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Synopsis

According to the cosmological big bang model the universe has undergone several

phase transitions (GUT, Electroweak, quark to hadron etc) at different stages of its

evolution. The quark-hadron transition occurred in the universe when it was a few

microsecond old and is the only transition which can be accessed in the laboratory. In

this phase transition, the chiral condensate is one of the order parameter measuring the

breaking of chiral symmetry and its study is important to understand the origin of the

mass of hadrons. Numerical simulation of QCD thermodynamics on the lattice predict

that at high temperature and/or baryon density, this condensate should vanish and chiral

symmetry should be restored. It is expected that the resulting changes in the vacuum

structure of QCD will affect the correlation functions of vector and axial-vector currents

of QCD. They may change in the medium leading to an identical profile at the phase

boundary signaling restoration of chiral symmetry. The correlator of vector current

of QCD is directly accessible in heavy-ion collisions since it couples to photons and

dileptons both of which undergo negligible final-state interaction. In low invariant mass,

this is proportional to the spectral function of the low lying vector mesons. The change

of the spectral properties of vector mesons in hot and dense medium is consequently

reflected in the electromagnetic spectra, specially in the invariant mass spectra of lepton

pairs.

We have investigated in-medium spectral properties of ρ and ω mesons by calculating

their one-loop self-energy at finite temperature and density. All the branch cuts and the

associated discontinuities of the self-energy functions have been discussed in details.

The framework of real time thermal field theory that we use, enables us to evaluate

the imaginary part of the self-energy from the branch cuts for real and positive values

of energy and momentum without having to resort to analytic continuation as in the

imaginary time approach. In addition to the unitary cut, present already in the vacuum

amplitude, the thermal amplitude generates a new, so-called Landau cut. An extensive

set of spin one-half and three-half 4-star resonances in the baryonic loops are taken

with the full relativistic baryon propagator in the loop diagrams. The novelty of this



full relativistic approach is that the baryons and anti-baryons naturally appear on an

equal footing and the additional singularities which are not considered in the Lindhard

function approach are automatically included. For the spin 3/2 resonances, an extra

term, contributing only in off-mass shell, is added to the Lagrangian because a symmetry

is associated with a point transformation under which the free Lagrangian for the Rarita-

Schwinger field remains invariant up to a change in the value of its free parameter. Along

with the baryon loops, we have included relevant meson loops to get a full modified

spectral function of ρ and ω. An almost flattened spectral density of ρ followed by ω

are found at very high temperature and density.

The integrated yield after space-time evolution using relativistic hydrodynamics with

quark gluon plasma in the initial state leads to a very good agreement with the exper-

imental data from In-In collisions obtained by the NA60 collaboration. The variation

of the inverse slope of the transverse mass (MT ) distribution can be used as an efficient

tool to predict the presence of two different phases of the matter during the evolution

of the system. The sensitivities of the effective temperature obtained from the slopes of

the MT spectra to the medium effects are studied.

With the help of the same frame work we have studied two other hadrons - nucleon

(N) and D meson. Using full relativistic baryon propagator as internal line, our nucleon

spectral function differs from the one in non-relativistic approximation, used in some

earlier calculations. By taking D meson as a probe of the strongly-interacting matter,

we have studied its spectral as well as transport properties with the help of covariant

formalism of heavy meson chiral perturbation theory. Owing to the Landau cut con-

tribution, the spectral modification of D mesons may result in a downward shift of the

pole leading to opening of sub-threshold channels of J/ψ decay providing nontrivial

contribution to its suppression in heavy ion collisions.
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Notation and Conventions

In the thesis, I have used the natural units, h̄ = c = kB = 1. The matric tensor used is

gµν = diag(1,−1,−1,−1). Most of the notation is introduced during the discussion and

the frequently used notations are enlisted below:

θ(x0) step function, θ(x0) = 1 when x0 > 0

= 0 when x0 < 0

T time order product

ǫ(q0) Sign function, ǫ(q0) = +1 when q0 > 0

= −1 when q0 < 0

β β = 1/T , where T is temperature

∆ Scalar propagator or scalar part of any propagator

S Spin 1
2
propagator

Dµν Spin 1 propagator

Gµν Four dimensionally transverse part of Spin 1 propagator

Π,Πµν Self-energy of Spin 0 and 1 particle respectively

Σ Self-energy of Spin 1
2
particle

µ chemical potential

n± Particle and anti-particle distribution function

M invariant mass

mπ mass of pion

mN mass of nucleon

mB mass of baryon

ǫµνλσ Levi civita symbol representing totally antisymmetric tensor, with ǫ0123 = 1

JP spin (J) parity (P ) quantum no.

Ti initial temperature

Tc transition temperature

Tch chemical freeze out temperature

TF kinetic freeze out temperature

W µν electromagnetic current correlation function

s, t, u Madelstam Variables, where

s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2
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Chapter 1

Introduction

In the journey of understanding the origin of matter, the main objective of our research

is to look for the basic constituents of matter and know their basic interactions. Probing

the matter at Fermi scale (10−15 m) we have seen a drastically condensed structure -

nucleus, which may be considered to possess the total mass of the matter. As per

contemporary wisdom, the nucleus can be divided into nucleons which are further made

up of quarks. Similar to atomic system, the mass of the nucleus is also very easily

reproduced by adding the rest mass of individual nucleons and the extra masses of the

components provide the binding energy of the nucleus. In 1960’s it was discovered that

the nucleon (with mass ∼ 940 MeV) is built of three valence quarks of up (u) and down

(d). Mysteriously the bare masses of u and d quarks are only about 5-10 MeV and our

traditional mass counting philosophy fails to understand the nucleon mass in terms of

masses of quark constituents. This 98 % of nucleon mass is believed to generate form

spontaneously breaking of chiral symmetry of the strong interaction. To be familiar

with the mysterious world of quarks and gluons inside the nucleon (or hadron), let us

begin with the QCD Lagrangian, describing the strong interaction of quarks and gluons

in Standard Model (SM).

LQCD =
∑

f

ψf(iγ
µDµ −mf )ψf −

1

4
Ga
µνG

µν
a (1.1)

where ψf denotes a quark field of flavor f and mass mf , Dµ = ∂µ − igsn
aAaµ/2 is the

covariant derivative and Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAbµA
c
ν is the gluon field strength

tensor. The structure constants of SU(3)color are denoted by fabc where the group indices

a, b, c take values from 1 to 8. The three and four gluon couplings endow QCD with

special properties which is very different from Quantum Electro Dynamics (QED) - the

1
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Figure 1.1: Left : Variation of QED and QCD coupling with momentum transfer (Q)
show an almost opposite trend [6]. Right : Running QCD coupling αs(Q) from various
measurements compared to theory [7].

theory of electromagnetic interaction. In QED the intermediate gauge particle, photon

does not have electric charge so it does not interact with itself. Renormalization of QED

loop diagrams render the electromagnetic coupling constant (αe = e2/4π) dependent on

the momentum transfer Q and αe(Q
2) increases with the increasing of Q. In QCD the

intermediate gauge particle, gluons unlike photons carry color charge and are self inter-

acting. Due to self interacting loop diagrams of gluons, QCD renormalization imposes

almost an opposite trend (see Fig. 1.1) in momentum dependence of strong coupling

constant (αs = g2s/4π). This shows at short distances, or large Q, αs(Q
2) decreases

logarithmically which means that the quarks and gluons appear to be weakly coupled at

very short distances, a behavior referred to as asymptotic freedom [1, 2]. QCD renormal-

ization introduces a scale ΛQCD known as the QCD scale parameter which has a value

∼ 200 MeV. For Q2 >> ΛQCD the value of αs is small and standard perturbation theory

works with a high level of accuracy as tested in deep inelastic scattering and many other

high energy processes. For Q2 ∼ Λ2
QCD on the other hand, the coupling is large and color

degrees of freedom get confined within hadrons like p, n, π, ρ etc. which are the relevant

degrees of freedom in this domain. Along with confinement, chiral symmetry is sponta-

neously broken; both these phenomena are responsible for the origin of hadronic masses

and bindings. So this nonperturbative domain of QCD is a very crucial region where

quark confinement [3, 4, 5] and the mass generation occur, posing formidable challenges

for their theoretical understanding [8]. An ab-initio study of these nonperturbative fea-
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tures of QCD is only possible through numerical simulations on a space-time lattice, a

field which has seen substantial progress in recent times. An alternative way to inves-

tigate the dynamics of strong interaction in the hadronic world is to construct effective

theories based on the symmetry structure of the underlying theory and chiral symmetry

plays a major role here.

1.1 Chiral Symmetry breaking in Hadronic spec-

trum

To discuss the chiral symmetry associated with QCD, let us rewrite Eq. (1.1) in the

limit of massless quarks 1 as

LQCD = i
∑

f=u,d

ψ
R

f γ
µDµψ

R
f + i

∑

f

ψ
L

f γ
µDµψ

L
f − 1

4
Ga
µνG

µν
a (1.2)

where ψL,Rf = 1
2
(1 ∓ γ5)ψf are respectively left and right chirality components of quark

field ψf . In this limit of vanishing quark masses, QCD Lagrangian (1.2) remains invariant

under independent transformations of left and right handed quark fields

ψL,Rf → UL,Rψ
L,R
f , UL,R = eiα

a
L,R

τa/2 (1.3)

where αaL,R(a = 1, 2, 3) are three real angles and τa are the Pauli matrices. Since the uni-

tary matrices UL,R belong to the groups SU(2)L,R respectively, of which the three Pauli

matrices τa are the generators. LQCD (1.2) is invariant under global SU(2)L×SU(2)R

symmetry leading to the conserved Noether currents JµaL,R = ψ
L,R

f γµ τ
a

2
ψL,Rf . This im-

plies that chirality or handedness is preserved and the associated symmetry of the strong

interaction in this limit is known as chiral symmetry. However, in reality the mass terms

∑

f

(ψ
L

fmfψ
R
f + ψ

R

fmfψ
L
f ) (1.4)

of the QCD Lagrangian (1.1) mixes the chiralities and breaks this symmetry explicitly.

Because of small masses, the chiral symmetry for two flavor (u and d) is still supposed

to be a good symmetry of strong interaction.

1With respect to other quarks (s, c, b and t), this limit may be well justified for u and d quarks
because of their small masses
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The observable particles i.e. hadrons are eigenstates of parity and so it is useful to

work with the vector and axial-vector Noether currents

JµaV,A = ψfγ
µ





1

γ5




τa

2
ψf (1.5)

which are related to the left and right handed currents by

JµaV,A = JµaR ± JµaL . (1.6)

The triplet of charges Qa
V,A =

∫
d3xJ0a

V,A(x) are the corresponding (quantum) generators

of SU(2)R×SU(2)L which commute with the Hamiltonian of QCD

[Qa
V,A, H ] = 0. (1.7)

The states that from irreducible representation (basis) of the SU(2)V group can be

connected by

QV |A〉 = |B〉 (1.8)

From Eq. (1.8) and (1.7) it follows immediately that

EA = 〈A|H|A〉

= 〈A|Q†
VHQV |A〉 (since H = Q†

VQVH = Q†
VHQ)

= 〈B|H|B〉 = EB (1.9)

Thus the symmetry of Hamiltonian H is manifest in the degeneracies of the energy

eigenstates corresponding to the irreducible representations of the symmetry group.

However implicit in the statement of (1.8) and hence (1.9) is invariance of the ground

state under symmetry transformation. Since |A〉 and |B〉 must be related to the ground

state |0〉 through some appropriate creation operators φA and φB

|A〉 = φA|0〉 , |B〉 = φB|0〉

and QV φAQ
†
V = φB (1.10)

Eq. (1.8) follows only if [9]

QV |0〉 = 0 (1.11)

It was shown by Vafa and Witten [10] that the vector charges annihilate the vacuum

Qa
V |0〉 = 0. Isospin symmetry i.e. SU(2)V is consequently realized in the usual Wigner-

Weyl mode which is reflected in the spectrum through the almost degenerate doublet of
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Figure 1.2: Hadronic spectra in vacuum do not show any mass degeneracy of chiral
partners. π, ρ with spin-parity quantum no. JP = 0−, 1− are well separated from their
Chiral partners f0, a1 (JP = 0+, 1+) respectively. Figure is taken from [37]

the proton and neutron, the triplet of the ρ+, ρ0, ρ− etc. In addition to the vector charges,

if the axial charges also annihilate the vacuum i.e. Qa
A|0〉 = 0, parity doublets should

exist in the spectrum. If chiral symmetry were realized in the conventional (Wigner-

Weyl) fashion one would expect there also to exist nearly degenerate but opposite parity

states (say |P 〉) generated by the action of the time-independent axial charges Qa
A =

∫
d3xJ0a

A (x) on these states [11]. Indeed since

H|P 〉 = EP |P 〉 ,

Hence H(QA|P 〉) = QA(H|P 〉) (using Eq. 1.7)

= EP (QA|P 〉) (1.12)

we see that QA|P 〉 must also be an eigenstate of the Hamiltonian (H) with the same

eigenvalue as |P 〉, which would seem to require the existence of parity doublets. This

however does not appear to be realized in nature. For example, the ρ meson with

JP = 1− is separated by about 500 MeV in mass from its chiral partner the a1 with

JP = 1+ (see Fig. 1.2). So are the masses of the nucleon and its chiral partner, the

N∗(1535). One can resolve this apparent paradox by postulating that parity-doubling

is avoided because the axial symmetry is spontaneously broken. Then according to

a theorem due to Goldstone, when a continuous symmetry is broken in this fashion

a massless boson having the quantum numbers of the broken generator must also be
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generated - in this case a pseudoscalar - and when the axial charge acts on a single

particle eigenstate |P 〉 one does not get a new single particle eigenstate of opposite

parity in return [12]. Rather one generates one or more of these massless pseudoscalar

bosons (denoted by a)

QA|P 〉 = |Pa〉+ ......... (1.13)

and the interactions of such “Goldstone bosons” with each other and with other particles

are found to vanish as the four-momentum goes to zero [13]. In QCD then, according

to Goldstone’s argument, one would expect three massless pseudoscalar states to exist

there - one for each spontaneously broken SU(2) axial generator, which would be the

Goldstone bosons of QCD. Examination of the particle data tables reveals, however,

that no such massless 0− particles exist. There exists three (22 − 1) 0− particles -

π+, π0 and π− (for 2-flavor QCD) which are much lighter than their hadronic siblings.

However, these states are certainly not massless and this causes us to ask what has

gone wrong with what appears to be rigorous reasoning. The answer is found in the

feature that our discussion thus far has neglected the piece of the QCD Lagrangian which

is associated with quark mass. The actual masses of these Nambu Goldstone Bosons

(NGBs) are obtained in chiral perturbation theory through an expansion in the (small)

actual masses of the quarks.

Hence the summary of this section is that the appearance of pions as massless (ap-

proximately) NGBs and non appearance of parity doublets in degenerate states are two

crucial outcome of spontaneous chiral symmetry breaking.

1.2 Chiral condensate

It is a general result that for any operator P , if

〈0|[Q,P ]|0〉 6= 0 (1.14)

then this expectation value is an order parameter of the symmetry generated by Q.

Introducing P b = ψγ5τ bψ we get

[Qa
A, P

b] = −δabψψ (1.15)
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Figure 1.3: Left : Variation of the quark condensate 〈0|ψψ|0〉 in T -ρ plane [18]. Right :
LQCD results of the chiral condensate as a function of temperature, taken from [19].

and so

Qa
A|0〉 6= 0

⇒ 〈0|ψψ|0〉 6= 0. (1.16)

The chiral condensate, as it is called, is the order parameter and its non-zero value

indicates the spontaneous breaking of chiral symmetry. Its value can be obtained from

the Gell-Mann-Oakes-Renner relation [14]

m2
πF

2
π = −(mu +md)〈0|ψψ|0〉+O(m2

u,d) (1.17)

which relates the pion mass and decay constant to the symmetry breaking parameters,

〈0|ψψ|0〉 (spontaneous) andmu,d (explicit). For Fπ = 93 MeV obtained from π+ → µ+νµ

decay, one gets 〈0|ψψ|0〉 ≃ −(250MeV)3 indicating that the strength of spontaneous

symmetry breaking is quite large. Such vacuum expectation values of other scalar op-

erators e.g. 〈0|GµνG
µν |0〉 etc. serve to parameterize the QCD vacuum and their values

cannot be estimated perturbatively. In the relativistic collisions of heavy ions the vac-

uum structure of QCD is expected to undergo a strong modification which in turn will be

manifested through the temperature and/or density dependence of the condensates [15].

A first estimate can be obtained by means of a virial expansion, approximating the hot

and dense medium produced in such collisions by a non-interacting gas of pions and

nucleons [16, 17]. The thermal average of the chiral condensate in the chiral limit

(mπ = 0) can be expressed as

〈ψψ〉β = 〈0|ψψ|0〉(1− T 2

8F 2
π

− ρ

3ρ0
) (1.18)
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where ρ0 is the nuclear saturation density. The value of the chiral condensate thus

decreases with temperature T and baryon density ρ which has been pictorially shown

in Fig (1.3). Here one sees that at high enough temperature T and/or density ρ, the

quark condensate 〈ψψ〉β drops to zero [20, 21]. At normal nuclear densities (ρ = ρ0) and

T = 0 (i.e. the center of a heavy nucleus) the condensate has dropped by almost 35%.

This corresponds to partial restoration of chiral symmetry. Gerber and Leutwyler [22]

have evaluated this quantity up to and including terms of O(T 6) using effective field

theory to find that the value of the condensate at T ∼ 160 MeV is about half its vacuum

value. Lattice simulations of QCD thermodynamics show a substantial change in the

energy and entropy density within a narrow temperature range around Tc = 170 MeV.

This is accompanied by a rapid decrease followed by vanishing of the value of the chiral

condensate indicating that chiral symmetry is restored in the Wigner-Weyl mode [23].

The order of the transition and the value of Tc however, depends on the number of

flavors as well as the value of the current quark mass.

Now the question is that how can we measure this in-medium change of chiral conden-

sate 〈ψψ〉β ? Experimentally, this chiral order parameter can not be measured directly.

Despite the fact that the condensate is not an experimental observable, it is hardly con-

ceivable that such a strong modification of the QCD vacuum should not have spectacular

consequences on hadronic properties, namely on the hadronic spectral functions. In next

section we will focus on the hadronic spectral function in vacuum and in medium.

1.3 Hadronic spectral function

In vacuum all hadrons except proton (almost a stable particle) live for a very short time

interval, quantified by mean life time (τ) and they decay to other hadrons or leptons.

These daughter particles may decay further and successive processes will continue still

they disintegrate to some stable particles (proton, electron, neutrino etc.). To describe

this unstable nature of hadrons let us start from the basic quantum mechanical descrip-

tion of decay phenomena. The exponential decay law can be beautifully constructed

by considering a non-stationary wave function [24] of parent hadron (H). For a certain

mean life time τ = 1
Γd

(Γd is called decay width of H) and energy ω ≃ mH (mH is mass
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Figure 1.4: Probability in time (left) and energy (right) for unstable particle
.

of H), the wave function of the H is

ψ(t) = ψ(0)e−iωte−
Γdt

2 (1.19)

Hence the decay probability of unstable particle will be

N(t)

N(0)
=

|ψ(t)|2
|ψ(0)|2 = e−Γdt (1.20)

which represents the famous exponential decay law. Taking Fourier transformation of

the wave function from time variable (t) to energy variable (q0), the probability exhibits

a Breit-Wigner distribution as a function of q0

|ψ̃(q0)|2
|ψ̃(ω)|2

=
Γ2
d/4

(q0 − ω)2 + Γ2
d/4

=
Γd
2
̺(q0) (1.21)

where

̺(q0) = −Im
1

q0 − ω + iΓd/2
(1.22)

Left panel of Fig. (1.4) shows the exponential decay probability with time (t) where

x-axis is normalized by mean life time (τ). The right panel of the figure shows the

Breit-Wigner type probability distribution as a function of energy. From this figure we

see as we decrease Γd or increase τ , the function becomes narrower and in the zero width

limit, it becomes a delta function

lim
Γd→0

̺(q0) = πδ(q0 − ω) (1.23)
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In QFT the spectral function appears as a consequence of the Kallen-Lehman represen-

tation of the two point function of local fields. The Feynman propagator −i∆(q2) is

defined as the time ordered product of two point functions of fields

i.e. ∆(q2) = i
∫
d4xeiq·x〈0|T φ(x)φ(0)|0〉

= i
∫
d4xeiq·x{θ(x0)〈0|φ(x)φ(0)|0〉+ θ(−x0)〈0|φ(0)φ(x)|0〉} (1.24)

To dissect the two point function 〈0|T φ(x)φ(0)|〉, we will insert the identity operator,

in the form of a sum over a complete set of states, between φ(x) and φ(0).

∆(q2) = i
∫
d4xeiq·x

∑

n

∫
d3p

(2π)3
1

2ωp(n)
{θ(x0)〈0|φ(x)|np〉〈np|φ(0)|0〉

+ θ(−x0)〈0|φ(0)|np〉〈np|φ(x)|0〉} (1.25)

where the identity operator is

1 =
∑

n

∫
d3p

(2π)3
1

2ωp(n)
|np〉〈np| (1.26)

The sum runs over all states with arbitrary number of particles with an integration over

all the particle momenta in each of the multi-particle states. These states are eigenstates

of the energy-momentum operator p̂µ,

p̂µ|np〉 = |np〉pµn (1.27)

Using the relation φ(x) = eip·xφ(0)e−ip·x and Eq. (1.27) in Eq. (1.25), we have

∆(q2) = i
∫
d4x

∑

n

{θ(x0)ei(q−pn)·x|〈0|φ(0)|np〉|2 + θ(−x0)ei(q+pn)·x|〈0|φ(0)|np〉|2} (1.28)

which after some simplification gives

∆(q2) =
∫ ∞

0

dq′2

2π
̺(q′2)

−1

q2 − q′2 + iη
(1.29)

for which

̺(q2) = 2Im∆(q2) (1.30)

where ̺(q′2) is a positive spectral function,

̺(q′2) =
∑

n

(2π)δ(q′2 −m2
n)|〈0|φ(0)|np〉|2 (1.31)
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This general representation of interacting propagator is known as the Kallen-Lehmann

representation. In free field theory the spectral function is just a delta function whereas

in interacting field theory, the spectral function contain all possible intermediate quan-

tum fluctuation in between two points. These are quantified by the self-energy Πvac

in terms of which the interacting propagator (∆)is obtained by solving the Dyson’s

equation,

∆ = ∆0 −∆0Πvac∆, ∆0 =
−1

q2 −m2
H + iη

(1.32)

which gives

∆ = 2Im
−1

q2 −m2
H −Πvac

(1.33)

Hence

̺(q) = 2Im
−1

q2 −m2
H + i{−ImΠvac(q)}

(1.34)

Comparing with the quantum mechanical expression (1.22), we see that the quantity

ImΠvac(q) (Imaginary part of vacuum self-energy) is related to the decay width and is

given by

ImΠvac(q = mH) = mHΓd (1.35)

Now in presence of medium the unstable hadrons H may collide with other thermal-

ized particles and its collision rate (Γcol = ρσv, where ρ is density of the medium, σ is

the cross section of H with other thermalized particles and v is the velocity of H .) adds

to the decay rate Γd so as to attenuate the probability amplitude more rapidly. Thus the

exponential attenuation factor become e−(Γd+Γcol)t/2. Simultaneously the spectral profile

will be wider in medium compare to vacuum. In QFT at finite temperature these two

contributions appear automatically. The expression of self-energy at finite temperature

can be written as

Π = Πvac +Πmed (1.36)

which will be elaborately discussed in Ch. 3. The total self-energy depends on the

medium parameter (temperature, density) along with the momentum. Through an

explicit calculation of QFT at finite temperature, one can get a modified spectral profile

of hadrons in thermal bath.
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1.4 Probing the in-medium spectral properties of

hadrons via heavy ion collision

Our aim is to characterize strongly interacting matter by investigating the spectral

function of a hadron when it propagates through hot and dense matter. Colliding

heavy ions at ultra-relativistic energies, Elab >> mN , is the only way to produce and

study bulk properties of the strongly interacting matter which last existed naturally

almost 14 billion years ago, a few microseconds after the Big Bang. Several large-

scale experiment at ultra-relativistic bombarding energies have been conducted over the

past twenty years to study this form of matter. Matter at large density but moderate

temperatures (SIS,BEVALAC) or matter at both large density and temperature (AGS)

can be generated in these experiments. From SPS (at CERN) to RHIC (at BNL) to

LHC (at CERN) the center of mass energy per nucleon has increased from
√
s = 17.3

GeV to
√
s = 200 GeV to

√
s = 5.5 TeV producing matter with high temperature

and low baryon density. Therefore, a large region of the QCD phase diagram can be

investigated through the variation of the colliding energy. In collisions of two nuclei at

ultra-relativistic energies, a large amount of energy is deposited in a small region of space

in a short duration of time. In this region, the energy density is therefore very large (of

the order of few GeV/fm3). This energy density, an order of magnitude greater than the

energy density of nuclear matter in equilibrium, may favor the formation of a new form

of matter such as Quark-Gluon Plasma. This kind of quark-hadron phase transition has

been essentially confirmed by numerical QCD lattice calculation at finite temperature.

There are some interesting phenomena which have received special importance in the

QGP. Some of them are discussed below.

(1) Jet quenching : When two protons collide at high energies, pairs of their constituent

quarks or gluons may collide with each other and scatter back to back, quickly breaking

up again into jets or spray of particles such as pions and kaons. If the jets propagate

through a medium formed after the nuclear collision due to multiple scattering, they

suffer further interaction with the medium and loss their energy. This parton energy

loss is referred to as jet quenching [25, 26] and provides fundamental information on

the thermodynamical and transport properties of the traversed medium. Results from

nucleus-nucleus collisions at the RHIC [27, 28] have shown evidence for the quenching
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effect through the suppression of inclusive high pT hadron production.

(2) J/ψ suppression : Suppression of J/ψ production in high energy heavy ion collisions

relative to p-p collisions is considered as a signature of QGP. This was pointed out

almost 30 years ago by Matsui and Satz [29]. In the hot QGP environment, the quark

and gluon move freely and due to Debye screening of color charges the string tension

vanishes. Hence the interaction between the cc quarks will be too weak to dissociate in

medium. Again the probability of forming a c quark (∼ e−mc/T )is less than that of lighter

quark (q = u, d, s) (∼ e−mq/T ). For charm and anti-charm quarks traveling through the

plasma, the abundance of u, d, s quarks and anti-quarks results in a high possibility that

the c and c can hadronize by combining with the light quarks and anti-quarks forming

open charm particles, which will result in the suppression of J/ψ in QGP.

(3) Elliptic flow : In non-central heavy-ion collisions, the initial spatial anisotropy of the

almond shape overlap region of the colliding nuclei is transformed into an anisotropy in

momentum space through interactions between the particles. As the system expands,

anisotropy is reduced and the system becomes more spherical, thus the driving force

quenches itself. The azimuthal momentum anisotropy [30] of particle emission from non-

central heavy-ion collisions can be quantified as the coefficients of the Fourier expansion

dN

pTdpTdφdy
=

dN

2πpTdpTdy
[1 + 2

∞∑

n=1

vncos{n(φ− ψ)}] (1.37)

where φ is the azimuthal angle of the particle and ψ is the angle subtended by the

reaction plane containing the beam axis and impact parameter with x-direction. The

second coefficient of the expansion, v2 , is usually referred to as elliptic flow.

Typical heavy-ion collision is believed to evolve as follows. Two Lorentz-contracted

nuclei approach each other at close to the speed of light until primordial nucleon-nucleon

collisions occur. After subsequent re-interactions for τ0 = 0.5− 1fm/c the Quark-Gluon

Plasma (QGP) is supposedly created. Driven by the pressure gradient the QGP expands

and cools (for a duration of τQGP ∼ 3 − 5fm/c). The hadronization then follows with

further expansion in the hadronic phase until the chemical freeze-out point when in-

elastic interactions cease and particle abundances get frozen. Further expansion/cooling

proceeds until kinetic freeze-out when elastic interactions stop and particle transverse

momentum spectra gets fixed. The total fireball lifetime is approximately 10 − 15fm/c

depending on the beam energy. Hence the modified hadrons come to the detector (af-
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ter traversing a long path compared to the dimension of the hot matter) carrying only

the information of freeze out surface. They loose in-medium information of the matter

in early stages (i.e. before freeze out). Instead of hadronic probes, electromagnetic

probes (dileptons and photons) are considered to be superior in order to extract the

in-medium information from the interior of the matter. Their interaction rate in the

strongly interacting matter is small enough for them to escape the interior of the matter

unaffected.

In the nineties, enhancement of dilepton production in heavy ion collisions at low

invariant mass as compared to conventional hadronic cocktails (see Fig. 1.5) was first

observed. The pioneering experiments on dilepton, which exhibited such kind of en-

hancement, started in the late 1980’s at the Lawrence Berkeley Laboratory with DLS

(Dilepton Spectrometer) [31, 32, 33] and at the CERN SPS with the CERES [34] and

HELIOS [35] detector system in the energy ranges of
√
s = 2-3 GeV and 17 GeV, re-

spectively. A number of authors have analyzed the dilepton spectra from heavy ion

collisions; the treatments differing both in the construction of the ρ spectral function as

well as the space time evolution scenario employed. This includes the nature of phase

transition, the equation of state as well as numerical values of the parameters like the

initial temperature, the thermalisation time, the phase transition temperature as well

as the chemical and kinetic freeze-out temperatures. We do not attempt to review or

summarize the considerable amount of work which has been done on this topic except

to mention the most recent few. The NA60 experiment at the CERN SPS measured

dimuon pairs in In-In collisions in which an excess was observed over the contribution

from hadronic decays at freeze-out in the mass region below the ρ peak [36]. This was

attributed to the broadening of the ρ in hot and dense medium [37, 38], in contrast

to the earlier data from the CERES collaboration [39] which is unable to differentiate

between the broadening and the pole shift of the ρ spectral function [40]. The NA60

data for the entire (measured) invariant mass range is reproduced by taking into account

dilepton productions from Drell-Yan processes, qq̄ annihilation, thermally broadened in-

medium ρ, decays of ρ at the freeze-out surface and primordial ρ produced from the

initial hard scattering [41]. The dilepton yield evaluated with the in-medium spectral

functions of ρ and ω mesons deduced from empirical forward scattering amplitudes [42]
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Figure 1.5: Dilepton spectra from heavy-ion collisions as measured by the CERES/NA45
collaboration. Data of P-Be collisions (Left) can be reproduced by the hadronic cocktail
contributions as extrapolated from hadron multiplicities in p+p data but this cocktail
fitting fail to reproduce the data of S+Au collisions (Right). The plot is taken from
[39].

does not reproduce the data well at the low invariant mass (M < 0.5 GeV) region. The

PHENIX experiment reported a substantial excess of electron pairs in the same region

of invariant mass [43]. The data has been investigated by several groups e.g. [44, 45, 46].

The yield in all these cases have remained insufficient to explain the PHENIX data [47].

Thus the issue of low mass lepton pair yield still remains an unsettled issue.

We have done an explicit thermal field theoretical calculation of in-medium spectral

functions of light vector mesons (ρ and ω). By coupling their spin averaged spectral

strength with dilepton channels and convoluting that static rate by hydrodynamical

space time evolution with appropriate initial conditions, we have carried out a detailed

investigation of the low mass dilepton yield in heavy ion collisions.

1.5 Organization of the thesis

The thesis is organized as follows. In Chapter 2, we have derived propagator at finite

temperature in the formalism of thermal field theory (QFT at finite temperature). We

have used the real time formalism of thermal field theory. Starting from spin 0 and spin

1
2
propagator we have written down a general form of propagator in vacuum as well as in

medium. In the last section of this chapter we have provided the Dyson-Schwinger form
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of spectral function for propagator of spin 0, 1
2
and 1. Chapter 3 is devoted to a general

evaluation of one-loop self-energy at finite temperature in real time thermal field theory.

At the end of this general calculation we have discussed each special cases where we can

notice the differences in the phase space part. Associated branch cuts in the one loop

self-energy and their diagrammatic interpretation are discussed. In the chapters 4 and 5

we have discussed one-loop self-energy of two light vector mesons (spin 1) - ρ and ω. We

have provided a unified description of the various sources modifying their propagation

in a meson and baryon gas at finite temperature and density. In the baryonic loops,

we have considered an exhaustive set of spin one-half and three-half 4-star resonances.

These modified spectral function of ρ and ω leads to a large enhancement (mostly due

to ρ modification) of dilepton production below the bare peak of the rho. This has

been shown in Chapter 6. The integrated dilepton yield after space-time evolution

using relativistic hydrodynamics with quark gluon plasma in the initial state leads to

very good agreement with the experimental data from In-In collisions obtained by the

NA60 collaboration. Effective temperatures are extracted from the inverse slope of the

transverse mass distributions for various invariant mass windows of dileptons and they

may be used to characterize the partonic phase. In next two chapters (Ch 7 and 8) we

have studied the in-medium properties of two more hadrons - nucleon (spin 1
2
) and D

meson (spin 0). In Chapter 8 we have also studied the transport properties of D as well

as B mesons. Chapter 9 contains the thesis summary and related discussions.



Chapter 2

Propagators in real-time thermal
field theory

In the macroscopic classical world, the idea of propagation of a particle from one point

to another is very simple as the Hamiltonian of the particle predictively determine its

certain trajectory, which can be compared with our experience of daily life. But when

we go to the microscopic quantum world, it becomes very hard to visualize the picture

of propagation because the particle, owing to Heisenberg’s uncertainty principle, does

not follow any certain trajectory. Only a probabilistic description can be proposed for

this particle1. Now if this particle is propagating with very high velocity then along with

the probabilistic features one has to incorporate the idea of special theory of relativity

where the mass of the propagating particle can be more than the mass of the particle at

rest. The quantum mechanical evolution operator, e−iHt gives the probability of a state

after time t, where H is the Hamiltonian operator of the particle which gives an energy

eigenvalue E after operating on the state in momentum space. In non-relativistic and

relativistic cases, the energy eigenvalues of the free particle propagating with momentum

~q are E = ~q2

2m
and E =

√
~q2 +m2 respectively. The probability amplitudes for a free

particle propagating from x(= tx, ~x) to y(= ty, ~y) for the two cases are given by [49]

G(tx, ty, ~x, ~y) = 〈y|e−iH(ty−tx)|x〉

∼ e
im(~y−~x)2

2(ty−tx) for E =
~q2

2m

∼ eim(~y−~x)2−(ty−tx)2 for E =
√
~q2 +m2 (2.1)

1In fact, our classical trajectory in the macroscopic world may be considered as a net result of all
possible probabilistic paths in microscopic domain by using the unitarity of quantum mechanics [48].

17
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The above relations show for (~y − ~x) > (ty − tx) i.e. in the space-like region, the

probability amplitude is non-zero which means that probabilities of a particle at two

points can be communicated by a signal with speed faster than the speed of light. In

other word causality is violated in this description. Interestingly, the causality violation

can not be cured even using the relativistic energy momentum relation. This may

suggest us to proceed from one particle description to many particle relativistic quantum

mechanical description (i.e. quantum field theory). Quantum Field Theory (QFT) solves

this causality problem in a miraculous way. The commutation of fields at two points is

an appropriate quantity to check whether the measurements at two points outside the

light cone are affected by each other or not. This commutator can be expressed as

〈0|[φ(x), φ(y)]|0〉 = −i∆+(x− y)− {−i∆−(x− y)} (2.2)

where

−i∆+(x− y) = 〈0|φ(x)φ(y)|0〉 =
∫

d3q

(2π)32ω
e−iq(x−y)

−i∆−(x− y) = 〈0|φ(y)φ(x)|0〉 =
∫

d3q

(2π)32ω
eiq(x−y) (2.3)

are positive and negative energy solutions of Klein-Gordon equation (for scalar field, φ)

with delta current source. These two quantities ∆+(x− y) and ∆−(x− y) in space-like

region are individually non-zero (∆±(x−y)|ty−tx→0 ∼ em|~y−~x|) but in Eq. (2.2) they cancel

each other. So the causality is preserved in QFT and the new theoretical outcome is the

negative energy solution or antiparticle. This negative energy propagation is basic to

restore causality because it absorbs the positive energy propagation in space-like region.

In this way we get a mathematical expression of causal propagation of a relativistic

particle in the microscopic world.

2.1 Free vacuum propagator

In QFT, the intrinsic spin of the particle is included in the field operator. The expressions

of field operators as well as their corresponding Euler-Lagrange equations are different for

particles with different spin and therefore their corresponding propagation amplitudes

are also different. We will start this section with the derivation of vacuum propagator for

only spin 0 (scalar) particle and spin 1/2 (fermion) particle. At the end of the section
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we will write down the propagator for particles with spin 0, 1/2, 1, 3/2 in a general

spectral representation.

2.1.1 Scalar propagator

Let us familiarize ourselves with three kinds of forms of propagator- (1) Retarded prop-

agator, (2) Advanced propagator and (3) Feynman propagator which are generally used

in QFT. Only for scalar particle we will derive these forms as for other particles only

numerator part, containing the spin sum states, has to be changed.

The propagator are defined in terms of commutation relation of field operators at two

points with different time ordering. These three kinds of propagator can mathematically

be expressed as [49, 50]

−i∆R(x− y) = θ(tx − ty)[〈0|φ(x)φ(y)|0〉 − 〈0|φ(y)φ(x)|0〉] (2.4)

−i∆A(x− y) = θ(ty − tx)[〈0|φ(x)φ(y)|0〉 − 〈0|φ(y)φ(x)|0〉] (2.5)

and

−i∆F (x− y) = 〈0|T [φ(x)φ(y)]|0〉

= θ(tx − ty)〈0|φ(x)φ(y)|0〉+ θ(ty − tx)〈0|φ(y)φ(x)|0〉 (2.6)

All of them satisfy the Klein-Gordon Equation with (four-dimensional) point source,

(22
x +m2)∆(x− y) = δ4(x− y) (2.7)

where ∆ is a general expression for all the three propagators. Using the spatial Fourier’s

relations

∆(tx − ty, ~x− ~y) =
∫

d3~q

(2π)3
ei~q·(~x−~y)∆(tx − ty, ~q)

δ3(~x− ~y) =
∫

d3~q

(2π)3
ei~q·(~x−~y) (2.8)

in Eq. (2.7), we get

(
∂2

∂t2x
− (i~q)2 +m2)∆(tx − ty, ~q) = δ(tx − ty)

⇒ (
∂2

∂t2x
+ ω2)∆(tx − ty, ~q) = δ(tx − ty) (2.9)
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with ω =
√
~q2 +m2. Here ty will be treated as a spectator point. The solution of the

equation

(
∂2

∂t2x
+ ω2)∆(tx, ty) = 0 , tx 6= ty (2.10)

is

∆(tx, ty) = A(ty)e
−iωt +B(ty)e

iωt , tx > ty

= C(ty)e
−iωt +D(ty)e

iωt , tx < ty (2.11)

Feynman propagator ∆F :

According to Feynman boundary conditions, the positive and negative frequencies should

propagate for tx > ty and tx < ty respectively. Using the conditions in (2.11), we get

B(ty) = C(ty) = 0 (2.12)

Another two boundary conditions [51] are

A(ty)e
−iωt = D(ty)e

iωt (as ∆(tx, ty) should be continuous at tx = ty)

A(ty)(−iω)e−iωt +D(ty)(+iω)e
iωt = 1

(as the discontinuity of
∂

∂tx
∆(tx, ty) at tx = ty should be unity) (2.13)

The solution satisfying the above boundary conditions is

∆F (tx, ty) =
i

2ω
e−iω(tx−ty) , tx > ty

=
i

2ω
eiω(tx−ty) , tx < ty (2.14)

which can be combined (putting ty = 0 and tx = t) as

∆F (t, ~q) =
i

2ω
[θ(t)e−iωt + θ(−t)eiωt] (2.15)

Using the integral representation of the Heaviside step function,

θ(t) = ±i lim
η→0

∫ ∞

−∞

dq′0
2π

e∓iq
′
0t

q′0 ± iη
, (2.16)

Eq. (2.15) can be evaluated as

∆F (t, ~q) =
i

2ω
[i
∫ dq′0

2π

e−i(q
′
0+ω)t

q′0 + iη
+ i

∫ dq′0
2π

e−i(q
′
0+ω)(−t)

q′0 + iη
]

=
∫
dq0
2π

e−i(q0)t(− 1

2ω
)[

1

q0 − ω + iη
− 1

q0 + ω − iη
]

(using q′0 = q0 − ω, − q0 − ω for first and second part of the integrand respectively)

=
∫
dq0
2π

e−i(q0)t∆F (q
2) (2.17)
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where

∆F (q
2) =

−1

q2 −m2 + iη
(2.18)

This is standard form of Feynman propagator in momentum space.

Retarded propagator ∆R :

As neither positive nor negative energy should propagate for tx < ty in retarded propa-

gation, our second part of Eq. (2.11) will vanish

i.e. C(ty) = D(ty) = 0 (2.19)

Similar to previous case, the others two constants, which are left, have to be fixed by the

boundary conditions of continuity of amplitude and discontinuity of first derivative [51],

A(ty)e
−iωty +B(ty)e

iωty = 0 and

A(ty)(−iω)e−iωty +B(ty)(+iω)e
iωty = 1 (2.20)

Determining the coefficients coming from the above relations and putting in Eq. (2.11)

we have

∆R(tx, ty) =
i

2ω
[e−iω(tx−ty) − eiω(tx−ty) , tx > ty

= 0 , tx < ty (2.21)

i.e. (for ty = 0 and tx = t)

∆R(t, ~q) =
i

2ω
θ(t)[e−iωt + eiωt] (2.22)

Taking the temporal Fourier’s transformation of (2.22) by using the step function (2.16),

we get retarded propagator in momentum space

∆R(q
2) =

−1

q2 −m2 + iǫ(q0)η
(2.23)

Advanced propagator ∆A :

Considering the propagation for ty > tx (i.e. A(ty) = B(ty) = 0) and following the same

procedure we can achieve the expression of advanced propagator in momentum space.

∆A(q
2) =

−1

q2 −m2 − iǫ(q0)η
(2.24)
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2.1.2 Fermion propagator

Fermion propagation is different from the boson propagation due to different quanti-

zation relations as well as the different equation of motions. Free Fermion field ψ is

governed by the Dirac’s equation

(i∂/ −m)ψ = 0 (2.25)

In the interaction picture there will be a current source on the right hand side of

Eq. (2.25). The Green function is defined by the equation,

(i∂/ −m)abSF (x− y) = δ4(x− y)Iab; a, b are Dirac indices (2.26)

where

−iSF (x− y) = 〈0|T {ψa(x)ψb(y)}|0〉

= θ(tx − ty)〈0|ψa(x)ψb(y)|0〉 − θ(ty − tx)〈0|ψb(y)ψa(x)|0〉 (2.27)

Straight forward spinor algebra of fermion field give us

〈0|ψa(x)ψb(y)|0〉 =
∫ d3q

(2π)32ω

∑

s

usa(q)u
s
b(q)e

−iq(x−y)

= (i∂/+m)ab

∫
d3q

(2π)32ω
e−iq(x−y) as

∑

s

usa(q)u
s
b = (q/+m)ab (2.28)

〈0|ψb(y)ψa(x)|0〉 =
∫

d3q

(2π)32ω

∑

s

vsa(q)v
s
b(q)e

iq(x−y)

= −(i∂/+m)ab

∫
d3q

(2π)32ω
eiq(x−y) as

∑

s

vsa(q)v
s
b = (q/−m)ab (2.29)

So we can express the fermion propagator in terms of scalar propagator as

SF (x− y) = (i∂/+m)∆F (x− y) (2.30)

From Eq. (2.17) we can write

∆F (x− y) =
∫ d3~q

(2π)3
ei~q·(~x−~y)∆F (tx − ty, ~q)

=
∫ d4~q

(2π)4
e−iq(x−y)∆F (q

2) (2.31)
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and putting it in Eq.(2.30) we will get

SF (x− y) =
∫

d4~q

(2π)4
e−iq(x−y)SF (q) (2.32)

where

SF (q) = (q/+m)∆F (q) (2.33)

General representation of vacuum propagator :

Getting motivation from the Eq. (2.18) and (2.33), we can write a general representation

of the propagator2 of a particle with any spin as

P (q) = ζ(q)∆F (q) (2.34)

where ζ is the sum of spin states of the particle and its expression for different spin

particles are given below

ζ(q) = 1 , S = 0

= (q/+m) , S =
1

2

= (−gµν + qµqν

m2
) , S = 1

= (q/+m)({−gµν +
2

3m2
qµqν +

1

3
γµγν +

1

3m
(γµqν − γνqµ)}) , S =

3

2

(2.35)

In spectral representation they can be expressed as

P (q) =
∫ dq′0

2π

̺(q′0, ~q)

q′0 − q0 − iηǫ(q0)
(2.36)

where

̺(q′0, ~q) = 2πǫ(q′0)ζ(q
′
0, ~q)δ(q

′
0
2 − ω2) (2.37)

represent the general form of free spectral function.

2.2 Free propagator at finite temperature

Let us proceed to quantum field theory at finite temperature after briefly recapitulating

quantum statistical mechanics. According to quantum mechanical ensemble theory, the

2The propagator defined in Feynman rule is exactly equal to −iP (q).
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expectation value of any physical quantity A, which is dynamically represented by an

operator Â, is given by

〈A〉 = 1

N

N∑

k

〈ψ∗
k|Â|ψk〉 (2.38)

where |ψk(t)〉 denotes the physical state in which the kth system of the ensemble happens

to be at time t and k = 1, 2, ..N for an ensemble of N identical systems.

In this theory, density matrix (ρmn) is the most important quantity which involves a

double averaging process - once due to probabilistic aspect of the quantum mechanical

states and again due to statistical aspect of the ensemble. The statistical average is

clearly seen in (2.38). The information of quantum average can be understood if we

expand the |ψk(t)〉 as

|ψk(t)〉 =
∑

n

akn(t)|φn〉 (2.39)

where akn(t) is coefficient giving the probability amplitude for kth system to be in the

various orthonormal states |φn〉. So Eq. (2.38) is now given by

〈A〉 =
1

N

N∑

k

[
∑

m,n

ak∗n a
k
mAnm]

= Tr(ρ̂Â) (2.40)

where

Anm = 〈φn|Â|φm〉

and ρmn =
1

N

N∑

k=1

∑

m,n

akma
k∗
n (2.41)

Depending upon the ensemble, the form of density matrix (ρ̂) will be different. For

example, in the canonical ensemble it has the form

ρ̂ =
e−βĤ

Z
, Z = Tre−βĤ . (2.42)

It is interesting to note that the quantum mechanical time evolution operator e−iĤt

becomes the density operator by the replacement t = −iβ. This analogy provides us

with a way to incorporate the ensemble average by evolving the time parameter in com-

plex plane instead of real axis only. This is the basis of the Thermal Field Theory

(TFT) [52, 53, 54, 55, 56].
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Region of analyticity : Instead of vacuum expectation value if we take thermal ex-

pectation value of the two point function of field operators, then the vacuum propagator

will be transformed to thermal propagator. For scalar particle it is defined as3

〈φ(τx, ~x)φ(τy, ~y)〉β =
1

Z

∑

m

e−βEm〈m|φ(τx, ~x)φ(τy, ~y)|m〉 (2.43)

which can be simplified as

〈φ(τx, ~x)φ(τy, ~y)〉β =
1

Z

∑

m,n

e−βEm〈m|φ(τx)|n〉〈n|φ(τy)|m〉 ,
∑

n

|n〉〈n| = 1̂

=
1

Z

∑

m,n

e−βEm〈m|eiĤτxφ(0)e−iĤτx|n〉〈n|eiĤτyφ(0)e−iĤτy |m〉

=
1

Z

∑

m,n

e−iEn(τx−τy)eiEm(τx−τy+iβ)〈m|φ(0)|n〉〈n|φ(0)|m〉 (2.44)

Note that the factor

eiEm(τx−τy+iβ) = eiEm[Re(τx−τy)+i{Im(τx−τy)+β}]

= eiEmRe(τx−τy)e−Em[Im(τx−τy)+β] (2.45)

has a non oscillatory part in complex τ -plane which must be exponentially damped in

order that the correlation function is well behaved for Em → ∞. This is possible only

when

Im(τx − τy) + β ≥ 0

⇒ Im(τx − τy) ≥ −β (2.46)

Similarly the factor

e−iEn(τx−τy) = e−iEnRe(τx−τy)eEnIm(τx−τy) (2.47)

will be a damped only when

Im(τx − τy) ≤ 0 (2.48)

Combining Eq. (2.48) and Eq. (2.46) we get the region of analyticity in τ -plane as

−β ≤ Im(τx − τy) ≤ 0 (2.49)

In real time formalism of thermal field theory, the contour is chosen so as to include the

real axis.

3For representing complex time in TFT, we have replaced ‘t’ by ‘τ ’. 〈 〉β represents thermal average.
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KMS relation :

The thermal propagator for a scalar field is given by

∆β
F (x− y) = 〈Tcφ(x)φ(y)〉β

= θc(τx − τy)∆
β
+(x− y) + θc(τy − τx)∆

β
−(x− y) (2.50)

where Tc and θc denote respectively time ordering and step function with respect to the

contour. The expressions of positive and negative energy propagation in medium having

temperature T = 1
β
are respectively given by

∆β
+(x− y) = 〈φ(x)φ(y)〉β =

1

Z

∑

m

〈m|e−βHφ(x)φ(y)|m〉

∆β
−(x− y) = 〈φ(y)φ(x)〉β =

1

Z

∑

m

〈m|e−βHφ(y)φ(x)|m〉 (2.51)

These two quantities are linked by a relation, called Kubo Martin Schwinger(KMS)

relation [57, 58, 52]

∆β
+(τx − τy, ~x− ~y) = ∆β

−(τx − τy + iβ, ~x− ~y) (2.52)

2.2.1 Scalar propagator at finite temperature

The equation of motion of scalar propagator is given by

(∂2c +m2)∆β
F (x− y) = δc(τx − τy)δ

3(~x− ~y) (2.53)

Proceeding with same strategy as for vacuum [recalling the Eq. (2.8) and Eq. (2.9)], we

get the temporal part of differential equation as

(
∂2

∂τ 2x
+ ω2)∆β

F (τx − τy, ~q) = δc(τx − τy) (2.54)

and for τx 6= τy, we get same solution as Eq. (2.11) for vacuum case.

Using the KMS boundary condition (2.52) for scalar particle, we get relations among

the coefficients of A,B,C and D as

A(τy)e
−βω = C(τy)

B(τy)e
βω = D(τy) (2.55)
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The continuity and discontinuity boundary conditions at the spectator point give the

values of rest of the unknowns,

A(τy) =
i

2ω
eiωτy(1 + n)

B(τy) =
i

2ω
e−iωτyn (2.56)

with n = 1
eβω−1

.

Using these, the positive and negative energy solutions of propagation amplitude in

thermal bath can be expressed as

∆β
+(τx, τy) =

i

2ω
[e−iω(τx−τy)(1 + n) + eiω(τx−τy)n]

∆β
−(τx, τy) =

i

2ω
[e−iω(τx−τy)n+ eiω(τx−τy)(1 + n)] (2.57)

So the scalar propagator at finite temperature is given by

∆β
F (τx, τy, ~q) =

i

2ω
[e−iω(τx−τy)(θc(τx − τy) + n) + eiω(τx−τy)(θc(τy − τx) + n)] (2.58)

2.2.2 Fermion propagator at finite temperature

We now derive fermion propagator at finite temperature and density. In this case the

equation of motion is

(i∂/c −m)SβF (x− y) = δc(τx − τy)δ
3(~x− ~y) (omitting Dirac indices) (2.59)

Similar to the vacuum case, we can link the thermal fermion propagator with the scalar

one by

SβF (x− y) = (i∂/c +m)∆β
F (x− y) (2.60)

and get the same equation as for scalar propagator i.e. Eq. (2.53). So guided by

Eq. (2.58) we guess a most general solution as

∆β
F (τx, τy) =

i

2ω
[e−iω(τx−τy)(θc(τx − τy)−E) + eiω(τx−τy)(θc(τy − τx)− F )] (2.61)

where E and F are two unknown coefficients being the functions of energy ω (the

conjugate variable of τ). Using (2.61) in (2.60), we get

SβF (τx, τy) = (iγ0∂0 + i~γ · ~▽+m)
∫ d3~q

(2π)3
ei~q·(~x−~y)

2ω
[e−iω(τx−τy)(θc(τx − τy)−E)
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+ eiω(τx−τy)(θc(τy − τx)− F )]

=
∫

d3~q

(2π)3
ei~q·(~x−~y)

2ω
[(γ0ω − ~γ · ~q +m)e−iω(τx−τy)(θc(τx − τy)− E)

+ (−γ0ω − ~γ · ~q +m)eiω(τx−τy)(θc(τy − τx)− F )]

=
∫

d3~q

(2π)3
ei~q·(~x−~y)SβF (τx, τy, ~q) (2.62)

where

SβF (τx, τy, ~q) = Sβ+(τx, τy, ~q)θc(τx − τy)− Sβ−(τx, τy, ~q)θc(τy − τx) (2.63)

with

Sβ+(τx, τy, ~q) =
1

2ω
[(γ0ω − ~γ · ~q +m)e−iω(τx−τy)(1− E) + (−γ0ω − ~γ · ~q +m)eiω(τx−τy)(−F )]

Sβ−(τx, τy, ~q) = − 1

2ω
[(γ0ω − ~γ · ~q +m)e−iω(τx−τy)(−E) + (−γ0ω − ~γ · ~q +m)eiω(τx−τy)(1− F )]

(2.64)

The KMS relation (2.52) for bosonic field identifies the coefficients E and F as Bose-

Einstein distribution functions. So we proceed in similar way to identify Fermi-Dirac

distribution function from the KMS relation for fermionic fields, which is given by

S+(τx − τy, ~x− ~y) = e−βµS−(τx − τy + iβ, ~x− ~y) (2.65)

Applying this boundary condition in Eq. (2.63) and equating the coefficients of each

oscillatory function (e±iω(τx−τy)), we get E = n+ and F = n−, where n± = 1
eβ(ω∓µ)+1

are

the fermion and anti-fermion distribution function. So Eq. (2.63) now becomes

SβF (τx, τy, ~q) =
1

2ω
[(γ0ω − ~γ · ~q +m)e−iω(τx−τy)(θc(τx − τy)− n+)

+ (−γ0ω − ~γ · ~q +m)eiω(τx−τy)(θc(τy − τx)− n−)] (2.66)

So far we got Eq. (2.58) and Eq. (2.66) as the three-momentum dependent thermal

propagator of Bosons and Fermions respectively in τ -plane which may be expressed in

spectral representation as

∆(τx, τy, ~q) = i
∫ ∞

−∞

dq′0
2π

ρ(q′0, ~q)e
−iq′0(τx−τy)[θc(τx − τy) + {nǫ(q′0)− θ(−q′0)}] (2.67)

S(τx, τy, ~q) = i
∫ ∞

−∞

dq′0
2π

σ(q′0, ~q)e
−iq′0(τx−τy)[θc(τx−τy)−{(n+θ(q

′
0)+n−θ(−q′0))ǫ(q′0)+θ(−q′0)}]

(2.68)
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where

ρ(q′0, ~q) = 2πǫ(q′0)δ(q
′2
0 − ω2) and (2.69)

σ(q′0, ~q) = 2πǫ(q′0)(γ
0q′0 + ~γ · ~q +m)δ(q

′2
0 − ω2) (2.70)

are the bosonic and fermionic spectral function for free theory (i.e. no interaction is

considered). We have already defined a general form of the free spectral function as

̺(q′0, ~q) in Eq. (2.37). The ρ(q′0, ~q) and σ(q
′
0, ~q) may be considered as particular cases of

the ̺(q′0, ~q). So we can write the two expressions (2.67) and (2.68) in a single expression

as

P (τx, τy, ~q) = i
∫ ∞

−∞

dq′0
2π

̺(q′0, ~q)e
−iq′0(τx−τy)[θc(τx − τy) + ǫqf(q

′
0)] (2.71)

where ǫqf(q
′
0) = ǫqNqǫ(q

′
0)− θ(−q′0). In special cases,

ǫq = +1, Nq = n[θ(q′0) + θ(−q′0)] = n for boson

and ǫq = −1, Nq = n+θ(q
′
0) + n−θ(−q′0) for fermion (2.72)

with BE distribution n and FD distributions n±. One can check that we can regain the

Eq. (2.15)4by putting Nq = 0 (for T=0) as well as the free scalar spectral function in

Eq. (2.71).

2.2.3 Free thermal propagator in general form

Here we are interested in the expression of Feynman propagator at finite temperature in

four momentum space. So far we have established the relations for the spatial Fourier

transforms of propagators keeping the time coordinate in the complex time plane. Of the

variety of possible contours in the complex time plane [59], two are specially interesting,

namely the closed one [60] and the symmetrical one [61].

We have chosen the latter contour (Fig.2.1) which begins from −T (say) on the

real axis and ends at −T − iβ, nowhere moving upwards [62]. Our choice is that of

Fig. (2.1), which for T → ∞, reduces to two parallel lines, the real line and the one

shifted by −iβ/2, to be denoted by subscripts 1 and 2 respectively [63, 61]. Now along

4More generalized form of Eq. (2.15) will be

P (τx, τy, ~q) = i

∫
∞

−∞

dq′0
2π

̺(q′0, ~q)e
−iq′

0
(τx−τy)[θ(τx − τy)− θ(−q′0)] (2.73)
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0−T T

Figure 2.1: Contour in time plane for real time formalism
.

ab 11 12 21 22

τx, τy τx = t τx = t τx = t− iβ/2 τx = −t− iβ/2

τy = t′ = 0 τy = −t′ − iβ/2 = −iβ/2 τy = −t′ = 0 τy = −t′ − iβ/2 = −iβ/2

θ(τx − τy) = θ(t) =0 (τx < τy) =1 (τx > τy) = θ(−t)

Table 2.1: Table showing the four possible sets of two points in complex time plane and
their corresponding values of step function θ(τx − τy).

the contour there are four possible ways of choosing the two points in complex time

plane. So after temporal Fourier transform of P (τx, τy, ~q) we get four components of

thermal propagator in four momentum space,

Pxy(q0, ~q) = i
∫ ∞

−∞
dtxe

iq0(tx−ty)P (τx − τy, ~q) x, y = 1, 2

=
∫ ∞

−∞

dq′0
2π

̺(q′0, ~q)Λxy [using Eq. (2.71)] (2.74)

where

Λxy = i
∫ ∞

−∞
dtxe

i(q0)(tx−ty)−i(q′0)(τx−τy)[θc(τx − τy) + ǫqf(q
′
0)] (2.75)

From Fig. (2.1), we see that the contour extends from −∞ to +∞ in first line but in

second line it follows completely opposite direction along real axis of τ -plane. So we have

to put an extra negative sign in real part of τ at any point of second line (for example,
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τb = −t′ − iβ/2 for 12-component as shown in Table.2.1). Now the time corresponding

any point on the second line is always greater than that of the first line, so θ function for

12 and 21 components results is a definite numerical value (i.e. one or zero). In case of

11 and 22 components, θ function is written in a functional form as two points in both

cases are located on the same line. Detailed evaluation (we will take tx = t and ty = 0)

of the four components are as follows.

P11 :

Λ11 = i
∫ ∞

−∞
dtei(q0−q

′
0)t[θ(t) + ǫqf(q

′
0)]

=
1

2π

∫ ∞

−∞
dν
∫ ∞

−∞
dt
ei(q0−q

′
0+ν)t

ν − iη
+ iǫq

∫ ∞

−∞
dtei(q0−q

′
0)tf(q′0)

=
∫ ∞

−∞
dν
δ(q0 − q′0 + ν)

ν − iη
+ 2πiǫqδ(q0 − q′0)f(q

′
0)

as θ(t) =
−i
2π

∫ ∞

−∞
dν

eiνt

ν − iη
and

∫ ∞

−∞
dteiνt = 2πδ(ν)

=
1

q′0 − q0 − iη
+ 2iπǫqδ(q

′
0 − q0)f(q0) (2.76)

2iπǫqδ(q
′
0 − q0)f(q0) = iπδ(q′0 − q0)[2ǫqNqǫ(q0)− 2θ(−q′0)]

= iπδ(q′0 − q0)[2ǫqNqǫ(q0) + {θ(q′0)− θ(−q′0)− 1}] as θ(−q′0) = 1− θ(q′0)

= iπδ(q′0 − q0)[2ǫqNqǫ(q0) + {ǫ(q′0)− 1}] as ǫ(q′0) = θ(q′0)− θ(q′0) (2.77)

Using Eq. (2.77) in Eq. (2.76) and rearranging, it follows

Λ11 =
1

q′0 − q0 − iη
+ iπδ(q′0 − q0)[2ǫqNqǫ(q0) + {ǫ(q′0)− 1}]

= P[
1

q′0 − q0
] + iπδ(q′0 − q0) + iπδ(q′0 − q0)[2ǫqNqǫ(q0) + {ǫ(q′0)− 1}]

=
1

q′0 − q0 + iηǫ(q′0)
+ ǫq2πiδ(q

′
0 − q0)Nqǫ(q0) (2.78)

Using this Λ11 in Eq. (2.74) we can get P11 with two different parts which are separately

evaluated below.

∫ ∞

−∞

dq′0
2π

̺(q′0, ~q)[
1

q′0 − q0 − iηǫ(q0)
]

=
∫ ∞

−∞

dq′0
2π

2πǫ(q′0)ζ

2ω
[δ(q′0 − ω) + δ(q′0 + ω)][

1

q′0 − q0 − iηǫ(q′0)
]

(using free spectral function from Eq.2.37)
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=
ζ

2ω
[

1

ω − q0 − iη
− 1

−ω − q0 + iη
]

= ζ∆F (q
2) where ∆F (q

2) =
−1

q2 −m2 + iη
(2.79)

and

∫ ∞

−∞

dq′0
2π

̺(q′0, ~q)[ǫq2πiδ(q
′
0 − q0)Nqǫ(q0)]

=
∫ ∞

−∞

dq′0
2π

2πǫ(q′0)ζ

2ω
[δ(q′0 − ω) + δ(q′0 + ω)][ǫq2πiδ(q

′
0 − q0)Nqǫ(q0)]

=
ζǫq2πiNq

2ω
[δ(q0 − ω) + δ(q0 + ω)]

= ζǫq2πiNqδ(q
2 −m2) (2.80)

So

P11 = ζ [∆(q2) + ǫq2πNqiδ(q
2 −m2)] (2.81)

P12 :

Λ12 = i
∫ ∞

−∞
dtei(q0−q

′
0)teq

′
0β/2[0 + ǫqf(q

′
0)]

= 2iπǫqe
q′0β/2δ(q′0 − q0)f(q

′
0) (2.82)

Using Eq. (2.82) in Eq. (2.74) and then putting the general expression of free spectral

function, we get

P12 =
∫ ∞

−∞

dq′0
2π

̺(q′0, ~q)[2iπǫqe
q′0β/2δ(q′0 − q0)f(q

′
0)]

=
∫ ∞

−∞

dq′0
2π

[
ζ2πǫ(q′0)

2ω
{δ(q′0 − ω) + δ(q′0 + ω)}]

[2iπǫqe
q′0β/2δ(q′0 − q0){Nq(q

′
0)ǫ(q

′
0)− ǫqθ(−q′0)}]

=
ζ2iπǫqe

q0β/2

2ω
[{δ(q0 − ω) + δ(q0 + ω)}][{Nq(q0)− ǫqθ(−q0)ǫ(q0)}]

=
ζ2iπǫq
2ω

[{n+e
βω/2δ(q0 − ω) + {n− − ǫqǫ(−ω)}e−βω/2δ(q0 + ω)}]

as θ(±q0)δ(q0 ∓ ω) = δ(q0 ∓ ω), θ(∓q0)δ(q0 ∓ ω) = 0

=
ζ2iπǫq
2ω

[
√
n+(1 + ǫqn+)δ(q0 − ω) + ǫq

√
n−(1 + ǫqn−)δ(q0 + ω)]

[ as n+e
βω/2 =

e
β
2
(ω−µ)

eβ(ω−µ) − ǫq
eβµ/2 =

√
n+(1 + ǫqn+)e

βµ/2

and (ǫq + n−)e
−βω/2 =

ǫqe
β(ω+µ)

eβ(ω+µ) − ǫq
e−βω/2 = ǫq

√
n−(1 + ǫqn−)e

βµ/2 ]
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= 2πiǫqN2qe
βµ/2δ(q2 −m2) , N2q =

√
n+(1 + ǫqn+) θ(q0) + ǫq

√
n−(1 + ǫqn−) θ(−q0)

(2.83)

P21 :

In this case as θ(τx − τy) = 1, so

Λ12 = i
∫ ∞

−∞
dtei(q0−q

′
0)te−q

′
0β/2[1 + ǫqf(q

′
0)]

= 2iπe−q
′
0β/2δ(q′0 − q0)[1 + ǫqf(q

′
0)] (2.84)

and putting it in Eq. (2.74), we get

P21 =
∫ ∞

−∞

dq′0
2π

̺(q′0, ~q)[2iπe
−q′0β/2δ(q′0 − q0){1 + ǫqf(q

′
0)}]

=
∫ ∞

−∞

dq′0
2π

[
ζ2πǫ(q′0)

2ω
{δ(q′0 − ω) + δ(q′0 + ω)}]

[2iπe−q
′
0β/2δ(q′0 − q0){1 + ǫqNq(q

′
0)ǫ(q

′
0)− θ(−q′0)}]

=
ζ2iπeq0β/2

2ω
[{δ(q0 − ω) + δ(q0 + ω)}][{ǫqNq(q0) + θ(q0)ǫ(q0)}]

=
ζ2iπǫq
2ω

[{ǫqn+ + ǫ(ω)}e−βω/2δ(q0 − ω) + n−e
βω/2δ(q0 + ω)]

=
ζ2iπ

2ω
[
√
n+(1 + ǫqn+)δ(q0 − ω) + ǫq

√
n−(1 + ǫqn−)δ(q0 + ω)]

[ as (ǫqn+ + 1)eβω/2 =
eβ(ω−µ)

eβ(ω−µ) − ǫq
e−βω/2 =

√
n+(1 + ǫqn+)e

−βµ/2

and ǫqn−e
βω/2 =

ǫqe
β
2
(ω+µ)

eβ(ω+µ) − ǫq
e−βµ/2 = ǫq

√
n−(1 + ǫqn−)e

−βµ/2 ]

= ζ2πiN2qe
−βµ/2δ(q2 −m2) (2.85)

P22 :

Λ22 = i
∫ ∞

−∞
dtei(q0−q

′
0)t[θ(−t) + ǫqf(q

′
0)]

=
−1

2π

∫ ∞

−∞
dν
∫ ∞

−∞
dt
ei(q0−q

′
0+ν)t

ν + iη
+ iǫq

∫ ∞

−∞
dtei(q0−q

′
0)tf(q′0)

= −
∫ ∞

−∞
dν
δ(q0 − q′0 + ν)

ν + iη
+ 2πǫqδ(q

′
0 − q0)f(q

′
0)

as θ(−t) = i

2π

∫ ∞

−∞
dν
e−iν(−t)

ν + iη
and

∫ ∞

∞
dteiνt = 2πδ(ν)

=
−1

q′0 − q0 + iη
+ 2iπǫqδ(q

′
0 − q0)f(q0) (2.86)
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Rearranging it like 11-component we have

P22 =
∫ ∞

−∞

dq′0
2π

̺(q′0, ~q)[
−1

q′0 − q0 + iηǫ(q0)
+ ǫq2πiδ(q

′
0 − q0)Nqǫ(q0)]

=
∫ ∞

−∞

dq′0
2π

2πǫ(q′0)ζ

2ω
[δ(q′0 − ω) + δ(q′0 + ω)]

[
−1

q′0 − q0 + iηǫ(q′0)
+ ǫq2πiδ(q

′
0 − q0)Nqǫ(q0)]

=
ζ

2ω
[{ −1

ω − q0 + iη
− −1

−ω − q0 − iη
}+ 2πǫqNq{δ(q0 − ω) + δ(q0 + ω)}]

= ζ [
1

q20 − ω2 − iη
+ 2πǫqNqδ(q

2
0 − ω2)] (2.87)

So the Pxy(q0, ~q) in 2× 2 matrix form can be expressed as

Pxy =
∫ ∞

−∞

dq′0
2π

̺(q′0, ~q)




1

(q′0−q0)−iη
+ ǫq2πiδ(q

′
0 − q0)f(q

′
0) ǫq2πie

βq′0/2δ(q′0 − q0)f(q
′
0)

2πie−βq
′
0/2δ(q′0 − q0)[1 + ǫqf(q

′
0)]

−1
(q′0−q0)+iη

+ ǫq2πiδ(q
′
0 − q0)f(q

′
0)





= ζ




−1
(q2−m2)+iη

+ ǫq2πiδ(q
2 −m2)Nq ǫq2πie

βµ/2δ(q2 −m2)N2q

2πie−βµ/2δ(k2 −m2)N2q
1

(q2−m2)+iη
+ ǫq2πiδ(q

2 −m2)Nq




(2.88)

The matrix in the first line of Eq. (2.88) gives the spectral representation of the thermal

propagator and it may be used to express dressed or interacting prpagator by putting

the interaction details in ̺ whereas second matrix represents the form of free thermal

propagator after putting free spectral function. The matrix Λxy as well as Pxy can now

be diagonalized by Uxy,

Uxy =


 N2q/

√
Nq ǫq

√
Nqe

βµ/2

√
Nqe

−βµ/2 N2q/
√
Nq




i.e. Uxy =


 N2q/

√
Nq −

√
Nqe

βµ/2

√
Nqe

−βµ/2 N2q/
√
Nq


 for fermion

=





√
n(1 + n)

√
n

√
n

√
n(1 + n)



 for boson (2.89)

The diagonalization procedure is as follows.

Pxy =



 P11 P12

P21 P22





= Uxx′P x′y′Uy′y = U



 P 0

0 −P ∗



U (2.90)
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where

P =
∫ ∞

−∞

dq′0
2π

̺(q′0, ~q)

q0 − q′0 − iηǫ(q0)

= ζ
−1

q2 −m2 + iη
(2.91)

So the diagonal elements of the free thermal propagator is exactly the same as vacuum

Feynman propagator. We can relate this to any component of Pab. The relation with

11-component is

P11 =
N2

2q

Nq
P − ǫqNqP

∗
(2.92)

In spectral representation this relation can be expressed as

P11 =
∫ ∞

∞

dq0
2π

̺(q′0, ~q)[
1

(q0 − q′0)− iη
+ ǫq2πiδ(q0 − q′0)f(q

′
0)]

=
∫ ∞

∞

dq0
2π

̺(q′0, ~q)[P(
1

(q0 − q′0)
) + iπ{1 + 2ǫqf(q0)}δ(q0 − q′0)]

So, ImP11 =
̺(q0, ~q)

2
{1 + 2ǫqf(q0)} (2.93)

From Eq. (2.91) and (2.93), we can get a relation among the ̺(q0, ~q), P and P11,

̺(q0, ~q) = 2ǫ(q0)ImP =
1

1 + 2ǫqf(q0)
2 ImP11

ReP = ReP11 (2.94)

The factor containing the thermal distribution function multiplied with P11 can be con-

verted to hyperbolic function. Considering |q0| = ω i.e. n± = 1
eβ(|q0|∓µ)−ǫq ,

1

1 + 2ǫqf(q0)
=

1

1 + 2ǫq{n+θ(q0) + n−θ(−q0)}ǫ(q0)− 2θ(−q0)

=
1

1 + 2ǫqn+
=

e
β
2
(|q0|−µ) − ǫqe

−β
2
(|q0|−µ)

e
β
2
(|q0|−µ) + ǫqe

−β
2
(−|q0|−µ)

for q0 > 0

=
1

−1 + 2ǫqn−
=
e

β
2
(−|q0|−µ) − ǫqe

−β
2
(−|q0|−µ)

e
β
2
(−|q0|−µ) + ǫqe

−β
2
(|q0|−µ)

for q0 < 0

(2.95)

Hence for any value of q0, we can write this factor as

1

1 + 2ǫqf(q0)
=

e
β
2
(q0−µ) − ǫqe

−β
2
(q0−µ)

e
β
2
(q0−µ) + ǫqe

−β
2
(−q0−µ)

= coth{β
2
(q0 − µ)} for fermion, i.e. ǫq = −1

= tanh{β
2
(q0)} for boson, i.e. ǫq = +1, µ = 0 (2.96)
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+......∞+ +=

Figure 2.2: The diagramatic representation of Dyson’s equation. Thin and bold dashed
lines stand for free and interacting propagators respectively.

So Eq. (2.94) is now given by

̺(q0, ~q) = 2ǫ(q0)ImP = 2 coth{β
2
(q0 − µ)}ImP11 for fermion

= 2 tanh{β
2
(q0)}ImP11 for boson (2.97)

2.3 Interacting thermal propagator

2.3.1 Scalar propagator

So far we have discussed about the structure of free (vacuum or thermal) propagator.

The exact propagators (−i∆(q)) is obtained perturbatively by summing loop diagrams

as shown in Fig. (2.2). This is actually a geometric progression with free propagator

(−i∆0(q)) as the first term and the self-energy (−iΠ(q)) as the common ratio.

−i∆(q) = −i∆0(q) + {−i∆0(q)}{−iΠ(q)}{−i∆0(q)}

+ {−i∆0(q)}{−iΠ(q)}{−i∆0(q)}{−iΠ(q)}{−i∆0(q)}+ ....

∆(q) =
∆0(q)

1− {−∆0(q)Π(q)}

=
−1

q2 −m2 −Π(q)
as ∆−1

0 = −(q2 −m2) (2.98)

The above equation can be expressed as

∆(q) = ∆0(q)−∆0(q)Π(q)∆(q) (2.99)

which is a general self-consistent equation for the interacting propagator of any spin

and is known as Dyson’s equation. The real part of vacuum self-energy (a divergent

quantity) is absorbed by the mass renormalization technique. Therefore Eq. (2.98) can

be written as

∆(q) =
−1

q2 −m2 − iImΠ(q)
(2.100)

The imaginary part of self-energy [ImΠ(q)] is nonvanishing in certain regions of q-axis,

where Π(q) has a discontinuity. Due to presence of this nonzero ImΠ(q), the spectral
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function ̺(q) will exhibit a Breit-Wigner type structure.

̺(q) = 2ǫ(q0)Im∆(q)

=
2ǫ(q0)ImΠ(q)

{q2 −m2}2 + {ImΠ(q)}2 (2.101)

In the limit of vanishing ImΠ(q), the spectral function reduces to its form of δ-function

for free propagator.

̺(q) = lim
{−ImΠ}→0

2ǫ(q0)Im[
−1

q2 −m2 + i{−ImΠ(q)} ]

= lim
{−ImΠ}→0

2ǫ(q0)[
{−ImΠ(q)}

(q2 −m2)2 + {−ImΠ(q)}2 ]

= 2ǫ(q0)πδ(q
2 −m2) [since lim

η→0

η/π

(x2 + η2
= δ(x) ] (2.102)

In real time thermal field theory the Dyson’s equation can be expressed in 2× 2 matrix

form as

∆ab(q) = ∆ab
0 (q)−∆ac

0 (q)Πcd(q)∆db(q) (2.103)

As discussed in the Eq. (2.88) the free and the exact propagator has the same spectral

representation. So the exact propagator can be diagonalised in the same way as the free

thermal propagator. Multiplying left side by (∆ea
0 )−1 and right side by (∆bf )−1 we get

Πef = (∆ef)−1 − (∆ef
0 )−1

= (Ueg∆
gh
Uhf)−1 − (Ueg∆

gh
0 U

hf )−1

= (Ueg)−1Π
gh
(Uhf)−1 (2.104)

This leads to the Dyson’s equation for diagonal matrices and is given by

(U∆U)ab = (U∆0U)
ab − ({U∆0U}{U−1ΠU−1}{U∆U})ab

∆
ab
= ∆

ab
0 − {∆0Π ∆}ab

where ∆
ab
0 =


 ∆0 0

0 −∆
∗
0


 , Π

ab
=


 Π 0

0 −Π
∗


 , ∆

ab
=


 ∆ 0

0 −∆
∗




⇒ ∆ = ∆0 −∆0Π ∆ (2.105)

Hence

̺(q) = 2ǫ(q0)Im∆(q)

=
2ǫ(q0)ImΠ(q)

{q2 −m2 − ReΠ(q)}2 + {ImΠ(q)}2 . (2.106)
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The thermal self-energy will be manifested in the spectral properties in two different

ways. One is mass shift (∆m) that can be measured by finding the root of equation

[q2 −m2 − ReΠth(q)]q=m+∆m = 0 (2.107)

and another is decay width enhancement (∆Γ = ImΠ(m)−ImΠV (m)
m

).

2.3.2 Fermion propagator

The form of Dyson’s equation for diagonal element of thermal propgator is the same as

in vacuum. So we directly jump to the discussion for diagonal part. Now general form

of Dyson’s Eq. (2.105) for spin 1/2 propagator can be written as (by replacing ∆0 → S0,

∆ → S and Π → Σ in Eq. (2.105))

S
−1

= S
−1
0 + Σ , S−1 = −(q/ −m)

S =
−1

Q/−M
(2.108)

where Qµ = qµ − Σ
µ
and M = m− ΣI with

Σ = Σγ0γ
0 − ~Σ~γ · ~γ + ΣII

= Σµγ
µ + ΣII (2.109)

For ~q = 0,

S = Sγ0γ
0 + SII (2.110)

where

Sγ0 =
Q0

Q2
0 −M2

and SI =
M

Q2
0 −M2

with Q0 = q0 − Σγ0 (2.111)

Here Σγ0 and ΣI contain the information of medium inputs (temperature and chemical

potential).

2.3.3 Vector propagator

For the spin 1 field we have to take care of the Lorentz indices (along with thermal

indices) in the Dyson’s equation [64, 53] and after diagonalization the equation becomes

Gµν(q) = G
(0)
µν (q)−G

(0)
µλ (q)Π

λσ
tot(q)Gσν(q) , (2.112)
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where

G
(0)
µν (q) =

(
−gµν +

qµqν
q2

)
−1

q2 −m2
ρ + iǫ

, (2.113)

is the four-dimensionally transverse5 part of the diagonal element of thermal propagator.

In the medium, presence of four velocity uµ, introduces an additional scalar variable u ·q
in addition to q2, leading to two independent tensors Pµν and Qµν in terms of which the

propagator and self-energy can be written as

Gµν = PµνGt +QµνGl

Πµν = PµνΠt +QµνΠl (2.115)

with

Pµν = −gµν +
qµqν
q2

− q2

q 2
ũµũν , ũµ = uµ − (u · q)qµ/q2 (2.116)

and

Qµν =
(q2)2

q 2
ũµũν , q

2 = (u · q)2 − q2 . (2.117)

satisfying the projection properties

P · P = −P, Q ·Q = −q2Q, P ·Q = 0 (2.118)

While both P and Q are four-dimensionally transverse, P is also 3-dimensionally trans-

verse. In the literature one generally finds the factor q2 instead of (q2)2 in the definition

of Qµν . However, at finite temperature dynamical singularity can appear at q2 = 0. The

additional factor of q2 keeps the kinematic covariant regular at that point. Using (2.115)

and (2.118), the Dyson equation (2.112) becomes

PµνGt +QµνGl = {(Pµν +
Qµν

q2
)∆0} − {Pµν∆0ΠtGt + q4Qµν

∆0

q2
ΠlGl}

Pµν [Gt −
1

∆−1
0 +Πt

] +Qµν [Gl −
1/q2

∆−1
0 + q2Πl

] = 0 (2.119)

Now equating coefficients of independent projection operators to zero,we reach our aim,

Gt(q) =
−1

q2 −m2
ρ − Πt(q)

, Gl(q) =
1

q2
−1

q2 −m2
ρ − q2Πl(q)

(2.120)

5

D
0

µν = G
(0)

µν +
qµqν

m2q2
, where D

0

µν =
(
−gµν +

qµqν
m2

) −1

q2 −m2
ρ + iǫ

(2.114)

We should note that qµG
(0)

µν = 0 but the term qµqν

m2q2
is not orthogonal to qµ.
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where

Πt = −1

2
(Π

µ
µ +

q2

q̄2
Π00), Πl =

1

q̄2
Π00, Π00 ≡ uµuνΠµν . (2.121)

Finally we note a kinematic relation between the transverse and the longitudinal com-

ponents of the propagator at ~q = 0. As ~q → 0, the structures of Pij and Qij depend on

how this limit is taken. This is eliminated, if we take

Gt(q0, ~q = 0) = q20 Gl(q0, ~q = 0) (2.122)

Clearly a similar relation must also hold between Πt,l, which is already implied by

Eq. (2.120).



Chapter 3

Self-energy in real-time thermal
field theory

3.1 Vacuum Self-energy

The vacuum in quantum field theory is a stormy sea of virtual particles originating from

quantum fluctuations [48]. So during the propagation of any particle it can’t be free from

disturbances created by these virtual particles. The self-energy, which has already been

introduced in section(2.3) of chapter(2), is generally believed to provide a quantitative

measurement of the fluctuations. In the simplest possible self-energy diagram [Fig (3.1)

or (3.2)], the propagating particle may create a virtual pair which are again annihilated

after a short time mandated by the uncertainty principle. The amputated loop part

of the diagram is known as one-loop self-energy. In a perturbative treatment, the self-

energy consists of a series of loop diagrams with subsequent terms containing higher

loops [65]. Here we are interested to study the effect of one-loop self-energy diagram on

the propagation amplitude. From the mathematical expression of interacting propgator

(2.98) in the previous chapter, we have seen how one-loop self-energy modifies the free

propagation amplitude. Now we will focus on the detail expression of one-loop self-

energy.

For a general description of one-loop self-energy, we can classify it into four possible

diagrams as shown in Figs. (3.1) and (3.2). Now for fermion self-energy, boson-fermion

(BF ) internal lines (Fig.3.2) are only allowed whereas for boson self-energy, boson-boson

[Fig.3.1(A)] as well as fermion-fermion internal lines are possible. There are two possible

diagrams for fermion-fermion internal lines for boson self-energy shown in Fig.3.1(B) and

41
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B (q) B (q)

B (k)

B (q−k)

B (q) B (q)

F (k)

F (k+q)

B (q) B (q)

F (k)

F (k−q)

(A) (B) (C)

Figure 3.1: Diagram (A) shows the boson self-energy for boson-boson (BB) loop whereas
others, (B) and (C) show the two possible diagrams for fermion-fermion loop. We have
denoted the fermion internal line in negative direction of time as F
.

F (q) F (q)

B (k)

F (q−k)

Figure 3.2: Fermion self-energy diagram for boson-fermion (BF) internal line
.

Fig Fig.3.1 (A) Fig.3.1 (B) Fig.3.1 (C) Fig.3.2

External line B (Boson) B B F (Fermion)

Internal lines BB FF FF BF

Momentum p = q − k p = k + q p = k − q p = q − k

of lower i.e. ǫ1 = +1 i.e. ǫ1 = +1 i.e. ǫ1 = −1 i.e. ǫ1 = +1

internal line ǫ2 = −1 ǫ2 = +1 ǫ2 = +1 ǫ2 = −1

Other sign ǫF = +1 ǫF = −1 ǫF = −1 ǫF = +1

functions i.e. ǫk = +1 i.e. ǫk = −1 i.e. ǫk = −1 i.e. ǫk = +1

(ǫF , ǫk, ǫp) ǫp = +1 ǫp = −1 ǫp = −1 ǫp = −1

Table 3.1: Table showing the values of different sign coefficients for four possible one-loop
self-energy diagrams.
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(C). Let us denote them by FF and FF respectively.

We can write the general expression of vacuum self-energy as

iΠV (q
2) = ǫF

∫ d4k

(2π)4
v1(q, k, p){−iP (k2, mk)}{−iP (p2, mp)}v2(q, k, p)

ΠV (q
2) = iǫF

∫ d4k

(2π)4
L(k, q, p)∆(k2, mk)∆(p2, mp) (3.1)

where L(k, q, p) = v1(q, k, p)ζkζpv2(q, k, p) is the product of two vertex functions (v1, v2)

and the numerator part of two internal lines (ζk, ζp). Recall that the general form of

vacuum propagator, P (k2, mk) is defined in Eq. (2.34) of the previous chapter. The

extra negative sign for fermion-fermion (FF or FF ) internal lines will be taken care of

by the sign coefficient ǫF . The general form of p is taken as p = ǫ1q0 + ǫ2k0 and the

values of sign coefficients, ǫ1, ǫ2 for different loops are given in Table. (3.1).

Decomposing the internal lines into positive and negative frequency propagation as

∆(k2, mk) =
−1

k20 − ω2
k + iη

=
−1

2ωk
[

1

q0 − (ωk − iη)
− 1

q0 + (ωk − iη)
] , (3.2)

Eq. (3.1) becomes

ΠV (q
2) = iǫF

∫ d3k

(2π)3
1

4ωkωp
IV (3.3)

where

IV =
∫ dk0L(k0)

(2π)
[{ 1

k0 − ωk + iη
− 1

k0 + ωk − iη
}

{ 1

(ǫ1q0 + ǫ2k0)− ωp + iη
− 1

(ǫ1q0 + ǫ2k0) + ωp − iη
}]

= IV 1 + IV 2 + IV 3 + IV 4 (3.4)

with

IV 1 =
∫ dk0L(k0)

(2π)
{ 1

k0 − ωk + iη

1

(ǫ1q0 + ǫ2k0)− ωp + iη
}

IV 2 =
∫
dk0L(k0)

(2π)
{ 1

k0 − ωk + iη

(−1)

(ǫ1q0 + ǫ2k0) + ωp − iη
}

IV 3 =
∫ dk0L(k0)

(2π)
{ (1)

k0 + ωk − iη

1

(ǫ1q0 + ǫ2k0)− ωp + iη
}

IV 4 =
∫
dk0L(k0)

(2π)
{ 1

k0 + ωk − iη

1

(ǫ1q0 + ǫ2k0) + ωp − iη
}. (3.5)

The four individual integrations can be done by residue theorem of complex variable.
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for p = q − k for p = q + k

for IV 1 Poles : k
(1)
0 = ωk − iη Poles : k

(1)
0 = ωk − iη

k
(2)
0 = q0 − ωp + iη k

(2)
0 = −q0 + ωp − iη

IV 1 =
−iL1

q0−ωk−ωp+iη
IV 1 = 0

Contour : Fig. 3.3(C) Contour : Fig. 3.3(A)

for IV 2 Poles : k
(1)
0 = ωk − iη Poles : k

(1)
0 = ωk − iη

k
(2)
0 = q0 + ωp − iη k

(2)
0 = −q0 − ωp + iη

IV 2 = 0 IV 2 =
(−1)iL5

−q0−ωk−ωp+iη

Contour : Fig. 3.3(A) Contour : Fig. 3.3(C)

for IV 3 Poles : k
(1)
0 = −ωk + iη Poles : k

(1)
0 = −ωk + iη

k
(2)
0 = q0 − ωp + iη k

(2)
0 = −q0 + ωp − iη

IV 3 = 0 IV 3 =
(−1)iL2

q0−ωk−ωp+iη

Contour : Fig. 3.3(B) Contour : Fig. 3.3(C)

for IV 4 Poles : k
(1)
0 = −ωk + iη Poles : k

(1)
0 = −ωk + iη

k
(2)
0 = q0 + ωp − iη k

(2)
0 = −q0 − ωp + iη

IV 4 =
iL4

q0+ωk+ωp−iη IV 4 = 0

Contour : Fig. 3.3(C) Contour : Fig. 3.3(B)

Table 3.2: Table showing the poles (denoted as k
(1)
0 and k

(2)
0 ) of integrands and results

of individual integration (IV i with i=1,2,3,4) by putting their corresponding residues.
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The poles of four integrands and their residues for two1 possible internal momenta are

given in Table. (3.2). The integrations will be done with the help of three possible contour

as shown in Fig. (3.3). For the contour 3.3(A) and (B) the corresponding integrations

will vanish because their poles are outside the contours (Cauchy’s Theorem). For the

contour 3.3(C), the integration will be nonvanishing. For example, residues of IV 1 with

p = q − k is

Res(IV 1) = lim
k0→k

(2)
0

(k0 − k
(2)
0 )

L(k0)

(2π)
[

1

k0 − k
(1)
0

1

k
(2)
0 − k0

]

=
−L(k0)
(2π)

[
1

q0 − ωk − ωp + 2iη
]. (3.6)

Collecting those nonvanishing integrations for all possible self-energy graphs we can

organize them as

IV = i[
−L1

q0 − ωk − ωp + iη
+

L4

q0 + ωk + ωp − iη
] , for p = q − k, k − q

= i[
−L2

q0 − ωk − ωp + iη
+

L5

q0 + ωk + ωp − iη
] , for p = q + k (3.7)

where

L1 = L(k0 = ωk) L4 = L(k0 = q0 + ωp)

L2 = L(k0 = −ωk) L5 = L(k0 = −q0 − ωp)

L3 = L(k0 = q0 − ωp) L6 = L(k0 = −q0 + ωp). (3.8)

L3 and L6 will be appeared in our later calculations.

ΠV (q
2) = −ǫF

∫ d3k

(2π)3
1

4ωkωp
[

−L1

q0 − ωk − ωp + iη
+

L4

q0 + ωk + ωp − iη
] , for p = q − k, k − q

= −ǫF
∫

d3k

(2π)3
1

4ωkωp
[

−L2

q0 − ωk − ωp + iη
+

L5

q0 + ωk + ωp − iη
] , for p = q + k. (3.9)

The principal value of above expression give the real part of vacuum self-energy. This is

a divergent quantity which after renormalization [66, 49, 67, 68] produces a finite value.

The imaginary part of vacuum self-energy is directly related with the vacuum decay

width. From Eq. (3.9), this part can be separated out to get

ImΠV (q
2) = −πǫF

∫
d3k

(2π)3
1

4ωkωp
{L1δ(q0 − ωk − ωp) + L2δ(q0 + ωk + ωp)} , for p = q − k, k − q

1As scalar part of propagator for p = q−k and p = k−q are exactly same so they will give same final
results of integrations and that’s why we have provided the information about the poles and residues
for only p = q − k case in the Table.
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(A) (B) (C)

Figure 3.3:

= −πǫF
∫ d3k

(2π)3
1

4ωkωp
{L2δ(q0 − ωk − ωp) + L1δ(q0 + ωk + ωp)} , for p = q + k.

(3.10)

3.2 Thermal Self-energy

Now we proceed to evaluate the one-loop self-energy at finite temperature. In real time

thermal field theory we have seen that both thermal propagator and self-energy have

2 × 2 matrix structure and can be diagonalized. The diagonalization of thermal self-

energy is slightly different from that of the thermal propagator, discussed previously in

Eq. (2.104). In this case we have

Πab = (U−1



 Π 0

0 −Π
∗



U−1)ab where U−1 =



 N2q/
√
Nq −ǫq

√
Nqe

βµ/2

−
√
Nqe

−βµ/2 N2q/
√
Nq





i.e. U−1 =


 N2q/

√
Nq

√
Nqe

βµ/2

−
√
Nqe

−βµ/2 N2q/
√
Nq


 for fermion

=



√
n(1 + n) −√

n

−√
n

√
n(1 + n)


 for boson. (3.11)

So Π11 =
N2

2q

Nq
Π− ǫqNqΠ

∗
and in spectral representation,

Π11 =
∫ ∞

−∞

dq0
2π

Ω(q′0, ~q)[
1

(q0 − q′0)− iη
+ ǫq2πiδ(q0 − q′0)f(q

′
0)] (3.12)

where Ω(q′0, ~q) is one-loop spectral density. Similar to thermal propagator, corresponding

quantities for self-energy also follow the same relations (compare with Eq. 2.97)

Ω(q′0, ~q) = 2ǫ(q0)ImΠ(q) = 2 coth(β{(q0 − µq)/2})ImΠ11(q) for fermion self − energy
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= 2 tanh(βq0/2)ImΠ11(q) for boson self − energy

ReΠµν(q) = ReΠ11
µν(q). (3.13)

These spectral densities (Ω or ̺) are closely related with retarded part of corresponding

quantities.2

So we will now focus on the 11-component of the thermal self-energy matrix

Π11(q) = iǫF

∫
d4k

(2π)4
v1(q, k, p)P11(k,mk)P11(p,mp)v2(q, k, p)

= iǫF

∫
d4k

(2π)4
L(k, q, p)∆11(k,mk)∆11(p,mp) (3.15)

where L(k, q, p) = v1(q, k, p)ζkζpv2(q, k, p) since the 11-component of thermal propagator

has a form like

P11(k,mk) = ζk∆11(k,mk) , ∆11(k,mk) = ∆(k) + ǫk2πiδ(k
2 −m2

k)Nk. (3.16)

Each of the thermal internal lines has two parts containing the information of vacuum

and medium separately. So Π11(q) also separates into vacuum and medium parts. The

medium contribution has a part linear in the distribution function and a part quadratic

in it. So we will decompose Π11(q) into three parts as

Π11(q) = Π11
V (q) + Π11

n (q) + Π11
n2(q) (3.17)

where Π11
V (q) = iǫF

∫ d4k
(2π)4

L(k, q, p)∆(k)∆(p) is the vacuum part, and

Π11
n (q) = iǫF

∫
d4k

(2π)4
L(k, q, p)[ǫk2πiδ(k

2−m2
k)Nk∆(p)+ǫp2πiδ(p

2−m2
p)Np∆(k)] (3.18)

Π11
n2(q) = iǫF

∫
d4k

(2π)4
L(k, q, p)[{ǫk2πiδ(k2 −m2

k)Nk}{ǫp2πiδ(p2 −m2
p)Np}] (3.19)

are the medium dependent part of self-energy, explicitly showing the linear and quadratic

dependence on distribution function respectively.

2The retarded propgator, PR = ζ −1
(q2−m2)+iηRǫ(q0)

and diagonal element of thermal propagator,

P = ζ −1
(q2−m2)+iη

suggest the relations

Re PR (or ΠR) = ReP (or Π)

̺ (or Ω) = 2ImPR (or ΠR) = 2ǫ(q0)ImP (or Π) (3.14)

Imaginary part of Self-energy take the place of η and so guided from the relation ηR = ǫ(q0)η, we can
intuitively proceed to above relation for imaginary part of self-energy.
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Π11
n (q) :

Considering the general form of Nk = nk+θ(k0) + nk−θ(−k0), we can write

Nkδ(k
2 −m2

k) =
1

2ωk
[nk+θ(k0) + nk−θ(−k0)][δ(k0 − ωk) + δ(k0 + ωk)]

=
1

2ωk
[nk+δ(k0 − ωk) + nk−δ(k0 + ωk)]. (3.20)

Here we have used θ(k0)δ(k0 ± ωk) = θ(∓ωk)δ(k0 ± ωk) , where ωk is always a positive

quantity. Using Eq. (3.20) for momentum k as well as p in Eq. (3.18), we have

Π11
n (q) = −ǫF

∫
d3k

(2π)3
In (3.21)

where

In =
∫
dk0L(k0, k, q, p)[

ǫk
2ωk

{nk+δ(k0 − ωk) + nk−δ(k0 + ωk)}
−1

p20 − ω2
p + iη

+
ǫp
2ωp

{np+δ(p0 − ωp) + np−δ(p0 + ωp)}
−1

k20 − ω2
k + iη

]

= −
∫
dk0

L(k0)

4ωkωp
[ǫk{nk+δ(k0 − ωk) + nk−δ(k0 + ωk)}{

1

p0 − ωp + iη
− 1

p0 + ωp − iη
}

+ǫp{np+δ(p0 − ωp) + np−δ(p0 + ωp)}{
1

k0 − ωk + iη
− 1

k0 + ωk − iη
}]

= − 1

4ωkωp

∫
dk0L(k0)[ǫkn

k
+δ(k0 − ωk){

1

(ǫ1q0 + ǫ2k0)− ωp + iη
− 1

(ǫ1q0 + ǫ2k0) + ωp − iη
}

+ǫkn
k
−δ(k0 + ωk){

1

(ǫ1q0 + ǫ2k0)− ωp + iη
− 1

(ǫ1q0 + ǫ2k0) + ωp − iη
}

+ǫpn
p
+δ(ǫ1q0 + ǫ2k0 − ωp){

1

k0 − ωk + iη
− 1

k0 + ωk − iη
}

+ǫpn
p
−δ(ǫ1q0 + ǫ2k0 + ωp){

1

k0 − ωk + iη
− 1

k0 + ωk − iη
}]

= − 1

4ωkωp
[{ ǫkn

k
+L1

(ǫ1q0 + ǫ2ωk)− ωp + iη
− ǫkn

k
+L1

(ǫ1q0 + ǫ2ωk) + ωp − iη
}

+{ ǫkn
k
−L2

(ǫ1q0 − ǫ2ωk)− ωp + iη
− ǫkn

k
−L2

(ǫ1q0 − ǫ2ωk) + ωp − iη
}

+{ ǫpn
p
+L3

ǫ2(−ǫ1q0 + ωp)− ωk + iη
− ǫpn

p
+L3

ǫ2(−ǫ1q0 + ωp) + ωk − iη
}

+{ ǫpn
p
−L4

ǫ2(−ǫ1q0 − ωp)− ωk + iη
− ǫpn

p
−L4

ǫ2(−ǫ1q0 − ωp) + ωk − iη
}]

= − 1

4ωkωp
[{ ǫkn

k
+L1

(ǫ1q0 + ǫ2ωk)− ωp + iη
− ǫ2ǫpn

p
+L3

(ǫ1q0 + ǫ2ωk)− ωp − iηǫ2
}

+{− ǫkn
k
+L1

(ǫ1q0 + ǫ2ωk) + ωp − iη
− ǫ2ǫpn

p
−L4

(ǫ1q0 + ǫ2ωk) + ωp − iηǫ2
}



49

+{ ǫkn
k
−L2

(ǫ1q0 − ǫ2ωk)− ωp + iη
+

ǫ2ǫpn
p
+L3

(ǫ1q0 − ǫ2ωk)− ωp + iηǫ2
}

+{− ǫkn
k
−L2

(ǫ1q0 − ǫ2ωk) + ωp − iη
+

ǫ2ǫpn
p
−L4

(ǫ1q0 − ǫ2ωk) + ωp + iηǫ2
}].

(3.22)

Here L3 = L{k0 = ǫ2(−ǫ1q0 + ωp)} and L4 = L{k0 = ǫ2(−ǫ1q0 − ωp)}. Note that

L3 → L3, L4 → L4 for p = q − k

L3 → L4, L4 → L3 for p = k − q

L3 → L6, L4 → L5 for p = k + q. (3.23)

Now using the complex identity 1
x±iη = P( 1

x
)∓ iπδ(x), we decompose Π11

n (q) into imag-

inary and real part as

ImΠ11
n (q) = −ǫF

∫
d3k

(2π)3
ImIn

= −ǫFπ
∫

d3k

(2π)3
1

4ωkωp
[(ǫkn

k
+L1 + ǫ22ǫpn

p
+L3)δ(ǫ1q0 + ǫ2ωk − ωp)

+ (ǫkn
k
+L1 + ǫ22ǫpn

p
−L4)δ(ǫ1q0 + ǫ2ωk + ωp)

+(ǫkn
k
−L2 + ǫ22ǫpn

p
+L3)δ(ǫ1q0 − ǫ2ωk − ωp)

+ (ǫkn
k
−L2 + ǫ22ǫpn

p
−L4)δ(ǫ1q0 − ǫ2ωk + ωp)]

= −ǫFπ
∫

d3k

(2π)3
1

4ωkωp
[L1{(ǫknk+ + ǫpn

p
+)δ(ǫ1q0 + ǫ2ωk − ωp)

+ (ǫkn
k
+ + ǫpn

p
−)δ(ǫ1q0 + ǫ2ωk + ωp)}

+L2{(ǫknk− + ǫpn
p
+)δ(ǫ1q0 − ǫ2ωk − ωp)

+ (ǫkn
k
− + ǫ22ǫpn

p
−)δ(ǫ1q0 − ǫ2ωk + ωp)}] (3.24)

and

ReΠ11
n (q) = −ǫF

∫
d3k

(2π)3
ReIn

= ǫF

∫ d3k

(2π)3
1

4ωkωp
P[
ǫkn

k
+L1 − ǫ2ǫpn

p
+L3

(ǫ1q0 + ǫ2ωk)− ωp
+

−ǫknk+L1 − ǫ2ǫpn
p
−L4

(ǫ1q0 + ǫ2ωk) + ωp

+
ǫkn

k
−L2 + ǫ2ǫpn

p
+L3

(ǫ1q0 − ǫ2ωk)− ωp
+

−ǫknk−L2 + ǫ2ǫpn
p
−L4

(ǫ1q0 − ǫ2ωk) + ωp
].

(3.25)

The real part arises completely due to medium and vanishes at T=0. Due to the presence

of distribution function, this part is free from any divergence Nonzero value of this real
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part may shift the pole.

Π11
n2(q) :

Π11
n2(q) = −i2πǫF ǫkǫp

∫
d3k

(2π)3
In2 (3.26)

where

In2 =
∫
dk0L(k0)Nkδ(k

2
0 − ω2

k)Npδ(p
2
0 − ω2

p)

=
∫
dk0L(k0)

4ωkωp
{nk+δ(k0 − ωk) + nk−δ(k0 + ωk)}{np+δ(ǫ1q0 + ǫ2k0 − ωp)

+ np−δ(ǫ1q0 + ǫ2k0 + ωp)}

=
1

4ωkωp
[L1{nk+np+δ(ǫ1q0 + ǫ2ωk − ωp) + nk+n

p
−δ(ǫ1q0 + ǫ2ωk + ωp)}

+L2{nk−np+δ(ǫ1q0 − ǫ2ωk − ωp) + nk−n
p
−δ(ǫ1q0 − ǫ2ωk + ωp)}]. (3.27)

Since this is a pure imaginary term, So

ReΠ11
n2(q) = 0

ImΠ11
n2(q) = −2πǫF ǫkǫp

∫
d3k

(2π)3
In2

= −2πǫF ǫkǫp

∫
d3k

(2π)3
1

4ωkωp
[L1{nk+np+δ(ǫ1q0 + ǫ2ωk − ωp)

+nk+n
p
−δ(ǫ1q0 + ǫ2ωk + ωp)}+ L2{nk−np+δ(ǫ1q0 − ǫ2ωk − ωp)

+ nk−n
p
−δ(ǫ1q0 − ǫ2ωk + ωp)}]. (3.28)

Collecting the imaginary part of self-energy from Eq. (3.28) and (3.24) we will get

medium dependent part

ImΠ11
med = ImΠ11

n + ImΠ11
n2

= −πǫF
∫

d3k

(2π)3
1

4ωkωp
[L1{(ǫknk+ + ǫpn

k
+ + 2ǫkǫpn

k
+n

p
+)δ(ǫ1q0 + ǫ2ωk − ωp)

+ (ǫkn
k
+ + ǫpn

p
− + 2ǫkǫpn

k
+n

p
−)δ(ǫ1q0 + ǫ2ωk + ωp)}

+L2{(ǫknk− + ǫpn
p
+ + 2ǫkǫpn

k
−n

p
+)δ(ǫ1q0 − ǫ2ωk − ωp)

+ (ǫkn
k
− + ǫpn

p
− + 2ǫkǫpn

k
−n

p
−)δ(ǫ1q0 − ǫ2ωk + ωp)}]. (3.29)

Now adding the vacuum part from Eq. (3.9) to above Eq. (3.29) we will get the 11-

component total in-medium self-energy

Π11 = ΠV + {ImΠ11
n + ImΠ11

n2}+ {ReΠ11
n }. (3.30)
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For the four possible cases, imaginary and real part of total self-energy are evaluated

below. We have repeatedly made use of Eq. (3.10), (3.29), (3.25) to specialize to three

cases with appropriate values of ǫ1, ǫ2 etc.

3.2.1 Boson self-energy for boson-boson (BB) loop

ImΠ11 = −π
∫

d3k

(2π)3
1

4ωkωp
[L1{(1 + nk+ + np+ + 2nk+n

p
+)δ(q0 − ωk − ωp)

+(nk+ + np− + 2nk+n
p
−)δ(q0 − ωk + ωp)}+ L2{(nk− + np+ + 2nk−n

p
+)δ(q0 + ωk − ωp)

+ (1 + nk− + np− + 2nk−n
p
−)δ(q0 + ωk + ωp)}]

= coth(
β(q0 − µq)

2
)ǫ(q0)ImΠ , using Eq.(3.13) for boson with nonvanishing µq

where ImΠ = −ǫ(q0)π
∫

d3k

(2π)3
1

4ωkωp
[L1{(1 + nk+ + np+)δ(q0 − ωk − ωp)

+(−nk+ + np−)δ(q0 − ωk + ωp)}+ L2{(nk− − np+)δ(q0 + ωk − ωp)

+ (−1 − nk− − np−)δ(q0 + ωk + ωp)}]. (3.31)

In second step we have rearranged the distribution functions as (here nk,p± = 1

e
β(ωk,p∓µ)−1 )

(1 + nk+ + np+ + 2nk+n
p
+) =

(1 + nk+)(1 + np+) + nk+n
p
+

(1 + nk+)(1 + np+)− nk+n
p
+

(1 + nk+ + np+)

= coth(
β{(ωk + ωp)− (µk + µp)}

2
)(1 + nk+ + np+)

(nk+ + np− + 2nk+n
p
−) =

(1 + nk+)n
p
− + nk+(1 + np−)

(1 + nk+)n
p
− − nk+(1 + np−)

(−nk+ + np−)

= coth(
β{(ωk − ωp)− (µk + µp)}

2
)(−nk+ + np−)

(nk− + np+ + 2nk−n
p
+) =

nk−(1 + np+) + np+(1 + nk−)

nk−(1 + np+)− np+(1 + nk−)
(nk− − np+)

= coth(
β{(−ωk + ωp)− (µk + µp)}

2
)(nk− + np+)

(1 + nk− + np− + 2nk−n
p
−) =

nk−n
p
− + (1 + nk−)(1 + np−)

nk−n
p
− − (1 + nk−)(1 + np−)

(−1 − nk− − np−)

= coth(
β{(−ωk − ωp)− (µk + µp)}

2
)(−1− nk− − np−)

(3.32)

and each of the cothyperbolic functions are attached to the different δ-functions in such a

systematic manner that we can convert them into a common function, coth(β(q0−µq)
2

), as-

suming µq = µk+µp. For e.g. coth(
β{(ωk+ωp)−(µk+µp)}

2
)δ(q0−ωk−ωp) = coth(β(q0−µq)

2
)δ(q0−



52

ωk − ωp). The general form of real part, Eq. (3.25) now produces the expression

ReΠ(q) = ReΠ11
n (q) =

∫
d3k

(2π)3
1

4ωkωp
P[
nk+L1 + np+L3

q0 − ωk − ωp
+

−nk+L1 + np−L4

q0 − ωk + ωp

+
nk−L2 − np+L3

q0 + ωk − ωp
+

−nk−L2 − np−L4

q0 + ωk + ωp
]. (3.33)

In this case, external and internal, all lines contain bosons. In absence of conserved

charges, µq = µk = µp = 0 and therefore n± = n = 1
eβω−1

.

3.2.2 Fermion self-energy for boson-fermion (BF ) loop

In this case only one of the boson internal lines is replaced by a fermion, so we will get

expressions similar to as Eq. (3.31) and (3.33) in which the sign attached with np will

be opposite i.e. np → −np.

ImΠ = −ǫ(q0)π
∫

d3k

(2π)3
1

4ωkωp
[L1{(1 + nk+ − np+)δ(q0 − ωk − ωp)

+(−nk+ − np−)δ(q0 − ωk + ωp)}+ L2{(nk− + np+)δ(q0 + ωk − ωp)

+ (−1− nk− + np−)δ(q0 − ωk + ωp)}]

ReΠ(q) =
∫ d3k

(2π)3
1

4ωkωp
P[
nk+L1 − np+L3

q0 − ωk − ωp
+

−nk+L1 − np−L4

q0 − ωk + ωp

+
nk−L2 + np+L3

q0 + ωk − ωp
+

−nk−L2 + np−L4

q0 + ωk + ωp
]. (3.34)

The cancellation of the common hyperbolic function (here it is tanh{β(q0 − µq)}/2) is
still valid because for this case the distribution functions are rearranged as follows (here

nk± = 1
eβ(ωk∓µ)−1

and np± = 1
eβ(ωp∓µ)+1

)

(1 + nk+ − np+ − 2nk+n
p
+) =

(1 + nk+)(1− np+)− nk+n
p
+

(1 + nk+)(1− np+) + nk+n
p
+

(1 + nk+ − np+)

= tanh(
β{(ωk + ωp)− (µk + µp)}

2
)(1 + nk+ − np+)

(nk+ − np− − 2nk+n
p
−) =

−(1 + nk+)n
p
− + nk+(1− np−)

−(1 + nk+)n
p
− − nk+(1− np−)

(−nk+ − np−)

= tanh(
β{(ωk − ωp)− (µk + µp)}

2
)(−nk+ − np−)

(nk− − np+ − 2nk−n
p
+) =

nk−(1− np+)− np+(1 + nk−)

nk−(1− np+) + np+(1 + nk−)
(nk− + np+)

= tanh(
β{(−ωk + ωp)− (µk + µp)}

2
)(nk− + np+)

(1 + nk− − np− − 2nk−n
p
−) =

−nk−np− + (1 + nk−)(1− np−)

−nk−np− − (1 + nk−)(1− np−)
(−1− nk− + np−)
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= tanh(
β{(−ωk − ωp)− (µk + µp)}

2
)(−1− nk− + np−).

(3.35)

We have to assume µq = µp to hold the relation µq = µk + µp as µk = 0 (i.e. we should

write in Eq. (3.34), nk± = nk = 1
eβωk−1

).

3.2.3 Boson self-energy for fermion-fermion loop

FF internal lines of B self-energy :

In this case momentum of lower internal line is p = k − q, so adding the corresponding

vacuum expression of Eq. (3.10) to the medium part (3.29) with corresponding sign

functions (see Table.3.1), we have

ImΠ11 = π
∫ d3k

(2π)3
1

4ωkωp
[L1{(−nk+ − np+ + 2nk+n

p
+)δ(−q0 + ωk − ωp)

+ (−nk+ − np− + 2nk+n
p
−)δ(−q0 + ωk + ωp)}

+L2{(−nk− − np+ + 2nk−n
p
+)δ(−q0 − ωk − ωp)

+ (−nk− − np− + 2nk−n
p
−)δ(−q0 − ωk + ωp)}]

π
∫

d3k

(2π)3
1

4ωkωp
{L1δ(q0 − ωk − ωp) + L2δ(q0 + ωk + ωp)}

= π
∫ d3k

(2π)3
1

4ωkωp
[L1{(−nk+ − np+ + 2nk+n

p
+)δ(q0 − ωk + ωp)

+ (1− nk+ − np− + 2nk+n
p
−)δ(q0 − ωk − ωp)}

+L2{(1− nk− − np+ + 2nk−n
p
+)δ(q0 + ωk + ωp)

+ (−nk− − np− + 2nk−n
p
−)δ(q0 + ωk − ωp)}]

= coth(
β(q0 − µq)

2
)ǫ(q0)ImΠ

where ImΠ = ǫ(q0)π
∫ d3k

(2π)3
1

4ωkωp
[L1{(1− nk+ − np−)δ(q0 − ωk − ωp)

+(nk+ − np+)δ(q0 − ωk + ωp)}+ L2{(−nk− + np−)δ(q0 + ωk − ωp)

+ (−1 + nk− + np+)δ(q0 + ωk + ωp)}]

and ReΠ = −
∫

d3k

(2π)3
1

4ωkωp
P[{ −nk+L1 + np+L4

(−q0 + ωk)− ωp
+

nk+L1 + np−L3

(−q0 + ωk) + ωp

+
−nk−L2 − np+L4

(−q0 − ωk)− ωp
+

nk−L2 − np−L3

(−q0 − ωk) + ωp
]

(using the replacement L3,4 → L4,3 of(3.23).)

= −
∫ d3k

(2π)3
1

4ωkωp
P[{n

k
+L1 − np+L4

q0 − ωk + ωp
+

−nk+L1 − np−L3

q0 − ωk − ωp
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+
nk−L2 + np+L4

q0 + ωk + ωp
+

−nk−L2 + np−L3

q0 + ωk − ωp
] (3.36)

by using the relations

(1− nk+ − np− + 2nk+n
p
−) =

(1− nk+)(1− np−) + nk+n
p
−

(1− nk+)(1− np−)− nk+n
p
−
(1− nk+ − np−)

= coth(
β{(ωk + ωp)− (µk − µp)}

2
)(1− nk+ − np−)

(−nk+ − np+ + 2nk+n
p
+) =

−(1− nk+)n
p
− − nk+(1− np−)

−(1− nk+)n
p
− + nk+(1− np−)

(nk+ − np+)

= coth(
β{(ωk − ωp)− (µk − µp)

2
)(nk+ − np+)

(−nk− − np− + 2nk−n
p
−) =

−nk−(1− np−)− np−(1− nk−)

−nk−(1− np−) + np−(1− nk−)
(−nk− + np−)

= coth(
β{(−ωk + ωp)− (µk − µp)

2
)(−nk− + np−)

(1− nk− − np+ + 2nk−n
p
+) =

nk−n
p
+ + (1− nk−)(1− np+)

nk−n
p
+ − (1− nk−)(1− np+)

(−1 + nk− + np−)

= coth(
β{(−ωk − ωp)− (µk − µp)

2
)(−1 + nk− + np−).

(3.37)

Here we are assuming µk = µp (since µq = 0) to maintain the cancellation of common

hyperbolic functions, coth{β(q0−µq)
2

} i.e. coth{βq0
2
}.

FF internal lines of B self-energy :

ImΠ11 = π
∫ d3k

(2π)3
1

4ωkωp
[L1{(−nk+ − np+ + 2nk+n

p
+)δ(q0 + ωk − ωp)

+ (1− nk+ − np− + 2nk+n
p
−)δ(q0 + ωk + ωp)}

+L2{(1− nk− − np+ + 2nk−n
p
+)δ(q0 − ωk − ωp)

+ (−nk− − np− + 2nk−n
p
−)δ(q0 − ωk + ωp)}]

= coth(
β(q0 − µq)

2
)ǫ(q0)ImΠ

where ImΠ = ǫ(q0)π
∫ d3k

(2π)3
1

4ωkωp
[L2{(−1 + nk− + np+)δ(q0 − ωk − ωp)

+(−nk− + np−)δ(q0 − ωk + ωp)}+ L1{(nk+ − np+)δ(q0 + ωk − ωp)

+ (1− nk+ − np−)δ(q0 + ωk + ωp)}]

and ReΠ = −
∫

d3k

(2π)3
1

4ωkωp
P[{−n

k
+L1 + np+L6

q0 + ωk − ωp
+
nk+L1 + np−L5

q0 + ωk + ωp

+
−nk−L2 − np+L6

q0 − ωk − ωp
+
nk−L2 − np−L5

q0 − ωk + ωp
]
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(using the replacement L3,4 → L6,5 of(3.23).) (3.38)

So we can write the diagonal element of thermal self-energy in a general form as

ImΠ = −ǫ(q0)ǫFπ
∫ d3k

(2π)3
1

4ωkωp
[C1δ(q0 − ωk − ωp) + C2δ(q0 − ωk + ωp)

C3δ(q0 + ωk − ωp) + C4δ(q0 + ωk + ωp)] (3.39)

and

ReΠ = ǫF

∫
d3k

(2π)3
1

4ωkωp
P[

R1

q0 − ωk − ωp
+

R2

q0 − ωk + ωp

+
R3

q0 + ωk − ωp
+

R4

q0 + ωk + ωp
]. (3.40)

where Ci’s and Ri’s (i=1,2,3,4) are given in Table.(3.3).

3.3 Branch cuts of self-energy

The regions, in which the four terms of imaginary part of self-energy are non-vanishing,

give rise to cuts in the self-energy function. These regions are controlled by the respective

δ-functions [52]. Thus, the first and the fourth terms are non-vanishing for q2 ≥ (mp +

mk)
2, giving the unitary cut, while the second and the third are non-vanishing for

q2 ≤ (mp −mk)
2, giving the so-called Landau cut.

We shall now obtain the cuts and the associated discontinuities of the self-energy function

in the q0 plane for fixed |~q|. Writing d3~k = 2π
√
ω2
k −m2

k ωkdωk sin θdθ, where θ is the

angle betwen ~q and ~k, we can readily integrate over cos θ using the δ-functions. But we

have to take into account the physical requirement, | cos θ| ≤ 1, which, as we shall see

presently, reduces the a priori range (mk to ∞) of integration over ωk.

First term of (3.39) :

The first term of (3.39), for which we have (q0 − ωk)
2 = ω2

p, give

|ǫ1~q + ǫ2~k|2 +m2
p = (q0 − ωk)

2 as ωp =

√
|ǫ1~q + ǫ2~k|2 +m2

p

=⇒ cos θ0 = ǫ1ǫ2
S2
k − 2q0ωk

2|~q|
√
ω2
k −m2

k

, S2
k = q2 −m2

p +m2
k . (3.41)

Then the inequality | cos θ0| ≤ 1 becomes

q2(ωk − ωk+)(ωk − ωk−) ≤ 0 (3.42)
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ImΠ = −ǫ(q0)ǫFπ
∫ d3k

(2π)3
1

4ωkωp
[C1δ(q0 − ωk − ωp) + C2δ(q0 − ωk + ωp)

C3δ(q0 + ωk − ωp) + C4δ(q0 + ωk + ωp)]

BB BF FF FF

C1 L1(1 + nk+ + np+) L1(1 + nk+ − np+) L1(1− nk+ − np−) L2(−1 + nk− + np+)

C2 L1(−nk+ + np−) L1(−nk+ − np−) L1(n
k
+ − np+) L2(−nk− + np−)

C3 L2(n
k
− − np+) L2(n

k
− + np+) L2(−nk− + np−) L1(n

k
+ − np+)

C4 L2(−1− nk− − np−) L2(−1− nk− + np−) L2(−1 + nk− + np+) L1(1− nk+ − np−)

ReΠ = ǫF
∫ d3k

(2π)3
1

4ωkωp
P[ R1

q0−ωk−ωp
+ R2

q0−ωk+ωp

+ R3

q0+ωk−ωp
+ R4

q0+ωk+ωp
]

BB BF FF FF

R1 L1n
k
+ + L3n

p
+ L1n

k
+ − L3n

p
+ −L1n

k
+ − L3n

p
− −L2n

k
− − L6n

p
+

R2 −L1n
k
+ + L4n

p
− −L1n

k
+ − L4n

p
− L1n

k
+ − L4n

p
+ L2n

k
− − L5n

p
−

R3 L2n
k
− − L3n

p
+ L2n

k
− + L3n

p
+ −L2n

k
− + L3n

p
− −L1n

k
+ + L6n

p
+

R4 −L2n
k
− − L4n

p
− −L2n

k
− + L4n

p
− L2n

k
− + L4n

p
+ L1n

k
+ + L5n

p
−

Table 3.3: Table showing the detail expressions of Ci and Ri for four individual loops.
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where ωk± are the roots of the quadratic equation for ωk,

ωk± =
S2
k

2q2
{q0 ± |~q|ǫ(S2

k)Wk} , Wk(q
2) =

√√√√1− 4q2m2
k

S4
k

. (3.43)

In the first term in (3.39), for which q2 ≥ (mp+mk)
2, as already stated, we have S2

k > 0

andWk < 1, so that both ωk+ and ωk− have the same sign like q0. Then this term is non-

zero only for positive q0 with the integration variable ωk restricted to ωk− ≤ ωk ≤ ωk+

and in terms of ωk integration it become

ImΠ1(q0, ~q) = − 1

16π~q

∫ ωk+

ωk−

dωkC1(ωp = q0−ωk, cos θ = cos θ0), q0 ≥
√
(mp +mk)2 + |~q|2 .

(3.44)

Second term of (3.39) :

For the second term in (3.39), we split the region q2 ≤ (mp −mk)
2 into two segments,

namely, 0 ≤ q2 ≤ (mp − mk)
2 and −~q 2 ≤ q2 ≤ 0 (as q20 can’t be negative) , denoting

them as La and Lb respectively . The relevant region in q0-axis for the two segments are

determined below

For La,

−~q 2 ≤ (q20 − ~q 2) ≤ 0 =⇒ 0 ≤ q20 ≤ ~q 2

=⇒ −~q ≤ q0 ≤ ~q (3.45)

and for Lb,

0 ≤ (q20 − ~q 2) ≤ (mp −mk)
2

=⇒ ~q 2 ≤ q20 ≤ ~q 2 + (mp −mk)
2

=⇒ q20 − {~q 2 + (mp −mk)
2} ≤ 0 and q20 − ~q 2 ≥ 0

=⇒ −
√
~q 2 + (mp −mk)2 ≤ q0 ≤

√
~q 2 + (mp −mk)2 and q0 ≥ ~q or q0 ≤ −~q.

(3.46)

Now assuming ωp ≥ ωk, q0 = ωk −ωp ≤ 0. So collecting from (3.45) and (3.46), relevant

inequality for this term is given below

−
√
~q 2 + (mp −mk)2 ≤ q0 ≤ −~q (denoting as L2b)

−~q ≤ q0 ≤ 0 (denoting as L2a). (3.47)
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As the second term follow the same inequality (3.42) we get same roots ωk± but unlike the

previous term, ωk+ is negative for L2a which can be immediately perceived by applying

the conditions S2
k < 0 and Wk > 1 in Eq. (3.43). Now for q2 ≤ 0, inequality (3.42) gives

ωk ≥ ωk− ≥ ωk+ i.e. ωk ≥ ωk− (other inequality ωk ≤ ωk+ ≤ ωk− does not hold as ωk

can’t be negative). So

ImΠ2a(q0, ~q) = − 1

16π~q

∫ ∞

ωk−

dωkC2(ωp = −q0 + ωk, cos θ = cos θ0), − ~q ≤ q0 ≤ 0.

(3.48)

Now for L2b q
2 ≥ 0, S2

k < 0 and Wk < 1. So ωk± both are positive and the integration

become

ImΠ2b(q0, ~q) = − 1

16π~q

∫ ωk−

ωk+

dωkC2(ωp = −q0 + ωk, cos θ = cos θ0)

−
√
~q 2 + (mp −mk)2 ≤ q0 ≤ −~q. (3.49)

Third term of (3.39) :

The third term has same q2 region of the second term but q0 ≥ 0. So choosing from

Eq. (3.45) and (3.46) relevant q0-region is given below

0 ≤ q0 ≤ ~q (denoting as L3a)

~q ≤ q0 ≤ ~q
√
~q 2 + (mp −mk)2 (denoting as L3b). (3.50)

The third term of (3.39) give different cos θ0 which is evaluated as

(q0 + ωk)
2 = ω2

p

= |ǫ1~q + ǫ2~k|2 +m2
p

=⇒ cos θ0 = ǫ1ǫ2
S2
k + 2q0ωk

2|~q|
√
ω2
k −m2

k

. (3.51)

The roots of inequality (3.42) will be

ω̃k± =
S2
k

2q2
{−q0 ± |~q|ǫ(S2

k)Wk}. (3.52)

Following same analysis for finding the ω̃k limits, the final expression of integration for

this term is given by

ImΠ3a(q0, ~q) = − 1

16π~q

∫ ∞

ω̃k−

dω̃kC3(ω̃p = q0 + ω̃k, cos θ = cos θ0)
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0 ≤ q0 ≤ ~q

ImΠ3b(q0, ~q) = − 1

16π~q

∫ ω̃k−

ω̃k+

dω̃kC3(ω̃p = q0 + ω̃k, cos θ = cos θ0)

~q ≤ q0 ≤
√
~q 2 + (mp −mk)2. (3.53)

Forth term of (3.39) : The fourth term contributes entirely to negative values of q0,

q0 ≤ −
√
~q 2 + (mp +mk)2 and following same roots ω̃k± as that of third term, this part

of integration can be written as

ImΠ4(q0, ~q) = − 1

16π~q

∫ ω̃k+

ω̃k−

dω̃kC4(ω̃p = −q0−ω̃k, cos θ = cos θ0), q0 ≤ −
√
(mp +mk)2 + |~q|2 .

(3.54)

The relevant limits and quantities of four different branch cut regions are organized in

Table.(3.4). The detailed branch cut region in q0-plane are shown in Fig. (3.4).

3.4 Physical significance one-loop self-energy

The distribution functions present in different terms of Eq. (3.39) may be understood

in terms of decay and recombination (inverse decay) probabilities [69].

Before going to T 6= 0 let us discuss the imaginary part of oneloop self-energy in vac-

uum. It can be expressed as square of matrix element of decay , integrated over phase

space. This is nothing but the optical theorem. Let us take a simple φ3 theory and to

comprehend the theorem, we prove the relation

−ImΠ(q = mq)

mq
= Γd(mq) (3.55)

where

Γd(mq) =
1

2mq

∫
d3k

(2π)32ωk

d3p

(2π)32ωp
(2π)4δ(q − k − p)|M |2

=
~kcm
8πm2

q

|M |2 , ~kcm =

√
(m2

q −m2
p −m2

k)− 4m2
pm

2
k

2mq
(3.56)

with square of spin averaged decay amplitude |M |2 = 1
2sq+1

∑
sk,sp |M(φq → φk, φp)|2.

Now the Lagrangian of scalar φ3 theory is given by

Lint = gφqφkφp (3.57)
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for which M(φq → φk, φp)|2 = g2 and so

Γd(mq) =

√
(m2

q −m2
p −m2

k)
2 − 4m2

pm
2
k

16πm3
q

g2. (3.58)

Now we turn to our self-energy calculation and using Eq. (3.44) at q = mq for T=0, we

have

ImΠ(q = mq) = − 1

16π~q

∫ ωk+

ωk−

dωkL(k0 = ωk, cos θ = cos θ0, q = mq)

= − 1

16π~q
g2[ωk−(q = mq)− ωk+(q = mq)] as L = v1ζkζpv2 = g2

= − 1

16π~q
g2[

S2
k(q = mq)

2m2
q

2~q

√√√√1− 4m2
qm

2
k

S4
k(q = mq)

]

=⇒ −ImΠ(q = mq)

mq
=

√
(m2

q −m2
p −m2

k)
2 − 4m2

pm
2
k

16πm3
q

g2, (3.59)

using the relation S4
k(q = mq)− 4m2

qm
2
k = (m2

q −m2
p −m2

k)
2 − 4m2

pm
2
k).

So the imaginary part of vacuum self-energy in the unitary cut region with positive

invariant mass is related to vacuum decay width. Now the same term (3.44) for T 6= 0 can

be interpreted as the vacuum width, convoluted with statistical weight factors. Here the

statistical weight factor is 1+nk++n
p
+ and it can be rearranged as (1+nk+)(1+n

p
+)−nk+np+,

indicating the decay process φq → φkφp with bose enhanced probability (1+nk+)(1+n
p
+)

minus the inverse decay process φkφp → φq with statistical probability nk+n
p
+. Similarly

second and third terms represent in-medium forward and reverse scattering processes

in Landau cut regions. For different loops, the diagrammatic interpretation of the four

terms in (3.39) are assembled in Table.(2A). Here the φq, φk and φp represent general

fields instead of scalar fields. From Table.(2A) one observes that the initial state of φk,p

(or φk,p) field is attached with nk,p+ (or nk,p− ) whereas their final state is attached with

(1 + ǫk,pn
k,p
+ ) (or 1 + ǫk,pn

k,p
− ). So we see that due to presence of medium final state of

boson experiences Bose enhancement whereas that of fermion faces Pauli suppression.
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q1q2q3−q2−q1 −q3

Im q0

Re q0

0

Figure 3.4: Branch cuts of self-energy function in q0 plane for fixed ~q. The quantities

q1,2,3 denote the end points of cuts discussed in the text : q1 =
√
(mp +mk)2 + |~q|2,

q2 =
√
(mp −mk)2 + |~q|2 and q3 = |~q|.
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Table 2A : Table shows the diagramatic representation for individual terms of imaginary part of in−medium self−energy.

In first column,the statistical weight factor for BB and BF loops are written in general way. In second and third column,
we have mentioned about the replacement of fields and distribution functions.
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−
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+
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+
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−
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−

k
nk

− p
np

−
)

q
k

p
k
nk

+ p
np

+
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region in q0 cosθ0 and q · k Limits of ωk

ImΠ1 q0 ≥
√
~q 2 + (mk +mp)2 cosθ0 = ǫ1ǫ2

S2
k
−2q0ωk

2|~q||~k| ωk− =
S2
K

2q2
[q0 −Wk]

q · k = −ǫ1ǫ2 S
2
k

2
to ωk+ =

S2
k

2q2
[q0 +Wk]

ImΠ2b −
√
~q 2(mp −mk)2 ≤ q0 ≤ −|~q| same as previous ωk+ =

S2
k

2q2
[q0 +Wk]

to ωk− =
S2
k

2q2
[q0 −Wk]

ImΠ2a −|~q| ≤ q0 ≤ 0 same as previous to ω− =
S2
k

2q2
[q0 −Wk]

to ∞

ImΠ3b |~q| ≤ q0 ≤
√
~q 2(mp −mk)2 cosθ0 = ǫ1ǫ2

S2
k
−2q0ω̃k

2|~q||~k| ω̃+ =
S2
k

2q2
[−q0 +Wk]

q · k = −ǫ1ǫ2 S
2
k

2
to ω̃− =

S2
k

2q2
[−q0 −Wk]

ImΠ3a 0 ≤ q0 ≤ |~q| same as previous ω̃− =
S2
k

2q2
[−q0 −Wk]

to ∞

ImΠ4 q0 ≤ −
√
~q 2(mk +mp)2 same as previous ω̃− =

S2
k

2q2
[−q0 −Wk]

to ω̃+ =
S2
k

2q2
[−q0 +Wk]

Table 3.4: Table shows the different branch cuts and their corresponding variables which
make the imaginary part of self-energy restrict to be nonzero on that cut region.



Chapter 4

Spectral properties of ρ meson in
hot and dense matter

The in-medium propagation of vector mesons, particularly ρ, has been extensively stud-

ied [37, 70, 71]. The reason is, of course, that it controls the rates of dileptons and

photons emitted from the hot and dense matter, created during the late stages heavy

ion collisions. The NA60 experiment at the CERN SPS measured dimuon pairs in In-In

collisions in which an excess was observed over the contribution from hadronic decays at

freeze-out in the mass region below ρ peak [72]. This was attributed to the broadening

of ρ in hot and dense medium [37]. More recently, the PHENIX experiment reported

a substantial excess of electron pairs in the same region of invariant mass [43]. This

has been investigated by several groups but the yield in all these cases have remained

insufficient to explain the data. Thus the issue of low mass lepton pair yield in heavy

ion collisions is far from closed and is one of the key issues to be addressed in the forth-

coming Compressed Baryonic Matter(CBM) experiment to be performed at the FAIR

facility in GSI [73].

The in-medium modification of ρ meson in presence of mesonic gas is generally be-

lieved to arise from two sources [37]. One is the change in its pion cloud, given essentially

by the ππ self-energy loop [74]. The other is the collisions suffered by the vector meson

with particles in the medium [75, 76, 77, 78, 79, 80].

In baryonic sector, most of the calculations were performed at zero temperature [81,

82, 83, 84, 85]. Finite temperature effects on the ρ spectral function in dense matter

have been evaluated by Rapp et al [86] in terms of resonant interactions of the ρ with

surrounding mesons and baryons in addition to modifying the pion cloud. Eletsky [80]

63
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and collaborators have also evaluated the spectral function of vector mesons at finite

temperature and density in terms of forward scattering amplitudes constructed using

experimental inputs assuming resonance dominance at low energies and a Regge-type

approach at higher energies.

The sources modifying the free propagation of a particle find a unified description

in terms of contributions from the branch cuts of the self energy function as shown by

Weldon [69]. In addition to the unitary cut present already in vacuum, the thermal

amplitude generates a new cut, the so called the Landau cut which provides the effect

of collisions with the surrounding particles in the medium. Here we have used this

formalism to obtain the ρ self-energy in mesonic [87] and baryonic matter [88, 89]

4.1 ρ self-energy in the medium

To study the ρ meson propagator, we do not start directly with the two-point function of

the ρ meson field, but consider instead the related object, namely the two-point function

of the vector current V i
µ(x),

V i
µ(x) = q̄(x)γµ

τ i

2
q(x), q =


 u

d


 (4.1)

of the two-flavor QCD theory. Conceptually we then keep contact with the fundamental

theory and deal with a conserved current. At the same time we can address directly

the physical processes, such as dilepton production in heavy ion collisions which will be

elaborately discussed in Ch. (6).

In the real time thermal field theory, the in medium two point function should have a

same 2× 2 matrix structure [64]. The thermal two point function is given by

T ij,abµν (E, ~q) = i
∫
d3xdτ eiq·x〈TcV i

µ(x)V
j
ν (0)〉ab (4.2)

where 〈O〉 denotes the ensemble average of an operator O,

〈O〉 = Tr(e−βHO)/Tre−βH (4.3)

and Tr indicating trace over a complete set of states. The superscripts a, b (= 1, 2) are

thermal indices and Tc denotes time ordering with respect to a contour in the plane of

the complex time variable [90]. The two point function of vector currents can be related
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h (q−k)

N (k)

B (k+q)

N (k)

B (k−q)

(a) (b) (c)

Figure 4.1: One-loop Feynman diagrams of in-medium ρ self-energy for mesonic loop
(a) and for baryonic loops (b) and (c). Dashed lines are allotted for mesons (ρ, π, h)
whereas the solid lines are fixed for baryons (N , B).

to the ρ meson propagator using the method of external fields [91] where one introduces

a classical vector field viµ(x) coupled to the vector current V i
µ(x). The free propagator

of the rho meson can be obtained by coupling the external field to the ρ meson field

operator using the Lagrangian [92]

Lρv =
Fρ
mρ

∂µ~vν · (∂µ~ρν − ∂ν~ρµ) (4.4)

where Fρ = 154 MeV is obtained from the decay ρ0 → e+ e−.

The transverse ρ meson propagator Gab
µν is then obtained from the relation T abµν =

K Gab
µν where the factor K = (Fρq

2/mρ)
2 comes from the coupling of the current with

the ρ field [87]. At finite temperature we have to deal with the diagonal element of the

propagator matrix and recalling the equations (2.120), we can express its spin average

form as

G =
1

3
(2 Gt + q2Gl) (4.5)

where

Gt =
−1

q2 −m2
ρ −Πt

, Gl =
−1/q2

q2 −m2
ρ − q2Πl

. (4.6)

The free propagation of the ρ meson is modified by interactions in the medium which

is populated by mesons and baryons. From Eq. (4.6) we see that the modification of ρ

propagation is controlled by the in-medium one loop self-energy of ρ meson. Now due

to presence of these thermal mesons and baryons in medium, we have to take in account

all possible mesonic loops (Π
M
t,l ) and baryonic loops (Π

B
t,l)

i.e. Πt,l =
∑

M

Π
M
t,l +

∑

B

Π
B
t,l. (4.7)

The detailed evaluations of ρ self-energy for mesonic and baryonic loops are discussed

below.
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4.1.1 Mesonic loops

In meson loops, the general structure of one loop self-energy is shown in Fig. 5.1(a).

One of the internal line is π and another is denoted as h which may be ω, h1, a1 as well

as π itself. For the interaction vertices entering in the four different one loop graphs, we

expand the relevant terms of the chiral Lagrangian and retain the lowest order terms to

get [93, 94, 92]

Lint =
Fρ
mρ

∂µ~vν · (∂µ~ρν − ∂ν~ρµ)

− 2Gρ

mρF 2
π

∂µ~ρν · ∂µ~π × ∂ν~π

+
g1
Fπ
ǫµνλσ(∂

νωµ~ρλ − ωµ∂ν~ρλ) · ∂σ~π

− g2
Fπ
hµ1 (∂µ~ρν − ∂ν~ρµ) · ∂ν~π

+
g3
Fπ

(∂µ~ρν − ∂ν~ρµ) · ~aµ1 × ∂ν~π. (4.8)

Here Fπ is the pion decay constant, Fπ = 93 MeV. The magnitude of other coupling

constants may be determined from the observed decay rates of the particles [95]. Thus

the decay rate Γ(ρ0 → e+ e−) = 6.9 KeV gives Fρ = 154 MeV. The decay rate Γ(ρ →
2π) = 153 MeV gives Gρ = 69 MeV. Similarly the decay rates Γ(ω → 3π) = 7.6 MeV,

Γ(h1 → ρπ) ≃ 360 MeV and Γ(a1 → ρπ) ≃ 400 MeV give respectively g1 = 0.87, g2 =

1.0 and g3 = 1.1.

In chapter(3) we have already obtained the expression of thermal boson self-energy for

boson-boson internal lines. Recapitulating the expression (3.31) and (3.33), here we

combine them in a single expression,

Π
µν
M (q) =

∫
d3k

(2π)3
1

4ωkωp
[
(1 + nk+)L

µν
1 + np+L

µν
3

q0 − ωk − ωp + iηǫ(q0)
+

−nk+Lµν1 + np−L
µν
4

q0 − ωk + ωp + iηǫ(q0)

+
nk−L

µν
2 − np+L

µν
3

q0 + ωk − ωp + iηǫ(q0)
+

−nk−Lµν2 + (−1 − np−)L
µν
4

q0 + ωk + ωp + iηǫ(q0)
]. (4.9)

where we have introduced the Lorentz indices µν. Now to calculate ρ meson self-energy

for different meson loops we make the following replacements

mk,p → mπ,h ωk,p → ωπ,h

nk,p± → nπ,h =
1

exp(βωπ,h)− 1
(assuming µπ,h = 0). (4.10)
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By obtaining the vertices from the interaction Lagrangian, Lµν can be expressed in terms

of Lorentz invariant tensors Aµν , Bµν and Cµν as

L(π)
µν =

(
2Gρ

mρF 2
π

)2

Cµν(k, q)

L(ω)
µν = −4

(
g1
Fπ

)2

(Bµν(k, q) + q2k2Aµν(k, q))

L(h1)
µν = −

(
g2
Fπ

)2

(Bµν(k, q)−
1

m2
h1

Cµν(k, q))

L(a1)
µν = −2

(
g3
Fπ

)2

(Bµν(k, q)−
1

m2
a1

Cµν(k, q)) (4.11)

where

Aαβ(q) = −gαβ + qαqβ/q
2,

Bαβ(k, q) = q2kαkβ − q · k(qαkβ + kαqβ) + (q · k)2gαβ ,

Cαβ(k, q) = q4kαkβ − q2(q · k)(qαkβ + kαqβ + (q · k)2qαqβ . (4.12)

To get a more realistic estimate we have included vacuum width of a1 and h1 internal

lines by using the formula [96],

Π
µν
M (q,mh) =

1

Nh

∫ (mh+2Γh)
2

(mh−2Γh)2
dM2 1

π
Im

[
1

M2 −m2
h + iMΓh(M)

]
Π
µν
M (q,M) (4.13)

with Nh =
∫ (mh+2Γh)

2

(mh−2Γh)2
dM2 1

π
Im

[
1

M2 −m2
h + iMΓh(M)

]
and Γh(M) = Γh→ρπ(M).

4.1.2 Baryonic loops

In the previous chapter we have seen that in case of two fermion internal lines there are

two possible diagrams (denoted previously as FF and FF loops) for boson self-energy.

So for baryon loops consisting of the nucleon N and another baryon B there will be

two possible diagrams as shown in Fig. 5.1(b) and (c). Obtaining the imaginary and

real part of NB and NB loops from Eq. (3.36) and (3.38) respectively, we write in a

compact form,

Π
µν

NB(q) = −
∫

d3k

(2π)3
1

4ωkωp
[
(1− nk+)L

µν
1 − np−L

µν
3

q0 − ωk − ωp + iηǫ(q0)
+

nk+L
µν
1 − np+L

µν
4

q0 − ωk + ωp + iηǫ(q0)

+
−nk−Lµν2 + np−L

µν
3

q0 + ωk − ωp + iηǫ(q0)
+
nk−L

µν
2 + (−1 + np+)L

µν
4

q0 + ωk + ωp + iηǫ(q0)
] (4.14)
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and

Π
µν

NB(q) = −
∫

d3k

(2π)3
1

4ωkωp
[
(1− nk−)L

µν
2 − np+L

µν
6

q0 − ωk − ωp − iηǫ(q0)
+

nk−L
µν
2 − np−L

µν
5

q0 − ωk + ωp − iηǫ(q0)

+
−nk+Lµν1 + np+L

µν
6

q0 + ωk − ωp − iηǫ(q0)
+
nk+L

µν
1 + (−1 + np−)L

µν
5

q0 + ωk + ωp − iηǫ(q0)
]. (4.15)

The internal lines in these loops contain a nucleon N and a baryon B which represents

several spin one-half and three-half 4−star resonances. Here B stands for the N∗(1520),

N∗(1650), N∗(1700), ∆(1230), ∆∗(1620), N∗(1720) as well as the N(940) itself. The

corresponding replacement in Eq. (4.14), (4.15) for the baryon loops are

mk,p → mN,B ωk,p → ωN,B

nk,p± → nN,B± =
1

exp{β(ωN,B ∓ µ)}+ 1
. (4.16)

Here µ is the baryonic chemical potential which is taken to be equal for all baryons.

Omitting isospin factors (IF ), the ρN couplings with the resonances are described by

the gauge invariant interactions [97]

L =
gρNB
mρ

[ψBσ
µνρµνψN + h.c.] JPB =

1

2

+

L =
gρNB
mρ

[ψBσ
µνγ5ρµνψN + h.c.] JPB =

1

2

−

L =
gρNB
mρ

[ψ
µ

Bγ
νγ5ρµνψN + h.c.] JPB =

3

2

+

L =
gρNB
mρ

[ψ
µ

Bγ
νρµνψN + h.c.] JPB =

3

2

−
. (4.17)

It is essential to point out that for the spin 3/2 resonances this coupling is not quite

correct owing to the fact that the free Lagrangian for the Rarita-Schwinger field [98] has

a free parameter. A symmetry is associated with a point transformation under which the

free Lagrangian remains invariant up to a change in the value of the parameter [99]. The

standard practice is to make a choice of the value of this parameter so that the spin-3/2

propagator has a simple form. In order that the interaction also remains invariant under

this transformation an additional term is added to it. Thus the Lagrangians involving

spin-3/2 fields take the form

L =
gρNB
mρ

[ψ
α

BOαβγνγ
5ρβνψN + h.c.] JPB =

3

2

+

L =
gρNB
mρ

[ψ
α

BOαβγνρ
βνψN + h.c.] JPB =

3

2

−
(4.18)
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with Oµα = gµα − 1
4
γµγα, the second term contributing only when the spin 3/2 field is

off the mass shell. The value of the coupling strength gρNB thus remains unaffected by

this exercise.

Now we will get four possible structure of Lµν depending upon the spin parity states

(JP ) of resonances B but numerically all the seven baryon loops are different because of

different coupling strength (gρNB) as well as the masses of resonances (mB). The four

kinds of tensor structure of Lµν are

Lµν(k, q) = −(
gρNB
mρ

)2





tr[σµαqα(k/+ PmN)σ
νβqβ(p/+mB)] for JP =

1

2

±

tr[V µα(k/+ PmN)U
νβ(p/+mB)Kβα] for JP =

3

2

± (4.19)

where Kβα = −gµν + 2
3m2kµkν + 1

3
γµγν + 1

3m
(γµkν − γνkµ) and V µα = V µα

0 + cV µα
c ,

Uµα = Uµα
0 + cUµα

c with

V µα
0 =

gρNB
mρ

(q/gµα − γµqα) Uνβ
0 =

gρNB
mρ

(q/gνβ − γνqβ)

V µα
c =

gρNB
mρ

γµ(γαq/− q/γα) Uνβ
c =

gρNB
mρ

(γνq/− q/γν)γβ . (4.20)

The second term V µα
c appears due to the off shell projection operator Oµν = gµν+cγµγν .

The constant c (i.e. c = −1
4
) is introduced to distinguish this contribution separately.

Here we will take p = k + ǫ1q where ǫ1 = ∓1 for diagrams representing NB and NB

respectively [Fig. 5.1(b) and (c)]. After evaluating the trace we will get

Lµν(q, k) = (
gρNB
2mN

)2






[(k2 − ǫ1(q· k) + PmNmB)q
2Aµν + 2Bµν ] forJP =

1

2

±

[α 3
2
Aµν + β 3

2
Bµν + γ 3

2
Cµν ] forJP =

3

2

± (4.21)

where α 3
2
= α00 + cα0c+ c2αcc, β 3

2
= β00 + cβ0c+ c2βcc and γ 3

2
= γ00 + cγ0c+ c2γcc. The

expressions for the various coefficients are given below

α00 =
8

3m2
B

[(k2m2
B + PmNm

3
B − k2q2)− ǫ1(q· k)(2k2 + q2 − 2(q· k))]q2

β00 =
8

3m2
B

[k2 +m2
B + ǫ1(q· k)]

α0c = 4
8

3m2
B

[PmNmBS
2
N − ǫ1(q· k)(S2

N + 3ǫ1(q· k)− 2PmNmB)]q
2

β0c = 4
8

3m2
B

[k2 −m2
B + 2ǫ1(q· k)]

γ0c = 4
8

3m2
B
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αcc = 4
8

3m2
B

[(m2
N + 2PmNmB)(S

2
N + 2ǫ1(q· k))− ǫ1(q· k)(S2

N + 4ǫ1(q· k))]q2

βcc = 4
8

3m2
B

[2(k2 −m2
B + 2ǫ1(q· k))]

γcc = 4
8

3m2
B

[2]

α3/2 =
2q2

3m2
B

[p2(p2 − 3q2) + p · q(3p2 + q2)

+3m2
B(p

2 + 2mNmB + p · q)

−2mNmB(p
2 + q2 − 2p · q)]

β3/2 = 4(1 + p2/3m2
B)

γ3/2 = −4/3m2
B (4.22)

where S2
N = q2 −m2

B +m2
N .

R JP gρNB ΓNπ (GeV) ΓNρ (GeV)

N(940) 1
2

+
7.7 0 0

N∗(1520) 3
2

−
7.0 0.07 0.023

N∗(1650) 1
2

−
0.9 0.132 0.013

N∗(1720) 3
2

+
7.0 0.03 0.155

∆(1232) 3
2

+
10.5 0.118 0

∆(1620) 1
2

−
2.7 0.036 0.023

∆(1700) 3
2

−
5.0 0.045 0.128

Table 4.1: Table showing the coupling constants and partial decay widths of the reso-
nances considered.

Up to now we have been treating the baryon resonances B in the narrow width

approximation. It is indeed necessary to consider the width of the unstable baryons in a
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Figure 4.2: In left panel, the imaginary (upper) and the real (lower) parts of self-energy
from ππ loop are shown separately in longitudinal and transverse components. In right
panel, the spin average of the components for πh(h = ω, a1, h1) loops are shown.

realistic evaluation of the spectral function. For this, we follow the procedure [100, 96]

of convoluting the self energy calculated in the narrow width approximation with the

spectral function of the baryons.

ΠB(q,mB) =
1

NB

∫ mB+2ΓB

mB−2ΓB

dM
1

π
Im

[
1

M −mB + i
2
ΓB(M)

]
ΠB(q,M) (4.23)

withNB =
∫ mB+2ΓB

mB−2ΓB

dM
1

π
Im

[
1

M −mB + i
2
ΓB(M)

]
and ΓB(M) = ΓB→Nπ(M)+ΓB→Nρ(M).

The values of these partial decay widths ΓB→Nρ, ΓB→Nπ and the coupling constants gρNB

are organized in Table (4.1). As a consequence of this convolution, the sharp ends of

the regions of non-zero imaginary part smoothly goes to zero at a higher value of M

depending upon the width of the resonance. It is shown in the dashed lines in the left

panels of Fig. (4.3) and (4.4) which correspond to the real and imaginary parts coming

from the NN∗(1520) loop computed in the narrow width approximation whereas solid

lines give their full width convoluted results

4.2 Results and discussion

We begin with the results of numerical evaluation of Fig. 5.1(A), representing the ρ self-

energy for meson loops. As usual, we retain the vacuum contribution in the imaginary

parts only, assuming the real (divergent) parts to renormalize the ρ meson mass. We cal-

culate the self-energies as a function of
√
q2 ≡M at fixed values of the three-momentum

~q and temperature T . It thus suffices to calculate the self-energies in the time-like region,
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for positive values of q0 starting from q0 = |~q|. So among the six segment of branch cuts

(Ch. 3), only two segments will contribute in the time-like region and the corresponding

imaginary part of self-energy are given by

ImΠ(q0, ~q) = − ǫ(q0)
16π~q

∫ ω̃π−

ω̃π+

dω̃πL2(q · k =
S2
π

2
){n(ω̃π)− n(ω̃h = q0 − ω̃π)}

for Landau cut, ~q ≤ q0 ≤
√
~q2 + (mh −mπ)2

= − ǫ(q0)
16π~q

∫ ωπ+

ωπ−

dωπL1(q · k =
S2
π

2
){1 + n(ωπ) + n(ωh = q0 − ωπ)}

for Landau cut, q0 ≥
√
(mh +mπ)2 + |~q|2 (4.24)

where S2
π = q2−m2

h+m
2
π. The principle value of Eq. (4.9) provide the required real part

of self-energy. Excluding the vacuum part (just by excluding the unity in the numerators

of (4.9)), we get only thermal real part which may shift the vacuum mass of ρ. The

ππ loop is distinguished by a large imaginary part of the self-energy, its vacuum part

giving Γρ ≡ ImΠ
(π)
/mρ = 153 MeV at M = mρ. Clearly it is only the unitary cut

in the time-like region that gives the imaginary part. The individual transverse and

longitudinal parts for this loop are shown in left panel of Fig. (4.2).

In showing the results for other loops, we average their imaginary and real parts

over the transverse and longitudinal components. They are shown in the right panel of

Fig. (4.2). Here it is only L3b part of Landau cut (|~q| ≤ q0 ≤
√
(mh −mπ)2 + |~q|2), which

contributes to the imaginary part. The only exception is the πω loop, where the unitary

cut (q0 ≥
√
(mh +mπ)2 + |~q|2) also contributes, its threshold for other loops appearing

outside the range of M plotted here. The πω loop dominates up to about M ∼ 500

MeV, beyond which the πa1 loop takes over. The rising trend of the imaginary part at

the upper end is due to the contribution of the unitary cut. While the imaginary parts

add up, there is appreciable cancellation among the real parts of different loops.

As, before, the imaginary part for baryon loops can be evaluated from the discon-

tinuities of the self-energy. However, the threshold for the unitary cut for these loops

being far away from the ρ pole we only consider the Landau part (L3b). So by picking

up the appropriate terms from Eq. (4.14) and (4.15), contributing in the region of L3b,

the expression of the imaginary part for baryon loops is given by

ImΠ(q0, ~q) =
ǫ(q0)

16π~q

∫ ω̃N−

ω̃N+

dω̃N [L2(q · k =
S2
N

2
){−n−(ω̃N) + n−(ω̃B = q0 + ω̃N)}
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74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
M (GeV)

-20

0

20

40

60

R
eΠ

ρ/m
ρ (

M
eV

)

-80

-60

-40

-20

0

Im
Π

ρ/m
ρ (

M
eV

)

M
B(µ=0 MeV)
B (µ=150 MeV)
tot (µ=0 MeV)
tot (µ=150 MeV)

T=150 MeV
q=300 MeV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
M (GeV)

0

1

2

3

4

5

6

7

8

9

10

Im
 G

ρ
(G

eV
)2

vacuum
q=0
q=300 MeV
q=500 MeV

T=170 MeV    µ=150 MeV
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+ L1(q · k = −S
2
N

2
){n+(ω̃N)− n+(ω̃B = q0 + ω̃N)}]

for Landau cut, ~q ≤ q0 ≤
√
~q2 + (mB −mN)2. (4.25)

We evaluate imaginary part of the ρ self-energy as a function of the invariant mass
√
q2 ≡M for two values of the three momentum. Shown in Fig. (4.3) left panel are the

contributions from the individual NB loops for a ρ meson at rest. The NN∗(1520) loop

makes the most significant contribution followed by the N∗(1720) and ∆(1700). The

right panel shows the corresponding results for ~q = 300 MeV where the transverse and

longitudinal components Πt and q
2Πl have been plotted separately. (Note that for a ρ

meson at rest Πt = q20Πl.) The corresponding results for the thermal contribution to the

real part are shown in Fig. (4.4).

On the left panel of Fig. (4.5) we plot the individual contribution of imaginary part

of spin averaged self-energy from the baryon and meson loops for two values of the

baryonic chemical potential. The small positive contribution from the baryon loops to

the real part is partly compensated by the negative contributions from the meson loops.

The substantial baryon contribution at vanishing baryonic chemical potential reflects

the importance of anti-baryons. Finally we come to the spectral function of ρ meson

and we have shown the spin average of the transverse and the longitudinal components.

In right panel of Fig. (4.5) we see how the vacuum spectral function is modified at

temperature, T=170 MeV and chemical potential, µ=150 MeV. In same figure we have

also checked the momentum (~q) dependence of thermal spectral function which reflects
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Figure 4.6: The spectral function of the ρ meson for (left) different values of the tem-
perature T and (right) different values of the chemical potential µ.

an important feature at finite temperature. It is the fact that the probability amplitude

at finite temperature depends independently on q0 and ~q because the rest frame of the

heat bath chooses a specific Lorentz frame and so unlike in vacuum, Lorentz invariance

does not hold at finite temperature. Therefore we see the non-zero differences in thermal

spectral function for different values of ~q, which can never be seen in vacuum. However,

we do not observe much variation with ~q of the ρ as seen in the figure. In left panel

of the Fig. (4.6), we plot the spectral function at fixed values of the baryonic chemical

potential and three-momentum for various representative values of the temperature. We

observe an increase of spectral strength at lower invariant masses resulting in broadening

of the spectral function with increase in temperature. This is purely a Landau cut

contribution from the baryonic loop arising from the scattering of the ρ from baryons in

the medium. Right panel of Fig. (4.6) shows the spectral function for various values of

the baryonic chemical potential for a fixed temperature. For high values of µ we observe

an almost flattened spectral density of the ρ which indicates an almost entire melting of

the resonance structure at the highest temperature and density. Possible consequences

for dilepton spectra in heavy-ion collision will be discussed in detail in Chapter (6).



Chapter 5

The ω meson in the medium

A large volume of literature is dedicated to the study of vector mesons in the medium, the

bulk of which concerns the ρ meson. Theoretical activities regarding the ω meson have

been mostly performed in cold nuclear matter (see e.g. [101] and [17, 102] for a review).

Though the lowest order virial expansion has been used in most cases [103, 104, 105]

the approaches differ widely in their methods resulting in a large variation in the results

concerning the mass and width. Consequently both positive and negative shifts of the

peak position have been proposed. On the experimental front the situation is far from

settled [17] with different groups reporting a reduction in mass [106] and increase in

width [107] in pA and γA collisions respectively. The upcoming experiments at the

FAIR facility at GSI thus assumes great significance in resolving some of the issues.

Finite temperature calculations at vanishing baryon density have been done in [108]

showing a large increase in width due to ω → 3π and ωπ → ππ processes. Baryon

induced effects on the ω spectral function at finite temperature has been treated within

a virial approach in [80] where the self-energy is obtained in terms of empirical scattering

amplitudes. In [109], in addition to contributions coming from scattering with mesons,

resonance-hole contributions have been included in the self-energy.

Similar to ρ meson scenario (Ch. 4) here also we have evaluated ω self-energy for

different meson and baryon loops by using effective Lagrangian and the real time for-

mulation of thermal field theory, which is discussed below.

5.1 Mesonic loops
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Figure 5.1: One-loop ω self-energy diagrams with baryons (a) & (b) where single and
double lines represent nucleon (N) and resonances (B) respectively. Diagram (c) indi-
cates meson loop where dashed, dotted and double dashed lines stand for ω, π and ρ
respectively.

Let us start with ω self-energy for πρ loop in where the ωπρ vertices can be obtained

from effective Lagrangian

Lint =
gm
Fπ
ǫµνλσ(∂

νωµ~ρλ − ωµ∂ν~ρλ) · ∂σ~π . (5.1)

The expression of in-medium self-energy for this case is exactly same as Eq. (4.9), keeping

the corresponding replacements

mk,p → mπ,ρ ωk,p → ωπ,ρ

nk,p± → nπ,ρ =
1

exp(βωπ,ρ)− 1
(assuming µπ,ρ = 0). (5.2)

Hence to represent ω self-energy for πρ loop, Eq. (4.9) become

Π
µν
(ρπ)(q) =

∫
d3k

(2π)3
1

4ωπωρ
[
(1 + nπ)Lµν1 + nρLµν3
q0 − ωπ − ωρ + iηǫ(q0)

+
−nπLµν1 + nρLµν4

q0 − ωπ + ωρ + iηǫ(q0)

+
nπLµν2 − nρLµν3

q0 + ωπ − ωρ + iηǫ(q0)
+

−nπLµν2 + (−1 − nρ)Lµν4
q0 + ωπ + ωρ + iηǫ(q0)

]. (5.3)

where the expression for Lµν appearing in the ω self-energy for the πρ loop is given by,

Lµν(ρπ)(q, k) = −4
(
gm
Fπ

)2

(Bµν + q2k2Aµν). (5.4)

The imaginary part in the relevant Landau and unitary cut regions are respectively given

by

ImΠ
µν
(ρπ) = − ǫ(q0)

16π|~q|
∫ ω̃−

π

ω̃+
π

dω̃πL
µν
2 {n(ω̃π)− n(ω̃ρ = q0 + ω̃π)} (5.5)

and

ImΠ
µν
(ρπ) = − ǫ(q0)

16π|~q|
∫ ω+

π

ω−
π

dωLµν1 {1 + n(ωπ) + n(q0 − ωπ)} (5.6)

where the integration limits ω±
π = S2

π

2q2
(q0 ± |~q|Wπ), ω̃

±
π = S2

π

2q2
(−q0 ± |~q|Wπ) with Wπ =√

1− 4q2m2
π

S4
π

and S2
π = q2 −m2

ρ +m2
π.
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The real part of the self-energy can be easily read off from (5.3) in terms of principal

value integrals and we do not write them here separately.

The ω self-energy due to its coupling to 3π states can be estimated by folding the ρπ

contribution with the ρ spectral function Aρ as in [105] to find the following expression

Π
µν
M (q) =

1

Nρ

∫ (q−mπ)2

4m2
π

dM2[Π
µν
(ρπ)(q,M)]Aρ(M) (5.7)

where Nρ =
∫ (q−mπ)2

4m2
π

dM2Aρ(M) and Aρ is the ρ spectral function. The value of coupling

constant is gm = 5.5 which is fixed by constructing the decay width of ω in 3π channels

as ImΠM (q=mω)
mω

= 7.6 MeV.

Following [69, 87], the Landau cut contribution from the ρπ loop can be interpreted as

the probability of occurrence of processes like ωπ → ρ and ωρ→ π which are responsible

for the loss of ω mesons in the medium minus the reverse processes which lead to a gain.

Similarly, the unitary cut contribution accounts for processes like ω → ρπ and its reverse.

As a consequence of folding with the ρ spectral function containing its 2π decay width,

all possible scatterings like ωπ → ππ, ωππ → π etc. as well as the decay ω → 3π,

proceeding through ρ-exchange are effectively accounted for in the imaginary part.

5.2 Baryonic loops

The internal lines in these loops contain a nucleon N and a baryon B which represents

several spin one-half and three-half 4−star resonances. Here B stands for the N∗(1440)

N∗(1520), N∗(1535), N∗(1650), N∗(1720) resonances as well as the N(940). For baryon

loops, the expression of ω self-energy is exactly same as Eq. (4.14) and (4.15) where we

have to keep in mind the resonances B which we are considering here. In the time-like

region, the total contribution from the baryon loops is given by

ImΠ
µν
(q0, ~q) =

ǫ(q0)

16π|~q|
∫ ω̃−

N

ω̃+
N

dω̃N [L
µν
1 (q · k = −S

2
N

2
){n+(ω̃N)− n+(ω̃B = q0 + ω̃N)}

+ Lµν2 (q · k =
S2
N

2
){−n−(ω̃N) + n−(ω̃B = q0 + ω̃N)}](5.8)

where the notations are same as previous chapter i.e. ω̃±
N =

S2
N

2q2
(−q0 ± |~q|WN ), WN =√

1− 4q2m2
N

S4
N

and S2
N = q2 −m2

B +m2
N . Here the unitary cut region in time-like domain,

being far from the ω pole, can be negligible in the contribution to the ω spectral function.
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The real part of the self-energy is obtained by the same technique as done for ρ

self-energy.

To include width of the resonances like the previous analysis, we have adopt the same

convolution procedure [100] i.e.

ΠB(q,mB) =
1

NB

∫ mB+2ΓB

mB−2ΓB

dM
1

π
Im

[
1

M −mB + i
2
ΓB(M)

]
ΠB(q,M) (5.9)

withNB =
∫ mB+2ΓB

mB−2ΓB

dM
1

π
Im

[
1

M −mB + i
2
ΓB(M)

]
and ΓB(M) = ΓB→Nπ(M)+ΓB→Nρ(M);

M =
√
q2.

Now to calculate Lµν ’s we have to first calculate the ωNB vertices which can be

obtained from the interaction Lagrangians [105]

L = −[ψB(g1γµ −
g2

2mN
σµν∂

ν
ω)ψNω

µ + h.c.] JPB =
1

2

+

L = i[ψBγ
5(g1γµ −

g2
2mN

σµν∂
ν
ω)ψNω

µ + h.c.] JPB =
1

2

−

L = −i[ψµBγ5(
g1

2mN

γα + i
g2

4m2
N

∂αN + i
g3

4m2
N

∂αω )(∂
ω
αOµν − ∂ωµOαν)ψNω

ν + h.c.] JPB =
3

2

+

L = −[ψ
µ

B(
g1

2mN
γα + i

g2
4m2

N

∂αN + i
g3

4m2
N

∂αω)(∂
ω
αOµν − ∂ωµOαν)ψNω

ν + h.c.] JPB =
3

2

−

(5.10)

where σµν = i
2
[γµγν − γνγµ] and Oµν = gµν − 1

4
γµγν is the off-shell projector contracted

with the vertices containing spin 3/2 fields [99] which contributes only when it is off the

mass shell. The values of all the coupling constants in the ωNB Lagrangian are taken

from Ref. [105, 110] and are given below in Table (5.1).

For spin 1
2

±
resonances the tensor Lµν(k, q) is given by

Lµν(k, q) = −tr[(g1γµ + i
g2

2mN
σµαqα)(k/+ PmN)(g1γ

µ − i
g2

2mN
σµαqα)(k/+ ǫ1q/+mB)]

(5.11)

where sign function ǫ1 has been used to generalize the two possible diagrams for baryon

loops as done in previous chapter.

Considering only the four-dimensionally transverse part of the self-energy we have

Lµν = 4(
g2

2mN
)2[(k2 − a(q· k) + bmNmB)q

2Aµν + 2Bµν ] (5.12)
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B JP g1 g2 g3

N(940) 1
2

+
4.19 -0.79 -

N∗(1440) 1
2

+
1.53 -4.35 -

N∗(1520) 3
2

−
3.35 4.80 -9.99

N∗(1535) 1
2

−
3.79 6.50 -

N∗(1650) 1
2

−
-1.13 -3.27 -

N∗(1720) 3
2

+
-6.82 -5.84 -8.63

Table 5.1: Table showing the coupling constants of ωNB vertex where B stands for
various resonances considered.

where Aµν , Bµν are gauge invariant (transverse) tensors (defined in previous chapter).

For spin 3
2

±
resonances

Lµν(k, q) = −tr[V µα(k/+ PmN)V
νβ(k/+ ǫ1q/+mB)Kβα] (5.13)

where V µα = V µα
0 + cV µα

c for the off shell projection operator Oµν = gµν + cγµγν (i.e.

c = −1
4
) with

V µα
0 =

g1
2mN

(q/gµα − γµqα) +
g2

4m2
N

{(q· k)gµα − kµqα} − g3
4m2

N

(q2gµα − qµqα)

V µα
c =

g1
2mN

γµ(γαq/− q/γα) +
g2

4m2
N

γµ{γα(q· k)− q/kα} − g3
4m2

N

γµ(q2γα − q/qα) .

(5.14)

Considering all three coupling constants Lµν is given by

Lµν = (
g1

2mN
)2Lµν11+(

g2
4m2

N

)2Lµν22+(
g3

4m2
N

)2Lµν33+
g1

2mN

g2
4m2

N

Lµν12+
g1

2mN

g3
4m2

N

Lµν13+
g2

4m2
N

g3
4m2

N

Lµν23

(5.15)

where

Lµνij = (α00
ij + cα

0c
ij + c

2αccij )A
µν +(β00

ij + cβ
0c
ij + c

2βccij )B
µν +(γ00ij + cγ

0c
ij + c

2γccij )C
µν (5.16)
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Figure 5.2: Left: The upper panel shows the contribution of the NN∗(1535) loop where
the result in the narrow width approximation is indicated by the dotted line. The lower
panel shows the contribution of other NB loops. Right: The corresponding results for
the real part.

with six possible sets of ij (ij = 11, 22, 33, 12, 13 and 23). The expression of all the

coefficients are provided in Appendix.

5.3 Results and discussion

We now present the results of numerical evaluation. We start with the spin-averaged

self-energy function. In Fig. (5.2) we plot the imaginary and real parts of ω self-energy

for vanishing three-momentum in the left and right panels respectively. The contribution

of the NN∗(1535) loop is observed to play the most significant role primarily due to the

strong coupling of this resonance with the ωN channel and is shown separately in the

upper panels. The effect of folding by the spectral function of the resonances denoted by

B is also shown where the smoothing of the sharp cut-off in the imaginary part defining

the end of the Landau cut is clearly observed in the upper panel on the left. In the

lower panels showing the contribution of the other loops the effect of the N ∗ (1520) is
seen to be significantly more than the others. In the left and right panels of Fig. (5.3)

we have shown the imaginary and real parts of ω self-energy for ~q = 300 MeV. Here

the transverse component Πt is shown along with q2 times the longitudinal component

(note that Πt = q2Πl for ~q = 0). As before, the N∗(1535) makes the most important

contribution and is shown separately in the top panels.

Plotted in the left panel of Fig. (5.4) is the spin averaged ω self-energy from the ρπ
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Figure 5.3: Imaginary (left) and real (right) parts of ω self energy for the NB loops
with three-momentum q = 300 MeV. Solid and dotted lines stand for transverse and
longitudinal part of the self energy respectively.
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Figure 5.5: Left: The ω spectral function showing individual contributions due to
mesonic and baryonic loops. Right: The region close to the ω pole.

loop. The effect of folding the ρπ self-energy with the ρ width is clearly visible in the

upper panel by the solid line which shows a finite contribution at the ω pole instead

of a vanishing contribution in this region when this folding is not done, as shown by

the dashed line. This is because the ω pole lies in between the Landau and unitary cut

thresholds at ∼630 and ∼910 MeV respectively. On the right panel is shown the total

contribution from the meson and baryon loops for two values of the baryon chemical

potential. A noticeable contribution is seen in the imaginary part below the nominal

ω mass. In the lower panel is shown the real part where the meson and baryon loops

provide a negative and positive contribution respectively at the ω pole which will be

manifested in the spectral function.

We now show the results for the spin averaged spectral function of the ω. In Fig. (5.5)

we show the contributions of the different loops to the spectral function. To bring out

the relative strengths at low invariant masses a logarithmic scale is employed in the left

panel. The dashed line represents ρπ loop in which the Landau cut contribution falls off

in the vicinity ofM = mρ−mπ and then increases as the unitary cut contribution builds

up. The Landau cut contributions from the baryonic loops, shown by the solid and dash-

dotted lines, however dominate in the region below the ω mass. We now concentrate

on a small M range around the ω mass in the right panel of Fig. (5.5). In tune with

the real part of the self-energy shown in the lower right panel of Fig. (5.3), the peak

shifts a little to the left for the meson loop in contrast to the situation when baryonic

contributions are added. The slight increase in mass in this case is also accompanied
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Figure 5.6: The spectral function of ω for different values of µB (left) and T (right)

by a larger imaginary part causing more suppression of the spectral strength at the

peak. Next we plot the spectral function for different µB and T in the left and right

panels of Fig. (5.3) respectively for M close to the ω mass. As before, the small positive

thermal mass shift of the ω increases with µB and T . The corresponding decrease of the

ω-spectral function at the peak representing the enhancement of width with increasing

µB and T is also seen.

In view of the fact that the ρ and ω peaks are close to each other it is worthwhile to

compare their relative spectral strengths below their nominal masses. We have plotted

the ω spectral function at two values of the chemical potential along with that of the

ρ which has been recently calculated in Ref. [88]. The sharp peak of the ω is stands

out against the smooth profile of the ρ. The characteristic 2π and 3π thresholds for the

ρ and ω in the vacuum case are also visible. Though the spectral strength of the ω is

lower than the ρ they do have a sizable contribution in the region below ∼700 MeV.

5.4 Appendix

The values of the coefficients for each set are given by

α00
11 =

8

3m2
B

[(k2m2
B + bmNm

3
B − k2q2)− a(q· k)(2k2 + q2 + 2a(q· k))]q2

β00
11 =

8

3m2
B

[k2 +m2
B + a(q· k)]

α0c
11 = 4

8

3m2
B

[bmNmBS
2
N − a(q· k)(S2

N + 3a(q· k)− 2bmNmB)]q
2
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β0c
11 = 4

8

3m2
B

[k2 −m2
B + 2a(q· k)]

γ0c11 = 4
8

3m2
B

αcc11 = 4
8

3m2
B

[(m2
N + 2bmNmB){S2

N + 2a(q· k)} − a(q· k){S2
N + 4a(q· k)}]q2

βcc11 = 4
8

3m2
B

[2{k2 −m2
B + 2a(q· k)}]

γcc11 = 4
8

3m2
B

[2]

(5.17)

β00
22 =

8

3m2
B

[{k2 − bmNmB + a(q· k)}m2
B]

γ0022 =
8

3m2
B

[−k2 + bmNmB − a(q· k)]

β0c
22 =

8

3m2
B

[−bmNmB{S2
N + 2a(q· k)}]

βcc22 =
8

3m2
B

[a(q· k){S2
N + 2a(q· k)}]

γcc22 =
8

3m2
B

[(k2 − bmNmB){S2
N + 2a(q· k)}]

(5.18)
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α00
33 =

8

3m2
B

[{−k2 + bmNmB − a(q· k)}m2
B]q

4

γ0033 =
8

3m2
B

[−k2 + bmNmB − a(q· k)]

α0c
33 =

8

3m2
B

[bmNmB{S2
N + 2a(q· k)}]q4

γ0c33 =
8

3m2
B

[−2{S2
N + 2a(q· k)}]

αcc33 =
8

3m2
B

[{k2 − 2bmNmB + a(q· k)}{S2
N + 2a(q· k)}]q4

γcc33 =
8

3m2
B

[−2{S2
N + 2a(q· k)}]

(5.19)

α00
12 =

8

3m2
B

[−k2 + 2bmNmB − a(q· k)]mB(q· k)q2

β00
12 =

8

3m2
B

[k2 − 2bmNmB + a(q· k) +m2
B]mB

γ0012 =
8

3m2
B

[−mB ]

α0c
12 = 2

8

3m2
B

[abmN (q· k){S2
N + 2a(q· k)}]q2

β0c
12 = 2

8

3m2
B

[(2mB − bmN ){S2
N + 2a(q· k)}]

αcc12 = 4
8

3m2
B

[abmN (q· k){S2
N + 2a(q· k)}]q2

βcc12 = 4
8

3m2
B

[(2mB − bmN ){S2
N + 2a(q· k)}]

(5.20)

α00
13 =

8

3m2
B

[(k2 + q2 +m2
B − 2bmNmB)(q· k) + aq2(k2 − 2bmNmB)]mBq

2

β00
13 =

8

3m2
B

[−amBq
2]

α0c
13 = 2

8

3m2
B

[{(2mB − bmN )(q· k)− abmNq
2}{S2

N + 2a(q· k)}]q2

αcc13 = 4
8

3m2
B

[{(2mB − bmN )(q· k)− abmNq
2}{S2

N + 2a(q· k)}]q2

(5.21)

α00
23 = 2

8

3m2
B

[k2 − 2bmNmB + a(q· k)]m2
B(q· k)q2

γ0023 = 2
8

3m2
B

[−a{k2 − 2bmNmB + a(q· k)}]
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α0c
23 = 2

8

3m2
B

[−bmNmB(q· k){S2
N + 2a(q· k)}]q2

γ0c23 = 2
8

3m2
B

[−a{S2
N + 2a(q· k)}]

αcc23 = 2
8

3m2
B

[(k2 − 2bmNmB)(q· k){S2
N + 2a(q· k)}]q2

βcc23 = 2
8

3m2
B

[−a{S2
N + 2a(q· k)}]q2 (5.22)

The rest of the coefficients are zero.



Chapter 6

Probing strongly interacting matter
by dileptons

It is well known that dileptons are excellent probes to study the local properties of the

transient form of matter produced in nuclear collisions at ultra-relativistic energies as

they leave the system almost unscathed after production. In the low invariant mass

region, which we study in this chapter, the rate of dilepton production is controlled by

the spectral functions of the vector mesons, specially the ρ and hence the modification

of the ρ spectral function determines the yield of lepton pairs in this region. The

broadening of the vector meson spectral functions leads to an enhancement of lepton

pair production in the invariant mass region below the ρ peak. The effect of the evolving

matter is handled by relativistic hydrodynamics. The time information in the invariant

mass spectra of dileptons is also displayed explicitly in [112] using the invariant mass

dependence of the elliptic flow of lepton pairs.

The rate of production of thermal dileptons is proportional to the two-point correlator

of vector currents [113] which is intimately related with vector meson spectral function.

Consequently, the spectral properties of vector mesons, the ρ meson in particular has

been a subject of intense discussion [37, 114, 16, 38].

In previous chapters (Ch.4 and Ch.5) we have extensively discussed about the in-

medium spectral properties of ρ and ω. In this chapter we first go through a brief

formulation which shows how the neutral vector meson (ρ, ω, ...) spectral function is

proportional to the dilepton production rate from hadronic phase. Then using those

spectral functions we have calculated dilepton yields as a function of invariant mass as

well as transverse mass (or momentum). The static rate of dilepton production is then

88
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evolved in space and time from formation to freeze out in order to get the final dilepton

yield which can be compared to experimental data. As indicated in introduction, a large

no of theoretical attempts [115, 116, 117, 118, 119, 120, 121, 122] have been made to

study the low mass dilepton spectra in heavy ion collisions. Their efforts have suggested

that medium effects play a very important role and a careful and detailed analysis of low

mass vector meson spectral function is necessary. In this chapter we will evaluate the

dilepton spectra from heavy ion collisions at SPS, RHIC and LHC energies and show

how medium effect of the ρ and ω mesons lead to an excellent agreement with NA60

data.

6.1 Formalism of dilepton emission rate

Let us consider an initial state |I〉 which goes to a final state |F 〉 producing a lepton pair

l+l− with momenta p1 and p2 respectively. The dilepton multiplicity thermally averaged

over initial states is given by [123, 124]

N =
∑

I

∑

F

|〈F, l+l−|ei
∫

Lintd
4x|I〉|2e

−βEI

Z

d3p1
(2π)32E1

d3p2
(2π)32E2

(6.1)

where Z = Tr[e−βH] and Lint = eψl(x)γµψl(x)A
µ(x)+eJhµ (x)A

µ(x) in which ψl(x) is the

lepton field operator and Jhµ(x) is the electromagnetic current of hadrons. Following [113,

123, 114] this expression can be put in the form

dN

d4qd4x
= − α2

6π3q2
L
(
M2

)
fBE(q0)g

µνWµν (q0, ~q) (6.2)

where the factor L(M2) = (1 + 2m2
l /M

2) (1 − 4m2
l /M

2)1/2 is of the order of unity for

electrons, M(=
√
q2) being the invariant mass of the pair and the electromagnetic (e.m.)

current correlator Wµν is defined by

Wµν(q0, ~q) =
∫
d4x eiq·x〈[Jemµ (x), Jemν (0)]〉 (6.3)

Here Jemµ (x) is the electromagnetic current and 〈〉 indicates ensemble average. The rate

given by eq. (6.2) is to leading order in electromagnetic interactions but exact to all

orders in the strong coupling encoded in the current correlator Wµν . The q2 in the

denominator indicates the exchange of a single virtual photon and the Bose distribution

implies the thermal weight of the source.
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In the QGP where quarks and gluons are the relevant degrees of freedom, the Wµν can

be directly evaluated by writing the hadron current in terms of quarks of flavor f i.e.

Jhµ =
∑
f efψfγµψf . Confining to the leading order contribution we obtain

gµνWµν = −3q2

2π

∑

f

e2f (1−
4m2

q

q2
) . (6.4)

The rate in this case corresponds to dilepton production due to process qq → γ∗ → l+l−.

To obtain the rate of dilepton production from hadronic interactions it is convenient to

break up the quark current Jhµ into parts with definite isospin

Jhµ =
1

2
(ūγµu− d̄γµd) +

1

6
(ūγµu+ d̄γµd) + · · ·

= JVµ + JSµ + · · ·

= Jρµ + Jωµ /3 + · · · (6.5)

where V and S denote iso-vector and iso-scalar currents and the dots denote currents

comprising of quarks with strangeness and heavier flavors. These currents couple to

individual hadrons as well as multi-particle states with the same quantum numbers

and are usually labeled by the lightest meson in the corresponding channel [125]. We

thus identify the isovector and isoscalar currents with the ρ and ω mesons respectively.

Defining the correlator of these currents W ρ,ω,φ
µν analogously as in (6.3) we write,

Wµν = W ρ
µν +W ω

µν/9 + ... (6.6)

The correlator of vector-isovector currents W ρ
µν have in fact been measured [126] in

vacuum along with the axial-vector correlator by studying τ decays into even and odd

number of pions. The former is found to be dominated at lower energies by the prominent

peak of the ρ meson followed by a continuum at high energies. The axial correlator, on

the other hand, is characterized by the broad hump of the a1. The distinctly different

shape in the two spectral densities is an experimental signature of the fact that chiral

symmetry of QCD is dynamically broken by the ground state [127]. It is expected that

this symmetry may be restored at high temperature and/or density and will be signaled

by a complete overlap of the vector and axial-vector correlators [128].

In the medium, both the pole and the continuum structure of the correlation function

gets modified [114, 92]. We will first evaluate the modification of the pole part due
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to the self-energy of vector mesons in the following. Using Vector Meson Dominance

the isovector and scalar currents are written in terms of dynamical field operators for

the mesons allowing us to express the correlation function in terms of the exact(full)

propagators or the interacting spectral functions of the vector mesons in the medium.

To reach that goal we have to specify the coupling of the currents to the corresponding

vector fields. For this purpose we write, in the narrow width approximation [125],

〈0|Jemµ (0)|R〉 = FRmRǫµ (6.7)

where R denotes the resonance in a particular channel and ǫµ is the corresponding

polarization vector. The coupling constants FR are obtained from the partial decay

widths into e+e− through the relation

F 2
R =

3mRΓR→e+e−

4πα2
(6.8)

yielding FR=0.156 GeV, 0.046 GeV and 0.079 GeV for ρ, ω and φ respectively. Eq. (6.7)

suggests the operator relations

Jρµ(x) = FρmρV
ρ
µ (x), Jωµ (x) = 3FωmωV

ω
µ (x) etc. (6.9)

where V ρ(ω)
µ (x) denotes the field operator for the ρ(ω) meson. So using the above rela-

tions connecting currents to fields (so-called field-current identity), the current commu-

tator become

Wµν =
∑

R=ρ,ω,..

F 2
Rm

2
R

∫
d4x eiq·x〈[V R

µ (x), V R
ν ]〉

=
∑

R=ρ,ω,..

F 2
Rm

2
RA

R
µν(q0, ~q)

= 2ǫ(q0)
∑

R=ρ,ω,..

F 2
Rm

2
RImD

R
µν(q0, ~q) (6.10)

where ARµν are the spectral functions of corresponding vector meson resonances (R) and

D
R
µν is the diagonal element of the thermal propagator matrix. The connection between

these two quantities have already been discussed in Chapter 2 (see Eq. 2.97). The form

of the diagonal element of the exact thermal propagator matrix for the spin 1 particle

has been obtained in section 1.3 by using the Dyson equation. From Eq. (2.120) we get

the G
R
µν which is the transverse (four dimensional) part of D

R
µν . So

D
R
µν(q) = G

R
µν −

qµqν
q2m2

R
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= − Pµν
q2 −m2

R −Πt(q)
− Qµν/q

2

q2 −m2
R − q2Πl(q)

− qµqν
q2m2

R

(6.11)

The imaginary part is then put in eqs. (6.10) and then in eq. (6.2) to arrive at the

dilepton emission rate [129, 130]

dN

d4qd4x
=

α2

π3q2
L(q2)fBE(q0)

[
F 2
ρm

2
ρAρ(q0, ~q) + F 2

ωm
2
ωAω(q0, ~q) + · · ·

]
(6.12)

where e.g. Aρ(= −gµνImDρ
µν/3) is given by

Aρ = −1

3

[
2
∑

ImΠR
t

(q2 −m2
ρ −

∑
ReΠR

t )2 + (
∑

ImΠR
t )2

+
q2
∑

ImΠR
l

(q2 −m2
ρ − q2

∑
ReΠR

l )
2 + q4(

∑
ImΠR

l )
2

]

(6.13)

the sum running over all mesonic and baryonic loops.

As indicated earlier, coupling of the hadronic current to multi-particle states gives rise to

a continuum structure in the current correlation function W µν . Following Shuryak [125]

we take a parameterized form for this contribution and augment the dilepton emission

rate with
dN

d4qd4x
=
α2

π3
L(q2)fBE(q0)

∑

V=ρ,ω

Acont
V . (6.14)

where

Acont
ρ =

1

8π

(
1 +

αs
π

)
1

1 + exp(ω0 − q0)/δ
(6.15)

with ω0 = 1.3, 1.1 GeV for ρ, ω and δ = 0.2 for both ρ and ω. The continuum contribution

for the ω contains an additional factor of 1
9
.

Thus, the dilepton emission rate in the present scenario actually boils down to the

evaluation of the self energy graphs of ρ and ω, which we have explicitly evaluated in

previous chapters as a function of q0, ~q, temperature (T ) and net baryon density (ρB).

Using those functions in the Eq. (6.13) we can get a numerical estimation of dilepton

static rates.

6.2 Rate of dilepton production

First we have plotted in Fig. (6.1), upper panel the relative contributions from the cuts

in the π−h loops keeping only one of them at a time. The unitary and Landau cuts for

the π, ω, h1 and a1 are seen to contribute with different magnitudes for different values of

the energy and three momenta of the off-shell ρ. In the time-like region, in the vicinity of
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the (bare) rho mass the imaginary part of the self energy from a particular loop receives

dominant contribution from only one of the cuts. The π− π loop for example, has only

the unitary cut and this contributes most significantly to dilepton emission near the ρ

pole. In contrast, the Landau cut contribution from the π − ω loop is dominant up to

about 400 MeV. Since this cut ends at M = mω − mπ and the unitary cut starts at

M = mω +mπ there is no contribution at the ρ pole. The Landau cut for the π − a1

self-energy extends up to about 1100 MeV and makes a substantial contribution both

at and below the ρ pole. The unitary cut starts at a much higher value of M and

hence does not make a significant contribution to the ρ spectral function. We also show

the effect of convolution over the width of the a1 as discussed above. As expected, the

contributions from the Landau and unitary cuts are now joined by a continuous line, the

boundaries being smeared out due to the substantial width of the a1. While analyzing

the different contributions one must keep in mind that the total contribution from the

different loops to the spectral function is not a linear sum of the individual contributions

as is clear from the definition given in Eq. (6.13). This is seen in the lower panel where

the cumulative contribution to the lepton pair yield is shown for the π − π and π − h

loops. Also shown is the enhancement in yield obtained by including baryons at µB =

30 MeV for RHIC energies.

By adding our ω spectral function (from Chapter 5) with the ρ one, a complete in-

medium effect in low mass dilepton rate is shown in the right panel of Fig. (6.1). Here

the sharp peak of the ω resonance in vacuum has almost been dissolve in the ρ-profile at

finite temperature. A significant enhancement is seen in the low mass lepton production

rate due to baryonic loops over and above the mesonic ones shown by the dot-dashed line.

The substantial contribution from baryonic loops even for vanishing chemical potential

points to the important role played by antibaryons in thermal equilibrium in systems

created at RHIC and LHC energies. In that panel we have also shown the thermal

dileptons contribution from the source of QGP.
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Figure 6.1: Left : Upper panel shows contributions from the discontinuities of the self-
energy graphs to the dilepton emission rate at T = 175 MeV and µB = 30 MeV. L and
U denote the Landau and unitary cut contribution. Lower panel shows contributions
from the mesons and baryons. Right : The dilepton emission rate from different sources-
QGP (dash double dotted line), mesonic interaction (dash dotted line) as well as total
(meson + baryon) hadronic interaction (dashed line) at T = 175 MeV and µB = 0 MeV.
Total hadronic interaction at different chemical potential, µB = 250 MeV (solid line)
and its vacuum contribution (dotted line) are also shown

6.3 Space time evolution

Total yields is obtained by integrating the rate of dilepton emission from a fluid element

at xµ ≡ (t, ~x) at local temperature T (xµ) and baryon density (µB(x)) over d
4x i.e.

dN

d4q
=
∫
d4x

dR

d4q
[E∗, T (xµ), µB(x

µ)] (6.16)

where

qµuµ =MTγT cosh(η − y)− qTγTvrcosφ

and d4q = dM2πqTdqTdy (6.17)

The space time dependence of the fluid velocity uµ(x) and temperature T (x) can be

obtained by by solving the the energy momentum conservation equation

∂µ T
µν = 0, T µν = (ǫ+ P )uµuν + gµνP (6.18)

where ǫ is the energy density and P is the pressure in the frame co-moving with the

fluid. With the assumption that the system undergoes a boost-invariant longitudinal

expansion along the z-axis [131] and cylindrically symmetric transverse expansion, the

hydrodynamics equations (6.18) reduce to

∂τT
00 +

1

r
∂r(rT

01) +
1

τ
(T 00 + P ) = 0
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∂τT
01 +

1

r
∂r[r(T

00 + P )v2r ] +
1

τ
T 01 + ∂rP = 0 (6.19)

In the set of hydrodynamic equations (6.19), the number of unknown variables exceeds

the number of equations by one. This set of equations are closed with the Equation of

State (EoS); typically a relation between the pressure P and the energy density ǫ. It is

a crucial input which essentially controls the profile of expansion of the fireball. In order

to check sensitivity with the equation of state (EoS), we have considered two scenarios:

(a) hadronic resonance gas (HRG) with all hadrons up to mass 2.5 GeV for the hadronic

phase along with a bag model EoS for the QGP phase and (b) EoS obtained from lattice

QCD calculations (LQCD) [132].

One of the most important parameters that go into the space-time evolution are

the values of the initial temperature and the thermalisation time. In case of isentropic

expansion the experimentally measured hadron multiplicity can be related to the initial

temperature and thermalisation time by the following equation [133] :

T 3
i (bm)τi =

2π4

45ζ(3)πR2
A4ak

〈dN
dy

(bm)〉 (6.20)

where 〈dN/dy(bm)〉 is the hadron (predominantly pions) multiplicity for a given cen-

trality class with maximum impact parameter bm, RA is the transverse dimension of

the system and ak is the degeneracy of the system created. The initial radial velocity,

vr(τi, r) and energy density, ǫ(τi, r) profiles are taken as [134], vr(τi, r) = 0 and ǫ(τi, r) =

ǫ0/(e
r−RA

δ + 1) where the surface thickness, δ = 0.5 fm. The hadron multiplicity resulting

from nucleus-nucles (A-A) collisions is related to that from proton-proton (pp) collisions

at a given impact parameter and collision energy by

〈dN
dy

(bm)〉 = [(1− x)〈Npart(bm)〉/2 + x〈Ncoll(bm)〉]
dNpp

dy
(6.21)

where x is the fraction of hard collisions, 〈Npart〉 and 〈Ncoll〉 are the average numbers of

participants and collisions respectively evaluated by using Glauber model. dN ch
pp/dy =

2.5 − 0.25ln(s) + 0.023ln2s, is the multiplicity of the produced hadrons in pp collisions

at center of mass energy,
√
s [135].

For the space-time picture, we thus work in the following scenario. An equilibrated

QGP is formed at initial temperature (time) Ti(τi), the system then cools due to expan-

sion and when the temperature reaches Tc it undergoes a phase transition from QGP
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to hadrons. After the completion of the phase transition the hadronic matter cools

and eventually freezes out first chemically at a temperature Tch and then kinetically at

a temperature TF . The transition temperature is taken as Tc ∼ 175 MeV. The other

inputs which goes into the calculations are chemical (Tch) and kinetic freeze-out (TF )

temperatures. The kinetic freeze-out in the system occurs when both the elastic and

in-elastic collisions stop ı.e. the freeze-out takes place when the collectivity in the system

ceases to exist. The value of TF can be constrained from the hadronic pT spectra [136].

In the present work we take TF = 120 MeV which reproduces the pT spectra of pions,

kaons reasonably well [137]. The ratios of various hadrons measured experimentally at

different
√
sNN indicate that the system formed in heavy ion collisions chemically decou-

ple at Tch which is higher than TF [138]. Therefore, the system remains out of chemical

equilibrium from Tch to TF . The deviation of the system from the chemical equilibrium

is taken in to account by introducing chemical potential for each hadronic species [139].

The chemical non-equilibration affects the yields through the phase space factors of the

hadrons which in turn affects the productions of the EM probes. The chemical potential,

µj for the hadronic species j as a function of T have been taken from Ref. [140]:

nj(T, µj)

s(T, {µj})
=

nj(Tch, µj = 0)

s(Tch, {µj} = 0)
(6.22)

where nj is the density of hadron j contains direct as well as contributions from resonance

decays. The µj is a function of T and it vanishes at T = Tch (= 170 MeV here).

Therefore, the space time evolution of µj is dictated by the evolution of T . The chemical

potentials of pions, ω, h1, a1, φ and proton enters through their thermal distributions as

a fugacity factor. The values of the respective chemical potential at the kinetic freeze-

out temperature, TF = 120 MeV are µπ = 68 MeV, µω = 179 MeV, µh1 = 204 MeV

µa1 = 204 MeV, µφ = 252 MeV µproton = 258 MeV. Now we will discuss about numerical

results of dileptons for different center of mass energy (
√
s). In space time evolution,

only initial conditions will be different which are tabulated in (6.3) for SPS, RHIC and

LHC energies.
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Figure 6.2: Dilepton invariant mass spectra for different pT -bins compared with the
NA60 data.
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√
s A-A τi Ti

SPS 17.3 GeV Pb-Pb 0.6 fm/c 280 MeV

RHIC 200 GeV Au-Au 0.2 fm/c 320 MeV

LHC 5.5 TeV Pb-Pb 0.1 fm/c 756 MeV

Table 6.1: Initial time (τi) and temperature (Ti) for different center of mass energy (
√
s)

of nucleus-nucleus (A-A) collision.

6.4 Results

6.4.1 At SPS Energy

We have obtained the dimuon yield (dN/dM) in In-In collisions at SPS at a center of

mass energy of 17.3 AGeV. The initial energy density is taken as 4.5 GeV/fm3 cor-

responding to a thermalisation time τi = 0.7 fm. In Fig. (6.2) we have shown the

invariant mass spectra for different transverse momentum (pT ) windows. The theoret-

ical curves agree quite well with the experimental data [36] for all the pT ranges. The

strong enhancement in the low M domain is clearly due to the large broadening of the

ρ in the thermal medium which comes entirely from the Landau cut in the self-energy

diagrams. In the last panel we also plot for comparison the spectra calculated in [141]

where the self-energy due to baryons has been evaluated following the approach of [80].

It is seen that this approach depicted by the dashed curve does not produce the required

enhancement to explain the data in the range 0.35 ≤M ≤ 0.65 GeV.

6.4.2 At RHIC Energy

Assuming 10% hard (i.e. x = 0.10) and 90% soft collisions for initial entropy production

the value of dN ch
pp/dy turns out to be about 2.43 at

√
s = 200 GeV. For RHIC energy,
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Figure 6.3: Left : invariant mass distribution of dileptons from hadronic matter (HM)
for modified and unmodified ρ meson. Right : Freeze out, QGP and total contribution
for EoS (a) HRG (dash-double dotted, dotted and dash-dotted lines) and EoS (b) LQCD
(long dashed, dashed and solid lines) at RHIC energy.

we take Ti = 320 MeV with initial time τi = 0.2 fm/c which acts as inputs to the

hydrodynamic evolution.

For studying thermal dileptons at the RHIC energy (as well as the LHC energy) we

have included the vacuum spectral function of φ meson because its mass appears at a

boundary between quark and hadronic sources of dileptons.

We begin by plotting the space-time integrated invariant mass spectra of dileptons.

In the left panel of Fig. (6.3) we plot the yield of lepton pairs from the hadronic matter

(HM), evaluated with and without the modified ρ spectral function for RHIC energy.

The enhancement in the region 0.1 ≤ M ≤ 0.7 GeV is purely a medium effect and is

a contribution from the Landau cut of the meson and baryon loops. In contrast, the

vacuum spectral function naturally starts from the 2mπ threshold coming from the unity

in the unitary cut contribution. The (small) kink at 0.42 GeV in this curve is due to

the 3mπ threshold for ω production. The enhancement in the yield due to medium

effects is ∼ 20 for M around 400 MeV. In the right panel of Fig. (6.3), we have shown

the dependence of the yield from the two phases on the EoS. Dilepton radiation from

hadronic phase outshines the emission from quark matter for M up to φ mass. Since

the internal loops of ρ self energy contains a1π and ωπ interactions we ignore the four

pion annihilation process [142] to avoid double counting. The contributions from quark

matter phase dominates over its hadronic counter part for both the EoS forM beyond φ-

peak. This fact may be used to extract various properties i.e. average flow, temperature
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Figure 6.4: Left : the dilepton yield plotted against MT −Mav for different M windows
for RHIC initial conditions. Right : corresponding Teff for different values of the M-
bins. The dashed line is obtained by setting vr = 0.

etc. of quark matter and hadronic matter by selecting M windows judiciously. The

dilepton yield from hadronic matter is observed to be larger when the HRG EoS is

employed in comparison to LQCD. This can be understood in terms of the velocity of

sound vs(= dP/dǫ evaluated at constant entropy) which controls the rate of expansion.

For EoS of the type (a) vs ∼ 1/3 in the QGP phase which is larger than the value of the

corresponding quantity for EoS of the type (b). Therefore, the rate of expansion in the

scenario (b) is comparatively slower, allowing the QGP to emit lepton pairs for a longer

time resulting in greater yield for LQCD EoS. In contrast, for the EoS (a), the lower

value of vs for the hadronic phase results in a slower cooling and hence a larger yield.

Also shown for comparison is the yield from the decays of ρ mesons at the freeze-out for

the two types of EoS used. The yield from this source is much smaller and we will not

consider it any further.

Since the invariant mass spectra is invariant under flow we now turn to the MT (=
√
p2T +M2

av) spectra to study this aspect. The left panel of fig. 6.4 shows theMT spectra

of lepton pairs at RHIC energies. Here the differential yield is integrated over small bins

of the pair invariant mass (from M1 to M2) and plotted against MT − Mav which is

actually a measure of the kinetic energy (KE) of the pair, Mav being the average mass

(= [M1+M2]/2) of the bin. The average value ofMT for a static system at a temperature

T is given by 〈MT 〉 ∼ M + T . Therefore, the average KE ∼ T , is the slope of the MT

distribution. Initially, the entire energy of the system formed in HIC is thermal in

nature and with progress of time some part of the thermal energy gets converted to the
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collective (flow) energy. In other words, during the expansion stage the total energy

of the system is shared by the thermal as well as the collective degrees of freedom.

As a consequence, unlike the invariant mass spectra the MT (or pT ) spectra is heavily

influenced by the collective flow and the average KE or the inverse slope may be written

as Teff = T + 1/2Mavv
2
r , where vr is the average radial flow velocity. The MT spectra of

dileptons for various M-bins have an exponential nature, the inverse slope providing an

effective temperature Teff . It is important to mention at this point that for a radially

expanding system the Teff has an explicit (linear) M dependence as mentioned above.

However, it has also an implicit M dependence even when vr = 0 (i.e. with longitudinal

expansion only) because it is expected that the high (low) M pairs predominantly emit

from the high (low) temperature or early (late) time zone. For a radially expanding

system the M dependence of inverse slope is stronger than for a system which expands

longitudinally only.

In the right panel of Fig. (6.4) we have plotted the effective temperature versus

Mav for various mass windows of the lepton pairs at RHIC energies, evaluated with

the in-medium spectral function of the vector mesons. Also shown by a filled square

is the value of Teff for the vacuum case in the window 0.4 ≤ M ≤ 0.6 where there is

substantial difference between the yields in free and medium cases as seen in the left

panel of Fig (6.3). The slope of these curves measure the average temperature and the

flow of the matter.

Let us try to understand the non-monotonic variation of the inverse slope with Mav

depicted in the right panel of Fig. (6.4). In the right panel of Fig. (6.3), it is shown that

the high M (above φ peak) pairs originate predominantly from the partonic source and

the low M (below ρ mass) domain, although outshine by the radiation from hadronic

source, contains non-negligible contributions from quark matter i.e. the low M region

contains contributions both from the hadronic as well as QGP phases. Now, the collec-

tivity (or flow) in the system does not develop fully in the QGP because of the small life

time of this phase which means that the radial velocity extracted from the high M re-

gion is small. Here the temperature decreases mainly due to longitudinal expansion and

consequently, the effective slope decreases slowly with decreasing Mav. In contrast, the

lepton pairs with mass around ρ-peak almost totally originate from the hadronic source
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(which appears in the late stage of the evolving system) and are significantly affected

by the flow resulting in higher values of vr and hence a higher Teff . At still lower values

of M , vr cannot be as large despite the substantial medium induced enhancement of

the hadronic sources since this domain also contains contribution from the QGP. For a

hadronic source with vacuum properties the yield in this region inM will be entirely due

to emission from quark matter and the value of vr will be much lower. Thus the values

of vr for M below and above the ρ-peak are smaller compared to the values around the

ρ peak even in the presence of medium effects, resulting in the non-monotonic behavior

as displayed in the right panel of Fig. (6.4) for 0.5 < M(GeV) < 1.3.

The slope of the MT spectra is connected with the average collective flow. It is well

known that the average magnitude of radial flow at the freeze-out surface can be ex-

tracted from the pT spectra of the hadrons. However, hadrons being strongly interacting

objects can bring the information of the state of the system when it is too dilute to sup-

port collectivity i.e. the parameters of collectivity extracted from the hadronic spectra

are limited to the evolution stage where the collectivity ceases to exist. These collective

parameters have hardly any information about the interior of the matter. On the other

hand the dileptons are produced and emitted from all space time points. Therefore, the

value of vr estimated from the dilepton spectra will be lower than the value extracted

from the hadronic spectra [36]. Indeed, the values of vr estimated from the slopes of the

curve is 0.25 for the M domains 0.5 < M (GeV)< 0.77. This value is much smaller than

the value of vr extracted from the hadronic spectra [143]. The dashed line in the right

panel of Fig. (6.4) is obtained by setting vr = 0. The results indicate that the observed

(solid line) rise (for 0.5 < M (GeV)< 0.77) and fall (for 0.77 < M (GeV)< 1.3) are

due to radial expansion of the system. However, the rise in large M domain is due to

cooling of the system due to longitudinal expansion - which is described as the implicit

M dependence of Teff above.

6.4.3 At LHC Energy

At LHC the measured values of dN ch
pp/dy for

√
sNN = 900 GeV, 2.36 TeV and 7 TeV

are 3.02, 3.77 and 6.01 respectively [144]. The value dN ch
pp/dy at

√
sNN = 5.25 TeV

is obtained by interpolating the above experimental data mentioned above. Assuming
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Figure 6.5: Left : QGP and total contribution for EoS (a) HRG (dotted and dash-
dotted lines) and EoS (b) LQCD (dashed and solid lines) at LHC energy. Right : Teff
for different values of the M-bins for LHC conditions which are extracted from the
corresponding MT spectra. The dashed line is obtained by setting vr = 0.

x = 0.2 in Eq. (6.21) we obtain dN/dy = 2607 in Pb+Pb collision for 0-10% centrality.

For τi = 0.1 fm/c we get Ti = 756 MeV.

The invariant mass spectra of lepton pairs is displayed for LHC initial conditions in

Fig. (6.5). Although, the results are qualitatively similar to RHIC, quantitatively the

yield at LHC is larger by an order of magnitude, primarily because of the large initial

temperature. This enhancement is also seen in the transverse mass distributions of the

lepton pairs at LHC.

Following the same procedure as done for RHIC energy, we have extracted the values

of Teff for different mass-bins from the corresponding MT spectra. The values of Teff for

various M-bins are larger than RHIC because of the combined effects of large initial

temperature and flow. In fact the value of vr for 0.5 < M(GeV)< 0.77 is ∼ 0.52. The

radial flow in the system is responsible for the rise and fall of Teff with Mav (solid line)

in the mass region (0.5 < M(GeV)< 1.3) because for vr = 0 (dashed line) a completely

different behavior is obtained. This type of non-monotonic variation of Teff (or vr) can

not be obtained with a single dilepton source [145]. Therefore, such non-monotonic

variation of the inverse slope deduced from the transverse mass distribution of lepton

pairs with average invariant mass is an indication of the presence of two different phases

during the evolution of the system. Thus, such variation may be treated as a signal of

QGP formation in heavy ion collisions.



Chapter 7

The spectral function of nucleons

Heavy ion collisions provide an opportunity to investigate particle propagation through

strongly interacting media. However, only the vector mesons, particularly the ρ, can

at present be studied directly by detecting dileptons, into which they decay in the hot,

dense media. The media created by these collisions consist, in general, not only of

mesons, but also of nucleons. Thus the effects of both mesons and nucleons on the

vector meson spectral functions have been extensively studied in the literature [37]. For

a more complete picture, the self-energy of nucleon itself need be investigated [146, 147,

148, 149, 150, 151, 152]. The nucleon self-energy function also determines the equation

of state of nuclear matter [153]. Here we have gone through a thermal field theoretical

studies in real time formalism to see the in-medium properties of nucleon in hot and

dense matter. We have evaluated one loop nucleon self-energy at finite temperature and

baryon chemical potential (µ) where πN and π∆ are taken as intermediate states.

7.1 Formalism

7.1.1 Expression of spectral function

We are starting our discussion from the Dyson’s equation to get the interaction picture.

The Dyson’s equation, followed by the diagonal part of Nucleon propagator at finite

temperature, is given by

S = S0 − S0 Σ S (7.1)

where Σ, S0 are respectively the diagonal elements of the self-energy matrix and and

the free propagator at finite temperature.

104
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Figure 7.1: One-loop graphs for nucleon self-energy

The free propagator S0 turns out to be the same as in vacuum,

S0(p) =
−(p/+mN )

p2 −m2
N + iη

. (7.2)

The calculation simplifies if we take ~q = 0 . Also restricting to the anti-nucleon pole in

Eq. (7.1), it becomes

S0(p0) =
(1 + γ0)

2

−1

p0 −mN + iη
. (7.3)

Decomposing Σ and S in Dirac space,

Σ = Σs + γ0Σv , S = Ss + γ0Sv , (7.4)

it follows from Dyson equation that Ss = Sv. Then letting Σ = Σs + Σv, we get the

complete propagator as

S(p0) =
(1 + γ0)

2

−1

p0 −mN − Σ
(7.5)

giving the spectral function

AN(p0) =
−ImΣ

(p0 −mN − ReΣ)2 + (ImΣ)2
(7.6)

7.1.2 Vertices of nucleon self-energy

The vertices appearing in Fig. (7.1) may be obtained from chiral perturbation theory

[91, 154, 155]. The effective interaction Lagrangians are given by,

LπNN = − gA
2mN

ψNaγµγ5(~τ · ∂µ~π)abψbN

= − gA
2mN

[{pγµγ5p∂µπ0 − nγµγ5n∂
µπ0}+

√
2{pγµγ5n∂µπ+ + nγµγ5p∂

µπ−}]

(7.7)
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LπN∆ =
g∆√
2
ψNa(~τ · ∂µ~π)cb∆abd

µ ǫcd + h.c.

= g∆[
2√
6
{p ∂µπ0∆+

µ + n ∂µπ0∆0
µ}+

1√
3
{p ∂µπ+∆0

µ − n ∂µπ−∆+
µ }

− {p ∂µπ−∆++
µ − n ∂µπ+∆−

µ }+ h.c.] (7.8)

where the indices a, b, c, d take values 1 and 2 and ǫ12 = −ǫ21 = 1, etc.

A second term is required in LπN∆ to ensure a pure coupling to spin 3
2
field [99]. In

the imaginary part of the self-energy, where ∆ is on mass shell, it does not contribute.

But in the real part, it does, which, however, we ignore in our calculation. The coupling

constants gA and g∆ are to be determined phenomenologically. As is well-known [151,

156], such a model requires form factors at the vertices, which we take in the Lorentz

invariant form as

F (q, k) =
Λ2

Λ2 + (q · k/mN)2 − k2
(7.9)

where q and k are the four-momenta of nucleon and pion at the vertices and Λ is

essentially a cut-off on these momenta. We first check this model with experimental

data on πN scattering. The interaction (7.8) allows us to calculate the decay width of

∆ → N + π as a function of its energy as

Γ(E) =
1

24π

(
g∆
Fπ

)2

F 2(E)|~q|3 (E +mN)
2 −m2

π

E2
. (7.10)

Here ~q is the three-momentum in the centre-of-mass of πN system,

~q2 =
{E2 − (mN +mπ)

2}{E2 − (mN −mπ)
2}

4E2
. (7.11)

In this kinematic configuration, the form factor becomes

F (|~q|) = Λ2

Λ2 + (|~q|E/mN)2
. (7.12)

The pion-nucleon partial wave f in the P33 channel may now be written in the form

f(E) ∼ 1

E2 −m2
∆ + im∆Γ(E)

. (7.13)

We take the resonance parameters at the pole position, m∆ = 1210 MeV and Γ(m∆) =

100 MeV [157]. Taking g∆ = 2.2 and Λ = 400 MeV [156], we can satisfy Eq. (7.10) and

also achieve reasonable agreement of the phase shift δ33 computed from Eq. (7.13) with

experiment [158] (left panel of Fig. 7.3). Also we take gA = 1.26 [66] and the same form

factor at the πNN vertex.
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7.1.3 Expression of self-energy

We now evaluate the self-energy matrices from graphs of Fig (7.1). We don’t start from

11-component since a general form of fermion self-energy at finite temperature has been

already evaluated in Chapter 3 (see the Section 3.2.2). Now simply adding the imaginary

and real parts we get the diagonal element of fermion self-energy at finite temperature

and is given by 1

Σ(q) =
∫

d3k

(2π)3
1

4ωkωp
[
(1 + nk+)L1 − np+L3

q0 − ωk − ωp + iηǫ(q0)
+

−nk+L1 − np−L4

q0 − ωk + ωp + iηǫ(q0)

+
nk−L2 + np+L3

q0 + ωk − ωp + iηǫ(q0)
+

−nk−L2 + (−1 + np−)L4

q0 + ωk + ωp + iηǫ(q0)
]. (7.14)

In terms of the quantities defined for nucleon self-energy with πB loops, We have to

make following replacement

ωk (mk) → ωπ (mπ) ωp (mp) → ωB (mB)

nk± → n(ωπ) =
1

eβωπ − 1
np± → n±(ωB) =

1

e(βωB∓µ) + 1
. (7.15)

In the following we restrict our evaluation to ~q = 0. In the absence of angular depen-

dence, we get an analytic expression for the imaginary part which gives a physical (or

real) value only in the branch cut regions of q0-axis. With ~q = 0, the value of |~k|, fixed
by the δ-functions contained in the imaginary part (given in Eq. 3.34), is the magnitude

of three-momentum in the center-of-mass of the pion-baryon system,

|~k|2 = {p20 − (mB +mπ)
2}{p20 − (mB −mπ)

2}
4p20

. (7.16)

In this frame, the form factor (7.12) simplifies to

F (|~k|) = Λ2

Λ2 + ~k2
. (7.17)

So in this static assumption, the regions q0 ≥ (mB +mπ) and q0 ≤ −(mB +mπ) define

the unitary cuts of nucleon self-energy and the region, −(mB +mπ) ≤ q0 ≤ (mB +mπ)

defines the Landau cuts. Let us define the variables,

ωπ =
q20 +m2

π −m2
B

2q0
, ωB =

q20 −m2
π +m2

B

2q0
(7.18)

1We have renamed the fermion self-energy as Σ
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which actually coincide respectively with ωπ and ωB on all the cuts. Then the imaginary

parts of Σ for p0 ≥ 0 are given by

ImΣ(p0) = − |~k|
8πq0




L(k0 = ωπ){1 + n(ωπ)− n+(ωB)} , on unitary cut

L(k0 = ωπ){n(|ωπ|) + n+(ωB)} , on Landau cut.
(7.19)

The real part of nucleon self-energy also simplifies for ~q = 0 to

ReΣ(p0) = − 1

16π2p0
P
∫ ∞

m2
π

dω2
π

√
ω2
π −m2

πh(ωπ)

ωπωB(ω2
π − ω2

π)
(7.20)

where

h(ωπ) = ωB{(ωπ+ωπ)L1−(ωπ−ωπ)L2}n(ωπ)−ωπ{(ωB+ωB)L3n+(ωπ)−(ωB−ωB)L4n−(ωπ)}.
(7.21)

Having carried out the evaluation in terms of the (Dirac) matrix-function L(p, k), it

remains to write its explicit expressions for the two loops,

L(q, k) =
3

4

(
gA
Fπ

)2

F 2(q, k){2k · qk/− k2(q/+ k/+mN )} , (πN loop) (7.22)

L(q, k) =
4

3

(
g∆
Fπ

)2

F 2(q, k)

{
−k2 + (q · k − k2)2

m2
∆

}
(q/− k/+m∆), (π∆ loop).

(7.23)

The fermionic structure of the nucleon self-energy is explicitly reflected in the expression

of L(q, k) though we have not explicitly displayed the Dirac indices for notational sim-

plicity. Adding the self-energy coefficients of unity (I) and zeroth component of gamma

matrices (γ0) we get the total self-energy, previously defined as Σ.

A question arises in such calculations, whether a non-relativistic approximation could

reproduce the relativistic results in a quantitative way [97]. To define this approxima-

tion, we rewrite E11(q0, ~q), the spin-independent factor in the 11-component of baryon

propagator as

E11(q0, ~q) =
−1

2ωB

{
1− n+(ωB)

q0 − ωB + iǫ
+

n+(ωB)

q0 − ωB − iǫ
−
(
1− n−(ωB)

q0 + ωB − iǫ
− n−(ωB)

q0 + ωB + iǫ

)}
.

(7.24)

The non-relativistic approximation to this propagator consists in retaining only the first

two terms above [159, 160]. Further we set ωB = mB everywhere for baryon 2. Note

that we approximate neither the propagator D11(k) for pion nor its energy-momentum

relation.

2One also approximates ωB = mB + (~p−~k)2/2mB, but it may lead to problems at higher momenta
[159].
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Figure 7.2: Imaginary (left panel) and real (right panel) parts of self-energy from πN
and π∆ loops. Solid curves represent the results of our calculation (relativistic, including
unitary cuts). Dotted curves result from non-relativistic approximation.

7.2 Results

Fig. (7.2) compares the typical behavior of relativistic results with the non-relativistic

ones for the imaginary and real parts of self-energy, separately for the two loops – we

see that only the real part for π∆ loop differ significantly between the two. Using the

imaginary part of self-energy for relativistic and non-relativistic both cases we have

constructed phase shift ∆33 for P33 partial wave in πN scattering where two parameters,

g∆ and Λ provide us a freedom to fit our calculated values with experimentally observed

values [158]. Interestingly we have got a common values of two parameters for both

cases as shown in left panel of Fig. (7.3). In the right panel of Fig. (7.3) we compare a

typical spectral function of our calculation with its non-relativistic limit.

Having made these comparisons, we come back to our model in Fig. (7.4) to draw the

nucleon spectral function at different values of T and µ, which are realized in heavy-ion

collisions [161, 162]. As expected, the height of the peak decreases with rise of tempera-

ture, while it remains about the same within the interval of chemical potential considered

here [77]. We also compare our results with two earlier calculations. Leutwyler and

Smilga [146] use virial expansion to leading order to obtain the self-energy for on-shell

nucleon in pionic medium. In Fig. (7.5) we compare their results for the imaginary and

real parts with those from our model, setting anti-particle distribution functions to zero.

The good agreement shows that our model is realistic, if we recall that they evaluate

the virial formula with experimental data on πN scattering. To conclude, we calculate
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the self-energy of the nucleon and its spectral function in the real time version of the

thermal field theory in the relativistic framework. The imaginary part of the self-energy

is built out of contributions from both Landau and unitary cuts from one loop graphs

with πN and π∆ intermediate states. In contrast to results in the literature, we find the

unitary cut from the π∆ loop to contribute significantly in the upper region of (virtual)

mass of nucleon considered. The nucleon spectral function turns out to be sensitive to

non-relativistic approximation, establishing the necessity of relativistic treatment for its

quantitative determination.



Chapter 8

Heavy-light mesons in hadronic
matter

The future CBM experiment of the FAIR project at GSI will provide an opportunity

to investigate strongly interacting matter at high baryon density. In particular, the

research program will be focused on obtaining the in-medium modifications of hadrons

in the charm sector by the annihilation of antiprotons on nuclei as well as heavy ion

collisions. The charm hadrons in dense matter will also be investigated in the scattering

of electrons off nuclei at Jlab. In-medium modification of open charm mesons (D, D,

D∗, D
∗
) are expected to exhibit several interesting features in dense matter like open

charm enhancement [163] as well as the possibility of D-mesic nuclei formation. Besides

the open charm meson, hidden charm mesons (ηc,J/ψ and higher excited states) also

provide the opportunity to investigate the gluon condensate at very high temperature

and density [164, 165]. Several theoretical efforts [166, 167, 168, 169, 170] have predicted

a larger mass drop of open-charm mesons than that of J/ψ which may help to explain

the J/ψ suppression in a hadronic environment although a width enhancement with

negligible mass shift of open charm mesons have also been suggested in order to explain

the suppression [171]. In view of many interesting and open issues in the charm sector,

the modification of the open and hidden charm mesons in a hot and dense environment

has become an important issue in recent times. Here also we have used the same thermal

field theoretical approaches to investigate the spectral properties of open charm mesons

(D and D∗). This in-medium modification of open charm mesons provides a new domain

of off-mass shell to open the DD type decay channel of charmonium states which is

related with J/ψ dissociation in hadronic matter.
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8.1 Spectral properties of open charm mesons in hot

hadronic matter

D

D∗

D

D

D

Φ

Φ

Figure 8.1: One-loop graph for two point function contributing to D meson self energy
and Φ stands for π, η and K mesons

Let us start with D ( D∗) meson self-energy where light pseudoscalar meson Φ and

heavy meson D∗ ( D) are internal lines of the one-loop diagram. Here Φ denote the

pseudoscalar octet i.e. π+, π0, π−, K+, K−, K0, K
0
and η. For any charge state of D (

D∗) there are four possible loops. e.g. for D+ (D∗+) meson self-energy, π+D∗0, π0D∗+,

ηD∗+ and K
0
D∗+
s (π+D0, π0D+, ηD+ and K0D+

s ) are the possible loops. Recalling the

boson self-energy expression for boson-boson loop (Sec. 3.2.1), we have

Π(q) =
∫

d3k

(2π)3
1

4ωkωp
[

(1 + nk)L1 + npL3

q0 − ωk − ωp + iηǫ(q0)
+

−nkL1 + npL4

q0 − ωk + ωp + iηǫ(q0)

+
nkL2 − npL3

q0 + ωk − ωp + iηǫ(q0)
+

−nkL2 + (−1− np)L4

q0 + ωk + ωp + iηǫ(q0)
]. (8.1)

The vertices appearing in the calculation of one-loop self-energy may be obtained using

chiral perturbation theory. The appropriate field variable for the pseudoscalar octet

(Nambu Goldstone fields) representing pions,kaons and η may be described by unitary

matrix u = exp( iλaΦa

2F0
), where,

λaΦa =
√
2




π0√
2
+ η√

6
π+ K+

π− − π0√
2
+ η√

6
K0

K− K̄0 − 2√
6
η


 , (8.2)

and F0 is Nambu Goldstone Boson decay constant in chiral limit. The lowest order

chiral Lagrangian for the heavy-light pseudoscalar and vector meson is,

L = 〈DµPDµP †〉+ i
g

F0

〈P ∗
µu

µP † − PuµP ∗†
µ 〉+ ... (8.3)

where P = (D0, D+, D+
s ) and P

∗
µ = (D∗0, D∗+, D∗+

s )µ are the triplets of D and D∗ meson

fields and,

uµ = i(u†∂µu− u∂µu
†) (8.4)
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.

The covariant derivatives are given by,

DµPa = ∂µPa − Γbaµ Pb , DµP †
a = ∂µP †

a + ΓµabP
†
b

with Γµ =
1

2
(u†∂µu+ u∂µu

†) (8.5)

where a,b denote SU(3) flavor index. The numerical value of the coupling constant g

is fixed by reproducing the D∗+ → D0π+ decay width [172]. To lowest order in Φ the

vector and axial-vector currents are

Γµ =
1

8F 2
π

[Φ, ∂µΦ], uµ = − 1

Fπ
∂µΦ . (8.6)

Using these lowest order part we get the interaction Lagrangian for P ∗PΦ and PΦPΦ

vertices as given below

LLOint = LP ∗PΦ + LPΦPΦ ,where

LP ∗PΦ = −i g
F0

〈P ∗
µ∂

µΦP † − P∂µΦP ∗†
µ 〉 (8.7)

LPΦPΦ =
1

8F 2
π

〈∂µP [Φ, ∂µΦ]P † − P [Φ, ∂µΦ]∂µP
†〉 (8.8)

This LPΦPΦ part which gives seagull graph shown in right side of Fig. (8.1), arises from

the Lagrangian (8.8). The other one-loop self energy graph shown in left side of Fig. (8.1)

is coming from the LP ∗PΦ (8.7). The required part of Lagrangian from Eq. (8.7) and

Eq. (8.8) to calculate the self-energy of D+ are given by

LD+P ∗Φ = −i g
F0

[
√
2(D+∂µπ−D

∗0
µ −D−∂µπ+D∗0

µ )

+ (D−∂µπ0D∗+
µ −D+∂µπ0D∗−

µ )

+
1√
3
(D+∂µηD∗−

µ −D−∂µηD∗+
µ )

+
√
2(D+∂µK0D∗−

sµ −D+∂µK
0
D∗+
sµ )] (8.9)

LD+ΦD+Φ =
−1

F 2
0

[(D+∂µπ
+∂µD−π−

−∂µD+∂µπ
+D−π− + ∂µD+π+D−∂µπ

−

−D+π+∂µD−∂µπ
−) + (D+∂µK

0
∂µD−K0

−∂µD+∂µK
0
D−K0 + ∂µD+K

0
D−∂µK

0

−D+K
0
∂µD−∂µK

0)] (8.10)
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However, the contribution of the seagull graph vanishes because the integrand is an odd

function of momentum (k). So we have to concentrate on the other graph, whose vertices

can be obtained from (8.9). The L(q, k)’s for all loops have same form only differing by

their different normalization factor α attached with the coupling g in Eq. (8.9). So the

form of L(q, k) (Lµν(q, k)) in the expression of D (D∗) meson self energy is given by

L(k, q) = −α2(
g

F0

)2[k2 − (k · q − k2)2

m2
p

]

(Lµν(k, q) = −α2(
g

F0
)2[kµkν ]) (8.11)

where α =
√
2, 1,

√
2, 1√

3
for π+D∗0(D0), π0D∗+(D+) , K0D∗+

s (D+
s ) and ηD

∗+(D+) loops

respectively and mp in Eq. (8.11) is the mass of D∗ meson.

We have evaluated the self energies as a function of
√
q2 = M at fixed values of the

three-momentum ~q and temperature T . It thus suffices to calculate the self-energies in

the time-like region, for positive values of q0 starting from q0 = |~q|.
The left (right) panel of Fig (8.2) show the imaginary and real parts of D (D∗)

mesons. The thermal contribution to the imaginary part leads to an enhancement in

the width and that of the real part produces a shift in the pole position. From the upper

panel of both curves, we can see a clear distinction between the two branches of Π(q0, ~q).

One observes a region in between the Landau and unitary cuts, where the imaginary

part of the self-energy is exactly zero. We also see a negligible in-medium mass shift

from the lower panels of these figures.

The spectral modification of the D and D∗ mesons which comes from the Landau cut

is basically a result of collisional broadening, which can lead to a substantial contribution

to J/ψ suppression through its dissociation in hadronic matter. The J/ψ can in fact

decay sub-threshold into the DD and D∗D channels, resulting in a finite dissociation

width in these otherwise closed modes. By folding the spectral function of the D and

D∗ mesons, J/ψ decay rate in medium can be obtained from the equation [173]

Γmed(J/ψ → DD) =
∫ g2

ψDD

3πm2
Jψ

|~P cm(m2
Jψ, p

2
D, p

2
D
)|3

×ImGD(p
0
D, ~pD) ImGD(p

0
D
, ~pD) dp2D dp2

D
(8.12)

where the ~P cm is center of mass momentum for decay of J/ψ meson to D and D mesons

with masses pD =
√
(p0D)

2 − (~pD)2 and pD =
√
(p0
D
)2 − (~pD)

2. For the other channels
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Figure 8.2: Left : Imaginary and real part of self-energy of D for different D∗Φ loops
in the upper and lower panel respectively. Right : Corresponding quantities of D∗ for
different DΦ loops

D∗D, DD
∗
and D∗D

∗
we have to replace corresponding in-medium spectral functions.

We have taken the value of gψDD = 7.8 for all channels [173].

The variation of J/ψ rate in DD and D∗D channels with temperature is shown in

Fig. (8.3). This estimate compares well with existing results in the literature [173] .
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Figure 8.3: In medium collision rate vs temperature for J/ψ for DD (dashed line), D∗D
(dotted line) channels and their summation (solid line).In dotted line D∗D and DD both
channels are taken.
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8.2 Transport properties of Heavy-light mesons in

hot hadronic matter

Besides thermal spectral properties, transport properties of heavy-light mesons play an

important role to characterize the medium formed in heavy ion collisions.

Let us imagine the scenario of pollen grains in water. The water molecules provide an

equilibrated background in which the pollen grains execute Brownian motion. We con-

sider a non-equilibrated heavy meson (D) executing Brownian motion in the hadronic

medium of thermalized light mesons (π,K, η). The Fokker-Planck (FP) equation pro-

vides an appropriate framework for such processes. To arrive at the FP equation, let us

starts from the Boltzmann transport equation
[
∂

∂t
+
~p

E
.~∇x + ~F .~∇p

]
f(~x, ~p, t) =

[
∂f

∂t

]

col

(8.13)

where ~p and E denote momentum and energy, ~∇x (~∇p) are spatial (momentum space)

gradient and f(~x, ~p, t) is the phase space distribution (in the present case f stands for

heavy meson distribution). ~F represents external forces acting on the heavy mesons and

here we ignore its effect i.e. ~F = 0. Further assuming that the matter is uniform, that

is, that the distribution functions of light particles appearing in the right-hand side of

Eq. (8.13) are x independent, we can average (8.13) over x. Defining

f(~p, t) =
1

V

∫
d3~xf(~x, ~p, t) (8.14)

which is the normalized probability distribution in momentum space, we have

∂f

∂t
=

[
∂f

∂t

]

col

(8.15)

If we define ω(~p,~k), the rate of collisions which change the momentum of the heavy

meson from ~p to ~p− ~k, then we have [174]
[
∂f

∂t

]

col

=
∫
d3~k

[
ω(~p+ ~k,~k)f(~p+ ~k)− ω(~p,~k)f(~p)

]
(8.16)

The first term in the integrand represents gain of probability through collisions which

knock the heavy meson into the volume element of momentum space at ~p, and the second

term represents loss out of that element. If we expand ω(~p+ ~k,~k)f(~p+ ~k) around ~k,

ω(~p+ ~k,~k)f(~p+ ~k) ≈ ω(~p,~k)f(~p) + ki
∂

∂pi
(ωf) +

1

2
kikj

∂2

∂pi∂pj
(ωf) (8.17)
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and substitute in Eq. (8.16), we get:

[
∂f

∂t

]

col

=
∂

∂pi

[
Ai(~p)f +

∂

∂pj
[Bij(~p)f ]

]
(8.18)

where we have defined the kernels

Ai =
∫
d3~kω(~p,~k)ki

Bij =
∫
d3~kω(~p,~k)kikj . (8.19)

for | ~p |→ 0, Ai → γpi and Bij → Dδij where γ and D stand for drag and diffusion

coefficients respectively. The function ω(~p,~k) is given by

ω(~p,~k) = gΦ

∫
d3~q

(2π)3
f̂(q)vσp,q→p′,q′ (8.20)

where f̂ is the equilibrium distribution function of light particles, v is the relative ve-

locity between the two collision partners, and gΦ is the degeneracy of thermalized light

particles. The cross section of DΦ scattering (where Φ denotes the light particles of the

medium) can be expressed in terms of matrix element MDΦ as

σp,q→p′,q′ =
1

(2π)6 v 2Eq2EpgDgΦ

∑
|MDΦ|2

1

2Eq′2Ep′
(2π)4δ(Ep+Eq−Eq′ −Ep′) (8.21)

So using Eq. (8.21) and (8.20) in (8.19), the drag may be defined as the thermal average

of the momentum transfer weighted by the square of the invariant transition amplitude

,

Ai =
1

2Ep

∫
d3~q

(2π)3Eq

∫
d3~p ′

(2π)3Ep′

∫
d3~q ′

(2π)3Eq′

1

gD

∑
|M |2 (2π)4δ4(p+ q − p′ − q′)f̂(q)[(p− p′)]

≡ 〈〈(p− p′)〉〉 (8.22)

where gD is the degeneracy factor of the heavy meson. The temperature dependence of

the drag coefficient enter through the phase space distribution.

Similarly the diffusion coefficients is a measure of the thermal average of the square

momentum transfer, weighted by the interaction through the square of the invariant

amplitude, |M |2,

Bij = 〈〈(p− p′)i(p− p′)j〉〉 (8.23)
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with the scalar function

Bij =
1

4

[
〈〈p′2〉〉 − 〈〈(p.p′)2〉〉

p2

]
(8.24)

Using the effective Lagrangian (8.3), we have evaluated the transport coefficients,

namely the drag and diffusion co-efficients of a hot hadronic medium consist of pions,

kaons and eta where heavy-light mesons are treated as a probe. Let us first discuss

the drag and diffusion coefficients of D+ meson. The relevant diagrams to calculate

the Born amplitude are shown in Fig. (8.4). Here the first part of Lagrangian (8.3) i.e.

Lagrangian (8.10) become important for giving the non-zero matrix element of contact

diagrams (right most diagram of Fig. 8.4). In terms of Mandelstam variables (s, t, u)

D+ D+
D+

D+

D+ D+

P*

P*

Figure 8.4: Feynman diagrams for the scattering of D mesons with pseudoscalar mesons
Φ (pion, kaon and eta) in the medium. Here P ∗ denotes charmed vector meson reso-
nances.

these matrix elements in the charge state basis are given below

MD+π+ = −MD+π− = − 1

4F 2
0

(s− u)

MD+π0 =MD+η =MD+K+ =MD+K− = 0

M
D+K

0 = −MD+K0 = − 1

4F 2
0

(s− u) (8.25)

From the interaction Lagrangian LD+P ∗Φ (8.9), we get the exchange diagrams of s and

t channels exhibiting D+ elastic scattering from the pseudoscalar mesons, Φ (D+(p1) +

Φ(p2) → D+(p3) + Φ(p4)). These invariant amplitudes in charge basis are as follows

MD+π+ =
2g2

F 2
0

{p1· p4 − (p1· p3 −m2
π)

2/m2
D∗}

t−m2
D∗

MD+π− =
2g2

F 2
0

{p1· p3 − (p1· p2 +m2
π)

2/m2
D∗}

s−m2
D∗

MD+π0 =

(
g2

F 2
0

)2

[
{p1· p3 − (p1· p2 +m2

π)
2/m2

D∗}
s−m2

D∗
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+
{p1· p4 − (p1· p3 −m2

π)
2/m2

D∗}
t−m2

D∗

]

MD+η =

(
g2

3F 2
0

)2

[
{p1· p3 − (p1· p2 +m2

η)
2/m2

D∗}
s−m2

D∗

+
{p1· p4 − (p1· p3 −m2

η)
2/m2

D∗}
t−m2

D∗

]

MD+K0 =
2g2

F 2
0

{p1· p3 − (p1· p2 +m2
K0)2/m2

D∗
s
}

s−m2
D∗

s

M
D+K

0 =
2g2

F 2
0

{p1· p4 − (p1· p3 −m2

K
0)2/m2

D∗
s
}

t−m2
D∗

s

(8.26)

The various invariant amplitudes can be expressed in terms of the Mandelstam variables

using the relations: p1 · p2 = s−m2
D
−m2

Φ

2
p1 · p3 = m2

D
+m2

Φ−t
2

and p1 · p4 = m2
D
+m2

Φ−u
2

where

mD is the mass of D meson and mΦ is mass of thermalized hadrons. The drag coefficient

(γ) can be expressed as a thermal average of the square of the momentum exchanged

between the heavy mesons and the bath particle, weighted by the interaction strength

through the above mentioned Born amplitudes. In Fig. 8.5 the variation of drag and

diffusion coefficients with T have been depicted for D-mesons. We observe [175] that the

values of both the transport coefficients increases with temperature and the dominant

contributions come from the pions in the medium. However, at higher temperature the

contributions from heavier hadrons become significant. The value of the spatial diffusion

coefficients, Dx may be expressed in terms of drag coefficients as Dx = T/(MDγ). The

value of Dx at T = 180 MeV is ∼ 2.5/(2πT ) i.e. 2.5 times larger than the thermal wave

length.

Recently the diffusion coefficient of D meson has been calculated using heavy meson

chiral perturbation theory [176] and also by using the empirical elastic scattering ampli-

tudes [177] of D mesons with thermal hadrons. The authors of Ref. [178] used unitarized

chiral effective Dπ interactions to evaluate the drag. Our results are not very far from

their predicted values.

Now we can apply the formalism described above to calculate the drag and diffusion

coefficients for the B meson. Here we replace our heavy-light meson triplet as :

P = (D0, D+, D+
s ) → (B0, B+, B+

s )

P ∗
µ = (D∗0, D∗+, D∗+

s )µ → (B∗0, B∗+, B∗+
s )µ (8.27)

But due to lack of empirical information in B sector we can not get any effective value
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Figure 8.5: The variation of drag (left panel) and diffusion (right panel) coefficients with
temperature due to the interaction of the D with thermal pions, nucleons, kaons and
eta.

of coupling strength. So we have depend on T-matrices from LQCD [172, 179, 180],

predicting the scattering length in hadronic sector.

For contact diagrams of B meson scattering we get similar forms of matrix elements

in charge basis as given in (8.25). For BΦ scattering, these can be represented in the

isospin basis as

M
(3/2)
Bπ = − 1

4F 2
π

(s− u), M
(1/2)
Bπ =

1

2F 2
π

(s− u),

MBη = 0, M
(1)
BK = 0, M

(0)
BK = − 1

2F 2
K

(s− u),

M
(1)

BK
= −M (0)

BK
= − 1

4F 2
K

(s− u) (8.28)

where the isospin of the BΦ system appears in the superscript. Denoting the threshold

matrix elements by T , these are obtained from (8.28) and are given by

T
(3/2)
Bπ = −mBmπ

F 2
π

, T
(1/2)
Bπ =

2mBmπ

F 2
π

,

TBη = 0, T
(1)
BK = 0, T

(0)
BK = −2mBmK

F 2
K

,

T
(1)

BK
= −T (0)

BK
= −mBmK

F 2
K

(8.29)

One can reproduce these T -matrix elements in the isospin basis using the lowest

order HMχPT Lagrangian for heavy mesons containing a heavy quark Q and a light

antiquark of flavor a as given below [181]

LHMχPT = −i trD(H̄Q
a v

µ∂µH
Q
a )
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−i trD(H̄Q
a v

µΓabµ H
Q
b )

+
g

2
trD(H̄

Q
a γ

µγ5uabµ H
Q
b ) + ... (8.30)

where HQ
a = 1+v/

2
(P ∗

aµγ
µ + iPaγ

5) and H̄Q
a = (P ∗†

aµγ
µ + iP †

aγ
5)1+v/

2
and trD denotes trace

in Dirac space. In this formalism, since the factor
√
mP and

√
mP ∗ have been absorbed

into the Pa and P
∗
aµ fields, the threshold T -matrix element (T̃ PΦ

th ) now has the dimension

of scattering length aP whereas in CχPT , we get a dimensionless T -matrix element

(T PΦ
th ). The relation between these two T -matrix elements and the scattering length aP

is given by

T PΦ
th = mP T̃

PΦ
th = 8π(mΦ +mP )aP (8.31)

The square of the isospin averaged T -matrix element is given by

∑
|TBΦ|2 = |TBπ|2 + |TBK |2 + |TBK |2 (8.32)

where |TBπ|2 = 1
(2+4)

(2|T (1/2)
Bπ |2 + 4|T (3/2)

Bπ |2)

and |TBK/K |2 = 1
(1+3)

(|T (0)

BK/K
|2 + 3|T (1)

BK/K
|2). We evaluate the drag coefficients of

the B-meson by using the momentum dependent and momentum independent matrix

elements given by Eqs.( 8.28) and (8.29) respectively. Inspired by the fact that the

results for the two scenarios are not drastically different in the LO we proceed to evaluate

the drag coefficient of heavy mesons by replacing
∑ |M |2 by

∑ |T |2 in NLO and NNLO

also where the T -matrix elements will be obtained from the scattering lengths. Liu et

al [180] have obtained the BΦ scattering lengths up to NNLO in HMχPT by using the

coupling constant from recent unquenched lattice results [182]. Using these NLO and

NNLO results we estimate the isospin averaged drag coefficients of B mesons [183]. The

magnitude of B meson drag coefficient reveals that the B mesons dissipate significant

amount of energy in the medium.

These non-negligible values of D and B meson drag coefficients might have crucial

consequences on quantities such as the nuclear suppression factor of single electrons

originating from the decays of heavy mesons. Though the charm and beauty quark

diffusion play a major role to explain this nuclear suppression factor but to make the

characterization of QGP reliable, the role of the hadronic phase should be taken into

consideration and its contribution must be subtracted out from the observables.



Chapter 9

Summary

The fundamental properties of low energy QCD, namely chiral symmetry and confine-

ment at finite temperature and baryon density are intimately related with the rich

structure of the nuclear many-body problem. We have devoted chapter 1 to describe

possible connections between the two. The change in the vacuum structure of QCD

under extreme conditions of T and µ possibly reached in heavy ion collision experiments

is reflected in the modified properties of hadrons which are manifested in their spectral

function. In this thesis we have evaluated the spectral function of various hadrons using

effective interaction in the framework of the real-time formalism of thermal field theory.

In chapter 2 we have derived the in-medium propagators for scalar, vector and spin

1/2 fermions in the real-time formulation. The 2× 2 matrix structure of the propagator

resulting from the real-time contour is elaborately discussed.

In chapter 3 the matrix structure of the self-energy in this formalism is introduced.

It is explicitly shown that the diagonalisation of this matrix leads to the simplification

that the required self-energy function can be obtained by evaluating any one component

of the matrix. The general forms of one-loop digram involving bosons and fermions

have been obtained and their analytic structure in the complex energy plane have been

discussed.

Among the hadrons, neutral vector mesons are very special as their in-medium prop-

erties are reflected in the invariant mass spectra of the lepton pairs. In Chapter 4 and 5

we have investigated the in-medium spectral properties of ρ and ω respectively in which

the interaction of the vector mesons with other mesons and baryons have been obtained

from effective Lagrangians.
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We have derived the discontinuities across all the cuts of a self-energy loop of these

light vector mesons. The novelty in this approach is the evaluation of the imaginary part

from the discontinuities of the self-energy function which provides an unified treatment

of various scattering and decay processes occurring in the thermal medium. Since the

excited nuclear matter consists of different mesons and baryons, we have to take into

account them as internal lines of one-loop diagrams. We have taken four different meson

loops for ρ self-energy. Near the ρ pole, the major contribution comes from the ππ loop,

which provides Bose enhancement in the unitary cut region. Due to unequal masses,

the other loops have some non-zero spectral strength in Landau cut region along with

the unitary cut. Only the Landau cut contribution is numerically important near the ρ

pole for the πh1 and πa1 loops whereas for πω loop both cuts become important.

Baryon loop graphs in the ρ self-energy involving the nucleon and 4-star N∗ and

∆ resonances up to spin 3/2 were evaluated using gauge invariant interactions and full

relativistic propagator to obtain the correct relativistic expressions. The singularities

in the complex energy plane were analyzed and the imaginary part obtained from the

Landau cut contribution. Results for the real and imaginary parts at non-zero three-

momenta for values of the temperature and baryonic chemical potential were shown for

the individual loop graphs. Adding meson and baryon loops we obtained the spectral

function of ρ meson as a function of temperature and density. In addition, deviations

from the neglect of the anti-baryon poles in the Lindhard function approach have been

numerically established.

For ω meson, one-loop self-energy graphs have been evaluated for an extensive set

of spin one-half and three-half N∗ resonances in addition to the ρπ loop using fully

relativistic propagators and off-shell corrections for spin three-half fields. Similar to ρ,

for ω we have also presented results of the real and imaginary parts for all the loops

considered and the full spectral function for several combinations of temperatures and

baryon chemical potentials relevant in heavy ion collisions.

We have made a comparison of the ρ and ω spectral functions finding the ω contri-

bution to be lower but of comparable magnitude. However, the fact that the latter is

suppressed by a factor ∼ 10 compared to the ρ in the dilepton emission rate makes a

quantitative study of the ω difficult. Additional hindrances could arise due to matter
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induced ρ−ω mixing [111]. Nevertheless, the contribution of the ω spectral strength is es-

sential for a quantitative description of the dilepton data from heavy ion collisions [130].

In view of high quality data expected in future from heavy ion collisions at the FAIR

facility at GSI we can conclude that an exhaustive evaluation of the spectral strength

at finite temperature and baryon density is necessary for a quantitative analysis.

The vector meson spectral function at finite temperature and baryon density have

been used to evaluate low invariant mass spectra of lepton pairs in chapter 6. Here we

have attempted to bring out distinguishing features stemming from many body effects

in the lepton pair yield from relativistic heavy ion collisions. We observe a significant

enhancement in the dilepton yield in the mass region below the ρ pole compared to

vacuum. The Landau cut contribution for various meson and baryon loops play the

main role in this enhancement. Since dileptons are produced at all stages of the collision

it is necessary to integrate the emission rates over the space-time volume from creation to

freeze-out. Relativistic hydrodynamics with cylindrical symmetry and boost invariance

along longitudinal directions has been used for space-time description. Equation of

states from lattice QCD and hadronic resonance gas have been used as input. After a

space-time evolution, the invariant mass spectra for various pT windows was found to be

in very good agreement with the experimental data obtained in In-In collisions at 17.3

AGeV. Comparing with the empirical approach of Ref. [80] using resonance dominance

in the forward scattering amplitude, our baryon loop calculation is more successful to fit

the low mass dilepton data. For RHIC and LHC energies we have seen similar low mass

enhancement in invariant mass spectra. It is argued that the non-monotonic variation

of the inverse slope deduced from the transverse mass distribution of lepton pairs for

various values of the average invariant mass is an indication of the presence of two

different phases during the evolution of the system. Thus, such a variation may be

treated as a signal of QGP formation in heavy ion collisions.

In Chapter 7 we have calculated the self-energy of the nucleon and its spectral func-

tion in the same thermal field theoretic formalism. The imaginary part of the self-energy

is built out of contributions from both Landau and unitary cuts from one loop graphs

with πN and π∆ intermediate states. In contrast to results in the literature, we find the

unitary cut from the π∆ loop to contribute significantly in the upper region of (virtual)
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mass of nucleon considered. The nucleon spectral function turns out to be sensitive to

non-relativistic approximation, establishing the necessity of relativistic treatment for its

quantitative determination.

In Chapter 8 we have investigated in-medium change of hadrons of heavy quark

sector. The same formalism of thermal field theory is applied to study D and D∗

mesons propagation in a hot matter composed of pions, kaons and eta. Here we have

adopted the effective Lagrangian coming from Heavy meson chiral perturbation theory.

After obtaining the full modified spectral function of open charm mesons, we have used

it to fold the J/ψ decay width in DD channels. Here we take into account the fact

that in the medium the open charm mesons are not stable particles but resonances

with finite collisional widths. The D (or D∗) spectral function, owing to the Landau

cut contribution, will have some strength in the invariant mass region below their bare

poles and that may help the J/ψ to decay into DD (or DD
∗
, D∗D, D∗D

∗
) channels.

A non-negligible value of imaginary part of the self-energy for D-D loop at J/ψ mass

give an estimation of J/ψ width at finite temperature, indicating the J/ψ suppression

in hadronic environment.

It is also interesting to study in-medium properties of heavy mesons by investigating

its transport properties in the medium. The drag and diffusion coefficients of hadronic

matter have been evaluated using open charm and beauty mesons as probes where the

interactions of the probes with the hadronic matter have been treated in the framework of

effective field theory. It is observed that the magnitude of both the transport coefficients

are significant, indicating substantial amount of interaction of the heavy mesons with

the thermal hadronic system. It is expected that this should non-trivially affect the

results on the nuclear suppression factor of single electron spectra measured in high

energy heavy ion collision experiments.
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