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Chapter 1

Introduction

It is the year 1932. British physicist Sir James Chadwick [1] from Cavendish

Laboratory discovered an electrically neutral sub-nuclear particle named neutron [2]. At

the time of discovery, no one could presume that within two decades, the immense power

of this apparently innocent electrically neutral particle would shake the entire world with

deadly shock in the form of a devastating nuclear weapon, the ‘A tomic-Bomb’ [3], [4].

Apart from this dark episode, the enormous potential of this particle has endowed the

scientists with the power to probe and unravel the internal structure of almost all

materials, especially those consisting of light elements like hydrogen or boron etc. for

their good scattering cross section, which makes them complementary to x-rays [5], [6].

In the post-war period (World War - II: 1939 to 1945 [7], [8]), important milestones

were achieved by the pioneering research of Ernest Wollan, Clifford Shull and Bertrame

N. Brockhouse on the development of neutron diffraction technique and neutron

spectroscopy [9], [10], [11]. With these remarkable contributions, neutron science has

overwhelmingly established itself as a useful tool to investigate the structure and

properties of materials, crossing the closed wall of the Manhattan Project [12]. Today’s

neutron science is extremely matured and advanced with the pace of technology. From

the conventional crystallography in solid-state physics to the complex tomography of
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protein samples in modern-day biology - across the horizon, precise scientific

investigations using neutron scattering and diffraction techniques have fetched

completely new knowledge previously unknown to mankind [13].

1.1 A brief review on the Spallation Neutron Sources

So far, two principal manmade sources of neutrons are there - nuclear reactors [14], [15]

and spallation neutron sources (SNSs) [16], [17]. Typically, nuclear reactors produce a

continuous beam of neutrons, having a flux of ∼ 1014 neutrons cm-2 s-1 [18]. Although

there is successful demonstration of a reactor at Dubna (IBR) [19], Russia, which operates

in the pulsed mode with higher peak flux, yet, this concept has not become popular, as

it is not very effecitive. Excluding this reactor, spallation sources are the principal way

to produce pulsed neutron beam with high peak flux of ∼ 1016 neutrons cm-2 s-1 [20],

which is extremely useful for the time of flight experiments. Another advantage with

spallation based neutron sources is that unlike nuclear reactors, these sources have no

issues regarding proliferation or inventory of long lived radioactive isotopes.

Interestingly, even before the discovery of fission (1939) [21], [22], Nobelist Glenn T.

Seaborg, in 1937 gave the concept of nuclear spallation [23]. However, spallation based

neutron sources could be demonstrated only in late 70s’. Perhaps this was because of

the associated complexity involved in building a suitable proton or negative hydrogen ion

(H-) accelerator. Among these complexities in developing a state of the art SNS, one

challenging task is to design a high power hadron accelerator.

Spallation based neutron sources also have an eventful history. Chronologically, the

first successful spallation neutron source ZING-P, acronym for Zero Gradient

Synchrotron (ZGS) Intense Neutron Generator - Prototype, was built at Argonne in

1974, using a 200 MeV accelerator. In this SNS, the 20 W average power proton beam

was capable of producing 5 × 1011 neutrons per pulse [24],[25]. Not only that, after the
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demonstration of this accelerator based spallation technology, tradition of success was

continued in the same laboratory in another project named Intense Pulsed Neutron

Source (IPNS) [26] in the early 1980s (1982) [27]. This was a rapid-cycling synchrotron

(RCS) based spallation source for the production of slow neutrons. Another milestone

was reached in Los Alamos after the commissioning of the proton storage ring in 1985,

with the implementation of the SNS concept there [28]. Further developments of the

accelerator based spallation technology took place with time in a series of projects in

different laboratories like ISIS (UK) [29], ANL [26], RAL [29], PSI [30] etc. In the last

two decades, remarkable advancements in this technology has been realized through the

demonstration of SNS at Oak Ridge [31] and J-PARC, Japan [32]. These two machines

are indeed milestones, being the world’s first megawatt class machines, where the aim of

high peak neutron flux of ∼ 1016 neutrons cm-2 s-1 is finally materialized. More recently,

CSNS in China has been commissioned [33]. New SNS project like European Spallation

Source (ESS) at Lund, Sweden is in a very advanced stage [34].

So far, two different types of design schemes have been successfully demonstrated

worldwide to build an SNS. Those are described below:

1. For SNS at Oak Ridge, a superconducting linac boosts up the energy of the H- ion

beam to around 1 GeV, and the millisecond long pulse of H- beam is then

compressed to intense microsecond long pulse of protons in an accumulator ring,

and finally hits a neutron rich spallation target of high-Z material [35];

2. For J-PARC, Japan, a millisecond long pulsed proton beam gains relatively low

energy (∼400 MeV) in the linac section. Then, through a 3 GeV Rapid Cycling

Synchrotron (RCS), this beam attains its desired energy and comes out as a

compressed microsecond long pulse before hitting the spallation target.

Both of these schemes have their own challenges and advantages. In a rapid cycling

synchrotron, proton beam is non-relativistic at the entrance, and after every cycle of
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revolution, energy of the beam increases gradually. As a result, the revolution time

period of the beam decreases continually with each cycle. Therefore, RCS necessarily

needs an advanced high-gradient magnetic alloy-loaded (generally ferrite loaded) RF

cavity, to maintain synchronism between the beam and the RF cycle. In such a cavity, the

operating frequency can be tuned in a programmable manner in each turn, to ensure the

right RF phase for the beam. The design and operation of such a cavity is

technologically challenging. Not only that, controlling space charge force in a dense

beam bunch, particularly in the low energy realm, is a real challenge in this scheme.

However, such a machine comprising of injector linac with an energy of few hundred

MeV and the RCS to boost the energy to ∼GeV, can also be built using normal

conducting cavities and normal conducting magnets, which reduces the capital cost. The

complexities associated with the cryogenic plant is not there in such normal conducting

accelerator. On the other hand, cryogenic plant is an essential part of an SNS, where the

full energy is gained from superconducting linac. Therefore, capital cost of the machines

based on full energy superconducting injector linac and accumulator ring are

considerably high. In this scheme, high energy beam bunch enters an accumulator ring

and gets compressed there. Hence, space charge related issues are not that stringent in

this scheme of SNS, and one can go for higher current in these machines.

1.2 Introduction to the Indian Spallation Neutron Source

There is a proposal to build an Indian Spallation Neutron Source (ISNS) to participate

in the wonderful voyage of neutron based discoveries in various fields of applied

sciences. After a thorough feasibility study, we have adopted the scheme similar to SNS

at Oak Ridge for the Indian SNS project, in which a megawatt class injector linac will

accelerate negative hydrogen ion beam up to the designed energy. Beyond a brief normal

conducting front-end section, in this linac, the 3 MeV beam will be energized up to an

energy of 1 GeV through a superconducting linear accelerator which will be followed by
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an accumulator ring. This linac will comprise of five different families of

Superconducting Radio-Frequency (SRF) cavities. Amongst these, two families of

elliptical SRF cavity will be used in the medium energy (∼150 to 450 MeV) and high

energy section (around 450 MeV onwards) of this 1 GeV injector linac [36], [37]. In this

context, studies on (i) the electromagnetic design optimization of these elliptic cavities

and (ii) the beam optics and lattice design of this 1 GeV injector linac are the two

objectives of the research presented in this thesis.

We would like to emphasize that ISNS project is also seen as an important step

towards Accelerator Driven Sub-critical System (ADS) [38] for the utilization of thorium

for energy production, as both ISNS and Indian ADS [39] [40] [41] will require an

expertise in building high average power superconducting linac.

The next subsection will describe the normal conducting front-end of the injector sec-

tion, followed by the 1 GeV superconducting linac and the accumulator ring.

1.2.1 Layout of the accelerator for Indian Spallation Neutron Source

Proposed layout of the accelerator for Indian Spallation Neutron Source is shown in

Fig. 1.1 [41].

Normal conducting front-end

As shown in Fig. 1.1, normal conducting front-end of the injector linac consists of an

ion source, Low Energy Beam Transport (LEBT) line [42], Radio Frequency Quadrupole

(RFQ) [43] and Medium Energy Beam Transport (MEBT) line [44]. A multi-cusp ion

source will produce a 2 millisecond long H- ion [45] beam pulse with an energy of 50

keV, repeating with a pulse repetition rate (PRR) of 50 Hz [46]. The 15 mA pulsed current

of H- ions will be then transported to the normal conducting 325 MHz RFQ through a

matching section, called the LEBT line. In order to facilitate the beam injection to the

accumulator ring, as well as extraction from there, the beam will be chopped to a pulse
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Figure 1.1: Schematic of the accelerator for the proposed Indian Spallation Neutron
Source.

width of 650 nanosecond @1MHz in the LEBT line. The beam pulse with a reduced

peak current of 10 mA will then be transported to the RFQ, where the millisecond long

beam pulse will be adiabatically bunched at 325 MHz, acquiring a longitudinal emittance.

Here, it is important to emphasize that due to pre-chopping in LEBT line and bunching in

RFQ, the 2 millisecond macro beam pulse will acquire a complex time structure, which is

described in Fig. 1.2 [37]. Finally, after gaining an energy of around 3 MeV, the beam will

enter another matching section, called the Medium Energy Beam Transport (MEBT) line.

This section will match the beam to the required input parameters of the superconducting

injector linac and also perform final chopping of the beam.

Superconducting linear accelerator

Through the MEBT line, the 3 MeV H- beam of 2 ms pulse width and pulse current

of 10 mA will be transported to the superconducting injector linac, which will accelerate

the beam up to energy 1 GeV. After traversing through three families of spoke resonator

(SR) in the low energy section, and two families of elliptical cavity in the medium and

high energy section of the injector linac, finally the 1 GeV beam will be transported

to the injection point of the accumulator ring through a High Energy Beam Transport
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Figure 1.2: Beam time structure for the proposed ISNS linac - (i) macro-pulse, (ii) midi-
pulse and (iii) micro-pulse.

(HEBT) [47] line with a suitable bend.

Accumulator ring

The beam follows 2000 turn charge exchange injection scheme, while being injected

into an accumulator ring of ∼ 262 m circumference. After completing this 2000 turn

injection, beam pulse will be then further compressed in another few hundred turns

(around 200 to 300 turns) by the programmable RF cavity voltage in the accumulator

ring [42], [48]. Such a compression of the µs beam is necessary to create a clean gap

between the head and tail of the circulating beam, in order to accommodate for the finite

rise time of the extraction kicker magnet. From the accumulator ring, extracted beam

will be transported finally towards a suitable spallation target made of neutron-rich high

Z material, through Ring to Target Beam Transport (RTBT) line [49].

1.3 Specification of the ISNS accelerator

Lattice design of ISNS accumulator ring specifies better than ∼0.8 mm-mrad of

normalized rms beam emittance requirement in all three planes. However, our target is to

confine the normalized rms beam emittance to around 0.45 mm-mrad in all these three
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planes. As because the targeted emittance will ensure an emittance growth budget of

75% in the design. Also, this choice of a normalized rms emittance to around 0.45

mm-mrad will favour the design of the charge exchange stripper foil placed in the beam

line in terms of foil heating. In our design, obtained value of the normalized rms beam

emittance at the exit of RFQ are 0.397 mm-mrad in x, 0.4 mm-mrad in y and 0.447

mm-mrad in the z directions [41]. Table 5.1 summarizes a few important parameters of

the ISNS accelerator.

Table 1.1: Important parameters of the ISNS linac and accumulator ring assembly
Parameter Base Value Unit

Average power of proton beam on target 1.0 MW
Kinetic energy of proton beam on target 1.0 GeV

Average beam current on target 1.0 mA
Pulse repetition rate 50 Hz

Protons per pulse on target 1.25×1014 protons
Charge per pulse on target 20 µC
Energy per pulse on target 20 kJ

Ion type (Front end, Linac, HEBT) H−

Linac beam macropulse duty factor 10%
Linac length (excluding the front end ) ∼196 m

Ion type (Ring, RTBT, Target) proton
Ring filling time 2.0 ms

Ring revolution frequency 1.0 MHz
Number of injected turns 2000

Emittance growth (RMS) budget for the linac ∼75%

1.4 An optimized SRF linac design for the proposed ISNS

For the high power superconducting hadron linac, our design optimization goal is typ-

ically twofold:

• design should be compact to minimize the number of SRF cavities.

• uncontrolled beam loss should be restricted below 1 W/m throughout the linac.
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As mentioned earlier, requirement of a cryo plant is inevitable in a superconducting

accelerator, which increases both capital and runtime cost of the design. A compact

design reduces the establishment cost of the linac in terms of the required number of

SRF cavities. Besides, an SRF linac with less number of cavities and less number of

cryomodules will also be expected to produce smaller static heat load. However, in the

case of a compact design, the dynamic heat load may appear as a point of concern, if one

sets large operating gradient in the RF cavities. Here, we want to mention that, in our

design, compactness is achieved mainly through efficient lattice design, and

simultaneously restricting the acceleration gradient to a nominal value used / reported by

the contemporary projects. Therefore, in this linac, it is expect that the dynamic heat

load will also be nominal, and the total heat load will be manageable with a typical cryo

plant used or planned to be used in the contemporary SRF accelerator laboratories /

projects. Our calculation shows that the total estimated heat load for this linac will be

less than 500 W, which is nominal. However, if required, this issue will be revisited

when we will complete the studies on the cryoplant requirement for our ISNS linac. In

the remaining of this section, we elaborate further on the motivation behind various

studies that have been targeted in this thesis, in order to achieve the two goals described

in the beginning of this sub-section:

• To realize a compact design, cavity geometry is optimized to enhance their

accelerating capabilities. However, the properties of the cavity material, such as

surface resistance, thermal conductivity and critical fields can also limit the

optimum electromagnetic performance of the cavity.

Therefore the first target was to perform the geometry optimization of the elliptic

cavities for improved electromagnetic performance.

• The cavity geometry was optimized for its fundamental mode, i.e., the mode that

has the lowest resonant frequency. However, in the cavity, some parasitic modes

can also be excited by the beam. These modes can act back on the beam and can
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add more heat load to the cryogenics.

Therefore, the next target of this research was to study the effects of these high

frequency parasitic modes.

• Apart from this, electromagnetic field developed in the cavity will also deform the

cavity shape. Due to this deformation, resonant frequency of the cavity is detuned

from the design frequency, and as a result, the RF cavity starts reflecting input

power.

Therefore, the third target of the research was to perform the analysis on the field

induced detuning, where the stiffness and tuning of the cavity assembly has been

optimized to take care of these issues.

• Breakdown of the superconducting properties of an SRF cavity material restricts the

electromagnetic performance of the cavity by limiting the peak magnetic field value

developed on inner surface of the cavity. Such breakdown is highly influenced by

the purity level of the superconducting cavity material.

Hence, the fourth target of the research work was to perform a rigorous magneto-

thermal analysis to study the effect of material purity on the limiting values of the

peak surface magnetic field.

• In a high power hadron linac, lost beam particle may induce long-lived radioactivity

in the machine, which may restrict the required hands on maintenance activities.

Therefore, the design should ensure that while operating the machine, beam loss

should be stringently limited below the allowable limit in the linac. A low beam

loss design requires a fine control on the dynamics of the beam.

• In order to meet these stringent beam dynamics criteria in the linac, rigorous anal-

yses should be performed on the single beam particle dynamics, as well as on their

collective motions, under the influence of the electromagnetic field of the RF cav-

ity and Coulombic repulsions acting between them.
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Hence, the fifth target of the research work was to perform rigorous beam dynamics

studies to evolve a low loss accelerator design of the proposed injector linac.

It is interesting to point out that in the linac, we will have H- ions, but in the accumulator

ring, there will be protons. It may be in order to briefly discuss the H- ions and its utility

in the SNS scheme.

1.5 A brief discussion on the negative hydrogen ion

Negative hydrogen ion or H- is a hydrogen anion, i.e., hydrogen atom with an extra

loosely bound electron in addition to its orbital electron. First theoretical proof of its

existence was provided by Hans A. Bethe [45]. Later the remarkable work of

Subrahmanyan Chandrasekhar on the description of stellar atmosphere based on H- ion

created an early interest on these ion species [50]. The ground state energy of a negative

hydrogen ion is around -14.36 eV, whereas, the loosely bound electron of an H- ion has a

small binding energy of around 0.75 eV. As such this electron is prone to leave the anion

under the effect of any electromagnetic field or even thermal radiation present in an

accelerator environment. Stripping of this loosely bound electron converts H- ion to a

neutral hydrogen atom, and hence, this process could be seemingly a major source of

beam loss in an H- accelerator.

Beam loss is extremely detrimental in a high power hadron machine because of the

probable hazards of the induced radioactivity. The use of H- ion beam has however an

advantage in the scheme of SNS, where the full energy beam from linac is injected to an

accumulator ring through multi-turn injection scheme.

In this injection scheme, four kicker magnets are used to shape the design beam orbit.

Kicker magnets are basically short pulsed dipole magnets with sharp rise and fall times.

As it is shown in Fig. 1.3, in the four kicker multi-turn injection scheme, both the
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injected and the stored beam pass through one of the kicker magnets (K2 here)

simultaneously. There, inside the dipole magnet K2, the H- and proton beams entering at

different inclinations are aligned by ensuring that the injected and stored beam receives a

kick in the opposite directions. This is possible, only when the injected and stored beam

are with opposite polarity. This precisely explains the reason for the compulsion to

accelerate H- ion beam in the linac. Once aligned, both H- and proton beam travel

together. Proton beam passes undisturbed. However, both electrons from the negative

hydrogen ion are detached by the stripper foil, converting it to a proton beam.

Figure 1.3: Four kicker injection scheme.

In this injection scheme, it is possible to control the phase space area of the beam

in a precise manner. This is because the charge exchange process is not a Hamiltonian

process. Therefore, Liouville’s theorem is not applicable here, and with the help of this

charge exchange process, we can perform multi-turn injection of beam slices in the proton

synchrotron, while keeping the phase space area of the beam under control. This scheme

was invented at the Institute of Nuclear Physics at Novosibirsk in Russia in 1960s [51].

As mentioned earlier, the dense microsecond long pulses of 1 GeV protons finally hit

the spallation target. In this process, called the high energy spallation, participants are the

1 GeV protons and the nuclei of the high Z spallation material. In the following section

briefly we will briefly discuss the spallation process.
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1.6 A note on the spallation process

The millisecond long beam pulse from the linac gets compressed about thousand (in

our case, 2000) times in the accumulator ring, and converted in to 1 GeV microsecond

long proton pulse. After extraction, such extremely dense proton pulse hits a spallation

target. The high velocity protons have very small de Broglie wavelength (λde Broglie). To

give an example, for the 1 GeV proton beam, speed v of an individual particle turns out to

be ∼ 0.875 c, where c is the speed of light. This corresponds to λde Broglie ∼ 0.1 fm. Due to

its small value of λde Broglie, an impinging proton interacts only with nearby nucleons. In

this way, the high speed proton starts transferring kinetic energy to few nucleons. These

nucleons immediately get ejected from their corresponding nuclei: amongst them there

are neutrons, which decide the yield of the spallation process. Typically, a 1 GeV proton

particle can yield about 23 neutrons [52]. However, as it is shown in Fig. 1.4, spallation

core goes through different stages like intra-nuclear cascade, pre-equilibrium stage, and

evaporation or fission [53] with time. Along with neutrons, in a nuclear spallation process,

the other products like Gamma-ray, π or µ-mesons are also produced.

Interestingly, yield produced by a proton in terms of the number of spallation neutrons

per unit energy, saturates nearly at 1 GeV energy. Although the number of spallation

neutron per proton increases proportionally with energy beyond 1 GeV, optimizing the

cost and operation complexities of the linac, conventionally, the output energy of the SNS

linac is kept around 1 GeV.

1.7 Beam loss in an H- linac

In a megawatt class hadron machine like ISNS, long-lived radio-activation of the

accelerator components [54] may be induced by the lost beam particles. To allow the

‘hands-on’ maintenance of accelerator after four hours of shut-down, residual
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Figure 1.4: Different stages of nuclear spallation.

radioactivity must be kept below the worldwide acceptable limit of 100 mrem/hr [54].

This corresponds to a strict allowable limit of 1 W/m average beam loss throughout the

machine for beam energies above 100 MeV [54], [55]. Not just that, for an accelerator

with long straight section (e.g., linac or the arm of the accumulator ring), even a more

stringent limit of 0.1 W/m is targeted in some circumstances. Figure 1.5 shows fractional

beam loss limit acceptable for our 1 GeV ISNS linac, which has been calculated

following Ref. [56].

Among different dominant loss mechanisms, stripping of loosely bound electron from

a negative hydrogen ion is the major part-taker in an H- linac. From literature review, we

have identified four dominant mechanisms, which are responsible for the stripping of H-

ions :

• One mechanism is ‘Lorentz stripping’, which is caused by the interaction of H−

ions with electric field in their rest frame [57].
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Figure 1.5: Maximum allowable fractional beam loss limit as a function of the beam
energy (broken red line) estimated considering a power loss of 0.1 W/m. Here we also
show the fractional loss due to intrabeam stripping (solid black line) obtained for the
ISNS linac. Fractional loss because of Lorentz stripping , is estimated < 10−12 for the
ISNS linac. It is therefore not shown here.

• Another one is binary collisions of H− ions in the beam bunch which is known as

the‘intra-beam stripping’ [56] [58]. (Also see the Appendix a)

• Interaction between H- ion and background photons in the beam frame, may cause

‘black-body radiation stripping’ [56], and

• also, especially in the poor vacuum condition, interaction of the residual gas with

H- may produce beam loss known as the ‘Residual gas stripping’ [56].

Analysis of beam stripping suggests some constraints, which need to be satisfied

during the beam optics design. For example, upper limit of the external focusing

magnets strength is chosen to ensure that there is no beam loss due to Lorentz stripping,

whereas beam loss due to intrabeam stripping restricts the lower limit of the beam size

(or beam emittance) [58].

As mentioned earlier, in the case of ‘Lorentz stripping’, electron in H- ions strip-off
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because of electric field in the beam frame, which is a rest frame for the ion. The

transverse magnetic field BLF of the external focusing magnet in the ‘lab frame’

transforms to transverse electric field E = βγcBLF in the ‘rest frame’ of the H- ion beam,

where β denotes the speed v of the ion in unit of the speed of light c, and

γ = 1/
√

(1 − β2) is the relativistic factor. In the presence of this field, life time τ0 of the

H− ions is given by the following equation [57] [59]:

τ0 =
A
E

exp
B
E
, (1.1)

Here A = 3.073 × 10−6 V.s/m, and B = 44.14 × 108 V/m. Using this equation, one

can obtain the fractional loss rate of H- ion beam as 1/(βcτLF). Here, τLF = γτ0 is the

lifetime H- ions in the lab frame. Accordingly, considering an allowable loss rate of 0.1

W/m, we have calculated the upper limit of the focusing magnetic field strength for our

1 MW injector linac, as a function of the beam energy which is shown in Fig. 1.6. Here,

it is noteworthy that Eq. (1.1) is applicable when the magnetic field is transverse to the

beam as in a quadrupole. Therefore, this formula is not directly applicable in the case of

solenoid magnets where the transverse magnetic field is dominant only near the edges.

As it appears in Fig. 1.6, in the medium and high energy (>100 MeV to 1 GeV) range

of the linac, tolerable values of the applied focusing field strength will vary from 0.5 T

to 2 T. In this calculation we have estimated the field limit as averaged over the lattice

length [57]. However, in a typical lattice, magnets occupy only 10 to 20 % of the lattice

length. Therefore, for the quadrupoles in the medium and high energy section, suitably

scaled up values of the limiting magnetic field will be 5 to 10 times the value shown in

Fig. 1.6.

In a more precise calculation of Lorentz stripping, one should also incorporate

electromagnetic field of the RF cavity along with field strengths of the external focusing

magnets. However, compared to the effect of focusing magnetic field, influence of this
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Figure 1.6: Maximum allowable focusing magnetic field strength, which is averaged over
a lattice period, as a function the beam energy. Calculation corresponds to the maximum
allowable fractional loss shown in Fig. 1.5.

RF field is insignificant [56]. It has been validated for the ISNS linac also1. The loss rate

due to residual gas stripping and blackbody radiation will be negligible for the ISNS

which is in line with the observation reported Ref. [56]. Issues related to the beam loss

will be revisited in the Chapter 6 after discussing the details of the lattice designed for

the injector linac.

Apart from beam stripping, space charge effect and beam instabilities are the other

two important issues in the design of a megawatt class accelerator, which can influence

the loss of beam particles. However, one can minimize the beam loss due to unwanted

resonances and non-linearites by an appropriate beam dynamics design [60].

1For ISNS linac, calculated beam loss corresponds to the Lorentz stripping influenced by the RF field,
is (∼ 10−18 W/m).
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Chapter 2

Electromagnetic design of medium and

high β elliptic Superconducting Radio-

Frequency (SRF) cavity

In the contemporary times, Superconducting Radio Frequency (SRF) cavities have

become an essential choice for high-energy, high-power particle accelerators

[31], [34], [61], owing to their several advantages over normal conducting cavities - such

as less Ohmic dissipation on the inner surface of the cavity wall, and the possibility of

operating at larger beam aperture radius, which allows higher beam current to be

accelerated [62]. Here, we will discuss an optimization recipe that we have developed

for the design and optimization of a multicell elliptic SRF cavity [61]. Following this

methodology, we have designed three families of elliptic SRF cavities for medium and

high energy section of the ISNS linac [41]. In this step-by-step one-dimensional (1D)

optimization recipe, maximum achievable value of the acceleration gradient Eacc is

ensured in the cavity by varying its geometric parameters.

In this chapter, first, we will discuss the procedure followed for the design optimization

of the mid-cells in a multicell cavity, where the principal aim is to maximize Eacc. Then
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the end-cell geometry will be optimized. There, the issue like maximization of field

flatness ηF in the multi-cell geometry becomes important.

The geometry will be optimized under the constraint imposed on the peak value of the

electric and magnetic field on the cavity surface. Peak value of the surface electric field

Epk should be restricted to 40 MV m-1 [63] for a 650 MHz niobium cavity, whereas the

peak value of the surface magnetic field Bpk should be kept below 70 mT [64]1. Before

we start detailed discussion on the electromagnetic design optimization of the cavity,

we will describe some general considerations like energy gain of a particle and some

important figures of merit, which are commonly used to characterize an RF cavity, in the

next section [65], [66].

2.1 Energy gain and other considerations in SRF cavities

2.1.1 Energy gain in an RF cavity

We can categorize the resonating electromagnetic modes into two classes [65] for a

cylindrically symmetric cavity structure:

• Transverse electric (TE) like mode: typically these modes have no parallel electric

field components along the axis of the cavity and

• Transverse magnetic (TM) like mode: field configuration of these modes typically

demonstrates no parallel magnetic field components along the cavity axis.

However, at the iris location or near both the ends of the cavity, where the beam pipe is

attached, both TE and TM like modes show finite non-zero parallel component of electric

and magnetic field respectively.

Generally these cavities are operated in their fundamental mode to provide acceleration

to the beam particles. In the fundamental mode configuration, electric field develops

mostly along the axial direction of the cavity and magnetic field lines encircle the cavity
1This is a conservative limit, and we will show in Chapter 5, it can go even up to 90 mT.
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axis, maintaining an azimuthal symmetry. Electromagnetic mode in this particular field

configuration is known as TM010 mode. The on-axis particles gain energy from the axial

electric field component Ez(r = 0, z, t) of the mode. Energy gain of an on-axis beam

particle from the electromagnetic field of a cavity can be calculated as follows [65]:

∆W = q

s2∫
s1

Ez(0, z, t)dz = q

s2∫
s1

Ez(0, z) cos (ωt + φ1)dz

= q

s2∫
s1

Ez(0, z) [cos ωtcos φ1 − sin ωtsin φ1]dz,

(2.1)

where, s1 is the initial position of the particle at a time t = 0 and s2 is the final position,

φ1 denotes the phase of the oscillating electromagnetic field in the cavity at t = 0. In

the above equation, ω = 2π fc denotes angular frequency of an electromagnetic mode

resonating with a frequency fc. We can derive the following parameter called transit time

factor T [65] from the above equation as:

T =

s2∫
s1

Ez(0, z) cos ωt(z) dz

s2∫
s1

Ez(0, z) dz
− tan φ1

s2∫
s1

Ez(0, z) sin ωt(z) dz

s2∫
s1

Ez(0, z) dz
. (2.2)

In fact, the transit time factor T can be considered as a scale factor denoting the ratio

between the reduced energy gain from the oscillating (RF) field and the constant energy

gain from an equivalent DC field.

In Eq. 2.1, if we choose s1 and s2 as the starting and end position of a cavity, we can

express it in a compact form as ∆W = qE0T L cos φ1. This is the Panofsky equation,

where E0 =
1
L

s2∫
s1

|Ez(0, z)|dz denotes average axial electric field and L = (s2 − s1) is the

length of the cavity. Equation 2.1 can be simplified imposing an additional condition that

the corresponding particle arrives at the middle of the cavity at the time t = 0. In that

special circumstance, that particular value of φ1 in the equation, is denoted as φs, i.e., the

synchronous phase. In an RF cavity, φs indicates the phase of the electromagnetic mode,
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when the synchronous particle arrives at the cavity centre.

According to the Panofsky equation, the maximum energy gain of a particle of unit

charge depends on the average axial electric field of an RF cavity and the transit-time

factor. Here, the product E0T gives an estimation of the energy gain of a particle traversing

unit length in an RF cavity. This product is denoted as the accelerating gradient Eacc. If we

want to set a particular Eacc, it leads to a certain amount of Ohmic heat dissipation on the

inner surface of the cavity. The amount of heat dessipated is proportional to the surface

resistance Rs of the cavity material. Although unwanted, such dissipation is unavoidable

while setting up an electromagnetic mode in the cavity.

Now, the average power dissipation Pc to set up an electromagnetic mode in the cavity

can be calculated as Pc =
Rs

2

∫
S

H2
||

da, where H|| is the amplitude of the tangential

magnetic field on a small elementary area da on the cavity wall and the integration is

carried over the entire inner wall of the cavity. In fact heat dissipation is a limiter in the

case of a high-gradient, high-duty factor operation of normal conducting cavity and in

the case of an SRF cavity, it leads to a cryogenic load. From that point of view, the

amount of Pc generates the primary specification for the cryo-plant, which is essential

for the operation of a superconducting accelerator.

2.1.2 Figures of merit to characterize an RF cavity

Here, we discuss some important figures of merit, which we commonly use to charac-

terize the electromagnetic performance of an RF cavity [65].

1. Quality factor Q0: This parameter decides the amount of Ohmic loss Pc of an

unloaded cavity, and is expressed as

Q0 =
ωU
Pc

. (2.3)

For a particular electromagnetic mode, energy stored in the cavity volume is
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denoted by U =
µ0

2

∫
V

H2(r, t) dV where, H is the amplitude of magnetic field at

the location r in the cavity.

2. (Effective) shunt impedance R: It is a measure of the effective voltage V0 = E0LT

developed on the axis of an RF cavity for a given value of Ohmic dissipation on the

cavity wall and is defined as

R =
V2

0

Pc
. (2.4)

3. R/Q factor: The shunt impedance and the quality factor together give another im-

portant figure of merit for the cavity which is

R
Q0

=
(E0LT )2

ωU
. (2.5)

It is a measure of the efficiency of acceleration per unit stored energy U of an

electromagnetic mode resonating at an angular frequency ω. Interestingly, this ratio

depends only on the cavity geometry. Material property of the cavity wall has no

influence on R/Q0 of a cavity.

4. Geometry factor G: Geometry factor of a cavity is defined as G = RsQ0. This

figure of merit also depends solely on the cavity geometry. In order to produce a

cavity voltage V0, the amount of heat dissipated on the cavity surface, is

proportional to G × (R/Q0).

In a multicell cavity, depending on the number of cells, several other normal modes

with nearby frequencies are possible, that follow the same field pattern in each cell along

with the mode resonating with desired operating frequency. Normal modes decide the

overall field pattern along the length of a multicell cavity. For an electromagnetic

resonant mode in the multicell geometry, the parameter called pass band depends on the

frequency span of these normal modes. Interestingly, the shunt impedance R of a

fundamental normal mode in the case of a multicell cavity is maximum for the π mode,

where the adjacent cells of a multicell geometry show a phase shift of π in their
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electromagnetic oscillation. Therefore, the cell length along beam axis is kept equal to

βλ/2 to maintain proper synchronization between the beam and the RF electromagnetic

field in the cavity operating in the π mode configuration. Here, β = v/c is the speed v of

the beam particle scaled by the speed of light c, and λ is the free space wavelength of RF.

Ideally, cell length of a multicell cavity should vary continuously to maintain perfect

synchronism between RF field and the beam particle as the beam traverses through and

gets accelerated2. However, in practice, often a limited sets of these multicell cavities

are planned to reduce the complexities associated with the fabrication of a large number

of dissimilar set of cavties. In a linac section designed for a range of energy, several

cavities with identical geometry are used. The cell-length of the cavities for each set

and the required number of sets are optimized to minimize the total number of cavities

in the linac. For a particular set of cavity, the optimized cell length is defined as βgλ/2

in the TM010-π mode of operation where βg is called the geometric beta of the cavity.

Such cavity will offer maximum synchronization, only when the beam particle attains a

velocity β = βg, and the particle in that case will gain nearly the maximum energy. In a

more precise sense, energy gain of a particle in the cavity will be maximum at a beta value

called βopt which is slightly greater than this βg. This deviation reduces with an increasing

number of cells in the cavity N as [67]

βopt = βg + βg
6

π2 × N2 .
(2.6)

Accordingly, for a 5 cell cavity, βopt ≈ 1.024× βg, and because of this small deviation, we

have considered βopt ≈ βg in this thesis.

2.1.3 Design constraints and the other generalities

Based on several considerations like availability of the RF power source, past

2This indeed happens in RFQ as well as in Drift Tube Linac (DTL).
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experiences and continuing collaborations with contemporary projects etc., operating

frequency of these medium and high β SRF elliptic cavities is chosen as 650 MHz for the

ISNS injector linac. We have adopted the typical TESLA type cavity [61] shape as the

base geometry for the further design optimization work. As mentioned in the last

chapter, in this design optimization work, we must follow the two design constraints -

the first one on the peak value of the surface electric field imposed by the field emission

consideration, and the second one on the peak value of the surface magnetic field

imposed by the consideration of the breakdown of superconductivity of the material.

In the next section, we will describe our methodology developed for the

electromagnetic design optimization of a multicell elliptic SRF cavity.

2.2 Parametrization of a TESLA type geometry and its

geometry optimization

2.2.1 TESLA shape in terms of seven independent parameters

For a cavity with multicell geometry, end cells have slightly different geometry

compared to the inner cells. Inner cells are identical to each other and they are called

mid-cells. As mentioned earlier, TESLA type cavity shape is adopted as the base

geometry for this optimization work. Figure 2.1 shows the 2D schematic of a typical

TESLA half-cell, which is evolved by joining two elliptic arcs with their common

tangent. The three-dimensional cavity shape is a figure of revolution around the beam

axis, obtained using the contour shown in Fig. 2.1. Following the conventional

nomenclature associated with the TESLA shape, the geometry of a TESLA half-cell is

described by the following seven independent parameters- iris radius Riris, iris ellipse

radii a and b, equator ellipse radii A and B, equator radius Req, and half-cell length L.

There, the wall angle α can be derived from these seven parameters.
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In the following six points, we summarize the correlation between the electromagnetic

performance and the geometry of the cavity [61]:

1. As mentioned, these multicell elliptic SRF cavities will be operated in a TM010-π

like standing-wave mode. There the cell length of the cavity should be equal to

βgλ/2 to satisfy synchronism between field of the electromagnetic mode and the

traversing beam particles. Hence, for these cavities the half-cell length L = βgλ/2

is a fixed quantity. Here, we want to mention the following important point. In a

hypothetical case, where one can consider a cavity comprising an array of infinite

number of identical cells, axial electric field developed in the TM010-π mode will be

perfectly confined within the cell itself. Then only, the axial electric field E0 can be

obtained from the equation E0 =
s2∫

s1

|Ez(0, z)|dz/L, as mentioned earlier. However,

cell numbers are finite in a real cavity, and there, the electromagnetic field of a mode

penetrates up to some depth in to the beam pipe from the cavity. Hence, there, the

accurate value of E0 can be calculated only integrating over the total length of the

field map, and that includes beam pipe lengths up to which the field is non-zero,

along with the cavity length L.

2. Beam dynamics considerations and the requirement of a descent cell-to-cell

coupling κc are the two major factors, which should be considered, while deciding

the dimension of Riris. In fact, higher value of Riris lessens the effect of HOMs and

wake-field, and gives a higher value of κc. On the other hand, such choice results a

reduction in the shunt impedance of the fundamental accelerating mode, and as a

consequence, maximum achievable accelerating gradient gets reduced.

3. As it is shown in Fig. 2.1, the slope α and the location of the common tangential

wall influence the ratio of the volumes of different cavity regions - one of them is

the equatorial dome, and the other is the iris region. Amongst, in the TM010-π

mode configuration, equatorial region of an elliptic cavity prominently stores

magnetic energy, whereas the iris region prominently stores electric energy. The
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wall slope α has a minor influence on the cell-to-cell coupling, but such influence

can significantly control the electric and magnetic peak fields on the cavity surface.

4. The ratio a/b has a strong influence in deciding the parameter Epk/Eacc. Therefore,

aiming at a maximum achievable acceleration gradient in the cavity, a/b is

optimized to minimize the parameter Bpk/Eacc for a targeted value of Epk/Eacc.

5. The equatorial contour of the cavity is defined by the parameter A and B, and is

optimized in order to reduce the peak magnetic field value. As it is observed [61],

the ratio A/B has nearly no effect on the electromagnetic performance of the cavity.

However, the same A/B ratio has strong influence on the mechanical requirements

of the cavity like stiffness, rigidity etc.

6. In our optimization work, we use the parameter Req to tune the cavity frequency.

We observe that the adjustment in the length of Req dose not effect either the

electromagnetic characteristics of the cavity or its mechanical properties. Perhaps,

it is because the effect of this adjustment is concurrently compensated by the

corresponding change in the value of A and B.

Figure 2.1 explictly shows these seven independent parameters that describe a tesla

type cavirt geometry. As it is discussed above, out of these seven independent parameters,

L is fixed. For a multicell cavity, Riris plays an important role in deciding κc. However, the

optimization of Riris will be presented in the later part of this chapter. We will describe

the preliminary part of this design recipe, considering a constant value of Riris . In our

simulation, Req was tuned to achieve the resonant frequency. Therefore, primarily we are

left with four independent geometric parameters to consider, while optimizing the cavity

geometry.

Based on a thorough review of the existing literature, we find that there are two types

approaches for cavity optimizations:

1. One can go for an optimization, targeting for maximum achievable Eacc in the cavity

geometry, which will optimize capital cost of an accelerator, or
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Figure 2.1: Two dimensional schematic of the half-cell geometry of a TESLA type elliptic
cavity.

2. The cavity geometry can be optimized by minimizing the power loss on the cavity

wall. This approach will optimize the run-time or operational cost as these cavities

will produce less heat load to the cryo-plant.

Issues involved in each of these approaches are discussed in the following subsection.

2.2.2 Approach followed for the geometry optimization of TESLA

type elliptic cavity

First, we discuss the issues involved in optimizing the acceleration gradient. For an

SRF cavity, optimization for the maximum achievable acceleration gradient is performed,

considering the constraints imposed on the peak value of the electric field and magnetic

field at the cavity surface. Therefore, here Eacc is limited by the maximum value of Bpk

developed on the inner surface of the cavity wall. As discussed earlier, maximum value

of Bpk should always be less than a specified value to avoid significant drop in the cavity

quality factor. This is the hard limit [66]. As it is mentioned earlier, for a 650 MHz

niobium made SRF cavity, a safe value for the Bpk can be typically taken as 70 mT. Also
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from field emission consideration, the maximum value of Epk on the cavity surface is

typically limited to 40 MV m-1. However, the maximum tolerable value of Epk can be

enhanced considerably, improving the surface finish and cleanliness of the cavity wall,

as well as, following an appropriate surface processing technique. This limit is therefore

called the soft limit. Here, we want to mention that the upper limit for Bpk = 70 mT

is of course a safe value, but it may be found as a little conservative one. In the recent

tests of 650 MHz cavities at FNL and 644 MHz cavities at MSU, it has been shown that

it is possible to push this Bpk value, even beyond 90 mT [68], [69]. In fact, we have

also obtained the similar result even theoretically through a rigorous magneto-thermal

analysis, which will be described in Chapter 5. With enhancement in upper limit of Bpk,

we should be able to operate the cavity at higher acceleration gradient, if required. This

will be particularly helpful, if we need to operate a cavity at higher gradient, in case of

failure of adjacent cavity in that period.

Another aim of such optimization may be to minimize the power loss Pc on the cavity

wall. As it is shown in Eq. 2.7, by maximizing the parameter G(R/Q0), we can minimize

Pc [70]. This power loss which can be expressed in terms of G and R/Q0 is as follows:

Pc =
V2

0

R
=

V2
0 × Rs

G(R/Q0)
. (2.7)

Therefore, we need to maximize the parameter G(R/Q0) to minimize the power loss Pc.

As it is reported in the literature, these are the two approaches followed for

optimization of the electromagnetic performance of an SRF cavity, especially the mid

cell geometry. As mentioned earlier, the end cell has some added issues to be considered.

The procedure that we have developed, performs the optimization, aiming at maximum

achievable acceleration gradient. However, finally we will show that the geometry

optimized following our methodology is moderately optimized, even for the minimum

power loss.
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In an RF cavity, the peak value of the electric field and the peak value of the magnetic

field typically follow an inverse relation, i.e., if we perturb the geometry to decrease

the peak value of the magnetic field, the peak electric field increases. Hence, a higher

accelerating gradient can be achieved for a relatively low Bpk on the cavity surface, if one

is ready to tolerate more Epk in the geometry and vice versa. Therefore, following our

design recipe, the cavity geometry will be optimized to minimize the value of Bpk/Eacc

below (Epk,max/Bpk,max) × (Epk/Eacc) for the targeted value of Epk/Eacc.

In the next subsection, we describe the geometry optimization of an SRF cavity mid-

cell for a maximum achievable Eacc under the constraint imposed on the peak field values

as we have discussed. Using this optimization technique, three sets of 5-cell 650-MHz

elliptic cavities has been designed for the medium and high energy section of the ISNS

linac. For the medium energy section, βg = 0.61 cavity will be used and for the high

energy section, we have the options to choose from either βg = 0.81 or βg = 0.9 cavity

geometry. Later, in Chapter 6, we will discuss how we choose these βg values.

2.3 Geometry optimization of an elliptic cavity midcell

We designed three sets of elliptic cavities, following the methodology that we have de-

veloped. Therefore, while describing different steps of this designed recipe, the reference

will be drawn from the respective cavity sets, where it can be best explained.

As it is descibed, half-cell length L = βgλ/4 is a fixed parameter for the TM010-π mode.

Therefore, for βg = 0.61, βg = 0.81 and βg = 0.9, 650-MHz SRF cavities, L is equal to

70.336 mm, 93.400 mm and 103.77 mm, respectively. In this chapter, first, we explain

our optimization of the mid-cell geometry for a fixed value of Riris = 44.000 mm, and the

optimization of Riris wil be presented in detail in the later part of this chapter. We set the

targeted value of Epk/Eacc ≤ 2.36 for the βg = 0.61 cavity. This choice should give an

accelerating gradient of ∼16.95 MV m-1 under the constraint condition of Epk ≤ 40 MV
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m-1, provided the Bpk is below the maximum allowable value. As mentioned earlier, we

kept the maximum allowable value of the sufrace magnetic field as 70 mT. Under similar

conditions, a maximum of 18.6 and 20 MV m-1 can be achieved for the accelerating

gradient in the βg = 0.81 and βg = 0.9 cavities for the targeted values of Epk/Eacc = 2.17

and 2.25, respectively.

Next, we explain the design recipe for the optimization of mid-cell geometry, refering

to the results we have obtained for βg = 0.61 cavity. The starting geometry is the

simplest one, where a/b = A/B = 1, and α = 880. We would like to mention here, that

the value of α is chosen based on the cavity fabrication experiences from the

contemporary projects. This is because the upper limit of α appears as a mechanical

constraint from cavity fabrication and cavity processing (chemical cleaning) point of

view. Only one independent variable will then remain with these three constraints

imposed on a/b, A/B and α. Hence, we choose B as ‘that’ independent variable. We

have performed these simulations using a two-dimensional (2 D) electromagnetic

eigenmode solver SUPERFISH [71]. In Fig. 2.2, values of Bpk/Eacc and Epk/Eacc are

plotted as a function of B. We have started these calculations from B ≈ L/2. Such choice

also sets the remaining optimization parameters A, a and b ≈ L/2, thus the initial

geometry turns out to be as the simplest TESLA type elliptical cavity geometry that one

can imagine. As shown in Fig. 2.2, initially, at B ≈ 40 mm, the corresponding value of

Bpk/Eacc is ∼ 5.5 mT/ (MV m-1) which is high, whereas the corresponding value of

Epk/Eacc is moderate there(∼ 2.8). Since the magnetic volume of the cavity enhances

with a concurrent increase in the values of B and A, the ratio Bpk/Eacc decreases steadily,

as we progress along the horizontal axis in the plot. This happens up to B ∼ 55 mm, with

a trivial increment in the value of Epk/Eacc. Infact the values of Bpk/Eacc continue to

decrease gradually beyond this point also, but, there the Epk/Eacc values starts increasing

significantly. Based on this observation, we stop at A = B = 55.550 mm, and we note the

respective values of Epk/Eacc and Bpk/Eacc as ∼ 2.9 and ∼ 4.31 mT/( MV m-1),

respectively, which shows that we are approaching close to our targeted values.

31



Therefore, fixing the value of B = 55.550 mm, we choose the geometry for further

optimization. We are now left only with two independent variables A and a/b.

Figure 2.2: For the βg = 0.61 cavity, variation of Bpk/Eacc, as well as Epk/Eacc as a
function of B, where, a/b = A/B = 1 and α = 880.

Here, we want to emphasize that our initial optimization was started with four

variables a, b, A and B. However, we chose the parameter B, and fixed its value. It is

based on our observation that, up to the chosen limit, B has the minimum influence on

the ratio of Bpk/Eacc and Epk/Eacc of the cavity among these four parameters. This is

probably because while changing B, the value of Req was adjusted simultaneously to

keep the resonant frequency of the cavity unchanged. As an overall effect, the equatorial

volume of the cavity geometry was not significantly affected by the change in the

parameter B. As mentioned, we choose α as a constraint. Then to fulfil that target, a

wrapper code was developed to generate the geometry of a cavity mid-cell, ensuring the

‘constant wall slope’ criteria by adjusting a and b, when we change the parameter B as

well as Req. The wrapper code was developed using C-programming language.

In fact, from a given set of inputs describing the parametric geometry of an elliptical

half-cell / cavity, the code SUPERFISH has an inbuilt module to generate the required
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geometric input file of an elliptical half-cell or the half cavity for its own eigen mode

solver. This module also provides a few parametric options to optimize the conventional

geometry of the cavity. However, these options are limited in number. In order to address

this concern, our wrapper code helps us to generate the geometry file of an elliptic half-

cell /cavity for the eigen mode solver of SUPERFISH in a more customized manner with

additional flexibilities. As an example, if we want to generate the geometric input file in

the case, where, only the length of the end half-cells, will be changed keeping the ratios of

a/b a A/B as well as the iris and equatorial radius constant throughout the cavity, options

given in the SUPERFISH module will not be good enough. However, this type geometry

can be easily generated using this wrapper code.

We have described the geometry optimization, considering α = 880 in the above

discussions. As mentioned earlier, cavity fabrication, mechanical strength of the cavity

and other considerations like cavity cleaning, put a limit on the maximum value of α,

which was chosen as 880, based on the practical experience and a thorough literature

review [37]. However, in the later part of this chapter, we will show that the

electromagnetic performance of the cavity improves with increasing value of α.

We have targeted the value of Epk/Eacc = 2.36 to obtain the desired accelerating

gradient, and at this stage of the simulation, we are close to it. Therefore, the next steps

of our optimizations were performed to minimize the value of Bpk/Eacc imposing a

constraint on the value of Epk/Eacc = 2.36.

Second stage of our optimization was performed by calculating the values of Epk/Eacc

as a function of the parameter A for a wide range of values of a/b varying between 0.2

and 1. From simulations, we have observed the monotonically increasing nature of

Epk/Eacc with A, for each value of a/b. However, the trend was opposite in the case of

Bpk/Eacc as a function of A. These trends of Epk/Eacc and Bpk/Eacc as a function of A are

shown in Fig. 2.3 for a narrow range of a/b between 0.51 to 0.56. We have performed

the calculation over a wide range of a/b values. However, in the figure, we show the
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results only for this narrow range, because the parameters of our optimized geometry are

anticipated to be lying in between these values. From Fig. 2.3(a), we choose those

particular values of A for each a/b value, which gives the target value of our

Epk/Eacc = 2.36. In fact, in this process, we choose a set of cavity geometries, each

having their corresponding value of a/b and A, and for which Epk/Eacc = 2.36. Amongst

all these geometries, the better one should correspond to the minimum value of Bpk/Eacc.

Therefore, we calculate the corresponding values of Bpk/Eacc for each of these

geometries from Fig. 2.3(b). In Fig. 2.4(a) and Fig. 2.4(b) we plot the corresponding

values of Bpk/Eacc of each geometry as a function of A and a/b. Note that, these data

points as shown in Fig. 2.4, are obtained considering the additional constraint of

Epk/Eacc = 2.36. Therefore, unlike Fig. 2.3(b), here the variation of Bpk/Eacc is

non-monotonic.

From Fig. 2.4, we choose the final optimized mid-cell geometry, which corresponds to

the minimum value of Bpk/Eacc = 4.56 mT/ (MV m-1). Importantly, this value of Bpk/Eacc

limits the value of achievable Eacc to 15.35 MV m-1 in this geometry, for the maximum

peak surface magnetic field value of 70 mT. This gradient is less than the targeted value

of 16.95 MV m-1, which was mentioned earlier. In this geometry, Epk/Eacc = 2.36, which

indicates that for the maximum peak surface electric field of 40 MV m-1, we can reach

a gradient of 16.95 MV m-1. However, in that case, exceeding the allowable limit of 70

mT, magnetic peak field value on the cavity surface, will reach a value of ∼77.29 mT. In

this optimized mid-cell geometry, A = 52.640 mm and a/b = 0.53. For α = 880, this

geometry corresponds to a = 15.280 mm and b = 28.830 mm. Optimized geometric

parameters of the βg = 0.61, 650-MHz cavity mid cell is summarized in Table 2.1, and

the corresponding RF parameters (for the TM010-π mode) are specified in Table 2.2. As

mentioned earlier, these values are obtained using the 2D electromagnetic design code

SUPERFISH [71].

We conclude this discussion on the mid-cell geometry optimization describing an
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Figure 2.3: For the βg = 0.61 cavity, variation of (a) Epk/Eacc and (b) Bpk/Eacc as a
function of A. In these simulations, the parameter B is kept fixed at 55.550 m for the
βg = 0.61 cavity. Here, α = 880,

interesting observation noticed in the plot of Epk/Eacc as a function of a/b for different

values of A as shown in Fig. 2.5. As it is observed there, we can identify an optimum

value of a/b for each value of A for which Epk/Eacc shows a minimum. Interestingly, the

distribution of the electric field on the cavity surface (Es) becomes more uniform near
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Figure 2.4: Plotting of Bpk/Eacc (a) as a function of A and (b) as a function of a/b for the
βg = 0.61 cavity. For each of these points, Epk/Eacc = 2.36. Data for plotting these curves
are taken from Fig. 2.3.

the iris region of the cavity when such minimum occurs. This is explicitly shown in

Fig. 2.6. There we have plotted the value of Es/Eacc along the cavity length. In this

figure z = 0 indicates equatorial plane of the cavity. This observation justifies the

selection of a/b as an optimization parameter.
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Table 2.1: Geometrical parameters for the optimized mid-cell geometry of the βg = 0.61
cavity.

Parameter Magnitude Unit
Riris 44.000 mm
Req 195.59 mm
L 70.336 mm
A 52.640 mm
B 55.550 mm
a 15.280 mm
b 28.830 mm
α 88.0000

Table 2.2: RF parameters for the optimized mid half cell in the TM010−π mode for the
optimized βg = 0.61 cavity. These values are calculated considering Rs = 10 n Ω.

RF Parameter Magnitude Unit
Frequency 650.0 MHz

Transit-time factor(T) 0.7675
Q0 1.332 × 1010

RsQ0(Geometry Factor) 189.0 Ω

R/Q0 32.66 Ω

Epk/Eacc 2.355
Bpk/Eacc 4.560 mT/[MV/m]

Eacc 15.40 MV/m

Figure 2.5: Variation of Epk/Eacc as a function of a/b for different values of A for the
βg = 0.61 cavity. Note that B=55.550 mm in this figure.

37



Figure 2.6: Plotting of Es/Eacc as a function of z, where, the solid line corresponds to
a/b = 0.53, for which Epk/Eacc shows the minima in a βg = 0.61 cavity geometry. Here,
the other two curves are for a/b = 0.55 and 0.51 respectively, which peak at higher value
of Es/Eacc, and z = 0 corresponds to the equator plane.

In reality, for most of the cases, these cavities are comprised of multiple cells. Issues

related to the multicell elliptic SRF cavity geometry are discussed in the next section.

2.4 Some aspects of multicell elliptic SRF cavities

Typically the multicell SRF cavities are used in a superconducting accelerator.

Multicell cavities are more efficient because compared to a single cell cavity, here, we

can obtain a higher value of the real estate or effective acceleration gradient. The

primary parameter that needs to be decided in the case of multicell cavity geometry is

the number of cells N in the cavity. This decision depends on several considerations.

Among these, one consideration is the transit time factor T , which strongly affects

energy gain ∆W obtained from a cavity. As discussed earlier, beam particle of velocity v

(= βc) will gain maximum energy from a cavity when β = βg. However, the β of the

particle changes with acceleration along the length of the cavity. Dependence of T on β
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is described by the following equation [57]:

T (N, β, βg) =



(
β

βg

)2

cos
(
πN

2β/βg

)
(−1)(N−1)/2

N
(
(β/βg)2 − 1

) where N =odd(
β

βg

)2

sin
(
πN

2β/βg

)
(−1)(N+2)/2

N
(
(β/βg)2 − 1

) where N =even,
(2.8)

Functional dependence of T on the normalized parameter β/βg is shown in Fig. 2.7 for

the βg = 0.61 cavities for different number of cells N. As mentioned earlier, these cavities

will be used in the approximate energy range between 160 MeV to 500 MeV in the ISNS

linac. This energy range will correspond to a range of β from 0.51 to 0.76, which is

between the two vertical lines shown in Fig. 2.7. As it is shown in Fig. 2.7, the transit

time factor is mostly greater than 0.7 within this selected range of β/βg. It will be the case

if we choose the number of cells N ≤ 5 in the βg = 0.61, 0.81 and 0.9 650-MHz SRF

elliptic cavities.

Figure 2.7: Variation of transit time factor T with the normalized parameter (β/βg) for the
5 cell, βg = 0.61 cavity. The two vertical lines correspond to β/βg = 0.85 and 1.27, which
is explained in the text on the context of βg = 0.61 multicell cavities.

Another important consideration in the cavity arises from the requirement of good field

flatness while deciding the number cells per cavity. Field flatness η for a multicell cavity
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is defined as follows [72]:

η =

(
1 −

σE

µ

)
. (2.9)

where, σE is the standard deviation of the maximum values of the electric field

amplitudes in different cells, and µ is the mean value calculated from these maximum

values of the electric field amplitudes. Field flatness is an important figure of merit of a

multicell cavity. In a cavity with poor field flatness, the cell with higher electric field

may quench or field emit first, even in a relatively low overall gradient of the cavity. The

synchronization between the particle and the electromagnetic wave may also be affected

by the poor field flatness.Thus, the field flatness plays a decisive role in the maximum

achievable acceleration gradient of a multicell cavity geometry. A maximum value of η

close to unity is therefore always desirable for a multicell cavity geometry. In addition to

this, the external quality factor of a power coupler may also be affected by a poor filed

flatness.

In principle, for a cavity with an infinite array of perfectly identical cells, or for a cavity

with finite number of perfectly matched cell, η should not depend on the cell number.

However, in the presence of manufacturing errors in the individual cell geometries, the

field flatness becomes a strong function of the number of cells N in a cavity, and κc, i. e.,

the cell-to-cell coupling coefficient, as [73]

(1 − η) ∝
σ f

f
1
kc

N2. (2.10)

Here, σ f / f denotes relative rms error in the resonant frequency of different cells, and

achievable tolerance on the cavity dimensions in the cavity manufacturing process decides

the quantity σ f / f . For a cavity with N number of cells, and for a known achievable value

of σ f / f , Eq. 2.10 shows that the coupling coefficient κc will decide the field flatness η.

Therefore, for further calculation, first, let us obtain an approximate estimation of the

value of κc is shown in Table 2.3, calculated from the 0 and π mode frequencies of a

cavity mid cell: As it is mentioned in the literature, cell-to-cell coupling κc = 1.87%
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Table 2.3: Calculation for the cell-to-cell coupling coefficient κc for the βg = 0.61 cavity.
Mode Resonant frequency (MHz) Cell-to-cell coupling coefficient
π fπ=650.00

κc = 2 ×
( fπ − f0)
fπ + f0

× 100 = 0.892%
0 f0=644.23

for a nine-cell 1.3-GHz TESLA cavity geometry, for which, an acceptable value of field

flatness is achieved [61], [66]. Assuming that a similar value of σ f / f is obtainable,

following similar machining and cavity processing techniques, we anticipate similar field

flatness (as it is reported in the case of a 9-cell TESLA cavity) for our elliptical cavities,

if we choose N = 9× (0.892/1.87)0.5 ≤ 6 number of cells per cavity. On the safer side, we

limit the number of cells in a cavity to 5 in our design. In this regard, more justifications

will be given later, when we discuss optimization of the iris radius.

Power handling capacity of the input power coupler is another consideration that influ-

ences the choice of the number of cells in a multicell cavity. In the medium and high en-

ergy section of the ISNS linac, beam will consume up to 200 kW of peak RF power from

a 5-cell cavity. This can be supplied by the commonly used power couplers designed for

the SRF cavities without hindrance [74].

Based on the above considerations, we opt for five cells in the elliptic cavities which

will be used in the medium and high energy section of the proposed ISNS linac.

As mentioned, the terminal cells are known as end-cells in a multicell cavity geometry.

Compared to the midcell geometry, end-cells are slightly different. In the next section, we

will discuss electromagnetic design optimization of the end-cell geometry.

2.5 Optimization of the end cell-geometry

End-cells does not see symmetric boundary conditions at the two ends in a multicell

cavity geometry. This is because, there are mid-cells at one end of an end-cell, and beam

pipe on the other end. Hence, electromagnetic field terminates at the two ends
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differently, even in the π mode. Therefore, if we take end-cell geometry exactly the same

as the mid-cell geometry, cavity will resonate at a slightly different frequency and some

more optimization steps become necessary to restore the resonant frequency to the

design frequency.

In addition to this restoration of the resonant frequency, another important

consideration for the end-cells is to ensure that none of the prominent higher order mode

gets trapped within the multicell geometry. Therefore, further optimization is required to

take care of the trapped mode in the end cell geometry, and this will be discussed in the

next chapter. In this chapter, we focus on the primary optimization of the end-cell

geometry, aiming at the frequency restoration.

Not only the overall resonant frequency of the cavity, but the resonant frequency of the

individual end-cell will also be deviated from the design frequency of the cavity, if we

use the geometry of an end-cell, exactly the same as the mid-cell geometry. An unequal

accelerating gradient may appear in the consecutive accelerating cells as a consequence

of such deviation in the resonant frequency. Therefore, restoration of the frequency is

also necessary to achieve good field flatness in the cavity. For the optimization of end-cell

geometry, our starting geometry is same as that of our optimized mid-cell. As shown

in Fig. 2.8, one side of the end-cell is connected to the beam pipe. In this geometry, we

modify only the half of the cell towards beam pipe end, keeping the other half undisturbed.

To tune the mid-cell geometry Req was made to vary. However, this process is not suitable

here. In fact, a fixed Req is a constraint here, because both the half-cells of the end-cell

should have the same Req. Another possibility is to tune the length of the end-half cell

Le, which is performed here to restore the design frequency (i.e. the mid-cell frequency)

in the end-cell. Following this technique, we found that the design frequency 650-MHz

is restored with an elongated end-half cell length Le = 71.550 mm in the βg = 0.61

cavity. However, in comparison to the mid cell, the change in the end-cell is small and

does not affect the synchronism condition. As it is mentioned earlier, the field flatness
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Figure 2.8: Geometry of the end-cell for the βg = 0.61 cavity.

of the multicell geometry should improve with this restoration of the design frequency,

which we have explicitly verified while optimizing, the end-cell geometry of the βg = 0.9,

650-MHz cavity. In Fig. 2.9, we plot the variation of the end cell resonant frequency

with the end-half cell length. Also, in the same figure, we show the field flatness of

the 5-cell cavity geometry. As shown in the figure, resonant frequency of the end-cell

increases monotonically with increasing value of Le. Field flatness of the cavity also

improves initially with the increasing end-half cell length and shows its maximum when

the frequency is perfectly restored. If we increase the cavity length further, the resonant

frequency of the end-cell continues to increase gradually, whereas the field flatness of the

multicell cavity starts dropping monotonically.

In this simple approach, only the end-half cell length is tuned. Therefore, one can

keep equator radius of the end-cell unchanged. This will help to keep the mechanical

fabrication of the cavity simple. Else, different cavity forming ‘die’ should be designed

for the mid-cell and the halves of the end-cell at the two ends. Beside the length and wall

angle, in this optimization process, all other geometrical parameters of the end-half cell

remains the same as the mid half-cell geometry.

In this context, we must mention another important issue related to the geometry
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Figure 2.9: Field flatness and resonant frequency as a function of the βg = 0.61 cavity
end-half cell length Le.

optimization of an end half-cell. We have optimized the end half-cell geometry with an

Riris, which will ensure the required value of the cell-to-cell coupling coefficient κc.

However, a modification in the end half-cell geometry may be needed in future, when a

power coupler will be incorporated in the geometry. As it is described in Ref [75], there

the end half-cell geometries are modified with enhanced iris diameter. However, the

optimization procedure, described in this chapter, is very general, and will be applicable

in performing the required modification in that case.

As mentioned earlier, some advanced optimization of the end-cell may be required to

take care of the trapped HOM. Another geometrical parameters of the end half cell also

need to be varied there along with the end-half cell length. The details will be discussed

in Chapter 3. In the next section, the remaining geometrical parameter, i.e., the iris radius

riris will be optimized.

2.6 Optimization of the iris radius

In the last sections, we have described the optimization of the mid cell and end cell
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geometry, considering a constant value of the iris radius Riris. In an RF cavity, Riris plays

an important role in deciding (a) the shunt impedance R of the cavity, which decreases

with Riris, as well as (b) the cell-to-cell coupling κc, which improves with increasing

Riris [37]. In Fig. 2.10, R and κc of a βg = 0.61, 650-MHz cavity geometry are plotted as

a function of the Riris, which confirms the expected trends. On the plot, each of the five

points represent an optimized cavity geometry, having a particular value of Riris. For

each of the different optimized multicell geometries, values of κc was calculated from the

passband of the respective TM010-π modes. Here, we want to mention that for a required

value of η, the value of κc ∝ N2, which is emphasized in Eq. 2.10 as well as in Ref. [76].

However, another reference [77] describes N3/2 dependence for the same, which is more

stringent. Following this conservative formula, we have calculated κc ≥ 0.775%, which

is required to achieve the desired field flatness in a βg = 0.61, 650-MHz, 5-cell cavity

geometry. The first formula with N2 dependence specifies a requirement of κc ≥ 0.6%

only. As shown in Fig. 2.10, the requirement κc ≥ 0.6% can be satisfied even in a cavity

with Riris = 39 mm. However, following a conservative approach we select our

Riris = 44 mm for the optimized βg = 0.61, 650-MHz 5-cell cavity geometry for which

κc = 0.81%.

Figure 2.10: Variation of kc (in %) and (and R/Q) with the Riris, where the dotted line
shows the value of κc ∼ 0.775%.
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2.7 RF parameters obtained for the optimized multicell

cavity geometry.

For the ISNS linac, optimization of 5-cell 650-MHz elliptic SRF cavity parameters for

βg = 0.61, βg = 0.81 and βg = 0.9 were performed following this design recipe, using

the 2 D EM code SUPERFISH. We now present the RF parameters obtained from the

simulations performed for optimized cavity geometries.

1. Simulated results for a βg = 0.61, 650-MHz 5-cell SRF elliptic cavity geometry:

Table 2.4 shows the simulated RF parameters obtained for the βg = 0.61 cavity.

In this design, only the length of the end-half Le = 71.550 mm is different compared

to the mid cell length. Rest of the end-half cell geometry is identical with the mid-

cell geometry, which we have described in Table. 2.1.

For the optimized multicell geometry, we have observed that there is a slight

deviation of ∼ 0.31 kHz in the frequency of the final cavity even after matching

the frequency of the end cell with the mid cell. In Fig 2.11, we plot the absolute

amplitude of the axial electric profile which was used to estimate the field flatness

η of the cavity geometry. We have obtained η > 99% for the optimized geometry.

Fig. 2.12 shows the field contours in one half of the multicell cavity. In Fig. 2.13,

five normal mode frequencies of the 5-cell cavity are plotted as a function of their

phase shifts. From this passband we have calculated cell-to-cell coupling coefficient

κc ≈ 0.81%.

These cavities will be operated in their TM010-π mode. However, as shown in

Fig. 2.13, for the 5-cell geometry, there will be five modes in the passband. We

have calculated the corresponding R/Q values for these five normal modes as a

function of β using the electromagnetic code SLANS [78], and these results are

shown in Fig. 2.14. As it is shown there, the R/Q values for the π-mode at 650.0

MHz dominate within the operation of range β (from ∼ 0.51 to ∼ 0.76), for which
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medium β cavities will be used. Maximum R/Q value for the π mode is ≈ 354 Ω at

β ∼ 0.65. However, beyond this range, R/Q of the 4π/5 mode resonating at 649.44

MHz frequency is large compared to the R/Q of the π mode.

2. Simulated results for a βg = 0.81, 650 MHz, 5-cell SRF elliptic cavity geometry:

We summarize the geometry and the optimized RF parameters of our βg = 0.81,

650-MHz, 5-cell SRF elliptic cavity in Table 2.5 and Table 2.6, respectively. Here,

end-half cell length was calculated as Le = 94.830 mm. Other design parameters of

the end-cell are identical with the optimized mid-cell geometries.

3. Simulated results for a βg = 0.9, 650-MHz 5-cell SRF elliptic cavity geometry :

Table 2.7 and Table 2.8 summarize the geometry and the optimized RF parame-

ters respectively of the βg = 0.9, 650-MHz 5-cell SRF elliptic cavity. For the opti-

mized end-cell, we have obtained Le = 105.80 mm. Other end-cell parameters are

identical with the optimized mid-cell parameters.

Here, we want to mention that the optimized mid-cell of βg = 0.81 and 0.9 elliptic

cavities have longer half-cell length than the half-cell length of a βg = 0.61 cavity. For

these two cavities, we can accept even somewhat smaller wall slope in the optimized

design still realizing the targeted acceleration gradient. Such relaxation in the wall slope

will improve the mechanical strength of the cavity and will ease fabrication procedure

ensuring the generation of the required field gradient. Therefore, we chose α ≈ 850 for

these two cavities.

In the next section, we will briefly discuss the optimization based on another design

approach, where the aim is to minimize the Ohmic loss in the design.

2.8 Geometry optimization for a low loss SRF cavity

So far, we have kept the wall angle of the cavity, i.e., α as a constant. In this section,
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Table 2.4: RF parameters for a 5-cell βg = 0.61 cavity in the TM010−π mode.
RF Parameter Magnitude Unit

Frequency 650.0 MHz
Transit-time factor(T ) 0.7094

Acc. Gradient (Eacc = E0T ) 15.40 MV/m
Q0 1.333 × 1010

G 189.4 Ω

R/Q0 327.4 Ω

Epk/Eacc 2.370
Bpk/Eacc 4.560 mT/(MV/m-1)

Table 2.5: Optimized geometry of a βg = 0.81, 650-MHz cavity mid cell.
Parameter Magnitude Unit

Riris 43.930 mm
Req 196.92 mm
L 93.397 mm
A 75.017 mm
B 69.000 mm
a 13.045 mm
b 20.781 mm
α 85.4500

Table 2.6: RF parameters for a 5-cell βg = 0.81 cavity in the TM010−π mode.
RF Parameter Magnitude Unit

Frequency 650.0 MHz
Transit-time factor(T ) 0.7159
Acc. Gradient (E0T ) 18.38 MV/m

Q0 1.7026 × 1010

RsQ0 (or G) 241.7 Ω

R/Q0 556.4 Ω

Epk/Eacc 2.170
Bpk/Eacc 3.809 mT/(MV/m-1)

we will review the effect of α on the electromagnetic performance of the SRF cavity.

These calculations are performed with βg = 0.9 half-cell geometry. In Fig. 2.15, we show

the variation of Bpk/Eacc for different values of α. The analysis shows that Bpk/Eacc of

the half-cell reduces further for the higher values of α. It is in fact expected. Equatorial

volume of the cavity cell increases with the increasing wall angle, and as a consequence,

the energy density of the magnetic field in the cavity, reduces resulting in reduction of the
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Table 2.7: Optimized geometry of a βg = 0.9, 650-MHz cavity mid-cell.
Parameter Magnitude Unit

Riris 50.000 mm
Req 199.93 mm
L 103.77 mm
A 83.275 mm
B 84.000 mm
a 16.788 mm
b 29.453 mm
α 85.0000

Table 2.8: RF parameters for a 5-cell βg = 0.9 cavity in the TM010-π mode.
RF Parameter Magnitude Unit

Frequency 650.0 MHz
Transit-time factor(T ) 0.7169
Acc. Gradient (E0T ) 18.60 MV/m

Q0 2.395 × 1010

RsQ0 (or G) 257.6 Ω

R/Q0 608.3 Ω

Epk/Eacc 2.251
Bpk/Eacc 3.754 mT/(MV/m-1)

peak value of the surface magnetic field Bpk there.

We have also plotted another parameter G(R/Q0) as a function of α in the same figure.

Interestingly, it is observed that the value of the parameter G(R/Q0) increases slowly

with increasing wall angle and nearly saturates for the higher values of α. These two

observations clearly indicate that the cavity geometries corresponding to the higher values

of α are optimized for the low loss as well as relatively higher accelerating gradients. In

fact, in an elliptical cavity geometry, the volume, as well as the (inner) surface area of the

equatorial dome increases with increasing α, i.e., the slope of the cavity wall. In these

cavities, volume inside the equatorial dome is the region, which is dominantly occupied

by the magnetic field (energy). Therefore, with increasing dome volume, peak value of

the magnetic field (as well as the surface current) on the inner wall of the cavity, reduces,

resulting a reduction in the Ohmic loss. It is because heat loss is proportional to the square

of the magnetic field value. It explains why one should prefer elliptical cavity geometry
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Figure 2.11: Variation of the magntidue of the axial electric field along the beam axis for
the optimized βg = 0.61 cavity.

with higher wall slope for the low loss operation.

On the other hand, an increase in α, does not change the shape and volume of the iris

region of the cavity. Therefore, the peak value of the electric field, which occurs at the iris

surface, remains nearly unperturbed in the geometry. As mentioned earlier, peak value of

the surface magnetic field as well as the peak value of the surface electric field together,

limit the electromagnetic performance of the cavity. However, for most of the cases,

limitation imposed on Bpk on the surface is reached first, while performing the geometry

optimization of an elliptical SRF cavity aiming at the maximization of Eacc. Again, in the

optimized cavity, the cavity geometry fixes Bpk/Eacc and Epk/Eacc. Therefore, a reduction

in the peak value of the magnetic field on the inner wall of the cavity geometry optimized

with higher values of wall slope, indicates an increases in the value of Eacc achievable

under the peak magnetic field limit.

However, as mentioned above, with increasing wall slope, inner surface of the cavity,

especially in the equatorial dome region, also increases. As we know, with increasing

surface area, Ohmic loss increases proportionally, and such an increase in the Ohmic loss

becomes comparable with its reduction due to the decreasing magnetic field value in the
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Figure 2.12: Field contours for one half of the βg = 0.61 cavity.

cavity geometry with very high wall slope. As it is shown in the figure, for the higher

values of α, G(R/Q0) as well as Eacc saturates in the cavity geometry.

However, it is inconvenient to manufacture multicell elliptic cavities with higher wall

angle from the fabrication and cavity processing point of view. Especially, it turns out

to be extremely challenging for the cavities with α values more than 900. These cavities

are called the re-entrant cavities. Although re-entrant type of cavities are superior choice

for achieving higher Eacc as well as minimum cavity loss, yet for the above mentioned

complexities, these deigns are not well accepted for the fabrication of multicell elliptic

SRF cavities.

2.9 Summary and conclusion

In this chapter, we have described a design recipe for the geometry optimization of

multicell elliptic SRF cavities. Following this step-by-step, one dimensional

methodology, we have optimized three sets of 5-cell 650 MHz elliptic cavities, which

will be used in the medium and high energy sections of the superconducting linac for the

proposed ISNS project. For the elliptic SRF cavity, the optimized parameters are chosen,
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Figure 2.13: Dispersion curve for the TM010-π mode of the βg = 0.61 cavity.

using a generalized procedure which is summarized as follows:

1. In this methodology, we reserve Req to tune the cavity to its design frequency for

each simulation, and from the synchronization point of view, we choose the half-

cell length L = βgλ/4. For the time being, we keep the value of Riris fixed.

2. Keeping in mind the practical constraint, we choose the permissible maximum

possible value for α.

3. Based on the above considerations and constraints imposed on L, Req and α, we

are left with three independent parameters A, B and a/b. Our optimization starts

by choosing B, which minimize the value of Bpk/Eacc, restricting Epk/Eacc within

a reasonable limit. Parameters like A, a and b are chosen to achieve the minimum

value of Bpk/Eacc , and a target value of Epk/Eacc.

4. End cells are optimized to restore the design frequency and field flatness, and there

Le is used as the tuning parameter.

5. Finally, we choose the value of Riris based on the requirement of κc.
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Figure 2.14: R/Q values of the monopole modes are plotted as a function of β for the 5
normal mode frequencies of the first pass band.

We have developed a new and generalized logical approach towards the design

optimization of a multicell SRF cavity. Following this, the geometry of an elliptic cavity

can be optimized for maximum achievable acceleration gradient. This approach is a

step-by-step, one dimensional methodology. The conventional SRF cavity optimization

techniques are essentially multidimensional technique. To compare our methodology

with the conventional multidimensional optimization process reported in the literature

(e.g., in Ref. [61], [70]), we plot the optimized values of Bpk/Eacc as a function of α in

Fig. 2.16, calculated using our methodology for the TESLA geometry. Then we

compared it with the plot reported in Ref. [70], where the plot is obtained using a

multidimensional optimization technique. Figure 2.16 shows similar trend for the two

plots. The proximity between these two plots justifies the effectiveness of our

optimization technique, compared to the multivariable optimization technique that has

been followed worldwide. In addition to this, the data point corresponding to the

experimentally obtained value of the cavity geometry described in Ref [61] designed for

the TESLA project is also shown in the same figure, which too confirms the

effectiveness of our design recipe. Before we conclude this Chapter, it will not be
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Figure 2.15: Optimum values of Bpk/Eacc as a function of α. Here the value of Epk/Eacc

is kept fixed at 2.0 for each data point.

Figure 2.16: Optimized value of Bpk/Eacc as a function of wall angle α using (i) our step-
by-step one dimensional optimization procedure, as well as (b) the conventional multi-
variable optimization technique, for the TESLA design. Also here, we have shown the
data point which correspond the design used for the TESLA project.

inappropriate to discuss the following point on the choice of the wall slope α for the

three set of cavities. For the TESLA type elliptical cavity, α is a parameter which has a
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profound influence on the accelerating gradient of a cavity. Cavities with larger value of

α offers more gradient. And in the design of a cavity with α ≥ 900, i.e., a reentrant type

cavity, accelerating gradient will be more. However, for the multicell elliptical cavities,

designed for the medium / low beta range, depending on βg value, its length reduces,

Epk/Eacc value increases and effectively its acceleration efficiency reduces. Therefore, in

order to increase the efficiency, there one plays with α and increase its value as large as

possible. Again, for an elliptical cavity, the choice of α is dominated by the chemical

cleaning and cavity fabrication view point. Realizing this tradeoff, in the βg = 0.61 case,

we set the value of α = 880 based on the experience and feedback of the contemporary

projects, and the cavity fabrication team. However, for the high beta cavities,

acceleration efficiency is indeed not that bad because of the moderate or relatively small

value of Epk/Eacc, and the choice of α is a bit relaxed there. Therefore, for the βg = 0.9,

and 0.81 elliptical cavities, we choose α = 850 and 85.450, respectively.
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Chapter 3

Study on Higher Order Modes (HOMs)

and wake-fields in elliptic SRF cavities

If we want to push the value of the operating beam current limit up in a linear

accelerator, then something unwanted, but interesting, happens there. For instance, beam

becomes unstable beyond a threshold value of the current. Certainly, these phenomenon

are very much troublesome from the operation point of view. In fact, such a occurrence

plays a decisive role, and ultimately sets the limit on the high-energy, high-current

operation of a frontier accelerator. However, many a times, such challenges also open up

opportunities to learn, develop and widen the horizon of beam physics, and eventually

push the state of the art accelerator technologies to a new level.

Typically, RF cavities in a linac are made to operate with their fundamental mode, i.e.

the mode with lowest resonant frequency. Particles in a beam bunch gain energy while

interacting with cavity fields developed in that electromagnetic mode.

In addition to the fundamental mode, in an accelerator, beam can generate and interact

with higher order modes also. The higher order modes (HOMs) extract energy mostly

from the beam. In fact not only thrive on the beam, but HOMs also act back on it leading

to different beam instabilities. In some special circumstances, energy stored in these
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modes may result in a significant heat load for the cryogenic cooling system of an SRF

accelerator. Studies on HOMs, along with their effect on the electromagnetic

performance of the cavity, and the resulting beam stability become therefore

indispensable while designing a high power accelerator.

In the previous chapter, detailed methodology has been described for the design

optimization of the medium and high β multicell elliptic SRF cavities for its operation in

the fundamental (TM010-π) mode. And in this chapter, we will explore the interaction

between HOMs developed in those cavities, with the beam. First, we will analyze HOMs

supported in these elliptical cavity geometries, and then we will explore the impact of

wakefield, which is yet another aspect of the beam cavity interaction.

3.1 Studies on HOMs in a multicell elliptic SRF cavity

An RF cavity can support a number of resonantly excited electromagnetic modes inside

the cavity. The fundamental mode has typically the lowest resonant frequency among all

of these modes, and rest of these modes are therefore called higher order modes or HOMs

in short.

3.1.1 Classification of HOMs and other general considerations

Electric field, i.e., the E field and magnetic field, i.e., the B field lines in the

fundamental mode configuration of an elliptic radio-frequency cavity preserve azimuthal

symmetry around the cavity axis, which is ususlly the beam axis. In the fundamental

mode, the axial component of the electric field Ez(r, z, θ, t) is the only non-zero electric

field component inside the cavity, except at the iris location and near the beam pipe.

There the other non-zero field component is the azimuthal magnetic field Bθ(r, z, θ, t). In

this context, here, we use the subscript z and θ to denote the axial and azimuthal field

components, respectively. In the other modes, also falling in the TM category, magnetic
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field components are non-zero only in transverse planes with respect to the axis of the

cavity. However, field components may vary azimuthally in these TM type HOMs.

Variation of electromagnetic fields in the azimuthal direction (i.e., in θ) can be expressed

in terms of eimθ, where, m is an integer such that its value may be 0, 1, 2 · · ·, and

i =
√
−1. Such modes can be expressed as TMm10 class, following the common

nomenclature. In this nomenclature, m = 0 indicates modes, where electromagnetic

fields show no variation in θ. Such modes are called the monopole modes. For example,

the fundamental mode, i.e., the TM010 mode developed in an elliptic RF cavity is a

transverse magnetic monopole mode. Similarly, m = 1 modes are called the dipole

modes. Contrary to the monopole modes, dipole modes do not produce any axial

component of the electric field along the beam axis. Modes with m =2, 3 or 4 · · · are

known as the quadrupole, sextupole and octupole · · · modes, respectively. Similar

classification is applicable for the transverse electric (TE) type modes also [65].

In the next subsection, we will study a very important and useful concept used in

analyzing the effect of HOMs in a particle accelerator. This is called the

Panofsky-Wenzel theorem [65], [79]. In fact, this theorem interestingly underlines that

only the higher order monopole and dipole modes can significantly influence the

dynamics of well collimated beam particles. In a well focused beam bunch, beam

particles remain nearly confined within a small transverse size and divergence

throughout the linac. Paraxial approximation therefore turns out to be an useful

technique there to simplify the related calculations.

3.1.2 Energy exchange between beam particles and HOMs

Following equation describes Lorentz force experienced by a beam particle traversing

through the electromagnetic environment of an RF cavity:

F =
∆p

∆t
= q(E + v ×B), (3.1)
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where, q and v are the respective charge and velocity of the beam particle. The change

in energy ∆ξ introduced due to the change in momentum under the influence of this force

on a beam particle can be written as, ∆ξ = m0c2β∆(γβ) = cβ|∆p|, where c is the speed of

light in vacuum, and β = |v|/c.

3.1.2.1 Energy exchange with the on-axis field components:

In an RF cavity, we can calculate the total change in energy of a particle traversing

along the cavity axis form Eq. 3.1 as [65],

ξ|| = qV|| = cβ|∆p| = q
∫ s f

si

E.dz = q
∫ s f

si

Ezdz, (3.2)

where V|| is the axial voltage developed in the cavity, as the particle traverses from the

position si to s f . These two positions si to s f can be chosen far enough beyond the end

walls of the cavity, where cavity fileds get attenuated completely. In the above equation,

V|| represents effective voltage V0 for a TM010 mode as it is described in Chapter 2. We

have estimated there the shunt impedance R of the cavity from V0. Alike TM010 mode,

shunt impedance as well as the parameter R/Q can also be identified as a figures of merit

for higher order TM monopoles. Interestingly, except for the monopole mode, strength

of the axial electric field is zero on the beam axis for all other higher order TM modes.

Another category of modes, i.e., the transverse electric or TE modes have no axial electric

field components. Therefore, neither TE modes nor TM dipole modes ideally participate

in this energy exchange with a well collimated on-axis beam.

3.1.2.2 Energy exchange with off-axis field components:

Depending on their electromagnetic field configurations, few modes in the RF cavity,

can also produce transverse deflection of the beam particles. Such deflections are

undesirable in the case of a typical accelerating cavity. Electromagnetic forces that

deflect the beam particles from their axial position, yield a change in the transverse
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momentum, and to calculate the amount of change introduced in the momentum, one can

use Panofsky-Wenzel theorem.

Transverse R/Q calculation from Panofsky-Wenzel theorem [65], [79], [80]

While traversing through the electromagnetic environment of an RF cavity, a beam

particle may experiences a change in its transverse momentum ∆p⊥, which can be

obtained from the following equation:

∆p⊥ =
q
cβ

∫ s f

si

|E + v ×B|⊥dz. (3.3)

The above equation is derived based on the assumption that the change in velocities of the

beam particles is insignificant within the cavity.

In the RF cavity, electromagnetic fields oscillate at the resonant frequency of the

electromagnetic mode. There, the following expression of ∆p⊥ can be derived for the

beam particles traversing through the cavity, from Eq 3.3 using Panofsky-Wenzel

theorem:

∆p⊥ = −
iq
ω

∫ s f

si

dE⊥ +
iq
ω

∫ s f

si

∇⊥Ez(r, z, θ, t)dz. (3.4)

In the above equation, E⊥ denotes orthogonal component of the electric field of the

electromagnetic mode developed in the cavity, resonating at an angular frequency ω. For

good reason, therefore, in this formulation, the electromagnetic field components are

assumed to have eiωt harmonic time dependence. We choose the two position si and s f

deep in the beam pipe, up to which all electromagnetic field components of

corresponding mode completely get attenuated completely. Hence, omitting the first

term from RHS, Eq. 3.4 can be written in the following simple form:

∆p⊥ =
iq
ω

∫ s f

si

∇⊥Ez(r, z, θ, t)dz. (3.5)

Equation 3.5 explains why neither the TE modes, nor the TM monopole modes can deflect
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on-axis beam particles. It is because, only the TM dipole modes have non-zero ∇⊥Ez on

the cavity axis.

For the beam particles, change in the transverse momentum also indicates energy

exchange between particles and corresponding electromagnetic mode. Therefore, similar

to our earlier discussion on shunt impedance in the case of a monopole mode imparting

acceleration to the beam particles, here also, one can introduced a figure of merit for the

dipole modes producing transverse deflection of the beam particles in terms of transverse

shunt impedance R⊥. For azimuthally symmetric cavities, formula for R⊥/Q of the nth

order dipole mode is given as follows:

R⊥
Q

∣∣∣∣∣
n

=
1

ωnUn

∣∣∣∣∣ ∫ s f

si

∇Ez(r, z, θ, t).dz
∣∣∣∣∣2. (3.6)

Here the subscript ‘n’ denotes corresponding parameters of the nth order dipole mode.

This is the equation, which is followed by the computer code SLANS to calculates R⊥/Q

value for an electromagnetic mode developed in the given geometry of a cavity [78].

Based on the above discussion, mostly the TM type monopole as well as dipole modes

can influence a well-collimated on-axis beam, and we may ignore the effect of all other

modes on the beam in a cavity, except at both the ends, where those ‘other’ modes may

have small axial field contributions. Now we present a brief discussion on the regenerative

beam break up (BBU) instability [81], [82].

Regenerative beam break up instability and threshold current calculation:

With the increasing beam current in a linac, a threshold value is reached, such that

beyond this limit, beam becomes unstable. This phenomenon was observed for the first

time in late 1950’s during the development of linacs [83], [84]. Later, it was identified as

regenerative beam break-up instability. The threshold current limits maximum obtainable

beam power from a particular linac. A formula for the threshold current calculation was
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derived by Wilson et. al. [85]. In fact, this work was an extension of the Backward Wave

Oscillator analysis on TM110 type dipole modes [85], [86]. More rigorous analysis was

performed later by Gluckstern et. al. on the calculation of threshold current for a standing

wave accelerating structure [87]. Following their work, we have performed a detailed

derivation to understand BBU instability [88].

TM type dipole modes can be generalized in terms of Hybrid electromagnetic (HEM)11

mode with x polarization. For these modes, using paraxial approximation, one can write

the non-zero synchronous part of the space harmonic components of the electromagnetic

field as [83], [84],

Ex = ξxsin(kz)cos(ωt),

Ez = xζ0cos(kz)cos(ωt),

Hy = Hycos(kz)sin(ωt).

(3.7)

In the above expression, ω is the angular frequency and k is the wave vector of the

corresponding electromagnetic mode, whereas ξx, ζ0 and Hy are the amplitude of the

respective field components. In the electromagnetic theory, it is a common practice to

represent the electromagnetic field components by complex number. Accordingly we

can write the z-component of the electric field as

ξz = xζ0cos(kz)eiωt, (3.8)

such that Ez = Re{ξz}.

From Panofsky-Wenzel theorem, one can formulate the following equation for

describing the trajectory of a beam particle traversing through the electromagnetic field

of a higher order dipole mode excited in a cylindrically symmetric RF cavity:

X0(z) =
iq
ω

∫ z

0

dz
′

pz(z
′)

∫ z
′

0

∂ξz

∂x
dz”. (3.9)

In the above expresion, pz is the momentum in the z direction. Here, the real part of
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X0(z) represents the transverse position x0(z) of the particle. The off-axis beam particles

experience non-zero Ez field of a dipole mode and exchange energy with the field and the

dipole mode get energized. Such energetic dipole mode then provides stronger transverse

kick to the beam particles and pushes them more and more off axis. In this positive

feedback process, the amount of power Pbeam swapped from the beam to a dipole mode

can be calculated as follows:

Pbeam = −Ib

∫ L

0
Ez(x = x0(z), y, z, t)dz = −Ib

∫ L

0
x0(z)

∂Ez(x, y, z, t)
∂x

dz, (3.10)

where, Ib is the beam current, and L is the total axial length of the structure. Here the

negative sign indicates that we are calculating the power lost by the beam.

In order to evaluate the above expression (i.e., Eq. 3.10), we require a closed form

expression of x0(z) and ∂Ez/∂x explictly in terms of the variable z. Therefore, let us

rewrite the term ∂ξz/∂x replacing t with t0 + z/βc as

∂ξz(x, y, z, t)
∂x

=
1
2
ζ0

(
eikz + e−ikz

)
e

iωz
βc eωt0 ,

(3.11)

where t0 indicates the time at which the particle was at the entrance of the cavity. Also we

have considered the entrance of the cavity coinciding with z = 0.

In Eq. 3.11, the wave vector k can be written as k = ω/vp, where vp denots the phase

velocity of the electromagnetic wave of the corresponding dipole mode. It can be argued

that in this energy exchange process, the contribution of the second term alone in the RHS

of Eq. 3.11, will be significant when synchronism (or near synchronism ) is achieved

between the velocity of the particle and phase velocity of the wave. Accordingly, the

above equation can be approximated as

∂ξz

∂x
=
ζ0

2
e−i(δβ)zeωt0 , (3.12)
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where δβ = 1/vp − 1/βc. Substituting Eq. 3.12 in the equation of X0, we obtain

X0(z) =
iq
ω

∫ z

0

dz
′

pz(z
′)

∫ z
′

0

ζ0

2
e−(δβ)z”

eiωt0dz”. (3.13)

In the light of the above discussion, it is clear that both of these complex quantities

in Eq. 3.13 have eiωt0 dependence, where the initial time t0 will be different for different

particles in the beam, as because they will enter the cavity with different initial phases.

Therefore, to estimate the total amount of power lost by the beam, it is required to take

average over all t0 in the calculation. And finally we need to substitute real values of the

two quantity X0(z) and ∂Ez/∂x in Eq. 3.10 to calculate Pbeam. Multiplying the complex

conjugate of the first quantity, i.e., X0(z) with second one, then dividing by 2 and taking

the real part, we obtain the following form of the expression for Pbeam:

Pbeam = −i
qIbζ

2
0

8ωpz
Re

[ ∫ L

0
dz

∫ z

0
dz
′

∫ z
′

0
dz
′′

eiδβ(z−z”)
]
, (3.14)

and after performing few more mathematical steps, finally we derive

Pbeam =
qIbζ

2
0 L3

2π3ωpz
g(ψ). (3.15)

In the above equation (Eq. 3.15), g(ψ) represents the degree of synchronization between

the velocity of a beam particle and the phase velocity of the electromagnetic wave

established because of a respective dipole mode. Following this formulation, one can

explicitly show that g(ψ) =
1
2

(
π

ψ

)3(
1 − cosψ −

ψ

2
sinψ

)
, where ψ = L

(
1
vp
−

1
βc

)
.

Like the other electromagnetic modes, these dipoles also loose part of there power Pc

dissipated on the metalic wall of the accelerating structure, and from this Ohmic heat loss,

we can calculate the transverse shunt impedance R⊥ for the respective mode as

R⊥ =
1
Pc

[ ∫ L

0
dz
∂Ez

∂x

]2

=
1
Pc

[ ∫ L

0
ζ0 cos(kz)eiωtdz

]2

. (3.16)
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Above equation as well shows the dependency between the transverse shunt impedance

R⊥ of a dipole mode and the speed of the beam particle. From the above equation,

following expression for Pc can be obtained

Pc =
1
4
ζ2

0 L2

R⊥
. (3.17)

Here, we want to mention that the transverse shunt impedance is calculated at the phase

velocity of the dipole mode.

Summarizing we can say that the dipole mode gains energy from the beam and

simultaneously it also loses its energy in the form of Ohmic heat dissipation on the

cavity wall. Therefore, the respective mode (dipole) will grow only when Pbeam of the

mode becomes more than Pc. Hence, equating Pbeam and Pc, we can calculate a threshold

value of the beam current Ith, above which the dipole will grow and beam will become

unstable. The expression for threshold beam current is obtained as

Ith =
π3 × (cpz) × k × β

2q × g(ψ) ×
R⊥
L
× L2

. (3.18)

In the above formulation, we presumed that a respective dipole mode will lose energy

only because of Ohmic heat dissipation on the cavity wall. In this regard, we must point

out that the scenario may change significantly if we take into account of the contribution

of HOM couplers in the design. Strength of the HOMs (including dipoles) established

in the cavity will be radically reduced because of the out coupling of power in presence

of HOM couplers. As a consequence, threshold values of the beam current may improve

significantly.

As mentioned earlier, the above mechanism acts like a positive feedback process, i.e.,

with the increasing beam current ultimately the dipole mode will be strong enough to

kick the beam in such a way that the beam will hit the cavity chamber and will be lost.

This is called regenerative beam breakup instability, and to avoid such instability for a
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pulsed linac, the cw average current needs to smaller than the threshold current given by

above formula [88]. This calculation will be very important for the accelerators dedicated

for ADS application, whereas the accelerators designed for SNS application, regenerative

BBU instability may not be that much vulnerable.

At the end of this discussion, we want to highlight that the phenomenon of regenerative

BBU is associated with single cavity, whereas in the case of multiple cavities, stacked

one after another, there the cumulative contribution of the individual cavities will decide

the ultimate deflection of the beam. Such mechanism may generate another type of beam

break-up instability, known as the cumulative BBU instability. Both monopole and dipole

HOMs may get induced because of this cumulative beam break-up [65]. Cumulative

BBU shows profound dependence on the temporal signature of the beam bunch as well

as their charge, which shows saturation in the case of a sufficiently long beam bunch

(in time), and then the threshold current remains nearly unchanged. As it is shown in

Refs. [89] and [90], threshold current corresponding to the cumulative BBU instability

is sufficiently large in the case of typical accelerators dedicated for SNS. Therefore, we

did not calculate threshold current corresponding to cumulative BBU for the ISNS elliptic

cavities.

Along with this, we have also calculated the resonantly excited heat generation and

the corresponding heat load due to collective contribution of monopole HOMs. It will be

presented in the later part of this chapter.

3.2 HOMs in the medium and high β elliptic cavities

Ideally, an RF cavity supports infinite number of HOMs, along with the fundamental

mode. However, beam pipes attached to its both ends, act as waveguides for the

electromagnetic modes excited in the cavity geometry. This defines an upper cutoff

frequency for a particular cavity geometry. Modes having frequency more than this
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cutoff frequency fc starts travelling through the beam pipe.

Such cutoff is determined by the beam pipe radius. For a cylindrical beam pipe, fc is

decided by the resonant frequency of a TE11 mode. However, some of the cavity modes

having frequency even more than this cutoff still may remain inside because of their field

configurations. Hence, we performed the HOMs analysis for our medium and high beta

elliptic cavities, up to the cutoff frequency of the TM11 mode in the beam pipe.

HOM analysis were performed for all the three families of 650 MHz, multicell elliptic

SRF cavities. However, we will describe our analysis, along with the simulated results,

mainly obtained using βg = 0.61, 650-MHz, 5-cell cavity. For this cavity, beam pipe

radius is 44 mm. Accordingly, the cutoff frequencies corresponding to the TE11 and TM11

modes, are ∼ 2 GHz and ∼ 4.2 GHz, respectively. Hence, HOM analysis was performed

up to 4.2 GHz frequency.

3.2.1 Higher order monopole modess in the multicell elliptic cavities

For the monopole mode, an important figure of merit is the parameter R/Q. This

parameter primarily quantifies “efficiency of acceleration per unit stored energy” of the

fundamental mode, as described in Chapter 2. In the cavity, a higher order monopole

mode with high R/Q value, may turnes out be a potentially dangerous HOM. Therefore,

we have analyzed all monopole modes in the cavity up to the cutoff frequency fc. We

described this analysis and elaborate the simulated results obtained using βg = 0.61, 650

MHz 5 cell cavity geometry.

Simulation shows the presence of three pass-bands in this multicell geometry up to

frequency fc = 4.2 GHz. Among them, the first one corresponding to the fundamental

mode (TM010 mode), has been described in the previous chapter. In this βg = 0.61 cavity

geometry, highest R/Q value was obtained as about 354 Ω for the π-mode configuration at

β = 0.65. In this context, we want to recapitulate that these cavities will be used for range
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of β - from ∼ 0.51 to ∼ 0.76. We have calculated an approximate value of the cell-to-cell

coupling coefficient κc = 0.8%.

For the second pass band, calculated R/Q values were considerably small compared to

the values obtained for the π or 4π/5 mode of the first pass band. Cell-to-cell coupling

coefficient κc for this pass band was obtained to be approximately 1.65%.

The third pass band shows an approximate κc = 0.74%, which is the smallest value of

the cell-to-cell coupling coefficient among the three pass bands. Interestingly, such small

κc may indicate the likelihood of a mode configuration trapped within the multicell cavity

geometry. With this anticipation, a thorough analysis was carried out for all five modes

of this third pass-band. Calculated R/Q of the constituent modes of this pass-band are

shown in Fig. 3.1, as a function of β. The mode resonating at 1653.2 MHz frequency

shows a gradually increasing pattern of R/Q with increasing β, which approaches a value

∼ 20 Ω at about β = 0.76. To verify if the mode is trapped, the axial electric field values

of this mode is plotted along the length of the multicell cavity in Fig. 3.2. As it appears in

the figure, the overall field amplitude shows maximum near the middle of cavity and falls

gradually as we move towards the cavity ends, and its values significantly drops near the

cavity end. Couplers are usually located on the beam pipe in a multicell SRF cavity, and

such a coupler can not efficiently out-couple the above mentioned trapped mode from the

cavity. Therefore, such confined field configuration of the corresponding HOM evidently

indicates the trapped nature of the mode.

Trapped mode analysis and final optimization of the end-cell:

Any trapped mode can be categorically classified as the mode with poor field flatness.

As addressed in Chapter 2, good field-flatness for a mode can be achieved and restored

typically by tuning the individual end-cells of the cavity. However, the implementation

is a little tricky here - since a good field-flatness must always be kept ensured for the

fundamental mode. To meet these two simultaneous requirements, one end-cell of the
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Figure 3.1: Plot of R/Q of the monopole modes as a function of β, for the five modes of
the third pass-band.

Figure 3.2: Plot of the axial electric field amplitude along the length of the cavity, for the
HOM at 1653.2 MHz in this unmodified geometry.

cavity is fine-tuned to resonate at a frequency of 650 MHz for the fundamental mode,

as well as for the trapped mode oscillating at a frequency 1653.2 MHz. Accordingly,

corresponding end half-cell dimension is adjusted iteratively by tuning the end half-cell

length Le and the semi major axis Ae.
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In Fig 3.3, we plot the axial electric field amplitude along the cavity length, obtained

from simulation performed with the modified cavity geometry. This figure clearly shows

a shifting of the field amplitude towards one end of the cavity. This confirms that the

mode is no longer trapped inside the cavity, and because of the axially shifted field

configuration, it will be possible to out-couple this mode with the HOM coupler.

In Figs. 3.4(a) and 3.4(b), field contours obtained in the modified end-cell geometry are

shown for the operating mode, resonating at 650 MHz, as well as for the HOM resonating

at 1653.2 MHz. In this modified geometry, the values of Le and Ae were found to be 71.24

mm and 52.12 mm, respectively. Geometric parameters of this modified end half-cell, i.e.,

“End Cell (A)” are summarized in the table 3.1, along with the other (unmodified) end

half-cell i.e., “End Cell (B)”.

Table 3.1: Optimized geometric parameters for the modified end half-cell.
Parameters End Cell-A End Cell-B Unit

Riris 44.000 44.000 mm
Req 195.59 195.59 mm
L 71.240 71.550 mm
A 52.120 52.640 mm
B 55.550 55.550 mm
a 15.280 15.280 mm
b 28.830 28.830 mm

3.3 Dipole HOMs in the multicell elliptic SRF cavities

Higher order dipole modes were simulated and analyzed up to a frequency of 4.2 GHz

in the βg = 0.61, 650-MHz, 5-cell cavity geometry. We found four dipole passbands

below 4.2 GHz in this geometry. This analysis was also performed within the range of β

values for which these cavities will be operated. We have used the computer code SLANS

to perform this analysis.

Among these passbands, we found that the corresponding modes of the first passband
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Figure 3.3: Amplitude of the axial electric field of the mode at 1653.2 MHz along the
cavity length, for the geometry with modified end cell at one side.

Figure 3.4: Plot of (a) field contour for the fundamental mode at 650.0 MHz, and (b) field
contour for the HOM at 1653.2 MHz, for the modified end-cell.

were the most prominent. The dipole mode resonating at 961.98 MHz frequency shows

highest value of R⊥/Q ≈ 4.43 × 104 Ω/m2 at β = 0.76. For this first passband, Fig. 3.5

represents the values of R⊥/Q as a function of β. The detailed parameters of few

prominent dipole modes with significant R⊥/Q values are summarized in Table 3.2.

Here we must emphasize that the code SLANS calculates dipole modes considering

the cavity wall as PEC (perfect Electrical Conductor). SLANS then performs

post-processing, where wall loss is calculated using the property of copper (Cu), and

accordingly the code calculates the value of the quality factor Q. As we know, Q

72



Figure 3.5: R⊥/Q values of five dipole modes of first passband plotted as a function of β.

depends inversely on the surface resistance of the cavity material. Therefore, we have

reprocessed the Q values multiplying with a scale factor Rs|Cu/Rs|Nb to obtain the correct

value of the quality factor for the Nb SRF cavities. Here Rs|Cu and Rs|Nb represents the

surface resistance of coper and niobium respectively and the values were calculated at

the corresponding dipole mode frequencies.

Regenerative BBU and the threshold current calculation:

As discussed earlier, calculation of the threshold current Ith for the excitation of

regenerative BBU instability constitutes an important part of the design of a high average

power linac.

We have obtained the details of all dipole modes up to the frequency 4.2 GHz from

SLANS simulations. As it is shown in Eq. 3.18, threshold current calculation also requires

the phase velocities vp values of the corresponding dipole modes. Therefore, we have

plotted dispersion diagram for the first few dipole-pass bands in the figure 3.6. Phase

velocity of the corresponding mode was calculated from there.

Values of the corresponding mode frequency were obtained directly from SLANS
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Figure 3.6: Dispersion diagram for the first four dipole passbands is shown here. Mode
frequencies are plotted with respect to the corresponding values of phase advance per cell.

simulation. However, calculation of the phase advance per cell φ (say) is not straight

forward. We have calculated the same following the procedure given in Ref. [91], using

the following formula,

cos(φ) =
Ez(r, z + Lcell) + Ez(r, z − Lcell)

2 × Ez(r, z)
. (3.19)

where we considered Ez(r, z) = eiφEz(r, z + Lcell) based on Floquet condition [65] for an

infinitely periodic structure.

It is important here to note that the on-axis axial electric field Ez(r = 0, z) is zero for

a dipole mode. Hence, to estimate φ from the above expression, we have considered

Ez(r, z) values at a slightly off-axis position (r ∼ 1 mm). The βg = 0.61 cavities will be

operated for the β values ranging 0.51 to 0.76. Therefore, in this dispersion diagram, the

modes located in between the lines v = 0.76c and v = 0.51c may show high probability of

interaction with the beam. Hence, we perform the threshold current calculation for these

selected modes only. Threshold current values calculated for the corresponding dipole
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modes are given in the Table 3.2. From calculation, we found that for the dipole mode

resonating at 965.85 MHz, the value of Ith will be minimum, which is around 0.5 mA.

This is less than the designed cw average beam current of 1 mA in our case1.

Figure 3.7 shows the dependence of g(ψ) as a function of β for the most prominent

dipole mode, resonating at 965.85 MHz. Also for this mode the variation of Ith is plotted

as a function of β in Fig. 3.8.

Figure 3.7: Here g(ψ) values plotted as function of β for the dipole mode resonating at
965.85 MHz.

Table 3.2: Few prominent dipole modes supported in the βg = 0.61 cavity geometry. Here,
βm indicate β value at which corresponding mthdipole shows the maximum R⊥/Q value.

Mode frequency βm Q R⊥/Q Ith

f (MHz) Ω/m2 (mA)
961.98 0.760 2.165 × 1010 44314 0.805
965.85 0.659 2.229 × 1010 28280 0.516
971.22 0.588 2.335 × 1010 16987 0.570
976.50 0.532 2.465 × 1010 8869.0 0.779
980.10 0.494 2.574 × 1010 4606.5 1.18
1296.3 0.731 2.165 × 1010 19224 1.86

We would like to emphasize that in this calculation, we have assumed the total HOM

power confined within the cavity only. In a realistic scenario, there will be a fair chance
1In this calculation, we took a value of 10 nΩ residual resistance for the cavity material. More details

on residual resistance is will be described in Chapter 5.
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Figure 3.8: Threshold current values are plotted as a function of β for the dipole mode
resonating at 965.85 MHz.

of the partial reduction of this HOM power in presence of beam pipes and other coupler

ports. Even, addition of the fundamental mode power coupler may change the scenario

significantly, and augmentation of any coupler in the design will profoundly increase the

threshold value of the beam current for the regenerative BBU instability. Considering all

these aspects, in future, we will assess whether inclusion of a dedicated HOM coupler is

required to achieve the desired value of the of the threshold beam current.

As we saw in the preceding section, it is the beam which excites higher order modes in

an RF cavity, and sometimes, if favourable conditions are fulfilled, these modes may gain

energy cumulatively and become stronger. Energy stored in these modes develops HOM

fields in the cavity. These HOM fields are also called retarded or wakefields, as because

most of the cases they interact with following beam bunches. Some of these wakefield

interactions will be studied in the next section.

3.4 Wakefield analysis of multicell elliptic SRF cavities

Particles in a beam bunch interact with each other, as well as with their image charges
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(currents) developed on the wall of the vacuum chamber. The first type of interaction is

typically between the particles within the beam bunch itself, and is known as the

space-charge effect; whereas, in the second type, electromagnetic field generated by the

beam, produces a retarded action on the tail particles of the same beam bunch or the

beam bunches traveling down the linac, and is known as the wakefield. Depending on

their phases, trailing particles or bunches may get acceleration or deceleration due to the

wakefield, which results in an energy spread in the beam bunch. In addition, wake

energy may produce Ohmic dissipation on the cavity wall, and thus may add to the

cryogenic heat load2.

3.4.1 Calculation of the wake Loss factor in these SRF cavities

As we have already explained, beam-cavity interaction is the source of the wake-energy.

If a point charge q loses Un amount of energy into the nth mode of an empty cavity mode,

following Ref. [55] we can write

Un = kn0q2, (3.20)

where the parameter kn is known as loss factor, which quantifies the amount of energy lost

by a point particle of unit charge. For the nth order monopole HOM, the loss parameter

kn0 can be explicitly written as kn0 = ωnR|n/4Qn, where ωn, R|n and Qn represent angular

frequency, shunt impedance and quality factor, respectively, for the monopole mode. Note

that, R|n is calculated for the speed of the charge particle.

In the above formulation, kn0 is defined for a point charge. However, following the

formulation given in Ref. [55], we can obtain a modified form of the formula for loss

2Please note that, the calculations presented in this section, were performed considering 0.4 mA cw
average beam current in the linac, which corresponds to ≈ 18.9 pC charge per micro-bunch. It was the
earlier design specification of the ISNS linac. However, as mentioned, in the present design, the cw average
beam current is increased to 1 mA, which corresponds to ≈ 47.25 pC charge per micro-bunch. Although,
with this specification, procedure described in this section will remain unchanged but, few results presented
in this section, particularly where the charge (of a micro-bunch) is used, should be scaled accordingly.
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factor of a Gaussian beam bunch as

kn = kn0 × e−(ω2
nσ

2)/(β2c2), (3.21)

where σ is the rms length of the Gaussian beam bunch. We define an integrated loss

factor K which is summed-over all kn values.

As discussed previously, shunt impedance R of a mode becomes dependent on the

velocity of the beam particle via transit time factor. Therefore, the loss factor also shows a

strong dependence on β. The conventional wake filed solver code ABCI [92] can calculate

the loss factor only for the cases where β ∼ 1. However, the respective β values at the

entrance and exit of the elliptic cavity sections of the linac, will be around 0.51 to 0.87.

Therefore, ABCI simulation will not be able to predict the loss factor for these cavities

accurately. Hence, we have developed the following alternative way.

As the name suggested, integrated loss factor K can be estimated by summing up

the loss factors of the individual HOMs [93]. Based on it, we have developed a semi-

numerical method.

In Chapter 2, we defined shunt impedance of a cavity as R = ZT 2(β), where Z =

(E0L)2/Pc is a quantity independent of β. First we have obtained the values of Z and

Q for each of the monopole modes from SUPERFISH simulation. In the next step, the

variation of the transit time factor T with β was obtained from the same code. From

Z and beta dependent transit-time factor T (β), R/Q values were calculated for different

β values using Eq. 3.21. This exercise was repeated for nearly 200 monopole modes.

Finally, the integrated loss factor was calculated from the summation of the individual kn

at each β values. Fig. 3.9 shows the integrated loss factor K plotted as a function of β as

a blue colored continuous line. The other smooth lines represent total loss factor for the

first, second and third monopole pass bands, respectively. From the calculation we found

K ≈ 2.6 V/pC at β ∼ 1. We have also simulated the same structure, using the code ABCI
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to verify this result at β ∼ 1. Result obtained using ABCI is shown in Fig. 3.10. We found

K values at β ∼ 1, calculated using these two techniques are comparable.

Figure 3.9: Integrated loss factor K =
∑

kn is plotted as a function of β. The blue line
here is generated by summing over the individual loss factors of ∼200 modes.

Using three-dimensional electromagnetic solver software CST-PS [94], calculation of

K is little involved for the β ≤ 1 cases. For β ≤ 1 cases, space-charge effect is also very

much prominent along with the wakefield effect. These two effects cannot be handled

separately by the wakefield solver of CST-PS. Therefore, following post-processing [95]

is required there to calculate the value of K .

Effect of space charge remains associated with the beam throughout the linac, whereas

wakefield confines mostly within the cavity geometry. Based on this fact, two

consecutive simulations were performed using the wakefield solver available with

CST-PS for two different cases. These two cases correspond to two geometries of the

same cavity connected to the beam pipes having small differences in their length. It is

expected with a little approximation that the total space charge effect will be

proportional to the cavity length, and it will be different for the two cases. On the other

hand, the effect associated with the wakefield would remain same in both of these
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geometries. From the two simulated results, contribution associated with the wakefield

alone was calculated following the procedure given in Ref. [95] and the calculated values

are shown in Fig. 3.9. Also, these values agree with the results we obtained using

SUPERFISH and ABCI. We found that the value of K at β ∼ 0.61 is approximately

0.531 V/pC from Fig. 3.9.

Figure 3.10: Integrated loss factor K =
∑

kn as a function of the frequency f , calculated
(a) following semi-numerical method for β → 1, and (b) calculated using ABCI, for a
beam bunch with Gaussian distribution of rms bunch length σ ∼ 5 mm.

3.4.2 Parasitic heat loss and the calculation of the wake potential

Part of the energy in the wakefield may produce parasitic heat loss, and in that case,

such loss will be an added heat load dissipated on the surface of the cavity along with the

regular head load of the operating mode. Therefore, this will also be an added load to the

cryogenic plant. The total power P0 deposited as parasitic heat load can be calculated as

P0 = N0 × q2 × K . (3.22)

In the above equation, N0 denotes the number of micro-pulses per second, and
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q = 18.9 pC is the total charge of a micro-bunch. Hence, for K = 0.531 V/pC, we

estimated the dissipated cw average power as 0.4 mW. Here, we assume that wake-fields

from different micro-pulses are adding incoherently within a macro-pulse. This

assumption will be appropriate in case the frequency of a significant HOM supported in

the cavity is neither an integral multiple of micro-pulse repetition rate, nor of midi-pulse

repetition rate. The rate of heat loss becomes significantly large if one or more HOMs

has their frequency as integral multiple of the micro bunch repetition rate. We conclude

this section by presenting the calculation of the energy spread in the beam bunch,

introduced by the wakefield.

Figure 3.11 shows wake-potential W(s) developed in a βg = 0.61 cavity. We used CST-

PS wakefield solver to calculate W(s) [95]. We calculated maximum energy spread δξ

Figure 3.11: Longitudinal wake potential generated by a Gaussian bunch having 1 pC
charge passing through the optimized 5-cell cavity.

induced in a single beam bunch due to wakefield using the formula give in Ref. [96]:

δξ = −q

√∫
ds × ρ(s) ×W2(s) − K2, (3.23)

where ρ(s) represents normalized line charge density and s is the distance from the bunch

centre. From Fig. 3.11, we observe that the W(s) at β = 0.61 is less compared to the
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W(s) calculated for the β = 1 case. We obtain δξ = 6.53 eV from the above equation.

The typical energy gain for a single βg = 0.61 5-cell cavity is ∼ 11 MeV. Therefore,

the relative spread in the beam energy due to wakefield will be negligible. In the next

sub-section, we will calculate the parasitic heat load due to resonant excitation of HOMs.

3.4.3 Heat load due to resonant excitation of HOMs

The beam has a multiple time-structure in a typical hadron linac. The time-structure of

the beam in the proposed ISNS linac is shown in Chapter 1 (in Fig. 1.2). Details of the

time structure are summarized here in the Table 3.3. For the ISNS, macro-pulse train will

repeat with a PRR of 50 Hz. Inside the macro-pulse, there will be a train of midi-pulses

repeating with a frequency of 1 MHz and within the midi-pulse, there will be the pulse

train of 325 MHz micro-pulses.

Following the procedure given in Ref. [97], Fourier series representation of this

typical time structure was calculated, and it is shown in Fig. 3.12. In case a cavity mode

frequency coincides with any of the frequency component present in the Fourier

spectrum of the beam, fields in that particular mode will add coherently from each of the

beam bunch, traversing through the cavity. Fourier coefficient corresponding to the

frequency component decides the fractional beam energy gained by the mode. In a real

cavity, energy in the mode will decay through Ohmic heat dissipation, as well as being

out coupled through beam pipe / coupler. However, if the corresponding Fourier

coefficient is sufficiently strong, energy will build up in the mode, depending on the

energy decay rate.

In a loss free cavity, an on-axis Gaussian micro beam bunch will excite nth monopoles

HOM with the following induced voltage:

Vq =
ωnR
2Q0

qeiωnt = V̄qeiωnt. (3.24)
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Table 3.3: Beam time structure for the ISNS injector linac
Time Spacing between micro-bunches, Tµb 3.07 ns (325 MHz)

Midi-pulse period, Tm 1 µs (1.0 MHz)
Midi-pulse gap length, Tmb 0.65 µs (1.0 MHz)

Average current in Tmb ∼ 6 mA
Macro-pulse period, TM 20 ms

Macro -pulse gap length, TMG 18 ms
Number of micro-bunches in one mid-pulse, N 211
Number of mid-pulses in one macro-pulse, M 2000

Average current in, TM 0.40 mA

Figure 3.12: Fourier components of ISNS beam pulse and the coefficients at different
frequencies.

Considering an external quality factor Qext for the nth HOM, we can calculate the decay

time constant Td = 2Qext/ωn. Note that, the decay time constant will depend on the total

quality factor Qtot of the cavity assembly, and in presence of couplers, Qtot = (Q−1
0 +

Q−1
ext)
−1. As we know, for a superconducting cavity Q0 >> Qext. Therefore, for an SRF

cavity assembly, Qtot will become approximately equalt to the Qext. With this decay time,

an expression for the net induced voltage can be written as Vq = V̄qe(iωnt−t/Td).

Let us now consider a time instant t1 by which n1
th micropulse has already passed

through the cavity. Hence, we can express t1 = n1Tµb + t, where, 0 ≤ t ≤ Tµb and n1 may
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represent any number between 1 and N. Now the total voltage induced in the cavity is

V(t) = V̄q

n1∑
ni=1

e[i(ni−1)ωnTµb−(ni−1)Tµb/Td]e(iωnt−t/Td)

= V̄q

[
1 − exp{n1(−Tµb/Td + iωnTµb)}

1 − exp(−Tµb/Td + iωnTµb)

]
e(iωnt−t/Td),

(3.25)

With a similar argument, total voltage induced in the cavity after the exit of m1
th

midipulse at a time instant t2 = m1 × Tm + t, where, 0 ≤ t ≤ Tm and 1 ≤ m1 ≤ M is

V(t) = V̄q

[
1 − exp{N(−Tµb/Td + iωnTµb)}

1 − exp(−Tµb/Td + iωnTµb)

]
×

[
1 − exp{m1(−Tm/Td + iωnTm)}

1 − exp(−Tm/Td + iωnTm)

]
e(iωnt−t/Td).

(3.26)

Finally, after the exit of pth macropulse at a time instant t3 = p×TM +t, where, 0 ≤ t ≤ TM,

total voltage induced in the cavity can be calculated as

V(t) = V̄q

[
1 − exp{N(−Tµb/Td + iωnTb)}

1 − exp(−Tµb/Td + iωnTµb)

]
×

[
1 − exp{M(−Tm/Td + iωnTb)}

1 − exp(−Tm/Td + iωnTm)

]
×

[
1 − exp{p(−TM/Td + iωnTb)}
1 − exp(−TM/Td + iωnTM)

]
e(iωnt−t/Td),

(3.27)

Eq. 3.27 clearly shows the signature of three resonances in the total induced voltage

V(t), which is also a function of Qext. Therefore, if we need to restrict the induced

voltage below some defined limit, we must choose the value of Qext accordingly with the

deployment of a suitable HOM coupler.

In Fig . 3.13 , we plot normalized HOM power P(t) as a function of time for different

values of Qext in the steady state. For the nth HOM, the normalized power is defined as

P(t) =
V(t)2

(R/Q)nQext
. (3.28)
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Figure 3.13: Normalized HOM power in the steady state, plotted for different values of
Qext at an HOM frequency of f = 1.625 GHz, which is the 5th harmonic of the micro-pulse
repetition rate, and 1625th harmonic of the midi-pulse repetition rate.

As mentioned, P(t) is the power coming out through the HOM coupler with a given

Qext. Again, for the nth mode, the power dissipated on the cavity, which will appear as

heat load to cryoplant will be given by P(t) × Qext,n/Q0,n. If we keep on reducing the

value of Qext, the normalized HOM power, i.e., P(t)/(R/Q) reduces, and so does load to

cryoplant. As we know, for any mode, V(t) is proportional to R/Q, and from the above

argument, we can say that the HOM power P(t) is also proportional to R/Q. It is therefore,

we normalized P(t) with respect to R/Q to make the curves given in Fig. 3.13 as universal

curves for a given time structure of pulses, the HOM frequency and Qext.

Figure 3.14(a) and (b) show the plots of normalized steady state HOM power as a

function of Qext for the HOM frequency of 1625 MHz and 1626 MHz respectively. The

HOM resonating at a frequency of 1.626 GHz is the1626th harmonic of the 1 MHz which

is the midi-pulse repetition rate of the beam.

From Fig. 3.14(a), it is clear that for these cavities if we fix Qext = 108, the normalized
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Figure 3.14: Time averaged HOM power (Pavg) plotted as a function of Qext. (a) Here the
HOM frequency is 1.625 GHz, hence micro and midi-pulses both are in resonance, (b)
Here HOM frequency is 1.626 GHz, therefore only midi-pulses are in resonance.

HOM power P̄HOM will be < 17 W/Ω for the higher order mode resonating at 1.625 GHz.

Again, for a value of Qext = 107, P̄HOM will further reduce to ∼ 5.94 W/Ω. As expected,

for the frequency 1626 MHz, the resonance is relatively weak.
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Figure 3.15: The normalized time averaged HOM power plotted as a function of HOM
frequency. Here we took Qext = 107.

Figure 3.16: Normalized time-averaged HOM power from the beam time structure near
f = 1.625 GHz which is the fifth harmonic of the micro-pulse repetition rate. Here
Qext = 107.

Fig. 3.15 shows the normalized time-averaged HOM power up to 4.2 GHz frequency,

and Qext = 107. Similar values of P̄HOM is noticable there for other micro-pulse resonance

peaks.
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In the figure Fig 3.16 we plot the values of P̄HOM for around f = 1.625 GHz for a

small range of frequencies. Fig 3.16 shows the signature of the midi-pulse resonances

along with the micro-pulse resonating at 1.625 GHz. From Fig 3.16 , we also observe

that, while in resonance, the micro-bunch frequency gives rise to the strongest resonance.

Based on this analysis, we conclude that the value of Qext should be kept below 108 in

order to reduce the cryogenic heat load due to resonant excitation of HOMs considerably.

3.5 Summary and conclusion

In this chapter, we have described studies on HOM and wakefield generated in the

optimized elliptic cavities for the ISNS linac. An HOM with a field configuration

trapped inside the optimized medium beta cavity is reported here, which is followed by a

discussion on the procedure for the successful removal of the same. A rigorous analysis

on the regenerative BBU instability and threshold current calculation is also discussed

here. Accordingly, we found that the medium beta elliptical cavities will limit the

maximum value of the cw average beam current below 0.516 mA. However, as

mentioned, threshold values of the beam current are calculated here in the absence of

HOM dampers since we have taken unloaded Q for all HOMs. In presence of HOM

couplers, or even the fundamental mode power coupler, the loaded Q will be

significantly less than the unloaded Q, and as a consequence, there, the threshold current

limits will increase several times. As it is discussed in this chapter, threshold value of the

beam current strongly depends on the velocity of the beam particles, and the minimum

value of the threshold beam current corresponds to that particular velocity, for which

synchronism between the velocity of a beam particle and the phase velocity of the

electromagnetic wave is a maximum. For a particular dipole mode, such condition is

satisfied only within one or two cavities in the linac. Therefore, even in the absence of

HOM dampers, there will be a fair chance that the instability produced in those cavities

may die out eventually in the subsequent sections of the linac. In this chapter, we have
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also calculated the heat load arises due to resonant excitation of the monopole HOMs.

However, such analysis only gives an idea about the extreme scenarios. An alternative

approach for the estimation of the parasitic heat load generated in the elliptical cavities,

is elaborated in Ref. [98]. Following the methodology given in reference, one can

calculate the total heat load due to the higher order electromagnetic modes supported in

the cavity geometry.
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Chapter 4

Study on the Lorentz Force Detuning

(LFD) in elliptic SRF cavities

Radiofrequency fields of an electromagnetic mode produce an electromagnetic

self-force on the inner wall of an RF cavity. This force is known as the Lorentz force.

This force has the potential to deform the cavity. As a consequence of this deformation,

resonant frequency of the operating mode gets detuned from its designed value. This is

called the Lorentz force detuning.

We have described electromagnetic design optimization of multicell elliptic SRF

cavity geometries in the previous chapters. The design has been optimized for maximum

achievable acceleration gradient. Owing to their extremely high Q-value, frequency

bandwidth for these SRF cavities is stringently small. Therefore, even a small detuning

in these cavities is enough to cause a large reflection of the input power. The situation is

even more stringent for a pulsed machine. The scenario may get worse there in case the

structural mode frequency of the cavity assembly starts resonating with the pulse

repetition rate (PRR) of the input RF pulse.

As described in previous chapters, the proposed ISNS accelerator will be a pulsed

machine, and elliptic SRF cavities will be used there in the medium and high energy
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section of the superconducting linac. Study of LFD is therefore extremely important for

these cavities.

4.1 General discussion on the Lorentz force detuning

In a cavity resonator, time varying electric and magnetic fields of an electromagnetic

mode remains confined inside the cavity wall, where these oscillating fields induce surface

current and surface charge density. The current and charge density thus induced, interact

with the electromagnetic fields of the mode to give rise to Lorentz force on the cavity

wall [99], which deforms the cavity wall [36], [100]. On a conducting plane with a surface

charge density, the pressure produced because of this Lorentz force will act in the outward

direction from the surface ,i.e., inwards to the cavity, whereas due to the surface current,

such force will be inward, i.e., outwards to the cavity.

In an RF cavity, electric and magnetic field of a mode oscillate with the resonant

frequency f0. However, cavity wall will effectively experience a pressure, averaged over

an RF period TP, due to slow mechanical response of the cavity material. The time

averaged Lorentz pressure P acting on the resonator wall can be calculated from the

following expression [36], [100], [101]:

P =
1
4

(ε0E2
pk − µ0H2

pk). (4.1)

Here ε0 and µ0 denote permittivity and permeability of the free space. In the equation,

Epk and Hpk represent peak value of the electric field and magnetic intensity respectively.

Also, as we know, in the free space, magnetic field B=µ0H [99].

For a TM010 mode, E-field dominates near the iris region of an elliptical cavity and

B-field dominates at the equatorial surface. Accordingly, Fig. 4.1(a) shows the typical

distribution of the Lorentz pressure on the inner surface of an elliptic cavity wall. As
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a consequence of this pressure, iris region deforms inward, whereas, in the equatorial

region, the deformtion is in the outward direction; which is shown in Fig. 4.1(b). As a

result of this deformation, resonant frequency of the cavity reduces and gets shifted to fL

from the design frequency f0. The deviation in the resonant frequency ∆ f = | f0 − fL| is

known as the Lorentz force detuning [66].

Figure 4.1: (a)Typical Lorentz pressure distribution on the inner wall of an SRF cavity
half-cell, and (b) the corresponding deformation (Not to scale).

As it is shown in Eq. 4.1, value of the Lorentz pressure P depends on the square of

amplitude of the peak electric field and magnetic field value. Therefore Lorentz pressure

will generate a static deformation in the cavity shape for an accelerator operating in a cw

mode. Such static detuning, which is a result of this static deformation is known as static

LFD [16], [66].

For a pulsed mode of operation, Lorentz pressure P also becomes periodic, following

the temporal pattern of the periodic input RF power pulse. Then, as mentioned, some of

the structural mode frequencies of a cavity assembly may get resonantly excited by this

periodic Lorentz pressure pulse train. This may lead to a dynamic amplification in the

deformation of the cavity shape. The detuning introduced by this resonant amplification

is known as the dynamic LFD [102].

Here we would like to emphasize that these structural modes are decided not by the

cavity alone, but by the entire cavity assembly, which includes stiffener rings, as well
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as the helium vessel [101]. Schematic of a typical SRF cavity - stiffener rings - helium

vessel assembly is shown in Fig. 4.2. As explained, electromagnetic field of a resonant

mode will apply a radiation pressure on the inner surface of the niobium cavity wall and

as a consequence of this pressure, the cavity shape might get deformed. Niobium rings

are therefore welded, connecting the outer wall of the niobium cavity cells, to reduce this

deformation. These rings are called stiffener rings. Assembly of cavity and stiffener rings

is inserted into a cylindrical titanium vessel. In an SRF accelerator, these vessels remain

filled up with liquid helium (usually at 2 K) and hence known as helium vessel also. In

this assembly, a thin ring-like niobium titanium (55Ti-45Nb) transition piece is used to

facilitate the joining between titanium vessel and niobium cavity end-groups [103].

Figure 4.2: (a) Schematic of a multicell SRF cavity along with helium vessel and stiffener
rings. (b) Inset is the 150 sector model of the cavity assembly.

Lorentz Force Detuning analysis is indeed a coupled-physics problem. We need to

perform both electromagnetic and structural analysis in order to compute Lorentz

pressure, cavity deformation and the detuned frequency. These calculations were

performed using the single environment of a finite element based simulation software

ANSYSTM [104], [105], [106]. Subroutines were developed there using ANSYSTM

parametric design language (APDL) which is a seamless programing interface available

with the software [106].
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4.2 Static and dynamic LFD in an elliptic SRF cavity - a

theoretical framework

In order to feed RF power to an RF cavity, impedance matching is essential between

the cavity and the RF power coupler. Such matching is ensured between cavity and power

coupler at design frequency f0 of the operating mode of an RF cavity. The requirement

on the RF power to be fed to the cavity becomes nealy doubled if the resonant frequency

of the cavity is detuned by δ f = f0/2QL [107]. Here, QL is the loaded quality factor of

the cavity, which is expressed in terms of coupling coefficient (βc) as QL = Q0/(1 + βc).

We need to set βc = 1 + PB/Pc in the case of a critical coupling in the presence of beam,

where PB denotes beam power in the expression of βc [65]. In case of an SRF cavity,

Pc is considerably less than that of the PB. With a little approximation, therefore the

parameter QL can be calculated from the formula QL ≈ Q0/βc = Q0/(PB/Pc). In terms of

the beam current IB and Rsh, i.e. the shunt impedance of the cavity, finally one can derive

QL ≈ Q0/(Rsh × IB/V0).

The average beam current in a pulse will be around 10 mA for the ISNS linac.

Therefore, QL for the βg = 0.9, 650 MHz elliptic SRF cavities will be around 3.2 × 106,

which corresponds to the typical bandwidth of the cavity, i.e., fc/QL ≈ 200 Hz [36].

Therefore, analysis and compensation of this Lorentz force detuning is extremely

essential in the case of an elliptic SRF cavity used in the ISNS injector linac.

4.2.1 Static Lorentz force detuning in an elliptic SRF cavity.

As mentioned, static LFD is the constant deviation in resonant frequency in an

accelerator operating in the continuous mode. Following Refs. [102], [101], we define a

parameter kLFD, which is known as Lorentz force detuning coefficient. This parameter

relates static detuning δ f in the resonant frequency of the cavity with the accelerating
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gradient Eacc as

δ f = −kLFDE2
acc, (4.2)

where kLFD has the unit Hz (MV/m)-2. As it is shown in Fig. 4.1(a), due to Lorentz

pressure, there is a reduction in the volume of an elliptic cavity, where electric field

dominates and the expansion in the cavity volume occures in the magnetic field region.

Therefore, from Slater perturbation theory, it can be shown that such deformation in the

cavity volume will lead to a reduction in the resonant frequency of the cavity. This

explains the negative sign in Eq. 4.2.

4.2.2 Periodic Lorentz pressure and the Dynamic LFD in an elliptic

SRF cavity.

As explained, Lorentz pressure originates from electromagnetic fields of the cavity

mode, and we can derive Lorentz pressure pulse shape from shape of the cavity voltage

using Eq. 4.1. Figure 4.3 describes the temporal shape of the RF voltage, as well as the

corresponding Lorentz pressure pulse, where the beginning point t1 of the 2 ms flat top

(from t1 to t2) indicates starting time of the 2 ms beam pulse [37]. The rising and falling

part of the voltage pulse is decided by the loaded quality factor of the cavity.

Following the cavity voltage, the Lorentz pressure pulse will be repeated with a PRR

of 50 Hz [37]. Therefore, we will explore the structural response of the cavity under the

influence of this periodic pressure pulse in the next subsection.

Theoritical formulation for the dynamic LFD [100]

Figure 4.3 shows the temporal profile of the Lorentz pressure pulse within the time

period 20 ms (PRR−1). In response to this time-dependent Lorentz pressure P, one can

explain the vibration of the cavity wall in terms of its normal mechanical modes of

vibration. This is described in brief as follows.
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Figure 4.3: Temporal profile of the amplitude of the normalized cavity voltage (in blue),
and the amplitude of the normalized Lorentz pressure pulse (in black).

We can parametrize the cavity surface in the form of two appropriately defined

variables u and v. Following this parametric representation using variables u and v, any

point on the cavity surface (x, y, z) can be denoted as x = x(u, v), y = y(u, v), and

z = z(u, v). Let us define a variable χ(u, v, t) representing the displacement of any point

on the cavity wall surface due to mechanical vibration at a time instant t. Any such

displacement can be decomposed into eigenmodes of vibration. Therefore, one can write

χ(u, v, t) =
∑

m φm(u, v)ηm(t), where, φm(u, v) and ηm(t) represents shape function and

amplitude of the mth orthonormal eigenmode, respectively. For these eigenmode shape

functions, we define the orthonormality condition as follows:

	
S

φm(u, v)φn(u, v)dS = Sδmn, (4.3)

where, dS denotes an elementary area on the total cavity surface area S and δmn is the

Kronecker delta function representing the condition δmn = 1 if m = n, and δmn = 0 for the

cases m , n.

An RF cavity may perform damped harmonic oscillation in the absence of any external
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force. We can calculate the time evolution of the displacement of a point on the cavity

surface as
χ̈ =

∑
m

φm(u, v)η̈m(t)

= −2
∑

m

ξmω0mφm(u, v)η̇m(t) −
∑

m

ω2
0mφm(u, v)ηm(t),

(4.4)

in that damped oscillation condition. Here ‘·’ and ‘··’ denote first order and second order

derivatives respectively w.r.t. time. In the above equation, the first term in the right hand

side containing η̇m(t), specifies the damping. The second term indicates the restoring

force. In the above equation, ξm describes fraction of the critical damping in this damped

harmonic oscillation equation [108].

However, an RF cavity will perform forced oscillation in the presence of Lorentz

force. In this case, r.h.s. of Eq. 4.4 will be modified with an addition of the term

[P(u, v, t)dS]/[m(u, v)dS] as follows:

χ̈ =
∑

m

φm(u, v)η̈m(t)

= −2
∑

m

ξmω0mφm(u, v)η̇m(t) −
∑

m

ω2
0mφm(u, v).ηm(t) +

P(u, v, t)
m(u, v)

,

(4.5)

where, m(u, v) is the mass per unit area of the cavity wall.

Multiplying the both sides of the above equation with φn(u, v) and performing integra-

tion over the entire surface S, we get

	
S

∑
m

φm(u, v)η̈m(t)φn(u, v)dS = − 2
	
S

∑
m

ξmω0mφm(u, v)η̇m(t)φn(u, v)dS

−

	
S

∑
m

ω2
0mφm(u, v)ηm(t)φn(u, v)dS

+

	
S

P(u, v, t)
m(u, v)

φn(u, v)dS.

(4.6)

Considering that the mass per unit area m(u, v) of the cavity wall is a constant quantity

which is not getting affected by the Lorentz pressure induced deformation of the cavity,

m(u, v) can be taken outside the integration. Hence, applying orthonormality condition,
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Eq. 4.6 can be simplified into the following form of a familiar forced harmonic oscillator

equation:

η̈m(t) + 2ξmω0mη̇m(t) + ω2
0mηm(t) =

1
M

	
S

P(u, v, t)φm(u, v)dS, (4.7)

where, M is the mass of the total mass of the cavity.

In this forced oscillation equation, Lorentz pressureP is the source of excitation, which

can be written as,

P(u, v, t) = F(t)P(u, v) =
F(t)
S

∑
n

Anφn(u, v), (4.8)

where, F(t) and P(u, v) independently represent the time and space dependent parts of the

pressure function P, and spatial part of the pressure function has been expanded in terms

of Eigen modes of mechanical vibration.

Substituting the series expansion of P(u, v, t) in Eq. 4.7, we obtain

η̈m(t) + 2ξmω0mη̇m(t) + ω2
0mηm(t) = F(t)Am/M. (4.9)

It is an ordinary forced harmonic oscillator equation, here F(t) describes time-variation

of the excitation force.

As explained, F(t) will be a periodic pulse train for the case of ISNS linac, and will

repeat with a PRR of 50 Hz. Hence, in terms of Fourier series we can write

F(t) =
∑

n Fn sin(nωMt + θn), where, ωM represents 2π× PRR with n = 0, 1, 2, .. Absolute

values of the Fourier coefficients of the forcing function are shown in Fig. 4.4 for

different frequencies ω/2π. Here, resonance will occur only when any of the structural

mode frequency (angular) meets the condition ω0m = nωM. Figure 4.4 also shows that

the contributions from the structural mode frequencies higher than 250 Hz are

progressively lower in the total response. In fact, the ratio of amplitudes corresponding
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to frequencies 250 Hz and 0 Hz, is ≤ 1/20.

Figure 4.4: Fourier series representation of the normalized Lorentz Pressure Pulse
Shape. Here F (ω)|Norm denotes normalized amplitudes corresponding to the participating
frequencies.

Therefore, based on this analysis, we can conclude that the contribution in building up

the resonance in the case of a forced oscillation will be significantly less for the

participating structural modes having frequencies higher than 250 Hz.

In the next section, we will discuss the details of modelling of the problem under study,

based on finite element method.

4.3 Discussion on the Finite element model

So far, we have identified the Lorentz force detuning analysis as a multiphysics

problem. We need E and B-field of the electromagnetic mode resonating in the cavity to

calculate the radiation pressure. Calculated pressure is then applied to the cavity wall

and the corresponding deformation in the geometry is calculated by performing the
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structural analysis. Depending on the type of analysis required, we need modules like

static or transient solver for structural analysis and eigenmode solver for electromagnetic

analysis. Therefore, we picked the FEM based code ANSYSTM to perform entire

analysis under the same software environment.

Geometric details of the 650-MHz medium and high β multicell elliptic SRF cavities

are described in Chapter 2. Based on studies performed on a similar cavities, the thickness

of the cavity wall has been selected as 4 mm [100].

Inner wall of these elliptical cavities will experience azimuthally symmetric Lorentz

pressure in a TM010-π mode configuration. On the basis of Eq. 4.7, we can expect that this

pressure will excite only azimuthally symmetric structural modes in the cavity. Hence,

we modelled only a 50 sector of the full cavity - helium vessel assembly in the azimuthal

direction, to take into account all the modes excluding the tortional or flexure ones. This

model is shown in Fig. 4.5. In the assembly of a dressed SRF cavity, electron beam

welding (EBW) is used to integrate the stiffener rings in the design. Stiffener rings can be

made of reactor grade niobium for which the advantage of 1.3 times higher yield strength

can be taken; therefore the thickness of the stiffener rings has been reduced to 3 mm only.

This also helps in reducing the heat input during EB welding of the stiffener ring with the

cavity wall, which is turn reduces the distortion caused by welding shrinkage. Material

properties used in the calculations were taken from the Ref. [109]. Fig. 4.5 also shows

the small transition piece of 55Ti-45Nb in between the niobium and titanium plates of the

end cover of the helium vessel. As mentioned, this transition piece facilitates the joining

between two dissimilar materials - niobium and titanium. However, this transition piece in

general reduces the stiffness of the cavity-helium vessel assembly due to its lower elastic

modulus compared to Nb or Ti. Therefore, the width of this ring shaped transition piece

is kept as small as possible, ensuring the manufacturing requirement.

It is mainly the boundary stiffness and the radiation pressure, which determine the

structural modes of a structure. In the work reported in Ref. [101], the stiffness was
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Figure 4.5: Figure shows the 50 sector model of the cavity-helium vessel assembly.

modelled by springs without including helium vessel. Our simulations were performed

on an integrated model of the cavity helium vessel assembly. It is therefore expected

that our model will represent the bending stiffness of the end cover more realistically.

However, the dedicated tuner arrangement was not included in this analysis.

Stiffness of the helium vessel depends on the two principal considerations - (a)

bending stiffness of the end cover, and (b) axial / membrane stiffness of the cylindrical

wall [100], [110]. Among these two, the later one is far more than the former. Bending

radius of the end cover and the wall thickness of cylinder were optimized for a desired

stiffness of the helium vessel. The bending stiffness is less compared to membrane

stiffness (i.e., the stiffness offered by a plane with finite thickness), therefore it influences

structural modes in the cavity-helium vessel assembly more than the membrane stiffness.

The tuner assembly is mounted in the mid of the cylindrical part of the helium vessel in a

typical configuration. Therefore, inclusion of the tuner assembly might change the

stiffness of the cylindrical membrane of the vessel. However, as explained in the end of

this chapter, it would have no significant effect on the result of our analysis.

As mentioned, this analysis was performed using the FEM based software

ANSYSTM-MULTIPHYSICS. The software ANSYSTM uses vector finite element

method (VFEM) for the computation of electromagnetic eigenmodes and

electromagnetic fields. VFEM ensures the accuracy in the computation by enforcing

continuity of the electric field on the inter-element boundaries [106]. In this study, the
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volume enclosed inside the cavity wall was the domain for the electromagnetic analysis.

Accurate computation of the radiation pressure requires precise estimation of the

electromagnetic field values at the inner surface of the cavity wall. Therefore, a fine

mesh density was created near the metallic boundary of the cavity. A refined mesh

density was also created along the cavity axis to ensure an accurate calculation of the

accelerating gradient Eacc. Lorentz pressure was calculated using Eq. 4.1 from the

electric and magnetic field values obtained at the metallic boundaries for each of the

nodal points on the cavity inner wall. ANSYSTMAPDL was used extensively for this

computation. In the subsequent operation, deformation in the cavity geometry was

computed through a structural analysis.

Numerical computations were performed on the nodal points for structural analysis

and we perform the discretization accordingly. Each of the discrete mass points can be

considered connected to all other points through imaginary springs. Based on that

assumption, the structure can be visualized like a system with multiple degrees of

freedom (MDoF). However, one principal bottleneck here is that the theoretical

modeling of an actual damping is very difficult in the case of a MDoF system.

Hence, to incorporate the damping in the structural computation, we have used an

established mathematical model, which is called Rayleigh proportional damping

model [111], [112]. Commensurate with the experimentally obtained result, reported in

Ref. [101], in our semi-numerical approach, we have assumed that for each of the

modes, the amount of damping present was 0.3% of their critical damping. Here, critical

damping is defined as the smallest damping coefficient above which the transient

response shows a non-oscillatory asymptotic behavior [108].

We have performed the structural transient calculation, following the mode

superposition method. Transient simulation was run for 4 seconds (equivalently up to

200 RF pulses) as it was observed that this time was enough for the run to yield a steady

repeatable response. We chose a time step size ∆t = 50 µs, which is less than (1/20)th of
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the time period of the largest frequency of natural modes of vibration that may get

excited during the pulse [106].

In the analysis, we have generated fully compatible finite element mesh at the interface,

which ensures a one-to-one correspondence between calculated electromagnetic fields

and applied Lorentz pressure on the structural elements.

In the next section, we will present the result of our analysis, which was performed on

βg = 0.61 and βg = 0.9, 650 MHz SRF elliptic cavities designed for the proposed ISNS.

4.4 LFD analysis of elliptical cavities designed for ISNS

Based on the above theoretical framework, a sequential design methodology was

developed. Lorentz Force Detuning analysis were performed on the medium and high β

elliptic multicell SRF cavities, following this methodology. In this section, we will

describe the methodology based on the results obtained from Lorentz force detuning

analysis of the βg = 0.9, 650-MHz multicell elliptical SRF cavity geometry. This will be

followed by a brief description of results obtained from the βg = 0.61, 650 MHz SRF

cavity. Considerations like the tunability of the cavity and the probable effect on the LFD

due to the inclusion of a tuner will be emphasized there.

4.4.1 LFD analysis on βg = 0.9 650 MHz 5-cell elliptical SRF cavity

The detailed geometry of this cavity has been described in Chapter 2. From the

parametric cavity geometry, FEM model of the ‘cavity helium vessel assembly’ was

created in ANSYSTM [36], [100].

As mentioned, the design gradient for this cavity is 18.6 MV m-1. To achieve this

gradient, a maximum of around 200 kW RF power will be fed into the structure. We have

calculated the corresponding bandwidth as∼ 200 Hz for these cavities.
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As mentioned, ISNS accelerator is a pulsed mode machine. Therefore, dynamic

Lorentz force detuning will be a crucial issue for the cavities. However, we start with

analyzing the static LFD as the helium vessel geometry is optimized based on the static

analysis.

Analysis on the static Lorentz force detuning: Our starting geometry of the helium

vessel was simple. It was a 1.1 m long titanium cylinder with inner diameter 504 mm,

terminated with flat end covers at both ends. A small curvature of 35 mm radius was

assumed at the junctions of the cylinder and end covers. This radius is called the

‘torus-radius’. Configuration of this cavity helium vessel assembly is shown in Fig. 4.6.

Figure 4.6: Starting geometry of the cavity and the ‘tori-flat’ helium vessel assembly.
Torus radius of the helium vessel is 35 mm in this configuration.

Stiffness of the helium vessel plays an important role in controlling the detuning due

to Lorentz force. Vessel stiffness can be enhanced (i) by increasing torus radius, or (ii)

by increasing the wall thickness of the cylinder. However, maximum value of this torus

radius is limited by the cavity volume, maximum radial position of the stiffener rings and

the radial position of the 55Ti-45Nb transition material. The transition piece is kept in

the flat portion of the end cover for ease of welding. With the increasing thickness of

the cylinder wall, the helium vessel will become heavy. This also increases the sag of

the assembly, and the material cost. Therefore, reduction in the LFD by increasing the

stiffness of the helium vessel is an expensive option, and needs suitable optimization.

Thickness of the titanium cylinder wall of the helium vessel was varied within a range

of 3 to 5 mm, and the torus-radius from 35 to 200 mm. The stiffness of the helium vessel
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were calculated for the different combinations of wall thickness and torus-radius. We have

used Hook’s law to calculate the stiffness of the helium vessel in this analysis. Figure 4.7

shows a reduction in the static LFD with increasing stiffness of the helium vessel. As it is

seen in the figure, the absolute value of the detuning reduces from 2.6 to 1.1 kHz, when

we increase the vessel stiffness from 2.3 to 6.5 kN/mm. In the same plot, corresponding

values of Lorentz force detuning coefficient −KLFD are shown. These calculations were

performed in absence of the stiffener ring.

Figure 4.7: LFD as a function of the stiffness of the helium vessel. Here calculations were
performed without including stiffener rings in the design. Also, the values of −KLFD is
shown here.

It can be seen from Fig. 4.7 that the stiffness of the helium vessel alone cannot

completely nullify the LFD. In fact, increasing helium vessel wall thickness makes the

structure stiff, but it has minimal influence on the deformation of individual cavity cells.

Therefore stiffener rings were integrated with the model to reduce the detuning further.

In this analysis, we have calculated the LFD by varying the radial positions of the

stiffener rings, for different values of the helium vessel stiffness. A reduction in the

values of static detuning with increasing radial position of stiffener rings is shown in

Fig. 4.8. Stiffener rings constraint the deformation of the cavity wall. Its effectiveness

increases, as we move towards radially outward location, and finally, when the stiffener
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rings reach nearly the top of the equatorial dome of the cavity, its effectiveness saturates.

As it is shown in Fig. 4.1, the intensity of the Lorentz force reduces near the cavity

equator. We have also shown the corresponding values of KLFD in the same figure.

Accordingly, the reducing trend of the detuning saturates for the higher radial position of

the stiffener ring.

Figure 4.8 shows that the static LFD (absolute) attains its minimum for the

configuration, which corresponds to a reasonable high value of the radial position of

stiffener rings. In this configuration, minimum LFD value of ∼ 550Hz was obtained for a

radial position of stiffener rings around 170 mm. Helium vessel stiffness was kept fixed

at 4.9 kN/mm in this calculation.

Figure 4.8: LFD is plotted as a function of the radial location of the stiffener rings. Helium
vessel stiffness was kept fixed at 4.9 kN/mm in this calculation. Values of −KLFD is shown
here.

Above analysis shows that the stiffener rings reduce the detuning considerably, yet

proper tuning is required for complete elimination of LFD. In this tuning process, the

cavity is subjected to an axial elongation (or contraction) with the help of a tuner system.

In the next part of our analysis, calculations were performed for the tuning

requirement for different radial positions of stiffener rings for the complete
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compensation of the static LFD. Complete compensation of LFD with the help of proper

tuning was studied for different values of the helium vessel stiffness. Moreover, based on

the practical considerations, like the maximum allowable value of the stiffener radius and

the limitation on the maximum tuning range, finally we have selected the design of the

helium vessel, which can offer a stiffness 4.9 kN/mm. For this configuration, the

thickness of the helium vessel was obtained as 5 mm with a torus radius of 120 mm. The

detailed geometry of the helium vessel is summarized in Table 4.1. Without

incorporating stiffener rings in the design, in the cavity-helium assembly, one can reduce

the detuning due to LFD to a value of ∼ 1300 Hz, which corresponds to a |KLFD| of ∼ 4

Hz / [MV/m]−2.

Table 4.1: The detailed geometry of the helium vessel.

Diameter (mm) Thickness (mm) Torus radius (mm) Stiffness (kN/mm)
504 5 120 4.9

Figure 4.9 shows that static LFD can be fully compensated with a pre-stretching of∼

9.5 µm, if we set the radial location of the stiffener rings around 80 to 110 mm. Such a

pre stretching in fact provides a small axial elongation to the cavity volume. Since, this

elongation increases mostly the volume of the electric field region of the cavity near the

iris, cavity frequency increases slightly.

One more constraint arises in the LFD analysis regarding the positioning of the

stiffener rings. An increasing radial position of the stiffener rings makes the tuning

difficult. Being an additional constraint, stiffener rings make the cavity assembly more

rigid and the structure becomes more and more rigid with the increasing radial location

of stiffener rings. However, finally, the cavity requires an elongation to completely

compensate for the LFD, and this elongation is provided by the tuner. Tuning turns out

to be difficult with the increasing rigidity of the cavity assembly. It will be explained

later in this chapter with the help of simulated results, when we present the LFD analysis

performed on βg = 0.61 cavities. Increasing the radial position of stiffener rings also

108



Figure 4.9: LFD as a function of the radial locations of the stiffener rings. Here, the
stiffness of the helium vessel is 4.9 kN/mm. In the vessel, an axial elongation of 9.5 µm
was considered in this simulation. Corresponding values of KLFD is also shown here.

affects another important figure of merit of a multicell cavity, which is the field flatness

η. One of the important optimization criteria in designing a multicell cavity geometry

was to maximize the field flatness. Chapter 2 shows that 99.4 % field flatness was

achieved in the optimized βg = 0.9, 650 MHz 5-cell cavity geometry. There, stiffener

rings were not considered in that optimization work. As it shown in Fig. 4.10, field

flatness starts deteriorating if we increase the radial position of stiffener rings. In a

multicell elliptic cavity geometry, the end cells are supported directly by the helium

vessel, which is relatively stiff compared to the cavity cells. Therefore, mid-cells deform

more compared to the end-cells with the increasing stiffener location. As a result, the

different cells of the cavity accrue different deformation. Therefore, resonant frequencies

of the individual cell become different, which results in a degradation of the cavity

field-flatness. Figure 4.10 also shows that this reduction will be rapid if we push the

radial position of the stiffener approximately beyond 100 mm.

Therefore, positioning of the stiffener rings will be a compromise between the field

flatness and LFD. Among the contemporary projects, as it is described in the Ref. [113],
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Figure 4.10: Reduction in the field flatness with increasing radial position of the stiffener
rings.

SNS project at Oak Ridge has targeted 98% field flatness as their design goal, whereas,

for the SNS cavities, the requirement was set as η ≥ 92% [114]. We have set a target of

98% field flatness in the final elliptic cavity geometry.

Finally, we would like to clarify that the radial position of all the stiffener rings was kept

the same in our analysis. It is because, the asymmetric placement of stiffener rings will

produce an uneven change in the individual cell geometry, particularly when the cavity

will go through the tuning. As observed in the simulation, asymmetric placement of the

stiffener rings leads to a loss of field flatness.

Static LFD is a predictable and slow phenomenon, and in the steady state, deformation

and the detuning remain constant. Therefore, following this deformation pattern, a pre-

calculated stretching of the cavity with a slow mechanical tuner can compensate this static

detuning effectively.

Above analysis shows that, in the case of our βg = 0.9, 650 MHz 5-cell elliptic cavity,

stiffener rings can be positioned anywhere in between the radial range of 80 to 100 mm
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to compensate the static LFD with an axial elongation of 9.5 µm, and because of such

positioning, field flatness of the multicell cavity will remain almost unaffected. However,

as mentioned, ISNS injector linac will be operated in the pulsed mode. In that case, as

mentioned, there the optimized positioning of the stiffener rings can only be finalized

based on the feedback obtained from the dynamic Lorentz Force Detuning study. In the

next subsection, we present the dynamic Lorentz force detuning analysis for the βg = 0.9

cavity.

Analysis on the dynamic Lorentz force detuning: For a pulsed linac, there is a

possibility of unwanted coupling between structural mode frequencies and the PRR of

the input RF pulse, and the undesirable outcome may be the dynamic amplification in the

detuning, i.e., the dynamic LFD.

Dynamic LFD analysis was also performed using ANSYSTM, and the required subrou-

tines to change the stiffener locations and to incorporate the pressure pulse in the simula-

tion etc. were developed in ANSYSTMAPDL.

Table 4.2 summarizes the results obtained from the simulation. Static and dynamic

LFD values of few prominent structural modes are tabulated there for different radial

locations of the stiffeners. Corresponding stiffness values of the cavity - stiffener ring -

helium vessel assembly are also included in the table. In this dynamic LFD analysis also,

we have kept the thickness of niobium stiffener rings fixed at 3 mm. Our observations and

results are explained in the following paragraphs.

Our analysis shows that if we keep the radius of the stiffener rings more than 113.5 mm,

all the structural mode frequencies of the cavity assembly will be beyond 250 Hz. As it

is shown in Table 4.2, for most of the cases, such choice also ensure the amplification

ratio between the static and dynamic Lorentz force detuning nearly unity. This in fact

corroborate the theory discussed earlier, where it was shown that the amplitude of the

Fourier components present in the pressure pulse goes down significantly beyond 250 Hz.

For example, if we choose the radial position of the stiffener at 122.5 mm, we found two
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of the structural mode frequencies close to multiples of 50 Hz. Even then, our analysis

shows that there will not be any amplification subjected to dynamic LFD. Similarly, if

we fix the radial position of stiffener above 116.5 mm, sensitivity of the LFD towards

stiffener radial position becomes less. In fact, beyond this radial position, both static and

dynamic LFD almost saturate. The dynamic LFD for the configuration with a mean value

of the stiffener location at 119.5 mm is shown in Fig. 4.11, during one time period after

the achievement of the steady state. Tuning requirement and the other important figures of

merit corresponding to this configuration is given in Table 4.3. Here, the tuning efficiency

of a tuner arrangement can be calculated from the dynamic LFD value and the required

tuning range. For example, as it is shown in Table 4.2, if we choose the radial position

of the stiffener at 119.5 mm, the corresponding dynamic detuning produced in that case

will be -652 Hz, and to compensate the same, one can calculate the required elongation

of 5.3 µm in the tuning arrangement from the tuning efficiency data given in Table 4.3.

There the cavity sensitivity is another parameter, which is an indirect measure of the

actual elongation in the cavity length required to compensate the LFD. Based on the data

given there, compensation of -652 Hz dynamic detuning requires approximately 3.1 µm

in the cavity length. Figure 4.13 shows that, the same detuning provides an approximate

axial displacement of 1.68 µm in the half of the cavity length, which substantiates the

calculated value of the 3.1 µm elongation in the cavity length to compensate the detuning

fully.

In the simulation, corresponding to the mean value of the radial position of stiffener

rings 80.5, 101.5 and 113.5 mm, respectively considerable dynamic amplifications were

observed. As expected, we found that the structural mode frequencies are close to the

multiples of 50 Hz for each of these cases and as it appears in Table 4.2, these mode

frequencies are considerably less than 250 Hz for these cases. Among these cases,

maximum dynamic LFD of 11480 Hz is reported for the configuration with mean

location of the stiffener at 80.5 mm. The reason is the perfect resonance between the

corresponding structural mode frequency at 150 Hz and the PRR, i.e. 50 Hz.
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Figure 4.11: Dynamic LFD with mean radial position of the stiffener rings at 119.5 mm.

As mentioned earlier, radiation pressure deforms the cavity shape. Consequently the

length of the cavity changes (squeezing or elongation). We observed that the change in

length is more important in determining the detuning compared to the radial deformations.

To verify this observation, we have simultaneously recorded the displacement of a point

(node) on the beam pipe (close enough to the end closure of the helium vessel) and the

LFD value with time during a single RF pulse after attaining the steady state. These two

results are shown in Fig. 4.12 in their normalized forms. It is evident from the figure that

the two curves follow each other. Therefore, transient displacement of the selected node

on the beam pipe can very well give an estimation of the dynamic LFD. We also obtained

a scale factor between the the dynamic LFD and change in the cavity length to be 170± 5

Hz/µm for the βg = 0.9 cavity. We found the scale factor is independent of the radial

position of the stiffener.

Figs. 4.13 to 4.16 show the transient displacement of a particular node of the cavity

located at the end. These figures correspond to the four different radial locations of the

stiffener rings. Figure 4.13 shows the transient longitudinal displacement of the above

mentioned node with a mean radial position of stiffener at 119.5 mm. Similarly,

Fig. 4.14 to 4.16 show transient displacements with mean radial positions of stiffener at

113.5 mm, 101.5 mm and 80.5 mm respectively. In these three cases the resonance
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Figure 4.12: Normalized dynamic LFD and change in the cavity length with a mean radial
position of the stiffener ring at 119.5 mm during a single pulse.

conditions are satisfied between structural mode frequencies and the PRR. Hence,

displacement amplitudes show clear signatures of the dynamic amplification.

Figure 4.13: Longitudinal displacement of the cavity w.r.t. its central plane as a function
of time, with mean radial position of stiffener at 119.5 mm.

To attain the stabilized transient response using the mode superposition method, we

have calculated the transient displacements up to 200 RF pulses. There the last pulse was

taken for our computation of the dynamic LFD.

Compared to static LFD, the cavity tuning required to compensate for the detuning

becomes more challenging in the case of dynamic LFD. Pre-stretching cannot

compensate the detuning here. Hence, we need a piezo crystal based tuner system.
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Figure 4.14: Resonant conditions corresponding to a mean radial position of stiffener at
113.5 mm, where the displacement is calculated w.r.t. central plane of the cavity.

Figure 4.15: Resonant conditions corresponding to a mean radial position of stiffener at
101.5 mm, where the displacement is calculated w.r.t. central plane of the cavity.

Figure 4.16: Resonant conditions corresponding to a mean radial position of stiffener at
80.5 mm, where the displacement is calculated w.r.t. central plane of the cavity.
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Instead of a single crystal, multiple piezo crystals are used in a stacked form to produce

sufficient force required to provide an exact change in cavity length. Here, we want to

mention that the presently available stacks of PZT give up to 100 µm of movement range

at the room temperature and 10 µm at operating temperature [115]. With a feed-forward

programming, the piezo tuner can compensate the LFD within the pulse duration. In this

design, as expected, we have kept the required range of the maximum axial elongation

(or contraction) to tune the cavity to be less than 10 µm.

In the next subsection, we will present LFD analysis performed on the βg = 0.61, 650

MHz SRF elliptical cavity geometry. There, we will elaborate only those points which

are different compared to the procedures already discussed.

Table 4.2: Static and dynamic LFD for different radial positioning of the stiffener rings.
No. Stiffener

mean radius
(mm)

Structural frequency of
symmetric longitudinal
modes (Hz)

Static
LFD
(Hz)

Dynamic
LFD
(Hz)

Cavity
stiffeness
(kN/mm)

1 122.5 296,551,757,882,925 -660 -794 17.84
2 119.5 280,534,745,787,932 -654 -652 15.67
3 116.5 266,515,733,877,939 -649 -656 13.85
4 113.5 252,493,721,876,943 -647 -1229 12.27
5 110.5 239,471,711,874,945 -648 -648 10.89
6 107.5 227,449,701,869,942 -653 -923 9.70
7 104.5 216,427,691,862,937 -659 -800 8.68
8 101.5 205,407,680,853,929 -669 -1120 7.78
9 98.5 195,387,669,843,918 -682 -670 7.01
10 95.5 186,369,657,832,906 -699 -877 6.34
11 92.5 178,352,645,820,892 -719 -815 5.75
12 89.5 170,336,633,807,878 -742 -916 5.23
13 86.5 163,322,621,795,864 -768 -1098 4.78
14 83.5 156,308,609,783,850 -796 -1574 4.39
15 80.5 150,296,597,771,836 -828 -11480 4.04
16 77.5 144,284,586,760,823 -862 -1177 3.73
17 74.5 139,273,575,749,810 -898 -781 3.45

4.4.2 LFD analysis of a 650 MHz, βg = 0.61, 5-cell elliptic SRF cavity

Geometrical, as well as other required parameters for the βg = 0.61, 650 MHz, 5-

116



Table 4.3: Figures of merit of a design with mean radial position of stiffener at 119.5 mm
No. Figures of merit Value
1 Required total tuning range for dynamic LFD compensation 5.3 µm
2 Field flatness after 1 mm movement of tuner 98.58%
3 Cavity end sensitivity while tuning (∆ f /∆cavity) 208.29 kHZ/mm
4 Tuning efficiency (∆ f /∆tuner) 123.83 kHZ/mm

cell elliptical cavity are described in Chapter 2. Design value of Eacc for these cavities

is 15.4 MV/m. It is to be noted that the design frequencies for both βg = 0.61 and

βg = 0.9 cavities are the same, i.e., 650 MHz; hence, the cavities will have nearly the

same diameter. Although βg = 0.61 cavity will be a little shorter in length. For the helium

vessel, length of the cylinder does not influence the stiffness much. Therefore, helium

vessel used for the both the cases will be identical, except for the length. Helium vessel

modelled for the βg = 0.61 cavity case will offer a stiffness around 4.9 kN/mm.

Analysis on the static Lorentz force detuning: Figure 4.17 shows the LFD as a function

of the radial positions of the stiffener rings, for the case, where the static detuning is

compensated by providing a longitudinal elongation of 8.3 µm to the cavity length. In

this compensated configuration, radial position of the stiffener rings can be varied from

70 to 110 mm.

For the βg = 0.61 cavity also, the temporal profile of the RF pulse will be the same.

Therefore, as it is described for the βg = 0.9 cavities, similar dynamic analysis can be

carried out here. However, avoiding repetition, we only give a qualitative presentation of

the dynamic LFD here.

Analysis on the dynamic Lorentz force detuning: Based on our previous discussions, we

conclude that the amplification in the detuning due to dynamic LFD can be avoided for a

structural mode of the cavity -

(1) if the mode frequency is not a multiple of the PRR; and more importantly

(2) if the mode frequency is more than 250 Hz.

For the βg = 0.61 cavities, Table 4.4 shows the five lowest order structural modes for

117



Figure 4.17: Static LFD as a function of the radial position of the stiffener rings. The
compensation due to cavity elongation provided by an axial elongation of 8.3 µm of the
cavity-helium vessel assembly is taken into account.

few radial position of the stiffeners. As it is shown in the table, the lowest order structural

mode frequencies will be more than 250 Hz for the configuration with radial location of

the stiffener rings on or above 124 mm. Therefore, on or beyond this radial location the

resonant amplification of dynamic LFD will not take place.

Table 4.4: Participating structural modes of the 5-cell βg = 0.61 cavity
rstiffener (mm) f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz) f5 (Hz)

124.00 265.07 426.48 576.19 713.59 749.42
120.00 244.87 414.74 564.03 696.97 759.72
116.00 226.00 397.09 550.89 681.37 760.72
112.00 208.76 375.45 538.55 662.98 750.70
108.00 193.18 352.27 526.39 641.40 732.29

As it is shown in Table 4.2, stiffness of the cavity helium vessel assembly also

increases with the increasing radial position of the stiffeners. Anticipating that this will

make the tuning inefficient, we have calculated the required displacement to compensate

the detuning for different radial position of the stiffener rings for the βg = 0.61 cavity. As
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expected, Fig. 4.18 shows that with the increasing radial position of the stiffener, larger

displacement of helium vessel is required to compensate for the LFD. Here, we just want

to clarify that the helium vessel displacement signifies its stretching only. We therefore

stopped at 124 mm for the mean radial location of the stiffener rings. This configuration

requires a 7.35 µm elongation of the helium vessel to compensate fully for the LFD.

Figure 4.18: Helium vessel displacement required to compensate for LFD, as a function
of the radial position of the stiffener rings.

In this analysis, we have studied the LFD by assuming tuner placed at the mid-length

of the cavity, where its own stiffness does not influence the LFD. However, PIP-II

(FNAL) [116], ESS [117] and MSU [118] have taken a pragmatically different approach.

They have chosen two stiffener rings to reduce LFD values to be so small that they need

little fast online tuning during their operation. They have also placed the tuner at the flat

end of the helium vessel so that it supplements the lower stiffness of the end cover to

reduce the LFD further. They have not presented their estimate of dynamic LFD. In such

scenario, the LFD strongly depends on the tuner rigidity for a multicell elliptic SRF
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cavity geometry. According to their observation made on βg = 0.65 cavities, LFD can be

minimized at the tuner /end cover / helium vessel rigidity >40 kN/mm, and two stiffener

rings instead of one stiffener, may therefore be an effective choice. However, as it is

shown in Fig. 4.18, with the increasing rigidity of cavity assembly, even offline tuning

will be very difficult. Therefore, further analysis is required for our cavities also to

corroborate the importance and effectiveness of the adaptation of two stiffener schemes.

4.5 Discussion and conclusion

A discussion on the static and dynamic Lorentz force detuning analysis is presented in

this chapter. Simulations were performed using ANSYSTM on the assembly of βg = 0.61

and βg = 0.9 elliptical cavity, integrated with stiffener ring and helium vessel.

Calculations were performed on the requirement of the elongation in the cavity length

for the full compensation of LFD. However, as mentioned, in this analysis, we did not

directly include the tuner arrangement in the design but modelled its influence.

To realize the effect of tuner arrangement on the stiffness of the helium vessel, a

simple analysis was performed. Instead of the tuner, in the middle of the helium vessel,

we modelled an annular section approximately, where the conventional tuner will be

attached. This section is shown in Fig. 4.2, where it is demarcated in brown colour. As

mentioned in Ref. [100], in the case of longitudinal structural mode excitation,

cylindrical part of the vessel will remain stationary, whereas the bending of the end cover

alone will produce mode shapes. Therefore, absence of tuner in our analysis has little

impact on the final outcomes. To verify this point, stiffness and density of the selected

annular section in the helium vessel were varied, and simultaneously, structural mode

frequencies were calculated. As shown in Fig 4.19, the variation in the structural mode

frequency with the density and stiffness of the material is negligible. We repeated the

analysis by varying the length of the annular ring from 3 to 20 mm, but no significant
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changes were observed in the result.

Figure 4.19: . (a) Structural mode frequencies (fstructural) as a function of the stiffness and
density of the tuner material (normalized with respect to the density of titanium) for five
structural modes, and (b) enlarged view of the plot of the lowest order structural mode
frequency. Here, the length of the annular tuner material is taken as 20 mm.

We would like to clarify that our LFD analysis was performed considering a single

stiffener arrangement. As it is shown in Fig. 4.8, single stiffener alone cannot drastically

reduce the LFD; and one needs a piezo based tuning arrangement to compensate for the
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same completely. However, the reliability of piezo tuner is not very well proven.

Therefore, one can go for double stiffener rings [117]if fast tuning is absent. Certainly

the double stiffener arrangement will increase the stiffness of the cavity assembly, and

therefore the LFD will be reduced considerably; however, such stiff arrangement will be

very difficult to tune, and there will be a possibility of a small amount of uncompensated

LFD [117]. Such scenario may be acceptable, if one can afford to put more input RF

power, and tolerate more reflection. Another interesting observation can also be made

regarding the tuner arrangement. Figure 4.2(b) shows the 150 sector model of our

cavity-stiffener -helium vessel assembly. Although, we did not model the tuner

explicitly, but the annular cross section of the helium vessel (tinted in brown) in the

model shows the probable location of the tuner arrangement, where a conventional blade

type tuner will be mounted. Such a tuner and its operation are described in Ref. [119]. In

this arrangement, a bellow will be there, connecting the two cylindrical halves of the

helium vessel. After performing off line (slow) tuning there, the movement of the bellow

will be restricted rigidly with an arrangement of nut and bolts. However, for fast tuning

the piezo actuator is excited in a programmable manner as per requirement. It is placed

in series with slow tuner mechanism. During slow tuning piezo element is a passive

element.

In the tuned arrangement, the overall stiffness will be determined by the membrane

stiffness of the helium vessel cylinder, and thus in the (slow) tuned scenario, tuner

arrangement will add some more mass in the cavity-stiffener-helium vessel assembly, but

will not influence the stiffness of the assembly very much, as it is shown in the above

figure (Fig. 4.19). In this context, we want to mention that in our study, the tuner is

placed at the mid length of the cavity. Therefore, the bending stiffness, which is quite

less than the axial membrane stiffness of helium vessel’s cylindrical portion, determines

the magnitude of Lorentz force detuning. However, there could be another design

approach, where the effect of low bending stiffness of end covers is mitigated by placing

the tuner at the end of the cavity, so that it stiffens the end cover.
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Chapter 5

Influence of material properties on the

performance of Nb based SRF cavities

In a normal conducting RF cavity made of copper, when used in continuous mode of

operation, the typical value of the achievable acceleration gradient is limited to a

maximum of 2 MV m-1 [62]. To generate even this much gradient, normal conducting

cavities have to withstand huge power dissipation on the cavity wall. Roughly 100 kW

power is deposited per meter as heat loss on the normal conducting cavity wall to

generate a typical gradient of 2 MV m-1. Removal of such a large amount of heat load

from an RF cavity is inherently difficult, therefore, for a high power accelerator used in

the cw mode or high duty factor operation, Superconducting Radio-Frequency (SRF)

cavities are the only choice. A typical gradient of 15 MV m-1 can be easily achieved

even in the continuous mode of operating in such cavities [61]. Since Ohmic wall loss is

remarkably small in an SRF cavity, heat load is not the bottleneck there. This gives an

additional liberty of compromising with the shunt impedance of the cavity to optimize

the shape of the cavity. For example, an SRF cavity with a large beam pipe radius is

extremely advantageous for a hadron machine, where limiting the loss of beam particle

in the linac is the most important goal.
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However, this journey of high power and high gradient SRF cavities has spanned

nearly half of a century. From Stanford Hansen Experimental Physics Laboratory

(HEPL) cavities to the contemporary state-of-art SRF cavities, dedicated effort has been

made to choose the suitable material, the appropriate pre and post processing techniques

and certainly the optimized cavity shape. Today’s SRF cavities for high power, high

gradient application are mostly of niobium. However, generating an appropriate

specification of the cavity material (niobium), in terms of its purity and other properties,

which influences the achievable gradient and Ohmic loss of the SRF cavity immensely,

has been an active field of research.

In this chapter, we will emphasize on the material aspects of an SRF cavity, and we

will study how these material properties can influence the electromagnetics of a state-of-

the-art niobium based high gradient SRF cavity. In Chapter 2, we have discussed how

the geometry optimization of an accelerating cavity can improve its accelerating gradient

Eacc. Here, we will show that the properties of the material may also need optimization to

realize the high gradient dream at an economical cost.

5.1 Introduction

Chapter 2 shows how the electromagnetic design of the cavity has been optimized,

aiming for the maximum achievable Eacc, under the constraint of upper limit on the fixed

peak electric and magnetic field values on the surface. As mentioned there, the

maximum value of the electric field Epk developed on the cavity surface is limited by the

field emission, whereas, the breakdown of the superconducting property of the SRF

cavity material depends on the peak value of the magnetic field Bpk on the cavity surface.

Ohmic heat dissipation on the cavity wall raises the temperature of the cavity material.

This dissipation is exceptionally small in the SRF cavities due to an extraordinarily small

value of superconducting surface resistance Rs [65]. Yet in the low operating
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temperature (T ≤ 2 K) realm, extraction of this small amount of heat turns out to be a

challenging problem because of the low value of thermal conductivity κ [66]. Thus Rs

and κ become the primary parameters to determine the steady state temperature profile in

the cavity material. However, these two parameters themselves are also strong functions

of the temperature. We will show that these dependencies play a very important part in

this analysis. In addition to temperature, purity of the material and the surface field Ba

influence Rs and κ strongly.

Increasing the purity of a Nb made SRF cavity improves the thermal conductivity κ.

At the same time, around the purity zone of our interest, Rs also shows an increasing

trend with the increasing purity of Nb. These two trends indicate towards an optimal

selection of the purity level of the cavity material niobium, for which the temperature

rise in the cavity material will be minimal. It is therefore expected that cavity made of

material of optimized purity level will withstand higher Bpk value before the initiation of

magnetothermal breakdown in the superconductivity.

Purity of a material (niobium here) in the SRF community is typically characterized by

the parameter called RRR i.e., the residual resistivity ratio [66]. It is defined as the ratio

of the resistivity of the material at room temperature and the normal state resistivity at

a low enough temperature which is below the superconducting transition temperature Tc

of the same material. Purity level of RRR = 300 has been set by the contemporary SRF

community as the most recommended choice for the niobium material for SRF cavity

fabrication [66]. Experimental observations are in favour as well as against this empirical

choice of RRR = 300 standard [120]. Therefore, in this chapter, we will present a rigorous

self-consistent magnetothermal analysis in the quest of an optimal choice of purity of the

SRF cavity material Nb.
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5.2 Material properties and the performance of the

superconducting cavities

Generalities:

Low loss feature of the state-of-art SRF cavities makes them nearly a unique choice

for high energy - high current accelerators operating in the continuous wave (cw) or long

pulse mode [66], [120]. The Ohmic loss Pc is proportional to Rs in an RF cavity. The

quality factor of an SRF cavity is a ratio of the geometry factor G and Rs, where the

geometry factor is a parameter solely dependent on the cavity geometry [65]. This inverse

relation between Q0 and Rs explains why an SRF cavity shows such extraordinarily high

value of quality factor (Q0 ∼ 1010) [66]. This is why these cavities are universally the

most suitable choice for the low loss-high gradient operation.

Today’s SRF community widely accepts niobium (Nb) as the material for making SRF

cavities to realize this low loss, high gradient goal. This choice is supported by the fact

that, among the elemental superconductors, Nb has the highest value of superconducting

transition temperature or critical temperature Tc ∼ 9.2 K [121]. Along with this, relative

abundance, ease in availability, formability, machinability, weldability and adequate

mechanical strength even at the low operating temperature make this metal as the most

suitable material for manufacturing the SRF cavities. Typically niobium is a Type-II

superconductor, offering reasonably high value of the lower critical magnetic field

Bc1 [121]. Here, we want to mention that, for the type -II superconductor niobium, the

typical values of Bc1 and Bc2 can be taken as 180 mT and 240 mT, respectively [66].

Cavities made of bulk niobium show a typical trend of Q0 with the increasing field

strength Ba. In the low field region (Ba ∼ 0 − 20 mT), Q0 of the cavity increases slightly.

Then Q0 shows gradually decreasing trend in the medium field region

(Ba ∼ 20 − 80 mT), which is called Q0 slope and finally, a sharp fall occurs at higher

values of the RF field (Ba ∼ 80 − 180 mT). This sharp fall is identified as the Q0 drop,
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which indicates breakdown of superconductivity in the SRF cavity material [122], [123].

The corresponding field strength Ba at which this breakdown phenomenon occurs is

denoted as the threshold magnetic field Bth. In fact, this is the peak RF magnetic field

value Bpk achievable in an SRF cavity on its surface. As it has been shown in Chapter 2,

ratio of Bpk and Eacc is a constant quantity for the design, e.g., for our βg = 0.9 and

βg = 0.61 cavities, Bpk/Eacc will be 3.76 and 4.56 mT/[MV/m], respectively [36], [37].

Therefore Bth also becomes a parameter, deciding the achievable maximum electric field

gradient Eacc possible in the SRF cavity.

There is a constant quest in the contemporary SRF community to push the threshold

magnetic field value Bth [121], [124] of Nb to Bc1 (or beyond) to achieve the maximum

possible gradient. In order to make the high gradient accelerator economically more

viable, there is a simultaneous urge to push the value of Q0 as high as possible.

This threshold limit Bth observed experimentally for an SRF cavity depends on the

purity level of the cavity material as well as the processing techniques followed during

cavity manufacturing. In today’s scenario, a standardized recipe is followed mostly to

perform the ‘pre’ and ‘post’-processing of Nb based superconducting cavities in different

SRF laboratories. Interestingly, an exact correlation between the purity level of the

niobium material, and the threshold magnetic field value Bth is yet unknown, even after

following such standardized recipe. A broad variation in Bth is reported by different

laboratories, but most of them have chosen RRR∼ 300 grade highly pure niobium as a

material for manufacturing today’s SRF cavity for high gradient operation.

To explain these experimental results as well as to predict an exact correlation between

the achievable threshold field Bth and the purity of the cavity material, ample amount

of theoretical works have been reported in the literature, and various models have been

proposed. But these studies performed in bits and pieces in different laboratories can

only explain experimental results, mostly in a case specific manner. We have performed

a rigorous magnetothermal analysis, considering the functional dependence of Rs and κ
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on the material purity, temperature and the applied field Ba. Aim of this study was to try

to understand the requirement of the highly pure (RRR∼ 300) Nb in the high gradient

operation, as well as to find out the feasibility of relatively low-purity, low-cost Nb as a

choice of material for the SRF cavity.

Before we go to the main topic, let us present a brief discussion on material purity,

especially the points associated with niobium. For niobium, defects and impurities are

classified mostly in two types–(i) impurities due to metallic (e.g., Ta, Fe, Sn etc.) or non-

metallic (e.g. O, H etc.) inclusions, and (ii) various kinds of material defects including

dislocations [125]. Through an expensive processing and purification process, metallic

impurities like Ta, Ti, W and Fe are reduced to the ppm level in the Nb material [126].

Amongst them, the main metallic impurity is Ta embedded in niobium. Since it is a

substitutional impurity, it should not have much influence on the electronic properties of

the bulk niobium. Besides, small Ta beads surrounded by the Nb Sea might not affect

the superconducting property of the bulk Nb due to proximity effect. The second type of

impurities, i.e., defects and dislocations are inevitable even in an ultra-pure Nb material.

In fact, the process of half-cell formation of a niobium made elliptical SRF cavity may

induce more defect and dislocations in the formed cavity. Therefore, the level of impurity

present in the final shape of a Nb-SRF cavity may be significantly different from the

impurity level of the starting Nb material. Previously, as a measure of the impurity in the

superconducting material, we discussed about RRR, which is the ratio of the resistivity

(ρ300K) at 300 K to the normal state resistivity (ρno) at a lower temperature. We now

discuss about another important parameter here - the electronic mean free path le, which

shows a proportional relationship with the metallic purity level [66], [127], [128], [129].

For a metallic sample, ρno can be estimated from the value of the electronic mean free

path le. Following Ref. [125] for Nb at Tc = 9.2 K, relation between le and ρno can be

expressed as le = 3.7× 10−16 Ω m2/ρno. Interestingly, for the normal electrons, the values

of ρno and le remain almost unaltered at a temperature below Tc. Both RRR and le vary

inversely with ρno. Hence, these two parameters will be proportional to each other.
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In the next two sub-sections, we discuss explicitly the functional form of Rs and κ and

their dependence on the Nb purity, T and Ba.

Electrical surface resistance (Rs) :

In the presence of an RF electromagnetic field, a superconductor shows a non-zero but

small resistance at a temperature below Tc (however, T , 0). Cooper pairs of a

superconductor lag behind the field when subjected to an oscillating electromagnetic

field, and the consequence is a partial screening of the electromagnetic field within the

superconductor. Normal electrons present in the superconducting state are exposed to the

field and give rise to this finite resistance. Considering their functional dependence, the

non-zero surface resistance can be written as follows:

Rs(le, Ba,T ) = RBCS (le,T ) × F (B̄a + C1B̄2
a + C2B̄3

a ˙ ˙ ˙ ˙) + Ri. (5.1)

In the above equation, RBCS (le,T ), denoted as the BCS resistance [121], shows a strong

dependence on the purity level of the material. The field dependent, dimensionless

multiplication term F (Ba,T ) is a non-linear enhancement factor here, and B̄a = Ba/T . In

the equation, Ri is the residual resistance [66], [128].

Purity of the material has a strong influence on the surface resistance and as

mentioned, material purity can be measured from the electronic mean free path le. With

the increasing purity, electronic mean free path in a material becomes quite large at a

very low temperature. In that scenario, RBCS reveals the true nature of the non-local field

response of the superconductor, and this non-locality becomes prominent, when the field

varies considerably within the radius le around a position r [66], [130], [131]. This is the

situation in the clean limit, where le is much greater than the zero field coherence length

ξ0 of the superconductor [66], [121]. In the dirty limit, where, le << ξ0, electromagnetic

field shows only a small variation in the length scale le, and the material responds locally

to the field. Considering this true response of a superconductor in an RF electromagnetic
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field, Mattis and Bardeen have derived the expression for the superconducting surface

current ~J(~r) from BCS formulation (including the contribution from the normal electrons

as well as cooper pairs), and the superconducting surface impedance in the extreme

anomalous limit [130], [132]. Based on this formulation, Reuter and Sondheimer [133]

and Hook [134] have derived a generalised form for the superconducting surface

impedance Zs = RBCS + iXs. Following their work, we have developed a subroutine in

MATLAB [135] to calculate Re(Zs) = RBCS . Fig. 5.1 shows BCS resistance at 2 K, as a

function of the purity level of the material Nb.

Figure 5.1: RBCS (calculated using the nonlocal response of electric field) at 2 K plotted
as a function of le for niobium, where, λ0 =39 nm, ξ0 =32 nm and ∆ = 1.9kBTc.

In our calculation, we took the two important parameters London penetration depth λ0

and coherence length ξ0 for niobium as 39 nm and 32 nm, respectively, with

superconducting band gap∆ = 1.9kBTc. Here, London penetration depth signifies the

distance in depth of the material from the surface required to die down to e−1 times the

externally applied electromagnetic field, and the other characteristic length of a

superconductor is the coherence length which is the distance between two electrons in a

cooper pair. As it is shown in Fig. 5.1, RBCS (le,T = 2 K) becomes minimum at around

le ≈ 10 nm. The value of RBCS increases gradually with le beyond this minimum.
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Interestingly, in the dirty limit, RBCS values calculated from this formulation are very

close to the values obtained using the local field response of the superconductor. On the

other hand, in the clean limit, the deviation is significant in the value of RBCS calculated

using these two approaches. For an example case of Nb, with le = 270 nm, if we

calculate RBCS assuming local response of the material, the value will be nearly double

of the value estimated from Fig. 5.1. Results obtained from our subroutine has been

benchmarked with the results obtained from SRIMP code [131], [136] which also

evaluate RBCS (le,T ) values solving the BCS formulation and including the non-local

field response of the material.

In the above formulation, values of RBCS (le,T ) have been calculated for an

electromagnetic field oscillating at 650 MHz frequency. However, here the calculations

have been performed assuming that the superconducting surface resistance is not at all

influenced by Ba (i.e., as if Ba → 0). As the form of Rs(le, Ba,T ) is shown in Eq. 5.1,

field dependent non-linear function F (Ba,T ) may incorporate an enhancement in Rs

subjected to the applied magnetic field Ba. This enhancement in the superconducting

resistance happens due to the field induced reduction in the superconducting band gap.

Applied field Ba normally increases the chances of pair-breaking of few quasi particles

like Cooper pairs. For a Type-II superconductor (like Nb) in the clean limit1, the closed

form of the enhancement factor can be taken as [138],

F (Ba,T ) =
8

πβ0
2

π∫
0

sinh2
(
β0

2
cosτ

)
tan2τdτ, (5.2)

where the quantity β0 =
π

23/2

Ba

Bc1

∆(T )
kBT

.

Fig. 5.2 shows calculated values of the enhancement factors F (Ba,T ) = Rs/RBCS as a

function of β0. From Eq. 5.2 the values of the factor F (Ba,T ) were calculated considering

the value of the critical magnetic field Bc1 = 200 mT.

1A pragmatically different formulation for the dirty superconductors is described in Ref [137], where
the field-induced suppression of the superconducting surface resistance is explained in an excellent way.
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Figure 5.2: Enhancement factor F = Rs/RBCS plotted as a function of β0.

In this analysis, the value of the residual resistance was kept fixed at Ri = 5 nΩ. As

it is realized, Ri is a part of the superconducting surface resistance, which is present in

the superconducting material even at T = 0 K. This value remains nearly unchanged up

to the critical temperature Tc. Probable origins of the residual resistance are the trapped

magnetic flux or the formation of the Nb-H, etc. [128]. We performed this analysis with

experimentally observed value of Ri. However, in a more rigorous calculation, one may

consider the weak dependence of the residual resistance on the temperature, Ba or even

on the purity level of the material. Based on the above formulations, a subroutine was

developed to calculate Rs(le, Ba,T ).

For the magnetothermal analysis, thermal conductivity κ is another important parame-

ter. We will discuss the functional form of κ and its dependence on parameters like mate-

rial purity on the temperature in the next paragraph.

Thermal conductivity of the SRF cavity material (κ):

In a metal, heat is propagated primarily via diffusion. Heat energy is transported due

to the microscopic movement of two types of carriers-the conduction electrons, and the

lattice vibrational modes, i.e., phonons [129]. Hence, summarizing the contributions from
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these two carriers, we can express the total thermal conductivity of κ of a metal as κ(T ) =

κen(T ) + κL(T ) [139], [140], where, suffixes ‘en’ and ‘L’ indicate respective contributions

from electrons and phonons. In the diffusion process, contribution from the conduction

electrons dominates in a typical metal. Phonon modes are usually suppressed as a result

of their scattering from the electrons, impurities and material defects. Though at a very

low temperature, phonons may contribute noticeably to the heat transportat. This will be

discussed later.

Usually, scattering of the carriers limits the thermal conductivity of a metal. Thermal

carriers may scatter from impurities, material defects and other thermal carriers.

Scattering from the impurities influences electronic contribution in the thermal

conductivity. In the normal conducting state, Wiedemann-Franz law correlates this

contribution κei with the normal state conductivity σn0 as κei = L0σn0T for a metal [140],

where L0 is the Lorentz number. Accordingly, the quantity κei is proportional to σn0 and

improves monotonically with the increasing purity of the material. This is the impetus,

which instigates the SRF community to use high RRR material. Scattering of free

electrons from lattices also limits the electron’s contribution in the thermal conduction.

The corresponding thermal conductivity κel = 1/aT 2 commensurates well with

experimental results. The parameter a here is an estimation of the amount of momentum

transfer with the lattice vibrations. Analyzing electron-phonon interaction, theoretical

value of a can be calculated from the formula

a = (6/π2)21/3N2/3
a I5(∞) · [Ke(295K) · Θ2

D]−1 [140], where ΘD and Na denote Debye

temperature and the effective number of conduction electrons per atom, respectively.

Here, I5(∞) ≈ 124.4 is the fifth order Grüneisen integral. For Nb, considering Na = 1,

ΘD = 275 K and Ke(295K) = 54 W m-1 K-1 as given in Ref. [140], analytically we can

estimate a = 2.3 × 10−5 m W-1 K-1. As it is reported in Ref. [140], measured value of a is

found to be significantly smaller than that of this analytically estimated value. In our

analysis we have used a = 7.52 × 10−7 mW-1K -1 [139], measured for a BCP treated Nb

sample reported in the Ref. [139].
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Figure 5.3: Plot of R(y) as a function of T/Tc.

Number of free electrons in a metal decreases steadily with decreasing temperature.

Particularly, in the superconducting state of a material, there is a drastic reduction in the

number of free electrons because of the formation of Cooper pairs [121]. Analytical

estimation of the thermal conductivity considering reduction in the number of free

electrons was performed by Bardeen et. al. [141]. Following their work, we have

estimated the scaled-down contribution in the electronic thermal conductivity κesfrom κen

in the superconducting state of a material as follows:

κes

κen
= R(y) =

1
f (0)

 f (−y) + y ln (1 + e−y) +
y2

2(1 + e−y)

 , (5.3)

where f (−y) is the Fermi integral, and is defined as f (−y) =
∞∫
0

(z/[1 + exp(z + y)])dz, and

y = ∆(T )/(2κBT ). As it is shown in Ref. [141], the value of R(y) tends to 0 as T tends to 0,

and approaches unity as the temperature approaches towards the transition temperature,

(i.e. T →9.2 K). Variation of this scale factor R(y) is shown in Fig. 5.3 as a function of

the temperature T ≤ Tc.

Next, we discuss the contribution κL arising from the crystal lattice. Lattice or
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phononic contribution in the thermal conductivity is primarily influenced by the two

scattering mechanisms- (i)scattering of phonons by the electrons, as well as (ii) by the

impurities, defects or lattice dislocations. For a metal in the normal conducting state,

scattering of phonons from the electrons give rise to a thermal conductivity κl−e(T ) ∝ T 2

in the low temperature regime [140]. On the other hand, in the superconducting state,

such contribution will be enhanced considerably with the decreasing number of free

electrons, and we write κl−e(T ) = DH(y)T 2ey. In the range 0 < T/Tc < 1, H(y) shows a

flat maximum value of 1. Again, Scattering of phonons from the impurities limits the

conductivity κl−i(T ) = BlphT 3, where B is a constant depending on the material

parameter, and lph is the phonon mean free path. Including all the contributions, we write

the expression for the total thermal conductivity κ(T, le) as follows:

κ(T, le) = κes(T ) + κL(T )

= R(y)
(

1
LσnoT

+ aT 2
)−1

+

 1
DT 2ey +

1
BlphT 3

−1

.

(5.4)

Interestingly, at a very low temperature, phononic contribution plays an important part

in deciding the total thermal conductivity κ(T, l) of a superconductor. For a defect

/dislocation free highly pure metal, there is the likelihood of a phonon peak at a very low

temperature, which can result in an enhancement in κL(T ). For Nb, phonon peak

improves the conductivity (thermal) at a temperature around T = 2 K. However, the

likelihood of this enhancement of κ almost entirely depends on the types of

post-processing that an SRF cavity has undergone. It is because the cavity forming

processes normally introduce ample defects and dislocations in the cavity geometry,

causing a considerable reduction in the phonon mean free path lph as well as in the hight

of the phonon peak, which affects κl−i. In this context of post-processing of the cavity,

annealing in particular may restore this phonon peak partly or sometimes completely.

Fig. 5.4 explains the importance of a typical post-processing of SRF cavities. In this

figure, we have shown the variation of κ(T, le) of Nb with temperature for three different
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Figure 5.4: Total thermal conductivity κ of RRR 300 graded niobium plotted as a
function of temperature T . Here the blue curve represents the case without the phononic
contribution. The enhancement in κ due to phonons at low temperature is observed in a
pre-strained, small grain niobium sample [126], which is shown in the continuous black
curve. Here the dotted black curve represents the case with reduced phonon peak in κ(T ),
in commensurate with the experimental observation in Ref. [127] for an SRF cavity.

cases of post processing. First case is a pre-strained small grain sample of Nb. There,

κ(T ) is enhanced near 2 K, showing the signature of a phonon peak. To generate this plot

from Eq. 5.4, we have considered D = 350 mK3W-1 and Blph=0.25 mK4W-1 [142]. The

other case shows the thermal conductivity without considering any phononic

contribution. Also, in Fig. 5.4, the third case represents a practical situation where the

phonon peak is not completely destroyed, but it is suitably scaled down according to the

experimentally observed results at 2 K as is reported in Ref. [143].

For a superconductor, normally the phonon peak appears at a very low temperature

(around T = 2 K). Therefore, enhancement in κ will be effective mainly in the case where

liquid helium bath temperature is kept at a value TB ≤ 2 K in particular. If we want to

operate the cavity, keeping the bath temperature TB = 4.2 K, which is the boiling point of

helium, there the phononic contribution will show almost no effects.

In the next sub-section, we will discuss another important contributor of thermal resis-

136



tance, especially in this low temperature regime, that is ‘Kapitza resistance’ which plays

an important part in deciding the heat diffusion in the case of an SRF cavity.

Kapitza Resistance(Rs) : To some extent, Kapitza resistance Rk is a strange thermal

resistance, which develops at the interface of two materials [66]. Until now, there is no

universal model available explaining Kapitza resistance completely, yet origins of this

resistance are mostly due to scattering and reflection of the phonons from interface as

well as the difference amid the acoustic properties of the media. Niobium-based

superconducting cavities are typically operated at a temperature close to 2 K and there

the heat is diffused from metallic wall to the insulator i.e. the superfluid helium. In this

low temperature regime, Kapitza resistance contributes prominently, causing a

temperature jump ∆T = (TS − TB) across the phonon mediated interface, where TS

denotes the temperature of the cavity outer wall. This difference in temperature

determines Q̄ i.e. the heat flow through per unit area of interface per unit time and is

estimated as Q̄ = hk(TS − TB). Here the quantity hk(= R−1
k ) is denoted as the Kapitza

conductance. Following Ref. [144], for the ∼ 2 K operation, hk is estimated in units of

‘W m-2 K-1’ as

hk = 200T 4.65
S

1 +
3
2

(
TS − TB

TB

)
+

(
TS − TB

TB

)2

+
1
4

(
TS − TB

TB

)3
 . (5.5)

So far, we have discussed the required theoretical background relevant to our analysis.

In the next section, we will present our work and findings, but before that, we perform a

brief review on the contemporary work and several interesting theoretical analyses

reported in the recent past.

5.2.1 A review on the contemporary works

Amongst the contemporary work, Refs. [145] and [146] report analyses where the

approach followed is relatively simple, Rs is assumed to be a function of temperature
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alone. In comparison, more realistic models were proposed by Weingarten [127] and

Gurevich [138]. These models perform thermal breakdown calculations, integrating the

field dependent nonlinear BCS surface resistance in the analysis. Incorporating this

non-linear BCS resistance model in their analysis, Bauer et. al. [143] proposed their

thermal feedback model (TFBM) and attempted to explain few experimental results for

different SRF cavities. However, in their TFBM model, non-linearity in the BCS surface

resistance is introduced in the form of a truncated scale factor F̄ (Ba,T ) = (B̄a + C1B̄2
a).

Also, they have used the parameter C1 as a free parameter, which we found rather

arbitrary, to attain a proper match with the experimental data. Due to this arbitrariness,

this model cannot be used in our calculation directly. In the work reported in Refs. [127]

and [138], non-linear BCS surface resistance is calculated in a more sophisticated way.

However, like the previously explained TFBM, here too the heat load is calculated

considering local Ohmic relation only. Arbitrariness of the TFBM was avoided with a

fixed value of C1 = 2 in the magnetothermal analysis performed by Vines et. al. [147].

They have included the influence of non-local response of the electromagnetic field also,

while calculating the surface resistance, and have studied the trend for the medium field

Q0 slope considering a few values of RRR. Although, they have not calculated Bth

values, noticeably the increasing trend of the threshold magnetic field with the reduced

value of RRR is observed in their analysis, which corroborates with our results obtained

based on a rigorous magnetothermal analysis. Nonlocal response of the electromagnetic

field was included in the model described in Ref. [148]. However they have calculated

the Rs without considering the field dependency in their calculation.

In our magnetothermal breakdown analysis, Ohmic heat load has been calculated

using the formula of Rs, which includes the intricacies of the nonlocal, as well as the

nonlinear response to the applied field. Non-locality was studied here also as a function

of the purity level of the material. In the calculation of thermal conductivity κ, we have

considered proper dependence on temperature and the purity level of the material.

Before we complete this review, we must mention the recent work of Gurevich [137],
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where he proposed a new model of non-linear superconducting surface resistance based

on density of state (DOS) smearing. Using this model, he has explained experimental

results obtained from Ti or N-treated Nb cavities. It is excellent that the field induced

suppression of surface resistance in Ti or N-treated Nb cavities can be explained by this

model. Our analysis is restricted only to the cavities made of medium and high purity

(bulk) niobium, and we did not consider the effect of doping. Therefore, the formulation

developed by Gurevich [137] is not directly applicable for our purpose.

5.3 Numerical calculations and analysis of results

In this section, we will present the result of our calculations with appropriate analyses.

In an SRF cavity, Ohmic heat load will be generated on the inner wall of the cavity

exposed to the RF electromagnetic field. The generated heat will diffuse through the

thickness of the metallic wall, will finally experience Kapitza resistance at the Nb-He

interface and finally will be deposited in the helium bath maintained at a temperature

TB = 2 K. In the steady state, the heat balance can be written as

1
2µ2

0

Rs(Ts0, Ba, le)B2
a = −κ(T, le) 5 (T ) = hk(TS − TB), (5.6)

where Tso denotes the steady state temperature of the cavity inner wall. This temperature

reduces to TS after crossing the Kapitza resistance developed in the solid-liquid contact

layer.

In this numerical calculation, we have evaluated Rs(T, Ba, le) and κ(T, le) from the

model described in Sec. 5.2. Our analysis considered the purity level of the material as

an important input parameter. The purity level is indicated by the electronic mean free

path le. An appropriate model for Kapitza conductance hk(TS ,TB) is described in the

subsection 5.2. All these parameters have been calculated considering their functional

dependence on the temperature to ensure self-consistency. Therefore, in every step of
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this numerical analysis, T is calculated accurately and is updated as an input to the

parameters depending on it.

This analysis has been performed in a sequential manner, as described below:

1. Purity level of the material in assumed in terms of le

(a) Steady state value of Rs(Ba, le,T ) is estimated iteratively from a predicted

value of the temperature as a function of the applied field Ba for that purity

lavel,

(b) For the cavity, Q0 value is calculated from the steady state value of

Rs(Ba, le,T ), and

(c) The above two sequence is repeated with the increasing value of Ba until the

breakdown is observed. (Here, breakdown is indicated by a sudden rise in the

value of Rs.) Corresponding Ba value at the breakdown denotes the threshold

value of the magnetic field Bth.

2. All the sequences are repeated for another value of purity level of the material.

Benchmarking calculations were first performed, where the study on dependence of

the threshold field on the purity level of the material, considering the well-known

TESLA cavity with resonant frequency 1.3 GHz [61]. In the second part of this analysis,

calculations were performed using geometries, as well as properties, of the optimized

ISNS cavities. In this calculation, the frequency value, wherever required, was

considered equal to the resonant frequency of ISNS cavity, which is 650 MHz [36] [37].

Model used in the simulation:

For the first phase of our calculation to benchmark our methodology for analyzing the

dependence of Bth on the purity level of the material, we have considered a 2.8 mm thick

infinite Nb slab with planer geometry. One side of this slab is considered to be exposed

to a spatially uniform RF electromagnetic field resonating at 1.3 GHz. This is the heat
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generation surface. Increasing electromagnetic field strength will increase the steady state

temperature of the surface. Another side of this infinite slab is considered to be in contact

with liquid helium maintained at TB = 2 K. As described, because of Kapitza resistance,

surface temperature of this side of the slab TS will be more than TB. This simple model is

described in Fig. 5.5.

In the real case, cavity and the magnetic field are essentially three-dimensional.

Therefore, the simple model used here, might appear to be far from reality. However,

because of the small thickness compared to curvature radius, the heat propagation

through the cavity wall is mostly in the direction normal to the wall surface. Therefore,

the realistic situation can be very well approximated with the model we have proposed.

In this infinite slab with planer surfaces, heat will flow in one-dimension (1 D). However,

in order to crosscheck the assumption, we have also performed the analysis for few cases

with the three dimensional (3 D) geometry of the cavity using ANSYSTM. Results

obtained using 3 D model were within a margin of 2 to 3 % deviation from the results

obtained using the calculations performed with this 1 D model. In order to analyze this 1

D simple geometry, a code was written in MATLAB, using subroutines, which we have

described in Sec. 5.2 to calculate Rs(T, Ba, l) and κ(T, l).

Numerical calculations: process benchmarking:

In our detailed magnetothermal analysis, converged values of Rs, κ and Q0 were

calculated in the steady state, considering three different phononic contributions in the

total thermal conductivity as described in Fig. 5.4. Also, as mentioned, material

parameters were taken as important input parameters in the analysis.

First, we performed the calculation for a fixed value of σno = 2.069×109(Ωm)−1. For a

Nb sample, this corresponds to a value of RRR∼ 300. Fig. 5.6 shows the variation of Q0

as a function of Ba, obtained from this magnetothermal analysis. For this calculation, we

have considered a value of the residual resistance Ri ∼ 5 nΩ.
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Figure 5.5: Model of a 2.8 mm thick infinite Nb plate geometry. Applied magnetic field
Ba on the surface is denoted by the ‘dot’s. Inner surface of the plate is in vacuum, whereas
the outer surface of the plate is immersed in a liquid helium bath at 2K.

Figure 5.6: For 1.3 GHz TESLA cavity made of RRR 300, Q0 is plotted as a function of
Ba, considering three possible variations of κ(T ) described in Fig. 5.4.
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As observed in Fig. 5.6, the corresponding Q0 values drop down sharply beyond a

certain value of the applied field Ba. This value is recorded as the threshold value of the

magnetic field Bth. Among these three plots, the results that we have generated without

including phononic contribution in the thermal conductivity κ, shows a sharp decrease of

Q0, which starts approximately at a value of Bth = 114 mT; whereas the curve calculated

considering full phononic contribution gives the corresponding value of Bth ≈ 154 mT.

Another calculation with κ corresponding to a scaled down phononic contribution,

results in a Bth ≈ 130 mT. Here the 2.8 mm thick Nb-slab, which we have chosen,

corresponds to the wall thickness of the 1.3 GHz TESLA cavity, as described in

Ref. [61]. From the same reference, for a value of Bpk/Eacc = 4.22 mT/[MV/m], we have

calculated Eacc values corresponding to these three threshold magnetic field values as 27,

30 and 36 MV m-1. Interestingly, the gradient calculated without considering phononic

contribution in κ, is in good agreement with the experimental result reported in Ref. [61].

Figure 12 of that reference, describes the plot of Q0 vs. Ba i.e., the applied field with a

similar trend as observed in our calculation. For the same TESLA geometry, another

reference (Ref. [143]) gives a value of Eacc ∼ 40 MV m-1, which is close to the

theoretical value obtained considering full phononic contribution in this magnetothermal

analysis. Reasonable proximity between these analytical results and the experimental

values certainly benchmarks the approach followed in this analysis.

Here, we want to point out one interesting observation. Near breakdown, when the

applied field approaches Bth value, corresponding temperature of the cavity inner-wall

goes well beyond the region where phononic contribution is significant in the thermal

conductivity κ. In the analyses, still the threshold field values differ depending on the

different phononic contributions. Apparently the above argument and the observation

may seem to contradict each other, however, the reason is the high sensitivity of cavity

surface temperature with magnetic field near the breakdown.

Numerical calculations considering the influence of the impurities :

In the next part of our analysis, we repeat the same procedure for different values of
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the purity level of the material. We can visualize as if we are doing calculation for

different niobium samples with different levels of purity (which corresponds to samples

with different σno values). We performed this analysis for a range of impurity values. We

have calculated the corresponding breakdown limits for niobium material with different

purity values. Figure 5.7 describes the scenario, where the three curves represent the

results calculated considering three different phononic contributions in κ- no phononic

contribution case, scaled down phononic contribution case and full phononic

contribution case.

Among these three plots shown in Fig. 5.7, results obtained without considering the

phononic contribution in the calculation of κ shows a rapid increment primarily with the

increasing purity level of the material. Here, the purity is represented by the σno values

shown in the horizontal axis in a logarithmic scale. Afterwards, the rise in the

corresponding threshold values comparatively reduces with the increasing value of the

purity. As it is shown in the figure, Bth value reaches from 92 to 115 mT when

corresponding σno value changes from 6.89 × 108 (Ω m)−1 to 2.07 × 109 (Ω m)−1. These

two values of σno actually represent RRR values of 100 and 300 respectively. In the

other two curves, corresponding to the scaled down and the full phononic contribution in

κ, the trend is a bit interesting. There, Bth value increases with the increasing purity level

of the material and at around σno = 1.724 × 107 (Ω m)−1, these two curves attain the

corresponding maximum values of Bth. These Bth values are ∼ 125 mT and ∼ 176 mT,

respectively for the cases considering the scaled down and full phononic contribution.

Interestingly, for the higher values of σno, threshold magnetic field values nearly

saturate. In the Table 5.1, Bth values corresponding to the RRR 100 and 300 material are

given for the three cases of phononic contributions.

Above observation leads to an interesting corollary. Proton or H- accelerators

dedicated for the ADSS or SNS application accelerates cw /pulsed beam mostly up to an

energy 1 to 1.5 GeV. There, depending on the velocity of the beam, cavities are required
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Figure 5.7: For 1.3 GHz TESLA cavity, Bth values are plotted as a function of σno. Here,
the blue curve represents the case where phononic contribution is not considered. The
continuous and the dotted black curves here represent the cases of full and scaled down
phononic contribution, respectively.

Table 5.1: Q-values at Bth for 1.3 GHz TESLA cavity.
RRR 300 Niobium RRR 100 Niobium

Bth(mT) Q(Bth) Bth(mT) Q(Bth)
without phonon peak 115 3.28 × 109 92 4.94 × 109

with scaled phonon peak 131 2.67 × 109 126 3.35 × 109

with phonon peak 154 1.84 × 109 157 2.04 × 109

to produce a typical accelerating gradient of 20 MV m-1. Our analysis shows, this

gradient is easily obtainable from the cavities made of RRR∼100 grade Nb, because

RRR∼100 grade Nb-cavities will give similar performance as cavities made of

RRR∼300 grade material. Purity level of the material has important consequences in the

cost reduction and mechanical strength point of view. For the above analysis have taken

Ri = 5 nΩ.

Now we will discuss the implication of this material purity issue on the 650 MHz SRF

cavities, which will be used in our ISNS program, as well as in the projected Indian ADSS

program. There will be two families of 5-cell elliptical SRF cavities, i.e., βg = 0.61
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cavities for medium energy and βg = 0.81 or βg = 0.9 for high energy section of the

ISNS linac. We have done the same analysis, as discussed for the previous work, on

these cavities. The only difference is that, these cavities will not be operated up to that

gradient corresponding to the breakdown limit. Instead, we will stop at a value of Ba,

when the Q0 value reduces to 50 % of the zero field value. These results are described in

Fig. 5.8, where the three curves correspond to the three different contributions from the

phonon peak used in the calculation of this magneto-thermal analysis. Here the dotted

line shows Q0 ≈ 7.18 × 109 which is the half value of the zero field Q0. As shown in

the figure, the three curves representing the null, scaled-down and full contribution of

the phonons in κ, reach Q0 ≈ 7.18 × 109 at 109, 129 and 140 mT value of the peak

/ applied magnetic field value, respectively. Following Ref. [37], at a design value of

Bpk/Eacc = 4.56 mT/(MV/m)-1, these peak magnetic field values will correspond to an

accelerating gradient of ∼24 MV m-1 achievable in the case of niobium made ISNS SRF

cavities made of RRR∼100 material, even in the case of a zero phononic contribution in κ.

We close this discussion summarizing threshold magnetic field limits and corresponding

quality factor values achieved in the case of RRR 100 and 300 graded niobium material

in Table 5.2.

Not only the cost reduction, another major advantage we can anticipate in case of a

RRR∼100 cavity in comparison to the RRR∼300 cavity is that we can achieve 10%

higher value of Q0. The implication is that the heat load in these cavities will be less i.e.

comparatively less load will be transfered the cryogenic plant.

Table 5.2: Q-values at Bth for 650 MHz ISNS cavity.
RRR 300 Niobium RRR 100 Niobium

Bth(mT) Q(Bth) Bth(mT) Q(Bth)
without phonon peak 134 5.20 × 109 109 7.27 × 109

with scaled phonon peak 154 3.92 × 109 147 5.00 × 109

with phonon peak 180 2.46 × 109 184 2.64 × 109
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Figure 5.8: Plot of Q0 as a function of Ba, as obtained from the analysis performed on an
ISNS cavity [36] for a fixed value of RRR 100 grade Nb, for three possible variations of
κ(T ). For these calculations, we considered 4 mm thick plate geometry. We have taken
Ri = 10 nΩ in this analysis.

5.4 Conclusions

In this chapter, we have discussed a rigorous magnetothermal analysis of a Nb-based

SRF cavity immersed in a liquid helium bath kept at a fixed temperature 2 K. In a sense,

this analysis is an extended review on the correlation between purity level of the SRF

cavity material, i.e. niobium and the threshold magnetic field value Bth. In this analysis:

(1) σno was used as an indicator of the purity level of Nb material.

(2) Rs and κ were evaluated as a function of Ba, T and the purity level of the material.

(3) Kapitza resistance was calculated as a function of TB and TS .

The analysis shows that relatively less pure niobium of RRR 100 can be an interesting

alternative for the SRF cavities designed for the SNS or ADSS application. This choice

will reduce the material cost of the cavity, as well the cavity will produce less heat load

to the cryogenic plant. As per the ‘Table-4 of ASTM B393’ standard, another advantage

of this reactor graded (RRR 100) niobium is around 30% higher value of the mechanical
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strength compared to the highly pure RRR 300 graded niobium. Therefore, one can

consider a reduction in the thickness of the cavity wall and based on this thickness

reduction, two major improvements can be possible:

(i) this will reduce the material requirement; hence cost will be further reduced.

(ii) reduction in the wall thickness will reduce the thermal resistance of the material, and

we may go for higher accelerating gradient.

Based on our analysis, we have generated a specification of the material for niobium

based SRF cavities in terms of the three basic parameters σno, κ and α respectively, where

the diffusivity α = κ/(ρ × CP(T )). This corresponds to RRR 100 graded niobium with

typical values of σno ∼ 6.89 × 108 (Ωm)-1, and κ ∼ 138.68 Wm-1K-1 and α ∼ 0.005

m2s-1. Here CP(T ∼ 9.3 K) = 3.36 J Kg-1K-1 [149]. These parameters are specified at a

temperature 9.3 K.

In this chapter, we presented an argument that because of the small thickness of the

cavity wall compared to its curvature, heat will diffuse mainly in the direction

perpendicular to the wall surface. This magnetothermal analysis was also extended for

the three-dimensional (3D) model and calculations were performed for a few cases.

Though final conclusions were no different, this 3D analysis can give extra information

in terms of the temperature profile along the inner surface of the cavity wall. One

example is presented in the following paragraph.

As mentioned earlier, for this magnetothermal analysis of an infinite niobium slab,

computer programs were written in MATLAB to solve the 1 D heat diffusion equation.

Again, to estimate the steady state three dimensional solutions for the converged values Rs

and κ, another computer programs were written in ANSYSTM, using ANSYSTM APDL.

For this calculation, we have considered the bath temperature TB = 4.2 K. This is because,

in this case, contribution from the phonon peak will not affect much the calculation of

κ. Keeping the azimuthally symmetric field configuration in the TM010-π mode, and the

other symmetries in mind, we modelled a 50 sector model of this cavity half-cell for the
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Figure 5.9: Surface temperature variation along the length of the cavity, obtained from a
three-dimensional analysis. Picture shown in the inset is the ANSYSTM generated surface
profile of the temperature.

3D analysis. Of course, we have considered the same wall thickness of 2.8 mm for both

the cases.

In this example, the analysis was performed for a value σno ∼ 6.89×108 (Ωm)-1 (which

corresponds to the RRR 100 graded material). From the 3D and 1D analyses, threshold

magnetic field values were obtained around 117 mT and 123 mT respectively. Figure 5.9

shows the temperature profile at the inner wall surface of the cavity, obtained from the

3D analysis. At the threshold, estimated temperature value of the cavity inner surface

obtained from this 3 D analysis was nearly 6.2 K, and the highest value of the temperature

estimated from 1D analysis was around 6.24 K.

Before we conclude, we would like to mention that our analysis certainly highlights

that the promise of relatively less pure reactor graded (RRR 100) niobium as the material

for cavities dedicated for SNS or ADSS accelerators is worth considering, compared to

the conventional choice of highly pure RRR 300 graded niobium material. In this work,
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our principal focus was to study the dependence of the electromagnetics of SRF cavities

on the purity level of the cavity material. We want to mention here that RRR 100 graded

niobium material is a popular choice for the nuclear reactors. However, other aspects

of the RRR 100 graded niobium, and substantial R&D experience on development of

SRF cavities with RRR 100 material will be required before implementing this choice for

future projects.
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Chapter 6

Lattice design and beam dynamics of

the 1 GeV H- linac for ISNS

As discussed in Chapter 1, nuclear spallation was discovered even before the

discovery of nuclear fission, yet the dream of a spallation neutron source (SNS) was

realized only in the late 1980s. The concept of SNS was implemented in Los Alamos in

1985, after the commissioning of the proton storage ring. As mentioned in Chapter 1,

one major reason for this was the challenge and complications associated with the

development of a high average power hadron accelerator. In a typical linac based

spallation neutron source, a pulsed beam of H- ions is boosted up to an energy of around

1 GeV. Several stringent beam dynamics criteria need to be satisfied, while designing

such a high power linac. The foremost criterion is to restrict the beam loss below a

stringent limit of 1 W/m [56], [150]. The lost beam particles can introduce the hazard of

permanent radioactivity in the structure. In addition, another important design target in

such a mega budget project is to make the linac compact.

In this chapter, we will discuss the lattice design and beam optics studies of a 1 GeV, 1

MW H- injector linac for the proposed Indian spallation neutron source [41]. In this linac,

five sets of SRF cavities will be used to boost the beam energy approximately from 3 MeV
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to 1 GeV. Amongst them, there will be 650-MHz multicell elliptic cavities in the medium

and high energy range of the linac. The geometry of these two families of 650 MHz,

5-cell elliptic SRF cavities have been finalized for the maximum achievable accelerating

gradient (Eacc), following a procedure discussed in Chapter 2. Rigorous analyses on the

higher order modes were performed and described in Chapter 3, which ensures that the

targeted beam current will not introduce instabilities during the operation of the machine.

In this chapter, a methodology will be described, following which, one can perform the

design optimization of the lattice of a compact megawatt class SRF linac.

A non-equipartitioned design concept [151] was implemented in this design

methodology to set the accelerating gradient and focusing strength values of the SRF

cavities and solenoid / quadrupole magnets, respectively. As described in the previous

chapters, the breakdown of superconductivity of the cavity material will set a limit on the

maximum achievable Eacc in these cavities; whereas, Lorentz stripping will restrict the

maximum allowable field strength of the external focusing magnets.

We will start our discussion with a quick description on the normal conducting front

end of the proposed linac in the next section. Proposed layout of the accelerator for Indian

Spallation Neutron Source is shown in Fig. 1.1.

6.1 Layout of the front end linac and some general

considerations

Front-end of the proposed injector linac will have a 50 keV, RF antenna type, multi cusp

H- ion source, followed by a 325 MHz RFQ accelerator. The ion source will be operated

with a pulse repetition rate (PRR) of 50 Hz, and will produce an H- beam of 2 ms pulse

width, and 15 mA pulse current. The H- ion beam from the ion source will be transported

and matched to the required input of the RFQ through a Low Energy Beam Transport
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(LEBT) line [42]. There will be a provision of chopping the beam to a pulse width of

650 ns @ 1 MHz in the LEBT line. Beam chopping is essential to avoid the beam loss

while injecting the beam into the accumulator ring. However, chopping will reduce the

cw average of the beam current from 15 mA to 10 mA, within the 2 ms macropulse. We

would like to mention here that while performing the beam dynamics studies of LEBT

line, we have assumed about 80 % space charge compensation everywhere in the line,

except in the chopper box. Schematic of the 1.9 m long LEBT line is shown in Fig. 6.1,

along with the transverse beam envelope. In the LEBT line, the 50 keV beam will be

transversely focused by the two numbers of 294 mm long solenoids, and we will utilize

the inter solenoid gap of ∼ 0.8 m to place diagnostic devices, and two steering magnets.

This arrangement will introduce ≤ 0.1% energy spread at the LEBT line exit.

Beam will then be accelerated in the RFQ [43]. There, the beam will develop a

normalized rms longitudinal emittance of 0.45 mm-mrad, while accelerating up to an

energy of ∼ 3 MeV.

Figure 6.1: Schematic and RMS beam envelope calculated in the 1.9 m long LEBT line
(not to scale). Two solenoids with strength ∼0.196 T and ∼0.235 T, respectively, will be
used to shape the beam there.

Beam from the RFQ will now be transported and matched to the entrance of the 1 GeV
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Figure 6.2: Schematic of the ∼4 m long MEBT line (not to scale), along with the RMS
beam envelopes. The blue and red curve represent the horizontal and vertical beam
envelope, respectively. Inset shows the longitudinal beam envelope.

Figure 6.3: Required field gradient of the eleven quadrupole magnets, shown along the
length of the MEBT line.
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SRF linac, through a Medium Energy Beam Transport (MEBT) line [44]. Layout of the

MEBT line along with the beam envelopes, is shown in Fig. 6.2. Optimized MEBT line

will consist of eleven quadrupole magnets and three buncher cavities. The design gradient

of these eleven quadrupoles is shown in Fig. 6.3. There is a plan to install a traveling wave

chopper in the aperture of the fifth and sixth quadrupole. This will reduce the rise time

of the chopped beam to nanosecond. In the MEBT line, gap voltage of the three buncher

cavities will be kept below 100 kV.

Beam will now be accelerated through the 1 GeV, 1 MW superconducting injector linac.

In this main linac, the beam loss should be kept strictly below the limit of 1 W/m, which

is the maximum allowable value. In the following section, we will discuss the dynamics

of the beam particles, and this will be followed by a description of the linac lattice.

6.2 Basic beam dynamics considerations and the lattice

layout of the 1 GeV 1 MW H- linac

The long injector linac will consist of several lattice periods, through which the beam

will traverse, maintaining a matched beam size throughout the length of the linac. In an

accelerator, the lattice is a typical periodic arrangement of RF cavities, focusing magnets

and drift sections, etc. For a periodic lattice, the matched beam size is an important

concept. In principle, it is the magical beam size that repeats itself after every period.

Thus, matched beam size at the entrance of an arbitrarily long accelerating section will

ensure constant average beam size in all periods throughout an accelerator. However, the

perfectly matched beam is an idealized concept. In practice, the actual beam size will

always have deviation from the matched beam size. Therefore, through an appropriate

design of the lattice, it should be ensured that the perturbations associated with a real

beam does not grow exponentially, and the overall beam does remain stable. We will

discuss the basic beam dynamics considerations in the next subsection, which must be
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addressed while designing a suitable lattice for the proposed injector linac. Based on

these considerations, the evolution of the linac lattice will be discussed further, along

with a detailed description on the layout of its lattice. In the following section, we start

our discussion with the dynamics of a single beam particle in the beam bunch.

6.2.1 Single particle dynamics and envelope equations in presence of

space charge

In an RF linac, the dynamics of a single particle in the beam bunch under the influence

of the linear forces due to space charge, RF and focusing magnetic field is described by

the following equation [60], [65], [152]:

ζ
′′

+
γ
′

γβ2 ζ
′

+ k2
ζ0(s, γ)ζ − K sc

ζ (IB, ax, ay, az, γ)ζ = 0. (6.1)

Here the variable ζ represents x, y or z coordinates of a particle in the beam bunch,

relative to a reference particle traversing along the z-axis. In the above equation, ‘′’ and

‘′′’ denote the single and double derivatives, respectively with respect to s. Here the

variable s represents instantaneous position of the reference particle in the linac. In the

equation, the second term denotes damping, which is introduced in an accelerator

because of relativistic effect. The third term represents the net restoring force on a beam

particle. This net force arises due to contributions from magnets (e.g., quadrupole and

solenoid magnets) and from the RF cavities. Typically the third term, i.e., k2
ζ0 is a

periodic term in a periodic lattice configuration. However, under smooth approximation,

this term is replaced suitably with an s-independent, equivalent focusing term denote by

k̄2
ζ0, where k̄ζ0 represents zero current phase advance per unit length. Finally, the fourth

term KS C
ζ in the above equation represents defocusing contribution from the

space-charge forces.

Space charge contribution is difficult to calculate for an arbitrary distribution of the
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beam particles in an arbitrarily shaped beam bunch. However, for an ellipsoidal beam

bunch with uniform distribution and rms beam sizes ax, ay and az along x, y and z

direction, respectively, KS C
ζ can be calculated analytically in terms of the beam current

IB, using the formula given in Ref. [65]. Under smooth approximation, we can define a

net focusing term k̄2
ζ =

√
(k̄2
ζ0 − K̄ sc

ζ ), where, k̄ζ will represent the phase advance per unit

length in presence of beam current. Here we introduce another parameter known as tune

depression µζ , which is a ratio k̄ζ/k̄ζ0. Eq. 6.1 represents a set of three coupled

differential equations. Here, coupling is generated because of the space-charge forces

and the electromagnetic field of the radio frequency cavity.

Above equation describes the dynamics of a single particle in an ellipsoidal beam

bunch. Using the single particle equation of motion, we derive the equation representing

the collective motion of all particles in the beam bunch. The evolution of the rms beam

size aζ is called the envelope equation, which is [65],

a
′′

ζ +
γ
′

γβ2 a
′

ζ + k2
ζ0(s, γ)aζ −

εζζ′

a3
ζ

− K sc
ζ (IB, ax, ay, az, γ)aζ = 0. (6.2)

Here εζζ′ denotes an un-normalized rms beam emittance in the ζζ
′

plane. Multiplying

this un-normalized rms emittance value with βγ and βγ3 we can obtain respectively the

normalized value of transverse and longitudinal rms emittances.

For an ideal case, we have introduced the concept of a matched beam. Accordingly, for

a periodic lattice, we can calculate matched rms beam sizes aζm(s) which satisfies Eq. 6.2.

Being a matched solution, the rms beam size aζm(s) as well as its first order derivative

a
′

ζm(s) should be identical at the entry and exit of each period. If the beam size is matched

throughout the linac, it ensures minimum variation in the rms beam size. However, in the

real cases, both the beam size and the lattice deviate from their ideal condition of matched

size and perfect periodicity. Considering these perturbations, the rms beam size for a real

beam bunch can be written as aζ(s) = aζm(s) + ∆aζ(s), where, ∆aζ(s) denotes the small

mismatch. Using Eq. 6.2, one can calculate a linearized differential equation describing
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the evolution of ∆aζ(s) as [60],

∆a
′′

ζ +
γ
′

γβ2 ∆a
′

ζ + k2
ζ0(s, γ)∆aζ − 3

εζζ′

a4
ζ

∆aζ −
∑
ζ

f sc
ζ ∆aζ = 0. (6.3)

In this linearized differential equation for envelope mismatch, f sc
ζ (IB, axm, aym, azm, γ)

denotes the coefficient of the space-charge term. Through the beam dynamics design, it

is essential to ensure that any mismatch in the beam size should not grow exponentially,

and to avoid the chances of beam loss, beam envelope should be confined well within the

available aperture of the machine. For a two dimensional coasting beam, several authors

have reported their analyses on the growth rate of the mismatch in beam size. Based on

their analyses, a conclusion has been drawn that the oscillations due to mismatch does

not grow if σζ0, i.e., the zero current phase advance per period is less than or equal to 90

degree in all three planes. The parameter σζ0 is defined as σζ0 = k̄ζ0 × L, where, L is the

period length [60] [153]. The authors did not include the effect of RF cavity field in their

stability analysis. Therefore, we have revisited these issues for a three-dimensional beam

bunch, including the effect of RF field. Results of this analysis will be elaborated in

Section 6.3.3. We will show later in this chapter that the growth in the mismatched

envelope oscillation can be explained as resonances occurring between mutually

orthogonal beam envelope oscillations, coupled through space charge forces (confluence

resonances), as well as between the lattice and each of the three orthogonal beam

envelope oscillations.

Similarly, as it can be shown using Eq. 6.1, unwanted resonance can get triggered

between an individual beam particle and the stable beam envelope oscillation, which can

arise in both case - without mismatch, or with mismatch. Single particle in a beam bunch

may experience a periodic variation in K sc
ζ (IB, ax, ay, az), because of the space-charge

force varying with the oscillating rms beam sizes. Beam particle will experience periodic

excitations due to the periodically varying space charge forces, and under suitable

conditions, this may lead to parametric resonance for some of the particles. As a
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consequence of this parametric resonance, these beam particles start performing large

amplitude oscillations, which results in the formation of beam halo [65]. For a given

lattice, different values of mismatch will produce different periodicity in the mismatched

envelope oscillation. In fact, this happens due to amplitude dependence of oscillation

frequency, arising due to the nonlinear space charge. For envelopes with different values

of mismatch, the maximum extent of halo particles will be different. Considering smooth

focusing approximation, Wangler et. al. [55] have developed a model called Particle

Core Model (PCM), which calculates the maximum extent of the halo particle for

different values of mismatch. In their analysis, they have reported the typical extents of

halo particles between 6 to 8 times of the rms beam size. This is important, because it

helps us in deciding the minimum aperture radius of an accelerator, and accordingly, the

aperture radius should be more than 6 to 8 times the rms beam radius. We have extended

the PCM analysis, explicitly including the periodic variation of the specific lattice that

we have designed, as well as their corresponding matched beam parameters.

In the preceding discussion, we have characterized the beam only in terms for the rms

beam size. However, an important consideration for a beam bunch is also its distribution

in real and phase space, taking into account the space charge forces, which affect the

dynamics of the beam particles. From previous studies [60], it is known that for a beam

bunch having dissimilar temperature in three degrees of freedom along x, y and z, the

emittance may be exchanged among different degrees of freedom. This may grow as an

instability which leads to emittance growth in certain planes and eventually results in

beam loss. This instability was studied extensively by Hofmann [151], based on which

Hofmann diagram was developed. For a particular beam current, this diagram shows the

growth rate of emittance exchange for a given ratio of normalized longitudinal and

transverse emittance (εzn/εtn), as a function of tune depression k̄t/k̄t0 and tune ratio k̄z/k̄t.

On the Hofmann diagram, a point representing the corresponding k̄t/k̄t0 and k̄z/k̄t is

defined as the ‘lattice footprint’ for a lattice period. The analysis performed by Hofmann

indicates an important corollary that while designing a linac, one does not always need
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to strictly satisfy the law of equipartitioning [151] i.e., maintain equal temperature in all

three degrees of freedom. Instead, one may suitably choose the design parameters to

keep the linac compact and cost-effective, provided it is ensured from the Hofmann

diagram that there is no emittance growth due to emittance exchange. Based on this

philosophy, we have evolved a generalized methodology, to keep the linac design

compact, and yet free from beam instabilities.

6.2.2 A brief review on the design recipe of a high power hadron linac

As emphasized earlier, objective of the design is two fold- (a) to make the injector linac

compact, cost-effective and (b) to keep the beam loss strictly below permissible limit of 1

W/m. In order to realize this, the following design recipe [57] [59] is generally followed:

1. The variation of phase advance per unit length kζ0 has to be adiabatic along the linac.

This is because a sudden change in kζ0 may result in large amplitude oscillations

for some particles, and the consequence may be a large growth in the beam size.

2. The zero current phase advance per period or σζ0 should be kept below 900, to

avoid envelope instabilities arising due to mismatch. It is desirable however, to

check explicitly whether it is possible to choose a higher value of σζ0 and still

avoid envelope instabilities for the particular lattice adopted in the design. This is

discussed in details in Section 6.3.3.

3. The net transverse focusing term k2
ζ0(s, γ) in Eq. 6.1 includes contribution from the

electromagnetic field developed in the RF cavity, which depends on the longitudinal

phase advance of the particle. In the cavity, beam particles undergo small amplitude

synchrotron oscillation, and therefore, k2
ζ0(s, γ) shows a periodic variation with s.

The coupling may give rise to parametric resonance when σt0=nσz0/2, n being an

integer [154]. Such resonance has to be avoided.
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4. Space charge induced collective instability can cause an emittance exchange

between transverse and longitudinal planes, and to avoid this emittance exchange,

lattice footprints throughout the linac should be carefully set in the resonance free

zone on Hofmann diagram [151]. To realize this approach in the design, tune

depression will be kept more than 0.5. Equipartition criterion is carefully violated

in this approach. As mentioned, implimenting this concept, we have developed our

methodology to make the linac compact.

5. In the case of a strong space-charge dominated beam, it is very difficult to keep

the tune depression above 0.5. There, fulfilling the equipartition criteria turns out

to be a useful way to reduce the chance of emittance exchange. Following the

equipartition criteria, one has to ensure equal temperature due to the transverse and

longitudinal motions in the beam frame. To implement this equipartitioning in the

design, it is required to tune the lattice to maintain ktεt,n = klεl,n throughout the

linac. This criteria can also be expressed in terms of zero current phase advances as
kt0

kz0
=

(
3
2
εl,n

εt,n
−

1
2

)1/2

[60]. This formula is however valid in the strong space charge

limit (µζ>0.71) only [60].

6. Minimum beam aperture radius of an accelerator should be kept larger than the

maximum extent of halo particles. Based on our discussion in the previous

subsection, minimum radius should be at least six times the rms beam size. In the

longitudinal plane also, the rms phase width should not exceed one sixth of the

synchronous phase. We have explicitly checked these criteria for our lattice

designed for the injector linac. We will discuss this in Section 6.3.4.

7. Formation of beam halo is undesirable throughout the length of the linac, and as we

have discussed, this is triggered by the oscillations in the beam envelope introduced

by the beam mismatch. Therefore, to reduce the mismatch in beam size, appropriate

beam matching should be ensured between two different sections of the lattice.

8. Last but not the least, the effect of intra-beam stripping of H- ions has to be consid-

161



ered. The loss due to intra-beam stripping has a strong dependence on the density

of H- ions in the beam bunch [58]. This factor has to be taken into account, while

choosing the beam size and beam emittance.

Before we delve on the lattice design and design schematic in the next section, here

we would pause for a brief comparative discussion on the equipartitioned and

non-equipartitioned design approach for our case. The normalized RMS longitudinal,

horizontal and vertical emittance values at the entrance of the linac in our design, are

0.447 mm-mrad, 0.397 mm-mrad and 0.400 mm-mrad, respectively. By putting these

numbers in the equipartitioning condition, finally we obtain the ratio k(x,y)0/kz0 as 1.114.

This implies that, to satisfy the equipartitioning criterion, the longitudinal phase advance

is required to be kept less than the transverse phase advance. However, σζ0 has to be

limited to less than 900 to avoid envelope instability. Accordingly, the maximum

possible value of transverse phase advance and longitudinal phase advance per period

should be as 900 and 810, respectively. On the other hand, if we choose to violate the

equipartitioning condition by considering a higher value of longitudinal phase advance

per period, it will be possible to choose a larger accelerating gradient, which will make

the injector linac compact. Therefore, we have chosen the nonequipartitioned approach

in our design, keeping in mind that a careful tuning throughout the linac is required to

avoid the collective resonances in the design.

6.2.3 Lattice design and layout of the ISNS linac

In this section, we discuss the calculations and considerations on the basis of which the

lattice of the ISNS linac is optimized. Schematic layout of the this optimized linac will

also be described here. First, we discuss how to choose the optimum value of geometric

beta (βg) for different families of the accelerating cavities. A perfect synchronization

between beam particles and the resonant field developed inside the RF cavity can be

achieved if we vary the cell length of the cavity continuously, as the beam propagates
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from one cavity to the other and gets accelerated. However, in practice, only a limited

families or sets of cavities with fixed cell length (for each family) are designed for a linac,

to keep the cavity manufacturing process simple and efficient. Typically, standing wave

accelerating cavities are operated in the π-mode, to ensure a maximum shunt impedance.

Hence, the cell length is kept fixed at βgλ/2. As mentioned earlier, βg is known as the

geometric beta. For a linac with limited number of the different type of cavity sets, the

choice of βg for each set and the transition energies from one set to another set of cavities

in the linac become an important considerations while designing a compact linac. Here,

we want to emphasize that along with physics requirements or optimization studies, other

factors like economy as well as construction and manufacturing feasibilities also play a

decisive role behind these choices. In the planning and implementation of such a mega

project, a major attention is paid to minimize the time, effort and the uncertainty / risk

factors. With this goal in mind, a thorough survey of similar contemporary projects like

PIP-II [155], ESS [34], Chinese ADS [156] as well as SNS at Oak-Ridge [16] [157] etc.,

was made.

As discussed earlier, ISNS is planned as a precursor to the Indian ADS [41] programme.

The concept of ADS is based on a high-energy, high-current proton accelerator, which

will be capable to deliver a cw power of around few tens of MW. And to realize such

a high power cw machine, superconducting RF cavities are the only choice. Therefore,

to acquire the skill as well as to acquaint ourselves with the SRF technology, for the

ISNS linac, our current plan is to use SRF cavities in the injector linac immediately after

the RFQ accelerator. Based on our review of the operational or ongoing SNS projects

worldwide and Indian Institutions and Fermilab Collaboration (IIFC), we decided the use

of five families of different superconducting RF cavities for the specified energy range of

the ISNS injector linear accelerator, starting from ∼ 3 MeV to around 1 GeV energy. We

will use three sets of superconducting single spoke resonators in the low energy section,

namely SR0, SR1 and SR2, having the respective βg values 0.11, 0.22 and 0.42. In the low

energy (beam energy < 200 MeV) region, superconducting spoke resonator is an excellent
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choice based on the high accelerating gradient (Eacc) achievable, compact size as well as

their cost efficient performance [150] [156]. On the other hand, in the medium and high

energy range (energy > 200 MeV), multicell elliptic SRF cavities are the popular choice

worldwide. Therefore, for the proposed ISNS linac also, two families of 5-cell 650-

MHz elliptic SRF cavities have been planned to boost the energy from ∼ 170 MeV to

1 GeV. Similar to the PIP-II project [155], it was earlier decided to use 5-cell 650-MHz

elliptic cavities with βg = 0.61 and βg = 0.9 for the medium and high energy part of

the superconducting injector linac proposed for ISNS. However, a thorough optimization

study was performed later aiming to minimize the number of cavities. Based on this study,

βg = 0.81 cavities have been picked up for the high energy section of the linac. This study

will be elaborated later in this sub-section. In this analysis, we denote βg = 0.61 and

βg = 0.81 elliptic cavities as EC1 and EC2, respectively.

For performing the optimization study, one needs the information regarding maximum

achievable acceleration gradient in an elliptic cavity geometry denoted as Eacc,m, as a

function of βg. Based on the formulation proposed by Eshraqi [158], one can calculate

the value of Eacc,m in terms of the geometric beta of the cavity from the following formula:

Eacc,m =
Epk,m(

k1

βg
+ k2 × βg

) .
(6.4)

which fits well with experimentally obtained data for different SRF elliptical cavities.

Here Epk,m denotes allowable limit of the peak electric field maximum on the inner wall

of the cavity (which was considered 40 MV/m in this optimization calculation). Based

on the maximum achievable gradient of our optimized medium and high beta multicell

elliptic SRF cavity geometry [36] [37], k1 and k2 values were adjusted to 1.84 and 1.17,

respectively, following Ref. [159] .

As required, in this analysis, σl0 was kept ≤ 900 throughout the linac. First step of this

optimization analysis is in fact a study of longitudinal beam dynamics at zero current.
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Here, the only active components are the RF cavities, which provide focusing and

acceleration to the beam particles. Other lattice components like beam pipes or the

transverse focusing elements contributes as a drift spaces in this zero current longitudinal

beam dynamics study. As a per-requisite, first we set the number of cavities, solenoids or

quadrupoles and drifts to complete the periods of the lattice. It is noteworthy that these

cavities are independently phased cavities, which offer flexibility to the lattice in terms

of their tunability. However, these lattices are typically longer compared to the normal

conducting drift tube linacs, and this is a disadvantage particularly in the low energy

spoke resonator (SR) sections.

In comparison with the medium and high beta elliptical SRF cavity sections, beam

experiences much stronger de-focusing force due to space charge in the low energy SR

section. Therefore, compact period of short length is advantageous in the SR section. To

realize this objective, superconducting solenoids are the excellent choice as external

focusing element in the low energy SR section. Therefore, keeping this in mind, one can

mount superconducting solenoids inside the cryostat, which helps to make the period

more compact [150], as it is desperately required in the low energy section. In the ISNS

linac, beam energy will be only 3 MeV at the entrance of the SR0 section. For an H-

particles 3 MeV energy corresponds to a β value around 0.08. Hence, in each period of

this SR0 section we restrict to one SR0 cavity only, along with one 20 cm long

superconducting solenoid. Periods in the SR1 section are designed with two cavities and

one 30 cm long superconducting solenoid in between, whereas, in the SR2 section, one

30 cm long superconducting solenoid is sandwiched between two SR2 cavity doublets

forming the period.

As mentioned earlier, 650 MHz multicell elliptical SRF cavities will be used in the

medium and high energy sections of the proposed injector linac. In this energy range,

particles will become nearly relativistic. Therefore, we can afford moderately longer

period length in these sections. Accordingly, normal conducting quadrupole triplets are
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planned in this energy range to provide the transverse focusing. In the medium energy

section, each period consists of one quadrupole triplet followed by three cavities.

Similarly, we have proposed a configuration with one triplet followed by six cavities for

the high energy section. These two periods, along with three SR periods are shown in

Figure 6.4. Table 6.1 and Table 6.2 present the design details for the RF cavities and

magnets, respectively, proposed in the five different energy ranges of the ISNS lattice.

Detailed configuration of all the periods is summarized in Table 6.3. In the medium and

high energy sections of the proposed linac, we have also explored another possibility to

use quadrupole doublet for transverse focusing [16] [41]. However, in our design, we

have adopted quadrupole triplet [156], considering an added important advantage that if

any of the quadrupole magnets in the triplet configuration goes out of order, still we can

achieve the required focusing in both vertical and horizontal planes, performing a minor

adjustment of the remaining two quadrupoles. Also, compared to the doublet

configuration, beam will remain closer to axi-symmetric in the lattice with triplet

configuration. In this design, one aim was to minimize the number of cryomodules,

especially in the spoke cavity sections. It is because in the low energy range, reduction in

the number of cryomodules will also reduce the number of matching sections, and

consequently the growth in the beam size and in beam emittance will be reduced.

Moreover it will reduce the number of room temperature to 2 K transitions there. We

mention the possible cryomodule lengths in Table 6.3, based on this physics design

alone. However, this issue may need a revisit after the completion of the engineering

design of the linac.

To minimize the total number of cavities in the medium and high β sections, a detailed

optimization was performed on the choice of βg for the two sets of elliptical cavities, and

the transition energy using the code GENLINWIN [159]. Figure 6.5 describes the result of

this analysis. Based on this study, we have obtained the optimized geometric beta values

for the corresponding two sets / families of elliptic SRF cavity as βg ∼ 0.61 and βg ∼

0.81, respectively. From this optimization calculation, corresponding transition energy
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Figure 6.4: Schematic configuration of the lattice structures used in different energy
sections of the injector linac: (a) βg = 0.11 SR0 section, (b) βg = 0.22 SR1 section,
(c) βg = 0.42 SR2 section, (d) βg = 0.61 EC1 section and (e) βg = 0.81 EC2 section.

between these two families was estimated as ∼ 480 MeV. In the optimized configuration,

12 numbers of medium energy periods and 6 numbers of high energy periods will be used.

Together, a total of 72 multicell elliptic SRF cavities will boost the energy from ∼ 168

MeV to the final energy.

In this injector linac, superconducting cavities will be housed inside their respective

cryomodules. Hence, unavoidably, the maximum length of a lattice section will be limited

by the length of the cryomodule there. The maximum length of a cryomodule is decided

from considerations imposed by the mechanical and thermal design. As it is shown in

Table 6.3, the maximum cryomodule length is kept below 10 m in this design.

In this design, one objective was to keep the linac compact, and therefore, most of the

RF cavities here will be operated with their maximum gradients. This consideration

compels us to design small matching sections with few extra cavities and magnets to

ensure proper beam matching during the transitions. Detailed configuration of the

matching section is given as follows:

1. Dedicated for the matching purpose, two squeezed SR0 periods are used in between

SR0 section and SR1(1) sections. Each of these periods is configured with one
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Figure 6.5: Total number of 5-cell, 650 MHz elliptic cavities required to accelerate the
beam from 168 MeV to 1 GeV as a function of βg plotted for both medium and high beta
cavity sections.

SR0 cavity along with a 20 cm long solenoid, separated by a 10.5 cm drift space.

Fig. 6.6(a) describes the details of this matching section. With a proper tuning of the

cavity voltage and magnetic strength, a separation of 40 cm is ensured in between

these two squeezed periods. This length will be sufficient to accommodate the end

closures of the two cryomodules. In this configuration, the first cavity is used as

an energy corrector, and the second one is used as a buncher cavity operating at

φs ∼ 900.

2. Same configuration is repeated in between the SR1(1) and the SR1(2) section and

also in between the SR1(2) and SR2(1) section.

3. Between SR2(1) and SR2(2) sections, part of the same configuration is used at the

SR2(1) end, whereas at the beginning of the SR2(2) section only a single solenoid

is used for the matching purpose, and there, an extra length in the beam pipe is

added to keep the cryomodule design identical for the two SR2 sections. This

configuration is shown in Fig. 6.6(b).
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4. Matching between 325 MHz spoke resonator sections and 650 MHz medium energy

elliptic cavity section is crucial, as because, we have a frequency doubling there.

Therefore, with three SR2 cavities, one solenoid and 4 quadrupoles - a dedicated

matching section is configured there. Among those elements, one solenoid and one

SR2 cavity will be housed inside the SR2(2) cryomodule, whereas, another two

SR2 cavities will be housed inside two dedicated cryo-jackets. With proper tuning

of the cavities and magnets, we can manage there a gap of 60 cm in between these

two cryo-jackets for the beam diagnostic and other necessary devices. Each of the

four quadrupoles used here is similar to the regular quadrupoles, which will be used

in the triplets. Configuration of this matching section is presented in Fig. 6.6(c).

Figure 6.6: Dedicated matching sections used in between (a) SR0 and SR1(1) sections, (b)
SR2(1) and SR2(2) sections, and (c) the SR2(2) section and medium energy EC1 section.

Table 6.4 summarizes the configuration details of these matching elements. It is

noteworthy that the RF cavity used in the matching section in between SR2(1) and

SR2(2) will be required to provide a voltage of around 3.1 MV for the matching. This

might be challenging for an SR0 cavity. Keeping this in mind, we have also made an

alternative design of this matching section, where an SR2 cavity will be used instead of

the SR0 cavity. As it is shown in Fig. 6.6(b), space requirement will not be a limitation

for this purpose.
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At the transitions, adiabatic change in the phase advance per unit length will be

ensured by these dedicated matching sections. These sections will also preserve constant

longitudinal acceptance criterion [160]. Following the first criterion we write:

E0T sin(φs)
λ

∣∣∣∣∣
S ection1

=
E0T sin(φs)

λ

∣∣∣∣∣
S ection2

. (6.5)

Here, λ is the free space wavelength corresponding to the RF frequency in the cavity. In

case, where the frequency gets doubled at the transition, synchronous phase φs should

also require to be doubled in order to keep the geometrical bunch length acceptance

unaltered. Introduction of these dedicated matching sections may be disadvantageous

Table 6.1: Design details of the RF cavities used in the proposed linac lattice.
Section Cav Name L(Field map) Operating Range
βg = 0.11 SR0 20 cm ∼4.9 to 9.3 MV/m
βg = 0.22 SR1 30 cm ∼6.1 to 10 MV/m
βg = 0.42 SR2 51 cm ∼7.7 to 10.8 MV/m
βg = 0.61 EC1 1.0 m ∼10 to 15.4 MV/m
βg = 0.81 EC2 1.36 m ∼15 to 18.6 MV/m

Table 6.2: Magnets used in the linac lattice and their design details.
Section Magnet Type L(Hard edge) Operating Range
βg = 0.11 Solenoid 20 cm ∼2.2 to 2.6 T
βg = 0.22 Solenoid 30 cm ∼1.9 to 2.8 T
βg = 0.42 Solenoid 30 cm ∼2.5 to 3 T
βg = 0.61 Quad. (Tripplet) 35 cm ∼2.9 to 7.8 T/m
βg = 0.81 Quad. (Tripplet 35 cm ∼3.6 to 8.3 T/m

Table 6.3: Detailed lattice parameters of the injector linac.
Section Lperiod Focusing Type βtrans ∼ Lcryo

βg = 0.11 0.61 m [Sol] (R) ∼ 0.15 ∼ 7.8m
βg = 0.22 1.28 m (R) [Sol] (R) ∼ 0.32 ∼ 7.4m
βg = 0.42 2.90 m (2 × R) [Sol] (2 × R) ∼ 0.50 ∼ 9.7m
βg = 0.61 6.15 m [FDF] (3 × R) ∼ 0.74 ∼ 4.3m
βg = 0.81 11.6 m [FDF] (6 × R) ∼ 0.87 ∼ 9.6m

from the perspective of compactness. However, we would like to mention that it offers
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more flexibility in the design. In a MW class hadron linac, it is extremely important to

reduce the chances of emittance growth and the chances of halo formation, with the help

of proper beam matching. These matching sections could be avoided, if we play with the

readjustment of the cavity gradients and synchronous phases at the end of sections.

However, increasing Eacc is not a feasible option in this ‘compact’ design. Another

option might be to change the synchronous phase. Synchronous phase affects the phase

acceptance. Therefore, it is not at all preferable to reduce the magnitude of synchronous

phase substantially. In addition to this, dedicated matching section might be

advantageous in the case of cavity failures in the adjacent regular accelerating sections.

There, a limited compensation of the energy might be possible by readjusting the

cavity-gradients of the matching section.

Table 6.4: Design and the detailed parameters of the matching sections.
Position

(In between) Cav Type
Focusing
Element Cavity φs

E0Lgap

(MV)
SR0,

SR1(1) 2×SR0 2×Sol (20 cm)
∼ −67.80

∼ −90.00
∼ 1.54
∼ 1.14

SR1(1),
SR1(2) 2×SR0 2×Sol (20 cm)

∼ −83.10

∼ −90.00
∼ 1.54
∼ 1.51

SR1(2),
SR2(1) 2×SR0 2×Sol (20 cm)

∼ −87.20

∼ −90.00
∼ 1.53
∼ 1.26

SR2(1),
SR2(2) 1×SR0 2×Sol (20 cm) ∼ −90.00 ∼ 3.1

SR2(2),
βg = 0.61 sec 3×SR2

1×SoL (20 cm)
4×Quad (35 cm)

∼ −90.00

∼ −90.00

∼ −90.00

∼ 1.64
∼ 3.32
∼ 3.77

We would like to emphasize that the optics design sometimes demands a reduced Eacc

for the cavity. However, for the cavities, it is better to operate arround their design

gradient, to reduce the chances of multipacting. It may so happen that at lower value of

Eacc, cavity will cross the multipacting barrier. In that case, multipacting will restrict the

functionality of the cavity. We have taken care of this issue in the design. Although few

of the SR0 cavities in this linac will be operated nearly at the half of their maximum

acceleration gradient, we have checked that this gradient is still safe from the

multipacting point of view. As we have discussed, transition energies should also be
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optimized to minimize the total number of cavities. In this design, nearly for all the

cavities, it is ensured that the normalized TTF (TTF / TTFmax) will be greater than 70%.

Fig. 6.7 also gives the confirmation that none of the cavities will be under-performing.

Figure 6.7: Transit time factors (TTF) normalized against their maximum values are
plotted as a function of β for the five different lattice sections used in the injector linac.
The straight lines show the transition β from one section to the other.

6.3 Beam dynamics calculations for ISNS linac

Lattice layout of the proposed injector linac for ISNS was described in the previous

section. Beam dynamics calculations for the linac will be presented in this section. We

start with a discussion on calculations performed to set the different lattice parameters

(i.e., the synchronous phase φs and acceleration gradient Eacc in each RF cavity, as well

as the focusing strength of the solenoid and quadrupole magnets). We will present the

envelope and multi-particle beam dynamics calculations including the space charge

effect in the Section 6.3.2. Section 6.3.3 will describe the detailed calculation of

envelope instability for the beam bunch. Beam halo analysis will be presented in the

Section 6.3.4. The discussion will be concluded with an estimation of the beam loss in

the Section 6.3.5.
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6.3.1 Beam optics calculations for the zero current

Discussion on the longitudinal beam dynamics calculations: Here, we will discuss

the longitudinal beam dynamics studies performed with zero current. Based on this study,

Eacc and φs values were set in each RF cavity. There are few computer codes available for

such calculations. However, to the best of our knowledge, the detailed design procedure is

not clearly described in the literature. Hence, we have evolved a methodology to set these

values. We found a good agreement between our results and the results obtained using

the computer code GENLINWIN. In this methodology, we consider a fixed value of φs

and E0 in all cavities in the same period. Here, we want to mention that although in this

recipe, these two quantities are kept fixed for all the cavities in the same period, particle

will gain different energies in each of the cavities. It is because the transit time factor

T will varies as the particle gets accelerated. Therefore, energy value at the entrance of

the next section will be carefully updated calculating the overall energy gain from the

previous section. While moving from one period to the next, simultaneously, the values

of φs and E0 are calculated for the next period in such a way that the two quantities -

(i) kl0, i.e., the zero current phase advance per unit length, and (ii) the area of separatrix

in the longitudinal phase space remain constant. As it is obvious, one constraint in this

analysis is that the maximum allowable axial field value Emax in the cavity comes from the

electromagnetic design of the cavity, and that limits E0. Hence, if the value of E0 obtained

in this methodology goes beyond Emax, we set E0 for the corresponding cavity to Emax. As

a consequence, we need to reduce the value of kl0 for the respective periods accordingly

in the section, as we progress along the linac length. However, under all circumstances,

we must ensure that the kl0 changes adiabatically. Constant or an adiabatically varying

kl0 implies that the particle experiences restoring force due to constant or slowly varying

spring constant as it moves down the linac. Maintaining a constant area of separatrix

implies that a constant fraction of this area will be occupied by the beam, as the area of

longitudinal phase space is conserved. Here, we consider the value of kl0 obtained after

averaging over one lattice period.
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We now discuss the basis on which we choose φs and E0T at the entrance of the spoke

resonator section, i.e., at the beginning of our injector linac. Aiming at a compact linac,

we try to achieve a design with maximum acceleration efficiency. Therefore, φs should

be chosen as small as possible. However, as we know, phase acceptance is decided by

the parameter φs only, and a small value of φs corresponds to a phase acceptance value

of 3|φs|. Therefore, the selected value of φs must ensure that the beam bunch length from

the preceding accelerating section will adjust well within the phase acceptance of the

subsequent lattice section. In this case, preceding section is the RFQ and the beam will

enter from there to this subsequent sections, i.e., the SR0 lattice. Next, we elaborate about

the choice of E0T . In an accelerating cavity, kl0 limits maximum allowable value of E0T

(of course, E0 needs to be kept smaller than Emax). Accordingly, the aim is to choose the

highest possible value of kl0 that will ensure the use of a maximum gradient in the cavity.

In addition, the maximum value of zero current longitudinal phase advance σl0 should

always be kept below 900, to avoid envelope instabilities.

We choose the value of σl0 in the first period of the SR0 section as 89 degree and

accordingly we fix the value of E0T in the first cavity. Such a choice of the value of

φs = 450, shows that at the entrance of the spoke resonator section, RMS longitudinal

beam bunch length is less than one-fourth of φs. Although this value is well below the

phase width of the separatrix there, which is 3 × |φs|, yet, it is bigger than the RMS beam

size of one-sixth of φs, as it is mentioned in the recipe described in Sub-section 6.2.2.

From multiparticle simulation, for this design we have ensured that in spite of this choice

of φs = 450 at the entrance, it is possible to restrict the RMS longitudinal beam size less

than one-sixth of φs mostly throughout the linac. The value of φs and E0 is updated in the

subsequent sections, following the procedure that we described earlier.

Discussion on the transverse beam dynamics calculation: Based on similar

arguments, as adopted while discussing the longitudinal dynamics, focusing magnetic

strengths is decided by the zero current transverse phase advance (kt0) value in the case
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of transverse dynamics. For the entire linac, it is required that all lattice footprints should

always be in the resonance free zone on the Hofmann diagram in presence of beam. In

fact, this is followed as the main guiding principle in the design of a non-equipartitioned

compact linac. Accordingly, we calculate the transverse focusing strength of the solenoid

and quadrupole magnets in the lattice such that the lattice footprints fall in the resonance

free zone of the Hoffmann diagram. Especially, we have targeted to place the footprints

in the wide resonance free zone, which exists between the third and fourth order even

resonance peaks. Such placement of the lattice footprints ensures the absence of

collective instabilities, which may arise because of the exchange of emittances among

different planes.

We have already argued that the zero current phase advance per period (σt0) in the

transverse plane should be kept below 900 to avoid transverse envelope instability.

Therefore, this will be a constraint in our calculation, while deciding for the maximum

design value of the zero current phase advance per unit length (kt0) in the transverse

plane. Also, as described, kt/kt0 should be in the resonance free zone on the Hofmann

diagram. Based on these two considerations we set the value of kt0 for each lattice. In the

calculation, the following relationship between kl and kl0 as well as between kt and kt0 is

used [65]:

kl = kl0

√
1 −

3qλIBF

20
√

5πε0γ3β2mc3axayazk2
l0

, (6.6)

kt = kt0

√
1 −

3qλIB(1 −F )

20
√

5πε0γ3β2mc3(ax + ay)ax,yazk2
t0

. (6.7)

Here IB = 14.5 mA is the macropulse beam current, q is the magnitude of the charge of an

H- ion and the term λ denotes free space wavelength of the corresponding RF frequency

at which the beam is bunched. As described in Ref. [65], the parameter F is called the

form factor, which depends on the shape of the bunch in the beam frame.

Pushing the value of transverse focusing strength or kt0 to its maximum is always

175



preferable in the design to minimize the transverse beam size (keeping in mind the

possibility of intra-beam stripping). Limiting the maximum value of σt0 ≤ 900, we might

have chosen the initial value of the zero current transverse phase advance per period

(σt0) as 890, which is same as the initial value of σl0. Accordingly, Eqs. 6.6 and 6.7 give

the value of kl/kt = 1.12 at the beginning of the linac for an average value of the typical

rms beam size of ax = ay = 1.7 mm and az = 2.0 mm. If we plot kl/kt = 1.12 on the

Hofmann diagram, it will certainly be in the resonance free zone, but very close to the

edge of the fourth order resonance peak. Therefore, it is preferable to set a value of

kl/kt > 1.12. Such choice will categorically help us to move away from the resonance,

and as a consequence the chances of emittance exchange between different planes will

be reduced further. Interestingly, if we want to move sufficiently away from the width of

the fourth order resonance peak by setting the ratio kl/kt to some higher value, the value

of σt0 will be reduced further from 900, resulting in a further reduction in the transverse

focusing strength. Therefore, we chose the initial value of kl/kt ≈ 1.2. This choice

ensures a satisfactory value of the transverse focusing strength, as well as a sufficient

distance from the resonance peak. We have tried to maintain this ratio by suitably

choosing the field strength of the focusing magnets throughout the linac. One point here

we want to mention is that: ISNS lattice will be an emittance dominant design, i.e., in

this design, space charge issues will not be that severe. Hence, while designing the

lattice, we have targeted to keep the tune depression values around 0.7.

We would like to emphasize that in this design, we have implemented the design

approach suggested by Hofmann et. al. [151]. This is the non-equipartitioned design

approach, where emphasis is more on making the linac compact. In the

nonequipartitioned design, the chances of emittance exchange is reduced by limiting the

lattice footprints to the safe zone of Hofmann diagram through appropriate tuning of the

lattice parameters. Beam has asymmetric emittance values in longitudinal and transverse

planes at the entrance of the SRF injector linac in our design. We found there the ratio of

εl,n/εtn ≈ 1.12. Such a design where εl,n > εtn, will be robust even in the case of an
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Figure 6.8: Figure on top shows the calculated acceleration gradient (Eacc) in the RF
cavities and the required strength of solenoid / quadrupole magnets along the length of
the linac. In the bottom, calculated variation in the synchronous phase φs of all RF cavities
is shown.
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Figure 6.9: Longitudinal (black dashed line) and transverse phase advance (horizontal:
solid red line and vertical: dotted blue line) per unit length is plotted along the length
of the linac without space charge (top) and with space charge (bottom) for the designed
value of a beam current of around 14.5 mA.
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emittance exchange compared to the design with εl,n < εtn. It is because in the case of

εl,n > εtn, reduction in the longitudinal emittance will divide equally between the two

transverse planes. As a result, low emittance growth will be expected in the design.

However, this choice will be disadvantageous compared to the other choice of εl,n < εtn in

case we adopt the equipartition conditions in the design by keeping klεl,n = ktεt,n. For an

equipartioned design and for εl,n > εt,n, we need to set relatively small value of kl0,

compared to the non-equipartioned design that we described, which will limit the Eacc in

the cavities to a relatively lower value. As a consequence, the linac will become

longer [150]. Hence, to avoid this scenario, we followed a non-equipartioned design

approach. Among the contemporary projects, this philosophy is also adopted in

designing a 1.5 GeV linac proposed for Chinese ADS program [156].

Calculated values of E0T and φs in each of the cavities in the linac, as well as the

focusing strengths of each magnet are plotted in Fig. 6.8. For this lattice, beam dynamics

calculations were performed for the beam envelope using the code TRACEWIN [159],

including the effect of space charge. As it is observed from the figure (Fig. 6.8),

accelerating gradients remains low in the few initial cavities in almost each section of the

linac. This happens due to the limitation coming from the longitudinal phase advance

criterion. The set values of E0T increases to higher values, as the beam energy increases

in the linac, and finally gets limited by the maximum achievable acceleration gradients in

the RF cavities. As we move from one section to the another, Transit time factor drops,

and therefore, an initial dip is observed in the accelerating gradient, which later increases

and ultimately saturates to the maximum achievable gradient values. In the design,

absolute value of φs reduces constantly except at the transition between cryomodules. To

accommodate the effect of frequency doubling at the transition from the SR sections to

the elliptical cavity section, the |φs| jumps to double of its value. Figure 6.9 shows the

signature of an overall smooth variation in the values of transverse and longitudinal

phase advances per unit length throughout the linac.
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6.3.2 Multi-particle beam dynamics simulations

We will now elaborate upon the multi-particle beam dynamics simulations for the

lattice parameters finalized in the preceding subsection. We made extensive use of the

beam dynamics computer code TRACEWIN. It calculates the space charge using a PIC

based subroutine. Matched beam parameters were calculated for the design current of

IB ∼ 14.5 mA at the entrance and exit of each ‘section’ of the linac. At this point, we

want to discuss a bit more on the process of beam matching followed in general in

designing a linac of this kind. There, the beam matching is performed carefully at the

entrance of each section. It is because of two reasons: (1) different lattice periods are

there in the separate sections, or (2) we need to include an extra length in the beam pipe

in between two sections, mainly to incorporate beam diagnostic devices or the end

closures of the cryomodules there. As an obvious consequence, regular periodicity of the

linac breaks at the entrance of each section. It is therefore, dedicated matching is

required there at the entrance of each section separately. In this design, the matching

sections help in matching the output of previous section with the input of the section

under consideration. As it is mentioned earlier, in the spoke resonator sections, we have

considered the lattice periods inside each cryomodule as one ‘section’. However, in the

elliptic cavity sections, all the lattice periods containing βg = 0.61 cavities constitute a

single section, and along the same line, all the periods consisting of βg = 0.81 cavities

constitute another single section.

End to end beam dynamics calculations were performed for the entire ISNS linac -

starting from the exit of the RFQ to the end of the injector linac. Figure 6.10 shows the

distribution of the input beam used in our calculation. This is the distribution obtained at

the RFQ exit [43]. Input Twiss parameters for this distribution are listed in Table 6.5. As

mentioned, the 4 m long MEBT line transports the beam from the RFQ to the entrance of

the first section of the 1 GeV injector linac. In this design, we maintain the value of kl/kt

to around 1.2, throughout the linac, based on the discussion in the previous subsection.
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Required fine-tuning for the accelerating electric field strength and focusing magnetic

field strength for each period were performed accordingly.

Figure 6.10: Beam distribution at the exit of Radio-Frequency Quadrupole (RFQ).

Table 6.5: Emittance values and Twiss parameters of the beam distribution at the exit of
RFQ

Twiss Parameter Values Units
αx 1.289
βx 0.1321 mm/mrad
εx 0.3973 mm-mrad
αy -1.3502
βy 0.1360 mm/mrad
εy 0.3996 mm-mrad
αz -0.0266
βz 0.5379 mm/mrad
εz 0.4467 mm-mrad

Now, we present the results of this end to end beam dynamics calculations. We have

used one-dimensional field maps in the simulation for the longitudinal profile of electric

field (i.e. Ez(z)) in the RF cavities, and have adopted hard-edge models for the calculation

of the field strength in the solenoid and quadrupole magnets. Some details regarding the
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field strengths and other parameters for the cavities and magnets are given in Table 6.1 and

Table 6.2. Figure 6.11 shows the rms and actual beam envelopes for the longitudinal, as

well as transverse directions. As observed from the figure, the transverse rms beam size

is around 2 mm throughout the linac. In this linac, ratio of the transverse rms beam size

to the minimum available aperture radius varies from 7 in the SR0 section to 10 at linac

exit. Evolution of the synchronous phase along the linac length is shown in Fig. 6.12.

It may be noted that we have found the rms phase width to be less than one sixth of the

absolute φs along the length of the linac. As discussed earlier in Section 6.2.3, suitable

matching sections have been designed between different sections of the linac. Detailed

configurations of these matching sections, along with the rms beam envelopes obtained in

these transition sections, are shown in Figs. 6.13(a) to 6.13(e).

Evolution of the three emittances values along the length of the linac is shown in

Figure 6.14. As mentioned earlier, we have fine-tuned the lattice to control the emittance

growth, while performing the multiparticle beam dynamics simulation with space

charge. Figure 6.14 also shows an interesting feature. We notice that, all the three

emittance values decrease simultaneously at a distance approximately between 80 to 110

m, which is contradictory to the Liouville’s theorem. In order to explain this

contradiction, it is relevant to mention here that the 2D emittance, εζζ′ =

√
ζ2)(ζ ′2) − ζζ ′

2

(where ζ → x, y, or z) is actually only a projected emittance, and only the 4 of the 36

terms of a full beam matrix [Σ][Σ]T is represented by this. The column matrix Σ consists

of six dimensional trace space coordinates x, x
′

, y, y
′

, z and z
′

. However, this decreasing

trend concurrently persists in the linac at ∼80 to 110 m, even in the 4 dimensional (4 D)

and 6 dimensional (6 D) emittance plots with nominal fluctuations of ±3% This is shown

in Fig. 6.15.1 The cause of this behavior is concealed in the fact that the code

TRACEWIN does not calculate emittance values from the canonical variables like x, px,

1In TRACEWIN, the four dimensional (4D) and six dimensional (6D) emittances are defined as εii′×ε j j′ ,
where, i, j ∈ {x, y, z}, but i , j, and εii′ × ε j j′ × εkk′ , where, i, j, k ∈ {x, y, z}, but i , j , k. Coupling between
x, y and z is thus not considered in the TRACEWIN results. Hence, in this calculation, contribution from
off-diagonal elements of the Σ matrix is absent.
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y, py, and z, δp/p. Rather, like the other usual multiparticle beam dynamics codes, it also

uses trace-space variables like x, x
′

, y, y
′

etc. for emittance calculation [161]. The

symplectic condition is therefore not satisfied there in the true sense, which seems to be

the reason behind this minor discrepancy.

Variation of the tune values along the length of the linac is plotted in Fig. 6.16. In this

linac, expected values of tune deprepression will be around 0.85 and lies in between 0.7

and 0.95. The beam is thus expected to be emittance dominated.

Figure 6.17 shows the lattice footprints on the Hofmann diagram, where, each point

on the diagram corresponds to one lattice period. It can be very clearly inferred from the

figure that all the lattice footprints are in the broad resonance free zone between the third

and fourth order even resonance peaks, and their values will scattered arround kl/kt ∼

1.2 line. It is worth mentioning here that apart from ensuring lattice footprint in the

resonance free zone, we have also ensured that the lines connecting consecutive footprints

on the Hofmann diagram do not cross any resonance peak. This in turn helps to minimize

emittance growth. Another point to be noted here is that in the medium and high energy

section, the ratio of the average transverse to the longitudinal emittance values approaches

unity. This is a favorable situation, as the fourth order even mode resonance peak in the

Hofmann diagram reduces significantly in that case.

Apart from this, we have calculated the beam acceptance in the longitudinal and

transverse planes using the computer code TRACEWIN, and the results are shown in

Fig. 6.18. From the figure, the golf club kind of separatrix is seen in the longitudinal

plane. The values of the longitudinal (full) and transverse (full) acceptances were

obtained at around 160 mm-mrad and 318 mm mrad respectively, at the exit of MEBT.

Figure 6.19 plots the required rf power values to be fed to the different cavities, along

the length of the linac. A margin of 25% has been kept in the rf power requirement

calculations here to take into account the effect of any cavity detuning.
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Figure 6.11: Horizontal (top, black), Vertical (top, blue) and longitudinal (middle, blue)
rms beam size in the linac along the length. In the other figure (bottom) color map shows
radial distribution of the normalized particle density throughout the linac, along with the
available aperture (black).
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Figure 6.12: RF bucket boundaries at +2 |φs| and - |φs| (black) are shown along with phase
distribution in the linac.

6.3.3 Studies on the envelope instabilities

As it has been discussed, an actual beam bunch traversing through the linac is not the

ideal or the matched one. Small mismatch or perturbation in the rms beam parameters is

always there. Eq. 6.3 describes the evolution of the mismatched envelope (∆aζ(s)) of an

intense beam bunch. This equation is a set of 3 coupled linear differential equations.

Using Floquet theorem, one can calculate the most general solution in terms of

eigenmodes with their eigenvalues for such a set of differential equations with periodic

coefficients. Among them, if the modulus of any of the eigenvalues is greater than unity,

solution will be unstable. Rigorous stability analysis for the case of a two dimensional

coasting beam has been performed by Reiser and Stuckmire [60], as well as Lund and

Bukh [153]. However, in their analysis, they have excluded the effect due to RF. In our

work, this analysis is extended to the case of a three dimensional bunched beam,

including the effect of acceleration and the transverse defocusing arising due to RF. The

number of phase space variables is six in the case of a three dimensional beam bunch.
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Figure 6.13: Longitudinal (right) as well as transverse (left) rms beam envelope across
the transitions from (a) SR0 to SR1(1) section, (b) SR1(1) to SR1(2) section, (c) SR1(2) to
SR2(1) section, (d) SR2(1) to SR2(2) section and (e) SR2(2) to EC1 section respectively.
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Figure 6.14: Evolution of the normalized rms beam emittance in the longitudinal (black
broken line) direction, vertical (red solid line) direction and horizontal (blue dotted line)
direction along the length of linac.

Figure 6.15: Evolution of the normalized transverse 4 D and the 6 D rms emittance values
are plotted along the linac length.
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Figure 6.16: Longitudinal (broken black line), horizontal (dotted blue line) and vertical
(solid red line) tune depression along the length of the linac.

Figure 6.17: Lattice footprint are plotted on the Hofmann chart for ISNS injector linac
with εz/εx = 1.12. Here kz/kxy=1 denotes fourth order even resonance, whereas, kz/kxy=2
denotes the third order even resonance. All lattice footprints (shown in coloured dots) are
nearly confined in the resonance free zone of the Hofmann diagram, between these two
resonances.
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Figure 6.18: Longitudinal (top) and transverse (bottom) full unnormalized acceptance
of the linac. Here background colour shows the input beam distribution, on which the
acceptances are shown in black.
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Figure 6.19: RF power requirement for the different cavities along the length of the linac.

Accordingly, six numbers of first-order, coupled linear differential equations with

periodic coefficients are obtained. Solving these equations using Floquet theorem, we

obtain six eigenvalues. However, as it is shown in Refs. [60] [153], with a two

dimensional coasting beam, the authors have obtained four eigenvalues. In our analysis,

the 6 × 6 transfer matrix corresponding to the six coupled differential equations, is

symplectic, and it represents propagation of the phase space variables over one period.

For this symplectic matrix, the calculated eigenvalues will be in reciprocal and complex

conjugate pairs. Probable six scenarios are described below. Also, they are elaborated in

Fig. 6.20:

• Case 1: Each of the three pairs of eigenvalues characterizes stable solution. All

eigenvalues are complex here, and lie on the unit circle, i.e., |λ| = 1.

• Case 2: Among the three pairs of eigenvalues, one pair corresponds to unstable so-

lution. For this pair, the eigenvalues are real with |λ| , 1 and φ = 1800. This cor-

responds to lattice resonance. Here, the remaining two pairs of eigenvalues charac-

terize stable solutions with |λ| = 1.
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• Case 3: Two among the three pairs of eigenvalues are in lattice resonance; hence,

correspond to unstable solutions. These two unstable pairs correspond to |λ| , 1

and φ = 1800. For the third pair, solution is stable.

• Case 4: Each of the three pairs is in lattice resonance. Therefore, solutions are

unstable here. For all these pairs corresponding |λ| , 1 and φ = 1800.

• Case 5: One pair corresponds to lattice resonance. The other two pairs (say, second

and third pair) characterize |λ2| and |λ3| , 1. Also, for these two pairs, λ2 = 1/λ3,

λ∗2 = 1/λ∗3 and φ2 + φ3 = 3600. These two pairs perform confluence resonance.

Here, solutions corresponding to all three pairs are unstable.

• Case 6: One of the three pairs corresponds to a stable solution, whereas, the other

two are in confluence resonance.

For a perturbed beam bunch, the three pairs of eigenvalues represent the three normal

mode of oscillation. Earlier analyses reported in Refs. [60] [153] describe growth rates

of only two normal modes. On the contrary, this analysis performed for a

three-dimensional bunched beam, discusses the growth rate of three normal modes. In

their analyses presented in Refs. [60] [153], the authors have concluded that in the case

of axisymmetric beam in a solenoid focusing channel, only one type of resonance, i.e.,

the parametric resonance is possible, and confluence resonance is not possible in that

case. This is because for an axisymmetric beam in a solenoid channel, their analysis

reduces to one dimension in their case. However, for a three-dimensional beam bunch,

even in the case of an axi-symmetric beam in a solenoid focusing channel, the analysis

will be two-dimensional. Here, the longitudinal dimension will be associated with each

of the transverse dimension. Therefore, our analysis performed on an axisymmetric

beam in a solenoid focusing channel shows confluence resonance also, in addition to

parametric resonance.

We now present the results of our calculations performed to obtain the growth rate of
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the three eigenmodes of three-dimensional rms mismatched envelope for the linac

lattice. Mismatched envelope was analyzed for the different lattice sections, which were

optimized for the different energy ranges of the linac. Through this analysis, we have

ensured the stability of the beam by setting an upper limit on the zero current phase

advance per period σζ0. Analyses reported in Refs. [60] [153] suggest to set this limit as

90 degree for all three planes. Our three three-dimensional analysis is more generalized

in nature. Therefore, in this three-dimensional analysis, we wanted to verify it explicitly,

if we get a similar value of σζ0, as reported in Refs. [60] [153]. Results of our analysis

performed for the SR0 section are described in Fig. 6.21. As mentioned earlier, it is the

only section, where the accelerating gradient in the cavity is limited by the maximum

value of σx0, σy0 and σz0. In line with our analysis, we therefore set

σx0 = σy0 = σz0 = 890, which is just below the limiting value of σζ,0 = 900. For the

envelope oscillations, phase advance per period of the three normal mode of envelope

oscillations are shown in Fig. 6.21. These values were computed for different values of

tune depression, corresponding to different values of beam current IB. From the analysis,

we found that the modulus of eigenvalues is unity, which is shown in Fig. 6.21. Also,

this is independent of beam current. This shows that the envelope oscillations will be

stable in this case. For the confirmation, beam dynamics simulations were performed

explicitly for a beam bunch with 10% mismatch and the results are shown in Fig. 6.22.

From the figure, it is evident that as expected theoretically, mismatch oscillations

obtained from the simulations are stable.

To explore the behavior of the lattice for higher values σζ0, another analysis was per-

formed with σζ0 = 1050, and the results are shown in Fig. 6.23. Here, we notice five dis-

tinct regions, which can be described as follows:

• Region 1: All three normal modes of oscillations are stable, which is represented

as Case 1.

• Region 2: Lattice resonance is shown by the third normal mode. The other two
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normal modes are stable, which are represented by Case 2.

• Region 3: Here the second normal mode is in resonance. Therefore, this region is

similar to Region 2.

• Region 4: A confluence is observed between the first and second normal modes.

Here, the third normal mode is stable. This characterizes Case 5.

• Region 5: It is similar to Region 2. The first normal mode is in resonance here.

Figure 6.20: Along with the unit circle which is shown in black, eigenvalues of the
envelope oscillations of a three-dimensional beam bunch in a periodic lattice are shown
on the complex plane.

Region 4 in Fig. 6.23 shows the interesting occurrence of a confluence resonance in the

solenoid focusing channel. This observation is commensurate with our earlier discussion,

where we argued that such a case can only be observed in the three dimensional analysis of

envelope mismatch, whereas, the two dimensional analysis of coasting beam described in

Refs. [60] [153] does not derive this conclusion. Beside SR0 section, in the other sections

of the lattice, we have specified the maximum value of σζ0 considerably less than the

limiting value of 900 in all three planes. These values are approximately 850 and 650

respectively, in the SR1 and SR2 sections. Similarly, σζ0 is ∼ 680 and 620 respectively,
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Figure 6.21: Phase advance per period φn (top), and modulus of eigenvalue of normal
modes of mismatched envelope oscillation, plotted as a function of tune depression for
σζ0 = 890. Note that in this case, eigen values could not be calculated accurately beyond
a value of σ = 87.50, because of some numerical accuracy.
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Figure 6.22: Oscillations in the beam envelope along x, y and z direction, as obtained
from the simulation for 10% mismatch in the beginning, is shown for σζ0 = 890.

in the medium and high beta elliptic cavity sections. As it is expected, no resonance is

observed there.

6.3.4 Analysis on the beam halo, using particle core model

In a high power hadron linac, another important loss mechanism is through halo

formation. Average particles in the beam bunch perform stable oscillations within the

beam envelope. In this context, oscillations performed by the halo particles are also

stable but their amplitude is significantly larger compared to the average or core

particles. As a consequence of this, beam size as well as beam emittance grows. In a

typical accelerator for a spallation neutron source, halo particles are removed mostly in

the High Energy Beam Transport (HEBT) section. Hence, these halo particles travel all

the way throughout the linac, along with the core particles. In order to decide the

minimum beam pipe aperture in a particular section of an accelerator, estimation of the

maximum transverse extent of the halo particles is therefore extremely important.
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Figure 6.23: Phase advance per period φn (top) and modulus of eigenvalues of normal
modes of mismatched envelope oscillation is plotted as a function of the tune depression
for σζ0 = 1050. In the figure we have marked five distinct regions as described in the text.
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In-depth research has been performed on halo formation mechanism in the beam by

several authors [55] [150]. It is widely believed that the parametric instability arising

from the mismatch oscillations in the beam envelope is an important mechanism of halo

formation. As a result of oscillations in the beam envelope arising due to mismatch,

particles experience a periodic variation in the effective spring constant that corresponds

to a net restoring force. The dynamics of such particles can be described using

well-established Particle Core Model (PCM) based on the pioneering work reported in

Ref. [55]. Implementing this concept, we wrote a subroutine in MATLAB, to solve the

following equation of motion of a halo particle and calculate its maximum radial extent,

ζ
′′

+ k2
ζ0(s)ζ − f sc

par(IB, ax, ay, ζ) = 0. (6.8)

Along with this equation, following rms envelope equation was also solved

simultaneously in the presence of a mismatch to calculate the rms beam size:

a
′′

ζ + k2
ζ0(s)aζ − f sc

env(IB, ax, ay)aζ = 0. (6.9)

Here we want to point out that, Eq. 6.8 and 6.9 are the simplified form of the Eq. 6.1 and

6.2. The dynamics of halo particles were calculated for the cw beam in absence of

acceleration, where, position and angle of the single particle are described by ζ and ζ
′

.

Perturbed beam size of the core is denoted by aζ . and space charge effect is introduced

by the function f sc
env(IB, ax, ay) in the above envelope equation. It is noteworthy to

mention here that the space-charge term f sc
par(IB, ax, ay, ζ) acting on a single halo particle

is linear only when the halo particle is inside the core and it decays outside the core.

Such dependency makes f sc
par(IB, ax, ay) a nonlinear function in ζ. Using the (electric)

field expression(s) given in Ref. [162], space charge force experienced on the single

particle is calculated inside, as well as outside the envelope.

The result of our analysis performed for the SR0 section, is shown in Fig. 6.24. Among
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Figure 6.24: Maximum extent of the halo particles (xmax) in the transvers plane as a
function of the beam mismatch (µ) for the proposed injector linac. Here, different curves
corresponds to different tune values (η).

different sections of ISNS linac, aperture radius is lowest in the SR0 section. For different

values of tune depression η, variation of the maximum extent of halo particle is shown

in the figure, as a function of the mismatch parameter (µ). Here µ denotes the ratio

of the mismatched and matched beam size at the entrance of the section. Calculations

described in Ref. [55] was performed for an ideal condition, considering a ‘constant’

matched beam size ax throughout the length s. In our calculation, we have considered

the actual variation in ax with s for a matched beam. Here, mismatched oscillations was

taken as a perturbation, superimposed on the oscillating matched beam. In this analysis,

maximum radial extent of the halo particles were estimated from the lattice with 5000

SR0 periods. At the entrance, the horizontal and vertical beam emittances were taken

as at 0.3972 and 0.3996 mm-mrad, respectively. The two emittance values are nearly

equal. Therefore, we have assumed that for this nearly circular beam, maximum extent of

the halo particles will remain approximately independent of the azimuthal position of the

particles.
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In this analysis, we have estimated maximum transverse oscillation amplitude of the

halo particles to be around 6 times that of the rms beam size aζ . It is noteworthy that

for different tune values, we have observed nearly equal value for the maximum extent

of the halo particles. Following Ref. [55], we have obtained the following expression for

xmax/aζ as a function of mismatch factor µ by data fitting :

xmax

aζ
= 3.071 × ln(µ) + 2.723. (6.10)

Here, we want to emphasize that, in a real linac, number of periods are limited (e.g.,

for the ISNS injector linac, in the SR0 section, only 12 periods will be there). As a

consequence, effect of beam halo formation may not be severe for an individual section.

In this analysis, focusing or defocusing effect of RF in the lattice was not considered.

Also as mentioned, we have considered a two-dimensional cylindrical beam instead of

the realistic configuration of a three dimensional beam bunch. These considerations may

deteriorate the scenario in the real case.

We have repeated the same analysis in the case of medium and high beta elliptical

cavities sections also. There, beam pipe aperture (rbp) is considerably larger compared to

the SR0 and SR1 sections. Accordingly, we found there the ratio rbp/aζ is even greater

than or by 10 times.

6.3.5 Studies on the beam loss estimation of the optimized linac

In Chapter 1, we have presented a discussion on the issues and severity of the beam

loss, particularly in the case of a high energy, high power H- linac. In this chapter, a

methodology has been described, following which, we have designed the optimized lattice

for the 1 GeV, 1 MW injector linac for the proposed ISNS project. Our aim was to design a

compact linac with low loss. We now present a discussion on the estimation of beam loss,
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and also verify whether for this optimized design, the beam loss is within the acceptable

limit. Using the optimized strength of focusing magnets, we first calculated the fractional

loss due to Lorentz stripping, which was found negligible (< 10−12 m−1) throughout the

linac. In Chapter 1, we also mentioned Intra-Beam Stripping (IBS), as another prominent

loss mechanism, particularly important in an H- linac. In this optimized linac, the loss due

to IBS was calculated from the simulated beam size, divergence and beam energy. For

this, we have followed the procedure outlined in Refs. [56] [163]. Besides, an elaborate

discussion on the mathematical formulation for IBS is presented in the Appendix A.

Calculated fractional beam loss due to IBS is shown in the Fig. 1.5. As it is shown

there, the total allowable fractional beam loss demonstrates smooth deceasing trend with

increasing beam energy, because the beam size and divergence are nearly constant along

the linac. Calculated power loss per unit length of the stripped particle due to IBS, as well

as the integrated power loss along the length of the linac is also shown in Fig. 6.25. Based

on our calculation, we have observed that the maximum loss due to IBS is around 0.03

W/m in our design, which is significantly less than the stringent loss limit of 1 W/m.

The estimated loss in the SNS SCL is reported as ∼ 0.05 − 0.17 W/m [58], which is

more than the value we obtained. Perhaps, it is because the result presented in Fig. 6.25

only indicates the loss due to IBS, whereas, the reported result in Ref. [58] incorporate

all possible losses. ISNS linac is designed for a micopulse average beam current (Iav)

of ≈ 14.5 mA, whereas, the current in the SNS linac is ≈ 35 mA[16]. As we know,

the intrabeam stripping loss varies with the square of the total charge of a beam bunch,

therefore, nearly double the value of beam current (i.e. in the case of SNS,) indicates a

loss 4 times more than the loss we have calculated.

6.4 Discussion and conclusion

To summarize, we have discussed an optimization procedure for the beam optics design
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Figure 6.25: Calculated power loss per unit length (solid black line) as well as integrated
power loss (broken red line) due to the occurrence of intrabeam stripping along the length
of the linac.

of a 1 GeV, 1 MW superconducting injector linac for the proposed ISNS. The linac will

consist of a number of independently phased cavities and focusing magnets, grouped into

several sections. Different important issues related to longitudinal as well as transverse

beam dynamics of such a long linac has been elaborated in this chapter. The aim has been

to keep the linac compact, while also ensuring a robust lattice design and a beam loss

strictly under the permissible limit of 1 W/m. This goal has been achieved by a careful

design procedure that was discussed in this chapter.

In this chapter, we have mentioned that the ISNS project is seen as the precursor of

the Indian ADS project, and justified our inclination towards designing the entire ISNS

injector linac using SRF cavities. However, in the low energy realm of a pulsed hadron

linac, below the energy about 180 MeV, the use of superconducting cavities might not

be cost efficient, especially keeping in mind that the technology for room temperatures

structures is well developed. On the other hand, being an emerging technology for the

frontier accelerators, standardization and global acceptancy of the spoke resonators may

201



still require significant R&D work. Therefore, for the ISNS project, we have also worked

out an alternative lattice design, where the low energy part of the linac will comprise of a

normal conducting Drift Tube Linac (DTL) structure.

To make the design compact, acceleration gradient in the cavities should be pushed

towards their maximum permissible values, and if possible, absolute value of cavity

synchronous phase φs should be close to zero. However, the choice of φs is limited by

the fact that longitudinal phase acceptance of a cavity is around |3φs|. On the other hand,

there are two constraints in setting the maximum permissible value of the acceleration

gradient: (i) peak field at the cavity surface should be less than the field corresponding to

breakdown, and (ii) the longitudinal phase advance per period should be less than 90

degree. It may be noted here that the first constraint is in terms of peak electric field E0

whereas the second constraint is in terms of Eacc, i.e., E0T . In case of the second one, the

limiting gradient and the RF power requirement (∼ IBE0T cos(−φs)) turns out to be

independent of transit time factor. For a given acceleration gradient (E0T ), the power

dissipation Pc on cavity surface, being dependent on E0, is higher if T is lower. Pc is

proportional to 1/T 2. Therefore, we have tried to keep the normalized transit time factor

greater than 70% to ensure that the cryogenic power requirement does not exceed by a

factor of two due to this effect. Next, when we are limited by the first constraint, the

maximum attainable value of Eacc is proportional to T . Hence, here we will aim for high

value of T , for example∼ 0.9. From Figs. 6.8 and 6.9, we notice that nearly 93% of the

cavities in this design confirm this requirement. It is quite relevant to mention here that

the choice of appropriate geometric beta (βg) values of the SRF cavities, along with

optimum value of transition energies, have also played a crucial role in minimizing the

number of cavities. For example, a switch in the βg value from 0.9 to 0.81 simply

resulted in a change in the requirement of total number of elliptic cavities 82 to 72 in the

medium and high energy section.

We would like to mention that one main aim of this design was to make the linac as
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compact as possible. In order to achieve this, we have ensured the use of maximum

acceleration gradient in most of the cavities. Towards the same aim, we tried to set the

absolute value of synchronous phase to be as small as possible as possible; ensuring that

bunch length is well within the acceptance. However, we have noticed that in the majority

of the operational high power linacs, the absolute value of the synchronous phase is ≥ 250,

to increase the area or the RF bucket and accommodate halo formation due to phase and

amplitude errors. The beam dynamics studies presented in the thesis do not include the

analysis of the dynamic and static errors of the accelerating and focusing elements, and

the acceptability of this lattice will be confirmed after we complete our beam dynamics

studies extensively including the effect of static and dynamic errors of the accelerating

and focusing elements, along with its correction scheme, which is now ongoing. Based

on the feedback, we will revisit the lattice design, if required. As it is shown in Fig. 6.12,

there are particles close to the boundary of the stable area in this design, especially in

the low energy section. Although, our multiparticle simulation shows that near the phase

space boundary the density of the particle is very small, yet after completing the study of

static and dynamic errors of the lattice elements on the beam dynamics, we will revisit

this issue, and we will verify whether it is necessary to improve the longitudinal phase

space area resetting the synchronous phase values.

In a high power hadron linac, proper matching of the beam parameters at the entrance

of each section is very important, and this is ensured by the design of suitable matching

sections in between two lattice section of the linac. An unmatched beam may result in

significant emittance growth, and sharp changes in kl and kt. These matching sections are

also important since we need to fine tune the lattice parameters in each section, so that

the lattice footprint lies in the desired zone on Hofmann diagram. In our work, we have

aimed to concentrate all (or most of) the lattice footprints in a resonance free zone of the

Hofmann diagram. The footprints have been localized in the zone between the third and

fourth order even resonance peak, since we chose kl0 > kt0, to make the linac compact.

Besides, to ensure the use of maximum acceleration gradient and adequate transverse
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focusing, we have fixed the footprint area very near to the outside of the the fourth order

resonance peak in the Hofmann diagram. However, we would like to add an important

point here. Hofmann diagram provides a ingenious insight about the emittance exchange

due to core-core resonance, as well as the chances of emittance growth, yet, for a periodic

lattice, it may not be the ultimate performance indicator. The reason is that the diagram is

generated considering smooth approximation. Hence, in order to estimate and control the

growth in the beam size and emittance in a precise manner along the length of the linac, a

careful and robust multiparticle simulation is truly inevitable.

Since we chose a lattice based on the conventional criterion of limiting values of phase

advances per period, we thought it may be appropriate to ensured that the design is free

from the envelope instability, by performing an analysis of the same for the actual lattice.

It may also be interesting to further explore, if for a particular lattice, higher value of

phase advances per period is possible, as has been seen in some cases [164], particularly

in the longitudinal plane. We have performed these analyses, taking a bunched beam

for the actual optimized lattice. Similarly, we have performed the analysis of beam halo

using PCM for the actual periodic lattice, i.e., without invoking smooth-approximation

in the calculation. This ensures no undesired effects related to beam halo even when the

periodic variations are considered in a matched envelope, for our design. Our analysis on

the formation of the beam halo is an extension of the work in Ref. [55]. We verified that

the formula for the maximum transverse extent of the halo particle (xmax) as a function of

mismatch parameters (µ) for our optimized lattice is similar in nature to the formula given

in Ref. [55]. The two constants in the formula however differ slightly.

While designing a high-energy, high-current H- linac for a large value of micropulse

current, the issue of intra beam stripping is of extreme importance. From Eq. 11 (of the

Appendix A), it can be shown that the fractional beam loss is inversely proportional to the

beam size, as well as it is proportional to the square of the average beam current. Such

loss for a low emittance beam may thus be higher due to reduced beam size. Therefore,
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the beam size as well as the micropulse averaged beam current should be appropriately

chosen, to satisfy the stringent beam loss criteria due to intra beam stripping.

Figure 6.26: Phase advance per period φn of mismatched envelope oscillation as a function
of the tune depression considering σz0 = 950.

Figure 6.27: Phase advance per period φn of mismatched envelope oscillation as a function
of the tune depression considering σx0 = 950, σy0 = 1050 and σz0 = 1000.

For a three-dimensional bunched beam in a periodic lattice, out of the six possible cases

of envelope oscillations as shown in Fig. 6.25, only ‘Case1’, ‘Case 2’ and ‘Case 6’ have
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been seen depending on the chosen parameters. However, we have explicitly verified that

the remaining cases are also possible by choosing different values of σ0. For SR0 lattice,

Fig. 6.26 shows that ‘Case 3’ is possible in Region 3, assuming σ0 = 950. Similarly for

βg = 0.61 lattice, Fig. 6.27 proves that ‘Case 5’ is possible in Region 4 where σx0 = 950,

σy0 = 1050 and σz0 = 1000.
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Chapter 7

Conclusions and future work

Accelerator based spallation neutrons have proven themselves as an excellent probe for

exploring the properties and dynamics of almost all materials. To shape the modern day

neutron based science in our country, a proposal is there to build one Indian Spallation

Neutron Source (ISNS). An important part of this complex accelerator will be a megawatt

class Superconducting Radio-Frequency (SRF) linac, which will boost the energy of H-

beam up to the full energy of 1 GeV.

In this linac, H- beam will gain a major part of its energy in the superconducting elliptic

cavity sections. Electromagnetic (EM) design of such state of the art SRF cavities involves

a rigorous optimization for their best electromagnetic performances. After the EM design

of these cavities, beam optics design of the linac using these cavities is also challenging

because of their stringent beam dynamics requirements. Therefore, motivation of this

research was two fold:

1. to design such multicell elliptic SRF cavities for their optimized electromagnetic

performance, as well as

2. to evolve a technique for the lattice design of a megawatt class H- linac.

Accordingly, we developed a generalized methodology for the electromagnetic design
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optimization of these multicell elliptic SRF cavities, and finally designed three families

of 5-cell, 650 MHz elliptic SRF cavities, using this methodology. Based on thorough

beam optics studies, a 1 GeV, 1 MW H- injector linac lattice has been designed for the

ISNS, satisfying stringent beam dynamics requirements.

Electromagnetic design of the elliptic SRF cavity was optimized for the maximum

achievable acceleration gradient, considering two main constraints - first one arising

from the tolerable limits of the peak surface electric field (limited by the field emission),

and the second one arising from the tolerable peak surface magnetic field (limited by the

breakdown of superconductivity of the material). Instead of the conventional technique

of multivariable optimization, we have developed a step-by-step, one-dimensional

optimization procedure for the optimization of the electromagnetic design of a TESLA

type SRF cavity, aiming for maximum achievable acceleration gradient (Eacc). We have

described the geometry of an elliptic cavity in terms of seven independent parameters.

Following the developed sequence, one can calculate the optimum value of these

parameters, one at a time, with appropriate scientific reasoning, for achieving the

targeted Eacc. In the case of a multi-cell cavity geometry, end cells require further

optimization. For this, we have evolved a simple technique, where end half-cell length is

optimized to tune the cavity to its design frequency for the fundamental mode. Such

tuning also maximizes field flatness in the multicell geometry. Although the primary aim

of our optimization technique has been to maximize the achievable Eacc, it also ensures a

reasonably high value of the shunt impedance in the final cavity geometry. While

designing a multicell cavity, another important issue is to optimally choose the number

of cells in a cavity. We have optimized the number of cells, mainly considering the range

of β for which the cavity will be used, and also based on the limitation of input RF power

that can be fed using a single input power coupler. Our methodology was finally

benchmarked with the help of the reported optimized electromagnetic parameters of the

1.3 GHz TESLA cavity, as obtained by using the standard multi-variable optimization

technique. Our methodology is generalized in the sense that following this sequential
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one-dimensional technique, TESLA type SRF cavity geometry of any frequency can be

optimized for the maximum achievable Eacc. A future study may be to explore the design

optimization of re-entrant type cavity geometries, following this optimization procedure.

The above mentioned sequential methodology will ensure the optimized

electromagnetic design of a multicell SRF cavity for the fundamental mode. However,

such optimization will not take care of the unwanted effect of Higher Order Modes

(HOMs) and wakefields induced in the cavity, in presence of beam. As an example, the

problem of trapped mode requires us to redesign the cavity end cell. Our methodology is

however effective only for a limited number of trapped HOMs as the geometry

optimization options are limited in the case of cavity end-cells. In future, a thorough

optimization analysis can be evolved, which can take care of the design with multiple

trapped modes. If we increase the beam current in a linac, a threshold will be reached,

beyond which beam gets unstable, because of regenerative Beam Break-Up (BBU)

instabilities. On this topic, several studies have been reported earlier, which give the

formula for the calculation of threshold current for onset of this instability. We have

worked out the details of intermediate steps, to understand the detailed derivation of the

formula, and based on this we have evolved a detailed procedure the estimation of the

threshold beam current in a multi-cell cavity geometry. Calculation for the dispersion

diagram for dipole pass bands for a multicell cavity, was an essential part of this

calculation. We have performed the study of BBU instability, to ensure that the design

current in the superconducting injector linac will not be limited by this threshold value.

As a future work, the BBU instability can be performed in the case of a single or double

cell cavity. In the SRF cavities, another crucial aspect is to minimize the chances of heat

load due to the resonant excitation of HOMs induced by the beam. This analysis was

performed for the medium and high beta elliptical cavities optimized for the ISNS linac.

An estimate was obtained for the Qext of HOM coupler, to ensure that the stength of

HOMs in the cavity is not significant.
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A simple procedure was developed for the calculation of the longitudinal wake-loss

factor for the beam, which is not ultra-relativistic. Calculation based on conventional

approach is time consuming as well as and resource consuming. Therefore, a procedure

was developed to calculate the same in an axisymmetric cavity structure, using the freely

available two-dimensional code SUPERFISH. Such an analysis gives us the rigorous

estimation of the unwanted effect of HOMs and wakefields on the electromagnetic

performance of the cavity, as well as on beam. Loss factor calculation technique can also

be extended for non-axisymmetric cavity structures.

Next, an analysis was presented on the dynamic Lorentz Force Detuning (LFD) for a

βg = 0.9, 650 MHz elliptic cavity, which will be used in the high energy section of our

pulsed injector linac. Compensation of detuning due to Lorentz force is essential during

the operation of an SRF cavity, especially from the point of view of RF power feeding. A

methodology has been reported for the LFD analysis, as well as its compensation. In

particular, the dynamic LFD is an important concern, particularly for a pulsed machine

like ISNS. Our methodology starts from the analysis of static LFD. Based on the static

analysis, we have optimized the shape and the thickness of the helium vessel. Also, we

have explained how the static analysis gives an approximate range of radial locations of

the stiffener rings, for the reduction of LFD, which can be then compensated using a

tuner. In the dynamic LFD analysis, we have calculated the structural mode frequencies,

and have performed the transient analysis of the structural deformation, which is

explained as an integrated effect of the vibrations of the normal structural modes

dominantly present in the cavity - helium - vessel assembly. Fourier series of the

periodic Lorentz pressure pulse was calculated, and we have explained the mechanism of

structural resonance with the frequency components available in the pressure pulse.

Based on a theoretical analysis and simulation, we have concluded that for the multicell

elliptic SRF cavities helium vessel assembly, the dynamic LFD will reduce to a level,

which is well within the compensatory range of piezo tuner, if we can ensure that all the

structural modes are vibrating with a frequency more than 250 Hz. We have also
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explained with a few examples, that the dangerous resonances in the case of dynamic

LFD can be evaded by avoiding those structural mode frequencies which are the multiple

of the repetition rate (PRR) of the input RF power pulse. We have calculated the radius

of the stiffener rings and the required compensation range of the cavity tuning

mechanism based on the study. Our procedure is applicable for the LFD analysis of any

RF cavity. It will be interesting to extent the Lorentz force detuning analysis work to low

β cavities.

So far, we have presented the optimization of the cavity geometry to push the

achievable acceleration gradient. Interestingly, the achievable acceleration gradient can

also be pushed by proper choice of material parameter that decide the maximum

permissible value of peak magnetic field for the material. Particularly, considering the

purity of the material as a parameter, we have performed a rigorous magnetothermal

analysis, where the threshold value of the magnetic field (beyond which the

superconducting breakdown of niobium will occur) was calculated for range of niobium

purity values.

In order to perform the magneto-thermal analysis, we have incorporated an elaborate

discussion on the dependence of superconducting surface resistance Rs and thermal

conductivity κ of the material on the purity level of the material, temperature and the

applied magnetic field. To make it more realistic, in the calculation, we have included

the nonlinear behavior of Rs in presence of the applied magnetic field. A subroutine was

also developed, considering nonlocal response of the superconductor to the RF

electromagnetic field. We have discussed the Kapitza resistance, which is an important

part of our analysis. Also, based on a thorough literature review, realistic contributions

from the phonon peak was incorporated in the calculation of the thermal conductivity.

Our calculations have been benchmarked with the results reported for the 1.3 GHz

TESLA cavity. This analysis shows that in the place of a highly pure, RRR 300 grade

niobium material, one can devise SRF cavities with relatively less pure RRR 100 grade
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niobium. Particularly, for the cavities used in the SNS or ADSS accelerator, RRR 100

graded niobium will not only provide the required gradient of 20 MV m-1, but also offer

around 10 % higher value of the cavity quality factor. Other advantage of using RRR 100

graded niobium material is that it gives rise to considerable reduction in the cost, and

also it leads to improvement in the mechanical properties of the material in the low

temperature realm. Based on ASTM B393 standard, RRR 100 graded niobium will offer

30 % higher mechanical strength. Therefore, we can think of the reduction in the cavity

wall thickness, which will improve the design in two ways: (i) reduced material

requirement will reduce the cost further, as well as (ii) reduced wall thickness will

reduce the thermal resistance and this will further improve the scope for high gradient

operation. Therefore, in future we will thoroughly analyze the mechanical aspects like

buckling, considering this thickness reduction. As another extension of this

magnetothermal analysis, one can study the effect of nitrogen or titanium doping in SRF

cavity material niobium. Further, for relatively moderate gradient (∼20 MV m-1)

application, one can think of a fisibility analysis on the alternative material like niobium

titanium alloy as an SRF cavity material.

It is challenging to design the beam optics of a megawatt class H- linac, because of the

stringent beam dynamics criteria that need to be fulfilled. A procedure was developed,

based on which we have designed an optimized lattice for the 1 GeV 1 MW H- injector

linac for ISNS. In this H- linac, beam loss above a stringent limit of 1 W/m is

detrimental, as because it can produce the hazard of long-lived radioactivity in the

accelerator. Hence, different loss mechanisms were reviewed in detail. Also, an

elaborate derivation and discussion was described for the Intra Beam Stripping (IBS).

We have evolved the dynamics of a single particle as well as beam bunch, and finally the

mismatched beam envelope. After reviewing conventional beam dynamics recipes, a

procedure was established for the selection of an optimum lattice for the medium and

high energy section, aiming at the minimization of the total number of elliptical cavities.

Most of the RF cavities will be operated at their designed accelerating gradient in this
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compact design. Therefore, we have developed the philosophy of dedicated matching

sections in respective lattice transitions, for a better beam matching. We have followed

the non-equipartitioned design approach to make the design compact based on the

techniques conceptualized by Hofmann. We have qualified our procedure for the design

of a MW class hadron linac on the basis of analytic and simulated results obtained by

performing beam dynamics with the optimized linac lattice. Along with insignificant

growth in emittance and beam size, we have also reported the stability of the beam,

showing that the lattice footprints are in the resonance free zone of the Hofmann

diagram. To the best of our knowledge, our analysis on the instabilities of a

three-dimensional beam bunch is reported for the first time. We have extended the

stability analysis of the beam envelope, including the influence of RF field of the cavity.

In this analysis, new set of resonances were found, especially, we have observed

confluence resonance in the lattices, where solenoids are used as focusing elements. We

have observed a maximum of around six times extent of the halo particle in the radial

direction through an extended calculation of the beam halo on the periodic lattices. Also,

for the optimized lattice, we have reported the results and the calculation procedure of

the beam loss due to IBS. We have developed a general recipe for the design of a

megawatt class hadron linac, satisfying all the essential beam dynamics criteria.

However, in this analysis, beam halo was studied for a two-dimensional coasting beam,

which can be extended in future for a three dimensional beam bunch.

To conclude, the work reported in this thesis includes a general methodology

describing the electromagnetic design optimization of a multicell elliptic SRF cavity,

aiming at the maximization of the achievable accelerating gradient; and also a

generalized methodology for design of low loss, high power, compact linac using these

cavities. On the optimized cavity geometry, an in-depth analysis of HOM and wakefield

analysis is also presented, and further optimization is done to ensure that the cavity

performance is not limited by unwanted effects of HOMs. A methodology was discussed

for performing LFD analysis for the elliptic SRF cavity, based on which, the

213



cavity-helium vessel design can be optimized. In order to optimize the cavity

performance with respect to the material purity, we have reviewed the correlation

between the threshold magnetic field and purity level of the SRF cavity material, i.e.,

niobium, and this analysis suggests that the moderately pure RRR 100 graded niobium

may be a suitable alternative of the conventional RRR 300 graded niobium as an SRF

cavity material. Also, we have reported the generalized beam optics studies and lattice

design studies, paying special attention to issue, like beam instability in case of beam

mismatch for a three-dimensional beam bunch, formation of beam halo and beam loss

due to intra-beam stripping, considering the realistic scenario. The procedure discussed

in the thesis may be useful for the design of a MW class hadron linac satisfying all the

stringent beam dynamics requirements.

Finally, we present some of the possible extension of our present work, described in

the thesis, as well as some new studies that can be carried out in future.

1. In the geometry optimization of the elliptical cavities, our research was confined

mainly to maximize the achievable acceleration gradient by varying the

geometrical parameters of the cavity. Although, there we found that the final

optimized geometry shows a reasonable high value of the shunt impedance, yet,

one can extend this optimization work including the shunt impedance or the

parameter G(R/Q0) also as another parameter to maximize. Such a multi-objective

optimization of cavity geometry, using modern techniques will ensure an

optimized cavity design, where maximization of the acceleration gradient will be

ensured, and simultaneously the Ohmic loss will be minimized.

2. Detailed estimation of heat load due to HOMs, in case of geometrical errors in

cavity, will be an interesting future work, and will be useful to decide the capacity

of the cryomodule.

3. One can think of an interesting future work in the form of a study on the feed for-

ward correction required for the compensation of dynamic LFD. Also, a feasibility
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study of the suitability of double stiffener rings in the cavity assembly can be per-

formed to analyze the reduction LFD. Such an analysis will be useful to decide the

requirement of the cavity tuning armament in the linac.

4. One natural extension of our beam dynamics work will be to study the effect of RF

cavities and focusing magnets failure on the beam dynamics of the ISNS linac, as

well as to chalk out schemes for their mitigation / compensation through tuning the

strength and phase of neighboring lattice elements, i.e., cavities and magnets.

5. In this analysis, we have considered fixed values of the parameter Rres in the calcu-

lation of the superconducting surface resistance. However, advance analysis can be

performed exploring the dependence of Rres on material parameters.

6. Similarly, a thorough study of the effect of misalignment or tilting errors of the

lattice elements like RF cavities, magnets and beam position monitors on the beam

dynamics of the optimized lattice may be another extension of our present research

to fulfil the demand of a complete physics design of ISNS linac.

7. Another interesting future work may be to explore new resonances that we have

discovered and described in here, in muti-particle simulations, by setting suitable

initial conditions for the onset of this resonance. A through study on this will help

us to decide proper phase advance values in the case of a particular beam current in

a more accurate manner.
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Summary 
 

     There is a proposal to build an Indian Spallation Neutron Source (ISNS), which will be a 

linear accelerator based high flux pulsed neutron source for experimental studies of condensed 

matter physics and various engineering applications. In the medium and high energy section of 

the superconducting injector linac of a typical spallation neutron source, multicell elliptic 

superconducting radio-frequency (SRF) cavities have become an indispensable choice for 

efficient acceleration of a high power beam. For such a hadron linac, lattice design is challenging 

because of the stringent requirement of low beam loss limit. The physics design of the injector 

linac for the proposed ISNS will be discussed in this dissertation, where we present a study of the 

electromagnetic design optimization of the 650 MHz elliptic SRF cavities, as well as the lattice 

design and beam dynamics studies for the 1 GeV injector linac, satisfying all the stringent beam 

dynamics requirements.    

    In Chapter 1, we will start our discussion, describing the spallation process and the other 

proven methods of neutron generation, followed by a brief review of the worldwide activities on 

the linac based spallation neutron sources and their applications. In this introductory chapter, we 

will also discuss the advantages of the use of SRF technology, and then about the loss 

mechanisms, along with the allowable loss limits followed worldwide for such a high power 

machine. When we began our optimization work on the two sets of elliptic SRF cavities for the 

ISNS linac, to the best of our knowledge, we did not find a complete optimization procedure 

reported anywhere in literature. This was the motivation behind the development of a step by 

step one-dimensional optimization methodology described in Chapter 2. Following our 

procedure, one can perform the design optimization of an elliptic SRF cavity for the maximum 

achievable acceleration gradient (Eacc) by varying the geometrical parameters of the cavity. 

Besides, the final optimized geometry also shows a reasonable high value of the shunt 



 

impedance. An RF cavity can support higher order modes (HOMs) having frequency higher than 

the fundamental mode. Those can affect the beam and produce instabilities. An analysis on HOM 

and wakefield generated in the optimized elliptic cavities will be described in Chapter 3. There, 

we will emphasize the procedure for the calculation of the threshold value of the beam current 

for the excitation of bean break-up (BBU) instability. In addition, we will also present a 

methodology for the calculation of heat load due to resonantly excited HOM. In Chapter 4, we 

will describe how the Lorentz pressure of an electromagnetic mode deforms the cavity geometry, 

resulting in a detuning of the resonant frequency from the designed value. Such a detuning is 

called the Lorentz Force Detuning (LFD), which may cause significant reflection of the input RF 

power. In this chapter, we will discuss how the unwanted coupling, possible between structural 

frequencies of cavity assembly and pulse repetition rate (PRR) of input RF power in the pulsed 

mode of operation, may result in resonant amplification of the detuning in the cavity resonant 

frequency, which is known as dynamic LFD. To attain an optimum desired performance from an 

SRF cavity, the choice of material parameters also plays an important role. In Chapter 5, we will 

present a rigorous magnetothermal analysis, describing the influence of material parameters on 

the electromagnetic performance of niobium based SRF cavities. There, we will show that for the 

ISNS cavities, relatively low purity, and therefore low cost niobium can ensure an Eacc = 20 

MV/m. In the sixth chapter, we will elaborate a procedure to choose the field strength of the 

focusing magnets, and accelerating gradient of the cavities in a compact linac, restricting the 

beam loss below the allowable limit of 1 W/m. This will be followed by an analysis on the intra 

beam stripping (IBS) and beam halo performed on our designed lattices in case of a mismatch in 

input beam parameters, for a three dimensional beam bunch. In this chapter, we will also discuss 

our study on the envelope instability with a three-dimensional beam bunch, which is reported for 

the first time for a linac lattice. In Chapter 7, we will conclude by describing the interesting 

findings of our research, along with a discussion on the possible future work. 
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Appendix A. Intrabeam stripping (IBS) - a brief review

Intrabeam stripping (IBS) was observed for the first time only in the previous decade

during the commissioning of LEAR [58] [165]. Most of the multiparticle tracking codes

presently used in the accelerator community do not include the calculation of beam loss

due to IBS [163]. We have evolved a semi-numerical treatment in order to calculate the

fractional beam loss due to IBS. A brief review of the procedure for this calculation will

be done in this appendix. Within the beam bunch, all the particles (ions) mostly performs

continuous oscillations around the synchronous one, which develops the chances of binary

collisions between those particles. Such inelastic impacts between negative hydrogen ions

in an H- accelerator may result in separation of the loosely bound electrons from the ions,

which is known as intra-beam stripping. Among various possibilities of binary collisions,

H-+ H-= H0+ H-+e is the dominant one in this stripping process. Along with H- and

electron, the third outcome is a neutral hydrogen atom produced in this process, which

finally gets lost from the beam bunch.

Intrabeam stripping is a probabilistic process, where the stripping probability of an

H- ions per collision can be estimated from the stripping cross section σH and we can

calculate the likelihood of stripping from the following empirical equation [163]:

σH(βr) = 240
α2

Fr2
0

(βr + αF)2

(βr − βc)6

(βr − βc)6 + β6
c

ln
(
1.79

βr + αF

αF

)
, (1)

where, ~vr (|~vr| = βrc) is the relative velocity between the colliding ions, αF ' 1/137 is the

fine structure constant and r0 ' 5.29177 × 10−13 m is the Bohr radius. This cross-section

approaches zero once βr → βc ≈ 7.5 × 10−5 [163]. The typical variation of σH with the

relative velocity is shown in Fig. (A1).

Let us calculate the number of binary collisions taking place within an H- beam

bunch. We will assume N is the number of ions within the bunch following Gaussian

distributions in position (η) and in velocity (vη) space, where η is the generalized
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Figure 1: Variation of σH− is plotted as a function of the relative velocity βr.

representation of the three cartesian coordinates x, y and z of the particle in the beam

frame w.r.t. the synchronous particle propagating along s. Hence, following standard

representation, normalized distribution of a beam bunch in the 6D hyperspace of space

and velocity coordinates can be written as

f (x, y, z, vx, vy, vz) = fp(x, y, z) × fv(vx, vy, vz) =

x,y,z∏
η

fη(η) × fvη(vη)

=

x,y,z∏
η

[
1

√
2πση

e−(η2/2σ2
η)
]
×

[
1

√
2πσvη

e−(v2
η/2σ

2
vη )

]
.

(2)

In this distribution function ση is the rms bunch size and σvη represents the rms velocity

spread. For the 6D hyperspace, we define an explicitl normalization criteria for the beam

bunch as
∞∫
−∞

f%(%)d% = 1, where, % represents any coordinate of the distribution.

Let us assume a particle at the position ~r1(x1, y1, z1) and velocity ~v1(vx1, vy1, vz1) within

beam bunch in this 6D hyperspace. We calculate the stripping probability for this

particle because of the likelihood of binary collisions with other particles in the beam
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bunch having velocities between ~v2(vx2, vy2, vz2) and ~v2 + d~v2 as

N fp(x1, y1, z1){σH(|~vr|)}{|~vr|∆t} fv(vx2, vy2, vz2) in a time interval of ∆t. Hence, we need to

perform the following integration to evaluate the total stripping probability P1 because of

the other of H- ions in the beam bunch:

P1 =N fp(x1, y1, z1)
∫
ϑ2

{σH(|~vr|)}{|~vr|∆t} fv(vx2, vy2, vz2)dϑ2. (3)

In the above equation, ~vr = ~v2 − ~v1 represents the relative velocity between two colliding

particles and dϑ2 represents an elementary volume dvx2dvy2dvz2 in the velocity space.

Extending the above calculation for all particles in the entire bunch, finally we can

calculate the total number of stripped particles in the time interval ∆t as

∆Nall =
N
2

∫
Γ1

∫
ϑ1

f (x1, y1, z1, vx1, vy1, vz1)(P1)dϑ1dΓ1, (4)

where, dϑ1 = dvx1dvy1dvz1 and dΓ1 = dx1dy1dz1. Two particles will participate in a binary

collision. Therefore the term 1/2 is included in the above equation to avoid the double

counting of the stripped particles.

In the next, let us calculate the number of particles stripped per unit time form the

following explicit equation

∆Nall

∆t
=

N2

2

∫
Γ1

[ fp(x1, y1, z1)]2dΓ1 × ....

.....

∫
ϑ1

∫
ϑ2

|~vr|{σH(|~vr|)} fv(vx1, vy1, vz1) fv(vx2, vy2, vz2)dϑ2dϑ1.

(5)

Inserting the distribution functions explicitly within the above equation (Eq. 5), we
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obtain the following equation, which requires integration over the entire hyperspace:

∆Nall

∆t
=

N2

2

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

x,y,z∏
vη
|~vr|{σH(|~vr|)}e

−

(v2
η1 + v2

η2)

2σ2
vη dvη1dvη2

8π3σxσyσz(σvxσvyσvz)2 .

(6)

The above equation can be simplified further by introducing the variable vsη = (vη1 + vη2)

and vrη = (vη2 − vη1), where, vη1 =
1
2

(vsη + vrη) and vη2 =
1
2

(vsη − vrη). For this

transformation, we obtain the Jacobian dvη1dvη2 =

∣∣∣∣∣δ(vη1, vη2)
δ(vsη, vdη)

∣∣∣∣∣dvsηdvrη =
1
2

dvsηdvrη,

which maps the elenemtary volume from old coordinate to this transfromed coordinate.

In the transformed frame of vrη and vsη, Eq. 6 can be integrated over vsη to obtain the

final expression for the fractional loss rate as

1
N

∆Nall

∆t
=

N
2

∞∫
−∞

∞∫
−∞

∞∫
−∞

x,y,z∏
vη
|~vr|{σH(|~vr|)}e

−

v2
rη

4σ2
vη dvrη

(4π)3σxσyσzσvxσvyσvz
.

(7)

The quantity βr will remain arround 2×10−3 in the entire ISNS linac. The corresponding

σH(|~vr|) values can therefore be taken more or less as constant with a little approximation

and we can assume σH(|~vr|) ≈ σmax. This assumption further simplifies Eq. 7 as the

following expression for the fractional beam loss

1
N

∆Nall

∆t
=

Nσmax
√

(σvx)2 + (σvy)2 + (σvz)2

8π2σxσyσz
χ(σvx, σvy, σvz). (8)

The function χ(σvx, σvy, σvz) denoted in the above equation explicitly represented as

χ(σvx, σvy, σvz) =
1

16π

∞∫
−∞

∞∫
−∞

∞∫
−∞

√√√√√√√√√√√ x,y,z∑
η

v2
rη

x,y,z∑
η
σ2

vη

x,y,z∏
η

{
e
−

v2
rη

4σ2
vη

dvrη

σvη

}
. (9)

These derivations are performed so far in the beam frame. Following the special
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theory of relativity, we need to transform the time from moving frame to the lab frame

∆t
′

→ γ∆t and the rms sizes σvx → γσvx, σvy → γσvy in the laboratory frame. Inserting

these transformed quantities in Eq. 7, we obtain the following formula for the fractional

stripping loss rate of H- ions in the laboratory frame:

1
N

∆Nall

γ∆t
=

1
N

∆Nall

ds
ds
∆t′

=

(
1
N

∆Nall

ds

)(
βzc

)
=

1
γ

Nσmax
√

(γσvx)2 + (γσvy)2 + (σvz)2

8π2σxσyσzγ
χ(γσvx, γσvy, σvz).

(10)

and in terms of per unit length, this can be written in the lab frame as [163]

L =
1
N

∆Nall

ds
=

Nσmax
√

(γθx)2 + (γθy)2 + (θz)2

8π2σxσyσzγ2 χ(γθx, γθy, θz). (11)

In this formula θx, θy and the θz denote the relative rms angular spread in x, y and z

directions.

A1: Algorithm followed for the semi numerical calculation

In this sub-section, we will sketch the brief methodology followed for our calculation

for the estimation of the beam loss due to intra-beam stripping in the ISNS injector linac.

For this calculaton, the required beam dynamics simulations were performed extensively,

using the beam dynamics code TRACEWIN.

Following algorithm was developed for the estimation of IBS in the ISNS linac:

• From TRACEWIN simulation, we have extracted β and γ values as a function of

the length of the linac for the synchronous particle.

• From the simulation, we also have extracted the three rms beam sizes σx, σy and σz

which are plotted in Fig. 6.11.

• Another required information in this formulation is the evolution of the transverse
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and longitudinal emittance values along the length of the linac, which is shown in

Fig. 6.14 .

From these data, values of the angular spread were calculated using θη =
εnη

βγση

, where

η corresponds to the three directions x, y or z. These values are shown in Fig. 2 in this

appendix. In this calculation, corresponding collision cross sectional values were obtained

from Fig. 1 in this appendix.

ISNS injector linac is designed for an average micopulse beam current of Iav ≈ 14.5

mA. Here the bunch frequency is fbunch = 325 MHz. Hence, in this linac the number of

H- ions within the beam bunch can be calculated as NH- =
Ibeam

q · fbunch
≈ 2.88 × 108.

With these input values, we have estimated beam loss due to IBS from Eq. 11 for our

ISNS linac, whcih is shown in Figure 6.25.

Figure 2: Evolutions of the transverse and longitudinal rms angular momentum spread
obtained from TRACEWIN simulation, along the length of the ISNS injector linac.
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The proposed Indian Spallation Neutron Source (ISNS) will be a linear accelerator based high peak flux 

pulsed neutron source for experimental studies of condensed matter physics and various engineering 

applications. The injector linac for the proposed ISNS is designed, using five sets of superconducting 

radio-frequency (SRF) cavities, where the two sets corresponding to medium and high energy, are of 

elliptic cavities. In the first part of this research work, we have established a step by step one-

dimensional optimization methodology, and 

following this one can perform the design 

optimization of an elliptic SRF cavity for 

maximum achievable acceleration gradient. 

A rigorous methodology has also been 

evolved to perform the calculation of the 

threshold beam current responsible for the 

excitation of beam break-up instability in 

the elliptical cavities. Effect of dynamic 

deformation of the cavity wall due to 

Lorentz pressure has been studied for the 

pulsed mode of operation. Cavity stiffening 

has been done to minimize the associated dynamic detuning of the cavity during its operation, under 

the constraints of tunability of the cavity and maintaining the field flatness. The optimization of the 

electromagnetic performance of the SRF cavities was concluded with an interesting magnetothermal 

analysis, showing the possibility of the low purity, low cost niobium as an alternative SRF cavity 

material. The next part of this research was the development of a general methodology to perform a 

compact design of this 1 GeV, 1 MW H− ion linac superconducting injector linac, by following the 𝑛𝑜𝑛-

𝑒𝑞𝑢𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑 design approach, where the emittance growth of the beam is controlled through 

appropriate adjustment of the strength of lattice elements, and an a acceptable evolution of beam 

profile inside the available aperture in the linac, as shown in Fig. 1, is obtained.  Analytical studies of 

the stability of mismatched envelope oscillations have been performed for a three dimensional beam 

bunch. A rigorous beam halo analysis based on Particle Core Model (PCM) was also pursued, 

considering the actual periodicity of the ISNS lattice, in order to estimate the maximum radial extent of 

the halo particle in case of a mismatch in the input beam parameter. 

Figure 1: Color map shows radial distribution of normalized 
particle density along with the available aperture (black), 
along the linac. 
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