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Synopsis 

 
Superconductors are materials of choice for the production of high field magnets in thermo-nuclear 

reactors. There are, however, concerns that the Niobium-based materials and Ag sheathed high TC 

superconducting materials are not good for such superconducting magnet applications where they may 

be subjected to long term neutron irradiation. This is because such neutron irradiation would transform 

them into radioactive materials with very long decay periods [1, 2]. Hence, there is a need for the 

development of newer superconducting materials with useful properties. In this direction, now the 

interest has been focused on other transition element alloy superconductors. One such system is the Ti-

V alloys which were known to be superconducting for a long time [3]. Previous studies on Ti-V alloys 

indicate that these alloys are highly machinable and could be used as an alternative material for 

technological applications [4-6]. However, the usage of Ti-V alloys in the actual technological 

applications has been rather limited so far, because of the lack of in-depth studies of the 

superconducting and normal state properties in these materials.  

The Ti-V alloys show a variety of structural phases across the complete compositional range [7]. The 

samples for the present study were chosen in such a way to cover the entire region of the body centered 

cubic phase of these alloys. It is reported in literature [8] that the superconducting transition 

temperature TC increases with increase in the Vanadium concentration among the alloys considered for 

this study. It is well known that addition of a magnetic impurity in non-transition element based s-wave 
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superconductors suppress the superconductivity due to pair breaking. It is also reported in literature that 

even the addition of the non magnetic transition elements suppress the TC [3, 9, 10] due to the formation 

of localized states. However, it has also been observed that the TC of a dirty limit superconductor is not 

affected significantly by disorder [11]. In fact a very high level of disorder is required to change the TC 

in such a system [12]. Surprisingly an enhancement in TC is observed in spite of increased disorder 

when Ti and V are alloyed, as compared to the TC of the constituent elements. Such behavior is 

observed in many transition metal alloys [3]. Apart from the enhanced TC, these transition metal based 

disordered binary alloys are also observed to have strong fluctuation conductivity effects well above TC 

and well above the upper critical field HC2 [13-15]. Moreover, these fluctuations have been found to be 

independent of the details of sample preparation, surface polishing, the size and shape of samples and 

the current density [13-15]. This could hint towards the fact that these alloys have the potential of 

exhibiting even higher values of TC and HC2 than what are observed experimentally at present. 

However, the reason for the existence of such strong fluctuation conductivity effects well above TC and 

well above HC2 is not clearly understood.  

In the present thesis, the objective is to study in detail the structural, electrical, magnetic and thermal 

properties of binary Ti-V alloys so as to understand the normal state as well as the superconducting 

state properties, which might be helpful in resolving the points raised above. We found that the spin 

fluctuations play an important role in the superconducting and normal state properties [16]. Our studies 

reveal that the reduction in the electron-phonon interaction as well as the spin fluctuations with the 

increasing Ti concentration is responsible for the observed variation of the TC as a function of 

composition [17]. Apart from this, the structural properties are also observed to influence the normal 

state and superconducting properties especially the critical current density of these alloys [18, 19]. In 

addition, several other interesting phenomena such as the high field paramagnetic effect [20], a vortex 

glass to vortex liquid phase transition [21] and a clear signature of a first order transition in the vortex 

mater (or the flux line lattice) leading to a peak effect observed in the field dependence of 

magnetization and the critical current density [22] were also observed in these alloys. The outline of the 

thesis, which includes the details of these studies are given below.           

In Chapter 1 (Introduction), an overview on the current status of the research on Ti-V alloys will be 

presented.  The structural phase diagram of these alloys will be discussed in detail. A brief introduction 

will be given on the aspects of the superconductivity, which are needed to understand the physical 

properties addressed in the present work. The motivation of the present work will be given at the end of 

the chapter.  

Chapter 2 (Preparation of samples and experimental techniques) will present the details of sample 

preparation and experimental techniques used in the present study. The samples of four TixV1-x alloys 

with x = 0.8, 0.7, 0.6 and 0.4 were prepared by arc-melting the constituent elements in Argon 
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atmosphere. The as-cast ingots were wrapped in Ta-foil and then sealed in quartz ampoules in an 

atmosphere of Argon. The samples were then annealed at 1300 °C for 10 hours. After that, the samples 

were cooled slowly to 1000 °C and then quenched rapidly into ice-water from 1000 °C. Details of the 

structural characterization techniques employed in the present study, such as, X-ray diffraction (XRD) 

experiments using the synchrotron radiation source, optical metallography, scanning electron 

microscopy (SEM), and energy dispersive analysis of X-ray (EDAX) will be given in this chapter. 

Basic principles of the measurements of resistivity, magnetization and heat capacity and the details of 

the experimental setups used will also be discussed.  

 

A detailed structural characterization of the present alloys has been performed by XRD experiments 

using the synchrotron radiation source, optical metallography, SEM, and EDAX. The results of such 

studies will be presented in Chapter 3 (Structural characterizations). The analysis of the XRD 

patterns performed using the Rietveld refinement technique [16, 18-20] reveals that the major phase in 

all the alloys is the body centered cubic (bcc)  phase (space group: I  3m). It is also observed that in 

Ti rich TixV1-x alloys (x = 0.8 and 0.7) contain secondary phases. The  phase with a hexagonal 

crystallographic structure (space group: P6/mmm) is common to both these alloys. However, the  

phase with a hexagonal-closed-packed (hcp) crystallographic structure is observed in annealed Ti0.7V0.3 

alloy (space group: P63/mmc) whereas stress induced  phase with an orthorhombic crystallographic 

structure is observed in Ti0.8V0.2 alloy (space group: Cmcm). The estimated lattice parameters 

corresponding to these phases are in agreement with the literature [23, 24]. SEM and optical 

metallography studies on the TixV1-x alloys reveal that the major  phase of these alloys consists of well 

connected grains of varying grain size. The average size of the grains in these alloys ranges from few 

tens to few hundreds of m. The signature of the  phase in the annealed Ti0.7V0.3 alloy and the stress 

induced  phase in both the as-cast and annealed samples of the Ti0.8V0.2 alloy is also visible in both 

optical and electron micrographs. In all the TixV1-x alloys, etch pits are also visible and these etched pits 

are distributed uniformly all over the sample. The results of the EDAX experiments show that the 

fluctuation in compositions of the investigated alloys over the entire sample surface is less than 2 % of 

the nominal compositions of the alloys. 

 

In Chapter 4 (Superconducting properties of TixV1-x alloys), the details of the superconducting 

properties of the TixV1-x alloys will be presented. The superconducting transition temperature TC is 

estimated from the temperature dependence of resistivity, magnetization and heat capacity 

measurements. The estimated TC values increase from 4.12 to 7.34 K as x is decreased from 0.8 to 0.4. 

These values are in agreement with the previously published results [8, 25]. The upper critical field HC2 

and the lower critical field HC1 at different constant temperatures are determined from the isothermal M 

versus H curves obtained at various constant temperatures below the TC of these alloys. The highest HC2 
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value is obtained in the Ti0.6V0.4 alloy (HC2 is about 10 T at T = 4.2 K). The density of states at Fermi 

level N(0)
HC2 

is estimated from the slope of the experimental HC2(T) curve near the TC [26].  Electronic 

band structure calculations have been performed to estimate the density of states at the Fermi level 

N(0)
BS

. The N(0)
HC2

 is found to be considerably larger than the  N(0)
BS

 for all the TixV1-x alloys. It is 

well known that the electron-phonon interaction leads to renormalization of the density of states at the 

Fermi level. The renormalization factor is (1 + ep), where ep is the electron-phonon coupling constant. 

The values of N(0)
HC2

 and  N(0)
BS

 are used to estimate ep  from the relation: N(0)
HC2  

=
 
N(0)

BS
 (1+ep) 

[26]. The estimated value of ep increases from ~0.5 to ~1.0 as x is decreased from 0.8 to 0.4. The Maki 

parameter M estimated for these TixV1-x alloys is higher than unity, implying that the Pauli 

paramagnetic pair breaking effect significantly influences the upper critical field in these alloys. Strong 

electron-phonon interactions, however, reduce the relative importance of Pauli paramagnetic pair 

breaking effect in V rich alloys. The experimental  HC2(T) data are then analyzed with the formalism 

given by Orlando et al. [27], which considers both the Pauli paramagnetic pair breaking effect and the 

corrections for the electron-phonon interactions. The magnitude and the temperature dependence of HC1 

are found to be nearly consistent with the predictions of the Ginzburg-Landau-Abrikosov-Gor’kov 

(GLAG) theory [28-31]. Two fundamental superconducting length scales namely the Ginzburg-Landau 

coherence length GL(0) and the Ginzburg-Landau London penetration depth GL(0) at absolute zero 

temperature are estimated using the Ginzburg-Landau relations. The values of GL(0) for these the 

TixV1-x alloys come out to be in the range of ~48-60 Å, which are considerably larger than the estimated 

mean free path for the electron conduction (le) in these alloys. This indicates that the TixV1-x alloys are 

dirty limit superconductors. It is found that the TixV1-x alloys are characterized with very high values of 

Ginzburg-Landau parameter  = GL(0) /GL(0) and the  value increases with the increase in x. For 

example, the value of  is as high as ~60 for the Ti0.7V0.3 alloy. Hence, these alloys are extreme type-II 

superconductors. The thermodynamic critical field HC is deduced from the measured electronic heat 

capacity in the superconducting state [32]. The experimental HC(T) curves are fitted with the empirical 

relation HC(T) = HC(0) [1-(T/TC)
2
] to obtain the value of HC(0). The obtained value of HC(0) in the 

TixV1-x alloys increases with decreasing x. Furthermore, we have estimated the Ginzburg number Gi 

[33] for the present TixV1-x alloys. The Gi number increases with increasing x and their values are in the 

range ~10
-6

 – 10
-5

 [19]. Although these values are lower than those for the high-TC Cuprate 

superconductors (Gi~10
-2

), they are considerably higher than those for typical low-TC superconductors 

(Gi ~10
-8 

-10
-9

). Thus, significant thermal fluctuation effect is expected in these crystalline TixV1-x alloys 

in spite of their low values of TC. 

The studies on the effect of superconducting fluctuations in the TixV1-x alloys above the TC will be 

presented in Chapter 5 (Fluctuation conductivity in TixV1-x alloys). The strong rounding-off behavior 

of (T) curve observed above TC as well as the relatively high positive magneto-resistance observed in 
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the temperature regime between TC and ~2TC for the present TixV1-x alloys are due to the 

superconducting fluctuations. Experimentally obtained excess conductivity is then analyzed with the 

help of the existing theoretical models of Aslamazov-Larkin [34] and Maki-Thompson [35-37]. For all 

the TixV1-x alloys except Ti0.8V0.2, the magnitude and the temperature dependence of the excess 

conductivity at low reduced temperatures (  0.1) are found to be well explained by the Aslamazov-

Larkin theory for 3D superconducting fluctuations. The roles of different pair-breaking 

mechanisms, such as, thermal phonons, magnetic impurities and spin fluctuations in the 

complete suppression of the Maki-Thompson type contribution to superconducting fluctuations 

in TixV1-x alloys will be discussed. It is observed that thermal phonons may not be strong 

enough for the complete suppression of the Maki-Thompson type superconducting fluctuations 

in these alloys. A linear field dependence of magnetization is observed in the normal state of 

these alloys up to magnetic fields of 80 kOe, which suggests that these alloys may not contain 

any magnetic impurities. Hence, the only probable pair breaking mechanism that leads to the 

suppression of Maki-Thompson type superconducting fluctuations in TixV1-x alloys is the spin 

fluctuations. Therefore, motivated by the fact that the spin fluctuations might be important in 

the TixV1-x alloys we have performed a detailed study of the normal state properties of these 

alloys.   

Chapter 6 (Normal state properties of TixV1-x alloys) will present the study on thermal, electric 

transport and magnetic properties of the TixV1-x alloys in their normal state. The heat capacity measured 

at low temperatures above TC is fitted with the function C(T) = T +T
3
 to obtain the Sommerfeld 

coefficient of electronic heat capacity  and the Debye temperature D. The electron-phonon coupling 

constant ep is also estimated using the experimental  value and the density of states at Fermi level 

N(0)
BS

 determined from the band structure calculations. The electrical resistivity in the TixV1-x alloys 

with x = 0.7 and 0.8 increases with decreasing temperature over a wide range of temperatures. For the 

TixV1-x alloys with x = 0.4 and 0.6, the electrical resistivity in the normal state increases with increasing 

temperature at all measured temperatures up to room temperature. At low temperatures (15 < T < 40 K), 

the temperature dependence of electrical resistivity observed for these two alloys is found to be 

described well with the function: (T) = 0 + AT
2
 +BT

5
. The T

5
 term represents the phononic 

contribution to the resistivity at low temperatures. The coefficient of the T
5
 term is found to be 

unusually small and it is positive for the x = 0.4 alloy and negative for the x = 0.6 alloy. This behavior 

and the quadratic temperature dependence of low-temperature resistivity are characteristic feature of the 

spin fluctuations [38]. In the normal state, the TixV1-x alloys exhibit temperature induced dc magnetic 

susceptibility (T)  -T
2
lnT, which also indicates the presence of the spin fluctuations [39, 40]. We 

have also estimated the Stoner factor S for the TixV1-x alloys. The S is observed to be about ~2 for the x 
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= 0.6 and 0.4 alloys. Such high value of S is generally observed in materials with spin fluctuations [41, 

42]. Kadowaki-Woods scaling relation [43] between 
2
 and the coefficient A of the quadratic term of 

the low-temperature electrical resistivity is also observed to be valid for the TixV1-x alloys (for x = 0.6 

and 0.4). The above experimental evidences clearly suggest the presence of spin fluctuations in the 

TixV1-x alloys. Our study also reveals that the spin fluctuations present in these alloys are itinerant in 

nature.  

We have further studied the influence of spin fluctuations on the superconductivity in TixV1-x alloys. 

When spin fluctuation interactions are not important, the superconducting transition temperature TC of a 

superconductor is governed by three important parameters, namely, D, ep and the coulomb interaction 

parameter * [44]. The calculated TC0 values using the McMillan formula for V rich TixV1-x alloys are 

found to be significantly higher than the experimentally observed values (TC). The disagreement 

between TC0 and TC increases with decreasing x. This observed disagreement arises mainly due to the 

electron-spin fluctuation interactions [45-48]. In the other words, we can say that the spin fluctuations 

in TixV1-x substantially reduce the superconducting transition temperature from the theoretically 

predicted value (TC0) to the one observed experimentally (TC). We have also provided an explanation 

based on the distribution of the electron-spin fluctuation interaction for the observed fluctuation 

conductivity above TC.   

The commercial application of a superconductor depends on its capability of carrying dissipation-less 

current in the presence of high magnetic fields. This aspect will be discussed for the TixV1-x alloys in 

Chapter 7 (Critical current and flux-line pinning in TixV1-x alloys). This chapter will be divided in 

two parts. The first part will cover a detailed study on the field dependence the critical current density 

JC and the pinning force density FP in both the as-cast and annealed samples of the TixV1-x alloys. The 

peak effect (PE) observed in the field dependence of magnetization curves [M(H) curves] in high fields 

near HC2 will be discussed in the second part of chapter 7. Isothermal M(H) curves obtained for both the 

as-cast and annealed samples of the TixV1-x alloys at various constant temperatures below their 

respective TC’s are distinctly irreversible. The observed irreversibility is caused by the pinning of flux 

lines within the superconductors. We have estimated the JC from the irreversible M(H) curves with the 

help of the Bean’s critical state model [49]. The as-cast Ti0.7V0.3 alloy has the highest JC value among all 

the investigated alloys. In zero fields and at 2 K temperature, the JC value estimated for this alloy is ~6 

× 10
8
 A/m

2
. In order to understand the pinning mechanisms operating in these superconducting TixV1-x 

alloys, a detailed analysis of the field dependence of pinning force density FP = JC × H is done using the 

Dew-Hughes model [50]. Except in the as-cast and annealed samples of the Ti0.8V0.2 alloy, the pinning 

force in all the TixV1-x alloys (both the as-cast and annealed) in the field regime of the main magnetic 

irreversibility arises primarily from the flux-line pinning by normal surface pins [19, 20]. The grain 

boundaries, edge dislocations and martensitic  phase boundaries (in annealed Ti0.7V0.3 alloy) constitute 
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the sources of such normal surface pinning centers in these alloys [19, 20]. In the as-cast and annealed 

samples of the Ti0.8V0.2 alloy, flux-line pinning occurs predominantly at normal point pins while the role 

of normal surface pins is prominent at relatively lower fields [19]. Substantial amount of  phase 

available in the as-cast and annealed samples of these alloys functions as normal point pinning centers 

[19]. We will then present the effect of thermal fluctuations on the high field critical current density in 

these alloys. The peak effect is observed in the isothermal M(H) curves in high-field regime near HC2 in 

all the present alloys except annealed Ti0.7V0.3. The peak effect in various superconductors occurs due to 

a field induced transition in the flux-line lattice from a phase of low to high flux pinning characteristic 

[51]. The nature of this phase transition has been investigated by using a minor hysteresis loop (MHL) 

technique [51] which revealed various characteristic features i. e., matastability, and 

superheating/supercooling associated with a first order phase transition. Moreover, we have estimated 

the equilibrium magnetization (Meq), which exhibits a clear jump in the PE regime. This was used for 

the estimation of the latent heat with the help of the Clausius-Clapeyron relation. At 2 K, latent heat 

comes out to be L ~35.7 J/g for the annealed Ti0.8V0.2 alloy whereas L~70 J/g at 4 K for annealed 

Ti0.4V0.6 alloy. These results provide further support that the PE in the TixV1-x alloys is associated with a 

first order phase transition in the vortex matter.  

In Chapter 8 (Vortex-glass to vortex-liquid transition in annealed Ti0.7V0.3 alloy), we will present 

the experimental study of vortex-solid to vortex-liquid phase transition [52-54] in the Ti0.7V0.3 alloy 

through the measurement of electrical resistivity in presence of various constant magnetic fields up to 

50 kOe. We found that both the width of the normal to superconducting phase transition in the alloy, 

and the tail in the electrical resistivity observed before achieving the zero resistivity state increase with 

increasing magnetic field. Using the Arrhenius relation, we have identified a vortex-glass to vortex-

liquid phase transition in this low TC superconductor. We have also identified a critical region 

corresponding to this phase transition and obtained the critical exponent for the same. We have used a 

modified vortex-glass model to separate out the temperature and field dependent parts of the effective 

pinning energy. The field dependent part of the effective pinning energy exhibits power law 

dependence on the applied magnetic field, and both the temperature and field dependent parts of the 

effective pinning energy indicate a crossover of behavior close to the vortex-glass to vortex-liquid 

phase transition in the alloy. This change of behavior might be because of a crossover from a regime of 

single vortex pinning dominate to a regime of collective vortex pinning tends to dominate.  

In Chapter 9 (High-field paramagnetic Meissner effect in TixV1-x alloys), we will present the study 

related to an anomalous feature in the samples of annealed Ti0.7V0.3 and as-cast as well as annealed 

Ti0.8V0.2 alloys. In contrast to conventional type-II superconductor, the magnetization in these samples 

is observed to increase when temperature is decreased below the TC in presence of high magnetic fields 

beyond a certain critical value. In this field and temperature regime, it is observed that the 
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magnetization values in the field cooled cooling (FCC) protocol have a smaller magnitude as compared 

to that in the field cooled warming (FCW) protocol. We have also observed that the magnetization at a 

constant temperature well below TC when cooled in the presence of high magnetic fields increases with 

time. These observed features are characteristics of the high-field paramagnetic Meissner effect 

(HFPME) [55-58]. We argue that the HFPME is observed in these alloys due to the non-uniform flux-

line pinning at the boundary of the inhomogeneously distributed  or  phases [20]. As stated in 

Chapter 2, the  phase in both the as-cast and annealed samples of Ti0.8V0.2 alloy is a stress induced 

phase which forms during the mechanical processing such as cutting of the sample. We therefore 

remove the  phase from the annealed sample of Ti0.8V0.2 alloy, which shows the signature of HFPME, 

by carrying out a second stage annealing following the same protocol employed during the first 

annealing [20]. HFPME becomes completely suppressed in this re-annealed sample suggesting that the 

non-uniform flux density promoted by pinning at  or  phase is indeed the reason for the occurrence 

of HFPME in Ti0.8V0.2 and Ti0.7V0.3 alloys. Our studies suggest that the observation of HFPME in these 

alloys is due to the inhomogeneous flux pinning and the trapping of the flux lines at the  or  phase 

boundary, which creep from rest of the sample volume.  

In Chapter 10 (Summary, Conclusion and Future work), we will present the summary and the 

conclusions drawn from the study and the scope for the further studies. The important conclusions are 

listed below: 

(1) The superconducting transition temperature TC of the present alloys is higher than the constituent 

elements Ti and V. The experimentally observed TC, however, is much less than that estimated by 

considering the electron-phonon interaction alone.    

(2) The Ginzburg number Gi for these TixV1-x alloys are estimated to be about 10
-6

 – 10
-5

 indicating the 

significant influence of the thermal fluctuations in these alloys. Such thermal fluctuations contribute to 

the observation of fluctuation conductivity well above TC.  

(3) The presence of spin fluctuations in V rich TixV1-x alloys is inferred from the normal state 

properties. We have shown that the spin fluctuations present in these alloys are itinerant in nature. 

(4) The variation of TC with composition in the TixV1-x alloys is explained by considering the electron-

phonon interaction and spin fluctuations. We also provide an explanation based on the distribution of 

the electron-spin fluctuation interaction for the observed fluctuation conductivity above TC.   

(5)  Grain boundaries, edge dislocations,  phase, and  (or ) phase boundaries seem to be  the 

sources of the flux-line pinning mechanisms in these superconducting alloys. The irreversibility field 

Hirr particularly in Ti rich TixV1-x alloys is observed to be lower than HC2 due to the increased role of 

thermal fluctuations which ultimately resulted in the suppression of the high-field JC in these alloys.  
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(6) The relatively strong flux line pinning along with thermal fluctuation effects in annealed Ti0.7V0.3 

alloy resulted in the formation of the Bose Glass phase in the mixed state of this superconductor. A 

difference is observed between the observed properties at high and low field regime when the data is 

analyzed with the existing scaling law. A new scaling law is proposed to resolve this difference. 

(7) We have observed the high field paramagnetic effect in Ti0.8V0.2 alloy and annealed Ti0.7V0.3 alloy. 

We have shown that this effect results from the inhomogeneous flux pinning due to the presence of 

stress induced martensitic  phase in Ti0.8V0.2 alloy, whereas it is resulted from the inhomogeneous 

flux pinning due to the presence of  phase in Ti0.7V0.3 alloy. We have shown that the high field 

paramagnetic effect is related with the flux pinning and can result wherever the inhomogeneous pinning 

centers are present.     
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Chapter 1

Introduction

1.1 General introduction

The thermonuclear reactors are potential sources of green and safe energy [1].

Superconducting Tokamak is an essential component of such thermonuclear

reactors, which magnetically confines the hydrogen plasma that is used to

generate electrical power [2]. The radiation and high energy particles gen-

erated in thermonuclear reactors can induce radioactivity in the materials

that are used to construct the reactor. Thus, the superconducting material

used to construct the magnet for the thermonuclear reactors might become

radioactive in long run. The superconducting materials currently being used

in the superconducting Tokamak are the Nb-based alloys such as Nb-Ti [2].

Some of the radioactive Nb isotopes, however, have very long half-life (few

hundreds to few thousands of years). In fact, some of the artificially created
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radioactive isotopes of Nb may have the half-life period as long as about 35

million years [3, 4]. Therefore, the nuclear waste management of the Nb-

based alloys used in the thermonuclear reactors is an important issue, which

could lead to hazardous consequences [5]. Thus, there is a need for newer

superconducting materials with useful properties from radioactivity points

of view. In this direction, a significant interest is now focused on other tran-

sition element alloy superconductors. One such system is the Ti-V alloys,

which were known to be superconductors for a long time [6]. The longest

half-life of artificially created radioactive vanadium is known to be around 330

days [3, 4]. Therefore V-based alloys, especially V-Ti alloys are considered

to be one of the suitable candidates for superconducting magnet applications

in thermonuclear reactors [5]. Previous studies on the Ti-V alloys indicate

that these alloys are highly machinable and could be an alternative mate-

rial for technological applications [5, 7, 8]. However, the usage of the Ti-V

alloys in the actual technological applications has been rather limited so far

because of the lack of in-depth studies of the superconducting and normal

state properties of these materials.

In this thesis a detailed study of the superconducting as well as normal

state properties of the Ti-V alloys are presented. In the current chapter,

we present a brief discussion on the basics of superconductivity, which is

followed by a discussion on the experimental results on the superconducting

and normal state properties of the Ti-V alloys available in the literature. The

motivation for the present studies is given at the end of this chapter.
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1.2 Basics of superconductivity

1.2.1 A brief history of superconductivity

Figure 1.1: Temperature dependence of resistivity of mercury as measured
by Kamerlingh Onnes in 1911. The figure is taken from Ref. [11].

The discovery of superconductivity in mercury by H. Kamerlingh Onnes

[9] in the year of 1911 is an important milestone of low temperature physics.

In the course of his experiments on the electric conductivity of mercury at low

temperatures, he had observed that the dc electrical resistance of mercury

drops abruptly to zero below a critical temperature TC = 4.19 K [9]. Fol-

lowing the discovery of superconductivity in mercury, H. Kamerlingh Onnes

had observed that other elements such as tin, lead etc. also exhibit zero

resistance below a certain TC (specific to each metal) [10]. The exhibition of

zero resistance is a characteristic feature of a superconductor.
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Figure 1.2: (Schematic) Demonstration of the Meissner-Ochsenfeld effect.
When the sample is cooled below TC in the presence of a magnetic field
lower than HC , the magnetic flux is expelled from the interior of the super-
conductor. The figure is taken from Ref. [11].

Twenty two years later, Meissner and Ochsenfeld [12] discovered that

these superconductors expel magnetic flux from their interiors and exhibit

perfect diamagnetism. This phenomenon is known as Meissner-Ochsenfeld

effect, and is shown schematically in Fig. 1.2. F. London and H. Lon-

don [13] were first able to explain the Meissner-Ochsenfeld effect based on a

semi-phenomenological approach. They had argued that the magnetic field

penetrates only through a thin layer at the sample surface. The characteristic

length scale over which the magnetic field can penetrate the sample is known

as the London penetration depth λL. A superconductor, however, exhibits

Meissner-Ochsenfeld effect only in the presence of an applied magnetic field

less than a critical field HC (typically few hundreds of mT for most of the
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elemental superconductors). As the applied field is increased to the critical

field HC , the superconducting sample reverts to its normal conducting state,

and the magnetic field penetrates throughout the sample.

In the year of 1950, Maxwell [14] and Reynolds et al. [15] had discov-

ered that the TC varies with the mass of the atom for different isotopes as

TC ∝ M−n, where M is the ionic mass and n is equal to 0.5 for most of

the metals. This is known as the isotope effect. The isotope effect provides

a strong support to the view-point that the electron-phonon interaction is

important for the occurrence of superconductivity. However, the understand-

ing of the phenomenon of superconductivity became clear only 46 years after

the discovery of the phenomenon, when Bardeen, Cooper, and Schrieffer [16]

had put forwarded their microscopic theory (the BCS theory) in the year

of 1957. According to the BCS theory, the interaction between the con-

duction electrons and the quantized excitation of the lattice (phonons) can

give rise to an additional interaction between the electrons themselves. In

certain circumstances this interaction between the electrons can be attrac-

tive. A very similar attractive interaction between the electrons mediated by

phonons was also shown by Frohlich [17] prior to the formulation of the BCS

theory. However, the major triumph of the BCS theory lies in the fact that

this theory describes the formation of electron pairs and their subsequent

condensation in a coherent superconducting state, which is represented by

a single superconducting wave function. The attractive interaction between

the electrons leads to the formation of electron pairs known as the Cooper
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pairs, and opens up a gap in the electronic density of states around the Fermi

energy. The BCS theory successfully explains most of the observed features

of superconductivity such as zero resistivity, the Meissner-Ochsenfeld effect,

the isotope effect, existence of superconducting energy gap etc.

1.2.2 The critical temperature

The temperature at which a superconducting material undergoes a transi-

tion from normal to superconducting state upon cooling is called the critical

temperature or the superconducting transition temperature TC of the super-

conducting material. According to the BCS theory, the critical temperature

TC of a superconductor can be expressed as [16]

kBTC = 1.14 < ~ω >av exp

[
− 1

N(EF )V

]
. (1.1)

Where, < ~ω >av is the average phonon energy, N(EF ) is the electronic

density of states at Fermi energy, and V is the interaction potential between

the Cooper pairs. By substituting (3/4)kBθD for < ~ω >av, as suggested by

Goodman et al. [18], we have

TC = 0.855θDexp

[
− 1

N(EF )V

]
. (1.2)

Here, θD is the Debye temperature. The above expression for TC is, however,

valid in the weak-coupling limit. McMillan [19] had derived a strong-coupling
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expression for TC based on the Eliashberg theory. The McMillan expression

for TC is given as [19]

TC =
θD

1.45
exp

[
−1.04(1 + λep)

λep − µ∗(1 + 0.62λep)

]
. (1.3)

where, λep = N(EF )V is the electron-phonon coupling constant and µ∗ is the

Coulomb interaction parameter.

1.2.3 The Ginzburg-Landau phenomenological theory

Ginzburg and Landau had developed a phenomenological theory for the phase

transition from normal to superconducting state based on Landau’s original

theory for the second-order phase transitions [20]. Landau had argued that

the transition from normal to superconducting state occurs because the free

energy of the superconducting phase is lower than that of the normal phase.

The Landau theory introduces the concept of an order parameter associated

with a second order phase transition [20]. The order parameter vanishes in

the high-temperature phase at T > TC , but acquires a non-zero value at

the low-temperature phase at T < TC . Here, TC is the critical temperature

for the second order phase transition. In the phenomenological Ginzburg-

Landau theory for superconductivity, the existence of a wave function Ψ

for the coherent superconducting state is assumed, and this wave function

was taken as the order parameter associated with the phase transition from

normal to superconducting state. Since the order parameter evolves contin-
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uously from zero value at TC , the free energy is expanded in the temperature

regime close to TC as a power series in this order parameter as [21]

F = F0 +

∫
[a|Ψ(~r)|2 +

1

2
b|Ψ(~r)|4 +

~2

2m∗
|~∇Ψ(~r)

−ie
∗

~c
~A(~r)Ψ(~r)|2 +

1

2
µ0H

2(~r)]dV. (1.4)

Here, the integration is performed over the sample volume. In the above

expression, F0 is the free energy of the sample in its normal state, H is the

internal magnetic field, the parameters a and b are functions of temperature,

~ is the reduced planck’s constant, µ0 is the permeability of the free space, and

c is the speed of light. The parameters e∗ and m∗ are chosen as respectively

the mass and the charge of the superconducting entities so that the third term

in the square bracket mimics the quantum mechanical kinetic energy term.

The increase in the energy due to the spatial variation of order parameter

caused by the sample inhomogeneity is taken into account by the gradient

term in the above free energy expression. The minimization of the free energy

given in the above expression (1.4) with respect to small changes in Ψ∗ yields

the first Ginzburg-Landau equation as

− ~2

2m∗

[
~∇− ie∗

~c
~A(~r)

]2

Ψ(~r) + aΨ(~r) + b|Ψ(~r)|2Ψ(~r) = 0. (1.5)

The minimization of the free energy given in the expression (1.4) with re-

spect to small changes in ~A yields the second Ginzburg-Landau equation.
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This second Ginzburg-Landau equation describes the super-current density

flowing in a superconductor, and is given as

~J(~r) = − ie
∗~

2m∗
[Ψ∗(~r)~∇Ψ(~r)−Ψ(~r)~∇Ψ∗(~r)]− e∗2

m∗c
|Ψ(~r)|2A(~r) (1.6)

The Ginzburg-Landau equations [Eqns. (1.5) and (1.6)] provide two char-

acteristic length scales for a superconductor, namely the Ginzburg-Landau

penetration depth

λ =

√
m∗c2b

4πe∗2|a|
, (1.7)

and, the Ginzburg-Landau coherence length

ξ =

√
~2

2m∗|a|
. (1.8)

The Ginzburg-Landau penetration depth λ is, like the London magnetic field

penetration depth, a characteristic length scale for the decay of magnetic field

in a superconductor while the Ginzburg-Landau coherence length ξ is a char-

acteristic length scale for the decay of the superconducting order parameter.

The parameter κ = λ/ξ is known as the Ginzburg-Landau parameter. The κ

value determines the magnetic behaviour a superconductor, and is useful to

distinguish between two different classes of superconductors, namely, type-I

and type-II superconductors. It is to be noted that the Ginzburg-Landau

equations are derived from the series expansion of the free energy around

TC , and therefore, they are valid only in the close vicinity of TC .
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Figure 1.3: Reversible magnetization curves as a function of applied field for
ideal type-I (a) and type-II (b) superconductors (schematic).

1.2.4 Type-I and type-II superconductors

Based on the value of the Ginzburg-Landau parameter κ, superconductors

are categorized into two different classes. Superconductors with κ <
1√
2

are

categorized as the type-I superconductors. These superconductors exhibit

perfect diamagnetism for magnetic fields up to the critical field HC . The

magnetic response exhibited by a type-I superconductor is shown schemat-

ically in Fig. 1.3(a). Most of the elemental superconductors are type-I in

nature. Superconductors with κ ≥ 1√
2

are known as type-II superconduc-

tors. This class of superconductor exhibits perfect diamagnetism until a

lower critical field HC1 is reached. For magnetic fields higher than HC1,

it is energetically more favourable for the superconductor to enter into a

state called the mixed state where the magnetic flux lines (vortices) are first

formed at the surface of the superconductor within a thickness of the order of
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λ, and then penetrate into the interior of the superconductor. Each normal

core of the flux-line carries one magnetic flux quantum Φ0(= 2.07 × 10−7

G-cm2). Consequently, when the magnetic field is increased above HC1, the

flux lines penetrate the superconductor, and the diamagnetic magnetization

starts to decrease suddenly. Flux penetration grows further until an upper

critical field HC2 is reached. Eventually, the normal conducting state of the

specimen is achieved at and above HC2. The magnetic response of a type-II

superconductor is presented in Fig. 1.3(b). All the alloys and inter-metallic

compounds that exhibit superconductivity are of type-II category.

1.2.5 The superconducting mixed state and the flux-
line lattice

The surface energy of the interface between a normal and a superconducting

region is negative for a type-II superconductor. Hence, in the superconduct-

ing mixed state, the normal cores of the flux lines threading a superconduct-

ing material should be such that the surface to volume ratio of the normal

cores is maximized. An energetically favourable configuration of the flux lines

is one in which the superconducting material is threaded by cylinders of nor-

mal material lying parallel to the direction of applied magnetic field. The

order parameter would vanish inside the normal cores over the length scale

of the order of coherence length ξ. Therefore, the diameter of the normal

cores will be ∼ 2ξ. On the other hand, the magnetic field associated with the

vortex current persists over the length scale of the order of the penetration
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depth λ. The variation of the order parameter as well as the magnetic field

profile inside an isolated flux line is schematically shown in Fig. 1.4(a).

Figure 1.4: (a) The variation of the order parameter and the magnetic field
profile inside an isolated superconducting flux line (schematic). (b) Abrikosov
flux-line lattice in the mixed state of a type-II superconductor (schematic).

In the mixed state, mutual repulsive interaction among the flux lines

tends to arrange them in a regular periodic hexagonal or triangular array

with a long range order. This regular periodic array of flux lines is called

the Abrikosov flux-line lattice (AFL) [22]. Such a flux-line lattice structure

is schematically shown in Fig. 1.4 (b). The existence of AFL in the mixed

state of type-II superconductors has been confirmed by Bitter decoration,

neutron scattering and scanning tunnelling microscopy (STM) experiments.

Fig. 1.5 shows the flux-line lattice in the mixed state of Ba0.6K0.4Fe2As2 [23]

and 2H-NbSe2 [24] superconductors obtained using STM experiments.
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Figure 1.5: (a) Flux-line lattice observed in Ba0.6K0.4Fe2As2 superconductor
at 2 K and in 9 T applied magnetic field. (b) Lateral view of the flux-
line lattice in 2H-NbSe2 superconductor at 300 mK and in various applied
magnetic fields. These results are obtained from the STM experiments.

1.2.6 Field of first flux-line entry

The flux lines start penetrating a type-II superconductor at HC1. For mag-

netic fields slightly above HC1, the flux lines are few in number and they are

far apart. Hence, the interaction between the flux lines can be assumed to

be negligible. In such case the Gibbs free energy per unit volume may be

written as [25]

G(H) = G(H = 0)− BH

4π
+ nLEL. (1.9)

Here, the second term in the r.h.s. of the above equation is the energy

term which relates the Gibbs and Helmholtz free energies. The third term

represents the line energy of the flux lines with nL being the number density
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of the flux lines and EL being the energy per unit length of the flux line. In

presence of uniform array of the flux lines, the magnetic induction B can be

written as B = Φ0nL, where Φ0 is the magnetic flux quantum. Hence, Eqn.

(1.9) can be rewritten as

G(H) = G(H = 0) + nL

[
EL −

Φ0H

4π

]
. (1.10)

It is evident from Eqn. (1.10) that for magnetic fields H < 4πEL/Φ0, the

minimization of the Gibbs free energy can be obtained by setting nL = 0. In

other words, no flux lines will penetrate the superconductor for magnetic

fields H < 4πEL/Φ0. However, for magnetic fields H > 4πEL/Φ0, the

minimization of the Gibbs free energy can be obtained if the superconductor

is penetrated by flux lines. Hence, we can identify HC1 as

HC1 =
4πEL

Φ0

. (1.11)

The energy per unit length of the flux line EL is given as [21]

EL =

[
Φ0

4πλ

]2

ln

(
λ

ξ

)
. (1.12)

When Eqn. (1.12) is substituted in Eqn. (1.11), we obtain the expression for

HC1 as

HC1 =
Φ0

4πλ2
ln

(
λ

ξ

)
. (1.13)
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It is to be noted in Eqn. (1.10) that the superconductor can lower its energy

by creating more and more number of flux lines. This will lead to a negative

divergence of the Gibbs free energy. However, this negative divergence of the

Gibbs free energy can be eliminated if we consider the interaction among the

flux lines, which gives a positive contribution in the expression of the Gibbs

free energy given in Eqn. (1.10).

When a flux line penetrates inside a superconductor, not very far from

the surface of the superconductor on the length scale of the magnetic field

penetration depth λ, the vortex current associated with the flux line has a

component normal to the surface of the superconductor. In order to satisfy

the boundary condition that no current flows normal to the surface of the su-

perconductor, one need to consider an image flux line with associated vortex

current flowing in the sense opposite to that of the flux line located inside

the superconductor [25]. If the flux line is located at a distance x = r (inside

the superconductor) from the edge (at x=0) of the superconductor such that

r < λ, then the image flux line will be located at x = −r [25]. This image

flux line will then exert an attractive force on the flux line located inside

the superconductor. Bean and Livingston [26] suggested that this attractive

force can prevent the penetration of the flux line inside a superconductor up

to a certain value of the applied magnetic field HP > HC1. For magnetic

field HC1 < H < HP , the Meissner state persists as a metastable state.

The existence of such a barrier for the penetration of the flux lines inside a

superconductor is known as the Bean-Livingston surface barrier.
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1.2.7 Field for the nucleation of superconductivity

As the magnetic field is increased above HC1, the density of the flux lines

increases and the normal cores of the flux lines eventually touch each other

at HC2. The HC2 can be thought as the magnetic field value at which super-

conductivity first nucleates in the interior of a sample upon decreasing the

magnetic field from a value higher than HC2. The order parameter is van-

ishingly small in the magnetic field regime just below HC2. In such case the

first Ginzburg-Landau equation [Eqn. (1.5)] can be linearized by neglecting

the higher order term in Ψ as [21, 25]

− ~2

2m∗

[
~∇− ie∗

~c
~A(~r)

]2

Ψ(~r) = −aΨ(~r). (1.14)

Eqn. (1.14) is the same as the Schrödinger equation for a particle with mass

m∗ and charge e∗ placed in a uniform magnetic field ~H with an associated

vector potential ~A. Only the lowest eigen value solution is meaningful here

because the linearized Ginzburg-Landau equation is valid only to describe the

onset of the superconductivity. The solution for the lowest energy (equal to

−a) corresponds to a circular motion of that particle in a plane perpendicular

to the applied magnetic field with a cyclotron frequency ωc = e∗H/m∗c, and

is given as: −a = (~ωc/2) or −a = (~e∗H/2m∗c) [21, 25]. Since the lowest

eigen value solution corresponds to the highest magnetic field up to which

the nucleation of the superconductivity occurs in the interior of the sample,

we can write −a = (~e∗HC2/2m
∗c) [21, 25]. Using Eqn. (1.8), we can then
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write the expression for HC2 in term of coherence length ξ as

HC2 =
Φ0

2πξ2
. (1.15)

Hence, for a type-II superconductor, the bulk superconductivity persists up

to HC2, beyond which surface superconductivity can persist up to the third

critical field HC3. The two characteristic critical fields HC2 and HC3 are

related with each other through the relation HC3 = 1.7HC2 [21].

1.2.8 Reversible and irreversible type-II superconduc-
tors

Figure 1.6: (Schematic) The field dependence of magnetization for an ideal
type-II superconductor free from any structural defects (curve 1) and non-
ideal type-II superconductors with structural defects (curve 2).

If a type-II superconductor is completely free from any crystal imper-

fections or defects, its magnetization is reversible i.e. the M(H) curves are

the same whether the applied magnetic field is increased from zero or de-
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creased from a value greater than HC2. This is schematically shown by the

curve 1 in Fig. 1.6. But a real sample usually possesses many kinds of crys-

tal imperfections, such as, voids, impurities, dislocations, grain boundaries,

precipitates of non-superconducting or weaker superconducting phases etc.

The flux lines can be pinned to these crystal imperfections. The pinning of

a flux line is energetically favourable because it effectively reduces the loss

of the condensation energy in the normal core of the flux line. Any kind

of crystal imperfection having dimension comparable to the diameter of the

normal core is capable of pinning the flux line. These crystal imperfections

are known as pinning centres. Consequently, on increasing the magnetic

field from zero, magnetic field does not penetrate the material in the form

of flux lines suddenly at HC1 because the flux lines formed at the surface of

the superconductor are hindered from moving freely into the interior of the

superconductor due to pinning of the flux lines at the pinning centres. Sim-

ilarly, on decreasing the magnetic field from a value greater than HC2, some

of the flux lines may be pinned to the pinning centres and cannot escape

from the interior of the superconductor. Consequently, the field dependence

of the magnetization curve [M(H) curve] obtained in field increasing and the

subsequent decreasing branches become distinctly different. This is schemat-

ically shown by the curve 2 in Fig. 1.6. The observed irreversibility in the

field dependence of magnetization of a superconducting sample is a measure

of flux-line pinning inside the superconducting sample, and it increases with

the increase in the density of the pinning centres in the sample.
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Figure 1.7: Voltage-current (V − I) characteristic curves of a type-II super-
conductor at a temperature less than TC and in different values of applied
magnetic field (schematic)

1.2.9 The critical current

When a type-II superconductor carries a transport current in its mixed state,

the flux lines experience Lorentz force in the direction perpendicular to both

the applied magnetic field and the current. If the superconductor is abso-

lutely free from any kind of structural imperfections or defects, the flux lines

would set into motion at an infinitely small Lorentz force. The motions of

the flux lines lead to a dissipation of energy, and hence the development of

a finite resistance. Hence, the perfect conducting state of the superconduc-

tor is lost. In type-II superconductors containing various types of structural

defects, the pinning of the flux lines at these structural defects impedes the

motions of the flux lines. A finite transport current is then required to set

these flux lines into motion such that the Lorentz force produced by it is

large enough to tear the flux lines off the structural defects. The current
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density required for de-pinning the flux-lines from the structural defects is

called the critical current density JC . The critical current density of a super-

conductor, therefore, depends strongly on the presence of structural defects

in the superconductor. Hence, the mixed state of a type-II superconductor

is therefore perfect conducting only in the presence of the structural defects,

which can pinned down the flux-lines and prevent their dissipative motions.

Apart from the high values of TC and HC2, an appreciably large value of JC

of a superconductor is therefore desirable for the development of supercon-

ducting magnets. Because of very large values of these critical parameters

(TC , HC2 and JC) in Nb-Ti, Nb3Sn, and Nb3Ge, these materials are used for

the fabrication of the high-field magnets.

Figure 1.8: The magnetic field penetration profile and the associated critical
current density inside a superconducting sample at various applied magnetic
fields, after starting from a zero-field-cooled state (schematic) [21].
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The critical current density of a superconductor can be directly obtained

from the measurement of voltage-current (V -I) characteristic curves. Fig.

1.7 illustrates schematically the V -I characteristic curves of a type-II super-

conductor. The current value for which a measurable voltage first appears in

the V -I curve is taken as the critical current IC (indicated by arrow heads in

Fig. 1.7). The critical current density JC is related to IC as JC = IC/A, where

A is the cross sectional area of the specimen in the direction perpendicular

to the direction of the current flow. The critical current density can also be

inferred from the irreversible M(H) curves using Bean’s critical state model

[27] and its various extensions [28-31]. This critical state model assumes

that, when a low magnetic field is applied to a superconducting sample, a

macroscopic super-current is induced on the surface of the sample while the

interior of the sample is shielded from the magnetic field and current. The

super-current flows where the magnetic field is present in accordance with

the Maxwell equation: ~∇× ~H = ~JC ( ~H being the internal magnetic field). As

the applied magnetic field is increased, the magnetic field and the associated

super-current penetrate deeper into the sample. The field and current are

present throughout the sample for a characteristic field H∗. The penetration

of magnetic field and the associated current density inside a superconducting

sample at various stages of the applied magnetic field is shown schematically

in Fig. 1.8. In the critical state model, the super-current always flows at the

level of the current critical current density JC [21]. According to the Bean’s

critical state model [27], for applied magnetic fields greater than H∗, the
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critical current density is directly proportional to the difference between the

magnetization measured in the increasing- and the decreasing-field branches

[21]. Hence, JC can be inferred from the irreversible M(H) curves using the

Bean’s critical state model.

1.2.10 The field-temperature phase diagram; and the
effect of thermal fluctuations and disorders on
the superconducting mixed state

According to the discussion on the type-II superconductors presented so far,

the magnetic field-temperature (H − T ) phase diagram of a type-II super-

conductor will be somewhat like that shown schematically in Fig. 1.9(a).

The superconducting state consists of two distinct regions in the H − T

phase diagram. The Meissner state occupies the low-field portion of the

H − T phase diagram and persists up to the HC1(T )-line, above which the

superconductor enters into the mixed state. The mixed state persists un-

til the HC2(T )-line, above which the normal conducting state of the sample

emerges. Such a H−T phase diagram is usually observed in the case of con-

ventional low-TC superconductors, for which the effect of thermal fluctuations

is insignificant. However, thermal fluctuations become significant in high-

TC cuprate, Chevrel-phases, Fe-pnictides, MgB2 superconductors etc. The

flux-line lattice or the vortex lattice in these superconductors is less rigid as

compared to that in the conventional low-TC superconductors. Consequently,

the flux-line lattice in these superconductors undergoes a transition into a

vortex-liquid state well below the HC2(T )-line. The H−T phase diagram for

28



Figure 1.9: (a) A schematic field-temperature (H − T ) phase diagram of
low-TC superconductors where the superconducting state is subdivided into
Meissner state and the superconducting mixed state. (b) H − T phase dia-
gram of the high-TC superconductors showing that the mixed state is subdi-
vided into vortex lattice and vortex liquid in these superconductors.

these superconductors is therefore more complex than that observed for the

conventional low-TC superconductors. In Fig. 1.9(b), we show schematically

the H − T phase diagram for a typical high-TC superconductor, where the

flux-line lattice arrangement with a long range order is persevered only up

to the irreversibility line or the HIrr(T )-line. In a type-II superconductor

with flux-line pinning a finite dissipation-less current can flow only below

this HIrr(T )-line. Hence, from the technological application point of view,

HIrr is more relevant than the HC2.

We have discussed above that in a defect free type-II superconductor, the

repulsive interactions among the flux lines tend to drive these flux lines to

get arranged in the hexagonal array of flux lines called Abrikosov flux line
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lattice. However, flux-line pinning at structural disorders may deform the

Abrikosov flux line lattice and prevent the emergence of long-range order of

the later [32]. In presence of weak random pinning, a quasi-ordered Bragg-

glass phase is observed in the mixed state of type-II superconductors [33-37].

On the other hand, the presence of very large number of strong quench

disorders in a superconductor leads to the formation of a disordered solid

vortex phase. Depending on the nature of the quenched disorders present

in the superconductor, the disordered vortex solid phase may be either the

vortex-glass or the Bose-glass. A vortex-glass phase [38, 39] is observed

in a superconductor where point defects act as the major pinning centres

for the flux lines. On the other hand, a Bose-glass phase [40, 41] exists in

a superconductor involving correlated defects like twin boundaries or ion-

induced columnar tracks.

1.3 Current status of research on the Ti-V

alloy superconductors

Since the discovery of high field superconductors, ductile Ti-V alloys are

being studied as an alternative to the Nb based alloys for high field applica-

tions. It is well known that the structural as well as the physical properties

in the normal state of a material influence its superconducting properties.

Hence, experimental studies were done over several decades to understand

the structural as well as the physical properties of the Ti-V alloys in their

normal state. In the normal state, studies on the physical properties such as
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the electrical resistivity [42-48], heat capacity [49-51], and dc magnetic sus-

ceptibility [43, 52] of the Ti-V alloys are available in the literature. We will

first outline the present status on the structural and the physical properties

of the Ti-V alloys and then we will give a summary of the studies on the

superconducting properties of the Ti-V alloys.

Figure 1.10: (a) Equilibrium phase diagram of the binary Ti-V alloy system.
(b) Non-equilibrium phase diagram of the quenched Ti-V alloys— data P.
Duwez [54] as modified by the results of the studies by Collings et al. [42,
51]. MS indicates the onset of the martensitic transition and ME, its end.

1.3.1 Structural properties of the Ti-V alloys

The equilibrium phase diagram (temperature versus concentration) for the

binary Ti-V alloy system is shown in Fig. 1.10(a). This figure is taken from

Ref. [53]. According to this phase diagram, elemental Ti undergoes a struc-

tural phase transformation at 882 ◦C, where it transforms martensitically

from the high-temperature body-centered-cubic (bcc) β phase into α phase
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having a hexagonal-close-packed (hcp) crystal structure. Addition of V into

Ti pushes the β-transus temperature toward lower temperatures. The β-

transus temperature is the limiting temperature down to which the stable β

can exist in the Ti-V alloys [indicated by red solid line in Fig. 1.10(a)] [42,

55]. Below the β-transus temperature, the stable metallurgical phase of the

Ti-V alloys is an admixture of β and α phase. The high-temperature β phase

of the Ti-V alloys can be retained at room temperature by quenching these

alloys into ice water from a temperature higher than the β-transus temper-

ature. The non-equilibrium phase diagram [42, 51] for the quenched Ti-V

alloys is shown in Fig. 1.10(b). According to this non-equilibrium phase

diagram, the crystallographic structure of the quenched Ti-V alloys at room-

temperature is predominantly the β phase down to about 12 atomic weight

percent of V [42, 51]. The β phase is unstable for V concentration less than

∼10.5 atomic percent and exhibits a martensitic phase transformation from

β to hcp-based α phase [42, 51].

An additional α′ phase can also be formed upon quenching the Ti-V

alloys having higher Ti concentrations [56]. The α′ phase has an orthorhom-

bic crystal structure and is formed due to a stress induced martensitic phase

transformation of the β phase matrix [56-58]. The main panel of Fig. 1.11(a)

shows the formation of the stress-induced α′ phase within the main β phase

matrix of a quenched Ti0.8V 0.2 alloy whereas the internal structure of such

stress-induced α′ phase is illustrated in its inset. These results are taken

from Ref. [58]. Quenched Ti-V alloys also form submicroscopic precipitation
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Figure 1.11: (a) Optical micrograph showing the typical formation of the
stress-induced martensitic α′ phase in a Ti0.8V0.2 alloy. The inset to figure (a)
illustrates the internal features associated with the stress-induced martensitic
phase [58]. [(b) and its inset] Bright field electron micrographs for a quenched
Ti0.86V0.14 alloy showing the formation of ω phase precipitates within the β
phase matrix [62].

of ω phase within the β phase matrix of these alloys having V concentration

in the range 13-25 atomic weight % [59, 60]. The formation of the ω phase

in the quenched Ti-V alloys had been studied previously using the trans-

mission electron microscopy (TEM) experiment [61-64] and by neutron and

X-ray diffraction experiments performed after a high-pressure treatment of

the samples [65, 66]. The ω phase has a hexagonal crystal structure, and

is formed by a displacive transformation involving the collapse of the (111)

planes of the bcc β phase crystal structure [67-69]. Fig. 1.11(b) shows the

morphology of the submicroscopic ω phase in a quenched Ti0.86V0.14 alloy

obtained by the transmission electron microscopy experiment. These results

are taken from Ref. [62].
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1.3.2 Physical properties of the Ti-V alloys in their
normal state

I. Electrical resistivity of the Ti-V alloys:

Previous studies had shown that the electrical resistivity in the normal state

of the Ti-V alloys depends strongly on the alloy concentration [42-45]. Fig.

1.12(a) shows the residual resistivity ρ0 of various TixV1−x alloys measured at

1.2 K and in magnetic field higher than the upper critical field of these alloys.

These data are taken from Ref. [70]. It is observed that ρ0 increases with

increasing Ti concentration and reaches the maximum for Ti concentration

x ∼0.8. On increasing the Ti concentration further, ρ0 shows a decrease

towards that of the pure Ti. Within the Ti concentration range 0.7 ≥ x ≥ 0.8,

Ti-V alloys have very high values of ρ0 (>120 µΩ-cm). Such high values of

the residual resistivity of the Ti-V alloys indicate that the mean free path for

the electron conduction is very short in these alloys. For the Ti-V alloys, the

mean free path for the electron conduction estimated using the free electron

model lies in the range of 2-8 Å[48].

Fig. 1.12(b) shows the temperature dependence of electrical resistivity

of various TixV1−x alloys. These data are taken from the Ref. [44]. As can

be seen in this figure the temperature coefficient of resistance (TCR) of the

TixV1−x alloys is negative within the Ti concentration range 0.7 ≥ x ≥ 0.8.

Various mechanisms have been proposed in order to interpret the negative

TCR observed in the Ti-V alloys. The negative TCR is observed in the Ti-V

34



Figure 1.12: (a) Residual resistivity ρ0 of various Ti-V alloys as a function
of Ti concentration x—after reference [70]. The solid line is the guide to the
eyes. (b) Temperature dependence of electrical resistivity of various Ti-V
alloys. This figure is taken from the Ref. [44]. The figure is reconstructed
for better clarity.

alloys where the formation of the ω phase precipitates is favourable. It was

initially suggested that the negative TCR exhibited by these Ti-rich Ti-V

alloys is related to the phenomenon of the formation of the ω phase precip-

itates in the β phase matrix of these alloys in a reversible manner during

temperature cycling [42, 43]. Ho et al. [71] had suggested that the nega-

tive TCR in the Ti-Mo alloys (Ti-V and Ti-Mo alloys exhibit qualitatively

similar variation of resistivity with temperature and also with the Ti con-

centration in these alloy systems) is caused by the enhanced scattering of

the conduction electrons by the crystalline ω phase precipitates present in

the β phase matrix of these alloys. On the other hand, E. W. Collings had

suggested that the soft phonons associated with the formation of the ω phase
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precipitation are responsible for the negative TCR in the Ti-V alloys rather

than the crystalline ω precipitation itself [42]. Later, the problem of negative

TCR of the Ti-V alloys was revisited by many other groups [46, 47]. These

studies suggest that the observed temperature behaviour of resistivity of the

TixV1−x alloys in the concentration range 0.7 ≥ x ≥ 0.8, can be explained

fairly well with the help of the theoretical models of structural Kondo effect

[72] and weak localization [73].

Figure 1.13: (a), (b) Variation of the Debye temperature θD and the Som-
merfeld coefficient γ as functions of Ti concentration x in the TixV1−x alloys.
Data are taken from Ref. [51]. The solid lines are the guide to the eyes. (c)
Temperature dependence of the dc magnetic susceptibility of various TixV1−x
alloys. This figure is taken from the Ref. [52].

II. Heat capacity of the Ti-V alloys: Chen et al. [49, 50] and Collings et

al. [1.51] had measured the heat capacity of the Ti-V alloys at temperatures
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below and above the TC of these alloys. They had estimated the Sommer-

feld coefficient γ and the Debye temperature θD from the low-temperature

heat capacity data taken just above TC . The values of θD and γ for various

TixV1−x alloys are shown as a function of Ti concentration x in Fig. 1.13(a)

and (b) respectively. The magnitude as well as the nature of variation of

γ with Ti concentration in the Ti-V alloy system is almost similar to that

observed in the Nb-Ti alloy system [74]. For the Ti-V alloy system, the

plots of γ and θD as functions of Ti concentration x show inverse scaling be-

haviour over the entire range of concentration. However, this inverse scaling

behaviour observed between γ(x) and θD(x) plots is much stronger near the

Ti-rich end of the Ti-V alloy system, where the formation of ω phase precip-

itates is favourable. It is observed that the addition of Ti into V increases γ

up to the Ti concentration x ∼0.4. With further addition of Ti, γ decreases

strongly, and thereby gives rise to a peak in γ(x) curve near x ∼0.4.

III. Magnetic susceptibility of the Ti-V alloys: Magnetic susceptibility

χ of various TixV1−x alloys was measured in the temperature range 77-1200 K

by E. W. Collings [43, 52]. The temperature dependence of magnetic suscep-

tibility of few selected Ti-V alloys is shown in Fig.1.13(c). It is observed that

the magnetic susceptibility of the Ti-V alloys depends strongly on tempera-

ture as well as the concentration of the alloys. For Ti concentration x ≥0.4,

magnetic susceptibility initially increases with the increase in temperature,

and then exhibits a broad peak at temperatures much higher than the room

temperature. However, the peak position in χ(T ) curve shifts progressively
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towards lower temperature side with decreasing Ti concentration in the Ti-V

alloys. After the peak, magnetic susceptibility shows weak decrement with

further increase in temperature. For further lower Ti concentration (x <0.4),

magnetic susceptibility decreases with increasing temperature up to 1200 K

(which was the highest temperature used for performing the measurements).

E. W. Collings had interpreted that in the Ti-V alloys with Ti concentration

x ≥0.4, the observed decreasing trend of the magnetic susceptibility with de-

creasing temperature is related to the formation of the ω phase precipitation

in the β phase matrix [43]. He had suggested that the magnetic susceptibil-

ity of the ω phase is lower than that of the β phase. Hence, the formation

of the ω phase during cooling of the sample effectively decreases the overall

magnetic susceptibility of the sample [43].

1.3.3 Superconducting properties of the Ti-V alloys

I. The superconducting transition temperature of the Ti-V alloys:

Both the elemental Ti and V are known to be superconducting at 0.4 K

and 5.4 K respectively [75]. Their alloys are, however, superconducting at

temperatures higher than the superconducting transition temperature TC ’s

of the constituent elements. Fig. 1.14(a) shows the variation of TC of the

Ti-V alloys as a function of Ti concentration. These values of TC are ob-

tained from the low-temperature heat capacity data measured by Collings et

al. [51]. It is evident from Fig. 1.14(a) that the variation of TC with the

alloy concentration has the trend almost similar to that of the Sommerfeld
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Figure 1.14: (a) Superconducting transition temperature TC of the TixV1−x
alloys as a function of the Ti concentration x. The data are taken from Ref.
[51]. TC values for the elemental Ti and V are taken from Ref. [75]. (b)
Upper critical field HC2 of various TixV1−x alloys —after Ref. [76]. The
solid lines in both the figures are the guide to the eyes.

coefficient γ shown in Fig. 1.13(b). Both TC and γ of the Ti-V alloys increase

weakly with the addition of Ti into V up to Ti concentration x ∼0.4. With

further increase in Ti concentration, both TC and γ decrease strongly. This

observation is in consonance with the BCS theory which predicts a paral-

lelism between the variation of TC and γ (both are related to the electronic

density of states at the Fermi energy). Consequently, studies were attempted

for quantitative comparison of TC of the Ti-V alloys with the BCS theory [6,

50]. Hulm and Blaugher [6] had found that for the Ti-V alloys, particularly

those having higher V concentration, TC value calculated using the BCS the-

ory is significantly higher than the experimental value. For the estimation

of TC , they had used the θD values obtained from the linear interpolation

between pure metals, and the γ values obtained from the heat capacity data

39



of reference [49]. The TC problem in the Ti-V alloys was revisited by Cheng

et al. [50]. Using the values of γ and θD obtained from their heat capacity

data, they had found a reasonably good agreement between the TC values

obtained from experiments and the BCS theory. Cheng et al. [50] had con-

cluded that the discrepancy found by Hulm and Blaugher [6] between the TC

values obtained from experiments and the BCS theory is most likely due to

the incorrect values of γ and θD used by Hulm and Blaugher.

II. The upper critical field of the Ti-V alloys: The upper critical

field HC2 for various TixV1−x alloys was measured by Berlincourt and Hake

[70, 76] and Bellin et al. [8] from the electrical resistivity measurements in

presence of magnetic field. The HC2 values for the TixV1−x alloys measured

at 1.2 K by Berlincourt and Hake are shown in Fig. 1.14(b) as a function

of Ti concentration x. The concentration dependence of HC2 of the TixV1−x

alloys exhibits a broad peak at x ∼0.6. For the TixV1−x alloys, an optimum

value of HC2 is obtained for x ∼0.6. For this optimum alloy concentration,

HC2 ∼9 T at 4.2 K [8, 77], which is slightly lower than the highest HC2

value observed in the Nb-Ti alloy system [76]. For the V-rich Ti-V alloys,

experimental HC2 values are in agreement with the HC2 values calculated

based on the Ginzburg-Landau-Abrikosov-Gorkov (GLAG) theory [70, 76].

On the other hand, experimental HC2 value in Ti-rich Ti-V alloys falls below

the HC2 value predicted by the GLAG theory [70, 76]. This discrepancy

is supposed to be due to the Pauli paramagnetic pair-breaking effect which
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becomes important for the Ti-rich Ti-V alloys [70, 76, 78].

III. The characteristic superconducting parameters of the Ti-V al-

loys: The superconducting transition temperature TC and also the normal

state parameters such as the residual resistivity ρ0 and the Sommerfeld coeffi-

cient γ are related to the various important parameters for the superconduct-

ing state. Several groups [50, 70, 76, 78, 79] have estimated the fundamental

superconducting parameters of the Ti-V alloys using the values of TC and the

normal state parameters ρ0 and γ of these alloys. For this purpose, the values

of γ were taken from the reference [50], while the ρ0 values were taken from

the reference [70]. We will present here the most important results of these

studies, which are needed for the characterization of the superconducting

state properties of the Ti-V alloys.

The thermodynamic critical field HC was estimated for the Ti-V alloys

[78, 79] using the BCS relation HC(T ) = 2.42γ
1
2TC(1− t2), where t = T/TC

[16]. The results of Blaugher [79] show that in the Ti concentration range

0.3 ≥ x ≥0.7, theHC values of the Ti-V alloys at 4.2 K lie in the range of 0.15-

0.16 T, and these values increase weakly with decreasing Ti concentration in

the Ti-V alloys. The Ginzburg-Landau coherence length ξ(0) was estimated

for few selected Ti-rich Ti-V alloys [78] with the help of the relation [80, 81]

ξ(0) = 1.0× 10−6(ρ0γTC)−
1
2 . (1.16)
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In the above relation, γ is in erg/cm3-K−2 and ρ0 is in Ω-cm. The estimated

values of ξ(0) lie in the range of 4-6 nm for these Ti-rich Ti-V alloys [78].

These values are much larger than the mean free path for the electron conduc-

tion [48], indicating that these Ti-V alloys are dirty limit superconductors.

The Ginzburg-Landau parameter κ was estimated for the Ti-V alloys [76, 79]

using the Gorkov relation [82] as approximated by Goodman [83]

κ = κ0 + κl = κ0 + 7.53× 103ρ0γ
1
2 . (1.17)

Here, γ is in erg-cm−3-K2 and ρ0 is in µΩ-cm. The term κ0 involves only the

electronic structure of a material and is independent of the electron scattering

mechanisms while the term κl involves the electron scattering mechanisms

[76, 82]. The normal state parameters ρ0 and γ were used to calculate the

values of κ0 and κl for the Ti-V alloys. It is observed that for Ti-V alloys

κ0 � κl, i.e., κ ∼ κl, and the calculated values of κ were found to be very

high for these Ti-V alloys [76, 79]. For an example, the calculated value of

κ for the Ti0.6V0.4 alloy is ∼80 [76]. The high values of κ estimated for the

Ti-V alloys indicate that these alloys are extreme type-II superconductors.

IV. The critical current density of the Ti-V alloys: Vetrano et al. [84]

had studied the effect of heat treatment on the critical current density JC

in a Ti0.8V0.2 alloy. Their study shows that the appropriate heat treatment

produces precipitation of α and ω phases in the Ti0.8V0.2. These precipitates

act as efficient flux-line pinning centres because of their appropriate sizes.
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Figure 1.15: (a) Voltage-current (V − I) characteristic curves for a Ti0.8V0.2

alloy at 4.2 K in the presence of different magnetic fields. (b) Critical current
density JC of the same alloy at different stage of heat treatment. Figures are
taken from the Ref. [84]. These figures are reconstructed for better clarity.

Consequently, the formation of both α and ω phase precipitates by heat

treatment causes the enhancement of JC by almost one order of magnitude

[84]. At liquid helium temperature and in the absence of any magnetic field,

the maximum value of JC achieved in this Ti0.8V0.2 alloy is ∼3×108 A/m2,

and JC is observed to be measurable for magnetic fields up to only ∼5 T [84].

However, recent studies [5, 7] have shown that the Ti-V alloys rich enough

in V are capable of carrying high dissipation-less currents in the presence

of relatively high magnetic field. With proper heat treatment, JC in the

V-rich Ti-V alloys can be increased up to ∼3×108 A/m2 in the presence of

6 T magnetic field. This study also suggests that the formation of α phase

precipitates by heat treatment is the reason for such JC enhancement in these

V-rich Ti-V alloys [5]. However, the obtained values of JC for the Ti-V alloys

do not reach to a level desired for the technological applications.
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1.3.4 Fluctuation conductivity in the Ti-V alloys

The temperature dependence of the electrical resistivity curve of the Ti-V al-

loys exhibits a strong rounding-off behaviour above the TC , and the behaviour

spreads up to temperatures ∼(2-3)TC [44, 85, 86]. Rassokhin et al. [44] had

investigated this rounding-off behaviour of the ρ(T ) curve in a series of Ti-V

alloys. Their results are shown in Fig. 1.16(a). The observed rounding-

off behaviour of the ρ(T ) curve in the Ti-V alloys is not markedly influenced

by the presence of disorders and/or preparation-sensitive secondary phases in

the samples [85, 86]. This suggests that the observed phenomenon is intrinsic

to the Ti-V alloys. These alloys also exhibit a temperature dependent large

positive magneto-resistance in the temperature regime where the rounding-

off behaviour in the ρ(T ) curve is observed [85-87]. This is shown in Fig.

1.16(b). These data are taken from the reference [86]. Hake and co-workers

had explained both the intrinsically wide resistive transition and the positive

magneto-resistance observed in the Ti-V alloys at temperatures above TC in

term of thermodynamic fluctuations of the order parameter, as is the case

for the high-TC superconductors [85-87]. Rassokhin et al. [44] had pointed

out that for the conventional low-TC superconductors like Ti-V alloys, the

additional conductivity caused by the superconducting fluctuation effect is

generally limited only in the close vicinity of TC . Rassokhin et al. [44] had

concluded that the rounding-off behaviour of the ρ(T ) curve observed in the

Ti-V alloys is caused by the pair breaking mechanism of the localized spin

fluctuations, which were supposed to be important in these alloys. Prior to
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Rassokhin et al. [44], the possible influence of localized spin fluctuations on

the superconductivity of the Ti-V alloys had been inferred by Prekul et al.

[88].

Figure 1.16: (a) Temperature dependence of electrical resistivity of various
TixV1−x alloys at low temperatures showing strong rounding-off behaviour
of the resistivity just above the TC . The figure is taken from Ref. [44]. The
numbers appearing in blue colour represent the resistivity in µΩ-cm whereas
the numbers appearing in black colour represent the temperature in K. (b)
Magneto-resistance as a function of magnetic field in a Ti0.75V0.25 alloy at
different constant temperatures above TC . The figure is taken from Ref. [86].
These figures are reconstructed for better clarity.

1.4 Motivation of the present work

The Bardeen-Cooper-Schrieffer (BCS) theory [16] predicts that the supercon-

ducting transition temperature TC is proportional to the electronic density

of states at the Fermi energy. At the same time, a large density of states
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at the Fermi energy is the reason behind the magnetic behaviour of Fe, Co

and Ni etc. In spite of large density of states at the Fermi energy, most of

the transition elements are found to be non-superconducting or have very

low values of TC , even though they are not magnetic. It has been pointed

out that the presence of spin fluctuations is the reason behind the variation

of TC among the transition elements [89]. Later on, the effects of local-

ized spin-fluctuations on the properties of dilute superconducting alloys were

studied by Zuckermann [90]. He showed that the superconducting transition

shifted to lower temperatures than that expected from the band structure

calculations performed without considering the spin-fluctuations [90]. Previ-

ous studies indicate that the spin fluctuations are important in the elements

such as V and Nb, and are the reason behind the suppression of TC in these

elements [91-93]. On the other hand, spin fluctuations are considered to be

unimportant in Ti [92, 93].

When we look at the variation of TC with the e/a (electrons per atom)

among the transition element binary alloys, we find a common trend [75]. For

certain combination of elements, the TC enhances quite significantly. This is

true for the Ti-V alloys as well. When the transition element Ti is added

into another transition element V, the resulting Ti-V alloys have TC values

higher than the constituent elements. Earlier studies have been focused to

explain the TC of the Ti-V alloys. However, the inferences of these studies

contradict with each other. Therefore, a consistent description of the TC in

the Ti-V alloys system is indeed necessary.
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Another important observation in the Ti-V alloys is the rounding-off be-

haviour of the temperature dependence of resistivity curve in the temperature

regime between TC and ∼2TC . Hake and co-workers [85, 86, 87] had sug-

gested that the observed phenomenon is intrinsic to the Ti-V alloys because

it is not influenced by the presence of any preparation sensitive secondary

phases in the sample. They had inferred that the superconducting fluctu-

ation induced conductivity is the reason behind the observed phenomenon.

Prekul et al. [94, 95], on the other hand, invoked the idea of the localized

spin fluctuations to understand the same phenomenon. Therefore, a precise

reason behind the observed phenomenon is yet to be made.

Moreover, it has been recognized in the recent times that the Ti-V alloys

can be promising candidates for the fabrication of superconducting magnets

for fusion reactors due to their good mechanical, thermal, superconducting

properties, and better immunity in the environment of nuclear radiation [5,

56]. However, their use in technological application is limited, mainly due to

the lack of complete understanding of the physical properties of these alloys.

A better understanding of the properties of the Ti-V alloys in their normal as

well as the superconducting state could lead to the possibility of enhancing

their superconducting properties (e.g., increasing the TC and HC2 towards

the theoretical limits) and enhancing other functional properties like critical

current density by suitable engineering techniques.

With this motivation, we present in this thesis, the studies on the struc-

tural, electrical, magnetic and thermal properties of the binary Ti-V alloys.
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Applicability of various possible mechanisms is tested to understand the nor-

mal state properties of these Ti-V alloys. The results of the study of the

normal state properties of the Ti-V alloys indicates the presence of itinerant

spin fluctuation in these alloys. The spin fluctuations are observed to be

playing an important role in the properties of the Ti-V alloys in their normal

as well as superconducting state. We also investigate the factors that govern

the critical current density in the as cast and annealed samples of the Ti-V

alloys. Moreover, we find some novel features such as signatures of high-field

paramagnetic Meissner effect and vortex-glass to vortex-liquid phase tran-

sition in the superconducting mixed state that have not been reported so

far for the Ti-V alloys. In the next few chapters we systematically present

our study on the annealed and as cast samples of the TixV1−x alloys of four

different compositions (x = 0.8, 0.7, 0.6 and 0.4). Chapter 2 describes the

detail of the sample preparation and the experimental methods used in this

study. In chapter 3, a detail of the structural and the metallographical char-

acterization of the Ti-V alloys is given. The properties of the Ti-V alloys

in their superconducting state are extensively studied in chapter 4. In this

chapter, we discuss on the superconducting transition temperature TC and

various critical fields (HC , HC1, and HC2) of the Ti-V alloys. The super-

conducting length scales, namely the coherence length ξ and the magnetic

field penetration depth λ are also estimated for these Ti-V alloys. Various

important physical properties such as electric resistivity, magnetization, and

heat capacity of the Ti-V alloys are also studied in the normal state of these
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alloys, and this study is summarized in chapter 5. This chapter also includes

a detail study to understand the superconductivity in Ti-V alloys utilizing

the outcomes of the study of the normal state properties of these alloys. The

study of the superconducting fluctuations induced conductivity in the Ti-V

alloys at temperatures above the TC of these alloys is presented in chap-

ter 6. For the purpose of practical applications, particularly in the field of

high-field magnet technology, the critical current density of Ti-V supercon-

ductors is studied in detail in chapter 7. In chapter 8, high-field paramagnetic

Meissner effect observed in multiphase Ti-rich Ti-V alloys is study to under-

stand the origin of this effect. In chapter 9, Bose-glass to vortex-liquid phase

transition in the annealed Ti0.7V0.3 sample is studied through the resistive

transition in presence of magnetic field. A summary and conclusions of our

study is presented in chapter 10.
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Chapter 2

Synthesis of the Ti-V alloys
and experimental techniques

2.1 Introduction

In this chapter, we describe the methods of preparation and structural char-

acterization of the Ti-V alloys, and other experimental techniques used in

the present study of the Ti-V alloys. X-ray diffraction (XRD) and optical

metallography experiments were used for the structural characterization of

the present Ti-V alloys. In order to investigate the physical properties of the

Ti-V alloys in their superconducting and normal states, we have measured

electrical resistivity, magnetization, heat capacity, and strain of these alloys

as functions of temperature and magnetic field. The experimental techniques

and equipments used for these measurements are discussed in this chapter.
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2.2 Preparation of the samples

The samples of four TixV1−x alloys having compositions x = 0.8, 0.7, 0.6 and

0.4 were prepared for the present study by melting the constituent elements

Ti (99.99 %, Alfa Aesar) and V (99.9+ %, Aldrich) taken in stoichiometric

ratio. The melting was done in a tri-arc furnace (model 5TA from Cen-

torr Vacuum Industries). Before melting the ingredients, the surfaces of the

ingredients were polished using emery paper in order to remove the oxide

layer if any. The ingredients were then cleaned using ethyl alcohol, dried and

weighed in the ratio of their atomic weight percent. The estimated masses

of the ingredients were taken and loaded in the chilled-water cooled copper

hearth and then melted in pure argon atmosphere. Tungsten was used as

an arc producing tip of the electrode in the tri-arc furnace. The operating

current for producing the arc was about 120-150 A. A pure Ti ball was used

as a getter element. This pure Ti ball was melted before melting the ingre-

dients of the sample (to be prepared) in order to absorb the residual trace of

the reactive gases present inside the furnace. Hemispherical-shaped as cast

ingots were obtained after melting the ingredient elements. The ingots were

flipped and re-melted four times to ensure homogeneity. Then the as cast

ingots were weighed in order to check the weight loss of the samples during

the process of their preparation. No perceptible weight loss was observed for

any of the present samples.

Each as cast ingot thus obtained was cut into two halves with the help
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Figure 2.1: Arc melting furnace (model 5TA from Centorr Vacuum Indus-
tries) used for the preparation of the samples of the Ti-V alloys.

of a low-speed diamond blade (Buehler, USA). One half of the ingots of

each alloy composition was annealed at 1300 ◦C, which is appreciably higher

than the β-transus temperature for the present alloy compositions (refer to

Fig. 1.10 of chapter 1). Before placing in the annealing furnace, the as cast

samples were first wrapped in Ta-foil and then sealed in quartz ampoules in

argon atmosphere to avoid the direct contact between the samples and the

quartz ampoule. The samples were annealed at 1300 ◦C for 10 hours and

then cooled down slowly to 1000 ◦C before quenching them into ice water.

Both the as cast and annealed half-ingots were cut into smaller pieces with

suitable shapes and sizes using the low-speed diamond blade for doing various

measurements as well as structural characterization experiments.
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2.3 Structural characterization of Ti-V alloys

2.3.1 X-ray diffraction

Powder X-ray diffraction experiment was used to determine the crystal struc-

ture and phase purity of the as cast and annealed samples of the Ti-V alloys.

This experimental method is based on the fact that the X-rays, when inci-

dent on a crystalline material, get diffracted from the regular arrangement

of atoms of the crystalline material. The relation between the distance d

from one atomic plane to the next and the angle θ in which the constructive

interference of the diffracted X-ray beam occurs (Fig. 2.1) is given by the

Bragg’s law: 2dsinθ = nλ, where λ is the wavelength of the X-ray beam

and n assumes different positive integer values depending on the order of

diffraction [96]. A monochromatic X-ray beam is used for the powder X-ray

diffraction measurements, and a scanning in 2θ (which is the angle between

the incident and the diffracted beam) is performed to obtain a diffraction

pattern. The position of the peaks in the diffraction pattern is related to the

inter-planar spacing between the atomic planes in the crystalline material,

and hence gives information about the parameters of the unit cell [96] while

the intensity of the diffraction peaks gives the information about the internal

structure of the unit cell [96].

X-rays are generally produced in laboratories with sealed tubes where

accelerated electrons collide with an anode. Upon decelerating, the electrons

emit electromagnetic waves (Bremsstrahlung), which have a continuous en-
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Figure 2.2: X-ray diffraction from the lattice planes with spacing d
(schematic). The diffraction maximum occurs at an angle θ whenever the
path difference 2dsinθ between the X-rays diffracted from consecutive lattice
planes is an integral multiple of the wavelength of the X-ray.

ergy distribution up to the total kinetic energy of the electrons. In addition,

the fast moving electrons knock out electrons from the inner shells of the

atoms of the constituent material of the anode. When an electron from

higher energy level fills this vacancy, an energy, which is equal to the dif-

ference in energy between these two electronic levels participating in this

process, is released in the form of electromagnetic radiation. For the inner-

most K levels, the energy of the emitted electromagnetic radiation lies in the

X-ray range with characteristic wavelengths depending on the constituent

material of the anode. If a certain wavelength is chosen using a monochro-

mator crystal, it has to be one of these characteristic lines; otherwise a very

low intensity of X-ray will be obtained. Consequently, the wavelengths of X-

rays generated by sealed tubes are restricted to certain characteristic values

(most common are 1.54 Åand 0.71 Åwith Cu and Mo anodes respectively
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[97]). A serious limitation with the laboratory based sources (sealed tubes)

is that they have low brilliance of the order of 105 photons/(Sec-mm2-mrad2-

0.1 %BW) of the emitted X-rays. After the major improvement of the sealed

tube by introducing the rotating anode, a brilliance up to of the order of 108

photons/(Sec-mm2-mrad2-0.1 %BW) may be reached in the laboratory based

sources of X-rays [98]. The synchrotron radiation sources, on the other hand,

are much more versatile and stronger. X-rays photons with a wide range of

wavelengths and high level of brilliance [∼ 1010 − 1012 photons/(Sec-mm2-

mrad2-0.1 %BW)] can be produced in the synchrotron.

The angle dispersive X-ray diffraction (XRD) experiments on the present

Ti-V alloys were performed on powdered samples using the X-rays from

INDUS-2 synchrotron radiation source at the Raja Ramanna Centre for

Advanced Technology, India. Fast moving electrons in the storage ring of

INDUS-2 emit photons upon changing direction at the bending magnet. The

emitted photons are not affected by the bending magnet and leave the storage

ring tangentially. These emitted photons are used for different experiments

conducted at different experimental end stations known as beamline. The

present experiments were performed at beamline BL-12. A Si (311) double

crystal monochromator was used to choose the certain wavelength of the X-

rays, and adaptive focusing optics was used to focus the photon beam. The

experiments were performed using an area detector (Image Plate, MAR-345

dtb) for fast recording of the XRD data obtained from the powdered sam-

ples. The parameters of the photon beam used in the angle dispersive X-ray
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diffraction experiments in Beamline-12 are:

Spectral range: 5−20 keV

Spectral resolution: 1.5 eV at 10 keV

Flux: 109−1010 photons/sec/100 mA at 10 keV

Beam Size: 0.6 mm (Horizontal) × 0.5 mm (Vertical)

Figure 2.3: (a) XRD pattern of the annealed Ti0.8V0.2 alloy obtained using
X-ray from synchrotron radiation source. The peaks corresponding to a
body-center-cubic β phase structure are indexed. (b), (c) XRD patterns of
the same alloy obtained using X-rays from laboratory source and synchrotron
radiation source, showing the advantage of the later over the former. Few
additional peaks (indicated by asterisks) become visible only in the XRD
pattern obtained using the synchrotron radiation source.

In the present work, the energy of the X-ray beam used in the experiments

was 19 keV (λ ∼0.65 Å), and an NIST-LaB6 standard was used for the

wavelength calibration. Two dimensional XRD pattern of powder sample

obtained on the image plate was reduced to the 1D (intensity versus 2θ)
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pattern using the Fit2D software [99]. Such a XRD pattern (intensity versus

2θ pattern) is shown in Fig. 2.3(a) for the annealed Ti0.8V0.2 alloy. In Fig.

2.3(b) and (c), we show for comparison the XRD patterns of the annealed

Ti0.8V0.2 sample obtained from the XRD experiments using a conventional

laboratory based source equipped with Cu-Kα radiation and the synchrotron

radiation source. Due to the low signal-to-noise ratio of the laboratory based

source, the peaks in the XRD pattern are weak and only a few peaks are

visible. On the other hand, the XRD pattern obtained using the synchrotron

radiation source not only has peaks with high intensity but also shows the

presence of few additional peaks indicated by the symbol (*) due to the very

high signal-to-noise ratio of the synchrotron radiation source. These clearly

show the advantages of synchrotron radiation sources over laboratory based

sources of X-ray for the structural investigations in our samples.

Figure 2.4: Optical micrographs showing (a) the grain structures in the an-
nealed Ti0.6V0.4 alloy and (b) the presence of martensite α phase in the main
β phase matrix of the annealed Ti0.7V0.3 alloy.
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2.3.2 Optical metallography

Optical metallography is an efficient experimental technique to investigate

the microstructural properties of a sample. It provides direct visualization

of the microstructures of a sample. The presence of grain boundaries, edge

dislocations, secondary phases etc. with sizes of the order of few micrometers

can be detected through optical metallography experiments. The knowledge

about these microstructures is very essential particularly for a supercon-

ducting sample because their presence in the sample determines the critical

current density of the same. For obtaining optical micrographs, the sam-

ples having typical surface area ∼3×3 mm2 were first embedded in moulds

prepared by liquid resin and its hardener taken in the volume ratio of 2:1.

The moulds were then allowed to become solid by leaving them for 24 hours.

When the mould becomes solid, it holds the sample firmly onto it. The

samples were first grinded to make their surface flat. After the finest pos-

sible grinding, the surface of the samples was successively polished using

6, 3, 1 and 1/2 micron diamond paste respectively, in a polishing machine

(Buehler, model: Minimet 1000). The polished samples were then etched

using a solution of 2 ml HF and 2 ml HNO3 in 1000 ml of water. The optical

micrographs of these etched samples were taken using a high power optical

microscope (Olympus, PME-3). This optical microscope is capable of taking

images of the sample with magnifications up to 100 times of the actual size

of the sample. Two selected optical micrographs obtained from the optical

metallography experiments on the present Ti-V alloys are shown in Fig. 2.4.
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2.4 Measurement of the electrical resistivity

All the samples under present study have resistances of the order of few

mΩ, which is comparable with the resistances of the lead wires used in a

typical experimental set-up for the resistance measurement. Moreover, the

Ti-V alloys undergo superconducting transition at low temperatures, and

the resistance of the samples reaches very low values in the superconducting

transition region. Therefore, we have used the four-probe configuration for

the measurement of electrical resistance of the present Ti-V samples. Once

the resistance RS of a sample is measured, the resistivity ρ of the sample is

obtained using the relation ρ (Ω-cm) = RS (Ω) × A (cm2)/` (cm), where

A is the cross-sectional area of the sample and ` is the separation distance

between the voltage leads across the sample. The resistivity of the present

Ti-V samples was measured as a function of temperature (4.2-300 K) and

magnetic field (0-5 T) with the help of a home-made set-up using a commer-

cial liquid helium cryostat (AMI, USA). The measurement probe consists of

a copper block with a manganin heater and a Cernox (CX-1030) temperature

sensor mounted onto it. The heater and the thermometer are connected to a

temperature controller (Lakeshore, Model 340). This arrangement measures

and controls the temperature of the sample. The sample was fixed onto the

measurement probe with the help of GE-7031 varnish near to the heater and

the temperature sensor in order to ensure good thermal contact among them.

The measurement of the resistance was accomplished with the help of a high
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precision nano-voltmeter (Keithley, model 2182) and a current source (Keith-

ley, model 6220). The data acquisition was done with the help of a computer

program written in Visual basic language. The present experimental set-up

for the measurement of resistance has a background noise level of the order

of 25 nV, and is sensitive to measure a change of resistance ∼ 10−7 Ω.

2.5 Measurement of the magnetization

Figure 2.5: Schematic diagram of different components of a vibrating sample
magnetometer (VSM Quantum Design, USA). The inset shows the schematic
diagram of the detection coil assembly which is wound in a second-order
gradiometer configuration with oppositely wound detection coils.

The measurement of magnetization of the present samples were performed

using a 9 T vibrating sample magnetometer (VSM, Quantum Design, USA)
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and a 7 T Superconducting Quantum Interference Device (SQUID) magne-

tometer (MPMS XL, Quantum Design, USA). The principle of measurement

of magnetization in these systems is based on the Faraday’s law of electromag-

netic induction, according to which a voltage is induced in a conductor under

a time-varying magnetic field. In a VSM, the sample vibrates in presence

of a homogeneous magnetic field with small fixed amplitude and a constant

frequency with respect to the stationary detection coils of the VSM. The

motion of the sample induces voltage in the detection coils. The magnitude

of the voltage signal induced in the detection coils depends on the magnetic

moment of the sample, the amplitude and frequency of vibration of the sam-

ple, and the distance of the sample from the detection coils [100]. The use of

the lock-in technique provides accurate measurement of this voltage signal

induced in the detection coils. A schematic diagram of the components in a

VSM is shown in Fig. 2.5.

The SQUID magnetometer is used for the measurement of the magneti-

zation with higher sensitivity. A SQUID is basically a superconducting ring

where one (in an rf-SQUID) or two (in a dc-SQUID) Josephson junctions are

inserted. The SQUID works in the principle that the magnetic flux linked

with it is periodic in the units of magnetic flux quantum Φ0 = h/2e, where

h is the Planck’s constant and e is the electronic charge [101]. For the mea-

surement of magnetization, the sample is moved in a detection coil assembly

made of a superconducting material. As shown in Fig. 2.6(a) the detec-

tion coil assembly is wound in a second-order gradiometer configuration with
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Figure 2.6: A schematic presentation of the experimental configuration in
the Quantum Design MPMS SQUID magnetometer used to measure the
magnetization.

oppositely wound detection coils in order to reject the contributions other

than those coming from the sample. The detection coils are connected to

the SQUID-input coil. The detection coils, the SQUID-input coil and the

connecting wires are the parts of a closed superconducting loop acting as a

flux transformer. The SQUID-input coil is inductively coupled to the SQUID

sensor. A superconducting magnet provides the magnetic field required for

the measurements. The motion of the sample through the detection coil as-

sembly changes the flux linked with the detection coil assembly. Any change

of flux linked with the detection coil assembly will result in a persistent cur-

rent to flow through the closed superconducting loop to keep the total flux

constant. The persistent current is proportional to the change in flux linked
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with the detection coil assembly due to the motion of the sample. This

persistent current produces a change in flux linked with the SQUID sensor.

The voltage signal across the SQUID sensor varies in accordance with the

persistent current in the closed superconducting loop. In a SQUID mag-

netometer, one does not measure the current but rather the voltage across

the SQUID output. The Quantum Design MPMS XL is an rf-SQUID based

magnetometer where the voltage signal at the SQUID output is used to fit

the response of an ideal magnetic dipole. The response function G of an

ideal magnetic dipole in a second-order gradiometer coil assembly (or the

detection coil assembly) is given by [102]

G(x) = −[R2 + (x− A)2]−
3
2 + 2(R2 + x2)−

3
2 − [R2 + (x+ A)2]−

3
2 , (2.1)

where x is the position of the magnetic dipole, A is the distance of the outer

coil from the centre of the detection coil assembly and R is the radius of the

coils (see Fig. 2.6). Additionally, the response of an actual sample placed

inside the detection coils is also associated with a constant background signal

as well as a drift which is linear in x. Therefore, the total output signal of

the SQUID in the case of actual magnetization measurement of a sample is

represented as [102]

S(x) = a1 + a2x+GT (x). (2.2)

The software of the Quantum Design (MPMS) magnetometer generates the

values of the parameters a1 and a2 through curve fitting so that GT (x) ap-
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proximates a3G(x), where the parameter a3 is directly proportional to the

magnetic moment of the sample. The function GT (x) is displayed as the

SQUID profile instead of the raw data S(x), and the best fit value of the

parameter a3 is quoted as the magnetic moment of the sample. The tem-

poral drift in the electronics is accounted for by the parameter a2, and this

parameter is chosen to make GT (x) symmetric about x = 0. That is why a

usual scan collects data on either sides of x = 0.

2.6 Measurement of the heat capacity

The relaxation technique is an appropriate experimental method used for the

measurement of heat capacity of small size samples [103]. In this method,

the sample is heated to raise its temperature by a small amount ∆T above a

constant reference temperature T0 (∆T/T0 ∼1%). When the heat is turned-

off, the temperature of the sample decays exponentially [103]. The time

constant τ of this heat relaxation process (assuming one dimension heat flow)

is related to the heat capacity C of the sample and the thermal conductance of

the connecting wires KW as: τ = C/KW [103]. Therefore, the heat capacity

of the sample can be obtained by knowing the temperature response of the

sample and the thermal conductance of the connecting wires. This relaxation

method has an advantage that it is easy for signal averaging (at a given T0,

numerous decay can be used to improve the signal to noise ratio). This

method can be used when the sample’s thermal conductivity is very poor.
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Figure 2.7: Schematic diagram of the calorimeter used in the PPMS Heat
Capacity option -from Ref. [104].

The heat capacity measurements of the present samples were performed

with the help of a Physical Properties Measurement System (PPMS) manu-

factured by Quantum design, USA. The PPMS uses the relaxation technique

for the measurement of heat capacity. The system works down to 2 K with

liquid 4He employing the evaporation technique. The maximum achievable

magnetic field in this set-up is 9 T. The schematic diagram of the calorimeter

used in the PPMS Heat Capacity option is shown in Fig. 2.7. The sample

was mounted on a sample-platform by thermally conducting grease [104]. A

thermometer and a heater are embedded onto the platform. The thermome-

ter provides the measurement of the temperature of the platform while the

heater provides the necessary heating power to the platform. The platform

is supported by thin gold-wires which provide electrical connections for the

thermometer and the heater embedded onto the platform. These wires also
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provide thermal anchoring between the platform and the puck. The puck

serves as calorimetric thermal bath. An additional thermometer embedded

in the puck provides the measurement of the temperature of this thermal

bath. A thermal shield covers the whole assembly in order to prevent un-

wanted loss or inflow of heat through radiation. The measurements were

performed in high vacuum so that the conduction of heat from the platform

to puck occurs dominantly through the connecting wires.

The measurement of heat capacity of a sample involves a number of steps.

The first step of the heat capacity measurement involves the calibration of the

resistance of the puck thermometer and the platform thermometer. Starting

from the highest temperature and moving downward, the system stabilizes

the temperature which is within the calibration temperature range, and mea-

sures the resistance of the puck thermometer and the platform thermometer

at that temperature. Consequently, a table of resistance values at various

temperatures is obtained. After this, the calibration of the thermal con-

ductance of the connecting wires and the electrical resistance of the heater

embedded on the platform are performed. Again, starting from the highest

temperature and moving downward, the temperature stabilizes at each tem-

perature that is in the calibration temperature range. When the temperature

stabilizes, the resistance of the heater RH is measured at that temperature.

To measure the thermal conductance KW of the connecting wires at the same

temperature, some amount of heating power PW (t) is given to the platform

by the heater. In doing so, the temperature of the platform TP will be in-

67



creased to some value higher than the puck temperature TB. In such case,

the heat balance equation will be

CP
dTP
dt

= PW (t)−KW [TP (t)− TB]. (2.3)

Here, CP is the heat capacity of the platform. In the steady state condition,

(dTP/dt) = 0, giving KW = PW (t)/(TP − TB) = I2RH/(TP − TB). In this

way, the thermal conductance KW of the connecting wires is determined from

the known value of the heater resistance RH and the temperature difference

between the platform and the puck. The actual values of the thermal con-

ductance KW of the connecting wires and the electric resistance of the heater

RL at different temperatures within the calibration temperature range are

then saved in the appropriate calibration table.

In the next step, the heat capacity measurement is performed without

sample in order to determine the heat capacity of the addenda CA. For accu-

rate heat capacity measurement of a sample, a small amount of grease, which

is just enough to hold the sample, is first applied to the sample platform, and

then the heat capacity of the platform and the grease is measured. Solving

the differential equation given in Eqn. (2.3), the temperature of the platform

at a time t during the heating and the cooling cycles will be obtained as

Heating cycle:

TP (t) = TB + [TP (t)− TB][1− exp(− t
τ

)], (2.4)
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Cooling cycle:

TP (t) = TB + [TP (t)− TB][1− exp( t
τ

)]. (2.5)

Here, τ = CA/KW is the relaxation time of the platform. Hence, the ex-

perimentally obtained temperature response of the platform during both the

heating and the cooling cycles is fitted with the above equations. The best

fit value of the parameter τ determines the value of CA using the initially

determined KW value.

Finally, the heat capacity measurement of the platform is performed with

the sample, using the so called two-tau model. In the two-tau model, it

is assumed that the thermal contact between the sample and the sample

platform is not good and there exists a finite temperature difference between

them. In such a case, the heat balance equations are obtained as

CP
dTP
dt

= PW (t)−KW [TP (t)− TB] +KG[TS(t)− TP (t)], (2.6)

and

CS
dTS
dt

= −KG[TS(t)− TP (t)]. (2.7)

Here, CS is the heat capacity of the sample and KG is the thermal conduc-

tance of the grease. Since the two-tau model considers both the thermal

relaxation between the platform and the puck, and the thermal relaxation

between the platform and the sample, there are two time-constants involved
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in the thermal relaxation process. They are given by τ1 = 1/(α + β) and

τ2 = 1/(α− β), where

α =
1

2

[
KW

CP
+
KG

CP
+
KG

CS

]
,

and

β =

√
K2
GC

2
S +K2

GCSCP +K2
GC

2
P +K2

WC
2
S + 2KWKGC

2
S − 2KWCSKGCP

2CSCP
.

The experimentally obtained temperature response of the composite sys-

tem of sample and platform is fitted considering KG and CS as fitting param-

eters; while for KW and CA, the values obtained in the previous (calibration)

steps are used. The values of the fitting parameters, which give the smallest

deviation of the experimentally obtained temperature response of the com-

posite system of sample and platform from the fit, provide the estimate of

CS. If the thermal contact between the sample and the platform is very good

(which would mean that the grease has nearly infinite thermal conductivity),

then a single-tau model may also be used for the measurements.

2.7 Measurement of the strain

There are a number of experimental techniques developed for the measure-

ment of strain of a sample. These include the resistance strain gauge, the

capacitance strain gauge, the inductance method, and the interferometric
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methods etc. Among these experimental techniques, the resistance strain

gauge technique is the simplest and an extensively used experimental tech-

nique for the measurement of strain. We have used this technique for the

measurement of the temperature dependence of strain in our samples. A

resistance strain gauge is constructed by bonding a fine electrical wire or

photographically etched metallic resistance foil to an electrical insulation

base using an appropriate bonding material. Electrical leads are attached to

the gauge for the measurement of resistance of the gauge. A change in strain

ε in the gauge causes a change in its resistance R as [105]

∆R

R0

=
R−R0

R0

= Fε, (2.8)

where, R0 is the resistance of the strain gauge in the strain free condition

and F is the gauge factor which qualifies the strain sensitivity of the strain

gauge and can have temperature dependence. For strain measurement, the

gauge is attached to the sample with an adhesive so that the gauge becomes

an integral part of the sample. The thermal strain experienced by the sample

transfers to the gauge, causing a change in the gauge resistance. The relative

change in gauge resistance is used to estimate the thermal strain of the sample

by using Eqn. (2.9) as:

ε =
∆L

L0

=
1

F

R−R0

R0

=
1

F

∆L

L0

. (2.9)
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A variation in temperature will cause change in the gauge resistance due

to (i) the inherent temperature dependence of the gauge resistance, (ii) the

thermal expansion of the gauge, and (iii) the thermal expansion of the sample

(as the gauge is mounted on the sample). When temperature is varied from

T to (T + ∆T ), the resistance of the gauge will change due to its inherent

temperature dependence as

(
∆R

RT0

)
G,Thermal

=
RT0+∆T −RT0

RT0

= βG∆T. (2.10)

Here βG is the temperature coefficient of the gauge resistance and RT0 is the

resistance of the strain gauge at temperature T in the strain free condition.

On the other hand, the chance of gauge resistance caused by the thermal

expansion of both the gauge and the sample can be expressed as

(
∆R

R0

)
G,Strain

= F

[(
∆L

L0

)
Sample

−
(

∆L

L0

)
Gauge

]
. (2.11)

Here (∆L/L0)Sample and (∆L/L0)Gauge are the thermal strain of the gauge

and the sample respectively. Therefore, the overall chance of gauge resistance

can be obtained by combining Eqns. (2.11) and (2.12) as

(
∆R

R0

)
G/Sample

= βG∆T + F

[(
∆L

L0

)
Sample

−
(

∆L

L0

)
Gauge

]
. (2.12)

Since we are interested in measuring strain of the sample, we need to get rid

of the term (∆L/L0)Gauge as well as βG∆T appearing in Eqn. (2.13) so that
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the strain of the sample can be obtained by measuring only the change of

resistance of the gauge. This is done by mounting an identical gauge on a

reference material. In this case the overall chance of gauge resistance due to

a change in temperature from T to T + ∆T will be

(
∆R

R0

)
G/Ref

= βG∆T + F

[(
∆L

L0

)
Ref

−
(

∆L

L0

)
Gauge

]
. (2.13)

Here (∆L/L0)Ref is the thermal strain of the reference material. Taking the

difference of Eqns. (2.13) and (2.14), the strain of the sample will be obtained

as

(
∆L

L0

)
Sample

=
1

F

[(
∆R

R0

)
G/Sample

−
(

∆R

R0

)
G/Ref

]
+

(
∆L

L0

)
Ref

. (2.14)

The quantities appearing in the square bracket in the Eqn. (2.15) are mea-

sured either in a bridge configuration or from separate measurements per-

formed on the sample and the reference material. The measured values of

these quantities at different temperatures along with the temperature depen-

dence of the strain of the reference material and the gauge factor F are used

to estimate the strain of the sample at different temperatures. We have used

copper as the reference material. The temperature dependence of the strain

data are available in the reference [106]. On the other hand, temperature de-

pendence of the gauge factor F is provided by the manufacturer of the strain

gauge. The temperature dependence of strain of the samples of the present
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Ti-V alloys was measured with reference to the length at 293 K. For the mea-

surement of strain we have used CFLA-1-350-11 strain gauges (Tokyo Sokki,

Tokyo). The experimental set-up for the measurement of strain is capable of

measuring both the temperature as well as the magnetic field dependence of

strain in the temperature range 30-300 K and in magnetic fields up to 5 T.
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Chapter 3

Structural investigations of the
Ti-V alloys

3.1 Introduction

The quenched Ti-V alloys retain their high temperature β phase structure

in a metastable state down to the room temperature when the V concentra-

tion in these alloys is higher than 14 at. wt. % [42, 51, 107]. The β phase

has a body-centered-cubic (bcc) crystal structure (space group Im3̄m). For

still lower V concentration, precipitations of α phase take place through a

martensitic phase transformation of the β phase [42, 51, 107]. The marten-

site α phase has a hexagonal-closed-packed (hcp) crystal structure (space

group: P63/mmc). The β phase of Ti-rich Ti-V alloys may also undergo a

stress induced athermal transition (martensite) to form an orthorhombic α′

phase with a space group Cmcm [58, 107, 108]. This stress induced α′ phase

is formed in the sample depending on where and how the stress is applied to

the sample. The quenched Ti-V alloys having higher Ti concentration may
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also exhibit the formation of a hexagonal ω phase (space group: P6/mmm)

within the main β phase of these alloys [61-64, 66, 109]. The presence of

the secondary phases (α, α′ and ω) phases influences the properties of Ti-

V alloys in their normal as well as superconducting state [42, 43, 51, 107].

Hence, the knowledge of the structural properties of the Ti-V alloys is very

crucial for understanding both the normal and the superconducting state of

these alloys. For example, the presence of these secondary phases has strong

influence on the current carrying properties of the Ti-V superconductors in

their superconducting state. We have performed detailed structural charac-

terization of as cast and annealed samples of four TixV1−x alloys (x = 0.8,

0.7, 0.6, and 0.4) with X-ray diffraction (XRD) and optical metallography

experiments. The results of these structural investigations are presented in

this chapter.

3.2 Results and discussion

3.2.1 X-ray diffraction

Fig. 3.1 shows the XRD patterns of the as cast and annealed Ti-V sam-

ples. The XRD experiments are performed using X-ray from synchrotron

radiation source (Beam line-12 of Indus-II synchrotron radiation source at

the Raja Ramanna Centre for Advanced Technology, Indore). The position

of the peaks in the XRD patterns indicates that the present samples are

formed mainly in the bcc β phase structure, and the peaks corresponding to
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Figure 3.1: XRD patterns of the as cast and annealed samples of Ti-V alloys.
The peaks corresponding to the β phase are indexed in these figures

this phase are indexed in Fig. 3.1. Apart from these β phase peaks, addi-

tional peaks are also present in the XRD patterns of all the samples except

annealed Ti0.6V0.4 and as cast Ti0.4V0.6 samples, and their presence indicates

the formation of secondary phases in these samples. These additional peaks

are quite weak as compared to the peaks corresponding to the β phase, and

are not visible very distinctly in Fig. 3.1. In order to know the crystal struc-

tures as well as the volume fractions of these secondary phases present in

these Ti-V samples, the XRD patterns of these samples are analysed using

the Rietveld refinement technique.

The Rietveld refinement of the XRD pattern of the annealed Ti0.8V0.2

sample is shown in Fig. 3.2. The red and black solid lines respectively
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Figure 3.2: The main panel shows the Rietveld refinement of the XRD pat-
tern of the annealed Ti0.8V0.2 sample. The red solid line is the experimental
data, the black solid line is the fitted curve and the green solid line is the
difference between the experimental and fitted curve. The inset show the
additional peaks corresponding to the hexagonal ω (indicated by symbol *)
and stress induced α′ (indicated by symbol #) phases present in this sample.

represent the experimental data and the fitted curve. The green solid line

indicates the difference between the experimental data and the fitting. Sim-

ilar analysis has been performed for all the samples, but not shown here.

The analysis of the XRD patterns indicates that the present Ti-V samples,

depending on the concentration, contain α, α′ and ω phases within the main

β phase matrix. The phase fractions of the α, α′, ω, and β phases and

the lattice parameters corresponding to these phases are obtained from the

analysis of the XRD patterns, and these values are given in Table 3.1. The

obtained lattice parameters corresponding to the constituent phases of the

present Ti-V samples are in agreement with the previous results [62,66].

The analysis of the XRD peaks reveals the presence of a large amount
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of α phase (∼28%) in annealed Ti0.7V0.3 sample. The presence of a small

amount (∼2%) of this phase is also inferred in annealed Ti0.4V0.6 sample. On

the other hand, the presence of α′ phase is inferred for both the annealed and

as cast Ti0.8V0.2 samples. The ω phase is present mostly in annealed and as

cast Ti0.8V0.2 and Ti0.7V0.3 samples. The formation of α, α′ and ω phases in

the Ti-V alloys has been reported previously [58, 62, 66, 107, 108].

Table 3.1: Volume fraction and lattice parameters of different constituent
phases present in the as cast and annealed samples of Ti-V alloys.

Metallurgical phases

β phase α or α′ phase ω phase
Phase Lattice Phase Lattice Phase Lattice

fraction parameter fraction parameter fraction parameter
(%) (Å) (%) (Å) (%) (Å)

As cast
Ti0.8V0.2

77 3.2583 3(α′) a=2.4732 20 a=4.6018
b=4.7002 c=2.8183
c=5.6075

Annealed
Ti0.8V0.2

71 3.2350 4(α′) a=2.6000 25 a=4.5750
b=5.7400 c=2.8080
c=4.0680

As cast
Ti0.7V0.3

>98 3.2373 −−− −−− <2 a=4.5900
c=2.6438

Annealed
Ti0.7V0.3

∼70 3.2150 ∼28(α) a=2.9776 ∼2 a=4.6711
c=4.5307 c=2.5950

As cast
Ti0.6V0.4

>98 3.2053 −−− −−− <2 a=4.2646
c=2.6545

Annealed
Ti0.6V0.4

100 3.1879 −− −− −− −−

As cast
Ti0.4V0.6

>98 3.1575 <2(α) a=2.7478 −− −−
c=4.0876

Annealed
Ti0.4V0.6

98 3.1511 2(α) a=2.6946 −− −−
c=4.0850
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3.2.2 Optical metallography

Fig. 3.3 and 3.4 shows the optical micrographs for the as cast and annealed

Ti-V samples. These optical micrographs evidence that the grain structure is

mostly equiaxed for these Ti-V samples. Apart from these equiaxed grains,

columnar grains are also observed to form in some portions of the annealed

Ti0.6V0.4 sample. This is shown in the panel (b) of the Fig. 3.4. The grain size

in the present Ti-V samples is found to be quite large, which is a characteristic

of the ductile Ti-V alloys [107]. The average grain size varies from few tens

to few hundreds of µm in these Ti-V samples. No correlation is found to exist

between the grain size and the alloy concentration. However, we find that

the heat treatment performed on the present Ti-V alloys has an influence

on the grain size. The annealed samples, in general, have relatively smaller

grain size as compared to their as cast counterparts. It is observed that the

grain size in the as cast Ti0.6V0.4 sample is the largest among all the present

Ti-V samples. While a very few smaller grains with an approximate size of

100 µm are observed in this sample, most of the grains are very large, and

the average size of some of these larger grains exceeds almost 1000 µm. On

the other hand, the grain are smallest in size in annealed Ti0.7V0.3 sample.

The average size of the grains in this sample is 40 µm approximately. For a

comparison, the average grain sizes observed in all the present Ti-V samples

are given Table 3.2.

Apart from the signature of the grain boundaries, uniformly distributed

dots are also visible in the main β phase matrix of few samples of the present
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Figure 3.3: Optical micrographs showing the grain structure in the Ti-V
samples. A dotted microstructure is also visible within the major β phase
matrix of few samples of the Ti-V alloys.
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Figure 3.4: Optical micrographs showing the grain structure in the Ti-V
samples. A dotted microstructure is also visible within the major β phase
matrix of few samples of the Ti-V alloys.
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Ti-V alloys. The presence of such dotted microstructures is more prominently

observed in annealed Ti0.6V0.4 sample and as cast Ti0.7V0.3 samples. In many

places these dots are found to line-up forming a network of a dotted line mi-

crostructure. This is more clearly visible in Fig. 3.3 (f) and 3.4 (c), where

optical micrographs having higher magnification are shown. The dotted mi-

crostructures mentioned above are also observed in annealed Ti0.8V0.2 sample

though they are present in this sample with low density. The dots appear to

be etched pits forming on the sample surface, as has been observed earlier

in scanning electron microscopy experiments on Ti-V alloy [37], and their

lining-up is reported to indicate the presence of edge dislocations and low

angle grain boundaries inside the β phase domains [37]. We recall that our

Table 3.2: Average grain size in the Ti-V alloys.

Average grain size(µm)
As cast Ti0.8V0.2 300

Annealed Ti0.8V0.2 200
As cast Ti0.7V0.3 90

Annealed Ti0.7V0.3 40
As cast Ti0.6V0.4 400

Annealed Ti0.6V0.4 175
As cast Ti0.4V0.6 250

Annealed Ti0.4V0.6 200

XRD analysis indicates the presence of the hcp α phase in annealed samples

of the Ti0.7V0.3 and Ti0.4V0.6 alloys and the orthorhombic α′ phase in both

annealed and as cast Ti0.8V0.2 samples. The optical micrographs shown in
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Fig. 3.5 also depict the formation of the secondary phase(s) within the major

β phase matrix of these samples, and these secondary phases are very similar

to those formed in a martensitic phase transformation in many transition

metal alloys. In annealed Ti0.7V0.3 sample, regions of needle-like as well as

disc shaped α phase are observed to be inhomogeneously distributed over the

β phase matrix of this sample. However, the martensitic phase pattern is not

very well-formed in many parts of this sample, and in such parts the dotted

microstructures and the grain boundaries of the main β phase are observed

more clearly. In annealed Ti0.4V0.6 sample, few martensitic needles are also

found to be inhomogeneously distributed over the main β phase matrix of

this sample.

It has been reported in the literature that the α phase in Ti-V alloys is

formed through a martensitic phase transformation from the β phase when

these alloys are heat treated at temperatures below the β-transus temper-

ature [62, 107]. According to the phase diagram of the Ti-V alloy system

[53], the β-transus temperature depends on the V content in the alloy. For

Ti0.7V0.3 and Ti0.4V0.6 alloys, the β-transus temperatures are 720 ◦C and 640

◦C respectively [37, 53]. Since the present alloys were quenched into ice water

from 1000 ◦C, the formation of α phase is not really expected in the Ti0.7V0.3

and Ti0.4V0.6 alloys. However, the disordered Ti-V alloys are known to have

compositional variation within their majorβ phase matrix [37, 62, 107]. Con-

sequently, if some portions of the β phase in as cast samples of the Ti0.7V0.3

and Ti0.4V0.6 alloys become richer in Ti content than the nominal compo-
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sitions, then these regions with elevated Ti content could act as nucleation

centres for the β to α phase transformation during the quenching of these

samples.

Figure 3.5: Optical micrographs showing the formation of the martensite α
phase in the annealed samples of Ti0.7V0.3 and Ti0.4V0.6 alloys, and the stress
induced martensite α′ phase in both annealed and as cast Ti0.8V0.2 samples.

On the other hand, in both annealed and as cast Ti0.8V0.2 samples, the

martensitic α′ phase needles are formed only near the edge of these samples.
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Since the α′ phase is a stress induced phase, any mechanical processing of

the samples such as cutting of the sample may induce the formation of this

phase in Ti-rich Ti-V alloys. While cutting the samples, a weight equivalent

to 0.010.1 kg is placed on the rotating diamond wheel. Ti-V alloys being

ductile, a shear stress is applied at the edge of the sample at the end of the

cutting process due to the tearing-off of the material. This applied stress

might be the reason for the formation of the α′ phase near the edges of the

as cast and annealed Ti0.8V0.2 samples [110]. It should be noted that the

amount of the stress induced α′ phase present in both as cast and annealed

Ti0.8V0.2 samples estimated from the XRD experiments may not be the same

as that present in the samples used in optical metallography experiments

because of the different mechanical routes followed for the preparation of the

samples for these experiments [110].

3.3 Conclusions

Our XRD results indicate that the present Ti-V alloys have been formed

predominantly in the body-centre-cubic β phase crystal structure. Apart

from the major β phase matrix of these alloys, the Ti-V alloys rich enough in

Ti also contain hexagonal ω phase as well as martensite α and α′ phases. The

α phase has a hexagonal-closed-packed crystal structure while the α′ phase

has an orthorhombic crystal structure and this phase is inferred to be formed

due to a stress induced athermal phase transformation from the β phase.
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The present Ti-V alloys are polycrystalline in nature, where the β phase

has very large grain size ranging from few tens to few hundreds of micron.

The presence of the dotted line microstructure is also revealed in some of

the present Ti-V samples through the optical metallography experiments.

Such lining-up of this dotted microstructure is reported [37] to indicate the

presence of edge dislocations and low angle grain boundaries within the β

phase matrix of these samples.
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Chapter 4

Superconducting properties of
the Ti-V alloys

4.1 Introduction

The properties of a material in its superconducting state are characterized

by certain parameters, such as the superconducting transition temperature

TC , the coherence length ξ, the magnetic field penetration depth λ, the

Ginzburg-Landau parameter κ, and various critical magnetic fields (the up-

per critical field HC2, the lower critical field HC1, and the thermodynamic

critical field HC). These parameters are of great importance for understand-

ing the charge-pairing mechanism in the superconductor. These parameters

also govern the properties of superconducting mixed state of a type-II super-

conductor. Although superconductivity in Ti-V alloys had been discovered

long ago, in the 1960’s, only few studies [70, 76, 78] are available in the

literature, which are being focused for characterizing the properties of the

Ti-V alloys in their superconducting state. However, a detail study of the
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superconducting properties of the Ti-V alloy is still lacking. In this chapter

we estimate the fundamental superconducting parameters for the annealed

samples of the Ti-V alloys. The temperature dependence of electrical re-

sistivity, magnetization, and heat capacity are used to estimate the TC of

these alloys. The lower and upper critical fields are estimated from the field

dependence of magnetization. The thermodynamic critical field is estimated

from the temperature dependence of heat capacity. These critical fields then

are used for the estimation of κ and the fundamental superconducting length

scales ξ and λ. These fundamental superconducting parameters are then

used to understand the superconducting properties, in general, and also the

superconducting mixed-state properties of the Ti-V alloys.

4.2 Results and discussion

4.2.1 The superconducting transition temperature of
the Ti-V alloys

Fig. 4.1(a) shows the temperature dependence of electrical resistivity (ρ) for

the Ti-V alloys at temperatures below 10 K and in zero magnetic field. On

decreasing temperature, the resistivity of these Ti-V alloys drops abruptly

to zero, indicating a transition from normal to superconducting state occurs

in these alloys. These Ti-V alloys have very high value of residual resistivity

ρ0 which is taken as the resistivity value measured at 10 K. The residual

resistivity increases with increasing Ti concentration in the Ti-V alloys. Fig.

4.1(b) shows the temperature dependence of magnetization (M) measured
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Figure 4.1: Temperature dependence of (a) electrical resistivity, (b) magne-
tization, and (c) heat capacity of the TixV1−x alloys at low temperatures to
show the superconducting transition in these alloys. The electrical resistivity
and heat capacity measurements are performed in zero magnetic field while
the magnetization measurements are performed in the presence of 10 mT
magnetic field. (d) The TC values (estimated from the temperature depen-
dences of resistivity, magnetization, and heat capacity) of the TixV1−x alloys
presented as a function of the Ti concentration x.
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in the zero-field-cooled (ZFC) warming protocol in the presence of 10 mT

applied magnetic field. In this protocol, the sample is first cooled to 2 K in

the absence of any field, and then a 10 mT magnetic field is applied before

performing the measurements while warming up the sample. All the present

Ti-V alloys exhibit diamagnetic behaviour in superconducting state. Fig.

4.1(c) shows the temperature dependence of heat capacity (C) in absence of

any magnetic field for the Ti-V alloys. A steep jump in heat capacity across

the superconducting transition is observed for all the Ti-V alloys, indicating

the bulk nature of the superconductivity in these Ti-V alloys. The temper-

ature dependences of electrical resistivity, magnetization, and heat capacity

data are used to estimate the superconducting transition temperature TC for

the Ti-V alloys. The TC is estimated from the ρ(T ) curve as the temperature

at which the temperature derivative of the resistivity becomes the maximum.

On the other hand, TC is estimated from the M(T ) data by finding the tem-

perature at which M approaches towards a negative value from its normal

state paramagnetic value. For the estimation of TC from the C(T ) data, we

take TC as the temperature at which the steep jump in the heat capacity

occurs. As shown in Fig. 4.1(d), the TC values of the present Ti-V alloys

estimated from the temperature dependences of resistivity, magnetization,

and heat capacity are roughly same. These values are in agreement with

the previously published results [50, 51]. It is observed that TC decreases

with increasing Ti concentration in the Ti-V alloys. The values of TC of the

present Ti-V alloys are, however, lower as compared to those observed in
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the technologically important Ti-Nb alloy system which is widely used in the

fabrication of superconducting magnets [74, 111, 112].

Figure 4.2: (a)-(d) Temperature dependence of heat capacity for the Ti-V
alloys (plotted as C/T versus T 2 fashion). The solid lines represent the fits
based on the relation (4.2). (e) The Sommerfeld coefficient γ and (f) the
Debye temperature θD for the Ti-V alloys obtained from the heat capacity
data. The solid lines in (e) and (f) are the guides to the eyes.

We can also estimate TC using the McMillan formula given as [19]

TC =
θD

1.45
exp

[
−1.04(1 + λep)

λep − µ∗(1 + 0.62λep)

]
. (4.1)

Here, λep is the electron-phonon coupling constant, θD is the Debye tempera-

ture, and µ∗ is the Coulomb interaction parameter. The parameters λep and

θD for the present Ti-V alloys are estimated using the heat capacity data.
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At low temperatures, the heat capacity of a metallic system is expressed as:

C(T ) = γT + βT 3. (4.2)

The first term in the above expression represents the electronic contribution

to the heat capacity whereas the second term represents the lattice contri-

bution. The parameter γ is the Sommerfeld coefficient, which is related to

the electronic density of states at the Fermi energy, and the parameter β

is related to the Debye temperature θD of a material as θD = (1944/β)
1
3 ,

where β is in J/mole-K4 [113, 114]. Following Eqn. (4.2), the plot of C/T

as a function of T 2 will be a straight line. Therefore, the interception of this

linear C/T versus T 2 curve on the C/T axis will provide an estimation of θD

while the slope will give an estimation of γ. Fig. 4.2(a)-(d) shows that the

C/T versus T 2 curves for the Ti-V alloys are linear in a wide temperature

regime above TC , where a straight line is fitted (indicated by the solid line)

to obtain the values of γ and θD for these Ti-V alloys. These values of γ and

θD are given in Table 4.1. These values are in agreement with the literature

[50, 51].

In the absence of spin fluctuations, the Sommerfeld coefficient γ is ex-

pressed as

γ =
1

3
π2k2

BN(0)(1 + λep), (4.3)

where, kB is the Boltzmann constant and N(0) is the bare value of the elec-

tronic density of states at the Fermi energy [114]. The bare density of state at
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the Fermi energy N(0) for the present Ti-V alloys is estimated from the elec-

tronic structure calculations performed in collaboration with S. K. Pandey of

Indian Institute of Technology, Mandi. The ab initio electronic structure cal-

culations were carried out using the spin polarized Korringa-Kohn-Rostoker

method [115]. The effect of doping was considered under the coherent po-

tential approximation (CPA). The exchange correlation functional developed

by Vosko Wilk and Nusair was used for the calculation [116]. The number

of k-points used in the irreducible part of the Brillouin zone is 104. For the

angular momentum expansion, `max=2 was considered for each atom. The

potential convergence criterion was set to 10−6. The results of these elec-

tronic structure calculations are shown in Fig. 4.3. Then the N(0) values

along with the experimental γ values are used to estimate λep for the present

Ti-V alloys, and these values are given in Table 4.1. We can infer from these

values of λep that the Ti-rich Ti-V alloys are weak-coupling superconduc-

tors. As the Ti concentration is decreased, λep increases and becomes ∼1

for the Ti0.4V0.6 alloy, indicating the moderate to strong coupling nature of

superconductivity in the V-rich Ti-V alloys.

The Coulomb interaction parameter µ∗ that appears in the McMillan

formula given in Eqn. (4.1) can be estimated from N(0) as [117]

µ∗ =

[
1 +

1

N(0)

]−1

. (4.4)

In the above relation, N(0) is expressed in the unit of states/eV-f.u. The
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Figure 4.3: Electronic density of state (DOS) for the β phase Ti-V alloys

value of µ∗ for all the present Ti-V alloys turns out to be about 0.175(2). The

estimated values of λep, θD, and µ∗ are used to estimate the TC of the Ti-V

alloys with the help of the McMillan formula. The TC value thus estimated

for the TixV1−x alloys having compositions x = 0.4, 0.6 and 0.7 is found

to be much higher than the experimentally measured value, whereas for x

= 0.8 alloy, it is significantly lower than the experimental value. Though a

higher value of estimated TC than the experimental value as observed for the

TixV1−x alloys with x = 0.4, 0.6 and 0.7 is physically accepted, the lower

value of estimated TC for the Ti0.8V0.2 alloy as compared to that observed

experimentally is non-physical, and thereby suggesting that the value of µ∗

used for the estimation of TC is not correct. Therefore, we rather estimate
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µ∗ from the experimentally determined TC value of Ti0.8V0.2. The value of

µ∗ comes out to be ∼0.12. The reduction in µ∗ from its value estimated

from N(0) may be due to the screening effect [92]. It is also to be noted

here that the value of µ∗ ∼0.12 is a standard value that is taken for the

analysis of superconductivity in the transition elements [75]. Therefore, we

use µ∗ ∼0.12 for all the present Ti-V alloys. However, the experimental TC

value for the TixV1−x alloys with x = 0.4, 0.6 and 0.7 is still found to be

significantly smaller as compared to that estimated from McMillan formula

by considering µ∗ ∼0.12 (the estimated TC values are given in Table 4.1).

This discrepancy may arise due to the presence of soft phonons [118] or spin

fluctuations [119, 120] in the TixV1−x alloys with x ≤0.4. The relevance of

the soft-phonons and/or spin fluctuations in the Ti-V alloy and their probable

influences on TC of these alloys will be addressed in chapter 6.

4.2.2 The upper critical field of the Ti-V alloys

In Fig. 4.4(a), we present the magnetic field dependence of magnetization

(M) for the Ti0.7V0.3 alloy obtained at various constant temperatures less

than the TC . Similar curves exist for all the other Ti-V alloys but are not

shown here for the sake of conciseness. The M(H) curves for these Ti-

V alloys are distinctly irreversible over a large magnetic field regime. The

observed irreversibility in the M(H) curves is due to the flux-line pinning

at the structural defects present in the alloys. The upper critical field HC2

is estimated from the magnetic field dependence of magnetization as the
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Table 4.1: Comparison of the experimentally measured TC values of the Ti-V
alloys with those estimated from the McMillan formula. Experimental TC ’s
are obtained from the M(T ) data. Magnetization of the annealed Ti0.7V0.3

sample exhibit very weak drop-off below 7 K. However, an appreciable change
in magnetization occurs only below 6.6 K, which we taken as TC to make
consistent the TC values obtained from resistivity and heat capacity data.
The values of γ, θD and λep obtained from the heat capacity data are also
given.

Ti0.8V0.2 Ti0.7V0.3 Ti0.6V0.4 Ti0.4V0.6

Experimental TC (K) 4.15±0.03 6.67±0.03 7.15±0.02 7.46±0.02

γ (mJ/mole-K2) 7.43±0.014 9.09±0.018 9.51±0.019 10.33±0.02
θD (K) 286±5 257±4 260±2 304±2

N(0) (state/eV-atom) 1.98 2.05 2.12 2.00
λep 0.59±0.003 0.88±0.004 0.91±0.004 1.19±0.004

TC (K) 4.1 10.6±0.2 11.4±0.2 21.0±0.4
from McMillan formula

Figure 4.4: (a) Magnetic field dependence of magnetization for the Ti0.7V0.3

alloy at various constant temperatures below TC . (b) Determination of HC2

from the M −H curve.
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magnetic field at which a distinct deviation from the linear magnetic field

dependence of the normal state magnetization is observed. For this, we first

fit a straight line to the normal state magnetization, which is shown in Fig.

4.4(b). The value of HC2 is taken as that point at which the difference

between the experimental curve and the fitted line exceeds the standard

deviation of the experimental points from the fitted line. Figs. 4.5(a) and

(b) present the temperature dependence of HC2 for the Ti-V alloys. The

HC2 values obtained by the extrapolation of the HC2(T ) data to 2 K (with

the help of the model given by Orlando et al. [121] and equation 4.10 given

below) are shown as a function of Ti concentration x in Fig. 4.5(c). A peak

is observed in the HC2(x) curve around x ∼0.6, which is in agreement with

the previously reported results [8, 76]. For the Ti0.6V0.4 alloy, HC2 is about

9 T at 4.2 K, which is slightly lower compared to the HC2(T = 4.2 K) of

Nb-Ti alloys [122, 123].

The Ginzburg-Landau-Abrikosov-Gor’kov (GLAG) theory [20, 22, 124,

125] was formulated in order to describe the temperature dependence of HC2

of type-II superconductors. The effect of the normal state paramagnetic

energy, the spin-orbit coupling, and the details of the scattering mechanism

were not taken into consideration in the GLAG theory. However, the added

complications due to the normal state paramagnetic energy, the spin-orbit

coupling, and the details of the scattering mechanism may be neglected in

the close vicinity of TC [126]. Therefore, the comparison of the experimental

HC2(T ) data with the GLAG theory may be done in the close vicinity of TC .
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Figure 4.5: (a), (b) Temperature dependence of HC2 of the Ti-V alloys (open
symbols). The solid line in panel (a) represents the function given in relation
(4.10) whereas the solid lines in panel (b) represent the fits to the experi-
mental HC2(T ) data based on the model given by Orlando et al. [121].(d)
The HC2 values at 2 K for the Ti-V alloys obtained by the extrapolation of
the HC2(T ) data. The solid line is the guide to the eyes.

According to the GLAG theory, the slope of the experimental HC2(T ) data at

TC is related to important normal state parameters, such as the Sommerfeld

coefficient γ and the residual resistivity ρ0 as [20, 22, 124-126]

[
dHC2

dT

]
T=TC

= −12eγρ0

π3kB
. (4.5)

Here, e is the electronic charge. Since γ is related to the electronic density of

state at the Fermi energy N(0)∗ as γ =
1

3
π2k2

BN(0)∗, the density of states at

the Fermi energy N(0)∗ can be obtained from the experimentally measured

quantities as [121]

N(0)∗ = −9.451× 10−10

(
MW

dρ0

)[
dHC2

dT

]
T=TC

. (4.6)
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In the above relation, the pre-factor is chosen so that N(0)∗ comes out in

states/eV-atom, provided the density d is in gram/cm3, the molecular weight

MW is in gram, ρ0 is in Ω-cm, and (dHC2/dT ) is in Oe/K. The values of N(0)∗

estimated for the present Ti-V alloys are given in Table 4.2. It is observed

that N(0)∗ increases progressively with the increasing V concentration in

the Ti-V alloys. It is also observed that for the present Ti-V alloys, the bare

density of states N(0) is significantly lower than N(0)∗, and the difference

between these two values increases with the increase of the V concentra-

tion. The observed disagreement arises mainly due to the electron-phonon

interactions. The electron-phonon interactions change the energy of the con-

duction electrons, and thereby causing an enhancement in the density of

states from its bare value N(0) by a factor of (1+λep). Accordingly, the val-

ues of N(0)∗ and N(0) can be used to estimate λep employing the relation:

(1+λep)=N(0)∗/N(0). The values of λep estimated in this procedure agree

with those estimated from the heat capacity data. These values of λep are

given in table-4.2.

The application of magnetic field destroys the superconductivity in a type-

II superconductor by two distinct pair-breaking effects. These are the orbital

and the Pauli paramagnetic pair-breaking effects. The kinetic energy of the

Cooper-pairs circulating around the normal core of the superconducting vor-

tices reduces the superconducting condensation energy, and thereby imposes

a limitation on the value of HC2 at which the phase transition from the su-
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Table 4.2: Few important parameters in the superconducting and normal
state of the Ti-V alloys. The numbers inside the brackets are the Maki
parameter obtained by considering the strong-coupling theory.

ρ0 −
[
dHC2

dT

]
T=TC

N(0)∗ λep αM

(µΩ-cm) (T/K) (state/eV-atom)
Ti0.8V0.2 157.21±0.01 4.43±0.03 2.80±0.03 ∼0.46 2.42

(2.00)
Ti0.7V0.3 129.63±0.01 3.87±0.05 2.92±0.03 ∼0.67 2.16

(1.67)
Ti0.6V0.4 98.94±0.02 3.94±0.03 3.71±0.04 ∼0.74 2.01

(1.52)
Ti0.4V0.6 61.63±0.01 2.90±0.04 4.06±0.04 ∼1.05 1.55

(1.00)

perconducting to normal state occurs. The orbital limiting field at absolute

zero temperature is commonly derived from the slope of the experimental

HC2(T )-line at TC as [127]

Horb
C2 (0) = −0.693TC

[
dHC2

dT

]
T=TC

. (4.7)

On the other hand, the Pauli paramagnetic pair-breaking effect [128, 129]

originates from the Zeeman splitting of the energy levels of a single electron.

A spin-up electron parallel to an applied magnetic field H raises its energy by

an amount of µBH whereas a spin-down electron anti-parallel to the applied

field lowers its energy by the same amount (µB being the Bohr magneton).

Hence, an energy difference of 2µBH arises between spin-up and spin-down
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electrons in the presence of a magnetic field H. Consequently, a reduction in

energy by an amount of 2µBH can be achieved by flipping an electron spin

to the energetically favourable direction. In the superconducting state, the

spins of the two electrons in a spin-singlet Cooper-pair has anti-parallel spin

configuration. Then, these spin-singlet Cooper-pairs must be broken in order

to polarize condensed electrons along the energetically favourable direction.

The paramagnetic pair breaking effect leads to the destruction of the super-

conductivity when the Pauli paramagnetic energy EP = χPH
2/2 becomes

equal to the superconducting condensation energy EC = N(0)∗∆2/2, where

χP is the spin susceptibility in the normal state of the material, ∆ is the

superconducting energy gap, and N(0)∗ is the electronic density of states at

the Fermi energy [128, 129]. The Pauli limiting upper critical field at zero

temperature is obtained from the experimental value of TC as [70, 128, 130]

HP
C2(0) = 1.86 TC [T ]. (4.8)

The relative importance of the orbital and the Pauli paramagnetic pair-

breaking effect in determining the upper limit of the HC2 of a superconductor

is described by the Maki parameter given by [127]

αM =
√

2
Horb
C2 (0)

HP
C2(0)

. (4.9)

A value of the Maki parameter αM larger than unity implies that the Pauli

paramagnetic pair-breaking effect dominates over the orbital pair-breaking
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effect in determining the HC2 of a superconductor. We estimate αM for

the present Ti-V alloys from the experimental TC and the slope of the

HC2(T )-line at TC using the relations (4.7)-(4.9). These values are given

in Table 4.2. For the present Ti-V alloys, the value of αM is found to be

significantly larger than unity, and it increases progressively with increas-

ing Ti concentration in the Ti-V alloys. Electron-phonon interaction, how-

ever, significantly alters the picture of the Pauli paramagnetic pair breaking

effect [121]. The re-normalization of the normal state parameters due to

electron-phonon interactions augments the Pauli limited upper critical field

as: HP
C2 = 1.86TCηHC(0)(1 + λep)

1
2 [121]. Here, ηHC(0) is a correction fac-

tor. We will see below that this correction factor does not alter the value

of HP
C2 significantly. However, the correction factor (1 + λep)

1
2 does alter

HP
C2 and hence αM drastically even for a weak-coupled superconductor. The

values of αM for the present Ti-V alloys are estimated after considering the

re-normalization effect due to electron-phonon interactions, and these values

are also included in Table 4.2. We have found that even after considering

the effect of electron-phonon interactions, the value of αM for all the Ti-

V alloys except the Ti0.4V0.6 alloy remains larger than unity. This implies

that the Pauli paramagnetic pair breaking effect strongly influences the HC2

of the Ti-rich Ti-V alloys. The probable influence of the Pauli paramag-

netic pair-breaking effect on the experimental HC2 in the Ti-rich Ti-V alloys

had already been suggested earlier [70, 76, 78]. On the other hand, αM be-

comes of the order of unity for the Ti0.4V0.6 alloy, suggesting that the Pauli
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paramagnetic pair-breaking effect is less important in this alloy. Hence, the

experimental HC2(T ) data for the Ti0.4V0.6 alloy is expected to exhibit good

agreement with the GLAG theory because this theory does not take the in-

fluences of the normal state Pauli paramagnetism into account. According

to the GLAG theory, the temperature dependence of HC2 is given as [20, 22,

124, 125, 131]

HC2(T ) = HC2(0)(1− t2). (4.10)

Here, t = T/TC and HC2(0) is the upper critical field at zero temperature. As

can be seen from Fig. 4.5(a), the relation (4.10) fits the experimental HC2(T )

data of the Ti0.4V0.6 alloy quite well. The fit gives the value of HC2(0) ∼ 11

T for this alloy.

Since the Pauli paramagnetic pair-breaking effect is found to be important

for the TixV1−x alloys having composition x >0.4, we analyse the experimen-

tal HC2(T ) data of these Ti-V alloys based on the theoretical model given

by Orlando et al. [121]. This theoretical model is a revised version of the

Werthamer-Helfand-Hohenberg (WHH) theory [132] proposed to analyse the

temperature dependence of HC2. This revised model considers both the Pauli

paramagnetic pair breaking effect as well as the corrections for the electron-

phonon interactions. In the original WHH theory, which includes the Pauli

paramagnetic limitation, the HC2 of a bulk type-II superconductor can be

written as an implicit function of temperature as [132]
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lnt = ϕ

[
1

2

]
− 1

2

[
1 +

λso
4X

]
ϕ

[
1

2
+
Y + (λso/4)−X

t

]
−1

2

[
1− λso

4X

]
ϕ

[
1

2
+
Y + (λso/4) +X

t

]
. (4.11)

Where, ϕ is the digamma function;

t = T/TC ;

X =

[(
λso
4

)2

− 4h2α2
M

π4

] 1
2

;

Y =

[
2h

π2

]
;

h = HC2(T )TC

[
dHC2

dT

]
T=TC

;

λso is the spin-orbit scattering parameter; and αM is the Maki parameter

given by the relations (4.7)-(4.9). For the fitting of the experimental HC2(T )

data of the TixV1−x alloys having composition x >0.4, we have considered

the re-normalization of the normal state parameters due to the electron-

phonon interactions by using HP
C2(0) = 1.86TCηHC(0)(1 +λep)

1
2 instead of the

BCS expression HP
C2(0) = 1.86TC . Hence, the fitting of the experimental

HC2(T ) data involves the estimation of the correction factor ηHC(0) as well.

According to Rainer and Bergman [133], any particular experimentally mea-

sured physical quantity Z [e.g. HC(T ), ∆(T ), HC2(T ) etc.] is related to its

weak-coupled BCS expression ZBCS as [121]

Z(T ) = ηZ(T )ZBCS(X∗). (4.12)
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Here, ηZ(T ) is the correction factor reflecting the additional correction due to

the strong-coupling theory, X∗ stands for the normal-state parameters, the

asterisk denotes that for evaluating ZBCS one uses normal-state parameters

renormalized by the presence of electron-phonon interactions [121]. There-

fore, for the superconducting energy gap, we can write

2∆(0)

kbTC
= η∆(0)

[
2∆(0)

kbTC

]BCS
= 3.53η∆(0). (4.13)

Using the results of references [134, 135] we have the expressions for the

correction factors ηHC
(0) and η∆(0) given by [121]

ηHC
(0) = 1 + 2.3

[
TC
ω0

]2

ln

[
ω0

TC

]
, (4.14)

η∆(0) = 1 + 5.3

[
TC
ω0

]2

ln

[
ω0

TC

]
, (4.15)

where, ω0 is the characteristic frequency (equivalent Einstein frequency).

Combining Eqns. (4.13)-(4.15), we obtain ηHC
(0) = 0.56604 + 0.12294n,

where n = 2∆(0)/kBTC is the experimentally measured quantity. For the

present Ti-V alloys, n is estimated from the temperature dependence of the

heat capacity data taken in the superconducting state of these Ti-V alloys.

It is found that n ∼3.6 for the Ti0.8V0.2 alloy while it is ∼4 for the rest of the

Ti-V alloys. Such values of n imply that the correction factor ηHC
(0) ∼1-1.05

is not very significant for the present Ti-V alloys. Once the correction factor

ηHC
(0) is obtained, we perform a two-parameter fitting of the experimen-
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tal HC2(T ) data. The electron-phonon coupling constant λep and spin-orbit

scattering parameter λso are taken as the fitting parameters. For the other

parameters appearing in the fitting function, the experimentally obtained

values are used. We obtain a reasonably good fitting of the experimental

HC2(T ) data for the TixV1−x alloys with compositions x >0.4 [Fig. 4.5(b)].

The fitting provides the value of HC2(0) for the Ti-V alloys (see Table 4.3).

The values of λep obtained from the fitting are almost identical to one ob-

tained from the heat capacity data (Tables 4.1 and 4.2). We also compare

the value of λso for the present TixV1−x alloys with the literature. For an

example, the fitting of the HC2(T ) data provides the value of λso=0.5±0.1 for

the present Ti0.8V0.2 alloy. On the other hand, a value of λso in the range of

0.6-0.1 is reported for a TixV1−x alloy having nearby composition (x=0.775)

in Ref. [78]. The observed slight difference between these values of λso may

be due to the fact that the HC2(T ) data in Ref. [78] was fitted without con-

sidering the re-normalization effect due to the electron-phonon interactions.

4.2.3 The lower critical field of the Ti-V alloys

In Fig. 4.6(a), we present the magnetic field dependence of magnetization

[M(H) curves] obtained at various constant temperatures T < TC for the

Ti0.6V0.4 alloy in low magnetic field regime. The magnetization measure-

ments were performed after zero-field-cooling the sample down to the tem-

perature of measurement. Similar curves exist for all the other Ti-V alloys
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Figure 4.6: (a) Field dependence of magnetization at various constant tem-
peratures below TC of the Ti0.6V0.4 alloy. (b) The deviation from linearity
δM against the effective magnetic field He for the Ti0.6V0.4 alloy at 2.5 K.

but are not shown here for the sake of conciseness. These M(H) curves

are linear at low magnetic fields, and a deviation from showing such linear

behaviour is observed at different values of field for different temperatures.

The lower critical field HC1 is usually determined by finding the point of

deviation of the M(H) curve from showing such linear behaviour. It is well

known that a demagnetizing field is associated with the irregular geometry

of the sample, and the effective magnetic field He inside the sample is related

to the externally applied magnetic field H as He = (H − 4πDM) (in CGS

unit), where D is the demagnetization factor. Hence, the effective magnetic

field He inside a sample may differ considerably from the field H applied.

This effect becomes particularly important for magnetic fields close to HC1

because the superconductors exhibit strong diamagnetism at such low mag-

netic fields. We have determined D for the Ti-V alloys by assuming complete
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flux expulsion at the lowest measuring field (1 mT in the present case).

For the estimation of HC1, we first fit a straight line to the low-field part

of the M(He) curve. Then, we quantify the deviation δM from the initial

linear magnetization by subtracting the fitted curve from the experimental

M(He) data. The plot of δM as a function of effective magnetic field is

shown in Fig. 4.6(b). The value of HC1 is taken as the field value at which a

non-zero value of δM appears first. This procedure actually gives the value

of the field for the first flux-line penetration HP which may or may not be

equal to HC1. It is well known that the edge effect [136] and/or the Bean-

Livingston (BL) surface barrier [26, 137] delays the penetration of flux lines

in a superconductor, and hence the characteristic field HP can be different

from the true value of HC1 of the sample. In such situations, HC1 estimated

from the deviation of linearity of the M(He) curve becomes ill defined. This

problem was observed earlier in the determination of HC1 of various high-TC

cuprate superconductors [136, 137-139].

According to the Bean’s critical state model [140-142], the deviation from

the linearity δM in the magnetic field regime HC1 � H � H∗ has a field

dependence of the form δM ∝ (H−HC1)2. Here, the characteristic field H∗ is

related to the critical current density JC of the sample [137, 138]. Hence, the

δM
1
2 versus He plot should be a straight line. Such plots are shown for the

Ti0.7V0.3 and Ti0.6V0.4 alloys in Fig. 4.7(a). These plots are indeed linear in

the high-field regime. However, a distinct deviation from linearity is observed

in these curves in the magnetic field regime just above HP , and the observed
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Figure 4.7: (a) The plots of δM
1
2 as a function of internal magnetic field He

for the Ti0.6V0.4 and Ti0.7V0.3 alloys at 2.5 K. (b) The field dependence of
magnetization for the Ti0.6V0.4 alloys at 4 K to illustrate the signature of
the existence of the Bean-Livingston surface barrier in this alloy. (c) The

plots of (δM/H)
1
2 against He for the Ti0.6V0.4 and Ti0.7V0.3 alloys. (d) The

temperature dependence of HC1 of the Ti-V alloys (open symbols). The solid
lines are the fittings to the experimental HC1(T ) data points based on the
empirical relation HC1(T ) = HC1(0)[1− t2], where t = T/TC .
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deviation is particularly significant in the case of Ti0.6V0.4 alloy. Similar

behaviour was observed previously in many other superconductors, such as

La-Sr-Cu-Co [136], Y-Ba-Cu-O [137], and Nb [143], where the observation

has been attributed due to either the edge effect [136] or the existence of the

Bean-Livingston surface barrier effect in the samples [137, 143].

In Fig. 4.7(b), we show the M(H) curve for the Ti0.6V0.4 alloy at 4

K and in the high magnetic field regime. This M(H) curve appears to be

markedly asymmetric around the field axis. Moreover, the magnetization

measured in the field-decreasing branch exhibit a tendency to saturate near

the M = 0 line. Similar characteristics are also observed in the M(H) curves

of the Ti0.4V0.6 and Ti0.8V0.2 alloys (these curves are not shown here). These

observations give clear indication for the existence of the Bean-Livingston

surface barrier in these Ti-V alloy superconductors [26, 144]. As can be

seen from Fig. 4.4(a), the M(H) curves for the Ti0.7V0.3 alloy are almost

symmetric around the field axis. Hence, the relevance of the Bean-Livingston

surface barrier is expected to be less significant in this alloy. Interestingly, the

deviation of the δM
1
2 versus He plot from showing the linear behaviour is also

observed to be minimal for the Ti0.7V0.3 alloy. Hence, the straightforward

method for the determination of HC1 by finding the deviation of linearity

of the M(He) curve cannot be used for the present Ti-V alloys. Burlachkov

et al. [139] had proposed a generalized Bean’s critical state model, which

considers the effect of the Bean-Livingston surface barrier. They assumed

that flux lines start penetrating into the sample at some distinct points at
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the surface of the sample where the barrier is suppressed by the presence of

defects, and obtained [137]

δM = A

[
(1−m)HC1

(He −HC1)2

2
+

(He −HC1)3

6

]
=
A(He −HC1)2[He − (3m− 2)HC1]

6
. (4.16)

In the above relation, A is a constant related to critical current density and

also to the shape of the sample. The parameter m is the ratio of equilibrium

magnetization M to the maximum negative magnetization M(HC1), and

depends only on the Ginzburg-Landau parameter κ. Burlachkov et al. [139]

had estimated m ≈0.7 for the high-κ (∼100) YBa2Cu3O7−δ superconductor.

Putting m=0.7 in the relation (4.16), one obtains (δM/He)
1
2 ∝ (He −HC1)

[137]. Consequently, the plot of (δM/He)
1
2 as a function of He will be a

straight line with a threshold at HC1. Such a plot is often used to check the

influence of the Bean-Livingston surface barrier in many superconductors

[137]. In Fig. 4.7(c), we present the (δM/He)
1
2 versus He plots for the

Ti0.7V0.3 and Ti0.6V0.4 alloys. These plots are indeed linear in the magnetic

field regime above HP . We estimate HC1 from the threshold of the (δM/He)
1
2

versus He plots. It is to be noted that the HC1 value thus estimated almost

coincides with the value of HP . This is also found to be true for the Ti0.4V0.6

and Ti0.8V0.2 alloys. These observations suggest that the existence of the

Bean-Livingston surface barrier in the present Ti-V alloys does not rise HP

above the HC1, but just lower the rate of flux line penetration into the sample.
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Similar result has also been found previously in Nb sample [143]. Fig. 4.7(d)

summarizes the temperature dependence of HC1 for the Ti-V alloys after

considering the correction for demagnetization effect. The experimentally

determined values of HC1(T ) are found to follow the empirical relation [145]

HC1(T ) = HC1(0)

[
1−

(
T

TC

)2
]
, (4.17)

where, HC1(0) is the lower critical field at absolute zero temperature. We

obtain the values of HC1(0) for the Ti-V alloys by fitting the experimental

HC1(T ) data based on the above relation. These values are given in Table

4.3. For the Ti-V alloys, HC1(0) is found to have relatively low value and it

increases with the decrease in Ti concentration in the Ti-V alloys.

4.2.4 Thermodynamic critical field of the Ti-V alloys

The thermodynamic critical field HC can be obtained from the heat capacity

data in the superconducting state using the relation [146]

HC(T )2 =

TC∫
T

dT ′
TC∫
T ′

[Ces(T
′′)− Cns(T ′′)]
T ′′

dT ′′. (4.18)

Here, Ces and Cen respectively represent the electronic heat capacities in

the superconducting and normal states. In order to obtain Cen, we first

fit the temperature dependence of the experimental heat capacity data in

the temperature range from the TC to 12 K based on the relation (4.2). In
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Figure 4.8: (a) Temperature dependence of the thermodynamic critical field
HC for the TixV1−x alloys estimated from the heat capacity data. The solid
lines are the fits to the experimental data points based on the empirical
relation: HC(T ) = HC(0)(1 − t2), where t = T/TC . (b) HC(0) values of
the TixV1−x alloys obtained from the fittings are shown as a function Ti
concentration x.

this relation, the first term represents the electronic heat capacity (Cen) and

the second term represents the lattice heat capacity (CL). The tempera-

ture behaviour of the lattice heat capacity is not altered when the material

undergoes a phase transition from normal to superconducting state. This

allows us to obtain the lattice heat capacity in the superconducting state by

the low temperature extrapolation of the normal state lattice heat capacity

CL(T ) = βT 3. Then the electronic heat capacity in the superconducting

state (Ces) is obtained by subtracting the lattice heat capacity (CL) from the

experimental heat capacity data taken at temperatures T ≤ TC . We then es-

timate HC(T ) for the Ti-V alloys based on the relation (4.18). These results

are shown in Fig. 4.8(a). The HC(T ) curves follow the empirical relation

HC(T ) = HC(0)(1 − t2), where t = T/TC and HC(0) is the thermodynamic
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critical field at zero temperature. The fitting of the HC(T ) curves with this

empirical relation is shown in Fig. 4.8(a) with the help of solid lines. The

values of HC(0) obtained as fitting parameter are presented in Table 4.3. The

value of HC(0) can also be obtained from the phenomenological Ginzburg-

Landau theory. According to this phenomenological theory, the critical fields

HC1(0) and HC2(0) are related to HC(0) as [147]

HC1(0) =
lnκ√

2κ
HC(0) (4.19)

and

HC2(0) =
√

2κHC(0). (4.20)

Here κ is the Ginzburg-Landau parameter. Therefore, the above two ex-

pressions provide the estimation of both HC(0) and κ from the knowledge of

HC1(0) and HC2(0). We have estimated HC(0) values for the present set of

Ti-V alloys using the values of HC1(0) and HC2(0). The estimated values of

HC(0) using this procedure match very well with the values obtained from

the heat capacity data. It is found that the HC(0) values for the Ti-V alloys

increases with the decrease in the Ti concentration. This is in agreement

with the BCS relation, according to which, HC(0) depends on both the TC

and the Sommerfeld coefficient γ as: HC(0) ∝ γ
1
2TC [70, 121]. We have

observed above that both the TC and γ increase with decreasing Ti concen-

tration in the Ti-V alloys. Consequently, HC(0) increases with decreasing Ti

concentration in the Ti-V alloys [Fig. 4.8(b)].
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4.2.5 Fundamental superconducting length scales in
the Ti-V alloys

In the phenomenological Ginzburg-Landau theory, the upper critical field

HC2 is the magnetic field value at which flux-line cores of radius ξ overlap with

each other. Therefore, HC2(0) is related to the Ginzburg-Landau coherence

length ξ(0) as

HC2(0) =
Φ0

2πξ(0)2
. (4.21)

We estimate ξ(0) for the Ti-V alloys from the HC2(0) values using relation

(4.21). The estimated values of ξ(0) are given in Table 4.3. For the Ti-V al-

loys, the coherence length is found to be much larger than the mean free path

of the conduction electrons (le) estimated for these alloys in the Ref. [148],

suggesting that these alloys are dirty limit superconductors. The Ginzburg-

Landau penetration depth at zero temperature λ(0) can be obtained from

the values of HC1(0) and ξ(0) using the Ginzburg-Landau relation given as

HC1(0) =

[
Φ0

4πλ(0)2

]
lnκ, (4.22)

where, the Ginzburg-Landau parameter κ = λ(0)/ξ(0). The above relation

is employed to estimate the value of λ(0) for the Ti-V alloys using the known

values of HC1(0) and ξ(0). The estimated values of λ(0) for the Ti-V alloys

are presented in Table 4.3.

According to the London model, the reversible magnetization M in the
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Figure 4.9: (a) M versus ln(H) curves for the Ti0.6V0.4 alloy at different con-
stant temperatures. (b) Temperature dependence of the penetration depth λ
for the Ti0.6V0.4 alloy obtained from the slope of the M versus ln(H) curves of
Fig. (a) (open symbols). The solid lines are the fits to the experimental data

points with the empirical relation λ(T ) = λ(0)/(1− t) 1
4 , where t = T/TC .

intermediate magnetic field regime HC1 � H � HC2 may be written as

−4πM =
Φ0

8πλ2
ln

[
η
HC2(T )

H

]
, (4.23)

where, η is a constant of the order of unity [149]. Therefore, the plot of

magnetization as a function of ln(H) should be linear in the intermediate

magnetic field regime, and its slope will provide the value of λ. In Fig.

4.9(a), we show few selected M(H) curves for the Ti0.6V0.4 alloy plotted in

M versus ln(H) fashion. At temperatures much lower than the TC , these

M versus ln(H) curves are linear over a considerably large magnetic field

regime. However, the linear region in the M versus ln(H) curves becomes

gradually narrower as the temperature approaches TC . This is found to be
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true for the other Ti-V alloys as well (not shown here). We then estimate λ

at various constant temperatures from the slopes of these M versus ln(H)

curves, and these results for the Ti0.6V0.4 alloy are shown in Fig. 4.9(b). In

the entire temperature regime, the λ(T ) data follow the empirical relation

λ(T ) = λ(0)/(1 − t) 1
4 , where t = T/TC [150]. The fitting of the λ(T ) data

with this empirical relation is shown in Fig. 4.9(b) by the solid lines. For

performing the fitting we take TC and λ(0) as the fitting parameters. The

curve-fitting gives a value of λ(0) ∼200 nm which is close to λ(0) ∼190 nm

obtained from the values of HC1(0) and ξ(0) using the Ginzburg-Landau

relation. We estimate λ(0) for all Ti-V alloys from the M(H) curves, which

are found to be almost identical to the values given in Table 4.3.

Table 4.3: Various fundamental parameters in the superconducting state of
the Ti-V alloys.

HC2(0) HC1(0) ξ(0) λ(0) κ HC(0)

(T) (mT) (nm) (nm) (mT)
Ti0.8V0.2 8.7±0.4 5.7±0.25 6.15±0.14 330±16 ∼55 80±2
Ti0.7V0.3 11.6±0.4 9.7±0.4 5.33±0.09 246±10 ∼50 148±5
Ti0.6V0.4 13.5±0.5 15.4±0.25 4.94±0.09 190±15 ∼40 178±3
Ti0.4V0.6 10.6±0.1 17.8±0.3 5.57±0.03 172±13 ∼32 200±5

The estimated values of ξ(0) and λ(0) is used for the estimation of the

Ginzburg-Landau parameter κ for the Ti-V alloys, and these values are given

in Table 4.3. The present Ti-V alloys are found to have very large values of
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κ, indicating that these Ti-V alloys are extreme type-II superconductors. As

discussed in the chapter 1, the Ginzburg-Landau parameter κ is obtained by

using the Gorkov relation [82] as approximated by Goodman [83] as

κ = κ0 + κ` = κ0 + 7.53× 103ρ0γ
1
2 . (4.24)

The physical meaning of each term appearing in the above relation is dis-

cussed in chapter 1. When the mean free path for the conduction electrons

le is much less than the Bardeen-Cooper-Schrieffer (BCS) coherence length

ξ0, then we can approximate [70, 76]

κ ≈ κ` ≈ 7.53× 103ρ0γ
1
2 . (4.25)

We have already found that the present Ti-V alloys are dirty limit supercon-

ductors. In a dirty superconductor, the Ginzburg-Landau coherence length

ξ(0) is related to the BCS coherence length ξ0 as: ξ(0) = 0.85(leξ0)
1
2 [151].

Hence, we find that l0 � ξ(0)� ξ0 for the dirty limit Ti-V superconducting

alloys, which implying that the approximation given in Eqn. (4.25) is valid

for the Ti-V alloys. It then appears from Eqn. (4.25) that the large value of

κ in these Ti-V alloys is due to the high values of ρ0 and γ of these alloys.

Since the variation of κ with γ is slower than the variation of κ with ρ0, the

increase in the value of κ in the TixV1−x alloys with the increase in the Ti

concentration x can therefore be ascribed to the increase of the ρ0 with x.
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4.3 Summary and conclusions

(i) The superconducting transition temperature TC of the present set of

Ti-V alloys increase from 4.48 K to 7.64 K as the Ti concentration is

decreased from 0.8 to 0.4. For the TixV1−x alloys with compositions

x ≤0.7, the TC estimated using the McMillan formula is found to be

much larger than the experimentally obtained TC value. A detailed

study probing the possible reasons (viz. soft-phonons or spin fluctua-

tions) for this observed disagreement will be presented in chapter 6.

(ii) Our estimation of the electron-phonon coupling constant λep indicates

that the Ti-rich Ti-V alloys are weak-coupling superconductors. The

value of λep increases with decreasing Ti concentration in the Ti-V

alloys. In the V-rich Ti-V alloys, λep is close to unity, indicating the

moderate to strong coupling nature of superconductivity in the V-rich

Ti-V alloys.

(iii) For the Ti-V alloys, the upper critical field HC2 depends strongly on

the alloy concentration. The maximum value of HC2 is obtained for the

Ti0.6V0.4 alloy. A value of HC2 ∼9 T is estimated for this alloy at 4.2

K. The Pauli paramagnetic pair breaking effect significantly influences

the HC2 of the Ti-V alloys. Electron-phonon interactions, however,

reduce the influence of the Pauli paramagnetic pair breaking effect in

the V-rich Ti-V alloys.
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(iv) The magnetic field dependence of magnetization indicates that the

Bean-Livingston surface barrier effect might be present in the supercon-

ducting Ti-V samples. Generally, the experimental observation of the

Bean-Livingston surface barrier effect in the conventional superconduc-

tors requires highly polished surfaces of the sample because the strong

local fields caused by the surface roughness can overcome the surface

barrier. However, Ti-V alloys have very large value of the Ginzburg-

Landau parameter κ. Therefore, the magnetic field limit (∼ HC/
√

2)

up to which the Bean-Livingston surface barrier can exist is much larger

than the HC1 of these Ti-V alloys [137]. Then the local fields caused by

the surface roughness may not be strong enough to completely destroy

the surface barrier in these Ti-V alloys. However, the Bean-Livingston

surface barrier is also known to become suppressed by the presence of

defects on the sample surfaces, which act as gates for the penetration

of the flux lines into the sample [137]. The grain boundary is one such

defect structure present in the Ti-V alloys. Due to the smallest grain

size and hence the highest defect density in the Ti0.7V0.3 alloy, the

Bean-Livingston surface barrier appears to be less significant in this

alloy. For the present Ti-V alloys, we have found that the estimation

of HC1 from the low-field M(H) data is not affected by the presence

of the Bean-Livingston surface barrier, though the presence of such

surface barrier lowers the rate of flux line penetration into the sample.

The presence of defects on the surface along with the surface roughness
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seems to be successful in nullifying the effect of the surface barrier at

some regions of the sample surfaces allowing the penetration of flux

lines into the sample at HC1.

(v) The coherence length ξ estimated for the present Ti-V alloys is found

to be much larger than the mean free path le for the electron conduc-

tion in these alloys, suggesting that these Ti-V alloys are dirty limit

superconductors. The very large values of Ginzburg-Landau parameter

κ estimated for the Ti-V alloys make them extreme type-II supercon-

ductors. However, the κ values estimated here are notably smaller than

those estimated using the normal state parameters in Refs. [70, 76, 79].

For the Ti-V alloys, the magnetic field penetration depth λ increases

with increasing Ti concentration. Since λ is related to the line tension

energy of the flux line as EL = (Φ0/4πλ)2lnκ, the flux line lattice in

the V-rich Ti-V alloys is expected to be more rigid as compared to that

in the Ti-rich Ti-V alloys. This is an important information because

soft flux line lattice is generally detrimental for the lossless current

carrying aspect of a superconductor. Moreover, the TC of the V-rich

Ti-V alloys is also higher than the liquid helium temperature. One of

the major problems with the V-rich Ti-V alloys is that the HC2 values

decrease as the Ti concentration decreases below x = 0.6. However, for

the V-rich Ti-V alloys, the value of the electronic mean free path le is

much larger than the inter-atomic spacing [148]. Consequently, le can

be further reduced by introducing defects in these Ti-V alloys. In doing
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so, the Ginzburg-Landau coherence length ξ [∝ (ξ0le)
1
2 , where the BCS

coherence length ξ0 is an intrinsic property of a superconductor which

remains unchanged when disorder is introduced in the system] can be

reduced, which in turn will result an enhancement of the HC2. On the

other hand, the value of le is comparable to the inter-atomic spacing

for the Ti-rich Ti-V alloys [148]. Consequently, le cannot be reduced

further by introducing defects. Therefore, such HC2 enhancement is

not possible for the Ti-rich Ti-V alloys. Based on these arguments it

appears that the V-rich Ti-V alloys are more relevant from the techno-

logical application points of view.
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Chapter 5

Fluctuation conductivity in the
Ti-V alloys

5.1 Introduction

Previous studies [44, 85, 86] on the bulk Ti-V alloys reported that the tem-

perature dependence of the electrical resistivity (ρ) of these alloys exhibited

strong rounding-off behaviour above the superconducting transition temper-

ature TC , as is the case for the many high-TC superconductors. The trace of

such a rounding-off behaviour of the ρ(T ) curve persists up to a temperature

∼ 2TC . This phenomenon is also observed in the thin film samples of the Ti-V

alloys [152]. It is also found that this phenomenon is not markedly influenced

by the presence of disorders and/or preparation-sensitive secondary phases in

the samples [85]. Thus the phenomenon appears to be intrinsic to the Ti-V

alloys. Hake [85] had found that the theories of superconducting fluctuations

induced conductivity well describe the ρ(T ) curve in the wide temperature

regime where the rounding-off behaviour is observed. Accordingly, Hake had
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inferred that the intrinsic rounding-off behaviour of the ρ(T ) curve observed

in the Ti-V alloys was a consequence of the superconducting fluctuation ef-

fect [85, 86]. However, the theories Hake had used to analyze the results [85,

86], were derived based on the time-dependent Ginzburg-Landau theory [85,

86, 153, 154], which is valid only in the close vicinity of TC . Therefore, the

legitimacy of his approach for analysing the experimental data in the large

temperature regime above TC is rather questionable. Later, Rassokhin et

al. [44] had suspected the superconducting fluctuations scenario by arguing

that the superconducting fluctuation effect is expected to be limited only in

the close vicinity of TC for bulk low-TC superconductors like Ti-V alloys. In

the work of Rassokhin et al. [44] and also in few concurrent works led by

Prekul et al. [88, 94], it was suggested that the rounding-off behaviour of the

ρ(T ) curve exhibited by the Ti-V alloys arises due to an interplay between

the (Cooper-pair) pair-breaking mechanism by the localized spin fluctuations

and a high temperature superconductivity of the Ti-V alloys (if localized spin

fluctuations were absent, these Ti-V alloys would show superconductivity at

temperature almost twice of the experimentally observed TC value). In fact,

a significant suppression of the TC by the presence of spin fluctuations in the

Ti-V alloys had been inferred previously by Pictet et al. [93] and recently by

us [155, 156]. These results put strength to the view point of Rassokhin et al.

and Prekul et al.. Therefore, the question whether the observed rounding-off

behaviour of the ρ(T ) curve of the Ti-V alloys is due to the superconducting

fluctuation effect or due to the non-trivial role of the spin fluctuations in
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these alloys is still remained imprecise.

This chapter is motivated to find a precise answer to the question raised

above. For this, we have study four annealed TixV1−x alloys having com-

positions x = 0.8, 0.7, 0.6 and 0.4. In these Ti-V alloys, ρ(T ) curve be-

comes strongly rounded-off at temperatures ranging from TC up to ∼2TC .

Moreover, these Ti-V alloys exhibit strong positive magneto-resistance for

temperatures T ≤ 2TC . To check whether the superconducting fluctuation

effect is behind these observed phenomena, we have analysed the excess con-

ductivity data of these Ti-V alloys based on the Aslamazov-Larkin (AL)

theoretical model [157] and its extended version [158]. We have also invoked

the theoretical model of Usadel [159], which considers the magneto-resistance

associated with the AL contribution to the excess conductivity. These the-

oretical models consistently describe the experimental data of the present

Ti-V alloys, suggesting that the superconducting fluctuation effect is behind

the observed rounding-off behaviour of the resistive transition of the Ti-V

alloys.
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5.2 Results and discussion

5.2.1 The temperature dependence of electrical resis-
tivity in the Ti-V alloys and the relevance of the
superconducting fluctuations in these alloys

Fig. 5.1 shows the temperature dependence of resistivity (ρ) for the Ti-V al-

loys in zero magnetic field. The ρ(T ) curve for all these Ti-V alloys appears to

be strongly rounded-off before a sharp drop of resistivity occurs at the onset

superconducting transition temperature TC . The trace of this rounding-off

behaviour of the ρ(T ) curve persists up to a temperature T ∗ ∼2TC . Such a

behaviour of the ρ(T ) curve is common in high-TC materials, where super-

conducting fluctuation effect is attributed for the observed behaviour. The

effectiveness of the superconducting fluctuation is quantified by the Ginzburg

number Gi, which for an isotropic superconductor is expressed as [160]

Gi =
1

2

[
kBTC

HC(0)2ξ(0)3

]2

, (5.1)

where HC(0) and ξ(0) are respectively the thermodynamic critical field and

the coherence length at zero temperature, and kB is the Boltzmann constant.

For the high-TC superconductors, Gi ∼10−2, making the superconducting

fluctuations significant in an experimentally accessible temperature window

∼ GiTC [161], though the experimental results indicate that the actual tem-

perature window for observing the superconducting fluctuation effect is still

larger than this estimate. On the other hand, experimental observation of
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Figure 5.1: The temperature dependence of resistivity curves for the TixV1−x
alloys. These curves show a strong rounding-off behaviour before a sharp drop
in the resistivity is observed at the onset temperature of the superconducting
transition, TC . The trace of this effect persists up to a characteristic temper-
ature T ∗ ∼ 2TC . The solid lines shown are extrapolations of the normal-state
resistivity. The temperature at which the extrapolated curve bifurcates from
the experimental ρ(T ) curve is taken as T ∗.
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the superconducting fluctuation effect becomes extremely difficult in the con-

ventional low-TC superconductors due to their very small values of Gi ∼10−8.

We have estimated the Gi number for the present Ti-V alloys using the val-

ues of HC(0) and ξ(0) obtained for these alloys in chapter 4. The Gi number

is estimated to be Gi ∼10−6-10−5 for the Ti-V alloys, which is intermediate

between those for the high-TC and the low-TC superconductors. A compa-

rable magnitude of the Gi number is found for MgB2 [162, 163] and YNi2B2

[164] superconductors, for which the superconducting fluctuations induced

conductivity above TC is well documented [164-166]. Therefore, strong effect

of the superconducting fluctuations may also be expected for the Ti-V alloys

in an experimentally accessible temperature window.

Figure 5.2: The plots of temperature window ∆T = (T ∗ − TC) where the
excess conductivity can be measured experimentally in the present TixV1−x
alloys, and the parameter GiTC for these TixV1−x alloys as a function of Ti
concentration x. The observed parallelism between these plots indicates the
correlation of superconducting fluctuations with the observed rounding-off
behaviour of the ρ(T ) curve shown in Fig. 5.1.
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To get a deeper insight into this, the temperature window ∆T (=T ∗−TC),

where the rounding-off behaviour of the ρ(T ) curve of the Ti-V alloys is ob-

served, is plotted against the Ti concentration in Fig. 5.2. Since the temper-

ature window, where the experimental observation of the superconducting

fluctuations induced conductivity is possible, can be correlated with the pa-

rameter GiTC [161], we also plot GiTC against the Ti concentration in Fig.

5.2. The observed parallelism between these plots indicates that supercon-

ducting fluctuations might be the probable reason behind the rounding-off

behaviour of the ρ(T ) curve of the present Ti-V alloys. This observation mo-

tivates us to analyse the experimentally measured excess conductivity data

of the present Ti-V alloy in the temperature regime above TC based on the

theoretical models for the superconducting fluctuation induced conductivity.

5.2.2 Theoretical models for the superconducting fluc-
tuation induced conductivity

In a superconductor, both the formation of the Cooper-pairs and their con-

densation into a coherent state of zero resistivity occur simultaneously at

TC . However, superconducting fluctuations can lead to the formation of

the short-lived Cooper-pairs at temperature above TC (a consequence of the

superconducting order parameter fluctuations). The presence of such short-

lived Cooper-pairs has a consequence to increase the conductivity of the

material, and thereby forming the rounding-off feature in the ρ(T ) curve

above TC . On theoretical ground, Aslamazov and Larkin [157] had proposed
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a direct contribution to the conductivity caused by the acceleration of the

short-lived Cooper-pairs. The Aslamazov-Larkin (AL) theory was derived

on the basis of the mean field approximation of the GinzburgLandau the-

ory. According to this theory, the excess conductivity above TC is given by

∆σAL(ε) = A0ε
−λ, where ε = (T − TC)/TC is the reduced temperature, A0

is a temperature independent amplitude of the excess conductivity, and λ is

the critical exponent of the excess conductivity or fluctuation conductivity

[167]. The critical exponent λ depends on the dimensionality D of the super-

conducting fluctuations as λ = (2−D/2). The AL contribution to the excess

conductivity for isotropic superconductors in different dimensions (indicated

by super-index) is expressed as [161, 167, 168]

∆σ3D
AL(ε) =

e2

32~ξ(0)
ε−0.5, (5.2)

and

∆σ2D
AL(ε) =

e2

16~d
ε−1, [ξ(T )� d]. (5.3)

Here, e is the electronic charge, ~ is the reduced Planck’s constant, ξ(T ) is

the coherence length at temperature T , and d is the characteristic length of

a two-dimensional system (usually denotes the thickness of the thin film).

Later, Maki [169] and Thompson [5.22] had proposed that the short-lived

Cooper-pairs formed above TC can also indirectly increase the conductivity

of a material. The Maki-Thompson (MT) contribution arises due to the

change in normal current in presence of superconducting fluctuations [168].
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In contrast to the direct AL contribution to the excess conductivity which

results from the acceleration of the short-lived Cooper-pairs, the indirect MT

contribution depends strongly on the presence of pair breaking mechanisms

in the material. The indirect MT contribution to the excess conductivity is

given by [168, 170]

∆σ3D
MT (ε) =

e2

8~ξ(0)
ε−α

[
1 +

(
δ

ε

) 1
2

]−1

, (5.4)

and

∆σ2D
MT (ε) =

e2

8~d

[
1

ε− δ

]
ln
[ε
δ

]
. (5.5)

In the above expression, δ is the pair breaking parameter which varies be-

tween zero and unity depending on the strength of the pair breaking mecha-

nisms present in a material. The sources of pair breaking mechanism may be

intrinsic to a material such as phonons, and/or magnetic impurities, and/or

spin fluctuations.

5.2.3 The temperature dependence of excess conduc-
tivity of the Ti-V alloys

The excess conductivity resulted from the formation of the short-lived Cooper-

pairs can be obtained from the resistivity data as

∆σ(T ) =
1

ρexp(T )
− 1

ρfit(T )
. (5.6)
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Here, ρexp(T ) is the experimentally measured resistivity and ρfit(T ) is the

background resistivity. Hence, the accuracy in the estimation of the excess

conductivity depends strongly on the way of determination of the background

resistivity. For obtaining the background resistivity, ρexp(T ) data of the Ti-V

alloys are fitted with suitable function forms of resistivity in the temperature

regime 3TC ≥T≥40 K, and then the fitted curve is extrapolated through

the TC . For the TixV1−x alloys with compositions x= 0.4 and 0.6, ρexp(T )

data are fitted based on the relation ρexp(T ) = ρ0 + AT 2 + BT 5, where ρ0,

A, and B are constants. On the other hand, ρexp(T ) data of the Ti0.7V0.3

and Ti0.8V0.2 alloys are fitted using the relations ρexp(T ) = ρ0 − A′lnT and

ρexp(T ) = ρ0 − B′
√
T respectively. Here A′ and B′ are constants. These

functional forms well describe the ρexp(T ) data of the present Ti-V alloys.

The temperature dependence of resistivity of the Ti-V alloys will be discussed

in detail in chapter 6. The background resistivity of the present Ti-V alloys

obtained in this procedure are shown by the solid lines in Fig. 5.1.

The excess conductivity ∆σ for the present Ti-V alloys is estimated fol-

lowing the procedure described above, and plotted against the reduced tem-

perature ε = (T − TmfC )/TmfC in log-log scales in Fig. 5.3. Here TmfC is the

mean field transition temperature which is taken as the temperature at which

the temperature derivative of the resistivity across the superconducting tran-

sition becomes the maximum. The TmfC values for the present Ti-V alloys are

given in Table 5.1. The ∆σ(ε) curves for all the Ti-V alloys except Ti0.8V0.2

exhibit some common features. A rapid upturn is observed in these curves
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Figure 5.3: Experimentally measured excess conductivity ∆σ for the TixV1−x
alloys as a function of reduced temperature ε = (T − TmfC )/TmfC in log-log
scales (solid symbols). The solid straight lines are the fits to the experimental
data base on the relation: ∆σ(ε) = A0ε

−λ. On the other hand, the non-linear
solid lines are the fits to the experimental data based on the function given
in Eqn. (5.7).
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in the close vicinity of TmfC , i.e. near to ε = 0. Such a rapid upturn in ∆σ(ε)

curve is quite common, and is known to arise due to the overestimation of

the excess conductivity in the broadened superconducting transition caused

by the presence of inhomogeneities in the sample [161, 171, 172]. In such

case, the rapid upturn observed in the ∆σ(ε) curve is expected to depend on

the criterion to define TC [161, 171, 172]. In agreement with this the rapid

upturn in the ∆σ(ε) curves of the Ti-V alloy is observed to depend strongly

on the specific criterion to define TC . This is illustrated in Fig. 5.4 for the

Ti0.6V0.4 alloy. We also observe in Fig. 5.4 that the rapid upturn in the

∆σ(ε) curve is gradually washed out as the chosen TC approaches towards

the onset temperature of the superconducting transition. These observations

clearly indicate that the observed feature indeed arises due to the overestima-

tion of the excess conductivity in the broadened superconducting transition.

Therefore, we will not focus our attention to analyse the excess conductivity

data in the temperature regime where this rapid upturn is observed.

After the rapid upturn, the ∆σ(ε) curves plotted in log-log scales become

linear with a negative slope within a narrow reduced temperature regime up

to ε ∼0.1. The observed temperature dependence of the excess conductivity

is in agreement with the AL theoretical model. We have determined the crit-

ical exponent λ by fitting the linear portion of the ∆σ(ε) curve shown in Fig.

5.3 with the function ∆σAL(ε) = A0ε
−λ. The fittings are shown by the solid

straight lines in Fig. 5.3. For the present Ti-V alloys, λ values are estimated

out to be ∼(0.5±0.05). These values of λ correspond to D ∼3, indicating
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Figure 5.4: (a) ∆σ(ε) curves for the Ti0.6V0.4 alloy plotted in log-log scales
using different choice of TC . (b) The ρ(T ) curve for the same alloy showing
the temperature points which are used as TC in panel (a).

the 3D character of the superconducting fluctuations as is expected for these

bulk Ti-V alloys. In the AL theoretical model, the temperature independent

amplitude of the excess conductivity for 3D superconducting fluctuations is

given by A0 = e2/32~ξ(0) (refer to Eqn. 5.3). Then the A0 value obtained

from the ∆σ(ε) data will provide an estimation of the coherence length at

zero temperature ξ(0). The ξ(0) values thus estimated for the present Ti-V

alloys are given in Table 5.1. The values of ξ(0) estimated from the knowl-

edge of HC2(0) are also given in Table 5.1 for a comparison. We find that

the values of ξ(0) estimated for the TixV1−x alloys with compositions x=

0.4, 0.6, and 0.7 using two different approaches agree with each other. These

observations suggest that (i) the AL theory consistently describes both the

magnitude as well as the temperature dependence of measured excess conduc-
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tivity in these Ti-V alloys and (ii) the indirect Maki-Thompson contribution,

which was originally proposed particularly for the low-TC superconductors,

is negligible in the present Ti-V alloys.

Figure 5.5: The temperature dependence of the electrical resistivity and heat
capacity of the Ti0.8V0.2 alloy. The temperature dependence of heat capacity
is (C) plotted in C/T versus T 2 fashion. These curves exhibit a change of
slope at T ∼5.5 K, which is above the TC of this alloy.

The ∆σ(ε) curve of the Ti0.8V0.2 alloy exhibits an abrupt jump at ε ∼0.3

[Fig. 5.3(d)]. Qualitatively very similar behaviour has been observed previ-

ously in YBa2Cu3O7 [173], Bi2Sr2Ca2Cu3Ox [174] and Tl2Ba2CaCu2Ox thin

films [175], where the observed effect is inferred to occur due to a distribution

of TC within these samples [176]. For Ti0.8V0.2 alloy, the resistive transition

from the normal to the superconducting state is observed to be significantly

broadened, and such a broadened resistive transition is an indication of the

presence of TC distribution in this sample. Moreover, for this alloy, both the

temperature dependence of resistivity [Fig. 5.5(a)] as well as the tempera-

ture dependence of heat capacity (C) plotted in C/T versus T 2 fashion [Fig.
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5.5(b)] exhibit change of slope at T ∼5.5 K (ε ∼0.3) which is clearly larger

than the TC of this alloy. The change of slope in the ρ(T ) and C/T versus

T 2 curves occurring at a temperature well above the TC further indicates the

presence of some superconducting regions with TC values relatively higher

than that of the main superconducting matrix. As a result of this the mea-

sured excess conductivity is strongly affected by the distribution of TC within

this sample at temperatures ε <0.3, and thereby preventing us to compare

the experimental ∆σ(ε) data with the AL theoretical model.

Table 5.1: The superconducting transition temperature and the coherence
length of the Ti-V alloys.

Ti0.4V0.6 Ti0.6V0.4 Ti0.7V0.3 Ti0.8V0.2

TmfC (K) 7.4 7.0 6.6 4.6
ξ(0) from AL theory (nm) 5.4 4.5 5.5 −
ξ(0) from HC2(0) (nm) 5.5 4.9 5.3 6.1

ξ(0) from extended AL theory (nm) 5.5 4.6 5.0 5.7

In the present Ti-V alloys, the AL behaviour of the measured excess con-

ductivity persists up to ε ∼0.1. At further higher temperature, the excess

conductivity falls much more rapidly than predicted from the AL theory,

and is observed to be measurable only up to the temperature ∼2TC . The

disagreement between the AL theory and the experimentally measured ex-

cess conductivity data at high temperature regime is commonly observed in

various superconducting samples [158, 161, 171, 172, 177, 178]. This dis-
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agreement is attributed to the short-wavelength fluctuations which become

increasingly important at high temperature regime [179]. However, an ex-

tended AL model is proposed recently by Leridon et al. [158], which suggests

that the low-temperature (ε ≤0.1) 3D AL behaviour as well as the high-

temperature (ε >0.1) rapid collapse of the excess conductivity data can be

modelled by the same interpolating function given by

∆σ(ε) =

[
e2

16~ξ(0)

] [
2ε0 sinh

(
2ε

ε0

)]− 1
2

, (5.7)

where, ε0 is the only adjustable parameter which along with ξ(0) governs

the collapse of the excess conductivity data at high temperature regime.

The above function well describes the excess conductivity data of Fe-based

[178] and high-TC cuprate superconductors [158] in both low as well as high-

temperature regimes. The excess conductivity data of all the Ti-V alloys are

fitted based on the function given in Eqn. (5.7) in the entire temperature

range of the fluctuation spectrum except at very low temperature regime

where the rapid upturn in the excess conductivity data is observed. The

fittings are shown by the non-linear solid lines in Fig. 5.3. The agreement

of our data with this purely heuristic function is extremely good. The ξ(0)

values obtained from the fittings are given in Table 5.1. These values are

found to be almost identical with those deduced from the HC2(0) values, in-

dicating that in the Ti-V alloys, the AL contribution is the only contribution

giving rise to the excess conductivity in the entire temperature range of the
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fluctuation spectrum of the present alloys.

Figure 5.6: (a), (b) Magneto-resistance of the TixV1−x alloys having com-
positions x= 0.6 and 0.8 at various constant temperatures above TC . Finite
positive magneto-resistance is observed in these alloys at temperatures be-
low ∼ 2TC . (c), (d) Magneto-conductivity of the TixV1−x alloys at different
constant temperatures (open and solid symbols). The solid line denotes the
fitting to the magneto-conductivity data based on Eqn. (5.8).

5.2.4 Magneto-resistance of the Ti-V alloys

The magnetic field dependence of magneto-resistance ∆ρ/ρ(H = 0) = [ρ(H)−

ρ(H = 0)]/ρ(H = 0) at various constant temperatures above TC is shown in

the Figs. 5.6(a) and (b) for two compositions of the Ti-V alloys. These Ti-

V alloys exhibit strong positive magneto-resistance which increases steadily

with increasing magnetic field in the present range of applied magnetic field.
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However, the magneto-resistance becomes gradually weaker as the tempera-

ture is increased, and becomes vanishingly small for T > 2TC . Very similar

behaviour is also observed for other two compositions of the Ti-V alloys

(these results are not shown here for the sake of conciseness). Since both the

rounding-off behaviour of the ρ(T ) curve and the strong positive magneto-

resistance are observed in present the Ti-V alloys in the same temperature

regime, there is a possibility that these observed phenomena are the man-

ifestations of the same physical phenomenon. The magneto-conductivity

∆σ(H)[= σ(H) − σ(H = 0)] associated with the AL contribution to the

excess conductivity for bulk materials has the form [159]

∆σ(H,T ) =
e2

4~

[
2kBT

π~µ

] 1
2
∞∑
n=0

(n+ 1)[(ε′ + pn)−
1
2

+(ε′ + pn+ p)−
1
2 − 2(ε′ + pn+

p

2
)−

1
2 ] (5.8)

where, ε′ = ln(T/TC)+p/2, p = πµe~/2kBT , and µ is the electronic diffusion

coefficient. The above equation nicely describes the magneto-conductivity

data of the present Ti-V alloys at temperatures above TC . This is illustrated

in Figs 5.6(c) and (d). In order to check the consistency of these fittings

we compare the values of µ obtained as fitting parameter with the values

available in the literature. A reasonably good agreement is observed between

these values. For an example, the fitting procedure gives µ ∼0.5 m2/sec for

the Ti0.4V0.6 alloy. Isino [148] had estimated µ ∼0.4 m2/sec for the Ti0.4V0.6

alloy, which is close to the value obtained here. Hence, the present results
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clearly indicate that the strong positive magneto-resistance exhibited by the

Ti-V alloys is resulted from the quenching of the superconducting fluctuations

by the application of magnetic field.

5.3 Summary and conclusions

The temperature dependence of resistivity and the magnetic field dependence

of magneto-resistance in the temperature regime above the superconducting

transition temperature TC is studied in four bulk TixV1−x alloys having com-

positions x = 0.8, 0.7, 0.6 and 0.4. These Ti-V alloys show a clear rounding-

off behaviour in the temperature dependence of resistivity curve in the tem-

perature regime above TC , and the trace of this effect persists up to the

temperature ∼ 2TC . In association with this, the Ti-V alloys exhibit strong

positive magneto-resistance in the temperature regime where the rounding-

off behaviour in the temperature dependence of resistivity curve is observed.

The existing theoretical models for the superconducting fluctuations induced

conductivity consistently describe both the temperature dependence of the

excess conductivity as well as the magnetic field dependence of magneto-

resistance observed in the present Ti-V alloys. These results suggest that

the superconducting fluctuations are responsible for the observed rounding-

off behaviour of the temperature dependence of the resistivity curve in the

present Ti-V alloys. We, therefore, discard the spin fluctuation scenario

which was introduced previously for explaining the observed phenomenon.
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Chapter 6

The normal state properties of
the Ti-V alloys

6.1 Introduction

In the chapter 4, we have observed that for the TixV1−x alloys with con-

centrations x = 0.4, 0.6 and 0.7, the experimentally determined supercon-

ducting transition temperature TC is significantly lower than that estimated

using McMillan formula [19]. We have also pointed out that the presence of

soft-phonon modes and/or spin fluctuations in a material may lead to such

a disagreement between the experimental and theoretical values of TC . In

this chapter, we present the results of our study on the various normal state

properties of these Ti-V alloys to understand the possible reasons behind

this difference between the experimental and theoretical values of TC . Our

studies on the temperature dependence of heat capacity, dc magnetic suscep-

tibility and electrical resistivity indicate the presence of spin fluctuations in

the Ti-V alloys, particularly in those having higher V concentration. This is
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further supported by the observed enhanced Stoner factor and the validity of

the Kadowaki-Woods scaling relation [180] for these Ti-V alloys. Based on

these experimental observations we infer that lower value of the experimen-

tally observed TC as compared to that estimated using McMillan formula is

due to the strong pair-breaking effect of the spin fluctuations. On the basis

of their theoretical study [93], Pictec et al. had also made a similar inference.

Our study reveals that the presence of spin fluctuations in Ti-V alloys not

only explains the difference between the experimental and theoretical values

of TC , but also accounts for the non-monotonic variation of TC as a function

of x in the TixV1−x alloys.

Figure 6.1: (a) The temperature dependence of heat capacity in the tem-
perature range 2-225 K for the Ti-V alloys. The solid lines are the best-fit
curves based on the relation C(T ) = γT + CL (see text for details). (b)
The temperature dependence of heat capacity of the Ti-V alloys presented in
C/T versus T 2 fashion in the temperature range 2-35 K. The non linearity
in the C/T versus T 2 plots observed in this temperature range indicates the
presence of soft-phonon modes or spin fluctuations in these Ti-V alloys.
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6.2 Results and discussion

6.2.1 The temperature dependence of heat capacity of
the Ti-V alloys

In Fig. 6.1(a) we show the temperature dependence of heat capacity for the

Ti-V alloys in the temperature range 2-225 K. In this figure, the scale on

the y-axis actually corresponds to the heat capacity of the Ti0.4V0.6 alloy

only. The rest of the curves are shifted upwards (so as to create a difference

of 5 J/mole-K between any two of the curves at the lowest temperature of

measurement) for better clarity. In this figure the solid lines are the fits to

the experimental data based on the relation C(T ) = γT + CL, where CL

represents the Debye lattice heat capacity which is given by

CL(T ) = 9R

(
T

θD

)3
θD∫
0

x4ex

(ex − 1)2
dx. (6.1)

Here, R is the universal gas constant and θD is the Debye temperature. For

performing the fitting, we take θD and the Sommerfeld coefficient γ as the

fitting parameters. It is evident from Fig. 6.1(a) that the fitting degrades

at low temperatures, and the observed disagreement between the experiment

data and the theory becomes more prominent as the V concentration in these

Ti-V alloys is increased. Such a disagreement between the experimental C(T )

data and the theory may arise from using of a single value of θD to fit the

C(T ) data in a large temperature range. However, our thermal expansion

measurement on the Ti0.6V0.4 alloy indicates that the variation of θD in the
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temperature range from 4.2 K to 300 K is less than 10 % (the experimental

data are not shown here). We have found that the observed disagreement

between the experimental C(T ) data and the theory cannot be accounted

by such a small variation in θD. In Fig. 6.1(b) we show the plots of C/T

as a function of T 2 for the present Ti-V alloys in the temperature range 2-

35 K. A non-linearity with a negative curvature is observed in these plots,

indicating the presence of low energy excitations such as soft-phonons [118,

120, 181] or spin fluctuations [119, 120] in the Ti-V alloys. In the case

of soft-phonons or spin fluctuations, a simplified model has been used in

the literature, in which the phonon density of states F (ω) are represented

by a set of Einstein modes (with frequency ω) having constant spacing in

the logarithmic frequency scale [118]. This simplified model does not give

the detailed map of the phonon density of states that is generally obtained

through the neutron scattering experiments but rather produces a smooth

phonon distribution function F (ω). It is reported in literature that certain

functional of the lattice heat capacity may be used to represent the form of

such phonon spectrum [118]. One such functional (5/4)Rπ4CLT
3 is an image

of the spectrum ω−2F (ω) for ω = 4.928T , where ω is expressed in Kelvin. In

this model, F (ω) is given by [118]

F (ω) =
∑
k

Fkδ(ω − ωk). (6.2)

Using this representation, the lattice heat capacity CL is then given by [118]
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CL = 3R
∑
k

Fk(zk)
2ezk/[ezk − 1]2. (6.3)

Where, zk = ωk/T and Fk is the weight factor for the ωk. The value of k is

so chosen that the least number of terms is sufficient to fit the experimental

heat capacity data. Then Fk is determined by the least square fit with a

condition
∑
k

Fk = 1. We adopt this model to understand the temperature

dependence of heat capacity in the normal state of the present Ti-V alloys.

Figure 6.2: The plots of CLT
−3 as a function of ln(4.928T ) (indicated by

the open symbols with a large density of points) and (4/5)Rπ2ω−2F (ω) as a
function of ln(ω) (dotted bar curves) for the Ti-V alloys.

Fig. 6.2 shows the plots of CLT
−3 = (C − γT )/T 3 as a function of

ln(4.928T ) for the present Ti-V alloys. The presence of soft-phonon or spin
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fluctuations in these alloys is indicated by the increase in CLT
−3 at low values

of ln(4.928T ). The temperature dependence of CL is fitted with the above

equation by considering 10 Einstein frequencies (k=10). The correspondence

between the fit and the data is shown by plotting (4/5)Rπ2ω−2F (ω) as a

function of ln(ω) along with the plot of CLT
−3 against ln(4.928T ). Then the

characteristic phonon scaling frequency ω̄log is estimated as [119]:

ω̄log = exp

[∫
d(lnω)F (ω)ln(ω)∫
d(lnω)F (ω)

]
. (6.4)

The obtained value of ω̄log can be can be used to estimate TC form the Allen-

Dynes form [6.8] of the McMillan formula [19] as

TC =
ω̄log
1.2

exp

[
−1.04(1 + λep)

λep − µ∗(1 + 0.62λep)

]
. (6.5)

In Table 6.1, we present the values of ω̄log and the corresponding TC values

for all the present Ti-V alloys estimated using µ∗ = 0.12 and λep values

obtained from the heat capacity data (given in Table 4.1). In chapter 4,

we have shown that the value of µ∗ is about 0.12 for the Ti-V alloys, and

such a value of µ∗ is commonly used for all the transition metals and their

alloys. We find that for the TixV1−x alloys having concentrations x = 0.4,

0.6 and 0.7, the value of TC estimated using expression (6.5) is still higher

than that obtained experimentally. Hence, the existence of soft-phonons in

these Ti-V alloys cannot explain the observed low value of the experimentally

TC of these alloys. We therefore explore the possibility of the existence of
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spin fluctuations [92, 183] in these Ti-V alloys, which also could lead to a

suppression of TC . In this direction, we now present the results of our studies

on the temperature dependence of dc magnetic susceptibility and electrical

resistivity in the normal state of these alloys.

Table 6.1: TC of the Ti-V alloys estimated with the help of the Allen-Dynes
form of the McMillan formula using µ∗=0.12 and, ω̄log and λep obtained from
the heat capacity data. The values of ω̄log obtained from the analysis of the
heat capacity data are also given.

Ti0.4V0.6 Ti0.6V0.4 Ti0.7V0.3 Ti0.8V0.2

ω̄log(K) 226.3 221.3 235.8 243.5

TC(K) 18.9 11.8 10.7 4.2

6.2.2 The temperature dependence of magnetic sus-
ceptibility of the Ti-V alloys

Fig. 6.3 shows the temperature dependence of dc magnetic susceptibility

χ = M/H for the Ti-V alloys in the temperature range 10-300 K. The mag-

netization (M) was measured in the presence of 1 T magnetic field using

a SQUID magnetometer. The data were corrected for the background sig-

nal. For doing this, the SQUID profiles were measured first for the bare

sample holder (empty straw) at the temperatures and magnetic fields where

the measurements were to be performed on the sample. Then the sample

was inserted into the straw keeping the configuration of the straw same,

and then the SQUID profiles were obtained at the same temperatures and
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Figure 6.3: Temperature dependence of dc magnetic susceptibility χ for the
Ti-V alloys in the temperature range 10-300 K. A peak in the χ(T ) curve is
observed at T ∼200 K for Ti0.4V0.6 alloy. The peak shifts to higher temper-
atures and the magnitude of χ decreases with increasing Ti concentration.
The solid lines represent the fitting based on the Eqn. 1.7.

magnetic fields where the profiles of the empty straw were recorded. The

SQUID profiles for the empty straw were then subtracted from the SQUID

profiles for the sample plus straw configuration, before fitting the profiles

for the estimation of the magnetic moment. Magnetic susceptibility in all

the present Ti-V alloys increases with the increase in temperature. Such be-

haviour is termed as “temperature induced magnetism” which is unlike that

of a paramagnet where the susceptibility decreases with increasing temper-

ature. The temperature induced magnetism observed in various transition

metals is reported to occur due to the temperature dependence of the Pauli

paramagnetism [184]. The temperature dependence of Pauli paramagnetism
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can be expressed within the Fermi liquid picture as [185]:

χ(T ) = χP

[
1 +

1

6
π2(kBT )2

(
1

n

δ2n

δE2

)
EF

−
(

1

n

δn

δE

)2

EF

]
. (6.6)

Here, n = N(0) is the bare electron density of states (DOS) at the Fermi

energy EF , which has been estimated for the present Ti-V alloys using the

band structure calculations (refer to chapter 4). The plots of the bare elec-

tronic density of state of the Ti-V alloys as a function of energy (Fig. 4.3

of chapter 4) are used to estimate the quantities (δ2n/δE2) and (δn/δE) at

EF . The results of these estimations indicate that the coefficient of the T 2

term in the above equation is negative for the TixV1−x alloys having compo-

sitions x = 0.4 and 0.6. This will lead to a decrease in χ with the increase

in temperature, which is not observed experimentally. However, our studies

on electronic structure show that the bare electron density of states at the

Fermi energy is very large and are dominated by 3d electrons. In such case,

the Pauli susceptibility is enhanced due to the spin fluctuations, and the

temperature dependence of χ follows the relation [186, 187]

χ(T ) = χ(0)− bT 2ln

(
T

T ′

)
, (6.7)

where, χ(0), b, and T ′ are constants. The characteristic temperature T ′ is

related to the characteristic temperature TP at which a peak in the temper-

ature dependence of susceptibility occurs, as: TP = T ′/e
1
2 [186, 187]. The
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above equation nicely fits the χ(T ) data of the present Ti-V alloys (Fig. 6.3).

The values of χ(0), b, and T ′ obtained as the fitting parameters are presented

in Table 6.2. It is observed that χ(0) decreases with the increase in Ti con-

centration x in the TixV1−x alloys, whereas T ′ increases as x increases. It is

also observed that the temperature dependence of susceptibility approaches

T 2 behaviour as x increases. This can be interpreted as an indication that the

system approaches toward Fermi liquid behaviour with increasing x. A small

Curie tail is observed at low temperatures, which may be related to a small

amount paramagnetic impurities (not detectable in the XRD measurements)

present in theses alloys. The isothermal field dependence of magnetization

at various constant temperatures above 10 K does not show any indication

of saturation even in 8 T applied magnetic field, and thereby ruling out any

appreciable contribution from ferromagnetic impurities.

We estimate Pauli spin susceptibility χP from the bare electronic density

of states at the Fermi energy using the relation χP = µ0µ
2
BN(0), where µB

is the Bohr magneton and µ0 is the permeability of the free space. This esti-

mate is almost an order of magnitude lower than the experimental magnetic

susceptibility χexp[= χ(0)/µ0], indicating that these Ti-V alloys are enhanced

Pauli paramagnets. In such cases, the Stoner enhancement factor S can be

estimated as

S =
χPexp
χP

. (6.8)

Here χPexp is the experimentally obtained Pauli spin susceptibility. In order
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Table 6.2: Various parameters estimated from the temperature dependence
of dc magnetic susceptibility of the Ti-V alloys in their normal state. The
parameter Tsf is obtained from the temperature dependence of resistivity of
the Ti-V alloys in their normal state.

Ti0.4V0.6 Ti0.6V0.4 Ti0.7V0.3 Ti0.8V0.2

χ(0) (10−10 Wb/A) 5.13±0.03 4.88±0.003 3.55±0.007 3.04±0.003
b (10−16Wb/A-K2) 2.27±0.6 3.85±0.17 4.91±0.28 4.51±0.06

T ′ (K) 372±15 512±12 616±19 757±9
χexp (10−4 unit less) 4.08±0.026 3.88±0.0024 2.82±0.005 2.42±0.002
χPexp (10−4 unit less) 1.81±0.01 1.99±0.001 1.12±0.002 9.08±0.001

Stoner factor S ∼2.04 ∼2.28 ∼1.40 ∼1.18
Wilson’s coefficient RW ∼1.2 ∼1.5 ∼0.94 ∼0.93

Tsf (K) ∼155 ∼90 ∼70 · · ·

to estimate χPexp from χexp, one needs to know the orbital susceptibility χOexp.

However, the estimation of χOexp from the experimental data is rather difficult.

We have taken the values of χOexp of the end members of the Ti-V system from

the literature. These values are reported to be χOexp ∼1.14×10−4 for β-Ti and

χOexp ∼3.02×10−4 for β-V [117]. Linear interpolation between these two end-

values is used to estimate χOexp for the present alloy compositions. Then χPexp

values for the present Ti-V alloys are obtained by subtracting χOexp from χexp,

and these values are given in Table 6.2. The estimated value of S is ∼2 (Table

6.2) for the V-rich Ti-V alloys, indicating the relevance of spin fluctuations

in these alloys. On the other hand, S ∼1 for Ti0.8V0.2 alloy, indicating that

the spin fluctuations are suppressed in Ti-rich Ti-V alloys. We have also

estimated the Wilson’s coefficient RW for the present Ti-V alloys using the
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relation: RW =

(
π2k2

B

3µ2
B

)
χPexp
γ

[188]. The values of the Wilson’s coefficient

RW for the present Ti-V alloys are also given in Table 6.2. We observe that

RW >1 for the TixV1−x alloys having concentration x=0.4 and 0.6, indicating

that these alloys are strongly correlated systems where spin fluctuations are

enhanced [188].

Figure 6.4: Temperature dependence of resistivity of the Ti-V alloys mea-
sured in zero applied magnetic field and in temperature range 10-300 K.

6.2.3 Electrical resistivity of the Ti-V alloys

The temperature dependence of electrical resistivity (ρ) for the present Ti-V

alloys in the temperature range 10-300 K is shown in Fig. 6.4. The magnitude

as well as the temperature dependence of resistivity of these Ti-V alloys is
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observed to depend strongly on the alloy composition. For the TixV1−x

alloys having concentrations x = 0.4 and 0.6, resistivity increases with the

increase in temperature in the entire temperature range of measurement.

For both these alloys, resistivity shows linear temperature dependence at

high temperatures, and a deviation from this linear behaviour is observed at

low temperatures. In the main panel of Fig. 6.5(a), the observed linearity of

the plot of (ρ − ρ0) against T 2 for the TixV1−x alloys with x = 0.4 and 0.6

indicates a quadratic temperature dependence of resistivity of these alloys at

low temperatures. Such a quadratic temperature dependence of resistivity

at low temperature is commonly exhibited by the materials where the strong

presence of spin fluctuations is observed.

Figure 6.5: (a) Resistivity ρ versus T 2 plots for the Ti0.4V0.6 and Ti0.6V0.4

alloys showing the T 2 dependence of resistivity at low temperatures (20-45
K). The inset of (a) show the plot of (ρ− ρ0)/T 2 against T 3 for the Ti0.4V0.6

alloy to illustrate the relevance of the T 5 term in the ρ(T ) data. (b) The plot
of the temperature dependence of resistivity for the Ti0.7V0.3 alloy, where
temperature is plotted in log scale. Its inset shows that the ρ(T ) of this alloy
remains unaffected on the application of magnetic field.
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Although the function ρ(T ) = ρ0 + AT 2 well describes the temperature

dependence of resistivity of the TixV1−x alloys having concentrations x =

0.4 and 0.6 at low temperatures, the fitting improves significantly when an

additional T 5 term is considered in the fitted function. The T 5 dependence

of resistivity at low temperatures is known to arise from the electron-phonon

scattering mechanism. The plot of (ρ− ρ0)/T 2 as a function of T 3 is shown

in the inset to Fig. 6.5(a) for the Ti0.4V0.6 alloy. The observed weak slope

of this plot indicates that the T 5 term has some relevance in the tempera-

ture dependence of resistivity of this alloy at low temperatures, though the

coefficient of the T 5 term is very small (∼10−9 µΩ-cm-K−5) for this alloy.

The coefficient of the T 5 term is also found to be very small but negative

for the Ti0.6V0.4 alloy. The negative as well as the small value of the coeffi-

cient of T 5 term can be explained within the theoretical models of electrical

resistivity which consider the contribution arises from the scattering mecha-

nism between the conduction electrons and the spin fluctuations [189, 190].

The temperature dependence of resistivity arising from the scattering of the

conduction electrons by spin fluctuations can be expressed as [189, 190]

ρsf (T ) = a

(
T

Tsf

)2
[
J2

(
Tsf
T

)
−
(
T

Tsf

)3

J5

(
Tsf
T

)]
. (6.9)

Here, a is an arbitrary constant, Tsf is the characteristic spin-fluctuations

temperature and Jn’s are the standard Bloch-Gruneisen scattering integrals.

On the other hand, the contribution to the resistivity at low temperatures,
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arising from the electron-phonon interactions, is given by [189, 190]

ρph(T ) = b

(
T

θD

)5

J5

(
θD
T

)
, (6.10)

where, b is some constant and θD is the Debye temperature. Then the total

ideal resistivity at low temperatures will be obtained by combining the above

two contributions, and is given as

ρ(T ) = ρsf (T ) + ρsf (T ) =

(
a

T 2
sf

)
J2

(
Tsf
T

)
T 2 +[(

b

θ5
D

)
J5

(
θD
T

)
−

(
a

T 5
sf

)
J5

(
Tsf
T

)]
T 5. (6.11)

It is evident from Eqn. (6.11) that the electron-spin fluctuations interactions

not only give rise to the quadratic temperature dependence of resistivity at

low temperatures but also attenuates the usual Bloch-Gruneisen T 5 term.

Furthermore, the coefficient of the T 5 term may be even negative if the con-

tribution arises from the electron-spin fluctuations scatterings is greater than

that from the electron-phonon scatterings. Thus, we find that all the char-

acteristic features observed in the temperature dependence of resistivity of

the Ti0.4V0.6 and Ti0.6V0.4 alloys at low temperatures can be explained by

considering the presence of spin fluctuations in these alloys. The coefficient

A of the T 2 term in the temperature dependence of resistivity is found to de-

crease with the increase in x, which indicates that the role of spin fluctuations

diminishes with the increase in Ti concentration in the Ti-V alloys. The tem-
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perature at which resistivity exhibits a deviation from the linear temperature

dependence at high temperature regime can be taken as the characteristic

spin-fluctuation temperature Tsf . The values of Tsf for the TixV1−x alloys

with compositions x = 0.4 and 0.6 are given in Table 6.2. It then seems

reasonable to assume that the observed deviation of the experimental C(T )

data from the curve fitted by considering the contributions from electrons

and the lattice may be due to increasing importance of spin fluctuations in

these Ti-V alloys at temperatures below Tsf , and therefore, the temperature

for observing such deviation can be considered as Tsf . Accordingly, we have

estimated Tsf values for the TixV1−x alloys with x = 0.4 and 0.6 from the

heat capacity data, which are found to be very similar to those obtained from

the resistivity data. On the other hand, Frings and Franse had shown that

the Tsf may be identified from the χ(T ) data as the temperature at which

the second derivative of χ with respect to temperature goes to zero [191]. For

an example, the second derivative of χ goes to zero at temperature T ∼120

K for the Ti0.6V0.4 alloy, which is slightly higher than the Tsf value obtained

from the temperature dependence of resistivity and heat capacity data.

The temperature coefficient of resistivity (TCR) α (= dρ/dT ) is negative

for the Ti0.7V0.3 and Ti0.8V0.2 alloys over a considerably large temperature

range. These results are consistent with the previous studies, where a nega-

tive TCR was reported for the TixV1−x alloys having concentrations in the

range 0.6< x <0.85 [42-44]. For the Ti0.7V0.3 alloy, the resistivity initially

decreases as the temperature is decreased from 300 K, and reaches to the
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minimum value near to 210 K. Resistivity then starts to increase with fur-

ther lowering of the temperature from 210 K down to 65 K. For temperatures

below 65 K, ρ(T ) curve exhibits another weak minimum at temperature close

to 30 K, which is visible in the inset of the Fig. 6.5(b). The main panel of

Fig. 6.5(b) shows the temperature dependence of resistivity for the Ti0.7V0.3

alloy, where temperature is plotted in log scale. In the temperature range

70-170 K, ρ(T ) curve is linear with a negative slope which indicates a −lnT

dependence of resistivity of this alloy in the said temperature regime. The

−lnT dependence of resistivity is known to arise due to either the spin-Kondo

effect [192] or TLS (Two-level-system)-Kondo effect [72]. The spin-Kondo

effect arises due to the screening of the magnetic moments by conduction

electrons in very dilute magnetic alloys, and the effect is known to depend

strongly on the applied magnetic field [72]. However, in the present case, it

is observed that the ρ(T ) curve of the Ti0.7V0.3 alloy remains unaffected by

the application of magnetic fields. This is shown in the inset of Fig. 6.5(b),

where the temperature dependence of resistivity measured in zero and 5 T

applied magnetic fields is shown for this alloy in the temperature range 10-

300 K. On the basis of this observation we argue that the observed −lnT

dependence of resistivity of the Ti0.7V0.3 alloy cannot be of magnetic origin.

The observed behaviour of ρ(T ) is therefore attributed to the TLS-Kondo ef-

fect. The TLS-Kondo model has been used previously in order to explain the

negative TCR of the Ti-V [47] as well as Nb-Ti alloys [46, 47, 193]. The pre-

vious studies suggest that the TLS-Kondo effect is related to the formation
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of the submicroscopic ω phase precipitations within the main β phase matrix

of these disordered transition metal alloys. The ω phase precipitations are

known to be formed due the lattice instability associated with the main β

phase matrix. In fact, the TLS-Kondo effect becomes the dominant mech-

anism for the electron scattering process in transition metal alloys, which

are at the verge of the β to ω structural phase transformation [194]. Previ-

ously, C. C. Tsuei had suggested that the formation of the submicroscopic

ω phase can lead to structural indeterminacy in the atomic arrangements in

these disordered transition metal alloys [194]. Consequently, there exist a

number of local atomic arrangements which are energetically equivalent. As

a possible consequence of this fact, a significant number of atoms or group of

atoms can tunnel between the states of equivalent energies, i.e., the atoms or

group of atoms constitute the two-level-systems (TLS) [194]. The TLS model

due to Cochrane et al. [72] explains that the two-level state can scatter the

conduction electrons in a way analogous to the spin-Kondo type exchange

interactions giving rise to the negative TCR with a characteristic −lnT de-

pendence of resistivity in many disordered materials. The present Ti0.7V0.3

alloy contains ω phase within the main β phase matrix of this alloy, which

clearly indicates the instability of the main β phase matrix of this alloy. In

such case, the exhibition of the TLS-Kondo effect is indeed expected.

We have already stated above that a weak dip-like feature is observed

in the ρ(T ) curve of the Ti0.7V0.3 alloy at temperatures below 65 K. Such a

resistivity dip indicates the interplay of at least two kinds of resistivity con-

162



tributions with opposite signs of TCR, e.g., a negative TCR due to the TLS-

Kondo effect, and a positive TCR that may arise due to various mechanisms

including electron-phonon, electron-magnon, and the electron-spin fluctua-

tions scattering. However, the phononic contribution is generally observed

to be negligible in materials where the TLS-Kondo scattering is a dominant

electron scattering process [194]. Moreover, the role of the electron-phonon

scattering is expected to be much reduced at low temperatures. We have

already ruled out the presence of any appreciable magnetic impurities in the

present Ti-V alloys. Hence, the possibility of a contribution towards the pos-

itive TCR due to the electron-magnon scattering can also be ruled out for the

Ti0.7V0.3 alloy. However, a quadratic temperature dependence of resistivity

is observed at low temperatures in the case of Ti0.4V0.6 and Ti0.6V0.4 alloys,

which has been inferred to arise due to the scattering of the conduction elec-

trons by spin fluctuations. Hence, we infer that the dip-like feature observed

in the ρ(T ) curve of the Ti0.7V0.3 alloy at low temperatures arises due to the

contributions from the TLS-Kondo scattering mechanism and most probably

the electron-spin fluctuations scattering mechanism, which becomes effective

only below the spin fluctuation temperature Tsf . In such a case, we can es-

timate Tsf for this alloy by finding the temperature below which resistivity

exhibits a deviation from showing a −lnT behaviour at low temperatures. A

value of Tsf ∼65 K is obtained for the Ti0.7V0.3 alloy, which is lower as com-

pared to the Tsf of both Ti0.4V0.6 and Ti0.6V0.4 alloys. Moreover, we observe

that the characteristic spin fluctuation temperature Tsf gradually decreases
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with the increase in Ti concentration in the Ti-V alloys. This result again im-

plies that the role of spin fluctuations in the Ti-V alloys becomes suppressed

as the Ti concentration is increased in these alloys.

Figure 6.6: (a) Resistivity versus
√
T plot for the Ti0.8V0.2 alloy to show the

−
√
T dependence of resistivity at low temperatures (16-50 K). Its inset show

the plot of the temperature dependence of resistivity of the Ti0.8V0.2 alloy,
where temperature is plotted in log scale. (b) The magneto-resistance of the
Ti0.8V0.2 alloy at various constant temperatures.

The TCR is negative for the Ti0.8V0.2 alloy in the entire temperature

range of the present measurements [Fig. 6.4(d)]. The main panel of Fig.

6.6(a) shows the plot of resistivity against
√
T in the temperature range

15-60 K for the Ti0.8V0.2 alloy. The observed linearity of this plot with a

negative slope suggests that the resistivity in this alloy varies with temper-

ature as ρ(T ) ∝ −
√
T in the said temperature range. At higher tempera-

tures, ρ(T ) curve deviates from showing the −
√
T behaviour, and follows the

−lnT dependence for temperatures above 200 K [shown in the inset of Fig.

6.6(a)]. In Fig. 6.6(b), we show the field dependence of magneto-resistance

164



of the Ti0.8V0.2 alloy at few selected constant temperatures. Superconducting

fluctuation induced conductivity gives rise to the strong positive magneto-

resistance in this alloy at temperatures up to about 15 K (refer to chapter 5).

For still higher temperatures, a weak negative magneto-resistance is observed

for this alloy. However, the magneto-resistance becomes vanishingly small at

temperatures T=80 K and above (these data are not shown here). The nega-

tive magneto-resistance along with the−
√
T dependence of resistivity implies

that the electron conduction mechanism in the Ti0.8V0.2 alloy is governed by

the weak-localization effect [195]. In fact, weak-localization effect is known

to become important particularly in highly disordered materials. Among all

the present Ti-V alloys, Ti0.8V0.2 alloy has the highest value of normal state

resistivity. This indicates that the degree of disorder is the highest in the

Ti0.8V0.2 alloy among the present T-V alloys. The mean free path for the con-

duction electrons `e is estimated for this alloy using the free electron model,

which comes out to be almost comparable to the inter-atomic distance. Such

a small value of `e is generally considered to be a pre-requisite for observ-

ing the weak-localization effect. However, the weak-localization is known to

be a low-temperature phenomenon, and generally becomes less significant

at higher temperatures. Consequently, the TLS-Kondo effect becomes the

dominant electron scattering mechanism to govern the electrical resistivity

of the Ti0.8V0.2 alloy at high temperature regime. This is indicated by the

observed −lnT dependence of resistivity and almost zero magneto-resistance

of this alloy at high temperature regime.
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Figure 6.7: Kadowaki-Woods scaling for the Ti0.4V0.6 (black solid circle) and
Ti0.6V0.4 (red solid square) alloys along with various heavy Fermion and spin
fluctuation systems. The solid line represents the function A/γ2 = 1.0×10−4

µΩ-cm(mole/mJ)2.

6.2.4 Validity of the Kadowaki-Woods scaling relation
for the Ti-V alloys

For the heavy Fermion and Spin fluctuation systems, the coefficient A of the

quadratic term in the temperature dependence of resistivity and the Som-

merfeld coefficient of the electronic heat capacity γ scale according to the

Kadowaki-Woods relation [180] given as: A/γ2 = 1.0× 10−4 µΩ-cm2(mole/mJ)2.

The plots of the coefficient A against γ for the TixV1−x alloys with composi-

tions x = 0.4 and 0.6 along with various heavy Fermion and spin fluctuation

systems are shown in Fig. 6.7 in log-log scales. The Kadowaki-Woods scal-

ing relation is found to be valid for both these Ti-V alloys, which further

supports the presence of spin fluctuations in the Ti-V alloys.
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6.2.5 Suppression of TC due to spin fluctuations in the
Ti-V alloys

The influence of spin fluctuations on the suppression of TC of a superconduc-

tor is known to be non-trivial. The strong suppression of TC in the elemental

superconductors such as V and Nb [92, 196, 197], and the absence of super-

conductivity in Pd and Pt [89, 198] are known to be due to the strong presence

of spin fluctuations in these materials. We therefore revisit the problem of

TC in the Ti-V alloys with the inclusion of the effect of spin fluctuations in

these alloys. In such case, TC can be estimated using the modified McMillan

formula which takes into account the effect of spin fluctuations, and is given

by [199]

TC =
θD

1.45
exp

[
−1.04(1 + λeff )

λeff − µ∗eff (1 + 0.62λeff )

]
. (6.12)

In the above expression, λeff and µ∗eff are the normalized parameters which

are expressed as λeff = λep/(1 +λsf ) and µ∗eff = (µ∗+λsf )/(1 +λsf ), where

λsf being the electron-spin fluctuations coupling constant [199]. In the pre-

vious chapter as well as in Sec. 6.2 of the present chapter, the considerations

for the spin fluctuations were not taken into account for the estimation of TC

using McMillan formula. Considering the additional re-normalization due to

the electron-spin fluctuation interactions the Sommerfeld coefficient of the

electronic heat capacity can be expressed as

γ =
1

3
π2k2

BN(0)(1 + λep + λsf ). (6.13)
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Using the value of N(0) obtained from the band structure calculations and

the experimentally measured TC , θD and γ values in Eqns. (6.12) and (6.13),

we can estimate the values of λep and λsf without any ambiguity. The values

of λep and λsf thus estimated for the present TixV1−x alloys are given in Table

6.3. We observe that in the TixV1−x alloys, both λep and λsf increase with

the decrease in the Ti concentration x. This implies that the initial increase

in the experimental TC with decreasing x down to 0.4 is due to the increase

in electron-phonon coupling constant. With further decrease in x below 0.4,

the experimental TC decreases and reaches a value of about 5.4 K for pure

V [see Fig. 1.13 (a)]. For the β phase TixV1−x alloy system, the residual

resistivity ρ0 decreases progressively as x is decreased [70]. Accordingly,

dρ/dT is expected to increase progressively as x is decreased in these β

phase TixV1−x alloys. Since λep ∝ dρ/dT [196], then λep is also expected to

increase with the decrease in x in the TixV1−x alloys. For the present Ti-V

alloys, the observed trend of the variation of λep with the alloy concentration

is consistent with this prediction. Moreover, a relatively higher value of

λep ∼1.3 for the elemental V [91, 92] is also commensurate with the above

prediction. Since both λep and θD [see Fig. 1.12(a)] increases with the

decrease in Ti concentration x in the TixV1−x alloys with x ≤0.4, then if we

disregard the influences of the spin fluctuations, TC should increase as x is

decreased in these Ti-V alloys. In spite of this, the experimental TC is found

to decrease as x is lowered below 0.4. We attribute this to the much stronger

influence of the spin fluctuations on TC of the V-rich Ti-V alloys.
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Table 6.3: The electron-phonon coupling constant λep and the electron-spin
fluctuation coupling constant λsf for the Ti-V alloys.

Ti0.4V0.6 Ti0.6V0.4 Ti0.7V0.3 Ti0.8V0.2

λsf 0.12±0.001 0.042±0.002 0.04±0.002 0

λep 1.068±0.005 0.86±0.005 0.84±0.002 0.59±0.001

6.3 Summary and conclusions

We have studied the normal state properties of the Ti-V alloys by measuring

the temperature dependence of heat capacity, dc magnetic susceptibility and

electrical resistivity. We have estimated the Stoner enhancement factor S

and also test the validity of the Kadowaki-Woods scaling relation in order to

ascertain the presence of spin fluctuations in the Ti-V alloys. The outcome

of the study on the normal states properties of the Ti-V alloys is then used to

explain the observed disagreement of the experimental TC with the theory.

The following conclusions are made in this chapter.

(i) The presence of spin fluctuations in the Ti-V alloys rich enough in V

concentration is inferred from: (a) the observed deviation of the exper-

imental heat capacity data from the fitted curve based on the relation

C(T ) = γT + CL(T ) at low temperatures, where CL(T ) represents

the Debye lattice heat capacity; (b) the non-linearity and the negative
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curvature in C/T versus T 2 plots at low temperatures; (c) −T 2ln(T )

dependence of the dc magnetic susceptibility; (d) the enhancement of

the Stoner factor S; (e) a higher value of the Wilson’s coefficient RW

than unity; (f) T 2 dependence of resistivity at low temperatures; and

(g) the validity of the Kadowaki-Woods scaling relation. The role of

spin fluctuations is diminished with the increase in Ti concentration in

the Ti-V alloys.

(ii) The presence of spin fluctuations gives rise to a strong suppression of

TC in the TixV1−x alloys having concentrations x = 0.4, 0.6 and 0.7.

(iii) Similar to λep and θD, λsf is also found to increase with the decrease in

Ti concentration x in the TixV1−x alloys. We suggest that the initial

increasing trend of TC of the TixV1−x alloys with the decrease in x

down to 0.4 is due to the increase of both λep and θD with the decrease

in x. In spite of increase of both λep and θD with increasing x in the

TixV1−x alloys, TC exhibit a decreasing trend with further lowering of

x below 0.4 and reaches a value of about 5.4 K for elemental V. We

have attributed this to the increasing role of the spin fluctuations with

the decrease in x in the V rich end of the Ti-V alloy system.
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Chapter 7

Critical current and flux-line
pinning in the Ti-V alloys

7.1 Introduction

In chapter 3 we have seen that the present Ti-V alloys contain various kinds

of lattice defects. These are the grain boundaries, edge dislocations, and the

secondary phases such as the hexagonal ω phase, hcp α phase, and the stress

induced orthorhombic α′ phase. These lattice defects are expected to act

as flux-line pinning centres, and hence their presence is likely to influence

the critical current density of the Ti-V alloys. In this chapter we study

the flux-line pinning properties in the Ti-V alloys through dc magnetization

measurements. We estimate the critical current density of these alloys from

the isothermal magnetic field dependence of magnetization. The magnetic

field dependence of the pinning force density is analysed to find out the roles

of these metallurgical factors on the critical current density in the Ti-V alloys.
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7.2 Results and discussion

7.2.1 Magnetic field dependence of magnetization

Figure 7.1: M(H) curves for few selected Ti-V alloys at various constant
temperatures below TC . (f)-(g) M(H) curves highlighting the peak-effect in
the Ti-V alloys. (i) Illustration of the determination of HIrr from the M(H)
curve closure.

Fig. 7.1 present the magnetic field dependence of magnetization (M)

of few selected Ti-V alloys at various constant temperatures below their
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respective TC . The M(H) curves are distinctly irreversible over a certain

magnetic field regime. Except in the annealed Ti0.7V0.3 alloy, all the as cast

and annealed Ti-V alloys exhibit a clear signature of the peak-effect in the

magnetic field dependence of magnetization [Fig. 7.1(f)-(h)]. The upper

critical field HC2 and the irreversibility field HIrr for these Ti-V alloys at

various temperatures are estimated from the M(H) curves. The method of

estimation of the HC2 has been discussed in chapter 4, and HIrr is taken as

the magnetic field value at which irreversible magnetization ∆M goes to zero

within the limit of the resolution of the present experimental set-up.

The temperature dependencies of HC2 and HIrr for the annealed Ti-V

alloys are shown in Fig. 7.2. Unlike in typical low-TC superconductors, in

the present Ti-V alloys particularly in those having higher Ti concentration,

HIrr(T )-line is noticeably depressed below the HC2(T )-line. For an example,

at 5 K temperature, the HIrr value for annealed Ti0.7V0.3 alloy is almost

1.5 T lower than the HC2 value. The lower value of the HIrr than the HC2

is common in high-TC cuprate superconductors [200, 201], Chevrel phase

superconductors [202-206], and MgB2 superconductor [207-209], where solid

flux-line system undergoes a transition into vortex-liquid at magnetic field

much below the HC2 due to the increasing importance of thermal fluctuations

in these superconductors. The Ginzburg number Gi was estimated to be

∼ 10−5 for the Ti-rich Ti-V alloys (see chapter 4), which indicates that

the thermal fluctuation is indeed important in these bulk Ti-V alloys. This
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is further confirmed by the magnetic relaxation experiments, the results of

which will be discussed in detail in chapter 9. On the basis of these facts, we

suggest that in the Ti-rich Ti-V alloys, thermal fluctuations lower the HIrr

to a magnetic field value much lower than the HC2, though this observed

effect is not as strong as is observed in the high-TC superconductors.

Figure 7.2: Temperature dependence of the characteristic fields HC2 and HIrr

for the annealed Ti-V alloys (in solid symbols). The solid lines are the guide
to the eyes. The dotted line is the fit to the HIrr(T ) data of the Ti0.7V0.3

alloy based on the relation HIrr(T ) ∝ (1− T/TC)n.
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As evident from Fig. 7.2, the temperature dependence of HIrr of the

Ti0.7V0.3 alloy is distinctly different from that of the other Ti-V alloys studied

here. In order to understand the distinct feature of the HIrr(T ) data of

the Ti0.7V0.3 alloy, we fit the HIrr(T ) data using the power law relation:

HIrr(T ) ∝ (1 − T/TC)n. The best fitting of the experimental data points

is obtained for n=1.43 (the fitting is shown by the dotted curve in Fig.

7.2). This is very close to the (1 − T/TC)1.5-dependence of HIrr, which

is theoretically predicted for both the phase transition from vortex-glass to

vortex-liquid state [38] as well as for the de-pinning of the flux lines due to the

thermal fluctuation effect [210]. The superconducting mixed state properties

of the Ti0.7V0.3 alloy will be studied in detail in chapter 8, where we shall

attempt to find out whether the HIrr(T )-line of this alloy is a de-pinning line

or a glass-transition line.

7.2.2 Magnetic field dependence of the critical current
densities in the Ti-V alloys

The irreversible magnetization of a superconductor is related to the critical

current density JC . The critical current density JC for the present Ti-V alloys

is estimated from the irreversible magnetization using Bean’s critical state

model [27]. According to this model, JC for a rectangular sample is given by

[211]

JC = 20∆M [
b

(1− a/3b)
]. (7.1)
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Figure 7.3: (a)-(h) Magnetic field dependence of critical current density JC
for the as cast and annealed Ti-V alloys at various constant temperatures
below their respective TC (JC is plotted in log scale). (i) JC(H) curves for
the annealed Ti0.7V0.3 alloy plotted in log-log scales to illustrate the sharp
drop-off of JC in high magnetic field regime.
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Here ∆M is the difference in magnetization between the H-decreasing and

the subsequent H-increasing branch. The parameters 2a and 2b (a > b) are

the dimensions of the sample in the directions normal to the direction of the

applied magnetic field. The field dependence of JC estimated for the an-

nealed and as cast Ti-V alloys at various constant temperatures below their

respective TC is shown in Fig. 7.3. As cast Ti0.7V0.3 alloy has the highest

JC value among all the present Ti-V alloys. At 2 K temperature and in 2 T

magnetic field, JC for this alloy is ∼ 108 A/m2. In the annealed and as cast

Ti0.4V0.6 alloys, JC exhibits moderate field dependence up to HIrr. On the

other hand, JC in the Ti-rich Ti-V alloys exhibits moderate field dependence

only in low magnetic field regime while it drops with increasing magnetic

field at an unusually faster rate in high magnetic field regime near to HIrr.

These features are more clearly visible in Fig. 7.3 (i), where JC(H) curves

for the annealed Ti0.7V0.3 alloy are plotted in log-log scales. Since thermal

fluctuations are important in the magnetic field regime close to HIrr, the ob-

served sharp drop in high-field JC seems to be related to the de-pinning of the

flux lines due to thermal fluctuations effect. Similar high-field JC behaviour

is also observed in MgB2 superconductor, where the observed behaviour is

ascribed to the increased role of thermal fluctuations in this superconductor

[207, 212]. On the basis of the results of our estimations of the superconduct-

ing parameters of the Ti-V alloys, we have suggested in chapter 4 that the

V-rich Ti-V alloys are expected to be superior than the Ti-rich Ti-V alloys

from JC point of view because the line tension energy EL[= (Φ0/4πλ)2lnκ]
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of the flux line is higher for the V-rich Ti-V alloys. A higher value of the line

tension energy in the V-rich Ti-V alloys implies that these alloys are capable

to compete with the thermal fluctuations effect, and thereby could sustain

dissipation-less current to flow up to higher magnetic fields. In agreement

with this, the drop-off in the high-field JC is less severely observed in the

case of Ti0.4V0.6 alloy, and also the HIrr lies very close to the HC2 for this

alloy.

In order to understand the pinning mechanisms prevalent in the present

Ti-V alloys, we estimate the pinning force density FP for these alloys using

the relation: FP = JC ×H. In Fig. 7.4, we show the magnetic field depen-

dence of the estimated FP for the present Ti-V alloys at various constant

temperatures. A detailed analysis of the field dependence of pinning force

density in terms of the size, spacing and nature of the pinning centres, and

the nature of their interaction with the flux-lines has been done by Dew-

Hughes [213]. It is normally expected that the pinning force density for a

type-II superconductor follows the general form [7.16]: fP ∝ hp(1−h)q, with

fP = FP/FP,max and h = H/HC2. Here, FP,max is the maximum value of FP

at a particular temperature, and the values of p and q depend on the details

of the pinning mechanism. According to the model of Dew-Hughes [213], if

both the size and spacing of the pinning centres are larger than the magnetic

field penetration depth of the superconductor then H can adjust everywhere

to its equilibrium value, which is different within the pinning centres from

that in the superconducting matrix. The flux-line pinning resulted from this
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Figure 7.4: Magnetic field dependence of pinning force density FP for the as
cast and annealed Ti-V alloys at various constant temperatures below their
respective TC .
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difference is said to originate from the magnetic interaction [213]. If the size

or the spacing of the pinning centres is less than the magnetic field penetra-

tion depth, then H cannot adjust to its local equilibrium value and adjusts

to some other suitable value. Then the flux-line pinning originates from the

difference in the superconducting properties, and is said to originate from

core interaction [213]. On the basis of these two types of interactions, the

following functional forms for the field dependence of pinning force density

are available in Dew-Hughes model:

(i) Normalized function F1: fP ∝ h
1
2 (1 − h), for magnetic interaction

with the normal volume pins;

(ii) Normalized function F2: fP ∝ h
1
2 (1− 2h), for magnetic interaction

leading to the ∆κ pinning (also called ∆TC pinning) by the volume

pins, where κ is the Ginzburg-Landau parameter;

(iii) Normalized function F3: fP ∝ (1 − h)2, for core interaction with

the normal volume pins;

(iv) Normalized function F4: fP ∝ h(1−h), for core interaction leading

to the ∆κ pinning by the volume pins;

(v) Normalized function F5: fP ∝ h
1
2 (1− h)2, for core interaction with

the normal surface pins;

(vi) Normalized function F6: fP ∝ h
3
2 (1−h), for core interaction leading

to the ∆κ pinning by the surface pins;
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(vii) Normalized function F7: fP ∝ h(1 − h)2, for core interaction with

the normal point pins; and

(viii) Normalized function F8: fP ∝ h2(1−h), for core interaction leading

to the ∆κ pinning by the point pins.

We have already observed that HIrr is considerably lower than HC2 for

the present Ti-V alloys. In such case, it is necessary to replace the scaling

field HC2 with the HIrr because JC is almost zero above HIrr. This is also

the case for the high-TC cuprate, Chevrel phase, and MgB2 superconduc-

tors. Moreover, it is well known that the magnetic irreversibility associated

with the peak-effect phenomenon has origin(s) different from that of the

main irreversible magnetization observed in the low magnetic field regime

[214]. Hence, for the present Ti-V alloys, a correct determination of the irre-

versibility field associated with the main region of irreversible magnetization

is not possible because of the presence of the peak-effect in the field depen-

dence of magnetization of these alloys. We shall call the irreversibility field

associated with the main irreversible magnetization observed in low magnetic

fields as the H∗ to distinguish it from the HIrr. Thermal fluctuations can

also influence the FP in high magnetic field regime, which may also lead to

some uncertainty in the determination of H∗. In such situations, the irre-

versibility field associated with the main irreversible magnetization can be

alternatively determined from the linear extrapolation of the FP (H) curve

(immediately after the main peak) to FP = 0 by completely disregarding

the zone affected by peak-effect and/or thermal fluctuations [215]. However,
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Dew-Hughes model suggests that the FP (H) curves are in general not ex-

pected to be linear except in the close vicinity of the reduced field h = 1,

and this is also evident from the experimental FP (H) curves shown in Fig.

7.5. Therefore, the straightforward method described above will provide an

erroneous determination of H∗. However, with simple mathematical manip-

ulation of the functional form fP ∝ hp(1 − h)q, we can get the functions

J
1/q
C H(1−p)/q which are linear in H. Following this, we plot the experimental

JC(H) data in J
1/q
C H(1−p)/q versus H fashion for different sets of values of p

and q suggested in the Dew-Hughes model. For a certain set of p and q values,

the plot of J
1/q
C H(1−p)/q against H will be linear, and the linear extrapolation

of these plots to J
1/q
C H(1−p)/q = 0 will provide an accurate estimation of H∗.

This is illustrated in Fig. 7.5. We have used this method to find out H∗,

and these values are used to interpret the pinning mechanism(s) prevailing in

the main region of irreversible magnetization with the help of Dew-Hughes

model.

Fig. 7.6-7.10 shows the normalized pinning force density fP as functions

of reduced field h = H/H∗ for the as cast and annealed Ti-V alloys at dif-

ferent constant temperatures below their respective TC . As shown in Fig.

7.6(a), the fP (h) curves for the annealed Ti0.8V0.2 alloy at various constant

temperatures below TC do not exhibit scaling behaviour. Moreover, at low

temperatures, the fP (h) curves exhibit a hump like feature in low reduced

magnetic field regime. This is more clearly visible in Fig. 7.6(b). These

observations indicate that more than one kind of pinning mechanisms is op-
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Figure 7.5: (a) J
1/q
C H(1−p)/q versus H plots for the annealed Ti0.8V0.2 alloy.

The plot is linear for p = 1 and q = 2 (main panel), whereas it becomes non-
linear for other sets of p and q values available in the Dew-Hughes model.
For an illustration J

1/q
C H(1−p)/q versus H plot for p = 0.5 and q = 2 is shown

in the inset. (b) J
1/q
C H(1−p)/q versus H plots for the as cast Ti0.7V0.3 alloy for

p = 0.5 and q = 2. The characteristic field H∗ is determined from the linear
extrapolation of these plots to J

1/q
C H(1−p)/q = 0.

Figure 7.6: Normalized pinning force density fP against the reduced mag-
netic field h = H/H∗ for the annealed Ti0.8V0.2 alloy at different constant
temperatures below TC . The open symbols represent the experimental data
while the solid lines represent the fittings based on normalized functions F5

and F7 available in the Dew-Hughes model.
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erating in this alloy. However, in the temperature range 2.5-3.25 K, the fP (h)

curves for the annealed Ti0.8V0.2 alloy exhibit marginal scaling behaviour in

high reduced magnetic field regime above h >0.3. The fP (h) curves in this

reduced magnetic field regime are observed to be well explained with the

normalized function F7 [Fig. 7.6(b), where only the fP (h) at 2.5 K is shown

for clarity], indicating that the normal point pins are the major source of

flux-line pinning mechanism in this magnetic field regime. In Fig. 7.6(b), we

also observe that the low-field hump in the fP (h) curve can be fitted with

the normalized function F5, which suggests that the flux-line pinning at the

normal surface pins becomes important in such low magnetic field regime.

Accordingly, at relatively higher temperature (say 3.5 K), where pinning force

is limited only in low magnetic field regime, fp(h) curve follows the normal-

ized function F5 [Fig. 7.6(c)]. As the temperature approaches towards TC , an

additional shoulder-like feature becomes apparent in the fP (h) curve in very

low magnetic field regime, and this becomes more prominent with increasing

temperature [Fig. 7.6(c)]. This additional shoulder-like feature cannot be

explained with the help of any of the functional forms of fP (h) available in

the Dew-Hughes model.

As shown in Fig. 7.7(a), a major portion of the main peak of the fP (h)

curves of the as cast Ti0.8V0.2 alloy is masked by the occurrence of the peak-

effect, and thereby a limited reduced magnetic field regime is available where

the analysis of the field dependence of FP by using Dew-Hughes model is pos-

sible. However, these fP (h) curves exhibit scaling behaviour in the reduced
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Figure 7.7: Normalized pinning force density fP as functions of reduced
magnetic field h = H/H∗ for the as cast Ti0.8V0.2 alloy at different constant
temperatures below TC . The open symbols represent the experimental data
while the solid line represents the fit based on normalized function F5.

magnetic field regime except near to the peak-effect regime [Fig. 7.7(a)], and

the scaled fP (h) curves follow the normalized function F5 [Fig. 7.7(b), where

only the fP (h) at 2.5 K is shown for clarity]. This implies that the normal

surface pins have the major contribution in the flux-line pinning mechanism

in the as cast Ti0.8V0.2 alloy. An additional narrow peak becomes clearly

visible in the fP (h) curves of the as cast Ti0.8V0.2 alloy in very low reduced

magnetic field regime below h <0.08, and this peak can be correlated to the

shoulder-like feature observed in the fP (h) curves of the annealed Ti0.8V0.2

alloy in exceedingly low magnetic field regime.

Fig. 7.8(a) and (c) show that when the temperatures is not very close to

TC , the fP (h) curves of both the annealed and as cast Ti0.7V0.3 alloys exhibit

scaling behaviour in the entire reduced magnetic field region except in the
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Figure 7.8: fP (h) curves for the annealed and as cast Ti0.7V0.3 alloys. The
open symbols represent the experimental data while the solid lines represent
the fits based on normalized function F5.

peak-effect region in the case of as cast Ti0.7V0.3 alloy. Such a scaling be-

haviour of the fP (h) curves indicates that the pinning force in these alloys is

mainly limited by only one type of pinning mechanism. These scaled fP (h)

curves follow the normalized function F5 [Fig. 7.8(a) and (c)], suggesting

that the flux-line pinning occurs mainly at the normal surface pins. At rel-

atively higher temperatures (T ≥5.25 K for the annealed Ti0.7V0.3 alloy and

T ≥4.5 K for the as cast Ti0.7V0.3 alloy), the high-field FP diminishes with

the increase in magnetic field more rapidly than does the low-field FP . As

temperature is increased, this rapid drop in high-field FP occurs at lower re-

duced magnetic field. At high temperatures close to TC , thermal fluctuations

effect becomes very robust to diminish the flux-line pinning particularly in
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the high magnetic field regime where the elastic energy of the flux-line system

is low. Therefore, the observed rapid drop in high-field FP can be correlated

to the de-pinning of the flux lines due to thermal fluctuations.

Figure 7.9: (a) Normalized pinning force density fP against the reduced
magnetic field h = H/H∗ for the annealed Ti0.6V0.4 alloy. The solid lines
represent the fittings of the experimental data based on normalized function
F5. (b) fP (h) curves in low reduced magnetic field region to show that the
experimental fP (h) curves deviate from the fitted curve. (c) FP (H) for the
annealed Ti0.6V0.4 alloy to illustrate the peak-effect in this alloy.

The fP (h) curves of annealed Ti0.6V0.4 alloy are shown in Fig. 7.9(a)

for T ≤5.5 K. These curves show reasonably good scaling behaviour in the

entire reduced magnetic field regime except in very low reduced magnetic

field regime. The observed scaling behaviour indicates that the pinning force

in the annealed Ti0.6V0.4 alloy is mainly limited by only one type of pinning

mechanism in the concerned temperature and magnetic field regime. These

scaled fP (h) curves follow the normalized function F5 [Fig. 7.9(a)], suggesting

that the flux-line pinning occurs mainly at the normal surface pins. The

187



fP (h) curves, however, exhibit an additional source of magnetic irreversibility

in very low reduced magnetic field regime, which is indicated by the upward

shift of the fP (h) curves above the normalized function F5 [Fig. 7.9(b)].

Similar behaviour has also been observed in the case of annealed and as cast

Ti0.8V0.2 alloys. We will address this issue later in this chapter. As shown in

Fig. 7.9(c), the second peak in the fP (h) curve occurring in the high magnetic

field regime (due to the peak-effect phenomenon) appears to coalesce with

the main peak of the fP (h) curve for temperatures T = 6.25 K. For T =

6.5 K and above, the high-field second peak in the fP (h) curve is concealed

within the main peak of the fP (h) curve. This is inferred from the observed

higher value of FP at 6.5 K than at 6.25 K in certain magnetic field region

within the main region of irreversible magnetization [Fig. 7.9(c)]. Due to the

occurrence of the peak-effect phenomenon within and around the main peak

of the fP (h) curves, it is not possible to find out H∗ for temperatures T >6

K. Consequently, we are prevented to carry out the scaling analysis of the

fP (h) curves of the annealed Ti0.6V0.4 alloy in the said temperatures regime.

Qualitatively, very similar results are also obtained for the as cast Ti0.6V0.4

alloy. These results are summarized in Fig. 7.10. Normal surface pins act

as the major pining centres in this alloy for temperatures T ≤4 K, which

is indicated by the observed scaling behaviour of the fP (h) curves, and the

agreement of these scaled fP (h) curves with the normalized function F5 [Fig.

7.10(a)]. The additional magnetic irreversibility observed in very low reduced
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Figure 7.10: (a) fP (h) curves for the as cast Ti0.6V0.4 alloy. The solid lines
represent the fitting of the experimental data based on normalized function
F5. (b) fP (h) curves in low reduced field regime to show that the experimen-
tal fP (h) curves deviate from the fitted curve. (c) FP (H) curves for the as
cast Ti0.6V0.4 alloy to illustrate the peak-effect in this alloy. (d) Temperature
dependence of JC for the same alloy to illustrate the peak-effect.

Figure 7.11: (a) Normalized pinning force density fP against the reduced
magnetic field h = H/H∗ for annealed Ti0.4V0.6 alloy. The solid lines repre-
sent the fittings of the experimental data based on normalized function F5.
(b) fP (h) curve for as cast Ti0.4V0.6 alloy at 2 K.
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magnetic field regime now becomes more prominent in the as cast Ti0.6V0.4

alloy as compared to its annealed counterpart [Fig. 7.10(b)]. At T = 5 K,

this additional magnetic irreversibility is strong enough to mask the main

peak of the fP (h) curve, making the determination of FP,max uncertain at

this temperature. Because of this, we have arbitrarily chosen FP,max for T

= 5 K to perform the scaling analysis of the fP (h) curve. We find that the

fP (h) curve at T = 5 K can also described by the normalized function F5 [Fig.

7.10(b)]. For temperatures T >5 K, a higher value of FP is observed at higher

temperature than at low temperature in certain magnetic field regime [Fig.

7.10(c)]. This corresponds to a hump in the JC(T ) curve in high temperature

regime as is clearly visible in Fig. 7.10(d). Such a hump-like feature in the

JC(T ) curve bears evidence for the occurrence of the peak-effect phenomenon

in this alloy. The peak-effect in the as cast Ti0.6V0.4 alloy occurs well inside

the main region of magnetic irreversibility for temperatures T > 5 K, giving

no opportunity to observe the effect separately in M(H) curve and hence in

JC(H) and Fp(H) curves. As the main peak of the fP (h) curves for T >5 K is

significantly influenced by the occurrence of the peak-effect, we do not bother

for performing the scaling analysis of the fP (h) curves in this temperature

regime.

Fig. 7.11 shows the fP (h) curves for the annealed and as cast Ti0.4V0.6

alloy. For the annealed Ti0.4V0.6 alloy, fP (h) curves scale onto each other

following the normalized function F5 up to reduced fields h ∼0.6, indicating

that the flux lines are pinned by the normal surface pins in this alloy. Like in
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(both the annealed and as cast) Ti0.8V0.2 and Ti0.6V0.4 alloys, an additional

source of magnetic irreversibility is also observed for this alloy in very low

reduced magnetic field regime. On the other hand, in the as cast Ti0.4V0.6 al-

loy, this additional low-field magnetic irreversibility becomes very prominent,

and the broad peak in the fP (h) curves in the region of the main magnetic

irreversibility reduces to a hump-like structure (Fig. 7.4), as is also the case

for the fP (h) curve of the as cast Ti0.6V0.4 alloy at T = 5 K [Fig. 7.10(b)]. In

such case, the uncertainty associated with the determination of FP,max pre-

vents us to carry out a proper scaling analysis of the fP (h) curves in a wide

range of temperature. However, at low temperatures (T = 2 K, 2.5 K and

3 K), it is possible to observe the broad peak of the fP (h) curve separately,

and hence the determination of FP,max is possible without uncertainty. We

find that the fP (h) curves of the as cast Ti0.4V0.6 alloy follow the normalized

function F5 for T = 2 K, 2.5 K and 3 K . Hence, similar to the annealed

Ti0.4V0.6 alloy, the normal surface pins act as the major pining centres in the

as cast Ti0.4V0.6 alloy as well. The result is shown in Fig. 7.11(b) where the

fP (h) curve only at 2 K is shown for clarity.

We now present a detail discussion on the experimental results on the flux-

line pinning properties of the currently investigated Ti-V alloys in terms of

the microstructural properties of these alloys. The XRD results discussed in

chapter 3 indicate that the annealed Ti0.8V0.2 alloy contain a large amount of

ω phase. Since the size of these non-superconducting ω phase precipitates is

usually very small (∼0.01 µm) [62], they act as effective point pinning centre
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for the flux lines. Consequently, their presence in the annealed Ti0.8V0.2 alloy

seems to be the major source of point pins in this alloy. However, this alloy

also contains extended defect like grain boundaries which are two-dimensional

in nature, and thereby can act as normal surface pins. Hence, in the annealed

Ti0.8V0.2 alloy, the dominant contribution of the normal surface pins in low-

field FP , which is inferred from our analysis of the pinning force curves, seems

to arise from the flux-line pinning at the grain boundaries. We have observed

above that the normal point pins become less effective to contribute towards

the pinning force in low magnetic field regime. As compared to the annealed

Ti0.8V0.2 alloy, the pinning force in the as cast Ti0.8V0.2 alloy is limited within

a smaller magnetic field regime [please see the panels (g) and (h) of Fig.

7.3]. Moreover, the as cast Ti0.8V0.2 alloy contains relatively lesser amount

of ω phase as compared to the annealed Ti0.8V0.2 alloy. Consequently, the

contribution of the ω phase towards pinning force becomes reduced, and the

grain boundaries play the major role in flux-line pinning mechanism in the

as cast Ti0.8V0.2 alloy.

The role of the normal point pins in the flux-line pinning mechanism is

expected to be negligible in the annealed and as cast TixV1−x alloys having

compositions x = 0.4, 0.6, and 0.7 because the ω phase is almost absent

in these alloys (only a very small amount of ω phase is present in the as

cast and annealed Ti0.7V0.3 alloy). The results of the structural investigation

also indicate that the defect structures those are present in these alloys are

grain boundaries, edge dislocations (most prominently observed in the as
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cast Ti0.7V0.3 alloy and also in the annealed Ti0.6V0.4 alloy), and α phase (in

the annealed Ti0.7V0.3 alloy and also in the annealed Ti0.4V0.6 alloy but with

very small amount). The presence of the edge dislocations in the present

Ti-V alloys is inferred from the observed lining-up tendency of some dotted

microstructures within the β phase matrix of these Ti-V alloys [37]. Similar

to the grain boundaries, α phase boundaries and the edge dislocations are also

two-dimensional in nature, and thereby can act as normal surface pins. In

commensurate with the results of these structural investigations we find from

our analysis on the field dependence of pinning force curves that the normal

surface pins are indeed the major source of flux-line pinning mechanism in

these alloys. We also find that the JC values obtained in these Ti-V alloys

have a correlation with the average grain size observed in these alloys. The as

cast Ti0.6V0.4 alloy has the largest grain size. The JC value in this alloy is also

observed to be the lowest among all the as cast and annealed TixV1−x alloys

(x = 0.4, 0.6, and 0.7). In the as cast and annealed Ti0.7V0.3 alloys, grains

are observed to be smaller as compared to those in the other Ti-V alloys.

The JC values in the as cast and annealed Ti0.7V0.3 alloys are also observed

to be the higher. However, we observe that the as cast Ti0.7V0.3 alloy has the

highest JC value though the average grain size in this alloy is observed to be

larger than the average grain size of the annealed Ti0.7V0.3 alloy. This may be

due to the presence of additional flux-line pinning mechanism in the as cast

Ti0.7V0.3 alloy, probably provided by the edge dislocations whose presence in

this alloy is indicated by the densely distributed dotted microstrures [please
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see Fig. 3.3 (f) in chapter 3]. Moreover, the presence of substantial amount

of α phase (∼28 %) in the annealed Ti0.7V0.3 alloy effectively reduces the

volume fraction of the superconducting matrix for super-current flow, and

thereby giving rise to a lower value of JC in the annealed Ti0.7V0.3 alloy as

compared to it as cast counterpart. On the other hand, the annealed and as

cast Ti0.4V0.6 alloys have comparable grain size. Consequently, JC values are

found to be almost comparable in these alloys.

When analysing the experimental fP (h) curves of the present Ti-V alloys

we have tried to fit the maximum possible portions of the fP (h) curves with

the help of Dew-Hughes model. However, we were not successful in very low

magnetic field regime where an additional source of magnetic irreversibility is

observed. Such an additional hysteresis can appear from the surface barrier

effects [26, 216, 217], and the irreversibility contributed by such effects is re-

ported [216] to be quite similar to that contributed by flux-line pinning. We

have obtained the evidence of the surface barrier effect in the present Ti-V

alloys with the help of the so called minor hysteresis loop (MHL) technique

[216]. We find that the MHL initiated from the field-increasing envelope mag-

netization curve touches the field-decreasing envelope magnetization curve

following a nearly-linear path without showing any rounding-off behaviour,

as is generally observed in presence of surface barrier effect [216].
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Figure 7.12: (a) The magnetic field dependence of magnetization at different
temperatures to show the peak-effect in the annealed Ti0.8V0.2 alloy. (b)
The magnetic field dependence of magnetization for the annealed and as
cast Ti0.8V0.2 alloys, showing that the peak-effect at 3 K occurs in these two
samples at different value of magnetic fields.

7.2.3 Peak-effect in the Ti-V alloys

All the annealed and as cast Ti-V alloys except annealed Ti0.7V0.3 alloy ex-

hibit the peak-effect in the isothermal field dependence of magnetization.

The peak-effect observed in the present Ti-V alloys exhibits the following

characteristic features:

(i) Magnetic irreversibility within the peak-effect region becomes larger as

the temperature is lowered [Fig. 7.12(a)],

(ii) The peak-effect shifts to higher magnetic field with decreasing temper-

ature [Fig. 7.12(a)],

(iii) The onset field for the peak-effect has a correlation with the magni-

tude of the pinning force density FP in the region of main magnetic
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irreversibility, and it is situated more closer to HC2 for the alloys hav-

ing higher FP value (in the region of main magnetic irreversibility) [Fig.

7.12(b)], and,

(iv) The onset field of the peak-effect in the ascending-field cycle is higher

than that in the descending-field cycle, as clearly shown in Fig. 7.13.

Figure 7.13: Construction of minor hysteresis loops (MHLs) within the peak-
effect regime of the annealed Ti0.8V0.2 alloy. The thick black curves in (a) and
(b) are the envelope magnetization curve. (c) The equilibrium magnetization
(Meq) of the same alloy at 2 K estimated from the MHLs.

The characteristic feature of the peak-effect outlined in point (iv) is also

observed in CeRu2 [218-224], 2H-NbSe2 [225], V3Si [226] superconductors

etc., where the peak-effect is thought to be associated with a field-driven

first-order phase transition in the flux-line lattice. In the high-field phase

of the flux-line lattice, flux lines are pinned to the defect sites more easily,

and thereby giving rise to the enhanced irreversible magnetization. In these

196



superconductors, the behaviour of the minor hysteresis loops (MHLs) within

the peak-effect regime are quite anomalous, and are not in accordance with

the predictions of Bean’s critical state model [218-220, 225-227]. Here, we

study the history effect of the magnetic irreversibility within and around the

peak-effect regime of the present Ti-V samples. Starting from various points

on the envelope M(H) curve within the peak-effect regime, we constructed

MHLs by decreasing magnetic field from the lower envelope M(H) curve, and

by increasing magnetic field from the upper envelope M(H) curve. These

results for annealed Ti0.8V0.2 sample are shown in Fig. 7.13. We observe that

the MHLs initiated from the lower envelope M(H) curve do not reach the

upper envelope curve for magnetic fields lower than HL which corresponds

to the minimum observed in the lower envelope M(H) curve in the peak-

effect regime [Fig. 7.13(a)]. On the other hand, MHLs initiated from the

upper envelope M(H) curve in this field regime undershoot below the lower

envelope M(H) curve [Fig. 7.13(b)]. However, MHLs initiated from both

the upper and lower envelope M(H) curves in the field regime above HL

reach the opposite envelope M(H) curves without showing any overshooting

or undershooting. This observed behaviour of the magnetic hysteresis within

the peak-effect regime are very similar to those reported in the references

[218, 220, 225, 226, 228,229], and are known to be characteristic features

related to the meta-stability (super heating/supercooling) associated with a

first-order phase transition in the flux-line lattice [218, 220].

For further study on the first-order phase transition in the flux-line lat-
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tice, we have estimated the equilibrium magnetization (Meq) which is a ther-

modynamic quantity (M is not a proper thermodynamic quantity). Meq is

estimated from the end points of the MHLs as prescribed by Roy et al. [218].

Fig. 7.13(c) shows that there is a clear jump in the magnetic field dependence

of Meq inside the peak-effect regime, which again indicates a first-order na-

ture of the phase transition taking place in the superconducting mixed state.

We then estimate the latent heat (L) associate with this phase transition us-

ing the Clausius-Clapeyron relation: L = T∆S = T∆Meq(dHPE/dT ), where

HPE corresponds to the applied magnetic field for the onset of the peak-effect

in increasing field branch [218]. The HPE values at different temperatures

were obtained from the experimental M(H) curves, and the slope of the

HPE(T ) curve at 2 K was used to find L. At 2 K, the value of L for annealed

Ti0.8V0.2 alloy comes out to be ∼35 µJ/g. In the annealed Ti0.4V0.6 alloy, L

comes out to be ∼70 µJ/g at 4 K (the related curves are not shown).

Thus, our magnetization measurements show that a first-order phase

transition in the flux-line system of the present Ti-V alloys gives rise to

the peak-effect in the field dependence of magnetization. Such a first-order

phase transition may occur from different origins. Firstly, it is suggested

on theoretical ground that a first-order phase transition in the flux-line sys-

tem may arise due to the formation of the Fulde-Ferrel-Larkin-Ovchinnikov

(FFLO) state in the high-field regime [230, 231], and has been considered

as the possible explanation for the peak-effect in various superconductors

[232-234]. However, the FFLO state is supposed to occur in extremely clean
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and strongly Pauli limited type-II superconductors [218]. Although Ti-V

alloys are strong Pauli limited superconductors, these alloys are dirty limit

superconductors (refer to chapter 4), thereby discarding the possible exis-

tence of the FFLO state in the Ti-V alloy superconductors. Moreover, this

approach cannot explain the different values of HPE at a given temperature

for the annealed and as cast Ti0.8V0.2 alloys, though the (intrinsic) properties

of these samples in their normal state as well as superconducting state are

quite similar.

In a second approach, a field-induced transition from the Abrikosov flux-

line lattice to a softened flux-line lattice (before the actual melting of the

flux-line lattice) is also considered as a first-order phase transition [235]. The

softened flux lines at high field are easily pinned even at the weak pinning

centres, giving rise to the peak-effect in the field dependence of magnetization

curve. However, this approach also cannot explain why does the flux-line

system in the annealed and as cast Ti0.8V0.2 alloys become soft at different

values of field thought the line tension energy ε0 = (Φ0/4πλ)2lnκ is the same

for both these alloys.

Finally, quenched disorders may also induce a phase transition in the flux-

line system from a quasi-ordered Bragg-glass phase to a highly disordered

vortex phase, and the possibility of a first-order nature of such a phase tran-

sition has been pointed out previously [236]. The disordered vortex phase

is strongly pinned phase, giving rise to the peak-effect in the field depen-

dence of magnetization at the order-disorder transition [226, 237-241]. We
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have observed that the onset field for the peak-effect has a correlation with

the magnitude of the pinning force density FP in the region of main mag-

netic irreversibility at lower magnetic fields. Peak-effect occurs at relatively

lower magnetic field for alloy having higher FP value (in the region of main

magnetic irreversibility). This indicates that the disorders have significant

influence on the occurrence of the peak-effect in the present Ti-V alloys, and

disorder driven order-disorder phase transition in the flux-line system might

provide an explanation for the observed peak-effect in these alloys. A disor-

der driven order-disorder transition occurs when the elementary pinning force

fP becomes of the order of the Labusch force fLab = ε0ξ/a0, where a0 is the

flux-line lattice constant [242]. Since a0 = (Φ0/H)1/2, the expression of the

field value at which the disorder-driven order-disorder transition and hence

the peak-effect will occur, can be written as HPE ∼ Φ0(fP/ε0ξ)
2. Since the

superconducting parameters have same values in the annealed and as cast

samples of the Ti0.8V0.2 alloy, we may write for these samples HPE ∝ f 2
P , i.e.,

HPE depends strongly on the elementary pinning force fP . As compared to

the annealed Ti0.8V0.2 alloy, the as cast Ti0.8V0.2 alloy is expected to have

relatively lower value of fP due to the lower defect density in this alloy (a

relatively smaller amount of ω phase is present in the as cast Ti0.8V0.2 al-

loy, refer to chapter 3), and thereby resulting in a relatively lower value of

HPE for the as cast Ti0.8V0.2 alloy. This observation clearly indicates that a

disorder-driven phase transition in the flux-line system seems to be a plausi-

ble mechanism giving rise to the peak-effect in the present Ti-V alloys.
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7.3 Summary and conclusions

(i) The magnetization in the Ti-V alloys was found to be irreversible with

respect to increasing and decreasing magnetic fields below an irre-

versibility field HIrr which is distinctly different from the upper critical

field HC2 of these alloys.

(ii) Analysis of the field dependence of the pinning force density in combi-

nation with the XRD and optical metallography studies indicate that

both the grain boundaries in the main β phase matrix and dislocation

arrays whose presence is indicated by the lining-up of etched pits on

the β phase matrix [37], act as surface pins for the flux lines. The

surface pins are mainly responsible for the critical current density in

the as cast and annealed TixV1−x alloys with x = 0.4, 0.6, and 0.7 and

also in the as cast Ti0.8V0.2 alloy.

(iii) The pinning force density in the annealed Ti0.8V0.2 alloy originates

mainly from the flux-line pinning at normal point pins. The ω phase

precipitates present in this alloy act the as normal point pins. However,

in lower magnetic field regime, flux-line pinning is provided by the

surface pins such as grain boundaries.

(iv) Except for the annealed Ti0.7V0.3 alloy, all the annealed and as cast Ti-

V alloys exhibit peak-effect in the field dependence of magnetization.

Within the peak-effect regime, irreversible magnetization of these Ti-
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V alloys shows history effect, which are known to be characteristic

features related to the meta-stability (super heating/supercooling) as-

sociated with a first-order phase transition in the flux-line system [218,

220]. Magnetic field dependence of equilibrium magnetization (Meq)

estimated from the minor-hysteresis-loops (MHLs), shows a clear jump

in the peak-effect regime, which again indicates the first-order nature

of the phase transition taking place in the flux-line system. We sug-

gest that a disorders-driven ordered-disordered phase transition in the

flux-line system is the origin of the first-order phase transition, which

in turn gives rise to the peak-effect in the present Ti-V alloys.
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Chapter 8

Bose-glass to vortex-liquid
phase transition in the vortex
state of the annealed Ti0.7V0.3
alloy

8.1 Introduction

In type-II superconductors, magnetic field penetrates the bulk of the material

in the form of superconducting vortices or flux lines when the applied mag-

netic field is higher than the lower critical field HC1. In defect free type-II

superconductors, the repulsive interaction among the flux lines tend to drive

the flux lines to get them arranged in a hexagonal array called the Abrikosov

lattice [22]. The existence of such an ordered Abrikosov lattice has been ob-

served in the superconducting mixed state of clean Nb samples through neu-

tron scattering experiment [243, 244]. However, flux-line pinning at quenched

disorders can prevent the emergence of the long-range order of the Abrikosov

lattice [32]. The weak random pinning of the flux lines perturbs the transla-
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tional invariance of the Abrikosov lattice, giving a quasi-ordered Bragg-glass

phase which has been observed experimentally in the mixed state of several

type-II superconductors [33-37]. On the other hand, strong pinning of the

flux lines gives rise to the formation of the disordered vortex-glass [38, 39]

or the Bose-glass phase [40, 41] depending on the nature and strength of the

quenched disorders present in a sample. Generally, a vortex-glass phase exists

in disordered materials involving point disorders while a Bose-glass phase is

observed in materials with correlated disorders like grain boundaries and/or

twin boundaries, and/or heavy ion-induced columnar tracks [245, 246]. The

vortex-glass phase continues to exist up to the glass transition temperature

TG, where it transforms into a vortex-liquid through a second order phase

transition [38]. In theoretical ground [38-41], it was predicted that when the

temperature is increased toward TG, electrical resistivity in the vortex-liquid

phase vanishes following a power law relation ρ ∝ |T − TG|s, where s is the

critical exponent of the glass transition. For high-TC superconductors, TG is

generally found to be substantially lower than the superconducting transition

temperature TC due to the relatively soft vortex matter and the enhanced

role of thermal fluctuations in these materials [38]. Consequently, for high-

TC superconductors, an appreciable temperature regime exists between the

TG(H)- and TC(H)-line, where the description of the vortex-glass transition

in term of vortex-liquid resistivity is possible [39]. Therefore, the study of the

resistive transition in the presence of magnetic field continues to be an ac-

tive experimental method for investigating vortex-glass transition in high-TC
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superconductors.

Generally, thermal fluctuations are less effective in bulk low-TC super-

conductors, causing the TG(H)-line to lie very close to the TC(H)-line. Con-

sequently, it is not possible to study of the vortex-glass transition in bulk

low-TC superconductors through resistive transition measurements. Ideally,

one has to rely on the small-angle neutron scattering (SANS), and/or scan-

ning tunnelling microscopy (STM) and/or Bitter decoration (BD) for ob-

serving the vortex-glass phase in bulk low-TC superconductors. Though the

experiment felicities like STM and BD can be useful for the real space imag-

ing of the vortex-glass phase and SANS for mapping of the vortex-glass

phase in reciprocal space, the dynamical nature of the vortex-glass phase

remains completely unrevealed in these experiments. Experimental study

of the vortex-glass phase in bulk low-TC superconductors through resistive

transition measurement is therefore necessary for a comparative study of the

vortex-glass phase in low-TC and high-TC superconductors, and also in the

point of view of the dynamical nature of the vortex-glass phase in a bulk low-

TC superconductor. Dimitriv et al. [37] have recently found the existence of

the Bragg-glass phase in the mixed state of a disordered Ti0.21V0.79 super-

conductor through SANS experiments. In Ti-V alloy system, the amount of

disorder is enhanced significantly with increasing Ti concentration because

of the formation of the ω phase and the martensite α or α′ phase within

the major β phase matrix of these alloys [42, 51]. In chapter 3, we have

found that the above mentioned secondary phases are indeed present in the
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samples of Ti0.8V0.2 and Ti0.7V0.3 alloys. Hence, the presence of a highly

disordered vortex-glass and/or Bose-glass phase is likely in the Ti-rich Ti-V

alloys. Moreover, we have found in the previous chapters that the ther-

mal fluctuations become increasingly important in Ti-rich Ti-V alloys. This

gives rise to an appreciable magnetic field-temperature regime between the

HC2(T )- and HIrr(T )-line [TG(H)-line is equivalent to HIrr(T )-line], where a

vortex-liquid phase exists with non-ohmic resistivity [39]. We have therefore

explored the possibility of such vortex-liquid to vortex-glass phase transition

in Ti-rich Ti-V alloys through electrical resistivity measurements, and in-

deed observed the signatures of the stated phase transition in the sample of

annealed Ti0.7V0.3 alloy. These results are presented in this chapter.

Figure 8.1: (a) Temperature dependence of electrical resistivity of annealed
Ti0.7V0.3 sample measured at low temperatures and in different magnetic
fields. (b) The same curves plotted in a reduced temperature scale to high-
light the field induced broadening of the superconducting transition.
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8.2 Results and discussion

8.2.1 Temperature dependence of electrical resistivity
in different constant magnetic fields: Evidence of
a glass to liquid phase transition in the flux-line
system of the annealed Ti0.7V0.3 sample

Fig. 8.1 (a) shows the temperature dependence of resistivity ρ measured for

the annealed Ti0.7V0.3 sample at low temperatures and in the presence of

various constant applied magnetic fields ranging from zero to 5 T. In zero

magnetic field, the sample enters into the superconducting state at the super-

conducting transition temperature TC = 6.69 K with a transition broadening

of ∆TC ∼ 0.14 K. Here, TC is defined as the temperature at which a steep

increase in the temperature derivative of ρ first appears on the higher tem-

perature side. The superconducting transition broadening ∆TC is defined as

the temperature interval where resistivity drops from 90 % to 10 % of its the

normal state value across the superconducting transition. In the presence

of magnetic field, TC shifts to lower temperatures and the superconducting

transition becomes more broadened. This latter effect is clearly visible in

Fig. 8.1 (b), where the resistivity is plotted against the reduced temperature

t = T/TC(H). It is well known that the broadening of the superconducting

transition in the presence of magnetic field could be resulted from thermally-

activated-flux-flow (TAFF). The temperature dependence of resistivity in

such a case is generally analysed with the help of the Arrhenius relation

given as [249]
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ρ(T,H) = ρ0exp

[
−U(T,H)

kBT

]
, (8.1)

where, kB is the Boltzmann constant, ρ0 is a pre-exponential factor (con-

stant), and U(T,H) is the activation energy associated with the flux-flow.

The Arrhenius plots (lnρ versus T−1 plots) in different applied magnetic

fields are shown in Fig. 8.2 (a). It can be seen from this figure that except at

temperatures in the close vicinity of TC , the Arrhenius plots are linear down

to a characteristic temperature T ∗, indicating that the observed magnetic

field-induced broadening of the resistive transition is caused by the TAFF

at temperatures above T ∗. At temperatures below T ∗, the Arrhenius plots

deviate from showing the linear behaviour and exhibits a strong downward

bend. This suggests that the activation energy for flux motion increases more

rapidly at temperatures below T ∗ than in the TAFF regime. This becomes

more evident in Fig. 8.2 (b), where we present the plots of the function

F [= −d(lnρ)/dT−1] against temperature for different values of the applied

magnetic field. According to the Arrhenius relation, the function F is pro-

portional to the activation energy U . It can be seen from this figure that

the activation energy tends to diverge as the temperature is decreased below

T ∗. Such a diverging behaviour of the activation energy at low temperatures

has previously been observed in many high-TC superconductors and is at-

tributed to a crossover to a critical region associated with the vortex-liquid

to vortex-glass phase transition [250-253].
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Figure 8.2: (a) The Arrhenius plots obtained for the annealed Ti0.7V0.3 sam-
ple in different magnetic fields. These plots exhibit a change of slope at the
characteristic temperature T ∗. (b) Temperature dependence of the activation
energy U for this sample in various constant magnetic fields.

Following the power law relation ρ ∝ |T − TG|s for the vortex-liquid

resistivity, one can expect the plot of the inverse of the logarithmic deriva-

tive of resistivity [d(lnρ)/dT ]−1 against T to be linear in the critical region

of the vortex-liquid to vortex-glass transition. In Fig. 8.3, the plots of

[d(lnρ)/dT ]−1 against temperature are shown for the annealed Ti0.7V0.3 sam-

ple for 0.5 and 5 T applied magnetic fields. In agreement with the theory,

these plots are linear at temperatures below T ∗, indicating the existence of

a glassy vortex phase in this sample at temperatures below TG. We then es-

timate the TG using the Vogel-Fulcher relation: [d(lnρ)/dT ]−1 = (T − TG)/s

[254-256]. According to this relation, TG is obtained by finding the tempera-

ture where the linear portion of [d(lnρ)/dT ]−1 versus T plot extrapolates to

[d(lnρ)/dT ]−1 = 0. Additionally, the critical exponent s at different applied
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magnetic fields is estimated from the inverse of the slope of the linear section

of these plots, and is shown in Fig. 8.4 (a). The value of s is found to be

∼1.8, and is almost independent of magnetic field. This value is smaller than

the values of s ∼6-8 generally obtained in the vortex-liquid to vortex-glass

phase transition in several high-TC superconductors where point disorders

act as the major flux-line pinning centres [254, 257]. However, similar small

values of s as estimated for the present sample have been obtained for phase

transition from vortex-liquid to Bose-glass in materials involving correlated

disorders, such as twined YBa2Cu3O7−δ (s ∼2) [254, 258] and YBCO with

columnar defects (s ∼2.4) [259].

Figure 8.3: The plots of [d(lnρ)/dT ]−1 against temperature for the annealed
Ti0.7V0.3 sample for 5 and 0.5 T magnetic fields.

We present in Fig. 8.4 (b)-(d) few selected micrographs obtained in scan-

ning electron microscopy (SEM) and optical metallography experiments on

the annealed samples of the Ti0.7V0.3 alloy. These micrographs reveal that

the crystal disorders which can lead to the flux-line pinning in the present
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sample consist of mainly grain boundaries and martensitic α phase. The

X-ray diffraction result indicates that the amount of the martensitic α phase

in this alloy is about 28 % (refer to chapter 3). These extended disorders

are correlated over mesoscopic length scales, and the presence of these cor-

related disorders gives rise to the Bose-glass phase in the annealed Ti0.7V0.3

sample, which is consistence with the estimate of the low value of the critical

exponent s for this sample.

Figure 8.4: (a) Critical exponent s for the annealed Ti0.7V0.3 sample in vari-
ous magnetic fields. (b), (c) SEM images of this sample showing the presence
of martensite α phase in the main β phase matrix this sample. (d) Optical
micrograph showing the grain structures in this sample.
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8.2.2 The modified vortex-glass model

In the previous section, we have obtained the experimental evidence for the

existence of a glassy vortex phase in the mixed state of annealed Ti0.7V0.3

sample based on the prediction of the vortex-glass theory [38-41]. Recent

works [247, 248] have made modification in the vortex-glass theory to give

a consistent description of vortex-liquid resistivity in the critical region of

the vortex-liquid to vortex-glass transition in the high-TC oxide supercon-

ductors. This modified vortex-glass model has been extensively used in the

recent times to ascertain both the vortex-liquid to vortex-glass as well as

the vortex-liquid to Bose-glass transition in various high-TC oxide and Fe-

based superconductors [247, 248, 255, 256, 260-263]. This modified vortex-

glass model takes the effective pinning energy U0 into consideration while

analysing the vortex-liquid to vortex-glass transition. This is done by replac-

ing the temperature difference (T − TG) by an energy difference (kBT −U0).

In this model the temperature dependence of resistivity in the critical region

of vortex-liquid to vortex-glass transition is expressed as: [247, 248]

ρ(T ) = ρn

∣∣∣∣ kBT

U0(H,T )
− 1

∣∣∣∣s . (8.2)

The modified vortex-glass model assumes an empirical effective pinning en-

ergy U0(H,T ) for the high-TC oxide superconductors, which has the form

[247, 248]

U0(H,T ) = UH

[
1− T

TC

]
;UH = kBTCH

−β. (8.3)
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In the above relation, UH is a function of field only and β is a constant

independent of temperature and magnetic field. The model also assumes

that the transition from vortex-liquid to vortex-glass occurs at TG, where the

thermal energy becomes equal to the pinning energy, i.e., U0(H,TG) = kBTG.

With this assumption the magnetic field dependent part of U0(H,T ) in Eqn.

(8.3) is obtained as a unique function of TG as

UH(H) =
kBTCTG
TC − TG

. (8.4)

Using the above form of UH(H), the empirical pinning energy given in Eqn.

(8.3) is then reformulated as:

U0(H,T ) =

kBTG

[
1− T

TC

]
[
1− TG

TC

] . (8.5)

When the effective pinning energy given in Eqn. (8.5) is substituted back in

Eqn. (8.2), the expression for the temperature dependence of resistivity in

the critical region associated with the vortex-liquid to vortex-glass transition

is obtained as

ρ(H,T ) = ρn

∣∣∣∣T (TC − TG)

TG(TC − T )
− 1

∣∣∣∣s . (8.6)

The resistivity given in Eqn. (8.6) depends on the magnetic field explic-

itly through the field dependence of TG. Eqn. (8.6) predicts a scaling be-

haviour between the normalized resistivity ρ/ρn and the scaling temperature
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TS = [T (TC − TG)/TG(TC − T )− 1] in the critical region of the vortex-liquid

to vortex-glass transition [247, 248]. Such a scaling behaviour between ρ/ρn

and TS has been found to exist in various disordered high-TC superconduc-

tors such as YBCO single crystals [247, 248], Ho-doped (Bi, Pb)-2212 [255],

BaFe2As2 single crystal [256], Ba0.55K0.45Fe2As2 [262], and C4+-irradiated

BaFe0.19Ni0.1As2 single crystal [263] etc., and this scaling behaviour has been

used to estimate the critical exponent s of the vortex-glass phase transition

in these materials. Another important aspect of the modified vortex-glass

model is that it provides consistent description of the effective pinning energy

U0 in the critical region of the vortex-glass transition. The effective pinning

energy U0 is important for the understanding of the flux-line pinning proper-

ties of a superconductor. We shall now use this modified vortex-glass model

to study the vortex-liquid to Bose-glass transition in the annealed Ti0.7V0.3

sample.

8.2.3 Temperature and field dependence of effective
pinning energy

In the modified vortex-glass model, temperature and field dependence of

U0(H,T ) may be obtained from Eqn. (8.2) as

U0(H,T ) = kBT

[
1−

(
ρ

ρn

) 1
s

]
, (8.7)

provided s and ρn are known. The values of U0(H,T ) are estimated using

Eqn. (8.7) for the annealed Ti0.7V0.3 sample. For the estimation of U0(H,T ),
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Figure 8.5: Temperature dependence of the effective pinning energy U0 for
the annealed Ti0.7V0.3 sample in different magnetic fields. (b) The field de-
pendence of UH of the same sample, which is calculated using Eqn. (8.4).
(c) The U0(H,T )/UH versus T curves showing the temperature dependent
part of the pinning energy.
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we have taken ρn as the resistivity value measured at 15 K, and we have used

the values of s presented in Fig. 8.4 (a). The estimated values of U0 in

different magnetic fields are shown as a function of temperature in Fig. 8.5

(a). Only the data points within the critical region of the vortex-liquid to

Bose-glass transition, i.e. in the temperature regime TG ≤ T ≤ T ∗, are shown

here for the sake of clarity. In this figure, it is observed that these U0(H,T )

curves exhibit linear temperature dependence. In the modified vortex-glass

model, TG value is determined from the point of intersection between the

U0(H,T ) curve and the kBT -line as indicated in Fig. 8.5 (a) [247, 248, 255,

256]. TG values determined at various magnetic fields using this procedure

match with those determined in the previous section. For H ≥2 T, the

straight lines obtained from the extrapolation of these linear U0(H,T ) curves

meet at a common point T = TC , where U0 becomes zero. This confirms that

for H ≥2 T, U0 in the critical region does vary with temperature following

(1 − T/TC) dependence. However, for H <1 T, we find that the straight

lines obtained by the extrapolation of these linear U0(H,T ) curves meet at a

common point T ∼7.56 K on U0(H,T ) = 0 line. On the other hand, for H=

1 T, this extrapolated straight line meets U0(H,T )= 0 line at a temperature

slightly higher than TC but lower than 7.56 K. These experimental facts

indicate that for H <2 T, U0 in the critical region varies with temperature

following a temperature dependence other than (1− T/TC) law.

In order to find out the exact temperature dependence of U0 in the applied

magnetic field regime H <2 T, we compare the experimental U0(H,T ) data
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for the present Ti0.7V0.3 sample with the more general expression of U0(H,T )

given as U0(H,T ) = UH(1 − T/TC)n(H), where the values of n depends on

the dimensionality of the flux-line system [264]. In the present case, we find

that n is unity for H ≥2 T while it assumes some values other than unity for

H <2 T. Binomial expansion of the above form of effective pinning energy

gives U0(H,T ) ∼ UH [1 − n(H)T/TC ] + D(T/TC). Here, the term D(T/TC)

represents the deviation from the linear behaviour of U0(H,T ), which arises

from the higher order term in (T/TC). However, the observed linearity of

the U0(H,T ) curves for H <2 T suggests that the term D(T/TC) can be

considered to be negligible in the present case. Therefore, we may write

U0(H,T ) ∼ UH [1− n(H)T/TC ]. Then the extrapolated U0(H,T ) curves will

give a threshold at T = TC/n(H). U0(H,T ) curves for H <1 T give a

threshold at 7.56 K, which implies n ∼0.87 in this magnetic field regime.

For H ≥2 T, we can estimate the UH values in different magnetic fields

from the slope of the linear U0(H,T ) curves (the slope being −UH/TC).

Alternatively, we can also estimate UH from Eqn. (8.4) using the experi-

mentally obtained value of TG. We find that the UH values estimated using

both these procedures nicely agree with each other. On the other hand,

for H <2 T, the slope of the linear U0(H,T ) curves is −nUH/TC . Hence,

the values of UH for H <2 T can be determined from the slope of the linear

U0(H,T ) curve and the corresponding n value. The alternative route for find-

ing UH for H <2 T is obtained from the fact that in the modified vortex-glass

model, the glass transition temperature TG is defined as kBTG = U0(H,TG).
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Since U0(H,TG) = UH(1 − TG/TC)n(H) = kBTG for H <2 T, we can write

UH = kBTG/(1− TG/TC)n(H). Therefore, the values of UH at different mag-

netic fields below 2 T can be estimated from the corresponding values of TG

and n using the above relation. A good agreement is obtained between the

values of UH estimated using these two procedures, indicating that the values

of n(H) obtained previously are quite reasonable.

In Fig. 8.5 (b), we present the magnetic field dependence of UH in log-

log scales covering the magnetic field range 0.1≤ H ≤5 T. In this figure,

we observed that UH(H) exhibits a power law relation UH(H) ∝ H−0.13

for H ≤1 T. On the other hand, the field dependence of UH can be roughly

described by another power law relation UH(H) ∝ H−0.8 for H ≥2 T. Having

obtained the field dependence of UH from our experimental data, we are

now in a position to extract the temperature dependent part of U0(H,T )

as UT (T ) = U0(H,T )/UH , and is shown in Fig. 8.5 (c). This figure shows

a linear relationship in U0(H,T )/UH versus T curves. For H ≥2 T, these

curves fall onto the (1 − T/TC)-line. On the other hand, the corresponding

curves for H ≤1 T fall onto the (1− 0.87T/TC)-line. These observations are

consistent with our inferences made above.

8.2.4 Scaling of the vortex-liquid resistivity

We now look into the scaling behaviour of the ρ/ρn versus TS curves for

the annealed Ti0.7V0.3 sample in the light of the above discussion. We have

observed that, for H ≥2 T, U0(H,T ) in the critical region of the vortex-
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Figure 8.6: The log-log plots of normalized resistivity against the scaling
temperature for the annealed Ti0.7V0.3 sample. For H ≥2 T, we use the
scaling temperature proposed in Ref. [247] while for low magnetic field regime
we use the scaling temperature derived by us (see the relevant text).

liquid to Bose-glass transition follows the empirical relation given in Eqn.

(8.3). Consequently, the ρ/ρn versus TS curves for H ≥2 T overlap with each

other in the critical region of Bose-glass transition, i.e. in the temperature

regime TG ≤ T ≤ T ∗. This is shown in Fig. 8.6 (a). For H <2 T, both

the magnetic field and temperature dependence of U0(H,T ) is different from

that observed for H ≥2 T. Consequently, the ρ/ρn versus TS curves for H <2

T do not scale with each other and also with the corresponding curves for

H ≥2. However, for H <1 T, it is found that U0 varies with temperature as

U0(T ) ∝ (1−T/TC)n, where n ∼0.87. Moreover, in this magnetic field regime,

the magnetic field dependent part of U0(H,T ) can be obtained in term of TG

as: UH = kBTG/(1− TG/TC)n. Hence, the overall effective pinning energy in
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this magnetic field regime can be expressed as

U0(H,T ) = UH(H)

[
1− T

TC

]n
=

kBTG

[
1− T

TC

]n
[
1− TG

TC

]n . (8.8)

This relation for U0(H,T ) is evidently different from one given in Eqn. (8.5),

and accordingly, the scaling relation between ρ/ρn and the scaling tempera-

ture will also be different for H <1 T. Substituting Eqn. (8.8) in Eqn. (8.2),

we obtain the temperature and magnetic field dependence of resistivity in

the critical region of the Bose-glass transition as

ρ(H,T ) = ρn

∣∣∣∣∣∣∣∣
T

[
1− TG

TC

]n
TG

[
1− T

TC

]n − 1

∣∣∣∣∣∣∣∣
s

. (8.9)

Eqn. (8.9) predicts a scaling behaviour between the normalized resistivity

ρ/ρn and a modified scaling temperature T ′S = [T (TC−TG)n/TG(TC−T )n−1].

In agreement with this, a good scaling behaviour between ρ/ρn and T ′S is

obtained for H <1 T, and these scaled curves are shown in Fig. 8.6 (b). In

the modified vortex-glass model, the critical exponent s is determined from

the slope of these scaled curves. In this method, the value of s comes out to be

∼1.7, which is close to the value obtained in Sec. 8.2. Hence, we have found

that the scaling behaviour of the electrical resistivity in the critical region

of vortex-liquid to Bose-glass transition remains valid in annealed Ti0.7V0.3

sample. Since both temperature and magnetic field dependence of U0(H,T )
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in the annealed Ti0.7V0.3 sample are distinctly different in the magnetic field

regimes below and above 2 T, the scaling behaviour of the resistivity are also

found to be different in these magnetic field regimes.

8.2.5 Vortex matter phase diagram

The field-temperature (H − T ) phase diagram for the annealed Ti0.7V0.3

sample is shown in Fig. 8.7. In this phase diagram, TG(H)-, TC(H)-, and

HIrr(T )-line respectively represent the glass transition line, the upper crit-

ical field line and the irreversibility field line. TG(H)-line and TC(H)-line

[or equivalently HC2(T )-line] are constructed from the ρ(T ) curves in various

applied magnetic fields, and the procedures employed to determine TC and

TG have been discussed above. The irreversibility field HIrr is determined

from the field dependence of magnetically measured critical current density

JC for this sample using a criterion that JC falls to zero (within the limit

of experimental accuracy) at HIrr. In this phase diagram, both TG(H)-line

and HIrr(T )-line lie distinctly below the TC(H)-line. Since both TG(H)-line

obtained from resistivity measurements and HIrr(T )-line obtained from mag-

netic measurements represent the magnetic field limit up to which a super-

conductor can carry currents without dissipation, they should coincide with

each other, and this is indeed observed for H ≥2 T. However, for H <2 T,

TG(H)-line splits strongly away from the HIrr(T )-line towards lower temper-

atures. Consequently, there exists a finite magnetic field and temperature

region between TG(H)-line and HIrr(T )-line, where finite role of flux-line
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pinning still survives. We have also found that both temperature and field

dependences of U0 in this sample undergo a change of behaviour at almost

the same magnetic field value where the splitting of the TG(H)-line from the

HIrr(T )-line starts to occur, and thereby suggesting a common origin for all

of these observed phenomena. In the following sections we will investigate

for the probable origin leading to these observed phenomena.

Figure 8.7: The field-temperature (H − T ) phase diagram for the annealed
Ti0.7V0.3 sample

8.2.6 Crossover from individual flux-line pinning to
collective pinning regime and its manifestations

The weak magnetic field dependence of U0 observed in low magnetic fields

suggests that individual pinning of the flux lines co-exists with the collec-

tive flux-creep phenomenon in this magnetic field regime [265]. For higher

applied magnetic fields, the flux lines are very large in number, and hence,

the flux-line spacing becomes significantly smaller than the magnetic field
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penetration depth. In such case, we expect, particularly in the high-κ ma-

terials like Ti-V alloys, a crossover to a new kind of pinning regime due to

collective behaviour of the flux lines, where U0 becomes strongly dependent

on magnetic field [210]. Qualitatively very similar change of behaviour of

the field dependences of U0 is also observed in various superconductors such

as BaFe2As2 single crystal [256], Fe1+y(Te1+xSx)z [266], Nd(O,F-)FeAs single

crystal [267] superconductors etc. Due to the collective behaviour of the flux

lines in higher magnetic field, the entire flux-line system will undergo a phase

transition from Bose-glass to vortex-liquid at TG. Since flux-line pinning and

hence JC vanishes within the vortex-liquid phase, TG(H)-line will be identical

to HIrr(T )-line, and this is indeed observed for H ≥2 T.

However, in low magnetic field regime, the collective behaviour among the

flux lines becomes weak. In such case, when the flux-line system undergoes

a phase transition from Bose-glass to vortex-liquid phase, few flux lines may

still be remained pinned at some stronger pinning sites available in the sample

via the individual flux-line pinning mechanism, which is consistent with the

observed slow variation of UH(H) in this magnetic field regime. Hence, in low

magnetic field regime, JC may not vanish at TG(H)-line due to the existence

of individual pinning of few flux lines at temperatures above TG. However,

the line tension of these pinned flux lines will eventually vanish at HIrr(T )-

line [25], and thereby the pinned flux lines above the TG(H)-line will be

capable of escaping from the pinning sites to give rise to a zero pinning state

of the sample at and above the HIrr(T )-line. Hence, in the H − T phase
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diagram, TG(H)-line will be located below the HIrr(T )-line in low magnetic

field regime. This is what we observe in Fig. 8.7. Based on this argument,

we will now explain the change of behaviour of the temperature dependence

of U0 observed below and above a crosser over magnetic field HD ∼2 T.

In the case of the extended defect such as grain boundaries and marten-

sitic α phase, the effective pinning energy U0 arises from the loss of con-

densation energy within the generalized pinning volume, and is expressed

as U0(T,H) ∝ HC(T )2ξ(T )2lP [268]. Here, HC is the thermodynamic crit-

ical field, ξ is the coherence length, and lP is the length of pinning sites

along the direction of the applied magnetic field. Thus, the temperature

dependence of HC and ξ governs the temperature dependence of U0. Since

ξ(T ) ∝ (1 − T/TC)−1/2 and HC(T ) ∝ (1 − T/TC) near TC [269], the tem-

perature dependence of U0 will be obtained as U0(T ) ∝ (1 − T/TC), which

is indeed observed experimentally for H ≥2 T. In annealed Ti0.7V0.3 sample,

different orientations and sizes of the extended disorders like grain boundaries

and martensitic α phase lead to a distribution of lP and hence U0 over the

sample volume. However, in high magnetic field regime, the flux-line system

can be described by a single value of U0 rather than a distribution of U0 be-

cause of the collective behaviour of the flux-line system. On the other hand,

in low magnetic field, the single flux-line pinning occurring above TG(H)-

line at some mesoscopic strong pinning sites like α phase may give rise to

Bose-glass islands having relatively higher U0 and hence TG values within the

interstitial vortex-liquid phase [270, 271]. The pinned flux lines within these
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Bose-glass islands are then expected to be de-localized and thereby forming

the vortex-liquid at a relatively higher temperature [270-272]. Consequently,

in low magnetic field regime, when temperature is increased keeping the

magnetic field constant, there are two independent ways which govern the

temperature dependence of U0. Firstly, U0 decreases following (1 − T/TC)

dependence which arises from the temperature dependence of the intrinsic su-

perconducting parameters. Secondly, an increase in temperature in presence

of a constant magnetic field involves the melting transitions of the Bose-glass

islands having higher and higher U0 values. As a result of this, the pre-

factor UH , which was presumed to be independent of temperature in high

magnetic field regime, also evolves with temperature in low magnetic field

regime. Such a temperature evolution of UH along with the usual (1−T/TC)

dependence gives rise to an overall slow variation of U0 in low magnetic field

regime than observed in high magnetic field regime. Hence, we suggest that

in Ti0.7V0.3 sample, the co-existence of the Bose-glass islands within the inter-

stitial vortex-glass slows down the dynamic of the flux lines in low magnetic

field regime.

8.3 Summary and conclusions

In summary, we have investigated the resistive transition of Ti0.7V0.3 sample

in presence of magnetic fields up to 5 T. We have found experimental evi-

dences for the existence of a Bose-glass vortex state in the superconducting
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mixed state of this sample. In the magnetic field regime H ≥2 T, the vortex-

liquid resistivity exhibits a scaling behaviour as predicted for vortex-glass

and/or Bose-glass scenario, proving further evidence of a Bose-glass transi-

tion in the studied sample. However, the vortex-liquid resistivity does not

follow the same scaling relation in the magnetic field regime H <2 T. This is

due to the fact that both the temperature as well as magnetic field dependen-

cies of the effective pinning energy U0 are distinctly different in the magnetic

field regimes below and above 2 T. We have formulated a new scaling re-

lation to describe the vortex-liquid resistivity for H <2 T by taking into

account the experimental temperature dependence of U0 in this magnetic

field regime. Another important result of this study is that although the

Bose-glass transition line [TG(H)-line] obtained from the resistive transitions

overlaps with the magnetically measured irreversibility line [HIrr(T )-line] for

H ≥2 T, they strongly split from each other for H <2 T. We have sug-

gested that all observed phenomena i.e. the change of behaviour of both the

temperature and magnetic field dependencies of U0 and the splitting of the

TG(H)-line from the HIrr(T )-line, all occurring at a crossover field HD ∼

2 T, are manifestations of the combined effects of the spatial variation of

U0 over the sample volume and the crossover in the pinning behaviour from

individual to collective pinning regime with increasing magnetic field.
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Chapter 9

High-field paramagnetic
Meissner effect in the
multi-phase Ti-V alloy
superconductors

9.1 Introduction

When a type-II superconductor is cooled down across the superconducting

transition temperature TC in the presence of magnetic field smaller than the

lower critical field HC1, it expels the magnetic flux from its interior. In an

ideal defect-free type-II superconductor, the complete expulsion of magnetic

flux leads to the perfect diamagnetic state of superconductor, which is char-

acterized by the dc magnetic susceptibility χ = M/H = −1. Conventionally,

this behaviour is taken as the hallmark of superconductivity. However, the

presence of crystal defects cannot be avoided in real superconductors. The

flux expulsion then becomes incomplete due to the pinning of the flux lines

at the defect sites. In such case, when the temperature is decreased below
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TC , the field-cooled magnetization decreases from its normal state paramag-

netic value and assumes a value |χ| < 1. However, in certain samples of both

high-TC cuprate and conventional low-TC superconductors, the field-cooled

magnetization increases as the temperature is decreased below TC in the

presence of a very low magnetic field of the order of few Oe. The field-cooled

magnetization in the superconducting state of these samples even becomes

larger than the normal state paramagnetic magnetization. This observed be-

haviour is in striking contrast to the conventional diamagnetic response of

a superconductor, and is known as “paramagnetic Meissner effect” (PME)

or “Wohlleben effect” [273]. PME was initially observed in high-TC super-

conductors [274-278], where it is explained considering the existence of spon-

taneous super-current in an unconventional paring state [279, 280]. Later

on, PME was also observed in conventional low-TC superconductor like Nb

[281-283], Al [284], Pb nano-wire arrays [285] and multi-phase Sn90In10 alloy

[286] in the presence of low magnetic field. These observations suggest that

the PME is not necessarily dependent upon some intrinsic unconventional

mechanism unique to the high-TC superconductors. In conventional low-TC

superconductors, the low-field PME is thought to originate due to the trap-

ping of flux lines and the subsequent compression of these trapped flux lines

while cooling the sample below TC [287, 288]. Such flux compression could

be resulted from the inhomogeneous cooling of the sample [287] and/or could

also be an intrinsic property originating because of the sample boundaries

present in any finite-size superconductor [284, 288].
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However, in some recent studies on YBa2Cu3O7−δ [289-292], hetero-structures

of YBa2Cu3O7−δ/La0.67Sr0.33MnO3 [293], MgB2 [294, 295], and thin film Nb

[296] samples, PME has been observed in the presence of sufficiently high

magnetic field of the order of few Tesla, and thus the effect is termed as high-

field PME or HFPME. A non-uniform distribution of flux lines caused by

flux-line pinning at the inhomogeneously distributed pinning centres within

the superconducting matrix has been argued to be behind the origin of the

HFPME [291, 293, 295]. In chapter 3, we have seen that the Ti-rich Ti-V

alloys such as Ti0.8V0.2 and Ti0.7V0.3 alloys are formed in multi-phase crys-

tallographic structures. The secondary phases like α, α′ and ω phases are

found to be present in the main β phase matrix of these alloys. The flux-line

pinning at these secondary phases may lead to a non-uniform distribution

of flux lines over the sample volume, thereby providing an opportunity for

studying the HFPME in these alloys. In the present chapter, we present an

experimental study on the HFPME in as cast and annealed samples of the

Ti0.8V0.2 alloys and annealed sample of the Ti0.7V0.3 alloy.

9.2 Results and discussion

9.2.1 Temperature dependence of magnetization

Figs. 9.1(a)-(c) shows the temperature dependence of magnetization mea-

sured in zero-field-cooled (ZFC), field-cooled-cooling (FCC) and field-cooled-

warming (FCW) protocols in the presence of 10 mT magnetic field for the
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Figure 9.1: (a)-(c). The temperature dependence of magnetization obtained
in the ZFC, FCC and FCW protocols for the as cast and annealed Ti0.8V0.2

samples and annealed Ti0.7V0.3 sample in the presence of 10 mT magnetic
field. The field-cooled magnetization demonstrates a thermal hysteresis, and
the magnetization measured in the cooling-down cycle (FCC) is more positive
than the magnetization obtained in warming-up cycle (FCW). (d) The evo-
lution of the temperature dependence of the FCC and FCW magnetization
with increasing magnetic field up to 3 T for the annealed Ti0.8V0.2 sam-
ple. The temperature dependence of the FCW magnetization curve tends to
switch above the corresponding FCC magnetization curve as the magnetic
field is increases up to a certain limiting value.
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as cast and annealed Ti0.8V0.2 samples and annealed Ti0.7V0.3 sample. These

samples exhibit diamagnetic behaviour at temperatures below TC . As can be

seen from these figures the ZFC magnetization lies well below the field-cooled

magnetization. In type-II superconductors, the flux-line pinning within the

bulk of the sample significantly influences the flux expulsion during the field-

cooled measurement while the flux exclusion during the ZFC measurement

is not affected by the same, thereby leading to a marked difference between

the ZFC and the field-cooled magnetization.

The field-cooled magnetization exhibits a thermal hysteresis, and the

magnetization measured in the cooling-down cycle (FCC) is more positive

than the magnetization obtained in warming-up cycle (FCW). Such a ther-

mal hysteresis of the field-cooled magnetization is a characteristic feature

of type-II superconductors where the flux-line pinning at the topological de-

fects is relevant, and is consistent with the theoretical interpretation based on

critical-state model calculations [297]. When a bulk superconducting sample

is cooled below TC in the presence of magnetic field higher than the lower crit-

ical field HC1, the flux-line pinning at the topological defects causes freezing

of the flux lines beyond the flux trapping depth L from the sample surface

[297]. During the subsequent warming-up cycle, these frozen-in flux lines

relax and move toward the regions of lower flux-line density. The flux-line

relaxation process hinders the penetration of flux lines into the sample from

the outside during the warming-up cycle. Hence, the number of flux lines

penetrating the sample during the warming-up cycle is always lesser than
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those expelled during the initial cooling-down cycle, and thereby causing a

more positive value of the FCC magnetization than the FCW magnetization.

Figure 9.2: The evolution of the temperature dependence of the FCC and
FCW magnetization with increasing magnetic field in the (a) as cast Ti0.8V0.2

sample and (b) annealed Ti0.7V0.3 sample.

Fig. 9.1(d) shows the evolution of the temperature dependence of the

FCC and FCW magnetization for the annealed Ti0.8V0.2 sample with increas-

ing applied magnetic fields. Few of these curves are shifted vertically for a

clear comparison. For magnetic fields up to H = 20 mT, FCC magnetization

curve lies above the FCW magnetization curve. These curves merge onto

one another for H = 40 mT. For still higher magnetic field, FCW magneti-
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zation curve switches above the FCC magnetization curve, which is opposite

to the conventional behaviour of a type-II superconductor. For such high

applied magnetic field, thermal hysteretic behaviour between the FCC and

FCW magnetization is also observed to be much more pronounced than that

observed in low magnetic field regime. Moreover, for H = 0.7 and 1 T, FCC

magnetization initially decreases from its normal state value when the tem-

perature is decreased below TC , and then starts to increase with further de-

crease in temperature. However, FCC magnetization in the superconducting

state remains smaller than the normal state magnetization. FCW magnetiza-

tion, on the other hand, initially increases with increasing temperature, and

then drops back to the FCC magnetization in the close vicinity of TC . FCW

magnetization in the superconducting state even becomes larger than the

normal state magnetization for H = 0.7 T. For H ≥1.5 T, thermal hysteresis

between the FCC and FCW magnetization becomes reduced and the sample

approaches more towards conventional behaviour. The thermo-magnetic re-

sponse of the as cast Ti0.8V0.2 and annealed Ti0.7V0.3 samples is qualitatively

very similar to that observed in the annealed Ti0.8V0.2 sample, and is shown

in Fig. 9.2 (a) and (b). However, in the case of annealed Ti0.7V0.3 sample,

the increase of the FCC magnetization with decreasing temperature is ob-

served to be less prominent and becomes observable only at temperatures

below 3 K. The observed thermo-magnetic behaviour of the present set of

samples in certain high applied magnetic field regime is distinctly different

from conventional behaviour of a type-II superconductor.
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As stated in the introduction section, the increase of FCC magnetization

with decreasing temperature below TC may be resulted from the flux com-

pression effect. However, the flux compression is known to give rise to the

paramagnetic response of the sample only in the presence of applied mag-

netic field smaller than HC1, and the superconducting samples are generally

found to recover the diamagnetic response in higher applied magnetic field

[287, 295, 298]. In the present set of Ti-V samples, HFPME is observed in the

presence of applied magnetic fields much larger than HC1, suggesting that the

flux compression may not be behind the origin of the observed effect in these

samples. The observed characteristic features of the HFPME, such as, the

increase of the FCC magnetization with decreasing temperature below TC , a

higher value of the FCW magnetization as compared to the FCC magnetiza-

tion, and also the time dependence of the FCC magnetization which will be

presented below, are unique to the HFPME [291, 292, 294, 296], suggesting

that the HFPME might have an origin which is entirely different from that

of the low-field PME.

HFPME is observed in the present set of samples only at temperatures

below the irreversibility temperature TIrr (which is taken as the tempera-

ture at which the temperature dependence of the ZFC curve bifurcates from

the FCC magnetization curve), indicating that flux-line pinning might be

responsible for the observed effect in these samples. In chapter 3, we have

found that both the as cast and annealed Ti0.8V0.2 samples contain stress

induced martensitic α′ phase within the main β phase matrix of these sam-
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Figure 9.3: Optical micrographs showing the spatial distribution of α phase
in the annealed Ti0.7V0.3 sample (a, b) and α′ phase in the annealed (c) and
as cast (d) Ti0.8V0.2 samples.

ples. On the other hand, annealed Ti0.7V0.3 sample contains martensitic α

phase within the main β phase matrix of this sample. As can be seen in

Fig. 9.3, the martensitic α′ and α phase are inhomogeneously distributed

within the main β phase matrix of these Ti-V samples. Reported TC values

of pure α phase Ti-V alloys indicate that these martensitic αM phases (we

will use this common symbol αM to denote the martensitic α and α′ phases)

are non-superconducting in the temperature range of present measurement

[6, 51]. Hence, the non-superconducting αM phase regions can act as ef-

ficient flux-line pinning sites. Then the flux-line pinning at the αM phase

regions will lead to an inhomogeneous distribution of flux lines over a macro-

scopic length scale much larger than the magnetic field penetration depth
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λ, which is only 2-3 hundreds of nm for the present Ti-V alloys (see Table-

4.3 of chapter 4). Such a spatially inhomogeneous distribution of flux lines

could result in a net bulk current to flow inside the sample in accordance

with the Maxwell’s equation ~J = ~∇ × ~H. The bulk current referred above

has a direction opposite to the diamagnetic screening current flowing at the

surface of the sample. Hence, a net paramagnetic response of the sample will

be obtained when the paramagnetic response resulting from the bulk current

exceeds the diamagnetic response from the surface screening current.

As described in chapter 3, α′ phase in both the as cast and annealed

Ti0.8V0.2 samples is a stress induced phase, which is formed during mechani-

cal processing of the samples such as cutting of the sample [58, 108, 110]. It

is then possible to get rid of this α′ phase from these samples by annealing

them at some elevated (β-field) temperature. The disappearance of the HF-

PME in a sample devoid of any α′ phase will be a confirmatory test for the

viewpoint that the HFPME observed in the present samples is indeed related

to the flux-line pinning at the αM phase regions. Motivated by this, we have

performed a second stage annealing of the annealed Ti0.8V0.2 sample initially

used for magnetization measurements. The protocol employed in this sec-

ond stage annealing is identical to the first stage annealing protocol. The

magnetization measurements are then performed again on this re-annealed

sample. We present in Fig. 9.4(a) the temperature dependence of the FCC

and FCW magnetization of this re-annealed sample in the presence of 1 T

magnetic field. For comparison we also show in Fig. 9.4(b), the temperature
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dependence of FCC and FCW magnetization of the initially annealed sam-

ple in the same applied magnetic field. As can be seen from these figures,

the HFPME is not observed in the re-annealed sample. This experimental

observation confirms that the flux-line pinning at the αM phase regions is

responsible for the occurrence of the HFPME in the present samples [110].

Figure 9.4: Temperature dependence of the FCC and FCW magnetization
measured in presence of 1 T magnetic field for the (a) re-annealed and (b)
the initially annealed Ti0.8V0.2 samples.

However, the annealed Ti0.4V0.6 sample also contains α phase within the

main β phase matrix of this sample (refer to chapter 3). The optical mi-

crographs of this sample are shown in Fig. 9.5(a), which clearly show the

presence of needle-shaped martensitic α phase within the main β phase ma-

trix. The martensite α phase appears to be inhomogeneously distributed in

the main β phase matrix of this sample. In spite of that, no indication of the

HFPME is observed in this sample, suggesting that the flux-line pinning at

spatially inhomogeneous distribution of non-superconducting phases may not
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Figure 9.5: (a) Optical micrograph of the annealed Ti0.4V0.6 sample showing
the formation of the needle-shaped martensitic α phase within the main β
phase matrix of this sample. (b) Temperature dependence of the ZFC, FCC
and FCW magnetization in 0.5 T applied magnetic field for the same sample
showing no indication of the HFPME in this sample.

be the only factor leading to the observation of the HFPME in the present

samples. Moreover, the common characteristic features associated with the

HFPME such as the more positive value of the FCW magnetization than the

FCC magnetization, time as well as temperature sweep rate dependence of

the FCC magnetization (will be discussed later in this chapter) etc., cannot

be explained by assuming only the static metastable distribution of the flux

lines driven by flux-line pinning. We therefore suggest that though the met-

allurgical aspect is essential for the occurrence of the HFPME, there must be

some other mechanism(s) which play(s) supplementary role in the occurrence

of the effect.

Dias et al. [291] have studied the HFPME in a series of melt-textured

YBa2C3O7−δ samples. Terentiev et al. [296] have also studied this effect in
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a thin film Nb sample. Their studies show that the paramagnetic FCC mag-

netization in their samples relaxes monotonically towards increasing positive

value. Based on their experimental results, these authors have interpreted

that flux-creep effect has a crucial role to play in the occurrence of the HF-

PME [291, 296]. It is notable that all the superconducting samples such as

melt-textured YBa2C3O7−δ [289-292], YBa2Cu3O7−δ/La0.67Sr0.33MnO3 het-

erostructures [293], MgB2 [294, 295], Nb thin film [296] etc., which are re-

ported so far to exhibit the HFPME, are also susceptible towards strong

flux-creep effect. In high-TC cuprate and MgB2 superconductors, enhanced

flux-creep effect is well documented in the literature. On the other hand,

flux-creep effect is enhanced drastically in low-TC thin film Nb sample be-

cause of the small flux-line correlation length LC in thin film sample [264].

It is then quite genuine to think that the flux-creep effect might have some

important role to play in the occurrence of the HFPME. In order to ascertain

this viewpoint, we first check the relevance of flux-creep in the present bulk

Ti-V alloys through the magnetic relaxation experiments.

9.2.2 Time dependence of magnetization

Fig. 9.6 shows the time dependence of the FCC magnetization for the an-

nealed Ti-V samples. The magnetization is measured after field-cooling the

samples at 1 K/min from 10 K to the measuring temperature. For H = 0.05

T, FCC magnetization of the annealed Ti0.7V0.3 sample decreases monoton-

ically with time. This is shown in Fig. 9.6(a). Similar behaviour is also ob-
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served in the as cast and annealed Ti0.8V0.2 samples (not shown here). This

kind of diamagnetic relaxation behaviour is quite common in the high-TC

superconductors. The enhanced flux-creep in the high-TC superconductors

assists the flux lines to escape from the interior of the sample, thereby leading

to the observation of the diamagnetic relaxation of the FCC magnetization.

Hence, we may infer from the present observations that flux-creep effect is

indeed important in the Ti-rich Ti-V samples.

The relevance of flux-creep in the Ti-rich Ti-V samples can also be un-

derstood in terms of the relatively larger values of the Ginzburg number Gi

estimated for them. The Gi numbers is ∼10−5 for the Ti0.8V0.2 and Ti0.7V0.3

alloys (see chapter 5). Although this value of Gi number is smaller than

the Gi ∼10−2 for the high-TC cuprate superconductors, it is considerably

larger than the Gi ∼10−8 for the typical low-TC superconductors. This un-

derlines the importance of flux-creep effect in these Ti-rich Ti-V alloys. On

the other hand, the Gi number for the Ti0.4V0.6 alloy is almost one order

of magnitude lower than those for the Ti0.8V0.2 and Ti0.7V0.3 alloys, imply-

ing negligible importance of the flux-creep effect in the Ti0.4V0.6 alloy (see

chapter 5). Accordingly, the FCC magnetization of the annealed Ti0.4V0.6

sample, measured at 2 K and in presence of 0.05 T magnetic field, does not

exhibit any diamagnetic relaxation behaviour [Fig. 9.6(b)]. Interestingly,

this sample does not exhibit any signature of the HFPME though it con-

tains the spatially inhomogeneous distribution of α phase within the main

β phase matrix of this sample. Hence, the observations of the HFPME in
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Figure 9.6: Time dependence of the FCC magnetization for the annealed
samples of the Ti-V alloys in the presence of different constant applied mag-
netic field and temperatures. The measurements are performed after field-
cooling the samples from 10 K to the measuring temperatures using a tem-
perature sweep rate of 1 K/min. The magnetization is normalized by M0

which denotes the magnitude of the magnetization at t = 0. The Ti-rich
Ti-V alloys exhibit diamagnetic relaxation behaviour at low magnetic field
regime and paramagnetic relaxation behaviour at relatively higher magnetic
field regime.
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the Ti0.8V0.2 and Ti0.7V0.3 samples and its absence in the Ti0.4V0.6 sample

signify that the flux-creep might be a necessary ingredient for the occur-

rence of the HFPME. In this context, it is important to mention that all

the superconducting samples such as melt-textured YBa2Cu3O7−δ [289-292],

YBa2Cu3O7−δ/La0.67Sr0.33MnO3 hetero-structures [293], MgB2 [294, 295], Nb

thin film [296] etc., which are reported so far to exhibit the HFPME, are also

susceptible towards strong flux-creep effect.

Figs. 9.6(c) and (d) show that for H = 0.5 T, FCC magnetization of

the annealed Ti0.8V0.2 and Ti0.7V0.3 samples relaxes monotonically towards

increasing positive value. This behaviour is opposite to the one expected

from the conventional flux-creep scenario described above. This anomalous

paramagnetic relaxation of the FCC magnetization depicted in Fig. 9.6(a)

has been observed previously in YBa2Cu3O7−δ [291, 292] and thin film Nb

[296] superconducting samples exhibiting the HFPME, suggesting that this

observed behaviour is a characteristic of the HFPME. The observed time

dependence of the HFPME clearly indicates the correlation of the vortex

dynamics with the HFPME. In the present Ti-V samples, the size of the

needle-shaped αM phase regions is much larger than the size of the other

relevant pinning centres such as the ω phase precipitations and grain bound-

aries available in the Ti0.8V0.2 and Ti0.7V0.3 samples. Consequently, these

αM phase regions are capable of pinning a flux line over longer length scale,

and thereby making the flux-line pinning most favourable at these regions.

Then it seems reasonable that the flux line could creep preferentially into
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the αM phase regions from other weak pinning centres. When the flux lines

creep into the αM phase regions from the rest of the sample and get pinned

there, some parts of the sample get depleted (compared to the equilibrium

distribution) of flux lines, and this creates the scope for additional flux lines

to enter into the sample from outside. As a possible consequence of this fact,

the anomalous paramagnetic relaxation of the FCC magnetization observed

in the present samples may occur in two ways. Firstly, the relatively higher

density of the flux-lines at the αM phase regions developed by the flux-creep

effect will give rise to the gradually higher paramagnetic response of the sam-

ple with elapsed time. Secondly, the entry of additional flux lines into the

sample will also contribute to increase the magnetization of the sample with

time. We now try to explain all the characteristic features associated with

the HFPME based on the interpretations made above.

(i) Temperature sweep rate dependence of the FCC magnetization

Fig 9.7 shows the temperature dependence of the FCC magnetization for the

as cast and annealed Ti0.8V0.2 samples measured using two different temper-

ature sweep rates. This figure shows that the thermo-magnetic behaviour of

these samples is highly sensitive to the temperature sweep rate. FCC magne-

tization is higher for a slower temperature sweep rate. This is also observed

for the annealed Ti0.7V0.3 sample (not shown here). The longer elapsed time

during a FCC measurement performed at a relatively slow temperature sweep

rate allows relatively large number of flux lines to creep into the αM phase

regions, and thereby produces higher paramagnetic response of the sample.
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Figure 9.7: Temperature dependence of FCC magnetization for the as cast
(in 0.5 T applied magnetic field) and annealed (in 1 T applied magnetic field)
samples of Ti0.8V0.2 alloy in two different temperature sweep rate.

(ii) Thermal hysteresis between the FCC and FCW magnetization

FCC and FCW measurements are performed in temporal sequence, and FCW

measurement follows the FCC measurement. While switching the experimen-

tal protocol from FCC to FCW, the sample is kept at a constant temperature

(2 K in the present case) for a finite period of time. During this elapsed time,

flux-creep into the αM phase regions results in an increase of the paramag-

netic response of the sample, which is evident from the steep jump of the

FCC magnetization at 2 K in Fig. in 9.4(b). On warming-up the sample

above 2 K, flux-creep into the αM phase regions along with the usual entry

of additional flux lines into the sample during the warming-up cycle gives

rise to the further enhancement of the paramagnetic response of the sample.

Consequently, the FCW magnetization is higher than the FCC magnetiza-
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tion. On further increase in temperature the inhomogeneous distribution of

flux lines over the sample volume is washed out in the close vicinity of TC

because of decreasing pinning efficiency of the αM phase regions and the en-

try of large number of flux lines into the sample in this temperature regime.

Consequently, FCW magnetization falls back onto the FCC magnetization

before the sample enters into the normal state at TC .

(iii) Temperature dependence of the paramagnetic relaxation be-

haviour of FCC magnetization

Fig. 9.6(c) shows that the paramagnetic relaxation behaviour of the annealed

Ti0.7V0.3 sample gradually diminishes as temperature is increased towards TC .

Very similar behaviour is also observed in high-TC materials exhibiting the

HFPME [291, 292]. When a highly dense state of the flux lines at some αM

phase regions is developed by the flux-creep and the subsequent pinning of

the flux lines at that region, the flux lines come quite close to each other.

However, in a high-κ material like Ti-V alloys (refer to chapter 4), strong

vortex-field associated with the flux line exists beyond the normal core of the

flux line [147], and thus the overlapping of such strong vortex-field opposes

the flux lines to come exceedingly closer to each other in the length scale much

lower than the magnetic field penetration depth λ. In such case, the average

separation between the flux lines and hence the density of flux lines at some

αM phase regions will be determined by the mutual competition between

the pinning energy and repulsive energy due to the interactions between the

vortex-field associated with the flux lines. In the previous chapter, we have
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found that the resistive transition of the annealed Ti0.7V0.3 sample in the

presence of magnetic field show indications for the existence of a Bose-glass

phase in the superconducting mixed state of this sample. This glass phase

exists up to the HIrr(T )-line (or equivalently TG(H)-line) which is, in gen-

eral, situated in the field-temperature (H − T ) phase diagram, not far away

from the HC2(T )-line for a low-TC superconductor. Therefore, in the H − T

regime near to HIrr(T )-line, the inter-spacing between the flux lines can be

assumed to be slightly lower than the normal core diameter of the flux lines,

which is just twice the coherence length ξ(T ). The exhibition of a glassy

vortex phase in H − T regime up to HIrr(T )-line is an indicative of the fact

that the pinning energy dominates over the vortex-vortex repulsive energy

even when the inter-spacing between the flux lines becomes close to 2ξ(T ). In

other words, we may say that the sufficiently higher pinning strength of the

αM phase regions present in the annealed Ti0.7V0.3 sample enables pinning of

as much as flux lines at these αM phase regions until the inter-spacing among

the flux lines becomes ∼2ξ(T ). This interpretation leads us to conclude that

the density of the flux lines at the αM phase regions and hence

the strength of the HFPME is expected to depend on ξ(T ). Since ξ

diverges at TC as ξ(T ) ∼ (1−T/TC)
1
2 , a given size of a non-superconducting

region such as the αM phase region is capable of accommodating relatively

larger number of flux lines at lower temperatures. As a possible consequence

of this fact, a relatively larger number of flux lines will be allowed to creep

into the αM phase regions at lower temperatures, producing stronger para-
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magnetic relaxation of the sample at lower temperatures. This explains the

observed temperature dependence of the paramagnetic relaxation behaviour

of the FCC magnetization, and will in general hold for any superconductor

whenever the pinning strength of the non-superconducting regions present in

the sample is sufficiently high.

(iv) Anisotropic behaviour of the HFPME in high-TC cuprate su-

perconductors

Another experimental observation which seems to be important in the present

context is that the HFPME observed in high-TC cuprate superconductors ex-

hibits strong anisotropic behaviour, and the effect is more strongly observed

when the magnetic field is applied parallel to the ab basal plane [291, 292].

This anisotropic behaviour becomes stronger as the anisotropy parameter is

increased. In order to explain this observed anisotropic behaviour of the HF-

PME in the melt textured YBa2C3O7−δ samples, Dias et al. have assumed a

preferential orientation of the needle-shaped non-superconducting Y211 pre-

cipitates parallel to the ab basal plane [291]. Based on this assumption they

have argued that the relatively larger interfacial region between the Y211

precipitate and YBCO matrix along the ab basal plane reinforces the flux-

line pinning when the magnetic field is applied parallel to the ab plane [291].

Consequently, HFPME is enhanced when the magnetic field is applied paral-

lel to the ab plane. However, in reality, the needle-shaped Y211 precipitates

are found to be randomly distributed within the YBCO matrix in all possi-

ble orientations [292, 299]. In our view, the observed anisotropic behaviour
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of the HFPME in high-TC cuprate superconductors arises mainly from the

different values of the coherence length in the ab basal plain and along the

c direction. In high-TC cuprate superconductors, the coherence length ξab

along the ab plain is significantly higher than the coherence length ξc along

the c direction. For the field orientation H||ab, the diameter of the normal

core of the of the flux lines is ∼2ξc while it is ∼2ξab for the field orientation

H||c. A relatively smaller normal core diameter of the flux lines for the field

orientation H||ab allows relatively larger number of flux lines to be pinned at

the Y211 precipitates and thereby produces much stronger HFPME in this

field orientation.

9.3 Summary and conclusions

The present experimental observations together with few other experimental

results available in the literature [291, 293, 295, 296] lead to the following

conclusions: The meta-stability of the flux-line system driven by flux-line

pinning at the inhomogeneously distributed αM phase within the supercon-

ducting matrix is the essential mechanism leading to the observation of the

HFPME in the present Ti-V alloy samples. The flux-creep effect acts as an

additional ingredient for the occurrence of the HFPME. The characteristic

features of the HFPME observed in the present Ti-V samples are found to be

explained consistently when the flux-creep effect (vortex dynamic) is taken

into account along with the (static) metastable distribution of the flux lines
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resulted from the flux-line pinning at the spatially inhomogeneous distribu-

tion of αM phase. Thus it appears that the HFPME may be considered in

general to be a common feature of the type-II superconductors having inho-

mogeneous distribution of pinning centres within the superconducting matrix

and finite role of flux-creep effect. The HFPME is also found to depend on

the fundamental superconducting length scale ξ of a superconductor because

the density of the flux lines at the non-superconducting regions indirectly

depends on this length scale, particularly when the pinning strength is suffi-

ciently high. Based on the present results obtained for the Ti-V samples, we

suggest that the superconductors with significant role of flux-creep effect and

very small values of ξ are favourable to exhibit strong HFPME. The high-

TC cuprate superconductors, which usually show giant flux-creep effect and

have very small values of ξ, are known to exhibit very strong HFPME. Sim-

ilarly, the very rare observation of the HFPME in low-TC superconductors

can also be understood from the negligible role of flux-creep and very large

values of ξ in these superconductors. On the other hand, Ti-V and MgB2

superconductors lie in-between the high-TC cuprate and conventional low-TC

superconductors in terms of the strength of flux-creep effect and the value of

ξ. Accordingly, HFPME is observed in the Ti-V and MgB2 superconductors,

though the effect is less prominent as compared to that observed in high-TC

cuprate superconductors [291, 293-295].
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Chapter 10

Summary, conclusions and
future outlook of the study

10.1 Summary and conclusions

In this thesis we have presented an experimental study on four TixV1−x al-

loys having concentrations x = 0.8, 0.7, 0.6 and 0.4. This study was focused

to understand the structural properties as well as various important super-

conducting and normal state properties of these Ti-V alloys. The structural

properties are studied through X-Ray diffraction (XRD) experiments (us-

ing both laboratory based and Synchrotron radiation sources) and optical

metallography. The properties of the Ti-V alloys in their normal as well

as superconducting state are studied through the measurements of resistiv-

ity, magnetization, and the heat capacity as functions of temperature and

magnetic field. In this study, we have also attempted to investigate on how

the structural and the normal state properties influence the superconduct-

ing properties of these Ti-V alloys. In this chapter we present the overall
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summary and the conclusions of this study.

The XRD patterns of the Ti-V alloys were analysed using the Rietveld

refinement technique to find out the crystal structure as well as the volume

fractions of the constituent phases present in the alloys. The analysis of the

XRD results indicates that the present Ti-V alloys are formed predominantly

in body-centre-cubic (bcc) β phase crystal structure. Apart from the major β

phase, the Ti-V alloys also contain hexagonal ω phase as well as martensite α

and α′ phases. The martensite α phase has a hexagonal closed packed crystal

structure. This phase is formed in a considerably large amount (∼28 %) in

annealed Ti0.7V0.3 alloy while a small amount of this phase (∼2 %) is also

detected in the annealed Ti0.4V0.6 alloy. On the other hand, the martensite

α′ phase is present in both the annealed and as cast samples of the Ti0.8V0.2

alloy. This martensite α′ phase has an orthorhombic crystal structure, and

is known to be formed due to a stress induced athermal transformation of

the β phase [58, 107, 108].

Optical micrographs show that these polycrystalline Ti-V alloys have very

large β phase grains with average grain size ranging from few tens to few hun-

dreds of micron. Apart from the signature of grain boundaries, a dotted mi-

crostructure is also visible to be densely distributed over the β phase matrix

of few samples of the present Ti-V alloys. In some portion of these samples,

the dotted microstructures show a tendency to lining-up, which is reported

to indicate the presence of edge dislocations and low angle grain boundaries

inside the β phase matrix of these sample [37]. Optical micrographs of the
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annealed samples of the Ti0.7V0.3 and Ti0.4V0.6 alloys show that the marten-

site α phase mostly formed in needle shaped pattern, is inhomogeneously

distributed within the β phase matrix of these alloys. On the other hand,

the stress induced martensite α′ phase in both annealed and as cast samples

of the Ti0.8V0.2 alloy is formed in the shape of needles near the edges of these

samples. It was inferred that the α′ phase is formed during the mechanical

processing such as cutting of the sample [110].

We have estimated the superconducting transition temperature TC , var-

ious critical fields (the upper critical field HC2, the lower critical field HC1,

and the thermodynamic critical field HC), the coherence length ξ, the mag-

netic field penetration depath λ, and the Ginzburg-Landau parameter κ to

characterize superconducting state properties of the present Ti-V alloys. We

have also estimated the Debye temperature θD and the electron-phonon cou-

pling constant λep from the low temperature heat capacity data, and the

bare electronic density of states at the Fermi energy N(0) obtained from the

band structure calculation. The estimated values of λep have led us to infer

that the Ti-rich Ti-V alloys are weak-coupling superconductors. As the Ti

concentration is decreased, λep increases and becomes ∼1 for the Ti0.4V0.6

alloy, indicating the moderate to strong coupling nature of superconductiv-

ity in the V-rich Ti-V alloys. Then we have compared the experimentally

determined TC values with those obtained using McMillan formula [19]. The

TC value thus estimated is found to be much higher than the experimentally

determined value for the TixV1−x alloys with x = 0.4, 0.6 and 0.7.

253



It was found that Pauli paramagnetic pair-breaking effect [128, 129] im-

poses limitation on the experimental HC2 in the Ti-rich Ti-V alloy super-

conductors. However, enhanced electron-phonon interaction in the V-rich

Ti-V alloys (as indicated by the increased value of λep with increasing V

concentration in the Ti-V alloys) reduces the role of the Pauli paramagnetic

pair-breaking effect, and thereby the experimentally determined HC2 in the

V-rich Ti-V superconductors agrees well with the prediction of the Ginzburg-

Landau-Abrikosov-Gorkov (GLAG) theory [8, 20].

The field dependence of magnetization curve of few samples of the present

Ti-V alloys particularly those having relatively low density of defect struc-

tures, bears some signature for the presence of Bean-Livingston surface bar-

rier [26]. However, we have found that in the present Ti-V alloy supercon-

ductors the existence of the Bean-Livingston surface barrier does not raise

the characteristic field for the first flux-line penetration HP above the lower

critical field HC1. The existence of the Bean-Livingston surface barrier only

lowers the rate of flux-line penetration in these samples. The Ginzburg-

Landau parameter κ was estimated and found to be very high for these Ti-V

alloy superconductors, indicating that these superconductors are extreme

type-II superconductors. The κ value increases progressively from 32 to 55

as the Ti concentration is increased from x = 0.4 to 0.8 in the TixV1−x alloys.

From the knowledge of the estimated superconducting parameters, we have

inferred that the flux-line lattice in the V-rich Ti-V alloys is more rigid as

compared to that in the Ti-rich alloys. This is important information has
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implications on the current carrying aspect of these superconductors.

Superconducting fluctuations induced conductivity in the annealed Ti-V

alloys above the superconducting transition temperature TC has been studied

through the measurements of electrical resistivity as functions of tempera-

ture and magnetic field. All the currently investigated Ti-V alloys exhibit

a strong rounding-off behaviour in the resistive transition, and the trace of

this behaviour persists up to the temperature ∼2TC . Moreover, these Ti-V

alloys exhibit strong positive magneto-resistance in the same temperature

regime where the experimental observation of the excess conductivity is pos-

sible within the level of experimental accuracy. Aslamazov-Larkin theoretical

model [157] and its extended version [158] consistently describe the excess

conductivity data of the present Ti-V alloys. In order to explain the strong

positive magneto-resistance observed in the temperature range from TC to

2TC , we have invoked the theoretical model of Usadel [159] which considers

the magneto-resistance associated with the Aslamazov-Larkin superconduct-

ing fluctuations induced conductivity. We have found that this theoretical

model consistently describes the magnetic field dependence of the magneto-

resistivity of the Ti-V alloys. Based on these observations we have inferred

that the rounding-off behaviour of the resistive transition in the Ti-V alloys

occurs due to enhanced role of the superconducting fluctuations in these al-

loys. The Ginzburg number Gi for the Ti-V superconductors is estimated

and found to be ∼10−6-10−5, which is intermediate between those for high-TC

cuprate superconductors (Gi ∼10−2) and conventional low-TC superconduc-
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tors (Gi ∼10−8). We have suggested that the moderate value of Gi of the

Ti-V superconductors makes the superconducting fluctuations significant in

the experimentally accessible temperature window in the present bulk low-

TC superconductors. Hence, the outcomes of the present study resolve the

debated problem of the observed rounding-off behaviour of the resistive tran-

sition in the Ti-V alloys, for which both the superconducting fluctuations

[85-87] and the spin fluctuations [44, 88, 94] scenario were independently

proposed previously.

Physical properties such as electric resistivity, magnetization, and heat

capacity of Ti-V alloys are studied in the normal state of the Ti-V alloys.

The important properties of the Ti-V alloys in their normal state are:

(i) The considerations of only the electronic and the Debye lattice heat

capacity cannot explain the experimental temperature dependence of

heat capacity data in the wide temperature range 10-225 K. At lower

temperature regime, the experimental heat capacity data deviate from

the fitting performed by considering only the electronic and the Debye

lattice heat capacity.

(ii) A non-linearity with a negative curvature is observed in the plots of

C/T as a function of T 2 at low temperatures.

(iii) Dc magnetic susceptibility follows−T 2lnT dependence on temperature.

(iv) There is an enhancement of the stoner factor S in TixV1−x alloys with

x ≤0.7.
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(v) For the Ti0.4V0.6 and Ti0.6V0.4 alloys, the electrical resistivity varies

with temperature as ρ(T ) = ρ0 + AT 2 + BT 5 at low temperatures.

The coefficient of the T 5 term in low-temperature resistivity is found

to be very small. This coefficient is positive for the Ti0.4V0.6 alloy and

negative for the Ti0.6V0.4 alloy.

(vi) For the Ti0.4V0.6 and Ti0.6V0.4 alloys, the Somerfield coefficient γ and

the coefficient A of the T 2 term in the temperature dependence of

electrical resistivity at low temperatures follow the KadowakiWoods

relation, according to which A/γ2 = 1.0×10−4 µΩ-cm(mole/mJ)2 for

the spin fluctuating systems [180].

All the above characteristic features pointed out above uniquely imply

that spin fluctuations are important in the Ti-V alloys particularly in those

having high V concentration [155, 156]. The outcome of this study was

then used to resolve the problem of the observed disagreement between the

experimentally measured and the theoretically predicted TC values of the

TixV1−x alloys with x ≤0.7. We have suggested that spin fluctuations, whose

presence is evident in various normal state properties of the Ti-V alloys,

suppress the TC from a much higher value ∼15-20 K (as calculated using

McMillan formula) to the experimental value which is less than 8 K for the

TixV1−x alloys with x ≤0.7 [155, 156].

From the point of practical applications, the critical current density JC

in as cast and annealed samples of the Ti-V alloys has been studied in detail.

JC is estimated from the irreversible magnetization using Bean’s critical state
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model [27]. As cast Ti0.7V0.3 alloy has the highest JC value among all the in-

vestigated alloys. To understand the flux-line pinning mechanisms operating

in the present Ti-V superconducting alloys, a detailed analysis of the field

dependence of pinning force density FP (= JC×H) has been performed using

Dew-Hughes model [213]. Flux-line pinning at normal surface pins has the

major contribution to the pinning force density in all the as cast and annealed

Ti-V alloys except in the annealed Ti0.8V0.2 alloy. The grain boundaries and

edge dislocations seem to constitute the sources of such normal surface pin-

ning centres in these alloys. In the annealed Ti0.8V0.2 alloy, flux-line pinning

occurs predominantly at normal point pins while the role of normal surface

pins is prevalent at relatively lower magnetic field. Substantial amount of

the ω phase available in this sample functions as the normal point pinning

centres. In the present Ti-V alloys, the most relevant pinning centres such as

grain boundaries have length scales of the order of few tens to few hundreds

of micron while inter-spacing between flux lines is of the order of few tens of

nm for an applied magnetic field of only 1 T, implying the lack of sufficient

pinning centres in these alloys. In spite of this fact, the zero field JC value

obtained in the as cast Ti0.7V0.3 alloy is only one order of magnitude lower

than that obtained in Nb-Ti superconducting wires which is extensively used

in the fabrication of high-field magnets (as cast Ti0.7V0.3 superconductor:

JC(H = 0 T, T = 4.2 K)∼7×108 A/m2; Nb-Ti superconductor: JC(H =

0 T, T = 4.2 K)∼1010 A/m2 [25]). Therefore, there is an ample scope to

achieve a sufficiently high level of JC in the Ti-V alloy superconductors by
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artificially introducing disorders in these materials.

We have further investigated on how the intrinsic superconducting prop-

erties of the Ti-V alloys govern the flux-line pinning properties in the same.

In these Ti-V alloys, JC drops sharply in high magnetic field regime and van-

ishes at the irreversibility field HIrr which is distinctly different from HC2 in

these alloys. The limitation of JC in high magnetic field regime was inferred

to occur due to the thermal fluctuation effect, as is the case for the high-

TC superconductors. As the value of Ginzburg number Gi decreases with

decreasing Ti concentration in the Ti-V alloys, thermal fluctuation effect be-

comes gradually less important in the V-rich Ti-V alloys. Consequently, the

V-rich Ti-V alloys exhibit relatively improved high-field JC behaviour. So

our study shows that from the JC point of view the V-rich Ti-V alloys

are superior than the Ti-rich Ti-V alloys.

We have also studied the peak-effect observed in all the annealed and

as cast Ti-V alloys except the annealed Ti0.7V0.3 alloy. The peak-effect is

characterized by an abrupt enhancement of the irreversible magnetization

(and hence critical current JC) in high magnetic field regime below HC2. To

investigate into the origin of the peak-effect, we have constructed the minor

hysteresis loops (MHLs) in and around the peak-effect regime. Magnetic hys-

teresis of these Ti-V alloys shows history effects within the peak-effect regime,

which are known to be characteristic features related to the meta-stability

(super heating/supercooling) associated with a first-order phase transition

in the flux-line system [218-220]. We have then estimated equilibrium mag-
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netization (Meq) at different magnetic field from these MHLs. The magnetic

field dependence of Meq shows a clear jump within the peak-effect regime,

which again indicates the first-order nature of the stated phase transition.

We have suggested that a disorder-driven phase transition in the flux-line

system gives rise to the peak-effect in the present Ti-V alloys.

We have presented a study on the vortex-glass to vortex-liquid phase

transition in the flux-line system of the annealed Ti0.7V0.3 alloy. In order to

ascertain the existence of such a phase transition in the flux-line system, the

superconducting transition in this alloy has been studied thorough resistiv-

ity measurements in the presence of various constant applied magnetic fields,

and the results are analyzed based on the theory of vortex-glass [38-41] as

well as the modified vortex-glass model [247, 248]. We have estimated the

glass transition temperature TG and the critical exponent s for the vortex-

liquid to vortex-glass phase transition. The s value is found to be ∼1.8 and

is almost independent of magnetic field. From both the estimated values

of s as well as the nature of the disorders present in this sample, it is in-

ferred that a Bose-glass [40, 41] vortex phase is formed in the mixed state

of the annealed Ti0.7V0.3 alloy. We have estimated the activation energy

or the effective pinning energy U0 for the annealed Ti0.7V0.3 alloy using the

modified vortex-glass model [247, 248]. Both the temperature and magnetic

field dependencies of U0 in the annealed Ti0.7V0.3 alloy are found to be dis-

tinctly different in the magnetic field regimes below and above 2 T, and these

features are attributed due to the crossover from individual vortex pinning
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regime to the collective pinning regime. For higher magnetic field (above 2

T), the temperature and magnetic field dependencies of U0 of the annealed

Ti0.7V0.3 alloy were found to be qualitatively very similar to those predicted

for the high-TC superconductors [247, 248]. Consequently, in this magnetic

field regime, the vortex-liquid resistivity of the annealed Ti0.7V0.3 alloy in the

critical region of the vortex-liquid to Bose-glass phase transition has been ob-

served to follow the scaling behaviour predicted by the modified vortex-glass

model [247, 248]. However, the same scaling law referred above was found

to be not valid in low magnetic field regime. We have proposed a new scal-

ing law for the vortex-liquid resistivity for low magnetic field regime. The

vortex-liquid resistivity of the annealed Ti0.7V0.3 alloy in low magnetic field

regime has been found to follow this new scaling law. This is the first study

showing the scaling behaviour of the vortex-liquid resistivity in a low-TC

superconductor.

We have studied the high-field paramagnetic effect (HFPME) in as cast

and annealed samples of Ti0.8V0.2 alloy and annealed sample of Ti0.7V0.3 al-

loy. In presence of relatively higher magnetic field (of the order of 1 Tesla),

FCC magnetization of these multiphase Ti-V samples increases when tem-

perature is decreased well below TC . Moreover, in the superconducting state,

FCW magnetization is found to be larger than the FCC magnetization. The

FCW magnetization in the superconducting state even becomes larger than

the normal state magnetization. These observed magnetic behaviours are

distinctly different from the conventional magnetic responses of a type-II su-
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perconductor, and are known as characteristics of the HFPME [291-296]. We

have suggested that the inhomogeneous distribution of flux lines driven by

the flux-line pinning at α (or α′) phase regions is the essential mechanism

leading to the observed HFPME in these samples. The above interpretation

has been tested and confirmed by observing the complete disappearance of

the HFPME in a Ti0.8V0.2 sample from which α′ phase is removed by an-

nealing it at an elevated β-field temperature. FCC magnetization exhibits

strong dependence on both time as well as the temperature sweep rate of

the measurements. Based on these experimental results, we have recognized

the flux-creep effect as an important ingredient for the occurrence of the HF-

PME. We have interpreted that the creep of the flux lines into some stronger

pinning centres available in these alloys (α or α′ phase in these Ti-rich Ti-V

alloys) enhances the flux-line density at these pinning centres, and thereby

giving rise to the increase in paramagnetic response of the samples with time.

We have also found that the coherence length ξ is another important factor,

which governs the strength of the HFPME in a superconductor. These factors

referred above successfully explain all the characteristic features associated

with the HFPME exhibited by the present Ti-V alloys as well as many other

superconducting systems.
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10.2 Future outlook

One of the important outcomes of the present study is that the supercon-

ducting transition temperature TC of the Ti-V alloys is significantly reduced

due to the presence of spin fluctuations in these alloys. This result provides

a way to achieve significantly higher TC values up to ∼15-20 K for the Ti-V

alloys by suppressing the role of spin fluctuations in these alloys. The doping

of a third element with negligible influence of spin fluctuations into the Ti-V

alloys by not perturbing the electronic band structure remarkably could be a

possible technique for the TC enhancement. However, the malleability, which

is known to be one of the important merits of the Ti-V superconductors for

being used in technological applications, should not be compromised by such

TC enhancement process. The origin of spin fluctuations in the Ti-V alloys

is itself an interesting research problem which is yet to be answered properly.

While investigating on the critical current aspect of the present Ti-V

alloys, we have found that the there is an ample scope to achieve a sufficiently

high level of JC in the Ti-V superconducting alloys by artificially introducing

disorders in these alloys. In this direction, we have planned to introduce

disorders in the present Ti-V alloys by heavy ion irradiation technique which

is known to be one of the promising techniques for the improvement of the

critical current density. Currently, this work is in ongoing stage.

Moreover, in this thesis, a little effort has been put to study the peak-

effect phenomenon, which is observed quite often in the Ti-V alloys as well
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as many other Ti-based transition metal alloys. To obtain a more complete

and comprehensive picture of this phenomenon, we are now studying this

phenomenon in detail.
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