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 Synopsis 

The development of high current cyclotrons and study of the behavior of the space 

charge dominated beam during injection and acceleration is an important area of current 

research, and the complexities associated with their dynamics are still not well understood. 

Under the accelerator driven subcritical systems (ADSS) programme, our group at 

Variable Energy Cyclotron Centre, Kolkata, has undertaken the development of a 10 MeV, 

5 mA compact radial sector proton cyclotron. A proton beam of ~ 10-20 mA at energy 80-

100 keV from a 2.45 GHz microwave ion source will first be collimated by slits to remove 

the undesired components (H2
+, H3

+ etc.), bunched using a sinusoidal buncher and will be 

injected axially into the central region of the cyclotron where a spiral inflector will place 

the beam on the proper orbit. Two delta type resonators located in the opposite valleys, 

will be used to accelerate the beam. Finally, this accelerated beam will be extracted using 

an electrostatic deflector. The main aim of this project is to study and settle various 

physics and technological problems associated with the production, bunching, 

acceleration, injection, extraction, etc. of the high intensity beams. The ion source and 

injection system of the compact cyclotron have been designed, fabricated indigenously, 

installed and commissioned. Presently it is under testing for beam characterization. 

This thesis presents the results of simulation works carried out to settle some of the 

physics issues related with the injection and acceleration of a space charge dominated 

beam in a compact cyclotron. The design issues of a spiral inflector, main magnet and 

space charge effect on the behaviour of the beam envelope in the spiral inflector and 

cyclotron have been discussed. The analysis is performed for a 10 MeV high current 

compact proton cyclotron with injection energy of 80 keV and current in the range of 5-10 

mA.  
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In a compact cyclotron, the vertical focusing obtained from the sectors is very weak in 

the central region. The transverse space charge force further reduces this focusing force. 

This effect leads to an increase in the beam size and thus sets a limit on the beam current 

that can be accommodated in a given aperture. A preliminary estimate indicates that the 

limiting current can be improved by increasing the injection energy of the beam and by 

optimizing the geometry of the cyclotron to improve the focusing forces. The first part of 

this thesis consists of determining the preliminary design parameters of the 10 MeV 

cyclotron. A hard-edge formulations and the transfer matrix technique have been used. A 

numerical simulation technique has been developed for studying the behaviour of the 

beam envelope during the first turn and also to estimate the vertical acceptance of the 

cyclotron central region in the presence of linear space charge. Here hills and valleys are 

treated as bending magnets with uniform field. The flaring and edge effects have been 

introduced by using thin lenses at each hill-valley boundary. The acceleration effect of two 

resonators in the opposite valleys has been included by approximating them with four 

step-function accelerating gaps. The change in the beam envelope has been studied by 

changing the injected beam current, initial width, divergence and emittance of the beam. A 

proper matching condition has been found and the limit on the injected beam current has 

also been estimated. 

The results of these initial studies are then used to design the magnet of the 10 MeV 

cyclotron. The magnetic field in the cyclotron guides the particles on isochronous 

trajectories and provides the required focusing in order to maintain good internal beam 

characteristics. The available analytical formulas for calculating the average magnetic 

field and betatron frequencies are not valid for high flutter field and particularly at the 

lower radii in the case of a compact cyclotron. Another difficult problem to solve is the 

shaping of the magnetic field in the central region. In our case the use of high injection 
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energy (80 keV) requires a comparatively larger space for the spiral inflector. Therefore, a 

careful optimization of the central plug is also needed. To optimize the pole profile of the 

hill of the cyclotron magnet an iterative technique has been developed. Here the sector 

shape is approximated by a polynomial function of radius. A 3D magnet code MagNeT is 

used to calculate the magnetic field in the median plane and an equilibrium orbit code 

GENSPEO is used to obtain the betatron frequencies as a function of energy. The 

frequency error is minimized by optimizing the coefficients of the polynomial by using the 

random search technique. When compared with other methods, it is found that this method 

gives smooth pole shape of the hill and takes less computation time for optimization. It 

requires only 5-8 parameters for restricting the relative frequency error to 1 in 104. The 

required isochronous field, within the tolerances, is obtained after several iterations, by 

shimming the angular width of the hill as a function of radius. 

As mentioned earlier, a spiral inflector will be used to place the injected beam on the 

proper orbit in the central region of the cyclotron. In this thesis a detailed design of the 

spiral inflector and the dynamics of a space charge dominated beam through it have been 

discussed. Due to low average magnetic field and large difference between hill and valley 

fields, the computed magnetic field in the central region near the axis of the 10 MeV 

cyclotron is slightly lower than the resonance field. Near the central region it varies with 

height as well as with radius. Due to these large variations, the design of the spiral 

inflector needs special attention and is challenging. A computer code has been developed 

to solve the equations of motion using fourth order Runge Kutta method for the central ion 

trajectory in the spiral inflector using the non-homogeneous magnetic field obtained from 

a 3D code MagNeT. The parameters of the inflector are adjusted iteratively to orient the 

beam properly at its exit to produce a well centered beam. The orbit centering of the 

inflected beam is checked by using the central region code in the analytic electric field and 
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computed magnetic field. It has been shown that the beam is well centered with the input 

conditions provided by the spiral inflector. 

For better transportation in the inflector and further acceleration in the cyclotron, the 

emittances and orientations of beam ellipses at the exit of the inflector should be matched 

to the acceptance of the central region. Any mismatch in the injection causes growth of 

beam sizes and emittances and finally leads to beam loss. Since knowledge of the central 

ion trajectory does not provide any information about how the inflector modifies the 

optical properties of the ion beam, a detailed study of beam dynamics using a uniform 

ellipsoidal bunch, and including the effect of space charge, has been carried out. As the 

injected dc beam from the ion source approaches the inflector, it takes the form of a bunch 

due to bunching action. The beam current in the bunch increases gradually as it traverses 

inside the spiral inflector. This effect modifies the space charge force on the particles in 

the beam and has been taken into account in the analysis. The optical properties of the 

spiral inflector have been studied using infinitesimal transfer matrix technique and sigma 

matrix method. The emittance growth that results from the coupling between the two 

transverse planes for different initial beam conditions has been estimated. The initial 

conditions of the beam have been optimized to reduce the emittance growth at the exit of 

the inflector. Simulation results show that a converging non-axisymmetric beam with 

equal emittances at the entrance is desirable to reduce the emittance growth at the exit.  

It is well known that a beam matched to a transport system produces minimum 

envelope oscillations and amplitude growth. Envelope mismatch is the major cause of 

emittance growth and halo formation. For mismatch beams, an unbalance between the 

applied focusing force and the defocusing forces due to space charge and thermal effects, 

cause whole beam to oscillate in a coherent way. This effect increases the beam size in 

both the transverse planes and causes severe beam loss. In the case of low beam current 
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the mismatch in one plane affects the beam behaviour only in that particular plane. 

However, in the case of an intense beam, where the space charge effect couples the 

motions of the two transverse planes, a mismatch in one plane affects the beam behaviour 

in both transverse planes. The preliminary studies of the effect of space charge in the 

compact cyclotron carried out during the initial design estimate are limited in accuracy; 

however, they provide good insight into the behaviour of beam envelopes. This limitation 

is due to the use of the hard edge model of the magnetic field which overestimates the 

vertical betatron tunes at the lower radii. A more detailed study has been carried out on the 

amplitude growth and oscillations in the beam envelopes along the accelerated central 

orbit in the computed magnetic field assuming a uniform ellipsoidal bunch. The study has 

been done by changing the current of the injected beam, as well as the initial width and 

divergence of the beam. First, the pattern of envelope oscillations and amplitude growth of 

the beam in both transverse planes at a particular radius (without acceleration), by 

displacing the initial beam size from the matched beam size at several values of beam 

current, has been discussed. Then the results of studies on the behaviour of the beam 

envelope in the 10 MeV cyclotron for different initial conditions of the beam has been 

addressed. The proper matching conditions have been obtained by adjusting the input 

beam parameters to minimize the amplitude growth and oscillations. The maximum beam 

current that can be transported through a given focusing channel of the compact cyclotron 

has also been estimated. 

Finally, since the overall goal of this thesis is to maximize the amount of beam that can 

be injected into the cyclotron, a transverse beam matching at the inflector entrance is 

necessary. Simulation results indicate that convergent phase ellipses with different 

orientations in x and y planes and a comparatively smaller width in the y plane give better 

beam transmission. The transformation of an axisymmetric beam from the ion source to a 
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non-axisymmetric beam at the entrance of the spiral inflector can’t be achieved by using 

cylindrical symmetric magnets such as Glaser and solenoid magnets as used in the 

transport line. In this case one needs either an elliptical solenoid or a quadrupole doublet. 

In our case an elliptical solenoid is more suitable than the quadrupole doublet due to space 

constraint. In the thesis the beam optical properties of an elliptical solenoid magnet have 

been studied, including the effect of space charge, and the feasibility of using an elliptical 

solenoid for transverse matching of a space charge dominated beam to the acceptance of a 

spiral inflector has also been discussed. 
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Chapter 1 

Introduction 

The production, acceleration and transport of intense charged particle beam is an 

active area of research and is at the center of various scientific studies. In the recent years 

high current cw accelerators, especially linacs and cyclotrons have received increased 

interests because of the need of high power and high quality beams for applications such 

as spallation neutron sources, accelerator driven systems (ADSS) and for nuclear waste 

transmutation. There has been a growing interest to understand the beam self field effects 

on focusing and transfer characteristics of intense charge particle beams. 

The production of clean energy through controlled nuclear fission based on 

accelerators has been considered all over the world as quite feasible for nuclear power 

generation through ADSS. In practical realization of ADSS, the most challenging task is 

the development of a high energy (~1 GeV) and high current (~10-15 mA) proton 

accelerator to produce neutrons by spallation to drive a sub-critical reactor assembly [1, 2]. 

Cyclotron is an excellent option for delivering high power high current beam because of 

its compact structure, low beam losses, operation in cw mode and the most important is 

the cost factor for beam power levels  10 MW [3, 4].  

Cyclotrons, operating presently in various laboratories around the world, were 

designed preliminarily for research in nuclear and particle physics with low beam current 

requirements. The compact cyclotrons designed for medical applications are providing 

hundreds of micro ampere beam. The beam power available from these machines is at 

least one order of magnitude lower than that needed for ADSS application. The overall 

efficiency of these machines is also very low. Much larger efficiency can be achieved by 
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designing the accelerator properly keeping in mind the power dissipation in rf and magnet. 

Today, cyclotron is the highest beam power accelerator (590 MeV, 1.8 MW at PSI) 

operating in cw mode [5]. 

In order to achieve 10 mA proton beam at 1 GeV using cyclotron, certain critical 

issues are required to be studied in detail, particularly at low energy regime where the 

space charge forces dominate. Before reaching the prototype stage of a driver accelerator 

for an ADSS plant much R & D works are needed to be carried out using proton beam of 

lower energy and lower current. Under the ADS development programme, a 10 MeV, 5 

mA compact radial sector proton cyclotron [6-8] is being developed at the Variable 

Energy Cyclotron Centre in Kolkata. Proton beam from 2.45 GHz microwave ion source 

[9] will be first collimated by slits to remove the undesired components (H2
+, H3

+ etc.), 

bunched using a sinusoidal buncher [10] and will be injected axially in the central region 

of the cyclotron where a spiral inflector will place the beam on the proper orbit [11-13]. 

Two delta type resonators located in the opposite valleys, will be used to accelerate the 

beam. Finally, this accelerated beam will be extracted using an electrostatic deflector. The 

main aim of this project is to study and settle various physics and technological problems 

associated with the production, bunching, acceleration, injection, extraction, etc. of the 

high intensity beams. The work presented in this thesis is related with the study of 

different aspects of the space charge dominated beam dynamics in a high current compact 

cyclotron. In the following section (1.1.) we first discuss the historical overview of the 

cyclotron and its research and commercial applications. 

1.1. Overview of cyclotrons 

The concept of cyclotron was originated by E. O. Lawrence and developed by him and 

his students [14]. He built his first cyclotron in 1930 followed by another, and used it for 

nuclear physics research. The basic principle of cyclotron is based on a combination of rf 
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acceleration and bending of charged particles in a magnetic field. Particles are accelerated 

in spiral paths inside two semicircular, flat metallic electrodes called dees. Dees are 

connected to an rf generator and are placed in a nearly uniform magnetic field. Charged 

particles, produced either by an ion source located at the centre of the cyclotron or by an 

external ion source, are injected into the median plane. The magnetic field causes particles 

to move in the median plane in approximately circular orbits inside the dee and across the 

gap between them. At each gap particles are accelerated and follow a spiral path as they 

gain energy. This is because the radius of orbit, being a function of the particle velocity, 

increases with time. At the edge of the magnet, full energy particle beam is pulled out 

(extracted) by an electrostatic deflector as an external beam.   

Before reaching the final energy, ions complete over a several hundred turns. In a truly 

uniform field the particle orbits have no stability in the vertical direction. It was 

recognized during early days that the strength of the magnetic field had to decrease with 

radius to yield simultaneously the necessary radial and vertical stability of the orbit 

motion. This is in conflict with the requirement of resonance which demands that the 

particle revolution frequency must be equal to the frequency of the rf voltage throughout 

the acceleration process. The situation is in fact worse than this because of the relativistic 

variation of mass with velocity which requires that the strength of the magnetic field 

should increase with radius. Due to this reason, the final energy obtainable from the so-

called classical cyclotrons was limited to ~ 2% of the rest mass energy of the particle.  

In the long history of the cyclotrons, researchers have made many improvements to 

overcome the energy limitations. The earliest solution implies a frequency modulation of 

the accelerating voltage, such that the frequency keeps pace with revolution frequency of 

the particle. These types of cyclotrons, called synchrocyclotrons have a macro-structure in 

the beam current. The average beam current is much lower than that of the classical 
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cyclotrons. The other solution was suggested by L. H. Thomas [15, 16]. He proposed to 

maintain a constant orbit frequency as the mass increases with energy by increasing the 

magnetic field strength with radius. Such a field profile brings in vertical defocusing to the 

beam. To counteract this defocusing, Thomas proposed contouring the magnet pole faces 

to provide an azimuthal variation in the field strength. In practice, this is achieved by 

dividing the poles into symmetrical sectors each consisting of a “hill” with small pole gap 

and high magnetic field and a “valley” with a large pole gap and low magnetic field. The 

different orbit curvatures in hills and valleys lead to a scalloped orbit oscillating around a 

circle. This gives rise to radial velocity component strongest at the hill valley boundary 

whereas the hill fringing field provides an azimuthal component of magnetic field. The 

result is a vertical focusing force at each hill-valley boundary.  

Two additional vertical focusing forces were discovered by Kerst and Laslett by 

making edges of the sectors spiral shaped [17]. The vertical focusing forces from the 

azimuthally varying magnetic field turned out to be large enough to correct the defocusing 

forces that are introduced by radially increasing magnetic field. This opened the possibility 

to adjust the magnetic field to take care of relativistic mass increase. The cyclotron with an 

Azimuthally Varying Field is mostly call the AVF cyclotron or sector focused cyclotron. 

The first AVF cyclotron using this principle was built in 1958 [18]. Since then AVF 

cyclotrons have been built in many ways ranging from small dedicated accelerators for 

isotope production to large facilities for basic research in nuclear and particle physics. 

The major advances in the AVF cyclotron over the last forty years are the use of 

superconducting magnets and the axial injection systems. The first development allowed 

to reduce the size and weight of cyclotron magnets for a given energy by more than an 

order of magnitude, which was important for large heavy ion beam facilities. The major 

facilities are K500 superconducting cyclotron at VECC [19], K500 and K1200 coupled 
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cyclotron complex at MSU [20], the Radioactive Ion Beam Factory (RIBF) at RIKEN 

[21], the ACCEL’ s superconducting 250 MeV proton cyclotron [22] for medical use etc.  

Another important improvement is the use of external ion source that allowed the 

acceleration of high intensity and variety of heavy ion beams. The AVF cyclotrons thus 

become a unique and versatile instrument that can be tailored to a large variety of uses. 

GANIL in France, operating two coupled K380 cyclotrons [23], is the facility for high 

intensity heavy ion beams for the production of radioactive species. The world biggest 

room temperature cyclotron with a magnet having 18 meter diameter and total weight of 

4000 tons built in early 70’s is at TRIUMF in Canada [24]. It produces 500 MeV (500 µA) 

proton beam for meson production. The commercial use of cyclotrons covers a large 

variety of applications. Best known are small cyclotrons for production of radioisotopes 

for medical uses such as positron emission tomography (PET), single photon emission 

computed tomography (SPECT) etc. The development of a 250-400 MeV/A cyclotron for 

radiation therapy with proton and carbon beams is an important step in bringing this 

advance technology into hospitals. 

In recent years, high-current cyclotrons have received increased interest because of the 

need of high-power and high-quality beams as required for ADSS application. The 

feasibility of cyclotrons for producing high power beams has been discussed by many 

authors and accelerator complexes consisting of two or three cyclotrons with a compact 

cyclotron as an injector, have been proposed to deliver 10 mA, 1 GeV proton beam as 

needed by ADSS. At present the 590 MeV cyclotron facility at the Paul Scherrer Institute, 

Switzerland (PSI) is the only machine which is routinely operated at 1.2 MW beam power 

as driver for the spallation neutron source SINQ [5]. As possible future applications, 

several proposals to generate about 10 MW of beam power using cyclotrons are in active 

considerations around the world. 
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1.2. Space charge effect in cyclotron 

In the beam intensity region that we are considering here (several mA) the space 

charge effects play crucial roles in the beam dynamics. Space charge forces of the beam in 

a cyclotron affect the beam behavior in both transverse and longitudinal directions [25, 

26]. Transverse space charge forces increase the beam sizes and reduce the betatron 

frequencies. If this reduction is significant which is serious in the axial direction, axial 

beam loss could occur. Longitudinal space charge force on the other hand increases the 

energy of the leading edge of the bunch and reduces the energy of the tail of the bunch. 

Because of the radius-energy correlation in cyclotrons, this energy spread expands the 

radial region occupied by each turn. Thus, this effect reduces the turn separation and 

causes a limitation on the beam intensity that can be accelerated in a cyclotron. 

While the transverse space charge effects are serious only at low energies, longitudinal 

ones are of concern throughout. The calculation and simulation of space charge effects are 

very complicated. Self-fields, external focusing fields and relative motion of individual 

particles in the bunch separated from the motion of the bunch have to be taken into 

account. The relative motion of particles in the bunch changes the density distribution 

which defines the fields. Thus the space charge force and the density distribution have to 

be treated in a self-consistent manner.  For understanding the behavior of tails and halos 

simulations have to be done with a very large number of particles. Since the tails of the 

profiles are determined by the nonlinear terms of the force, an accurate knowledge of the 

charge distribution in the bunch is necessary to calculate them which are very difficult to 

get for a cyclotron beam. So, an accurate prediction of the behavior of beam losses under 

space charge force is close to impossible. However, an insight in the essential features can 

be derived from simple models and the analysis of the simulation results.  
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1.2.1. Transverse space charge effect 

In a cyclotron the transverse space charge effect is strongest on the first few turns 

particularly in the axial direction because the energy of the beam is low and focusing 

forces are small in the region near the machine center. An estimation of transverse space 

charge effect can be obtained by calculating the tune shift. The tune shift for a continuous 

un-bunched beam can be given by [26] 
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Here  y0  is the axial betatron frequency at zero beam current, Q  is the charge state and 
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where MA310 I , b2  is the beam height. The above mentioned expressions of the 

limiting current indicates that for acceleration of high beam current in a cyclotron it is 

necessary to have high axial betatron tune y  and large beam phase width. The injection 

energy and energy gain per turn E  should also be as high as possible.   

1.2.2. Longitudinal space charge effect 

Special attention is needed to be paid to longitudinal space charge effects, because 

isochronous cyclotrons do not have the property of longitudinal focusing. In the first order 

approximation the longitudinal space charge force causes an additional energy spread in 

the beam. It causes trailing particles in a bunch to lose energy. The broadening of the 

bunch due to the linear part can be compensated by adjusting the phase away from the 

peak of the rf voltage. If a flattop system is used then it can be compensated by adjusting 

the phase of the third harmonic with respect to the accelerating rf voltage. The nonlinear 

part results in deterioration of the beam quality and increase in the loss of beam due to 

long tails on the beam profiles.  

A rough estimate of space  charge  induced  energy  spread  scE  can be obtain by the 

integration of longitudinal electric field lE  over the whole path of the particle in a 

cyclotron  as [26] 

RdnqEE lsc 


2
2

2                 (1.5) 

The turns remain separated as long as this energy spread is less than the energy gain per 

turn at the extraction radius. Based on “sector model” Joho [28] deduced a very useful 

scaling law that the maximum beam current scales with 
3

1

N
, where N  is the total number 

of turns. Thus for acceleration of high beam current in a cyclotron the turn number N  
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should be small which implies a high energy gain per turn. A preliminary estimate of 

current limit due to longitudinal space charge effect can be obtained from  
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where T  is the final kinetic energy, N  is the number of turns and   is the cross section 

of the bunch with phase width  .  

The criteria stated above give only a rough estimate of the intensity limit from the 

transverse and longitudinal space charge effects. Therefore, a more detailed study and 

simulations are needed to know the actual beam behavior in the cyclotron. 

1.3. Axial injection and inflectors 

One of the greatest improvements in the operation of the AVF cyclotron over the last 

thirty years has been the use of the external ion sources and axial injection system. This 

scheme has many advantages in terms of the high current operation, easy maintenance, 

possibility of pre-acceleration of the beam etc. The job of the axial injection system is to 

transport the ion beam from the external ion source to the injection point located at the 

central region of the cyclotron. In this system the ion beam enters into the axial bore of the 

cyclotron magnet and finally bent by 900 into the median plane of the cyclotron by means 

of an inflector. Most of the inflectors consist of two parallel electrodes across which an 

electric field is applied. The beam inside the inflector is affected by the action of both 

electric and magnetic fields and so the design of the inflector is complicated in nature. In 

the following subsection we briefly discuss about the most widely used inflectors in the 

cyclotrons such as electrostatic mirror [29], hyperboloid inflector [30], parabolic inflector 

[31] and spiral inflector [32].  
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1.3.1. Mirror inflector  

The mirror inflector consists of a pair of planer electrodes which are positioned at an 

angle of about 450 to the incoming ion beam. To allow the ion beam to enter the inflector 

one electrode is made of grid of wires. The grid is grounded and a dc voltage is applied to 

the other electrode. Ions entering axially in the mirror inflector are bent by 900 in the 

median plane. Although the mirror inflector has a simple structure, the grid reduces the 

transmission efficiency and increases the effective emittance of the beam at its exit. Since 

ions do not travel in an equipotential line inside the mirror inflector, it requires almost 

same voltage as the injection voltage for the inflection.  

1.3.2. Hyperboloid inflector  

The hyperboloid inflector was proposed by Muller. The electrodes are formed by two 

pieces of concentric hyperboloids and their rotation axis is parallel to the magnetic field. 

The electric field distribution inside the inflector possesses radial symmetry. This means 

that once the magnetic radius of curvature has been chosen the inflector geometry is 

completely fixed and hence there are no free parameters in the inflector design for 

readjustment of orbit centre. It provides the complete decoupling between the radial and 

axial motion and hence there is no growth in the effective emittance. The matching of the 

beam emittance at the inflector exit with the cyclotron acceptance is much simple to 

obtain. The central trajectory is along an equipotential, but the contribution of electric field 

is not always to bend the beam by 90°. This inflector is not compact. 

1.3.3. Parabolic inflector  

In this inflector the electrodes are obtained from the bending sheets of metal plates into 

a parabolic shape. It requires relatively low voltage and is easy to manufacture using 

standard machine shop techniques. The one of the electric field components is always zero 

at all points within this inflector. It has the same disadvantages as the hyperboloid; there 
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are no free parameters, and the dimensions of the device are relatively large. Nowadays 

this type of inflector is rarely used. 

1.3.4. Spiral inflector  

The spiral inflector has now become most widely used inflecting device owing to its 

flexibility, relatively low voltage needed for operation and almost 100% transmission 

efficiency. First developed by Belmont and Pabot [32], it is a three-electrode device 

consisting of a pair of biased electrodes housed into a grounded shielding, being the third 

electrode. Since this inflector is used in a magnetic field, the biased electrodes have a 

twisted shape to take into account the spiraling of the ion trajectory due to the magnetic 

field. The biased electrodes produce an electric field perpendicular to the design orbit to 

inflect ions. Since the central ion trajectory always lies on an equipotential surface the 

required voltage to inflect ions is much lower. The beam inside the spiral inflector is 

affected by the action of both electric and magnetic fields and so the ion trajectories are 

complicated in nature. The shape and size of the spiral inflector depends on magnetic 

radius, electric radius, tilt parameter, spacing and width of the electrodes etc [33]. 

However, for a given magnetic field and injection energy of the beam, the final shape to 

meet the beam centering requirements depends on two adjustable parameters, the inflector 

height and the tilt angle. This fact makes the spiral inflector more flexible compared to 

other inflectors used in cyclotrons.  

1.4. Microwave ion source and its injection system at VECC 

In this section we will briefly present the description of the off-line testing stand of 

injection system of the cyclotron which consists of a microwave ion source and 

approximately 3 meter long low energy beam transport line (LEBT). The microwave ion 

source (2.45 GHz, 80 kV, 20 mA) is presently under testing for performance improvement        
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[9, 34]. Beam from the ion source will be transported by a low energy beam transport line 

and will be injected axially into a 10 MeV, 5 mA compact cyclotron. The ion source 

(shown in Fig. 1.1) consists of a plasma chamber, two movable solenoids to produce 

desired magnetic field and a triode ion extraction system. The diameter of the apertures in 

the plasma electrode, accelerating electrode and de-accelerating electrodes are 7 mm, 10 

mm and 10 mm respectively. The plasma chamber is a double walled water-cooled 

cylindrical stainless steel chamber of 100 mm length and 90 mm diameter. The microwave 

power from the 2.45 GHz, 1.2 kW magnetron is coupled to the chamber through a three 

stubs tuning unit, an auto tuner and water cooled ridged wave-guide.  

 

Fig. 1.1. 2.45 GHz microwave ion source on the high voltage deck and solenoid based low 
energy beam transport line. 

Ion source with adjustable solenoid, its power supplies, microwave generator, a high 

precision gas flow system etc., all are kept at a high voltage deck ~ 100 kV. High voltage 

deck is separated from the ground through polypropylene insulators. A two-segment 

ceramic insulators (Al2O3) column, which supports the beam extraction electrodes, 

separates the high voltage deck and the beam line at the ground potential. Power to the 

various subsystems on the deck is supplied using a 150 kV, 30 kW isolation transformer. 

Control units for adjusting current in the solenoids, movement of solenoids, tuning of 

microwave power, adjustment of gas flow etc. is placed on the high voltage deck. The 
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control and monitoring of the various voltages and current for different subsystems are 

done with a PC at ground potential through optic fibre. 

The injection beam line (shown in Fig. 1.1) consists of two magnetic solenoids, some 

diagnostic elements such as slits, faraday cup and emittance monitoring box. The beam 

from the ion source is expected to contain a substantial fraction (~10 to 20%) of molecular 

hydrogen ion. Two motor controlled independent slits at the waist location of proton 

between the two solenoids, one set for the x-plane and other set for the y-plane, are used to 

control the size of the proton beam and to reject most of the molecular hydrogen beam 

[35]. We have also provided another water cooled fix slit of 4 cm dia after the first 

solenoid and before the waist position of protons. Beam current measuring equipments 

used in the beam line are; a DCCT just after the extraction, a water-cooled faraday cup (up 

to 10 mA only) with secondary electron suppresser after the slit and a faraday cup cum 

beam dump at the end of the LEBT. Three turbo pumps having pumping speed of 520 l/s 

are used to evacuate the entire system.  

                     

Fig. 1.2. Beam spot of 80 keV, 5 mA on water cooled alumina plate. 

We have achieved a stable beam current around 10 mA on DCCT and 7 mA on the 

faraday cup through 1 cm × 1 cm slit just before the faraday cup at 500 W of microwave 

power at an extraction voltage of 80 kV. We have transported this beam up to the length of 

~ 3 meter at the last beam dump near the diagnostic chamber without any loss. We have 
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also observed increase in the beam current ( 10I mA) at the DCCT with increase in 

microwave power. Beam spot of 80 keV, 5 mA on alumina plate located at a distance 

about 3 meters away from the extraction is shown in Fig. 1.2. Most of the ring type 

shadow around the hot spot is due to other beams and neutrals. At present we are testing 

the source for long term stability and beam quality improvement.  

1.5. Outline of the thesis 

This thesis presents the results of works carried out to settle some of the physics and 

technological issues related with the injection and acceleration of the space charge 

dominated beam in a compact proton cyclotron. The design issues of a spiral inflector, 

main magnet of the cyclotron and space charge effect on the behaviour of beam envelopes 

in the spiral inflector and cyclotron have been discussed. The analysis is performed for a 

10 MeV high current compact proton cyclotron with injection energy of 80 keV and beam 

current in the range of 5-10 mA.  

The design of the magnet for high current compact cyclotron requires special attention.  

The isochronous magnetic field of a compact cyclotron is mainly achieved by accurately 

shaping the profile of hill. A well designed magnet not only provide required isochronous 

magnetic field for the beam up to the extraction radius but at the same time it also provides 

sufficient vertical and radial focusing to the beam and avoids dangerous resonance 

crossing during the acceleration of the beam. In the design of the magnet one requires a 

special attention in the central part and optimization of the central plug to place the spiral 

inflector properly and provide sufficient axial focusing. The quality of the beam is mainly 

decided by the proper design of the central region. The basic problem in the central part of 

a high current compact cyclotron is that the focusing provided by the magnetic field is 

very low during the first few turns. 
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The other crucial component in the central region is the spiral inflector. Its task is to 

inflect the axially injected beam in the median plane and place the beam on the proper 

orbit without much degradation in the quality of the beam. In this regard the design of the 

spiral inflector and its location in the central region is very important for better centering 

and further acceleration of the beam in the cyclotron. 

For the acceleration of high intensity beam in a cyclotron one requires careful control 

of particle dynamics with space charge forces of the beam in different subsystems. This is 

the important aspect that has been discussed in this thesis. The acceleration of high 

intensity beam of the order of mA in a compact cyclotron is strongly influenced by the 

space charge defocusing forces [36]. The study of the beam behavior in the cyclotron 

reveals that beam envelope behaves differently due to the coupling of the axial and radial 

motion arising due to space charge effects [37]. At the injection the beam must be matched 

to the acceptance of the central region of the cyclotron. Any mismatch causes envelope 

oscillations and amplitude growth of the beam during the acceleration which finally results 

in the loss of the beam. Careful optimization of the input beam parameters is thus required 

if matching conditions are to be achieved. The estimation of the radial and vertical 

acceptances of the cyclotron in the presence of space charge and understanding of the 

behavior of the beam envelopes along the accelerated orbits are also important for lossless 

acceleration of high intensity beam. 

The spiral inflector couples the radial and axial motions of the ion and thus affects the 

properties of the beam. This effect is more pronounced for high intensity beams. The beam 

properties at the exit of the inflector strongly depend on the beam sizes and phase space 

orientations of the beam at the entrance of the inflector. Keeping all these facts in mind 

and the recent requirement of high intensity beam injection into cyclotrons motivated us to 

investigate the detailed beam dynamics in the spiral inflector with space charge. 
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A matching of beam from the ion source to the input of the spiral inflector is essential 

to keep the beam loss and emittance growth within acceptable limit and thus to achieve 

efficient beam transmission through the inflector. Numerical results show that for 

minimum emittance growth and less divergence in the axial direction, the input beam at 

the spiral inflector should be a converging non-axisymmetric with equal emittances in 

both the transverse planes. Thus the transformation of initially axisymmetric beam to a 

non-axisymmetric beam at the input of the inflector is also required. We have discussed 

this aspect in the final part of the thesis. 

The Chapters of this thesis are laid out in the order in which the work has been 

completed. Chapter 2 of the thesis consists of determining the preliminary design 

parameters of the 10 MeV cyclotron. A hard-edge formulation and the transfer matrix 

technique are used. A numerical technique is developed for studying the behaviour of the 

beam envelope during the first turn and also to estimate the vertical acceptance of the 

cyclotron central region in the presence of space charge. Proper matching conditions have 

been found and the limit on the injected beam current has also been estimated. 

In the beginning of Chapter 3, the detailed design of the magnet of the 10 MeV 

cyclotron is described. To optimize the pole profile of the hill of the cyclotron magnet an 

iterative optimization procedure based on random search technique has been developed. 

Here the sector shape is approximated by a polynomial function of radius. A 3D magnet 

code MagNet [38] is used to calculate the magnetic field in the median plane and an 

equilibrium orbit code GENSPEO [39] is used to obtain the betatron frequencies as a 

function of energy. The frequency error is minimized by optimizing the coefficients of the 

polynomial by using the random search technique.  

The later part of Chapter 3 deals with the detailed design of the spiral inflector to be 

used to inflect the 80 keV proton beam into the central region of the 10 MeV cyclotron. A 
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computer code has been developed to solve the equations of motion for the central 

trajectory in the inflector using 3D magnetic field data. The parameters of the inflector are 

adjusted iteratively to orient the beam properly at its exit to produce a well centered beam.  

The detailed study on the beam dynamics through the spiral inflector using a uniform 

ellipsoidal bunch with space charge effect is discussed in Chapter 4. The beam current in 

the bunch increases due to bunching as the beam traverses inside the spiral inflector. This 

is also taken into account in the analysis. The optical properties of the inflector and the 

behaviour of evolution of projected emittances through it have been studied using 

infinitesimal transfer matrix technique and sigma matrix method.  

Chapter 5 presents a detailed investigation on the amplitude growth and oscillations in 

the beam envelopes along the accelerated orbit in the cyclotron in the presence of space 

charge effect using a uniform ellipsoidal bunch. The proper matching conditions are 

obtained by adjusting the input beam parameters to minimize the amplitude growth and 

oscillations. The maximum beam current that can be transported through a given focusing 

channel of the compact cyclotron is also estimated. 

In Chapter 6 a transverse beam matching at the entrance of the spiral inflector using an 

elliptical solenoid is discussed. The transformation of an axisymmetric beam from the ion 

source to a non-axisymmetric beam at the inflector entrance which is required for better 

transmission can’t be achieved by using solenoid magnets as used in the transport line. For 

this one needs either an elliptical solenoid or a quadrupole doublet. The space constraint in 

the transport line favours the use of elliptical solenoid.  

Chapter 7 describes the major highlights of this thesis and suggests further work which 

can be fruitfully pursued as a direct consequence.     
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1.6. Summary 

In this Chapter first we have presented some general overview about the cyclotron and 

different types of inflectors. Then we have described the 2.45 GHz microwave ion source 

and its injection system operating at the Variable Energy Cyclotron Centre, Kolkata. We 

have also presented a brief overview of the work presented in this thesis. The following 

Chapters describe the details of the work outlined briefly in this Chapter. 
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Chapter 2 

Space charge effects in a compact cyclotron 

2.1. Introduction 

The acceleration of high-intensity beam in a cyclotron is primarily limited by the 

transverse and longitudinal space charge effects. The transverse space charge effect is 

serious at low energies near the central region and severely limits the intensity of the beam 

to be injected within a given acceptance. The longitudinal space charge effect, which 

expands the radial region occupied by the beam, is present throughout and is a major 

contributor to the extraction problem.  

In a compact cyclotron, the vertical focusing force provided by the electromagnetic 

field is very weak near the center. The transverse space charge force further reduces this 

focusing force, which leads to an increase in the beam size, and thus sets a limit on the 

beam current that can be accommodated in a given aperture. This limit on the beam 

current depends on various factors, such as injection energy, beam emittance, available 

vertical aperture, vertical tune, phase acceptance in the central region etc. Several authors 

[25-27, 40, 41] have investigated the effect of transverse space charge in cyclotrons and 

obtained analytical expressions to estimate the limit on the beam current. The beam 

intensity limitations due to space charge and possible ways to improve it have been 

summarized in detail by Stammbach in ref. [26]. A preliminary estimation indicates that 

the limiting current due to transverse space charge in a compact cyclotron can be 

improved by increasing the injection energy of the beam and enhancing the focusing 

forces by optimizing the magnet geometry of the cyclotron.  
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As mentioned earlier, the longitudinal space charge effect expands the radial region of 

the beam and causes extraction problem. In order to extract the beam with minimum 

losses, a clear separation of turns at the extraction radius is mandatory. This can be 

realized in practice in two ways. First, one can design rf resonators to stand high voltages. 

This reduces the number of turns and also increases the turn separation due to low energy 

spread at the extraction. The other way is to design the cyclotron with a large extraction 

radius, i.e., using a low average magnetic field.  

Apart from using high injection energy, the general trend for improving the limiting 

current in a cyclotron is to use betatron tunes as high as possible. It is shown in ref. [36] 

that this procedure generally does not yield the desired result in the case of a compact 

cyclotron. The limiting current depends on the vertical betatron tune and the average 

magnetic field, and both are related to each other. An attempt to improve the vertical 

betatron tune by optimizing the sector geometry results in a reduction of the average 

magnetic field and vice versa. For a given hill and valley field, the maximum in the 

vertical betatron tune occurs at a lower hill angle and decreases as the hill angle is 

increased. The average magnetic field more or less increases linearly as the hill angle is 

increased. When these two parameters are optimized properly for a given hill and valley 

fields, one gets a maximum in the limiting current at a particular hill angle ~ N/ , where 

N is the number of sectors. This result gives a direction on how to choose the sector angle 

while working on the design optimization of a compact cyclotron.  

In most of the works mentioned above, results are based on the assumptions that the 

magnet of the cyclotron is a uniform focusing channel, the available geometrical aperture 

is completely filled with a beam of uniform density, and there is no coupling between the 

vertical and horizontal motions. These assumptions are crude and, in general, due to 

envelope oscillations, the aperture is never filled. The space charge term in the envelope 
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equations couples the two motions. Though, the above-mentioned results are very useful 

for having an initial estimate, a more detailed study incorporating the coupling of the two 

betatron motions is necessary for finding out the optimum initial beam parameters.  

In this Chapter first, the analytical formulations used for obtaining the shape of the 

magnet sectors are outlined. These formulations are then used to study the behavior of 

space charge dominated beam during the first turn in the 10 MeV compact cyclotron. The 

change in beam envelopes has been studied by changing the current, initial width, 

divergence and emittance of the beam. It is tried to find out the proper matching 

conditions and the estimation of the limit on the beam current that can be injected. In 

addition, the dependence of the limiting current on various beam-related parameters has 

also been studied. 

2.2. Method of simulation 

In this section, analytical formulations used for obtaining the shape of the magnet 

sectors are outlined. The preliminary design parameters of the cyclotron have been 

obtained using the hard-edge formulations [17] and the transfer matrix technique [42]. 

Since the vertical focusing frequency is quite sensitive to the fringe field at the hill-valley 

boundary, we have modified the classical hard-edge formula to include the soft-edge 

effect. The flaring and edge effects have been introduced by using thin lenses at each hill-

valley boundary. In the following sub-sections, we briefly outline the analytical 

expressions used for computing the properties of the equilibrium orbit, betatron tunes and 

beam envelopes in the compact cyclotron. 

2.2.1. Cyclotron parameters 

 Consider an N  sector compact cyclotron with magnetic fields HB  and VB  in the hill 

and valley respectively. Let the angular widths of hill and valley be 0 and 0 on an 



22 
 

equilibrium orbit, and the corresponding angles of turning of orbits be   and   with 

radius of curvature H  and V , respectively. The geometry of an equilibrium orbit for 

one sector is shown in Fig. 2.1. For a particle of charge q , mass m , and momentum p , 

following relations hold: 
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Here R  is the distance between the machine centre and the point on the orbit at the hill-

valley boundary. By choosing a central field CB  and using the isochronous condition that 

the period of one revolution be constant, i.e. 
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and using simple algebra, one can easily get expressions for angles   and   as 
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where   is the usual relativistic term and v  is the velocity of the particle. Using relations 

of Eqs. (2.1)-(2.5), it is straight forward to obtain relations between angles 0 and 0 as 
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Here 1  is the spiral angle at the entry of the hill and can be chosen as desired to optimize 

a special design. The effective spiral angle 2  at the exit of the hill, which includes spiral 

angle as well as flaring effect, can be obtained using the relation 

dR
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d
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12 tantan                                                        (2.9) 

 

Fig. 2.1. Orbit section in one period of magnetic field consisting of a hill and a valley. 

The second term of Eq. (2.9) can be obtained by performing a simple differentiation 

and algebraic manipulations using Eqs. (2.2), (2.3) and (2.6). We have introduced the 

correction term for fringing fields (soft edge effect) [43] by replacing 1  and 2  in the 

case of the vertical motion by  
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Here g  and   represent the hill gap and radius of curvature of the particle in the hill 

when 1  and 2  are used for entry and exit angles for the hill respectively.  When 1  and 
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2  are used for valley, g  and   represent the valley gap and radius of curvature of the 

particle in the valley, respectively. 1K  and 2K  are constants and have different values for 

different types fringing field boundaries [43].  

2.2.2. Betatron tunes 

We have used the well-known matrix method to estimate the radial and vertical 

betatron tunes x  and y . Here hills and valleys are treated as bending magnets of lengths 

H  and V  having focusing strengths of H/1  and V/1 respectively. The flaring and 

edge effects are introduced by using thin lens matrices at each hill-valley boundary. The 

transfer matrices HR and HV for horizontal and vertical motions in hill are given by 
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The transfer matrices VR and VV for horizontal and vertical motions in valley will be 

similar and can be obtained by replacing   , VH   , 
21   , and 12   , in 

Eqs. (2.12) and (2.13). The radial and vertical betatron tunes x  and y  can be obtained 

from the expressions: 
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We have obtained the shape of the magnet and properties of the equilibrium orbit using an 

iterative process. Care has been taken to keep betatron tunes x  and  y  sufficiently away 

from the resonance. It should be noted here that all  , 0 ,  , 0 , H , V , R  etc. are the 

function of beam energy and constant for a given equilibrium orbit. After acceleration, 
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particles move to new equilibrium orbit and therefore, all the parameters mentioned above 

assume new values.    

2.2.3. Beam envelopes 

In order to obtain the beam envelope )(sX  in the horizontal plane and )(sY  in the 

vertical plane, where s  being the distance along the equilibrium orbit, we have solved 

numerically the following coupled envelope equations [44]                                       
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where, xk  is the well-known focusing strength of magnets (hill or valley) in horizontal 

direction (= 1  ).  The term (  /2 ) is included with the beam current I  to account for 

the beam phase width accepted in the central region. qmcI 3
00 4 , with qm /  being 

mass/charge ratio of the particle and is known as the characteristic current and for 

proton, MA310 I . x  and y  are the beam emittance in the x  and y  planes 

respectively and   and   are the usual relativistic parameters. We have included the 

acceleration effect of two resonators in the opposite valleys by approximating them with 

four step-function accelerating gaps. Equations (2.16) and (2.17) have been solved 

numerically in the hill magnet and the valley magnet to obtain X , X   and Y , Y  . At each 

hill valley boundary, X and X obtained from the solutions have been converted to the well 

known twiss parameters x , x  and x   using the following relations: 
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These twiss parameters are then transformed to new values by the thin-lens matrices R, 

which include the effect of edge, flaring and soft edge: 
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Here J1 and J2 stand for the initial and final matrices containing twiss parameters, 

respectively. We can easily obtain the lens matrix R for horizontal and vertical motions at 

the entry of a hill by using 1   and 1  , and at the exit from a hill by using 2    

and 2  , respectively. In the case of motions at the entry and exit of a valley, we need 

to replace 
21   , and  12   . The radius of curvature H   for the hill, and V    

for the valley. The final twiss parameters obtained from J2 and the relations of Eq. (2.18) 

have been used to get back X and X  for further calculations. Similar expressions have 

been used for y-plane also. Since the slope of the envelope reduces with the acceleration, 

we have modified X   and Y  suitably at each accelerating gap by multiplying them with 

the ratio of old   to the new .  

2.3. Numerical results and discussions 

In this section, we present the results of preliminary design studies of our 10 MeV 

compact cyclotron and discuss the results of numerical simulation carried out for studying 

the behavior of the beam envelopes during the injection [37]. 

2.3.1. Preliminary design of the 10 MeV magnet 

 A hard-edge approximation and the transfer matrix technique developed in the 

previous section have been used to determine the magnet shape. A linear drop-off of the 

field model has been used for the fringe field using the value for the fringe field integrals 

1K  and  2K  equal to 1/6 and 3.8, respectively [43]. Figure 2.2 shows the magnet sector 
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geometry and radial and vertical betatron tunes as a function of beam energy. The 

important design parameters (preliminary design) are listed in Table 2.1.  

 

Fig. 2.2(a). A schematic of sector geometry obtained using the hard-edge formulations and 
the transfer matrix technique. 

 

Fig. 2.2(b). Radial and vertical betatron tunes as a function of beam energy. 
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Table 2.1 

Parameters of the 10 MeV compact cyclotron 

Parameters Values 

Injection energy 

Final energy 

Hill field BH 

Valley field BV 

Hill gap 

Valley gap 

Max. hill angle 

No. of resonators 

Injection radius 

Radial tune υx 

Vertical tune υy 

100 keV 

10 MeV 

1.5 T 

0.15 T 

4 cm 

46 cm 

34.20 

2 

6.6 cm 

1.1-1.2 

0.61-.99 

2.3.2. Transverse space charge effect and limiting current 

In order to study the behavior of the space charge dominated beam during the first turn 

in the 10 MeV cyclotron a computer code is written to solve the differential equations 

(2.16) and (2.17). We have used step size equal to 0.1 mm in the numerical calculation. 

Microwave ion sources operating at different labs produce several mA of proton beam 

with normalized emittance varying between 0.4 to 1.0 π mm mrad [45]. We have used 

same values for the normalized emittance 8.0  n   mm mrad in both the planes 

which corresponds to total emittance of 53.4 π mm mrad at 100 keV injection energy. The 

phase acceptance   in the central region of a cyclotron varies between 200 to 400 of rf 

[46]. In the present work we have assumed   = 30o of rf. 
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Figure 2.3(a) shows the behavior of the beam envelopes with distance s along the 

equilibrium orbit at an injection radius of 6.6 cm. In this case, there is no acceleration and 

the beam current 0I  mA. The term zero beam current ( 0I  mA) throughout the 

thesis, has been used to indicate low beam current where the space charge effect is 

negligible. We can clearly see the periodicity in the envelope oscillations and it is 

straightforward to find out the matched initial phase ellipses analytically.  

 

Fig. 2.3. Behavior of beam envelopes in the radial and vertical directions with distance s 
along the equilibrium orbit for the first turn with zero beam current: (a) no acceleration, 

(b) accelerations and soft-edge effects. Normalized emittance 8.0n  mm mrad in both 

the transverse planes. 

Figure 2.3(b) shows the envelopes with acceleration and soft-edge effects. As 

indicated earlier, the acceleration has been introduced using four gaps, each having 100 

kV and located in two opposite valleys. We have chosen the starting point at the entry of a 

hill; the first two acceleration gaps are at the beginning and at the end of the first valley 

and the other two gaps are in the third valley. One can see the lack of periodicity in the 

envelope oscillations due to the increase in the path length and slight reduction in the 
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amplitude caused by acceleration. The introduction of the soft edge has not only increased 

the envelope amplitude but also added an extra oscillation in the axial envelope. It is easy 

to see from Fig. 2.3 that at low beam intensity the average amplitude of the beam envelope 

is limited to ~ 2.2 mm in both planes. The transverse space charge effect leads to an 

increase in the beam size. In order to have a comparative study, we have restricted the 

maximum envelope amplitude to 5 mm in both planes in our further analysis. 

 

 

Fig. 2.4. Results of numerical calculations: (a) beam envelopes in the radial and vertical 

directions with accelerations, soft-edge effects and 85.5I  mA. Envelope amplitude is 

restricted to 5  mm in both planes, (b) phase ellipses in the radial and vertical directions 

used as initial condition. These are the matched ellipses (Fig. 2.2(a)) with 0I  mA. 

Figure 2.4(a) shows the beam envelope with the same initial conditions as those of the 

matched conditions ( 0I  mA) used in Fig. 2.3(a), when the injected beam current 

85.5I  mA. The matched phase ellipses are shown in Fig. 2.4(b). It is clear that these 
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initial conditions are not at all suitable for injection in the case of space charge dominated 

beams, because best aperture filling does not occur in this case. It is well known that a 

beam matched to the periodic system has minimum envelope oscillations. However, in the 

case of the space charge dominated beams, it is difficult to find out the matched envelope 

analytically and one has to resort to numerical techniques. 

 

 

Fig. 2.5. Results of optimization: (a) beam envelopes with amplitude 5  mm in the radial 

and vertical planes, optimized using upright phase ellipses in both planes, (b) upright beam 

ellipses with normalized emittance 8.0n  mm mrad in both planes. 

Figure 2.5(a) shows the beam envelopes optimized using initial up-right ellipses, i.e. 

0 yx  . These ellipses are shown in Fig. 2.5(b). As indicated in the figure, the 

injected beam current is improved substantially to 14.8 mA in this case. We have also tried 

to optimize the beam envelopes using tilted ellipses as initial conditions. Results of 
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optimization are as shown in Figs. 2.6(a) and (b). One can notice a marginal increase in 

the beam current (15.8 mA) within the 5 mm half aperture. 

 

 

Fig. 2.6. Beam envelopes in the radial and axial planes optimized with tilted phase ellipses 
to accommodate more beam current (15.8 mA). (a) Beam envelopes with amplitudes 5  

mm, and (b) phase ellipses with normalized emittance 8.0n  mm mrad in both planes. 

As stated earlier the proton beam from 2.45 GHz microwave ion source will be 

injected into the central region of the 10 MeV compact proton cyclotron. The ion source is 

presently under testing for beam characterization. During the testing of the source it is 

observed that ion source is more stable and reliable against sparks and electric discharge in 

the extraction region when operated with extraction voltage near 80-85 keV. So we have 

repeated the simulation with injection energy of 80 keV also. In order to have large turn 

separation at the extraction and to reduce the number of turns to obtain the final energy we 



33 
 

have now chosen the dee voltage 125gV  kV. Figure 2.7 shows the simulation results of 

beam envelopes in the radial and axial planes optimized with tilted phase ellipses. It has 

been found that with decrease in the injection energy the limiting current is also decreased 

to a value of 13.6 mA within the specified 5 mm half aperture sizes in both the planes. 

 

 

Fig. 2.7. Simulation results of beam envelopes in the radial and axial planes at injection 
energy of 80 keV and acceleration voltage 125 kV (a) Beam envelopes with amplitudes 

5 mm, and (b) phase ellipses with emittance 8.0n  mm mrad in both planes. 

2.3.3. Effect of input conditions on limiting current 

We have also studied the behavior of beam envelopes with different starting conditions 

and accelerating voltages. It has been observed during optimization that there is a 

particular set of initial parameters for a given beam current that gives the optimum beam 

envelope. An optimized set of initial parameters of phase ellipses X ,  X   and Y , Y  for a 
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given beam current (say 14.8 mA) is not at all suitable for other beam currents (say 10 

mA). We observed that a change in the accelerating voltage from 100 to 50 kV reduces the 

limiting beam current marginally (0.25 mA) in the matched condition, whereas this 

reduction is substantial in the case of the optimized condition (2.2 mA). We believe that 

these effects are due to the coupling between x and y motions via space charge term.  

Figure 2.8 shows the variation of the maximum beam current confined within a half-

aperture of 5 mm in both horizontal and vertical planes, as a function of the injection 

energy and the beam emittance. As expected, the limiting current increases with the 

injection energy and reduces if the emittance is increased. Clearly, a beam with low 

emittance ~ 0.8  mm mrad and injection energy in the range of 80-100 keV appear 

reasonable for the injection of 10 mA beam current (theoretical limiting value ~ 15 mA) in 

the compact cyclotron. 

 

Fig. 2.8. Variation of limiting current as a function of injection energy for various values 
of beam emittance. In all cases the half aperture is restricted to 5 mm in both the planes. 

2.3.4. Longitudinal space charge effect and turn separations 

Although the work presented in this Chapter is mainly devoted to the transverse space 

charge effect, we would also like to mention the results of preliminary calculations for the 
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turn separation and the energy spread produced by the longitudinal space charge effect at 

the extraction. As indicated earlier, acceleration to the beam will be provided by two 

resonators (delta type) located in the opposite valleys. They will be designed to provide an 

accelerating voltage of 100 kV at the injection, which will increase gradually up to 200 kV 

at the extraction. With an accelerating voltage of 200 kV and x equal to 0.9, we get a 

radial gain per turn equal to ~ 32 mm and an effective turn separation of ~ 14 mm at the 

extraction for a beam having a phase width equal to 300 of rf and a radial width of ~ 10 

mm at the injection. For estimating the effect of longitudinal space charge, we have used 

the following simple formula for the energy spread due to longitudinal space charge after 

n  turns. The formula is valid for separated turns and is given by [47] 
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where I  is the average beam current, a2  is the transverse beam diameter, and rff  is the rf 

frequency. Using an average value of ~ 150 kV for the accelerating voltage at each gap 

and 42 MHz for the rf, one obtains an energy spread of ~ 300 keV for 10 mA beam at 10 

MeV. Since the space charge induced energy spread is smaller than the energy gain per 

turn, turns will remain separated at the extraction. Assuming that the total longitudinal 

space charge energy spread is equal to half of the energy gain per turn, the average beam 

intensity limit due to longitudinal space charge comes out to be ~ 19.7 mA at 10 MeV. 

We would like to point out here that the results presented here are valid when the 

injection energy is sufficiently high in the range of 80-200 keV and the average magnetic 

field is low (which is the case when one uses the deep valley concept to provide large 

flutter). These results are not applicable for the small injection radius (compared to the 

pole gap in the hill region), i.e. for the low injection energy in the region of 10-20 keV and 
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the high average magnetic field in the range of 1.5-1.8 Tesla. Here the injection radius as 

well as flutter becomes very small. The hard-edge analytical relations together with the 

estimation of fringe field using thin-lens matrices used by us are not valid in this region.  

2.4. Summary 

In this Chapter, we have studied the behavior of the space charge dominated beam 

envelopes during the injection in a compact cyclotron. We have studied the change in the 

beam envelopes by changing the current and other parameters of the injected beam and 

estimated the limit on the beam current that can be injected. The dependence of the 

limiting current on various machine and beam related parameters have also been studied. 

In addition, we have described a method for improving the limit of the beam current that 

can be injected into a compact isochronous cyclotron. A procedure of optimizing beam 

parameters in a given acceptance in the presence of space charge force is also presented. 

Results of this work will be helpful in choosing the geometry of the magnet for a high-

current compact cyclotron during the initial design stage before a more complicated and 

refined optimization program is taken up. 
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Chapter 3 

Design of magnet and spiral inflector for 10 MeV 

compact cyclotron 

3.1. Introduction 

In this Chapter first we describe the design of the magnet of 10 MeV compact 

cyclotron carried out using 3D code and an optimization technique. Then we present the 

detail design procedure of the spiral inflector using the computed magnetic field data. 

 One of the central problems for isochronous cyclotrons is to obtain a desired radial 

field profile for a constant period of ion revolution. The isochronous magnetic field of 

compact cyclotron is mainly achieved by accurately shaping the profile of hill. The 

deviation between the achieved magnetic field and the required isochronous field should 

be within an acceptable limit of 1 in 104. Well designed sector shape, not only minimizes 

the phase slip of the beam with respect to rf but at the same time, provides sufficient 

vertical and radial focusing to the beam.  

Analytical formulas available in the literature do not predict the correct values of hill 

angle and betatron tunes at lower radii in the case of a compact cyclotron particularly in 

the cases where hill gap is small and valley gap is large. The fringe field effects are no 

longer negligible in such cases. Hence a 3D code, together with an equilibrium orbit code, 

becomes necessary to obtain the correct shape of sectors. This involves a lengthy iterative 

procedure to determine the hill angle at a large number of radii.  

There is no simple method available in the literature for the iterative shimming and 

quick optimization of the sector geometry. Papash et al. [48] proposed an algorithm for 

shimming of the hill using analytical formulas. However, their method is valid only for 
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low flutter field. Qin et al. [49] used a method based on least square fitting of the multiple 

linear regression model of the magnet pole shimming vector related to isochronous field 

formation. For this, they used the data of isochronous field error due to small change in 

hill angle at some discrete radial points. The sector shape at each iteration was controlled 

by changing the hill angles at these locations. In this method, for a better accuracy, one has 

to use a large number of hill data points. So it takes large computation time because 

initially one has to run the 3D code for each data point to generate the correlation matrix.  

In this Chapter the design procedure of main magnet of the 10 MeV high current 

compact proton cyclotron has been discussed. We have proposed a shimming method, 

which gives smooth sector geometry of the hill. Using the computed magnetic field we 

have then discussed the design of a spiral inflector which will be used to inflect the 80 keV 

proton beam into the central region of the cyclotron. A computer code has been developed 

to solve the equations of motion for the central ion trajectory. The parameters of the 

inflector are adjusted iteratively to produce a well centered beam. The orbit centering of 

the inflected beam is checked by using the central region code.  

3.2. Cyclotron magnet design 

In this section we briefly outline the formulations used for optimizing the sector 

geometry [8]. We have used a 3D magnetic field code MagNet [38] to calculate the field 

in the median plane and have obtained the frequency errors as a function of energy using 

equilibrium orbit code GENSPEO [39]. These frequency errors are then minimized by 

modifying the sector geometry. 

3.2.1. Optimization with Random search method  

Consider a N  sector cyclotron with constant magnetic fields BH and BV in the hill and 

valley respectively. Let )(r  and )(r  define the hill and valley angles, respectively, at an 
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average radius r . Using hard edge approximation for the sectors, we can write the 

following relations: 
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where CB  is the isochronous field at the center of the cyclotron and  2/ mcqBa C . 

Using Eqs. (3.1) we can write  
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Expanding the square root term in the above equation we get 
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The above equation shows that the hill angle )(r  is a polynomial function of 2r for 

constant hill and valley fields. We can see that the coefficients of the above equation are 

known in terms of the parameter a  and it is very easy to get required )(r at different 

radii. However, in real situation, hill and valley magnetic fields are not constant due to 

fringe field effects and are function of both r  and azimuthal angle. As a result, the 

coefficients of the polynomial in Eq. (3.3) for )(r will be different. These are then to be 

found out by the iterative approach as mentioned earlier. We approximate the form of the 

hill angle to be a polynomial of degree m  in 2r  as 

m
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It is obvious that the polynomial coefficients 0a , 1a etc. depend on the hill and valley 

fields, in addition to the final beam energy. One can start with a given set of an values, and 

iteratively correct these to obtain the final optimized hill angle. For initial model one can 

choose a hill profile as given by Eq. (3.3); however, any reasonable profile of hill 

including a constant hill angle can be used. The first step in the present method is to 
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calculate the z-component of the magnetic field )0,,( zrB  at the median plane for the 

initial sector geometry and obtain the frequency errors at different energies. The frequency 

error is defined as 

1
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k



                          (3.5) 

where k 1, 2, …, n denotes the energy steps, 0  is the constant rotation frequency of the 

particle for isochronous field and )( kE is the rotation frequency of the particle at energy 

kE  for the calculated magnetic field with the assumed sector shape. The magnitude of 

frequency errors greater than the specified tolerance limit means the magnetic field is 

different from the required isochronous field and hence it needs to be corrected by 

modifying the sector shape. 

The second step involves the calculation of the elements of the )1(  mn correlation 

matrix. For this it is required to calculate the magnetic field by slightly changing the sector 

shape with a very small change in one of the coefficients, say iii aaa  , of the 

polynomial keeping all other coefficients and geometry constant. The same procedure is 

repeated for all other coefficients one by one. The small deviation in frequency errors 

)1( , )2( ,…, )(n  so obtained at different energy steps are related linearly as 
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For the validity of these linear set of equations it is necessary that the perturbed values ia  

should be very small so that the shift in the frequency errors is small and 
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While calculating the correlation matrix we have found that the values of the matrix 

elements for initial few energy values (i.e. at lower radius) are very small. So to make an 
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appreciable change in the elements at lower radii we have added another factor to the 

equation of hill angle )(r . Now the modified hill angle becomes 

2
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Here, g  is a parameter which we want to optimize for pole shimming in the central 

region, 0r  is the radius where we want maximum changes in the frequency error and a  is 

a chosen constant. Further, we have included the coil current also for the optimization so 

the total number of parameters becomes )3( m  and the size of the correlation matrix is   

)3(  mn . The linear set of equations can be written in the matrix form 
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The optimization of the parameters 0a , 1a ,…, 2ma , has been done by random search 

techniques which is given below. Here parameter 1ma  represents the coefficient g in Eq. 

(3.8) and 2ma  is the coil current parameter. 

In random search method we have minimized the frequency error of the particle by a 

suitable combination of all the unknown parameters. We have defined an error term errorR  

which is the sum of the squares of the estimated frequency errors accumulated over all the 

energy steps  
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Here  
ia

k


 are the elements of the correlation matrix calculated for the initial geometry. 

Now the quantity errorR  is minimized by varying the parameters ia  randomly [50]. A set 

of parameters is chosen randomly within a small range for ia  and errorR  is calculated. This 

is done repeatedly until a small value of errorR  is obtained. This gives an intermediate set 

of ia . The process is repeated with random values chosen around the intermediate set of 

values. At each step the range for each parameter is decreased so that the search becomes 

faster. After a number of cycles of the process one obtains the minimum value of errorR  

and new values of parameters ia . This completes one step of iteration of minimizing the 

frequency error. With this set of new parameters ia , a new hill shape is obtained, and the 

magnetic field is calculated once again. The new frequency errors, which are smaller than 

those calculated with the earlier hill shape, are also determined and random search process 

is repeated. The iterations are continued until the frequency error falls below the required 

tolerance. A good feature of the random search technique is that one can easily introduce 

constraints in the problem. One can reject a solution if the constraints are not fulfilled. One 

can also put constraints that the central field should be within a pre-defined range and the 

betatron frequencies are in the chosen range. 

3.2.2. Optimized magnet geometry 

The above method has been applied to optimize the sector geometry of our 10 MeV, 5 

mA compact cyclotron. The preliminary design of the magnet was obtained using 

analytical formulations based on hard edge approximation and matrix method [17, 37, 42, 

51] discussed in Chapter 2. We have chosen the configuration of the magnet having four 

sectors with maximum field of 1.5 T at the hill centre. We have chosen the deep valley 

structure to provide strong focusing in the vertical direction. The hill gap is 5 cm and the 
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valley gap is 50 cm, same as the distance between the upper and lower return yokes. For 

the injection system, one hole is provided at the center. We have provided eight holes in 

the four valleys for vacuum pumps and RF cavities. Apart from using a high dee voltage 

(125 kV), we have chosen a low average magnetic field equal to 0.689 T (particle 

revolution frequency 5.10f  MHz, harmonic number 4h ) and hence a large 

extraction radius of ~ 65 cm for 10 MeV cyclotron to have a reasonable turn separation at 

the extraction. In order to meet the isochronism, the shaping of the azimuthally averaged 

magnetic field was done with the help of varying the sector angular width along the radius.   

 

Fig. 3.1. Magnet model built in the code. 

Based on the preliminary design, a 3D magnet model was established and MagNet 

code was utilized for the field calculation and optimization. Before starting the actual 

optimization we have fixed the yoke and leg thickness properly so that there is no 

saturation in any part of the magnet. Symmetry considerations allowed us to use only 1/16 

portion of the magnet as shown in Fig. 3.1. This helped us to save time for the 

computation of the field. In order to improve the accuracy we have divided the model into 

different zones appropriate with the dimension i.e., smaller mesh sizes at lower radii. The 

output of the magnet code was used in GENSPEO for the calculation of frequency errors 
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and other equilibrium orbit properties. In the optimization we have used six parameters 

0a , 1a , 2a , 3a , 4a , 9a  from the polynomial and other two as coil current and pole 

shimming in the central region. The field near the extraction radius falls very sharply 

because of finite pole radius. Therefore the hill angle should also change rapidly to keep 

isochronous condition intact up to the extraction radius. For this we have used a higher 

order term 18
9ra  in the polynomial which affects the field only at the extraction. 

 

Fig. 3.2. Decrease in frequency error as a function of energy at different iterations. Here 
numbers 1, 2 , 3… indicate the results obtained after that many iterations. 

For the optimization we have started with the hill shape obtained from Eq. (3.3) and 

current in the coil is set equal to 500 A (turns ~200). The values of frequency error as a 

function of energy are shown in Fig. 3.2 for successive iterations. We can see that the 

convergence of the method is fast and frequency errors are within 02.0  throughout only 

after two iterations. After 6 iterations we have achieved the frequency error 410 at all 

energies. The initial and optimized values of parameters are given in Table 3.1. 
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Table 3.1 

Initial and final optimized parameters 

Parameter Initial value  Optimised value     

Coil current (A) 

a0 

a1 

a2 

a3 

a4 

a9 

g 

500 

15.8 

6.10-5 

4.4.10-10 

2.64.10-15 

0 

0 

0 

489.4 

9.59 

1.5.10-3 

-1.51.10-7 

-6.36.10-12 

1.85.10-15 

4.74.10-34 

-2.37 

 

Figure 3.3 shows the optimized hill shape, i.e., the hill angle as a function of radius. It 

is markedly different from the initially adopted hill shape, indicating the dominance of 

fringe field effect in the case of large difference between the hill and the valley fields. 

 

Fig. 3.3. Hill shape and hill angle optimized by random search method. Dotted curve 
shows the initial hill angle obtained using hard edge approximation. 
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Fig. 3.4(a) shows the variation of the optimized radial and axial betatron tunes as a 

function of energy. The dotted curve represents the analytical values. We can see that the 

values of axial betatron tune y  are greater than 0.5 throughout, except near the central 

region. Fig. 3.4(b) shows the optimized average magnetic field and required isochronous 

magnetic field (dotted). The variation of the integrated phase slip sin  is shown in         

Fig. 3.4(c). It shows that the phase excursion in the entire region is limited within  2 deg. 

The optimized parameters of the 10 MeV cyclotron are listed in Table 3.2. 

 

Fig. 3.4. Equilibrium orbit properties of the optimized magnet. (a) Radial and axial 
betatron tunes as a function of energy. Dotted curves represent the analytical values. (b) 
The optimized average magnetic field and required isochronous magnetic field (dotted) as 

a function of energy. (c) The phase slip sin  as a function of energy for initial phase 
02i , harmonic number 4h  and peak energy gain per turn 500 keV. 



47 
 

Table 3.2 

Parameters of the 10 MeV cyclotron 

Parameters Values 

Injection energy  

Final energy 

Injection radius 

  Extraction radius 

  Hill / Valley field 

Pole gap; Hill/ Valley 

Sector width 

Pole radius 

Ampere turn 

Iron weight  

100 keV/80 keV 

10 MeV 

6.6 cm 

65 cm 

1.5 T/0.15 T 

5 cm/50 cm 

16-34 deg. 

72 cm 

315×200 

25 ton 

One of the most difficult problem to solve was the shaping of the magnetic field in the 

central region. The estimated height of the spiral inflector is comparatively large, around 

10 cm (80 keV injection energy), and therefore, a careful optimization of the central plug 

was needed. We have optimized the height and position of the plug, hill extension in the 

central region to get the average field close to the isochronous magnetic field. 

3.2. Design of the spiral inflector 

The design of a spiral inflector assuming a constant magnetic field has been described 

by many authors [52-56]. This simplification is almost always satisfied when the injection 

energy of the beam is low (~10-20 keV) and the dimension of the inflector is 

comparatively small (height ~ 2-4 cm). Due to low average magnetic field and large 

difference between hill and valley fields, the computed magnetic field in the central region 
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near the axis of our 10 MeV cyclotron is slightly lower than the resonance field. Near the 

central region it also varies with height as well as with radius. The variation of the 

magnetic field with distance z from the median plane along the cyclotron axis is shown in 

Fig. 3.5. Due to these large variations the design of the spiral inflector and central region 

geometry are more complicated and challenging. Here we briefly outline the formulations 

used by us to design the spiral inflector [12]. 

 

Fig. 3.5. Variation of the magnetic field with distance z from the median plane along the 
cyclotron axis. Data is obtained from 3D code. 

3.2.1. Coordinate system 

In a spiral inflector two coordinate systems are generally used [57]. We have used the 

right handed Cartesian coordinate system x , y  and z  with its origin lies on the cyclotron 

axis in the median plane. The three unit vectors yx ˆ,ˆ and ẑ  point along the x , y  and 

z axes respectively. The z axis is vertically opposite to the direction of the incoming ion 

and major component of the magnetic field ( zB ) is opposite to the z  direction and x and 

y  axes are in the median plane. The electric field at the entrance of the inflector is along 

the x direction. The second coordinate system is the optical coordinate system hu,  and v  

with basis vectors hu ˆ,ˆ  and v̂  which moves in space along with the central ion trajectory. 
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Here hu,  and v  denote the coordinates of a paraxial ray. Vector v


 is along the direction 

of the velocity of the beam, vector h


is always parallel to the median plane (x-y plane) and 

vector vhu


 . It is parallel to the median plane at the entrance of the inflector, changes 

its direction as the beam advances and becomes perpendicular to the median plane at the 

exit of the inflector. A schematic diagram of both coordinate systems is shown in Fig. 3.6. 

 

Fig. 3.6. A schematic of fixed right handed cartesian ),,( zyx  and optical 

),,( vhu coordinate system. The electric field is along the x  direction at the entrance of the 

inflector and the magnetic field is uniform and opposite to the z direction. 

If 222
0 zyxv   is the velocity of an ion on the central trajectory, where x , y  

and z are the velocity components of the central ion along x , y  and z  respectively, then 

the unit vectors hu ˆ,ˆ  and v̂  can be expressed in terms of yx ˆ,ˆ and ẑ  as 
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                         (3.13) 

where dot denotes the differentiation with respect to time t . 

3.2.2. Central ion trajectory  

The components of Lorentz force equation in the combined electric and magnetic 

fields can be written as: 
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                (3.16)  

where q , m  and 0v  are the charge, mass and velocity of the ion respectively. Here the 

electric and magnetic fields both are functions of coordinates x , y  and z  and prime 

denotes the differentiation with respect to path length tvs 0 . In order to find the 

analytical electric field inside the spiral inflector we have made the following 

assumptions: 

a) The u component of the electric field, uE  is constant ( 0E ) at all points along the 

central trajectories. 

b) The v  component of the electric field vE  is zero. 

Using these assumptions, the electric field in a tilted spiral inflector can be written as 

hEuEhEuEE hu
ˆ)sin(ˆ)cos(ˆˆ 


                      (3.17) 

where E


 is the electric field strength seen by the central ion trajectory and   is the local 

tilt angle. Figure 3.7 shows the u - h  cross-sectional view. Since the electrodes surface of 
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the spiral inflector are slanted by an angle  , we introduce a rotated optical coordinate 

system defined by rotating the vectors û and ĥ  about the vector v̂  by an angle  . Thus 

huur
ˆ.sinˆ.cosˆ                          (3.18) 

huhr
ˆ.cosˆ.sinˆ                          (3.19) 

and they form the right handed coordinate system ( ,ˆ ru rĥ , v̂ ) as shown in Fig. 3.7.  

 

Fig. 3.7. Spiral inflector geometry as viewed from a plane perpendicular to the central 

trajectory. Here d  is the electrode spacing and S is the width of the electrodes.  

From Fig. 3.7 and using the condition (a) we can write,  

 coscos
0EE

E u 


                        (3.20) 

Here 0E  is the magnitude of the electric field which is always constant and perpendicular 

to the direction of motion of the ion. For a given kinetic energy T of the beam, it decides 

the height parameter A  of the spiral inflector, defined as  

02 qETA                                                                                                                     (3.21) 

In fact, A  is the electric radius of the ion in the absence of the magnetic field. For an 

inflector without tilt the spacing between electrodes is held constant to keep the magnitude 
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of the electric field 0E  a constant and so the electrical radius A . In the case of a tilted 

inflector a component of the electric field is used to generate a force in the plane of the 

magnetic force to modify the beam centering. Here the spacing between electrodes is 

narrowed gradually so that the electric radius A  remains constant. The local tilt angle   

as used earlier is defined by  

 A

szA
k

)(
tan


                                                 

(3.22) 

where k   is a free parameter and it decides the maximum tilt angle km  1tan  at the exit 

of the inflector. Using equations (3.11), (3.12) and (3.20) in equation (3.17) we can write 

the components of the electric field in the spiral inflector as,  
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22
0 yxEE z                                                               (3.25) 

Choosing a suitable value of A  and k   one can easily solve Eqs. (3.15)-(3.16) to get the 

coordinates of the central ion trajectory in a given magnetic field.  

One of the important parameter required to be optimized in the design of the spiral 

inflector is the “off- centre” i.e. the displacement of the centre of the trajectory from the 

vertical axis at the exit of the inflector. It is given by 

22
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                                            (3.26) 
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Here all the values of xxx ,,  and yyy ,,  are evaluated at the exit of the inflector. While 

designing an inflector one needs to optimize the off-center parameter at the exit of the 

inflector to meet the requirement of the orbit centering of the beam in the central region 

for further acceleration. If the central magnetic field is not enough to make the beam well 

centered, the height A  and tilt k   are required to be adjusted properly. The height A  of 

the inflector is limited by the space available in the central region. More tilt affects the 

beam emittance adversely, reduces the gap between electrodes in the exit region and 

makes the fabrication of the inflector difficult. Therefore, a proper choice of parameters A  

and k plays an important role in the design of the spiral inflector.  

 3.2.3. Central ion trajectory in a constant magnetic field  

It is easy and straight forward to show that the general equations for the spiral inflector 

developed so far can be reduced to the well-known equations presented in the literature for 

the case of a constant magnetic field i.e. 0 yx BB  and 0BBz  . Equations (3.14)-

(3.16) and (3.23)-(3.25) with some algebraic manipulations take the following form:  

     0
0

)(sin2sincos2cos)( Bby
mv

qA
bKbkbKbAbx 

                   
(3.28)   

     0
0

)(sin2coscos2sin)( Bbx
mv

qA
bKbkbKbAby                     (3.29) 

bAbz sin)(                                                                      (3.30) 

where )/()/( 0 AsAtvb   is the instantaneous angle of the velocity vector with the 

vertical. The shape parameter K  is defined by 

22

k

R

A
K

m




         (3.31) 

Here 0qBpRm   is the magnetic radius of the ion with momentum p . Equations (3.28)-

(3.30) can be solved analytically to yield the following parametric equations;  
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)sin1()( bAbz  ,  2/0  b                                  (3.34) 

These equations agree with the equations presented in many references mentioned earlier. 

3.2.4. Orbit calculations and design parameters 

In this subsection we present the design results of the spiral inflector. As mentioned 

earlier, the ion source is more stable and reliable against sparks and electric discharges in 

the extraction region when operated with extraction voltage near 80-85 kV. So we have 

worked out the design of the spiral inflector for 80 keV injection energy. The option of 

using 100 keV injection energy is still open. We have performed all the calculations at 100 

keV also, however, in this thesis we present the results for 80 keV only. 

The design of a inflector is an iterative process. For a given injection energy a suitable 

value of parameter A  is chosen considering a reasonable value of the electric field 

between the electrodes (< 20 kV/cm) to avoid any sparking. The tilt parameter k   is then 

varied to produce the desired orbit centre at the inflector exit. We have written a computer 

code to solve Eqs. (3.14) to (3.16) for the central trajectory in the inflector using magnetic 

field data obtained from 3D code and electric field from Eqs. (3.23) to (3.25). The gap 

between electrodes is chosen ~ 14 mm to ensure the loss free bending of the beam with 

maximum diameter of 10 mm. The aspect ratio  , defined as the width of the electrode 

divided by gap between the electrodes is taken equal to 2, first to avoid the effect of the 

fringe field and second to tolerate the shift in the beam trajectory inside the inflector. The 

grounded plates parallel to the inflector entrance and exit are placed 7 mm away from the 
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inflector such that opening of these plates coincide with the opening of the inflector at the 

entrance and exit. Important parameters of the inflector are listed in Table 3.3. 

Table 3.3 

Optimized parameters of the inflector 

Parameters Values 

Height (A) 

Tilt (k) 

Electric field (E0) 

Aspect ratio () 

   Off centering (c) 

   Gap (d0) entrance/exit 

Position at exit (r,) 

Exit data (xe, ye) 

8.65 cm 

0.65   

18.5 kV/cm 

2 

4.1 cm 

14 mm/12 mm 

7.05 cm, 99.110   

(-1.24, 6.84) cm 

 

Fig. 3.8. Electrode geometry of the spiral inflector. Ground electrodes at the entrance and 
exit are not shown in the figure.  
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The data of the central ion trajectory in the inflector obtained from the code has been 

used in program INFLECTOR [58] to generate the shape of electrodes and mesh points for 

RELAX3D [59] to compute the electric field distributions in the inflector. Figure 3.8 

shows the geometry of the spiral inflector without ground plates. Figure 3.9 shows the 

computed electric field strength on the central ion trajectory (u plane) and compares it 

with the analytical electric field (hard edge approximation) used for the initial design. 

 

Fig. 3.9. Comparison of the analytic (dotted) and computed (solid) electric fields along the 
central ion trajectory in the spiral inflector. 

It can be readily seen from Fig. 3.9 that the extension of fringe field is very small 

compared to that of short inflectors where entrance and exit fringe fields contribute 

significantly. This may be due to the choice of a comparatively large aspect ratio   and 

height A  of the inflector in the present design. We found very small difference in the 

coordinates of the central ion trajectory calculated using analytic and computed electric 

fields. The computed electric field and magnetic field data are then used to optimize the 

geometry to get the desired orbit center at the exit of the inflector. 

3.2.5. Orbit centering 

The orbit centering of the inflected beam has been checked by using the central region 

code which solves the equations of motion in a combined electric and magnetic fields. The 
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coordinates and direction of the velocity of the particle following the central trajectory are 

obtained at the inflector exit and entered as an input to the central region code. All 

calculations of beam centering have been performed with the parameters listed in Table 

3.4. The orbit tracing has been done using the computed magnetic field (3D) data. The 

electric field distribution in the median plane at four accelerating gaps is approximated by 

a Gaussian function given by the following expression, )2/exp()2/( 22  xVE gg  , 

)2.04.0(2 HW   where W2 is the gap between the dee and dummy dee (ground 

electrode), H2 is the height of the dee and 0x  is the gap centre. This formula for the 

horizontal component of electric field gE  within the accelerating gap in the median plane 

generates electric field which is very close to the numerically computed electric field [60].  

 

Fig. 3.10. Position of the inflector, location of the accelerating gaps G-1 to G-4 in the 
median plane (x-y plane) and accelerated orbits of proton from 80 keV to 10 MeV. 

Figure 3.10 shows the horizontal cross section in the central region, position of the 

inflector, location of the accelerating gaps G-1 to G-4 in the x-y plane (median plane) and 

accelerated orbits of protons from 80 keV to 10 MeV. It is easy to see from Fig. 3.10 that 



58 
 

the beam is well centered with the input condition provided by the spiral inflector. The 

position of the orbit center has also been found to converge satisfactorily after few turns. 

Table 3.4 

Parameters used for orbit tracing 

Parameters Values 

Dee voltage (Vg) 

r.f. frequency (frf) 

Harmonic No. (h) 

Dee gap (W) 

Dee height (H) 

Phase width( ) 

125 kV 

42 MHz 

4 

2 cm 

3 cm 

± 150 

3.3. Summary  

In this Chapter, we have described random search techniques for obtaining the 

isochronous magnetic field for a compact cyclotron by optimization of pole profile of the 

hill. The advantage of this method is that one can optimise the sector geometry using only 

few parameters (5-8) of the polynomial. This reduces the initial computational effort 

required to generate the correlation matrix by running the 3D code. This method is fast 

and converges in five to six iterations and it allows one to include constraints during 

optimization. The acceptable range of the various parameters, such as the coil current (i.e., 

the central magnetic field), minimum and maximum hill angles, etc., can be easily 

incorporated. We have also described a design procedure of the spiral inflector in the 

inhomogeneous magnetic field. Axially available space in the central region for the 

inflector and the beam centering requirement forced us to choose the tilt parameter 

65.0k , making the fabrication a challenging job.    
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Chapter 4 

Space charge effect in the spiral inflector 

4.1. Introduction 

In this Chapter we present a numerical method to study the space charge dominated 

beam dynamics in the spiral inflector. Numerous studies related to the inflector beam 

optics have been reported by several researchers in the literature [52-56, 61-65]. The 

recent requirement of high current beam injection in a cyclotron [66-69] demands for more 

detailed analysis of beam transport through this it including the effect of space charge. 

Many authors [70-72] have discussed about the beam transport through a spiral 

inflector including the effect of space charge by assuming a simple model of a continuous 

cylindrical beam with uniform distribution. However, in the real situation, as the injected 

dc beam from the ion source approaches the inflector, it takes the form of a bunch due to 

bunching action. The beam current in the bunch increases gradually as it traverses inside 

the spiral inflector. This effect modifies the space charge force on the particles in the beam 

and needs to be taken into account for more accurate analysis of the beam dynamics 

through the spiral inflector.  

In the following section, first we derive the equations of paraxial ion trajectories 

assuming the beam as a well defined ellipsoidal bunch. This assumption is more realistic 

compared to the uniform cylindrical beam. The increase of current in the bunch due to 

bunching action is included in the calculation as the beam traverses inside the inflector. 

The increase in the transverse space charge force is taken proportional to the increase of 

beam current in the bunch. We have also calculated the beam envelopes inside the 

inflector and projected emittances at the exit of the inflector using the sigma matrix 
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method. The initial starting conditions of the beam have been optimized to obtain desired 

phase ellipses with minimum emittance growth in the two transverse phase planes at the 

exit of the inflector. Furthermore, the four dimensional transverse acceptance of the spiral 

inflector has been estimated as a function of beam current.  

4.2. Transverse beam dynamics  

In the derivation of paraxial ion trajectory equations we have assumed the beam bunch 

as a well defined ellipsoid with radial semi axis rm and longitudinal semi axis vm in the 

bunch frame. As mentioned earlier the velocity modulation imparted to the beam at the 

buncher gap leads to the density modulation as the beam advances and thus at each step, 

the charge density )(0 b  in the bunch will take a new value. We have assumed that, 

though the local charge density )(0 b  will vary with path length, it will remain uniform in 

the bunch. The uniformity of local charge density in the bunch is a simplified 

approximation; however, it is very near to the real situation. It has some advantage in 

terms of studying the beam dynamics because in this case the space charge forces are 

linear. In the following derivations we have also assumed that the bunch shape remains 

ellipsoidal within the inflector, the effect of image charge due to the conducting boundary 

is negligible and the beam radius mr  remains constant inside the spiral inflector. 

4.2.1. Space charge field 

 The space charge potential at any point inside the ellipsoidal bunch is given by the 

following expression [73, 74],  

 22

0

0 2)1(
4

)(
),,( vMrM

b
bvrs 




             (4.1) 

where r is the radial distance from the bunch axis and v is the distance along longitudinal 

direction from the bunch centre.  
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The parameter M  for 1 , where )/( mm rv , is given by the following expression: 
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In the moving frame of the bunch the space charge force is purely electrostatic. The 

longitudinal and radial space charge electric fields can be easily obtained by 

differentiating Eq. (4.1) with respect to v  and r  respectively. In dealing with the spiral 

inflector it is common practice to use the so called optical coordinate systems ),,( vhu and 

),,( vhu rr as defined earlier. The origin of this system is at the bunch center and travels 

along the central trajectory. Calculations become easy after expressing the electric field 

components in the optical coordinate systems. Using the relations between the two optical 

coordinate systems described in detail in [57], it is straight forward to get the following 

expressions for the space charge electric fields from Eq. (4.1) as 
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where pI , is the peak beam current, given by  
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in which I  is the average beam current,  f  is the frequency of the voltage applied on the 

buncher,  )(bQ  is the total charge in the bunch and   is the beam phase width. 
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4.2.2. Paraxial ray equations 

In the derivation of paraxial ray equations in the presence of space charge we have 

used the analytic electric field and a constant magnetic field. Let )(trp


 
and )(trc


 be the 

position vectors of the paraxial and central trajectory particles of charge q  and mass m  at 

time t  respectively. Then both position vectors must follow the Lorentz equation of 

motion: 

)]()([ pp
SC

pp rBrErEqrm



               (4.7) 

)]()([ cccc rBrrEqrm
                (4.8) 

If the magnetic field B


 is constant throughout the volume of the spiral inflector then the 

equation of motion of the paraxial ion with respect to the central trajectory at time t  can 

be written as 

 BrEEqrm SC
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  11                                (4.9) 

where vvrrvvhhuurrr cp ˆˆˆˆˆ1 


 is the displacement vector of the paraxial ray 

from the bunch centre and E


  is the first order change in the electric field with respect to 

the central ray. Here hu,  and v  denote the coordinates of the paraxial ray and dot 

indicates the differentiation with respect to time t .  

The components of E


  in the optical coordinate system can be obtained by taking the 

first order change in the electric field with respect to the central ray [57] 
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where rr hu ,  and v  are the projections of the displacement from the central ion trajectory 

( 1r


) on the rotated coordinate system. The expression of E


  in the ),,( vhu   coordinate 

system can be written as [57] 
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Using the relation for the constant magnetic field through the spiral inflector 
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and using Eqs. (4.4), (4.5) and (4.9-4.14) we can obtain the coupled differential equations 

for the paraxial ion trajectory through the spiral inflector as 
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The last term on the right hand side of each of the paraxial ion equations (4.15) is due 

to the space charge effects. In the case of a uniform cylindrical beam these terms in hu,  

and v  directions take the form 
00

2
02 Evr

AuI

m

p


, 

00
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02 Evr

AhI

m

p


 and 0 respectively, where 0v  is 

the velocity of the beam. The relation between beam divergence hu pp ,  and vp  in the 

coordinate system perpendicular to the central trajectory velocity vector and hu ,  and v  

can be given by [52], 

bhKpAu u cos2
            

(4.16a) 

buKpAh h cos2                                  (4.16b) 

bhKuApv v sin2                                 (4.16c) 

Equations (4.15) cannot be solved analytically and hence a numerical integration method 

is needed to get the coordinates of the paraxial ion trajectory. One can easily estimate 

approximate beam envelope through the spiral inflector by solving the paraxial trajectories 

for several representative particles that belong to the boundary of the contours in (u - up ) 

and ( h - hp ) planes as well as in the interior of the phase ellipse at the entrance. However 

an easy way to obtain the envelope is to use the infinitesimal transfer matrix as discussed 

in the following sub-section. 

4.2.3. Beam envelopes 

Since paraxial ray equations presented in the previous subsection are linear, therefore 

any solution of these equations can be represented by the linear combinations of six 

linearly independent solutions. Let T
vhu pvphpus ),,,,,()( 0 x  represents the coordinates 

of a paraxial ray at a location 0s . At some other location s , the coordinates will be 
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transformed according to the matrix equation, )(),()( 00 ssss xMx   where ),( 0ssM  is a 

66  transfer matrix whose elements are functions of s  and 0s . In order to generate 

matrix ),( 0ssM , we need to solve Eqs. (4.15) for six different initial conditions. A simple 

way is to choose initial condition in which one coordinate say u  is equal to 1 and all other 

coordinates are equal to 0. The solution of differential equations will yield the first column 

of transfer matrix M . By repeating the same procedure with other coordinates one can 

easily get all other columns of matrix M . It is to be noted here that the initial conditions 

for forming the matrix elements should be canonical so that matrix M  should be a 

symplectic one. As the inflector is put in the axial magnetic field 0B  of the cyclotron, the 

variable )( 0sx   are no longer canonical at the inflector entrance. To make the variables 

canonical we need to modify them by multiplying with the matrix [75] : 
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           (4.17) 

The transfer matrix so developed can be used to study the beam properties through the 

spiral inflector. In order to study the effect of space charge on the inter plane coupling 

when the beam passes through the inflector, we need to calculate the six dimensional beam 

matrix σ  as a function of the path length s . The beam matrix σ  can be defined as 

Txxσ                (4.18) 

where   denotes the average over the beam distribution. The evolution of sigma matrix at 

position s can be obtained from  

),()(),()( 000 ssssss TMσMσ             (4.19) 



66 
 

where )( 0sσ is the beam matrix at location 0s . The rms beam sizes and the rms emittances 

in the u  and h  planes at a point s  can be obtained from the following relations 

)()(
~

11 sσsU  ,    )()(
~

33 sσsH    

)()(~
21122211 σσσσsu 

, 
)()(~

43344433 σσσσsh          (4.20) 

Since we have considered the beam as a uniform ellipsoidal distribution, the actual 

beam sizes and emittances are related with the corresponding rms quantities as, 

)(
~

5)( sUsU  ,  )(
~

5)( sHsH   and )(~5)( ss uu   , )(~5)( ss hh         (4.21) 

4.3. Numerical results and discussions 

In this section we present the simulation results of space charge dominated beam 

behaviour through the spiral inflector with designed parameters 65.8A  cm and 

65.0k  of our 10 MeV cyclotron presented in Chapter 3 [12].  Since the paraxial 

trajectory equations through the inflector are valid only for a constant magnetic field, we 

have searched out an equivalent constant magnetic field 0B  (= 5.15 kG) to yield almost 

similar central ion trajectory what we obtained with the 3D magnetic field data. The 

energy conservation in the paraxial ray calculation was ensured by incorporating two 

discontinuous jumps   uTdqVPv  ./  in the forward kinetic momentum at the entrance 

( ) and exit () of paraxial ion through the spiral inflector. Here V  is the voltage on the 

inflector electrode and u  is the paraxial ion displacement from the central ion [57].  

As mentioned earlier, the bunch compression increases the peak current pI  in the 

bunch as it traverses through the spiral inflector and alters the space charge force. In order 

to include this effect in the beam dynamics, we have used the results of buncher 

simulation presented in detail in ref. [10]. The entrance of the inflector is located at a 

distance of 65 cm from the centre of the buncher gap. The variation of bunching factor 
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fB , defined as the ratio of beam current in the specified bunch width at a given location s  

when the buncher is on to the beam current in the same bunch width when the buncher is 

off, is shown in Fig. 4.1 as a function of path length inside the spiral inflector from the 

entrance to exit. It can be readily seen that the beam current in the bunch is already 

increased by 4.8 times at the entrance of the inflector, increases gradually as the bunch 

traverses through the inflector and becomes almost 5.2 times at the exit of the inflector. 

This variation of beam current has been taken into account in the paraxial ion trajectory 

and envelope calculations. In the numerical calculations we have assumed 030  of rf. 

Since at injection energy of 80 keV and buncher frequency of 42 MHz, the bunch size 

corresponding to 300 of rf phase is equal to 7.8 mm, we have used the value of 

longitudinal semi axis of the ellipsoidal bunch equal to 3.9 mm. The value of radial semi 

axis is chosen 4.5 mm. 

 

Fig. 4.1. The variation of bunching factor fB  with path length as the beam bunch moves 

inside the spiral inflector, showing the effect of bunching action of a sinusoidal buncher. 
The entrance of the inflector is located at 65 cm from the buncher gap. 

4.3.1. Behaviour of beam envelopes 

In order to determine the beam envelope quantities through the spiral inflector using 

the formulations developed in the previous sections we have written a computer code. It 
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first solves the paraxial trajectory given by Eqs. (4.15) for given initial beam conditions 

from point 0s  to dsss  0 in the spiral inflector, where ds  is the small interval. In the 

calculations we have used the step size 5.0ds  mm. Using the solution of paraxial ion 

trajectories for six different initial conditions, the infinitesimal transfer matrix ),( 0ssM is 

obtained for the small interval ds . This infinitesimal transfer matrix is then used to find 

out the beam matrix )(sσ at point s  from Eq. (4.19) utilizing the initial value of )( 0sσ . 

The beam envelope quantities are obtained from the elements of )(sσ using Eqs. (4.20) 

and (4.21). The entire process is repeated until the exit of the spiral inflector is reached.  

 

Fig. 4.2. The evolution of beam sizes through the spiral inflector in u and h planes for 

average beam current 0I  mA (dotted curve) and 5I  mA at the inflector exit. Dashed 

curves are for case of uniform cylindrical beam and solid lines belong to uniform 
ellipsoidal bunched beam.  

Figure 4.2 compares the beam envelope through the spiral inflector in u  and h  planes 

for the case of ellipsoidal beam and cylindrical beam with same initial conditions and 
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same variation of beam current in the bunch inside the inflector (Fig. 4.1). We have 

considered the initial beam as an upright ellipse in both u  and h  planes with beam size 

5.4 HU  mm and emittance 60 hu    mm mrad. It is evident from Fig. 4.2 that 

the space charge force contributes significantly at this current level and results of uniform 

cylindrical beam underestimates the space charge contributions in both the planes. 

 

Fig. 4.3. Comparison of beam envelopes for ellipsoidal bunch with constant current 
(dashed curve) and gradually increasing current (solid curve) from entrance to exit. 

As mentioned earlier, that when the beam enters the inflector it takes the form of a 

bunch and current in the bunch increases gradually at it traverses inside the inflector. In 

order to compare the effect of this variable beam current with the constant current in the 

bunch we have plotted the evolution of beam envelope through the spiral inflector in u  

and h  planes in Fig. 4.3. Dashed curve represents the case when the average beam current 

in the bunch is constant and equal to 5 mA (peak current is 60 mA). Solid curve represents 

the case when the average current in the bunch is 4.65 mA (peak current is 55.8 mA) at the 
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entrance, increases gradually up to 5 mA (peak current is 60 mA) at the exit. It can be 

readily seen that there is a noticeable difference in the behaviour of envelopes in the h 

plane for the two cases. 

4.3.2. Study of emittance growth 

In a spiral inflector, there is a strong coupling between the two transverse directions 

which results in emittance growth at the exit. This emittance growth is very sensitive to 

the beam size and orientation of the phase ellipses of the beam at the entrance of the 

inflector. Initially the orientations of the entrance ellipses with zero beam current were 

adjusted to have minimum growth of emittances in both planes at the inflector exit. We 

then studied the behaviour of the emittance growth at the exit of the inflector by varying 

only beam current and keeping all other conditions unchanged. Results are illustrated in 

Fig. 4.4 by dotted curves. We then tried to optimize the initial conditions in u  and h  

planes for each value of beam current to reduce the emittance growth in both the planes. 

Results are shown in Fig. 4.4 by solid curves. It can be readily seen from the Fig. 4.4 that 

emittance growth increases sharply in h  plane when the beam current is high. During the 

optimization it is observed that the output condition in the u plane is very sensitive to the 

initial conditions. A slight variation in the input parameters to reduce the emittance causes 

rotation of the beam ellipse with increase in the beam size and beam divergence by large 

amount. During the optimization of emittance at the exit we have taken care that beam size 

and beam divergence remain within a reasonable limit in both the planes. The increase in 

emittances at zero beam current in both the planes is due to the inter plane coupling 

effects. The effect of space charge is rather weak below 3.0 mA in both the planes. We 

observed that the initial phase ellipses which correspond to the minimum emittance 

growth without space charge are not at all suitable when the space charge effect is 

included and hence the initial beam conditions need to be adjusted again to reduce the 
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emittance growth at the inflector exit. In other words, one needs different set of initial 

phase space ellipses to control the emittance growth if the beam current is changed. 

 

Fig. 4.4. Variation of un-optimized (dotted curve) and optimized (solid curve) beam 

emittances in u  and h  planes at the exit of the inflector as a function of the beam current. 

The initial beam emittance is 60  mm mrad in both phase planes. 

Figure 4.5 shows the orientations of optimized phase ellipses, in h  and u  planes at the 

entrance and the resulting phase ellipses at the exit of the inflector for average beam 

current of 5 mA at the exit. While optimizing the orientation of the phase ellipses at the 

entrance of the inflector we have taken care that the emittance growth should be less in the 

vertical plane within the acceptable beam size, because focusing force in the central region 

is comparatively weak in this plane. An effort to reduce the emittance in u  plane leads to 

an increase in the beam size and beam slope by a large amount. The large vertical 

defocusing (u -plane) at the inflector has also been observed in simulation by many 

authors [76-78]. This is a major concern and needs to be taken care during the 

optimization. Results show that comparatively large growth of emittance in both the 

planes is mainly due to the coupling effect. The estimated effective emittances at the exit 

in h  and u  planes are 106  mm mrad and 144  mm mrad for 5exitI  mA respectively. 

A comparison of emittances at the entrance and exit in h  plane shows an increase by a 
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factor of 1.8 whereas in the u  plane it is 2.4 times, which are within the acceptance of the 

central region. The acceptance of the central region at the inflector exit for 6 mm half 

aperture is 514  mm mrad in the horizontal plane and 200  mm mrad in the vertical 

plane. During the simulation we observed that the influence of coupling and space charge 

on emittance growth is comparatively large when one uses the upright input ellipses. To 

restrict the emittance growth within the acceptable value it is necessary to use tilted phase 

ellipses at the input of the spiral inflector. 

 

Fig. 4.5. Phase ellipses in h  and u  planes; (a) and (b) represent the optimized phase 

ellipses at the inflector entrance. (c) and (d) show the phase ellipses at the inflector exit for 

5exitI  mA. Solid lines indicate the area pertaining to the particular phase plane and 

dashed lines the area arising from the coupling with other phase planes. The dotted curves 
in (c) and (d) represent the effective phase ellipses obtained using sigma matrix method.  

4.3.3. Estimation of transverse acceptance 

We have also calculated the four dimensional transverse acceptance of the spiral 

inflector i.e. the largest phase space volume that passes through the inflector. For this 

purpose we generated a uniform distribution of particles in four dimensional phase space 
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),,,( hu phpu  and then tracked the paraxial ray of each of these particles through the 

inflector for a given value of the beam current. At each integration step we checked the 

location of particles and accepted only those which were within the 75% of the available 

aperture 2/max du   and 2/max dh   in the spiral inflector in both the planes. The 

rms quantities of all the accepted particles were analyzed to obtain the elements of the 

sigma matrix. The square root of the determinant of the sigma matrix gives the four 

dimensional rms acceptance of the spiral inflector [79].  

 

Fig. 4.6. Variation of acceptance as a function of beam current. 

Figure 4.6 shows the four dimensional acceptance (16 times rms acceptance) of the 

spiral inflector as a function of the beam current. Since the other parameters are kept 

constant, the reduction of the acceptance with beam current is only due to the space charge 

effect. 

4.3.4. Effect of input parameters on beam behavour 

In order to see the effect of space charge and input beam conditions on the paraxial ion 

trajectories we have tracked 1000 particles through the spiral inflector with equal 

emittances 60 π mm mrad in both the planes for two values of beam current 0I  mA and  
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5I  mA. The results are illustrated in Fig. 4.7.  We have considered two cases.  In the 

first case the input beam is axisymmetric with 4 HU  mm and 0 hu PP  mrad 

whereas in the second case the beam is non-axisymmetric with 4U  mm, 3.2H  mm  

 

Fig. 4.7. Paraxial trajectories of 1000 particles with equal input emittances 60 π mm mrad 

in both the planes at 0I  mA and 5I  mA. (a) axisymmetric upright ellipse with 

4 HU  mm and 0 hu PP  mrad (b) non-axisymmetric tilted ellipse with 4U  

mm, 3.2H  mm and 6uP  mrad, 31hP  mrad (optimized condition of Fig. 4.5). 

and 6uP  mrad, 31hP  mrad. The space charge effect as well as the influence of 

input beam conditions is clearly visible on the spiral pattern. It is evident from the figure 

that the radial expansion of the beam in the case of non-axisymmetric beam is 

comparatively less at both the values of beam current. 
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The numerical result plotted in Fig. 4.8 shows the beam cross section consisting of 

1000 paraxial trajectories at different locations Ss /  inside the inflector for the 

axisymmetric and non-axisymmetric input beams. Here 58.132/  AS   cm, is the path 

length of the central ion trajectory in the inflector. The dynamics of the beam pulsation 

and rotation caused due to inter-plane coupling and space charge effect is clearly visible in 

the plots. As mentioned earlier here also we see that non-axisymmetric beam with 

converging phase ellipse is more suitable for better transmission in the spiral inflector 

because it occupies less area in u - h  planes. 

 

Fig. 4.8. Transverse cross-sections of the beam at different locations in the spiral inflector 

at 0I  mA and 5I  mA for axisymmetric and non axisymmetric input beams.  

Figure 4.9 shows the paraxial ion trajectories and resulting beam envelopes for 0I  

mA and 5exitI  mA through the spiral inflector in u  and h  planes for 40 representative 

particles belonging to the boundary of the input emittances of 60  mm mrad in each 
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plane. The dashed curve represents the envelope obtained using the sigma matrix method. 

It can be readily seen that the envelopes obtained by both the methods are in good 

agreement. The maximum beam size is limited within 6 mm in both the planes throughout 

the inflector, much less than the minimum gap of 12 mm between electrodes, which is 

kept to fulfill the requirement of high beam intensity. 

 

Fig. 4.9. Paraxial ion trajectories and resulting beam envelopes through the spiral inflector 

in both u  and h  planes for 0I  mA and 5exitI  mA. Input conditions are optimized. 

4.4. Summary 

To summarize, we have developed the equations of paraxial ion trajectories to study 

the space charge dominated beam dynamics assuming the beam as an ellipsoidal bunch. 

We have also calculated the beam envelopes inside the inflector and emittance growth at 
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the exit of the inflector using the sigma matrix method. The inclusion of increase of the 

beam current in the bunch due to bunching action as the beam traverses inside the 

inflector, produces a significant change in the beam envelope compared to the case when 

the beam current in the bunch is constant. From the results of ion trajectory calculations 

we have found that initial emittance conditions have considerable effect on the emittance 

growth at the exit of the inflector. Results show that space charge effect remains rather 

weak for beam intensity below 3.0 mA. At higher current above 3.0 mA space charge 

force is no longer negligible and starts to play a crucial role in the growth of beam 

envelope and emittance. It is also observed that the initial phase ellipses which correspond 

to the minimum emittance growth without space charge are not at all suitable when the 

space charge effect is included. One needs different set of initial phase space ellipses to 

control the emittance growth at the exit if the beam current is changed. 
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Chapter 5 

Envelope oscillations and amplitude growth in a 

compact cyclotron 

5.1. Introduction 

In this Chapter we discuss the investigation on the amplitude growth and oscillations 

in the beam envelopes along the accelerated orbit in a compact cyclotron cyclotron [7]. 

We have used the coupled beam envelope equations and assumed the beam to be a 

uniform ellipsoidal bunch. 

The study of the beam behavior in the central region of the cyclotron reveals that beam 

envelope behaves differently due to the coupling of the horizontal and vertical motions 

arising due to space charge effects [37]. In order to achieve optimum performance, the 

emittance and orientation of the phase ellipses of the injected beam must be matched to the 

acceptance of the central region of the cyclotron. It is believed that envelope mismatch is 

the major cause of emittance growth and halo formation [44]. For mismatch beams, an 

unbalance between the applied focusing force and the defocusing forces due to space 

charge and thermal effects, cause whole beam to oscillate in a coherent way. This effect 

increases the beam size in both the transverse planes and causes severe beam loss. In the 

case of low beam current the mismatch in one plane affects the beam behavior only in that 

particular plane. However, in the case of intense beam, where the space charge effect 

couples the motions of the two transverse planes, a mismatch in one plane affects the 

beam behavior in both transverse planes.  

In a previous work [37] discussed in Chapter 2 we have studied the effect of space 

charge in a compact cyclotron to get the proper beam matching conditions at the injection. 
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We have used transverse envelope equations assuming a uniform continuous beam and an 

analytical hard edge model for the magnetic field. Since hard edge model of the magnetic 

field overestimates the vertical betatron tunes at lower radii, the results so obtained are 

limited in accuracy; however, they provide good insight about the behavior of beam 

envelopes. We like to point out here that studies on space charge effect in a compact 

cyclotron above 1 mA beam current are still not well understood and lots of research is 

going on to resolve the physics and technological issues at high current. Commercial 

compact cyclotrons operating for medical isotope production are limited to beam current 

<1 mA. Therefore, to avoid the beam loss, a systematic study of the space charge 

dominated beam behavior in the focusing channel of a compact cyclotron is of practical 

importance. This is the main objective of the work presented in this Chapter. 

In this Chapter, first we have obtained the values of magnetic and electric betatron 

tunes and then developed the coupled accelerated beam envelope equations. It is assumed 

that the beam is a uniform ellipsoidal bunch. First the pattern of envelope oscillations and 

amplitude growth of the beam in both transverse planes at a particular radius (without 

acceleration) have been analyzed by displacing the initial beam size from the matched 

beam size at several values of beam current. Then we have discussed the results of our 

studies on the behavior of beam envelope in the 10 MeV cyclotron at different initial 

conditions of the beam. Finally we have obtained the proper matching conditions by 

optimizing the input beam parameters and also estimated the maximum beam current that 

can be transported through a given aperture of the cyclotron focusing channel.  

5.2. Calculation of Betatron tunes  

The design of the magnet of 10 MeV cyclotron has been discussed in Chapter 3. We 

have obtained the radial and axial betatron tunes from the computed magnetic field data 
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using the equilibrium orbit (EO) program GENSPEO [39]. The variation of the radial x  

and vertical y (magnetic) magnetic betatron tunes as a function of the orbit radius R  is 

shown in Fig. 5.1. During the first few turns in a compact cyclotron, the vertical magnetic 

focusing is very weak. It is, therefore, necessary to exploit the vertical electric focusing 

available at the dee gaps by properly adjusting the geometry and phase. 

 In a cyclotron, the electric field at the acceleration gaps exerts a lens like action in the 

vertical plane on off-median plane particles during the first few turns. In order to include 

this effect in the calculations, we have used the first order theory [80] to estimate the 

electric vertical betatron tune. The electric focusing has negligible effect on the radial 

motion. We have assumed that particle traverses the electric gaps periodically in a 

stationary orbit of radius R , without increase of energy (taking the average of initial and 

final energy at the gaps). As mentioned earlier, the accelerating structure of 10 MeV 

cyclotron consists of two delta type resonators located in the opposite valleys and each has 

an angle of 4/ . For a particle displaced from the median plane in the vertical direction, 

the initial position and slope 0y  and 0y  at the first gap and final position and slope y  and 

y  at the third gap are related as 
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where M is the transfer matrix from the first gap to the third gap. The distance between the 

first and second gap is 4/R  whereas the distance between the second and third gap is 

4/3 R , where R  is the average orbit radius under consideration. The focal length 1f  and 

2f  are given by the following expressions: 
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where rff , H and 0E  are the rf frequency, half height of the dee and rest mass energy of 

the particle respectively. The factor F  depends upon the geometry of the dee [80]. A 

particle with kinetic energy E  will gain energy cgqV cos  in traversing the first gap and 

the energy of the particle at the middle of the gap will be 2/)cos( cgc qVEE   where 

gV  is the gap voltage and c  is the phase of rf when the particle is at the middle of the 

gap. The electric vertical betatron tune can be obtained from 





  MTr
2

1
cos

1 1


 y                 (5.5) 

 

Fig 5.1. Betatron tunes as a function of orbit radius. Dashed curves represent the 

contribution to the vertical betatron tunes y (solid line) from the electric and magnetic 

focusing. The initial rf phase c  is equal to 5o. 

The parameters used in the calculations are: injection energy 80E  keV, dee voltage 

125gV  kV, rf frequency 42rff  MHz, dee height from the median plane 5.1H  cm 
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and gap between dee and dummy dee 22 W  cm. The corresponding F  factor for this 

particular dee geometry is 0.82. The electric vertical tune y (electric) obtained using Eq. 

(5.5) which is appreciable only at lower radii is shown by dashed line. The effective 

vertical tune is obtained using the formula, 5.022 )]electric()magnetic([)effective( yyy    

which is obtained by adding the vertical magnetic and electric focusing forces together and 

using the fact that focusing force is proportional to the square of the tune value. The result 

is also shown in Fig. 5.1. We have used values of these betatron tunes x  and 

y (effective) in the beam envelope calculations. 

5.3. Accelerated Beam envelope equations 

Our main objective in this work is to study the behavior of beam envelopes along the 

accelerated orbits in the two transverse planes and to estimate the maximum transportable 

beam current in a given aperture. In order to obtain the coordinates of the path along the 

accelerated orbits, we performed the orbit tracing in the median plane of the cyclotron by 

solving the equations of motion in the combined electric and magnetic fields. The 

coordinates and velocity of the central ion trajectory obtained at the inflector exit were 

used as input. The accelerated orbits of the proton from 80 keV to 10 MeV in the median 

plane of the cyclotron is shown in Fig. 3.10 in Chapter 3. 

We consider a bunched beam having uniform density distribution with ellipsoidal 

symmetry propagating along the accelerated orbit in the focusing channel of a compact 

cyclotron. The method presented here can also be utilized for any beam distribution using 

the concept of equivalent beams. According to this concept, the beam must have the same 

second moment as the actual beam distribution [44, 81]. It is well known that the space 

charge effect on bunches circulating in a cyclotron is very complex. Bunches rotate in the 

median plane and the rate of rotation depends upon the charge density. For short bunches 
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the stationary beam distribution shape is circular (i.e. bunch length = radial width). In the 

case, where the injected bunches are much longer azimuthally compared to the radial 

width, the bunch breaks up into small droplets [82, 83]. Since the charge density and 

hence the perveance reduces in the case of long bunches for the same beam current 

compared to the short bunches, this break up takes comparatively longer time [82]. Since 

in our case the average longitudinal bunch size during the first turn (~ 14 mm) is large 

compared to the matched radial beam width (~ 5 mm) we have simplified our analysis by 

neglecting the bunch rotation due to the radial and longitudinal coupling. We have also 

neglected the effect of axial variation of longitudinal field on the transverse motion. Under 

these assumptions the bunch shape remains ellipsoidal within the cyclotron. Since the 

longitudinal bunch size in a cyclotron depends on the location of the equilibrium orbit it 

will change to a new value after the acceleration at each gap.   

 

Fig. 5.2. A schematic of coordinate system attached to the beam bunch moving along the 
accelerated orbit in the median plane.   

We now introduce a local coordinate system x , y  and z  as shown in Fig. 5.2 with the 

centre of the ellipsoid which moves with velocity v  along the accelerated orbit in the 

median plane. Here x  and y  are the two transverse coordinates measure the distances 

from the bunch centre ( 0 zyx ) along the radial and vertical directions respectively 
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whereas z  measures distance along the longitudinal direction. The z  axis is always 

tangent to the accelerated orbit. If s  be the path length along the accelerated orbit in the 

median plane from the starting point, then a particle with coordinates ),,( zyx in the beam 

frame has coordinates ),,( zsyxR   in the laboratory frame where R  is the 

instantaneous orbit radius from the machine centre. The differential equations for beam 

envelopes )(sX  and )(sY  in the two transverse planes [84, 85] can be written as: 
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and the average beam current I  as 

rfbrfb fQfqnZYXI  
3

4
                (5.8) 

Here )(sX , )(sY  and )(sZ are the semi axes of the ellipsoid, which are also the envelope 

sizes in the yx,  and z  directions respectively. bQ  is the total charge in the bunch 

assumed to remain constant during the motion,  rff  is the rf frequency, R  is the average 

orbit radius, x  and y  are the betatron tunes and nx  and ny  are the normalized 

emittances of the beam in the x  and y  planes respectively. qmcI /4 3
00   is the 

characteristic current and for proton, 310 I  MA. The second term in both the envelope 

equations (5.6) and (5.7) represent the acceleration effect and prime denotes the 

differentiation with respect to s . Integrals, 1G  and 2G  in eqs. (5.6) and (5.7) can be 

expressed in terms of the elliptic integrals of the first kind ),( pF   and second kind 

),( pE  . The form of these integrals depends on the relative magnitude of the envelope 

functions. For the ellipsoid with ZYX  , the integrals 1G  and 2G  have the form: 
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where  , p  and the integrals ),( pF   and ),( pE   are given by 
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For oblate ellipsoid and spheroid with different relative magnitudes of YX ,  and Z , 

integrals 1G  and 2G  have been obtained using the standard integrals given in ref. [86].  

The transverse envelope equations with acceleration and linear focusing forces for a 

long uniform continuous beam having elliptical symmetry [87] can be expressed as 
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The term (  /2 ) is included with the beam current I  to account for the phase 

acceptance in the central region. Knowing the functional dependence of the focusing 

strength and )/()(    along the path length s , one can easily obtain the evolution of 

envelopes around the central ion trajectory in the median plane of the cyclotron. The space 

charge term couples the envelope equations, and hence plays an important role in the 

evolution of envelopes )(sX  and )(sY , particularly when the beam current is sufficiently 

large. For low beam current and without acceleration there are special solutions of Eqs. 

(5.6) and (5.7), where .const mXX  and .const mYY  and are given by  
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These correspond to the so called matched solutions for which the beam envelope sizes 

preserve the initial shape throughout its path i.e. beam envelopes are straight lines. The 

matched solutions with space charge terms and without acceleration, can be obtained by 

solving the following coupled equations simultaneously 
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In the case of space charge dominated beam together with acceleration it is not possible to 

obtain the matched sizes. In such situation one needs to solve Eqs. (5.6) and (5.7) for beam 

envelopes along the path of the accelerated orbit and then to optimize the initial conditions 

for which the envelopes )(sX  and )(sY  exhibit minimum amplitude of oscillations. 

5.4. Numerical results and discussions 

In this section we present the results of studies on behavior of the beam envelopes in 

the focusing channel of the 10 MeV compact cyclotron under various initial conditions of 

the beam parameters. We performed numerical solutions of Eqs. (5.6) and (5.7) and tried 

to optimize the input beam conditions in the presence of space charge to get the beam 

envelopes within the specified acceptance in the 10 MeV cyclotron. We have used same 

values for emittances equal 60 π mm mrad in both the planes in the present calculation. 

This is the typical value of the emittance one expects at the injection radius in the 

cyclotron after transporting and inflecting the beam by a spiral inflector using the 

microwave ion source. The values of )/()(    have been estimated from the change of 

energy of the accelerated particle along the path length s using the orbit integration code.  
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Figure 5.3(a) shows the variation of )/()(    as a function s  up to five turns. The 

bunch size corresponding to 300 of rf phase at the injection energy of 80 keV and rf 

frequency of 42 MHz, is equal to 8 mm. Therefore, we have chosen the initial value of the 

longitudinal semi axis of the ellipsoidal bunch equal to 4 mm. As the beam energy 

increases the bunch size also increases along the longitudinal direction. The variation of 

bunch size Z2  as a function of the path length s  for five turns is shown in Fig. 5.3(b). 

This change of bunch size has been incorporated while solving Eqs. (5.6) and (5.7) along 

the accelerated orbits of the beam. 

 

Fig. 5.3.  The variation of (a) )/()(    and (b) bunch size Z2  as a function path length 

s  along the accelerated orbits up to five turns. Long ticks on the middle horizontal line 

indicate the turn number.  There are four kicks at four acceleration gaps in each turn. 

5.4.1. Beam envelopes in a particular orbit 

To understand the beam envelopes behaviour along the accelerated orbits we have first 

explored the beam envelopes under various conditions at a particular orbit radius of 30 cm 

(it can be any radius) without including the acceleration effects in the envelope equations. 
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We obtained the matched beam sizes at this radius for three different values of beam 

current using Eqs. (5.14) to (5.16). The calculated matched beam sizes in the radial and 

vertical planes are 1.71 mm and 1.98 mm for 0 mA, 1.92 mm and 2.38 mm for 5 mA and 

2.11 mm and 2.84 mm for 10 mA respectively as shown by the dotted lines in Fig. 5.4. 

 

Fig. 5.4. Radial and vertical beam envelopes, for different initial conditions at radius 30 
cm without acceleration for five revolutions and three different values of beam current. 
Matched beam sizes are shown by dotted lines. All solid curves represent mismatch by 0.5 
mm from the matched beam size whereas dashed curves represent mismatch by 1.0 mm 

from the matched beam size. The values of the matched beam sizes are (a) 71.1mX  mm, 

98.1mY  mm for 0 mA,  (b) 92.1mX  mm, 38.2mY  mm for 5 mA and (c) 11.2mX  

mm, 84.2mY  mm for 10 mA.  

We then studied the envelope evolution for five revolutions by changing the initial 

beam sizes by 0.5 mm and 1.0 mm from the matched values in all the above mentioned 
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three cases. Results are shown in Fig. 5.4. In the case of 0I  mA, the patterns of the 

envelope oscillations in each plane are similar for the two values of displaced initial beam 

sizes. The number of oscillations per turn in the radial plane is equal to 2.12 which is twice 

the value of betatron tune 06.1x  and follows the linear theory of envelope oscillations 

described in detail for solenoid and quadrupole focusing channels [44, 88]. Similarly in the 

vertical plane where 8.0y , there are 1.6 oscillations per turn. These numbers of 

oscillations are independent of the displacement of the initial beam size from the matched 

value, however, the amplitudes of oscillations are different. 

It is readily seen from Fig. 5.4(b) and 5.4(c) that the envelope oscillations pattern is 

completely different in both the planes when the space charge effect is included in the 

calculations. We observed the decrease in the number of oscillations per turn as the beam 

current is increased and a marginal increase in the number of oscillations as the beam size 

from the matched radius is increased. This behavior is due to the fact that with increase in 

the beam current there is a depression in the tune values and hence the decrease in the 

number of oscillations. However it is difficult to predict the exact behavior of these 

oscillations due to mixture of two modes of oscillations because of different values of 

betatron tunes in the two transverse planes. 

We have also studied the envelope behaviors by increasing and decreasing the beam 

sizes from the matched beam size in one plane and keeping the beam size fixed in the 

other plane equal to the matched size. In the case of 0I  mA, as expected, we did not 

observe any change in the envelope of y  plane due to mismatch in the x  plane and vice 

versa. However, with beam current, a mismatch in x  plane not only produced oscillations 

in the x  plane but also produced a small ripples in the y  plane and vice versa. We 

observed this effect in the case of 5 mA and 10 mA beam current which is due to the fact 

that space charge term couples the two transverse motions. The behavior of envelopes in 
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x  and y  planes around the matched beam sizes (dotted line) under various conditions is 

shown in Fig. 5.5 for 5 mA beam current. 

 

Fig. 5.5. Radial and vertical beam envelopes without acceleration, for different initial 

conditions at radius 30 cm for five revolutions at 5I  mA beam current. Dotted lines 

represent the matched envelope sizes 92.1mX  mm and 38.2mY  mm. The beam 

envelopes are for (a) 5.0 mXX  mm, 5.0 mYY  mm, (b) 5.0 mXX  mm, 

5.0 mYY  mm, (c) 5.0 mXX  mm, mYY   , (d) 5.0 mXX  mm, mYY  . 

In Fig. 5.5(a) the initial beam sizes in x plane is reduced by 0.5 mm whereas in y plane 

it is increased by 0.5 mm from the corresponding matched beam sizes. In this case the 

envelope oscillations start initially with so called “out of phase" mode, quickly change to 

“in phase” mode and then again to “out of phase” mode and so on. This mixed mode of 

oscillation is due to the fact that betatron tunes in both planes are different and hence the 
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number of oscillations per turn. Fig. 5.5(b), in which the initial beam sizes in both x  and 

y  planes are reduced by 0.5 mm from the matched beam sizes, shows the almost identical 

behavior where the initial oscillations start first with “in phase” mode and keep on 

changing between the two modes along the path length. In Fig. 5.5(c) and 5.5(d) we have 

shown the behavior of envelope oscillations where the initial beam sizes in y  plane is 

kept equal to matched beam sizes and in x  plane the beam size is decreased by 0.5 mm in 

one case and increased by 0.5 mm in other case from the matched sizes. Here we observe 

that the induced envelope oscillations in y  plane are completely different in both cases. 

5.4.2. Beam envelopes along accelerated orbit 

Now we will discuss about the behaviour of the beam envelopes along the accelerated 

orbits in the 10 MeV cyclotron. Since there is a wide variation of betatron tunes with 

radius in a cyclotron as shown in Fig. 5.1, the calculated matched beam sizes at different 

orbit radii are also different. Figure 5.6 shows the variation of matched beam sizes mX  and 

mY  in the radial and vertical planes respectively as a function of the orbit radius for various 

values of the beam current. The increase in the matched beam sizes with beam current in 

both the cases is due to the depression in tune values with beam current. Since the matched 

beam sizes at different orbit radii are not same, it is not possible to find out a unique 

matched beam sizes at the injection radius. The matching of the beam size at one radius 

automatically becomes an un-matched beam size at other radii and hence produce 

oscillations as well as growth in the beam envelopes. It is well known that amount of beam 

current that can be transported through a focusing channel is a maximum when the beam is 

perfectly matched to the acceptance of the channel. It is not possible to obtain such 

condition in a cyclotron focusing channel. Therefore, one needs to optimize the initial 
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beam conditions in both the planes at the injection radius to reduce the amplitude growth 

and envelope oscillations as minimum as possible throughout the focusing channel. 

 

Fig. 5.6. Variation of matched beam envelope sizes mX  and mY  as a function of orbit 

radius for various values of beam current. 

The beam envelopes in the two transverse planes as a function of distance s along the 

accelerated orbit for beam current 0I  mA are shown in Fig. 5.7(a). The initial beam 

sizes used here are the matched beam sizes 92.1mX  mm and 26.3mY  mm at the 

injection radius (7.05 cm). We see that due to the acceleration there is a large growth in 

the amplitude of the envelope oscillations in both the planes together with a distinct slow 

modulation on the radial beam envelope amplitude. It is clear that these initial conditions 

are not at all suitable. In order to reduce the amplitude of oscillations we studied the 

behavior of the envelopes by changing the input beam conditions. Figure 5.7(b) shows the 

optimized envelopes after adjusting the initial beam sizes as well as orientations of the 
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phase ellipses in both the planes. There is a substantial reduction in the envelope 

amplitude with these initial conditions. The pattern of modulation on the amplitude is also 

altered with the reduction in the frequency of modulation. 

 

Fig. 5.7. Beam envelopes along the path of the accelerated orbits up to final radius for 

0I  mA. (a) The initial beam sizes are the matched beam sizes 92.1mX  mm and 

26.3mY  mm at the injection radius (7.05cm) in both the planes. (b) Envelopes obtained 

after optimization of initial beam conditions to yield minimum amplitude of oscillations in 
the beam envelopes. Ticks on the horizontal central line indicate the number of turns. 

The behavior of beam envelopes for 5 mA is shown in Fig. 5.8. The input conditions 

of the beam in Fig. 5.8(a) are the same as that of optimized input conditions of  0I  mA. 

As we see these input conditions produce more amplitude of oscillations in the beam 

envelopes. At different values of beam current the pattern of oscillations are different. The 

optimized beam envelopes are shown in Fig. 5.8(b) after further adjusting the initial beam 

conditions at the injection radius. Figure 5.9 shows the phase ellipses in the radial and 
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vertical directions used as initial conditions for beam current 0I  mA and 5I  mA. It 

is to be pointed out here that orientations of the phase ellipses and beam sizes at the 

injection are very crucial parameters and need to be adjusted properly each time, if the 

beam current is changed. For different values of the beam current, the orientation of the 

phase ellipses are different in both the planes to yield minimum growth in the amplitude of 

beam envelope oscillations. 

 

Fig. 5.8. Radial and vertical beam envelopes along the path of the accelerated orbit up to 

final radius for 5I  mA. (a) The initial beam sizes are the optimized sizes with 0I  

mA; 4.20 X  mm, 70 X  mrad in the radial plane and 6.20 Y  mm, 100 Y  mrad 

in the vertical plane at the injection radius. (b) Envelopes obtained after optimization of 

initial beam conditions to yield minimum oscillation in the envelopes ( 7.30 X  mm, 

270 X  mrad, 8.40 Y  mm, 320 Y  mrad).  

A comparison of the behavior of envelopes of uniform ellipsoidal bunch with that of a 

uniform continuous beam obtained by solving Eqs. (5.12) and (5.13) shows the patterns of 
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oscillations almost similar. However, the growth in the amplitude is less in the case of a 

uniform cylindrical beam. This kind of result is expected because for the same value of 

beam current in a given phase width, the charge density and hence the space charge 

defocusing force is more in the case of ellipsoidal bunch. Since ellipsoidal bunch is more 

close to the laboratory beam, we can say that the uniform cylindrical beam underestimates 

the space charge effects. 

 

Fig. 5.9. Input phase ellipses in x and y planes for (a) matched envelope sizes at injection 

radius for 0I  mA (Fig 5.7(a)), (b) the optimized envelopes with acceleration and 0I  

mA (Fig 5.7(b)), (c) the optimized envelopes with acceleration and 5I  mA (Fig 5.8(b)). 

5.4.3. Estimation of limiting current 

We have also estimated the maximum transverse limiting current that can be 

transported through the focussing channel of the 10 MeV cyclotron within 6 mm half 
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aperture. Figure 5.10(a) shows the radial and vertical beam envelopes along the 

accelerated orbits up to 21 turns with optimized initial conditions for ellipsoidal beam. In 

the case of ellipsoidal bunch the limiting current is approximately 7 mA. The limiting 

current in the case of uniform continuous beam is slightly higher i.e. 8.2 mA. These 

limiting currents can be increased if we remove the restriction on the aperture sizes from 6 

mm. We have also carried out optimization of the beam envelope by varying the 

normalized beam emittances from 0.5 to 1.5 π mm mrad and found that the limiting 

current reduces slightly with the increase in the beam emittance. At normalized emittances 

of 0.5, 0.7, 1.0, 1.2, 1.5 π mm mrad the limiting currents, whose beam envelopes remain 

within 6 mm in both planes, are 7.2 mA, 7 mA, 6.6 mA, 6.3, mA and 6.1 mA respectively. 

 

Fig. 5.10. Radial (X) and vertical (Y) beam envelopes along the accelerated orbits up to 10 

MeV.  (a) uniform ellipsoidal bunched beam with initial conditions 9.40 X  mm, 

300 X  mrad, 3.50 Y  mm, 350 Y  mrad  and (b) envelopes when the betatron tunes 

are scaled of by 1.15 times with same initial conditions as in (a).  
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The vertical blow up of the beam near the injection caused by the small tune value is 

the main factor responsible for the limiting current. In our design, the chosen maximum 

height of the dee from the median plane is equal to 15 mm. Therefore, a 5 mA beam 

current can be comfortably injected and accelerated in the present design of the cyclotron. 

We believe that slow modulation on the radial beam envelope (X) is due to the betatron 

tune x , which is very close to one at the lower radii. A scaling of x  either up or down 

from the present value reduces the amplitude as well as these oscillations considerably. 

Fig 5.10(b) shows the envelope patterns where the x  and y  are scaled up by a factor of 

1.15. In a compact cyclotron, one can easily manipulate the values of vertical tune y  by 

changing the flutter and the shape of sectors. It is not possible to change the profile of the 

radial tune x  as desired in an isochronous cyclotron because it follows the profile of 

relativistic term   as the energy of the beam increases. This value remains very close to 

unity at lower radii where the beam energy is not sufficiently relativistic. The best way to 

control the beam envelope oscillations and amplitude growth is then to optimize the initial 

beam conditions properly. 

Till now we have discussed the beam optimization in the focusing channel of the 

cyclotron and results indicate that for maximum beam transmission one needs converging 

initial phase ellipses in both the transverse planes. However, in reality it is difficult to get 

such initial conditions because the spiral inflector which is used to inject the beam in the 

central region puts sever restrictions on the beam emittance due to inter-plane coupling 

effect. Generally the optimum phase ellipse in the vertical direction at the inflector exit is 

diverging. The optimized phase ellipses at the exit of the inflector are shown in Fig. 

5.11(a) and 5.11(b) for equal input emittances of 45 π mm mrad in both the planes. It can 

be readily seen that there is a substantial growth of emittances in both the planes and the 
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orientations of phase ellipses are also different. The behavior of beam envelopes in x  and 

y  planes with these input conditions of the beam are shown in Fig. 5.11(c). Here we see 

that there is a slight reduction in the beam current ( 3.5linI  mA) within the specified       

6 mm half aperture sizes in both the planes.  

 

Fig. 5.11. Optimized phase ellipses at the exit of spiral inflector in the central region of 10 

MeV cyclotron and beam envelopes in x  and y  planes along the accelerated orbits with 

these input beam conditions. 

5.5. Summary  

The behavior of transverse beam oscillations has been studied in a compact cyclotron 

along the accelerated orbits for space charge dominated beam. The emphasis has been on 

the determination of the input beam conditions at the injection to reduce the oscillations 

and amplitude growth in both the transverse planes. The most important conclusion that 
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can be extracted from this study is the critical dependence of the input beam conditions on 

the injected beam current. Our results suggest that for different values of beam current, the 

beam sizes and orientations of the phase ellipses are different in both the transverse planes 

that lead to the minimum amplitude growth in envelope oscillations.  

The evolution of beam bunch in the combined electric and magnetic fields of a 

cyclotron is very complex due to the coupling between the radial and longitudinal motions 

which leads to the rotation of the bunch. In this work we have presented a simplified 

model and results so obtained present a good insight about the behavior of the transverse 

motion of the space charge dominated beam with uniform density distribution in a 

compact cyclotron.  
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Chapter 6 

Elliptical solenoid and matching of intense beam to 

the spiral inflector  

6.1. Introduction 

Since the overall goal of this thesis is to maximize the amount of beam that can be 

injected into the cyclotron, a transverse beam matching at the inflector entrance is thus 

necessary. Results of beam dynamics in a spiral inflector carried out in Chapter 4, indicate 

that convergent phase ellipses with different orientations in x and y planes and a 

comparatively smaller width in the y plane give better beam transmission. The 

transformation of an axisymmetric beam from the ion source to a non-axisymmetric beam 

at the entrance of the spiral inflector can’t be achieved by using cylindrical symmetric 

magnets such as Glaser and solenoid magnets as used in our transport line. In this case one 

needs either an elliptical solenoid [89-91] or a quadrupole doublet. In our case an elliptical 

solenoid is more suitable than the quadrupole doublet due to space constraint. 

In this Chapter, first we discuss the beam optical properties of an elliptical solenoid 

magnet in the presence of linear space charge effects, as the beam passes through it. Then 

we present the feasibility of using an elliptical solenoid in the solenoid based low energy 

beam transport line of our 10 MeV cyclotron to match the beam at the input of the spiral 

inflector [92]. Generally the Kapchinskij-Vladimirskij (K-V) beam envelope equations 

[93] are used to understand the high intensity beam dynamics and evolution of beam 

envelope through a transport system. However, these equations can be used only in an 

uncoupled lattice i.e. where the two transverse motions are uncoupled. In the case of an 
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elliptical solenoid it is not straight forward to decouple the two transverse motions and 

hence the applications of K-V beam envelope equations are difficult [102]. 

A simple way to study the dynamics of intense beam in the elliptical solenoid is to find 

out the transfer matrix of it in the presence of space charge effect. Since both equations of 

motion and beam envelope quantities are coupled with each other, it is not easy to obtain 

the transfer matrix analytically. In such situations a convenient way is to follow the 

infinitesimal transfer matrix approach [81, 94]. We have obtained the paraxial ray 

equations of motion in the combined fields of elliptical solenoid and space charge. From 

these paraxial equations we have obtained the infinitesimal transfer matrix of an elliptical 

solenoid for a non-axisymmetric beam and at the same time we have also calculated the 

beam envelope through the magnet by employing the recursive sigma matrix method [81].  

6.2. Theoretical analysis  

Consider a space charge dominated continuous beam propagating through the 

magnetic field B


 of an elliptical solenoid with average axial velocity cv   where   is 

the relativistic parameter and c is the speed of light in vacuum. In the laboratory frame, we 

use a right handed Cartesian coordinate system x, y and z with unit vectors yx ˆ,ˆ and ẑ  

respectively. As it is customary in accelerator physics we use zs  , the distance along the 

axial direction aligned with the beam axis and x, y represent the transverse coordinates 

from the beam axis. In the present analysis we assume that the particle trajectory will 

remain very close to the axis and transverse beam sizes  22 xX  and  22 yY in 

x  and y  directions are very small compared to the radii of beam pipes, coils etc. where 

  denotes a transverse statistical average over the beam distribution function. We also 

assume that the transverse velocities are much smaller compared to the average axial 

velocity of the particles (i.e. vyx , ).  
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6.2.1. Potential for elliptical solenoid 

The magnetic field and its components in an elliptical solenoid can be obtained by 

solving the Laplace equation for magnetic potential   in a cylindrical coordinate system 
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For two fold geometrical symmetry with respect to 0  and 2/   such as the case of 

elliptical solenoid, the general solution of Eq. (1) can be written as 
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By substituting Eq. (6.2) in (6.1) and comparing the coefficients of r and   for all values 

of l  and m , which satisfy the recursion relations of both r and   simultaneously, we find 

that all 08,26,24,2    as well as all 06,04,02,0   . The 

other coefficients can be obtained using the recursion relations. The general solution (6.2) 

can now be expressed as 
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where (n) denotes the n-th derivative of   with respect to the axial distance s . Since in 

Eq. (6.3) the potential on the axis has only s dependence, therefore, only off axis particles 

will experience radial and azimuthal fields. Under the paraxial approximation of beam 

transport as stated above, only the second order terms in the expansions of the potential 
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will be important. Therefore, in our further analysis, we retain the terms only up to 2r in 

Eq. (6.3) and ignore all other higher order terms in the potential. The potential then takes 

the form of  
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where ),0()( ssA   and ),0(4)( 2,2 ssD  . The first two terms in Eq. (6.4) are the usual 

terms used in the conventional solenoid. The third term is the contribution due to the 

asymmetric pole face of the elliptical solenoid. This term is similar to a quadrupolar term 

and produces focusing and defocusing in the two transverse planes in addition to the usual 

solenoidal focusing given by the first two terms. In terms of coordinates yx,  and s , the 

potential   as given in Eq. (6.4), can be expressed as 
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The components of the magnetic field at any point ),,( syx  near the axis can be obtained 

easily from Eq. (6.5) as 
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where )()( )1( sAsB   is the field on the axis of the solenoid. In the last equation (6.6c) we 

have neglected the second order terms in x  and y . The function )(sD  is related with the 

field gradient along x  and y  directions and depends upon the shape of the elliptic cross-

section of the solenoid. The value of )()1( sB  and elliptical parameter )(sD can be easily 

obtained using Eqs. (6.6) as 
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where xR  and yR  are the semi major and semi minor axes of the elliptic pole face of the 

solenoid and )( xx RB and )( yy RB  are the magnetic fields at the tip of the pole face along x  

and y  directions respectively. It is easy to see that for yx RR   the value of )(sD  

becomes zero and )()1( sB reduces to the same value as that of a conventional solenoid.  

6.2.2. Equations of motion      

The transverse equations of motion of a particle of rest mass m  and charge q  in the 

external magnetic field of the elliptical solenoid and beam self fields can be written as 

)]()([ S
yy

S
ss

S
x BBsBByEqxm                                                                                

)]()([ S
ss

S
xx

S
y BBxBBsEqym                                                                            (6.8) 

Here   is the usual relativistic parameter and SE


and SB


are the space charge electric and 

magnetic fields respectively. For an intense continuous beam with small transverse 

dimensions and slow axial variations ( )0/(  s , the s  variation of the self scalar and 

vector potentials can be treated as negligibly small. Under these conditions, the self-

electric and self-magnetic fields associated with an intense continuous beam of charged 

particles can be obtained from 

),,(ˆˆ),,( syxy
y

x
x

syxE SS 

















,         

),,(ˆˆ),,( syxAy
x

x
y

syxB S
s

S



















          
(6.9) 

 



105 
 

where the scalar potential ),,( syxS  for the self electric field obeys the Poisson equation, 
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and the vector potential for the self magnetic field is  
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c
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Here ),,( syxn  is the number density of particles. 

In an uncoupled system, a beam having constant density and pulsating in transverse 

dimensions X  and Y , the elliptical cross-section of the beam always remains upright. In 

this case one can obtain the space charge potential inside the beam by solving Eq. (6.10) 

and hence self fields as discussed in ref. [93] as well as in many text books [44, 84].  

 

Fig. 6.1. A schematic of rotated coordinate system )~,~( yx  with respect to the laboratory 

coordinate system ),( yx  by an angle  , in which the semi axes of elliptical cross-section 

of the beam are aligned with the coordinate axes.  

In the cases where the two transverse motions are coupled, the elliptical cross section 

of the beam not only pulsates in two transverse planes but also rotates about the 

propagation axis. Both the dimensions X  and Y as well as the tilt angle   are functions of 
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s and thus it is not straight forward to obtain the space charge potential within the beam. In 

order to obtain the space charge potential in a coupled system at any axial location s  we 

use a coordinate system which is rotated by an angle   with respect to the laboratory 

coordinate system where the elliptical cross-section is upright. Here one can calculate the 

space charge potential assuming a uniform beam distribution. This potential can then be 

transformed to the laboratory coordinate system to calculate the required self-electric and 

self-magnetic fields as desired in the equations of motion. 

We have introduced a coordinate system )~,~( yx  which is rotated with respect to the 

laboratory coordinate system ),( yx  by an angle  . From here and onwards we use tilde ~ 

on a variable to represent the quantity in rotated coordinate system. In the rotated 

coordinate system the semi axes of elliptical cross-section of the beam are aligned with the 

coordinate axes as shown in Fig. 6.1. The coordinates are related by 

 sincos~ yxx  ,            cossin~ yxy           (6.12) 

To determine the self-electric and self-magnetic fields of the beam self consistently we 

assume that the equilibrium particle density is uniform within the upright elliptical 

boundary in the rotated system and zero elsewhere. Therefore the uniform particle density 

profile of the beam in this system can be expressed as 
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where  Θ(x) = 1 if x > 0 and Θ(x) = 0 if x < 0 and  2~2)(
~

xsX and  2~2)(
~

ysY  are 

the beam sizes along the transverse x~  and y~  coordinate axes respectively. 

 Here const),~,~(~~

0

0  


syxnydxdn  is the number of particles per unit axial length. The 

density profile ),,( syxn  in Eq. (6.10) will also remain constant inside the rotated ellipse 

whose transverse dimensions are X  and Y and the tilt angle is   [95-97]. The self 
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electrostatic potential in the rotated coordinate system where elliptical cross-section is 

upright with constant density distribution specified in Eq. (6.13) can be solved using 

Poisson’s equation [98]. The result is 
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where cYXqnI  ~~
0  is the beam current and 0  is the permittivity of free space. By 

substituting the expression of x~ and y~  from Eq. (6.12) into Eq. (6.14), we have 
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Eq. (6.15) gives the self potential in terms of laboratory coordinates x  and y . The 

expressions for the self field of a rotated beam in the case of a linearly coupled system are 

also mentioned in ref. [99, 100].  

We are now in a position to express the equations of motion given in Eq. (6.8) in terms 

of field components of elliptical solenoid obtained in Eq. (6.6) and self field of the beam. 

Replacing t  with s  ( cts  ) and using the fact that xBsE SS
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sB , the equations of motion can be written as 
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where cmsqBsK 2/)()(  , cmsqDsJ 2/)()(   and 333
02/  mcqIQ   is the 

beam perveance and the prime denotes the derivative with respect to s . The first term in 

Eqs (6.17) depends upon the gradient of the magnetic field. It is effective only at the 

entrance and exit of the elliptical solenoid where there is a sharp rise and fall in the 

magnetic field. Its effect is to impart an impulse to the particle which causes a sudden 

change in the direction of the trajectory [91, 101] and can be expressed in matrix form for 

the entrance as 


























































































0

0

0

0

0

0

0

0

))((

100)(

0100

0)(10

0001

y

y

x

x

sK

y

y

x

x

sK

sK

y

y

x

x

endR         (6.18) 

where 00 , yx  are the initial positions and 00 , yx 
 are the initial divergences of the particle in 

x  and y  planes respectively at the entrance of the magnet. For the exit of the solenoid the 

matrix will be ))(( sKend R . Inside the elliptical solenoid the particle trajectory is 

obtained by solving Eqs (6.17) without the first term. Thus the equations of motion inside 

the elliptical solenoid are 

)()(2)( xyxx yxQysKysJx           

)()(2)( xyyy xyQxsKxsJy             (6.19) 

These are coupled differential equations and their analytical solutions are known in the 

absence of space charge ( 0Q ) and can be represented in terms of transfer matrix [91]. 

The transfer matrix then can be utilized to obtain the beam properties using the standard 

sigma matrix method. However, in the case of space charge effect simple matrix 

multiplication cannot be used because the space charge forces are dependent on the 

properties of the beam itself. A convenient way for dealing with the space charge is to 

employ the infinitesimal transfer matrix approach. 
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6.2.3. Infinitesimal transfer matrix and beam envelopes 

Since Eqs. (6.19) are linear, therefore any solution of these equations can be 

represented by a linear combinations of four linearly independent solutions. Since we are 

primarily interested in the transverse beam dynamics we need to construct 44  

infinitesimal transfer matrix. Let Tyyxxs ),,,()( 0 x  represents the coordinates of a 

paraxial ray in the laboratory coordinate system at a location 0s  inside the elliptical 

solenoid magnet. At some other location s , the coordinates will be transformed according 

to the matrix equation, )(),()( 00 ssss xRx   where ),( 0ssR is a 44  transfer matrix 

inside the magnet whose elements are functions of s  and 0s . In order to generate the 

matrix ),( 0ssR , we need to solve Eqs. (6.19) for four different initial conditions with 

sufficiently small interval 0ssds  , with Lds  , where L  is the length of the 

elliptical solenoid. A simple way is to choose the initial conditions in which one 

coordinate say x  is equal to 1 and all other coordinates are equal to 0. The solution of 

differential equations will yield the first column of transfer matrix ),( 0ssR . By repeating 

the same procedure with other coordinates one can easily get the all other columns of 

matrix ),( 0ssR . The entry and exit matrix of magnet at 0s and s  has to be multiplied with 

),( 0ssR to get the coordinate transformation through the small portion ds   of elliptical 

solenoid magnet. This can be expressed as 

))((),())((),( 000 sKsssKss endend RRRM            (6.20) 

This is the infinitesimal transfer matrix.  

It is to be noted here that the space charge term in equations of motion (6.19) depends 

on the properties of the beam itself i.e. on the beam sizes ( )(
~

sX and )(
~

sY ) and the rotation 

angle   which are function of the axial distance s . These quantities must be evaluated 
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after each interval ds  to obtain the self field. The beam envelope quantities are basically 

related to the beam matrix σ.  For a continuous beam the sigma matrix defines the shape of 

a 4D hyper-ellipsoid of the beam i.e.  

11  xσxT                                                                                                    (6.21) 

where the superscript “T” denotes the transpose of the matrix. The 4D hyper-ellipsoid 

when projected into 2D subspace (say yx, ) in the laboratory coordinate system, the 

equation of the projected ellipse becomes 
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Here the elements of sub-matrix 13σ  are chosen from elements of the matrix σ  defined in 

Eq. (6.21). Expanding Eq. (6.22) we have 

xyσyσxσσσσ xyxxyyxyyyxx 2222            (6.24) 

In the rotated coordinate system, the beam ellipse with semi axes )(
~

sX and )(
~

sY as shown 

in Fig. 6.1 is an upright ellipse and its equation can be written as 
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              (6.25) 

Now using the values of x~  and y~  from Eq. (6.12) into Eq. (6.25) and then comparing the 

coefficients of 2x , 2y  and xy  with Eq. (6.24) we have 
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~
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~

YθXσ xx            (6.26a) 

 2222 sin
~

cos
~

XYσ yy  ,          (6.26b) 
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~~

( 22 YXσ xy            (6.26c) 
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The semi axes of upright ellipse )(
~

sX and )(
~

sY in the rotated coordinate system can be 

easily obtained using Eqs. (6.26) as 

)(4)]()([)()(
2

1
)(

~ 22 sσsσsσsσsσsX xyyyxxyyxx   

)(4)]()([)()(
2

1
)(

~ 22 sσsσsσsσsσsY xyyyxxyyxx   













 

)()(

)(2
tan

2

1
)( 1

sσsσ

sσ
s

yyxx

xy            (6.27) 

The beam sizes )(
~

sX and )(
~

sY  and the rotation angle )(s  have been used to determine 

the self field potential in the laboratory frame as given in Eq. (6.15) to solve Eqs. (6.19). 

In order to determine the beam sigma matrix along the axial distance s  in the 

laboratory coordinate system, we use the recursive sigma matrix method. In this method 

we divided the elliptical solenoid magnet into large number of small intervals 0ssds   

and beam matrix )(sσ  at location s  is obtained by using the relation 

Tssssss ),()(),()( 000 MσMσ              (6.28) 

where )( 0sσ  is the beam matrix at location 0s  and ),( 0ssM  is the infinitesimal transfer 

matrix defined in Eq. (6.20). The beam sizes and the emittances in the x  and y  planes at 

an axial location s  can be obtained from the following relations 

)()( sσsX xx ,    )()( sσsY yy   

)]()()([)( 2
''' sσsσsσs xxxxxxx 

, 
)]()()([)( 2

''' sσsσsσs yyyyyyy        (6.29) 

6.3. Beam optical properties of an elliptical solenoid 

In this section we first discuss the beam optical properties of the elliptical solenoid 

magnet in the presence of space charge using the parameters of our low energy beam 
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transport line. We have chosen injection energy equal to 80 keV and parameters 04.0K  

cm-1 and 0003.0J  cm-2. These parameters are taken constant along the length s  of the 

magnet. Throughout the analysis we have assumed that initial emittances in both the 

planes are uncoupled. The beam line parameters are: length of the elliptic solenoid 30L  

cm and drift lengths before and after the magnet are 40 cm and 100 cm respectively. 

6.3.1. Focusing characteristics 

We have written a computer code which solves the paraxial trajectory given by Eqs. 

(6.19) for specified initial beam conditions from point 0s  to dsss  0 , where ds  is the 

small interval. We have used the step size 1ds  mm. Using the solution of paraxial ion 

trajectories for four different initial conditions, the infinitesimal transfer matrix ),( 0ssM is 

obtained for the small interval ds . It is then used to find out the beam matrix )(sσ at point 

s  from Eq. (6.28) utilizing the initial value of )( 0sσ . To determine the self field potential 

),,( syxS in the optical coordinate system we have used the elements of )(sσ in Eq. (6.27) 

to get the beam sizes )(
~

sX , )(
~

sY  and the rotation angle )(s . The beam envelope 

quantities are obtained from the elements of )(sσ using Eqs. (6.29).  

In Fig. 6.2 the behavior of beam envelope and focusing properties of elliptical solenoid 

magnet are compared with the conventional solenoid ( 0J ) at two values of beam 

current 0I  mA and 10I  mA. The input beam conditions for both cases are  

25.0)0()0(  YX  cm, 0)0()0(  YX  mrad and equal total emittances in both the 

planes i.e. 60)0()0(  yx    mm mrad at 40 cm before the magnet. The variation of 

the beam envelopes through the solenoid magnet for beam current 0I  mA and 

10I mA are shown in Fig. 6.2(a). As expected, the beam envelopes in both the planes 

are similar for this circular symmetric input beam because solenoid magnet exerts equal 

focusing forces in both the planes. The effect of space charge is clearly evident in terms of 
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location and size of the waist. For 0 mA beam current, the waist with size ~0.2 cm is 

formed at a distance ~30 cm from the exit of the magnet. In the case of 10 mA, not only 

the size of the waist ~0.33 cm of the beam is larger but the location of the waist ~50 cm is 

also at a farther distance from the exit of the magnet. However, in both the cases the 

circular symmetry of the beam is maintained. 

 

Fig. 6.2. Beam envelopes for (a) solenoid magnet and (b) elliptical solenoid magnet, for 
same initial axisymmetric beam with X(0) = Y(0) = 0.25 cm, X’(0) = Y’(0) = 0 mrad and 

εx(0) = εy(0)  = 60  mm mrad for two different values of beam current I = 0 mA (solid 

curve) and I = 10 mA (dashed curve). 

In Fig 6.2(b) we have shown the evolution of beam envelopes through the elliptical 

solenoid with parameters 04.0K  cm-1 and 0003.0J  cm-2 for two values of beam 

current with the same input conditions as in the previous case. The effect of asymmetric 

focusing and inter-plane coupling effect is clearly visible from the envelope behavior. The 

beam envelopes in both the planes for 0I  mA are different because of the parameter J  

which causes an extra gain in focusing force in y  plane and a reduction in the x  plane. As 

a result the beam waist in y  plane is formed at a shorter distance compared to that of the 
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x-plane and the sizes of the beam waist are also different for the symmetric input beam. 

The effect of space charge, as shown in Fig 6.2(b) by dashed curve for 10 mA beam 

current, not only increases the waist sizes but also the location of the waists in both planes.  

6.3.2. Study of inter-plane coupling effect 

In order to understand the coupling effect in the beam caused by an elliptical solenoid 

magnet we now explore the magnitude of projected emittances under various input beam 

conditions. Fig. 6.3 shows the behavior of the projected x  and y  emittances as a function 

of axial distance s, for an axisymmetric input beams with 25.0)0()0(  YX  cm, 

0)0()0(  YX  mrad and with equal emittances 60)0()0(  yx    mm mrad in both 

the planes. In the case of a conventional solenoid ( 0J ) the projected emittances in the x 

and y planes are same at all the points downstream, they are equal to the initial emittances 

and are not affected by the beam current. This is due to the fact that both the external as 

well as space charge forces are symmetric with respect to the two semi-axes of the ellipse 

in the local x - y  plane.  

 

Fig. 6.3. Transverse projected x  and y  emittances through the solenoid (dashed line) and 

elliptical solenoid (solid line) for axisymmetric input beam. The input conditions of the 
beam are same as in the case of Fig. 6.2. 



115 
 

The situation is completely different in the case of elliptical solenoid ( 0003.0J cm-2) 

where we see a growth in the projected x  and y  emittances even for I = 0 mA. This 

happens because of the fact that the initial axisymmetric beam becomes non-axisymmetric 

in the local x-y plane even in the absence of space charge. The magnitude of the projected 

emittances in both the planes grows rapidly as the beam passes through the magnet, 

reaches to a maximum value inside the magnet and then decreases for both values of beam 

current. It is interesting to note that x  and y  projected emittances are always equal to 

each other at any point downstream and independent of the magnitude of the x-y coupling. 

There is a substantial growth in the magnitude of the projected emittances at the exit in 

both the planes due to the coupling effects. The estimated values of the emittances for 

0I  mA and 10I  mA at the exit of the elliptical solenoid magnet are 66.4  mm mrad 

and 96.4  mm mrad respectively. 

It can be readily seen from Fig. 6.3 that the behavior of projected emittances in the 

drift after the exit of the elliptical solenoid is different for the case of beam with space 

charge where the emittances do not remain constant as in the case of 0I  mA. This is 

happening due to the coupled motions in x-y planes at the exit of elliptical solenoid i.e. the 

tilted transverse cross-section of the beam. The space charge effect further introduces 

coupling due to which there will be either a growth or reduction in the projected 

emittances as the beam travels in the drift space after the exit.  

In Fig. 6.4 we have plotted the behavior of transverse projected emittances through the 

elliptical solenoid and compared the results with that of conventional solenoid. We have 

chosen the initial emittances in x  and y  planes as 70)0( x   mm mrad, 50)0( y   

mm mrad respectively and unequal input beam sizes in the two transverse directions i.e. 

5.0)0( X  cm, 25.0)0( Y  cm. The behavior of projected emittances for a conventional 

solenoid ( 0J ) is shown in Fig. 6.4(a). It is interesting to note here that there is an 



116 
 

exchange of emittance from one plane to the other plane. The projected emittance reduces 

in the plane where the initial emittance is high and it grows in the other plane where the 

initial emittance is low. The projected x  and y emittances at any point downstream are 

always unequal except at a point as shown by the dotted vertical line where these are equal 

in both the planes. There is very little growth in the projected emittances due to the space 

charge effect for the present initial condition of the beam. 

 

Fig. 6.4. Projected x and y emittances for 0I  mA (solid line) and 10I  mA (dashed 

line) through the (a) solenoid and (b) elliptical solenoid magnet for non-axisymmetric 

input beam. The input beam conditions in both cases are 5.0)0( X  cm, 25.0)0( Y  cm, 

0)0()0(  YX  mrad, 70)0( x   mm mrad and 50)0( y   mm mrad. 

The behavior of projected emittances through the elliptical solenoid is presented in Fig 

6.4(b) with the same initial conditions. Apart from an exchange of emittances from one 

plane to the other plane, there is a substantial growth in the projected emittances inside as 

well as outside the magnet due to the space charge effect. Two points are noteworthy from 

Fig. 6.4(b). In the case of 10 mA beam current, the projected emittance in both the planes 
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rises very fast inside the magnet, goes to a peak value and then drops to a smaller value at 

the exit. This effect is very small in the case of low beam current as well as in the case of 

the conventional solenoid. The second interesting point is that the projected emittances in 

both the planes are also equal at only one point and the location of that point is unaffected 

by the space charge effect. 

 

Fig. 6.5. Phase ellipses in x  and y  planes at the exit of elliptical solenoid along with 

contributions from the inter-plane coupling for initial uncoupled phase ellipses. Parameters 

of elliptical solenoid are 04.0K  cm-1, 0003.0J  cm-2 and 30L  cm. 

In an elliptical solenoid, there is a strong coupling between the two transverse planes 

which results in growth of projected emittances at the exit. This growth in projected 

emittances depends on the parameter J  and is very sensitive to the orientation of the 
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phase ellipses of the beam at the entrance of the elliptical solenoid. In order to demonstrate 

the coupling effect of the two transverse planes on the projected emittances, tracing of 

paraxial rays of 40 representative particles that belong to the boundary of the contours in 

( x - x ) and ( y - y ) planes of the phase ellipse at the entrance in both the planes have been 

performed through the magnet. The initial conditions for the coordinates and the beam 

divergences are chosen using tilted phase ellipses with cross-section 1)0( X cm, 

5.0)0( Y  cm and emittances 60)0()0(  yx    mm mrad in both planes. 

Fig. 6.5 shows the orientations of phase ellipses, at the entrance and exit of the 

elliptical solenoid for 0 mA and 10 mA along with the contributions from the inter-plane 

coupling. Figures 6.5(a) and 6.5(b) represent the initial phase ellipses at the entrance of the 

elliptical solenoid whereas Fig. 6.5(c) and 6.5(d) represent the phase ellipses at the exit for 

0I  mA. Solid lines indicate the area pertaining to the particular phase plane whereas 

dashed lines indicate the area contributed from the other plane. The total area of these 

subspaces gives the effective emittance at the exit of the magnet as shown by the dotted 

curve. The inter-plane coupling effects in the case of 10 mA beam current are shown in 

Fig. 6.5(e) and 6.5(f). It is to be noted here that the increase in emittances in both the 

planes at 0I  mA is purely due to the inter-plane coupling effects. The estimated 

effective emittances at the exit in x  and y  planes are same and equal to 75  mm mrad 

for 0I  mA and 81  mm mrad for 10I  mA. However, the orientations of projected 

emittances in both the planes at the exit are different. 

6.3.3. Parametric dependence of emittance growth 

We have also studied the behavior of projected emitances in both the planes at the exit 

with parameter J  for three different values of the beam current. We have considered two 

cases. In the first case (Fig. 6.6(a)) we have chosen an axisymmetric beam with 
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5.1)0()0(  YX  cm whereas in the second case (Fig. 6.6(b)) it is a non-axisymmetric 

beam with 5.1)0( X cm, 0.1)0( Y  cm. In both the cases initial emittances are 

uncoupled and equal i.e. 60)0()0(  yx    mm mrad. It can be readily seen from Fig. 

6.6 that, although the projected emittances at the exit increase with parameter J and beam 

current, their values are always equal in both the planes. For 0J , the projected 

emittances at the exit are equal to the initial emittances in the case of axisymmetric beam. 

However, there is a substantial growth in the emittances in the case of non-axisymmetric 

beam even at 0J  and increases with beam current. It is observed from the numerical 

calculations that there is a comparatively more growth in the projected emittances for non-

axisymmetric beam as we increase the value of parameter J and the beam current. 

 

Fig. 6.6. Transverse projected emittances at the exit of the elliptical solenoid as a function 

of the parameter J  for three different values of beam current. (a) axisymmetric beam with 

5.1)0()0(  YX  cm. (b) non-axisymmetric beam with 5.1)0( X cm, 0.1)0( Y . Other 

input conditions are, 60)0()0(  yx    mm mrad and 10)0()0(  YX  mrad. 

Parameters of the elliptical solenoid are 04.0k  cm-1 and 30L  cm. 
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In Fig. 6.7 we have plotted the transverse projected emittances at the exit of the 

elliptical solenoid as a function of the parameter J  for three different values of the beam 

current considering a more general case where the initial emittances are unequal in both 

the planes i.e. 70)0( x   mm mrad, 50)0( y   mm mrad and the beam is non-

axisymmetric. As usual we observe an increase in the projected emittances with beam 

current as well as with parameter J . In this case also there is a distinct exchange of 

emittances from one plane to the other plane at the exit of the magnet. 

 

Fig 6.7. Projected emittances at the exit of the elliptical solenoid as a function of the 

parameter J for beam currents 0I  mA (solid line), 10I  mA (dashed line) and 20I  

mA (dotted line) for an initial non-axisymmetric beam with 5.1)0( X  cm, 1)0( Y  cm, 

10)0()0(  YX  mrad, 70)0( x   mm mrad and 50)0( y   mm mrad. Parameters 

of the elliptical solenoid are K = 0.04 cm-1 and L = 30 cm. 

6.3.4. Conversion of an elliptical beam to a circular beam 

It is not always possible to transfer a beam of elliptical cross-section to a circular 

cross-section using a conventional solenoid. Such transformation can happen only in a 

particular situation where the beam rotation through the solenoid is 4/)12( n [102, 

103]. But a beam of circular cross-section can never be transformed to an elliptical cross-
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section using an axisymmetric solenoid magnet. However an elliptical solenoid can 

transform a beam of elliptical cross-section to a circular cross-section and vice-versa.  

A single elliptical solenoid, in general can never transform a beam of circular cross-

section to a circular cross-section like an axisymmetric solenoid. For this we need a 

combination of two elliptical solenoids in succession with parameters J  and J . Figure 

6.8 shows the beam envelopes in which the beam waists with equal sizes are formed at the 

axial location ~105 cm in both the planes for 10I  mA. The initial beam is axisymmetric 

with 25.0)0()0(  YX  cm, 0)0()0(  YX  mrad and 60)0()0(  yx   mm mrad. 

The optimum locations and lengths of the elliptical solenoids are indicated by boxes in 

Fig. 6.8. The length of the first magnet is 20 cm with 046.0K cm-1 and 00025.0J cm-

2 and that of the second is 19 cm with 046.0K cm-1, 00025.0J cm-2. 

 

Fig. 6.8. Beam envelopes in x and y planes for 10 mA beam current through elliptical 
solenoid doublet to produce beam waists at the axial location ~105 cm. The initial beam is 

axisymmetric with 25.0)0()0(  YX  cm and 60)0()0(  yx   mm mrad. Here “W” 

indicates the location of equal beam waist in both the planes. 

6.4. Transverse beam matching to the spiral inflector 

As it is mentioned earlier, the injection system of 10 MeV proton cyclotron consists of 

two solenoid magnets to transport and match the beam at the entrance of a spiral inflector. 
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A detailed study presented in Chapter 4 indicates that convergent phase ellipses with 

different orientations in x and y planes and a comparatively smaller width in y plane give 

better beam transmission. Figure 6.9 shows the results of transverse matching of an 

axisymmetric beam at the entrance of the spiral inflector. The resulting beam envelopes 

producing a beam of unequal sizes in x and y planes are shown in Fig. 6.9(a) and the phase 

 

Fig. 6.9. Beam envelopes and phase ellipses in the x  and y  planes for matching at the 

inflector entrance with average beam current 5I  mA. The input beam parameters are 

25.0)0()0(  YX  cm, 60)0()0(  yx    mm mrad. The estimated emittances at the 

matching point M are 4.61)()(  MM yx   mm mrad. 

ellipses are shown by solid lines in Fig. 6.9(b) and 6.9(c). The required phase ellipses at 

the entrance of the spiral inflector for better transmission and minimum emittance growth 

are shown by dotted curves in Fig. 6.9(b) and 6.9(c). The initial beam parameters at the 

waist position ( 0s ) of second solenoid are 25.0)0()0(  YX   and equal values of 

emittances 60)0()0(  yx    mm mrad in both the planes. The optimized parameters 
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of the elliptical solenoid magnet are 064.0K cm-1 and 00014.0J cm-2 and length 

25L  cm. The location of elliptical solenoid and matching point from the beam waist of 

the second solenoid are 20 cm and 65 cm respectively. The estimated projected emittances 

at the matching point are 4.61)()(  MM yx    mm mrad which indicates very small 

emittance growth caused due to elliptical solenoid. 

6.5. Summary 

In this Chapter, we have discussed the focusing properties of an elliptical solenoid and 

studied the transport and matching of space charge dominated beam using the infinitesimal 

transfer matrix technique. We have studied the emittance growth that results from the 

coupling between the two transverse planes as a function of beam current and the coupling 

parameter of the elliptical solenoid under various input beam conditions. The change of 

transverse projected emittances as a function of distance does not really indicate any 

degradation in the beam quality. We like to mention here that in a linearly coupled 4D 

phase space although the x and y projected emittances vary as a function of distance, there 

are always two independent generalized invariants analogous to the x and y emittances for 

the uncoupled system [104, 105]. Any increase in the generalized invariants provides 

information about the intrinsic degradation of the full 4D phase space of the beam. Thus in 

order to know the presence of any nonlinearity in the system one needs to calculate these 

invariants. We have also shown that the elliptical solenoid has an advantage and flexibility 

over the conventional solenoid for transverse matching of the beam to the spiral inflector 

which requires unequal beam sizes as well as different orientations of phase ellipses in the 

two transverse planes.  
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Chapter 7 

Conclusions and future works 

7.1. Conclusions 

In this thesis two major topics related with the injection and acceleration of a space 

charge dominated beam in a compact cyclotron have been addressed. The first topic deals 

with the design of the 10 MeV compact proton cyclotron and the study of the behaviour of 

space dominated beam along the accelerated orbits. Initially, a hard-edge approximation 

for field and the transfer matrix technique have been used to determine the preliminary 

design parameters of the magnet. We have studied the behaviour of beam envelopes using 

a uniform beam distribution during the first turn to estimate the acceptance in the central 

region. The limiting current that can be accommodated for further acceleration has also 

been estimated. Our results suggest that there is a particular set of initial parameters for a 

given beam current that gives the optimum beam envelopes. It is shown that a beam with 

low emittance ~ 0.8  mm mrad and injection energy in the range of 80-100 keV appears 

reasonable for the injection of 10 mA beam current (theoretical limiting value ~ 15 mA) in 

the compact cyclotron.  

In the next step an iterative random search technique has been developed and utilized 

to optimize the final profile of the magnet of the 10 MeV cyclotron. When compared with 

other methods, it is found that this method gives smooth shape of the hill profile and takes 

less computation time for optimization. The present design of the magnet provides axial 

betatron tune greater than 0.5 throughout, except near the central region and the phase 

excursion in the entire region is limited within  2 deg.  
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Since hard edge model of the magnetic field overestimates the vertical betatron tunes 

at lower radii, the results of envelopes prediction in the cyclotron so obtained are limited 

in accuracy. In order to improve the accuracy and study the beam dynamics in detail we 

have used the computed 3D magnetic field data and coupled accelerated beam envelope 

equations developed assuming the beam as a uniform ellipsoidal bunch. The study of 

envelope behaviour at a particular radius indicates that when the initial beam sizes are 

displaced from the matched sizes, the number of oscillations follows the pattern as per the 

prediction of the linear theory of envelope oscillations.  

The results of studies on behaviour of the beam envelope along the accelerated orbits 

predict the maximum transverse limiting current 7 mA for ellipsoidal bunch and 8.2 mA 

for uniform continous beam model within 6 mm half aperture. It is found that the limiting 

current reduces slightly with increase in the beam emittance. The results of beam 

optimization in the focusing channel of the cyclotron indicate that for maximum beam 

transmission one needs converging initial phase ellipses in both the planes. However in 

reality it is difficult to get such initial conditions because a spiral inflector generally 

produces axially diverging phase ellipse at its exit. The estimated value of limiting current 

using the input conditions provided by the spiral inflector is found to reduce slightly (Ilim = 

5.3 mA) within the specified 6 mm half aperture. 

The second topic that has been addressed in this thesis is the detailed design of the 

spiral inflector, the dynamics of a space charge dominated beam through it and the 

transverse beam matching at its input. A tilted spiral inflector with height A = 8.65 cm and 

tilt parameter k’ = 0.65 has been chosen after performing several iterations. During the 

design of the inflector in the space available in the central region at the chosen injection 

energy we have taken care that the inflected beam in the median plane is well centered. 
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A detailed study of beam dynamics through the spiral inflector using a uniform 

ellipsoidal bunch, and including the effect of space charge, has been carried out using 

infinitesimal transfer matrix technique and sigma matrix method. The increase in the 

current in the bunch due to bunching as the beam passes through the inflector has been 

included in the beam dynamics. We observed a significant change in the beam envelopes 

compared to the case when the beam current in the bunch is constant. From the numerical 

results it is observed that initial beam conditions have considerable effect on the projected 

emittances at the exit of the inflector. The growth in projected emittances is comparatively 

large when one uses the upright input ellipses. It is found that convergent phase ellipses 

with different orientations in x and y planes and a comparatively smaller width in the y 

plane give better beam transmission and less emittance growth at the exit of the inflector. 

 We have also studied the feasibility of transverse beam matching at the input of the 

spiral inflector using an elliptical solenoid after the second solenoid magnet in the low 

energy beam transport line. First we have made detail investigation on the beam optical 

properties of an elliptical solenoid magnet. This analysis includes the effect of space 

charge and uses infinitesimal transfer matrix technique and sigma matrix method to 

evaluate the beam behaviour. We have studied the emittance growth through it as a 

function of beam current under various input beam conditions. It is observed that the 

magnitude of projected emittances in both the planes is always equal to each other at any 

point downstream for equal input beam emittances whether initial beam is axisymmetric 

or non-axisymmetric. On the other hand when the input beam emittances are unequal it is 

found that there is an exchange of emittance from one plane to the other plane. The 

projected x and y emittances at any point downstream are always unequal except at a point 

where these are equal in both the planes. The feasibility of using an elliptical solenoid for 

transverse matching of a space charge dominated beam to the acceptance of the spiral 
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inflector which requires converging non-axisymmetric beam has been studied. Numerical 

results of optimization relevant to our system are also presented. 

7.2. Future works 

Deep theoretical understanding of the dynamics of space charge dominated beam 

through cyclotron and spiral inflector has been gained. However most of the theoretical 

calculations are based on the use of ideal KV beam distribution whose full four 

dimensional structure corresponds to a singular, hyper-ellipsoidal shell in phase space. For 

strong space charge, this singular structure drives unphysical, higher-order instabilities 

which limit the practical use of the K-V distribution [106]. The method presented in this 

thesis can also be used with physical distributions of beam particle in an rms equivalent 

beam sense provided the variation of statistical beam emittances is negligible or 

sufficiently low [44]. In order to verify that the formulations presented also works for non 

K-V smooth distributions it is required to perform the particle-in-cell simulations. 

We also like to point out here that the beam dynamics through the spiral inflector and 

along the accelerated orbits presented in the thesis assumes negligible energy spread in the 

beam. It is well known that an energy spread in the beam after a certain threshold value 

gives rise to the emittance growth for a space charge dominated beam [107]. The detailed 

simulation of beam dynamics with real beam distributions including the effect of energy 

spread in the beam would be of interest for future study. 

The evolution of beam bunch in the combined electric and magnetic fields of a 

cyclotron is very complex due to the coupling between the radial and longitudinal motions 

which leads to the rotation of the bunch. In this work we have presented a simplified 

model assuming a uniform beam distribution and neglected the coupling between radial 

and longitudinal motions. Results so obtained present a good insight about the transverse 

behavior of the space charge dominated beam in a compact cyclotron. However, in order 
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to study the detailed beam behavior with real beam distributions including the effect of 

radial-longitudinal coupling it will be necessary to use particle-in-cell simulations [108]. 

This will provide more insight of the beam behaviour including the neighboring bunch 

effect in the cyclotron. 

In this thesis we have discussed the dynamics of space charge dominated beam 

through the spiral inflector and in the 10 MeV compact cyclotron and discussed the 

various requirements of matching and efficient transmission. For better understanding of 

the beam behaviour it is necessary to do experiments on beam inflection. The 

experimental results would help to improve the modeling of the simulation work. The 

microwave ion source is operating and providing ~ 7 mA of beam current at 80 keV. Our 

future plan is to construct an inflector and a small magnet having similar characteristics as 

the central region of 10 MeV cyclotron and to study the high current beam inflection. The 

beam dynamics simulations based on simple model and verification of its results with 

actual measurements will help to define the final choice of parameters of the facility. 

Another direction of future research would be to fabricate an elliptical solenoid and 

place in the low energy beam transport line to match the beam at the input of the spiral 

inflector and then study the beam transmission. Such kind of device for matching, to the 

best of our knowledge, has not been used in the injection line of existing facilities. Results 

of such experimentations would provide valuable input to the accelerator community for 

matching the space charge dominated beam to a non-axisymmetric system. 
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