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Synopsis

Synchrotron light sources, based on an electron storage ring have many characteristic

advantages over conventional x-ray sources such as wide energy range, higher flux, high bright-

ness etc. The high brightness of synchrotron radiation from electron storage ring is the result

of high quality of stored electron beam in the storage ring. The quality of electron beam is

represented by an important figure of merit of the electron storage ring called beam emittance.

The magnetic lattice of the storage ring controls the beam and the brightness of photon beam

is inversely proportional to the product of two transverse beam emittances of electron beam.

Beam emittance signifies how well collimated and divergent the electron beam is. Smaller

its value brighter is the emitted synchrotron radiation. Thus, in storage ring lattice design,

one of the important criteria for increasing the brightness is to minimize the beam emittance.

The beam emittance at fixed electron energy has a cubic dependence on the bending angle.

Therefore, to reduce the beam emittance, bending magnets in large numbers are required in

given circumference of the storage ring.

In last few decades, several methods have been evolved to improve the beam emittance.

Now a days, an innovative method using multi bend achromat (MBA) instead of double or triple

bend achromat is being considered and studied, which leads to ultra low emittance. Using MBA

lattice, few hundreds of pm.rad beam emittance can be achieved which leads to brightness of

the photon beam of the order of 1020 to 1022 photons per second per unit area per unit solid
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angle in 0.1% bandwidth of considered wavelength with fully loaded insertion devices. MAX

IV, a 3 GeV electron storage ring, is an example of this kind of machine, which uses seven bend

achromat lattice.

In order to improve beam emittance further, other technologically challenging techniques

like transverse gradient, longitudinal gradient bend (LGB), introduction of anti or reverse bend

in dipoles of the lattice are being used to get more aggressive design of new synchrotron

radiation sources and upgrade existing/running facility to facilitate users with ever increasing

brightness. Beam emittance reduction is desirable, however for successful operation of the

facility, various other lattice parameters need to be optimized or constrained. For example,

betatron tunes should be far away from dangerous resonances, horizontal beta function should

be large at injection point and large value of dispersion is desirable at sextupole locations for

effective chromaticity correction etc. These aspects make lattice design of a storage ring a

complex optimization problem. In order to handle such complex optimization problem, one

has to use available numerical optimization techniques.

In this thesis, extensive optimization studies to minimize the beam emittance in an

electron storage ring using LGBs are discussed. We have optimized the magnetic field profile

along the beam direction in a dipole magnet in general and for dipole magnet of Indus-2

storage ring, in particular. Detailed comparative studies of a storage ring lattice cell utilizing

LGB and constant field dipoles are presented and merits and demerits are highlighted. The

studies indicate that the beam emittance of a storage ring is much lower with dipoles utilizing

LGB compared to dipoles with constant field. In addition, LGB also helps in shaping lattice

parameters at sextupole location to correct chromaticity with reduced strength of sextupoles.

Maintaining same circumference of the Indus-2 storage ring and matching other lattice paramet-

ers with quadrupole magnets, beam emittance can be reduced to∼40 nm.rad with LGB compar-
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ed to 58 nm.rad with constant field dipole. The studies are extended to minimize the beam

emittance of baseline lattice of Indus-3, a 6 GeV electron storage ring with beam emittance

150 pm.rad. Satisfying the operational constraints, the beam emittance can further be reduced

to ∼ 135 pm.rad by replacing four dipoles out of seven with LGBs.

This whole thesis is organized in the following way. In the first Chapter, basic physics

of circular accelerators and some important parameters, such as Courant-Snyder variables,

dispersion, betatron tune, chromaticity, emittance etc., are discussed, which are important in

view of lattice design of a storage ring. In addition, some of the advanced techniques to reduce

the beam emittance are also discussed in this Chapter. Lattice design of a storage ring and its

analysis is a complex optimization problem. Different types of optimization techniques, which

are capable to handle these complex optimization problem, are introduced in Chapter 2. In

Chapter 3, extensive studies on optimization of LGB profiles in a dipole taking emittance and

synchrotron radiation loss in consideration have been discussed. These optimization studies

of LGB profiles then applied to Indus-2 storage ring lattice. The application of LGB profile

changes the distribution of dispersion function which needs to be matched with original lattice.

Therefore, optimization of quadrupole strengths with LGBs are carried out and important

parameters are compared with original lattice of Indus-2 storage ring. Further, this study is

extended to the base line design of Indus-3. These studies are presented in Chapter 4. In the

last Chapter, conclusion and future scope of this thesis work has been discussed.

vii



List of Figures

1.1 Coordinate system used in a circular accelerators. . . . . . . . . . . . . . . . . 6

1.2 (a) Sector (black) and Rectangular (parallel edges with red color) type dipoles.

(b) Vertical magnetic field along x-direction. . . . . . . . . . . . . . . . . . . 8

1.3 (a) Pole faces and field direction in a quadrupole magnet. A positive charged

particle coming out of the page will experience a focusing force in x direction

and a defocusing force in y direction. (b) Variation of vertical magnetic field

along x-direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 (a) Pole faces and field direction in a sextupole magnet. Force on a positively

charge particle on the x axis and coming out side of the page is shown by arrow.

(b) Variation of vertical magnetic field along x-direction. . . . . . . . . . . . . 12

1.5 Position and slope (with respect to longitudinal direction) of the charged particle

before and after traversing the magnetic element. . . . . . . . . . . . . . . . . 15

1.6 Position and slope (with respect to longitudinal direction) of the charged particle

after passing through a drift space. . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Particle position (with respect to longitudinal direction) after passing through a

focusing quadrupole. O is the centre of the quadrupole and F is focal point. . . 17

viii



1.8 An example of arrangement of different magnetic elements. Elements 1, 3, 5,

7, 9, 11 are drift spaces. Elements 2 and 12 are focusing quadrupole, 4 and 8

are defocusing quadrupole. Elements 6 and 10 are dipole magnets. . . . . . . . 19

1.9 Motion of different energy particles in a sector type dipole magnet. . . . . . . . 19

1.10 Emittance as a phase space area for a single particle. Maximum position and

maximum slope are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.11 Position and slope of a particle after passing through a magnetic element.

(β0, α0, γ0)′ and (β, α, γ)′ are CS variables at entrance and exit of the magnetic

element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.12 CS variables at the entrance and exit of the magnetic element. . . . . . . . . . 27

1.13 Tune diagram for fractional betatron tune up to fourth order resonance. . . . . . 28

1.14 Radiation damping phenomenon in horizontal plane. px and ps are the momentum

of electron in horizontal and longitudinal direction respectively. pRF is the

momentum provided by RF cavity. x′0 is the initial slope of electron and x′1 is

the slope of electron after passing through RF cavity. . . . . . . . . . . . . . . 33

1.15 Quantum Excitation phenomenon. . . . . . . . . . . . . . . . . . . . . . . . . 36

1.16 Variation of horizontal beta and dispersion function in case TME lattice. Both

functions have minima at the centre of the bending magnet. . . . . . . . . . . . 40

1.17 Variation of horizontal beta and dispersion function in the first dipole of DBA

lattice. Dispersion and its derivative are zero at the entrance of the dipole. . . . 42

1.18 (a) Linear variation of magnetic field along x-direction (black) and compared

with homogeneous field (blue). (b) Shape of dipole to get linearly decreasing

magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.19 Variation of longitudinal field profile in the dipole magnet of a DBA lattice . . 45

ix



1.20 Variation of longitudinal field profile in the dipole of TME lattice . . . . . . . . 46

1.21 Schematic layout of Indus Accelerator complex [3, 5]. . . . . . . . . . . . . . . 47

1.22 Variation of beta and dispersion functions in Indus-2 unit lattice cell. Bending

magnets are shown by green boxes, quadrupoles are in red and blue boxes and

sextupoles are in yellow and black boxes. . . . . . . . . . . . . . . . . . . . . 48

1.23 Beta Functions of Indus-3 lattice cell. Boxes in red colour are dipole magnet,

boxes in green colour are quadrupoles and boxes in blue colour are sextupole

magnets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.1 Reflection (left) and expansion (right) of Nelder-Mead simplex. . . . . . . . . . 59

2.2 Outside contraction (left), inside contraction (middle) and shrink (right) of

Nelder-Mead simplex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 Various steps involved in Genetic Algorithm. . . . . . . . . . . . . . . . . . . 65

2.4 NSGA-II procedure for one iteration [25]. . . . . . . . . . . . . . . . . . . . . 68

3.1 Variation of dispersion function in DBA lattice. The green rectangular boxes

are homogeneous dipoles, blue rectangular boxes are focusing quadrupoles,

red rectangular boxes are defocusing quadrupoles, yellow ones are focusing

sextupoles and the black ones are defocusing sextupoles. . . . . . . . . . . . . 71

3.2 Variation of dispersion function in TME lattice. Dispersion function is symmetric

in the dipole and minima occurs at the center of the dipole. Two qudrupoles,

one focusing (blue) and other defocusing (red), at both side of the dipole are

used to control the lattice functions. . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Breaking of a homogeneous dipole (left) into n dipoles (right). The dipole (left)

has parameters, length (L), magnetic field (B), bending angle (θ), local bending

radius (ρ). Same parameters can be defined for each section of dipole (right). . 72

x



3.4 Variation of longitudinal field profile in the dipole magnet (DBA). (b) Comparison

of Horizontal dispersion function for LGB dipole (solid curve) with homogeneous

dipole (dashed curve). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 (a) Variation of longitudinal field profile in the dipole magnet (TME). (b) Comparison

of Horizontal dispersion function for LGB dipole (solid curve) with homogeneous

dipole (dashed curve). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Values of CS variables at points A, B, ..., E, which are entrance of each dipole

section and F is the exit of last section. . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Variation of ∆θ with successive simulation run. . . . . . . . . . . . . . . . . . 77

3.8 LGB profiles after each simulation run using Nelder-Mead algorithm. . . . . . 78

3.9 Variation of objective function after 8th simulation run. . . . . . . . . . . . . . 78

3.10 Variation of ρ after final simulation run. . . . . . . . . . . . . . . . . . . . . . 78

3.11 Variation of dispersion function in the dipole. . . . . . . . . . . . . . . . . . . 78

3.12 Variation of objective function in different generations. Best fitness shows

the value of objective function at current generation and maximum constraint

shows how constraints are more satisfied in each generation. . . . . . . . . . . 81

3.13 Variation of magnetic field and ρ. For homogeneous dipole magnetic field and

ρ are 1.503 Tesla and 5.55 m respectively. . . . . . . . . . . . . . . . . . . . . 81

3.14 Variation of dispersion function in the dipole. . . . . . . . . . . . . . . . . . . 81

3.15 Variation of objective function in each generation for the case where no initial

guess is provided. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.16 Variation of magnetic field and ρ. For homogeneous dipole magnetic field and

ρ are 1.503 Tesla and 5.55 m respectively. . . . . . . . . . . . . . . . . . . . . 83

3.17 Variation of dispersion function in the dipole. . . . . . . . . . . . . . . . . . . 83

xi



3.18 Different LGB profiles generated by genetic algorithm. . . . . . . . . . . . . . 84

3.19 Emittance for different LGB profiles with objective function and SR loss (color

bar). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.20 Different LGB profiles using GA with maximum magnetic field in the first

section 2.65 Tesla. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.21 LGB profile for the 10 section case with hard constraint on maximum magnetic

field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.22 LGB profile for the 15 section case with hard constraint on total magnetic field. 87

3.23 Pareto optimal front between first and second objective. SR loss is given by

color at each point of Pareto optimal front. . . . . . . . . . . . . . . . . . . . . 89

3.24 Different LGB profiles for A, B and C. . . . . . . . . . . . . . . . . . . . . . . 89

3.25 Different magnetic elements of Indus-2 lattice in TME configuration. . . . . . . 90

3.26 Variation of different lattice functions. . . . . . . . . . . . . . . . . . . . . . . 91

3.27 LGB profiles for different chosen maximum magnetic field. . . . . . . . . . . . 92

3.28 Comparison of lattice functions with and without LGB. . . . . . . . . . . . . . 93

4.1 Basic elements in Indus-2 unit lattice (not to scale). Here, QF: focusing quadrupole,

QD: defocusing quadrupole, SF: focusing sextupole, SD: defocusing quadrupole.

Number indicates family of that element, e.g. Q1D shows first family of defocusing

qudrupoles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Variation of beta and dispersion functions in Indus-2 unit lattice. . . . . . . . . 97

4.3 LGB profile compared with homogeneous dipole field in the dipole magnet. . . 98

4.4 Variation of dispersion function with LGB. . . . . . . . . . . . . . . . . . . . 98

4.5 Variation of horizontal beta function with LGB. . . . . . . . . . . . . . . . . . 99

4.6 Variation of vertical beta function with LGB. . . . . . . . . . . . . . . . . . . 99

xii



4.7 Variation of objective function. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.8 Variation of dispersion function with LGB and matching. . . . . . . . . . . . . 101

4.9 Variation of horizontal beta function with LGB and matching. . . . . . . . . . 101

4.10 Variation of vertical beta function with LGB and matching. . . . . . . . . . . . 101

4.11 Variation of horizontal beta function with LGB, matching, and betatron tune

correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.12 Variation of vertical beta function with LGB, matching and betatron tune correction.104

4.13 Dynamic aperture comparison for on momentum charged particles. . . . . . . . 105

4.14 Comparison of Pareto optimal front. . . . . . . . . . . . . . . . . . . . . . . . 107

4.15 Comparison of beta functions at injection for each solution. . . . . . . . . . . . 108

4.16 Maximum beta functions comparison for each solution. . . . . . . . . . . . . . 108

4.17 Betatron tune comparison for each solution. . . . . . . . . . . . . . . . . . . . 108

4.18 Natural chromaticity comparison for each solution. . . . . . . . . . . . . . . . 108

4.19 Different magnetic elements of Indus-3 lattice (not to scale). Magnetic elements

which are above base line are focusing in nature and below the base line are

defocusing in nature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.20 Designed lattice functions of Indus-3 lattice. . . . . . . . . . . . . . . . . . . . 109

4.21 Optimized LGB profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.22 Pareto optimal front for emittance with dispersion at straight section. . . . . . . 112

4.23 Horizontal and vertical beta functions comparison for each solution. . . . . . . 112

4.24 Maximum horizontal and vertical beta functions comparison for each solution. . 112

4.25 Horizontal and vertical betatron tune comparison for each solution. . . . . . . . 113

4.26 Horizontal and vertical natural chromaticity comparison for each solution. . . . 113

4.27 Comparison of dispersion function. . . . . . . . . . . . . . . . . . . . . . . . . 114

xiii



4.28 Comparison of horizontal beta function. . . . . . . . . . . . . . . . . . . . . . 114

4.29 Comparison of vertical beta function. . . . . . . . . . . . . . . . . . . . . . . 114

4.30 Comparison of dynamic aperture for 1000 turns. . . . . . . . . . . . . . . . . . 116
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Chapter 1

Basic Accelerator Physics

The synchrotron radiation (SR), emitted by transverse acceleration of ultra relativistic

electron under applied magnetic field, is in much demand for various science experiments due

to wide photon energy range and high brightness. To achieve high brightness SR, the dedicated

electron storage rings have been built and are further being designed for further enhancing it.

The brightness is governed by the beam emittance, which is the design criteria for any storage

ring magnetic lattice. In order to design a magnetic lattice of a electron storage ring, deep

understanding of beam dynamics of circular accelerators is required. In this Chapter, beam

dynamics of circular accelerators and important concepts relevant to the thesis are presented.

In Section 1.1, a brief introduction to evolution of accelerators dedicated to produce

SR are discussed. Various parameters based on linear beam dynamics of circular accelerators

are discussed in Sections 1.2-1.8. Important phenomenon that govern the beam emittance in a

storage ring, which highly affects the brightness of SR, is introduced in Section 1.12. Various

types of low emittance magnetic lattices, which are used to build storage rings, are discussed

in Section 1.13. In addition, advanced methods to improve the beam emittance is described

in Section 1.15. At the end, features of Indus-2 and proposed Indus-3 storage ring lattices
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are discussed in Section 1.16 and 1.17. These lattices are considered to study the effect of

longitudinal variation of magnetic field in the dipoles on the beam emittance.

1.1 Synchrotron radiation sources

E. McMillan and independently V. Veksler, invented the synchrotron in 1945 [1]. Synch-

rotron, basically, is a circular accelerator in which radius of the accelerating charged particle is

fixed by applying magnetic field and acceleration is provided by radio frequency (RF) cavities

at one or more places in the circular ring. It is well known from special relativity equations that

as particle achieves higher and higher velocity, its mass increases. Therefore, under applied

magnetic field, orbit of the charged particle changes. To stabilize the orbit, magnetic field has

to be synchronized with energy of the charged particle. This concept is the basic principle of a

synchrotron.

First synchrotron was made for the purpose of accelerating charged particle with ever

increased energy for the particle physics research [1]. Electron, a very light charged particle,

achieves ultrarelativistic speed in energy range of few MeV. In electron synchrotrons, at these

energies electron emits SR while going through transverse acceleration under applied magnetic

force in the bending magnet. The SR was first time detected at 70 MeV synchrotron at GE in

the year 1947 [1].

The energy loss per turn by an electron in the form of SR increases as fourth power

of energy of an electron [2], which was the main limitation in high energy circular electron

accelerators and it requires very high RF power to compensate this energy loss. Soon it was

realized that SR emitted from electrons has better characteristics than conventional X-rays

sources like high brightness, high flux, broad energy spectrum etc., which became boon for

various science experiments. At that time, scientist started to use SR produced from high energy
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electron synchrotrons parasitically. These synchrotrons, where SR was used parasitically are

called first generation synchrotron radiation sources (SRSs). Since then, rigorous study on the

design of dedicated SRSs based on electron storage ring, in which electron beam is stored for a

long time, had been carried out in various synchrotron accelerator facilities. These synchrotrons

or storage rings, which were fully dedicated to produce synchrotron radiation are called second

generation SRSs. In second generation SRSs, bending magnets were primary source to get

uninterrupted high brightness SR for many beam line users at a time. This is the great advantage

over X-rays facility where only one user at a time can use the X-ray facility. Indus-1, a 450

MeV electron storage ring located at RRCAT, is an example of second generation SRS [3].

After successful operation of second-generation electron storage rings, insertion devices (IDs)

like undulators, wigglers, wavelength shifter etc. were introduced to increase brightness, flux

and energy range of SR. These devices are external to the well design lattice of the storage

ring. Therefore, more spaces are to be provided to install them. These spaces, i.e. magnet free

zones, therefore, become part of the design of storage ring lattices. These SRSs are called third

generation SRSs. Indus-2, a 2.5 GeV electron storage ring is an example of third generation

SRS [3–5].

One of the main purpose of designing a new electron storage ring or upgrading an

existing electron storage ring is the demand of high brightness of the photon beam. The

brightness of photon beam is defined as photon flux per unit area per unit solid angle and

is mathematically expressed as [6]

B =
F

4π2ΣxΣyΣx′Σy′
, (1.1)

where F is the flux, defined as number of photons produced per second in 0.1% bandwidth of

considered wavelength. Σx,y and Σx′,y′ are effective beam size and divergence of photon beam,
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which are related to electron beam size and divergence as [6]

Σx,y =
√
σ2
x,y + σ2

r , (1.2)

Σx′,y′ =
√
σ2
x′,y′ + σ2

r′ . (1.3)

Here σx,y and σx′,y′ are horizontal and vertical electron beam size and divergence respectively,

and σr and σr′ are the photon beam size and divergence, respectively. σx,y and σx′,y′ are

related to beam emittance of the storage ring which is an important criteria in storage ring

design. Beam sizes and its relation to beam emittance is discussed in Section 1.14.

Flux of photon beam depends on number of photons produced, which depends on stored

beam current. But, one cannot fill large current due to many limitations such as vacuum, load

on RF, intra beam scattering issues related to lifetime etc. In addition, high current does not

lead to improvement of quality of stored beam, e.g. beam size. From eq.(1.1) brightness of the

photon beam is inversely proportional to product of two beam emittances in transverse plane.

Therefore, as a lattice designer, one focuses on beam emittances to increase brightness with

improved beam quality.

Beam emittance, roughly, scales as cubic power of bending angle, therefore more number

of dipole magnets in the lattice are required to reduce the beam emittance. Now a days, scientist

are focusing on fourth generation SRSs, utilizing the concept of multi bend achromat (MBA)

lattice, instead of double or triple bend achromat, and IDs to build or upgrade existing storage

rings to achieve ultra low emittance [7]. The requirement of more number of dipoles make

storage ring large in size and consequently increases the cost of the machine. MAX IV is

the first operating machine based on MBA concept [7, 8]. Further, to push beam emittance

towards more lower side, technologically challenging, advanced methods were introduced such

as transverse gradient [9], longitudinal gradient bend (LGB) [10,11], reverse or anti bend [12].

LGB was first introduced by J. Gau, T. Raubenheimer in 2002 [10]. They applied the LGB
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in NLC damping storage ring and found sufficient beam emittance reduction. Now a days,

magnet design technology has been improved much and LGB has been widely accepted in

lattice design to upgrade of an existing facility and new storage ring lattices [11]. MAX IV, a

3 GeV storage ring, is a running example of it [13]. Some examples of high energy and large

circumference SRSs to produce hard X-rays are ESRF, France (6 GeV) [14], Spring-8, Japan

(8 GeV) [15], APS, USA (7 GeV) [16]. Also, there are some facilities which are build to get

soft X-rays like ALS, USA (1.9 GeV) [17], ELLETRA, Italy (2-2.4 GeV) [18] etc.

1.2 Coordinate system used in circular accelerators

It is always desirable to study the dynamics of a particle in a coordinate system in

which equation of motion of the particle takes a simple form. In circular accelerators, study of

charged particle dynamics is preferred in moving or Frenet-Serret coordinate system instead of

conventional coordinate system.

As shown in Fig. 1.1, this coordinate system consists a designed orbit at which reference

or designed charged particle moves. Coordinate axes of the coordinate system are denoted by

X, Y and S and origin is co-moving with reference charged particle which has coordinates (0,

0, 0). Coordinates of any other charged particle is defined as deviation from the designed orbit

and are denoted by x, y and s. Here, x and y are deviations in radial and vertical direction from

the designed orbit, respectively, and s is the deviation of the charged particle with respect to

reference charged particle in the direction of motion. Unit vectors along X, Y and S direction

are shown in Fig. 1.1. Also, it is notable that unit vector in Y direction does not change.

Most of the large circular accelerators in the world are build to keep designed orbit in

the horizontal plane. Therefore,X−S plane in known as horizontal or median plane and Y −S

plane is known as vertical plane. Motion of charged particles in these two planes defines the
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transverse properties of the beam of charged particles.

Fig. 1.1: Coordinate system used in a circular accelerators.

Local radius of curvature ρ, in general, is a function of path length s, i.e., ρ = ρ(s).

For a straight section ρ = ∞ and ρ is finite where path is curved. The X, Y and S form a

right-handed coordinate system, i.e., x̂ × ŷ = ŝ. Generally, transverse deviations of a charged

particle are very small, i.e., x, y � ρ. Therefore, paraxial approximation can be used in study of

motion of charged particle. Motion of a charged particle in an electromagnetic field is discussed

in the following section.

1.3 Motion of a charged particle in an electromagnetic field

Motion of a charged particle in an electromagnetic field is governed by Lorentz force

law and is mathematically given by [2]

~F =
d~p

dt
= q( ~E + ~v × ~B), (1.4)

where ~p, q, and ~v are momentum, charge, and velocity of the charged particle, respectively.

~E and ~B are electric and magnetic fields, respectively. To govern an ultrarelativistic charged

particle, magnetic field is much more effective than electric field. Therefore, the transverse

dynamics of the charged particle at ultrarelativistic speed can be controlled by magnetic field
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only. Equation of motion for such charged particle can be written as

~F =
d(m0γ ~̇R)

dt
= q(~v × ~B), (1.5)

where m0 and ~̇R are rest mass and velocity of the charged particle, respectively, and γ is the

Lorentz factor which is given by γ = 1 + E
Erest

; E and Erest are the kinetic energy and rest

mass energy of the charged particle respectively.

From eq.(1.5), in a normal magnetic field, one can derive following relation for a

circular orbit [2]

p

q
= Bρ, (1.6)

where p = |~p| = γm0|~v| and ρ are the momentum and bending radius of charged particle,

respectively. The result in eq.(1.6) is also true for relativistic velocities. The quantity Bρ,

called ”Beam rigidity”, is an important quantity in a circular accelerator which depends only

on the momentum and given charge of the particle. For an ultrarelativistic charged particle,

energy and momentum are related by E = cp; c is the speed of light in vacuum. It means

that, energy and momentum can be used interchangeably. In a storage ring, energy of reference

charged particle is constant and therefore, beam rigidity of storage ring is a constant quantity.

Beam rigidity is often used to define normalized quantities for storage ring like strength

of the quadrupole, sextupole etc. which are discussed in Section 1.4. For an electron storage

ring q = e, eq.(1.6) can be written in terms of energy as [2]

Bρ(T.m) =
10

2.998
βE(GeV ). (1.7)

For ultrarelativistic particles, this expression is further simplified as β is almost equal to 1.

In a circular accelerator, magnetic fields are generated by different types of magnetic

elements which are discussed in the following Section.
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1.4 Basic magnetic elements used in accelerators

To guide the charge particles in a circular accelerator, different magnetic elements like

dipoles, quadrupoles and sextupoles are used. In case of storage ring, usually a periodic unit

lattice cell, an arrangement of magnetic elements in a particular fashion, is designed and is

repeated to make a complete storage ring. The different magnetic elements are discussed in the

following Sections [5].

1.4.1 Dipole magnets

An ideal dipole magnet (constant field ~B in space) is used to generate a curvature

(bending) in the design trajectory of an accelerator and therefore is also known as bending

magnet or dipole magnet. An ideal dipole has infinite long pole faces parallel to each other and

produces homogeneous (constant) field irrespective of position, i.e., | ~B(x, y, s)| = b, where b is

a constant. However, practical dipole magnet has finite size. Due to finite length, fringe fields

are generated which contain higher order multipoles.

𝜽

𝟐
𝜽

𝟐

𝜽

s

x

y

𝑩𝒚

x

(a) (b)

Fig. 1.2: (a) Sector (black) and Rectangular (parallel edges with red color) type dipoles.

(b) Vertical magnetic field along x-direction.
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Magnetic field in a normal dipole is defined as

~B(x, y, s) = ±bŷ, (1.8)

where ŷ is the unit vector in the vertical direction and b is a constant. However, skew dipole

is defined as ~B(x, y, s) = ±bx̂, where x̂ is the unit vector in horizontal or radial direction.

It means that a normal dipole becomes a skew dipole after rotation of 90◦ about longitudinal

direction.

Two types of dipole magnets are generally used in lattice design of a storage ring namely

sector and rectangular, which are shown in Fig. 1.2. In a sector type dipole, the design trajectory

enters and leaves the magnet edges at right angles, whereas in rectangular type, end faces are

parallel to each other and design trajectory enters and leaves the magnet edges at equal angle but

different from 90◦. The transverse gradient and the longitudinal gradient can also be introduced

in the bending magnets to make the size of a storage ring compact and minimise the beam

emittance.

1.4.2 Quadrupole

A quadrupole magnet has a linearly varying magnetic field with the transverse distance

(x or y) from the design orbit, resulting in a restoring force on the charged particle passing

through it, which can be used as a focusing magnet. Normal quadrupole magnet has four pole

faces as shown Fig. 1.3. These pole faces are hyperbolic in shape to provide linear variation of

fields with distances. Field lines originate perpendicularly from North pole and terminate on

South pole. Variation of magnetic fields in a quadrupole are given as

Bx = gy and By = gx, (1.9)

where g = dBy
dx

. At the centre of quadrupole, i.e., x = 0, y = 0, the net magnetic field is zero.

Therefore, charged particle which passes through the centre of quadrupole does not experience
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any force. Also, force on the charged particle increases with the increase of the distance from

the center. Hence, more distant particle experiences more force towards or away from the centre

of the quadrupole magnet. Quadrupoles are mainly used for focusing or defocusing action on

the charged particles. Normalized quadrupole strength k is defined as [2]

k =

(
e

p

)
g =

g

Bρ
. (1.10)

Eq.(1.10) can be written in terms of energy as

k(m−2) = 0.2998
g (Tm−1)

βE (GeV)
. (1.11)

𝒚

x

𝐍

𝐍𝐒

𝐒

𝑩𝒚

x

(a) (b)

Fig. 1.3: (a) Pole faces and field direction in a quadrupole magnet. A positive charged particle coming

out of the page will experience a focusing force in x direction and a defocusing force in y direction. (b)

Variation of vertical magnetic field along x-direction.

As shown in Fig. 1.3, positive charged particle coming out of the page and having

different position on x-axis focuses towards centre of the quadrupole. Also, if a quadrupole

focuses in one plane then in another plane it always defocuses. Therefore, to achieve overall

focusing in both the transverse planes, at least two quadrupoles separated by some distance are

normally used in the lattice design. Conventionally, a quadrupole focusing in horizontal plane

is called focusing quadrupole and a quadrupole focusing in vertical plane is called defocusing
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quadrupole. If a normal quadrupole is rotated through 45◦ about longitudinal direction, then it

is called skew quadrupole.Skew quadrupoles are used to correct coupling in the machine. To

build a tight focusing storage ring high gradient in the quadrupole is required.

Dipole and quadrupole magnets generate magnetic force on the particle that is either

independent or linear to the charged particle position. The dynamics, which includes only

dipole, quadrupole and drift space with zero magnetic fields, is known as the linear beam

dynamics. Various optics characteristics and parameters of the storage rings are determined by

linear beam dynamics. These parameters are introduced in Sections 1.5, 1.7 and 1.9.

1.4.3 Sextupole

The electron beam contains many charged particles, each may have small energy devia-

tion from the energy of the reference or central particle. These particles when pass through the

quadrupole, they focus away from the focal point. This phenomenon is known as chromatic

aberration or chromaticity (discussed in Section 1.10). To correct chromaticity, the sextupole

magnets are included in a storage ring and are placed near a quadrupole. A sextupole has six

pole faces with North and South poles placed alternatively as shown in Fig. 1.4. The orientation

of the poles are in such a way that magnetic field variation in the sextupole has following form

By =
1

2
g′(x2 − y2) and Bx = g′xy. (1.12)

Variation of y component of magnetic field, i.e., By along x-axis is shown in Fig. 1.4. The

sextupole strength is defined as [2]

S[m−3] =
e

p
g′ = 0.2998

g′

βE(GeV)
. (1.13)
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x

𝐒

𝐒 𝐒

𝐍𝐍

𝐍
𝒚

𝑩𝒚

x

(a) (b)

Fig. 1.4: (a) Pole faces and field direction in a sextupole magnet. Force on a positively charge particle

on the x axis and coming out side of the page is shown by arrow. (b) Variation of vertical magnetic field

along x-direction.

Fields in the sextupole are non-linear, as the strength of the sextupoles increase, non-line-

arity in the machine also increases. In addition, Bx component of sextupole field is the product

of x and y, it will generate coupling in the charged particle motion.

1.5 Equation of motion of a charged particle in a given

magnetic field

Equation of motion of a charged particle moving in a general magnetic field ~B with

velocity ~v is given by eq.(1.5). In a storage ring, kinetic energy of the charged particle is

constant, consequently, γ will be a constant and rest mass, m0, is a constant, too. Therefore,

eq.(1.5) becomes

d2 ~R

dt2
= q

~v × ~B

γm0

. (1.14)

General position of the charged particle can be written as ~R = rx̂ + yŷ and general

radius of curvature as r = ρ+ x. Considering uncoupled motion in both transverse directions,

general equation of transverse motion of a charged particle in a given magnetic field can be
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written in terms of path length s as [A.1]

d2x

ds2
−
(
ρ+ x

ρ2

)
= −By

Bρ

(
1 +

x

ρ

)2

, (1.15)

d2y

ds2
=
Bx

Bρ

(
1 +

x

ρ

)2

. (1.16)

Here, it is assumed that energy of the charged particle is constant and magnetic field component

in s direction, i.e., Bs, is zero. Magnetic field components Bx and By can be expanded as a

Taylor’s series about reference orbit as

Bx = Bx(0) +
∂Bx

∂y
y +

1

2!

∂2Bx

∂y2
y2 + · · · , (1.17)

By = By(0) +
∂By

∂x
x+

1

2!

∂2By

∂x2
x2 + · · · . (1.18)

Here,Bx(0) andBy(0) are constant and derivatives of magnetic fields are calculated at reference

orbit. For small deviations, i.e., x, y � ρ, higher order terms in expansion of magnetic fields

can be neglected. Using fourth Maxwell relation in the pole gap of a magnetic element where

current and charges are zero, we have∇× ~B = 0→ ∂Bx
∂y

= ∂By
∂x

. Since bending of the charged

particle is considered in horizontal plane. Therefore, for horizontal motion Bx(0) = 0. Using

these results, eq.(1.15) and eq.(1.16) can be further simplified as

d2x

ds2
+

(
1

ρ2
+

1

Bρ

∂By

∂x

)
x = 0, (1.19)

d2y

ds2
−
(

1

Bρ

∂By

∂x

)
y = 0. (1.20)

Expression 1
Bρ

∂By
∂x

is denoted by k. This is an important quantity which is normalized

with beam rigidity and has units [m−2]. In general, equation of motion in transverse planes can
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be written in a single equation as

u′′ +K(s)u = 0, with


K = 1

ρ2
+ 1

Bρ

∂By
∂x
, foru = x

K = − 1
Bρ

∂By
∂x
, foru = y

(1.21)

Eq.(1.21) is called “Hill’s equation” and is similar to equation of simple harmonic motion

with variable spring constant. From this equation, position and slope of a charged particle can

be found at any position s. In general, K is the function of path-length s. But for a magnetic

element,K(s) can be treated as a constant, i.e., K(s) = K. AssumingK positive and constant,

the solution of eq.(1.21) can be written as [2, 19]

u(s) = A cos(
√
Ks) +B sin(

√
Ks). (1.22)

Then slope of the particle trajectory is given by

u′(s) = −A
√
K sin(

√
Ks) +B

√
K cos(

√
Ks), (1.23)

here A and B are constant. For K < 0, hyperbolic sine and cosine terms will appear instead

of sine and cosine. For a given length of a magnetic element and initial position of a charged

particle at the entrance of magnetic element, constants A and B can be found. After finding

these two constants, eq.(1.22) and (1.23) can be written in matrix form as

u
u′


out

=

 cos(φ) 1√
K

sin(φ)

−
√
K sin(φ) cos(φ)


u
u′


in

, (1.24)

where φ =
√
KL. Here, in and out shows entrance and exit of the magnetic element as shown

in Fig. 1.5.
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𝒖
𝒖′

𝒊𝒏

𝒖
𝒖′

𝒐𝒖𝒕

Magnetic element

Fig. 1.5: Position and slope (with respect to longitudinal direction) of the charged particle before and

after traversing the magnetic element.

The matrix

M =

 cos(φ) 1√
K

sin(φ)

−
√
K sin(φ) cos(φ)

 =

C(S) S(s)

C ′(s) S ′(s)

 =

M11 M12

M21 M22

 (1.25)

is called transfer matrix for the magnetic element, and it is different for different type of

magnetic elements. Here, C(s) = M11 = cos(φ), S(s) = M12 = 1√
K

sin(φ). C ′(s) and

S ′(s) are derivatives of C(s) and S(s), respectively. This transfer matrix transports position

and slope of a charged particle from entrance to exit point of the magnetic element. Transfer

matrix for different type of magnetic element are in following Section.

1.5.1 Transfer matrix for a drift space

For a drift space, i.e., no magnetic field, K = 0. Transfer matrix for a drift space is

given by [19]

MDrift =

1 L

0 1

 , (1.26)

where L is the length of the drift space. As shown in Fig. 1.6, when a charged particle passes

through a drift space its position changes, but slope remains constant.
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𝒖𝒐𝒖𝒕

𝒖𝒊𝒏

Drift Space of Length L

𝒖′𝒊𝒏 = 𝒖′𝒐𝒖𝒕

𝒖′𝒊𝒏

𝒖′𝒐𝒖𝒕

Fig. 1.6: Position and slope (with respect to longitudinal direction) of the charged particle after passing

through a drift space.

Drift spaces play an important role in lattice design. Mostly all magnetic elements in

the storage ring are electromagnetic in nature. Magnetic elements have coils wrapped on the

iron core. One must provide some space between two magnetic element for these coils. Also,

vacuum pumps and cooling systems, beam position monitors, dipole correctors, beam profile

monitors require spaces. In addition, installation of IDs also require large spaces.

1.5.2 Transfer matrix for a quadrupole

For a pure quadrupole, K = k = 1
Bρ

∂By
∂x

and transfer matrix for a focusing quadrupole

is given by [19]

MQ, focusing =

 cosφ 1√
|k|

sinφ

−
√
|k| sinφ cosφ

 , (1.27)

where φ =
√
kL and k > 0 (focusing quadrupole) and for a defocusing quadrupole transfer

matrix is given by

MQ, defocusing =

 coshφ 1√
|k|

sinhφ√
|k| sinhφ coshφ

 , (1.28)

where φ =
√
|k|L and k < 0 (defocusing quadrupole).
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𝒖𝒐𝒖𝒕

𝒖𝒊𝒏

Quadrupole of Length L

𝒖′𝒊𝒏 = 𝟎

𝒖′𝒐𝒖𝒕

fo F

Designed orbit

Fig. 1.7: Particle position (with respect to longitudinal direction) after passing through a focusing

quadrupole. O is the centre of the quadrupole and F is focal point.

Quadrupole is a focusing element. In Fig. 1.7, action of a focusing quadrupole is shown.

Focal length of a quadrupole is given by [19]

f =


1√

kL tan(
√
kL)

, for k > 0

1√
−kL tanh(

√
−kL)

, for k < 0

(1.29)

If f << L (thin lens approximation), eq.(1.29) becomes

f =
1

kL
(1.30)

1.5.3 Transfer matrix for a dipole

For a sector type dipoleK(s) = 1
ρ2

. Transfer matrix for horizontal plane is given by [19]

Mx =

 cos θ ρ sin θ

−1
ρ

sin θ cos θ

 , (1.31)

where θ = L
ρ

is the bending angle of the dipole magnet. In vertical plane sector type dipole

magnet behaves like a drift space with length L = θρ, because there is no any bending in

vertical plane. In thin lens approximation θ → 0, transfer matrix Mx can be written as
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Mx =

 1 0

− L
ρ2

1

 (1.32)

Here, one can see that dipole act as a focusing element. This focusing originates from the fact

that the different energy charged particle has different ρ in the dipole. This type of focusing is

called geometrical focusing.

For a rectangular type dipole magnet, transfer matrices for both transverse planes are

given as [19]

Mx =

1 ρ sin θ

0 1

 , My =

 cos θ ρ sin θ

−1
ρ

sin θ cos θ

 . (1.33)

Transfer matrix for horizontal plane has the form like a drift space with length L = ρsinθ. This

is because, the weak geometrical focusing in horizontal plane is exactly compensated by the

defocusing at the entrance and exit faces [2, 5].

In a magnetic lattice of a storage ring, there are large number of magnetic elements to

guide a charged particle. In matrix formulation one can compute transfer matrix for a given

arrangement of magnetic elements. In Fig. 1.8, an example of an arrangement of magnetic

elements is shown. If transfer matrices for different magnetic elements areM1, M2, M3, · · · ,M12

and a charged particle enters from the entrance of the first element and exits from the last

element, then transfer matrix for this arrangement is given by the product of individual transfer

matrix as

M = M12.M11.M10. . .M2M1 (1.34)

This result can be generalized for n number of magnetic elements provided transfer matrix for

each element is known.
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Fig. 1.8: An example of arrangement of different magnetic elements. Elements 1, 3, 5, 7, 9, 11 are drift

spaces. Elements 2 and 12 are focusing quadrupole, 4 and 8 are defocusing quadrupole. Elements 6

and 10 are dipole magnets.

1.6 Dispersion and trajectory of an off-momentum particle

In a dipole, an off-momentum or off-energy charged particle does not follow the same

path as reference charged particle even if it is launched on the designed path. This is shown

in Fig. 1.9, higher energy charged particle follows longer path, however, lower energy particle

follow shorter path and trajectories of different energy particles get dispersed. This phenomenon

is called dispersion.

Fig. 1.9: Motion of different energy particles in a sector type dipole magnet.

Position or deviation from designed orbit of such particles is given by [2]

x(s) = η(s)
∆p

p0

= η(s)δ, x′(s) = η′(s)δ, (1.35)

here, p0 is the momentum of reference charged particle and δp = p − p0 is the change in
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momentum of a charged particle from reference charged particle. ∆ = ∆p
p0

and η(s) are

relative momentum deviation and dispersion function, respectively. Eq.(1.35) shows that dipole

separates off different momentum or energy charged particles in position, i.e., if ∆p < 0 then

x < 0 and if ∆p > 0 then x > 0.

In an ideal lattice dispersion is generated by the dipole magnet in horizontal direction

only. However, vertical dispersion can be present in the machine due to various errors in the

machine. For example, skew quadrupole (rotated quadrupole) and rotational error in the dipole

magnet can generate dispersion in vertical plane. Phenomenon of dispersion plays an important

role in the consideration of lattice design of a storage ring.

Considering ideal dipole, after including dispersion and considering small momentum

deviation, new equations of motion in both transverse planes can be written as [2, 19]

d2x

ds2
+

(
1

ρ2
+

1

Bρ

∂By

∂x

)
x =

δ

ρ
, (1.36)

d2y

ds2
−
(

1

Bρ

∂By

∂x

)
y = 0. (1.37)

Eq.(1.36) is an inhomogeneous differential equation while eq.(1.37) is a homogeneous differen-

tial equation. Therefore, solution of eq.(1.36) will contain homogeneous solution with particular

integral and is given by [2]

x(s) = A.C(s) +B.S(s) + δ.η(s), (1.38)

where η(s) is given by

η(s) =

s∫
0

1

ρ(s′)
[S(s)C(s′)− C(s)S(s′)] ds′. (1.39)

After including dispersion term one can write solution of equation of motion in matrix formulation
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and in terms of dispersion function as [19]
η

η′

1


out

=


M11 M12 M13

M21 M22 M23

M31 M32 M33




η

η′

1


in

. (1.40)

For a sector type dipole, eq.(1.40) can be written as [19]
η

η′

1


out

=


cos θ sin θ ρ(1− cos θ)

−1
ρ

sin θ cos θ sin θ

0 0 1




η

η′

1


in

, (1.41)

Similarly for a rectangular type dipole
η

η′

1


out

=


cos θ sin θ ρ(1− cos θ)

−1
ρ

sin θ cos θ 2 tan θ
2

0 0 1




η

η′

1


in

. (1.42)

In Section 1.5, equation of motion is solved considering K as a constant. In the

following Section, solution of equation of motion is given for a more general case, in which K

is a periodic function.

1.7 Parametric solution of equation of motion and Courant-

-Snyder parameters

For circular accelerators, i.e., a periodic system, general equation of motion of a charged

particle with reference energy can be written as [A.2]

u′′(s) +K(s)u(s) = 0, (1.43)

here u stands for x or y and K is a periodic function of path length s with period C. The period

C may be either full circumference of circular accelerator or one super period in the circular
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accelerator. The charged particle in the circular accelerator has to make millions of revolutions

and will experience a periodic potential in every turn. Solution of such differential equation is

given by Floquet’s theorem and can be written in the form [2]

u(s) = A
√
β(s) cos[φ(s) + φ0], (1.44)

here φ0 and A are constant and φ is the phase of the charged particle. This form of amplitude is

chosen for specific problem of circular accelerators. Any general function which depends on s

can be chosen for amplitude function. Amplitude function β(s) is also a periodic function with

same period of K, i.e., C. Solution in eq.(1.44) confirms that after each turn charged particle

acquires a positive phase, which means, particle will not have same position after travelling a

complete turn or a super period.

After substituting solution in eq.(1.43), an equation in terms of sine and cosine can be

obtained. After equating the coefficient of sine and cosine terms equal to zero, two equations

can be obtained as [A.2]

1

2

(
ββ′′ − 1

2
(β′′)2

)
− β2(φ′)2 + kβ2 = 0 (1.45)

β′φ′ + βφ′′ = 0. (1.46)

Eq.(1.46) can be rearranged as (βφ′)′ = 0 or βφ′ = Constant. Value of this constant is just a

scaling factor and can be chosen as 1 for simplicity. Further,

φ′(s) =
1

β(s)
→ φ(s) =

s∫
0

ds′

β(s′)
. (1.47)

In a circular accelerator, one is free to choose our reference point of integration from 0

to s. Therefore, integration constant is chosen as 0 for simplicity. φ(s) is called phase advance

of charged particle after travelling a distance s and it depends on amplitude function β(s).

Using result for phase advance, eq.(1.45) becomes

1

2
ββ′′ − 1

4
(β′)2 + β2k = 1. (1.48)

22



This is an important relation called envelope equation. Because it represent the envelope of the

beam. Also, it may happen that for some values of quadrupole strength k, solution of envelope

equation may not exist. This leads to resonances for such values of k.

With the introduction of new variables, which are given as

α = −1

2
β′, γ =

1 + α2

β
(1.49)

eq.(1.45) becomes

α′ = kβ − γ. (1.50)

The variables α(s), β(s), γ(s) are called Courant-Snyder variables or Twiss parameters. Twiss

parameters and the phase function φ(s) are called betatron functions or lattice functions and

oscillatory motion of a charged particle along longitudinal direction or beam line is called the

betatron oscillation [2].

One can find an invariant of motion between solution u(s) and Courant-Snyder variables

by eliminating (φ(s) + φ0) from solution u(s), which is given by

γu2 + 2αuu′ + βu′2 = A2. (1.51)

A quantity ε, called emittance, is defined as A2 = ε. Relation in eq.(1.51) is the equation of

general ellipse with area πε, i.e., emittance is directly related to the phase space area. General

ellipse as shown in Fig.1.10, denotes motion of single particle in phase space. After passing

through different magnetic elements this ellipse will change its shape and size but area will

remain constant if forces are conservative and linear. In circular accelerators, there are large

number of charged particles and form the beam. Charged particles having same emittance but

different in phase will lie on this ellipse at different locations. If this is the ellipse for outermost

charged particle which survives i.e. stable in the storage ring, then all charged particles whose

emittance are lower than outermost charged particle will surely survive.
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𝑢

𝑢′

𝜺𝜷(𝒔)

𝜺(𝒔)

𝜸(𝒔)

𝜺

𝜷(𝒔)

𝜺𝜸(𝒔)

Fig. 1.10: Emittance as a phase space area for a single particle. Maximum position and maximum slope

are also shown.

The beam emittance of whole beam can equivalently be describe by the emittance of

the outermost charged particle in a beam. Trajectories of charged particles on the ellipse is

described by

ui(s) =
√
ε
√
β(s) cos[φ(s) + φ0i], (1.52)

where φ0i is an arbitrary phase constant of the ith charged particle. Selecting every point along

the beam line for which cos[φ(s) + φ0i] = ±1, one can get an envelope of the beam containing

all charged particles as

umax = ±
√
εβ(s). (1.53)

This is the maximum amplitude that a charged particle can have at any position s. Beam

envelope changes with path length s and depends only on beam emittance and betatron functions.

Courant-Snyder variables plays important role in beam dynamics and one can study

beam dynamics in terms of Courant-Snyder variables.
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1.8 Beam dynamics in terms of Courant-Snyder variables

If, initial position and slope at the entrance of a magnetic element are known, then

position and slope can be found at the exit of the magnetic element provided that Courant-Snyder

(CS) are know at entrance and exit of the magnetic element. one can write matrix equation for

position and slope of a charged particle in term of CS variables as [20]

𝒖
𝒖′ 𝒊𝒏

𝒖
𝒖′ 𝒐𝒖𝒕

Magnetic element

𝜷𝟎

𝜶𝟎

𝜸𝟎

𝜷
𝜶
𝜸

Fig. 1.11: Position and slope of a particle after passing through a magnetic element. (β0, α0, γ0)′ and

(β, α, γ)′ are CS variables at entrance and exit of the magnetic element.

u
u′


out

=


√

β
β0

(cosφ+ α0 sinφ)
√
ββ0 sinφ

(α0−α) cosφ−(1+αα0) sinφ√
ββ0

β0
β

(cosφ− α sinφ


u
u′


in

. (1.54)

Here, in and out denote entrance and exit of the magnetic element. Eq.(1.54) is true for any

charged particle trajectory. CS variables are properties of magnetic element and each charged

particle having different position and slope will experience same values of these variables.

For a periodic system β = β0 and α = α0 , eq.(1.54) reduces tou
u′


out

= M

u
u′


in

, (1.55)
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where matrix M is the transfer matrix which is given by

M =

cosµ+ α sinµ β sinµ

γ sinµ cosµ− α sinµ

 , (1.56)

here µ is the phase advance for one turn or one super period [A.2]. This 2× 2 matrix is called

one turn or one period matrix and further, it can be written as

M = I cosµ+ J sinµ, (1.57)

where I is the 2× 2 identity matrix and J is given by

J =

 α β

−γ −α

 ; with property J2 = −I. (1.58)

Transfer matrix in this form has an advantage that it can be written as M = exp(Jµ).

If charged particle makes n turns in the ring then for stability of this charged particle

in the whole ring, there must be a stability criteria. In any large circular accelerator, an unit

periodic structure is repeatedly used to make complete structure of circular accelerator. Number

of repetition of this periodic structure is called super period. If Mp is the transfer matrix for

one super period and charged particles makes n turns in a storage ring then transfer matrix for

p super period and n turns is given as follows

M = ((Mp)
p)n = (Mp)

np = exp(npJµ). (1.59)

To ensure stability of particles after n turns, µ must be real and matrix element of M

must be finite. From eq.(1.56), a necessary condition for stability of charged particles can be

derived as [20]

|Trace(M)| = |2 cosµ| ≤ 2. (1.60)

In addition, CS variables at the entrance and exit can be related for a magnetic element

if transfer matrix M for a magnetic element is known. Consider CS variables at the entrance
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of the magnetic element, are (β, α, γ)in = (β0, α0, γ0) , then CS variables at the exit is given

by [19] 
β

α

γ


in

=


M2

11 −2M11M12 M2
12

−M11M21 M11M22 +M12M21 −M12M22

M2
21 −2M21M22 M2

22




β0

α0

γ0.

 (1.61)

Magnetic element

𝜷𝟎
𝜶𝟎
𝜸𝟎

𝜷
𝜶
𝜸

Fig. 1.12: CS variables at the entrance and exit of the magnetic element.

Eq.(1.61) is an important relation to see the behaviour of CS variables in different

magnetic elements e.g. for a drift space, the transfer matrix M can be given in terms of path

length, s, as

M =

1 s

0 1

 . (1.62)

Therefore, 
β

α

γ

 =


1 −2s s2

0 1 −s

0 0 1




β0

α0

γ0

 . (1.63)

Hence,

β(s) =β0 − 2α0s+ s2γ0

α(s) =α0 − sγ0

γ(s) =γ0.

(1.64)
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From eq.(1.64), β(s) follows a parabolic nature in drift space, α(s) is linear with s and γ(s) is

constant throughout drift space.

Some concepts like betatron tune, chromaticity, momentum compaction factor play

important role in operation of practical storage ring. These are discussed in the Sections 1.9,

1.10 and 1.11.

1.9 Betatron tune

Off axis particle oscillates about designed orbit due to focusing nature of the quadrupoles.

The number of oscillations per revolution is called betatron tune and denoted by νx for horizontal

plane and νy in vertical plane. Expression for betatron tune is given by [A.2]

νx,y =
µx,y
2π

=
1

2π

∮
1

βx,y(s)
ds, (1.65)

where µx,y =
∮

1
βx,y(s)

ds is the phase advance for complete ring.

Fig. 1.13: Tune diagram for fractional betatron tune up to fourth order resonance.

Any practical storage ring is not ideal, errors, either systematic or random, always are

present in the practical machine. Imperfections in the machine, e.g. dipolar error, quadrupolar
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error, sextupolar error, excite resonances in the storage ring. Therefore, for stable oscillations,

there are restriction on the betatron tunes. For example betatron tune should not be integer

or half integer or one third integer. Dipolar error generates first order resonances or integer

tune resonances, quadrupolar error generates second order or half integer tune resonances

and sextupole error generates third order resonances. General condition for resonance can

be written as mνx + nνy = l, where m,n, l are integers. This is the equation of straight line

in a 2-D plane, called tune space. This is shown in Fig.1.13 up to fourth order. Each line is a

resonance line and |m|+ |n| is called order of resonance. In order to operate a storage ring, the

fractional betatron tunes in both planes should be far away from the resonance lines.

1.10 Chromaticity

Generally, in a storage ring there are bunches instead of a single charged particle and

these bunches have large number of charged particles. In addition, single bunch has spread

in energy, i.e., each charged particle has small energy deviation from the reference charged

particle. After passing through the quadrupole, these different energy charged particles experi-

ence different focusing force, and as a result, they focus at different points. This phenomenon

is called chromaticity.

Momentum dependent quadrupole strength is given as [2]

k(p) =
e

p
g, (1.66)

here e is the charge on charged particle. Then change in quadrupole strength will be

∆k =
dk

dp
∆p =

eg

p0

(
∆p

p0

)
= −kδ (1.67)

∆k =


kδ , for horizontal motion (k > 0)

−kδ , for vertical motion (k < 0)

(1.68)
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For horizontal focusing quadrupole, higher momentum charged particle experiences

weaker quadrupole strength and vice versa for lower momentum charged particles. These

effects introduce shift in betatron tune, which may cross the resonance line and may lead to

loss of the beam. Total betatron tune shift can be given as [5, 6]

∆νx,y =
1

4π

∫
βx,y(s)∆kx,y(s) ds = ∓ 1

4π

∫
βx,y

∆p

p0

k(s) ds. (1.69)

Taking k positive, naturally occurring chromaticities for both planes of the machine are defined

as [5]

ξx,y =
∆νx,y

∆p
p0

= − 1

4π

∮
βx,yk(s) ds. (1.70)

For a strong focusing machine, natural chromaticity is always negative [5]. Natural

chromaticity depends on betatron function and strength of the quadrupoles only, i.e., higher

strength quadrupole placed at higher beta functions will lead to higher natural chromaticity.

Correction of natural chromaticity is done by using sextupoles. Expression for chromaticity

correction for horizontal and vertical planes are given by [5]

ξx,y = − 1

4π

∮
βx,y(s)[k(s)∓ S(s)η(s)] ds, (1.71)

where S(s) is the sextupole strength. Using appropriate strength of the sextupole, one can

achieve desired value of chromaticity in the machine. To efficiently correct the chromaticity in

each plane, chromatic sextupoles should be placed at the location where dispersion is non-zero

and betatron functions are well separated. Horizontal chromaticity correction needs large

horizontal and small vertical beta function and vice versa for the vertical chromaticity correction.

Sextupole having a strength S, compensate the focusing error by deflecting higher momentum

charged particle and lower momentum charged particle towards the focusing point.

In a storage ring, there are two types of aperture: (i) physical aperture, which is defined

by boundary of vacuum chamber, and (ii) dynamic aperture, which is a completely theoretical
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phenomenon. Dynamic aperture is defined as ”stable area of a boundary under non-linear

forces ”. Non-linear forces arises due to non-linear magnetic fields e.g. fields of sextupoles,

octupoles and multipoles due to errors in the practical electron storage ring. Multipole fields

excite various higher order resonances and leads to particle loss in the beam. Therefore, area

available for stable oscillation of charged particles gets reduced.

Dynamic aperture of an electron beam in the storage ring is a hypothetical aperture

beyond which any charged particle will not survive. This means that if a charged particle is

inside of dynamic aperture, then it has stable oscillations for sufficient number of turns. It

is always experienced that large dynamic aperture provides good operating condition for a

any electron storage ring. It is very challenging to increase the dynamic aperture. Dynamic

aperture can be calculated by tracking of charged particle through the storage ring. The plot of

all maximum stable initial amplitude gives dynamic aperture boundary.

1.11 Momentum compaction factor

The path length of a closed off-momentum charged particle will differ from the path

length of the reference charged particle (which is defined to be the circumference, C). Momen-

tum compaction is defined as relative change in circumference per unit relative momentum

off-set and denoted by αc [2].

αc =
∆L
L

∆p
p

=
∆L
L

δ
. (1.72)

This quantity tells us about how orbits are closely packed for different off-energy charged

particles. αc can be negative, positive or zero depending on the energy deviation of the particle.

αc is related with dispersion as

αc =
1

C

∮
η(s)

ρ(s)
ds. (1.73)
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In a storage ring, a low value of α is desired to make beam close to reference orbit, which is

also a challenging task for a storage ring lattice designer.

In an electron storage ring, emission of synchrotron radiation affects the dynamics of

electron beam which is discussed below.

1.12 Effect of synchrotron radiation on electron beam in the

storage ring

A relativistic charged particle when accelerated in a macroscopic electromagnetic field

emits radiation which is called synchrotron radiation (SR). Instantaneous power radiated by

such a charged particle is given by [21]

P =
2e2

3c
γ6
(

(~̇β)2 − (~β × ~̇β)2
)
, (1.74)

where e is the charge of the charged particle, γ is the Lorentz factor, c is the speed of the

light, ~β = ~v
c

is the velocity and ~̇β = ~̇v
c

is the acceleration of the charged particle. In terms of

accelerating forces, the rate of radiated energy is proportional to the square of the accelerating

force. Also, the rate depends on the angle between the force and the charged particle’s velocity

and is larger by the factor γ2 =
(

E
m0c2

)2

when the force is perpendicular to the velocity than

when the force is parallel to the velocity. In a circular accelerator the typical longitudinal forces

(from the accelerating system) are much weaker than the typical transverse magnetic forces.

Therefore, one needs to consider the radiation effects that accompanied by the magnetic forces

only.

Energy lost by an electron, having energy E, in one turn in an electron storage ring is

given by [22]

U =
Cγβ0E

4

2π

∮
ds

[ρ(s)]2
=
cγE

4

2π

∮
ds

[ρ(s)]2
, (1.75)
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here β0 = 1 (at ultrarelativistic speed), Cγ = e2

3ε0(m0c2)4
is a constant and for electrons this

constant has a numerical value equal to 8.846 × 10−5 [m.GeV−3]. I2 is the second radiation

integral and is defined as [22]

I2 =

∮
ds

[ρ(s)]2
(1.76)

Second radiation integral is inversely proportional to square of the local radius of curvature

and for an isomagnet (constant field dipole), it is a constant and has value 2π
ρ

. Thus, for an

isomagnet energy loss per turn can be given as [A.3]

U0 = 88.575
[E(GeV)]4

ρ
. (1.77)

Eq.(1.77) shows that, electron storage rings with small radius of curvature (high magnetic field)

have higher energy loss per turn.

Fig. 1.14: Radiation damping phenomenon in horizontal plane. px and ps are the momentum of

electron in horizontal and longitudinal direction respectively. pRF is the momentum provided by RF

cavity. x′0 is the initial slope of electron and x′1 is the slope of electron after passing through RF cavity.

In an electron storage ring, emission of SR has damping effect on betatron oscillations

as well as synchrotron oscillations (oscillations in longitudinal direction). This damping effect

is called radiation damping. Fig.1.14 explains the phenomenon of radiation damping in the

horizontal plane. To understand this, consider an electron oscillating about a closed orbit in

horizontal plane having momentum p0, after emission of SR in bending magnet, the momentum
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of an electron reduced by ∆p in the direction of SR emission. The loss of momentum is

compensated by RF cavity. But, as shown in Fig. 1.14, after passing through the RF cavity

only longitudinal component of momentum, ps, is compensated and energy is restored. As

a result, slope of the electron is decreased. As electron moves in the ring, slope of electron

decreases turn by turn. This radiation damping phenomenon is true for each electron in the

beam which emits radiation and it leads to reduction in beam emittance. Also, this radiation

damping happens in each plane, i.e., horizontal, vertical and longitudinal planes. The rate

equation of damping of horizontal beam emittance is given by [22]

dεx
dt

= − 2

τx
εx. (1.78)

Similarly, for vertical beam emittance

dεy
dt

= − 2

τy
εy. (1.79)

Damping times in horizontal, vertical and longitudinal planes are given by [22]

τx =
2E0

jxU0

T0, (1.80)

τy =
2E0

jyU0

T0, (1.81)

τs =
2E0

jsU0

T0, (1.82)

where T0 is the time period for one revolution and ji=x,y,s is called damping partition number

and are given as [22]

jx = 1− I4

I2

, jy = 1, js = 2 +
I4

I2

. (1.83)

Here, jx, jy, and js are called horizontal, vertical and longitudinal damping partition number,

respectively. I4 is the fourth radiation integral and is defined as [22]

I4 =

∮
ηx(s)

ρ(s)

(
1

[ρ(s)]2
+ 2k1

)
ds, (1.84)
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where k1 is the normalized quadrupole strength in the dipole magnet. This type of magnets are

called combined function magnet. For a homogeneous field dipole magnet k1 becomes zero.

The damping partition numbers satisfy an important relation called Robinson theorem which is

given as [22]

jx + jy + js = 4. (1.85)

Significance of Robinson theorem is this, damping in a particular plane can be influenced by

damping in the other planes, because total damping number must be constant.

After so many turns, slope of electrons in the beam must go to zero, consequently beam

emittance will reduce to zero if only radiation damping phenomenon occurs. However, there

exist finite value of beam emittance called equilibrium or natural beam emittance. This is

because of counter effect that occurs in the electron storage ring, called quantum excitation.

It is well established that emission of SR radiation is discrete and quantum in nature.

As shown in Fig.1.15, after emission of photon from an on energy closed orbit electron, there

is a sudden change in energy of the electron and it oscillates about an off-energy closed energy.

In addition, electron beam consist of large number of electrons in the form of bunches. There

is energy spread in these electron bunches. Therefore, photons emitted from different electrons

are of different energy and also, random in nature [22,23]. These sudden change in energies of

electrons act as noise or fluctuation source in the phase space and act opposite to the radiation

damping, which prevent the betatron amplitude of oscillations to be damped to zero. Due

to quantum excitation, oscillations grow up unless they are balanced by radiation damping.

Including these two phenomena a rate equation for horizontal emittance can be written as [22]
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Fig. 1.15: Quantum Excitation phenomenon.

dεx
dt

= − 2

τx
εx +

2

τx
Cqγ

2 I5

jxI2

. (1.86)

In eq.(1.86), first term arises from radiation damping and second term arises from quantum

excitation. In the equilibrium condition, dεx
dt

= 0, and emittance is given by

εx0 = Cqγ
2 I5

jxI2

. (1.87)

εx0 is called natural emittance and Cq = 55
32
√

3
~
m0c

, ~ is the Plank constant divided by 2π. For

electron storage rings, its value is equal to Cq = 3.832 × 10−12m. I5 is the fifth radiation

integral and is defined as [22]

I5 =

∮
Hx(s)

[ρ(s)]3
ds. (1.88)

I5 depends onH function and inversely proportional to cubic power of local radius of curvature.

TheH function is defined as [22]

Hx = γxη
2
x + 2αxηxη

′
x + βxη

′2
x . (1.89)

The Hx(s) function depends on twiss parameters, dispersion and its derivative. There are two

more radiation integral which are defined as [22]

I1 =

∮
ηx(s)

ρ(s)
ds, (1.90)
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I3 =

∮
ds

|[ρ(s)]3|
. (1.91)

I1 is related to the momentum compaction factor αc, which plays an important role in the

longitudinal dynamics and I3 is related to equilibrium energy spread in a bunch, which is given

by

σδ0 = Cqγ
2 I3

jsI2

. (1.92)

For y-direction, ideally there should not be any dispersion. Therefore,H and hence fifth

radiation integral must be zero. This implies that the vertical emittance must be zero. However,

in deriving equation for the natural emittance, it is assumed that all photons were emitted

directly along the instantaneous direction of motion of electron. In fact, photons are emitted

with a distribution with angular width 1
γ

about the direction of motion of the electron [22]. This

leads to some vertical recoil that excite vertical betatron motion, resulting a non-zero vertical

emittance. An expression for lower limit of the vertical beam emittance, called quantum limit,

is given by [22].

εy,min =
12

55

Cq
I2

∮
βy(s)

|[ρ(s)]3|
ds. (1.93)

Though vertical beam emittance has finite value, but, still it is much smaller than the natural

beam emittance. Also, errors and betatron coupling in the practical electron storage ring,

increase the vertical beam emittance. It is always desirable to make errors in the practical

machine as small as possible to achieve quantum limit of vertical beam emittance.

Important mathematical relations are summarized in Table 1.1.

Table 1.1: Important mathematical relations [2, 22]

Radiation integral I1

∮ ηx(s)
ρ(s) ds

Radiation integral I2

∮
ds

[ρ(s)]2
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Radiation integral I3

∮
1
|ρ3|

Radiation integral I4

∮ ηx(s)
ρ(s)

(
1

[ρ(s)]2
+ 2k1

)
ds

Radiation integral I5

∮ Hx(s)
[ρ(s)]3

ds

Energy loss per turn 88.575 [E(GeV)]4

ρ

Natural emittance εx Cqγ
2 I5
jxI2

Damping partition numbers jx = 1− I4
I2

, jy = 1, js = 2 + I4
I2

Horizontal damping time τx 2E0
jxU0

T0

Vertical damping time τy 2E0
jyU0

T0

Longitudinal damping time τs 2E0
jsU0

T0

Robinson’s theorem jx + jy + js = 4

H function γη2 + 2αηη′ + βη2

Equilibrium energy spread σδ0 Cqγ
2 I3
jsI2

1.13 Different types of magnetic lattices and equilibrium

emittance

In order to achieve low emittance different type of lattices are proposed such as theoretical

minimum emittance (TME), double bend achromat (DBA), and triple bend achromat (TBA),
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a combination of TME and DBA. Now a days multi bend achromat (MBA) lattice are used to

achieve ultra low emittance in electron storage rings. Natural beam emittance can be written as

averaged quantities as [20]

εx0 = Cqγ
2 I5

jxI2

= Cqγ
2

〈
Hx(s)
ρ3(s)

〉
〈

1
ρ2(s)

〉 . (1.94)

For a lattice which utilizes isomagnetic dipole, ρ is constant and beam emittance is given by

εx0 = Cqγ
2 I5

jxI2

= Cqγ
2 〈Hx(s)〉

jxρ
. (1.95)

Storage ring having isomagnetic dipoles, the horizontal damping partition number jx ∼ 1 and

〈Hx〉 is the average over the dipoles [20]. Therefore, to minimize emittance is equivalent to

minimize 〈Hx〉 over the dipole with respect to ηx and βx.

The theoretical minimum beam emittance in the isomagnetic lattice is given by [5]

εx,min = FlatCqγ
2θ3, (1.96)

where θ is the bending angle of the dipole. Flat is called form factor, which depends on the

particular magnetic cell structure. From eq.(1.96), it can be seen that beam emittance depends

on third power of the bending angle. For a fixed energy electron storage ring Cqγ2 is constant.

Therefore, emittance in a given storage ring with fixed energy can be reduced with dipoles with

smaller bending angle. But small bending will lead to large number of dipoles to bend the

electron by 360 deg and this leads to large size of storage ring, consequently cost of the storage

ring will increase.

1.13.1 Theoretical minimum emittance (TME) lattice

In a TME lattice, there is a single dipole in the unit lattice cell. Dispersion and beta

functions are symmetric with respect to centre of the dipole magnet as shown in Fig.1.16. After
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minimizing Hx with respect to horizontal beta function and horizontal dispersion function ηx

over the dipole, the minimum of the average ofHx function is given by [5, 20]

〈Hx〉 =
1

12
√

15
ρθ3, (1.97)

where ρ and θ are the radius of curvature and bending angle of the dipole. Values of βx and ηx

at the entrance and at centre of the dipole magnet are given as

at the entrance of the dipole : (β0, α0, η0, η
′
0) =

(
8√
15
L,
√

15, 6Lθ,−2θ

)
, (1.98)

at the centre of the dipole : (βc, ηc)TME =

(
1√
60
L,
Lθ

24

)
, (1.99)

here L is the length of the dipole. Theoretical minimum emittance is given by

εx,TME =
1

12
√

15
Cq
γ2θ3

jx
. (1.100)

Fig. 1.16: Variation of horizontal beta and dispersion function in case TME lattice. Both functions have

minima at the centre of the bending magnet.

For a TME lattice form factor is taken as 1. Though TME lattice has lowest minimum

emittance. But they cannot be used for third generation synchrotron radiation sources due

to requirement of zero dispersion at the location of IDs. Both horizontal beta function and

dispersion function attain higher value in the quadrupoles, therefore, generate large negative
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natural chromaticity. Therefore, much stronger sextupoles are required to correct the chromati-

city. In addition, dispersion is nonzero at the ID straight section, which is not desirable. Hence,

TME lattice is not the proper choice for the storage ring lattice. Therefore, a lattice called DBA

is used which provide zero dispersion at location of IDs.

1.13.2 Double bend achromat (DBA)lattice

This type of lattice consists two bending magnets in the unit lattice cell to make an

achromat. If dispersion and it derivative are zero at the entrance of the dipole magnet, it is

called achromatic condition and lattice which provide achromatic condition is called achromat.

The dispersion free region is utilized for installation of IDs. This type of lattice is most widely

used in electron storage rings. In Fig.1.17, part of the achromat is shown. In this type of lattice

minimum of beta function is not at the centre of the bending magnet. After minimizing 〈Hx(s)〉

with respect to βx and αx, minimum of 〈Hx〉 is given by [20]

〈Hx〉MEDBA =
1

4
√

15
ρθ3, (1.101)

with the condition on βx and αx at the entrance as [20]

β0 =
6√
15
L α0 =

√
15 γ0 =

8
√

5√
3
. (1.102)

Minimum beam emittance is given by [5, 20]

εx,DBA =
1

4
√

15
Cq
γ2θ3

jx
. (1.103)

After choosing optimum values of β0 = 6√
15
L and α0 =

√
15 at the entrance of the dipole, beta

function achieves minimum value βx,minimum = 3
4
√

60
L at s0 = 3

8
L in the dipole magnet. From

eq.(1.100) and eq.(1.103) we found that

εx,DBA = 3εx,TME (1.104)
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Fig. 1.17: Variation of horizontal beta and dispersion function in the first dipole of DBA lattice.

Dispersion and its derivative are zero at the entrance of the dipole.

Though form factor for DBA is three time higher than the TME, a practical storage

ring in DBA configuration acquires even higher form factor than 3, generally, in the range of

3-10 [24]. For some storage rings, it may be higher than 10.

1.13.3 Multi bend achromat (MBA) lattice

To achieve much lower natural emittance, concept of MBA lattice was introduced.

In MBA lattice more than two dipole magnets are normally used. In a MBA lattice, more

number of TME dipoles are introduced between the two dipoles of DBA lattice. The minimum

emittance in a MBA lattice is given by [5]

εx,MBA =
1

12
√

15

(
M + 1

M − 1

)
Cq
γ2θ3

jx
, (1.105)

where M is the number of dipole in the MBA lattice and for equal bending angle in all dipole

used, θ is the average angle of all dipoles. Now a days, MBA lattice is more preferred to achieve

ultra low emittance in the electron storage rings.
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1.14 RMS beam sizes

In dispersion free region, the RMS beam sizes and beam divergences in the transverse

plane are defined by only betatron function and are given as [22]

Horizontal plane:
√
εxβx(s),

√
εxγx(s), (1.106)

Vertical plane:
√
εyβy(s),

√
εyγy(s), (1.107)

For a region where dispersion is finite, the RMS beam sizes and divergences are given by

Horizontal plane:
√
εxβx(s) + (ηxσδ)2,

√
εxγx(s) + (η′xσδ)

2, (1.108)

Vertical plane:
√
εyβy(s) + (ηyσδ)2,

√
εyγy(s) + (η′yσδ)

2, (1.109)

where εx and σδ are RMS beam emittance and RMS momentum spread.

1.15 Advance methods to improve beam emittance

In last few decades, new advance methods were introduced to reduce the beam emittance

further, like transverse gradient, longitudinal gradient bend (LGB), and anti bend etc. in the

dipole magnet. Here, we have discussed transverse gradient and LGB in a dipole.

Natural horizontal beam emittance as given in eq.(1.87) is

εx0 = Cqγ
2 I5

jxI2

. (1.110)

Here, the first term Cq is constant and second term γ2 is also a constant as energy in the storage

ring is fixed. Therefore, in order to reduce the beam emittance, only radiation integrals and

horizontal damping partition number are to be optimized. This can be done in following two

ways.
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Maximize jx: From eq.(1.84), if we introduce negative quadrupole gradient in dipole

magnet in such a way that the quantity I4
I2

becomes −ve, then jx can be made greater than 1

and beam emittance will reduce. As Robinson’s theorem puts a limit on jx, the value of jx can

be increased up to 2 only. Also, if one increase the jx above 2 by increasing k1, the dipole will

loose its dipole nature and behaves like a pure quadrupole and it is also difficult task to provide

such gradient in the dipole magnet. It means, improving horizontal damping partition number,

one can reduce beam emittance by a factor of 2. Physically, increasing horizontal damping

partition number means rate of radiation damping will increase, i.e., electron beam will damp

fast for the same quantum excitation.

(a) (b)

Fig. 1.18: (a) Linear variation of magnetic field along x-direction (black) and compared with

homogeneous field (blue). (b) Shape of dipole to get linearly decreasing magnetic field.

Since bending of electron is in horizontal plane, there will not be any effect on jy.

Therefore, js will increase due to Robinson theorem. Also, js is inversely proportional to

energy spread in the bunch [24], energy spread of bunch will increase and this leads to increase

in bunch length that is not desirable in electron storage rings. In Fig. 1.18, a linearly decreasing

magnetic field compared with homogeneous magnetic field is shown. At the center of dipole

both have same value of field. The linearly decreasing magnetic field will provide quadrupole

gradient in the dipole. Also, a curved shape of dipole is shown to produce linearly decreasing
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magnetic field.

Minimize the term I5
I2

: I5 contains H function in the numerator which is defined in

eq.(1.89) and ρ3 in the denominator. If, one is able to reduce the H function or increase the

radius of curvature or both in the dipole magnet, emittance will decreased naturally. To achieve

this goal, a longitudinal variation in dipole field profile was introduced [10]. These dipoles then

termed as longitudinal gradient bend (LGB). The LGB field profile instead of homogeneous

magnetic field in the dipole causes H function and radius of curvature to vary differently. In

recent studies, it was established that LGB profile follows parabolic decay [24] of the magnetic

field over the length of the dipole magnet. For achromat case, magnetic field decreases from

high value at one end to low value at other end as shown in Fig. 1.19 [24]. This LGB profile

helps in providing two major beam dynamical advantages: (i) reduction of beam emittance,

and (ii) large dispersion at the sextupole location.

Dipole

Bmax

Homo. magnetic field

By

s

Fig. 1.19: Variation of longitudinal field profile in the dipole magnet of a DBA lattice

For a TME lattice, the magnetic field profile is such that its maximum occurs at the

center of the dipole and field reduces symmetrically to lower value on either side as shown in

Fig. 1.20 [24]. This LGB profile satisfy only one purpose, i.e., reduction of beam emittance.
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Fig. 1.20: Variation of longitudinal field profile in the dipole of TME lattice

Using this type of LGB profile dispersion will reduce at the centre of dipole and conseq-

uently H function will reduce. This leads to reduction in beam emittance. Physically in both

cases i.e achromat and TME, we are reducing the quantum excitation in the dipole magnet.

1.16 Indus-2 storage ring lattice

In India, there are two electron storage ring based SRSs namely Indus-1 and Indus-2,

located at RRCAT, Indore. Indus-1, a 450 MeV energy synchrotron radiation source has

circumference of 18 m, which provides SR in the vacuum ultraviolet range. Indus-2, which is a

third generation electron storage ring, has energy 2.5 GeV and provides synchrotron radiation

in the hard x-rays regime [3, 4]. This radiation is very useful for variety of material study. A

schematic layout of Indus-1 and Indus-2 synchrotron radiation source facility is shown in Fig.

1.21. The base line lattice of Indus-2 was designed for beam emittance of 58 nm.rad.

Both storage rings share a common injector system consisting of a 20 MeV microtron

and 20-450/550 MeV booster synchrotron [3–5]. Unit lattice cell of Indus-2 is based on DBA

or Chessman Green lattice. In unit lattice cell, there are 2 dipole magnets for bending of beam,

9 quadrupoles (4 focusing type and 5 defocusing type) for focusing and defocusing action of

beam, 4 sextupoles (2 focusing and 2 defocusing) for chromaticity correction.
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Fig. 1.21: Schematic layout of Indus Accelerator complex [3, 5].

In Table 1.2 different designed parameters of Indus-2 lattice are given and different

magnetic elements with their maximum available strength are shown in Table 1.3.

Table 1.2: Different design parameters of Indus-2 storage ring

Beam Energy 2.5 GeV

Beam current 200-300 mA

Circumference 172.47 m

Beam Emittance, εx 58 nm.rad

Betatron tune [νx, νy] [9.2, 5.2]

Natural chromaticity [ξx, ξy] [-19, -12]

Corrected chromaticity [ξx, ξy] [2, 2]

Momentum compaction factor, αc 5.2× 10−3

Energy spread, σδ 9× 10−4

Damping time [τx, τy, τs] [4.74, 4.62 ,2.28] ms

Energy loss per turn 623 keV

Power loss 186.6 kW(BM)@ 300 mA
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Table 1.3: Different magnetic elements of the Indus-2 storage ring.

S.No. Name Type Length [m] Max.

Available

Field

Total

Number

1. BM Dipole (Rectangular type) 2.18 1.503 T 16

2. Q1D Defocusing Quadrupole 0.30 16 T m−1 16

3. Q2F Focusing Quadrupole 0.55 16 T m−1 16

4. Q3D Defocusing Quadrupole 0.40 16 T m−1 16

5. Q4F Focusing Quadrupole 0.40 16 T m−1 16

6. Q5D Defocusing Quadrupole 0.40 16 T.m−1 8

7. SF Focusing Sextupole 0.2 400 T m−2 16

8. SD Defocusing Sextupole 0.2 400 T m−2 16

Fig. 1.22: Variation of beta and dispersion functions in Indus-2 unit lattice cell. Bending magnets are

shown by green boxes, quadrupoles are in red and blue boxes and sextupoles are in yellow and black

boxes.
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Lattice functions for one unit lattice cell of Indus-2 are shown in Fig.1.22. This lattice is

designed in such a way that dispersion acquires high value at sextupole location, maximum

beta functions are less than 21 m through out the lattice cell.

Indus-2 is in regular operation. Therefore no changes in position and lengths of any

magnetic element of Indus-2 lattice can be done. Beam emittance of Indus-2 lattice can be

reduced by replacing homogeneous dipole with dipoles with LGBs. In this thesis work, studies

with LGB in the dipole magnet has been done with two purposes, (i) lower the beam emittance,

(ii) increase dispersion at sextupole location. In addition, building constraints are to be satisfied,

i.e. all other hardware need not be shifted.

1.17 Indus-3 storage ring lattice

Indus-3, a 6 GeV electron storage ring, is a proposed high brightness synchrotron

radiation source (HBSRS) at RRCAT. Baseline lattice has been designed to achieve emittance

of∼ 150 pm.rad. Indus-3 uses hybrid seven bend achromat lattice cell with ring circumference

∼ 911.7 m. The ultra low emittance of Indus-3 leads to brightness of the order of 1020 − 1022

photons per second per unit angle per unit area in 0.1% bandwidth of considered wavelength

with fully loaded IDs. In Fig. 1.23, the lattice functions for one unit lattice cell are shown

with position of different magnetic elements. In the Table 1.4, different designed parameters

are shown and the Table 1.5 shows numbers and strengths of different magnetic elements in

Indus-3 lattice. A transverses quadrupole gradient have been provided in BM3 and BM4. That

is why this lattice is a hybrid lattice. The strengths of quadrupoles are quite high. This leads to

tight focusing of beam in the machine. The aperture size of Indus-3 is quite small compared to

Indus-2 lattice.
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Fig. 1.23: Beta Functions of Indus-3 lattice cell. Boxes in red colour are dipole magnet, boxes in green

colour are quadrupoles and boxes in blue colour are sextupole magnets.

Table 1.4: Different design parameters of Indus-3 storage ring.

Beam Energy 6.0 GeV

Beam current 200 mA

Circumference 911.798 m

Beam Emittance, εx 149 pm.rad

Betatron tune [νx, νy] [74.15, 24.22]

Natural chromaticity [ξx, ξy] [-109.6, -80.9]

Corrected chromaticity [ξx, ξy] [4, 4]

Momentum compaction factor, αc 1× 10−4

Energy spread, σδ 1.02× 10−3

Damping time [τx, τy, τs] [8.72, 14.84 ,11.44] ms

Energy loss per turn 2.46 MeV

Power loss per turn 491.7 kW(BM)@ 200 mA
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Table 1.5: Different magnetic elements of the Indus-3 lattice.

S.No. Name Element Length [m] Required Field Total Number

1. BM1 Dipole 2.17 0.28 T 64

2. BM2 Dipole 2.17 0.28 T 64

3. BM3 Dipole 0.4 0.63 T 64

4. BM4 Dipole 0.325 0.75 T 32

5. Q1F Quadrupole 0.40 40.8 T m−1 16

6. Q2D Quadrupole 0.30 42.8 T m−1 64

7. Q3D Quadrupole 0.20 42.2 T m−1 64

8. Q4F Quadrupole 0.30 71.2 T m−1 64

9. Q5F Quadrupole 0.20 54.8 T m−1 64

10. Q6D Quadrupole 0.25 60.6 T m−1 64

11. Q7D Quadrupole 0.50 36.4 T m−1 64

12. Q8F Quadrupole 0.60 73.6 T m−1 64

14. S1 (D) Sextupole 0.25 3580 T m−2 64

15. S2 (F) Sextupole 0.25 4752 T m−2 64

16. S3 (D) Sextupole 0.250 2880 T m−2 64

17. SH1 (F)
Harmonic

Sextupole
0.25 1462 T m−2 64

18. SH2

(D)

Harmonic

Sextupole
0.1 2748 T m−2 64

F: Focusing, D: Defocusing
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As there are transverse gradient in BM3 and BM4, therefore, only BM1 and BM2 are

left which have homogeneous field. These dipoles can be chosen to study LGB profiles.

In this Chapter, a brief introduction of accelerator physics relevant to this thesis work

is presented which are very important in storage ring design. Many concepts like, lattice

functions, betatron tune, beam emittance, chromaticity etc are discussed. In addition, effect

of SR on the beam emittance and concept of radiation damping and quantum excitation which

leads to equilibrium emittance are also discussed. Different types of low emittance lattice

cell and advanced method to reduce the beam emittance are also described. Though, beam

emittance reduction is desirable in any storage ring, however for successful operation of the

facility, various other lattice parameters need to be optimized or constrained. For example,

betatron tunes should be far away from dangerous resonances, horizontal beta function should

be large at injection point, large value of dispersion is desirable at sextupole locations for

effective chromaticity correction, large dynamic aperture for good beam life time and injection

efficiency etc. These aspects make lattice design of a storage ring a complex optimization

problem. This requires a better understanding of optimization techniques. Various optimization

techniques are discussed in Chapter 2 and optimized result for Indus-2 and Indus-3 are presented

in Chapter 3 and 4.
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Chapter 2

Optimization techniques used in

accelerators

As discussed in Chapter 1, in lattice design of a storage ring, many conflicting objectives

like beam emittance, dynamic aperture, desired lattice parameters, with large number of variab-

les such as strengths of different magnetic elements, position of different magnetic elements

etc., and many constraints like maximum achievable strengths of magnetic elements, constraints

on lattice functions, betatron tune etc., are needed to be optimized. These aspects make the

storage ring lattice design a complicated multi-objective optimization problem. Therefore,

numerical techniques that can handle these complicated optimization problem are required. In

recent past, classical, like simplex method, as well as modern methods, which are evolutionary

methods, were used to handle these optimization problems. Evolutionary algorithms were

introduced in the field of accelerator design in recent years [5]. These evolutionary methods

found to be very efficient in designing of lattice of storage ring and set a new trend in optimizing

the accelerator performance in simulations as well as in real operation. In this Chapter, two

non gradient optimization methods, Nelder-Mead algorithm, a classical method and genetic
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algorithm, an evolutionary method are discussed in detail. These methods will be used to

perform numerical optimization of LGB profiles in a dipole magnet and the studies are presented

in Chapter 3.

The meaning of optimization of an objective function, which depends on one or more

independent variables, is to find the values of the independent variables for which the objective

function has extremum ( either minima or maxima). If there is only one objective function that

needs to be optimized, then this optimization problem is called single objective optimization

problem [25], which is discussed in Section 2.1. On the other hand, if there are more than

one objective function that need to be optimized, then this optimization problem is called

multi-objective optimization problem, which is discussed in Section 2.2.

2.1 Single objective optimization problem

In a single objective optimization problem, an objective function f(~x), is needed to be

optimized which depends on one or more independent variables ~x = (x1, x2, x3, · · · , xn) = xi;

where i = 1, 2, 3, · · ·n; n is the number of independent variables. Single objective optimization

problem can be written, mathematically, as [25]

Minimize or Maximize f(~x)

Subject to gj(~x) ≥ 0, j = 1, 2, 3, · · · , J,

hk(~x) = 0, k = 1, 2, 3, · · · , K,

xLi ≤ xi ≤ xUi , i = 1, 2, 3, · · · , n,

(2.1)

where g′is are J inequality constraints, h′is are K equality constraints, xLi and xUi are lower

and upper bound for ith independent variable, respectively. To optimize such single objective

function f(~x), one needs to find those values of independent variables for which f(~x) has

extremum (maximum or minimum) value. Most of the algorithms were developed to solve
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either minimization or maximization of objective functions. Hence, it was a difficult task

to handle mixed optimization problems. Therefore, to handle such optimization problems,

duality principle [25] was introduced, where any maximization problem can be converted into

minimization problem by multiplying the objective function by -1.

To solve single objective optimization problems, various classical methods, also called

derivative based methods, like Newton’s method, steepest descant method, and quasi-Newton’s

method, were developed [5]. In these methods, the objective function must be differentiable

upto first order (gradient) and sometimes, second partial derivatives (hessian) are required.

But in most of the real world problem, the first or second partial derivatives of the objective

functions are not always possible. Therefore, other methods called direct search methods, were

developed to solve single optimization problem.

The simplest direct search method is the “Brute Force Method”. Here, the search

domain is divided into grids, which are visited point by point, and whenever best one is

found, best found minimizer is updated. This method is also called sampling method. But

this method has several drawbacks like there is strong dependence of grid size on the problem

and exponential growth with grid size. Also search time increases exponentially. Another

search method that tries to avoid these difficulties is Nelder-Mead method. In the following

Section, the Nelder-Mead algorithm is discussed.

2.1.1 Nelder-Mead method

Nelder-Mead algorithm is designed to solve the classical unconstrained single objective

optimization problem. It uses a variable shape simplex. A simplex in Rn space is a convex

hull of n + 1 vertices, for example, in two dimensions, the simplex is a triangle and in three

dimensions, it is a tetrahedron.

A simplex based direct search method begins with a set of n+1 points ~x1, ~x2, · · · , ~xn+1 ∈
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Rn that are considered as the vertices of working simplex S. Here, each ~xi; i = 1, 2 · · · , n+ 1

is an initial solution of objective function. There are many methods to create initial simplex

like Spendley’s et al regular simplex, axis by axis simplex, Pfeffer’s method etc [26]. Pfeffer’s

method for generating initial simplex is described below.

In the Pfeffer’s method, two positive quantity τu and τz are defined, where τu is used for

usual components of ~x0, where ~x0 is the user defined initial guess of solutions, and τz is used

for the case where one component of ~x0 is zero. The standard values of τu and τz are

τu = 0.05 and τz = 0.00025.

The first vertex of the initial simplex is chosen as initial guess ~x0 and can be written as

~x1 = ~x0. (2.2)

The other vertices are defined as

(~xi)j =



(~x0)j + τu(~x0), if j = i− 1 and (~x)j 6= 0,

τz, if j = i− 1 and (~x)j = 0,

(~x0)j, if j 6= i− 1,

(2.3)

for vertices i = 2, · · · , n + 1 and components of initial guess j = 1, · · · , n. After calculating

initial simplex, this algorithm perform some operation for one iteration which are discussed

below [5, 27]

1. Ordering: In order to perform the algorithm, the vertices of S are ordered with respect

to the function values as

f(~x1) ≤ f(~x2) ≤ f(~x3) ≤ · · · ≤ f(~xn) ≤ f(~xn+1).

Objective function values f(~xn+1), f(~xn) and f(~x1) are called worst, second worst and

best points.
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2. Centroid: After ordering function values at vertices, centroid ~c of all vertices, except

worst vertex, is calculated.

~c =
1

n

n∑
i=1

~xi. (2.4)

3. Transformation: After calculating centroid, new working simplex is found from the

current one by replacing only the worst vertex ~xn+1 with a better point by using reflection,

expansion and contraction. If iteration succeeds, the accepted point becomes the new

vertex of the working simplex. If this fails, shrink the simplex towards the best vertex ~x1.

In this case, n new vertices are computed.

• Reflection: In reflection, reflection point, ~xr, is calculated as

~xr = ~c+ α(~c− ~xn+1), and fr = f( ~xr). (2.5)

Here, α is reflection coefficient. If f1 ≤ f( ~xr) < f( ~xn), accept point ~xr and terminate

the iteration here and go to the step 1 for next iteration.

• Expansion: If fr < f1, i.e., objective function has lower value at reflection point than the

best point, then expansion operation is performed and expansion point ~xe is calculated as

~xe = ~c+ γ(~xr − ~c) = ~c+ αγ(~c− ~xn+1) and fe = f(~xe). (2.6)

Here, γ is expansion coefficient. If fe < fr, accept ~xe and terminate the iteration.

Otherwise, if fe ≥ fr, accept ~xr and terminate the iteration here and go to the step 1

for next iteration. The expansion of the simplex is applied only if fe < fr < f1.

• Contraction: if fr ≥ fn, contraction is performed between best point and better of ~c and

~xn+1, then contraction point, ~xc is calculated, which can be either outside or inside.
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– Outside: If fn ≤ fr < fn+1 (i.e., ~xr is strictly better than ~xn+1). In this case,

outside contraction is performed and contraction point, ~xc, is calculated as

~xc = ~c+ β(~xr − ~c) = ~c+ βα(~c− ~xn+1) and fc = f(~xc). (2.7)

Here, β is contraction coefficient. If fc ≤ fr, accept ~xc and terminate the iteration

and go to the step 1 for next iteration. Otherwise, shrink operation is performed.

– Inside: If fr ≥ fn+1, inside contraction is performed and calculated as

~xc = ~c− β(~c− ~xn+1) and fc = f(~xc). (2.8)

If fc < fn+1, ~xc is accepted and terminate the iteration. Otherwise, perform the

shrink operation.

• Shrink: In this operation, n vertices are computed as

~xj = ~xl + δ(~xj − ~xl) and fj = f(~xj), for j = 1, 2, · · · , n+ 1 with j 6= 1. (2.9)

Here, δ is shrink coefficient. The shrink transformation was introduced to prevent the

algorithm from failing in the following case.

A failed contraction is much rarer, but it can occur when a valley is curved and one point

of the simplex is much farther from the valley bottom than the others. Contraction may

then cause the reflected point to move away from the valley bottom instead of towards it.

Further contractions are then useless. The action proposed, contracts the simplex towards

the lowest point, and will eventually bring all points into the valley.

In Fig. 2.1 and Fig. 2.2, different operation of Nelder-Mead algorithm for 2-D case are

shown. In these figures, ~x3 is the worst vertex for the simplex.
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Fig. 2.1: Reflection (left) and expansion (right) of Nelder-Mead simplex.
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Fig. 2.2: Outside contraction (left), inside contraction (middle) and shrink (right) of Nelder-Mead

simplex.

Different coefficients should satisfy the following constraints [27]

α > 0, γ > 1, γ > α, 0 < β < 1, 0 < δ < 1.

The standard values of these parameters are

α = 1, , γ = 2, β =
1

2
δ =

1

2
.

For a practical implementation of the Nelder-Mead algorithm, it must include a test that

ensures termination in a finite amount of time [28]. (i) Domain convergence or termination

test: It becomes true when the working simplex S is sufficiently small in some sense. (ii)

Function value convergence test: It become true when function values fj are close enough in
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some sense. (iii) No convergence test: It become true if the number of iteration or function

evaluation exceeds some prescribed maximum allowed value.

In MATLAB, Nelder-Mead algorithm is coded with the name fminsearch and has been

used in the present thesis for the optimization of LGB profile in a dipole magnet of a low

emittance lattice cell.

2.2 Multi-objective optimization

In multi-objective optimization problems, a set of objective functions, fm; m = 1, 2, 3, · · ·

,M , need to be optimized simultaneously. These objective functions can be defined in a vector

form as

~f(~x) = (f1, f2, f3, · · · , fM), (2.10)

here M is the number of objective function. Each fm is a function of ~x = (x1, x2, x3, · · · , xn).

Vector objective function ~f has to be optimized with linear or non-linear constraints within

variable bounds [25]. In mathematical form, optimization problem becomes

Minimize fm(~x), m =1, 2, 3, · · · ,M,

Subject to gj(~x) ≥ 0, j =1, 2, 3, · · · , J,

hk(~x) = 0, k =1, 2, 3, · · · , K,

xLi ≤ xi ≤ xUi , i =1, 2, 3, · · · , n,

(2.11)

J and K are the number of inequality and equality constraints respectively. xLi and xUi are

lower and upper bounds for ith independent variable. One must find vector ~x such that each

objective function achieves minimum value.

In real world multi-objective optimization, there may be conflicting nature of objective

functions, i.e., one function can only be improved at the cost of deteriorating the other functions.

In such cases, there does not exist unique optimal solution. There exist a number of solutions
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which all are optimal. But, for a practical point of view user always needs a single optimal

solution, no matter whether the associated optimization problem is single objective or multi-obje-

ctive. Therefore, in multi-objective problem one must find a set of all optimal solution by

considering all objectives equally important. After a set of all optimal solution is found, one

can use higher level qualitative information associated with each objective to make a choice.

Therefore, there is a two step process for an ideal multi-objective optimization procedure [25].

Step 1 Find multiple trade-off optimal solutions with a wide range of values for objectives.

Step 2 Choose one of the obtained solution using higher level information.

But, if for a particular problem a preference factor is known for each objective, then,

there is no need to follow above two step process. One can assign preference factor to each

objective and form a composite single objective [see Section 2.3]. This procedure is called a

preference based multi-objective optimization. Using different preference vector, one can find

many optimal solutions. But, it is important to realize that the trade-off solution is largely

sensitive to preference vector used in forming composite function. A change in preference

vector will result in a different trade-off solution and any arbitrary preference vector may not

result in a trade-off optimal solution to all problems. Besides this difficulty, finding a relative

preference vector itself is highly subjective and not straightforward. One of the classical method

to solve multi-objective optimization problem is discussed in the following Section.

2.3 Classical methods for multi-objective optimization

problems (MOOP)

Many classical methods were developed to solve MOOP like weighted sum method,

epsilon constraint Method, weighted matric methods, rotated matric methods etc. [25]. Weighted

sum method, a preference based approach for solving MOOP, is described here.
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Weighted sum method is useful if one knows about weight factors that must be given to

each objective function. One can write optimization problem with composite function as [25]

f(~x) =
M∑
m=1

wmfm

Subject to gj(~x) ≥ 0, j =1, 2, 3, · · · , J,

hk(~x) = 0, k =1, 2, 3, · · · , K,

xLi ≤ xi ≤ xUi , i =1, 2, 3, · · · , n,

(2.12)

where
M∑
m=1

wm = 1 and wm is the weight factor for mth objective function, which satisfy

0 ≤ wm ≤ 1.

This method is the simplest way to solve MOOP. In this method, each objective fm must have

same functional behaviour, i.e., each function must have minima. Otherwise this method will

not work.

Most of the classical methods use a deterministic procedure for approaching the optimum

solution. These classical algorithms start from a random guess solution. After that, based on

pre-specified transition rules, the algorithm finds a search direction, which is often arrived at

by considering local information. Now, an unidirectional search is performed along the search

direction to find the best solution. This best solution becomes the new solution and the above

procedure is continued for a number of times. These methods are fast converging, however,

they may converge to local minima. It is, therefore, recommended to run the method for few

times to achieve a reasonable solution. In addition, these methods have many user defined

parameters, for example in weighted sum method each weight factor, wi must be defined and it

is difficult to decide for an arbitrary optimization problem.

To avoid these difficulties, the evolutionary algorithms (EA) were introduced in MOOP.

One of the most striking difference between classical search and EA is that in each iteration,
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EA uses a population or set of random solutions. Therefore, the outcome of an EA is also

a population of solution. If there is a single optimum in an optimization problem, all EA

population will converge to that optimum solution. However, if there are multiple optimal

solution for an optimization problem, then EA can capture all optimal solution in its final

population. This ability makes EA an unique method in solving multi-objective optimization

problem.

2.4 Evolutionary algorithm for optimization problems

In 1975, Holland introduced the genetic algorithms (GA), a modern optimization method,

to handle MOOP which allows optimization algorithm to find global optimal solutions [25].

After that many methods were developed. In 1983, the simulated annealing algorithm was

introduced by Kirkpatrick et al. [29] and in 1995, Kennedy and Eberhart introduces another

recipe in the optimization, a particle swarm optimization (PSO) [30, 31]. In 1995, differential

evolution (DE) algorithm was introduced by Storn and Price [32]. These advance optimization

methods belong to population based optimization methods, which are a class of evolutionary

algorithms. These methods for optimization have proven their effectiveness in real world

problem where the objective functions and the constraints are discontinuous and non differen-

tiable.

The working of GA is based on the natural evolution and governed by Darwin’s principle

of survival of fittest which says that [5]

1. If above-average offspring is generated by genetic processing, usually it survives longer

than an ordinary individuals survives. Therefore, it has more chances to produce offspring

which have some of its qualities better than an average individual.

2. On the other hand, if a below-average offspring is created by a genetic processing, it
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generally does not survive longer and eliminated quickly from the population.

This suggest that individuals in the population that are most fit amongst all others will survive

in the next generation. This is the principle of genetic algorithm which is implemented in

mathematical form and used as the global search algorithms and is discussed below.

2.4.1 Genetic algorithm

The genetic algorithm (GA) is well established in the field of accelerator design. Since,

GA uses population based approach, therefore, constraints can be handle in much better way

than classical methods.

In all real optimization problems, there may be the case where domain of the problem

is not known. In that case, GA initiates its search from a random population of the solution.

If a termination criterion is not satisfied, different operators like reproduction, crossover and

mutation are applied to update solutions. One iteration of these operators is called one generation.

A flow chart for one iteration of genetic algorithm is shown in the Fig. 2.3 and various steps

involved in genetic algorithm is discussed in the following Sections [5]

1. Population initialization (P)

According to the problem range and constraints at any generation, initial population is

initialized. Familiar way to generate initial population is uniform distribution or Gaussian

distribution of the variables. This distribution must be generated within the upper and

lower limits of the variables. After the first population is created, GA assign fitness to

each solution. If the termination criteria is not satisfied then GA performs reproduction,

crossover and mutation operations to create population, called children or offsprings, for

the next generation which are discussed below.
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Fig. 2.3: Various steps involved in Genetic Algorithm.

2. Reproduction or selection

In the reproduction or selection method, more copies of a solution, which has highest

fitness, are reproduced. There are many selection methods for example tournament

selection, roulette wheel selection, ranking selection etc. Tournament selection is more

popular among other selection methods due to its simple implementation. In this selection

method n number of solutions are picked randomly and they compete with each other.

The solution which has highest fitness, wins. This solution goes into next generation. The

number of solutions which compete each other in the tournament is called as tournament

size. Normally, the tournament size is taken to be two and the tournament selection

method is called a binary tournament selection.

3. Crossover

Crossover operator in GA utilizes two or more parent solutions to generate offspring

of the reproduced population which is based on selection method. Simulated binary

crossover (SBX) is widely used among the available crossover operators [25]. Two
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offspring (xo1, xo2) solutions from two distinct parent solution (xp1, xp2) are generate

by SBX method using following set of equations [25]

xo1 =
1

2
[(1 + βi)xp1 + (1− βi)xp2],

xo2 =
1

2
[(1− βi)xp1 + (1 + βi)xp2],

(2.13)

where βi can be calculated using following relation [5]

βi =


(2qi)

−(ηc+1) ; qi ≤ 0.5,(
1

2−2qi

)−(ηc+1)

; otherwise,

(2.14)

where qi ∈ (0, 1) is a random number. ηc is a parameter that controls the crossover

process. Generated offspring solution are close to the parent solution if value of ηc is

high, and a small value of ηc allows the distant solution to be selected as offspring.

4. Mutation

Mutation in GA has same meaning as in natural evolution, i.e., changes in genes. Here,

a small change in a solution is done to mutate it. Mutation operation is performed after

selection and crossover operations. One of the mutation method is polynomial mutation.

It is given as [25]

xom = xo + ∆maxδ̄i, (2.15)

where ∆max =
(
x

(U)
i − x

(L)
i

)
and parameter δ̄i is calculated as

δ̄i =


(2ri)

−(ηm+1) ; ri < 0.5,

1− [2(1− ri)]−(ηm+1) ; ri ≥ 0.5,

. (2.16)

where ri ∈ (0, 1) is a random number and ηm is a parameter that controls the mutation

process. If ηm = 0, the independent variation−∆maxδ̄i are uniformly distributed between

∆max to ∆max. As ηm is increased largely, δ̄i approaches towards zero. It means that no

mutation is applied. Therefore x0m = x0
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These operations generates the population for the next generation t+ 1. This process continues

until the stopping criteria is satisfied.

Genetic algorithms can be used to solve single as well as multi-objective optimization

problems. Single objective optimization problem is defined in Section 2.1. In MATLAB, single

objective genetic algorithm is implemented as a code ”ga” and widely used in accelerator

design.

2.4.2 Multi-objective genetic algorithm

Most of the multi-objective optimization problem contains conflicting objectives, for

example, in lattice design of a storage ring one need small beam emittance and sizeable dynamic

aperture. These two objectives are example of conflicting objectives. one cannot achieve lower

emittance without worsening the dynamic aperture [5].

One of the goal of an ideal multi-objective is to find many trade-off solutions. Solutions

which satisfy all constraints and non dominated by each others are called Pareto optimal solution

and trade-off of Pareto optimal solutions is called Pareto optimal front [25]. A single objective

GA can be converted into a multi-objective optimizer with following steps: (i) emphasize

is given to the non-dominated solution in order to progress the solution towards the optimal

solution, (ii) to maintain diversity in the solution, emphasize is given to less-crowded solution,

(iii) to achieve fast convergence close to the true Pareto optimal front, emphasize is given to

best solutions.

To address these three issues, elitist non dominated sorting GA is developed to convert

single objective GA to multi-objective GA [5,25]. Its working principle is shown in Fig. (2.4).

The parent population (Pt) of size N is generated randomly and off-springs (Qt) of size N are

generated using GA operators at generation t. Together Pt and Qt makes a population Rt of

size 2N . This combined population is sorted into number of Pareto optimal fronts using non
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Fig. 2.4: NSGA-II procedure for one iteration [25].

dominated sorting. The first front F1 is completely non dominated set. The second front F2 is

dominated by members of F1 only. This process is continued to get more and more optimal

fronts. We assign fitness value 1 to F1, fitness value 2 to F2, and so on. A new parameter known

as crowding distance, which measures how close the individual is to its neighbour individual,

is calculated for each individuals. Large value of crowding distance provides better diversity in

the population [5].

The parent population Pt+1 of size N in the next generation are selected from non

dominated solution starting from the best solutions or best optimal fronts and so on. When

the number of population become N , rest of the solutions are simply rejected. This process of

selecting parent population from previous generation continued until termination criteria is not

satisfied. In MATLAB multi-objective GA is implemented with the code name gamultiobj.

In MATLAB, a complete package of simulation code with name Accelerator Toolbox

(AT) [33], has been developed at SLAC worldwide. This code calculates all lattice parameters

of a storage ring like emittance, momentum compaction factor, damping times, damping partition

numbers, energy loss per turn etc. Also transfer matrix for an element or whole ring can be

calculated. A program using AT can be written for a lattice design. AT generates data for plot
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of beta function, dispersion function etc. and tracking can also be done to calculate dynamic

aperture.

In this Chapter, different optimization techniques, in particular Nelder-Mead algorithm

and genetic algorithm, have been discussed. These optimization techniques are very useful

in handling optimization problems where derivatives of objective function are not possible.

These techniques can handle complex optimization problems and are widely used in accelerator

design. Both algorithms have been used in the study of optimization of LGB profiles in a dipole,

which is presented in Chapter 3.

69



Chapter 3

Optimization of longitudinal gradient

bend profiles in dipole magnet

As discussed in Chapter 1, longitudinal gradient bend (LGB) is an advance technique to

reduce the beam emittance. First study of LGB in a storage ring was presented by J. Guo and

T. Raubenheimer in 2002. In their paper [10], they applied the LGB in NLC damping storage

ring and found a satisfactory reduction of beam emittance than the homogeneous dipoles. Now

a days, magnet design technology has been improved much and most of the storage ring lattice

designer are using LGB in place of constant filed dipoles to reduce beam emittance further. In

this Chapter, optimization studies of LGB profiles in a dipole for two type of lattices namely

achromat and theoretical minimum emittance (TME) is presented which is discussed in the

following Section.

3.1 LGB profiles in dipoles for achromatic and TME lattices

In storage rings, mostly achromat type lattices are used, for example, double bend

achromat (DBA), triple bend achromat (TBA) or multi bend achromat (MBA), due to requirement
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of horizontal dispersion, η, and its derivative, η′, to be zero at the locations of IDs. A unit

cell of a DBA lattice, similar to Indus-2 storage ring, is shown in Fig. 3.1. It consist of two

homogeneous dipole magnets to bend the electron, nine quadrupoles to control lattice functions

and four sextupoles to correct chromaticity in both transverse planes. Using combination of

quadrupoles between the two dipoles, one can achieve achromatic condition, i.e., η and η′ are

zero at the entrance of the first dipole and symmetrically at the exit of the second dipole. This

lattice is designed to get large dispersion at sextupole locations.

IDs IDs

Quadrupoles Quadrupoles

Quadrupoles and sextupoles 

Point of mirror symmetry

Dipole Dipole

Fig. 3.1: Variation of dispersion function in DBA lattice. The green rectangular boxes are homogeneous

dipoles, blue rectangular boxes are focusing quadrupoles, red rectangular boxes are defocusing

quadrupoles, yellow ones are focusing sextupoles and the black ones are defocusing sextupoles.

Quadrupoles Quadrupoles

Dipole

Point of symmetry

Fig. 3.2: Variation of dispersion function in TME lattice. Dispersion function is symmetric in the

dipole and minima occurs at the center of the dipole. Two qudrupoles, one focusing (blue) and other

defocusing (red), at both side of the dipole are used to control the lattice functions.
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In Fig. 3.2, an unit cell of TME lattice with homogeneous dipoles is shown. Here,

achromatic condition is not satisfied. Though, TME lattice can not be used for third generation

storage rings due to requirement of zero dispersion at location of IDs, but, it is useful in

designing of TBA or MBA lattices, where more than one dipole satisfying TME condition

are used. In order to reduce beam emittance further in the same lattice, the homogeneous

dipoles can be replaced with dipoles having LGB profile in both type of lattices. LGB profiles

for DBA and TME lattices have been discussed in Section 1.15, Chapter 1. For a DBA lattice, a

parabolic decaying LGB profile is required. On the other hand, for a TME lattice, LGB profile

is such that its maxima occurs at centre of the dipole and reduces symmetrically on either side.

Though, continuous LGB field profile are desirable, but, design of continuous decay profile is

very complicated [11, 34]. Therefore, stair like parabolic decay profile is modeled instead of

continuous parabolic decay profile.

𝑳,𝑩, 𝝆, 𝜽
𝑳𝟏
𝑩𝟏

𝝆𝟏
𝜽𝟏

𝑳𝟐
𝑩𝟐

𝝆𝟐
𝜽𝟐

𝑳𝟑
𝑩𝟑

𝝆𝟑
𝜽𝟑

𝑳𝒏
𝑩𝒏

𝝆𝒏
𝜽𝒏

Fig. 3.3: Breaking of a homogeneous dipole (left) into n dipoles (right). The dipole (left) has

parameters, length (L), magnetic field (B), bending angle (θ), local bending radius (ρ). Same

parameters can be defined for each section of dipole (right).

In order to generate stair like LGB profile, dipole magnet is divided into n sections (Fig.

3.3) in such a way that total length is same as homogeneous dipole. After that, magnetic field in

each section is chosen in such a way that, it fits the continuous parabolic decay profile with the

condition that total bending angle must be same as homogeneous dipole. For DBA and TME

lattices, stair like parabolic decay profiles are shown in Fig. 3.4 and Fig. 3.5.
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As shown in Fig. 3.4, magnetic field in the first section is high (low local radius of

curvature ρ), which generates higher slope of horizontal dispersion, η′x, than the homogeneous

dipole, but almost same horizontal dispersion, ηx. In the next dipole section, magnetic field is

lower than the first section, but still higher than the homogeneous dipole, it will also generate

higher η′x and ηx will have higher value than homogeneous dipole. This behaviour of ηx is

shown in Fig. 3.4. Also, at the exit of the dipole, ηx and η′x are higher than the homogeneous

dipole, which leads to high dispersion at sextupole location. In each section, H function

and bending radius, ρ, will have different values than the homogeneous dipole. This leads

to different values of I5

(
= 〈H

ρ3
〉;H = γxη

2
x + 2αxηxη

′
x + βxη

′2
x

)
in each section and average

of I5 will have smaller value than the homogeneous dipole magnet due to dominating nature

of ρ3 in sections having magnetic field lower than the homogeneous dipole fields. In this way,

emittance will reduce.

After introducing LGB in the dipole magnet, one can achieve lower emittance in the

same circumference of the storage ring or one can design a compact ring for the same emittance.

Also, large dispersion at the sextupole location leads to low sextupole strength to correct the

same level of chromaticity in the machine. These are the major advantage of LGBs.

Dipole

B

Bmax

Homo. magnetic field

s
Dipole

s

𝜼𝒙

(a) (b)

Dipole

Fig. 3.4: Variation of longitudinal field profile in the dipole magnet (DBA). (b) Comparison of

Horizontal dispersion function for LGB dipole (solid curve) with homogeneous dipole (dashed curve).
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For a TME lattice, purpose of introducing LGB is to minimize beam emittance only. As

shown in Fig. 3.5, a symmetric decaying LGB profile reduces the dispersion at the center of

the dipole. Therefore, area under the curve, i.e., 〈H
ρ3
〉 reduces, which leads to lower emittance.

But, higher magnetic field will increase the SR loss, i.e., in order to reduce beam emittance,

one has to compromise high SR loss.

B

Homo. Magnetic field 

𝑩𝒎𝒂𝒙

Dipole
s s

Dipole

𝜼𝒙

(a) (b)

Fig. 3.5: (a) Variation of longitudinal field profile in the dipole magnet (TME). (b) Comparison of

Horizontal dispersion function for LGB dipole (solid curve) with homogeneous dipole (dashed curve).

3.2 Objective function to generate LGB profiles

Expression for the horizontal natural beam emittance is given by eq.(1.95) as

εx0 = Cqγ
2
〈Hx(s)
ρ3(s)
〉

〈 1
ρ2
〉
, (3.1)

here, Hx = γxη
2
x + 2αxηxη

′
x + βxη

′2
x , i.e., Hx = f(αx, βx, γx, ηx, η

′
x) and ρ is the local radius

of curvature of the dipole. For a storage ring with fixed energy, one can choose

f =

〈
Hx(s)

ρ3(s)

〉
/

〈
1

ρ2

〉
, (3.2)

as an objective function which, in principle, is a function of magnetic field and length in each

section of dipole. Therefore, optimization problem will be; minimize f( ~B, ~L) with constraints

on total length, total bending angle and maximum magnetic field. One more constraint on
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magnetic field in each section is that magnetic field should be of decreasing nature, i.e., Bi >

Bi+1; i = 1, 2 · · · , n − 1; n is the number of dipole sections. If dipole is divided into equal

sections such that total length is equal to length of homogeneous dipole magnet, then objective

function will be a function of magnetic fields only.

Variation in Courant-Snyder (CS) variables αx, βx and γx is governed by quadrupole

strengths. Therefore, LGB profile will introduce only marginal change (due to geometrical

focusing in dipoles) in these variables and CS variables of original lattice can be taken in

calculation ofHx function. It means that,Hx is independent of CS variables and only function

of ηx and η′x. A case study, where dipole magnet is divided into 5 equal sections, is discussed

in the following Section.

3.3 Optimization of LGB profiles in dipole for achromat lattice

To study LGB profiles for an achromat lattice, dipole of Indus-2 (a DBA lattice) is

taken. The length of the dipole is 2.175 m and maximum magnetic field is 1.503 Tesla. This

dipole magnet bends a charged particle by 22.5◦ with ρ = 5.55 m. To generate LGB profiles,

dipole is divided into 5 equal section such that total length of the dipole is unchanged. The

objective function to minimize beam emittance can be chosen as

f =

〈
Hx(s)

ρ3(s)

〉
. (3.3)

The 〈 1
ρ2
〉 term will be taken care by the ρ3 in the 〈Hx

ρ3
〉.
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Let θi and Li are the angle length of ith section of dipole magnet, where i = 1, 2, · · · , 5.

Therefore, optimization problem becomes

Minimize f( ~B) =

〈
Hx

ρ3

〉
with constraints ∆θ = |

i=5∑
i=1

θi − θoriginal| = 0,

max( ~B)i < 2.65.

( ~B)i > ( ~B)i+1; i = 1, 2, · · · , 4,

(3.4)

here ~B = (B1, B2, B3, B4, B5), θoriginal = 22.5◦ and length, L = 2.1795 m. The maximum

magnetic field, 2.65 T, is chosen based on SR loss and emittance reduction. Since ∆θ can not

be made to zero, therefore, if ∆θ is less than 10−3, then solution can be acceptable.

Point A Point B Point C Point D Point E Point F

𝜶 1.2462 0.5308 -0.1976 -0.9213 -1.6222 -2.2832

𝜷 [m] 1.5357 0.7595 0.6139 1.1027 2.2136 3.9195

𝜸 [m-1] 1.6625 1.6877 1.6924 1.6766 1.6405 1.5851

A B C D E F

Fig. 3.6: Values of CS variables at points A, B, ..., E, which are entrance of each dipole section and F is

the exit of last section.

In Fig. 3.6, values of CS variables are given at points A, B, ..., F. At each point,

H-function is calculated. After that, taking average of the H function at entrance and exit

of each dipole section, H function is calculated at the centre of each dipole section. Then

objective function can be calculated as

f =
1

5

5∑
i=1

Hxi

(ρi)3
. (3.5)

.

76



Here, hard edge model of dipole [2] is assumed, i.e. fringe fields between two dipole

sections are completely ignored. Two optimization methods, Nelder-Mead algorithm and single

objective genetic algorithm, have been used to generate LGB profiles.

3.3.1 Optimization using Nelder-Mead algorithm

The optimization problem is defined in eq. (3.4). The primary requirement of Nelder

Mead method is that it requires an initial guess to create initial simplex. Therefore, 1.5 Tesla

in each section of dipole magnet, which is the field of a homogeneous dipole, is chosen as an

initial guess. For this initial guess, the value of objective function is 2.07× 10−4. Here, default

stopping criteria of the algorithm are chosen, i.e., the algorithm will be stopped if objective

function does not change in successive iteration or the objective function is less than 10−4.

Though initial guess is provided for the first simulation run, but, it requires more relaxation on

the constraint of total angle to run the program. In the second simulation run, optimized values

of magnetic field from first simulation run can be used as initial guess and constraint on total

angle is made more tight than the first simulation run.
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Fig. 3.7: Variation of ∆θ with successive simulation run.

After 9 successive simulation runs, a solution for which ∆θ is 6.4×10−4 is achieved, and

solution is accepted. Variation of ∆θ for different simulation runs is shown in Fig 3.7 which

shows that using improved initial guess, constraint on ∆θ can be satisfied in few simulation
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runs. Different LGB profiles after each simulation run are shown in Fig. 3.8 and Variation of

objective function for 9th simulation run is shown in Fig.3.11.

After final simulation run, optimized values of magnetic fields in each section are

B = [2.0991 1.6772 1.4414 1.2539 1.0740][Tesla],

with objective function value 1.64× 10−4.
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Fig. 3.8: LGB profiles after each simulation

run using Nelder-Mead algorithm.
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Fig. 3.9: Variation of objective function after

8th simulation run.
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Fig. 3.10: Variation of ρ after final simulation

run.
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Fig. 3.11: Variation of dispersion function in

the dipole.

After assuming LGB profile in all dipole magnets of Indus-2 lattice, different parameters

in achromatic condition are shown in Table 3.1. In calculating the beam emittance (using
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eq.(3.1)), electron energy is considered to be 2.5 GeV, which is the designed energy for Indus-2.

For calculation of SR loss per turn, it is assumed that there are total 16 dipoles (each 22.5 deg)

to complete the full storage ring i.e. ring of Indus-2.

Table 3.1: Comparison of parameters with original lattice.

S.No. Parameter original lattice

Lattice with LGB

and achromatic

condition

1. Emittance [nm.rad] 58 41.5

2. SR loss per turn [keV] 623 656

The emittance for this case is less than∼ 30% from the nominal lattice, i.e., lattice with constant

field dipole with a little increase in SR loss (30 keV).

This study shows that Nelder-Mead algorithm requires good initial guess to find an

optimal solution in reasonable simulation runs. If initial guess is not good, it will need more

relaxation on the constraints and requires more simulation runs to find an optimal solution.

This is the major drawback of this method. To avoid these difficulties posed by Nelder-Mead

method, GA technique can be used. In the Section below, a study with GA is presented.

3.3.2 Optimization using genetic algorithm

The genetic algorithm uses a random population of initial solutions. In successive

generation, it try find a search direction in which solutions satisfy more constraints. The

objective function for this case can be defined in a similar way as,
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Minimize f( ~B) =

〈
Hx

ρ3

〉
with constraints

V ariable space range LB : 0.5 Tesla in each section

UB : 2.65 Tesla in each section

∆θ = |
i=5∑
i=1

θi − θoriginal| ≤ 10−3,

max( ~B)i ≤ 2.65.

( ~B)i >( ~B)i+1; i = 1, 2, · · · , 4,

(3.6)

here, UB and LB are lower and upper bounds of independent variables.

3.3.2.1 Optimization using GA with initial guess

In order to provide a search direction to GA, initial guess for this method is provided

same as in previous case, i.e., 1.5 Tesla in each section of the dipole. The number of generation

and population size are chosen as 50 and 100, respectively. In a single simulation run, GA gives

result with satisfying all constraints which is shown in Fig. 3.12.

After optimization the optimized values of the magnetic fields in each section of the

dipole are

B = [2.0982 1.6111 1.4742 1.2926 1.0676][Tesla],

which is shown in the Fig.3.13. The obtained LGB profile is almost similar to the profile

obtained using Nelder-Mead algorithm. The variation of dispersion function in the dipole is

shown in Fig. 3.14. The calculated values of the beam emittance and SR loss per turn are also

equivalent.

80



Fig. 3.12: Variation of objective function in different generations. Best fitness shows the value of

objective function at current generation and maximum constraint shows how constraints are more

satisfied in each generation.

Fig. 3.13: Variation of magnetic field and ρ.

For homogeneous dipole magnetic field and ρ

are 1.503 Tesla and 5.55 m respectively.
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Fig. 3.14: Variation of dispersion function in

the dipole.

Table 3.2: Comparison of parameters with original lattice in case of genetic algorithm.

S.No. Parameter original lattice Lattice with LGB and achromatic

condition

1. Emittance [nm.rad] 58 42

2. SR loss per turn [keV] 623 655
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Though, an initial guess is provided here (a bad solution for GA), GA can give results without

any initial guess in a single simulation run. This is the great advantage of GA over Nelder-Mead

method. One result without any initial guess is presented in the following Section.

3.3.2.2 Optimization using GA without initial guess

For this case, GA algorithm is used with same objective function defined in eq.(3.6)

without any initial guess. The variation of objective function and LGB profile are shown in

Fig. 3.15 and Fig. 3.16. The objective function reduces to almost same value as previous case

and a similar LGB profile is also generated. Emittance and SR loss are compared in Table 3.3,

which shows almost same result i.e. there is no need to provide initial guess to run the GA code.

After optimization the optimized values of the magnetic field in each section of the dipole are

B = [2.1701 1.6630 1.4979 1.0912 1.0904][Tesla]

Fig. 3.15: Variation of objective function in each generation for the case where no initial guess is

provided.
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Fig. 3.16: Variation of magnetic field and ρ.

For homogeneous dipole magnetic field and ρ

are 1.503 Tesla and 5.55 m respectively.
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Fig. 3.17: Variation of dispersion function in

the dipole.

Table 3.3: Comparison of parameters with original lattice.

S.No. Parameter original lattice Lattice with LGB and achromatic

condition

1. Emittance [nm.rad] 58 41

2. SR loss per turn [keV] 623 667.7

Based on these studies, it can be concluded that GA produces much better results compared to

Nelder-Mead algorithm in view of getting optimal solution in a single run of the simulation. It

can also be highlighted that the over all emittance in both the optimization is almost similar.

Emittance in each case reduced to ∼ 41 − 42 nm.rad from 58 nm.rad and SR loss per turn is

almost same.

3.3.2.3 Convergence test of GA

Simulation studies to test the convergence of GA algorithm in producing the LGB

profiles and the objective function is also carried out. The results of generated LGB profiles for
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fourteen simulation runs considering same lower and upper bounds of the magnetic fields are

shown in Fig.3.18. The objective function converges to the same value almost in all simulation

runs. There are very small variations in each profile except 13th and 14th profile. The small

variation in the profile is due to randomness in the initial population in each GA simulation run.
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Fig. 3.18: Different LGB profiles generated by genetic algorithm.

As shown in Fig. 3.19, though, there is a little variation in the field profiles and objective

functions in each case, but emittance is almost same which is∼ 40−42 nm.rad. In addition, SR

loss in each case is also same except one case (13th LGB profile), in which SR loss is ∼ 675

keV. It is because of increased magnetic field in the first section. This shows the advantage

of LGB dipole over homogeneous dipole, i.e., using dipoles with LGB, one can significantly

reduce beam emittance in the same circumference of storage ring.
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Fig. 3.19: Emittance for different LGB profiles with objective function and SR loss (color bar).
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3.3.2.4 Optimization using GA with hard constraint

Another study with hard constraint on maximum field is also presented, in which max-

imum field in first section is strictly desired to be 2.65 Tesla. This maximum field will shift

the critical wavelength of SR towards much harder X-rays [2], which is the requirement of

many material research. Using objective function of eq.(3.6) with one more constraint, i.e.,

max( ~B)1 = 2.65 Tesla, different LGB profiles have been generated which are shown in

Fig.3.20.

In this case, the value of objective function after optimization are 1.840 × 10−4 −

1.879 × 10−4 and emittance in achromatic condition are 38 − 39 nm.rad. Though, value of

objective function is increased, emittance in achromatic condition get reduced a little bit more

than previous cases, i.e., ∼ 38− 39 nm.rad, due to increased SR loss, which is increased from

623 keV to ∼ 720 − 727 keV, because of increased magnetic field. The increase in SR loss

enhances the radiation damping which ultimately reduce the beam emittance. The increased

SR loss can be compensated by increasing the RF power.
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Fig. 3.20: Different LGB profiles using GA with maximum magnetic field in the first section 2.65 Tesla.

In the previous studies, dipole magnet is divided into 5 sections. In the following

Section, we will explore the effect on beam emittance and SR loss by optimizing the LGB
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profiles in a dipole magnet, divided in more number of sections. Motivation of this case is to

achieve LGB profile close to true parabolic profile, and to see the effect on beam emittance. In

the following Section, studies with dipole divided into 10 and 15 sections are presented.

3.3.2.5 Selection of number of dipole sections

If a dipole is divided into 10 or 15 sections, the number of independent variables will be

10 or 15 respectively. Here, same objective function with more number of variables and hard

constrains on maximum magnetic field in first section has been used.

Case I: Dipole magnet is divided into 10 sections.

Optimization problem is given in eq.(3.6) and hard constraint on the magnetic field in first

section is taken. After optimization, optimized LGB profile is shown in Fig.3.21.
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Fig. 3.21: LGB profile for the 10 section case with hard constraint on maximum magnetic field.

Case II: Dipole magnet is divided into 15 sections.

In a similar way, dipole can be divided into 15 sections to get more converged profile towards

parabola. After optimization, the optimized profile is shown in Fig. 3.22.
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Fig. 3.22: LGB profile for the 15 section case with hard constraint on total magnetic field.

In Table 3.4, different parameters are compared for both the cases with 5 sections case.

Table 3.4: Comparison of different parameter with original lattice for 15 section case.

S.No. Parameter 5 section case 10 section case 15 section case

1. Emittance [nm.rad] 38.5 38.8 39.5

2. SR loss per turn [keV] 722 685 677

In both cases, emittance reduces from 58 to ∼ 39 nm.rad. This study shows that more number

of section in dipole does not lead to considerable reduction in beam emittance. It is also

challenging to design and manufacture the dipole with LGB profile for more and small lengths

of the sections, and it will increase the cost of magnet. For further studies, the case in which

dipole is divided into 5 sections is considered, which is an acceptable trend in low emittance

ring designs [34].

So far we have discussed the optimization of LGB profiles to minimize the beam

emittance based on single objective Nelder-Mead and GA algorithm. Various other objectives

are considered as the constraints. In the following Section, the optimization of the LGB profiles

using MOGA to minimize the beam emittance, maximize the dispersion at sextupole location,
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and minimize the SR loss will be discussed.

3.3.2.6 Optimization using multi objective genetic algorithm (MOGA)

The LGB profile optimization considering three conflicting objectives is performed

using MOGA algorithm. First objective is to minimize emittance (minimize I5), maximize the

dispersion at sextupole (in chromatic section) and minimize the SR loss. The second objective

of maximizing the dispersion can be converted to maximize the slope of dispersion at the exit

point of the dipole magnet. To see the behaviour of SR loss, slope of dispersion function

and emittance, a multi-objective optimization problem can be defined in which there are three

objective functions, (i) f1:
〈
H(s)
ρ3

〉
, (ii) f2: derivative of dispersion function at the exit of dipole

magnet and (iii) f3: SR loss per turn. The purpose of this study to see the trade offs between

conflicting objective functions. The optimization problem can be defined as

Minimize ~f( ~B) =(f1,−f2, f3)

with constraints

V ariable space range LB : 0.5 Tesla in each section

UB : 2.65 Tesla in each section

∆θ = |(
i=5∑
i=1

θi − θoriginal| = 0,

max( ~Bi) ≤ 2.65.

Bi >Bi+1; i = 1, 2, · · · , 4,

(3.7)

The negative sign is chosen for second objective, because it has to be maximize. The population

size is chosen as 300 and number of generations is chosen as 100. Some of the optimized LGB

profiles from previous studies are chosen as initial guess to give a search direction to GA. After

optimization, the following trade off between first two objective with third one is found which

is shown in Fig.3.23. It shows that all three objectives are conflicting. One has to choose
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LGB profile judicially. Large derivative of dispersion at the exit of dipole, which leads to large

dispersion at sextupole location, comes with large SR loss per turn. In Fig. 3.24, three cases

namely A, B and C are shown and corresponding parameters are compared in Table. 3.5. As

value of objective function increase, SR loss also increases. Though objective function in case

C is greater than the homogeneous case but emittance still reduces because radiation damping

dominates.
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Fig. 3.23: Pareto optimal front between first

and second objective. SR loss is given by

color at each point of Pareto optimal front.
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Fig. 3.24: Different LGB profiles for A, B and

C.

Table 3.5: Comparison of different LGB profiles in case of MOGA.

S.No. Parameter A B C

1. 〈H
ρ3
〉 1.656×10−4 1.878×10−4 2.347×10−4

2. SR loss per turn [keV] 666.8 708.2 769.1

3. η′ [rad] 0.3846 0.3854 0.3859

4. Emittance [nm.rad] 40.1 41.5 47.5
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3.4 Optimization of LGB profiles in dipole for TME lattices

To study LGBs in TME lattices, a lattice based on TME is designed considering the

same dipole (as in DBA lattice of Indus-2). This lattice uses same homogeneous dipole of

Indus-2, i.e., length and magnetic field are same. Unit lattice cell of Indus-2 in TME configuration

is shown in Fig. 3.25 with different magnetic elements and lattice functions are shown in Fig.

3.26. In TME configuration, there will be 16 super period instead of 8 to make the complete

ring with circumference 172.47 m.

Q1D Q1D

Q2FQ2F

Line of symmetry

Dipole

Fig. 3.25: Different magnetic elements of Indus-2 lattice in TME configuration.

Though, Indus-2 can not be operated in TME configuration, however TME is the backbone

of the MBA lattices, which can be inserted between two matching cells (DBA type) to reduce

the beam emittance below the limit of achromatic lattice. As shown in Fig. 3.5, LGB profile in

a dipole for TME lattice is such that the magnetic field must be maximum at the center of the

dipole and decreasing on either side of the dipole.
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Fig. 3.26: Variation of different lattice functions.

To generate stair like LGB profile (Symmetrically decaying), dipole is divided into 25

equal sections to get more smooth LGB profile. The middle section of the dipole is further

divided into 2 equal sections. Therefore, there are total 26 sections. Three cases have been

studied in which, maximum magnetic field is 6 Tesla, 5 Tesla and 4 Tesla. Here, in each

profile, maximum magnetic field in the center dipole section is desired.

The optimization problem for this case can be defined as

Minimize f( ~B) =

〈
Hx

ρ3

〉
with constraints

V ariable space range LB : 0.5 Tesla in each section

UB : 6.0 Tesla in each section

∆θ = |(
i=26∑
i=1

θi − θoriginal| = 0,

max( ~B)i ≤ 6,

( ~B)i <~Bi+1; i = 1, 2, · · · , 13,

( ~B)i =( ~B)27−i; i = 1, 2, · · · , 12,

max(( ~B)13) = 6 or 5 or 4

(3.8)

91



The CS variable at entrance, mid and exit point of the dipole are

entrance of the dipole (αentr, βentr., γentr.) =(5.6372, 6.4114, 5.1124)

at mid of the dipole (αmid, βmid, γmid) =(0, 0.1882, 5.3145)

at the end of dipole (αend, βend, γend) =(−5.6372, 6.4115, 5.1124).

(3.9)

It can be seen that, beta function achieves minimum at the center of the dipole in TME lattice

and symmetrically increases on either side. This behaviour is provided by α, where at the

entrance α is negative , at the centre it is zero, and at the exit it achieves same value as entrance

but positive. γ function is almost constant over the dipole.

After optimization, LGB profiles for three cases are shown in Fig. 3.27 and different

parameters after including LGBs are shown in Table 3.6.
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Fig. 3.27: LGB profiles for different chosen maximum magnetic field.

Table 3.6: Comparison of different parameter with original lattice in case of TME.

S.No. Parameter Homo.

magnetic field

Max. field 4 Tesla Max. field 5 Tesla Max. field 6 Tesla

1. Emittance

[nm.rad]

14.14 5.365 3.8 3.27

2. SR loss per

turn [keV]

623 917 964 1111
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This study shows that emittance can be reduced by less than half with dipoles having LGB than

the homogeneous field dipoles, but at the cost of increased SR loss because of high magnetic

field. Since magnetic field in the center dipole section is upto 6 Tesla, it can not be achieved

using normal electromagnetic dipole. One has to use superconducting dipole. These dipoles

with LGBs can be used in MBA lattices to reduce the beam emittance further in the same ring

or one can design a storage ring with lower circumference for the same emittance, this will

reduce the cost of the machine.

For the case, where magnetic field at the center is 5 Tesla, the variation of different

lattice functions are shown in Fig. 3.28. At the center of the dipole, dispersion function

is more minimum than the homogeneous dipole which leads to a reduction in H function.

Consequently, the beam emittance reduces. Also, beta functions are not changed much from

the original lattice.
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Fig. 3.28: Comparison of lattice functions with and without LGB.

In this Chapter, an extensive optimization study of LGB profiles using single and multi-

-objective genetic algorithms are presented. The LGB profiles of a dipole in DBA lattice case,
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and for a dipole in TME lattice case are optimized. Outcome of the study is that the beam

emittance reduces by ∼30% in DBA and less than half emittance can be reduced in TME case.

In a well design lattice, if dipoles are placed with LGBs, the distribution of dispersion

over the full lattice cell will change. It is due to the fact that quadrupoles are optimized for the

lattice functions with homogeneous field dipole. Further studies including optimized LGBs and

tuning of quadrupoles are presented in Chapter 4 for the case of well design lattice of Indus-2

and Indus-3. The performance comparison of the lattice with and without LGBs are made.
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Chapter 4

Indus-2 and Indus-3 storage ring lattice

performance with LGBs

In Section 1.16 and 1.17, Indus-2 and proposed Indus-3 electron storage rings have

been discussed. In operational storage rings, there always exists a possibility of up-gradation

to improve the performance. In newly design lattices with conventional means, one can also

do aggressive optimization to achieve ever improved performance by including technologically

challenging quadrupole gradient and dipole fields.

The optimization studies are presented in Chapter 3 to get optimal LGB profiles in

view of beam emittance and increasing the dispersion at sextupole location, to achieve efficient

correction of natural chromaticity with reduced sextupole strengths. First study to reduce

emittance for achromatic and TME cases are presented and comparison of emittance with

nominal emittance were performed. It was also highlighted that the SR loss per turn in LGB

case is always higher than the SR loss per turn from constant field dipole. In these studies, it was

assumed that the lattice functions at the entrance of the dipoles are known and fixed, however, in

actual lattice design with LGB profiles, the distribution of dispersion function get changed. It is
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the case when quadrupoles are operating with the nominal lattice, i.e., the lattice with constant

field dipoles. Therefore, re-tuning of the quadrupole strengths are required to achieve desired

distribution of the lattice functions after including LGBs in place of constant field dipoles.

These studies are carried out for the case of Indus-2 storage ring, which is operational in user

mode, and Indus-3, which is an upcoming project at RRCAT. In Section 4.1, the optimization

of quadrupoles with dipoles replaced with LGBs are performed to achieve desired distribution

of lattice functions for Indus-2 storage ring lattice. The comparative study of dynamic aperture

in the lattice with and without LGB are given in Section 4.2. The optimization of various

objectives using MOGA are also presented in Section 4.3 to get trade off between them in a

running/ designed electron storage ring in the same circumference. Similar studies for Indus-3

are performed in Section 4.4.

4.1 DBA lattice of Indus-2 with LGBs

As discussed in Section 1.16, Indus-2 has been designed based on DBA configuration

with ring circumference 172.47 m and beam emittance of 58 nm.rad. Positions of different

magnetic elements of unit lattice are shown in Fig. 4.1. This unit lattice consist 2 dipoles, 9

quadrupoles and 4 sextupoles. Each element in the unit lattice is placed in such a way that it

looks symmetric with respect to centre of quadrupole Q5D and strength of the quadrupoles are

such that the lattice/ amplitude functions have distribution as shown in Fig. 4.2. The achromatic

condition, i.e., dispersion and its derivative at straight sections are zero, is achieved using three

quadrupoles (two Q4F and one Q5D) between dipole magnets and beta functions are controlled

using all five families of qudrupoles, i.e. Q1D, Q2F, Q3D, Q4F, and Q5D.
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Q1D Q3D Q5D Q1D Q1D

Q2F Q4F Q4F Q2FSF SF

SD SD

Half ID 

section

Half ID 

section
Dipole Dipole

Fig. 4.1: Basic elements in Indus-2 unit lattice (not to scale). Here, QF: focusing quadrupole, QD:

defocusing quadrupole, SF: focusing sextupole, SD: defocusing quadrupole. Number indicates family

of that element, e.g. Q1D shows first family of defocusing qudrupoles.

Fig. 4.2: Variation of beta and dispersion functions in Indus-2 unit lattice.

Since Indus-2 is in regular operation in user mode, ring size, length and position of any

magnetic element in the machine can not be changed. In order to reduce the beam emittance

further in the same ring with minimum hardware change, dipoles with LGBs can be used.

4.1.1 Optimization of lattice function with LGBs

The optimization of lattice functions of an achromat (DBA or MBA) lattice with LGBs

is a two step process. First, optimization of the dipole to get optimal LGB profile, which

is already discussed in Chapter 3, second, optimization of strength of quadrupoles to match
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lattice function to the nominal lattice.

A LGB profile has been chosen from Section 3.3.2, Chapter 3, in which dipole is divided

into 5 sections and magnetic field in the first section is 2.65 Tesla. Magnetic fields in each

section of the dipole are given as

B = [2.6500 1.5575 1.2632 1.0845 0.9575] [Tesla]. (4.1)

The comparison of LGB profile with homogeneous field is shown in Fig.4.3. After replacing

homogeneous dipoles with dipoles with LGBs in an unit lattice, achromatic condition is lost

which is shown in Fig. 4.4. This is because of unoptimized quadrupole strengths. Also, it

can be seen in Fig. 4.5 and Fig. 4.6 that introduction of LGB does not change beta functions

which was assumed in LGB profiles study. A small change in horizontal beta function is due

to geometrical focusing in dipole magnets. But over the dipole, it is same as nominal lattice.
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Fig. 4.3: LGB profile compared with

homogeneous dipole field in the dipole

magnet.
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with LGB.

In order to get achromatic condition and constraints on other important parameters like

constraint on betatron tune, beta functions, stability conditions etc., optimization of quadrupole

strengths is required. Here, all five families of quadrupoles, i.e., Q1D, Q2F, Q3D, Q4F and

Q5D, have been chosen in the optimization. Here, this optimization problem is solved using

single as well as multi-objective techniques. Using single objective techniques and using

quadrupole strengths of nominal lattice as initial guess is described below.

In this optimization problem, there are many objective functions which are; (i) f1:

beam emittance, (ii) f2: dispersion at straight section, (iii) f3: slope of dispersion at straight

section, (iv) f4: derivative of beta functions at injection, (v) f5: beta functions at injection,

(vi) f6: betatron tunes (vii) f7: beta functions at symmetric point. Each objective function

f3, f4, f5, f6, and f7 contains two objective functions for each plane. Therefore, there are

12 objective functions in total. In Indus-2, normalized strengths of qudrupoles can go upto

2.2 m−2. This will put a constraint on maximum available normalized quadrupole strength.

Also, lattice functions are periodic, therefore, to find a stable solution, |Trace(M)| ≤ 2, where

M is the transport matrix of periodic cell. In addition, maximum value of beta functions should

be in limit, this will also be a constraint.
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The available variables for this optimization problem are normalized strength of qudrup-

oles, i.e., ~k = (k1, k2, k3, k4, k5). In order to minimize each objective function, the objective

function can be written as (fi − f 0
i )2; i = 1, 2, · · · , 12. For first objective function, f 0

1 can be

chosen as 0, because emittance is desired as low as possible. Other f 0
i : i = 2, 3, · · · , 12 can

be chosen as of nominal or original lattice. The initial values of quadrupole strengths are

k0 = [−0.79860 1.52949418 − 1.6899011 1.81969574 − 1.116476][m−2]

A composite objective function with proper weight factors can be defined to convert this multi

objective optimization problem into a single objective optimization problem which can be

written as

Minimize f(~k) =
i=12∑
i=1

wi(fi − f 0
i )2

with constraints

|(~k)i| ≤ 2.2 m−2,

|Trace(M)| ≤ 2,

max(βx and βy) ≤ 20 m,

(4.2)

where, wi(≥ 0) is the weight factor for ith objective function and satisfy the relation
∑
wi = 1.

Weight factors are chosen in such a way that it gives satisfactory optimal result. High value of

weight factor is given to dispersion at straight section than the rest of the objective functions.

Because requirement of achromatic condition is the first priority.

After optimization of the problem, the optimized values of quadrupole families Q1, Q2,

Q3, Q4, Q5 are

k = [−0.8733 1.5686 − 1.6752 1.6591 − 1.0760][m−2],

and behaviour of objective function after each iteration is shown in Fig. 4.7. With initial guess

k0, the objective function has value equal to 0.56 and after optimization, it reduces to 0.004.
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The algorithm stops due to no improvement in objective function in the successive iterations.

The strength of quadrupoles Q4F and Q5D are decreased from nominal lattice, which leads to

reduction in natural chromaticity in the machine.
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Fig. 4.7: Variation of objective function.
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Fig. 4.9: Variation of horizontal beta function

with LGB and matching.
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Fig. 4.10: Variation of vertical beta function

with LGB and matching.

After optimization of quadrupole strengths of all five family, variation of lattice functions

are shown in Fig.4.8, Fig.4.9 and Fig.4.10, which are given by lattice with LGB and matching.

Achromatic condition is restored after optimization of quadrupole strengths. The small change

in horizontal beta function is because of higher weight factor is given to second objective
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function. But, still these changes are small. Comparison of different parameters of Indus-2

lattice with LGB and original lattice are presented in Table 4.1.

Table 4.1: Comparison of Indus-2 lattice with LGB, Indus-2 lattice with LGB and betatron

tune correction and original lattice.

S.No. Parameters Indus-2 (Original

Lattice)

Indus-2 (Lattice

with LGB and

matching)

Indus-2 (lattice

with LGB,

matching, and

corrected betatron

tune)

1. Energy (GeV) 2.5 2.5 2.5

2. Emittance (nm-rad) 58.1 38.3 43.8

3. Energy loss per turn

(keV)

623 725 725

4. Betatron tunes [νx, νy] [9.2 5.2] [8.71 5.19] [9.2 5.2]

5. Natural chromaticity [-19.05 -12.05] [-19.12 -11.14] [-14.33 -11.26]

6. Momentum Compaction

factor

0.0052 0.0051 0.0051

7. Dispersion function at

sextupole location [m]

0.68 0.76 0.76

8. Beta function at

injection [m]

[14.02 2.0] [13.2 2.1] [7.4 1.9]

9. Max. Beta function [m] [20.5 18.5 ] [20.0 17.4] [12.5 17.5]

10. Beta function at

symmetric point [m]

[1.8 11.2] [3.0 13.6] [1.88 13.1]
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11. Required sextupole

strength for

chromaticity correction

[2,2] [m−3]

[13.03 -11.72] [10.85 -10.09 ] [9.54 -9.582]

The brightness ratio of Indus-2 lattice with LGBs and nominal lattice is calculated using 1%

coupling and σr = 0. The ratio of brightness comes out to be ∼ 2. Emittance, after including

LGBs in dipoles of Indus-2 lattice, reduces from 58 to 38 nm.rad with marginal change in other

important parameters. As natural chromaticity of the machine is decreased and dispersion at

the sextupole location is increased from 0.68 m to ∼ 0.76 m, sextupole strengths to correct the

chromaticity to the same level of nominal lattice get reduced from 13.03 m−3 to 10.85 m−3 in

horizontal and -11.72 m−3 to -10.1 m−3 in vertical plane. These are the major advantages of

dipoles with LGB in a storage ring over storage rings with homogeneous dipoles.

Here, betatron tunes are not same as original lattice. Therefore, one has to correct

betatron tune to the original lattice to see the effect of betatron tune correction on lattice

functions. Therefore, betatron tune is corrected to [9.2, 5.2] using Q2F and Q3D families

of quadrupoles. These quadrupoles are chosen, because they are located at zero dispersion and

will not affect achromatic condition. After betatron tune correction, strengths of quadrupole

Q2F changes from 1.5686 m−2 to 1.6204 m−2 and strength of quadrupole Q3D changes from

-1.6752 m−2 to -1.7003 m−2. The different lattice parameters after betatron tune correction

are presented in the fourth column of Table 4.1 and variation of horizontal and vertical beta

functions are shown in Fig. 4.11 and Fig. 4.12.
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Fig. 4.11: Variation of horizontal beta

function with LGB, matching, and betatron

tune correction.
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Fig. 4.12: Variation of vertical beta function

with LGB, matching and betatron tune

correction.

It can be seen that how betatron tune is sensitive to lattice function. After correction of

betatron tune, emittance increased by 5 nm.rad and horizontal beta function at injection changes

from 13.92 m to 7.4 m. This decrease in horizontal beta function will lead to more strengths

of kicker to inject the beam in the storage ring, which is a disadvantage. But, low horizontal

beta function at IDs location lead to low beam size in IDs which is an advantage. In practical

storage ring, real effect of the change in horizontal beta function can be seen only after study

of dynamic aperture, which is presented in the following Section.

4.1.2 Dynamic aperture

In Section 1.10, the concept of dynamic aperture is explained. This phenomenon arises

due to non linearity in the machine. As strength of sextupole for chromaticity correction is small

in lattice with LGBs compared to original lattice. Hence, dynamic aperture should not change

much from original lattice. After correcting chromaticity to [2, 2] (horizontal and vertical)

with two families of sextupoles, for on momentum charged particles, a comparative study of

dynamic aperture for three cases are compared in Fig. 4.13.
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To calculate dynamic aperture, range of x is chosen from -32 mm to 32 mm in step size

of 0.5 mm. On the other hand, range of y is chosen from -17 to 17 mm. The maximum range

of x and y are chosen on the basis of available physical aperture of vacuum chamber. Charged

particle is tracked for 1000 turns in the grids and the boundary is decided on the basis of loss,

i.e., after a certain point of the grid, charged particle is lost.

-40 -20 0 20 40
0

5

10

15

20

x [mm]

y
 [

m
m

]

 

 

Original lattice

Uncorrected betatron tune

Corrected betatron tune

Fig. 4.13: Dynamic aperture comparison for on momentum charged particles.

Though, positive values in vertical direction are plotted, but graph of the boundary is

symmetric with respect to x, i.e. a closed boundary will be there. Also, open ends at both side

of x is because of fixed range of x. If range of x is allowed more, there will not be any open

ends. As depicted in Fig. 4.13, if betatron tune is allowed to be relaxed then dynamic aperture

shifted towards outer region in x direction. But, if we correct the betatron tune it approximately

covers the same area as original lattice i.e., life time of electron beam will be same as original

lattice.

In Section 4.1, quadrupole strengths are optimized using single objective algorithm.

Major disadvantage of this algorithm is that the weight factors are highly sensitive and a proper

choice of these weight factors is required which is a tedious task and one has to run many

simulation runs to get an optimal solution. In order to avoid these difficulties, multi-objective
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genetic algorithm (MOGA) can be used. A optimization study using MOGA is presented in

the following Section.

4.2 Comparative study of beam emittance with and without

LGBs

To find a trade-off between dispersion function at straight section and emittance, MOGA

has been used. As optimization of quadrupole strengths of Indus-2 lattice with LGB is a

multi-obje-

ctive optimization problem. In this study, two objective functions, (i) f1: emittance, and (ii) f2:

dispersion at straight section are chosen and rest of the objective functions like maximum beta

functions (βx,max, βy,max), betatron tunes (νx, νy), beta functions at symmetric point (βx,sym, βy,sym)

etc., are chosen as constraints. The optimization function can be written as

Minimize~f = (f1, f2),

with constraints

|(~k)i| < 2.2 m−2; i = 1, 2, · · · , 5,

|Trace(M)| ≤ 2,

max(βx and βy) <= 20m,

0.7 ≤ fractional νx,y ≤0.9 or 0.1 ≤ fractional νx,y ≤ 0.25,

|βx,inj − 14| <1.2 and |βy,inj − 2| < 0.5,

|βx,sym − 1.8| <1.5 and |βy,sym − 14.2| < 0.2.

(4.3)

The range of betatron tune is chosen so that fractional betatron tune is far away from dangerous

resonances. Range of other constraints are chosen to get optimal solution. In Fig.4.14, a Pareto

optimal front to show trade off between dispersion function at straight section and emittance is
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given and it is compared with Pareto optimal front for original lattice. In Pareto optimal front,

there are large number of solutions for strengths of quadrupoles.

Fig. 4.14 shows that both objectives are conflicting in nature and one must choose

a solution judicially. To get desired emittance one has to compromise dispersion at straight

section. This is the major advantage of multi-objective genetic algorithm over classical methods.

Beta functions at injection, natural chromaticity, betatron tune, maximum beta functions for

different set of quadrupole strengths are shown in Fig.4.15, Fig.4.16, Fig.4.17, and Fig.4.18

and data of quadrupole strengths, which have dispersion at straight section less than 0.002 m

are shown in numbers. There are only two data which satisfy dispersion function at straight

section near to zero. For both data, emittance is nearly 38 nm.rad, other parameters can also be

compared in figures.

According to ones requirement, e.g. if one wants to allow a little dispersion at straight

section, then solution can be chosen such that important parameters, like betatron tune, natural

chromaticity, beta functions at injection, maximum beta functions, are satisfied.
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Fig. 4.14: Comparison of Pareto optimal front.
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injection for each solution.
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Fig. 4.16: Maximum beta functions

comparison for each solution.
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Fig. 4.17: Betatron tune comparison for each

solution.
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Fig. 4.18: Natural chromaticity comparison

for each solution.

A similar optimization studies of LGBs are presented for Indus-3 lattice in the following

Sections.

4.3 MBA lattice of Indus-3 with LGBs

In Section 1.17, Chapter 1, Indus-3 lattice has been discussed. Indus-3 or high brightness

synchrotron radiation source (HBSRS) is a 6 GeV electron storage ring. The baseline lattice

has been designed to achieve beam emittance of 150 pm.rad. Different elements of Indus-3

lattice are shown in Fig. 4.19. Magnetic elements are placed in the unit lattice in such a way
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that it looks symmetric with respect to center of BM4 and strengths of quadrupoles are such

that it generates lattice functions as shown in Fig. 4.20.
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Fig. 4.19: Different magnetic elements of Indus-3 lattice (not to scale). Magnetic elements which are

above base line are focusing in nature and below the base line are defocusing in nature.
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Fig. 4.20: Designed lattice functions of Indus-3 lattice.

Dipole magnets BM3 and BM4 are combined function dipole magnets, i.e., these magn-

ets have quadrupole gradient along with dipole component. Dipole magnets BM1 and BM2

are homogeneous dipole magnets and are same. As BM3 and BM4 already have transverse

gradient, hence it is difficult to include LGB because of technological challenges. Therefore,

to study LGB for this lattice, dipoles BM1 and BM2 are chosen and similar logic as LGB

in Indus-2 dipole can be applied. LGB profile for BM1 will be a decreasing profile. On the

other hand, for BM2 it will be reversed, i.e., a increasing LGB profile to shape the dispersion

function. The length of the dipoles BM3 is 2.17 m and it bends a charged particle by an angle
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1.74◦. In this case also, dipole magnet is divided into 5 equal sections and LGB profile is

optimized using single objective genetic algorithm with maximum magnetic field 0.45 Tesla in

the first section.

After optimization, magnetic fields in each section of dipole are

B = [0.4500 0.3167 0.2430 0.2008 0.1899][Tesla].

The optimized LGB profile is shown in Fig.4.21 and compared with homogeneous magnetic

field, i.e., 0.28 Tesla.

This LGB profile will change the distribution of dispersion function in the lattice and

the achromatic condition will be lost. Therefore, strength of quadrupoles are needed to be

optimized.
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Fig. 4.21: Optimized LGB profile.

4.3.1 Matching of lattice function with quadrupoles

To match lattice functions and other constraints like betatron tune, stability condition,

limit on maximum beta function, etc., quadrupole strengths must be optimized. This optimization

problem is solved using MOGA, in which three objective functions are chosen which are: (i)

f1:emittance, (ii) f2: dispersion function at straight section, (iii) f3: dispersion at focusing

sextupole location. Quadrupoles used in Indus-3 lattice have large gradient compared to Indus-2
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lattice. Therefore, Indus-3 is a very tight focusing machine and betatron tune, lattice function

etc. are much sensitive compared to Indus-2. Therefore, all quadrupole family, i.e., Q1, Q2,

Q3, Q4, Q5, Q6, Q7, Q8 and quadrupole gradient in BM3 and BM4 are chosen for matching

of lattice function and other important parameters. The limit on strengths of quadrupoles is

chosen as 4.2 m−2 and for quadrupole gradient in BM3 and BM4 it is chosen as 2.2 m−2.

The multi-objective optimization problem can be defined as

Minimize ~f(~k) = (f1, f2,−f3),

with constraints

|(~k)i| < 4.2 m−2; i = 1, 2, · · · , 8,

|(~k)i| < 2.4 m−2; i = 9, 10,

|Trace(M)| ≤ 2,

βx,y,max <= 20m,

0.75 ≤ fractional νx,y ≤ 0.9 or 0.1 ≤ fractional νx,y ≤ 0.3,

|βx,inj − 11.6| < 2.5 and |(βy,inj − 5.34| < 1.5,

|βx,sym − 0.4| < 1 and |βy,sym − 4.3| < 1,

(4.4)

Number of generation and number of population to run the MOGA code are 200 and 500

respectively. The large number of population are chosen to get more number of solution

that satisfy constraints. To give a search direction to MOGA, initial values of strength of

quadrupoles are chosen. Initial values of quadrupole strengths and quadrupole component in

BM3 and BM4 are

k0 = [2.0369 − 2.1406 − 2.6000 2.1141 3.5617

−2.7373 3.0327 3.6775 − 2.2 − 2.0][m−2].

After optimization, Pareto optimal front between emittance and dispersion at straight
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section with color bar for dispersion at focusing sextupole location are shown in Fig. 4.22.

It can be seen that each objective is conflicting in nature, i.e., one has to choose a solution

judicially. As dispersion at focusing sextupole increases, achromatic condition not satisfied and

emittance is also increased. Emittance in each case is in the range 136 to 140 pm.rad, which

shows the advantage of LGB dipoles. In MOGA, large number of solutions are generated,

which are all optimal with given constraints. For each solution, beta function at injection,

natural chromaticity, betatron tune and maximum beta function are calculated and are shown

in Fig. 4.23, Fig. 4.24, Fig. 4.25, and Fig. 4.26.
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Fig. 4.22: Pareto optimal front for emittance with dispersion at straight section.
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Fig. 4.23: Horizontal and vertical beta

functions comparison for each solution.
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beta functions comparison for each solution.

112



74.2 74.4 74.6 74.8 75 75.2
24.1

24.15

24.2

24.25

24.3

24.35


x


y  29333

 

 

E
m

it
ta

n
c
e
 [

p
m

.r
a
d

]

135

140

145

150

Original lattice

Fig. 4.25: Horizontal and vertical betatron

tune comparison for each solution.
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Fig. 4.26: Horizontal and vertical natural

chromaticity comparison for each solution.

For each solution from MOGA, horizontal betatron tune increases from 74.2 to 74.8-74.9

which is acceptable, because it is away from resonances and vertical betatron tune is almost

same to original lattice. Horizontal beta function at injection reduces from 11.5 m to 9-9.5m,

which will require increase in the kicker strengths, but vertical beta function is close to original

lattice. One advantage of low horizontal beta function is that beam size at IDs location will be

low which is desirable. Maximum beta function is reduced for both planes by 2-2.5 m. Natural

chromaticity in horizontal plane is decreased by an amount of 8, which is an advantage. Those

solutions, for which dispersion at straight section is less than 0.0002 m are shown by numbers.

There are only two solutions which satisfy it.

One of the solution, for which dispersion at straight section is near to zero, is given by

k = [2.1432 − 2.3929 − 1.9493 1.6595 3.8988

−3.0263 3.1920 3.8916 − 2.1680 − 2.2908][m−2].

For this optimized values of quadrupole strengths, betatron tune is [74.9, 24.25]. After correction

of betatron tune to [75.2, 24.2] with Q1 and Q2, the strength of Q1 changes from 2.1432

to 2.1627 and strength of Q2 changes from -2.3929 to 2.4044 m−2, i.e., a small increase in

these two quadrupole strengths. Using these strengths, variation of different lattice functions
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after betatron tune correction are shown in Fig.4.27, Fig.4.28 and Fig.4.29 and comparison of

different lattice parameters are shown in Table.4.2
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Fig. 4.27: Comparison of dispersion function.
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Though, these beta functions (lattice with LGB) are acceptable, but still there is a scope

for further optimization.

Table 4.2: Comparison of Indus-3 lattice with LGB with original Indus-3 lattice.

S.No. Parameters Indus-3 (Original Lattice) Indus-3 Lattice with LGB

1. Energy (GeV) 6 6

2. Momentum Compaction factor 9.55×10−5 9.07×10−5

3. Emittance (nm-rad) 148.9 135.1

4. Betatron tunes [νx, νy] [74.15 , 24.22] [75.2 , 24.2]

5. Natural chromaticity [-109.15 -80.94] [-102.52 -80.81]

6. Energy Loss per turn (MeV) 2.46 2.57

7. Beta function at injection [m] [11.57 5.34] [9.1 5.3]

8. Max. Beta function [m] [12.54 18.71] [10.3 17.7]

9. Beta function at symmetric point

[m]

[0.38 4.03] [ 0.44 5.19]

10. Dispersion at sextupole location [m] 0.078 0.085

11. Required sextupole strength for

chromaticity correction [4, 4] [m−3]

[-89.5 118.79 -57.02] [-90.95 118.53

-58.97]

Study of Indus-3 lattice with LGBs shows that emittance can be reduced by ∼ 10%

without much affecting the lattice functions, betatron tune etc. Though natural chromaticity is

reduced, but due to change in beta functions at sextupole location leads to a small increase in

sextupole strength to correct the same level of chromaticity.

Though horizontal beta function is reduced at injection and sextupole strengths are

increased a little bit, actual performance can only be predicted after dynamic aperture calculation

which is given in the following Section.
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4.3.2 Dynamic aperture

After correcting chromaticity to [4, 4] (horizontal and vertical) with sextupoles, dynamic

aperture calculation is done by tracking of particles in the whole ring for 1000 turns. To

calculate dynamic aperture, range of x is chosen from -15 mm to 15 mm in step size of 0.5

mm. On the other hand, range of y is chosen from 0 to 8 mm. The maximum range of x and

y are chosen on the basis of physical aperture of vacuum chamber. Charged particle is tracked

for 1000 turns in the grids and the boundary is decided on the basis of loss, i.e., after a certain

point of the grid, charged particle is lost. In Fig.4.30, a comparison of dynamic aperture for

Indus-3 lattice utilizing LGB dipoles and original Indus-3 lattice is shown. Nearly equal area

is covered between both curves.
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Fig. 4.30: Comparison of dynamic aperture for 1000 turns.

Though dynamic aperture is reduced a little in the vertical plane, but it is increased in

the horizontal plane and this will help in off axis beam injection.

In this Chapter, Indus-2 and Indus-3 lattices which utilizes LGB dipole are optimized

and different important parameters like betatron tune, lattice functions, chromaticity, dynamic

aperture are analysed using single as well multi-objective techniques. The summary of this

Chapter is given below.

116



For the case of Indus-2, using dipoles with LGB, emittance can be reduced∼ 33% in the

same ring with minimum hardware change if betatron tune is allowed to change by an integer

and nearly 25% emittance reduced if same betatron tune is desired to nominal lattice. After

introducing LGB brightness will increases by a factor of 2. As dispersion function at sextupole

location increased from 0.7m to 0.8m, required sextupole strengths get reduced by 16% for

focusing sextupole and 13.8% for defocusing sextupole for the same level of chromaticity

correction, i.e., [2, 2].

For the case of Indus-3, using dipoles with LGBs, emittance can be reduced by ∼ 10%

in the same circumference of the ring. Dynamic aperture area for on momentum particles

is almost same as original lattice. Though a little decrease in vertical plane, but, there is an

increase in horizontal direction which is required for off beam injection (an advantage).
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Chapter 5

Conclusion and future scope

Brightness of photon beam is one of the major aspect in designing or upgrading any SR

source based on electron storage ring. An important beam parameter, called beam emittance,

highly affects brightness of the photon beam and quality of beam, i.e., beam size. In order

to increase brightness one has to improve beam emittance by some means. In recent years,

advanced techniques like transverse gradient, longitudinal gradient bend (LGB), reverse or anti

bend in a dipole have been studied and being used to improve the beam emittance. In this

thesis work, an extensive study on optimization of LGB profiles has been presented. Further,

new lattices have been designed by replacing homogeneous dipole of Indus-2 and Indus-3.

After discussing accelerator physics relevant to this thesis briefly, technologically challen-

ging advanced methods (LGB and transverse gradient) to improve the beam emittance are

discussed. In Chapter 2, the necessary numerical optimization techniques are described which

are used to optimize a dipole with LGBs. In particular, single objective such as Nelder-Mead

(a classical direct search method) and multi-objective optimization techniques such as genetic

algorithm (GA) are discussed. Optimization studies of LGB profiles using dipole of Indus-2

are discussed in Chapter 3. Both techniques, i.e., Nelder-Mead and single objective genetic
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algorithm have been used to generate different LGB profiles. New lattice for Indus-2 is designed

by replacing homogeneous dipole with dipole with LGB. The introduction of LGB dipole

changes the distribution of dispersion in the lattice due to unoptimized quadrupole strengths.

Therefore, quadrupole strengths are optimized to match the lattice function and other important

parameters. Using similar logic, dipole of Indus-3 is optimized for LGB profile and lattice

functions and other important parameters are matched using all quadru-

pole families and quadrupole component in BM3 and BM4.

Beam emittance of Indus-2 reduced by ∼30% by introducing LGB in the dipole if

betatron tune is allowed to change by integer and∼24% with corrected betatron tune to nominal

lattice. A study of Indus-2 in TME configuration is also carried out, which shows that emittance

with LGB dipoles is reduced by less than half. Also, beam emittance of Indus-3 lattice reduced

by ∼10% by introducing LGB in dipoles which shows major advantage of dipole with LGB

over homogeneous dipole. In addition, LGB in dipole increases the dispersion at sextupole

location, which decreases the sextupole strengths to correct the same level of chromaticity as

of nominal lattice.

In this thesis, the studies of beam emittance reduction and optimization of lattice perform-

ance are presented in ideal case with LGBs. To model the LGB, we have considered the hard

edge model, where fringing fields are ignored. In addition, for realistic magnetic lattice, error

and analysis also need to be performed. In electron storage rings, the real advantage of LGB

will be when we use anti-bends (dipoles with negative bending angles) [12]. This combination

help decouple the distribution of beta and dispersion function. These studies will be carried out

in future.
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Appendix A

Derivations

A.1 Equation of motion of an electron in a moving coordinate

system

Equation of motion of a electron in a given magnetic field, in moving coordinate system

can be written using Lorentz force law as

d~P

dt
= e~v × ~B. (A.1)

Considering no magnetic field component in the longitudinal direction, i.e.,

~B = (Bx, By, 0).

Using this magnetic field and velocity ~v = (vx, vy, vs),

~v × ~B = −vsByx̂+ vsBxŷ + (v − xBy − vyBx)ŝ.

Ignoring radiation generated by electron eq.(A.1) can be written as

d~P

dt
= γm0

d2 ~R

dt2
. (A.2)
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Fig. A.1: Frenet-Serret coordinate system. x̂, ŷand ŝ are unit vectors in horizontal, vertical and

longitudinal direction respectively.

Energy of the electron is constant, therefore γ will be a constant and m0 (a constant) is

the rest mass energy of electron. Hence equation of motion becomes

~R = e~v × ~B.

~R can be written as

~R = rx̂+ yŷ (A.3)

~R = ṙx̂+ r ˙̂x+ ẏŷ. (A.4)

 𝑠 𝑥1
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𝑠2 − 𝑠1
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 𝑥2

Fig. A.2: Change in unit vector in horizontal direction.

If, there is any motion in the s-direction, the unit vector x̂ will have a derivative, i.e., ˙̂x.
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From Fig A.2, it can be seen that

˙̂x = θ̇ŝ, (A.5)

where θ̇ = vs
r

. Therefore,

~̇R = ṙx̂+ rθ̇ŝ+ ẏŷ, (A.6)

and differentiating one more time

~̈R = r̈x̂+ (2ṙθ̇ + rθ̈)ŝ+ ÿŷ. (A.7)

Using same argument as used to obtain ˙̂x , we have

˙̂s = −θ̇x̂, (A.8)

Therefore,

~̈R = (r̈ − rθ̇2)x̂+ (2ṙθ̇ + r ¨theta)ŝ+ ÿŷ. (A.9)

Thus, equation of motion in the x-direction is

r̈ − rθ̇2 = −evsBy

γm0

= − ev
2
sBy

γm0vs
. (A.10)

Since vx << vs and vy << vs, to a very good approximation, the total momentum p of the

particle is γm0vs. So,

r̈ − rθ̇2 = −ev
2
sBy

p
. (A.11)

Changing independent variable t to s, the derivative becomes

d

dt
=
ds

dt

d

ds
, (A.12)

Since,

ds = ρdθ = vsdt ρ
r
. (A.13)

Hence, assuming d2s
dt2

= 0,

d2

dt2
=

(
ds

dt

)
d2

ds2
=
(
vs
ρ

r

)2 d2

ds2
. (A.14)
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Replacing r with ρ+ x, the equation of motion becomes

d2x

ds2
− ρ+ x

ρ2
= −By

Bρ

(
1 +

x

ρ

)2

, (A.15)

where Bρ = p
e
. A similar treatment yields for the equation of motion in the y-direction

d2y

ds2
=
Bx

Bρ

(
1 +

x

ρ

)2

. (A.16)

In general, these equations are non-linear. One can study these equation for linear case and

non-linear terms can be treated as perturbation to these equations.

A.2 Closed form solution

General equation of motion is given by

u′′ +K(s)u = 0. (A.17)

This is the equation of harmonic oscillator with variable spring constant, i.e., K = f(s).

Though, spring constant is a function of independent variable s, for circular accelerators, K

is periodic, i.e., there is a distance C such that

K(s+ C) = K(s). (A.18)

The repeated distance of the hardware, C, may be as large as circumference of a synchrotron

or it may be less. The general solution of equation of motion is given by

u(s) = A
√
β(s)cos[ψ(s) + δ], (A.19)

where A and δ are the two constants of integration reflecting from initial conditions, and β(s)

is also be a periodic function with periodicity C. Here, a similarity with harmonic oscillator

can be noticed, when K becomes periodic function of position, the solution will differ from the
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simple harmonic oscillator problem by a factor representing a spatially varying amplitude and

a phase, which does not develop linearly with s. β(s) and psi(s) can be found by substituting

general solution into the differential equation. Differentiating u with respect to s

u′ = A
β′

2
√
β
cos(ψ + δ)− A

√
βsin(ψ + δ)ψ′ (A.20)

and

u′′ = A
ββ′′ − 1

2
β′2

2β3/2
cos(ψ+ δ)−A β′√

β
sin(ψ+ δ)ψ′−A

√
βsin(ψ+ δ)ψ′′−A

√
βcos(ψ)ψ′2.

(A.21)

Inserting in eq.(A.17), we get

A

[
ββ′′ − 1

2
β′2

2β3/2
−
√
βψ′2 +K

√
β

]
cos(ψ+δ)−A

[
β′√
β
ψ′ +

√
βψ′′ +

√
βψ′
]

sin(ψ+δ) = 0.

(A.22)

Since, it required that β and ψ are to be independent of δ. So, coefficients of sine and cosine

terms must vanish separately. Equating coefficient of sine term equal to 0, it gives

βψ′′ + βψ′ + β′ψ′ = 0 or (βψ′)′ = 0, (A.23)

eq.(A.23) can be solved further as

ψ′ =
Const.

β(s)
, (A.24)

Where c is an arbitrary constant of integration. This arbitrary constant can be chosen as 1 for

convenience.

1

2
(ββ′′ − 1

2
β′2)− β2ψ′2 + β2K = 0 (A.25)

Using this relationship between β(s) and ψ, A.25 becomes

1

2
ββ′ − 1

4
β′2 + β2K = 1. (A.26)
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With the introduction of Courant-Snyder variables

α = −1

2
β′ and γ =

1 + α2

β
, (A.27)

we can write eq.(A.25)

β′′ + 2Kβ − 2γ = 0 (A.28)

Strictly speaking, β(s) need not be periodic; it only has to be a solution of the eq.(A.25). But

if the motion we are trying to describe is that of a particle travelling through a periodic section

of a accelerator, for instance through thousands of revolution about a circular accelerator, it is

much more useful to choose the unique periodic solution for β(s).

Using eq.(A.24), phase difference from a point s0 to s is given by

ψ =

∫ s

s0

1

β(s)
ds. (A.29)

For a complete ring, phase difference is given by

µ = ψring =

∮
1

β(s)
ds. (A.30)

We define betatron tune as

ν =
µ

2π
=

1

2π

∮
1

β(s)
ds. (A.31)

Betatron tune tell us how many oscillation makes a charged particle in one revolution.

A.3 Energy Loss

A relativistic electron when accelerated in a macroscopic force field will radiate electromag-

netic energy. The rate of emission is proportional to the square of the accelerating force and

depends on the angle between the force and the electrons velocity and is larger by the factor
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γ2 =
(

E
m0c2

)2

when the force is perpendicular to the velocity than when the force is parallel

to the velocity. In a circular accelerator, the typical longitudinal forces (from the accelerating

system) are much smaller than the typical transverse magnetic forces. Therefore, radiation

effects that accompany by the magnetic forces are needed to consider only. The rate of loss of

energy, Pγ by radiation can be written as

Pγ =
2

3

rec

(m0c2)3
E2F 2

⊥, (A.32)

where m0, re are rest mass and classical electron radius of the electron respectively. F⊥ is the

magnetic force on the electron.It is convenient to define a constant

Cγ =
4π

3

rec

(m0c2)3
(A.33)

For electron Cγ = 8.85 × 10−5[m.GeV −3]. Since F⊥ = ecB, the radiated power is

given by

Pγ =
e2c3

2π
CγE

2B2. (A.34)

This shows that instantaneous power is proportional to the square of both the energy and the

local magnetic field strength. It is sometimes useful to express the magnetic force in terms of

the local radius of curvature ρ of the trajectory; then

Pγ =
cCγ
2π

E4

ρ2
(A.35)

An electron circulating on the design orbit has the nominal energy E0 and moves on the radius

rhos = 1
G

. To find the energy U0 radiated in one revolution, we must integrate Pγ with respect

to time once around the ring. Since dt = ds
c

U0 =
CγE

4
0

2π

∮
G2(s)ds. (A.36)

We may write the integral as the mean of G2 multiplied by L = 2πR, the distance around the

ring;

U0 = C4
γR〈G〉. (A.37)
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For an isomagnetic guide field G = G0 = 1
ρ0

along the curved path of the length 2πρ0 and zero

everywhere. So,

〈G2〉 =
G0

R
=

1

Rρ0

(A.38)

and

U0 =
CγE

4
0

ρ0

. (A.39)

For a fixed radius, the energy radiated per turn varies as the fourth power of the electron energy.
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Synopsis

Synchrotron light sources, based on an electron storage ring have many characteristic

advantages over conventional x-ray sources such as wide energy range, higher flux, high bright-

ness etc. The high brightness of synchrotron radiation from electron storage ring is the result

of high quality of stored electron beam in the storage ring. The quality of electron beam is

represented by an important figure of merit of the electron storage ring called beam emittance.

The magnetic lattice of the storage ring controls the beam and the brightness of photon beam

is inversely proportional to the product of two transverse beam emittances of electron beam.

Beam emittance signifies how well collimated and divergent the electron beam is. Smaller

its value brighter is the emitted synchrotron radiation. Thus, in storage ring lattice design,

one of the important criteria for increasing the brightness is to minimize the beam emittance.

The beam emittance at fixed electron energy has a cubic dependence on the bending angle.

Therefore, to reduce the beam emittance, bending magnets in large numbers are required in

given circumference of the storage ring.

In last few decades, several methods have been evolved to improve the beam emittance.

Now a days, an innovative method using multi bend achromat (MBA) instead of double or triple

bend achromat is being considered and studied, which leads to ultra low emittance. Using MBA

lattice, few hundreds of pm.rad beam emittance can be achieved which leads to brightness of

the photon beam of the order of 1020 to 1022 photons per second per unit area per unit solid
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angle in 0.1% bandwidth of considered wavelength with fully loaded insertion devices. MAX

IV, a 3 GeV electron storage ring, is an example of this kind of machine, which uses seven bend

achromat lattice.

In order to improve beam emittance further, other technologically challenging techniques

like transverse gradient, longitudinal gradient bend (LGB), introduction of anti or reverse bend

in dipoles of the lattice are being used to get more aggressive design of new synchrotron

radiation sources and upgrade existing/running facility to facilitate users with ever increasing

brightness. Beam emittance reduction is desirable, however for successful operation of the

facility, various other lattice parameters need to be optimized or constrained. For example,

betatron tunes should be far away from dangerous resonances, horizontal beta function should

be large at injection point and large value of dispersion is desirable at sextupole locations for

effective chromaticity correction etc. These aspects make lattice design of a storage ring a

complex optimization problem. In order to handle such complex optimization problem, one

has to use available numerical optimization techniques.

In this thesis, extensive optimization studies to minimize the beam emittance in an

electron storage ring using LGBs are discussed. We have optimized the magnetic field profile

along the beam direction in a dipole magnet in general and for dipole magnet of Indus-2

storage ring, in particular. Detailed comparative studies of a storage ring lattice cell utilizing

LGB and constant field dipoles are presented and merits and demerits are highlighted. The

studies indicate that the beam emittance of a storage ring is much lower with dipoles utilizing

LGB compared to dipoles with constant field. In addition, LGB also helps in shaping lattice

parameters at sextupole location to correct chromaticity with reduced strength of sextupoles.

Maintaining same circumference of the Indus-2 storage ring and matching other lattice paramet-

ers with quadrupole magnets, beam emittance can be reduced to∼40 nm.rad with LGB compar-
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ed to 58 nm.rad with constant field dipole. The studies are extended to minimize the beam

emittance of baseline lattice of Indus-3, a 6 GeV electron storage ring with beam emittance

150 pm.rad. Satisfying the operational constraints, the beam emittance can further be reduced

to ∼ 135 pm.rad by replacing four dipoles out of seven with LGBs.

This whole thesis is organized in the following way. In the first Chapter, basic physics

of circular accelerators and some important parameters, such as Courant-Snyder variables,

dispersion, betatron tune, chromaticity, emittance etc., are discussed, which are important in

view of lattice design of a storage ring. In addition, some of the advanced techniques to reduce

the beam emittance are also discussed in this Chapter. Lattice design of a storage ring and its

analysis is a complex optimization problem. Different types of optimization techniques, which

are capable to handle these complex optimization problem, are introduced in Chapter 2. In

Chapter 3, extensive studies on optimization of LGB profiles in a dipole taking emittance and

synchrotron radiation loss in consideration have been discussed. These optimization studies

of LGB profiles then applied to Indus-2 storage ring lattice. The application of LGB profile

changes the distribution of dispersion function which needs to be matched with original lattice.

Therefore, optimization of quadrupole strengths with LGBs are carried out and important

parameters are compared with original lattice of Indus-2 storage ring. Further, this study is

extended to the base line design of Indus-3. These studies are presented in Chapter 4. In the

last Chapter, conclusion and future scope of this thesis work has been discussed.
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Chapter 1

Basic Accelerator Physics

The synchrotron radiation (SR), emitted by transverse acceleration of ultra relativistic

electron under applied magnetic field, is in much demand for various science experiments due

to wide photon energy range and high brightness. To achieve high brightness SR, the dedicated

electron storage rings have been built and are further being designed for further enhancing it.

The brightness is governed by the beam emittance, which is the design criteria for any storage

ring magnetic lattice. In order to design a magnetic lattice of a electron storage ring, deep

understanding of beam dynamics of circular accelerators is required. In this Chapter, beam

dynamics of circular accelerators and important concepts relevant to the thesis are presented.

In Section 1.1, a brief introduction to evolution of accelerators dedicated to produce

SR are discussed. Various parameters based on linear beam dynamics of circular accelerators

are discussed in Sections 1.2-1.8. Important phenomenon that govern the beam emittance in a

storage ring, which highly affects the brightness of SR, is introduced in Section 1.12. Various

types of low emittance magnetic lattices, which are used to build storage rings, are discussed

in Section 1.13. In addition, advanced methods to improve the beam emittance is described

in Section 1.15. At the end, features of Indus-2 and proposed Indus-3 storage ring lattices
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are discussed in Section 1.16 and 1.17. These lattices are considered to study the effect of

longitudinal variation of magnetic field in the dipoles on the beam emittance.

1.1 Synchrotron radiation sources

E. McMillan and independently V. Veksler, invented the synchrotron in 1945 [1]. Synch-

rotron, basically, is a circular accelerator in which radius of the accelerating charged particle is

fixed by applying magnetic field and acceleration is provided by radio frequency (RF) cavities

at one or more places in the circular ring. It is well known from special relativity equations that

as particle achieves higher and higher velocity, its mass increases. Therefore, under applied

magnetic field, orbit of the charged particle changes. To stabilize the orbit, magnetic field has

to be synchronized with energy of the charged particle. This concept is the basic principle of a

synchrotron.

First synchrotron was made for the purpose of accelerating charged particle with ever

increased energy for the particle physics research [1]. Electron, a very light charged particle,

achieves ultrarelativistic speed in energy range of few MeV. In electron synchrotrons, at these

energies electron emits SR while going through transverse acceleration under applied magnetic

force in the bending magnet. The SR was first time detected at 70 MeV synchrotron at GE in

the year 1947 [1].

The energy loss per turn by an electron in the form of SR increases as fourth power

of energy of an electron [2], which was the main limitation in high energy circular electron

accelerators and it requires very high RF power to compensate this energy loss. Soon it was

realized that SR emitted from electrons has better characteristics than conventional X-rays

sources like high brightness, high flux, broad energy spectrum etc., which became boon for

various science experiments. At that time, scientist started to use SR produced from high energy
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electron synchrotrons parasitically. These synchrotrons, where SR was used parasitically are

called first generation synchrotron radiation sources (SRSs). Since then, rigorous study on the

design of dedicated SRSs based on electron storage ring, in which electron beam is stored for a

long time, had been carried out in various synchrotron accelerator facilities. These synchrotrons

or storage rings, which were fully dedicated to produce synchrotron radiation are called second

generation SRSs. In second generation SRSs, bending magnets were primary source to get

uninterrupted high brightness SR for many beam line users at a time. This is the great advantage

over X-rays facility where only one user at a time can use the X-ray facility. Indus-1, a 450

MeV electron storage ring located at RRCAT, is an example of second generation SRS [3].

After successful operation of second-generation electron storage rings, insertion devices (IDs)

like undulators, wigglers, wavelength shifter etc. were introduced to increase brightness, flux

and energy range of SR. These devices are external to the well design lattice of the storage

ring. Therefore, more spaces are to be provided to install them. These spaces, i.e. magnet free

zones, therefore, become part of the design of storage ring lattices. These SRSs are called third

generation SRSs. Indus-2, a 2.5 GeV electron storage ring is an example of third generation

SRS [3–5].

One of the main purpose of designing a new electron storage ring or upgrading an

existing electron storage ring is the demand of high brightness of the photon beam. The

brightness of photon beam is defined as photon flux per unit area per unit solid angle and

is mathematically expressed as [6]

B =
F

4π2ΣxΣyΣx′Σy′
, (1.1)

where F is the flux, defined as number of photons produced per second in 0.1% bandwidth of

considered wavelength. Σx,y and Σx′,y′ are effective beam size and divergence of photon beam,
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which are related to electron beam size and divergence as [6]

Σx,y =
√
σ2
x,y + σ2

r , (1.2)

Σx′,y′ =
√
σ2
x′,y′ + σ2

r′ . (1.3)

Here σx,y and σx′,y′ are horizontal and vertical electron beam size and divergence respectively,

and σr and σr′ are the photon beam size and divergence, respectively. σx,y and σx′,y′ are

related to beam emittance of the storage ring which is an important criteria in storage ring

design. Beam sizes and its relation to beam emittance is discussed in Section 1.14.

Flux of photon beam depends on number of photons produced, which depends on stored

beam current. But, one cannot fill large current due to many limitations such as vacuum, load

on RF, intra beam scattering issues related to lifetime etc. In addition, high current does not

lead to improvement of quality of stored beam, e.g. beam size. From eq.(1.1) brightness of the

photon beam is inversely proportional to product of two beam emittances in transverse plane.

Therefore, as a lattice designer, one focuses on beam emittances to increase brightness with

improved beam quality.

Beam emittance, roughly, scales as cubic power of bending angle, therefore more number

of dipole magnets in the lattice are required to reduce the beam emittance. Now a days, scientist

are focusing on fourth generation SRSs, utilizing the concept of multi bend achromat (MBA)

lattice, instead of double or triple bend achromat, and IDs to build or upgrade existing storage

rings to achieve ultra low emittance [7]. The requirement of more number of dipoles make

storage ring large in size and consequently increases the cost of the machine. MAX IV is

the first operating machine based on MBA concept [7, 8]. Further, to push beam emittance

towards more lower side, technologically challenging, advanced methods were introduced such

as transverse gradient [9], longitudinal gradient bend (LGB) [10,11], reverse or anti bend [12].

LGB was first introduced by J. Gau, T. Raubenheimer in 2002 [10]. They applied the LGB
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in NLC damping storage ring and found sufficient beam emittance reduction. Now a days,

magnet design technology has been improved much and LGB has been widely accepted in

lattice design to upgrade of an existing facility and new storage ring lattices [11]. MAX IV, a

3 GeV storage ring, is a running example of it [13]. Some examples of high energy and large

circumference SRSs to produce hard X-rays are ESRF, France (6 GeV) [14], Spring-8, Japan

(8 GeV) [15], APS, USA (7 GeV) [16]. Also, there are some facilities which are build to get

soft X-rays like ALS, USA (1.9 GeV) [17], ELLETRA, Italy (2-2.4 GeV) [18] etc.

1.2 Coordinate system used in circular accelerators

It is always desirable to study the dynamics of a particle in a coordinate system in

which equation of motion of the particle takes a simple form. In circular accelerators, study of

charged particle dynamics is preferred in moving or Frenet-Serret coordinate system instead of

conventional coordinate system.

As shown in Fig. 1.1, this coordinate system consists a designed orbit at which reference

or designed charged particle moves. Coordinate axes of the coordinate system are denoted by

X, Y and S and origin is co-moving with reference charged particle which has coordinates (0,

0, 0). Coordinates of any other charged particle is defined as deviation from the designed orbit

and are denoted by x, y and s. Here, x and y are deviations in radial and vertical direction from

the designed orbit, respectively, and s is the deviation of the charged particle with respect to

reference charged particle in the direction of motion. Unit vectors along X, Y and S direction

are shown in Fig. 1.1. Also, it is notable that unit vector in Y direction does not change.

Most of the large circular accelerators in the world are build to keep designed orbit in

the horizontal plane. Therefore,X−S plane in known as horizontal or median plane and Y −S

plane is known as vertical plane. Motion of charged particles in these two planes defines the
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transverse properties of the beam of charged particles.

Fig. 1.1: Coordinate system used in a circular accelerators.

Local radius of curvature ρ, in general, is a function of path length s, i.e., ρ = ρ(s).

For a straight section ρ = ∞ and ρ is finite where path is curved. The X, Y and S form a

right-handed coordinate system, i.e., x̂ × ŷ = ŝ. Generally, transverse deviations of a charged

particle are very small, i.e., x, y � ρ. Therefore, paraxial approximation can be used in study of

motion of charged particle. Motion of a charged particle in an electromagnetic field is discussed

in the following section.

1.3 Motion of a charged particle in an electromagnetic field

Motion of a charged particle in an electromagnetic field is governed by Lorentz force

law and is mathematically given by [2]

~F =
d~p

dt
= q( ~E + ~v × ~B), (1.4)

where ~p, q, and ~v are momentum, charge, and velocity of the charged particle, respectively.

~E and ~B are electric and magnetic fields, respectively. To govern an ultrarelativistic charged

particle, magnetic field is much more effective than electric field. Therefore, the transverse

dynamics of the charged particle at ultrarelativistic speed can be controlled by magnetic field
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only. Equation of motion for such charged particle can be written as

~F =
d(m0γ ~̇R)

dt
= q(~v × ~B), (1.5)

where m0 and ~̇R are rest mass and velocity of the charged particle, respectively, and γ is the

Lorentz factor which is given by γ = 1 + E
Erest

; E and Erest are the kinetic energy and rest

mass energy of the charged particle respectively.

From eq.(1.5), in a normal magnetic field, one can derive following relation for a

circular orbit [2]

p

q
= Bρ, (1.6)

where p = |~p| = γm0|~v| and ρ are the momentum and bending radius of charged particle,

respectively. The result in eq.(1.6) is also true for relativistic velocities. The quantity Bρ,

called ”Beam rigidity”, is an important quantity in a circular accelerator which depends only

on the momentum and given charge of the particle. For an ultrarelativistic charged particle,

energy and momentum are related by E = cp; c is the speed of light in vacuum. It means

that, energy and momentum can be used interchangeably. In a storage ring, energy of reference

charged particle is constant and therefore, beam rigidity of storage ring is a constant quantity.

Beam rigidity is often used to define normalized quantities for storage ring like strength

of the quadrupole, sextupole etc. which are discussed in Section 1.4. For an electron storage

ring q = e, eq.(1.6) can be written in terms of energy as [2]

Bρ(T.m) =
10

2.998
βE(GeV ). (1.7)

For ultrarelativistic particles, this expression is further simplified as β is almost equal to 1.

In a circular accelerator, magnetic fields are generated by different types of magnetic

elements which are discussed in the following Section.
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1.4 Basic magnetic elements used in accelerators

To guide the charge particles in a circular accelerator, different magnetic elements like

dipoles, quadrupoles and sextupoles are used. In case of storage ring, usually a periodic unit

lattice cell, an arrangement of magnetic elements in a particular fashion, is designed and is

repeated to make a complete storage ring. The different magnetic elements are discussed in the

following Sections [5].

1.4.1 Dipole magnets

An ideal dipole magnet (constant field ~B in space) is used to generate a curvature

(bending) in the design trajectory of an accelerator and therefore is also known as bending

magnet or dipole magnet. An ideal dipole has infinite long pole faces parallel to each other and

produces homogeneous (constant) field irrespective of position, i.e., | ~B(x, y, s)| = b, where b is

a constant. However, practical dipole magnet has finite size. Due to finite length, fringe fields

are generated which contain higher order multipoles.

𝜽

𝟐
𝜽

𝟐

𝜽

s

x

y

𝑩𝒚

x

(a) (b)

Fig. 1.2: (a) Sector (black) and Rectangular (parallel edges with red color) type dipoles.

(b) Vertical magnetic field along x-direction.
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Magnetic field in a normal dipole is defined as

~B(x, y, s) = ±bŷ, (1.8)

where ŷ is the unit vector in the vertical direction and b is a constant. However, skew dipole

is defined as ~B(x, y, s) = ±bx̂, where x̂ is the unit vector in horizontal or radial direction.

It means that a normal dipole becomes a skew dipole after rotation of 90◦ about longitudinal

direction.

Two types of dipole magnets are generally used in lattice design of a storage ring namely

sector and rectangular, which are shown in Fig. 1.2. In a sector type dipole, the design trajectory

enters and leaves the magnet edges at right angles, whereas in rectangular type, end faces are

parallel to each other and design trajectory enters and leaves the magnet edges at equal angle but

different from 90◦. The transverse gradient and the longitudinal gradient can also be introduced

in the bending magnets to make the size of a storage ring compact and minimise the beam

emittance.

1.4.2 Quadrupole

A quadrupole magnet has a linearly varying magnetic field with the transverse distance

(x or y) from the design orbit, resulting in a restoring force on the charged particle passing

through it, which can be used as a focusing magnet. Normal quadrupole magnet has four pole

faces as shown Fig. 1.3. These pole faces are hyperbolic in shape to provide linear variation of

fields with distances. Field lines originate perpendicularly from North pole and terminate on

South pole. Variation of magnetic fields in a quadrupole are given as

Bx = gy and By = gx, (1.9)

where g = dBy
dx

. At the centre of quadrupole, i.e., x = 0, y = 0, the net magnetic field is zero.

Therefore, charged particle which passes through the centre of quadrupole does not experience
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any force. Also, force on the charged particle increases with the increase of the distance from

the center. Hence, more distant particle experiences more force towards or away from the centre

of the quadrupole magnet. Quadrupoles are mainly used for focusing or defocusing action on

the charged particles. Normalized quadrupole strength k is defined as [2]

k =

(
e

p

)
g =

g

Bρ
. (1.10)

Eq.(1.10) can be written in terms of energy as

k(m−2) = 0.2998
g (Tm−1)

βE (GeV)
. (1.11)

𝒚

x

𝐍

𝐍𝐒

𝐒

𝑩𝒚

x

(a) (b)

Fig. 1.3: (a) Pole faces and field direction in a quadrupole magnet. A positive charged particle coming

out of the page will experience a focusing force in x direction and a defocusing force in y direction. (b)

Variation of vertical magnetic field along x-direction.

As shown in Fig. 1.3, positive charged particle coming out of the page and having

different position on x-axis focuses towards centre of the quadrupole. Also, if a quadrupole

focuses in one plane then in another plane it always defocuses. Therefore, to achieve overall

focusing in both the transverse planes, at least two quadrupoles separated by some distance are

normally used in the lattice design. Conventionally, a quadrupole focusing in horizontal plane

is called focusing quadrupole and a quadrupole focusing in vertical plane is called defocusing
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quadrupole. If a normal quadrupole is rotated through 45◦ about longitudinal direction, then it

is called skew quadrupole.Skew quadrupoles are used to correct coupling in the machine. To

build a tight focusing storage ring high gradient in the quadrupole is required.

Dipole and quadrupole magnets generate magnetic force on the particle that is either

independent or linear to the charged particle position. The dynamics, which includes only

dipole, quadrupole and drift space with zero magnetic fields, is known as the linear beam

dynamics. Various optics characteristics and parameters of the storage rings are determined by

linear beam dynamics. These parameters are introduced in Sections 1.5, 1.7 and 1.9.

1.4.3 Sextupole

The electron beam contains many charged particles, each may have small energy devia-

tion from the energy of the reference or central particle. These particles when pass through the

quadrupole, they focus away from the focal point. This phenomenon is known as chromatic

aberration or chromaticity (discussed in Section 1.10). To correct chromaticity, the sextupole

magnets are included in a storage ring and are placed near a quadrupole. A sextupole has six

pole faces with North and South poles placed alternatively as shown in Fig. 1.4. The orientation

of the poles are in such a way that magnetic field variation in the sextupole has following form

By =
1

2
g′(x2 − y2) and Bx = g′xy. (1.12)

Variation of y component of magnetic field, i.e., By along x-axis is shown in Fig. 1.4. The

sextupole strength is defined as [2]

S[m−3] =
e

p
g′ = 0.2998

g′

βE(GeV)
. (1.13)
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x

𝐒

𝐒 𝐒

𝐍𝐍

𝐍
𝒚

𝑩𝒚

x

(a) (b)

Fig. 1.4: (a) Pole faces and field direction in a sextupole magnet. Force on a positively charge particle

on the x axis and coming out side of the page is shown by arrow. (b) Variation of vertical magnetic field

along x-direction.

Fields in the sextupole are non-linear, as the strength of the sextupoles increase, non-line-

arity in the machine also increases. In addition, Bx component of sextupole field is the product

of x and y, it will generate coupling in the charged particle motion.

1.5 Equation of motion of a charged particle in a given

magnetic field

Equation of motion of a charged particle moving in a general magnetic field ~B with

velocity ~v is given by eq.(1.5). In a storage ring, kinetic energy of the charged particle is

constant, consequently, γ will be a constant and rest mass, m0, is a constant, too. Therefore,

eq.(1.5) becomes

d2 ~R

dt2
= q

~v × ~B

γm0

. (1.14)

General position of the charged particle can be written as ~R = rx̂ + yŷ and general

radius of curvature as r = ρ+ x. Considering uncoupled motion in both transverse directions,

general equation of transverse motion of a charged particle in a given magnetic field can be
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written in terms of path length s as [A.1]

d2x

ds2
−
(
ρ+ x

ρ2

)
= −By

Bρ

(
1 +

x

ρ

)2

, (1.15)

d2y

ds2
=
Bx

Bρ

(
1 +

x

ρ

)2

. (1.16)

Here, it is assumed that energy of the charged particle is constant and magnetic field component

in s direction, i.e., Bs, is zero. Magnetic field components Bx and By can be expanded as a

Taylor’s series about reference orbit as

Bx = Bx(0) +
∂Bx

∂y
y +

1

2!

∂2Bx

∂y2
y2 + · · · , (1.17)

By = By(0) +
∂By

∂x
x+

1

2!

∂2By

∂x2
x2 + · · · . (1.18)

Here,Bx(0) andBy(0) are constant and derivatives of magnetic fields are calculated at reference

orbit. For small deviations, i.e., x, y � ρ, higher order terms in expansion of magnetic fields

can be neglected. Using fourth Maxwell relation in the pole gap of a magnetic element where

current and charges are zero, we have∇× ~B = 0→ ∂Bx
∂y

= ∂By
∂x

. Since bending of the charged

particle is considered in horizontal plane. Therefore, for horizontal motion Bx(0) = 0. Using

these results, eq.(1.15) and eq.(1.16) can be further simplified as

d2x

ds2
+

(
1

ρ2
+

1

Bρ

∂By

∂x

)
x = 0, (1.19)

d2y

ds2
−
(

1

Bρ

∂By

∂x

)
y = 0. (1.20)

Expression 1
Bρ

∂By
∂x

is denoted by k. This is an important quantity which is normalized

with beam rigidity and has units [m−2]. In general, equation of motion in transverse planes can
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be written in a single equation as

u′′ +K(s)u = 0, with


K = 1

ρ2
+ 1

Bρ

∂By
∂x
, foru = x

K = − 1
Bρ

∂By
∂x
, foru = y

(1.21)

Eq.(1.21) is called “Hill’s equation” and is similar to equation of simple harmonic motion

with variable spring constant. From this equation, position and slope of a charged particle can

be found at any position s. In general, K is the function of path-length s. But for a magnetic

element,K(s) can be treated as a constant, i.e., K(s) = K. AssumingK positive and constant,

the solution of eq.(1.21) can be written as [2, 19]

u(s) = A cos(
√
Ks) +B sin(

√
Ks). (1.22)

Then slope of the particle trajectory is given by

u′(s) = −A
√
K sin(

√
Ks) +B

√
K cos(

√
Ks), (1.23)

here A and B are constant. For K < 0, hyperbolic sine and cosine terms will appear instead

of sine and cosine. For a given length of a magnetic element and initial position of a charged

particle at the entrance of magnetic element, constants A and B can be found. After finding

these two constants, eq.(1.22) and (1.23) can be written in matrix form as

u
u′


out

=

 cos(φ) 1√
K

sin(φ)

−
√
K sin(φ) cos(φ)


u
u′


in

, (1.24)

where φ =
√
KL. Here, in and out shows entrance and exit of the magnetic element as shown

in Fig. 1.5.
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𝒖
𝒖′

𝒊𝒏

𝒖
𝒖′

𝒐𝒖𝒕

Magnetic element

Fig. 1.5: Position and slope (with respect to longitudinal direction) of the charged particle before and

after traversing the magnetic element.

The matrix

M =

 cos(φ) 1√
K

sin(φ)

−
√
K sin(φ) cos(φ)

 =

C(S) S(s)

C ′(s) S ′(s)

 =

M11 M12

M21 M22

 (1.25)

is called transfer matrix for the magnetic element, and it is different for different type of

magnetic elements. Here, C(s) = M11 = cos(φ), S(s) = M12 = 1√
K

sin(φ). C ′(s) and

S ′(s) are derivatives of C(s) and S(s), respectively. This transfer matrix transports position

and slope of a charged particle from entrance to exit point of the magnetic element. Transfer

matrix for different type of magnetic element are in following Section.

1.5.1 Transfer matrix for a drift space

For a drift space, i.e., no magnetic field, K = 0. Transfer matrix for a drift space is

given by [19]

MDrift =

1 L

0 1

 , (1.26)

where L is the length of the drift space. As shown in Fig. 1.6, when a charged particle passes

through a drift space its position changes, but slope remains constant.
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𝒖𝒐𝒖𝒕

𝒖𝒊𝒏

Drift Space of Length L

𝒖′𝒊𝒏 = 𝒖′𝒐𝒖𝒕

𝒖′𝒊𝒏

𝒖′𝒐𝒖𝒕

Fig. 1.6: Position and slope (with respect to longitudinal direction) of the charged particle after passing

through a drift space.

Drift spaces play an important role in lattice design. Mostly all magnetic elements in

the storage ring are electromagnetic in nature. Magnetic elements have coils wrapped on the

iron core. One must provide some space between two magnetic element for these coils. Also,

vacuum pumps and cooling systems, beam position monitors, dipole correctors, beam profile

monitors require spaces. In addition, installation of IDs also require large spaces.

1.5.2 Transfer matrix for a quadrupole

For a pure quadrupole, K = k = 1
Bρ

∂By
∂x

and transfer matrix for a focusing quadrupole

is given by [19]

MQ, focusing =

 cosφ 1√
|k|

sinφ

−
√
|k| sinφ cosφ

 , (1.27)

where φ =
√
kL and k > 0 (focusing quadrupole) and for a defocusing quadrupole transfer

matrix is given by

MQ, defocusing =

 coshφ 1√
|k|

sinhφ√
|k| sinhφ coshφ

 , (1.28)

where φ =
√
|k|L and k < 0 (defocusing quadrupole).
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𝒖𝒐𝒖𝒕

𝒖𝒊𝒏

Quadrupole of Length L

𝒖′𝒊𝒏 = 𝟎

𝒖′𝒐𝒖𝒕

fo F

Designed orbit

Fig. 1.7: Particle position (with respect to longitudinal direction) after passing through a focusing

quadrupole. O is the centre of the quadrupole and F is focal point.

Quadrupole is a focusing element. In Fig. 1.7, action of a focusing quadrupole is shown.

Focal length of a quadrupole is given by [19]

f =


1√

kL tan(
√
kL)

, for k > 0

1√
−kL tanh(

√
−kL)

, for k < 0

(1.29)

If f << L (thin lens approximation), eq.(1.29) becomes

f =
1

kL
(1.30)

1.5.3 Transfer matrix for a dipole

For a sector type dipoleK(s) = 1
ρ2

. Transfer matrix for horizontal plane is given by [19]

Mx =

 cos θ ρ sin θ

−1
ρ

sin θ cos θ

 , (1.31)

where θ = L
ρ

is the bending angle of the dipole magnet. In vertical plane sector type dipole

magnet behaves like a drift space with length L = θρ, because there is no any bending in

vertical plane. In thin lens approximation θ → 0, transfer matrix Mx can be written as
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Mx =

 1 0

− L
ρ2

1

 (1.32)

Here, one can see that dipole act as a focusing element. This focusing originates from the fact

that the different energy charged particle has different ρ in the dipole. This type of focusing is

called geometrical focusing.

For a rectangular type dipole magnet, transfer matrices for both transverse planes are

given as [19]

Mx =

1 ρ sin θ

0 1

 , My =

 cos θ ρ sin θ

−1
ρ

sin θ cos θ

 . (1.33)

Transfer matrix for horizontal plane has the form like a drift space with length L = ρsinθ. This

is because, the weak geometrical focusing in horizontal plane is exactly compensated by the

defocusing at the entrance and exit faces [2, 5].

In a magnetic lattice of a storage ring, there are large number of magnetic elements to

guide a charged particle. In matrix formulation one can compute transfer matrix for a given

arrangement of magnetic elements. In Fig. 1.8, an example of an arrangement of magnetic

elements is shown. If transfer matrices for different magnetic elements areM1, M2, M3, · · · ,M12

and a charged particle enters from the entrance of the first element and exits from the last

element, then transfer matrix for this arrangement is given by the product of individual transfer

matrix as

M = M12.M11.M10. . .M2M1 (1.34)

This result can be generalized for n number of magnetic elements provided transfer matrix for

each element is known.
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Fig. 1.8: An example of arrangement of different magnetic elements. Elements 1, 3, 5, 7, 9, 11 are drift

spaces. Elements 2 and 12 are focusing quadrupole, 4 and 8 are defocusing quadrupole. Elements 6

and 10 are dipole magnets.

1.6 Dispersion and trajectory of an off-momentum particle

In a dipole, an off-momentum or off-energy charged particle does not follow the same

path as reference charged particle even if it is launched on the designed path. This is shown

in Fig. 1.9, higher energy charged particle follows longer path, however, lower energy particle

follow shorter path and trajectories of different energy particles get dispersed. This phenomenon

is called dispersion.

Fig. 1.9: Motion of different energy particles in a sector type dipole magnet.

Position or deviation from designed orbit of such particles is given by [2]

x(s) = η(s)
∆p

p0

= η(s)δ, x′(s) = η′(s)δ, (1.35)

here, p0 is the momentum of reference charged particle and δp = p − p0 is the change in
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momentum of a charged particle from reference charged particle. ∆ = ∆p
p0

and η(s) are

relative momentum deviation and dispersion function, respectively. Eq.(1.35) shows that dipole

separates off different momentum or energy charged particles in position, i.e., if ∆p < 0 then

x < 0 and if ∆p > 0 then x > 0.

In an ideal lattice dispersion is generated by the dipole magnet in horizontal direction

only. However, vertical dispersion can be present in the machine due to various errors in the

machine. For example, skew quadrupole (rotated quadrupole) and rotational error in the dipole

magnet can generate dispersion in vertical plane. Phenomenon of dispersion plays an important

role in the consideration of lattice design of a storage ring.

Considering ideal dipole, after including dispersion and considering small momentum

deviation, new equations of motion in both transverse planes can be written as [2, 19]

d2x

ds2
+

(
1

ρ2
+

1

Bρ

∂By

∂x

)
x =

δ

ρ
, (1.36)

d2y

ds2
−
(

1

Bρ

∂By

∂x

)
y = 0. (1.37)

Eq.(1.36) is an inhomogeneous differential equation while eq.(1.37) is a homogeneous differen-

tial equation. Therefore, solution of eq.(1.36) will contain homogeneous solution with particular

integral and is given by [2]

x(s) = A.C(s) +B.S(s) + δ.η(s), (1.38)

where η(s) is given by

η(s) =

s∫
0

1

ρ(s′)
[S(s)C(s′)− C(s)S(s′)] ds′. (1.39)

After including dispersion term one can write solution of equation of motion in matrix formulation
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and in terms of dispersion function as [19]
η

η′

1


out

=


M11 M12 M13

M21 M22 M23

M31 M32 M33




η

η′

1


in

. (1.40)

For a sector type dipole, eq.(1.40) can be written as [19]
η

η′

1


out

=


cos θ sin θ ρ(1− cos θ)

−1
ρ

sin θ cos θ sin θ

0 0 1




η

η′

1


in

, (1.41)

Similarly for a rectangular type dipole
η

η′

1


out

=


cos θ sin θ ρ(1− cos θ)

−1
ρ

sin θ cos θ 2 tan θ
2

0 0 1




η

η′

1


in

. (1.42)

In Section 1.5, equation of motion is solved considering K as a constant. In the

following Section, solution of equation of motion is given for a more general case, in which K

is a periodic function.

1.7 Parametric solution of equation of motion and Courant-

-Snyder parameters

For circular accelerators, i.e., a periodic system, general equation of motion of a charged

particle with reference energy can be written as [A.2]

u′′(s) +K(s)u(s) = 0, (1.43)

here u stands for x or y and K is a periodic function of path length s with period C. The period

C may be either full circumference of circular accelerator or one super period in the circular
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accelerator. The charged particle in the circular accelerator has to make millions of revolutions

and will experience a periodic potential in every turn. Solution of such differential equation is

given by Floquet’s theorem and can be written in the form [2]

u(s) = A
√
β(s) cos[φ(s) + φ0], (1.44)

here φ0 and A are constant and φ is the phase of the charged particle. This form of amplitude is

chosen for specific problem of circular accelerators. Any general function which depends on s

can be chosen for amplitude function. Amplitude function β(s) is also a periodic function with

same period of K, i.e., C. Solution in eq.(1.44) confirms that after each turn charged particle

acquires a positive phase, which means, particle will not have same position after travelling a

complete turn or a super period.

After substituting solution in eq.(1.43), an equation in terms of sine and cosine can be

obtained. After equating the coefficient of sine and cosine terms equal to zero, two equations

can be obtained as [A.2]

1

2

(
ββ′′ − 1

2
(β′′)2

)
− β2(φ′)2 + kβ2 = 0 (1.45)

β′φ′ + βφ′′ = 0. (1.46)

Eq.(1.46) can be rearranged as (βφ′)′ = 0 or βφ′ = Constant. Value of this constant is just a

scaling factor and can be chosen as 1 for simplicity. Further,

φ′(s) =
1

β(s)
→ φ(s) =

s∫
0

ds′

β(s′)
. (1.47)

In a circular accelerator, one is free to choose our reference point of integration from 0

to s. Therefore, integration constant is chosen as 0 for simplicity. φ(s) is called phase advance

of charged particle after travelling a distance s and it depends on amplitude function β(s).

Using result for phase advance, eq.(1.45) becomes

1

2
ββ′′ − 1

4
(β′)2 + β2k = 1. (1.48)
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This is an important relation called envelope equation. Because it represent the envelope of the

beam. Also, it may happen that for some values of quadrupole strength k, solution of envelope

equation may not exist. This leads to resonances for such values of k.

With the introduction of new variables, which are given as

α = −1

2
β′, γ =

1 + α2

β
(1.49)

eq.(1.45) becomes

α′ = kβ − γ. (1.50)

The variables α(s), β(s), γ(s) are called Courant-Snyder variables or Twiss parameters. Twiss

parameters and the phase function φ(s) are called betatron functions or lattice functions and

oscillatory motion of a charged particle along longitudinal direction or beam line is called the

betatron oscillation [2].

One can find an invariant of motion between solution u(s) and Courant-Snyder variables

by eliminating (φ(s) + φ0) from solution u(s), which is given by

γu2 + 2αuu′ + βu′2 = A2. (1.51)

A quantity ε, called emittance, is defined as A2 = ε. Relation in eq.(1.51) is the equation of

general ellipse with area πε, i.e., emittance is directly related to the phase space area. General

ellipse as shown in Fig.1.10, denotes motion of single particle in phase space. After passing

through different magnetic elements this ellipse will change its shape and size but area will

remain constant if forces are conservative and linear. In circular accelerators, there are large

number of charged particles and form the beam. Charged particles having same emittance but

different in phase will lie on this ellipse at different locations. If this is the ellipse for outermost

charged particle which survives i.e. stable in the storage ring, then all charged particles whose

emittance are lower than outermost charged particle will surely survive.
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𝑢
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𝜺𝜷(𝒔)

𝜺(𝒔)
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𝜺

𝜷(𝒔)

𝜺𝜸(𝒔)

Fig. 1.10: Emittance as a phase space area for a single particle. Maximum position and maximum slope

are also shown.

The beam emittance of whole beam can equivalently be describe by the emittance of

the outermost charged particle in a beam. Trajectories of charged particles on the ellipse is

described by

ui(s) =
√
ε
√
β(s) cos[φ(s) + φ0i], (1.52)

where φ0i is an arbitrary phase constant of the ith charged particle. Selecting every point along

the beam line for which cos[φ(s) + φ0i] = ±1, one can get an envelope of the beam containing

all charged particles as

umax = ±
√
εβ(s). (1.53)

This is the maximum amplitude that a charged particle can have at any position s. Beam

envelope changes with path length s and depends only on beam emittance and betatron functions.

Courant-Snyder variables plays important role in beam dynamics and one can study

beam dynamics in terms of Courant-Snyder variables.
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1.8 Beam dynamics in terms of Courant-Snyder variables

If, initial position and slope at the entrance of a magnetic element are known, then

position and slope can be found at the exit of the magnetic element provided that Courant-Snyder

(CS) are know at entrance and exit of the magnetic element. one can write matrix equation for

position and slope of a charged particle in term of CS variables as [20]

𝒖
𝒖′ 𝒊𝒏

𝒖
𝒖′ 𝒐𝒖𝒕

Magnetic element

𝜷𝟎

𝜶𝟎

𝜸𝟎

𝜷
𝜶
𝜸

Fig. 1.11: Position and slope of a particle after passing through a magnetic element. (β0, α0, γ0)′ and

(β, α, γ)′ are CS variables at entrance and exit of the magnetic element.

u
u′


out

=


√

β
β0

(cosφ+ α0 sinφ)
√
ββ0 sinφ

(α0−α) cosφ−(1+αα0) sinφ√
ββ0

β0
β

(cosφ− α sinφ


u
u′


in

. (1.54)

Here, in and out denote entrance and exit of the magnetic element. Eq.(1.54) is true for any

charged particle trajectory. CS variables are properties of magnetic element and each charged

particle having different position and slope will experience same values of these variables.

For a periodic system β = β0 and α = α0 , eq.(1.54) reduces tou
u′


out

= M

u
u′


in

, (1.55)
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where matrix M is the transfer matrix which is given by

M =

cosµ+ α sinµ β sinµ

γ sinµ cosµ− α sinµ

 , (1.56)

here µ is the phase advance for one turn or one super period [A.2]. This 2× 2 matrix is called

one turn or one period matrix and further, it can be written as

M = I cosµ+ J sinµ, (1.57)

where I is the 2× 2 identity matrix and J is given by

J =

 α β

−γ −α

 ; with property J2 = −I. (1.58)

Transfer matrix in this form has an advantage that it can be written as M = exp(Jµ).

If charged particle makes n turns in the ring then for stability of this charged particle

in the whole ring, there must be a stability criteria. In any large circular accelerator, an unit

periodic structure is repeatedly used to make complete structure of circular accelerator. Number

of repetition of this periodic structure is called super period. If Mp is the transfer matrix for

one super period and charged particles makes n turns in a storage ring then transfer matrix for

p super period and n turns is given as follows

M = ((Mp)
p)n = (Mp)

np = exp(npJµ). (1.59)

To ensure stability of particles after n turns, µ must be real and matrix element of M

must be finite. From eq.(1.56), a necessary condition for stability of charged particles can be

derived as [20]

|Trace(M)| = |2 cosµ| ≤ 2. (1.60)

In addition, CS variables at the entrance and exit can be related for a magnetic element

if transfer matrix M for a magnetic element is known. Consider CS variables at the entrance
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of the magnetic element, are (β, α, γ)in = (β0, α0, γ0) , then CS variables at the exit is given

by [19] 
β

α

γ


in

=


M2

11 −2M11M12 M2
12

−M11M21 M11M22 +M12M21 −M12M22

M2
21 −2M21M22 M2

22




β0

α0

γ0.

 (1.61)

Magnetic element

𝜷𝟎
𝜶𝟎
𝜸𝟎

𝜷
𝜶
𝜸

Fig. 1.12: CS variables at the entrance and exit of the magnetic element.

Eq.(1.61) is an important relation to see the behaviour of CS variables in different

magnetic elements e.g. for a drift space, the transfer matrix M can be given in terms of path

length, s, as

M =

1 s

0 1

 . (1.62)

Therefore, 
β

α

γ

 =


1 −2s s2

0 1 −s

0 0 1




β0

α0

γ0

 . (1.63)

Hence,

β(s) =β0 − 2α0s+ s2γ0

α(s) =α0 − sγ0

γ(s) =γ0.

(1.64)
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From eq.(1.64), β(s) follows a parabolic nature in drift space, α(s) is linear with s and γ(s) is

constant throughout drift space.

Some concepts like betatron tune, chromaticity, momentum compaction factor play

important role in operation of practical storage ring. These are discussed in the Sections 1.9,

1.10 and 1.11.

1.9 Betatron tune

Off axis particle oscillates about designed orbit due to focusing nature of the quadrupoles.

The number of oscillations per revolution is called betatron tune and denoted by νx for horizontal

plane and νy in vertical plane. Expression for betatron tune is given by [A.2]

νx,y =
µx,y
2π

=
1

2π

∮
1

βx,y(s)
ds, (1.65)

where µx,y =
∮

1
βx,y(s)

ds is the phase advance for complete ring.

Fig. 1.13: Tune diagram for fractional betatron tune up to fourth order resonance.

Any practical storage ring is not ideal, errors, either systematic or random, always are

present in the practical machine. Imperfections in the machine, e.g. dipolar error, quadrupolar
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error, sextupolar error, excite resonances in the storage ring. Therefore, for stable oscillations,

there are restriction on the betatron tunes. For example betatron tune should not be integer

or half integer or one third integer. Dipolar error generates first order resonances or integer

tune resonances, quadrupolar error generates second order or half integer tune resonances

and sextupole error generates third order resonances. General condition for resonance can

be written as mνx + nνy = l, where m,n, l are integers. This is the equation of straight line

in a 2-D plane, called tune space. This is shown in Fig.1.13 up to fourth order. Each line is a

resonance line and |m|+ |n| is called order of resonance. In order to operate a storage ring, the

fractional betatron tunes in both planes should be far away from the resonance lines.

1.10 Chromaticity

Generally, in a storage ring there are bunches instead of a single charged particle and

these bunches have large number of charged particles. In addition, single bunch has spread

in energy, i.e., each charged particle has small energy deviation from the reference charged

particle. After passing through the quadrupole, these different energy charged particles experi-

ence different focusing force, and as a result, they focus at different points. This phenomenon

is called chromaticity.

Momentum dependent quadrupole strength is given as [2]

k(p) =
e

p
g, (1.66)

here e is the charge on charged particle. Then change in quadrupole strength will be

∆k =
dk

dp
∆p =

eg

p0

(
∆p

p0

)
= −kδ (1.67)

∆k =


kδ , for horizontal motion (k > 0)

−kδ , for vertical motion (k < 0)

(1.68)
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For horizontal focusing quadrupole, higher momentum charged particle experiences

weaker quadrupole strength and vice versa for lower momentum charged particles. These

effects introduce shift in betatron tune, which may cross the resonance line and may lead to

loss of the beam. Total betatron tune shift can be given as [5, 6]

∆νx,y =
1

4π

∫
βx,y(s)∆kx,y(s) ds = ∓ 1

4π

∫
βx,y

∆p

p0

k(s) ds. (1.69)

Taking k positive, naturally occurring chromaticities for both planes of the machine are defined

as [5]

ξx,y =
∆νx,y

∆p
p0

= − 1

4π

∮
βx,yk(s) ds. (1.70)

For a strong focusing machine, natural chromaticity is always negative [5]. Natural

chromaticity depends on betatron function and strength of the quadrupoles only, i.e., higher

strength quadrupole placed at higher beta functions will lead to higher natural chromaticity.

Correction of natural chromaticity is done by using sextupoles. Expression for chromaticity

correction for horizontal and vertical planes are given by [5]

ξx,y = − 1

4π

∮
βx,y(s)[k(s)∓ S(s)η(s)] ds, (1.71)

where S(s) is the sextupole strength. Using appropriate strength of the sextupole, one can

achieve desired value of chromaticity in the machine. To efficiently correct the chromaticity in

each plane, chromatic sextupoles should be placed at the location where dispersion is non-zero

and betatron functions are well separated. Horizontal chromaticity correction needs large

horizontal and small vertical beta function and vice versa for the vertical chromaticity correction.

Sextupole having a strength S, compensate the focusing error by deflecting higher momentum

charged particle and lower momentum charged particle towards the focusing point.

In a storage ring, there are two types of aperture: (i) physical aperture, which is defined

by boundary of vacuum chamber, and (ii) dynamic aperture, which is a completely theoretical
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phenomenon. Dynamic aperture is defined as ”stable area of a boundary under non-linear

forces ”. Non-linear forces arises due to non-linear magnetic fields e.g. fields of sextupoles,

octupoles and multipoles due to errors in the practical electron storage ring. Multipole fields

excite various higher order resonances and leads to particle loss in the beam. Therefore, area

available for stable oscillation of charged particles gets reduced.

Dynamic aperture of an electron beam in the storage ring is a hypothetical aperture

beyond which any charged particle will not survive. This means that if a charged particle is

inside of dynamic aperture, then it has stable oscillations for sufficient number of turns. It

is always experienced that large dynamic aperture provides good operating condition for a

any electron storage ring. It is very challenging to increase the dynamic aperture. Dynamic

aperture can be calculated by tracking of charged particle through the storage ring. The plot of

all maximum stable initial amplitude gives dynamic aperture boundary.

1.11 Momentum compaction factor

The path length of a closed off-momentum charged particle will differ from the path

length of the reference charged particle (which is defined to be the circumference, C). Momen-

tum compaction is defined as relative change in circumference per unit relative momentum

off-set and denoted by αc [2].

αc =
∆L
L

∆p
p

=
∆L
L

δ
. (1.72)

This quantity tells us about how orbits are closely packed for different off-energy charged

particles. αc can be negative, positive or zero depending on the energy deviation of the particle.

αc is related with dispersion as

αc =
1

C

∮
η(s)

ρ(s)
ds. (1.73)
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In a storage ring, a low value of α is desired to make beam close to reference orbit, which is

also a challenging task for a storage ring lattice designer.

In an electron storage ring, emission of synchrotron radiation affects the dynamics of

electron beam which is discussed below.

1.12 Effect of synchrotron radiation on electron beam in the

storage ring

A relativistic charged particle when accelerated in a macroscopic electromagnetic field

emits radiation which is called synchrotron radiation (SR). Instantaneous power radiated by

such a charged particle is given by [21]

P =
2e2

3c
γ6
(

(~̇β)2 − (~β × ~̇β)2
)
, (1.74)

where e is the charge of the charged particle, γ is the Lorentz factor, c is the speed of the

light, ~β = ~v
c

is the velocity and ~̇β = ~̇v
c

is the acceleration of the charged particle. In terms of

accelerating forces, the rate of radiated energy is proportional to the square of the accelerating

force. Also, the rate depends on the angle between the force and the charged particle’s velocity

and is larger by the factor γ2 =
(

E
m0c2

)2

when the force is perpendicular to the velocity than

when the force is parallel to the velocity. In a circular accelerator the typical longitudinal forces

(from the accelerating system) are much weaker than the typical transverse magnetic forces.

Therefore, one needs to consider the radiation effects that accompanied by the magnetic forces

only.

Energy lost by an electron, having energy E, in one turn in an electron storage ring is

given by [22]

U =
Cγβ0E

4

2π

∮
ds

[ρ(s)]2
=
cγE

4

2π

∮
ds

[ρ(s)]2
, (1.75)
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here β0 = 1 (at ultrarelativistic speed), Cγ = e2

3ε0(m0c2)4
is a constant and for electrons this

constant has a numerical value equal to 8.846 × 10−5 [m.GeV−3]. I2 is the second radiation

integral and is defined as [22]

I2 =

∮
ds

[ρ(s)]2
(1.76)

Second radiation integral is inversely proportional to square of the local radius of curvature

and for an isomagnet (constant field dipole), it is a constant and has value 2π
ρ

. Thus, for an

isomagnet energy loss per turn can be given as [A.3]

U0 = 88.575
[E(GeV)]4

ρ
. (1.77)

Eq.(1.77) shows that, electron storage rings with small radius of curvature (high magnetic field)

have higher energy loss per turn.

Fig. 1.14: Radiation damping phenomenon in horizontal plane. px and ps are the momentum of

electron in horizontal and longitudinal direction respectively. pRF is the momentum provided by RF

cavity. x′0 is the initial slope of electron and x′1 is the slope of electron after passing through RF cavity.

In an electron storage ring, emission of SR has damping effect on betatron oscillations

as well as synchrotron oscillations (oscillations in longitudinal direction). This damping effect

is called radiation damping. Fig.1.14 explains the phenomenon of radiation damping in the

horizontal plane. To understand this, consider an electron oscillating about a closed orbit in

horizontal plane having momentum p0, after emission of SR in bending magnet, the momentum
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of an electron reduced by ∆p in the direction of SR emission. The loss of momentum is

compensated by RF cavity. But, as shown in Fig. 1.14, after passing through the RF cavity

only longitudinal component of momentum, ps, is compensated and energy is restored. As

a result, slope of the electron is decreased. As electron moves in the ring, slope of electron

decreases turn by turn. This radiation damping phenomenon is true for each electron in the

beam which emits radiation and it leads to reduction in beam emittance. Also, this radiation

damping happens in each plane, i.e., horizontal, vertical and longitudinal planes. The rate

equation of damping of horizontal beam emittance is given by [22]

dεx
dt

= − 2

τx
εx. (1.78)

Similarly, for vertical beam emittance

dεy
dt

= − 2

τy
εy. (1.79)

Damping times in horizontal, vertical and longitudinal planes are given by [22]

τx =
2E0

jxU0

T0, (1.80)

τy =
2E0

jyU0

T0, (1.81)

τs =
2E0

jsU0

T0, (1.82)

where T0 is the time period for one revolution and ji=x,y,s is called damping partition number

and are given as [22]

jx = 1− I4

I2

, jy = 1, js = 2 +
I4

I2

. (1.83)

Here, jx, jy, and js are called horizontal, vertical and longitudinal damping partition number,

respectively. I4 is the fourth radiation integral and is defined as [22]

I4 =

∮
ηx(s)

ρ(s)

(
1

[ρ(s)]2
+ 2k1

)
ds, (1.84)
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where k1 is the normalized quadrupole strength in the dipole magnet. This type of magnets are

called combined function magnet. For a homogeneous field dipole magnet k1 becomes zero.

The damping partition numbers satisfy an important relation called Robinson theorem which is

given as [22]

jx + jy + js = 4. (1.85)

Significance of Robinson theorem is this, damping in a particular plane can be influenced by

damping in the other planes, because total damping number must be constant.

After so many turns, slope of electrons in the beam must go to zero, consequently beam

emittance will reduce to zero if only radiation damping phenomenon occurs. However, there

exist finite value of beam emittance called equilibrium or natural beam emittance. This is

because of counter effect that occurs in the electron storage ring, called quantum excitation.

It is well established that emission of SR radiation is discrete and quantum in nature.

As shown in Fig.1.15, after emission of photon from an on energy closed orbit electron, there

is a sudden change in energy of the electron and it oscillates about an off-energy closed energy.

In addition, electron beam consist of large number of electrons in the form of bunches. There

is energy spread in these electron bunches. Therefore, photons emitted from different electrons

are of different energy and also, random in nature [22,23]. These sudden change in energies of

electrons act as noise or fluctuation source in the phase space and act opposite to the radiation

damping, which prevent the betatron amplitude of oscillations to be damped to zero. Due

to quantum excitation, oscillations grow up unless they are balanced by radiation damping.

Including these two phenomena a rate equation for horizontal emittance can be written as [22]
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Fig. 1.15: Quantum Excitation phenomenon.

dεx
dt

= − 2

τx
εx +

2

τx
Cqγ

2 I5

jxI2

. (1.86)

In eq.(1.86), first term arises from radiation damping and second term arises from quantum

excitation. In the equilibrium condition, dεx
dt

= 0, and emittance is given by

εx0 = Cqγ
2 I5

jxI2

. (1.87)

εx0 is called natural emittance and Cq = 55
32
√

3
~
m0c

, ~ is the Plank constant divided by 2π. For

electron storage rings, its value is equal to Cq = 3.832 × 10−12m. I5 is the fifth radiation

integral and is defined as [22]

I5 =

∮
Hx(s)

[ρ(s)]3
ds. (1.88)

I5 depends onH function and inversely proportional to cubic power of local radius of curvature.

TheH function is defined as [22]

Hx = γxη
2
x + 2αxηxη

′
x + βxη

′2
x . (1.89)

The Hx(s) function depends on twiss parameters, dispersion and its derivative. There are two

more radiation integral which are defined as [22]

I1 =

∮
ηx(s)

ρ(s)
ds, (1.90)
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I3 =

∮
ds

|[ρ(s)]3|
. (1.91)

I1 is related to the momentum compaction factor αc, which plays an important role in the

longitudinal dynamics and I3 is related to equilibrium energy spread in a bunch, which is given

by

σδ0 = Cqγ
2 I3

jsI2

. (1.92)

For y-direction, ideally there should not be any dispersion. Therefore,H and hence fifth

radiation integral must be zero. This implies that the vertical emittance must be zero. However,

in deriving equation for the natural emittance, it is assumed that all photons were emitted

directly along the instantaneous direction of motion of electron. In fact, photons are emitted

with a distribution with angular width 1
γ

about the direction of motion of the electron [22]. This

leads to some vertical recoil that excite vertical betatron motion, resulting a non-zero vertical

emittance. An expression for lower limit of the vertical beam emittance, called quantum limit,

is given by [22].

εy,min =
12

55

Cq
I2

∮
βy(s)

|[ρ(s)]3|
ds. (1.93)

Though vertical beam emittance has finite value, but, still it is much smaller than the natural

beam emittance. Also, errors and betatron coupling in the practical electron storage ring,

increase the vertical beam emittance. It is always desirable to make errors in the practical

machine as small as possible to achieve quantum limit of vertical beam emittance.

Important mathematical relations are summarized in Table 1.1.

Table 1.1: Important mathematical relations [2, 22]

Radiation integral I1

∮ ηx(s)
ρ(s) ds

Radiation integral I2

∮
ds

[ρ(s)]2
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Radiation integral I3

∮
1
|ρ3|

Radiation integral I4

∮ ηx(s)
ρ(s)

(
1

[ρ(s)]2
+ 2k1

)
ds

Radiation integral I5

∮ Hx(s)
[ρ(s)]3

ds

Energy loss per turn 88.575 [E(GeV)]4

ρ

Natural emittance εx Cqγ
2 I5
jxI2

Damping partition numbers jx = 1− I4
I2

, jy = 1, js = 2 + I4
I2

Horizontal damping time τx 2E0
jxU0

T0

Vertical damping time τy 2E0
jyU0

T0

Longitudinal damping time τs 2E0
jsU0

T0

Robinson’s theorem jx + jy + js = 4

H function γη2 + 2αηη′ + βη2

Equilibrium energy spread σδ0 Cqγ
2 I3
jsI2

1.13 Different types of magnetic lattices and equilibrium

emittance

In order to achieve low emittance different type of lattices are proposed such as theoretical

minimum emittance (TME), double bend achromat (DBA), and triple bend achromat (TBA),
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a combination of TME and DBA. Now a days multi bend achromat (MBA) lattice are used to

achieve ultra low emittance in electron storage rings. Natural beam emittance can be written as

averaged quantities as [20]

εx0 = Cqγ
2 I5

jxI2

= Cqγ
2

〈
Hx(s)
ρ3(s)

〉
〈

1
ρ2(s)

〉 . (1.94)

For a lattice which utilizes isomagnetic dipole, ρ is constant and beam emittance is given by

εx0 = Cqγ
2 I5

jxI2

= Cqγ
2 〈Hx(s)〉

jxρ
. (1.95)

Storage ring having isomagnetic dipoles, the horizontal damping partition number jx ∼ 1 and

〈Hx〉 is the average over the dipoles [20]. Therefore, to minimize emittance is equivalent to

minimize 〈Hx〉 over the dipole with respect to ηx and βx.

The theoretical minimum beam emittance in the isomagnetic lattice is given by [5]

εx,min = FlatCqγ
2θ3, (1.96)

where θ is the bending angle of the dipole. Flat is called form factor, which depends on the

particular magnetic cell structure. From eq.(1.96), it can be seen that beam emittance depends

on third power of the bending angle. For a fixed energy electron storage ring Cqγ2 is constant.

Therefore, emittance in a given storage ring with fixed energy can be reduced with dipoles with

smaller bending angle. But small bending will lead to large number of dipoles to bend the

electron by 360 deg and this leads to large size of storage ring, consequently cost of the storage

ring will increase.

1.13.1 Theoretical minimum emittance (TME) lattice

In a TME lattice, there is a single dipole in the unit lattice cell. Dispersion and beta

functions are symmetric with respect to centre of the dipole magnet as shown in Fig.1.16. After
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minimizing Hx with respect to horizontal beta function and horizontal dispersion function ηx

over the dipole, the minimum of the average ofHx function is given by [5, 20]

〈Hx〉 =
1

12
√

15
ρθ3, (1.97)

where ρ and θ are the radius of curvature and bending angle of the dipole. Values of βx and ηx

at the entrance and at centre of the dipole magnet are given as

at the entrance of the dipole : (β0, α0, η0, η
′
0) =

(
8√
15
L,
√

15, 6Lθ,−2θ

)
, (1.98)

at the centre of the dipole : (βc, ηc)TME =

(
1√
60
L,
Lθ

24

)
, (1.99)

here L is the length of the dipole. Theoretical minimum emittance is given by

εx,TME =
1

12
√

15
Cq
γ2θ3

jx
. (1.100)

Fig. 1.16: Variation of horizontal beta and dispersion function in case TME lattice. Both functions have

minima at the centre of the bending magnet.

For a TME lattice form factor is taken as 1. Though TME lattice has lowest minimum

emittance. But they cannot be used for third generation synchrotron radiation sources due

to requirement of zero dispersion at the location of IDs. Both horizontal beta function and

dispersion function attain higher value in the quadrupoles, therefore, generate large negative
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natural chromaticity. Therefore, much stronger sextupoles are required to correct the chromati-

city. In addition, dispersion is nonzero at the ID straight section, which is not desirable. Hence,

TME lattice is not the proper choice for the storage ring lattice. Therefore, a lattice called DBA

is used which provide zero dispersion at location of IDs.

1.13.2 Double bend achromat (DBA)lattice

This type of lattice consists two bending magnets in the unit lattice cell to make an

achromat. If dispersion and it derivative are zero at the entrance of the dipole magnet, it is

called achromatic condition and lattice which provide achromatic condition is called achromat.

The dispersion free region is utilized for installation of IDs. This type of lattice is most widely

used in electron storage rings. In Fig.1.17, part of the achromat is shown. In this type of lattice

minimum of beta function is not at the centre of the bending magnet. After minimizing 〈Hx(s)〉

with respect to βx and αx, minimum of 〈Hx〉 is given by [20]

〈Hx〉MEDBA =
1

4
√

15
ρθ3, (1.101)

with the condition on βx and αx at the entrance as [20]

β0 =
6√
15
L α0 =

√
15 γ0 =

8
√

5√
3
. (1.102)

Minimum beam emittance is given by [5, 20]

εx,DBA =
1

4
√

15
Cq
γ2θ3

jx
. (1.103)

After choosing optimum values of β0 = 6√
15
L and α0 =

√
15 at the entrance of the dipole, beta

function achieves minimum value βx,minimum = 3
4
√

60
L at s0 = 3

8
L in the dipole magnet. From

eq.(1.100) and eq.(1.103) we found that

εx,DBA = 3εx,TME (1.104)

41



Fig. 1.17: Variation of horizontal beta and dispersion function in the first dipole of DBA lattice.

Dispersion and its derivative are zero at the entrance of the dipole.

Though form factor for DBA is three time higher than the TME, a practical storage

ring in DBA configuration acquires even higher form factor than 3, generally, in the range of

3-10 [24]. For some storage rings, it may be higher than 10.

1.13.3 Multi bend achromat (MBA) lattice

To achieve much lower natural emittance, concept of MBA lattice was introduced.

In MBA lattice more than two dipole magnets are normally used. In a MBA lattice, more

number of TME dipoles are introduced between the two dipoles of DBA lattice. The minimum

emittance in a MBA lattice is given by [5]

εx,MBA =
1

12
√

15

(
M + 1

M − 1

)
Cq
γ2θ3

jx
, (1.105)

where M is the number of dipole in the MBA lattice and for equal bending angle in all dipole

used, θ is the average angle of all dipoles. Now a days, MBA lattice is more preferred to achieve

ultra low emittance in the electron storage rings.
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1.14 RMS beam sizes

In dispersion free region, the RMS beam sizes and beam divergences in the transverse

plane are defined by only betatron function and are given as [22]

Horizontal plane:
√
εxβx(s),

√
εxγx(s), (1.106)

Vertical plane:
√
εyβy(s),

√
εyγy(s), (1.107)

For a region where dispersion is finite, the RMS beam sizes and divergences are given by

Horizontal plane:
√
εxβx(s) + (ηxσδ)2,

√
εxγx(s) + (η′xσδ)

2, (1.108)

Vertical plane:
√
εyβy(s) + (ηyσδ)2,

√
εyγy(s) + (η′yσδ)

2, (1.109)

where εx and σδ are RMS beam emittance and RMS momentum spread.

1.15 Advance methods to improve beam emittance

In last few decades, new advance methods were introduced to reduce the beam emittance

further, like transverse gradient, longitudinal gradient bend (LGB), and anti bend etc. in the

dipole magnet. Here, we have discussed transverse gradient and LGB in a dipole.

Natural horizontal beam emittance as given in eq.(1.87) is

εx0 = Cqγ
2 I5

jxI2

. (1.110)

Here, the first term Cq is constant and second term γ2 is also a constant as energy in the storage

ring is fixed. Therefore, in order to reduce the beam emittance, only radiation integrals and

horizontal damping partition number are to be optimized. This can be done in following two

ways.
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Maximize jx: From eq.(1.84), if we introduce negative quadrupole gradient in dipole

magnet in such a way that the quantity I4
I2

becomes −ve, then jx can be made greater than 1

and beam emittance will reduce. As Robinson’s theorem puts a limit on jx, the value of jx can

be increased up to 2 only. Also, if one increase the jx above 2 by increasing k1, the dipole will

loose its dipole nature and behaves like a pure quadrupole and it is also difficult task to provide

such gradient in the dipole magnet. It means, improving horizontal damping partition number,

one can reduce beam emittance by a factor of 2. Physically, increasing horizontal damping

partition number means rate of radiation damping will increase, i.e., electron beam will damp

fast for the same quantum excitation.

(a) (b)

Fig. 1.18: (a) Linear variation of magnetic field along x-direction (black) and compared with

homogeneous field (blue). (b) Shape of dipole to get linearly decreasing magnetic field.

Since bending of electron is in horizontal plane, there will not be any effect on jy.

Therefore, js will increase due to Robinson theorem. Also, js is inversely proportional to

energy spread in the bunch [24], energy spread of bunch will increase and this leads to increase

in bunch length that is not desirable in electron storage rings. In Fig. 1.18, a linearly decreasing

magnetic field compared with homogeneous magnetic field is shown. At the center of dipole

both have same value of field. The linearly decreasing magnetic field will provide quadrupole

gradient in the dipole. Also, a curved shape of dipole is shown to produce linearly decreasing
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magnetic field.

Minimize the term I5
I2

: I5 contains H function in the numerator which is defined in

eq.(1.89) and ρ3 in the denominator. If, one is able to reduce the H function or increase the

radius of curvature or both in the dipole magnet, emittance will decreased naturally. To achieve

this goal, a longitudinal variation in dipole field profile was introduced [10]. These dipoles then

termed as longitudinal gradient bend (LGB). The LGB field profile instead of homogeneous

magnetic field in the dipole causes H function and radius of curvature to vary differently. In

recent studies, it was established that LGB profile follows parabolic decay [24] of the magnetic

field over the length of the dipole magnet. For achromat case, magnetic field decreases from

high value at one end to low value at other end as shown in Fig. 1.19 [24]. This LGB profile

helps in providing two major beam dynamical advantages: (i) reduction of beam emittance,

and (ii) large dispersion at the sextupole location.

Dipole

Bmax

Homo. magnetic field

By

s

Fig. 1.19: Variation of longitudinal field profile in the dipole magnet of a DBA lattice

For a TME lattice, the magnetic field profile is such that its maximum occurs at the

center of the dipole and field reduces symmetrically to lower value on either side as shown in

Fig. 1.20 [24]. This LGB profile satisfy only one purpose, i.e., reduction of beam emittance.
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Fig. 1.20: Variation of longitudinal field profile in the dipole of TME lattice

Using this type of LGB profile dispersion will reduce at the centre of dipole and conseq-

uently H function will reduce. This leads to reduction in beam emittance. Physically in both

cases i.e achromat and TME, we are reducing the quantum excitation in the dipole magnet.

1.16 Indus-2 storage ring lattice

In India, there are two electron storage ring based SRSs namely Indus-1 and Indus-2,

located at RRCAT, Indore. Indus-1, a 450 MeV energy synchrotron radiation source has

circumference of 18 m, which provides SR in the vacuum ultraviolet range. Indus-2, which is a

third generation electron storage ring, has energy 2.5 GeV and provides synchrotron radiation

in the hard x-rays regime [3, 4]. This radiation is very useful for variety of material study. A

schematic layout of Indus-1 and Indus-2 synchrotron radiation source facility is shown in Fig.

1.21. The base line lattice of Indus-2 was designed for beam emittance of 58 nm.rad.

Both storage rings share a common injector system consisting of a 20 MeV microtron

and 20-450/550 MeV booster synchrotron [3–5]. Unit lattice cell of Indus-2 is based on DBA

or Chessman Green lattice. In unit lattice cell, there are 2 dipole magnets for bending of beam,

9 quadrupoles (4 focusing type and 5 defocusing type) for focusing and defocusing action of

beam, 4 sextupoles (2 focusing and 2 defocusing) for chromaticity correction.
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Fig. 1.21: Schematic layout of Indus Accelerator complex [3, 5].

In Table 1.2 different designed parameters of Indus-2 lattice are given and different

magnetic elements with their maximum available strength are shown in Table 1.3.

Table 1.2: Different design parameters of Indus-2 storage ring

Beam Energy 2.5 GeV

Beam current 200-300 mA

Circumference 172.47 m

Beam Emittance, εx 58 nm.rad

Betatron tune [νx, νy] [9.2, 5.2]

Natural chromaticity [ξx, ξy] [-19, -12]

Corrected chromaticity [ξx, ξy] [2, 2]

Momentum compaction factor, αc 5.2× 10−3

Energy spread, σδ 9× 10−4

Damping time [τx, τy, τs] [4.74, 4.62 ,2.28] ms

Energy loss per turn 623 keV

Power loss 186.6 kW(BM)@ 300 mA
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Table 1.3: Different magnetic elements of the Indus-2 storage ring.

S.No. Name Type Length [m] Max.

Available

Field

Total

Number

1. BM Dipole (Rectangular type) 2.18 1.503 T 16

2. Q1D Defocusing Quadrupole 0.30 16 T m−1 16

3. Q2F Focusing Quadrupole 0.55 16 T m−1 16

4. Q3D Defocusing Quadrupole 0.40 16 T m−1 16

5. Q4F Focusing Quadrupole 0.40 16 T m−1 16

6. Q5D Defocusing Quadrupole 0.40 16 T.m−1 8

7. SF Focusing Sextupole 0.2 400 T m−2 16

8. SD Defocusing Sextupole 0.2 400 T m−2 16

Fig. 1.22: Variation of beta and dispersion functions in Indus-2 unit lattice cell. Bending magnets are

shown by green boxes, quadrupoles are in red and blue boxes and sextupoles are in yellow and black

boxes.
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Lattice functions for one unit lattice cell of Indus-2 are shown in Fig.1.22. This lattice is

designed in such a way that dispersion acquires high value at sextupole location, maximum

beta functions are less than 21 m through out the lattice cell.

Indus-2 is in regular operation. Therefore no changes in position and lengths of any

magnetic element of Indus-2 lattice can be done. Beam emittance of Indus-2 lattice can be

reduced by replacing homogeneous dipole with dipoles with LGBs. In this thesis work, studies

with LGB in the dipole magnet has been done with two purposes, (i) lower the beam emittance,

(ii) increase dispersion at sextupole location. In addition, building constraints are to be satisfied,

i.e. all other hardware need not be shifted.

1.17 Indus-3 storage ring lattice

Indus-3, a 6 GeV electron storage ring, is a proposed high brightness synchrotron

radiation source (HBSRS) at RRCAT. Baseline lattice has been designed to achieve emittance

of∼ 150 pm.rad. Indus-3 uses hybrid seven bend achromat lattice cell with ring circumference

∼ 911.7 m. The ultra low emittance of Indus-3 leads to brightness of the order of 1020 − 1022

photons per second per unit angle per unit area in 0.1% bandwidth of considered wavelength

with fully loaded IDs. In Fig. 1.23, the lattice functions for one unit lattice cell are shown

with position of different magnetic elements. In the Table 1.4, different designed parameters

are shown and the Table 1.5 shows numbers and strengths of different magnetic elements in

Indus-3 lattice. A transverses quadrupole gradient have been provided in BM3 and BM4. That

is why this lattice is a hybrid lattice. The strengths of quadrupoles are quite high. This leads to

tight focusing of beam in the machine. The aperture size of Indus-3 is quite small compared to

Indus-2 lattice.
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Fig. 1.23: Beta Functions of Indus-3 lattice cell. Boxes in red colour are dipole magnet, boxes in green

colour are quadrupoles and boxes in blue colour are sextupole magnets.

Table 1.4: Different design parameters of Indus-3 storage ring.

Beam Energy 6.0 GeV

Beam current 200 mA

Circumference 911.798 m

Beam Emittance, εx 149 pm.rad

Betatron tune [νx, νy] [74.15, 24.22]

Natural chromaticity [ξx, ξy] [-109.6, -80.9]

Corrected chromaticity [ξx, ξy] [4, 4]

Momentum compaction factor, αc 1× 10−4

Energy spread, σδ 1.02× 10−3

Damping time [τx, τy, τs] [8.72, 14.84 ,11.44] ms

Energy loss per turn 2.46 MeV

Power loss per turn 491.7 kW(BM)@ 200 mA
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Table 1.5: Different magnetic elements of the Indus-3 lattice.

S.No. Name Element Length [m] Required Field Total Number

1. BM1 Dipole 2.17 0.28 T 64

2. BM2 Dipole 2.17 0.28 T 64

3. BM3 Dipole 0.4 0.63 T 64

4. BM4 Dipole 0.325 0.75 T 32

5. Q1F Quadrupole 0.40 40.8 T m−1 16

6. Q2D Quadrupole 0.30 42.8 T m−1 64

7. Q3D Quadrupole 0.20 42.2 T m−1 64

8. Q4F Quadrupole 0.30 71.2 T m−1 64

9. Q5F Quadrupole 0.20 54.8 T m−1 64

10. Q6D Quadrupole 0.25 60.6 T m−1 64

11. Q7D Quadrupole 0.50 36.4 T m−1 64

12. Q8F Quadrupole 0.60 73.6 T m−1 64

14. S1 (D) Sextupole 0.25 3580 T m−2 64

15. S2 (F) Sextupole 0.25 4752 T m−2 64

16. S3 (D) Sextupole 0.250 2880 T m−2 64

17. SH1 (F)
Harmonic

Sextupole
0.25 1462 T m−2 64

18. SH2

(D)

Harmonic

Sextupole
0.1 2748 T m−2 64

F: Focusing, D: Defocusing

51



As there are transverse gradient in BM3 and BM4, therefore, only BM1 and BM2 are

left which have homogeneous field. These dipoles can be chosen to study LGB profiles.

In this Chapter, a brief introduction of accelerator physics relevant to this thesis work

is presented which are very important in storage ring design. Many concepts like, lattice

functions, betatron tune, beam emittance, chromaticity etc are discussed. In addition, effect

of SR on the beam emittance and concept of radiation damping and quantum excitation which

leads to equilibrium emittance are also discussed. Different types of low emittance lattice

cell and advanced method to reduce the beam emittance are also described. Though, beam

emittance reduction is desirable in any storage ring, however for successful operation of the

facility, various other lattice parameters need to be optimized or constrained. For example,

betatron tunes should be far away from dangerous resonances, horizontal beta function should

be large at injection point, large value of dispersion is desirable at sextupole locations for

effective chromaticity correction, large dynamic aperture for good beam life time and injection

efficiency etc. These aspects make lattice design of a storage ring a complex optimization

problem. This requires a better understanding of optimization techniques. Various optimization

techniques are discussed in Chapter 2 and optimized result for Indus-2 and Indus-3 are presented

in Chapter 3 and 4.
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Chapter 2

Optimization techniques used in

accelerators

As discussed in Chapter 1, in lattice design of a storage ring, many conflicting objectives

like beam emittance, dynamic aperture, desired lattice parameters, with large number of variab-

les such as strengths of different magnetic elements, position of different magnetic elements

etc., and many constraints like maximum achievable strengths of magnetic elements, constraints

on lattice functions, betatron tune etc., are needed to be optimized. These aspects make the

storage ring lattice design a complicated multi-objective optimization problem. Therefore,

numerical techniques that can handle these complicated optimization problem are required. In

recent past, classical, like simplex method, as well as modern methods, which are evolutionary

methods, were used to handle these optimization problems. Evolutionary algorithms were

introduced in the field of accelerator design in recent years [5]. These evolutionary methods

found to be very efficient in designing of lattice of storage ring and set a new trend in optimizing

the accelerator performance in simulations as well as in real operation. In this Chapter, two

non gradient optimization methods, Nelder-Mead algorithm, a classical method and genetic
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algorithm, an evolutionary method are discussed in detail. These methods will be used to

perform numerical optimization of LGB profiles in a dipole magnet and the studies are presented

in Chapter 3.

The meaning of optimization of an objective function, which depends on one or more

independent variables, is to find the values of the independent variables for which the objective

function has extremum ( either minima or maxima). If there is only one objective function that

needs to be optimized, then this optimization problem is called single objective optimization

problem [25], which is discussed in Section 2.1. On the other hand, if there are more than

one objective function that need to be optimized, then this optimization problem is called

multi-objective optimization problem, which is discussed in Section 2.2.

2.1 Single objective optimization problem

In a single objective optimization problem, an objective function f(~x), is needed to be

optimized which depends on one or more independent variables ~x = (x1, x2, x3, · · · , xn) = xi;

where i = 1, 2, 3, · · ·n; n is the number of independent variables. Single objective optimization

problem can be written, mathematically, as [25]

Minimize or Maximize f(~x)

Subject to gj(~x) ≥ 0, j = 1, 2, 3, · · · , J,

hk(~x) = 0, k = 1, 2, 3, · · · , K,

xLi ≤ xi ≤ xUi , i = 1, 2, 3, · · · , n,

(2.1)

where g′is are J inequality constraints, h′is are K equality constraints, xLi and xUi are lower

and upper bound for ith independent variable, respectively. To optimize such single objective

function f(~x), one needs to find those values of independent variables for which f(~x) has

extremum (maximum or minimum) value. Most of the algorithms were developed to solve
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either minimization or maximization of objective functions. Hence, it was a difficult task

to handle mixed optimization problems. Therefore, to handle such optimization problems,

duality principle [25] was introduced, where any maximization problem can be converted into

minimization problem by multiplying the objective function by -1.

To solve single objective optimization problems, various classical methods, also called

derivative based methods, like Newton’s method, steepest descant method, and quasi-Newton’s

method, were developed [5]. In these methods, the objective function must be differentiable

upto first order (gradient) and sometimes, second partial derivatives (hessian) are required.

But in most of the real world problem, the first or second partial derivatives of the objective

functions are not always possible. Therefore, other methods called direct search methods, were

developed to solve single optimization problem.

The simplest direct search method is the “Brute Force Method”. Here, the search

domain is divided into grids, which are visited point by point, and whenever best one is

found, best found minimizer is updated. This method is also called sampling method. But

this method has several drawbacks like there is strong dependence of grid size on the problem

and exponential growth with grid size. Also search time increases exponentially. Another

search method that tries to avoid these difficulties is Nelder-Mead method. In the following

Section, the Nelder-Mead algorithm is discussed.

2.1.1 Nelder-Mead method

Nelder-Mead algorithm is designed to solve the classical unconstrained single objective

optimization problem. It uses a variable shape simplex. A simplex in Rn space is a convex

hull of n + 1 vertices, for example, in two dimensions, the simplex is a triangle and in three

dimensions, it is a tetrahedron.

A simplex based direct search method begins with a set of n+1 points ~x1, ~x2, · · · , ~xn+1 ∈
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Rn that are considered as the vertices of working simplex S. Here, each ~xi; i = 1, 2 · · · , n+ 1

is an initial solution of objective function. There are many methods to create initial simplex

like Spendley’s et al regular simplex, axis by axis simplex, Pfeffer’s method etc [26]. Pfeffer’s

method for generating initial simplex is described below.

In the Pfeffer’s method, two positive quantity τu and τz are defined, where τu is used for

usual components of ~x0, where ~x0 is the user defined initial guess of solutions, and τz is used

for the case where one component of ~x0 is zero. The standard values of τu and τz are

τu = 0.05 and τz = 0.00025.

The first vertex of the initial simplex is chosen as initial guess ~x0 and can be written as

~x1 = ~x0. (2.2)

The other vertices are defined as

(~xi)j =



(~x0)j + τu(~x0), if j = i− 1 and (~x)j 6= 0,

τz, if j = i− 1 and (~x)j = 0,

(~x0)j, if j 6= i− 1,

(2.3)

for vertices i = 2, · · · , n + 1 and components of initial guess j = 1, · · · , n. After calculating

initial simplex, this algorithm perform some operation for one iteration which are discussed

below [5, 27]

1. Ordering: In order to perform the algorithm, the vertices of S are ordered with respect

to the function values as

f(~x1) ≤ f(~x2) ≤ f(~x3) ≤ · · · ≤ f(~xn) ≤ f(~xn+1).

Objective function values f(~xn+1), f(~xn) and f(~x1) are called worst, second worst and

best points.
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2. Centroid: After ordering function values at vertices, centroid ~c of all vertices, except

worst vertex, is calculated.

~c =
1

n

n∑
i=1

~xi. (2.4)

3. Transformation: After calculating centroid, new working simplex is found from the

current one by replacing only the worst vertex ~xn+1 with a better point by using reflection,

expansion and contraction. If iteration succeeds, the accepted point becomes the new

vertex of the working simplex. If this fails, shrink the simplex towards the best vertex ~x1.

In this case, n new vertices are computed.

• Reflection: In reflection, reflection point, ~xr, is calculated as

~xr = ~c+ α(~c− ~xn+1), and fr = f( ~xr). (2.5)

Here, α is reflection coefficient. If f1 ≤ f( ~xr) < f( ~xn), accept point ~xr and terminate

the iteration here and go to the step 1 for next iteration.

• Expansion: If fr < f1, i.e., objective function has lower value at reflection point than the

best point, then expansion operation is performed and expansion point ~xe is calculated as

~xe = ~c+ γ(~xr − ~c) = ~c+ αγ(~c− ~xn+1) and fe = f(~xe). (2.6)

Here, γ is expansion coefficient. If fe < fr, accept ~xe and terminate the iteration.

Otherwise, if fe ≥ fr, accept ~xr and terminate the iteration here and go to the step 1

for next iteration. The expansion of the simplex is applied only if fe < fr < f1.

• Contraction: if fr ≥ fn, contraction is performed between best point and better of ~c and

~xn+1, then contraction point, ~xc is calculated, which can be either outside or inside.
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– Outside: If fn ≤ fr < fn+1 (i.e., ~xr is strictly better than ~xn+1). In this case,

outside contraction is performed and contraction point, ~xc, is calculated as

~xc = ~c+ β(~xr − ~c) = ~c+ βα(~c− ~xn+1) and fc = f(~xc). (2.7)

Here, β is contraction coefficient. If fc ≤ fr, accept ~xc and terminate the iteration

and go to the step 1 for next iteration. Otherwise, shrink operation is performed.

– Inside: If fr ≥ fn+1, inside contraction is performed and calculated as

~xc = ~c− β(~c− ~xn+1) and fc = f(~xc). (2.8)

If fc < fn+1, ~xc is accepted and terminate the iteration. Otherwise, perform the

shrink operation.

• Shrink: In this operation, n vertices are computed as

~xj = ~xl + δ(~xj − ~xl) and fj = f(~xj), for j = 1, 2, · · · , n+ 1 with j 6= 1. (2.9)

Here, δ is shrink coefficient. The shrink transformation was introduced to prevent the

algorithm from failing in the following case.

A failed contraction is much rarer, but it can occur when a valley is curved and one point

of the simplex is much farther from the valley bottom than the others. Contraction may

then cause the reflected point to move away from the valley bottom instead of towards it.

Further contractions are then useless. The action proposed, contracts the simplex towards

the lowest point, and will eventually bring all points into the valley.

In Fig. 2.1 and Fig. 2.2, different operation of Nelder-Mead algorithm for 2-D case are

shown. In these figures, ~x3 is the worst vertex for the simplex.
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Fig. 2.1: Reflection (left) and expansion (right) of Nelder-Mead simplex.

𝒙𝟑

𝒙𝒓

𝒙𝟏 𝒙𝟐 𝒙𝟏 𝒙𝟐

𝒙𝟑
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𝒙𝟑

𝒙𝒄

𝒙𝒄

Fig. 2.2: Outside contraction (left), inside contraction (middle) and shrink (right) of Nelder-Mead

simplex.

Different coefficients should satisfy the following constraints [27]

α > 0, γ > 1, γ > α, 0 < β < 1, 0 < δ < 1.

The standard values of these parameters are

α = 1, , γ = 2, β =
1

2
δ =

1

2
.

For a practical implementation of the Nelder-Mead algorithm, it must include a test that

ensures termination in a finite amount of time [28]. (i) Domain convergence or termination

test: It becomes true when the working simplex S is sufficiently small in some sense. (ii)

Function value convergence test: It become true when function values fj are close enough in
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some sense. (iii) No convergence test: It become true if the number of iteration or function

evaluation exceeds some prescribed maximum allowed value.

In MATLAB, Nelder-Mead algorithm is coded with the name fminsearch and has been

used in the present thesis for the optimization of LGB profile in a dipole magnet of a low

emittance lattice cell.

2.2 Multi-objective optimization

In multi-objective optimization problems, a set of objective functions, fm; m = 1, 2, 3, · · ·

,M , need to be optimized simultaneously. These objective functions can be defined in a vector

form as

~f(~x) = (f1, f2, f3, · · · , fM), (2.10)

here M is the number of objective function. Each fm is a function of ~x = (x1, x2, x3, · · · , xn).

Vector objective function ~f has to be optimized with linear or non-linear constraints within

variable bounds [25]. In mathematical form, optimization problem becomes

Minimize fm(~x), m =1, 2, 3, · · · ,M,

Subject to gj(~x) ≥ 0, j =1, 2, 3, · · · , J,

hk(~x) = 0, k =1, 2, 3, · · · , K,

xLi ≤ xi ≤ xUi , i =1, 2, 3, · · · , n,

(2.11)

J and K are the number of inequality and equality constraints respectively. xLi and xUi are

lower and upper bounds for ith independent variable. One must find vector ~x such that each

objective function achieves minimum value.

In real world multi-objective optimization, there may be conflicting nature of objective

functions, i.e., one function can only be improved at the cost of deteriorating the other functions.

In such cases, there does not exist unique optimal solution. There exist a number of solutions
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which all are optimal. But, for a practical point of view user always needs a single optimal

solution, no matter whether the associated optimization problem is single objective or multi-obje-

ctive. Therefore, in multi-objective problem one must find a set of all optimal solution by

considering all objectives equally important. After a set of all optimal solution is found, one

can use higher level qualitative information associated with each objective to make a choice.

Therefore, there is a two step process for an ideal multi-objective optimization procedure [25].

Step 1 Find multiple trade-off optimal solutions with a wide range of values for objectives.

Step 2 Choose one of the obtained solution using higher level information.

But, if for a particular problem a preference factor is known for each objective, then,

there is no need to follow above two step process. One can assign preference factor to each

objective and form a composite single objective [see Section 2.3]. This procedure is called a

preference based multi-objective optimization. Using different preference vector, one can find

many optimal solutions. But, it is important to realize that the trade-off solution is largely

sensitive to preference vector used in forming composite function. A change in preference

vector will result in a different trade-off solution and any arbitrary preference vector may not

result in a trade-off optimal solution to all problems. Besides this difficulty, finding a relative

preference vector itself is highly subjective and not straightforward. One of the classical method

to solve multi-objective optimization problem is discussed in the following Section.

2.3 Classical methods for multi-objective optimization

problems (MOOP)

Many classical methods were developed to solve MOOP like weighted sum method,

epsilon constraint Method, weighted matric methods, rotated matric methods etc. [25]. Weighted

sum method, a preference based approach for solving MOOP, is described here.
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Weighted sum method is useful if one knows about weight factors that must be given to

each objective function. One can write optimization problem with composite function as [25]

f(~x) =
M∑
m=1

wmfm

Subject to gj(~x) ≥ 0, j =1, 2, 3, · · · , J,

hk(~x) = 0, k =1, 2, 3, · · · , K,

xLi ≤ xi ≤ xUi , i =1, 2, 3, · · · , n,

(2.12)

where
M∑
m=1

wm = 1 and wm is the weight factor for mth objective function, which satisfy

0 ≤ wm ≤ 1.

This method is the simplest way to solve MOOP. In this method, each objective fm must have

same functional behaviour, i.e., each function must have minima. Otherwise this method will

not work.

Most of the classical methods use a deterministic procedure for approaching the optimum

solution. These classical algorithms start from a random guess solution. After that, based on

pre-specified transition rules, the algorithm finds a search direction, which is often arrived at

by considering local information. Now, an unidirectional search is performed along the search

direction to find the best solution. This best solution becomes the new solution and the above

procedure is continued for a number of times. These methods are fast converging, however,

they may converge to local minima. It is, therefore, recommended to run the method for few

times to achieve a reasonable solution. In addition, these methods have many user defined

parameters, for example in weighted sum method each weight factor, wi must be defined and it

is difficult to decide for an arbitrary optimization problem.

To avoid these difficulties, the evolutionary algorithms (EA) were introduced in MOOP.

One of the most striking difference between classical search and EA is that in each iteration,
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EA uses a population or set of random solutions. Therefore, the outcome of an EA is also

a population of solution. If there is a single optimum in an optimization problem, all EA

population will converge to that optimum solution. However, if there are multiple optimal

solution for an optimization problem, then EA can capture all optimal solution in its final

population. This ability makes EA an unique method in solving multi-objective optimization

problem.

2.4 Evolutionary algorithm for optimization problems

In 1975, Holland introduced the genetic algorithms (GA), a modern optimization method,

to handle MOOP which allows optimization algorithm to find global optimal solutions [25].

After that many methods were developed. In 1983, the simulated annealing algorithm was

introduced by Kirkpatrick et al. [29] and in 1995, Kennedy and Eberhart introduces another

recipe in the optimization, a particle swarm optimization (PSO) [30, 31]. In 1995, differential

evolution (DE) algorithm was introduced by Storn and Price [32]. These advance optimization

methods belong to population based optimization methods, which are a class of evolutionary

algorithms. These methods for optimization have proven their effectiveness in real world

problem where the objective functions and the constraints are discontinuous and non differen-

tiable.

The working of GA is based on the natural evolution and governed by Darwin’s principle

of survival of fittest which says that [5]

1. If above-average offspring is generated by genetic processing, usually it survives longer

than an ordinary individuals survives. Therefore, it has more chances to produce offspring

which have some of its qualities better than an average individual.

2. On the other hand, if a below-average offspring is created by a genetic processing, it
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generally does not survive longer and eliminated quickly from the population.

This suggest that individuals in the population that are most fit amongst all others will survive

in the next generation. This is the principle of genetic algorithm which is implemented in

mathematical form and used as the global search algorithms and is discussed below.

2.4.1 Genetic algorithm

The genetic algorithm (GA) is well established in the field of accelerator design. Since,

GA uses population based approach, therefore, constraints can be handle in much better way

than classical methods.

In all real optimization problems, there may be the case where domain of the problem

is not known. In that case, GA initiates its search from a random population of the solution.

If a termination criterion is not satisfied, different operators like reproduction, crossover and

mutation are applied to update solutions. One iteration of these operators is called one generation.

A flow chart for one iteration of genetic algorithm is shown in the Fig. 2.3 and various steps

involved in genetic algorithm is discussed in the following Sections [5]

1. Population initialization (P)

According to the problem range and constraints at any generation, initial population is

initialized. Familiar way to generate initial population is uniform distribution or Gaussian

distribution of the variables. This distribution must be generated within the upper and

lower limits of the variables. After the first population is created, GA assign fitness to

each solution. If the termination criteria is not satisfied then GA performs reproduction,

crossover and mutation operations to create population, called children or offsprings, for

the next generation which are discussed below.
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Fig. 2.3: Various steps involved in Genetic Algorithm.

2. Reproduction or selection

In the reproduction or selection method, more copies of a solution, which has highest

fitness, are reproduced. There are many selection methods for example tournament

selection, roulette wheel selection, ranking selection etc. Tournament selection is more

popular among other selection methods due to its simple implementation. In this selection

method n number of solutions are picked randomly and they compete with each other.

The solution which has highest fitness, wins. This solution goes into next generation. The

number of solutions which compete each other in the tournament is called as tournament

size. Normally, the tournament size is taken to be two and the tournament selection

method is called a binary tournament selection.

3. Crossover

Crossover operator in GA utilizes two or more parent solutions to generate offspring

of the reproduced population which is based on selection method. Simulated binary

crossover (SBX) is widely used among the available crossover operators [25]. Two
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offspring (xo1, xo2) solutions from two distinct parent solution (xp1, xp2) are generate

by SBX method using following set of equations [25]

xo1 =
1

2
[(1 + βi)xp1 + (1− βi)xp2],

xo2 =
1

2
[(1− βi)xp1 + (1 + βi)xp2],

(2.13)

where βi can be calculated using following relation [5]

βi =


(2qi)

−(ηc+1) ; qi ≤ 0.5,(
1

2−2qi

)−(ηc+1)

; otherwise,

(2.14)

where qi ∈ (0, 1) is a random number. ηc is a parameter that controls the crossover

process. Generated offspring solution are close to the parent solution if value of ηc is

high, and a small value of ηc allows the distant solution to be selected as offspring.

4. Mutation

Mutation in GA has same meaning as in natural evolution, i.e., changes in genes. Here,

a small change in a solution is done to mutate it. Mutation operation is performed after

selection and crossover operations. One of the mutation method is polynomial mutation.

It is given as [25]

xom = xo + ∆maxδ̄i, (2.15)

where ∆max =
(
x

(U)
i − x

(L)
i

)
and parameter δ̄i is calculated as

δ̄i =


(2ri)

−(ηm+1) ; ri < 0.5,

1− [2(1− ri)]−(ηm+1) ; ri ≥ 0.5,

. (2.16)

where ri ∈ (0, 1) is a random number and ηm is a parameter that controls the mutation

process. If ηm = 0, the independent variation−∆maxδ̄i are uniformly distributed between

∆max to ∆max. As ηm is increased largely, δ̄i approaches towards zero. It means that no

mutation is applied. Therefore x0m = x0
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These operations generates the population for the next generation t+ 1. This process continues

until the stopping criteria is satisfied.

Genetic algorithms can be used to solve single as well as multi-objective optimization

problems. Single objective optimization problem is defined in Section 2.1. In MATLAB, single

objective genetic algorithm is implemented as a code ”ga” and widely used in accelerator

design.

2.4.2 Multi-objective genetic algorithm

Most of the multi-objective optimization problem contains conflicting objectives, for

example, in lattice design of a storage ring one need small beam emittance and sizeable dynamic

aperture. These two objectives are example of conflicting objectives. one cannot achieve lower

emittance without worsening the dynamic aperture [5].

One of the goal of an ideal multi-objective is to find many trade-off solutions. Solutions

which satisfy all constraints and non dominated by each others are called Pareto optimal solution

and trade-off of Pareto optimal solutions is called Pareto optimal front [25]. A single objective

GA can be converted into a multi-objective optimizer with following steps: (i) emphasize

is given to the non-dominated solution in order to progress the solution towards the optimal

solution, (ii) to maintain diversity in the solution, emphasize is given to less-crowded solution,

(iii) to achieve fast convergence close to the true Pareto optimal front, emphasize is given to

best solutions.

To address these three issues, elitist non dominated sorting GA is developed to convert

single objective GA to multi-objective GA [5,25]. Its working principle is shown in Fig. (2.4).

The parent population (Pt) of size N is generated randomly and off-springs (Qt) of size N are

generated using GA operators at generation t. Together Pt and Qt makes a population Rt of

size 2N . This combined population is sorted into number of Pareto optimal fronts using non
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Fig. 2.4: NSGA-II procedure for one iteration [25].

dominated sorting. The first front F1 is completely non dominated set. The second front F2 is

dominated by members of F1 only. This process is continued to get more and more optimal

fronts. We assign fitness value 1 to F1, fitness value 2 to F2, and so on. A new parameter known

as crowding distance, which measures how close the individual is to its neighbour individual,

is calculated for each individuals. Large value of crowding distance provides better diversity in

the population [5].

The parent population Pt+1 of size N in the next generation are selected from non

dominated solution starting from the best solutions or best optimal fronts and so on. When

the number of population become N , rest of the solutions are simply rejected. This process of

selecting parent population from previous generation continued until termination criteria is not

satisfied. In MATLAB multi-objective GA is implemented with the code name gamultiobj.

In MATLAB, a complete package of simulation code with name Accelerator Toolbox

(AT) [33], has been developed at SLAC worldwide. This code calculates all lattice parameters

of a storage ring like emittance, momentum compaction factor, damping times, damping partition

numbers, energy loss per turn etc. Also transfer matrix for an element or whole ring can be

calculated. A program using AT can be written for a lattice design. AT generates data for plot
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of beta function, dispersion function etc. and tracking can also be done to calculate dynamic

aperture.

In this Chapter, different optimization techniques, in particular Nelder-Mead algorithm

and genetic algorithm, have been discussed. These optimization techniques are very useful

in handling optimization problems where derivatives of objective function are not possible.

These techniques can handle complex optimization problems and are widely used in accelerator

design. Both algorithms have been used in the study of optimization of LGB profiles in a dipole,

which is presented in Chapter 3.
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Chapter 3

Optimization of longitudinal gradient

bend profiles in dipole magnet

As discussed in Chapter 1, longitudinal gradient bend (LGB) is an advance technique to

reduce the beam emittance. First study of LGB in a storage ring was presented by J. Guo and

T. Raubenheimer in 2002. In their paper [10], they applied the LGB in NLC damping storage

ring and found a satisfactory reduction of beam emittance than the homogeneous dipoles. Now

a days, magnet design technology has been improved much and most of the storage ring lattice

designer are using LGB in place of constant filed dipoles to reduce beam emittance further. In

this Chapter, optimization studies of LGB profiles in a dipole for two type of lattices namely

achromat and theoretical minimum emittance (TME) is presented which is discussed in the

following Section.

3.1 LGB profiles in dipoles for achromatic and TME lattices

In storage rings, mostly achromat type lattices are used, for example, double bend

achromat (DBA), triple bend achromat (TBA) or multi bend achromat (MBA), due to requirement
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of horizontal dispersion, η, and its derivative, η′, to be zero at the locations of IDs. A unit

cell of a DBA lattice, similar to Indus-2 storage ring, is shown in Fig. 3.1. It consist of two

homogeneous dipole magnets to bend the electron, nine quadrupoles to control lattice functions

and four sextupoles to correct chromaticity in both transverse planes. Using combination of

quadrupoles between the two dipoles, one can achieve achromatic condition, i.e., η and η′ are

zero at the entrance of the first dipole and symmetrically at the exit of the second dipole. This

lattice is designed to get large dispersion at sextupole locations.

IDs IDs

Quadrupoles Quadrupoles

Quadrupoles and sextupoles 

Point of mirror symmetry

Dipole Dipole

Fig. 3.1: Variation of dispersion function in DBA lattice. The green rectangular boxes are homogeneous

dipoles, blue rectangular boxes are focusing quadrupoles, red rectangular boxes are defocusing

quadrupoles, yellow ones are focusing sextupoles and the black ones are defocusing sextupoles.

Quadrupoles Quadrupoles

Dipole

Point of symmetry

Fig. 3.2: Variation of dispersion function in TME lattice. Dispersion function is symmetric in the

dipole and minima occurs at the center of the dipole. Two qudrupoles, one focusing (blue) and other

defocusing (red), at both side of the dipole are used to control the lattice functions.
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In Fig. 3.2, an unit cell of TME lattice with homogeneous dipoles is shown. Here,

achromatic condition is not satisfied. Though, TME lattice can not be used for third generation

storage rings due to requirement of zero dispersion at location of IDs, but, it is useful in

designing of TBA or MBA lattices, where more than one dipole satisfying TME condition

are used. In order to reduce beam emittance further in the same lattice, the homogeneous

dipoles can be replaced with dipoles having LGB profile in both type of lattices. LGB profiles

for DBA and TME lattices have been discussed in Section 1.15, Chapter 1. For a DBA lattice, a

parabolic decaying LGB profile is required. On the other hand, for a TME lattice, LGB profile

is such that its maxima occurs at centre of the dipole and reduces symmetrically on either side.

Though, continuous LGB field profile are desirable, but, design of continuous decay profile is

very complicated [11, 34]. Therefore, stair like parabolic decay profile is modeled instead of

continuous parabolic decay profile.

𝑳,𝑩, 𝝆, 𝜽
𝑳𝟏
𝑩𝟏

𝝆𝟏
𝜽𝟏

𝑳𝟐
𝑩𝟐

𝝆𝟐
𝜽𝟐

𝑳𝟑
𝑩𝟑

𝝆𝟑
𝜽𝟑

𝑳𝒏
𝑩𝒏

𝝆𝒏
𝜽𝒏

Fig. 3.3: Breaking of a homogeneous dipole (left) into n dipoles (right). The dipole (left) has

parameters, length (L), magnetic field (B), bending angle (θ), local bending radius (ρ). Same

parameters can be defined for each section of dipole (right).

In order to generate stair like LGB profile, dipole magnet is divided into n sections (Fig.

3.3) in such a way that total length is same as homogeneous dipole. After that, magnetic field in

each section is chosen in such a way that, it fits the continuous parabolic decay profile with the

condition that total bending angle must be same as homogeneous dipole. For DBA and TME

lattices, stair like parabolic decay profiles are shown in Fig. 3.4 and Fig. 3.5.
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As shown in Fig. 3.4, magnetic field in the first section is high (low local radius of

curvature ρ), which generates higher slope of horizontal dispersion, η′x, than the homogeneous

dipole, but almost same horizontal dispersion, ηx. In the next dipole section, magnetic field is

lower than the first section, but still higher than the homogeneous dipole, it will also generate

higher η′x and ηx will have higher value than homogeneous dipole. This behaviour of ηx is

shown in Fig. 3.4. Also, at the exit of the dipole, ηx and η′x are higher than the homogeneous

dipole, which leads to high dispersion at sextupole location. In each section, H function

and bending radius, ρ, will have different values than the homogeneous dipole. This leads

to different values of I5

(
= 〈H

ρ3
〉;H = γxη

2
x + 2αxηxη

′
x + βxη

′2
x

)
in each section and average

of I5 will have smaller value than the homogeneous dipole magnet due to dominating nature

of ρ3 in sections having magnetic field lower than the homogeneous dipole fields. In this way,

emittance will reduce.

After introducing LGB in the dipole magnet, one can achieve lower emittance in the

same circumference of the storage ring or one can design a compact ring for the same emittance.

Also, large dispersion at the sextupole location leads to low sextupole strength to correct the

same level of chromaticity in the machine. These are the major advantage of LGBs.

Dipole

B

Bmax

Homo. magnetic field

s
Dipole

s

𝜼𝒙

(a) (b)

Dipole

Fig. 3.4: Variation of longitudinal field profile in the dipole magnet (DBA). (b) Comparison of

Horizontal dispersion function for LGB dipole (solid curve) with homogeneous dipole (dashed curve).
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For a TME lattice, purpose of introducing LGB is to minimize beam emittance only. As

shown in Fig. 3.5, a symmetric decaying LGB profile reduces the dispersion at the center of

the dipole. Therefore, area under the curve, i.e., 〈H
ρ3
〉 reduces, which leads to lower emittance.

But, higher magnetic field will increase the SR loss, i.e., in order to reduce beam emittance,

one has to compromise high SR loss.

B

Homo. Magnetic field 

𝑩𝒎𝒂𝒙

Dipole
s s

Dipole

𝜼𝒙

(a) (b)

Fig. 3.5: (a) Variation of longitudinal field profile in the dipole magnet (TME). (b) Comparison of

Horizontal dispersion function for LGB dipole (solid curve) with homogeneous dipole (dashed curve).

3.2 Objective function to generate LGB profiles

Expression for the horizontal natural beam emittance is given by eq.(1.95) as

εx0 = Cqγ
2
〈Hx(s)
ρ3(s)
〉

〈 1
ρ2
〉
, (3.1)

here, Hx = γxη
2
x + 2αxηxη

′
x + βxη

′2
x , i.e., Hx = f(αx, βx, γx, ηx, η

′
x) and ρ is the local radius

of curvature of the dipole. For a storage ring with fixed energy, one can choose

f =

〈
Hx(s)

ρ3(s)

〉
/

〈
1

ρ2

〉
, (3.2)

as an objective function which, in principle, is a function of magnetic field and length in each

section of dipole. Therefore, optimization problem will be; minimize f( ~B, ~L) with constraints

on total length, total bending angle and maximum magnetic field. One more constraint on
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magnetic field in each section is that magnetic field should be of decreasing nature, i.e., Bi >

Bi+1; i = 1, 2 · · · , n − 1; n is the number of dipole sections. If dipole is divided into equal

sections such that total length is equal to length of homogeneous dipole magnet, then objective

function will be a function of magnetic fields only.

Variation in Courant-Snyder (CS) variables αx, βx and γx is governed by quadrupole

strengths. Therefore, LGB profile will introduce only marginal change (due to geometrical

focusing in dipoles) in these variables and CS variables of original lattice can be taken in

calculation ofHx function. It means that,Hx is independent of CS variables and only function

of ηx and η′x. A case study, where dipole magnet is divided into 5 equal sections, is discussed

in the following Section.

3.3 Optimization of LGB profiles in dipole for achromat lattice

To study LGB profiles for an achromat lattice, dipole of Indus-2 (a DBA lattice) is

taken. The length of the dipole is 2.175 m and maximum magnetic field is 1.503 Tesla. This

dipole magnet bends a charged particle by 22.5◦ with ρ = 5.55 m. To generate LGB profiles,

dipole is divided into 5 equal section such that total length of the dipole is unchanged. The

objective function to minimize beam emittance can be chosen as

f =

〈
Hx(s)

ρ3(s)

〉
. (3.3)

The 〈 1
ρ2
〉 term will be taken care by the ρ3 in the 〈Hx

ρ3
〉.
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Let θi and Li are the angle length of ith section of dipole magnet, where i = 1, 2, · · · , 5.

Therefore, optimization problem becomes

Minimize f( ~B) =

〈
Hx

ρ3

〉
with constraints ∆θ = |

i=5∑
i=1

θi − θoriginal| = 0,

max( ~B)i < 2.65.

( ~B)i > ( ~B)i+1; i = 1, 2, · · · , 4,

(3.4)

here ~B = (B1, B2, B3, B4, B5), θoriginal = 22.5◦ and length, L = 2.1795 m. The maximum

magnetic field, 2.65 T, is chosen based on SR loss and emittance reduction. Since ∆θ can not

be made to zero, therefore, if ∆θ is less than 10−3, then solution can be acceptable.

Point A Point B Point C Point D Point E Point F

𝜶 1.2462 0.5308 -0.1976 -0.9213 -1.6222 -2.2832

𝜷 [m] 1.5357 0.7595 0.6139 1.1027 2.2136 3.9195

𝜸 [m-1] 1.6625 1.6877 1.6924 1.6766 1.6405 1.5851

A B C D E F

Fig. 3.6: Values of CS variables at points A, B, ..., E, which are entrance of each dipole section and F is

the exit of last section.

In Fig. 3.6, values of CS variables are given at points A, B, ..., F. At each point,

H-function is calculated. After that, taking average of the H function at entrance and exit

of each dipole section, H function is calculated at the centre of each dipole section. Then

objective function can be calculated as

f =
1

5

5∑
i=1

Hxi

(ρi)3
. (3.5)

.
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Here, hard edge model of dipole [2] is assumed, i.e. fringe fields between two dipole

sections are completely ignored. Two optimization methods, Nelder-Mead algorithm and single

objective genetic algorithm, have been used to generate LGB profiles.

3.3.1 Optimization using Nelder-Mead algorithm

The optimization problem is defined in eq. (3.4). The primary requirement of Nelder

Mead method is that it requires an initial guess to create initial simplex. Therefore, 1.5 Tesla

in each section of dipole magnet, which is the field of a homogeneous dipole, is chosen as an

initial guess. For this initial guess, the value of objective function is 2.07× 10−4. Here, default

stopping criteria of the algorithm are chosen, i.e., the algorithm will be stopped if objective

function does not change in successive iteration or the objective function is less than 10−4.

Though initial guess is provided for the first simulation run, but, it requires more relaxation on

the constraint of total angle to run the program. In the second simulation run, optimized values

of magnetic field from first simulation run can be used as initial guess and constraint on total

angle is made more tight than the first simulation run.
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3
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Simulation run
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 [
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Fig. 3.7: Variation of ∆θ with successive simulation run.

After 9 successive simulation runs, a solution for which ∆θ is 6.4×10−4 is achieved, and

solution is accepted. Variation of ∆θ for different simulation runs is shown in Fig 3.7 which

shows that using improved initial guess, constraint on ∆θ can be satisfied in few simulation
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runs. Different LGB profiles after each simulation run are shown in Fig. 3.8 and Variation of

objective function for 9th simulation run is shown in Fig.3.11.

After final simulation run, optimized values of magnetic fields in each section are

B = [2.0991 1.6772 1.4414 1.2539 1.0740][Tesla],

with objective function value 1.64× 10−4.
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Fig. 3.8: LGB profiles after each simulation

run using Nelder-Mead algorithm.
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Fig. 3.9: Variation of objective function after

8th simulation run.
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Fig. 3.10: Variation of ρ after final simulation

run.
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Fig. 3.11: Variation of dispersion function in

the dipole.

After assuming LGB profile in all dipole magnets of Indus-2 lattice, different parameters

in achromatic condition are shown in Table 3.1. In calculating the beam emittance (using
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eq.(3.1)), electron energy is considered to be 2.5 GeV, which is the designed energy for Indus-2.

For calculation of SR loss per turn, it is assumed that there are total 16 dipoles (each 22.5 deg)

to complete the full storage ring i.e. ring of Indus-2.

Table 3.1: Comparison of parameters with original lattice.

S.No. Parameter original lattice

Lattice with LGB

and achromatic

condition

1. Emittance [nm.rad] 58 41.5

2. SR loss per turn [keV] 623 656

The emittance for this case is less than∼ 30% from the nominal lattice, i.e., lattice with constant

field dipole with a little increase in SR loss (30 keV).

This study shows that Nelder-Mead algorithm requires good initial guess to find an

optimal solution in reasonable simulation runs. If initial guess is not good, it will need more

relaxation on the constraints and requires more simulation runs to find an optimal solution.

This is the major drawback of this method. To avoid these difficulties posed by Nelder-Mead

method, GA technique can be used. In the Section below, a study with GA is presented.

3.3.2 Optimization using genetic algorithm

The genetic algorithm uses a random population of initial solutions. In successive

generation, it try find a search direction in which solutions satisfy more constraints. The

objective function for this case can be defined in a similar way as,
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Minimize f( ~B) =

〈
Hx

ρ3

〉
with constraints

V ariable space range LB : 0.5 Tesla in each section

UB : 2.65 Tesla in each section

∆θ = |
i=5∑
i=1

θi − θoriginal| ≤ 10−3,

max( ~B)i ≤ 2.65.

( ~B)i >( ~B)i+1; i = 1, 2, · · · , 4,

(3.6)

here, UB and LB are lower and upper bounds of independent variables.

3.3.2.1 Optimization using GA with initial guess

In order to provide a search direction to GA, initial guess for this method is provided

same as in previous case, i.e., 1.5 Tesla in each section of the dipole. The number of generation

and population size are chosen as 50 and 100, respectively. In a single simulation run, GA gives

result with satisfying all constraints which is shown in Fig. 3.12.

After optimization the optimized values of the magnetic fields in each section of the

dipole are

B = [2.0982 1.6111 1.4742 1.2926 1.0676][Tesla],

which is shown in the Fig.3.13. The obtained LGB profile is almost similar to the profile

obtained using Nelder-Mead algorithm. The variation of dispersion function in the dipole is

shown in Fig. 3.14. The calculated values of the beam emittance and SR loss per turn are also

equivalent.

80



Fig. 3.12: Variation of objective function in different generations. Best fitness shows the value of

objective function at current generation and maximum constraint shows how constraints are more

satisfied in each generation.

Fig. 3.13: Variation of magnetic field and ρ.

For homogeneous dipole magnetic field and ρ

are 1.503 Tesla and 5.55 m respectively.
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Fig. 3.14: Variation of dispersion function in

the dipole.

Table 3.2: Comparison of parameters with original lattice in case of genetic algorithm.

S.No. Parameter original lattice Lattice with LGB and achromatic

condition

1. Emittance [nm.rad] 58 42

2. SR loss per turn [keV] 623 655
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Though, an initial guess is provided here (a bad solution for GA), GA can give results without

any initial guess in a single simulation run. This is the great advantage of GA over Nelder-Mead

method. One result without any initial guess is presented in the following Section.

3.3.2.2 Optimization using GA without initial guess

For this case, GA algorithm is used with same objective function defined in eq.(3.6)

without any initial guess. The variation of objective function and LGB profile are shown in

Fig. 3.15 and Fig. 3.16. The objective function reduces to almost same value as previous case

and a similar LGB profile is also generated. Emittance and SR loss are compared in Table 3.3,

which shows almost same result i.e. there is no need to provide initial guess to run the GA code.

After optimization the optimized values of the magnetic field in each section of the dipole are

B = [2.1701 1.6630 1.4979 1.0912 1.0904][Tesla]

Fig. 3.15: Variation of objective function in each generation for the case where no initial guess is

provided.
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Fig. 3.16: Variation of magnetic field and ρ.

For homogeneous dipole magnetic field and ρ

are 1.503 Tesla and 5.55 m respectively.
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Fig. 3.17: Variation of dispersion function in

the dipole.

Table 3.3: Comparison of parameters with original lattice.

S.No. Parameter original lattice Lattice with LGB and achromatic

condition

1. Emittance [nm.rad] 58 41

2. SR loss per turn [keV] 623 667.7

Based on these studies, it can be concluded that GA produces much better results compared to

Nelder-Mead algorithm in view of getting optimal solution in a single run of the simulation. It

can also be highlighted that the over all emittance in both the optimization is almost similar.

Emittance in each case reduced to ∼ 41 − 42 nm.rad from 58 nm.rad and SR loss per turn is

almost same.

3.3.2.3 Convergence test of GA

Simulation studies to test the convergence of GA algorithm in producing the LGB

profiles and the objective function is also carried out. The results of generated LGB profiles for

83



fourteen simulation runs considering same lower and upper bounds of the magnetic fields are

shown in Fig.3.18. The objective function converges to the same value almost in all simulation

runs. There are very small variations in each profile except 13th and 14th profile. The small

variation in the profile is due to randomness in the initial population in each GA simulation run.
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Fig. 3.18: Different LGB profiles generated by genetic algorithm.

As shown in Fig. 3.19, though, there is a little variation in the field profiles and objective

functions in each case, but emittance is almost same which is∼ 40−42 nm.rad. In addition, SR

loss in each case is also same except one case (13th LGB profile), in which SR loss is ∼ 675

keV. It is because of increased magnetic field in the first section. This shows the advantage

of LGB dipole over homogeneous dipole, i.e., using dipoles with LGB, one can significantly

reduce beam emittance in the same circumference of storage ring.
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Fig. 3.19: Emittance for different LGB profiles with objective function and SR loss (color bar).
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3.3.2.4 Optimization using GA with hard constraint

Another study with hard constraint on maximum field is also presented, in which max-

imum field in first section is strictly desired to be 2.65 Tesla. This maximum field will shift

the critical wavelength of SR towards much harder X-rays [2], which is the requirement of

many material research. Using objective function of eq.(3.6) with one more constraint, i.e.,

max( ~B)1 = 2.65 Tesla, different LGB profiles have been generated which are shown in

Fig.3.20.

In this case, the value of objective function after optimization are 1.840 × 10−4 −

1.879 × 10−4 and emittance in achromatic condition are 38 − 39 nm.rad. Though, value of

objective function is increased, emittance in achromatic condition get reduced a little bit more

than previous cases, i.e., ∼ 38− 39 nm.rad, due to increased SR loss, which is increased from

623 keV to ∼ 720 − 727 keV, because of increased magnetic field. The increase in SR loss

enhances the radiation damping which ultimately reduce the beam emittance. The increased

SR loss can be compensated by increasing the RF power.
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Fig. 3.20: Different LGB profiles using GA with maximum magnetic field in the first section 2.65 Tesla.

In the previous studies, dipole magnet is divided into 5 sections. In the following

Section, we will explore the effect on beam emittance and SR loss by optimizing the LGB
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profiles in a dipole magnet, divided in more number of sections. Motivation of this case is to

achieve LGB profile close to true parabolic profile, and to see the effect on beam emittance. In

the following Section, studies with dipole divided into 10 and 15 sections are presented.

3.3.2.5 Selection of number of dipole sections

If a dipole is divided into 10 or 15 sections, the number of independent variables will be

10 or 15 respectively. Here, same objective function with more number of variables and hard

constrains on maximum magnetic field in first section has been used.

Case I: Dipole magnet is divided into 10 sections.

Optimization problem is given in eq.(3.6) and hard constraint on the magnetic field in first

section is taken. After optimization, optimized LGB profile is shown in Fig.3.21.
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Fig. 3.21: LGB profile for the 10 section case with hard constraint on maximum magnetic field.

Case II: Dipole magnet is divided into 15 sections.

In a similar way, dipole can be divided into 15 sections to get more converged profile towards

parabola. After optimization, the optimized profile is shown in Fig. 3.22.
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Fig. 3.22: LGB profile for the 15 section case with hard constraint on total magnetic field.

In Table 3.4, different parameters are compared for both the cases with 5 sections case.

Table 3.4: Comparison of different parameter with original lattice for 15 section case.

S.No. Parameter 5 section case 10 section case 15 section case

1. Emittance [nm.rad] 38.5 38.8 39.5

2. SR loss per turn [keV] 722 685 677

In both cases, emittance reduces from 58 to ∼ 39 nm.rad. This study shows that more number

of section in dipole does not lead to considerable reduction in beam emittance. It is also

challenging to design and manufacture the dipole with LGB profile for more and small lengths

of the sections, and it will increase the cost of magnet. For further studies, the case in which

dipole is divided into 5 sections is considered, which is an acceptable trend in low emittance

ring designs [34].

So far we have discussed the optimization of LGB profiles to minimize the beam

emittance based on single objective Nelder-Mead and GA algorithm. Various other objectives

are considered as the constraints. In the following Section, the optimization of the LGB profiles

using MOGA to minimize the beam emittance, maximize the dispersion at sextupole location,
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and minimize the SR loss will be discussed.

3.3.2.6 Optimization using multi objective genetic algorithm (MOGA)

The LGB profile optimization considering three conflicting objectives is performed

using MOGA algorithm. First objective is to minimize emittance (minimize I5), maximize the

dispersion at sextupole (in chromatic section) and minimize the SR loss. The second objective

of maximizing the dispersion can be converted to maximize the slope of dispersion at the exit

point of the dipole magnet. To see the behaviour of SR loss, slope of dispersion function

and emittance, a multi-objective optimization problem can be defined in which there are three

objective functions, (i) f1:
〈
H(s)
ρ3

〉
, (ii) f2: derivative of dispersion function at the exit of dipole

magnet and (iii) f3: SR loss per turn. The purpose of this study to see the trade offs between

conflicting objective functions. The optimization problem can be defined as

Minimize ~f( ~B) =(f1,−f2, f3)

with constraints

V ariable space range LB : 0.5 Tesla in each section

UB : 2.65 Tesla in each section

∆θ = |(
i=5∑
i=1

θi − θoriginal| = 0,

max( ~Bi) ≤ 2.65.

Bi >Bi+1; i = 1, 2, · · · , 4,

(3.7)

The negative sign is chosen for second objective, because it has to be maximize. The population

size is chosen as 300 and number of generations is chosen as 100. Some of the optimized LGB

profiles from previous studies are chosen as initial guess to give a search direction to GA. After

optimization, the following trade off between first two objective with third one is found which

is shown in Fig.3.23. It shows that all three objectives are conflicting. One has to choose
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LGB profile judicially. Large derivative of dispersion at the exit of dipole, which leads to large

dispersion at sextupole location, comes with large SR loss per turn. In Fig. 3.24, three cases

namely A, B and C are shown and corresponding parameters are compared in Table. 3.5. As

value of objective function increase, SR loss also increases. Though objective function in case

C is greater than the homogeneous case but emittance still reduces because radiation damping

dominates.
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Fig. 3.23: Pareto optimal front between first

and second objective. SR loss is given by

color at each point of Pareto optimal front.
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Fig. 3.24: Different LGB profiles for A, B and

C.

Table 3.5: Comparison of different LGB profiles in case of MOGA.

S.No. Parameter A B C

1. 〈H
ρ3
〉 1.656×10−4 1.878×10−4 2.347×10−4

2. SR loss per turn [keV] 666.8 708.2 769.1

3. η′ [rad] 0.3846 0.3854 0.3859

4. Emittance [nm.rad] 40.1 41.5 47.5
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3.4 Optimization of LGB profiles in dipole for TME lattices

To study LGBs in TME lattices, a lattice based on TME is designed considering the

same dipole (as in DBA lattice of Indus-2). This lattice uses same homogeneous dipole of

Indus-2, i.e., length and magnetic field are same. Unit lattice cell of Indus-2 in TME configuration

is shown in Fig. 3.25 with different magnetic elements and lattice functions are shown in Fig.

3.26. In TME configuration, there will be 16 super period instead of 8 to make the complete

ring with circumference 172.47 m.

Q1D Q1D

Q2FQ2F

Line of symmetry

Dipole

Fig. 3.25: Different magnetic elements of Indus-2 lattice in TME configuration.

Though, Indus-2 can not be operated in TME configuration, however TME is the backbone

of the MBA lattices, which can be inserted between two matching cells (DBA type) to reduce

the beam emittance below the limit of achromatic lattice. As shown in Fig. 3.5, LGB profile in

a dipole for TME lattice is such that the magnetic field must be maximum at the center of the

dipole and decreasing on either side of the dipole.
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Fig. 3.26: Variation of different lattice functions.

To generate stair like LGB profile (Symmetrically decaying), dipole is divided into 25

equal sections to get more smooth LGB profile. The middle section of the dipole is further

divided into 2 equal sections. Therefore, there are total 26 sections. Three cases have been

studied in which, maximum magnetic field is 6 Tesla, 5 Tesla and 4 Tesla. Here, in each

profile, maximum magnetic field in the center dipole section is desired.

The optimization problem for this case can be defined as

Minimize f( ~B) =

〈
Hx

ρ3

〉
with constraints

V ariable space range LB : 0.5 Tesla in each section

UB : 6.0 Tesla in each section

∆θ = |(
i=26∑
i=1

θi − θoriginal| = 0,

max( ~B)i ≤ 6,

( ~B)i <~Bi+1; i = 1, 2, · · · , 13,

( ~B)i =( ~B)27−i; i = 1, 2, · · · , 12,

max(( ~B)13) = 6 or 5 or 4

(3.8)
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The CS variable at entrance, mid and exit point of the dipole are

entrance of the dipole (αentr, βentr., γentr.) =(5.6372, 6.4114, 5.1124)

at mid of the dipole (αmid, βmid, γmid) =(0, 0.1882, 5.3145)

at the end of dipole (αend, βend, γend) =(−5.6372, 6.4115, 5.1124).

(3.9)

It can be seen that, beta function achieves minimum at the center of the dipole in TME lattice

and symmetrically increases on either side. This behaviour is provided by α, where at the

entrance α is negative , at the centre it is zero, and at the exit it achieves same value as entrance

but positive. γ function is almost constant over the dipole.

After optimization, LGB profiles for three cases are shown in Fig. 3.27 and different

parameters after including LGBs are shown in Table 3.6.
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Fig. 3.27: LGB profiles for different chosen maximum magnetic field.

Table 3.6: Comparison of different parameter with original lattice in case of TME.

S.No. Parameter Homo.

magnetic field

Max. field 4 Tesla Max. field 5 Tesla Max. field 6 Tesla

1. Emittance

[nm.rad]

14.14 5.365 3.8 3.27

2. SR loss per

turn [keV]

623 917 964 1111
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This study shows that emittance can be reduced by less than half with dipoles having LGB than

the homogeneous field dipoles, but at the cost of increased SR loss because of high magnetic

field. Since magnetic field in the center dipole section is upto 6 Tesla, it can not be achieved

using normal electromagnetic dipole. One has to use superconducting dipole. These dipoles

with LGBs can be used in MBA lattices to reduce the beam emittance further in the same ring

or one can design a storage ring with lower circumference for the same emittance, this will

reduce the cost of the machine.

For the case, where magnetic field at the center is 5 Tesla, the variation of different

lattice functions are shown in Fig. 3.28. At the center of the dipole, dispersion function

is more minimum than the homogeneous dipole which leads to a reduction in H function.

Consequently, the beam emittance reduces. Also, beta functions are not changed much from

the original lattice.
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Fig. 3.28: Comparison of lattice functions with and without LGB.

In this Chapter, an extensive optimization study of LGB profiles using single and multi-

-objective genetic algorithms are presented. The LGB profiles of a dipole in DBA lattice case,
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and for a dipole in TME lattice case are optimized. Outcome of the study is that the beam

emittance reduces by ∼30% in DBA and less than half emittance can be reduced in TME case.

In a well design lattice, if dipoles are placed with LGBs, the distribution of dispersion

over the full lattice cell will change. It is due to the fact that quadrupoles are optimized for the

lattice functions with homogeneous field dipole. Further studies including optimized LGBs and

tuning of quadrupoles are presented in Chapter 4 for the case of well design lattice of Indus-2

and Indus-3. The performance comparison of the lattice with and without LGBs are made.
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Chapter 4

Indus-2 and Indus-3 storage ring lattice

performance with LGBs

In Section 1.16 and 1.17, Indus-2 and proposed Indus-3 electron storage rings have

been discussed. In operational storage rings, there always exists a possibility of up-gradation

to improve the performance. In newly design lattices with conventional means, one can also

do aggressive optimization to achieve ever improved performance by including technologically

challenging quadrupole gradient and dipole fields.

The optimization studies are presented in Chapter 3 to get optimal LGB profiles in

view of beam emittance and increasing the dispersion at sextupole location, to achieve efficient

correction of natural chromaticity with reduced sextupole strengths. First study to reduce

emittance for achromatic and TME cases are presented and comparison of emittance with

nominal emittance were performed. It was also highlighted that the SR loss per turn in LGB

case is always higher than the SR loss per turn from constant field dipole. In these studies, it was

assumed that the lattice functions at the entrance of the dipoles are known and fixed, however, in

actual lattice design with LGB profiles, the distribution of dispersion function get changed. It is
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the case when quadrupoles are operating with the nominal lattice, i.e., the lattice with constant

field dipoles. Therefore, re-tuning of the quadrupole strengths are required to achieve desired

distribution of the lattice functions after including LGBs in place of constant field dipoles.

These studies are carried out for the case of Indus-2 storage ring, which is operational in user

mode, and Indus-3, which is an upcoming project at RRCAT. In Section 4.1, the optimization

of quadrupoles with dipoles replaced with LGBs are performed to achieve desired distribution

of lattice functions for Indus-2 storage ring lattice. The comparative study of dynamic aperture

in the lattice with and without LGB are given in Section 4.2. The optimization of various

objectives using MOGA are also presented in Section 4.3 to get trade off between them in a

running/ designed electron storage ring in the same circumference. Similar studies for Indus-3

are performed in Section 4.4.

4.1 DBA lattice of Indus-2 with LGBs

As discussed in Section 1.16, Indus-2 has been designed based on DBA configuration

with ring circumference 172.47 m and beam emittance of 58 nm.rad. Positions of different

magnetic elements of unit lattice are shown in Fig. 4.1. This unit lattice consist 2 dipoles, 9

quadrupoles and 4 sextupoles. Each element in the unit lattice is placed in such a way that it

looks symmetric with respect to centre of quadrupole Q5D and strength of the quadrupoles are

such that the lattice/ amplitude functions have distribution as shown in Fig. 4.2. The achromatic

condition, i.e., dispersion and its derivative at straight sections are zero, is achieved using three

quadrupoles (two Q4F and one Q5D) between dipole magnets and beta functions are controlled

using all five families of qudrupoles, i.e. Q1D, Q2F, Q3D, Q4F, and Q5D.
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Q1D Q3D Q5D Q1D Q1D

Q2F Q4F Q4F Q2FSF SF

SD SD

Half ID 

section

Half ID 

section
Dipole Dipole

Fig. 4.1: Basic elements in Indus-2 unit lattice (not to scale). Here, QF: focusing quadrupole, QD:

defocusing quadrupole, SF: focusing sextupole, SD: defocusing quadrupole. Number indicates family

of that element, e.g. Q1D shows first family of defocusing qudrupoles.

Fig. 4.2: Variation of beta and dispersion functions in Indus-2 unit lattice.

Since Indus-2 is in regular operation in user mode, ring size, length and position of any

magnetic element in the machine can not be changed. In order to reduce the beam emittance

further in the same ring with minimum hardware change, dipoles with LGBs can be used.

4.1.1 Optimization of lattice function with LGBs

The optimization of lattice functions of an achromat (DBA or MBA) lattice with LGBs

is a two step process. First, optimization of the dipole to get optimal LGB profile, which

is already discussed in Chapter 3, second, optimization of strength of quadrupoles to match
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lattice function to the nominal lattice.

A LGB profile has been chosen from Section 3.3.2, Chapter 3, in which dipole is divided

into 5 sections and magnetic field in the first section is 2.65 Tesla. Magnetic fields in each

section of the dipole are given as

B = [2.6500 1.5575 1.2632 1.0845 0.9575] [Tesla]. (4.1)

The comparison of LGB profile with homogeneous field is shown in Fig.4.3. After replacing

homogeneous dipoles with dipoles with LGBs in an unit lattice, achromatic condition is lost

which is shown in Fig. 4.4. This is because of unoptimized quadrupole strengths. Also, it

can be seen in Fig. 4.5 and Fig. 4.6 that introduction of LGB does not change beta functions

which was assumed in LGB profiles study. A small change in horizontal beta function is due

to geometrical focusing in dipole magnets. But over the dipole, it is same as nominal lattice.
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Fig. 4.3: LGB profile compared with

homogeneous dipole field in the dipole

magnet.
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Fig. 4.6: Variation of vertical beta function

with LGB.

In order to get achromatic condition and constraints on other important parameters like

constraint on betatron tune, beta functions, stability conditions etc., optimization of quadrupole

strengths is required. Here, all five families of quadrupoles, i.e., Q1D, Q2F, Q3D, Q4F and

Q5D, have been chosen in the optimization. Here, this optimization problem is solved using

single as well as multi-objective techniques. Using single objective techniques and using

quadrupole strengths of nominal lattice as initial guess is described below.

In this optimization problem, there are many objective functions which are; (i) f1:

beam emittance, (ii) f2: dispersion at straight section, (iii) f3: slope of dispersion at straight

section, (iv) f4: derivative of beta functions at injection, (v) f5: beta functions at injection,

(vi) f6: betatron tunes (vii) f7: beta functions at symmetric point. Each objective function

f3, f4, f5, f6, and f7 contains two objective functions for each plane. Therefore, there are

12 objective functions in total. In Indus-2, normalized strengths of qudrupoles can go upto

2.2 m−2. This will put a constraint on maximum available normalized quadrupole strength.

Also, lattice functions are periodic, therefore, to find a stable solution, |Trace(M)| ≤ 2, where

M is the transport matrix of periodic cell. In addition, maximum value of beta functions should

be in limit, this will also be a constraint.
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The available variables for this optimization problem are normalized strength of qudrup-

oles, i.e., ~k = (k1, k2, k3, k4, k5). In order to minimize each objective function, the objective

function can be written as (fi − f 0
i )2; i = 1, 2, · · · , 12. For first objective function, f 0

1 can be

chosen as 0, because emittance is desired as low as possible. Other f 0
i : i = 2, 3, · · · , 12 can

be chosen as of nominal or original lattice. The initial values of quadrupole strengths are

k0 = [−0.79860 1.52949418 − 1.6899011 1.81969574 − 1.116476][m−2]

A composite objective function with proper weight factors can be defined to convert this multi

objective optimization problem into a single objective optimization problem which can be

written as

Minimize f(~k) =
i=12∑
i=1

wi(fi − f 0
i )2

with constraints

|(~k)i| ≤ 2.2 m−2,

|Trace(M)| ≤ 2,

max(βx and βy) ≤ 20 m,

(4.2)

where, wi(≥ 0) is the weight factor for ith objective function and satisfy the relation
∑
wi = 1.

Weight factors are chosen in such a way that it gives satisfactory optimal result. High value of

weight factor is given to dispersion at straight section than the rest of the objective functions.

Because requirement of achromatic condition is the first priority.

After optimization of the problem, the optimized values of quadrupole families Q1, Q2,

Q3, Q4, Q5 are

k = [−0.8733 1.5686 − 1.6752 1.6591 − 1.0760][m−2],

and behaviour of objective function after each iteration is shown in Fig. 4.7. With initial guess

k0, the objective function has value equal to 0.56 and after optimization, it reduces to 0.004.
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The algorithm stops due to no improvement in objective function in the successive iterations.

The strength of quadrupoles Q4F and Q5D are decreased from nominal lattice, which leads to

reduction in natural chromaticity in the machine.
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Fig. 4.7: Variation of objective function.
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Fig. 4.9: Variation of horizontal beta function

with LGB and matching.
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Fig. 4.10: Variation of vertical beta function

with LGB and matching.

After optimization of quadrupole strengths of all five family, variation of lattice functions

are shown in Fig.4.8, Fig.4.9 and Fig.4.10, which are given by lattice with LGB and matching.

Achromatic condition is restored after optimization of quadrupole strengths. The small change

in horizontal beta function is because of higher weight factor is given to second objective
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function. But, still these changes are small. Comparison of different parameters of Indus-2

lattice with LGB and original lattice are presented in Table 4.1.

Table 4.1: Comparison of Indus-2 lattice with LGB, Indus-2 lattice with LGB and betatron

tune correction and original lattice.

S.No. Parameters Indus-2 (Original

Lattice)

Indus-2 (Lattice

with LGB and

matching)

Indus-2 (lattice

with LGB,

matching, and

corrected betatron

tune)

1. Energy (GeV) 2.5 2.5 2.5

2. Emittance (nm-rad) 58.1 38.3 43.8

3. Energy loss per turn

(keV)

623 725 725

4. Betatron tunes [νx, νy] [9.2 5.2] [8.71 5.19] [9.2 5.2]

5. Natural chromaticity [-19.05 -12.05] [-19.12 -11.14] [-14.33 -11.26]

6. Momentum Compaction

factor

0.0052 0.0051 0.0051

7. Dispersion function at

sextupole location [m]

0.68 0.76 0.76

8. Beta function at

injection [m]

[14.02 2.0] [13.2 2.1] [7.4 1.9]

9. Max. Beta function [m] [20.5 18.5 ] [20.0 17.4] [12.5 17.5]

10. Beta function at

symmetric point [m]

[1.8 11.2] [3.0 13.6] [1.88 13.1]
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11. Required sextupole

strength for

chromaticity correction

[2,2] [m−3]

[13.03 -11.72] [10.85 -10.09 ] [9.54 -9.582]

The brightness ratio of Indus-2 lattice with LGBs and nominal lattice is calculated using 1%

coupling and σr = 0. The ratio of brightness comes out to be ∼ 2. Emittance, after including

LGBs in dipoles of Indus-2 lattice, reduces from 58 to 38 nm.rad with marginal change in other

important parameters. As natural chromaticity of the machine is decreased and dispersion at

the sextupole location is increased from 0.68 m to ∼ 0.76 m, sextupole strengths to correct the

chromaticity to the same level of nominal lattice get reduced from 13.03 m−3 to 10.85 m−3 in

horizontal and -11.72 m−3 to -10.1 m−3 in vertical plane. These are the major advantages of

dipoles with LGB in a storage ring over storage rings with homogeneous dipoles.

Here, betatron tunes are not same as original lattice. Therefore, one has to correct

betatron tune to the original lattice to see the effect of betatron tune correction on lattice

functions. Therefore, betatron tune is corrected to [9.2, 5.2] using Q2F and Q3D families

of quadrupoles. These quadrupoles are chosen, because they are located at zero dispersion and

will not affect achromatic condition. After betatron tune correction, strengths of quadrupole

Q2F changes from 1.5686 m−2 to 1.6204 m−2 and strength of quadrupole Q3D changes from

-1.6752 m−2 to -1.7003 m−2. The different lattice parameters after betatron tune correction

are presented in the fourth column of Table 4.1 and variation of horizontal and vertical beta

functions are shown in Fig. 4.11 and Fig. 4.12.
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Fig. 4.11: Variation of horizontal beta
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tune correction.
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Fig. 4.12: Variation of vertical beta function

with LGB, matching and betatron tune

correction.

It can be seen that how betatron tune is sensitive to lattice function. After correction of

betatron tune, emittance increased by 5 nm.rad and horizontal beta function at injection changes

from 13.92 m to 7.4 m. This decrease in horizontal beta function will lead to more strengths

of kicker to inject the beam in the storage ring, which is a disadvantage. But, low horizontal

beta function at IDs location lead to low beam size in IDs which is an advantage. In practical

storage ring, real effect of the change in horizontal beta function can be seen only after study

of dynamic aperture, which is presented in the following Section.

4.1.2 Dynamic aperture

In Section 1.10, the concept of dynamic aperture is explained. This phenomenon arises

due to non linearity in the machine. As strength of sextupole for chromaticity correction is small

in lattice with LGBs compared to original lattice. Hence, dynamic aperture should not change

much from original lattice. After correcting chromaticity to [2, 2] (horizontal and vertical)

with two families of sextupoles, for on momentum charged particles, a comparative study of

dynamic aperture for three cases are compared in Fig. 4.13.
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To calculate dynamic aperture, range of x is chosen from -32 mm to 32 mm in step size

of 0.5 mm. On the other hand, range of y is chosen from -17 to 17 mm. The maximum range

of x and y are chosen on the basis of available physical aperture of vacuum chamber. Charged

particle is tracked for 1000 turns in the grids and the boundary is decided on the basis of loss,

i.e., after a certain point of the grid, charged particle is lost.
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Fig. 4.13: Dynamic aperture comparison for on momentum charged particles.

Though, positive values in vertical direction are plotted, but graph of the boundary is

symmetric with respect to x, i.e. a closed boundary will be there. Also, open ends at both side

of x is because of fixed range of x. If range of x is allowed more, there will not be any open

ends. As depicted in Fig. 4.13, if betatron tune is allowed to be relaxed then dynamic aperture

shifted towards outer region in x direction. But, if we correct the betatron tune it approximately

covers the same area as original lattice i.e., life time of electron beam will be same as original

lattice.

In Section 4.1, quadrupole strengths are optimized using single objective algorithm.

Major disadvantage of this algorithm is that the weight factors are highly sensitive and a proper

choice of these weight factors is required which is a tedious task and one has to run many

simulation runs to get an optimal solution. In order to avoid these difficulties, multi-objective
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genetic algorithm (MOGA) can be used. A optimization study using MOGA is presented in

the following Section.

4.2 Comparative study of beam emittance with and without

LGBs

To find a trade-off between dispersion function at straight section and emittance, MOGA

has been used. As optimization of quadrupole strengths of Indus-2 lattice with LGB is a

multi-obje-

ctive optimization problem. In this study, two objective functions, (i) f1: emittance, and (ii) f2:

dispersion at straight section are chosen and rest of the objective functions like maximum beta

functions (βx,max, βy,max), betatron tunes (νx, νy), beta functions at symmetric point (βx,sym, βy,sym)

etc., are chosen as constraints. The optimization function can be written as

Minimize~f = (f1, f2),

with constraints

|(~k)i| < 2.2 m−2; i = 1, 2, · · · , 5,

|Trace(M)| ≤ 2,

max(βx and βy) <= 20m,

0.7 ≤ fractional νx,y ≤0.9 or 0.1 ≤ fractional νx,y ≤ 0.25,

|βx,inj − 14| <1.2 and |βy,inj − 2| < 0.5,

|βx,sym − 1.8| <1.5 and |βy,sym − 14.2| < 0.2.

(4.3)

The range of betatron tune is chosen so that fractional betatron tune is far away from dangerous

resonances. Range of other constraints are chosen to get optimal solution. In Fig.4.14, a Pareto

optimal front to show trade off between dispersion function at straight section and emittance is
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given and it is compared with Pareto optimal front for original lattice. In Pareto optimal front,

there are large number of solutions for strengths of quadrupoles.

Fig. 4.14 shows that both objectives are conflicting in nature and one must choose

a solution judicially. To get desired emittance one has to compromise dispersion at straight

section. This is the major advantage of multi-objective genetic algorithm over classical methods.

Beta functions at injection, natural chromaticity, betatron tune, maximum beta functions for

different set of quadrupole strengths are shown in Fig.4.15, Fig.4.16, Fig.4.17, and Fig.4.18

and data of quadrupole strengths, which have dispersion at straight section less than 0.002 m

are shown in numbers. There are only two data which satisfy dispersion function at straight

section near to zero. For both data, emittance is nearly 38 nm.rad, other parameters can also be

compared in figures.

According to ones requirement, e.g. if one wants to allow a little dispersion at straight

section, then solution can be chosen such that important parameters, like betatron tune, natural

chromaticity, beta functions at injection, maximum beta functions, are satisfied.
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Fig. 4.14: Comparison of Pareto optimal front.
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injection for each solution.

18 19 20 21
16

17

18

19


x
 ma x [m]


y m

a
x

 [
m

]

174 196

 

 

E
m

it
ta

n
ce

 [
n

m
.r

a
d

]

20

30

40

50

60
Original lattice

Fig. 4.16: Maximum beta functions

comparison for each solution.
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solution.
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Fig. 4.18: Natural chromaticity comparison

for each solution.

A similar optimization studies of LGBs are presented for Indus-3 lattice in the following

Sections.

4.3 MBA lattice of Indus-3 with LGBs

In Section 1.17, Chapter 1, Indus-3 lattice has been discussed. Indus-3 or high brightness

synchrotron radiation source (HBSRS) is a 6 GeV electron storage ring. The baseline lattice

has been designed to achieve beam emittance of 150 pm.rad. Different elements of Indus-3

lattice are shown in Fig. 4.19. Magnetic elements are placed in the unit lattice in such a way
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that it looks symmetric with respect to center of BM4 and strengths of quadrupoles are such

that it generates lattice functions as shown in Fig. 4.20.
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Fig. 4.19: Different magnetic elements of Indus-3 lattice (not to scale). Magnetic elements which are

above base line are focusing in nature and below the base line are defocusing in nature.
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Fig. 4.20: Designed lattice functions of Indus-3 lattice.

Dipole magnets BM3 and BM4 are combined function dipole magnets, i.e., these magn-

ets have quadrupole gradient along with dipole component. Dipole magnets BM1 and BM2

are homogeneous dipole magnets and are same. As BM3 and BM4 already have transverse

gradient, hence it is difficult to include LGB because of technological challenges. Therefore,

to study LGB for this lattice, dipoles BM1 and BM2 are chosen and similar logic as LGB

in Indus-2 dipole can be applied. LGB profile for BM1 will be a decreasing profile. On the

other hand, for BM2 it will be reversed, i.e., a increasing LGB profile to shape the dispersion

function. The length of the dipoles BM3 is 2.17 m and it bends a charged particle by an angle
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1.74◦. In this case also, dipole magnet is divided into 5 equal sections and LGB profile is

optimized using single objective genetic algorithm with maximum magnetic field 0.45 Tesla in

the first section.

After optimization, magnetic fields in each section of dipole are

B = [0.4500 0.3167 0.2430 0.2008 0.1899][Tesla].

The optimized LGB profile is shown in Fig.4.21 and compared with homogeneous magnetic

field, i.e., 0.28 Tesla.

This LGB profile will change the distribution of dispersion function in the lattice and

the achromatic condition will be lost. Therefore, strength of quadrupoles are needed to be

optimized.
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Fig. 4.21: Optimized LGB profile.

4.3.1 Matching of lattice function with quadrupoles

To match lattice functions and other constraints like betatron tune, stability condition,

limit on maximum beta function, etc., quadrupole strengths must be optimized. This optimization

problem is solved using MOGA, in which three objective functions are chosen which are: (i)

f1:emittance, (ii) f2: dispersion function at straight section, (iii) f3: dispersion at focusing

sextupole location. Quadrupoles used in Indus-3 lattice have large gradient compared to Indus-2
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lattice. Therefore, Indus-3 is a very tight focusing machine and betatron tune, lattice function

etc. are much sensitive compared to Indus-2. Therefore, all quadrupole family, i.e., Q1, Q2,

Q3, Q4, Q5, Q6, Q7, Q8 and quadrupole gradient in BM3 and BM4 are chosen for matching

of lattice function and other important parameters. The limit on strengths of quadrupoles is

chosen as 4.2 m−2 and for quadrupole gradient in BM3 and BM4 it is chosen as 2.2 m−2.

The multi-objective optimization problem can be defined as

Minimize ~f(~k) = (f1, f2,−f3),

with constraints

|(~k)i| < 4.2 m−2; i = 1, 2, · · · , 8,

|(~k)i| < 2.4 m−2; i = 9, 10,

|Trace(M)| ≤ 2,

βx,y,max <= 20m,

0.75 ≤ fractional νx,y ≤ 0.9 or 0.1 ≤ fractional νx,y ≤ 0.3,

|βx,inj − 11.6| < 2.5 and |(βy,inj − 5.34| < 1.5,

|βx,sym − 0.4| < 1 and |βy,sym − 4.3| < 1,

(4.4)

Number of generation and number of population to run the MOGA code are 200 and 500

respectively. The large number of population are chosen to get more number of solution

that satisfy constraints. To give a search direction to MOGA, initial values of strength of

quadrupoles are chosen. Initial values of quadrupole strengths and quadrupole component in

BM3 and BM4 are

k0 = [2.0369 − 2.1406 − 2.6000 2.1141 3.5617

−2.7373 3.0327 3.6775 − 2.2 − 2.0][m−2].

After optimization, Pareto optimal front between emittance and dispersion at straight
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section with color bar for dispersion at focusing sextupole location are shown in Fig. 4.22.

It can be seen that each objective is conflicting in nature, i.e., one has to choose a solution

judicially. As dispersion at focusing sextupole increases, achromatic condition not satisfied and

emittance is also increased. Emittance in each case is in the range 136 to 140 pm.rad, which

shows the advantage of LGB dipoles. In MOGA, large number of solutions are generated,

which are all optimal with given constraints. For each solution, beta function at injection,

natural chromaticity, betatron tune and maximum beta function are calculated and are shown

in Fig. 4.23, Fig. 4.24, Fig. 4.25, and Fig. 4.26.
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Fig. 4.22: Pareto optimal front for emittance with dispersion at straight section.
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Fig. 4.23: Horizontal and vertical beta

functions comparison for each solution.
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beta functions comparison for each solution.
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Fig. 4.25: Horizontal and vertical betatron

tune comparison for each solution.
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Fig. 4.26: Horizontal and vertical natural

chromaticity comparison for each solution.

For each solution from MOGA, horizontal betatron tune increases from 74.2 to 74.8-74.9

which is acceptable, because it is away from resonances and vertical betatron tune is almost

same to original lattice. Horizontal beta function at injection reduces from 11.5 m to 9-9.5m,

which will require increase in the kicker strengths, but vertical beta function is close to original

lattice. One advantage of low horizontal beta function is that beam size at IDs location will be

low which is desirable. Maximum beta function is reduced for both planes by 2-2.5 m. Natural

chromaticity in horizontal plane is decreased by an amount of 8, which is an advantage. Those

solutions, for which dispersion at straight section is less than 0.0002 m are shown by numbers.

There are only two solutions which satisfy it.

One of the solution, for which dispersion at straight section is near to zero, is given by

k = [2.1432 − 2.3929 − 1.9493 1.6595 3.8988

−3.0263 3.1920 3.8916 − 2.1680 − 2.2908][m−2].

For this optimized values of quadrupole strengths, betatron tune is [74.9, 24.25]. After correction

of betatron tune to [75.2, 24.2] with Q1 and Q2, the strength of Q1 changes from 2.1432

to 2.1627 and strength of Q2 changes from -2.3929 to 2.4044 m−2, i.e., a small increase in

these two quadrupole strengths. Using these strengths, variation of different lattice functions
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after betatron tune correction are shown in Fig.4.27, Fig.4.28 and Fig.4.29 and comparison of

different lattice parameters are shown in Table.4.2
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Fig. 4.27: Comparison of dispersion function.
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Fig. 4.29: Comparison of vertical beta function.
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Though, these beta functions (lattice with LGB) are acceptable, but still there is a scope

for further optimization.

Table 4.2: Comparison of Indus-3 lattice with LGB with original Indus-3 lattice.

S.No. Parameters Indus-3 (Original Lattice) Indus-3 Lattice with LGB

1. Energy (GeV) 6 6

2. Momentum Compaction factor 9.55×10−5 9.07×10−5

3. Emittance (nm-rad) 148.9 135.1

4. Betatron tunes [νx, νy] [74.15 , 24.22] [75.2 , 24.2]

5. Natural chromaticity [-109.15 -80.94] [-102.52 -80.81]

6. Energy Loss per turn (MeV) 2.46 2.57

7. Beta function at injection [m] [11.57 5.34] [9.1 5.3]

8. Max. Beta function [m] [12.54 18.71] [10.3 17.7]

9. Beta function at symmetric point

[m]

[0.38 4.03] [ 0.44 5.19]

10. Dispersion at sextupole location [m] 0.078 0.085

11. Required sextupole strength for

chromaticity correction [4, 4] [m−3]

[-89.5 118.79 -57.02] [-90.95 118.53

-58.97]

Study of Indus-3 lattice with LGBs shows that emittance can be reduced by ∼ 10%

without much affecting the lattice functions, betatron tune etc. Though natural chromaticity is

reduced, but due to change in beta functions at sextupole location leads to a small increase in

sextupole strength to correct the same level of chromaticity.

Though horizontal beta function is reduced at injection and sextupole strengths are

increased a little bit, actual performance can only be predicted after dynamic aperture calculation

which is given in the following Section.
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4.3.2 Dynamic aperture

After correcting chromaticity to [4, 4] (horizontal and vertical) with sextupoles, dynamic

aperture calculation is done by tracking of particles in the whole ring for 1000 turns. To

calculate dynamic aperture, range of x is chosen from -15 mm to 15 mm in step size of 0.5

mm. On the other hand, range of y is chosen from 0 to 8 mm. The maximum range of x and

y are chosen on the basis of physical aperture of vacuum chamber. Charged particle is tracked

for 1000 turns in the grids and the boundary is decided on the basis of loss, i.e., after a certain

point of the grid, charged particle is lost. In Fig.4.30, a comparison of dynamic aperture for

Indus-3 lattice utilizing LGB dipoles and original Indus-3 lattice is shown. Nearly equal area

is covered between both curves.

-15 -10 -5 0 5 10 15
0

2

4

6

8

x [mm]

y
 [

m
m

]

 

 

Original lattice

Lattice with LGB

Fig. 4.30: Comparison of dynamic aperture for 1000 turns.

Though dynamic aperture is reduced a little in the vertical plane, but it is increased in

the horizontal plane and this will help in off axis beam injection.

In this Chapter, Indus-2 and Indus-3 lattices which utilizes LGB dipole are optimized

and different important parameters like betatron tune, lattice functions, chromaticity, dynamic

aperture are analysed using single as well multi-objective techniques. The summary of this

Chapter is given below.
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For the case of Indus-2, using dipoles with LGB, emittance can be reduced∼ 33% in the

same ring with minimum hardware change if betatron tune is allowed to change by an integer

and nearly 25% emittance reduced if same betatron tune is desired to nominal lattice. After

introducing LGB brightness will increases by a factor of 2. As dispersion function at sextupole

location increased from 0.7m to 0.8m, required sextupole strengths get reduced by 16% for

focusing sextupole and 13.8% for defocusing sextupole for the same level of chromaticity

correction, i.e., [2, 2].

For the case of Indus-3, using dipoles with LGBs, emittance can be reduced by ∼ 10%

in the same circumference of the ring. Dynamic aperture area for on momentum particles

is almost same as original lattice. Though a little decrease in vertical plane, but, there is an

increase in horizontal direction which is required for off beam injection (an advantage).
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Chapter 5

Conclusion and future scope

Brightness of photon beam is one of the major aspect in designing or upgrading any SR

source based on electron storage ring. An important beam parameter, called beam emittance,

highly affects brightness of the photon beam and quality of beam, i.e., beam size. In order

to increase brightness one has to improve beam emittance by some means. In recent years,

advanced techniques like transverse gradient, longitudinal gradient bend (LGB), reverse or anti

bend in a dipole have been studied and being used to improve the beam emittance. In this

thesis work, an extensive study on optimization of LGB profiles has been presented. Further,

new lattices have been designed by replacing homogeneous dipole of Indus-2 and Indus-3.

After discussing accelerator physics relevant to this thesis briefly, technologically challen-

ging advanced methods (LGB and transverse gradient) to improve the beam emittance are

discussed. In Chapter 2, the necessary numerical optimization techniques are described which

are used to optimize a dipole with LGBs. In particular, single objective such as Nelder-Mead

(a classical direct search method) and multi-objective optimization techniques such as genetic

algorithm (GA) are discussed. Optimization studies of LGB profiles using dipole of Indus-2

are discussed in Chapter 3. Both techniques, i.e., Nelder-Mead and single objective genetic
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algorithm have been used to generate different LGB profiles. New lattice for Indus-2 is designed

by replacing homogeneous dipole with dipole with LGB. The introduction of LGB dipole

changes the distribution of dispersion in the lattice due to unoptimized quadrupole strengths.

Therefore, quadrupole strengths are optimized to match the lattice function and other important

parameters. Using similar logic, dipole of Indus-3 is optimized for LGB profile and lattice

functions and other important parameters are matched using all quadru-

pole families and quadrupole component in BM3 and BM4.

Beam emittance of Indus-2 reduced by ∼30% by introducing LGB in the dipole if

betatron tune is allowed to change by integer and∼24% with corrected betatron tune to nominal

lattice. A study of Indus-2 in TME configuration is also carried out, which shows that emittance

with LGB dipoles is reduced by less than half. Also, beam emittance of Indus-3 lattice reduced

by ∼10% by introducing LGB in dipoles which shows major advantage of dipole with LGB

over homogeneous dipole. In addition, LGB in dipole increases the dispersion at sextupole

location, which decreases the sextupole strengths to correct the same level of chromaticity as

of nominal lattice.

In this thesis, the studies of beam emittance reduction and optimization of lattice perform-

ance are presented in ideal case with LGBs. To model the LGB, we have considered the hard

edge model, where fringing fields are ignored. In addition, for realistic magnetic lattice, error

and analysis also need to be performed. In electron storage rings, the real advantage of LGB

will be when we use anti-bends (dipoles with negative bending angles) [12]. This combination

help decouple the distribution of beta and dispersion function. These studies will be carried out

in future.
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Appendix A

Derivations

A.1 Equation of motion of an electron in a moving coordinate

system

Equation of motion of a electron in a given magnetic field, in moving coordinate system

can be written using Lorentz force law as

d~P

dt
= e~v × ~B. (A.1)

Considering no magnetic field component in the longitudinal direction, i.e.,

~B = (Bx, By, 0).

Using this magnetic field and velocity ~v = (vx, vy, vs),

~v × ~B = −vsByx̂+ vsBxŷ + (v − xBy − vyBx)ŝ.

Ignoring radiation generated by electron eq.(A.1) can be written as

d~P

dt
= γm0

d2 ~R

dt2
. (A.2)
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Fig. A.1: Frenet-Serret coordinate system. x̂, ŷand ŝ are unit vectors in horizontal, vertical and

longitudinal direction respectively.

Energy of the electron is constant, therefore γ will be a constant and m0 (a constant) is

the rest mass energy of electron. Hence equation of motion becomes

~R = e~v × ~B.

~R can be written as

~R = rx̂+ yŷ (A.3)

~R = ṙx̂+ r ˙̂x+ ẏŷ. (A.4)
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𝑠2 − 𝑠1
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 𝑥2

Fig. A.2: Change in unit vector in horizontal direction.

If, there is any motion in the s-direction, the unit vector x̂ will have a derivative, i.e., ˙̂x.
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From Fig A.2, it can be seen that

˙̂x = θ̇ŝ, (A.5)

where θ̇ = vs
r

. Therefore,

~̇R = ṙx̂+ rθ̇ŝ+ ẏŷ, (A.6)

and differentiating one more time

~̈R = r̈x̂+ (2ṙθ̇ + rθ̈)ŝ+ ÿŷ. (A.7)

Using same argument as used to obtain ˙̂x , we have

˙̂s = −θ̇x̂, (A.8)

Therefore,

~̈R = (r̈ − rθ̇2)x̂+ (2ṙθ̇ + r ¨theta)ŝ+ ÿŷ. (A.9)

Thus, equation of motion in the x-direction is

r̈ − rθ̇2 = −evsBy

γm0

= − ev
2
sBy

γm0vs
. (A.10)

Since vx << vs and vy << vs, to a very good approximation, the total momentum p of the

particle is γm0vs. So,

r̈ − rθ̇2 = −ev
2
sBy

p
. (A.11)

Changing independent variable t to s, the derivative becomes

d

dt
=
ds

dt

d

ds
, (A.12)

Since,

ds = ρdθ = vsdt ρ
r
. (A.13)

Hence, assuming d2s
dt2

= 0,

d2

dt2
=

(
ds

dt

)
d2

ds2
=
(
vs
ρ

r

)2 d2

ds2
. (A.14)
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Replacing r with ρ+ x, the equation of motion becomes

d2x

ds2
− ρ+ x

ρ2
= −By

Bρ

(
1 +

x

ρ

)2

, (A.15)

where Bρ = p
e
. A similar treatment yields for the equation of motion in the y-direction

d2y

ds2
=
Bx

Bρ

(
1 +

x

ρ

)2

. (A.16)

In general, these equations are non-linear. One can study these equation for linear case and

non-linear terms can be treated as perturbation to these equations.

A.2 Closed form solution

General equation of motion is given by

u′′ +K(s)u = 0. (A.17)

This is the equation of harmonic oscillator with variable spring constant, i.e., K = f(s).

Though, spring constant is a function of independent variable s, for circular accelerators, K

is periodic, i.e., there is a distance C such that

K(s+ C) = K(s). (A.18)

The repeated distance of the hardware, C, may be as large as circumference of a synchrotron

or it may be less. The general solution of equation of motion is given by

u(s) = A
√
β(s)cos[ψ(s) + δ], (A.19)

where A and δ are the two constants of integration reflecting from initial conditions, and β(s)

is also be a periodic function with periodicity C. Here, a similarity with harmonic oscillator

can be noticed, when K becomes periodic function of position, the solution will differ from the
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simple harmonic oscillator problem by a factor representing a spatially varying amplitude and

a phase, which does not develop linearly with s. β(s) and psi(s) can be found by substituting

general solution into the differential equation. Differentiating u with respect to s

u′ = A
β′

2
√
β
cos(ψ + δ)− A

√
βsin(ψ + δ)ψ′ (A.20)

and

u′′ = A
ββ′′ − 1

2
β′2

2β3/2
cos(ψ+ δ)−A β′√

β
sin(ψ+ δ)ψ′−A

√
βsin(ψ+ δ)ψ′′−A

√
βcos(ψ)ψ′2.

(A.21)

Inserting in eq.(A.17), we get

A

[
ββ′′ − 1

2
β′2

2β3/2
−
√
βψ′2 +K

√
β

]
cos(ψ+δ)−A

[
β′√
β
ψ′ +

√
βψ′′ +

√
βψ′
]

sin(ψ+δ) = 0.

(A.22)

Since, it required that β and ψ are to be independent of δ. So, coefficients of sine and cosine

terms must vanish separately. Equating coefficient of sine term equal to 0, it gives

βψ′′ + βψ′ + β′ψ′ = 0 or (βψ′)′ = 0, (A.23)

eq.(A.23) can be solved further as

ψ′ =
Const.

β(s)
, (A.24)

Where c is an arbitrary constant of integration. This arbitrary constant can be chosen as 1 for

convenience.

1

2
(ββ′′ − 1

2
β′2)− β2ψ′2 + β2K = 0 (A.25)

Using this relationship between β(s) and ψ, A.25 becomes

1

2
ββ′ − 1

4
β′2 + β2K = 1. (A.26)
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With the introduction of Courant-Snyder variables

α = −1

2
β′ and γ =

1 + α2

β
, (A.27)

we can write eq.(A.25)

β′′ + 2Kβ − 2γ = 0 (A.28)

Strictly speaking, β(s) need not be periodic; it only has to be a solution of the eq.(A.25). But

if the motion we are trying to describe is that of a particle travelling through a periodic section

of a accelerator, for instance through thousands of revolution about a circular accelerator, it is

much more useful to choose the unique periodic solution for β(s).

Using eq.(A.24), phase difference from a point s0 to s is given by

ψ =

∫ s

s0

1

β(s)
ds. (A.29)

For a complete ring, phase difference is given by

µ = ψring =

∮
1

β(s)
ds. (A.30)

We define betatron tune as

ν =
µ

2π
=

1

2π

∮
1

β(s)
ds. (A.31)

Betatron tune tell us how many oscillation makes a charged particle in one revolution.

A.3 Energy Loss

A relativistic electron when accelerated in a macroscopic force field will radiate electromag-

netic energy. The rate of emission is proportional to the square of the accelerating force and

depends on the angle between the force and the electrons velocity and is larger by the factor
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γ2 =
(

E
m0c2

)2

when the force is perpendicular to the velocity than when the force is parallel

to the velocity. In a circular accelerator, the typical longitudinal forces (from the accelerating

system) are much smaller than the typical transverse magnetic forces. Therefore, radiation

effects that accompany by the magnetic forces are needed to consider only. The rate of loss of

energy, Pγ by radiation can be written as

Pγ =
2

3

rec

(m0c2)3
E2F 2

⊥, (A.32)

where m0, re are rest mass and classical electron radius of the electron respectively. F⊥ is the

magnetic force on the electron.It is convenient to define a constant

Cγ =
4π

3

rec

(m0c2)3
(A.33)

For electron Cγ = 8.85 × 10−5[m.GeV −3]. Since F⊥ = ecB, the radiated power is

given by

Pγ =
e2c3

2π
CγE

2B2. (A.34)

This shows that instantaneous power is proportional to the square of both the energy and the

local magnetic field strength. It is sometimes useful to express the magnetic force in terms of

the local radius of curvature ρ of the trajectory; then

Pγ =
cCγ
2π

E4

ρ2
(A.35)

An electron circulating on the design orbit has the nominal energy E0 and moves on the radius

rhos = 1
G

. To find the energy U0 radiated in one revolution, we must integrate Pγ with respect

to time once around the ring. Since dt = ds
c

U0 =
CγE

4
0

2π

∮
G2(s)ds. (A.36)

We may write the integral as the mean of G2 multiplied by L = 2πR, the distance around the

ring;

U0 = C4
γR〈G〉. (A.37)
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For an isomagnetic guide field G = G0 = 1
ρ0

along the curved path of the length 2πρ0 and zero

everywhere. So,

〈G2〉 =
G0

R
=

1

Rρ0

(A.38)

and

U0 =
CγE

4
0

ρ0

. (A.39)

For a fixed radius, the energy radiated per turn varies as the fourth power of the electron energy.
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