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SYNOPSIS 

Synchrotron radiation is the electromagnetic radiation emitted by highly relativistic 

charged particles, when they are radially accelerated. Electron storage rings, which are 

designed specifically for the production of synchrotron radiation, are termed as synchrotron 

radiation sources. In these storage rings, synchrotron radiation is produced using dipole 

magnets and insertion devices. Dipole magnets are used to bend the electron beam imparting 

above mentioned radial acceleration to electrons. Insertion devices are devices having periodic 

arrangements of dipole magnets, and are classified as wigglers and undulators. Synchrotron 

radiation is widely used because of its unique characteristics such as high spectral flux and 
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brightness, broad band spectrum from infrared to hard X-ray, highly collimated and polarized, 

pulsed time structure and its uninterrupted availability for several hours. The spectral 

characteristics of the radiation are decided by the energy, emittance and current of the stored 

electrons, dipole magnet field and configuration of insertion devices. 

An important parameter for synchrotron radiation users is the spectral brightness of emitted 

photon beam, which is governed by the electron beam emittance. Smaller the beam emittance, 

higher is the spectral brightness [1] of the emitted photon beam. This is achieved by choosing 

a suitable magnetic lattice and a large number of cells of the chosen lattice. The magnetic lattice 

is a periodic arrangement of magnets namely dipole, quadrupole and sextupole magnets, which 

are arranged in a closed loop. In addition to this, a storage ring has long straight sections 

preferably dispersion free for installation of insertion devices. The twiss parameters (β, α 

governing width and divergence of the electron beam at various locations) in these sections are 

also chosen such that the effect of insertion devices on the beam dynamics is minimum. The 

commonly used magnetic lattice structures include double bend achromats, triple bend 

achromats, multiple bend achromats and FODO lattices [2-8] (alternate arrangement of 

focusing and defocusing quadrupole magnets). 

An injector, which is normally either a linear accelerator or a synchrotron, is required for 

injecting an electron beam into the storage ring.  The beam energy from the injector may be 

either equal to or less than the final beam energy in the storage ring. The storage ring, in which 

the beam is injected at lower beam energy, a higher beam current from the injector is required 

to reduce the filling time of the ring.  

Raja Ramanna Centre for Advanced Technology (RRCAT) in Indore (India) is house for 

two synchrotron radiation sources, known as Indus-1[9] and Indus-2[10]. Indus-1 is a 450 MeV 

small storage ring, which is designed to produce radiation in vacuum ultraviolet region mainly 

from its dipole magnet (critical wavelength 31Ao). The magnetic lattice of the Indus-1 is a 
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combined function lattice, consisting of 4 superperiods, each having one dipole magnet and 

two doublets of quadrupoles magnets. On the other hand, Indus-2 is a 2.5 GeV energy machine 

classified as third generation x-ray synchrotron radiation source. This has a double bend 

achromat lattice and which has been designed to operate with a beam emittance of 58 nm.rad 

at 2.5 GeV. Both storage rings have a common injector which is a synchrotron with a microtron 

as the pre-injector. The microtron is the accelerator in which electrons are produced and 

accelerated to 20 MeV. These electrons are, then injected into the synchrotron at a repetition 

rate of 1Hz.  In this, electrons are accelerated from 20 MeV to 450/550 MeV with the help of 

an RF cavity and by synchronously ramping the magnetic fields of its dipole, quadrupole and 

steering magnets. After acceleration to the required beam energy, the beam is extracted from 

the synchrotron for its injection to Indus-1 and Indus-2. In Indus-1, electron beam is injected 

at the peak energy of the ring i.e. at 450 MeV, whereas in Indus-2 electrons are injected at 

550 MeV and after storage of required beam current, they are accelerated to 2.5 GeV.  

The objective and scope of thesis is to study beam injection, beam optics and insertion 

devices for synchrotron radiation sources. To this end in this thesis, we focus on the following 

aspects of synchrotron radiation sources.  

1) Beam injection dynamics of the synchrotron. 

2) Beam optics of double bend achromat lattice and their application to Indus-2 and a 

scheme for reducing beam emittance in Indus-2. 

3) Effect of insertion devices like a wavelength shifter on the beam dynamics of  

Indus-1.  

In the synchrotron, a three kicker magnets multi turn compensated bump injection scheme 

[11] has been employed for beam injection. The beam is injected in the horizontal plane with 

the help of an injection septum magnet, which is kept close to the focusing quadrupole magnet. 

In this case, at the injection septum magnet location, twiss parameters ( and ) have a large 
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values. The high value of horizontal -function helps in maximizing horizontal beam 

acceptance of the synchrotron, which is desirable for beam injection. The high value of α-

function plays an important role in deciding the amplitude of residual oscillations during and 

after beam injection. The performance of the synchrotron in terms of accelerated beam current 

was found better (from ~1.3 mA to ~3.2 mA), when all the three kicker magnets are operated 

at the same current than the situation when kicker magnets are operated at currents required to 

generate the compensated bump. The first topic listed above involves study of beam dynamics 

by tracking of electrons for a large number of turns to understand this phenomenon.  

In the second topic of the thesis, beam optics of the double bend achromat lattice has been 

studied. The double bend achromat structure contains two dipole magnets and the drift space 

between two dipole magnets contains either a single focusing quadrupole magnet or 

combination of focusing and defocusing quadrupole magnets to form the achromat. Here, the 

dispersion function and its derivative of an electron entering the first dipole magnet and that of 

the beam coming out of second dipole magnet are zero. The achromat structure plays an 

important role in deciding the beam emittance and dynamic aperture. The beam emittance in a 

lattice is proportional to the cube of bending angle of the dipole magnet. Thus the beam 

emittance can be reduced significantly by reducing the bending angle of the dipole magnet. In 

this case, dynamic aperture is reduced due to higher strengths of sextupole magnets, needed for 

chromaticity correction, which is a consequence of smaller dispersion function.  In a storage 

ring with a smaller number of unit cells, bending angle is relatively large as compared to the 

rings with a higher number of unit cells. In the former case, beam emittance is higher, and 

consequently sextupole strengths are lower. The beam emittance in a given lattice can also be 

optimized with a proper choice of the achromat structure. In the literature, no analytical 

approach is available for providing guidance on how to choose quadrupole magnets in the 

achromat part of a double bend achromat to obtain theoretical minimum beam emittance. In a 
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double bend achromat, Chasman-Green lattice [2] represents the basic structure for low 

emittance synchrotron radiation sources. In this lattice, single focusing quadrupole magnet 

(QF) is used to form an achromat. In this thesis work, we carry out study of this structure 

assuming quadrupole magnets to be thin lenses and derive an analytical expression, showing 

the limitation of this lattice in achieving the theoretical minimum beam emittance. From the 

point of view of achieving the theoretical minimum emittance, analytical expressions are 

derived for the achromats having two, three and four quadrupole magnets. In a two quadrupole 

magnet structure, two focusing quadrupole magnets are used. The three- and four-quadrupole 

magnet structures consist of three and four quadrupole magnets respectively and have different 

combinations of focusing (QF) and defocusing (QD) quadrupole magnets. The magnetic lattice 

configuration of Indus-2 is a double bend achromat in which its achromat part has QF-QD-QF 

structure. This analytical study is extended for Indus-2 and the issue of achromat length chosen 

for it is addressed.  

Beam optics studies carried out during the thesis work also include the scheme evolved and 

implemented to reduce the beam emittance in Indus-2 at final beam energy. The storage ring 

of Indus-2 was commissioned with a moderate optics in which beam emittance was 135 nmrad 

(~2.4 times of the design beam emittance). This was done to overcome difficulties faced in the 

storage of electron beam at the design beam emittance, which were attributed to injection errors 

arising from the mismatch of kicker magnets [12] and small dynamic aperture. In the moderate 

optics, dynamic aperture in transverse planes is higher and the effects of injection errors are 

smaller in comparison to the low emittance optics. These are attributed to reduced strengths of 

sextupole magnets with a higher dispersion function at their locations, which is achieved by 

breaking the achromatic condition. The effect of injection error is further reduced in the 

moderate optics with the help of off-momentum beam injection. An analysis is presented to 
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explain why it is easier to inject the beam with an off-momentum beam injection as compared 

to the on-momentum beam injection. 

In order to operate Indus-2 with a low emittance optics, avoiding difficulties arising during 

the beam injection, a scheme has been discussed, in which electron beam is injected (at 

550 MeV) using the moderate optics with higher beam emittance (135 nmrad) in comparison 

to the design beam emittance (58 nmrad) and after beam storage and its acceleration to 2.5 

GeV, the emittance is reduced by changing the strengths of quadrupole and sextupole magnets. 

Here, the emittance is reduced to one third (45 nmrad) of the present operating value. In 

addition, the vertical -function at the center of the long straight sections used for insertion 

devices, is also reduced by ~60% (from 3.6 m to 1.4 m), which helps to reduce the effect of 

insertion devices on beam dynamical parameters. The above procedure is implemented in 

presence of finite distortion of closed orbit and betatron functions [13]. In order to ensure a 

smooth switch over from the moderate to low emittance optics, a procedure is evolved and 

executed in a step by step manner. In each step, storage ring's sensitivity to linear and nonlinear 

imperfections is controlled in a well-defined way to avoid any fast decay of beam current. 

The third topic of the thesis is devoted to the effect of insertion devices on beam dynamical 

parameters [14] such as tune, β-asymmetries (- beat) and dynamic aperture. Here, the effect 

of a wavelength shifter on beam dynamics of Indus-1 is addressed. In an electron storage ring, 

a wavelength shifter is used to reduce the critical wavelength of the emitted radiation spectrum. 

The peak magnetic field of a wavelength shifter is much higher than that of a dipole magnet. 

Effects of the wavelength shifter on beam dynamical parameters depend upon the trajectory of 

electron beam and profile of the magnetic field. The linear and non-linear forces, which are 

generated by the wavelength shifter, may excite resonances that can lead to a severe 

degradation of the dynamic aperture. To estimate these forces, a Hamiltonian for wavelength 

shifter is derived. In Indus-1, the available length for installation of insertion devices is very 



7 

 

 

small. In view of this, a wavelength shifter with a peak field of 3 T is considered to shift its 

critical wavelength. Using this Hamiltonian, the effect of a 3 T-wavelength shifter in Indus-1 

is studied. The organization of the thesis is given below 

Chapter 1: Overview of synchrotron radiation sources is presented in which a brief 

description of Indus-1 and Indus-2 synchrotron radiation sources is discussed. A brief 

description of accelerator physics of synchrotron/storage ring is presented. In this chapter, we 

discuss equation of motion, radiation damping, beam emittance, chromaticity correction and 

transverse beam acceptance. Besides, different types of magnetic lattices, injection schemes 

and effects of insertion devices on beam dynamical parameters are also discussed. 

Chapter 2: This chapter discusses the description of compensated and uncompensated 

injection schemes for the synchrotron. During beam injection, α-function plays an important 

role in the injection dynamics and its effect is highlighted in this chapter. It is shown that the 

performance of the synchrotron, in terms of accelerated beam current, is improved by injecting 

a short pulse (pulse duration equal to few times the revolution period of the synchrotron) with 

small residual oscillations. For this, the bump shape, bump reduction rate as well as injection 

angle with respect to the bump slope are optimized. It is possible to do so by employing an 

uncompensated bump scheme in which the strengths of the kicker magnets are not correlated 

to one another unlike in the compensated bump scheme and with the adjustment of injection 

angle from turn to turn. Tracking and experimental results of compensated and uncompensated 

injection scheme are presented, highlighting the advantage of uncompensated bump scheme. 

In the uncompensated bump scheme, increase in the beam current is also achieved when the 

injection beam angle is regulated during beam injection by injecting the beam on the rising part 

of the septum magnet pulse. 

Chapter 3: In this chapter, a study for the double bend achromat is carried out. The phase 

advance requirement for the minimum beam emittance is derived. To achieve this phase 
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advance requirement, different arrangements of quadrupole magnets consisting of single QF, 

two QFs, three quadrupole magnets (having different combination of QFs and QDs) and 

another having four  quadrupole magnets (two QFs and two QDs or four QFs) are studied. 

Using the analytical expressions, parameters of the chosen structures (strength of quadrupole 

magnets and length of drift space) are varied and their effects are evaluated on beam emittance. 

It is shown that in single QF structure, the required phase advance cannot be achieved, thus 

in this structure, minimum beam emittance is not achievable. A formula for the minimum 

achievable beam emittance for this configuration is derived. In QF-QF structures, the condition 

of phase advance for minimum beam emittance is satisfied. However, it is found that in this 

structure, the drift space between two focusing quadrupole magnets becomes prohibitively long 

and besides, there is no way to control vertical -function. Thus the above structure is not 

suitable for minimum beam emittance. For three and four quadrupole magnet structures, 

following arrangement of quadrupole magnets QF-QF-QF/QF-QD-QF/QD-QF-QD and QF-

QD-QD-QF/QF-QF-QF-QF/QD-QF-QF-QD are studied with the objective of achieving 

minimum beam emittance. Among these structures QF-QD-QF/ QF-QD-QD-QF are shown to 

be more suitable for obtaining minimum beam emittance. 

The achromat of Indus-2 consists of QF-QD-QF configuration. In this lattice, the length of 

drift space between QF and QD i.e. l2 of the achromat part is varied and for each length, 

tunability of the lattice under the given constraints on beam emittance and lattice parameters is 

studied. For minimum beam emittance, lattice parameters are beyond the given constraints. 

The tunability of the lattice is optimum, if l2 is chosen in between 2.5 m to 3 m. In Indus-2, l2 

is chosen 2.66 m, in which beam emittance is ~55 nm.rad, which is ~1.5 times of the minimum 

beam emittance.  

Chapter 4: Indus-2 ring was commissioned with the moderate optics to overcome with the 

difficulties faced with the design beam emittance. In this chapter, commissioning experience 
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of Indus-2 ring with the moderate optics is discussed. It is shown that in the presence of 

mismatch between injection kicker magnets, injection of the electron beam with the moderate 

optics is easier as compared to low emittance optics. The effect of off-momentum beam 

injection is also highlighted. 

To carry out transition of optics from the moderate to low emittance, an objective function 

employing least square method with Lagrangian multiplier is defined. This function is used to 

calculate the strengths of quadrupole and sextupole magnets. The objective function is evolved 

and executed in a step by step manner in a well-defined way to avoid any fast decay of the 

stored electron beam. With this method, the beam emittance in Indus-2 at 2.5 GeV is 

successfully reduced to one third (from 135 nmrad to 45 nmrad) without any additional loss of 

beam current. The results of switch over process from the moderate to low emittance optics are 

also discussed in this chapter. 

Chapter 5: The effect of insertion devices on beam dynamics was studied by L. Smith, in 

which equations of motion were obtained from the Hamiltonian with Halbach’s magnetic field 

model for sinusoidal electron beam trajectory transformation. To understand the effect of a 

wavelength shifter, these equation of motions are derived for the compensated electron beam 

trajectory transformation. The modified equations of motion give extra terms of the 

quadrupole, sextupole and octupole force components, which are not present in undulators and 

wigglers. These force components arise due to profile of the magnetic field and electron beam 

trajectory in the wavelength shifter.  

This model was used to study the effect of 3T-wavelength shifter in Indus-1. As the beam 

lifetime is short in Indus-1, it is desirable to keep the wavelength shifter operational during the 

beam injection. In this ring, amplitude of the injected and stored beam oscillation is large due 

to injection scheme followed. The studies carried out show that there is a degradation in 

dynamic aperture, which may make it difficult to accumulate the beam. For its smooth 
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operation, a correction scheme is developed to correct the tune and -asymmetries leading to a 

significant improvement in dynamic aperture, which is sufficient for beam injection  

The work carried out in the thesis is summarized and further scope of above studies is also 

discussed in Chapter 6.  
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CHAPTER-1 

 

INTRODUCTION 

 

Synchrotron radiation is the electromagnetic radiation emitted by highly relativistic charged 

particles, when they are radially accelerated under the influence of magnetic fields. Electron 

storage rings, which are designed specifically for the production of this radiation, are termed 

as synchrotron radiation sources. In an electron storage rings, an electron keeps revolving 

around a closed path at constant energy and this path is guided by the arrangement of magnets. 

Dipole magnets are used to bend the electron beam imparting above mentioned radial 

acceleration to electrons. In these storage rings, the radiation is produced using dipole magnets 

and insertion devices. A radio frequency (RF) cavity is used in the ring to provide energy to 

the electron beam during beam energy ramping as well as to compensate the loss of beam 

energy due to the radiation. Insertion devices are devices having periodic arrangements of 

dipole magnets, and are termed as wigglers and undulators. In the presence of these devices, 

an electron trajectory wiggles and on each wiggling, the radiation is emitted. In case of wiggler, 

the emitted radiation adds up incoherently, on the other hand in case of undulator, the emitted 

radiation adds up coherently. There is no sharp boundary between these two devices, they have 

similar structure and mainly have the difference in magnetic field strength. 

In this chapter, an overview of synchrotron radiation sources is presented. The basic of 

accelerator physics of synchrotron radiation source for understanding the motion of an electron 

in the presence of magnetic elements is discussed. Topics such as radiation damping, beam 

emittance, chromaticity correction, longitudinal motion of an electron and transverse beam 

acceptance are explained. In next section, different types of magnetic lattices, suitable for 

synchrotron radiation sources, are discussed. Methods of the electron beam injection into 

synchrotron/storage ring are presented in subsequent section. In next section, effects of 
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insertion devices on beam dynamical parameters are summarized. The objective and scope of 

thesis is to study beam injection, beam optics and insertion devices for synchrotron radiation 

sources. As a case study, these studies are presented for Indus-1 and Indus-2 storage ring. In 

the last section, a brief description of Indus-1 and Indus-2 synchrotron radiation sources at 

RRCAT, India is discussed.  

 

1.1 Overview of synchrotron radiation sources   

The spectrum of radiation, emitted from synchrotron storage rings has unique 

characteristics such as wide tuning range from infra-red to X-rays (broad band spectrum), high 

flux, high brightness, high polarization, pulsed time structure etc. For example brightness, 

which is defined as the number of photons per sec. per unit area, per unit solid angle, per 0.1% 

of bandwidth from a dipole magnet, is ~1013, which is ~106 times higher as compared to the 

conventional rotating anode X-ray source. In the third generation synchrotron radiation 

sources, brightness from insertion devices is increased up to ~1020.  

The synchrotron radiation sources have emerged as a powerful tool to study material 

science, surface science, chemistry, biology, medicine and industrial applications due to above 

mentioned characteristics. Uninterrupted availability of the radiation for several hours from a 

synchrotron radiation source is very suitable for the study of materials requiring a long 

exposure time. The high flux and high brightness [1] are the figure of merit for the synchrotron 

radiation sources. These spectral characteristics are governed by the energy and current of the 

stored electrons, bending magnet field and configuration of insertion devices. The brightness 

of the radiation also depends on the electron beam transverse size and divergence, which are 

related to beam emittance. The brightness of this source can be increased by reducing the 

electron beam emittance.  
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The radiation from a dipole magnet is continuous. The critical energy of the emitted 

synchrotron radiation [2] (which is defined as an energy above and below which the power 

radiated is equal) from its  

𝐸𝑐(𝐾𝑒𝑉) = 0.665𝐸2(𝐺𝑒𝑉)𝐵(𝑇)   (1.1) 

Here 𝐸 and 𝐵 represent beam energy and magnetic field of a dipole magnet respectively. 

On the other hand, the radiation spectrum is continuous (broad band) and quasi 

monochromatic (narrow band) from a wiggler and an undulator, respectively. The energy of 

different harmonic component (𝐸𝑛) of the radiation from an undulator and a wiggler magnet 

[2] is given by  

𝐸𝑛(𝐾𝑒𝑉) =
0.950𝑛𝐸2(𝐺𝑒𝑉)

𝜆(𝑐𝑚)(1 + 𝐾2

2⁄ )
     

(1.2) 

Here K is deflection parameter, which is defined as K=0.934Bo(T)(cm),  and Bo is the period 

length and peak magnetic field of insertion devices, for wiggler K>>1 and for undulator K<1, 

and n shows the nth harmonics of synchrotron radiation.  

From the comparison of equation (1.1) and (1.2), it can be observed that the energy of the 

emitted synchrotron radiation from a dipole magnet as well as from an insertion device is 

proportional to the square of the stored beam energy. Thus to obtain hard X-ray from a dipole 

magnet or from an insertion device, it is preferable to keep stored beam at higher energy. The 

critical wavelength from a dipole magnet can be reduced with the help of a higher magnetic 

field, which can be obtained with the help of a wavelength shifter. This wavelength shifter is a 

special case of wiggler, which consists of one central dipole magnet with a higher magnetic 

field along with few side dipole magnets of reduced magnetic field. The critical energy of the 

emitted synchrotron radiation from the wavelength shifter is calculated in the same way as for 

dipole magnet. From equation (1.2), it can be seen that the radiation from insertion devices is 

inversely proportional to the period length of the insertion devices, thus shorter undulator 
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period length is preferable for obtaining higher photon beam energy. The high flux (number of 

photons emitted per second per milli-radian in a given spectral bandwidth) is obtained with the 

help of insertion devices and higher stored beam current. The flux from wigglers and undulators 

is proportional to the number of periods and square of the number of periods, respectively. 

Now we will give a brief description of a synchrotron radiation source. Typically a 

synchrotron source consists of an injector, a pre injector, a storage ring and the beamlines 

installed in the storage ring to tap the synchrotron radiation. An injector, either a linear 

accelerator or a synchrotron, is required for injecting an electron beam into the storage ring.  

The beam energy of the injector may be either equal or lower than the operating beam energy 

of the storage ring. 

Historically, high energy synchrotrons designed for carrying out experimentation on 

particle physics [3], in which synchrotron radiation produced in dipole magnets was tapped are 

termed as first generation synchrotron radiation source. In the second generation synchrotron 

radiation sources, the storage rings were specially designed to produce the radiation from their 

dipole magnets. The modern synchrotron radiation sources, which are specially designed to 

produce the radiation from insertion devices, are termed as third generation synchrotron 

radiation sources.  These sources have long straight sections to accommodate insertion devices. 

In these straight sections dispersion function is kept zero or very small to avoid any dilution of 

the beam emittance. For this, mostly double bend achromat or triple bend achromat lattice with 

a large number of unit cells are used. In last one or two decades, several third generation 

synchrotron radiation sources are operational in the world and they are in the process of up-

gradation [4] to increase the brightness by reducing the beam emittance and increasing the 

length of insertion section for installation of longer insertion devices. The new facilities are 

also under consideration to get high brightness higher than 1018 in hard X-ray region (10-100 
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KeV) with the help of beam emittance in pm-rad range and stored beam energy above 4.5 GeV 

[5].  

In the fourth generation synchrotron radiation sources [6], spectral brightness from 

insertion devices can be further increased by reducing the beam emittance closed to the 

diffraction limit i.e. a fraction of the photon beam (/4). For this purpose, either energy 

recovery linear accelerator facility/ multi bend achromat magnetic lattice for storage ring has 

to be used.  

In short in synchrotron radiation source, electron beam is injected from an injector into 

a storage ring and in the ring, a proper and optimized magnetic optics is arranged to obtain 

electron beam with a very small beam size and divergence and then to enhance the brightness 

of the emitted radiation, insertion devices are installed. In the thesis a case study of beam 

injection into the synchrotron, which is used as an injector for Indus-1 and Indus-2 storage ring, 

is discussed. A theoretical study of double bend achromat lattice and their application to Indus-

2 lattice is presented and a scheme is also presented to reduce the beam emittance in Indus-2. 

To study the effect of insertion devices on the beam optics, a detailed theoretical study of a 

wavelength shifter in Indus-1 is done.  

 

1.2 Brief description of accelerator physics of synchrotron radiation 

sources 

 

To keep the electrons circulating in a storage ring/synchrotron, a series of dipole, 

quadrupole and sextupole magnets are arranged in a closed loop.  The motion of an electron 

can be defined by using a local coordinate system (as shown in figure 1.1), which moves along 

the ideal orbit (design orbit) [7, 8]. The small deviation from the coordinates of an electron 
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with respect to the ideal orbit is denoted by (x, y, s). Here x and y represent the motion along 

the radial (horizontal) and vertical direction, respectively and s denotes the motion along the 

beam direction.  

 

Figure 1. 1: Co-ordinate system for an electron motion in a circular accelerator 

 

At a given point ‘s’, (which is measured from an arbitrary reference point), the motion of 

electrons in horizontal plane is described by its position (𝑥 ) and the angle (𝑥′), 𝑥′ is defined 

as a derivative of position with respect to longitudinal coordinates (s). Similarly in vertical 

plane, it is described by a position (𝑦 ) and corresponding angle(𝑦′). Now we will discuss the 

basic of beam dynamics [8-13].to study the motion of an electron.  

 

1.2.1 Equation of motion 

In the horizontal plane, the motion of an electron in a given magnetic element is governed 

by Hills equation [8-13], which is 

𝑑2𝑥(𝑠)

𝑑𝑠2
+ 𝑘(𝑠)𝑥(𝑠) = 0 

(1.3) 

Here 𝑘(𝑠) is the coefficient, which is related with the magnetic field strength of a given 

magnetic element.  
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The solution of Hill's equation is obtained using hard edge piece wise constant model, in 

which 𝑘(𝑠) is assumed to be a constant (𝑘) over the length of the magnet. Under this condition, 

the solution in a given magnet is given by  

𝑥 = 𝐴exp(𝑖√𝑘𝑠) + 𝐵exp( −𝑖√𝑘𝑠)    (1.4) 

The angle (x′) is obtained by differentiating equation (1.4) with respect to s,  
 

𝑥′ = 𝑖√𝑘{𝐴exp(𝑖√𝑘𝑠) − 𝐵exp( −𝑖√𝑘𝑠)  }          (1.5) 

Here constants A and B are determined by initial values.  Let at s = 0, x = xo and oxx ' . With 

these condition, above two equations yield 

𝑥 = 𝑥𝑜cos(√𝑘𝑠) + 𝑥𝑜
′
sin( √𝑘𝑠)

√𝑘
       

(1.6) 

𝑥′ = −𝑥𝑜√𝑘sin(√𝑘𝑠) + 𝑥𝑜
′ cos(√𝑘𝑠)    (1.7) 

The solutions of equation (1.6) and (1.7) can be represented using a transfer matrix, which 

relates coordinates at entry and exit of the element  

[
𝑥1

𝑥1
′ ] = �̃� [

𝑥𝑜

𝑥𝑜
′ ] = [

𝑀11 𝑀12

𝑀21 𝑀22
] [

𝑥𝑜

𝑥𝑜
′ ] 

(1.8) 

Where 𝑀11 = cos sk , 𝑀21 = −√ksin sk , 𝑀12 =
sin sk

√k
, and 𝑀22 = cos sk  

 A similar matrix can be defined for the vertical plane, which is given by 

[
𝑦1

𝑦1
′] = �̃� [

𝑦𝑜

𝑦𝑜
′] = [

𝑅11 𝑅12

𝑅21 𝑅22
] [

𝑦𝑜

𝑦𝑜
′]  

(1.9) 

These matrices (�̃� and �̃�), which characterize magnetic elements, are knows as transfer 

matrices. Now we will write down the transfer matrix for drift space and different magnetic 

elements, explicitly. 

i). Drift space  

In this region 𝑘(𝑠) is zero thus an electron will not experience any field. In the horizontal 

plane, transfer matrix for drift space of length l is 
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�̃�  = [
1 𝑙
0 1

] (1.10) 

The same matrix is valid for the vertical plane also.  

ii). Quadrupole magnet 

Quadrupole magnet is used to focus the electron beam. A quadrupole magnet by virtue of 

its geometry and field direction is focusing in one plane, while it is defocusing in the other 

plane. The transfer matrix of a quadrupole magnet, which is focusing in the horizontal plane 

and defocusing in the vertical plane is obtained with the solution of Hill's equation 

�̃�  = [
cos√|𝑘|𝑙

sin√|𝑘|𝑙

√|𝑘|

−√|𝑘|sin√|𝑘|𝑙 cos√|𝑘|𝑙

] 

(1.11) 

Here,  𝑘 =
1

𝐵𝜌

𝜕𝐵𝑦

𝜕𝑥
, B is known as magnetic rigidity of an electron, which is given by 

𝐵𝜌(𝑇𝑚) =
10 

3𝐸(𝐺𝑒𝑉)
, and l is the length of quadrupole magnet. 

In defocusing plane, matrix elements contain hyperbolic functions, which give an unbounded 

motion i.e. defocusing. 

�̃� = [
cosh√|𝑘|𝑙

sinh√|𝑘|𝑙

√|𝑘|

√|𝑘|sinh√|𝑘|𝑙 cosh√|𝑘|𝑙

] 

(1.12) 

For defocusing quadrupole magnet, transfer matrix �̃� and �̃� are interchanged.  

iii). Sector dipole magnet  

In this magnet an electron enters and exits perpendicular to the edges of the magnet. Thus, 

a deviated orbit from the design trajectory traverses different path length inside the magnet, 

compared to the design orbit. This gives rise to a focusing phenomenon in the bending plane, 

known as “geometric focusing”. Therefore, in the horizontal plane geometrical focusing (1 𝜌2⁄ ) 

also took place along with bending action, where  is the radius of curvature for the design 

orbit inside the dipole magnet. In the horizontal plane, the transfer matrix is given by 
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�̃�  = [

cos𝜃𝑏 𝜌sin𝜃𝑏

−
sin𝜃𝑏

𝜌
cos𝜃𝑏

] 

(1.13) 

Here  𝜃𝑏 is the bending angle. In the other plane, this dipole magnet acts as a drift space of 

length lb=𝜃𝑏. 

iv). Rectangular dipole magnet  

In this magnet, the entry and exit edges are parallel, as a result an electron enters and exits 

at the half of bending angle. At the edges of the magnet, an electron will experience defocusing 

and focusing force in the horizontal and vertical planes respectively. In the horizontal plane, 

defocusing action is compensated by geometrical focusing (𝑘 = 1
𝜌2⁄ ). Thus the magnet acts 

like a drift space in the horizontal plane and acts as a focusing quadrupole in the vertical plane, 

commonly known as “edge focusing”. In the horizontal and vertical planes, the matrices are 

given respectively by 

�̃�  = [
1 𝜌sin𝜃𝑏

0 1
] (1.14) 

�̃�  = [

cos𝜃𝑏 𝜌sin𝜃𝑏

−
sin𝜃𝑏

𝜌
cos𝜃𝑏

] 

(1.15) 

1.2.2 Dispersion function  

If an electron momentum is different (off-momentum) then in the dipole magnet magnetic 

force will be different in comparison to an on-momentum electron.  In this case, equation of 

motion (1.3) [8-13] for the horizontal plane is given by  

𝑑2𝑥(𝑠)

𝑑𝑠2
+ 𝑘 (𝑠)𝑥(𝑠) = −

1

𝜌

∆𝑝

𝑝
                       

(1.16) 

Here p is the design or on-momentum and p shows the off-momentum (deviation in 

momentum from p). The solution of above equation is written in terms of transfer matrix  
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[

𝑥1

𝑥1
′

𝛿
] = [

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

0 0 1
] [

𝑥𝑜

𝑥𝑜
′

𝛿
]   

(1.17) 

Here =
Δ𝑝

𝑝⁄  

The trajectory of an off-momentum electron is defined as 

𝑥(𝑠) = 𝜂(𝑠)𝛿 (1.18) 

𝑥′(𝑠) = 𝜂′(𝑠)𝛿 (1.19) 

Here, 𝜂(𝑠), 𝜂′(𝑠) is defined as dispersion function and derivative of dispersion function with 

respect to s respectively. The dispersion function relates deviation in a trajectory for the off-

momentum electron with respect to the design trajectory due to a momentum offset (in first 

order of ). Dispersion is mainly generated by dipole magnets. For sector dipole magnet 𝑀13 =

𝜌(1 − cos𝜃𝑏) and 𝑀23 = sin𝜃𝑏 and for rectangular dipole magnet 𝑀13 = 𝜌(1 − cos𝜃𝑏) and 

𝑀23 = 2tan
𝜃𝑏

2
.  

Similar to the dipole magnet, quadrupole magnet also has its effect depending on the 

momentum. In the quadrupole magnet 𝑘 is changed for an off-momentum electron, which is 

𝑘 = 𝑘 (1 +
p

p
)

−1

~𝑘 (1 −
p

p
)  

(1.20) 

 Thus for an off-momentum electron, focussing forces in the horizontal and vertical planes are 

different as compared to an on-momentum electron.  

1.2.3 Lattice parameters propagation along the ring  

Instead of piece-wise constant model, which is discussed above, Hill’s equation can also 

be solved, considering variation in 𝑘 with s. These solutions give rise to some new parameters, 

known as twiss parameters [8-13]. The solution of Hill's equation (1.3), in terms of twiss 

parameters, for an on-momentum electron is discussed here. The general solution of Hill’s 

equation in horizontal plane is 
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𝑥(𝑠) = 𝐴𝜉(𝑠)cos(𝜇𝑥(𝑠) + 𝜇𝑜)   (1.21) 

Here A and 𝜇𝑜 are constants, which are determined from the initial coordinates. The solution 

represents oscillatory motion and this oscillation is known as betatron oscillation. Due to 

dependence of k on ‘s’, the amplitude of oscillations become ‘s’ dependent, i.e. 𝐴𝜉(𝑠), in which 

A is constant while 𝜉(𝑠) is a function of ‘s’. The function 𝜉(𝑠) and 𝜇𝑥(𝑠) are independent of 

𝜇𝑜, if following condition is satisfied. 

𝜇𝑥(𝑠) = ∫
𝑑𝑠

𝜉2(𝑠)

𝑠

0

 
(1.22) 

Differentiation of equation (1.22) with respect to s is given   

𝑑𝜇𝑥(𝑠)

𝑑𝑠
=

1

𝜉2(𝑠)
 

(1.23) 

With the help of equation (1.21), (1.22) and (1.23), equation for the 𝜉(𝑠) is given by 

𝑑2𝜉

𝑑𝑠2
+ 𝑘(𝑠)𝜉(𝑠) =

1

𝜉3
 

(1.24) 

Generally, 𝜉(𝑠) is written as √𝛽𝑥(𝑠) and 𝛽𝑥(𝑠) is known as betatron function, which is 

governed according to the arrangement of different elements i.e. on 𝑘(𝑠). Equation (1.23) 

becomes  

𝜇𝑥(𝑠) = ∫
𝑑𝑠

𝛽𝑥(𝑠)

𝑠

0

  
(1.25) 

𝜇𝑥(𝑠) is betatron phase advance, which is obtained with the help of 𝑘(𝑠) and 𝛽𝑥(𝑠). We rewrite 

the equation (1.21) as 

𝑥(𝑠) = 𝐶√𝛽𝑥(𝑠) cos 𝜇𝑥(𝑠) + 𝐷√𝛽𝑥(𝑠) sin 𝜇𝑥(𝑠)       (1.26) 

 Here C and D are constants, now 𝑥′(𝑠) (angle) is obtained after taking the derivative of 

equation (1.26) with respect to s 
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𝑥′(𝑠) = −
𝐶

√𝛽𝑥(𝑠)
{𝛼𝑥(𝑠)cos𝜇𝑥(𝑠) + sin𝜇𝑥(𝑠)}

+
𝐷

√𝛽𝑥(𝑠)
{cos 𝜇𝑥(𝑠) − 𝛼𝑥(𝑠) sin(𝜇𝑥(𝑠)  } 

 

 

(1.27) 

Here  

𝛼𝑥(𝑠) = −
1

2

𝑑𝛽𝑥(𝑠)

𝑑𝑠
  

(1.28) 

The constants C and D are redefined in terms of initial coordinates 

𝐶 =
𝑥(𝑠)

√𝛽𝑥(𝑠)
,  𝐷 = 𝑥′(𝑠)√𝛽𝑥(𝑠) +

𝑥(𝑠)𝛼𝑥(𝑠)

√𝛽𝑥(𝑠)
 

By substituting the expressions of the constant into equations (1.26) and (1.27), one can obtain 

the matrix �̃� (S2/S1) from S1 location to S2 location  

[
𝑥2

𝑥2
′  ]

=

[
 
 
 
 
 
 

√
𝛽2,𝑥

𝛽1𝑥

(cos∆𝜇𝑥 + 𝛼1sin∆𝜇𝑥) √𝛽1,𝑥𝛽2,𝑥sin∆𝜇𝑥

−
1 + 𝛼1,𝑥𝛼2,𝑥

√𝛽1,𝑥𝛽2,𝑥

sin∆𝜇𝑥 +
(𝛼1,𝑥 − 𝛼2,𝑥)

√𝛽1,𝑥𝛽2,𝑥

cos∆𝜇𝑥
√
𝛽1,𝑥

𝛽2,𝑥

(cos∆𝜇𝑥 − 𝛼2,𝑥sin∆𝜇𝑥)

]
 
 
 
 
 
 

[
𝑥1

𝑥1
′] 

(1.29) 

Here 𝛽1,𝑥 and 𝛼1,𝑥, are horizontal twiss parameters at S1 location and  𝛽2,𝑥 and 𝛼2,𝑥, are 

horizontal twiss parameters at S2 location, ∆𝜇𝑥 is the phase advance between S1 and S2 locations  

Any synchrotron or storage ring is formed by repeating same structure of magnetic optics, i.e. 

ring is formed by periodic arrangement of some basic arrangement of a magnetic optics. The 

basic arrangement of magnetic optics is known as unit cell (also known as superperiod) and 

after repeating this unit call, complete lattice of the ring is constructed. The unit cell is 

constructed using different arrangement of magnetic elements. The twiss parameters at the start 

and at the end of the unit cell are periodic (same). If the length of unit cell is L then  

𝛽𝑥(𝑠) = 𝛽𝑥(𝑠 + 𝐿) 

𝛼𝑥(𝑠) = 𝛼𝑥(𝑠 + 𝐿) 
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Thus for one cell, transfer matrix after substituting above periodic condition of twiss 

parameters in equation (1.29) is given by  

�̃�  = [
cos𝜇𝑥 + 𝛼𝑥(s)sin𝜇𝑥 𝛽𝑥(s)sin𝜇𝑥

−𝛾𝑥(s)sin𝜇𝑥 cos𝜇𝑥 − 𝛼𝑥(s)sin𝜇𝑥
]    

(1.30) 

Here 𝜇𝑥 represents phase advance over one unit cell. A new parameter, 𝛾𝑥 is also introduced, 

which is defined by 

𝛾𝑥(𝑠) =
1 + 𝛼𝑥(𝑠)

2

𝛽𝑥(𝑠)
    

(1.31) 

By inspection, it can be seen that this form of the generalized matrix (1.30) can be split into 

two parts such that 

�̃�  = �̃� cos𝜇𝑥 + 𝑱�̃�sin𝜇𝑥  (1.32) 

Here   �̃�  = [
1 0
0 1

]          and 𝑱�̃� = [
𝛼𝑥(𝑠) 𝛽𝑥(𝑠)
−𝛾𝑥(𝑠) −𝛼𝑥(𝑠)

]           

It can be seen that 𝑱�̃�
2

= −1. Thus the algebra of �̃� is clearly the same as that of a complex 

number, so from De Moivre’s formula after mth cell.  

�̃�𝑚 = �̃� cos(𝑚𝜇𝑥) + 𝑱�̃�sin(𝑚𝜇𝑥)  (1.33) 

�̃�−𝑚 = �̃� cos(𝑚𝜇𝑥) − 𝑱�̃�sin(𝑚𝜇𝑥) (1.34) 

If ring constitutes, m number of unit cell then matrix (1.30) for a ring is given by   

�̃� = [
cos2𝜋𝜈𝑥 + 𝛼𝑥(s)sin2𝜋𝜈𝑥 𝛽𝑥(s)sin2𝜋𝜈𝑥

−𝛾𝑥(s)sin2𝜋𝜈𝑥 cos2𝜋𝜈𝑥 − 𝛼𝑥(s)sin2𝜋𝜈𝑥
]          

(1.35) 

Here x , represents horizontal tune, which is the phase advance of betatron oscillations, 

executed by of an electron in a one revolution. Physically, it shows number of betatron 

oscillations, executed by an electron in one complete revolution in the ring, which is given by  

 
)(2

1

2 
s

dsm

x

x
x




  

(1.36) 

In the vertical plane, similar transfer matrix can be written down 



36 

 

 

�̃� = [
cos2𝜋𝜈𝑦 + 𝛼𝑦(s)sin2𝜋𝜈𝑦 𝛽𝑦(s)sin2𝜋𝜈𝑦

−𝛾𝑦(s)sin2𝜋𝜈𝑦 cos2𝜋𝜈𝑦 − 𝛼𝑦(s)sin2𝜋𝜈𝑦
]       

(1.37) 

Here y , represents vertical tune 

 
(s)β

ds

ππ

mμ
ν

y

y
y 

2

1

2
 

(1.38) 

The tune point of a ring is defined by ( x , y ) 

i). Stability of betatron oscillations in a ring  

The equation for the coordinate transformation through a unit cell with transfer matrix �̃� 

is given by 

�̃� [
𝑥1

𝑥1
′ ] = 𝜆 [

𝑥1

𝑥1
′ ] 

(1.39) 

Here  and (𝑥, 𝑥′)  is termed as Eigen value and Eigen vectors respectively  

𝜆2 − (𝑀11 + 𝑀22)𝜆 + (𝑀11𝑀22 − 𝑀12𝑀21) = 0 (1.40) 

The two roots of equation (1.40), for the transfer matrix, which have unit determinant is  

𝜆𝑎.𝑏 =
(𝑀11 + 𝑀12) ± √(𝑀11 + 𝑀12)2 − 4

2
      

(1.41) 

Let us choose cos𝜇 = (𝑀11 + 𝑀12) 2⁄ . In order that the motion is stable  𝜇 must be real. 

𝜆𝑎,𝑏 = cos𝜇 ± 𝑗sin𝜇 = 𝑒±𝑗𝜇  (1.42) 

It implies that  

(𝑀11 + 𝑀12)

2
= |

1

2
𝑇𝑟𝑎𝑐𝑒(𝑀)| < 1 

(1.43) 

In order to have the stable betatron oscillations (bounded motion) in both the planes, this 

condition has to be satisfied.  

ii). Constant of motion  

The constant A in equation (1.21) is evaluated with the help of equation (1.21) and (1.3). 

The constant is an invariant of the motion, which is given by 
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𝛾𝑥(𝑠)𝑥(𝑠)2 + 2𝛼𝑥(𝑠)𝑥(𝑠)𝑥′(𝑠) + 𝛽𝑥(𝑠)𝑥
′2(𝑠) =   𝐴  (1.44) 

From equation (1.44) the maximum displacement (beam size) and maximum angle (beam 

divergence) of an electron at any location ‘s’ are  

𝑥𝑚𝑎𝑥(𝑠) = √𝐴𝛽(𝑠) (1.45) 

𝑥′𝑚𝑎𝑥(𝑠) = √𝐴𝛾(𝑠) (1.46) 

From equation (1.45) and (1.46), it can be seen that twiss parameters (s), (s) and (s) provide 

an information of the beam size, beam divergence and a correlation between displacement and 

angle respectively at any location ‘s’ in a ring. Here A, which is invariant of motion is known 

as beam emittance. Therefore, the beam emittance shows the area formed by the particle in x-

x’ plane (or in y-y’ plane), i.e. beam emittance is the area in phase plane. 

According to Louiville’s theorem in the presence of conservative forces, emittance is a 

constant of motion. Thus phase space area (emittance) of an electron at exit and entry of a given 

magnetic element will remain unchanged. At entry and exit of a given magnetic element only 

shape and orientation of the phase space ellipse will be changed. The transfer matrix for twiss 

parameters is given by 

[

𝛽2,𝑥

𝛼2,𝑥

𝛾2,𝑥

] = [

𝑀11
2

−𝑀11𝑀21

𝑀21
2

−2𝑀11𝑀12

𝑀11𝑀22 + 𝑀12𝑀21

−2𝑀21𝑀22

𝑀12
2

−𝑀21𝑀22

𝑀22
2

] [

𝛽1,𝑥

𝛼1,𝑥

𝛾1,𝑥

] 

(1.47) 

Here  𝛽1,𝑥, 𝛼1,𝑥 and  𝛾1,𝑥 are horizontal twiss parameters at entry and 𝛽2,𝑥, 𝛼2,𝑥 and 𝛾2,𝑥 are 

horizontal twiss parameters exit of an element.  

Similarly in the vertical plane, transformation of twiss parameters ( 𝑦(s), 
𝑦
(𝑠) and 

𝑦
(s)) can 

be obtained with the help of transfer matrix �̃�. 

iii). Dispersion function evaluation for the ring  

The periodic solution of 𝜂-function (dispersion function) after one turn at a given location 

is given by  
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[

𝜂𝑜

𝜂𝑜
′

𝛿
] = [

𝑀11 𝑀12 𝑀13

𝑀21 𝑀22 𝑀23

0 0 1
] [

𝜂𝑜

𝜂𝑜
′

𝛿
] 

(1.48) 

By solving above equation (1.48), 𝜂-function and its derivative at this location is given by 

𝜂𝑜
′ =

𝑀21𝑀13+𝑀23(1−𝑀11)

2−𝑀11−𝑀22
 and 𝜂𝑜 =

𝑀12𝜂𝑜
′ +𝑀11

1−𝑀11
  (1.49) 

The solution of Hill’s equation in terms of twiss parameters for an off-momentum electron is  

𝑥(𝑠) = √ 𝜀𝛽𝑥(𝑠)cos(𝜇(𝑠) + 𝜇0) + (𝑠)𝛿 (1.50) 

Similar expression in the vertical plane can be written, however, in general, in this plane 𝜂-

function is zero, because bending of ideal orbit generally takes place in the horizontal plane 

(dispersion is generated by dipole magnet).  

1.2.4 Radiation damping and equilibrium beam emittance 

In the dipole magnet, the emission of synchrotron radiation from relativistic electron is a 

random and non-conservative process. In this process, energy loss per turn by an electron is 

given by 

𝑈 =
𝐶𝛾𝐸

4

2𝜋
∫

𝑑𝑠

𝜌2
     

(1.51) 

Here, integration is taken over the ring, 𝐶𝛾 is physical constant, for electron, which is given by 

8.846*10-05 m/GeV3, 𝜌 is the bending radius of a dipole magnet and U is the energy of 

synchrotron radiation (loss from electron’s energy E). This energy loss take place along the 

direction of beam, as a result transverse and longitudinal component of momentum are reduced. 

To replenish this lost energy of electrons, RF cavities are installed in the ring. The electric field 

in this cavity imparts the energy to the electron, when it passes through the cavity. The 

longitudinal component of momentum is compensated by an RF cavity, however, the 

transverse component of momentum cannot be compensated. In this process, transverse 

amplitude of betatron oscillations is reduced. This phenomenon is called radiation damping. In 

the dipole magnet, in the horizontal plane -function (dispersion function) is nonzero. Thus 



39 

 

 

during emission of synchrotron radiation, betatron oscillations are excited due to change in the 

orbit, which are governed by the off-momentum orbit. In this process, the amplitude of 

transverse oscillations increases, which is defined as quantum excitation. The equilibrium 

between radiation damping and quantum excitation will lead to equilibrium beam emittance, 

which can be obtained with the help of synchrotron radiation integrals and partation numbers. 

These radiation integrals are governed by the dipole magnets and properties of the lattice. First 

synchrotron radiation integral is not related to radiation effects, it relates the changes in the 

circumference for the off momentum electrons, which is given by 

𝐼1  = ∫
𝜂(𝑠)

𝜌(𝑠)
𝑑𝑠 

(1.52) 

Second synchrotron radiation integral is used to define the energy loss per turn from dipole 

magnets (equation 1.51) for an electron, which is defined as 

𝐼2  = ∫
𝑑𝑠

𝜌2(𝑠)
 

(1.53) 

Third synchrotron radiation integral is used to define the effect of synchrotron radiation on 

longitudinal dynamics (longitudinal dynamics is discussed in section 1.2.6), it is given by 

𝐼3  = ∫
𝑑𝑠

𝜌3(𝑠)
 

(1.54) 

The damping of horizontal betatron oscillations and longitudinal oscillations are 

proportional to the horizontal damping partition number 𝑗𝑥 and longitudinal damping partition 

number 𝑗𝑧 respectively. These partition number are given by 

𝑗𝑥 = 1 −
𝐼4
𝐼2

, 𝑗𝑧 = 2 +
𝐼4
𝐼2

 
(1.55) 

Here 𝐼4 is fourth synchrotron radiation integral, which is governed by the bending radius of 

dipole magnet and dispersion function. This integral has to be modified, if the dipole magnet 

has a transverse gradient. Because in this case, magnetic field experienced by an electron, will 
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also be governed by the horizontal position. The fourth synchrotron radiation integral is given 

by 

𝐼4 = ∫
𝜂(𝑠)

𝜌(𝑠)
{

1

𝜌2(𝑠)
+ 2𝑘(𝑠)} 𝑑𝑠    

(1.56) 

Here 𝑘(𝑠) =
1

𝐵𝜌

𝑑𝐵

𝑑𝑥
 is the quadrupole strength, which is arising due to gradient in the dipole 

magnet, for separated dipole magnet 𝑘(𝑠) = 0. 

The fifth synchrotron radiation integral, which is used to define quantum excitation, is 

given by 

𝐼5 = ∫
𝐻(𝑠)𝑑𝑠

𝜌3(𝑠)
   

(1.57) 

Here 𝐻(𝑠) = 𝛾𝑥(𝑠)𝜂
2 + 2𝛼𝑥(𝑠)𝜂(𝑠)𝜂/(𝑠) + 𝛽𝑥(𝑠)𝜂

/2(𝑠), ‘s’ is the longitudinal distance in a 

dipole magnet at which twiss parameters and dispersion functions in the horizontal plane are 

𝛽𝑥, 𝛼𝑥, 𝛾𝑥, 𝜂 and 𝜂/ respectively. 

In an electron storage ring, equilibrium horizontal beam emittance is normally referred to 

the beam emittance [14-16], which is given by  

𝜀 = 𝐶𝑞𝛾𝑜
2

1

𝑗𝑥

𝐼5
𝐼2

  
(1.58) 

Here  𝛾𝑜 is the reduced energy (ratio of total energy of electron to the rest mass energy) of the 

electrons and 𝐶𝑞 is constant, which is given by 3.382*10-13 m and. For iso-magnet (𝜌 is 

constant) and for separated function dipole magnet 𝑗𝑥 = 1, equation (1.58) can be written as 

𝜀 = 𝐶𝑞𝛾0
2
〈𝐻〉

𝑗𝑥𝜌
  

(1.59) 

Here 〈𝐻〉 = ∫ (𝛾𝑥(𝑠)𝜂
2 + 2𝛼𝑥(𝑠)𝜂(𝑠)𝜂/(𝑠) + 𝛽𝑥(𝑠)𝜂

/2(𝑠))𝑑𝑠 2𝜋𝜌⁄  

Neglecting weak focussing (∝ 1
𝜌2⁄ ) of the dipole magnet, the H-function is evaluated in 

the sector dipole magnet with following relation 
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 𝛽𝑥(𝑠) = 𝛽𝑜,𝑥 − 2𝛼𝑜,𝑥𝑠 + 𝛾𝑜,𝑥 𝑠
2 (1.60) 

𝛼(𝑠) = 𝛼𝑜,𝑥 − 𝛾𝑜,𝑥𝑠 (1.61) 

𝛾(𝑠) = 𝛾𝑜,𝑥 (1.62) 

𝜂(𝑠) = 𝜂𝑜 + 𝜂𝑜
/
 (𝑠)𝑠 + 𝜌(1 − cos𝜃𝑏)   (1.63) 

𝜂𝑜
/
 (𝑠) = 𝜂𝑜

/
+ sin𝜃𝑏 (1.64) 

Here (𝛽𝑜,𝑥, 𝛼𝑜,𝑥, 𝛾𝑜,𝑥) is twiss parameter at beginning of the dipole magnet and s is the distance 

from the dipole magnet.  

In the vertical plane, beam emittance is mostly governed by the transverse coupling 

constant (𝜅 ) between the horizontal and vertical plane (𝜅 =
𝜀𝑦

𝜀𝑥
). In this plane, dispersion 

function is zero, as a result there is no quantum excitation during emission of synchrotron 

radiation. However, due to finite opening angle of synchrotron radiation, the betatron 

oscillation are excited, with this excitation, the vertical beam emittance (𝜀𝑦), which is given by 

𝜀𝑦 =
13

55

𝐶𝑞

𝜌𝑗𝑦
∮𝛽𝑦(𝑠)𝑑𝑠 

(1.65) 

Here 𝑗𝑦 is the vertical partition function, which is equal to one.  

From equation (1.51), it can be seen that for an off-momentum electron, energy loss per 

turn is dependent upon the electron energy. It means higher energy electrons will lose more 

energy as compared to the low energy electrons. This process leads to radiation damping in the 

longitudinal plane. In this plane, quantum excitation is also generated due to discrete emission 

of synchrotron radiation. The equilibrium between radiation damping and quantum excitation 

will lead to natural momentum spread. 

i ) Beam Size and beam divergence  

In practice, we don’t have a single electron, in the electron beam a large number of electrons 

are distributed in phase space. In which most electrons are close to the central orbit with small 

emittance and progressively fewer electrons at larger emittance. The electron beam emittance 
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boundary is defined such that 68% Gaussian distribution of electrons are included in it. The 

maximum displacement and maximum angle of the electron beam at any location s are defined 

as beam size and beam divergence (as shown in figure 1.2).  

These electrons are also distributed in momentum. In the vertical plane dispersion function 

is zero, thus center of the phase space is on the design orbit, however, in the horizontal plane, 

the center of phase space is modified for off-momentum electrons according to the dispersion 

function. Thus in the horizontal plane, electron beam size and divergence are modified 

according to dispersion function and energy spread, which are given by 

𝜎𝑥 = √𝛽𝑥(𝑠)𝜀𝑥(𝑠) + 𝑛2(𝑠)(
𝛿𝑝

𝑝⁄ )2     
(1.66) 

𝜎𝑥
/
= √𝛽𝑥(𝑠)𝛾𝑥(𝑠) + 𝜂′2(𝑠) (

𝛿𝑝
𝑝⁄ )

2

      
(1.67) 

 

 

Figure 1. 2: Beam size and beam divergence of an electron beam in the phase space. 
 

1.2.5 Chromaticity  

For an off-momentum electron, the focusing effect of the quadrupole magnet is different as 

compared to on-momentum electron (equation 1.20) and therefore tune point in a ring for an 

off-momentum electron are different as compared to an on-momentum electron. In the ring, 
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the ratio between fractional changes in betatron tune with fractional change in momentum is 

defined as chromaticity. In horizontal and vertical plane this is  

   






 x

x

x            

(1.68) 

 







y

y

y   

(1.69) 

In both horizontal and vertical planes, natural value of chromaticity is negative [17]. For 

the low emittance ring, due to strong focusing forces, natural value of chromaticity is very 

large. They may excite the head tail instability [11]. Chromaticity can be corrected using 

sextupole magnets which are placed at the non-zero dispersion region. The sextupole magnets 

provide extra focusing and defocusing forces for higher and lower off-momentum electrons. In 

thin lens approximation, electron which experience kick at the sextupole locations are given by 

 22

2
yx

m
x    

(1.70) 

mxyy 
 

(1.71) 

Here x and 
y  are the kick strength in horizontal and vertical plane respectively. m is the 

integrated normalized strength of the sextupole magnet, i.e. 𝑚 =
1

𝐵𝜌

𝜕2𝐵𝑦

𝜕𝑥2 . The displacement of 

off-momentum electrons at the sextupole are 

  xx  (1.72) 

yy 
 

(1.73) 

Here x and y are displacements of an electron due to the betatron oscillation in horizontal 

and vertical plane respectively. Thus, for off-momentum electrons experience the kick due to 

sextupole is given by  
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 22222
2

  yxx
m

x   
(1.74) 

 yxmy )(   (1.75) 

In these equations, first term is used to correct the chromaticity and remaining terms 

generate perturbations via nonlinear kicks, except for the 
22 term. The non-linear kicks will 

generate the amplitude-dependent tune shifts [18]. The chromaticity correction term is 

proportional to dispersion function and amplitude of betatron oscillations.  In order to reduce 

the strength of sextupole magnets, these are located in the lattice where beta and dispersion 

functions are high. Further in the both planes, beta functions should be well decoupled in such 

a way that at horizontal chromaticity correcting sextupole magnet x is high and y is low and 

at vertical chromaticity correcting sextupole magnet y is high and x is low.  

1.2.6 Longitudinal motion of an electron  

A radiofrequency (RF) cavity [8] is used to transfer energy to the beam along the beam 

direction for beam acceleration as well as for compensation of energy loss due to synchrotron 

radiation. This cavity has a special size and shape and normally made-up of metallic chamber, 

in which electromagnetic fields build up at a given frequency. This frequency is selected such 

that it should be an integer multiple of the revolution frequency of electrons. Longitudinal 

electric field component of electromagnetic field is used to transfer energy for the electron 

beam along the beam direction. Due to this field component, in the longitudinal direction, 

electron bunches are formed near the synchronous phase This synchronous phase is defined for 

a reference electron, which is moving with the design energy and synchronous time for this, 

energy gain from the RF cavity is  equal to energy loss per turn (U). The synchronous phase is 

given by 


𝑠
= sin−1 

𝑈

𝑒𝑉
 

(1.76) 
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Here U is electron energy loss per turn and V is a peak value of Voltage. 

The momentum offset and phase deviation for other electrons with respect to the reference 

electron at a given instant are given by.  

𝛿𝑓 = 𝛿𝑖 +
𝑒𝑉

𝐸𝑜
{sin(𝜓𝑖 + 

𝑠
) − sin(

𝑠
 )}  

(1.77) 

𝜓𝑓 = 𝜓𝑖 + 2𝜋ℎ𝛼𝑐𝛿𝑓  (1.78) 

Here an electron enters the cavity at a phase 𝜓𝑖 with a momentum offset i. The energy and 

phase of this electron at the time of exit from cavity is 𝛿𝑓 and 𝜓𝑓 respectively. h and 𝛼𝑐 = 𝐼1/ 𝐶 

are the harmonic number and momentum compaction factor respectively. Here 𝐼1 is the first 

synchrotron radiation integral, which is given by equation (1.52) and 𝐶 is the ring 

circumference. 

Equations (1.75) and (1.76) show that if electrons, are deviated in momentum or in phase with 

respect to reference electron, they will oscillate around the synchronous phase. These 

oscillations are termed as synchrotron oscillation. The maximum number of bunches (RF 

bucket), which can be stored in the ring are governed by the harmonic number, which is the 

ratio of the RF frequency to the revolution frequency of the reference electron.  

1.2.7 Acceptance of the ring  

The parameter acceptance is defined as the maximum phase space area in which the injected 

and stored beam can be survived. This parameter plays an important role in deciding the beam 

injection [19] and beam lifetime. In a linear ring, the acceptance is defined with the help of 

physical aperture of vacuum chamber, in the presence of nonlinear magnetic components this 

is defined by dynamic acceptance. In horizontal plane, the physical acceptance is given by 

2

)(

/)()(
min













 


s

ppssa
A

x

xx
x




 

(1.79) 
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Here )(sax  is the half width of the horizontal vacuum chamber, )(sx  and (s) are chosen at 

a point ‘s’ in which horizontal acceptance is evaluated.  

The acceptance can be increased by reducing the maximum beta function. In the ring, 

normally the injection septum magnet is kept close to the design orbit, thus the horizontal 

acceptance is limited at the location of septum magnet. The local projection of the acceptance 

gives the allowable minimum and maximum aperture, in which the electron beam survives.  

ppssAsx xx /)()()(  
 

(1.80) 

During the beam injection, higher aperture is required at the point of beam injection, which 

can be obtained by increasing the beta function at the injection point. In vertical plane, vertical 

acceptance and aperture can be evaluated using the similar expression, in this plane (s) is 

zero. Normally in an electron storage ring, the vertical acceptance is reduced due to smaller 

magnet pole gap of insertion devices. 

In a real storage ring/synchrotron, there are always errors in the magnets and in the 

placement of these magnets, which affect the dynamics. In the ring, the design orbit is decided 

by the dipole magnets. Now any dipolar field errors will lead to deviation in the orbit, which is 

termed as closed orbit distortion (COD) [12]. From this distorted orbit, deviated electron will 

now exhibit betatron oscillations around this orbit. Similarly any quadrupolar field errors will 

change the pattern of the betatron oscillation and hence the beta function. This change in beta 

function with respect to design value is known as beta-beat (β-asymmetry). In presence of these 

errors, physical acceptance of the ring is also reduced.  

In the presence of sextupole magnets and nonlinear imperfections of the ring magnets 

structural resonances (P = S  I, where S is the periodicity of the machine, P and I is integer) 

and the random (P = I) resonances will be excited due to periodic or random field distribution 

of these forces respectively. The resonance condition is given by 
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lx + mz = P 

l + m = n  

(1.81) 

Where l, m, n and P are the integers and n is the order of resonance.  In an uncoupled motion, 

we can consider these cases separately for each plane. The nth resonance is excited by the tune 

values 1/n for the 2n-pole field error. From equation (1.81), it can be seen that in the ring, 

resonances can be avoided by choosing the suitable tune point.  

In the presence of linear and nonlinear forces, the acceptance is reduced due to excitation 

of nonlinear resonances. Thus in a real ring, the available acceptance, which is defined by 

dynamic acceptance may be smaller as compared to the physical acceptance. The dynamic 

acceptance is the maximum area in the phase space, in which motion of the electron remains 

stable. The projected area of horizontal and vertical dynamic acceptances on real space i.e. in 

a horizontal and a vertical plane, is known as ‘dynamic aperture’. The dynamic aperture 

estimation is carried out on the basis of tracking simulations. In this, method different initial 

horizontal and vertical coordinates of electrons with on and off-momentum are tracked in a 

magnetic lattice of a storage ring for defined number of turns to check the stability of phase 

space. The tracking is performed by using the standard beam dynamic tracking code such as 

RACETRACK [20], MAD [21] etc. The dynamic aperture is mainly governed by the tune. 

Thus the tune point should be properly selected to obtain sufficient dynamic aperture.  

As stated earlier, in this thesis, three different important and essential aspects of beam 

dynamics of synchrotron radiation sources are studied, i.e. beam injection in a synchrotron, 

double bend achromat lattice for achieving low emittance and effects of insertion devices on 

beam dynamics. Therefore, after having a basic review on elementary concepts of beam 

dynamics, basics of these three areas are discussed and presented in brief in the next sections. 

These aspects are studied using cases from Indus accelerator facility. Thus, a brief sketch of 

Indus accelerator facility is drawn. Subsequent chapter have details of beam injection with a 
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case study of synchrotron, magnetic lattice for low emittance with a case study of Indus-2 and 

effects of a wavelength shifter with a case study of Indus-1. 

1.3 Magnetic lattices for synchrotron radiation sources  

The smaller beam emittance (higher brightness) can be achieved by adopting a suitable 

magnetic lattice which defines the arrangement of magnetic elements namely dipole, 

quadrupole and sextupole magnets in the synchrotron radiation source.  In a third generation 

synchrotron radiation source, the magnetic lattice is designed such that besides providing a 

small beam emittance, long straight sections preferably dispersion free are also made available  

for installation of insertion devices.. The dispersion free region can be obtained with the help 

of specially designed and optimized configuration of magnetic structure known as achromat 

section. The achromat section is formed with at least two dipole magnet and a suitable 

arrangement of focussing and defocusing magnets in between the dipole magnets. The 

brightens from an insertion devices is given by [1]  

2/2/222/2/22   24π

Flux 
  Brightness 

λyλyλxλx   


  

(1.82) 

Here 
/σ  andσ
x,yx,y are the rms beam size and rms beam divergence of the electron beam, 

/σ andσ


 are the sizes and angle for the particular wavelength () of the photon beam, subscript 

x and y denotes horizontal and vertical plane respectively. The equation shows that up to certain 

limit by reducing the electron beam size and divergence, the brightness from insertion devices 

can be increased. 

The beam emittance for a given lattice is governed by following relation [11] 

𝜀 = 𝐹𝑙𝑎𝑡𝑡𝑖𝑐𝑒𝐶𝑞𝛾𝑜
2𝜃𝑏

3 (1.83) 



49 

 

 

Here 𝐹𝑙𝑎𝑡𝑡𝑖𝑐𝑒 is a form factor, which is the intrinsic property of a given lattice. 𝐶𝑞 is the compton 

wavelength of the electron, 𝛾𝑜 is the reduced energy (ratio of total energy of electron to the rest 

energy) of the electrons and 𝜃𝑏 is the bending angle of a dipole magnet. 

The equation (1.83) shows that in a lattice, beam emittance is proportional to the third 

power of bending angle ( 𝜃𝑏), therefore smaller beam emittance is achieved by reducing the 

bending angle. In this case, for storage ring more number of unit cells are required. The smaller 

beam emittance (higher brightness) is also achieved by adopting a suitable magnetic lattice 

(𝐹𝑙𝑎𝑡𝑡𝑖𝑐𝑒), which defines the arrangement of magnetic elements namely dipole, quadrupole and 

sextupole magnets. The commonly used magnetic lattices [22-33] are FODO lattice, double 

bend achromats (DBA), triple bend achromats (TBA) and multiple bend achromats (MBA). 

Here we give a brief description of different choices of lattices.  

1.3.1 FODO lattice  

In FODO lattice, dipole magnet is located between QF and QD magnet. This structure is 

more compact [28], thus in a given ring more number of unit cells of this structure can be 

accommodated. In the unit cell, dispersion function is non zero at the location of insertion 

section, which is used for insertion devices. The zero dispersion function can be obtained with 

the help of missing dipole scheme. However, in this case, twiss parameters are not symmetric 

with respect to center of insertion section. For this lattice, minimum value of 𝐹𝑙𝑎𝑡𝑡𝑖𝑐𝑒 is equal 

to 1.2 thus beam emittance for such structure can be defined as  

𝜀 = 1.2𝐶𝑞𝛾𝑜
2𝜃𝑏

3  (1. 84) 

 

1.3.2 Double bend achromat lattice  

 In the double bend achromat lattice, a double bend achromat is accompanied by sections 

having zero dispersion function on both sides for installation of insertion section (as shown in 

figure 1.3). In the double bend achromat, the dispersion function and its derivative for an 
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electron beam entering the first dipole magnet and of the beam coming out of second dipole 

magnet are zero. In this lattice, the horizontal beam emittance [8] is given by  

𝜀 = 𝐶𝑞𝛾𝑜
2𝜃𝑏

3
1

𝑗𝑥
(
1

3

𝛽𝑜,𝑥

𝑙𝑏
−

1

4
𝛼𝑜,𝑥 +

1

20
𝛾𝑜,𝑥𝑙𝑏  )   

(1.85) 

Here 𝛼𝑜,𝑥, 𝛽𝑜,𝑥 & 𝛾𝑜,𝑥 are the horizontal twiss parameters at the beginning of the dipole magnet. 

 

Figure 1. 3 A schematic diagram of double bend achromat lattice, in which along with a 

double bend achromat section, long straight sections for installation of insertion devices are 

shown. The symbol QP, SP and ID denote quadrupole magnet, sextupole magnet and 

insertion device respectively.  

In the lattice, a variation of beta () and dispersion () functions within the dipole magnet 

are shown in the figure 1.4. The minimum beam emittance [29] is searched by finding the 

optimum values of 𝛽𝑜,𝑥  and  𝛼𝑜,𝑥. At optimum values of 𝛽𝑜,𝑥
∗   and  𝛼𝑜,𝑥

∗ , minimum beam 

emittance is  

𝜀𝑚𝑖𝑛 = 𝐶𝑞𝛾0
2𝜃𝑏

3
1

4√15
 

(1.86) 

With 𝛼𝑜,𝑥
∗ = √15  and 𝛽𝑜,𝑥

∗ = √
12

5
𝑙𝑏,  β𝑚𝑖𝑛,𝑥

∗ = √
3

320
lb at 3/8lb of the dipole magnet 
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Here 𝛽𝑚𝑖𝑛 is the minimum horizontal beta function in the dipole magnet and an asterisked 

quantity means the quantity is evaluated when the minimum beam emittance condition is 

fulfilled. In this lattice the beam emittance is smaller than the FODO lattice by a factor of 5.0.  

 

 

Figure 1. 4  A schematic diagram showing variation of beta and dispersion functions in a 

dipole magnet of a double bend achromat lattice.  

1.3.3 Theoretical minimum beam emittance lattice  

In the double bend achromat lattice, beam emittance is further reduced with the help of 

optimizing dispersion function in the dipole magnet, this lattice is termed as theoretical 

minimum beam emittance lattice. In the lattice achromatic condition is broken as a result 

outside the achromat dispersion function is finite. A variation of beta and dispersion function 

within the dipole magnet of the lattice is shown in the figure 1.5. In this case, for minimum 

beam emittance 〈𝐻〉 function, where 𝐻 defined in equation (1.59), is optimised with respect to 

twiss parameters (𝛽𝑜,𝑥, 𝛼𝑜,𝑥) and dispersion function. The minimum beam emittance [30] by 

considering equal bending angle of all dipole magnets is given by 

𝜀𝑚𝑖𝑛 = 𝐶𝑞𝛾0
2𝜃𝑏

3
1

12√15
 

(1.87) 

For this, in the center of the dipole magnet  𝛽𝑚𝑖𝑛,𝑥 =
𝑙𝑏

√15
⁄   and 

𝑚𝑖𝑛
=

𝑙𝑏
2

24𝜌
⁄  . 

And at the start of dipole magnet 𝛼𝑜,𝑥
∗ = √15, 𝛽𝑜,𝑥

∗ =
8

√15
𝑙𝑏, 𝜂𝑜

∗ =
𝐿𝜃𝑏

6⁄  and 𝜂𝑜
′∗ =

−𝜃𝑏
2⁄ .  
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In this case,𝐹𝑙𝑎𝑡𝑡𝑖𝑐𝑒is equal to
1

12√15
 .In this lattice, the  beam emittance is smaller than the 

double bend achromat lattice by a factor of three and from the FODO lattice by a factor of 15.5. 

At the insertion section, dispersion function is non-zero, which will increase the beam 

emittance due to emission of synchrotron radiation from insertion devices. Thus in most of the 

synchrotron radiation sources [34], the beam emittance is optimized with slight leakage of the 

dispersion function in the insertion section. With this condition, beam emittance is reduced by 

a factor of two in comparison to the design value of beam emittance in achromatic condition.  

 

Figure 1. 5 A schematic diagram showing variation of beta and dispersion functions in a 

dipole magnet of a theoretical minimum beam emittance lattice.  

 

1.3.4 Triple or multiple bend achromat lattice 

For theoretical minimum emittance lattice, the minimum beam emittance is one third of 

double bend achromat lattice. For this lattice, in the insertion straight section dispersion 

function is non zero, this drawback is overcome with triple bend achromat lattice.  A triple 

bend achromat lattice, is a combination of the double bend achromat and theoretically 

minimum beam emittance lattice. In triple bend achromat section, in the middle of double bend 

achromat at the mirror symmetry point one dipole is placed (as shown in figure 1.6). With this 

additional dipole, bending angle is reduced. For example by considering equal bending angle 

for all dipole magnets, beam emittance is reduced by one third.  Further at the dipole, variations 

of beta and dispersion functions have to be optimized according to the theoretical minimum 

beam emittance lattice with the adjustment of length of dipole magnet, quadrupole strengths 
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and drift space between the magnetic elements. In this condition horizontal beta and dispersion 

functions are to be kept small between the dipoles, which results strong strength of chromaticity 

correcting sextupoles to correct the natural chromaticity resulting in the reduction of dynamic 

aperture. In the lattice, the minimum beam emittance [31, 33] is  

𝜀𝑚𝑖𝑛 = 𝐶𝑞𝛾0
2𝜃𝑏

3
7

9

1

4√15
  

(1.88) 

 

Figure 1. 6 A schematic diagram of triple bend achromat lattice, in which along with a triple 

bend achromat section, long straight sections for installation of insertion devices are shown 

The symbol QP, SP and ID indicate quadrupole magnet, sextupole magnet and insertion 

device respectively. 

 

The beam emittance can be further reduced if bending angle of the centre dipole is kept 1.5 

times higher in comparison to the bending angle of side dipole magnet. Generally in this 

configuration, the strong strength of chromaticity correcting sextupoles may reduce the 

dynamic aperture. Keeping this into mind, in Indus-2 double bend lattice is preferred over the 

triple bend achromat lattice. 
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In the triple bend achromat lattice by using more than one dipole (multiple bend achromat) 

in between the two dipole magnet, beam emittance can be further reduced. This type of lattice 

is termed as multiple bend achromat lattice. In this lattice minimum beam emittance [33] is 

𝜀𝑚𝑖𝑛 = 𝐶𝑞𝛾𝑜
2𝜃𝑏

3 (
𝑀 + 1

𝑀 − 1
)

1

12√15
 

(1.89) 

Here 𝑀 is the number of dipole magnet. 

Recently, multi-bend achromat lattices have been chosen in various synchrotron radiation 

sources [4.5] to reduce the beam emittance in pm-rad range. 

 

1.4 Injection scheme  

The objective of the injection scheme is to trap injected beam in the synchrotron/storage 

ring vacuum chamber with minimum residual betatron oscillations [19, 35-37]. Here, we will 

discuss in brief about beam injection. 

The beam is transported with the help of transfer line from exit of one accelerator to entry 

of another accelerator and afterwards the beam is injected into the ring with the help of the 

injection septum magnet. The transport line is used to manipulate the beam twiss parameters 

and dispersion function to satisfy the requirements of beam injection. The twiss parameters and 

dispersion function of the injection septum magnet are matched with those of the ring then it 

is called matched beam injection otherwise it is called mismatch beam injection. Similarly in 

the longitudinal plane, timing of injected beam and its momentum spread should be such that 

injected beam should be trapped inside the RF bucket with minimum synchrotron oscillations. 

The injection septum magnet is located inside the ring, which provides deflection to the 

incoming beam with minimum disturbances to the stored beam. At exit of the magnet, the beam 

executes betatron oscillation around the design orbit due to finite displacement of the injected 

beam with respect to this orbit. In this process, the beam may be lost at the magnet within a 
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few turns. For example, for νx = 2.25, after 4th revolution the beam hits to the septum magnet 

as its displacement at the magnet is same as that of before injection. This loss can be avoided 

with the help of single turn and multi-turn injection schemes. The single turn and multi-turn 

injection schemes are classified depending upon the pulse duration of injection kicker magnet 

(Tk from start of injection), in which its magnetic field is reduced to zero. 

1.4.1 Single turn injection scheme:  

In this scheme, injection kicker pulse amplitude as well as its timing are to be adjusted such 

that in the next turn after beam injection the beam does not experience any deflection from the 

kicker magnet, otherwise the beam will be deflected out of the ring acceptance. In the scheme, 

pulse of injected beam is shorter as compared to the revolution period of the ring. Generally, 

this scheme is applicable to the synchrotron when there is no stored beam. 

 

Figure 1. 7 A schematic diagram of single turn injection scheme  

 

A schematic diagram of the scheme is shown in the figure 1.7.  The beam is injected into 

the ring with the help of the injection septum magnet. The transfer matrix from the injection 

septum magnet (se) to injection kicker magnet location (ki) is written as  
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[
𝑥𝑘𝑖

ki
]

=

[
 
 
 
 
 

√
𝛽𝑘𝑖,𝑥

𝛽1𝑥

(cos∆𝜇𝑥 + 𝛼𝑠𝑒,𝑥sin∆𝜇𝑥) √𝛽𝑠𝑒,𝑥𝛽𝑘𝑖,𝑥sin∆𝜇𝑥

−
(1 + 𝛼𝑠𝑒,𝑥𝛼𝑘𝑖,𝑥)sin∆𝜇𝑥 + (𝛼𝑠𝑒,𝑥 − 𝛼𝑘𝑖,𝑥)cos∆𝜇𝑥

√𝛽𝑠𝑖,𝑥𝛽𝑘𝑖,𝑥

√
𝛽𝑠𝑒,𝑥

𝛽𝑘𝑖,𝑥

(cos∆𝜇𝑥 − 𝛼𝑘𝑖,𝑥sin∆𝜇𝑥)
]
 
 
 
 
 

[
𝑥𝑠𝑒

𝑥𝑠𝑒
′ ]   

 

 

 

 

(1.90) 

 

With xsexkix ,,    

The beam position at the kicker magnet location is  





 sinx')sin(cos ,,,

,

,
xkixsesexxsex

xse

xki
seki xx

 

(1. 91) 

In the single injection kicker scheme, it is necessary that at the injection kicker magnet location, 

the injected beam displacement should be zero.  

0.0kix
 

(1.92) 

The required strength of injection kicker magnet ( ki ) and injected beam angle at the septum 

magnet ( sex'  ) to bring the injected beam on the orbit are estimated with following relations  

xse

xxse

sese xx'
,

, )cot(



 


 

(1.93) 

xxkixse

se
ki

x







sin,,
 

(1.94) 

To minimize the strength of 
ki , the injection septum and injection kicker magnet should 

be kept at high value of beta-function and simultaneously the phase advance between them 

should be 90o.  

1.4.2 Multi- turn injection scheme:  

This scheme is generally used for beam injection into the synchrotron and storage ring. In 

the scheme, injected beam pulse length acceptance may be higher as compared to the revolution 

period the ring. This can be achieved with the help of the fractional horizontal tune around 0.25 
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and a small bump reduction rate. To capture the injected beam, ring acceptance is moved 

towards the septum magnet with the help of time dependent orbit bump, which is created for 

few turns. This bump is generated, either, with the help of single kicker magnet (globally) or 

locally with the help of two, three or four kicker magnets.  

The bump and its reduction rate are optimized such that in consecutive turn the injected 

beam can be accepted and the beam which is already stored should not hit to the any part of 

the ring. In this process, early beam occupies near to the center of the acceptance and later 

beam at the periphery of the ring acceptance.  

The amplitude of bump (B) and the location of the septum magnet from the designed orbit 

(Ls) can be approximately calculated from the following relation. 

tcxi SSB  24  (1.95) 

cxss SBL  4  (1.96) 

Here xi and xs denotes beam size of the injected and stored beam respectively, Sc and St 

denotes clearance and thickness of the injection septum magnet.   

In synchrotron, Indus-1 and Indus-2, three, single and four injection kicker schemes are 

adopted respectively to carry multi-turn beam injection. The detail of multi-turn injection 

scheme is discussed for single kicker, three kicker and four kickers in Chapter-5, 2 and 4, 

respectively.  

1.5 Effect of insertion devices on beam dynamics 

The insertion device is a periodic arrangement of magnetic field either in vertical plane 

(planner) or in both transverse planes (horizontal and vertical). This can be classified on the 

basis of deflection parameter (K), which is defined as K=0.934Bo(T)(cm), here  and Bo is 

the period length and peak magnetic field of insertion devices respectively. Generally, the 

deflection parameter for undulator is less than 1 and for wiggler this is greater than 1. The 

magnetic field [38-41] of a planner insertion device is given as; 
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(1.97) 

Here, x, y and z are horizontal, vertical and longitudinal directions respectively. 

The parameter kx measures the transverse variation of the field and if kx  0 then By increases 

with x and hence provide the horizontal focusing. If kx is imaginary then By will fall with x and 

provide horizontal defocusing.  The above expressions are valid if deviation of the electron 

beam trajectory from the central axis is small.  

Ideally, the insertion device should be designed such that effect of this device on the beam 

dynamical parameters is negligible. In reality, this device has significant linear and nonlinear 

effects [38-41] on the dynamics of the beam. These are arises due to its intrinsic magnetic field 

configuration and residual field errors which are attributing due to in-homogeneities of the 

magnetization within the magnet block, assembly and machining tolerances etc.  

The first condition is to match the orbit at entry and exit of insertion devices (sinusoidal 

trajectory of electron beam inside the device) with the ring orbit. These conditions are satisfied 

with  

0,1   dsBI
L

L
yx

 

(1.98) 

0'

,2    
dsdsBI

L

L

s

L
yx

 

(1.99) 

 

The linear and nonlinear effects on the beam dynamics due to its intrinsic magnetic field 

configuration can be studied with the help of Hamiltonian. 

1.5.1 Hamiltonian in presence of insertion devices  

The Hamiltonian of an electron [39] under above magnetic field (equation (1.97) can be 

written as, 
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Here 𝜌 =
3.33𝐸(GeV)

𝐵𝑜(T)
, which is the radius of curvature corresponding to the field Bo 

In equation (1.100), after a canonical transformation to change the betatron variables with 

the oscillating trajectory of electron beam and hyperbolic function of cosine and sine are 

expanded up to fourth order in x and y. Afterwards H is given by 
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The equations of motion are given by Hamiltonian’s equations. 
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The equations of motion are same as betatron equations of motion in the storage ring. They are 

given as: 
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In equation (1.104) and (1.105), oscillating terms contain normal and skew sextupole, 

octupole like non-linarites and are equal to zero after averaging over the period length. After 

averaging over the period length equation of motions are 
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1.5.2 Linear and nonlinear effect of insertion devices 

The first term in equation (1.106) and (1.107) represents quadrupole field, second and third 

terms represent octupole like fields. Due to quadrupole components periodicity of the lattice 

will be broken due to distortions of betatron functions. These will cause a change in beam sizes 

that can affect the users, reduce beam lifetime and break the symmetry of chromaticity 

correcting sextupoles. The break in symmetry can excite additional linear and nonlinear 

resonances. In thin lens approximation, tune shift and maximum -asymmetry (beta-beat) [11] 

due to quadrupole component for the sinusoidal planner insertion device are  
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Here L denotes the length of insertion devices. 

The octupole like components will produce the amplitude-dependent tune-shifts and can 

excite the following 4th order resonances. 
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mx 4 , my 4 , myx   22  (1.112) 

Where m is any integer 

Since the effect of quadrupole and octupole components depends upon the horizontal and 

vertical beta function. Thus it is preferable to keep small value of these functions at insertion 

devices. It can be also shown that at lower energy, the linear and nonlinear effects of insertion 

devices will be more significant.  

Now we will present a brief description of Indus-1 and Indus-2 storage ring  

1.6. Indus synchrotron radiation source 

 

Figure 1. 8  A schematic view of Indus-1 and Indus-2 ring along with synchrotron and 

microtron. 

Raja Ramanna Centre for Advanced Technology (RRCAT) in Indore (India) houses two 

synchrotron radiation sources, namely Indus-1 [42, 43] and Indus-2 [44-46]. Indus-1 is a 

450 MeV, small storage ring, which is designed to produce radiation in vacuum ultraviolet 

(VUV) region. On the other hand, Indus-2 is a 2.5 GeV, moderate third generation X-ray 
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synchrotron radiation source. Both the storage rings share common pre-injector microtron and 

injector synchrotron. Microtron raises the electron beam energy to 20 MeV and this electron 

beam is sent to the synchrotron via Transfer Line-1 (TL-1). Electrons are extracted from the 

synchrotron at 450/550 MeV, transported and injected to the Indus-1 or Indus-2. In Indus-1, 

electrons are injected at the peak energy of the ring i.e. at 450 MeV whereas in Indus-2 they 

are injected at 550MeV. The above process is repeated every second until the desired current 

is achieved. In Indus-2 after storage of required beam current, electrons are accelerated to 

2.5 GeV. A schematic layout showing these sources is displayed in figure 1.8. A brief 

description of these rings is discussed below. 

1.6.1 Synchrotron  

A synchrotron is used for accelerating the electron beam energy from 20 MeV to 

450/550 MeV, its schematic layout is given in figure 1.9. It is a separated function accelerator, 

which has a six super-periods and each super-period consists of one sector dipole, one 

horizontal focussing (QF) and one defocusing (QD) quadrupole magnet. S1 to S6 are six 

straight sections. The section S1 accommodates the injection septum and injection kicker 

magnet (K2). The injection kicker (K3) and extraction kicker magnet are located in section S2. 

In S4 section extraction septum magnet is located from which beam is extracted and S6 section 

is used to accommodate the RF cavity and injection kicker (K1) magnet.  

A 20 MeV, 500 ns long electron beam pulse from the microtron is injected into it with the 

help of a multi-turn injection scheme [47, 48]. The energy of the injected electrons is increased 

with the help of the RF cavity and the beam orbit kept constant by synchronously increasing 

the magnetic fields in dipole, quadrupole and steering magnets. A capacitive loaded re-entrant 

structure [43] was chosen for the RF cavity. For orbit correction, six horizontal corrector 

magnets (secondary coil on each dipole) and five vertical corrector magnets are used, which 

are located almost uniformly around the ring. 
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Figure 1. 9 A schematic layout of synchrotron  

 

Table 1. 1: Parameters of the synchrotron 

Final beam energy 450/550 MeV* 

Current ~3-4 mA 

Circumference 28.45 m 

Super-periods  6 

Tune point 2.11,1.44 

Harmonic number 3 

RF frequency 31.619 MHz 

* 450 MeV for injecting into Indus-1 and 550 MeV for injecting into Indus-2 

 

After acceleration to 450 /550 MeV, the electrons are extracted from the synchrotron [47] 

and then transported with the help of transfer lines (TL-2/TL-3) to the Indus-1/Indus-2 storage 

ring. In the synchrotron three electron bunches are formed, as its RF frequency is three times 

the revolution frequency. These bunches are extracted with the help of the fast extraction kicker 
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and extraction septum magnet. At present, the rise time of the magnetic field of fast extraction 

kicker is 45 ns and separation between two bunches is 30 ns thus two bunches out of three 

bunches are extracted and one bunch is lost during the extraction process. The main parameters 

of the synchrotron are shown in table 1.1 

 

1.6.2 Indus-1  

Indus-1 is a 450 MeV storage ring, which generates synchrotron radiation in the range 30 

- 2000 Å, mainly from the dipole magnet. This magnetic lattice consists of 4 superperiods, each 

having one dipole magnet with a field index of 0.5, two doublets of quadrupoles (QF and QD) 

and a 1.3 m long straight section.  

 

Figure 1. 10 A schematic layout of Indus-1 ring, here QF, and QD, represent focusing and 

defocusing quadrupole magnet respectively. 

 

 

 The ring has four straight sections S1 to S4, out of these two sections namely S1 and 

S3 are used for beam injection. The injection septum and kicker magnets are placed in the 
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sections S1 and S3 respectively. Of the remaining two sections (S2 and S4), S2 section is kept 

to accommodate a 3 Tesla wavelength shifter and S4 section is used to accommodate an RF 

cavity. The layout and the main parameters of Indus-1 are given in figure-1.10 and table-1.2 

respectively. The structure of the RF cavity is similar to the RF cavity of synchrotron i.e. 

capacitive loaded re-entrant structure. This wavelength shifter is considered to shift its critical 

wavelength from 61 Ao to 31 Ao. A comparison of spectral flux variation with energy for the 

bending magnet and the wavelength shifter is shown in figure-1.11. The wavelength shifter 

will be a superconducting device with total length of 0.54 m. The device will have three dipoles 

magnets. The peak magnetic field of the central dipole and side dipole will be 3.0 T and 1.5 T 

respectively.  

 
Figure 1. 11 In Indus-1, spectral flux of bending magnet and wavelength shifter with 

respect to photon energy. 

 

1.6.3 Indus-2  

Indus-2 is a 2.5 GeV a moderate third generation synchrotron radiation source, in which critical 

wavelength of the radiation from dipole magnets is 2 Å. A double bend achromat lattice having 

8 unit cells is adopted for this source. One of its unit cell along with ring is shown in figure 
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1.12. Each unit cell has a 4.6 m long straight section, two 22.5° rectangular bending magnets, 

a triplet of quadrupoles (QF-QD-QF) to control the dispersion in the achromat section, two 

quadrupole triplets (QD-QF-QD) for the adjustment of beam sizes in the 4.6 m long straight 

sections and four sextupoles in the achromat section for the correction of natural chromaticity. 

In the ring for orbit correction, 48 horizontal correctors, 40 vertical correctors and 56 beam 

position indicators are located around the ring.  Out of eight 4.6 m straight sections, one is used 

for the beam injection, two for the RF cavities and the remaining five for insertion devices. The 

structure of RF cavities are bell shaped. The main parameters of the ring are tabulated in table-

1.2. 

 

Table 1. 2: Main parameters of Indus-1 and Indus-2 

Parameters Indus-1 Indus-2 

Beam energy at injection 450 MeV 550 MeV 

Final stored beam energy 450 MeV 2.5 GeV 

Circumference  18.966 m 172.474 m 

Operating beam current  125 mA 175 mA 

Critical wavelength 61 Å 1.98 Å 

Beam emittance(εx/ εy) 7.010-8/7.010-9 m-rad 5.810-8/5.810-10 m-rad 

Periodicity 4 8 

No. of dipole, quadrupole 

and sextupole magnets 

4,16,8 16,72,32 

Harmonic number 2 291 

RF frequency 31.619 MHz 505.812MHz 

Energy loss per turn 

from dipole magnets 

3.6 keV   623 keV 

RF voltage 22 kV 1.27 MV 

Number of cavities 1 4 

 



67 

 

 

In the ring, a multi turn injection scheme, employing a compensated bump generated by 

four kickers is used, which are located in first long straight section. The electron beam is 

injected, from the synchrotron at a peak energy of 550 MeV with a repetition rate of 1 Hz. In 

the ring, injection is carried out to store up to 200 mA beam current with the help of multi 

bunch filling scheme [50, 51]. After accumulation of the desired beam current, the stored beam 

is accelerated to 2.5 GeV by slowly increasing magnetic field of the all the magnets of the 

storage ring in a synchronous manner. 

 

 

 

Figure 1. 12 A schematic diagram of Indus-2 ring 
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CHAPTER 2 

 

BEAM INJECTION INTO SYNCHROTRON 

 

 

In this chapter, the mechanism of beam injection into the synchrotron is studied. As 

discussed in Chapter-1, the synchrotron is a common injector for Indus-1 and Indus-2 

synchrotron radiation sources. Electron beam is injected into it in the horizontal (radial) plane 

through an injection septum magnet, employing a three-kicker multi-turn injection scheme 

[47]. The injection septum magnet is kept close to the focusing quadrupole magnet, where twiss 

parameters ( and ) have large values. The high value of horizontal beta function helps in 

maximizing horizontal beam acceptance of the synchrotron, which is desirable for beam 

injection. The large α-function (alpha function) plays an important role in deciding beam 

displacement and residual betatron oscillations during beam injection.  

In the synchrotron, the injected beam oscillations after beam injection do not die during 

first few milliseconds and during this time a major part of the beam loss takes place, since the 

damping time of betatron oscillation at 20 MeV, the energy at which electrons are injected into 

the synchrotron is 14 minutes. The loss of electron beam is mainly attributed to the un-bunched 

electron beam pulse injection, a small dynamic aperture, variation of tune point during beam 

energy ramping, absence of chromaticity correction etc. 

In the injection plane, when the beam acceptance is small, it is better to inject few turns 

(pulse length equal to few revolution periods of the synchrotron) with small residual betatron 

oscillations, so that injected turns are lodged within the real physical acceptance/dynamic 

acceptance. With this in view, beam injection is performed in the compensated and 

uncompensated orbit bump schemes [48] at present operating tune point ( 11.2x , 44.1y ) 

of the injection energy. It is noticed that accelerated beam current in the uncompensated bump 
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scheme (keeping the strengths of the kickers magnets equal) is higher as compared to the 

compensated bump scheme.  

Theoretical as well as experimental studies are carried out to explain why the performance 

of the synchrotron is better in the uncompensated bump scheme as compared to the 

compensated bump scheme. Normally in an electron storage ring, beam injection is carried out 

in such a way that the entire injected beam pulse undergoes the same deflection in passing 

through the septum magnet. This is achieved by injecting the beam at the top of the injection 

septum magnet pulse. Here, we have also extended studies in both injection schemes to the 

case in which the angle of the injected beam is varied from turn to turn, which is done by 

injecting the beam on rising part of the injection septum magnet. 

2.1 Injection scheme 

In the synchrotron, the compensated or uncompensated bump during beam injection is 

produced by using three kicker magnets or kickers, which are located inside vacuum chamber 

in  S6 (first kicker), S1 (second kicker) and S2 (third kicker) straight sections as shown in figure 

1.9 of Chapter-1.  The parameters of the microtron [52] are tabulated in table 2.1. 

 

Table 2. 1: Parameters of the Microtron 

 

Parameters Value 

Output 

Energy 

20 MeV 

Output current 15 mA 

Pulse length 0.5 µs 

Pulse 1 Hz 

Energy spread 0.1% 

Emittance 1 mm mrad horizontally, 

3 mm mrad vertically 
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At the time of beam injection, the center of injected beam is separated from the injection 

septum magnet at a radial distance (xc) of 38 mm from the design beam orbit as shown in figure 

2.1. The injection septum magnet is azimuthally located between first and second kicker, 

having thickness (St) of 3 mm and its inner edge is at 32 mm from the design orbit.  

 

Figure 2. 1 Compensated orbit bump of 30 mm, generated by kicker-1, 2 and 3. 

 

The kicker magnetic field pulses are half sinusoids. The electron beam is injected during 

the last 1 µs of the falling part of the pulse to achieve nearly linear rate of fall of the orbit bump. 

During this period, the injection kicker strengths are changed with time according to the 

relation 

 
)/cos(

/)1(cos
)(

kd

kdri
i

TT

TTTn
n







  

(2.1) 

Where i (i =1-3) denotes kicker -1,2 and 3 respectively, i is maximum deflection imparted by 

the kicker i, n  corresponds to number of turns of the injected electrons in the synchrotron, (n 

= 1 represents the initial injection time), rT is revolution period in the synchrotron (~94 ns), kT

is the duration of kicker pulse, which is 14.2 s and dT  is additional delay in the pulse length 

from  peak of the injection kicker pulse to the injection point ( 6.1 s).  
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A theoretical study of the injection dynamics is presented assuming the length of the 

incoming electron beam pulse to be 1 s with constant beam current. The initial part of 

incoming beam enters the synchrotron 1 s before, the kickers are switched off. The injected 

beam pulse is divided into 11 equal parts (slices). The pulse length of each slice is equal to one 

synchrotron revolution period (~ rT ). The kicker strengths are reduced linearly during 

injection, as a result the starting part of a slice and its last part appearing after 94 ns experiences 

different injection bump depending upon the bump reduction rate. The first slice corresponds 

to the initial part of the incoming beam and the 11th represents the last part of the 1 s beam 

pulse. The last slice length is ~64 ns, which is shorter in comparison to 94 ns. The beam is 

injected in the ramp mode, in which current of synchrotron magnets (dipole, quadrupole and 

steering) are raised synchronously. In this mode, during beam injection beam energy ramp rate 

is ~1 keV/s, which is negligible. 

 

Figure 2. 2 For one superperiod of synchrotron lattice functions at the operating tune 

point (x=2.11, y=1.44) 
 

 

The lattice functions (twiss parameters) of the synchrotron at the tune point (2.11, 1.44) are 

shown in figure 2.2. The maximum beta function at the focussing quadrupole location (4.33 m) 
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is slightly higher as compared to the beta function at the septum magnet location (4.28 m). The 

maximum of the orbit bump occurs near the septum magnet. The inner edge of the septum 

magnet is at 32 mm, whereas all over the ring physical aperture is ±45 mm. Therefore if the 

beam does not hit the septum magnet it will not hit the vacuum chamber anywhere else. In 

these studies, we have, therefore, tracked the position of the slices at the septum magnet 

location. 

The slices, which have injected beam displacement (in the presence of injection bump) and 

residual betatron oscillation amplitude (after beam injection) less than 31.5 mm (by considering 

septum magnet clearance (Si) as 0.5 mm) are considered to be accepted. The amplitude of the 

residual betatron oscillation is the amplitude of coherent betatron oscillation after beam 

injection. To carry out the injection simulations, the computer program RACETRACK [20] is 

modified as per the requirement. 

2.1.1 Compensated orbit bump scheme 

i ) Theory   

The synchrotron acceptance at the septum magnet location is shifted with the help of the 

orbit bump to trap the injected beam (which is away from the synchrotron). In three kicker 

injection scheme, the compensated orbit bump and its slope for first turn at the septum magnet 

location [8 -12] are given by 

)sin()1( ,1,,,11 xxsxsxbumpx  
 

(2.2) 

 )sin()cos()1( ,1,,,,1,
,
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1

/
xxsxsxxs

xs

x
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


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(2.3) 

To generate the bump, the strengths of the kickers are calculated using the following relation. 
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Here, xs, , x,1 , x,2 , x,3  and xs, , x,1 , xx ,3,2 ,   are the beta functions and phase advance at the 

septum magnet and at the kicker-1, 2 and 3 location respectively. In this case, phase advances 

at the septum and at the kickers-1,2 and 3 are taken with respect to an arbitrary fixed point in 

the synchrotron,
 xs, denotes the α-function at the septum magnet location, For different turns 

(n), )(nxbump  is calculated with )(ni , )(ni  is calculated via equations (2.1) and (2.4). In 

figure 2.1, the compensated three-magnet orbit bump of ~30 mm is shown. 

The bump is gradually reduced as the beam is injected. The displacement of the injected 

beam, during and after beam injection depends on initial injected beam coordinates 

(displacement and angle) with respect to the bumped orbit. In order to find out the feasibility 

of injected turns, it is necessary to know its displacement from the design orbit. (Undistorted 

orbit). Here we present a mathematical formulation [35-37] to get an idea of displacement of 

the injected beam during beam injection and maximum residual betatron oscillation amplitude 

after beam injection. The phase space of the injected beam in the normalized coordinates is 

shown in figure 2.3 with reference to position of the bump at the injection septum (point O). 

The twiss parameters of the incoming beam are assumed to be matched with those of the 

synchrotron.  The point O1 represents the center of the injected beam and O2 is the point where 

the injected beam touches the circle with radius OO2 (equal to in which the injected beam 

executes betatron oscillations. This circle with radius defines the maximum residual betatron 

oscillation amplitude after beam injection. The center of injected beam coordinates ( ), /

ee xx for 

mth slice (number of turn (n) starts from m), with respect to bumped orbit are defined by  
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)(mxxx bumpce   (2.5) 

)(// mxx bumpe   
(2.6) 

Here cx and     are the center of injected beam position and angle coordinates with respect to 

design orbit.  

The equation of injected beam circle is given by 

 xsee XXXX ,
2//2 )()(   (2.7) 

Here ee xX  ,
/

,,
/

exsexse xxX    and xX  , 
/

,,
/ xxX xsxs   , x and 

/x are the displacement 

and angle of an electron beam with respect to the center of injected beam. 

 

 

Figure 2. 3 A normalized phase space circles of injected beam and for residual oscillation. 

 

The equation of the circle, in which injected beam executes betatron oscillations having 

radius   and center at O (0, 0) is  

22/2  XX  (2.8) 

The radius  and angle  as shown in figure 2.3 are 
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The equation (2.9) shows that   is minimum, when
xs

exs
e

x
x

,

,/




 , which leads  equals to 

zero degree.Coherent betatron oscillation amplitude ( m ) for mth slice is calculated after 

substituting ),( /

ee xx  from equation (2.5) and (2.6) into equation (2.10) leading to, 
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The minimum of m   can be obtained with the help of following condition  
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(2.12) 

This equation shows that for a finite xs, , as the bump reduces the difference between the 

injection angle and bump slope increases. In order to constrain the amplitude of residual 

betatron oscillation, either injection angle or bump slope or both of them need to be adjusted 

so that the condition of equation (2.12) is satisfied. In three kicker compensated bump scheme, 

it is not possible to adjust the bump slope for different slices, in the absence of this the only 

possibilities is to adjust the injection angle with the help of injection septum magnet for 

different slices.  

While it is desirable to have minimum betatron oscillation of the injected beam slices, it is 

essential to first trap the injected beam slices in the synchrotron. It is therefore important to 

study the beam motion during the process of injection. During beam injection, the radius OO1 

is varying according to  and horizontal tune. The displacement of the extreme particle (point 

O3 of figure 2.3) for mth slice, in nth turn from the design orbit depends upon the orbit bump 

and OO1. This is given by the following relation. 
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(2.15) 

In equation (2.13), a sign of last term (beam size xs, ) depends upon the sign of cosine 

function (of second term). If cosine function is positive, last term is positive otherwise it is 

negative. From equation (2.13), it can be shown, that in the presence of the bump after one 

turn, the injected beam reaches the septum magnet. This value will depend upon the bump 

reduction rate, horizontal tune as well as on . To keep the injected beam far away from the 

septum magnet for a given horizontal tune, the bump reduction rate has to be properly adjusted. 

With a proper choice of   (which is adjusted with the injected beam coordinates), after one 

turn injected beam is kept away from the septum magnet, however, in this case residual betatron 

oscillations after beam injection is increased due to non-zero value of  . 

 In an ideal condition, for initial slice amplitude of residual betatron oscillation is equal to 

the injected beam size. For this bump reduction rate that is the rate at which bump is reduced, 

should be nearly equal to  

Bump reduction rate= 2 xs, + Sc + St + Si

 

(2.16) 

Here xs,  (  xs, ) denotes the horizontal beam size, St septum magnet thickness, Sc septum 

magnet clearance for injected beam (inside the septum) and Si septum magnet clearance for the 

stored beam.  

Since in the three kicker injection scheme, an arbitrary bump slope is not possible at the 

injection point. Thus for different slices,  have to be adjusted. In this case, first slice is on the 

design orbit and for consecutive slices residual betatron oscillations are increased according to 

bump reduction rate. If bump reduction rate is large, few slices will be accepted In the case of 
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lower bump reduction rate, injected beam can be kept away from the septum magnet by slightly 

increasing the residual betatron oscillations of a first slice and properly choosing the horizontal 

tune. The horizontal tune needs to be kept away from an integer so that after one turn, the 

injected beam oscillations can be kept away from the septum magnet. In this aspect, fractional 

horizontal tune around 0.25 is more suitable choice. In this case, many slices can be accepted 

in the synchrotron and for consecutive slices, the residual betatron oscillations will be increased 

by a small value. In nutshell, in the process of injection optimization, the injection bump, bump 

reduction rate as well as injection angle ( ) for a given horizontal tune has to optimized such 

that maximum slices are accepted and for these slices residual betatron oscillations remain 

small. 

ii) Injection simulations  

In the synchrotron, at the septum magnet location s  is 2.1 mm, St is 3 mm and by 

choosing Sc and Si 1 mm. With these parameters, the bump reduction rate required for the beam 

at the present horizontal tune (x=2.11) to clear the septum magnet and circulation using 

equation (2.16) should be 8.7 mm/turn. With this bump reduction rate, first slice is on the orbit 

and for consecutive slices, residual betatron oscillations are increased by large value. Thus, it 

is required to find a moderate solution. 

In the present configuration, an orbit bump of 38 mm is generated by operating the kickers

)1(1 ,

 

)1(2  and )1(3  at the strengths which correspond to beam deflection of 12.9 mrad, 

9.8 mrad and 9.4 mrad respectively. The slope of the bump at the injection point with respect 

to the design orbit is 1.6 mrad.  The bump reduction rate per turn is 3.5 mm. At the injection 

point on the present operating tune point,
1

,, m16.0/ xsxs  , where xs,  =4.3 m and xs, = -

0.7 rad. With these parameters, from equation (2.12), in every turn, either injection angle of 

the injected beam should be increased or bump slope should be decreased in a step of 0.57 mrad 
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to obtain the minimum residual betatron oscillation for all slices. In the present setup for 38 mm 

bump, the initial slope of the bump is 1.6 mrad and the bump is reduced in 11 turns, rate of the 

change of bump slope per turn is ~0.15 mrad. With this rate of change of bump slope, it is not 

possible to satisfy the condition (2.12) for all slices.  

While it is desirable to have minimum betatron oscillation of the injected beam slices, it is 

essential to first trap the injected beam slices in the synchrotron.  For the first slice,
 

)1(bumpx

=38 mm, )1(1

bumpx =1.6 mrad, the injected beam may hit the inner part of the injection septum 

magnet, after one turn of injection due to the lower bump reduction rate. This can be avoided 

by allowing higher residual betatron oscillation amplitude, which is obtained either by lowering 

the bump or by changing the injection angle of injected beam. For a fixed value of the bump 

and length of incoming beam pulse, the bump reduction rate is fixed. In order to optimize the 

injection process, in following studies, the position of the slices has been tracked at the septum 

magnet location for different injection angles.  

 

Figure 2. 4 In the compensated bump scheme, effect of injection angle (θ) on maximum 

beam displacement for different slices. The solid and dotted line indicates accepted and 

unaccepted part of the beam slices respectively. The calculations have been carried out by 

equation (2.13). 
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The effect of injected beam angle on the position of a slice during injection is calculated 

using equation (2.13). Figure 2.4 gives the displacement of injected slices during injection i.e. 

when the bump is being lowered. The displacement shown is the maximum value of the 

displacement in first 12 turns after the injection of a slice considering the bump at the start of 

beam injection to be 38 mm. Figure 2.5 gives the amplitude of the residual betatron oscillation 

ρm calculated using equation (2.11). 

 

 
Figure 2. 5 In the compensated bump scheme, effect of injection angle (θ) on amplitude of 

residual betatron oscillation for different slices. The solid and dotted line indicates accepted 

and unaccepted part of the slices respectively. The calculations have been carried out by 

equation (2.11). 

 

These figures 2.4 and 2.5 indicate that for the initial 5 slices, if the injection angle is 

reduced, displacement of an injected slice from the design orbit decreases but the amplitude of 

residual betatron oscillation is minimum for a certain injection angle as also indicated by 

equation (2.12). For the injection angle of 1.6 mrad, the first slice is injected on the bumped 
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orbit and the amplitude of its residual betatron oscillation resulting from its beam size is 

minimum, other slices have higher residual betatron oscillation amplitude due to their finite 

displacement from the bumped orbit and also due to their non-optimum injection angle. The 

slices, which have injected beam oscillation less than 31.5 mm are considered. The figure 2.4 

and 2.5 shows that at injection angle of -0.4 mrad, the number of slices accepted is maximum 

and their residual betatron oscillations after beam injection remains within the limit. This angle 

is – 2.0 mrad less as compared to the bump slope (1.6 mrad), which provides optimum angle 

of injection for the first slice.  The amplitude of residual betatron oscillations for -0.4 mrad 

injection angle is much higher because the mismatch from the optimum angle is substantially 

increased.  For the first slice, the amplitude of residual betatron oscillation is 10.5 mm and for 

other slices it increases progressively. In this case six slices are accepted and their residual 

betatron oscillation amplitudes are 10.5, 12.8, 15.9, 19.5, 23.2 and 27.0 mm. To look into the 

more details, the phase space plots for first to sixth slices are shown in the figure 2.6. The phase 

space plots also show a similar behaviour. 

 

Figure 2. 6 In the compensated bump scheme, for the bump of 38 mm the injected beam 

phase space of first to six slices at the septum magnet for the injection angle (θ) of -0.4 mrad. 

The phase space is plotted by using computer code RACETRACK. 
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At higher bump reduction rate, the amplitudes of residual betatron oscillation are higher for 

all slices except that of one slice, which is on the bumped orbit. Presently, with the existing 

power supplies bump can be increased by 15%. In this case, for one accepted slice amplitude 

of residual betatron oscillation after beam injection can be reduced to 8.8 mm and for other 

slices, their amplitudes are 12.7, 17.1, 21.6 and 26.2 mm. which are significantly higher. 

 

Figure 2. 7 In the compensated bump scheme, phase space of first to six slices of the injected 

beam when the beam injection angle (θ) is varied from -0.4 mrad to 0.8 mrad in step of 

0.2 mrad during injection. The phase space is plotted by using computer code RACETRACK. 

 

The above injection simulation (figure 2.4 and figure 2.5) indicate if injection angle is changed, 

the displacement of the injected beam as well as residual beam oscillation amplitude is 

changed. So the possibility to change the injection angle during beam injection is explored. 

When beam injection is performed on the rising part of the injection septum magnet pulse, 

different slices of the injected beam will also experience different injection angle. Due to 

limitation of injection septum magnet power supply, the injection angle for each slice can be 

increased up to 0.2 mrad only. In the compensated bump (38 mm) injection scheme, if injection 

angle (-0.4 mrad) is increased by 0.2 mrad for each slice, the residual betatron oscillation for 
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different slices will be reduced in 0.0-2.7 mm range. The amplitudes of residual betatron 

oscillation, for 1st to 6th slices are 10.5, 12.0, 14.5, 17.5, 20.9 and 24.3 mm respectively. Their 

phase space plots are shown in the figure 2.7. 

 

2.1.2 Uncompensated orbit bump scheme  

At the injection septum magnet, orbit bump and its slope reduction rate can be adjusted by 

allowing closed orbit distortion all over the synchrotron. The orbit bump is not localized in the 

injection region thus this method of injection is called as uncompensated injection scheme. 

Here, bump, bump slope and their reduction rate are additional parameters for optimization. In 

this scheme, it is possible to reduce the residual betatron oscillations for at least few slices as 

compared to the compensated bump scheme. However, due to uncompensated bump for initial 

few turns, injected beam oscillation amplitude all over the synchrotron remains higher.  

The bumped orbit )(nxo  and its slope )(/ nxo , at an observation point in the synchrotron for 

an arbitrary strength of three injection kickers are given by the following equations [11]. 
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Where xo, and  xo,  are the beta function and betatron phase advances at the observation 

point. The sign of the sine term in the second expression is positive if xo, > xi,  and negative 

if xo, < xi, . 

The present operating condition, in which all injection kickers
 
are operated at the strength 

of 14.6 mrad is discussed. This generates 60 mm orbit bump with bump slope of 8.2 mrad at 

the injection septum magnet location. The bumped orbit over the synchrotron is shown in figure 

2.8 by using equation (2.17).  
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Figure 2. 8 The bumped orbit in the uncompensated orbit bump scheme with all injection 

kicker magnets set at 14.6 mrad. The bumped orbit is calculated by equation (2.17). 

 

The injected beam angle sensitivity during and after beam injection are plotted for this 

scheme in figure 2.9 and 2.10. Figure 2.9 gives the displacement of injected slices, during 

injection i.e. when the bump is being lowered. The displacement shown is the maximum 

displacement in first 12 turns after the injection of a slice considering the bump at the start of 

beam injection to be 60 mm. Since the starting bump is much higher than the distance of the 

septum magnet from the design orbit, initial few slices are not accepted. Accordingly, in figure 

2.9, initial three slices are not considered. The advantage of the higher bump gives a higher 

bump reduction rate and higher bump slope rate i.e. 5.5 mm per turn and 0.7 mrad per turn 

respectively, which helps in accepting some slices into the synchrotron.  Figure 2.10 gives the 

amplitude of the residual betatron oscillation obtained by tracking the slices for forty turns. The 

amplitude of residual betatron oscillation for the 6th slice is minimum for the injection angle of 

5.6 mrad. This slice is not accepted as during injection this slice hits the septum magnet.  
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Figure 2. 9 In the uncompensated bump scheme, variation of maximum beam displacement 

with injection angle (θ) for different slices. The solid and dotted line indicates accepted and 

unaccepted part of the beam slices respectively. The simulations are carried out by using 

computer code RACETRACK. 

 

Figure 2. 10. In the uncompensated bump scheme, effect of injection angle (θ) on amplitude 

of residual betatron oscillation for different slices. The solid and dotted line indicates 

accepted and unaccepted part of the slices respectively. The simulations are carried out by 

using computer code RACETRACK. 
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At an injection angle of 4.6 mrad, four (6th to 9th) slices having an injected beam pulse 

length ~380 ns are fully accepted. For the 5th slice, injected beam displacement at the septum 

magnet goes up to 33 mm, as a result a part of this slice hits the septum magnet and remaining 

part is accepted.  The phase space for 5th -9th slices at the septum magnet is plotted in figure 

2.11. For these slices, the amplitudes of residual betatron oscillation are 9.2, 6.5, 8.6, 15.3 and 

23.1 mm.  The results show that for consecutive 5th, 6th and 7th slices residual betatron 

oscillations is increased by amounts which are much smaller than the bump reduction rate of 

5.5 mm per turn. This is attributed to the nature of the bump and bump slope. This is the main 

benefit available, when the kickers are operated at equal currents. 

 

 

Figure 2. 11 At the septum magnet location, movement of the injected beam in phase space 

of fifth to nine slice at the injection angle (θ) of 4.6 mrad for the uncompensated bump 

scheme. The simulations are carried out by using computer code RACETRACK. 

 

As mentioned earlier, it is possible to change the injection angle up to 0.2 mrad per slice or 

turn during injection by injecting the electron beam on the rising part of the septum magnet 
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pulse. Beam injection dynamics is also studied for this case. Taking the variation of injection 

angle per turn as 0.2 mrad, the phase space during and after injection is plotted in figure 2.12 

for the starting injection angle of 4.4 mrad.  This figure shows that the part of the 5th slice, 

which is hitting the septum magnet, is considerably reduced and the acceptance of this slice is 

accordingly increased. The amplitudes of residual betatron oscillation of 5th to 9th slice are 10.0, 

6.5, 8.4, 15.3 and 23.2 mm. These are nearly the same as those obtained when the injection 

angle is fixed during injection. 

 

Figure 2. 12 At the septum magnet location, injected beam movement in phase space of fifth 

to nine slice, when the beam injection angle (θ) is varied from 4.4 mrad to 5.2 mrad in step 

of 0.2 mrad in the uncompensated bump scheme. The simulations are carried out by using 

computer code RACETRACK. 

 

2.2. Performance of the synchrotron in different injection schemes  

The results of two experiments performed to compare the performance of the synchrotron 

in the two injection schemes are discussed. In the first experiment, a 500 ns pulse from the 
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microtron is injected into the synchrotron. In this experiment, the injection kickers current and 

timings are adjusted in such a way that in  the compensated bump scheme, incoming beam 

experiences kicker magnetic field corresponding to 1st to 5th slices and in the uncompensated 

bump scheme ( by keeping all kicker current at the same value) it corresponds to 5th to 9th 

slices. In the compensated and uncompensated bump scheme, ~1.3 mA (figure 2.13) and 

~3.2  mA (figure 2.14) accelerated beam current is observed respectively. The results reported 

here correspond to acceleration of the beam to 550 MeV. There is no change in the performance 

of the synchrotron when electrons are accelerated to 450 MeV. 

The beam injection is also performed by injecting the beam on the rising part (figure 2.15) 

of the septum magnet. The resultant increase in the injection angle of consecutive slices is 

0.2 mrad /turn. In the compensated bump scheme, hardly any improvement in accelerated beam 

current is observed. In the uncompensated bump injection scheme accelerated beam current 

increases from ~3.2 mA to ~3.6 mA (figure 2.16). 

 

 

Figure 2. 13 Beam current in the compensated bump scheme, the dipole ramp profile and 

accelerated current (DCCT signal, 100 mV/mA) are label in the figure.  
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Figure 2. 14. Synchrotron DCCT in uncompensated bump scheme. All injection kicker 

current are set at 14.6 mrad kick. 

 

  

 

 

Figure 2. 15 Beam injection on the rising part of the septum magnet pulse (Injected beam 

pulse, synchrotron injection septum, injection kicker are label in the figure). 
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Figure 2. 16 Synchrotron DCCT in uncompensated bump scheme (Beam injection is 

performed on the rising part of the injection septum magnet pulse) 

 

In the second experiment, a 60 ns pulse (~6 mA) is extracted from the microtron and 

injected into the synchrotron to find out the length of the entering electron beam, which can be 

accepted in the synchrotron. Here, all three kickers are set according to the compensated and 

uncompensated bump injection schemes. The incoming pulse is moved on time scale with 

respect to the kicker pulses. The accelerated currents for different slices are shown in figure 

2.17. It is observed that in the compensated bump injection scheme, two slices are accepted 

whereas in the uncompensated bump injection scheme three slices are accepted. In the both 

schemes, when beam injection is performed on the rising part of the injection septum magnet 

pulse, the same slices are accepted. In the uncompensated bump scheme, the acceptance of the 

first slice representing the 5th slice is much higher, when the injection is done on the rising part 

of the septum magnet pulse than when the injection angle is held fixed during injection.  

The relation between theoretical simulations and the experimental results are summarized 

in table 2.2. In the theoretical simulations for each slice, the calculation of displacement and 

residual betatron oscillations are done assuming the start of the slice. Since the actual slice 

length is 94 ns long. The residual betatron oscillations mentioned in this table are for the start 
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and end of the slice. The table indicates that in both the schemes, injected beam pulse length 

acceptance is smaller as compared to the theoretical prediction. In the compensated bump 

scheme, injected beam pulse length acceptance should be 560 ns containing 1st to 6th slices, 

whereas practically the acceptance is 190 ns, which include 1st and 2nd slices. Similarly in the 

uncompensated bump scheme, the pulse acceptance should be 380 ns containing 6th to 9th slices, 

whereas practically it is 280 ns, which includes 5th to 7th slices. In the uncompensated bump 

scheme, increase in pulse length of the accepted beam and improvement in the beam current is 

attributed to smaller residual betatron oscillation amplitudes of the accepted slices. In the 

uncompensated scheme by varying the injection angle, 5th slice acceptance is improved.  As 

per injection simulations, acceptance of this slice can be improved by changing the injection 

angle from 4.6 mrad to 4.4 mrad (figure 2.11 and 2.12). In the compensated bump scheme by 

varying the injection angle hardly any improvement is noticed. It may be due to the fact that 

the amplitudes of residual betatron oscillations of accepted slices are the same in the both cases. 
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Figure 2. 17 Accelerated beam current with 60 ns injected beam pulse in the compensated 

and uncompensated bump schemes. 
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Table 2. 2: Comparison between experiments and theoretical simulations of compensated 

and uncompensated injection schemes in terms pulse length acceptance of injected beam 

(T
pul

), accelerated beam current (I
acc

) and residual betatron oscillation amplitude (m) in a 

slice (pulse length 94 ns). Brackets in the columns of the two schemes denote the sequence 

number of the accepted slices.  

Mode of beam 

acceptance 

Resultant data at different mode of beam acceptance 

Compensated bump scheme Uncompensated bump scheme 

Θ 
Experimental 

Iacc (mA) 

Theoretical  

m(mm) 
Θ 

Experimental 

Iacc (mA) 

Theoretical   

m (mm) 

Tpulse = 500 ns 

(Nominal) 

-0
.4

 (
m

ra
d

) 

1.3 mA ---- 

4
.6

 (
m

ra
d

) 

3.2 mA ---- 

Tpulse = ~60 ns  

(Slice wise 

acceptance) 

0.25 mA(1) 10.5-12.8 mm(1) 0.1 mA(5) 9.2-6.5 mm(5) 

0.1 mA(2) 12.8-15.9 mm(2) 0.35 mA(6) 6.5-8.6 mm(6) 

---- ---- 0.25 mA(7) 8.6-15.3 mm(7) 

Tpulse of accepted 

total slices 

Pulse length 

<190 ns(1 to 2) 

Pulse length 

560 ns(1 to 6) 

Pulse length 

<280 ns(5 to 7) 

Pulse length 

380 ns(6 to 9) 

Tpulse = 500 ns 

(Nominal) 

-0
.4

 t
o
 0

.6
 (

m
ra

d
) 1.3 mA ---- 

4
.4

 t
o

 5
.2

 (
m

ra
d
) 

3.6 mA ---- 

Tpulse = ~60 ns  

(Slice wise 

acceptance) 

0.25 mA(1) 10.5-12.0 mm(1) 0.2 mA(5) 10.2-6.5 mm(5) 

0.1 mA(2) 12.0-14.5 mm(2) 0.35 mA(6) 6.5-8.4 mm(6) 

---- ---- 0.25 mA(7) 8.4-15.3 mm(7) 

Tpulse of accepted 

total slices 

Pulse length 

<190 ns(1 to 2) 

Pulse length 

560 ns(1 to 6) 

Pulse length 

<280 ns(5 to 7) 

Pulse length 

470 ns(5 to 9) 

 

The table 2.2 indicates that for experimentally accepted slices transverse acceptance is 

~15 mm, whereas as per the theoretical simulations it should be ~ 30 mm. In both the cases, 

the acceptance of one slice is higher in comparison to other slices, indicating that the slice with 

smaller amplitude of residual betatron oscillation contributes more to the final beam current. 

Within this allowable aperture, in the uncompensated bump scheme more slices contribute to 

beam current compared to the compensated bump scheme.  The above results suggest that 

uncompensated bump scheme can thus be applied to the synchrotron, which have a smaller 

beam acceptance. 
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2.3. Conclusions 

In the compensated injection scheme, twiss parameters ( and ) at the injection septum 

magnet have large values in order to constrain the amplitude of residual betatron oscillation of 

different slices during injection, bump slope or injection angle has to be adjusted.  

In the synchrotron beam acceptance is small. Its performance is improved with the 

adjustment of bump, bump slope and optimization of injection angle in such a way that after 

injection residual betatron oscillations increases by small values. It is possible to do so by 

employing an   uncompensated bump scheme in which the strengths of the kickers are not co-

related to one another unlike the compensated bump. In this scheme shorter injected beam pulse 

is accepted and the amplitudes of residual betatron oscillations of the few slices are smaller as 

compared to the compensated bump injection scheme. For example in the synchrotron in 

uncompensated bump scheme three slices have residual betatron oscillations less than 10 mm. 

Such a condition cannot be obtained in the compensated bump scheme. Thus performance of 

the synchrotron is better in uncompensated scheme as electrons with smaller residual betatron 

oscillations have higher probability to be accepted in it.  In this scheme, increase in the beam 

current is also achieved when the injection beam angle is regulated during beam injection by 

injecting the beam on the rising part of the septum magnet pulse. In view of the possibility of 

having smaller residual betatron oscillations of the injected slices, the uncompensated bump 

scheme thus may be applied to ring, which have smaller acceptance in the injection plane.   
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CHAPTER 3 

 

STUDY OF DOUBLE BEND ACHROMAT LATTICE 

 

In this chapter, beam optics of the double bend achromat lattice has been studied.  The 

double bend achromat lattice, consists of a double bend achromat (DBA structure) 

accompanied by sections having zero dispersion on both sides for accommodating insertion 

devices. In third generation synchrotron radiation source, the double bend achromat lattices 

have been widely used. The double bend achromat structure contains two dipole magnets and 

the drift space between two dipole magnets contains either a single focusing quadrupole magnet 

or combination of focusing and defocusing quadrupole magnets to form the achromat. In the 

structure, dispersion (η) function which is generated by the first dipole magnet is adjusted at 

the entry of the second dipole magnet in such a way that at the exit of the second dipole magnet 

dispersion function is zero. The zero dispersion function is helpful to avoid the beam emittance 

growth due to insertion devices.  

The achromat structure plays an important role in deciding the beam emittance and dynamic 

aperture. The beam emittance in a lattice is proportional to the cube of bending angle of its 

dipole magnet. The beam emittance thus can be reduced significantly by reducing the bending 

angle of the dipole magnet. Condition of achromaticity requires strong quadrupoles thus the 

chromaticity of the ring is high in such lattice In this case, dynamic aperture is reduced due to 

higher strengths of sextupole magnets, needed for chromaticity correction, which is a 

consequence of smaller dispersion function. In a storage ring with a smaller number of unit 

cells, bending angle is relatively large as compared to the rings with a higher number of unit 

cells. In the latter case, beam emittance is higher, and consequently sextupole strengths are 
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lower. The beam emittance in a given lattice can also be optimized with a proper choice of the 

achromat structure. 

In table-3.1 [53], double bend achromat structures for different synchrotron radiation 

sources are shown. In these structures, a symmetrical distribution of twiss parameters and 

dispersion function about the center of the achromat are achieved by using a single QF 

(focusing quadrupole magnet) or with combination of QF and QD (defocusing quadrupole 

magnet).  The table-3.1 also shows that in Elettra and Indus-2 storage ring QF-QD-QF structure 

has been adopted, and this gives lower ratio of the design beam emittance (𝜺𝒅𝒆𝒔 ) to the 

theoretical minimum beam emittance (𝜺𝒎𝒊𝒏) as compared to other combinations used in different 

storage rings. In Elettra storage ring, the emittance is further minimized by using a gradient in 

dipole magnets.  

 

Table 3. 1: DBA structure at different synchrotron radiation sources 
Ring 

 

Energy 

(GeV) 

𝜺min 

(nmrad) 

𝜺des 

(nmrad) 

Dipole  

Magnet 

𝜺des/ 𝜺min DBA structure 

CAMD 1.5 104.1 342 8 3.29 QF 

Indus-2 2.5 36.1 54 16 1.5 QF-QD-QF 

ANKA 2.5 36.1 72.8 16 2.01 QF 

ELETTRA 2.5 6.9 7 24 1.02 QF-QD-QF 

APS 7 2.3 8.22 80 3.63 QD-QF-QF-QD 

Spring-8 8 1.7 5.57 96 3.25 QD-QF-QF-QD 

Here εdes is the design beam emittance. 

 

 In the literature, no analytical approach is available for providing guidance on how to 

choose quadrupole magnets in the achromat part of a double bend achromat to obtain 

theoretical minimum beam emittance. In a double bend achromat, Chasman-Green lattice [24] 

represents the basic structure for low emittance synchrotron radiation sources. In this lattice, 
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single focussing quadrupole magnet (QF) is used to form an achromat. In this chapter, we carry 

out study of this structure assuming quadrupole magnets to be a thin lenses and derive an 

analytical expression, showing the limitation of this lattice in providing the theoretical 

minimum beam emittance. From the point of view of achieving the theoretical minimum 

emittance, analytical expressions are derived for the achromats having two, three and four 

quadrupole magnets. In a two quadrupole magnet structure, two focusing quadrupole magnets 

are used. The three and four-quadrupole magnet structures consist of three and four quadrupole 

magnets respectively. Indus-2 has a double bend achromat lattice in which its achromat part 

has QF-QD-QF structure. This analytical study is extended for Indus-2 addressing the issue of 

achromat length chosen for it.  

3.1 Beam emittance in a double bend achromat  

The horizontal beam emittance in a storage ring is determined by equilibrium between the 

rate of quantum excitation and the rate of damping of betatron oscillations in horizontal plane. 

For a double bend achromat (separated function, 𝑗𝑥 =1) structure, it is given by [8, 10, 54]  

𝜀 ≈ 𝐶𝑞𝛾𝑜
2𝜃𝑏

3 (
1

3

𝛽𝑜,𝑥

𝑙𝑏
−

1

4
𝛼𝑜,𝑥 +

1

20
𝛾𝑜,𝑥𝑙𝑏  )      

(3.1) 

Where 𝐶𝑞 :Compton wavelength of the electron, 𝛾𝑜 : reduced energy of the electrons, 𝜃𝑏 

:bending angle, 𝑙𝑏 : length of the dipole  magnet and 𝜌: bending radius . 𝛼𝑜,𝑥, 𝛽𝑜,𝑥 𝑎𝑛𝑑 𝛾𝑜,𝑥 are 

the horizontal twiss parameters at the beginning of the dipole magnet.  

The theoretically minimum emittance is searched by finding the optimum  𝛽𝑜,𝑥  and 𝛼𝑜,𝑥. 

With these optimum values, theoretically minimum beam emittance [29] is given by 

𝜀𝑚𝑖𝑛 = 𝐶𝑞𝛾𝑜
2𝜃𝑏

3
1

4√15
  

(3.2) 

Here 𝛼𝑜,𝑥
∗ = √15, 𝛽𝑜,𝑥

∗ = √
12

5
𝑙𝑏, 𝛽𝑚𝑖𝑛,𝑥

∗ = √
3

320
lb at 3/8lb of the dipole magnet, 𝛽𝑚𝑖𝑛,𝑥 is the 

minimum horizontal beta function inside the dipole magnet. 



96 

 

 

Neglecting 1/2 focusing, accordingly the horizontal phase advance (μBM,x) [11] in a dipole 

magnet is given by  

μBM,x = ∫
ds

(𝛽𝑜,𝑥 − 2𝛼𝑜,𝑥𝑠 + 𝛾𝑜,𝑥𝑠2)

lb

0

     
(3.3) 

The twiss parameter (𝛽1,𝑥, 𝛼1,𝑥) at the exit of the dipole magnet for the minimum beta function, 

which is located at 3/8lb of the dipole magnet, can be obtained from  

𝛽1,𝑥 = 𝛽𝑚𝑖𝑛,𝑥 +
𝑠2

𝛽 𝑚𝑖𝑛,𝑥
  

(3.4) 

𝛼1,𝑥 = −
1

2

𝑑𝛽1,𝑥

𝑑𝑠
=   −

𝑠

𝛽𝑚𝑖𝑛,𝑥
 

(3.5) 

Here s is the distance of the exit of the dipole magnet from the point where  𝛽𝑥 is 𝛽𝑚𝑖𝑛,𝑥. 

From equation (3.4 and 3.5), ratio between 𝛽1,𝑥 and 𝛼1,𝑥is  

𝛽1,𝑥

𝛼1,𝑥
= −(

𝛽𝑚𝑖𝑛,𝑥
2

𝑠
+ 𝑠) = ~ − 𝑠 

(3.6) 

The dispersion-function generated by a dipole magnet [11] at its exit is given by   

𝜂1 = 𝜌(1 − cos𝜃)  (3.7) 

𝜂1
/
= sin𝜃 (3.8) 

A transfer matrix to transform dispersion function of the electron beam from one location 

(say 1) to another location (say 2) with the help of twiss parameters and betatron phase [11] 

advance is given by   

[
𝜂2

𝜂2
/] =

[
 
 
 
 
 

√
𝛽2,𝑥

𝛽1,,𝑥

(cos∆𝜇 + 𝛼1.𝑥sin∆𝜇) √𝛽1,𝑥𝛽2,𝑥sin∆𝜇

−
1 + 𝛼1,𝑥𝛼2,𝑥

√𝛽1,𝑥𝛽2,𝑥

sin∆𝜇 +
(𝛼1,𝑥 − 𝛼2,𝑥)

√𝛽1,𝑥𝛽2,𝑥

cos∆𝜇 √
𝛽1,𝑥

𝛽2,𝑥
(cos∆𝜇 − 𝛼2,𝑥sin∆𝜇)

]
 
 
 
 
 

[
𝜂1

𝜂1
/] 

             (3.9) 
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Here (𝛽1,𝑥, 𝛼1,𝑥) and (𝛽2,𝑥, 𝛼2,𝑥) are twiss parameters at location 1 and 2 respectively and  ∆𝜇 

is the phase advance between 1 and 2. 

The achromatic condition can be obtained by matching the twiss parameters at the exit of 

first dipole magnet (𝛽1,𝑥 , 𝛼1,𝑥) with those at the entry of second dipole magnet (𝛽1,𝑥, −𝛼1,𝑥), in 

this case transfer matrix equation (3.9) can be rewritten as 

[
𝜂1

−𝜂1
/]

2

= [
cos𝜇𝑠𝑡𝑟𝑢,𝑥 + 𝛼1,𝑥sin𝜇𝑠𝑡𝑟𝑢,𝑥 𝛽1,𝑥sin𝜇𝑠𝑡𝑟𝑢,𝑥

−
(1−𝛼1,𝑥

2 )sin𝜇𝑠𝑡𝑟𝑢,𝑥−2𝛼1,𝑥cos𝜇𝑠𝑡𝑟𝑢,𝑥

𝛽1,𝑥
cos𝜇𝑠𝑡𝑟𝑢,𝑥 + 𝛼1,𝑥sin𝜇𝑠𝑡𝑟𝑢,𝑥

] [
𝜂1

𝜂1
/]

1

             (3.10) 

Here, μstru,x is phase advance between the two dipole magnets.  

The phase advance (𝜇𝑠𝑡𝑟𝑢,𝑥) between the two dipole magnet is estimated from solving 

equation (3.10), which is estimated by following equations 

cos 𝜇𝑠𝑡𝑟𝑢,𝑥 =

(
𝜂1

𝜂1
/)

2

− (𝛼1,𝑥
𝜂1

𝜂1
/ + 𝛽1,𝑥)

2

(
𝜂1

𝜂1
/)

2

+ (𝛼1,𝑥
𝜂1

𝜂1
/ + 𝛽1,𝑥)

2  

(3.11) 

sin 𝜇𝑠𝑡𝑟𝑢,𝑥 =
2𝜂1(𝛼1,𝑥𝜂1 + 𝛽1,𝑥𝜂1

/
)

𝜂1
2 + (𝛼1,𝑥𝜂1 + 𝛽1,𝑥𝜂1

/
)
2 

(3.12) 

tan(
𝜇𝑠𝑡𝑟𝑢,𝑥

2
) = |𝛼1,𝑥 + 𝛽1,𝑥

𝜂1
/

𝜂1
| 

(3.13) 

𝜇𝑠𝑡𝑟𝑢,𝑥 is obtained by solving equation (3.11) and (3.12) or with equation (3.13), those solutions 

of 𝜇𝑠𝑡𝑟𝑢,𝑥 will be preferred for which μstru,x is less than 180o. The total phase advance (𝜇𝑐𝑒𝑙𝑙,𝑥) 

in the achromat cell (from the starting point of the first dipole magnet to the exit point of the 

second dipole magnet) is given by 

𝜇𝑐𝑒𝑙𝑙,𝑥 = 2𝜇𝐵𝑀,𝑥 + 𝜇𝑠𝑡𝑟𝑢,𝑥  (3.14) 

For a given beam emittance, initial twiss parameters of the achromat is selected from 

equation (3.1). From these parameters, phase advance requirement within a dipole magnet is 

obtained by equation (3.3) and between the two dipole magnets, it is decided by equations 
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(3.11) and (3.12). For the theoretical minimum beam emittance, horizontal phase advance 

between the two dipole magnets (µ
𝑠𝑡𝑟𝑢,𝑥
∗ ) and within a dipole magnet (𝜇𝐵𝑀,𝑥

∗ ) are ~122o and 

156.7o respectively. Accordingly from equation (3.14), horizontal phase advance in the 

achromat for the theoretical minimum beam emittance is ~435o.  

In figure 3.1, horizontal phase advance requirement between two dipole magnets for 

different values of beam emittance (which is obtained from equation 3.1, with the variation of 

initial twiss parameters), is plotted by considering a dipole magnet having 𝜃𝑏 = 22.5o, 𝑙𝑏= 

2.18 m, beam energy (E) 2.5 GeV (parameters of Indus-2). 

 

Figure 3. 1 A requirement of phase advance (stru,x) between two dipole magnets (from the 

exit of first dipole magnet to entry of second dipole magnet) of a double bend achromat 

structure, versus beam emittance by considering parameters of Indus-2 (b = 22.5o,lb = 

2.18 m, E(beam energy) = 2.5 GeV). 

3.2. Double bend achromat structure  

For a given beam emittance, the achromatic condition is satisfied with a proper relationship 

between dispersion function and twiss parameters, which is obtained with the help of 

quadrupole magnets. In the achromat section, an electron beam coming out from the first dipole 
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magnet passes through a drift space and then enters the quadrupole magnet. In thin lens 

approximation phase advance within a quadrupole magnet (∆𝜇) is negligible. With this 

approximation, with the help of equation (3.9), the dispersion function (𝜂3) and its derivative 

(𝜂3
/
)  at the exit of the first quadrupole magnet are related to those at its entrance 𝜂2, 𝜂2

/
 are 

given by 

[
𝜂3

𝜂3
/] = [

1 0

−  
(𝛼3,𝑥 − 𝛼2,𝑥)

𝛽2,𝑥
1
] [

𝜂2

𝜂2
/] 

(3.15) 

Here 𝛼2,𝑥 and 𝛼3,𝑥 are 𝛼-functions at the entrance and at the exit of the quadrupole magnet 

respectively. In thin lens approximation 𝛽3,𝑥 = 𝛽2,𝑥and 𝜂3 = 𝜂2 are assumed. 

From equation (3.15), integrated strength of quadrupole magnet (𝑘𝑄𝑃) is  

𝑘𝑄𝑃 = −
(𝛼3,𝑥 − 𝛼2,𝑥)

𝛽2,𝑥
=

(𝜂3
/
− 𝜂2

/
)

𝜂2
  

(3.16) 

𝜂3
/

= 𝜂2 {−
(𝛼3,𝑥 − 𝛼2,𝑥)

𝛽2,𝑥
+

𝜂2
/

𝜂2
} 

(3.17) 

In the horizontal plane, focusing and defocusing action of the quadrupole magnet will be 

decided by α3,x. For  𝛼3,𝑥 >  𝛼2,𝑥, quadrupole magnet is QF and for   𝛼3,𝑥 <  𝛼2,𝑥, quadrupole 

magnet is QD. Thus strength of QF is negative and strength of QD is positive.  

Now the feasibility of achieving the required phase advance in achromats of double bend 

achromat having (1) one QF (2) two QFs (3) a combination of three quadrupole magnets 

(consisting different combination of QFs and QD) and (4) a combination of four quadrupole 

magnets consisting of QFs and QDs are discussed. 

3.2.1 With single quadrupole magnet (Basic Chasman-Green structure) 

In this structure, one quadrupole magnet is placed at the center of the drift space between 

the two dipole magnets (figure 3.2). The length of drift space, from exit of the first dipole 

magnet to center of quadrupole magnet is 𝑙1. The strength of quadrupole magnet is adjusted 
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such that an electron entering the first dipole magnet with zero dispersion (𝜂𝑜) and derivative 

of 𝜂𝑜 (𝜂𝑜
/
) comes out second dipole magnet with zero 𝜂𝑜 and 𝜂𝑜

/
. This condition is satisfied 

with the help of focusing quadrupole magnet (QF) with defocusing quadrupole magnet (QD) 

above condition cannot be satisfied. The η-function and its derivative after the drift space of 

length 𝑙1, at which QF is located is given by  

𝜂2 = 𝜌(1 − cosθ) + 𝑙1sinθ (3.18) 

𝜂2
/

= sinθ (3.19) 

 

Mirror symmetry
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Figure 3. 2. Layout of double bend achromat with single QF. At ith location 𝜷,𝜶, 𝜼 and / 

function is denoted by 
i,z i,z,i

 and 
i
/ respectively, here i=0 and 1 entrance and exit of 

dipole  magnet(BM), similarly i=2 and 3 entrance and exit of the QF. Here z=x or y for 

horizontal or vertical planes respectively. 

 

To satisfy achromatic condition and to have a mirror symmetrical distribution of beta -

functions about the center of QF, at the QF, 𝛼3,𝑥 = −𝛼2,𝑥 (𝜂3
/
= −𝜂2

/
), so from equation (3.16), 

integrated strength of QF is given by  

𝑘𝑄𝐹 =
2𝛼2,𝑥

𝛽2,𝑥
= −

2𝜂2
/

𝜂2
 

(3.20) 

For a small bending angle,  
𝜂2

𝜂2
/  from equation (3.18 and 3.19) is equal to ~𝑙1 +

𝑙𝑏

2
.  The ratio 

𝛽2,𝑥

𝛼2,𝑥
 from equation (3.20) is 
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𝛽2,𝑥

𝛼2,𝑥
~ − (𝑙1 +

1

2
𝑙𝑏) 

(3.21) 

From equation (3.6), 
𝛽2,𝑥

∗

𝛼2,𝑥
∗   for the theoretical minimum beam emittance is written as  

𝛽2,𝑥
∗

𝛼2,𝑥
∗ ~ −  (𝑙1 +

5

8
𝑙𝑏) 

(3.22) 

The difference between  
𝛽2,𝑥

∗

𝛼2,𝑥
∗   and 

𝛽2,𝑥

𝛼2,𝑥
 of the minimum beam emittance and of Chasman-Green 

structure is obtained from equation (3.22) and (3.21), which is given by 

𝛽2,𝑥
∗

𝛼2,𝑥
∗ −

𝛽2,𝑥

𝛼2,𝑥
~ −

𝑙𝑏
8

 
(3.23) 

The equation (3.23) shows that due to this difference, in a basic Chasman-Green structure, 

minimum beam emittance cannot be achieved. The optimum twiss parameters for minimum 

beam emittance in the case of basic Chasman-Green structure (𝜀𝐶𝐺,𝑚𝑖𝑛)has to be redefined. The 

𝛽2𝑥

𝛼2𝑥
 (equation (3.21)) in terms of initial twiss parameters is written as  

 
𝛽2,𝑥

𝛼2,𝑥
=

𝛽𝑜,𝑥 − 2𝛼𝑜,𝑥(𝑙1 + 𝑙𝑏) + 𝛾𝑜,𝑥(𝑙1 + 𝑙𝑏)
2

𝛼𝑜,𝑥 − 𝛾𝑜,𝑥(𝑙1 + 𝑙𝑏)
=   −(𝑙1 +

1

2
𝑙𝑏)    

(3.24) 

From equation (3.24), 𝛾𝑜  is written as  

𝛾𝑜,𝑥 =
1 + 𝛼𝑜,𝑥

2

𝛽𝑜,𝑥
=

𝛼𝑜,𝑥(2𝑙1 + 3𝑙𝑏) − 2𝛽0,𝑥

(𝑥 + 𝑙𝑏)𝑙𝑏
 

(3.25) 

The relation between  𝛽𝑜,𝑥   and 𝛼𝑜,𝑥 is obtained with the help of equation (3.25),  

𝜕𝛼𝑜,𝑥

𝜕𝛽𝑜,𝑥
=

𝛼𝑜,𝑥(2𝑙1 + 3𝑙𝑏) − 4𝛽𝑜,𝑥

2𝑙𝑏(𝑙1 + 𝑙𝑏)𝛼𝑜,𝑥 − (2𝑙1 + 3𝑙𝑏)𝛽𝑜,𝑥
  

(3.26) 

For the basic Chasman-Green structure, initial value of twiss parameters at the start of achromat 

should follow the relation (3.26). Here, the optimum values of twiss parameters are obtained 

by solving equation (3.1), (3.25) and (3.26). After solving the above equations, the value of 

𝛽𝑜,𝑥    in terms of 𝛼𝑜,𝑥 is 
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𝛽𝑜,𝑥 = 𝛼𝑜,𝑥𝑙𝑏 {
29𝑙1𝑙𝑏 + 22𝑙1

2 + 10𝑙𝑏
2

52𝑙1𝑙𝑏 + 18𝑙𝑏
2 + 40𝑙1

2} = 𝐶1𝛼𝑜,𝑥𝑙𝑏   
(3.27) 

Where 

𝐶1 = 𝐶𝑜𝑛𝑠𝑡 =
29𝑙1𝑙𝑏+22𝑙1

2+10𝑙𝑏
2

52𝑙1𝑙𝑏+18𝑙𝑏
2+40𝑙1

2   (3.28) 

𝛼𝑜,𝑥 is estimated by equation (3.24), after substituting 𝛽𝑜,𝑥 from equation (3.27) 

𝛼𝑜,𝑥 = ±√
(𝑙1 + 𝑙𝑏)

𝐶1{(2𝑙1 + 3𝑙𝑏) − 2𝐶1𝑙𝑏} − (𝑙1 + 𝑙𝑏)
      

(3.29) 

The equation (3.29) gives two roots of 𝛼𝑜,𝑥, with positive root beta function reduces in the 

dipole magnet, this is required to obtain the minimum beam emittance. Thus positive root of  

𝛼𝑜,𝑥 is selected to obtain minimum beam emittance.  

The expression for the beam emittance (εCG ) in the basic Chasman-Green structure with 

the help of equation (3.1), (3.27) and (3.29) is 

𝜀𝐶𝐺 = 𝐶𝑞𝛾𝑜
2𝜃𝑏

3
1

𝑗𝑥
[

(20𝐶1𝑙1 + 14𝐶1𝑙𝑏 − 9𝑙1 − 6𝑙𝑏)

60(𝑙1 + 𝑙𝑏)3/2√(2𝐶1𝑙1 + 3𝐶1𝑙𝑏 − 2𝐶1
2𝑙𝑏 − 𝑙1 − 𝑙𝑏)

] 
(3.30) 

The horizontal phase advance in the achromat (𝜇𝑐𝑒𝑙𝑙,𝑥)is given by integrating the equation (3.3) 

over the length of achromat from the start of achromat up to the end of the achromat 2(𝑙1 + lb). 

The expression for 𝜇𝑐𝑒𝑙𝑙,𝑥 can be written as 

𝜇𝑐𝑒𝑙𝑙,𝑥 = 2[tan−1{𝛾𝑜,𝑥(𝑙1 + 𝑙𝑏) − 𝛼𝑜,𝑥} − tan−1(−𝛼𝑜,𝑥)]         (3.31) 

For minimum beam emittance in Chasman-Green structure, 𝑙1 ≫ 𝑙𝑏, for this 𝐶1~ 

0.55, 𝛼𝑜,𝑥~3.16, 𝛽𝑜,𝑥~1.74𝑙𝑏, and 𝜀𝐶𝐺,𝑚𝑖𝑛 is  

𝜀𝐶𝐺,𝑚𝑖𝑛 ≅ 𝐶𝑞𝛾𝑜
2𝜃𝑏

3
1

2.45√15
  

(3.32) 

By using equation (3.2) and (3.32), ratio between minimum beam emittance in Chasman-Green 

structure to theoretical minimum beam emittance is given by   
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𝜀𝐶𝐺,𝑚𝑖𝑛

𝜀𝑚𝑖𝑛
 ~1.63 (3.33) 

This indicates here that the minimum beam emittance in the Chasman-Green structure is 

63  % higher as compared to theoretical minimum beam emittance.  

In this structure 𝛽2,𝑥 at QF is given by 

𝛽2,𝑥 = 𝛽𝑜,𝑥 {1 +
(𝑙1 + 𝑙𝑏)

𝐶1𝑙𝑏
}
2

+
(𝑙1 + 𝑙𝑏)

2

𝛽𝑥𝑜
   

(3.34) 

In vertical plane twiss parameters 𝛼2,𝑦 at QF location are determined by defocusing action 

of QF. To obtain symmetrical solution 𝛽2,𝑦 is a free parameter, which should be kept at 

minimum value.  𝛼2,𝑦 is estimated on the basis of QF strength, which is given by  

𝛼2,𝑦 = −
𝑘𝑄𝐹𝛽2,𝑦

2
= +

𝛽2,𝑦

(𝑙 1 +
1
2 𝑙𝑏)

  
(3.35) 

From this relation initial vertical beta (𝛽𝑜,𝑦) at the start of the achromat is back calculated for 

a given length of −(𝑙1 + 𝑙𝑏). Its relation is   

𝛽𝑜,𝑦 =
{𝛽2,𝑦 + 𝛼2,𝑦(𝑙1 + 𝑙𝑏))}

2
+ (𝑙1 + 𝑙𝑏)

2

𝛽2,𝑦
    

(3.36) 

By using the relation of α2,y, the equation (3.36) can be rewritten in the following form.  

𝛽𝑜,𝑦 =  𝛽2,𝑦 {1 +
(𝑙1 + 𝑙𝑏)

(𝑙1 +
1
2 𝑙𝑏)

}

2

+
(𝑙1 + 𝑙𝑏)

2

 𝛽2,𝑦
     

(3.37) 

Now we will see the variation of 𝜇𝑐𝑒𝑙𝑙,𝑥, 𝜀𝐶𝐺/𝜀𝑚𝑖𝑛, 𝛽2,𝑥, 𝛽𝑜,𝑦 versus 𝑙1 by using equation 

(3.31), (3.30), (3.34) and (3.37) respectively for Indus-2 conditions for  𝛽2,𝑦 = 4 𝑚. The figure-

3.3 shows that initially 𝜀𝐶𝐺/𝜀𝑚𝑖𝑛 reduces on increasing the gap between the dipole magnet and 

focusing quadrupole magnet (𝑙1). After certain 𝑙1, this reduction becomes negligible. The phase 

advance in the achromat cell ( μ
cell,x

) increases slowly due to a high value of horizontal beta 
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function. The maximum value of  μ
cell,x

  is~320o, in which contribution of dipole magnet 

(μ
BM,x

) is~290o and structure (μ
stru,x

) is~30o. 
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Figure 3. 3For the basic Chasman-Green structure CG/min,2,x(m),o,y(m) and cell,x(deg.) 

versus l1 (length between from the exit of dipole  magnet to the center of the achromat)  for 

Indus-2 parameters (b=22.5o, lb=2.18 m,2,y=4 m and E=2.5 GeV). The calculations have 

been carried out by using equation (3.31), (3.30), (3.34) and (3.37). 

 

In the structure, preferred location for horizontal chromaticity correcting sextuple magnet 

(SF) and vertical chromaticity correcting sextuple magnet (SD) is near QF and dipole magnet 

respectively. Strength of SF is inversely proportional to 𝛽2,𝑥 and 𝜂2[17]. As a result, as 𝑙1 

increases, strength of SF and SD will be reduced due to a higher value of  𝛽2,𝑥 𝑎𝑛𝑑  𝜂2 near 

QF and higher value of vertical beta function (𝛽1,𝑦) near dipole magnet location respectively. 

However, due to a large value of beta function (𝛽2,𝑥 and 𝛽𝑜,𝑦), physical acceptance will be 

reduced as well as sensitivity towards linear and nonlinear imperfections will be increased, and 

this imposes a practical limitation to the keep a higher value of maximum horizontal and 

vertical beta function.  
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3.2.2. With two quadrupole magnets (QF-QF structure) 

We have shown above that with one QF, phase advance requirement for the theoretical 

minimum beam emittance is not feasible. To study this, two focusing quadrupole magnet 

structure is discussed. Here the strength of focusing quadrupole magnet and gap between the 

two focusing quadrupole magnets (𝑙2) are available for optimization. In this case, it is possible 

to make 𝛼-function positive, as a result higher value of  phase advance can be generated due to 

small value of 𝛽𝑥. In order to obtain the mirror symmetry about the center of the achromat, two 

focusing quadrupole magnets are placed symmetrically about the center of the achromat (as 

shown in figure 3.4). 
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Figure 3. 4 Layout of a double bend achromat with two QFs. At ith location 𝜷,𝜶, 𝜼 and / 

function is denoted by 
i,z i,z,i

 and 
i
/ respectively, here i=0 and 1 at entrance and exit of 

dipole  magnet, i=2 and 3 at entrance and exit of QF. Here z=x or y for horizontal or vertical 

planes respectively. 

 

The phase advance(∆𝜇𝑄𝐹) between the two QFs can be obtained by equating the elements 

of the transfer matrix used in equation (3.9, 3.10) with transfer matrix of drift space of 

length 2𝑙2 and is given by  

(

𝑐𝑜𝑠Δ𝜇𝑄𝐹 + 𝛼3,𝑥𝑠𝑖𝑛Δ𝜇𝑄𝐹 𝛽2,𝑥𝑠𝑖𝑛Δ𝜇𝑄𝐹

−
(1 − 𝛼3,𝑥

2)𝑠𝑖𝑛Δ𝜇𝑄𝐹 − 2𝛼3,𝑥𝑐𝑜𝑠Δ𝜇𝑄𝐹

𝛽2,𝑥
𝑐𝑜𝑠Δ𝜇𝑄𝐹 + 𝛼3,𝑥𝑠𝑖𝑛Δ𝜇𝑄𝐹

)  

= (
1 2𝑙2
0 1

)  

(3.38) 
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∆𝜇𝑄𝐹 = 𝑠𝑖𝑛−1
2𝑙2
𝛽2,𝑥

  
(3.39) 

From equation (3.39), it can be seen that the phase advance for minimum beam emittance can 

be obtained, for which a suitable 𝛼3,𝑥 is required, which is always positive. 𝛼3,𝑥 is governed by 

the achromatic condition, according to which, the derivative of dispersion function has to be 

zero between the two QFs.  From equation (3.17) 

−
(𝛼3,𝑥 − 𝛼2,𝑥)

𝛽 2,𝑥
+

𝜂2
/

𝜂2
= 0 

(3.40) 

Thus required strength of each QF by using equation (3.16) will be given by 

𝑘𝑄𝐹 = −
(𝛼3,𝑥 − 𝛼2,𝑥)

𝛽2,𝑥
= −

𝜂2
/

𝜂2
  = −  

1

𝑙1 +
𝑙𝑏
2

  
(3.41) 

Accordingly  

𝛼3,𝑥 = 𝛼2,𝑥 +  
𝛽2,𝑥

𝑙1 +
𝑙𝑏
2

  
(3.42) 

𝛼3,𝑥 is required as per equation (3.42) and is generated by choosing a suitable strength of QF. 

For the theoretical minimum beam emittance, 𝛼3,𝑥 can be estimated on the basis of initial twiss 

parameter of dipole magnet after substituting 𝛼2,𝑥 = 𝛼2,𝑥
∗ , 𝛽3,𝑥 = 𝛽2,𝑥 = 𝛽2,𝑥

∗  term in equation 

(3.42).  

𝛼3,𝑥 =
1

(𝑙1 +
𝑙𝑏
2)𝛽𝑚𝑖𝑛,𝑥.

{𝛽𝑚𝑖𝑛,𝑥
2 +

𝑙𝑏
8

(
5𝑙𝑏
8

+ 𝑙1)}   
(3.43) 

When  𝑙1 = 0, α2,x
∗   ~ − 6.45, β

2,x
∗ = 4.13𝑙b and from (3.43) α3,x is 1.81 

The point in the drift space, where 𝛼 becomes zero is called the center of the achromat. At 

the center of achromat, α is zero, with this condition, 𝑙2 can be estimated and is given by 

equation (3.44). Variation of 𝑙2 with 𝑙1is plotted in figure 3.5.  
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𝑙2 =
𝛼3,𝑥𝛽2,𝑥

1 + 𝛼3,𝑥
2   

(3.44) 

 

Figure 3. 5 In QF-QF structure of a double bend achromat, for theoretical minimum beam 

emittance l2 (gap from exit of QF to center of achromat) versus l1 (gap from exit of dipole 

magnet to QF) is plotted for lb= 2.18 m. The calculation has been performed by using 

equation (3.44) and (3.43). 

 

The figure 3.5 shows that for a shorter 𝑙2, QF should be close to dipole magnet (small 𝑙1). 

Normally the separation between the dipole magnet and QF is more than 0.5 m, keeping in 

view the finite length of the quadrupole magnet and space requirement of other elements such 

as beam position monitors, steering magnet etc. For example in the case of Indus-2, the length 

of dipole  magnet is 2.18 m and the gap between dipole  magnet and QF is ~0.75 m  for this 

gap the gap between the two QFs (2𝑙2) should be around 18 m to achieve the condition of 

theoretical minimum beam emittance.  

At QF location, twiss parameters will be decided on the basis of initial twiss parameters at 

the start of achromat. In this way, 𝑙2 is related to the beam emittance (the initial twiss 

parameters at the start of achromat). The variation of allowable minimum beam emittance with 

different choices of 𝑙2 for Indus-2 is plotted in figure 3.6, which also shows that for theoretically 
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minimum beam emittance gap between two QFs is 18m. The figure-3.6 also shows that by 

increasing the gap between the two focusing quadrupole magnet beam emittance reduces with 

a higher value as compared to single focusing quadrupole magnet.  
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Figure 3. 6 In QF-QF structure of a double bend achromat, variation of l2 (gap from exit of 

QF to center of achromat) versus the allowable ratio of achievable minimum beam emittance 

(/min) is plotted for Indus-2 parameters (b=22.5o, lb= 2.18 m, l1=0.75 m and E=2.5 GeV). 

The calculation has been performed by using equation (3.1), (3.4), (3.41) and (3.44).). 

 

In the vertical plane, to get a symmetric solution α4,y  is zero, twiss parameters  

𝛽3,𝑦 (𝛽2,𝑦)  𝑎𝑛𝑑 𝛼3,𝑦  at QF location is 

  𝛽2,𝑦 = 𝛽4,𝑦 +
𝑙2

2

𝛽4,𝑦
 

(3.45) 

 𝛼3,𝑦 = 
𝑙2

𝛽4,𝑦
 

(3.46) 

The defocusing action of QF will change,  α3,yin following way  



109 

 

 

𝛼2,𝑦 =  𝛼3,𝑦 +
𝛽2,𝑦

(𝑙1 +
1
2 𝑙𝑏)

  
(3.47) 

The above equation shows that at QF location 𝛽2,𝑦 will be higher as compared to that at the 

center of achromat. The twiss parameters 𝛽2,𝑦 and 𝛼2,𝑦 depend up on 𝑙2. The initial 𝛽𝑜,𝑦 can be 

obtained from equation (3.36) after using twiss parameters at QF location (𝛽2,𝑦 and 𝛼2,𝑦 ). Thus 

𝛽𝑜,𝑦 is increased for higher length of 𝑙2. 

In the QF-QF structure preferred location of SF and SD is close to QF and dipole magnet 

respectively. Due to small gap between QF and BM (𝑙1) beta function are not well decoupled 

in horizontal and vertical plane. Thus higher strength of chromaticity correcting sextupole 

magnets are required, which will degrade the dynamic aperture. 

3.2.3. With three quadrupole magnets  
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Figure 3. 7 Layout of double bend achromat structure with three quadrupoles (QP1-QP2-

QP1). At ith location 𝜷, 𝜶, 𝜼 and / function is denoted by 
i,z 
i,z,i

 and 
i
/ respectively,  here 

i=0 and 1 at entrance and exit of dipole  magnet(BM), i=2 and 3 at entrance and exit of QP1, 

i=4 and 5 at entrance and exit of QP2. Here z=x or y for horizontal or vertical planes 

respectively. 

 

In the case of QF-QF structure, the gap between the two QFs decides the minimum beam 

emittance. Further in the vertical plane, focusing action is not available to control the vertical 

beta function. In this structure, by inclusion of third quadrupole magnet, we will study that 

whether the gap between two quadrupole magnets is freely adjustable as compared to QF-QF 

structure and in the vertical plane any control on the twiss parameters are possible. In figure-
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3.7 a schematic layout of three quadrupole magnets (QP1-QP2-QP1) structure is shown.  Here 

QP2 is at centre of the achromat with two QP1s placed mirror symmetrically on its either side 

at a distance of 𝑙2. 

 

At the exit of QP1 𝜂3
/
 is estimated from equation (3.17). 

𝜂3
/
= 𝜂2 {−

𝛼3,𝑥

𝛽2,𝑥
+

𝛼2,𝑥

𝛽2,𝑥
+

𝜂2
/

𝜂2
}    

(3.48) 

For the theoretical minimum beam emittance, after substituting 𝛼2,𝑥 = 𝛼2,𝑥
∗ , 𝛽2,𝑥 = 𝛽2,𝑥

∗  and 

𝜂2
/

𝜂2 = 1 (𝑙1 +
𝑙𝑏

2
⁄ )⁄   in equation (3.48)  

𝜂3
/
= 𝜂2 {

𝛽2,𝑥
∗ 𝐶2 − 𝛼3,𝑥

𝛽2,𝑥
∗ }   

(3.49) 

Where 

𝐶2 =
𝛽𝑚𝑖𝑛,𝑥

2 . +
𝑙𝑏
8 (𝑙  1 +

5𝑙𝑏
8 )

[𝛽𝑚𝑖𝑛,𝑥
2 . + (𝑙1 +

5𝑙𝑏
8 )

2

] (𝑙1 +
𝑙𝑏
2)

   

(3.50) 

  𝐶2𝛽2,𝑥
∗ =

𝛽𝑚𝑖𝑛,𝑥
2 +

𝑙𝑏
8 (𝑙1 +

5𝑙𝑏
8 )

𝛽𝑚𝑖𝑛,𝑥(𝑙1 +
𝑙𝑏
2)

 

(3.51) 

From equation (3.49) and (3.16), 𝑘𝑄𝑃1 is given by 

𝑘𝑄𝑃1 =
𝜂3

/

𝜂2 
– 

𝜂2
/

𝜂2 
 = {

𝛽2,𝑥
∗ 𝐶2 − 𝛼3,𝑥

𝛽2,𝑥
∗ } − 𝑐3 

(3.52) 

Where 𝑐3=
1

𝑙𝑏
2
+𝑙1

. The nature of 𝜂3
/
 is decided by 𝛼3,𝑥 or vice versa. With the help of 𝜂3

/
 at 

entrance of QP2, 𝜂4, 𝜂4
/
 are governed by the following relations.   

𝜂4 = 𝜂2 + 𝜂3
/
𝑙2 (3.53) 

𝜂4
/
= 𝜂3

/
 (3.54) 
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For achromatic condition, it is required that at the exit of QP2 𝛼5 = −𝛼4, and 𝜂5
/
= −𝜂4

/
. To 

satisfy these conditions the required integrated strength of QP2 (𝑘𝑄𝑃2) is given by  

𝑘𝑄𝑃2 = −
2𝜂4

/

𝜂4
  = −2(

𝜂3
/

𝜂2 + 𝜂3
/
𝑙2

)   =
2𝛼4,𝑥

𝛽4,𝑥
 

(3.55) 

From equation (3.52) and (3.55), 𝑘𝑄𝑃1 and 𝑘𝑄𝑃2 are related by following equation 

𝑘𝑄𝑃2 = −
2(𝑘𝑄𝑃1 + 𝑐3)

𝑙2(𝑘𝑄𝑃1 + 𝑐3) + 1
  

(3.56) 

The above equation in terms of twiss parameters is rewritten as 

𝑘𝑄𝑃2 = −
2(𝐶2𝛽2,𝑥

∗ − 𝛼3,𝑥)

𝑙2(𝐶2𝛽2,𝑥
∗ − 𝛼3,𝑥) + 𝛽2,𝑥

∗
 

(3.57) 

In thin lens approximation, twiss parameters at QP2 location are estimated by using following 

relation   

𝛽4,𝑥 = 𝛽2,𝑥
∗ − 2𝛼3,𝑥𝑙2,𝑥 + 𝛾3,𝑥𝑙2 

2  (3.58) 

   𝛼4,𝑥 = 𝛼3,𝑥 − 𝛾3,𝑥𝑙2  (3.59) 

Accordingly, 𝑙2 can be obtained after substituting the relation of 𝛽4,𝑥 and 𝛼4,𝑥, from equation 

(3.58) and (3.59) into equation (3.55) and we get 

𝑙2 =
𝐶2𝛽2,𝑥

∗2

𝐶2𝛽2,𝑥
∗ 𝛼3,𝑥 + 1

  
(3.60) 

From equation (3.60), 𝑙2 is decided by the relation between 𝛼3,𝑥 and 𝐶2𝛽2,𝑥
∗ , in which  𝐶2𝛽2,𝑥

∗  

is a constant. (From equation (3.51). The only parameter, which can be varied is α3,x, for 

different values of 𝛼3,𝑥, nature and strengths of QP1 and QP2 and 𝑙2 can be estimated. As an 

example for minimum beam emittance, requirement of  𝑙2, the nature of QP2, for different 

α3,xis discussed below with the help of equation (3.49), (3.52), (3.57) and (3.60). In this 

example for 𝑙1 = 0 following parameters are taken, 𝛼2,𝑥
∗ = −6.45 (from equation (3.5), 𝛽2,𝑥

∗ =

4.13𝑙𝑏 (from equation (3.4) and 𝐶2𝛽2,𝑥
∗ = 1.7 (from equation (3.51)). 
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Case-1 QF-QD-QF structure 

If 𝐶2𝛽2,𝑥
∗ ,<  𝛼3,𝑥 < 𝐶2𝛽2,𝑥

∗ +
𝛽2,𝑥

∗

𝑙2
 then from equation (3.52) QP1 is QF. From equation (3.49), 

at the exit of QP1 the derivative of dispersion function is negative and from equation (3.57) 

QP2 is QD, thus above structure is QF-QD-QF. In equation (3.60), 𝛼3,𝑥 is in the denominator, 

so by keeping a higher value of 𝛼3,𝑥, 𝑙2 can be reduced. For example if 𝛼3,𝑥 = 2𝐶2𝛽2,𝑥
∗   then 

𝑙2~𝑙𝑏 

Case-2 QF-QF structure 

If 𝛼3,𝑥 = 𝐶2𝛽2,𝑥
∗ , then from equation (3.52) QP1 is QF. In this case, from equation (3.49) the 

derivative of dispersion function is zero. It can be seen from equation (3.57) that at the center 

of achromat, QP2 is not required. This is the case of QF-QF structure. In this case 𝑙2 = 1.6𝑙𝑏 

which is higher than to that of case-1. 

Case-3 QF-QF-QF structure  

If −
1

C2β2,x
∗ < α3,x ≤ C2β2,x

∗ , the above range of 𝛼3,𝑥is decided by equation (3.60) such that 𝑙2 

has a finite value. In this case QP1 is QF, from equation (3.52) and at the exit of QP1 (QF), 

derivative of dispersion function is positive from equation (3.49). From equation (3.57), QP2 

is QF. Thus, structure is QF-QF-QF. In this case 𝛼3,𝑥is smaller as compare to case-1 and 2 so 

𝑙2 is larger compared to case-1 and 2. If 𝛼3,𝑥 = 0  then 𝑙2 = 7.4𝑙𝑏 and if  −
1

𝐶2𝛽2,𝑥
∗ < 𝛼3,𝑥 < 0 

then 𝑙2 > 7.4𝑙𝑏 

Case-4 QF-QF-QF/QD-QF-QD structure 

If 𝛼3,𝑥  ≤ −
1

𝐶2𝛽2,𝑥
∗   then from equation (3.60), 𝑙2 is infinite or negative. In this case, the 

achromat structure for theoretical minimum beam emittance is not feasible. From equation 

(3.52), 𝛼3,𝑥 ≤ −0.57, thus either QP1 is chosen QF (𝛼3,𝑥 > 𝛽2,𝑥
∗ (𝐶2 − 𝐶3)) or QD (𝛼3,𝑥 <

𝛽2,𝑥
∗ (𝐶2 − 𝐶3)) minimum beam emittance is not possible. This also makes clear that QD-QF-
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QD structure cannot give minimum beam emittance. The above result shows that according to 

equation (3.56), for a given strength of QP1, a solution of QP2 exists. However, from equation 

(3.60), stable solution of twiss parameters will not be available for different strength of QP1 

and QP2. 

 A schematic diagram for different cases (case -1, 2 and 3) is shown in figure 3.8. The above 

figure indicates that in QF-QD-QF structure achromat length remain smaller. In QF-QD-QF 

structure 𝑙2 can be reduced and a tunability in the vertical plane is also available.  In this case, 

preferred location of SF and SD is close to QF and QD respectively. Due to QD at sextupole 

location horizontal and vertical plane beta function can be well decoupled. Thus in this 

structure, it is possible to reduce the strength of chromaticity correcting sextupole magnets, 

which will be helpful to increase the dynamic aperture.  Thus for minimum beam emittance 

QF-QD-QF structure is better. 

 

Figure 3. 8 A schematic diagram showing dispersion function in following structure of 

double bend achromat a) QF-QD-QF b) QF-QF and c) QF-QF-QF. The figure shows that 

achromat length in QF-QD-QF structure is less than the other two structures. 
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The integrated strength of QF and QD obtained by using equation (3.52) and (3.56) for 

different value of 𝑙2 is shown in figure 3.9 for the conditions of Indus-2 as mentioned earlier. 

The figure shows that for a shorter 𝑙2, the strength of QF and QD are high. For the shorter 𝑙2 

strength of QD is very high as compared to the QF strength. The high strength of QD will 

change the α-function by a large value as a result minimum and maximum vertical beta function 

will be reduced and increased respectively.  

 

Figure 3. 9 Integrated strength of QF and QD versus l2 (distance between QF and QD) for 

Indus-2 conditions (b=22.5o, lb= 2.18 m and l1= 0.75 m).The figure shows that for smaller 

l2 integrated strength of QF and QD is higher. The calculations have been performed by 

using equation (3.52) and (3.57).  

 

When 𝑙2smaller, strength of QPs is higher as a result beta-functions in both the planes are 

larger which reduces decoupling of horizontal and vertical plane. Thus the choice of 𝑙2 and 

strength of QPs are crucial. The strength of QD has to be selected in such a way that vertical 

beta function at the QF location remains within the limit. At QD location 𝛼4,𝑦, is given by 
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𝛼4,𝑦 = −
𝑘𝑄𝐷𝛽4,𝑦

2
  

(3.61) 

The twiss parameters (𝛽3,𝑦, 𝛼3,𝑦) at QF location will be back calculated (−𝑙2) by following 

equation   

𝛽3,𝑦 =  𝛽4,𝑦 {1 −
𝑘𝑄𝐷𝑙2

2
}

2

+
𝑙2

2

 𝛽4,𝑦
  

(3.62) 

𝛼3,𝑦 = 𝛼4,𝑦 + 𝛾4,𝑦𝑙2 (3.63) 

The initial vertical beta (𝛽𝑜,𝑦) at the start of achromat is obtained from equation (3.36) after 

substituting the value of 𝛽2,𝑦(𝛽3,𝑦) from equation (3.62) and using following relation of 𝛼2,𝑦 

𝛼2𝑦 = 𝛼4,𝑦 + 𝛾4,𝑦𝑙2 − 𝛽2𝑦𝑘𝑄𝐹  (3.64) 

𝛾4,𝑦 =
1 + 𝛼4,𝑦

2

 𝛽4,𝑦
 

(3.65) 

To obtain a smaller beam emittance, reasonable value of 𝛽4,𝑦 and kQDshould be selected 

such that initial vertical twiss parameters (𝛽𝑜,𝑦, 𝛼𝑜,𝑦) remain within the limits. For this length 

𝑙1 and 𝑙2 has to be optimized. In section 3.3, an example of the optimization of 𝑙2 versus beam 

emittance is discussed.  

3.2.4 With four quadrupole magnets  

In the case of QD-QF-QD structure stable solutions of twiss parameters are not available 

for the theoretical minimum emittance. Beside this in the QF-QD-QF structure, achromat 

length cannot be reduced to small value, due to higher strengths of QF and QD magnet. Now 

we will study that whether in this structure with the inclusion of an additional quadrupole 

magnet any flexibility can be obtained.  

In four quadrupole magnets structure, to obtain symmetrical solution two QP1 and two QP2 

are used to form the achromat. They are placed symmetrically about the center of achromat as 

shown in figure-3.10. For achromatic condition, strengths of QP1 and QP2 are adjusted such 
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that after QP2, derivative of dispersion function is zero. This relation on the basis of transfer 

matrix can be written as 

[
𝜂4

0
] = [

1 0
𝑘𝑄𝑃2 1] [

1 𝑙2
0 1

] [
1 0 

𝑘𝑄𝑃1 1] [
1 𝑙1
0 1

] [
𝜂1

𝜂1
/]   

(3.66) 

Where 𝜂4 is the dispersion function at the exit of QP2. From equation (3.66), 𝑘𝑄𝑃2 and 𝑘𝑄𝑃1 

depend upon each other by following relation 

𝑘𝑄𝑃2 = −
(𝑘𝑄𝑃1 + 𝐶3)

𝑙2(𝑘𝑄𝑃1 + 𝐶3) + 1
   

(3.67) 

The equation (3.67) can be rewritten as 

1

𝑘𝑄𝑃2
+

1

𝑘𝑄𝑃1 +
1

𝑙𝑏
2 + 𝑙1

= −𝑙2 
(3.68) 

l
3
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Figure 3. 10 Layout of double bend achromat with four quadrupole magnet structure (QP1-

QP2-QP2-QP1). At ith location 𝜷,𝜶, 𝜼 and / function is denoted by 
i,z i,z,i

 and 
i
/ 

respectively, here i=0 and 1 at entrance and exit of dipole  magnet(BM), i=2 and 3 at entrance 

and exit of QP1, i=4 and 5 at entrance and exit of QP2. Here z=x or y for horizontal or 

vertical planes respectively 

 

In this case, for the same 𝑘𝑄𝑃1, 𝑘𝑄𝑃2 is half of three quadrupole magnet structure 

(equation (3.57)). Now, we will derive an analytical relations for estimating gap (𝑙3) between 

two QP2. In this case equation (3.55) can be written as  

  𝑘𝑄𝑃2 = −
(𝛼5,𝑥 − 𝛼4,𝑥)

𝛽4,𝑥
=

−𝜂4
/

𝜂2
 

(3.69) 

Where  
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𝛽4,𝑥 = 𝛽2,𝑥 − 2𝛼3,𝑥𝑙2 + 𝛾3,𝑥𝑙2
2 (3.70) 

The equation (3.69) can be rewritten as  

𝛼5,𝑥 = 𝛼3,𝑥−𝛾3,𝑥𝑙2+𝛽4,𝑥

(𝑘𝑄𝑃1 + 𝑐3)

𝑙2(𝑘𝑄𝑃1 + 𝑐3) + 1
    

(3.71) 

𝑙3 =
𝛼5,𝑥𝛽4,𝑥

1 + 𝛼5,𝑥
2  

(3.72) 

Here α3,x = α2,x−kQP1𝛽2,𝑥. At QP2 location, twiss parameters (β4,x, α5,x), 𝑘𝑄𝑃1 and 𝑘𝑄𝑃2 are 

deciding parameters to estimate 𝑙3. By considering twiss parameters for the theoretical 

minimum beam emittance, 𝑙3 is estimated with the help of equation (3.67), (3.70), (3.71) and 

(3.72) for two different cases in which different arrangement of QPs are considered.  

 

Case-1 QD-QF-QF-QD structure 

If QP1 is QD, from equation (3.67) QP2 is QF. In this arrangement, at exit of QD, 𝛼3,𝑥 is more 

negative thus 𝛽4,𝑥 at QF location is higher as compared to 𝛽2,𝑥 of QF-QF structure. The phase 

advance depends upon beta function from equation (3.39), as a result to obtain required phase 

advance for the theoretical minimum beam emittance, 𝑙3 is longer as compared to QF-QF 

structure. 

In figure 3.11 an example is shown by considering QD close to dipole magnet and QF 

0.75  m away from QD. When strength of QD is zero (QF-QF structure), 𝑙3 is small. As strength 

of QD increases 𝛽4,𝑥 and 𝑙3 also increases. Thus arrangement of QD-QF-QF-QD is not suitable 

for the theoretical minimum beam emittance. 
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Figure 3. 11 For l1=0, l2=0.75 m strength of QD is varied and its effect on the strength of 

QF, twiss parameters 
4,x

, 
5,x

 and on l3 is shown. In the figure, notation of QF unit is chosen 

negative. The calculations have been performed by using equation (3.67), (3.70), (3.71) and 

(3.72). 

 

Case-2 QF-QF-QF-QF/QF-QD-QD-QF structure 

If QP1 is QF, for a given strength of QP1 (𝑘𝑄𝑃1), from equation (3.67) QP2 is either QF or QD. 

The nature of QP2 is dependent upon 𝑘𝑄𝑃1 and 𝑙2. 

Case-2a QF-QF-QF-QF structure 

At lower 𝑘𝑄𝑃1(|𝑘𝑄𝑃1| ≤
1

𝑙𝑏
2
+𝑙1

), from equation (3.67), QP2 is QF. If 𝑘𝑄𝑃1is increased then 

strength of QP2 (𝑘𝑄𝑃2) is reduced. If 𝑘𝑄𝑃1 is small, due to weak focusing 𝛼3,𝑥 is negative, thus 

𝛽4,𝑥 is higher. As a result, higher value of 𝑙3 is required. If 𝑘𝑄𝑃1 is equal to the strength as that 

of QF-QF structure, in that case 𝑙3 is equal to the 𝑙3 of QF-QF structure.  

Case-2b QF-QD-QD-QF structure 

If 𝑘𝑄𝑃1 is in the range 
1

𝑙𝑏
2
+𝑙1

< |𝑘𝑄𝑃1| <
1

𝑙2
+

1
𝑙𝑏
2
+𝑙1

, from equation (3.67) QP2 is QD. If 𝑘𝑄𝑃1 

(QF) is increased then α3,x becomes more positive, as a result 𝛽4,𝑥 is reduced. Thus smaller 𝑙3 
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is required to obtain the required phase advance. The point at which 𝑙3 is zero, corresponds to 

QF-QD-QF structure. If 𝑘𝑄𝑃1 (QF) is further increased then 𝛽4,𝑥 is further reduced and  𝛼3,𝑥and 

𝑘𝑄𝑃2 (QD) is further increased. At certain point 𝛼5,𝑥 becomes negative as a result stable 

solution will not exist.  

The advantage of this structure is that in this structure, for the same lengths of 𝑙2, the 

strengths of QD will be less here compared to QF-QD-QF for the non-zero 𝑙3 case. In this 

structure an additional space (𝑙3) is available for installation of insertion devices in the middle 

of achromat section. As an example in section 3.3, we will discuss the case of Indus-2 with 

QF-QD-QD-QF structure of the achromat.  

 3.3 Structure of Indus-2 lattice 

In Indus-2, a double bend achromat lattice is adopted. The schematic diagram of its unit 

cell discussed in section 1.6.3 of Chapter-1, is shown here in figure.3.12. Here we will study 

its achromat part. The achromat has two 22.5° rectangular dipole magnets, a triplet of 

quadrupole magnets (QF2-QD3-QF2) to control the dispersion in this section. In the achromat, 

center of QF2 is kept at 0.75 m away from the exit of dipole magnet(𝑙1) to provide a sufficient 

space for SF, steering magnets and beam diagnostics components. Center of QD3 (𝑙2) is kept 

2.66 m away from center of QF2 magnet. 

 

 

Figure 3. 12 Unit cell of Indus-2 storage ring. 
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3.3.1 Tunability of Indus-2 lattice with QF-QD-QF structure of the achromat 

 

i) Achromat structure for minimum beam emittance 

 

Figure 3. 13 In QF-QD-QF double bend achromat structure, the ratio of achievable beam 

emittance (/
min

) versus l2 (distance from QF to QD). 

In thin lens approximation, effect of  𝑙2 on beam emittance as well as on the lattice 

parameters is studied. The minimum achievable beam emittance depends upon the gap (l2) 

between QF2 and QD3 as discussed in section 3.2.3. Analytically, different optical solutions 

of achromat are simulated by keeping different l2 considering quadrupole magnets as thin 

lenses for 𝑙1 = 0.75 m. For each 𝑙2, quadrupole magnets strengths are estimated with the help 

of equation (3.52) and (3.57) by considering different initial twiss parameters at the start of 

achromat. For each solution, 𝛽𝑦-function at the center of the achromat is varied to find out 𝛽𝑜,𝑦 

at the start of the achromat by using equations (3.61) to (3.64) and (3.34). In figure 3.13, 

variation of 𝑙2 vs. ratio of allowable beam emittance (𝜀/𝜀min) is plotted by considering 

different twiss parameters at the start of achromat with the help of computer program Achromat 

[55], in which quadrupole magnets are treated as thin lenses. In this figure, those solutions are 

accepted for which maximum vertical beta function (𝛽𝑜,𝑦) does not exceed above 25 m. The 
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figure shows that as 𝑙2 increases, beam emittance decreases. To obtain solution close to the 

theoretical minimum beam emittance required 𝑙2 is above 4 m. For 𝑙2~4.8m, lattice functions 

in the achromat are plotted in figure 3.14. The figure shows that to obtain reasonable vertical 

beta function at the start of achromat, 𝛽𝑦 at the center of the achromat has to be kept at a higher 

value.  

 

Figure 3. 14 Lattice functions in the double bend achromat for theoretical minimum beam 

emittance for l2 (distance from QF to QD) 4.8 m by considering the parameters of Indus-2. 

 

ii) Achromat structure for different length of achromat  

The value of l2 is decided by keeping an eye on requirement of twiss parameters in insertion 

straight section. As discussed in Chapter-1 the linear and nonlinear beam dynamical effect of 

insertion devices depends upon the beta function at the location of insertion section. Thus it is 

desirable to keep smaller value of beta function in both planes (horizontal and vertical) at the 

center of insertion sections. The beam injection is also carried out in the one of the insertion 

sections for which a higher value of beam acceptance is required. The linear acceptance of the 

machine can be increased by keeping horizontal beta -function close to the maximum beta 

function at the center of insertion section. To satisfy these conflicting requirements of beam 
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injection and insertion devices, horizontal beta function in the insertion section is kept at a 

moderate value. To obtain moderate solution following constraints are kept during 

optimization. 

1) Beam emittance less than two times of the theoretical minimum beam emittance (72 

nmrad)  

2) At middle of insertion section (insertion devices and at injection point) 7 m<βins,x<15 m 

and βins,y<4 m  

3)  The horizontal and vertical maximum beta function is less than βmax,x <25 m and βmax,y 

< 20 m respectively. 

In addition, a wide tunability of tune point should be available for a given l2. To obtain the 

optimum value of l2, the tune space of optics is studied by taking the finite length of quadrupole 

magnets (thick lens) with different values of l2 by using the computer program such as Burhani 

[56], Achromat [55] and ESRO [57]. For this purpose, strengths of insertion straight section 

quadrupole magnets are varied for different strengths of achromat quadrupole magnets.  

The tune space of the optics is decided on the basis of above mentioned criteria. Under 

these constraints, the horizontal and vertical tune space of the optics for l2=2.0 m, l2=2.5 m, 

l2=3.0 m and l2=3.5 m is shown in Figures-3.15. These result show that tunability is optimum 

for l2=2.5 m and 3 m. In case of l2= 4 m, optical solutions are not possible within above 

constraints, as in this case maximum horizontal and vertical beta function are well beyond 

specified limits. Accordingly, Indus-2 lattice has been optimized with l2=2.66 m. Due to this 

length, sufficient space is available in Indus-2 to install subsystems components in the ring. 

Based on this structure various optical solutions [57-63] are studied. The horizontal and vertical 

tune space of the optics for l2=2.66 m is shown in the figure 3.16. The figure shows that in the 

tune space, larger area is available for horizontal and vertical integer tune point above 9.0 and 

6.0 respectively. 
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A) Tune space for l2=2.0 m 

 
 

B) Tune space for l2=2.5 m 

 

C) Tune space for l2=3.0 m 

 

D) Tune space for l2=3.5 m 

 

Figure 3. 15 In Indus-2 ring, allowable tune point for different length of l2 (in the achromat 

between center of QF to center of QD). The simulations are performed with the help of 

computer program, under following constraint ε<72 nmrad, 7 m<βins,x<15 m, βins,y<4 m, 

βmax,x <25 m and βmax,y< 20 m).  

  

7.5 8.0 8.5 9.0 9.5 10.0 10.5

4

5

6

7

8

9

10

11


y

x

55

57

59

61

63

66

68

70

72

Centre of QF to Centre of QD: 2.0 m

8.0 8.5 9.0 9.5 10.0 10.5 11.0

4

5

6

7

8

9

10

11


y

x

50

53

56

58

61

64

66

69

72

Centre of QF to Centre of QD: 2.5 m

9.0 9.5 10.0 10.5 11.0 11.5 12.0

4

5

6

7

8

9

10

11


y

x

48

51

54

57

60

63

66

69

72

Centre of QF to Centre of QD: 3.0 m

9.0 9.5 10.0 10.5 11.0 11.5 12.0

4

5

6

7

8

9

10

11


y


x

48

51

54

56

59

62

65

68

71

Centre of QF to Centre of QD: 3.5 m



124 

 

 

 

 

Figure 3. 16 The allowable horizontal versus vertical tune range for the chosen l2=2.65 m of 

Indus-2 ring (under following constraint ε<72 nmrad, 7 m<βins,x<15 m, βins,y<4 m, βmax,x <25 

m and  βmax,y< 20 m), the simulations are performed with the help of computer program. 

 

Indus-2 is designed for a beam emittance of ~55 nmrad, which is 1.5 times of the theoretical 

minimum beam emittance. For the above beam emittance lattice functions for the tune point 

(x=9.2, y =5.2) and (x=9.3, y =6.2) are shown on figure 3.17 and 3.18. 

 

 

Figure 3. 17 Lattice function of Indus-2 for ε=58 nmrad at(x=9.2, y =5.2). 
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Figure 3. 18 Lattice function of Indus-2 for ε=54 nmrad at(x=9.3, y =6.2). 

 

3.3.2 Tunability of Indus-2 lattice with QF-QD-QD-QF structure of the achromat 

The tunability of Indus-2 lattice is also studied. by considering in the achromat part QF-

QD-QD-QF instead of QF-QD-QF  structure, The gap between QF and center of achromat is 

kept according to Indus-2 lattice and between QD and center of achromat (l3) is kept at 

following values 1) 0.5 m, 2) 1.0 m, 3) 1.5 m and 4) 1.75 m. The tune space of optics is plotted 

by taking the finite length of quadrupole magnets (thick lens) with the computer program 

Achromat [55] and ESRO [57]. 

In the simulations, strength of insertion straight section quadrupole magnets are varied for 

different strengths of achromat quadrupole magnets. The tune space of the optics is decided on 

the basis of following constraint ε<72 nmrad, 7 m<βins,x<15 m, βins,y<4 m, βmax,x <25 m and 

βmax,y< 20 m. Under these constraints, the horizontal and vertical tune space for l3=0.5 m, 

l3=1.0  m, l3=1.5 m and l3=1.75 m are shown in figure-3.19. These results show that in a wide 

range of l2 and l3 solutions are available for low beam emittance. For l3=1.75 m, lattice function 

are plotted in figure 3.20 and 3.21 for the tune point (x=9.3, y =5.2) and (x=9.3, y =6.2) 

respectively.  
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A. Tune space for l3=0.5 m 

 
 

B. Tune space for l3=1.0 m 

 
 

C. Tune space for l3=1.5 m 

 
 

D. Tune space for l3=1.75 m 

 

Figure 3. 19 In Indus-2 ring, by considering QF-QD-QD-QF structure of the achromat, 

allowable horizontal versus vertical tune range for different values of gap between center of 

QD and center of achromat (l3). For different values of l3, gap between QF and QD is 

adjusted such that the length of the achromat should remain constant. The simulations are 

performed with the help of computer program, under following constraint ε<72 nmrad, 7  m 

<βins,x<15 m, βins,y<4 m,  βmax,x <25 m and βmax,y< 20 m). 
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Figure 3. 20 Lattice function of Indus-2 for ε=52 nmrad at(x=9.3, y =5.2) by considering 

QF-QD-QD-QF structure of the achromat. 

 

Figure 3. 21 Lattice function of Indus-2 for ε=52 nmrad at(x=9.3, y =6.2) by considering 

QF-QD-QD-QF structure of the achromat. 

 

The allowable tune space and lattice functions show that it is possible to operate Indus-2 

achromat with QF-QD-QD-QF structure. In this structure, gap between two QD can be used 

for installation of insertion device. The detail study of above structure has to be carried out. 
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3.4 Conclusions  

For different structures of double bend achromat, analytical formulae are presented. In a 

basic Chasman-Green structure, an analytical relation of beam emittance shows that by 

increasing the distance between dipole magnet and QF, initially beam emittance reduces 

afterwards reduction in beam emittance is negligible. In this case, allowable minimum beam 

emittance is 63% higher than the theoretical minimum beam emittance. In the case of two 

quadrupole magnet structure (QF-QF structure) by increasing the length of the drift space 

between QF-QF beam emittance is reduced by a larger value as compared to single QF 

structure. In this structure, theoretical beam emittance is achievable at the cost of the long 

length of achromat. Further in this structure, any provision to control the vertical beta function 

is not available, as a result the utility of above structure is limited. In order to overcome 

drawback of QF-QF structure, three and four quadrupole structures are discussed. The 

disadvantage of QF-QF structure is overcome by using the QF-QD-QF/QF-QD-QD-QF 

structure. In the three quadrupole magnet structure, shorter length of achromat is possible with 

a higher strength of QF and QD magnets and very high value of initial twiss parameters. In the 

case of QF-QD-QD-QF structure, strength of QD is reduced at the cost of additional length 

between the two QDs, this additional length can be used for installation of insertion devices.  

In Indus-2, in the achromat part, QF-QD-QF structure is chosen by keeping moderate 

vertical beta function and moderate achromat length. These studies helped us in understanding 

and optimizing QF-QD-QF structure for Indus-2 which operates at 1.5 times of the minimum 

beam emittance.  These studies also suggest that in Indus-2, in the achromat section, additional 

space for insertion devices can be created by changing the present achromat structure of QF-

QD-QF into QF-QD-QD-QF structure, for this structure further studies have to be carried out.  
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The above analytical formulas help to evaluate location of quadrupole magnets, quadrupole 

magnets strength, variation of twiss parameters and beam emittance before performing time- 

consuming optics matching. 
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CHAPTER 4 

 

BEAM EMITTANCE REDUCTION IN INDUS-2  

  

In Indus-2, electron beam is injected in the horizontal plane at a beam energy of 550 MeV. 

At this injection energy, beam rigidity is low and during the beam injection, the betatron 

oscillation amplitude of the injected beam remains significantly large for a long time due to 

longer radial radiation damping time (450 ms).  

As explained in Chapter-3, Indus-2 lattice has been optimized in achromatic condition by 

keeping the beam emittance of ~55 nm.rad, which is ~1.5 times that of the theoretical minimum 

beam emittance. The beam emittance referred here is the horizontal/radial beam emittance of 

the ring. In the initial stages of the commissioning, difficulties were faced in accumulating the 

beam current with the design optics. With this optics, partial beam loss phenomenon was 

observed during beam accumulation, which was attributed to injection errors arising from the 

mismatch of kickers [50] and small dynamic aperture [61-63]. In this optics, effects of linear 

and nonlinear imperfections are high due to high strengths of chromaticity correcting sextupole 

magnets.  

To overcome this problem, Indus-2 was commissioned using a moderate optics [58] having 

beam emittance of 135 nmrad (~2.5 times that of design beam emittance) at 2.5 GeV. In this 

optics, dynamic aperture is increased by reducing the strength of sextupole magnets, which is 

obtained by increasing the dispersion function at its location by breaking achromatic condition. 

The smaller strength of sextupole magnets will reduce the injected and stored beam 

oscillations. Using this optics, sensitivity towards linear and nonlinear imperfections are 

reduced. Effect of injection errors is further reduced with the help of off-momentum beam 
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injection. With off-momentum beam injection, better beam accumulation was observed during 

beam injection. The tune point in tune space (figure 3.16 of Chapter-3) is chosen such that the 

optics can be switched over to the optics, which has smaller beam emittance. 

In order to operate Indus-2 with a low emittance, we have implemented a scheme, in which 

the electron beam is injected using the moderate optics at 550 MeV and after accumulation of 

the required current and increasing the beam energy to final beam energy, the beam emittance 

is reduced by changing the strengths of quadrupole and sextupole magnets. A similar scheme 

was also proposed by Miyata et.al [64] in which a lattice is designed in such way that the beam 

is injected using an optics having a higher beam emittance and after storage of the required 

current, the emittance is reduced by changing the strengths of quadrupole and sextupole 

magnets.  

An optics providing beam emittance one third of the moderate optics keeping the operating 

point nearly the same has been evolved by keeping dispersion function nearly zero, in the 

insertion straight section, where the vertical beta is also less than half of the moderate optics. 

This optics is termed as low emittance optics. With the help of this optics photon brightness 

from undulators will be increased by a factor of eight and linear as well as non-linear effects 

of insertion devices will be reduced by a factor of 2.3 as compared to the moderate optics.  

To ensure smooth switch over from the moderate optics to low emittance, a procedure is 

evolved and executed in a step by step manner. In each step, storage ring's sensitivity to linear 

and nonlinear imperfections is also controlled in a well-defined way to avoid any partial beam 

loss. This is done by optimization of the beta function and tune point during the switch over. 

In this chapter, we present the studies in dynamical aspects of beam injection with the 

moderate and low emittance optics to demonstrate that it is easier to inject the beam with the 

moderate optics.  The procedure followed for reduction of the beam emittance, which involves 

minimization of an objective function maintaining the strict control on the tune and beta 
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functions is also discussed. The results of simulations during switch over from the moderate to 

low emittance mode and experimental results during its implementation are discussed.   

4.1 Dynamic aperture studies 

In both horizontal and vertical transverse planes, sufficient dynamic aperture is required 

for beam injection. In horizontal plane it is required to accommodate the residual oscillation of 

injected beam. The aperture requirement is further enhanced due to increase in the residual 

oscillations caused by mismatch between injection kickers. In vertical plane, this is mainly 

determined by the finite orbit distortion and from injected beam having finite beam size and 

non-zero initial coordinates (displacement and angle) from the design orbit.  

The lattice functions for the moderate and low emittance optics and corresponding dynamic 

aperture for the tune point (9.27 6.16) at beam injection are shown in figures 4.1, 4.2 and 4.3 

respectively. Horizontal and vertical tune are shown in the brackets. The dynamic aperture is 

computed for one value of radial and vertical damping time (800,000 turns) by considering 

aperture limit (x = ±32 mm, y = ±17 mm) at 550 MeV using RACETRACK [20]. In this 

computation, natural chromaticity is corrected up to zero in both the planes with the sextupoles. 

In the low emittance optics, in both planes dynamic aperture is reduced due to higher strength 

of chromaticity correcting sextupole magnets. In the vertical plane, vertical acceptance is 

reduced due to decrease in vertical beta in the center of insertion section and increase βy,max 

.The result shows that in the low emittance optics at x = 13 mm, the dynamic aperture shrinks 

due to excitation of resonances. Thus, in the low emittance optics, the dynamic aperture is 

smaller in both horizontal and vertical planes as compared to the moderate optics.  
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Figure 4. 1 Lattice functions for the moderate optics (Beam emittance 135 nmrad).  

 

 

 

Figure 4. 2: Lattice functions for the low emittance optics (Beam emittance 45 nmrad). 
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Figure 4. 3 Dynamic aperture for 800,000 turns (one damping time) with the moderate and 

low beam emittance optics at injection energy (550 MeV) at the tune point (9.27 6.16). 

For the moderate optics, required vertical aperture for beam injection is estimated with the 

help of vertical scrapper movement. The vertical scrapper is located ~2 m away from the center 

of the 7th insertion straight section. Here, the injection section is considered to be first section. 

The results of the experiment indicate that minimum aperture required in the vertical plane for 

beam injection is found to be ±6 mm [66]. During the measurement, rms horizontal and vertical 

closed orbit after correction are ~1.3 mm and ~0.8 mm respectively. On the other hand, for the 

low emittance optics closed orbit distortions will be increased due to higher value of 

amplification of linear imperfection (closed orbit and beta beat) and higher strengths of 

sextupole magnets. Thus, in the presence of actual linear and nonlinear imperfections, vertical 

aperture in the low emittance optics, will be reduced by a higher amount as compared to the 

moderate optics. 
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4.2  Beam Dynamics at injection energy 

 

4.2.1 Injection scheme  

The injection is carried out in the radial plane from the outer side of the ring by using a 

compensated bump generated by four kicker magnets [67-68] see figure 4.4.  

 

Figure 4. 4 A schematic diagram of beam injection scheme in Indus-2. 

 

During the injection process, the injection bump, which is trapezoidal in shape,  generated 

by the injection kicker magnets, has to be adjusted such that stored beam remains well 

separated from the septum magnet as well as the residual betatron oscillations of the injected 

beam remain small. In an ideal case, the amplitude of orbit bump (B) and the location of the 

septum from the designed orbit (Ls) can be calculated from the following relation [35-37]. 

tcxi SSB  24 ,  (4.1)  

cxss SBL  ,4  (4.2) 

Where i,x: Beam size of the injected beam, s,x : Beam size of the stored beam, Sc : septum 

clearance; septum thickness (St)=3.0 mm, injected beam emittance (xi)= 3.9*10-07 mrad and 

stored beam emittance (xs )= 2.5*10-08 mrad are respectively at 550 MeV. The value of xs has 

been arrived at by taking into consideration a blow-up of emittance due to intrabeam scattering 
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and bunch lengthening [51], which is nearly same for both optics. For the injected beam a blow-

up factor of two (2) has also been assumed by considering effect of magnetic field in-

homogeneity in the extraction septum [69]of synchrotron and thick and thin septum of Indus-

2. [70].  

In the case of Indus-2, above relations equation (4.1) and (4.2) are only guidelines and are 

not exact as pulse shapes of the kicker magnets are nearly half sinusoids and are not exactly 

identical see table-4.1. They have jitter of ±7 ns with respect to each other, which causes 

mismatch between pulses.  

Table 4. 1 Measured pulse power supply parameters of injection kickers 
 Rising time(𝝁s) Falling time (𝝁s) 

Kicker(1) 1.3 1.53 

Kicker(2) 1.27 1.53 

Kicker(3) 1.29 1.60 

Kicker(4) 1.29 1.60 

The jitter among kickers: ±7 ns 

In the presence of mismatch between the injection kicker pulses, the injection bump is not 

closed, as a result the residual betatron oscillations of injected and stored beam are increased. 

Thus a part of injected or stored beam or both beams may be lost during injection process. 

These losses can be reduced by using a combination of following methods 1) reducing the 

nonlinear forces / strengths of sextupole magnets using a moderate optics and 2) with the help 

of negative orbit displacement at the septum location or with the smaller injection bump or 

combination of both.  

In the case of a negative orbit displacement or a lower bump, higher dynamic aperture is 

required to accommodate increased residual betatron oscillation of the injected beam. As 

mentioned earlier higher dynamic aperture is available with the moderate optics.  

More flexibility can be obtained by employing an off-momentum beam injection (Δ𝑝 𝑝⁄ ). 

In off-momentum beam injection, injected beam oscillations can be partially reduced during 
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the injection as shown by Shoji et. al. [71]. They have demonstrated that the reduced betatron 

oscillation helps in the storage of the ring .In order to carry out off-momentum beam injection 

a finite value of dispersion function (𝜂𝑖𝑛𝑠) is required at the injection point. For off-momentum 

beam injection, the center of injected beam position at the septum location [35-37] is given by 

𝑋 = 𝑥𝑐𝑜𝑑,𝑠𝑒𝑝 + 𝜂𝑖𝑛𝑠

𝛥𝑝

𝑝
+ 𝑥𝑏𝑢𝑚𝑝 cos (

2𝜋𝑛𝑇𝑟

𝑇𝑘
) + 𝑥𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 cos(2𝜋𝑛𝜈𝑥) 

with  𝑥𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = (𝑥𝑐 − 𝑥𝑏𝑢𝑚𝑝 − 𝜂𝑖𝑛𝑠
𝛥𝑝

𝑝
− 𝑥𝑐𝑜𝑑,𝑠𝑒𝑝) 

(4.3)  

Where 𝑥𝑏𝑢𝑚𝑝 represents the magnitude of orbit bump (generated by injection kicker magnets),  

𝑥𝑐𝑜𝑑,𝑠𝑒𝑝 denotes orbit displacement at the septum location, 𝑥𝑐 injected beam center from the 

design orbit, 𝑥𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 amplitude of residual betatron oscillation, 𝜈𝑥 horizontal tune, n number 

of turns of the stored particles in the ring, with maximum value of bump at n =0 ( injection 

time),
rT   revolution period of the ring and 

kT  fall time of the kicker pulse. During initial few 

turns 𝑥𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 will be reduced and injected beam center is shifted by 𝜂𝑖𝑛𝑠
Δ𝑝

𝑝
, afterwards the 

oscillation will be increased due to synchrotron-betatron oscillations. 

For the moderate optics, at the point of beam injection, dispersion function is -0.4 m, 

whereas it is negligibly small for the low emittance optics.  It is possible to reduce residual 

horizontal betatron oscillations of the injected beam with off-momentum beam injection for 

the moderate optics. On the other hand for the low emittance optics, these oscillations are not 

much reduced due to very small dispersion function.  

4.2.2 Effect of mismatch between injection kickers 

Tracking studies have been carried out with the modified computer code RACETRACK 

for the moderate and low beam emittance optics at the tune point (9.27, 6.16). . In these studies, 

beam size is taken to be 1.5 times that of the rms beam size of the injected beam. In the 

calculations, inner side of septum location is fixed at 15 mm from the design orbit. It is worth 

mentioning here that in the ring, the distance of the septum from the design orbit had to be 
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reduced from 21 mm to 15 mm to enable viewing of the beam on the beam profile monitors 

due to the aperture limitations of these monitors. Consequently, this has reduced the aperture 

for beam oscillations in the ring. Currently, the beam position indicators installed in the ring, 

do not have a provision for the turn-by-turn beam position measurement.  

Injected and stored beam tracking is done by including the mismatch between the kickers 

(as given in table 4.1) and neglecting the mismatch (no jitter and equal pulse lengths, having 

rise time of 1.2 µs and fall time of 1.6 µs). The turn by turn tracking simulations of the injected 

and stored beam have been done by considering the injection beam bump of 9.6 mm. For the 

bump of 9.6 mm, injection simulation results for the low emittance and moderate optics in the 

presence of mismatch between injection kickers are plotted in figure 4.5 and 4.6 respectively. 

These figures show that in the low emittance mode, a part of the stored beam hits the septum 

magnet, whereas for the moderate optics, injected and stored beam, do not hit the septum 

magnet. A comparative analysis is summarized in table 4.2, with and without mismatch 

between the injection kickers.  The effect of the mismatch among kickers is smaller for the 

moderate optics as compared to the low emittance optics. It is attributed to the smaller strength 

of chromaticity correcting sextupole magnets, which is nearly half of the low emittance optics. 

This results in a less distortion of the transverse betatron phase space. This is also manifested 

as smaller amplitude dependent tune shift in this optics as compared to the low emittance optics 

as shown in figure 4. 7. The stored beam experiences the angular kick from the kickers for five 

turns, whereas the injected beam for three turns (revolution time in the storage ring 575 ns) 

respectively. Thus residual oscillations of stored beam are increased by higher amounts as 

compared to the injected beam (table-4.2). 
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A) Injected beam oscillation B) Stored beam oscillation 

 

Figure 4. 5 For the low emittance optics a) injected and b) stored beam oscillations for thirty 

and six turns, respectively in the presence of mismatch between injection kickers (table 4.1). 

The injection bump of 9.6 mm is generated by matching the starting point of injection 

kickers. 

 

 

Table 4. 2: The maximum oscillations of injected and stored beam in the moderate and low 

beam emittance optics with and without mismatch between injection kickers 
 

p/p=0, Bump=9.6 mm Without mismatch  With mismatch  

 Optics A+ (mm) S+ (mm)  A+ (mm) S+ (mm) 

Low emittance  13.0 12.1 15.5 16.5 

Moderate  13.0 11.5 14.5 15.1 

Where A+ and S+ represents the maximum displacement towards the septum magnet of injected 

and stored beam. 
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A) Injected beam oscillation B) Stored beam oscillation 

 

Figure 4. 6 For the moderate optics a) injected and b) stored beam oscillations for thirty and 

six turns respectively in the presence of mismatch between injection kickers (table 4.1). The 

injection bump of 9.6 mm is generated by matching the starting point of injection kickers. 

 

 

 

Figure 4. 7 The amplitude dependent tune shifts in horizontal plane w.r.t. horizontal beam 

position for the moderate and low emittance optics. 
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For the low emittance optics, due to mismatch between the injection kickers, residual 

betatron oscillation in horizontal plane is higher as compared to the moderate optics. These 

aspects make the beam injection very difficult with the low emittance optics. 

4.2.3 Commissioning experience with moderate optics 

During the commissioning with the moderate optics, smooth beam injection took place 

when a negative DC bump of ~4.5 mm was generated in the injection section using orbit 

corrector magnets.  This negative orbit displacement helps in keeping the injected and stored 

beam away from the septum for the same value of the injection bump. An additional advantage 

of the negative orbit displacement is that it increases the horizontal aperture available for 

betatron oscillation by 4.5 mm in the injection section (the horizontal aperture at other places 

in the ring is 32 mm). Accordingly, the dynamic aperture on the other side of septum will also 

be increased. When the injection bump was 12.3 mm, the injection efficiency was ~40 % and 

this is increased to ~80 % with off-momentum injection (-0.9 %) achieved by synchronously 

increasing the magnet currents of all storage ring magnets. Injection efficiency is estimated 

with respect to transmitted beam current in Indus-2.  In the moderate optics shown in figure 

4.1, dispersion function is negative thus for off-momentum beam injection, stored beam energy 

is kept ~0.9 % higher than that injected beam energy. For both on and off-momentum beam 

injection, fast decay of stored beam was observed. This fast decay was arrested by increasing 

the separation of the stored beam from the septum magnet. This was done by reducing the 

injection bump from ~12.3 mm to ~9.6 mm. For the smaller bump, for on-momentum beam 

injection, injection was not possible and for off-momentum injection rate was 40 %. For higher 

bump, the fast decay of stored beam current is attributed to the beam going close to the septum 

magnet. On reducing the bump to 9.6 mm, improvement in beam lifetime of the stored beam 

was observed.  
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The turn by turn tracking simulations of the injected and stored beam have been done to 

understand the above findings in the presence of mismatch between injection kicker pulses. In 

simulations, the injection beam bump of 12.3 mm and 9.6 mm for on and off-momentum 

electrons (-0.9 %) are considered by including the mismatch between injection kickers. In order 

to estimate the fraction of the injected pulse length, which can be accepted, these studies 

include tracking of electrons which are injected at the synchronous phase and also those which 

are displaced in time scale (0.25 ns, and 0.5 ns) with respect to the synchronous phase. The 

simulation results are presented in table-4.3, which contains the maximum displacement of the 

injected beam on the septum side (A+) and on the other side of the septum (A-) during the first 

10 turns and during initial 200 turns. The tracking of the beam up to 200 turns has been done 

to account for the synchrotron  oscillations as the period of one synchrotron oscillation is ~50 

turns at 700 kV RF voltage [72] and the energy acceptance is ~2%. 

This table shows that for the bump of 12.3 mm, on-momentum injected beam having pulse 

length up to 0.25 ns is accepted. On the other hand for the same bump, off-momentum electrons 

up to 0.5 ns pulse length are accepted. This indicates why injection improves with off-

momentum beam injection. For 12.3 mm bump, the stored beam goes close to the septum 

magnet. On reducing the bump to 9.6 mm, the on-momentum beam is not accepted much 

because it goes close to the septum magnet and thus injection is not possible.  

For this bump, off-momentum beam with pulse length equal to ~0.25 ns is accepted and 

since the stored beam remains far away from the septum magnet.  Acceptance of shorter pulse 

length explains why there is a reduction in the injection efficiency when the bump is reduced 

from 12.3 mm to 9.6 mm. 
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Table 4. 3: The maximum displacement towards and opposite side of the septum magnet for 

on and off-momentum beam injection with the moderate optics. In simulation following 

parameters are kept, xcod,sep=-4.5 mm, horizontal beta function (βxi) of injected beam is 8 m.  
 

 

 

Case Bump (mm),  

pulse length (ns) 

A+, A- (mm) 

(0-10 turns) 

A+, A- (mm)  

(0-200 turns) 

S+ (mm) 

On-momentum  12.3, 0 12.6 - 21.3 12.6 - 21.3 14.0 

12.3, 0.25 14.1 - 19.1 14.3 - 24.5  

12.3, 0.5 15.0 - 18.0 16.0 - 27.3  

9.6, 0 14.7 - 23.2 14.7 - 23.2 10.6 

9.6, 0.25 16.3 - 20.9 16.5 - 26.6  

9.6, 0.5 17.2 - 19.8 17.9 - 29.7  

Off-momentum  

( Δ𝑝 𝑝⁄  =-0.9%) 

12.3, 0 12.0 - 16.1 12.1 - 22.8 14.0 

12.3, 0.25 12.9 - 13.9 12.9 - 23.9  

12.3, 0.5 13.9 - 12.5 14.0 - 26.6  

9.6, 0 14.2 - 18.2 14.3 - 24.9 10.6 

9.6, 0.25 15.1 - 16.0 15.1 - 26.4  

9.6, 0.5 16.3 - 14.6 16.3 - 28.6  

 

Where A+ represents the maximum displacement towards the septum magnet and A- is the 

maximum displacement on the side opposite to the septum magnet from the design orbit. Pulse 

length 0 indicates the synchronous particle. 
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4.3 Procedure for optimization during operation 

The horizontal beam emittance (discussed in Chapter-1) is given by 

𝜀 = 𝐶𝑞𝛾0
2
〈𝐻〉

𝑗𝑥𝜌
 

(4.4)  

 

Here 〈𝐻〉 = ∫ (𝛾𝑥𝜂
2 + 2𝛼𝑥𝜂𝜂/ + 𝛽𝑥𝜂

/2
)𝑑𝑠 2𝜋𝜌⁄ , s is the longitudinal distance in a bending 

magnet at which twiss parameters beta, alpha, dispersion function and derivative of dispersion 

function are 𝛽𝑥, 𝛼𝑥, 𝜂 and 𝜂/, respectively on the horizontal plane, 𝛾𝑥 =
1+𝛼𝑥,

2

 𝛽𝑥
, 𝐶𝑞 is the 

compton wavelength of the electron, 𝛾𝑜 is the reduced energy of the electrons. 𝜌 is the bending 

radius and 𝑗𝑥 is the horizontal partition number. 

The beam emittance can be reduced by reducing the 〈𝐻〉 function. To do this, profiles of 

𝛽𝑥 and 𝜂 in the bending magnets have to be optimized by varying the strength of quadrupole 

magnets. The strength of quadrupole magnets are optimized such that beta function at the center 

of insertion section satisfies the requirement of insertion devices and beam injection.  

In the double bend achromat for achromatic condition in the insertion section, dispersion 

function and its derivative at first bending magnet and at the exit of second magnet should be 

zero (figure 1.3 of Chapter-1). This condition can be satisfied by choosing a proper phase 

advance between the two bending magnets (discussed in section 3.1 of Chapter-3), for which 

proper strengths of quadrupole are required between the two bending magnet. The requirement 

of phase advance also depends upon the initial twiss parameters at the start of bending magnet. 

The initial twiss parameters at the start of bending magnet will be governed by the insertion 

straight section quadrupoles. Thus the strength of quadrupole magnets of insertion and 

achromat sections are simultaneously adjusted in a gradual manner to reduce the beam 

emittance by adjusting  𝛽𝑖𝑛𝑠,𝑥 (horizontal beta function at center of the insertion straight 

section) or 𝛽𝑖𝑛𝑠,𝑦 or both keeping the tune point as required. In the usual method of optical 
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matching, a nonlinear system of equations is solved by Newton-Raphson method [73], in which 

the number of variables are kept equivalent to number of matching parameters. Since the 

optimization has to be done in the presence of the beam, this method provides limited flexibility 

in optimization.  

For the proper optimization, we solve a system of linear equations so that the trend of 

change of optics can be regulated. In this method, the number of variables can be kept higher 

than the number of matching parameters. Another advantage of this method is that during its 

execution, if the observed closed orbit distortion (COD), 𝛽-asymmetry (beta-beat) and tunes 

are higher than the values predicted theoretically, then the necessary corrections (for COD and 

𝛽-asymmetry) are implemented. The detailed description of the method is given below 

In order to obtain the required beta functions and tunes simultaneously, while exploring the 

possibility of reducing the emittance, an objective function is constructed and it is optimized 

by using least square and Lagrangian multiplier method [74]. This function is given by equation 

(4.5), which is minimized by differentiating it with respect to small perturbations in quadrupole 

magnet strengths ( k ). In this objective function, first two terms ),),(( , yxzkB jijz   show 𝛽-

asymmetry generated by the quadrupole magnets all over the ring in horizontal (x) and vertical 

(y) planes respectively. Here i is the location at which change in beta function is considered. 

The index j denotes the quadrupole magnet whose strength is to be varied. The next two terms 

(
21, SS ) given by equation (4.6) are related to the required tune shift and contribution of 

different quadrupole magnets to the tune shift ( jjz kA , ) in x and y plane respectively. The 

remaining two terms ( 43 , SS ) are given by equation (4.7). These are related to the required 𝛽-

asymmetry and contribution of different quadrupole magnets to the 𝛽-asymmetry at a particular 

azimuthal location in ( jljz kB , ) in x and y plane respectively.  

http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=11&cad=rja&uact=8&ved=0CGEQtwIwCmoVChMI-oyB6o6FxwIVx56OCh32PQB7&url=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D1mXNofv67CM&ei=3Ee7VfquDse9ugT2-4DYBw&usg=AFQjCNFRB_e3MFuE9RBdTklw1DYmJFwj5A
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(4.7) 

In equation (4.5) the parameters 1 , 2 , 3 and 4 are Lagrangian undetermined multipliers, 

zl, indicates beta function at a particular azimuthal location, 
required
zl ,  indicates required beta 

function at a particular azimuthal location 𝑙 and 
required

z indicates required tune shift. The 

upper limit in the summation n and m denote the number of quadrupole magnets whose 

strengths are varied and the number of observation points respectively. 

Here we use thin lens approximation to define the changes in beta and tune values. ijzB ,

and jzA ,  are related to the change in the strength of jth quadrupole magnet through equations 

(4.8) and (4.9). These coefficients are calculated using these equations by considering small 

perturbations in quadrupole magnet strengths ( jk ). In the first order and thin lens 

approximation they are given by [12],  

  jzizjzzj
ziz

z
jijz kKB 
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
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In order to minimize the function S (equation (4.5)), it is differentiated with respect to jk s 

0.0
)(






jk

S

 

(4.10) 

From equations (4.6), (4.7) and (4.10) we get n+4 equations and n +4 unknowns ( 1k , 2k

, 3k ,…, nk , ,1 2 , 3  and 4 ). By solving these equations numerically using Guass 

elimination method [75], the required changes in k  of n quadrupole magnets are obtained.  

In order to minimize the difference between the strength of quadrupole magnets obtained 

using thin lens approximation and corresponding strength of real quadrupole magnets, 
required
zl,  

and 
required

z  are changed in small steps. In each step, the quadrupole magnet strengths 

obtained from above method are put into a standard computer code such as RACETRACK. 

The code RACETRACK is used to convert thin lens calculations into thick lens optics, new 

twiss parameters are used in next step calculations in which 
required
zl,  and 

required
z  are again 

changed by small amounts. This procedure is repeated several times. 

To find out the trends of optics in each step, beam emittance, strengths of sextupole 

magnets, amplification factors for COD at zmax, location, 𝛽-asymmetry and amplitude 

dependent tune shifts due to sextupole magnets are calculated. During the switch over the 

strengths of quadrupole magnets need to be varied such that 𝛽-asymmetry and COD [11-12] 

generated are not increased enormously otherwise there can be a loss of the stored beam. The 

amplification factor for COD due to the misalignment of quadrupole magnets and 𝛽-asymmetry 

due to quadrupole magnet field errors are estimated by using equation (4.11) and (4.12). 
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Here Zco = Xco or Yco (horizontal or vertical COD), z  rms quadrupole magnet misalignment, 

jk   denotes the integrated strength of jth quadrupole magnet and 
zmax,  is the maximum 

betatron function in the ring.  

The strength of sextupole magnets also need to be changed in synchronism with quadrupole 

magnets. Amplitude dependent tune shift [18] as expressed by equation (4.13) is an important 

parameter influencing the dynamic aperture. It is also calculated at each step during the switch 

over process. This is calculated by considering the requirement of dynamic aperture for beam 

lifetime, which is roughly ten times of the beam sizes. 
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Here
zz

z
zJ

 2

2

cos2


zJ and z denote the action and corresponding angle variables in 

transverse planes. The four coefficients )2,1,( jiCij
 are expressed in the harmonic 

expansion 

4.4  Implementation  

 

 

Figure 4. 8 Unit cell of the storage ring in Indus-2, in this unit cell quadrupole 

magnets and chromaticity correcting sextupole magnets arrangement are shown. 
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The schematic diagram of Inuds-2 unit cell discussed in subsection 1:6:3 of Chapter-1 is 

shown here in figure 4.8. In the lattice, five quadrupole magnet families are available for 

reducing the beam emittance, maintaining the tune point nearly unchanged. The optimization 

is carried out by using the modified computer code Burhani [56]. The emittance change over 

procedure is carried out under the following constraints 

 (1) Transverse betatron tune point remains constant or controlled as per requirement, so that 

partial beam loss, which may take place due to excitation of resonances can be avoided, 

(2) Sensitivity of the beam optics to linear and nonlinear imperfections is as smooth as possible,  

(3) The horizontal (
xins, ) /vertical beta ( yins, ) at the center of long insertion straight section are 

also adjusted to reduce the beam dynamical effect of insertion devices,  

 (4) Chromaticity correcting sextupoles strengths are adjusted as per natural chromaticities of 

the optics. 

 It was observed that in the insertion section among three quadrupole (QD1-QF1-QD2) 

only two quadrupoles should be used for optimization. Since, defocusing quadrupoles QD1 

and QD2 are close to each other, as a result during optimization if both families (QD1 and 

QD2) are used, then their variations of strength are irregular. Thus only four quadrupole (QD1, 

QF1, QF2, QD3/ QD2, QF1, QF2, QD3) families are available for optimization. 

4.4.1 Optimization and Implementation  

Initially, the beam emittance reduction was tried at 2.0 GeV, since closed orbit distortions 

were significant at this energy thus the beam emittance could be reduced to half of the moderate 

optics [65]. Later on the ring was operated at 2.5 GeV with better correction of the orbit. At 

this energy i.e. at 2.5 GeV, in the moderate optics, measured horizontal tune, x =9.20, which 

nearly matches with the theoretical tune. On the other hand, the measured vertical tune, y

=6.14, is less than the theoretical tune 6.20. The measured beta beat (𝛽-asymmetry) in the 
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horizontal and vertical planes is ~10-15 % [72]. COD is corrected with rms values of ~1.35 and 

~0.7 mm in horizontal and vertical plane respectively.  

In the moderate optics, dispersion function in the insertion section is ~ -0.4 m. In the low 

emittance optics, the dispersion function is nearly zero and ins,y is ~1.4 m. Since the tune 

points are nearly the same in both the optics, there is a possibility of switching over the 

operation from the moderate optics to low emittance optics, resulting in a smaller beam 

emittance and smaller
ins,y .  

To proceed to the optics giving smaller 
ins,y  and reduction in beam emittance, various 

combinations of quadrupole magnets have been simulated. From these simulations, it is 

observed that a combination of three quadrupole magnets namely QD2 of the insertion section 

and QF2 and QD3 of achromat section are suitable for approaching the required optics. It is 

noticed that when 
insy ,  is reduced from 3.5 m to 1.4 m, the beam emittance is reduced from 

135 nmard to 45 nmrad. 
insx,  is kept as a free parameter because the reduction in its value 

requires a large change in horizontal tune. The strength of sextupole magnets are increased by 

a large amount during the switch over process due to increase in the natural chromaticity, 

change in dispersion function and change in de-coupling between beta functions at their 

locations. So during this process, the sextupole strengths are required to be varied 

synchronously in a well-defined manner. 

When the tune point is kept constant during the switchover process, percentage change in 

amplification factors of COD and 𝛽-asymmetry from the moderate to low emittance optics are 

higher as compared to that when horizontal and vertical tunes are increased by 0.07 and 0.05 

respectively. These results are shown in table 4.4. It is, thus, better to slowly change the tunes 

during reduction of the beam emittance.  



151 

 

 

During the above optimization process, percentage change in amplification factors of COD 

and 𝛽-asymmetry, quadrupole and sextupole magnet strengths with respect to the beam 

emittance are shown in the figure 4.9 and 4.10. A comparison between the moderate and low 

emittance optics in terms of main parameters is tabulated in table 4.5 

 

Figure 4. 9 Variation of % change in strength of quadrupole and sextupole magnets with 

beam emittance. 

 

 

Figure 4. 10 Variation of % change in amplification factors of COD, 𝜷-asymmetry in 

horizontal and vertical plane with beam emittance. 
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Table 4. 4. Percentage change in amplification factor from the moderate to low 

emittance optics, when tune point are kept constant or changed 

 

),( yx    during switch over 

x

xCO


 

y

yCO


 

kk

xx



 
 

kk

yy



 

 

(0.0, 0.0) 13% 61% 13% 79% 

(0.07, 0.05) -11% 12% 5% 43% 

 

Table 4. 5: Comparison between the moderate and low emittance optics 

Parameters Moderate Optics Low Emittance Optics 

max,x , max,y , ηmax (m) 19.8, 14.8, 1.05 22.7, 18.8, 0.65 

insx, insy , , ηins (m) 11.1, 3.6, -0.41 13, 1.4, 0.07 

x , y  (9.19, 6.2) (9.26, 6.25) 

@ 2.5 GeV (nmrad) 135 45 

𝜉𝑥, 𝜉𝑦 

(Natural chromaticities) 

-20, -9 -22, -13 

x  -64x2 - 68y2 -118x2 - 321y2 

y  -24x2 + 31y2 -41x2 - 197y2 

Momentum compaction 7*10-03 4*10-03 

 

Here x and y denotes the initial amplitude of betatron oscillations in horizontal and vertical 

plane respectively. 

 The amplitude dependent tune shift due to sextupoles for ten times of the beam size (at the 

center of insertion section), during the switch over process are plotted in figure 4.11. As evident 
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from figure 4.11, the amplitude dependent tune shift in the low emittance optics is much smaller 

as compared to the moderate optics primarily due to changes in the beam size with beam 

emittance.  

 

Figure 4. 11 Variation of horizontal and vertical amplitude dependent tune shift with beam 

emittance. 

 

4.4.2 Implementation of switch over procedure 

Nearly 110 mA beam current was initially stored at 2.5 GeV using the moderate optics. 

Here, two third of the ring (200/291 bunches) was filled with ~0.55 mA current/bunch to 

overcome ion trapping effects. Thereafter, the strength of quadrupole and sextupole magnets 

were changed synchronously as shown in figure 4.9. For this, a look up table was generated 

and applied to the software [76]. The time taken for the changeover is less than few minutes as 

shown in figure 4.12. The switch over procedure was temporarily halted at 66 nmrad to measure 

beam lifetime for about 2 minutes. It is evident from this figure that during the process of 

switch over there is no drastic change in the decay rate of the beam current and the beam 

lifetime seems to increase by ~20 %. The beam life time in Indus-2 is primarily governed by 

the vacuum [43, 77]. Our estimate indicates that due to the reduction of vertical dynamic 
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aperture (as shown in figure 4.3), the beam lifetime should decrease nearly by 7 %. The 

anomaly between the observed and estimated values is attributed to the uncertainty in the 

available transverse apertures, DCCT noise and in the coupling constant between the two 

planes. However, this is still a matter of study.  

 

 

Figure 4. 12  The reduction of beam emittance (estimated), beam lifetime and beam current 

with time (during switch over) 

 

During the switch over process, variation of rms COD calculated using BPI data with the 

estimated beam emittance is shown in figure 4.13. This figure shows that, in vertical plane, 

rms COD is increased whereas in horizontal plane, it is slightly decreased. These results are in 

agreement with the theoretical predictions. The variation of difference between the measured 

and theoretical tune in each plane is shown in figure 4.14. This figure shows that in both the 

planes, the difference varies smoothly up to ~100 nmrad, afterwards in vertical plane it starts 

to increase. This may be attributed due to the increase in β- asymmetry or increase in rms COD.  
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Figure 4. 13  Variation of measured horizontal and vertical rms COD with estimated beam 

emittance. 

 

 

Figure 4. 14 Variation of difference in horizontal and vertical tune between measured and 

estimated with beam emittance. 
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Figure 4. 15 Movement of tune point in resonance diagram during switch over 

Movement of the tune points during switch over process is plotted in the resonance diagram 

(figure 4.15), which is plotted by considering single periodicity of the lattice and resonances 

up to 5th order. The tune diagram shows that during the switch over process, tune point crosses 

4th and 5th order resonances. No additional loss of beam as shown in figure 4.15 is observed 

during this process.  

There is a provision to measure beam size of the circulating beam using X-ray and pin hole 

camera. A beamline known as X-ray diagnostic beamline has been setup on a dipole magnet. 

The horizontal and vertical beam sizes measured at the x-ray diagnostic beamline installed at 

a bending magnet [78] whole setup with the moderate and low emittance optics are tabulated 

in table 4.6. There is a good agreement between the theoretical and measured values of beam 

size in horizontal plane. In the moderate optics, coupling between horizontal and vertical plane 

is 0.7 % [72]. In the low emittance optics, the measured vertical beam size is ~20 % higher 

than the beam size estimated taking the above value of coupling.  This difference may be due 

to increase in 𝛽-asymmetry, uncertainty in the transverse coupling and effect of beam 

instabilities in vertical plane. 
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Table 4. 6. A comparison between measured and theoretical beam size at the moderate 

and low emittance optics 

 

 Moderate Optics Low emittance Optics 

Theoretical beam size (rms) x: 430 µm, y: 65 µm x: 225 µm, y: 51 µm 

Measured beam sizes (rms) x: 440±10 µm, y: 68±3 µm x:230±10 µm, y: 68±3 µm 

 

4.5  Conclusions  

The moderate optics is employed for the storage of the beam in Indus-2 at 550 MeV taking 

advantage of the negative dispersion function and using the negative DC orbit bump with the 

off-momentum beam (~0.9 %). At 2.5 GeV, the beam emittance is reduced by switching over 

the ring operation from the moderate to low emittance optics. Lagrangian multiplier method is 

used for changing the optics. Here an objective function employing a least square method with 

Lagrangian multiplier is evolved to calculate the strength of quadrupole and sextupole magnets 

required during transition from the moderate to low emittance optics. By using this method, 

the beam emittance in Indus-2 at 2.5 GeV is successfully reduced to one third without any 

additional loss of beam. The method followed here can be implemented for the synchrotron 

radiation sources, where it is difficult to store electron beam at the low emittance. 
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CHAPTER 5 

 

EFFECT OF WAVELENGTH SHIFTER ON BEAM DYNAMICS 

 

Introduction  

 

In an electron storage ring, insertion devices are used to enhance the spectral 

flux/brightness of the synchrotron radiation sources. In which, a wavelength shifter is used to 

reduce the critical wavelength of the emitted synchrotron radiation spectrum. In Indus-1, a 

wavelength shifter with peak field of 3T is considered to shift its critical wavelength from 61 Ao 

to 31 Ao. The schematic location of wavelength shifter and lattice functions of the storage ring 

is shown in figure 5.1 and 5.2 respectively.  

 Insertion devices, adversely affcet the linear and nonlinear beam dynamics of electrons, as 

discussed in Chapter-1. They cause distortion of the betatron functions, linear and non-linear 

(amplitude dependent) tune shift. These effects are inversely proportional to square of the beam 

energy. In Indus-1, at 450 MeV these effects are significant. The beam lifetime is short in 

Indus-1 therefore the wavelength shifter should be kept on during beam injection. During beam 

injection, injected and stored beam oscillation amplitude remains large due to single kicker 

multi-turn injection scheme. In the presence of this device, oscillations of injected and stored 

beam will be further increased and dynamic aperture of the ring may also be reduced due to its 

linear and nonlinear forces. With these changes, it may be difficult to store the beam current. 

Thus it is essential to study effects of the device on the beam dynamics, 

  



159 

 

 

 

 

Figure 5. 1 A schematic layout of Indus-1 ring, S2 section is kept to accommodate a 

wavelength shifter. 

 
Figure 5. 2 The lattice functions of Indus-1 ring 

 

The effect of insertion devices on beam dynamics was studied by L. Smith[ 39], in which 

equations of motion were obtained from the Hamiltonian with Halbach’s magnetic field model 

(sinusoidal magnetic field) for sinusoidal electron beam trajectory.  As discussed in Chapter-

1, the equations of motion obtained from Hamiltonian, show that for this device quadrupole 
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and octupole like component has to be taken into consideration, the oscillating magnetic fields 

such as sextupole, decapole etc are negligible, when these terms are averaged over a period.  

The magnetic field of a wavelength shifter is generally complicated [79]. If transverse 

horizontal magnetic field component is present in wavelength shifter then orbit bump in it will 

give an additional linear and nonlinear component [80-82] in comparison to oscillating 

trajectory. However, it is helpful to express its magnetic field as a sinusoidal function. Here 

we will discuss the wavelength shifter, which has three magnet poles. In this structure, electron 

beam trajectory is a compensated bump. The Hamiltonian, studied by L. Smith is derived for 

the compensated electron beam trajectory transformation by assuming wavelength shifter 

magnetic field in terms of a sinusoidal function. Using this Hamiltonian various linear and 

nonlinear forces (components) are estimated, which are arising due to compensated orbit 

bump in the sextupole and decapole component.  

5.1 A Hamiltonian for wavelength shifter  

 

5.1.1 Magnetic Field 

The components of transverse magnetic field in a wavelength shifter can be obtained from 

Halbach’s [40] expression, by taking a large number of harmonics into account. This model 

has been used for wigglers [83, 84] and is used here for the wavelength shifter to express the 

magnetic field as follows  
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Here x, y, z are horizontal, vertical and beam directions respectively, mmz dk / ,  m 

denotes pole number 1,2 and 3, dm is used to represent corresponding pole length, pnmc ,  

indicates the amplitudes of pth and nth harmonic, 
mB is the peak magnetic field, and m is phase 

),,0( 213121 ddd    for different pole. The side and main pole magnetic field and length 

are adjusted such that the first and second field integral of magnetic field along the beam axis 

is zero and higher order multipole components are small.  

For an ideal wavelength shifter with infinitely wide pole mxk  tends to zero, and field is 

independent of x. However, if the field distribution is known with the width of poles ±Lx,( Lx 

half of the pole width) we can define the horizontal periodicity as kx=2π/Lx. With a two 

dimensional Fourier transform, the coefficients Cm,pn can be obtained from the field data in x-

z plane. In general, a real field has an infinite number of modes and these are obtained from 

the coefficients of Fourier transform. If fitted field does not correspond exactly to the field map 

then small corrections [84] to the higher order coefficients can greatly improve the 

correspondence between the fitted field and the mapped field. 

To simplify the Hamiltonian for the wavelength shifter, single harmonics (p=1, n=1) of 

magnetic field along with
1

22
31

2d

dB
BB  , )( 321 dddd  , 11,mc =1, xxx kkk 321   11,myk  is 

defined as myk and kkkk zzz  321 . Where 2B  is peak magnetic field and d is magnetic 

pole length. In real practice, these Hamiltonian has to be sum over all harmonics of magnetic 

field. In figure 5.3 magnetic field profile of a 3T wavelength shifter is shown.  
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Figure 5. 3 Profile of magnetic field in a 3T wavelength shifter, which is generated by three 

dipole magnets. 

 

5.1.2 Electron beam trajectory 

The equation of motion for the first pole in the horizontal plane, with coshkxx1 is: 
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In equations (5.4-5.6), on right hand side the second additional term is arising due to 

compensated electron bump trajectory. 
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Figure 5. 4 Electron beam trajectory in the presence of the 3T wavelength shifter 

 

The electron beam trajectory in the presence of magnetic field of 3T wavelength shifter (as 

shown in figure 5.3) is plotted in figure 5.4, with the help of equations (5.4), (5.5) and (5.6).  

5.1.3 A Hamiltonian for Betatron motion 

The Hamiltonian of the motion [39] of an electron under above magnetic field can be 

written as, 
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A canonical transformation is required to change variables from ( , , )x y z  to ( , , )x y s   where s 

is distance along the equilibrium orbit, x
 is a displacement in the (x, z) plane perpendicular to 

the equilibrium orbit and y y   is the vertical displacement from the equilibrium orbit. 

Transformation between variables for first pole, second pole and third pole can be written as  
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And the canonical momentum transformation can be written as 
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Here // ,,, eeee zzxx are regarded as a function of ‘s’ and )(sin m
m sk

B

B



 . For simplicity 

drop the subscript e and  . 

In equation (5.7), after canonical transformation and hyperbolic functions are expanded up 

to fourth order in x and y. The equation of motions are governed by 
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In presence of wavelength shifter equation of motion is given by 
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(5.22) 

In the wavelength shifter, trajectory of the electron beam is a compensated bump thus 

oscillating sinkm(s-cm) and coskm(s-cm) terms are retained in equation (5.21) and (5.22), where  
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these terms are neglected in the case of wigglers and undulators (discussed in Chapter-1). These 

terms are averaged over the length of wavelength shifter, and will give quadrupole, sextupole 

and octupole magnet like terms, which are discussed below.  

i) Quadrupole magnet components: 

In the horizontal plane, for a side pole, quadrupole magnet component due to edge 

focussing and orbit offset into the sextupole magnet component will cancel each other, thus 

only main pole has to be considered. In vertical plane, edge focusing of the side and main pole 

both has to be taken into account. 
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These components will distort the beta functions and produce the linear tune-shifts. The distortions 

of the beta functions around the ring will cause a change in beam sizes and that can affect the users, 

reduce beam lifetime and break the symmetry of chromaticity correcting sextupoles, as a result 

additional resonances will be excited. The linear tune-shifts can derive the machine operation close to 

a resonance.  

ii) Sextupole magnet components:   

These terms are determined by averaging oscillating terms of the Hamiltonian. In addition, 

orbit offset in the octupole magnet will also generate sextupole like magnet components, their 

contributions remain small so these terms are not taken into account.  
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If coupling coefficients for side and main pole are equal (
xxx kkk 321  ), then sextupole 

magnet components will be vanished, on the other hand it has to be taken into account. These 

components will generate amplitude dependent tune shift, which may lead to reduction in the 

dynamic aperture.  

 

 

iii) Octupole magnet like components: 

These terms are determined by the non-oscillating and oscillating terms of the equations 

(5.21) and (5.22). In oscillating terms, these arise due to the orbit offset in the decapole magnet 

like component. In vertical plane contributions of these terms are small, thus they are not 

considered. However, in horizontal plane these terms are considered. In the device, strength of 

octupole magnet like components are higher than to the components of insertion device [39]. 
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(5.28) 

The octupole magnet like components will generate non-linear effects and will produce the amplitude-

dependent tune-shifts and excite its own intrinsic resonances that can lead to degradation of dynamic 

aperture. 

5.2  Studies for Indus-1 

The parameters of the wavelength shifter taken here are 2B  (peak magnetic field) = 3T, coupling 

coefficients 03.0)/( 2 mymx kk , number of poles (m) =3, total magnetic length =0.54 m, 

xxxx kkkk  321
 and kkkk  221

. A detailed study has been carried out for Indus-1 for present 
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operating tune point 69.1x  and. 28.1y . The wavelength shifter is divided into a number of hard 

edge rectangular magnets having field index to model the horizontal and vertical focusing caused by 

the wavelength shifter as shown in equation (5.23) and (5.24).  For optics and tracking calculations, a 

wavelength shifter model [8] was used in which each wavelength shifter pole was simulated by a 

constant field dipole with gap between the poles. The dipole pole field, Bp=Boπ/4 and pole length 

Lp=4λ/π2 were set to produce the same bending and focussing effect as the actual wavelength shifter. 

To estimate the edge focussing due to finite kx, dipole field index into the central dipole is modelled by 

defining a field index

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B
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 . The model yields the linear tune shifts and β-

asymmetry in the wavelength shifter. These parameters are presented in table 5.1. The change due to 

nonlinear component (octupole magnet like) is calculated using a thin lens transport matrix. The kick 

is derived by integrating the equation of motion (equation 5.27 and 5.28) over the length of the device.  

 

Table 5. 1:  wavelength shifter model for computer simulations 

Component Length (m) Bending radius(m) Focusing strength Field index(n) 

Side dipole 0.146 1.2732394 -0.6168 m-2 0.0   

Drift 0.034      

Central pole 0.146 0.6366197 -2.4674 m-2 0.247 

Drift 0.034    

Side dipole 0.146 1.2732394 -0.6168 m-2 0.0  

 

5.2.1 Linear effect compensation  

If wavelength shifter have both 
mxk and 

myk  component then in horizontal and vertical 

planes, β-asymmetry as well as linear tune shift will take place. It is required to correct both 

tunes and -asymmetry for smooth operation. To locally compensate these effects, it is required 

that the strength of quadrupole magnets should be varied symmetrically to maintain the 

symmetry of the lattice. For this, four quadrupole magnet pairs are required. In this 
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configuration, only two pairs of quadrupole magnets are available. With these two variables, 

four parameters cannot be corrected. The various options of compensation such as local 

beta/global tunes [85-86], global beta and tunes using different combinations of quadrupole 

magnets were studied using computer program Burhani [56], it is found that it is not possible 

to compensate both simultaneously.  

 

Figure 5. 5 In horizontal plane, β-asymmetry after global tune correction  

 

 

 
 

Figure 5. 6 In vertical plane, β-asymmetry after global tune correction 
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The global tunes correction does not offer good solution as it leaves the large -asymmetry 

(figure 5.5 and 5.6). The -asymmetry in both planes are compensated by -matching ( except 

in region of the device), using neighbouring focussing (QF) and defocusing (QD)  quadrupole 

magnet, which are adjacent  to the device. The -matching changes the linear tunes by a large 

amount. Therefore, the scheme, in which first -matching is done by using neighbouring QF 

and QD families and then linear tunes are compensated globally with remaining families of QF 

and QD, was studied (figure 5.7 and 5.8). The scheme offers a promising solution in which 

beta function is well corrected in the dipole magnet, where synchrotron radiation is taped. The 

detail results are summarized in table-5.2 

 

Figure 5. 7: In horizontal plane, β-asymmetry after α-matching and tune correction  
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Figure 5. 8: In vertical plane, β -asymmetry after α-matching and tune correction  

 

Table 5. 2: linear distortions caused by the magnetic profile of wavelength shifter  
 

Correction x y xrms  yrms 

Before  -0.02 0.06 10.39 27.47 

Only Tune   0.0 0.0 9.36 27.47 

 Matching and tune   0.0 0.0 6.78 23.87 

 

 

5.2.2 Dynamic aperture 

In the presence of the wavelength shifter symmetry of the lattice will be broken as a result 

various resonances will be excited. In the figure resonance diagram is plotted by considering 

periodicity of the lattice equal to four (figure 5.9) and one (figure 5.10). 
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Figure 5. 9 Tune diagram up-to 4th order considering four periodicity of the ring. Blue and 

green colour indicates 3rd and 4th order resonances respectively. The points A and B indicate 

tune point for a bare lattice and in the presence of wavelength shifter. 

 

Figure 5. 10: Tune diagram considering single periodicity of the ring. Blue and green color 

indicates 3rd and 4th order resonances respectively. The points A and B indicate tune point 

for a bare lattice and in the presence of wavelength shifter. 

 

The dynamic aperture simulations are plotted for on-momentum electrons, after 100,000 

turns in the following cases 

a) For bare lattice  

b) In presence of wavelength shifter  
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1. Without any correction 

2. After tune correction with octupole magnet like component of wavelength shifter  

3. After both corrections (α-matching and tune) without octupole magnet like component 

of wavelength shifter and 

4. After both corrections (α-matching and tune) with octupole magnet like component of 

wavelength shifter. 

The simulated result shows that without any linear correction, the dynamic aperture reduces 

nearly 50%, see figure 5.11, since horizontal tune (1.67) is shifted near to third order resonance 

see figure 5.10. The tune point (1.67, 1.34) is also near to fourth order resonances.  
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Figure 5. 11 Dynamic Aperture for bare lattice and in presence of wavelength shifter 

(without any correction) 
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Figure 5. 12 Dynamic Aperture after following correction 1) after tune correction and 2) α-

matching and tune correction  

 

After global tune correction, the dynamic aperture improves significantly and after the both 

corrections (α-matching and tune), the dynamic aperture is further increased. In horizontal 

plane, it is increased from 21 mm to 26 mm, see figure 5.12. Similarly in the vertical plane, the 

dynamic aperture is improved, for example at the following coordinates (x, x/, y, y/) = (20, 0, 

4, 0), in the case of global tune correction fourth order island formation takes place (as shown 

in figure 5.13) and after the both corrections island formation does not take place (as shown in 

figure 5.14).  

The dynamic aperture is also simulated with and without octupole like magnet component 

of the wavelength shifter in the case of both (α-matching and tune) corrections. The results 

show that reduction in dynamic aperture due to octupole like magnet component of the device 

is quite small, see figure 5.12. 
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Figure 5. 13: In vertical plane, phase space plot after tune correction  

 

Figure 5. 14: In vertical plane, phase space plot after both corrections (α-matching and 

tune). 

 

5.2.3 Injection simulation  

In Indus–1, a single kicker multi-turn injection scheme [49] is adopted in the horizontal 

plane. In this scheme, the injection septum and injection kicker magnet are located at symmetry 

points of the ring diametrically opposite to each other, so that maximum of orbit bump (xb) 

occurs at the center of the straight section, in which the injection septum magnet is placed. Two 
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bunches (separated by 30ns) extracted from the synchrotron are injected into Indus-1. The 

locations of the injected bunches on the injection kicker are shown in the figure 5.15. The 

injection kicker magnetic field reaches to peak value in 1.2 S following a sinusoidal shape 

and it decays exponentially with fall time of 150 nS. The first and second bunch is on the top 

and falling edge of injection kicker respectively. The first bunch experiences higher bump in 

comparison to the second bunch. Thus for the second bunch, injected beam oscillations and 

residual oscillations after beam injection will remain higher in comparison to the first bunch.   

 

 

Figure 5. 15: Spatial distribution of first and second bunch of injected beam with respect to 

the strength of injection kicker magnet. 

 

Now, we will derive a relation to estimate the strength of the injection kicker. For a periodic 

lattice, the transfer matrix [8-13] from the injection kicker magnet to injection septum can be 

written as  
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After one turn, transfer matrix at the injection kicker magnet location can be written as 

 

(5.30) 

xkixb  2sin2cos11  , xxkib  2sin,12  , xxki
b  2sin

,21  and 

xxkixb  2sin2cos ,22   

To satisfy closed orbit condition, the transfer matrix has to satisfy following condition  

 
(5.31) 

By solving the above expression, the kicker strength can be written as 
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(5.32) 

Now we will study the effect of wavelength shifter on the injection dynamics. In the 

presence of this device (having finite kx), at the injection septum magnet, symmetry of beta 

function will be broken and orbit bump, which is generated by the injection kicker magnets 

will be distorted.   

 At the injection septum magnet placed at 21 mm from the design orbit maximum 

oscillation amplitude of injected and stored bunches are tabulated in table 5.3 and 5.4 for the 

bare lattice and after both -matching and globally tune correction. For these calculations, 

16 mm orbit bump is produced the kicker magnet as shown in figure 5.16. 
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Figure 5. 16: The bumped closed orbit for bare lattice and after both correction (α-matching 

and tune correction) 
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Table 5. 3: For bare lattice amplitude of beam oscillation during beam injection  

 

 Injected Beam Oscillation (mm) Stored Beam Oscillation (mm) 

Bunch Max at 

septum 

 Max. and Min. 

at other places  

Residual 

oscillation 

Max at 

septum  

 Max. and Min. 

at other place  

Residual 

oscillation 

 First  15.0 18.1-29.1 ±12.6 16.60 16.7- 17.1 ±4.8 

Second  17.4 19.7 -29.1 ±16.2 16.14 16.2-16.7 ±6.5 

 

Table 5. 4:  During beam injection, amplitude of beam oscillation after the both 

corrections (α- matching & tune)  

 

 Injected Beam Oscillation (mm) Stored Beam Oscillation (mm) 

Bunch Max at 

septum 

 Max. and Min. 

at other place  

Residual 

oscillation 

Max at 

septum  

 Max. and Min. 

at other place  

Residual 

oscillation 

First  15.7 18.7-31.3 ±13.3 16.47 17.2 -18.0 ±5.2 

Second  17.9 20.3-31.3 ±17.7 16.05 16.6-17.4 ±7.1 

 

After both correction (-Matching and global tune correction), maximum and minimum 

injected beam oscillation over the ring (20.3, -31.3) is slightly higher in comparison to the bare 

lattice (19.7, -29.1). The above result indicates that in the horizontal plane dynamic aperture 

requirement is 20 mm for beam injection. In vertical plane, dynamic aperture requirement is 

4 mm, which is mainly determined by the finite orbit distortion and from injected beam having 

finite beam size and non-zero initial coordinates (displacement and angle) from the design 

orbit.  It is discussed in sub section 5.2.3 that the above mentioned dynamic aperture is available 

after both corrections (α-matching and tune correction). Thus it is possible to operate 

wavelength shifter in Indus-1 during bema injection after both corrections.  

The dynamic aperture requirement can be further reduced with the help of off-momentum 

injection. In which, by injecting positive off-momentum electrons (+0.1%), injected beam 
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oscillations can be reduced (18.8, -28.3). For these electrons, oscillation amplitude of injected 

bunches as well as stored bunches are shown in the figure 5.17 and 5.18 and these oscillations 

are tabulated in table-5.5.  

 

Figure 5. 17: After the both corrections (α-matching and tune correction), injected Beam 

oscillation during beam injection with +0.1% off-momentum beam injection. 

 
 

Figure 5. 18: After the both corrections (α-matching and tune correction), stored beam 

oscillation during beam injection. 
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Table 5. 5 During beam injection, amplitude of beam oscillation for +0.1% off-momentum 

injection after both correction (α- matching and tune)  

 
 Injected Beam Oscillation (mm) 

Bunch Max at septum   Max. and Min. at other place  Residual oscillation 

 First  15.8 18.8-28.3 13.1-10.1 

Second  18.1 19.1-28.3 17.2-14.3 

 

5.3 Conclusion   

The derived Hamiltonian for the wavelength shifter generates an extra term for quadrupole, 

and octupole magnet like component, which arises due to orbit offset into the wavelength 

shifter. The sextupole magnet component has to be taken into consideration, if side pole and 

main pole coupling coefficients differ with each other. In order to operate the wavelength 

shifter in Indus-1, local  correction/ partial and total global tunes correction may be required.  
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CHAPTER 6 

 

SUMMARY AND CONCLUSIONS 

 

In Chapter-1, basics of beam dynamics of synchrotron /storage ring including topic such as 

beam injection, beam optics and effect of insertion devices on beam dynamics are discussed. 

In Chapter-2, beam injection into the synchrotron is discussed and it is explained that why the 

synchrotron (common injector for Indus-1 and Indus-2) performance in terms of accelerated 

beam current was found better in the uncompensated orbit bump scheme as compared to the 

compensated orbit bump scheme. In the synchrotron, at the injection septum magnet, twiss 

parameters in the plane of beam injection have large values, as a result in the compensated 

bump injection scheme, amplitude of residual oscillations of the subsequent turns increase with 

a higher amount than the bump reduction rate. In the uncompensated bump scheme, it is 

possible to generate higher value of the bump and bump slope at the injection point, which 

helps in constraining the amplitude of residual oscillations for a short pulse (pulse duration 

equal to few times the revolution period of the synchrotron). This condition is not achievable 

with the three kicker compensated bump scheme. Consequently in the uncompensated bump 

scheme amplitude of residual oscillation of the accepted slices remain smaller as compared to 

the compensated bump injection scheme and this helps in achieving a higher beam current.  

In Chapter-3, a double bend achromat lattice with various types of achromats such as a 

single QF or combination of QFs and QDs are discussed from point of view of achieving the 

theoretical minimum beam emittance. This structure contains either a single QF or combination 

of QFs and QDs to form the achromat. An analytical approach assuming quadrupoles as thin 

lenses have been followed for studying these structures. It is shown that with single QF 
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structure, the theoretical minimum beam emittance is not possible. The theoretical minimum 

beam emittance in a given structure is possible with following combinations of quadrupole 

magnets QF-QF/QF-QD-QF/QF-QF-QF/QF-QF-QF-QF/QF-QD-QD-QF/QD-QF-QF-QD. 

This is shown that for smaller length of an achromat having QF-QD-QF and QF-QD-QD-QF 

structures are suitable for obtaining the minimum beam emittance.  

Achromat of Indus-2 i.e. QF-QD-QF is also studied. The tunability of Indus-2 lattice for 

obtaining smaller beam emittance under the given constraints of optical parameters is studied 

by choosing different lengths of achromat. It is found that the chosen length of Indus-2 

achromat is around the beam emittance of 55nmrad, which is 1.5 times of the theoretical 

minimum beam emittance. Initial studies indicate that in the achromat section, an additional 

space for insertion devices can be created by modifying the present achromat structure from 

QF-QD-QF to QF-QD-QD-QF. 

In Chapter-4, studies carried out to reduce the beam emittance are presented. The 

commissioning experience of Indus-2, which is commissioned by using the moderate optics is 

discussed. It is shown that why it is easier to inject the beam with the moderate optics as 

compared to the low emittance optics. The advantage of an off-momentum beam injection is 

also highlighted. In order to operate the Indus-2 with the low emittance optics, a procedure is 

evolved and implemented at the final beam energy to reduce the beam emittance and vertical 

beta function by controlling the linear and nonlinear imperfections in a well-defined way to 

avoid any fast decay of beam current. Here an objective function employing a least square 

method with Lagrangian multipliers is evolved to calculate the strength of quadrupole and 

sextupole magnets required during transition from the moderate to low emittance optics. By 

using this method, the beam emittance in Indus-2 at 2.5 GeV is successfully reduced to its one 

third value without any additional loss of beam 
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In Chapter-5, a Hamiltonian for wavelength shifter is derived by considering compensated 

electron beam trajectory transformation. Based on this Hamiltonian, linear and non-linear 

forces are estimated. The result shows that in the wavelength shifter, the compensated electron 

beam trajectory gives additional quadrupole, sextupole and octupole components in 

comparison to the oscillating electron beam trajectory of the insertion devices. Based on this, 

effects on beam dynamical parameters are studied by considering the case of Indus-1.  

Future work  

1. In the synchrotron, dynamic acceptance is small, a significant beam current loss takes 

place in initial part of beam energy ramping. Within this region, tune point is not 

constant and its variation is not smooth. In the region dynamic acceptance can be 

partially improved by optimizing the tune point. In the present setup, facility is not 

available to change the tune point during the beam energy ramping process. In order to 

get flexibility in optimization, a new ramping scheme should be studied. 

2. The double bend achromat lattice should be studied by considering a gradient or 

alternate gradient in the dipole magnet 

3. In Indus-2, at the low beam emittance, closed orbit distortion, beta-beat as well as 

transverse coupling need to be properly corrected. Afterwards these corrections, the 

procedure, evolved here to reduce the beam emittance in Indus-2 should be used for 

further reducing the beam emittance by allowing finite dispersion function in the 

insertion section. 

4. In the Indus-2 additional space for installation of insertion devices can be created by 

modifying the present achromat QF-QD-QF structure with QF-QD-QD-QF structure.  

Initial few results of this structure are presented, further detailed studies have to be 

carried out.  

5. In Indus-2, a wavelength shifter having five poles will be used to provide a fixed source 
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point. In order to predict the linear and nonlinear effects of this wavelength shifter on 

the electron beam motion, the Hamiltonian will be derived for the double bump 

trajectory. 
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