
Dissipative Fluid Dynamics for Ultra-Relativistic Nuclear
Collisions

by

Victor Roy

Enrolment No.- PHYS04200704003

Variable Energy Cyclotron Centre, Kolkata-700064, India.

A thesis submitted to

The Board of Studies in Physical Sciences
In the partial fulfillment of the requirements

For the Degree of

Doctor of Philosophy

of

HOMI BHABHA NATIONAL INSTITUTE

April, 2012



Homi Bhabha National Institute

Recommendation of the Viva Voce Board

As members of the Viva Voce Board, we certify that we have read the dissertation pre-

pared by Victor Roy entitled Dissipative Fluid Dynamics for Ultra-Relativistic

Nuclear Collisions and recommend that it may be accepted as fulfilling the disserta-

tion requirement for the degree of Doctor of Philosophy.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Date:

Chairman- Prof. D. K. Srivastava

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Date:

Convener- Prof. A. K. Chaudhuri

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Date:

Member 1- Prof. J. Alam

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Date:

Member 2- Prof. M. G. Mustafa

Finally approval and acceptance of this dissertation is contingent upon the candidate’s

submission of the final copies of the dissertation to HBNI. I hereby certify that I have

read this dissertation prepared under my direction and recommend that it may be

accepted as fulfilling the dissertation requirement.

Date:

Place:



STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the

Library to be made available to borrowers under rules of the HBNI.

Brief quotation from this dissertation are allowable without special permission, pro-

vided that accurate acknowledgment of source is made. Requests for permission for

extended quotation from or reproduction of this manuscript in whole or in part may

be granted by the Competent Authority of HBNI when in his or her judgment the

proposed use of the material is in the interests of scholarship. In all other instances,

however, permission must be obtained from the author.

Victor Roy



DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by

me. The work is original and has not been submitted earlier as a whole or in part for

a degree/diploma at this or any other Institution/University.

Victor Roy



Acknowledgments

I would like to thank my supervisor Dr. A.K. Chaudhuri for his continuous support

and careful supervision throughout the PhD period. The second person without whose

constant support and inspiration this work would have not been complete is Dr. Be-

dangadas Mohanty. I would like to express my sincere gratitude to both of them. I

was also fortunate to have Dr. Dinesh K. Srivastava (Head Physics Group), Dr. Jan-e

Alam, and Dr. M.G. Mustafa as the members of my doctoral committee. I would

like to thank them all for helpful suggestions and useful physics discussions. It is also

my pleasure to thank the former director Prof. Bikash Sinha and the present director

Dr. Rakesh Kumar Bhandari of the Variable Energy Cyclotron Centre (VECC), Dean

academics of Homi Bhabha National Institute (HBNI) Dr. Partha Barat, and the head

theoretical physics division Dr. Santanu Pal for providing me the opportunity to carry

out my research work at VECC.

It was a pleasure to collaborate with the following colleagues at VECC, Dr. Subhasis

Chattopadhyay, Dr. Sourav Sarkar, Dr. Sidharth K. Prasad, Mr. Partha P. Bhaduri,

Mr. Santosh K. Das, Mr. Sabyasachi Ghosh, and Ms. Payal Mohanty. It was also

a pleasure to have following people as friends and colleagues at VECC, Dr. Rupa

Chatterjee, Dr. Mriganka M. Mandal, Dr. Saikat Biswas, Dr. Tapasi Ghosh, Dr.

Arnomitra Chatterjee, Dr. Umme Jamil, Mr. Prasun S. Chaudhuri, Dr. Sharmishtha

Banik, Mr. Jajati K. Nayak, Mr. Haridas Pai, Mr. Prithwish Tribedy, Mr. Pratap

Roy, Mr. Amlan Dutta, Mr. Somnath De, Mr. Sudipan De, Mr. Md. Younus, Mr.

Nihar R. Sahoo, Mr. Arnab Banerjee, Mr. Manish R. Gohil, Mr. Subhash Singha,

v



Mr. Md. Nasim, Mr. Abhishek Mishra, Mr. Amal Giri, Mr. Trambak Bhattacharjee,

Ms. Sukanya Mitra, Ms. Surasree Mazumder, Md. Rihan Haque, Mr. Sumit Basu,

Mr. Arindam Roy, Mr. Subikash Choudhury, Ms. Maitreyee Mukherjee, Mr. Vishal

Srivastava, Mr. Balaram Dey, and Mr. Sanoar Molla.

In the first year of the PhD program at VECC, we went through a one year of detail

pre-doctoral course. I am thankful to the teachers of this course for their wonderful

teaching. Throughout the whole research period I have extensively used and benefited

from the computing facility at VECC provided by the computer and informatics group.

I am thankful to the administrative, library, accounts, and canteen/guest house staff of

VECC for their co-operation.

During the PhD period, I got the opportunity to attend and deliver a talk at the

Berkeley School on Collective Dynamics held at the Lawrence Berkeley National Labo-

ratory, Berkeley, California. I would like to thank the organizers of the school, specially

Dr. Nu Xu, for their support and Department of Science and Technology, Govt. of

India, for generously providing the funding to attend the school. I have also attended

and delivered talks at the International School on High-Energy Nuclear Collisions and

the 7th International Workshop on Critical Point and Onset of Deconfinement, Wuhan,

China. I would like to thank the organizers of the school/workshop and the Homi

Bhabha National Institute, Department of Atomic Energy, India for their kind sup-

port. I express my sincere thanks to Professor Sourendu Gupta for inviting me for an

academic visit to Tata Institute of Fundamental Research, Mumbai and to TPSC for

the travel support. I presented my first plenary talk at the Workshop on High En-

vi



ergy Physics and Phenomenology (WHEPP-2012) organized at Mahableswar by TIFR,

Mumbai. I would like to thank DAE-SRC project of Dr. Mohanty, project sanction

No. 2010/21/15-BRNS/2026 for providing partial travel support. I was fortunate to

be able to attend the Quark Matter Conference held at Jaipur, 2008, and ICPAQGP -

2010 at Goa, the experience of meeting several scientists of our field at one place was

quite unique. I would like to thank the organizers of the conferences for providing me

with this opportunity.

Like thousands of physics students, I am inspired by the famous three volumes of

the lectures by Professor Richard P. Feynman, to pursue the research in the field of

high energy physics. I would like to thank Professor Chirantan Neogy of University of

Kalyani for his encouragement to pursue research in physics.

Finally, I would like to express my most sincere thanks to my parents for their

constant support throughout the research period.

vii



List of Publications

1. 2+1 dimensional hydrodynamics including bulk viscosity: A Systemat-

ics study.

Victor Roy, A.K. Chaudhuri.

Published in Phys. Rev. C. 85 (2012) 024909.

2. Charged particle’s elliptic flow in 2+1D viscous hydrodynamics at LHC

(
√
sNN = 2.76 TeV) energy in Pb+Pb collision.

Victor Roy, A.K. Chaudhuri.

Published in Phys. Lett. B 703 (2011) 313.

3. Elliptic flow of thermal dilepton as a probe of QCD matter.

Payal Mohanty, Victor Roy, Sabyasachi Ghosh, Santosh K Das, Bedangadas

Mohanty, Sourav Sarkar, Jane Alam, Asis K Chaudhuri.

Published in Phys. Rev. C. 85 (2012) 031903.

4. Hydrodynamical analysis of centrality dependence of charged particle’s

multiplicity in
√
sNN = 2.76 TeV Pb+Pb collision.

A.K. Chaudhuri, Victor Roy.

Published in Phys. Rev. C . 84 (2011) 027902.

5. Hadronic resonance gas and charged particle’s pT spectra and elliptic

flow in
√
sNN = 200 GeV Au+Au collisions.

Victor Roy, A.K. Chaudhuri.

Published in Phys. Rev. C 82 (2010) 031901.



6. Transverse Momentum Spectra and Elliptic Flow in Ideal Hydrody-

namics and Geometric Scaling.

Victor Roy, A.K. Chaudhuri.

Published in Phys. Rev. C 81 (2010) 067901.

7. Elliptic flow (v2) in pp collisions at energy available at the CERN Large

Hadron Collider: A hydrodynamical approach.

S.K. Prasad,Victor Roy, S. Chattopadhyay , A.K. Chaudhuri.

Published in Phys. Rev. C 82 (2010) 024909.

8. Equation of state dependence of Mach cone like structures in Au+Au

collisions.

Victor Roy, A.K. Chaudhuri.

Published in J.Phys.G 37 (2010) 035105.

Papers Communicated

1. Comparison of results from a 2+1D relativistic viscous hydrodynamic

model to elliptic and hexadecapole flow of charged hadrons measured

in Au-Au collisions at
√
sNN = 200 GeV.

Victor Roy, A. K. Chaudhuri and Bedangadas Mohanty.

Submitted to the Physical Review C. e-Print: arXiv:1204.2347.

2. Fluctuating initial condition and smoothening effect on elliptic and

triangular flow.

Md.Rihan Haque, Victor Roy, A. K. Chaudhuri.

Submitted to the Physical Review C. e-Print: arXiv:1204.2986.

ix



Conference proceedings

1. Transverse Momentum Spectra and Elliptic Flow in Ideal Hydrody-

namics and Geometric Scaling.

Victor Roy, A. K. Chaudhuri.

Proceeding of the DAE Symp. On Nucl. Phys. 55 (2010) 582.

2. Lattice Based Equation and Transverse Momentum Spectra of Identi-

fied Particles in Ideal and Viscous Hydrodynamics.

Victor Roy, A. K. Chaudhuri.

Proceeding of the DAE Symp. On Nucl. Phys. 55 (2010) 624.

3. Charged particle pT spectra and elliptic flow in a 2+1D viscous hydro-

dynamics including shear and bulk viscosity.

Victor Roy, A K Chaudhuri.

Proceeding of the DAE Symp. On Nucl. Phys. 56 (2011) 844.

4. Probing elliptic flow of QCD matter by lepton pairs.

Payal Mohanty,Victor Roy, Sabyasachi Ghosh, Santosh K Das, Bedangadas Mo-

hanty, Sourav Sarkar, Jan-e Alam, Asis K Chaudhuri.

Proceeding of the DAE Symp. On Nucl. Phys. 56 (2011) 856.

5. Transport properties of the matter formed in heavy-ion collisions at

the Large Hadron Collider.

Victor Roy, A K Chaudhuri.

Proceeding of the DAE Symp. On Nucl. Phys. 56 (2011) 910.

x



Synopsis

Nuclear collisions at relativistic energies are extensively used to study the proper-

ties of Quantum Chromodynamic (QCD) vacuum. At high temperature and pressure,

QCD matter can undergo a confinement-deconfinement transition. The deconfined state

of quarks and gluons is commonly called as the Quark-Gluon-Plasma (QGP). Recent

experiments at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National

Laboratory and at the Large Hadron Collider (LHC) at CERN have provided strong

indications that in central heavy-ion collisions, a QGP state is formed.

Relativistic hydrodynamics provides a useful tool to analyze the experimental data

from the relativistic heavy-ion collisions. It is assumed that in such a collision a fireball

is produced. Constituents of the fireball collide frequently to establish local thermal

equilibrium sufficiently fast and after a certain time τ0, hydrodynamics becomes ap-

plicable. If the macroscopic properties of the fluid e.g. local energy density, pressure,

fluid velocity etc. are known at the equilibration time τ0, the relativistic hydrodynamic

equations can be solved to give the space-time evolution of the fireball. The evolution

proceeds as per the input equation of state (EoS), which is a thermodynamic relation

between the energy density, pressure, and number density of the fluid. EoS may or may

not include phase transition. Hydrodynamics models are unique, because the phenom-

ena of phase transition can be explicitly incorporated via EoS. When the interactions

between the constituents are too weak (mean free path comparable/larger than the

system size) the hydrodynamic evolution ends and freeze-out occurs. Using suitable

algorithm (e.g. Cooper-Frye), the fluid information at the freeze-out can be converted

xi



into the invariant distribution for particle, which can then be directly compared with

the experimental data. The mass dependence of slope of invariant yields of produced

hadrons as a function of transverse momentum (pT ) and elliptic flow value at low pT

(< 1 GeV) observed in experimental data provides support for applying relativistic

hydrodynamics to high energy heavy-ion collisions.

Ideal hydrodynamics has been extensively used for comparison with the experimen-

tal RHIC data. Theoretical calculations (QCD and AdS/CFT based) indicate presence

of finite dissipative effects for the temperature range achieved in collisions at RHIC and

LHC. In addition, the centrality dependence of elliptic flow measurements at RHIC also

indicates that dissipative effects need to be considered in hydrodynamic simulations.

This dissertation focuses on understanding the dissipative effects in the QCD matter

formed in the heavy-ion collisions. Specifically we estimate the shear viscosity to en-

tropy density ratio (η/s) by comparing the simulated results from a 2+1D relativistic

viscous hydrodynamic model to the experimental data measured at RHIC and LHC.

We will follow the second order Israel-Stewart theory of causal viscous hydrodynam-

ics for the numerical simulation of viscous fluid. Treating shear and bulk viscosity coef-

ficients as input parameters, the evolution of shear and bulk viscous fluid are obtained

by solving the energy-momentum conservation and corresponding viscous relaxation

equations. The numerical code is named as AZHYDRO-KOLKATA. For our study we

have constructed an EoS using lattice QCD data for the QGP phase with the hadron

resonance gas EoS for the hadronic phase. We have implemented the necessary equa-

tions for bulk viscous evolution of the fluid and bulk viscous correction to the freeze-out

xii



distribution function. These are in addition to the corresponding equations and correc-

tions due to shear viscosity. Details of the temporal evolution of various components of

shear and bulk stress, temperature of the fluid, average transverse velocity, and spatial

and momentum anisotropy has been studied. The later results have been compared to

corresponding values for the ideal fluid evolution. We have also studied in detail the

effect of two different temperature dependent bulk viscosity to entropy density (ζ/s)

ratio on experimental observables like pT spectra and elliptic flow. We have followed

the Cooper-Frye prescription to obtain the invariant yield of the hadrons. The reso-

nance decay contribution to the thermal pion yields have been considered at a given

freeze-out temperature. For the studies involving bulk viscosity we have presented the

results of bulk viscous correction to the freeze-out distribution function following the

Grad’s 14-moment method. Specifically we point out the limitations of this approach.

All the simulations have been done assuming finite baryon number density effects are

small at top RHIC and LHC energies.

The simulated invariant yield (dN/d2pTdη) and elliptic flow (v2) of charged hadrons

as a function transverse momentum for different collision centralities are compared to

the corresponding experimental measurements for Au-Au collisions at
√
sNN = 200

GeV (RHIC) and Pb-Pb collisions at
√
sNN = 2.76 TeV (LHC). The higher beam en-

ergy is accounted in the simulations by considering a higher value of initial transverse

energy density profile and also larger value of inelastic nucleon-nucleon cross section.

We have studied in detail the effect of varying initial energy density profile (by con-

sidering a Glauber model and CGC model based initial conditions, as well as varying

the hard scattering fraction parameter value in the Glauber based initial condition) on

xiii



experimental observables such as pseudorapidity density of charged hadrons (dNch/dη),

dN/d2pTdη, v2(pT ) for various collision centralities. The simulations are carried out

for various input values of a temperature independent η/s (0.08 - 0.2). The centrality

dependence of experimentally measured dNch/dη at RHIC and LHC has been used in

our hydrodynamic simulations to fix the corresponding initial conditions. From the

simulations we observe that the pT spectra becomes flatter (average transverse velocity

becomes larger) with increase in the input η/s values. While simulated v2(pT ) values

become smaller (momentum anisotropy becomes smaller) with increase in the input

η/s values. Comparison of our viscous hydrodynamic simulation results to the exper-

imental data at RHIC and LHC shows that both dN/d2pTdη and v2 demands higher

values of η/s as we go from central (0-10%) to peripheral collisions (40-50%). We find

the observable v2(pT ) is more sensitive to the viscous effects compared to dN/d2pTdη.

Our study suggests that the η/s estimated from the RHIC and LHC data have values

around 0.08 - 0.18. A comparison of our estimate of η/s to those obtained by other

groups has been discussed in the last chapter of this thesis. The small value of η/s

estimated for the QGP system formed in high energy heavy-ion collisions indicate that

the system is strongly coupled, where the inter-particle potential energy dominates over

the (thermal) kinetic energy of the particles.
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Chapter 1

Introduction

1.1 QCD and QGP

There are four fundamental interactions in nature: (i) Gravitational, (ii) Weak, (iii)

Electromagnetic, and (iv) Strong interaction, which governs the behavior of all the

known matter. Quantum Chromodynamics (QCD) is the theory of strong interaction.

In the 1960’s, discovery of a large number of strongly interacting particles (hadrons)

and the subsequent explanation of the properties of hadrons by Gell-mann and Zweig

suggests that hadrons are not elementary particles, rather it consists of more fundamen-

tal particles called quarks. It was then possible to explain the properties of dozens of

observed hadrons by considering three kinds (flavor) of quarks and their antiparticles.

In 1973 Gross, Wilczek, and Politzer [1, 2] came up with a proposal for a quantum field

theory for the strong interactions, QCD, a non-abelian gauge field theory based on the

1
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gauge group SU(3) for quarks with massless vector particles mediating the force. These

particles were to be named gluons.

Gluons are like photons, which according to the theory of Quantum electrodynamics

are the carrier of electromagnetic force. Photons does not interact with each other 1,

whereas the situation becomes complex in the case of strong interaction because the

mediator gluons carry color charges and hence interacts with each other.

No free quarks or gluons are observed in nature. They are always confined inside

hadrons. The QCD predicts this confinement property, although it is not easy to prove.

It was shown by Wilczeck, Gross, and Politzer that the running coupling constant of

strong interaction αs becomes small in the limit of high momentum transfer (Q) between

the two colliding partons. This phenomenon is related to the asymptotic freedom [3].

With further advances in QCD, theoretician was now able to understand and predict

new phenomenon in the field of nuclear physics at high temperature and density. T.D.

Lee proposed that by distributing high energy or high nucleonic density over a relatively

large volume one could temporarily restore broken symmetries of the physical vacuum

and possibly create novel abnormal dense states of nuclear matter [4, 5]. Collins and

Perry [6] realized that the asymptotic freedom property of QCD implies the existence

of an ultra-dense form of matter with deconfined quarks and gluons, called the Quark-

Gluon Plasma (QGP) [7].

1At very high energies non-linear phenomenon occurs where photon can interact among themselves,

J.D. Jackson, Classical Electrodynamics,Third Edition.
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Figure 1.1: Summary of the measurements of αs(Q) as a function of Q. Perturbative
QCD calculations are shown by the lines. The figure is from reference [8].

Depending upon the value of strong coupling constant αs, QCD theory is broadly

divided into two main regimes : (i) Perturbative: where the value of αs is small such

as in the collision of two partons where the momentum transfer is large. Perturbative

QCD calculation shows excellent agreement with the experimental estimates of αs as

shown in figure 1.1 [8].

(ii) Non-perturbative: where the value of αs is large. In this regime, the perturbative

QCD calculation breaks down. One way to do a first principle calculation in the non-

pertubative regime is through numerical simulations on a space-time lattice. This can be

further divided into two cases. (a) In the zero temperature region, lattice QCD (lQCD)

calculations of mass of hadrons has good agreement with the experimentally measured

masses as shown in figure 1.2. In the zero temperature limit, lQCD also predicts the
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Figure 1.2: The light hadron spectrum of QCD. Horizontal lines and bands are the
experimental values with their decay widths. Symbols are lattice QCD calculation by
Durr et al. [9].

breaking of chiral symmetry. (b) In the high temperature limit lQCD predicts that

chiral symmetry will be restored. It also predicts the phenomenon of deconfinement

where the colorless hadrons will decompose into quarks and gluons or formation of

QGP. According to the recent lQCD calculation with 2+1 flavor and for realistic quark

masses, the quark-hadron transition should occur at a cross over temperature (Tco) ∼

175 MeV [10].

Figure 1.3 shows the entropy density over cube of the temperature from a lQCD

calculation with 2+1 flavor as a function of temperature [10]. For relativistic particles,

to a very good approximation, s/T 3 = 2π2

45
geff . Where geff is the effective degrees of

freedom of the system. From figure 1.3 at low temperatures ∼ 110 MeV the geff ∼
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Figure 1.3: Lattice QCD results of entropy density (s) normalized by T 3 as a function
of the temperature (T ) [10]. The Stefan-Boltzmann limit sSB = 4PSB/T is indicated by
an arrow.

3.4. For a system of pion gas the effective degrees of freedom is around 3. At high

temperatures ∼ 250 MeV the geff ∼ 30. For a massless system of quarks with 3 flavors,

their anti-particles and gluons the geff = (ggluon + 7
8
gquark) = (8 × 2 + 7

8
NcNfNsNa) =

47.5. Where Nc is the number of colors = 3, Nf is the number of flavors = 3, Ns is

the spin degrees of freedom = 2, and Na = 2 is the degrees of freedom for the particles

and anti-particles. So lQCD predicts a transition from a state where quarks and gluons

are confined inside hadrons (relevant degrees of freedom are hadronic) to a state where

quarks and gluons are deconfined (relevant degrees of freedom are partons) at high

temperatures. The s/T 3 value does not reach the Stefan-Boltzmann limit for a non-

interacting massless system of quarks and gluons, indicating that the system of quarks

and gluons in the temperature range 170 - 1000 MeV is strongly interacting.

The formation of QGP in the laboratory is possible by colliding heavy ions at rela-

tivistic energies as it is done at Relativistic Heavy Ion Collider (RHIC) or Large Hadron
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Collider (LHC) experiments. Results from these experiments (presented in the section

on QGP signatures) as well as the lQCD calculations discussed above indicates the for-

mation of a strongly coupled QGP (sQGP). The strongly coupled quark-gluon plasma is

in many ways similar to certain kinds of conventional (electromagnetic) plasmas consist-

ing of electrically charged particles (electrons, ions or large charged mesoscopic grains),

which also exhibit liquid or even solid-like behavior. The strongly coupled plasmas are

characterized by an inter-particle potential energy which dominates over the (thermal)

kinetic energy of the particles. Strongly coupled plasmas occur in electrical discharges,

in cryogenic traps and storage rings, in semiconductors, and in astrophysical systems

(interior of giant planets and white dwarfs) [11].

Figure 1.4: Different types of plasmas over the density (n) - temperature (T ) plane.
Strongly coupled plasmas are located right from the Γ = 1 line. Γ characterizes the
ratio of the potential to kinetic energy. The figure is from reference [11]

.

Figure 1.4 illustrates the different plasma types over temperature - density plane.
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Besides the conventional plasmas, the approximate location of the sQGP is also shown.

Strongly coupled systems are characterized by the coupling parameter Γ which is the

measure of the ratio of average potential energy to the average kinetic energy per

particle. The strong coupling regime corresponds to Γ > 1. Recent work indicates that

the coupling parameter for the sQGP is expected to be in the order of one [12, 13, 14,

15, 16, 17]. Understanding the transport properties of the sQGP is one of the main

motivations of this thesis work.

Now we will discuss about the space-time evolution of the system formed in rela-

tivistic heavy-ion collisions and give a brief note on the different experimental facilities

for high energy heavy-ion collisions.

1.2 Relativistic Heavy Ion Collision

1.2.1 Space-time evolution

Figure 1.5 shows different stages of heavy-ion collision schematically. The proper time

axis (τ) is along the horizontal direction. Though there are no sharp boundaries between

different stages as shown in figure 1.5, we can broadly divided the whole evolution into

the following sub-stages.

• Initial stage : In the initial stage two nuclei approaching each other with rela-

tivistic speed. Because of their high speed, the colliding nuclei are highly Lorentz
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Figure 1.5: Schematic diagram illustrating the different stages of evolution for heavy-ion
collisions at relativistic energies. The figure is from [18].

contracted along the direction of motion. According to the convention at τ = 0

two nuclei collides. Before collision, the distributions of quarks and gluons in the

colliding nucleus are described by the corresponding structure functions.

• Pre-equilibrium stage : After collision (τ > 0), a large amount of initial kinetic

energy of the incoming nucleons are deposited into a very small region of the reac-

tion zone. Strong interaction between quarks and gluons of the colliding nucleons

helps to achieve local thermal equilibrium quickly around τ ∼ 1fm. After ther-

malization, the quarks, antiquarks, and gluons of the thermalized medium follows

the corresponding Fermi-Dirac or Bose-Einstein distributions. Heavy quark pairs

such as ss, cc and high energetic photons are also produced in the primary collision

between two partons of the colliding nucleus in this early stages of evolution.

• QGP evolution : The state of the thermalized QGP can be described by a

few thermodynamic variables like local temperature, pressure, energy density etc.

The pressure gradient which builds up in the process of thermalization drives the

QGP in the radially outward directions. The system expands and cools down. The

space-time evolution of the QGP can be described by a relativistic hydrodynamics

simulation. When the temperature of the QGP drops below a critical value (lQCD

predicted cross over temperature), quarks and gluons and their corresponding
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antiparticles forms colorless hadrons. This process is known as hadronization. In

figure 1.6 we depict the constant temperature contours corresponding to Tco =

175 MeV and freeze-out temperature of 130 MeV in the τ - x plane (at y = 0)

indicating the boundaries for the QGP and hadronic phases respectively. The life

time of the QGP phase ∼ 6 fm and the duration of the hadronic phase is ∼ 6 - 12

fm. These contours are obtained from a relativistic ideal hydrodynamics, details

of which will be discussed in chapter-2.

• Hadron gas and freezeout : The hadron gas, consists of stable and unstable

hadrons, further expands and cools down until the mean free path of the con-

stituent hadrons becomes large compared to the system size. When this happen,

hadrons no longer collides among themselves and their momentum distribution

remains unchanged hereafter. This is called kinetic freezeout. There is another

freezeout called chemical freezeout. According to the statistical model calculation,

the chemical freezeout happens in the hadronic phase, just after the hadronization,

corresponds to the time when inelastic collisions ceases. Post chemical freezeout,

the ratio of the number of different kinds of particles remains unchanged.

Hydrodynamics is believed to be applicable from the thermalization until kinetic

freezeout. The typical time duration is of the order of ∼10-15 fm depending on the

collision centrality. Using a smooth Glauber based initial condition, followed by subse-

quent space-time evolution within the framework of a relativistic 2+1D viscous hydro-

dynamics and a freeze-out prescription based on Cooper-Frey method we will attempt

to understand the evolution of the system formed in heavy-ion collisions at RHIC and

LHC in this thesis.



10

x (fm)

τ 
(f

m
)

0 2 4 6 8

2

4

6

8

10

12
0.130 GeV

0.175 GeV

QGP Phase

Hadronic Phase

Figure 1.6: Constant temperature contours denoting the space-time boundaries of the
QGP and hadronic phases in the τ -x plane (at y=0).

1.2.2 Experimental facilities

The first heavy ion collisions at relativistic energies were undertaken at the Lawrence

Berkeley National Laboratory, LBNL, at Berkeley, USA, and at the Joint Institute for

Nuclear Research, JINR, in Dubna, USSR. At the Bevatron in LBNL, the energy scale

was at the level of 1-2 GeV per nucleon. The aim was to study the particle production

from the nuclear matter with densities at few times normal nuclear matter density. The

demonstration of the possibility of studying the properties of compressed and excited

nuclear matter motivated further research programs at much higher energies. The fixed

target experiments with relativistic nuclei in the energy range
√
sNN=4 - 20 GeV were

carried out in the years 1987 - 1994. The projectile ions varied from Sulphur, Silicon,

Oxygen, Gold, Nickel, Niobium, Indium, and Lead. The experiments made use of

the Alternate Gradient Synchrotron (AGS) facility at Brookhaven National Laboratory
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(BNL) and Super Proton Synchrotron (SPS) facility at the European centre of research

in nuclear physics (CERN). The first high energy heavy-ion collider experiments started

in 1999 at the Relativistic Heavy-Ion Collider (RHIC) facility at BNL and later at the

Large Hadron Collider (LHC) at CERN in the year 2010. At RHIC the
√
sNN range

covered was between 7.7 to 200 GeV. The colliding ions includes Proton, Deuteron,

Copper, and Gold. At LHC the heavy-ion collision data has been taken at
√
sNN = 2.76

TeV, with the future plan to raise it to 5.5 TeV. The dominant colliding ion species is

Pb-Pb.

Table 1.1 shows various high energy heavy-ion accelerator facilities, their year of

commissioning, colliding systems, and approximate highest
√
sNN values. Figure 1.7

Table 1.1: Heavy Ion Collision.

Year Accelerators Colliding systems Colliding energy
1987 BNL AGS Au-Si (fixed target) 5 GeV
1987 CERN SPS Pb-S (fixed target) 20 GeV
1992 BNL AGS Au-Au (fixed target) 4 GeV
1994 CERN SPS Pb-Pb (fixed target) 17 GeV
2000 BNL RHIC Au-Au (collider) 200 GeV
2010 CERN LHC Pb-Pb (collider) 2760 GeV

shows the charged particle pseudorapidity density (dNch/dη) per average number of

participating nucleon (< Npart >) pair as a function of
√
sNN for heavy-ion and p-p col-

lisions [19]. The charged particle production seems to have a power law dependence on

the
√
sNN for both heavy-ion and p-p collisions, with the rate of increase in multiplicity

being faster for heavy-ion collisions compared to p-p collisions. The dNch/dη is one

among the several observables measured in the experiments, other relevant observables

used in this thesis are the invariant yields of charged hadrons ( d2N
2πpTdpTdη

) and elliptic
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Figure 1.7: Charged-particle pseudorapidity density per participant pair for central
nucleus-nucleus and non-single diffractive pp (pp) collisions, as a function of

√
sNN [19].

flow (v2). Both of these observables are discussed in chapter- 5. A brief discussion of

elliptic flow as a signature of QGP is given in the next section of this chapter.

1.2.3 Theoretical models

We have discussed earlier that in this thesis we are interested in modeling the evolu-

tion of QGP and subsequent hadronic matter by using relativistic hydrodynamics for

relativistic heavy ion collision. The evolution phase of the QGP and hadronic matter

can be alternatively simulated in a relativistic transport model.

Thus we have two Lorentz-covariant dynamical frameworks at our disposal: (i) rel-

ativistic hydrodynamics and (ii) covariant transport theory. They represents opposite

limits in their underlying assumptions: the first is a macroscopic description and as-
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sumes approximate local thermal equilibrium. The details of relativistic hydrodynamics

is discussed in chapter-2. The second provides a microscopic description of the system

and is suited for the early and late non-equilibrium stages. Transport theories based

on parton degrees of freedom can also describe the early thermalization processes. The

late hadronic rescattering and freeze-out stage requires a description in terms of a co-

variant hadron cascade and can be matched to the earlier hydrodynamic evolution of

QGP phase [20]. Some of the typical transport based calculations are A Multi Phase

Transport (AMPT) model [21] and Ultra Relativistic Quantum Molecular Dynamic

(URQMD) model [22]. All these theoretical descriptions are well-developed and can be

further advanced.

Research on hydrodynamics as is carried out in this thesis mainly focuses on viscous

effects and the extraction of the QGP viscosities from experimental hadron data at low

transverse momentum (pT < 3 GeV). The most dramatic effect of shear viscosity (η)

is its ability to inhibit the buildup of anisotropic collective flow, thereby reducing the

elliptic flow of the emitted final-state hadrons. In heavy-ion collisions, these effects are

strong due to large expansion rates, especially at early times. Hence, the elliptic flow

is considered as one of the sensitive observable to phenomenologically constraint even

a small value of shear viscosity to entropy density ratio (η/s) of the fluid.

However, a quantitative determination of η/s of QGP requires comparison of the

experimental data with a full-simulation model which incorporates all the stages of the

evolution from pre-equilibrium to freezeout. It should be borne in mind that the precise

determination of η/s depends on the uncertainties of various model parameters. To
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reduce this uncertainty in such an extraction process of η/s by comparing experimental

data to model calculations, a judicious comparison of the results from hydrodynamic

approach with transport theory will be helpful.

1.3 QGP Signatures

1.3.1 Jet quenching

One of the most exciting results obtained at RHIC is the discovery of suppression in

the production of high transverse momentum (pT) mesons in nucleus-nucleus collisions

compared to corresponding data from p-p collisions scaled with the number of binary

collision [23, 24, 25, 26]. This phenomena is called as the jet quenching in a dense

partonic matter [27] and has been interpreted in terms of energy loss of partons in

QGP. The energy loss by energetic partons traversing the hot and dense medium formed

in high-energy heavy-ion collisions is predicted to be proportional to both the initial

gluon density [28, 29] and the lifetime of the dense matter [30]. The results on high-pT

suppression of mesons are usually expressed in terms of the nuclear modification factor

(RAA), defined as:

RAA =
dNAA/dyd

2pT
TABdσNN/dyd2pT

(1.1)

where the overlap integral TAB = Nbinary/σ
pp
inelastic with Nbinary being the number of

binary collisions estimated from Glauber model calculation [31].

In figure 1.8 we show the experimental data (symbols) for the RAA(pT), for various
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Figure 1.8: The nuclear modification factor (RAA) for mesons and direct photons as
measured in RHIC experiments at midrapidity for central Au-Au collisions at

√
sNN =

200 GeV [32]. Also shown are the RdAu for charged pions for
√
sNN = 200 GeV. The

lines are results from various model calculations. See text for more details.

produced mesons [33, 34, 35] and direct photons [36] in the central Au-Au collisions at

midrapidity. A large suppression in high pT meson production is observed, and those

for π0’s being almost flat at RAA ≃ 0.2 up to 20 GeV. From figure 1.8 it is clear that

the level of suppression for π0’s, η’s, and φ-mesons are very similar, which supports

the conclusion that the suppression occurs in the partonic phase, not in the hadronic

phase. This strong suppression of meson production is in contrast to the behavior of

direct photons, also shown in the figure 1.8 by filled black boxes. The direct photons

follow binary scaling (i.e. RAA ≃ 1) or no suppression. This observation is a strong

evidence that the suppression is not an initial state effect, but a final state effect caused

by the high density medium with color charges created in the collision. This is further

supported by the experimental measurement from deuteron on Au ion collisions, which

gave a RdAu(pT) ∼ 1 for π± at midrapidity and high pT [37].
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The various curves in figure 1.8 are different theoretical calculations. The dashed

curve shows a theoretical prediction using the GLV parton energy loss model [28, 29] .

The model assumes an initial parton density dN/dy = 800 − 1100, which corresponds

to an energy density of approximately 5-15 GeV/fm3. The solid curves are predictions

from reference [30].The parton energy loss calculations discussed above attributes the

opacity to plasma induced radiation of gluons, much like ordinary bremsstrahlung of

photons by electrons. The dot-dashed curve in figure 1.8 is a theoretical result on RAA

by considering only the collisional energy loss [38].

1.3.2 Elliptic flow

The elliptic flow coefficient v2 measured in high energy heavy-ion collision is an impor-

tant observable. Elliptic flow is a measure of anisotropy of the momentum distribution

of the produced particles for non-central nucleus nucleus collision [39]. The elliptic flow

is defined as [40]

v2 = 〈cos2(φ−Ψ)〉 , (1.2)

where φ is the azimuthal angle of the particle and Ψ is the azimuthal angle of impact

parameter. The angular bracket denotes the averaging over particles and events.

Alternatively, the momentum distribution of the produced hadrons in the azimuthal

direction can be decomposed into a Fourier series in φ as

dN

pTdpTdφdy
=

dN

2πpTdpTdy

[
1 + 2

∞∑

1

vncos [n (φ−Ψ)]

]
. (1.3)
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Where vn’s are various order of flow harmonics, v1 is the directed flow, v2 is the elliptic

flow, v3 is triangular flow and so on.

In non-central heavy-ion collisions, the initial spatial anisotropy of the almond shape

overlap region of the colliding nuclei is transformed into an anisotropy in momentum

space through interactions between the particles. As the system expands, anisotropy is

reduced and the system becomes more spherical, thus the driving force quenches itself.

Therefore the elliptic flow is sensitive to the collision dynamics in the early stages.

The left panel of figure 1.9 shows the experimentally measured v2 as a function of

pT of π±, K0
s , p̄ and Λ+ Λ̄ for minimum bias Au-Au collision at

√
sNN = 200 GeV [41].

Hydrodynamics calculations assuming early thermalization, ideal fluid expansion, an

equation of state consistent with lattice QCD calculations including a phase transition

at Tc=165 MeV, and a sharp kinetic freezeout at a temperature of 130 MeV, are shown

as dot-dashed lines [42]. A clear and systematic mass-dependence of v2 is seen in

the data. It is a strong indicator that a common transverse velocity field underlies

the observations. This mass-dependence, as well as the absolute magnitude of v2, is

reproduced reasonably well (at the ∼ 30% level) by the hydrodynamics calculations

with QGP equation of state [41]. The inferred early thermalization suggests that at

the early stage, collisions are dominated by strongly interacting matter, with short

constituent mean free paths essentially a perfect liquid with small viscosity. Extracting

the viscosity of the produced QCD matter in the heavy-ion collisions from the elliptic

flow measurements is one of the main goals of this thesis. The comparison of the

charged hadron v2 from a 2+1D viscous hydrodynamic simulation to the corresponding
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Figure 1.9: Left panel: STAR experimental results for the transverse momentum de-
pendence of the elliptic flow parameter in 200 GeV minimum bias Au-Au collisions for
π±, K0

s , p̄ and Λ+ Λ̄ [41]. Hydrodynamic calculations [42] are shown as the dot-dashed
lines. Right panel: Compilation of the number of constituent quark scaled v2 as a
function of the scaled transverse kinetic energy [32].

experimental measurements at RHIC and LHC are discussed in chapter 5 of this thesis.

The right panel of figure 1.9 shows the elliptic flow v2 of several identified particles

versus the transverse kinetic energy (mT - m0), both divided by the number of con-

stituent quarks (nq). Where m0 is the rest mass of particle and mT is the transverse

mass
√
p2T +m2

0. The v2 for all identified hadrons as well as light nuclei belowmT -m0 <

1 GeV falls on a universal curve [32]. This scaling behavior is believed to provide the ev-

idence for formation of partonic matter during the Au-Au collision process at 200 GeV.

It is very hard to explain this observed pattern in a scenario where only hadronic matter

exists throughout the interaction, whereas the hypothesis of coalescence of quarks from

de-confined QGP phase offers a ready explanation [43].
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1.3.3 J/ψ suppression

J/Ψ is a bound state of cc and it is produced in the initial stage of the nucleus nucleus

collision. Suppression of J/Ψ production in high energy heavy ion collisions relative to

p-p collisions is considered as a signature of QGP. This was pointed out almost 30 years

ago by Matsui and Satz [44].

To understand the phenomenon of J/Ψ suppression in the QGP, we consider the

following points [45]: (a) The string tension k in the inter quark potential v(r) =

− q
4πr

+ kr tends to 0 in the high temperature QGP phase. Where q is the color charge

of the quarks and r is the inter quark distance. (b) Debye screening of color charges

(q) between c and c leads to the rearrangement of the parton densities around c and c.

The potential gets modified and has the following form,

v(r) = − q

4π

e−r/λD

r
. (1.4)

Where the Debye screening length (λD) according to perturbative QCD calculation

is inversely proportional to the plasma temperature and a function of g (=
√
4παs),

λD = 1√(
Nc
3
+

Nf
6

)
g2T

. Nc and Nf are the number of colors and flavors respectively.

(c) The value of λD becomes small at high temperature and consequently the range of

attractive potential (equation 1.4) become small. At high enough temperatures , it may

be impossible for cc pair to form a bound state. That particular temperature when the

dissociation of cc pair happens is called critical dissociation temperature Tcd. Using the

charm quark mass mc=1.84 GeV, a lowest order perturbative QCD calculation gives

Tcd = 0.291
√
αeff , where αeff is the effective strong coupling constant. By using the
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approximate value of αeff in the QGP phase, the above expression gives Tcd values 100-

200 MeV[45]. In the heavy ion collision at both RHIC and LHC the initial temperature

of the produced QGP is well above this predicted value of Tcd.

The separated c and c quark in the QGP phase subsequently hadronizes by com-

bining with other light quark present in the system. Thus in a nucleus-nucleus collision

where QGP is formed, the final yield of J/Ψ particle will be suppressed as compared to

p-p collision where QGP is not formed. However, the produced J/Ψ in nucleus nucleus

collision may also interact with other hadrons produced in the collision and this may

lead to the break up of the J/Ψ particles and hence results in suppression of J/Ψ yields.

The red triangles in figure 1.10 shows the experimental measurement of nuclear

modification factor RAA as a function of Npart for
√
sNN=200 GeV collision at midra-
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pidity [46]. Where the nuclear modification factor RAA is a measure of J/Ψ suppression

and is defined as RAA =
NJ/Ψ(Au−Au)

Ncoll×NJ/Ψ(p−p)
. Where Ncoll is the number of binary collision.

A value of RAA <1 indicates J/Ψ suppression in heavy ion collision relative to p-p

collision. From figure 1.10 we see that J/Ψ is suppressed for nucleus-nucleus collisions

at
√
sNN=200 GeV at mid rapidity. The suppression is more for central compared to

peripheral collision. The solid lines in the figure corresponds to RAA values considering

only the suppression in QGP of initially produced J/Ψ through pQCD (left panel) and

thermal (right panel) processes [47]. The dashed-dotted curves corresponds to con-

tribution due to the effect of regeneration of J/Ψ in the hot QGP phase, where the

dissociated c and c come close to one another in the process of hadronization and form

J/Ψ. The sum of the two contribution is shown as dashed lines in the figure 1.10.

1.3.4 Electromagnetic probes

Photons and dileptons produced in nuclear collisions are combinedly known as elec-

tromagnetic probes. They are produced throughout the whole space-time evolution of

the fireball from early stage of pre-equilibrium upto the freezeout. After production,

photons and dileptons interacts with the medium dominantly via electromagnetic in-

teractions (electromagnetic coupling constant αe is small compared to strong coupling

constant αs). The mean free path of the photons and dileptons are large compared to

the system size, hence, they suffer almost no collision inside the medium before reaching

the detectors. We will consider here only photon production as a possible signature of

QGP formation. Some nice reviews on photon and dileptons production and their use
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as a signal of QGP formation in high energy heavy ion collision can be found in refs.

[48, 49, 50, 51, 52, 53].

In the QGP phase the photon production rate and the photon momentum distri-

bution depend on the momentum distribution of the quarks, antiquarks and gluons

from which it is produced. Therefore, photon produced in quark gluon plasma phase

carry information on the thermodynamical state of the medium at the moment of their

production. The dominating processes by which photon is produced in the QGP phase

are,

• Annihilation : In this process a quark interact with an antiquark and produce a

photon and a gluon. The corresponding reaction is q + q → γ + g. The other

possibility q + q → γ + γ is suppressed compared to the previous one by a factor

of αe/αs and is generally not considered in calculation.

• Compton process : In Compton process, a gluon interact with a quark (anti-

quark) and produce a photon and quark (anti-quark). Corresponding reactions

are q + g → γ + q and q + g → γ + q.

• Bremsstrahlung process : q + g → g + q∗ → g + q + γ.

• Fragmentation process : q + g → q + g∗ → q + γ + X.

Measuring these direct photons will help us to detect the formation of QGP in heavy-ion

collisions and understand its thermodynamic properties.
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However, there exists other sources of photons in heavy-ion collisions. Photons

are also produced in the hadronic phase. For example, π+ + π− → γ + ρ0 and

π± + ρ0 → γ + π± etc. There is no direct experimental way to separate the photon

from the above mentioned sources from those coming from QGP. Besides the emission

of photons from the QGP and hadronic phase, photons can also be produced at the

time of collision between two nucleus. The dominating production mechanism of pho-

ton in this case is same as QGP phase (i,e. annihilation and Compton processes) but

involving quarks and gluons inside the incoming nucleons. The difference between the

photon production from the QGP phase and from the initial state of the collision is

that in the QGP phase the quark, antiquark, and gluon from which photon is produced

follows the corresponding thermal distribution, whereas for the other case quarks and

gluons are distributed inside the colliding nucleus according to their structure function.

Experimentally this contribution of photons in heavy-ion collisions is estimated by mea-

suring the direct photon distribution in p-p collisions and scaling the yields with the

number of binary collisions. Finally photons are produced copiously from the decay of

hadrons such as π0 and η which are produced in heavy ion collisions through soft QCD

processes. These contributions can be removed experimentally through the invariant

mass reconstruction technique.

Figure 1.11 shows the invariant cross section (p-p) and invariant yield (Au-Au) of

direct photons as a function of pT at mid rapidity for
√
sNN = 200 GeV collision [54]. The

three curves on the p-p data represent NLO pQCD calculations. The dashed curves show

a modified power-law fit to the p-p data, scaled by Glauber nuclear overlap function

(TAA). Excess number of direct photon is observed in Au-Au collision compared to p-p

collision in the pT range 1-3 GeV. The solid black curves are exponential plus the TAA
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Figure 1.11: Invariant cross section (p-p) and invariant yield (Au-Au) of direct photons
as a function of pT at mid rapidity for

√
sNN = 200 GeV collision measured by the

PHENIX collaboration at RHIC [54]. See the text for details.

scaled p-p fit. This indicates that the excess direct photon distribution is exponential

and hence thermal in nature. The inverse slope parameter for the exponential function is

221 MeV for 0-20% centrality collision. The red dotted curve near the 0-20% centrality

data is a hydrodynamical model based theory calculation with initial temperature 370

MeV [55]. Both these temperature values are larger than the critical temperature (∼174

MeV)[10] predicted by lQCD calculation for quark-hadron phase transition.

1.3.5 Strangeness enhancement

The phenomenon of strangeness enhancement as a signature of QGP formation in high

energy heavy ion collision was reported more than 30 years ago [56, 57]. In a nucleus
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nucleus collision, no valence strange quarks are present in the initial colliding nucleons.

However, ss pair can be created in the subsequent QGP or hadronic phase formed in

heavy ion collision. In the QGP phase g + g → s + s is the dominating process for

strangeness production [59]. These interactions could occur very rapidly and the s-quark

abundance would equilibrate in the plasma. In a hot hadronic system, strange mesons

can be produced through the following reactions, π+π → K+K,N +N → N +Λ+K

etc. The strangeness enhancement in QGP with respect to a non-QGP system (hadronic

gas) at the same temperature can be understood in the following simplified calculation.

The ratio of number densities of strange quark to non strange quark (u and d quarks)

can be calculated theoretically for a hadron gas and for QGP in thermal and chemical

equilibrium. Let us first consider the strangeness content of a hadronic gas in thermal

and chemical equilibrium. Considering only valence quark content of strange meson

K±, K0, K0 and non-strange mesons π±, π0 one can arrive at the following relationship

[45]

s+ s

u+ u+ d+ d
=

K+/π+

1.5 +K+/π+
. (1.5)

The number density of a species with mass mi at temperature T in a hadronic gas can

be expressed as

ni =
Tm2

i

2π2

∞∑

k=1

1

k
K2

(
kmi

T

)
, (1.6)

where K2 is the modified Bessel function of order 2. Using this expression we can

evaluate the ratio of number of positive Kaons (nK+) to that of positive Pions (nπ+)

[45] at temperature 200 MeV, which is
nK+

nπ+
≈0.38. Using this value of K+/π+ ratio into

equation 1.5 we have the ratio of strange quark density to non-strange quark density in

hadron gas at temperature 200 MeV as 0.20.
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Similarly, the number density of strange and non strange quarks in QGP phase can

be calculated by considering a QGP in thermal and chemical equilibrium state. The

number density of quarks for zero chemical potential and temperature T is obtained by

the following expression

nq =
NcNs

(2π)3

∫ ∞

0

4πp2dp

1 + e
√

p2+m2
q/T

, (1.7)

where Nc, Ns are the number of colors and number of spins of quarks respectively and

mq is the corresponding quark mass. Now we can calculate the same ratio s+s
u+u+d+d

in QGP phase by using the equation 1.7. For a net baryon free QGP at temperature

200 MeV the ratio s+s
u+u+d+d

is 0.42. This above calculation shows that the number of

strange quark content in QGP is almost 2 times larger (strangeness enhancement) than

the corresponding number of strange quark in hadronic gas at the same temperature.

The higher number of s and s quarks in the QGP phase will finally shows up as an

enhancement of strange hadrons (φ, K, Λ etc.) production compared to the case where

the QGP is not formed like in p-p collisions. Figure 1.12 shows the enhancement of

strange hadron production at RHIC for Au-Au and Cu-Cu collisions [62]. Upper

panel shows the ratio of strange hadron production normalized to Npart in nucleus-

nucleus collisions relative to corresponding results from p-p collisions at
√
sNN=200

GeV. The results are plotted as a function of Npart. All the strange hadrons K
−, φ,Λ,Ξ

and Ξ shows an enhancement. The observed enhancement increases with centrality

and reaches a maximum for central collisions. The bottom panel of figure 1.12 shows

the enhancement of φ meson for Au-Au and Cu-Cu collisions at
√
sNN=62.4 and 200

GeV. The observation of φ meson enhancement has helped us to solve the issue of

canonical suppression, which challenged the idea of strangeness enhancement [60, 61].

According to the idea of canonical suppression, (a) the strangeness enhancement in
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in Cu-Cu and Au-Au collisions at 200 and 62.4 GeV. The p-p collision data at 200 GeV
are from the STAR experiment and at 62.4 GeV from the ISR [63].

nucleus-nucleus collisions, relative to p-p collisions, should increase with the valence

strange quark content of the hadrons and (b) the enhancement is predicted to decrease

with increasing beam energy. From figure 1.12 we see that both this points are in

disagreement with the experimental measurement of φ meson suppression. All these

observations is a clear indication for the formation of a dense partonic medium being

responsible for the strangeness enhancement in Au-Au collisions at
√
sNN=200 GeV.
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1.4 Transport properties

In the previous section we have seen that a strongly coupled state of quarks and gluons

or QGP is formed in the high energy heavy ion collisions at RHIC. This provides us

the unique opportunity to study the transport coefficients of this fundamental form of

matter. For a system slightly away from equilibrium, according to the linear theory

of non-equilibrium thermodynamics, the thermodynamic fluxes are proportional to the

thermodynamic forces. The proportionality constants are known as the transport coef-

ficients. The table 1.2 shows the thermodynamic fluxes and thermodynamic forces with

corresponding transport coefficients.

Table 1.2: Thermodynamic flux, thermodynamic force, transport coefficient and their
relationship.

Flux Force (gradient of) Transport coefficient Equation

Momentum Velocity Viscosity πij = −η
(
∂vi
∂xj

)

πij vi η, ζ

Heat Temperature Heat conductivity hi = −k
(
∂T
∂xi

)

hi T k

Diffusion flow Number density Diffusion constant Φi = −D
(

∂n
∂xi

)

Φi n D

Below we will only discuss shear viscosity, bulk viscosity, and heat conductivity.

1.4.1 Shear viscosity

The shear viscosity arises in a fluid when a velocity gradient is present. The shear

viscosity coefficient η is a measure of how a fluid will flow under an applied force. The
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inverse of η is called the fluidity. As we have seen in the table 1.2, the shear viscous

coefficient η is the proportionality constant between momentum flux and the velocity

gradient (force). The most general definition of viscous stress can be written as

πij = η

(
∂vi
∂xj

+
∂vj
∂xi

− 2

3
δij
∂vk
∂xk

)
+ ζδij

∂vk
∂xk

, (1.8)

where ζ is the coefficient of bulk viscosity and is discussed in the next subsection.

According to the above definition, there will be no shear viscous force for a fluid in

uniform rotation for which the components of the gradient of velocity is related by the

following condition ∂vi
∂xj

= − ∂vj
∂xi

.

The relativistic generalization of the shear part of the equation 1.8 is

πµν = η
[
∆µ

α∆
ν
β +∆µ

β∆
ν
α − 2

3
∆µν∆αβ

]
∂αuβ, (1.9)

where ∆µν = gµν − uµuν is the projection operator, gµν is the metric tensor, and uµ

is the fluid four velocity. Equations 1.8 and 1.9 are the phenomenological definition of

shear and bulk viscosity. The value of the shear, bulk viscosity, and all other transport

coefficients can be calculated from the underlying kinetic theory of fluids. The molecular

theory of transport phenomena in dilute gases gives the following expression for η [64],

η =
1

3
n 〈p〉 lmfp, (1.10)

where n is the density, 〈p〉 is the average momentum of the molecules, and lmfp is the

mean free path. The mean free path can be written as lmfp = 1
nσ
, where σ is the scat-

tering cross section. Then we have η = 〈p〉
3σ
. The mean momentum of molecules varies

as
√
T and consequently η for a system of dilute gas rises with increasing temperature.
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The solution of Boltzmann kinetic equation in collision time approximation gives the

following expression for η [65]

η = − τ

15

∫
dΓ
p4

ǫ2p

∂f0
∂ǫp

(1.11)

where f0 is the distribution function, dΓ = g d3p
(2π)3

, g is the degeneracy, ǫp is the energy

of the particles considered.

The momentum transport in liquid is due to the motion of vacancies and has a

different temperature dependence of η compared to gas [66]. In the above calculation

the following assumptions are made (i) only two particle interaction are considered, (ii)

distribution function vary slowly in the space time, and (iii) molecular chaos.

The shear viscosity for an strongly interacting system can be calculated by using

Kubo formula [67] as given below

η = lim
ω→0

1

2ωh̄

∫
dtd3xeiωt 〈[Tµν(t, x), Tµν(0,0)]〉 . (1.12)

Here Tµν is the component of the stress-energy tensor, ω is the frequency.

Theoretical calculations based on quantum mechanics and string theory gives a lower

bound h̄
2πkB

and h̄
4πkB

on η/s respectively [68]. Where h̄ and kB are Planck’s constant

divided by 2π and Boltzmann constant respectively. The details will be discussed in

chapter-2.

In order to compare the value of η of various fluid of different mass density (ρ), it is

desirable to compare the kinematic viscosity η/ρ of the fluids. For relativistic system
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the corresponding quantity is η/s [66], where s is the entropy density of the fluid.

1.4.2 Bulk viscosity

In equation 1.8, we encountered the second viscosity coefficient ζ, which is also known

as bulk viscosity or volume viscosity. First thing to be noted is that bulk viscosity

arises for a non zero value of ~∇.~v which corresponds to a change in the fluid volume

(density). If the process of compression or expansion is fast enough, the fluid ceases

to be in thermodynamic equilibrium and internal processes are set up to restore the

equilibrium. In the process of restoration of equilibrium, energy is dissipated as heat.

Like shear viscosity, the bulk viscosity coefficient ζ for a gas can be calculated from

solution of Boltzmann kinetic equation in collision time approximation and has the

following form [65]

ζ = −τ
∫
dΓ
∂f0
∂ǫp

{(
w

cvT
− 1

3

)
ǫp +

m2

3ǫp

}2

. (1.13)

Here cv is the specific heat, w = (ǫ+p), ǫ is energy density, f0 is the distribution function,

dΓ = g d3p
(2π)3

, g is the degeneracy, and ǫp is the energy of the particles considered.

The bulk viscosity for an strongly interacting system can be calculated by using

Kubo formula [67] given below

ζ = lim
ω→0

1

6ωh̄

∫
dtd3xeiωt 〈[Tµµ(t, x), Tµµ(0,0)]〉 , . (1.14)
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Here Tµµ is the diagonal component of the stress-energy tensor, ω is the frequency. The

bulk viscosity calculated in a perturbative QCD and string theoretical model based

on anti de-Sitter space conformal field theory (AdS/CFT) are given by the following

forms ζ = 15η
(
1
3
− ∂p

∂ǫ

)2
(PQCD) and ζ ∝ η

(
1
3
− ∂p

∂ǫ

)
(AdS/CFT). For an ideal gas

of massless particles, the speed of sound c2s = ∂p
∂ǫ
=1

3
, consequently the bulk viscosity

vanishes. It can be shown that a gas of point particles will have zero bulk viscosity

in the non-relativistic limit [69]. However, a non-zero value of bulk viscosity may be

obtained when the system undergoes a transition, or where the speed of sound is smaller

than the Stefan-Boltzmann value (1/
√
3).

The shear and bulk viscosity of the strongly interacting Quark Gluon Plasma can

be obtained from the first principle lQCD calculation [70, 71]. However, the present

lattice calculations of transport coefficient of QCD matter has large uncertainty. Alter-

natively both the shear and bulk viscosity of the QGP can be estimated by comparing

experimental data with the theoretical model simulations. With η and ζ as input in

this thesis work such an approach has been used and discussed in chapter-5.

1.4.3 Heat conductivity

In the Navier-Stokes approximation the baryon flux can be decomposed into an ideal

(nuα) and dissipative component (να) as nα = nuα + να [72], where uα is the fluid

four velocity. The form of the dissipative term να depends on the definition of what

constitutes the local rest frame of the fluid. In the Landau-Lifshitz frame (where energy
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three flux T 0i vanishes) for first order theory with the constraint of second law of

thermodynamics, the dissipative correction to the baryon number current takes the

following form

να = k

[
nT 2

ǫ+ P

]
∇α

[
µ

T

]
. (1.15)

Where k is the heat conductivity, µ is the chemical potential, and T is the temperature.

For a symmetric matter (where number of baryons and anti-baryons are same) as is

expected to form at the top RHIC and LHC energies, the baryon chemical potential

is very small or almost zero. Hence ∇α
[
µ
T

]
vanishes and there is no heat conduction.

In view of the above argument we will neglect the dissipative contribution to the en-

tropy generation due to the heat conductivity in our simulation of relativistic viscous

hydrodynamics.

1.5 Organization of the thesis

The space-time evolution of the QCD matter can be simulated by using either rela-

tivistic hydrodynamics or relativistic transport models. QGP is a transient state of

matter and it is believed that the perfect local thermal equilibrium is never achieved,

rather QGP is a strongly interacting plasma with very low value of shear viscosity.

This indicates that the space-time evolution of QGP should be described in a viscous

hydrodynamics framework. By using viscous hydrodynamics we should be able to es-

timate (phenomenologically) the transport coefficients e.g., shear, bulk viscosity, and

heat conductivity of the QGP. By comparing the experimental observables measured

at RHIC and LHC to numerical simulations of the relativistic viscous hydrodynamics
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in 2+1 dimension, we have estimated the shear viscosity to entropy density ratio of the

QCD matter and studied the effect of bulk viscosity on the experimental observables.

Similar works in this direction can be found in [73, 74, 75, 76, 77, 79, 80, 81, 82].

In the second chapter, we will discuss the formalism of Israel-Stewart second order

theory of causal viscous hydrodynamics and the implementation of it to the numerical

code of 2+1D viscous hydrodynamics AZHYDRO-KOLKATA [83, 84]. Third chapter

deals with the numerical results of shear viscous evolution. Numerical solution of bulk

viscous evolution and corresponding results will be discussed in the fourth chapter.

In the fifth chapter, we compare the viscous hydrodynamics simulation results with

experimental observables (mostly pT spectra, differential and integrated elliptic flow

of charged hadrons) measured at Relativistic Heavy Ion Collider and Large Hadron

Collider experiments. We also compare our estimates of η/s to corresponding results

from other groups. We summarize the work carried out in this thesis and present a

brief outlook in the final chapter.



Chapter 2

Relativistic hydrodynamics

In this chapter we discuss the relativistic hydrodynamics for both ideal and viscous

fluids. It has already been discussed in chapter-1 that a major portion of the space-

time evolution of the QCD matter produced in high energy heavy ion collisions can be

described in the frame work of relativistic hydrodynamics. One of the first application

of relativistic hydrodynamics in high energy nuclear collisions is due to Landau [85].

According to Landau the motivations behind the applicability of hydrodynamics are

the following:

(i) Due to high velocity, the accelerating nucleus becomes highly Lorentz contracted.

After collision a large amount of energy is deposited in a small volume by the inelastic

collisions between the nucleons and large number of particles are formed. The mean

free path in the resulting system is small compared to the whole volume and statistical

equilibrium sets up.

(ii) In the next stage, the expansion of the system is described by hydrodynamic equa-

35
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tions. During the process of expansion, the mean free path remains small in comparison

to system size, and this justify the use of hydrodynamics. Since the velocities in the

system is comparable to the speed of light, we must use relativistic hydrodynamics.

(iii) As the system expands, the interaction becomes weaker and mean free paths be-

comes longer. The number of particles appears as a physical characteristic when the

interaction becomes sufficiently weak. When the mean free path becomes comparable

to the linear dimension of the system, the latter breaks up into particles. This was

called as ”‘break-up”’ stage. The break-up occurs when the temperature of the system

becomes comparable to the pion mass.

At very high energy collisions J.D. Bjorken [86] proposed a modification to the exist-

ing Landau’s hydrodynamic model. According to Bjorken, at very high energy collisions

the colliding nucleus or nucleons becomes transparent. After collision the colliding nu-

cleus are receding from each other with almost the speed of light. A central plateau

region is formed in the particle production with rapidity variable. The fluid expansion

near the collision axis occurs along the longitudinal direction and is homogeneous. The

entropy per unit rapidity is conserved, as a consequence of the boost symmetry. Par-

ticle productions per unit rapidity only depends on the initial energy density (entropy

density) and not on the details of the hydrodynamic evolution.

Even today these main ideas due to Landau and Bjorken remains almost unchanged.

We now have stronger evidence in support of hydrodynamics to be applicable in de-

scribing the evolution of nuclear matter produced in high energy heavy ion collisions.

The two main experimental evidences in this direction are the mass dependence of the
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slope of the pT spectra for identified hadrons and the mass ordering of elliptic flow v2

in nucleus-nucleus collisions (see figure 1.9). These phenomena are not observed for the

proton-proton collision at the same centre of mass energy [41].

2.1 Ideal hydrodynamics

In classical hydrodynamics a perfect or ideal fluid is defined to be a continuum system

which obey Pascal’s law (any exerted pressure will be transmitted isotropically through-

out the fluid) and is incapable of supporting any shear force applied to it. By using the

above criterion one can construct the stress-energy tensor T µν for a perfect fluid in the

framework of special relativity. Let us consider an fluid element in the local rest frame,

for which the fluid four velocity is uµ = (1,~0). In absence of any heat conduction,

the energy flux of the fluid T 0i will be zero and T 00 will be the energy density ǫ. On

the other hand, i-th component of the force exerted on surface element dSj is T ijdSj.

According to the Pascal’s law this force is isotropic and normal to the surface on which

it acts. Thus we can write T ij = Pδij, where P is the pressure measured by an observer

at rest with respect to the fluid. Therefore, for an element of fluid at local rest frame,

the stress-energy tensor takes the following form

T µν =




ǫ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P




. (2.1)
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Where ǫ is the energy density of the fluid. We can find an expression for a moving

fluid element having four velocity uµ = γ(1, ~v) by a Lorentz transformation of T µν .

The final form of the energy-momentum tensor obtained in this way is expressed as

T µν = (ǫ+ P )uµuν − Pgµν . Here gµν is the metric tensor. Both the ǫ and P appearing

in this equation are measured by an observer moving with the fluid and in general ǫ

and P are function of the position four vector xµ. The space-time evolution of the ideal

fluid is governed by the equations of the conservation of energy and momentum

∂µT
µν = 0. (2.2)

Apart from the energy-momentum conservation, a fluid may contain several conserved

charges, such as total electric charge, net baryon number etc. The conserved charges

obey the following continuity equation

∂µN
µ
j = 0, j = 1, k. (2.3)

Where Nµ
j = γ(n,~j) is the particle current four vector. The zeroth component N0 is the

number density n, measured by an observer moving with the fluid element at a given

space-time point. The other three components N i(i = 1, 2, 3) are the corresponding

current ~j. The subscript j denotes different conserved charges. One of the conserved

charge for heavy-ion collisions is the net baryon number (the number of baryon minus

the number of anti-baryon). Thus for an ideal fluid with local thermal equilibrium T µν

and Nµ takes the following form

T µν = [ǫ(x) + P (x)] uµuν − P (x)gµν (2.4)

Nµ = nuµ. (2.5)

There are five equations, four conservation equation for energy-momentum and one for

particle number, but the number of unknown is six ǫ(x), P (x), n(x) and three compo-
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nents of uµ (three because uµu
µ = 1). In order to close the equations an Equation of

State (EoS) P = f(ǫ,n) is necessary. We will discuss more about EoS in a later section.

Using the thermodynamic relationship, Tds = Pd
(
1
n

)
+ d

(
ǫ
n

)
, where 1/n denotes the

volume per particle and s is the entropy per unit volume, and by taking product of uµ

with equation 2.3, the specific entropy s is found to be constant in time. Mathematically

this is expressed as

∂µS
µ = 0 (2.6)

Sµ = suµ. (2.7)

Where Sµ is the entropy four current. The entropy density for an ideal fluid is obtained

from the thermodynamic relation

Ts = ǫ+ P − µN, (2.8)

where µ is the chemical potential. Thus the fundamental equations which completely

determine the evolution of a relativistic ideal fluid are the continuity equation and the

energy momentum conservation equation along with an EoS.

To gain some physical insight from the conservation equation 2.2, we consider the

projector operator ∆µν = (gµν − uµuν). The corresponding covariant operator is ∆µν =

(gµν − uµuν). The ∆µν is orthogonal to fluid four velocity uµ which can be understood

from the following property

∆µνuµ = 0. (2.9)

The parallel projection of equation 2.2 in the direction of fluid four velocity gives

uν∂µT
µν = 0

⇒ Dǫ+ (ǫ+ P ) ∂µu
µ = 0, (2.10)
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where D = uµ∂µ. The perpendicular projection of equation 2.2 to the uµ gives

∆α
ν∂µT

µν = 0

⇒ (ǫ+ P ) uµ∂µu
α −∆µα∂µP = 0

⇒ (ǫ+ P )Duα −∇αP = 0, (2.11)

where ∇α = ∆µα∂µ. In the non-relativistic limit D and ∇α essentially reduces to time

and space derivative and the energy density ǫ in a very good approximation reduces to

mass density (ρ) and the following relations holds ρ >>P. With all these approxima-

tions equation 2.10 and 2.11 reduces to the following conservation of mass and Euler

equations.

∂ρ

∂t
+ ~∇.(ρ~v) = 0, (2.12)

∂~v

∂t
+ ~v.~∇~v = −1

ρ
~∇P. (2.13)

2.2 Viscous hydrodynamics

Non zero shear and bulk viscosity in Heavy Ion Collision :

The shear viscosity for a strongly interacting quantum fields can be obtained by using

the Kubo formula [68]

η = lim
ω→0

1

2ωh̄

∫
dtdxeiωt 〈[Tµν(t, x), Tµν(0,0)]〉 , (2.14)

where Tµν is the traceless part of the stress-energy tensor, ω is angular frequency, and h̄

is Planck constant divided by 2π. The right hand side can be related to the absorption
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cross section of low energy graviton by branes in string theory [68].

σabs(ω) =
κ2

ω

∫
dt dx eiωt 〈[Tµν(t, x), Tµν(0,0)]〉 , (2.15)

where κ =
√
8πG appears due to the normalization of the graviton’s action. Identifying

the entropy density s = a/4G, where a is the area of the event horizon for the calculation

as given in [68] leads to the following relationship

η

s
=

h̄

4πkB
. (2.16)

Where kB is the Boltzmann constant. The quantum mechanical calculation based on

uncertainty principle also predicts a lower bound on η/s. The shear viscosity of any

fluid is η ∼ ǫτmft, where ǫ is the energy density and τmft is the typical mean free time

of quasi particles. The entropy density is s ∼ kBn, where n is the number density

of quasi particles. Therefore η/s ∼ τmftǫ
kBn

. Here ǫ/n is the average energy per quasi

particle. According to the uncertainty principle, the product of ǫ/n and τmft is greater

than or equal to h̄. Therefore we obtain, from the uncertainty principle alone, that

η/s ≥ h̄/kB. In addition, the calculations from lQCD and perturbative QCD (pQCD)

shows that η/s is non-zero for the temperature range achieved in high energy heavy-ion

collisions [70, 71]. This is shown in the left panel of figure 2.1. The η/s in hadronic

phase can be calculated using a hadron resonance gas model [88]. Right panel in figure

2.1 shows the η/s for a hadron resonance gas as function of temperature. The black

dashed line is the result with excluded volume correction. The solid red line is the

calculation with additional Hagedorn states.

The bulk viscosity for the QGP phase has been calculated in both lQCD as well

as in pQCD [70, 71]. According to the pQCD calculation, bulk viscosity satisfy the
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Figure 2.1: Left panel : η/s as a function of T/Tc from lattice QCD calculation for two
different lattice size [71]. Also shown are the perturbative QCD calculation of η/s as
well as the KSS bound [68]. Right panel : η/s as a function of T from hadron resonance
gas model calculation [88]. See text for details.

following relation

ζ ≈ 15η
(
1

3
− c2s

)2

, (2.17)

where η and cs are the shear viscosity and the speed of sound of the medium respectively.

The Anti de Sitter space Conformal Field Theoretical (AdS/CFT) calculations gives

the following form [87]

ζ ∝ η
(
1

3
− c2s

)
. (2.18)

The two formula differed in the dependence of ζ on 1
3
− c2s. Both of them suggest a

non-zero value of ζ. As in the temperature range achieved in high energy heavy-ion

collision η/s ≥ 1/4π and c2s <
1
3
from lQCD [10].

The left panel of figure 2.2 shows the lattice calculation of ζ/s by two different groups

[70, 71]. In the hadronic phase ζ/s can be calculated in a hadron resonance gas (hrg)

model. One such calculation by Noronha et al. [88] is shown in the right panel of

figure 2.2. The dashed black line is the calculated ζ/s for hrg with the excluded volume

correction due to the finite size of hadrons. For the calculation all hadrons with mass
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Figure 2.2: Left panel : ζ/s as a function of T/Tc from the lattice QCD calculation
by Meyer (star) [70] and Nakamura et al. (filled circles) [71]. Right panel : ζ/s as
a function of temperature in the hadronic phase from hadron resonance gas model
calculation [88].

less than 2 GeV was considered. The red solid and blue dashed lines are calculations for

hrg gas with the additional contributions from exponentially increasing Hagedorn mass

states for two limiting values of Hagedorn massmH = 20 and 80 GeV respectively. Both

η/s and ζ/s being nonzero in heavy ion collision emphasizes the need to include viscous

effects in relativistic hydrodynamics. In the next sections we discuss the formalism for

relativistic viscous hydrodynamics in detail.

2.2.1 First-Order theory for viscous hydrodynamics

The early formulation of relativistic viscous hydrodynamics can be found in the work by

Eckart [89, 90] and Landau-Lifshitz [91]. These theories are known as first order theory
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as the non equilibrium entropy four current Sµ contains terms which are of first order

in the dissipative fluxes. The resulting equations for the dissipative fluxes are linearly

proportional to the thermodynamic forces. The relativistic viscous hydrodynamics can

be formulated either from kinetic theory or from a phenomenological macroscopic ap-

proach [92, 93, 94, 95]. We will discuss the phenomenological approach here. In a

phenomenological macroscopic theory the non-equilibrium entropy four current can be

written as

Sµ = Sµ
eq + δSµ

=
P (α, β)uµ − µNµ

eq + uνT
νµ
eq

T
+Qµ (δNµ, δT µν)

= P (α, β)βµ − αNµ
eq + βνT

µν
eq +Qµ (δNµ, δT µν) , (2.19)

where α = µ
T
, β = 1

T
, and βν = uν

T
. The term Qµ (δNµ, δT µν) contains second and higher

order terms of dissipative flows δNµ and δT µν . Where δNµ and δT µν are the dissipa-

tive corrections to the equlilibrium particle four current (Nµ
eq) and energy-momentum

tensor (T µν
eq ) respectively. The non-equilibrium particle four current (Nµ) and energy-

momentum tensor (T µν) are given by,

Nµ = Nµ
eq + δNµ = nuµ + V µ, (2.20)

and

T µν = T µν
eq + δT µν

= [ǫuµuν − P∆µν ]− Π∆µν + πµν

+(W µuν +W νuµ). (2.21)

Where δNµ ≡ V µ is the charge diffusion current, andW µ is the energy-momentum flow

orthogonal to uµ which be decomposed as W µ = qµ + ǫ+P
n
V µ, qµ is the heat flow. The
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first order theory of viscous relativistic hydrodynamics is obtained from the second law

of thermodynamics ∂µS
µ ≥ 0, by setting Qµ = 0 in the equation 2.19

∂µS
µ = ∂µ (Pβ

µ)− ∂µ
(
αNµ

eq

)
+ ∂µ

(
βνT

µν
eq

)

=
(
Nµ −Nµ

eq

)
∂µα−

(
T µν − T µν

eq

)
∂µβν . (2.22)

The last line was obtained by using the Gibbs-Duhem relationship, ∂µ (Pβ
µ) = Nµ

eq∂µα−

T µν
eq ∂µβν . Using equations 2.20 and 2.21 into the equation 2.22, we have the following

inequality,

∂µS
µ =

1

T
(ΠX − qµXµ + πµνXµν) ≥ 0. (2.23)

Where X ≡ −θ = −∂µuµ; Xµ ≡ λnT 2

ǫ+p
∇µ

(
µ
T

)
and Xµν ≡ ∇<µuν>. The

inequality in the equation 2.23 can be satisfied by assuming the following relationship

between thermodynamic force to thermodynamic fluxes.

Π = −ζθ,

πµν = 2η∇<µuν>,

qµ = −λ nT
2

e+ p
∇µ

(
µ

T

)
. (2.24)

The positive transport coefficients ζ, η, and λ are the bulk viscosity, shear viscosity,

and heat conductivity respectively. θ = ∂µu
µ is the expansion scalar and ∇<µuν> =

1
2
(∇µuν + ∇νuµ) − 1

3
(∂µu

µ)(gµν − uµuν) is a symmetric traceless tensor. Using equa-

tion 2.24, the inequality in 2.23 takes the following form

∂µS
µ =

1

T

(
Π2 − qµqµ + πµνπµν

)
≥ 0. (2.25)

All terms on the left side of the inequality are now positive definite (the negative sign

before the qµ makes the second term positive as qµ is a space like vector perpendicular
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to uµ). The equations in 2.24 are known as Navier-Stokes equations and they are of

parabolic in nature. It is the nature of the parabolic differential equation that it permits

the undesirable effect of infinite speed of signal propagation. The relativistic Navier-

Stokes theory is no exception. Consider a small perturbation in the fluid energy density

and fluid velocity of a system which was initially at equilibrium and at rest [96, 97]

ǫ = ǫ0 + δǫ(x, t), uµ = (1,~0) + δuµ(x, t). (2.26)

The relativistic Navier-Stokes equation then specify the space-time evolution of the

perturbed quantities, for a particular direction µ = y this is given by

∂tδu
y − η0

ǫ0 + p0
∂2xδu

y = O(δ2) . (2.27)

This gives the following “dispersion-relation” of the diffusion equation

ω =
η0

ǫ0 + p0
k2. (2.28)

The velocity of a particular mode with angular frequency ω can be obtained by taking

the derivative of ω with respect to the wave number k

vT (k) =
dω

dk
= 2

η0
ǫ0 + p0

k. (2.29)

One finds vT is linearly dependent on the wavenumber k, which implies that for a

sufficiently large value of k, the speed of the diffusion will grow without bound and

exceed the speed of light.

The widely used causal viscous hydrodynamics is due to Israel, Stewart, and Muller

[92, 98]. There are other similar formalism of causal relativistic viscous hydrodynamics

e.g, Ottinger and Gremla formalism [99]. These causal theories are developed with the
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assumption that the entropy four current Sµ include terms quadratic in the dissipative

fluxes and hence they are called second order theories of dissipative fluids. In the next

sub-section we will discuss the Israel-Stewart second order theory from a phenomeno-

logical point of view.

2.2.2 Israel-Stewart theory of second order causal viscous hy-
drodynamics

Israel and Stewart constructed causal viscous hydrodynamics by incorporating second

order terms in the entropy four current sµ. This phenomenological construction of the

second order terms incorporate five new transport coefficients in addition to the thermal

conductivity and two coefficient of viscosity.

For the causal theory of second order viscous hydrodynamics the term Qµ in equa-

tion 2.19 should be kept. Qµ contain terms which are second order of dissipative fluxes.

Qµ =
qµ

T
+
β0
2T

uµΠ2 − β1
2T

uµqµq
µ +

β2
2T

uµπαβπ
αβ − α0Πq

µ

T
+
α1π

µνqν
T

, (2.30)

where β0, β1, and β2 are thermodynamic coefficients for bulk stress (Π), heat flow (qµ),

and shear viscous stress (πµν) respectively, α0, and α1 are thermodynamic coefficients

for coupling between heat flow to the viscous stresses. The divergence of the non-

equilibrium entropy four current now takes the following form

∂µS
µ =

1

T
(ΠX − qµXµ + πµνXµν) + ∂µQ

µ

= −Π

[
θ + β0Π̇ +

1

2
T∂µ

(
β0
T
uµ
)
Π− α0∇µq

µ

]
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−qµ
[
∇µ lnT − u̇µ − β1q̇µ −

1

2
T∂ν

(
β1
T
uν
)
qµ − α0∇νπ

ν
µ − α1∂µΠ

]

+πµν

[
σµν − β2π̇µν +

1

2
T∂λ

(
β2
T
uλ
)
πµν + α1∇〈µuν 〉

]
. (2.31)

The symbols such as Ẋ represent the time derivative of X. The second law of thermo-

dynamics, ∂µS
µ ≥ 0, will be satisfied if the right hand side of the equation 2.31 is a sum

of squares. This condition leads to the following relaxation equations for dissipative

fluxes

τΠΠ̇ + Π = −ζθ −
[
1

2
ζT∂µ

(
τ0
ζT

uµ
)
Π

]
+ τ0∇µq

µ, (2.32)

τπ∆
α
µ∆

β
ν π̇αβ + πµν = 2ησµν −

[
ηT∂λ

(
τ2
2ηT

uλ
)
πµν

]
+ τ2∇〈µqν 〉, (2.33)

τq∆
ν
µq̇ν + qµ = λ (∇µT − T u̇µ) +

[
1

2
λT 2∂ν

(
τ1
λT 2

uν
)
qµ

]
. (2.34)

Where the relaxation time for bulk, shear, and heat flow are given by

τΠ = ζβ0 , τπ = 2ηβ2, τq = λTβ1. (2.35)

The coupling coefficients are given by

τ0 = ζα0 , τ1 = λTα1 , τ2 = 2ηα1 (2.36)

The relaxation times are function of thermodynamic quantities like energy and number

density and can be calculated from kinetic theory. A detailed analysis from kinetic

theory also leads to the same form of transport equations but with some additional

terms [93]. The phenomenological approach used here relies on the fact that the system

is close to the equilibrium state. In this approximation, the dissipative fluxes should be

smaller compared to the equilibrium thermodynamic variables

|Π| << p, (πµνπ
µν)1/2 << p, (−qµqµ)1/2 << ǫ. (2.37)
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Choice of frame

So far, the hydrodynamic four velocity uµ is arbitrary. With a proper physical choice

of uµ, one can define relevant macroscopic quantities such as energy density, number

density, heat flow, and entropy density of any fluid. There are two commonly used

definition of uµ, one due to Eckart and the other due to Landau-Lifshitz [100]. According

to Eckart definition uµ is parallel to the particle four flow Nµ

uµE ≡ Nµ

√
NνN ν

. (2.38)

Another way to interpret this frame is to take the product of Nµ with the projector

operator defined as ∆µν = (gµν − uµuν). Since the projector operator is perpendicular

to the four velocity uµ by definition, it leads to

∆µνN
ν = 0. (2.39)

This new definition implies that in the local rest frame of the fluid the spatial component

of the Nµ vanishes.

The other choice is due to Landau-Lifshitz. Here uµ is parallel to the energy flow

uµL ≡ T µ
ν u

ν
L√

uLαT αβTβγu
γ
L

. (2.40)

The product of T µνuν with the projector operator vanishes,

∆σµT
µνuν = 0. (2.41)

This implies that the energy flow vanishes in the local rest frame of the fluid element. It

is obvious that in this frame qµ ≡ 0. The use of Landau-Lifshitz frame is advantageous
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in those cases where the net particle number vanishes. Similar situation occurs in the

high energy heavy ion collision at mid-rapidity, where the net baryon number is small.

For our study we have used the Landau-Lifshitz definition of fluid four velocity. In

the next section we will discuss the details of the numerical simulation of the viscous

hydrodynamics.

2.3 Numerical setup

For any relativistic theory the co-ordinate system are four dimensional, e.g. for defining

an event in a relativistic system, one use space-time co-ordinate (t, x, y, z). It is conve-

nient to use longitudinal proper time τ and space time rapidity ηs instead of time t and

z co-ordinate to describe the space-time evolution of the system formed in relativistic

heavy ion collisions. The τ and ηs are related to the time t and z by the following

relationship,

τ =
√
t2 − z2, ηs =

1

2
ln
t+ z

t− z
. (2.42)

Constant t, z and τ, ηs lines are shown in the figure 2.3.

Depending upon symmetry of the system under investigation, the hydrodynamical

simulation are mainly categorize in the following categories:

• 1+1 dimension,

• 2+1 dimension,
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τ=constant

z

t
η=constant

Figure 2.3: The space time diagram of co-ordinate system. Constant τ and η lines are
shown.

• 3+1 dimension.

Each category can be further classified into two groups (i) ideal, and (ii) viscous. Here

the convention is : dimension of space + time. The choice of using 1+1, 2+1, or 3+1D

hydrodynamics simulation depends upon the symmetry of the system considered. For

example, in a head on collisions between two spherically symmetric nuclei at relativis-

tic energies, the reaction zone is azimuthally symmetric and the longitudinal boost

invariance is a good approximation at midrapidity. In such cases a 1+1 dimensional

hydrodynamics simulation is most effective framework to simulate the space-time evo-

lution. For 1+1D hydrodynamics simulation the fluid variables are only function of

radial distance and time. To investigate the azimuthal dependence of experimental

observables, a 2+1D hydrodynamics is necessary. The table 2.1 shows the assump-

tion and the possible observables that can be studied with hydrodynamic simulation in

various dimensions. We will use (τ, x, y, ηs) co-ordinate system in our 2+1D viscous hy-

drodynamics code ”‘AZHYDRO-KOLKATA”’ [83] with the assumption of longitudinal

boost invariance. For a boost invariant system, the equation of motion of the fluid does
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Table 2.1: Hydrodynamics simulation in various dimensions.

Dimension Symmetry Observables
1+1 φ, η pT spectra
2+1 η pT spectra and v2
3+1 none pT spectra, v2, rapidity dependence

not contain ηs explicitly. Like space-time co-ordinate, the energy-momentum four vec-

tor pµ = (E,Px, Py, Pz) is relevant for a relativistic system. We will use (MT , Px, Py, Y )

co-ordinate system for momentum space variables. The functional relationship between

the transverse mass MT and the momentum space rapidity Y to the energy E and z

component of the momentum Pz respectively, are as follows

MT =
√
E2 − P 2

z , and Y =
1

2
ln
E + Pz

E − PZ

. (2.43)

We are using Landau-Lifshitz frame for the definition of uµ. For this choice of frame,

the non-zero transport coefficients for a relativistic imperfect fluid in a net-baryon free

plasma are the shear and bulk viscosity. We will discuss here the form of T µν including

shear and bulk viscosity along with the proper form of relaxation equations for the

dissipative fluxes in detail. The metric tensor in the (τ, x, y, ηs) co-ordinate system is

gµν = (1,−1,−1,−1/τ 2), gµν = (1,−1,−1,−τ 2). (2.44)

The energy momentum conservation and the number conservation equation in the

general curvilinear co-ordinate system takes the following forms [101]

T µν
;µ = ∂µT

µν + Γµ
µαT

αν + Γν
µαT

µα (2.45)

Nµ
;µ = ∂µN

µ + Γµ
µαN

α, (2.46)
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where Γν
µα = 1

2
γνρ (∂µgρα + ∂αgρµ − ∂ρgµα) is the Christoffel symbol of second kind. The

only non vanishing Γν
µα’s in (τ, x, y, ηs) co-ordinate are

Γη
τη = Γη

ητ =
1

τ
, (2.47)

and

Γτ
ηη = τ. (2.48)

The energy-momentum tensor including shear and bulk viscous stress is

T µν = T µν
eq +∆T µν

= (ǫ+ p)uµuν − pgµν +Π(uµuν − gµν) + πµν

= (ǫ+ p+Π)uµuν − (p+Π)gµν + πµν . (2.49)

With the assumption of boost invariance, the energy momentum conservation equa-

tions 2.45 in (τ, x, y, ηs) co-ordinate system takes the following form (see appendix A),

∂τ T̃
ττ + ∂x

(
v̄xT̃

ττ
)
+ ∂y

(
v̄yT̃

ττ
)

= −
[
p+Π+ τ 2πηη

]
, (2.50)

∂τ T̃
τx + ∂x

(
vxT̃

τx
)
+ ∂y

(
vyT̃

τx
)

= −∂x
[
p̃+ Π̃ + π̃xx − vxπ̃

τx
]
− ∂y [π̃

yx − vyπ̃
τx] ,

∂τ T̃
τy + ∂x

(
vxT̃

τy
)
+ ∂y

(
vyT̃

τy
)

= −∂y
[
p̃+ Π̃ + π̃yy − vyπ̃

τy
]
− ∂x [π̃

xy − vxπ̃
τy] ,

where Ãmn ≡ τAmn, p̃ ≡ τp, vx ≡ T τx/T ττ , and vy ≡ T τy/T ττ .

The above set of coupled partial differential equations 2.50 need to be solved in

order to simulate the space-time evolution of a viscous fluid. The solution of these
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set of equations require initial and freeze-out condition, which are discussed in the

subsequent sections. It is almost impossible to find analytical solution for these coupled

partial differential equations for arbitrary initial conditions. One of the effective way to

solve these coupled partial differential equations is to use numerical methods. Numerical

solution is done by replacing the differential operator with difference equation and solve

them on a space-time grid by using a proper algorithm. The numerical algorithm used

to solve the hydrodynamics equations are discussed later. Before that let us discuss

the relaxation equations for shear and bulk viscosity obtained from the Israel-Stewart

theory of causal viscous hydrodynamics used in this study.

Relaxation equations for viscous stresses

For a net baryon free matter qµ=0. The relaxation equation 2.32 for the bulk viscosity

can be written as

DΠ = − 1

τΠ

[
Π+ ζ∇µu

µ +
1

2
ζTΠ∂µ(

τΠu
µ

ζT
)

]
, (2.51)

where D = uµ∂µ is the convective time derivative and θ = ∂µu
µ is the expansion scalar.

The above equation in (τ, x, y, ηs) co-ordinate system, with the assumption of boost

invarinace becomes

∂Π

∂τ
+ vx

∂Π

∂x
+ vy

∂Π

∂y
= − 1

τΠγτ

[
Π+ ζθ +

1

2
ΠτΠ∂µu

µ + ζTΠD

(
τΠ
ζT

)]
. (2.52)

The relaxation equation 2.33 for shear stress is rearranged in the following form (by
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setting qµ = 0)

Dπµν =
1

τπ

[
2η∇<µuν> − πµν − ηT∂λ

(
τ2
2ηT

uλ
)
πµν

]
. (2.53)

The equation 2.53 with the absence of last term on the right hand side is known as sim-

plified Israel-Stewart equation. Recent calculations [93, 102] of dissipative fluid dynam-

ics equations from kinetic theory and in conformal field theories at finite temperature

shows that the relaxation equations for shear and bulk viscosity contains several new

second order terms and co-efficients. The full relaxation equations for bulk and shear

stresses in the kinetic theory has the following form

DΠ = − 1

τΠ
[Π + ζ∇µu

µ]− I0, (2.54)

Dπµν =
1

τπ

[
2η∇<µuν> − πµν

]
− Iµν1 − Iµν2 − Iµν3 . (2.55)

Where

I0 ≡ 1

2
Π

(
∇λu

λ +D ln
β0
T

)
, (2.56)

Iµν1 ≡ (πλµuν + πλνuµ)Duλ , (2.57)

Iµν2 ≡ 1

2
πµν

(
∇λu

λ +D ln
β2
T

)
, (2.58)

Iµν3 ≡ 2π
〈µ
λ ω

ν〉λ = πµλων
λ + πνλωµ

λ . (2.59)

The term Iµν1 is necessary for satisfying the condition of transversality and tracelessness

of πµν . We have incorporated Iµν1 in our viscous hydro code, but omitted the Iµν2 for

computational simplicity in all of our calculations unless specified. The Iµν3 term is

for vorticity, which is presently neglected in our calculations. But the initial angular

momentum of the two colliding nuclei for non-zero impact parameter is ∼1000 unit

of h̄. The conservation of angular momentum suggests a large angular momentum of
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the reaction zone. The effect of non-zero angular momentum should be studied in

details by incorporating Iµν3 in the simulation. It is a current topic of interest and needs

further study to fully understand the implication of vorticity in the fluid evolution. The

condition of

(i) boost invariant velocity profile ,

(ii) tracelessness of πµν i.e. πµνgµν = 0, and

(iii) the orthogonality of πµν to uµ i.e, uµπ
µν=0.

leave us with three independent components of the πµν . For example, the boost invariant

condition implies: σητ = σηx = σηy = 0, which gives: πητ = πηx = πηy = 0. The zero

trace condition gives: πττ = πxx + πyy + τ 2πηη. The orthogonality condition leads to

πττ = vxπ
xτ + vyπ

yτ , (2.60)

πxτ = vxπ
xx + vyπ

yx, (2.61)

πyτ = vxπ
xy + vyπ

yy. (2.62)

We choose πxx, πxy, and πyy as the three independent components of the shear stress

tensor. Any other possible choice is equally good. The relaxation equations for the

independent component of shear viscous stress is expressed in the following way

∂τπ
xx + vx∂xπ

xx + vy∂yπ
xx = − 1

τπγ
(πxx − 2ησxx)− 1

γ
Ixx1 , (2.63)

∂τπ
yy + vx∂xπ

yy + vy∂yπ
yy = − 1

τπγ
(πyy − 2ησyy)− 1

γ
Iyy1 , (2.64)

∂τπ
xy + vx∂xπ

xy + vy∂yπ
xy = − 1

τπγ
(πxy − 2ησxy)− 1

γ
Ixy1 . (2.65)

Where the components of σµν are

σxx = −∂xux − uxDux − 1

3
∆xxθ, (2.66)
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σyy = −∂yuy − uyDuy − 1

3
∆yyθ, (2.67)

σxy = −1

2
[∂xu

y − ∂yu
x − uxDuy − uyDux]

−1

3
∆xyθ. (2.68)

The components of the kinetic theory term Iµν1 are

Ixx1 = 2ux
[
π0xDu0 − πxxDux − πyxDuy

]
,

Iyy1 = 2uy
[
π0yDu0 − πxyDux − πyyDuy

]
, (2.69)

Ixy1 =
(
uxπ0y + uyπ0x

)
Du0 − (uxπxy + uyπxx)Dux − (uxπyy + uyπyx)Duy. (2.70)

The dependent shear stress tensor components can be obtained from the independent

ones from the following relations,

πτx = vxπ
xx + vyπ

xy, (2.71)

πτy = vxπ
xy + vyπ

yy, (2.72)

πττ = v2xπ
xx + v2yπ

yy + 2vxvyπ
xy, (2.73)

τ 2πηη = −(1− v2x)π
xx − (1− v2y)π

yy

+2vxvyπ
xy. (2.74)
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Numerical Algorithm

The numerical solution of the conservation equations 2.50 and the relaxation equa-

tions 2.63-2.65 are done with the help of a multi-dimensional flux corrected transport

algorithm called Smooth And Sharp Transport Algorithm (SHASTA) [103]. Flux Cor-

rected Transport (FCT) is known to be an accurate and effective algorithm to solve

non-linear generalized continuity equation of the type which occurs in fluid dynamics

[103, 104]. For example we solve the following form of equation.

∂R

∂t
= −∂ (Rvx)

∂x
− ∂ (Rvy)

∂y
− ∂℘

∂x
− ∂Φ

∂y
, (2.75)

where R is the quantity to be transported, ℘, Φ are source terms and v is the fluid

velocity. We are not going to discuss the technical details of the algorithm but will only

outline the procedure, interested readers can see [103, 104] for details.

• First the physical space is divided into lattice of finite size with a fixed grid spacing.

The SHASTA algorithm is Eulerian i.e, the calculation is done on a fixed grid.

The quantities such as energy density, pressure, fluid velocity etc, involved in the

simulation are specified on the grid points at the starting time.

• The time is divided into discrete steps. The quantities at the n+1-th step are

evolved from the corresponding quantities at the n-th step.

• The differential equations are replaced by their corresponding difference equations.

For example the continuity equation ∂ρ
∂t

+ ∂(vρ)
∂x

= 0 can be written as a difference
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equation in the following form

ρn+1
i = ρni −

v∆t

∆x

[
ρni − ρni−1

]
, (2.76)

where n denotes the time step and i is the discrete spatial step.

• To enhance the accuracy of the numerical simulation the time evolution is done

in two steps. The velocities of the fluid and the source term are first calculated

at half time steps n+1
2
. Then using this new velocity and the new source term in

the n-th step one calculates the quantities at the n+1-th step.

• After transporting the quantity in the next time step, one has to remove the nu-

merical diffusion inherent to the transport scheme. This is done by calculating an

anti-diffusive flux, which should be subtracted from the time-advanced quantities

at the n+1-th step to get the final result at the n+1th step. The calculation of

the anti-diffusion is carried out by a method called ”‘flux correction”’.

2.4 Initial conditions

To solve the hydrodynamics conservation equations 2.50 and the relaxation equations 2.51

and 2.53 for dissipative fluxes we need to define the values of the variables T xx, T xy, πxx

etc. at the initial time τ0 at each grid points. To define the components of T µν , one

has to specify the values of energy density (ǫ(x, y)), pressure (P (x, y)), initial fluid ve-

locity (vx(x, y), vy(x, y)) and also the bulk (Π(x, y)), and shear stress (πµν(x, y)). The

values of these parameters are obtained from either theoretical calculations or are con-

strained by confronting the simulated result with the experimental data. For example,
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the typical thermalization time for heavy ion collision, ranges between τ0 ∼0.2-1.0 fm.

The estimation of τ0 value can be understood from the argument that typical time taken

by two colliding nuclei to cross each other with high velocities (γ ∼ 10 for RHIC), is

of the order of 1 fm. In most of our calculations we will use τ0 = 0.6 fm. The effect

of different choice of τ0 on measured pT spectra and v2 of charged hadrons has been

studied by the present author in reference [105]. The initial energy density profile is

fixed in our simulation by reproducing the experimentally measured charged particle

pseudorapidity density. In the next few paragraphs we will discuss about the different

initial parameters and their values.

Initial energy density profile

At very high energies (
√
sNN > 10GeV ) the colliding nucleons loose most of their energy

through inelastic collisions. To calculate the initial energy deposited in the reaction zone

formed by the colliding nuclei, two widely used theoretical approaches are,

• Glauber Model [31], and

• Color Glass Condensate (CGC) Model [106, 107].

In general the energy density profile in the reaction zone of nucleus-nucleus colli-

sion fluctuates from event to event. This fluctuation is attributed to the fluctuation of

the position of participating nucleons or to the fluctuating gluon density profile in the

colliding nucleus. So far most of the hydrodynamic simulations were done for smooth
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initial condition, which corresponds to an average over a large number of ensembles of

identical events. In the event by event simulation of hydrodynamics, the fluctuating

initial energy density profile can be calculated from either Monte-Carlo Glauber (MC-

Glauber)/CGC (MC-CGC) model [76]. The fluctuating initial condition is necessary

to explain the experimentally observed odd harmonics (v3, v5 etc.) of the particle az-

imuthal distribution [108].

We will use two component smoothed Glauber model initialization for all subsequent

calculations unless stated otherwise. For the smooth Glauber model, the initial ǫ(x, y)

is obtained in the following manner,

• for a collision with impact parameter~b, the transverse distribution of wounded nu-

cleons NWN(x, y,~b) and number of nucleon-nucleon binary collisions NBC(x, y,~b)

are calculated in a Glauber model. We will denote NBC by simply number of

collisions Ncoll and the number of wounded nucleons by Npart,

• the energy density profile ǫ(x, y,~b) is assumed to have two contributions, one

proportional to the Ncoll(x, y,~b) and the other proportional to the Npart(x, y,~b),

ǫ(x, y, b) = ǫ0

[
xNcoll + (1− x)

Npart

2

]
, (2.77)

where ǫ0 is a parameter which represent the central energy density for ~b = 0 collision

and x is the fraction of hard scattering. The fraction of hard scattering x is fixed by

reproducing the experimentally measured charged particle pseudorapidity density per
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Figure 2.4: Solid circles are ALICE [110] measurement of charged particle pseudorapid-
ity density per participating nucleon pair for different centrality at midrapidity. The
dashed line is the ideal hydrodynamics simulation for the two component Glauber model
initialization (equation 2.77) with hard scattering fraction x=0.9.

participant pair ( 1
0.5Npart

dNch

dη
) as a function of centrality (Npart) as shown in figure 2.4

for Pb-Pb collisions at
√
sNN =2.76 TeV. The typical value of x obtained for LHC and

RHIC energy is x=0.9. Taking the two extreme values of x = 0 and 1, we have studied

the effect of different initial energy density profile on the charged hadron pT spectra

and elliptic flow v2 for RHIC energy in reference [109]. The study shows that for central

collision (0-10%) the energy density initialization with x = 1 is preferred compared to

initialization with x = 0. Whereas, for other collision centralities the initialization with

x = 0 is preffered over x = 1. The details are discussed in appendix B. The value of

the ǫ0 is fixed by reproducing the experimentally measured charged hadron multiplicity

in the most central collisions as shown in the left panel of figure 2.5 for LHC energy.

The typical energy density profile in transverse plane (X − Y ) for mid-central Au-

Au collisions is shown in the right panel of figure 2.5. The solid blue points represents

the fluid energy density at grid points and the peak height is proportional to ǫ0. To
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calculate the Ncoll(x, y,~b) and Npart(x, y,~b) from Glauber model, we choose the X axis

lies along the impact parameter vector ~b and hence we will omit the vector sign from

now onwards. A non zero impact parameter ’b’ collision of two spherical nuclei with

different mass number ’A’ and ’B’ will produce the following transverse density of binary

collision and wounded nucleon profile.

Ncoll(x, y; b) = σinTA

(
x+

b

2
, y

)
TB

(
x− b

2
, y

)
(2.78)

Npart(x, y; b) = TA
(
x+ b

2
, y
)

1−


1−

1− σinTB
(
x− b

2
, y
)

B




B



+TB
(
x− b

2
, y
)

1−


1−

1− σinTA
(
x+ b

2
, y
)

A




A

 . (2.79)

Where σin is the inelastic nucleon-nucleon cross section. Its value depends on the

√
sNN and is obtained from the experimental data. For

√
sNN=200 and 2760 GeV

collisions σin ∼ 40 and 70 mb respectively. TA,B is the thickness function of the two

colliding nuclei and is defined as TA(x, y)=
∫∞
−∞ dzρA(x, y, z); ρA(x, y, z) is the nuclear

density given by a Wood-Saxon profile: ρA(r)=
ρ0

1+exp[(r−RA)/ξ]
. ξ and RA are diffuseness

parameter and nuclear radius respectively. The typical values of these parameter for

Au and Pb nucleus which we will use in our calculation are as follows

Parameters Au Pb

A 197 208
ρ0 (fm−3) 0.17 0.17
RA (fm) 6.370 6.624
ξ (fm) 0.540 0.549
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Figure 2.5: Left panel: Estimation of ǫ0 in equation 2.77. The shaded red band is the
experimentally measured charged particle multiplicity (dNcharge/dη) for central (0-5%)
Pb-Pb collision at midrapidity for

√
sNN=2.76 TeV [110]. The line with red circles

is the ideal hydrodynamics simulation of the Pb-Pb collision with varying ǫ0. Right
panel: Typical energy density profile in transverse (X-Y) plane for mid-central Au-Au
collision.

The total number of participating nucleons for a collision with impact parameter

b is calculated from equation 2.79 as Npart(b) =
∫
Npart(x, y; b)dxdy. The Npart(b) is a

measure of the centrality class of nuclear collision. For most central collisions Npart(b) is

larger compared to that in the peripheral collisions. This is shown in figure 2.6 for Pb-

Pb collision with inelastic nucleon-nucleon cross section σin= 70 mb which corresponds

to collision at
√
sNN=2.76 TeV.

The other choice to calculate initial energy density profile is based on CGC model

which relies on the physical argument of gluon saturation at high energies. Romatschke

et al. [78] have used a modified version of Kharzeev-Levin-Nardi (KLN) kT factorization

originally due to Drescher et al. [111] for initialization of energy density. Implementa-

tion and results with CGC initial condition in our relativistic viscous hydrodynamics
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Figure 2.6: The Npart (red star) and Ncoll (black circles) calculated from Glauber model
are shown as a function of impact parameter b for Pb-Pb collision with σin = 70 mb.

code is discusses in the appendix C.

Initial transverse velocity

In our calculation we will use a zero initial transverse velocity vx(x, y) = vy(x, y) = 0.

This choice is justified, because at the very early time, fluid expansion takes place

dominantly in the longitudinal direction.

Initial shear and bulk stresses

The inadequate knowledge of the initial non-equilibrium stage of the heavy ion collision

leads us to assume the initial values of the viscous stresses πµν and Π. Generally one

has two options. (i) Assume the viscous effects to be vanishing at the initial time

πµν = Π = 0. Or (ii) set the quantities to their corresponding Navier-Stokes (NS)
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values πµν = 2ησµν and Π = −ζθ. By considering the highly non-equilibrium dynamics

involved in the initial stages of the heavy-ion collision, the second choice seems to be

more appropriate. For most of the simulation results discussed in this thesis we will use

the NS initialization unless stated otherwise. The boost invariance flow profile for the

fluid then corresponds to the following initial forms of the πµν and Π.

πxx(x, y) = πyy(x, y) =
2η

s(x, y)

s(x, y)

3τ0
, (2.80)

πxy(x, y) = 0, (2.81)

Π(x, y) = − ζ

s(x, y)

s(x, y)

τ0
. (2.82)

Relaxation time for viscous stresses

Another important input to viscous hydrodynamics simulation is the relaxation time for

bulk stress (τΠ) and shear (τπ) stress appears in the equation 2.51 and 2.53, respectively.

In principle, relaxation times τΠ and τπ could be calculated from the underlying kinetic

theory, which for strongly coupled QCD plasma, is a complex problem. Relaxation times

τΠ and τπ was calculated in reference [92] for simple relativistic Boltzmann, Bose, and

Fermi gases with mass m using Grad 14 moment approximation in relativistic kinetic

theory. For a Boltzmann gas, in the non-relativistic limit (β = m
T
→ ∞), τΠ = ζβ0 ≈

6
5
m2

T 2

ζ
P

and τπ = 2ηβ2 ≈ η/P , In the relativistic limit (β → 0), τΠ = ζβ0 = ζ 216
P
(kT
m
)4

and τπ = 2ηβ2 = 3η
2P

. Note that in the relativistic limit, the mass term appears in the

the denominator with a quartic power. Two phases in heavy ion collision i,e. QGP and

hadronic phase consist of quasiparticles of different masses, the dependence of this mass

with temperature as well as the ambiguity around the crossover makes it difficult to use
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τΠ as given here. In our simulation the τΠ is either taken as a constant or kept same

as τπ. The dependence of pT spectra and elliptic flow on τπ and τΠ will be discussed in

chapter-3 and 4.

2.5 Equation of State

Equation of State (EoS) is the functional relationship between thermodynamic variables

pressure (P ) and number density (n) to the energy density (ǫ). The conservation

equations, ∂µT
µν = 0, contains one additional variable than the number of equations.

EoS closes the system of equations by providing another functional relationship and it

is one of the important input to hydrodynamics. The speed of sound of the medium

cs =
√

∂p
∂ǫ

is obtained from the EoS. In ideal hydrodynamics, cs controls the expansion

rate of the fluid under a given pressure gradient ∇P through the following relationship

Duµ =
1

ǫ+ P
∇µP, (2.83)

∂uµ

∂τ
= −c

2
s

s
∂µs. (2.84)

Where the last equation 2.84 is obtained for a special case of a baryon less fluid in its

local rest frame. From equations 2.83 and 2.84, it is evident that for a larger cs the

fluid acceleration is larger for a given pressure gradient. Thus EoS influences the fluid

expansion and observables like slope of the pT spectra, anisotropic flow coefficient v2

etc. It is then important to use an realistic EoS which is the connection between the

microscopic world to the macroscopic world in hydrodynamics calculation. The effect
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Figure 2.7: The filled circles are the lattice calculation [10] of entropy density divided
by the cube of temperature. Solid black curve is the parametric fit (equation 2.85) to
the lattice data. The pressure divided by the fourth power of temperature from lattice
calculation is shown by the open circles. The pressure and energy density calculated
from the equation 2.86, 2.87 are shown by red dashed dot and black dashed curve
respectively.

of phase transition on observables like v2 and pT spectra of hadrons can be studied by

changing EoS in hydrodynamic simulations.

The most reliable calculation of QCD equation of state is obtained from the lQCD

simulation. The recent lattice calculation with 2+1 flavors and physical quark mass

shows that the hadron to quark-gluon transition is a crossover at temperature Tco ∼175

MeV for vanishing net baryon density [10, 112]. However, the lattice simulation is not

reliable at low temperature where the lattice spacing is large [113]. The thermodynamics

of the nuclear matter at temperature below Tco can be described by assuming a system

of non-interacting hadrons and their resonances. This model is known as hadron res-

onance gas model (hrg). For our calculation, we construct a combined lattice+hadron

resonance gas EoS. Where the lattice calculation is used to obtain the EoS for the high
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Figure 2.8: The left panel shows the energy density (dashed line), pressure (red dashed
dot line) and entropy density (solid black line) as a function of temperature for the
lattice+hrg equation of state. In the right panel the energy density and pressure divided
by fourth power of temperature and entropy density by cube of temperature is plotted.

temperature phase (QGP), which is then smoothly joined at the crossover temperature

to the hadronic EoS calculated from hadron resonance gas model. This is done in two

steps: first the entropy density slat(T) of the QGP phase is obtained by parameterizing

the lattice data (black solid curve in figure 2.7) [10] using the equation 2.85.

slat
T 3

= α + [β + γT ][1 + tanh
T − Tco
∆T

], (2.85)

The best fit is obtained for the following values of the fit parameters α = 0.64, β =

6.93, γ = 0.55, Tco = 170 MeV, and ∆T = 0.1Tco. The corresponding pressure and

energy density (shown in figure 2.7) are calculated by the following thermodynamic

relations

P (T ) =
∫ T

0
slat(T

′)dT ′, (2.86)

ε(T ) = Tslat − P. (2.87)

The entropy density for the hadronic phase shrg(T) is calculated from the thermo-

dynamic relation Ts = ǫ+ P . Where ǫ and P for the hadronic phase are calculated in
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a hadron resonance gas model by the following formulas [114]

ǫ =
∑

i

gi
(2π)3

∫
fi(~p)

√
~p2i +m2

i d
3p, (2.88)

P =
∑

i

gi
(2π)3

∫
fi

~p2i

3
√
~p2i +m2

i

d3p. (2.89)

Where gi is the spin-isospin degrees of freedom for the i-th hadron species, ~pi andmi are

the corresponding momentum and mass of the hadrons. The equilibrium distribution

function fi(p) for bosons and fermions are given by the familiar Bose-Einstein and

Fermi-Dirac distribution

fi(~p) =
1

exp ((Ei − µi) /T )∓ 1
, (2.90)

where µi is the chemical potential for the i-th species and the temperature of the system

is denoted by T . The ∓ in the denominator is for boson and fermion respectively. The

summation over hadronic states
∑

i is carried out for hadrons and resonances below

mass mres < 2.5 GeV. Figure 2.8 left panel shows the variation of ǫ, P , and s as a

function of temperature from the hrg model. In the second step, the calculation of the

final EoS (lattice+hrg) is done by smoothly joining the slat and shrg by the following

functional form to obtain the total entropy density for the combined hadronic and QGP

phases,

scombined =

[
1 + tanh(x)

2

]
shrg +

[
1− tanh(x)

2

]
slat. (2.91)

Where, x = T−Tco

∆T
and ∆T = 0.1Tco. The pressure and energy density for the complete

system is obtained from the thermodynamic relations in the equations 2.86 and 2.87

respectively, by replacing slat with the combined entropy density scombined. Figure 2.8

right panel shows the variation of ǫ, P , and s as a function of temperature for the

complete EoS. Corresponding speed of sound is shown in figure 2.9.
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Figure 2.9: The squared speed of sound c2s, calculated from the complete EoS (lat-
tice+hrg) is plotted as a function of temperature. The arrow in the top right shows the
Stefan-Boltzmann limit c2s = 1/3.

2.6 Freezeout

According to the statistical and hydrodynamics motivated models, there are two freeze-

out temperature in the evolution phase of the nuclear matter formed in high energy

heavy-ion collision. For a particular beam energy collision the chemical freezeout corre-

sponds to the temperature (Tch) at which the inelastic collisions stops. Tch is extracted

by fitting the statistical-thermal model calculation to the experimentally measured par-

ticle ratios for hadrons. Below Tch the ratios of the number of observed particles are

fixed. The other freezeout temperature corresponding at which elastic collision stops

is known as thermal or kinetic freezeout temperature (Tfo). Tfo is generally extracted

from the experimentally measured slopes of the transverse momentum distribution of

hadrons by assuming a radial flow profile generated due to hydrodynamic expansion.

Below Tfo there are no more interactions and particles energy and momenta are un-

changed afterwards. Typical values of these parameter for Au-Au collision at RHIC
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energy are Tch ∼ 165MeV and Tfo ∼ 130MeV [41].

First we will discuss the kinetic freezeout scenario for our hydrodynamic simulation.

We have not considered the chemical freezeout scenario in our calculation. Some general

arguments in support of this will be presented at the end of this section.

The hydrodynamics equations, once initialized, will give the subsequent space time

evolution of the thermodynamic variables and conserved charges. The hydrodynamics

equation itself does not know when to start and when to stop. The inputs necessary

for starting the hydrodynamics evolution has already been discussed in the previous

section. To stop the simulation we have to provide some conditions externally. One

way to fix the final condition (also termed as freezeout condition) is to use the following

physical argument. As the matter expands and cools, the mean free path (λmfp =
1
nσ
;

n and σ are the number density and cross section respectively) of the constituents of

the matter grows. At some later time the mean free path becomes larger compared

to the system size. The local thermal equilibrium is then no longer applicable and

the hydrodynamic picture breaks down. The n in the denominator of λmfp is a steep

function of temperature, this leads to a freeze-out at nearly constant temperature [115].

We will use constant freezeout temperature, Tfo =130 MeV, for our simulation unless

stated otherwise. The invariant yield EdN/d3p of the hadrons are calculated on the

freezeout hypersurface by using the Cooper-Frey algorithm [116]. This is done in the

following way. The particle four current Nµ for a system of non-interacting gas is

calculated from the kinetic theory definition as

Nµ =
∫
f(x, p)pµ

d3p

E
. (2.92)
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The number of particles dN crossing the freezeout surface element dσµ is

dN = Nµdσµ. (2.93)

By putting the kinetic theory definition of Nµ into the above equation and rearranging

few terms we have

E
dN

d3p
=
∫
f(x, p)pµdσµ, (2.94)

which is the well known Cooper-Frey formula for calculating the invariant yield.

The single particle distribution function for a system in local thermal equilibrium is

given by the following form

feq(x, p) =
g

(2π)3
1

exp
(
pµuµ−µ

Tfo

)
∓ 1

, (2.95)

with freezeout temperature Tfo and chemical potential µ. g is the degeneracy factor.

The (∓) are respectively for bosons and fermions. For dissipative fluids, the system is

not in local thermal equilibrium. In a highly non-equilibrium system, the distribution

function f(x, p) is unknown. If the system is slightly off-equilibrium, then it is possible

to calculate the correction to the equilibrium distribution function due to (small) non-

equilibrium effects. Slightly off-equilibrium distribution function can be approximated

as,

f(x, p) = feq(x, p) + δf. (2.96)

Where δf = δfbulk + δfshear << feq represents the dissipative correction to the

equilibrium distribution function feq, due to bulk viscosity and shear viscosity. The

form of δfbulk and δfshear used in our simulation will be discussed in chapters 3 and 4 .
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Resonance decay contribution to pion yield

In high energy nuclear collisions various hadronic resonances are formed. The life time

of most of the resonance particles are of the order of the expansion life time of the

nuclear matter. The end product for the most of the decay channels involve pions. The

decay of hadron resonances to pion enhances the pion yield specially at low pT . We have

used the formalism given in [117] to calculate the relative contribution of the resonance

decay to thermal pion spectra. The relative contribution of the resonance decay to

pion spectra is a function of both the freezeout temperature (Tfo) and pT . Thus the

final pT spectra of π− are obtained by adding the contribution from resonance decay

to the thermal pT spectra calculated from Cooper-Frey formula. For our calculation

we have considered the following hadronic decay channels; ρ0,− → π−π+,0, K∗−,0 →

π−K0,+,∆ → π−N,ω → π+π−π0, η → π+π−π0 with their corresponding branching

ratios [117]. Our calculation of the π− spectra from these decay channels and the

thermal spectra for Tfo = 130MeV are shown in figure 2.10. The pT spectra of total

π− is shown by the red line. According to the formalism given in [117], to calculate the

pion contribution form resonances we need to provide the source temperature (we have

considered zero baryon chemical potential). The ratio of the total pion to the thermal

pion for the calculation at two different freezeout temperature Tfo = 130 and 150 MeV

are shown in figure 2.11. The parametric fit to the ratio for Tfo=130 and 150 MeV are

ratio(Tfo=130MeV ) = 1.0121 +


1.4028/


1 +

(
(pT − 0.0134)

0.5096

)2



 (2.97)

ratio(Tfo=150MeV ) = 1.0252 +


3.0495/


1 +

(
(pT − 0.032)

0.3881

)2



 . (2.98)

About ∼ 50% of the total pion yield are coming from resonance decay at LHC en-
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Figure 2.12: The transverse momentum spectra for negative pions, negative kaons, and
antiprotons for (a) the model CE and (b) the model PCE. To see these results clearly,
the yield of kaons (antiprotons) is scaled by 10−1 (10−2). The dashed, dotted, solid
lines represent results for T th = 100, 120, and 140 MeV, respectively [118].

ergy (
√
sNN=2.76 TeV), whereas for RHIC energy (

√
sNN=200 GeV) the resonance

contribution to total pion yield is ∼ 30% for Tfo=130 MeV.

Notes on Chemical freezeout

In our calculation of hadron resonance gas EoS, we have considered zero chemical po-

tential for mesons and baryons, which implies chemical equilibrium is maintained in the

system. For this scenario, the ratios of particles to antiparticles are 1, and this ratio

is maintained throughout the temperature range from chemical freezeout temperature

Tch to thermal freezeout temperature Tfo. To investigate the effect of early chemical

freezeout on the charged hadron pT spectra and elliptic flow Hirano et al. have done

a comparative study [118]. The simulation was done for three different EoS. We will
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consider two of them which are relevant for the present discussion. In reference [118]

the QGP phase was considered as a gas of massless u, d, s quarks and gluons which was

common for the two cases. For the hadronic phase, the two choices were (i) EoS with

chemical equilibrium (CE). (ii) EoS with partial chemical equilibrium (PCE). The QGP

and hadronic phases were joined with a first order phase transition. Their EoS-CE in

the hadronic phase is same as ours with the only difference in the number of resonances

included. We consider resonances having mass upto 2.5 GeV, they consider resonances

upto ∆(1232). The other choice EoS-PCE is constructed by considering the chemical

freezeout. Their simulated results for identified hadron pT spectra for Au-Au collision

at
√
sNN=130 GeV are shown in figure 2.12. The slope and the yield of the pT spectra

of π− and K− for kinetic freezeout temperature 140 MeV (solid curve) remains almost

same for two scenario. The anti-proton spectra on the other hand is largely modified

due to the incorporation of partial chemical equilibrium in the EoS. The neglect of

partial chemical equilibration in hadronic phase of the EoS used in our hydrodynamics

simulation will thus introduce a negligible error in the process to extract η/s from ex-

perimental data. Because the bulk of the particles produced in a high energy nucleus

collisions at RHIC and LHC are pions and kaons. They contributes ∼ 93% of the total

yield at top RHIC energy. Our simulation with chemical equlibriated EoS can explain

both the pion and kaon spectra well (discussed in appendix D). The v2 of inclusive

charged hadrons are calculated from identified hadrons v2 by taking the corresponding

invariant yields as weight factors. Hence the main contribution to the v2 of charged

hadrons are from pions and kaons only. In summary we expect non-inclusion of chemical

freeze-out in our simulation to have negligible effect on the observables discussed.



Chapter 3

Shear viscous evolution

In this chapter we will discuss the effect of shear viscosity on evolution of fluid, pT

spectra, and elliptic flow (v2) of pions using a 2+1D relativistic viscous hydrodynamics

simulation (details of which are given in chapter-2). To study the shear viscous evo-

lution we have to solve the evolution equation for the energy-momentum tensor and

the relaxation equations for shear stress tensor. In particular, the energy momentum

conservation equation in presence of only shear viscosity has the following form [83, 101],

∂τ T̃
ττ + ∂x

(
v̄xT̃

ττ
)
+ ∂y

(
v̄yT̃

ττ
)

= −
[
P + τ 2πηη

]
,

∂τ T̃
τx + ∂x

(
vxT̃

τx
)
+ ∂y

(
vyT̃

τx
)

= −∂x
[
P̃ + π̃xx − vxπ̃

τx
]
− ∂y [π̃

yx − vyπ̃
τx] ,

∂τ T̃
τy + ∂x

(
vxT̃

τy
)
+ ∂y

(
vyT̃

τy
)

= −∂y
[
P̃ + π̃yy − vyπ̃

τy
]
− ∂x [π̃

xy − vxπ̃
τy] .(3.1)

Where Ãmn ≡ τAmn, P̃ ≡ τP , vx ≡ T τx/T ττ , and vy ≡ T τy/T ττ . The relaxation

equation for the component πxx of the shear stress πµν is

∂τπ
xx + vx∂xπ

xx + vy∂yπ
xx = − 1

τπγ
(πxx − 2ησxx)− 1

γ
Ixx1 . (3.2)

78



79

The evolution equations for πyy and πxy are of similar form (see chapter-2). We will

denote the term Iµν1 ≡ (πλµuν+πλνuµ)Duλ as the R-term. The effect of inclusion of this

term on the fluid evolution as well as on the spectra and v2 of pions will be discussed.

It has been pointed out in [74] that the inclusion of R-term is important. The R-term

ensures that throughout the evolution πµν remains traceless and it also ensures that

πµνuµ=0. Shear viscous evolution without the R-term is named as simplified Israel-

Stewart equation in this chapter.

Initial conditions : The simulations have been done for Au-Au collisions with ini-

tial central energy density ǫ0= 30 GeV/fm3 and for Pb-Pb collisions with ǫ0= 100

GeV/fm3. These values of ǫ0 approximately corresponds to the energy densities achieved

at top RHIC energy (
√
sNN=200 GeV) and LHC energy (

√
sNN=2.76 TeV) respectively.

The two component Glauber model initialization is used for calculating the transverse

energy density profile. The impact parameter for simulating the heavy ion collisions is

taken as b=7.4 fm. Initial time is 0.6 fm for both RHIC and LHC. The initial transverse

velocity of the fluid is assumed to be zero (vx(x, y) = vy(x, y) = 0). At the initial time

τ0, the values of the independent component of shear stresses πxx, πyy, and πxy are set

to the corresponding Navier-Stokes values for a boost invariant expansion as,

πxx = 2ησxx =
2η

3τ0
,

πyy = 2ησyy =
2η

3τ0
,

πxy = 2ησxy = 0.

The σµν ’s are already defined in chapter-2.
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Equation of State : We have used lattice+hrg equation of state with crossover

transition at Tco=175 MeV as discussed in the previous chapter. The low temperature

phase of the EoS is modeled by hadronic resonance gas, containing all the resonances

with mass Mres ≤2.5 GeV. The high temperature phase is a parametrization of the

recent lattice QCD calculation [10]. Entropy density of the two phases were smoothly

joined at T = Tco=175 MeV by a smooth step like function.

Shear viscous coefficient : The simulations have been carried out for four different

input values of η/s=0.0 (ideal) ,0.08 (KSS bound [68]), 0.12, and 0.16. They are

considered to be independent of temperature.

Shear relaxation time : The default value of the shear relaxation time τπ for the

simulation results presented in this chapter is 0.5 × (3η/2p). The effect of varying τπ

will be discussed later in this chapter.

Freezeout : The freezeout temperature is set to Tfo=130 MeV. The effect of a higher

freezeout temperature Tfo=160 MeV has also been studied. The implementation of the

shear viscous correction to the freezeout distribution function will be discussed in the

last subsection of this chapter.
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3.1 Temporal evolution of fluid

In presence of shear viscosity, the thermodynamic pressure is modified. The trace-

lessness of shear stress tensor πµν , along with the assumption of longitudinal boost

invariance ensures that the πxx and πyy components are positive at the initial time of

the fluid evolution. Consequently, for the same thermodynamic conditions, the effective

pressure is larger (see equation 3.1) in the transverse direction compared to the ideal

fluid. It is then important to have some idea how various components of shear viscous

stress πµν evolves in space-time. In the next section, we will first discuss the evolution

of the independent components of πµν which are πxx, πyy, and πxy according to our

convention. We will also show in detail the evolution of average values of all the seven

components of πµν as a function of time.

3.1.1 Evolution of shear-stress

The temporal evolution of πxx(x, y), πyy(x, y), and πxy(x, y) for two different relaxation

time τπ = 0.5 × (3η/2p) and τπ = 0.1 × (3η/2p) are shown in figures 3.1 and 3.2

respectively. Results are shown in one quadrant only, values in the other quadrants can

be obtained by using refelction symmetry. For impact parameter b=7.4 fm collision,

the reaction zone is elliptical, the πxx(x, y), πyy(x, y) and πxy(x, y) also reflects this

elliptical shape. The magnitude of πxx and πyy is observed to decrease with the increase

in distance from the center of the reaction zone. The values also decrease with increase

in τ . The value of πxx and πyy reduces by almost two orders of magnitude of their
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Figure 3.1: The contour plot of shear stress components in XY plane at three different
times. left panel is the evolution of πxx, the middle panel is for πyy, and πx,y is shown
in the right panel. The simulation was done for τπ = 0.5× (3η/2p).

initial values at τ ∼ 7 fm. The πxy(x, y) however shows a non-monotonic variation with

τ . Starting from zero it reaches a minimum value around τ ∼ 3 fm and finally goes to

zero around τ = 8 fm. Simulation with smaller relaxation time for shear stress shows

a faster decrease in the magnitude of πxx, πyy, and πxy with time. This is shown in

figure 3.2.

The temporal evolution of the spatial average value of the various shear viscous

stress components are shown in the figure 3.3. The solid red line is the simulation

for τπ = 0.5 × (3η/2p), and the blue dashed curve is the simulation results for τπ =
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0.1 × (3η/2p). All the shear stress components except πxy and πηη remains positive

during the whole evolution. Magnitude of all the components rapidly decreases with

time and reaches very small value after ∼ 7 fm. The rate of decrease is faster for a

smaller value of τπ.
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3.1.2 Temperature evolution

The temporal evolution of temperature of the fluid at three different spatial positions

are shown in figure 3.4 for Au-Au (left panel) and Pb-Pb (right panel) collisions. The

central initial energy density for Au-Au and Pb-Pb collisions are 30 GeV/fm3 [84] and

100 GeV/fm3 [119] respectively. The solid red, blue dashed, green dotted, and pink

dash dotted curves corresponds to η/s=0 (ideal), 0.08, 0.12, and 0.16 respectively. For

all the cases, the decrease in temperature with time (τ) suggests that the system cools

down with time. At early times (∼ 1fm) the rate of cooling is similar for one dimensional

Bjorken expansion (black dashed dot dot curve) and 2+1D hydrodynamic expansion.

However, after that, the rate of cooling for 2+1D expansion is slower compared to the

one dimensional Bjorken expansion [86] for Au-Au collision with ǫ0=30 GeV/fm3. For

Pb-Pb collision with a higher ǫ0=100 GeV/fm3, the system cools down faster with

transverse expansion compared to Bjorken expansion at later times ( > 4 fm). In 2+1D

hydrodynamics the rate of cooling is slower for a larger η/s for both of the systems

considered here. Although the general features as described above remains same at

other locations (x = y=2 fm and x = y=4 fm) considered here, the magnitude of the

initial temperatures decreases with increasing distance from the centre. The rate of

cooling also decreases as one goes from central (small x, y) to peripheral (large x, y)

regions.
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3.1.3 Transverse flow and eccentricity

We assume the transverse velocity of the fluid at the initial time is zero for our sim-

ulation. Because of the pressure gradients, the fluid velocity in the transverse direc-

tion gradually builds up with time. The rate of increase in the transverse velocity

depends on the speed of sound which in turn depends on the EoS. Figure 3.5 shows

the temporal evolution of spatially averaged value of the transverse velocity 〈〈vT 〉〉

for Au-Au (left panel) and Pb-Pb (right panel) collision with four different values of

η/s. The spatially averaged transverse velocity is defined as 〈〈vT 〉〉 =
〈〈γT√v2x+v2y 〉〉

〈〈γT 〉〉
.

Here the angular bracket〈〈...〉〉 denotes average with respect to the energy density, and

γT = 1/
√
1− v2x − v2y . The red solid , blue dashed, green dotted, and pink dash dot-

ted curves are the simulated 〈〈vT 〉〉 for η/s=0 (ideal), 0.08, 0.12, and 0.16 respectively.

Because of the enhanced pressure in the transverse direction in the viscous fluid, the
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fluid acceleration is more for shear viscous evolution than in the ideal fluid evolution.

This leads to a larger 〈〈vT 〉〉 for shear evolution compared to the ideal fluid evolution.

The increase in 〈〈vT 〉〉 is more for larger η/s. The 〈〈vT 〉〉 increases faster with time for

simulation with ǫ0=100 GeV/fm3 compared to ǫ0=30 GeV/fm3. In lattice+HRG EoS

the speed of sound is larger in the QGP phase than in the hadronic phase. The QGP

phase life time is extended for a higher initial temperature or ǫ0. This leads to a rapid

increase in the velocity for a larger ǫ0 compared to a fluid evolution with a smaller value

of ǫ0. The pressure gradient is larger for a higher value of initial ǫ0, correspondingly

the 〈〈vT 〉〉 at freezeout is larger for Pb-Pb collision with ǫ0=100 GeV/fm3 compared

to Au-Au collision with ǫ0=30 GeV/fm3. The higher values of 〈〈vT 〉〉 leads to a flatter

pT spectra.

A non-zero impact parameter collision between two identical nuclei leads to an

elliptical collision zone. The spatial eccentricity εx of the collision zone is defined as

εx =
〈〈y2 − x2〉〉
〈〈y2 + x2〉〉 . (3.3)

εx is a measure of spatial deformation of the fireball from spherical shape. A zero

value of εx means the system is spherical, 0 < εx < 1 indicates an elliptic shape with

major axis along Y direction, and εx < 0 means the major axis along X direction.

The angular bracket 〈〈...〉〉 implies an energy density weighted average. For b=7.4

fm collision, the evolution of εx with time (τ) is depicted in figure 3.6 for (a) Au-Au

collision with ǫ0=30 GeV/fm3 and (b) Pb-Pb collision with ǫ0=100 GeV/fm3. Also

shown in the same figure are the corresponding momentum anisotropy εp. Similar to

the spatial anisotropy, one can define the asymmetry of fireball in momentum space.
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The momentum space anisotropy εp is defined as

εp =

∫
dxdy(T xx − T yy)

∫
dxdy(T xx + T yy)

. (3.4)

The solid red curve corresponds to the temporal evolution of both εx and εp for ideal

fluid, the dashed, green dotted, and pink dash dotted curves are for shear viscous fluid

evolution with η/s =0.08, 0.12, and 0.16 respectively. Because of the enhanced pressure

gradient in shear viscous evolution, the initial spatial deformation (εx ≈ 0.28 for Au-Au

and ≈ 0.30 for Pb-Pb) takes a smaller time to change its shape for the shear viscous

evolution compared to the ideal fluid evolution. Because of the higher initial energy

density in Pb-Pb collision, the lifetime of the fireball is larger, as well as the pressure

gradients, compared to Au-Au collision. Evolution for a longer time with a higher fluid

velocity leads to a negative values of εx at the late stage τ ≥ 9 fm for Pb-Pb collision.

However, the rate of increase of εp for a viscous fluid evolution is larger compared

to ideal fluid evolution at the early time. εp saturates at τ ∼ 4 fm for shear viscous

evolution but continues to grow until the freezeout for ideal evolution. The trend is

similar for Au-Au and Pb-Pb collisions except that the rate of increase of εp is faster

for the later case. After τ ∼4 fm, the εp becomes smaller for higher values of η/s. The

simulated elliptic flow v2 in hydrodynamic model is directly related to the temporal

evolution of the momentum anisotropy. Hence, one should expect the values of v2 is

decreased with increase in η/s.
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Figure 3.6: The temporal evolution of spatial eccentricity (εx) and momentum
anisotropy (εp) for ideal (red solid), and viscous fluid with η/s=0.08 (blue dashed),
0.12 (green dotted), and 0.16 (pink dashed doted curve). Left Panel: Simulations for
Au-Au collision at b=7.4 fm with ǫ0=30 GeV/fm3. Right panel: Simulations for Pb-Pb
collision at b=7.4 fm with ǫ0=100 GeV/fm3.

3.2 Spectra and Elliptic flow

As discussed in chapter-2, there are two-fold corrections to the ideal fluid due to shear

viscosity. The energy momentum tensor changes due to the dissipative fluxes, and

the freezeout distribution function is also modified. If the system is in a state of near

local thermal equilibrium then one can calculate the corresponding non-equilibrium

correction δf(x, p) to the equilibrium distribution function feq(x, p) by making a Taylor

series expansion of feq(x, p) [83]. This method will break down for a system which is

far away from the state of local thermal equilibrium. In this section we will concentrate

on the pT spectra and v2 of π− only for Au-Au collisions (a) with only shear viscous

correction in T µν and (b) with both the shear viscous correction to T µν and freezeout

distribution function fneq(x, p) = feq(x, p) + δfshear. We will also investigate about

the relative correction to the invariant yield of π− due to shear viscosity compared to
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Figure 3.7: Left panel: The pT spectra of π− for shear viscous evolution (η/s = 0.12)
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dahsed line), 0.12 (green dotted line), and 0.16 (black solid line). The bottom panel
shows the relative correction to the pT spectra for shear viscosity compared to the ideal
fluid. δN is the difference between shear (Nneq) and ideal (Neq) pT spectra.

the ideal fluid evolution. In addition, we will also discuss the contribution of R-term to

shear viscous evolution. The effect of dissipative correction to the freezeout distribution

function on the pT spectra and v2 of π− will be presented for two values of Tfo=130

and 160 MeV.

3.3 Without correction to the freezeout distribu-

tion function

Figure 3.7 shows the pT spectra of π− in Au-Au collisions with b=7.4 fm, ǫ0=30

GeV/fm3, and for temperature independent η/s=0.12. The top left panel shows the
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results with (green dotted line) and without (solid red line) R-term in the shear vis-

cous evolution. The R-term ensures that throughout the evolution shear stress ten-

sor remains traceless and transverse to the fluid velocity. The relative correction

δN = NR−term − NwithoutR−term due to the presence of R-term in simplified Israel-

Stewart equation to the pT spectra is shown in the bottom left panel of figure 3.7. For

pT < 3 GeV the relative correction due to the R-term is <10%.

The top right panel of the figure 3.7 shows the pT spectra of π− for four different

values of η/s=0, 0.08, 0.12, and 0.16. The spectra becomes flatter with increasing

values of η/s. The shear viscous correction to the ideal pT spectra is also pT dependent,

the relative correction to the invariant yield (δN/Neq) for shear viscosity with respect

to ideal fluid should be <1. For the current configuration we find that the relative

correction remains under 50% for pT values of 1.5, 1.0, and 0.8 GeV for η/s = 0.08,

0.12, and 0.16 respectively (shown in the bottom right panel of figure 3.7).

The corresponding results for v2 of π
− is shown in the figure 3.8. We find the effect

of R-term in shear evolution on v2 is negligible (< 2%). The shear viscosity opposes any

anisotropy in the fluid velocity arising due to the pressure gradient. Hence in presence

of shear viscosity the momentum eccentricity εp is reduced (as seen in the left panel of

figure 3.6) which leads to a reduction in value of v2(pT ) (as seen in top right panel of

figure 3.8). The reduction in v2 is more for a larger η/s. The relative correction to v2

due to shear viscosity compared to ideal fluid is within 50% for η/s=0.16 for the pT

range studied. This is shown in the bottom right panel of figure 3.8.
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Figure 3.8: Left panel: Same as left panel of figure 3.7 but for v2. Right panel: Same
as right panel of figure 3.7 but for v2 .

3.4 Correction to the freezeout distribution func-

tion

As discussed earlier, there are two-fold corrections to the ideal hydrodynamics due to

the dissipative processes. So far all the simulated results shown in the previous sections

are for shear viscous evolution with the viscous correction in T µν only. Here we will

discuss the effect of shear viscous correction to the freezeout distribution function on

pT spectra and v2 of π−. The non-equilibrium correction due to shear viscosity δfshear

to the equilibrium freezeout distribution function feq is calculated from kinetic theory

[94, 121]. The distribution function for a system slightly away from local thermal

equilibrium can be approximated as [83]

fneq(x, p) = feq(x, p)[1 + φ(x, p)], (3.5)

where φ(x, p) << 1 is the corresponding deviation from the equilibrium distribution

function feq(x, p). The non-equilibrium correction φ(x, p) can be approximated in
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Grad’s 14 moment method by a quadratic function of the four momentum pµ in the

following way [121]

φ(x, p) = ε− εµp
µ + εµνp

µpν , (3.6)

where ε, εµ, and εµν are functions of p
µ, metric tensor gµν , and thermodynamic variables.

For a system where only the shear stresses exists, one can identify

φ(x, p) = εµνp
µpν , (3.7)

where

εµν =
1

2(ǫ+ p)T 2
πµν . (3.8)

As expected the correction factor increases with increasing values of shear stress πµν .

The correction term also depends on the particle momentum. The Cooper-Frey formula

[120] for a non equilibrium system is [94, 121]

dN

d2pTdy
=

g

(2π)3

∫
dΣµp

µfneq(p
µuµ, T )

or,
dN

d2pTdy
|eq +

dN

d2pTdy
|neq =

g

(2π)3

∫
dΣµp

µfeq(p
µuµ, T )

+
g

(2π)3

∫
dΣµp

µδfshear(p
µuµ, T ). (3.9)

For our case, the product of particle four momentum pµ = (mT coshy, px, py,mT sinhy)

and the freezeout hypersurface dΣµ =
(
mT coshη,−∂τf

∂x
,−∂τf

∂y
mT sinhη

)
τfdxdydη is ex-

pressed as

pµ.dΣµ =
(
mT cosh(η − y)− ~pT .~∇T τf

)
τfdxdydη.

Using these relationships into equation 3.9 we have the correction to the invariant yield

due to the shear viscosity as

dN

d2pTdy
|neq =

g

(2π)3

∫

Σ
dΣµp

µf(x, p)φ(x, p). (3.10)
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After some algebra (see Appendix E) we have the final form of the shear viscous

correction to the invariant yield of ideal fluid as

dNneq

dyd2pT
=

g

(ǫ+ p)T 2 (2π)3

∫
τfdxdy

∞∑

n=1

(∓1)n+1enβ[γ~pT~vT+µ]

[mT

[
a1
4
k3(nβT ) +

3a1
4
k1(nβT ) +

a2
2
k2(nβT ) +

a2
2
k0(nβT )

]

−~pT .(~∇T τf )
[
a1
2
k2(nβT ) + a2k1(nβT ) + (

a1
2

+ a3)k0(nβT )
]
]. (3.11)

Where

a1 = m2
T (π

ττ + τ 2πηη),

a2 = −2mT (pxπ
τx + pyπ

τy), (3.12)

a3 = p2xπ
xx + p2yπ

yy + 2pxpyπ
xy −m2

T τ
2πηη. (3.13)

.

The top left panel of figure 3.9 shows the pT spectra of π− with (blue dashed and

black solid curve) and without (red solid and green dotted curve) the shear viscous

correction to the equilibrium freezeout distribution function for two different freeze-

out temperatures Tfo=130 and 160 MeV respectively. The shear viscous evolution

is carried out for η/s = 0.12. For a lower value of freezeout temperature (Tfo=130

MeV), the system evolves for a longer time compared to a higher freezeout temperature

(Tfo=160 MeV). The shear stresses πµν decrease with time, and for a fluid evolution for

longer time, their values on the freezeout hypersurface become vanishingly small (see

figure 3.3). Thus depending on the values of the freezeout temperature, one would get

different shear viscous correction to the freezeout distribution function. The relative

shear viscous correction δN/Nwo to the invariant yield of π− for Tfo=130 MeV and
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Figure 3.9: Left panel: The pT spectra of π− for Au-Au collision at b=7.4 fm with ǫ0=30
GeV/fm3 with and without the shear viscous correction to the equilibrium freezeout
distribution function for two different freezeout temperature Tf=130 and 160 MeV.
The left bottom panel shows the relative correction δN/Nwo (see text for details) for
Tf=130 (black dashed line) and Tf=160 (green dotted curve). Right panel: Same as
left panel but for v2 of π−.

Tfo=160 MeV are shown in the bottom left panel of figure 3.9. Where δN = Nw−Nwo;

Nw is the invariant yield of π− obtained for shear viscous evolution by considering the

viscous correction to both T µν and f(x, p), and Nwo is the corresponding yield cal-

culated without the viscous correction to the freezeout distribution function but only

considering the corresponding viscous correction to T µν .

We observe that for freezeout temperature Tfo=130 MeV, the non-equilibrium cor-

rection dN
d2pT dy

|neq to the pT spectra of π− due to the δfshear is zero in the pT range

considered here. This can be seen from the left bottom panel of figure 3.9, where

the relative corrections δN/Nwo are shown for Tfo=130 MeV (black-dashed line) and

Tfo=160 MeV (green dotted curve). For Tfo=160 MeV, the freezeout correction is non-

zero. At low pT the correction is negative and at high pT (> 1.5 GeV) it has a positive
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value. The corresponding effect of the δfshear on v2(pT ) of π− is shown in the right

panel of figure 3.9. The different lines bear the same meaning as used in the left panel.

Similar to the pT spectra, the relative correction δv2/v2wo is close to zero for Tfo=130

MeV. However, for the freezeout temperature Tfo=160 MeV, this correction is large

and is of the order of 40% at pT ∼ 1 GeV.



Chapter 4

Bulk viscous evolution

To study the bulk viscous evolution for a relativistic fluid, we need to solve the cor-

responding energy-momentum conservation equations and the relaxation equations for

the bulk stress (Π) of the system. The energy momentum conservation equation in

presence of only bulk viscosity has the following form,

∂τ T̃
ττ + ∂x

(
v̄xT̃

ττ
)
+ ∂y

(
v̄yT̃

ττ
)

= − [P +Π] , (4.1)

∂τ T̃
τx + ∂x

(
vxT̃

τx
)
+ ∂y

(
vyT̃

τx
)

= −∂x
[
P̃ + Π̃

]
,

∂τ T̃
τy + ∂x

(
vxT̃

τy
)
+ ∂y

(
vyT̃

τy
)

= −∂y
[
P̃ + Π̃

]
.

Where Ãmn ≡ τAmn, P̃ ≡ τP , and vx ≡ T τx/T ττ , vy ≡ T τy/T ττ .

The relaxation equation for bulk stress is

∂Π

∂τ
+ vx

∂Π

∂x
+ vy

∂Π

∂y
= − 1

τΠγT
[Π + ζθ +

1

2
ΠτΠ∂µu

µ + ζTΠD

(
τΠ
ζT

)
]. (4.2)

Where D = uµ∂µ is the convective time derivative and θ = ∂µu
µ is the expansion

98
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scalar. τΠ = ζβ0 is the relaxation time for bulk viscous stress, β0 is a constant that

appears in the second order viscous hydrodynamics as discussed in chapter-2, T is the

temperature, ζ is the coefficient of bulk viscosity and γT = 1√
1−v2x−v2y

.

Equation of state: In the present simulations for Au-Au collision at center of mass

energy 200 GeV per nucleon, we have used an EoS with cross-over transition at Tco=175

MeV, as discussed in chapter-2 [119]. The low temperature phase of the EoS is modeled

by the hadronic resonance gas, containing all the resonances with massMres ≤2.5 GeV.

The high temperature phase is a parametrization of the recent lQCD calculation [10].

Entropy density of the two phases were joined at T = Tco=175 MeV by a smoothed

step like function.

Bulk Viscous Coefficient: As discussed in chapter-2, the exact form of the ζ/s(T)

is quite uncertain. In this thesis we choose two different temperature-dependent forms.

Form-1 is shown in figure 4.1(a). It is constructed in the following way: for the QGP

phase we use the formula derived in pQCD calculations, ζ/s = 15η
s
(T ) (1/3− c2s(T ))

2
.

The squared speed of sound c2s(T ) is calculated using the relation c2s(T ) = ∂P (T )/∂ǫ(T ) |s,

where the pressure P (T ) and the energy density ǫ(T ) are obtained form the lQCD cal-

culation [10]. The η/s(T) used in this calculation is same as given in [74] which was

obtained using the lattice data [71]. The ζ/s for the hadronic phase used in form-1 is the

same as calculated in [88]. The calculation was done by using a hadron resonance gas

model, including all known hadrons and their resonances up to mass 2 GeV with finite

volume correction to the thermodynamic quantities. It also includes an exponentially
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Figure 4.1: Two different forms of temperature dependence of ζ/s. (a)Form-1: ζ/s in
the QGP phase (T>175 MeV) is calculated by using pQCD formula ζ/s = 15η

s
(T )(1/3−

c2s(T ))
2, where c2s was calculated from recent lattice data [10]. In the hadronic phase (T

< 175 MeV) ζ/s is parametrized from [88]. (b)Form-2: This form is taken from [139],
where in the QGP phase ζ/s was obtained from a different lattice calculation [127] and
ζ/s in hadronic phase is from [88]. Red dashed line is the KSS bound [68] of the shear
viscosity to entropy density ratio η/s ∼ 1/4π.

increasing density of Hagedorn states in the mass range of 2-80 GeV.

Form-2 is shown in figure 4.1(b). This form was taken from the reference [139]. For

the QGP phase the ζ/s was taken from a different lattice calculation [127]. For the

hadronic phase the ζ/s was taken from [88]. The peak value of form-2 is ∼10 times

larger than the peak value in form-1. Though both form of ζ/s shows a peak near the

crossover temperature (Tco ∼175 MeV), their dependency on temperature is slightly

different in the QGP phase. The red dashed line in both figures 4.1(a) and (b) shows

the KSS bound of shear viscosity to entropy density ratio [68].

For comparison purposes, we will also show some simulation results with only shear

viscosity. However, in this simulation, we have neglected the temperature dependence

of shear viscosity to entropy density ratio. We have performed the simulations with the
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AdS/CFT minimal value, η/s = 1/4π.

Bulk relaxation time : A brief discussion on the form and the value of bulk re-

laxation time τΠ was given in chapter-2. For the simulation results presented in this

chapter, the default value of τΠ has been set to τπ , where τπ = 3η
2P

is the relaxation

time for the shear viscous stress. To study the effect of varying relaxation time we have

also carried out simulation for τΠ = 0.1τπ and 5.0τπ.

Initial conditions : The initial conditions for the 2+1D bulk viscous hydrodynamics

simulations presented in this chapter are given in table 4.1. The initial energy density

Table 4.1: Initial conditions for 2+1D viscous hydrodynamics calculation.

Parameters Values
ǫ0 30 (GeV/fm3)
τ0 0.6 fm

vx(x, y), vy(x, y) 0.0
πxx(x, y) = πyy(x, y), πxy(x, y) 2η/3τ0, 0

Π(x, y) 0 and −ζθ(default)

profile in the transverse plane is obtained from a two component Glauber model, with

ǫ0 being the central energy density. In this study, we will use Navier-Stokes (NS)

initialization of bulk stress, Π(x, y) = −ζθ, unless stated otherwise. One can also

initialize Π(x, y) by assuming a zero value at the initial time τ0.

Freezeout : The freezeout temperature is set to Tfo=130 MeV. The effect of a higher

freezeout temperature Tfo=160 MeV has also been studied. The implementation of the
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bulk viscous correction to the freezeout distribution function using Grad’s 14 moment

methods will be discussed in the last subsection of this chapter.

4.1 Temporal evolution of fluid

4.1.1 Evolution of bulk stress
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Figure 4.2: Left panel: The transverse profile of bulk stress Π(x, y) at the initial time
τ0=0.6 fm/c. Right panel: Π(x, y) at a later time τ = 11.7fm.

The space-time evolution of Π(x, y) is governed by the relaxation equation 4.2.

The relaxation time τΠ in equation 4.2 controls how fast the stress Π(x, y) relaxes

to its instantaneous equilibrium value. The left panel of figure 4.2 shows the initial

Π(x, y) with Navier-Stokes initialization in b=7.4 fm Au-Au collisions for form-1 of

bulk viscosity. For b=7.4 fm collision, the collision zone is asymmetric. The right panel

of the same figure shows the Π(x, y) at a later time τ=11.7 fm. Within a span of ∼10

fm, bulk stress is decreased by a factor of 100. Anisotropicity of the bulk stress is also
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Figure 4.3: The spatially averaged bulk viscous stress 〈Π〉 in the transverse plane as
a function of evolution time for two different initialization of Π(x, y). (a) for ζ/s(T)
form-1 and (b)ζ/s(T) form-2. The simulation with zero initial bulk stress Π(x, y) = 0 is
marked as blue. Simulation for NS initialization Π(x, y) = −ζθ is marked as red. The
solid, dashed dotted, and dashed lines represent the simulation with different relaxation
time for Π(x, y).

decreased. Pressure gradient is more along the minor axis (x-direction in figure 4.2),

and fluid expands rapidly in that direction and hence reducing the spatial anisotropicity.

Form-II of ζ/s also gives similar results. In figure 4.3(a) we show the temporal evolution

of spatially averaged bulk stress, 〈Π〉, for two different initializations: (i) Π(x, y)=0 at

the initial time τ0 (blue lines) and (ii) Navier-Stokes (NS) initialization Π(x, y) = −ζθ

(red lines) at τ0. Results are shown for three different relaxation times: τΠ=1.0 (solid

line), 0.5 (dashed dot line), and 0.1 (dashed lines) times τπ. τπ = 3η/2P is the relaxation

time for shear viscous stress estimated for a relativistic Boltzman gas [92].

We observe that the late time evolution of bulk stress hardly depends on the ini-

tialization of Π. Even when the Π is initialized to zero value, it quickly reaches the

Navier-Stokes value. The time by which the bulk stress reaches the Navier-Stokes value

depends on the relaxation time. The shorter relaxation time τΠ drives the system to

reach the equilibrium Navier-Stokes value faster, and in the limit of τΠ → 0 equation 4.2
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transforms to the relativistic Navier-Stokes equation. From figure 4.3 one can see that

〈Π〉 with zero initialization takes the least time to attain its instantaneous equilibrium

value (red line) for the smallest value of τΠ. In figure 4.3(b), same results are shown

for the form-2 of ζ/s. Results are similar to that obtained for form-1 of ζ/s except the

minimum of 〈Π〉 is shifted in time for form-2 by 2 fm .

4.1.2 Temporal evolution of temperature
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Figure 4.4: The rate of cooling for ideal, shear, and bulk viscous evolution are shown
in three different locations, x = y=0 fm (solid line), x = y=2 fm (dashed line), and
x = y=4 fm (dashed dotted line). Red line corresponds to the ideal fluid evolution,
blue and pink lines are for bulk and shear viscous evolution respectively. Left panel:
(a) the calculation with ζ/s form-1. Right panel: (b) with ζ/s form-2.

The rate of cooling of the fluid element for two different forms of ζ/s at three different

locations in the reaction zone for ideal (red line), bulk (blue line), and shear (pink line)

viscous evolution are shown in figures 4.4(a) and (b). Figure 4.4(a) is the simulation for

ζ/s form-1 and 4.4(b) is for ζ/s form-2. The rate of cooling is different at various points

in the reaction zone. There is no noticeable change in the rate of cooling due to bulk
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viscosity compared to the ideal fluid evolution. For evolution with η/s=0.08, there is a

decreases in the rate of cooling at the early time for the central region. The difference

between the effects of bulk and shear stress on rate of cooling is due to the difference in

magnitude of Π and πµν . In the peripheral region the temperature variation is almost

same for the ideal, shear, and bulk viscous evolution. Early in the evolution (∼2-3

fm), the fluid expansion is mainly in the longitudinal direction and follows Bjorken

cooling law T 3τ = constant. The cooling rate at the central region (x = y=0) for fluid

expansion according to the Bjorken expansion is shown by the dotted lines in the left

panel of figure 4.4 for comparison. At later time (τ >5 fm) the transverse expansion

leads to a different slope for the cooling rate compared to the one dimensional Bjorken

expansion.

4.1.3 Transverse velocity and eccentricity

Transverse velocity : Figures 4.5(a) and (b) show the temporal evolution of the

spatially averaged transverse velocity (〈〈vT 〉〉) of the fluid with form-1 and form-2 of ζ/s

respectively. The space averaged transverse velocity is defined as 〈〈vT 〉〉 = 〈〈γ√v2x+v2y 〉〉
〈〈γ〉〉

.

〈〈...〉〉 symbol corresponds to the energy density weightage at each space points. The

solid red line is for the ideal fluid and the dash-dotted and dotted lines are for bulk and

shear viscous evolution respectively. Because of the reduced pressure gradient for the

bulk viscous evolution compared to the ideal fluid, the corresponding 〈〈vT 〉〉 is reduced

for bulk viscous evolution. The reduction in 〈〈vT 〉〉 at later times (after ∼ 8 fm) is

greater for ζ/s form-2 than for form-1. The shear viscosity on the other hand increases
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Figure 4.5: Temporal evolution of spatially averaged transverse velocity 〈〈vT 〉〉 for ideal
and viscous simulation. The red solid line is for the ideal fluid evolution and the dashed
dot and dotted lines are for the bulk and shear viscous evolution respectively. Left
panel: (a) ζ/s form-1. Right panel: (b) ζ/s form-2.

the pressure gradient in the transverse direction and reduces the longitudinal pressure

at the early times of evolution. Because of the enhanced pressure gradient, 〈〈vT 〉〉 for

shear viscous evolution is increased compared to the ideal fluid.

Spatial and momentum eccentricity: As discussed in the previous chapter, the

spatial eccentricity εx, defined as

εx =
〈〈y2 − x2〉〉
〈〈y2 + x2〉〉 , (4.3)

is a measure of the spatial deformation of the fireball from the spherical shape. For the

b=7.4 fm collision, the evolution of εx with time (τ) is depicted in figures 4.6(a) and

(b). The solid red line corresponds to the temporal evolution of εx for ideal fluid, the

dash-dotted, and dashed lines are for bulk and shear viscous fluid evolution respectively.

Because of the reduced pressure gradient in the bulk viscous evolution compared to the
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Figure 4.6: The evolution of spatial anisotropy with time. The solid red line, the dash-
dotted line and the dashed lines are respectively for ideal fluid, fluid with only bulk
viscosity, and fluid with only shear viscosity. Left panel: (a) ζ/s form-1. Right panel:
(b) ζ/s form-2.

ideal fluid, the initial spatial deformation (εx ≈ 0.28) takes a longer time to change

its shape for the bulk viscous evolution compared to the ideal fluid evolution. At later

time in the evolution, change in the εx is more pronounced for form-2 of ζ/s compared

to form-1. Shear viscosity does the opposite to the transverse expansion: initially it en-

hances the transverse velocity and the spatial deformation εx reduces at a much higher

rate compared to the ideal fluid evolution.

As discussed in the previous chapter, the momentum space anisotropy εp is defined

as

εp =

∫
dxdy(T xx − T yy)

∫
dxdy(T xx + T yy)

. (4.4)

The simulated elliptic flow v2 in the hydrodynamic model is directly related to

the temporal evolution of the momentum anisotropy. In fact in ideal hydrodynamics
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Figure 4.7: The temporal evolution of the momentum anisotropy. The lines shown here
have same meaning as explained in figure 4.6. Left panel: (a) for form-1 of ζ/s and
Right panel: (b) for form-2 of ζ/s.

v2 ∝ εp. The evolution of εp as a function of time is shown in figures 4.7(a) and (b) for

ζ/s form-1 and ζ/s form-2 respectively. Compared to the ideal fluid evolution (solid

red line), the bulk viscous evolution (dash-dotted line) results in a reduced value of

momentum anisotropy around the freezeout time(∼ 12 fm) 1. The change in ǫp for the

bulk viscous evolution compared to the ideal fluid is prominent after τ ∼ 3-4 fm of

the fluid evolution. Around this time most regions of the fluid elements reaches the

temperature range ∼ 175 MeV where ζ/s has its maximum value.

1Actually the freezeout happens across the whole lifetime of the fluid evolution. Here the freezeout

time ∼ 12 fm corresponds to the time when there is no fluid element left above the specified freezeout

temperature.
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4.2 Effect of bulk viscosity on spectra and elliptic

flow

4.2.1 Without correction to the freezeout distribution
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Figure 4.8: Negative charged pion’s pT spectra for Au-Au collision at impact parameter
b=7.4 fm.The solid red line is the spectra from ideal fluid evolution. The dashed dot
and dotted lines are for bulk viscous evolution with form-1 and form-2. The inset figure
shows the ratio of correction to the pT spectra due to bulk viscosity to ideal evolution.

We first discuss the change in particle spectra and elliptic flow due to bulk viscosity.

The non-equilibrium correction to the equilibrium distribution function is neglected.

The simulated charged pion pT spectra is shown in the figure 4.8. The red solid line is the

result obtained for ideal fluid simulation, the dash-dotted and dotted lines are obtained

for form-1 and form-2 of bulk viscosity respectively. Due to the smaller transverse flow

in presence of the bulk viscosity, we get a steeper pT spectra compared to the ideal

fluid evolution. However, the change is small. The inset of figure 4.8 shows the relative

correction δN/Neq to the pT spectra for ideal fluid (Neq) due to the bulk viscosity.

Where δN= Nbulk −Neq. The correction to the pT spectra is small: at pT ∼2 GeV the
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Figure 4.9: Negative charged pion’s v2 for Au-Au collision at impact parameter b=7.4
fm.The solid red line is v2 from ideal fluid evolution. The dashed dot and dotted lines
are for bulk viscous evolution with form-1 and form-2. The inset figure shows the
relative correction to the v2 due to bulk viscosity.

correction is ∼ 10% with the form-2 of ζ/s. It is even less (< 5%) for form-1.

The simulated elliptic flow v2 of π− produced in Au-Au collisions at impact pa-

rameter b=7.4 fm are shown in figure 4.9. The red solid line is the result for ideal

hydrodynamics. The dash-dotted and dotted lines are v2 with bulk viscosity of form-1

and form-2 respectively. We have not included the non-equilibrium correction to the

distribution function. The inset of figure 4.9 shows the relative change in v2 with bulk

viscosity compared to the ideal fluid evolution. The relative correction in v2 for form-1

of ζ/s is within ∼ 4% for the pT range 0-3 GeV, and for form-2 the relative correction

is within ∼ 8%. It appears that if the non-equilibrium correction to the equilibrium

distribution function is neglected, both forms of the bulk viscosity introduce relatively

small corrections to the particle spectra and elliptic flow.
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Figure 4.10: Negative charged pion’s pT spectra for Au-Au collision at impact parameter
b=7.4 fm.The solid red line is for the simplified Israel-Stewart equation. The dashed
dot line is the simulated result for fluid evolution with all the terms in bulk viscous
relaxation equation. The inset figure shows the ratio of the relative contribution to the
pT spectra coming from the terms 1

2
ΠτΠ∂µu

µ and ζTΠD
(
τΠ
ζT

)
.

Relative contribution of various terms in relaxation equation : The relaxation

equation for bulk stress is given in equation 4.2. Here we discuss the contribution to the

pT spectra and elliptic flow v2 of negative pions coming from the terms 1
2
ΠτΠ∂µu

µ and

ζTΠD
(
τΠ
ζT

)
in the right hand side of the equation 4.2. The relaxation equation with

only the terms [Π + ζθ] will be referred here as the simplified Israel-Stewart equation.

Figure 4.10 shows the invariant yield vs. pT of π− for bulk viscous evolution with (a)

simplified Israel-Stewart equation (red solid line) and (b) full Israel-Stewart equation

(black dashed dot line). The relative contribution to the pT spectra due to the terms

1
2
ΠτΠ∂µu

µ and ζTΠD
(
τΠ
ζT

)
in the relaxation equation is found to be less than 4%.

Figure 4.11 shows the v2 vs. pT of π− for bulk viscous evolution with (a) simpli-
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Figure 4.11: Negative charged pion’s v2 for Au-Au collision at impact parameter b=7.4
fm.The lines and the inset is the same as described in figure 4.10 but for v2.

fied Israel-Stewart equation (red solid line) and (b) full Israel-Stewart equation (black

dashed dot line). The relative contribution to the v2 due to the terms 1
2
ΠτΠ∂µu

µ and

ζTΠD
(
τΠ
ζT

)
in the relaxation equation is found to be less than 1%.

4.2.2 With correction to the freezeout distribution function

It has already been discussed a few times that there are two kinds of dissipative cor-

rections to the ideal fluid simulation. First the energy-momentum tensor contains a

viscous correction and the freezeout distribution function is also modified in presence of

the dissipative processes. So far in this chapter all the bulk viscous simulation results

were obtained for dissipative correction to the energy-momentum tensor only. In this

section we discuss the correction to the freezeout distribution function. We have em-

ployed Grad’s 14-moment methods for freezeout dissipative correction as described in

reference [134]. The implementation of this method to our 2+1D viscous hydrodynamic
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code ”‘AZHYDRO-KOLKATA”’ is briefly discussed below.

Grad’s 14 moment method for dissipative correction to the freezeout distri-

bution function : We have already discussed in chapter-3 that the non-equilibrium

distribution function for a system which is slightly away from equilibrium can be ap-

proximated as,

f(x, p) = feq(x, p) + δf. (4.5)

Where δf = δfbulk + δfshear << f represents the dissipative correction to the equi-

librium distribution function, feq, due to bulk and shear viscosity respectively.

There are different methods available to calculate the dissipative correction to the

distribution function [82, 134, 135, 139, 144, 148]. In order to maintain the continuity of

the energy-momentum tensor across the freezeout surface, the functional form of the δf

must fulfill the Landau matching condition; uµ∆T
µνuν = 0 [148]. For bulk viscosity, the

dissipative correction for a multicomponent system was calculated by using Grad’s 14-

moment methods in reference [134]. Following reference [134], the dissipative correction

for bulk viscosity δfbulk can be written in the following form,

δfbulk = −feq(1 + ǫfeq)×
[
D0p

µuµ + B0p
µpν∆µν + B̃0p

µpνuµuν
]
Π.

Where the prefactors D0, B0, and B̃0 are temperature dependent constants. For
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simplicity we have dropped the index ′i′ which was used in reference [134] to denote

different types of particles. The Landau matching condition is satisfied with the present

form of bulk viscous correction to the ideal distribution function. In reference [134], the

prefactors D0, B0, and B̃0 was calculated for a multicomponent hadron gas. We will

use their estimated values (given in the table 4.2) in this calculation for two different

freezeout temperatures Tfo =130 MeV and Tfo=160 MeV.

Table 4.2: Prefactors for two different temperatures

Tfo D0(GeV
−5) B0(GeV

−6) B̃0(GeV
−6)

130 MeV 9.10×104 1.12×105 -3.27×104

160 MeV 2.01×104 1.66×104 -7.84×103

The bulk viscous correction dNbulk

d2pT dy
to the ideal spectra dNeq

d2pT dy
according to the

Cooper-Frey formula is

dNbulk

d2pTdy
=

g

(2π)3

∫

Σ
dΣµp

µδfbulk(p
µuµ, T ). (4.6)

Where pµ = (mT coshy, px, py,mT sinhy) is the four momentum of the fluid. The final

form of the bulk viscous correction to the invariant yield is given by [84]

dNbulk

d2pTdy
= A[mT

{
b1
4
k3(nβ⊥) +

3b1
4
k1(nβ⊥) +

b2
2
k0(nβ⊥) +

b2
2
k0(nβ⊥) + b3k1(nβ⊥)

}

−~pT .~∇T τf

{
b1
2
k0(nβ⊥) +

b1
2
k2(nβ⊥) + b2k1(nβ⊥) + b3k0(nβ⊥)

}
]Π(4.7)

where β⊥ = mTγβ, and

A = 2
∞∑

1

(∓1)n+1enβ(γ~vT ~pT ) g

(2π)3

∫
τfdxdy,
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Figure 4.12: The charged pion pT spectra for impact parameter b=7.4fm Au-Au col-
lision. Ideal fluid evolution (black solid line) and various values of ζ/s form-1. (a)
Freezeout temperature Tfo=130 MeV (b) Tfo=160 MeV.

b1 = m2
T

(
B̃0 −B0

)
γ2,

b2 = mT

{
D0γ + 2γ2 (pxvx + pyvy)B0 − 2B̃0γ

2 (pxvx + pyvy)
}
,

b3 = B0m
2
T −D0γ (p

xvx + pyvy)− B0p
2
x

(
1 + γ2v2x

)
−B0p

2
y

(
1 + γ2v2y

)

− 2B0p
xvxp

yvyγ
2 + B̃0γ

2 (pxvx)
2 + 2B̃0γ

2pxvxp
yvy + B̃0γ

2 (pyvy)
2 .

We will now discuss the effect of the bulk viscous correction to the freezeout distri-

bution function on the pT spectra and v2 of π− in the following paragraphs.

Figure 4.12 (a) and (b) shows the pT spectra of pions for freezeout temperature

Tfo=130 and 160 MeV for four different values of ζ/s form-1. The black solid line in

figure 4.12 is the pT spectra for ideal fluid evolution for b=7.4 fm Au-Au collision. The

other lines are for bulk viscous evolution with varying values of form-1 ζ/s. The red

dashed line is the simulated spectra with form-1 ζ/s, whereas long-dashed, dash-dotted,

and dotted lines are results for 0.1, 0.05, and 0.01 times the form-1 ζ/s. It appears
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that for QCD motivated bulk viscosity over entropy ratio, ( ζ
s
)QCD = 15η

s
(1
3
− c2s)

2,

Grad’s 14-moment method introduces a very large correction to the spectra. At low pT ,

compared to the ideal fluid, π− yield is increased by a factor of 10 or more. Corrections

are comparatively less if bulk viscosity is reduced. For very small bulk viscosity, e.g.

for 0.01 times form-1 ζ/s, the spectra is very close to the ideal fluid evolution in the pT

range 0 < pT < 1 GeV.

To put things in perspective for the present calculations relative to the existing

calculations in reference [134], we should compare the relative change in invariant yield

of negative pions versus pT between ideal simulation and bulk viscous simulation for

both cases. In order to do that, we have to compare with the corresponding calculations

done in the present work with input bulk viscosity to entropy density of 0.01×ζ/s at Tfo
= 160 MeV. Such a value of ζ/s is chosen so as to have a similar magnitude of Π over

the freeze-out surface as used in reference [134]. We find that the relative corrections

are similar.

The specific form of the dissipative correction to the ideal freezeout distribution

function considered here leads to a large negative correction to the pT spectra for higher

values of pT . Depending on the value of ζ/s, the dissipative correction due to the bulk

viscosity results in a negative invariant yield above a certain value of pT . A negative

value of particle number is unphysical, we will omit the pT range in the subsequent

plots from where the particle number becomes negative. As discussed earlier, freeze-

out correction is obtained under the assumption that the non-equilibrium correction to

the distribution function is smaller than the equilibrium distribution function, δfbulk <<
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Figure 4.13: The relative correction to the pT spectra due to the bulk viscosity compared
to ideal fluid evolution. Dissipative correction in the fluid evolution as well in the
freezeout distribution function has been included. Shaded region shows the relative
correction of 50%.(a) Freezeout temperature Tfo=130 MeV (b) Tfo=160 MeV.

feq. It is then implied that the relative correction (δN/Neq) has to be small for Israel-

Stewart’s hydrodynamics to be applicable. Figures 4.13 (a) and (b) show the relative

correction (δN/Neq) to the pT spectra due to the bulk viscosity for Tfo=130 and 160

MeV respectively. The shaded bands in the figures correspond to the relative correction

of 50%. We consider here a correction of magnitude greater than 50% to indicate the

breakdown of the the freezeout correction procedure. From figure 4.13 one can see that

the pT spectra changes drastically in the bulk viscous evolution (solid black line) with

ζ/s form-1. Only for the viscous simulation with bulk viscosity to entropy density ratio

less than 0.01 times ζ/s the relative correction is less than 50%. Within the present

prescription for bulk viscous correction to the freezeout distribution function, these

results imposes a severe constraint on the bulk viscosity, ζ
s
≤ 0.01( ζ

s
)QCD.

We find from figures. 4.12 and 4.13 that the value of δfbulk is greater for the simula-

tions with Tfo = 130 MeV than for those with Tfo = 160 MeV. This can be understood
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Figure 4.14: Same as figure 4.12 but for elliptic flow v2.

in the following manner. As shown in equation 4.7, the values of Π on the freezeout

surface as well as the values of the prefactors D0, B0, and B̃0 at a given value of Tfo

determine the magnitude of δfbulk. The average magnitude of Π decreases from about

−5 × 10−6 GeV/fm3 at Tfo = 160 MeV to −2 × 10−5 GeV/fm3 at Tfo = 130 MeV.

However, the prefactor values as given in Table 4.2 increases with decrease in temper-

ature. So the observed Tfo dependence of δfbulk is due to the interplay of both the

temperature dependence of Π and prefactors.

Figure 4.14 shows the elliptic flow of pions for b=7.4 fm Au-Au collision as a function

of pT for ideal and bulk viscous evolution. The lines represents the same conditions as

described in figure 4.12. The relative correction to v2 is defined in the same way as for

the pT spectra and is shown in figures 4.15 (a) and (b) for Tfo=130 MeV and 160 MeV

respectively.

In all the above calculations, we have used the Boltzmann estimate for the relaxation

time for shear viscosity τΠ = τπ. We have investigated the effect of relaxation time on



119

pT (GeV)
0 1 2 3

δv
2/

v 2e
q

-2

-1

0

1

2

3

4

ζ/s
0.1 ζ/s
0.05 ζ/s
0.01 ζ/s

(a) Tf=130 MeV

pT (GeV)
0 1 2 3

δ v
2/

v 2
eq

0

1

2

3

ζ/s
0.1 ζ/s
0.05  ζ/s
0.01 ζ/s

(b) Tf=160 MeV

Figure 4.15: Same as figure 4.13 but for elliptic flow v2.

the pT spectra and elliptic flow. For relaxation times τΠ=0.1, 1, and 5 times τπ, we

have solved the hydrodynamic evolution and computed π− pT spectra and elliptic flow.

Results are shown in figure 4.16. If relaxation time is decreased by a factor of 10

from τΠ = τπ to τΠ = 0.1τπ, pT spectra or elliptic flow hardly changes. If relaxation

time is increased by a factor of 5, at large pT yield is reduced marginally. The effect

is more pronounced on elliptic flow: v2 is increased. Increased flow with increasing

relaxation time can be understood as follows: bulk stress evolve comparatively slowly

with increased τΠ and the non-equilibrium correction at the freeze-out is increased. This

will lead to larger v2.

Conclusions : The effect of bulk viscosity on pion pT spectra and elliptic flow was

studied by numerically solving 2+1D relativistic viscous hydrodynamics equations. Two

different parametrize form of ζ/s(T) was used along with constant η/s. To construct

ζ/s in the partonic phase we use lattice data. ζ/s in the hadronic phase is calculated

using a hadron resonance gas model including Hagedorn states with limiting mass of
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Figure 4.16: Effect of relaxation time on pT spectra and elliptic flow.

80 GeV.

A comparative study of ideal, shear, and bulk viscous evolution is also done. We

observe that the time variation of the temperature of the fluid remains similar for ideal

and bulk viscous evolution. However, in the presence of shear viscosity the cooling

rate is reduced. Because of the reduced pressure due to bulk viscosity, the transverse

velocity slightly decreases compared to the ideal fluid around freezeout time. The shear

viscosity on the other hand increases the transverse pressure, which results in a higher

transverse velocity compared to the ideal evolution. The observable consequence of the

above fact is reflected in the slope of the pT spectra of pion. The time evolution of spatial

eccentricity is almost unchanged in ideal and bulk viscous evolution. Due to the larger

transverse velocity in shear viscous evolution, the spatial deformation shows a rapid

change compared to the ideal fluid. The momentum anisotropy in the shear viscous

evolution grows at a much slower rate compared to the ideal evolution. The change in

the time variation of momentum anisotropy in the bulk viscous fluid with respect to

ideal case is observed at a late time of the evolution. This will have consequences on
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the observed elliptic flow of the hadrons.

The bulk viscous modification of the freezeout distribution function according to

Grad’s moment method has been considered. The change in pT spectra and v2 in

bulk viscous evolution with respect to the ideal simulation with no correction to the

freezeout distribution is within 5-10% depending on the form of ζ/s(T). However, a

large correction to both the pT spectra and elliptic flow was observed for bulk viscous

simulation with dissipative correction to the freezeout distribution function. Combined

study of pT spectra and v2 of pion in b=7.4 fm Au-Au collision with full bulk viscous

evolution puts a constraint on the applicability of Grad’s 14-moment methods. We

find the relative correction remains within 50% for bulk viscosity to entropy density

ratio less than 0.01 times ζ/s form-1. In absence of a reliable method for bulk viscous

correction to the freezeout distribution function, we do not include bulk viscosity in

2+1D viscous hydrodynamic simulations while extracting η/s from experimental heavy

ion collision data as will be discussed in the next chapter.



Chapter 5

Shear Viscosity at RHIC and LHC

5.1 Introduction

In the previous two chapters we have discussed the effect of shear and bulk viscosity

on the fluid evolution and on the charged hadron’s pT spectra and v2. In this chapter

we are going to discuss the application of viscous hydrodynamics simulations to explain

the experimental observables and extract the η/s of the fluid produced at top RHIC

and LHC energies. In chapter-4 we have mentioned that the bulk viscous correction

to the invariant yield of pions is large due to the specific method used to calculate

the dissipative correction to the freezeout distribution function. Hence, in this chapter

we will only consider the shear viscosity. In the next subsection we will discuss the

experimental observables which have been used in our study. This is followed by a very

brief discussion on application of relativistic transport model calculations to the heavy

122
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ion data. Finally we will compare our shear viscous hydrodynamic simulation results

to the available data at RHIC and LHC.

5.1.1 Experiments at RHIC and LHC

We have considered the experimental measurements of Au-Au
√
sNN=200 GeV colli-

sions at RHIC and Pb-Pb
√
sNN=2.76 TeV collisions at LHC to extract η/s of the

QCD matter by using the relativistic viscous hydrodynamics model. Specifically we

have taken the data from PHENIX and STAR experiments at RHIC and from ALICE

experiment at LHC.

5.1.2 Observables

Charged hadron pseudorapidity density per participating nucleon pair :

PHENIX collaboration has measured charged particle multiplicity per participating

nucleon pair at midrapidity ( 1
0.5Npart

dNcharge

dη
) in Au-Au collisions at

√
sNN= 200 GeV

as a function of centrality [150]. The experimental finding shows that the number of

produced charged hadrons per participating pair decreases by ∼ 35% from central to pe-

ripheral collisions (discussed later in figure 5.3). Centrality dependence of 1
0.5Npart

dNcharge

dη

is an important observable to understand the collision dynamics and geometry. In ref-

erence [150], a systematic comparison of experimentally measured 1
0.5Npart

dNcharge

dη
as a

function of centrality to various theoretical model calculations are given.
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In Large Hadron Collider experiment, ALICE collaboration has measured the 1
0.5Npart

dNcharge

dη

at midrapidity for Pb-Pb collision at
√
sNN=2.76 TeV [110]. The trend for the cen-

trality dependence of 1
0.5Npart

dNcharge

dη
is observed to be same as was measured for Au-Au

collisions at
√
sNN=200 GeV. However, the number of produced charged hadron is in-

creased by a factor of about 2 in Pb-Pb collisions at
√
sNN=2.76 TeV compared to

Au-Au collisions at
√
sNN=200 GeV. Measured value of dNcharge/dη at midrapidity for

0-5% Au-Au collision at
√
sNN=200 GeV is 687±37 [150]. The corresponding value for

Pb-Pb collision at
√
sNN=2.76 TeV is 1601±60 [110].

In our simulation we have used experimentally measured 1
0.5Npart

dNcharge

dη
to fix the

x fraction used in the two component Glauber model calculation of initial transverse

energy density profile.

Centrality dependence of charged hadron invariant yield : We have com-

pared our viscous hydrodynamics simulation with the experimentally measured charged

hadron invariant yield (dN/d2pTdη) as a function of pT for both Au-Au [151] and Pb-

Pb [152] collision at
√
sNN=200 GeV and 2.76 TeV respectively. The slope of the

dN/d2pTdη vs. pT is related to the effective temperature of the thermalized system

at the time of freezeout. The PHENIX measurement of charged hadron dN/d2pTdη

in Au-Au collisions at
√
sNN=200 GeV [151] has been done for pT range from 0.5-9.5

GeV for | η |< 0.35 (η is the pseudorapidity). We will compare our simulation to the

experimental data for pT range 0.5-3.0 GeV and for 0-50% collision centralities. The

ALICE measurement of charged hadron dN/d2pTdη in Pb-Pb collisions at
√
sNN=2.76
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TeV [152] has been done for the pT range 0.3-20 GeV for | η |< 0.8 for 0-5% and 70-80%

centrality. We will compare viscous hydrodynamics simulation results for pT < 3 GeV,

and for 0-5% centrality.

Centrality dependence of charged hadron elliptic flow : It has already been

stated that the elliptic flow coefficient (v2) is one of the important observables mea-

sured in high energy heavy-ion collisions at RHIC and LHC. Elliptic flow is defined as

v2 = 〈cos2(φ−Ψ)〉, where φ is the azimuthal angle of an emitted particle with respect

to the x axis, Ψ is the angle between the reaction plane (which contains impact param-

eter vector and beam direction which is taken along the z axis) to the x axis, and the

angular bracket denotes the averaging over particles and events. Elliptic flow, v2, and

other higher harmonics of the flow are treated as a definitive signature of collectivity of

the medium (discussed in chapter-2). For our comparative study between the viscous

hydrodynamics simulations and experimental data presented in this chapter, we have

used the v2 and v4 of charged hadrons measured by the PHENIX collaboration [153] for

√
sNN=200 GeV Au-Au collisions. The elliptic flow coefficient v2 is measured exper-

imentally by various methods like event plane method, two particle correlations, four

particle correlations etc. In reference [153], the PHENIX collaboration has used event

plane method to measure the charged hadrons v2, v3, and v4 for Au-Au
√
sNN=200

GeV collisions. The main difficulty to measure v2 or any other higher order flow har-

monics in experiment is due to the uncertainty in the estimation of the reaction plane

angle Ψ, which is not a direct experimental observable. The PHENIX collaboration

has used three different detector system (a) Beam Beam Counter (BBC), (b) reaction
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plane detector (RXN) of BBC, and (c) Muon-Piston Calorimeter (MPC) to estimate

the event plane angle. The BBC detector was used to estimate the centrality of the

collisions, RXN and MPC were used to estimate the reaction plane angle (Ψ) for a par-

ticular event. The event plane measurement detectors and flow measurement detector

are separated by 2-3 unit of rapidity which helps to reduce the effect of non-flow in the

measurement. The pad and drift chamber were used to reconstruct the momentum and

azimuthal distribution of the produced particles at mid-rapidity with azimuthal angle

coverage of φ = π radian. The experimental data shows that v2 increases with pT for a

particular centrality collision and it increases in the semi peripheral collisions compared

to the central collisions (the PHENIX estimation of v2 for Au-Au
√
sNN=200 GeV col-

lisions are shown later in figure 5.5). Experimentally measured v4 by the PHENIX

collaboration [153] shows similar behavior (as discussed later in figure 5.7). The pT

integrated elliptic flow data was taken from STAR experiment [161]. Where the time

projection chamber detector was used to measure v2 in the pseudo rapidity range | η |<

1.0.

We have also compared our viscous hydrodynamics simulation to the experimentally

measured v2 at LHC for Pb-Pb
√
sNN=2.76 TeV collision. The experimental measure-

ment of v2 was done by the central detectors of the ALICE experiment [154] for 10-50%

collision centrality at midrapidity by using 4 particle correlation method. The 4 par-

ticle correlation method does not need the information about the event plane angle.

The experimental finding shows that the measured value of v2 as a function of pT for

the 10-50% Pb-Pb
√
sNN=2.76 TeV collision is similar in magnitude to that of the v2

measured for Au-Au
√
sNN=200 GeV collision. However, a more flatter pT spectra at
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LHC compared to RHIC, results in a increase in the pT integrated elliptic flow value by

about 30% at LHC compared to RHIC.

5.1.3 Theoretical models

The space-time evolution of the matter produced in high energy heavy-ion collisions can

be described by using either a relativistic viscous hydrodynamic model or a relativistic

transport model simulation like A Multi Phase Transport model (AMPT) [21] and

Ultra Relativistic Quantum Molecular Dynamics (URQMD) [22] etc. For physically

reasonable values of initial parameter set, both the hydrodynamics and transport model

gives satisfactory description of various experimental observables. One can also estimate

the values of transport coefficients of the QCD matter by using these dynamical models.

One of the two model, relativistic viscous hydrodynamics is the main topic of this

dissertation and the detail comparison of viscous hydrodynamic simulation result to

the experimental observables measured at RHIC and LHC will be presented in the

subsequent sections. Like all the other models, relativistic viscous hydrodynamics has

its own limitation. For example, it is known from kinetic theory calculations [131, 155,

156] that the value of specific shear viscosity (η/s) is quite large in the hadronic phase.

In a relativistic viscous hydrodynamics model, a large value of shear or bulk viscosity

introduce a large dissipative correction to the energy-momentum tensor. This large

dissipative correction to the T µν ultimately leads to the breakdown of the assumption

of near local thermal equilibrium and the viscous hydrodynamics will no longer be a

valid model without that assumption. On the other hand, transport models does not
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Figure 5.1: Left Panel : Transverse momentum dependence of charged hadron elliptic
flow at midrapidity. The experimental data for Au-Au

√
sNN=200 GeV collision mea-

sured by the PHENIX collaboration are shown by filled square [158]. The simulated
v2 from AMPT for two different sets of parameter are shown by red circles and blue
triangles. Right Panel : Temperature dependence of specific shear viscosity (ηs/s) in
the partonic matter calculated in [157]. A specific set of parameter was used for the
calculation.

rely upon the assumption of near local thermal equilibrium and will work for a non-

equilibrated system. In the following we will discuss a few results obtained from a

transport model calculation AMPT. The details of the model and the parameters used

for the study can be found in reference [157].

Transport model : The left panel of figure 5.1 compares the simulated results of

elliptic flow v2 obtained from the AMPT model calculation [157] with the experimental

data for Au-Au
√
sNN=200 GeV collision [158]. The v2 calculation from AMPT model

for Au-Au collision at RHIC has been done for two set of input parameters (shown by

red and blue lines in the left panel of figure 5.1). The details of selecting the values of

parameters can be found in the original work by Xu et. al [157]. Reasonable agreement

between the data and transport simulation is observed.
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In reference [157], the specific shear viscosity (η/s) of the quark gluon plasma pro-

duced in heavy ion collision at RHIC and LHC was also estimated. The calculated

values of η/s as a function of temperature is shown in the right panel of figure 5.1. We

will discuss about the formula used to estimate η/s in such a transport approach [157]

in a later paragraph of this chapter.

With this brief discussion on transport model calculation in heavy-ion collision,

now we present our study of the application of relativistic viscous hydrodynamics in

heavy-ion collision. In the following sections we will compare viscous hydrodynamics

simulation to various experimental observables measured at RHIC and LHC and will

try to estimate the approximate value of η/s.

5.2 η/s at RHIC

5.2.1 Input to viscous hydrodynamics

We have already discussed about the inputs necessary for 2+1D viscous hydrodynamics

simulation in chapters 2 and 3. These inputs are free parameter in a viscous hydrody-

namics simulation and their values are adjusted to explain the experimental data. In

the following we have written the values of the input parameters used in our simulation

for Au-Au
√
sNN=200 GeV collision.

• Initial time : 0.6 fm,
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• Initial energy density profile : ε(b, x, y) = ε0[(1−x)Npart(b,x,y)
2

+xNcoll(b, x, y)],

• Fraction of hard scattering : x=0.9,

• Initial energy density and temperature : See table 5.1.

Table 5.1: ε0 and Ti values for various η/s.
η/s 0 0.08 0.12 0.16 0.18
ε0 43.4± 3.5 36.5± 2.5 32.5± 2.2 27.7± 2.0 25.4± 2.0

(GeV/fm3)
Ti 410± 7 392± 7 382± 6 367± 6 360± 6

(MeV)

• Initial transverse velocity : vx(x, y) = vy(x, y) = 0,

• Initial shear stresses :πxx = πyy = 2η/3τ0, π
xy=0,

• Relaxation time for shear stress : τπ = 3η/2p

• Freezeout temperature : Tfo = 130 MeV.

In figure 5.2 we show the estimate of the initial central energy density ε0 for various

values of η/s. This is done by matching the experimentally measured charged hadron

multiplicity-density at midrapidity for 0-5% Au-Au collision at
√
sNN = 200 GeV mea-

sured by the PHENIX collaboration [150]. Their values along with the uncertainty and

the corresponding initial temperature are given in table 5.1. The uncertainties are due

to the errors associated with the experimental measurement of charged hadron multi-

plicity density which is shown as a red shaded band in figure 5.2. Viscous fluid evolution

is associated with entropy generation, to produce a fixed multiplicity, lower value of ε0

is required compared to the ideal fluid.
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Figure 5.2: The experimental measurement of charged hadron multiplicity-density at
midrapidity (687 ± 37) for 0-5% Au-Au collision at

√
sNN = 200 GeV by the PHENIX

collaboration [150] is shown by the red shaded region with the corresponding error.
Charged hadron multiplicity obtained from ideal and viscous hydrodynamics simulation
for varying ε0 are shown by the lines and symbols.

5.2.2 Results

With all the model parameters fixed we present below a study of the centrality depen-

dence of simulated charged particles multiplicity, pT spectra, v2, and v4 in
√
sNN=200

GeV Au-Au collisions.

Charged hadron multiplicity per participant pair : In the left panel of figure 5.3

shows the simulated ( 1
0.5Npart

dNch

dη
) results for ideal fluid (curves) with different x fraction

compared with the corresponding PHENIX measurements (open circles)[150]. In all

the simulations, the central energy density ε0 is fixed to reproduce the experimental

multiplicity of charged hadron in central (0-5%) collision. We find that the simulations

with x fraction of 0.9 reproduces the experimental measured charged particle-density

as a function of number of participating nucleons. The ideal hydrodynamics simulation
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Figure 5.3: Left panel : PHENIX measurements for the centrality dependence of charged
particles multiplicity per participating nucleon pair (open circles) [150] are compared
with ideal hydrodynamical simulations for hard scattering fraction (x) 0.14 (pink dash
dot-dot), 0.3 (blue dash dot), 0.6 (red dashed), and 0.9 (solid black). Right panel :
Same as left panel but for x fraction 0.9 and η/s=0 (black solid curve), 0.08 (red dashed
curve), 0.12 (blue dash dotted curve), 0.16 (pink dash-dot-dot curve), and 0.18 (green
dotted curve).

with x < 0.9 overpredict the experimental data for peripheral collisions. There is an

alternate procedure for initializing the energy density. In such an approach the initial

entropy density profile is parametrized using a two component model as discussed in

[159, 160] from which the initial energy density profile is obtained. In such an entropy

density parametrization the optimum value of the x fraction is ∼ 0.1. In subsequent

results we have used the value of x fraction equals to 0.9, which best describe the

centrality dependence of charged hadron pseudorapidity density at midrapidity (as seen

in figure 5.3).

The right panel of figure 5.3 shows the comparison of experimentally measured

1
0.5Npart

dNch

dη
to the ideal (black solid curve) and viscous hydrodynamics simulation with

η/s= 0.08 (red dashed curve), 0.12 (blue dash dotted curve), 0.16 (pink dash-dot-dot

curve), and 0.18 (green dotted curve) for x=0.9. The simulations are carried out by fix-
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Figure 5.4: PHENIX measurements for charged particles pT distribution in 0-50% Au-
Au collisions (open circles) [151] are compared with hydrodynamic simulations (different
lines) for η/s=0-0.18 (bottom to top).

ing the value of ǫ0 to reproduce the value of the measured charged particle multiplicity-

density for 0-5% Au-Au collision at
√
sNN = 200 GeV. The centrality dependence of

the result indicates that within the experimental errors associated with the charged

particle multiplicity density, this observable is not very sensitive to the various input

values of η/s.

Centrality dependence of charged particles pT spectra : PHENIX measure-

ments for charged particles pT spectra in 0-10%, 10-20%, 20-30%, 30-40%, and 40-50%

centrality collisions at mid-rapidity (open circles) [151] are compared with hydrodynam-
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ical simulations (curves) in figure 5.4. The viscous hydrodynamic simulation has been

carried out for five different η/s=0 (black solid), 0.08 (red dashed), 0.12 (dash dotted),

0.16 (dash-dash-dash), and 0.18 (green dotted curve). As discussed in chapter-3, the

shear viscosity increases the transverse velocity (vT ) of the fluid and hence makes the

pT spectra flatter. This effect of shear viscosity on spectra is evident in figure 5.4. Com-

pared to the ideal fluid, in viscous evolution, high pT production of charged hadrons is

enhanced. In order to get a quantitative estimate of the matching between the experi-

mental data and the hydrodynamic simulation we have carried out a χ2 analysis. The

χ2 per degrees of freedom is defined as

χ2

N
=

1

N

N∑

i=1

[
TH(i)− EX(i)

E(i)

]2
, (5.1)

where TH(i) is the theoretical estimates, EX(i)and E(i) are corresponding experimen-

tal measurement and related errors, and N is the number of experimental data points.

In table 5.2, χ2 values are listed. From the comparison of experimentally measured pT

spectra for centrality 0-50% with viscous hydrodynamics simulation we can conclude

that PHENIX data on charged particles pT spectra in 0-10% collisions do not demand

any viscosity. Whereas for other centralities the experimental data is well reproduced

with a small (∼ 0.08-0.12) value of η/s.

Centrality dependence of charged hadron elliptic flow : The viscous hydrody-

namics simulations (curves) along with the experimentally measured centrality depen-

dence of charged hadron elliptic flow (open boxes) as a function of pT for Au-Au collision
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Table 5.2: χ2/N values for the fit to the PHENIX data for different values of viscosity
to entropy ratio.

χ2/N
Data set η/s = 0.0 η/s=0.08 η/s=0.12 η/s=0.16 η/s=0.18

charged particles 0.14 0.29 0.44 0.15 0.05
multiplicity

spectra: 0-10% 11.97 22.34 41.81 77.75 107.2
spectra: 10-20% 4.70 11.0 27.30 63.30 95.0
spectra: 20-30% 2.95 5.10 19.90 62.50 102.5
spectra: 30-40% 5.40 2.70 14.50 59.60 105.0
spectra: 40-50% 14.20 3.50 6.40 44.70 84.90
v2 integrated 7.91 6.87 7.30 8.08 8.93
v2: 0-10% 1.52 13.48 24.30 34.45 38.36
v2: 10-20% 80.29 10.17 0.23 5.19 12.49
v2: 20-30% 165.51 30.56 2.67 2.75 6.40
v2: 30-40% 111.25 11.87 1.00 6.10 11.03
v2: 40-50% 184.10 39.69 12.23 5.89 3.53

at
√
sNN= 200 GeV [153] are shown in five panels of the figure 5.5. Like the pT spectra,

charged hadron v2 do not demands any viscosity in most central (0-10%) collision. It is

also evident from the χ2 value as shown in table 5.2 . As already discussed in chapter-3,

the momentum anisotropy (ǫp) decreases in shear viscous evolution compared to ideal

fluid and hence v2 decreases with increasing value of η/s. This trend is observed in

the simulations shown in figure 5.5. From the comparison between experimental data

and viscous hydrodynamic simulations we observe that in peripheral collisions the fluid

is more viscous (with a higher value of η/s) than in central collisions. In summary,

charged hadron v2 data in 0-10% is best explained by simulations with η/s=0, 10-20%

for η/s=0.12 and the higher centralities for η/s around 0.16.
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Figure 5.5: In five panels, PHENIX measurements for charged particles elliptic flow
in 0-10%, 10-20%, 20-30%, 30-40% and 40-50% for Au-Au collisions at

√
sNN=200

GeV are shown by the open boxes [153]. The solid, short dashed, dashed dotted and
long dashed lines are hydrodynamic model simulation for elliptic flow for fluid viscosity
η/s=0 (black solid curve), 0.08 (red dashed curve), 0.12 (blue dash dotted curve),
0.16 (pink dash-dot-dot curve), and 0.18 (green dotted curve) respectively.
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Figure 5.6: The pT integrated elliptic flow at midrapidity as a function ofNpart measured
by STAR collaboration [161] for

√
sNN=200 GeV Au-Au collision are shown by solid

circles. The hydrodynamical simulation for η/s=0 (black solid curve), 0.08 (red dashed
curve), 0.12 (blue dash dotted curve), 0.16 (pink dash-dot-dot curve), and 0.18 (green
dotted curve) are also shown.

Centrality dependence of charged hadron integrated elliptic flow : Figure 5.6

shows the pT integrated v2 measured by the STAR collaboration [161] for
√
sNN = 200

GeV Au-Au collision at midrapidity as a function of number of participating nucleons.

Our viscous hydrodynamics simulation results for different values of η/s are also shown.

The solid black line is the simulated result for ideal fluid (η/s=0), the results for η/s

= 0.08, 0.12, 0.16, and 0.18 are shown as red dashed curve, blue dash dotted curve ,

pink dash-dot-dot, and green dotted curves respectively. We find that our simulations

explain the data for mid-central collisions (0-10% to 30-40%). For 0-5% central collision

the simulation results are lower than the experimental data. This difference between

simulation and data could be understood by considering different initial conditions such

as (a) transverse energy density profile based on Color Glass Condensate (CGC) or (b) a

fluctuating initial condition by using event by event hydrodynamics. Results with CGC

initial conditions are discussed in appendix C. For 40-50% collision, the simulated
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results are higher compared to the experimental data. This indicates that the higher

value of η/s is needed to explain the data. However, simulation with higher values of

η/s within the current simulation framework is difficult to carry out because of large

viscous correction to the equilibrium energy momentum tensor.

Centrality dependence of charged hadron v4 : The flow associated with the

fourth harmonic (v4) of the Fourier expansion of the azimuthal angle (φ) distribution of

produced particles with respect to reaction plane angle (Ψ) is defined as 〈cos4(φ−Ψ)〉.

The open boxes in 5.7 are the experimental measurements for v4 in
√
sNN = 200 GeV

Au-Au collision [153].

The corresponding hydrodynamics simulations are shown by curves for η/s=0 (solid

black), 0.08 (red dashed), and 0.12 (dash dotted). Like v2 the values of v4 also decreases

with increase in η/s. The experimental v4 data for 0-10% , 10-20%, and 20-30% centrali-

ties are underestimated in ideal fluid simulations. v4 for 30-40% and 40-50% centralities

agrees with the ideal hydrodynamics simulation. This observation is in sharp contrast

to what we have seen above for the case of elliptic flow in figure 5.5. In order to under-

stand the v4 results, it is important to investigate in future the role of initial conditions

in viscous hydrodynamics simulation. The results with a CGC based initial conditions

for the viscous hydrodynamics simulations are discussed in appendix C. These observa-

tions also emphasizes the need to experimentally measure the higher harmonics of flow

for charged hadrons.
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Figure 5.7: The open boxes are PHENIX measurements for charged particles v4 in 0-
10%, 10-20%, 20-30%, 30-40%, and 40-50% Au-Au collisions at

√
sNN=200 GeV [153].

The solid, dashed, and dashed dotted lines are hydrodynamic model simulation for v4
for fluid viscosity η/s=0 (black solid curve), 0.08 (red dashed curve), and 0.12 (blue
dash dotted curve) respectively.



140

5.2.3 Comparison to other estimates of η/s
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Figure 5.8: Extracted values of η/s for Au-Au collision at
√
sNN = 200 GeV by different

model calculations using different experimental observables. The solid vertical line at
the left shows the lower limit of η/s in unit of 1/(4π) [68]. For comparison we have also
shown the η/s of He at Tc (blue dashed line).

The figure 5.8 shows the extracted values of η/s in different model calculations for

Au-Au collisions at
√
sNN=200 GeV. Most of the estimates are obtained by comparing

experimental data for elliptic flow with model calculations. Some of the estimates used

pT correlations and heavy meson v2 data. The theoretical calculations include simula-

tions with transport based approach as well as 2+1D and 3+1D viscous hydrodynamics

with various initials conditions. Also shown are the results from lattice QCD calcula-

tion. Our estimate of η/s based on the results discussed in the previous paragraphs are

shown on the top row of figure 5.8 as red star. All these results indicates that the η/s

value of the QGP fluid produced at top RHIC energies lies within 1-5 ×1/4π and is be-

low the η/s value of helium (blue dashed line) at Tc. The spread in the estimated values

of η/s reflects the current uncertainties associated with the theoretical calculations.
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5.3 η/s at LHC

In this section we will discuss the comparison between the experimental data for Pb-Pb

√
sNN=2.76 TeV collision at mid-rapidity to the viscous hydrodynamics simulations.

The centrality dependence of charged particle pseudorapidity density, pT spectra (0-

5%), average v2, and v2 vs. pT are used to extract η/s.

5.3.1 Input to viscous hydrodynamics

We have discussed the inputs necessary for 2+1D viscous hydrodynamics simulation

several times. Here we will only mention their values appropriate for Pb-Pb
√
sNN=2.76

TeV collision.

• Initial time : 0.6 fm,

• Initial energy density profile : ε(b, x, y) = ε0[(1−x)Npart(b, x, y)+xNcoll(b, x, y)],

• Fraction of hard scattering : x=0.9,

• Initial energy density and temperature : See table 5.3.

• Initial transverse velocity : vx(x, y) = vy(x, y) = 0,

• Initial shear stresses :πxx = πyy = 2η/3τ0, π
xy=0,

• Relaxation time for shear stress : τπ = 3η/2p
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Table 5.3: ε0 and Ti values for various η/s.
η/s 0 0.08 0.12 0.16
ε0 153.0± 6.0 135.0± 5.5 123.8± 5.2 111.3± 4.6

(GeV/fm3)
Ti 557± 5 541± 6 530± 5 516± 4

(MeV)

• Freezeout temperature : Tfo = 130 MeV.

In figure 5.9 we show the estimate of the initial central energy density ε0 for various

η/s so as to match the experimentally measured charged hadron multiplicity-density

at midrapidity for 0-5% Pb-Pb collision at
√
sNN = 2.76 TeV measured by the ALICE

collaboration [110]. Their values along with the uncertainties and the corresponding

initial temperatures are given in table 5.3. The uncertainties are due to the errors

associated with the experimental measurement of charged hadron multiplicity density

which is shown as a red shaded band in figure 5.9. Viscous fluid evolution is associated

with entropy generation, to produce a fixed multiplicity, lower values of ε0 are required

compared to the ideal fluid. The initial temperature achieved in central Pb-Pb collision

at LHC is about 1.6 times larger than at RHIC.

5.3.2 Results

With all the model parameters fixed we can study the centrality dependence of simulated

charged particles multiplicity, pT spectra, and v2 in
√
sNN=2.76 TeV Pb-Pb collisions.
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Figure 5.9: The experimental measurement of charged hadron multiplicity-density at
midrapidity for 0-5% Pb-Pb collision at

√
sNN = 2.76 TeV by the ALICE collaboration

is shown by red shaded region with the corresponding error [110]. Charged hadron
multiplicity obtained from ideal and viscous hydrodynamics simulation for varying ε0
are shown by the lines and symbols.
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Figure 5.10: ALICE measurements for centrality dependence of charged particles mul-
tiplicity per participating nucleon pair (solid circles) [110] are compared with hydrody-
namical simulations for η/s=0 (small dashed), 0.08 (dash dotted), 0.12 (long dashed),
and 0.16 (solid curve).
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Charged hadron multiplicity per participant pair : In figure 5.10 simulation

results (curves) for charged particles multiplicity per participant pairs are compared

with the ALICE measurements (solid circles)[110]. Even though, fluid was initialized to

reproduce experimental multiplicity in 0-5% collisions, in peripheral collisions, viscous

fluid produces more particles than an ideal fluid. The reason is understood. Viscous

effects depend on the velocity gradients. Velocity gradients are more in a peripheral

collisions than in a central collisions, so is the viscous effect. To be quantitative about

the fit to the data in ideal and viscous hydrodynamics, we have computed χ2 values for

the fits, they are listed in table 5.4. Best fit to the data is obtained in the ideal fluid

approximation. The results with viscous evolution gives a higher (a factor of 2-5) χ2

value. We can conclude that ALICE charged particle multiplicity data in
√
sNN=2.76

TeV Pb-Pb collisions do not demand any viscosity.

Charged particle pT spectra in 0-5% collision : ALICEmeasurements for charged

particles pT spectra in 0-5% collisions at mid-rapidity (solid circles) [152] are compared

with hydrodynamical simulations (curves) in figure 5.11. We have initialized the fluid

to reproduce pT integrated charged particles multiplicity in 0-5% collision. Such an

initialisation do reproduces experimental pT spectra reasonably well. Effect of viscosity

on spectra is also evident. Compared to the ideal fluid, in viscous evolution, high pT

production is enhanced. In table 5.4, χ2 values for the fits are listed. Charged particle

pT spectra in 0-5% collision is equally well explained in ideal (χ2/N= 10.26) and vis-

cous (η/s=0.08) fluid (χ2/N= 10.58) evolution. We can conclude that ALICE data on

charged particles pT spectra in 0-5% collisions, demand the fluid viscosity with range
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Figure 5.11: The solid circles are the ALICE measurements for charged particles pT
distribution in 0-5% Pb-Pb collisions [152]. The lines are hydrodynamic simulations for
η/s=0-0.16 (bottom to top).

η/s=0-0.08.

Centrality dependence of differential elliptic flow : ALICE collaboration em-

ployed various methods, e.g. 2 and 4 particle cumulant, q-distribution, Lee-Yang zero

method etc, to measure charged particles elliptic flow in Pb-Pb collisions [154]. Flow

in 4-particle cumulant method, Lee-Yang zero method and q-distribution is consistent

with each other. 2-particle cumulant method however results in ∼15% higher flow. In

figure 5.12, ALICE measurements for elliptic flow v2{4}, in 4-particle cumulant method,

in 10-20% ,20-30%, 30-40%, and 40-50% collision centralities are shown (the solid cir-

cles) [154]. ALICE collaboration measured elliptic flow upto pT ≈ 5 GeV. In figure 5.12,

we have shown the measurements only upto pT=3 GeV. Hydrodynamical model are not

well suited for large pT . Sources other than thermal also contribute to the particle

production at large pT . The continuous, small dashed, dashed dot, and medium dashed

lines in figure 5.12 are simulated elliptic flow for pions in hydrodynamic evolution of

fluid with viscosity to entropy density ratio η/s=0.0, 0.08, 0.12, and 0.16 respectively.
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Figure 5.12: In four panels, ALICE measurements for charged particles elliptic flow in
10-20%, 20-30%, 30-40%, and 40-50% Pb-Pb collisions are shown by solid circles [154].
The solid, short dashed, dashed dotted and long dashed lines are hydrodynamic model
simulation for elliptic flow for fluid viscosity η/s=0, 0.08, 0.12, and 0.16 respectively.

As expected with increasing η/s the v2(pT ) decreases. We observe that for peripheral

collisions experimental data need more viscous fluid than in central collisions.

Centrality dependence of integrated elliptic flow : In figure 5.13 ALICE mea-

surements for integrated elliptic flow in 4-particle cumulant method are compared with

hydrodynamical simulations for elliptic flow. Elliptic flow depend sensitively on viscos-

ity, flow reducing with increasing viscosity. Reduction is more in peripheral than in

central collisions. As argued previously, viscous effects are more in peripheral than in

central collisions. For viscosity, η/s=0.16, in very peripheral collisions, experimental

centrality dependence is not reproduced, data are under predicted. χ2/N values for

the fits to the data are noted in table 5.4. Unlike the centrality dependence of charged

particles multiplicity or pT spectra (0-5%), best fit to the ALICE data on integrated
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Figure 5.13: The pT integrated elliptic flow at midrapidity as a function of Npart,
measured by the ALICE collaboration for

√
sNN=2.76 TeV Pb-Pb collision are shown

by solid triangles [154]. The hydrodynamics simulation for η/s=0 (small dashed curve),
0.08 (dash dotted curve), 0.12 (long dashed curve), and 0.16 (solid black curve), are
also shown.

elliptic flow is obtained for η/s=0.08.

Discussion : In the present analysis we have used some specific initial conditions, e.g.

initial time τ0=0.6 fm, initial fluid velocity vT = 0, hard scattering fraction x = 0.9,

boost-invariant shear stress tensor etc. All possible initial conditions are not explored.

The systematic uncertainty in η/s due to various uncertainties in the initial conditions

was estimated as large as 175% [124]. A combined χ2 analysis of the simulated results for

various η/s and the experimental data on the charged particle multiplicity, pT spectra

(0-5% centrality), v2(pT ) vs. pT (10-50% centrality), and integrated v2 are shown in

figure 5.14 (solid circles). Parabolic fit (solid curve) to the combined χ2/N versus η/s

gives the minimum at η/s=0.08 with the corresponding error ±0.02. The presently

extracted value of η/s = 0.08 ± 0.02 from the experimental data will be even more

uncertain, if all possible initial conditions are accounted for.
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Table 5.4: χ2/N values for the fit to the ALICE data for different values of viscosity to
entropy ratio.

χ2/N
Data set η/s = 0.0 η/s=0.08 η/s=0.12 η/s=0.16

charged particles 0.93 2.57 4.07 5.11
multiplicity

0-5% 10.26 10.58 18.87 25.57
pT spectra
v2 integrated 14.71 2.06 8.88 35.53
v2: 10-20% 6.72 4.72 7.75 15.24
v2: 20-30% 22.57 8.24 8.79 19.20
v2: 30-40% 42.68 13.09 10.32 24.77
v2: 40-50% 32.69 9.63 4.30 9.15

η/s
0.00 0.05 0.10 0.15 0.20

χ2 /N

0

10

20

Figure 5.14: χ2/N values for the fits to the ALICE combined data set (see text). The
solid line is a parabolic fit to the χ2 values.
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5.3.3 Comparison to other estimates of η/s

χ2 analysis of all the combined data discussed above (figure 5.14) shows that the shear

viscosity to entropy density ratio is very close to the string theoretical prediction of the

lower limit of η/s. Our estimated η/s is compared to other model calculations in figure

5.15. All the model calculations indicates that the values of η/s of the QCD matter

formed in heavy-ion collision at LHC lies between 1-4×(1/4π). The specific shear viscos-

ity was obtained in reference [157] by using A Multi Phase Transport model (AMPT).

They explain the experimentally measured charged particle pseudorapidity density per

participating nucleon pair, elliptic flow (v2(pT )) in 40-50% centrality, and the centrality

dependence of v2 for Pb-Pb collision at
√
sNN = 2.76 TeV. The model parameters that

describe the ALICE data are initial temperature T=468 MeV, and parton-parton cross

section of 1.5 mb (the corresponding value of strong coupling constant αs= 0.47 and

screening mass µ = 1.8fm−1). Considering only up and down quarks the shear viscosity

to entropy density ratio was calculated by the following formula

η/s ≈ 3π

40α2
s

1
(
9 + µ2

T 2

)
ln

(
18+ µ2

T2

µ2

T2

)
− 18

. (5.2)

The estimated η/s for LHC energy was calculated to be 0.273 (shown in figure 5.15).

Bozek [162] has estimated the specific shear viscosity of the fluid for LHC energy

by using a 2+1D viscous hydrodynamics model. The initial parameters used in his

calculation are similar to that used by the present author except (a) entropy density was

initialized with hard scattering fraction x ∼ 0.15. In addition to shear viscosity, bulk

viscosity (ζ/s=0.04) in the hadronic phase was considered. Freezeout and resonance
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Figure 5.15: Extracted values of η/s for Pb-Pb collision at
√
sNN = 2.76 TeV by

different model calculations. The solid vertical line at the left shows the lower limit
of η/s in unit of 1/(4π) [68]. For comparison we have also shown the η/s of He at Tc
(green dashed line).

decay was based on THERMINATOR event generator [163]. Experimental data are

best fitted with η/s ∼ 0.08.

A 3+1D viscous hydrodynamics calculation with fluctuating initial conditions was

done by Schenke et. al in reference [164]. They explain the v2(pT ) and pT integrated v2

for different centralities. Their calculation shows that the experimental data measured

at LHC by the ALICE collaboration are best described for η/s value 0.08 or smaller.

Luzum et al. [78] have estimated η/s by using a 2+1D viscous hydrodynamics simula-

tion with smooth initial conditions for LHC energy to be same as at RHIC, η/s=0.1±

0.1 (theory) ± 0.08 (experiment).



Chapter 6

Summary and Outlook

The transport coefficients of the QCD matter are important physical quantities of in-

terest. One way to estimate the transport coefficients of the QCD matter is to do a

non-perturbative QCD calculation on lattice [70, 71, 127]. However, current calcula-

tions on lattice have large uncertainties. The alternate approach is to compare results

from the model calculation, e.g. second order viscous hydrodynamics, to those mea-

sured in the experiments involving high energy heavy ion collision. This is because the

collisions at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider

(LHC) have confirmed the formation of a deconfined state of quarks and gluons called

the quark-gluon-plasma (QGP) [5, 41, 122]. The data from these experiments thus

provide an unique opportunity to extract the transport coefficients of the QGP state.

This later approach forms the major part of this thesis work. Our studies presented

here have concentrated on extracting the shear viscosity to entropy density ratio (η/s)
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at RHIC and LHC energies. The value of η/s of the QGP is found to lie between 1-4

times the KSS bound [68] and is consistent with similar calculations done by other

groups [76, 78, 165, 166, 167, 168, 169, 170, 171, 172, 157, 162, 164]. Towards achieving

this goal of extracting η/s of the QCD matter, several steps were undertaken, we discuss

these briefly below.

Development of 2+1D viscous hydrodynamics numerical code : For the sim-

ulation results presented in this thesis we have used the 2+1D viscous hydrodynamics

code ”‘AZHYDRO-KOLKATA”’ [83, 84]. It is based on the second order Israel-Stewart

theory of causal viscous hydrodynamics, which solves the energy-momentum conserva-

tion equation, and relaxation equations for shear and bulk viscosity by assuming lon-

gitudinal boost invariance. Numerical solution of these equations are done with the

help of a multi dimensional flux corrected transport algorithm called Smoothed And

Sharp Transport Algorithm (SHASTA). Details of the numerical set up are discussed in

chapter-2. The major contribution of this thesis work towards the development of the

viscous hydrodynamics code ”‘AZHYDRO-KOLKATA”’ is through the implementation

of bulk viscosity to both energy-momentum and relaxation equations. In addition, bulk

viscous correction to the freezeout distribution function is also included. The detail

study of the temporal evolution of shear and bulk stress, temperature, transverse ve-

locity, spatial and momentum eccentricity, and the effect of shear and bulk viscosity on

invariant yield and differential elliptic flow as a function of pT are discussed in chapters

3 and 4.
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To solve these hydrodynamic equations we need to provide initial conditions. In this

thesis we have used a two component Glauber model based initial condition to calculate

the initial energy density in transverse plane. In such an approach, the hard scattering

fraction parameter (x) plays an important role. We have studied in detail the effect

of varying hard scattering fraction x in the initialization of energy density on charged

hadron pT spectra and v2(pT ) for different collision centralities [109]. The details of

this study is presented in appendix B. For comparing to experimental data the x value

is fixed to that which best described the measured dNch/dη as a function of collision

centrality. The choice of a different initialization based on Color Glass Condensate

model on pT spectra and v2 is discussed in appendix C.

In order to solve the energy-momentum conservation equations we need to provide

an Equation of State (EoS). Equation of state is constructed by combining a recent

lattice QCD calculation with 2+1 flavors [10], physical quark mass and quark hadron

transition with a crossover temperature at ∼ 170 MeV for vanishing net baryon density

with a hadron resonance gas model considering all hadrons and resonances below mass

2.5 GeV.

We have used Cooper-Frey freezeout prescription to calculate hadron spectra from a

constant temperature freezeout hypersurface. The resonance decay contribution to the

thermal pion yield calculated on the freezeout surface is also included. The following

decay channels of unstable hadrons with the corresponding branching ratios has been

considered, ρ0,− → π−π+,0, K∗−,0 → π−K0,+,∆ → π−N,ω → π+π−π0, η → π+π−π0.

We find the resonance contribution to the total pion yield at freezeout temperature of
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130 MeV is about ∼ 30% and 50% at
√
sNN=200 GeV and 2.76 TeV respectively.

Extracting η/s of the matter formed in heavy-ion collisions: Most of the

studies presented in this thesis have focused primarily on comparison of our simulated

results to two experimental data sets (i) Au-Au collision at
√
sNN=200 GeV and (ii) Pb-

Pb collision at
√
sNN=2.76 TeV. The details of which have been presented in chapter-5.

For Au-Au collisions the experimental data includes dNch/dη vs. Npart, dN/d
2pTdη

vs. pT , v2 vs. Npart, v2(pT ) vs. pT , and v4(pT ) vs. pT . The collision centrality

studied for these data sets at midrapidity are 0-10%, 10-20%, 20-30%, 30-40%, and

40-50%. The viscous hydrodynamics simulations were carried out for the following

temperature independent input values of η/s=0.0, 0.08 , 0.12, 0.16, and 0.20. The

observable dNch/(0.5Npartdη) vs Npart is found to be insensitive to the various input

values of η/s used in the simulation within the experimental errors associated with

the charged particle multiplicity density. We find that shear viscosity increases the

transverse velocity (vT ) of the fluid and hence pT spectra becomes flatter. Compared

to ideal fluid, in viscous evolution, high pT production is enhanced. We find that

the charged particles pT spectra in 0-10% Au-Au collisions at
√
sNN=200 GeV do not

demand any viscosity. Whereas for other centralities the experimental data are well

reproduced by viscous hydrodynamics simulations with a small (∼ 0.08-0.12) value of

η/s. The momentum anisotropy (ǫp) decreases in shear viscous evolution compared

to the ideal fluid and hence v2 decreases with increasing values of η/s. We find that

the data on v2(pT ) vs. pT is most sensitive to the value of η/s. From the comparison
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between experimental data and viscous hydrodynamic simulations we observe that for

peripheral collisions the fluid is more viscous (with higher values of η/s) compared to

central collisions. The charged hadron v2 data in 0-10% is best explained for simulations

with η/s=0, 10-20% for η/s=0.12 and the remaining centralities for η/s around 0.16.

Similar conclusions are drawn for v2 vs. Npart. We find in simulations, like v2, the values

of v4 also decreases with increase in η/s. The experimental data for 0-10% , 10-20%, and

20-30% centralities are above the ideal hydrodynamics simulation. Data for 30-40% and

40-50% centralities agrees with the ideal hydrodynamics simulation. This observation

is in sharp contrast to what we have seen for the case of elliptic flow. In order to

understand the v4 results, it is important to investigate in future the role of initial

conditions in viscous hydrodynamics simulation. These observation also emphasizes

the need to experimentally measure the higher harmonics of flow for charged hadrons.

For Pb-Pb collisions the experimental data includes dNch/dη vs. Npart (0-70% col-

lision centrality), dN/d2pTdη vs. pT (0-5% collision centrality), v2 vs. Npart (0-70%

collision centrality), and v2(pT ) vs. pT (10-20%, 20-30%, 30-40% and 40-50% collision

centralities). The differences in the collision centralities compared to Au-Au collisions

are primarily due to the availability of the experimental data at the time of this study.

The viscous hydrodynamics simulations were carried out for the following temperature

independent values of η/s=0.0, 0.08 , 0.12, and 0.16. The general conclusions for the

various observables are similar to that seen for Au-Au collisions. The charged particles

multiplicity data in
√
sNN=2.76 TeV Pb-Pb collisions do not demand any viscosity

[105]. We observe that v2(pT ) vs. pT for peripheral collisions needs higher values of η/s

compared to central collisions [119]. This is also true for the centrality dependence of
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pT integrated v2. The best fit to the Pb-Pb data on integrated elliptic flow considered

in this study is obtained for viscous hydrodynamic simulations with η/s=0.08. In the

present analysis we have used some specific initial conditions, e.g. initial time τi=0.6

fm, initial zero fluid velocity, hard scattering fraction 0.9, boost-invariant shear stress

tensor etc. All possible initial conditions are not explored in the work presented here.

The systematic uncertainty in η/s due to various uncertainties in initial conditions could

be as large as 175%. The presently extracted value of η/s = 0.08 ± 0.02 will be even

more uncertain, if all possible initial conditions are accounted for.

We observed for the RHIC energy, the extracted value of η/s lies between 1-4×1/4π,

and at LHC the η/s is similar and lies close to 1/4π. This led to the conclusion that

a strongly coupled quark gluon plasma has been created in the heavy-ion collisions at

both RHIC and LHC energy.

Outlook : In recent times there has been much progress in the field of application of

relativistic viscous hydrodynamics to the high energy heavy-ion collisions. To explain

the centrality dependence of charged hadron elliptic flow and pT spectra, the shear

viscosity was included in the hydrodynamics simulation. The experimentally measured

odd harmonics of flow coefficients like v3, v5 etc. can now be explained with the in-

clusion of fluctuating initial conditions in hydrodynamics simulations. To explain the

rapidity dependence of various experimental observables 3+1D viscous hydrodynamics

have been developed [108]. In addition to the important role of knowing the proper

initial conditions in high energy heavy-ion collisions on such hydrodynamic simulations
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(e.g Glauber vs. CGC) there are still some open issues which should be studied in the

future.

• Some recent calculations find that the initial magnetic field produced in heavy-

ion collision at relativistic energies is of the order of eB ∼ 104 MeV 2 [173]. If

sufficiently large magnetic field persists up to the thermalization time then this

would have considerable effect on the subsequent fluid evolution. The current

fluid evolution equations then needs to be modified to include the effect of the

magnetic field.

• Initial reaction zone for heavy-ion collisions at non-zero impact parameter can

have ∼ 1000 unit of angular momentum (in unit of h̄)[174]. This would lead to

a large vorticity in the fluid in order to conserve the initial angular momentum.

Finite vorticity of the fluid will have measurable effects on the flow observables.

• The dissipative correction to the freezeout distribution function plays an impor-

tant role on the pT spectra calculated in the Cooper-Frey freezeout prescription

and v2. There are still theoretical uncertainties in prescription for dissipative cor-

rection to the freeze-out distribution function for both shear and bulk viscosity

[84]. This needs to be settled in order to correctly estimate the η/s of QGP.

• We have used a temperature independent form of input η/s and a temperature

dependent ζ/s for our viscous hydrodynamics simulations. However it is expected

that η/s is also temperature dependent [74]. The present theoretical knowledge

of the temperature dependence of both the shear and bulk viscosity for QCD
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matter is quite uncertain. The higher values of shear stresses can also induce the

phenomenon of cavitation as discussed in reference [175].

• RHIC beam energy scan program provides experimental data for
√
sNN = 7.7

- 39 GeV, corresponding to baryon chemical potential values between 450 - 100

MeV respectively [176]. These data, when compared to viscous hydrodynamic

simulations will allow for obtaining the η/s of the QCD matter in the T, µB plane

of the QCD phase digram. For this, one needs to solve the viscous hydrodynamic

equations at finite baryon density (for calculations presented in this thesis corre-

sponding to
√
sNN = 200 and 2760 GeV this effect is neglected). In addition the

role of chemical freeze-out also needs to be investigated in details.



Appendix A

Hydrodynamics equations in
curvilinear co-ordinate

The metric tensor for (τ, x, y, η) co-ordinate system is

gµν = (1,−1,−1,− 1

τ 2
), gµν = (1,−1,−1,−τ 2). (A.1)

The energy momentum conservation equations in the general curvilinear co-ordinate

has the following form,

∂µ;T
µν = ∂µT

µν + Γµ
µαT

αν + Γν
µαT

µα, (A.2)

where the symbol Γν
µα is the Christoffel symbol of second kind. The only non-vanishing

Christoffel symbols in (τ, x, y, η) co-ordinates are

Γη
τη = Γη

ητ =
1

τ
, (A.3)

and

Γτ
ηη = τ. (A.4)
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Case-I For ν=0, we have from equation A.2,

⇒ ∂τT
ττ + ∂xT

xτ + ∂yT
yτ + Γµ

µαT
ατ + Γτ

µαT
µα = 0

⇒ ∂τT
ττ + ∂xT

xτ + ∂yT
yτ + Γη

ητT
ττ + Γτ

ηηT
ηη = 0

⇒ ∂τT
ττ + ∂xT

xτ + ∂yT
yτ +

T ττ

τ
+ τ

[
P +Π+ τ 2πηη

τ

]
= 0

⇒ ∂τ (τT
ττ ) + ∂x

(
τT ττ T

xτ

T ττ

)
+ ∂y

(
τT ττ T

yτ

T ττ

)
= −

[
P +Π+ τ 2πηη

]

⇒ ∂τ
(
T̃ ττ

)
+ ∂x

(
T̃ ττ v̄x

)
+ ∂y

(
T̃ ττ v̄y

)
= −

[
P +Π+ τ 2πηη

]
(A.5)

Case-II For ν = 1 the equation A.2 gives

∂τT
τx + ∂xT

xx + ∂yT
yx + Γµ

µαT
αx + Γx

µαT
µα = 0

⇒ ∂τT
τx + ∂xT

xx + ∂yT
yx + Γη

ητT
τx = 0

⇒ ∂τT
τx + ∂xT

xx + ∂yT
yx +

T τx

τ
= 0

⇒ ∂τ (τT
τx) + ∂x (τT

xx) + ∂y (τT
yx) = 0

⇒ ∂τ (τT
τx) + ∂x [τ {T τx − πτx} vx] + ∂y [τ {T τx − πτx} vy] = −∂x [τ {P +Π+ πxx}]− ∂y [τπ

xx]

⇒ ∂τ
[
T̃ τx

]
+ ∂x

[{
T̃ τx − π̃τx

}
vx
]
+ ∂y

[{
T̃ τx − π̃τx

}
vy
]

= −∂x
[
P̃ + Π̃ + π̃xx

]
− ∂y [π̃

yx](A.6)

To derive the last two lines we have used the following expressions,

• T̃ µν = τT µν ,

• T τx = (ǫ+ P +Π) γ2⊥vx + πτx,

• T xx = (ǫ+ P +Π) γ2⊥v
2
x + (P +Π) + πxx,

• T τy = (ǫ+ P +Π) γ2⊥vxvy + πyx,
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where the T xx and T yx are expressed in terms of T τx in the following way

• T xx = [T τx − πτx] vx + (P +Π) + πxx,

• T yx = [T τx − πτx] vy + πyx.

Case-III Similarly for ν = 2 we have

⇒ ∂τ
[
T̃ τy

]
+ ∂x

[{
T̃ τy − π̃τy

}
vx
]
+ ∂y

[{
T̃ τy − π̃τy

}
vy
]
= −∂y

[
p̃+ Π̃ + π̃yy

]
− ∂x [π̃

xy](A.7)

Finally the equations A.5, A.6, A.7 are rearranged in the following form to implement

them in the SHASTA algorithm,

∂τ
(
T̃ ττ

)
+ ∂x

(
T̃ ττ v̄x

)
+ ∂y

(
T̃ ττ v̄y

)
= −

[
P +Π+ τ 2πηη

]

∂τ
[
T̃ τx

]
+ ∂x

[
vxT̃

τx
]
+ ∂y

[
vyT̃

τx
]

= −∂x
[
P̃ + Π̃ + π̃xx − vxπ̃

τx
]
− ∂y [π̃

yx − vyπ̃
τx]

∂τ
[
T̃ τy

]
+ ∂x

[
vxT̃

τy
]
+ ∂y

[
vyT̃

τy
]

= −∂y
[
P̃ + Π̃ + π̃yy − vyπ̃

τy
]
− ∂x [π̃

xy − vxπ̃
τy] .

For completeness we write down here the relaxation equations of πµν and Π,

∂τπ
xx + ∂x(vxπ

xx) + ∂y(vyπ
xx) = − 1

τπγ
(πxx − 2ησxx)− 1

γ
Ixx1 + πxx (∂xv

x + ∂yv
y) ,

∂τπ
yy + ∂x(vxπ

yy) + ∂y(vyπ
yy) = − 1

τπγ
(πyy − 2ησyy)− 1

γ
Iyy1 + πyy (∂xv

x + ∂yv
y) ,

∂τπ
xy + ∂x(vxπ

xy) + ∂y(vyπ
xy) = − 1

τπγ
(πxy − 2ησxy)− 1

γ
Ixy1 + πxy (∂xv

x + ∂yv
y) .

and

∂τΠ+∂x(vxΠ)+∂y(vyΠ) = − 1

τΠγ

[
Π+ ζθ +

1

2
ΠτΠθ + ζTΠD

(
τΠ
ζT

)]
+Π(∂xv

x + ∂yv
y) .

(A.8)

The terms γ, Iµν1 , τπ, and τΠ are already defined in chapter-2.



Appendix B

Effect of hard scattering fraction

In this appendix we discuss the effect of varying hard scattering fraction x in the initial-

ization of energy density in transverse plane on charged hadron pT spectra and v2(pT )

for different collision centralities. The use of a two component Glauber model initializa-

tion for the energy density profile is motivated by the findings in [177]. In reference [177]

the multiplicity of charged hadron per unit pseudo-rapidity in p-p collisions npp =
dNch

dη

was explained by assuming that a fraction x of multiplicity is generated due to hard

’processes’ and the rest (1− x) is due to soft processes. Assuming that hard processes

scales with the binary collision numbers (Ncoll) and the soft processes scales with the

participant numbers (Npart), the pseudo-rapidity density in nucleus-nucleus collisions

was then parameterized as,

dN

dη
= npp

[
(1− x)

Npart

2
+ xNcoll

]
. (B.1)

Where one computes the Npart and Ncoll from Glauber model. PHOBOS collaboration

studied the geometric scaling of pseudo-rapidity density in
√
sNN=19.6 and 200 GeV
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Au-Au collisions [178]. According to their finding for both the collision energies, hard

scattering fraction is approximately constant, x = 0.13± 0.01(stat)± 0.05(sys).

Following equation B.1, in a non-central Au-Au collision for impact parameter b,

the initial energy density in the transverse plane can be parameterized as,

ǫ(x, y; b) = ǫ0 [(1− x)Npart(x, y; b) + xNcoll(x, y; b)] , (B.2)

where Npart(x, y; b) and Ncoll(x, y; b) are the transverse density distribution for the par-

ticipant pairs and the collision number respectively. Ideal hydrodynamics, with Glauber

model initialization, with hard scattering fraction x = 0.25, explains a variety of experi-

mental data, e.g. identified particle’s multiplicity, mean momentum, pT spectra, elliptic

flow etc [179]. Glauber model initialization of the energy density, with x = 0.13, also

gives a reasonable description to the experimental data [160]. One inconsistency how-

ever remained. Glauber model initialization with hard scattering fraction x = 0.25 or

x = 0.13, under predict experimental elliptic flow in very central, e.g. 0-10% collisions.

Dissipative effects can not be the reason. Inclusion of dissipative effects only reduces

elliptic flow. To understand the relation between elliptic flow in central Au-Au collisions

and the geometric scaling of initial energy density as in equation B.2, we have simulated

√
sNN=200 GeV Au-Au collisions with Glauber model initial condition at two extreme

limits of the hard scattering fraction, x = 0 and x = 1. Two limits corresponds to very

different collision dynamics, for x = 0, initial energy density scales with participant
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density implying that Au-Au collisions are completely dominated by the soft processes.

For x = 1, Au-Au collisions are completely dominated by the hard processes and the ini-

tial energy density scales with the density of binary collision numbers. Actual scenario

is in between the two extreme limits.

Details of the hydrodynamic model has already been discussed in Chapter-2 and

can also be found in [179]. We assume that the fluid is thermalized in the time scale

τ0=0.6 fm [179]. At τ0=0.6 fm, energy density in the transverse plane is distributed as

in equation B.2, with hard scattering fraction (i) x = 0 or (ii) x = 1. Irrespective of the

hard scattering fraction, initial fluid velocity is assumed to be zero, vx(x, y) = vy(x, y) =

0 and the fluid is assumed to undergo kinetic freeze-out at temperature Tfo=150 MeV.

For this study we have used lattice+hrg EoS [124] where the confinement-deconfinement

transition is a cross-over at Tco=196 MeV [180].

With hard scattering fraction fixed, either x = 0 or x = 1, central energy density ǫ0

is the only parameter left in the modeling of the initial energy density profile. We fix ǫ0

by fitting the PHENIX data on charged particles pT spectra in 0-10% Au-Au collisions

[151]. For x = 0, best fit to the 0-10% data is obtained with ǫ0=36.1 GeV/fm3.

PHENIX data require ∼30% higher central energy density, ǫ0=48 GeV/fm3, if Au-Au

collision is completely dominated by the hard processes (x = 1). The solid and the

dashed lines in figure B.1a are fit to the data with hard scattering fraction x = 1 and

x = 0 respectively. Data are well fitted. Charged particles pT spectra in central Au-Au

collision is insensitive to the hard scattering fraction x in the Glauber model of initial

condition.
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Figure B.1: In panels (a-f) PHENIX data [151] on the charged particle transverse
momentum spectra in 0-60% Au-Au collisions are compared with hydrodynamic model
predictions. The dashed lines are the predictions when initial energy density scales with
participant density (x = 0). The solid line are predictions when energy density scales
with density distribution of binary collision numbers (x = 1).

With initial energy density fixed, we can predict for the pT spectra in all the other

collision centralities. In figure B.1, in panels (b-f), model predictions for the charged

particles pT spectra in 10-20%, 20-30%, 30-40%, 40-50%, and 50-60% Au-Au collisions

are compared with the PHENIX data [151]. When central energy density is fixed to

reproduce charged particles pT spectra in 0-10% collisions, Glauber model initialisation

with x = 1, also give reasonable description to the spectra in 10-20% and 20-30% cen-

trality collisions. But in more peripheral collisions, PHENIX data are under predicted.
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Figure B.2: Initial eccentricity of the collision zone as a function of participant numbers.
The filled circles and squares are eccentricity with hard scattering fraction 0 and 1
respectively.

Initialization with hard scattering fraction x = 0 however continue to explain data till

very peripheral collisions, though description to the data deteriorates at larger pT or

in more peripheral collisions. It appears that if in Au-Au collisions, energy density

scales with participant density (x = 0), charged particles pT spectra in 0-60% Au-Au

collisions are reasonably well explained. On the contrary, if energy density scales with

binary collision number density (x = 1), charged particles pT spectra, only in central

(0-30%) collisions is explained.

Let us now concentrate on the centrality dependence of simulated elliptic flow.

In a hydrodynamic model, elliptic flow depends on the initial spatial eccentricity,

εx = 〈y2−x2〉
〈x2+y2〉

, 〈...〉 denotes energy density weighted averaging. In figure B.2, central-

ity dependence of εx, in the two extreme limits x = 0 (filled circles) and x = 1 (filled
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squares) are shown. εx is more if Au-Au collisions are dominated by the hard processes

(x = 1) rather than the soft processes (x = 0). Glauber model initialization of energy

density with hard scattering fraction x = 1 will generate more elliptic flow than the

initialization with x = 0.

In figure B.3, we have compared the simulated v2 with PHENIX measurements [158]

by three different methods (i) event plane method from two independent sub-detectors,

v2{BBC} , (ii)v2{ZDC − SMD} and (iii) two particle cumulant v2{2}.

The solid and dashed lines in figure B.3 corresponds to Glauber model initial con-

ditions with x = 1 and x = 0 respectively. As expected from the eccentricity study

(figure B.2), in all the collision centralities, Glauber model initialization with x = 1

generate more flow than the initialization with x = 0. Unlike the pT spectra in central

Au-Au collisions, which do not distinguish between the initial conditions with x = 1

and x = 0, elliptic flow, being a more sensitive observable, can distinguish between

them. It is very interesting to note that Glauber model initialization with hard scat-

tering fraction x = 1 well explain the PHENIX data on elliptic flow in 0-10% Au-Au

collisions. However, in all the other collision centralities elliptic flow is over predicted.

For example, at pT ≈1.5 GeV, simulated flow with x = 1 over predict experiments by

∼20%, 25%, 35%, 45%, and 60% in 10-20%, 20-30%, 30-40%, 40-50%, and 50-60% Au-

Au collisions respectively. Glauber model initialization with hard scattering fraction

x = 0 gives a lower value of eccentricity and elliptic flow in 0-10% Au-Au collisions

is underpredicted e.g., at pT ∼1.5 GeV, it under predicts the experimental data by

∼35%. In all the other collision centrality agreement with data are comparatively bet-
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Figure B.3: The filled circles, squares and triangles are PHENIX measurements [158]
for elliptic flow in 0-60% Au-Au collisions. The solid and dashed lines are elliptic flow
in hydrodynamic simulations with hard scattering fraction x=1 and x=0 respectively.

ter. In 10-20% and 20-30% Au-Au collisions, Glauber initialisation with x = 0 give very

good description of the data up to pT ∼1.5 GeV. In more peripheral collisions, flow is

over predicted. Even then agreement with data is better than that obtained with hard

scattering fraction x = 1. For example at pT ≈1.5 GeV, simulated flow over predicts

PHENIX data by ∼ 15%, 25%, and 50% in 30-40%, 40-50%, and 50-60% collisions

respectively.

Present analysis indicates that in 0-10% Au-Au collisions, simultaneous description

of pT spectra and elliptic flow require hard scattering fraction x = 1 in the Glauber
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model of initial condition. In less central collisions however, simultaneous description

of pT spectra and elliptic flow are best obtained with hard scattering fraction x = 0.

The result implies that geometric scaling of Au-Au collisions changes with collision

centrality. In a central collision, energy density scales with binary collision number

density while in a less central collision, energy density scales with participant density.

Arguably, transition from binary collision number scaling to participant scaling can not

be as sharp as conjectured here. More detailed analysis is required to find the width

and exact location of the transition.

Such a transition may have implications for the hydrodynamical analysis also. Note

that for binary collision number scaling, fluid has to be initialized at higher energy

density (ε0=48 GeV/fm3 for x = 1 and ε0=36.1 GeV/fm3 for x = 0). We have

assumed similar thermalization time τ0=0.6 fm for both the scaling conditions. Since

thermalsation time scale is expected to be inversely proportional to the energy density,

it is likely that the fluid in central Au-Au collisions will thermalise in a shorter time

scale compared to the thermalization time of the fluid in less central collisions.

The result may also have implication on the dynamics of the pre-equilibrium stage.

Hydrodynamic models assume local thermalization. The fluid produced in Au-Au col-

lisions evolves through a pre-equilibrium stage to equilibration. At present, we have

limited knowledge about the pre-equilibrium stage. Present results suggests that in

0-10% Au-Au collisions, pre-equilibrium stage is dominated by binary collisions, but in

a less central collision, pre-equilibrium stage is dominated by the ’wounded’ nucleons.
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In the present analysis, the effect of viscosity is neglected.

Effect of viscosity is to enhance particle production mainly at large pT , and also

to reduce elliptic flow. One observes from figure B.1 and B.3, that in 0-10% Au-

Au collisions, if initial energy density scales with collision number density, ideal fluid

dynamics hardly leaves any scope for viscous enhancement of pT spectra or for viscous

suppression of elliptic flow. Assumption of viscous fluid evolution can only worsen the

fit to the elliptic flow. We conclude that the PHENIX data on the charged particles

pT spectra and elliptic flow in 0-10% Au-Au collisions do not demand any viscosity.

Viscosity however can be important in peripheral collisions. In peripheral collisions,

experimental pT spectra and elliptic flow are better explained if energy density scales

with participant density. However, at large pT elliptic flow is over predicted. With

viscous suppression agreement with data will be better as shown in this thesis.

In the present calculations we have not included eccentricity fluctuation. In [160],

effect of eccentricity fluctuation on elliptic flow was studied in detail. Eccentricity

fluctuation increases elliptic flow. A 3+1D hydrodynamics calculation with eccen-

tricity fluctuations also provide a reasonable explanation of the central v2 data from

PHENIX [108].



Appendix C

2+1D viscous hydrodynamics with
Color Glass Condensate based
initial condition

In this appendix we discuss the 2+1D relativistic viscous hydrodynamic simulations

with initial conditions based on the Color-Glass-Condensate (CGC) approach [106, 181].

We compare the simulated results to calculations with Glauber based initial conditions

and experimental data at RHIC. We have used the KLN (Kharzeev-Levin-Nardi) kT -

factorization approach [182], due to Drescher et al. [111]. The energy-momentum

conservation equations and relaxation equations for shear stress, other initial conditions,

equation of state and freeze-out conditions are same as discussed in chapter-5 for Au-Au

collisions at
√
sNN = 200 GeV.

We follow references [78, 183] and consider that the initial energy density can be
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obtained from the gluon number density through the thermodynamic relation,

ǫ(τi,xT , b) = C×
[

dNg

d2xTdY
(xT , b)

]4/3
, (C.1)

where dNg

d2xT dY
is the gluon number density evaluated at central rapidity Y = 0 and the

overall normalization C is a free parameter. C is fixed to reproduce the experimentally

measured charged particle multiplicity density at midrapidity. The values of C used in

the simulations for different input values of η/s are given in Table C.1. The number

density of gluons produced in a collision of two nuclei with mass number A is given by

dNg

d2xTdY
= N

∫ d2pT

p2T

∫ pT
d2kT αs(kT ) φA(x1, (pT + kT )

2/4;xT ) φA(x2, (pT − kT )
2/4;xT ),(C.2)

where pT and Y are the transverse momentum and rapidity of the produced gluons,

respectively. x1,2 = pT × exp(±Y )/
√
s is the momentum fraction of the colliding gluon

ladders with
√
s the center of mass collision energy and αs(kT ) is the strong coupling

constant at momentum scale kT ≡ |kT |. N is the normalization constant. The uninte-

grated gluon distribution functions are taken as

φ(x, k2T ;xT ) =
1

αs(Q2
s)

Q2
s

max(Q2
s, k

2
T )
P (xT )(1− x)4 , (C.3)

P (xT ) is the probability of finding at least one nucleon at transverse position xT and

is defined as P (xT ) = 1 −
(
1− σTA

A

)A
, where TA=

∫∞
−∞ dzρ(z) is the thickness function

and σ is the nucleon-nucleon cross section taken as 42 mb. The saturation scale at

a given momentum fraction x and transverse coordinate xT is given by Q2
s(x,xT ) =

2GeV2
(
TA(xT )/P (xT )

1.53/fm2

) (
0.01
x

)λ
. The growth speed is taken to be λ = 0.28.

Space-time evolution : Figure C.1 shows the constant temperature contours corre-

sponding to Tco = 175 MeV and Tfo = 130 MeV in the τ -x plane (at y = 0) indicating
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Table C.1: Values of the normalization constant C used in CGC model for initial
transverse energy density.

η/s C (GeV/fm1/3) CGC
0.0 0.11
0.08 0.095
0.12 0.085
0.16 0.070
0.18 0.065
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m
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Figure C.1: Constant temperature contours denoting the space time boundaries of the
QGP and hadronic phases from a 2+1D viscous hydrodynamic simulation with η/s
= 0.08 for Au-Au collisions at impact parameter 7.4 fm. The solid red curves are
simulations with initial transverse energy density profile based on CGC model while
the dashed black curves correspond to initial conditions based on Glauber model.
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Figure C.2: The spatially averaged shear viscous stresses πxx, πyy, and πxy as a function
of evolution time for Au-Au collisions at impact parameter 7.4 fm and η/s = 0.08. The
solid red and black dashed curves corresponds to simulations with CGC and Glauber
based initial conditions respectively.

the boundaries for the QGP and hadronic phases respectively. The solid red curves

corresponds to initial transverse energy density profile based on CGC model and the

dashed black curve corresponds to results based on Glauber model initial conditions.

We observe that the lifetime of QGP and hadronic phases are slightly extended for

the simulations based on CGC initial conditions compared to Glauber based initial

conditions. While the spatial extent of the hadronic phase is slightly smaller for the

simulations with CGC initial conditions relative to Glauber based conditions.

Temporal evolution of shear stress : The temporal evolution of spatially averaged

πxx, πyy, and πxy are shown in figure C.2 for CGC (solid red curve) and Glauber (black

dashed curve) initialization of energy density. All the three components of πµν becomes

zero after time ∼ 7 fm irrespective of the CGC or Glauber model initialization. At

initial time the values of spatially averaged πxx and πyy are observed to be larger for
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Figure C.3: Temporal evolution of spatially averaged transverse velocity 〈〈vT 〉〉. The
results are from a 2+1D viscous hydrodynamic simulation with η/s = 0.08. The solid
red curve corresponds to simulated result with CGC based initial transverse energy
density profile. The black dashed line is the simulated result with Glauber based initial
conditions.

CGC compared to the Glauber initialization. However, the difference vanishes quickly

∼ 3 fm. For πxy a noticeable difference is seen for CGC and Glauber model initialization

within time ∼ 6 fm.

Average transverse velocity and eccentricity : Figure C.3 shows the temporal

evolution of the spatially averaged transverse velocity (〈〈vT 〉〉) of the fluid with Glauber

based and CGC based initial transverse energy density profile with fluid viscosity η/s =

0.08. The simulation is for Au-Au collisions at impact parameter, b = 7.4 fm. Solid red

curve is for CGC based initial condition and the dashed black curve is for the Glauber

based initial condition. We observe almost no change in the 〈〈vT 〉〉 as a function of time

for the two initial conditions studied. This effect should be reflected in the slope of the

invariant yield of the charged hadrons as a function of transverse momentum being the
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Figure C.4: The temporal evolution of spatial eccentricity (εx) and momentum
anisotropy (εp) for Au-Au collisions at b=7.4 fm. The solid red curves corresponds
to viscous hydrodynamics (η/s = 0.08) simulated results with CGC based initial con-
dition and the black dashed lines corresponds to results with Glauber based initial
condition.

same for both the initial conditions.

Figure C.4 shows the temporal evolution of the spatial eccentricity (εx) and the

momentum space anisotropy (εp) of the viscous fluid (η/s = 0.08) with Glauber and

CGC based initial conditions for Au-Au collisions at impact parameter, b = 7.4 fm.

Solid red curve is for the CGC based initial condition and the dashed black curve is

for the Glauber based initial condition. We find both εx and εp are higher for the

simulated results with CGC based initial condition compared to initial condition based

on Glauber model. As the simulated elliptic flow v2 in hydrodynamic model is directly

related to the temporal evolution of the momentum anisotropy, we expect the v2 for the

CGC based initial condition to be larger than the corresponding values for the Glauber

based initial condition.
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Figure C.5: Invariant yield of charged hadrons as a function of transverse momentum
at midrapidity for Au-Au collisions at

√
sNN = 200 GeV. The open circles corresponds

to experimental data measured by the PHENIX collaboration [151]. The lines represent
results from a 2+1D relativistic viscous hydrodynamic model with a CGC based initial
transverse energy density profile and for different η/s values.

Now we proceed to compare the simulated results based on CGC initial conditions

to experimental data at RHIC. The experimental data used for comparison to our sim-

ulated results are from the PHENIX collaboration at RHIC [184, 151]. The observables

used are invariant yield of charged hadrons, elliptic flow, and hexadecapole flow as a

function of pT for Au-Au collisions at pseudorapidity | η |< 0.35 for
√
sNN = 200 GeV.
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Comparison to experimental data - Invariant yield : Figure C.5 shows invariant

yield of charged hadrons as a function of transverse momentum at midrapidity for Au-

Au collisions at
√
sNN = 200 GeV for five different collision centralities (0-10%, 10-

20%, 20-30%, 30-40%, and 40-50%). The open circles are the experimental data from

the PHENIX collaboration [151]. The lines are simulated spectra with a CGC based

initial transverse energy density profile. The fluid viscosity varies between η/s=0-0.18.

We find the 0-10% experimental data is best explained by simulation with η/s = 0.0.

Whereas data for collision centralities between 20-30% to 40-50% supports a η/s value

within 0.08 to 0.12. Similar conclusions were drawn in chapter-5 for Glauber based

initial conditions. This also means that the invariant yield of charged hadrons are

not very sensitive to the choice of a Glauber based or CGC based initial conditions.

The average transverse velocity at the freeze-out which determines the slope of the pT

spectra was observed to be similar for the fluid evolution with Glauber and CGC based

initial conditions (see figure C.3).

Comparison to experimental data - Elliptic flow : Figure C.6 shows the ellip-

tic flow (v2) as a function of the transverse momentum (pT ) for charged hadrons at

midrapidity in Au-Au collisions at
√
sNN = 200 GeV. The results are shown for five

different collision centralities (0-10%, 10-20%, 20-30%, 30-40%, and 40-50%). The open

circles are the experimental data from the PHENIX collaboration [184]. Also shown

for comparison the simulated results for ideal fluid evolution with Glauber based initial

conditions. We find the v2(pT ) for CGC based initial condition is larger compared to

corresponding results from Glauber based initial conditions (shown in chapter-5). This
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Figure C.6: Elliptic flow of charged hadrons as a function of transverse momentum at
midrapidity for Au-Au collisions at

√
sNN = 200 GeV. The open circles corresponds to

experimental data measured by the PHENIX collaboration [184]. The lines represent
results from a 2+1D relativistic viscous hydrodynamic model with a CGC based initial
transverse energy density profile and different η/s values.
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can be understood from the fact that CGC based initial condition leads to a higher

value of momentum anisotropy compared to Glauber based initial condition (as seen in

figure C.4). The general conclusion that the experimental data prefers a higher value

of η/s as we go from central to peripheral collisions as seen for viscous hydrodynamic

simulations with Glauber based initial conditions (in chapter-5) also holds for those

with the CGC based initial conditions. However, we find from the comparison of ex-

perimental data to simulations based on CGC initial conditions that the v2(pT ) data

for 0-10% collisions is best explained for simulated results with η/s between 0.08-0.12.

This is in contrast to what we saw from the comparisons of data to simulations with

Glauber based initial conditions, where the data preferred η/s = 0.0 (see chapter-5).

For more peripheral collisions (centralities beyond 20-30%), it seems data would prefer

a higher value of η/s ∼ 0.18. We do not present simulation results for η/s > 0.18 as

the viscous hydrodynamic simulated spectra distributions show a large deviations from

ideal fluid simulation results. This leads to a breakdown of the simulation frame work

which is designed to be valid for case of small deviations of observables from ideal fluid

simulations.

Comparison to experimental data - hexadecapole flow : Figure C.7 shows the

hexadecapole flow (v4) as a function of the transverse momentum (pT ) for charged

hadrons at midrapidity in Au-Au collisions at
√
sNN = 200 GeV. The results are shown

for five different collision centralities (0-10%, 10-20%, 20-30%, 30-40%, and 40-50%).

The open circles are the experimental data from the PHENIX collaboration [184]. Sim-

ulated results for only ideal fluid evolution using Glauber based initial condition are
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Figure C.7: Hexadecapole flow of charged hadrons as a function of transverse mo-
mentum at midrapidity for Au-Au collisions at

√
sNN = 200 GeV. The open circles

corresponds to experimental data measured by the PHENIX collaboration [184]. The
curves represent results from a 2+1D relativistic viscous hydrodynamic model with both
Glauber based (same as in chapter-5) and CGC based initial transverse energy density
profile and different η/s values.
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shown (solid black curve, same as in chapter-5). While for the CGC based initial condi-

tions the simulated results are shown for η/s = 0.0 (purple solid thick curve) and 0.08

(orange dashed curve). We find that v4(pT ) from ideal hydrodynamic simulations with

Glauber based initial conditions under predict the experimental data for all the collision

centralities except for the most peripheral collisions (40-50%). Comparison between the

simulated results with CGC based initial condition and experimental data shows that

the preferred η/s lies between 0.0 and 0.08 for the collision centralities studied.



Appendix D

Pion and Kaon pT spectra at RHIC
energy

In this appendix we discuss the comparison of ideal hydrodynamics simulation of pT

spectra for pions and kaons to the corresponding experimental measurements for Au-

Au collisions at
√
sNN=200 GeV for different centralities. The ideal hydrodynamic

simulation is done for a lattice+hrg EoS with chemical equilibrium in the hadronic

phase. The construction of lattice+hrg EoS is already discussed in chapter-2.

Initial conditions : At the initial time τ0=0.6 fm, the fluid velocity is assumed to

be zero, vx(x, y) = vy(x, y) = 0, the initial energy density of the fluid in the transverse

plane is distributed as,
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Figure D.1: PHENIX measurement of invariant yield of (π+ + π−)/2 as a function of
transverse momentum pT for Au-Au

√
sNN =200 GeV collision are shown for 0-5%,

20-30%, and 40-50% centrality collision [185]. Ideal hydrodynamics simulation results
are shown by curves.

ε(b, x, y) = εi

[
(1− x)

2
Npart(b, x, y) + xNcoll(b, x, y)

]
, (D.1)

The details of which is also discussed in chapter-2. Freeze-out temperature is chosen to

be Tfo=130 MeV.

With the initial conditions as described above, we have computed transverse mo-

mentum spectra of pions and kaons. In figure D.1, simulated pion spectra from ideal

fluid evolution in 0-5%, 20-30%, and 40-50% Au-Au collisions are shown by curves.

Corresponding experimental measurement by PHENIX collaboration are shown by sym-

bols [185]. The total pion spectra for the hydrodynamics simulation was obtained by

considering resonance decay contribution to the thermal pion yield for freezeout tem-

perature Tfo=130 MeV.
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Figure D.2: PHENIX measurement of invariant yield of (K+ + K−)/2 as a function
of transverse momentum pT for Au-Au

√
sNN =200 GeV collision are shown for 0-5%,

20-30%, and 40-50% centrality collision [185]. Ideal hydrodynamics simulation results
are shown by curves.

In figure D.2, PHENIX data [185] for K++K−

2
(symbols) are compared with ideal hy-

drodynamic model predictions (curves) . Pion and Kaon spectra in the centrality range

0-50% are well explained in ideal fluid evolution with kinetic freezeout temperature

Tfo=130 MeV.



Appendix E

Shear viscous correction to the
equilibrium freezeout distribution
function

In Cooper Frey prescription, the particle’s momentum distribution is obtained by inte-

grating the one particle distribution function over the freeze-out hyper surface Σµ.

E
dN

d3p
=

g

(2π)3

∫
dΣµp

µf(pµuµ, T ), (E.1)

where g is the degeneracy factor of the particles. f(pµuµ, T ) is the one particle Juttner

distribution function. The above equation can also be written in terms of transverse

momentum (pT ) and momentum-space rapidity (y) as,

dN

d2pTdy
=

g

(2π)3

∫

Σ
dΣµp

µf(pµuµ, T ). (E.2)

In the presence of viscosity the equilibrium distribution function modified as

f = feq + δf. (E.3)
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Considering only shear viscosity we have,

δfshear =
1

2(ǫ+ p)T 2
f0 (1 + f0) p

µpνπµν (E.4)

The four momentum of the fluid element is pµ = (mT coshy, px, py,mT sinhy) where

mT =
√
m2

0 + p2T and the momentum rapidity is y = 1
2
lnE+pz

E−pz
. Thus,

pµpνπ
µν = m2

T (π
ττ + τ 2πηη)cosh2(η − y)

−2mT (pxπ
τx + pyπ

τy)cosh(η − y) + p2xπ
xx + p2yπ

yy + 2pxpyπ
xy −m2

T τ
2πηη

= a1cosh
2(η − y) + a2cosh(η − y) + a3. (E.5)

Where

a1 = m2
T (π

ττ + τ 2πηη),

a2 = −2mT (pxπ
τx + pyπ

τy),

a3 = p2xπ
xx + p2yπ

yy + 2pxpyπ
xy −m2

T τ
2πηη.

The freeze-out hypersurface in (τ, x, y, η) co-ordinate with boost invariance is given

as

dΣµ =

(
mT coshη,−

∂τf
∂x

,−∂τf
∂y

mT sinhη

)
τfdxdydη. (E.6)

Then the dot product of pµ with dΣµ results in,

pµ.dΣµ =
(
mT cosh(η − y)− ~pT .~∇T τf

)
τfdxdydη. (E.7)

The shear viscous correction to the invariant yield is,

dNneq

dyd2pT
=

g

(2π)3

∫

Σ
dΣµp

µδf(x, p)
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=
g

(2π)3

∫
τfdxdydη

1

2(ε+ p)T 2

1

e[β(pµuµ−µ)] ± 1
pµpνπµν

[
mT cosh(η − y)− ~pT .~∇T τf (x, y)

]

=
g

2(ǫ+ p)T 2 (2π)3

∫
τfdxdydη

∞∑

n=1

(∓1)n+1e−nβ[γ(mT cosh(η−y)−~pT .~vT )−µ]

pµpνπ
µν
[
mT cosh(η − y)− ~pT .~∇T τf (x, y)

]

=
g

2(ǫ+ p)T 2 (2π)3

∫
τfdxdy

∞∑

n=1

(∓1)n+1enβ[γ~pT~vT+µ]

∫ ∞

−∞
dη
(
a1cosh

2(η − y) + a2cosh(η − y) + a3
) [
mT cosh(η − y)− ~pT .~∇T τf (x, y)

]
.(E.8)

Denoting the first part of the right hand side of the above equation by I1 we have

dNneq

dyd2pT
= 2I1

∫ ∞

0
dη[a1mT cosh

3(η − y)− a1~pT .~∇T τf (x, y)cosh
2(η − y)

+a2mT cosh
2(η − y)− a2~pT .~∇T τf (x, y)cosh(η − y)

+a3mT cosh(η − y)− a3~pT .~∇T τf ]e
−nβγmT cosh(η−y). (E.9)

Where

I1 =
g

2(ǫ+ p)T 2 (2π)3

∫
τfdxdy

∞∑

n=1

(∓1)n+1enβ[γ~pT~vT+µ].

We will use the following definition of modified Bessel function and the relationship

of hyperbolic functions to further simplify the equation E.9. The n-th order modified

Bessel function of the second kind is defined as

kn(x) =
∫ ∞

0
cosh(nt)e−xcoshtdt. (E.10)

The hyperbolic functions are,

cosh2t =
1

2
[cosh(2t) + 1] , (E.11)
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and

cosh3t =
1

4
[cosh(3t) + 3cosht] . (E.12)

Using these relations into equation E.9 and also defining βT = βγmT and changing the

integration variable as (η − y) = t we have

dNneq

dyd2pT
= 2I1[

a1mT

4

∫ ∞

0
cosh(3t)e−nβT coshtdt+

3a1mT

4

∫ ∞

0
cosht e−nβT coshtdt

−a1
2
~pT .(~∇T τf )

∫ ∞

0
cosh(2t) e−nβT coshtdt− a1

2
~pT .(~∇T τf )

∫ ∞

0
e−nβT coshtdt

+
a2mT

2

∫ ∞

0
cosh(2t)e−nβT coshtdt+

a2mT

2

∫ ∞

0
e−nβT coshtdt

−a2~pT .(~∇T τf )
∫ ∞

0
cosht e−nβT coshtdt+ a3mT

∫ ∞

0
cosht e−nβT coshtdt

−a3~pT .(~∇T τf )
∫ ∞

0
e−nβT coshtdt]. (E.13)

Using equation E.10 and the value of I1 in the above equation we arrive at the final

form of the invariant yield as,

dNneq

dyd2pT
=

g

(ǫ+ p)T 2 (2π)3

∫
τfdxdy

∞∑

n=1

(∓1)n+1enβ[γ~pT~vT+µ][mT (
a1
4
k3(nβT ) +

3a1
4
k1(nβT )

+
a2
2
k2(nβT ) +

a2
2
k0(nβT )− ~pT .(~∇T τf )[

a1
2
k2(nβT ) + a2k1(nβT ) + (

a1
2

+ a3)k0(nβT )]).



Bibliography

[1] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).

[2] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).

[3] Frank Wilczek, Fantastic Realities 49 Mind Journeys and A Trip to Stockholm.

World Scientific.

[4] T. D. Lee and G. C. Wick, Phys. Rev. D 9, 2291 (1974).

[5] M. Gyulassy and L. McLerran, Nucl. Phys. A 750, 30 (2005) [nucl-th/0405013].

[6] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975).

[7] E. V. Shuryak, Phys. Rept. 61, 71 (1980).

[8] S. Bethke, Nucl. Phys. Proc. Suppl. 121, 74 (2003) [hep-ex/0211012].

[9] S. Durr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D. Katz, S. Krieg and

T. Kurth et al., Science 322, 1224 (2008) [arXiv:0906.3599 [hep-lat]].

[10] S. Borsanyi et al., JHEP 1011, 077 (2010) [arXiv:1007.2580 [hep-lat]].

[11] Z. Donko, P. Hartmann and G. J. Kalman, arXiv:0710.5229 [nucl-th].

190



191

[12] M. H. Thoma, J. Phys. G 31, L7 (2005) [Erratum-ibid. G31, 539 (2005)]

[arXiv:hep-ph/0503154].

[13] T. D. Lee, Nucl. Phys. A 750, 1 (2005).

[14] J. Liao and E. Shuryak, Phys. Rev. C 75, 054907 (2007) [arXiv:hep-ph/0611131].

[15] S. Mrowczynski and M. H. Thoma, Ann. Rev. Nucl. Part. Sci. 57, 61 (2007)

[arXiv:nucl-th/0701002].

[16] J. L. Nagle, Eur. Phys. J. C 49, 275 (2007) [arXiv:nucl-th/0608070].

[17] E. Shuryak, hep-ph/0703208 [HEP-PH].

[18] http://qgp.phy.duke.edu/

[19] B. Abelev et al. [ALICE Collaboration], Phys. Rev. Lett. 105, 252301 (2010)

[arXiv:1011.3916 [nucl-ex]].

[20] H. Song, S. A. Bass and U. Heinz, Phys. Rev. C 83, 024912 (2011) [arXiv:1012.0555

[nucl-th]].

[21] Z. W. Lin, C. M. Ko, B. A. Li, B. Zhang and S. Pal, Phys. Rev. C 72, 064901

(2005) [arXiv:nucl-th/0411110].

[22] M. Bleicher et al., J. Phys. G 25, 1859 (1999) [arXiv:hep-ph/9909407].

[23] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 91, 072301 (2003)

[arXiv:nucl-ex/0304022].

[24] B. B. Back et al. [PHOBOS Collaboration], Phys. Rev. Lett. 91, 072302 (2003)

[arXiv:nucl-ex/0306025].



192

[25] J. Adams et al. [STAR Collaboration], Phys. Rev. Lett. 91, 072304 (2003)

[arXiv:nucl-ex/0306024].

[26] I. Arsene et al. [BRAHMS Collaboration], Phys. Rev. Lett. 91, 072305 (2003)

[arXiv:nucl-ex/0307003].

[27] X. N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).

[28] I. Vitev and M. Gyulassy, Phys. Rev. Lett. 89, 252301 (2002) [arXiv:hep-

ph/0209161];

[29] M. Gyulassy, P. Levai and I. Vitev, Phys. Rev. Lett. 85, 5535 (2000) [arXiv:nucl-

th/0005032].

[30] X. -N. Wang, Phys. Rev. C 70, 031901 (2004) [nucl-th/0405029].

[31] M. L. Miller, K. Reygers, S. J. Sanders and P. Steinberg, Ann. Rev. Nucl. Part.

Sci. 57, 205 (2007) [nucl-ex/0701025].

[32] B. Mohanty, New J. Phys. 13, 065031 (2011) [arXiv:1102.2495 [nucl-ex]].

[33] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 97, 152301 (2006)

[arXiv:nucl-ex/0606003].

[34] A. Adare et al. [PHENIX Collaboration], Phys. Rev. C 83, 024909 (2011)

[arXiv:1004.3532 [nucl-ex]].

[35] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 101, 232301 (2008)

[arXiv:0801.4020 [nucl-ex]].



193

[36] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. Lett. 96, 202301 (2006)

[nucl-ex/0601037].

[37] J. Adams et al. [STAR Collaboration], Phys. Lett. B 637, 161 (2006) [arXiv:nucl-

ex/0601033].

[38] J. Alam, P. Roy and A. K. Dutt-Mazumder, hep-ph/0604131.

[39] J. Y. Ollitrault, Phys. Rev. D 46, 229 (1992).

[40] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998) [arXiv:nucl-

ex/9805001].

[41] J. Adams et al. [STAR Collaboration], Nucl. Phys. A 757, 102 (2005) [nucl-

ex/0501009].

[42] P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuskanen and S. A. Voloshin, Phys.

Lett. B 503, 58 (2001) [arXiv:hep-ph/0101136].

[43] D. Molnar and S. A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003) [arXiv:nucl-

th/0302014].

[44] T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).

[45] C-Y Wong, Introduction to High-Energy Heavy-Ion Collision, World Scientific.

[46] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 98, 232301 (2007) [nucl-

ex/0611020].

[47] L. Yan, P. Zhuang and N. Xu, Phys. Rev. Lett. 97, 232301 (2006) [nucl-

th/0608010].



194

[48] J. Alam, S. Sarkar, P. Roy, T. Hatsuda and B. Sinha, Annals Phys. 286, 159 (2001)

[hep-ph/9909267].

[49] J. I. Kapusta, P. Lichard and D. Seibert, Nucl. Phys. A 544, 485C (1992).

[50] R. Chatterjee, L. Bhattacharya and D. K. Srivastava, Lect. Notes Phys. 785, 219

(2010) [arXiv:0901.3610 [nucl-th]].

[51] L. D. McLerran and T. Toimela, Phys. Rev. D 31, 545 (1985).

[52] C. Gale and J. I. Kapusta, Phys. Rev. C 35, 2107 (1987).

[53] R. Rapp and J. Wambach, Adv. Nucl. Phys. 25, 1 (2000) [arXiv:hep-ph/9909229].

[54] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 104, 132301 (2010)

[arXiv:0804.4168 [nucl-ex]].

[55] S. Turbide, R. Rapp and C. Gale, Phys. Rev. C 69, 014903 (2004) [arXiv:hep-

ph/0308085].

[56] J. Rafelski and B. Muller, Phys. Rev. Lett. 48, 1066 (1982) [Erratum-ibid. 56,

2334 (1986)].

[57] P. Koch, B. Muller and J. Rafelski, Phys. Rept. 142, 167 (1986).

[58] J. Rafelski, Eur. Phys. J. ST 155, 139 (2008) [arXiv:0710.1931 [nucl-th]].

[59] A. Shor, Phys. Rev. Lett. 54, 1122 (1985).

[60] J. Cleymans and A. Muronga, Phys. Lett. B 388, 5 (1996) [nucl-th/9607042].



195

[61] J. Cleymans, M. Marais and E. Suhonen, Phys. Rev. C 56, 2747 (1997) [nucl-

th/9705014].

[62] B. I. Abelev et al. [STAR Collaboration], Phys. Lett. B 673, 183 (2009)

[arXiv:0810.4979 [nucl-ex]].

[63] T. Akesson et al. [Axial Field Spectrometer Collaboration], Nucl. Phys. B 203, 27

(1982) [Erratum-ibid. B 229, 541 (1983)].

[64] F. Reif, Fundamental of statistical and thermal physics. McGraw-HILL Book Com-

pany.

[65] S. Jeon, Phys. Rev. D 52, 3591 (1995) [arXiv:hep-ph/9409250].

[66] T. Schafer and D. Teaney, Rept. Prog. Phys. 72, 126001 (2009) [arXiv:0904.3107

[hep-ph]].

[67] R. Kubo J. Phys. Soc. Jap. 12, 570 (1957); R. Kubo Rept. Prog. Phys. 29, 255

(1966).

[68] P. Kovtun, D. T. Son and A. O. Starinets, Phys. Rev. Lett. 94, 111601 (2005)

[arXiv:hep-th/0405231].

[69] S. Weinberg, Astrophys. J. 168, 175 (1971).

[70] H. B. Meyer, Phys. Rev. Lett. 100, 162001 (2008).

[71] A. Nakamura and S. Sakai, Phys. Rev. Lett. 94, 072305 (2005) [hep-lat/0406009].

[72] P. Danielewicz and M. Gyulassy, Phys. Rev. D 31, 53 (1985).



196

[73] H. Song, “Causal Viscous Hydrodynamics for Relativistic Heavy Ion Collisions,”

[arXiv:0908.3656 [nucl-th]].

[74] H. Niemi, G. S. Denicol, P. Huovinen, E. Molnar and D. H. Rischke, Phys. Rev.

Lett. 106, 212302 (2011) [arXiv:1101.2442 [nucl-th]].

[75] T. Hirano, P. Huovinen and Y. Nara, Phys. Rev. C 84, 011901 (2011)

[arXiv:1012.3955 [nucl-th]].

[76] H. Song, S. A. Bass, U. Heinz, T. Hirano and C. Shen, Phys. Rev. Lett. 106,

192301 (2011) [arXiv:1011.2783 [nucl-th]].

[77] M. Luzum and P. Romatschke, Phys. Rev. Lett. 103, 262302 (2009)

[arXiv:0901.4588 [nucl-th]].

[78] M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915 (2008) [Erratum-ibid. C

79, 039903 (2009)] [arXiv:0804.4015 [nucl-th]].

[79] R. S. Bhalerao, J. P. Blaizot, N. Borghini and J. Y. Ollitrault, Phys. Lett. B 627,

49 (2005) [arXiv:nucl-th/0508009].

[80] P. Bozek, Phys. Rev. C 81, 034909 (2010) [arXiv:0911.2397 [nucl-th]].

[81] G. S. Denicol, T. Kodama and T. Koide, J. Phys. G 37, 094040 (2010)

[arXiv:1002.2394 [nucl-th]].

[82] K. Dusling and D. Teaney, Phys. Rev. C 77, 034905 (2008) [arXiv:0710.5932 [nucl-

th]].

[83] A. K. Chaudhuri, arXiv:0801.3180 [nucl-th].



197

[84] V. Roy and A. K. Chaudhuri, Phys. Rev. C 85, 024909 (2012) [arXiv:1109.1630

[nucl-th]].

[85] S. Z. Belenkij and L. D. Landau, Hydrodynamic theory of multiple production of

particles, Nuovo Cimento, supplement, 3, 15 (1956).

[86] J. D. Bjorken, Phys. Rev. D 27, 140 (1983).

[87] P. Benincasa, A. Buchel and A. O. Starinets, Nucl. Phys. B 733, 160 (2006)

[arXiv:hep-th/0507026].

[88] J. Noronha-Hostler, J. Noronha and C. Greiner, Phys. Rev. Lett. 103, 172302

(2009) [arXiv:0811.1571 [nucl-th]].

[89] C. Eckart, Phys. Rev. 58, 267 (1940).

[90] C. Eckart, Phys. Rev. 58, 919 (1940).

[91] Landau L.D,and Lifshitz E.M. 1959. Fluid Mechanics, page 308-312.

[92] W. Israel and J. M. Stewart, Annals Phys. 118, 341 (1979) ; Ann. Phys. (N.Y.)

100, 310 (1976).

[93] B. Betz, G. S. Denicol, T. Koide, E. Molnar, H. Niemi and D. H. Rischke, EPJ

Web Conf. 13, 07005 (2011) [arXiv:1012.5772 [nucl-th]].

[94] A. Muronga, Phys. Rev. C 76, 014910 (2007) [nucl-th/0611091].

[95] A. Muronga, Phys. Rev. C 76, 014909 (2007) [nucl-th/0611090].

[96] P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2010) [arXiv:0902.3663 [hep-ph]].



198

[97] W. A. Hiscock and L. Lindblom, Phys. Rev. D 31, 725 (1985).

[98] I. Muller, Z. Phys. 198, 329 (1967).

[99] M. Grmela and H. C. Ottinger, Phys. Rev. E 56, 6620 (1997).

[100] S. R. de Groot, W. A. van Leeuwen, Ch. G. van weert. Relativistic Kinetic Theory,

principles and applications, North-Holland Publishing Company.

[101] U. W. Heinz, H. Song and A. K. Chaudhuri, Phys. Rev. C 73, 034904 (2006)

[arXiv:nucl-th/0510014].

[102] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov, JHEP

0804, 100 (2008) [arXiv:0712.2451 [hep-th]].

[103] J. P. Boris and D. L. Book, J. Comput. Phys. 11, 38 (1973).

[104] D. H. Rischke, S. Bernard and J. A. Maruhn, Nucl. Phys. A 595, 346 (1995)

[nucl-th/9504018].

[105] A. K. Chaudhuri and V. Roy, Phys. Rev. C 84, 027902 (2011) [arXiv:1102.4936

[nucl-th]].

[106] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 3352 (1994) [arXiv:hep-

ph/9311205].

[107] E. Iancu and R. Venugopalan, In *Hwa, R.C. (ed.) et al.: Quark gluon plasma*

249-3363 [hep-ph/0303204].

[108] B. Schenke, S. Jeon and C. Gale, Phys. Rev. Lett. 106, 042301 (2011)

[arXiv:1009.3244 [hep-ph]].



199

[109] V. Roy and A. K. Chaudhuri, Phys. Rev. C 81, 067901 (2010) [arXiv:1003.5791

[nucl-th]].

[110] K. Aamodt et al. [ALICE Collaboration], Phys. Rev. Lett. 106, 032301 (2011)

[arXiv:1012.1657 [nucl-ex]].

[111] H. -J. Drescher, A. Dumitru, A. Hayashigaki and Y. Nara, Phys. Rev. C 74,

044905 (2006) [nucl-th/0605012].

[112] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz and K. K. Szabo, Nature 443, 675

(2006) [arXiv:hep-lat/0611014].

[113] P. Huovinen and P. Petreczky, Nucl. Phys. A 837, 26 (2010) [arXiv:0912.2541

[hep-ph]].

[114] Edward W. Kolb and Michael S. Turner, The Early Universe, Addison-Wesley.

[115] P. F. Kolb, J. Sollfrank and U. W. Heinz, Phys. Rev. C 62, 054909 (2000) [hep-

ph/0006129].

[116] F. Cooper, G. Frye and E. Schonberg, Phys. Rev. D11, 192 (1975).

[117] J. Sollfrank, P. Koch and U. W. Heinz, Phys. Lett. B 252, 256 (1990).

[118] T. Hirano and K. Tsuda, Phys. Rev. C 66, 054905 (2002) [nucl-th/0205043].

[119] V. Roy and A. K. Chaudhuri, Phys. Lett. B 703, 313 (2011) [arXiv:1103.2870

[nucl-th]].

[120] F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).

[121] A. Muronga and D. H. Rischke, nucl-th/0407114.



200

[122] K. Adcox et al. [PHENIX Collaboration], Nucl. Phys. A 757, 184 (2005).

[123] I. Arsene et al. [BRAHMS Collaboration], Nucl. Phys. A 757, 1 (2005).

[124] A. K. Chaudhuri, Phys. Lett. B681, 418-422 (2009).

[125] T. Hirano, U. W. Heinz, D. Kharzeev, R. Lacey and Y. Nara, Phys. Lett. B 636,

299 (2006).

[126] S. Sakai and A. Nakamura, PoSLAT 2007, 221 (2007).

[127] F. Karsch, D. Kharzeev and K. Tuchin, Phys. Lett. B 663, 217 (2008).

[128] J. I. Kapusta, arXiv:0809.3746 [nucl-th].

[129] S. Jeon, Phys. Rev. D 52, 3591 (1995).

[130] A. Wiranata and M. Prakash, Nucl. Phys. A 830, 219C (2009).

[131] M. Prakash, M. Prakash, R. Venugopalan and G. Welke, Phys. Rept. 227, 321

(1993).

[132] K. Paech and S. Pratt, Phys. Rev. C 74, 014901 (2006).

[133] G. Torrieri, B. Tomasik and I. Mishustin, Phys. Rev. C 77, 034903 (2008).

[134] A. Monnai and T. Hirano, Phys. Rev. C 80, 054906 (2009).

[135] K. Dusling and T. Schaefer, arXiv:1109.5181 [hep-ph].

[136] W. Israel, Nonstationary Irreversible Thermodynamics: A Causal Relativistic

Theory, Annals of Physics 100,310-331 (1976).



201

[137] A. Muronga, Phys. Rev. C 76, 014909 (2007).

[138] E. Molnar, H. Niemi and D. H. Rischke, Eur. Phys. J. C 65, 615 (2010).

[139] G. S. Denicol, T. Kodama, T. Koide and Ph. Mota, Phys. Rev. C 80, 064901

(2009).

[140] D. Kharzeev and K. Tuchin, JHEP 0809, 093 (2008).

[141] J. W. Chen and J. Wang, Phys. Rev. C 79, 044913 (2009).

[142] D. Davesne, Phys. Rev. C53, 3069-3084 (1996).

[143] T. Hirano and Y. Nara, Phys. Rev. C 79, 064904 (2009).

[144] P. Bozek, arXiv:1110.6742 [nucl-th].

[145] V. Roy and A. K. Chaudhuri, Phys. Rev. C 81, 067901 (2010).

[146] P. F. Kolb, U. W. Heinz, P. Huovinen, K. J. Eskola and K. Tuominen, Nucl. Phys.

A 696, 197 (2001).

[147] X. G. Huang, T. Kodama, T. Koide and D. H. Rischke, Phys. Rev. C 83, 024906

(2011).

[148] M. Luzum and J. -Y. Ollitrault, Phys. Rev. C 82, 014906 (2010).

[149] A. K. Chaudhuri, J. Phys. G G37, 075011 (2010).

[150] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. C 71, 034908 (2005)

[Erratum-ibid. C 71, 049901 (2005)] [nucl-ex/0409015].



202

[151] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. C 69, 034910 (2004) [nucl-

ex/0308006].

[152] K. Aamodt et al. [ALICE Collaboration], Phys. Lett. B 696, 30 (2011)

[arXiv:1012.1004 [nucl-ex]].

[153] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 107, 252301 (2011)

[arXiv:1105.3928 [nucl-ex]].

[154] K. Aamodt et al. [The ALICE Collaboration], Phys. Rev. Lett. 105 (2010) 252302

[arXiv:1011.3914 [nucl-ex]].

[155] M. I. Gorenstein, M. Hauer and O. N. Moroz, Phys. Rev. C 77, 024911 (2008)

[arXiv:0708.0137 [nucl-th]].

[156] O. N. Moroz, arXiv:1112.0277 [hep-ph].

[157] J. Xu and C. M. Ko, Phys. Rev. C 84, 014903 (2011) [arXiv:1103.5187 [nucl-th]].

[158] S. Afanasiev et al. [PHENIX Collaboration], Phys. Rev. C 80, 024909 (2009)

[arXiv:0905.1070 [nucl-ex]].

[159] P. Bozek, Phys. Rev. C 83, 044910 (2011) [arXiv:1012.5927 [nucl-th]].

[160] T. Hirano and Y. Nara, Phys. Rev. C 79, 064904 (2009) [arXiv:0904.4080 [nucl-

th]].

[161] B. I. Abelev et al. [STAR Collaboration], Phys. Rev. C 77, 054901 (2008)

[arXiv:0801.3466 [nucl-ex]].

[162] P. Bozek, Phys. Lett. B 699, 283 (2011) [arXiv:1101.1791 [nucl-th]].



203

[163] A. Kisiel, T. Taluc, W. Broniowski and W. Florkowski, Comput. Phys. Commun.

174, 669 (2006) [nucl-th/0504047].

[164] B. Schenke, S. Jeon and C. Gale, Phys. Lett. B 702, 59 (2011) [arXiv:1102.0575

[hep-ph]].

[165] R. A. Lacey et al., Phys. Rev. Lett. 98, 092301 (2007) [arXiv:nucl-ex/0609025].

[166] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97, 162302 (2006) [arXiv:nucl-

th/0606061].

[167] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

[arXiv:0706.1522 [nucl-th]].

[168] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 98, 172301 (2007)

[nucl-ex/0611018].

[169] H. van Hees, M. Mannarelli, V. Greco and R. Rapp, Eur. Phys. J. C 61, 799

(2009) [arXiv:0808.3710 [hep-ph]].

[170] Z. Xu and C. Greiner, Phys. Rev. Lett. 100, 172301 (2008) [arXiv:0710.5719

[nucl-th]].

[171] H. B. Meyer, Phys. Rev. D 76, 101701 (2007) [arXiv:0704.1801 [hep-lat]].

[172] N. Demir and S. A. Bass, Phys. Rev. Lett. 102, 172302 (2009) [arXiv:0812.2422

[nucl-th]].

[173] D. E. Kharzeev, L. D. McLerran and H. J. Warringa, Nucl. Phys. A 803, 227

(2008) [arXiv:0711.0950 [hep-ph]].



204

[174] F. Becattini, F. Piccinini and J. Rizzo, Phys. Rev. C 77, 024906 (2008)

[arXiv:0711.1253 [nucl-th]].

[175] J. R. Bhatt, H. Mishra and V. Sreekanth, Phys. Lett. B 704, 486 (2011)

[arXiv:1103.4333 [hep-ph]].

[176] B. Mohanty [STAR Collaboration], J. Phys. G 38, 124023 (2011) [arXiv:1106.5902

[nucl-ex]].

[177] D. Kharzeev and M. Nardi, Phys. Lett. B 507, 121 (2001).

[178] B. B. Back et al. [PHOBOS Collaboration], Phys. Rev. C 70, 021902 (2004).

[179] P. F. Kolb and U. Heinz, in Quark-Gluon Plasma 3, edited by R. C. Hwa and

X.-N. Wang (World Scientific, Singapore, 2004), p. 634.

[180] M. Cheng et al., Phys. Rev. D 77, 014511 (2008).

[181] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994) [arXiv:hep-

ph/9309289].

[182] D. Kharzeev, E. Levin and M. Nardi, Nucl. Phys. A 730 (2004) 448 [Erratum-ibid.

A 743 (2004) 329].

[183] A. Dumitru, E. Molnar and Y. Nara, Phys. Rev. C 76, 024910 (2007)

[arXiv:0706.2203 [nucl-th]].

[184] A. Adare et al. [PHENIX Collaboration], Phys. Rev. Lett. 105, 062301 (2010)

[arXiv:1003.5586 [nucl-ex]].



205

[185] S. S. Adler et al. [PHENIX Collaboration], Phys. Rev. C 69, 034909 (2004)

[arXiv:nucl-ex/0307022].


