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Synopsis

The e+e− pair production from vacuum by strong electromagnetic (EM) field is a fundamental

prediction of quantum electrodynamics (QED) [1]. Although the process was foreseen theoret-

ically several decades ago [2–6], its experimental verification is still missing because of the un-

availability of an electric field strength comparable to the Schwinger limit ES = 1.32×1018V/m.

Since the probability of pair production from vacuum by a strong electric field of strength Epeak

is proportional to exp(−πES /Epeak), the process is exponentially suppressed for Epeak � ES .

The available electric field strength for the present-day laser systems is of the order of Epeak ∼

1013 − 1014 V/m [7], considerably below the critical field limit ES . However, recent advances

in laser technology, specially the use of chirp pulse amplification method, have made it possi-

ble to generate ultrashort laser pulses in deeply relativistic regime [8]. The European Extreme

Light Infrastructure for Nuclear Physics (ELI-NP) is planing to build a 10 PW pulsed laser to

achieve intensities I ∼ 1023 W/cm2 for the first time for investigating new physical phenomena

at the interfaces of plasma, nuclear and particle physics [9, 10]. The electric field at the laser

focus will have a maximum value of 1015 V/m at such intensities. In the ELI-NP experimental

area E6, it is proposed to study radiation reactions, strong field QED effects and the resulting

production of ultrabright gamma rays which could be used for nuclear activation. The construc-

tion of X-ray free electron laser (XFEL) is under way at DESY, Hamburg using self amplified

spontaneous emission (SASE) principle [11]. In a landmark experiment E144 at Stanford Linac

Acceleration centre (SLAC) in 1997 it was possible to observe non-linear QED processes like

non-linear Compton scattering and stimulated pair production in the collision of a 46.6 GeV

electron beam with terawatt laser pulses of 1053 nm and 527 nm with intensity I = 1022 W/cm2

[12, 13]. Although these multi-photon processes pertain to the perturbative regime of QED, the

successful experimental realizations thereof raise the hope for the experimental verification of

the Schwinger mechanism in coming decades.

The aforesaid developments renewed interest in theoretical studies of pair production by

intense optical lasers. Using the realistic focused field models, e.g. a weakly focused field in

paraxial approximation [14], tightly focused field models [15, 16], and the optimally focused

v
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field model of e-dipole pulses [17], it was demonstrated that pair production can take place

even at intensities substantially lower than the critical intensity IS = c
4πE2

S (here c denotes the

light velocity in vacuum). Superposition of laser pulses in a counterpropagating configuration

has been shown to lower the threshold value of the required field strength considerably [18].

Such beam configurations were extensively used to study various aspects of pair production,

including the dynamics of post production.

Studying pair production for a realistic space and time dependent field of the ultra short and

intense laser pulses offers new challenges. This has resulted in the development of numerous

theoretical approaches. While the proper time propagator method was used by Schwinger to

derive the pair production rate for an electric field constant in time and space [1], its exten-

sion to the space/time varying fields was done using the WKB method [19] and the worldline

instanton method [20]. Recognising the equivalence of the pair production process to the over-

the-barrier scattering problem in quantum mechanics, the structure of the turning points in the

complex time plane [21] was used to calculate the longitudinal momentum spectrum of the cre-

ated particle at the asymptotic time for a spatially uniform time dependent electric field. A full

fledged dynamical description of pair creation process for time varying fields is possible within

the framework of the quantum kinetic approach using the quasi-particle [22] representation (for

spatially homogeneous fields) and the Wigner representation [23] (for spatially inhomogeneous

fields).

The study of pair production has also provided yet another setting to test and substantiate

the concept of t-non invariant vacuum state proposed in the area of quantum chromodynamics

(QCD) for the pre-equilibrium evolution of quark-gluon plasma in heavy ion collision and the

possible connection thereof to the phase transition [24]. The long standing issue of the origin

of irreversibility and its effect on the entropy production have received attention in the recent

times [25].

In this thesis, we have studied pair production from vacuum in the focal region of two

ultrashort and ultraintense counterpropagating laser pulses using Narozhny-Fofanov (N-F) field

model [14]. To begin with, we have taken the general focused EM field which is a combination

of e- and h- polarised waves to study the dependence of the spatiotemporal distribution of

created pairs on the relative content of e- and h- polarizations in the resultant field in the focal

region. We have also studied the effect of carrier envelope phase (CEP) and the relative phase

difference of two linearly/circularly e-polarised colliding pulses on the invariant electric and

magnetic fields structures and hence the spatiotemporal distribution of the created pairs. We

have observed the generation of ultrashort particle bunches with FWHM of 200 atto-second

[26, 27]. Later, we have studied the dynamical aspects of created pairs using quantum kinetic
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theory. Here we study the effect of the temporal pulse envelope on the longitudinal momentum

spectrum of the created particles. The pair production process may be viewed as a field induced

phase transition (FIPT) of the vacuum state [25]. The evolution of the order parameter of the

phase transition is studied for multi-sheeted Sauter pulse with higher order frequency chirp

parameter. Pair production in strong EM field allows to analyse the inter-relation between

the entropy production and irreversibility in systems which show reversibility at microscopic

level [28]. In this thesis, the evolution of the von Neumann entropy function for a few cycle

Sauter pulses is studied. The non-monotonic entropy growth has been observed with oscillatory

structures. This thesis is organized in seven chapters a brief description of which is as follows.

We begin with a basic introduction of the particle production mechanism via Schwinger

mechanism in the presence of ultrashort and ultraintense laser pulses in Chapter 1. We also

present a review of different pair production mechanisms (multi-photon pair production process

and tunneling pair production mechanism) [6, 29]. In order to have the gauge and Lorentz

invariant description of pair production via Schwinger mechanism we introduce the concept

of invariant electric and magnetic fields in a Lorentz transformed frame in which electric and

magnetic fields are parallel to each other[1, 18, 30]. We discuss different configurations of the

focused colliding laser pulses [26, 27]. The quantum kinetic formalism which allows us to

study the longitudinal momentum spectrum of created pairs, evolution of the order parameter

of FIPT and the non-monotonic increase of entropy is also discussed.

In Chapter 2 we study pair creation for different state of beam polarization of the EM field

of two counterpropagating laser pulses. The characteristic parameter for the beam polarization

is given by the parameter of asymmetry µ [31] between e-and h-waves in the field expression

where e (h)-wave refers to the EM field in which only electric (magnetic) field is purely trans-

verse with respect to the propagation direction [14]. The main aim of revisiting this topic is

to know how the pairs are distributed in spatiotemporal coordinates for different values of µ.

It is found that the beams made up of entirely e-and h-waves (µ = ∓1) are the most effective

for pair production whereas the beam having equal mixture of e-and h-waves (µ = 0) is the

worst for pair production [18]. In this chapter, we explain these observations by the structure

of underlying fields. Though µ = 0 case is not suitable for efficient pair production, it is found

to be appropriate for generating shorter bunches of electrons and positrons [26].

Ultrashort laser pulses are characterized by CEP which is inherent to the process of their

generation [32]. The effect of CEP on the spatiotemporal distribution of electron-positron pairs

created by ultra-intense counterpropagating femtosecond laser pulses is studied in Chapter 3.

When the laser pulses are linearly e-polarized, the temporal distribution of the pairs is found to

be sensitive to CEP. Same analysis is extended for the circularly e-polarized laser pulses. It is
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seen that when the counterpropagating laser pulses are both right and left circularly polarized,

the effect of CEP is insignificant. On the other hand when the superimposed fields are in

the combination of right and left circular polarizations, the CEP dependence shows up in the

invariant electric and magnetic fields structure and hence it reflects in the particle-antiparticle

temporal distribution. However, the total number of pairs is not greatly influenced by CEP for

both the polarizations [27].

In Chapter 4 we have studied the pair production mechanism by a strong EM field of two

colliding e-polarized laser pulses with a relative phase shift Ψ. The spatio-temporal distribu-

tion of created pairs is very sensitive to this phase shift and to polarization of the pulses. We

have analysed this dependence in detail and demonstrate how it can be explained in terms of

the underlying invariant electric field structure of the counterpropagating focused pulses which

is spiky. We find that the total pair production is larger when one of the spikes is located

near the centre of the spatiotemporal envelope (and the distribution of created pairs looks ap-

proximately unimodal), and smaller when the neighboring spikes are off-centered but located

symmetrically. The particular phase shift required for each case depends on the polarization

of the pulses. Among the considered cases, for the parameters adopted in this study the global

maximum for the total number of pairs is achieved with the circularly e-polarized counterprop-

agating pulses having the same sense of rotation with no relative phase difference as considered

in Ref. [18]. Possibility of phase control of Schwinger pair production may be useful, e.g., to

increase the attainable intensity of tightly focused colliding laser pulses by reducing pair pro-

duction and hence preventing field depletion at their crossing, or, conversely, to measure the

typically unknown field structure and phase relations of extremely strong laser pulses [33].

Effect of temporal pulse shape of intense few cycle ultrashort laser pulses on the momentum

distribution of e+e− pairs is studied using quantum kinetic equation in Chapter 5. Single and

multi-sheeted Gaussian and Sauter pulses, are considered to this end. For multi-sheeted pulses

having a few cycle of oscillations the temporal profile of the pulse is revealed in the interfer-

ence pattern in the momentum spectrum at asymptotic times. The onset of the oscillation due

to the quantum interference between the neighbouring turning point structures takes place for

fewer subcycle oscillations for the Gaussian pulse than that for the Sauter pulse. Furthermore,

the oscillation amplitude for the same number of subcycle oscillations within the pulse dura-

tion is larger for the Gaussian pulse. The presence of the carrier offset phase and the frequency

chirping is found to magnify these differences. These observations are explained in terms of the

turning point structure in complex t-plane and invoking the concept of over the barrier scatter-

ing. The momentum spectrum of the created particle-antiparticle pairs being very sensitive to

the shape of temporal envelope may provide a way to measure it for the ultrashort laser pulses.
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Pair production in the presence of a time dependent electric field may be viewed as a FIPT

[24, 25]. In Chapter 6, we have studied the evolution of the order parameter associated with

FIPT of the vacuum state for the time dependent multi-sheeted Sauter pulse. In particular, the

effect of the time dependent frequency of the electric field due to the higher order frequency

chirping is investigated. We limit our study up to the quadratic frequency chirping for the dif-

ferent evolution stages of the order parameter e.g., the quasi electron positron plasma stage, the

transient stage and the residual electron-positron plasma stage. In the presence of the quadratic

frequency chirping, the formation of pre-transient region is observed at earlier times before the

electric field attains its maximum value. The t non-invariant particle distribution function re-

sults in the non-monotonic increase in von Neumann entropy [28, 34]. We study the effect of

sub-cycle pulse oscillations on the evolution of the entropy and the particle density for different

values of subcycle oscillations.

In Chapter 7, we summarize the major outcomes of our studies on electron-positron pair

production via Schwinger mechanism by ultrastrong and ultrashort laser EM fields and discuss

the future outlook.
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Chapter 1

Introduction

The e+e− pair production from vacuum by strong electromagnetic (EM) field is a fundamental

prediction of quantum electrodynamics (QED) [1]. The basic process is coined from the rel-

ativistic wave equation where energy has positive and negative continua which are separated

by the forbidden energy gap 2mc2. According to the Dirac theory [2], the vacuum state is de-

fined as the states with negative energy are totally filled and positive energy states are empty.

But due to the quantum fluctuation in the vacuum state there exist virtual particle-antiparticle

pairs (here electron and positron) which does not satisfy the Einstein energy-momentum on-

shell mass condition (a particle with rest mass m, momentum p and energy E should satisfy

E2 − p2c2 = m2c4 where c is speed of light in vacuum). So there is a spontaneous creation and

annihilation of virtual particle-antiparticle pairs from the vacuum. The process is limited by

the fundamental quantum mechanical uncertainty which basically sets the characteristic length

and time scale of the process. In general, one can think the vacuum as a statistical ensemble of

virtual electron-positron loops which are randomly oriented as shown in left side of Fig. 1.1.

In the presence of an external field, these loops are oriented along the electric field and we get

polarized vacuum as shown in right side of Fig. 1.1. If the external electric field is so strong that

it would overcome the mutual Coulombic attraction force for the charged particle-antiparticle

pairs we get real particle and anti-particles from the vacuum. The typical dimension of the loop

is Compton length λC = ~/mc.

One can generally estimate the production rate of the created pairs which get tunnel out

from the potential barrier by a constant electric field using the WKB method. We consider the

constant electric field with field strength E0, particle energy E and 3-momentum p(x). The

1
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Figure 1.1: Pictorial representation of vacuum state without and with the external field.
(Adapted from “Strong-Field QED Processes in Short Laser Pulses”, Daniel Seipt, Ph. D.
thesis, University of Dresden, 2012)

potential barrier gets modified and it varies linearly. We have the modified on-shell mass con-

dition

(E − |e|E0x)2 = c2(m2c2 + p(x)2), (1.1)

where e(|e| < 0) is the charge of the particle. The classically forbidden regions are determined

where the particle momentum becomes imaginary and we have non-zero quantum mechanical

tunneling probability in this forbidden region. The classical turning points are determined by

equating p(x) = 0 which will end up two turning points located at x+ = (E + mc2)/|e|E0 and

x− = (E −mc2)/|e|E0. So apart from the pre-factor which is of the order of unity, the tunnelling

probability is calculated by

W ∼ exp{−
2
~

i

x−∫
x+

dxp(x)} (1.2)

where p(x) = imc
√

1 − (E − |e|E0x)2/m2c4 in the classically forbidden region. Now changing

the variable λ = (E−|e|E0x)/mc2 and dλ = −|e|E0dx/mc2. The limits of the integration become

λ+ = −1 and λ− = 1. So we get

W ∼ exp{−
4m2c3

~|e|E0

1∫
0

dλ
√

1 − λ2} = exp{−
πm2c3

~|e|E0
}. (1.3)

Here one define the critical field strength Ecr which accelerates the virtual electron positron pair
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Figure 1.2: Plot of the potential barrier in the presence of the external electric field. (Adapted
from “Strong-Field QED Processes in Short Laser Pulses”, Daniel Seipt, Ph. D. thesis, Univer-
sity of Dresden, 2012)

upto a λC = ~/mc to gain the kinetic energy of the order of the rest mass of the pair and we get

2|e|EcrλC = 2mc2 which gives the value of ES = m2c3/|e|~ = 1.32× 1018 V/m. So the tunneling

probability becomes

W ∼ exp{−
πEcr

E0
} (1.4)

which is in good agreement with exact formula of the pair production rate per unit volume per

unit time by Schwinger formula [1]

W =
|e|2E2

0

4π3~2c
exp{−

πEcr

E0
}. (1.5)

The generalization of the Schwinger formula of pair production rates per unit volume and per

unit time in the presence of the constant electric and magnetic fields with fields strength E0 and

H0 was derived by Nikishov [3] and resulted in the final form

W =
|e|2E0H0

4π2~2c
coth(

πH0

E0
) exp{−

πEcr

E0
}, (1.6)

where E0 and H0 are the invariant electric and magnetic fields in the Lorentz transformed frame

where both the fields are parallel. These invariant fields are defined by the Lorentz invariants

for the electric and magnetic fields E and H as follows: the Lorentz scalar F and pseudoscalar

G are F = (E2
− H2)/2 and G = E · H. The normalized invariant electric and magnetic fields

are defined as ε = E0/ES and η = H0/ES where (E,H) =
√

(F 2 + G2)1/2 ± F in the centre of
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momentum frame of the field. For the plane wave in vacuum both the Lorentz invariants are zero

and therefore pair production is not possible whatever may be the strength of the field. Here it

is justified because for the plane wave, all the wave vectors are moving parallel and therefore

there is no centre of momentum frame of the field with non zero invariant mass density of the

field [4]. This process was foreseen theoretically several decades ago [5–9], its experimental

verification is still missing because of the unavailability of an electric field strength comparable

to the Schwinger limit ES . Since the probability of pair production from vacuum by a strong

electric field of strength Epeak is proportional to exp(−πES /Epeak), the process is exponentially

suppressed for Epeak � ES . The pair production rate shows that it is a non-perturbative process

with the electric charge e and needs to evaluate exactly.

A simple way to meet the criteria of non zero Lorentz invariants is to use focused ultra-short

and ultra-intense laser beam(s). The focused laser beams can be described by the various field

models such as Narozhny-Fofanov (N-F) field model for weakly focused pulse [10], tightly

focused field model [11, 12] and optimally focused field model [13, 14]. Use of two or many

counterpropagating laser beams have been shown to reduce the intensity threshold much below

the critical intensity [15, 16]. In these field configurations, the magnetic field vanishes in the

focus and thereby enhancing the pair production rate [17, 18]. Furthermore, because of the

formation of the standing wave pattern in the focal plane the peak field strength of the electric

field increases. Consequently, several theoretical studies have explored various aspects of pair

production using the counterpropagating beam configuration of focused laser beams such as

enhancement of the production rate [11, 15, 16], momentum distribution of the created parti-

cles [19, 20], dynamically assisted Schwinger mechanism [20–23], barrier control tunneling

mechanism in e+e− photoproduction [24], and spin-polarization state of the created particles on

the laser field polarization [25]. While, there is a quest to achieve ultraintense lasers to experi-

mentally realize some of the strong field QED effects, Fedotov et al., have analyzed an issue of

fundamental importance, that is, if there are any limitations on the attainable intensity for high

power lasers [26]. It has been shown that even a single e+e− pair created by a superstrong laser

field in the vacuum would cause the development of an avalanche-like QED cascade which

rapidly depletes the incoming laser pulse. In the light of this work, the configurations of laser

beams which diminish pair production, also assume significance. For example, a perpendicular

magnetic field has been shown to effectively control - even to the extent of completely halting

the pair production by the supercritical static electric field [17, 18].
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1.1 Different formalism of pair production processes

The simple realization of materialization process by pair production from high energetic gamma

photon can be done if we consider two photons with four momenta kµ1 and kµ2 collide at an

angle, such that the invariant parameter η = k1k2
m2 > 2 [27] then the creation of electron and

positron pair is kinematically allowed. The additional source is required to get kinematically

allowed pair production for a single gamma photon. In general there are three possibilities of

pair production known so far which are i) pair production by a high energy gamma photon

propagating in a strong laser field (Breit-Wheeler pair production in a multiphoton regime), ii)

pair production by a Coulomb field in the presence of a strong laser electromagnetic field, iii)

vacuum pair production by the strong electric field of laser in tunnelling regime via Schwinger

mechanism.

In this thesis, we mainly focus on the pair production process via Schwinger processes

which is the non-perturbative signature of vacuum decay process in the presence of a constant

background field. This process was studied in a more general field theoretic approach in the

presence of a constant electric field background by Schwinger [1] using proper time propaga-

tor. Although for the characteristic length and time scales of the process is Compton length

and time scale which are much smaller than the present day radiation field wavelength and

the time period. Therefore one can use spatiotemporaly inhomogeneous field to calculate the

pair production rates using a locally constant field approximation. This methodology has the

advantage to use laser pulses because laser light is the potential source of such high electric

field at the focus. For a real space and time-dependent field of the ultrashort and ultraintense

laser pulses offers new challenges. This has resulted in the development of numerous theoret-

ical approaches for the space/time varying fields which has been formulated using the WKB

method [28] and the worldline instanton method [29]. Recognising the equivalence of the pair

production process to the over-the-barrier scattering problem in quantum mechanics [30], the

structure of the turning points in the complex time plane [31] was used to calculate the longitu-

dinal momentum spectrum of the created particle at the asymptotic time for a spatially uniform

time dependent electric field. A full fledged dynamical description of pair creation process for

time varying fields is possible within the framework of the quantum kinetic approach using the

quasi-particle [32] representation (for spatially homogeneous fields) and the Wigner represen-

tation [33] (for spatially inhomogeneous fields).
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1.2 Schwinger mechanism realization by the ultrashort and

ultraintense laser source

The available electric field strength for the present-day laser systems is of the order of Epeak ∼

1013 − 1014 V/m [34], considerably below the critical field limit ES . However, recent advances

in laser technology, especially the use of chirp pulse amplification method, have made it possi-

ble to generate ultrashort laser pulses in deeply relativistic regime [35]. The European Extreme

Light Infrastructure for Nuclear Physics (ELI-NP) is planning to build a 10 PW pulsed laser to

achieve intensities I ∼ 1023 W/cm2 for the first time for investigating new physical phenomena

at the interfaces of plasma, nuclear and particle physics [36, 37]. The electric field at the laser

focus will have a maximum value of 1015 V/m at such intensities. In the ELI-NP experimental

area E6, it is proposed to study radiation reactions, strong field QED effects and the resulting

production of ultrabright gamma rays which could be used for nuclear activation. The construc-

tion of X-ray free electron laser (XFEL) is underway at DESY, Hamburg using self-amplified

spontaneous emission (SASE) principle [38]. In a landmark experiment E144 at Stanford Linac

Acceleration centre (SLAC) in 1997 it was possible to observe non-linear QED processes like

non-linear Compton scattering and stimulated pair production in the collision of a 46.6 GeV

electron beam with counterpropagating laser pulses with photon energy 2.4eV and laser field

intensity I = 1.38 × 1018W/cm2 [39, 40]. Although these multi-photon processes pertain to the

perturbative regime of QED, the successful experimental realizations thereof raise the hope for

the experimental verification of the Schwinger mechanism in coming decades.

The aforesaid developments renewed interest in theoretical studies of pair production by

intense optical lasers. Using the realistic focused field models, e.g. a weakly focused field in

paraxial approximation [10], tightly focused field models [12, 41], and the optimally focused

field model of e-dipole pulses [17], it was demonstrated that pair production can take place

even at intensities substantially lower than the critical intensity IS = c
4πE2

S (here c denotes the

light velocity in vacuum). Superposition of laser pulses in a counterpropagating configuration

has been shown to lower the threshold value of the required field strength considerably [15].

Such beam configurations were extensively used to study various aspects of pair production,

including the dynamics of post-production.
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1.3 Motivation of the present work

The validation of the Schwinger pair production process can be achieved by the use of ultrashort

and ultraintense laser pulses at the focus which has non zero Lorentz invariants. Therefore it is

essential to have the exact analytical expression of the electric and magnetic fields at the focus

to get the desired Lorentz invariants and hence the invariant electric and magnetic fields. The

focusing generates the longitudinal components at the focal region and the EM field is no more

transverse. The relative contribution of the transverse and the longitudinal components of the

electric field introduces the concept the beam polarization with a parameter of asymmetry [15].

So our first motive is to study how the spatiotemporal distribution of the EM fields at the focal

region with different beam polarization will determine the spatiotemporal distribution of the

invariant electric fields and hence the pair production rates.

Ultrashort laser pulse propagation has a significant dependence on the carrier-envelope

phase (CEP) which is basically the phase difference between the carrier wave and the enve-

lope of the pulse profile [42–44]. It has the significant bearing on the QED processes like pair

production, Compton effects etc. In fact, the determination CEP can be taken place as reported

in Ref. [42] where the angular distribution of photons emitted by an electron via multiphoton

Compton scattering due to an intense laser pulse has been shown. It is shown that the reported

study [42] has direct dependence on CEP of the laser pulse. How this parameter affects the

spatiotemporal distribution of the invariant electric and magnetic fields and consequently the

distribution of produced pairs is our second motive.

There is a possibility that the colliding pulses have relative phase difference. This may

alter the spatiotemporal distribution of the EM fields at the focus. Apart from the geometrical

optimization of the focus beams the relative phase of the two colliding pulses alter the desired

peak position of electric field in the transformed frame. Hence the dependence of relative phase

of the colliding pulses may offer us a good scheme of the generation of particle production rates

in the focal volume.

The validity of Schwinger’s formula to compute the spatio-temporal distribution of pairs

created by time and space varying fields due of ultrashort and ultraintense laser pulses with

the justification that the length and time scales of the variation are much larger than the char-

acteristic Compton length and time. However, as the pulse duration is reduced further in the

range of few hundreds of atto-second when it is no more much larger than the characteristic

Compton time, use of Schwinger formula to describe the pair production rate is questionable.

The later section of the thesis we use the quantum kinetic approach using quantum Vlasov

equation (QVE) [19, 31, 45–60]. This methodology has a strong relevance in the context of the
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momentum distribution of the created pairs in semiclassical approximation where the asymp-

totic reflection coefficient gives the average particle numbers in a particular mode [61]. The

theory was used to study the rich dynamical behaviour of the pair creation process for the time

dependent but spatially homogeneous field configuration [19, 53, 62]. The ultrashort pulses

Gaussian and Sauter are the two most commonly used (quite often interchangeably) temporal

profiles. A simple Sauter pulse without any subcycle oscillation (also known as single sheeted

Sauter pulse) offers analytical solutions for the momentum distribution [56] and the dynam-

ics of produced pairs [49]. However, a Sauter pulse with subcycle oscillations (multi sheeted

pulse) is no longer analytically tractable. On the other hand, for a multi sheeted Gaussian pulse

it is possible to express the vector potential in an analytically closed form in terms of error

function. These analytical conveniences have led researchers to use Sauter and Gaussian tem-

poral profiles for the kinetic studies of the pairs created by the single sheeted and multi sheeted

pulses, respectively [31]. This is possibly due to the perception that both the pulses should give

very similar results because of their close resemblance. This, to the best of our knowledge, has

not been verified so far. This is one of the motivations of this study. While the evolution of

individual modes was studied in Ref. [59, 60], the evolution of the momentum distribution as a

whole has not been reported so far. This is the second motivation of our study. We, therefore,

use quantum kinetic equation to present a detailed comparative study of the evolution of longi-

tudinal momentum distribution of the pairs created by these two pulses (Sauter and Gaussian)

for a given pulse duration, number sub-cycle oscillations, CEP, and frequency chirp.

The quantum kinetic formalism has the potential to see the complete evolution process of

the single particle distribution function. Here pair production process may be viewed as a field-

induced phase transition (FIPT) of the vacuum state [59]. The evolution of the order parameter

of the phase transition is studied for multi-sheeted Sauter pulse with higher order frequency

chirp parameter. Pair production in strong EM field allows to analyse the inter-relation between

the entropy production and irreversibility in systems which show reversibility at microscopic

level [63]. In this thesis, the evolution of the von Neumann entropy function for a few cycle

Sauter pulses is studied. The non-monotonic entropy growth has been observed with oscillatory

structures. This thesis is organized into seven chapters a brief description of which is as follows.

1.4 Overview of the present work

In Chapter 2 we study pair creation for different state of beam polarization of the EM field

of two counterpropagating laser pulses. The characteristic parameter for the beam polarization

is given by the parameter of asymmetry µ [64] between e-and h-waves in the field expression
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where e (h)-wave refers to the EM field in which only electric (magnetic) field is purely trans-

verse with respect to the propagation direction [10]. The main aim of revisiting this topic is

to know how the pairs are distributed in spatiotemporal coordinates for different values of µ.

It is found that the beams made up of entirely e-and h-waves (µ = ∓1) are the most effective

for pair production whereas the beam having equal mixture of e-and h-waves (µ = 0) is the

worst for pair production [15]. In this chapter, we explain these observations by the structure

of underlying fields. Though µ = 0 case is not suitable for efficient pair production, it is found

to be appropriate for generating shorter bunches of electrons and positrons [65].

Ultrashort laser pulses are characterized by CEP which is inherent to the process of their

generation [42]. The effect of CEP on the spatiotemporal distribution of electron-positron pairs

created by ultra-intense counterpropagating femtosecond laser pulses is studied in Chapter 3.

When the laser pulses are linearly e-polarized, the temporal distribution of the pairs is found to

be sensitive to CEP. Same analysis is extended for the circularly e-polarized laser pulses. It is

seen that when the counterpropagating laser pulses are both right and left circularly polarized,

the effect of CEP is insignificant. On the other hand when the superimposed fields are in

the combination of right and left circular polarizations, the CEP dependence shows up in the

invariant electric and magnetic fields structure and hence it reflects in the particle-antiparticle

temporal distribution. However, the total number of pairs is not greatly influenced by CEP for

both the polarizations [66].

In Chapter 4 we have studied the pair production mechanism by a strong EM field of two

colliding e-polarized laser pulses with a relative phase shift Ψ. The spatio-temporal distribu-

tion of created pairs is very sensitive to this phase shift and to polarization of the pulses. We

have analysed this dependence in detail and demonstrate how it can be explained in terms of

the underlying invariant electric field structure of the counterpropagating focused pulses which

is spiky. We find that the total pair production is larger when one of the spikes is located

near the centre of the spatiotemporal envelope (and the distribution of created pairs looks ap-

proximately unimodal), and smaller when the neighboring spikes are off-centered but located

symmetrically. The particular phase shift required for each case depends on the polarization

of the pulses. Among the considered cases, for the parameters adopted in this study the global

maximum for the total number of pairs is achieved with the circularly e-polarized counterprop-

agating pulses having the same sense of rotation with no relative phase difference as considered

in Ref. [15]. Possibility of phase control of Schwinger pair production may be useful, e.g., to

increase the attainable intensity of tightly focused colliding laser pulses by reducing pair pro-

duction and hence preventing field depletion at their crossing, or, conversely, to measure the

typically unknown field structure and phase relations of extremely strong laser pulses [67].
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Effect of temporal pulse shape of intense few cycle ultrashort laser pulses on the momentum

distribution of e+e− pairs is studied using quantum kinetic equation in Chapter 5. Single and

multi-sheeted Gaussian and Sauter pulses, are considered to this end. For multi-sheeted pulses

having a few cycle of oscillations the temporal profile of the pulse is revealed in the interfer-

ence pattern in the momentum spectrum at asymptotic times. The onset of the oscillation due

to the quantum interference between the neighbouring turning point structures takes place for

fewer subcycle oscillations for the Gaussian pulse than that for the Sauter pulse. Furthermore,

the oscillation amplitude for the same number of subcycle oscillations within the pulse dura-

tion is larger for the Gaussian pulse. The presence of the carrier offset phase and the frequency

chirping is found to magnify these differences. These observations are explained in terms of the

turning point structure in complex t-plane and invoking the concept of over the barrier scatter-

ing. The momentum spectrum of the created particle-antiparticle pairs being very sensitive to

the shape of temporal envelope may provide a way to measure it for the ultrashort laser pulses.

Pair production in the presence of a time dependent electric field may be viewed as a FIPT

[58, 59]. In Chapter 6, we have studied the evolution of the order parameter associated with

FIPT of the vacuum state for the time dependent multi-sheeted Sauter pulse. In particular, the

effect of the time dependent frequency of the electric field due to the higher order frequency

chirping is investigated. We limit our study up to the quadratic frequency chirping for the dif-

ferent evolution stages of the order parameter e.g., the quasi electron positron plasma stage, the

transient stage and the residual electron-positron plasma stage. In the presence of the quadratic

frequency chirping, the formation of pre-transient region is observed at earlier times before the

electric field attains its maximum value. The t non-invariant particle distribution function re-

sults in the non-monotonic increase in von Neumann entropy [57, 63]. We study the effect of

sub-cycle pulse oscillations on the evolution of the entropy and the particle density for different

values of subcycle oscillations.

In Chapter 7, we summarize the major outcomes of our studies on electron-positron pair

production via Schwinger mechanism by ultrastrong and ultrashort laser EM fields and discuss

the future outlook.



Chapter 2

Effect of polarization on the structure of
electromagnetic field and spatiotemporal
distribution of e+e− pairs generated by
colliding laser pulses

In Chapter 1 we have discussed that to meet the criteria of non zero EM field invariant it is

required to use focused laser pulses. But focusing introduces longitudinal field component and

we can not define the exact polarization of the EM field. In vacuum, Maxwell equation is linear

and one can use superposition principle to write the general EM field at any arbitrary space

time position which is the linear superposition of transverse and longitudinal components. In

this Chapter we study the pair creation mechanism for the different state of beam polarization

of the EM field of two counterpropagating laser pulses. The characteristic parameter for the

beam polarization is given by the parameter of asymmetry µ [64] between e-and h-waves in the

field expression. The main aim of revisiting this topic is to know how the pairs are distributed

spatially and temporally for different values of µ. It has been reported that the beams of entirely

e-and h-waves (µ = ∓1) are effective for pair production whereas the beams with an equal

mixture of e-and h-waves (µ = 0) are the worst for pair production [15]. So here we analyse

this observation from the structure of underlying fields. Though µ = 0 case is not suitable for

efficient pair production, it is found to be appropriate for generating shorter pulses of electrons

and positrons.

This Chapter is organized as follow. In the Sec. 2.1 we discuss the basic understanding of

the pair creation mechanism in the presence of EM field. The structure of EM fields, the field

invariants and the invariant fields is analysed for different values of µ, with the reference to

11
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its possible role in pair production in this section. In Sec. 2.2 we discuss the spatiotemporal

distribution of EM fields in both the frames. The polarization dependence of the spatiotemporal

distribution of the pairs is also presented in this section. We conclude in Sec. 2.3. The technical

details are given in Appendix A.

2.1 Theoretical background and field model

In the presence of a strong uniform electric field the vacuum depletion process gives rise to

e−e+ pair production [1, 68]. The EM field associated with a typical ultrashort laser pulse

having wavelength and pulse duration of the order of a micron and a few tens of femtosecond

can be taken as uniform in space-time over the Compton length and time scales [1]. Then the

average number of created pair is calculated by the [1, 16]

Ne−e+ =
e2E2

S

4π2~2c

∫
dV

∫
dtεη coth(

πη

ε
) exp(−

π

ε
). (2.1)

Here ε = E/ES , η = H/ES , and (E,H) =
√

(F 2 + G2)1/2 ± F are the invariant electric and

magnetic fields in the reference frame in which they are parallel to each other and F = (E2
−

H2)/2, G = E ·H are Lorentz invariants of the EM field. In order to have the non-zero Lorentz

invariants focused EM fields are used. According to Narozhny-Fofanov (N-F) field model [10]

the focused EM field does not possess any definite state of polarization. However it can always

be represented as a superposition of e-and h-waves: E = (1 − µ)Ee/2 + (1 + µ)Eh/2, and H =

(1 − µ)He/2 + (1 + µ)Hh/2. Here e(h)-wave is the totally transverse electric (magnetic) field

with respect to the propagation direction [10]. In this chapter we consider two right circularly

polarized laser beams propagating in the +z (forward) and −z (backward) directions both having

their focal region at the origin. Using the N-F field model which is valid in the weak focusing

limit (focusing parameter, ∆ << 1), the expression of the real part of the electric and the

magnetic fields due to the superposition of forward and backwards propagating e-waves are

given as

Ee
≈ 2E0g

e−
ξ2

1+4χ2

(1 + 4χ2)

[
sinωt

{
cosωz/c −

2ξ2 sin φ
(1 + 4χ2)1/2 sin (φ + ωz/c)

}
êx − cosωt

{
cosωz/c

−
2ξ2 cos φ

(1 + 4χ2)1/2 cos(φ + ωz/c)
}
êy

]
,

(2.2)
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and

He
≈ 2E0g

e−
ξ2

1+4χ2

(1 + 4χ2)

[
sinωt

{
sinωz/c −

2ξ2 cos φ
(1 + 4χ2)1/2 sin (φ + ωz/c)

}
êx − cosωt

{
sinωz/c

−
2ξ2 sin φ

(1 + 4χ2)1/2 cos(φ + ωz/c)
}
êy −

8∆ξ

(1 + 4χ2)1/2 cos(φ + ωz/c) cosωtêz

]
.

(2.3)

Here, ω is the frequency of the laser pulse, λ is the wavelength, ∆ is the focusing parameter; x,

y, and z are the spatial coordinates; ρ =
√

x2 + y2, ξ = ρ/R, χ = z/L, exp(iφ) = (x + iy)/ρ, ∆ =

c/ωR = λ/2πR, L = R/∆, and g is the temporal pulse envelope to account for the finite pulse

width of the laser beams and it is taken as g = exp(−4(t2/τ2 + z2/c2τ2)). The pulse duration τ

is taken to be 10 f s. The technical details of the derivation are relegated to Appendix A. Using

the Eqs. (2.2,2.3), the expression of the Lorentz invariants are given as

F e ≈
2E2

0g2e−
2ξ2

1+4χ2

(1 + 4χ2)2

[
cos 2ωz/c −

2ξ2

(1 + 4χ2)1/2

{
cos 2ωz/c + cos 2ωt cos 2φ

}
+ O(ξ4)

]
, (2.4)

Ge ≈
2E2

0g2e−
2ξ2

1+4χ2

(1 + 4χ2)2

[
sin 2ωz/c −

2ξ2

(1 + 4χ2)1/2

{
sin 2ωz/c − cos 2ωt sin 2φ

}
+ O(ξ4)

]
. (2.5)

When the counterpropagating beams are made up of h-waves, it follows from the duality [10]

(see Appendix A) that F h = −F e, Gh = Ge.

For the case when the counterpropagating pulses are made up of the equal mixture of e- and

h-waves, using the expressions of Ee+h and He+h derived in Appendix A, the expressions of

F e+h and Ge+h become

F e+h ≈ −A
[

cos 2(ωt + φ − ψ/2) −
16∆2 cos 2ωt
(1 + 4χ2)1/2 cos2(φ + ωz/c) −

ξ2 cos 2(ωt + φ)
(1 + 4χ2)1/2

]
Ge+h ≈ A

[
sin 2(ωt + φ − ψ/2) −

16∆2 sin 2ωt
(1 + 4χ2)1/2 cos2(φ + ωz/c) −

ξ2 sin 2(ωt + φ)
(1 + 4χ2)1/2

]
,

(2.6)

where A = 2E2
0g2ξ2 exp(−2ξ2/1 + 4χ2)/(1+4χ2)5/2. At this point it may be worthwhile to com-

pare the expressions of invariants F and G for µ = 0 with those for µ = ∓1. First, the amplitude

part of F and G for µ = 0 has a factor of ξ2 which makes it negligibly small in the focal region

where ξ � 1. Away from the focal region ξ2 increases but the amplitude is exponentially sup-

pressed by the Gaussian profile factor exp(−2ξ2/(1 + 4χ2)). Therefore the amplitudes of F and

G for µ = 0 are always much smaller to those for µ = ∓1 which do not have ξ2 dependence in

the leading order.
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Second, the phase part of invariants for µ = −1 shows oscillatory behaviour along the propaga-

tion direction with a length scale of the order 2πc/ω which is quite expected feature associated

with the standing wave formation. This type of interference, which gets carried over to the

reduced field invariants ε and η (see Eq. 2.7) is the root cause of effective pair production by

the two laser beams. As Ge/|Ee
||He
| ≈ 1−O(ξ2) near the focus, the electric and magnetic fields

in the focal region are nearly parallel to each other in the lab frame.

The expressions of the reduced invariant electric and magnetic fields for µ = −1 in the limit

of small χ, ξ in the focal region are given as

εe ≈
2E0ge−

ξ2

1+4χ2

(1 + 4χ2)
| cosωz/c|

[
1 −

ξ2

(1 + 4χ2)1/2

{
1 + cos 2ωt cos 2φ

}
+ O(ξ4)

]
, (2.7)

and

ηe ≈
2E0ge−

ξ2

1+4χ2

(1 + 4χ2)
| sinωz/c|

[
1 −

ξ2

(1 + 4χ2)1/2

{
1 − cos 2ωt cos 2φ

}
+ O(ξ4)

]
. (2.8)

For h-wave beams, the reduced electric and magnetic fields are given εh = ηe and ηh = εe.

Finally, the reduced invariant fields for µ = 0 can be expressed as

εe+h ≈
2E0ge−

ξ2

1+4χ2 ξ

(1 + 4χ2)5/4 | sin(ωt + φ − ψ/2)|
[
1 −

8∆2 cos2(φ + ωz/c) sin(ωt − φ + ψ/2)
(1 + 4χ2)1/2 sin(ωt + φ − ψ/2)

+ O(ξ2)
]
,

(2.9)

and

ηe+h ≈
2E0ge−

ξ2

1+4χ2 ξ

(1 + 4χ2)5/4 | cos(ωt + φ − ψ/2)|
[
1 −

8∆2 cos2(φ + ωz/c) cos(ωt − φ + ψ/2)
(1 + 4χ2)1/2 cos(ωt + φ − ψ/2)

+ O(ξ2)
]
.

(2.10)

The above expressions for ε and η are derived in the small χ, ξ approximation in order to

understand the physical origin of the pair production in terms of the structure of EM fields and

the invariants in the focal region. It is clear that the qualitative features of the invariants F and

G get translated into reduced field invariants ε and η. As before the amplitudes of ε and η are

the same in all the cases. While it is maximum for ξ = 0 for µ = −1 it identically vanishes

for µ = 0 case and is much smaller for any other value of ξ because of the presence of the

factor ξ in the leading order term for the amplitude in the latter case. For µ = ∓1 both ε and

η show oscillatory behaviour with phase difference of π/2 with spatial frequency ≈ 2πω/c in

z-direction, the propagation direction. The origin of this oscillation, as discussed earlier, is the
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interference of the counterpropagating beams. This type of oscillation is absent in ε and η for

µ = 0. However, it shows oscillatory behaviour in time. For µ = −1, ε shows a maximum for

ξ = 0 and χ = 0. Consequently the spatial distribution of e+e− pairs would show a peak at the

centre of the focal spot. However, for µ = 1, ε is minimum for ξ = χ = 0 and hence the spatial

distribution of e+e− pairs will show a dip right at the centre of the focal spot. We will return

this point later.

2.2 Results and Discussion

As discussed in the previous section the invariant fields are quite sensitive to the polarization of

the colliding pulses. In this section we discuss the spatiotemporal distribution of the invariant

fields, ε and η, their relationship with the fields in the lab frame and finally the distributions of

the created pairs for various polarization states of the colliding pulses.

2.2.1 Pulses made up of purely e-waves (µ = −1)

The invariant electric field given by Eq. 2.7 shows striking similarities with magnitude of the

corresponding electric field in the lab frame given by Eq. B.20. In fact, comparing the expres-

sion of |Ee
| in Eq. B.22 with that of εe reveals that the two differ only by terms of the order of

ξ2 or higher. Thus the two are identical for ξ = 0 and nearly identical in the entire focal region

where ξ < 1. The same holds good for the invariant magnetic field ηe Eq. 2.3 and |He
| the

magnitude of the magnetic field in the lab frame Eq. B.23. This point is illustrated in Fig. 2.1

which shows the distribution of the fields, (|Ee
|, εe) at the top and (|He

|, ηe) at the bottom, as

a function of the normalized longitudinal coordinate χ for ξ = 0.8 and t = 0.3τ. The fields in

both the frames are nearly same even for the regions close to the periphery of the focal region.

The field distributions form standing wave patterns with decreasing amplitude within the pulse

envelope function g. The multiple maxima of the field oscillations are spaced by ≈ 0.03272L

along the propagation direction. The electric field distribution has a dominant central lobe lo-

cated at χ = 0. On the other hand, the magnetic field distribution has two equally dominant side

lobes located on either side of its minimum at χ = 0. The longitudinal extent of the focused

field in both the cases is up to χ = ±0.2 and is symmetrical about χ = 0.

Since that ε and η have the meaning of the electric and magnetic fields in the Lorentz frame in

which they are parallel to each other, their approximate equality to the respective fields in the

Lab frame follows from the fact that the e-polarized counterpropagating pulses produce nearly
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Figure 2.1: (Top) |Ee|, εe, and (Bottom) |He|, ηe as function of χ for the counterpropagating laser
beams with µ = −1. ξ = 0.8, t = 0.3τ, and φ = π/2. The field parameters are: E0 = 0.0565ES ,
∆ = 0.1, λ = 1µm, and τ = 10 f s.

parallel electric and magnetic field in the focal region as already mentioned in the previous

section. This may be further analysed by invoking the well known result [4, 69] that for given

non-orthogonal E and H fields one can achieve the frame of ε and η by the Lorentz boost V
(in the units of c) such that V/(1 + V2) = (E × H)/(|E|2 + |H|2). In this case, for µ = −1, the

components of Ce(= Ee
×He) and Ve are given as

Ce
x ≈

16E2
0g2e−

2ξ2

1+4χ2 ∆ξ cos φ
(1 + 4χ2)5/2 cos2 ωz/c sin 2ωt Ve

x ≈ −
∆ξ sin 2ωt
(1 + 4χ2)2 cosωz/c, (2.11)

Ce
y ≈

32E2
0g2e−

2ξ2

1+4χ2 ∆ξ cos φ
(1 + 4χ2)5/2 cos2 ωz/c sin2 ωt Ve

y ≈ −
2∆ξ sin2 ωt
(1 + 4χ2)2 cosωz/c, (2.12)

and

Ce
z ≈ −

4E2
0g2e−

2ξ2

1+4χ2 ξ2 sin 2φ
(1 + 4χ2)5/2 sin 2ωt Ve

z ≈ −
ξ2 sin 2φ

2(1 + 4χ2)1/2 sin 2ωt. (2.13)

As both ξ and ∆ � 1, |Ve
| is negligibly small in the focal region and vanishes at ξ = 0. This

explains the observation that the transformation from (E, H) to (ε, η) is nearly identity near the

focal region and for the special case of ξ = 0 it is exactly identity. The physical consequence of

a very small value of |Ce
|, in the focal region, is that a very small amount of EM energy flows
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out from the focal region and thereby resulting in an efficient pair production for counterprop-

agating beams with µ = −1. Furthermore, since |Ce
| is proportional to ∆, a smaller value of ∆

will lead to a larger number of pairs. This effect has been attributed to the increase in the focal

volume in the literature [15]. However, the explanation given here is more direct and physical.

In view of the near equality of the fields in both the frames, it is natural to examine if one can

use the expressions for the magnitude of electric and magnetic fields in the lab frame instead

of those for ε and η for calculating the number of pairs using the Eq. 2.1. We use the field

expressions in both the frames and calculate the number of pairs which is tabulated in Table

2.1. The first column shows the results of using fields |Ee
| and |He

| in the place of εe and ηe. The

second column shows the results using εe and ηe. It is seen that the number of pairs is almost

same in column 1 and 2. One immediate ramification of this observation is that one can work

in the lab frame for the circularly colliding pulses made of e-waves. This would offer enormous

simplification for analytical calculation and thus may help in getting the physical insight of

the underlying process. Having discussed the structure of the EM fields in the focal region

I × 1027W/cm2 Ne+e−(|Ee
|, |Hh

|) Ne+e−(εe, ηe)
0.2 3.7157 3.5269
0.3 2.1308(4) 2.0135(4)
0.4 4.1661(6) 3.9253(6)
0.5 1.5907(8) 1.4944(8)
0.6 2.4276(9) 2.2782(9)
0.7 2.0694(10) 1.9375(10)
0.8 1.1857(11) 1.1091(11)
0.9 5.158(11) 4.82(11)
1 1.7912(12) 1.6723(12)

Table 2.1: Ne+e− calculated using Eq. 2.1 for different values of intensities of the counterprop-
agating laser beams with µ = −1. This is shown in the last column. The middle column shows
the number of pairs when (|Ee|,|He|) are used in place of (εe,ηe) in Eq. 2.1 for the calculation.
∆ = 0.1, τ = 10 f s, and λ = 1µm. The numbers in the brackets indicate in powers of 10.

and their relationship with the reduced field invariants, we now investigate the spatiotemporal

distribution of the created pairs in the focal region. For convenience, we define the differential

particle distribution with respect to a particular space or time coordinate which is integrated

over all the other coordinates except for the coordinate under the consideration. This obviously

gives the derivative of Ne+e− with respect to that coordinate. Such a differential particle distri-

bution provides a measure to know the space-time extent of the pairs in the focal region. These

differential distribution closely follows the distribution of the invariant electric field ε or |E| (as
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Figure 2.2: The differential pair distributions for the counterpropagating laser beams with µ =

−1, 1, and 0 as a functions of χ. The data for µ = 0 is multiplied by a factor of 105. The field
parameters are same as those in Fig. 2.1.
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Figure 2.3: The differential pair distributions for the counterpropagating laser beams with µ =

−1, 1, and 0 as a functions of t/τ, the scaled time. The data for µ = 0 is multiplied by the factor
of 2.5 × 104. The field parameters are same as those in Fig. 2.1.

discussed above). The consequence of the standing wave formation in the electric field distribu-

tion is manifested in the spiky differential particle distribution dNe+e−/dχ along the propagation

direction Fig. 2.2. It implies that the pair production takes place in a smaller region of the

central antinode of the electric field distribution at χ = 0. The longitudinal extent of the pairs

is 0.0048L ≈ 0.076µm. The transverse extent of the pairs in the x direction is 0.17R ≈ 0.27µm

while that in the y direction is 0.2R ≈ 0.31µm (the data not shown). The transverse distribution

is mainly governed by the Gaussian form function F1. The slight asymmetry along the x and

y directions is because of the φ dependence of the fields appearing with the ξ2 term through

the form function F2. The temporal distribution is dictated by the pulse envelope function g,
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although the particles are produced over much shorter time duration compared to the pulse du-

ration. It is shown in Fig. 2.3. The bunch duration of e+e− pairs estimated by FWHM of the

distribution is of the order of 1.4 f s.

2.2.2 Pulses made up of purely h-waves (µ = 1)

Because of the duality between the h-wave configuration and the e-wave configuration of the

counterpropagating pulses, the structure of the fields and the invariant fields and the relationship

between the two remain same as that for µ = −1. There is, however, interchange between the

invariant electric and magnetic fields: εh = ηe; ηh = εe and |Eh
| = |He

|; |Hh
| = |Ee

|. As a result

of this interchange, εh as a function of χ is π/2 phase-shifted with respect to εe. It, therefore,

has a node at χ = 0 and two equally prominent antinodes on either side of χ = 0 wherein pairs

are mostly created. Thus the spatial distribution of the particles in the longitudinal direction is

bimodal with the peaks coinciding with those of the antinodes located at χ = ∓0.0164. The

peak values are slightly less than half of that for µ = −1. The longitudinal extent of the pairs

on both the locations is 0.0732µm. The spatial distribution in the transverse direction and the

temporal distribution of pairs are expectedly more or less same as those for µ = −1.

2.2.3 Pulses made up of the equal mixtures of e-and h-waves (µ = 0)

The resulting invariant fields Eqs. (2.9,2.10) are quite different from those of the e-wave Eqs. (2.7,2.8)

or h-wave configurations - both qualitatively and quantitatively. The invariant fields are much

smaller in the focal region by a factor of 2ξ. The invariant fields are significantly non-identical

to the respective fields in the lab frames given by Eqs. (2.9,2.10,A.16,A.17). This can be ex-

plained by evaluating Ce+h = Ee+h
×He+h. The x and y components of Ce+h are proportional to

ξ∆ and hence negligibly small however, the z-component is quite significant which is given by

Ce+h
z =

4E2
0g2e−

2ξ2

1+4χ2

(1 + 4χ2)2 [1 −
2ξ2

(1 + 4χ2)1/2 cosψ]. (2.14)

The above expression implies that the electric and the magnetic fields are almost orthogonal

to each other in the lab frame. The parallel portion of the fields goes as ξ2 which can also

be inferred from the presence of the ξ2 factor in the invariant Ge+h in Eq. A.15. The invariant

fields, therefore, are much less compared to the fields in the lab frame. It also implies that a

large amount of EM field energy flows out from the focal region. Hence this field configuration

is not efficient for the pair production.
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Unlike the µ = ±1, the invariant electric field in this case does not have, in its leading or-

der, the oscillatory term with spatial frequency ωz/c along the propagation direction Eq. 2.9.

Consequently, the longitudinal distribution of pairs is much broader. However, because of the

presence of this oscillatory term in the next higher order, the distribution, as shown in Fig. 2.2,

has a dip in the centre and has two peaks on its either side. The extent of the effective region of

pairs has increased in comparison to those of µ = ∓1 cases. FWHM of each peak is 0.0139L.

The transverse extent of the pairs in the x direction is 0.15R ≈ 0.23µm while that in the y direc-

tion is 0.8R ≈ 1.27µm (the data not shown). The large asymmetry in the transverse distribution

is because of the strong dependence of the invariant fields on the azimuthal angle φ.

The interference effect of the counterpropagating beams is seen in the temporal distribution of
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Figure 2.4: The invariant fields εe+h, and ηe+h for µ = 0 as a function of t/τ the scaled time.
ξ = 0.1, χ = 0.1, and φ = π/2. The field parameters are as those in Fig. 2.1.

the invariant fields Fig. 2.4. It has multiple maxima/minima within the pulse envelope function

g. In Fig. 2.3 which presents the differential particle distribution in time, a very sharp peak of

FWHM 449as is seen for µ = 0. This implies that it is possible to generate ultrashort particle

bunches using this configuration - much shorter than what can be obtained using laser pulses

with µ = ∓1.

2.3 Conclusion

We have studied the particle production via Schwinger mechanism for counterpropagating fo-

cused laser beams with the parameter of asymmetry µ = ∓1, and 0. The complete features

of the pair generation are explained on the basis of the structure of the electromagnetic (EM)

fields and their relationship with the EM fields invariants and the reduced invariant fields in the

transformed frame where both electric and magnetic fields are parallel. Analytical expressions
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of the resultant field distribution in both the frames are discussed which are used to pinpoint

why colliding beam configurations with µ = ∓1 are particularly efficient for pair production

and why that corresponding to µ = 0 gives much lower number of the pairs. It has been estab-

lished that the configurations with µ = ∓1 yields electric and magnetic fields which are almost

parallel to each other in the focal region. This minimizes the energy flowing out of the focal

region and thereby producing a maximum number of pairs. Just opposite situation arises for

the configuration µ = 0. In this case, the resulting electric and magnetic fields are nearly or-

thogonal to each other and the most of EM field energy flows out from the focal region thereby

effecting less number of pairs. Though µ = 0 configuration is not efficient for pair production,

it offers the possibility for generating ultrashort bunches of electrons and positrons.





Chapter 3

Electron-positron pair creation by
counterpropagating laser pulses:role of
carrier envelope phase

A few cycle ultra-short laser pulse propagation has significant dependence on the carrier en-

velope phase (CEP) which is basically the phase difference between the carrier wave and the

envelope of the pulse profile [42–44]. It has significant bearing on the QED processes like pair

production, Compton effects etc. In fact, the determination CEP can be taken place as reported

in Ref. [42] where the angular distribution of photons emitted by an electron via multiphoton

Compton scattering due to an intense laser pulse has been shown. It is shown that the reported

study [42] has direct dependence on CEP of the laser pulse. The effect of CEP on the momen-

tum distribution of the produced pairs has also been extensively explored for the time dependent

but spatially uniform electric field [19, 31, 70].

In this Chapter we study the effects of CEP on the invariant fields distributions and the

corresponding differential production rates of e+e− pairs in spatio-temporal coordinates for

the counterpropagating linear and circular polarizations e-wave focused Gaussian laser pulses.

Here e-wave refers the EM wave configuration in which electric field is perpendicular to the

propagation direction [10]. We consider the circularly polarized forward and backward prop-

agating laser pulses are in the combinations of right-right and right-left in their polarization

vector rotations. We see that such kinds of polarization vectors combinations result CEP de-

pendence in the invariant fields structure for circular polarization.

This Chapter is organized as follows. In Sec. 3.1 we discuss the EM field configurations

for linearly and circularly e-waves laser pulses. The dependence of the CEP on the energy

23
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flow from the focal volume is studied for the linear polarization. The CEP dependence on

the structure of the invariant electric and magnetic fields for circularly e-polarized laser pulses

is also discussed in this section for right-right and right-left configurations. The distributions

of the invariant fields and the differential production rates of e+e− pairs are discussed in 3.2.

The particle production yield for three configurations of polarizations (linear, circular right-

right,circular right-left) is presented in Sec. 3.3. Finally we conclude in Sec. 3.4. The technical

details of the analytical expressions for the EM field are given in Appendix B.

3.1 Theoretical Method

The present section is devoted for the calculation of the invariant electric and magnetic fields in

the focal region for counterpropagating focused Gaussian laser pulses. We consider both linear

and circular polarizations of the pulse of e-wave configuration. First we calculate for the linear

polarization and second we do the calculation for the circular polarization case.

3.1.1 Structure of the EM fields due the superposition of counterpropa-
gating linearly e-polarized focused Gaussian laser pulses

We consider the EM field structure of two linearly polarized counterpropagating focused laser

pulses. In the pulsed laser EM field profile for ultra-short in time, we take the effect of CEP

between the carrier wave and the envelope function. Using N-F field model [10] the expressions

of the laser pulses propagating in z and −z directions and having their focal region centred

about the origin for the case where the pulses are made up of two e-waves are given as (detailed

calculations have been shown in Appendix B):

ReEe = 2E0g
e−ξ

2/(1+4χ2)

1 + 4χ2 sin(ωt + ϕ̃)
[
êx

{
cos(ωz/c − 2ψ) −

2ξ2

(1 + 4χ2)1/2 sin2 φ cos(ωz/c − 3ψ)
}

+êy
ξ2

(1 + 4χ2)1/2 sin 2φ cos(ωz/c − 3ψ)
]
,

(3.1)
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and

ReHe
≈ −2E0g

e−ξ
2/(1+4χ2)

1 + 4χ2

[
cos(ωt + ϕ̃)

(
êx

ξ2

(1 + 4χ2)1/2 sin 2φ sin(ωz/c − 3ψ)

− êy

{
sin(ωz/c − 2ψ) −

2ξ2

(1 + 4χ2)1/2 sin2 φ sin(ωz/c − 3ψ)
} )

+ 4ξ∆
sin(ωt + ϕ̃)
(1 + 4χ2)1/2 sin φ sin(ωz/c − 3ψ)êz

]
.

(3.2)

Here E0 is the normalized (by Schwinger field ES ) peak electric field strength of the laser

beams, ω is the corresponding central frequency, λ is the wavelength, ∆ is the focusing or

spatial inhomogeneity parameter, R is the focusing radius, L is the Rayleigh length; and ξ =

ρ/R, χ = z/L, ρ =
√

x2 + y2, exp(iφ) = (x+ iy)/ρ, ∆ = c/ωR = λ/2πR, L = R/∆, and exp(iψ) =

(1 + 2iχ)/
√

1 + 4χ2. The superscript e refers to the focused EM field in e-wave mode [10]. In

Eqs. (3.1-3.2), g is the temporal envelope function to account for the finite pulse width and ϕ̃

is the corresponding CEP. Though there can be various functional forms of g consistent with

the condition that g(0) = 1 and g should decrease very fast at the periphery of the focal pulse

for |ϕ| � ωτ [10, 15], we take g = exp(−4(t2/τ2 + z2/c2τ2)) for all the calculations presented

here [65]. Here ϕ = ω(t − z/c) is defined as the instantaneous phase of the laser EM wave. The

magnitude of the resultant EM field given in Eqs. (3.1,3.2) in the focal region ( |χ| < 1, ξ < 1)

can be approximated as

|ReEe
| ≈ 2E0g

e−ξ
2/(1+4χ2)

1 + 4χ2 | sin(ωt + ϕ̃)| |cos(ωz/c − 2ψ)|
[
1 −

2ξ2

(1 + 4χ2)1/2 sin2 φ

]
, (3.3)

and

|ReHe
| ≈ 2E0g

e−ξ
2/(1+4χ2)

1 + 4χ2 | cos(ωt + ϕ̃)| |sin(ωz/c − 2ψ)|
[
1 −

2ξ2

(1 + 4χ2)1/2 sin2 φ

]
. (3.4)

It shows that the magnitude of the electric and magnetic fields for linearly e-polarized coun-

terpropagating laser pulses has standing wave structure in which the temporal oscillation has

additive CEP dependence and the longitudinal oscillation has a phase term ψ(= arctan(2χ)) due

to the complex Gaussian beam functions F1 and F2. Since the pair creation process is solely

governed by the invariant EM fields so it is worthwhile to calculate the EM field invariants. The

expression for the Lorentz invariants F e, Ge of the EM field given by Eqs. (3.1-3.2) is

F e =
1
2

(ReEe2
−ReHe2) ≈ 2E2

0g2 e−2ξ2/(1+4χ2)

(1 + 4χ2)2

{
sin2(ωt + ϕ̃) − sin2(ωz/c − 2ψ)

} [
1 −

4ξ2

(1 + 4χ2)1/2 sin2 φ

]
,

(3.5)
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and

Ge = ReEe
· ReHe

≈ −4E2
0g2ξ2χ

e−2ξ2/(1+4χ2)

(1 + 4χ2)5/2 sin 2(ωt + ϕ̃) sin 2φ
[
1 + 3ξ2

]
. (3.6)

For e-wave beam configuration the reduced invariant electric and magnetic fields are defined as

[1, 65]:

εe =

√√
F e2 + Ge2 + F e, ηe =

√√
F e2 + Ge2

− F e. (3.7)

The value of Ge is negligibly small in the focal region. It is maximum in the peripheral region

ξ = 0.75, χ = ±0.25 for t = 0.001τ, φ = π/4, and ϕ̃ = π/2. Still this maximum value is 0.01

times less than that of F e at the space-time position. In this approximation where Ge can be

neglected, the sign of F e (which is given by whether sin2(ωt+ ϕ̃)−sin2(ωz/c−2ψ) is positive or

negative) gives two non-trivial situations. If sin2(ωt + ϕ̃) > sin2(ωz/c− 2ψ), then F e is positive

and consequently εe is non zero and ηe is zero. This gives rise to what is known as electric

regime [71]:

εe ≈ 2E0g
e−ξ

2/(1+4χ2)

1 + 4χ2

{
sin2(ωt + ϕ̃) − sin2(ωz/c − 2ψ)

}1/2
[
1 −

2ξ2

(1 + 4χ2)1/2 sin2 φ

]
, and ηe ≈ 0.

(3.8)

Similarly one has magnetic regime (F e is negative) for the case when sin2(ωt+ϕ̃) < sin2(ωz/c−

2ψ) [71]. Here εe vanishes and ηe is non zero:

εe ≈ 0, and ηe ≈ 2E0g
e−ξ

2/(1+4χ2)

1 + 4χ2

{
sin2(ωz/c − 2ψ) − sin2(ωt + ϕ̃)

}1/2
[
1 −

2ξ2

(1 + 4χ2)1/2 sin2 φ

]
.

(3.9)

Recalling that εe and ηe are the electric and magnetic fields strengths in the frame where they

are parallel, it can be easily seen that expressions of the electric and magnetic fields in both the

frames are not identical as seen in the Eqs. (3.3,3.8, 3.9, 3.4). Since electric and magnetic fields

in this case are not parallel, there will be flow of energy from the focal region governed by the

Poynting vector (Se). The x, y, and z components of Se are given as

S e
x ≈ 16E2

0g2ξ3∆
e−2ξ2/(1+4χ2)

(1 + 4χ2)3 sin2(ωt + ϕ̃) sin2 φ cos φ sin 2(ωz/c − 3ψ), (3.10)

S e
y ≈ −16E2

0g2ξ∆
e−2ξ2/(1+4χ2)

(1 + 4χ2)5/2 sin2(ωt + ϕ̃) sin φ sin(ωz/c − 3ψ)
[

cos 2(ωz/c − 2ψ)

−
2ξ2

(1 + 4χ2)1/2 sin2 φ cos(ωz/c − 3ψ)
]
,

(3.11)
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and

S e
z ≈ −E2

0g2 e−2ξ2/(1+4χ2)

(1 + 4χ2)2 sin 2(ωt + ϕ̃)
[
sin 2(ωz/c − 2ψ) −

4ξ2

(1 + 4χ2)1/2 cos2 φ sin(2ωz/c − 5ψ)
]
.

(3.12)

In Eqs. (3.10,3.11,3.12), the Cartesian components of Se show that the energy flow in x and

y directions is much smaller compared to the z-direction. The oscillatory nature of S e
z leads to

instantaneous energy flow whereas the average energy flow is zero.

For e-linearly polarized counterpropagating laser pulses (e-LPCLP) beam discussed above,

an additional control over the pair production mechanism can be achieved by tuning CEP with

respect to the dynamic phase ϕ of the laser pulses. In particular, if sin2(ωt+ϕ̃) < sin2(ωz/c−2ψ)

then EM field energy will remain confined within this region as a standing wave without any

loss due to e+e− pair production.

3.1.2 Circular polarization with CEP dependence in invariant fields for
the counterpropagating focused Gaussian laser pulses

In this section we discuss the CEP dependence on the resultant field configuration in both the

frames. We consider the EM field structure in lab frame and in the Lorentz transformed frame

for the counterpropagating circularly e-polarized laser pulses propagating in +z (forward prop-

agation) and −z (backward propagation) directions using N-F field model [10]. We consider the

two counterpropagating laser pulses in the following combinations: First both the forward and

backward beams are right circularly polarized and second the forward beam is right circularly

polarized and backward beam is left circularly polarized. We see that the former one gives

spatially localized field distribution whereas the later one gives the temporally localized fields

with CEP dependent terms in the leading order.

3.1.2.1 Structure of the EM field for circularly right-right combination in the counter-
propagating configuration

The expression of the EM fields strength due to the superposition of counterpropagating circu-

larly e-polarized laser pulses of same state of rotation of the polarization vectors (we assume
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both are right circularly polarized) is given as (detailed derivation is given in Appendix B)

|ReEe
| ≈

2E0ge−ξ
2/1+4χ2

(1 + 4χ2)
| cos(ωz/c − 2ψ)|

[
1 −

ξ2

cos(ωz/c − 2ψ)(1 + 4χ2)1/2

{
cos(ωz/c − 3ψ)

+ cos 2(ωt + ϕ̃) cos(3ψ − ωz/c − 2φ)
}

+ O(ξ4)
]
,

(3.13)

and

|ReHe
| ≈

2E0ge−ξ
2/1+4χ2

(1 + 4χ2)
| sin(ωz/c − 2ψ)|

[
1 −

ξ2

sin(ωz/c − 2ψ)(1 + 4χ2)1/2

{
sin(ωz/c − 3ψ)

+ cos 2(ωt + ϕ̃) sin(3ψ − ωz/c − 2φ)
}

+ O(ξ4)
]
.

(3.14)

Eqs. (3.13,3.14) show that in the leading order it contains oscillatory term in longitudinal co-

ordinate whereas CEP dependence is not seen. The leading order expression of the invariant

electric and magnetic fields is

εe ≈
2E0ge−ξ

2/1+4χ2

(1 + 4χ2)
| cos(ωz/c − 2ψ)|, and ηe ≈

2E0ge−ξ
2/1+4χ2

(1 + 4χ2)
| sin(ωz/c − 2ψ)|.

It reflects that such combination of the polarization vectors for counterpropagating laser pulses

has no CEP dependence at the field magnitude level and also in the invariant fields expression.

3.1.2.2 Structure of the EM field for circularly right-left combination in the counter-
propagating configuration

We use the focused EM field structure and derive the structure of the resultant electric and

magnetic fields due to the superposition of right circularly e-wave in +z-direction and left cir-

cularly e-wave propagating in −z-direction. The expression of the real part of the electric and

magnetic fields in the above mentioned configuration is given by (detailed derivation is given

in Appendix B)

ReEe = 2E0g
[{

sin(ωt + ϕ̃)Re[F1eiωz/c] − sin(ωt + ϕ̃ − 2φ)Re[F2eiωz/c]
}
êx −

{
sin(ωt + ϕ̃)Im[F1eiωz/c]

+ sin(ωt + ϕ̃ − 2φ)Im[F2eiωz/c]
}
êy

]
,

(3.15)



Chapter 3. Effect of carrier envelope phase 29

and

ReHe = 2E0g
[{

cos(ωt + ϕ̃)Re[F1eiωz/c] + cos(ωt + ϕ̃ − 2φ)Re[F2eiωz/c]
}
êx −

{
cos(ωt + ϕ̃)Im[F1eiωz/c]

− cos(ωt + ϕ̃ − 2φ)Im[F2eiωz/c]
}
êy + 2∆ sin(ωt + ϕ̃ − φ)Re[eiωz/c∂F1

∂ξ
]
]
.

(3.16)

We use the expression of ReEe and ReHe given in Eqs. (3.15,3.16) to calculate the expression

of the Lorentz invariants F e and Ge as

F e ≈ −2E2
0g2 e−2ξ2/1+4χ2

(1 + 4χ2)2

[(
1 −

2ξ2 cosψ
(1 + 4χ2)1/2

)
cos 2(ωt + ϕ̃) −

2ξ2 cos 2φ
(1 + 4χ2)1/2 cos(2ωz/c − 5ψ)

]
,

(3.17)

and

Ge ≈ 2E2
0g2 e−2ξ2/1+4χ2

(1 + 4χ2)2

[(
1−

2ξ2 cosψ
(1 + 4χ2)1/2

)
sin 2(ωt + ϕ̃)−

2ξ2 sin 2φ
(1 + 4χ2)1/2 cos(2ωz/c−5ψ)

]
. (3.18)

Here the approximate expression of F1 and F2, the complex Gaussian form functions of fo-

cused laser beam stated in Appendix B in normalized spatial coordinates χ and ξ is used. The

approximate expression of the Lorentz invariants F e and Ge as given in Eqs. (3.17,3.18) shows

oscillatory behaviour in time. The value of F e is positive in negative half cycle of its oscilla-

tion period. Such feature is translated into the invariant electric and magnetic fields expression

which are given as

εe ≈ 2E0g
e−ξ

2/1+4χ2

(1 + 4χ2)

(
1 −

2ξ2 cosψ
(1 + 4χ2)1/2

)1/2
| sin(ωt + ϕ̃)|

[
1 −

ξ2 cos(2ωz/c − 5ψ)
(1 + 4χ2)1/2

sin(2φ − ωt − ϕ̃)
sin(ωt + ϕ̃)

+O(ξ4)
]
,

(3.19)

and

ηe ≈ 2E0g
e−ξ

2/1+4χ2

(1 + 4χ2)

(
1 −

2ξ2 cosψ
(1 + 4χ2)1/2

)1/2
| cos(ωt + ϕ̃)|

[
1 −

ξ2 cos(2ωz/c − 5ψ)
(1 + 4χ2)1/2

cos(2φ − ωt − ϕ̃)
cos(ωt + ϕ̃)

+O(ξ4)
]
.

(3.20)

It shows the oscillating structure of invariant electric and magnetic fields in the leading
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order in time and the oscillating phase ωt has a additive ϕ̃ term which reflects the direct CEP

dependence. Hence the combination of the polarization vectors’ rotation plays an important

role in the structure of the resultant field due to the superposition of two counterpropagating

circularly e-polarized laser pulses.

3.2 Results and discussions

Here we discuss the spatio-temporal distribution of the invariant fields (εe and ηe) and the dif-

ferential pair production rates for counterpropagating focused Gaussian laser pulses as derived

in Sec. 3.1.1. First the distribution of fields is discussed in Sec. 3.2.1-3.2.2 and later the pair

production rates are presented in Sec. 3.2.3. The space-time variables are scaled by the laser

parameters such as: time is scaled by the pulse duration τ; longitudinal variable z is scaled by

the Rayleigh length L; and the transverse variables x, y are by the focusing radius R of the laser

beam.

3.2.1 Field distribution: Linear polarization

The spatio-temporal distribution of εe for e-LPCLP for which the analytical expression is given

in Sec. 3.1.1 is discussed here for different values of CEP. Fig. 3.1(a) shows the temporal dis-

tributions of εe for CEP ϕ̃ = 0, π/4, and π/2 at the focal point. The invariant field shows

oscillatory behaviour inside the pulse envelope function g due to the interference between the

counterpropagating pulses in time. For ϕ̃ = π/2 the invariant electric field has a central peak

(located at t = 0) accompanied by other small peaks symmetrically placed on the either side

of the central peak in time. As the value of ϕ̃ is reduced to π/4, the temporal profile of εe

shifts to the right, i.e. towards the leading part of the laser pulse. Moreover the profile becomes

asymmetric in time. The peaks in the leading part of the laser pulse are smaller and the ones

in the trailing part are large compared to those for ϕ̃ = π/2. For ϕ̃ = 0, the temporal profile is

again symmetric. However, it has a minimum at the centre of the laser pulse and has two major

maxima on either side of the centre. The reduced magnetic field ηe vanishes completely in this

case (data not shown) as Ge is identically equal to zero and F e is positive for z = 0. For z , 0

and x = y = 0 (whereGe = 0), depending on the sign of F e, we have a mesh like structure in the

zt-plane where some regions belong to the electric regime and other to the magnetic regime. In

Fig. 3.1(b-d), the contour of εe is shown in zt-plane for ϕ̃ = π/2, 3π/4, and π. It shows that the

peak positions are getting shifted in temporal axis with CEP whereas in the z-axis, no changes
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Figure 3.1: The temporal evolution of εe and its contour plots in zt-plane (in scaled variables)
for different values of CEP, showing the locations of the peak field positions for linearly po-
larized counterpropagating laser pulses. Top left panel shows the temporal evolution of εe for
ϕ̃ = 0, π/4, and π/2. From top right to bottom right panels the contour plots for ϕ̃ = π/2, 3π/4,
and π in the zt-plane for x = y = 0 are shown. The laser EM field parameters are E0 = 0.0565,
∆ = 0.1, τ = 10 f s, and λ = 1µm. The adjacent colour bars are showing the normalized field
strength at the field peak positions.

have been observed in the peak positions. It is obvious from the simplified expression of εe in

Eq. 3.8. Here due to the shift in the peak positions, the maximum peak height also gets reduced

because of the Gaussian pulse envelope function g. It ensures that the control over the CEP is

important in the context of the process which depends on the peak field strength.

It shows that the maximum electric field is located at z = 0, and due to the interference

between the counterpropagating beams in z and t, the reduced electric field is distributed like

localized spikes in zt-plane. The z-distribution or the location of the peaks along the z-axis

is not affected by the variation of ϕ̃ and it shows one central peak z = 0 and two non-central

peaks located symmetrically about z = 0 in the leading order. Hence because of the three

peaks in the leading order in z-distribution of εe, it results trimodal distribution of differential

pairs which we see in Sec. 3.2.3. The temporal location of the peak positions is very sensitive

to CEP. For ϕ̃ = π/2, the contour of the reduced field εe is shown in the Fig. 3.1(b) which

describes the locations of the maximum field intensities in the zt-plane. Here at the central
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position (z = t = 0) the field distribution possesses maximum intensity. Fig. 3.1(c) shows the

same for ϕ̃ = 3π/4 where it reflects the shift in the temporal axis. Significant changes have

observed in the contour εe in zt-plane for ϕ̃ = π in which the peak field intensity in the central

position is zero and it gets splitted into two peaks located symmetrically about t = 0 in the

time axis. It causes bimodal distribution of differential pair production rates in time, which we

discuss in Sec. 3.2.3.

From the analytical expression of the simplified reduced electric field εe in Eq. 3.8 , we

discuss the locations of the peak positions and the corresponding shifts with CEP as presented

in Fig. 3.1(a). We consider at the focus (z = 0). From Eq. 3.8, we have the location of the central

peak position as ωt + ϕ̃ = ±π/2, which ends up with two values such as ωt+ = π/2 − ϕ̃ and

ωt− = −π/2 − ϕ̃. Here +(−) sign in the subscript denotes the temporal position corresponding

positive (negative) time axis. So the difference between the locations of the central peaks in

positive and negative time axis is given by ω(t+ − t−) = π or (t+ − t−) = π/ω. It concludes that

the separation between temporal positions in central peaks are independent on the values of

CEP. Some special cases are as follows: (1) For ϕ̃ = π/2, we have central peak at ωtcentral = 0

along with two side peaks at ωt+ = π and ωt− = −π. (2) For ϕ̃ = π/4, we have ωt+ = π/4

and ωt− = −3π/4. (3)Similarly for ϕ̃ = 0, we have ωt+ = π/2 and ωt− = −π/2. So the above

analysis and the distribution of reduced electric field in the Fig. 3.1 coincide and it tells that the

central maxima are changing, depending on the values of CEP. Such features also contribute in

the relative shift in the location of the particle distribution in time which we discuss in the next

section.

Fig. 3.2(a-b) shows the invariant electric field distributions in xt-plane for ϕ̃ = π/2 and π.

It is seen that the x-distribution follows the Gaussian profile as we have seen in the leading

expression of εe (it varies as exp(−ξ2/(1+4χ2))) in Eq. 3.8. The temporal profile has oscillating

structure. It is also seen that the x-distribution remains same whereas shifts in the location of

the intensity peak value have been observed in t-distribution. So the peak field strength gets

reduced for ϕ̃ = π configuration as seen in the colour bar in Fig. 3.2(b). But the yt-distribution

presents slightly different dependence on CEP. In the Fig. 3.2(c-d), the invariant electric field

distributions in the yt-plane has been shown for the same of values of ϕ̃ as in the xt-distribution.

The temporal distributions are same but in y axis, it shows two extra peaks apart from the central

maxima which is also obvious from the Eq. 3.8. All such invariant electric field distributions

control the rate of the particle distributions with space-time coordinates for different values of

ϕ̃ which we see in Sec. 3.2.3.
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Figure 3.2: Contour plots of the εe in xt-and yt-planes in scaled variables for CEP ϕ̃ = π/2 and
π, showing the locations of the peak field positions for linearly e-polarized counterpropagating
laser pulses. Top left panel shows for ϕ̃ = π/2 and in the top right it is for ϕ̃ = π in the xt-plane
for y = z = 0. In the bottom it shows same in the yt-plane for x = z = 0 are given. The laser
EM field parameters are E0 = 0.0565, ∆ = 0.1, τ = 10 f s, and λ = 1µm. The adjacent colour
bars are showing the normalized field strength at the field peak positions.

3.2.2 Field distribution: Circular polarization

We have seen in Sec. 3.1.2.1 that the two right circularly counterpropagating laser pulses, the

resultant expressions of the electric and magnetic fields in both the frames do not have CEP

dependence in leading order. Therefore we present electric and magnetic fields due to the su-

perposition of right circularly forward propagating laser pulse with the left circularly backward

propagating pulse in consideration as theoretically derived in Sec. 3.1.2.2. The analytical ex-

pression of εe and ηe shows that the CEP dependence comes in the temporal oscillations whereas

other variables do not include any CEP dependence. So we present the invariant electric and

magnetic fields distributions in time as a function of CEP.

Temporal distributions of the reduced invariant electric and magnetic fields profiles for dif-

ferent values of CEP are shown in Fig. 3.3. Both upper and lower panels show oscillating field

profiles in time. The locations of the antinodal positions change with CEP and consequently

their peak values get change. It shows that the maximum electric field occurs at t = 0 for

ϕ̃ = π/2 and the magnetic field possesses minimum value. But for ϕ̃ = 0 the magnetic field
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reaches maximum and electric field vanishes at t = 0. These two values of CEP give the max-

imum and minimum values of the invariant electric and magnetic fields as shown in the left

panel of upper and lower figure in Fig. 3.3. Such kind of temporal fields profiles get translated

into the temporal distribution of the particle-antiparticle production rates. Other features in the

oscillating field profiles such as the formation of the two peaks in the central region instead of

the single peak, asymmetric locations of the peaks about t = 0, and the corresponding asym-

metry in their peak heights are shown in the right panel of upper and lower figures in Fig. 3.3.

Such field distribution manifest in the distribution of particle production rates in time which we

see in Fig. 3.5.

−1 0 1
0

0.05

0.1

t/ τ

ε

−1 0 1
0

0.05

0.1

t/ τ

ε

−1 0 1
0

0.05

0.1

t/ τ

η

−1 0 1
0

0.05

0.1

t/ τ

η

ϕ̃ = π/2

ϕ̃ = π/2ϕ̃ = 0 ϕ̃ = 3π/4

ϕ̃ = 3π/4 ϕ̃ = π/4ϕ̃ = 0

ϕ̃ = π/4

Figure 3.3: Temporal distributions of invariant electric and magnetic fields for counterpropa-
gating circularly e-polarized laser pulses in right-left combination of the polarization vectors
as function of CEP. The upper panel shows invariant electric field distributions for ϕ̃ = 0, π/2
in the left and π/4, 3π/4 in the right. The lower panel shows the same for invariant magnetic
field. The laser EM field parameters are E0 = 0.0565, ∆ = 0.1, τ = 10 f s, and λ = 1µm.

3.2.3 Particle distribution: Linear polarization

Here we show the distribution of pair production rates in space-time coordinates by applying

Nikishov formula [3]. It tells that the average number of e+e− pairs produced in the presence of

constant electric and magnetic fields per unit volume and per unit time is given by

we−e+ =
dNe−e+

dVdt
=

e2E2
S

4π2~2c
εeηe coth(

πηe

εe ) exp(−
π

εe ). (3.21)

Using Eq. 3.21, we calculate the differential pairs numerically and present the distributions in

space-time coordinates (such as x/R, y/R, χ = z/L, and in t/τ ) for e-LPCLP mode for different
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values of CEP. First we discuss the x-distribution of the differential pairs for two values of ϕ̃

(π/2 and π) which are the two optimum values of ϕ̃ for producing maximum and minimum rates

of the differential pairs and the average production yields. Fig. 3.4(a) displays the differential

pairs distributions in x/R for ϕ̃ = π/2 and π. It forms like a Gaussian profile which is obvious

as the reduced electric field distribution exhibits such profiles (Fig. 3.2(a-b)). The contour plot

of εe in normalized xt-plane shows Gaussian nature along the x axis and oscillatory nature in

the time axis. Because of the extended electric field distribution in x axis due to the prefactor

exp(−ξ2/(1 + 4χ2)) term in εe given in Eq. 3.8, the rate of pair production gets broadened.

The differential particle distribution in normalized y-axis is shown in Fig. 3.4 b. The distri-

bution profile is Gaussian and ϕ̃ = π/2 leads to the maximum differential pair production rate

in y. Such pair distribution can be explained from the contour plot of εe as shown in Fig. 3.2(c).

Here apart from the Gaussian factor exp(−ξ2/(1 + 4χ2)) in the analytical expression of εe, see

Eq. 3.8, it exhibits quadratic variation in y in the leading order. So the y-distribution of invariant

electric field εe has nodal structure, seen in Fig. 3.2(c-d). The central region contributes in pair

production as it possesses maximum peak field strength whereas the other lobes do not have

sufficient field strength to produce pairs. So effectively the y-distribution gets localized and

we have non-identical particle distribution in x and y axes. Such localization of the invariant

electric field also produces higher production rate in y than x axis.

Fig. 3.4(c) shows the variation dNe+e−/dχ with χ for ϕ̃ = π/2 and π. The distribution rate

shows trimodal profile for both the value of CEP. For ϕ̃ = π/2, the maximum production rate

occurs at χ = 0 and the other two peaks are located symmetrically about the central position χ =

0. The separation between the non-central peaks is insensitive with the CEP values. Although

for ϕ̃ = π, the profile of the particle production rate falls under the same profile with ϕ̃ = π/2

but the non central peaks exceed from ϕ̃ = π/2 case. Such kind of particle distribution has

resemblance to the invariant electric field distribution as seen in Fig. 3.1(a-b)-Fig. 3.1(d). Here

dNe+e−/dχ shows very spiky nature because of the localization of εe in χ.

Fig. 3.4(d) shows dNe+e−/d(t/τ) in time for ϕ̃ = 0, π/4 , and π/2. It shows CEP sensitivity

in the differential pair distribution. The maximum rate of pair production occurs at ϕ̃ = π/2 and

minimum at ϕ̃ = 0.

The shift in the central peak results the reduction of the peak height due to the temporal

pulse envelope function g. So the temporal distribution of the pairs gets reduced for CEP other

than π/2. We have observed such asymmetrical distribution for ϕ̃ = π/4. This can be explained

by calculating the locations of the reduced electric field maxima. In the central zone we have

two points which are located at t+ = π/4ω and t− = −3π/ω. These two values correspond to
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Figure 3.4: The differential e+e− pair production rates in scaled space-time variables for dif-
ferent values of CEP ϕ̃ for the counterpropagating linearly polarized laser pulses. The upper
panel shows the distribution in transverse coordinates x and y and the lower panel shows in
longitudinal variable χ and time. The laser EM field parameters are E0 = 0.0565, ∆ = 0.1,
τ = 10 f s, and λ = 1µm.

the reduction of the peak electric field strength differently which causes an asymmetric particle

distribution. Because of the CEP, the internal field oscillation advances towards the leading

edge of the pulse envelope and peak position of the field is being shifted. So at such positions

due to the pulse envelope function, the peak field strength gets reduced and the temporal rate

of the pair generation gets lowered. The other observed feature of dNe+e−/d(t/τ) in t/τ is that

it shows very sharp distribution and the corresponding width of the profile at FWHM is 200as

for a laser profile of pulse duration 10 f s. Such kind of sharp bunch generation is important for

the generation of e− or e+ beams having small temporal spread, high γ value etc. by applying a

suitable magnetic field.
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3.2.4 Particle distribution: Circular polarization

Here we discuss about the differential particle production rates in time for the counterpropagat-

ing circularly e-polarized focused Gaussian laser pulses. We consider the forward propagating

pulse is right circularly polarized and backward propagating pulse is right circularly polarized

for the first case and left circularly polarized pulse for the second case. It is seen that in the

resultant expression of the invariant electric and magnetic fields for the right-right combination

in the polarization vector rotation is devoid of temporal oscillation in the leading order and it

shows oscillations in longitudinal coordinate. It is also seen that the leading order spatiotempo-

ral dependence is independent of CEP. So as a result the differential particle production in time

is insensitive with CEP and it follows the overall smooth variation due to the pulse envelope

function g.

Distribution of the particles in spatiotemporal coordinates for the circularly e-polarized
right-left combination in the counterpropagating configuration

Differential particle distribution in time is shown in Fig. 3.5 for circularly e-polarized focused

Gaussian laser pulses in right-left combination for the counterpropagating fields. Fig. 3.5 shows

that the production rates are sharp and localized within the interval of time smaller than the laser

pulse duration. It has some other feature such as unimodal particle distribution gets changed to

bimodal one depending on CEP. For ϕ̃ = π/2, the production rate is occurred at t = 0 which

gives maximum peak value and displays symmetric unimodal structure. But by changing the

value of CEP, the profile becomes bimodal one having symmetric and asymmetric both in peak

values and the occurrence of the peaks about t = 0. The separation of the peaks in bimodal

profile for a particular value of CEP is fixed and it holds for other values of CEP. We have

calculated the FWHM of the distribution profiles as 220as which shows the generation of very

short particle bunch for circular polarization in counterpropagating configuration. For ϕ̃ , π/2,

the particle production rate in time changes its location and it is accompanied with the reduction

of peak height. So the proper control over CEP is required to get maximum rate of particle

production in time.
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Figure 3.5: Differential e+e− pair production rates in time for ϕ̃ = 0, π/4, π/2, and 3π/4
for the counterpropagating circularly e-polarized focused Gaussian laser pulses in right-left
combination in polarization vectors rotation. The laser EM field parameters are E0 = 0.0565,
∆ = 0.1, τ = 10 f s, and λ = 1µm.

3.3 Particle production yield: linear and circular polariza-

tions

The average numbers of created pairs Ne+e− for different values of CEP for the counterpropagat-

ing laser pulses are shown in Table 3.1. The data shows for both linear and circular polarizations

laser pulses in e-wave configuration. For circular polarization case, we have separately shown

for right-right and right-left combinations of their polarization vector rotations in column two

and three. Although the data shows less sensitivity with CEP on average pair number gen-

eration relative to the differential particle production rate. However it shows that the average

particle number increases (slightly) with CEP varied from 0 to π/2 and then reduces for linear

polarization and circular polarization in right-left combination. The right-right combination in

circular polarization, the average particle numbers are almost insensitive with CEP.

3.4 Conclusion

To conclude, the present studies examined the electron-position pair production process via

Schwinger mechanism for the counterpropagating focused Gaussian ultrashort a few cycle

(τ = 10 f s with laser radiation wavelength λ = 1µm which corresponds three oscillation) laser

pulses. It includes linear and circular polarizations in e-wave configuration. For the circular
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ϕ̃ Ne+e−(linear) Ne+e−(cir right-right) Ne+e−(cir right-left)

0 2.517 × 106 1.980 × 107 1.547 × 107

π
8 2.605 × 106 1.992 × 107 1.577 × 107

π
4 2.856 × 106 1.976 × 107 1.729 × 107

3π
8 3.051 × 106 2.011 × 107 1.876 × 107

π
2 3.157 × 106 1.994 × 107 1.919 × 107

3π
4 2.826 × 106 1.984 × 107 1.734 × 107

5π
6 2.651 × 106 1.983 × 107 1.611 × 107

Table 3.1: The average number of created particles Ne+e− as a function of CEP ϕ̃ for coun-
terpropagating linear and circular polarizations in e-wave mode. The column two and three
are for the circular polarization in right-right and right-left combinations in the rotation of the
polarization vector. Here E0 = 0.0565, ∆ = 0.1, τ = 10 f s, and λ = 1µm.

polarization we considered both right and left handedness of the rotation of the polarization

vector and the effect of the carrier envelope phase (CEP) dependence also considered.

First it has been shown for the linear polarization where CEP dependence came into the

leading order of the invariant field distribution. The focal region composed of electric and

magnetic regimes where the Lorentz invariant F e is either positive or negative. It is seen os-

cillatory structure in both longitudinal coordinate and in time. Such kind of field distribution

made the differential particle production process more localized and hence very short particle

bunch can be produced in longitudinal coordinate and in time. Here we have calculated that for

CEP = π/2, the resultant field configuration produces maximum production rate in time with

width at FWHM is 200as.

Second, it has been studied for the circular polarization case of counterpropagating configu-

ration. The combinations of right-right and right-left in the polarization vector rotations for the

forward and backward propagating laser pulses have been studied. The resultant field distribu-

tion for the right-right combination showed oscillatory field profile in longitudinal coordinate

which does not include any CEP dependence. But for the right-left combination generates os-

cillation in time and in the leading order it depended on CEP. Consequently two cases have

been seen, one in which particle production rate is insensitive with CEP and two in which parti-

cle production rate is very sensitive with CEP. Former one produces spatially localized particle

distribution whereas the later one produces temporally localized particle production.

One basic observation is that for the circularly e-polarized counterpropagating laser pulses,

the mixture of right-right in the rotation of the polarization vector gives localized invariant

electric and magnetic fields in longitudinal coordinate irrespective of the value of CEP in the

leading order whereas the temporal profile follows the pulse envelope function. Therefore such
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field profile gives rise to localized particle bunch formation in the longitudinal axis. On the

other hand when the superposition is taken between right-left combination between the two

pulses in polarization vector i.e., the forward beam is right circularly polarized and backward

beam is left circularly polarized (the opposite configuration also give same result), it is seen

that the invariant electric and magnetic fields depend on the fast oscillation in time with CEP

under the envelope function. It has a temporally localized invariant fields which causes the

differential pair distribution short.

So the proper control over CEP is essential for the ultrashort laser pulses in counterpropa-

gating configuration in particle-antiparticle production mechanism.



Chapter 4

Phase control of Schwinger pair
production by colliding laser pulses

So far we have studied the spatiotemporal distribution of the created pairs by the counterpropa-

gating laser pulses at focus where it is assumed the colliding pulses are in phase configuration.

However, it has been shown recently in Ref. [66] that for a focused linearly polarized standing

wave the invariant electric field distribution, and hence also pair production, are sensitive to the

carrier envelope phase (CEP) ϕ̃. Here we study the spatio-temporal distribution of e+e− pairs

created via the Schwinger mechanism at a focal region of the colliding laser pulses described

by the Narozhny-Fofanov model [10], assuming that the pulses are in addition mutually phase

shifted. As we demonstrate, the phase shift Ψ considerably affects the longitudinal spatial

(here, z-) coordinate and time distributions of the resulting EM field, especially for ultrashort

(few cycle) laser pulses. Furthermore, we study the dependence of the invariant field structure

and of the distribution of the created pairs on polarization, relative sense of rotation (for circular

polarization), and CEP of the counterpropagating pulses.

The Chapter is organized as follows: in Sec. 4.1 we briefly discuss the basic theory: the

Schwinger formula for average pair production and the structure of the invariant electric and

magnetic fields of the coherently superposed counterpropagating focused laser pulses. Next we

present the differential pair production rates in spatiotemporal coordinates and explanation of

their features in terms of the invariant electric field distribution in Sec. 4.2, finally concluding

in Sec. 4.3. A technically useful simplification of the envelope of counterpropagating pulses is

discussed in Appendix C.

41
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4.1 Theoretical background and field model

Assuming the validity of a locally constant field approximation, the average number of created

pairs per unit time and volume can be calculated using the Nikishov formula [3, 72]:

we−e+ =
d2Ne−e+

dVdt
=

e2E2
S

4π2~2c
εη coth

(
πη

ε

)
exp

(
−
π

ε

)
, (4.1)

where e is the magnitude of the electron charge, and ε, η =

√√
F 2 + G2 ± F [with F =

1
2

(
E2
− H2

)
and G = E · H] are the normalized (by ES ) invariant electric and magnetic field

strengths, i.e. the magnitudes of the electric and magnetic field strengths in a reference frame

where they are locally either zero or parallel. Eq. (4.1) is valid in a locally constant field

approximation based on an assumption that the characteristic length and time scales of the e+e−

pair production process (the Compton length ~/mec and time ~/mec2 scales) are much smaller

than the carrier wavelength (λ ≈ 1µm) and the period (λ/c ≈ 3fs) of the laser field, respectively

[72]. In particular, pair production is negligible if ε is small or vanishing in a focal region,

while in the opposite case of nearly vanishing η Eq. (4.1) reduces to

we−e+ =
d2Ne−e+

dVdt
≈

e2E2
S

4π3~2c
ε2 exp

(
−
π

ε

)
. (4.2)

As we will see later on, these special cases are realized for the magnetic and electric regimes

in the focal region for collision of linearly polarized laser pulses. Hence we use Eq. (4.2) for

presenting the numerical results of differential particle production rates in spatiotemporal coor-

dinates for linearly polarized laser pulses and Eq. (4.1) otherwise. To obtain a temporal particle

distribution we integrate we+e− over the spatial coordinates, and to obtain the longitudinal spa-

tial distribution of particle production we integrate the production rate we+e− over the transverse

spatial coordinates and time. The actual distribution of the invariant fields in a focal region of

colliding pulses strongly depends on their polarization and is discussed below. In all numerical

calculations, we use the exact expressions for the EM fields and assume for definiteness the

amplitude E0 = 0.0565, carrier wavelength λ = 1µm, focusing parameter ∆ = 0.1, and pulse

duration τ = 10 f s for each of the counterpropagating pulses. However, to easier interpret the

results, in the rest of the section we also derive the approximate analytical expressions for field

invariants near the focus.

Let us start with a field configuration of linearly polarized counterpropagating focused laser

pulses based on the Narozhny-Fofanov field model [10]. We assume the normalized (by ES )

electric fields of the pulses propagating in a forward (+z) and backward (−z) directions of the
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form [15]

E f = iE0e−iω(t−z/c)−iϕ̃g
[
êx(F1 − F2 cos 2φ) − êyF2 sin 2φ

]
, (4.3)

and

Eb = iE0e−iω(t+z/c)−iϕ̃−iΨg
[
êx(F∗1 − F∗2 cos 2φ) − êyF∗2 sin 2φ

]
, (4.4)

respectively, where E0 is the normalized (by ES ) peak electric field strength of the laser pulse;

ω = 2πc/λ is the central frequency of the pulse; λ is the laser carrier wavelength; F1, F2 are

the Gaussian-like functions of the form [10]

F1 =
1

(1 + 2iχ)2

(
1 −

ξ2

1 + 2iχ

)
exp

(
−

ξ2

1 + 2iχ

)
, F2 = −

ξ2

(1 + 2iχ)3 exp
(
−

ξ2

1 + 2iχ

)
,

F∗1 and F∗2 are their complex conjugates; ξ = ρ/R is the normalized radial variable with

ρ =
√

x2 + y2 at the transverse Cartesian spatial coordinates x, y; R is the focal radius; φ =

arctan(y/x) is the azimuthal angle; χ = z/L is the normalized longitudinal coordinate with

L = R/∆ being the Rayleigh length for a focusing aperture parameter ∆ = c/ωR. The en-

velope function g accounts for temporal finiteness of the laser pulses. In this paper we take

g = exp(−4t2/τ2 − 4z2/c2τ2) [65, 66] (a detailed explanation of our method of introducing g is

given in Appendix C). Finally, ϕ̃ and Ψ are CEP and the phase shift of the backward propagat-

ing pulse, respectively.

The corresponding expressions for the normalized magnetic field of the forward and back-

ward propagating pulses are [15]

H f = iE0e−iω(t−z/c)−iϕ̃g
[ (

1 − i∆2 ∂

∂χ

) {
êxF2 sin 2φ− êy(F1−F2 cos 2φ)

}
+ 2i∆ sin φ

∂F1

∂ξ
êz

]
, (4.5)

and

Hb = −iE0e−iω(t+z/c)−iϕ̃−iΨg
[ (

1 + i∆2 ∂

∂χ

) {
êxF∗2 sin 2φ − êy(F∗1 − F∗2 cos 2φ)

}
+ 2i∆ sin φ

∂F∗1
∂ξ

êz

]
.

(4.6)

Following the procedure of Ref. [66], the expressions for the Lorentz invariants of the re-

sultant EM field E = E f + Eb, H = H f + Hb of the superposed counterpropagating pulses can

be derived,

F =
1
2

(
ReE2

− ReH2
)
≈

2E2
0g2e−

2ξ2

1+4χ2

(1 + 4χ2)2

[
sin2(ωt + ϕ̃ + Ψ/2) − sin2(ωz/c + Ψ/2)

]
, (4.7)
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and

G = ReE · ReHe
≈

2E2
0g2ξ2e−

2ξ2

1+4χ2

(1 + 4χ2)5/2 sin (2φ) sin [2(ωt + ϕ̃ + Ψ/2)] sin [2(ωz/c + Ψ/2)], (4.8)

where we retain only the leading order terms in ∆, ξ, and χ, as justified in the focal region in

a weak focusing limit. Since G = O
(
ξ2

)
is negligibly small there, one of the invariant fields

(depending on the sign of F ) is vanishingly small. For F > 0 we have so-called electric regime

[71]

εelec ≈
2E0ge−

ξ2

1+4χ2

(1 + 4χ2)

[
sin2(ωt + ϕ̃ + Ψ/2) − sin2(ωz/c + Ψ/2)

]1/2

, and ηelec ≈ 0, (4.9)

whereas, for a magnetic regime F < 0 [71]

εmag ≈ 0, and ηmag ≈
2E0ge−

ξ2

1+4χ2

(1 + 4χ2)

[
sin2(ωz/c + Ψ/2) − sin2(ωt + ϕ̃ + Ψ/2)

]1/2

. (4.10)

Clearly, pairs are created solely during an electric regime, and the phases Ψ and ϕ̃ control

toggling between the electric and magnetic regimes at given point and time, thereby controlling

also the pair production. As is seen from the obtained approximate expressions (and in fact is

also true for the exact ones), it is enough to restrict phases by 0 ≤ ϕ̃ < π and 0 ≤ Ψ < 2π.

Spatiotemporal distributions of the invariant field εe for few representative values Ψ =

0, π/2, π and ϕ̃ = 0, π/2 are presented in Fig. 4.1, where the rhombic structure corresponds to

the aforementioned separation into the alternating electric (color) and magnetic (dark) regimes.

It is clear from the figure, as well as from the above equations, that the maxima are shifted with

respect to the origin t = z = 0, and that their shift is determined by the phases. If the maxima

are remote from the origin (which is at the center of the envelope) then their magnitudes are

reduced, in this way they are also indirectly controlled by the phases. The figure illustrates a

variety of possible opportunities: the maxima can be located symmetrically about the origin,

with either one [see Fig. 4.1(d)] or a gap [Figs. 4.1(a,c,f)] seating at the origin (in the latter case

there can be either four or two maxima closest to it: if there are two then they can be lined

up along either axis); or off centered [like in Figs. 4.1(b,e)] – in the latter case the magnitudes

of the maxima are lined up according to their distance from the origin. Qualitatively, the pair

production rate behaves the same way [see Eq. (4.1) or (4.2)], hence, as we will see below, this

variety of opportunities precisely corresponds to peculiarities of distribution of created pairs

that we observe in our calculations.
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Figure 4.1: Spatiotemporal distributions of the invariant electric field ε(x = 0, y = 0, z, t) for
linearly e-polarized Gaussian laser pulses colliding with different values of the phases ϕ̃ and Ψ.
The laser parameters are E0 = 0.0565, ∆ = 0.1, τ = 10 f s, and λ = 1µm.

Now consider circularly polarized forward and backward propagating laser pulses with a

relative phase difference Ψ. We follow closely the steps discussed in Ref. [65, 66]. For a

forward propagating (along +z) laser pulse, the electric and magnetic fields are given by

E f = iE0e−iω(t−z/c)−iϕ̃g
[
F1(êx ± iêy) − F2e±2iφ(êx ∓ iêy)

]
, (4.11)

and

H f = ±E0e−iω(t−z/c)−iϕ̃g
[ (

1 − i∆2 ∂

∂χ

) [
F1(êx ± iêy) + F2e±2iφ(êx ∓ iêy)

]
+ 2i∆e±iφ∂F1

∂ξ
êz

]
, (4.12)

respectively. Here the signs correspond to the right (+)- and left (−)- handed rotation of the

electric field vector with respect to propagation direction. For a backward propagating (along

−z) laser pulse with a relative phase shift Ψ the expressions for the electric and magnetic fields

are given by

Eb = iE0e−iω(t+z/c)−iϕ̃−iΨg
[
F∗1(êx ± iêy) − F∗2e∓2iφ(êx ∓ iêy)

]
, (4.13)

and

Hb = ∓E0e−iω(t+z/c)−iϕ̃−iΨg
[ (

1 + i∆2 ∂

∂χ

) [
F∗1(êx±iêy)+F∗2e∓2iφ(êx∓iêy)

]
+2i∆e∓iφ∂F∗1

∂ξ
êz

]
. (4.14)

For a pair of counterpropagating circularly polarized pulses, we have two alternatives: either
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both pulses have the same polarization (for definiteness right handed, hereafter referred to as

the RR configuration), or opposite polarizations (for definiteness we assume that the forward

propagating pulse has the right handed polarization and the backward propagating one has the

left handed polarization, hereafter referred to as the RL configuration).

For the RR configuration the Lorentz invariants near the focus (ξ, χ � 1) are given by

FRR ≈
2E2

0g2e−
2ξ2

1+4χ2

(1 + 4χ2)2 cos [2(ωz/c + Ψ/2)], GRR ≈
2E2

0g2e−
2ξ2

1+4χ2

(1 + 4χ2)2 sin [2(ωz/c + Ψ/2)], (4.15)

so that the invariant electric and magnetic fields are

εRR ≈
2E0ge−

ξ2

1+4χ2

(1 + 4χ2)
| cos (ωz/c + Ψ/2)|, ηRR ≈

2E0ge−
ξ2

1+4χ2

(1 + 4χ2)
| sin (ωz/c + Ψ/2)|. (4.16)

One can see that, unlike the case of linearly polarized configuration, now their phases are

time-independent and are solely controlled by single phase Ψ. The overall smooth temporal

dependence on a time scale τ remains only due to the pulse envelope function g. The oscillatory

dependence on longitudinal coordinate χ is shown in Fig. 4.2. It is clear that as Ψ is growing

from zero, the highest central spike becomes off-centered, and eventually at Ψ = π is replaced

with two spikes of equal height located symmetrically about the center.
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Figure 4.2: Dependence of the invariant electric field ε at ξ = φ = 0 on the longitudinal
coordinate χ for counterpropagating circularly e-polarized focused Gaussian laser pulses in RR
configuration with relative phases for Ψ = 0, π/4, π/2, and π. Laser parameters are the same
as in Fig. 4.1.
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Proceeding the same way for the RL configuration, we obtain the leading order expressions

of the Lorentz invariants

FRL ≈ −2E2
0g2 e−

2ξ2

1+4χ2

(1 + 4χ2)2 cos [2(ωt + ϕ̃ + Ψ/2)], GRL ≈ 2E2
0g2 e−

2ξ2

1+4χ2

(1 + 4χ2)2 sin [2(ωt + ϕ̃ + Ψ/2)],

(4.17)

and the invariant electric and magnetic fields read as follows:

εRL ≈ 2E0g
e−

ξ2

1+4χ2

(1 + 4χ2)
| sin(ωt + ϕ̃ + Ψ/2)|, ηRL ≈ 2E0g

e−
ξ2

1+4χ2

(1 + 4χ2)
| cos(ωt + ϕ̃ + Ψ/2)|. (4.18)

In contrast to the RR case here their oscillations are purely temporal and depend on both Ψ and

ϕ̃, see Fig. 4.3. As it shows, variation of the phases, like in previous case, results in a shift of

the main maximum from the center. Namely, it is located at the origin t = 0 for ϕ̃ = 0 at Ψ = π,

whereas for ϕ̃ = π/2 at Ψ = 0. As we will see in the next section, off-centering of the main

maximum results in passing from unimodal to bimodal profile of created pairs.
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Figure 4.3: Time evolution of the invariant electric field ε at ξ = φ = χ = 0 for counter-
propagating circularly e-polarized focused Gaussian laser pulses in RL configuration with CEP
ϕ̃ = 0, π/2 and with relative phase Ψ = 0, π/4, π/2, and π. Laser parameters are the same as
in Fig. 4.1.
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4.2 Results and discussion

According to Eq. (4.1), the pair production rate depends exponentially and monotonously on

the spatiotemporal distribution of the invariant electric field in the focal region, which in turn is

controlled by the phase shifts Ψ and ϕ̃. Hence, we present and discuss the results of calculation

of differential particle production rate for various polarizations of the collided pulses and in

dependence on the values of Ψ and ϕ̃. The main goal is to demonstrate how its features can be

natively understood in terms of the underlying invariant EM field spatiotemporal structure.

4.2.1 Differential pair production rate (linear polarization)
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Figure 4.4: Spatial distributions in longitudinal coordinate χ of particles created by colliding
linearly polarized laser pulses with Ψ = 0, π/2, π and ϕ̃ = 0, π/4, π/2. Laser parameters are
the same as in Fig. 4.1.
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Figure 4.5: Temporal distributions of particles created by colliding linearly polarized laser
pulses with Ψ = 0, π/2, π and ϕ̃ = 0, π/4, π/2. Laser parameters are the same as in Fig. 4.1.

Let us first discuss pair production in the case of linearly polarized colliding pulses. The

differential particle distributions in longitudinal z-coordinate, calculated by means of Eqs. (4.2)

– (4.6) for the values 0, π/2, π of relative phase Ψ and for CEP ϕ̃ = 0, π/4, π/2, are shown in

Fig. 4.4. The distributions possess a spiky structure, with the peaks positions sensitive to Ψ but

independent of ϕ̃. This feature is obvious from the form of the simplified expression (4.9) of

the invariant ε in electric regime. Furthermore, the production rate is maximal for Ψ = 0 and

ϕ̃ = π/2. As Ψ varies, the peaks are shifted from the focus center (as is the case e.g., for Ψ = π/2
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or π), hence the distribution becomes asymmetric (changes from unimodal to bimodal) and the

production rate is reduced. For Ψ = π the bimodal distribution becomes symmetric. In contrast

to the position, the separation of the peaks is merely independent of phase shifts (remains

about π∆2 = 0.0314 in dimensionless units used at the figure). The same is approximately true

also for the peak widths. It is seen that for the adopted values of parameters pair production

results the generation of narrow (FWHM = 0.0636µm) particle-antiparticle bunches localized

in longitudinal direction.

Similar features are observed also in a temporal distribution (see Fig. 4.5), where, however,

the distribution profiles (peak heights as well as their locations) are sensitive to both phase

shifts. In all the cases shown, in agreement with Eq. (4.9), the temporal distribution is unimodal

and maximal for ϕ̃+Ψ/2 ≈ π/2 and bimodal symmetric for ϕ̃+Ψ/2 ≈ 0 or π. The peaks FWHM

width is here as narrow as 200as. As expected from Fig. 4.1, the most prolific production rate

is observed in Fig. 4.5(c) for ϕ̃ = π/2 and Ψ = 0, i.e., for an in-phase configuration of the

counterpropagating beams.

4.2.2 Differential pair production rate (circular polarization)

For colliding circularly e-polarized laser pulses it has been observed earlier [66] that the struc-

ture of the invariant electric and magnetic fields and the pair production rate depend on their

relative handedness. In particular, in RR configuration the invariant fields and the differential

particle production rates do not reveal any CEP dependence. When the counterpropagating

pulses are in-phase, a broad unimodal temporal particle distribution is produced. On the other

hand, the colliding pulses in RL configuration produce particle bunches localized in time and

with notable CEP dependence. It is, therefore, natural to consider these two cases separately.

4.2.2.1 Particle distribution for the circularly e-polarized colliding pulses in RR config-
uration

For RR configuration, since the invariant fields trivially depend on time and are independent

on ϕ̃ [see Eq. (4.16) and note that the same is true exactly], it is enough to present the spatial

distribution of created pairs only in dependence on Ψ, see Fig. 4.6. The maximal production

rate is achieved with Ψ = 0, in this case the distribution looks unimodal and symmetric. The

minimal production rate corresponds to a symmetric bimodal distribution at Ψ = π, while for

the intermediate values of Ψ the distribution is bimodal but asymmetric. The FWHM width

(about 0.0764µm) of the peaks, as well as separation between them (λ/2 = 0.5µm), are both
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Figure 4.6: Spatial longitudinal distributions of e+e− pairs created in RR configuration for
Ψ = 0, π/4, π/2, 3π/4, π. The laser parameters are same as in Fig. 4.1.

insensitive to the phase Ψ. All these results are in obvious agreement with our above discussion

of the invariant field structure [see Eq. (4.16) and Fig. 4.2].

4.2.2.2 Particle distribution for the circularly e-polarized colliding pulses in RL config-
uration

For RL configuration, in contrast, the invariant fields trivially depend on position, but are sensi-

tive to both phase shifts, hence it is enough to present only temporal evolution of the production

rate, but in dependence on both phase shifts, see Fig. 4.7. As in previous cases, at variation of
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Figure 4.7: Evolution of the e+e− pair production rate in RL configuration for ϕ̃ =

0, π/4, π/2, 3π/4 and for Ψ = 0, π/4, π/2, 3π/4, π. Laser parameters are the same as
in Fig. 4.1.
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phases the distribution profile changes from unimodal through asymmetric bimodal to symmet-

ric bimodal. In agreement with Eq. (4.18), the particular form of the distribution depends solely

on the combination ϕ̃ + Ψ/2, with maximal and minimal production rates when it is close to

π/2 and to zero or π, respectively. The FWHM width of the generated particle bunches is about

220as, much shorter than laser pulse duration 10 f s. As before, it is insensitive to both phases

ϕ̃ and Ψ, as well as to separation between the peaks when the profiles are bimodal, which is

about 1.6 f s.

By comparing the figures of this section, we conclude that for the same values of parameters

the circularly polarized RR-configuration with Ψ = 0 maximizes the total number of created

pairs. Namely this configuration was discussed in greater details (in particular, in dependence

of amplitude and focusing degree) in Ref. [15].

4.3 Conclusion

It was proposed [13, 15, 16, 20, 25, 73, 74] that coherent superposition of focused optical laser

pulses is favorable for future observations of spontaneous pair production below the Schwinger

limit because of constructive interference, which notably increases the peak field strength. In

this context, it is natural to analyze phase dependence of the arising interference pattern, as well

as the possibilities for phase control of the corresponding pair production rate. Here we have

done it with respect to both phase shifts inherent to the problem, the carrier envelope phase ϕ̃

of individual pulses, and their relative phase shift Ψ. As shown, their variation shifts the spiky

interference pattern of the invariant electric field with respect to the carrier envelope, leaving

the widths of the peaks unaltered.

The same conclusion broadly refers to the pair production rate, which depends on the in-

variant fields monotonously. Indeed, in all the cases considered here we could relate the pe-

culiarities of particle distribution to the underlying invariant field structure. However, since

due to exponentiation in Eqs. (4.1) or (4.2), at the level of production rate only those peaks

of the invariant electric field that are closest to the center of the spatiotemporal envelope re-

main significant, the resulting spatial and temporal distributions of created pairs can look either

nearly unimodal or bimodal. For the same reason, their longitudinal and temporal spike widths

are much smaller than of the original invariant field structure, meaning time-localized (during

hundreds attoseconds) formation of extremely short (tens nanometers long) electron-positron

bunches. The post production dynamics of such dense bunches may be highly non-trivial [74]

and may need a separate study.
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We predict that the total pair production is maximal when one of the spikes is located near

the center of the spatiotemporal envelope (and distribution of created pairs looks approximately

unimodal), and minimal when the neighboring spikes are off-centered but located symmetri-

cally. The particular phase shifts required for each case depend on polarization of the pulses.

Among the considered cases, for the parameters adopted here the global maximum is achieved

with a circularly polarized RR configuration considered in Ref. [15].

Possibility of phase control of Schwinger pair production under discussion may be useful,

e.g., to increase the attainable intensity of tightly focused colliding laser pulses by reducing pair

production and hence preventing field depletion at their crossing, or, conversely, to measure the

typically unknown field structure and phase relations of extremely strong laser pulses in a way

similar to proposed in Ref. [42] by using the multiphoton Compton scattering.



Chapter 5

Imprint of temporal envelope of ultra
short laser pulses on momentum spectrum
of e+e− pairs

In this Chapter effect of temporal pulse shape of intense ultrashort pulses on the momentum

distribution of e+e− pairs is studied using quantum kinetic equation. Two closely resembling

temporal envelopes namely, Gaussian and Sauter, keeping all the other pulse parameters same,

are considered to this end.

In previous Chapters, Schwinger’s formula was used to compute the spatio-temporal distri-

bution of pairs created by time and space varying fields due of ultrashort and ultraintense laser

pulses with the justification that the length and time scales of the variation are much larger than

the characteristic Compton length and time. However, as the pulse duration is reduced further in

the range of few hundreds of atto-second when it is no more much larger than the characteristic

Compton time, use of Schwinger formula to describe the pair production rate is questionable.

Furthermore in such cases the transient and non-equilibrium dynamics of the produced particles

can only be described in the framework of the kinetic theory approach using quantum Vlasov

equation (QVE) [19, 31, 45–60]. This methodology has a strong relevance in the context of the

momentum distribution of the created pairs in semiclassical approximation where the asymp-

totic reflection coefficient gives the average particle numbers in a particular mode [61]. The

momentum spectrum of created particles has also been studied in nonpertubative multiphoton

regime where the Keldysh adiabaticity parameter ξ ∼ 1 [75]. The semiclassical formulation

was used in studying the time-domain multiple-slit interference effect from vacuum in [76].

The theory was used to study the rich dynamical behaviour of the pair creation process for

53
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the time dependent but spatially homogeneous field configuration [19, 53, 62]. In particular, it

was shown that a quasi particle mode evolves through three distinct temporal stages, namely

the quasi electron positron plasma (QEEP) stage, the transient stage and finally the residual

electron-positron plasma (REPP) stage [58–60] The temporal characteristics of the ultrashort

pulses consist of a temporal profile with a given pulse duration τ, number of subcycle oscilla-

tions ωτ with ω being the carrier frequency, carrier envelope phase (CEP) and frequency chirp

parameter(s). Gaussian and Sauter are the two most commonly used (quite often interchange-

ably) temporal profiles. A simple Sauter pulse without any subcycle oscillation (also known

as single sheeted Sauter pulse) offers analytical solutions for the momentum distribution [56]

and the dynamics of produced pairs [49]. However, a Sauter pulse with subcycle oscillations

(multi sheeted pulse) is no longer analytically tractable. On the other hand, for a multi sheeted

Gaussian pulse it is possible to express the vector potential in an analytically closed form in

terms of error function. These analytical conveniences have led researchers to use Sauter and

Gaussian temporal profiles for the kinetic studies of the pairs created by the single sheeted and

multi sheeted pulses, respectively [31], sometimes even in the same report [59]. This is possibly

due to the perception that both the pulses should give very similar results because of their close

resemblance. This, to the best of our knowledge, has not been verified so far. This is one of the

motivations of this study. While the evolution of individual modes was studies in Ref. [59, 60],

the evolution of the momentum distribution as a whole has not been reported so far. This is the

second motivation of our study. In this Chapter we, therefore, use quantum kinetic equation to

present a detailed comparative study of the evolution of longitudinal momentum distribution of

the pairs created by these two pulses (Sauter and Gaussian) for a given pulse duration, number

sub-cycle oscillations, CEP, and frequency chirp.

We find that the momentum spectrum of the pairs for the Sauter and Gaussian pulses differ

significantly at all the temporal stages of the evolution. However, for the qualitative description

of the difference only two temporal regions seem to be relevant - first one is the region from the

QEEP stage to the transient stage (referred to as the transient region hereafter) and the second

one is the region well beyond the transient stage (also referred to as the asymptotic region). In

the transient region, the spectrum is smooth with a single peak for both the pulses. However

the location of peak, the peak height and the width are different for any instant of time and they

evolve differently with time. However the peak height for the Gaussian pulse is consistently

higher than that for the Sauter pulse. In the other regime, where the spectrum does not change

with time, the peak position of the spectrum nearly coincides in both the cases. However, in

the asymptotic region, just contrary to the trend in the transient region, the peak height of the

spectrum for the Gaussian pulse is lower than that for the Sauter pulse as long as the number of
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subcycle oscillations, ωτ < 5. As reported in Ref. [77], the momentum spectrum for the mul-

tisheeted Gaussian shows oscillations over the smooth profile due to the quantum mechanical

interference of the reflected quasi particle waves from bumpy time-dependent potential. These

oscillation are suppressed in the case of Sauter pulse. The onset of oscillation takes place at

ωτ = 6 for the Sauter pulse compared to ωτ = 4 for the Gaussian pulse. Furthermore, for

the same value of ωτ the amplitude of oscillation is smaller for the Sauter pulse. In fact, it is

due to this interference effect that the peak height of the momentum spectrum for the Gaussian

pulse takes over that for the Sauter pulse for ωτ ≥ 5. These difference in the asymptotic time

spectrum of the two pulses get much more prominent on increasing the linear frequency chirp

in these pulses and also on varying the CEP.

This Chapter is structured as follows: In Sec. 5.1 we discuss briefly the relevance of the

aforesaid pulses to the counterpropagating configuration of intense ultrashort pulses. We also

outline the basic formulation of the quantum kinetic equation (QKE) in the context of parti-

cle production from the time dependent but spatially uniform electric fields. We present our

numerical results for the multi-sheeted Sauter and Gaussian pulses with different values of ωτ

parameter in Sec. 5.2. The effect of varying the carrier-envelope offset phase and the linear

frequency chirp on the momentum spectrum is also studied in this section. The results are qual-

itatively explained by invoking the equivalence between the pair creation by EM field and the

over-the-barrier scattering problem and also quantitatively by analysing the structure of turning

points in the complex t-plane in the stationary phase approximation. We conclude in Sec. 5.3.

Details of the calculation based on the turning point structure showing the essential difference

in the momentum spectrum of the two temporal pulse forms are relegated to Appendix. D.

5.1 Theory

5.1.1 Laser field model

It is well known that the electric field given by the spatially homogeneous Sauter/ Gaussian

pulse may arise in the focal region of the counterpropagating laser pulses. Here we give

two such examples from Ref. [66, 67] wherein the focused EM field model by Narozhny-

Fofanov [10] was used. When the counterpropagating pulses with amplitude E0/2 are linearly

e-polarized or are in combination of right-left circular polarization the expressions of the elec-

tric and magnetic fields at the focus (x = y = z = 0) are of the form

E(t) = E0g(t) sin(ωt + φ), H(t) = 0, (5.1)
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where g(t) is the temporal envelope function which describes the electric field of a finite du-

ration and φ is the carrier-envelope offset phase i.e., the phase difference between the high

frequency carrier wave and the envelope function [42–44]. If we take g(t) = exp(−t2/2τ2), we

get the spatially uniform multi-sheeted Gaussian field

E(t) = E0 exp(−t2/2τ2) sin(ωt + φ), H(t) = 0, (5.2)

where τ is the total pulse length. On the other hand, by taking g(t) = cosh−2(t/τ) the form of

the multi-sheeted Sauter field

E(t) = E0 cosh−2(t/τ) sin(ωt + φ), H(t) = 0. (5.3)

These are the two widely used temporal fields in the studies of QKE.

The applicability of the spatially uniform field approximation may be justified as the spatial

length scale of the EM field of the laser pulse is much larger than the characteristic Compton

length (o = ~/mec) of the QED process. The corresponding time dependent vector potential
~A(t) = (0, 0, A(t)) can easily be calculated by the relation ~E(t) = −∂~A(t)/∂t where we have

assumed the scalar potential A0 = 0 (temporal gauge). Fig. 5.1 shows the shape of the time

dependent electric field for Sauter and Gaussian pulses with different values of ωτ parameter.

The value of the ωτ parameter is taken as 3 and 7. The shape of the simple Sauter (E(t) =

E0 cosh−2(t/τ)) and simple Gaussian (E(t) = E0 exp(−t2/2τ2)) fields (these are also known as

single-sheeted Sauter and Gaussian fields) are shown as a reference. We use Eq. 5.1 for the

multi-sheeted electric fields to calculate the momentum spectrum of created particles.
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5.1.2 Mathematical formalism of the quantum kinetic theory

The kinetic equation used in this work has been derived using different techniques by various

researchers [32, 56, 57]. Here we give the essential steps closely following the derivation given

[32, 55]. The basic formulation of fermionic pair production can be derived from the Dirac

equation for the matter field Ψ(x)

(iγµ∂µ − eγµAµ − m)Ψ(x) = 0. (5.4)

Here, we have assumed the external electric field is a classical background and take one dimen-

sional spatially uniform but time dependent electric field which is characterized by the 4-vector

potential Aµ = (0, 0, 0, A(t)). The electric field can easily be calculated by E(t) = −dA(t)/dt.

As the external gauge field varies in time one can decompose the spinor field in Fourier mode

[61]

Ψ(x, t) =
∑

s

∫
d3 p eip·x

(
up,s(t)bp,s(t) + v−p,s(t)d

†
−p,s(t)

)
, (5.5)

where bp,s(t) and d†−p,s(t) are the annihilation and creation operators for the particle and antipar-

ticle with momenta ±p and spin s in a time dependent basis. In a particular Dirac matrix basis

(eigenvectors of γ0γ3), one can write the time dependent spinors up,s(t) and vp,s(t) as a single

function ψp(t), which satisfies the equation

ψ̈p(t) + (ω2
p(t) + iṖ3(t))ψp(t) = 0, (5.6)

where ω2(p, t) = m2 + p2
⊥ + P2

3(t) and P3(t) = p3 − eA(t).

Here one can define the adiabatic particle number basis where the creation and annihilation

operators are written as

Bp,s(t) = bp,s(t)e−iΘ(p, t), Dp,s(t) = dp,s(t)e−iΘ(p, t), (5.7)

where Θ(p; t) =
t∫

t0

dt′ω(p, t′) is the dynamical phases accumulated between initial and final

states. The operators Bp,s(t) and Dp,s(t) satisfy the Heisenberg-like equations of motion

dBp,s(t)
dt

= −
eE(t)ε⊥

2ω2(p, t)
D†−p,s(t) + i[H(t), Bp,s(t)],

dDp,s(t)
dt

=
eE(t)ε⊥

2ω2(p, t)
B†−p,s(t) + i[H(t),Dp,s(t)],

(5.8)
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where the quasi-particle Hamiltonian H(t) is given by

H(t) =
∑
s,p

ω(p, t)
(
B†p,s(t)Bp,s(t) − D−p,s(t)D

†
−p,s(t)

)
. (5.9)

We now define the occupation number of electron in a time dependent basis with spin s and

momentum p for the instantaneous vacuum state fs(p, t) =< 0in|B
†
ps(t)Bps(t)|0in >. Similarly

one can also define the occupation number of the positron f̄s(−p, t) =< 0in|D
†
−ps(t)D−ps(t)|0in >.

Here fs(p, t) = f̄s(−p, t) due the charge conjugation invariance. Now fs(p, t) and f̄s(−p, t) will

serve as a single particle distributions functions in quasi-particle representation [49, 78]. The

evolution of fs(p, t) satisfies the equation

d fs(p, t)
dt

= −
eE(t)ε⊥

2ω2(p, t)
Re{φs(p, t)}, (5.10)

where φs(p, t) =< 0in|D−ps(t)Bps(t)|0in > is the anomalous average of in-vacuum state denoting

the complex particle-antiparticle correlation function. It satisfies the evolution equation

dφs(p, t)
dt

=
eE(t)ε⊥
ω2(p, t)

[2 fs(p, t) − 1] − 2iω(p, t)φs(p, t), (5.11)

provided that fs(p, t) = f̄s(−p, t) is used. In general, one can write the real and imaginary parts

of φs(p, t) = us(p, t) + ivs(p, t) for which Eq. 5.11 can be decomposed into two real equations

dus(p, t)
dt

=
eE(t)ε⊥
ω2(p, t)

[2 fs(p, t) − 1] + 2ω(p, t)vs(p, t),

dvs(p, t)
dt

= −2ω(p, t)us(p, t).
(5.12)

In particular, we have a set of three first order differential equations for the complete dynamical

evolution of the vacuum electron-positron pair production process which are listed as (we have

absorbed an extra minus sign which appears in above equations of f (p, t), u(p, t) and v(p, t) and

the spin index s)

d f (p, t)
dt

=
eE(t)ε⊥

2ω2(p, t)
u(p, t),

du(p, t)
dt

=
eE(t)ε⊥
ω2(p, t)

[1 − 2 f (p, t)] − 2ω(p, t)v(p, t),

dv(p, t)
dt

= 2ω(p, t)u(p, t).

(5.13)

The real part of the anomalous average term u(p, t) which represents vacuum polarization ef-

fects plays an important role in the source term of the pair production. In fact this term gives the

information about the quantum statistical character via [1− 2 f (p, t)], due to the Pauli exclusion



Chapter 5. Imprint of temporal envelope of ultra short laser pulses on momentum spectrum of
e+e− pairs 59

principle. Similarly the imaginary part of anomalous average term v(p, t) denotes the counter

process of pair production which is basically the pair annihilation in the vacuum excitation pro-

cess [19]. One can also combine the above set of first order differential equation into a single

first order integro-differential equation

d f (p, t)
dt

=
eE(t)ε2

⊥

2ω2(p, t)

t∫
−∞

dt′
eE(t′)
ω2(p, t′)

[1 − 2 f (p, t′)] cos[2Θ(p; t, t′)], (5.14)

which is the quantum transport equation of the vacuum particle pair production [32, 63] where

the non-Markovian character or the memory effect is evident via the term [1 − 2 f (p, t)] and

the highly oscillating kernel cos[2Θ(p; t, t′)]. The detailed derivation of Eq. 5.14 is given in

Appendix D.

We solve the Eq. 5.13 numerically for time dependent single and multi-sheeted ultrashort

Sauter and Gaussian laser pulses as discussed in Sec. 5.1.1 with initial conditions f (p, ti) =

u(p, ti) = v(p, ti) = 0 at ti → −∞ instead of solving the Eq. 5.14 which is non-local in

time and involves very rapidly oscillating phase with double the frequency of ω(p, t) of the

quasi-particle. It is worthwhile to mention that the set of coupled differential equations of

( f (p, t), u(p, t), and v(p, t)) has the first integral of motion (1− 2 f (p, t))2 + u(p, t)2 + v(p, t)2 = 1

[79].

5.2 Results

In this section we present the momentum spectrum of the created particle based on the numer-

ical solution of Eq. 5.13 for time dependent Sauter and Gaussian pulses, thereby showing its

sensitivity to the temporal envelope of the pulse.

5.2.1 Momentum distribution of created particles in the transient and
asymptotic regions

The evolution of the vacuum state undergoes Zitterbewegung which gets modified by the inter-

action of time dependent electric field with quasi-energyω(p, t) =

√
m2 + p2

⊥ + P2
3(t) and quasi-

momentum P3(t) = p3−eA(t). The initial virtual electron-positron pair plasma state in the pres-

ence of single sheeted Sauter and multi sheeted Gaussian pulses was shown to evolve from the

quasi-electron positron (QEPP) stage to final residual electron-positron plasma (REPP) stage
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Figure 5.2: Evolution of quasi-particle distribution function for single and multi-sheeted (ωτ =

4, 6) Gaussian and Sauter pulses for longitudinal momentum p3 = 0 and transverse momentum
p⊥ = 0. All the units are taken in electrons mass unit. The field parameters are E0 = 0.1,
τ = 100, and the carrier-envelope offset phase φ = π/2.

via the highly oscillating transient stage [58, 59]. The evolution for single sheeted Gaussian

and multi sheeted Sauter pulses has not been reported so far. Moreover, there are no results

available for the pulse parameters of both the pulses we wish to consider in this Chapter.

We, therefore, show the complete evolution of the quasi-particle distribution function for

the single and multi-sheeted (ωτ = 4, 6) Gaussian (in the left panel) and Sauter (right panel)

pulses in Fig. 5.2 for the longitudinal momentum value p3 = 0. The insets of Fig. 5.2 show the

evolution of the quasi-particle distribution function in the transient stage of evolution charac-

terized by rapid oscillations. We note here that the transient stage occurs at earlier times for the

Gaussian pulse than the Sauter pulse.

Use of the QKE formalism allows us to study the quasi-particle momentum spectrum at

any instant of time and hence the evolution thereof. As mentioned before we, however, restrict

ourself to two distinct temporal regimes, namely the transient regime (consisting of QEPP and

transient stages) and the asymptotic region (well beyond the transient stage in REPP stage).

Fig. 5.3 shows momentum spectra for single sheeted Sauter and Gaussian pules. The spectra,

which have smooth unimodal structure, change rapidly in the transient region. The location of

the central peak and the peak height of the momentum spectrum are quite different for both the

pulses. In particular, the spectrum for the Gaussian pulse has larger peak height than that for

the Sauter pulse in this region, as seen in Figs. 5.3(a-b). However in the asymptotic region the

momentum spectra for both the pulses become centrally symmetric about p3 = 0. Contrary to

the trend in the transient region, the peak height is larger for the Sauter pulse in the asymptotic

region. For the single-sheeted Sauter pulse with electric field E(t) = E0 cosh−2(t/τ) and the

corresponding vector potential A(t) = −E0τ tanh(t/τ), QKE in Eq. 5.14 was shown to have

exact solution in the asymptotic region [63]. It was shown [61] that in the stationary phase
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parameters are E0 = 0.1, τ = 100, and the carrier-envelope offset phase φ = π/2.

approximation, the asymptotic time spectrum is governed by the structure of the turning points

tp in the complex time plane which are defined by the relation ω(p, tp) = 0. In this case,

tp = τ tanh−1((±im − p3)/eE0τ) + inπτ where n is integer number. The turning points appear

as complex conjugate pairs. For p3 = 0, all the turning points are located on imaginary axis.

The dominant contribution to the momentum spectrum comes from n = 0 turning points. Thus,

the pair creation mechanism is governed by the single pair of turning point and the asymptotic

particle spectrum becomes smooth unimodal profile.

We now consider multi-sheeted Sauter and Gaussian pulses for ωτ = 4 and 6 and present

in Fig. 5.4 the momentum spectrum in the transient region (t = 70[m−1], 280[m−1]) and in

the asymptotic region (t = 1050[m−1] for Sauter and Gaussian pulses. The momentum spectra

in the transient region, much like the trend discussed above, significantly differ for the two

pulses for the same number of subcycle oscillations, with the peak height for the Sauter pulse

being consistently lower than that for the Gaussian pulse. In the asymtotic region, oscillations

over the otherwise smooth unimodal momentum spectrum for the multi sheeted Gaussian pulse

were reported in [61, 77]. These results are reproduced here for the ready reference here while

comparing the results obtained for the corresponding Sauter pulses. We find that the oscillation

become noticeable for ωτ ≥ 4 for the Gaussian pulse and for ωτ ≥ 6 for the Sauter pulse, see

the lower panel of the Fig. 5.4 and also Fig. 5.5.
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Figure 5.4: Longitudinal momentum spectrum of created particles in the presence of time
dependent multi-sheeted Sauter and Gaussian pulses at different times for ωτ = 4, 6. The value
of transverse momentum is taken to be zero and all the units are taken in electrons mass unit.
The field parameters are E0 = 0.1, τ = 100, and the carrier-envelope offset phase φ = π/2.

For the same number of subcycle oscillations, the amplitude of oscillations is larger for the

Gaussian pulse than that for the Sauter pulse, as seen in Fig. 5.5. In fact, the spectrum for the

ωτ = 6 Gaussian pulse is similar to that for the Sauter pulse with ωτ = 7 (Fig. 5.5) as far as the

oscillations in both cases are concerned (note the scaling factors). As long as the oscillations

are not prominent (ωτ ≤ 5) the spectrum has higher peak value for the Sauter pulse than that for

the Gaussian pulse. With the increase in the oscillation amplitude in the momentum spectrum

for Gaussian pulses the trend reverses for (ωτ ≥ 6).

5.2.2 Scattering potential structure for the Gaussian and Sauter pulses

The physical explanation of the onset of oscillation over the otherwise smooth momentum spec-

trum induced due to the subcycle oscillation in the multi-sheeted Gaussian pulse was provided

by Dumlu in a seminal work [31] by mapping the problem of pair creation by the spatially

uniform time dependent pulses to the well studied over the barrier scattering problem of quan-

tum mechanics. It was shown that the pairs creation is related to the reflection of the initial
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t → −∞ quasi particle mode with longitudinal momentum p3 (transverse momentum p⊥ = 0
without any loss of generality) at asymptotic times t → ∞ due to the time dependent scattering

potential, V(t) = −(p3 − eA(t))2. We use the same physical picture to explain the suppression

of oscillations in the momentum spectrum of the pairs created by the Sauter pulse. In Fig. 5.6,

we present the scattering potential V(t) = −(p3 − eA(t))2 for multi sheeted Sauter and Gaussian

pulses with ωτ = 3, 4, 5, 6, 7 for the longitudinal momentum p3 = 0. The potential is symmetric

about t = 0. It is smooth, having a single bump (or barrier) for the single sheeted pulses (not

shown here) and the multi sheeted pulses having small number of subcycle oscillations, ωτ ≤ 3

(only ωτ = 3 case shown here). As the value of ωτ is increased the structure of the potential

gets more bumpy causing multiple reflections of the incident wave. It is the interference of the

multiple reflected waves which results in the oscillations in the momentum spectrum at asymp-

totic times. For ωτ = 4, the scattering potential, as shown in Fig. 5.6(b) has three bumps – the

larger one in the centre and two smaller ones on either side of the central one towards the tail

region of the pulse. For the Sauter pulse, on the other hand, the scattering potential has one

bump in the centre, with the side bumps being hardly visible. Hence, the momentum spectrum
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for the Sauter pulse with ωτ = 4 in Fig. 5.4 does not show the interference effects. On the other

hand the spectrum for the corresponding Gaussian pulse in Fig. 5.4 does show mild interference

effect in form very small amplitude oscillations over the smooth unimodal profile.

With the increase in the number of subcycle oscillations, the existing side bumps become

more prominent and additional side bumps appear in the scattering potential. In all the cases,

however, the side bumps for the Sauter pulse are less prominent than those for the corresponding

Gaussian pulse. Relative strength of the prominent side bumps relative to the central one is

nearly 1/3 for the Sauter pulse and 1/2 for the Gaussian pulse with ωτ = 6. For ωτ = 7,

it is about 1/2 for the Sauter pulse and 3/2 for the Gaussian pulse. This explains the relative

suppression of oscillations in the momentum spectrum for the Sauter pulse.

The side bumps for the Sauter pulse become visible for ωτ = 5 (Fig. 5.6(c)) but these are

too small to cause any discernible interference effects in the momentum spectrum. The onset

of oscillation in the momentum spectrum for the Sauter pulse takes place only at ωτ = 6. In

Fig. 5.6, we compare the scattering potential due to the Sauter pulse with ωτ = 7 with that

due to the Gaussian pulse with ωτ = 6. The similarity of the two potential structures explain

the similarity in the momentum spectrum for the two pulses with different number of subcyle

oscillations.

It may be helpful to relate the difference in the scattering potential due to Sauter and Gaus-

sian pulses to their respective electric field profiles. As seen in Fig. 5.1, for higher values of

ωτ, the subcycle oscillations located away from the centre of the temporal envelope are more

intense for the Gaussian pulse making thereby the side bumps more prominent.

5.2.3 Turning point structure for Sauter and Gaussian pulses

In [31, 61], a theoretical framework was developed to calculate the reflection amplitude for

the over barrier scattering problem and hence the momentum spectrum of the created pairs by

the spatially uniform time dependent pulses. In particular, it was shown that for a subcritical

field for which the reflection amplitude in the asymptotic time limit |Rp(∞)| � 1, it is possible

express Rp(∞) as a sum involving all the turning points:

Rp(∞) ≈
∑

tp

(−1)peiπ/2e
−2i

tp∫
−∞

dt′ω(p,t′)
. (5.15)
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Figure 5.6: Over-the-barrier scattering potential V(t) = −(p3 − eA(t))2 for time dependent
multi-sheeted Gaussian and Sauter electric pulses. From top left to bottom middle the value
of the ωτ = 3, 4, 5, 6, 7. The scaled scattering potentials due to the Sauter pulse with ωτ = 7
and the Gaussian pulse with ωτ = 6 are shown on the bottom left. Longitudinal and transverse
momenta p3 = 0 and p⊥ = 0. All units are expressed in electrons mass unit. The field
parameters are E0 = 0.1, τ = 100, and the carrier-envelope offset phase φ = π/2.

As mentioned earlier, turning points tp are defined in the complex t-plane by the relation

ω(p, tp) = 0. They appear in complex conjugate pairs as the vector potential A(t) considered

here is real. It was argued in Ref. [52] that the function exp(−2i
tp∫
−∞

dt′ω(p, t′)) is oscillatory

along the real axis of complex t-plane and exponentially decaying along the imaginary axis.

Thus, only the pairs of turning points located near the real axis contribute significantly to the

reflection amplitude and the corresponding terms in the expression of reflection amplitude rep-

resent the reflection due to the significant bumps discussed in the previous subsection. If the

reflection is governed by more than a single pair of turning points, the resulting momentum

spectrum of pairs will show interference effects in form of oscillations. For definiteness, the

asymptotic momentum distribution fp(∞) = |Rp(∞)|2 is given by [61]

fp(∞) ≈
∑

tp

e−2K(p)
p + 2

∑
tp′,tp

(−1)(p−p′) cos
(
2Θ

(p,p′)
p

)
e−K(p)

p −K(p′)
p , (5.16)

where K(p)
p =

∣∣∣∣∣ tp∫
t∗p

dt ω(p, t)
∣∣∣∣∣ and Θ

(p,p′)
p =

Re(tp′ )∫
Re(tp)

dt ω(p, t). In Eq. 5.16, the first term on the right

hand side contains the contribution of reflections from all the pairs of turning points and the

second term represents the inference of reflected waves from different pairs of turning points.

Because of the exponential suppression factor exp(−2K(p)
p ) the dominant contribution to the

asymptotic distribution function comes from those pairs of turning points which are closer to
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Figure 5.7: Turning points tp in complex t-plane for the multi-sheeted Sauter (blue dots) and
Gaussian pulses (red dots) with same number of subcycle oscillations. ωτ =3, 4, 5, 6, and
7 from top right to bottom middle. The plot on the bottom left shows the turning points for
Sauter pulse with ωτ = 7 and Gaussian pulse with ωτ = 6. Longitudinal momentum p3 = 0
and transverse momentum p⊥ = 0. All units are expressed in electrons mass unit. The field
parameters are E0 = 0.1, τ = 100, and the carrier-envelope offset phase φ = π/2.

the real axis. Therefore, a closer look into the structures of the turning points in Fig. 5.7 for

both pulses, will be able to shed light on the nature of the resulting momentum spectrum in the

asymptotic region.

As mentioned earlier, for p3 = 0 (and p⊥ = 0, considered for convenience), all the turning

points are located on the imaginary axis for the single sheeted Sauter pulse. The separation

between successive turning points is πτ which is enormous. The pair creation, therefore, is

dictated by the single pair of turning point which is closest to the real axis and is given by

tp = τ tanh−1((±im − p3)/eE0τ) = ±9.96687i. Turning points for the corresponding Gaussian

pulse are very close to those for the Sauter pulse, with the relevant pair closest to the real axis

being ±9.98339i. Thus in both the cases, the asymptotic momentum spectrum has smooth

unimodal profile. Since the turning point pair for the Sauter pulses is slightly closer to the real

axis, the resulting momentum spectrum has somewhat larger peak value as seen is Fig. 5.3.
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We present in Fig. 5.7 the turning points structures for multi sheeted pulses with ωτ = 3,

4, 5, 6 and 7 for the longitudinal momentum mode p3 = 0 . For the multi sheeted pulses, be-

sides the central turning point pair on the imaginary axis, there are other pairs of turning points

symmetrically located on either side of the imaginary axis. Although these turning points are

located much closer to the real axis compared to the n , 0 turning points for the single sheeted

pulses, for the values of ωτ ≤ 3 they are still far-off to give any significant contribution to the

reflection amplitude. As the value of ωτ is increased, more pairs of turning points have compa-

rable imaginary values of t, thereby giving rise to the possibility of the interference effects in the

asymptotic reflection coefficient and hence the oscillatory pattern in the momentum spectrum

of created particles. For the Gaussian pulse withωτ = 4, there are two such pairs symmetrically

located on either side of the central pair, at a distance of 83.1 unit along the real axis (note that

the side bumps of the scattering potential also appear close to these locations , see Fig. 5.6).

The distance of these turning points from the real axis is 13.7068 unit which is comparable to

the distance of 9.7359 unit of the central pair. For the Sauter pulse, the corresponding addi-

tional turning point pairs are located at a distance of 19.5236 units which is more than twice

the distance at which the central turning point pair is located. This explains the suppression of

oscillations in the momentum spectrum for the Sauter pulse . It is only at ωτ = 6 that the non

central turning point pairs are located at a distance (12.2396 units) from the real axis which is

comparable to that for the central turning point pair. These turning points cause oscillations

in the momentum spectrum. Appendix D contains detailed calculation of interference effect in

the momentum spectrum which clearly brings out that the onset of oscillations for the Gaussian

pulse takes place for ωτ = 4 whereas for the Sauter pulse, oscillations start at ωτ = 6.

For the same number of subcycle oscillations within the pulse duration the amplitude of

oscillations in the momentum spectrum is larger for the Gaussian pule as the turning points

causing the interference lie closer to the real axis in this case than those for the Sauter pulse.

The turning point structure for the Gaussian pulse with ωτ = 6 and the Sauter pulse with

ωτ = 7 are quite similar as shown in Fig. 5.7 (bottom right). This is consistent with the

similarity of the scaled scattering potentials for the two pulses, as shown in Fig. 5.6 (bottom

left) and also explains strong resemblance between oscillations in the respective momentum

spectra (Fig. 5.5).

The central pair of turning points for the Sauter pulse is always slightly closer to the real

axis than that for the Gaussian pulse. Therefore, unless the interference effect due to the other

pairs of turning points becomes strong enough, the momentum spectrum for Sauter pulse has a

higher peak value.
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5.2.4 Momentum spectrum for Sauter and Gaussian pules with carrier-
envelope offset phase

Thus far, the carrier-envelope offset phase φ is taken to be π/2 in order to match the maximum

of oscillating electric field to the maximum of the temporal envelope. In this case, both Sauter

and Gaussian pulses are nearly identical in the central part. Therefore, the overall profile and

the centre of the momentum spectra discussed so far are quite similar for both the pulses. The

noticeable difference for the two pulses in the non central region is reflected in the suppression

of oscillations in the momentum spectrum for the Sauter pulse. For other values of φ, the

maximum of the electric field is pushed away from the central region towards one of tail regions,

making it asymmetrically distributed in the pulse envelope. It is expected that variation in φ

will make the difference in the momentum spectra for the Sauter and Gaussian pulses more

pronounced.

The dashed line of Fig. 5.8 shows the momentum spectrum of the created particles for the

Sauter pulse with ωτ = 5 with the carrier-envelope offset phase φ = π/4. The correspond-

ing spectrum for Gaussian pulse was reported in Fig. 3 of Ref. [77]. In the spectrum for the

Sauter pulse the oscillations are drastically suppressed, the peak value is lower, the width is

larger and the centre is at p3 = −1.262 MeV which results the corresponding kinetic momen-

tum P3(∞) = 357 keV. Note that the spectrum for the Gaussian pulse has maximum kinetic

momentum P3(∞) = 102 keV.

To understand the origin of these differences we plot vector potential for φ = π/4 for both

pulses as shown in Fig. 5.9(a). One can see from the plot of vector potential that the spectrum

will be off-centred. The respective scattering potential is also shown Fig. 5.9(b). It is seen that

the multiple bump structure for the Sauter pulse has less barrier height than the Gaussian pulse

case. Therefore the reflection amplitudes from the side bumps of the Sauter pulse have com-

paratively less contribution and the resulting interference profile of the momentum spectrum at

asymptotic time is less than the Gaussian one.

In Fig. 5.8, the momentum spectrum for the Sauter pulse with φ = 0 should be compared

with that reported for Gaussian pulse in Fig. 4 of Ref. [77]. All the aforesaid differences in the

momentum spectra are once again seen here.
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Figure 5.8: Asymptotic distribution function of the created particles in the presence of time
dependent multi-sheeted Sauter pulse as a function of longitudinal momentum of the particles
with different values of carrier-envelope offset phase (φ). The transverse momentum is con-
sidered to be zero and all the units are taken in electrons mass unit. The field parameters are
E0 = 0.1, τ = 100, and ω = 0.05.
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Figure 5.9: Plots of A(t) and V(t) for Gaussian (dashed line) and Sauter (line) with carrier-
envelope offset phase (φ) = π/4. The V(t) = −(p3 − eA(t))2 is plotted for the longitudinal
momentum values p3 = −1.286 for the Gaussian pulse and p3 = −1.262 for the Sauter pulse.
The transverse momentum is considered to be zero and all the units are taken in electrons mass
unit. The field parameters are E0 = 0.1, τ = 100, and ω = 0.05.

5.2.5 Momentum spectrum for Sauter and Gaussian pules with frequency
chirping

The expression of the electric field for the ultrashort pulses with the linear frequency chirp

parameter β is given by E(t) = E0g(t) sin(ωt + βt2 + φ) with g(t) being either a Gaussian or

Sauter envelope. The presence of β modifies the frequency in a time dependent way – for

negative times the effective frequency is lower while for positive times the effective frequency
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is higher. As discussed in the previous subsection the tail regions of the two pulse forms may

differ significantly in presence of frequency chirping and hence give rise to different momentum

spectrum of created particles at asymptotic times. In order to verify this claim, we plot the

momentum spectrum as seen in Fig. 5.10 for multi-sheeted Sauter pulse with ωτ = 5 and the

value of β = 0.00025, 0.0005, 0.00075. We compare our results with those obtained with the

corresponding Gaussian pulse reported in Fig. 3 of Ref. [31]. For small value of linear chirp

β = 0.00025, the asymptotic momentum spectrum for the Sauter pulse shows small oscillation

induced over the smooth profile for negative value of p3 the as seen in Fig. 5.10. For the

Gaussian pulse, the oscillations in the spectrum are much more pronounced and the spectrum is

not centred at p3 = 0, see top left plot of Fig. 3 in Ref. [31]. As we increase the value of β, the

shape of the distribution for the Sauter pulse remains intact although the oscillation amplitude

gets enhanced. However, for the Gaussian pulse, it has been shown in [31] that the momentum

spectrum becomes highly oscillating with irregular profile.
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Figure 5.10: Asymptotic distribution function of the created particles in the presence of time
dependent multi-sheeted Sauter pulse as a function of longitudinal momentum of the particles
with different values of linear frequency chirp parameter (β). The transverse momentum of the
created particle is taken as zero (p⊥ = 0) and all the units are taken in electronic mass unit. The
field parameters are E0 = 0.1, τ = 100, central frequency ωτ = 5 and carrier-envelope offset
phase φ = π/2 .
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5.3 Conclusion

To conclude, the effect of temporal pulse shape of intense ultrashort pulses on the momentum

distribution of e+e− pairs is studied using quantum kinetic equation. It is shown that the distri-

bution is quite sensitive to the temporal profile – to the extent that the two closely resembling

temporal envelopes namely, Gaussian and Sauter with the same pulse parameters give rise to

significantly different momentum spectrum of pairs at all the temporal stages of evolution. The

temporal stages are classified, for convenience, into two distinct regions – transient and asymp-

totic regions. It is found that the transient region for the Gaussian pulse has larger temporal

extent. In the transient region, the spectrum is smooth with a single peak for both the pulses.

However the location of peak, the peak height and the width are different for any instant of

time and they evolve differently with time. However the peak height for the Gaussian pulse is

consistently higher than that for the Sauter pulse.

In the other regime, where the spectrum does not change with time, the peak position of the

spectrum nearly coincides in both the cases. However, in the asymptotic region, just contrary

to the trend in the transient region, the peak height of the spectrum for the Gaussian pulse

is lower than that for the Sauter pulse as long as the number of subcycle oscillations, ωτ <

5. As reported in Ref. [20], the momentum spectrum for the multisheeted Gaussian shows

oscillations over the smooth profile due to the quantum mechanical interference of the reflected

quasi particle waves from bumpy time-dependent potential. These oscillation are suppressed

in the case of Sauter pulse. The onset of oscillation takes place at ωτ = 6 for the Sauter

pulse compared to ωτ = 4 for the Gaussian pulse. Furthermore, for the same value of ωτ the

amplitude of oscillation is smaller for the Sauter pulse. In fact, it is due to this interference

effect that the peak height of the momentum spectrum for the Gaussian pulse takes over that for

the Sauter pulse for ωτ ≥ 5. The sensitivity of the momentum spectrum to the temporal pulse

forms is explained by analyzing the shape of potential causing over barrier reflections and also

the turning point structure in complex time plane for the two pulse forms.

The differences in the asymptotic time spectrum of the two pulses get much more prominent

on increasing the linear frequency chirp in these pulses and also on varying the CEP. Further-

more, the profile and the location of the spectrum is vastly different for the two pulses.

Although it may appear somewhat far fetched, measuring momentum spectrum of the pairs

may provide a possible method for the determination of the temporal profile for ultrashort

pulses.





Chapter 6

Field induced phase transition and
entropy production

The production of particle-antiparticle pairs from the vacuum fluctuation in a time-dependent

electric field E(t) was seen as a field induced phase transition (FIPT) via the t-non invariant

vacuum state because of the non-stationary Hamiltonian [49]. Here, the spontaneous symme-

try breaking of the vacuum state takes place under time inversion and consequently electron-

positron pairs are generated which are the massive analogue of Goldstone bosons [80]. In

order to quantify this symmetry breaking one defines a complex order parameter Φ(p, t) = 2 <

0in|a
†
p(t)b†−p(t)|0in >= |Φ(p, t)| exp(iψ(p, t)) [32, 49, 58] where a†p(t), b†−p(t) are creation operators

of particle and antiparticle with momentum ±p, respectively, in the quasi-particle representation

in the time dependent basis. FIPT was studied for the single and multi-sheeted electric pulses

[32, 49, 58]. It was shown that the evolution of the modulus of order parameter |Φ(p, t)| brings

out three distinct stages/ phases namely the quasi-electron positron plasma (QEPP) stage, the

transient stage and the final residual electron positron plasma stage (REPP). The effect of sub-

cycle field oscillations on these stages was also studied for different longitudinal momentum

values [58, 59]. However the evolution of the phase of the complex order parameter, to the best

of our knowledge, has not been studied so far. We use quasi-particle representation of quantum

kinetic formalism (QKE) [32, 55–57, 63, 78] for the evolution of the quasi-particle vacuum in

the presence of a time dependent electric field under the mean field approximation (neglecting

the collisional effects of the created particles and back reaction force on the external electric

field).

In this Chapter, we study the evolution of the modulus and the phase of Φ(p, t) and analyse

their interrelation. Frequency chirp is an essential and integral part of ultrashort laser pulses.

73
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The frequency chirping changes the time period of subcycle oscillations of the external electric

field which further induces complexity in the evolution of the order parameter. We analyse this

complexity as a function of linear and quadratic frequency chirp parameters.

The rest of the chapter is organized as follows: in Sec. 6.1 we briefly discuss FIPT and

introduce the complex order parameter. The effect of frequency chirping in the evolution of

the order parameter is discussed in Sec. 6.2. We discuss the evolution of entropy production

in Sec. 6.3. Finally we conclude in Sec. 6.4. The technical details of the derivation of the

evolution equation are relegated to Appendix E.

6.1 Kinetic equations for evolution of order parameter

Using the quantum kinetic equations in the form of 3-coupled ordinary differential equations

[32, 63, 81] for the single particle distribution function f (p, t) =< 0in|a
†
p(t)ap(t)|0in >=

< 0in|b
†
−p(t)b−p(t)|0in > and the real and imaginary parts of the order parameter u(p, t) =

|Φ(p, t)| cosψ(p, t) and v(p, t) = |Φ(p, t)| sinψ(p, t) respectively, we get the following nonlinear

coupled differential equations for the evolution of the modulus |Φ(p, t)| and the phase ψ(p, t) of

the order parameter, see Appendix E for the technical details of the derivation.

d|Φ(p, t)|
dt

=
eE(t)ε⊥

2ω2(p, t)
cosψ(p, t)

√
1 − |Φ(p, t)|2,

dψ(p, t)
dt

= 2ω(p, t) −
eE(t)ε⊥
ω2(p, t)

sinψ(p, t)
√

1 − |Φ(p, t)|2

|Φ(p, t)|
.

(6.1)

u(p, t) and v(p, t) govern the vacuum polarization and the counter process of pair production

i.e., pair annihilation, respectively. The terms ω(p, t) =

√
m2 + p2

⊥ + P2
3(t) and P3(t) = p3 −

eA(t) are the quasi-energy and the longitudinal quasi-momentum respectively of the quasi-

particle. The particle acceleration is governed by dP3(t)/dt = eE(t) in the presence of the time

dependent electric field E(t); e is the electronic charge; ε⊥ =
√

m2 + p2
⊥ is the transverse energy.

The electric field in this study is taken as the multi-sheeted Sauter pulse which is considered

to describe well the resultant field of counter propagating ultrashort laser pulses in the focal

region.

E(t) = E0 cosh−2(t/τ) cos(αt3 + βt2 + ω0t), (6.2)

where β and α are the linear and quadratic frequency chirp parameters respectively; ω0 is the

central frequency of the laser electric field oscillation with τ being the total pulse length. Single

sheeted Sauter pulse corresponds to α = β = ω0 = 0.
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6.2 Results and discussions

We solve Eq. 6.1 numerically for the evolution of |Φ(p, t)| and ψ(p, t) with the initial condition

|Φ(p, t → ∞)| = 0. The phase ψ(p, t) is defined only up to an arbitrary additive constant. For

definiteness we begin at t = −10τ with |Φ(p, t = −10τ)| = 10−16 and ψ(p, t = −10τ) = π/4 so

as to have u = v = 10−16/
√

2 initially.

The complete evolution of the modulus of the order parameter |Φ(p, t)| was shown to go

through three distinct stages namely initial quasi-electron positron plasma (QEPP) stage, tran-

sient stage, and final residual electron-positron plasma (REPP) stage of the created electron-

positron pairs by the external time dependent electric field of single sheeted Sauter pulse and

multi-sheeted Gaussian pulse [58, 59]. As the evolution of the phase ψ(p, t) has not been stud-

ied so far, we revisit these cases. |Φ(p, t)| and ψ(p, t) are plotted as function of time for single

and multi-sheeted Sauter pulses without any frequency chirp (ω0τ = 5, α = β = 0). It is seen

that |Φ(p, t)| increases linearly in time in QEPP region for the single-sheeted Sauter pulse up

to t = 0 at which electric field reaches maximum value and thereafter |Φ(p, t)| decreases. Then

|Φ(p, t)| undergoes rapid oscillations and makes the transition from QEPP to a transient region

then finally to REPP state as a consequence of FIPT wherein |Φ(p, t)| reaches a constant value

different from zero. The phase ψ(p, t) remains almost constant before increasing rapidly about

the time the transient stage in the evolution of |Φ(p, t)| appears. For the multi-sheeted Sauter

pulse the evolution of |Φ(p, t)| shows periodic oscillations corresponding to the subcycle struc-

ture of the electric field in the QEPP region. The transient region appears later and becomes

elongated before it reaches final REPP state.

As seen in Eq. 6.1 the evolution of |Φ(p, t)| is governed by the temporal profiles of the

electric field E(t) and the corresponding vector potential A(t) through the ratio E(t)
ω2(p,t) (Note that

ε⊥ = e = 1) and also by the phase term cosψ(p, t). As ψ(p, t) remains nearly constant, the

QEPP stage is largely controlled by E(t)/ω2(p, t) as seen the Fig. 6.1. For the single-sheeted

pulse as shown in Fig. 6.2 the electric field profile is smooth having its maximum at t = 0

while the vector potential is large in magnitude on the either side of the electric field maximum

resulting in a sharper temporal profile of E(t)/ω2(p, t). In Refs. [58, 59] the temporal profile of

|Φ(p, t)| in the QEPP stage was compared to that of |E(t)|. However, the much sharper profile of

|Φ(p, t)|, particularly near the centre of the pulse, and the faster decay thereof in the tail regions

is better explained by |E(t)|/ω2(p, t) than |E(t)|, see the upper panel of Fig. 6.2. The formation

of the transient region takes place because of the sudden increase in the value of the phase

ψ(p, t) which makes cosψ(p, t) (on the right hand side of Eq. 6.1) and hence |Φ(p, t)| oscillate

rapidly. Once the electric field gets vanishingly small resulting in a constant value of |Φ(p, t)|
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Figure 6.1: Evolution of the modulus |Φ(t)| and the phase ψ(t) of the order parameter for a time
dependent (a) and (c) single-sheeted Sauter pulse;(b) and (d) multi-sheeted (ω0τ = 5) Sauter
pulse without frequency chirping (α = β = 0). All the units are taken in electron mass unit. The
field parameters are E0 = 0.1, and τ = 100. The insets show magnified view of the evolution
in the transient region.

in the REPP region. In this region dψ(p, t)/dt = ωt and hence Φ(p, t) ∼ ΦReiωt where ΦR is

the constant value of Φ(p, t). For the multi-sheeted pulse, as shown in the top left panel of

the Fig. 6.2 (dashed line), the electric field oscillates within the smooth envelope. In contrast

to the single sheeted field case, the vector potential is much suppressed in the tail region of

the field having oscillatory structure in the centre (top-middle panel of Fig. 6.2). The resulting

E(t)/ω2 has a temporal profile close that of E(t), except near the pulse centre. The QEPP region

is consequently broader and the temporal profile of |Φ(p, t)| in this region is modified by the

subcycle structures of the electric field. In this case too, the temporal profile of |Φ(p, t)| in the

QEPP stage is well explained by that of |E(t)|/ω2(p, t). The rapid oscillation of |Φ(p, t)| in the

transient region in this case is governed by the oscillations in E(t), cosψ(p, t) and A(t), therefore

the transient region elongated and the modulation effect is seen in the top right panel of Fig. 6.1.

In the QEPP region, the counter term v(p, t) governing the depolarization/ pair annihilation is

stronger than the term u(p, t) which is responsible for the polarization/ pair creation. Both

u(p, t) and v(p, t) oscillate with varying amplitudes which is large in the centre of the pulse.

The decrease in amplitude of v(p, t) in moving away from the centre is more than that of u(p, t).
In the transient region both the amplitudes are nearly same, before becoming identical in the

REPP stage.
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Figure 6.2: Plots of time dependent electric field |E(t)| and |E(t)/ω2(p, t)| for single sheeted
Sauter (top left); for multi sheeted Sauter pulse (top right); the vector potential |A(t)| for single
and multi sheeted Sauter pulses (top middle); real part of order parameter |u(t)| (bottom left)
and imaginary part of order parameter |v(t)| (bottom right) for single-sheeted and multi-sheeted
Sauter pulses. All the units are taken in electron mass unit. The field parameters are E0 = 0.1,
τ = 100, the central frequency of the pulse ω0 = 0.05, and linear and quadratic frequency chirp
parameters β = α = 0. Transverse and longitudinal momenta are taken to be zero.

6.2.1 Effect of frequency chirping on field induced phase transition

It is clear from the results discussed so far the complexity in the evolution of the modulus and

the phase of the order parameter, particularly in the transient stage, is because of the non linear

coupling in the dynamical equations governing the evolution of the modulus and the phase. As

demonstrated above, in the QEEP region, the evolution of modulus is mostly governed by both

electric field E(t) and vector potential A(t). The evolution of the phase, on the other hand, is

governed by two distinct terms which contain all the dynamic behaviour. In the QEEP stage,

where the phase evolves slowly and smoothly, the two terms seem to balance each other. The

transient stage arises when this dynamic balance is lost and hence there is steep increase in

the phase over a very small duration. After the transient stage, the dynamics of the phase and

modulus of the order parameter are decoupled.

The presence of frequency chirping, in effect makes frequency time dependent. This, in

turn affects the number of subcycle oscillations within the envelope. In the presence of linear

frequency chirp β, the subcycle oscillations are asymmetric about t = 0. As we have taken the

positive value of β, the number of oscillations within the pulse envelope is lesser for t < 0 than

that for t > 0. Hence the evolution of |Φ(p, t)| shows irregular oscillations in the QEPP state
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(Fig. 6.3). As β is increased further the oscillations become faster and are spread throughout

the QEPP region as seen in the bottom left plot of Fig. 6.3. The evolution can qualitatively

be understood by looking at the temporal profiles of E(t), A(t) and also the ratio |E(t)/ω2(p, t)|
as shown in Fig. 6.4. The linear frequency chirping makes the electric field asymmetric about
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Figure 6.3: Evolution of |Φ(t)| and ψ(t) for a time dependent multi-sheeted Sauter pulse with
ω0τ = 5 and different values of linear frequency chirping parameter β. The other parameters
are same as in Fig. 6.1.

t = 0 and as we consider the positive value of β, the subcycle oscillation is more in t > 0 than

t < 0. For β = 5 × 10−5, the effect of frequency chirping is small. Hence the evolution of

|Φ(p, t)|, as in the case of multi sheeted Sauter pulse discussed above, follows the electric field

profile in QEPP stage and the transient stage is marked by the sudden change in the evolution of

the phase. For β = 5×10−4, however, there is much more asymmetry in the electric field profile

and the vector potential is large and constant for t < 0, before undergoing quick oscillations

near t = 0 and attaining a constant value thereafter. The evolution of |Φ(p, t)| with enhanced

oscillation frequencies in the QEPP stage follows the temporal profile of |E(t)/ω2(p, t)|.

Now we consider the effect of the linear chirp β in the presence of quadratic chirp α =

1 × 10−6. Here for small values of β, the inequality ω0 > ατ2 > βτ holds and the effect of

α dominates the evolution of |Φ(p, t)|. The evolution shows the formation of a pre-transient

region in the QEPP region for values of t < 0 (before the electric field reaches its maximum

value E0). This is shown in the top panel of Fig. 6.5. However this region gets suppressed

for higher values of β to give the uninterrupted QEPP region with irregular, fast and spread
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Figure 6.4: Plots of |E(t)|, |E(t)|/ω2(t) and |A(t)| for multi-sheeted Sauter pulse for the linear
frequency chirp parameter β = 5 × 10−5 and 5 × 10−4 with α = 0. Others parameters are same
as in Fig. 6.2.

out oscillations as seen in Fig. 6.5(c)-(d). It is seen that for higher values of β, the formation

of REPP stage takes place with larger magnitude of the order parameter for p3 = −0.5 MeV

mode than p3 = 0.5 MeV. The effect of only quadratic chirping is shown in Fig. 6.7 for
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Figure 6.5: Evolutions of |Φ(t)| and ψ(t) for a time dependent multi-sheeted Sauter pulse with
ω0τ = 5 and different values of linear frequency chirping parameter β with a quadratic fre-
quency chirping, α = 1 × 10−6. The other parameters are same as in Fig. 6.1.

the longitudinal momentum values p3 = 0 MeV and p3 = ±0.5 MeV. For α = 5 × 10−7

the evolution of |Φ(p, t)| shows high frequency oscillations in QEPP stage, see top panel of

Fig. 6.7. There is no formation of the pre-transient region in this case. However, if the value

of α is increased to α = 5 × 10−6 the formation of pre-transient region takes place which is

seen in the bottom panel of Figs. 6.7. Furthermore, the pre-transient and the transient regions

are shifted towards the maximum of the electric field i.e. towards t = 0. Higher the value of α
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Figure 6.6: Plots of |E(t)|, |E(t)|/ω2(t) and |A(t)| for multi-sheeted Sauter pulse for linear fre-
quency chirp parameter β = 5 × 10−5 and 5 × 10−4 with α = 1 × 10−6. Others parameters are
the same as in Fig. 6.2.

larger is the shift. Consequently the formation of REPP state takes place earlier as the value of

α is increased. The magnitude of the order parameter in the REPP region also increases with

increase in the value of α and results in the formation of final electron-positron state with higher

correlation. Moreover, the clear separation for different momentum modes can be seen in the

pre-transient and transient stages of evolution of order parameter. In order to understand the
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Figure 6.7: Evolutions of |Φ(t)| and ψ(t) for a time dependent multi-sheeted Sauter pulse with
ω0τ = 5 and different values of quadratic frequency chirping parameter α without linear fre-
quency chirping. The other parameters are same as in Fig. 6.1.

complex evolution of the order parameter we look at the temporal pulse profile of the electric

field and the corresponding vector potential. We present E(t) and A(t) for α = 5 × 10−7 and

5 × 10−6 in Fig. 6.8. The subcycle oscillations within the pulse envelope make the evolution
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of order parameter complicated. The presence of only quadratic frequency chirping makes the

electric field symmetric and the vector potential antisymmetric about t = 0. For α = 5 × 10−7,

the effect of the frequency chirping is less in the electric field dominated regimes and it shows

regular oscillation. But for α = 5 × 10−6, the electric field exhibits more oscillations which

makes the dynamics of order parameter complex through E(t) and ω(p, t).
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Figure 6.8: Plots of E(t) and A(t) for multi-sheeted Sauter pulse for the quadratic frequency
chirp parameter α = 5 × 10−7 and 5 × 10−6 with β = 0. Others parameters are the same as in
Fig. 6.2

6.3 Entropy production

Electron-positron pair production in the presence of a time dependent electric field is viewed

as a field induced phase transition going through various stages of evolution. Study of pair

production from such a point of view provide an opportunity to address the fundamental ques-

tion as to how irreversible observable behaviour can arise when the underlying dynamics is

reversible at the microscopic level. There have been related studies in the area of heavy-ion

collisions and quantum chromodynamics [82]. In the context of pair production in presence of

an external field irreversibility and entropy production were described in terms of time scales,

such as memory time and production time [57]. Kluger et al. have related the evolution of

entropy to identification of "relevant" and "irrelevant" dynamical variable [83]. Evolution of

entropy for single sheeted Sauter pulse was studied in Ref. [58]. Here we present results for the

evolution of entropy for pair production due to some of the pulses considered above and try to

find possible connection between the evolution of order parameter and the entropy production.
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The single particle momentum distribution function f (p, t) defined earlier is used to define

the entropy density of the quantum system by the von-Neuman formula

S (t) = −g
∫

d3 p
(2π)3

[
f (p, t) ln f (p, t) + (1 − f (p, t)) ln(1 − f (p, t))

]
. (6.3)

Here g is the spin degeneracy factor which equals to two for the spin-1/2 particles. The single

particle distribution function f can be expressed in terms of the modulus of the order param-

eter using the first integral of motion given in Appendix E. However, the phase of the order

parameter does not appear in the definition of entropy density and in this sense it is an irrele-

vant variable. Thus the loss of phase information can be related to monotonic increase in the

entropy.

We solve Eq. 6.3 numerically for the time dependent multi sheeted Sauter pulse with

different values of ωτ parameter. We use all the units in electron mass unit and assume

~ = c = e = m = kB = 1.

The evolution of entropy density of the quantum system is shown in Fig. 6.9 as consequence

of vacuum particle antiparticle pair production. In Figs. 6.9(a)-(d) we choose the value of

ωτ = 4, 5, 6, and 7 in the sub-cycle structure of the Sauter pulse. Such inclusion of the sub-

cycle structure of the Sauter pulse modifies the temporal evolution of the entropy density of

the created particle-antiparticle pairs. The entropy evolution has two distinct regions. In the
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Figure 6.9: Evolution of the entropy density in the presence of time dependent multi-sheeted
Sauter pulse with different values of ωτ parameter. From top left to bottom right the values of
ωτ parameter are taken as 4, 5, 6, and 7. The field parameters are E0 = 0.1, τ = 100 in electron
mass unit.
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first one has non monotonic growth of entropy. This matches with the QEPP stage of the

time evolution of the modulus of the order parameter and hence the single particle distribution

function. As discussed earlier, for multi sheeted pulses the evolution is largely governed by

the electric field for all the momentum modes. In fact the evolution matches with the temporal

profile of |E(t)|. In entropy, all momentum modes add to again give the profile of |E(t)| in the

QEPP region and hence resulting in its non monotonic increase. In the transient region, because

of abrupt increase in the phase of order parameter, the single particle distribution function

undergoes rapid oscillations which get washed out when summed over many momentum modes

to give a constant non zero value of entropy as a result of decoherance. In the QEEP region the

dynamics is non Markovian, whereas from the transient region onwards it is irreversible and

Markovian.

In order to establish the connection between the evolutions of entropy and the order param-

eter modulus we present the evolution of entropy for the Sauter pulses with frequency chirp.

It is clear that all the complexities of the evolution of the order parameter modulus are also

seen in the evolution of entropy. The appearance of a small flat region corresponding to the

pre-transient region is also seen (Fig. 6.10).
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Figure 6.10: Evolution of the entropy density in the presence of time dependent multi-sheeted
Sauter pulse with frequency chirping. The field parameters are E0 = 0.1, τ = 100 in electron
mass unit.

In the end, we consider a combination of two Sauter pulses which are temporally delayed.

We use the form of the electric field and vector potential given in [76] as:

E(t) = E0 cosh−2(ω(t − T/2)) − E0 cosh−2(ω(t + T/2)), (6.4)

(antisymmetric configuration) and

A(t) =
E0

ω
{1 + tanh(ω(t − T/2)) − tanh(ω(t + T/2))}. (6.5)

Fig. 6.11 it is once again clear that in the QEPP region evolutions of entropy and the order

parameter modulus have very similar temporal profile.
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Figure 6.11: Evolutions of the |Φ(p, t)|, ψ(p, t), and entropy density in the presence of time
dependent single-sheeted two Sauter pulses with delayed in time. The field parameters are
E0 = 0.1, ω = 0.04, the delay time T = 200.2. All units are in electron mass unit.

6.4 Conclusion

To conclude, we have studied the evolution of the complex order parameter which defines the

particle-antiparticle correlation due to the vacuum fluctuation in the presence of a multi-sheeted

Sauter pulse with frequency chirping. We have considered the both linear and quadratic fre-

quency chirping parameters for the evolution of the complex order parameter for the longitu-

dinal momentum values p3 = 0 MeV,∓0.5 MeV. The evolution stages of the order param-

eter which undergoes quasi-electron positron plasma oscillation to residual electron-positron

plasma stage via the highly non-linear transient region get modified by the frequency chirping

of the electric field. In general, the quasi-electron positron plasma state gets modulated by the

frequency chirping and the formation of the pre-transient region is seen in the evolution of the

order parameter in the presence of quadratic frequency chirping. In the second section, we

have studied the evolution of the entropy for the time dependent Sauter pulse sub-cycle pulse

oscillations, frequency chirping and time delay. The evolution of the entropy density, in each

case was shown to match with that of the order parameter modulus in the QEEP region. The in-

stantaneous increase or decrease in entropy signifies some counter effect of the pair production

i.e. the pair annihilation process. The monotonic increase in entropy in the transient region and

onwards is attributed to the dephasing in the particle anti-particle correlation function.



Chapter 7

Conclusion and outlook

In this chapter, we first summarise the major outcomes of our work based on the studies of

electron-positron pair production via Schwinger mechanism by ultrastrong and ultrashort laser

electromagnetic (EM) field in the thesis. We have structured our work mainly in two domains,

first the geometrical control of focused laser EM field for the production of electron-positron

pairs at the focus and second to study the dynamics of the created particle-antiparticle pairs

from the single particle distribution function using kinetic theory approach. We have neglected

the spin effects of the created particles. First portion of our studies deals with the dependence

of local pair production rates in longitudinal coordinate (along the laser pulse propagation) and

time on the spatiotemporal structure of the invariant electric and magnetic fields. We have

seen that the spatial focusing of the EM field makes it necessary to specify the beam polariza-

tion parameter, which determines the transverse and longitudinal component of the generalized

focused beam. We have found that the localized particle bunches along the longitudinal direc-

tion (propagation direction) are produced by the circularly e- or h- polarized colliding pulses.

The colliding pulses made up of equal mixture of e- and h-wave produces ultrashort particle

bunches. Carrier envelope phase (CEP) is an important parameter for Ultrashort laser pulses.

We find that it influences spatio temporal distribution of pairs. For linearly e-polarized colliding

laser pulses, there is zone formation of the invariant electric and magnetic fields. Depending

on the value of CEP we get unimodal or bimodal temporal distribution of created pairs. When

the colliding circularly e-polarized pulses have same sense of rotation, CEP has no effect on

the spatiotemporal distribution of pairs. However, when the pulses have opposite sense of rota-

tion CEP controls the temporal distribution of pairs. We find that colliding pulses with relative

phase difference give rise to spiky spatiotemporal distribution of the invariant field in the fo-

cal region. Thus the relative phase can be used to control the spatiotemporal distribution of

the created pairs by the pulses with linear or circular polarizations. We predict that the total

85
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pair production is maximal when one of the spikes in the invariant electric field distribution is

located near the center of the spatiotemporal envelope (and distribution of created pairs looks

approximately unimodal), and minimal when the neighboring spikes are off-centered but lo-

cated symmetrically. The particular phase shifts required for each case depend on polarization

of the pulses. Among the considered cases, for the parameters adopted here the global maxi-

mum is achieved with a circularly polarized pulses with same sense of rotation as considered

in Ref. [15].

Possibility of phase control of Schwinger pair production under discussion may be useful,

e.g., to increase the attainable intensity of tightly focused colliding laser pulses by reducing pair

production and hence preventing field depletion at their crossing, or, conversely, to measure the

typically unknown field structure and phase relations of extremely strong laser pulses in a way

similar to proposed in Ref. [42] by using the multiphoton Compton scattering.

In the second portion of our thesis, we have studied the evolution of single particle mo-

mentum distribution of the created particles by the spatially homogeneous but time dependent

electric field using quantum kinetic approach. It is shown that the distribution is quite sensi-

tive to the temporal profile – to the extent that the two closely resembling temporal envelopes

namely, Gaussian and Sauter with the same pulse parameters give rise to significantly differ-

ent momentum spectrum of pairs at all the temporal stages of evolution. The temporal stages

are classified, for convenience, into two distinct regions – transient and asymptotic regions.

It is found that the transient region for the Gaussian pulse has larger temporal extent. In the

transient region, the spectrum is smooth with a single peak for both the pulses. However the

location of peak, the peak height and the width are different for any instant of time and they

evolve differently with time. However the peak height for the Gaussian pulse is consistently

higher than that for the Sauter pulse. In the other regime, where the spectrum does not change

with time, the peak position of the spectrum nearly coincides in both the cases. However, in

the asymptotic region, just contrary to the trend in the transient region, the peak height of the

spectrum for the Gaussian pulse is lower than that for the Sauter pulse as long as the number of

subcycle oscillations, ωτ < 5. As reported in Ref. [20], the momentum spectrum for the mul-

tisheeted Gaussian shows oscillations over the smooth profile due to the quantum mechanical

interference of the reflected quasi particle waves from bumpy time-dependent potential. These

oscillation are suppressed in the case of Sauter pulse. The onset of oscillation takes place at

ωτ = 6 for the Sauter pulse compared to ωτ = 4 for the Gaussian pulse. Furthermore, for the

same value of ωτ the amplitude of oscillation is smaller for the Sauter pulse. In fact, it is due to

this interference effect that the peak height of the momentum spectrum for the Gaussian pulse

takes over that for the Sauter pulse for ωτ ≥ 5. The sensitivity of the momentum spectrum to
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the temporal pulse forms is explained by analyzing the shape of potential causing over barrier

reflections and also the turning point structure in complex time plane for the two pulse forms.

The differences in the asymptotic time spectrum of the two pulses get much more prominent

on increasing the linear frequency chirp in these pulses and also on varying the CEP. Further-

more, the profile and the location of the spectrum is vastly different for the two pulses. Although

it may appear somewhat far fetched, measuring momentum spectrum of the pairs may provide

a possible method for the determination of the temporal profile for ultrashort pulses.

We have also studied the evolution of the modulus and the phase of the complex order pa-

rameter associated with the field induced phase transition of the vacuum state interacting with

the time dependent multi-sheeted Sauter pulse with frequency chirping up to the quadratic or-

der. We analyse the different evolution stages of the order parameter e.g., quasi electron positron

plasma stage, transient stage, and residual electron-positron plasma stage in the presence of the

frequency chirping. We have shown that the onset of the transient stage in the evolution of the

modulus of order parameter is governed by the abrupt and large change in the value of phase

of the order parameter. We have used our understanding of the evolution of the complex order

parameter to the issue of irreversibility and the non monotonic growth of entropy in the context

of pair production.

Outlook and future perspective

The main future outlook of the present study can be drawn in the field of ultrafast and ultrashort

laser pulse near Schwinger field limit where nonlinear effects are self-sustained. The generation

of ultrashort particle bunches with submicron spatial extension may be the next generation

particle beams. On the other hand the momentum spectrum of the created pairs not only enable

to get full particle dynamics after the production but also help to measure the ultrashort laser

pulses in atto-second regimes.

The counter propagating configurations studied in this thesis show the existence of spiky

spatiotemporal structure of invariant field. One can envisage a situation where the pairs created

in one of the "spikes" interact with the other spikes of the field and there may be possibility of

a QED cascade [84] in the presence of structured field patterns".

For the counter propagating configurations we have used the N-F model which is valid in

the weak focussing limit. Extending some of these studies to other field models, such as tightly

focussed model [11] and optimum e-dipole model would be quite interesting [17]. Furthermore,
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we have taken the spatio temporal pulse profile to be Gaussian. Some interesting profiles, e,g.

the Bessel or higher order Gaussian should also be used in the similar studies.

The effect of back reaction force on the external electric field by the induced electric field

generated in pair production process has not been considered in our studies of momentum

distribution. Inclusion of collisional effects can also affect the features of field induced phase

transition and the entropy production. We wish to take up some of these outstanding problems

in future.



Appendix A

Fields of circularly polarized
counterpropagating laser beams with
parameter of asymmetry µ

A.1 Fields of circularly polarized counterpropagating laser

beams with parameter of asymmetry µ = ∓1

In this Appendix A.1, we present a detailed calculation for the electric and magnetic fields for

the right circularly polarized counterpropagating laser pulses made up of purely e-waves which

are propagating in +z (forward) and −z (backward) directions as mentioned in Chapter 2.

Following [10], we begin with the expressions for the complex e-wave electric and the magnetic

fields of the focussed laser beams propagating in the forward and backward directions and

having their focal region at z = 0. In the end we take real parts of the fields and these are used

to calculate the invariants given in Chapter 2. Fields for the forward pulse are:

Ee
f = iE0e−iω(t−z/c)g

{
F1(êx + iêy) − F2e2iφ(êx − iêy)

}
, (A.1)

and

He
f = E0e−iω(t−z/c)g

{
(1 − i∆2 ∂

∂χ
)
[
F1(êx + iêy) + F2e2iφ(êx − iêy)

]
+ 2i∆eiφ∂F1

∂ξ
êz

}
. (A.2)
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Fields for the backward pulse are:

Ee
b = iE0e−iω(t+z/c)g

{
F∗1(êx + iêy) − F∗2e−2iφ(êx − iêy)

}
, (A.3)

and

He
b = −E0e−iω(t+z/c)g

{
(1 + i∆2 ∂

∂χ
)
[
F∗1(êx + iêy) + F∗2e−2iφ(êx − iêy)

]
+ 2i∆e−iφ∂F∗1

∂ξ
êz

}
. (A.4)

Here F1, F2 are the Gaussian form functions for the focused laser beam [10] given as F1 =

(1 + 2iχ)−2(1 − ξ2/(1 + 2iχ)) exp(−ξ2/(1 + 2iχ)) and F2 = −ξ2(1 + 2iχ)−3 exp(−ξ2((1 + 2iχ)).

F∗1and, F∗2 are complex conjugates of the respective form functions. The other parameters are

already defined in Chapter 2. The resultant electric and magnetic fields due to the superposition

of forward and backward pulses are given by:

Ee = Ee
f + Ee

b = 2iE0e−iωtg
{

(êx + iêy)Re
[
F1eiωz/c

]
− (êx − iêy)Re

[
F2e2iφeiωz/c

]}
. (A.5)

He = He
f + He

b = 2iE0e−iωtg
{

(êx + iêy)Im
[
F1eiωz/c

]
+ (êx − iêy)Im

[
F2e2iφeiωz/c

]
+2i∆Im

[
eiφeiωz/c∂F1

∂ξ

]
êz

}
.

(A.6)

In Eq. A.6 we have neglected the term having ∆2 as ∆ << 1 in the weak focusing limit. Using

the expressions of F1 and F2 the complex electric and magnetic fields can be written as:

Ee = 2iE0ge−iωt e−ξ
2/1+4χ2

(1 + 4χ2)

[{
cos(ωz/c − 2ψ +

2χξ2

1 + 4χ2 ) −
2ξ2 sin φ

(1 + 4χ2)1/2

sin(φ + ωz/c − 3ψ +
2χξ2

1 + 4χ2 )
}
ex + i

{
cos(ωz/c − 2ψ +

2χξ2

1 + 4χ2 )

−
2ξ2 cos φ

(1 + 4χ2)1/2 cos(φ + ωz/c − 3ψ +
2χξ2

1 + 4χ2 )
}
ey

]
,

(A.7)

He = 2iE0ge−iωt e−
ξ2

1+4χ2

(1 + 4χ2)

[{
sin (ωz/c − 2ψ) −

2ξ2 cos φ
(1 + 4χ2)1/2 sin (φ + ωz/c − 3ψ)

}
ex

+i
{

sin (ωz/c − 2ψ) −
2ξ2 sin φ

(1 + 4χ2)1/2 cos(φ + ωz/c − 3ψ)
}
ey

−
8∆ξ

(1 + 4χ2)1/2 (1 −
ξ2

2(1 + 4χ2)1/2 ) cos(φ + ωz/c)ez

]
.

(A.8)

The above equations can be further simplified by neglecting the terms 2χξ2/(1 + 4χ2) and

ψ(= arctan 2χ) in comparison to the spatial frequency wz/c from the phase terms describing
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oscillations of the EM field along the propagation (z) direction. This approximation will be

used henceforth. Finally, we have the expressions of the real electric and magnetic fields in

explicit form as:

Ee = 2E0g
e−

ξ2

1+4χ2

(1 + 4χ2)

[
sinωt

{
cosωz/c −

2ξ2 sin φ
(1 + 4χ2)1/2 sin (φ + ωz/c)

}
êx

− cosωt
{

cosωz/c −
2ξ2 cos φ

(1 + 4χ2)1/2 cos(φ + ωz/c)
}
êy

]
,

(A.9)

and

He
≈ 2E0g

e−
ξ2

1+4χ2

(1 + 4χ2)

[
sinωt

{
sinωz/c −

2ξ2 cos φ
(1 + 4χ2)1/2 sin (φ + ωz/c)

}
êx

− cosωt
{

sinωz/c −
2ξ2 sin φ

(1 + 4χ2)1/2 cos(φ + ωz/c)
}
êy

−
8∆ξ

(1 + 4χ2)1/2 (1 −
ξ2

2(1 + 4χ2)1/2 ) cos(φ + ωz/c) cosωtêz

]
.

(A.10)

Using Eqs. (A.9 - A.10) the magnitude of the fields in the focal region can be written as:

|Ee
| ≈

2E0ge−
ξ2

1+4χ2

(1 + 4χ2)
| cosωz/c|

[
1 −

ξ2

cosωz/c(1 + 4χ2)1/2

{
cosωz/c

+ cos 2ωt cos(ωz/c + 2φ)
}

+ O(ξ4)
]
,

(A.11)

and

|He
| ≈

2E0ge−
ξ2

1+4χ2

(1 + 4χ2)
| sinωz/c|

[
1 −

ξ2

sinωz/c(1 + 4χ2)1/2

{
sinωz/c

− cos 2ωt sin(ωz/c + 2φ)
}

+ O(ξ4)
]
.

(A.12)

Eqs. (A.11 - A.12) are used to get the expression for F e while Eqs. (A.9 - A.10) are used to

get the expression for Ge and hence the expressions of εe and ηe given in Chapter 2. The

expressions of the EM fields, invariants, and invariant EM fields for µ = 1 can be written as

the dual transform of those for the µ = −1 case. For the complex EM fields Eh = iHe, and

Hh = −iEe [10] which implies F h = −F e, Gh = Ge., εh = ηe and ηh = εe.
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A.2 Fields for circularly polarized counterpropagating laser

pulses with µ = 0

As done in Appendix A.1 we begin with the complex fields which allow us to write the electric

and the magnetic fields for the counterpropagating laser pulses made up of equal mixture of

e- and h- waves (µ = 0) as Ee+h = (Ee + Eh)/2 = (Ee + iHe)/2, and He+h = (He + Hh)/2 =

(He
− iEe)/2. Using the expressions of Ee and He from Eqs. (A.7,A.8) we have the explicit

expression of Ee+h as:

Ee+h = iE0e−iωtg
e−

ξ2

1+4χ2

1 + 4χ2

{[
exp(i(ωz/c − 2ψ)) −

2iξ2

(1 + 4χ2)1/2 e−iφ sin(ωz/c + φ − 2ψ)
]
êx

+i
[

exp(i(ωz/c − 2ψ)) −
2iξ2

(1 + 4χ2)1/2 e−iφ cos(ωz/c + φ − 2ψ)
]
êy −

8∆ξ

(1 + 4χ2)1/2 (1−

ξ2

2(1 + 4χ2)1/2
) cos(φ + ωz/c)êz

}
,

(A.13)

and He+h = −iEe+h. The physical fields are given by taking the real parts of the above equations:

Ee+h
≈ E0g

e−
ξ2

1+4χ2

(1 + 4χ2)

[
êx

{
sin(ωt − ωz/c + 2ψ) +

2ξ2 cos(ωt + φ)
(1 + 4χ2)1/2 sin(ωz/c + φ − 3ψ)

}
−êy

{
cos(ωt − ωz/c + 2ψ) −

2ξ2 cos(ωt + φ)
(1 + 4χ2)1/2 cos(ωz/c + φ − 3ψ)

}
+

8∆ξ

(1 + 4χ2)1/2

× cosωt cos(φ + ωz/c)êz

]
,

(A.14)

and

He+h
≈ E0g

e−
ξ2

1+4χ2

(1 + 4χ2)

[
êx

{
cos(ωt − ωz/c + 2ψ) −

2ξ2 sin(ωt + φ)
(1 + 4χ2)1/2 sin(ωz/c + φ − 3ψ)

}
+êy

{
sin(ωt − ωz/c + 2ψ) −

2ξ2 sin(ωt + φ)
(1 + 4χ2)1/2 cos(ωz/c + φ − 3ψ)

}
−

8∆ξ

(1 + 4χ2)1/2

× sinωt cos(φ + ωz/c)êz

]
.

(A.15)
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We calculate the magnitude of the real part of the electric and magnetic fields:

|Ee+h
| ≈ E0g

e−
ξ2

1+4χ2

1 + 4χ2

[
1 −

2ξ2

(1 + 4χ2)1/2 cos(ωt + φ) cos(ωt + φ − ψ) +
2ξ4

(1 + 4χ2)
cos2(ωt + φ)

+
32∆2ξ2

(1 + 4χ2)3 cosωt cos2 (φ + ωz/c)
]
.

(A.16)

|He+h
| ≈ E0g

e−
ξ2

1+4χ2

1 + 4χ2

[
1 −

2ξ2

(1 + 4χ2)1/2 sin(ωt + φ) sin(ωt + φ − ψ) +
2ξ4

(1 + 4χ2)
sin2(ωt + φ)

+
32∆2ξ2

(1 + 4χ2)3 sinωt cos2 (φ + ωz/c)
]
.

(A.17)

Eqs. (A.16 - A.17) are used to get the expression for F e+h while Eqs. (A.14 - A.15) are used to

get the expression for Ge+h and hence the expressions of εe+h and ηe+h given in Chapter 2.





Appendix B

Electromagnetic fields with CEP
dependence for linear and circular
polarizations

B.1 Linear polarization counterpropagating laser pulses and

the CEP dependence

For the linearly e-polarized focused EM fields, the expressions of the electric field in both

forward (in z direction) and backward (in −z direction) propagations can be written as [15]

Ee
f = iE0e−iω(t−z/c)−iϕ̃g

[
êx(F1 − F2 cos 2φ) − êyF2 sin 2φ

]
, (B.1)

and

Ee
b = iE0e−iω(t+z/c)−iϕ̃g

[
êx(F∗1 − F∗2 cos 2φ) − êyF∗2 sin 2φ

]
. (B.2)

Here F1, F2 are the complex Gaussian form functions for the focused laser beam [10] given as

F1 = (1 + 2iχ)−2(1 −
ξ2

1 + 2iχ
) exp(−

ξ2

1 + 2iχ
), and F2 = −ξ2(1 + 2iχ)−3 exp(−

ξ2

1 + 2iχ
).

(B.3)

F∗1, F∗2 are the complex conjugate of them. All the symbols have already been defined in

Sec. 3.1.1. Similarly one can have the expressions magnetic field in forward and backward
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directions as [15]

He
f = iE0e−iω(t−z/c)−iϕ̃g

[
(1 − i∆2 ∂

∂χ
)
{
êxF2 sin 2φ − êy(F1 − F2 cos 2φ)

}
+ 2i∆ sin φ

∂F1

∂ξ

]
, (B.4)

and

He
b = −iE0e−iω(t+z/c)−iϕ̃g

[
(1 + i∆2 ∂

∂χ
)
{
êxF∗2 sin 2φ − êy(F∗1 − F∗2 cos 2φ)

}
+ 2i∆ sin φ

∂F∗1
∂ξ

]
. (B.5)

Now if we allow them to superimpose in the focal region, the expressions of the electric and

magnetic fields are given by

Ee = Ee
f + Ee

b = 2iE0e−i(ωt+ϕ̃)g
[
êxRe

[
(F1 − F2 cos 2φ)eiωz/c

]
− êyRe

[
F2eiωz/c sin 2φ

]]
, (B.6)

and

He = He
f + He

b = −2E0e−i(ωt+ϕ̃)g
[
êxIm

[
F2eiωz/c sin 2φ

]
+ êyIm

[
(F1 − F2 cos 2φ)eiωz/c

]
+2i∆ sin φIm

[
eiωz/c∂F1

∂ξ

]]
.

(B.7)

But the physical electric and magnetic fields are real part of Eqs. (B.6,B.7) which are given as

ReEe = 2E0 sin(ωt + ϕ̃)g
[
êxRe

[
(F1 − F2 cos 2φ)eiωz/c

]
− êyRe

[
F2eiωz/c sin 2φ

]]
= 2E0g

e−ξ
2/(1+4χ2)

1 + 4χ2 sin(ωt + ϕ̃)

×

[
êx

{
cos(ωz/c − 2ψ) −

2ξ2

(1 + 4χ2)1/2 sin2 φ cos(ωz/c − 3ψ)
}

+ êy
ξ2

(1 + 4χ2)1/2 sin 2φ cos(ωz/c − 3ψ)
]
,

(B.8)

and

ReHe = −2E0g
[

cos(ωt + ϕ̃)
{
êxIm

[
F2eiωz/c sin 2φ

]
+ êyIm

[
(F1 − F2 cos 2φ)eiωz/c

]}
+ 2∆ sin φ sin(ωt + ϕ̃)

×
[
eiωz/c∂F1

∂ξ

]]
≈ −2E0g

e−ξ
2/(1+4χ2)

1 + 4χ2

[
cos(ωt + ϕ̃)

(
êx

ξ2

(1 + 4χ2)1/2 sin 2φ sin(ωz/c − 3ψ) − êy

{
sin(ωz/c − 2ψ)

−
2ξ2

(1 + 4χ2)1/2 sin2 φ sin(ωz/c − 3ψ)
})

+ 4ξ∆
sin(ωt + ϕ̃)
(1 + 4χ2)1/2 sin φ sin(ωz/c − 3ψ)êz

]
.

(B.9)

To derive the approximate Eqs. (B.8,B.9) we have used the expressions of F1, F2 from the

Eq. 4.5 in the small χ, ξ limit. It shows that resultant fields are oscillating in longitudinal
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coordinate and time also. It also shows the CEP dependence in the leading order term.

B.2 Circular polarization counterpropagating laser pulses and

the CEP dependence

Here we discuss the CEP dependence on the structure of the EM fields due to the superposition

of two counterpropagating laser pulses made up of circularly e-polarized focused Gaussian

pulses propagating in +z and −z direction. To start with, the expression of the electric and

magnetic fields for the forward propagating circularly e-polarized focused Gaussian laser pulse

are given as

Ee
f = iE0e−iω(t−z/c)−iϕ̃g

{
F1(êx ± iêy) − F2e±2iφ(êx ∓ iêy)

}
, (B.10)

and

He
f = ±E0e−iω(t−z/c)−iϕ̃g

{
(1− i∆2 ∂

∂χ
)
[
F1(êx ± iêy) + F2e±2iφ(êx ∓ iêy)

]
+ 2i∆e±iφ∂F1

∂ξ
êz

}
. (B.11)

Here F1, F2 are the complex Gaussian beam functions for the focused laser EM field which have

already been defined in Appendix B.1 and other EM field dependent terms have been defined in

Sec. 3.1.1. The ± signs denote the right and left circularly polarized pulses correspondingly in

their polarization vector rotation. Similar expression of the EM field in the backward direction

(in −z direction) can be written as

Ee
b = iE0e−iω(t+z/c)−iϕ̃g

{
F∗1(êx ± iêy) − F∗2e∓2iφ(êx ∓ iêy)

}
, (B.12)

and

He
b = ∓E0e−iω(t+z/c)−iϕ̃g

{
(1 + i∆2 ∂

∂χ
)
[
F∗1(êx ± iêy) + F∗2e∓2iφ(êx ∓ iêy)

]
+ 2i∆e∓iφ∂F∗1

∂ξ
êz

}
. (B.13)

Due to the superposition of forward and backward propagating laser EM fields, we have the

resultant electric and magnetic fields as

Ee = Ee
f + Ee

b = iE0e−iωt−iϕ̃g
{

eiωz/c
[
F1(êx ± iêy) − F2e±2iφ(êx ∓ iêy)

]
+e−iωz/c

[
F∗1(êx ± iêy) − F∗2e∓2iφ(êx ∓ iêy)

]}
,

(B.14)
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and

He = He
f + He

b = ±E0e−iωt−iϕ̃g
{

eiωz/c
(
(1 − i∆2 ∂

∂χ
)
[
F1(êx ± iêy) + F2e±2iφ(êx ∓ iêy)

]
+2i∆e±iφ∂F1

∂ξ
êz

)
∓ e−iωz/c

(
(1 + i∆2 ∂

∂χ
)
[
F∗1(êx ± iêy) + F∗2e∓2iφ(êx ∓ iêy)

]
+ 2i∆e∓iφ∂F∗1

∂ξ
êz

)}
.

(B.15)

Eqs. (B.14,B.15) give the expression of the electric and magnetic fields due the superposition

of two counterpropagating circularly polarized laser pulses for both right and left circularly

polarized pulses. Here we explicitly derive the expressions of the electric and magnetic fields

for the combinations of right-right and right-left for the forward and backward propagating

laser pulses.

B.2.1 Circularly polarized beams are right -right combinations in their
polarization vectors rotation

When both the pulses are right circularly polarized the expression for electric and magnetic

fields from the Eqs. (B.14,B.15) is given as

Ee = Ee
f + Ee

b = 2iE0e−i(ωt+ϕ̃)g
{

(êx + iêy)Re
[
F1eiωz/c

]
− (êx − iêy)Re

[
F2e2iφeiωz/c

]}
, (B.16)

and

He = He
f + He

b = 2iE0e−i(ωt+ϕ̃)g
{

(êx + iêy)Im
[
F1eiωz/c

]
+ (êx − iêy)Im

[
F2e2iφeiωz/c

]
+2i∆Im

[
eiφeiωz/c∂F1

∂ξ

]
êz

}
.

(B.17)

The physical electric and magnetic fields are real part of the Eqs. (B.16,B.17) which are given

as

ReEe = 2E0g
[

sin(ωt+ϕ̃)Re
[
(F1−F2e2iφ)eiωz/c

]
êx−cos(ωt+ϕ̃)Re

[
(F1+F2e2iφ)eiωz/c

]
êy

]
, (B.18)
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and

ReHe = 2E0g
[

sin(ωt + ϕ̃)Im
[
(F1 + F2e2iφ)eiωz/c

]
êx − cos(ωt + ϕ̃)Im

[
(F1 − F2e2iφ)eiωz/c

]
êy

−2∆ cos(ωt + ϕ̃)Im
[
eiφeiωz/c∂F1

∂ξ

]
êz

]
.

(B.19)

Now using the expressions of F1 and F2 from Eq. 4.5, we have the expression of the electric

and magnetic fields as

ReEe = 2E0g
e−ξ

2/1+4χ2

(1 + 4χ2)

[
sin(ωt + ϕ̃)

{
cos (ωz/c − 2ψ) −

2ξ2 sin φ
(1 + 4χ2)1/2 sin (φ + ωz/c − 3ψ)

}
êx

− cos(ωt + ϕ̃)
{

cos (ωz/c − 2ψ) −
2ξ2 cos φ

(1 + 4χ2)1/2 cos(φ + ωz/c − 3ψ)
}
êy

]
,

(B.20)

and

ReHe = 2E0g
e−ξ

2/1+4χ2

(1 + 4χ2)

[
sin(ωt + ϕ̃)

{
sin (ωz/c − 2ψ) −

2ξ2 cos φ
(1 + 4χ2)1/2 sin (φ + ωz/c − 3ψ)

}
êx

− cos(ωt + ϕ̃)
{

sin (ωz/c − 2ψ) −
2ξ2 sin φ

(1 + 4χ2)1/2 cos(φ + ωz/c − 3ψ)
}
êy

−
8∆ξ

(1 + 4χ2)1/2 (1 −
ξ2

2(1 + 4χ2)1/2 ) cos(φ + ωz/c) cos(ωt + ϕ̃)êz

]
.

(B.21)

The corresponding magnitude of the electric and magnetic fields is given by

|ReEe
| ≈

2E0ge−ξ
2/1+4χ2

(1 + 4χ2)
| cos(ωz/c − 2ψ)|

[
1 −

ξ2

cos(ωz/c − 2ψ)(1 + 4χ2)1/2

{
cos(ωz/c − 3ψ)

+ cos 2(ωt + ϕ̃) cos(3ψ − ωz/c − 2φ)
}

+ O(ξ4)
]
,

(B.22)

and

|ReHe
| ≈

2E0ge−ξ
2/1+4χ2

(1 + 4χ2)
| sin(ωz/c − 2ψ)|

[
1 −

ξ2

sin(ωz/c − 2ψ)(1 + 4χ2)1/2

{
sin(ωz/c − 3ψ)

+ cos 2(ωt + ϕ̃) sin(3ψ − ωz/c − 2φ)
}

+ O(ξ4)
]
.

(B.23)



Appendix B. Electromagnetic fields with CEP dependence for linear and circular
polarizations 100

B.2.2 Circularly polarized beams are right-left combinations in their po-
larization vectors rotation

Here we derive the expression of the electric and magnetic fields due to the superposition of

right circularly forward propagating pulse with the left circularly backward propagating pulse.

Form the Eqs. (B.14,B.15) the expression of the real part of the electric and magnetic fields can

be written as

ReEe = 2E0g
{(

sin(ωt + ϕ̃)Re[F1eiωz/c] − sin(ωt + ϕ̃ − 2φ)Re[F2eiωz/c]
)
êx −

(
sin(ωt + ϕ̃)Im[F1eiωz/c]

+ sin(ωt + ϕ̃ − 2φ)Im[F2eiωz/c]
)
êy

}
(B.24)

and

ReHe = 2E0g
{(

cos(ωt + ϕ̃)Re[F1eiωz/c] + cos(ωt + ϕ̃ − 2φ)Re[F2eiωz/c]
)
êx −

(
cos(ωt + ϕ̃)Im[F1eiωz/c]

− cos(ωt + ϕ̃ − 2φ)Im[F2eiωz/c]
)
êy + 2∆ sin(ωt + ϕ̃ − φ)Re[eiωz/c∂F1

∂ξ
]êz

}
.

(B.25)

Using the explicit expression of F1 and F2 from Eq. (B.3) we derive the simplified form of the

Eqs. (B.24,B.25) in normalized spatial coordinates as follows:

ReEe = 2E0g
e−ξ

2/1+4χ2

(1 + 4χ2)

[{
sin(ωt + ϕ̃)

(
cos(ωz/c − 2ψ) −

ξ2

(1 + 4χ2)1/2 cos(ωz/c − 3ψ)
)

+ sin(ωt + ϕ̃ − 2φ)

×
ξ2

(1 + 4χ2)1/2 cos(ωz/c − 3ψ)
}
êx −

{
sin(ωt + ϕ̃)

(
sin(ωz/c − 2ψ) −

ξ2

(1 + 4χ2)1/2 sin(ωz/c − 3ψ)
)

− sin(ωt + ϕ̃ − 2φ)
ξ2

(1 + 4χ2)1/2 sin(ωz/c − 3ψ)
}
êy

]
,

(B.26)
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and

ReHe = 2E0g
e−ξ

2/1+4χ2

(1 + 4χ2)

[{
cos(ωt + ϕ̃)

(
cos(ωz/c − 2ψ) −

ξ2

(1 + 4χ2)1/2 cos(ωz/c − 3ψ)
)
− cos(ωt + ϕ̃ − 2φ)

×
ξ2

(1 + 4χ2)1/2 cos(ωz/c − 3ψ)
}
êx −

{
cos(ωt + ϕ̃)

(
sin(ωz/c − 2ψ) −

ξ2

(1 + 4χ2)1/2 sin(ωz/c − 3ψ)
)

+ cos(ωt + ϕ̃ − 2φ)
ξ2

(1 + 4χ2)1/2 sin(ωz/c − 3ψ)
}
êy −

8∆ξ

(1 + 4χ2)1/2 sin(ωt + ϕ̃ − φ) cos(ωz/c + 3ψ)êz

]
.

(B.27)

Therefore the magnitude of the electric and magnetic fields is

|ReEe
| = 2E0g

e−ξ
2/1+4χ2

(1 + 4χ2)

[
sin2(ωt + ϕ̃)

(
1 −

ξ2

(1 + 4χ2)1/2 cosψ
)

+
2ξ2

(1 + 4χ2)1/2 sin(ωt + ϕ̃)

× sin(ωt + ϕ̃ − 2φ) cos(2ωz/c − 5ψ) + O(ξ4)
]1/2

,

(B.28)

and

|ReHe
| = 2E0g

e−ξ
2/1+4χ2

(1 + 4χ2)

[
cos2(ωt + ϕ̃) −

2ξ2

(1 + 4χ2)1/2

{
cos(ωt + ϕ̃)

(
cos(ωt + ϕ̃) cosψ

+ cos(ωt + ϕ̃ − 2φ) cos(2ωz/c − 5ψ)
)
−

32ξ2∆2

(1 + 4χ2)1/2 cos2(ωz/c + 3ψ) sin2(ωt + ϕ̃ − φ)
}]1/2

.

(B.29)

Eqs. (B.28,B.29) show that in the leading order the field strength is oscillating and it contains

the CEP dependence.





Appendix C

Temporal envelope function for the
counterpropagating beams valid at the
focus

As shown in Ref. [10], finite pulse duration can be incorporated into a focused pulse model

roughly by introducing an individual envelope factor g(ϕ) for each pulse [such that g(0) = 1

and g(ϕ) vanishes for |ϕ| & ωτ, where τ is pulse duration]. Let us show that inside a focal region

of counterpropagating pulses one can with high accuracy rather use a single common envelope

instead. Consider their total (for definiteness, electric) field

Etot = g1E f + g2Eb, (C.1)

where E f ,b are the fields of forward and backward propagating pulses [see Eqs. (4.3), (4.4)],

g1 = g1(ϕ/ωτ) = g1((t − z/c)/τ) and g2 = g2(ϕ′/ωτ) = g2((t + z/c)/τ) – their individual

envelopes. For the sake of simplicity, we assume g1(ϕ) = g2(ϕ) = exp(−4ϕ2/τ2), as used

throughout the paper. By rewriting

Etot =
√

g1g2

( √
g1/g2E f +

√
g2/g1Eb

)
, (C.2)

we define g =
√

g1g2 = exp(−4t2/τ2 − 4z2/c2τ2), then the weight factors g f =
√

g1/g2 and

gb =
√

g2/g1 read g f ,b = exp(±8zt/cτ2) = exp(±8χt′L/cτ), where χ = z/L and t′ = t/τ are

the dimensionless longitudinal coordinate and time normalized by laser duration. Even though

for the parameters used here (τ = 10 f s, λ = 1µm,∆ = 0.1) we have L/cτ = 5.3, pair creation

is localized in a tiny region |χ| . 0.02 and |t′| . 0.15 (see Figs. 4.4-4.7), where both weight
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factors g f ,b are close to unity. Hence one can optionally use for the total field a modified

common envelope function g =
√

g1g2, which is extremely useful to explain the results in a

qualitative way. The numerical results are in good agreement in both cases of using either g1

and g2 or the approximate common envelope g.



Appendix D

Derivation of quantum kinetic equation in
mean field approximation

In this Appendix we present the technical details of the quantum kinetic equation using quasi-

particle representation. We follow the steps in Ref. [32, 63, 78]

D.1 Dynamics of Pair Creation

For the description of electron-positron pair production in an electric field we start from the

QED Langrangian density for the fermionic matter field ψ with the gauge field Aµ which is

given by.

L = ψ̄iγµ(∂µ + ieAµ)ψ − mψψ̄ −
1
4

FµνFµν

= ψ̄iγµ∂µψ − eψ̄γµAµψ − mψ̄ψ −
1
4

FµνFµν.

(D.1)

From this Lagrangian density, the equation of motion for the Dirac field ψ can be obtained by

using the field-theoretic Euler-Lagrange equation

∂µ

(
∂L

∂(∂µψ̄)

)
−
∂L

∂ψ̄
= 0. (D.2)

which gives the Dirac equation for fermionic field ψ

(
iγµ∂µ − eγµAµ − m

)
ψ(x) = 0. (D.3)
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Here Aµ denotes the vector potential in temporal gauge Aµ = (0, 0, 0, A(t)) and the resulting

electric and magnetic fields are E(t) = −Ȧ(t) =
dA(t)

dt and B = ∇ × A(t) = 0. We want the

solution of the Dirac equation where the eigenstates are of the form

ψ(±) = [iγ0∂0 + γk pk − eγ3A(t) + m] χ(±)(r, t)Rreip̄.r. (D.4)

The index k = 1, 2, 3 and the (±) sign in the superscript denotes eigenstates with positive and

negative modes which can be realized at t → ∓∞.

The spinor part is given R1 =


0

1

0

-1


R2 =


0

1

0

-1


which are the eigenvectors of the matrix

γ0γ3 with the orthonormality condition R†r Rs = 2δrs. Therefore we have

(
iγµ∂µ − eγµAµ − m

)(
iγ0∂0 + γk pk − eγ3A(t) + m

)
χ±

(
r, t)Rreip̄.r = 0. (D.5)

By the standard relation of the inner product of 4-vectors we have γµ with γµ = {γ0, γk}

∂µ = {∂0,−∂k}, γ
µAµ = γ3A(t)

γµ∂µ = γ0∂0 − γ
k∂k

iγµ∂µ = iγ0∂0 − iγk∂k = iγ0∂0 + γk pk. Therefore we have

(−(γ0)2(∂0)2 − ieγ0γ3∂0A(t) + (γk)2(pk)2 − ieγ3A3γ
0∂0 + e2(γ3)2A2(t) − m2)χ(±)(r, t)Rreip̄.r = 0

(D.6)

(−∂2
0 − ieȦ(t) − p2

k − m2 − e2A2(t) + 2eA(t)p3 − m2)χ(±)(r, t)Rreip̄.r = 0 (D.7)

(−∂2
0 − ieȦ(t) − p2

k − m2 − (p2
3 − 2ep3A(t) + e2A2(t))χ±

(
r, t)Rreip̄.r = 0 (D.8)(

∂2
0 + ieȦ(t)+ω

2( p̄, t)
)
χ±(p̄, t) = 0 (D.9)

=⇒ χ̈±( p̄, t) = −

(
ω2(p̄, t) + ieȦ(t)

)
χ±(p̄, t) = 0 (D.10)

where γk pkγ
3A(t) = γkγ3 pkA(t) and −eA(t)

[
γk pkγ

3 + γ3γk pk

]
= −eA(t)

[
γkγ3 pk + γ3γk pk

]
= −eA(t)

[
γkγ3 + γ3γk

]
= −eA(t)2gk3 pk = 2eA(t)p3. Here ω( p̄, t) =

√
m2 + p2

⊥ + (p3 − eA(t))2.

Now we decompose the quantized matter field with the spinor functions which are complete

and orthonormalized. The decomposition of Ψ(x)

Ψ(x) =
∑
r,p̄

[
ψ−p̄,r(x)bp̄,r(t0) + ψ+

p̄,r(x)d†p̄,r

]
(D.11)
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where b p̄r(t0), b†p̄r(t0), d p̄r(t0), d†p̄r(t0) are annihilation and creation operators of electrons and

positrons which act on the vacuum in state |Oin〉 at the initial time t = t0 and obey the anti-

commutation relations

{bp̄r(t0), b†p̄‘r‘(t0)} = {d†p̄r(t0), dp̄′ r̄′(t0)} = δrr′δ p̄p̄′ . (D.12)

For relativistic system, the evolution process mixes the states with negative ψ−(x) and positive

ψ+(x) energies. Non-diagonal term appears in the Hamiltonian which is responsible for pair

creation. The diagonalization is achieved by a time dependent Bogoliubov transformation from

time independent to time dependent basis

b p̄,r(t) = α− p̄(t)b p̄r(t0) + βp̄(t)d†p̄r(t0)

d p̄,r(t) = α− p̄(t)dp̄r(t0) + β− p̄(t)b†−p̄r(t0)
(D.13)

with the normalization condition |αp̄(t)|2 + |βp̄(t)|2 = 1. The time dependent creation and anni-

hilation operators satisfy the anticommutation relation

{bp̄r(t), b
†

p̄′r′(t)} = {d†p̄r(t), dp̄′ r̄′(t)} = δrr′δ p̄ p̄′ (D.14)

bp̄,r(t) and d p̄,r(t) describe the quasiparticles at the time t with an instantaneous vacuum |0t〉.

b(t0), b†(t0) : d(t0), d†(t0) are the unitary non-equivalent to the system b(t), b†(t) : d(t), d†(t)

Therefore the Bogoluibov transformation gives the new representation of the field operators

ψ(x) =
∑
r,p̄

[
Ψ−p̄,r(x)b p̄,r(t) + Ψ+

p̄,r(x)d†p̄,r(t)
]

=
∑
r,p̄

[
Ψ−p̄,r(x)

(
αp̄(t)bp̄,r(t) + βp̄(t)d†− p̄r(t0)

)
+ Ψ+

p̄,r(x)
(
α∗p̄(t)d†p̄,r(t0) − β∗p̄(t)b−p̄r(t0)

)]
=

∑
r,p̄

[
b p̄,r(t0)

(
Ψ−p̄,r(x)αp̄(t) − Ψ+

p̄,r(x)β∗(t)
)

+ d†− p̄,r(t0)
(
Ψ−p̄r(x)βp̄(t)) + Ψ+

p̄r(x)α∗p̄(t)
)]

=
∑
r,p̄

[
Ψ−p̄r(x)bp̄r(t0) + Ψ+

p̄,r(x)d†− p̄r(t0)
]

(D.15)

where the correspondence are ψ−p̄,r(x) = Ψ−p̄,r(x)αp(t) − Ψ+
p̄,r(x)β∗p̄(t)

ψ+
p̄,r(x) = Ψ−p̄,r(x)βp̄(t) + Ψ+

p̄,r(x)α∗p̄(t) = α∗(t)Ψ+
p̄,r(x) + βp̄(t)Ψ−(x)

Therefore it is justified to assume that the function Ψ±p̄,r have a spin structure similar to that of
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ψ±p̄,r,

Ψ±p̄,r(x) =

[
iγ0∂0 + γk p̄k − eγ3A(t) + m

]
φ±p̄(x)Rre±iΘ(t)ep̄x̄ (D.16)

where the dynamical phase is defined as

Θ( p̄, t) =

∫ t

t0
dt′ω(p̄, t′) (D.17)

and φ±p̄ are yet unknown function. Here one can define the adiabatic particle number basis by

absorbing the fast oscillating term which is given as

Bp̄,r(t) = b p̄,r(t)e−iΘ( p̄,t) (D.18)

The Heisenberg equation of motion for the creation and annihilation operators in adiabatic basis

is given as
dBp̄,r(t)

dt
=
−eE(t)ε⊥

2ω2 D†− p̄,r(t) + i
[
H(t), Bp̄,r(t)

]
, (D.19)

and
dD p̄,r(t)

dt
=
−eE(t)ε⊥

2ω2 B†− p̄,r(t) + i
[
H(t),Dp̄,r(t)

]
(D.20)

which is a unitary non-equivalence representation of in-vacuum and quasiparticle states. Single

particle distribution function or the average occupation number for electron in the quasiparticle

representation is given by

fr =
〈

0in|b
†

p̄,r(t)bp̄,r(t)|0in

〉
=

〈
0in|B

†

p̄,r(t)Bp̄,r(t)|0in

〉
, (D.21)

and for positrons

f̄r(p̄, t) =
〈

0in|d
†

p̄,r(t)d p̄,r(t)|0in

〉
=

〈
0in|D

†

p̄,r(t)Dp̄,r(t)|0in

〉
. (D.22)

This will give rise to time dependent averaged particle number
∑

r,p̄ f̄r( p̄, t) =
∑

r, p̄ fr( p̄, t) =

N(t). Now the evolution equation of the single particle distribution function is given as

d fr

dt
=

〈
0in|

dB†p̄,r
dt

(t)Bp̄,r(t)|0in

〉
+

〈
0in|B

†

p̄,r(t)
dBp̄,r(t)

dt
|0in

〉
(D.23)

where
dB†p̄,r(t)

dt
=
−eE(t)ε⊥

2ω2 D−p̄,r(t) − i
[
Ĥ(t), Bp̄,r(t)

]
(D.24)
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so

d fr( p̄, t)
dt

=
−eE(t)ε⊥

2ω2

[ 〈
0in|D− p̄,r(t)Bp̄,r(t)|0in

〉
+

〈
0in|B

†

p̄,r(t)D
†

− p̄,r(t)|0in

〉 ]
=
−eE(t)ε⊥

ω2 Re
[ 〈

0in|D− p̄,r(t)Bp̄,r(t)|0in

〉 ]
.

(D.25)

Here
〈
0in|D−p̄,r(t)BP̄,r(t)|0in

〉
= Φr( p̄, t) the particle antiparticle correlation function. Now the

evolution equation for the correlation function is given by

dΦr(p̄, t
dt

=
eE(t)ε⊥

2ω2( p̄, t)

[
2 fr(p̄, t) − 1

]
− 2iω( p̄, t)Φr( p̄, t), (D.26)

which basically couples the slow and fast varying time scales. Again we integrate Eq. D.26

with time we get

Φr(p̄, t) =
ε⊥
2

∫ t

t0
dt′

eE(t′)
ω2(p̄, t)

[
2 fr( p̄, t) − 1

]
e2i

[
Θ( p̄,t′)−Θ( p̄,t)

]
, (D.27)

with the boundary condition Φr( p̄, t)
∣∣∣
t=t0

vanishes. Therefore the full expansion of d fr( p̄,t)
dt is

given by

d fr(p̄, t)
dt

=
eE(t)ε⊥

2ω2( p̄, t)

∫ t

t0
dt′

eE(t′)
ω2( p̄, t

[
2 fr( p̄, t) − 1

]
cos

(
2
[
Θ( p̄, t) − Θ( p̄, t′)

])
(D.28)

which is required quantum kinetic equation for the single particle distribution function in quasi-

particle representation.

D.2 Onset of oscillations in the momentum spectrum of multi

sheeted Sauter and Gaussian pulses

Here we use Eq. 5.16 to determine the onset of oscillations for multi sheeted Sauter and Gaus-

sian pulses. We first evaluate the integrals K(p)
p =

∣∣∣∣∣ tp∫
t∗p

dt ω(p, t)
∣∣∣∣∣, Θ

(p,p′)
p =

Re(t′p)∫
Re(tp)

dt ω(p, t) and

hence fp(∞) for ωτ = 4 and 6 for both pulses. We take three pairs of turning points (the central

one and the adjacent ones on either side of the central pair), tp1, tp2, and tp3 and their complex
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conjugates. So we have from Eq. 5.16 for the three pairs of turning points

fp(∞) ≈ e−2K(p1)
p + e−2K(p2)

p + e−2K(p3)
p − 2 cos

(
2Θ

(p1,p2)
p

)
e−K(p1)

p −K(p2)
p − 2 cos

(
2Θ

(p2,p3)
p

)
e−K(p2)

p −K(p3)
p

+2 cos
(
2Θ

(p1,p3)
p

)
e−K(p1)

p −K(p3)
p ,

(D.29)

where the three pairs of turning points are taken from left to right. In Fig. 5.7 the values of

turning points for ωτ = 4 are tp1 = −83.1 + 13.7068i, tp2 = 0 + 9.7359i, tp3 = 83.1 + 13.7068i

for the Gaussian pulse, whereas for the Sauter pulse the values of turning points are tp1 =

−87.056 + 19.5236i, tp2 = 0 + 9.721i, tp3 = 87.056 + 19.5236i. The values of the integrals

for the Sauter pulse are K(p1)
p =

∣∣∣∣∣ tp1∫
t∗p1

dt ω(p, t)
∣∣∣∣∣ = 32.3513, K(p2)

p =

∣∣∣∣∣ tp2∫
t∗p2

dt ω(p, t)
∣∣∣∣∣ = 15.3754,

and K(p3)
p =

∣∣∣∣∣ tp3∫
t∗p3

dt ω(p, t)
∣∣∣∣∣ = 32.3513. Therefore, in Eq. D.29 the value of the exponentials are

e−2K(p1)
p = 7.9438 × 10−29, e−2K(p2)

p = 4.4165 × 10−14, e−2K(p3)
p = 7.9438 × 10−29, e−K(p1)

p −K(p2)
p =

1.87309 × 10−21, e−K(p2)
p −K(p3)

p = 1.87309 × 10−21, and e−K(p1)
p −K(p3)

p = 7.9438 × 10−29. The orders

of the exponentials show that the main contribution to fp comes from only one turning point

pair, tp2 and its conjugate, which lie at the centre. The momentum spectrum, therefore, is

unimodal with no interference effect due to reflections from other turning points, for ωτ = 4

for the Sauter pulse. Similar calculation for the Gaussian pulse gives: K(p1)
p = 21.8979, K(p2)

p =

15.3933, and K(p3)
p = 21.8979 and the value of the exponentials are e−2K(p1)

p = 9.5448 × 10−20,

e−2K(p2)
p = 4.26148×10−14, e−2K(p3)

p = 9.5448×10−20, e−K(p1)
p −K(p2)

p = 6.37731×10−17, e−K(p2)
p −K(p3)

p =

6.37731 × 10−17, and e−K(p1)
p −K(p3)

p = 9.5448 × 10−20. In this case the main contribution to the

reflection coefficient is from the central turning point. Hence the shape of the momentum

spectrum is unimodal. However, the interference between the central and the adjacent turning

points also appears with relative strength of about 1.5 × 10−3. So for the Gaussian pulse case

the onset of oscillation takes place for the first time for ωτ = 4 and the momentum spectrum

showing small amplitude oscillations over the unimodal profile.

Now we calculate fp(∞) for ωτ = 6 for the Sauter pulse which shows for the first time the

onset of oscillation in the momentum spectrum as seen in the left panel of Fig. 5.5. Here the

values of the turning points for p3 = 0 are tp1 = −54.31278 + 12.2396i, tp2 = 0 + 9.453768i,

tp3 = 54.31278 + 12.2396i and their complex conjugates. The values of the integrals are

K(p1)
p = 19.7175, K(p2)

p = 15.0493, and K(p3)
p = 19.7175. The value of the exponential are

e−2K(p1)
p = 7.47409 × 10−18, e−2K(p2)

p = 8.47864 × 10−14, e−2K(p3)
p = 7.47409 × 10−18, e−K(p1)

p −K(p2)
p =

7.96105 × 10−16, e−K(p2)
p −K(p3)

p = 7.96105 × 10−16, and e−K(p1)
p −K(p3)

p = 7.47409 × 10−18. So the
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value of the phase integrals for the dominant terms are Θ
(p1,p2)
p =

Re(tp2)∫
Re(tp1)

dt ω(p, t) = −81.5475,

Θ
(p2,p1)
p =

Re(tp3)∫
Re(tp2)

dt ω(p, t) = 81.5475 and cos
(
2Θ

(p1,p2)
p

)
= cos

(
2Θ

(p2,p3)
p

)
= 0.9643. Therefore

the interference term 2 cos
(
2Θ

(p1,p2)
p

)
e−K(p1)

p −K(p2)
p + 2 cos

(
2Θ

(p2,p3)
p

)
e−K(p2)

p −K(p3)
p = 3.0708 × 10−15

becomes comparable to the term e−2K(p2)
p = 8.47864×10−14, representing the reflection from the

central turning point. Here the modulation over the unimodal profile appears with the relative

strength of 3.6 × 10−2. The peak value of the distribution fp=0(∞) ≈ 8.17154 × 10−14.





Appendix E

Derivation of evolution equation for phase
and modulus of the order parameter

To study the evolution of order parameter Φ(p, t) = 2 < 0in|a
†
p(t)b†−p(t)|0in >= |Φ(p, t)| exp(iψ(p, t))

we solve numerically QKE expressed in the form of 3-coupled ordinary differential equations

[32, 63, 81]:

d f (p, t)
dt

=
eE(t)ε⊥

2ω2(p, t)
u(p, t),

du(p, t)
dt

=
eE(t)ε⊥
ω2(p, t)

[1 − 2 f (p, t)] − 2ω(p, t)v(p, t),

dv(p, t)
dt

= 2ω(p, t)u(p, t).

(E.1)

Here f (p, t) =< 0in|a
†
p(t)ap(t)|0in >=< 0in|b

†
−p(t)b−p(t)|0in > is the single particle distribution

function, u(p, t) and v(p, t) are the real and imaginary parts of Φ(p, t). u(p, t) and v(p, t) gov-

ern the vacuum polarization and the counter process of pair production i.e., pair annihilation,

respectively. The terms ω(p, t) =

√
m2 + p2

⊥ + P2
3(t) and P3(t) = p3 − eA(t) are the quasi-

energy and the longitudinal quasi-momentum respectively of the quasi-particle. The particle

acceleration is governed by dP3(t)/dt = eE(t) in the presence of the time dependent elec-

tric field E(t); e is the electronic charge; ε⊥ =
√

m2 + p2
⊥ is the transverse energy of the

created particle and Θ(p; t1, t2) =
t2∫

t1

dt′ω(p, t′) is the dynamical phases accumulated between

initial to final state. It is noted that f (p, t), u(p, t) and v(p, t) satisfy the first integral of motion

(1−2 f (p, t))2+u2(p, t)+v2(p, t) = 1 with initial conditions fin(p, tin) = uin(p, tin) = vin(p, tin) = 0

[49]. This first integral of motion can also be expressed in terms of f (p, t) and |Φ(p, t)| by the

relation (1− 2 f (p, t))2 + |Φ(p, t)|2 = 1. Using the Eq. 5.13 we get the evolution equation for the

113
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complex order parameter Φ(p, t) which is given by

dΦ(p, t)
dt

=
eE(t)ε⊥
ω2(p, t)

[1 − 2 f (p, t)] + 2iω(p, t)Φ(p, t). (E.2)

Now we decompose the complex order parameter Φ(p, t) = |Φ(p, t)| exp(iψ(p, t)) and use the

relation (1 − 2 f (p, t))2 + |Φ(p, t)|2 = 1 we get the evolution equations for |Φ(p, t)| and ψ(p, t)
which are given as

d|Φ(p, t)|
dt

=
eE(t)ε⊥
ω2(p, t)

cosψ(p, t)
√

1 − |Φ(p, t)|2,

dψ(p, t)
dt

= 2ω(p, t) −
eE(t)ε⊥
ω2(p, t)

sinψ(p, t)
√

1 − |Φ(p, t)|2

|Φ(p, t)|
.

(E.3)
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