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SYNOPSIS

The collisions of heavy nuclei at relativistic energies have been generated a great

deal of interest, both theoretically and experimentally, since the past few decades. The

primary goal of such collisions in the laboratories is to liberate the partons (quarks

and gluons) inside the colorless hadron and study the in-medium behaviour of quantum

chromodynamics (QCD); the gauge theory of strong interactions. At very high energies

the collision between the two Lorentz contracted nuclei is almost transparent and mul-

tiple parton-parton scattering and annihilation takes place during their passage. This

will lead to creation of a hot and dense matter in which the basic degrees of freedom is

partonic rather than hadronic.

It may eventually achieve a local thermal equilibrium if the collision rate of the

constituent partons is greater than the expansion rate of the system. This exotic state

of matter is known as quark-gluon plasma (QGP); is presumed to exist when the universe

was few micro-seconds (∼ 10−6 sec) old. The plasma expands and consequently cools and

below a certain critical temperature (or energy density) the partons are confined to form

hadrons. The lattice QCD simulations, believed to derive QCD properties from the first

principle, suggest the transition temperature is near 160 MeV. However the mechanism

and order of the quark-hadron phase transition still remains to be challenging problem

in high energy nuclear physics. The existence of QGP can be conjectured through the

phenomena of i) Jet-quenching ii) Elliptic flow of hadrons and thermal photons iii) Quark

number scaling of elliptic flow of hadrons iv) Electromagnetic radiations v) Dissociation

of quarkonium states (e.g., J/Ψ, Upsilon) vi) Suppression of heavy mesons etc.

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and

the Large Hadron Collider (LHC) at CERN are the two major heavy ion research facili-

ties currently in operation. The experiments have provided a clear proof of formation of

QGP in the collisions of heavy nuclei (e.g. Au or Pb) by ascertaining all the proposed

signatures mentioned above. In addition, the observations at RHIC and the LHC experi-

ment have put several constraints on the existing theoretical models of relativistic heavy

ion collisions. There exists a number of unresolved issues like; the observed elliptic flow

coefficient (v2) of direct photons at RHIC follows the shape but registers 50% more flow
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compared to the theoretical prediction.

The present thesis contains a detailed phenomenological analysis of QGP properties

through the direct photon intensity interferometry, quenching of large momentum jets

and identification of jet-tagged back-scattering photons for Au-Au collisions at the RHIC

and Pb-Pb collisions at the LHC energies. The elaboration of each topic is provided

below.

Two important theoretical tools used in the present study are Relativistic Hydrody-

namics and Perturbative Quantum Chromodynamics (pQCD). The matter created in

relativistic heavy ion collisions is assumed to be thermalized at the proper time τ0(< 1

fm/c) after the collision. From this point onwards, Relativistic Hydrodynamics (ideal

or viscous) has been used to describe the bulk evolution of the matter until the system

loses collectivity due to large mean free path of the constituent particles. In the present

work, an ideal relativistic hydrodynamic model has been used with the assumption of

longitudinal boost invariance and azimuthally symmetric transverse expansion.

The other tool, pQCD has it’s unique importance in describing the production of

particles at large momentum in elementary hadron-hadron collisions. The prefix ’Per-

turbative’ is used to signify that the strong interaction coupling (αs) can be expanded

in a perturbation series when the momentum scale (Q) of the associated process is much

larger than the typical QCD scale; ΛQCD. Therefore inclusion of Feynman diagrams of

higher order in αs improves the accuracy, while calculating elastic or inelastic parton-

parton scattering cross section involving large momentum transfer. The corrections up

to Next-to Leading order (NLO) in αs have been included in the present work.

An Equation Of State (EOS) of hot hadronic matter, consists of all baryons having

mass (m) up to 2 GeV and mesons up to 1.5 GeV, has been constructed. The observation

of rapid growth of hadronic states near the transition temperature, lead Hagedorn to

propose an exponentially increasing hadronic mass spectrum. The current study includes

those Hagedorn resonances in the mass region 2< m < 12 GeV. Different thermodynamic

quantities like; entropy density, pressure are calculated for the hadronic mixture in the

grand canonical ensemble formalism at zero baryonic chemical potential. The derived

quantities have also corrected by taking into account the finite volume of hadrons. It has
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been found that the thermodynamic quantities for volume corrected hadron+Hagedorn

gas closely follow their counterparts derived from lattice QCD in the temperature range

T< 200 MeV. Next it is matched either with the Bag model EOS or the lattice EOS of

quark matter at T= 165 MeV. The Bag model EOS (HHB) admits a first order phase

transition with critical temperature 165 MeV whereas the lattice EOS (HHL) exhibits

a sharp cross-over for the temperature range, 180 < T< 190 MeV.

The relevant hydrodynamic equations are solved for the two equations of state with

identical initial condition for the Au-Au collisions (200A GeV) at the RHIC and Pb-Pb

collisions at the LHC (5.5A TeV) energies. It has come out that the thermal particle

(pion, kaon, proton) and thermal photon transverse momentum spectra are minimally

sensitive to the difference of the two EOS. However interesting differences have been

found in the time evolution of average temperature and radial flow of the system. Ear-

lier studies of heavy ion collisions have revealed that the direct photon intensity inter-

ferometry is a good probe of history of evolution of the system. Thus the two photon

intensity correlation function is calculated for the two equations of state at the aver-

age momentum value of the pair 1.7 GeV at RHIC and 1.2 GeV at the LHC energies.

The ‘normal’coordinates used for this study are the ‘outward’, ‘sideward’and ‘longitu-

dinal’momentum differences. The outward and longitudinal correlation function is seen

to discriminate between the two EOS.

The energy and system size dependence of jet quenching has been investigated by

analyzing the nuclear modification factor of neutral pion production for Au-Au, Cu-Cu

collisions at the RHIC (200A GeV) and charged hadron production for Pb-Pb colli-

sions at the LHC (2.76A TeV) energies. NLO pQCD is used for the initial production

and then the light partons are assumed to lose energy via gluon bremsstrahlung while

traversing through the QGP. The quark-gluon medium is considered as an assembly of

static scattering centers at some fixed temperature (or energy density). Inspired of the

formalism by Baier et al., three different regimes of parton energy loss are considered

in this work. The Bethe-Heitler (BH) regime of incoherent gluon radiations, the LPM

regime of partial coherent gluon radiations and the Complete coherence regime where

the whole medium behaves like a single scattering center. The energy loss per collision,
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ε, is taken proportional to the energy (E) of the fast parton,
√
E or constant for the

BH, LPM and Complete coherence regimes of energy loss respectively. The effect of

parton energy loss and nuclear shadowing are included by modifying the vacuum parton

fragmentation function. The fluctuation in the number of collisions of the test parton

is accounted through the Poisson distribution of scattering centers. The average path

length 〈L〉 of the parton inside the medium is evaluated using optical Glauber model

and assuming uniform density of the colliding nuclei. The parameter ε is tuned sys-

tematically to get an accurate description of the nuclear modification factor (RAA) of

hadron production, from most central to mid-peripheral collisions at the RHIC and LHC

energies mentioned earlier.

It has been found that the BH mechanism is operating at the low transverse momen-

tum region; pT < 5 GeV at RHIC and (5 < pT < 8) GeV at LHC. The LPM mechanism

is seen to describe the data well in the intermediate pT regime, (5–10) GeV at RHIC and

(6–15) GeV at LHC. Finally the large momentum part of nuclear modification factor,

pT > 8 GeV at RHIC and pT > 10 GeV at LHC, is best explained by the Complete

coherence regime of energy loss for all centralities of collision. In addition, an empirical

determination of parton energy loss per unit length (dE/dz) in QGP has been carried

out. It is found that dE/dz grows linearly with the path length 〈L〉 at the RHIC and

LHC energies for the partons having pT > 8–10 GeV which contradicts the Ads/CFT

based prediction. The magnitude of energy loss per unit length of the parton, also

increases by a factor of 2–3 from RHIC to LHC energy.

In non-central collisions, the azimuthal variation in the path length of the probe

parton causes an azimuthal anisotropy in the transverse momenta spectra of final state

hadrons. Such momentum anisotropy study has been performed at the RHIC and LHC

energy, using the energy loss parameter obtained from the earlier RAA analysis. It

has been shown that the predicted azimuthal momentum anisotropy coefficient (v2) of

neutral pions is about 2 times larger than the data for most central collisions (0-10%) and

a little better in agreement for mid-peripheral collisions (40-50%) at the RHIC energy.

Similar result has been found for the charged hadron momentum anisotropy at the LHC

energy. Finally the nuclear modification factor and azimuthal momentum anisotropy of

high energy prompt photons at RHIC energy are also calculated. Photons originating

x



from QCD Compton scattering and annihilation, do not suffer energy loss. Only the

photons originated from the collinear fragmentation of final state parton are affected

by the energy loss before fragmentation, hence contributes to the azimuthal momentum

anisotropy. Once again the energy loss parameters from the neutral pion RAA analysis

are used. It has been found that the v2 of direct photons at RHIC is well reproduced

by LPM and Complete coherence regime of energy loss in the region of pT > 6 GeV.

According to the mechanism of production, direct photons are classified as i) hard

prompt photon ii) pre-equilibrium photon iii) jet-medium backscattering photon and iv)

thermal photon. However only the inclusive yield of direct photons have been measured

in experiment and isolation of a particular contribution is considerably challenging task.

The jet-medium photons are produced due to scattering of large momentum jets

with thermal medium partons in QGP. Hydrodynamic simulations have shown that the

source to be dominating in the range of momenta; 2 < pT < 4 GeV at RHIC energy.

It has been proposed that jet-medium photons exhibit negative azimuthal momentum

anisotropy (v2). However the experimental results are not quite conclusive so far.

In order to identify this source, the production of back-scattering photons opposite

to large momentum trigger jets have been studied in the present work. The use of

large momentum jets as trigger has two fold advantage: first; the fast partons of the

medium often have back-to back correlation with large pT jets and second; only the hard

prompt photons have similar correlation with the jets which eliminates the contribution

of pre-equilibrium and thermal photon sources. Due to finite resolution of jet energy

measurement in experiment, a finite window in jet energy is chosen rather than a sharp

value. The hard prompt photons (direct + fragmentation contribution) are calculated

in a narrow angular region (±15 degrees) on the away-side of trigger jets of momentum

30–35 GeV at RHIC and 60–65 GeV at LHC. They are treated as ‘background ’for the

jet-medium photons.

The Leading Order (LO) parton spectrum on the away-side has also been estimated

in the same kinematical condition. The partons are allowed to propagate through a lon-

gitudinally expanding fireball and lose energy before the backscattering occurs to create

photons. The energy loss parameter is estimated from the RAA of hadron production
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at the RHIC and the LHC energy.

At LO, a strong correlation is observed between the trigger jet momentum and back-

scattered photon momentum without parton energy loss. Switching on energy loss the

back-scattered photon peak is seen to be shifted towards low momentum. The back-

scattered photons with energy loss are treated as ‘signal’. At NLO, the perfect balance

between the trigger jet and away-side jet momentum has been lost. In this work, the

signal has been evaluated up to LO accuracy whereas the background has been estimated

at LO and NLO both. The experimental observable, RAA, has been defined as the ratio

of invariant yield of background photons in pp collisions over the sum of invariant yield

of signal and background photons in AA collisions. An enhancement in RAA is clearly

seen just below the trigger jet window both at the RHIC and the LHC energy, affirms

the existence of backscattering process in QGP. With the NLO background, the signal

weakens but survives. The height of the peak is found to reflect the temperature of the

medium when the back-scattering had occurred whereas the width of the peak is sensitive

to the parton energy loss. The effect of trigger jet energy loss has been investigated and

found to smear out the potential signal.
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Chapter 1

Introduction

1.1 Why do heavy ion collisions ?

The prodigious research in basic sciences over the past few centuries has been succeeded

to conclude that all static and dynamic physical processes happened in the universe

on the length scale ranging from few Fermi (∼ 10−15m) to few parsec ( ∼ 1016m) are

governed by four basic interactions; strong, electromagnetic, weak and gravitational.

These interactions are found enough to account from the synthesis of atomic nuclei to

the formation of galaxies. The strong interaction is responsible for the bound structure

of nucleons and nuclei. The shape and size of atoms, molecules, solids, and liquids

are determined by electromagnetic interaction. The weak interaction determines the

stability and composition of atomic nuclei and the gravitational interaction controls the

dynamics of all rigid bodies on macroscopic length scale.

The gravitational and electromagnetic were known to be the only fundamental in-

teractions until the celebrated alpha scattering experiment by Lord Rutherford in 1911

which revealed the inner structure of atoms. This pioneering experiment lead scientists

to use high energy particle beams to explore deep inside the nucleus (and nucleon). The

first evidence of inner constituents of nucleon came from the deep-inelastic lepton-proton

scattering experiments [1]. They are named as quarks by Murray Gell-Mann which carry

fractional electric charges. At the same time Richard Feynman introduced the concept of

parton model which showed that a substantial fraction of proton’s momentum is carried

by charge neutral partons. These are called gluons, the mediator of strong interaction

that holds the quarks together. Thus the theory of strong interaction developed in early

1
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Figure 1.1: Recent measurements of strong coupling αs as a function of momentum scale
Q at the Large Hadron Collider experiment (Source: Eur. Phys. J. C 73 (2013) 2604).

1970’s to describe the interaction between quarks and gluons is called Quantum chro-

modynamics (QCD). Yoichiro Nambu proposed an additional quantum number of QCD

called Color ; which has been confirmed later in the measurements of cross-section for

electron-positron annihilation to hadrons [2].

The two renowned properties of QCD are Asymptotic freedom and Infrared Slavery or

Confinement. They can be naively explained through the variation of strong interaction

coupling constant (αs(Q)) with the momentum transfer scale Q (see Fig. 1.1). In the

large momentum transfer limit; the effective coupling between the quarks becomes small

and the interaction between them is so weak that they behave as free particles. This

property is known as asymptotic freedom which is well described by perturbative tech-

niques of QCD. However in the small momentum transfer limit; the effective coupling

rises to very large value and the quarks are strongly bonded. The numerical simulations

of QCD suggest the static quark-anti-quark potential at long distances varies as ∼ Kr,

which is responsible for the confinement property. The unsolved mysteries of high en-

ergy physics like the generation of mass and spin of hadrons lies in this domain of QCD.

Following the idea of asymptotic freedom, Collins and Perry in 1975 [3] suggested that

at very high densities (or temperatures) a deconfined state of quarks and gluons can be
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Figure 1.2: The scaled energy density (ε/T 4) (Left) and pressure (p/T 4) (Right) as a
function of temperature from lattice QCD [6] simulations for various quark flavors. Note
that the variation of pressure is continuous near Tc where the energy density changes
abruptly.

achieved. At densities about 2-3 times the normal nuclear matter density, the hadrons

tend to overlap and the individual quarks inside them lose their identity. The long range

interactions are screened in this deconfined matter due to many body effects. Such an

exotic state of matter has been argued to exist at the core of neutron star and few

micro-seconds after the cosmological Big-Bang when the temperature of our newborn

universe is about 1012K [4]. This novel state of matter later referred as the Quark-Gluon

Plasma (QGP) [5]. It was suggested that the celestial conditions of formation of QGP

can be achieved in laboratory in the collisions of heavy nuclei at relativistic energies.

Thus heavy ion program has started for the search of QGP at different laboratories

worldwide motivated by the following questions: (i) testing the behaviour of QCD at high

temperature (T ) and baryon density (or baryo-chemical potential µB), (ii) exploring the

QCD phase diagram in (T -µB) plane and the order of phase transition, (iii) investigating

the mechanism of confinement of quarks in hadrons.

The numerical scheme developed to calculate the QCD properties at finite tem-

perature (or density) on a discrete space-time lattice is known as lattice QCD. These

computations show a rapid rise in energy density (ε/T 4) when the matter reaches a

critical temperature Tc ∼ 160 MeV [6]. This indicates the basic degrees of freedom of

matter has been changed from hadrons to partons. The hadronic matter below Tc has

roughly three degrees of freedom, corresponding to three iso-spin states of pions. Above

Tc, the matter consists of 2-3 active flavors of quark (and anti-quark) and gluons. Thus
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Figure 1.3: (Right) Lattice prediction of QCD phase diagram and location of critical
point on T -µB plane in physical units [7].(Left) Schematic diagram of RHIC beam energy
scan program for the search of QCD critical point [8].

the total degrees of freedom in QGP phase becomes 40-50. It is clearly visible from

Fig. 1.2 that the energy density increases as we include more number of flavor.

Another distinctive suggestion from lattice QCD is that the QGP phase may admit

two types of transition to the hadronic phase; one at high baryon density (µB) and

the other at high temperature. The phase transition at high µB is considered a first-

order transition whereas at high temperatures it is a cross-over transition, in a strict

thermodynamical sense. In addition, the theory predicts a critical end point where

the first-order phase boundary ends and the cross-over region starts (See Fig. 1.3).

However the exact location of critical end point is not precisely determined till now.

This motivates the Beam Energy Scan Program where the entire (T -µB) plane can

be mapped in experiment by varying the center of mass energy (
√
s) of the colliding

nucleon pair. The project is currently operated by RHIC at the Brookhaven National

Laboratory (BNL). The STAR collaboration of RHIC is measuring the higher moments

of fluctuation of conserved quantities (like; net charge, net baryon etc.) on event-by-

event basis. These quantities are related to the thermodynamic susceptibilites which are

estimated in lattice QCD [8].
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Experimental facilities

Heavy ion collisions at moderate energies (1-2 GeV/nucleon) were first performed at

BEVALAC in Lawrence Berkeley National Laboratory. However the attained energy

density was not enough to produce QGP phase. Next developments included of Alter-

nating Gradient Synchrotron (AGS) experiment at BNL and Super Proton Synchrotron

(SPS) experiment at CERN. Both of them collided different species of nuclei at various

energies (
√
s ≈ 4-17 AGeV) in fixed target mode. The notable heavy ion runs at AGS

and SPS are Au+Au 11.6 AGeV and Pb+Pb 158 AGeV respectively. The vast amount

of data collected at SPS already indicates the onset of QGP phase [9]. Based on the data

of SPS and theoretical predictions, heavy ion community proposed to build a collider

machine where we have about a factor of 10 rise in
√
s. Thus the Relativistic Heavy Ion

Collider (RHIC) experiment constructed at BNL, achieved Au+Au collisions at
√
s=

200 AGeV. Results from the RHIC experiment for the first time has given a clear evi-

dence of formation of deconfined quark-gluon matter through the observation of various

proposed signatures [10]. Currently RHIC is involved in low energy heavy ion runs (
√
s=

7.7-63 AGeV) for the search of QCD critical point. Going beyond RHIC energies, CERN

has commissioned the Large Hadron Collider (LHC) which is believed to be the largest

man-made machine on the earth. The LHC is designed to collide heavy ion beams up to

energy
√
s= 5.5 ATeV. The results from the first heavy ion runs (Pb+Pb at 2.76 ATeV)

in November, 2010 have drawn considerable attention of the community [11].

The RHIC and LHC experiments are motivated to study the QGP properties at

low µB and high temperatures. In future the Compressed Baryonic Matter (CBM)

experiment at FAIR/GSI laboratory is being designed to investigate the QCD phase

diagram at high µB and moderate temperature, which is complementary to the study of

nuclear matter at the RHIC and LHC experiments. This experiment will be fixed target

(
√
s= 10-45 GeV/nucleon) but with higher beam luminosity compared to AGS or SPS.

This will facilitate observation of strange and charm particles in addition.
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1.2 Space-time picture of heavy ion collision

Figure 1.4: Evolution of matter created in relativistic heavy ion collisions in 2D
Minkowski space. The arrows indicate the emission of hadrons after the kinetic freeze-
out whereas photons (real and virtual) are emitted from all stages of evolution.

The theoretical study motivated space-time diagram of relativistic heavy ion collision

is depicted in Fig. 1.4. We shall explain briefly the dynamics of each stages of evolution

separated by isentropic contours of relativistic proper time τ .

1. Before the collision, two nuclei approach each other at relativistic speed. The

longitudinal dimensions are then Lorentz contracted in the center of mass frame.

All the physical phenomenon will be confined within the world lines traced by

the two nuclei. The initial state is described by the Glauber model of nuclear

collisions which is based on independent nucleon-nucleon scattering picture [13].

The production of energy density (or entropy density) depends on number density

of wounded nucleons and number of binary collisions. The model is quite successful

in explaining observed momentum spectra and elliptic flow of particles but fails in

case of two particle correlations and higher order flow harmonics [12]. The modern

description includes the Color-Glass description of the colliding nuclei [14] which

assumes that at very high energies the nucleus is dominated by weakly coupled

gluon matter. The initial energy density is determined from the classical evolution

of gluonic field equations.
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2. At the proper time τ= 0 (i.e. the collision point), the two nuclei strike each other

and the partons inside them start interacting. The parton-parton inelastic scatter-

ing and fusion may lead to an equilibrated partonic matter if the scattering rate

is larger than the expansion rate of the system. This is called the pre-equilibrium

phase. The scatterings often involve large momentum transfer (Q ∼ 10 GeV),

which are responsible for creation of hard jets. The cross-section of these hard

processes are calculated using perturbative QCD. Observation of these hard jets

(hadron, direct photon or heavy quark) in experiment helps us to gain knowledge

about pre-equilibrium dynamics.

3. An obvious consequence of the partonic interactions is that the system rapidly

approaches thermal equilibrium at some proper τ0 after the initial impact. The

liberated partons of the incident nuclei form a strongly coupled fluid like matter;

called the Quark-Gluon Plasma. The average energy density at the onset of QGP

phase for Au+Au collisions at RHIC is about 20 GeV/fm3, of course strongly de-

pends on the equilibration time τ0. The matter subsequently expands and cools,

controlled by the laws of ideal or viscous relativistic hydrodynamics and the equa-

tion of state (EOS). The phenomenological input to the hydrodynamic simulation

is the initial thermalization time τ0 which is widely taken as <1 fm/c [15]. Ex-

perimental data indicates the matter produced at RHIC and LHC exhibits nearly

perfect fluid behaviour with only a very small viscosity [16].

As the energy density decreases, quark matter undergoes a 1st order or cross-over

phase transition to hadronic matter. In case of 1st order transition, there shall

be a mixed phase where both QGP and hadronic phase co-exist at the transition

temperature Tc. During the mixed phase the temperature remains constant and

the difference of energy of the two phases is utilized in the expansion of matter.

4. The partons start getting confined into hadrons at energy density ∼0.7-1 GeV/fm3.

The matter is now considered as strongly interacting hot hadronic gas (mostly con-

sisting of pions). If we assume that the local thermal equilibrium is still maintained,

the evolution is described by relativistic hydrodynamics. However non-equilibrium

transport equations have also been used to describe this phase [17]. The matter
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Figure 1.5: Pictorial representation of different stages of heavy ion collision. The wavy
line denote the photons and the arrow denotes the hard jets. Art courtesy of C. Nonaka
and M. Asakawa [15].

subsequently expands until the mean collision rate becomes smaller than the local

expansion rate. At this point the hydrodynamic description breaks down and we

get a freely streaming gas of hadrons using Copper-Frye hypothesis [18]. This

is known as the kinetic freeze-out of the system. The condition of decoupling

from hydrodynamics is specified by quoting a kinetic freeze-out temperature or an

energy density in the simulation.

A good agreement between the particle ratios observed at RHIC and the statistical

thermal models suggests that there is a chemical freezout of the system where the

number density of each hadrons becomes fixed. Recent analyses has shown the

chemical freeze-out temperature is very close to Tc [19]. The inelastic collisions

between the constituents have stopped at this point. However, elastic scatterings

continue till the kinetic freeze-out. The momentum distribution of final state

hadrons solely depends on the kinetic freeze-out criterion.

1.3 Evidences of formation of QGP

The information of produced particle’s momentum, rapidity etc. reaching at the detec-

tor, is integrated over space and time. Thus it is very difficult in experiment to disentan-

gle the contribution of a particular phase. However theoretical models are constructed

under certain assumptions and controlled by a number of parameters. Therefore direct

mapping between experiment and theory enables us to characterize a particular phase.

There are ample signatures proposed in favour of existence of QGP phase from theory
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side. Notable achievements come from the observation of; (i) Collective flow of hadrons

(and thus photons) (ii) Jet-quenching (iii) Electromagnetic radiation (iv) Constituent

quark number scaling of flow (v) Strangeness enhancement (iv) Suppression of J/Ψ and

Υ states. Jet-quenching and Electromagnetic radiation are elaborately discussed in the

later part of the thesis. We briefly discuss rest of them at present.

Figure 1.6: The elliptic flow coefficient v2 for various mesons and baryons measured at
RHIC for Au+Au collisions at 200A GeV along with predictions from ideal hydrody-
namic simulation [20].

� Collective Flow: The evidence for creation of “bulk matter ”at RHIC comes

through the collective flow of final state hadrons. The study of collective flow gives key

information about early thermalization and equation of state of the plasma. It is mea-

sured in experiment through different Fourier coefficients of azimuthal (φ) distribution

of hadrons with respect to one of the collision symmetry plane.

dN

dφ
∝ (1 + 2v1 cosφ+ 2v2 cos 2φ+ 2v3 cos 3φ+ 2v4 cos 4φ+ ...), (1.1)

where v1, called the directed flow, describes the side-ward motion of the particles. It is

believed that v1 is generated during nuclear passage time thus sensitive to the properties

of matter created at initial stages of collision [21]. v2, known as the elliptic flow, measures

the momentum anisotropy of produced hadrons at low transverse momentum (pT ) [22].

It has been shown by hydrodynamic simulations that the collective flow of bulk matter
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Figure 1.7: (Left)The differential elliptic flow v2 vs. transverse kinetic energy for different
hadrons for Au+Au collisions at 200A GeV. (Right) The same when scaled with number
of valance quarks follow an universal line irrespective of hadron type [27].

converts the initial spatial anisotropy to the momentum anisotropy of final state particles

in non-central collisions [23]. RHIC experiment has first shown the remarkable agreement

of v2 for π, K, p, Λ hadrons and ideal hydrodynamic calculations for pT ≤ 2 GeV/c (see

Fig. 1.6) which validates the formation of a thermalised dense matter in ultra-relativistic

nuclear collisions. Similar agreement at the recent LHC energy has been found by a

Hydro+Transport approach [24]. The elliptic flow of direct photons has been proposed

a powerful signature of early time dynamics complementary to the hadronic flow [25].

Direct photon elliptic flow reflects the momentum anisotropy of thermalised quarks from

which they are emitted, thus contains valuable information about the spatial deformation

of initial state. However the disagreement between theoretical prediction and the recent

measurement of direct photon v2 at RHIC [26] pose a serious question to the community.

� Quark number scaling of flow: The plot of elliptic flow parameter v2 of iden-

tified hadrons vs. the transverse kinetic energy (KET ) at RHIC exhibits interesting

behaviour (Fig. 1.7). At low KET regime, all curves follow a single line which is well

predicted by hydrodynamics. For higher KET (≥1 GeV), a clear discrimination between
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baryons and mesons is seen which breaks the hydrodynamic expectation. An explana-

tion of this phenomena comes from the coalescence [28] or recombination [29] of valance

quarks which is considered as an alternative to fragmentation mechanism of hadron pro-

duction at intermediate pT . Both models are assuming the existence of a thermalised

partonic matter. Also the models predict a scaling of v2 with the number of valance

quarks (nq) inside the hadron [30]. This indeed beautifully confirmed by experimental

data when (v2/nq) is plotted against (KET/nq). This observation confirms that the flow

anisotropy is developed in early partonic phase.

� Strangeness enhancement: The increased production of strange particles in

relativistic heavy ion collisions compared to proton-proton (pp) collisions has been pro-

posed a signature of QGP formation by Rafelski and Müller [31]. They showed that

the dominant channel of strangeness production is through gluon fusion; gg → ss̄. It

was motivated by the fact that K+/π+ ratio is seen little higher than the strangeness

content (ss̄/uūdd̄) of a thermally and chemically equilibrated hadron gas [32]. Now one

hopes to produce a baryon rich quark-gluon plasma at low collision energies (e.g. SPS

experiment) in which chemical potential of u and d quarks are non-zero. But the s

quark has zero chemical potential as the colliding nuclei initially contain no strangeness.

Thus it is easier to produce ss̄ pair in the medium compared to uū or dd̄ pair. The

anti-strange quark (s̄) either combined with valance u, d quarks give rise to K+, K0 or

with ū, d̄ sea anti-quarks yield K−, K̄0 mesons respectively. The contribution of sea u, d

quarks to the strange meson production is assumed small for the collision energies avail-

able at SPS or RHIC. As the quarks and anti-quarks are produced by differing amount,

the K+/π+ and K−/π− ratio measured in experiments [33] are found to be dissimilar.

The strangeness enhancement can also be understood from statistical mechanical con-

sideration. The high multiplicity events for heavy ion reactions are usually explained

by grand canonical ensemble. However the small systems produced in p + p collisions

are described by canonical ensemble. Thus the process which is enhanced in heavy ion

reactions, is actually suppressed in p+ p reactions due to reduced phase-space.
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� Suppression of J/Ψ and Υ states: J/Ψ and Υ are the bound states of cc̄

and bb̄ respectively. The heavy quark pair QQ̄ is believed to be produced in the initial

hard collisions and their bound state can be described by the non-relativistic potential

V(r)= σr−α/r at zero temperature. Now the binding potential between Q and Q̄ inside

QGP medium is modified by a factor exp(-r/rD) (where rD is the Debye screening radius);

due to presence of deconfined color charges. The heavy quark pair will form a bound

state in QGP when the Debye screening radius is much larger than the ground state

radius of quarkonium otherwise they dissociate. Now the level of screening increases

with rise in energy density (or temperature) of the system. Considering the fact that

quarkonium states have certain binding energies, they will dissociate in QGP at certain

energy density thresholds. Thus the suppressed production of quarkonium states in

high energy nuclear collisions is considered an important signature of deconfinement,

was first suggested by Matsui and Satz [34]. The PHENIX collaboration at RHIC has

performed several measurements on J/Ψ suppression at different collision centralities

and energies [35]. Due to small production cross-section at earlier collider energies,

the Υ states have been recently measured in Pb+Pb collisions at LHC by the ALICE

collaboration [36].

1.4 Organization of the thesis

The present thesis goes as following. In chapter 2 we have discussed ideal relativistic

hydrodynamic equations, formalism of equation of state (EOS) of the strongly interact-

ing matter, thermal particle and photon production at RHIC and LHC energies, and

spacetime evolution of thermal photon emitting source. Chapter 3 contains the descrip-

tion of first order and second interference in optics and then it’s application to heavy

ion collision, parameterization of two photon correlation function and the results for

heavy ion collisions at RHIC and LHC energies. Chapter 4 is devoted to jet quenching

studies which gives an introduction and then discusses the formalism of parton energy

loss, nuclear modification of neutral pion and charged hadron production for different

centralities of collision at RHIC and LHC, and suppressed production and azimuthal

anisotropy of prompt photons at RHIC. In chapter 5 we have reviewed different sources

of direct photons in heavy ion collisions, then outline the calculation of rate of produc-
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tion of jet-medium back-scattered photons in QGP. We have described our strategy of

separating jet-medium photons from other sources using trigger jets. We have computed

examples for kinematic situations at RHIC and LHC and discussed the effect of parton

energy loss as well as trigger jet energy loss on back-scattering photon production. Fi-

nally in chapter 6, all research works presented in the thesis have been summarized. In

the appendices we have outlined the calculation of finite volume correction for hadrons

and invariant momentum spectra of hadrons at the kinetic freeze-out surface.



Chapter 2

Construction of EOS and
Hydrodynamic Evolution

2.1 Introduction to Relativistic Hydrodynamics

The laws of ideal hydrodynamics can be used for evaluation of a strongly interacting

system, produced after high energy hadronic collision was first proposed by Landau [37].

The thumb-rule for applicability of hydrodynamics is that the mean free path (λ) of

the constituent particles should be much much less than typical length of the system

(λ << L). This essentially means the constituent particles of the system scatter very

frequently. The system eventually achieves local thermal equilibrium if the microscopic

collision time scale becomes very short compared to the macroscopic time scales related

to the response of the system under small changes in density, pressure, or temperature.

We write the local conservation equations of energy-momentum and conserved charges

for a thermalized fluid cell:

∂µT
µν = 0, (2.1)

∂µJi
µ = 0, i = 1, ..., n. (2.2)

In addition, the second law of thermodynamics provides:

∂µS
µ ≥ 0, (2.3)

where T µν is the energy-momentum tensor, Ji
µ is conserved current of i’th type, Sµ is the

entropy current. At present, we take i=1 (say, Jµ= net baryon current) for simplicity.

14
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The ideal fluid dynamic decompositions of the above quantities are given by:

T µν
ideal = (e+ P )uµuν − gµνP, (2.4)

Jµ
ideal = nBu

µ, (2.5)

Sµ
ideal = suµ (2.6)

uµ is the four-velocity of the fluid cell and gµν=diag(+1,-1,-1,-1) is the metric tensor.

The local charge (baryon) density nB, energy density e, pressure P and entropy density

s are defined in the local rest frame of the fluid. These quantities are related by the

thermodynamic relation

Ts = e + P − µBnB, (2.7)

where µB is the chemical potential associated with the conserved baryon number. The

local rest frame of a fluid cell is the Galilean frame in which all momentum components

vanish. The fluid has isotropic properties in the rest frame due to local thermodynamic

equilibrium. In the rest frame of fluid; uµ= (1,0,0,0). In a global frame where the fluid

rest frame moves with a velocity ~v, uµ is given by:

uµ = (u0, ~u) = γ(1, ~v), (2.8)

where γ = 1/
√
1− ~v2 is the Lorentz boost. uµ acts like a four vector under Lorentz

transformations.

uµ = Λµ
νu

ν (2.9)

also reduces to a scalar upon contraction,

uµuµ = (u0)2 − (~u2) = 1. (2.10)

The zeroth component of the Lorentz transformation matrix (Λµ
ν)

uµ = Λµ
0 · 1 = Λµ

0 , (2.11)

where γ ≈ 1 in the first order of velocity ~v. The other components can be obtained as;

gρσ = gµνΛρ
µΛ

σ
ν

= g00Λρ
0Λ

σ
0 + giiΛρ

iΛ
σ
i
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Λρ
iΛ

σ
i = Λρ

0Λ
σ
0 − gρσ = uρuσ − gρσ (2.12)

Thus in the first order of ~v, Λµ
ν writes as:




1 vx vy vz
vx 1 0 0
vy 0 1 0
vz 0 0 1


 (2.13)

The energy-momentum tensor of a fluid element in rest frame:

T µν
rest =




ǫ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P


 (2.14)

Now the energy-momentum tensor of a fluid element moving with arbitrary velocity ~v

is obtained due to Lorentz transformation

T ρσ
global = Λρ

µΛ
σ
νT

µν
rest

= Λρ
0Λ

σ
0T

00
rest + Λρ

iΛ
σ
i T

ii
rest

= ǫuρuσ + (uρuσ − gρσ)P

T ρσ
global = (ǫ+ P )uρuσ − Pgρσ

=




ǫ (ǫ+ P )vx (ǫ+ P )vy (ǫ+ P )vz
(ǫ+ P )vx P 0 0
(ǫ+ P )vy 0 P 0
(ǫ+ P )vz 0 0 P




(2.15)

The energy-momentum tensor T µν is a symmetric (4× 4) tensor of rank 2. This has 10

independent components. Now we discuss the significance of it’s different components,

• T 00 represents the energy density.

• T k0 represents the energy flux along the direction k.

• T 0l represents the momentum density along the direction l.

• T kl represents the flux of lth component of momentum density along direction k.

• T kk represents the pressure.



17

The momentum density for non-relativistic fluid is ρ~v, where ρ is the mass density. For

a relativistic fluid, mass density is replaced by (ǫ + P), rather than energy density (ǫ).

The pressure also contributes to the inertia of the fluid. The quantity (ǫ + P) is called

the heat function per unit volume of the fluid.

2.1.1 Ideal Hydrodynamic equations

Now we derive the equations of motion for a perfect fluid moving with four-velocity

uµ [38]. We start with the equations of local energy-momentum conservation and local

baryon number conservation,

∂µT
µν = 0, (2.16)

∂µJB
µ = 0. (2.17)

Projecting T µν parallel to uν:

uν∂µT
µν = 0

⇒ uν∂µ[(ǫ+ P )uµuν − gµνP ] = 0

⇒ uµ∂µ(ǫ+ P ) + (ǫ+ P )∂µu
µ + (ǫ+ P )uµuν∂µu

ν − uν∂
νP = 0

Using uνuν= 1, we get uν∂µu
ν= 0

uµ∂µǫ+ uµ∂µP + (ǫ+ P )∂µu
µ − uν∂

νP = 0

⇒ uµ∂µǫ+ (ǫ+ P )∂µu
µ = 0

⇒ ǫ̇+ (ǫ+ P )θ = 0 (2.18)

where we have used the notation u· ∂a ≡ ȧ is the comoving time derivative and ∂· u ≡ θ

is known as the local expansion rate of the system.

Projecting T µν perpendicular to uν :

∆νλ∂µT
µν = 0

⇒ (gνλ − uνuλ)∂µ[(ǫ+ P )uµuν − gµνP ] = 0

⇒ gνλ∂µ(ǫ+ P )uµuν + (ǫ+ P )gνλu
µ∂µu

ν

+ (ǫ+ P )gνλu
ν∂µu

µ − gνλg
µν∂µP − uνuλ(u

µuν)∂µ(ǫ+ P )

− (ǫ+ P )[uνuλu
ν∂µu

µ + uνuλu
µ∂µu

ν ] + uνuλg
µν∂µP = 0
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⇒ uµuλ∂µ(ǫ+ P ) + (ǫ+ P )[uµ∂µuλ + uλ∂µu
µ] − ∂λP

− uλu
µ∂µ(ǫ+ P ) − (ǫ+ P )[uλ∂µu

µ + uλu
µuν∂µu

ν ]

+ uµuλ∂µP = 0

Using uν∂µu
ν= 0, we get

(ǫ+ P )uµ∂µuλ − ∂λP + uλu
µ∂µP = 0

⇒ (ǫ+ P )u̇−∇µP = 0 (2.19)

Where ∇µ = ∆µν∂
νP = (gµν − uµuν)∂

νP = ∂µP − uµu
ν∂νP

Conservation of net Baryon number

∂µJB
µ = 0

∂µ(nBu
µ) = 0

uµ∂µnB + nB∂µu
µ = 0

ṅB + nBθ = 0 (2.20)

The eq. (2.18) and (2.20) describe the variation of local energy density and baryon

density due to expansion of the system, while the eq. (2.19) describes the acceleration of

the system driven by the local pressure gradient with (ǫ+P ) acts as inertia of the fluid.

These are the most general equations of ideal relativistic hydrodynamics. They can be

solved using a particular velocity profile and coordinate system. It turns out that the

equations are much more easily solvable if we change the space-time coordinates (t, z)

to the light cone variables (τ, η).

τ =
√
t2 − z2 (2.21)

is the longitudinal proper time and

η =
1

2
ln

(t+ z)

(t− z)
(2.22)

is called the space-time rapidity.

Going from center of mass frame to Lab frame (i.e., applying a Lorentz boost along

the z axis), τ remains invariant while the rapidity changes by a constant amount. Thus
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one solves the hydrodynamic solutions at certain rapidity, then applying a boost to get

solutions at other rapidities. The transformation of coordinates is done by using:

t = τ cosh η (2.23)

z = τ sinh η (2.24)

Also the derivatives are transformed as

∂

∂t
= cosh η

∂

∂τ
− sinh η

τ

∂

∂η
(2.25)

∂

∂z
= − sinh η

∂

∂τ
+

cosh η

τ

∂

∂η
(2.26)

2.2 Construction of Equation of State

2.2.1 The Hadron Resonance Gas Model

In the preceding section, Eq.( 2.18– 2.20) consists of 5 equations and there are 6 un-

knowns; nB, e, P and 3 components of local fluid velocity ~v. To close the set of equa-

tions, we invoke a relation between the local pressure and energy density known as the

Equation of State (EOS), P = P (e, nB).

In the present work, we have constructed a hadron resonance gas (HRG) model

which includes all baryons of mass (m) ≤ 2 GeV and all mesons of m ≤1.5 GeV and

their corresponding anti-particles. The discrete part of the hadron mass spectrum is

given by:

ρdis. =

mi≤M∑

i

gi δ(m−mi) , (2.27)

where the sum runs over all known hadronic states with their respective spin degen-

eracies (gi) up to mass M < 2 GeV. In the higher mass range, we include Hagedorn

states with continuous, exponentially growing mass spectrum. This is followed by the

hypothesis of Hagedorn, which explains the particle production rate quite successfully in

high energy proton-proton collisions [39]. A recent study of HRG model which includes

an exponential mass spectrum has shown remarkable good agreement with lattice for

T< 155 MeV [40], thus supports the existence of such hadronic states. The density of

Hagedorn states is taken as:

ρcont.(m) = A
exp(m/TH)

(m2 +m2
0)

5/4
, (2.28)
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where A = 0.5 GeV3/2, m0 = 0.5 GeV and m varies from 2 GeV to 12 GeV. TH = is

known as the Hagedorn temperature, equals to 196 MeV. The parameters are adopted

from [41], which discusses the importance of Hagedorn states for the rapid chemical

equilibration of hadrons near the critical temperature Tc.

The underlying assumption of the HRG model is the equivalence of thermodynamic

properties of an interacting gas of hadrons and a free gas of hadrons and it’s resonances.

This has been proven explicitly in [42], where the temperature variation of square of

speed of sound (C2
s ) of an interacting gas of pions (π) is found to be very similar to a

non-interacting gas of pion (π), kaon (K), eta (η), rho (ρ) and omega (ω) mesons.

Assuming all the species are in thermal and chemical equilibrium, the grand canonical

partition function of a HRG can be written as a product of partition functions of all

hadrons and the resonances.

lnZHRG(µ, V, T ) =
∑

i

ln zi(µi, V, T ) + lnZHS , (2.29)

where zi is the partition function and µi is the chemical potential of the ith hadron. The

partition function of the discrete hadronic states;

ln zi(µi, V, T ) = ± V gi
(2π)3(~)3

∫
dp4πp2 ln[1± λiexp(−βǫi)], (2.30)

with (+) sign for fermions and (-) sign for bosons. The parameter λi = exp(µi/T ) is

called the fugacity and ǫi =
√
p2 +m2

i is the energy of the ith hadron. β = 1/T in the

natural units.

For the continuous Hagedorn mass spectrum, the partition function is defined as;

lnZHS =

∫
dmρcont.(m) ln zMS(V, T,m) , (2.31)

where zMS stands for the grand canonical partition function of an ideal gas of mesons.

Note that, we have assumed only mesonic Hagedorn states are produced with zero net

strangeness.

Various thermodynamic quantities like; Pressure, Energy density, Number density

are calculated from each partition function and add them to get the total Pressure,

total Energy density and total number density of the system. Here we have listed the

formulae for a particular hadronic species;

Pressure : Pi =
gi

3(2π)3(~)3

∫
dp

4πp2(p∂ǫi
∂p

)

exp[β(ǫi − µi)]± 1
(2.32)



21

Energydensity : ei =
gi

(2π)3(~)3

∫
dp

4πp2(ǫi)

exp[β(ǫi − µi)]± 1
(2.33)

Numberdensity : ni =
gi

(2π)3(~)3

∫
dp

4πp2

exp[β(ǫi − µi)]± 1
(2.34)

The entropy density(s) is calculated using the fundamental thermodynamic relation:

Tsi = (ei + Pi)− µni. (2.35)

All the above mentioned quantities are derived for zero hadronic chemical potential in

the present work.

Till now, we have assumed the hadrons are constituting an ensemble of ideal point-

like particles. According to the MIT Bag model, each hadron occupies a finite volume

which is proportional to their mass; m/4B [43], where B is called the Bag constant.

Thus the hadrons are impenetrable to each other and the repulsive interaction among

the hadrons is implemented through the excluded volume correction of the above ther-

modynamic quantities. Several approaches are available in the literature to account

for the effect [44, 45]. We have adopted the thermodynamically consistent formalism

of Kapusta and Olive [46] in the present study. The excluded volume corrected (xv)

quantities are related to same calculated for the point-particle (pt) as1;

Pxv =
Ppt(T

∗)

1− Ppt(T ∗)
4B

, (2.36)

exv =
ept(T

∗)

1 + ept(T ∗)
4B

, (2.37)

Txv =
T ∗

1− Ppt(T ∗)

4B

, (2.38)

sxv =
spt(T

∗)

1 + ept(T ∗)
4B

, (2.39)

where T ∗ is an arbitrary temperature for a system of point-like hadrons.The Bag constant

is taken as B1/4 =0.340 GeV [41]. We restrict the hadron resonance gas description up

to T ≤ TH . For T > TH , the system is more likely to be in deconfined state of quarks

and gluons. Now, the four possible outcomes of the hadronic matter part of the EOS

are listed below with increasing richness of description;

1See Appendix A
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Figure 2.1: (Top) P/T 4, e/T 4 for hadron gas and volume corrected hadron gas; (Bottom)
for hadron + Hagedorn gas and volume corrected hadron + Hagedorn gas, in comparison
with the lattice QCD result.

• Hadron Gas.

• Vol. Corrected Hadron Gas.

• Hadron and Hagedorn Gas.

• Vol. Corrected Hadron and Hagedorn Gas.

We have calculated temperature weighted energy density (e/T 4), pressure (P/T 4)

and entropy density (s/T 3) for each of the four scenarios.

2.2.2 Comparison with lattice QCD

Several QCD thermodynamic properties are derived through the lattice simulations,

which is believed the first principle theory of QCD. The most convenient quantity cal-

culable on lattice is the trace anomaly in the fourth power of temperature; Θµµ(T )/T 4.
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This can also be expressed as temperature derivative of pressure,

Θµµ(T )

T 4
≡ e− 3P

T 4
= T

∂

∂T
(P/T 4). (2.40)

The parameterized form of trace anomaly is taken from a recent lattice study [47] in 2+1

flavor QCD with almost physical quark masses (p4 action; Nτ=8). The parameterization

is given up to T =539 MeV and it is arbitrarily extrapolated to higher temperatures for

our calculation at the LHC energy. The pressure is obtained from Eq. 2.40 as:

P (T )

T 4
− P (T0)

T 4
0

=

∫ T

T0

dT ′ 1

T ′5
Θµµ(T ′), (2.41)

where T0 is an arbitrary temperature, usually chosen low enough such that the pressure

and other thermodynamic quantities have dominant contribution from pions. It has

been found that the pressures for the four descriptions of the hadronic matter discussed

above, are nearly identical at a temperature ∼140 MeV. Thus, for lattice calculations

final values for the pressure are obtained by taking T0 as 140 MeV, and adding the

corresponding pressure from the hadronic matter. The energy density (e) and entropy

density (s = (e+P )/T ) are obtained by combining the result of P/T 4 and (e−3P )/T 4.

In Fig. 2.1, we have displayed the results of pressure and energy density for the four

scenarios of the hadronic matter and compared with the similar quantities obtained from

the lattice calculations in the temperature range; T < 200 MeV.

We find the pressure or energy density rises rapidly for ordinary hadron gas as tem-

perature increases. Adding finite volume corrections arrests the rapid rise of the ther-

modynamic quantities. It is seen that the volume correction plays an important role

beyond temperature 140 MeV (see Fig. 2.2). Inclusion of Hagedorn resonances pre-

dicts the shape similar to lattice results over a few bins of temperature but the energy

density (or pressure) shoots up. This is because of higher mass hadronic states are

more populated as the temperature approaches to the Hagedorn temperature, TH . Fi-

nally switching on volume corrections for hadron + Hagedorn resonance gas brings in

proximity with the lattice, both in shape and magnitude.

We have also calculated the square of speed of sound C2
s (= ∂P/∂e) and the temper-

ature variation of C2
s for the four scenarios are shown in Fig. 2.3 along with the lattice

result. It is seen that the four descriptions exhibit identical variation of C2
s for T <140
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MeV. Adding volume correction to the hadron gas causes sharp rise in C2
s . The contri-

bution of Hagedorn states are found to reduce the speed of sound. The possible reason is

the following: as the temperature approaches closer to TH , higher mass Hagedorn states

are populated. The increase in energy density is expensed to form the higher mass

resonances, thus reduces the pressure. Finally, the volume corrected hadron + Hage-

dorn gas has been found in good agreement with the lattice result over several bins of

temperature.

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2

T
*
 (GeV)

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

T
xv

 (
G

eV
)

Figure 2.2: Variation of volume corrected temperature Txv with true temperature T ∗.

2.2.3 The HHB and HHL EOS

The above analyses conclude that the volume corrected hadron + Hagedorn gas is the

best choice for the hadronic matter part of the EOS. Now for the quark matter part

of the EOS, we have chosen either the Bag model equation of state [43] or the lattice

equation of state [47]. In both cases, the transition temperature from hadronic matter

to quark matter is chosen as 165 MeV. This is guided by the thermal model prediction of

the chemical freeze out temperature at top RHIC energies [48] and similar temperature

is expected at the top LHC energy [49].

The Bag model EOS consists of an ideal massless gas of u,d, s quarks and gluons.

The pressure, energy density for an ideal gas of quarks and gluons at zero baryonic

chemical potential are given by [32]:

PQGP = gtot
π2

90
T 4 − B

eQGP = gtot
π2

90
T 4 +B, (2.42)
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Figure 2.3: (Left) Square of speed of sound vs Temperature for the four scenarios of
hadronic matter. (Right) Square of speed of sound for the HHB and HHL EOS, as a
function of e1/4

where gtot = [gg + 7/8(gq + gq̄)] is the total degeneracy factor. The factor (7/8) appears

due to the difference in the Bose and Fermi statistics in the Boltzmann factor. gq, gq̄

and gg are the respective degeneracies for quarks, anti-quarks and gluons.

gq = gq̄ = NcNsNf , (2.43)

with Nc = 3 (color), Nf = 3 (flavor) and Ns = 2 (spin).

Now there are 8 gluons with 2 degrees of polarisation; gg = 8 × 2 = 16. Thus the

total degeneracy factor; gtot = 16 + 7/8(18 + 18) = 47.5.

The appearance of negative Bag constant (B) in Eq. 2.42 signifies that the QGP

formed in the laboratory is a finite system with boundary. We have varied the Bag

constant B to match the pressure of both phases such that the constructed EOS admits

a first order phase transition at critical temperature Tc= 165 MeV. This is called as the

HHB (Hadron Hagedorn Bag) EOS of the strongly interacting matter.

Next we consider the realistic EOS which emulates the QCD interaction among

the quarks and gluons on a lattice. We have followed the lattice result of 2+1 flavor

QCD with almost physical quark masses [47] at zero baryonic chemical potential. The

hadronic matter description is matched with the lattice EOS at a temperature 165 MeV.

While the pressure, energy density varies smoothly near the point of transition, a little

discontinuity(∼ 3%) has been found for the speed of sound. We believe the effect would

be negligible on any physical observable. This is called the HHL (Hadron Hagedorn

Lattice) EOS which includes a cross-over from quark matter to hadronic matter around



26

the temperature 185 MeV.

The speed of sound (C2
s ), describes the rate of expansion at different phases of the

system, for the two EOS is plotted against e1/4 in Fig. 2.3. We find in the hadronic

phase, both EOS shows similar variation in speed of sound. In the mixed phase region

(0.4≤ e ≤ 2) GeV/fm3; the speed of sound is zero for the HHB EOS whereas it never

becomes zero for HHL EOS. Finally in the QGP phase (e > 2 GeV/fm3), the speed of

sound approaches to a constant value (1/3) for the HHB EOS and remains larger than

the HHL EOS. The differences in the speed of sound may lead to interesting effects in

the final state which we will see in subsequent studies.

2.3 Hydrodynamic Evolution:

In order to distinguish between the two EOS, we considered the central collisions of gold

(Au) nuclei at the top RHIC energy (
√
sNN = 200 GeV) and lead (Pb) nuclei at the top

LHC energy (
√
sNN = 5.5 TeV).

We have assumed a cylindrical symmetry of the system and boost invariance in the

longitudinal direction. Thus the fluid four-velocity (uµ) has the form

uµ = γr(τ, r)(
t

τ
, vr, 0,

z

τ
)

= γr(τ, r)(cosh η, vr, 0, sinh η) (2.44)

with γr = 1/
√
(1− v2r) is the boost factor and r is the transverse distance from the

collision axis. Since τ and r do not change under Lorentz boost; scalar quantities like

energy density, temperature are function of τ and r and independent of η.

The hydrodynamic equations of motion (Eqs. 2.18, 2.19) are given by [50, 51]

∂τT
00 +

1

r
∂r(rT

01) +
1

τ
(T 00 + P ) = 0 (2.45)

and

∂τT
01 +

1

r
∂r
[
r(T 00 + P )v2r

]
+

1

τ
T 01 + ∂rP = 0, (2.46)

where T 00 = (ǫ+ P )u0u0 − P and T 01 = (ǫ+ P )u0u1.

The above equations can always be reduced to the form of continuity equation:

∂tρ+∇(ρv) = 0 (2.47)
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The numerical schemes used to solve such type of differential equations are called

flux correlated transport algorithm (FCT). We have followed a special kind of FCT

called ‘SHASTA’ (Sharp And Smooth Transport Algorithm), is invented by Boris and

Book [52]. The special merit of this algorithm is that it can handle discontinuities

which appears as rarefaction shock waves at the boundary of quark phase and hadronic

phase [53].

2.3.1 Initial conditions and history of evolution

The thermalized state of matter namely, the quark-gluon plasma is assumed to be formed

at some initial proper time τ0 after the collision. Therefore to describe the time evolution

of the matter, we need a value of initial energy density (ǫ(τ0)) and radial velocity (vr(τ0)).

The initial transverse velocity is taken to be zero, vr(τ0) = 0 [51, 54]. The energy density

is contributed from both soft and hard processes in the collision. While the soft processes

scales with density of wounded nucleons (nwn(r)), the hard processes scales with number

of binary collisions (nBC(r)). nwn(r) and nBC(r) are obtained from the optical Glauber

model [13, 32]. Thus the energy density at any point (r, τ) is given by:

ǫ(r, τ) = 〈ǫ0(0, τ0)〉 [αnwn(r, τ) + (1− α)nBC(r, τ)] , (2.48)

where the α is the fraction of the soft processes. We find that α =0.75 gives reasonable

description of the particle spectra at the RHIC energy [55], while at the LHC energy

we expect soft fraction increases following the study of Kharzeev et al. [56] and mini-jet

picture of parton production [57].

The average initial energy density and the initial proper time for hydrodynamic

simulation are following:

〈ǫ0(0, τ0)〉 =





80.8 GeV/fm3 τ0 = 0.2 fm/c RHIC,

718.3 GeV/fm3 τ0 = 0.1 fm/c LHC.
(2.49)

Our choice of initial time (τ0) is followed from the EKRT model [58] which combines

perturbative QCD mini-jet production with gluon saturation to compute initial condi-

tion of hydrodynamics. Within the framework of EKRT, the initial time is inversely

proportional to saturation momentum scale (psat.); τ0 ∼ 1/psat.. The value of psat. at
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Figure 2.4: Time evolution of average energy density, Temperature and Radial velocity
at the RHIC (left panel) and LHC (right panel) energy for the two EOS.

RHIC and LHC is taken as 1.16 and 2.03 GeV respectively [59]. It has been found that

the set of initial parameters produces rapidity density of charged particles dNch/dy ≈
680 at RHIC and dNch/dy ≈ 2040 at LHC [60]. Our choice of initial time is little smaller

than other works [55, 61] however if we consider larger formation time, the correspond-

ing energy density would be reduced. The choice of small τ0 facilitates us to derive a

fraction of pre-equilibrium photons in the thermal photon spectrum.

For the HHB EOS, we approached the Maxwell construction of mixed phase as done

in earlier works [50, 51]. Let us assume the energy density of the QGP phase at the

critical temperature (Tc) is ǫq(Tc) and that for the hadronic phase is ǫh(Tc). Then the

fraction β of the energy density contributed by QGP phase in mixed phase is give by:

ǫ(β, Tc) = βǫq(Tc) + (1− β)ǫh(Tc) . (2.50)

In case of HHL EOS, we assume the quark-gluon plasma exists for T ≥ 185 MeV [47]

and below that the matter is in hadronic phase.

Next we calculate the time evolution of the internal variables of the system e.g,

Energy density, Temperature, Radial velocity (vr) for the two EOS at the RHIC and

LHC energy. The quantities are averaged as;

〈f〉 =
∫

2π r dr f(r, τ) ǫ(r, τ)∫
2π r dr ǫ(r, τ)

. (2.51)
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The results are shown in Fig. 2.4. We see the variation of 〈ǫ〉 with time (τ) is quite

similar for the two equations of state at RHIC and LHC both. The time variation of 〈T 〉
shows difference. There is a plateau like region for 4 < τ < 8 fm/c in case of HHB EOS,

as bulk of the system resides in mixed phase. However for HHL EOS the temperature

is continuously decreasing. The plateau region is little larger at LHC as the system life

time is longer.

The more interesting result awaits in the temporal evolution of average radial velocity

〈vr〉 for the two EOS. Initially the radial velocity grows faster for the HHB EOS because

of large speed of sound in the QGP phase (see Fig. 2.3). Once the system enters into

the mixed phase, the radial velocity becomes constant. It rises again after elapsing

the phase. The radial velocity for HHL EOS is continuously growing, initially smaller

but overshoots the former during the mixed phase. This will give rise to larger radial

velocity at the final hadronic phase. We shall see the effect in the momentum spectrum

of particles.

2.3.2 Kinetic freeze out and particle production

As discussed earlier, the kinetic freeze out takes place at the end of the hydrodynamic

evolution when the microscopic collision rate becomes smaller than the expansion rate

of the system. The transition from the fluid dynamical description to freely streaming

particle description is achieved by Cooper-Frye formula [18]. According to this formula,

one runs the hydrodynamic simulation up to large time and determine the four dimen-

sional freeze out hyper-surface (Σµ) of constant temperature. The fluid cells along this

hyper-surface should pass the prerequisite freeze out criterion. We consider the kinetic

freeze out takes place at T = 100 MeV both at RHIC and LHC. This is inspired from

various thermal model predictions at low µB of the phase diagram [62].

The invariant momentum distribution of i’th type of particles are given by2:

E
dNi

d3p
=

dN

2πpTdpTdydφ
=

∫

Σ

f(x, p, t)pµdσ
µ

=
gi

(2π)3

∫

Σ

pµdσ
µ

exp[(E∗ − µ(x))/Tf (x)]± 1
, (2.52)

where E∗ = pµu
µ is the energy of the particle in a global frame. µ(x) and Tf (x) are

2See Appendix B for details
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Figure 2.5: (Upper panel) The thermal pion and proton transverse momentum spectra
at the RHIC energy for HHB and HHL EOS. The data points are taken from PHENIX
collaboration [63]. (Lower panel) The same at the top LHC energy.

the local chemical potential and temperature along the freeze out surface Σµ. They

are computed from the hydrodynamic output, along with input from the equation of

state. This formalism is used to calculate momentum distribution of all directly emitted

hadrons of all masses.

In Fig. 2.5, we have shown the transverse momentum spectra of thermal pions and

protons for the central collisions of Au nuclei at mid-rapidity (y =0) at RHIC energy

for the two EOS. The experimental data for transverse momentum distribution of pions

and protons [63] for 0 − 5% most central collisions are also given for comparison. We

note that both the EOS, HHB and HHL, gives a good description of the data up to pT=

2 GeV. However to inspect more closely, we have shown the ratio of thermal pion yields

for the two EOS in Fig. 2.6. It can be seen that the deviation of HHL from HHB is about

25% at pT= 2 GeV. The resonance decay contribution is not considered in the present

study. However it will improve the yield at lower pT [64] where difference between the

two EOS is merely seen. In addition, the inverse slope of the spectra for the HHL EOS

is found to be larger than the same for the HHB EOS.
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The inverse slope of the momentum spectra (Eq.2.52) can be expressed as; Tf =

Tav + mv2r for hadrons of mass m [55]. We feel the difference is originated due to the

variation in radial velocity (Fig. 2.4). If the system follows HHB EOS, the acceleration

of the system stops during the mixed phase gives rise to smaller radial velocity at the

time of freeze out compared to the lattice EOS.

The corresponding results for the central collision of Pb nuclei at the top LHC en-

ergy are shown in Fig. 2.5 While the earlier observations remain true we find that the

difference between the momentum spectra for the two EOS is further reduced. This is

due to the large life time of the system produced at LHC.
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Figure 2.6: Ratio of thermal pion (Left) and thermal photon (Right) production for the
two EOS, HHL and HHB, for Au+Au collisions at the RHIC energy is plotted against
the transverse momentum of pion and photon.

2.3.3 Thermal photon production

The invariant yield of thermal photons is obtained by integrating the emission rate of

photons from QGP and hadronic phase over the space-time volume of the system. The

main channels of photon production in an equilibrated quark matter up to leading-order

of strong coupling (αs) are i) quark-gluon Compton scattering and ii) quark-anti-quark

annihilation. Also there are inelastic processes of photon production like Bremsstrahlung

radiation and pair annihilation. They contribute to the same 2 → 2 order because of the

presence of near-collinear singularity [65]. We have used the thermal photon emission

rate in QGP by Arnold et al. [65] which includes all the above processes at zero µB and

taking into account the Landau-Pomeranchuk-Midgal (LPM) effect while computing

inelastic processes.
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Figure 2.7: Thermal photon transverse momentum spectra at the RHIC and LHC energy
for the two equations of state. The photon data at RHIC for 0-20% centrality bin are
adopted from [68].

The photons emitted from strongly interacting, hot hadronic matter populate the

thermal photon spectrum at lower pT . The hadronic matter is considered as an ensemble

of interacting mesons. The most important hadronic channels of photon production are

i) πρ→ πγ ii) ππ → ργ. We have used the photon emission rate from Turbide et al. [66]

which includes additional strange meson channels in the calculation e.g., (πK∗ → Kγ),

(KK∗ → πγ) and reactions with exchange of heavy mesons as ω (782 MeV). It has also

taken into account Dalitz decays like; ρ→ ππγ.

Using these rates we have calculated the transverse momentum spectra of thermal

photons for the central collisions of Au (Pb) nuclei at the RHIC (LHC) energy for the

two EOS. We have checked the slope of the thermal photon spectrum is close to earlier

work [67] at the RHIC energy. The results are shown in Fig. 2.7 along with the direct

photon data of 0-20% centrality bin from the PHENIX collaboration [68]. However in

order to compare with experimental data one would need to add the prompt photon

contribution. Similar to hadron spectra described earlier, we find the thermal photon

spectra for the two EOS are very close and the inverse slope of the spectra is found

larger in case of lattice based EOS. We have also shown the ratio of thermal photon

yields for the two EOS (see Fig. 2.6).

2.3.4 Spatial and temporal evolution of photon source

The observations suggest that the thermal particle and photon momentum spectra are

not able to distinguish between the two EOS, one admitting a first order phase transition,
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and the other admitting a sharp cross-over as suggested by lattice QCD calculations.

This raises the question, is there any possible way to distinguish between the two

scenarios? We are curious in the study because it encloses the two widest possibilities of

EOS of the matter created in relativistic heavy ion collisions. We recall that the history

of evolution of average energy density and radial velocity have shown some noticeable

differences. This fact instigates us to calculate two photon intensity interferometry which

provides “live coverage”of the space-time development of source [69].
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Figure 2.8: The radial and temporal dependence of the photon emitting source at the
RHIC energy for the HHB and HHL EOS.

Therefore we have plotted the spatial and temporal distribution of the photon emit-

ting source for a typical photon momentum ≈ 1.7 GeV for the two equations of state at

RHIC (Fig. 2.8). We find the production of photons is larger for the HHL EOS at small

radial distances as well as intermediate time (during the mixed phase). Now photons

originated from quark matter at earlier times and from hadronic matter at later times

and the interference depends on the relative contribution of both [70]. As the space-time

structure of the two sources are quite distinct, we hope that the interferometry of ther-

mal photons may resolve the issue. The next section discusses the two photon intensity

interferometry (or the momentum correlation) in great details.



Chapter 3

Intensity interferometry for the two
EOS

3.1 The formalism of interferometry

The idea of two-particle intensity interferometry was first proposed by the British sci-

entists Hanbury Brown and Twiss in 1950s [73], to measure the angular size of the as-

tronomical objects. A similar treatment applied independently by Goldhaber et al. [74]

in 1960, to measure the spatial size of the interaction zone in proton-antiproton anni-

hilation, exploiting the Bose-Einstein correlation of two pions. This sometimes called

as second order interference because it compares intensities at the point of superposi-

tion rather than amplitudes as it was in case of first order interference. In the next

two subsections, we have discussed the salient features of first order and second order

interference following the literature reported in Ref. [75].

3.1.1 First order interference

We consider a general Young slit experiment where we have N-slits on a screen (D1)

at r1, r2, ..., rN , is illuminated by a point source S. The detector is placed on a second

screen (D2) at R to observe the interference pattern due to the superposition of waves

coming from N-slits. As the waves are coming from a single source, there is a constant

phase relation between them. The distance between the slits is considered to be much

smaller than the distance between the screens; |ri − rj| ≪ d [75].

The resultant wave function Φ measured at R arises from the coherent superposition

34
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Figure 3.1: A schematic arrangement of first-order interference in optics.

of N wave functions φi emitted from ri:

φi = exp{−ik · (ri −R)} and Φ =

N∑

i=1

φiχi, (3.1)

where χi represents the phase at each point. We define the first order correlation function

C1(R) as the ratio of total measured intensity at R (I1(R)) and the product of partial

intensities (Ii(R)) at R.

C1(R) =
I(R)

[
∏N

i=1 I1(R)I2(R)....IN(R)]
(3.2)

This can also be written in terms of the amplitude of the wave functions and averaged

over the measurement time,

C1(R) =
〈|Φ|2〉

(
∏N

i=1 〈|φiχi|2〉.....〈|φNχN |2〉)1/N
= 〈|Φ|2〉 (3.3)

where each factor in the denominator time averages to one. Thus the first order corre-

lation function is directly proportional to |Φ|2.

|Φ|2 =

{
N∑

i=1

φiχi

}{
N∑

j=1

φ∗
jχ

∗
j

}

= N +

{
N∑

i,j=1, j>i

lij +

N∑

i,j=1, j>i

l∗ij

}
(3.4)



36

lij = φiφ
∗
jχiχ

∗
j is the complex amplitude. As the phase difference between the waves will

be constant in time; 〈|χiχ
∗
j |〉=1 for all i, j. The time average of the square amplitude

becomes

〈|Φ|2〉 = N +
∑

i,j=1, j 6=i

(φiφ
∗
j) = N +

∑

i,j=1, j 6=i

exp{−ik · (ri − rj)} (3.5)

Collecting the exponential terms pair-wise, we write the first order correlation func-

tion:

C1(R) = N + 2
N∑

i,j=1, j>i

cos{k · (ri − rj)} (3.6)

The R dependence of the correlation function C1(R) comes through the angle between

k and the distance (ri− rj) of two slits. It is also related to the Fourier transform of the

slit distribution on D1. Thus one can get information about the spatial distribution of

the secondary sources from the first order correlation function.

Now the argument of the cosine term in Eq. (3.6) can be expressed in terms of path

difference between each slit and the detector:

k(yi − yj). (3.7)

This also further can be reduced in terms of angular radius of the slits (θij) viewed

from the screen (D2) and the distance of the detector (L) from the center of D2,

kθijL. (3.8)

Thus, for a given momentum k, the angular size of the light emitting source can be

obtained from the shape of the correlation function. This is the basic principle of

Michelson-type interferometer, used for astronomical purposes. The resolution of such

apparatus is ∼ λ/L, where λ is the wavelength. Now in order to improve the resolution

either λ has to be decreased or L has to be increased. But the intensity of the distant

objects decrease with increasing λ. Then remaining possibility is to increase the base

line L of the interferometer. The challenge is to keep the phase difference constant over

long distances. This severely limits the applicability of first order interferometry to

determine the size of distant stars.
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3.1.2 Second order interference

In order to circumvent this problem, Hanbury Brown and Twiss proposes a new tech-

nique which is based on the principle of intensity interference. Here the superposition

of waves is considered to be incoherent which distinguishes it from the first order in-

terference [75]. Some times this also referred as HBT interferometry; named after the

scientists.

This is achieved in the previous Young’s slit experiment if we replace the single

point source S by N-independent point sources. Thus there will be no constant phase

relation between the superposing waves. The relative phases (|χiχ
∗
j |) at the point of

superposition (R) fluctuates randomly much faster than the measurement time, so time

average gives this zero: 〈|χiχ
∗
j |〉 = 0. Therefore, the second term of Eq. 3.4 contributes

zero and the first order correlation function becomes constant.

|Φ|2 = N

⇒ C1(R) = N = Constant (3.9)

We find an uniform illumination of the screen (D2). Now we add another detector at R′

in coincidence with the first one at R. The second order correlation function is defined

as the measured intensity at (R,R′) in coincidence divided by the intensity measured at

each detector individually:

C12(R,R
′) =

I(R,R′)

I(R)I(R′)
. (3.10)

In terms of amplitude of resultant wave functions at R and R′:

C12(R,R
′) =

〈|Φ|2|Φ′|2〉
〈|Φ|2〉〈|Φ′|2〉 , (3.11)

where |Φ|2 and |Φ′|2 are the intensities detected at R and R′. Since there are two

detectors, we have two wave functions φi = exp{−ik1 · (ri − R)} and φ′
i = exp{−ik2 ·

(ri − R′)} associated with each slit with momentum k1 and k2.

Φ =
N∑

i=1

φiχi and Φ′ =
N∑

k=1

φ′
kχ

′
k (3.12)

As the superposition of waves is incoherent, from Eq. 3.9 we get |Φ|2 = |Φ′|2 = N . Thus

the second order correlation function follows from Eq. 3.11:

C12(R,R
′) =

〈|Φ|2|Φ′|2〉
N2

. (3.13)
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Figure 3.2: A schematic arrangement of second order interference in optics.

Using Eq. 3.4, we write the correlated amplitude as:

|Φ|2|Φ′|2 =

[
N +

(
N∑

i,j=1, j>i

lij +
N∑

i,j=1, j>i

l∗ij

)]

×
[
N +

(
N∑

k,m=1,m>k

lkm +
N∑

k,m=1,m>k

l∗km

)]
(3.14)

We only write those terms for which relative phases cancel. The rest terms are time

averaged to zero.

|Φ|2|Φ′|2 = N2 +

(
N∑

i,j=1, j>i

lij

N∑

k,m=1,m>k

l∗km

)

+

(
N∑

i,j=1, j>i

l∗ij

N∑

k,m=1,m>k

lkm

)
(3.15)

Thus we get,

〈|Φ|2|Φ′|2〉 = N2 +

{
N∑

i,j=1, j>i

(φiφ
∗
jφ

∗′
i φ

′
j) +

N∑

i,j=1, j>i

(φ∗
iφjφ

′
iφ

∗′
j )

}

= N2 +

N∑

i,j=1, i 6=j

(φiφ
∗
jφ

∗′
i φ

′
j)

= N2 +
N∑

i,j=1, i 6=j

exp{iq.(ri − rj)}, (3.16)
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where q is the relative momentum difference k1 − k2. Grouping the exponential terms

pair-wise, finally we get the second order correlation function from Eq. 3.13:

C12(q) = 1 +
2

N2

∑

i,j=1, j>i

cos{q · (ri − rj)}. (3.17)

The dependence of R,R′ in the correlation function comes through the relative angle

between k1 and k2. Now if we consider k1 ≈ k2 = k, the argument of the cosine function

in Eq. 3.17 becomes

kθijL. (3.18)

and the second order correlation function writes as:

C12(L) = 1 +
2

N2

∑

i,j=1, j>i

cos{kθijL}. (3.19)

Like the first order correlation function, angular size of an distant object for a given

momentum k can be determined from the shape of the second order correlation func-

tion. The resolution of the interferometer based on the above principle is still given by

λ/L. But the condition of keeping constant phase is now relaxed. So the base length

L of the interferometer could be extended arbitrarily large values for small wavelength

measurement [73].

NQuantum stastistical interpretation

An alternative description of the second order correlation function can be arrived

from the quantum statistics. Since the detected particles are indistinguishable, one

should symmetrize (bosons) or anti-symmetrize (fermions) the two-particle wave func-

tion. For bosons, we find an enhancement for small momentum difference (i.e. the

particles are produced close in phase space).

Let us consider fij is the production amplitude of a particle produced at ri with

momentum kj. Now the joint probability of detecting two particles of momentum k1

and k2 in coincidence, is given by

P (k1, k2) =

〈
|
∑

i,j=1, j>i

(f1if2j ± f1jf2i)|2
〉
, (3.20)

where the first part represents contribution of particles with momentum k1 produced

ri and momentum k2 produced at rj . The second part arises due to symmetrization
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Figure 3.3: Schematic view of second order interference.

(+) or anti-symmetrization (−) of the wave function. Here we neglects all point-like

contributions where both particles are produced at the same point.

Thus we write the second order correlation function as the ratio of joint probability of

detecting two particles with momenta k1, k2 and the product of individual probabilities

of detection:

C12(k1, k2) =
P (k1, k2)

P (k1)P (k2)

=

〈
|
∑N

i,j=1 j>i(f1if2j ± f1jf2i)|2
〉

〈|
∑N

i f1i|2〉〈|
∑N

j f2j |2〉
(3.21)

3.2 Intensity interferometry in heavy ion collisions

As discussed in the previous chapter, the matter created in relativistic heavy ion col-

lisions is continuously evolving in space-time. The method of HBT interferometry has

been extensively used during the past decades to extract the dynamical information

about the system. Now we shall discuss the fundamental differences in the methodology

of HBT interferometry, used for astronomy and nuclear physics:

• In astronomical purposes, the emission points of a stellar object are far apart (∼
thousands of kilometer) compared to the distance between the detectors on the earth

surface (∼ hundreds of meter). The size to distance ratio is about 104. In nuclear

physics, the emission points are much closely spaced (∼ few Fermi) than the separation

between the detectors (∼ few centimeter) at the laboratory. Here the size to distance

ratio is about 10−14.

• The emission points on a star are considered to be static which is not valid in case

of dynamical system produced in heavy ion collisions. Therefore we need to include
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explicit time dependence in the formalism. Thus the vectors (ki, ri) are replaced by the

four-vectors ri = (ti, ri) and ki = (Ei,ki). The N static emission points are now replaced

by N particle production currents; j(ri). The production amplitude of one particle at ri

with four-momentum kj is given by; fij = j(kj)exp(ikj · ri), where j(kj) is the Fourier

transform of j(ri).

The definition of two-particle correlation function in heavy ion collisions is followed

from Eq. 3.21, where the numerator is given by the Lorentz invariant two particle co-

incidence momentum spectrum and the denominator is given by the product of single

particle momentum distributions:

C(k1,k2) =

[
E1E2

dN

d3k1d3k2

]
/

[
E1

dN

d3k1

E2
dN

d3k2

]
, (3.22)

There are several ways discussed in the literature to build a connection between the

particle distribution in momentum space and source distribution in coordinate space.

We follow the treatment of Ref. [76] in which the source is considered as an ensemble of

elementary classical currents Jµ(r). Thus for incoherent emission of particles, the above

equation can be written as,

C(q,K) = 1±
∣∣∫ d4xS(x,K)eix·q

∣∣2
∫
d4xS(x,k1)

∫
d4xS(x,k2)

, (3.23)

where the (+) for bosons and (−) for fermions. K = (k1+k2)/2 is the average momen-

tum vector and q = k1 − k2 is the difference in momentum between the two particles.

The space-time emission function S(x,k) is approximated as the rate of particle pro-

duction per unit four volume, EdN/d3kd4x.

3.2.1 Parameterization of the correlation function

The two particle intensity correlation function is often approximated as a gaussian in

terms of suitable momentum coordinates. The average transverse momentum of the

pair is defined; KT = (k1T + k2T)/2 and the difference in the transverse momentum

of the pair is given by qT = (k1T − k2T). We have followed the ‘osl ’system of co-

ordinates [71, 72], where ‘l’stands for the longitudinal direction along the beam axis,

‘o’stands for the outward direction parallel to KT and the remaining Cartesian direction

referred as sideward direction denoted by ‘s’. This is also referred as, Pratt-Bertsch

parameterization of the correlation function.
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We can write the four-momentum (kµi ) of the ith particle;

kµi = (kiT cosh yi, kiT cosψi, kiT sinψi, kiT sinh yi), (3.24)

where kT is the transverse momentum, y is the rapidity and ψ is the azimuthal angle of

the particle.

Figure 3.4: Geometrical interpretation of outward (qo) and side-ward (qs) momentum
differences.

In terms of these variables, the longitudinal (ql), outward (qo), and side-ward mo-

mentum (qs) differences are obtained as [77]:

ql = k1z − k2z

= k1T sinh y1 − k2T sinh y2 , (3.25)

qo =
qT ·KT

KT

=
(k21T − k22T )√

k21T + k22T + 2k1Tk2T cos(ψ1 − ψ2)
, (3.26)

qs =

∣∣∣∣qT − qo
KT

KT

∣∣∣∣

=
2k1Tk2T

√
1− cos2(ψ1 − ψ2)√

k21T + k22T + 2k1Tk2T cos(ψ1 − ψ2)
. (3.27)

The correlation function C(q,K) is often parameterized in terms of the outward,

side-ward and longitudinal momentum differences:

C(q,K) = 1± exp

(
−
∑

i,j=o,s,l

R2
ij(K)qiqj

)
. (3.28)
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This can be understood from the fact that the correlation function is the Fourier trans-

form of the source distribution. If the source distribution has Gaussian shape in coordi-

nate space, the correlation function would also be Gaussian in the momentum space.

♠Interpretation of HBT radius parameters

The width of the correlation function Rij(K) is called the HBT radius parameter,

characterizes the space-time dimension of the source [78, 79] along different directions.

R2
ij(K) = 〈(x′i − βit

′)(x′j − βit
′)〉 (3.29)

x′, t′ are the rms variances of the source in space and time. βi is the projection of

pair velocity β(= K/E) along the direction i. Only six R2 parameters can be measured

from the correlation function.

Now for an azimuthally symmetric system, the source has reflection symmetry xs →
−xs. The correlation function is symmetric under the transformation qs → −qs; which
yields R2

os = R2
sl = 0 [80]. The Eq. 3.28 becomes:

C(q,K) = 1± exp{−q2oR2
o − q2sR

2
s − q2lR

2
l − 2qoqlR

2
ol}, (3.30)

where the Ro,Rs and Rl are the Fourier transformed radii corresponding to momentum

differences qo, qs and ql respectively. The cross-term Rol was first proposed in Ref. [78].

This term vanishes if the source possesses longitudinal symmetry under xl → −xl. Under
the Gaussian approximation, the radii are given by:

R2
s = 〈x′2s 〉 = 〈y2〉 − (〈y〉)2,

R2
o = 〈(x′o − βot

′)2〉 = 〈(x− βot
′)2〉 − 〈x− βot

′〉2,

R2
l = 〈(x′l − βlt

′)2〉 = 〈(z − βlt
′)2〉 − 〈z − βlt

′〉2,

R2
ol = 〈(x′o − βot

′)(x′l − βlt
′)〉 = 〈(x− βot

′)(z − βlt
′)〉 − 〈x− βot

′〉〈z − βlt
′〉.(3.31)

We have chosen the longitudinal direction along ẑ, sideward direction along ŷ and

outward direction along x̂. For a static source, the HBT radii are corresponding to

the geometric size of the source along different directions. However for an expanding

source, the measured HBT parameters do not reflect the actual size of the source [81, 82].

Thus Rs probes only the spatial structure whereas Ro probes both temporal and spatial

structure of the source. The ratio of Ro/Rs referred as the time duration of particle
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Figure 3.5: (Left) Two photon correlation function measured for the Kr+Ni system
at 60A MeV, is plotted against the Lorentz invariant relative four momentum Qinv =√
q20 − q2 (Right) The same for the Ta+Au system 39.5 MeV. The figures are adopted

from Ref. [92].

emission [83]. It is also suggested that the ratio (Ro/Rs) strongly increases in the

presence of a mixed phase between QGP and hadronic phase [84, 85]. However the ratio

is found ∼ 1.0 from the RHIC experiment [86], leads to HBT-puzzle [87]. A definite

conclusion of the puzzle appears in Ref. [88], where the source of discrepancy is explained

as the inclusion of pre-equilibrium flow, viscosity, etc. influences the evolution dynamics.

3.2.2 Intensity interferometry of direct photons

The idea to study the interferometry of high energy photons in heavy ion collisions was

first proposed by D. Neuhauser [89]. Intensity interferometry of hadrons carries infor-

mation of the later dilute stages of relativistic heavy ion collision where they are created

mostly. The two hadron correlation function is affected by final-state interaction among

the hadrons and contribution from the resonance decay. In contrast, the direct photons

have advantage of electromagnetic coupling with the medium. They are not suffering

from any final-state interactions or feed down contribution, once they are created. Thus

two photon intensity correlation is an efficient probe of the structure and lifetime of

the central dense region created the collision. The only shortcoming in performing such

measurement in experiment, is to subtract the huge background of photons coming from

decay of neutral pions (π0 → 2γ).
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Figure 3.6: Two photon correlation function is plotted against Qinv for the average
transverse momentum window 200 < KT < 300 MeV/c. The solid line shows the
parameterization. The figure is adopted from Ref. [93].

Several works has been done during the past decades [69, 90] which establish the ap-

plicability of photon intensity interferometry to trace the dynamics of evolution of QGP.

Some recent works have suggested an interference of photons emitted from quark matter

and hadronic matter, both in central and non-central collisions of heavy nuclei [70, 91].

Similar phenomenon already observed in intermediate energy nuclear collisions, where

the hard photons are emitted from two sources separated in space-time [75, 92]. The au-

thors of Ref. [92] has observed the density oscillations in the system Kr+Ni at 60A MeV

(or Ta+Au at 39.5A MeV) via hard photon intensity interferometry in the momentum

range KT ≤ 20 MeV/c (see Fig. 3.5).

For high energy nuclear collisions, WA98 collaboration of CERN has so far succeeded

in measuring the two photon correlation function in central collisions of Pb nuclei at

SPS energy(158A GeV) [93]. An one dimensional analysis of the correlation function is

performed for the photons of average momenta 200 < KT < 300 MeV/c (see Fig. 3.6).

The correlation function is parameterized as:

C(Qinv) = A[1 + λexp(−Q2
invR

2
inv)], (3.32)

where Rinv is the invariant radius parameter corresponding to relative momentum Qinv(=
√
q20 − q2). A is the strength of the Gaussian, λ denotes the correlation strength. The

analysis has found the invariant radius of the photon emitting source is about 6 fm,

which is comparable to the radius extracted from the interferometry of pions of same

momenta [93]. However the clear significance of Rinv is debatable so far [94].
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3.3 Interferometry of thermal photons at RHIC and

LHC

In this section, we study the intensity interferometry of thermal photons at the RHIC

and LHC energies for the two EOS [95], HHB and HHL, discussed in the preceding

chapter. We are interested of the photons having average transverse momenta KT <

2 GeV. Our formalism closely follows the framework of earlier analysis [77, 70] on the

same line. The spin-averaged correlation function of two photons, having momenta k1

and k2 is following from Eq. 3.23:

C(q,K) = 1 +
1

2

∣∣∫ d4xS(x,K)eix·q
∣∣2

∫
d4xS(x,k1)

∫
d4xS(x,k2)

, (3.33)

where the (+) sign stands for bosons and the ‘1/2 ’factor arises due to sum over photon

polarisation in the final state. The emission function S(x,K) or the invariant photon

production rate is given by the hydrodynamic calculation. For the interference of photons

emitted from the QGP phase and hadronic phase, the source term ‘S’in the numerator is

expressed as; SQ+SH . SQ and SH are the photon emission rates from QGP and hadron

phases respectively. In the denominator, we put SQ and SH both.

In terms of different HBT radii, the two photon correlation function can be written

as:

C(q,K) = 1 +
1

2
exp{−q2oR2

o − q2sR
2
s − q2lR

2
l }, (3.34)

where we have considered photon pairs with vanishing rapidity in the center of momen-

tum frame of a symmetric collision. Thus the cross-term of Eq. 3.30 vanishes.

We generate thermal photon distribution for the two EOS in the transverse momenta

region kT ∈(0.1–4.0) GeV (as discussed in the earlier chapter) and distribute them uni-

formly over the rapidity (y) and azimuthal (ψ) space. Then we sample the photon pairs

such that their average transverse momentum (KT) is less than 2 GeV. The two pho-

ton correlation function along different directions is calculated from Eq. 3.33. In order

to bring out correct dependence of the correlation function on a particular momentum

difference, the momenta of the interfering photons are such chosen that when qo 6= 0, qs

and ql are zero exactly. Like; for this criterion we choose y1 = y2 =0 and ψ1 = ψ2 =0.

We calculate outward, sideward and longitudinal correlation functions at the RHIC

energy for a typical photon momentum KT ≈1.7 GeV. The results are displayed in



47

0 0.04 0.08 0.12 0.16
qs (GeV)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

C
HHL
HHB

QM+HM

Au+Au@RHIC,γγIntensity Correlation
Thermal Photons, k1T=1.7 GeV

y1=y2=0, k1T=k2T, qo=q
l
=0 

0 0.04 0.08 0.12 0.16
q

l
(GeV)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

C

HHL
HHB

QM+HM

Au+Au@RHIC, γγIntensity Correlation
Thermal Photons, k1T=1.7 GeV

ψ1=ψ2=0, k1T=k2T, qo=qs=0

0 0.04 0.08 0.12 0.16
qo (GeV/c)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

C

HHL
HHB

QM+HM

Au+Au@RHIC, γγIntensity Correlation
Thermal Photons, k1T=1.7 GeV/c

0 0.04 0.08 0.12 0.16
qo (GeV)

1.0

1.1

1.2

1.3

C

HHL
HHB

Thermal Photons, k1T=1.7 GeV

QM

HM

Au+Au@RHIC,  γγIntensity Correlation

ψ1=ψ2=0, y1=y2=0

Figure 3.7: (Upper panel) Two photon correlation function at RHIC is plotted with
sideward and longitudinal momentum difference; (Lower panel) the same plotted with
outward momentum difference and the individual contributions from each phases.

Fig. 3.7. It is found that the sideward correlation function is identically similar for the

two EOS while the longitudinal correlation function shows a slight difference. The more

surprising fact awaits in case of outward correlation function, we see a clear distinction

between the two equations of state. Bearing in mind that the interference pattern

depends on the relative contributions from quark phase and hadronic phase, we have

also plotted the relative contributions of each phase (Fig. 3.7). This can be done by

retaining either SQ or SH in the numerator and denominator of Eq. 3.33. One may

conclude from Fig. 3.7, the main source of the difference lies in the hadronic matter

contribution to the total correlation function.

Next we investigate the underlying HBT radii of the photon source in QGP (Q) and

hadronic (H) phase along the outward direction. The source function is parameterized

as:

|ρi,α| = Iα exp
[
− 0.5 (q2iR

2
i,α)
]
, (3.35)

where i= o, s or l in an obvious notation and Iα denotes the photon fraction coming from
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QGP or hadronic phase. Thus IQ = dNQ/(dNQ + dNH) and IH = dNH/(dNQ + dNH).

The correlation function for each phase is given by:

C(qi, α) = 1 + 0.5|ρi,α|2. (3.36)

The total correlation function includes the interference between the two sources is

the following [75, 70]:

C(qi) = 1 + 0.5
[
|ρi,Q|2 + |ρi,H |2 + 2 |ρi,Q||ρi,H | cos(qi∆Ri)

]
, (3.37)

where ∆Ri stands for the space-time separation between the two sources.
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Figure 3.8: Transverse momentum dependence of outward radii of the photon emitting
sources in the QGP and hadronic phase for Au+Au collisions at RHIC

From Eqs.( 3.36) and (3.37) we obtain the outward HBT radii (in fm) of each source

and their separation, for the thermal photons having KT ≈1.7 GeV at RHIC energy

for the two EOS. As the calculations are done with a smooth hydrodynamic model, the

uncertainty in the parameters are assumed to be small.

HHB Ro,Q = 2.5, Ro,H = 8.3, ∆Ro = 14.9 . (3.38)

HHL Ro,Q = 2.7, Ro,H = 4.8, ∆Ro = 13.4 . (3.39)

We find the outward radius in the QGP phase (Ro,Q) is comparable for the two EOS.

However a large difference between the radii is seen in case of hadronic phase (Ro,H),

which we anticipated. We also find the separation (∆Ro) between the two sources is
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little larger for the HHB EOS. These can be understood as the HHB EOS includes a

mixed phase, the system lived longer (in particular the hadronic matter part).

We have also shown the transverse momentum dependence of Ro,Q, Ro,H and ∆Ro

of the thermal photons at the RHIC energy( Fig.3.8). It is seen that Ro,Q is nearly

similar for the two EOS while Ro,H shows substantial deviation in the range of momenta;

0.1< KT <2.0 GeV.
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Figure 3.9: (Upper panel) Two photon correlation function at LHC is plotted with
sideward and longitudinal momentum difference; (Lower panel) the same plotted with
outward momentum difference and the individual contributions from each phases.

Next we investigate the intensity correlation of thermal photons for the collisions of

Pb nuclei at the top LHC energy. Following the same treatment described above, we

have calculated the outward, sideward and longitudinal correlation function for a typical

momentum KT ≈ 1.2 GeV. The results are depicted in Fig. 3.9. Similar to earlier study

at RHIC, the sideward correlation function is found minimum sensitive to the choice

of EOS. The longitudinal correlation function is now seen to distinguish between the

two EOS. It would be interesting to see whether the shape remains intact at other

rapidites. However this will need a 3+1D hydrodynamic simulation of the system which

is beyond the scope of present study. The outward correlation function is found most
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sensitive to the difference between the two EOS. We have also shown the quark matter

and hadronic matter contribution to the total correlation function. As seen earlier, the

difference mainly arises due to the interference of photons coming from hadronic phase.

We have not extracted HBT radius parameters in this case but expect to follow similar

variation like the RHIC energy( Fig.3.8).

In this chapter, we have discussed the formalism of first order (namely amplitude

interference) and the second order interference (namely intensity interference) in op-

tics. Both interferometry techniques are used in astronomy for determining the size

of distant celestial objects. The intensity interferometry gains advantage over the or-

dinary interferometry in case of smaller wavelengths. The second order interference

can also be interpreted as the quantum statistical effect due to symmetrization or anti-

symmetrization of the wave function of two identical particles originated close in phase

space. We discussed in particular the intensity interference of direct photons in rela-

tivistic nuclear collisions as a probe of the space-time structure of the system. We have

cited examples of such measurements in earlier experiments. The present work explores

the intensity interferometry of thermal photons at the RHIC and LHC energies for the

two equations of state constructed earlier and find exciting possibility to differentiate

between them [95]. The observation could be valuable to probe the EOS of strongly

interacting matter in experiment.



Chapter 4

System size dependence of nuclear
modification factor

4.1 Introduction

The production of hadrons with large transverse momenta is found to be strongly sup-

pressed in the central collisions of heavy nuclei at the energies available at the Relativistic

Heavy Ion Collider experiment and the Large Hadron Collider experiment [96, 97]. This

phenomenon commonly referred as ‘jet quenching’ [98] originates due to interaction of

hard partons with the surrounding medium created in relativistic heavy ion collisions. In

the early pre-equilibrium phase of the collision, often two hard partons are created back-

to back in the processes involving large momentum transfer. They traverse through the

dense QGP fireball, losing energy through multiple collisions and fragment into hadrons

outside the medium. The energy loss of the parton occurs from both collisional [99, 100]

and radiative processes [101, 102], calculated within the framework of perturbative QCD

(pQCD). However the radiative mode is found to to be dominant [103]. It is difficult to

measure directly the amount of energy loss of the scattered parton, but it is imprinted

through the leading hadron momentum which is recorded in experiment. The suppres-

sion in the hadronic momentum spectra is measured in terms of the nuclear modification

factor (RAA) defined by:

RAA(pT , b,
√
s) =

d2NAA(b)/dpTdy

TAA(b)(d2σNN/dpTdy)
, (4.1)

where the numerator gives the invariant yield of hadrons in AA collisions with impact

parameter b at the center of mass energy (
√
s). The denominator contains the production

51
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cross-section of hadrons for pp collisions at the corresponding center of mass energy per

nucleon multiplied by the nuclear overlap function (TAA(b)).

Thus if AA collision is considered as an incoherent superposition of pp collisions,

RAA would be equal to unity (neglecting the effect of nuclear parton distributions) and

there will be no suppression. However the experimental data shows RAA < 1; implies

the existence of a strongly interacting QCD medium.

Figure 4.1: (Left) Schematic picture of two hard jets created back-to back inside the
fireball. One of the jet (near-side) travels a small path before it escapes the medium,
the energy of the jet remains unaltered. While the other (away-side) jet travels a long
distance, suffers multiple scatterings and energy loss. (Right) The dijet asymmetry is a
manifestation of the jet-quenching, observed by ATLAS collaboration [104] for Pb+Pb
collisions at

√
sNN= 2.76 TeV.

The jet-quenching has several other consequences. The jets created in a non-central

collisions would transverse different distances in and out direction of the reaction plane

and lose differing amount of energy. This will cause an azimuthal anisotropy in the

momentum spectra of the final state hadrons of non-hydrodynamic origin [105]. Next

we consider the large momentum photons coming from the fragmentation of a hard

quark jet. The energy loss of the parent jets prior to fragmentation leads to nuclear

suppression and azimuthal anisotropy of these hard photons at large pT .

There exist a series of theoretical studies during the last decades on the topic; how a

light parton loses energy while traversing a hot and dense QGP medium. Here we have

enlisted some notable works among them.

The first ever attempt was made by Bjorken [99], considering elastic scatterings with
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the medium constituents. The differential energy loss per unit length (dE/dz) has been

found proportional to the square of the plasma temperature. Later developments on

the subject includes finite-temperature field theory approach [106], careful treatment of

Debye screening mass and kinematics [107].

The first calculation of radiative energy loss in a QCD medium incorporating LPM

effect was presented by Gyulassy and Wang [101] where the fast parton is assumed

to move under screened Coloumb potential produced by the static scattering centers.

Later Baier et al. (BDMPS) [102] include the re-scattering of gluons in the above model

which is an important assumption for the dense medium. It has been found that the

constructive or destructive interference among the emitted gluon quanta depends on the

formation time of the radiated gluon. We shall discuss this feature in detail later. The

differential energy loss (dE/dz) in case of coherent gluon emission is found proportional

to the path length traversed by the hard parton.

The more recent and sophisticated studies on the medium evolution of light parton

energy loss are the following:

• Higher Twist (HT) [108]: The scheme calculates all medium enhanced soft

gluon contribution to the scattering cross-section, which are generally suppressed

by the power of Q (the hard momentum scale) but enhanced in case of large nuclei.

Thus a hard parton scatters off a soft gluon of the medium prior to emit radiation.

• GLV: The Gyulassy-Levai-Vitev model [109] develops on the static scattering

center model of Gyulassy and Wang [101] with a color screened potential. The

scattering amplitude is expanded in terms of opacity parameter (L/λ) where L is

the length of the medium and λ is the mean free path. In the first order opacity

expansion the gluon spectrum reduces to BDMPS result for the asymptotic parton

energy limit (E → ∞).

• ASW: The multiple scattering picture of BDMPS is first developed within a path-

integral formalism by Zakharov [110]. The formalism of Armesto, Salgado, and

Wiedemann [111] uses the opacity expansion of the scattering amplitude in a path

integral formalism and accounts for the finite probability of scattering of both

incoming and outgoing partons. Finally in the large length limit; one recovers the
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gluon radiation spectrum of BDMPS formalism.

• AMY: In the Arnold-Moore-Yaffe [112] scheme the hard parton is assumed to

move in an equilibrium quark-gluon medium at very high temperature (T). Thus

the parton have momentum ∼T and undergoes soft scatterings with momentum

transfer ∼ gsT (gs is the strong coupling). The radiated gluons further scatter

in the medium with typical scale ∼ g2sT. Thus the hard thermal loop (HTL) per-

turbation technique is used to resum all such contributions in the gluon radiation

spectrum.

All the above models are equivalent in the sense that the pQCD techniques are used

to estimate the in-medium energy loss of the hard jets. All the schemes calculate the

change in gluon radiation spectrum of the parton due to medium effect and the leading

parton always fragments outside the medium. The difference between the formalisms

arise from (i) the hadron contribution coming from sub-leading gluons, (ii) including or

excluding interference among the radiated gluons, (iii) considering a static or dynamic

QGP medium, etc. A nice compilation of all approaches (except GLV) on a common

relativistic hydrodynamic medium can be found in Ref. [113]. The study has found that

the values of the transport coefficient (q̂) for the three approaches differ significantly to

describe the nuclear modification of hadron production at RHIC.

However for the current study, we have used a simple phenomenological model which

demonstrates the evolution of parton energy loss mechanism with pT of final hadrons.

The model was first used at the RHIC energy [114] to explain the origin of neutral pion

(π0) suppression at large pT and later used at the LHC energy [115]. The earlier works

were done for most central collisions. The present study [116] explores the system size

dependence of parton energy loss mechanisms through explaining the nuclear modifica-

tion of hadron production from most central to peripheral collisions, at the RHIC and

LHC energy.
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4.2 Theoretical Formalism

4.2.1 Particle production in pp collisions

As a first step, we discuss the particle production in elementary pp collisions using

next-to leading order pQCD. The inclusive particle yield in pp collisions is often used

as a reference in heavy ion experiment. The inclusive cross-section for production of

particles can be written in the factorisation regime of QCD which states that at large

values of pT , the short distance dynamics is perturbatively calculable in terms of partonic

cross-sections, while the dominant non-perturbative phenomena can be factorised in the

parton densities of the colliding hadrons and the fragmentation function of the detected

particle:

dσAB→C

d2pTdy
=
∑

a,b,c

∫
dxa

∫
dxb

∫
dz

z2
Fa/A(xa, Q

2
F )Fb/B(xb, Q

2
F )
dσ(Q2

R)ab→c

d2pcTdyc
Dc/C(z, Q

2
f ),

(4.2)

where Fa/A(x,Q
2) is the parton distribution function (PDF) for the parton a and

Fb/B(x,Q
2) is the PDF for the parton b, for the nucleon A and B respectively. Dc/C gives

the fragmentation probability of parton c into a hadron C evaluated at z = pC/pc, where

z is the fraction of the parton’s momentum carried by the hadron. In case of photon

production, Dc/γ gives the probability that a photon will be fragmented off a quark with

the momentum fraction z = pγ/pc. In addition, we have an extra term where photon is

directly produced in the hard collision (c = γ) and the fragmentation function reduces

to δ(1 − z). The hard parton-parton cross-section (σab→c(xa, xb, Q
2
R)) is calculated for

the leading order processes O(α2
s) such as:

q + q → q + q,

q + q̄ → q + q̄,

q + g → q + g,

g + g → g + g,

...... (4.3)

At the next-to-leading order, O(α3
s) we include subprocesses like:

q + q → q + q + g ,
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q + q̄ → q + q̄ + g,

q + q′ → q + q′ + g,

q + q̄ → q′ + q̄′ + g,

g + g → g + g + g

...... (4.4)

The running coupling constant αs(µ
2), is evaluated at the next-to-leading order from

the 2-loop renormalisation group equation:

αs(Q
2
R) =

12π

(33− 2Nf ) ln(Q2
R/Λ

2)

(
1− 6(153− 19Nf) ln ln(Q

2
R/Λ

2)

(33− 2Nf )2 ln(Q2
R/Λ

2)

)
,

where QR is the renormalization scale, Nf is the number of flavors, and Λ is the ΛQCD

scale. There are three arbitrary momentum scales associated with the factorization

(QF ), renormalization (QR), and fragmentation (Qf ) processes. We set all the three

scales equal to a common scale; Q = cpT and vary the constant c in order to match the

experimental data.

We have used the program INCNLO [117] to calculate the above cross-section at

the RHIC and LHC energies. The initial parton densities are given by CTEQ4M struc-

ture function [118] and the final state hadron fragmentation is obtained from the BKK

fragmentation function [119]. In Fig. 4.2, we have shown the scale dependence of π0

production for pp collisions at 200 GeV (RHIC) and charged hadron (h+ + h−) produc-

tion at 2.76 TeV (LHC). It has been found that the scale c = 1.0 gives reasonably good

description of the data measured by the PHENIX [120] and the CMS [121] collaboration.

The quantitative description of the data from pp collisions provides us with a reliable

baseline to calculate nuclear modification of hadron production in nucleus-nucleus colli-

sions.

4.2.2 Particle production in AA collisions

The same factorised approach can be used for the particle production in nucleus-nucleus

collisions while taking care of (i) Energy loss of partons in the medium and (ii) Nuclear

Shadowing. The code is suitably modified to account for these effects. We shall discuss

first the parton energy loss formalism used in this work.
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Figure 4.2: The scale dependence of neutral pion yield in p+p collision at
√
s= 200 GeV

and charged hadron yield at
√
s= 2.76 TeV, compared with the data from the PHENIX

and the CMS collaboration.

Model of parton energy loss

The energy loss model closely follows the treatment of Baier et al. [103, 122]. We have

considered a static, homogeneous QCD medium of length (L), which consists of several

static scattering centers in the spirit of Gyulassy-Wang model. The scattering centers

are assumed to be infinitely heavy so they don’t recoil after the scattering. Thus the

collisional energy loss vanishes in this formalism. An energetic parton of energy E moves

along z-direction through this medium, subjected to multiple scattering and energy loss

in terms of induced gluon radiation. The emitted gluon of energy ω is assumed to be

soft, i.e. ω ≪E. The soft approximation leads to a picture of propagation of a relativistic

particle on a straight trajectory with E≫ µ and receives independent momentum kicks

from successive scatterings. µ is the typical momentum transfer in a single hard collision.

The key factors of our model are the average energy loss per collision (ε) by the

parton, the mean free path of the parton (λ) and the average path length of the parton

in the medium (L). We assume λ < L such that several scatterings takes place in the

medium. The distribution of n-scattering centers is assumed to be random and given by

the probability distribution:

P (n, L) =
(L/λ)n

n!
e−L/λ . (4.5)

Now the interference between the successive radiation amplitudes depends on the
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formation time of the emitted gluon. The formation time is defined as:

tform ≃ ω

k2T
, (4.6)

where ω is the energy of the radiated gluon and kT is the transverse momentum. One

would have ω ≫ kT for near-collinear emission.

The coherence length (lcoh) can be defined as the length in the medium over which

the emitted gluon quanta interfere constructively.

lcoh ≃ ω

〈k2T 〉coh
≃ ω

Ncoh〈k2T 〉
, (4.7)

where Ncoh is the number of coherent scattering centers. One can then write,

Ncoh =
lcoh
λ

≃
√

ω

λµ2
≡
√

ω

ELPM
, (4.8)

where ELPM = λµ2 is the energy parameter introduced to separate the incoherent and

coherent radiation of gluons.

Depending on the formation time (or the coherence length) of the radiated gluon,

we consider three different regimes of parton energy loss; Bethe-Heitler (BH) regime

of incoherent energy loss, LPM regime of partial coherent and complete coherence

regime of energy loss.

For small formation time tform ≤ λ and ω ≤ ELPM; incoherent radiation takes

place over L/λ scattering centers. This is called as the BH regime of incoherent energy

loss. Since successive scatterings are independent, the total gluon radiation spectrum is

proportional to the single scattering spectrum. The energy loss per unit length in this

regime writes as:

−dE
dz

≈ αs

π
Nc

1

λa
E , (4.9)

where Nc = 3 and E is the energy of the parton. We write ε ≈ kE for this case and

determine k from the data of nuclear modification of hadron production.

Next we discuss LPM suppression of emitted gluon radiation having formation time

greater than λ but less than L and energy ω > ELPM. According to LPM principle,

multiple scatterings do not generate multiple radiation of gluon when coherence time is

large. The radiation process does not resolve between single and multiple scatterings

as only the total momentum transfer matters. Thus the radiation over Ncoh scattering
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centers added coherently gives rise to total energy loss. We find the gluon radiation

amplitude of the LPM limit is suppressed by a factor of ‘1/
√
ω’compared to the BH

limit [122]. The energy loss per unit length written as:

−dE
dz

≈ αs

π

Nc

λ

√
ELPME . (4.10)

Thus for LPM regime ε ≈
√
αE and α will be determined from the from the measurement

of RAA.

Finally, in the large formation time (tform > L) and large energy limit (ELPM <

ω < E) of the emitted gluon, we are in the complete coherence regime of energy loss.

The radiations from all scattering centers added coherently as if one single scattering

takes place for the entire medium. This is called the complete coherence regime of energy

loss and the energy loss per unit length becomes constant, independent of parton energy:

−dE
dz

≈ αs

π
Nc

〈k2T 〉
λ

L . (4.11)

This is denoted as constant energy loss (ε ≈ κ) regime as the parton would lose constant

amount of energy in each collision.

A careful calculation of the Eq. 4.11 leads to [103]:

−dE
dz

=
αs

4
Nc

〈k2T 〉L
λa

ṽ . (4.12)

where ṽ is Fourier transform of the normalized differential parton scattering cross-section

for the appropriate momentum transfer scale. The momentum transport coefficient q̂ is

then defined as

q̂ =
〈k2T 〉
λa

ṽ , (4.13)

so that we can write

−dE
dz

=
αs

4
Ncq̂L . (4.14)

The Eq. 4.14 can be used to deduce the average momentum transport coefficient for a

given centrality.

Here we shall note that k is dimensionless and α, κ have the unit of GeV. The pa-

rameters k, α, κ are varied to get an accurate description of the nuclear modification

factor of hadrons (Rh

AA) at different centralities of collisions. We have kept the mean

free path (λ) as 1 fm for quarks and gluons both. The average path length 〈L〉 of the
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parton inside the medium for a given centrality is calculated using the optical Glauber

model. The phenomena of multiple scattering and energy loss of partons enter into

Figure 4.3: Schematic sketch of path length traversed by the parton in non-central
collisions of two symmetric nuclei A and B.

the particle production description (Eq. 4.2) through the modification of vacuum frag-

mentation function D0(z, Q2). We have followed the prescription of medium modified

fragmentation function by Wang et al. [123], described as:

zDc/C(z, L,Q
2) =

1

Ca
N

N∑

n=0

Pa(n, L) ×
[
zanD

0
c/C(z

a
n, Q

2) +

n∑

m=1

zamD
0
g/C(z

a
m, Q

2)

]
(4.15)

where zn = zET /(ET −
∑n

i=0 ε
i), zm = zET /εm. The first term represents the hadronic

contribution of a leading parton with a reduced energy (ET −∑n
i=0 ε

i) and the second

term represents the hadronic contribution of the emitted gluons, each having energy

εm. CN =
∑N

n=0 P (n, 〈L〉) and N is the maximum number of collisions suffered by the

parton, equal to ET/ε.

The azimuthal (φ) variation of path length with respect to reaction plane for non-

central collisions is evaluated using the optical Glauber model. Assuming uniform den-

sities for the colliding nuclei, the average path-length for an impact parameter b and

azimuthal angle φ can be written as:

L(φ; b) =

∫ ∫
ℓ(x, y, φ, b)TAB(x, y; b) dx dy∫ ∫

TAB(x, y; b) dx dy
, (4.16)
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Figure 4.4: (Left panel) Azimuthal variation of the average path length traversed by a
parton in collision of Au nuclei. The impact parameter for the upper curve is an average
for 0-20% most central collisions and the lower one is for 40-60% centrality.(Right panel)
The average path length vs. impact parameter for Au+Au system.

where x and y are the transverse co-ordinates for the point where the partons scatter to

produce the jet(s) which traverses the path length ℓ(x, y, φ, b) at an angle φ with respect

to the reaction plane (Fig. 4.3). TAB(x, y; b) = tA(x+ b/2, y)tB(x− b/2, y) is the nuclear

overlap function and tA and tB are the transverse density profiles of the two nuclei. An

average of L(φ; b) over φ (varying from zero to 2π) gives the average path length L(b)

(see Fig. 4.4).

Nuclear shadowing

Deep inelastic lepton-nucleus scattering experiments has revealed that the distribution

of partons inside a large nucleus is considerably different than a free nucleon. The

phenomenon has been first reported by the European Muon Collaboration (EMC) when

measured the ratio of structure functions of iron and deuterium nucleus in the deep

inelastic scattering of muons. The ratio, plotted against the momentum fraction of

nucleon carried by the bound parton (Bjorken x), shows distinct behaviour at different

regions of x [124]. Several theoretical models were proposed to explain the observed

feature, based on application of QCD for a many-body system [125].

Now the parton distribution for flavor i inside a nucleus of mass number A consists

of Z protons and (A-Z) neutrons, is defined as:

fi/A(x,Q
2) = RA

i (x,Q
2)[
Z

A
fi/p(x,Q

2) +
A− Z

A
fi/n(x,Q

2)], (4.17)
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Figure 4.5: Schematic plot of nuclear modification to the free nucleon PDF at various
regions of momentum fraction x (adopted from JHEP 0904 (2009) 065).

where RA
i (x,Q

2) denotes the nuclear modification to the free nucleon PDF. The parame-

terization of RA
i (x,Q

2) is performed at charm mass threshold Q2
0 = m2

c = 1.69GeV 2. At

higher scales Q2 > Q2
0, the nuclear parton distributions are obtained by solving the lin-

ear DGLAP evolution equation. The different kinematic region of RA
i are schematically

shown in Fig. 4.5.

1. Shadowing region (x . 0.1): a large suppression in the parton distributions, can

be explained through gluon fusion in an infinite momentum frame [126].

2. Anti-shadowing region (0.1 . x . 0.3): an enhancement in the parton distribu-

tions, originates due to conservation of parton momentum.

3. EMC region (0.3 . x . 0.7): the original region of suppression in the cross-section

observed by the EMC collaboration.

4. Fermi motion (x > 0.7): an enhancement in the parton distribution, attributed to

the intrinsic motion of nucleons in the rest frame of nucleus.

There are several parameterizations of the factor RA
i (x,Q

2
0) available. We have used

the EKS98 parameterization of nuclear parton distributions by Eskola et al. [127] which

shows a very good agreement between leading DGLAP evolution of nuclear parton dis-

tributions and the Q2 evolution of the NMC data. Since this work was published several



63

somewhat improved PDF as well as shadowing functions have become available. How-

ever their use will not make any quantitative change in the results.

4.3 Nuclear modification of neutral pion production

at RHIC

In the present study, we have calculated the centrality dependence of RAA of neutral

pions (π0) for Au-Au and Cu-Cu collisions at
√
sNN = 200 GeV [116] using the parton

energy loss model discussed above. We have shown the results for four centrality classes

viz. near central (0-10%, 10-20%) and mid central (40-50%, 50-60%). It has been

found that different parton energy loss mechanisms are responsible for the suppressed

production of π0 at different regions of pT .

4.3.1 Rπ
0

AA for Au-Au collisions at RHIC

The suppressed production of neutral pions calculated with BH mechanism of energy

loss are shown in Fig. 4.6 for the four centralities of collision. This mechanism is seen

to provide a good description of the data for pT ≤ 6 GeV/c. The best fit value of the

coefficient k is given by the solid line and the other two lines express the uncertainty in

the value of k. The value k = 0.10 signifies that the parton will lose 10% of it’s initial

energy in the first collision, then 10% of the reduced energy in the second collision

and so for. The energy loss coefficient k also decreases by 20% as we move from near

central to mid-central collisions. We have noted that the slope of Rπ0

AA changes around

pT= 5 GeV/c, indicates a possible change in the mechanism for energy loss for partons

contributing to higher momenta.

This expectation becomes true, when the so-called LPM mechanism of energy loss

is seen to follow the curvature of Rπ0

AA in the pT range of 6–10 GeV/c (see Fig. 4.7).

As before, the best fit value of the coefficient α is shown by the solid red line. Thus a

parton having energy 10 GeV would lose about 1 GeV in the first collision for 0-10%

centrality.

The transition from BH limit to LPM limit at pT ≈ 5 GeV/c should not be treated

as coincidence. We recall the parameter ELPM = λµ2, which separates the BH and LPM

regime of energy loss. If we take λ ∼ 1 fm and average momentum transfer per collision
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Figure 4.6: Nuclear modification of π0 production for Au+Au collisions at
√
sNN=200

GeV, using BH mechanism. The experimental data are taken from Ref. [128].

µ ≈ 1 (GeV/c)2; ELPM comes about 5 GeV/c, where the transition takes place for all

centralities.

Finally we see from Fig. 4.8, the hadronic suppression at large momenta pT > 8

GeV/c is best described by the complete coherence regime of energy loss. The best fit

value of κ is shown by the solid line. The parton would lose 1.4 GeV energy per collision

in most central 0-10% and about 1 GeV for mid central 40-50% collisions.

Here we add that a quick look at Fig. 4.7 may lead to conclude that the description

using the LPM mechanism is also working reasonably well till the largest pT considered

here. However a careful look at the Figs. 4.7 and 4.8 reveal that the LPM description

mostly misses the data for larger pT values while the description using the constant

energy loss per collision correctly follows the curvature of the data till the largest pT . A

more accurate data extending up to even larger pT at the LHC energy would settle this

question. This will be discussed in the next section.

We also recall that the LPM and the complete coherence regimes differ by the for-

mation time of the emitted gluons. This is reflected in a slight change in the curvature

of the nuclear modification factor, around pT ≈ 8–10 GeV/c.
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Figure 4.7: Nuclear modification of π0 production for Au+Au collisions at
√
sNN=200

GeV using LPM mechanism. The experimental data are taken from Ref. [128].

4.3.2 Rπ
0

AA for Cu-Cu collisions at RHIC

Following the success in describing the nuclear modification of hadron production in Au-

Au collisions, next we analyse the data of neutral pion suppression in Cu-Cu collisions

at the same center of mass energy. This is particularly interesting because central

collisions of Cu nuclei have number of participants similar to mid central collisions of

Au nuclei. Thus, a comparison would provide us results for two systems, one having

small spatial eccentricity (most central) and the other possesses large spatial eccentricity

(mid central).

Proceeding as earlier, we have shown the results for nuclear modification of π0 pro-

duction for Cu+Cu collisions at
√
sNN= 200 GeV for 0-10% most central and 30-40%

mid central collisions (Fig. 4.9), using the three energy loss mechanisms and compared

with the measurements by the PHENIX collaboration [129].

The the BH regime of energy loss is seen to describe the data for pT < 6 GeV/c for

all centralities and the coefficient k decreases about 30% from central to mid central

event. The best fit value of all coefficients are shown by the solid line, as before.
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Figure 4.8: Nuclear modification of π0 production for Au+Au collisions at
√
sNN=200

GeV in the complete coherence regime of energy loss. The experimental data are taken
from Ref. [128]

The LPM regime of energy loss is seen to follow the curvature of nuclear modification

factor over the pT range 6-10 GeV/c and even beyond for the far central collisions.

Finally, for the region of pT > 6-8 GeV/c the complete coherence regime of energy

loss is seen to work well. We find the demarcation of the LPM and constant energy

loss mechanisms is not as sharp as it was for Au nuclei, especially for the less central

collisions. This may have its origin in the smaller path length 〈L〉 for Cu nuclei.

It shall be noted that the energy loss coefficients obtained for the most central (0-

10%) collision of Cu nuclei is quite close to the same for the mid central (50-60%)

collisions of Au nuclei, for all three mechanisms. This verifies our earlier presumption

and confirms the applicability of the energy loss model.

4.4 Nuclear modification of charged hadron produc-

tion at LHC

The nuclear modification of charged hadron production (Rch

AA) for Pb+Pb collisions at

√
sNN= 2.76 TeV is calculated within the same framework of parton energy loss for four
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Figure 4.9: Nuclear modification of π0 production for Cu+Cu collisions at
√
sNN=200

GeV for the BH, LPM and complete coherence regime of energy loss. The experimental
data are taken from Ref. [129]
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centralities of collision; 0-5%, 5-10%, 10-30%, 30-50% [130]. The parameters k, α, κ are

systematically tuned to have a good agreement with the charged hadron suppression

data from the CMS collaboration [131]. The results are displayed in Fig. 4.10 where we

have shown the best fit value of the parameters only.

1 10 100
pT (GeV/c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
A

A
ch

BH; k=0.16
LPM; α=0.45
Constant; κ=3.75

0-5%; Pb+Pb@ 2.76 ATeV 

1 10 100
pT (GeV/c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
A

A
ch

BH; k=0.16
LPM; α=0.45
Constant; κ=3.60

5-10%; Pb+Pb@ 2.76 ATeV 

1 10 100
pT (GeV/c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
A

A
ch

BH; k=0.16
LPM; α=0.45
Constant; κ=3.50

10-30%; Pb+Pb@ 2.76 ATeV 

1 10 100
pT (GeV/c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
A

A
ch

BH; k=0.16
LPM; α=0.35
Constant; κ=3.00

30-50%; Pb+Pb@ 2.76 ATeV 

Figure 4.10: Nuclear modification factor of charged hadron production calculated for
Pb+Pb collisions at

√
sNN=2.76 TeV, in the BH, LPM, and complete coherence regimes

of energy loss and compared with the measurements by the CMS collaboration [131].

The BH mechanism of energy loss is seen to work nicely in the region of pT , 5-8

GeV/c. A change in curvature of the data is noted near pT ≈ 8 GeV/c, where BH

contribution to the nuclear modification factor drops slowly and the other energy loss

mechanisms start operating. The LPM mechanism is seen to explain the data for the pT

range ∼ (6–15) GeV/c and even beyond for far-central collisions (30-50%). Finally, the

complete coherence regime of energy loss has been found to follow curvature of the data

over a broad region of pT ; 10 GeV/c < pT < 100 GeV/c. The bending of theoretical

curve for pT > 100 GeV/c can be explained due to the anti-shadowing of nuclear parton

distributions (see Fig. 4.5).
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Figure 4.11: dE/dz vs average path length, 〈L〉 of the parton, for Au+Au and Cu+Cu
collisions at 200 AGeV (RHIC) and for Pb+Pb collisions at 2.76 ATeV (LHC). The
corresponding partons have pT > 8 GeV/c for RHIC energies and > 10–12 GeV/c for
LHC energies.

4.4.1 Centrality dependence of dE/dz and q̂

The energy loss per unit length is empirically determined as, −dE/dz = ε/λ, for the

complete coherence regime of energy loss. Thus the concerned partons would have pT ≥
8 GeV/c at RHIC and pT ≥ 12 GeV/c at the LHC center of mass energies. We have

found the rate of energy loss needed to explain the nuclear modification data at large

pT , varies linearly with the average path length 〈L〉 for both at the RHIC and the LHC

energies (Fig. 4.11). The error bar shown in Fig. 4.11 is related with the uncertainty of

the parameter ε and dashed line describes the linear fit. Our empirical result confirms

the conviction of Baier et al. that the total radiative energy loss suffered by the parton

inside a static medium of length L, ∆E ∝ L2 [103]. While the slopes of the fits for

Au+Au and Cu+Cu collisions at RHIC are quite similar, it becomes more steeper for

Pb+Pb collisions at LHC. This implies the parton radiative energy loss becomes more

prominent at the LHC center of mass energy. Also the magnitude of energy loss rises

about 2-3 times as we go from RHIC to LHC.

The average momentum transport coefficient q̂ for a particular centrality of collision

can be obtained from Eq. 4.14. We find for Au+Au collisions at 200 AGeV, q̂ varies from

0.25 GeV2fm−1 for 0-10% centrality to 0.39 GeV2fm−1 for 50-60% collision centrality.

The decrease of q̂ for more central collisions can be understood through the width of the
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transverse momentum distribution of the parton, 〈p2Tw〉 = q̂L [122]. The width 〈p2Tw〉
has been found about 1.25 GeV2 for 0-10% and 0.90 GeV2 for 50-60% collision centrality.

This signifies the system produced in central collisions is much dense and hotter than in

peripheral collisions. In case of Cu+Cu collisions, we get q̂ ≈ 0.18 GeV2fm−1 for all the

centralities. The near identity of q̂ for all the centralities is related to a smaller variation

in the path length for them.

Using the same law, we have obtained q̂ ≈ 0.63 GeV2fm−1 for 0-5% most central and

0.91 GeV2fm−1 for 30-50% mid central collisions of Pb nuclei at 2.76 ATeV. This value

is about 2 times higher than the same obtained for Au+Au collisions at RHIC energy.

It has been discussed earlier that various authors reported widely differing values of

q̂, in order to explain the hadronic suppression data. Thus, ASW scheme has found a

value of 5–10 GeV2fm−1 and GLV scheme reported a value in the range of 0.35–0.85

GeV2fm−1. On the other hand HTL based AMY approach suggests ∼ 2 GeV2fm−1. It

is assumed that part of the discrepancy lies due to different physical quantities of the

expanding system over which the average is taken.
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4.5 Azimuthal momentum anisotropy of hadrons

In the preceding sections, we have shown the success of our phenomenological model

of parton energy loss in describing the nuclear modification of hadron production at

the RHIC and LHC energies for different centralities of collision. In case of non-central

collisions, the parton will have an azimuthal variation of path length in the transverse

plane (see Fig. 4.3). This follows an azimuthal dependence of parton energy loss which

causes azimuthal anisotropy in the final state hadron momentum spectra at large pT .
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Figure 4.12: The differential azimuthal anisotropy coefficient v2 of neutral pion calcu-
lated using the three energy loss mechanisms for Au+Au collisions at

√
sNN=200 GeV.

The experimental data are from the PHENIX collaboration [132].

The differential azimuthal momentum anisotropy is measured in terms of the pa-

rameter v2(pT ), which is the second Fourier coefficient of the azimuthal distribution of

hadrons in the reaction plane:

v2(pT ) =

∫ 2π

0
dφ cos(2φ)dN/d2pTdy∫ 2π

0
dφ dN/d2pTdy

. (4.18)

Here we recall that the “elliptic”flow of hadrons seen at lower pT [55], is completely dif-

ferent than the present scenario. The later is originated due to hydrodynamic expansion
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Figure 4.13: The differential azimuthal anisotropy coefficient, v2(pT ), of charged hadrons
calculated in the complete coherence regime of parton energy loss for Pb+Pb collisions
at

√
sNN= 2.76 TeV. The experimental data are adopted from the ALICE Collabora-

tion [133].

of the system which converts the initial spatial anisotropy to the momentum anisotropy

of final particles. The hydrodynamic flow also affects the particle spectra up to pT ∼ 4-5

GeV/c. In addition, the recombination mechanism [29] is considered an alternative of

fragmentation process of hadronization in the intermediate pT range 3-5 GeV/c. Thus,

the results presented here should be taken as indicative of anisotropy which can arise

due to medium modification of the fragmentation function due to energy loss of partons.

The results of v2(pT ) of neutral pions for pT > 2 GeV/c for Au+Au collisions at

√
sNN= 200 GeV are shown in Fig. 4.12 for four centralities of collision, along with

the data from PHENIX collaboration [132]. We have taken the best fit value of the

energy loss parameter from earlier Rπ0

AA analysis and calculated φ dependent particle

spectra using L(φ; b). The theoretical results are shown over the pT region where the

corresponding mechanisms are found to work well.

Thus BH mechanism should be operating for pT ≤ 6 GeV/c, gives v2(pT ) increasing

with pT . However the experimental data shows the contrary behaviour. The results

for LPM and complete coherence regimes of energy loss exhibits similar behaviour to

the experimental data for the respective pT region. The theoretical values of azimuthal

anisotropy are larger by a factor of 2 for most central collisions (0-10%) and quite

reasonable for less central collisions (50-60%). It indicates the description of geometry

dependent momentum anisotropy of particles at large pT becomes more appropriate for

peripheral collisions.
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Next we have calculated v2(pT ) of charged hadrons in the complete coherence regime

of energy loss for Pb+Pb collisions at
√
sNN= 2.76 TeV for four centralities of collision;

0-5%, 5-10%, 10-30%, 30-50%. The preliminary results from the ALICE collaboration

are also given for comparison [133]. The energy loss parameter is taken from the Rch

AA

analysis. We have noted the theoretical results for pT ≥ 10 GeV/c are over predicting

the data by a factor of 2 for most central collisions (5-10%) and about factor of 1.5 for

mid central (30-40%) collisions (Fig. 4.13).

One immediate reason of the discrepancy between theory and experiment is the use of

uniform density for the colliding nuclei. A WoodsSaxon density profile for the colliding

nuclei would certainly reduce the difference in the path lengths for the partons travelling

along the reaction plane and perpendicular to it, thus reduce v2. In addition, introducing

an realistic expansion of the medium would reduce the momentum anisotropy of hadrons,

particularly at low pT .
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4.6 Nuclear suppression and azimuthal anisotropy

of prompt photons

The high energy prompt photons created in the early stages of heavy ion collisions con-

stitutes unique signal of the interactions between quarks and gluons at short distances.

The word “prompt”is used to identify the class of photons which do not come from the

decay of hadrons (e.g., π0, η, etc.). This photon source is mostly dominating at higher

momenta which roughly separates it from the thermal photon region. The basic mech-

anisms of prompt photon production at the Leading-order (LO) of strong coupling αs

are (i) quark–gluon Compton scattering (qg→ qγ), (ii) quark–anti-quark annihilation

(qq̄→ gγ) and (iii) collinear fragmentation from the final state quark (q→ q+γ) [134].

Of these the third process is sensitive to the energy loss of the parent quark before it

fragments [114, 135]. This will also give rise to azimuthal anisotropy of prompt pho-

tons at large pT . However prompt photons created in the processes (i) and (ii) do not

contribute to azimuthal anisotropy.

We have calculated the invariant yield of prompt photons for proton-proton collisions

at
√
s= 200 GeV using the code INCNLO. The results are shown in Fig. 4.14 for three

different scales Q= 0.5kT , 1.0kT , 2.0kT . We have used CTEQ4M PDF and BFG-II

parton to photon fragmentation function for this study. It is found that our results

are consistent with the data from PHENIX [136] and also with earlier calculations (see

Ref. [136]). For the rest of the calculations we have used a common scale Q = 1.0kT .

We have not performed calculations at the LHC energy since no baseline pp data was

available at that time.

The code is suitably modified while performing calculations for Au-Au collisions

at the RHIC energy. We include the energy loss suffered by the quarks and nuclear

shadowing as before. The isospin of the colliding nucleons is also properly accounted in

our formalism which is essential for the photon calculation.

In Fig. 4.15 , we have shown the results of nuclear modification of prompt pho-

ton production for the three energy loss mechanisms. The energy loss coefficients are

obtained from the earlier analysis of neutral pion suppression for Au+Au collisions at

200A GeV. We have shown the theoretical results over the region where the respective
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Figure 4.14: A comparison of production of prompt photons in p+p collision measured
by the PHENIX collaboration [136] at

√
sNN = 200 GeV with NLO pQCD calculations.

mechanisms are found to work. Our results are found to be in fair agreement with the

preliminary data from PHENIX collaboration [137] beyond pT ≥ 10 GeV/c where the

prompt photon source is dominant. Of course we do realize that for lower kT , several

other mechanisms like jet-conversion [138], induced bremsstrahlung [139] and thermal

production [65, 66] will contribute. We find the three energy loss mechanisms behave

in a similar way which is contrary to hadron suppression. We shall discuss this feature

later.
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Figure 4.15: Nuclear suppression of hard photons calculated using BH, LPM, and con-
stant energy loss per collision for Au+Au (0-10%) collisions at

√
sNN=200 GeV. The

data points are taken from Ref. [137]
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Figure 4.16: The differential azimuthal anisotropy coefficient vγ2 of direct photons calcu-
lated with two schemes of parton energy loss for Au+Au collisions at

√
sNN= 200 GeV

along with experimental data from the PHENIX [140] (left panel) and the STAR [141]
(right panel) collaborations.

Next we calculate the differential azimuthal anisotropy coefficient vγ2 (kT ) of prompt

photons originated due to azimuthal variation of path length of the parent quark. Re-

calling the fact that elliptic flow of direct photons for kT ≤ 5 GeV/c is an outcome

of collective flow of thermal partons developed at early times [25]. In Fig. 4.16 the

results for vγ2 (kT ) are shown for LPM and complete coherence regimes of parton energy

loss for two centrality classes (20-40% and 10-40%) and compared them with the recent

measurements from the PHENIX [140] and the STAR [141] collaborations. We make no

further adjustments of the energy loss parameters obtained earlier.

We see that our theoretical curves agrees well with the experimental data for kT ≥
6 GeV/c for both cases. Next we discuss the similar pattern of three energy loss mech-

anisms. The energy loss parameters are extracted from the earlier study of nuclear

modification of hadron production at large pT , which is sensitive to the energy loss of

quarks and gluons both. However prompt photon production is only affected due to

energy loss of quarks. Thus the possible reason could be the dominant contribution

of quarks to the hadron as well as the photon production at large pT , which is then

properly sampled in our calculation. One could study the flavor dependence of parton

energy loss by fixing the quark energy loss from the direct photon spectra and then fix

the gluon energy loss from the hadronic spectra.



Chapter 5

Jet-tagged back-scattering photons
from QGP

5.1 Introduction

The measurement of direct photons and dileptons holds great promise for the char-

acterization of matter created in high energy nuclear collisions. The large mean free

path (∼ 100 fm) of these electromagnetic radiations which is an order of magnitude

larger than the transverse size of the colliding nuclei, enable them to carry informa-

tion from the earliest stages of collision. Due to electromagnetic coupling with matter

(αem/αs ∼ 10−2), they are least scattered in the surrounding medium and carry the in-

formation undistorted to the detectors [142]. The present discussion is mainly centered

on direct photon production. Theoretical efforts over the last few decades have been

spent to identify several sources of direct photon which constitute the entire spectrum

observed in experiment. They include:

• Prompt photons originated from the initial hard scatterings between the beam

partons and from fragmentation of large momentum jets [134, 143]. The basic

mechanisms of prompt photon production at the Leading Order of strong coupling

αs are (i) quark–gluon Compton scattering (qg→ qγ), (ii) quark–anti-quark anni-

hilation (qq̄→ gγ) and (iii) bremsstrahlung radiation from the final state parton

(q(g)→ q(g)+γ). The photons produced through the processes (i) and (ii) are

called “direct”photons whereas photons originated from the process (iii) are called

“fragmentation”photons. They are found to be sensitive to the parton distribution

77
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Figure 5.1: Schematic plot of production rate vs.energy for different direct photon
sources.

of the colliding nucleons and the QCD scale parameter ΛQCD [144, 145].

• Pre-equilibrium photons are originated in the phase when the initial state partons

undergo multiple re-scatterings but have not thermalized yet. By using parton

cascade model, the contribution has been evaluated and found to dominate at

lower transverse momenta [146]. The photon momentum (pT ) depends on the

momentum scale (Q2) of collision not on the temperature of system, which provides

valuable information about pre-equilibrium dynamics [147].

• Photons produced due to interaction of high energy jets with thermalized QGP

are commonly known as Jet-medium photons. They are calculated either from

elastic scattering (2 → 2) of partons [138] or inelastic bremsstrahlung from a fast

quark [139]. This particular source has been found to dominate intermediate pT

region; 3 − 5 GeV at the RHIC and LHC energies. The photon momentum is

strongly correlated with parent jet momentum and the yield is sensitive to the

temperature of the plasma.

• The electromagnetic radiation emitted from an equilibrated partonic or hadronic

matter are called thermal photons. The production mechanism of thermal photon

has been discussed earlier in Chapter 2. It is noted that while the photon yield

of other sources follows a power-law in pT , thermal photon yield falls exponen-

tially with pT . Thus the inverse slope parameter of thermal photon pT spectra
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is a measure of average temperature of the thermalized medium produced in the

collisions. The temperature extracted from the slope of recent LHC direct photon

measurement is ∼ 304± 51 MeV [148].

The photon sources discussed in the above paragraphs roughly follow a hierarchy of

transverse momenta, from high to low pT (see Fig. 5.1). However it is a formidable task

in experiment to separate out each particular contribution, in fact to distinguish direct

photons from the overwhelming background of low momentum photons come from the

decay of π0 and η mesons. The present study aims to identify the jet-medium photon

contribution by employing the correlation with large momentum jets. It will be argued

later that this effectively rids the sample of photons from thermal and pre-equilibrium

sources and vastly reduces the background from fragmentation prompt photons. Further

the jet-medium photons are found to offer complementary measure of parton energy loss

independent of hadronic measurement.

5.2 Production rate of jet-medium photons in QGP

Jet-medium photons produced through the elastic Compton (qg → qγ) or annihilation

(qq → γg) scattering was first estimated in Ref. [138]. We find the cross-section of these

processes is sharply peaked at backward angles i.e., the produced photon approximately

carries the same momentum of the initial quark or anti-quark. This phenomenon is

called “back-scattering”of photons, quite well-known in electrodynamics The low energy

photon beams (∼ 1 eV) are Compton back-scattered form a high energy electron beam

(∼ 100 MeV) to produce high energy laser beam of few tens of MeV [149] at HIGS

research facility of Duke free electron laser laboratory. The QCD analogue used here is

a thermal gluon of energy ∼ 200 MeV scattering off a fast quark ∼ 10 GeV to produce

a hard photon of few GeV. In the following subsections, we have outlined the rate of

production of back-scattering photons due to Compton and annihilation processes in

QGP at Leading Order of strong coupling (αs) [32].
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5.2.1 Photon production by Compton scattering

The color independent part of the cross-section for (qg → qγ) is related to the process

(qγ → qγ) as;

Eγ
dσ

d ~pγ
(qg → qγ) = (gs/eq)

2Eγ
dσ

d ~pγ
(qγ → qγ)

=
αs

αem
(
e

eq
)2Eγ

dσ

d ~pγ
(qγ → qγ), (5.1)

where αs = g2s/4π and αem = e2/4π. eq is the fractional charge of the quark. We write

ga

qkf

qlf

γ

s− channel

qkf

ga qlf

γ

u− channel

Figure 5.2: Feynman diagrams for the Compton process in QCD.

the Mandelstam variables for the process (q + g → q + γ),

s = (pq + pg)
2,

t = (pg − pγ)
2,

u = (pq − pγ)
2. (5.2)

Using the above variables, the differential cross-section for (qγ → qγ) is given by [150]:

dσ

dt
= (

eq
e
)4

8πα2
em

(s−m2)2

{
(

m2

s−m2
+

m2

u−m2
)2 + (

m2

s−m2
+

m2

u−m2
)− 1

4
(
s−m2

u−m2
+
u−m2

s−m2
)

}

(5.3)

In the small quark mass limit (m→ 0); only the last term dominates the cross-section.

Thus using Eqs. (5.1) and (5.3), the differential cross section for QCD Compton

scattering in the small quark mass limit is:

dσComp.

dt
(qg → qγ) = −(

eq
e
)2

2παsαem

(s−m2)2

{
(
s−m2

u−m2
+
u−m2

s−m2
)

}
. (5.4)

For a given center of mass energy (
√
s), we find the cross section becomes large for

small values of (u−m2);

|u−m2| = |(pq − pγ)
2 −m2|
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= |m2 + 0− 2pq · pγ |

≃ 2EγEq − | ~pγ||~pq|cosθγq

≃ 2Eγ(Eq − |~pq|cosθγq) (5.5)

Thus |u −m2| is minimum when θγq= 0 i.e., the photon momentum ~pγ is collinear to

~pq~pg

~pq́

~pγ

θγq

Figure 5.3: Kinematics of the Compton process in center of mass frame.

~pq.

~pγ ≈ ~pq Backward scattering (5.6)

Similarly, it can also be shown that the 4-momentum of the photon is approximately

same as the 4-momentum of the quark,

pγ ≈ pq. (5.7)

They are called Compton back-scattering photons. The color independent part of the

back-scattering photon cross section is approximated as

Eγ
dσComp.

d ~pγ
≈ σC

totEγδ( ~pγ − ~pq), (5.8)

where σC
tot is the color independent part of the total Compton scattering cross section;

obtained by integrating Eq. (5.4) over allowed range of t.

•The upper and lower limit of t:

We define the center of mass energy for the reaction qg → qγ

√
s = E∗

q + E∗
g , (5.9)

with |~p∗q| = |~p∗g| = E∗
g ; |p∗q| =

√
E∗

q −m2.
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Thus,

√
s =

√
E∗2

g +m2 + E∗
g

⇒ E∗
g =

s−m2

2
√
s

(5.10)

Similarly,

E∗
γ =

s−m2

2
√
s
. (5.11)

t = (pg − pγ)
2 = −2E∗

gE
∗
γ(1− cosθγ∗g∗), (5.12)

where the (∗) corresponds to the quantities measured in center of mass frame.

The upper limit of t corresponds to θγ∗g∗ = 0.

tup = 0 (5.13)

The lower limit corresponds to θγ∗g∗ = π

tlow = −4E∗
gE

∗
γ =

−4(s−m2)2

4s
=

−(s−m2)2

s
(5.14)

Now we briefly outline the steps of calculation of rate of production of photons in

the Compton process. Let us consider a quark of flavor f with color index (k) scatters

with a gluon of color a, yields a photon and a quark with color index (l) and flavor f .

qkf + ga = γ + qlf (5.15)

The number of photons emitted per unit time

dNγ

dt
= NsNg

nf∑

f=1

3∑

k=1

3∑

l=1

8∑

a=1

∣∣∣∣
λakl
2

∣∣∣∣
2

× 1

(2π)6

∫
d3x d3pg d

3pq

fg(~pg)fq(~pq)[1− fq( ~́pq)]σ
C
tot(s)vqg, (5.16)

where Ns,Ng are the quark, gluon spin degeneracies respectively. λakl are the standard

Gell-Mann matrices. fq(~pq) and fg(~pg) are the momentum distribution function of the

incoming quark and gluon. fq( ~́pq) gives the probability of production of a quark with

momentum ~́pq(= ~pq + ~pg − ~pγ) in the final state. Thus [1− fq( ~́pq)] is the Pauli blocking

factor, reduces the probability of occupying the same state. vqg = |vq−vg| is the relative
velocity of the incoming partons.
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Using the properties of Gell-Mann matrices we get;

3∑

k=1

3∑

l=1

8∑

a=1

∣∣∣∣
λakl
2

∣∣∣∣
2

=
8× 2

4
= 4. (5.17)

Thus Eq. 5.16 becomes

dNγ

dt
= 4NsNg

nf∑

f=1

1

(2π)6

∫
d3x d3pg d

3pqfg(~pg)fq(~pq) [1− fq( ~́pq)]σ
C
tot(s)vqg. (5.18)

The photon cross section can be written as sum over all momentum states

σC
tot(qg → qγ) =

∫
Eγ

dσComp.

d ~pγ
(qg → qγ)

d ~pγ
Eγ

. (5.19)

Inserting the above in (Eq. 5.18), we get the rate of photon production due to Compton

process

Eγ
dNγ

d4xd ~pγ
= 4NsNg

nf∑

f=1

1

(2π)6

∫
d3pg d

3pqfg(~pg)fq(~pq)[1− fq( ~́pq)]

×Eγ
dσComp.

d ~pγ
vqg (5.20)

It can be shown from relativistic kinematics that in a collinear collision between A

and B, the quantity EAEB|VA − VB| is Lorentz invariant.

EAEB|VA − VB| = [(pA · pB)2 −m2
Am

2
B]

1/2

= [(s− p2A − p2B)
2/4−m2

Am
2
B]

1/2 (5.21)

Thus the relative velocity vqg becomes

vqg =

√
(s− p2q − p2g)/4−m2m2

g

EqEg

=
(s−m2)

2EqEg

(5.22)

Using Eqs.( 5.8) and ( 5.22), we get

Eγ
dNγ

d4xd ~pγ
= 4NsNg

nf∑

f=1

1

(2π)6

∫
d3pg d

3pqfg(~pg)fq(~pq)[1− fq( ~́pq)]

×Eγδ( ~pγ − ~pq)σ
C
tot(s)

(s−m2)

2EqEg
(5.23)



84

The integration over pq vanishes due to delta function and ~́pq = ~pg. Thus Eq. 5.23

becomes

Eγ
dNγ

d4xd ~pγ
=

4NsNgEγ

(2π)6

nf∑

f=1

∫

~pγ= ~pq

d3pgfg(~pg)fq( ~pγ)[1− fq(~pg)]

×σC
tot(s)

(s−m2)

2EγEg
(5.24)

Assuming Fermi-Dirac distribution for the quark and Bose-Einstein distribution for the

gluon and integrating over the gluon phase space (s/4Eγ < pg <∞), we ultimately get

the rate of back-scattered photons for (qg → qγ):

Eγ
dNγ

d4xd ~pγ
=
NsNgαemαs

32π2
fq( ~pγ)T

2

nf∑

f=1

(
eq
e
)2
{
ln(

4EγT

m2
) + Ccomp

}
. (5.25)

Including the process (qg → qγ), the total rate of Compton back-scattered photons

at Leading Order strong coupling (αs) is given by:

Eγ

dNComp.
γ

d4xd ~pγ
=
NsNgαemαs

32π2
[fq( ~pγ) + fq( ~pγ)]T

2

nf∑

f=1

(
eq
e
)2
{
ln(

4EγT

m2
) + Ccomp

}
(5.26)

5.2.2 Photon production by annihilation

The color independent part of the differential cross section for (qq → γg) is related to

the differential cross section of the process (qq → γγ) as,

Eγ
dσann

d ~pγ
(qq → γg) = (gs/eq)

2Eγ
dσ

d ~pγ
(qq → γγ)

=
αs

αem
(
e

eq
)2Eγ

dσ

d ~pγ
(qq → γγ), (5.27)

The differential cross section of photon production for (qq → γγ), averaged over initial

state spins and summed over final state polarizations, is given by ( [150]):

dσ

dt
= (

eq
e
)4

8πα2
em

s(s− 4m2)

{
(

m2

t−m2
+

m2

u−m2
)2 + (

m2

t−m2
+

m2

u−m2
)− 1

4
(
t−m2

u−m2
+
u−m2

t−m2
)

}

(5.28)

In the small quark mass limit (m → 0), the last term dominates the cross section.

Using Eqs. 5.27 and 5.28 the differential cross section of (qq → γg) in small quark mass

limit:
dσann

dt
= −(

eq
e
)2)

2παemαs

s(s− 4m2)

{
(
t−m2

u−m2
+
u−m2

t−m2
)

}
, (5.29)
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Figure 5.4: Feynman diagrams for the annihilation process in QCD.

where the Mandelstam variables for the process (q + q → γg) are:

s = (pq + pq)
2,

t = (pq − pγ)
2,

u = (pq − pγ)
2. (5.30)

For a given value of
√
s, we find cross section of the annihilation process becomes max-

imum, when |t−m2| or |u−m2| is minimum.

|t−m2| = |(pq − pγ)
2 −m2|

= |m2 + 0− 2pq · pγ −m2|

≃ 2EγEq − | ~pγ||~pq|cosθγq

≃ 2Eγ(Eq − |~pq|cosθγq) (5.31)

|t−m2| is minimum when θγq = 0 i.e., photon momentum ( ~pγ) aligns along the direction

of quark momentum (~pq).

~pγ ≈ ~pq Forward scattering (5.32)

Similarly,

|u−m2| = |(pq − pγ)
2 −m2|

≃ 2Eγ(Eq − |~pq|cosθγq). (5.33)

|u−m2| is minimum when θγq = 0 i.e., photon momentum ( ~pγ) aligns along the direction

of anti-quark momentum (~pq).

~pγ ≈ ~pq Backward scattering (5.34)
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We have seen dσann/dt has two peaks and the photon is most likely to be produced

in these two directions. Thus the color independent part of the cross section can be

approximated:

Eγ
dσann

dpγ
(qq → γg) ≈ σA

tot(s)
1

2
Eγ [δ( ~pγ − ~pq) + δ( ~pγ − ~pq)], (5.35)

where σA
tot(s) is the total annihilation cross section is obtained by integrating Eq. 5.29

over the allowed ranges of t.

θγq

~pq ~pq

~pg

~pγ

Figure 5.5: Kinematics of the annihilation process in center of mass frame.

•The upper and lower limit of t:

We define the center of mass energy for the reaction qq → γg

√
s = E∗

q + E∗
q = E∗

γ + E∗
g , (5.36)

with |~p∗q| = |~p∗q| and | ~p∗γ| = |~p∗g|. Thus,

E∗
q =

√
s

2
and E∗

γ =

√
s

2
. (5.37)

t = (pq − pγ)
2 = m2 − 2E∗

γ(E
∗
q − |~p∗q|cosθ∗γq) (5.38)

The upper limit of t corresponds to θ∗γq =0

tup = m2 − 2Eγ

(√
s

2
−
√
(

√
s

2
)2 −m2

)

= m2 −Eγ

(√
s−

√
(s− 4m2)

)

= m2 −
√
s

2

(√
s−

√
(s− 4m2)

)
(5.39)
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The lower limit corresponds to θ∗γq = π

tlow = m2 −
√
s

2

(√
s+

√
(s− 4m2)

)
(5.40)

Next we briefly describe the steps of calculation of photon production rate due to

annihilation process. Let us consider an anti-quark of flavor f , color j annihilates with

a quark of same flavor, color i, yields a photon and a gluon with color index m.

qif + qjf → γ + gm (5.41)

The number of photons produced per unit time is given by;

dNγ

dt
= N2

s

nf∑

f=1

3∑

i=1

3∑

j=1

8∑

m=1

∣∣∣∣
λmij
2

∣∣∣∣
2

× 1

(2π)6

∫
d3x d3pq d

3pq

fq(~pq)fq(~pq)[1 + fg(~pg)] σ
ann
tot (s)vqq,

where fq(~pq) and fq(~pq) are the momentum distribution function of the quark and anti-

quark respectively. fg(~pg) is the occupation probability of the gluon having momentum

~pg = (~pq + ~pq − ~pγ) in the final state. As the gluon is produced simultaneously with

the photon, we have an enhancement factor [1 + fg(~pg)] due to Bose-Einstein statistics.

vqq = |~vq − ~vq| is the relative velocity between the incoming partons.

Summed over color matrices (Eq. 5.17), we get

dNγ

dt
= 4N2

s

nf∑

f=1

∣∣∣∣
λmij
2

∣∣∣∣
2

× 1

(2π)6

∫
d3x d3pq d

3pq

fq(~pq)fq(~pq)[1 + fg(~pg)] σ
A
tot(s)vqq,

The color independent annihilation cross section σA
tot(s) can be written as sum over all

photon momentum:

σA
tot(qq → γg) =

∫
Eγ

dσann

d ~pγ
(qq → γg)

d ~pγ
Eγ

. (5.42)

Inserting Eq. 5.42 in Eq. 5.42, we get the rate of production of annihilation photons,

Eγ
dN

d4xd3pγ
=

4N2
s

(2π)6

nf∑

f=1

∫
d3pq d

3pq fq(~pq)fq(~pq)[1 + fg(~pg)]Eγ
dσann

d ~pγ
(qq → γg)vqq(5.43)
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vqq can be expressed as (see eq. 5.21):

vqq =
1

EqEq
[(pq · pq)2 −m2

qmq]
1
2

=
1

EqEq
[(s− p2q − (pq)

2/4− (m2)2]
1
2

=

√
s(s− 4m2)

2EqEq
(5.44)

Substituting Eq. (5.35) and (5.44) in Eq. 5.43, we have

Eγ
dN

d4xd3pγ
=

4N2
s

(2π)6

nf∑

f=1

∫
d3pq d

3pq fq(~pq)fq(~pq)[1 + fg(~pg)]

×σA
tot(s)

Eγ

2
[δ( ~pγ − ~pq) + δ( ~pγ − ~pq)]

√
s(s− 4m2)

2EqEq

(5.45)

The delta functions kill the integrations over pq or pq which yields

Eγ
dN

d4xd3pγ
=

4N2
s

(2π)6
Eγ

2

nf∑

f=1

∫

~pγ= ~pq

d3pq fq( ~pγ)fq(~pq)[1 + fg(~pq)] σ
A
tot(s)

√
s(s− 4m2)

2EγEq

+

∫

~pγ= ~pq

d3pqfq(~pq) fq( ~pγ)[1 + fg(~pq)]σ
A
tot(s)

√
s(s− 4m2)

2EqEγ
(5.46)

The above equation can also be written as;

Eγ
dN

d4xd3pγ
=

4N2
s

2(2π)6

nf∑

f=1

∫

~pγ= ~pq

d3pq fq( ~pγ)fq(~pq)[1 + fg(~pq)] σ
A
tot(s)

√
s(s− 4m2)

2Eq

+ (q ↔ q) (5.47)

Assuming Fermi-Dirac distribution for the anti-quark and Bose-Einstein distribution

for the gluon, we integrate over pq in the limit (s/4Eγ < pq <∞) and use the relativistic

approximation s≫ 4m2. Thus the Eq. 5.47 becomes;

Eγ

dNann
γ

d4xd ~pγ
=

4N2
sαemαs

32π2
fq( ~pγ)T

2

nf∑

f=1

(
eq
e
)2
{
ln(

4EγT

m2
) + Cann

}
(5.48)

+ (q ↔ q) (5.49)

The above expression gives the rate of production due to annihilation at Leading

Order of strong coupling (αs).
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5.2.3 Total photon production rate

Putting Ns=2, Ng=2 in Eqs. 5.26 and 5.49, we get the total rate of back-scattering

photons in QGP through Compton and Annihilation processes:

Eγ

dN total
γ

d4xd ~pγ
= Eγ

dN comp
γ

d4xd ~pγ
+ Eγ

dN total
γ

d4xd ~pγ
(5.50)

=
αemαs

4π2
[fq( ~pγ) + fq( ~pγ)]T

2

nf∑

f=1

(
eq
e
)2
{
ln(

4EγT

m2
) +

Ccomp + Cann

2

}

where the constants are given by Ccomp =-1.916 and Cann=-0.416.

We find the rate of photon production depends on the temperature (T ) of the quark-

gluon plasma and rest mass (m) of the quark. Following Ref. [151] we assume an effective

thermal mass of the quark;

mth =
gsT√
6

(5.51)

Another important study on thermal photon production in QGP by Kapusta et

al. [152] includes a correction in the term ln(4EγT/m
2
th), by replacing mth to

√
2mth.

Thus Eq. 5.51 becomes,

Eγ

dN total
γ

d4xd ~pγ
=
αemαs

4π2
[fq( ~pγ) + fq( ~pγ)]T

2

nf∑

f=1

(
eq
e
)2
{
ln(

3Eγ

αsπT
)− 1.166

}
. (5.52)

It is found that the total production rate of back-scattered photons is proportional to

T 2 ln(1/T ), thus sensitive to the temperature of the plasma. It can also be noted that

the phase space distribution of the fast quark (fq(~p)) enters linearly in the rate equation

which leads to power-law behaviour of the momentum spectrum.

5.3 Inclusive yield and elliptic flow of jet-medium

photons

The first calculation of jet-medium photons with an one dimensional boost invariant

expansion of the system, shows significant contribution in the single inclusive photon

spectra at intermediate pT (∼ 3–5GeV) at RHIC and LHC [138].The more recent cal-

culation with two dimensional, boost-invariant ideal hydrodynamic expansion has also

verified the earlier result [153]. This particular source has to compete with prompt hard

photons at larger pT and thermal photons at smaller pT (Fig. 5.6). Hence it is almost
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Figure 5.6: Inclusive yield and azimuthal anisotropy of direct photons for Au+Au col-
lisions at

√
sNN= 200 GeV, calculated with ideal hydrodynamic evolution of the sys-

tem [153]
.

impossible to confirm their existence from the measurement of single inclusive photon

spectra alone.

The azimuthal momentum anisotropy (v2) of jet-medium photons has been predicted

to be negative [154]. This can be understood as the fast jet travels longer distance in the

direction perpendicular to the reaction plane in comparison of along the reaction plane,

jet-medium back-scattering would more probable to occur out-of the plane. However

recent experimental measurements of direct photon v2 at RHIC and LHC have not

found any firm evidence for the existence of jet-medium photons [26, 155].

In viewing the above indeterministic situations, we propose the use of a trigger jet for

an unambiguous signature of this source. It is motivated by the fact that back-scattering

phenomena are induced by jets and jets are preferred to produce back-to-back in the

medium. Additionally, jets are routinely measured in heavy ion experiments with good

amount of precision. Thus we adopt the strategy to tag a jet of large transverse energy

(ET ) and measure the direct photons on the opposite side. Only prompt direct and

fragmentation photons possess such correlation with away-side jets. They will consti-

tute the “background”of the back-scattered photon measurement. Pre-equilibrium and

thermal photons do have such correlation, thus can be eliminated from the background.
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Figure 5.7: Schematic diagram of tagging a jet opposite to a prompt hard photon.

5.4 Background of jet-medium photons

For the estimation of background, we choose the trigger jet energy within a small window

around Eγ and look for photons in a narrow azimuthal region (∆φ = ±15 degrees) with

respect to the trigger jet-axis on the opposite side. Our choice attempts to maximize the

back-scattering signal and at the same time keeps jet reconstruction feasible in experi-

ment. Ideally the jet could be represented by a Delta function peaked at Eγ. However

the uncertainty in jet reconstruction in experiment limits the resolution of jet energy

measurement. We have chosen trigger jet window of 5 GeV for this reason. It is expected

that fragmentation photons are concentrated in the low-z region (z = Eγ/Ejet) [134].

Thus choosing the value of Eγ close to trigger jet energy window vastly reduces back-

ground from fragmentation and induced bremsstrahlung photons. Our calculation of

background photons relies on the code JETPHOX (version:1.2.2) [156] which evalu-

ates direct and fragmentation photon cross-section separately at Leading Order (LO)

and Next-to Leading Order (NLO) accuracy for proton-proton (pp) and nucleus-nucleus

(AA) collisions. The contributions are then summed to obtain the total physical cross-

section. The program can implement variety of experimental cuts (kinematic, isolation)

at the partonic level. JETPHOX has successfully explained the isolated prompt photon

production in pp collisions at the Tevatron energy [144] and the recent LHC energy [145].

Thus it provides a safe baseline of our analysis. However we have not implemented any

isolation cut in the present study for heavy ion collisions.

We have estimated the background photons in the collisions of gold nuclei at 200A
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Figure 5.8: Cross-section of prompt direct and fragmentation photons for Au+Au and
Pb+Pb collisions for the kinematical situations at RHIC and LHC respectively (see text
for details). The result is normalized per nucelon-nucleon collision.

GeV (RHIC) and lead nuclei at 2.76A TeV (LHC) for the the typical kinematic conditions

described here. The trigger jet window in rapidity-energy (yjet − ET ) is defined as;

−1 < yjet < 1 and (30 < ET < 35) GeV for RHIC and −2 < yjet < 2 and (60 < ET <

65) GeV for LHC. The hard prompt photons are measured in between the azimuthal

angle 165< φj <195 degrees relative to the trigger jet and in the rapidity interval

|yγ| <0.5 for RHIC and LHC both. We have used the CTEQ6M [157] and EPS09 [158]

parameterization of parton distributions for nucleons and nuclei respectively. The parton

to photon fragmentation probability is given by BFG-II fragmentation function [159].

The isospin asymmetry of the colliding nuclei has been properly accounted in JETPHOX.

The results for the background prompt photons (direct and fragmentation) at LO for

RHIC and LHC are displayed in Fig. 5.8. We recall that at leading order kinematics the

four-momentum of the trigger jet is perfectly balanced by the parton or photon on the
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Figure 5.9: Total cross-section of background photons at LO and NLO for Au+Au and
Pb+Pb collisions at RHIC and LHC respectively (see text for details). The result is
normalized per nucelon-nucleon collision.

opposite side (Pjet = Pγ). This can be verified through the correlation between direct

photon peak and the trigger jet window (see Fig. 5.8). The fragmentation photons are

found to amass in the low pT region as predicted. However at NLO, the Delta function

like correlation between trigger jet and prompt photon is diluted because of the presence

of third parton in the final state. The results for total background are shown in Fig. 5.9

where it is seen that the background develops an extended tail-like structure beyond the

trigger-jet window.

5.5 Results

To identify the back-scattering photon signal, we propose to measure the nuclear modifi-

cation of photon production around the trigger jet pT window. The nuclear modification

factor (Rγ

AA) is defined as:

Rγ

AA
(pT ) =

(Signal+Background)AA

Ncoll × (Background)pp
, (5.53)

where the ‘Signal’refers to the jet-medium back-scattered photons and the ‘Background’refers

to prompt direct + fragmentation photons. Ncoll is the total number of binary collisions

for a given centrality of collision.

5.5.1 Effect of parton energy loss

For this preliminary study, we have considered central collisions of Au nuclei at RHIC

(200A GeV) and Pb nuclei at LHC (2.76A TeV). We have used a longitudinally expand-
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ing, boost invariant fireball model; called PPM [160] to evaluate the back-scattering

photon production (according to Eq. 5.52) and energy loss of fast quarks before re-

scattering in the QGP medium. The transverse profile of entropy density depends on

the number density of participant nucleons (npart(r)), calculated from Glauber model.

The normalization of the entropy density is fixed by the multiplicity data of Au+Au

collisions at RHIC and scaled up to describe the data for Pb+Pb collisions at LHC. We

have used the equation of state for ideal relativistic gas of 3 light quarks, to calculate

the temperature of the system. PPM evaluates the differential energy loss ∆E = CIβ

20 25 30 35 40
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Figure 5.10: (Upper panel) Invariant yield of back-scattering photons in opposite to
30–35 GeV trigger jet at RHIC and 60–65 GeV trigger jet at LHC energy for central
Au+Au and Pb+Pb collisions respectively. (Lower panel) The nuclear modification fac-
tor of back-scattering photon + background photon (solid red line) and only background
photon (black dashed line) at RHIC and LHC kinematic conditions.

of a parton along the trajectory which is given by the expression:

Iβ =

∫
dττβρ(r+ τ êθ), (5.54)

where (r, θ) is the point of creation of the parton and êθ is the unit vector along the

trajectory. ρ(r) describes the spatial distribution of the hard processes which is given by
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the number density of binary collisions (ncoll(r)). β encodes the path-length dependence

of energy loss. In the present work, we adopted LPM type energy loss for which β=1.

The coefficient C describes the quenching strength, is given by C = q̂(r)/ncoll(r). q̂(r)

is proportional to the local entropy density and the normalization is determined from

the inclusive hadron suppression at RHIC and LHC energies [160].

In order to calculate the ‘Signal’, we have extracted the fast parton (quark) invariant

momentum yield from JETPHOX in the same kinematical situation. The current study

includes 3 active quark flavors (nf = 3). Now the phase-space distribution of the quark

jets fq(p) is related to their invariant yield as [161]:

fq(p) =
(2π)3

gqπR2τpqT

dN q

d2pqTdy
, (5.55)

where gq=6 is the spin-color degeneracy of the quarks and R is the transverse dimension

of the fireball. In the case of no energy loss suffered by the fast quark, back-scattering

signal is lying under the prompt direct photon peak [162]. However the energy loss of

fast quarks before conversion shift the back-scattering signal towards lower momentum,

compared to the trigger window.

In Fig. 5.10, we have shown the results of back-scattered photon signal and nuclear

modification factor for trigger jet window 30–35 GeV at RHIC and 60-65 GeV at LHC

for LO kinematics. The diffusion of signal towards lower momentum is due to the

energy loss of leading parton (quark). The characteristic peak in Rγ

AA
just below the

trigger window could be considered as a potential signature of back-scattering photons.

It mostly comes from the down-shift of back-scattering photon strength under direct

prompt photon peak. The nuclear modification factor of background photons (black

dashed line) which could serve as baseline for this measurement, has also displayed in

Fig. 5.10. We find the baseline Rγ

AA
is compatible with different x regions of EPS09

parton distribution, probed by the trigger parton.

Next we show the results of nuclear modification factor with the background calcu-

lated at NLO accuracy in Fig. 5.11 The back-scattering signal is still LO because the

leading parton picture, which we are using, is not quite well-defined at NLO. Therefore,

the LO signal is scaled by a K-factor that we determine from the ratio (background at

NLO)/ (background at LO) in the fragmentation dominated region of the background

(e.g. 20 GeV at RHIC and 40 GeV at LHC) in pp collisions. We have found that
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Figure 5.11: (Upper panel) Leading order back-scattering signal (multiplied by K-factor)
with the NLO background prompt photons calculated for the RHIC and LHC kinematic
conditions. (Lower panel) The nuclear modification factor of back-scattering signal(K-
factor) + background photon (solid red line) and only background photon (black dashed
line) at RHIC and LHC.

the potential signature in Rγ

AA
weakens but survives at NLO. Though the radiative

corrections tend to wash out the signal but can be separable from the background.

5.5.2 Effect of trigger jet energy loss

We have also studied the sensitivity of trigger jet energy loss on the back-scattering

phenomenon for the LO kinematics [163]. Recent measurements at the LHC experi-

ment [164, 165] indicate that jets are strongly suppressed in the medium. Jet energy

loss is much less controlled in the present approach however an accurate analysis would

require a full jet shower simulation in medium [166]. We have modelled the differential

energy loss (i.e. amount of energy outside of a jet cone) is proportional to the path

length and has weak logerthemic dependence on energy.

dE

dτ
= − r̂ ln(

ET

Λ
), (5.56)
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Figure 5.12: Rjet

AA
of single inclusive jets calculated for (Left ) central Au+Au collisions

at RHIC for two values of r̂ corresponds to “raa”values of 1.0 and 0.7 at pT = 30 GeV
(Right) central Pb+Pb collisions at LHC for four values of r̂ corresponds to raa values of
1.0, 0.9, 0.7, 0.5 at pT = 100 GeV. Data from STAR [167], ALICE [164] and CMS [165]
collaborations are also shown for comparison.

where Λ= 0.2 GeV and r̂ is proportional to the local entropy density as it was in case

of leading parton energy loss.

In order to calibrate the jet energy loss, we have calculated the nuclear modification

factor (Rjet

AA
) of single inclusive jets for central Au+Au collisions at RHIC and Pb+Pb

collisions at the LHC energy. We vary the normalization of r̂ to generate a certain

inclusive jet Rjet

AA. We shall refer to different values of r̂ by quoting the approximate

value of Rjet

AA
at ET= 30 GeV at RHIC and ET= 100 GeV at LHC. The numbers are

referred as “raa ”in the plots. Our results of single inclusive jet suppression at RHIC

and LHC are displayed in Fig. 5.12 along with the data from STAR, ALICE and CMS

for the jet-cone radii 0.4, 0.2 and 0.4 respectively. In the present set-up we can not make

a rigorous connection between jet cone radius and jet RAA, however the lowest value of

raa both at RHIC (0.7) and LHC (0.5) roughly corresponds to the suppression seen in

these analyses with small cone radii.

Now we have a set of jet energy loss parameters r̂ that contains the information of

currently available jet reconstruction accuracy, but more optimistic situations would be if

larger jet cones are used in experiment that contain more of the original jet energy. Next

we calculate the photon spectra (both background and signal) in opposite of trigger jets

for the different energy loss scenarios. For this purpose, we generalize the formula 5.52

to the rate of photons associated with a trigger jet window (Γj) in ET − yjet − φj space

described earlier. We replace the single quark distribution fq(p) by the parton-jet pair
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distribution integrated over Γj ,

fΓj
q (pq) =

(2π)3

gqτpT
δ(y − η)ρ(τ, r⊥)

×
∫

Γj

dETdyjetdφjEq
dN

d3pqdETdyjetdφj

∣∣∣
pq+∆pq
ET +∆ET

(5.57)

where r = (τ, η, r⊥) and pq are the position and momentum of the quark at the time

of back-scattering. r0 = (τ0, η, r
0
⊥) and p0

q are the initial position and momentum of

the quark when it was created in the hard collision. The quark is supposed to travel in

straight line along the direction of p0
q, i.e. r⊥ = r0⊥ + (τ − τ0)p̂

0
q . ∆pq and ∆ET are

energy lost by the parent quark and the trigger jet in the medium respectively. ρ(τ, r⊥)

gives the density of hard collisions in the transverse plane as before.

Here PPM propagates all photon-jet pairs and parton-jet pairs emitted from the hard

collisions. The energy loss of the jet in the medium is calculated according to Eq. 5.56

and all photon-jet pairs with final jet energy falls within Γj are counted. For parton-jet

pairs the energy loss of the jet and of the parton are calculated while the back-scattering

probability of the parton is also taken into account. We do not take into account energy

loss for partons before fragmentation in order to get a lower estimate for the signal to

background ratio. However if energy loss of fragmenting partons is taken into account

it will help suppress the fragmentation background at high photon-z.

In Fig. 5.13, we have shown the background photon and the back-scattering photon

spectra for the four trigger jet energy loss scenarios (raa 1.0, 0.9, 0.7, 0.5) at LHC and

two scenarios (raa 1.0, 0.7) at RHIC with parton energy loss included at LO kinematics.

We have checked that the scenario ‘raa 1.0’reproduces our old result of only parton

energy loss. The general behaviour we have found is both the signal and background

diffuses and tends to be shifted towards higher pT window. This is due to the fact that a

trigger jet counted in 30–35 GeV or 60–65 window might have originated a jet of larger

energy. While the diffusion of signal strength at RHIC is about 3–4 GeV above the

trigger jet pT window (raa 0.5), it becomes quite larger at LHC∼ 10 GeV (raa 0.5 and

0.7).

We have found the energy loss of trigger jet leads to suppression in Rγ

AA
in the trigger

jet window due to shift of background photons towards higher pT . On the other hand

the back-scattering signal causes a local enhancement in Rγ

AA
just below the trigger
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Figure 5.13: (Upper panel) Invariant yield of background photon and back-scattering
photon, (Lower panel) nuclear modification factor of calculated for back-scattering pho-
ton + background photon (‘Signal’) and only background photon (‘Background’) for
different trigger jet energy loss scenarios in central Au+Au collisions at RHIC and
Pb+Pb collisions at the LHC energy.

jet window. However the enhancement is not visible for the current jet reconstruction

scenario (raa 0.5) at the LHC. The width of the dip can be correlated with the momentum

shift of the trigger jet due to energy loss.

In conclusion, We find that the separation of back-scattering photons from other

photon sources using trigger jets depends crucially on our ability to reliably estimate

the original trigger jet energy. With the current jet cone sizes and jet energy loss, the

signal is too weak to be observed. The width of the signal carries information about

jet and parton energy loss. However we have to realize that the present calculation

has estimated a lower limit of the back-scattering photon strength. First, the use of

simple equation of state underestimates the temperature and thus the back-scattering

rate; second, we omitted induced photon bremsstrahlung, which will generally increase

the back-scattering photon rate below the trigger window and lastly the energy loss of

partons before fragmenting to photons, effectively reduces the background.



Chapter 6

Summary and Outlook

Electromagnetic and hard probes of strongly interacting matter which consists of thermal

photon intensity interferometry, suppressed production of hadrons at large momenta and

identification of jet-medium back-scattered photons, have been discussed in detail in this

thesis. A brief summary of each of the topic is provided below.

Construction of EoS and two photon intensity interferometry

Within the framework of hadron resonance gas model, we have constructed an equa-

tion of state (EoS) of hot hadronic matter which consists of discrete hadronic states up

to mass (m)≤ 2 GeV and continuous Hagedorn states in the mass range 2 < m <12

GeV. It has been found that thermodynamic quantities agree quite well with the lattice

QCD simulation results for temperature (T)≤ 200 MeV, on accounting for Hagedorn

resonances and finite volume correction of hadrons. The hadronic matter description is

switched either to Bag model equation of state or lattice equation of state at temper-

ature 165 MeV. The EoS includes the Bag Model admits a first order phase transition

whereas the lattice based EoS shows a rapid cross-over from QGP to hadron gas. Using

the two EoS we have calculated thermal particle and thermal photon transverse momen-

tum spectra for the central collisions of Au and Pb nuclei at the top RHIC (200A GeV)

and LHC (5.5A TeV) energy respectively, considering ideal relativistic hydrodynamic

evolution. The particle and photon spectra have shown marginal sensitivity to the dif-

ference between the two EoS. But temporal and spatial evolution of the photon emitting

source has been found different for the two EoS. Motivating by this observation, we have

calculated two photon intensity correlation at the RHIC and LHC energies. The two
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photon correlation function has been found to differentiate between first order phase

transition or cross-over from partonic matter to hadronic matter. Thus the present

findings could be valuable in order to probe the EoS of strongly interacting matter in

experiment. Further developments in the line can be done by checking the sensitivity

of initial parameters of the simulation or considering a more realistic evolution (e.g.

viscous hydrodynamics) of the system.

Centrality dependence of nuclear modification of hadron production

We have investigated the system size dependence of jet-quenching by analyzing the

suppressed production of hadrons in the collisions of Au and Cu nuclei at center of mass

energy 200A GeV (RHIC) and Pb nuclei at 2.76A TeV (LHC). We have used a simple

phenomenological model of parton energy loss in which the QGP medium is considered

as an assembly of static scattering centers at some fixed temperature. Next-to leading

order (NLO) perturbative QCD has been used for the initial production of partons and

then they are assumed to lose energy via gluon bremsstrahlung while traversing the

QGP. The energy loss per collision, ε, is taken proportional to the energy of the parton

(E),
√
E or constant for the incoherent, partial coherent and complete coherent regimes

of gluon radiation. The energy loss formalism closely follows the model advocated by

Baier, Dokshitzer, Mueller, Peigné, Schiff. The finite probability of multiple scattering

of partons and nuclear modification to parton distributions are also taken into account.

By calculating the path length traversed by the parton in QGP, ε remains to be only

adjustable parameter in this calculation. With the model, we have reproduced the cen-

trality dependence of nuclear modification factor (RAA) of hadron production measured

at RHIC and LHC energies. Thus the study has demonstrated the change in parton en-

ergy loss mechanisms which is revealed through the transverse momentum dependence

of nuclear modification factor of hadron production. Additionally, we have empirically

found the linear path length dependence of parton energy loss at the large transverse

momentum regime at RHIC and LHC.
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Jet-tagged back-scattering photons in quark-gluon plasma

The direct photons (real and virtual) are considered as an excellent messenger of

QGP properties because of their large mean ree path. Several sources of direct photons

has been proposed so far in theory but the separation of a single contribution is a chal-

lenging task in experiment. Photons originated due to Compton backscattering of large

momentum jets in QGP, was first reported in PRL 90, 132301 (2003). The jet-medium

Compton back-scattered photons are considered to contain valuable information about

the temperature and parton energy loss mechanism in QGP. Attempts to identify this

source in experiment through direct photon inclusive spectra or azimuthal momentum

anisotropy (v2) at RHIC energy has been inconclusive so far. In the present work, we

have proposed a novel way to separate these particular photons from other direct photon

sources by using the correlation with the trigger jet at large photon momentum. The

hard prompt photons are only produced in coincidence with a jet, considered as ‘back-

ground’for this study. We have calculated the invariant yield and nuclear modification

factor of back-scattering photons in coincidence with the trigger jet at leading order of

strong coupling for the central Au+Au collisions at RHIC (200A GeV) and Pb+Pb col-

lisions at LHC ( 2.76A TeV). For this purpose, we have used a NLO perturbative QCD

code of prompt photon production and a fireball model for the evolution of the medium.

The back-scattering photons have caused a sharp peak in the nuclear modification fac-

tor around the trigger jet window which could be considered as a potential signal. The

height and width of the peak is related with the temperature and energy loss of quarks

in the medium. However it has been found that inclusion of higher order processes for

the ‘background’and account for the trigger jet energy loss tends to wash out the signal.

Thus the present analysis is concluded with a comment that there exists a possibility to

separate Compton back-scattered photons from other sources if the energy of the trigger

jet is determined reliably in experiment.



Appendix A

Finite volume correction of
thermodynamic variables

Following the pressure ensemble formalism of Hagedorn [168], the grand canonical pres-

sure partition function is defined as:

Π(β, ξ, V ) =

∫ ∞

0

dV exp(−ξV )Z(β, V, λ), (A.1)

where Z(β, V, λ) is the grand canonical partition function. β = 1/T , λ = µ/T . ξ is a

new parameter associated with volume, in a similar way β is related to energy and µ is

related to number density.

Re-writing Eq. A.1 as,

Π(β, ξ, V ) =

∫ ∞

0

dV exp

(
−V [ξ − 1

V
lnZ(β, V, λ)]

)
. (A.2)

We define ξ0 =
1
V
lnZ(β, V, λ). Thus the integral converges for the values of ξ > ξ0,

provided the thermodynamic limit

lim
V→∞

1

V
lnZ(β, V, λ) exists. (A.3)

The pressure P (β, λ) is given by the singularity of partition function Π(β, ξ, V );

ξ0(β, λ) = lim
V→∞

[
1

V
lnZ(β, V, λ)] = βP (β, λ). (A.4)

We can define a function g(β, λ, V ), as the difference between 1
V
lnZ and ξ0,

g(β, V, λ) =
1

V
lnZ(β, V, λ)− ξ0. (A.5)

If the finite volume effects are neglected in defining Z(β, V, λ), then g = 0. The nature

of the singularity ξ0 (pole or branch cut) depends on the function g(β, V, λ).
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By giving a short introduction of pressure ensemble formalism, now we write the

grand canonical partition function Z for a system of identical particles with finite size

treated relativistically with Boltzmann statistics [46]:

Z(β, V ) =
∞∑

N=0

1

N !

N∏

i=1

∫
d3p

(2π)3
exp(−βǫi)× (V − V0)

N , (A.6)

where V0 =
∑N

i=1(ǫi/4B) is the total volume occupied by the particles. ǫi is the energy

of the ith particle and B is the MIT Bag constant.

Taking Laplace’s transform of partition function,

Π̂(β, ξ, V ) =

∫ ∞

V0

dV exp(−ξV )Z(β, V ). (A.7)

The factor simplifies as:

∫ ∞

V0

dV (V − V0)
Nexp(−ξV )

= exp(−ξV0)
∫ ∞

V0

dV (V − V0)
Nexp(−ξ(V − V0))

= exp(−ξ
N∑

i=1

ǫi
4B

)
N !

ξN+1

=
N∏

i=1

exp(−ξ ǫi
4B

)
N !

ξN+1
. (A.8)

Thus we get the partition function for the pressure ensemble from Eq. A.7 as:

Π̂(β, ξ, V ) =

∞∑

N=0

1

N !

N∏

i=1

∫
d3p

(2π)3
exp(−βǫi) exp(−ξ

ǫi
4B

)
N !

ξN+1

≈ 1

ξ

∞∑

N=0

[
1

ξ

∫
d3p

(2π)3
exp (−ǫ(β + ξ/4B))

]N
(A.9)

Let us consider

x =
1

ξ

∫
d3p

(2π)3
exp (−ǫ(β + ξ/4B)) (A.10)

and use binomial expansion
∞∑

N=0

xN =
1

1− x
, (A.11)

thus Eq. A.9 becomes:

Π̂(β, ξ, V ) =
1

ξ

[
1

1− 1
ξ

∫
d3p
(2π)3

exp (−ǫ(β + ξ/4B))

]
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=
1

ξ −
∫

d3p
(2π)3

exp (−β∗ǫ)

=
1

ξ − β∗Ppt(β∗)
(A.12)

where β∗ = (β + ξ/4B) and Ppt(β
∗) = 1/β∗

∫
d3p/(2π)3exp(−β∗ǫ) is the pressure of a

system of point like particles with temperature (1/β∗).

From the general consideration of pressure ensemble, the pressure Pxv for a system

of finite volume particles with temperature (1/β) is obtained by locating the pole ξ0 of

the partition function Π̂(β, ξ, V ):

ξ = βPxv(β) = ξ0. (A.13)

Thus we get;

ξ0 = βPxv(β) = β∗Ppt(β
∗)

βPxv(β) = (β + ξ/4B)Ppt(β
∗)

βPxv(β) = βPpt(β
∗) +

βPxv(β)

4B
Ppt(β

∗)

Pxv(β) = Ppt(β
∗) +

Ppt(β
∗)

4B
Pxv(β)

Pxv(β) =
Ppt(β

∗)

1− Ppt(β∗)
4B

(A.14)

The Eq. A.14 provides the relation between pressure with finite volume correction

and the pressure of point like particles.



Appendix B

The invariant momentum spectra of
hadrons

The hadrons are emitted from an infinitesimal fluid element moving with four-velocity

uµ, often follows the ideal gas like distribution:

f(x, p) =
g

(2π)3
1

exp(pµuµ/T )± 1
, (B.1)

where g is the spin-isospin degeneracy and pµ is the four-momentum of the hadron in a

frame where uµ is measured. The normalization of uµ is taken as; uµuµ= -1. Thus the

flux of particles within momentum element d3p through an element of surface dσµ [54],

dN =

∫
d3pf(x, p)

pµ

p0
dσµ. (B.2)

The invariant momentum distribution of a particular kind of hadron is given by:

E
dN

d3p
=

dN

d2pTdy
=

g

(2π)3

∫
f(x, p)pµdσµ. (B.3)

Now the four-momentum of the hadron

pµ = (mT cosh y, pT cosφ, pT sinφ,mT sinh y), (B.4)

and the four-velocity for an azimuthally symmetric system

uµ = γr(cosh η,−vr, 0,− sinh η) (B.5)

with y is the energy-momentum rapidity, η is the space-time rapidity and γr = 1/
√
1− v2r

is the Lorentz boost. Then

pµuµ = γrmT cosh(y − η)− γrvrpT cosφ

= mT cosh yT cosh(y − η)− pT sinh yT cosφ. (B.6)
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yT is called the ‘Transverse rapidity’defined as:

yT =
1

2
ln

1 + vr
1− vr

(B.7)

so that γr = cosh yT , vr = tanh yT and γrvr = sinh yT .

From Eq. B.1, we write the phase space distribution of the hadron:

f(x, p) =
g

(2π)3
1

exp {(mT cosh yT cosh(y − η)− pT sinh yT cosφ)/T} ± 1
(B.8)

Next we discuss the freeze-out criterion. At some constant freeze-out temperature

T (r, τ) = Tfrez; the numerical algorithm determines a three dimensional decoupling

surface (Σµ) whose surface elements are given by the vector dσµ.

In general, dσµ = (d3~x, dtd~S). For an azimuthally symmetric system, the decoupling

surface element can be written as:

dσµ = (rdrdφdz, êrrdφdzdt, 0, êzrdφdrdt) (B.9)

Using the relations t = τ cosh η, z = τ sinh η and dtdz = τdτdη, we write

pµdσµ = rdφdη[mT τ cosh(y − η)dr +mT sinh(y − η)dτ − pT τcosφdτ ]. (B.10)

In case of boost-invariant scenario y = η, the second term of expression (B.10) has

null contribution. Inserting the expressions (B.8) and (B.10) in Eq. B.3 and integrating

over the phase space variables leads to

dN

d2pTdy
=

g

(2π)3

∫
τr

∫ 2π

0

dφ

∫
dη

mT cosh(y − η)dr − pT cosφdτ

exp {(mT cosh yT cosh(y − η)− pT sinh yT cosφ)/T} ± 1
(B.11)

We find the result is independent of y for the boost-invariant case. Also we need the

value of transverse flow velocity (vr) at z = 0 for calculating the momentum spectra.

The integration over τ and r are done along the surface defined by T (r, τ) = Tfrez.
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