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Synopsis

Study on properties of nanostructures, such as nanosheets, nanotubes, nanowires and nan-

oclusters, has been an active area of research during the last few decades since they possess

many exciting and novel properties. They are also potential candidates for possible ap-

plications in nanotechnology. Nanostructures have a large surface-to-volume ratio which

plays an important role in determining many of their physical and chemical properties.

The properties of nanostructures strongly depend on their size, shape and chemical com-

positions. Functionalization, intercalation and doping by addition of electron acceptors or

donors are the ways of modifying the properties of these nanostructures. The properties

of nanostructures can also be tuned by applying mechanical stress and external electric

and magnetic fields.

With the advancement of sophisticated experimental methods and characterization

techniques, many novel nanostructures have been synthesized and their properties have

also been investigated. Among these nanostructures, carbon based nanostructures such

as graphene, nanotubes and fullerenes have received considerable attention from both

experimentalists and theoreticians[1–7]. Graphene is a two-dimensional honeycomb-like

structure of carbon and is one of the most well studied materials during the last decade.

The reason for the tremendous interest in this material is due to the fact that it pos-

sesses many exciting and novel properties. For example, the charge carriers in this system

behave like massless Dirac-Fermions which give rise to a linear dispersion around the

Fermi energy at a highly symmetric k-point (K) in the reciprocal lattice [1, 2]. Similar

to graphene, carbon nanotubes are also considered as potential candidates for applica-

tions in nanotechnology because of their unique properties such as outstanding electrical

and thermal conductivity, excellent field emission, tunable optical properties and very

good mechanical properties [5, 6]. Carbon nanotube and fullerene can be considered as

wrapped graphene sheet in cylindrical and spherical shapes, respectively. The interesting

properties associated with carbon based nanostructures have prompted us to search for

similar nanostructures made up of other group IV and also group III-V materials. The
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graphene-like structure made up of silicon is called silicene where Si atoms are arranged

in a two-dimensional honeycomb lattice similar to the arrangement of carbon atoms in

graphene [8]. Major advantage with the nanostructures of silicon, germanium and other

group III-V materials is that they can be compatible with the existing semiconductor

technology.

Over the last few decades, ab initio density functional theory (DFT) [9] based elec-

tronic structure calculations have been widely used to study the properties of several

materials including the nanostructures. DFT based calculations have been highly suc-

cessful in predicting many ground state properties of several materials [10, 11]. In this

thesis, we investigate various physical properties of nanostructures namely graphene-like

structure - silicene, single walled carbon (SWCNT) and gallium phosphide nanotubes

(SWGaPNT), group III-V clusters and homonuclear diatomic molecules using ab initio

density functional theory based methods. A systematic study on the evolution of many

properties of nanostructures as a function of their sizes has been carried out. We also

study the effect of external influences such as doping of different elements as well as

external electric field on the properties of nanostructures.

The thesis is organized in the following manner.

In Chapter 1 of the thesis, we provide an overview of properties of nanostructures

such as graphene, carbon nanotubes and nanoclusters.

A brief introduction to the computational methods employed in the electronic structure

calculations based on DFT and time-dependent DFT (TDDFT) is given in Chapter 2.

Discussions on the results for the geometric, electronic and optical properties of

graphene-like structure - silicene have been presented in Chapter 3. The electronic

structure calculations of silicene show that it is a semi-metal and the charge carriers in

this two-dimensional system behave like massless Dirac-Fermions since it possesses linear

dispersion around Dirac point. Thus, the electronic properties of silicene are similar to

those of graphene. Though graphene possesses many novel properties, its application in

nanoelectronic devices is limited due to its zero band gap and hence it is difficult to control

the electrical conductivity of graphene. It is desirable to have a band gap in materials in

addition to their novel properties. We demonstrate through the results of our calculations
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that a band gap in silicene can be opened up at the Fermi level due to an external static

electric field which leads to the breaking of inversion symmetry. Our results show that

the induced band gap varies linearly with the strength of external electric field. Further-

more, the value of band gap can be tuned over a wide range of energies. Hence, there is

a possibility of using silicene monolayer in nanodevice applications. We also discuss the

optical response properties of silicene in Chapter 3. We identify and characterize the

important electronic transitions which are prominent in the optical absorption spectra of

silicene. At the end of Chapter 3, we also discuss the results of our investigation on the

effect of doping of various elements on the properties of silicene.

It is known from the literature that the electronic properties of bi- and multi-layer

of graphene are distinctly different from those of mono-layer. For example, bi-layer of

graphene possesses parabolic dispersion around the highly symmetric k-point (K) in the

reciprocal lattice as opposed to the linear dispersion in the case of mono-layer. In order

to understand how the geometric and electronic properties of multi-layers of silicene are

different from those of mono-layer of silicene, in Chapter 4 we present our results of a

detailed investigation on the geometric and electronic properties of bi- and multi-layers

of silicene with different possible stacking configurations using ab initio DFT based cal-

culations. We also study the evolution of geometric as well as electronic structures of

multi-layers of silicene with increasing number of layers (n ranging from 1 to 10). Al-

though a mono-layer of silicene possesses properties similar to those of graphene, our

results show that the geometric and electronic properties of multi-layers of silicene are

strikingly different from those of multi-layers of graphene. We observe that strong inter-

layer covalent bonding exists between the layers in multi-layers of silicene as opposed to

the weak van der Waals interaction which exists between the graphene layers. Our calcu-

lations show that the inter-layer bonding strongly influences the geometric and electronic

structures of these multi-layers. Like bi-layers of graphene, silicene with two different

stacking configurations AA and AB exhibits linear and parabolic dispersions around the

Fermi level, respectively. However, unlike graphene, for bi-layers of silicene, these dis-

persion curves are shifted in the band diagram because of the strong inter-layer bonding

present in the structure. For the multi-layers with n ≥ 3, we study the geometric and elec-
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tronic properties of multi-layers with four different stacking congurations, namely AAAA,

AABB, ABAB and ABC. The results of cohesive energy calculation predict that rhombo-

hedral (ABC) stacking sequence is the minimum energy conguration. Furthermore, our

calculations predict that the Bernal (ABAB) stacking, which is energetically most stable

stacking sequence in multilayer of graphene, is however the least stable stacking sequence

in multilayers of silicene because of the different nature of hybridizations favored in the

bulk Si and C. At the end of Chapter 4, we also discuss the results for the ground state

properties of the hybrid structures made up of silicene and other graphene-like structures.

In Chapter 5, we present results for the geometric and electronic structures of quasi-

one-dimensional (infinite-length) single walled nanotubes made up of carbon (SWCNT)

and gallium phosphide (SWGaPNT) using all-electron based density functional theory

calculations. Here, we study and compare the geometric and electronic properties of

carbon and gallium phosphide nanotubes since the former has a rich π-electron density

which is not expected in the case of the III-V nanotubes. Furthermore, we probe the

effect of intercalation of alkali and transition metal atom clusters on the properties of

these nanotubes. It has been observed in the literature that intercalation of atoms or

clusters inside carbon nanotube systems can give rise to many interesting changes in their

properties [12–15] such as presence of half-metalicity in transition metal atoms doped

SWCNT(3,3) [12], Kondo effect [13], semiconductor-metal as well as metal-semiconductor

transition in alkali metal doped SWCNT [14], metal induced adsorption of biomolecules

on nanotubes [15].

Our calculations on undoped nanotubes show that unlike in SWCNT, there is a strong

buckling effect in the optimized geometric structure of SWGaPNT. The amount of buck-

ling can be characterized by the buckling length and it is found to be about 0.48 Å in

SWGaPNT. The presence of buckling is due to the mixture of sp2 and sp3 hybridiza-

tions in SWGaPNT. The results of our calculations show that both SWCNT(10,0) and

SWGaPNT(10,0) are semiconductors with direct band gaps of 0.83 and 1.48 eV, respec-

tively. It is important to note that this is in contrast to the respective bulk materials,

which are semiconductors with indirect band gaps. In case of nanotubes intercalated with

alkali metal atom clusters, we observe that there is a semiconductor to metal transition
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due to significant amount of charge transfer from valence band of alkali metal atom to

the unoccupied bands of nanotubes. On the other hand, our spin-polarized calculations

of these nanotubes intercalated with chains of single transition metal atom indicate that

SWCNT(10,0) undergoes a transition from semiconducting to a half-metallic state and a

signature of similar transition is observed for SWGaPNT(10,0) as well. On the contrary,

the electronic structures of these nanotubes show metallicity when they are intercalated

with more number of transition metal atoms.

Having discussed the results on the ground state properties of infinite-length nan-

otubes in the previous chapter, we shall discuss the various properties of finite-length car-

bon nanotubes as well as fullerenes in Chapter 6. Understanding the response properties

of nanostructures as function of their shape and size is an important aspect associated

with the research in nanoscience. Keeping this in mind, in Chapter 6, we carry out

detailed calculations to investigate the electronic polarizability and strength of van der

Waals interaction (through the coefficient (C6)) between the carbon nanostructures with

two different shapes namely (a) tubular : finite-length carbon nanotubes with different

chirality index and (b) spherical : fullerenes. We also study the evolution of these prop-

erties with the increasing size of the nanostructures. The dispersion coefficients (C6) are

obtained via Casimir-Polder relation. It is observed from our calculations that the values

of polarizability and C6 coefficients between the carbon nanotubes scale non-linearly with

the length of nanotubes. Furthermore, our calculations show that nanotubes are more

polarizable than the fullerenes having similar number of atoms. This can be attributed

to the geometry of nanotubes, which can be easily polarized along the tube direction.

Therefore, these quasi-one-dimensional structures have large anisotropy in polarizability

and this large anisotropy can play an important role in electric field aligned growth of

nanotubes. The oriented growth of nanotubes is important for nanoelectronics and Ural

et al. has already grown aligned SWCNTs onto the surfaces of SiO2 / Si substrates in

presence of strong electric fields [16]. Additionally, it is found that the values of C6 are

about 40 - 50 % lower for the carbon cages when compared to those of nanotubes with

equal number of atoms.

The presence of large surface-to-volume ratio of the nanostructures plays a vital role
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in their potential application in storing significant quantities of several gas molecules and

in gas sensors. For example, the storage of hydrogen by carbon based nanostructures,

especially carbon nanotubes has shown great promise and the studies on adsorption of

hydrogen atom or molecule as well as other small molecules have received overwhelming

attention of the researchers [17–26]. Hence, to explore the potential of the adsorption of

different gases, specically the environmentally important ones, by the carbon based nanos-

tructures, detailed studies and microscopic understanding of various physical properties of

these materials are essential. It is well known that the van der Waals interaction plays an

important role in the physisorption of the gas molecules with the nanostructures. There-

fore the knowledge and accurate estimate of the van der Waals interaction coefficients

(C6) between the carbon based nanostructures and different molecules of environmentally

important gases are highly important. Hence, in this study, we also calculate the van der

Waals interaction coefficients (C6) between different gas molecules and carbon nanotubes

as well as fullerene using the TDDFT method. It is observed from our calculations of the

van der Waals coefficients between the small molecules and the carbon nanostructures

that the environmentally important gas molecules such as green house and ozone deplet-

ing ones, possess reasonably higher values of C6 coefficient. Hence, our estimation of the

coefficients based on the ab initio calculations between the carbon nanostructures and

the environmentally important gas molecules can be useful in providing the microscopic

understanding in the studies of adsorption, specically physisorption, of these gases on

carbon-based nanostructures.

In Chapter 7, we discuss the results of the various ground state and response proper-

ties of quasi-zero-dimensional semiconductor clusters namely stoichiometric gallium phos-

phide (GanPn) clusters with n = 2 - 5. The ground state properties such as the geometric,

electronic and vibrational properties have been studied by employing DFT based calcu-

lations. The stability of these clusters is checked by the binding energy and vibrational

frequency analysis. The static dipole polarizabilities of these clusters have been obtained

by employing various ab initio wave function based methods as well as DFT / TDDFT

with different exchange-correlation (XC) functionals, ranging from simple local density

approximation (LDA) to an asymptotically correct model potential namely statistical av-
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erage of orbital potential (SAOP). A systematic investigation is carried out to analyze the

performance of different XC functionals used in DFT / TDDFT method in determining

static dipole polarizability of these clusters. The results for most stable isomers show

that the DFT / TDDFT method with different XC functionals underestimate the values

of polarizability in comparison to the results of second order Møller-Plesset perturbation

theory (MP2) method. We infer from our calculations that among the several XC func-

tionals, the values of polarizability obtained within generalized gradient approximation

(GGA) by using Perdew-Burke-Ernzerhof exchange with Lee-Yang-Parr correlation func-

tional and Perdew-Burke-Ernzerhof exchange-correlation functionals are the closest to the

corresponding results from Møller-Plesset perturbation theory for GanPn clusters. The

values of polarizability obtained by the DFT/TDDFT calculations with model potential-

SAOP are found to be lower than those obtained with the LDA and GGA XC functionals.

Moreover, the LDA and GGA results for polarizability are closer to the corresponding MP2

values than those obtained by SAOP. This may be due to the accidental cancellation of

errors arising from calculations of low lying and high lying excited states by LDA and

GGA functionals, which contribute to the polarizability. However, no such cancellation

of errors occurs when excited states are obtained with SAOP. Our study on the evolution

of static polarizability per atom with size shows that it reaches the bulk limit from the

above as the size of the clusters increases.

The results of our systematic investigation on the various ground state and response

properties of homonuclear diatomic molecules (from hydrogen to rubidium, including

transition metals) as a function of atomic number of the constituent atoms have been

summarized in Chapter 8. We study the variation of different ground state and re-

sponse properties of homonuclear diatomic molecules along the rows and columns of the

periodic table by using state of the art DFT / TDDFT calculations. Our study includes

the variation of properties such as the binding energy, highest occupied and lowest unoccu-

pied molecular orbital (HOMO and LUMO, respectively), HOMO-LUMO gap, harmonic

vibrational frequency, vertical ionization potential, vertical electron affinity as well as

response properties such as static dipole polarizability and van der Waals interaction co-

efcient. We observe from our calculations that several properties of homonuclear diatomic
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molecules show periodic variations along rows and columns of the periodic table. The pe-

riodic variations in the ground state properties of diatomic molecules have been explained

by the nature and type of the bond that exists between the constituent atoms. Similarly,

the periodic variations in the response properties such as static dipole polarizability and

strength of the van der Waals interaction between diatomic molecules have been correlated

with the variations in metallic/nonmetallic character of the elements along the periodic

table.

Finally, the thesis has been concluded in Chapter 9 and then followed by a brief

discussion on the possible future work.
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Chapter 1

Introduction

The word “nano” in Greek means “dwarf”. It is used as a prefix in science and engineering

to denote a billionth (10−9) of a unit, like nanometer (nm) for length and nanosecond

(ns) for time. Nanoscience is a branch of science that involves the studies of properties

of materials at the scale of nanometers. It is one of the most active areas of scientific

research in twenty first century. In 1959, the Nobel Laureate Richard P. Feynman gave

a famous talk[1] entitled “There’s Plenty of Room at the Bottom”. In this talk, he had

discussed many aspects regarding manipulation of atoms and molecules at nanoscale and

also outlined the promise of nanotechnology. Since then there has been a rapid progress in

the fields of nanoscience and nanotechnology[2–16] due to the availability of sophisticated

experimental techniques for the growth and characterization of materials at nanoscale.

Another important factor which has played a significant role in the development of this

field is the miniaturization of devices in semiconductor industry. Over the years, the

field of nanoscience has evolved enormously and it is now influencing several branches of

science including physics, chemistry, biology, materials science and medicine.

The main reason for the tremendous interest in this field is the fact that the nanos-

tructures i.e the nm sized materials, possess many exciting and novel properties which

are drastically different from those of atoms as well as their bulk counterparts. For ex-

ample, bulk gold is an inert material, however, nanoparticles made up of gold are highly

reactive[17, 18]. The modifications in the properties of materials at nanoscale are mainly

due to the (i) large surface-to-volume ratio and (ii) strong effect of quantum confinement.

In bulk materials, the number of atoms on the surface is a negligible proportion of the

total number of atoms. Thus, the surface atoms play an insignificant role in the properties

of bulk materials. However, when the size of the materials is reduced to nanoscale, the

ratio of number of atoms on the surface and the total number of atoms in the material
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becomes very large and hence the physical and chemical properties of the nanomaterials

strongly depend on the surface properties. This may result in modification or enhancement

of several existing properties of the bulk materials or even emergence of new properties.

As mentioned above, the high reactivity of gold nanoparticles is a good example. More-

over, the color of gold nanoparticles can be orange, purple, red or greenish depending upon

the size of the nanoparticle. This is due to the presence of surface plasmon resonance[19]

where the electron cloud surrounding the metal nuclei oscillates coherently with the elec-

tric field of the incoming light. Similar effect is also observed in silver nanopartiles[20].

Colloidal gold nanoparticles were already well known in the middle ages and they were

used as dyes in stained glass windows of cathedrals and palaces. Because of their enhanced

surface plasmons, the noble metal nanoparticles have also been used in biological sensing

application[21].

Similar to metal nanomaterials, carbon based nanostructures have also been exten-

sively studied by both experimentalists and theoreticians since they possess many ex-

traordinary properties and due to their potential applications in nanodevices[22–33]. For

example, two-dimensional graphene possesses many novel properties, namely, the charge

carriers in this system behave like massless Dirac-Fermions, an anomalous half-integer

quantum Hall effect, Klein tunneling, non-zero minimum conductivity, etc[24–26]. Simi-

larly, quasi-one-dimensional carbon nanotubes possess exceptional electrical, mechanical

and optical properties[27–33]. For instance, metallic carbon nanotubes can carry an elec-

tric current density which is more than thousand times greater than that of normal metals

like copper[34]. Because of the large surface-to-volume ratio, the nanostructures have also

become promising materials for several applications, including catalytic activity, storage

and sensor devices. There exist several studies on the adsorption of various gases on the

surface of nanostructures. For example, storage and adsorption of hydrogen and many

other gas molecules by carbon based nanostructures have received a lot of interest in

the scientific community[35–49]. It has been reported in the literature that significant

quantity of hydrogen can be stored in carbon nanostructures. Thus, they can be used

as a good hydrogen-storage material for fuel-cell electric vehicles[35]. Possibility of using

carbon based nanostructures for gas sensor application has also been proposed in the
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literature[50–58]. It is expected that sensors made from nanomaterials have enhanced

sensitivity and selectivity as compared to those made up of their bulk counterparts.

Another important consequence of reducing the size of materials to nanoscale is the

appearance of quantum confinement effects. We know from the elementary quantum

mechanics that if any one of the physical dimensions of the material is comparable to the

de Broglie wavelength of the charged particles, the energy levels of the system become

discrete due to the confinement of the wave function of particles. The dependence of

values of these energy levels and thus the energy gap on the size of the system can be easily

explained by the simple potential well problems in quantum mechanics. The energy gap,

difference between valence and conduction band edges, is of fundamental importance since

most of the properties of materials, such as intrinsic conductivity, electronic transitions

and optical properties, strongly depend on it. Thus, finding possible ways of controlling

the value of band gap of the materials is important from the application point of view.

For instance, the size dependence of the HOMO−LUMO gap of CdSe-CdS core-shell

nanoparticles has been experimentally demonstrated in ref[59]. It has been shown in

ref[59] that the fluorescence can be tuned between blue and red by varying the size of

these nanoparticles.

If only one of the three physical dimensions of a material is in nanometer range, then

it is called a quantum well. In this case, the charge carriers are confined in one direction

while they can move in the other two directions similar to that in the corresponding bulk

material. One of the classic examples is a semiconductor quantum well structure in which a

narrow band gap material, like GaAs, is sandwiched between the wide band gap materials,

like AlxGa(1−x)As [60]. The depth of the well can be adjusted by the composition of the

AlGaAs layer. On the other hand, if two of the three physical dimensions are in nanometer

range, then it is called a quantum wire. Similarly, if all the three physical dimensions are

in nanometer range then it called a quantum dot. Fullerenes and carbon nanotubes are

the examples for the quantum dot and wire respectively. Most important applications of

the artificial quantum structures made up of semiconducting materials are the quantum

well lasers and detectors which have revolutionized the field of semiconductor electronic

and optoelectronic devices[60–63].
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It is also possible to modify the properties of nanostructures by applying mechanical

stress as well as by external electric and magnetic fields. Functionalization, intercalation

and doping by different atoms, molecules and functional groups are the additional methods

of modifying the properties of nanostructures. Our ability to control over the size, shape

and chemical composition of the nanostructures and then modify their properties in a

desired manner will create a profound effect on the development of novel nanodevices.

In the following section, we give a brief introduction to the properties of carbon based

nanostructures namely graphene and nanotube as well as semiconductor cluster which

are relevant to the content of the present thesis. The objectives of the present thesis are

discussed at the end of the chapter.

1.1 Introduction to Graphene and Carbon Nanotubes

Carbon is one of the important elements present in nature which forms a basis of living

organism in earth. Carbon can exist in various allotropes and some of them are shown in

Figure 1.1. Among these allotropes, the two well known bulk forms of carbon are graphite

and diamond in which carbon atom exists in sp2 and sp3 hybridizations respectively.

Physical properties of these two forms are very different. For example, graphite is a

soft layered material and it conducts electricity (semi-metal) whereas diamond is the

hardest material with very high thermal and negligible electrical conductivity (wide band

gap material). Carbon also exists in other bulk forms such as hexagonal Lonsdaleit and

amorphous forms. The discoveries of low dimensional forms of carbon namely fullerene

(C60) in 1985 [22] and nanotube in 1991[23] and the successful isolation of graphene in

2004[24–26], have led to a flurry of activities in the field of carbon based nanoscience and

nanotechnology during the last three decades. Consequently, many fascinating properties

of these nanostructures have been unveiled through several studies. Carbon nanotube

and fullerene can be considered as wrapped graphene sheet in cylindrical and spherical

shapes, respectively. Furthermore, the bulk graphite is also considered as infinitely stacked

graphene sheets.
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Figure 1.1: Various allotropes of carbon: (a) diamond, (b) graphite, (c) C60, (d) carbon
nanotube and (e) graphene.

1.1.1 Graphene

In 2004, A. Geim and K. Novoselov have successfully isolated single-layer graphene by

exfoliating pieces of graphite using scotch tape and demonstrated the existence of many

exciting and novel properties of graphene[24–26]. For their outstanding work, they have

received the Nobel Prize in physics for the year 2010.

Graphene is a two-dimensional honeycomb-like structure in which carbon atoms are

arranged in a hexagonal lattice. It has space group of P6/mmm. The primitive unit

cell of graphene is shown in Figure 1.2 (a) and it contains two carbon atoms say A and

B. The unit cell can be translated via primitive lattice vectors â1 and â2. The value of

bond length (dC−C) between carbon atoms in graphene is found to be 1.42 Å. Brillouin

B

A B

B A

A
Γ

KM

k

k y

x

a1

2â

^

Figure 1.2: (a) Direct and (b) reciprocal lattices of graphene. Unit cell containing two
carbon (A and B) atoms is shown in blue color. â1 and â2 represent the primitive lattice
vectors of graphene.
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zone of graphene with the highly symmetric k-points is shown in Figure 1.2 (b). In

graphene, carbon atom exists in sp2 hybridization due to the superposition of the 2s, 2px

and 2py orbitals of atomic carbon which gives rise to three σ bonds with their nearest

neighbors. The unhybridized 2pz orbital forms π bonds similar to those of benzene and

other aromatic molecules. In this sense, graphene can be considered as the extreme size

limit of planar aromatic molecules. The strong σ bonds are responsible for the excellent

mechanical properties of graphene whereas the delocalized electrons in the π bonds lead

to several exciting and novel electronic properties of graphene. For example, the charge

carriers in this system behave like massless Dirac-Fermions due to the presence of linear

dispersion around the Fermi energy at a highly symmetric k-point (K) in the reciprocal

lattice (see Figure 1.2 (b)).

The presence of the linear dispersion in the electronic band structure of graphene

can be explained by simple tight binding (TB) approximation[64]. As mentioned above,

the electronic properties of graphene arise mainly due to the 2pz electrons. The unit

cell of graphene contains two electrons, one each from A and B atoms. Within this TB

approximation, the wavefunction of the system can be constructed by linear combinations

of 2pz orbitals of two carbon atoms (at the sites A and B) and it is given by

Ψ(r) = cA φA(r) + cB φB(r) (1.1)

where φA and φB are the pz orbitals corresponding to the two carbon atoms at the sites A

and B respectively. By considering only nearest neighbor interaction, the TB Hamiltonian

for the system can be written as

Ĥ =

HAA HAB

HBA HBB

 =

 ε2pz −t0f(~k)

−t0f(~k)∗ ε2pz

 (1.2)

with f(~k) = exp(i~k · ~R1) + exp(i~k · ~R2) + exp(i~k · ~R3)

where ε2pz is the energy of the 2pz orbital. The parameters ε2pz and t0 are found by

fitting experimental or first-principles data. In practice, the value of ε2pz is set to zero.

The empirical value of the interaction integral (t0) between the nearest neighbor atoms
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Figure 1.3: Three-dimenisonal plot of the electronic band structure of graphene. The
energies of bands are given with respect to the Fermi level.

is chosen to be 2.9 eV since this value gives the best fit. The function f(~k) contains the

sum of the phase factors and the vectors ~R1, ~R2 and ~R3 represent the positions of the

three nearest B atoms relative to A atom or vice versa. The dispersion relation for the

electronic band structure of graphene is obtained by diagonalizing the above Hamiltonian

and it is found to be

E(kx, ky) = ε2pz ± t0

√√√√1 + 4 cos

(√
3kxa

2

)
cos

(
kya

2

)
+ 4 cos2

(
kya

2

)
(1.3)

Figure 1.3 shows the three-dimensional plot of the electronic band structure of graphene

obtained by the above relation. The energies of the bands are given with respect to the

Fermi level. The conduction ( above ) and valence (below the Fermi level) bands are due

to the anti-bonding π∗ and bonding π states respectively. The valence and conduction

bands touch each other only at the highly symmetric k-points K of the Brillouin zone

but there is no overlap between these two bands. The points in energy versus k-points

(E-k) diagram where the conduction and valence bands touch each other at EF are called

the Dirac points. In the three-dimensional plot of energy versus kx and ky, the dispersion

around K and K’ points forms the so called Dirac cones.

The behavior of charge carriers in graphene at the Fermi energy is of great interest
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in condensed matter physics due to the linear dispersion in the band structure which

gives rise to the massless Dirac-Fermions in graphene. Around the Dirac point, the

dynamics of the charge carriers in graphene can be described by the relativistic Dirac-like

Hamiltonian[64],

Ĥ =

 ∆ h̄vF (kx − iky)

h̄vF (kx + iky) −∆

 (1.4)

where k, vF and ∆ are momentum, Fermi velocity of the charge carriers and the onsite

energy difference between the carbon atoms at sites A and B, respectively. Diagonalization

of the above Hamiltonian yields the following dispersion relation,

E = ±
√

∆2 + (h̄vFk)2 (1.5)

For pristine graphene, the onsite energy difference ∆ is zero due to the presence of inversion

symmetry. This leads to the linear dispersion around the Dirac point

E = ±h̄vFk (1.6)

The presence of linear dispersion and thus, the Dirac-Fermions in graphene leads to

many exciting phenomena such as an anomalous half-integer quantum Hall effect, Klein

tunneling, non-zero minimum conductivity, etc[24–26]. Another interesting consequence

of the linear dispersion is the ambipolar electric field effect i.e. the possibility of continu-

ously tuning the amount as well as type of charge (from electrons to holes) through the

application of a gate voltage by shifting the Fermi-level up and down[24].

1.1.2 Carbon Nanotubes

Carbon nanotube (CNT) is another fascinating nanostructure with extraordinary me-

chanical, electrical and thermal properties[27–33]. CNT exists in two forms: (a) single

walled carbon nanotube (SWCNT) and (b) multi-walled carbon nanotube (MWCNT).

As mentioned earlier, the geometric structure of SWCNT can be considered as rolled

graphene. In absence of any effect of curvature due to the folding of graphene sheet, the
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Figure 1.4: (a) Chiral ( ~Ch) and translation (~T ) vectors of SWCNT. (b) Three different
types of SWCNTs

bonding arrangement in SWCNT is similar to that in graphene and thus, the electronic

properties of SWCNT can be obtained from those of graphene by mapping the Brillouin

zone of graphene into that of SWCNT. The approximation used in this case is called the

zone folding approximation. The properties of SWNCT strongly depend upon the way in

which a graphene sheet is rolled up into SWCNT. The vector which defines the direction

along which the graphene plane is rolled up is called the chiral vector ( ~Ch) [27, 29]. The

chiral vector can be expanded in terms of primitive lattice vectors of graphene (see Figure

1.4 (a)) and it is given by

~Ch = n â1 +mâ2 (1.7)

Thus, the pair of wrapping indices (n,m) decides the chirality of the SWNCT. The magni-

tude of the chiral vector (| ~Ch|) gives the value of circumference of SWCNT. Furthermore,

in accordance with its shape of edge, a SWCNT is classified into three types and they are

: (a) zigzag (n,0), (b) armchair (n,n) and (c) chiral (n,m). In Figure 1.4 (b), we give the

geometric structures of these three types of SWCNTs.

One can also derive the expressions for the diameter (d) and chiral angle (θ), which are

defined by the angle between the chiral vectors and the lattice vector â1, of the SWCNT

in terms of the wrapping indices (n,m) and they are

d =

√
~Ch · ~Ch
π

= a

√
n2 +m2 + nm

π
(1.8)
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cos θ =
2n+m

2
√
n2 +m2 + nm

(1.9)

where a is the lattice constant of graphene which is equal to
√

3dC−C . From the above

relation, we can obtain the values of 30◦ and 0◦ for the chiral angles of armchair and

zigzag SWCNTs respectively. The chiral angle for the chiral nanotubes lies in between

these two values.

A periodicity of the quasi-one-dimensional SWCNT along the axis of tube is defined

by a lattice translation vector (~T )([27, 29])

~T =
2m+ n

dgcd
â1 +

2n+m

dgcd
â2 (1.10)

where dgcd is the greatest common divisor of (2m + n) and (2n + m). It is important to

note that the translation vector (~T ) is perpendicular to the chiral vector (~Ch).

Similar to the chiral and translation vectors, the reciprocal lattice vectors of the

SWCNT can also be derived from those of graphene. There are two reciprocal lattice

vectors for SWCNTs namely (i) ~Kc along the circumference of nanotube and (ii) ~Ka

along the axis of nanotube. The chiral, translation and reciprocal lattice vectors of the

SWCNT need to obey the following boundary conditions[27, 29],

~T · ~Kc = 0 ; ~T · ~Ka = 2π (1.11)

~Ch · ~Kc = 2π ; ~Ch · ~Ka = 0 (1.12)

Thus, the magnitudes of these two reciprocal vectors ( ~Kc and ~Ka) are inversely propor-

tional to those of the chiral and the translation vectors respectively. Applying the periodic

boundary conditions on the wave vector (kz) of Bloch wave function along the tube axis,

we get the following relation for the allowed values of wave vector within the first Brillouin

zone (− π
T
≤ kz ≤ π

T
).

kz =
2π

Nt|~T |
l with l = 0, 1, 2, · · ·Nt − 1 (1.13)

whereNt is the number of unit cells present in the SWCNT. For an infinitely long SWCNT,
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Figure 1.5: Condition for metallicity of SWCNT obtained from zone folding approxima-
tion. Numbers in the brackets represent the wrapping indices (n,m).

the allowed values of the wave vector are continuous.

Similarly, applying the boundary conditions on the wave vector (k⊥) along the cir-

cumference ( direction perpendicular to the tube axis), we get

k⊥ =
2π

|~Ch|
q =

2

d
q (1.14)

where q is an integer. In contrast to the case of wave vector along the tube direction, there

is a constraint on the allowed values of k⊥ due to the finite value of the diameter. Thus,

the allowed values of wave vectors (kz and k⊥) of the SWCNT form equi-distant k-lines

in the Brillouin zone of graphene. It is important to note that whenever these k-lines of

SWCNT pass through the highly symmetric k-point K of graphene, the SWCNT becomes

metallic since, only at this k-point, the conduction and valence bands touch each other in

graphene. It is now straight forward to derive the condition for metallicity of the SWCNT

in the following manner. In order for a SWCNT to be metallic, its chiral vector should

satisfy the following conditions[27, 29],

~Ch · ~K = 2πq (q is an integer) (1.15)

(nâ1 +mâ2) · (2b̂1 + b̂2)/3 =
2n+m

3
= q (1.16)
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where b̂1 and b̂2 are the primitive reciprocal lattice vectors. This leads to the condition

for metallicity of SWCNT that (2n+m) or equivalently (n−m) needs to be an integral

multiple of 3. Figure 1.5 shows the metallic and semiconducting SWCNTs obtained by

the above condition. It is to be noted that the armchair SWCNT (n,m) is always metallic

whereas the zigzag SWCNT (n,0) is metallic when n is an integral multiple of 3, otherwise

the SWCNT is a semiconductor. The above condition for metallicity is not valid for the

SWCNTs with very small diameter due to the large influence of the effect of curvature.

1.2 Introduction to Semiconductor Clusters

Nanoclusters are aggregates of atoms containing a few up to a few thousands of atoms.

Similar to two- and one-dimensional nanostructures, the properties of quasi-zero-dimensional

nanoclusters are also different from those of the corresponding materials in the bulk form.

There exists a variety of clusters made up of different atoms and molecules. According to

the nature of chemical bonding which exists between the constituent atoms and molecules,

the nanoclusters are classified into the following types , namely, (i) van der Waals clus-

ters, (ii) metal clusters, (iii) network clusters and (iv) clusters of ionic materials[65]. The

covalent bond that exists between the constituent atoms in semiconductor clusters leads

to the formation of atomic networks and hence they are called the network clusters[65].

The binding energies of the clusters depend on the type of bonds present in the clusters.

There are two important discoveries which have made tremendous influences in the

field of cluster science. The first one is the discovery of the magic numbers in the abun-

dance of the alkali metal clusters by Knight et al.[66] in 1984. The occurrence of the

magic numbers is correlated with the electronic shell structure of the clusters. It has been

observed that the clusters with filled electronic shells are more stable than the clusters

with open shells. This is similar to the atoms where the noble gas atoms with completely

filled valence shell are chemically inert. Thus, the nanocluster is also called as superatom.

The second one is the discovery of fullerene (C60) by Kroto et al.[22] in 1985. C60 is one

of the stable forms of carbon and it has a closed electronic shell with the HOMO-LUMO

gap of 1.57 eV[67]. The fullerene and its solid-like structures possess many interesting

physical properties. For example, the solid-like structures of C60 doped with alkali-metal
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atoms exhibit superconductivity[68].

After these two discoveries, there has been an increased interest in the field of semi-

conductor nanoclusters due to their interesting properties and their potential applications

in the semiconducting industry. It is a hope of the researchers working in this field that

the future miniaturization of semiconductor microelectronic devices can be achieved us-

ing semiconductor cluster based nanomaterials. As discussed earlier, many interesting

properties of nanoclusters arise due to the large surface-to-volume ratio as well as due to

the quantum confinement effect. The physical and chemical properties of nanoclusters

strongly depend on their sizes, shapes and chemical compositions. For example, strong

size dependance of the optical properties and reactivity of the clusters have been observed

in the literature[59, 69–74]. It is well known that the surfaces of semiconductor bulk sys-

tems undergo structural relaxations in order to reduce the number of dangling bonds

and consequently the surface energy. The clusters have larger ratio between number of

surface and bulk atoms than the corresponding value in the bulk materials and hence the

effect of dangling bonds is much more dominant on the properties of clusters. For exam-

ple, small silicon clusters (Sin; n ≤10 ) exhibit higher coordination than the tetrahedral

bonding arrangement in bulk silicon. Moreover, it has also been observed that silicon

clusters of intermediate size show dramatic changes in their chemical reactivity, depend-

ing on the number of atoms in the cluster[73]. The abnormal optical properties (bright

photo-luminescence) in porous silicon have been attributed to the quantum confinement

of electrons and/or surface effects. Thus, several studies on the electronic and optical

properties of silicon clusters with different sizes have been carried out to understand the

effect of quantum confinement[75–79].

There exist a lot of theoretical and experimental studies on homogeneous and hetero-

geneous clusters made up of several semiconductor materials comprising of elements from

group IV and III-V[80–121]. The heterogeneous semiconductor clusters such as GaAs,

GaN and GaP, are considered to be more attractive than the homogeneous clusters (C,

Si and Ge) since the properties of former can be controlled by changing their chemical

compositions, in addition to their sizes. One of the earliest experimental studies on bi-

nary semiconductor clusters was by Smalley and coworkers[114]. They have observed that
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the relative abundance of larger GaAs clusters followed a binomial distribution whereas

the smaller clusters deviated strongly from this distribution. More recent experimental

studies on semiconductor clusters have been made by Neumark and coworkers[115–120]

and by Weltner et al.[121]. Most of the existing studies mentioned above on nanoclus-

ters are directed towards an understanding of the changes in structural and electronic

properties with increasing size of clusters. However, it is worthwhile to mention here that

there is no systematic experimental method to extract the equilibrium geometry of clus-

ters. Thus, theoretical studies play a crucial role in identifying the ground state structure

and hence these are helpful in understanding several physical and chemical properties of

nanoclusters.

1.3 Objectives of the Present Thesis

With enormous increase in the power of modern computers and recent progress in com-

putational techniques, there has been a large increase in the number of computational

studies performed on the properties of materials including nanostructures. In computa-

tional material science, ab initio density functional theory (DFT) [122, 123] has become

an important and widely used computational tool to study the properties of various sys-

tems since it provides accurate results for the ground state properties and also due to

its favourable scaling of computational time with the size of the system[124, 125]. In

DFT, the ground state electron density of a system is used as a basic variable instead

of a complex many-body wave function. All the properties of a system have became a

functional of density. With modern computational facilities, it is now possible to perform

ab initio DFT based calculations for relatively large systems and similar calculations are

not possible with the wave function based ab initio methods. Without any empirical

parameters, DFT is capable of not only explaining the properties of existing materials,

but also reliably predicting unknown properties of novel electronic systems. The DFT

calculations would provide detailed information about the system which will help us to

understand the interesting properties of materials under investigations.

The interesting properties[24–26] associated with graphene have motivated many re-

searchers to search for new graphene-like two-dimensional materials made up of other
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elements. Up to now, several graphene-like structures composed of elements from group

IV, III-V, II-VI and Metal dichalcogenides have been proposed in the literature[126–130].

Among these graphene-like structures, silicene - graphene analogue of silicon has received

a lot of attention [128–145] during last few years. The existing studies on the properties of

mono-layer silicene show that it possesses many exciting novel properties similar to those

of mono-layer of graphene. Initially, it has been predicted that the electronic structure

of silicene possesses linear dispersion around the Dirac point and thus the charge carriers

in this two-dimensional system behave like massless relativistic Dirac-Fermions[128–131].

Recently, the existence of linear dispersion in the electronic structure of silicene mono-layer

has been experimentally confirmed by the angle-resolved photo emission spectroscopy

(ARPES) measurement[146]. We wish to mention here that silicon based nanostructures

like silicene have an important added advantage over carbon based nanostructures like

graphene due to their compatibility with the existing semiconductor technology. Thus, it

is important to explore various possibilities of modifying the properties of silicene.

There exist several theoretical and experimental studies on various properties of bi-

and multi-layers of graphene in the literature [147–162]. These studies show that many

properties of graphene strongly depend on the number of layers, the inter-layer interac-

tions and the stacking sequences. However, it is important to note that there are no

detailed investigations on the properties of bi- and multi-layers of silicene. Thus, it will

be interesting to probe the properties of the same.

In chapter 3 of this thesis, we present the results of our study on the geometric, elec-

tronic and optical properties of mono-layer of silicene and then compare with those of

graphene. We also investigate the effect of two external influences namely, (a) hydrogena-

tion and (b) transverse external static electric field on the properties of mono-layer of

silicene.

In chapter 4 of this thesis, we present the results of a detailed computational study on

the geometric and electronic properties of multi-layers of silicene as well as the evolution of

these properties as a function of number of layers. For this purpose, we consider different

stacking configurations for the multi-layers of silicene with number of layers (n) ranging

from 1 to 10. We also probe several ground state properties of hybrid structure made up
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of honeycomb silicene and boron nitride layers.

As mentioned earlier, carbon nanotube (CNT) is a fascinating carbon based nanos-

tructure, having excellent electrical, mechanical and optical properties[27–33]. Recently,

nanotubes and nanowires made up of other group IV and III-V elements received consid-

erable attention due to their interesting properties and also due to the possible technolog-

ical importance of these materials in semiconductor industries. Among the group III-V

materials, there exist some investigations on the physical properties of phosphide-based

nanotubes and nanowires[163–174]. Recently, synthesis of GaPNT have been reported

by Wu et. al.[163] and the optical studies on this nanotube show an emission peak cor-

responding to the direct band gap transition of GaPNT. Thus, it can be a potential

candidate for applications in the light emitting devices. We know that the CNTs have a

rich π-electron density which is, however, not expected in the nanotubes made up of group

III-V materials. Thus, it will be interesting to study in microscopic detail the similarity

and difference between the geometric and electronic properties of carbon and group III-V

NTs, specifically, when these NTs are intercalated with various AM or TM atoms.

Keeping these points in mind, in chapter 5 of this thesis, we investigate the geometric

and electronic properties of SWCNT(10,0) and SWGaPNT(10,0). Main emphasis is to

study the effect of intercalation of alkali (AM) and transition metal (TM) atom clusters

on the properties of these two NTs. For this purpose, we choose alkali metal atom (Nan;

n = 1 - 4) and transition metal atom (TMn; n = 1 - 2; TM = Mn, Fe, Co) clusters. Here,

n is the number of dopant atoms in the unit cell.

It is well known that the long range weak van der Waals (vdW) interaction plays an

important role in many physical, chemical and biological phenomena. For example, it is

the main driving force behind the formation of solid-like superstructures, thin films, ropes

and bundles made up of carbon nanotube or fullerene units as well as in physisorption of

various gas molecules on surface of nanomaterials. Thus, a detailed microscopic study of

the vdW interaction and a quantitative estimation of strength of this interaction between

different carbon nanostructures are extremely helpful to understand the above mentioned

processes. However, we would like to mention here that there does not exist a reliable

estimation of strength of the vdW interaction (through C6 coefficient) between the carbon
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nanostructures using the first-principle methods.

In chapter 6 of the present thesis, we discuss the results of the calculation of vdW

interaction coefficient between different cages and nanotubes, containing maximum about

100 carbon atoms, by using all-electron calculations based on DFT and time dependent

density functional theory (TDDFT). We also investigate the variation of the static dipole

polarizability and C6 coefficient as a function of different physical parameters such as

size and shape of the nanostructures. In addition, we also estimate the vdW coefficients

between the carbon nanostructures and different gas molecules, specifically the environ-

mentally hazardous ones, in order to explore the possibility of adsorption of these gases

by the carbon based nanostructures.

Similar to one-dimensional systems, the properties of zero-dimenisonal semiconductor

clusters, both homogeneous (Sin, Gen, ...) and heterogeneous (GamAsn, GamPn, GamNn

and AlmPn, ...) have also been extensively investigated in the literature [80–100]. How-

ever, in case of GaP clusters, all the existing studies are devoted to understanding the

ground state properties[101–113]. To the best of our knowledge, there exists only one

study [100] in which the calculation of polarizability of hydrogen terminated GaP clusters

with tetrahedral geometries have been performed by employing time dependent Hartree-

Fock (TDHF) method.

Thus, in chapter 7 of the present thesis, we investigate the static dipole polarizability

of stoichiometric gallium phosphide clusters (GanPn with n = 2−5) by employing various

ab initio wave function based methods as well as DFT / TDDFT. In order to study the

performance of different XC functionals used in DFT / TDDFT method in determining

static dipole polarizability of these clusters, we carry out the calculations of polarizability,

within DFT / TDDFT, by employing various XC functionals, ranging from simple local

density approximation (LDA) to asymptotically correct model potential - statistical aver-

age of orbital potential (SAOP). Furthermore, we also study the evolution of polarizability

with the size of the clusters.

As we know that many physical and chemical properties, such as atomic and ionic radii,

ionization energy, electron affinity, electronegativity, metallic and non-metallic character,

and chemical reactivity, of elements in periodic table exhibit a periodic trend. The ex-
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istence of the periodic trend is essentially a manifestation of the shell structure in the

electronic configuration of elements. However, it is not well established in the literature

whether the molecules also exhibit similar periodic variation of properties or not. Even

in case of one of the simplest molecules present in nature i.e. homonuclear diatomic

molecules, there is no systematic study on how several physical and chemical proper-

ties vary along the rows and columns of the periodic table, though there exist several

experimental and theoretical studies on the properties of diatomic molecules. This has

motivated us to carry out a systematic investigation on variation of different ground state

and optical response properties of homonuclear diatomic molecules as a function of atomic

number of constituent atoms. The results of this investigation are discussed in chapter 8.

In the next chapter, we briefly discuss the computational methods employed in the

present thesis.
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Chapter 2

Computational Methodology

In the present thesis, we employ the density functional theory (DFT)[122, 123] and the

time-dependent density functional theory (TDDFT)[175] based calculations to study the

ground state and optical response properties of the nanostructures, respectively. In this

chapter, we give a brief introduction to the basics of DFT and TDDFT based calculations.

It is well known that the physical and chemical properties of materials are determined

by the behavior of electrons which glue the atoms together to form a variety of molecules

and solids. These electrons interact among themselves and also with the nuclei of the

constituent atoms present in the system. The electronic structure calculations based on

quantum mechanical theory play an important role in understanding many physical and

chemical properties of materials. In quantum mechanics, the ground state properties

of many-particle systems, like molecules and solids containing electrons and nuclei, are

described by the time-independent Schrödinger Equation

H |Ψ〉 = E|Ψ〉 (2.1)

with the Hamiltonian (Ĥ)

H = − h̄2

2me

N∑
i=1

∇2
i −

h̄2

2

NI∑
I=1

∇2
I

MI

+
1

4πε0

N∑
i<j

e2

|ri − rj|
+

1

4πε0

NI∑
I<J

ZIZJe
2

|RI −RJ|

− 1

4πε0

N,NI∑
i,I

ZIe
2

|ri −RI|
(2.2)

where

h̄ & ε0 - Planck’s constant and permittivity of vacuum.

ri & RI - positions of electrons and nuclei.

me & MI - masses of electrons and nuclei.
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e & ZIe - charges of electrons and nuclei.

N & NI - numbers of electrons and nuclei in the system.

Now onwards, we use atomic units in which the following fundamental constants - h̄, e,

me, and 1
4πε0

are taken as unity. In the above equation, the first two terms represent the

kinetic energy operators for electrons and nuclei. The next two terms correspond to the

repulsive potentials due to electron-electron and nucleus-nucleus interactions. The attrac-

tive interaction between the electrons and nuclei is described by the last term. Solving the

many-body Schrödinger equation (2.1) associated with the full Hamiltonian (2.2) for any

realistic system is a formidable task. It requires dealing with 3(N+NI) degrees of freedom

to obtain a desired solution. The complexity arises due to the electrostatic interaction

terms which couple the degrees of freedom of the particles among themselves and also with

those of others. As a result, one needs to look for reasonable approximations to simplify

the complex situation. Fortunately, in many physical problems, we can decouple the nu-

clear and electronic degrees of freedom with the Born-Oppenhemier approximation[176]

and solely focus attention on the Schrödinger equation for the electrons.

2.1 Born-Oppenhemier Approximation

According to this approximation[176], the electrons move much faster than the nuclei

since the mass of an electron is much smaller than that of a nucleus. Thus the motion

of electrons can be treated as instantaneous with respect to the motion of the nuclei.

Moreover, it is assumed that the electrons remain always in the same adiabatic state

during the motion of nuclei. Hence, the degrees of freedom of these two particles can

be considered to be decoupled. By using this approximation, one can neglect the kinetic

energy of nuclei from the Hamiltonian. Furthermore, the positions of the nuclei can be

treated as parameters and thus the nucleus-nucleus interaction term becomes constant

for a fixed set of nuclei. Then, the Hamiltonian which governs the electronic structure of

the matter can be represented as

Ĥ = −1

2

N∑
i=1

∇2
i +

N∑
i<j

1

|ri − rj|
−

N,NI∑
i,I

ZI
|ri −RI|

(2.3)
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Even after invoking the Born-Oppenhemier approximation, finding the solution of many-

electron Schrödinger equation with this Hamiltonian (2.3) is still a difficult task. Again,

the reason for the difficulty is due to the second term which couples the coordinates of

electrons. This term prevents the reduction of a many-electron problem to an effective

single-electron problem.

2.2 Solving Many-Electron Problems

2.2.1 Wave Function Based Methods

In order to solve the Schrödinger equation for a many-electron system, an independent

particle approach was introduced by D. R. Hartree[177] (called Hartree method) and then

it was modified by V. Fock (called Hartree-Fock (HF) method)[178].

Within the Hartree method, the electrons are considered as independent and they

interact with each other only via a mean-field Coulomb potential. Thus, the many-body

wave function Ψ(r1, r2, . . . , rN) can be written as a product of single-particle orbitals φi(r)

Ψ(r1, r2, . . . , rN) = φ1(r1)φ2(r2) . . . φN(rN) (2.4)

Minimization of the energy expectation value

〈E〉 =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(2.5)

with the wave function in Eq.(2.4) and subject to the orthonormalization condition

∫
φ?i (r)φj(r)dr = δij (2.6)

leads to a single-electron-like Schrödinger equation,

(
−∇

2

2
+ Vmean(r)

)
φi(r) = εijφi(r) (2.7)
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By an unitary transformation φi =
∑N

j Uijφ
′
j (Uij is unitary matrix i.e. U †U = I), we get

(
−∇

2

2
+ Vmean(r)

)
φ
′

i(r) = εiφ
′

i(r) (2.8)

where Vmean(r) is the mean field potential in which the electron moves. This potential

includes the following two terms. (a) The external potential due to the electron-nuclear

interaction and (b) the Hartree potential due to classical electrostatic repulsion between

the electrons

VH(r) =
1

2

∫
dr′

n(r′)

|r− r′|
(2.9)

It is to be noted that this term includes the spurious effect due to the self-interaction.

The electron density of a system can be written as a sum of squares of the single-particle

orbitals

n(r) =
N∑
i

|φ′i(r)|2 (2.10)

To solve Eq.(2.8), one should know the Vmean(r) which depends on n(r). However, the

calculation of density requires the knowledge of single-particle orbitals φi(r) - which are

the solutions of the equation we intend to solve. Hence, the equation is solved self-

consistently.

The major problem with the Hartree method is that the Hartree wave function does

not satisfy one of the fundamental properties of many-body wave function for the Fermions

i.e the anti-symmetry property. In the HF method, the anti-symmetry property is incor-

porated by forming a Slater determinant[179] of the single-particle orbitals

Ψ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) . . . φ1(xN)

φ2(x1) φ2(x2) . . . φ2(xN)

...
...

...

φN(x1) φN(x2) . . . φN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.11)

where xi ≡ (ri, σi) includes spatial and spin-coordinates (σi). The above wave function
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is normalized. Similar to the previous case, the minimization of the energy expectation

value with the above wave function leads to the single-particle HF equation

(
−∇

2

2
+ Vext(r)

)
φi(r) +

∑
j

∫
dr′
|φj(r′)|2

|r− r′|
φi(r)

−
∑
j

δσi,σj

∫
dr′

φ?j(r
′)φ?i (r

′)

|r− r′|
φj(r) = εiφi(r) (2.12)

In the above equation, the first two terms correspond to the kinetic energy and the external

potential respectively. The third term is the Hartree potential due to classical Coulomb

electrostatic repulsion between the electrons. The last term on the left-hand side is called

the exchange term which arises due to the inclusion of the Pauli’s exclusion principle

through the anti-symmetric wave function. This term adds considerable complexity in

the Hartree-Fock equation due to its non-local character. Physically, because of the

exclusion principle the electrons with same spin avoid each other and thus, a depleted

region of the charge density in the immediate vicinity of a given electron is created which

is called the exchange hole. The exchange energy is considered due to the interaction

between the exchange hole and the electrons. Within the HF method, a definite meaning

can be assigned to the eigen values of single-particle orbitals with the help of Koopman’s

theorem. The theorem states that each eigen value gives the energy required to remove

an electron from the corresponding single-electron state.

There are two major improvements in the HF method as compared to the Hartree

method. First, it includes the anti-symmetry property of the many-body wave function

and thus exactly takes into account of the contribution due to the exchange effect. Sec-

ondly, there is no self-interaction in HF method since the self-interaction contribution

present in the Hartree potential is exactly equal and opposite to that in the exchange

potential and thus they cancel each other. However, it is important to note that the com-

plex many-body wave function can never be a single Slater determinant of single-particle

orbitals or a simple combination of few determinants. Thus, the energy obtained from

the HF method is always higher than the true value. The error in the calculations of

the HF energy with respect to the true one is called the correlation energy which arises

due to the many-body correlation between the electrons[180]. Later on, several Post-
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Hartree-Fock methods were developed to include the effect of correlations[181]. Some of

these methods are (i) Configuration interaction (CI), (ii) Coupled cluster (CC) and (iii)

Møller-Plesset perturbation theory (MP2, MP3, MP4, etc.). The performance of these

methods are impressive and they are able to produce accurate results. However, the

practical applicability of these methods is strongly restricted to a system of few atoms

or molecules since these methods are computationally expensive due to an unfavorable

scaling with the size of the system[182]. For example, the scaling of computational time

in CI method goes as M6 for single and double excitations, and as M8 and M10 for triply

and quadruple excitations, respectively, where M is the size of the basis set used in the

calculations. Similarly, the computational time in nth order Møller-Plesset perturbation

theory scales as Mn+3. Thus, in order to carry out the electronic structure calculations

for a wider range of materials, one requires an alternative theory which can handle much

larger systems containing many electrons more efficiently.

2.2.2 Density Based Method - Density Functional Theory

Density functional theory is an alternative way to study the electronic structure of matter

in which the ground state electron density of a system is used as a basic variable instead

of a many-body wave function. Conceptually, it is easy to work with density rather than a

many-body wave function since the former is a function of three variables in contrast to the

3N variables of the latter. This theory has become a widely popular tool for the electronic

structure calculations of condensed matter. DFT has also become popular in quantum

chemistry due to recent developments in the modern approximate functionals[125]. The

calculations based on DFT with these approximate functionals provide an useful balance

between accuracy and computational cost. Thus, it allows us to perform calculations on

much larger systems, which are not possible with wave function based ab initio methods,

while retaining much of their accuracy.

For the first time, a theory based on the ground state electronic density n(r) was

proposed by Thomas[183] and Fermi[184, 185] in 1927. In this theory, the kinetic energy

functional is derived from non-interacting electrons in homogenous electron gas. However,

this theory does not include the quantum effects such as exchange and correlation. The
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theory is unable to predict the stability of the molecular systems since the total energy

of a molecule is higher than its constituent atoms. Over the years, several attempts

have been made to improve the Thomas-Fermi like density based approach by including

better kinetic energy functional as well as the effect of exchange and correlation[186–

188]. However, the theory lacks formal justifications for using the ground state electronic

density n(r) as a basic variable.

Foundations of DFT

The theoretical foundation for the density functional theory was laid by P. Hohenberg

and W. Kohn in 1964[122]. The theory is based upon the following two theorems.

Theorem 1: For any system of interacting particles in an external potential Vext(r),

the potential Vext(r) is determined uniquely, except for a trivial additive constant, by the

ground state particle density n(r).

Since the Hamiltonian is thus completely determined with a constant shift in the

energy, it follows that the many-body wave functions for all the states of the system are

determined. Hence, all the properties of the system are functionals of density and they

can be completely determined if the ground state particle density n(r) is known.

Theorem 2: (Variational Principle) There exists an universal functional F [n] for any

valid external potential Vext(r). For any particular Vext(r), the exact ground state energy

of the system is the global minimum value of the total energy functional E[n], and the

density n(r) that minimizes the functional is the exact ground state density.

The proofs of these theorems for the non-degenerate ground state are very simple.

Let us assume that there are two different external potentials Vext(r) and V ′ext(r) which

differ by more than an additive constant and both give the same ground state density

n(r). For the external potential Vext(r), the Hamiltonian Ĥ has the ground state energy

E0 and ground state wave function Ψ. Similarly, E ′0 and Ψ′ are the ground state energy

and ground state wave function corresponding to Ĥ ′ with the external potential V ′ext(r).

The Hamiltonians for the above mentioned two systems are given by

Ĥ = T̂ + Ŵ + Vext(r) ; Ĥ ′ = T̂ + Ŵ + V ′ext(r) (2.13)
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where T̂ and Ŵ represent the kinetic energy and the electron-electron repulsive potential

respectively. Since Ψ′ is not the ground state wave function of Ĥ, it follows that

E0 = 〈Ψ|Ĥ|Ψ〉 < 〈Ψ′|Ĥ|Ψ′〉 (2.14)

The inequality in the above equation is strictly valid due to the assumption that the system

has non-degenerate ground state. One can re-write the last term in above equation as

〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉+ 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉 (2.15)

= E ′0 +

∫
d3r [Vext(r)− V ′ext(r)]n(r) (2.16)

Substituting Eq.(2.16) in Eq.(2.14), we get

E0 < E ′0 +

∫
d3r [Vext(r)− V ′ext(r)]n(r) (2.17)

One can estimate the expectation value of Ĥ ′ with the wave function Ψ and we arrive at

a similar result as above

E ′0 < E0 +

∫
d3r [V ′ext(r)− Vext(r)]n(r) (2.18)

Now, adding Eq.(2.17) and Eq.(2.18) we get the following contradictory inequality

E0 + E ′0 < E ′0 + E0 (2.19)

This proves the fact that there cannot be two different external potentials, differing by

more than an additive constant, which yield the same ground state density. Thus, there

should be a one-to-one correspondence between the external potential and the ground

state density.
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Universal Functional

The total energy functional of the system can be written as

E[n] = 〈Ψ|Ĥ|Ψ〉 = 〈Ψ[n]|T̂ + Ŵ |Ψ[n]〉+

∫
d3rVext(r)n(r) (2.20)

= F [n] +

∫
d3rVext(r)n(r) (2.21)

where T [n] = 〈Ψ[n]|T̂ |Ψ[n]〉 and W [n] = 〈Ψ[n]|Ŵ |Ψ[n]〉 are the kinetic and electron-

electron interaction energy functionals respectively. The functional F [n] = T [n] + W [n]

is called universal functional since it is independent of the external potential and conse-

quently of the system. The ground state energy of a system can be obtained by minimizing

the above energy functional. The ground state density is the one which minimizes the

E[n] and hence satisfy the Euler-Lagrange equation

δF [n]

δn(r)
+ Vext(r) = µ (2.22)

where µ is the Lagrange multiplier associated with the constraint

∫
n(r)dr = N (2.23)

If we know the exact form of F [n], Eq.(2.22) can be solved exactly to obtain the ground

state density and thus, the ground state energy. Unfortunately, the exact form of the

universal functional is not known.

2.2.3 The Kohn-Sham Approach

In 1965, soon after the discovery of the DFT, a practical approach of utilizing DFT

for performing the electronic structure calculations was proposed by Kohn and Sham

(KS)[123]. This approach has made DFT the most widely used tool in computational

material science. In this approach, KS has ingeniously mapped the problem of a compli-

cated interacting system onto a problem of much easier-to-solve non-interacting system.

They have considered a fictitious auxiliary non-interacting system, with an effective po-
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tential Vks, having the same density n(r) as that of the original interacting system. The

main idea behind the KS approach is that the universal functional is written in terms of

the kinetic energy Ts[n] of the fictitious auxiliary non-interacting system.

F [n] = T [n] +W [n]

= Ts[n] + (T [n]− Ts[n]) + EH [n] + (W [n]− EH [n])

= Ts[n] + EH [n] + Exc (2.24)

where Exc is the exchange-correlation functional

Exc[n(r)] = T [n]− Ts[n] +W [n]− EH [n] (2.25)

and EH [n] represents the Hartree energy due to the classical Coulomb interaction between

the electrons. Though Ts[n] is not the true kinetic energy of the system, it can be exactly

determined by

Ts[n] = −
N∑
i

∫
φi(r)∗

[
∇2

2

]
φi(r)dr (2.26)

Then, the small error or difference between the kinetic energies of the original interacting

and fictitious auxiliary non-interacting systems is clubbed into the Exc[n]. However, we

do not know the form of this functional and thus one needs to use an approximation for

it.

The single-electron eigen states φi(r) corresponding to the auxiliary non-interacting

system are obtained by solving the Kohn-Sham equation

(
−∇

2

2
+ Vks[n(r)]

)
φi(r) = εiφi(r) (2.27)

and then the density of the system (interacting and non-interacting) can be written as

sum of squares of the occupied orbitals

n(r) =
N∑
i

|φi(r)|2 (2.28)

28



By incorporating the first Hohenberg-Kohn theorem, the Kohn-Sham potential Vks of the

fictitious system can be related to the external potential Vext of the real system in the

following manner since both these two potentials correspond to the same density.

Vks[n(r)] = Vext[n(r)] + VH [n(r)] + Vxc[n(r)] (2.29)

where VH [n(r)] =
1

2

∫
n(r′)

|r− r′|
dr′ and Vxc[n(r)] =

δExc[n(r)]

δn(r)
(2.30)

are the Hartree and the exchange-correlation potentials respectively.

The total energy of the system can be obtained from the solutions of the KS equation

and it is given by

E[φi(r)] =
N∑
i

∫
φi(r)∗

[
−∇

2

2

]
φi(r)dr +

∫
Vext(r)n(r)dr +

1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′

+Exc[n(r)] + ENN

=
N∑
i

εi −
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ −

∫
Vxcn(r)dr + Exc[n(r)] + ENN (2.31)

where ENN is the energy due to the interaction between the nuclei.

2.2.4 Exchange-Correlation Functional

Within the Kohn-Sham scheme, all the quantum mechanical effects are included in the

the exchange-correlation functional. However, the exact form for Exc as a functional of

density is not known. Though the DFT is exact in principle, it is required to use an

approximation to the unknown Exc functional for the practical applications. Till date,

several approximations to the exchange-correlation functional have been proposed in the

literature[123, 189–196].

Local Density Approximation

A simplest approximation to the exchange-correlation functional is the local density ap-

proximation (LDA) which is suggested by KS in their seminal paper. Within the LDA,

29



the exchange-correlation functional is written as

Exc[n(r)] =

∫
n(r) εhomoxc (n, r) dr (2.32)

where the exchange-correlation energy density (εxc[n(r)]) of a system at each point is re-

placed by the exchange-correlation energy density (εhomoxc (n, r)) of a homogeneous electron

gas with density at that point. In this sense, the functional is purely local. Within the

DFT formalism, the exchange-correlation density (εxc) can be divided into two contribu-

tions namely the exchange (εx) and the correlation (εc). The exact form of the exchange

part for homogeneous gas is given by Dirac and it is called the Dirac exchange[186]. In

case of correlation, the analytical form is available only for low and high density limits.

However, highly accurate numerical quantum Monte-Carlo simulations of the homoge-

neous electron gas are available from the work of Ceperly and Alder[197]. Based on the

results of this work, the analytical expressions for the correlation energy density have

been obtained by using sophisticated interpolation schemes. The most widely used rep-

resentation is VWN, developed by Vosko, Wilk, and Nusair[189] while the recent one has

been given by Perdew and Wang[190].

The LDA can be extended to the spin polarized case which is called as the local spin

density approximation (LSDA) in which the up and down spins are treated separately.

Exc[n
↑(r), n↓(r)] =

∫
n(r) εhomoxc (n↑(r), n↓(r)) dr (2.33)

The performance of LDA/LSDA is quite satisfactory. It is expected that it would

provide good results for the homogeneous system like nearly-free-electron metal. However,

it is found to give reasonably good results for the inhomogeneous systems like atoms and

molecules as well. One of the reasons for the success is that it obeys the sum rules

for the exchange and correlation holes. It typically underestimates the contribution of

exchange energy and overestimates the contribution of correlation energy which result in

cancellation of errors. This leads to unexpectedly good results for the Exc values. However,

there are some failures of LDA, namely it tends to overestimate the binding energy but

underestimate atomic ground-state energies, ionization energies and bang gaps.
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Generalized Gradient Approximation

After the LDA, a further improvement to the approximation of exchange-correlation

energy leads to the generalized gradient approximation (GGA) in which the exchange-

correlation energy density depends not only on the density of the electrons, but also on

the gradient of the density (|∇n↓(r)|, |∇n↓(r)|). Thus, the GGA is expected to give better

results for the inhomogeneous systems.

EGGA
xc [n(r)] =

∫
n(r) εxc(n

↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|) dr

=

∫
n(r) εhomoxc Fxc(n

↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|) dr (2.34)

where Fxc is a dimensionless quantity and it satisfies the sum rules. Numerous forms

of the Fxc have been proposed in the literature[191, 195]. In many systems, the GGA

gives improved results for the binding energies and the bond lengths as compared to the

LDA. For most of our calculations for the ground state properties, we use one of the most

popular GGA forms given by Perdew-Burke-Ernzerhof (PBE)[195].

2.2.5 Solving the Kohn-Sham Equation

In practice, the Kohn-Sham equation is solved numerically by an iterative procedure

which is called as the self-consistent field (SCF) method. The steps involved in the SCF

calculations are given below. The flow chart of these steps is also given in Figure 2.1.

1. Choose the approximate geometric structure of a system

2. Make an initial guess for the electron density n(r)

3. Construct the Kohn-Sham potential based on this density

4. Solve the Kohn-Sham equation to obtain the Kohn-Sham orbitals and energies

5. Construct a new density using these orbitals

6. Check the self-consistency. If the difference between the total energy of the system in

two consecutive cycles is smaller than the threshold value, the self-consistency is achieved.

Otherwise, go to step 7

7. Obtain new density by mixing the densities of the present and previous cycles. Then

go back to step 3
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Figure 2.1: The flow chart of the steps involved in DFT calculations including geometry
optimization

The procedure will be continued until self-consistency is reached. These calculations

have been performed for the initial geometry (with a set of fixed nuclei) and it may not
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correspond to the correct geometric structure of the system. In order to obtain the correct

geometric structure, we calculate the Hellmann-Feynman force on each of the atoms at

the end of the SCF cycle. If the forces are more than the threshold value, new geometric

structure is created by appropriately moving the corresponding atoms. Now, the above

mentioned steps in the SCF calculations are followed for the new geometric structure.

The outer geometry loop is continued until we obtain the optimized geometric structure

of the given system. At the end of these calculations, we can obtain all the ground state

properties of the system from the KS orbitals and energies.

To solve the Kohn-Sham equation, we use a few numerical codes. Here, we summarize

some of the salient features of these codes which we have used in our calculations. Though

all the below mentioned codes solve same KS equation, the practical implementations are

different. The main differences arise due to (a) the type of basis sets used to expand the

KS orbitals (plane waves vs atom-centered basis functions ) and (b) the way in which the

interaction between the nucleus and electrons is treated (full-potential vs pseudopoten-

tial/projector augmented wave). For most of our electronic structure calculations based

on the DFT, we use the PBE[195] XC potential.

WIEN2k

We have used WIEN2k package[198] to perform the all-electron DFT based electronic

structure calculations for the periodic solids. It employs the full-potential linearized aug-

mented plane-wave (FP-LAPW) and local-orbitals as basis set to solve the Kohn-Sham

equation. In this method, the unit cell is divided into two regions, namely (i) non-

overlapping atomic spheres and (ii) an interstitial region. Atomic orbitals and plane

waves are used as basis sets in the regions (i) and (ii) respectively. This method is con-

sidered to be one of the most accurate schemes for band structure calculations. We also

include the relativistic effects in our calculations. The SCF calculations are performed

with the convergence criterion for the total energy to be less than 0.1 mRy. The structures

are optimized by minimizing the Hellmann-Feynmann forces till the forces on individual

atoms are small (below 5 mRy/a.u).
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Vienna Ab initio Simulation Package (VASP)

Using VASP[199], we have performed the electronic structure calculations for periodic

solids within the framework of the projector augmented wave (PAW) method. PAW

method considerably reduces the number of plane wave required for the calculations. In

this code, the convergence criteria for energy in SCF cycles is chosen to be 10−6 eV. All the

structures are optimized by minimizing the forces on individual atoms with the criterion

that the total force on each atom is below 10−2 eV/ Å.

Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA)

We have also used SIESTA package[200–202] for performing a fully self-consistent DFT

calculation by solving the standard Kohn-Sham equations. The KS orbitals are ex-

panded using a linear combination of pseudoatomic orbitals proposed by Sankey and

Niklewski[203]. All our calculations have been carried out by using triple-zeta basis set

with polarization function. The standard norm conserving Troullier-Martins pseudopotentials[204]

have been utilized.

Amsterdam Density Functional (ADF)

We use the ADF package [205] to perform the ground state and response properties

calculations for the finite non-periodic systems, within the framework of DFT / TDDFT.

For ground state properties, we use the triple-ξ Slater-type orbital (STO) basis set with

two added polarization functions (TZ2P basis set of ADF basis set library [205]). We use

the Mayer formalism[206] as implemented in the ADF package[205] for the calculations

of bond order. For these calculations, the convergence criteria for the norm of energy

gradient and energy were fixed at 10−4 atomic units (a.u.) and 10−6 a.u., respectively.

Super-cell Approach

Many of the above mentioned codes use periodic boundary conditions to simulate three-

dimensional periodicity of the bulk solids. But, the low dimensional nanostructures either

lack or possess periodicity along only one or two directions. In order to simulate these low-

dimensional nanostructures using the periodic code, we use super cell approach in which
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Figure 2.2: Unit and super cells of low dimensional nanostructures: graphene (a, b) -
two-dimensional system with vacuum in one direction, carbon nanotube (c, d) - one-
dimensional system with vacuum in two directions, and fullerene (e, f) - zero-dimensional
system with vacuum in all the three directions.

an artificial unit cell is constructed with a large vacuum along the non-periodic directions.

The vacuum is provided along the non-periodic directions to avoid the interaction between

the nanostructures in the adjacent unit cells. In case of two-dimensional planar structures

(along x- & y- axes), a vacuum space is given along the direction (z-axis) perpendicular to

the plane. Similarly, for one (along x-axis) and zero-dimensional structures, the vacuum

space is given in two (along y- and z-axes) and all the three (along x-, y- and z-axes)

non-periodic directions respectively. In Figure 2.2, we give examples for unit cells (first
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column) and super cells ( second column) of low-dimensional systems such as graphene

(a, b), carbon nanotube (c, d) and fullerene (e, f).

2.3 Time Dependent Density Functional Theory

In this section, we briefly describe the basics of the time-dependent density functional

theory (TDDFT) which has been employed to calculate the frequency dependent polar-

izability.

Foundations

Formal foundation of TDDFT is based on the Runge-Gross (RG) theorem (1984)[175]

and it is the time-dependent analogue of the Hohenberg-Kohn (HK) theorem (1964)[122].

The RG theorem shows that, for a given initial wavefunction, there is an unique mapping

between the time-dependent external potential of a system and its time-dependent den-

sity. This implies that one can work with time-dependent density (3 variables) instead of

the many-body wavefunction (3N variables). Hence, all the properties of a system can be

determined from the knowledge of the density alone. Unlike in DFT, there is no general

minimization principle in the time-dependent case. Consequently, the proof of the RG

theorem is more involved than that of the HK theorem. It has been shown by many peo-

ple, namely Ghosh, Deb, Bartolotti, Runge, Gross, Kohn and others[207–214] that several

important concepts in the ground state DFT can be extended to time-dependent case in a

rigorous manner. Thus, the TDDFT can be used to calculate the dynamic response prop-

erties such as polarizability, hyper-polarizability, excited state energies, optical absorption

spectra and strength of the van der Waals interaction.

The evolution of many-body wavefunction with time is given by the time-dependent

Schrödinger equation

Ĥ(t)|Ψ(t)〉 = i
∂

∂t
|Ψ(t)〉, with |Ψ(t = 0)〉 = |Ψ(0)〉. (2.35)
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and the Hamiltonian Ĥ(t) of a system is given by

Ĥ(t) = T̂ + Ŵ + V̂ext(t), (2.36)

where T̂ , Ŵ and V̂ext(t) are the kinetic energy, the electron-electron repulsive and time-

dependent external potentials respectively. The time-dependent density can be obtained

from the many-body wave function as

n(r, t) = N

∫
dr2 . . .

∫
drN|Ψ(r, r2....rN, t)|2 (2.37)

and it has the interpretation that n(r, t)dr is the probability of finding an electron in a

region dr around r at a time t. Then, the density is normalized to the total number of

electrons

∫
n(r, t)dr = N (2.38)

2.3.1 Runge-Gross Theorem

The RG theorem states that two densities n(r, t) and n′(r, t) evolving from a common ini-

tial state |Ψ(0)〉 under the influence of two Taylor expandable external potentials Vext(r, t)

and V ′ext(r, t), respectively, will be different if the potentials differ by more than a purely

time-dependent (r-independent) function

Vext(r, t)− V ′ext(r, t) 6= c(t)⇒ n(r, t) 6= n′(r, t) (2.39)

Now, in this situation, there is a one-to-one correspondence between the time-dependent

density and potential. In order to prove this theorem, let us first show that current den-

sities corresponding to these potentials must differ. The current density can be written

as

j(r, t) = N

∫
dr2 . . .

∫
drN =

(
Ψ(r, r2....rN, t)∇Ψ†(r, r2....rN, t)

)
(2.40)

where = denotes the imaginary part and the corresponding continuity equation for the

37



current density is given by

∂

∂t
n(r, t) +∇· j(r, t) = 0 (2.41)

Since the Hamiltonians of the two systems considered here differ only in their one-body

external potentials, the equation of motion for the difference in their current densities can

be written in the following manner

At t = 0

∂

∂t
{j(r, t)− j′(r, t)}t=0 = −i〈Ψ(0)|

[
j(r, 0), {Ĥ(0)− Ĥ ′(0)}

]
|Ψ(0)〉

= −i〈Ψ(0)| [j(r, 0), {Vext(r, 0)− V ′ext(r, 0)}] |Ψ(0)〉

= −n(r, 0)∇{Vext(r, 0)− V ′ext(r, 0)} (2.42)

where n(r, 0) is the initial density. It is seen from the above equation that if the two

potentials differ (by more than just a constant) at the initial time, then the first derivative

of the currents must be different. Similarly, we can also show that the higher order

derivative of current densities will differ by

∂k+1

∂tk+1
{j(r, t)− j′(r, t)}t=0 = −n(r, 0)∇ ∂k

∂tk
{Vext(r, t)− V ′ext(r, t)}t=0 (2.43)

If the equation (2.39) is satisfied and the two external potentials are Taylor expandable

about t = 0, then there must be some finite k for which the right hand side (RHS) of

equation (2.42) does not vanish, so that

j(r, t) 6= j′(r, t) (2.44)

Thus, the two Taylor-expandable potentials, different by more than just a trivial con-

stant, give two different current densities. In other words, there must be a one-to-one

correspondence between the current densities and external potentials.

Substituting the equation of continuity in (2.43), we get

∂k+2

∂tk+2
{n(r, t)− n′(r, t)}t=0 = −∇·

[
n(r, 0)∇ ∂k

∂tk
{Vext(r, t)− V ′ext(r, t)}t=0

]
(2.45)

38



If the RHS of the above equation is non-zero for some value of k, then the two densities

will be different. In order to show that the RHS is non-vanishing, let us assume that

∇· [n(r, 0)∇f(r, t)] = 0 (2.46)

where the function f(r) is defined as

f(r) =
∂k

∂tk
{Vext(r, t)− V ′ext(r, t)}t=0} (2.47)

Now, consider the following integral

∫
f(r, t)∇· {n(r, 0)∇f(r, t)}dr =

∫
n(r, 0)f(r)∇f(r, t)· dS−

∫
n(r, 0) [∇f(r, t)]2 dr (2.48)

We use the Green’s theorem to obtain the RHS of the above equation. The left-hand side

of the above equation should be zero due to our initial assumption in Eq.(2.46). The first

term on RHS with surface integral vanishes since both the density and potential decay to

zero as r →∞. Equality in the above equation requires that the second term should also

go to zero. But, the second term on RHS will vanish only when density or ∇f is zero. The

first choice is obviously ruled out. The second possibility contradicts our assumption that

the two potentials differ by more than a time-dependent constant. Hence, there exists a

one-to-one correspondence between the time-dependent density and the time-dependent

potential. In other words, any two potentials which differ by more than a time-dependent

constant will always give two different densities and vice versa. This completes the proof

of the RG theorem.

2.3.2 Time Dependent Kohn-Sham Equation

Consider a fictitious non-interacting Kohn-Sham system with a potential Vks(r, t) having

a time-dependent density n(r, t). Then the time-dependent Kohn-Sham (TDKS) equation

is given by

i
∂

∂t
φ(r, t) =

[
−∇

2

2
+ Vks[n](r, t)

]
φ(r, t) (2.49)
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where the time-dependent density is defined as

n(r, t) =
N∑
i=1

|φi(r, t)|2 (2.50)

The Vks(r, t) and the initial condition are chosen such that the time-dependent density of

non-interacting system is equal to that of a real interacting system with a time-dependent

potential Vext. Now, by virtue of the one-to-one correspondence proven in the previous

subsection, the potential Vks(r, t) can be written as

Vks(r, t) = Vext(r, t) + VH(r, t) + Vxc(r, t) (2.51)

where VH and Vxc(r, t) are the time-dependent Hartree and exchange-correlation potentials

respectively. To solve the above TDKS equation, one requires a knowledge of the Vxc(r, t).

Unfortunately, the exact form of the function is not known and hence in practice we need

to use an approximation for it.

2.3.3 Linear Response Theory and Adiabatic Local Density Ap-

proximation

When the strength of perturbing potential is weak, we can employ the linear response

theory using perturbation theory to study the dynamic response properties of a system.

We assume here that the initial state of the system is non-degenerate ground state and

then we can expand the density n(r, t) close to the initial state as

n(r, t) = nGS(r, t) + δn(r, t) (2.52)

where δn(r, t) is the first order change in the ground state density due to a small change

in the external potential,

δn(r, t) =

∫
dt′
∫
dr′χ[nGS](r, r′, t− t′)δVext(r′, t′) (2.53)
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In the above equation, the χ represents the susceptibility of the system which tells us

how the density of the system changes at a point r and time t due to the change in the

external potential at an arbitrary point r′ and at time t′. Here, t > t′. Similarly, the

response of density due to a small change in the KS potential is determined by χKS. It

is to be noted that the susceptibility of a real interacting system χ is different from that

of a fictitious non-interacting system. However, both these susceptibilities should yield

same response to the density.

δn(r, t) =

∫
dt′
∫
dr′χKS[nGS](r, r′, t− t′)δVKS(r′, t′)

=

∫
dt′
∫
dr′χKS[nGS](r, r′, t− t′){δVext(r′, t′) + δVH(r′, t′) + δVxc(r

′, t′)} (2.54)

Taking Fourier transform of Eq.(2.53) and (2.54), and then comparing these two equations,

we get

χ(r, r′, ω) = χKS(r, r′, ω) +∫
dr1

∫
dr2χKS(r, r1, ω){ 1

|r1 − r2|
+ fxc(r1, r2, ω)}χ(r2, r

′, ω) (2.55)

where fxc is called the exchange-correlation kernel and it is given by

fxc[n](r, r′, t− t′) =
∂Vxc[n]

∂n(r, t)
(2.56)

The expression (2.55) is central equation in the linear response theory within the TDDFT.

This is a Dyson-like equation. The χ(r, r′, ω) has poles at the excitation energies of the

system and the strengths of the poles are related to the intensity of optical absorption.

The susceptibility of the KS system can be written in terms of the ground state KS eigen

functions and eigen values

χKS(r, r′, ω) = 2 lim
η→0+

∑
i

∑
a

{φi(r, t)φa(r, t)φ
∗
i (r
′, t′)φ∗a(r

′, t′)

ω − ωia + iη
+

φi(r, t)φa(r, t)φ
∗
i (r
′, t′)φ∗a(r

′, t′)

ω + ωia − iη
} (2.57)
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where φi(r, t) and ωi are the eigen functions and the corresponding eigen values of the KS

states. The suffixes i and a represent the occupied and unoccupied KS states respectively.

It is clear from the equations (2.55) and (2.57) that the TDDFT based response

property calculations require approximation for the XC functional at two levels. The first

one is the static XC potential required to calculate the ground-state Kohn-Sham (KS)

orbitals and orbital energies. The second approximation is needed to represent the XC

kernel fxc(r, r
′, ω).

The exact exchange-correlation potential depends on the entire history of the density,

as well as the initial wave functions of both the interacting and the Kohn-Sham systems.

However, the dependence of initial wave functions can be lifted if we start from a non-

degenerate ground state (in both interacting and non-interacting systems) where the

initial wave functions themselves are functionals of the initial density. Still, Vxc(r, t)

has a functional dependence not just on n(r, t) but on n(r′, t′) at an arbitrary point r′ in

space and t > 0. Thus this potential is non-local in both space and time. In other words,

this potential remembers all the densities in past, and hence it has memory. Therefore,

the Vxc in TDDFT is much more complex than that in DFT.

Adiabatic Local Density Approximation

A widely used approximation for the XC kernel fxc is the adiabatic local density approx-

imation (ALDA). In this approximation, the functional derivative of the Vxc is taken as

static i.e XC kernel fxc is frequency independent. Thus, the adiabatic approximation ig-

nores the dependence of density in the past and the Vxc depends only on the instantaneous

density.

V ALDA
xc [n](r, t) = Vxc[n(r)] (2.58)

Thus, the above functional is local in time. For the exchange-correlation kernel, the

Vxc[n](r) of the homogeneous electron gas is used

fALDAxc (rt, r′t′) =
∂V LDA

xc [n(r), r]

∂n(r′)
δ(t− t′) (2.59)
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This approximation is expected to perform better for slowly changing potentials. Now, it

is being regularly used to study several optical response properties of the finite systems

and the results obtained from these calculations are quite satisfactory[215, 216].

2.3.4 Response Property Calculations

In this thesis, we study the optical response properties such as static electric dipole po-

larizability and strength (through C6 coefficient) of the van der Waals interaction of

nanostructures (non-periodic systems) by employing TDDFT based calculations. The

average dipole polarizability (ᾱ) and its anisotropy (∆α) can be expressed in terms of

second-rank polarizability tensor (α).

ᾱ(ω) =
αxx(ω) + αyy(ω) + αzz(ω)

3
(2.60)

|∆α| =
[

3 Tr α2 − (Tr α)2

2

] 1
2

(2.61)

The strength (C6) of attractive van der Waals interaction between two neutral systems (A

and B) is obtained via Casimir-Polder expression[217] which relates C6 with the dynamic

polarizability of the interacting systems evaluated at imaginary frequency.

C6 =
3

π

∫ ∞
0

ᾱA(iω) ᾱB(iω) dω (2.62)

where ᾱA(ω) and ᾱB(ω) are the isotropic average dynamic polarizability of the systems

A and B respectively. For the calculations of polarizability of nanostructures, we use the

RESPONSE module[218] available in the ADF package. This module employs the linear

response theory of many-body systems and uses exact analytical expressions for polariz-

ability in terms of the moment of the first-order induced density. For the calculations of

the Kohn-Sham orbitals and energies, we use several approximate exchange-correlation

functionals, ranging from simple local density approximation to asymptotically correct

model potential - statistical average of orbital potential (SAOP)[219, 220]. For the XC

kernel fxc, we use the above mentioned adiabatic local density approximation (ALDA).

43



For these response property calculations, we use one of the largest basis sets, namely, the

all electron even tempered basis set ET-QZ3P-2DIFFUSE (ET) with two sets of diffuse

functions as available in the ADF basis set library [205].

In this chapter, we have briefly discussed the basics of the DFT and TDDFT which

we have employed in the electronic structure calculations to study several ground state

and optical response properties of the nanostructures. The results of these investigations

will be discussed in the following chapters. In Chapter 3, we start our discussion on

the properties of two-dimensional graphene-like honeycomb structure made up of silicon

atoms.
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Chapter 3

Physical Properties of Mono-layer of

Silicene

The fascinating physical properties[24–26] associated with graphene have motivated many

researchers to search for new graphene-like two-dimensional (2D) materials made up of

other elements. Various possibilities of producing different graphene-like structures with

exciting novel as well as unexpected new properties have widened the area of research in

2D materials since they are considered as promising candidates for many technological

applications in future nanoelectronic devices. Until now, several graphene-like structures

composed of elements from group IV (Si, Ge, SiC, GeC, SnGe, SiGe, SnSi, SnC )[128–

130], group III-V (BN, AlN, GaN, InN, InP, InAs, InSb, GaAs, BP, BAs, GaP, AlSb,

BSb)[127, 129, 130], group II-VI (ZnO, BeO, ZnS)[127] and Metal dichalcogenides ( MCh2

with M = Mo, W, Nb, Ta and Ch = S, Se, Te)[126] have been proposed and their physical

and chemical properties are being investigated.

The graphene analogue of silicon is called silicene in which silicon atoms are arranged

in a two-dimensional honeycomb lattice similar to carbon atoms in graphene. For the

first time, the term silicene was used by Guzman-Verri et. al[131] in 2007. Among

the above mentioned graphene-like two-dimensional materials, silicene has received much

attention[128–145] during last few years. The reason for the tremendous interest in this

material is due to the fact that it possesses many exciting novel properties similar to those

of graphene. For example, theoretical studies have predicted that the electronic structure

of silicene possesses linear dispersion around the Dirac point and thus the charge carriers in

this two-dimensional system behave like massless Dirac-Fermions[128–131]. The quantum

spin Hall effect in silicene has also been theoretically studied[137, 138]. Presence of a

relatively large induced energy gap of about 1.55 meV in silicene due to the spin-orbit
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coupling is also reported in the literature[139]. Silicon based nanostructures ( like silicene,

silicon clusters, silicon nanotubes etc.) have an important added advantage over the

carbon based nanostructures (like graphene, fullerene, carbon nanotubes, etc.) as they

are expected to be compatible with the existing semiconductor technology. Thus, silicene

is considered as one of the promising materials for the applications in nanotechnology.

Though carbon and silicon atoms possess same number of electrons (four) in the va-

lence shell, the physical and chemical properties of systems based on these two elements

are typically very different. For example, the former forms a basis of living organism.

On the other hand, silicon is one of the most important ingredients for the semiconduc-

tor industry. Origin of differences in the properties between carbon and silicon based

systems is due to the kind of hybridizations which exists in these two systems. Carbon

atoms can exhibit all the three sp, sp2 and sp3 hybridizations whereas silicon favors sp3

hybridization. This is due to the fact that the energy difference between the sub-levels (

3s and 3p) in silicon is much smaller as compared to that between 2s and 2p sub-levels

in carbon. Thus, the sub-level 3s of silicon can easily mix with all 3p sub-levels (3px,

3py and 3pz) which favors the sp3 hybridization. Due to the above mentioned reason,

naturally silicon does not exist in graphite-like layered form. Thus, silicene can not be

produced by exfoliation method which is the simplest method used for the production of

graphene. Hence, the growth or synthesis of silicene requires sophisticated experimental

methods. Recently, silicene sheet and nanoribbon have been successfully grown on various

substrates such as silver, diboride thin films and iridium[146, 221–236] and many of the

theoretical predictions on the properties of silicene are now being verified. One of the

important achievements in this direction is that the existence of linear dispersion in the

electronic structure of silicene has been experimentally confirmed by the angle-resolved

photo emission spectroscopy (ARPES) measurement[146] and thus, the Dirac-Fermions

in silicene is now well established. In another experiment, a possible superconducting gap

of about 35 meV is also observed in silicene on Ag(111) substrate by scanning tunneling

spectroscopy[237]. At present, the scientific community working in this area is actively

exploring various possibilities of modifying and tuning many physical and chemical prop-

erties of silicene[238–244] and these efforts will be crucial in making silicene a potential
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material for wide variety of applications.

In this chapter, we discuss the results of our detailed studies on the geometric, elec-

tronic and optical properties of mono-layer of silicene and then compare them with those

of graphene. Though silicene possesses the novel properties as mentioned above, the prac-

tical applications of this material in nanoelectronics and nanodevices necessitate efficient

schemes to control and modify its properties. As mentioned in the introductory chapter,

the properties of nanostructures can be altered by chemical doping and also by application

of external electric and magnetic fields. Thus, in this chapter, we also choose to study

the effect of two external influences namely, (a) transverse external static electric field

and (b) hydrogenation on the properties of silicene. We observe from our calculations

that silicene undergoes semi-metal to semiconductor transition due to hydrogenation. In

case of transverse external electric field, our calculations predict that a band gap can be

opened up and tuned in a controlled manner in mono-layer of silicene by applying an

external transverse electric field. On the contrary, it is well known that, inducing a band

gap in a mono-layer of graphene by applying an electric field is not possible.

3.1 Geometric Structures

We start this sub-section with discussions on the geometrical properties of silicene. Figure

3.1 shows portions (6×6×1 super cell) of infinitely extending two-dimensional honeycomb

lattice of both (a) silicene and (b) graphene. The unit cell of silicene (graphene) contains

two Si (C) atoms which are denoted by ’A’ and ’B’. The results of electronic structure

calculations based on DFT show that the minimum energy structure of silicene is slightly

different from the planar structure of mono-layer of graphene[129, 130]. In case of silicene

the atoms present in the unit cell are buckled (see the side views of Figure 3.1). In

other words, A and B atoms in the unit cell of silicene do not lie on the same plane.

Consequently, the ground state structure of silicene lacks 6-fold rotational and two mirror

plane symmetries which are present in the planar structure of graphene. Hence, the space

group of silicene reduces to P3̄m1 instead of P6/mmm of graphene. We use SIESTA

package[200–202] for all the electronic structure calculations presented in this chapter.

For exchange-correlation potential generalized gradient approximation given by Perdew-
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Figure 3.1: The geometric structures of (6×6×1) super cell of silicene ((a) top and (b)
side view) and graphene ((c) top and (d) side view). The lines in (a) and (c) represent
the unit cells. The vertical distance between two Si atoms at sites A and B is represented
by ’d’, which arises due to buckling.

Burke-Ernzerhof[195] has been used. An energy cutoff of 400 Ry is used and the mesh

of k-points for Brillouin zone integrations is chosen to be 45×45×1. Our results on the

geometric properties of silicene and graphene are summarized in Table 3.1 . It can be

clearly observed from the table that hybridization in graphene is of sp2 type due to the

well defined angle of 120◦ between the nearest neighbor carbon atoms. On the other

hand, in silicene, the bond length and bond angles between the silicon atoms are 2.309

Å and 115.4◦ respectively. It is important to note here that the value of bond angle in

silicene lies in between corresponding angles in sp2 (120◦) and sp3 (109.47◦) hybridized

structures. Thus, the hybridization in silicene is not purely of sp2 or sp3 character but a

mixture of sp2 and sp3. Moreover, the Si-Si distance in silicene is much larger than the

C-C distance in graphene. This is due to fact that there exists a much weaker π bond in

the former as compared to that in the latter. This results in buckling in silicene which

in turn causes a greater overlap between orbitals leading to higher binding energy. The

amount of buckling can be characterized by a buckling length denoted by d, which is

defined as the vertical distance between silicon atoms at sites A and B in the unit cell.
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Table 3.1: The results of optimized geometries of mono-layers of silicene and graphene
obtained by DFT with PBE exchange-correlation functional. Experimental values are
given in parentheses[146, 245]

System Space Lattice Bond Bond Buckling

Group Constant (Å) Length (Å) Angle (◦) Length (Å)

Graphene P6/mmm 2.468 (2.462 ) 1.425 (1.421) 120 0.0

Silicene P3̄m1 3.903 2.309 (2.2a) 115.4 0.501

a - value of Si-Si bond length in silicene on Ag(111) substrate[146].

We find that the value of d in silicene is 0.501 Å while that in graphene is zero. We

would like to mention here that the finite value of d in silicene plays an important role

in determining the electronic structure of silicene under the influence of external electric

field and we will discuss these details later. Before proceeding further we wish to point

out that our results on the geometric structure of silicene match well with the already

existing data[129, 130].

3.2 Electronic Structures

Now, we present our results for the electronic structure of mono-layers of silicene and

then compare these results with those of graphene. In Figure 3.2 (a) and (b), we plot

the band structure (BS) along the high symmetry points in Brillouin zone and density of

states (DOS) for silicene and graphene respectively. The magnified view of BS close to the

Fermi level (EF ) is displayed in the insets of Figure 3.2 since the characteristic of electronic

structures around the EF plays an important role in deciding the transport properties of

a material. Figure 3.2(a) clearly elucidates the semi-metallic nature of silicene since the

value of DOS at EF is zero. It is also observed that the conduction and valence bands

touch each other only at the highly symmetric point K. Our detailed investigation of BS

and DOS indicates that the contributions to the DOS just below and above the EF are

due to the π and π∗ orbitals respectively. The most important feature in the BS is the

existence of a linear dispersion around the point K (see inset in Figure 3.2(a)). The point

in energy vs. momentum (E-k) diagram where the conduction and valence bands touch

each other at EF is called the Dirac point. Comparison of the BS of silicene (as presented

in Figure 3.2(a)) with that of graphene (in Figure 3.2(b)) clearly shows that around the
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EF , the electronic structures of silicene and graphene are very similar. The presence of

linear dispersion in the BS of silicene implies that the charge carriers around the EF

behave like massless Dirac-Fermions. Analogous to graphene, the electronic structure of

silicene around the Dirac point can be described by relativistic Dirac-like Hamiltonian[64]

Ĥ =

 ∆ h̄vF (kx − iky)

h̄vF (kx + iky) −∆

 (3.1)

where k, vF and ∆ are the momentum, the Fermi velocity of charge carriers and the

onsite energy difference between the Si atoms at sites A and B, respectively. Then, the

dispersion around the Dirac point is given by

E = ±
√

∆2 + (h̄vFk)2 (3.2)

For pristine silicene, the onsite energy difference ∆ is zero and hence Eq.(3.2) becomes

E = ±h̄vFk (3.3)

which explains the presence of linear dispersion around the Dirac point in silicene.

3.3 Optical Properties

The study of interaction of electromagnetic radiations with materials is an important area

of research in material science and spectroscopy. These studies would provide information

about the electronic structures of materials. Keeping this in mind, we have carried out

calculations of dielectric function and absorption spectra of silicene which characterize

its linear optical properties. The frequency dependent dielectric function is calculated

by employing first order time-dependent perturbation theory as implemented in SIESTA

package[200–202]. These calculations within the framework of DFT require the Kohn-

Sham (KS) eigen functions and eigen values. However, it is important to note that

one needs to solve the KS equation with finer mesh of k-points for accurate calculation

of optical response properties. Thus, in the present case, we use large mesh size of
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Figure 3.2: Band structure and density of states for the optimized structures of (a) silicene
and (b) graphene. The energies of bands are with respect to the Fermi level.

250×250×1 for the calculations. Using eigen functions and eigen values of the KS states,

we calculate the imaginary part of dielectric functions for the light polarized parallel

and perpendicular to the plane of silicene sheet. The real part of dielectric functions

is then obtained via Kramers-Kronig relation. The results for real and imaginary parts

of dielectric function obtained for the mono-layer of silicene are plotted in Figure 3.3

along with the corresponding results for graphene. We observe that the contributions

of dielectric function along the directions parallel (εxx and εyy represented by ε‖) and

perpendicular (εzz represented by ε⊥) to the plane of silicene sheet are different. This

anisotropy in dielectric function is a consequence of the two-dimensional nature of the

silicene sheet. The results for dielectric function clearly show that ε‖ and ε⊥ dominate

in different energy regimes. The comparison of dielectric function of silicene with that of

graphene (Figure 3.3(b)) shows that they are similar to each other but the variations are

in different energy ranges[246].

We also calculate the optical absorption spectra of both graphene and silicene from

the corresponding imaginary parts of the dielectric function and they are plotted in Figure

3.4. From the absorption spectra, we observe that there is no cut-off energy in absorption
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Figure 3.3: The calculated real (ε1) and imaginary (ε2) part of dielectric function of
(a) silicene and (b) graphene. The upper, middle and lower panels depict the parallel,
perpendicular and total contributions of the dielectric functions respectively.

coefficient of graphene and silicene. This corroborates to the fact that there is no band

gap in both silicene and graphene, as discussed in the previous sub-section. Our detailed

analysis of optical absorption spectra shows that silicene possesses two major peaks in

energy range from 0 to 6 eV. These two peaks correspond to the two important transitions

(see the arrows in Figure 3.2 (a)) which occur between the electronic states of silicene.

The first peak (around 1.74 eV) in the absorption spectra corresponds to the transitions

from states π to π∗ which are close to the Fermi level. The value of the absorption peak

matches well with 1.69 eV of peak to peak (above and below EF ) energy difference in

DOS (see in Figure 3.2(a)). On the other hand, the broader second peak ( maximum

around 3.94 eV and extends beyond 6 eV) corresponds to the transitions from occupied

σ to unoccupied σ∗ states. The broad energy range of this peak is due to the large band

width of both σ and σ∗ states. Akin to the results of dielectric functions, the absorption

spectra of both silicene and graphene (Figure 3.4) look similar but the energy scales are

in variance due to the involvement of different valence shells in Si (M shell) and C (L

shell).

3.4 Effect of External Influences

As mentioned in the introduction, external fields and chemical doping can be exploited to

modify the properties of materials in a controlled manner. In this sub-section, we discuss
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Figure 3.4: The optical absorption spectra of (a) silicene and (b) graphene.

the effect of (a) transverse static electric field and (b) hydrogen doping on the properties

of silicene. We start our discussion with the results for silicene when it is subjected to

transverse external electric field and then compare these with the corresponding results

for graphene.

3.4.1 Transverse Static External Electric Field

To understand the response of silicene and graphene to the transverse static electric field,

we perform the electronic structure calculations of both the mono-layers under influence

of electric field with varying strength. It is to be noted that in practice, the strength of

electric field can be easily controlled and varied by the applied gate voltage. We find that

the change in the value of lattice constant of silicene due to the application of an external

electric field is less than 1%. The results of band structures obtained for silicene and

graphene around the Dirac point for various strengths of electric field are shown in Figure

3.5. First observation from Figure 3.5 is that a band gap is opened up at the Fermi level

in silicene due to the electric field. In contrast to this, for graphene, it is not possible

to induce a band gap by applying an electric field. Note that both systems - silicene

and graphene, exhibit similar electronic structure around the Fermi level in absence of

external electric field, but they show distinctly different characteristics in the presence

of an external electric field. This obviously raises the question: why do they behave so
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Figure 3.5: The band structures of (a) silicene and (b) graphene around the Dirac point
for different strengths of transverse static electric field.

differently in the presence of an external electric field.

As we mentioned in the previous sub-section, the charge carriers in both silicene and

graphene behave as massless Dirac-Fermion in the absence of any external influences.

However, there is a breaking of inversion symmetry in case of silicene when we apply

an external electric field unlike in case of graphene. This is due to the fact that the

potentials, VA and VB, seen by the silicon atoms at the sites A and B, respectively, are

different, since these two atoms are located at different positions along the electric field

direction. In other words, the presence of buckling in geometric structure of silicene leads

to a finite value of onsite energy difference. In this case, the dispersion around the Dirac

point becomes

E = ±
√

∆2 + (h̄vFk)2 (3.4)

Very close to the high symmetry point K, h̄vFk � ∆, then

E = ±∆

√
1 +

(
h̄vFk

∆

)2

≈ ±∆

[
1 +

1

2

(
h̄vFk

∆

)2
]

(3.5)

Hence, the induced band gap, which is the energy difference between the conduction and

valence bands, becomes twice that of the onsite energy difference. It is also interesting

to note that the above equation also explains the appearance of parabolic-like dispersions

near the highly symmetric point K in silicene (see Figure 3.5(a)). On the other hand,
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Figure 3.6: Spatial distribution of highest occupied (without electric field (a) and with 5
V/nm (c)) and lowest unoccupied states (without electric field (b) and with 5 V/nm (d))

the onsite energy difference in graphene is zero (∆ = 0) because the potentials seen by

the carbon atoms at the sites A and B are same. Consequently, there is no opening up of

energy gap in graphene (see Figure 3.5(b)). We would like to mention here that the spin-

orbit coupling (SOC) does induce a very small gap of the order of µeV in graphene and

about 1.55 meV in silicene[139, 247]. However, these values are much smaller compared

to the thermal energy kBT at room temperature (∼ 25 meV ) and hence they will not be

useful in operating or controlling nanoelectronic devices made up of graphene/silicene at

ambient conditions.

In order to comprehend the effect of transverse electric field on the electronic properties

of silicene, we plot the spatial distribution of the highest occupied (π) and the lowest

unoccupied states (π∗) of silicene with and without electric field in Figure 3.6. From the

band structure in Figure 3.2, it can be clearly seen that these two above mentioned states

touch each other exactly at the highly symmetric point K. In the absence of electric field,

the spatial distributions of these two states (see Figure 3.6(a) and 3.6(b)) clearly show the

presence of inversion symmetry. However, when we apply the electric field, the inversion

symmetry present in these two states is destroyed. Due to this, the spatial distribution

of charges above and below the silicene sheet are completely different (see Figure 3.6(c)

and 3.6(d)). This breaking of inversion symmetry in silicene leads to the opening up of

band gap.
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of silicene sheet.

Furthermore, to study the relationship between the magnitude of induced band gap

and the strength of electric field, in Figure 3.7 we plot the variation in the values of

band gap as a function of the strength of electric field. We observe from Figure 3.7

that the band gap varies linearly with the strength of external electric field. Therefore,

the band gap can be tuned over a wide range of energies by varying the strength of

the field. Moreover, we also observe that both valence and conduction band edges move

symmetrically away from the Fermi level as the strength of field is increased. The linear

relationship between the band gap and the strength of electric field can be explained as

follows. As mentioned earlier, the value of induced band gap can be written as Eg = 2∆,

where ∆ is proportional to the difference in potentials (VA−VB) seen by the silicon atoms

at the sites A and B which in turn is equal to the product of strength of the field (F )

and the buckling length (d). This demonstrates that Eg is proportional to the strength of

the applied field. From Figure 3.7, the value of the proportionality constant is found to

be 10.14 meV per V/nm. The finite value of d in silicene mono-layer plays an important

role in breaking the symmetry in the presence of an electric field and thereby opening a

band gap which is consistent with the available results in the literature[133–135]. The

possibility of opening and tuning a band gap in silicene makes it more useful from device

application point of view as compared to graphene[136].

Optical absorption spectra of silicene when it is subjected to different strengths of
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transverse static electric field are given in Figure 3.8(b)-(d). The figures (See inset in (d))

clearly indicate that there is no absorption of light having energy below a certain cut-off

value which increases with the strength of electric field. These results are also consistent

with our discussions of the effect of transverse electric field on the electronic structure of

silicene. Interestingly, the features of spectra with electric field, such as the width and

position of peaks, corresponding to different transitions remain similar to those of silicene

without electric field. Hence, we conclude from our results that the transverse electric

field affects the electronic states which are only very close to the Fermi level.

3.4.2 Hydrogenation

The method of chemical doping of different elements has been used in material science,

over many decades, in order to modify or tune the properties of a material. The degree of

modification of a property depends strongly on both the nature and concentration level

of the dopant atoms. In present case, we consider the simplest element - hydrogen as a

dopant, for the modifications of properties of silicene. The fully hydrogenated silicene is

called silicane (Si2H2) in analogy to graphane. We observe the following modifications

in the geometric structure. The value of lattice constant of silicane is 3.92 Å. We find

that the values of bond length between Si-Si and Si-H are 2.37 Å and 1.52 Å respectively.
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Further, the bond angles obtained are 111.1◦ and 107.8◦ respectively for Si-Si-Si and H-

Si-Si. The buckling length in silicane is 0.74 Å which is about 48 % more as compared

to that of pure silicene. Our results on the geometric properties of silicane match well

with the results available in the literature[144, 248–250]. It is interesting to note that

the values of bond length and angle between Si atoms in silicane are higher and lower

respectively compared to the corresponding values in silicene. Furthermore, both these

values are quite closer to those of bulk silicon(2.35 Å and 109.5◦). These results suggest

the presence of sp3-like hybridization in silicane[144, 248–250].

The BS and DOS of silicane are shown in Figure 3.9. We observe from this figure that

the character of silicene changes from semi-metal to semiconductor due to hydrogenation

with an indirect band gap of 2.27 eV along Γ-M direction. However, the BS of silicane

also possesses a direct band gap of 2.31 eV at Γ point which is about 1.8% higher than

the indirect one. Our results on BS match well with the corresponding data available

in the literature[144, 248–250]. However, it is important to note that the values of band

gap estimated from DFT calculations are underestimated by approximately about 30-

50% and hence the true gap may be larger. We also calculate the optical absorption

spectra of silicane and the results are displayed in Figure 3.8(e). The main influence

of hydrogenation on optical absorption spectra is the disappearance of the first peak at

around 1.74 eV since there are no π bands present in system. However, the second peak

which corresponds to σ to σ∗ transition is not much influenced by hydrogenation as these

states are not modified by this effect. These results again suggest that the behavior of

silicene under influence of hydrogenation is akin to that of graphene[251].
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3.5 Summary

In this chapter, we have presented our results for the geometric, electronic and optical

properties of graphene-like structure - silicene obtained from the DFT based calculations.

We observe from these results that the electronic structures of both silicene and graphene

mono-layers around the Fermi level are similar. Both these two materials are semi-metal

and possess linear dispersion around the Dirac point. Thus, the charge carriers in silicene

and graphene behave like massless Dirac-Fermions. However, interestingly, the electronic

structures of mono-layer of silicene and graphene under transverse electric field are differ-

ent. Our calculations predict that a band gap in mono-layer of silicene can be opened up

and also tuned over a wide range of energies by ab external electric field. Furthermore, the

value of induced band gap can be more than the thermal energy for the applied electric

field strength of few V/nm and hence, there is a possibility of using mono-layer of silicene

in nanodevice even at room temperature. The results on optical response property calcu-

lations show that the dielectric function strongly depend on the direction of polarization

of incident light. The anisotropic response in dielectric function is a consequence of two-

dimensional characteristic of silicene. The optical absorption spectra of silicene possess

two major peaks due to the π to π∗ and σ to σ∗ transitions. In case of hydrogenation, we

observed from the geometry analysis that the hybridization in silicene goes from mixture

of sp2 and sp3 to sp3 . Consequently, the electronic structure of silicene gets modified

drastically and it undergoes a transition from semi-metal to semiconductor due to hydro-

genation. Therefore, we infer from our results that both these external influences strongly

modify the electronic states (π and π∗) of silicene which are close to the Fermi level.

Publication based on this chapter

Properties Of Two-Dimensional Silicon Versus Carbon Systems

C. Kamal, Arup Banerjee, and Aparna Chakrabarti

Graphene Science Handbook: Size-Dependent Properties, CRC Press, Taylor & Francis
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Chapter 4

Physical Properties of Multi-layers of

Silicene

Having discussed the physical properties of mono-layer of silicene and the effect of two

external influences on them in the previous chapter, we now focus our attention on our

results for the geometric and electronic structures of bi- and multi-layers of silicene as

well as a hybrid structure made up of honeycomb silicene and boron nitride (BN) in the

present chapter.

We would like to mention here that, unlike the case of bi- and multi-layers of graphene,

there are no detailed investigations on the properties of bi- and multi-layers of silicene.

Given the importance of silicon based nanostructures because of their compatibility with

the existing semiconductor technology, it is interesting to study the properties of bi- and

multi-layers of silicene and investigate how the properties evolve as a function of number

of layers. For this purpose, we carry out a computational study on the geometric and

electronic properties of bi- and multi-layers of silicene with different stacking configura-

tions using DFT based calculations. We also investigate the evolution of these properties

with increasing number of layers (n) ranging from 1 to 10.

Before starting our discussion on the properties of multi-layers of silicene, we shall

see how the properties of graphene change as the number of layers increases. There

exist several theoretical and experimental studies on various properties of bi- and multi-

layers of graphene in the literature [147–162]. These studies show that many properties

of graphene strongly depend on the number of layers, the inter-layer interactions and

the stacking sequences. For example, the electronic properties of graphene bi-layer in

Bernal stacking are distinctly different from the corresponding properties of mono-layer

of graphene. The linear dispersion present in the band structure of graphene mono-

60



layer changes to parabolic dispersion in case of graphene bi-layer. Thus, the behavior

of the charge carriers transforms drastically from massless Dirac-Fermions to nearly-free-

particles as we go from mono-layer to bi-layer. From the application point of view, the

bi-layer structure is considered to be more important as compared to the mono-layer

though the latter possesses many interesting properties. This is due to the fact that

there is no band gap in the pristine mono- and bi-layer of graphene, however, it has been

shown both theoretically and experimentally that a band gap can be opened up in bi-

layer of graphene by applying a gate voltage. Furthermore, the value of band gap can

be tuned over a wide range which may have potential applications in nanoelectronics and

nanodevices [147, 148].

4.1 Geometric Structures

First, we begin with the discussions on the geometric properties of multi-layers of silicene.

As we have seen in the previous chapter, the unit cell of mono-layer of silicene contains

two Si atoms (Si1 and Si2) with space group of P3̄m1. For the construction of multi-layers

with different stacking configurations, we consider three possible unit cells in which these

two Si atoms are placed at symmetric positions. The geometric structures of these three

A

A’

A B

B

B’

C

C

C’

Si1 Si2

Si1Si1

Si2Si2

Figure 4.1: Three types of unit cells for mono-layer of silicene in which two Si atoms are
at highly symmetric positions. Top view (top panel) and side view (middle and bottom
panels)
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types of unit cells are shown in Figure 4.1. These arrangements are (i) A: Si1 (0, 0, 0),

Si2 (2/3, 1/3, z), (ii) B: Si1 (0, 0, 0), Si2 (1/3, 2/3, z), and (iii) C: Si1 (2/3, 1/3, 0),

Si2 (1/3, 2/3, z). The variable ’z’ in the fractional coordinates along the z-axis indicates

that the two silicon atoms in the unit cell are not in the same plane and this is due to

the effect of buckling. The relative position of Si2 can be below (A, B and C) or above

(A’, B’ and C’) the Si1 atom. In this study, we consider following four different stacking

configurations : (1) AAAA - simple hexagonal, (2) AABB - double hexagonal, (3) ABC

- rhombohedral, and (4) ABAB - Bernal stacking. The first three stacking configurations

lead to a tetrahedral arrangement of Si atoms which is a favourable configuration for

silicon based systems. We would like to mention here that the ABC stacking configuration

leads to a multi-layered structure with stacking of diamond structure of bulk silicon along

(111) direction. In case of multi-layers of graphene, the Bernal stacking corresponds to

the minimum energy configuration and hence we include this stacking as well to study

the multi-layers of silicene. We carry out the geometry optimization of multi-layers of

these four stackings with number of layers up to ten. For these calculations, we use the

VASP code[199] within the framework of the PAW method. The cutoff for the plane wave

expansion is taken to be 400 eV and the mesh of k-points for Brillouin zone integrations is

chosen to be 21×21×1. The optimized geometries of ten layers with all the four stacking

configurations are shown in Figure 4.2 (i).

Cohesive Energy: In order to study the stability of the multi-layers of silicene with

different stackings, the cohesive energy Ec of all the multi-layers has been calculated by

using the expression

Ec = 2nESi − En, (4.1)

where En and ESi are the energies of multi-layers ( n- layers) and Si atom respectively.

The variation in values of cohesive energy per atom with increasing number of layers

for different stackings is plotted in Figure 4.2 (ii). The dashed line indicates the value of

cohesive energy per atom (4.553 eV/atom) of bulk silicon (diamond structure). We observe

that all the multi-layered structures considered in the present study are energetically

stable. Our calculations suggest that the rhombohedral stacking (ABC) is the minimum

energy configuration. However, the values of cohesive energy of ABC stacking are much
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Figure 4.2: (i) The optimized geometric structures of multi-layers ( n = 10 ) with four
stacking configurations : (a) ABC, (b) AABB, (c) AAAA and (d) ABAB. (ii) Variation
of the cohesive energy per atom with the increasing number of layers for these stacking
configurations. The dashed line indicates the value of cohesive energy per atom of bulk
silicon (diamond structure).

closer to those of AAAA, and AABB stackings. The cohesive energy per atom of 10 layers

in AABB and AAAA stackings are 7 and 15 meV/atom lower than that of ABC stacking,

respectively. The cohesive energies per atom of three stacking configurations, AAAA,

AABB and ABC increase smoothly with the number of layers. Interestingly, cohesive

energy of Bernal stacking (ABAB) is much lower than those of all the other stackings.

In case of 10 layers, the cohesive energy per atom of ABAB stacking configuration is

236 meV/atom lower than that of ABC stacking. This result is in contrast to that of

multi-layers of graphene where ABAB stacking is the lowest energy configuration. We

also observe an oscillation in the values of cohesive energy of Bernal stacking. In order

to understand these results for cohesive energies of multi-layers of silicene, we carry out

a detailed investigation on the geometric structures of all the multi-layers of silicene.

4.1.1 Bi-layers

For bi-layers, there are only two possible stackings namely, AA and AB. We perform

geometry optimization of the bi-layers of silicene with a starting inter-layer separation

equivalent to that of bi-layers of graphene. The optimized geometric structures of the
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Figure 4.3: The optimized geometric structures of (a) AA and (b) AB stacked bi-layers
of silicene. Top and side views of (3×3) super cell.

bi-layers are displayed in Figure 4.3. Our results for the geometric structure of bi-layers

are summarized in Table 4.1. For comparison, we also include the bond length and

bond angle between Si atoms in mono-layer of silicene in the table. These results show

that there exists a strong covalent bond between the atoms in the layers of silicene as

opposed to a weak van der Waals (vdW) interaction which exists in the multi-layers of

graphene and graphite. Consequently, the Ec per atom for bi-layers of silicene increases

significantly from that of mono-layer. It is also observed that AB stacking is lower in

energy as compared to the AA stacking and difference in the Ec per atom between these

two structures is 34 meV/atom. In order to further examine the nature of bonding

between the two layers of silicene, we study the valence charge density distributions of

bi-layers. In Figure 4.4, we show the valence charge density distributions of AA and AB

stacked bi-layers of graphene ((a) and (b)) as well as silicene ((c) and (d)). The analysis of

valence charge density distribution in both AA and AB stackings of silicene corroborates

Table 4.1: The results of optimized geometries of mono- and bi-layers of silicene obtained
by DFT with PBE exchange-correlation functional. First and second values of bond
lengths and angles in the bi-layers correspond to the intra-layer and inter-layer data.

System Lattice Bond Bond Buckling

Constant (Å) Lengths (Å) Angles (◦) Length (Å)

Mono-layer 3.867 2.279 116.08 0.457

Bi-layer AB 3.851 2.321, 2.528 112.10, 106.69 0.667

Bi-layer AA 3.858 2.324, 2.464 112.21, 106.57 0.663
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Figure 4.4: The valence charge density distributions of AA and AB stacked bi-layers of
graphene ((a) and (b)) and silicene ((c) and (d)). Top and side views of (3×3) super cell.

to the results of optimized geometries discussed above. The significant charge density

distribution around the inter-layer bonds establishes the covalent nature of these bonds.

This is different from a weak vdW coupling which exists between two graphene layers (see

Figure 4.4(a) and (b)). We also observe that the buckling and the bond lengths in both

AA and AB stacked bi-layers have increased compared to corresponding results for the

mono-layer of silicene. Furthermore, the results presented in Table 4.1 show that there is

a reduction in the values of bond angles between atoms in same layer (intra- layer) and

there is an increase in the values of bond angles between atoms in two layers (inter-layer).

These results suggest that the contribution of sp3 hybridization has increased as compared

to that of mono-layer of silicene.
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4.1.2 Multi-layers

Now, we discuss the results for optimized geometry and cohesive energy of multi-layers

of silicene with four different stacking configurations. In Figure 4.2, we show the opti-

mized structures of multi-layers (n = 10). This figure clearly elucidates the existence of a

inter-layer covalent bonding in the multi-layers of silicene similar to the case of bi-layers.

As discussed above, the cohesive energies of multi-layers with the three stacking configu-

rations AAAA, AABB and ABC are significantly higher than that of the structure with

ABAB stacking. This can be attributed to the fact that all the inner layers are covalently

bonded with the adjacent layers in these three stackings. Due to this inter-layer bonding,

all the silicon atoms in these three stackings, except those on surfaces, have four near-

est neighbors ( three intra-layer and one inter-layer) in nearly tetrahedral configurations.

Hence, all the valence electrons in the silicon atoms (except ones on surface) make four

sigma bonds with their nearest neighbors, due to sp3-like hybridization in these stackings.

In ABAB stacking, Si1 atom in layer A makes a fourth inter-layer sigma bond with Si1

atom in layer B along z-direction (see Figure 4.2, both the atoms are at same point in

the xy-plane) ) and hence these atoms assume nearly tetrahedral configuration. However,

Si2 atoms in layers A and B do not have strong sigma bonds with each other ( they are

at different point in xy-plane)) and Si2-Si2 distance is more than 3 Å. Each set of AB

layers are well connected by Si1-Si1 bonds but the two Si2 atoms lack the fourth nearest

neighbors to form the sigma bond. Therefore, the number of sigma bonds in this stacking

is less and hence they have the lowest cohesive energy as compared to those of AAAA,

AABB and ABC stacking configurations. The reason for closeness of cohesive energies of

AAAA, AABB and ABC stacking configurations is the similar bonding environment of

each Si atom in these three stackings.

Valence Charge Density: In Figure 4.5, we plot the valence charge density dis-

tribution for six layers with ABC and ABAB stacking configurations. This figure clearly

brings out the differences in bonding properties in these two configurations, which are

consistent with our results obtained from the optimized geometries of these multi-layers.

Furthermore, we note here that the cohesive energy of ABAB stacking configuration shows

an oscillations with increasing number of layers. This can be explained by examining the
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Figure 4.5: The valence charge density distributions of multi-layers of silicene (n = 6)
with (a) ABC and (b) ABAB stacking configurations.

charge density distribution of this stacking configuration as shown in Figure 4.5 (b). It is

observed that each bi-layer (AB) in ABAB stacking is strongly connected by inter-layer

Si1-Si1 covalent bonds. However, the bonding between two adjacent AB bi-layers is weak

and they are connected by the inter-layer Si2 atoms. The valence charge density presented

in Figure 4.5 (b) confirms the presence of strong Si1-Si1 and weak Si2-Si2 bonds. Hence,

the structures with even number of layers have large cohesive energy as compared to the

structures with odd number of layers. This leads to an oscillation in cohesive energy per

atom in ABAB stacking (see Figure 4.2(ii)).

4.2 Electronic Structures

4.2.1 Bi-layers

The band structure for AB and AA stackings along the highly symmetric k-points in

Brillouin zone are shown in Figure 4.6 (b) and (c) respectively. We also include the band

structure of mono-layer of silicene in Figure 4.6 (a) and (d) for comparison. It is clearly

seen from the figures that dispersions around the EF for these two stackings are different

and hence the electronic properties strongly depend upon the nature of stackings. For
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Figure 4.6: Band structures of mono-layer ((a) and (d)) and bi-layers ((b), (c), (e) and
(f)) of silicene in two different energy ranges.

AA configuration, it is observed that there exists linear dispersion along two directions

namely, Γ-K and Γ-M ( see Figure 4.6 (e)). Each of these dispersion curves crosses at

two points, denoted by P and Q in the band diagram (E-k). On the other hand for AB

stacked bi-layer, we obtain a dispersion which is parabolic in nature ( see Figure 4.6 (f)).

These two dispersion curves also cross each other at two points namely R and S in the

E-k diagram. It is interesting to note that all these four points do not coincide with

the Fermi level. The presence of linear and parabolic dispersions in AA and AB stacked

bi-layers respectively is similar to those present in bi-layers of graphene[153]. However,

in case of bi-layers of graphene, all these crossing points (P, Q, R and S) lie at the EF .

The differences in the band structures of bi-layers of silicene from that of graphene may

be due to the presence of strong inter-layer covalent bonding in bi-layers of silicene as

compared to the weak vdW bonding between the layers of graphene. In order to verify

this, we plot the band structure and charge density distributions for both AA and AB

stacked bi-layers of silicene with different inter-layer separations in Figure 4.7.

Variation of Band Structure with Inter-layer Separation: It can be clearly

observed from Figure 4.7 that these four crossing points (P, Q, R and S) slowly move
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Figure 4.7: Variation of band structures and charge density distributions of AA and AB
stacked bi-layers of silicene with different inter-layer separations. The value below the BS
represents the inter-layer distance in Å

toward each other in E-k diagram and finally merge with each other at the EF for a

distance larger than 7 Å between the two layers. Furthermore, the band structures of both

AA and AB stacked bi-layers are reduced to that of mono-layer since there is a negligible

interaction between the layers at a distance larger than 7 Å. We also observe that the band

structures become similar to those of bi-layers of graphene for the intermediate inter-layer

distances of about 3-4 Å. In this situation, we also observe that there is no overlap of

charge densities between the layers. Therefore, we note that the origin of the differences

in the band structures of bi-layers of silicene and graphene is indeed due to the presence

of strong inter-layer coupling in the former.

4.2.2 Multi-layers

The interesting trends found in the bi-layer prompt us to probe the band structures of

multi-layers of silicene with more than two layers in four different stacking configurations

namely, AAAA, AABB, ABC and ABAB. We observe from our calculations that for given
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Figure 4.8: Evolution of band structures of (a) ABC and (b) ABAB stacked multi-layers
of silicene with increasing number of layers.

number of layers (n), the band structures of multi-layers with AAAA, AABB and ABC

stacking configurations are quite similar and on the other hand, they are different from

those of multi-layer of silicene with Bernal stacking (ABAB). Hence, we present, in Figure

4.8, the results only for the band structures of (a) ABC and (b) ABAB stacked multi-

layers with increasing value of n. The reason for similarity of band structures in AAAA,

AABB and ABC is due to the similar local environment of silicon atoms in tetrahedral

configurations in these stackings. However, they are different from the band structure

of multi-layer with ABAB stacking due to different arrangement of silicon atoms in this

stacking. Furthermore, for a given number of layers, we observe that there exists more

number of bands with characteristic dispersion of σ bonds between Si atoms in ABC

stacking as compared to those in ABAB structures (see Figure 4.8). Moreover, it can

be observed that there exist two bands in multi-layers with ABC stacking which always

cross the Fermi level. The width of these bands decreases with number of layers and

hence they tend to be dispersionless as n goes beyond 6. To verify the nature of these two
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bands, we hydrogenate the multi-layers of silicene and study the effect of hydrogenation

on their band structures. The band structures of hydrogenated multi-layers of silicene

with 6 layers are also plotted in Figure 4.8 ( denoted as 6LH) for comparison with bare

multi-layers. These plots clearly show the absence of bands corresponding to the states

at the Fermi level and thus a transition from semi-metallic to semiconductor state takes

place. On the other hand, for Bernal stacking, we observe that there exist less number of

bands corresponding to σ bonds while more number of bands corresponds to the weakly

bound π bonds as compared to those of ABC stacking. These π bands arise from Si atoms

present on every layer of multi-layers of silicene. Therefore, the saturation of Si atoms on

the surface with hydrogen atoms does not cause the system to undergo a transition from

semi-metallic to semiconductor state.

4.3 Hybrid Structure of Silicene and Boron Nitride

The results presented in the previous sections clearly indicate that the properties of multi-

layers of silicene are drastically different from those of multi-layers of graphene. This is

due to the fact that the multi-layers of silicene possess strong inter-layer covalent bonds

in contrast to the weak vdW interaction between the layers of graphene multi-layers

and bulk graphite. Due to this strong inter-layer covalent bonding, the multi-layers of

silicene can no longer behave like two-dimensional layered materials similar to the multi-

layers of graphene and graphite. However, it is desirable to obtain graphene-like silicon

based layered systems possessing similar exciting and novel properties of multi-layer of

graphene. We note here that the former has an important advantage over carbon based

systems because of their compatibility with the existing semiconductor industry.

Keeping the above mentioned points in mind, we propose that there is a possibility

of creating a graphite-like layered structure of silicon by inserting a buffer layer in be-

tween the multi-layers of silicene. The buffer layer prevents the strong inter-layer covalent

bonds between the layers of silicene. Moreover, the buffer layer is expected not to alter

the electronic properties of the multi-layers of silicene around the EF . For this purpose,

we consider a hybrid graphite-like layered system made up of alternate layers of honey-

comb silicene and honeycomb boron nitride (BN). In this case, we choose BN as a buffer
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layer since the existing theoretical studies show that interaction between mono-layer of

silicene and BN substrate is due to weak vdW[252–255]. We study the geometric and

electronic structures of the hybrid graphite-like layered system by employing DFT based

calculations. We want to probe whether it would be possible to have an energetically

stable hybrid system with physical properties similar to those of bi-layers of graphene as

well as bulk graphite.

4.3.1 Geometric Structures

We choose (2×2×1) and (3×3×1) super cells of free standing honeycomb silicene and BN

respectively for the construction of an unit cell for the graphite-like hybrid structure. This

configuration leads to matching of the lattice constants of these two different materials

with a deviation of only about 1.7 %. Each layer of honeycomb silicene (BN) contains 8

silicon (9 boron and 9 nitrogen) atoms. The calculated optimized geometric structure of

the hybrid graphite-like bulk system (Si16B18N18) is shown in Figure 4.9 (a). Our results

on geometric structure obtained by DFT based calculations with PBE XC functional show

that the hybrid bulk system has a value of lattice constant 7.554 Å along a axis. The

calculated values of Si-Si and B-N bond lengths in the basal plane are 2.246 and 1.454

Å respectively. We observe that the amount of buckling present in silicene layer in this

hybrid system is slightly increased to 0.543 Å from its free standing value. The reason for

increase in the buckling length is due to the interaction of silicene layer with the other

layers present in the bulk system. Moreover, the increase in the value of buckling leads to

a higher contribution of sp3-like hybridization in Si atoms in silicene of the hybrid system

as compared to that of Si atoms in free standing silicene. Our calculations give 14.695 Å

for the value of lattice constant along c axis. Thus, the inter-layer distance between the

silicene and BN layers becomes 3.674 Å. We also perform similar calculations for bi-layer

of silicene with a single BN layer kept in between (Si16B9N9). The optimized geometry of

bi-layer is given in Figure 4.9 (b). In this case, the lattice constant along a axis and inter-

layer distance of the hybrid bi-layer are estimated to be 7.607 and 4.011 Å respectively.

It is to be noted that our calculations of cohesive energy for the hybrid systems show that

they are energetically stable. We find that the cohesive energy per atom for the hybrid
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Figure 4.9: The optimized geometric structures and spatial charge density distributions
of hybrid graphite-like structures made up of silicene and BN layers. (a) Bulk system
(Si16B18N18) and (b) bi-layer of silicene with a single BN layer (Si16B9N9)

bulk and bi-layer systems are 6.07 and 5.57 eV/atom respectively.

In order to get deeper insight into the interaction between the layers of the hybrid

systems, we also plot the spatial distribution of charge densities for the hybrid graphite-

like bulk system (Si16B18N18) and hybrid bi-layer of silicene (Si16B9N9) in Figure 4.9. The

figure clearly shows that the charge distribution of hybrid systems exhibits characteristic

features of layered systems such as (i) presence of large charge densities in basal planes

containing covalent bonds between atoms in each layer and (ii) negligible amount of

charge densities present between the adjacent layers. Thus, our results clearly indicate

that the hybrid systems are similar to those of graphite and multi-layers of graphene.

From our calculations, the value of bulk modulus for the hybrid bulk system (Si16B18N18)

is estimated to be 48.5 GPa. For this purpose, we use Birch-Murnaghan formula for

equation of state. This value of bulk modulus of hybrid bulk system is slightly higher

than the corresponding values of layered structures such as bulk graphite (33.8 GPa)[256]

and bulk hexagonal BN (25.6 GPa)[257]. However, they are much lower than that of

bulk silicon (98 GPa)[258]. This result again corroborates with above mentioned charge

density results which indicates the layered nature of the bulk hybrid system made up of

silicene and BN. Thus, the hybrid system may also be used as a soft material similar to
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Figure 4.10: Band structures of layered systems in two energy ranges. (a) Bulk graphite
with super cell (2×2×1), (b) hybrid bulk system (Si16B18N18), as well as hybrid bi-layer
(Si16B9N9) with (c) optimized inter-layer distance and (d) inter-layer distance about 3.41
Å. The energies of bands are with respect to the respective Fermi level.

graphite and bulk BN.

4.3.2 Electronic Properties

Having analyzed the geometrical properties of hybrid graphite-like structures in the pre-

vious section, we now discuss our results on the electronic properties of these hybrid

systems. In Figure 4.10, we plot the electronic band structures, in two different energy

ranges, for both the hybrid bulk and bi-layered systems along the high symmetry points in

Brillouin zone, which give dispersions corresponding to the motion of the charge particles

along the planar directions. For the sake of comparison, we also include the electronic

band structure of bulk graphite, with super cell (2×2×1) containing 16 carbon atoms,

in Figure 4.10 (a) so that we can directly compare these results with the hybrid system.

Our results on band structure for the hybrid bulk system show that the conduction and

valence bands touch each other only at the highly symmetric point K in Brillouin zone.

On comparison of the results for the hybrid bulk system, Si16B18N18, (Figure 4.10 (b))

with those of bulk graphite (Figure 4.10 (a)), we find that the electronic band structures

of these two systems are similar. However, we observe that the hybrid system contains

additional number of bands which lie above ≈ 2.0 eV and below ≈ -2.0 eV. The contri-
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Figure 4.11: Total and partial density of states for hybrid graphite-like structure made up
of silicene and BN layer: (a) bulk system (Si16B18N18) and (b) bi-layer (Si16B9N9). The
values of energy are with respect to the Fermi level.

butions for these bands are mainly due to the BN layers. Furthermore, around the Fermi

level, we observe a parabola-like dispersion for the hybrid bulk system (see Figure 4.10

(b)). Thus, the charge carriers in this system behave nearly-free-particle-like. It is clearly

seen from Figure 4.10 (b) that the band structures of the hybrid bulk system and bulk

graphite are rather similar close to the Fermi level. The combined results of geometric

and electronic structure calculations lead to an important conclusion that the hybrid bulk

system made up of alternate silicene and BN layers can be a possible material for silicon

based layered structure similar to that of carbon based bulk graphite.

Interestingly, in case of the hybrid bi-layered system, we observe a linear dispersion

around the Fermi level (see Figure 4.10 (c)) in contrast to the parabola-like dispersion

present in bi-layer of graphene. Furthermore, this dispersion is also distinctly different

from the corresponding dispersion for the pure bi-layer of silicene (without BN layer) given

in Figure 4.6 (c) where the parabolic dispersions are shifted in both E and k direction in

the band structure due to strong inter-layer covalent bonding. A closer look at the bands

reveals that two linear dispersions are present in the band structure and they correspond

to the two silicene layers of hybrid bi-layer. We also observe from our calculations that the
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characteristic of the dispersion has a strong dependence on the inter-layer distance. When

the inter-layer distance is reduced to that of bi-layer of graphene, the linear dispersion

present in hybrid bi-layer system transforms to the parabolic dispersion (see Figure 4.6

(d)) which is quite similar to that of bi- layer of graphene.

In order to investigate the contributions of different atoms to the electronic states,

we also calculate the total density of states (DOS) and partial DOS for these two hybrid

systems, namely bulk system (Si16B18N18) and bi-layer (Si16B9N9) (see Figure 4.11). First

important observation is that the hybrid systems, both bulk as well as bi-layer, are semi-

metallic since the values of DOS at EF are zero. Investigation from the atom projected

partial DOS clearly indicates that the contributions of DOS just below and above Fermi

levels are mainly due to π and π∗ orbitals of silicene layers. Moreover, we observe that

there is no contribution from either boron or nitrogen around the Fermi level. These atoms

contribute to DOS at about -1.8 eV ( and below) and 2.5 eV (and above) compared to

the Fermi level respectively for valence and conduction bands. Thus, the buffer BN layer

does not contribute to the electronic states close to the Fermi level.

4.4 Summary

In this chapter, we have presented our results for the geometric and electronic proper-

ties of multi-layers of silicene with four different stacking configurations (AAAA, AABB,

ABAB and ABC) which are obtained by employing DFT based calculations with PBE

XC functional. In this study, we have investigated the evolution of these properties with

increasing number of layers (n) ranging from 1 to 10. Our results on cohesive energy show

that all the multi-layers considered in the present study are energetically stable. Though,

mono-layer of silicene possesses properties similar to those of graphene, our results show

that the geometric and electronic properties of multi-layers of silicene are strikingly differ-

ent from those of multi-layers of graphene. We observe that there exist strong inter-layer

covalent bondings between the layers in multi-layers of silicene as opposed to weak vdW

bonding which exists between the graphene layers. The inter-layer bonding strongly in-

fluences the geometric and electronic structures of these multi-layers. Like bi-layers of

graphene, silicene with two different stacking configurations AA and AB exhibits linear
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and parabolic dispersions around the Fermi level, respectively. However, unlike graphene,

for bi-layers of silicene, these dispersion curves are shifted in band diagram; this is due

to the strong inter-layer bonding present in the latter. For n ≥ 3, we find that the ABC

stacked multi-layers of silicene is the lowest energy configuration which is in contrast

to the case of multi-layers of graphene where Bernal (ABAB) stacking configuration is

reported to be the minimum energy configuration.

In addition, we have also proposed an energetically stable hybrid graphite-like system

made up of silicene and BN layers. The results of our calculations predict that the hybrid

bulk system possesses physical properties similar to those of bulk graphite. The coupling

between the layers of silicene and BN of this hybrid system is due to weak vdW interaction

which is same as that in graphite and multi-layers of graphene. We also observe from the

results of the electronic band structure and the DOS that the hybrid bulk system is a

semi-metal and it possesses the dispersion curve, around EF , very similar to that of bulk

graphite. Main contributions to the electronic states around EF arise only due to silicene

layers. Our calculations on bi-layer of silicene with a BN layer show that it possesses

the characteristic linear dispersion around EF . However, the nature of dispersion curve

becomes parabola-like when the inter-layer distance reduces to that of bi-layer of graphene.

These calculations indicate that the hybrid bulk system based on silicon and BN can be

a possible candidate for two-dimensional layered soft material akin to graphite.
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Chapter 5

Effect of Intercalation on Properties

of Carbon and Gallium Phosphide

Nanotubes

In the last two chapters, we have discussed the physical properties of mono- and multi-

layers of two-dimensional graphene-like structure - silicene. Now, we begin our discussion

on the physical properties of another fascinating nanostructure, quasi-one-dimensional

nanotube (NT). In this chapter, we present our results for the geometric and electronic

properties of single walled carbon (SWCNT) and gallium phosphide nanotubes (SWGaPNT).

We also study the effect of intercalation of alkali (AM) and transition metal (TM) atom

clusters on the properties of these two NTs.

Similar to graphene, there exist several studies on various physical properties of car-

bon nanotubes. These studies show that the carbon nanotubes possess extraordinary

electrical, mechanical and thermal properties and thus they are considered as potential

candidates for the building blocks of nanoscale devices[27–33]. Recently, there is a flurry

of activities in understanding the nanostructures made up of other group IV and group

III-V elements because of their interesting properties and also due to the technological

importance of these materials in semiconductor industries. Among the group III-V mate-

rials, though the nitride-based III-V systems are well studied[259–272], there exist only a

few investigations on the physical properties of phosphide-based one-dimensional systems

such as nanotubes and nanowires[163–174]. We wish to note here that, recently, synthesis

of GaPNT have been reported by Wu et. al.[163] and the optical studies on this nan-

otube show an emission peak corresponding to the direct band gap transition of GaPNT.

Therefore, it can be a potential candidate for applications in the light emitting devices.
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As mentioned in the introductory chapter, the properties of the nanostructures can be

altered by chemical doping or intercalations of various atoms, molecules and their clus-

ters. It has been observed in the literature that intercalation of atoms or clusters inside

carbon nanotubes can give rise to many interesting changes in their properties[273–293].

We would like to mention a few interesting results from these studies. Half-metalicity

has been observed in TM doped SWCNT(3,3) which is important for the spintronic

applications[273]. Presence of Kondo effect[274], modifications of affinity and reactivity of

TM clusters with nanotube[275], and the dopant TM acting as a glue between nanotube

and graphene sheet[276], have been reported in the literature. Unusual freezing and melt-

ing behaviors have been studied for gallium intercalation inside carbon nanotubes[277].

From first principles calculations, Li et. al. have shown that the electronic structure

of the silver filled SWCNTs can be altered systematically by varying the content of sil-

ver inside the nanotube[278]. In another study, Miyamoto et. al. have shown that

filling up of thin carbon nanotubes by potassium (K) atom leads to charge transfer of

one electron per K atom to the conduction bands of nanotube[279]. The doping of AM

atoms or clusters inside the nanotubes can lead to other interesting properties such as

semiconductor-metal as well as metal-semiconductor transitions in SWCNT[280], metal

induced adsorption of biomolecules on nanotubes[281], influences of dopant atoms on work

function of nanotubes[282–284], occurrence of phase transition between two different types

of phases of alkali (Rb and Cs) intercalated SWCNTs[285] and drastic change in optical

absorption spectra of semiconducting as well as metallic SWCNT [286].

We know that the hybridization in SWCNT, with larger diameter, is sp2 type which

is similar to that of graphene. Thus, SWCNTs have a rich π-electron density which

is, however, not expected in the nanotubes made up of group III-V materials. There-

fore, it will be interesting to study in microscopic detail the similarity and difference

between the geometric and electronic properties of carbon and group III-V NTs, specif-

ically, when these NTs are intercalated with various AM or TM atoms. The reason for

choosing these two types of elements is the following: the AM elements are known to be

nearly-free-electron systems. Hence we want to probe, if these atoms, when intercalated

in an otherwise semiconducting nanotube, always result in metallicity as was found in
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Ref.[279]. On the contrary, the purpose of probing the TM is to find out, if these atoms,

upon intercalation in an otherwise non-magnetic nanotube, yield any magnetic properties

or even half-metallicity as has been observed recently in Ref[273]. Keeping these aims

in mind, we investigate the geometric and electronic properties of SWCNT(10,0) and

SWGaPNT(10,0), with and without sodium atom (Nan; n = 1 - 4) and transition metal

atom (TMn; n = 1 - 2) clusters. Here, n is the number of dopant atoms in the unit cell.

The TM atom clusters considered in the present study comprise of manganese (Mn), iron

(Fe) and cobalt (Co) atoms.

5.1 Geometric Structures

In this section, we discuss the results for the geometric properties of SWCNT as well as

SWGaPNT with the chirality index (10,0). In Figure 5.1, we display the optimized geome-

tries of undoped and some of the doped SWCNTs and SWGaPNTs. The results for the

diameters, bond lengths and bond angles of undoped SWCNT and SWGaPNT are also

summarized in Table 5.1. For all-electron based electronic structure calculations of NTs,

SWCNT(10,0) SWCNT(10,0)+Na2 SWCNT(10,0)+Na4

SWGaPNT(10,0)+Mn2SWGaPNT(10,0)

(d) (e)

(c)(b)(a)

Figure 5.1: The optimized geometries of SWCNT(10,0) ( (a) undoped, doped (b) with
two Na atoms and (c) with four Na atoms) and SWGaPNT(10,0) ((d) undoped and (e)
doped with two Mn atoms)
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Table 5.1: The results of optimized geometries of SWCNT(10,0) and SWGaPNT(10,0)
obtained by DFT calculations with PBE exchange-correlation functional.

Nanotubes Diameter (Å) Bond Length (Å) Bond Angle (◦)

SWCNT 7.86 1.42 117.4, 120.1

SWGaPNT 11.60 (Ga) 2.37, 2.31 102.1 (Ga-P-Ga), 117.2 (Ga-P-Ga)

12.56 (P) 114.7 (P-Ga-P), 120.6 (P-Ga-P)

we use relativistic full potential linearized augmented plane wave (FPLAPW) method as

implemented in WIEN2k code[198]. It has been observed from our previous studies that

all-electron based DFT calculations are necessary for the correct prediction of the elec-

tronic properties of SWCNTs specifically the ones with small (sub-nm) diameter[294]. We

observe from our calculations that SWCNT(10,0) is cylindrical in shape with a diameter of

about 7.86 Å. However, the calculated optimized geometry of SWGaPNT shows that the

NT is cylindrical with a buckling effect. It is observed that due to the buckling, gallium

and phosphorous atoms do not lie at same radial distance from the axis of NT. Thus, the

SWGaPNT has an inner (containing gallium atoms) and an outer (containing phospho-

rous atoms) cylinder with the diameters of 11.60 Å and 12.56 Å respectively. Then the

buckling length turns out to be 0.48 Å which is defined as half of the difference between the

inner and outer diameters. The buckling effect observed in SWGaPNT clearly indicates

that the hybridization in SWGaPNT is not the same as that in SWCNT. It is well known

that the SWCNT with large diameter (more than 7.0 Å) has sp2 hybridization[32, 294].

The presence of sp2 like hybridization in SWCNT(10,0) is evident from bond lengths and

bond angles which are close to 1.42 Å and 120◦ ( geometrical parameters of graphene)

respectively. However, for smaller diameter, there exists a mixture of sp2 and sp3 hy-

bridizations in SWCNT as is evident from Table 5.1[294]. In case of SWGaPNT, even

with larger diameter the hybridization is a mixture of sp2 and sp3. It is seen from Table

5.1 that the values of bond angle in SWGaPNT lie in between those of sp2 and sp3 hy-

bridizations. This is due to the fact that carbon can form 2D (sp2 hybridized) and 3D

(sp3 hybridized) structures whereas GaP favors only 3D structures. The nanotube has

one-dimensional periodicity along the axis of the tube. The lattice constants of unit cells

for SWCNT(10,0) and SWGaPNT(10,0) are found to be 4.26 Å and 7.10 Å, respectively.

The unit cell contains 40 atoms in each case.
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We observe that there is no significant deformation in the geometry of both the NTs

due to doping of single TM or AM atom per unit cell which corresponds to 2.5% of

doping. Thus, the TM or AM atom forms a linear chain along the axis of NT due to

the one-dimensional periodicity. When concentration of doping increases, SWCNT(10,0)

expands with a maximum change in diameter of about 4% in case of doping with Na4

cluster per unit cell (which corresponds to 10% of doping). For SWGaPNT, we observe

that the changes in the optimized structure are negligible even for doping with four atoms.

However, when two Mn atoms are intercalated inside the unit cell of SWGaPNT , the Mn

atoms do not form dimer as in other cases of two atoms doping and each Mn atom gets

closer to the Ga atoms of the inner wall of the SWGaPNT (see Figure 5.1(e)). This is

due to the fact that the bond which exists between the Mn atoms in dimer form is weak

due to the van der Waals interaction[295, 296]. The consequence of these observations

and the effect of different dopings on the electronic structures will be discussed in the

next section. In order to check the stability of the NTs, we also calculate the binding

energy (BE) of all the NTs considered here. We find that all the doped SWCNT(10,0) and

SWGaPNT(10,0) are energetically bound systems. However, the BE/atom of undoped

NTs are slightly higher than those of the doped NTs. For example, the BE of single Mn

doped SWCNT(10,0) is lower by 0.25 eV as compared to the undoped one.

5.2 Electronic Structures

In the bulk form, both carbon (diamond) and GaP(zinc blende) are semiconductor with

indirect band gap of about 5.4 and 2.32 eV, respectively[297]. Our results for the band

structures of carbon and gallium phosphide in both bulk and NT(10,0) phases are given

in Figure 5.2. It is important to note that, in contrast to their bulk counterparts, both

SWCNT(10,0) and SWGaPNT(10,0) are semiconductor with direct band gaps of 0.83 and

1.48 eV, respectively. Hence, these NTs are possible candidates for applications in the light

emitting devices. The semiconducting nature of SWCNT(10,0) agrees with the condition

of non-metallicity derived on the basis of chirality indices. In order to understand various

contributions to the electronic states, we perform detailed analysis of orbital projected

band structures. For this nanotube, it is observed that the valence and conduction bands
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Figure 5.2: The band structures of (a) SWCNT(10,0), (b) carbon bulk (diamond), (c)
SWGaPNT(10,0) and (d) GaP bulk (zinc blende) obtained from DFT using GGA (PBE)
XC functional. The values of energy are with respect to the Fermi level.

are largely dominated by p-type of carbon. There is little contribution of s-type in the

bands -3.0 eV below the Fermi level (EF ). For SWGaPNT, we find that the conduction

bands have contributions from s- and p-type of gallium as well as phosphorous, while the

valence bands are mainly p-derived bands of phosphorous.

5.2.1 Alkali Metal Doping

Now, we study the effect of intercalation of sodium clusters on the band structure of NTs.

The results for the band structure of SWCNT(10,0) intercalated with Nan clusters are

given in Figure 5.3. It is also observed from this figure that SWCNT becomes metallic due

to the intercalation of alkali metal atom inside the tube even at a small doping density

of 2.5%. We observe the appearance of nearly-free-electron (NFE) bands, with parabolic
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Figure 5.3: The band structures of SWCNT(10,0) doped with alkali metal clusters con-
taining (a) a Na atom, (b) two Na atoms, (c) three Na atoms and (d) four Na atoms per
unit cell. The values of energy are with respect to the Fermi level. The bands with circles
and dots are due to the contributions from dopant atoms.

type dispersion, around the Fermi level corresponding to the 3s levels of the intercalated

Na atoms. These bands are partially filled and hence they contribute in turning the

undoped semiconducting SWCNT to metal as a result of intercalation. Furthermore,

the doping of Na atoms increasingly pushes down the carbon-derived conduction bands

towards the Fermi level, leading the system to being increasingly more metallic with more

doping. The fractional occupancies in the carbon derived conduction bands are due to the

transfer of charges from the Na atoms (s bands) to the C atoms (p bands) (see Table 5.2).

This has been confirmed by the charge density analysis (see Figure 5.4 (a)). Apart from

the apparently rigid shifting of the bands, it has also been observed that the degeneracy
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SWCNT(10,0)+Na2

up down

SWCNT(10,0)+Mn2

(a)
(b)

Figure 5.4: The charge densities of SWCNT(10,0) doped with (a) two Na atoms and
(b) two Mn atoms (both for up and down spins) in a plane perpendicular to the axis of
nanotubes.

of some of the bands is lifted as the concentration of doping increases. It is important to

note that the SWCNT intercalated with Na atoms possesses many conducting channels

which are due to two types of partially filled bands. They are (a) NFE bands due to

linear chain of Na atoms and (b) conduction bands of NT ( which are unoccupied in bare

NT and now partially occupied in intercalated NT due to the charge transfer). These two

types of conducting channels may play an important role in the transport properties of

NTs.

In Figure 5.5, we present our results of the band structures of SWGaPNT(10,0) doped

with alkali metal clusters containing (a) a Na atom and (b) four Na atoms per unit cell.

Similar to SWCNT, there is a semiconductor to metal transition in SWGaPNT due to

the intercalation of sodium clusters. Again, it is due to both shifting of Ga and P derived

conduction bands down toward the Fermi level and the transfer of charges from the Na (s-

type) to Ga and P (p-type). Thus, we can say that the effect of intercalation on the band

structures of SWCNT and SWGaPNT is similar. However, we observe that the 3s (Na)

bands in SWGaPNT show somewhat less dispersion as compared to those in SWCNT.

Moreover, the amount of charge transfer from sodium to NT atoms is also less in this case

(see Table 5.2). This is due to the fact that the Na clusters in SWGaPNT are separated

by larger distances from NT atoms as compared to those in SWCNT. Thus, we may say

that SWGaPNT requires larger concentration of doping as compared to that in SWCNT,

in order to produce the similar effect.
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Figure 5.5: The band structures of SWGaPNT(10,0) doped with alkali metal clusters
containing (a) a Na atom and (b) four Na atoms per unit cell. The values of energy
are with respect to the Fermi level. The bands with circles and dots are due to the
contributions from dopant atoms.

5.2.2 Transition Metal Doping

The band structures of SWCNT(10,0) intercalated with single TM atom per unit cell

( 2.5 % of doping) are shown in Figure 5.6. Our spin polarized calculations show that

single TM doped SWCNT(10,0) is half metallic. The system behaves as semiconductor

for spin up carriers and metallic for the spin down carriers. It is clearly seen from Figure

5.6 that there is no crossing of bands at the Fermi level for spin up carriers (see (a) and

(c)). However, the band structures for the spin down cases possess conducting channels

which are mainly due to s-type band of TM atoms ((b) and (d)). These bands near the

Fermi level also possess NFE like dispersion and hence they may play an important role in

the transport properties of NTs. It is observed that the characteristic bands of undoped

SWCNT are not significantly modified because of the doping. Spin up carriers: the

d-bands of TM corresponding to the carrier with spin up lie around 3-4 eV below the

Fermi level. These bands are highly localized and hence they are nearly-dispersion-free

(NDF) like. We observe that a band (showing dispersion) corresponding to s-electrons

of TM atom appears around -2.0 eV at Γ point. Spin down carriers: we observe a

dispersive band corresponding to the s-electrons of TM atom appears at a lower energy

compared to the spin up case (around -1.0 eV at Γ point). At the same time, many flat or

86



Table 5.2: The amount of charge transfer from the dopant atoms to NTs and total
magnetic moments per unit cell.

Nanotubes Charge Transfer Magnetic moments

(10,0) Amount From To (µB)

SWCNT+Na1 0.33 3s(Na) 2p(C) -

SWCNT+Na2 0.90 3s(Na) 2p(C) -

SWCNT+Na3 1.45 3s(Na) 2p(C) -

SWCNT+Na4 2.16 3s(Na) 2p(C) -

SWCNT+Mn1 0.05 3d(Mn) 2p(C) 5.07

SWCNT+Fe1 0.00 - - 4.00

SWCNT+Co1 0.00 - - 2.70

SWCNT+Mn2 1.00 3d(Mn) 2p(C) 9.08

SWGaPNT+Na1 0.11 3s(Na) p(GaP) -

SWGaPNT+Na4 0.23 3s(Na) pl(GaP) -

SWGaPNT+Mn1 0.00 - - 5.00

SWGaPNT+Fe1 0.00 - - 3.91

SWGaPNT+Co1 0.00 - - 3.01

SWGaPNT+Mn2 0.00 - - 9.99

less dispersive bands appear around the Fermi level which correspond to the d-electrons

of the TM atom. The results for the charge transfer and total magnetic moment per unit

cell are given in Table 5.2. For the single TM atom intercalated cases, the results indicate

that there is no significant overlap of charges between the TM atoms and the NTs. Thus,

the magnetic moments per TM atom are comparable to the atomic moments.

Similar to TM doped SWCNT, the low percentage (2.5 %) of TM doping shows the

signature of half metallicity in SWGaPNT (Figure 5.7). The reason for the presence of

half metallic characters of linear chain inserted in SWGaPNT can be similar to the case

of SWCNT. As in the case of AM atom doped NTs, the characteristic bands of undoped

SWGaPNT are not modified much with intercalation. This again suggests that there is

no significant hybridization between the dopant atoms and NTs. Spin up carriers: for

the Mn atom doping, there is an atomic like level at about 1.0 eV below the Fermi level

due to s-type of Mn. Valence bands below the Fermi level are largely dominated by p-type

of both Ga and P. We also observe that the bands corresponding to d-electrons of Mn

appear at around -3.7 eV (not shown in Figure 5.7 (a)). In case of Fe atom doped NT,

there is a atomic like level at about 1.2 eV below the Fermi level due to s-electron of
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Figure 5.6: The band structures of SWCNT(10,0) doped with single transition metal
atom per unit cell. Manganese : (a) up and (b) down spin, and Iron : (c) up and (d)
down spin. The values of energy are with respect to the Fermi level. The bands with
circles and dots are due to the contributions from dopant atoms.

Fe. Similar to the Mn doped case, the valence bands below the Fermi level are largely

dominated by p-electrons of Ga and P atoms. The bands corresponding to d-electrons of

Fe occur around -2.3 and -3.0 eV. Spin down carriers: the Mn-derived band of s-electron

occurs at around the Fermi level and a band due to d-electrons appears at about 0.7 eV

above the Fermi level. On the other hand, for Fe doped NT, the Fe-derived band due to

s-electron occurs around the Fermi level and a d-type band occurs at about 1.0 eV above

the Fermi level. For Co-doping case, the qualitative features in the band structure are

quite similar to those of Fe and Mn doped NT. From the charge density analysis of TM-

doped NTs, it is observed that there is no significant charge transfer from the transition

metal atoms to nanotubes and therefore, the net magnetic moments per unit cell closely

match with those of free TM atoms (see Table. 5.2). The lack of a significant overlap of
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Figure 5.7: The band structures of SWGaPNT(10,0) doped with single transition metal
atom per unit cell. Manganese: (a) up and (b) down spin, and Iron: (c) up and (d) down
spin. The values of energy are with respect to the Fermi level. The bands with circles
and dots are due to the contributions from dopant atoms.

charges between the dopant atoms and the NT is due to a large separation between them

which gives rise to a poor charge transfer. However, the situation may change when the

number of intercalated TM atoms increased to more than one.

We now discuss the effect of intercalation of TM atoms, beyond 2.5 %, on the elec-

tronic structure of NTs. First we discuss the results obtained for SWCNT(10,0). Our

band structure calculations indicate that the SWCNT becomes fully metallic when the

percentage of intercalation goes beyond 2.5. We can see from Figure 5.8 (a) and (b) that

SWCNT intercalated with two Mn atoms (per unit cell) possesses conducting channels for

both spin up and down carriers due to partially occupied level at the Fermi level. Hence,

the SWCNT doped with two Mn atoms becomes fully metallic. Spin up carriers : we ob-

89



Γ Z           
-5

-4

-3

-2

-1

0

1

2

3

4

5

E
n

e
r
g

y
(e

V
)

E
F

Γ Z           
-3

-2

-1

0

1

2

3

E
n

e
r
g

y
(
e
V

)

E
F

Γ Z           
-5

-4

-3

-2

-1

0

1

2

3

4

5

E
n

e
r
g

y
(e

V
)

E
F

Γ Z           
-3

-2

-1

0

1

2

3

E
n

e
r
g

y
(
e
V

)

E
F

(a) (b)

(c) (d)

Figure 5.8: The band structures of SWCNT(10,0) doped with two Mn atoms ((a) up and
(b) down spins) and SWGaPNT(10,0) doped with two Mn atoms ((c) up and (d) down
spins). The values of energy are with respect to the Fermi level. The bands with circles
and dots are due to the contributions from dopant atoms.

serve that a band corresponding to s-type of Mn atom appears around -2.8 eV at Γ-point

and many atomic-like flat bands appear between -2.4 to -3.5 eV, which correspond to

d-type electrons of Mn atoms. These bands also have significant amount of contribution

from p-type electrons of carbon atoms. Spin down carriers : on the other hand, the band

structure for down spin carriers contains a band corresponding to the s-electrons of Mn

atom around -2.1 eV at Γ-point. This band also has contributions from d-type electrons

of Mn atoms. Our result indicates the presence of significant hybridization between the

dopant Mn and C atoms. Here also, we observe many atomic-like flat bands around Fermi

level which correspond to d-type electrons of Mn atom. In contrast to the single TM atom

intercalation case, there is a large charge transfer from d-type electrons of Mn atoms to
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p-type electrons of carbon. It is seen from Figure 5.8 (a) and (b) that there are partial

occupancies in p-type carbon derived bands due to the charge transfer. The presence of

large charge transfer has been confirmed by charge density analysis (see Table. 5.2 and

Figure 5.4 (b)).

Similar to the case of SWCNT, the higher concentration of TM intercalation in

SWGaPNT is also expected to drive the system to full-metallicity. However, we observe

that SWGaPNT doped with two Mn atoms (per unit cell) is a semiconductor. Though

there is a reduction in the value of band gap because of doping, it is not enough to make

the conduction bands cross the Fermi level. It is important to note that the optimized

geometry of SWGaPNT intercalated with two Mn atoms is slightly different from that of

SWCNT with two Mn atoms (see Figure 5.1 (e)). We would like to mention here that the

free Mn dimer turns out to be an unbound system from our DFT calculations[296]. How-

ever, a weak bond between the Mn atoms can result within SWCNT due to the stronger

confinement effect. But, in case of SWGaPNT, after geometry optimization, each Mn

atom move towards the inner walls of NT and attaches itself with separate Ga atoms.

This is due to the fact that there is more room for the unbonded Mn atoms in SWGaPNT

as compared to that in SWCNT since the diameter of SWGaPNT(10,0) is about 47

% larger than that of SWCNT(10,0). Furthermore, in contrast to the SWCNT case, no

charge transfer takes place from Mn atoms to either Ga or P atoms in SWGaPNT. There-

fore, none of the bands corresponding to the SWGaPNT shifted towards the Fermi level

and the SWGaPNT retains its semiconducting character. Overall, it is observed from our

calculations that the effect of intercalation on the electronic properties of both SWCNT

and SWGaPNT are similar. However, our calculations indicate that the SWGaPNT may

require higher concentration of intercalation to produce effects similar to that in SWCNT.

5.3 Summary

In this chapter, we have presented our results for the geometric, electronic and magnetic

properties of alkali- and transition metal atom clusters doped and undoped SWCNT(10,0)

and SWGaPNT(10,0) which have been obtained by using all-electron based DFT cal-

culations with GGA (PBE) exchange-correlation functional. Our results of optimized
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geometric structures show that both the SWCNTs and SWGaPNTs are cylindrical in

shape. However, the SWGaPNTs are buckled due to the presence of mixture of sp2 and

sp3 hybridizations. In contrast to the indirect band gap of the bulk materials: carbon

(diamond) and gallium phosphide (zinc blende), we observe that both SWCNT(10,0) and

SWGaPNT(10,0) possess direct band gaps of 0.83 and 1.48 eV, respectively. Hence, these

NTs are possible candidates for applications in the light emitting devices.

Our calculations of electronic structures of SWCNT intercalated with a single tran-

sition metal atom show that it undergoes a transition from semiconducting to a half-

metallic state. Our calculations indicate that signature of similar transitions are expected

for SWGaPNT(10,0) as well. However, the transition becomes semiconductor to metal-

lic when the concentration of TM atoms increases. The results of SWCNT(10,0) and

SWGaPNT(10,0) intercalated with alkali metal atoms give an indication that intercala-

tion leads to metallization in these NTs. Significant overlap between the atoms of alkali

metal and the NTs and subsequent charge transfer from the former to the latter holds the

key to this semiconductor to metal transition. From the results of our calculations, we

conclude that though there are differences in the nature of hybridization and bonding in

SWCNT(mostly sp2) and SWGaPNT (mixture of sp2 and sp3 ), both NTs with the same

chirality index are found to be semiconducting in nature and also they exhibit similar

effect of intercalations depending upon the concentration of dopant atoms.
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Chapter 6

Optical Response Properties of Car-

bon Nanostructures

Having studied the ground state properties of carbon and gallium phosphide nanotubes

in the previous chapter, we now proceed to present our results for the optical response

properties such as static electric dipole polarizability and strength (through C6 coefficient)

of the van der Waals (vdW) interaction of the carbon nanostructures (CNSs) in the current

chapter. Main aim of the present chapter is to study the vdW interaction between two

CNSs as well as between a CNS and small gas molecules, including the environmentally

important ones, from the first-principle calculations. We also investigate the variation of

these response properties as a function of different physical parameters such as size and

shape of the nanostructures. For this purpose, we choose two different shapes of CNSs

namely cages and carbon nanotubes (CNTs) with various sizes (up to 100 carbon atoms).

As mentioned in the introductory chapter, the large surface-to-volume ratio of nanos-

tructures plays a crucial role in many applications. For example, nanostructures are po-

tential candidates for storing or adsorbing significant quantities of different molecules or

gases. Recently, the topic of storage or adsorption of hydrogen and other small molecules

by nanostructures, especially systems based on carbon, has received overwhelming atten-

tion of the researchers[35–49]. It has been shown that a very high hydrogen uptake in

CNTs is possible; hence these nanotubes can act as a good hydrogen-storage material for

fuel-cell electric vehicles[35]. The fast kinetics and reversibility of the process of hydrogen

adsorption in different CNSs indicate that the interaction between the hydrogen molecules

and the CNS is due to physisorption[42–45]. The vdW interaction plays an important

role in these interactions.

In the literature, there have also been various studies on gas adsorption on CNTs,
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mainly, aimed towards the application of these structures as gas sensors. The CNTs are

good choice of material for producing sensor for gas molecules such as NO2, NH3, CO2, etc

since their properties can be significantly altered by adsorption of these gas molecules[50–

58]. Moreover, the sensors made from CNTs will be very small in size and has advantages

like low power consumption, light weight and low cost. Recently, effort towards sucking

up of the hazardous or greenhouse gases from the atmosphere has gained momentum

since the accumulation of some of these gases leads to severe global warming[298]. It

is expected that the CNTs and carbon cages may adsorb these gases because of their

increased surface area which leads to increased absorptive capacity. There have been

quite a few studies on adsorption of different gases, including rare and toxic gases, on

carbon nanostructures[58, 299–316].

Another interesting aspect of these CNSs is the formation of solid-like superstruc-

ture from the nanotube or fullerene units. The prominent force for the formation of

these solid-like superstructures is the vdW interaction[317–320]. Similar interaction is

also responsible for the formation of bundles or ropes of CNTs[321–323]. Henrard et.

al.[324] have shown that the vdW interaction in the bundles of nanotubes has important

consequences on the vibrational modes. It has also been shown in the literature, both

theoretically[317, 318] and experimentally[325], that beyond a certain diameter, single

walled CNTs (SWCNTs) deform due to very large vdW forces. Jiang et. al.[325] have

shown that this deformation can be measured from the changes in the electron diffrac-

tion intensities. As the distance between two CNTs is of the order of their radius, the

vdW interaction between them becomes dominant. Girifalco et. al.[321] have shown that

the vdW force between two SWCNTs can be as strong as about 1 eV/nm and values of

cohesive energy of CNT bundles can be as high as 4.8 eV/nm. It has been observed by

Takanori et. al.[322] that the vdW force is the main adhesion force for deposition of thin

straight bundles of CNT lying parallel to the substrate surface during dc anhydrous elec-

trodeposition. Thin films of SWCNT have been grown by Sato et. al.[323] by depositing

SWCNT bundles in a layer-by-layer fashion and again, the vdW force is the main driving

force for the formation of such a thin film of SWCNT. Popescu et. al. have given simple

model for vdW interactions between two radially deformed SWCNTs[326].
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It is clearly observed from above discussions that the vdW interaction between two

CNSs as well as between a CNS and other molecules or gases plays a crucial role in many

processes like formations of solid-like superstructures, thin films and bundles or ropes of

nanostructures as well as physisorption of various molecules or gases by nanostructures.

Thus, a detailed microscopic study of the vdW interaction and a quantitative estimation

of strength of this interaction between different cages or between various nanotubes is

extremely helpful to understand the above mentioned processes. Hence, in the present

study, we perform the calculation of vdW interaction coefficient between the cages and

nanotubes, containing maximum about 100 carbon atoms, by using all-electron calcu-

lations based on DFT and TDDFT. In addition, we also estimate the vdW coefficients

between the CNS and different gas molecules, specifically the environmentally important

ones, in order to explore the potential of the adsorption of these gases by the carbon based

nanostructures.

6.1 Results and Discussions

We perform the optimization of geometric structures of the CNSs using DFT based geome-

try optimization procedure as implemented in ADF package[205]. For these calculations,

we use Slater type Orbital (STO) basis set with triple-zeta with two added polariza-

tion functions (TZ2P basis set as in ADF package) and Perdew-Burke-Ernzerhof XC

potential[195]. Our results for the optimized geometric structures of some of the typical

CNSs considered in the present study are given in Figure 6.1. We terminate both the

ends of the finite-length CNTs with hydrogen atoms in order to avoid the dangling bonds.

The results for the optimized geometries of cages obtained in the present work match well

with the previous results available in the literature[327–331]. The geometric structures

for the carbon cages with 20 and 60 atoms are similar to the corresponding structures

available in Ref[327–330]. The cage with 80 atoms corresponds to a structure which is

very close to the minimum energy structure found by Sun et. al.[331].
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(d) (f)(b)

(a) (c) (e)

Figure 6.1: Optimized geometric structures of some of the carbon nanostructures. (a)
Finite-length CNT(3,3), (b) finite-length CNT(6,0), (c) cage C20, (d) cage C60, (e) cage
C80, and (f) cage C100. Finite-length CNTs are terminated with hydrogen atoms at both
the ends. Yellow and blue colors depict carbon and hydrogen atoms respectively.

6.1.1 Polarizability of the Carbon Nanostructures

In this sub-section, we discuss the results for the static dipole polarizability of the CNSs.

For the calculations of the static and frequency dependent polarizabilities, we use ab

initio TDDFT based method which is implemented in the RESPONSE module of ADF

package[205]. Detailed description of the method adopted in ADF package for obtaining

frequency dependent polarizabilities is available in Ref.[218]. We have used TZ2P basis set

for the response property calculation of CNSs. In case of small molecules, we have chosen

even tempered basis set (ET-QZ3P-2DIFFUSE) with two sets of diffuse functions[205].

As mentioned in Chapter 2, a TDDFT based response property calculation requires ap-

proximating the XC functional at two different levels. The first one is the static XC

potential needed to calculate the ground-state KS orbitals and their energies. The second

approximation is needed to represent the XC kernel fXC(r, r′, ω) which determines the

XC contribution to the screening of an applied field. For the XC kernel, we use reason-

ably accurate adiabatic local density approximation (ALDA)[332]. On the other hand, for

calculating ground state orbitals and their energies, we use the orbital dependent model

potential namely, statistical average of orbital potential (SAOP)[219, 220], which has cor-
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Table 6.1: Static polarizability values for carbon cages (in a.u.) obtained using SAOP /
ALDA XC potential / kernel. The values are compared to the theoretical data from Ref.
[334]. The experimental value is given in the parenthesis.

Fullerene Present Ref. [334] Deviation from Ref.[334]

C20 182.9 - -

C60 545.6 581.6 (516±54) ≈ 6 %

C80 777.6 811.68 ≈ 4 %

C90 956.1 932.47 ≈ 3 %

C100 1081.6 1073.2 ≈ 1 %

rect behavior both in the asymptotic region and close to the nucleus. This XC potential is

chosen since it is well known that the correct behavior of the XC potential, specifically in

the asymptotic regime, plays a crucial role in the accurate determination of the response

properties[218, 333].

Our results for the polarizability of cages are summarized in Table 6.1. In order to

establish the accuracy of our results obtained with the above mentioned choice of the basis

set and XC potential, we compare our results for the polarizability with already existing

data from the literature[334]. In Ref.[334], the authors report the results obtained by

using various basis sets and XC potentials; we compare our data with their results using

SAOP XC potential, and the largest basis set used by them, namely, TZP+. We observe

that the agreement between the results from the Ref. [334] and the present calculation is

quite good. Results from Table 6.1 clearly indicate that the maximum deviation being

6% in the case of C60 cage and the deviation keeps decreasing with the increasing size

of the cage; the minimum being about 1% for C100. Furthermore, we note that the

polarizability value of 545.6 a.u. for C60 obtained from our calculation matches well with

the experimental value of 515±54 a.u. This establishes the validity of our choice of the

XC potential and the basis set.

Next, we discuss our results for the polarizability of CNTs with the chiralities (n,n)

and (m,0); where n starts at 2 and ends at 5, and m ranges from 4 to 10. In Figure 6.2

(a), we plot the average static polarizability of CNTs as a function of the length of the

nanotubes. We observe from this figure that the CNT(2,2), having the least diameter

of 2.81 Å, has the smallest values of polarizability throughout the range of length of
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Figure 6.2: (a) Variation of average static polarizability, for the CNTs with different
chiralities, as a function of length. (b) The parallel and (c) perpendicular components of
the static polarizability are plotted as a function of length for CNT(3,3) and CNT(6,0).

about 4 to 20 Å. CNT(4,0), having diameter of 3.32 Å, has the next largest value of

polarizability. We would like to mention here that the armchair CNT(n,n) has smaller

diameter as compared to the zigzag CNT(2n,0). It is observed from Figure 6.2 (a) that

the values of polarizability for CNT(2n,0) are higher than those of CNT(n,n) though both

the CNTs have same number of carbon and hydrogen atoms. The reason for this is as

follows : the geometries of the zigzag CNT(2n,0) and armchair CNT(n,n) (see Figure

6.1) are such that the zigzag tubes have more number of bonds along the tube axis as

compared to that of the armchair tubes. Thus, a zigzag tube is more polarizable along

the tube axis which leads to larger average polarizability. Moreover, a trend of increasing

polarizability values with the increase of diameter is very clearly observed from Figure 6.2

(a). For the larger tubes, of (n,0), with n = 8 to 10, we do not display the results in the

figure due to limited number of data points. However, the overall trend of the increase
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Figure 6.3: The parallel components of the static polarizability per length obtained from
HF and DFT methods are plotted as a function of length for CNT(3,3) and CNT(4,0).

in the static polarizability values with the diameter of the CNTs over the entire range of

length (4 to 20 Å), is maintained for these tubes as well. From Figure 6.2(a), it is also

observed that for all the CNTs, the values of polarizability increase quadratically with

increasing length. We show in Figure 6.2(b) and 6.2(c), the parallel or longitudinal and the

perpendicular or transverse component of polarizability, respectively, for both CNT(3,3)

and CNT(6,0), as a function of the length of the CNTs. It is seen from Figure 6.2(b)

that the parallel component of the polarizability increases quadratically with increasing

length, while the perpendicular component of polarizability always increases linearly with

increasing length (Figure 6.2(c)). This observation agrees very well with results from the

literature[335, 336] : Ma et. al. reported a similar trend on the polarizability versus

length from their calculations of size-dependent polarizabilities of finite-length SWCNTs

of longer lengths (up to 13.5 nm) and the diameters of some of these tubes are comparable

with the ones studied here (CNT(4,4) to CNT(6,6) and CNT(8,0) to CNT(10,0))[335].

Before proceeding further, we wish to point out that many authors have observed

that conventional XC functionals such as LDA and GGA overestimate the values of (Hy-

per)polarizabilities for π-conjugated long-chain systems[337–339]. The reason for the

overestimation is due to the fact that these XC functionals possess incorrect description

of electric field dependence of the response part of the functionals[339]. Since HF method

takes the effect of exchange exactly, it does not have the above mentioned shortcoming.

Therefore, to assess the role of the non-local field-counteracting potential in the pres-

ence of an external electric field, we have carried out calculations of polarizability for two
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different tubes, namely, the zigzag CNT(4,0) and armchair CNT(3,3), as a function of

length, by employing the Hartree-Fock (HF) method (using the package GAMESS[340]).

It is to be noted here that the lengths of all finite CNTs considered in the present work

are less than or about 20 Å. In this length regime (≤ 20 Å), we find from the HF results,

that the trend in variation of parallel component of polarizability with the length of CNT

is the same as that obtained by the DFT with SAOP XC functional. The HF and DFT

(SAOP) results on CNT(3,3) and CNT(4,0) are displayed in Figure 6.3. It is observed that

the parallel component of polarizability (polarizability per length) increases quadratically

(linearly) with the length of the tube up to about 20 Å. Thus within this length regime

the effect of non-local field-counteracting potential in the presence of external electric field

is presumably negligible. However, the values of polarizability obtained by DFT (SAOP)

are slightly higher than the corresponding HF data (Figure 6.3). We observe that when

we go close to and beyond the length regime of 20 Å, the results for polarizability obtained

from both the methods start showing differences.

We know that the values of polarizability depend on the size, symmetry and atomic

constituents of a system. Here, we study two different shapes like nearly-spherical (fullerenes/cages)

and tubular (nanotubes) structures. We observe that nanotubes are more polarizable than

the fullerenes having similar number of atoms. This can be attributed to the geometry of

CNT, which can be easily polarized along the tube direction (see the magnitudes in Figure

6.2 (b) and 6.2 (c), parallel component is having higher value). Therefore, these quasi-

one-dimensional structures have large anisotropy in polarizability. This large anisotropy

can play an important role in electric field aligned growth of carbon nanotubes. The ori-

ented growth of nanotubes are important for nanoelectronics. It has been shown by Ural

et. al.[341] that aligned SWCNTs can be grown onto the surfaces of SiO2/Si substrates

in strong electric fields. This is supported by our results on polarizability which shows

different length scaling for polarizability along parallel and perpendicular directions to the

tube axis. Hence, anisotropy in polarizability will increase as length of the nanotube in-

creases, which in turn gives more torque on off-aligned nanotubes as they grow in electric

field.
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Figure 6.4: Variation of the vdW interaction coefficient (C6) per atom as a function of the
number of atoms in the cages. In this plot, we include the results for the carbon based
fullerenes, C20, C60, C80, C90 and C100.

6.1.2 van der Waals Coefficient of the Carbon Nanostructures

Having studied the polarizabilities of the carbon cages and the CNTs as a function of

length and diameter, we now present our results for the C6 coefficients between these

CNSs ( which is obtained by using equation (2.62)). The variation of the vdW coefficient

(C6) per atom as a function of number of atoms in the carbon cage is plotted in Figure

6.4. For the cages, we choose the independent variable as the number of atoms instead

of diameter since, unlike cage C60, some of the cages are not spherical in shape. Similar

to the results for polarizability, we observe that the values of C6 also strongly depend

on the size and shape of the nanostructures. It is to be noted that the strength of vdW

interaction is determined by the polarizability of the systems involved. The polarizability

of a system is determined by the number of easily polarizable or loosely bound electrons,

the volume over which they are spread and the extent of perturbation of the electron cloud

possible. In case of carbon systems, the loosely bound π-electrons play an important role

in the polarizability. Bigger the carbon cage the larger is the number of π-electrons and

the volume over which these electrons are spread. In case of CNTs, we plot the variation

of the vdW coefficient (C6) per atom as a function of length of the CNTs in Figure 6.5

(a). We observe that the C6 values per atom, like polarizability, increase with the length
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Figure 6.5: Variation of the vdW interaction coefficient (C6) per atom as a function of
(a) length and (b) diameter of CNTs. In case of (b), the length of the CNTs is fixed (
about 11.5 Å).

of the tubes in a non-linear fashion. Moreover, when we look at the diameter dependence

of the vdW coefficient, a clear trend is noted. CNT(2,2) having the least diameter has the

smallest coefficient throughout the length range of about 4 to 20 Å, as observed in Figure

6.5 (a). The CNT(4,0) has the second largest C6 coefficient. Like the polarizability values,

the trend of increasing C6 values with the increase of diameter is very clearly observed

from Figure 6.5 (a). The CNT(10,0) and also CNT(5,5), the two among the largest

diameter tubes considered in this work, have large coefficients. This observation of the

large increase of the vdW coefficient with the diameter corroborates with the established

trend[317, 318, 325]. Furthermore, to assess the dependence of C6 on the diameter of the

CNTs, in Figure 6.5 (b), we plot the values of C6 per atom as a function of the diameter of

the CNTs for a fixed length. In this case, the length of the CNTs has been fixed at about

11.5 Å. The values of C6 per atom of the CNTs with increasing diameter, in the order of

CNT(4,0), CNT(3,3), CNT(6,0), CNT(4,4), CNT(5,5) and CNT(10,0), have been plotted

in this figure. We observe that the vdW coefficients increase linearly with the diameter,

with a correlation coefficient of 0.999. The number of atoms per CNT with increasing

diameter increases leading to larger polarizability and in turn giving rise to larger values

of vdW coefficient. For the sake of comparison, we plot the C6 per atom of C60 (with a

diameter of 7.09 Å) in the same figure. We note that a large difference in the value of C6

for C60 is observed in comparison with the CNTs.
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In order to make a quantitative estimation of difference in values of C6 and polarizabil-

ity for CNTs and cages, we have calculated the standard deviation and the mean values

of these quantities. For this purpose, we analyze the results of C6 and polarizability for

different CNTs and cages having 60 as well as 80 carbon atoms. We find that the ratio

between the values of standard deviation and the mean for C6 and polarizability values of

CNTs with 60 carbon atoms are about 0.038 and 0.043, respectively. On the other hand,

for CNTs with 80 carbon atoms, the same ratios are about 4 times more. For this case,

these ratios are 0.163 and 0.204, respectively, for C6 and polarizability. Therefore, CNTs

with different chirality and higher total number of atoms have C6 values which deviate

more from each other, compared to the ones containing less number of atoms. As we can

see that the cage structures are less polarizable and hence their interaction strengths are

consistently lower than those of CNT. We observe that the cages with 60 and 80 atoms

are having C6 and polarizability values which are about 40 - 50 % lower as compared to

the corresponding mean values for CNTs with similar number of atoms.

6.1.3 Polarizability and C6 Coefficient of Gases

In Table 6.2, we give the values of dipole moment, the static polarizability, anisotropy

of the static polarizability and the vdW coefficient for the gas molecules considered in

this work. We also compare our calculated polarizability values of these molecules, with

available experimental data as well as values calculated from Ref.[342, 343] to establish the

accuracy of our results. We observe a very good agreement between our results and those

available in the literature with the deviations of the order of 0.1 to 3 %. It is observed from

Table 6.2 that all the C6 results available in the literature are overestimated compared to

our calculations. We estimate the differences between these results and the corresponding

data obtained from our calculations : the maximum deviation being 17 % for the low

molecular weight rare gases, He and Ne. However, for high molecular weight rare gases,

Ar and Kr, the deviation is small (up to 2.7 %). While for H2 and H2O, the deviation is

about 10 %, for all the molecules with higher molecular weight the maximum deviation

is only about 5 %.
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Table 6.2: Dipole moment, static polarizability (ᾱ), anisotropy of the ᾱ and the C6

coefficient values for several molecules, obtained using SAOP/ALDA XC potential. [ The
values for polarizabilities given in parentheses refer to the experimental and theoretical
results[342, 343]; the values for C6 given in parentheses are from theoretical results[343]]

Molecule Molecular Dipole polarizability anisotropy C6

Weight Moment

(a.u.) (Debye) (a.u.) (a.u.) (a.u.)

H2 2.0156 0.0 5.6929 (5.43) 2.0285 12.9249 (14.3)

He 4.0026 0.0 1.4189 0.0 1.503 (1.82)

CH4 16.0312 0.0 17.61 (17.27) 0.0 132.493

H2O 18.0105 1.803 9.6167 (9.64) 0.9941 45.2996 (50.1)

Ne 19.9924 0.0 2.5717 0.0 5.9935 (7.26)

CO 27.9949 0.1668 13.088 (13.08) 3.45 79.747 (83.8)

N2 28.0062 0.0 11.872 (11.74) 4.844 74.0914 (77.2)

F2 37.9968 0.0 8.124 (8.38) 5.8314 43.135

Ar 39.9624 0.0 11.555 0.0 68.0317 (69.9)

CO2 43.9898 0.0 17.05 (17.51) 13.009 152.9964 (161.0)

N2O 44.0011 0.1084 19.26 (19.77) 18.536 180.1426 (186.0)

O3 47.9847 0.573 18.179 17.337 157.381

SO2 63.9619 1.652 25.637 (25.61) 13.068 294.6244

Cl2 69.9378 0.0 31.84 (30.35) 17.273 413.6942

Kr 83.9115 0.0 17.277 0.0 133.2492 (135.0)

CF4 87.9936 0.0 19.020 0.0 251.4489

CCl4 151.8756 0.0 73.717 0.0 2154.6822

6.1.4 C6 Coefficient between Carbon Nanostructures and Gases

In this sub-section, we discuss the results of the vdW interaction coefficient between CNS

and various gas molecules such as hydrogen (H2), Nitrogen (N2), carbon dioxide (CO2),

carbon monoxide (CO), sulfur dioxide (SO2), nitrous oxide (N2O), methane (CH4), ozone

(O3), water vapor (H2O), fluorine (F2), chlorine (Cl2), carbon tetra fluoride (CF4), and

carbon tetra chloride (CCl4). We also study the interaction of four rare gas atoms, namely

He, Ne, Ar and Kr with the CNS. In Figures 6.6 (a) and (b), we present our results of

the vdW interaction coefficient of the above mentioned systems with the CNSs containing

about 60 and 100 carbon atoms, respectively. Since for all the nanotubes the trend is the

same, we only show the results for some of the typical nanotubes. In Figure 6.6 (a) we

show the data for tubes with chiralities (2,2), (3,3), (6,0), (4,4) and (5,5) as well as C60.

The results for tubes with chiralities (3,3), (4,4) and (10,0) as well as C100 are shown in

Figure 6.6 (b).
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Figure 6.6: The vdW interaction coefficient of the small molecules with the carbon nanos-
tructures containing about (a) 60 and (b) 100 carbon atoms.

We start with a discussion on the results for the vdW interaction of rare gases with

the CNS. It is observed from Figure 6.6 that the values of interaction coefficient for the

rare gases with the CNS are small. It is well known that due to the shell filling the

rare gases are non-polar, chemically very inert and have low polarizability. Thus, they

interact weakly with the CNS. However, the C6 coefficients between inert gas atoms and

CNS increase with the size of the atom of these gases. This is due to the fact that as

we go from He to Kr, the rare gas atoms become more polarizable since the distance of

valence electrons from the nucleus increases. So the magnitude of the dispersion forces

increases with increasing system size since the dispersion coefficient is dependent on the

polarizability of the system.

Next we proceed to compare the C6 coefficients between the nanostructures and all

other small molecules including H2 and primarily the environmentally important gases,

as listed above. First of all, it is observed that the C6 coefficients of the carbon cages

with all the molecules are consistently smaller than those of the nanotubes. This is due

to fact that the nanotubes are more polarizable compared to the cages. It is interesting to

see from Figures 6.6 (a) and (b), that for H2, the C6 values are much larger compared to

those of He even though He and H2 have the same number of electrons. These reasonably

high values of C6 between the H2 and the CNS, including cages, expectedly, lead to the

easy adsorption of H2 on these types of nanostructures with high surface-to-volume ratio.

This observation is in conformity with the numerous studies on CNT and fullerene derived
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systems as possible hydrogen storage materials.

Furthermore, Figures 6.6 (a) and (b) show that the hazardous gases such as methane,

nitrous oxide, carbon dioxide, carbon tetrachloride, carbon tetrafluoride, and sulfur diox-

ide interact strongly with the CNS compared to rare gases or other molecules. Carbon

tetrachloride ( which is an ozone-depleting and a greenhouse gas) and chlorine molecule

show very high C6 values with themselves as well as with the CNS. These two molecules

are also having higher values of static dipole polarizability and interact strongly with

themselves. This is due to the presence of seven electrons in the valence state for the

chlorine atom. Here we would like to mention in support of our result of reasonably high

value of C6 for various gases that Cinke et. al.[300] obtained and they observed that

SWCNTs adsorb nearly twice the volume of CO2 compared to activated carbon; Kowal-

czyk et. al.[344] showed that the carbon nanotubes are better adsorbents of CF4 than

currently used activated carbons and zeolites.

Next we proceed to compare the data of some pair of molecules. Due to the difference

in the electron distribution, the pair N2O and CO2 have slightly different C6 values (N2O

has a 17.7 % higher C6 value compared to CO2), as seen from Table 6.2, though these

two molecules have very similar molecular weights and same total number of electrons.

This difference in the values of C6 for CO2-CO2 and N2O-N2O interaction is also reflected

in the results for C6 between these molecules and the CNS. These data are elucidated

in Figures 6.6 (a) and (b). It is worth mentioning here that the ozone molecule with

comparable molecular weight and the number of electrons with CO2 and N2O (see Table

6.2), has C6 values with the nanostructures which are in between those of CO2 and N2O.

Next we consider CH4 and H2O which have similar molecular weights and same number

of electrons (10 each). Though water has a larger permanent electric dipole moment

compared to methane, which has none (see Table 6.2), the average electron cloud is more

rigid in water than in methane as is reflected by the smaller value of polarizability of

water molecule versus methane; this in turn leads to a comparatively larger C6 value for

CH4 when compared to H2O. Since the C6 value between two methane molecules is much

higher compared to water (Table 6.2), we observe that the C6 values between methane

and the CNS are also significantly higher compared to those between H2O molecule and
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the nanostructures. Finally we consider another pair of molecules, namely, the chlorine

molecule and sulfur dioxide, which have comparable number of electrons, 34 and 32,

respectively. It can be seen from Figures 6.6 (a) and (b), that the values of C6 coefficient

with CNS of the former is much larger. This may be attributed to the difference in the

molecular geometry : While Cl2 is a linear molecule and more polarizable, SO2 has a

structure of isosceles triangle with an O-S-O angle of about 119◦.

6.2 Summary

In this chapter, we employ all-electron ab initio TDDFT based method to calculate the

static dipole polarizability and the vdW interaction coefficient, C6, between different finite

carbon cages and finite-length carbon nanotubes with different size and chirality, contain-

ing maximum about 100 atoms. We also calculate the vdW coefficient between these

carbon nanostructures and small gas molecules, including the environmentally important

ones. From our calculations, we find that the average static polarizability increases with

the length of CNT in a non-linear fashion. These quasi-one-dimensional structures also

have large anisotropy in polarizability due to the different scaling of components of po-

larizability with the length. The large anisotropy in polarizability of the CNTs plays an

important role in electric field aligned growth of CNTs. Our results also show that the

C6 values increase linearly and quadratically with the diameter and length of the CNTs,

respectively. We also observe that the CNTs are more polarizable than the carbon cages

due to the easy polarization along the axis of the former; hence the CNTs, with similar

number of atoms, interact strongly with themselves as compared to the cages. For nanos-

tructures with 60 and 80 carbon atoms, it is found that the C6 and polarizability are

about 40 - 50 % lower in the cages compared to the tubes. The nonlinear increase of the

C6 values of the CNSs with length implies a much stronger vdW interaction between the

longer CNSs compared to the shorter ones. This result can be useful in understanding

the formation of superstructures made up of CNSs.

From our calculations of the vdW coefficients between the small molecules and the

carbon nanostructures, it is observed that the C6 values of H2 are much larger compared to

those of He. These reasonably high values of C6 between the H2 and the CNS corroborate
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with the observations of adsorption of significant quantities of H2 on these nanostructures.

We also found that the interaction coefficients of environmentally hazardous gases with

CNSs are quite high as compared to those of rare gases. Our estimation of the vdW

coefficients between the CNS and these gases can be useful in providing the microscopic

understanding in the studies of adsorption, specifically physisorption, of these gases on

CNSs.
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Chapter 7

Physical Properties of Gallium Phos-

phide Clusters

In the last two chapters, we have presented our results for quasi-one-dimensional car-

bon and gallium phosphide nanotubes. Now, in this chapter, we study the static dipole

polarizability of stoichiometric gallium phosphide clusters (GanPn with n = 2 − 5 ) by

employing various ab initio wave function based methods as well as DFT / TDDFT. We

use the following ab initio wave function based methods, namely, Hartree-Fock (HF),

second order Møller-Plesset perturbation theory (MP2) and coupled cluster theory with

single and double with perturbative triple excitations (CCSD(T)) for the calculations of

polarizability.

The study of semiconductor clusters has been an active area of research over last

two decades because of their novel properties and due to the technological importance

of semiconductor materials in electronic industries employed in fabrication of small and

fast microelectronic devices. Several theoretical and experimental studies on both ho-

mogeneous (Sin, Gen, etc.) and heterogeneous (GamAsn, GamPn, GamNn and AlmPn,

etc.) semiconductor clusters exist in the literature [80–100]. GaP is one of the important

III-V semiconductor materials with an indirect band gap of 2.26 eV[345] and it has been

widely used in the manufacture of low-cost light-emitting diodes with low to medium

brightness. There exist many studies on nanoclusters of this material. But, most of these

works are devoted to the study of geometrical structures, their stabilities and electronic

properties by employing various methods of calculating electronic structures. The study

on polarizability of stoichiometric GaP clusters are scarce in the literature. However, it

is well known that the optical response properties, specifically, the polarizability of ma-

terials govern many physical and chemical phenomena. To the best of our knowledge,

109



there exists only one study devoted to the calculation of polarizability of GaP clusters

consisting of GaX4H3+
12 , XGa4H3−

12 , H3−GaXH3, Ga4X4H18 and Ga3X3H12 clusters (with X

= N, P and As) [100]. In Ref [100] the calculation of polarizability has been performed

by employing time-dependent Hartree-Fock method and structure of all the above men-

tioned clusters possessing tetrahedral geometries and the outer atoms were terminated by

hydrogen atoms which are relevant to crystalline state and thin films.

On the other hand, several studies involving ground state properties like geometric

structures, harmonic vibration frequencies and various other properties of GaP clusters

have been carried out and reported in the literature[101–113]. For example, Costales et

al. have investigated the structural and vibrational properties of stoichiometric GanPn

clusters with n = 1 - 3 in the framework of DFT[101]. A similar study has been performed

by Guo et al. on GaxPy clusters with (x + y = 8) using B3LYP XC functional and 6-

31 +G(d) basis set. Subsequently, they also calculated photoelectron spectra of neutral

and anionic GanPn clusters with n = 7 − 9 within DFT using B3LYP and B3PW91 XC

functionals[102, 103]. Li et al. investigated the geometric structure, electronic state and

vibrational frequencies of GanP and GanP2 clusters with n = 1 − 7 by using B3LYP

XC functional and 6-31 +G(d) basis set[104]. The study on structure, stability and

melting point of GanPn clusters with n = 2 − 5 was carried out by Andreoni et al.

using ab initio molecular dynamics (Car-Parrinello) method[105]. Balasubramanian et

al. employed complete active space multi configuration self consistent field and multi-

reference single plus double configuration interaction to theoretically study the electronic

states of low lying levels of many GaP clusters[106–109]. The spontaneous formation of

GaP fullerenes was proposed by Tozzini et al. by using ab initio molecular dynamics

method[110]. In addition, Archibong et al. studied vertical detachment energy (VDE),

adiabatic electron detachment energy (AEDE) and vibrational frequencies of GaP clusters

using CCSD(T) and DFT / B3LYP methods[111, 112]. The geometric structures and band

gaps of GaP clusters included in Sodalite cages have also been calculated by employing

ab initio molecular dynamics (Car-Parrinello) method in Ref[113].

In the context of experimental studies on GaP clusters, we note that Neumark and

coworkers studied the photodetachment spectra of neutral IV and III-V clusters [115–120].
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These studies are important in characterizing the low lying states of these clusters. They

also studied photoelectron spectra of GaxP
−
y clusters at a photodetachment wavelength

(266nm/4.657 eV) and electron affinity and VDE of some neutral clusters. Micic et al.

studied optical absorption spectra of passivated nanocrystal in 20-30 Å size regime of

GaP[346]. Infra-red (IR) absorption spectra of GaP, Ga2P and GaP2 clusters trapped in

4K argon matrix have been measured by Weltner et al.[121]. Huang et al. measured the

mass spectra of GaP anion clusters produced by laser ablation[347].

In general, it is well known that the results obtained by ab initio wave function based

methods such as Møller-Plesset perturbation theory and coupled cluster theory are quite

accurate. But, these methods are computationally significantly intensive and feasible only

for smaller systems. Thus, for bigger systems, the better methods of choice would be the

ones based on DFT / TDDFT as these methods are known to yield accurate results for the

polarizability of many-electron systems. However, the success of DFT / TDDFT based

methods in determining polarizability crucially depends on the nature of approximations

used for the exchange-correlation (XC) functionals. Thus, in the present study, we in-

vestigate the performance of different XC functionals used in DFT / TDDFT method

in determining static dipole polarizability of GanPn clusters. For this purpose, we carry

out the calculations of polarizability, within DFT / TDDFT, by employing various XC

functionals, ranging from simple local density approximation (LDA) to asymptotically

correct model potential - statistical average of orbital potential (SAOP). Besides assess-

ing the effect of XC functionals on the polarizability we also study of evolution of the

polarizability with the size of the clusters.

7.1 Geometric Structure

We perform the optimization of all GanPn clusters using DFT based geometry optimiza-

tion procedure as given in ADF package [205]. We employ TZ2P basis set along with

Becke-Perdew (BP86) XC potential [191, 192]. The initial structures of GanPn clusters

are similar to those of GanAsn clusters which have been reported by Karamanis et al.

[348]. The optimized structures of GanPn clusters with different symmetries are shown

in Figure 7.1. In Table 7.1, we summarize the interatomic distances between Ga-Ga, P-P
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Figure 7.1: Optimized geometries of stoichiometric gallium phosphide ( GanPn ) clusters
with n = 2− 5. The black (grey) circles are the Ga (P) atoms.

and Ga-P atoms in GanPn clusters. For tetramer (Ga2P2), the equilibrium structure is

planar rhombus with D2h symmetry, which matches well with the results already available

in the literature [104, 106, 111, 349]. This rhombus structure of Ga2P2 has been isolated

experimentally as part of a large complex by Cowley and coworker in 1989 [350]. It is

interesting to note that most of the tetramers, for example C4, Si4, Ga2As2, Na4 and K4,

show planar rhombus as equilibrium structure. We observe that the optimized structure

of GaP clusters retain similar geometry as that of GaAs clusters obtained by Karamanis

et al [348].

We can see from the Table 7.1 that the GaP clusters contain different values of inter-

atomic distances for each Ga-P, Ga-Ga and P-P. It is observed that average interatomic

distances of Ga-P and Ga-Ga atoms in GanPn clusters are higher than their corresponding

bond lengths of 2.360 Å, and 2.691 Å, in bulk (zinc blende) GaP and bulk (α - Ga) gallium,

respectively. The interatomic distances of P-P atoms are closer to their corresponding

bond length of 2.220 Å, in bulk (black) phosphorus except for the octamer Ga4P4 with C2v

symmetry. The higher values of interatomic distances in GanPn clusters as compared to

those from their bulk structures show that the interaction between atoms in the clusters is

weaker than that in the bulk structures. The atoms in bulk make as many covalent bonds

(consistent with the valence electron) as possible in order to minimize the total energy of

the system. But in case of very small clusters as considered here, most of the atoms are on

the surface so they cannot form as many bonds as in a bulk. We know that as the number
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Table 7.1: The binding energy (EB in eV), HOMO-LUMO gap (in eV) and interatomic
distances (in Å) of GanPn clusters

n - EB HOMO-LUMO Interatomic distance (Å)

Symmetry ( eV ) gap (eV) Ga-Ga P-P Ga-P

2 - D2h -9.62 1.42 - 2.08 2.56

3 - Cs -16.06 2.25 2.77 2.22 2.45, 2.63, 2.76

3 - C2v -15.43 1.71 2.63 2.19 2.49, 2.65, 3.11

4 - Ci -21.21 1.46 2.61, 3.09 2.20 2.32, 2.41, 2.53, 3.03

4 - Cs -20.82 1.57 2.61, 3.09 2.21, 2.32 2.57, 2.69, 2.77, 2.85

4 - C2v -20.37 0.98 2.64, 2.98 2.60 2.39, 2.48

4 - Td -20.23 0.37 2.79 - 2.42

5 - Cs(I) -27.55 1.69 2.77, 2.84, 2.91, 3.11 2.24 2.36, 2.44, 2.61, 2.71, 2.82

5 - Cs(II) -27.25 1.53 2.78, 2.87, 2.93, 3.20 2.30 2.28, 2.46, 2.56, 2.99

5 - Ci -26.82 1.27 2.62, 2.78, 2.99 2.17, 2.31 2.36, 2.56, 2.72, 2.82, 2.95

of bonds increases, the binding between the atoms becomes stronger and then they come

closer to each other. Thus, the interatomic distances in small clusters are larger than the

corresponding bond lengths in bulk. As the size of the clusters increases, the atoms inside

the clusters try to make more bonds than those at the surface. Eventually, the larger size

of the clusters allows them to form bulk like geometries, with only small deviations at

the surface. The lower binding energy of GanPn clusters with respect to its bulk value

confirms the weak interaction between the atoms in the clusters.

In order to check the stability of the clusters, we calculate the binding energies and

harmonic vibrational frequencies of these clusters. The binding energies of GanPn clusters

are calculated by using the expression

EB = EGanPn − n(EGa + EP ) (7.1)

where EGanPn , EGa and EP are the energies of GanPn cluster, Ga and P atom, respectively.

The values of binding energy calculated by the above formula are given in Table 7.1.

The negative sign signifies that all the clusters studied here are bound systems and the

magnitude of binding energy indicates the relative stability between the isomers. To see

how the binding energy changes with the size of GanPn clusters, we plot the variation of

binding energy per atom with the size (n) in Figure 7.2. It is clear from this plot that as

the size increases, the clusters become more bound. Note that the magnitude of cohesive

energy per atom of bulk GaP is 7.02 eV/atom[351], which is much higher than the binding
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Figure 7.2: Plot of binding energy per atom as a function of size for the most stable
isomers.

energy of all these clusters. This also supports the argument presented above about the

interatomic distances in cluster. We observe that the most stable structures for hexamer,

octamer and decamer are isomers with Cs, Ci and Cs(I) symmetries, respectively. Similar

trend was obtained for GanAsn clusters by Karamanis et. al.[348]. This indicates that

similar type of bonding exists in both GaP and GaAs clusters. In order to study the effect

of basis set superposition error (BSSE) on binding energy, we have calculated BSSE for

the most stable isomers of GanPn clusters. We find that the values of BSSE are less than

0.2 % of their corresponding binding energies. Therefore the effect of BSSE is small. This

is obvious since we have used one of the largest basis sets in our calculations.

To verify whether the clusters considered in this study are stable or not, we calculate

the harmonic vibrational frequencies for all the optimized structures. The absence of

imaginary frequencies is used to confirm the stability of a structure. The calculated

harmonic vibrational frequencies of GanPn clusters are given in Table 7.2. We observe

no imaginary frequencies for any of the optimized structure considered here. Therefore,

these optimized structures are stable and possible local-minimum-energy-structures on

the potential energy surface. Our results of harmonic vibrational frequencies for GanPn

clusters match well with the available results in the literature[101, 104]. For example, we

can see from Table 7.2 that our results of harmonic vibrational frequencies for tetramer

Ga2P2 withD2h and hexamer Ga3P3 with Cs symmetries match very well with those values

obtained by Costales et al. [101] . Furthermore, we also note here that for tetramer
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Table 7.2: The harmonic vibrational frequencies (in cm−1 ) of GanPn clusters. The values
in the parenthesis are obtained by Costales et al. [101]

n Symmetry Harmonic vibrational frequency ( cm−1 )

2 D2h 68(67), 123(122), 169(166), 262(253), 276(272), 567(564)

3 Cs 52(51), 70(64), 113(109), 115(111), 157(154), 171(167), 238(230),

247(242), 275(272), 387(385), 400(391), 505(498)

3 C2v 44, 120, 154, 168, 191, 223, 247, 316, 442, 450

4 Ci 64, 84, 113, 141, 187, 209, 267, 283, 336, 340, 442

4 Cs 62, 96, 118, 132, 142, 144, 156, 198, 229, 258, 308, 406, 428

4 C2v 103, 132, 146, 153, 193, 214, 233, 244, 256, 304, 319, 352, 369

4 Td 145, 233, 333

5 Cs(I) 84, 101, 145, 156, 161, 185, 194, 206, 228, 244, 272, 300, 361, 373, 396

5 Cs(II) 29, 68, 79, 97, 101, 114, 120, 136, 159, 186, 218, 255, 270, 324, 362, 377, 403

5 Ci 72, 81, 114, 159, 180, 204, 222, 235, 246, 293, 322, 430

Ga2P2 the lowest and the most intense frequencies obtained by us ( 68 and 276 cm−1

respectively) are also in close agreement with the ones reported by Li et al. (65.1 and

255.1 cm−1 respectively )[104].

It is well known that the chemical stability of molecules/clusters may be characterized

by their electronic configurations and energy gap between highest occupied molecular or-

bital (HOMO) and the lowest unoccupied molecular orbital (LUMO). A system having

closed shell electron configuration with a large energy gap is chemically inert and hence

more stable. All the GanPn clusters studied in the present work have closed shell configu-

ration. In Table 7.1, we present the values of HOMO-LUMO gap for all the clusters. We

can see from the table that the most stable isomers have large HOMO-LUMO gaps ( 1.42,

2.25, 1.46 and 1.69 eV for tetramer, hexamer, octamer and decamer respectively) which

are comparable with or larger than the value 1.57 eV of stable C60 fullerene molecule

[67]. These large values of HOMO-LUMO gap suggest that GanPn clusters are inert and

stable. We also observe that the HOMO-LUMO gaps for most stable isomers are higher

as compared to other isomers. The stability trend observed by HOMO-LUMO gap is also

consistent with those of binding energy results.
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Table 7.3: Average static polarizability ( ᾱ ) of various isomers of GanPn clusters by ab
initio wavefunction based methods and DFT / TDDFT method with several XC function-
als. The values of mean and standard deviation (Std.dev) of polarizability are given in
the last two columns. The last row contains root mean square error (Erms ) with respect
to the MP2 method for all the functionals.

n - Average static polarizability ( α )

Symmetry HF MP2 B3LYP BLYP HLYP HOP PBELYP SAOP VWN PBEPBE Mean Std.dev

2 - D2h 144.76 147.98 142.80 144.54 139.19 139.22 146.09 139.72 143.64 144.96 142.52 2.78

3 - Cs 199.06 206.22 196.57 198.61 192.20 192.30 199.57 193.38 194.22 198.99 195.73 3.08

3 - C2v 200.02 194.24 189.33 189.67 192.94 193.48 191.32 185.99 186.36 188.11 189.65 2.80

4 - Ci 253.92 255.22 247.76 249.37 246.01 245.93 251.30 246.93 245.38 246.44 247.39 2.02

4 - Cs 274.12 285.58 273.75 277.94 264.88 264.86 280.68 270.58 276.22 278.35 273.41 6.09

4 - C2v 264.88 208.13 240.81 240.97 254.88 256.59 242.85 238.45 236.64 238.45 243.70 7.68

4 - Td 215.44 231.03 225.94 231.47 209.28 208.38 232.97 231.53 226.00 225.52 223.89 9.74

5 - Cs(I) 294.99 318.23 294.40 296.42 286.51 286.35 298.57 293.48 292.23 294.01 292.75 4.35

5 - Cs(II) 321.92 290.42 303.60 304.72 310.70 311.83 306.88 302.31 299.91 301.63 305.20 4.29

5 - Ci 325.96 328.72 318.17 320.74 315.87 316.38 323.43 315.44 318.43 320.63 318.64 2.79

Erms 24.11 0.00 15.94 14.93 23.64 24.21 14.87 16.48 15.35 14.74 - -

7.2 Static Polarizability and Anisotropy

We begin this section with the discussion of results obtained for the average static dipole

polarizability (α) and the anisotropy in polarizability (∆α) of GanPn clusters which are

displayed in Figure 7.1. The results for the average static polarizability calculated by

various ab initio wave function based methods and DFT / TDDFT method with several

XC functionals are summarized in Table 7.3 . It is observed from Table 7.3 that the values

of average static polarizability strongly depend on size and symmetry of the clusters.

First we discuss the results obtained by various ab initio wave function based methods

and then compare them with those calculated by TDDFT based method with several XC

functionals. We perform the calculation of polarizability by employing ab initio wave

function based method such as HF and MP2 for all the optimized structures. We carry

out the CCSD(T) calculation of polarizability only for the tetramer. The value of α

obtained for tetramer Ga2P2 with D2h symmetry by CCSD(T) method is 147.02 a.u

whereas α calculated by MP2 method is 147.98 a.u. which is about 0.6 % higher than the

value obtained from CCSD(T) method. The HF method gives a value of α = 144.76 a.u

which is about 1.6 % less than that calculated by CCSD(T) method. The estimation of

polarizability value by MP2 method matches very well with that obtained by CCSD(T)

method. Since the results obtained by ab initio wave function based methods (such
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as MP2 and CCSD(T)) are quite accurate and the CCSD(T) result available only for

tetramer, we compare all our polarizability results with those obtained by MP2 method.

It is observed from Table 7.3 that for the most stable isomers of GanPn clusters studied

here, the values of α obtained by MP2 method are always higher than those calculated

with HF method. But, for some other isomers such as, Ga3P3 with C2v, Ga4P4 with

C2v and Ga5P5 with Cs(II) symmetries the HF method overestimates the value of α as

compared to that obtained by MP2 method. Similar results were obtained by Karamanis

et al.[348] for GanAsn clusters as well.

Now we analyze the results of polarizability obtained by TDDFT method with several

XC functionals which are compiled in Table 7.3. We compare these results with the

ones calculated by MP2 method which we use for bench marking our DFT / TDDFT

results. Here, we use many XC functionals such as simple LDA (VWN), GGA (PBEPBE,

PBELYP, BLYP ), hybrid ( B3LYP, HLYP, HOP ) and SAOP[189, 191, 193–196, 219, 220]

in order to study the effect of XC functional on the polarizability of GanPn clusters.

For tetramer Ga2P2 with D2h symmetry, the value of α calculated with the PBELYP

functional gives better result as compared to that obtained with other XC functionals. We

calculate polarizability by using HF exchange with two different correlation functionals

such as LYP and OP. The values of α obtained by HLYP and HOP are α = 139.19 and α

= 139.22 a.u respectively for LYP and OP correlation functionals. The calculation with

SAOP gives α = 139.72 a.u which is close to HLYP and HOP values of polarizability. All

these values are lower than the LDA and GGA results.

We consider two isomers with Cs and C2v symmetries for hexamer Ga3P3 for our

calculation. The isomer with Cs symmetry has more binding energy (by 0.6 eV) than the

other isomer. For this isomer, the value of polarizability obtained by PBELYP is (α =

199.57 a.u ) the highest and close to the MP2 result. But for the isomer with C2v symmetry

the HLYP and HOP functionals produce data closer to MP2 result. For both the isomers,

the SAOP results are much lower than the corresponding MP2 results. The isomer with

Cs symmetry is found to be more polarizable than the isomer with C2v symmetry. We

note that the order in which the value of α varies with different XC functionals is different

for the two isomers.
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As mentioned in the previous section, the isomer with Ci symmetry gives the higher

binding energy for octamer Ga4P4 compared to other isomers. The variation of α with

different XC functionals is similar for the isomers with Ci, Cs and Td symmetries, in which

the lowest and highest value of α are produced by the HOP and PBELYP functionals,

respectively. For these isomers, the values of polarizability obtained by PBELYP are close

to those calculated by MP2 method. For the structure with C2v symmetry, we observe

that the HLYP and HOP give higher values of α compared to other XC functionals. Out

of four isomers considered here the isomer with Cs symmetry is more polarizable than the

other isomers. We note here that the value of α obtained by MP2 method for the isomer

with C2v symmetry is the lowest among all the results.

Out of the three isomers considered for decamer Ga5P5, the isomer with Cs(I) sym-

metry has highest binding energy. For this isomer, the DFT / TDDFT method underes-

timates the values of polarizability compared to MP2 method. The value of α = 298.57

a.u. obtained by PBELYP functional is the closest to the MP2 result. However, for the

isomer with Cs(II) symmetry, the DFT / TDDFT method overestimates the values of po-

larizability compared to MP2 method. The isomer with Ci symmetry is more polarizable

than the other two isomers.

In Table 7.3 , we have included mean and standard deviation of polarizability values

obtained by different XC functionals for each isomer. The standard deviation gives the

spread of values of polarizabilities around the mean values. It can be seen from the

last column of Table 7.3 that the dispersion is highest for Ga4P4 with Td symmetry and

lowest for Ga4P4 with Ci symmetry. In order to study the overall performance of the

different functionals we also calculate the root mean square error Erms with respect to

the MP2 method for all the functionals. This value gives closeness of the polarizability

values calculated from different XC functionals with respect to those obtained from MP2

method. The results for Erms are presented in the last row of Table 7.3. We find that the

Erms for PBELYP, PBEPBE and BLYP functionals are the smallest.

Furthermore, we note from Table 7.3 that LDA and GGA results for polarizability are

closer to the corresponding MP2 values than those obtained by employing model potential

- SAOP. It is well known from the sum-over-states (SOS) expression of polarizability that
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it is related to the oscillator strengths associated with all the excited states and their

energies. The linear and non-linear optical properties of III-V semiconductor clusters (

GaAs, GaSb, InP, InAs and InSb) have been calculated by employing time-dependent

Hartree-Fock formalism along with SOS expression [352]. These calculations have been

performed with large number of excited states (of the order of 100) to obtain convergence.

In this connection we mention that the correct asymptotic behavior of SAOP is capable

of yielding quite accurate results for the low lying excited states [353] , however, for high

lying excited states it is not that accurate. This may be one reason for the discrepancy

between results for polarizability obtained via TDDFT / SAOP and MP2 methods. On

the other hand, the closeness of LDA and GGA results to MP2 data may be attributed

to the fact that LDA and GGA XC potentials underestimate the contributions to the po-

larizability arising from transition to bound Rydberg type states and overestimate those

from continuum. The cancellation of errors in these two contributions to the polarizability

sometimes yields good results accidentally. Therefore, the closeness of LDA and GGA re-

sults with MP2 values in some systems may be fortuitous. However, no such cancellations

of errors occur when excited states are obtained with SAOP. We believe that it may be

this lack of cancellation together with inaccuracy in predicting high lying excited states

by SAOP that leads to results for the polarizability which deviate more from MP2 data

than the corresponding LDA and GGA values. It is important to note here that unlike

III-V semiconductor clusters, for alkali metal clusters of Na and K, the values of polar-

izability obtained by employing SAOP are very close to data from both accurate wave

function based methods (MP2 and CCSD(T)) and experiments [354, 355]. Moreover, for

these systems the SAOP results are also significantly higher than both LDA and GGA

values. For these systems, only few low lying excited states contribute to the polarizabil-

ity as these few states are sufficient to saturate the oscillator strength of excitations. It is

exactly these low lying states which are well reproduced by SAOP [356], thus giving very

accurate values of polarizability of alkali metals clusters.

Having studied the effect of XC functionals on polarizability, we now focus our atten-

tion on evolution of polarizability with the size of the clusters. In Figure 7.3, we plot

the variation of static mean polarizability per atom with the size of the clusters which
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Figure 7.3: Plot of average static polarizability ( ᾱ ) per atom of stoichiometric gallium
phosphide ( GanPn ) clusters obtained by (A) second-order Møller-Plesset perturbation
theory (MP2) and (B) DFT with PBEPBE functional. The circle and cross represent the
values for the most stable and other isomers, respectively.

has been calculated by MP2 method (top panel) and TDDFT with PBEPBE functional

(bottom panel). We observe similar variation of polarizability with the size of the clus-

ters in both calculations. The circle and the cross in the Figure 7.3 represent the values

of polarizability for the most stable and other isomers, respectively. The horizontal line

represents the value of GaP bulk polarizability per atom calculated by Classius-Mossotti

relation. The value of bulk polarizability per atom is 25.1 a.u.. As seen from Figure 7.3,

the values of polarizability per atom decrease as the size of the clusters increases and reach

the bulk limit from above. This is expected because as the size of the clusters increases,

system goes from molecular state to solid and hence all the properties of clusters should

reach the bulk limit. In Figure 7.4 we plot the variation of anisotropy in polarizability
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Figure 7.4: Plot of anisotropy in polarizability ( ∆α) for the most stable isomers of
stoichiometric gallium phosphide ( GanPn ) clusters obtained by various methods.

with size of the clusters. It is observed that the values of ∆α decrease with the size of

clusters. This is expected since the clusters become more symmetric as the size of the

clusters increases.

7.3 Summary

In this chapter, we have presented our results for the geometry and harmonic vibrational

frequency analysis of small stoichiometric gallium phosphide clusters ( GanPn with n =

2−5 ) obtained by DFT based calculations. To establish the stability of the various isomers

of GanPn clusters considered here, we do a systematic analysis of vibrational frequencies as

well as evaluation of binding energy of all the structures. These investigations show that all

the structures considered here are stable. We also observe from the results of geometric

analysis and binding energy of optimized structures that the interactions between the

atoms in these clusters are weaker than those in the bulk.

Main emphasis of the present investigation is to calculate the static dipole polarizabil-

ity of these clusters by employing various ab initio wave function based methods and DFT

/ TDDFT method. A systematic investigation is carried out to analyze the performance

of different XC functionals used in DFT / TDDFT method in determining static dipole
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polarizability of these clusters. The results for most stable isomers show that, the DFT /

TDDFT method with different XC functionals underestimate the values of polarizability

in comparison to the results of MP2 method. We find that among the several XC func-

tionals, the values of polarizability obtained by PBELYP and PBEPBE functionals are

the closest to the corresponding MP2 data for GanPn clusters. However, the values of po-

larizability obtained by the DFT / TDDFT calculations with model potential - SAOP are

found to be lower than those obtained with the LDA and GGA XC functionals. Moreover,

the LDA and GGA results for polarizability are closer to the corresponding MP2 values

than those obtained by SAOP. This may be due to the accidental cancellation of errors

arising from calculations of low lying and high lying excited states by LDA and GGA

functionals which contribute to the polarizability. But, there is no such cancellation of

errors when excited states are obtained with SAOP. Our study on the evolution of static

dipole polarizability per atom shows that the value reaches the bulk limit from above as

the size of the clusters increases.
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Chapter 8

Periodic Trends in Properties of Homonu-

clear Diatomic Molecules

Up to now, we have discussed various physical properties of nanostructures, namely,

two-dimensional - graphene-like structures: silicene mono-layer and multi-layers, hybrid

system made up of silicene and boron nitride, quasi-one-dimensional - carbon and gallium

phosphite nanotubes, as well as quasi-zero-dimensional - carbon cages and gallium phos-

phite clusters, in the preceding chapters. Now, in this chapter, we present and discuss

our results for several physical and chemical properties of one of the simplest molecules

which exist in nature i.e. homonuclear diatomic molecules.

It is well known that the arrangement of elements in the periodic table elucidates

the periodic trend in several physical and chemical properties, for example atomic and

ionic radii, ionization energy, electron affinity, electronegativity, metallic and non-metallic

character, and chemical reactivity. The periodicity is basically related to the electronic

configuration of elements. The electronic configuration of elements exhibits shell structure,

and the periodic trend mentioned above is essentially a manifestation of this effect. The

manifestation of shell structures is also observed as magic numbers in atomic nuclei and

also in metal clusters[357, 358, 66, 359, 360]. However, it is not well established whether

the molecules also exhibit similar periodic variation of properties or not. Although several

physical and chemical properties of diatomic molecules are extensively studied by both

experiment and theory, there is no systematic study on how these properties vary along the

rows and columns of the periodic table. This has motivated us to carry out a systematic

investigation on variation of different ground state and optical response properties of

homonuclear diatomic molecules as function of atomic number of constituent atoms.

For this purpose, we perform the DFT and TDDFT based electronic structure cal-
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culations for the homonuclear diatomic molecules of first four rows of the periodic table

starting from hydrogen to rubidium including transition metals. The present study in-

cludes the variation of following ground state and response properties : binding energy

(BE), highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO,

respectively), HOMO-LUMO gap, harmonic vibrational frequency (ν), vertical ionization

potential (IP), vertical electron affinity (EA), static dipole polarizability (ᾱ) as well as C6

coefficient which gives the strength of van der Waals (vdW) interaction.

8.1 Ground State properties

In this section, we start our discussions on the results for the ground state properties of

homonuclear diatomic molecules which are obtained by performing the electronic structure

calculations based on DFT with PBE XC functional[195] and TZ2P basis set (using ADF

package[205]). In order to assess the accuracy of our results which are summarized in Table

8.1, we carry out a systematic comparison of these results with the existing theoretical and

experimental data[295, 361–379]. Here we wish to point out that Mn2 molecule turns out

to be an unbound system from DFT calculations as is also reported by Susumu et. al.[295]

and hence it is excluded from further consideration. It is observed from Table 8.1 that

our results for the ground state properties, namely, internuclear distance, binding energy

and harmonic vibrational frequency match well with the corresponding data available in

the literature[295, 361–379]. The variations in values of ground state properties with the

available theoretical and experimental data are small.

Having established the accuracy of our results, we now proceed with the main goal of

the chapter i.e. a systematic study of the trends in various properties as one moves across

the rows and columns of the periodic table. For this purpose, in Figure 8.1, we plot the

ground state properties such as (a) the internuclear distance (R), (b) binding energy (BE),

(c) bond order (BO) and (d) harmonic vibrational frequency (ν) as a function of atomic

number (Z) of the constituent atom (for example, Z=1 corresponds to H2 molecule). It can

be clearly seen from Figure 8.1, that all the above-mentioned properties show a periodic

variation as a function of Z. The periodic variation in these properties can be explained by

the nature and number of bonds which exist in the diatomic molecules. First we discuss
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Table 8.1: Molecular electronic state, internuclear distance (in Å), binding energy (in
eV) and harmonic vibrational frequency (in cm−1) of homonuclear diatomic molecules
(X2) obtained by DFT based calculations with PBE XC functional. ’Present’ signifies
our results while ’others’ signifies experimental and theoretical results available in the
literature. References are given in the parentheses.

X2 State BE R (Å) ν (cm−1)

(eV) Present others Present others

H2
1Σ+

g -4.56 0.75 0.74[361], 0.74[363] 4323.59 4403.00[361], 4416[363]

He2 1Σ+
g -0.01 2.66 3.00[361], 2.77[367] 81.90 12.27[367]

Li2 1Σ+
g -0.88 2.71 2.67[361],2.69[363],2.67[364],2.74[365] 334.50 351.40[361],345[363],330.30[365]

Be2 1Σ+
g -0.41 2.43 2.45[361], 2.48[363], 2.43[372] 358.33 286[363], 327[372]

B2
3Σ−g -2.84 1.63 1.59[361], 1.61[363] 980.79 1051.30[361], 1005[363]

C2
1Σ+

g -6.51 1.28 1.31[361], 1.25[363] 1930.14 1855.00[361], 1876[363]

N2
1Σ+

g -10.6 1.10 1.09[361],1.10[363],1.10[364],1.10[365] 2353.28 2358.00[361],2447[363],2347.00[365]

O2
3Σ−g -5.85 1.22 1.21[361],1.20[363],1.21[364],1.23[365] 1529.48 1580.00[361],1636[363],1521.30[365]

F2
1Σ+

g -2.85 1.42 1.44[361],1.40[363],1.41[364],1.43[365] 992.59 892.00[361], 1048[363], 968.10[365]

Ne2 1Σ+
g -0.01 2.90 3.10[361], 3.09[367] 55.70 14.00[361], 15.39[367]

Na2 1Σ+
g -0.78 3.12 3.08[361], 3.04[363], 3.08[364], 3.11[365] 152.33 159.23[361], 163[363], 148.30[365]

Mg2 1Σ+
g -0.13 3.50 3.95[363], 3.50[372] 102.34 47[363], 49.57[372]

Al2 1Σ+
g -1.04 2.68 2.50[363] 236.74 324[363]

Si2 3Σ−g -2.89 2.22 2.16[363],2.25[364],2.31[365] 412.72 511.00[361],546[363],465.90[365]

P2
1Σ+

g -5.26 1.90 1.89[361],1.89[363],1.89[364],1.92[365] 780.09 780.43[361],807[363],767.20[365]

S2
3Σ−g -4.66 1.92 1.89[361],1.90[363],1.89[364], 1.94[365] 692.98 725.68[361],715[363],660.60[365]

Cl2 1Σ+
g -3.04 2.01 1.99[361],2.02[363],1.99[364],2.05[365] 539.26 564.90[361],540[363],500.30[365]

Ar2 1Σ+
g -0.01 3.93 4.03[367] 25.62 10.83[367]

K2
1Σ+

g -0.58 3.95 3.92[361] 91.21 92.64[361]

Ca2 1Σ+
g -0.27 4.13 4.11[372] 87.32 49.05[372]

Sc2 5Σ−u -2.18 2.63 2.63[368], 2.62[295], 2.60[369], 2.46[370] 246.02 243[368], 270[369], 240[370]

Ti2 3∆g -3.81 1.90 1.90[368], 1.90[295], 1.90[369], 1.94[370] 446.47 462[368], 488[369], 408[370]

V2
3Σ−g -3.54 1.74 1.74[368], 1.74[295], 1.76[369], 1.77[370] 646.46 651[368], 679[369], 537[370]

Cr2 1Σ+
g -1.56 1.59 1.72[368], 1.63[295], 1.63[369] 818.09 347[368], 799[369]

Fe2 7∆u -4.04 1.99 2.01[368], 2.01[295], 1.96[369], 2.02[370] 411.30 397[368], 460[369], 300[370]

Co2 5∆g -3.49 1.92 1.98[368], 1.98[295], 1.95[369], 2.16[370] 399.37 381[368], 424[369], 297[370]

Ni2 3Σ−g -3.09 2.93 2.11[368], 2.10[295], 2.05[369], 2.15[370] 334.08 325[368], 367[369], 259[370]

Cu2
1Σ+

g -2.12 2.25 2.25[368], 2.26[295] 258.52 257[368], 298[369], 266[370]

Zn2
1Σ+

g -0.08 3.18 3.21[368] 53.19 54[368]

Ga2 3Σ−g -1.11 2.69 2.45[373], 2.50[374] 204.64 210[373], 198[374]

Ge2 1Σ+
g -1.94 2.38 2.45[376] 201.26 206[376]

As2 1Σ+
g -4.31 2.12 2.10[361], 2.13[375] 431.76 429.44[361], 417[375]

Se2 3Σ−g -3.83 2.2 2.15[361] 372.56 391.77[361]

Br2 1Σ+
g -2.62 2.32 2.37[377] 309.63 303[377]

Kr2 1Σ+
g -0.01 4.26 4.36[367] 17.00 10.97[367]

Rb2
1Σ+

g -0.54 4.33 4.18[371] 54.46 57.28[361]

Ref[361, 364, 370, 371]: experimental values. Ref[363]: DFT with B3LYP. Ref[365]: DFT with RESC-BOP. Ref[367,

368, 295, 372]: DFT with PBE. Ref[369] : DFT with LSDA. Ref[373]: MRSDCI. Ref[374, 375]: CASSCF. Ref[376]:

MRCI. Ref[377]: FOCI.

the results of the diatomic molecules which are made up of elements from s- and p-blocks

of the periodic table. From Figure 8.1 (a), we find that the internuclear distance R is the
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Figure 8.1: The periodic variation in the values of (a) internuclear distance (R in Å),
(b) binding energy (BE in eV), (c) bonding order (BO) and (d) harmonic vibrational
frequency (ν in cm−1) with atomic number (Z) of the constituent atoms in the diatomic
molecules.

lowest for group V diatomic molecules such as N2, P2 and As2. This is due to the strong

(triple) covalent like bonds that exist between the atoms in these molecules. The presence

of triple bond can be confirmed from the value of bond order i.e BO = 3 (see Figure 8.1

(c)). On the other hand, the noble gas diatomic molecules possess the highest values of

internuclear distance. The reason for this is that the noble gas atoms have completely

filled valence shell and thus are not likely to form any chemical bond. However, there

exists a weak bond between the noble gas atoms because of a long range vdW interaction.

Similar to noble gas diatomic molecules, the group II diatomic molecules also have larger

values of internuclear distance. In this case, the constituent atoms have filled valence

sub-shells such as 2s, 3s and 4s in Be, Mg and Ca atoms, respectively and consequently,

these molecules also do not have strong bonds. The value of BO is zero for the diatomic

molecule made up of both these two groups (see Figure 8.1 (c)).

In case of alkali-metal diatomic molecules, we observe that the values of R is slightly
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lower than those of nearby group II diatomic molecules. This happens because the alkali

metal atoms have single electron in valence state (2s, 3s and 4s in Li, Na and K, respec-

tively) and two electrons from each of the alkali metal atoms can form a bond ( value of BO

is 1) and hence there is a decrease in the value of R. However, they cannot form a strong

bond due to the free electron-like nature for which an alkali metal atom tends to give away

an electron to the other. It is observed that the value of R for other diatomic molecules

lies in between those of noble gas and group V diatomic molecules. We observe from Fig-

ure 8.1 that the transition metal diatomic molecules follow similar trend in the variation

in the values of the BO and R as that of s- and p- block diatomic molecules. However,

the value of BO for diatomic molecules of first row transition metal atoms are relatively

higher than the others with a maximum value of 6.3 for Cr2 molecule. These values are

consistent with the available DFT based theoretical data in the literature[380, 381]. It

is also interesting to see how the values of R change while we go from the first row to

second and then to third row of the periodic table. We observe from Figure 8.1 (a) that

the internuclear distance of diatomic molecules of each group increases as we go from first

row to second row and then to third row due to increase in the value of atomic radius of

constituent atoms. Hence the overall trend in variation of R in each row and column of

the periodic table is similar.

Next we focus our attention on the binding energy of the diatomic molecules. We

calculate the binding energies of these diatomic molecules, say X2, by using the expression

BE = EX2 − 2EX (8.1)

where EX2 and EX are the energies of diatomic molecule and the constituent atoms

respectively. The results of BE calculations for these diatomic molecules are given in

Figure 8.1(b). We observe a periodic variation in the values of BE along the rows of the

periodic table. There is a strong correlation between the values of R and the magnitude of

BE of diatomic molecules - stronger the binding between the atoms in the molecules, lower

the internuclear distance between them. The periodic variation in BE can be explained

by the nature and number of bonds which exist in the diatomic molecules. The lowest

and highest values in the magnitude of BE are observed for the noble gas and group V
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diatomic molecules respectively. This is due to the weak vdW bond present in the former

as opposed to the strong triple bond which exists in the latter. The value of BE for

all other diatomic molecules lies in between these two limits. However, the BE of Cr2

molecule shows a discrepancy with respect to the general trend as shown by the other

diatomic molecules. The lower value of R and the highest value of BO in case of Cr2

molecule is incommensurate with the relatively low value of BE. This issue has already

been addressed in the literature and it still remains unresolved[381, 382].

Now, we discuss the results for the harmonic vibrational frequencies of diatomic

molecules. The calculations of harmonic vibrational frequency are also used to check

the stability of the molecules. For linear diatomic molecules there is only one degree of

freedom for vibrational motion and the results obtained for vibrational frequency are given

in Figure 8.1 (d). Within the assumption that vibrational motions of diatomic molecules

are harmonic, the frequencies of diatomic molecules are directly proportional to the square

root of force constant and inversely proportional to the square root of reduced mass of the

diatomic molecules. From Figure 8.1 (d), it is clearly seen that the values of frequency

decrease as we go from smaller to bigger molecules because of increase in mass of con-

stituent atoms. Furthermore, we observe that the variations in the frequency have strong

correlation with the binding energy of molecules - stronger the binding, higher the values

of vibrational frequency. This shows that, as a first approximation, the force constant is

directly related to the BE of a molecule. Overall, the variation of harmonic vibrational

frequency along the rows and columns of the periodic table is similar to that of BE with

opposite sign, except for the Cr2 molecule. This is due to the discrepancy in case of BE

of this diatomic molecule as described above.

Having studied the trends in the results obtained for the binding energy, internuclear

distance and harmonic vibration frequency, we now focus our attention on the variation

of some important spectroscopic properties such as IP, EA, HOMO and HOMO-LUMO

gap of diatomic molecules which are given in Figure 8.2. Before going to the discussion

on the variation of these properties, we compare our results with the existing data in the

literature. Our results for IP match well with the available experimental and theoretical

results[363–365, 368, 383–389]. For example, we obtained the values of IP for H2, N2 and

128



-20

-10

0

10

20

30
HOMO
Gap

0 10 20 30 40
Z

-10

0

10

20

IP
EA

(b)

(a)

Figure 8.2: The variation in the values of (a) HOMO and HOMO-LUMO gap (in eV) and
(b) ionization potential (IP in eV) and electron affinity (EA in eV) with atomic number
(Z) of the constituent atoms of the diatomic molecules.

O2 as 16.210, 15.334 and 11.566 eV, respectively, which agree well with the correspond-

ing experimental values of 15.427, 15.581 and 12.071 eV by Lianga et al [385, 386] and

theoretical values of 15.5 and 12.05 eV for N2 and O2 respectively. For F2, we obtained

the value of IP as 15. 493 eV which is very close to 15.70 eV calculated by Vladimir

et. al.[387]. From Figure 8.2 (b), we observe that the values of IP are maximum for

noble gas diatomic molecules and minimum for alkali metal diatomic molecules in a row

of the periodic table. This is due to the fact that the electrons in noble gas atoms are

completely filled and hence it is very difficult to remove an electron from these elements.

On the other hand, free electron-like nature of the alkali metal elements is responsible for

their minimum values of IP. All the other molecules are having values lying between these

two extremes. The value of IP slowly increases when we go from alkali metal to noble gas

molecules. However, the values of IP decrease while we go down in any group because

of the increased number of sub-shells which screen the valence electrons more effectively.

The variation in IP of diatomic molecules along the row of the periodic table resembles

that of the atoms. It is also observed from Figure 8.2 (a) that there is a periodic variation

in the values of EA. In Figure 8.2 (b) we plot the variation in HOMO and HOMO-LUMO
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gap for all the diatomic molecules from hydrogen to rubidium including the transition

metals. We observe an oscillation in the values of HOMO similar to that of IP. This

is expected since there is a correlation between the values of IP and HOMO. From the

Figure 8.2 (b), we also observe that the values of HOMO-LUMO gap are relatively higher

for the stable molecules such as H2, N2, O2 and also for noble gas diatomic molecules.

8.2 Optical Response Properties

In the previous section we have presented our results for several ground state proper-

ties of the diatomic molecules. In the following, we discuss the results for the optical

response properties such as static dipole polarizability and van der Waals interaction co-

efficient, C6, of these diatomic molecules. The calculations of response properties are

carried out by employing DFT/TDDFT using two different XC functionals (PBE[195]

and SAOP[219, 220]) with even tempered basis set with two sets of diffuse functions

(ET-QZ3P-2DIFFUSE). We use adiabatic local density approximation (ALDA) for the

XC kernel. The results on average static dipole polarizability, anisotropy in polarizability

and van der Waals interaction coefficient between diatomic molecules are summarized

in Table 8.2 and Table 8.3. In these tables, we also include the results available in the

literature for comparison. Here, we carry out the C6 calculations only for the closed shell

molecules. The calculation of static dipole polarizability for open-shell molecules have

been performed by using finite field approach since the response property calculation in

ADF packages[205] is implemented only for closed-shell systems.

8.2.1 Static Dipole Polarizability

It is clearly seen from Table 8.3 that our results on static polarizability match well with the

data available in the literature[342, 343, 371, 385, 386, 390–412]. For example, with SAOP

XC functional, we obtain the values of static polarizability and anisotropy for N2 as 11.87

and 4.84 a.u., respectively which match very well with the experimental values (11.74

and 4.70 a.u.)[385] and other theoretical results (CCSD(T), 11.70 and 4.79 a.u.)[390]. We

observe that the values of polarizability obtained by SAOP functional are much higher for

alkali and group II diatomic molecule as compared to those obtained by employing PBE
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Table 8.2: Average static polarizability (α) (in a.u.) and anisotropy in polarizability
(∆α) (in a.u.) of diatomic molecules (X2) obtained by DFT/TDDFT with SAOP and
PBE XC functionals. ’Others’ signify experimental and theoretical results available in the
literature. References are given in the parentheses.

X2 α ∆α

SAOP PBE Others SAOP PBE Others

H2 5.69 5.75 5.4068[398], 6.10[343], 5.1892[394], 6.10[386] 2.03 1.95 2.0539[398]

He2 2.83 3.16 0.07 0.10

Li2 226.69 200.45 212.99[394], 203.5[391], 201.7, 215.7[371], 229.45[392] 99.49 105.33

Be2 102.38 96.48 87.81[400] 93.97 93.04 75.16[400]

B∗2 65.96

C2 33.28 39.29 27.07[399] 0.00 8.31

N2 11.87 12.38 11.7709[401],11.70[390],11.74[393],12.3[343] 4.84 4.76 4.6074[401],4.79 [390]

O∗2 10.41 10.67[393]

F2 8.12 9.02 8.219 ( 8.38)[342],8.4812[404] 5.83 5.67 4.915[342],5.9446 [404]

Ne2 5.15 6.19 0.19 0.27

Na2 269.72 243.81 272.64[394], 203.5[391], 269.91[392], 259.5[371] 163.05 148.25 171.64 [403]

263.28[403] 171.64 [403]

Mg2 174.71 163.61 126.87 126.99

Al2 90.65 55.89 128.21± 13.49 [411] 145.91 198.55

Si∗2 57.77 47.08 [409]

P2 51.82 50.89 49.20 [402] 30.71 29.56 28.02 [402]

S∗2 40.38 40.53 [410] 30.39 [410]

Cl2 31.84 32.05 30.556 ( 30.35) [342], 30.98 [406] 17.27 16.87 16.558 (17.53)[342]

Ar2 23.13 23.96 1.78 2.02 3.37±1.35 [412]

K2 472.93 463.73 497.5, 507.5[371], 519.58[392] 340.05 296.72

Ca2 375.77 351.67 280.85 281.79

Sc∗2 244.76

Ti∗2 155.76

V∗2 142.94

Cr2 100.91 122.94 50.32 53.67

Fe∗2 95.53

Co∗2 83.64

Ni∗2 83.89

Cu2 64.54 78.63 77.62 (93.82)[397] 47.56 44.6 44.73 (67.09)[397]

Zn2 73.36 89.55 76.92 [405] 43.37 61.36

Ga∗2 118.72

Ge2 66.40 60.64 77.05 81.07

As2 62.87 64.30 61.87 [408] 42.22 41.40 39.86 [408]

Se∗2 57.83

Br2 45.85 46.76 44.72[407] 26.37 25.53 25.26[407]

Kr2 34.64 36.35 3.21 3.61 4.72±1.35 [412]

Rb2 493.22 497.38 544.90[394], 533.08[392], 565.6, 582.4[371] 504.55 466.72

∗ The values of static polarizability have been obtained by finite field calculations (see text).
Ref[371]: DFT with B3PW91 and CCSD. Ref[386, 392, 411, 412]]: experimental values. Ref[390, 398, 401–404, 407,
409, 410]: CCSD(T). Ref[391]: Time Dependent Gauge Invariant (TDGI) method. Ref[393]]: Time-Dependent CCSD.
Ref[342]]: MP2 ( experimental values are given in bracket). Ref[394]]: QDFG ( Greens function formalism in quantum
defect theory). Ref[343]]: TDDFT within ALDA. Ref[397]]: DFT with B3LYP and CCSD(T). Ref[[399]]: MRSCF.
Ref[[400]]: TDGI method. Ref[[405]]: MP2. Ref[[406]]: SDQ-MP4. Ref[[408]]: MP4.

functional (except for Rb2). The large differences in values of polarizability are observed

for Na2 and Li2 where SAOP values of polarizability are 14.04 % (for Na2) and 13.09 %

131



0 10 20 30 40
Z

0

200

400

α
 (

a
.u

)

PBE

SAOP

Finite Field

0

5000

10000

15000

C
6
 (

a
.u

)

PBE

SAOP

0

200

400

∆
α

 (
a
.u

) PBE

SAOP

|
(a)

(b)

(c)

Figure 8.3: The variation in the values of (a) average static polarizability (ᾱ in a.u.), (b)
anisotropy in polarizability (∆α in a.u.) and (c) the vdW interaction coefficient (C6 in
a.u.) with atomic number (Z) of the constituent atoms in the diatomic molecules.

( for Li2) higher than the values obtained by using PBE functional. But, for most of the

other diatomic molecules the values of polarizability obtained by using SAOP are lower

as compared to those obtained by PBE functional. However the trend in variation of

polarizability along the rows are similar for the two XC functionals used here.

In order to see how the polarizability varies along rows of the periodic table, we plot

values of average static polarizability (α) and anisotropy in polarizability ( ∆α) as a

function of Z in Figure 8.3 (a) and (b), respectively. Here also, we observe that there is a

periodic variation in values of polarizability along the rows of the periodic table. We find

that the alkali metal and noble gas diatomic molecules have highest and lowest values of

α respectively, in each row of the periodic table. The alkali metal molecules have higher

values of polarizability because of their free electron-like nature, whereas the lower values

of polarizability of noble gas molecules are due to their closed-shell configurations in which

electrons are tightly bound and hence they are less polarizable. The values of α decrease

monotonically as we go from alkali metal to noble gas diatomic molecules. The trend in

variation is similar for all three rows but the second and third rows have higher values

of polarizability because the size of constituent atoms increases as we go down a group.

This variation in polarizability may be correlated with the variation of metallic character
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Table 8.3: The van der Waals interaction coefficient C6 (in a.u.) of diatomic molecules
obtained by DFT/TDDFT with SAOP and PBE XC functionals. ’Others’ signifies ex-
perimental and theoretical results available in the literature. References are given in the
parentheses.

Molecules C6 (a.u.)

SAOP PBE Others

H2 12.92 12.92 12.058[413], 11.99[395], 11.324[396], 14.3[343], 12.5[415]

He2 5.99 6.90

Li2 3205.88 2583.74 2877[391], 2626, 2862[371]

Be2 1266.19 1120.06 1072.8 [400]

C2 173.74 170.07

N2 74.13 77.36 77.2[343], 77.6[415], 72.9[393]

F2 43.07 49.30

Ne2 23.97 29.82

Na2 4559.66 3931.83 4313[391], 4174, 4659[371]

Mg2 3267.03 2938.92

Al2 1854.41 1789.56

P2 749.12 720.25

Cl2 412.47 409.91 336.8[415]

Ar2 272.28 279.80

K2 11188.45 10856.71 12000, 13150[371]

Ca2 10667.06 9505.86

Cr2 1410.56 1821.00

Cu2 708.16 955.23

Zn2 1003.36 1334.52

Ge2 1514.50 1581.60

As2 1052.92 1078.68

Br2 751.47 764.35

Kr2 534.46 560.19

Rb2 12577.45 12735.60 15320, 167000[371]

of these elements in the periodic table where the metallic character increases while going

down in any group and decreases across a period from left to right.

8.2.2 van der Waals Interaction Coefficient (C6)

Our results for the vdW coefficient, C6, between the diatomic molecules are summarized

in Table 8.3. We can see from this table that our results on the vdW coefficient between

alkali metal and other molecules ( hydrogen and nitrogen) match well with the data

available in the literature [343, 354, 371, 385, 390, 391, 395, 396, 413–415]. In order to see

how the C6 coefficient varies along rows of the periodic table we also plot the strength of

vdW interaction between diatomic molecules against atomic number of constituent atoms

in Figure 8.3 (c). We observe that the variation in strength of vdW interaction is very
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similar to that of static polarizability. We find that the alkali metal diatomic molecules

are expected to interact strongly with each other since they are highly polarizable as

compared to the other diatomic molecules. A weak interaction is observed between two

noble gas diatomic molecules. This is expected since they are less polarizable and have

low static polarizability values. The values of C6 coefficient for other diatomic molecules

lie in between the coefficients of these two types of molecules.

8.3 Summary

In the present chapter we have discussed the trends in variation of several ground state

and response properties of homonuclear diatomic molecules along the rows and columns

of the periodic table by using DFT and TDDFT based calculations. It is observed from

our calculations that several properties of homonuclear diatomic molecules show periodic

variations as a function of atomic number of the constituent atoms. The periodic vari-

ations in the ground state properties such as the binding energy, interatomic distance,

harmonic vibration frequency, etc. can be explained by the nature and type of the bond

that exists between the constituent atoms. We also observe that the trends in periodic

variations of the response properties such as static dipole polarizability and strength of

the van der Waals interaction between diatomic molecules have strong correlation with

the variations in metallic character of the elements along the periodic table.

Publication based on this chapter

Interesting Periodic Variations in Physical and Chemical Properties of Homonuclear Di-

atomic Molecules

C. Kamal, Arup Banerjee, Tapan K. Ghanty, and Aparna Chakrabarti

International Journal of Quantum Chemistry, 112, 1097 (2012)
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Chapter 9

Conclusion

The study of nanostructures such as graphene-like structures, nanotubes, and nanoclusters

is an active area of research because of their novel properties and also due to their potential

applications in nanotechnology. In this thesis, we have carried out a detailed computa-

tional study on several ground state and optical response properties of nanostructures

by employing ab initio density functional theory and time dependent density functional

theory (DFT/TDDFT) based calculations. For our investigations, we have considered the

following materials : Two-dimensional graphene-like structures - silicene as well as hybrid

system made up of honeycomb silicene and boron nitride (BN) layers, one-dimensional

systems - carbon and gallium phosphide nanotubes, as well as zero-dimensional systems

- carbon cages, gallium phosphide clusters, and homonuclear diatomic molecules.

In the first two chapters of the thesis, we have given a brief introduction to the nanos-

tructures and the computational methods employed in DFT / TDDFT based calculations

to study the properties of nanostructures. The results of our investigations for the above

mentioned nanostructures have been discussed in the remaining chapters of the thesis.

In chapters 3 and 4, we have presented our results for various physical properties

of silicene as well as hybrid structure made up of honeycomb silicene and boron nitride

layers. We wish to point out here that silicene, the silicon based nanostructure, can be

more compatible with the existing semiconductor technology than graphene. In chapter

3, we have discussed the geometric, electronic and optical properties of mono-layer of

silicene and then compared these properties with those of mono-layer of graphene. It is

observed from our results that, in the absence of any external influences, the electronic

structures of both silicene and graphene mono-layers around the Fermi level are similar.

Our calculations predict that a band gap in mono-layer of silicene can be induced and also

tuned over a wide range by applying an external static electric field. Contrary to these
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results, for mono-layer graphene it is not possible to open up a band gap by applying an

electric field. Importantly, we have observed that the value of induced band gap in mono-

layer of silicene can be more than the thermal energy at room temperature for the applied

electric field strength of few volts/nm. Hence, silicene is one of the promising materials for

application in nanodevice, even at room temperature. We have also carried out studies on

optical response property of mono-layers of silicene. The results of these calculations show

that the dielectric function strongly depends on the direction of polarization of incident

light. The anisotropic response in dielectric function is a consequence of two-dimensional

characteristic of silicene.

In order to study the influence of the number of layers (n) and the stacking sequences

on the properties of multi-layers of silicene, we have carried out detailed investigations

on the geometric and electronic properties of multi-layers of silicene with four different

stacking configurations (AAAA, AABB, ABAB and ABC) and the results are discussed

in chapter 4. Our calculations show that the geometric and electronic properties of multi-

layers of silicene are distinctly different from those of multi-layers of graphene. Main

reason for the differences is the presence of strong inter-layer covalent bonding between

the layers in multi-layers of silicene as opposed to weak van der Waals (vdW) bonding

which exists between the graphene layers. We have observed that the inter-layer bonding

strongly affects the properties of silicene multi-layers. Like bi-layers of graphene, silicene

with two different stacking configurations AA and AB exhibits linear and parabolic dis-

persions around the Fermi level, respectively. However, for bi-layers of silicene, these

dispersion curves are shifted in both energy and momentum directions of the band di-

agram as compared to those in graphene bi-layer; this is due to the strong inter-layer

bonding present in the former. For multi-layers with n ≥ 3, the results of cohesive energy

calculation predict that the ABC stacking sequence is the minimum energy configuration.

Furthermore, our calculations predict that the Bernal (ABAB) stacking, energetically the

most stable stacking sequence in multi-layer of graphene and graphite, is the least stable

stacking sequence in multi-layers of silicene. This is due to the different hybridizations in

Si (sp3 ) and C ( sp2).

It is understood from the above discussions that the multi-layers of silicene can not
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behave like multi-layers of graphene and graphite, due to the presence of strong inter-

layer covalent bonding. However, it is desirable to obtain graphene-like silicon based

layered systems possessing exciting and novel properties similar to those of multi-layer of

graphene. In chapter 4, we have also proposed an energetically stable hybrid graphite-like

layered system made up of alternate layers of honeycomb silicene and honeycomb BN. Our

calculations predict that this hybrid system possesses some physical properties similar to

those of bulk graphite. The coupling between the layers of this hybrid system is due to

weak vdW interaction which is same as that in graphite and multi-layers of graphene.

Thus, our calculations show that the hybrid bulk system based on silicon and BN can be

a possible candidate for two-dimensional layered soft material akin to graphite.

Chapters 5 and 6 of the present thesis are devoted to the discussions on the prop-

erties of quasi-one-dimensional nanotubes. In chapter 5, we have studied the effect of

intercalation of alkali and transition metal atom clusters on the geometric, electronic

and magnetic properties of single walled carbon (SWCNT) as well as gallium phosphide

nanotubes (SWGaPNT), both with the chirality index (10,0). We have observed from

the results of geometric structures that both the pristine SWCNTs and SWGaPNTs are

cylindrical in shape. However, the atoms in SWGaPNTs are buckled due to the presence

of mixture of sp2 and sp3 hybridizations. In contrast to the indirect band gap of their

bulk counterparts, our calculations predict that both SWCNT(10,0) and SWGaPNT(10,0)

possess direct band gaps of 0.83 and 1.48 eV, respectively. Hence, these NTs are possible

candidates for applications in the light emitting devices.

We have observed interesting changes in the electronic structures of these nanotubes

when they are intercalated with alkali and transition metal atom clusters. Our calcu-

lations of electronic structures for the SWCNT(10,0) show that the system undergoes a

transition from semiconducting to a half-metallic state due to the intercalation of linear

chain of transition metal atom. We have also observed signature of similar transition

in SWGaPNT(10,0). The situation becomes different for higher concentration of inter-

calation. In this case, the system undergoes a transition from semiconductor to a fully

metallic state. Intercalation of alkali metal atoms in SWCNT(10,0) and SWGaPNT(10,0)

leads to semiconductor to metal transition in these NTs. The reason for the metallization
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in these NTs is due to a significant charge transfer from the alkali metal atoms to the NTs.

Overall, we have observed from the results of our calculations that the effect of the above

mentioned intercalations on both the NTs is quite similar though there are differences in

the nature of hybridization in SWCNT (primarily sp2) and SWGaPNT (mixture of sp2

and sp3 ).

It is well known that the optical response properties such as the polarizability and van

der Waals interaction, play an important role in many physical, chemical and biological

phenomena. In chapter 6, we have carried out a detailed investigation on the static

dipole polarizability and the strength of vdW interaction (through coefficient, C6) between

carbon nanostructures (CNS) with different sizes and shapes. Our results indicate that the

CNTs possess large anisotropy in polarizability due to the different scaling of components

of polarizability with the length. A large anisotropy is known to play an important role

in electric field aligned growth of CNTs. We have observed that the C6 scales linearly and

quadratically with the diameter and length of the CNTs, respectively. CNTs are easily

polarizable along the axis of the tube, and hence they interact strongly with themselves

as compared to carbon cages containing similar number of atoms. Our estimation of the

C6 values between the CNS and their variation with the size and shape can be useful

in understanding the formation of superstructures made up of carbon nanostructures.

We have also studied the vdW interaction between these CNS and small gas molecules,

including the environmentally important ones. Our results indicate that the C6 coefficients

of H2 as well as environmentally hazardous gases with CNS are quite high. Thus, the CNS

can be a promising candidate for adsorption and storage of these gases.

In chapter 7, we have calculated the static polarizability of small stoichiometric gal-

lium phosphide clusters ( GanPn) by employing various ab initio wave function based

methods and DFT / TDDFT method. A systematic investigation has been carried out

to study the performance of various XC functionals used in DFT / TDDFT method in

determining static dipole polarizability of these clusters. We have observed that the DFT

/ TDDFT method with different XC functionals underestimate the values of polarizability

in comparison to those obtained from MP2 method. Among the several XC functionals,

the performance of PBELYP and PBEPBE XC functionals is best since the values of
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polarizability obtained from these two functionals are the closest to the corresponding

MP2 data. Surprisingly, our detailed analysis indicates that the values of polarizability

obtained with model potential - SAOP, which is expected to give good results due to its

correct asymptotic behavior, are lower than those obtained with the standard LDA and

GGA XC functionals. Finally, our study on the evolution of static dipole polarizability

per atom shows that the value reaches the bulk limit from above as size of the clusters

increases.

In chapter 8, we have studied the trends of several ground state and optical response

properties of homonuclear diatomic molecules along the rows and columns of the periodic

table. Our calculations reveal that many properties of diatomic molecules exhibit periodic

variations as a function of atomic number of the constituent atoms. We have explained

the periodic variations in the ground state properties in terms of the nature and type of

the bond that exists between the constituent atoms. Similarly, we have also observed that

the periodic variation in the response properties such as static dipole polarizability and

strength of the vdW interaction (C6 coefficient) has strong correlation with the variations

in metallic / non-metallic character of the elements along the periodic table.

One of the primary goals of researchers working in the field of material science is to

search for novel materials with desirable physical and chemical properties. In the present

thesis, we have studied various ground state and optical response properties of few such

materials - nanostructures made up of carbon, silicon, BN and GaP. However, there exists

a great possibility of producing variety of novel nanomaterials made up of several other

elements in the periodic table. Computational studies, like the one carried out in the

present thesis, play an important role in explaining and understanding novel properties of

new materials. We wish to mention here that the present thesis has mainly concentrated

on the ground state as well as optical response properties of nanostructures, but, there ex-

ist many other interesting properties namely, the electron-phonon interactions, vibrational

and transport properties, charged and neutral excitations ( quasi-particle energies, exci-

tons). Some of these properties require calculations beyond DFT such as the calculations

using Hedin’s GW approximation and the Bethe-Salpeter equation. We would pursue the

studies on these properties of nanostructures in our forthcoming research works.
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