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SYNOPSIS

The field of intense charged particle beams is a rapidly growing field due to

many important applications ranging from accelerator driven systems, neutron

spallation sources, heavy ion fusion, high intensity accelerators for basic research

in high energy and nuclear physics, to mention a few examples. For most high

intensity accelerators, at the lower energy part, particularly near the ion source,

the self-field of the beam plays an important role in determining the beam

behaviour from there onwards. For the optimal design and stable operation

of high intensity accelerators and their beam transport systems, it is therefore

necessary to develop a basic understanding of the beam dynamics with space-

charge effects particularly at low energy.

The Variable Energy Cyclotron Centre at Kolkata has undertaken a project

of development of a 10 MeV, 5 mA compact radial sector proton cyclotron.

This project is a part of the activity of high intensity accelerator development

for accelerator driven subcritical systems. The injection line of the cyclotron

consists of 2.45 GHz microwave ion source, two solenoids to transport and match

the beam, a slit between the solenoids to reject the unwanted component of the

beam and a sinusoidal buncher to bunch the beam. The ion source and the

solenoid based low energy beam transport line have been designed, fabricated

and commissioned and are presently under testing for beam characterization.

The ion source will produce proton beam at an energy of 80−100 keV and beam

current in the range of 10− 20 mA. The extracted beam will first be collimated

by slits to remove the undesired ions (H+
2 , H

+
3 etc.) and will be bunched using

a sinusoidal buncher. It will then be injected axially in the central region where

a spiral inflector will place the beam on the proper orbit of a cyclotron. The

main aim of the project is to study the physics of space-charge-dominated beams
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and technological problems associated with the generation, transport, bunching,

injection, extraction, etc. of the high intensity proton beams.

In this thesis, detailed analytical and numerical studies have been performed

to study the dynamics of space-charge-dominated beams (single species and

multispecies) propagating through the low energy beam transport line. Main

emphasis has been put on the matching, rejection of unwanted component and

detailed analysis of the physical phenomena associated with the transport of

intense beams.

In an uncoupled and perfectly aligned lattice, the Kapchinskij-Vladimirskij

(K-V) distribution is the only known exact self-consistent solution of the nonlin-

ear Vlasov-Maxwell equations for intense beams. In the first part of the thesis,

a self-consistent kinetic description has been used to understand the dynamics

of a space-charge-dominated single species beam in the aligned and misaligned

solenoidal based transport system. A general equation for the centroid motion

is derived using the nonlinear Vlasov-Maxwell equation. It has been shown

that there exists a self-consistent Vlasov equilibrium distribution in the case

of a uniform beam density. The beam envelope equation that determines the

evolution of the outer radius of the equilibrium beam is similar in form to the

well known K-V envelope equation and is independent of the centroid equation

when the conducting beam pipe is considered very far away from the beam.

The microwave proton sources used in the injection system of cyclotrons

produce a proton fraction of the order 80-85% of the total beam. The other

major unwanted components are H+
2 and H+

3 . The presence of these unwanted

species in an intense beam alters the dynamics of the primary species during

the transport and thus the behavior of the beam envelope relative to the usual

situation where the unwanted species are not present.
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In this thesis, a multispecies beam envelope model for the evolution of an

axisymmetric space-charge-dominated multispecies beam has been developed,

for the evolution of the radius of each species along the transport line. For the

selection of a particular species, circular slits are introduced in the beam line.

The effective values of the current and emittance of each species after the slit are

taken into account in the beam envelope model for further transport in case the

radius of any species is larger than the slit size. Numerical results of the beam

selection and transport have been presented for various values of the total beam

current and different fractions of p,H+
2 , H

+
3 species. It has been observed that

the envelope of the proton beam behaves differently in the presence of different

fractions of the other components. The simple envelope model presented in

this thesis can be successfully utilized for a more precise estimate of the beam

envelope, without the use of large simulations in the case of a multispecies beam.

An optimization method has also been developed to find the optimal beam

line settings for the transport and matching of the desired primary beam using

the developed multispecies beam envelope model. It is based on the random

search technique where the parameters are varied randomly during the optimiza-

tion. Using this method, the primary beam is matched at the final position and

the loss of unwanted species is maximized at the location of a circular slit. In the

optimization two cost functionals have been defined, one for the primary beam

and the other for the unwanted species. The major advantage of this method

is that it is very simple to apply, easy to include any number of constraints

without calculating any differentiation of the cost functional and is very fast.

In order to improve the capture efficiency in a defined phase width of the

cyclotron, it is necessary to bunch the beam in the beam injection line. The

physics of the bunching process of intense beams is not yet well understood.

Therefore, a systematic study of the beam dynamics during the longitudinal
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beam compression will be helpful in better understanding of the beam bunching

and in improving the design of the system.

In the thesis, a detailed theoretical analysis has been carried out for the lon-

gitudinal and transverse beam dynamics of the beam bunch as it evolves under

the influence of space charge and external forces during the bunch compression.

The longitudinal dynamics and transverse dynamics have been studied using

disc model and envelope model respectively for various types of fixed shape

beam density profiles. The beam envelope equation has been modified to take

into account the longitudinal space-charge effect on transverse motion which

arises when the bunch size is comparable to beam size. It has been shown that

the location of the buncher from the time focus is a very crucial parameter in

the case of high beam current. For a given beam current, there is an optimum

drift length of time focus from the buncher beyond which the bunching efficiency

decreases rapidly and is independent of buncher voltage. It has been observed

that for intense beams different parts of the bunch evolve differently due to the

unequal amounts of space-charge force experienced during the bunch compres-

sion. This kind of behaviour does not appear when the beam current is very

small. For beams with bell shaped distribution, it has been observed that the

increased nonuniformity in the density distribution reduces the total projected

rms emittance as well as sharpness of the beam pulse at the time focus and the

effect is reversed for hollow shape distributions.

Though the linear beam envelope model based on K-V distribution or on

equivalent rms quantities, generally used for studying the average beam behav-

ior in the injection line, predicts the envelope behavior with reasonable accuracy,

it does not provide any information on emittance growth due to nonlinear ex-

ternal or self forces. In the more general case, where nonlinear forces from

both the applied fields as well as from the space-charge fields are present, the
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analytical investigation is very difficult, and one takes help of computer simu-

lations. For the self-consistent description of an intense beam, particle-in-cell

(PIC) simulation methods are widely used to understand the beam dynamics

in beam transport systems.

In order to understand the detailed dynamics of space-charge-dominated

beams with different density distributions in the injection line, a two-dimensional

PIC code has been developed. To include the effect of bunching a three dimen-

sional PIC code has also been developed for the self-consistent study during

the longitudinal compression. In the PIC method a beam is represented as a

collection of a large number of macroparticles. The equations of motion for

the macroparticles are integrated using the leap-frog algorithm. The region oc-

cupied by the ensemble of particles is divided into uniform meshes. At every

time step, the space-charge forces acting on the beam particles are calculated

using the particle-in-cell method, in which the charge of the macroparticles is

deposited onto a nearest grid points, followed by solving Poisson’s equation us-

ing the fast Fourier transform method. The computer code developed on the

above philosophy can handle the misalignment (displacement as well as tilt),

higher order nonlinearity of the focusing element and the off-centering of the

beam.

The PIC code has been used to investigate the evolution of phase space

distribution, rms emittances, rms size, and centroid for different types of beam

distributions particularly in the cases where the focusing magnets are misaligned

with respect to the symmetry axis. In addition, the beam loss during the

transport has also been estimated numerically for various beam parameters.

The PIC code has also used to get detailed information about the evolution

of the beam distribution and emittance growth caused due to nonlinear effects
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in the case of multispecies beams. The evolution of beam size and emittance

growth of the primary species has been investigated in the presence of unwanted

species for various beam parameters. The formation of beam hollow of unwanted

species is observed due to nonlinear space-charge effect. It has been shown that

the rejection of unwanted species is very effective when the slit is placed after

the hollow formation of the unwanted species.
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Chapter 1

Introduction

1.1 Applications of Charged Particle Beams

High intensity charged particle beams are used in many areas of scientific re-

search, as well as for a variety of applications. To mention a few examples,

high-intensity charged particle beams are used in applications such as accel-

erator driven subcritical systems (ADSS) [1], neutron spallation sources [2],

heavy ion fusion [3] and high intensity accelerator for basic research in high

energy and nuclear physics [4, 5]. In recent years activities on ADSS has gained

momentum for production of clean energy through controlled nuclear fission.

Basically, a particle accelerator is used to deliver a continuous high energy ∼
1 GeV proton beam of the order of 10 mA to produce neutrons by spallation

to feed a fuel/moderator assembly where the neutrons multiply by fission chain

reactions. Unlike a conventional reactor, in ADSS the fission reaction is not

self-sustaining and is subcritical. It needs a continuous supply of neutrons from

external source. If the accelerator stops, the reaction stops as well. The ex-

pectation is that such systems could be a possible source of energy for coming

decades with Thorium as breeding fuel which has considerable advantages when

compared with Uranium. Thorium is more abundant than Uranium. It gener-
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ates much less Pu and transuranic actinides among the radioactive waste. The

primary fuel is completely burnt after a number of fuel cycles. Moreover, op-

eration in an accelerator driven mode eliminates the possibility of a criticality

accident. Among the different options for the accelerator complex for ADSS are

either a system of linacs or cyclotrons [6, 7, 8].

In practical realization of ADSS, the most challenging task is the develop-

ment of a high energy (∼ 1 GeV) and high current (∼ 10 − 15 mA) proton

accelerator to produce neutrons by spallation to drive the sub-critical reactor

assembly. Cyclotron is an excellent option for delivering high power high cur-

rent beam because of compact structure, low beam losses, operation in the cw

mode and the most important cost factor for the beam power levels ≤ 10 MW.

Cyclotrons operating presently at various laboratories around the world were

designed preliminarily for research in nuclear and particle physics. The beam

powers available from these machines are at least one order of magnitude lower

than needed for ADSS. The overall efficiency of these machines is also very low.

Much larger efficiency can be achieved by designing the accelerator properly

keeping in mind the power dissipation in RF and magnet. At present cyclotron

is the highest beam power accelerator at PSI producing proton beam of 1.3

MW in cw mode at 590 MeV [9, 10]. In order to achieve 10 mA proton beam

at 1 GeV using cyclotron, certain critical issues are required to be studied in

detail, particularly at low energy regime where the space-charge forces dominate.

Before reaching the prototype stage of a driver accelerator for ADSS plant much

R & D works are needed to be carried out using proton beam of lower energy

and lower current.

The Variable Energy Cyclotron Centre at Kolkata has undertaken a project

to develop a 10 MeV, 5 mA compact radial sector proton cyclotron. This project
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is a part of the activity of the high intensity accelerator development for ADSS.

The main aim of the project is to study the physics of space-charge-dominated

beams and technological problems associated with the generation, transport,

bunching, injection, extraction etc. The ion source and the solenoid based low

energy beam transport line have been designed, fabricated and commissioned.

It is presently under testing for beam characterization.

In this thesis, detailed analytical and numerical studies have been performed

to understand the dynamics of space-charge-dominated beams (single species

and multispecies) propagating through the low energy beam transport line.

Main emphasis has been put on the matching, rejection of unwanted components

and detailed analysis of the physical phenomena associated with the transport

of intense beam. In the following section we briefly describe the sailent features

of the 10 MeV cyclotron and present status of the injection system.

1.2 Parameters of 10 MeV Cyclotron

Detailed design philosophy of the four sector 10 MeV compact cyclotron is given

in Ref. [11, 12, 13]. The maximum magnetic field at the hill centre is 1.5 T, and

an average magnetic field is 0.689 T, which correspond to a particle revolution

frequency of 10.5 MHz for proton. The hill gap is 4 cm and the valley gap is

64 cm, same as the distance between the upper and lower return yokes. For

the injection system, one hole is provided at the center. We have provided four

holes in the four valleys, two of which will be used for vacuum pumps and the

rest two will be used for the RF cavities. Apart from using a high dee voltage,

we have chosen a low average magnetic field and hence a large extraction radius

(∼ 65 cm) for 10 MeV cyclotron to have a reasonable turn separation at the

extraction radius. Though this method increases the cost of the cyclotron, it

gives more flexibility and a clear advantage for injection and extraction. The
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harmonic mode h of operation is equal to 4. The magnet design combines the

advantages of solid pole cyclotron and separated sector cyclotron. A high flutter

provides strong focusing in the vertical direction. The main idea was to provide

the vertical betatron tune > 0.5 in the acceleration zone. This is necessary for

handling the space-charge defocusing force at an average beam current of ∼ 5

mA.

1.3 Injection System of 10 MeV Cyclotron

In order to study injection of space-charge-dominated beam in the compact cy-

clotron and to characterize the beam, we have developed a microwave ion source

and a beam transport line [14]. Ion source with adjustable solenoid, its power

supplies, microwave generator (2.45 GHz, 1.2 kW), a high precision gas flow

system etc., all float at ∼100 kV. High voltage deck at 100 kV is separated from

the ground through polypropylene insulators. A two-segment ceramic insula-

tors (Al2O3) column, which supports the beam extraction electrodes, separates

the high voltage deck and the beam line at the ground potential. Three turbo

pumps having pumping speed of 520 l/s are used to evacuate the entire system.

Two pumps are placed close to the extraction and other one in the transport

line. Two motor controlled independent slits, one for x-plane and other for the

y-plane are placed in the beam line to control the size of the beam and to re-

ject the molecular hydrogen beam. Figure 1.1 shows the layout of the injection

system.

1.3.1 Ion Source and Extraction System

The design of the ion source is based on the principle of microwave discharge

off resonance. The main advantage of this type of the source is the low emit-

tance, stable high yield with large proton fraction. The schematic of ion source
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�

��Figure 1.1: Layout of the high voltage deck, source and LEBT line.

is shown in Fig. 1.2. The plasma chamber is a double walled water-cooled

cylindrical stainless steel chamber of 100 mm length and 90 mm diameter. The

microwave power from the 2.45 GHz, 1.2 kW magnetron is coupled to the cham-

ber through a three stubs tuning unit and ridged wave guide. The microwave

window for vacuum sealing is placed behind a bend to avoid any damage due

to back streaming electrons. Two motor controlled movable magnetic coils with

separate power supply provide the desired magnetic field. There is a provision

for adjustment of coils parallel to the source axis online with two motors. The

diameter of the apertures in the plasma electrode, accelerating electrode and

de-accelerating electrode are 7 mm, 8 mm and 8 mm respectively.

1.3.2 Low Energy Beam Transport Line

The injection beam line as shown in Fig. 1.3 consists of two solenoid magnets

each having physical length 40 cm to transport and match the proton beam

and two steering magnets to steer the beam. The beam from the ion source

is expected to contain H+
2 and H+

3 species along with primary proton beam.
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����� �

��

Figure 1.2: Drawing of the ion source and extraction system (left). Developed ion
source (right).

We have provided a slit at the waist position of the proton beam after the first

solenoid to reject most of H+
2 and H+

3 species. Beam current measuring equip-

ments used in the beam line are: a water-cooled faraday cup with secondary

electron suppresser, a DCCT and a beam dump cum faraday cup at the end of

the beam line. A pressure of the order of 3.5 · 10−7 mbar has been achieved in

the beam line. At present we are testing the source for performance and beam

quality improvement. In order to study the inflection and transmission of the

high beam current through the spiral inflector, we have designed and fabricated

a small magnet having a similar characteristics as the central region of 10 MeV

cyclotron.

The main body of this thesis consists of analytical, numerical and particle-

in-cell (PIC) simulation study of intense single and multispecies beam behavior

through low energy beam transport line. Detailed analysis of beam behavior

has also been studied under various conditions such as misalignments and with

different beam distributions.
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Figure 1.3: Beam transport line.

1.4 Space Charge Dominated Beams

As mentioned earlier, the main work presented in this thesis is the study on

the dynamics of space-charge-dominated beams propagating through the low

energy beam transport line. In the following we present a general discussion on

the space-charge effect. A beam is a collection of large number of charged par-

ticles moving along a straight or curved orbit, in which the longitudinal velocity

is much greater than the transverse velocities. Depending on the nature of the

source, there is always a spread in kinetic energy and velocity distribution in a

charged particle beam. The quality of the beam can be described by the beam

emittance which is related to the width and divergence of the beam. The diver-

gence of the beam is due to the random velocity spread. The most widely used

beam emittance is the normalized root-mean-square (rms) emittance defined in

one direction (say, the x- direction) as [15]

ε̃n = βγε̃ (1.1)
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where ε̃ is the unnormalized rms emittance in the x-direction, defined as

ε̃ = (〈x2〉〈x′2〉 − 〈xx′〉2)1/2 (1.2)

where 〈· · · 〉 indicates the average over the beam distribution. In the case of

a uniform distribution the total normalised emittance εn = 4ε̃n. It is to be

pointed out here that emittance alone is not enough to define the quality of a

beam. The figure of merit is therefore known as the normalized brightness of the

beam, commonly defined as beam current divided by the square of normalised

emittance. In order to have a good quality beam for a given current one always

tries to get the beam emittance as minimum as possible. When the brightness

of the beam is very high, the beam becomes space-charge dominated. In the

space-charge dominated regime, the space-charge force is much greater than

the emittance force which can be described by the relation KR2 > ε2, where

K = 2I/(I0β
3γ3) is the self-field perveance of the beam and R is the radius of

the beam [15].

1.5 Theoretical Models of Intense Beams

For most of the machines near the ion source the self field is important in de-

termining the beam characteristics. In order to have optimal design and stable

operation it is essential to have a basic understanding of the beam dynamics

with space-charge. As the beam current increases the interaction between the

particles become more important. The charges produce mutually repulsive elec-

tric force and also magnetic fields that produce attractive forces. The magnetic

forces are much smaller than the electric forces at low velocity and are unimpor-

tant except for relativistic particles. The total Coulomb field experienced by any

particle is the sum of the fields due to all other particles. The self interaction

of particles can be classified into two categories, the collisional regime and the

collective or space-charge regime. The collisional regime is dominated by binary

8



Chapter 1. Introduction

collisions caused by close encounters. The space-charge regime is dominated by

the self field produced by the particle distribution that can be represented by a

smooth field as a function of space and time. The space-charge regime occurs

when there are enough neighbouring particles to shield the effects of density

fluctuations, a phenomenon known in plasma physics as Debye shielding. In

order to distinguish the two regimes a parameter λD known as Debye length is

used and is given by [15]

λD =

(
ε0γ

2kBT

q2n

)1/2

(1.3)

where kB is the Boltzmann constant, n is the number density of particles, q

is the charge, T is the temperature, ε0 is the free space permittivity and γ is

the usual relativistic parameter. If the Debye length is large compared with

the beam radius R (λD � R), the single particle behaviour dominates. On

the other hand, if the Debye length is small compared to the beam radius

(λD � R), collective behaviour of the beam dominates and smooth functions

for charge and field distributions can be used. In such cases self fields can be

treated as an applied force. In the absence of collisions, a complete description

of collective processes for intense charged particle beams in terms of external

field and smooth self fields is provided by the Vlasov-Maxwell equations. These

equations provides self-consistent nonlinear evolution of the beam distribution

function f(x,p, t) and the self-generated fields and are given by [15, 16]

∂f

∂t
+

∂

∂x
· (vf) + ∂

∂p
· (q(E+ v×B))f = 0 (1.4)

The total electric and magnetic fields E(x, t) and B(x, t) are determined self-

consistently from Maxwell’s equations

∇ · E =
1

ε0
q

∫
f(x,p, t)d3p+ ρext(x, t), (1.5)

∇× E = −∂B/∂t, (1.6)

9



Chapter 1. Introduction

∇ ·B = 0, (1.7)

∇×B = μ0Jext(x, t) + μ0q

∫
vf(x,p, t)d3p+ μ0ε0∂E/∂t. (1.8)

here ρext(x, t) and Jext(x, t) are the external volume charge density and current

density respectively. For a multispecies beam, each species can be defined by

separate distribution function and evolution of each distribution is provided by

Vlasov equation. A variety of theoretical and numerical methods are employed

based on the above Vlasov-Maxwell equation to describe the collective effects in

charged particle beams such as beam envelope model, 1D model for longitudinal

dynamics and more rigorous self-consistent methods.

1.5.1 Vlasov Equilibrium for Space Charge Dominated

Beams

The equilibrium states of a distribution of collisionless low energy charged par-

ticle beams are defined by time independent solutions of the Vlasov-Maxwell

equations by setting ∂f/∂t = 0 in Eq. (1.4). The equilibrium distribution func-

tion can then be used to investigate beam equilibrium properties over a wide

range of system parameters and beam intensities. Of particular concern are

emittance growth and beam losses, which arise due to the evolution of distribu-

tion function in their non equilibrium states. The solution of Vlasov-Maxwell

equations obviously has many solutions which depend on the form of the dis-

tribution functions and the parameters of the system. The usual approach is

to choose a distribution function which depends on the constants or integrals

of the single particle motion and therefore is a solution of the Vlasov equation.

In an uncoupled and perfectly aligned lattice, the Kapchinskij-Vladimirskij (K-

V) distribution function is the only known exact self-consistent solution of the

nonlinear Vlasov-Maxwell equations for high-intensity beams [17]. There also

exists a rigid-rotor Vlasov equilibrium for an intense axisymmetric beam with

uniform density in the radial direction propagating through an aligned periodic

10



Chapter 1. Introduction

solenoidal focusing field [18]. In a recent article, Moraes et al. [19] have stud-

ied the propagation of off-axis intense beam in an aligned periodically focusing

solenoidal channel and obtained a Vlasov equilibrium distribution.

1.5.2 Beam Envelope Model

The Kapchinskij-Vladimirskij (K-V) envelope equations are often employed as

a simple model of the transverse evolution of intense ion beams. These equa-

tions are coupled ordinary differential equations. They describe the evolution

of the beam edge in response to applied linear focussing forces and defocussing

forces resulting from space-charge and emittance [17]. The K-V beam envelope

equations are given by

X ′′ + kx(s)X − 2K

(X + Y )
− ε2x
X3

= 0 (1.9)

Y ′′ + ky(s)Y − 2K

(X + Y )
− ε2y
Y 3

= 0 (1.10)

where X and Y are the beam envelope sizes and εx and εy are the emittances in

x and y directions respectively. kx(s) and ky(s) are the external focussing forces

in x and y directions respectively and K is the perveance of the beam. Later

Sacherer and Lapostolle extended the work for the elliptically symmetric more

general beam density distributions [20, 21]. They introduced rms quantities

and the concept of equivalent beams. According to this concept, two beams

composed of the same species, current and kinetic energy are equivalent if the

second moments of the distributions are the same. The evolution equations for

the rms beam size are same for all the distributions. The rms envelope equations

are given by

x̃′′ + kx(s)x̃− K

2(x̃+ ỹ)
− ε̃2x
x̃3

= 0 (1.11)

ỹ′′ + ky(s)ỹ − K

2(x̃+ ỹ)
− ε̃2y
ỹ3

= 0 (1.12)

11
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Here x̃ and ỹ are the rms beam sizes, ε̃x and ε̃y are the rms emittances and prime

denotes derivatives with respect to path length s. However, the emittance in

the rms envelope equations is an unknown function of path length s except for

K-V distribution. Such envelope models are typically solved when the variation

of statistical beam emittance is negligible or sufficiently slow [22, 23].

1.5.3 Beam Dynamics during Bunching

In many practical applications such as rf accelerators, free electron lasers and

microwave tubes, one requires bunching of the intense beams. A systematic

study of transverse and longitudinal dynamics during beam bunching results

in better understanding of the processes and in improved design schemes. The

collective processes in intense beams are three dimensional in nature and are dif-

ficult to solve analytically. However, considerable theoretical progress has been

made in the development and application of one dimensional Vlasov-Maxwell

model, warm fluid model and cold fluid model to describe the longitudinal beam

dynamics of long beam bunch. Such one dimensional Vlasov descriptions rely

heavily on using a quasi self-consistent g-factor model to incorporate the av-

erage effects of transverse beam geometry and the surrounding wall structure.

The longitudinal space-charge electric field is given by [15]

Ez =
g

4πε0γ2
∂λ

∂z
(1.13)

here λ is the line charge density, g = 2ln(b/R) is the geometry factor which

depends on radii b and R of conducting pipe and beam respectively. The term

∂λ/∂z indicate the variation of line charge density along the bunch.

The transverse dynamics during the bunching is described by the transverse

K-V envelope equation. The perveance of the beam bunch becomes function of

path length s and increases as the beam bunching takes place. The evolution

12



Chapter 1. Introduction

of beam radius for an axisymmetric beam is described by,

R′′ + k(s)R − K(s)

R
− ε2

R3
= 0 (1.14)

The effective perveance K(s) includes the increase in the beam current during

the bunching. The longitudinal and transverse beam dynamics are either solved

independently or coupled by the geometric factor g. The g-factor model is used

when the gradient of line charge density is very small and the longitudinal bunch

size is large compared to the transverse beam size.

1.5.4 Self-consistent Approach

The major shortcomings of K-V and rms beam envelope models are the fact that

they do not provide any information on the emittance growth due to nonlinear

forces from both the applied fields as well as from the space-charge forces. In

cases where nonlinear forces are present the theoretical investigation becomes

very difficult, and one has to rely on computer simulations using realistic beam

distribution.

Several advanced numerical tools are available for the self-consistent investi-

gation of nonlinear collective processes in intense charged particle beams. Few

popular methods are particle-in-cell (PIC) simulation methods [24], particle-

particle method, Vlasov method [25, 26, 27], δf simulation method [16] etc.

Among them, PIC methods are most widely used. Realistic many particle sim-

ulations provide more insights into the various complexities associated with

intense self field and also help in the design of the accelerator systems. PIC

simulations follow the motion of a large number of charged particles in their

self-consistent electric and magnetic fields. When appropriate methods are

used, even few thousand macroparticles are sufficient to describe adequately

the collective effects in a beam. However, to perform such numerical simula-

tions, considerable computational power is often required.

13



Chapter 1. Introduction

1.6 Thesis Overview

In this thesis, detailed analytical formulations, numerical and PIC simulations

have been performed to understand the dynamics of space-charge-dominated

beam (single species and multispecies) propagating through a low energy beam

transport line.

In Chapter 2 a self-consistent kinetic description is presented to under-

stand the dynamics of a space-charge-dominated beam in aligned and misaligned

solenoid based beam transport line. A general equation for the centroid mo-

tion is derived using the nonlinear Vlasov-Maxwell equation. As we know that

there exists Vlasov equilibrium for intense beam known as K-V distribution in

the case of aligned transport elements. It has been shown that for misaligned

channel there also exists a self-consistent Vlasov equilibrium distribution for

the beam dynamics in the case of a uniform beam density around the beam

centroid. The beam envelope equation that determines the evolution of outer

radius of equilibrium beam around the beam centroid is similar in form to the

well known K-V envelope equation. It is independent of the centroid equation

when the conducting beam pipe is considered very far away from the beam.

Finally, a self-consistent two dimensional PIC model is used to investigate the

evolution of rms beam quantities, centroid motion, and phase space distribution

of particles. In addition, the beam loss during the transport for different types

of initial beam distributions has also been estimated for misaligned system.

In the first part of Chapter 3 a beam envelope model for an axisymmetric

space-charge-dominated multispecies beam is presented for the evolution of the

radius of each species along a solenoid based beam transport line. Circular

slits are introduced in the beam line for the selection of particular species. The

effective values of the current and emittance of each species after the slit are

14
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taken into account in the beam envelope model for further transport in case the

radius of any species is larger than the slit size. In the later part of Chapter 3

the evolution of multispecies beam is studied using self-consistent PIC method

where each species of the beam is represented as a combination of large number

of macroparticles. The evolution of beam size and emittance growth of the

primary species is investigated in the presence of unwanted species. The real

space distributions of the unwanted species are studied with and without the

presence of a slit in the beam line. The formation of beam hollows of unwanted

species is observed which are produced due to nonlinear space-charge effect. It

has been shown that the rejection of unwanted species is very effective when

the slit is placed after the hollow formation of unwanted species.

In Chapter 4 an optimisation method is described to find the optimal beam

line settings for the transport and matching of intense multispecies beam using

the envelope model discussed in Chapter 3. The method is based on random

search technique where the parameters are varied randomly during the optimi-

sation. Using this method, the primary beam is matched at the final position

and the losses of unwanted species are maximised at the location of the slit. To

quantify the quality of the solution two cost functionals are used in the optimi-

sation, one for the primary beam and other for the unwanted species. We have

studied the transport of intense proton beam from ion source in the presence

of H+
2 and H+

3 in the solenoid based beam transport line for various values of

total beam current and different fractions of the species. The major advantage

of this method is that it is very simple to apply and easy to include any number

of constraints. It does not require any differentiation of the cost functional and

is very fast.

In Chapter 5 numerical simulations have been carried out to optimise the

bunching performance of sinusoidal, two harmonic and double drift bunchers
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in the presence of space charge. The main aim of this work is to find out a

suitable buncher to bunch the high intensity beam for injection into the pro-

posed cyclotron. Disc model has been used for the longitudinal dynamics and

K-V envelope equations have been used for transverse dynamics. Numerical

simulations and optimisation of buncher parameters have been performed for

100 keV proton beam. The effect of buncher voltage and drift length on the

bunching efficiency and density distribution of the beam at the time focus have

been studied for various values of the beam current.

In Chapter 6 a theoretical model has been developed for bunch size com-

parable to transverse beam size to study the beam dynamics during the beam

bunching for different types of distributions. As the beams from the ion source

can never be monoenergetic, the finite longitudinal energy spread is also in-

cluded in the analysis. The beam envelope equation has been modified to take

into account the longitudinal space-charge effect on transverse motion which

arises when the beam size is comparable to the bunch size. During the bunch-

ing as the beam drifts the line charge density along the beam bunch does not

remain uniform. As a result different portions of the bunch evolve differently

during the transport. In order to include the variation of beam radius along

the length of the beam and to understand the behaviour of projected emittance

during the bunch compression, the total length of the beam is divided into

thick slices. The evolution of radius of individual slice is then found out under

the influence of space charge and external forces. Finally, self-consistent PIC

simulations have been carried out to understand the beam dynamics in more

detail.

The details of the development of two-dimensional and three dimensional

particle-in-cell (PIC) codes which are used in the previous chapters is described

inChapter 7. The 2D PIC code can handle self-consistent evolution of a space-
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charge dominated single as well as multispecies beam propagating through a

beam transport system. The developed 3D PIC can help to understand the

complete description of collective behavior in intense charged particle beams

during the beam bunching. In this chapter the details behind the structures of

the two dimensional and three dimensional PIC codes are described. The code

handles the misalignment (displacement as well as tilt) of the focussing element,

higher order nonlinearity of the focussing elements and the off-centring of the

beam.

Finally, Chapter 8 summarizes the conclusions drawn from the earlier chap-

ters and identifies possible areas of future research.
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Chapter 2

Beam Dynamics in the Aligned
and Misaligned LEBT System

2.1 Introduction

It is becoming increasingly important to understand the self-field effects on de-

termining the detailed equilibrium, stability, and transport properties of high-

intensity beams in a fully self-consistent manner from the nonlinear Vlasov-

Maxwell equations [16]. In an uncoupled and perfectly aligned lattice, the

Kapchinskij-Vladimirskij (K-V) distribution is the only known exact self-consistent

solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams

[17]. There also exists a rigid-rotor Vlasov equilibrium for an intense axisym-

metric beam with uniform density in the radial direction propagating through a

periodic solenoidal focusing field [18]. Recently, Qin and Davidson have general-

ized the K-V distribution function to describe high-intensity beam dynamics in

a coupled transverse focusing lattice [28] using the generalized Courant-Snyder

invariant [29, 30]. In all the cases it has been assumed that the beam and the

focusing elements are perfectly aligned to the symmetry axis. In a recent ar-

ticle, Moraes et al. [19] have studied the propagation of off-axis intense beam

in an aligned periodically focusing solenoidal channel and obtained a Vlasov
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equilibrium distribution.

One critical but unavoidable problem in the beam transport lines is the

presence of undesired imperfections in the beam line components [31, 32, 33,

34, 35]. In practical beam transport systems there is always a possibility that

solenoid magnets are placed with finite displacement and rotational alignment

errors with respect to the ideal symmetry axis. The dipole field terms induced

by misalignments of the solenoid can significantly deviate an aligned centroid

orbit away from the designed axis of the beam. It is therefore, of practical

importance to investigate the physics of beams in a misaligned focusing channel

[36, 37, 38, 39].

In this chapter we provide a self-consistent kinetic description to understand

the dynamics of a space-charge-dominated beam in a misaligned solenoid based

low energy beam transport line [40]. At first the magnetic field components

of the misaligned solenoid is obtained in the laboratory frame in terms of mis-

alignment parameters and single particle equation of motion is derived. Then a

general equation for the centroid motion of continuous, intense charged particle

beam is derived using the kinetic nonlinear Vlasov-Maxwell equation.

Most beams extracted from the ion sources are in the energy range of 10 - 150

keV and current in the range of 10 - 20 mA with stronger repulsive space-charge

force. It is therefore, important to understand the effect of space charge on beam

dynamics at low energy since the initial beam state can affect the quality of the

beam downstream. The nonlinear space-charge field of an intense beam is a

serious concern and needs special attention to avoid emittance growth and halo

formation during the transport [41, 42, 43, 44, 45]. The problem of matching of

the nonuniform density distributed beam in a linear uniform channel as well as

nonlinear focussing channel is discussed in Refs. [15, 46, 47, 48]. However, due
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to some practical constraints, it is not always possible to use nonlinear focusing

channel.

In the later part of the chapter, a PIC code has been used to investigate the

evolution of rms beam quantities, centroid, and phase space distribution in the

cases of aligned and misaligned focussing magnets. The details of PIC code are

discussed in Chapter 7. We have used five types of phase space distributions

of the beam and investigated the behaviour of beam propagation in real and

phase spaces. In addition, loss of beam during the transport for different types

of initial beam distributions are also estimated.

2.2 Vlasov Equilibrium in Misaligned Focussing

Channel

We consider a continuous, axisymmetric charged-particle beam propagating in

the laboratory coordinate system (x, y, z) with axial velocity βbcẑ in a solenoid

based beam transport line. The magnetic field in the case of an aligned solenoid

for small transverse excursions is given by,

Br(r, s) = −r
2

dBz(s)

ds
+
r3

16

d3Bz(s)

ds3
+O(r5) (2.1a)

Bz(r, s) = Bz(s)− r2

4

d2Bz(s)

ds2
+O(r4) (2.1b)

where, s = z is the axial coordinate along the beam propagation, r =
√
x2 + y2

is the radial distance from the solenoid axis and prime denotes derivative with

respect to s. In a realistic beam transport system, there can be a finite displace-

ment and rotational (tilt) mechanical alignment errors of the magnets. We now

use coordinate system for the misaligned solenoid as xD, yD, zD, with zD as the

longitudinal axis of symmetry for the solenoid as shown in Fig. 2.1. Let us

assume that the geometric center of the magnet is translationally displaced by


Δ = Δxx̂ + Δyŷ + Δz ẑ relative to the laboratory frame. The solenoid axis of
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Figure 2.1: Schematic of a misaligned solenoid described by a two-step transforma-
tion. First, translation of center by �Δ = Δxx̂+Δxx̂, and then a rotation of the axis
of symmetry in the translated system.

symmetry ẑD is then rotated through a polar angle φ with respect to z axis and

an azimuthal angle θ with respect to x axis. It is to be noted here that before

the rotation, unit vectors in the displaced coordinate system are parallel to the

laboratory coordinate system. The projection of ẑD in the laboratory system

can be written as [34]

ẑD = sin φ cos θx̂+ sinφ sin θŷ + cosφẑ (2.2)

whereas the coordinate transformation in component form can be expressed as

xD = x−Δx − θx(s− s0 −Δz) (2.3a)

yD = y −Δy − θy(s− s0 −Δz) (2.3b)

zD = z −Δz + θxx+ θyy (2.3c)

in which we have used θx = φ cos θ and θy = φ sin θ for the rotational parameters

assuming that the value of φ is very small i.e. |φ| � 1. The magnetic field

components at location (r, z) in the laboratory frame for a misaligned solenoid
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in linear approximation can be expressed as [34],

Bx(r, s) = −1

2

dBz(s)

ds
(x−Δx − θx(s− s0)) +Bz(s)θx (2.4a)

By(r, s) = −1

2

dBz(s)

ds
(y −Δy − θy(s− s0)) +Bz(s)θy (2.4b)

Bz(r, s) = Bz(s)− dBz(s)

ds
Δz (2.4c)

These equations represent the leading order magnetic field components of an

ideal solenoid which is misaligned with displacement parameters Δx,Δy,Δz and

the rotational parameters θx, θy. It is easy to see that the misaligned solenoid

generates an s dependent dipole field in x and y directions together with a shift

in the longitudinal field component. The equations of motion for a particle of

charge q and mass mb in the presence of solenoidal magnetic field and self field

of the beam are given by

γbmb
d2x

dt2
= − q

γ2b

∂φs

∂x
+ q (vyBz − vbBy) (2.5a)

γbmb
d2y

dt2
= − q

γ2b

∂φs

∂y
− q (vxBz − vbBx) (2.5b)

here φs is the usual self-field electrostatic potential and vb = βbc. Using Eq.

(2.4) in Eq. (2.5) and using s = βbct it is straight forward to obtain

x′′ − 2ky′ + 2k′y′Δz − k′y + ∂ψs/∂x = −k′(Δy + θy(s− s0))− 2kθy
(2.6a)

y′′ + 2ky′ − 2k′x′Δz + k′x+ ∂ψs/∂y = k′(Δx + θx(s− s0))− 2kθx (2.6b)

Here ψs = qφs/(mbγ
3
bβ

2
b c

2) is the normalised self-field potential of the beam

and k = qBz(s)/(2mbcβbγb) is the focussing field strength of the solenoid. For

a solenoidal focussing, the cross coupled form of Eq. (2.6) results in a macro-

scopic rotation of the beam about the longitudinal axis. These equations can be

simplified by transforming the coordinates to the rotating Larmor frame which

rotates with angular velocity dφL/ds = −k(s). The Larmor frame coordinates

22



Chapter 2. Beam Dynamics in the Aligned and Misaligned LEBT System

xL(s) and yL(s) and laboratory frame coordinates x(s) and y(s) are related as,[
xL(s)
yL(s)

]
=

[
cos φL(s) sin φL(s)
− sinφL(s) cosφL(s)

] [
x(s)
y(s)

]
(2.7)

Equations (2.6), after some straightforward algebra, can be expressed in the

Larmor frame as,

x′′L + k2xL + ∂ψs/∂xL = Gm (2.8a)

y′′L + k2yL + ∂ψs/∂yL = Hm (2.8b)

where,

Gm = −k′(Δy + θy(s− s0)) cosφL(s)− 2kθy cos φL(s)

+k′(Δx + θx(s− s0)) sinφL(s)− 2kθx sin φL(s)

Hm = k′(Δx + θx(s− s0)) cosφL(s) + 2kθx cosφL(s)

+k′(Δy + θy(s− s0)) sinφL(s)− 2kθy sin φL(s)

In the derivation of Eq. (2.8), we have neglected the higher order terms such as

2k′y′Δz and 2k′x′Δz. Since from here only Larmor frame will be used through-

out in this chapter we drop the subscript L for convenience. In the paraxial

approximation, the beam distribution function fb(x, y, vx, vy, s) evolves accord-

ing to the Vlasov-Maxwell equations [16]

∂fb
∂s

+vx
∂fb
∂x

+vy
∂fb
∂y
−(
k2x+ ∂ψs/∂x−Gm

) ∂fb
∂vx

−(
k2y + ∂ψs/∂y −Hm

) ∂fb
∂vy

= 0

(2.9)

∇2ψs = −(2πK/Nb)nb(x, y, s) (2.10)

In the above equation nb(x, y, s) =
∫
fbdvxdvy is the beam density, Nb =∫

fbdrdv is the line density of the beam particles and K = 2Nbq
2/(γ3bmbβ

2
b c

2)

is the beam self-field perveance.
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Our objective is to find a self-consistent solution of Eq. (2.9) and Eq. (2.10).

Using Eq. (2.9) and averaging over the distribution function we have,

〈x〉′ = 〈vx〉, 〈y〉′ = 〈vy〉 (2.11)

〈x〉′′ = 〈vx〉′ = −k2〈x〉 − 〈∂ψs/∂x〉 +Gm (2.12a)

〈y〉′′ = 〈vy〉′ = −k2〈y〉 − 〈∂ψs/∂y〉+Hm (2.12b)

Above equations describe the evolution of the beam centroid 〈x〉 and 〈y〉 in

response to the solenoidal magnetic field, the average self-field components

〈∂ψs/∂x〉, 〈∂ψs/∂y〉 and the dipole field terms due to misaligned solenoid. Since

∂ψs/∂x and ∂ψs/∂y correspond to the self-force exerted on beam particles by

themselves, their average over the beam distribution must vanish due to pair

wise inter-particle interaction [19] i.e. 〈∂ψs/∂x〉 = 〈∂ψs/∂y〉 = 0. The equa-

tions of motion for the centroid, thus become

〈x〉′′ + k2〈x〉 = Gm (2.13a)

〈y〉′′ + k2〈y〉 = Hm (2.13b)

It is to be noted here that so far we have not made any assumption on the

particular form of the beam distribution. Therefore, the equations of centroid

stated above are always valid as long as the beam evolves according to the

Vlasov-Maxwell system.

The self-field potential ψs and the distribution function fb are nonlinearly

coupled in the Vlasov-Maxwell equations. In order to construct the equilibrium

solution, we first assume a specific form for the self-field potential, and then find

the invariants of the particle motion in the presence of external field as well as

the self field. A distribution function constructed in terms of the invariants of

24



Chapter 2. Beam Dynamics in the Aligned and Misaligned LEBT System

single particle motion in the phase space will satisfy the Vlasov equation. How-

ever, any arbitrary choice of distribution function may not be useful. One needs

to choose a specific distribution function of the invariants so that it generates

the initially assumed self-field potential. This enables one to derive a set of dif-

ferential equations for the beam envelopes using the self-consistent distribution

function and the Vlasov-Maxwell equations.

In order to construct the self-consistent solution of the nonlinear Vlasov-

Maxwell equations, we first assume a circular beam with a uniform distribution

around the centre (〈x〉, 〈y〉) as,

nb(x, y, s) =

{
Nb/ (πR

2(s)) rb < R(s)

0 rb > R(s)
(2.14)

so that it will generate linear self-field force in the beam. Here rb = (x2b + y2b )
1/2

is the radial distance of a particle, R(s) is the beam envelope with respect to

the centroid, xb = x − 〈x〉 and yb = y − 〈y〉. The normalised self potential in

the interior of the beam is given by ψs = −K (x2b + y2b ) /2R
2. The equations of

motion of a beam particle in the Larmor frame located at (x, y) and subjected to

the external focussing force and the self-field force are therefore, evolve according

to

x′′ + k2x−Kxb/R
2 = Gm (2.15a)

y′′ + k2y −Kyb/R
2 = Hm (2.15b)

The equations of motion of beam particle in Larmor frame with respect to the

beam centroid (〈x〉, 〈y〉) can be easily obtained by subtracting Eqs. (2.13) from

Eqs. (2.15) and given by

x′′b + k2xb −
(
K/R2

)
xb = 0 (2.16a)

y′′b + k2yb −
(
K/R2

)
xb = 0 (2.16b)
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The solution for xb and yb can be expressed as [16]

xb = Axw(s) cos

(∫
w−2(s)ds+ φ0x

)
(2.17a)

yb = Ayw(s) cos

(∫
w−2(s)ds+ φ0y

)
(2.17b)

in which Ax, Ay, φ0x, φ0y are constants and the envelope function w(s) can be

obtained by solving w′′ + (k2 −K/R2)w = w−3. Ax and Ay can be expressed

in the form

A2
x = (xb/w)

2 + (wx′b − w′xb)
2
= const. (2.18a)

A2
y = (yb/w)

2 + (wy′b − w′yb)
2
= const. (2.18b)

Since Ax and Ay are the constants of motion, any function of the form fb(A
2
x, A

2
y)

is a solution of the nonlinear Vlasov equation. If we choose the distribution

function

fb = Nb

(
π2ε

)−1
δ
(
A2

x + A2
y − ε

)
(2.19)

it satisfies Eq. (2.14) provided R =
√
εw, where ε is the emittance of the beam

and is a constant. The beam radius R(s) obeys familiar envelope equation

R′′ + k2R− (K/R)− (
ε2/R3

)
= 0 (2.20)

The above treatment can also be generalised for a uniformly distributed circular

beam which rigidly rotates in the Larmor frame as it propagates along the

beam line. From Eqs. (2.17) it is easy to see that d(xby
′
b − ybx

′
b)/ds = 0

which corresponds to the conservation of canonical angular momentum pθ. The

generalised distribution function for a rigidly rotated circular beam [18] which

satisfies the Vlasov-Maxwell equation can be expressed as

fb = Nb

(
π2εT

)−1
δ
(
A2

x + A2
y − 2ωpθ − (1− ω2)εT

)
(2.21)
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In this case εT is the effective emittance, ω(−1 < ω < 1) is the rotation pa-

rameter and both are constants and we obtain R =
√
εTw with an envelope

equation similar to Eq. (2.20).

It is also possible to construct a Vlasov equilibrium for an elliptical beam

with zero angular momentum assuming the distribution function given by

fb = Nb

(
π2εxεy

)−1
δ
(
A2

x/εx + A2
y/εy − 1

)
(2.22)

where εx and εy are the emittances of the beam in x and y directions respectively.

This distribution function also yields coupled envelope equations similar to the

K-V beam envelope equations. A Vlasov equilibrium distribution, therefore, can

be formed for space-charge-dominated beam even when the solenoid magnets in

the beam transport lines are misaligned with respect to the symmetry axis. To

verify the conservation of beam emittances in such cases, we have performed a

self-consistent simulation using particle-in-cell (PIC) [24] method discussed in

Chapter 7. As the beam propagates, we compute the self-consistently obtained

beam sizes and the rms transverse emittances from

Xrms =
√
〈x2b〉, εxrms =

√
〈x2b〉〈x′2b 〉 − 〈xbx′b〉2 (2.23)

where 〈· · · 〉 represents averages over macroparticles in the Larmor frame. We

can have a similar expression for y plane also.

2.3 Numeical Results

Though the theoretical description presented in the previous sections is general

in nature, however, it is developed mainly to study the dynamics of space-

charge-dominated beam in our low energy beam injection line of 10 MeV cy-

clotron. The detail of low energy beam transport line are given in Chapter 1.

Its consist of a microwave ion source and two solenoid magnets S1 and S2 of
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physical length 40 cm each to transport and match the beam [49]. A schematic

of beam transport system with misaligned solenoids is shown in Fig. 2.2.
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Figure 2.2: A schematic of beam transport system with misaligned solenoid magnets
showing the laboratory coordinate system (x, y, z) and the local coordinate system
(xD, yD, zD) of the solenoids.

2.3.1 Computation of Solenoid Field and its Derivatives

In practical calculations, it is common to use a hard edge model for solenoids,

however, a more realistic calculation can be done with accurate smooth field

profile of the solenoids. We have calculated the magnetic field of the solenoid

using 3D MagNet code [50] and fitted the calculated normalised field (magnetic

field divided by the central field) by an analytical function given by,

Bn =
Bz(s)

B0
=

{
1

1+exp(a(s−s0−b))
for s > s0

1− 1
1+exp(−a(s−s0−b))

for s < s0
(2.24)

in which s0 is the axial coordinate of the centre of the solenoid. We obtained

the values for the parameters a = 0.4986 and b = 22.3712 after fitting which

has been used in Eq. (2.24) to compute the first, second and third derivatives

of the field as needed in the simulation. We have defined a function χ, the ratio

of nonlinear to linear term to know the strength of the nonlinear term as given
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by,

χ = |r
2

8

d3Bz

ds3
·
(
dBz

ds

)−1
| (2.25)

The normalised magnetic field and its first, second and third derivatives are

shown in Fig. 2.3. It can be readily seen that the nonlinear terms are appreciable

only at the both edges of the solenoid and the strengths are very small for higher

order derivatives.
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Figure 2.3: Variation of axial (r = 0) (a) normalised axial magnetic field Bn of
solenoid obtained from simulation (dotted) and analytical approximation (solid) (b)
first B1 = dBn/ds, (c) second B2 = d2Bn/ds

2 , and (d) third B3 = d3Bn/ds
3

derivatives along the length of the solenoid.

2.3.2 Vlasov Equilibrium in Misaligned Channel

In this subsection we compare the analytical results obtained in the previous sec-

tion with the PIC simulation results. In Fig. 2.4(a) we have shown the evolution

of beam centroid 〈x〉 and 〈y〉 as the beam propagates in the misaligned solenoids.

The numerical solution to the beam centroid equations (solid curves) shows a

good agreement with the self-consistent simulation result (dashed curves). The
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input parameters are: beam current I = 10 mA, normalized emittance εn = 0.8π

mmmrad, 〈x〉 = 〈y〉 = 0 and 〈x〉′ = 〈y〉′ = 0, the rms beam sizes Xrms = 1.25

mm and Yrms = 1.25 mm at s = 0. The centre of solenoids S1 and S2 are lo-

cated at 60 cm and 210 cm respectively. The peak values of the magnetic field

of solenoids S1 and S2 are 3.035 kG and 2.883 kG respectively. The misaligned

parameters of S1 are Δx = 3 mm, Δy = -3 mm, θx = 0 mrad, θy = 0 mrad

and for S2 are Δx = -5.225 mm, Δy = 5.225 mm, θx = −1.6 mrad, θy = 1.6

mrad. Other important parameters for the numerical simulations are: N =

77000, step size along the axial direction Δs = 1 mm, Nx = Ny = 128. Here

we have assumed that the beam pipe is of square cross-section 12.8 cm × 12.8

cm.

It can be readily seen from Fig. 2.4(a) that initially the beam centroid which

is aligned to the beam propagation axis, gets deviated from the ideal axis as it

enters the dipole field region of the misaligned solenoid. The excursion of the

centroid oscillation reaches to a very large value ∼ 2 cm at the second solenoid

S2 for the chosen set of the parameters. Figure 2.4(b) shows the evolution of

percentage change of rms beam emittances εxrms and εyrms as a function of

drift length s obtained with PIC simulation for the cases of misaligned (dashed

curves) and aligned (dotted curves) solenoids. It can be readily seen that the

beam emittances are well conserved in the case of misaligned solenoids and the

evolution of emittances is similar to the aligned solenoids. This confirms that

the chosen K-V beam distribution function is the equilibrium distribution. The

comparison of the rms beam envelope sizes shown in Fig. 2.4(c) indicates that

there is hardly any difference in the evolution of the beam envelopes for the

cases of misaligned and aligned solenoids. We also see that the beam envelopes

are stable, though the beam centroid excursions along the beam line are very

large. It is to be noted here that for the confinement of the beam both centroid
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Figure 2.4: Plots show the evolution of (a) beam centroid 〈x〉 and 〈y〉 (b) percentage
change in rms beam emittances and (c) rms beam sizes Xrms and Yrms as a function
of drift distance s.

and envelope have to be stable.

2.3.3 PIC Simulation in Aligned Solenoid System

In this subsection, we present the self-consistent particle-in-cell (PIC) simulation

results carried out for the case of aligned solenoid transport system with different

beam density distributions. In Fig. 2.5 we have shown the evolution of the rms

envelopes and rms emittances for 10 mA with the same beam and transport

parameters as used in Fig. 2.4. The beam is loaded initially according to

five different distributions: K-V (KV), waterbag (WB), parabolic (PA), semi-
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Gaussian (SG) and Gaussian (GA). It is readily seen from Fig. 2.5(a) that

the variation of beam sizes along s is almost similar for all the distributions,

indicating that evolution of the rms beam sizes is weakly dependent on the form

of the initial beam distribution.

The evolution of emittance along the beam transport line is shown in Fig.

2.5(b). It is interesting to note that beam emittance for all the distributions

except the K-V distribution shows an oscillating pattern and there is an overall

increase in the emittance, more for Gaussian and semi-Gaussian distributions.

The emittance increases in the initial part of the beam line, reaches its first

maximum at s ∼ 112 cm just before the first waist, decreases with s and again

starts increasing for all the distributions and reaches to maximum before the

second waist. The reduction in the emittance for the semi-Gaussian distribution

between the region s = 0 to s = 40 cm is not surprising because emittance can

decrease during the relaxation.

In order to investigate the effect of nonlinear terms of solenoid fields on

the emittance growth, we have compared the simulations with and without

including the nonlinear term (as given in Eq. (2.1)). We did not observe any

appreciable difference between the two cases. The third order nonlinear term

is strong only in the fringe region near the edges of the solenoids (shown in

Fig. 2.4(d)) where the beam size is ∼ 1.5 cm. In the fringe field region the

maximum value of parameter χ, the ratio of the nonlinear over linear term

is only ∼ 0.035 which means the nonlinear force experienced by a particle at

such radius is at most, ∼ 3.5% of the linear focussing force. The effect of

nonlinearity of solenoid field on the emittance growth is thus negligibly small

for the present case. Therefore emittance growth during transport is mainly

an effect of the nonlinear beam space charge. Emittance growth is seen to be

greater in the converging part of the beam, where the strength of nonlinear
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Figure 2.5: Evolution of (a) rms beam size Xrms(s) and (b) ratio of rms emit-
tance εrms(s)/εrms(0) in Larmor frame as a function of drift length s using the
self-consistent particle-in-cell method for five different initial distributions K-V (KV),
waterbag (WB), parabolic (PA), semi-Gaussian (SG) and Gaussian (GA) of the beam.

space-charge term is more. The maximum emittance occurs at s = 270 cm and

the ratios εrms(270)/εrms(0) are 1.3, 1.175 and 1.05 for Gaussian, semi-Gaussian

and parabolic distributions respectively.

In Fig. 2.6 the evolution of rms beam size and rms emittance is compared

for axisymmetric and non-axisymmetric beam with I = 10 mA. The initial

beam distribution is Gaussian with following input conditions (i) axisymmetric

Xrms(0) = Yrms(0) = 0.125 cm and εxrms(0) = εyrms(0) = 13π mmmrad, (ii)

non-axisymmetric Xrms(0) = 0.125 cm, Yrms(0) = 0, εxrms(0) = 13π mmmrad
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Figure 2.6: Evolution of rms beam size and rms emittance in Larmor frame for ax-
isymmetric (solid) and non-axisymmetric (dashed) beam with Gaussian distribution.
The input parameters are: (i) axisymmetric: Xrms(0) = Yrms(0) = 0.125 cm and
εxrms(0) = εyrms(0) = 13π mmmrad, (ii) non-axisymmetric: Xrms(0) = 0.125 cm,
Yrms(0) = 0.2 cm, εxrms(0) = 13π mmmrad and εyrms(0) = 19.5π mmmrad.

and εyrms(0) = 19.5π mmmrad. In the case of axisymmetric beam the behaviour

of beam size and emittance in both the x and y planes is similar as shown by

solid curve. It is interesting to note that in the case of non-axisymmetric beam

the emittance growth is more in the plane where the beam envelope size is

small and vice-versa. Initially the beam size and beam emittance in x plane

follows the same behaviour as in the case of axisymmetric case however, as the

beam leaves the first solenoid where the beam starts converging, the behaviour

is changed. This is due to the inter plane coupling effect triggered by the beam
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space-charge force. We also see that there is an exchange of emittance from

one plane to the other plane in the case of non-axisymmetric beam which is

common to the coupled motions.
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Figure 2.7: Plots of transverse (a) real space (x, y) and (b) phase space (x, x′) of the
beam at locations s = 0 cm and s = 277 cm for five initial distributions K-V (KV),
waterbag (WB), parabolic (PB), semi-Gaussian (SG), and Gaussian (GA).

The distributions of beam in the real space and phase space in the transverse

plane at the two locations s = 0 and s = 277 cm obtained by performing

simulations with 10000 macroparticles for five different initial distributions K-

V (KV), waterbag (WB), parabolic (PA), semi-Gaussian (SG) and Gaussian
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(GA) are shown in Fig. 2.7. In this case both the solenoids are aligned with the

beam propagation axis and other beam parameters are same as used in Fig. 2.5.

From the simulation results we see that K-V and waterbag distributions yield

almost similar real and phase space distributions at the final location. In the

case of parabolic distribution where the beam density is non-uniform, it is easy

to notice a slight deformation in the phase space and diffusion of particles in

the outer region of the real space. The simulation results of semi-Gaussian and

Gaussian distributions show a redistribution of the beam with large distortion

in the phase space together with generation of many halo particles. We believe

that such kind of behaviour is mainly caused by the nonlinear space-charge force

which is stronger in these cases compared to the parabolic distribution.

2.3.4 PIC Simulation in Misligned Solenoid System

In order to investigate the effect of misalignment of solenoid magnets on the

beam dynamics, we have used various values of misalignment parameters of

solenoids. Here we have studied the motion of centriod and the behaviour of

beam envelopes around the centroid. Simulation results are shown in Fig. 2.8

to Fig. 2.12. The evolution of the centroid displacements x0 = 〈x〉 and y0 = 〈y〉
from the ideal beam axis has been calculated from the macroparticles positions

x and y, where brackets indicate average over the distribution of macroparticles.

We have considered three different sets of misalignment parameters of solenoids

[Δx(mm), Δy(mm), θx(mrad), θy(mrad): (i) [2,−2, 0, 0] for S1 and [0, 0, 0, 0]

for S2, (ii) [5, 0, 0, 0] for S1 and [0, 0, 0, 0] for S2, (iii) [2, 2, 20, 0] for S1 and

[2, 2, 20, 0] for S2.

Figure 2.8 shows the comparison of beam centroid motion x0, y0 for different

sets of misaligned parameters. We performed the simulation with all the five

distributions and observed that the motion of centroid for a given set of mis-
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Figure 2.8: Evolution of the beam centroid 〈x〉 and 〈y〉 in laboratory frame using
self-consistent model in the case of initial K-V distribution for four different cases:
ideal [0, 0, 0, 0] for S1 and [0, 0, 0, 0] for S2, case (i) [2,−2, 0, 0] for S1 and [0, 0, 0, 0]
for S2, case (ii) [5, 0, 0, 0] for S1 and [0, 0, 0, 0] for S2, case (iii) [2, 2, 20, 0] for S1 and
[2, 2, 20, 0] for S2. Centroid motion for a given set of misalignment is independent of
beam distribution.

aligned parameter is independent of the form of the initial beam distribution.

It is easy to see from the figure that even for a small misalignment (case (ii))

the centroid oscillation amplitude reaches upto 1.5 cm at the end of the beam

line. When the misalignment is large (case (iii)), the centroid motion is unstable

and its value reaches to more than 4.5 cm at the end of the beam line. Any

further transport of the beam without any control of the centroid motion leads

to the loss of the whole beam on the beam pipe. The simulation was also done

with and without including the higher order nonlinear field of the solenoid as
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expressed in Eqs. (2.1) and we found no appreciable effect on the motion of

centroid. This may be due to the small strength of nonlinear terms in the case

of our solenoids as mentioned earlier.
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Figure 2.9: Real space and phase space distributions of initial 10 mA beam with
Gaussian distribution at the second waist (s = 277 cm) in the case (a), (b) aligned
and (c), (d) misaligned solenoids of case (iii) [2, 2, 20, 0] for S1 and [2, 2, 20, 0] for S2.

Figure 2.9 shows the real space and phase space distributions of initial 10

mA beam with Gaussian distribution at the second waist (s = 277 cm) for

aligned and misaligned solenoids. In Figs. 2.9(a) and 2.9(b) we have shown the

beam behaviour in the case of aligned solenoids where both real space and phase

space distributions are centered around the ideal beam propagation axis. The

distribution in y − y′ phase plane is similar as shown for x− x′ plane. In Figs.

2.9(c) and 2.9(d), we have plotted the real space x − y distribution and phase

space distribution in x − x′ and y − y′ planes for misaligned solenoids with

parameters stated in case (iii). As obvious, the beam distribution is centred
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around the location of the centroid at s = 277 cm. We also see that real space

and phase space distributions in this case are different mainly in the outer region

due to the formation of halo and loss of the particles. A detailed analysis shows

a loss of beam particles ∼ 0.6% in the present case of misaligned solenoids.
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Figure 2.10: Evolution of rms beam envelope Xrms in Larmor frame around the
centroid with drift length s in the case of misaligned solenoids for (a) K-V and (b)
Gaussian distributions. Misalignment parameters are: ideal [0, 0, 0, 0] for S1 and
[0, 0, 0, 0] for S2, case(i) [2,−2, 0, 0] for S1 and [0, 0, 0, 0] for S2, case(ii) [5, 0, 0, 0] for
S1 and [0, 0, 0, 0] for S2, case(iii) [2, 2, 20, 0] for S1 and [2, 2, 20, 0] for S2.

The evolution of beam envelopes around the centroid for K-V and Gaussian

distributions for various values of misalignment parameters is compared in Fig.

2.10. It can be readily seen that the beam envelope around the centroid is

independent of the misalignment parameters in the case of K-V distribution.
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Chapter 2. Beam Dynamics in the Aligned and Misaligned LEBT System

For the Gaussian distribution there is a slight change in the envelope behavior

for case (iii). It is interesting to note here that the evolution of envelope for

both the distribution is independent of the centroid motion. This fact is also

supported by the simulation result of case (iii) where we see that envelope is

stable, although the centroid motion is unstable. The evolution of envelopes is

also checked with other distributions and the envelope behavior is found almost

identical when the misaligned parameters are small. We have also evaluated
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Figure 2.11: Beam loss as a function of drift length s for five distributions with
misalignment parameters of case (iii): [2, 2, 20, 0] for S1 and [2, 2, 20, 0] for S2.

the percentage of beam loss as a function of drift distance s for various beam

distributions using the misaligned parameters of case (iii) [2, 2, 20, 0] for S1 and

[2, 2, 20, 0] for S2. Results shown in Fig. 2.11 indicate that beam loss is very

small for KV, WB and PA distributions. However in the case of GA and SG

distributions, the loss increases rapidly from s = 180 cm to s = 200 cm and

saturates to a value of ∼ 0.6% in the case of GA distribution and ∼ 0.55%

in the case of SG distribution. We believe that this loss is mainly due to the

nonlinear space-charge force that generates more number of halo particles (see
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Fig. 2.7). These halo particles ultimately hit the beam pipe when the centroid

excursion is large from the symmetry axis.
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Figure 2.12: Evolution of the beam centroid in the laboratory frame for different mis-
alignment parameters set (i) [0, 2, 0, 0] for S1 and [2, 0, 20, 0] for S2, set (ii) [2, 0, 20, 0]
for S1 and [2, 0, 0, 0] for S2, set (iii) [2, 2, 20, 0] for S1 and [2, 2, 20, 0] for S2.

In order to control the centroid motion and beam oscillations generally steer-

ing magnets are used in the beam transport lines. For low beam current method-

ology applied is as follows. First the actual solenoid misaligned parameters are

evaluated using the experimental measurement of the centroids at different lo-

cations in the beam line. Then centroid are manipulated using dipole steering

field. This procedure is based on the fact that the resultant of several misalign-

ments can be obtained by using the superposition principle [34]. In order to
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show that such superposition is also valid for the case of space-charge-dominated

beam, the PIC simulation is performed with following three sets of misaligned

solenoids: set (i): [0, 2, 0, 0] for S1 and [2, 0, 20, 0] for S2, set (ii): [2, 0, 20, 0] for

S1 and [2, 0, 0, 0] for S2, set (iii): [2, 2, 20, 0] for S1 and [2, 2, 20, 0] for S2. Here

set (iii) is the resultant which combines the misalignments of set (i) and set

(ii). From the simulation results shown in Fig. 2.12, it is seen that at any loca-

tion s the value x1(s) + x2(s) = x3(s) where x1(s) = (x1, y1), x2(s) = (x2, y2)

and x3(s) = (x3, y3) are the coordinates of centroid at location s obtained with

misaligned set (i), set (ii) and set (iii). The results indicate that the superpo-

sition method is also valid here. The method developed in Ref. [34] to control

the centroid motion due to misalignment can also be utilised in the case of

space-charge-dominated beam with small centroid excursion.

2.4 Summary and Discussion

To summarize, we have derived equations of motion for the centroid of the beam

in the Larmor frame in terms of focussing strength and misaligned parameters

of the solenoid magnets using nonlinear Vlasov-Maxwell equation. We have

constructed a self-consistent Vlasov equilibrium for the case of uniform density

beam moving in a misaligned solenoidal focussing channel. It has been shown

that the beam envelope obeys the familiar envelope equation, independent of

the centriod motion and the misaligned parameters of the magnet. The self-

consistent PIC simulation supports the analytical results.

A self-consistent PIC model has been utilized to study the dynamics of

space-charge-dominated beam through aligned and misaligned solenoid based

transport system. In the case of aligned solenoids, it is shown that the evolution

of the rms beam sizes is weakly dependent on the form of the initial beam

distribution. It is observed that the growth in the emittance is more in the
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converging region of the beam where the strength of nonlinear space-charge

term is comparatively more. There is an exchange of emittance from one plane

to the other plane when the initial beam is non-axisymmetric.

In the case of misaligned solenoids, the simulation results with different

distributions indicate that the motion of centroid is independent of the beam

distribution. It is shown that the beam envelope around the centroid obeys

the familiar envelope equation, and is independent of the centroid motion for

small centroid oscillation. For large misalignment, particularly tilt, the envelope

evolution depends on the form of beam distribution. It is also found that the

envelope is stable although the centroid motion is unstable. Large excursion

of centroid without any control leads to the loss of the beam on the beam

pipe particularly in the case of nonuniform beam distribution. This reveals the

importance of centroid motion to the overall beam confinement properties.
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Chapter 3

Dynamics of Multispecies Beam
in the LEBT System

3.1 Introduction

One of the earliest works on the beam envelope equations for transverse motion

of intense charged particle beams having elliptical cross section and uniform den-

sity are the well known Kapchinskij-Vladimirskij (K-V) equations [17]. Later

Sacherer and Lapostolle extended the work for the elliptically symmetric more

general beam density profile [15, 20, 21]. However, the above mentioned equa-

tions are valid only when the beam contains particles of same species (electron

or single ion).

Beam transport presents major difficulties in the cases when the beam con-

tains more than one species. For example, the typical value of the proton frac-

tion from the microwave ion sources is of the order of 80 - 85% of the extracted

beam [51, 52, 53]. The other major unwanted components in the beam are H+
2

and H+
3 . The effect of unwanted species has to be taken into account for the

matching of primary species which is very important in limiting the generation

of beam halo [41, 42, 43, 44, 45] and particle losses.

In this chapter equations for the beam envelope of a cylindrically symmet-
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ric space-charge-dominated multispecies beam transported through a solenoid

based beam transport line are derived [49]. We have also discussed the beam

selection using slits in the beam line. In the envelope equations, only the effec-

tive values of the current and emittance of each species are considered after the

slit for further transport in case the radius of any species is larger than the slit.

The envelope model gives a good description about the evolution of beam

sizes of different species and helps in quick optimisation of beam line parameters.

However, it does not provide any information about the behaviour of beam

distribution and emittance growth caused due to nonlinear effects during the

transport. In order to investigate more deeply the dynamics of multispecies

beam, the self-consistent PIC simulation has been performed. We have studied

the emittance growth of the primary species due to other unwanted species

present in the beam for various beam parameters. The real and phase space

distributions of all the species are investigated with and without placing a slit

in the beam line. It is observed that there is a formation of beam hollows of

unwanted species which are produced due to nonlinear space-charge effect. The

selection of the primary species has been carried out and it is shown that the

rejection of unwanted species is very effective when one places the slit after the

hollow formation of unwanted species. The numerical simulation result of the

transport of protons from 2.45 GHz microwave ion source in the presence of

H+
2 , H

+
3 species has been presented for various values of the total beam current

and different fractions of p,H+
2 , H

+
3 species.

3.2 Envelope Model for Multispecies Beam

In this section, we derive the differential equation for the envelope of multi-

species beam propagating through a solenoid based beam transport system. It

is assumed that beam is axisymmetric and the density distributions of all the
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species are uniform.

3.2.1 Space Charge Field

We consider a thin, axisymmetric continuous intense multispecies charged parti-

cles beam propagating through the drift space and applied focussing fields. We

use s = z as the axial coordinate measuring the distance along beam axis and

r =
√
x2 + y2 as the radial distance from the beam axis. In order to determine

the self-electric and self-magnetic fields of the beam, we consider the density

profile of different species of the beam to be uniform so that [18]

nj(r, s) =

{
Nj/

(
πr2j (s)

)
0 < r ≤ rj(s)

0 r > rj(s)
(3.1)

where rj(s) is the beam radius of species j and Nj

(
Nj =

∫∞
0
nj(r, s)2πrdr

)
is

the number of particles of species j per unit axial length. In order to develop

the equation of motion for individual test particles, the paraxial approximation

has been used. In this approximation the Budker parameter of the beam is very

small compared with unity i.e., (q2jNj)/(mjc
2) � 1, the beam is thin and the

transverse kinetic energy of the particles is small compared to the axial kinetic

energy i.e., vx2j + vy2j � vz2j ≈ β2
j c

2. Here, c is the speed of light in vacuum,

qj , mj are the charge and rest mass of species j respectively. βj is the relativistic

parameter for particle of species j. The scalar potential φsc
j for the self-electric

field can be obtained from Poisson’s equation(
∂2

∂x2
+

∂2

∂y2

)
φsc
j (x, y, s) = −

qjnj(r, s)

ε0
(3.2)

Since we have assumed that beam is cylindrically symmetric, we can easily

solve Eq. (3.2) in the cylindrical coordinate system with boundary condition

φsc = 0 at r = b (b is the radius of beam pipe), and the solution is [15]

φsc
j (r, s) =

{
qjNj

4πε0

(
1 + 2 ln b

rj(s)
− r2

r2j (s)

)
for r ≤ rj(s)

qjNj

2πε0
ln b

r
for rj(s) < r ≤ b

(3.3)
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3.2.2 Single Particle Equation

The total force acting on a particle can be obtained by adding the external

forces and the self-electric and magnetic forces due to all the components of the

beam. The x-component of force on a particle of species j can be written as,

Fxj = Fxextj + Fxscj (3.4)

Fxscj is the force due to self-electric and magnetic fields of all the components

of the beam and is given by

Fxscj = qj
(
Exscj − βjcBy

sc
j

)
+ qj

n∑
k=1
k �=j

(Exsck − βjcBy
sc
k ) (3.5)

In Eq. (3.5) the first term on the right side represents the force due to jth species

whereas the summation term represents forces due to all other species k. Here

n is the total number of species present in the beam. After simplification we

have,

Fxscj = qj
(
1− β2

j

)
Exscj + qj

n∑
k=1
k �=j

(1− βjβk)Ex
sc
k (3.6)

The equation of motion for a particle of species j can be written as,

γjmjβ
2
j c

2x′′ = Fxextj +
qjEx

sc
j

γ2j
+ qj

n∑
k=1
k �=j

(1− βjβk)Ex
sc
k (3.7)

in which the differentiation is with respect to the axial distance s and γj is the

usual relativistic term for species j. The expression for Exscj can be obtained

from Eq. (3.3) as

Exscj =

{
Ij

2πε0βjcr2j
· x for |x| ≤ rj(s)

Ij
2πε0βjc

· x
r2

for |x| > rj(s)
(3.8)

where Ij is the current due to species j of the beam. The total current of

the beam is simply the sum of the currents due to all the components i.e.

I =
∑n

j=1 Ij .
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The equation of motion for a particle of species j can be written as,

γjmjβ
2
j c

2x′′ = Fxextj +
qjIj

2πε0cβjγ
2
j r

2
j

x

+qj

n∑
k=1
k �=j

[
(1− βjβk)

Ik
2πε0cβk

(
x

r2k
Θ (rk − r) +

x

r2
Θ (r − rk)

)]
(3.9)

in which Θ(y) is the Heaviside step function with the property Θ(y) = 1 for

y ≥ 0 and Θ(y) = 0 for y < 0. Rearranging above equation we have

x′′ = gxextj + aj
x

r2j
+

n∑
k=1
k �=j

bjk

(
x

r2k
Θ(rk − r) +

x

r2
Θ(r − rk)

)
(3.10)

with aj =
qjIj

2πε0mjβ3
j γ

3
j c

3 , gx
ext
j =

Fxext
j

mjγjβ2
j c

2 , bjk =
qj(1−βjβk)Ik

2πε0mjβ2
j γjβkc3

.

3.2.3 Equation of Motion in the Larmor Frame

In the present analysis we consider that the external field is generated by the

solenoid magnets only. The solenoid focusing field in the paraxial limit can be

approximated by [54]

Bext(r, s) = Bz(s)êz − r

2
B′z(s)êr

which yields the expression for gxextj as [55]

gxextj = kl′j(s)y + 2klj(s)y
′ (3.11)

where, klj(s) = qjBz(s)/(2mjγjβjc). For solenoid focussing, the coupled form

of the equations of motion causes a macroscopic rotation of the beam about

the longitudinal axis. These equations take a simpler form in the Larmor frame

which rotates at Larmor frequency with respect to the laboratory frame. The

coordinates xL, yL in the Larmor frame can be obtained from coordinates x, y by

a rotation of laboratory frame through Larmor angle θ(s) about the z axis. The
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rotation angle will be different for different species of the beam. If we denote

the rotation for species j by θj(s), then we can write the relation between the

coordinates of two frames as [16, 55]

xL(s) = x(s) cos θj(s) + y(s) sin θj(s) (3.12a)

yL(s) = −x(s) sin θj(s) + y(s) cos θj(s) (3.12b)

The rotation angle θj(s) is given by

θj(s) = −
∫ s

si

klj(s
′)ds′ (3.13)

Consistent with this Larmor transform, the divergences x′(s) and y′(s) trans-

form as [55]

x′L(s) = x′(s) cos θj + y′(s) sin θj + klj(s) (x(s) sin θj − y(s) cos θj) (3.14a)

y′L(s) = −x′(s) sin θj + y′(s) cos θj + klj(s) (x(s) cos θj + y(s) sin θj)
(3.14b)

Using these transformation relations and dropping the suffix in xL for simplicity

i.e. xL → x, the equation of motion of species j in the Larmor frame can be

written as

x′′ = −kl2j (s)x+ aj
x

r2j
+

n∑
k=1
k �=j

bjk

(
x

r2k
Θ(rk − r) +

x

r2
Θ(r − rk)

)
(3.15)

where r2 = x2 + y2 = x2L + y2L. We have a similar equation for y motion also.

3.2.4 Beam Envelope Equation

In order to analyse the behaviour of the beam with any arbitrary distribution

during the transport, it is more appropriate to use the rms quantities. Multiply

the Eq. (3.15) by x and averaging over the distribution of species j, we obtain

xx′′ + kl2j (s)x
2 − aj x

2

r2j
−

n∑
k=1
k �=j

bjk

(
x2

r2k
Θ(rk − r) +

x2

r2
Θ(r − rk)

)
= 0 (3.16)
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with j = 1, 2, · · ·n. where x2 =
∫ ∫

x2fj(r,p,s)drdp∫ ∫
fj(r,p,s)drdp

and similar for other quantities.

Now we have the following relations [15]

x̃2 = x2, x̃′2 = x′2(
x2

)′
= 2xx′ =

(
x̃2

)′
= 2x̃ · x̃′(

x2
)′′

=
(
x̃2

)′′
= 2 (x̃ · x̃′)′ = 2

(
x̃ · x̃′′ + x̃′2

)
where tilde ∼ indicates the rms quantities. Furthermore,

(
xx′

)′
= x′2 + x · x′′

= x′2 − kl2j (s)x
2 + aj

x2

r2j
+

n∑
k=1
k �=j

bjk

(
x2

r2k
Θ(rk − r) +

x2

r2
Θ(r − rk)

)
= 0

(3.17)

Using above relations and rearranging the terms of Eq. (3.17) we have

x̃′′ + kl2j (s)
x2

x̃
− aj

x2

r2j x̃
− 1

x̃

n∑
k=1
k �=j

bjk

(
x2

r2k
Θ(rk − r) +

x2

r2
Θ(r − rk)

)
− ε̃2j (s)

x̃3
= 0

(3.18)

In Eq. (3.18), ε̃j(s) is the rms emittance of species j of the beam defined as,

ε̃2j(s) = x2 · x′2 − xx′
2

(3.19)

In order to find out the beam size of all the components of the beam, we need to

calculate the average values of Eq. (3.18) and the evolution of the beam emit-

tance along the transport line for each species. In the present envelope model

we have used a fixed shape uniform density profile for all the species to study

the behaviour of the beam keeping the emittance term constant. Substituting

these average values and using x2 = x̃2 in Eq. (3.18) we obtain

x̃′′ + kl2j (s)
x2

x̃
− aj

x2

r2j x̃
− 1

x̃

n∑
k=1
k �=j

bjk (f(rj , rk) + g(rj, rk))−
ε̃2j(s)

x̃3
= 0(3.20)
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where, the functions f (rj, rk) and g (rj , rk) are given by (see Appendix A)

f(rj, rk) =

⎧⎨⎩
r2j
4r2

k

if rj < rk
r2
k

4r2
j

if rj > rk
(3.21)

and

g(rj, rk) =

{
0 if rj < rk
1
2

(
1− r2

k

r2j

)
if rj > rk

(3.22)

For a uniform distribution, the beam radius rj(s) = 2x̃ and εj = 4ε̃j. Therefore,

the equation for the beam radius can be written as,

r′′j + kl2j (s)rj −
aj
rj
− 4

rj

n∑
k=1
k �=j

bjk (f(rj, rk) + g(rj, rk))−
ε2j(s)

r3j
= 0 (3.23)

It is very easy to show that envelope Eq. (3.23) developed here, reduces to the

well known envelope equation for single species as discussed in the literature,

for Ik = 0 and j = k.

3.2.5 Beam Selection by Slit

In practical accelerator applications, out of many species only one component of

the beam is required. In order to select a particular component of multispecies

beam one has to put slits at appropriate places in the beam line. The current

as well as the emittance of a particular species of the beam will be reduced if

radius of the beam of that particular species at the slit position is larger than

the radius of the slit. After passing through the slit, the resultant current of

species j is given by

Ij =

{
Ij if p ≥ 1

Ijp
2 if p < 1

(3.24)

where p = rslit/rj(slit), rj(slit) is the radius of the species j at the slit and rslit

is the radius of the slit. The effective emittance of species j, can be obtained
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by evaluating the phase space area that passes through the slit. The effective

phase space area which passes through the slit is given by (see Appendix A)

εjeff =
2εj
π

[
p
√
1− p2 + sin−1 p

]
(3.25)

where εj is the emittance of species j of the beam before the slit. If there is any

loss in any species at the slit the current of that species also reduces as given

by the Eq. (3.24). So, in general the quantity aj , bjk in Eq. (3.23) varies along

the transport line. To calculate the orientation of the effective phase ellipse

after the slit, first we need to calculate the rms emittance as well as the twiss

parameters αsj, βsj and γsj of the ellipse just after the slit. The rms quantities

just after the slit are given by (see Appendix A)

x2 =
εjr

2
slit

2πp2εjeff

[
p
√
1− p2 − 2p · q3/2 + sin−1 p

]
(3.26)

x′2 =
ε3jp

2

6πr2slitεjeff

[
3βjγj sin

−1 p+ 3βjγjp
√
q + 2p(1− 3α2

j)q
3/2

]
(3.27)

xx′ = − αjε
2
j

2πεjeff

[
p
√
q − 2p · q3/2 + sin−1 p

]
(3.28)

where αj , βj and γj are the Twiss parameters of the beam just before the slit

and q = (1 − p2). The rms emittance of the species j after the slit can be

obtained from

ε̃sj =

√
x2 · x′2 − (

xx′
)2

(3.29)

The Twiss parameters αsj, βsj and γsj are now given by βsj = x2/ε̃sj , γsj =

x′2/ε̃sj and αsj = −xx′/ε̃sj .

3.3 Numerical Results

As mentioned earlier there is a slit system between the two solenoids of the

LEBT line to reject unwanted species from the proton beam. The emittance
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of the beam from the ion source is mainly dictated by the ions temperature,

slit size of the plasma electrode and the magnetic field in the extraction region.

The normalised emittance of the extracted beam is given by [56, 57],

εn =
4

mic

R

2

√
mikTi +

q2B2
exR

2

16
(3.30)

where Bex is the axial magnetic field at the extraction slit, R is the slit radius,

Ti is the ion temperature, mi is the mass of the ion and k is the Boltzmann

constant. Typical values of normalised emittances for p,H+
2 and H+

3 ion species

used in the numerical calculations are εn(p) = 0.8π mmmrad, εn(H
+
2 ) = 0.4π

mmmrad and εn(H
+
3 ) = 0.27π mmmrad respectively.

3.3.1 Results using Envelope Model

In this subsection, we present numerical results using beam envelope model for

multispecies beam with various beam currents and species fractions. We have

used the soft edge profile of the solenoids (Eq. (2.24), Chapter 2) for the

calculation. We have solved Eq. (3.23) using 4th order R-K method and the

detailed procedure is given in Appendix A.

In Fig. 3.1 the envelopes of proton beam along the axial direction are plotted

for various proton fractions (60%, 80% and 100%) in the total beam current of

10 mA. Other components of the beam are H+
2 and H+

3 . The centres of the

solenoids S1 and S2 are located at s = 60 cm and s = 210 cm respectively and

a circular slit of radius 5 mm at 135 cm. The location of the slit is indicated

by an arrow. The initial beam has radius of 2.5 mm which expands rapidly

due to space-charge forces. The first solenoid focuses the beam to a waist

around the slit. The second solenoid brings the beam to another waist at the

matching point which is ∼ 280 cm. We can see that for different fractions of

proton, the envelope of proton beam behaves differently in the presence of other

components. Before solenoid S1, the radii of H+
2 and H+

3 are smaller than the
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Figure 3.1: Evolution of the envelope radii of proton beam having three different
fractions 60%, 80% and 100% in the total beam of 10 mA at 100 keV, for an ax-
isymmetric beam in the transport line. The initial beam parameters are r(0) = 2.5
mm, r′(0) = 0. The centres of the solenoids S1 and S2 are located at s = 60 cm and
s = 210 cm respectively. The orientations of the phase ellipses at the slit location are
also shown for the three different fractions of proton.

proton radius. Due to the space-charge forces of H+
2 and H+

3 the beam radius

of proton diverges rapidly where the proton fraction is less. At the slit H+
2

and H+
3 fractions are reduced drastically with a substantial reduction in the

space-charge force on proton beam due to these components. As a result the

proton radius diverges more in the cases where the proton fraction is large. In

all cases beam envelope passes through the slit and thus there is no reduction

in the current and emittance of the proton beam.

The evolution of beam envelopes of H+
2 and H+

3 are shown in Fig. 3.2 for

total beam current of 10 mA in which proton current is 6 mA and currents

due to H+
2 and H+

3 are 2 mA from each. Both beams diverge initially and

the growth rate slowed down when they are subjected to the focussing force of

solenoid S1 at 60 cm. At the slit the beam radius of H+
2 is reduced from 2.5
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Figure 3.2: Variation of envelope radii of a) H+
2 beam and b) H+

3 beam without slit
(dashed line) and with slit of radius 5 mm (solid line). Slit is located at s = 135 cm.
The strengths of the solenoids S1 and S2 are 3.035 kG and 2.833 kG respectively.
The evolution of H+

2 and H+
3 envelope radii after selection by three different slit sizes

are also shown. The dotted curves represent the proton envelope.

cm to 0.5 cm (Fig. 3.2(a)) with a substantial reduction in the current as well

in the emittance. The radius of H+
2 beam diverges again (shown by solid line)

due to the action of its emittance and space-charge forces of proton, H+
2 and

H+
3 . At solenoid S2 it again experiences the focussing force and thus the rate of

divergence of its envelope is reduced. For this beam the focussing force due to

solenoid is not enough and thus the beam diverges after forming a waist. The

situation is same for H+
3 beam as shown in Fig. 3.2(b).

In order to understand the evolution of beam envelopes in more detail, the
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Figure 3.3: Evolution of envelope radii of p,H+
2 and H+

3 having fractions of 80%,
15% and 5% respectively in the total initial beam current of 10 mA at 100 keV. The
initial beam parameters are r(0) = 2.5 mm, r′(0) = 0 for all the species. Beam spots
of p,H+

2 and H+
3 near the second waist of proton beam are also shown.

envelopes of H+
2 and H+

3 are also plotted for three different slit sizes in Fig.

3.2(a) and 3.2(b). As the slit size increases the envelope radii also increases at

the slit and evolves under the action of space charge and emittance forces. The

beam with larger radius at the solenoid S2, experiences comparatively stronger

focussing force and reduced space-charge force. The beam radius therefore

evolves accordingly under the action of these focussing and defocusing forces

as beam advances in the drift length. The major portions of the H+
2 and H+

3

beams are rejected at the slit and out of 4 mA beam, only 0.172 mA passes

through the slit. There is also reduction in the emittances of both species.

Figure 3.3 shows the beam envelopes of p,H+
2 and H+

3 having fractions of

80%, 15% and 5% respectively in the total initial beam current of 10 mA. At the

slit most of the H+
2 and H+

3 beams are rejected whereas proton beam passes

through the slit without any loss. The estimated fractions of p,H+
2 and H+

3

after the slit are 98.6%, 1.13% and 0.27% respectively. The estimated beam
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spot of these three beams near the second waist of proton beam is also shown

in Fig. 3.3. A second slit at this location having radius equal to the radius of

proton beam (7 mm), can further reduce the fraction of other components. The

estimated fractions of p,H+
2 and H+

3 after the second slit are 99.94%, 0.054%

and 0.006% respectively.
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Figure 3.4: The orientation of phase space ellipses of different species of the beam
at the position of the slit for various beam parameters. In each case the phase space
region occupied between the two dotted lines (representing the edges of the slit in
phase space), will pass through the slit of radius 5 mm.

The orientations of phase ellipses of p,H+
2 and H+

3 beams at the slit location

are shown in Fig. 3.4 for various fractions of p,H+
2 and H+

3 in the beam current

of 10 mA. As discussed earlier, only those portions of phase ellipses of H+
2

and H+
3 which are within the edges of the slit in the phase space represented

by dotted lines, will pass through the slit. The emittance and current of H+
2

and H+
3 of the beam after passing through the slit for various values of proton

fractions in the 10 mA and 20 mA of total beam current are given in Table 3.1.
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Table 3.1: Emittances and currents of different components of the beam after
the slit of radius 5 mm. The initial emittances in πmmmrad are; 54.7948 (p),
38.7463 (H+

2 ) and 31.6376(H+
3 ).

After passing through the slit
Total Beam species (%) Emittance of species Current of species
current (π mmmrad) (mA)
(mA) p H+

2 H+
3 H+

2 H+
3 H+

2 H+
2

60 40 − 11.5911 − 0.224 −
60 20 20 11.0869 7.5495 0.102 0.07

10 80 20 − 12.2323 − 0.124 −
80 10 10 11.9217 8.1996 0.059 0.041
100 − − − − − −
60 40 − 8.7806 − 0.247 −
60 20 20 8.4597 5.4535 0.114 0.069

20 80 20 − 9.2941 − 0.136 −
80 10 10 9.0958 5.9969 0.065 0.04
100 − − − − − −

3.3.2 Results of PIC Simulation

We have developed a PIC method for multispecies beam to study the beam

dynamics self-consistently. The details are given in Chapter 7. In the PIC

method, each species of the beam is represented as a combination of large num-

ber of macroparticles. We have calculated the rms beam sizes X̃j, Ỹj and rms

emittances ε̃jx, ε̃jy of all the species in their Larmor frame. The rms beam sizes

and rms emittances for species j are given by,

X̃j = 〈x2ji〉1/2, ε̃jx =
[〈x2ji〉〈x′ji2〉 − 〈xjix′ji〉2]1/2 (3.31)

here xji is the i
th macroparticle of the jth species. In Eq. (3.31), 〈· · · 〉 denotes

the ensemble average over the beam particle distribution. We have similar

expressions for y coordinate also.

The calculation region is divided into uniform rectangular meshes of dimen-

sion Nx = Ny = 128. We have used 77000 macroparticles for each species and

step size Δs = 1 mm in the axial direction. The charge on the macroparti-
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cle of each species is distributed according to species fraction and number of

macroparticles. We like to point out here that we have chosen the number of

macroparticles and step size after running a large number of test simulations.

In Fig. 3.5 we have plotted the evolution of beam envelopes and emittances

obtained from PIC simulation (dashed line) for the following choice of param-

eters: total beam current I = 10 mA, species fractions p = 80%, H+
2 = 15%,

H+
3 = 5%, rms beam sizes Xrms = 1.25 mm at s = 0 for all the species, magnetic

fields at the centre of the solenoids S1 and S2 equal to 3.03 kG and 2.88 kG

respectively same as used in the envelope model. A slit of radius 5 mm is used

at s = 135 cm for the selection of proton. For comparison we have also shown

the beam envelopes obtained by solving multispecies envelope equations (solid

line). We have considered that all the species are K-V distributed at s = 0.

It is evident from Fig. 3.5(a) that the results of the beam size obtained from

the envelope equations agree well with the results of PIC simulations for the

primary beam. However, the beam sizes predicted by the envelope model for

H+
2 and H+

3 beams differ by ∼12%(maximum) near the centre of solenoid S2

although the qualitative behaviour of the envelope is almost similar.

The evolution of beam emittances of p,H+
2 and H+

3 beams obtained from

multispecies PIC simulation is shown in Fig. 3.5(b). The small growth in

emittance of proton is because of the fact that initially the rms beam size of

proton is larger than rms sizes of H+
2 and H+

3 and hence particles of the proton

beam experience nonlinear space-charge force due to H+
2 and H+

3 . It is evident

from the figure that there is a rapid increase in the emittances of H+
2 and H+

3

beams after s = 100 cm. The emittance growth is due to the nonlinear space-

charge force of converging intense proton beam. At the slit major portions of

the H+
2 and H+

3 beams are rejected together with the substantial reduction in

their emittances. We see a sharp increase in the emittances of H+
2 and H+

3
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Figure 3.5: Comparison of the evolution of (a) rms beam sizes and (b) rms emittances
of p,H+

2 and H+
3 obtained from the multispecies envelope model (solid curve) and

the self-consistent PIC simulation (dashed curve) for I = 10 mA. A slit of radius 5
mm is places at s = 135 cm.

after the slit in the region where the proton beam size is small, remain almost

constant in the region where the proton beam size is comparable to the beam

sizes of H+
2 and H+

3 and then increase again as the proton beam converges. It

is to be noted that the emittance of all the species is calculated in their own

Larmor frame.

To further investigate the effect of the distribution of unwanted species H+
2

and H+
3 on the dynamics of proton beam, we have done the PIC simulation

with different types of distribution for H+
2 and H+

3 keeping the distribution
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Figure 3.6: Plot shows the comparison of the variation of (a) rms beam size and
(b) rms emittance of initially K-V distributed proton beam and with different types
of beam distribution for H+

2 and H+
3 . We have considered five different types of

distribution for H+
2 and H+

3 : K-V (KV), waterbag (WB), parabolic (PA), semi-
Gaussian (SG) and Gaussian (GA) distributions.

of the proton beam same as K-V distribution. Figure 3.6(a) and 3.6(b) show,

respectively, the evolution of the rms beam size and the rms emittance of proton

beam along the transport line. Parameters are same as in Fig. 3.5. It is readily

seen from the figure that the evolution of rms beam size of proton is independent

to the form of the distribution function of H+
2 and H+

3 , however, there is a

small growth in the emittance of the proton beam when the nonuniformity of

the distributions of H+
2 and H+

3 is increased.

Up till now, we have presented the results of simulation considering the
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Figure 3.7: Evolution of rms beam size of proton along the distance s with different
types of initial distribution for all the species. We have considered five different
types of distributions for all the species p,H+

2 and H+
3 : K-V (KV), waterbag (WB),

parabolic (PA), semi-Gaussian (SG) and Gaussian (GA) distributions.

distribution of the proton beam as K-V and with various types of distribu-

tion for the H+
2 and H+

3 beam species. Now we study the beam dynamics of

all the species considering different types of distribution. We have considered

five different types of distribution for the simulation which are K-V, waterbag,

parabolic, semi-Gaussian and Gaussian distribution and for the same choice of

system parameters as in Fig. 3.5. We did not observe any appreciable change in

the rms beam size of proton as shown in Fig. 3.7 by changing the distribution

function of H+
2 and H+

3 beams.

Figure 3.8 shows evolution of beam envelopes of H+
2 and H+

3 for different

types of initial distributions. It is evident from the figure that there is a slight

difference in the evolution of the beam size of H+
3 before the slit location. Since

after the slit major portion of this species is rejected we see that the difference

is negligibly small.
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Figure 3.8: The variation of the rms beam size of (a) H+
2 and (b) H+

3 along the
beam transport line. A circular slit of aperture 5 mm is placed at a distance s = 135
cm.

Figure 3.9(a) and 3.9(b) show respectively, the evolution of the emittances

of H+
2 and H+

3 as a function of distance s. It is readily seen from Fig. 3.9 that

there is a significant change in the evolution of the emittances of H+
2 and H+

3

species when the distribution of the species are different. The emittance growth

rate increases when the distribution of the proton beam changes from K-V to

other distributions such as waterbag, parabolic, semi-Gaussian and Gaussian.

This effect is more pronounced just before the slit within the region of s = 100

cm to s = 135 cm where the beam size of the proton beam is small and hence the

strength of the space-charge defocusing force is more. After the slit the growth
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Figure 3.9: The variation of the rms emittance of (a) H+
2 and (b) H+

3 along the beam
transport line before and after a slit of aperture 5 mm with different distributions of
species. Slit is located at s = 135 cm.

rate is small. This is due to the fact that most of the particles of H+
2 and H+

3

are within the proton beam. After s = 240 cm where the proton beam starts

converging, the rate of growth of emittance of H+
2 and H+

3 increases rapidly.

In Fig. 3.10, we have plotted the real space and phase space distributions of

all the species at the final location s = 277 cm without using any slit in the beam

line. It is evident from the real space plot that the species are separated from

each other in the case of uniform distribution whereas, in the case of Gaussian

distribution, both p and H+
2 distributions overlapping each other. Figure 3.11

shows the final particle distributions in phase space and in real space at s =
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Figure 3.10: Phase space (x, x′) and real space (x, y) distributions of p,H+
2 and H+

3

at s = 277 cm without any slit in the beam line for K-V and Gaussian distributions
of all the species. Species fractions are: p = 80%, H+

2 = 15% and H+
3 = 5%.

277 cm, with circular aperture and square aperture for the case of K-V and

Gaussian distributions for all the species. Both the diameter of the circular

aperture as well as sides of the square aperture are kept equal to 1 cm. It is

evident from the real space plot that the distributions of H+
2 and H+

3 form

hollows around the proton beam. We can also see from the real space plot

that the distribution of H+
2 beam is four fold symmetric which is arising due

to the square slit whereas the distribution of H+
3 beam is almost axisymmetric.

In Fig. 3.12, variation of the rms beam envelope size and rms emittances of

proton beam are shown as a function of distance s for various proton fractions

in the total beam current of 10 mA. Here Gaussian distribution is used for all

the species in the simulation. From Fig. 3.12(a) we also see here that the proton

envelopes for different fractions of proton behave differently in the presence of

other component as predicted by the beam envelope model. Figure 3.12(b)
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Figure 3.11: Comparison of phase space and real space distributions of p,H+
2 and

H+
3 at location s = 277 cm for circular and square aperture placed at s = 135 cm.

We have considered K-V and Gaussian distributions of all the species.
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Figure 3.12: Evolution of (a) rms envelope size and (b) rms emittance of proton
having different species fractions in the total beam of 10 mA at 100 keV. Different
percentage fraction in 10 mA are (1): [60, 20, 20], (2): [70, 20, 10], (3): [80, 10, 10], (4):
[80, 15, 5] and (5): [100, 0, 0].

shows the evolution of emittance of proton beam. The growth in the emittance

of proton increases as the fraction of unwanted species is increased.

Self-consistent PIC simulation shows the formation of hollow of unwanted
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species around the primary beam which become more distinct after the second

solenoid. Inspecting the behaviour of beam evolution, we have chosen two

location for the slit (i) at s = 135 cm at the first waist of proton and (ii)

s = 257 cm just before the second waist of proton where the distribution of

H+
2 and H+

3 become hollow. We have performed PIC simulations considering

uniform and Gaussian distributions with initial species fraction as p = 80%,

H+
2 = 15%, H+

3 = 5% in both the cases.
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Figure 3.13: Phase space (x, x′) and real space (x, y) distributions of p,H+
2 and H+

3

at different locations during the beam transport for two types of distributions (A)
K-V and (B) Gaussian for all the species.
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The PIC simulation results of using slit at two locations with uniform dis-

tribution are shown in Fig. 3.13A(a) to (h). Figure 3.13A(a) and 3.13A(c)

represent the real space distribution of the particles at the slit (s = 135 cm)

and at location s = 277 cm where the second waist of proton is formed whereas

Fig. 3.13A(b) and 3.13A(d) show the corresponding phase space plots. Similar

plots of real and phase spaces when the slit is placed at s = 257 cm are shown

in Fig. 3.13A(e) to (h). The beam selection using a slit of radius 5 mm at

s = 135 cm results in further formation of hollows of unwanted species at the

second waist of proton (Fig. 3.13A(c)). This indicates that the beam selection

is not very efficient. It can be readily seen from Fig. 3.13A(e) that species at s

= 257 cm are well separated and putting a slit of size approximately equal to

the size of proton beam (7 mm) at this location rejects most of the unwanted

species efficiently. The estimated fractions of p,H+
2 and H+

3 for the first case

(slit at s = 135 cm) are 98.38%, 1.34% and 0.28% respectively whereas for the

second case (slit at s = 257 cm), fractions are equal to 99.86%, 0.125%, 0.015%

respectively. It is very easy to observe that phase space distributions of H+
2

and H+
3 beams are highly distorted at the slit as well as at the final location

whereas, the phase space of proton at the final location is almost similar for

both the cases.

As we know, every realistic particle distribution at finite temperature has a

diffusive tail. The Gaussian beam is more realistic and it constitutes a bridge

between the ideal K-V beam and the laboratory beam. Therefore, we have also

shown the results of self-consistent PIC simulation with Gaussian distribution

in Fig. 3.13B(a) to (h) for comparison. In this case the beam edges are not

sharp and phase space distributions of all the species including proton are highly

distorted at the slit position as well as at the final location, clearly indicating

the effect due to nonlinear space-charge force of the species. A comparison of
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results using these two distributions will provide valuable help in understanding

the experimental data.

3.4 Summary and Discussion

In this chapter we have derived the transverse envelope equations to improve

the modelling of a space-charge-dominated beam in the presence of unwanted

species. The formulations for beam selection using slit system have been devel-

oped to obtain the phase ellipse and its orientation after the slit to calculate

the beam transport downstream. We have studied the transport of proton from

2.45 GHz microwave ion source in the presence of H+
2 , H

+
3 species. We have

observed that envelope of the proton beam behaves differently in the presence

of different fractions of the other components.

Finally, self-consistent analysis has been performed using PIC method for

different distributions of the species. The emittance growth of the primary

species due to other unwanted species is studied for various beam parameters.

We have observed the formation of beam hollows of unwanted species which

are produced due to nonlinear space-charge effect. The selection of the primary

species is performed and shown that the rejection of unwanted species is very

effective when the slit is placed after the hollow formation of unwanted species.

The results of evolution of the rms beam envelopes obtained from envelope

model show a reasonably good agreement with the PIC simulation. Thus the

envelope model discussed in this chapter can be utilised for more precise es-

timate of the beam envelope without the use of large simulations in the case

of a multispecies beam where the beam current is in the range of 5 - 30 mA.

However in the case of beam current more than 30 mA the beam excursion be-

comes large, difficult to focus the beam to small waist, and the required solenoid

fields are comparatively large. In the case of high beam current 30 - 100 mA,
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one needs to introduce a desired gas deliberately in the beam transport line

for space-charge compensation. This way one can reduce the space-charge de-

focusing force and control the beam excursion. The method developed in this

chapter can still be used when the space-charge compensation is present by re-

placing the beam current I with I(1 − f) in the envelope equation where f is

the average neutralization factor.
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Chapter 4

Optimisation of LEBT
Parameters for Multispecies
Beam

4.1 Introduction

A key issue in the design of beam transport system for intense beam is to prevent

the loss of the beam particles, emittance growth and halo formation [41, 58,

59, 60]. The situation becomes more difficult when the beam contains more

species and various charge states. In the previous chapter, we have presented

the beam envelope model for transport and selection of primary beam from the

multispecies beam. As an example, we have discussed the transport of proton

beam from 2.45 GHz microwave ion source in the presence of H+
2 and H+

3 beam

in the solenoid based beam transport system. The values of proton fraction from

these sources [52, 53] are in the range of 75% to 85% of the total extracted beam.

The matching of primary beam in the presence of other unwanted species carries

a practical importance in the case of space-charge-dominated beam to preserve

the quality of the primary beam. Although numerical solutions to the beam

envelope equations can be easily obtained in a given layout of a transport line,

the question remains as to whether the best possible setting of the parameters

(position and strength of the focussing elements) has been chosen in the sense
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of providing the minimum beam radius all over the beam transport line.

Optimization problems arise in different fields of science and engineering

[12, 61, 62, 63, 64, 65, 66, 67, 68, 69]. There are many optimization techniques

discussed in the literature for designing and tuning of beam transport lines

[70, 71, 72, 73, 74, 75, 76] using the well known K-V beam envelope equations

[17], originally formulated to model a uniform density beam with elliptical cross

section. These equations can also be applied to equivalent beams having dif-

ferent elliptically symmetric particle distributions with same second moments

[15, 20, 77]. A semi analytical approach has been presented in Ref. [73] to find

the best possible setting of magnetic lenses for a chosen layout of the transport

line. The method is based on a piecewise minimisation of the beam radius us-

ing thin lens approximation for focussing magnets. The optimisation techniques

presented in Refs. [74, 75, 76] utilize the principles of optimal control theory

to aid in the design of beam transport and matching systems. However, above

mentioned optimisation techniques are suitable for beam containing only single

specie such as electron or single ion with constant beam emittance throughout

the transport line.

In this chapter we describe a method to find the optimal beam line set-

tings for the transport and matching of primary beam from the space-charge-

dominated multispecies beam [78]. It is based on random search technique

where the primary beam is matched at the final position and the loss of un-

wanted species is maximised at the location of a circular slit by choosing the

parameters randomly. In general, the practical constraints in the matching sec-

tion are (i) the maximum beam excursions dictated by the acceptance aperture

of focussing elements and (ii) the beam pipe radius. The first constraint is im-

posed by the nonlinearities in the focussing fields of magnets which leads to the

beam quality degradation. The second constraint is related to the interference
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of image forces. To remove these difficulties, we have used a reference trajectory

for the beam envelope along the transport line to restrict the excursion of beam

radius [74] and a cost functional to quantify the quality of the solution. Nu-

merical results of the beam selection and optimized transport parameters have

been presented for various values of total beam current and different fractions

of p,H+
2 and H+

3 species for the LEBT system.

4.2 Mathematical Model

4.2.1 Dynamics of Multispecies Beam

Detailed derivations of space-charge-dominated beam envelope equations for a

thin, axisymmetric, continuous intense multispecies beam and the beam selec-

tion using circular slit in a solenoid based transport line have been discussed

in Chapter 3. The derivation of envelope equations is based on the assump-

tion that beam density distribution of all the species will remain uniform (i.e.

K-V distribution) [49]. Here we outline only important results relevant for the

present optimisation. The envelope equations of each species of the beam, in its

own Larmor frame, propagating through a solenoid focussing channel, is given

by (Eq. (3.23), Chapter 3)

r′′j + kl2j (s)rj −
aj
rj
− 4

rj

n∑
k=1
k �=j

bjk (f(rj, rk) + g(rj, rk))−
ε2j(s)

r3j
= 0 (4.1)

Here j = 1, 2, · · ·n, s is the axial coordinate in the laboratory frame, klj(s) is the

applied external force experienced by species j, rj and εj are the envelope radius

and emittance of the species j of the beam respectively and n is the number

of species in the beam. The terms in the summations are the space-charge

coupling terms due to other species. The quantities f (rj, rk) and g (rj, rk) are
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defined in Eq. (3.21) and Eq. (3.22). aj(s) and bjk(s) are given by

aj =
qjIj

2πε0mjβ3
j γ

3
j c

3
, bjk =

qj(1− βjβk)Ik
2πε0mjβ2

j γjβkc
3

(4.2)

in which, Ij is the current, mj is the mass, βj and γj are the usual relativistic

terms of species j of the beam. Similarly subscript k represents these quantities

for species k. Though the envelope equation presented here is based on uniform

density distribution it can also be utilized for any beam distribution using the

concept of equivalent beams [15, 20]. According to this concept, the beam must

have the same second moment as the actual beam distribution. In such cases

one has to use the rms quantities in the envelope equation.

At the location of the circular aperture, the current as well as the emittance

of species are reduced if envelope sizes of those species are larger than the

aperture size. After passing through a circular slit the resultant current of the

species j is given by

Ij =

{
Ij if p ≥ 1

Ijp
2 if p < 1

(4.3)

where p = rslit/rj(slit). Here rslit is the radius of the slit and rj(slit) is the

radius of species j at the slit location. If the beam radius of the species j is

larger than the radius of the slit then there is also a reduction in the emittance

of species j. The value of effective emittance of species j just after the slit can

be obtained from the phase space area that passes through the aperture of the

slit and is given by (see Appendix A)

εjeff =
2εj
π

[
p
√
1− p2 + sin−1 p

]
(4.4)

The orientation of the phase ellipse after the slit can be obtained by evaluating

the twiss parameters αsj, βsj and γsj of the species j just after the slit. These

quantities can be obtained by evaluating the second moments of the beam dis-

tribution. The expression of the twiss parameters αsj, βsj and γsj are given as
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(see Appendix A)

βsj =
x2

ε̃sj
, γsj =

x′2

ε̃sj
, αsj = −xx

′

ε̃sj
(4.5)

The rms emittance of the species j after the slit can be obtained from

ε̃sj =

√
x2 · x′2 − (

xx′
)2

(4.6)

Since we have considered the uniform density distribution of the beam in our

analysis the total effective emittance of species j of the beam just after the slit

will be εj = 4ε̃sj.

4.2.2 Boundary Condition

The initial conditions for each species of the beam such as radius, divergence,

current, energy, emittance etc. at the entrance location s = si of the transport

system are known. These conditions characterise the beam coming from the

preceding device in the transport or accelerator system. For species j we specify

the initial envelope radius and divergence as rj(si) and r′j(si). In the case of

matching, we are also given desired final condition at s = sf for the desired

primary component of the beam. We denote these conditions as rpm, r
′
pm. Thus

the following boundary conditions must be satisfied for the desired primary

component at the final location:

rp(sf ) = rpm, r′p(sf ) = r′pm (4.7)

Mathematically, the matching section has several adjustable parameters k =

(k0, k1, ..) for example the strengths, position and length of focussing elements,

drift spaces, location of slit etc. in the beam line. The beam radius and slope

of the primary species (rp, r
′
p) at the matching point, which are functions of the

beam line parameters k can be obtained by integrating the n (number of species)

number of coupled second order differential equations Eq. (4.1) simultaneously.
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Beam envelope equations Eq. (4.1) must be solved along with Eq. (4.3) to Eq.

(4.6) to take care reduction in beam emittance, change in the orientation of

phase ellipses after the slit, reduction in the beam current of different species

etc. The matching error can thus be expressed as f(k) = (rp − rpm, r
′
p − r′pm).

The total effective beam current of the unwanted species after the slit is

Ieff(k) =

n∑
k=1
k �=j

Ik · r2slit
r2k(slit)

(4.8)

The matching problem is therefore equivalent to find a solution set {kopt} such
that ‖f(kopt)‖ = 0 for the case of primary species and the total beam current

Ieff(k) of the unwanted species be as minimum as possible at the slit location.

4.2.3 The Reference Trajectory and Cost Functional

In most of the cases we have more variables or parameters than the terminal

conditions in a beam transport systems which lead multiple solutions to the

matching problem. In order to quantify the quality of each solution we gen-

erally define a cost functional. The optimal solution is one for which the cost

functional is optimum in the specified domain of parameter space. Initially we

define a reference trajectory guided by the initial design for the primary com-

ponent which we want to match into the injection point of the accelerator or

in another transport system. The reference trajectory represents the optimal

path through the transport channel and consequently we need that the actual

beam envelope trajectory tracks the path as close as possible to the reference

trajectory. Therefore, we choose the cost functional of the primary beam as

the least square distance between the actual beam trajectory and the reference

trajectory. We define a cost functional for the primary species in terms of the

solution of the primary component (rp(s), r
′
p(s)) and the reference trajectory

76



Chapter 4. Optimisation of LEBT Parameters for Multispecies Beam

(rref(s), r
′
ref(s)) as

Jp(k) =

∫ sf

si

(rp(s)− rref(s))
2ds (4.9)

4.3 Optimisation using Random SearchMethod

The main aim in any optimization problem is to minimize a set of objective

functions by tuning several variables under certain given constraints. For the

present case, the optimisation problem can be stated as

minimise ‖f(k)‖, Ieff (k) and Jp(k)

subject to rp(slit) < rslit and rp(s) < rmax

with kLi ≤ ki < kUi (4.10)

where kLi and kUi are the lower and upper limit of the parameter ki, and rmax

is the maximum allowed radius of the primary species. In the random search

technique we start with an initial value of the parameters of the beam line

elements. The upper and lower limits of each parameter are also defined. We

then solve the n (number of species) number of coupled second order differential

equations Eq. (4.1) simultaneously along with Eq. (4.3) to Eq. (4.6) for all the

species with initially chosen set of parameters. The values of matching error

‖f(k)‖ and the effective current of the unwanted species at the location of the

slit Ieff(k) as well as the cost functional Jp(k) defined for the primary species

are then calculated for the initial set of parameters. In the next step, the new

values of all the parameters are randomly chosen within the predefined range

of each parameter [12, 79]. The values of ‖f(k)‖, Ieff (k) and Jp(k) are again

calculated for these chosen random set of parameters and compared with those

obtained with the previous set of parameters. If these values are smaller than

the previous trial then this gives an intermediate set of parameters k. The
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process is repeated and after a number of successful trials we check whether

the value of a parameter is increased or decreased over the previous trials and

accordingly we shift the parameter space.

1?7@?

A�B�����+��,���������

$��.�������*��+,��

#��	
�&�	��� A+

0��

A�B�,����������������

#�������&��+������

0��

A+

@������������,���������

�����.�������+���������

$��.���������:�����:�,

#���:�C,&���������*��.��

���.���+������

1?D"E+����������+��
0�� A+

Figure 4.1: The flow chart of the optimisation code using random search technique.

In order to reduce the range of each parameter during the optimization

the following technique has been adopted. The lower and upper values kLi

and kUi of parameter ki are chosen initially along with the staring value of the

parameter k0. After each successful trial we first check whether the value of

the parameter ki is increased or decreased from the previous trial and we take
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it as ktemp. Then we define the range with respect to this temporary value

and also reduce the parameter space from the previous parameter range using

kLi (new) = ktemp − α(ktemp − kLi ) and k
U
i (new) = ktemp + α(kUi − ktemp). Here

α < 1, is the user defined parameter chosen suitably. Depending on the value

of α the parameter space is reduced. Now during the optimization the values of

the parameters are varied from kLi (new) and k
U
i (new). This way it is possible to

locate the optimised set of parameters more accurately. This procedure helps

in reducing the total number of trials needed for the optimisation. In this

technique one can easily introduce any number of constraints in the problem

and it does not require any differentiation of the objective function. It arrives

at a solution quite fast and can locate the global minimum within the specified

range of the parameters if the random jump is chosen sufficiently large initially.

We have written a program in Fortran to optimise the transport line parameters

for matching of space-charge-dominated multispecies beam. The flow chart of

the program is shown in Fig. 4.1.

4.4 Numerical Results

The schematic diagram of our injection system of 10 MeV cyclotron, indicating

the location of various components is shown in Fig. 4.2. The system is axisym-

metric, consisting of two solenoid magnets S1 and S2, with physical lengths of

ls1 = ls2 = 40 cm. The radius of the slit rslit is equal to 5 mm and is placed at

135 cm from the ion source. The total length of the beam line ld1 + ld2 + ld3

is fixed and equal to 280 cm. In the optimisation, the soft edge profile of the

solenoid magnet (Eq. (2.24)) has been used. Typical values of normalised

emittances for p,H+
2 and H+

3 ion species used in the numerical calculations

are εn(p) = 0.8π mmmrad, εn(H
+
2 ) = 0.4π mmmrad and εn(H

+
3 ) = 0.27π

mmmrad which corresponds to emittance (in π mmmrad) of ε(p) = 54.7948,
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ε(H+
2 ) = 38.7463 and ε(H+

3 ) = 31.6376 respectively at energy of 100 keV.
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Figure 4.2: Schematic diagram of the matching system.

!�"#$�%&'($)����	

� �� 	�� 	�� ��� ���

���
��
	

���

���

	��

	��

���

���

��� ��9�	���7
@�������F��+�%
#�������
D,��������

1���

Figure 4.3: Plots of unmatched (dash-dotted line) and matched (solid line) beam
envelopes of proton for total initial beam current of 10 mA at 100 keV. Dashed line
represents the reference trajectory of the proton beam. The initial beam parameters
for all the species are r(0) = 2.5 mm, r′(0) = 0. The fractions of p,H+

2 and H+
3 are

80%, 15% and 5% respectively. The initial beam transport parameters are: B1 =
3.97 kG, B2 = 2.47 kG, ld1 = 97 cm, ld2 = 144 cm and ld3 = 39 cm. The optimised
beam transport parameters are: B1 = 3.09 kG, B2 = 2.87 kG, ld1 = 59 cm, ld2 =
150 cm and ld3 = 71 cm. The optimised locations of solenoid magnets are also shown
by solid curve.

In the optimisation problem the matching section has seven adjustable pa-

rameters. The parameters are k = (B1, B2, ls1, ls2, ld1, ld2, lslit). Here, B1 and
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B2 are the peak magnetic fields, ls1 and ls2 are the physical lengths, ld1 and ld2

are the location of the centre of the first and second solenoids respectively as

shown in Fig. 4.2. In the present example we have fixed the lengths ls1 and ls2

of the solenoids S1 and S2 and the location of the slit from the ion source. So,

there are four free parameters with two conditions to be satisfied at the target

plane i.e. beam envelope size and divergence. This means that the matching

problem is under constrained. However, in the practical situation there are

some constraints in the transport systems which are very common and need to

be taken into consideration. The most important constraint is the maximum

beam envelope excursion dictated by the linearity of the acceptance aperture

of the focussing elements. In the optimisation problem we have introduced a

constraint such that the beam excursion in the solenoid magnet and beam line

does not exceed 50% of the available aperture radius. Our goal is to match the

proton beam to the final state rpm = 2.5 mm, r′pm = 0 mrad and maximise the

loss of other undesired components of the beam at the slit. In order to calculate

the cost functional for the proton beam we have chosen a reference trajectory

rref in units of cm (dashed line in Fig. 4.3) as a piecewise linear function of s

defined along the transport line as,

rref(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.25 + (1.8−0.25)
40

· s if s < 40

1.8 if 40 ≤ s < 80

1.8− (1.8−0.45)
55

· s if 80 ≤ s < 135

0.45 + (1.8−0.45)
55

· s if 135 ≤ s < 190

1.8 if 190 ≤ s < 230

1.8− (1.8−0.45)
50

· s if 230 ≤ s < 280

(4.11)

The matched beam envelopes (solid line) and the beam envelope obtained

with initial setting (dash-dotted line) of the proton beam along the transport

line for 10mA total beam current are shown in Fig. 4.3. The initial beam radius

and divergence of all the species are same i.e. r(0) = 2.5 mm, r′(0) = 0 with

fractions of p,H+
2 and H+

3 as 80%, 15% and 5% respectively. It is evident from
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Fig. 4.3 that for the initial set of parameters the trajectory of the proton beam

does not satisfy the matching conditions at the final point and the radius of the

proton beam at the slit location is larger than the slit size. The radius of proton

beam is also beyond the allowed set value of rmax = 2 cm along the beam line.

The beam envelope for H+
2 and H+

3 beams before the slit and after the

selection by slit is shown in Fig. 4.4 for both the initial and optimised beam

line parameters. It is readily seen that beam sizes of H+
2 and H+

3 at the position

of the slit are larger in the case of optimised set of the parameters compared to

the beam sizes with initial parameters. This indicates a loss of large fraction of

total beam current due to H+
2 and H+

3 species at the slit position.

!�"#$�%&'($)����	
� �� 	�� 	�� ��� ���

���
��
	

���

	��

���

���

	
����
�
��
�����
�

��
��

��9	���7

#�������
�
G

1���


�
G


�
G

#�������
�
G

D,��������
�
G

D,��������
�
G


�
G 
�

G

Figure 4.4: Plots of envelope radii of H+
2 beam (dotted line), H+

3 beam (dashed line)
before optimisation and H+

2 beam (solid), H+
3 beam (dash-dotted) after optimisation

of the beam line parameters. The initial and optimised transport parameters are
same as in Fig. 4.3.

Figure 4.5(a) shows the optimised beam envelopes of p,H+
2 and H+

3 having

fractions of 80%, 15% and 5% respectively in the total initial beam current of

10 mA. At the slit most of the H+
2 and H+

3 beams are rejected whereas proton
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Figure 4.5: Evolution of envelope radii of p,H+
2 and H+

3 beams for 10 mA and 20
mA beam current for two different fractions. The initial beam parameters for all the
species are r(0) = 2.5 mm, r′(0) = 0 in both the cases.

beam passes through the slit without any loss in its beam current. The final

beam parameters obtained for proton are r(278) = 2.83 mm, r′(278) = 0 which

are very close to the values set in the matching condition as rpm = 2.5 mm,

r′pm = 0. The estimated fractions of p,H+
2 and H+

3 after the slit are 98.6%,

1.15% and 0.25% respectively. A second slit at the waist position of proton

having radius equal to the radius of proton beam (2.83 mm), can further reduce

the beam of the other components. The estimated fractions of p,H+
2 and H+

3

after the second slit are 99.95%, 0.043% and 0.007% respectively. The evolution

of envelopes of p,H+
2 and H+

3 with fractions 70%, 20% and 10% at 20 mA beam
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current are also shown in Fig. 4.5(b) for comparison. The optimised beam line

parameters for different fractions of p,H+
2 and H+

3 at total beam current of 10

mA and 20 mA are given in Table 4.1.

Table 4.1: Optimised parameters for 10 mA total beam current with different
fraction of p,H+

2 and H+
3 . The initial emittances in πmmmrad are; 54.7948 (p),

38.7463 (H+
2 ) and 31.6376 (H+

3 ). (ld1 + ld2 + ld3 = 280 cm)

Optimised values
Beam Parameter Initial 1 2 3 4
current values p=60% p=70% p=80% p=80%
(mA) H+

2 =20% H+
2 =20% H+

2 =10% H+
2 =15%

H+
3 =20% H+

3 =10% H+
3 =10% H+

3 =5%
B1 (kG) 3.97 3.05 3.05 3.04 3.09

10 B2 (kG) 2.47 2.95 2.94 2.92 2.87
ld1 (cm) 97 60 61 60 59
ld2 (cm) 144 152 150 153 150
B1 (kG) 3.97 3.23 3.24 3.23 3.24

20 B2 (kG) 2.47 2.92 2.99 2.98 2.96
ld1 (cm) 97 57 54 55 55
ld2 (cm) 144 147 155 154 159

We have also done the calculation at higher beam current upto 40 mA and

found that optimization technique works well. However for fixed length of the

transport system the solenoid field and the amplitude of the envelope in the

beam line increases with the higher value of the beam current. It is also difficult

to get the desired beam waist size of the proton at the defined location. In

order to transport higher current say in the range of 40 mA to 100 mA, one

therefore needs to use the space-charge compensation to reduce the space-charge

defocusing force. In that case the effective beam current will be reduced to

I(1−f) where f is the neutralization factor and the procedure discussed in this

chapter can be easily utilized.
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Figure 4.6: Cost functional of proton beam and total beam current of unwanted
species just after selection by the slit for different fractions 1, 2, 3 and 4 of species
as mentioned in Table 4.1. Results are presented for the optimised and unoptimised
beam transport parameter for 10 mA and 20 mA.

The cost functional Jp defined in Eq. (4.9) as the least square distance

between the actual trajectory and the reference trajectory over the entire trans-

port line is shown in Fig. 4.6(a) for 10 mA and 20 mA of total beam current

and at four different fractions 1, 2, 3 and 4 as mentioned in Table 4.1. It is

evident from the figure that there is a substantial reduction almost by a factor

of ∼ 104 in the cost functional in all the cases. It is to be noted here that the

value of cost functional depends upon the choice of reference trajectory and one

can further reduce it by a better choice of reference trajectory. The advantage

of this method is that one can choose the reference trajectory as desired for the
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transport of the beam and the program optimises the parameters accordingly.

Figure 4.6(b) shows the reduction in the beam current of the unwanted species

after the slit. Since the beam size of H+
3 at the slit is larger than H+

2 , the loss of

H+
3 will be more compare to H+

2 at the slit. This fact is evident in Fig. 4.6(b)

for the cases of fractions 3 and 4 where total beam current due to both the H+
2

and H+
3 are same but they have different fractions. The initial beam currents

of unwanted species just before the slit, which are 4 mA, 3 mA, 2 mA and 2

mA for fractions 1, 2, 3 and 4 in the case of total beam current of 10 mA, are

reduced to less than 0.5 mA in all the cases after the selection by the slit. It is

interesting to note that the beam current of unwanted species after the slit for

20 mA total beam current are also same as in the case of 10 mA, though the

values of beam current of these unwanted species before the slit are twice for

20 mA compare to the values in the case of 10 mA.

4.5 Summary and Discussion

The procedure outlined in this chapter provides a method to find optimal beam

line settings for a space-charge-dominated multispecies beam using random

search optimisation technique. We have used this technique and studied the

transport of the high current proton beam in the presence of unwanted H+
2

and H+
3 species. The optimum magnetic fields and the positions of the two

solenoid magnets have been obtained to transport and match the proton beam

and maximise the reduction of the unwanted species at the position of the slit.

In the optimisation, we have defined two cost functionals, one for the primary

beam and other for the unwanted species. The major advantage of this method

is that it is very simple to apply, easy to include any number of constraints

without calculating any differentiation of the cost functional and is very fast.
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Chapter 5

Beam Bunching in the Presence
of Space Charge

5.1 Introduction

Most of the ion sources produce continuous beam of charged particles. In a

cyclotron using such an external ion source, only a small fraction of the injected

continuous beam is accepted in the central region for further acceleration. By

transforming the continuous beam into a suitably bunched beam using a buncher

prior to injection, the amount of accepted particles can be increased.

An ideal voltage waveform for a buncher is a sawtooth, however, it is very

difficult to generate it at the required frequency and power level. Therefore,

bunchers are fed with either a sinusoidal waveform or a nearly saw tooth like

waveform obtained by combining the fundamental wave with its various higher

harmonics. Sinusoidal bunchers, using the fundamental of sinusoidal voltage

waveform at a gap, are the most frequently used bunchers in the axial injection

system of the cyclotron. They typically bunch about 50% of the original dc

beam in a phase width of 300 of rf [80]. Harmonic bunchers [81, 82, 83] where

higher harmonics together with the fundamental rf are superimposed on a single

bunching gap, capture as much as 60% - 80% of the dc beam depending upon
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the number of harmonics used. In a double drift buncher, the beam is over-

bunched by the first buncher operating at the fundamental frequency of the rf,

allowed to drift a short distance, and then modulated again by a second buncher

operating at twice the frequency of the first buncher and out of phase by 1800.

The maximum efficiency obtainable with this technique depends on the voltages

of two bunchers as well as on the ratio of the separation of two bunchers to the

total drift length. These types of bunchers give a bunching efficiency slightly

better than what is obtainable with three harmonics on a single bunching gap.

Many workers have carried out detailed theoretical studies and optimization of

parameters of such bunchers but their results are applicable only for low beam

current.

As mentioned earlier, the axial injection system of the cyclotron consists

of two solenoids to transport the beam together with a buncher and a spiral

inflector [84]. In order to find out a suitable buncher as per our requirement

in the limited space, we have carried out studies using a numerical technique

to optimise the parameters of a sinusoidal, two harmonics and double drift

bunchers and evaluated the performances as a function of beam current. In

the case of a sinusoidal buncher for a given drift length and low beam current,

one can achieve optimum bunching efficiency by varying only the voltage on

the buncher electrode (assuming negligible energy spread in the beam). Same

procedure does not work as we increase the beam current. For high beam current

(I > 1 mA), it is necessary to optimize both buncher voltage and as well as drift

length to get the optimum performance. In the case of a double drift buncher

(DDB), the distance between the two bunchers is another parameter requires

to be optimised.

The phase acceptance of most of the cyclotron is roughly 10% of the rf

cycle. The local beam current just before injection becomes ∼10 times higher
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than the average beam current. This leads to large space-charge effects on the

transverse beam size and affects the longitudinal bunching efficiency for average

beam current more than 1 mA. Most of the high current cyclotrons are designed

and developed for medical isotope productions and they produce average beam

current in the range of 100 - 500 μA. Since at this current level and for a

nominal beam sizes ∼ 5 mm to 8 mm, the beam envelope is still dominated by

the emittance, one can observe a very small space-charge effect on bunching.

The dependence of bunching efficiency of a double drift double harmonic

buncher on beam intensity has been investigated experimentally at TRIUMF

cyclotron up to 700 μA of proton at injection voltage of 300 kV [85]. In the

experimental results, a small but gradual drop in the bunching efficiency has

been observed with the beam current. A detailed analysis of bunching using a

sinusoidal buncher for 870 keV protons has been presented in Ref. [86] relevant

only to the injector cyclotron at PSI. In compact cyclotrons, it is not possible

to use such high injection energy because of the space problem in the central

region for a high voltage inflector. An analysis of bunching performance related

with cyclotron TR30 (injection energy 25 keV) [87] indicates that one needs to

carefully optimize the drift distance to get good bunching efficiency in the case

of high intensity beams. Further one should also use high injection energy in a

compact cyclotron.

In this chapter we have carried out numerical simulation to optimise the

bunching performance of sinusoidal, two harmonic and double drift bunchers

in the presence of space charge. We have used disc model in the longitudinal

direction and K-V envelope equation in the transverse direction. We have per-

formed the numerical results at 100 keV proton beam and optimised the buncher

parameters. The effect of buncher voltage and drift length on the bunching effi-

ciency and the density distribution at the time focus has been studied for various
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values of the beam current. The details of the buncher to be used in the axial

injection system together with the results of simulations are also discussed.

5.2 Theory

In a buncher, an axial rf electric field generates a time dependent modulation of

the ions velocity. This velocity modulation leads to a density modulation after a

drift space. The buncher parameters are optimised to get the maximum number

of ions in a given bunch width at the time focus. As long as the beam current

is small, this optimisation can be easily done analytically [83]. At high beam

current where space-charge-effect dominates, an analytical description becomes

difficult and one rely on numerical simulation.

We have written a computer code using the well-known disc model [88, 89]

in the longitudinal direction as used by many workers for sinusoidal bunchers to

incorporate the effect of space charge and extended it for other kind of bunchers

[90]. For the estimation of transverse beam size during bunching, we have used

the K-V beam envelope equation. A length of the beam corresponding to the

bunch spacing βλrf , is divided into a number of discs, where β is the relativistic

term and λrf is the free space wavelength of applied rf. In order to improve the

accuracy, a βλrf/2 period is also included in both sides of the period βλrf . The

average electric field of disc j on disc i is given by [88, 89]

Eij = E0

∞∑
n=1

exp(−βn|zi − zj |)
(
2J1(βnR)

αnJ1(αn)

)2

sign(zi − zj) (5.1)

here E0 = Q/(2πε0R
2), Q is the charge on each disc and R is the radius of disc.

zi, zj are the positions of discs i and j respectively from the central disc . J0 and

J1 are the Bessel functions, αn being the zero of order r of J0 and βn = αn/b

where b is the radius of the beam pipe. The total force acting on disc i can be
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obtained by summing the effect of all the discs i.e.

Fi = Q
N∑
j=1

Eij, j = i (5.2)

where N is the total number of discs in the length 2βλrf . The total force on any

disc due to all other discs depends only on the positions of the other discs. Since

the positions of discs change along the drift length, it is necessary to divide the

total drift distance into discrete steps. In the case of sinusoidal buncher, when

discs pass through the buncher gap they receive voltage impulse and for the

disc i, it is given by,

ΔVi = −V1 sin
(
4π(i− 1)

(N − 1)

)
(5.3)

where V1 is the amplitude of the buncher voltage. In the case of two harmonic

buncher, rf of frequencies ω and 2ω are applied at the same gap. The voltage V2

of the rf of frequency 2ω is set 1800 out of phase with respect to the voltage V1

of the rf of frequency ω. The resultant voltage impulse on disc i after passing

through such buncher gap is,

ΔVi = −V1 sin
(
4π(i− 1)

(N − 1)

)
+ V2 sin

(
8π(i− 1)

(N − 1)

)
(5.4)

The increase in the kinetic energy T0 of disc i after passing the buncher gap is

given by,

Ti = T0 +QΔVi (5.5)

In the present calculation, the effect of the initial beam energy spread is not

considered. The position and velocity of all discs have been calculated with

respect to the central disc, which gets no impulse from the buncher. The position

and velocity of disc i at distance L from the buncher in the absence of space-

charge effect can be easily obtained using,

δβi = (βi − β0), zi = (i− (N + 1)/2)h+ δβi
L

β0
(5.6)
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where, h = 2βλrf/N , is the width of each disc and βi and β0 are the velocity

parameters of disc i and that of the central disc respectively. In order to cal-

culate the effect of space charge, it is necessary to divide the total drift length

into many small intervals of length d, and can be chosen suitably to improve

the numerical accuracy. The position of disc i after travelling a small distance

d, as a result of velocity modulation by buncher voltage, is given by

z1i = zi + δβi
d

β0
(5.7)

The space-charge force on a disc due to all other discs changes with the position

of disc and thus modifies the velocity and energy of the disc at each step. The

modified velocity (with respect to central disc) of disc i having mass M , after

the first step is,

δβsi = δβi +
Fi

M

d

β0c2
(5.8)

The new position of disc i due to the velocity change caused by the space-charge

force and velocity modulation is given by,

zni = zi +
δβi + δβsi

2

d

β0
(5.9)

It is to be noted here that the effect of space-charge term has been averaged

over small distance d. The above-mentioned steps are then repeated for all discs

from i = 1 to N . The position and velocity of all discs are then calculated at

distances 2d, 3d, 4d · · · till the central disc completes the total drift length L.

In a double drift beam buncher the fundamental rf voltage is applied at one

gap and the second harmonic of rf voltage is applied at an another gap at a

suitable distance from the first gap. In this case, disc i gets the voltage impulse

and energy at the first gap as given by Eq. (5.3) and Eq. (5.5) and moves ahead.

When it reaches the second gap it receives another voltage impulse given by,

ΔV ′i = V2 sin

(
8π

(N − 1)

zni

h

)
(5.10)
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and

Tni = Ti +QΔV ′i (5.11)

where zni is the position of the disc i at the second buncher gap situated at

a distance l = n.d from the first buncher. We then calculate the position and

velocity of discs at distances (n+1)d, (n+2)d, · · · and so on till the central disc

completes the total drift length L.

In order to know the beam radius along the transport line which is required

in Eq. (5.1) we have used K-V beam envelope equation [15]. In our transport

line there are two solenoid magnets for focussing the beam in the transverse

direction. Since the focussing force due to the solenoid magnet is axially sym-

metric, the size of the beam in the transverse direction remains symmetric as

the beam traverses along the axial direction. The K-V beam envelope equation

for instantaneous beam radius R is given by

R′′ + k2(s)R− K(s)

R
− ε2

R3
= 0 (5.12)

with

K(s) = K
n(s)

n
(5.13)

Here ε is the transverse emittance of the beam, k(s) = qBz(s)/(2mcβγ) is the

focussing strength for the solenoid and Bz(s) is the axial magnetic field of the

solenoid. β and γ are the usual relativistic factors. K = 2I/(I0β
3γ3) is known as

the generalised perveance with I0 = 31 MA for proton and I is the average beam

current. For a continuous beam perveance is constant. In the case of bunching,

voltage modulation at the buncher gap leads to the density modulation as the

beam advances and thus at each step current in the bunch changes. We have

introduced this effect in our calculation by multiplying K with the ratio of the

number of discs n(s) in the specified bunch width at location s in the drift to

the number of discs n in the specified bunch width at the buncher location.
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5.3 Numerical Results

In this section, we present the results of optimisation of the above-mentioned

bunchers for 100 keV proton beam with normalised emittance of 0.8π mmmrad.

The operating frequency of the 10 MeV cyclotron is 42 MHz (4th harmonic

operation) which gives the value of bunch spacing βλrf equal to ∼10.5 cm. We

have written a computer code, which calculates the position and velocity of

all the discs including the space-charge forces at any specified position along

the drift length. In the present calculation we have taken 360 discs in one

bunch spacing, but this can be changed as required. Before performing the

simulation, the force on a disc due to all other discs for 5000 disc separations

have been calculated in advance and stored in a file for interpolation. This helps

in reducing the computational time. Figure 5.1 shows the plot of normalised

electric field as a function of disc separation. We can see that the influence

of electric field is almost negligible when the discs separation are more than

βλrf/4. Numerical calculations indicate that one disc per degree gives a good

accuracy. We have calculated the efficiency of all the bunchers for a bunch width

of 300 of rf at the time focus. In the initial calculations, it has been assumed

that the beam radius will remain approximately constant (R = 5 mm, can be

adjusted by focusing with a long solenoid) during the drift.

Figure 5.2 shows the optimised bunching efficiency for a sinusoidal buncher

as a function of the buncher voltage and the drift length. The bunching efficiency

is the ratio of the number of discs in the specified phase width to the number

of discs in one βλrf . It is observed that at low beam current (< 1 mA), the

bunching efficiency remains almost constant and is independent of the drift

length. However, the optimum buncher voltage increases as the drift length is

decreased. This behaviour is similar to the bunching process as observed in the

absence of space-charge effects. For higher currents (> 1 mA), the bunching

94



Chapter 5. Beam Bunching in the Presence of Space Charge

������,�����+�����
���� ���� �	�� ��� 	�� ��� ���

� "
3�4
�5
�

�	��

����

���

���

	��

Figure 5.1: Normalised electric field Eij/E0 as a function of the disc separation. The
bunch spacing βλrf is equal to 10.5 cm.

efficiency remains almost constant up to a certain drift length and then decreases

rapidly as the drift length is increased. This decrease in bunching efficiency is

sharper at higher beam currents. This behaviour is independent of the voltage

on the buncher and is shown in Fig. 5.2 for several values of beam current

optimised for the beam phase width 300 of rf.

We have found that for a given beam current and a fixed phase width there

is an optimum drift length below which the bunching efficiency remains almost

constant. However, the buncher voltage increases as we decrease the drift length

from the optimum value. It is obvious that one should use the buncher voltage

as minimum as possible to save the rf power as well as to restrict the spread

in the beam energy in the bunch. We define an optimum drift length which

requires minimum buncher voltage for bunching efficiency of 90% of the max-

imum bunching efficiency. The optimum drift length decreases as we increase

the beam current. Figure 5.3 shows the variation of the optimum drift length

and optimised buncher voltage for various values of the beam current for beam
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Figure 5.2: Optimised bunching efficiency of a sinusoidal buncher as a function of
the drift length for various values of the beam current of 100 keV proton beam. The
beam radius is 5 mm and the phase width at time focus is 300 of rf for all the cases.

radii of 5 mm and 8 mm. It is clear that the beam radius plays a crucial role

and a large beam radius is advantageous. It requires not only the less buncher

voltage but also gives more flexibility in the choice of the drift length for a given

beam current.

In two harmonics buncher, the rf voltage of frequency ω and 2ω are applied

at the same gap. The voltage V2 of second harmonic (2ω) of rf is adjusted

1800 out of phase with respect to the voltage V1 of the fundamental (ω) of rf.

We have optimised the bunching efficiency by varying the voltages of the two

harmonics. For the double drift bunching system, the bunching efficiency has

been optimised by varying the voltages and the separation between ω and 2ω

bunchers. It has been observed that for a particular value of the beam current,

the optimum drift length L remains same for sinusoidal, two harmonic and

double drift bunchers. Thus the drift length L between the buncher and the

time focus is a crucial parameter to obtain a good bunching efficiency for a
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Figure 5.3: Variation of the optimum drift length and buncher voltage as a function
of the beam current. The beam phase width at the time focus is 300 of rf.

given beam current.

The variations of buncher voltage V1(ω) and the ratio of voltages V2(2ω) and

V1(ω) for two harmonic buncher are shown in Fig. 5.4 as a function of beam

current. In all the cases bunching efficiency is ∼ 73% for phase width 300 of

rf. The variation of the bunching efficiency of double drift buncher with l/L is

shown in Fig. 5.5 for three values of beam current and optimum drift length.

Here l is the distance between the two buncher gaps and L is the distance of

time focus from the first buncher. As it appears, the ratio l/L for maximum

bunching efficiency is approximately equal to 0.22 for all cases.
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Figure 5.4: Variation of the parameters of a two harmonic buncher with the beam
current. The bunch width at the time focus is 300 of rf and the beam radius is 5 mm.
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Figure 5.5: Variation of the bunching efficiency for a double drift buncher as a
function of l/L for three different values of the beam current. The beam bunch width
at the time focus is 300 of rf and the beam radius is 5 mm.

As mentioned earlier the axial injection system of the proposed 10 MeV, 5

mA proton cyclotron consists of a 2.45 GHz microwave ion source to deliver

100 keV, 20 mA (maximum) proton beam, two solenoids (S1 and S2) with
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Figure 5.6: K(s)/K as a function of drift length showing the effect of increasing
beam current in the bunch on the perveance.

physical length 40 cm to transport the beam together with a buncher and a

spiral inflector. The length of the Low Energy Beam Transport (LEBT) is ∼
2.8 meter. In between the two solenoids there is a slit to remove the undesired

part of the beam and a faraday cup to measure the beam current. As we have

already mentioned that in the case of bunching, the voltage modulation at the

buncher gap leads to the density modulation as the beam advances and thus

at each step perveance of the bunch K(s) assumes a new value. The numerical

estimate of the K(s)/K as a function of drift length (Fig. 5.6) shows the effect

of density modulation on perveance as the beam advances in the drift.

The optimised beam envelope for 10 mA of beam current, obtained by solv-

ing K-V beam envelope equation is shown in Fig. 5.7 (dash-dotted line). The

maximum drift distance available in the transport line is ∼ 100 cm (from the

end of the buncher) with one solenoid magnet S2 in between the buncher and

the time focus. We have carried out the optimisation of a sinusoidal buncher for

this particular case using the above mentioned disc model in the longitudinal
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Figure 5.7: Beam envelopes for 10 mA proton beam in the injection line. (a) dash-
dotted line: without buncher, magnetic field of S1 and S2 are 3.034 kG and 2.88 kG
respectively, beam radius at time focus is 2.85 mm. (b) dashed line: with buncher on
and unoptimised, (c) solid line: with buncher on and optimised, magnetic field of S1
and S2 are 3.034 kG and 2.96 kG respectively and the beam radius at time focus is
6.03 mm. The beam phase width is 300 of rf.

direction and K-V beam envelop equations in the transverse direction. This way

we have taken care of the change in beam radius within the phase width during

the bunching as the beam travels in the drift space. In this optimisation we

have varied the position and strength of the solenoid S2 to get the beam waist

at the same location. The dashed curve in Fig. 5.7 shows the beam envelope

with buncher on. As it appears the waist of the beam is formed earlier and the

size of the beam is also increased. It was not possible to form the waist at the

desired location with a reasonable beam size by varying the buncher voltage

and the magnetic field of the solenoid magnet S2. In order to get the beam

waist at the same location as in the case of continuous beam, we have to shift

the location of the solenoid S2 by 15 cm. In the optimisation, we have taken

care that beam waist and time focus both are formed at the same location. As
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seen in Fig. 5.7 (solid line) there is an increase in the beam size in the solenoid

and at the waist also. Figure 5.8 shows the density distribution of the discs at

the time focus. The bunching efficiency in this case is ∼ 47% for phase width

of ±150 of rf and the energy width within the bunch is ± 2.0 keV.
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Figure 5.8: Density distribution of discs at the time focus for beam phase width of
300 of rf. (a) Without space charge: buncher voltage V1 = 5.32 kV and bunching
efficiency is equal to 54%. (b) With space charge (10 mA beam current): optimized
buncher voltage V1 = 5.6 kV and bunching efficiency is 47%. The restricted energy
width ΔE = ±2.0 keV.

5.4 Summary and Discussion

In this chapter we have presented the results of numerical simulations carried

out for sinusoidal, two harmonic and double drift bunchers in the presence of

space charge. We have shown that the location of buncher from the time focus

is a very crucial parameter in the case of high beam current. For a given

beam current there is an optimum drift length beyond which the bunching

efficiency decreases rapidly and is independent of buncher voltage. This decrease

in bunching efficiency is sharper at higher beam currents. We have also seen
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that the optimum drift length remains the same whether one uses a sinusoidal

or a double harmonic or a double drift buncher. A prior knowledge of the

buncher parameters is useful in setting up and tuning a bunching system without

much experimentation and the results presented here will help in this regard.

The method of optimization based on disc model has helped us to obtain the

required buncher parameters and configuration for our injection system. This

method can be easily applied to any type of bunchers used in the accelerator

laboratories.
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Chapter 6

Dynamics of Intense Beam
during Bunching

6.1 Introduction

The longitudinal compression of space-charge-dominated beam has been studied

extensively in theory, simulations [91, 92, 93, 94, 95, 96, 97] and experiments

[98, 99, 100]. Considerable progress has been made in the development and

application of one dimensional Vlasov-Maxwell model [91, 92, 93, 94], warm-

fluid model [101, 102, 103] and cold-fluid model [104] to describe the longitudinal

beam dynamics of intense beams for long bunch. Such models rely heavily on

using a quasi self-consistent g-factor model [105, 106, 107] to incorporate the

average effects of transverse beam geometry. In a situation, where the bunch

size becomes comparable to the beam radius, the g-factor model is no longer

valid. In such situation one needs to include the effect of longitudinal electric

field in the transverse motion.

In this chapter we have developed a model to study the beam dynamics

of intense beams during the bunching for the cases when the bunch size is

comparable to beam radius [90, 108]. Since ion beams from the ion source can

never be monoenergetic, the finite longitudinal energy spread in the beam is
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also included in the simulation. During the bunching, the line charge density

along the beam bunch does not remain uniform, as a result different portions

of the beam in the bunch evolve differently along the transport line. We have

included this effect in the analytical formulation [109]. Finally, we have carried

out simulations using a 3D PIC method to investigate the beam dynamics self-

consistently in more detail.

6.2 Longitudinal Dynamics

In order to study the beam dynamics, we have divided the beam into large

number of discs and slices. A schematic illustration of the beam frame and

laboratory frame is shown in Fig. 6.1. Here, s is the longitudinal coordinate of

the bunch centre from the buncher gap, z is the longitudinal coordinate in the

bunch frame, zi is the coordinate of thin disc i used for longitudinal dynamics

and Zi is the coordinate of the centre of thick slice i from the bunch centre. The

thick slices are used for numerical modelling of the transverse envelope equation

describing the evolution of the bunch radius R(z, s). Here zi = 0 and Zi = 0

correspond to the location of the bunch centre. The positions of thin discs zi

evolve during the bunching, whereas the position of thick slice Zi is fixed in the

beam frame.

6.2.1 Beam Energy Spread

Apart from ion temperature, fluctuations in the extraction voltage, a physical

limitation on the minimum energy spread in the beam also results from the

space-charge effect of the beam during the transport in a conducting beam

pipe. The electrostatic potential distribution [15] for a beam having uniform

density in the radial direction in a beam pipe of radius b (with φ(b) = 0) is

φ(r) =
30I

β

(
1 + 2 ln

b

R
− r2

R2

)
, r ≤ R, (6.1)
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Figure 6.1: A schematic illustration of beam frame and laboratory frame.

Here R is the beam radius and I is the beam current. Due to the space-charge

field, part of the kinetic energy of the particle inside the beam is converted

into electrostatic potential energy. The magnitude of the energy spread can be

estimated by taking difference of potentials at r = 0 and r = R which is equal

to 30I/β. The minimum value of the energy spread due to the space-charge

effect is ∼20 eV for 100 keV, 10 mA protons.

In order to study the finite longitudinal energy spread on the beam dynamics

we have assumed that the longitudinal energy distribution in the continuous

beam is Gaussian before entering the buncher gap with

f(E) =
1√
2πσE

exp

(
−(E −E0)

2

2σ2
E

)
(6.2)

Here σE is the resultant energy spread due to all the effects discussed earlier.

After crossing the buncher gap the velocity of the beam will be modulated de-

pending upon the time of arrival of the beam particle at the buncher gap. For a

sinusoidal voltage applied at the buncher gap, the resulting velocity modulation
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is given by

Δv(z) = −eVb
mv

sin
(ωz
v

)
(6.3)

where Vb is the amplitude of the buncher voltage of frequency ω and z is the

longitudinal coordinate in the beam frame from the centre of the bunch and has

a span of −βλrf/2 to βλrf/2.

6.2.2 Average Longitudinal Electric Field

In order to obtain the longitudinal electric field of the beam having different

density profiles in the transverse direction we have used the Green function

method and assumed that the beam is axisymmetric. The beam potential φ(r, z)

inside a conducting pipe with radius b is given by

φ(r, z) =

∫ ∫
G(r, z; rs, zs)ρ(rs, zs)rsdrsdzs (6.4)

where G(r, z; rs, zs) is the Green function and ρ(rs, zs) is the charge density of

the beam at the source point (rs, zs). The coordinates (r, z) denote the field

point where potential φ(r, z) is to be calculated. The Green’s function G for an

axisymmetric charge distribution can be obtained from a Bessel series expansion

[108, 110, 111, 112] as

G(r, z; rs, zs) =
1

ε0b

∞∑
n=1

J0 (βnr) J0 (βnrs)

αnJ2
1 (αn)

exp (−βn|z − zs|) (6.5)

where, βn = αn/b and αn’s are the zeros of the Bessel function J0. The lon-

gitudinal component of the space-charge field is given by Ez = −∂φ/∂z. The

electric field Eij(r, s) at a position (r, zi, s) due to a thin disc of width w and

fixed charge Q located at zj is given by

Eij(r, s) =
1

ε0b2

∞∑
n=1

exp (−βn|zi − zj |) J0(βnr)
J2
1 (αn)

×
∫ Rj

0

J0(βnr
′)σ(r′, Rj)wr

′dr′sign(zi − zj) (6.6)
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where Rj = R(zj , s) is the radius of disc j at the position zj when the bunch

centre is at location s and σ(r′, Rj) is the charge density of disc j per unit

length. The integration over z is not required because discs are infinitesimally

thin. Since we have assumed that the total charge Q in a disc will remain fixed,

we have Q = λw, where λ is the constant line charge density of a disc given by

λ =

∫ Rj

r=0

σ(r, Rj)2πrdr (6.7)

The average longitudinal electric field on disc i due to disc j is given by

〈Eij(r, s)〉 =
∫ Ri

r=0

∫ 2π

φ=0
Eij(r, s)σ(r, Ri)rdrdφ∫ Ri

r=0

∫ 2π

φ=0
σ(r, Ri)rdrdφ

(6.8)

Equation (6.6)and Eq. (6.8) can be used to evaluate a close expression for

the average electric field 〈Eij(r, s)〉 for a wide range of choices of beam density

profile σ (r, R). In the following section we discuss two types of fixed shape

density profiles, one is of the bell shape type and other is of hollow shape type.

6.2.3 Fixed Shape Density Profile σ (r, R)

Let us assume the transverse beam density profile σ (r, R) as [16]

σ(r, R) =

{
λf

(
r
R

)
0 ≤ r ≤ R

0 R < r ≤ b
(6.9)

where f (r/R) is a smooth function that depends on scaled radial variable r/R.

There are many choices for density distribution function f (r/R) in Eq. (6.9).

In order to generate bell shape density distribution, we assume

f
( r
R

)
= σB(p, R)

(
1− r2

R2(p)

)p

0 ≤ r ≤ R (6.10)

and for the hollow shape density distribution, we consider

f
( r
R

)
= σH(p, R)

(
1 +

r2

R2(p)

)p

0 ≤ r ≤ R (6.11)

where p = 0, 1, 2, · · · is a positive integer. It decides the peakedness and hollow-

ness of the beam distribution. The value of p = 0 corresponds to the uniform
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distribution in both the cases. The terms σB(p, R) and σH(p, R) for the bell

shape and hollow shape distributions respectively, are to be determined from

the normalisation condition. In order to analyse and compare the behaviour of

uniform, bell shape and hollow shape beam distributions during bunching, we

consider the concept of equivalent beams [15, 113]. According to this concept

the equivalent beam must have the same second moments as the actual beam.

Thus for rms-matched beams we have 〈x2〉0 = 〈x2〉p. The expression of 〈x2〉p for
the bell shape density distribution and 〈x2〉0 for uniform density distribution

are given by

〈x2〉p = R2(p)

2(p+ 2)
, 〈x2〉0 = R2(0)

4
(6.12)

It then follows that

R2(p) =
(p+ 2)R2(0)

2
(6.13)

Using the normalisation condition defined in Eq. (6.7), we can easily obtain

σB(p, R) =
p+ 1

πR2(p)
(6.14)

Similarly, for the hollow shape distribution we have

〈x2〉p = (p2p+1 + 1)R2(p)

2(p+ 2) (2p+1 − 1)
(6.15)

R2(p) =
(p+ 2) (2p+1 − 1)R2(0)

2 (p2p+1 + 1)
(6.16)

σH(p, R) =
p+ 1

π (2p+1 − 1)R2(p)
(6.17)

Figure 6.2 compares the function f(r/R)πR2 as a function of normalised beam

radius r/R for bell shape and hollow shape distributions at different values of

parameter p.
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Figure 6.2: Plot of distribution function f(r/R)πR2 as a function of r/R for (a) bell
shape and (b) hollow shape distributions with p = 0, 1, 2, 3.

6.2.4 Evaluation of 〈Eij〉 for Fixed Shape Density Profile

In this subsection we will derive expressions for the average electric field 〈Eij〉
on disc i due to disc j for the class of fixed shape density profiles described in

Eq. (6.10) and Eq. (6.11) for the bell shape and hollow shape distributions.

Using Eq. (6.6) and Eq. (6.10) we can write the expression for electric field on

disc i due to disc j for the case of bell shape distribution as,

Eij(r, p, s) =
λσB(p, Rj)w

ε0b2

∞∑
n=1

exp (−βn|zi − zj |) J0(βnr)
J2
1 (αn)

×
∫ Rj

0

J0(βnr
′)

(
1− r′2

R2
j

)p

r′dr′ · sign(zi − zj) (6.18)

109



Chapter 6. Dynamics of Intense Beam during Bunching

here Rj = R(p, zj , s) is the radius of the jth disc. Using Eq. (6.10) and Eq.

(6.18) in Eq. (6.8), we can obtain the average longitudinal electric field on disc

i due to disc j as (see Appendix B)

〈Eij(r, p, s)〉 =
Q22p+1 ((p+ 1)!)2 b2p

πε0R
p+1
i Rp+1

j

∞∑
n=1

exp (−βn|zi − zj |)
J2
1 (αn)

×Jp+1(βnRi)Jp+1(βnRj)

α2p+2
n

sign(zi − zj) (6.19)

A similar exercise for hollow shape distribution yields (see Appendix B)

〈Eij(r, p, s)〉 = BH2
2pb2

∞∑
n=1

exp (−βn|zi − zj |)
J2
1 (αn)

[
Ri

αn

J1(βnRi)− pb

α2
n

J2(βnRi)

+
p.(p− 1)b2

α3
nRi

J3(βnRi)− · · ·+ (−1)pp!bp−1
αp+1
n Rp−1

i

Jp+1(βnRi)]

×[Rj

αn
J1(βnRj)− pb

α2
n

J2(βnRj) +
p.(p− 1)b2

α3
nRj

J3(βnRj)

− · · ·+ (−1)pp!bp−1
αp+1
n Rp−1

j

Jp+1(βnRj)] · sign(zi − zj) (6.20)

where, BH = 2Q(p+1)2

πε0(2p+1−1)2R2
iR

2
j b

2
.

Using Eq. (6.19) and Eq. (6.20) one can calculate the average electric field

on disc i due to disc j for various kind of beam distributions.

6.2.5 Equation of Motion

In the disc model each disc, identified by index i, is characterized by fixed charge

Q, mass M , an axial velocity vi, longitudinal position zi. The longitudinal

equation of motion of each disc in the beam frame can be written as,

dzi
ds

=
vi
v

(6.21)

dvi
ds

=
Q

γMv

[
Erf + Esc(zi, s)

]
(6.22)

where, Esc(zi, s) =
∑

j〈Eij(r, s)〉, j = i is the total space-charge field on disc i.

Here, v is the velocity with which the central disc in the defined bunch width
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moves. The field Esc(zi, s) which is due to the space charge will be experienced

by the discs throughout the motion whereas the field Erf will act only once on

a disc at the buncher gap.

6.3 Transverse Dynamics

The transverse beam dynamics has been studied by employing the beam en-

velope equation. Since the longitudinal electric field depends upon the beam

radius, an accurate calculation of the radius is necessary to simulate the longi-

tudinal beam dynamics correctly. In order to include the possible variation of

beam radius along the length of the beam and to understand the behaviour of

projected emittance during the bunch compression, we have divided the length

βλrf of the beam into thick slices, where λrf is the wavelength of the rf. The

position of the slices is fixed with respect to the beam centre. The evolution of

the radius of the slices is then found out under the influence of external force

and space-charge force of the beam during the bunch compression.

6.3.1 Beam Envelope Equation

We now begin with the rms envelope equation of each slice for a cylindrically

symmetric beam in a beam transport line. The equation for rms envelope x̃(Z, s)

is given by

x̃′′ + k(Z, s)x̃− 〈xFx〉
mγv2x̃

− ε̃2(Z, s)

x̃3
= 0 (6.23)

here, Z is the position of a slice with respect to the bunch centre and in this

case it covers a span of −βλrf/2 ≤ Z ≤ βλrf/2. The prime denotes differen-

tiation with respect to the variable s. Fx is the space-charge force and ε̃(Z, s)

is the rms emittance of the slice and k(Z, s) represents the focussing strength

of the external force. Furthermore, the rms emittance also includes the contri-

bution due to the time dependent rf force applied at the buncher gap. For an
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axisymmetric beam, we have from Maxwell’s equation

1

r

∂

∂r
(rEr) +

∂Ez

∂z
=
ρ(r, z)

ε0
(6.24)

Using Taylor series expansion [15, 108] and keeping only first order term in the

expansion of ∂Ez(r, z)/∂z we can write,

Er(r, z) ≈ 1

ε0r

∫ r

0

rρ(r, z)dr − r

2

∂Ez(0, z)

∂z
(6.25)

After substituting the expression of Er(r, z) in Eq. (6.23) and using some alge-

bra, we can write the envelope equation of each slice as [109]

x̃′′ + k(Z, s)x̃− K(Z, s)

4x̃
+

q

2mc2β2γ2
∂Ez(Z, s)

∂Z
x̃− ε̃2(Z, s)

x̃3
= 0 (6.26)

Here K(Z, s) = 2I(Z, s)/(I0β
3γ3), I(Z, s) being the current in the slice given by

Nd(Z, s)Qβc/Δg, where Nd(Z, s) is the number of discs in the slice at location

(Z, s) and Δg is the width of the slice. I0 is the characteristics current and for

proton I0 = 31 MA. Using the expression of the rms beam size in terms of total

beam radius R(p, Z, s) as given in Eq. (6.12) for the case bell shape density

distribution, we can write

R′′ + k(Z, s)R− (p+ 2)

2

K(Z, s)

R
+ Λ(Z, s)R− ε2(Z, s)

R3
= 0 (6.27)

where ε = 2(p + 2)ε̃ and Λ(Z, s) = q
2mc2β2γ2

∂Ez(Z,s)
∂Z

. The term Λ(Z, s)R in the

envelope equation is the force in the radial direction due to the axial varia-

tion of the longitudinal electric field. Similarly for the hollow shape density

distribution, we can use Eq. (6.15) and write the envelope equation as

R′′+k(Z, s)R− 2(p+ 2) (2p+1 − 1)

4 (p2p+1 + 1)

K(Z, s)

R
+Λ(Z, s)R− ε

2(Z, s)

R3
= 0 (6.28)

with ε =
2(p+2)(2p+1−1)

(p2p+1+1)
ε̃. The number of discs in a given slice and hence I(Z, s)

can be obtained by evaluating the position of discs using longitudinal dynamics.
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The projected emittance of the bunch can be obtained by summing over the

ensemble of beam slices covering the bunch and is given by

εp(s) =
√
〈R2〉〈R′2〉 − 〈RR′〉2 (6.29)

where

〈R2〉(s) =
1

Ns

Ns∑
j=1

R2(Zj, s), 〈R′2〉(s) = 1

Ns

Ns∑
j=1

R′2(Zj, s),

〈RR′〉(s) =
1

Ns

Ns∑
j=1

R(Zj , s)R
′(Zj, s). (6.30)

Here Ns is the number of slices within the specified bunch width. Since the

bunch size is very small, typically one tenth of the total beam size in one rf

period, the projected transverse emittance will be small for the emittance dom-

inated beam. But for space-charge-dominated beam the projected emittance

can be quite large. The total emittance of the beam will therefore, be the

combination of this projected and the thermal emittances.

6.3.2 Evaluation of the Axial Derivative of 〈Eij〉
In order to solve the transverse envelope Eq. (6.27) and Eq. (6.28), first we need

to evaluate the average value of axial derivative of the longitudinal electric field.

Here we present the method of calculation of the axial derivative of longitudinal

field for different types of density distributions in the transverse direction. Using

Eq. (6.6) we can write the axial longitudinal electric field at the position of slice

i slice due to disc j as,

Eij(0, Zi, s) =
1

ε0b2

∞∑
n=1

exp (−βn|Zi − zj |)
J2
1 (αn)

×
∫ Rj

0

J0(βnr
′)σ(r′, Rj)wr

′dr′sign(Zi − zj) (6.31)
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So, the axial electric field at the position Zi of slice i due to all other discs in

the beam is

Ei(0, Zi, s) =
∑
j

Eij(0, Zi, s) (6.32)

Since a given slice contains many discs, we have evaluated the axial electric field

at the midpoint of the thick slices for the present case. Using Eq. (6.10), Eq.

(6.31) and Eq. (6.32) the general expression for the axial electric field in the

case of bell shape density distribution is given by (see Appendix B)

〈Ei(0, Zi, s)〉 = Q2p+1(p+ 1)!bp−1

ε0

∞∑
n=1

exp (−βn|Zi − zj|)
α2p+2
n J2

1 (αn)

Jp+1(βnRj)

Rp+1
j

sign(zi−zj)

(6.33)

In a similar way, using Eq. (6.11), Eq. (6.31)and Eq. (6.32) the axial electric

field for hollow shape distribution can be obtained as (see Appendix B)

〈Ei(r, Zi, s)〉 =
2Q(p+ 1)2p

ε0 (2p+1 − 1)

∞∑
n=1

exp (−βn|Zi − zj |)
J2
1 (αn)

[
Rj

αn

J1(βnRj)− pb

α2
n

J2(βnRj)

+
p(p− 1)b2

α3
nRj

J3(βnRj)− · · ·+ (−1)pp!bp−1
αp+1
n Rp−1

j

Jp+1(βnRj)]sign(Zi − zj)

(6.34)

The derivative of the axial electric field at the midpoint of each thick slice can

be obtained from

dEi(0, Zi, s)

dZ
=
Ei+1(0, Zi+1, s)−Ei−1(0, Zi−1, s)

2Δg
(6.35)

where Δg is the width of each thick slice.

The average behaviour of the bunch can be found by replacing the quantity

K(Z, s) by 〈K(Z, s)〉, Λ(Z, s) by 〈Λ(Z, s)〉 and ε(Z, s) by 〈ε(Z, s)〉. Here the

average 〈..〉 is over the bunch length Δz. So, the envelope equation of the bunch

can be written as [108]

R̄′′ + k(s)R̄ − K(s)

R̄
+

qR̄

2mβ2γ2c2
〈∂Ez(0, z, s)

∂z
〉 − ε2(s)

R̄3
= 0 (6.36)
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We can write the above equation as

R̄′′ + k(s)R̄ − Keff(s)

R̄
− ε2(s)

R̄3
= 0 (6.37)

where we have defined,

Keff(s) = K(s)− Λ(s)R̄2 (6.38)

and

Λ(s) =
q

2mβ2γ2c2
〈∂Ez(z, s)

∂z
〉 (6.39)

6.3.3 Emittance Growth due to RF Field

In Eq. (6.27) and Eq. (6.28) the quantity ε(Z, s) is the effective value of the

transverse emittance of the thick slice at location s from the buncher gap. In

beam bunching, the rf field at the buncher gap modulates the velocity of the

beam longitudinally as well as it provides focussing or defocusing impulse in the

transverse direction. Depending upon the phase φ, the value of the divergence

will be different for different discs. As the beam drifts, these discs with different

orientation of phase ellipse will start overlapping each other which leads to

the emittance growth in the transverse direction. The phase φ is uniformly

distributed on discs before crossing the buncher gap and is equal to zero when

the centre of the bunch crosses the rf gap. After crossing the buncher gap, the

transverse position of a particle in disc n is [108, 114]

xf = xi, x′f = x′i +
πVbxi
2Tβλrf

(1− β2) cosφn (6.40)

where Vb is the applied peak voltage at the buncher gap, T is the kinetic energy

of the beam and φn is the rf phase when the disc n crosses the gap. The initial

and final rms emittances of a slice at location Z from the bunch centre can be

written as

ε̃2i (Z, s) = x2i · x′i2 − xix′i
2
, ε̃2f(Z, s) = x2f · x′f 2 − xfx′f

2
(6.41)
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The change Δε̃2rf(Z, s) = ε̃2f(Z, s) − ε̃2i (Z, s) in the emittance of the slice at

location (Z, s) after simplification is given by

Δε̃2rf(Z, s) = x2
(

πVb
2Tβλrf

)2 [
cos2 φn|Z − cosφn

2|Z
]

(6.42)

The terms cos2 φn and cos φn|Z are average values of cos2 φn and cosφn of the

discs which are within the slice at the location (Z, s). The change in the emit-

tance Δε̃2rf(s) of the bunch at location s can be obtained from Eq. (6.42) by

taking the averages of the discs which are within the specified bunch width Δz

and is given by [108]

Δε̃2rf(s) =
(
ε2f − ε2i

)
= x2

(
πVb

2Tβλrf

)2 [
cos2 φn|s − cos φn

2|s
]

(6.43)

The total effective rms emittance of the bunch is therefore given by

ε̃2eff(s) = ε̃2 + ε̃p2(s) + Δε̃2rf(s) (6.44)

6.4 Numerical Results

The theoretical formulations of the beam dynamics in the previous sections in-

dicate that the transverse and longitudinal motions are coupled to each other.

Thus, to calculate the dynamics of each disc, it is necessary to solve the trans-

verse and longitudinal motions simultaneously. In this section we present the

results of studies on a sinusoidal beam bunching system to be used in the in-

jection line of the 10 MeV compact cyclotron (see Fig. 1.1, Chapter 1). The

expected normalized emittance of the beam is 0.8π mmmrad. The diameter of

the beam pipe is 11.0 cm. The buncher is placed before the solenoid S2 in the

beam line. The operating rf frequency of the buncher is 42 MHz, which gives

the bunch spacing βλrf = 10.45 cm at 100 keV injection energy and bunch

width Δφ is 300 of rf.
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6.4.1 Simulation Results using Analytical Model

At first we present the simulation results of beam bunching for a beam having

uniform density distribution in the transverse direction. Figure 6.3(a) shows

how the longitudinal part which is due to the axial variation of longitudinal elec-

tric field, contributes in the transverse envelope equation as the beam moves

along the drift length. This effect decreases with the increase in the energy

spread and is more dominant near the time focus where the number of discs in

the specified bunch width is large. Figure 6.3(b) compares the variation of the

effective perveance as a function of drift length with and without longitudinal

part with zero energy spread. We see that in the case of short bunches the inclu-

sion of axial variation of longitudinal electric field is necessary in the transverse

dynamics, because it reduces the effective perveance by a considerable amount.

The simulation results on emittance growth due to rf field applied at the

buncher gap for different values of energy spread in the beam for 0 mA and 10

mA are shown in Fig. 6.4. The effect of energy spread on emittance dilution

is almost negligible at low beam current. As the beam current increases, emit-

tance dilution also increases and the effect is more dominant when the energy

spread is large. Since this effect is due to the overlapping of discs with different

orientations of transverse phase space, the emittance dilution is maximum at

the time focus.

The relative density distribution N(φ)/N0 of discs at the time focus is shown

in Fig. 6.5. N(φ) and N0 are the number of disc per unit phase at the time focus

when the buncher voltage is on and off respectively. Figure 6.6 shows the phase

space plot of the beam at the time focus for various conditions. The indicated

bunching efficiencies η in both the figures present the values for bunch width

±150 of rf (Δφ = 300 of rf). The bunching efficiency decreases as we increase

the beam current. For I = 10 mA, the bunching efficiency decreases to 42% for
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Figure 6.3: (a) Evolution of the quantity 〈Λ(s)〉 due to the axial variation of longitu-
dinal electric field during the bunch compression for 100 keV, 10 mA beam at various
values of energy spread. (b) Variation of the perveance 〈K(s)〉 of the beam bunch
during longitudinal bunch compression, with and without the inclusion of 〈Λ(s)〉.
The optimised drift length L = 77 cm and buncher voltage Vb = 6 kV are used in the
simulation.

energy spread of 80 eV and it further decreases to 29% when the energy spread

is 320 eV. We see here that space-charge affects the bunching process adversely

and it is more severe when the energy spread is large.

It is evident from Fig. 6.6 that the phase space plot of the beam is different

when the beam current is high. For I = 0 mA, discs which are behind the bunch

centre at buncher gap having positive impulse tend to overtake discs which are

ahead during the drift and cross through the bunch centre at the time focus
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Figure 6.4: Evolution of the emittance growth during the beam transport with bunch
compression for three different values of beam current and at different energy spread
; σE = 0, 80, 160, 240, 320 eV. The beam injection energy is 100 keV.

and vice versa. In the case of high beam current the motions of the discs are

dominated by both rf field as well as the space-charge field of the beam. The

space-charge force of the beam increases during the bunch compression and

act against the velocity modulation initially given by the rf field. As a result

discs are repelled by the space-charge force with less number of discs crossing

centre of the bunch at the time focus. At sufficiently high current space-charge

force dominates and prevents the disc crossing with substantial reduction in the

bunching efficiency.

In order to study the dynamics inside the bunch in more detail during
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Figure 6.5: Relative density distribution of discs at the time focus as a function of
phase φ for 100 keV beam at beam current of I = 0 mA (L = 100 cm), I = 5 mA (L
= 87 cm) and I = 10 mA (L = 77 cm) and for three different values of initial beam
energy spread (column 1 for σE = 0 eV, column 2 for σE = 80 eV and column 3 for
σE = 320 eV).

the bunching process we have divided the beam into slices as discussed in

Section 6.3 and considered different density distribution for the discs in the

transverse direction. Figure 6.7 shows the variation of rms radius and rms di-

vergence of the beam in one βλrf consisting of 72 slices near the entrance of the

buncher gap obtained from the data of optimise beam envelope in the transport

line. The number of slices in the chosen bunch width of 300 of rf is 6. It can be

readily seen from the figure that the rms radius of slices in one βλrf varies from

6.85 mm at the beginning to 8.35 mm at the end. The radius of slice decides the

radius of discs, and any variation in the radius of discs changes its space-charge

contribution on the other discs. As the beam propagates the radius and diver-
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Figure 6.6: The longitudinal phase space distribution of the beam at the time focus
for three different value of beam current and energy spread at 100 keV. The indicated
bunching efficiencies η are for bunch width Δφ = 300 of rf.

gence of the slices change according to the transverse beam envelope equation.

We first simulated the evolution of envelope radius and divergence of slices

as a function of drift length and phase ellipse of different slices at the time focus

(longitudinal focus) with low beam current. The calculation is then repeated

the same calculation with 10 mA beam current for uniform and nonuniform

density distributions of the beam in the transverse direction. The evolution of

the rms radius of different slices numbered as 1 to 6 starting from the beginning

of bunch to the end, are shown in Fig. 6.8 as a function of drift distance for

two different values of beam currents I = 0 mA and I = 10 mA respectively. It
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Figure 6.7: Variation of (a) rms radius and (b) rms divergence of beam in one βλrf

consisting of 72 slices at the entrance of the buncher gap. The slices in the chosen
bunch width are indicated by dark shades.

can be readily seen that there is very small difference in the radius of different

slices along the transport line when the beam current is very small. It is evident

from Fig. 6.8(b) that for 10 mA beam current the evolution of the rms beam

size of the slices are quite different. This is because of the fact that these slices

receive different space-charge forces during the bunch compression. The radii

of central slices 3 and 4 indicate as if they have received comparatively stronger

transverse space-charge force compared to the those slices which are away from

the centre of the bunch. The dotted curve in Fig. 6.8(b) compares the result

where the bunch radius is assumed as constant. It is also evident from the Fig.
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Figure 6.8: Variation of rms radius and rms emittance of different slices in the bunch
width as a function of drift length for I = 0 mA and I =10 mA. Six slices of the bunch
are numbered as 1 to 6 starting from the beginning of the bunch to the end. The
location and length of solenoid magnet S2 together with strengths are also indicated.

6.8(b) that the waist of central slices and outer slices are formed at different

locations compared to the position of the waist of the bunch of constant radius.

Figures 6.8(c) and 6.8(d) show the effect of phase dependent rf field on

the emittance of different slices as the beam drifts for 0 mA and 10 mA. The

evolution of emittance of slices is quite different in these two cases which is due

to the fact that in the first case discs cross the bunch centre whereas in the

second case discs are repelled by the space-charge force with a reduction in the

disc crossing near the time focus. The emittance growth is at peak near the

time focus and decreases afterwards for all the slices in the case of 10 mA beam

current whereas the emittance growth of different slices keeps on increasing even

after the time focus when the beam current is very low.

A plot of the projected rms emittance of the bunch for uniform, bell shape
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Figure 6.9: Evolution of (a) projected rms emittance due to space-charge effect and
(b) total effective rms emittance for different distributions. The total effective rms
emittance (Eq. (6.44)) includes the thermal and growth due to the space charge and
rf fields.

and hollow shape distributions are shown in Fig. 6.9(a). The variation of total

effective rms emittance (as defined in Eq. (6.44)) as a function of drift length is

shown in Fig. 6.9(b). The total effective rms emittance includes thermal part

as well as growth due to the space charge effect and time dependent rf force.

A comparison of results indicates that an increase in the non uniformity of

density leads to an increase in the rms emittance for hollow shape distribution

and a decrease in the rms emittance of the bell shape distribution throughout

the drift length. It is readily seen from Fig. 6.9 that the maximum growth

in the emittance occurs just before the time focus whereas minimum growth is
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just after the time focus in all the cases. Results show that the rms emittance

growth at the time focus increases with increasing parameter p for hollow shape

distribution and decreases with increasing parameter p for the case of bell shape

distribution.
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Figure 6.10: The rms radius, rms divergence and orientation of the phase ellipses of
the slices 1 to 6 at the buncher location and at the time focus for I = 0 mA.

In Fig. 6.10 we have plotted the rms beam radius, rms beam divergence and

orientation of phase ellipses at the buncher gap and at the time focus for very

low beam current i.e. I = 0 mA. We see here that at the time focus the radius

of different slices are almost same whereas the divergence of different slices,

though small but changes from negative to positive values. Since the radius of

six slices is almost same and the difference in divergence among the slices is
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very small at the time focus, the orientation of phase ellipse for different slices

is almost identical.
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Figure 6.11: Plots show (A) rms radius and (B) rms divergence of slices 1 to 6 of
the beam bunch at the time focus at 10 mA beam current having different density
distributions in the radial direction. The term initial indicates the values at the
buncher location.

The behaviour of slice radius at the time focus for the bell shape and hollow

shape distributions at 10 mA beam current are shown in Fig. 6.11 from which

three points are noteworthy. First, the radius of the six slices is not same at the

time focus in the case of bell shape and hollow shape distributions. Second, the

radius of slices near the bunch centre seems to be more affected by the space-

charge force and thus become large compare to the radius of outer slices. This is

due to the fact that the number of discs and hence the transverse space-charge

force is more in the central slices compared to that of outer slices. Third,
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the effect of parameter p is completely opposite in the two cases of density

distribution. In the case of bell shape distribution, the rms radius of central

slices decreases and outer slices increases with parameter p whereas the effect

is just opposite in the case of hollow shape distribution.

Figure 6.11(B) compares the rms divergence of different slices at time focus

for bell shape and hollow shape density distributions with different values of

parameter p at 10 mA beam current. As mentioned earlier for the case of I = 0

mA, the envelope divergence of slices starting from a small negative value goes

through almost equal to zero for central slices and then become positive for the

latter slices and all the slices more or less form a waist at the time focus. In the

case of space-charge-dominated beam the divergence of central slices are also

zero however slices on both sides of central slices have negative divergence in all

the cases. We also see that the magnitude of divergence increases in the case of

hollow shape distribution with parameter p whereas it decreases in the case of

bell shape distribution.

In Fig. 6.12(A) we have shown the phase space orientations of all six slices at

the time focus for three different values of parameter p together with the initial

phase ellipses at the buncher location. It is readily seen from Fig. 6.12(A)

that the phase space orientation of central and outer slices at the time focus

are different in contrast to the case of I = 0 mA, where all the slices form a

waist at the time focus. It is also evident from these plots that the effective

rms emittance decreases in the case of bell shape distribution as we increase the

value of parameter p and it increases for the hollow shape distribution with p

(also shown in Fig. 6.9).

The profile of the current in different slices around the bunch centre at the

time focus for bell shape and hollow shape density distributions is presented in
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Figure 6.12: (A) Phase space ellipse and (B) current I(Z, s)/I(Z, 0) of all six slices
in the bunch at the time focus for bell shape and hollow shape density distributions
of the beam at three different values of parameter p. Initial indicates values at the
buncher location. Slices in the specified bunch width of 300 of rf are shown in dark
colour.

Fig. 6.12(B). In fact these plots represent the variation of the actual line charge

density distribution of the beam at the time focus. The estimated bunching

efficiencies for all the distributions is 44%. The slices in the specified bunch

width are indicated by dark colour. The average bunching factor Bf , which

we define by the ratio of total current in the slices in a given phase width at

the time focus when the buncher is on to the total current in the slices in the

same phase width when the buncher is off, is also indicated in the Fig. 6.12(B).

We see that values of Bf are almost same in all the cases, but the shapes of

the current pulses at the time focus vary with density distributions. These are

comparatively sharper in the case of hollow shape density distribution. The
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sharpness of current pulses increases with parameter p for hollow shape density

distribution whereas it reduces in the case of bell shape distribution.
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Figure 6.13: Variation of (a) current in the slices I(Z, s)/I(Z, 0) around the bunch
centre and (b) the parameter Λ(Z, s) at four different axial locations s from the
buncher gap in the case of uniform density profile. The shaded regions indicate the
extent of specified bunch width (300 of rf).

The profile of the current in the slices I(Z, s)/I(Z, 0) around the bunch

centre and the parameter Λ(Z, s) defined in Eq. (6.27) and Eq. (6.28), are

shown in Fig. 6.13 at four different locations s in the drift length from the

buncher gap for the case of uniform density profile. The numerical results of

these parameters show almost identical qualitative behaviour for hollow and

bell shape density profiles. It is evident from Fig. 6.13(a) that the current is
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large at the centre of the bunch and the maximum current in the central slice

reaches before the time focus. However, the total current in the specified bunch

width which also defines the bunching efficiency reaches its maximum value at

the time focus. It is readily seen from Fig. 6.13(b) that the value of parameter

Λ(Z, s) which is proportional to the axial derivative of the longitudinal electric

field, reaches its maximum value at the time focus. The appearance of the

negative value of Λ(Z, s) at the bunch edges as the beam approaches the time

focus is due to the change in the behaviour of the electric field at the bunch

edges. Thus the inclusion of this effect in the transverse dynamics is essential

for more accurate estimation of the bunch behaviour.

6.4.2 Simulation Results using PIC Model

In the analysis of beam bunching presented in previous sections of this chapter

it is assumed that the transverse emittance of each disc remains constant during

the transport. But in real situation during the bunching the beam emittance

evolve along the transport line and therefore one needs a self-consistent sim-

ulation for prediction of the beam behavior more accurately. In this section,

we employ a PIC method to study the beam dynamics self-consistently. The

details of the PIC simulation method are given in Chapter 7. The macropar-

ticles used in the simulation have following distribution in the transverse 4D

phase space: K-V, waterbag, parabolic, semi-Gaussian and Gaussian. The ini-

tial distribution of the macroparticles in the longitudinal direction is taken as

uniform in space and Gaussian distributed in energy with respect to the mean

value.

The evolution of the average rms radius of the bunch is shown in Fig. 6.14(a)

as a function of drift distance for 10 mA beam current. For comparison, the

rms radius obtained from the disc-envelope model is also plotted [109]. In Fig.
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Figure 6.14: Comparison of the evolution of (a) the rms beam size and (b) the
relative increase in bunch current 〈I(s)〉/I(s = 0) along the drift length during the
bunching obtained with PIC simulation (solid) and analytical formulations.

6.14(b) we have compared the variation of the bunch current 〈I(s)〉/I(s = 0)

in the defined phase width (±150) along the drift length obtained from 3D PIC

model and envelope-disc model for monoenergetic beam.

In Fig. 6.15A(a)and Fig. 6.15B(b), we have plotted the evolution of emit-

tances of different slices numbered as 1 to 6 along the beam transport line

during the bunch compression with K-V and Gaussian distribution in the trans-

verse phase space respectively. The increase in emittance occurs mainly due to

transverse-longitudinal space charge coupling. We can see from Fig. 6.15A(a)

that the emittance of the central slices increases with a slow rate. The emittance

of end slices is almost constant up to 60 cm and then increases very rapidly.

After s = 80 cm, the emittance of all the slices saturates at higher value than

the initial values.

For the Gaussian beam, the behaviour is different than the K-V beam and

the results of PIC simulation is shown in Fig. 6.15A(b). For Gaussian distribu-

tion, the emittance of the central slices grows slowly and reaches to maximum

value at s = 60 cm and then starts decreasing and saturates at a lower value
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Figure 6.15: Evolution of the (A) slice emittances and (B) slice current as a function
of drift distance s with initial K-V and Gaussian distributions. The thick solid line
indicated by average represents the average value of parameter of the bunch.

than the peak value. The emittance of the slices at the edges (1 and 6) is almost

constant up to s = 80 cm and then increases abruptly to a very high value and

then decreases slowly and reaches to a lower value. The saturation value of

final rms emittance of different slices is 2 to 2.5 times of the initial value in the

case of K-V beam whereas it is 3.5 to 4 times in the case of Gaussian beam

indicating a considerable emittance growth.

The evolution of the relative increase in current in the slices as a function of

drift distance is shown in Fig. 6.15B(c) and Fig. 6.15B(d) for a monoenergetic

beam with K-V and Gaussian distribution in the transverse direction respec-

tively. It is easy to observe that up to s = 40 cm there is very little change

in the current in slices. After s = 40 cm, current in the central slices increase,

whereas the current in the slices at the edges decreases. The current of the

central slices (3 and 4) increase to a very high value almost by a factor of ∼
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12 at s = 60 cm and then it decreases. The current of other slices also show

the increasing behaviour at different drift locations. It is interesting to observe

that decrease of the current in the central slices and increase in the slice at the

outer slices happen in such way that the average current in the bunch becomes

maximum at the time focus. We can see that this behaviour is similar for both

the distributions.
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Figure 6.16: Transverse and longitudinal phase space distributions at the time focus
with initial K-V and Gaussian distributions.

The phase space distributions of the beam in the transverse and longitudinal

planes at the time focus are shown in Fig. 6.16. The results of PIC simulation

show that particles are more diffused and occupied large phase space area in

the transverse plane for Gaussian distribution in comparison with that of K-V

distribution. However, the distribution of particles in the longitudinal phase

space is almost identical for both the distributions. This is because of the fact

that beam is monoenergetic and has identical distribution in the longitudinal

distribution for both the cases.
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6.5 Summary and Discussion

In this chapter, we have developed a method to study the dynamics of the

rf beam bunching under the influence of space charge for the cases where the

bunch size is comparable to the beam radius. We have modified the beam

envelope equation to take into account the longitudinal space charge effect on

transverse motion which arises due to the finite bunch size. We have shown that

for intense beam, different part of the bunch evolve in a different way due to

the unequal amount of space-charge force experienced during the bunching in

contrast to the cases where the beam current is very low. For beams with bell

shape distribution, it has been observed that the increase in non-uniformity

in density distribution reduces the total projected rms emittance as well as

sharpness of the beam pulse at the time focus. For beams with hollow shape

distribution, it has been found that the increased non-uniformity in density

distribution increases the total rms projected emittance and the sharpness of

the beam pulse at the time focus. We have also observed that when the beam

current is high, the projected rms emittance of the bunch dominates over the

rms emittance growth caused due to the rf phase mixing.

Finally we have compared the results of analytical model with the PIC sim-

ulation. The evolution of rms size and current in the bunch obtained from

disc-envelope model agrees reasonably well with PIC simulation results. Simu-

lation of emittance growth with PIC code shows a saturation value of final rms

emittance of different slices. As expected, the beam with Gaussian distribution

shows a comparatively large emittance growth with respect to K-V distribution.
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PIC Simulation Methods for
Space Charge Dominated Beam

7.1 Introduction

The estimation of the average behavior of intense single and multispecies beam

can be found using beam envelope model [15, 17, 20, 49, 115, 116, 117]. Al-

though, these models can provide a good estimate of the average behavior of the

beam, these methods are not self-consistent. In most of the cases, it is impossi-

ble to investigate the dynamics analytically with strong nonlinear space-charge

forces and misaligned magnets. For the self-consistent description of an in-

tense beam, there are several advanced numerical tools such as particle-in-cell

(PIC) simulation methods [24, 118, 119, 120, 121, 122, 123, 124], Vlasov method

[25, 26, 27], δf simulation method [16, 125, 126, 127] etc. Among them PIC

simulations are widely used to provide insights into the various complexities

associated with high space-charge conditions.

In order to understand the detailed dynamics of space-charge-dominated

beam with different density distributions in the injection line, a two-dimensional

PIC code has been developed. To include the effect of bunching, a three dimen-

sional PIC code has also been developed for the self-consistent study during
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the longitudinal compression. The 2D PIC code can handle the misalignment

(displacement as well as tilt), higher order nonlinearity of the focusing element

and the off-centering of the beam.

7.2 Computational Procedure for PIC Method

In PIC method small number of macroparticle (compared to the number of real

particles) are used to represent the beam and the self-field are calculated self-

consistently from them. Each macroparticle represents many individual charge

particle respectively while maintaing the charge to mass ration of a single charge

particle.

The PIC algorithm is outlined in Fig. 7.1. The interior is divided into a

computational mesh. At each time step in the PIC simulation, the charge den-

sities at the grid points are calculated from the distributions of macroparticles.

The potential is solved at the grid points from the Poisson’s equation. The

electric field is calculated at each particle position from the known values of the

electric field at the nearest grid points. The particle positions and velocities are

advanced in time in the presence of self field and external field by the leap-frog

method. Any particles which are found to hit the boundary are removed from

the simulation. The process is repeated for the next time step. The separate

steps implemented in the PIC algorithm are described in detail in the following

sections. The code is written in Fortran.

7.3 2D PIC Method for Single Species

In this section we discuss briefly each step of a 2D PIC method for the case

when the beam contains single species.
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Figure 7.1: Particle-in-cell simulation algorithm.

7.3.1 Charge Assignment to the Grid Points

The first part of the PIC algorithm is to set up the charge density for the

Poisson solver. The region occupied by ensemble of particles is divided into

uniform rectangular meshes of dimension Nx × Ny. Since Poisson’s equation

is solved on a mesh, the charge density needs to be known at the grid points,

however, the particles are free to be anywhere in the computational region.

Therefore, one must interpolate charge density from the particle’s position to

the computational grid. The charge of every particle is distributed to its four

nearest grid points as shown in Fig. 7.2. We have used the area weighting

method which is also known as particle-in-cell or bilinear weighting [122]. The

charge density Qij at grid points (i, j) is a combination of contributions from

all particles which are inside the given elementary mesh and is given by

Qij =

N∑
n=1

Qxy

(
1− |xn − xi|

hx

)(
1− |yn − yj|

hy

)
(7.1)

where Qxy is the dimensionless space-charge density of individual particle and

hx, hy are mesh sizes in x and y direction respectively, (xn, yn) is the coordinate

of the particle n. We can write the beam current I = λv, where λ is the charge
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per unit length. In grid weighting method, one particle occupies an area of

hx × hy. Space-charge density of each macroparticle is

Qxy =
λ

Nhxhy
(7.2)

where N is the total number of macroparticle in the simulation.

�
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���������	�

Figure 7.2: Charge deposition in two dimensional rectangular grid.

Since charge is distributed to neighbouring grid points, the area weighting

scheme has the effect of introducing finite size particles, rather than point par-

ticles into the simulation. It results in smoothing of particle distribution and

the singularity associated with the Coulomb interaction between point particles

is removed implicitly in PIC simulations.

7.3.2 Poisson Solver

We consider that the continuous beam is transported in a straight focussing

channel within a conducting rectangular beam pipe. The potential φ at the

boundary of the beam pipe is zero (shown in Fig. 7.3) and on grid points it is

solved using Poisson’s equation. We have calculated the potential of the beam

in the beam frame using fast Fourier transform (FFT) method.
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Figure 7.3: 2D Cartesian grid for the solution of Poisson’s equation for continuous
beam in the case two dimensional problem.

The Poisson equation in Cartesian coordinate is given by

∂2φ

∂x2
+
∂2φ

∂y2
= −ρ(x, y) (7.3)

Here the potential and density are normalised. The unknown potential of the

beam and space-charge density at grid points can be represented by the Fourier

series as,

φij =

Nx−1∑
m=1

Ny−1∑
n=1

φ̄mn sin

(
πmi

Nx

)
sin

(
πnj

Ny

)
(7.4a)

ρij =

Nx−1∑
m=1

Ny−1∑
n=1

ρ̄mn sin

(
πmi

Nx

)
sin

(
πnj

Ny

)
(7.4b)

The terms φ̄mn and ρ̄mn are found from inverse Fourier transform and given by,

ρ̄mn =
4

NxNy

Nx−1∑
i=1

Ny−1∑
j=1

ρij sin

(
πmi

Nx

)
sin

(
πnj

Ny

)
(7.5a)

φ̄mn =
4

NxNy

Nx−1∑
i=1

Ny−1∑
j=1

φij sin

(
πmi

Nx

)
sin

(
πnj

Ny

)
(7.5b)

139



Chapter 7. PIC Simulation Methods for Space Charge Dominated Beam

Substituting the expression of φij and ρij in the Poisson’s equation (7.3), we

obtain,

φ̄mn =
ρ̄mn(

πm
a

)2
+

(
πn
b

)2 (7.6)

So the space-charge potential φij can be calculated utilising expansion of Eq.

(7.4). We have used a centered difference scheme to calculate electric field at

the grid points as given by,

Exij = −φi+1j − φi−1j

2hx
, Eyij = −φij+1 − φij−1

2hy
(7.7)

7.3.3 Interpolation of Fields to the Particle Location

The electric fields at all particle positions are calculated by interpolating from

the electric field at the grid points using the same area weighting scheme as

described for the calculation of the charge density matrix and it is given by,

Exn = ExijWij + Exi+1jWi+1j + Exij+1Wij+1 + Exi+1j+1Wi+1j+1 (7.8a)

Eyn = EyijWij + Eyi+1jWi+1j + Eyij+1Wij+1 + Eyi+1j+1Wi+1j+1 (7.8b)

where Wij,Wi+1j ,Wij+1,Wi+1j+1 are the weighting factor at the grid points

(i, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1) respectively. The weighting factor Wij is

given by

Wij =

(
1− |xn − xi|

hx

)(
1− |yn − yj|

hy

)
(7.9)

Similarly one can calculate other weighting factors.

7.3.4 Particle Distribution Generator in Phase Space

At first we require the phase space coordinates of all the macroparticles for the

simulation. For the generation of particle distribution in transverse 4D phase

space (x, x′, y, y′), we consider a class of distributions with elliptical symmetry.
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The distribution function f(x, x′, y, y′, s) depends on a parameter which de-

scribes the hyper ellipsoid surface in 4D phase space. The linear field Courant-

Snyder invariant distribution is specified as

f⊥(x⊥, x
′
⊥, s) =

λ

q
f(A2) (7.10)

where

λ = q

∫
d2x⊥

∫
d2x′⊥f⊥ (7.11)

and f(A2) is any function of the single particle amplitude parameter given by

A2 =

(
x

rx

)2

+

(
rxx

′ − r′xx

εx

)2

+

(
y

ry

)2

+

(
ryy

′ − r′yy

εy

)2

(7.12)

The functions f(A2) for K-V, waterbag, parabolic, Gaussian, semi-Gaussian

distribution are given by [15, 122, 128]

K-V : f(A2) =
1

π2εxεy
δ(A2 − 1) (7.13)

Waterbag : f(A2) =
8

9π2εxεy
Θ

(
1− 2

3
A2

)
(7.14)

Parabolic : f(A2) =
3

2π2εxεy

(
1− 1

2
A2

)
Θ

(
1− 1

2
A2

)
(7.15)

Gaussian : f(A2) =
4

π2εxεy
e−2A

2

(7.16)

Here, Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0 is a Heaviside unit-step

function.

The semi-Gaussian distribution is taken to be of the form [27, 119, 129]

fSG
⊥ (x, x′, y, y′) =

2λ

qπ2εxεy
Θ

[
1−

(
x2

r2x
+
y2

r2y

)]
× exp

[
−2

(
rxx

′ − r′xx

εx

)2

− 2

(
ryy

′ − r′yy

εy

)2
]
(7.17)

An important feature of Eq. (7.17) is that the corresponding number density

of beam particles nb(x, y) = q
∫
d2x′⊥f

SG
⊥ has the uniform-density step-function
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Figure 7.4: Generation of particle distributions in real, phase and momentum spaces
for K-V (KV), waterbag (WB), parabolic (PA), semi-Gaussian (SG) and Gaussian
(GA) distributions.

profile. The projections of 4D distribution function in phase spaces (x, x′) and

(y, y′), real space (x, y) and momentum space (x′, y′) are shown in Fig. 7.4 for

five different distributions. The parameters used are: number of macroparticle

N = 10000, rms normalized emittances ε̃nx = 0.2π mmmrad and ε̃ny = 0.8π

mmmrad, rms beam sizes Xrms = 2.5 mm and Yrms = 5 mm, rms envelope

angles X ′
rms = 7.5 mrad and Y ′rms = -7.5 mrad.

142



Chapter 7. PIC Simulation Methods for Space Charge Dominated Beam

7.3.5 Equation of Motion

The equations of motion of each macroparticle are given by,

dx

dt
= v (7.18a)

γ
dv

dt
=

q

m

(
Eext(x,Δ, θ, s) + Esc + v× (Bext(x,Δ, θ, s) +Bsc)

)
(7.18b)

here Δ and θ are the displacement and rotational misalignment parameters of

the focussing elements. We have solved the set of first order ordinary differential

equations using the second order, time centred leap-frog method [24]. The leap-

frog scheme is shown in the Fig. 7.5. If the external focussing force is only

electric field then the differential equations can be written in finite difference

form as

γ
vi+1/2 − vi−1/2

Δt
=

q

m
E(xi) (7.19a)

xi+1 − xi

Δt
= vi+1/2 (7.19b)

In Eq. (7.19), E(xi) = Eext(xi) + γ−2Esc(xi). If the external magnetic field is

�
�
�
�
�
�

�:�� �:�4�� �� ���4�� ����

��:��
��� �����

 �:�4��  ���4��

Δ��

Figure 7.5: Leap-frog method.

present a complication in the motion of macroparticles arises because of the ve-

locity dependent terms in the Lorentz force. This complication results because
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x and v are advanced out of phase in the leap-frog method. A commonly im-

plemented time centred scheme for magnetic forces is the following 3-step Boris

method [24]. At the first stage, the particle performs a half-step acceleration in

the electric field given by,

v
(1)
i+1/2 = vi−1/2 +

q

m

Δt

2γ
E(xi) (7.20)

At the second stage the velocity vector of the particle rotates in the magnetic

field given by

v
(2)
i+1/2 = v

(1)
i+1/2 +

(
v
(2)
i+1/2 + v

(2)
i+1/2

)
× ΩiΔt

2
(7.21)

where, Ωi =
qB(xi,si)

mγ
and si = iβcΔt. The above equation can be simplified as,

v
(2)
i+1/2 = v

(1)
i+1/2 +

2

1 +
(
ΩiΔt
2

)2v(3)
i+1/2 × Ωi (7.22)

Where, v
(3)
i+1/2 = v

(1)
i+1/2 +v

(1)
i+1/2× ΩiΔt

2
. At the third stage, the particle perform

half step acceleration in the electric field

vi+1/2 = v
(2)
i+1/2 +

q

m

Δt

2γ
E(xi) (7.23)

The rms emittances of the beam at each step are calculated using position and

divergence of macroparticles and it is given by,

ε̃x =
[〈x2i 〉〈x′i2〉 − 〈xix′i〉2]1/2 (7.24)

here 〈x2i 〉 = 1
N

∑N
i=1 x

2
i , 〈x′i2〉 = 1

N

∑N
i=1 x

′
i
2, 〈xix′i〉 = 1

N

∑N
i=1 xix

′
i. Similar ex-

pressions for y coordinates also.

7.4 PIC Model for Multispecies Beam

In this section, we describe the PIC method for multispecies beam. Each species

of the beam is represented as a combination of large number of macroparticles

and each macroparticle maintains the mk/qk of a single ion. We consider a
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continuous, multispecies beam propagating in the z-direction, each of which

is described by a distribution function, for example, fj(x, p, t) for species j.

Each component of the beam has characteristic axial momentum mjγjVj. Here,

Vj = βjc is the average axial velocity, γj is the relativistic factor, mj is the rest

mass of species j and c is the speed of light in vacuum. For illustration, in Fig.

7.6 we have shown the transverse cross section of the beam containing three

species and the computational grids. The equations of motion for the particles

are given by

dxji
ds

=
vxji
βjc

(7.25a)

dyji
ds

=
vyji
βj

(7.25b)

dvxji
ds

= − qj
mjβjcγj

[
1

γ2j

∂φs
j

∂x
+

∑
k=1
k �=j

∂φs
k

∂x
− vyji(B

ext
z +

∑
k=1
k �=j

Bs
zk)

+ βjc(B
ext
y +

∑
k=1
k �=j

Bs
yk)] (7.25c)

dvyji
ds

= − qj
mjβjcγj

[
1

γ2j

∂φs
j

∂y
+

∑
k=1
k �=j

∂φs
k

∂y
+ vxji(B

ext
z +

∑
k=1
k �=j

Bs
zk)

− βjc(B
ext
x +

∑
k=1
k �=j

Bs
xk)] (7.25d)

The subscript ji lebels the ith simulation particle and Nj is the total number

of simulation particles for the jth species. The term φs
k, B

s
xk, B

s
yk, B

s
zk are the

space-charge potential and magnetic field in the laboratory frame due to kth

species. The total current of the beam is the sum of the currents due to all

the species. Let the current of the jth species is Ij . We can write the current

Ij = λivj for the species j, where λj is the charge per unit length. Space-charge

density of each macroparticle for species j is

Qjxy =
λj

Njhxhy
(7.26)
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Figure 7.6: Computational grid for the solution of Poisson’s equation with beam
spot of three different species.

The electric field in the beam frame on the grids due to each species is calculated

using FFT method as discussed in Section 7.3.2. The fields are then trans-

formed in the laboratory frame using the Lorentz transformation. The above

procedure is repeated for other species of the beam also. The total electric and

magnetic fields in the laboratory frame are calculated by summing the electric

and magnetic fields of each species respectively. Then fields at the position of

the macroparticles are calculated by interpolating the field from the grid points

to the particles position using the same area weighting scheme.

7.5 3D PIC Method for Beam Bunching

In order to study the bunching problem we have extended the 2D PIC code dis-

cussed in previous sections with the inclusion of a third longitudinal coordinate

into the equations of motion. Here each particle occupies a position in 6D phase

space depending on the specific particle distribution. The macroparticles are

initially placed with different types of distribution in the transverse direction as

discussed earlier and the longitudinal distribution corresponds to a z-continuous
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beam with a finite spread of longitudinal momentum Δpz. The generation of

particle distributions in the transverse phase space is already discussed in 2D

PIC model. Simulation of longitudinal phase space is performed by generating

uniform particle distribution within the interval −βλrf/2 ≤ z ≤ βλrf/2 and a

Gaussian distribution in longitudinal energy around the average kinetic energy

of the beam. Here λrf is the wavelength of rf. The Fourier transform method

is used to solve Poisson equation with proper boundary condition in the longi-

tudinal and transverse directions. The potential φ is zero at the surface of a

rectangular pipe and is periodic in the longitudinal direction with period βλrf .

7.5.1 Equation of Motion

The equation of motion along the longitudinal direction is given by

dz

ds
=
vz
Vz

(7.27a)

dvz
ds

=
q

mγVz
(Erf

z + Esc
z ) (7.27b)

where vz is the velocity of macroparticle with respect to average velocity Vz.

Erf
z , E

sc
z are the longitudinal component of electric field due to rf field and

space-charge field respectively. Before entering the buncher gap the beam is

continuous. At the buncher gap it received velocity modulation from the rf field

which leads to density modulation as the beam advances and finally takes the

form of a bunch.

7.5.2 Charge Assignment to the Grid Points

In this case the region occupied by ensemble of particles is divided into uniform

rectangular meshes of dimension Nx × Ny × Nz. The charge of every particle

is distributed to its eight nearest grid points as shown in Fig. 7.7. The charge

density at grid points, Qijk is a combination of contributions from all particles
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which are inside the given elementary mesh and is given by [122]

Qijk =

N∑
n=1

Qxyz

(
1− |xn − xi|

hx

)(
1− |yn − yj|

hy

)(
1− |zn − zk|

hz

)
(7.28)

where Qxyz is the dimensionless space-charge density of individual particle and

hx, hy, hz are mesh sizes in x, y and z directions respectively. xn, yn, zn are the

coordinates of the particle n. Similarly the charge is distributed to the other

grid points also.
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Figure 7.7: Charge deposition in three dimentional rectangular grid.

7.5.3 Calculation of the Space Charge Electric Field

To calculate the space-charge field, we have divided the continuous beam into

several βλrf interval. Due to the periodic formation of bunches, it is possible

to consider the motion of only one bunch. Space-charge fields of neighbouring

bunches are taken into account by imposing periodic boundary conditions for

potential and space-charge density in the longitudinal direction. Space-charge

field of the train of bunches is calculated from the Poisson’s equation in Carte-
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sian coordinate system. The Poisson equation in 3D cartesian coordinate is

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= −ρ(x, y, z) (7.29)

With Dirchlet boundary conditions for potential φ at the surface of an infi-

nite pipe with rectangular cross-section of a × b and periodic condition in z-

direction i.e., φ(a/2, y, z) = φ(−a/2, y, z) = φ(x, b/2, z) = φ(x,−b/2, z) = 0

and φ(x, y, z) = φ(x, y, z + Lb). Here, Lb is the distance between center of two

consecutive bunches. In terms of rf wavelength, we can write Lb = βλrf . The

computational mesh is shown in Fig. 7.8. Unknown potential of the beam and
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Figure 7.8: 3D rectangular grid for the solution of Poisson’s equation for continuous
beam and bunched beam respectively.

space-charge density at the grid points are represented as Fourier series as given

by,

φijk =
Nx−1∑
m=1

Ny−1∑
n=1

Nz∑
p=1

φ̄mnp sin

(
πmi

Nx

)
sin

(
πnj

Ny

)
exp

(
−2πkp

Nz

)
(7.30a)

ρijk =

Nx−1∑
m=1

Ny−1∑
n=1

Nz∑
p=1

ρ̄mnp sin

(
πmi

Nx

)
sin

(
πnj

Ny

)
exp

(
−2πkp

Nz

)
(7.30b)
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As a first step, Fourier coefficients in space-charge density expansion are calcu-

lated as

ρ̄mnp =
4

NxNyNz

Nx−1∑
i=1

Ny−1∑
j=1

Nz∑
p=1

ρijk sin

(
πmi

Nx

)
sin

(
πnj

Ny

)
exp

(
−2πkp

Nz

)
(7.31)

Substitution of expressions of φijk and ρijk into Poisson’s equation, we obtain the

relation between Fourier coefficients of space-charge ρ̄mnp and potential φ̄mnp.

φ̄mnp =
ρ̄mnp(

πm
a

)2
+

(
πn
b

)2
+

(
2πp
Lb

)2 (7.32)

The potential φijk at the grid point (i, j, k) can be found using inverse Fourier

transform as given by the expression Eq. (7.30). We used a centered difference

scheme to calculate electric field at the grid points as given by,

Exijk = −φi+1jk − φi−1jk

2hx
, Eyijk = −φij+1k − φij−1k

2hy
, Ezijk = −φijk+1 − φijk−1

2hz

(7.33)

7.5.4 Interpolation of Fields to the Particles Position

The electric fields at all particle positions are calculated by interpolating from

the electric field at the grid points using the same area weighting scheme as

used for the calculation of the charge density matrix.

Exn = ExijkWijk + Exi+1jkWi+1jk + Exij+1kWij+1k

+Exijk+1Wijk+1 + Exi+1j+1kWi+1j+1k + Exi+1jk+1Wi+1jk+1

+Exij+1k+1Wij+1k+1 + Exi+1j+1k+1Wi+1j+1k+1 (7.34)

hereWijk,Wi+1jk,Wij+1k,Wijk+1,Wi+1j+1k,Wi+1jk+1,Wij+1k+1,Wi+1j+1k+1 are the

weighting factor at the grid points (i, j, k), (i+1, j, k), (i, j+1, k), (i, j, k+1), (i+

1, j+1, k), (i+1, j, k+1), (i, j+1, k+1), (i+1, j+1, k+1) respectively. Similarly

one can express the fields in y and z directions. The weighting factor Wijk is
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given by,

Wijk =

(
1− |xn − xi|

hx

)(
1− |yn − yj|

hy

)(
1− |zn − zk|

hz

)
(7.35)

And other weighting factors can also be found in a similar way.

7.6 Convergence Test and Benchmarking

There are two main sources of numerical errors relevant to beam dynamics

simulation. First arises due to the finite accuracy of the arithmetic operations

performed by the computer. Second one is due to the finite accuracy of the

numerical methods used to calculate the fields at the grid points. The first type

of errors can be minimised by using double precision arithmetics. At the same

time we have used second order leap-from integrator with regards to the step

size to increase the accuracy. The numerical stability of the integration scheme

depends only on having sufficiently fine step size Δs. The most important

condition in choosing a step size is to have enough steps to resolve the relevant

length scales. Another issue that can affect the accuracy of PIC simulations

is the number of macroparticles N used. The parameters N and number of

grid points are not completely independent because a sensible charge density

representation at the grid points is obtained only when there is a sufficient

number of macroparticles per grid cell.

At first we found out the minimum number of macroparticles needed to

represent the beam distributions. We have generated different initial distribu-

tions by varying the number of macroparticles. The rms normalised emittance

is chosen equal to 0.2π mmmrad which is same for all the distributions. The

number of macroparticles is varied from 102 to 105. At first, we have generated

particles position and divergence for a particular number of macroparticles for

all the distributions. Then using the values of position and divergence of the
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macroparticles, we have again calculated rms emittance of the beam and esti-

mated the error in the rms emittance. The process is repeated by varying the

number of macroparticles.
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Figure 7.9: Variation of error in the generation of emittance against number of
macroparticles.

Figure 7.9 shows the variation of percentage error in the calculated emittance

as a function of number of macroparticles. It is easy to see that for number of

macroparticles more than 104, the error is within 1%. It can be also seen from

the figure that the error follows the 1/N1/2 pattern (shown by dashed curve).

In Fig. 7.10 beam density profiles are plotted for an initial K-V and Gaussian

beam along the y axis for different values of number of grids and macroparticles.
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Figure 7.10: Plots of the beam density profiles along the y axis for different values
of number of grids and macroparticles.

The number of grids are varied from 64 × 64 to 256 × 256. For the number of

grids 64×64, the outer boundary of the uniform density beam is not sharp even

after using large number of macroparticles. With the number of grids 128×128

we see that the beam boundary is comparatively sharp and the sharpness of the

beam edge increases when the number of grids is increased to 256× 256. With

more number of grids one also needs more macroparticles to reduce the density

fluctuation in the beam. It is readily seen that more than 2 · 104 macroparticles

are required for 128× 128 grids to get the smooth profile for the charge density

whereas more than 5 · 104 macroparticles are needed in the case of 256 × 256

grids.
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Figure 7.11: Evolution of (a) rms beam size and (b) rms emittance of an initial
Gaussian distributed beam along the beam transport line for different values of N,Nx

and Δs.
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for different distributions.
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Figure 7.13: Contour plot for the charge density, potential and y-component of the
electric field Ey for K-V and Gaussian distributions.

We now study the convergence properties with respect to the parameters

Δs,N , Nx, Ny for the case of transport of proton beam in the solenoid based low

energy beam transport line as discussed earlier. We consider the transport of 10

mA, 100 keV cw proton beam with Gaussian distribution and rms normalized

emittances equal to 0.2π mmmrad in the transverse planes. The simulation

result for the evolution of rms beam size and rms emittance with initial Gaussian

beam is shown in Fig. 7.11. Convergence studies included the following ranges

of parameters: Δs = 5 mm, 2 mm, 1 mm and 0.5 mm; N = 1000, 10000, 40000,

77000 and 150000; Nx ×Ny = 64 × 64, 128× 128 and 256× 256. It is evident

from the figure that there is very small difference in the rms size and emittance

when the number of macroparticles is more than 40000 and step size is less than
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Figure 7.14: Three dimensional plot for the charge density, potential and y-
component of the electric field Ey for K-V and Gaussian distributions.

Figure 7.12 shows the plots of density, potential and y-component of the

electric field with 77000 macroparticles for K-V, waterbag, parabolic, Gaussian

and semi-Gaussian distributions. The contour and the 3D plots of charge den-

sity, potential and y-component of electric field are also shown in Fig. 7.13 and

Fig. 7.14 respectively for K-V and Gaussian distribution.

It is also important to validate the PIC simulation result with a wellknown

analytical results. For this we have done the beam dynamics simulation for the

same transport line using K-V distribution with PIC and wellknown beam enve-

lope equation. Figure 7.15 shows the comparison of results obtained with PIC

simulation (solid line) and solving the K-V beam envelope equations (dashed
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Figure 7.15: Plots of rms beam envelopes obtained with PIC method and envelope
equation as a function of path length for I = 10 mA. Beam input parameters are:
rms beam size Xrms(0) = 1.25 mm and rms divergence X ′

rms(0) = 0, beam energy
E0 = 100 keV, normalised rms emittance εrms = 0.2π mmmrad.

line). We have choose 77000 macroparticles and 128 × 128 grids for this case.

PIC simulation shows a good agreement.

7.7 Summary and Discussion

A PIC simulation method has been developed for the self-consistent evolution

of a space-charge-dominated single and multispecies beam propagating through

a beam transport system and the dynamics of intense beams during the longi-

tudinal compression. In the 2D PIC model we have included the misalignment

(displacement as well as tilt) and the higher order nonlinearity of the focussing

element, off-centring of the beam. We have described the method in detail for

2D and 3D PIC codes. The convergence test and the benchmarking of the code

have also been performed. The PIC codes developed in this chapter have been

used extensively to study and understand the space-charge-dominated beam

presented in previous chapters.
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Chapter 8

Conclusions and Future
Research

8.1 Conclusions

In this thesis, detailed analytical and numerical studies have been performed to

study the dynamics of space-charge-dominated beam (single species and multi-

species) propagating through a solenoid based low energy beam transport line.

The main aim is to develop understanding of the dynamics of space-charge-

dominated beam in the transport line and also providing valuable data for

practical applications.

In Chapter 2 of this thesis, a self-consistent kinetic description is described

to understand the dynamics of a space-charge-dominated beam in a misaligned

solenoidal channel. At first the magnetic field components of the misaligned

solenoid in the laboratory frame have been obtained in terms of misalignment

parameters and the single particle equation of motion has been developed. A

general equation for the centroid motion of continuous, intense charged particle

beam is derived using the kinetic nonlinear Vlasov-Maxwell equation. It has

been shown that there exists a self-consistent Vlasov equilibrium distribution

for the beam dynamics in the case of a uniform density around the centroid.
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The beam envelope equation that determines the evolution of outer radius of

equilibrium beam around the beam centroid is similar in form to the well known

K-V envelope equation and is independent of the centroid equation when the

conducting beam pipe is considered very far away from the beam. The self-

consistent particle-in-cell (PIC) simulation supports the analytical results.

A self-consistent PIC model has been developed and utilized to study the

dynamics of continuous space-charge-dominated beam through aligned and mis-

aligned solenoid based transport system considering different kinds of initial

beam distributions. In the case of aligned solenoids, it has been shown that

the evolution of the rms beam sizes is weakly dependent on the form of the

initial beam distribution. The emittance growth is seen to be greater in the

converging part of the beam where the strength of nonlinear space-charge term

is comparatively more. It is seen that there is an exchange of emittance from

one plane to the other plane when the initial beam is nonaxisymmetric. In the

case of misaligned solenoids, the simulation results with different distributions

indicate that the motion of centroid is independent of the beam distribution. It

is shown that the beam envelope around the centroid obeys the familiar enve-

lope equation, and is independent of the centroid motion for small misaligned

parameters. For large misalignment particularly tilt, the envelope evolution de-

pends on form of the distribution of the beam. It is also found that the envelope

is stable although the centroid motion is unstable. Large excursion of centroid

without any control leads to the loss of the beam on the beam pipe particu-

larly in the case of nonuniform beam distribution, revealing the importance of

centroid motion to the overall beam confinement properties.

In the first part of Chapter 3 of this thesis, a beam envelope model of an

axisymmetric space-charge-dominated multispecies beam is presented for the

evolution of the radius of each species in a solenoid based beam transport line.
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Circular slit is used in the beam line for the selection of particular species. The

effective values of the current and emittance of each species after the slit are

taken into account in the beam envelope model for further transport in case the

radius of any species is larger than the slit size. The analytical model has been

used to transport proton from 2.45 GHz microwave ion source in the presence of

H+
2 , H

+
3 species. Numerical results are presented for various values of the total

beam current and different fractions of p,H+
2 , H

+
3 species. It has been observed

that envelope of the proton beam behaves differently in the presence of different

fractions of the other components. The envelope model discussed in Chapter 3

can be utilised for more precise estimate of the beam envelope without the use

of large simulations in the case of a multispecies beam.

In the later part of Chapter 3, the evolution of multispecies beam is studied

using self-consistent 2D PIC method where each species of the beam is repre-

sented as a combination of large number of macroparticles. The evolution of

beam size and emittance growth of the primary species due to other unwanted

species for various beam parameters has been investigated. The real space dis-

tributions of the unwanted species have been investigated with and without the

presence of a slit in the beam line. The formation of beam hollows of unwanted

species is observed around the primary beam which is produced due to nonlinear

space-charge effects. It has been shown that the rejection of unwanted species

is very effective when we place the slit after the hollow formation of unwanted

species.

In Chapter 4 of this thesis, an optimisation method is discussed to find

the optimal beam line settings for the transport and matching of multispecies

beam using the multispecies beam envelope model described in Chapter 3. The

optimisation method is based on random search technique where the transport

parameters are varied randomly during the optimisation. Using this method,
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the primary beam is matched at the desired position and the loss of unwanted

species is maximised at the location of a circular slit. In the optimisation,

two cost functionals are defined one for the primary beam and other for the

unwanted species. The advantage of a random search technique over the other

methods is that it is very simple to apply. In this technique one can easily

introduce any number of constraints in the problem. It does not require any

differentiation of the objective function with respect to the parameters. The

technique is quite fast and can locate the global minimum within the specified

range of the parameters if the random jump is chosen sufficiently large initially.

To demonstrate the utility of the technique, the optimised parameters have been

obtained for the transport and matching of intense proton beam from ion source

in the presence of H+
2 and H+

3 in a solenoid based transport line. Numerical

results of the beam selection and optimized transport parameters have been

presented for various values of total beam current and different fractions of p,H+
2

and H+
3 species. We have also tested the method at higher beam current upto

40 mA and found that optimization technique works well. For the transport

of higher current say in the range of 40 − 100 mA, one needs space-charge

compensation to restrict the beam envelope size within the resonable limit. In

that case the effective beam current will be reduced to I(1− f) where f is the

charge neutralization factor and the procedure discussed in Chapter 4 can be

easily utilized.

In order to find out a suitable buncher in our injection system, numerical

simulations have been carried out to study the bunching performance of sinu-

soidal, two harmonic and double drift bunchers in the presence of space charge.

Methods and results are presented in Chapter 5. Disc model have been used

for the longitudinal dynamics and K-V envelope equations have been used for

transverse dynamics. Numerical simulations and optimisation of buncher pa-
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rameters have been performed for 100 keV proton beam. It is found that the

location of buncher from the time focus is a very crucial parameter in the case

of high beam current. For a given beam current there is an optimum drift

length beyond which the bunching efficiency decreases rapidly and is indepen-

dent of buncher voltage. This decrease in bunching efficiency is very rapid at

higher beam currents. We have also seen that the optimum drift length remains

the same whether one uses a sinusoidal or a double harmonic or a double drift

buncher. The simple disc model has helped us to obtain the required buncher

parameters and configuration for our injection system. This method can be

easily applied to any type of bunchers used in the accelerator laboratories.

In Chapter 6 of this thesis, a model has been developed for the longitudinal

and transverse beam dynamics of the bunch as it evolve under the influence of

space charge and external force during the bunching. The longitudinal dynamics

is studied using disc model and transverse dynamics is studied using envelope

model. An analytical expression for the electric field experienced by a disc due

to other disc inside a conducting pipe is derived using Green function technique

for the case of bell shape and hollow shape density profiles in the transverse

direction. The beam envelope equation has been modified to take into account

the longitudinal space-charge effect on transverse motion, which arises when the

beam size is comparable to the bunch size.

In order to include the variation of beam radius along the length of the

beam and to understand the behaviour of projected emittance during the bunch

compression, the total length of the beam is divided into thick slices. The

evolution of radius of individual slice is then found out under the influence of

space charge and external forces. For beams with bell shape distribution, it has

been observed that the increased nonuniformity in density distribution reduces

the total projected rms emittance as well as sharpness of the beam pulse at
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the time focus. On the other hand, for beams with hollow shape distribution,

the increased nonuniformity in density distributions increases the total rms

projected emittance and the sharpness of the beam pulse at the time focus. It

has also been observed that when the beam current is high the projected rms

emittance of the bunch dominates over the rms emittance growth caused due

to the phase mixing arising from the rf field.

Finally we have compared the results of analytical model with the 3D PIC

simulations. The evolution of rms size and current in the bunch obtained from

disc-envelope model agrees reasonably well with PIC simulation result. Simu-

lation of emittance growth with PIC code shows a saturation value of final rms

emittance of different slices. As expected, the beam with Gaussian distribu-

tion shows a considerably large emittance growth compared to case when K-V

distribution is used.

In Chapter 7 detail description of the 2D and 3D PIC simulation methods

used in the previous chapters for the self-consistent evolution of space-charge-

dominated (single and multispecies) beam have been described. In the 2D PIC

model we have included the misalignment (displacement as well as tilt) and the

higher order nonlinearity of the focussing element, off-centring of the beam. The

convergence test and the benchmarking of the code have also been performed.

8.2 Future Research

Our studies on the dynamics of intense beam in low energy transport line open

up the following directions of research which can be attempted in future. In

the present thesis, we have considered only solenoid magnets (based on re-

quirement of the project) for focussing of the intense beam. The analysis can

be extended to study the beam dynamics in transport lines where solenoid and

quadrupole magnets are present. The combination of both magnets can be used
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for the matching of axisymmetric beam into nonaxisymmetric beam. It would

be interesting to study the effect of misalignments of solenoid and quadrupole

magnets on the beam behaviour.

In the thesis we have considered the uniform density distributions for all the

species for the development of multispecies beam envelope equation. Though,

we have predicted the evolution of rms beam sizes for all the species using

PIC simulation for different distributions, the analysis can be extended analyti-

cally using different types of fixed shape density distribution. This analysis will

predict the beam envelope evolution for realistic distribution. The PIC simu-

lation method can also be extended to study the effect of misalignments of the

focussing magnets on the primary beam in the presence of unwanted species,

which has not been discussed in this thesis.

We have used 3D PIC code for the complete description of collective behav-

ior in intense charged particle beams during the bunching. Since full 3D PIC

method is very slow, an alternate fast method can be developed to study the

transverse dynamics during the beam bunching by combining 2D PIC and disc

model together. For simplicity many authors have taken linear increase in the

bunch current along the beam transport line during the bunching. It would be

more realistic if one takes the more realistic data for the increase in the beam

current which one can obtain by using the beam envelope and disc model. This

value can be easily included in the 2D PIC model to study the transverse beam

dynamics.

We have developed an optimisation technique to obtain the parameters of

beam transport lines for the matching of intense multispecies beam. The tech-

nique can be extended to carry out the analysis in the presence of bunching

for single species. The evolution of transverse beam size will be different than
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that of the continuous beam. This effect will be small in the case of low beam

current but it will become important in the case of intense beam and will affect

the matching at the target location. One can do it by varying the strength

and position of the magnet. But sometimes due to the constraint of the avail-

able drift space, one may not able to achieve the matching condition. Thus for

the proper matching, one may need another parameter that is the variation in

the length of the solenoid magnet together with the strength and the location,

which we have not explored in the present thesis.
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A.1 Calculation of f (rj, rk) and g (rj, rk)

In this Appendix, we derive the term f (rj, rk) and g (rj , rk) as given in Eq.

(3.21) and Eq. (3.22) for the case of uniform density distribution for all the

species.

The functions f (rj, rk) and g (rj , rk) in Eq. (3.20) is defined as

f (rj , rk) =
x2

r2k(s)
Θ (rk(s)− r) (A.1)

g (rj, rk) =
x2

r2
Θ (r − rk(s)) (A.2)

where the average of the quantity h(r,p, s) is given by

h(r,p, s) =

∫ ∫
h(r,p, s)fj(r,p, s)drdp∫ ∫

fj(r,p, s)drdp
(A.3)

Here fj(r,p, s) is the distribution function for species j. The number density

of species j is

nj(r, s) =

∫
fj(r,p, s)dp (A.4)

For K-V distributed beam we can write

nj(r, s) =

{
nj 0 < r ≤ rj(s)

0 r > rj(s)
(A.5)

where, nj = Nj/
(
πr2j (s)

)
, Nj is the number of particles per unit length. If

rj(s) < rk(s) then

x2

r2
Θ (r − rk(s)) = 0 (A.6)
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and

x2

r2k(s)
Θ (rk(s)− r) =

∫
x2

r2
k
(s)
Θ (rk(s)− r) fj(r,p, s)drdp∫

fj(r,p, s)drdp

=

∫
x2

r2
k
(s)
Θ (rk(s)− r)nj(r, s)dr∫

nj(r, s)dr

=

∫ rj(s)

0

∫ 2π

0
x2

r2
k
(s)
njrdrdθ∫ rj(s)

0

∫ 2π

0
njrdrdθ

=
r2j (s)

4r2k(s)
(A.7)

(b) If rj(s) > rk(s) then average exists for both the terms i.e.

x2

r2k(s)
Θ (rk(s)− r) =

∫ rk(s)

0

∫ 2π

0
x2

r2
k
(s)
njrdrdθ∫ rk(s)

0

∫ 2π

0
njrdrdθ

=
r2k(s)

4r2j (s)
(A.8)

and

x2

r2
Θ (r − rk(s)) =

∫ rj(s)

rk(s)

∫ 2π

0
x2

r2
nj(r, s)rdrdθ∫ rj(s)

rk(s)

∫ 2π

0
nj(r, s)rdrdθ

=
1

2

(
1− r2k(s)

r2j (s)

)
(A.9)

Substituting above values in Eq. (A.1) and Eq. (A.2), we obtain

f(rj, rk) =

⎧⎨⎩
r2j
4r2

k

if rj < rk
r2
k

4r2j
if rj > rk

(A.10)

and

g(rj, rk) =

{
0 if rj < rk
1
2

(
1− r2

k

r2j

)
if rj > rk

(A.11)

A.2 Beam Selection through Circular Slit

To solve the envelope Eq. (3.23), we need to calculate the phase space area

that passes through the slit in the case when the beam size is larger than the

radius of the slit. For illustration we have shown a typical phase space ellipse

of a species of the beam at the location of the slit in Fig. A.1. The maximum

opening of the slit is shown by two vertical solid lines. So the effective phase

space area which passes through the slit is the shaded region. The effective
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Figure A.1: Plot shows a typical phase space ellipse at the slit position. The edges
of the slit are shown by two vertical solid lines.

emittance which passes through the slit can be easily obtained by using the

steps given below. The equation of the ellipse at the slit position can be written

as

γjx
2 + 2αjxx

′ + βjx
′2 = εj (A.12)

where εj is the emittance of species j of the beam before the slit and αj , βj and

γj are the well known Twiss parameters. From the above equation we can write

x′ = −αj

βj
x±

√
εj
βj
− x2

β2
j

The area of the shaded region is given by

ΔAj =

∫ rslit

−rslit

∫ −
αj

βj
x±

√
εj

βj
− x2

β2
j

−
αj

βj
x−

√
εj

βj
− x2

β2
j

dxdx′ = 2

∫ rslit

−rslit

√
εj
βj
− x2

β2
j

dx

After simplification we obtain

ΔAj = 2εj

[
p
√
1− p2 + sin−1 p

]
(A.13)

where p = rslit/rj(slit). The effective emittance of species j after the slit is,

therefore, given by εjeff = ΔAj/π. To calculate the orientation of the effective

168



Appendix A.

phase ellipse after the slit, first we need to calculate the rms emittance of the

new area as well as the twiss parameters αsj, βsj and γsj of the ellipse just after

the slit. The rms quantities just after the slit are given by

x2 =

∫ ∫
x2dxdx′∫ ∫
dxdx′

=
I1

ΔAj
(A.14)

I1 =

∫ ∫
x2dxdx′

=
εjr

2
slit

2p2

[
p
√

1− p2 − 2p
(
1− p2

)3/2
+ sin−1 p

]

x′2 =

∫ ∫
x′2dxdx′∫ ∫
dxdx′

=
I2

ΔAj

(A.15)

I2 =

∫ ∫
x′2dxdx′

=
ε3jp

2

6r2slit

[
3βjγj sin

−1 p + 3βjγjp
√

1− p2 + 2p
(
1− 3α2

j

) (
1− p2

)3/2]

xx′ =

∫ ∫
xx′dxdx′∫ ∫
dxdx′

=
I3

ΔAj

(A.16)

I3 =

∫ ∫
xx′dxdx′

= −αjε
2
j

2

[
p
√
1− p2 − 2p

(
1− p2

)3/2
+ sin−1 p

]
The rms emittance of the species j after the slit can be obtained from

ε̃sj =

√
I1I2 − I23
ΔAj

(A.17)

A.3 Runge-Kutta Method

We have used 4th order Runge-Kutta method for solving the envelope equations

of species as given in Eq. (3.23) in Chapter 3. At first, we converted the n

number of second order equations into 2n first order equations. We represented
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the radii and divergence of the beam envelope by two vectors R and V i.e.

RT = [r1, r2, · · · rn] and V T = [r′1, r
′
2, · · · r′n]. We can write Eq.(3.23) as

R′ = V (A.18a)

V ′ = F (R, I, ε, kl, s) (A.18b)

where

IT = [I1(s), I2(s), · · · In(s)]

εT = [ε1(s), ε2(s), · · · εn(s)]

klT = [kl1(s), kl2(s), · · · kln(s)]

(A.19)

The solution at the (i+ 1)th interval can be written as

Ri+1 = Ri +
1

6
[K1 + 2K2 + 2K3 +K4] (A.20a)

Vi+1 = Vi +
1

6
[L1 + 2L2 + 2L3 + L4] (A.20b)

where

K1 = Δs · Vi

L1 = Δs · F (Ri, I, ε, kl, si)

K2 = Δs ·
(
Vi +

L1

2

)
L2 = Δs · F

(
Ri +

K1

2
, I, ε, kl, si +

Δs

2

)
K3 = Δs ·

(
Vi +

L2

2

)
L3 = Δs · F

(
Ri +

K2

2
, I, ε, kl, si +

Δs

2

)
K4 = Δs · (Vi + L3)

L4 = Δs · F (Ri +K3, I, ε, kl, si +Δs)
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In order to obtain the radius of each species of the beam, we have calculated

the values of K1, K2, K3, K4, L1, L2, L3, L4 at each step. At the slit position the

effective beam current and emittance of each species were modified using the

expressions as given in Eq. (3.24) and Eq. (3.25) respectively.
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In this Appendix, we have derived the expressions for the electric fields as

used in Eq. (6.19) and in Eq. (6.20) for the case of bell shape and hollow shape

density distributions respectively. Similarly these expressions can be utilised in

Eq. (6.31) to get the final expressions Eq. (6.33) and Eq. (6.34).

B.1 Evaluation of 〈Eij〉 for Bell Shape Density

Profile

The expression for electric field on disc i due to disc j for the case of bell shape

distribution is

Eij(r, p, s) =
λσB(p, Rj)w

ε0b2

∞∑
n=1

exp (−βn|zi − zj |) J0(βnr)
J2
1 (αn)

×
∫ Rj

0

J0(βnr
′)

(
1− r′2

R2
j

)p

r′dr′ · sign(zi − zj) (B.1)

where Rj = R(p, zj, s).

The average longitudinal electric field on disc i due to disc j can be obtained

using

〈Eij(r, p, s)〉 =
∫ Ri

r=0

∫ 2π

φ=0
Eij(r, p, s)λσB(p, Ri)

(
1− r2

R2
i

)p

rdrdφ∫ Ri

r=0

∫ 2π

φ=0
λσB(p, Ri)

(
1− r2

R2
i

)p

rdrdφ
(B.2)
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〈Eij(r, p, s)〉 = AB

∞∑
n=1

exp (−βn|zi − zj|)
J2
1 (αn)

[∫ Rj

0

J0(βnr
′)

(
1− r′2

R2
j

)p

r′dr′
]

×
[∫ Ri

0

J0(βnr)

(
1− r2

R2
i

)p

rdr

]
sign(zi − zj) (B.3)

where AB =
2πQσB(p,Rj)σB(p,Ri)

ε0b2
. The above equation can be simplified as

〈Eij(r, p, s)〉 = BB

∞∑
n=1

exp (−βn|zi − zj|)
J2
1 (αn)

[∫ Rj

0

J0(βnr
′)

(
1− r′2

R2
j

)p

r′dr′
]

×
[∫ Ri

0

J0(βnr)

(
1− r2

R2
i

)p

rdr

]
sign(zi − zj) (B.4)

where BB = 2Q(p+1)2

πε0b2R2
jR

2
i

. Here we have used the relation σB(p, R) =
p+1

πR2(p)
.

Let us define

Ib(p, R) = (p+ 1)

∫ R

0

J0(βnr)

(
1− r2

R2

)p

rdr (B.5)

To calculate the integral we have used the relation
∫
tαJα−1(t)dt = tαJα(t)

For p = 1

Ib(1, R) = 2

∫ R

0

J0(βnr)

(
1− r2

R2

)
rdr

=
4

β2
n

J2(βnR)

We can arrange it as

Ib(1, R) =
2(1 + 1)!

β1+1
n R1−1

J1+1(βnR) (B.6)

For p = 2

Ib(2, R) = 3

∫ R

0

J0(βnr)

(
1− r2

R2

)2

rdr

= 3

∫ R

0

J0(βnr)

(
1− 2r2

R2
+

(
r2

R2

)2
)
rdr

=
24

β3
nR

J3(βnR)
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We can arrange the expression as

Ib(2, R) =
22(2 + 1)!

β2+1
n R2−1

J2+1(βnR) (B.7)

For p = 3

Ib(3, R) = 4

∫ R

0

J0(βnr)

(
1− r2

R2

)3

rdr

= 4

∫ R

0

J0(βnr)

(
1− 3r2

R2
+ 3

(
r2

R2

)2

−
(
r2

R2

)3
)
rdr

=
192

β4
nR

2
J4(βnR)

We can arrange the expression as

Ib(3, R) =
23(3 + 1)!

β3+1
n R3−1

J3+1(βnR) (B.8)

So in general we can write

Ib(p, R) =
2p(p+ 1)!

βp+1
n Rp−1

Jp+1(βnR) (B.9)

If we substitute the expression (B.9) of Ib(p, R) in Eq. (B.4) we obtain

〈Eij(r, p, s)〉 =
Q22p+1 ((p+ 1)!)2 b2p

πε0R
p+1
i Rp+1

j

∞∑
n=1

exp (−βn|zi − zj |)
J2
1 (αn)

×Jp+1(βnRi)Jp+1(βnRj)

α2p+2
n

sign(zi − zj) (B.10)

B.2 Evaluation of 〈Eij〉 for Hollow Shape Den-

sity Profile

For hollow shape density distribution the average electric field on disc i due to

disc j is

〈Eij(r, p, s)〉 = AH

∞∑
n=1

exp (−βn|zi − zj |)
J2
1 (αn)

[∫ Rj

0

J0(βnr
′)

(
1 +

r′2

R2
j

)p

r′dr′
]

×
[∫ Ri

0

J0(βnr)

(
1 +

r2

R2
i

)p

rdr

]
sign(zi − zj) (B.11)
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Where AH =
2πQσH (p,Rj)σH (p,Ri)

ε0b2
. The above equation can be simplified as

〈Eij(r, p, s)〉 = BH

∞∑
n=1

exp (−βn|zi − zj |)
J2
1 (αn)

[∫ Rj

0

J0(βnr
′)

(
1 +

r′2

R2
j

)p

r′dr′
]

×
[∫ Ri

0

J0(βnr)

(
1 +

r2

R2
i

)p

rdr

]
sign(zi − zj) (B.12)

where, BH = 2Q(p+1)2

πε0(2p+1−1)2R2
iR

2
j b

2
. Here we have used the relation σH(p, r) =

(p+1)
π(2p+1−1)R2(p)

.

Let us define

Ih(p, R) =

∫ R

0

J0(βnr)

(
1 +

r2

R2

)p

rdr (B.13)

For p = 1

Ih(1, R) =

∫ R

0

J0(βnr)

(
1 +

r2

R2

)
rdr

=
2R

βn
J1(βnR)− 2

β2
n

J2(βnR)

We can arrange the expression as

Ih(1, R) = 21
[
R

βn
J1(βnR)− 1

β2
n

J2(βnR)

]
(B.14)

For p = 2

Ih(2, R) =

∫ R

0

J0(βnr)

(
1 +

r2

R2

)2

rdr

=

∫ R

0

J0(βnr)

(
1 +

2r2

R2
+

(
r2

R2

)2
)
rdr

=
4R

βn
J1(βnR)− 8

β2
n

J2(βnR) +
8

β3
nR

J3(βnR)

Arranging the above expression we can write

Ih(2, R) = 22
[
R

βn
J1(βnR)− 2

β2
n

J2(βnR) +
2!

β3
nR

J3(βnR)

]
(B.15)
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Similarly for p = 3 we can write,

Ih(3, R) = 23[
R

βn
J1(βnR)− 3

β2
n

J2(βnR) +
3 · 2
β3
nR

J3(βnR)

− 3!

β4
nR

2
J4(βnR)] (B.16)

In general

Ih(p, R) = 2p[
R

βn
J1(βnR)− p

β2
n

J2(βnR) +
p.(p− 1)

β3
nR

J3(βnR)

− · · ·+ (−1)p p!

βp+1
n Rp−1

Jp+1(βnR)] (B.17)

Substituting the above expression (B.17) and using βnb = αn in Eq. (B.12) we

obtain,

〈Eij(r, p, s)〉 = BH2
2pb2

∞∑
n=1

exp (−βn|zi − zj |)
J2
1 (αn)

[
Ri

αn
J1(βnRi)− pb

α2
n

J2(βnRi)

+
p.(p− 1)b2

α3
nRi

J3(βnRi)− · · ·+ (−1)pp!bp−1
αp+1
n Rp−1

i

Jp+1(βnRi)]

×[Rj

αn

J1(βnRj)− pb

α2
n

J2(βnRj) +
p.(p− 1)b2

α3
nRj

J3(βnRj)

− · · ·+ (−1)pp!bp−1
αp+1
n Rp−1

j

Jp+1(βnRj)]sign(zi − zj) (B.18)
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