 

the bunch length may change. Therefore it is necessary to suppress T566 in the entire range of 

tuning. In some experiments, where asymmetric density distribution is required, proper value 

of T566 is of significant importance [47], however this is not required in TL-2. 

Second order longitudinal dispersion T566 can be obtained for a curved path inside a dipole 

magnet using the geometry, depicted in Fig. 1.6. The path length of the trajectory (including 

effect of x') for an off-momentum electron due to dispersion can be written as 

              
 
        

 
  

     
 

 
 
 

     

 
  

   

[4.1] 

Expanding the above expression up to second order in co-ordinates and taking the difference 

from the length of design trajectory (d), gives the change in path length for an off-

momentum electron as follows 

    
 

 
 

  

   
 
   

 
    

[4.2] 

 

Expressing co-ordinates in above expression using first and second order map, T566 is 

obtained explicitly as given below (for zero initial dispersion and its derivatives) 
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[4.3] 

  

This expression shows that T566 is related with second order elements T166 [9, 48, 49]. 

Expression for T566 with non-vanishing initial dispersion and its derivative as well as 

propagation of second order dispersion in an optics is provided in Appendix C. Inclusion of 

sextupole magnets in the non-zero dispersion region can be used for controlling T166. Second 

order dispersion in an optics is obtained using perturbation technique. Second order 

dispersion can be described by following differential equation [23, 49] 

       
 

  
          

Here D(2) is the second order dispersion and  f is the driving term for second order dispersion, 

which is given by [49] 

   
 

 
   

   

 
 
 

 
   

 

 
        

  

 
  

 

 
    

Here 'm' is the sextupole strength (
 

  

    

   
) and K is the quadrupole strength. This expression 

reveals that sextupole magnet has an effect on the second order dispersion (if magnet is 

placed at the non-zero dispersion location). This effect on T166 is utilized to control T566 in an 

optics, leaving R56 unaffected.  

Field of a sextupole magnet varies as    
 

 
         and       . Thus kick imparted 

by a sextupole magnet on an electron in the beam is a nonlinear function of co-ordinates and 

therefore, sextupole magnets generates geometric aberrations, which increase the emittance 

of the beam. Keeping this in view, sextupole scheme should be optimized in such a way so 

that in suppression of T566, effect on emittance is minimum. 

If two sextupole magnets are placed in an optics at the symmetric location with  betatron 

phase apart, there will be no net transverse kick on the design momentum electron due to 
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these sextupole magnets [17]. The transfer matrix for such an optics becomes unit matrix 

with negative sign and the optics is known as -I transformer i.e. identity transformer. In this 

scheme, as the net transverse kick is zero, there will be no emittance dilution. Thus if T566 is 

corrected using this type of scheme, T566 will be suppressed without dilution of the emittance. 

In thick lens, this condition cannot be met exactly, however if within the length of sextupole 

magnets, if beta function does not vary with large values, the emittance dilution still remains 

insignificant. 

 

4.1 Sextupole scheme for TL-2 

In an optics, there are various second order geometric terms (T5ij; i and j=1 to 4), geometric-

chromatic cross terms (T5i6, i=1 to 4) and pure chormatic term (T566), which contribute to the 

path length, hence finally to bunch length. Variation in bunch length due to geometric and 

geometric-chromatic cross terms depend on transverse beam emittance and for a very small 

beam emittance, these contributions are negligible. In TL-2, the total contribution in path 

length from geometric and geometric-chromatic cross terms is only about 10% of the 

contribution of only T566. Therefore, it is sufficient to suppress T566 in entire range of tuning. 

In TL-2, four sextupole magnets, grouped in two families are installed in Module-3 to control 

T566. The major challenge in sextupole scheme is to suppress T566 in the entire range of R56 

tuning, keeping the transverse emittance dilution below 10%. To suppress T566 within the 

available strength of sextupole magnets, sufficient dispersion is generated in Module-3 at the 

location of sextupole magnets as described in Section 3.2. 

Due to various constraints, the optical functions in Module-3 are not symmetric as discussed 

in detail in the previous chapter. Also, there is a requirement of wide tuning range of R56 in 

the transfer line and optical functions vary by large magnitude (dispersion at the entrance of 
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second dipole magnet varies from nearly -1 m to +1 m in the entire range of tuning). So 

conditions for placing the sextupole magnets in a standard scheme, like -I transformer etc. 

cannot be satisfied. Therefore, sextupole scheme for TL-2 is optimized in an another way to 

suppress T566, keeping the dilution of transverse emittance small. 

The kick of a thin sextupole magnet on an electron in horizontal plane is given by 

   
     

  
 
 

 
          

[4.4] 

Here 'l' is the effective length of the sextupole magnet. Similarly, in vertical plane, the kick is 

given by 

   
     

  
      

[4.5] 

The displacements x and y for an electron due to betatron oscillations and dispersion are 

                      [4.6] 

 

                   
[4.7] 

Here x and y are the emittance in horizontal plane and vertical plane, respectively. Betatron 

phases at the location of sextupole magnets are x and y and subscript '0' shows the initial 

phase in the respective plane. We are interested in geometrical aberrations, which increases 

emittance, so chromatic term (momentum dependent) of Eq. 4.6 can be dropped in further 

studies. Using Eq. 4.6 and 4.7 in Eq. 4.4 and 4.5, sextupolar kicks in the both the planes can 

be obtained as a function of Twiss parameters and betatron phases. In TL-2, horizontal and 

vertical emittance of the beam are same, hence we will use x = y =  in further discussions. 

The kick in horizontal plane is 
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Which can be written as 

   
 

 
                                                 

[4.8] 

In vertical plane, kick is given by 

                                    
[4.9] 

In a transfer line, consisting of N sextupole magnets, total kick becomes 

   
 

 
                 

 

   

                                          

 

 

[4.10] 

 

                                           

 

   

 

[4.11] 

Minimizing the effects of sextupole magnets on emittance is equivalent to minimizing the 

total kick on an electron due to all the N-sextupole magnets as given in Eq. 4.10 and 4.11. In 

the horizontal kick, there are two terms, first is phase independent and second is phase 

dependent, while in vertical kick, only phase dependent term exists. For a symmetric -I 

transformer, the kick of Eq. 4.10 and 4.11 becomes zero between two sextupole magnets with 

opposite polarities, resulting in zero dilution of transverse emittance. For the optics, in which 

such phase advance is not possible, we can still minimize the kick angles by having an 

optimized distribution of beta functions and phases at the locations of sextupole magnets and 

dilution in transverse emittance can be bought down. 
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In Module-3 optics, as described in the previous chapter, optimization is mainly carried out to 

have a suitable distribution of dispersion and generate the desired R56 in tuning range. There 

is very little scope in optics of Module-3 to optimize it for minimizing the kick angles from 

sextupole magnets. Therefore, last quadrupole triplet of Module-2 is used to generate a 

suitable initial Twiss parameters at the entrance of Module-3, so that the distribution of Twiss 

parameters in Module-3 generates smaller kick angles computed from Eq. 4.10 and 4.11 and 

also beta function remain in suitable range to allow adequate clearance of the beam in the 

vacuum chamber aperture. This optimization leads to a reduced dilution of phase space, while 

keeping R56 and T566 unchanged. 

We present the optimization procedure in detail for two extreme R56 values of tuning range 

i.e. for R56 = +0.30 m and -0.30 m. Fig. 3.10A and Fig. 3.10M show the optimized beta 

functions and dispersion for these two optics for which aberrations, generated by sextupole 

magnets are minimized to keep the dilution in transverse emittance low. By changing the 

initial beta functions at Module-3 from these optimized values, kick angles also vary. The 

variations in kick angles for these two extreme R56 are shown in Fig. 4.1, given below. 
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Fig. 4.1A Variation in kick angles generated by sextupole magnets [Eq. 4.10 and 4.11] for 

R56 = +0.30 m optics [50] 



107 
 

-40 -20 0 20 40

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

 
x

 
y


x
 a

n
d

 
y
 (

m
ra

d
)

% change in initial horizontal -function

 

Fig. 4.1B Variation in kick angles generated by sextupole magnets [Eq. 4.10 and 4.11] for 

R56 = -0.30 m optics [50] 

Fig. 4.1A shows that at the tuned optics (0% on horizontal axis) for R56 = +0.30 m, kick 

angles are larger in magnitude for both the planes than the optics tuned at the initial beta 

functions less than 20% from the present values. But figure shows clearly, that the kick angle 

is very sensitive to initial value of beta function at this reduced value. If optics is tuned to this 

lower values of beta function, where kick angles are close to minimum (near to zero), a slight 

variation in initial beta function brings a large change in kick angles. So even if this initial 

value provide a small kick angles, there are issues related to practical operation of line. At the 

tuned optics, variation in beta function does not bring a sudden change in kick angles and 

hence provide good robust operating conditions. In addition, at operating points, the dilutions 

in emittance due to kick angles are within the limit. Fig. 4.2A shows the distortion in phase 

space at different initial beta functions, obtained by tracking of electrons using MAD8. As the 

beta function becomes 35% lower than the chosen operating point, there is large distortion in 

phase space. Up to 10% change in initial beta function does not cause much distortion in 

phase space and confirms that the chosen operating point on the basis of kick angles are well 
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optimized. Due to change in initial beta function, at the location of sextupole magnets, phase 

independent term in kick angle (Eq. 4.10) changes rapidly, which brings sensitivity in kick 

angles for the initial values of beta function. 

Fig. 4.1B shows that in case of R56 = -0.30 m, the kick angles do not vary significantly with 

change in initial beta function. Therefore, here operating point is chosen where beta functions 

are not very high in Module-3. Very low sensitivity on kick angles with initial beta function 

for this optics is also confirmed by the tracking results, shown in Fig. 4.2B. 
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10% 
 

35% 
 

Fig. 4.2A Tracking results, showing phase space distortion in both the planes (1 and 2) 

at different initial horizontal  function (-35%, -10%, +10% and +35%) at Module-3 for 

R56 = +0.30m. Horizontal scale is in mm and vertical is in mrad 
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10% 

 

35% 

 

Fig. 4.2B Tracking results, showing phase space distortion in both the planes (1 and 2) 

at different initial horizontal  function (-35%, -10%, +10% and +35%) at Module-3 for 

R56 = +0.30m. Horizontal scale is in mm and vertical is in mrad 

One more example for optimization of sextupole scheme through the kick computation is 

given in Fig. 4.3 for R56 = +0.25 m optics. This example is chosen because of the steep 

change in quadrupole settings from R56 = +0.30 m to R56 = +0.25 m. 

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4
X Plane

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4
Y Plane



112 
 

-20 -15 -10 -5 0 5 10 15 20

0.00205

0.00210

0.00215

0.00220

0.00225

0.00230

-20 -15 -10 -5 0 5 10 15 20

0.0040

0.0041

0.0042

0.0043

0.0044

0.0045


x
 (

m
ra

d
)

% change in initial horizontal -function

 
x


y
 (

m
ra

d
)

 
y

 

Fig. 4.3 Variation in kick angles generated by sextupole magnets [Eq. 4.10 and 4.11] for 

R56 = +0.25 m optics 

Kick angles are minimum for 10% higher horizontal beta function and therefore, phase space 

dilution will be minimum at this beta function. Again, here choosing a beta function different 

from the above (10% higher) value of initial horizontal beta function is based on the 

minimum among the beta-max values in both the planes. Also the optimum setting of optics 

is in the middle of almost stable kick angles. Kick angle increases steeply for beta function 

lower or higher by 10% from the chosen optimum values of initial beta functions. 

Using this method, at each value of R56, beta functions are optimized to minimize the kick 

angles, keeping the emittance dilution within control in presence of T566 correcting sextupole 

magnets. The tracking results for each R56 for optimized optics are shown in Fig 4.4A, 4.4B 

and 4.4C [50]. 
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Fig 4.4A Distortion in horizontal and vertical phase space in both the planes (1 and 2) 

at positive R56 (0.30, 0.25, 0.20, 0.15, 0.10, and 0.05m) due to T566 correcting sextupoles in 

normalized phase space. Horizontal scale is in mm and vertical is in mrad 
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Fig 4.4B Distortion in horizontal and vertical phase space in both the planes (1 and 2) 

at negative R56 (-0.05, -0.10, -0.15, -0.20, -0.25 and -0.30m) due to T566 correcting 

sextupoles in normalized phase space. Horizontal scale is in mm and vertical is in mrad 
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Fig. 4.4C Distortion in horizontal and vertical phase space in both the planes (1 and 2) 

at zero R56 (isochronous mode) due to T566 correcting sextupoles in normalized phase 

space. Horizontal scale is in mm and vertical is in mrad 

Table 4.1A and 4.1B give the T566 for different values of R56 in TL-2 and the required 

sextupole strength to suppress the T566. 

 

Table 4.1A: Sextupole strength (m
-3

) for T566 correction for positive and zero R56 

Sextupole R56 settings (m) 

0.30 0.25 0.20 0.15 0.10 0.05 0.00 

SX1 41.368925 26.797500 32.094230 42.307200 39.357680 42.531715 41.779525 

SX2 OFF OFF OFF OFF -88.703140 -94.505860 -119.552150 

SX3 OFF OFF OFF OFF 88.703140 94.505860 119.552150 

SX4 -41.368925 -26.797500 -32.094230 -42.307200 -39.357680 -42.531715 -41.779525 

T566 without 

sextupoles (m) 

-38.710 -41.910 -37.205 -22.733 -25.272 -26.783 -27.650 

T566 after 

correction (m) 

10
-4

 

-7.443 3.358 -0.73 3.547 2.847 -9.118 -7.575 
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Table 4.1B: Sextupole strength (m
-3

) for T566 correction for negative R56 

Sextupole R56 settings (m) 

-0.05 -0.10 -0.15 -0.20 -0.25 -0.30 

SX1 42.006775 41.902875 43.538175 43.616720 43.700000 43.703990 

SX2 -112.543600 -115.361700 -127.993550 -126.457750 -154.538700 -135.895150 

SX3 112.543600 115.361700 127.993550 126.457750 154.538700 135.895150 

SX4 -42.006775 -41.902875 -43.538175 -43.616720 -43.700000 -43.703990 

T566 without 

sextupoles 

(m) 

-31.541 -32.462 -28.467 -27.724 -16.761 -17.661 

T566 after 

correction 

(m) 10
-4

 

7.005 -4.847 3.552 -3.760 -4.252 -3.200 

 

 

4.2 Sextupole error in dipole magnets 

In dipole magnets, sextupole components are main systematic errors. Design of dipole 

magnets for TL-2 were already available and it is essential to check if these errors are within 

tolerable limit or not. For estimating the allowable limit on sextupole component in dipole 

magnets, electrons within 2 beam sizes are tracked considering sextupole components at 

both the edges of each dipole magnet along with T566 correcting sextupole magnets. Tolerable 

error components in dipole magnets are estimated on the basis of ~5% increase in beam size 

as compared to the beam size in the absence of sextupole errors. Table 4.2 shows the 

allowable error components at different R56 tuning.    
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Table 4.2: Tolerable integrated sextupole component in dipole magnets for different R56 

settings 

R56 (m) Maximum tolerable sextupole strength (sl)  

(m
-2

) 

+0.30 -2.0 

0.00 -5.0 

-0.30 -5.0 

 

Above table shows that maximum allowable integrated sextupole error (sl) in a dipole magnet 

is -2 m
-2

. The sextupole component in the design of dipole magnets are well below this limit, 

hence there no problem is expected with sextupole errors in dipole magnets in the line. 
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CHAPTER 5 

CSR STUDIES OF TRANSFER LINE-2  

 

 When the path of an electron is curved through a dipole magnet in a beam transport 

system or in an accelerator, it emits radiation, known as synchrotron radiation (SR) [32]. In 

an ultra-relativistic case, the emitted radiation is highly collimated in the forward direction. 

The electron therefore loses energy in the form of this radiation and energy loss increases 

rapidly with the electron energy. At shorter bunch length radiation may become coherent and 

significant amount of power is emitted in SR. This energy loss changes the beam dynamics 

and is one of the major concerns in the design of a bunch compressor. In this chapter, in first 

section, we provide a general but a very brief overview of synchrotron radiation and in next 

section, the effects of this radiation on beam parameters of a bunch compressor is discussed. 

In last section simulation results of TL-2 in presence of emitted radiation is presented.  

 

5.1 General overview of Synchrotron Radiation (SR) 

In a bunch of N electrons, if distances between electrons are longer than the emitted 

wavelength, all electrons radiate independent of each other and the radiation is incoherent. 

The emitted radiation has a wide continuous spectrum as shown in Fig. 5.1. The incoherent 

radiated power from this bunch is given by [51] 

     
 

    

     

  
 

[5.1] 
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Here  is the relativistic factor and  is the radius of curvature of the path. Other symbols 

carry their usual meaning. The spectrum is characterised by one wavelength, known as 

critical wavelength (   
  

  
  ), which divides the emitted spectral power in two halves 

[52].  

 

Fig. 5.1 Spectrum of synchrotron radiation for four different electron beam energies (150 

MeV, 300 MeV, 450 MeV and 600 MeV). Bending radius  is taken 1 m 

In other extreme case, when bunch length is very small as compared to emitted wavelength, 

all the electrons emit radiation as a single entity. In this case radiation is coherent and 

radiated power of coherent synchrotron radiation (CSR) is given by  

     
 

    

      

  
 

[5.2] 

 

Here total power from the bunch is N
2
 times the power from a single electron. Between these 

two limits, the emitted power is partially coherent and is given by 
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[5.3] 

 

The partially coherent power varies with bunch length (), while incoherent and coherent 

power do not depend on the bunch length. 

The emitted synchrotron radiation from electrons has a broad continuous spectrum ranging 

from micro waves to X-ray (Fig. 5.1). The radiation spectrum of an electron bunch in circular 

motion is given by [30, 53] 

  

  
 
   
  

            
  
 
 
 

  
[5.4] 

 

   
  

 
     

      
 
 

  
    

  
       

 

 

 

Here K5/3 is Bessel function. This spectrum consist of above mentioned three regimes i.e. 

incoherent, partially coherent and coherent, depending on the bunch length.  

As the energy of the electron beam increases, spectrum shifts towards the right side i.e. 

towards higher frequencies (shorter wavelengths). Spectrum at lower frequencies (longer 

wavelengths) remains almost independent to beam energy. The spectrum at lower frequency 

side becomes coherent at shorter bunch lengths and intensity at lower side of spectrum 

increases with decreasing the bunch length. The three regimes of spectrum can be described 

using two bunch lengths, one is critical bunch length defined below 

   
  

   
 

[5.5] 
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This critical bunch length is equal to critical wavelength vector of the emitted spectrum. If 

bunch length in a line becomes shorter than this bunch length, the emitted radiation becomes 

coherent. Second limiting bunch length depends on the number of electrons in a bunch and is 

given by 

        
 
   [5.6] 

 

If bunch length is bigger than inc, the emitted radiation is incoherent. Bunch length in 

between these two limits, emits radiation which is partially coherent. Fig 5.2 shows these 

three regimes with emitted power [30, 54]. Power is normalized to incoherent power and 

bunch length is normalized with critical bunch length. 

 

Fig 5.2 Emitted power (normalized) with bunch length (normalized) 

The maximum charge in TL-2 bunch is 2.33 nC, which gives number of electrons (N) in the 

bunch as ~1.410
10

. The bunch length at the entrance of TL-2 is 2.510
-3

 m (~8.3 ps), which 

becomes after compression as 4.510
-4 

m (~1.5 ps). There are two types of dipole magnets in 

TL-2 and in the following table 5.1, parameters related to synchrotron radiation emitted by 

the electron bunch of 300 MeV at these two dipole magnets, used in Module-3 of TL-2 are 

provided. 
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Table 5.1 CSR related parameters for TL-2 dipole magnets 

Parameter Dipole-1 Dipole-2 

Bending angle 30.75 17.25 

Bending radius () 0.96518 0.89106 

c (m) 3.1810
-9

 2.9310
-9

 

inc (m) 129.310
-3

 119.210
-3

 

Pinc (W) 86.05 93.30 

Pcoh (W) 1.210
9
 1.310

9
 

P in SR at the compressed  (W) 152.510
3
 161.010

3
 

Log(/c) 5.15 5.18 

 

Parameters in last two rows of the above table are computed at the finally compressed bunch 

length of ~1.5 ps. Above table shows that the bunch length in TL-2 is not extremely short ( 

≫ c) i.e. the emitted power is much less than the coherent power, but it is significantly 

higher than the incoherent power. In Fig. 5.2, green arrow marked the position of bunch size 

after compression in TL-2. 

 

5.2 Effects of CSR on beam dynamics 

The emitted radiation from the one electron can interact with the another electron of the 

bunch and therefore may have an effect on the dynamics. On the curved path of an electron 

bunch, the emitted radiation from the tail of the bunch follows a straight path and have 

interaction with head of the bunch. Fig. 5.3 shows a schematic of this mechanism. 
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Fig 5.3 Tail-head interaction of an electron bunch due to emitted CSR 

If bending angle in Fig 5.3 is , then path length difference between electron trajectory and 

photon trajectory is 

  
   

  
 

[5.7] 

 

Therefore, two electrons can interact if distance between these two, is smaller than this 

"slippage length". Thus tail-head interaction in a bunch of length  is possible, if arc length 

of design trajectory is larger than           
 
  .  

 All the formulations presented in the previous section is developed for a circular motion 

inside the magnetic field and therefore do not account for the finite length of a magnet. 

Radiative interaction of two electrons in a bunch, which leads to the generation of CSR, 

depends on the length of the magnet i.e. transient effects. These interaction with an account 

of transient and relativistic effects are described in Ref [55]. The total energy loss of a bunch 

in CSR is given by 

      
 
 
     

     
 
  

 
 

      
 
 
  

 

 
 
 

 
 
  

    
   

 
      

[5.8] 

 

The formula is applicable for the range 
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The total energy loss of a bunch is not much a problem rather than a redistribution of the 

energy inside the bunch. As bunch enters a magnet, a longitudinal force due to CSR is build 

up and this causes an energy redistribution in the bunch depending on the position of an 

electron inside the bunch. For 1D charge distribution, this change in energy with position in a 

bunch is also derived in Ref [55] and is given by 

  

     
  

   

     
 
  

 
 

  
  

   
 

 
 
     

   

  
      

   

 
  

  
   

      
 
 

      

   

 

  
   

  

  

 

 

 

[5.9] 

 

Here  is the linear charge density of the bunch (as a function of s). The first part in bracket 

shows the transient effects, which fade out in long magnets as the bunch progresses. The 

second part describes the transition to the steady state and reflects that the electrons which are 

closer than slippage length, have interaction. 

The emission of radiation and interactions take place on a curved path, where dispersion is 

non-zero. Thus each slice of the bunch along the propagation axis has betatron oscillations 

about the different trajectory due to difference of energy in each slice and overall emittance 

of the bunch increases. Due to this difference in energy of each slice, the slices also have 

different path lengths and distribution of electron in a bunch along the length also changes 

and effective bunch length may increase. In this way, CSR may increases transverse 

emittance and bunch length. It is thus necessary to study these effects. 

Apart from the above mentioned longitudinal effects, there are also transverse effects in a 

curved path, however the effects of this transverse part on the beam dynamics is very small 

[56, 57].  
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5.3 CSR simulation and studies for TL-2 

Although it is stated in Section 5.1, bunch length are not extremely short in TL-2, however it 

still emits radiation which is partially coherent with a significant power. Therefore, it is 

essential to study the beam behaviour in TL-2 in presence of CSR. For simulating the 

behaviour of beam with CSR in TL-2, computer code ELEGANT [58] is used. This code is 

based on Saldin's model [59]. For computing the CSR, code bins the 'macro particle' arrival 

time at the end of each dipole piece and then this distribution is smoothed out using filters. 

Using this distribution, derivative of density with respect to s is obtained and then both parts 

of the Eq. 5.9 are computed. Using these calculations, energy kicks are applied to the each 

macro particle. This code does not take transverse distribution into account for this 

computation and also does not use true retarded time to save the computational time. Due to 

smoothening of density histogram using filters, number of macro particles in simulation 

becomes a critical parameter. Also the number of pieces of dipole magnets also becomes 

important [60].  

In our simulation to fix these parameters, we increased number of electrons (macro particles), 

number of pieces of dipole magnets, number of bins etc. to see the effects on the bunch 

length, transverse emittance and final energy of bunch after CSR loss. When these results 

becomes almost independent to the chosen parameters, we fixed theses parameters with slight 

increase in these values. Fig. 5.4 shows variation in simulation results with number of 

electrons at one of the selected R56 optics. The chirping is set to get the minimum bunch 

length from the optics. 
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(A) Bunch length variation with N  
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 (B) Horizontal emittance variation with N 
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(C) Variation in final average bunch energy with N 

Fig 5.4 Variation in beam parameters at exit from TL-2 for different number of electrons 

(macro particles) in the simulation [61] 

The finally chosen parameters for further study are as (1) Number of macro particles 510
5
 

(2) Number of kicks in each dipole magnet 4 (3) Number of bins 500. 

Fig. 5.5 shows the initial electron distribution (at the extraction septum of CR) in the electron 

bunch with 1 of ~2.5 mm (8.3 ps). Final density distribution of the electrons in this bunch 

(at the end of R56 tuning arc) are shown in Fig. 5.6 at two extreme settings of tuning range 

(R56 = 0.30 m and -0.30 m). The required compressed 1 of bunch length is ~0.45 mm (1.5 

ps). The distributions on each setting show bunch without considering CSR effects and with 

CSR effects, respectively. 
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Fig. 5.5 Initial electron distribution in bunch 

 

(A) R56=0.30 m without CSR 

 

(B) R56=0.30 m with CSR 

(C) R56=-0.30 m without CSR 

 

(D) R56=-0.30 m with CSR 

Fig. 5.6 Electron density distribution in bunch along the longitudinal direction at different 

R56 settings without and with CSR effects [61] 
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These results show that in the longitudinal direction, there is no any noticeable change. A 

very minute analysis shows that there is only very little (insignificant) redistribution of some 

electrons in the bunch. On these two important settings of R56, transverse emittance are 

shown without and with CSR in Fig. 5.7. In transverse plane also CSR does not bring any 

change. 

 

(A) x-x' plot for R56=0.30 

m without CSR 

 

(B) y-y' plot for R56=0.30 

m without CSR 

 

(C) x-x' plot for R56=0.30 

m with CSR 

 

(D) y-y' plot for R56=0.30 

m with CSR 

 

(A) x-x' plot for R56=-0.30 

m without CSR 

 

(B) y-y' plot for R56=-0.30 

m without CSR 

 

(C) x-x' plot for R56=-0.30 

m with CSR 

 

(D) y-y' plot for R56=-

0.30 m with CSR 

Fig. 5.7 Horizontal and vertical phase space for extreme tuning of R56 with and without 

CSR effects [61] 

These studies show that CSR effects are not a serious problem in TL-2, up to 1.5 ps of bunch 

length. To see the effects of CSR, we further carried out studies by simulating the short 

bunches in TL-2 and noticeable CSR effects starts from the bunch length of ~0.5 ps and 

shorter.  Therefore TL-2 operating range is almost safe from the CSR point of view.  
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CHAPTER 6 

ANALYTICAL MAP FOR DIPOLE MAGNET AND ITS APPLICATION 

TO BUNCH COMPRESSOR 

 

 The most important magnetic element in a bunch compressor is a dipole magnet. The 

maximum contribution and control in path length deviation due to momentum offset comes 

through dipole magnets in an optics. For compressing the bunch length with feasible values 

of R56 requires a large value of R65 i.e. large correlated momentum spread. Thus a precise 

path length computation requires higher order dependence of path length on momentum. For 

a high emittance beam, even geometric higher order terms can contribute to the path length. 

Therefore, for obtaining the precise final bunch length from an initial distribution of electrons 

in the beam in 6D phase space for a bunch compressor would require a higher order map for a 

dipole magnet. Although at very short bunch length, CSR related effects are more prominent 

than the nonlinear effects of dipole magnets, however it is always useful to have an exact 

analytical expression producing results, correct up to all orders. 

Presently, analytically higher order maps are obtained either through inclusion of higher 

order perturbation terms in Hill's equation step by step and then using Green function theory 

to solve it or describing the magnet with a Hamiltonian and using Lie operator theory [21-23, 

62-68]. In these methods, mathematical complexities are involved. We want to quote here 

from one of the landmark papers [67] in this field "...Indeed even if one is aware of the 

symplectic condition of the map generated by the Hamiltonian H of special relativity, it is not 

clear to most physicists that the return map from an arbitrary surface of section leads to a 



133 
 

canonical symplectic map in some properly selected coordinates. Without going into 

mathematical details which are obscure to most accelerator physicists, …" 

The numerical integration for the equation of motion is available up to very high orders [69-

71], but increasing order of integration in numerical simulations costs time. Besides this, it is 

not feasible to get an insight with the problem using numerical techniques. We have obtained 

an analytical formulation of map using hard edge approximation for dipole magnets, which is 

correct up to all orders and thus provides an alternate method. The formulation is obtained 

using geometrical arguments and therefore, no mathematical complexities are faced in 

understanding the problem with this alternate method. In Section 6.1 we present this 

formulation for a sector magnet. In Section 6.2, we showed an example of the bunch length 

computation using formulation and compared it with numerical methods for a chicane type 

bunch compressor. In subsequent section, we extended this formulation for wedge magnets.  

 

6.1 Map for sector dipole magnet 

In this section, we describe the geometry of a sector dipole magnet and then using 

geometrical methods, the map for a sector dipole magnet is obtained. Similar approach is 

used in work of Wollnik [72] to obtain the linear map of a dipole magnet. For describing the 

problem there are two co-ordinate systems, one is u-v co-ordinate system in which u-v plane 

is the median plane in which design trajectory bends. It is a fixed co-ordinate system whose 

origin coincides with the apex of the sector magnet and one of the co-ordinate axes coincide 

with the magnet edge. Other co-ordinate system x-y is the usual accelerator co-ordinate 

system. The geometry is shown in Fig 6.1 [73]. The arc marked by C1 is the design trajectory 

and defines the x-y co-ordinate system (usual accelerator co-ordinates). The radius of 

curvature and bending angle for the design trajectory are  and  respectively. Let us choose 
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another particle, deviated from the design trajectory and this enters the magnet at the point B. 

Its trajectory is defined by the arc C2 in the figure. The displacement and angle with respect 

to design trajectory at the entrance of this particle are xi and i, respectively. Let the 

momentum deviation of the particle be . At the exit of the magnet, the displacement and 

angle of this particle with design trajectory are xe and e, respectively. The aim is to find a 

map which provides xe and e as a function of xi, i and . 

Fig 6.1 Geometry of the sector dipole magnet with co-ordinate system 

and particle trajectory 

The trajectory C2, traced by the deviated particle has a radius of curvature 1 with the centre 

at O'. Let co-ordinates of the centre (uc, vc) in the fixed co-ordinate system. The bending 
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angle for this arc is 1. The co-ordinates of the centre as a function of initial co-ordinates and 

radius of curvature 1 is given by 

icu  sin1  [6.1] 

           

  iic xv  cos1  [6.2] 

 

Here 1=(1+). This deviated particle exits from the magnet at point B1 (u1,v1) and its exit 

co-ordinates are following 

   sin1 exu   [6.3] 

 

   cos1 exv   [6.4] 

 

From Eq. 6.3 we get  





sin

1u
xe  

[6.5] 

 

The angle at the exit can be obtained by taking the difference between the slopes of two 

trajectories C1 and C2 at points A1 and B1 as following 
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2 tan  are the slopes of trajectories C1 and 

C2 at points A1 and B1 respectively. In these expressions, m  (=cot) is the slope of the exit 
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edge of the dipole magnet. Eq. 6.5 and 6.6 give co-ordinates of the deviated particle at the 

exit of the magnet and both of these co-ordinates depend on the co-ordinate u1. If u1 can be 

expressed exactly as a function of initial co-ordinates and momentum offset of the particle, 

exact map for a hard edge sector magnet can be obtained. Point B1 in Fig. 6.1 is an 

intersection point of circle C2 and edge OB1. Therefore, it is a common point for these two 

following curves 

    2

1

22
 cc vvuu  [6.7] 

 

muv   [6.8] 

These two equations above, give the intersection point u1 as following 
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Here 
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[6.10] 

and 

2

1

22



cc vu
Q


  

[6.11] 

 

Using Eq. 6.9 in 6.5 and 6.6 provides the co-ordinates of the deviated particles at the exit of 

the magnet as a function of initial co-ordinates and momentum offset i.e. it is a map in the 

median plane of a sector magnet. There are no approximations, except that the hard edge is 

used in deriving these expressions and therefore, the map is exact up to all orders. 
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Now we add another degree of freedom i.e. particle at the entrance is inclined at an angle i 

with the median plane and a displacement of yi in vertical direction. For this trajectory, 

magnetic field will not be in the perpendicular direction to the plane of motion. In this case, 

the particle will trace out a trajectory, which will be a part of a helix (AA2) and particle will 

exit from the magnet with a vertical displacement of ye. The geometry is shown in Fig. 6.2. 

The effective magnetic field for bending the trajectory is        and radius of curvature (   ) 

for helix path will be 1/cosi. Due to helix, this trajectory will follow a longer path inside the 

dipole magnet than the trajectory without inclination to the median plane and due to this 

longer path, co-ordinates xe and e will be modified. Due to changed radius of curvature, the 

projection of trajectory AA2 on the median plane AA1' will be different from the trajectory 

AA1, which is the path of the particle having same initial condition except initial vertical 

angle. This shows the origin of coupling in the motion in a dipole magnet. 

 

Fig. 6.2 Trajectory of a particle having vertical inclination (i) from the median plane 

The centre of curvature for the trajectory of this particle is O' and its co-ordinates are given 

by following relations 

A 

A2 

A'1 

A1 

O' 

O 

'1 

1 
ye 
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[6.13] 

Replacing values of uc, vc and 1 in Eq. 6.9, 6.10 and 6.11 by uc', vc' and 1' from above 

expressions, provide u1 for the particle with vertical angle i. Using this value of u1 in Eq. 6.5 

and 6.6, the horizontal co-ordinate xe and angle e at the exit of the magnet can be obtained 

for this particle. 

In order to obtain the vertical co-ordinate at the exit, the path length dependence on initial 

horizontal co-ordinate xi and angle i is to be known. The path length in the median plane can 

be obtained by integrating the circular trajectory from initial to final co-ordinates in the fixed 

u-v co-ordinate system. 
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For the particle, entering the magnet at a vertical angle i, the co-ordinates uc and radius of 

curvature 1 will be replaced by u'c and 1' respectively. For this inclined trajectory, the path 

length (S') becomes S/cosi. The path length of the design trajectory is given by  
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The difference between S' and S0 provides path length deviation of a particle's trajectory from 

the design trajectory and it is one of the most important parameters in the bunch compressor. 

Using S, the vertical exit co-ordinate ye can be obtained by the following relation 

     
iie Syy tan      [6.15] 

 

The vertical angle at the exit e is same as initial vertical angle i. Above mentioned 

procedure gets all the co-ordinates (xe, e, ye, e and path length) as a function of initial co-

ordinates (xi, i, yi, i and ). In this procedure, no any approximation except hard edge is 

assumed and final expressions are purely algebraic in nature i.e. no differentials or integrals 

are required and hence expressions can be calculated analytically completely. The complete 

procedure is outlined in Fig. 6.3, given below. 

 

Fig 6.3 Procedure for obtaining final co-ordinates of a particle travelled through a sector 

dipole magnet as a function of initial co-ordinates 

These analytical results are applied to a sector dipole magnet with a bending angle of 30.75 

and a bending radius of 0.96 m. A Gaussian distributed beam of 3000 particles in 6D is taken 

and the final bunch length and transverse emittance growth of this beam is studied as a 

function of initial bunch length and transverse emittance. Results are compared with 

Compute u'c, v'c and 1 for the particle with set of initial conditions. 

Compute u1 and path length with above quantities 

Obtain final set of co-ordinates using u1 and path length 
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numerical results using MAD8. In computation, difference in bunch length is found with 

increase in initial transverse emittance between the analytical and numerical results. The 

difference is due to effect of transverse geometrical terms on bunch length. In Fig. 6.4, results 

are depicted in which a monochromatic beam of correct energy is tracked through the 

magnet. 

 

Fig. 6.4 Variation in final bunch length with initial transverse emittance in m-rad. Initial 

bunch length is taken as 8.3 ps. 

The effect on transverse emittance growth is almost same for analytical and numerical results. 

There is also difference between the analytical and numerical results for the final bunch 

length as a function of initial bunch length for a monochromatic beam of correct energy. this 

deviation in plotted in Fig. 6.5. The deviation increases to ~10% for very short initial bunch 

length (sub ps range). Again, transverse emittances are almost same, obtained analytically 

and numerically. 
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Fig. 6.5 Variation in difference in final bunch length obtained from analytical expression 

and MAD as a function of initial bunch length ( in s) 

These results show that the bunch length obtained by analytical expressions deviates from the 

numerical computation and therefore these expressions are important for estimating correct 

bunch length from a bunch compressor.  

Including momentum spread in initial beam (instead of monochromatic beam), does not bring 

much deviation in the results of transverse plane from analytical expressions and numerical 

computation. However, there is difference in longitudinal phase plane, which increases with 

increase in momentum spread. Fig. 6.6 shows the results for a 8.3 ps initial bunch length. 

 

-16 -14 -12 -10 -8 -6 -4 -2

0

2

4

6

8

10

D
if

fe
re

n
c

e
 i

n
 b

u
n

c
h

 l
e

n
g

th
 

w
it

h
 r

e
s

p
e

c
t 

to
 A

n
a

ly
ti

c
a

l 
fo

rm
u

la
 (

%
)

log





142 
 

 

Initial emittance (10
-9

 m-rad in both the 

planes); Δp/p = 0.2% (1) and bunch length 

8.3ps (1) 

 

Initial emittance (10
-9

 m-rad in both the 

planes); Δp/p = 1% (1) and bunch length 

8.3ps (1) 

 

Initial emittance (10
-9

 m-rad in both the 

planes); Δp/p = 2% (1) and bunch length 

8.3ps (1) 

 

Fig. 6.6 Longitudinal phase space after passing through magnet (obtained from MAD and 

formula) 
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6.2 Validation of the derived analytical map 

The derived expressions for the map encompasses all the orders and are exact in hard edge 

approximation. In this section, we carry out analysis of the derived map by separating 

different terms of each order and show that formulation provides the usual expressions. 

6.2.1 Linear terms 

In first order, uc and vc becomes (from Eq. 6.1 and 6.2) 

icu  and iic xv   

The co-ordinates uc and vc contain minimum first order terms in initial co-ordinates i.e. these 

do not contain constant terms and thus P and Q will contain minimum second order terms 

(see Eq. 6.10 and 6.11). Therefore, u1 can be written up to first order easily as 
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Now using Eq. 6.5, xe can be obtained 
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Putting the value of m=cot in above expression gives xe finally as follows   

  cos1.sin.cos  iie xx  [6.16] 

 

This is the usual first order relation for a sector dipole magnet. Using trigonometric identity, 

Eq. 6.6 can be reduced to 
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After simplification, this expression can be written as 
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In linear approximation, Eq. 6.16 reduces to 
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This expression is usual linear function for horizontal angle for a sector magnet. 

Again in linear approximation, S= and this gives co-ordinates in vertical plane  

iie Syy   [6.19] 

           

      [6.20] 

Thus formulation correctly reduces to usual relations in linear approximation. 
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6.2.2 Higher order terms 

Now we outline the procedure which obtains the higher order terms using the analytical 

expression. Higher order map elements (R-, T- and U- maps) are given in [48, 66, 67]. As 

already stated that the derived expression encompasses all the orders and therefore there is no 

need to separate the terms of different orders, however we present this separation of terms 

only to validate the formulation. In order to obtain higher order terms, P and Q (as given in 

Eq. 6.10 and 6.11) are also expanded up to higher orders. Variation in P and Q for different 

bending radii and bending angles are shown in Fig. 6.7A and Fig. 6.7B, respectively. 

 

(A) 

 

(B) 

Fig. 6.7A Variation in P and Q with bending radius for fixed bending angle of 30.75. The 

xi and i are taken as 100 mm and 20 mrad respectively 
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(A) 

 

(B) 

Fig. 6.7B Variation in P and Q with bending angle for fixed bending radius of 1 m. The xi 

and i are taken as 100 mm and 20 mrad respectively 

In practical situations, P and Q are smaller than one and thus in Eq. 6.9, expansion can be 

used easily to obtain the higher order terms as well as expansion up to certain orders in co-

ordinates for P and Q using Eq. 6.10 and 6.11 can also be obtained. From Eq. 6.11, we get up 

to third order (up to elements of U-map) 
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Here M=1+m
2
. Using these two expressions, explicit higher order terms of Eq. 6.9 can be 

computed. The first part of this equation is as 
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Second part is given by 
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Addition of these two parts produce u1 and using u1 in Eq. 6.5, xe can be obtained up to third 

order. Similarly, using Eq. 6.16 and expansion of Z, e can be obtained up to third order from 

the following expression 
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From these two equations, we get the well known elements of R-, T- and U-maps same as 

defined in [22, 23, 48, 66, 67]. This shows that the derived analytical expression is correct 

and can be used in analysis and design of an optics. 

 

6.3 Example of a bunch compressor 

From Section 6.1, it is evident from the example of a dipole magnet that the deviation 

between numerical method and analytical map is larger in longitudinal plane than the 

deviation in transverse emittance and therefore the analytical formula becomes more 

important from the bunch compressor point of view. Therefore, in this section, we provide a 

specific example of a chicane bunch compressor. Chicane optics is in general made by using 

rectangular dipole magnets with proper orientation (Section 1.8.2), but here in this section, 

chicane is formed using sector dipole magnets with inclusion of quadrupole magnets. The 
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aim of example is to show that in computing the bunch length from an optics which employs 

sector dipole magnet, there is remarkable difference in analytical results and numerical 

computation. The optics used in this example is shown in Fig. 6.8 and parameters of this 

optics is shown in Table 6.1.  

 

 

Fig. 6.8 Geometry of C-chicane optics 

Table 6.1: Parameters of the chicane optics 

Parameters Values 

Beam energy 300MeV 

Horizontal emittance 10nm-rad 

Vertical emittance 10nm-rad 

Initial H 7.922m 

Initial V 3.271m 

Initial H 0.000 

Initial V 0.000 

 

The optics is tuned to R56=-0.25 m and a chirped beam to attain the minimum bunch length is 

tracked through the optics. The results obtained by tracking the motion of electrons using 

MAD8 is termed as numerical results. In other case, only at the place of dipole magnets 

analytical map is used, otherwise MAD8 is used. We refer to these results as the analytical 

M 
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results. The initial Gaussian distributed beam consisting of 3000 electrons, is shown in 

transverse plane in Fig. 6.9. Cases of different bunch lengths are considered and thus beam 

distribution is different in longitudinal plane in each case. In each case, the chirping is done 

differently for achieving minimum bunch length and in chirping, only linear effects (R56 and 

R65) are considered. The results of transverse emittance show a little difference between 

analytical and numerical model.  However in longitudinal plane, the difference is larger with 

increasing the initial bunch length as depicted in Fig. 6.10. To observe the effect further, a 

longer bunch of 80 ps is also tracked and difference becomes even larger (Fig. 6.10C). For a 

longer bunch length, chirping produces larger momentum spread and due to this, chromatic 

effect creates larger difference between numerical and analytical results. For high momentum 

spread, higher order chromatic effects also become important, which are not present in 

numerical model (MAD8 up to third order tracking). In numerical results, it is clear that the 

dominant nonlinear effects are seen due to T566 only, while at higher momentum deviation, 

even more higher order terms causes important effects and effect of T566 up to some extent 

are cancelled out. In all the results, initial transverse emittance is kept constant and therefore 

transverse geometric effects on bunch length are almost same. For higher momentum spread, 

in transverse phase space, almost there is no difference between the two results (Fig. 6.10E 

and 6.10F). To test the results further, numerical tracking of higher order using code 

ELEGANT [59] is performed (exact dipole Hamiltonian with integration order of 4). The 

tracking results reaches closer to analytical results as shown in Fig. 6.10D. In this tracking 

also, for obtaining analytical results, for the dipole magnets, the analytical map is used, for 

remaining part ELEGANT is used. This shows that the higher order numerical codes reaches 

closer to analytical results. 
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(A) Horizontal phase space 

 

(B) Vertical phase space 

Fig. 6.9 Initial beam distribution in horizontal and vertical phase space (emittance of 10 

nm-rad in both the planes) 

 

(A) Bunch Length: 1 ps 

 

(B) Bunch Length: 8.3 ps 
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(C) Bunch Length: 80 ps (D) Bunch Length: 80 ps 

 

(E) Bunch Length: 80 ps 

 

(F) Bunch Length: 80 ps 

Fig. 6.10 Phase space distribution of beam after bunch compressor (analytical and 

numerical model) 

 

6.4 Analytical map for wedge magnet 

Exact analytical map (in hard edge approximation) of a wedge magnet can also be obtained 

using the geometrical approach similar to that used for a sector type dipole magnet. In 

general, map of a wedge magnet is obtained considering equivalent sector magnet and edge 

effects. In geometrical approach also we will use an equivalent sector magnet which has the 

same design trajectory as that of the wedge magnet as depicted in fig. 6.11 [73]. 
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Fig. 6.11 Geometry of the wedge magnet in fixed u-v co-ordinate system 

Again we consider fixed u-v co-ordinate system. Two red lines (L1 and L2) show the entry 

and exit edge of the wedge magnet. The v-axis of the co-ordinate system coincides with the 

entry edge of the equivalent sector magnet. The exit edge of sector magnet is OB', shown in 

blue colour. Design trajectory C1 is a circular arc (AA') in the median plane. The edge angle 

of the wedge magnet is ei. The trajectory of a deviated particle from the design trajectory is 

shown by curve C2 (BBrB'rB'). The co-ordinates of this particle at the entrance of the sector 

magnet are xi and i and at the entrance of wedge magnet, these co-ordinates are xri and ri. 

At exit, the co-ordinates are xre, re and xe, e at the edge of wedge magnet and sector magnet 

respectively. The exit edge of wedge magnet is inclined and makes an angle of ee with edge 
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of the sector magnet. Inside the wedge magnet (from xri, ri to xre, re), the particle follows a 

circular path. In this analytical model, there is a difference between xi and xri as well as 

between xe and xre. In usual accelerator maps, the edge effects are considered as the thin lens 

(even in higher order) and under this approximation, this difference vanishes. Therefore, in 

our analytical computation, for obtaining the co-ordinates at the exit of wedge magnet (xre, 

re), requires two steps, first is to obtain a function which gives xri, ri from xi, i and in 

second step using these xri, ri, the  xre, re are observed. The second step is very similar to 

the procedure followed for the sector magnet. 

Let a particle enters the edge at point Br. The distance of this point from the design orbit 

along the edge is given by 

 ii

ii
i

e

x
L








cos

cos

 

iiiri eLLx cos2 0

22

00  
 

[6.21] 











 

i

ri

i
i e

x

L
sinsin

0

1




 

iiri  
 

[6.22] 

 

Now the deviated particle traces an arc of a circle up to Br

 with centre of circle O and radius 

of 1. The co-ordinates at the exit edge of the wedge magnet are the common point of circle 

C2 and edge L2. The co-ordinates of the centre of the circle 

   iiiric xu   sinsin 00  
[6.23] 

   iiiric xv   coscos 00  
[6.24] 
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The xre is the distance between Br

 and F, which is given by 
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Here uBr and vBr is the common point between exit edge of magnet and trajectory of the 

deviated particle and is given by 
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The angle of the deviated particle with respect to design orbit at the exit edge is given by 
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Thus Eq. 6.25 and 6.29 are the desired transfer function in the median plane. 

Then there will be an additional optional step if one wants to obtain again the co-ordinates xe 

and e from the xre and re. This transformation is also provided below. 
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The path length of the deviated particle inside the magnet is given by 
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and mi is the slope of the entry edge from u-axis. The difference between S and 0 gives the 

path length difference for the deviated particle. If there is some finite initial vertical angle of 

the particle with median plane, radius of curvature will be increased by 1/cosi. The vertical 

co-ordinates can be obtained similar to sector magnet using S as follows 

ririre Syy tan
 

[6.33] 

 

rire  
 

[6.34] 

 

It is easy to see that the transformation from xi, i to xri, ri (and similarly from xre, re to xe, 

e) becomes usual thin (de)focusing lens with strength of tan(ei)/0 on retaining linear terms 

only. Also the formulae reduce to the sector magnet formulae in case of ei=ee=0. 

An example of emittance change after beam transportation through a rectangular magnet is 

shown in Fig. 6.12 as a function of input horizontal emittance (vertical emittance is kept 

constant and very small i.e. 1 nm-rad) using analytical expression and MAD. The parameters 
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of the magnet are the same as that of the sector magnet (30.75 of bending angle and 0.96 m 

of bending radius) and assuming a monochromatic beam. As pointed out earlier in the section 

that analytical expression brings a difference between xri and xi (similarly xre and xe), the 

emittance growth is less than the growth indicated by MAD in the horizontal plane while in 

vertical plane it is more. In vertical plane due to coupling (higher order) analytical expression 

changes vertical emittance (although change is very small) due to increase in input horizontal 

emittance. The difference in bunch length with momentum deviation for a rectangular magnet 

between the results obtained using analytical expression and MAD is not much significant. 

 

Fig. 6.12 deviation in emittance from numerical computation using analytical results as a 

function of initial horizontal emittance 

Although, computer codes are available to simulate the dynamics up to very high order, but 

we obtained expressions correct up to all order with an alternative, and simpler approach, 

which can be used to estimate higher order effects very quickly. The study shows that in case 

of a sector magnet for large momentum spread and shorter bunches, higher order effects in 

longitudinal plane becomes important. Although in a bunch compressors, in general effects of 

CSR is much more prominent than this nonlinear effect, nevertheless to know the exact 

results is also important. 
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SUMMARY AND CONCLUSIONS 

 

 In this thesis, a general layout for optical design of bunch compressors is presented 

with a detailed design study of CTF3 Transfer Line-2 (TL-2) bunch compressor. In Chapter 

1, necessary background of charged particle beam optics is briefly discussed including types 

of bunch compressor optics. In Chapter 2, a short introduction to CLIC and CTF3 is 

presented.  

With geometrical and magnetic constraints in view, TL-2 bunch compressor is designed for a 

very wide tuning range of R56 from -0.30 m to +0.30 m. For ease in the design and operation, 

this line is divided into three modules. First module matches the optics from extraction point 

of Combiner Ring to Module-2. Module-2 matches the Module-1 and Module-3. Module-2 

also sends the beam vertically up through a vertical achromat required due to the different 

floor levels. In this module, a long element free clear space is provided to accommodate a tail 

clipper. Module-3, built by four dipole magnets, forms the tunable R56 arc. For controlling the 

beta function and to shape the dispersion for obtaining the desired R56, this module employs 

nine quadrupoles in set of three triplets. These nine quadrupoles are grouped in five families. 

After this arc, this module has a quadrupole doublet to match the final required beta function 

at the exit point of this line. Chapter 3 summarizes all these various aspects of TL-2 design 

and relevant calculations. 

Under the building geometry and magnetic constraints, it is not possible to obtain a 

symmetric solution for the entire range of tuning in Module-3 i.e. R56 arc is not optically 

symmetric and thus correction of T566, which is needed for the entire range is a challenge. The 

inclusion of sextupole magnets to control T566, should not deteriorate the emittance in 

transverse plane (horizontal and vertical) more than 10%. Due to lack of optical symmetry in 
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this arc, no standard technique for cancellation of aberration of sextupole magnets works. 

Therefore a new scheme is evolved in which the geometrical aberration is minimized by 

considering the total kicks imparted to the particles, by sextupole magnets. For this 

minimization, required initial Twiss parameters at the beginning of line are obtained and 

these parameters are matched by Module-2. This scheme successfully worked in entire range 

of tuning and thus optical design has been completed. Chapter 4 describes this scheme and 

results. 

Bunch compressors faces another problem of coherent synchrotron radiation (CSR). When 

bunch length becomes extremely small, the radiation emitted from an electron bunch on a 

curved trajectory becomes coherent. Thus a significant magnitude of the field is created. This 

field can cause tail to head interactions in the bunch and can also excite betatron oscillations 

around dispersive orbit. Thus transverse emittance and bunch length may deteriorate due to 

CSR. Although, the bunch length in TL-2 is not extremely short, but for a complete study, we 

carried out the study of CSR to look into bunch behaviour. The dynamics in presence of CSR 

is simulated using code ELEGANT. Emittance dilution and lengthening of bunch is seen due 

to CSR in TL-2. The results are provided in Chapter 5. 

On the design presented in this thesis, TL-2 line has been installed in CTF3 at CERN. 

In any bunch compressor, where very short bunches have to be produced with a reasonable 

value of R56, momentum spread has to be increased in a correlated way by an RF system. For 

a large momentum spread, the path length should be obtained up to higher orders to estimate 

bunch length more accurately. Major control on the bunch length is obtained using dipole 

magnets. Therefore a higher order description of dipole magnet becomes necessary. Although 

computer codes can compute the bunch length with very high orders, but increasing the order 

costs the computation time. Available analytical techniques are based on perturbation 
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methods and increasing one order in calculations demand a complicated mathematics. In this 

thesis, an analytical map for a hard edge magnet, is obtained, which is correct up to all orders. 

This provides a quick estimation of the phase space distribution of beam passing through a 

dipole magnet. There is remarkable difference in the results for a large momentum spread 

obtained through computation, truncated to second and third order in codes and from 

analytical map. An example of chicane type bunch compressor for comparison is presented. It 

is shown that difference is larger in case of a sector type dipole magnet than a rectangular 

dipole magnet. 
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Appendix A 

 

In this appendix, a short introduction to beam matrix approach to describe the propagation of 

beam parameters through a magnetic optics is presented. The equation for the phase space 

ellipse can be written as [15] 

           [A.1] 

 

Here    is the following column vector of the co-ordinates 

   

 
 
 
 
 
 
 
  
 

  
  
  
 
 
 
 
 

 

The volume of the 6-D ellipse defined by Eq. A.1 is given by 

  
  

 
      

For horizontal plane (x, x'), Eq. A.1 becomes 

    
             

       
       

Comparing this equation with ellipse equation, showing Courant-Synder invariant, gives 

     
   
   

  
[A.2] 

This is known as beam matrix. The different elements of this beam matrix are related with 

RMS parameters of the beam as follows 
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Determinant of the beam matrix gives the square of the beam emittance in the considered 

plane i.e. 

             
                   

Which is the statistical definition of the beam emittance. 

One of the important aspects of the beam matrix is the evolution of this matrix through a 

magnetic optics and it is given by 

          
  [A.3] 

Here R is the transfer matrix of the considered optics (or element). This equation directly 

gives the evolution of the beam from one point to other in a given optics. 

Similar to the transverse plane, the beam matrix can be defined explicitly for the longitudinal 

plane also [9]. For this plane 

              

              

              

Here subscript 'l' refers to the longitudinal plane. In case of R66 = 1 (i.e. no change in central 

beam energy), symplectic transformation of beam matrix as defined in Eq. A.3 is also 

possible in longitudinal plane and this provides the evolution of longitudinal Twiss 

parameters through the optics. This gives propagation of the l as follows 
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This expression gives that in case of           and              , the longitudinal 

    i.e. very short bunch length. But these settings requires very small R56 and very large 

R65 (i.e. RF voltage and momentum spread reaches towards infinity). The same fact is 

discussed in Section 1.8.1 (Eq. 1.55). 
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Appendix B 

 

In this appendix, derivations of expressions of R56 for different optics used in Chapter 1 and 

Chapter 3 are provided. First, an expression of the R56 for a chicane with quadrupole magnets 

(Chapter 1) is obtained. In next section, the R56 for the S-arc optics with two different 

bending magnets and three families of quadrupole magnets (Chapter 3) is obtained.  

B 1. Approximate value of R56 for a chicane optics with quadrupole 

magnets  

In a chicane optics, the rectangular magnets are placed with their pole faces parallel to each 

other. The beam in the first magnet of the chicane optics enters at the right angle with the 

pole face. In the linear map, presented in Eq. 1.12, the orientation of the rectangular magnet 

is considered in which beam enters at an angle of /2- with the pole face. Now here in this 

section, we provide a difference between path lengths of an off-momentum trajectory and the 

design trajectory for a rectangular magnet as placed in a chicane optics. The expressions are 

derived using geometry of the magnets under consideration, instead of using transfer 

matrices. The orientation of the rectangular magnet in this optics is shown in Fig. B.1.  

 

Fig. B.1 Rectangular magnet as used in chicane geometry 
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Using simple geometry, we can get 

        

and 

          [B.1] 

 

These two equations provide 

        
 

    
 

[B.2] 

 

If we obtain change in Larc with the momentum deviation, this gives change in path length 

due to momentum offset for the magnet.  

Larc depends on  (Eq. B.2) and  depends on bending radius  (Eq. B.1). Therefore, the 

deviation in Larc with momentum is given by [74] 

     
  

  
  

     
  

  

  

  

  
 

[B.3] 

First two differentials ds/d and d/d can be obtained using Eq. B.1 and B.2 as follows 

    
  

  
  

   
  

  
    

 
 

  

  
     

          

     
  

In a magnetic field, p=eB. Using this relation, we get 
  

  
 

 

 
 . Using all these differential 

relations in Eq B.3, we get [74, 75] 

     
  

  
   
    

         
[B.4] 

 

Up to second order in bending angle, this expression becomes 
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[B.5] 

 

Before proceeding further to obtain the R56 of the complete optics, it is worth clarifying the 

basic difference between the two approaches (i.e. geometrical and matrix based), employed to 

obtain the R56 of an optics. In this thesis, different optics for bunch compressors are analyzed 

analytically using geometrical approach as it is used in deriving Eq. B.5 [74]. The another 

approach, based on transfer matrices is introduced in Chapter 1 and is also used by the 

computer code MAD8, which is utilized for optimization and simulations for TL-2. In 

transfer matrix approach, a dipole magnet (sector, rectangular or wedge) is specified in terms 

of a sector magnet with thin lenses at its edges to account for the edge angle or angles of the 

entry and exit. In geometrical approach, the path length actually traversed by an electron 

within a dipole magnet is considered. In this case, the path length change is the actual 

difference between the path length of an off-momentum trajectory and the design trajectory. 

Though with these two approaches, calculated change in path length due to momentum offset 

in the individual magnets and drift spaces may be different but for the complete optics, R56 

values are equal in both the cases.. In Fig. B.2, the difference between these two approaches 

are shown for the first two magnets of a chicane optics.  
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Fig B.2 First half geometry of a chicane optics 

Here, curve ACC'A' (black solid curve) is the design trajectory of an on-momentum electron. 

Curve AEDD'E'A'' (red dotted) is the trajectory of an off-momentum particle (p+p). 

Equivalent sector magnets, used to define the local co-ordinate system, are also shown with 

apex O and O'. In matrix approach, the path length of an off-momentum trajectory is 

calculated in first dipole magnet from A to D and in the second magnet from E' to A", while 

in geometrical approach, we calculate the path length from A to E in the first magnet and 

from D' to A" in the second magnet. The path length for the off-momentum trajectory (AD) 

in matrix approach is longer in the first magnet as compared to the path length of the design 

trajectory (AC) and it is (E'A") much shorter in the second magnet as compared to the design 

trajectory C'A', which gives smaller positive and larger negative R56 in the first and second 

magnet, respectively. In geometrical approach, the path lengths of the off momentum 

trajectories (AE and D'A")  are equal in both the magnets and are shorter than the path length 

of the design trajectories (AC and C'A', which are equal to each other). The path length in 

drift space in geometrical approach is calculated from E to D', while when matrix are used, 

the path length in drift is from D to E'. In matrix approach, a slight change in path length of 
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an off-momentum trajectory in the drift space due to angle with respect to design trajectory is 

taken into account through the dispersion dependence of R56. Needless to mention that in the 

geometrical approach, the path length difference in drift space is calculated using the 

geometry in that section (for example Eq. B.10). 

Overall result for complete optics are the same by both the approaches [74]. In matrix 

approach, edges are approximated as a thin lens, while in geometrical approach, no such 

approximation is involved. In following sections for analyzing different optics, we adopted 

the geometrical approach.  

In case of the optics of a chicane with quadrupole magnets, there is change in angles of an 

off-momentum trajectory at the entrance and exit of the second dipole magnets and therefore, 

difference between path lengths of an off-momentum trajectory and the design trajectory in 

the first and second dipole magnets become different. The change in angle with respect to 

design trajectory due to momentum offset () in first order is the derivative of dispersion i.e. 

  
     . Using geometrical approach, change in path length with respect to the path length 

of the design trajectory due to momentum offset i.e. R56 (we will refer to this change in path 

length due to momentum offset inside the magnet body as R56, but in strict sense it is different 

from the R56 which is defined in the matrix approach as discussed above) for the magnet in 

such case is given by 

    
       

 
  

   
 

   
[B.6] 

 

Here D' is used at the place of /. The optics of chicane with quadrupole magnets is 

depicted in Fig. 1.12. We consider an off-momentum trajectory with an offset  in this optics, 
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which coincides with the design trajectory before entering the optics. The lateral 

displacement of this off-momentum trajectory up to the first quadrupole magnet is given by 

            
 

      
         

 

   
  

Up to second order in angle and first order in , this becomes 

          
   
 
        

   
 
    

The deviation of this trajectory from the design trajectory at this location becomes 

           
   
 
    

Therefore, the kick of quadrupole (strength K1) on this trajectory is given by 

                  

In above expression, for focusing quadrupole magnet K1 will be negative. Using Xq1 in 

above expression, finally we get in first order of  

            
   
 
    

[B.7] 

 

Due to quadrupole kick, the angle made by off-momentum trajectory at the entrance of the 

second dipole magnet with respect to the design trajectory is given by 

                 
   
 
    

[B.8] 
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Dividing bm2 by momentum offset  gives the derivative of dispersion (D') at the entrance 

to the second dipole magnet. Using this D' in Eq. B.6, contribution in R56 from the second 

dipole magnet can be obtained as follows 

                   
   
 

     
   
 

     
   
 
    

   
 

   
[B.9] 

 

In optics without quadrupole magnets, only last term of above equation is there. The first two 

terms are produced due to quadrupole magnet. 

The path length of an off-momentum trajectory in the first drift space (first dipole exit to the 

first quadrupole magnet) is given by 

     
   

    
 

   
 
     

    
 

 
     

   
 

This gives the change in path length due to momentum offset as follows 

    
 

      
  

[B.10] 

After quadrupole kick, the total angle for an off-momentum trajectory becomes 
 

   
    . 

The angle q1 depends on  (Eq. B.9) and in path length calculation, angle appears in 

quadratic form (Eq. B.10). Therefore, this angle q1 alone changes the path length in second 

order in momentum deviation. In computing R56, the change in first order is only considered 

and this change is ignored, however a cross term of q1 with bending angle  is a first order 

term in momentum offset. Thus, using Eq. B.7, the change in path length for off momentum 

particle in second drift space is  
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With these two expressions, the difference between path length of the design and off-

momentum trajectory in drift spaces can be found and is given as 

   
 

      
            

   
 
    

[B.11] 

This change in path length in drift space contains an additional term as compared to that of 

the optics without quadrupole magnet. Adding R56 contribution from the first dipole magnet 

(D' = 0) to contributions from Eq. B.9 and Eq. B.11, provides R56 for the half optics of a 

chicane and due to symmetry, total R56 will be twice of this. the R56 of complete optics is thus 

can be given by 

           
    
 

        
          

   
 
      

   
 
    

It shows that a focusing quadrupole magnet (negative value of K1) adds a positive value to 

R56. The second term has its origin in the difference in angular deviation in off-momentum 

trajectory at the entrance of the second dipole magnet as compared to optics without 

quadrupole magnet. Without quadrupole magnets, this term also vanishes. This expression 

can be written as 

                    
          

   
 
      

   
 
    

[B.12] 

Here R56,chicane is the R56 of the optics without quadrupole magnets. The quadrupole magnet 

can thus be used to tune the R56 of this optics. 

 

B.2 Approximate value of R56 for an S-arc  

The R56 for a rectangular magnet (pole face orientation as used in Eq. 1.12) is obtained by 

putting the integration of the dispersion inside the magnet (Eq. 1.16) in Eq. 1.21. The 
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resulting R56 is (here again R56 is the "geometrical change in path length due to momentum 

offset inside the magnet body only" and therefore is different from the usual matrix element 

R56, see pages 166-167 for details) 

                                [B.13] 

Now expanding above expression up to second order in bending angle  is given by 

    
   
     

 
 
    

 

 
 

[B.14] 

Here Lbm is the magnet length and this length has a simple geometrical relation with bending 

angle and radius and is given below 

  
   

     
 
  

 

In a rectangular magnet, the path length does not depend on the deviation of an off-

momentum trajectory from the design trajectory, instead it depends on the angle of an off-

momentum trajectory with the design trajectory. Therefore, in R56 only D' contributes, not the 

D. Knowing derivative of the dispersion at the entrance of different dipole magnets in each 

optics, Eq. B.14 can provide R56. The optics of the  S-arc, discussed in Chapter 3, employs 

dipole magnets in this orientation. The tuning arc of TL-2 is a variation in this type of optics. 

Layout of this optics is shown in Fig. 3.6. Length and angle for the first and fourth dipole 

magnet are equal and are Lbm1 and 1, respectively.  Similarly, the length and angle for the 

second and third dipole magnet are Lbm2 and 2, respectively. Third dipole magnet bends 

beam opposite to second dipole magnet and fourth dipole magnet bends the beam opposite to 

first dipole magnet, resulting in a net zero bending. The kick angle on an off momentum 

trajectory due to first quadrupole magnet (in first order of ) is 
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[B.15] 

 

Due to this quadrupole kick, at the location of the second quadrupole magnet, deviation in 

off-momentum trajectory from the design trajectory is given by 

                
    

 
            

    

 
      

[B.16] 

 

Lqq1 is the distance between the first two quadrupole magnets. Using this expression of the 

above displacement, kick angle on this trajectory imparted by second quadrupole magnet can 

be obtained 

    
      

   
              

    

 
            

    

 
      

[B.17] 

 

Using these two quadrupole kicks, the angle of an off-momentum trajectory at the entrance of 

the second dipole magnet from the horizontal axis (black dotted line in Fig. 3.6) is given by 

                                      [B.18] 

 

Here  

      
    

 
 

The design trajectory has an angle of 1. with the horizontal axis at the entrance of the second 

dipole magnet. The difference in angles made by design trajectory and an off-momentum 

trajectory provides the derivative of the dispersion at the entrance to the second dipole 

magnet. This is given by 
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                               [B.19] 

 

Using this expression, the R56 contribution from the second dipole magnet is given by 

        
 

 
      

  
    

 
                              

[B.20] 

 

From the first dipole exit to the entrance of the second dipole magnet, the difference in path 

length of an off-momentum trajectory from the design trajectory is given by 

    
 

       
                 

                 
                

  
[B.21] 

Here Lq2 is the distance from the second quadrupole magnet to the entrance of the second 

dipole magnet. Similarly the change in path length due to momentum offset from the exit of 

second dipole magnet to the third quadrupole magnet can be obtained as following 

    

 
            

                                        

                       

[B.22] 

The change in path length for an off-momentum trajectory as compared to the design 

trajectory from the third quadrupole magnet to the mid-point of this quadrupole doublet can 

be calculated using the kick imparted by the third quadrupole magnet. This kick can be 

derived similar to the kicks, as derived for the first two quadrupole magnets. At the location 

of the third quadrupole magnet, deviation in off-momentum trajectory from the design 

trajectory is given by  
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[B.23] 

Here L2q is the distance from the exit of the second dipole magnet to third quadrupole 

magnet. Using above expression of the displacement and Eq. B.15 and B.17, kick angle on 

this trajectory imparted by the third quadrupole magnet can be obtained as following 

                                               

                                     

 

[B.24] 

 

Here   
    

 
     and   

    

 
    . 

The R56 contribution from the third quadrupole magnet to the mid-point of the quadrupole 

doublet formed by Q3 is given by 

     

 
             

                  

                        

                              

                       

                         

                           

                      

 

 

 

[B.25] 

Here Lqq2 is the distance between the third quadrupole magnet and symmetry point of the 

optics. Adding all the contributions of R56 from Eq. B.20, B.21, B.22 and B.25 to the 

contribution from the first dipole magnet, provides R56 for half of the arc. Twice of this gives 
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R56 of the arc. By introducing three new variables i.e.        ,       and     

    , the R56 of the arc is given by 

                     

 

         

 

   

 

[B.25] 

Here 

    
 

 
             

        
                       

  

 

                 
                          

 

                           

 

                     

 

              
 

 
                       

     

 

                     

 

                

  
 

 

 

 

 

 

 

[B.26] 

This is Eq. 3.1. In TL-2 tuning arc, one defocusing quadrupole magnet in the first and last 

straight section also adds an additional degree of freedom and helps in obtaining a desired 

value of dispersion at the location of sextupole magnet to correct the T566 within the available 

sextupole strength. One more defocusing quadrupole magnet at the mirror location provides a 

control over vertical beta function without affecting the value of R56, as the dispersion is zero 

at this location.  
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Appendix C 

 

 In this appendix, a brief discussion on dispersion and T566 is presented. The co-

ordinate x and x' of a particle after passing through an optics in linear approximation is 

mapped with its initial co-ordinates as following 

                      [C.1] 

 

                       [C.2] 

For obtaining the propagation of dispersion (i.e. D(s)), consider an off-momentum trajectory 

through the optics, i.e. x=D, x'=D' in above equations. We get 

                     [C.3] 

 

                      [C.4] 

Above equations describe the propagation of dispersion through an optics, when initial 

dispersion and its derivative are Din and D'in respectively. If at the entrance of an optics, 

dispersion and its derivative, both are zero, above relations yield propagation of dispersion 

and its derivative through the optics as following 

      and        

Longitudinal dispersion R56 is given by Eq. 1.21, which can be expressed in the following 

form using Eq. C.1 

        
   
 
        

   
 
    

   
 
   

[C.5] 

For zero initial dispersion and its derivative, R56 becomes 
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[C.6] 

Similarly, we can obtain the propagation of second order dispersion through an optics and its 

relation with T566. Assuming only horizontal dispersion, up to second order, x and x' is given 

by 

                             
                             

 

                                       
  

 

[C.7] 

 

                              
                             

 

                                       
  

 

[C.8] 

Non-listed matrix elements in above equations are zero in an optics consisting of drift spaces, 

dipole magnets and quadrupole magnets. However T144 is non-zero for a dipole magnet, 

which gives x as a function of y
2

in, but we consider only horizontal dispersion and this terms 

does not give contribution in horizontal dispersion propagation. Up to second order, 

displacement and angle of an off-momentum trajectory are given by           
  and 

             
 . Here D(2) and D'(2) are second order dispersion and its derivative, 

respectively. Using these relations in Eq. C.7 and C.8, propagation of second order dispersion 

and its derivative in an optics can be obtained as follows 

                                 
                             

 

                                     

 

[C.9] 

 

                                  
                             

 

                                     

 

[C.10] 
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In case of vanishing initial dispersion and its derivative, second order dispersion and its 

derivative propagate as D(2)=T166 and D'(2)=T266.  

Second order change in path length due to momentum offset is quantified by the second order 

map element T566, which is related to second order dispersion. The change in path length is 

given by Eq. 4.2, re-written here as 

    
 

 
 

  

   
 
   

 
    

Due to momentum offset (up to second order), this change in path length becomes 

    
        

 

 
 
    

   
 
     

 
    

From this, we get T566 as following 

       
    

 
 
 

 
 
  

  
         

[C.11] 

Using explicit expressions of D, D' and D(2) from Eq. C.3, C.4 and C.9, value of T566 as a 

function of map elements can be obtained as follows 
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[C.12] 

In case of zero initial dispersion and derivative, which is the case at the entrance for an 

achromat optics, T566 becomes 

       
   
 

   
 
   
 

 
 
    
 
    

[C.11] 

This is Eq. 4.3. 
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