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SYNOPSIS

Quark Gluon Plasma: A novel state of QCD matter

Quantum Chromo Dynamics (QCD) is the non-abelian gauge theory with the gauge group

SU(3), coupled to quarks in the fundamental representation, which describes one of the basic

interactions of nature, the strong interaction. Due to its non-abelian nature, QCD, in many

aspects, is different from Quantum Electro Dynamics (QED), the theory of abelian gauge group

U(1) describing the electromagnetic interactions of nature. Unlike QED, where the mediatory

particle or the gauge particle, photon, does not interact among themselves, in QCD gluons

(gauge boson of QCD) self-interact because they carry colour charge themselves.

QCD is the governing theory of the interactions among the coloured degrees of freedom, quarks

and gluons having the following Lagrangian:

L = ψ̄i(i /D −mi)ψi −
1

4
F a
µνF

aµν (1)

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAbµA
c
ν (2)

Here, i is the flavour, a is the colour index over the generators of the non-abelian gauge group

G, fermion multiplet ψ belongs to an irreducible representation r of G, m is the mass of the

fermion and /D = γµ(∂µ − igsA
a
µt
a
r), where t

a
r are the Gellmann matrices. The last term in

the field strength tensor, F a
µν , is the typical of QCD which exists due to the self-interaction

of gluons. Here, fabc are the structure constants of the gauge group, G and gs is the colour

charge related to the coupling of QCD, αs by the relation, αs = (g2s/4π). The coupling of QCD

stands apart due to its unique dependence on the relevant energy scale. The behaviour of this

coupling at different regime of energy is very different. At lower energies or larger distances,

the value of αs becomes larger, so that it is impossible to separate individual quarks from a

hadron. This is the reason behind confinement of quarks into colour-neutral hadrons.

But, at high enough temperature and baryon density, it is possible to realise a state in which

quarks are no longer bound to their parent hadrons, rather they interact, out of the influence of
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their parent hadron, within a bigger volume, i.e. the nuclear volume. This phenomenon is called

deconfinement where the pertinent degrees of freedom are coloured quarks and gluons. This

can be attributed to another fantastic feature of the QCD coupling, the asymptotic freedom,

which predicts that αs decreases with the increase in energy or decrease in distance. Therefore,

the interaction between the quarks and gluons becomes weaker when two of them approach

each other.

There can be two physical situations in which the quarks can be ‘deconfined ’from their parent

hadrons to form a medium of deconfined matter.

i) Naoki Itoh in 1970 [1] and Collins and Perry [2] in 1975 proposed that at high enough baryon

density (i.e. if a nucleus is compressed to a critical value of pressure), hadrons within the

nucleus will overlap with each other. As a result of this, quarks within the overlapping hadrons

behave as asymptotically free particles when they are no longer bound to their parent hadrons.

ii) Same sort of situation can also arise when the nucleus is ‘heated up ’(i.e. provided with

enough kinetic energy) to create more and more hadrons up to a critical value of temperature.

These hadrons, again, start to overlap resulting into the formation of such a system, called

Quark Gluon Plasma (QGP), in which each quark loses its identity of belonging to its parent

hadron, but interact as independent degrees of freedom inside the nuclear volume.

This novel state of deconfined quark matter might have existed just a few microseconds after

the Big Bang in the early universe and may still exist in the core of a neutron star. It is

also believed, after a stunning testimonial at a CERN press release in 2000, that when two

heavy ions are collided at relativistic/ultra-relativistic energies in the laboratories (as has been

performed in Relativistic Heavy Ion Collider, RHIC at BNL and Large Hadron Collider, LHC

at CERN) a system of Quark Gluon Plasma (QGP) is formed.
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Open Heavy Quark as a probe of QGP

The physics of Quark Gluon Plasma is a contemporary field of research, both theoretically

and experimentally, and it will continue to intrigue scientific minds all over the world in the

upcoming years. This is because of the fact that there is ample opportunity to test Quantum

Chromo Dynamics (QCD) when applied to a medium at a particular temperature and baryon

density. There are various ways in which QCD in vacuum modified by the non-zero temperature

and baryon density. Therefore, Quark Gluon Plasma is a good tool to explore different aspects

of QCD in a medium. As, QGP formed due to the heavy ion collisions, lasts only for a short

scale, both spatially and temporally, it is not possible to measure its properties directly, rather

one needs different probes to study different properties of the medium. There are various

probes like electromagnetic probe (such as photons, dileptons which do not interact via QCD

with the medium particles and carry information of the initial state of the medium), Quarkonia

(bound state of heavy quark and its corresponding anti quark) suppression, quenching of Jet

(collimated beam of high energetic particles) etc., which give the signature of the formation of

a deconfined system, QGP.

In this dissertation, we endeavour to explore Quark Gluon Plasma with yet another class of

probes, open Heavy Quark (HQ) originated at a very early stage of heavy ion collision by

hard processes. HQ has the following advantages as an ‘external’probe: i) They are produced

before the formation of QGP due to the early hard scatterings. It can experience the whole

evolution of the medium starting from the beginning, ii) Being heavy (mass>> temperature

of the bath), there will be negligible thermal production, iii) Total number of HQ is conserved

as the probabilities of creation and annihilation are small inside the medium, iv) Thermal

equilibration time of HQ is larger than that of light quarks and gluons. Therefore, they can

be treated as Brownian particles moving inside a thermal fluid composed of light quarks, light

anti-quarks and gluons.
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The heavy quark, as a Brownian particle, evolves inside the medium according to the Boltzmann

Transport Equation (BTE):

∂f

∂t
+
~p

E
· ∂f
∂~x

+ ~F · ∂f
∂~p

=

[
∂f

∂t

]
coll

(3)

where f(~x, ~p, t) is the single-particle distribution function of an ensemble of HQ immersed inside

a fluid of light partons. In the absence of any external force, ~F , in a uniform plasma, BTE

becomes:
∂f

∂t
=

[
∂f

∂t

]
coll

. (4)

The right hand side of the above Eq. 2.26 is called the collision integral which entails that heavy

quark is suffering collisions with the medium particles. In general, it comes under an integral.

After linearising this integro-differential equation with the approximation of ‘soft ’scattering,

one can arrive at a partial differential equation, called the Fokker-Planck Equation (FPE) [7]:

∂f

∂t
=

∂

∂pi
[Ai(~p)f +

∂

∂pj
(Bij(~p)f)] (5)

One of the main motivations of this dissertation is to solve for this differential equation. In

order to do that the following informations are required:

i) The inputs, Ai and Bij, which are basically related to the drag and diffusion coefficients of

the heavy quark travelling inside Quark Gluon Plasma. The interaction of the HQ with the

medium particles is encoded within these transport coefficients.

ii) The initial distribution function of Heavy Quark, calculated from the initial hard processes

at the very early stage of Heavy Ion Collision (HIC). It has been supplied from the MNR

code [9] for charm and bottom.

iii) That the HQ is propagating inside an expanding (in space-time) plasma is reflected in the

evolution equation along with the proper initial conditions for the background QGP.

Having calculated the transport coefficients of the Heavy Quark and discussing about the space-

time expansion of QGP, the method of the solution of the Fokker Planck Equation has been

elaborated.
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Transport coefficients of HQ

The first step towards solving FPE is to evaluate drag and diffusion coefficients from the

interaction of HQ with the light partons constituting the medium. It can be understood from

the following discussions that the transport coefficients are really the average (over the relevant

phase space) of the momentum transfer between the HQ and the bath particles or the square

of the momentum transfer depending upon whether it is drag or diffusion. As we are dealing

with the relativistic HQ, it is imperative to take into account the dependence of drag/diffusion

coefficients on the momentum of HQ and the temperature of the bath. Heavy Quark, while

propagating inside the medium, can lose energy via two basic processes: i) elastic collisions

with the medium particles and ii) gluon radiation off HQ due to the inelastic collision.

Collisional transport coefficients

The elastic scattering processes which have been considered here are: Qq → Qq, Qq̄ → Qq̄

and Qg → Qg. Whereas Q stands for the Heavy Quark, q, q̄ and g are light quark, their

corresponding anti-quark and gluon, respectively, constituting the medium. If Xcoll is denoted

to be the notation for elastic drag/diffusion coefficients, it can be expressed symbolically as:

Xcoll =

∫
phase space× interaction× transport part. (6)

The transport part is either the momentum transfer of HQ (in case of drag) or the square of the

momentum transfer (in case of diffusion). As all the discussions are dealing with the relativistic

Heavy Quark, there will be one drag coefficient and two diffusion coefficients, transverse and

longitudinal. These three transport coefficients can be calculated from the above Eq. 2.40.

The interaction part is actually the invariant amplitude squared evaluated from the relevant

Feynman diagrams. As a first attempt to shield the infra-red divergence (appearing in the

t-channel Feynman diagram) due to soft gluon exchange, Debye mass (mD ∼ gT ) has been

used in an ad-hoc manner. Later, the gluon propagator, resummed with the help of the Hard

Thermal Loop (HTL) technique, has been employed for the computation of the elastic matrix

elements for a more self-consistent shielding in the weak coupling regime [4]. The magnitude
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of the transport coefficients are enhanced, for the entire range of the momentum of heavy

quark and the temperature of the bath, when HTL is used. This is due to the inclusion of full

spectral function (inclusion of processes like Landau damping etc.) instead of using only the

static approximation, i.e. the Debye mass. Fig. 1 is an example of drag of HQ when varied

with temperature, T. Same kind of plots will follow for diffusion and also for the case when

varied with respect to the momentum of HQ.

0.1 0.3 0.5 0.7
T(GeV)

0

0.05

0.1

0.15

0.2

0.25
D

ra
g(

fm
−

1 )

HTL(Charm)
Bare(Charm)
HTL(Bottom)
Bare(Bottom)

Figure 1: Drag vs Temperature of the bath:comparison between HTL with bare (shielded with
Debye mass) propagator for a 5 GeV charm and bottom [4]

Radiative transport coefficients

Transport coefficients have been calculated also when the heavy probe suffers gluon

bremsstrahlung while interacting with the QCD medium. The present calculation has been

done within the ambit of pQCD and kinetic theory and it is shown that the radiative transport

coefficients can be expressed in terms of the elastic (collisional) transport coefficients as long

as the emitted gluons are soft, i.e. their energies are much less than that of the HQ. Therefore,

in this factorisation limit, the radiative transport coefficient can be generically written as:

Xrad = Xcoll ×
∫

gluon emission spectrum× phase space factor of emitted gluon. (7)
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In the above formula, the gluon emission spectrum has been taken for the whole range of

rapidity of the radiated gluon [5]. The approximations used in the derivation of the spectrum

for the generic process, Q(k1) + q/q̄/g(k2) → Q(k3) + q/q̄/g(k4) + g(k5):

i) Gluons are soft: E5 � E1. Here, k5 = (E5, ~k⊥, k5z) and k1 = (E1, ~k1).

ii) No recoil of the HQ due to elastic scattering, i.e. eikonal trajectory1: q⊥ � E1, q = k1 − k3.

iii) No recoil of HQ due to soft gluon emission, i.e. eikonal trajectory2: k⊥ � E1.

The approximation which has been relaxed here is the collinear approximation, E5 � k⊥.

Instead here, we use E5 ≥ K⊥. It is evident from the figures 3.7, 3.11 and 3.9 that the radiative

transport coefficients are larger in magnitude than the collisional ones especially at higher

momentum of heavy quark. The same statement is also true for higher temperature and for

the case of bottom quark.As bottom is heavier than charm, the momentum dependence of the

transport coefficients is less prominent for bottom.
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p(Gev)

0

0.05

0.1

0.15

0.2

A
(f

m
−

1)

coll
rad
coll+rad

Figure 2: Drag of charm vs momentum at bath temperature, T=525 MeV [7]

Fig. 3.7 shows a dependence of the drag coefficient of charm quark on its momentum. As the

momentum of heavy quark increases, the drag decreases because drag is approximately the

measure of the inverse of the relaxation time. Higher the momentum of the particle, harder for

the medium to relax the particle to equilibrium. Likewise drag, diffusion also has dependence
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Figure 3: Transverse diffusion of charm vs momentum at bath temperature, T=525 MeV [7]

on the momentum of charm as indicated in Fig. 3.11 and 3.9. So, it is seen that the momentum

dependence of the transport coefficients should not be neglected for a relativistic heavy quark

because they will have effect on the solution of the Fokker Planck Equation.

It is important to mention that we have performed a calculation of the dead-cone factor in the

gluon spectrum of heavy quark when HQ recoils after scattering elastically with the medium.

Therefore, this recent effort[Ref. [6]] has relaxed eikonal trajectory1 approximation and has

introduced a non- eikonality parameter into the picture.

Effect of gluon radiation on the shear viscosity to entropy density

ratio of QGP

Now that the procedure for determination of the radiative transport coefficients is known, its

effect can be explored in estimating different observables like the shear viscosity of QGP. The

value of the shear viscosity, η to entropy density, s ratio, η/s plays a pivotal role in determining

the nature of the QGP medium. It has been shown within certain framework that η/s can

be estimated by evaluating the transport parameter, q̂, which is the square of the average

transverse momentum exchange between the fast parton (probe) and the medium per unit
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Figure 4: Longitudinal diffusion of charm vs momentum at bath temperature, T=525 MeV [7]

length. In this work, q̂ has been related to the transverse diffusion coefficient, B⊥ of the charm

quark and the value of q̂ turns out to be ∼ 1GeV 2/fm. It can be shown that η/s of QGP

comes closer to the experimental band when gluon radiation by charm quark has been taken

into account on top of the elastic collisions [7][Fig. 6.4].

Gluon radiation and the equilibrium distribution function of HQ

The fate of the equilibrium distribution function of a charm quark has also been investigated (we

assume charm quark to be equilibrated in the first place) when charm quark undergoes elastic

as well as inelastic, i.e. radiative interactions with the medium particles. This equilibrium

distribution function of charm never follows that of the thermal Boltzman distributions of the

particles of the background medium, rather it is described by Tsallis class of distribution, which

might be thought of as a superposition of many Boltzmann distributions. We have used the

generalised Einstein relation obtained in the Ref. [11] to show that raditaion has negligible

effect on the shape of the equilibrium distribution function of charm quark [7], i.e. whether a

heavy quark undergoes elastic collisions only or it also radiates gluons has nothing to do with

the ultimate shape of the equilibrium distribution of the charm quark.
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Figure 5: For a charm quark with momentum, < pT >= 5 Gev propagating in QGP of
temperature, T [7]

Initial Condition and Expansion of QGP

If one tries to investigate the effect of gluon radiation on another kind of observable like the

nuclear modification factor of heavy flavour, RAA, the first and foremost requirement is to solve

Fokker Planck Equation. Before solving, it has to be kept in mind that not only the HQ, but

also the background medium is evoling with time. So, one must have to take into account

this space-time expansion. The initial temperature, Ti and the initial thermalisation time, τi

for the background QGP expected to be formed in RHIC and LHC can be constrained to the

experimentally obtained (final) total mutiplicity in the following way:

T 3
i τi ≈ Constant× dN

dy
(8)

Here, we have made use of the boost invariant model of relativistic hydrodynamics proposed by

Bjorken [7], [12] for the space-time evolution of the expanding QGP. Therefore, in the previous

section when the theoretical result of the nuclear modification factor was compared with that

of the experiments, one would require to take particular values for the initial temperature and
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the initial thermalisation time satisfying the above relation 8. In this way, we got the initial

temperature, Ti to be 300 MeV and 550 MeV at RHIC(
√
s = 200 GeV) and at LHC (

√
s = 2.76

TeV) respectively.

Solution of FPE and the nuclear modification factor

Now that the drag and diffusion coefficients of the Heavy Quark for elastic scattering as well

as for the gluon bremsstrahlung have been calculated and the space-time evolution of the

background QGP has been discussed, one can go for solving the Fokker Planck Equation.

Being a second order partial differential equation, it needs an initial condition, i.e. the initial

distribution function of the heavy quark, fin(pT , τi) to be supplied when it first sees the medium

of QGP around it. These distribution functions for charm and bottom have been taken from

the MNR code [9] for proton-proton collision in the absence of the medium. The ratio between

the solution of FPE at the critical temperature, Tc ∼ 175 MeV and the initial distribution,

fin(pT , Ti) is the theoretical estimate of the nuclear modification factor, RAA of open charm

and bottom in QGP. To compare our result with experimental data from RHIC and LHC,

Peterson fragmentation function has been used to hadronise the heavy quark. Finally, one can

obtain the distribution functions for the single electrons originated from the decays of D and

B mesons. Therefore, theoretical expression for the nuclear suppression factor becomes:

R
D(B)→e
AA =

fD(B)→e(pT , Tc)

fD(B)→e(pT , Ti)
(9)

The momentum dependence of the transport coefficients has been found to be crucial in repro-

ducing the experimental data [10]. It is also observed that the gluon radiation from HQ plays

a dominant role in heavy quark propagation, especially in high momentum and temperature

domain. Finally, we have been able to reproduce the experimental data for RAA including

radiation from HQ[Fig. 7].

Therefore, in conclusion we can comment that i) energy loss of bottom is less than that of charm

quark, ii) in order to reproduce experimental data, we should take into account the momentum
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Figure 6: RAA as a function of pT for D and B mesons at RHIC at centre of mass energy, 200
GeV/nucleon [10]

dependent transport coefficients of heavy quark as well as the contribution of radiation of gluons

from the heavy quark.

Effect of Equation of State on the initial parameters of QGP

When Eq. 8 has been used for the QGP expansion, ideal hydrodynamics, where the presuure

and energy density relationship is P = 1
3
ε, i.e. the square of the velocity of sound, c2S is

1/3, has been considered. But, lattice QCD (lQCD) result shows some dependence of c2S with

temperature, T . Keeping this in mind our motivation has been to use temperature dependent

c2S instead of using 1/3 and to try to prdict the a range of the initial entropy density for the

background medium. The equation used:

siτi ∝ dN

dy
, i.e. (10)

T
1/c2S
i τi ∝ dN

dy
(11)
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Figure 7: RAA as a function of pT for D and B mesons at LHC for centre of mass energy, 2.76
TeV/nucleon [10]

For this purpose, the experimental data on the charged particle mutiplicity, dNch

dη
(which is

connected to dN
dy

by a constant numerical factor) and the nuclear suppression factor, RAA of

single electron spectra originated from the semileptonic decays of D and B mesons have been

employed. It has been mentioned earlier that the plot c2S vs T from lattice has been used to

minimise the model dependence. We observe that the value of the initial entropy density, si of

the QGP varies from 20 to 59/fm3 depending on the value of c2S dictated by lattice [13].

Summary

In conclusion, the entire work presented here can be summarised into the following important

points:

i) A detailed account of the open heavy quark propagation inside a thermalised medium of light

partons is presented in this dissertation.
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ii) Both the cases, when the Heavy Quark interacts only elastically as well as when it suf-

fers gluon bremsstrahlung also, have been treated and drag/diffusion coefficients have been

computed for both cases.

iii) For the case of a relativistic heavy quark, transverse and longitudinal diffusion coefficients

become equally important along with the drag coefficient.

iv) Gluon bremsstrahlung off HQ plays dominant role, especially at the higher momentum of

HQ and at higher temperature of the bath, as opposed to the elastic processes in the evaluation

of the transport coefficients. These transport coefficients, in turn, are responsible for explaining

experimental data on the nuclear modification factor, RAA of HQ.

v) It has been observed that the dependence of the transport coefficients on the momentum of

the relativistic heavy probe plays a crucial role in estimating RAA of heavy flavours at RHIC

and LHC energies.

vi) It has also been explored that the gluon radiation has quite significant effect in calculating

the shear viscosity to entropy density ratio of QGP, whereas it has negligible contribution in

determining the shape of the equilibrium distribution function of charm quark.
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Chapter 1

Introduction

1.1 Towards Quark Gluon Plasma:

One of the most exciting and fascinating things happens in physics when a theoretical pre-

diction of significant extent inspires tremendously rigorous and challenging experiments which

finally lead to satisfactory results. Such was the excitement when it has been declared on 10th

February, 2000 by the then CERN director General that the experiments performed at CERN

were giving a clear picture of “a new state of matter” containing coloured quarks and gluons

which are not confined to the respective parent hadrons any more.

The previous paragraph has lot of new terms introduced. As we will go deeper into this

dissertation we will try to develop a general idea about what is called “a new state of matter”

or what does confinement or deconfinement mean. Before going into the details our first and

foremost job is to understand what are known as “quarks” and “gluons” and what are the basic

laws of physics governing those.

The quest of understanding nature depends, in many ways, upon knowing the basic building

blocks of matter. If one looks back in the history of how we have come to know about the

elementary or indivisible particles of nature, we might understand the amount of hard work it

took to arrive at today’s scenario. Starting from ancient times, continuous effort has been on
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to probe deep inside the matter in search of its basic constituents. For many decades, atoms

were known to be the smallest indivisible blocks of matter. But, in 1911, Ernest Rutherford

performed a scattering experiment which made it clear that an atom is basically composed of

negatively charged electrons and a concentrated small sized heavy positively charged nucleus. It

was established later that whereas the electrons are elementary particles themselves, nucleus is

made of positively charged protons and electrically neutral neutrons. Both protons and neutrons

are hadrons which have been thought of as composite particles made up of more sub-structures.

In 1968, Deep Inelastic Scattering was performed at Stanford linear Accelerator (SLAC), where

a high energy beam of electrons was scattered off a proton target. This is just like taking

a photograph of the inside of a proton in pursuit of knowing its basic constituents. The sub

structure of proton can be “seen” simply by bombarding electrons where the momentum transfer

is very large. The Deep Inelastic Scatterings like e+p→ e+X, whereX is anything constituting

the inner structure of proton, showed that the cross sections manifest scale invariance at the

higher energies. This means that the form factors start to lose their dependence on the mass

scales relevant in the problem.

The DIS experiment results were successfully explained by the parton(the name came from ‘part

of nucleon) model developed by Feynman. This is a very naive model where the constituents

of the proton are described by free point-like particles. Despite being a simple model it could

throw light on many qualitative features of DIS including Bjorken scaling. But, the problem

with parton model lies elsewhere: proton, being a bound state of a the then unknown force,

should be described dominantly by non-perturbative effects, whereas in the parton model, at

extremely high energies the partons could be described by free point-like particles.

With the advent of Quantum field theory of strong interactions, i.e. Quantum Chromo Dynam-

ics (QCD), the explanation of the DIS experiments was remarkable. It has been shown that

the renormalised strong coupling varies with relevant scale of energy. At asymptotically high

energies, quarks may be treated as free point particles due to the fact that coupling becomes

vary small in that regime of energy. Therefore, inside a hadron the partons will behave almost

like free particles. That is why parton model has been so much successful in explaining the DIS
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experiments. This phenomenon is called Asymptotic freedom[1]. This feature is attributed to

the fact that QCD is non-abelian in nature.

The opposite feature exhibited by QCD is the confinement, through which it may be justified

why quarks are colour neutral, i.e. they are confined within the small volume of hadrons. This

phenomenon happens because at smaller and smaller energies, the QCD coupling becomes so

strong that quarks cannot fly apart from hadrons.

It is evident that whereas the leptons like electrons are governed by the field theory of electro-

magnetic interactions, Quantum Electro Dynamics (QED), the governing law for describing the

interactions between quarks and gluons is QCD. Through this QCD interactions, they remain

confined in colour neutral hadrons.

In this dissertation, our one of the principal aims is to be able to creat such a state where quarks

can be made deconfined, aparently, within a volume greater than the hadronic volume. We

will try to understand and answer the following question: Is it possible to have such a scenario

when quarks might be deconfined from their parent hadrons? Though at very high energies,

asymptotic freedom will let us treat the partons more or less as free particles, but as we try to

isolate a quark from a hadron, the coupling will become so strong that it would be impossible

to liberate the quark from its parent hadron (confinement feature of QCD). There must have

to be other processes through which one is able to create this kind of state. Starting from Deep

Inelastic Scattering the emergence of the concept of such a state is not at all a straightforward

story. Though, here, we are not interested in the methodical development, it will be really

constructive to know why two heavy ions are being collided in the laboratories at increasingly

higher energies all over the world.

Therefore, asymptotic freedom is the very reason responsible for the creation of the deconfined

coloured quark matter. To this end, let us discuss the running coupling of QCD which can be

related to a function called ‘β-function’through an equation called the ‘Renormalisation Group

Equation’. The solution of that equation will give the dependence of the QCD coupling with

the energy scale. Before doing that we should answer a couple of questions like:(i) what is a

renormalisation group equation in the first place? and (ii) what is known as the β-function
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of a gauge theory? The answer to the first question will require a basic knowledge about

the gauge theory that it might encounter certain divergences resulting from the integrations

like:
∫
pndp, where n is a positive integer and p is any momentum ranging from 0 to ∞. So, one

needs a cut off in the momentum scale or a subtraction point, µ to make sure that the final

results are not diverging due to the divergent integration. The differential equation showing

the dependence of the running coupling of QCD on this cut off or the subtraction point is

called the ‘Renormalisation Group Equation’. It also reflects the fact that the final results of a

theory or the basic physics should not depend on the subtraction point. The coefficient of this

equation (i.e the right hand side of this equation) is what is called the ‘β-function’. The first

order differential looks like:

µ
∂g

∂µ
= β(g), (1.1)

where, g is the coupling of QCD. The β-function of QCD can be seen to have the following

form (the method of calculation is not given here, any text book on QCD can be consulted for

this):

β(g) = − g3

16π2

(
11− 2

3
Nf

)
, (1.2)

where, Nf is the number of flavour taken in this context. The fact that the β-function is

negative in case QCD is the reason why QCD is an asymptotically free theory. Knowing this

QCD β-function one can solve the differential Eq. 1.1 for the coupling whic varies with respect

to the energy scale.

After this brief account of the non-abelian nature(asymptotic freedom) of QCD, let us come

back to the present context of this thesis: the creation of Quark Gluon Plasma(QGP) in heavy

ion collisions. Though we are continually using the word “deconfined” state, it is very important

to keep it in mind that the quarks and gluons are not deconfined within any possible volume.

However, in this context, it is the nuclear volume instead of the hadronic volume within which

quarks are bound by strong interaction. The meaning of deconfinement can easily be understood

by the following simple picture of how a matter of freely moving quarks and gluons are formed

from the hadronic state[2]: The hadrons are considered as the quark bags within which they are

confined by the interaction between themselves. As the mediator of the strong interaction is the

4



gluon, therefore, hadrons are really a composite system of bound quarks and gluons. A nucleus

can thus be thought of as a dense system of quark bags, i.e. neutrons and protons. Now, we

start to imagine that what will happen when the nucleus is compressed, i.e.when we increase

the baryon density or we heat it up keeping the volume fixed such that the pair creation of

pions (there might be generation of other hadrons too) comes into the picture. At these extreme

scenarios quark bags will start to overlap with one another and a quark matter will be formed

where all the quarks and gluons will no longer be bound to their parent hadron rather they

will be deconfined within a bigger volume, i.e. the nuclear volume. The situation also arises

in condensed matter physics in case of metal-insulator transition called Mott Transition. In

case of an insulator where the distances between the atoms are large, electron density is small

leading to a weak Coulomb screening, therefore the electrons are bound. If the atoms are moved

closer together the electron density increases and the electron feels a strong Coulomb screening.

Therefore, the energy levels move up and after a certain point there are no available bound

states for the valence electrons and the insulator becomes a metal. There is a critical screening

length after which the last electron state is bound no longer.

Figure 1.1: Transition from hadronic to quark matter [2]

The above example is just to motivate that this type of transitions are also available in other

physical situations. Just like the Mott transition, there are certain critical values for the

baryon density and the temperature beyond which the hadrons will no longer exist and a

matter is formed which is “coloured”. It has been predicted theoretically that in order that

such melting of quark bags will occur the critical baryon density (which is taken care through
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the baryochemical potential, µB, to be non-zero) needed is ten times the normal nuclear matter

density, ρ0 = 0.125 GeV/fm3 and the temperature required is of the order of 160− 180 MeV .

This concept of the creation of the deconfined matter due to asymptotic freedom was first

proposed by Naoki Itoh in 1970 and then by Collins and Perry in 1975 [3].

Such a state of deconfined quark matter might have existed a few microseconds after the Big

Bang in the early universe. Also, the core of the neutron star might contain this state. If

we wish to analyse these systems, one of the best ways is to recreate such a system in the

laboratories. It is expected that when two heavy ions are collided at relativistic energies, a

medium composed of deconfined quarks and gluons will be formed. Recently, such a system,

beleived to be created at the Relativistic Heavy Ion Collider (RHIC) and at the Large Hadron

Collider (LHC), intrigues scientific mind all over the world with its mutifarious interesting

aspects.

We can have a rough and handwaiving idea about the pressure and energy density needed to

create the deconfined quark matter at µB = 0 [4]

The simplest example of confined or hadronic matter can be a purely massless pionic gas. The

pressure of such non-interacting gas, where we have taken all three pion charge states, is given

by:

Pπ =
π2

90
gpionT

4 ≈=
1

3
T 4 (1.3)

gpion=pion degrees of freedom=3. The most simple example of the deconfined matter is the

ideal QGP for which the pressure can be written as:

Pqgp =
π2

90
gqgpT

4 −B (1.4)

where, gqgp is the number of degrees of freedom in QGP=[2×8+ 7
8
(2×2×2×3)], gluon having

two polarisations and eight colours, massless quarks and anti-quarks having two spins, two

flavours and three colours. B is the bag pressure which is actually taking care of the pressure

exerted by the vacuum on the coloured medium. Since the state with minimum free energy

or highest pressure is favourable in nature, therefore, the transition is from a low temperature

pion gas to a high temperature QGP. The critical temperature for this first order transition
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will be determined by the condition Pπ = Pqgp, and which is Tc = (0.3 × B)1/4 = 150 MeV

if B1/4 = 200 MeV extracted from the quarkonia spectroscopy. The relation between pressure

and energy density, ε for massless ideal constituents is ε = 3P . Therefore, the corresponding

energy densities are επ ≈ T 4 and εqgp ≈ 12T 4 + B. The above calculation was really a back of

the envelope one and are very much idealistic, a real QGP is never massless, non-interacting

and the relation between energy density and pressure is not so trivial (a real QGP is really

non-conformal). But, we can have a order of magnitude estimate of the critical energy density

which is 0.5 to 1.0 GeV/fm3.

1.2 Probing the Quark Matter:

Once the deconfinement sets in, it is of prime importance to understand its different properties

fully, i.e. to study its behaviour at different temperature and baryon density. The medium

produced in the heavy ion collisions expands very fast. Its lifetime ( 5 − 10fm/c) and the

spatial volume both are far too short to measure any of the properties directly. Therefore,

we need to search for a probe. A probe is a particle produced in Heavy Ion Collisions and

interacts with the medium in such a way that it carries relevant informations of the medium

through which it has propagated and has come out retaining its identity but being somewhat

modified by the medium. By looking at the modifications of the probe and analysing them we

can retrace back various characteristics of the medium.

We will have a brief discussion about the possible probes [5] of the quark matter produced in

heavy ion collisions particularly emphasising on the type of probe we will be dealing with in

the rest of the chapters. The choice of probe actually depends upon the sensitivity of that

probe with certain properties of the medium. Therefore, we can see the response of the system

towards the probe and can gain insight in different characteristics of the system.
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1.2.1 Electromagnetic probe

The medium formed due to the heavy ion collision at relativistic energies are considered, by

definition, to be hotter than its surroundings (vacuum). Therefore, in the hot QGP, due to

the quark anti-quark annihilation real and virtual photons are created. These virtual photons

in turn give rise to the electron-positron or muon-antimuon pairs. The intearctions are in the

leading order qq̄ → γ or qq̄ → γ∗ → ll̄. Also there are other various sources of photons and

dileptons. The main processes through which electromagnetic probes (photons and dileptons)

can be generated are the following:

1. Directly from the hard collisions of the partons at the time of nuclear collision qq̄ →

gγ, q(q̄)g → q(q̄)γ etc.

2. Directly emitted from the thermalised QGP and the hadronic sector,

3. decay photons originated from the hadronic decays like, π0 → γγ, η0 → γγ etc. Dilep-

tons can be generated from Dalitz decay. Electromagnetic signals probe the structure of the

electromagnetic current-current correlation function (response function):

Wµν(q
2) =

∫
d4x d4y eiq(x−y) < jµ(x)jν(y) > (1.5)

where, jµ(x) is the electromagnetic current. As they do not interact with the strongly intearct-

ing medium, they have a large mean free path compared to the size of the system. Therefore,

they will emit unaffected and will carry the information from whole of the evolution of the

medium. They are one of the most clean probes of QGP as they help us see the most earliest

and hottest part of the evolution [6, 7]. But, the problem with them is that they can be emitted

from all the evolution stages and there will be a lot of backgroud emission from hadronic decay

processes. If we can differentiate the early stage radiation from backgroud it will be a very

good signal of QGP [8, 9].

8



1.2.2 Quarkonia suppression

The basic mechanism of the deconfinement of the matter produced in the heavy ion collision is

the Debye scrrening. When an external static charge is put into a QED plasma in equilibruim,

its electric field is screened by the charges in the plasma. The Debye mass or the transverse

Debye screening length is given by the pole of the photon propagator. In case of QCD, which

is actually a non-abelian gauge theory, as far as the non-perturbative treatment is valid, the

Debye screening has the same sort of interpretation like that in case of QED. In the leading

order, it looks like:

mD = (N/3 +Nf/6)
1/2 gT (1.6)

where Nf is the number of flavours in the SU(N) gauge theory [10]. As the definition of

the Debye screening is not complete in perturbative domain because at next to leading order

the problem becomes highly non-perturbative, there are other methods of estimating Debye

screening such as Lattice gauge theory, some effective field theories etc. Here, what we need is

the very basic idea that when the screening radius, rD becomes less than the binding radius of

the hadrons,rH , deconfinement sets in. We will discuss, very briefly, what happens to a heavy

quarkonia when it is put inside such a deconfined medium. Quarkonia are basically bound

states of heavy quark anti-quark pairs (cc̄, bb̄). They are much smaller than the light hadrons

and are much more tightly bound with binding enegries up to 0.5 to 1.0 GeV. Due to the early

parton-parton hard scattering, a cc̄ pair will be produced before QGP is formed. The resonance

intearction of the cc̄ system will then lead to J/ψ production. After being produced the cc̄ pair

finds itself in a deconfined medium. If the temperature of the surrounding medium is enough

high and if the Debye screening radius is smaller than the size of J/ψ, the resonance interaction

will not be operative and the produced cc̄ will not result into a j/ψ, rather they will propagate

separately inside the medium. To understand the above concept in more details, let us look at

the typical radius of J/ψ. From a non-relativistic treatment at temperature, T = 0, we can get

an idea about the radius of J/ψ. In vacuum, the non-relativistic cc̄ potential is

V (r) = σr − αeff/r (1.7)
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where σ is the string tension and αeff is the Coulomb interaction coupling. Now, if we calculate,

for an isolated system of cc̄ at T = 0 and with a mass of charm to be 1.5 Gev, the magnitude of

the J/ψ radius will be rJ/ψ = 0.2fm. If we vary different parameters like mass, string tension

and αeff , we will have an estimate: 0.2 ≤ rJ/ψ ≤ 0.5fm. Now, we will have to see what

happens when this J/ψ falls into a thermal medium with temperature, T ≥ Tc. At T ≥ Tc,

there will be no string tension (as σ(Tc) = 0) which leads to the following form of the Coulomb

Screened potential:

V (r) = −αeff
r
exp(−r/rD) (1.8)

where rD is the Debye screening radius. But, this potential, as it stands, can still provide bound

state description. Again, with this potential, by minimising the binding energy, we can show

that the smallest value of the screening radius which permits a Coulombic bound state is;

rminD = [0.84mαeff (T )]
−1. (1.9)

This is just a rough estimate and according to this estimate when the Debye screening radius

goes below the above mentioned value it becomes smaller than rJ/ψ. It has been observed

from different studies that the existence of J/ψ will be excluded when T/Tc = 1.2 or even

less. Except J/ψ’s, there are other quarkonia states having different sizes and binding energies.

Therefore, at first, the larger and more loosely bound excited states are dissolved and finally

the smallest and the most tightly bound states. This is called the sequencial suppression of

quarkonia. This is indeed a good probe of QGP, because it is really sensitive to the changes in

the colour response function of the medium, i.e. whether a ’coloured’ system is formed or not

can be inferred from the study of sequencial melting of quarkonia [11, 12].

1.2.3 Jet Quenching

As the quark and gluon Jets are coloured objects, they can very well probe the coloured

structure of QCD matter. When a Jet propagates inside QGP, it can lose energy in two different

ways: i) one by colliding with the medium particles elastically and ii) other by radiating gluons

after elastic collision in its course of propagation. At the time of collision between two heavy
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ions, hard scatterings give rise to fast partons which after some time due to strong interaction

develop a shower of particles around itself. The fast leading parton along with other daughter

partons constitute a collimated beam called a jet. When this Jet is created in a heavy ion

collision, it finds a thermal and dense medium around it. In the process of its propagation

through the medium, a jet interacts with the medium particles and loses its energy/momentum

untill it gets out of the medium and hadronises.

Let us find out what information we can extract from the energy loss of a jet. Let us suppose

that a back to back (at the leading order, due to the momentum conservation) jet is created at

the edge of the medium 1.2, then one jet which is near the edge can leave the medium without

interacting much with the medium particles while the other jet will have to interact with the

medium particles and consequently its energy will be attenuated.

Figure 1.2: Energy loss of a away side jet[13]

The energy loss of a fast charged particle is a well-known problem in QED. Just like the case

in QED, when a highly energetic parton travels through a QCD medium it will lose energy or

in other words, its transverse momentum will be broadened. This energy loss is expected to be

greater in heavy ion collison (A+A) than in case of p+p or p+A collisions. This is called the

”jet quenching”.
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It can be shown that the loss of energy per unit length by the fast partons due to the elastic

collision with the medium particles is proportional to the square of the strong coupling[14]:

−dE
dx

∝ α2
sT

2(1 +Nf/6)ln(
E

αsT
) (1.10)

where T is the temperature of the thermal medium and E is the energy of the fast parton.

Because of the dependence on T 2, it has been pointed out by Bjorken that −dE/dx can be

shown to be proportional to
√
ε [15], where ε is the energy density of the QGP medium. There is

a rather self-consistent way of calculating the collisional energy loss using the resummed Hard

Thermal Loop propagator in order to take into account the proper screening effect. These

calculations have also been done in many literatures.

In the QCD medium, gluon bremsstrahlung is also a major mechanism of losing energy. After

its production from hard processes a fast parton emits gluon radiation and both the leading

parent parton and the radiated gluon would have to traverse the medium of length L, suppose.

It has been shown that the energy loss of the leading parton due to the soft gluon radiation is

proportional to the strong coupling (αs) and the energy (ω) of the emitted gluon[16]:

∆E ' αsω (1.11)

where

ω =
1

2
q̂L2 (1.12)

Here, in the above expression q̂ is called the transport coefficient connected to the jet which

is propagating. The physical interpretation of this transport parameter is the average of the

square of the transverse momentum transfer between the medium and the fast parton per unit

length of the medium:

q̂ =
< q2⊥ >

L
(1.13)

This relation is very much important in the context of probing QGP medium because it has a

dependence on the energy density of the medium produced and its value in QGP is more than
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that in hadronic medium. Therefore, it is obvious that the jet will be more suppressed inside

the coloured matter.

1.2.4 Heavy Quark Jet

Thus far, we have been discussing about the energy loss of jets where the leading fast parton is

either a light qquark or a gluon. Also, a heavy quark produced due to the early hard collision

before the medium formation can very well form a collimated parton shower resulting into a

jet. These heavy quark jets while propagating through the quark matter will also lose energy

via elastic as well as inelastic interactions with the medium particles. It has been observed in

the experimental data of the nuclear modification factor, RAA that heavy quarks lose quite an

amout of energy in the medium. Therefore, they can also be considered as a very good probe for

detecting QGP. Besides, they have certain nice extra characteristics which make them excellent

probes:

i) We know that the QCD interaction conserves the flavour, i.e. it is flavour independent.

Gluons only couple to the colour charge of the quark. Therefore, as such there should be

no basic differences between light and heavy quark jets. Nonetheless, the presence of quite a

heavy mass (m � T ) might change the scenario as far as the kinematics, i.e. the phase space

substantially. It can limit the phase space in case radiation of a gluon off a heavy quark.

ii) As the mass of heavy quark is significantly larger than the typically attained temperature

of the medium produced in heavy ion collisions and the other non-perturbative scales, m �

T,ΛQCD, the production of heavy quarks is constrained to the early stage of the collision. It

is very unlikely that the heavy quark numbers will be changed due to their production inside

QGP medium.

iii) Thermalisation time of heavy quark ought to be larger than that of the light quarks/gluons

by a factor m/T . Rough estimations show that whereas light quarks/gluons thermalises within

0.3 to 1 fm/c time, the heavy quark thermalisation time, τQ are almost 5-20 times larger and

13



may be comparable to or even larger than the QGP lifetime, τQGP ' 5fm/c in a central Au+Au

collisions.

iv) Being much heavier than the medium particles, the heavy quark can be described by the

theory of Brownian motion. Non-relativistically, the typical thermal momentum of a heavy

quark is p2th ≈ 3mT � T which is much larger than the typical momentum transfer scale

(∼ T ) of heavy quark from the medium. consequently, the whole treatment of the heavy quark

can be performed on the assumption of small momentum transfer with the help of Fokker

Planck equation quite effectively.

We will elaborate on the heavy quark energy loss regarding the elastic collision as well as the

radiative loss by the way of gluon bremsstrahlung in the later chapters, subsequently.

1.3 Organisation of the thesis:

The thesis will mainly stress upon the motion and the transport coefficient of heavy quark

when used to probe the system of QGP.

In Chapter-II, the motion of heavy quarks will be discussed in details after it enters the ther-

malised quark matter. Therefore, HQ is a so-called ”external” probe to the medium. We

will see that the evolution of heavy flavours is described by the theory of Brownian motion.

Different transport coefficients of heavy quarks have been evaluated in the framework of the

Fokker-Planck Equation (FPE) while they are traversing the deconfined medium. The formal-

ism of FPE will be illustrated in quite details and different underlying assumptions to use this

kind of formalism will be discussed accordingly. In this chapter, we will only deal with the

elastic binary collisions suffered by the probe with the light medium particles. The fact that

the medium is a thermalised one will be taken care of by shielding the infra-red divergence of

the dynamics by using Debye mass and then by using the resummed gluon propagator in the

framework of leading order Hard Thermal Loop (HTL) theory. The drag and diffusion coeffi-

cients of the probe are plotted as functions of the momentum of the probe and temperature of

the medium and different implications are pointed out.
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Chapter-III will mainly deal with the gluon radiation emitted by the Heavy Quarks by virtue of

their interaction with the medium partons. First, there will be a generic discussion regarding

the spectrum of emitted gluon from the heavy probe with a small overview of the different

approximations and assumptions used in this work. The transport coefficients like drag, trans-

verse and longitudinal diffusion coefficients are calculated in case of radiative energy loss and

they are plotted showing a comparison with their values when HQ is suffering elastic collisions

only.

Once the transport coefficients of HQ are known for both elastic as well as inelastic collisions

with the medium, Fokker Planck Equation is now solved in Chapter-IV. In order to solve

this equation, we also took into account the background for which the space-time evolution is

governed by the hydrodynamic conservation equations. Bjorken boost invariant hydrodynamic

model (which is a one dimensional hydro) has been considered here. In this way we observe the

effect of the medium on the distribution function of the Heavy Quark when it emerges from the

coloured medium. The medium effect thus encoded in the distribution function of the probe is

studied considering nuclear modification factor, RAA as the relevant observable. Theoretically

extracted RAA has been contrasted with the experimental data as observed in the heavy ion

collision at RHIC/LHC and it is seen that they quite agree with each other.

The initial thermalisation time, τi and the initial temperature, Ti of the medium of deconfined

quarks and gluons cannot be calculated from any first principal theoretical considerations as yet.

There is always a sort of model dependence in their values. In Chapter-V, we have presented

a naive estimation of the initial entropy density, si/initial temperature, Ti of the medium by

varying the square of the velocity of sound, c2S (as per lattice results) with temperature, T and

by comparing our theroretical result of RAA (for each value of c2S taken) with the experimental

data obtained in Au+Au collisions at centre of mass energy,
√
s = 200 GeV/nucleon.

In Chapter-VI, the radiative energy loss off Heavy Quark has been recast as an important

aspect in determining the shear viscosity of QGP. We observe here that the shear viscosity to

entropy density ratio, η/s of QGP is closer to the experimental value when gluon radiation off

charm quark has been taken into account. But, the story is very different if we want to see the
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effect of gluon bremsstrahlung on the equilibruim distribution function of the charm quark (if

we consider charm to reach equilibruim finally). It will be shown that the soft gluon emission

from charm has no effect on the shape of the charm quark distribution function.

In the final chapter, we will briefly discuss about different scpoes and outlooks in the direction

of the heavy quark energy loss. All over the world, many groups are presently working on the

derivation of the spectrum of the gluon radiated from the heavy probes. They are basically

using different approximations and assumptions regarding the dynamics of the heavy quark

propagation inside QGP. In the perspective of this dissertation, the radiated gluon spectrum

really helps in calculating the transport coefficients of heavy quarks when it emits a gluon

bremsstrahlung. It is not yet a settled issue that whether we should take into account both the

radiative and collisional effect or whether and at what regime one effect overcasts the other.

So, we will make some critical comments in this respect and try to address this unsettled issue

with a more detailed description of the evaluation of the radiative transport coefficients with

an up-to-date gluon emission spectrum.
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Chapter 2

Evolution of Heavy Quark in Quark

Gluon Plasma

2.1 Motion of Heavy Quarks as Brownian particles: For-

malism:

Let us start this chapter with a brief overview of the physics of Brownian motion. How heavy

quarks satisfy the criteria of being a Brownian particle will be elaborated in details with a

highlight on the underlying assumptions.

The problem of Brownian motion dates back to very early time (observed by Robert Brown in

1827 and explained by Einstein in 1905) in the field of non-equilibrium statistical mechanics.

It is an age old classical problem which deals with the motion of a heavy particle immersed

in a fluid made up of light particles. In this thesis, as we are interested to study the motion

of a relatively (in comparison with the other scales of the problem) heavy mass particle, we

will also remain within the classical regime as far as the equation of motion of the massive

particle is concerned. In classical mechanics, if we need to understand the time evolution of

the motion of a particle, we have to solve some sort of differential equation (like Newton’s

laws, Lagrange’s equations etc.) and we can determine the exact values of the observables
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like position, velocity or momentum of the particle as functions of time for the given initial

conditions. Therefore, those are called deterministic approach of solving the evolution equation

for the relevant particle.

At this point we should pause and ponder over the fact that for Brownian motion, we are really

tackling a statistical problem with an effect of many particles constituting the fluid on the

heavy mass immersed in it and more over we have to keep it in mind that though the motion

of heavy quarks has been treated as a classical one, but the microscopic interaction suffered by

them with the fluid particles is governed by a quantum field theory of strong interactions,i.e.

Quantum ChromoDynamics. The above two points are very critical and should be handled

very carefully. First, we will consider the problem of Brownian motion as a probabilistic one

and continue the journey upto the derivation of the equation of motion of HQ. After having

completed this discussion we will incorporate QCD into our picture.

The problem of Brownian motion is a particular example of the general theory of random or

stochastic processes. There are two ways to treat this problem: i) Langevin approach and ii)

Fokker Planck approach. Although, the present work rests on the Fokker Planck formalism,

yet it will be quite constructive to discuss the alternative approach, which is due to Langevin.

2.1.1 Langevin Formalism:

The evolution of heavy quarks traversing through the medium of Quark Gluon Plasma can

be governed by Langevin Equation. This formalism has been employed by many authors in

various literatures [1],[2],[3], [4],[5] etc.
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Non-Relativistic Heavy Quark:

Let us first treat heavy quark as a non-relativistic Brownian particle. The equation of motion

followed by the heavy quark will then be:

dpi
dt

= −ηDpi + ξi(t) (2.1)

dxi
dt

=
pi
M

(2.2)

Here, M is the mass of the heavy quark, ηD is the momentum drag coefficient and ξi(t) takes care

of the effect of the random collisions of the Brownian particle with other light fluid particles.

Collisions are included via a Gaussian white noise term characterised by the correlation function

of the fluctuating force.

< ξi(t)ξj(t
′) >= κδijδ(t− t′) (2.3)

3κ is the mean squared momentum transfer per unit time which arises from the cumulated effect

of many uncorrelated momentum kicks. As heavy quark is considered to be a nonrelativistic

one, there is only one diffusion coefficient, i.e. the medium appears to be isotropic to the heavy

quark which is near to the thermal equilibrium, yet not in equilibrium.

The solution of the Eq. 2.2 is the following:

pi(t) =

∫ t

−∞
dt′eηD(t−t′)ξi(t

′)xi(t) =

∫ t

0

dt′
pi(t

′)

M
(2.4)

where t � η−1
D has been assumed. This formalism [6] has been developed for a nonrelativistic

HQ, where M � T with thermal momentum of HQ is p ∼
√
MT . Now, if one can determine

momentum space diffusion coefficient, the frictional force or drag coefficient, ηD can be related

to it from the non-relativistic fluctuation-dissipation theorem:

ηD =
κ

2MT
(2.5)
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Relevant time scales for non-relativistic Langevin Equation:

After we have discussed Langevin equation as the equation of motion of non-relativistic Brown-

ian particle, we should also mention the range of validity within which this approach is relevant

and useful. For a non-relativistic heavy quark(M � T ), one can calculate the interaction rate,

Γ of HQ with the medium particles and it comes out to be Γ ∼ g2T [7]:

Γ = g2T

∫
dq

(2π)3
πm2

D

(~q2 +m2
D)

2q
(2.6)

In the above equation, the only scale within the integral is the Debye mass, mD ∼ gT . There-

fore, the typical momentum exchange in the interaction will be of the same order. Consequently,

we can talk about two time scales:

i) The time interval between two collisions:

∆τ =
1

Γ
∼ 1

g2T
(2.7)

ii) Duration of a collison:

τcoll ∼
1

gT
(2.8)

We could see from the above two estimations of the time scales that in the weak coupling regime,

we can take τcoll � ∆τ , which may be the range of validity of the non-relativistic langevin

treatment. Owing to its large mass which is very very large compared with the temperature of

the bath, the total number of collisions needed to change the squared momentum by a factor

of 1 is huge. Typically, the HQ relaxation time is greater than that of the light quark by the

following amount [6]:

τheavy ∼
M

T
τlight. (2.9)

Therefore, while solving langevin equation by discretising the time derivative, one needs to

keep the different time scales in mind. The time step, ∆t should be sufficiently large to include

many collisions, but should be much shorter than τheavy. The the time hierarchy would be:

τlight � ∆t� τheavy. (2.10)
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Relativistic Heavy Quark:

In the non-relativistic treatment of heavy quarks it has been considered that HQs are not too

far from the equilibrium. But, it is observed that in heavy ion collisions, charm and bottom

quarks are produced with sufficient transverse momentum. Therefore, it is quite necessary to

study HQs relativistically, i.e. when they are fast moving. Still, it is worth mentioning that

throughout the treatment the heavy quarks are always considered to be different than the light

medium partons.

The Langevin Equation for a relativistic heavy quark can be written as:

dpi

dt
= −A(~p)pi + ξi(t), (2.11)

< ξi(t)ξj(t′) > = Bij(~p)δ(t− t′), (2.12)

Bij(~p) = B‖(p)
pipj

p2
+B⊥(δ

ij − pipj

p2
). (2.13)

Here, the change of notation is in order:ηD → A(~p) and κδij → Bij. It should be mentioned

in this note that for the relativistic heavy quark it is very important to consider both of

the diffusion coefficients, longitudinal and transverse, and also to keep the full momentum

dependence of the transport coefficients. In the above Eq. 2.13, A is the drag and B⊥ and B‖

are the transverse and longitudinal diffusion coefficients of the HQ. To this end, let us introduce

a useful tensor which will enable us to separate out the momentum dependence of the noise

term, i.e. the diffusion term, distinctly:

bij =
√
B‖
pipj

p2
+
√
B⊥(δ

ij − pipj

p2
) (2.14)

= b‖
pipj

p2
+ b⊥(δ

ij − pipj

p2
). (2.15)

With the help of the above equation, Langevin equation can be rewritten as:

dpi

dt
= Ai(~p) + bij(~p)ηi(t), (2.16)

< ηi(t)ηj(t′) > = δijδ(t− t′). (2.17)
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The above equation can be solved explicitly only when it is discretised [2, 6] in small time steps

∆t. The momenta at each time step are p0, p1,....., pn. α is a parameter which specifies a whole

family of discretisation and it ranges from 0 to 1. After solving the Langevin Equation small

algebraic manipulation leads to the following results:

< ∆pi > = Ai(~p0)∆t+ α(∂kb
ij(~p0))bkj(~p0)∆t and (2.18)

< ∆pi∆pj > = bik(~p0)bjk(~p0)∆t = Bij(~p0)∆t. (2.19)

Depending upon the value of α, there are many discretisation schemes, like Ito(for α = 0),

Stratonovich (for α = 1). In the Ito scheme, it is possible to arrive at the equivalent Fokker

Planck equation:
∂P

∂t
+

∂

∂pi
[AiIto(~p)P ]−

1

2

∂2

∂pi∂pj
[Bij(~p)P ], (2.20)

where, AiIto = −Api and P (~p, t|~p0, t0) is the conditional probability that a particle with mo-

mentum p0 at time t0 will have momentum ~p at time t.

Here, we will not illustrate the Langevin dynamics in further detail, because in our work, we

have not followed this prescription, but the Fokker Planck formalism. The brief discourse on

Langevin dynamics has been put forward just to make a comparative study of the two equivalent

formulations for the evolution of heavy quark inside QGP. One can refer to different literatures

like [Ref. [6, 7, 8]] for detailed account of Langevin simulation.

2.1.2 Fokker Planck Formalism:

We have already encountered one form of the Fokker Planck Equation (from Langevin Eqqua-

tion) in the previous section. It is high time to introduce the Fokker Planck formalism, formally,

starting from another approach.

We have already mentioned that the problem of the heavy flavour propagation within a medium

of light partons can be described by the theory of Brownian motion. if f(~x, ~p, t) is the single

particle distribution function of an ensemble of heavy quarks immersed in the fluid consisting

of light quarks and gluons, then the evolution of this distribution function will be governed by
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the Master Equation or the Boltzmann Transport Equation (BTE) [1]:[
∂

∂t
+
~p

E
.
∂

∂~x
+ ~F .

∂

∂~p

]
f(~x, ~p, t) =

[
∂f

∂t

]
collisions

(2.21)

~F is the force exerted on the HQ by the surrounding colour field. ~p and E denote the three

momentum and the energy of the HQ respectively. The right hand side of Eq. 2.21, which is

called the collision integral, C[f ], is attributed to the QCD interactions of HQ with light quarks,

anti-quarks and gluons. One should, in principle, solve this integro-differential equation under

the influence of QQ̄ potential and the background colour field which are to be included in the

force term. But, here, we will set ~F = 0 and will treat QGP to be uniform. Therefore, the

second and the third term of the left hand side of Eq. 2.21 vanishes under these approximations.

Defining

f(~p, t) =
1

V

∫
d3~xf(~x, ~p, t) (2.22)

which is the normalized probability distribution in the momentum space, we have

∂f(~p, t)

∂t
=

[
∂f

∂t

]
collisions

. (2.23)

Eq. 2.23 tells that the only physical reason for the evolution of the momentum distribution

function is the collisions of heavy quark with the light particles inside the QCD matter.

Our main aim is to determine the collision integral of the transport Eq. 2.23. Once, we determine

a particular form of C[f ], we can proceed towards solving the differential equation. There are

various approximate methods to solve this integro-differential equation. In this note, it is

constructive to mention that Eq. 2.23 can be reduced to the simple form in the relaxation time

approximation:
∂f(~p, t)

∂t
= −f − f0

τ
(2.24)

which is a simplified and useful first approximation. Here, f0 is the equilibrium distribution

function and τ is the relaxation time that determines the rate at which the fluctuations in the

system drive it to a state of equilibrium again. In this form, the equation is easier to solve.

But, we have to arrive at a rigorous form of collision integral [1] corresponding to the present
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physical and more realistic situation. The approximation, that we apply here, is due to Landau,

which allows only soft scatterings in the medium, i.e. the scatterings between the heavy quark

and the medium particles where the magnitude of the exchanged three momentum is small. If

we define w(~p,~k) to be the rate of collisions which changes the momentum of the HQ from ~p

to ~p− ~k, we have [
∂f

∂t

]
collisions

=

∫
d3~k[w(~p+ ~k,~k)f(~p+ ~k)− w(~p,~k)f(~p)]. (2.25)

The second part of the integral corresponds to all those transitions that remove HQ from

momentum ~p to ~p−~k, and therefore, represents a net loss to the distribution function. Likewise,

the first part of the integral represents a net gain to the distribution function of HQ. With these,

Eq. 2.23 becomes:

∂f(~p, t)

∂t
=

∫
d3~k[w(~p+ ~k,~k)f(~p+ ~k)− w(~p,~k)f(~p)] (2.26)

Eq. 2.26 is an equation in f and in the right hand side the w’s contain the distribution functions

of the medium particles, which are in equilibrium, in their expressions. To see the dependence

of w on the distribution functions, Let us write down the expression for w(~p,~k) when the heavy

quark is interacting with the gluons of the QGP medium [1]:

wg(~p,~k) = γg

∫
d3q

(2π)3
f̂g(~q)v~p,~qσ

g

~p,~q→~p−~k,~q+~k
(2.27)

where, f̂g is the medium gluon distribution function, γg is the degeneracy of gluons in the

medium and σg is the cross section for the heavy quark-gluon interaction. We can simplify the

form of Eq. 2.26 by adopting the previously discussed Landau approximation. Mathematically,

this approximation amounts to assuming w(~p,~k) to fall of rapidly to zero with |~k|, i.e., transition

probability function, w(~(p), ~k) is sharply peaked around |~k| = |~p|. Therefore, if we expand the

integrand in the right hand side of Eq. 2.26 in powers of ~k, we have

w(~p+ ~k,~k)f(~p+ ~k) ≈ w(~p,~k)f(~p) + ~k · ∂
∂~p

(wf) +
1

2
kikj

∂2

∂pi∂pj
(wf) (2.28)
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Retaining terms up to the second order only, we obtain Landau Kinetic equation:

∂f

∂t
=

∂

∂pi

[
Ai(~p)f +

∂

∂pj
[Bij(~p)f ]

]
, (2.29)

where the kernels are defined as the following:

Ai =

∫
d3~kw(~p,~k)ki , (2.30)

and

Bij =
1

2

∫
d3~kw(~p,~k)kikj. (2.31)

When the distribution functions of the light quark, the corresponding anti quarks and gluons

of the medium in the expression of w(~p,~k) are that of the equilibrium ones, i.e. either Fermi-

Dirac(in case of light quarks and anti-quarks) or Bose-Einstein(in case of gluons), Eq. 3.32 is

named as the Fokker-Planck Equation. These coefficients Ai and Bij are related to the drag

and diffusion coefficients of the propagating heavy quark while it is suffering QCD interactions

with the particles of the medium. These are the inputs to the Fokker Planck Equation and

in the next section, I will discuss how they can be evaluated within the ambit of perturbative

QCD.

2.2 Elastic collisions of heavy quark with the medium

particles:

We will first consider the binary elastic collisions of the Heavy Quark (Q) with the light quark

(q), their corresponding anti-quark (q̄) and gluon (g) constituting the medium and then evaluate

the transport coefficients of the heavy quark by computing the invariant matrix elements for

the following processes:

Q(p) + q/q̄/g(q) → Q(p ′) + q/q̄/g(q ′). (2.32)
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In the expression 2.32, p, q, p′ and q′ withiin the brackets are the momenta of the heavy quark

and light quark/anti-quark/gluon of the medium before and after the collision respectively. The

Feynman diagrams are depicted in Figs. 2.1and 2.2:

Figure 2.1: Qg → Qg

Figure 2.2: Qq → Qq

The expressions of the invariant amplitudes for the 2 → 2 processes have been taken from the

Ref. [9]. Once the matrix elements are known, one can proceed to calculate the transport

coefficients. By looking at the expressions 2.30 and 2.31, we can write the generic transport

coefficient (X) in the following way:

X =

∫
phase space×matrix element squared× transport part (2.33)

Here, transport part is either momentum transfer (drag) or square of the momentum transfer

(diffusions) between the HQ and the medium light particles. The specific expressions for Ai

and Bij are [1]:

Ai =
1

2Ep

∫
Πi=p′,q,q′Di

1

γQ

∑
|M |2(2π)4δ4(p+ q − p′ − q′)

× f(~q)[1 + f(~q′)](p− p′)i =<< (p− p′)i >>, (2.34)
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When, Πi=p′,q,q′Di =
d3q

(2π)32Eq

d3q′

(2π)32Eq′
d3p′

(2π)32Ep′
. Likewise,

Bij =
1

2
<< (p− p′)i(p− p′)j >> (2.35)

It would be constructive to decompose the drag and diffusion coefficients according to:

Ai = A(p)pi,

Bij = B⊥(p)(δij −
pipj
p2

) +B‖(p)
pipj
p2

(2.36)

In the above equations, A, B⊥ and B‖ are the drag, transverse and longitudinal diffusion

coefficients correspondingly. It can be noticed from the expressions 2.36 that the transport

coefficients, in general, depends on the momentum of the fast moving heavy quarks. It is

also worth mentioning that this momentum dependence will play significant role in solving the

Fokker Planck Equation, later. Again,

A = Aipi/p
2 =<< 1− ~p.~p′

p2
>> (2.37)

B⊥ =
1

2
(δij −

pipj
p2

)Bij

=
1

4
<< [p′2 − (~p.~p′)2/p2] >> (2.38)

B‖ =
pipj
p2

Bij

=
1

2
<< [(~p.~p′)2/p2 − 2~p.~p′ + p2 × 1] >> (2.39)

In order to the perform the above integrations, we have to choose a frame of reference. Here, ~q′

integration is trivially performed with the help of the delta function. While doing the ~q integral,

it is useful to propagate the heavy quark along the polar axis of this integral as the integrand

does not depend on the azimuth of ~q. The ~p′ integration has been implemented in the centre

of mass frame. Consequently, for the collisional transport coefficient, Xcoll, the algebraically

simplified version of the integration becomes:

Xcoll(~p, T ) =
1

512π4

1

Ep

∫ ∞

0

qdqd(cosχ)
s−M2

s
f(~q)[1± f(~q′)]∫ 1

−1

d(cosθc.m)
1

γQ

∑
|M |22→2

∫ 2π

0

dφc.mX(~p′). (2.40)
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X(~p′) is either A or B⊥ or B‖ from Eq. 2.39. For the detailed steps of the integration, one can

refer to [1]. In this work, this integration has been performed and results have been prepared

for each of the transport coefficients in case of charm and bottom quarks propagating inside

QGP.

2.2.1 Relation between drag and diffusion coefficients:

Before presenting the results for the transport coefficients, we will discuss briefly the physical

significance of these coefficients and also the relationship among them.

Landau-Kinetic Equation 3.32, in general, does not need the background medium to be in

thermal equilibrium. It is also evident from the expressions for the drag and diffusion coeffi-

cients 2.36 that there is no information of the temperature of the surrounding medium unless

one assumes the medium particles to be thermal (Bose-Einstein or Fermi-Dirac). In our case,

we have presumed that the Brownian particle is immersed inside a thermally equilibrated Quark

Gluon Plasma having temperature,T, i.e. they follow Fokker Planck Equation. Therefore, the-

oretically, if allowed to evolve for infinite time (practically, for a long time compared to any

other time scales), the heavy quark will attain thermal distribution at the end.

For a non-relativistic HQ, the Fokker Planck Equation 3.32 transforms into the following form:

∂f

∂t
= γ

∂

∂~p
· (~pf) +D

∂2f

∂~p2
, (2.41)

where, Ai = γpi and Bij = Dδij (only one diffusion coefficient for non-relativistic case) and

γ and D are independent of the momentum of the heavy quark. It is constructive to explore

the effects of drag and diffusion coefficients on the Brownian particle from the one-dimensional

form of Eq. 2.41:
∂f

∂t
= γ

∂

∂p
(pf) +D

∂2f

∂p2
(2.42)
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The solution of the above Eq. 2.42 with a delta function initial condition [f(p, 0) = δ(p− p0)]

for HQ distribution is [10],

f(p, t) =
[ γ

2πD
(1− e−2γt)

]−1/2

exp

[
− γ

2D

(p− p0e
−γt)2

1− e−2γt

]
(2.43)

We can infer from the above solution that the effect of drag is to shift the mean momentum

of the Brownian particle, < p >= p0e
−γt, along the momentum axis and diffusion makes the

width of the distribution larger with a variance, σ =< p2 > − < p >2= D
γ
(1− e−2γt), reducing

the value of the maximum.

A non-relativistic heavy particle, in the process of being dragged and diffused, will, eventually,

reach thermal equilibrium in the medium. Therefore, the drag, γ and the diffusion, D must have

to share a definite relation in order that the above condition is reached. This is the celebrated

Einstein relation for non-relativistic case:

D = γMT, (2.44)

which tells us that the dissipation(drag) in the medium can be connected to the random fluc-

tuating motion causing the diffusion. It can be shown that under certain circumstances, the

momentum space diffusion coefficient, D can be related to the position space diffusion constant,

Dx,

Dx =
2dD

M2γ2
(2.45)

where d is the dimensionality. This is valid for time, t >> γ−1, while γ−1 is the order for the

relaxation time of the non-relativistic heavy quark.

Now, if we suppose that the heavy quark is relativistic, i.e. fast moving, the above relation 2.44

will not hold true. In this case also, there is a fare possibility that the heavy quark becomes

thermalised at the end of its journey through the medium with a temperature (it may not be

thermalised due to the short lifetime of QGP and the high momentum of the probe, heavy

quark), T, the Einstein relation must have to be generalised so that it involves all the three

momentum dependent transport coefficients, A, B⊥ and B‖.
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Here, a short discussion on the derivation of the generalised Einstein relation for heavy quark

is in order [11]. Let us revisit the FPE in the following way:

∂f

∂t
=

∂

∂pi

[
Ai(~p)f +

∂

∂pj
(Bij(~p)f)

]
= − ~∇p.~℘ (2.46)

where ~℘ is the probability current. A relationship among the transport coefficients might be

derived by demanding that ∂f/∂t is zero, i.e. ~℘ vanishes (due to the detailed balance) when

Eq. 2.46 is satisfied by the equilibrium distribution function, fHQeq . We will assume a particular

form of the equilibrium distribution function for the heavy quark which may not be a regular

Boltzmann type thermal distribution:

fHQeq (p;TT , q) = Nexp[−Φ(p;TT , q)], (2.47)

where N is the normalisation factor and TT , q are the parameters required to specify the shape

of the distribution. Putting ∂fHQeq /∂t = 0, we get the following relation:

Ai(~p, T ) = Bij(~p, T )
∂Φ(~p)

∂pj
− ∂Bij(~p, T )

∂pj
(2.48)

Using the expressions for Ai and Bij[Eq. 2.36] and the fact that fHQeq depends only on the

magnitude of the momentum for a spatially homogeneous case, a generalised Einstein relation

involving the three drag/diffusion coefficients can be arrived at:

A(p, T ) =
1

p

dΦ

dp
B‖(p, T )−

1

p

dB‖

dp
− 2

p2
[B‖(p, T )−B⊥(p, T )] (2.49)

This relation is valid for any momentum of HQ. One can check that this reduces to the well-

known non-relativistic Einstein relation 2.44 when Φ = p2/(2MT ), A = γ and B⊥ = B‖ = D.

In view of the previous discussions, there are certain subtle questions which can be addressed

here. We have mentioned a number of times that the generalised Einstein relation 2.49 must

have to be obeyed in order that the heavy quark reaches thermal equilibrium at a time, t→ ∞

in a static infinite medium, theoretically. But, in practice, heavy flavours do not evolve for an

infinite time and also the background QGP medium is not at all static: its temperature is a

function of space and time, both and after a critical time, the medium of QGP ceases to exist.

As a consequence, whether the heavy quark will thermalise or not is not a very settled and
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simple problem. Even if the equilibrium state is attained, the resulting distribution function

may have a shape different from a thermal one. This issue of the shape of the equilibrium

distribution will be elaborated in a later chapter of this treatise.

2.2.2 Collisional transport coefficients in Hard Thermal Loop (HTL)

approach:

So far, while calculating the collisional transport coefficients using Eq. 2.40, we have essentially,

used the vacuum matrix elements. In order to tackle the infra-red divergence due to soft

intermediary gluon exchange and to incorporate the fact that the Heavy Quark-light parton

interaction occurs in a thermal medium, we have shielded the t-channel divergence by replacing

t by t−m2
D in an ad-hoc manner.

To this end, we will introduce Hard Thermal Loop (HTL) re-summed gluon propagator to

regulate the t-channel divergence in a more self-consistent way and to calculate the transport

coefficients. In the weak coupling regime, i.e. when g � 1, the HTL corrections due to the

three-gluon vertex can be neglected in our case. This statement can be accounted for by

adopting a simple power counting method [1]. It can be shown that the order of magnitude

of the N-gluon vertex is gNT 2p−N+2, where T is the temperature of the medium and p is the

external momentum of the Feynman diagram. Therefore, it is easily followed that if p ∼ T , i.e.

hard, then the order of magnitude of the 3-gluon vertex is g3T which is less in order than the

bare vertex if we suppose g � 1.

Henceforth, the transport coefficients evaluated using HTL re-summed or “effective ”gluon

propagator (see Appendix-A) will be called “effective ”as opposed to “bare ”ones obtained by

vacuum pQCD shielded by Debye mass (which can be obtained in the static limit from the HTL

gluon self energy). We use zero-temperature fermionic propagator for heavy quarks because

they do not thermalize with the medium. For Qq → Qq scattering the t-channel contribution is

calculated in the Appendix-A. No other process is possible in this case. But Qg → Qg process

contains all the channels among which we use bare perturbation results for s-channel, u-channel
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and their interference terms because of the involvement of heavy quarks in the internal line.

For rest of the terms, i.e. the pure t-channel diagram, the interference of t-channel with s,and

u-channels, we use the effective results (see Appendix-A).
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Figure 2.3: (Color online) Variation of drag of heavy quarks of momentum 1 GeV with
temperature.[13]

Fig.2.3 depicts the variation of the drag coefficients of charm and bottom of a particular momen-

tum with respect to temperature of the surrounding medium. It is observed that drag of charm

and bottom increase with the increasing temperature for all the cases, i.e. when calculated

using bare(shielded by Debye mass) gluon propagator as well as using HTL gluon propagator.

This is because of the fact that as the temperature of the medium increases, the random ther-

mal motion of the medium particles also increases. Therefore, the heavy quark encounters more

and more interactions as the temperature is larger and lose more and more momentum which

results into larger drag. It can be noticed from this plot that for both, charm and bottom, the

values of the drag coefficients are larger when the divergence has been shielded with effective

gluon propagator instead of the Debye mass shielding. We see that at 400 MeV temperature

the HTL drag for charm quark is ∼33% more than the bare one, whereas, the corresponding

difference is ∼25% for bottom quarks. We also observe that this difference increases with the

increase in temperature. As the temperature attainable in the heavy ion collisions at RHIC
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Figure 2.4: (Color online) Variation of drag of heavy quarks with momentum in a QGP bath
of temperature 300 MeV.[13]

and LHC are quite high, the enhancement of drag at high temperatures will have significant

effect in that regime.

In the Fig. 2.4, the drag is shown to be dependent on the momentum of the heavy quark

propagating inside QGP. We can see from the plot that the profile of the drag coefficient of

charm and bottom is decreasing with larger momentum. Physically, one can account for this

behaviour by noting that it is harder to stop or to degrade the momentum of the heavy quark

when it is really moving faster and faster. In that case, faster the heavy quark, lesser will be

the exchange of its momentum with the bath particles. The momentum dependence of drag is

distinctly affected if we consider the HTL re-summed gluon propagator. For a 5 GeV charm

the corresponding difference is ∼50%. For higher momenta (10 GeV) the difference dies down

to ∼45%. But, it must be emphasized that this kind of difference in momentum variation , if

found in radiative processes too, will lead to an improvement in earlier works [1] where bare

perturbation theory variation has been used.

The variation of the diffusion(transverse) coefficient with the bath temperature is shown in

fig. 2.5. Diffusion shows the same profile as the drag coefficient, i.e. it also increases with
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Figure 2.5: (Color online) Variation of diffusion of heavy quarks of momentum 1 GeV with
temperature.[13]

the increasing temperature. The reason for this kind of behaviour has already been discussed

while explaining fig. 2.3. Diffusion co-efficients seem to be more sensitive to the use of effective

propagator in a sense that we observe ∼100% change between that effective and bare values

at 400 MeV temperature and this difference increases with temperature. Though unlike drag,

this difference is not much (∼3.5%) for a difference in quark mass.

The momentum dependence of diffusion is just the opposite to that of the drag. Diffusion

increases as the momentum of the heavy quark takes higher values(see fig. 2.6). The momentum

dependence is also affected by the use of HTL gluon propagator, a 5 GeV charm diffuses ∼80%

more when the exchanged gluon passes through all the possible processes in medium. This

difference increases with the momentum of the external probe, i.e. the heavy quark.

2.3 Highlights:

Therefore, at the end of this chapter, we hope to have developed a basic idea about the propa-

gation of an open heavy quark in Quark Gluon Plasma. Also, the procedure of the calculations
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Figure 2.6: (Color online) Variation of diffusion of heavy quarks with momentum in a QGP
bath of temperature 300 MeV.[13]

of drag and diffusion coefficients has been discussed with relevant plots for the case when the

heavy quark scatters elastically with the medium particles. Let us write down the gist of this

chapter combined into some important points:

1. The motion of the heavy quark in the background of the Quark Gluon Plasma has been

elaborated within the framework of the Brownian motion. The evolution of the heavy

quark inside the medium can be described by either Langevin Equation [1, 2, 3, 6] or

Fokker Planck Equation(in the present work) each of which is basically the approximated

version of the Boltzmann Transport Equation. Both these equivalent formalisms are

discussed theoretically.

2. This dissertation mainly deals with the formulation and solution of the Fokker Planck

Equation. So, the inputs to the equation, such as drag and diffusion coefficients, are

computed when the heavy quark undergoes elastic collision with the medium particles.

3. While calculating the transport coefficients, the infra-red divergence due to the exchange

of soft gluons has been shielded, first, by Debye mass in an ad-hoc manner. Results for a

more self-consistent treatment of the Hard Thermal Loop(HTL) perturbation theory on
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drag and diffusion coefficients have also been presented. It has been noted that the mag-

nitude of the transport coefficients are enhanced in case of HTL due to the introduction

of processes like Landau damping etc. which are typical manifestation of the existence of

the various processes occurring inside the medium.

4. Qualitatively, we see that values of effective transport co-efficients are larger than bare

ones. Actually, earlier calculations used thermal mass of gluon which is ΠL(x → 0) (see

Appendix-A) as the regularizing agent. As evident from the expressions of gluon self-

energies, taking HTL approximated (but no x→ 0 approximation) ΠL and ΠT we consider

new processes like Landau damping ascertained by the imaginary parts of self-energies.

Now, consideration of new processes will decrease the equilibration time of gluon. Since

inverse of equilibration time is the imaginary part of self-energy, the previous statement

implies that the denominator of effective propagator is smaller than the bare counterpart.

Hence the amplitude of the process increases. We could have extrapolated our argument

for radiative processes also. Since the radiative processes include processes like Qq → Qqg

or Qg → Qgg we have two propagators to deal with. The radiative amplitude MQq→Qqg

will involve only one effective (gluon) propagator and MQg→Qgg will involve two. So, we

expect effective radiative drag to increase, too.

5. Inverse of drag is the measure of equilibration time. Hence, inclusion of effective thermal

gluon propagator increases the likelihood of charm or bottom being equilibrated with the

medium. Again, drag being the measure of energy loss, increase in effective drag results in

increase in suppression of heavy flavours. That implies an increase in initial temperatures

of QGP considered so far.
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Chapter 3

Gluon Radiation off Heavy Quarks

3.1 Radiation from a point charge in classical electrody-

namics:

In the previous chapter, we have made an effort to analyse the process of binary elastic scatter-

ing suffered by the heavy quarks with the bulk particles and also have evaluated the relevant

transport coefficients within the Fokker Planck formalism. But, besides being scattered elas-

tically, heavy quark also emit bremsstrahlung gluons while traversing the thermal medium.

In the present chapter, gluon radiation from heavy quark(HQ) will be discussed in details in

the context of the transport coefficients. At later chapters, we will endeavour to explore the

effect of radiation on other physical quantities of interest. Also, there are references of many

well-known articles which discuss the radtion of gluons from heavy quark [4, 5, 6]

Throughout the entire treatment of the radiation, we will try to be pedagogic in most of the

cases,but will become intricate in some particular topics. Let us start our discussion with a

moving point massive charged particle which can be described by the simple Classical Electro

Dynamics(CED). From the point of view of CED, it is known that the accelerated charge emits

electromagnetic radiation (i.e. photons when the fields are quantised). Very briefly, we will

first develop an idea of the angular distribution of radiation emitted by a point charge moving
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non-relativistically as well as relativistically within the framework of CED. After having done

that we will step into the discussions of the radiation of gluons from heavy quark in the context

of Quantum Chromo Dynamics (QCD).

We know that the fields for a moving charge is, in general, described by the well-known Liénard

Wiechert potentials [1]:

Aµ(x) =

[
eV µ

V ν(x− r(τ))ν

]
τ=τ0

, (3.1)

where e is the electric charge, V µ is the four velocity and rµ(τ) is the position at a proper time

τ of the moving point charge, τ0 is the retarded proper time defined by the light cone condition.

[x−r(τ0)]2 = 0 and the retarded requirement, x0 > r0(τ0). Eq. 3.1 indicates that the potentials

Figure 3.1: World line of the charged particle[1]

are to be calculated at the retarded time, τ0. It can be explained nicely with the help of Fig. 3.1

from which it is quite clear that the world line of the charged particle intersects the light cone

at two points and it is only the earliest point, rµ(τ0) which contributes to the fields at xµ.

Sometimes, for familiarity, Eq. 3.1 is written in a non-covariant form, where the scalar potential,

Φ(~x, t) and the vector potential, ~A(~x, t) can be written as:

Φ(~x, t) =

[
e

(1− ~β.n̂)R

]
τ=τ0

(3.2)

~A(~x, t) =

[
e~β

(1− ~β.n̂)R

]
τ=τ0

(3.3)
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where, ~β = ~v(τ)/c, ~v being the three-velocity of the particle, R = |~x− ~r(τ)| which is the light

cone condition in three dimensions and n̂ is the unit vector in the direction of ~x− ~r(τ).

Here, our main aim is to look into the angular distribution of the radiation. For that we need

to know the electric field which can be constructed out of the field strength tensor, F µν which

is given by:

F µν =
e

V.(x− r)

d

dτ

[
(x− r)µV ν − (x− r)νV µ

V.(x− r)

]
(3.4)

This field strength tensor is manifestly covariant, but for our purpose, we need the expression

for the electric field:

~E(~x, t) = e

[
n̂− ~β

γ2(1− ~β · n̂)3R2

]
τ=τ0

+
e

c

[
n̂× ((n̂− ~β)× ~̇β)

(1− ~β.n̂)3R

]
τ=τ0

, (3.5)

where, ~̇β = d~β/dt. The first term in Eq. 3.5 is called the velocity field and the second term

is called the acceleration field due to the obvious reason that they depend on velocity and

accelerations respectively. Also, the second term is responsible for radiation, whereas the first

term is static.

Now, if we first consider the case of a non-relativistic accelerated charge, then the radiation

term of the electric field becomes:

~Ea =
e

c

[
n̂× (n̂× ~̇β)

R

]
τ=τ0

(3.6)

Therefore, the power radiated per unit solid angle or the angular distribution of radiation will

be
dP

dΩ
=

c

4π
|R ~Ea|2 =

e2

4πc
|~̇β|2sin2θ (3.7)

where, θ is the agle between acceleration and n̂. Eq. 3.7 is the famous Larmor result for

non-relativistic accelerated point charge.

If the motion of the accelerated charged particle is relativistic, then the angular distribution

will look like the following:

dP

dΩ
=

e2

4πc

|n̂× ((n̂− ~β)× ~̇β)|2

(1− n̂ · ~β)5
(3.8)
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We can derive the expression for the angular distribution from the above equation when accel-

eration and velocity are parallel to each other:

dP

dΩ
=
e2 ~̇β2

4πc

sin2θ

(1− βcosθ)5
(3.9)

From the Fig. 3.4 it is clear that as β → 1, the angular distribution is tipped forward more and

Figure 3.2: Radiation pattern when velocity is parallel to acceleration[1]

more and its magnitude is also increased. We can also see that there exists a small cone around

the direction of propagation of the particle, where there is no radiation. This region is called

the dead-cone region which does not exist for a highly or ultra relativistic particle for which

mass has no significance at all. i.e. for a massless relativistic particle, there is no dead-cone

zone.

If we now consider the scenario when the velocity and acceleration of the particle are orthogonal

to each other, we will find no such phenomenon like dead-cone effect, rather the radiation will

be always sharply peaked in the direction of the propagation of the particle. The expression

Figure 3.3: System of coordinates when ~β and ~̇β are perpendicular to each other [2]
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for the differential power will be:

dP

dΩ
=

e2

4πc

|~̇β|2

(1− βcosθ)3

[
1− sin2θcos2φ

γ2(1− βcosθ)2

]
(3.10)

As, here, velocity is perpendicular to the acceleration, it is an example of the instantaneous

circular motion. This pattern of radiation is a typical of synchrotron radiation [2].

Figure 3.4: Radiation pattern when velocity, ~v is perpendicular to acceleration, ~a[2]

3.2 Radiation from a heavy quark:

In the previous section, we have recapitulated some basic ideas of the classical radiation from

an accelerated point charge. But, in this dissertation, as can be seen, we have dealt with the

radiation of gluon (which is the mediatory particle of Quantum Chromo Dynamics) from the

heavy quark propagating inside the deconfined medium of quarks and gluons. Now, the obvious

question which arises here is, �in which way the radiation in Quantum Field Theory(here QCD)

different from or similar to that in Classical Field Theory?�To this end, let us specify that from

now on the discussions will border on the emission of radiation of ‘soft’gluon from the heavy

quark. Here, soft means that the four momentum of the emitted gluon will be very small

compared to other momentum scales. In this regime of soft radiation the results and the

pattern of the radiation will be very similar to that of the classical. For detailed discussions

one can refer to [3].

There are mainly two reasons for a heavy quark to radiate gluon:
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i) When a heavy quark is produced after Heavy Ion Collision(HIC), it carries a large virtuality

along with it. In order to reduce this virtuality it emits radiation until it becomes real.

ii) Heavy quarks also radiate gluons when they interact or scatter with another particle (suppose

another quark, anti-quark or gluon).

This discussion will concentrate on the second kind of radiation which results from the elastic

scattering of heavy quark.

For this purpose, the relevant Feynman diagrams will be evaluated to arrive at the spectrum

of the radiated gluon and various approximations which have been used throughout the entire

process, will be explained. The radiation of gluons will ultimately lead to the measure of the

energy loss of heavy quarks by considering that the gluons which are emitted as radiation will

be absorbed by the surrounding medium. We will first discuss the interaction of Heavy Quark

with the light quark, their corresponding anti-quark of the medium. Later, we shall see that,

within the ambit of the approximations to be used in the present formalism, the dominant

interaction, i.e. the interaction of heavy quark with the gluons, will differ only in the colour

factor with the previously calculated Feynman amplitude of the scattering of heavy quark and

light quarks.

Feynman diagrams and the approximations:

The relevant Feynman diagrams for the scattering of Heavy Quark(Q) with light quark(q) where

a single gluon is emitted as radiation are given in Fig. 3.5. In order to calculate
∑

|M |22→3, the

invariant amplitude squared for the process, the necessary Mandelstam variables are [7]:

s = (p+ q)2, s′ = (p′ + q′)2, (3.11)

t = (p− p′)2, t′ = (q − q′)2, (3.12)

u = (p− q′)2, u′ = (q − p′)2, (3.13)

with

s+ t+ u+ s′ + t′ + u′ = 4M2. (3.14)
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Figure 3.5: Feynman diagrams for Qq → Qqg process

Most of the treatments regarding the gluon radiation mainly concentrate on the ‘soft-eikonal-

collinear’regime of the radiation. Before explaining the above phrase within the inverted com-

mas let us write down the four momenta of particles specified in the centre of momentum

frame:

p = (Ep, 0, 0, pz) , q = (Eq, 0, 0,−pz) (3.15)

p′ = (Ep′ , ~q⊥, p
′
z) , q′ = (Eq′ ,− ~q⊥,−p′z) (3.16)

k5 = (E5 = k⊥cosecθ, ~k⊥, k⊥cotθ). (3.17)

Here, θ is the angle at which the gluon is radiated. We can now get back to the discussion of

the usual approximations considered in the ‘soft-eikonal-collinear’regime.

1. Soft gluon emission: The energy(Ep) of the parent parton, the heavy quark in this oc-

casion, is quite large compared to the energy of the emitted gluon, E5: Ep � E5 or

k5 → 0.

2. Eikonal trajectory of HQ: There are two types of eikonal trajectory of heavy quark possi-

ble:(a) when there is no recoil of the heavy parton due to the elastic scattering with the

light quarks and gluons: Ep � q⊥, (b) when the heavy quark does not recoil due to the

emission of gluon radiation: Ep � k⊥. This approximation is, in effect, the extrapolation
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of the soft gluon approximation, i.e. the reason behind neglecting the recoil effect of HQ

is the softness of the emitted gluon.

3. Collinear gluon emission: In this regime, the emitted gluon sweeps almost grazing angle

with the direction of propagation of the heavy quark. Symbolically, this can be written

as E5 � k⊥. Later, it will be observed that whereas a typical singularity arises in the

expression of the emitted gluon spectrum due to this collinear emission of soft gluons,

the mass of the heavy quark has a deeper consequence to remove this divergence up to

certain limit.

The above approximations having the following hierarchy

Ep � E5 � k⊥, q⊥ � mTH � ΛQCD. (3.18)

are the usual practices in the domain of the radiative energy loss. As we are dealing with

the heavy quark as the probe particle, the gluons are no longer considered to emit collinearly

with the parent parton. Later, this statement will be clear from the ‘dead-cone’pattern of the

radiation spectrum of heavy quark. Previously, the term ‘dead-cone’has been introduced in the

context of classical electrodynamics. Further discussion on this will follow. Consequently, the

resulting hierarchy [7, 8] among the different scales of the analysis are:

Ep � q⊥ � mTH � ΛQCD (3.19)

Ep � E5 ≥ k⊥ � mTH � ΛQCD. (3.20)

The principal part of the present work is based on the second hierarchy(Eq. 3.20). But, we

also endeavoured to remove another limitation by providing the heavy quark with a finite recoil

after its being scattered elastically by the medium particles. In this way, we let go off the

first eikonal trajectory approximation. Physically, this signifies that instead of continuing in

the same direction, this time the heavy quark bents or changes direction after suffering elastic

scattering. Therefore, yet another hierarchy has come into the picture: Ep > q⊥ is considered

instead of Ep � q⊥. Every other relations are similar to hierarchy 3.20. This new concept of
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non-eikonal trajectory of HQ has been studied carefully and will be discussed very briefly in

the upcoming section.

Gluon radiation spectrum:

In this section, we will elaborate on the method of calculation of the invariant amplitude

squared of the Feynman diagrams drawn in the previous section 3.5 using the hierarchy 3.20 as

explained in Ref.[7]. Therefore, we will skip all the intricacies of the calculations, rather quote

the result obtained in the above reference. The square of the invariant amplitude, |M |2Qq→Qqg

or |M |2Qg→Qgg can be expressed in terms of the respective binary scattering amplitudes. This

factorisation is only possible because of the soft gluon emission,

|M |2Qq→Qqg = 12g2|M |2Qq→Qq

1

k2⊥

(
1 +

M2

s
e2η

)−2

, (3.21)

|M |2Qg→Qgg =
CA
CF

|M |2Qq→Qqg. (3.22)

Here, M is the mass of the heavy quark, CA/CF = 9/4 is the Casimir factor, η = −ln(tan(θ/2))

is the rapidity of the emitted gluon. The factor, D =
(
1 + M2

s
e2η

)−2

is the suppression factor

called the dead-cone factor. The binary scattering amplitude is,

|M |2Qq→Qq =
8

9
g4
s2

t2

(
1− M2

s

)2

. (3.23)

The gluon radiation spectrum is defined as the ratio of the invariant amplitude squared of the

radiative/inelastic(two particle going to three particle) gluon bremsstrahlung process to that

of the elastic(two particle going to two particle) process:

|M |22→3

|M |22→2

= 12g2
1

k2⊥

(
1 +

M2

s
e2η

)−2

(3.24)

This relation is valid in the full rapidity domain of the emitted gluon and in the full range of

the variable M/
√
s. In this note, it is constructive to recall the notion of the dead-cone as

explained in the beginning of this chapter in the context of Classical Electro Dynamics (CED).

The region of ‘no radiation’along the forward direction of the radiation spectrum of heavy quark
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was termed as dead-cone region. This region is typically due to the heavy mass of the probe and

this is absent in case of a light emitter of gluon radiation as is evident in the Gunion-Bertsch [9]

formula for the radiation spectrum of light quark. If we take the limit M → 0 we can arrive

at the Gunion-Bertsch approximated dead-cone factor
q2⊥

(q⊥−k⊥)2
with an extra approximation

q⊥ � k⊥ which is attributed to the singularity when q⊥ = k⊥. This approximation or limit

is called the Gribov limit. The deeper consequence of the Gribov limit lies in the fact that

one can neglect the Feynman diagram involving the three-gluon vertex if one stays within this

regime. Again, if we go back to the problem of heavy quark energy loss, we may note that in

the soft gluon radiation limit, the concept from CED is extended and in the limit M �
√
s

and θ � 1 it has already been shown in Ref. [10] that a region of dead-cone exists. In that

case, the dead-cone factor is simply the approximated version of the generalised factor derived

in Ref. [7]: (
1 +

M2

s tan2(θ/2)

)−2
M�

√
s, θ�1−−−−−−−→

(
1 +

M2

E2
pθ

2

)−2

. (3.25)

All the approximations and re-derivation of different known formulae are discussed in greater

detail in Ref. [7]. It is imperative to note another kind of singularity called the infra-red singu-

larity caused by the soft gluon exchange in the binary scattering processes. If the propagator

gluon is soft, i.e. the exchanged momentum is quite small, the term appearing in the invariant

amplitude squared, |M |2 will start to diverge when we try to extract any physical observable

by integrating |M |2 over the appropriate phase space. This infra-red divergence or t-channel

divergence can be shielded by the Debye mass (mD) by replacing 1
t2

with 1
(t−m2

D)2
. This ad-hoc

shielding can be done away with a more self-consistent method of shielding following Hard

Thermal Loop (HTL) approximations. Though this is already discussed in Chapter-2 of the

dissertation in case of binary elastic scattering, still it will directly translate into the radiative

regime because of the factorisation limit. Therefore, it is very much evident that the existence

of the thermal QGP is responsible in lifting the infra-red divergence.

The notion of the existence of the thermal medium can also have effect on the gluon radiation

spectrum in a rather different way: the gluons that are emitted as radiation can very well

thermalise and can be part of the surrounding medium. Then only one can claim that the

energy lost by the heavy quark, due to gluon bremsstrahlung, has been transfered to the
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medium. Subsequently, it is a constructive exercise to consider the emitted gluon as thermal

and calculate the radiation spectrum again taking this ‘Ter-Mikayelian Effect’into account. In

this case, the modified or re-defined momenta of the particles taking part in the scattering

processes are:

p = (Ep, 0, 0, pz), q = (Eq, 0, 0,−pz). (3.26)

In the eikonal limit, p = p′ and q = q′. The four momenta of the emitted gluon will be:

k5 = (
√
k2⊥ +m2

gcosecθ,
~k⊥,

√
k2⊥ +m2

gcotθ). (3.27)

The virtuality condition satisfied by the emitted gluon is k25 = m2
g. It is important to mention

that although gluons(i.e. the mediatory boson of QCD) do not carry mass in vacuum, yet they

attain an effective mass due to the presence of the thermal medium. This concept is similar to

the effective mass gained by the electron while traveling inside a lattice. After calculating the

invariant amplitude squared and adding them all, we get the following expression:

|M |2Qq→Qqg = 12g2|M |2Qq→Qq

1

(k2⊥ +m2
g)
DTM , (3.28)

where, DTM is the new dead-cone factor due to the Ter-Mikayelian effect given by:

DTM = D +
m2
g

s

[
(1 + M2

s
e2η)−1

6(1−∆2
M)

−
4(1 + M2

s
e2η)−1

9∆2
M(1−∆2

M)
+

4(1 + M2

s
e2η)−2)

9∆2
M

]
, (3.29)

and ∆2
M =M2/s. Therefore, in this case, the gluon radiation spectrum can be written as:

|M |22→3

|M |22→2

= 12g2
1

(k2⊥ +m2
g)
DTM . (3.30)

If we compare the expression of the gluon radiation spectrum from heavy quark without Ter-

Mikayelian effect(Eq. 3.24) to that with this effect(Eq. 3.30), we will be able to notice that the

soft divergence in Eq. 3.24 appearing due to the smaller values of k⊥ disappears in the case

where Ter-Mikayelian effect is considered, i.e. the divergence is shielded by the thermal mass

of the gluon.
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3.3 Radiative transport coefficients of heavy quark:

Having calculated the gluon radiation spectrum in various approximations, we are now in a po-

sition to evaluate drag and diffusion coefficients of heavy quarks suffering gluon bremsstrahlung

while propagating through Quark Gluon Plasma(QGP). In this context, the radiation spectrum

with soft- eikonal approximation(as obtained in Ref. [7]) has been used in the present work.

Let us begin by recalling the Eq.2.31 of Chapter-2 which gives the expression for the generic

transport coefficient in case of elastic scattering of heavy quark with the medium particles:

X(~p) =

∫
phase space × interaction × transport part (3.31)

Also, we might recall that the transport coefficients like drag and diffusion can be calculated

from the Eq. 3.31 and they are the inputs to the Fokker Planck Equation:

∂f

∂t
=

∂

∂pi

[
Ai(~p)f +

∂

∂pj
[Bij(~p)f ]

]
, (3.32)

Here, we are skipping the detailed description of the terms involved in Eq. 3.32 and the math-

ematical expressions for drag, Ai and diffusion, Bij(details are provided in Chapter-2). This

same expression 3.31 for X(~p) will also hold for the determination of drag(Ai or A(~p)) and

diffusion(Bij, i.e. longitudinal, B‖ and transverse, B⊥ diffusion coefficients) when HQ un-

dergoes gluon radiation. According to the present approximation, the soft gluons will carry

negligible amount of momenta along with them so that the magnitude of momentum transfer

will become exactly same as that in case of elastic scattering. Therefore, the expressions for

the transport part of drag and diffusion remain same for both elastic and radiative interactions

of heavy quark. The things which will distinguish radiative process from the elastic case are

the phase space factor and the invariant amplitude squared for the processes as is clear from
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the expression below:

Xrad =
1

2Ep

∫
d3q

(2π)32Eq

∫
d3q′

(2π)32Eq′

∫
d3p′

(2π)32Ep′

×
∫

d3k5
(2π)32E5

1

γ

∑
|M |22→3(2π)

4δ4(p+ q − p′ − q′ − k5)

× f̂(Eq)(1± f̂(Eq′))(1 + f̂(E5))

× θ(τ − τF )θ(Ep − E5) (3.33)

The inelastic or three body process(2 → 3) described here is symbolised as:

Q(p) + q/q̄/g(q) → Q(p′) + q/q̄/g(q′) + g(k5). (3.34)

In comparison to the expression for the collisional transport coefficient, the extra phase space

integration is appearing due to the emission of the radiated gluon. Therefore, in the above

Eq. 3.33, there are four integrations over the three momenta of all the particles participating in

the radiative process except over the momenta of the probe particle. The invariant amplitude

squared used here is that explained in the previous section in Eq. 3.22. The delta function

signifies the four momentum conservation. The factor [1+ f̂(E5)], where f̂(E5) is Bose-Einstein

distribution function for thermal gluons, is taking care of the absorption of the emitted gluon by

the surrounding background medium. This physically will signify that unless the emitted gluon

is not absorbed by the medium, the energy of the heavy quark will not be considered to be lost

by radiation which goes into the medium. There are also other two theta functions: (i) θ(τ−τF )

keeps the kinematics of the process strictly within the additive or ‘Bethe-Heitler’regime where

the scattering centres are separated enough to have the additive gluon radiation. In this way,

the incoherent multiple gluon emission due to Landau-Pomenronchuk-Migdal(LPM) effect is

excluded. (ii) θ(Ep−E5) prohibits the emission of gluons with energy greater than that of the

incoming parent heavy quark.

It can be shown using Eq. 3.22 that the radiative transport coefficient might be expressed

in terms of the elastic/collisional transport coefficient when the radiated gluon carries soft
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momentum. Earlier also this limit of factorisation has been mentioned and it may be noted

that this is only valid in the soft radiation approximation.

Xrad = Xcoll ×
∫

d3k5
(2π)32E5

12g2s
1

k2⊥

×
(
1 +

M2

s
e2y

)−2

[1 + f̂(E5)]θ(τ − τF )θ(Ep − E5). (3.35)

After doing some simple steps and rewriting the integration in terms of k⊥ and η, we get the

following expression:

Xrad = Xcoll ×
∫ k⊥,max

k⊥,min

1 + f(E5)

k⊥
dk⊥(1 +

M2

s
e2η)−2dη (3.36)

Here, we have removed θ functions because the limits of k⊥ will be determined by them:

(a) θ1(τ − τF ) = θ1(Λ
−1 − τF ), where Λ is the elastic scattering interaction rate and τF =

coshη/k⊥ is the formation time of the emitted gluon. The formation time is the time required

for the radiated gluon to be separated from the parent heavy quark [11]. The interaction rate

for the elastic scattering of heavy quark with the medium particle is given by:

Λ =
1

2Ep

∫
d3q

(2π)32Eq

∫
d3q′

(2π)32Eq′

∫
d3p′

(2π)32Ep′

1

γQ

∑
|M |2

× (2π)4δ4(p+ q − p′ − q′)f̂(Eq) (3.37)

According to the first θ function in Eq. 3.33:

Λ−1 >
coshη

k⊥
k⊥ > Λ coshη

∴ k⊥,min = Λ coshη. (3.38)
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(b) The second θ function in Eq. 3.33 tells:

Ep > E5

Ep > k⊥coshη

k⊥ <
Ep

coshη

∴ k⊥,max =
Ep

coshη
. (3.39)

In order to simplify algebra and to perform the k⊥ integration in the Eq. 3.36, we have considered

further approximation in calculating the term [1 + f̂(E5)]:

1 + f̂(E5) = 1 +
1

ek⊥coshη/T − 1

=
ek⊥coshη/T

ek⊥coshη/T − 1
. (3.40)

Now, if we assume E5 � T then the above equation becomes:

1 + f̂(E5) =
1 + k⊥coshη

T
k⊥coshη

T

= 1 +
T

k⊥coshη

≈ T

k⊥coshη
. (3.41)

With the above assumptions and after having performed the k⊥ integration,

Xrad = Xcoll ×
6αsT

π

∫
dη

[
1

k⊥,min

− 1

k⊥,max

]
1

coshη
(1 +

M2

s
e2η)−2. (3.42)

In the previous chapter the transport coefficients for the elastic scattering have already been

calculated and in this chapter their radiative counterparts are computed. Once we have the

transport coefficients for both the elastic and inelastic/radiative processes, we add them to

get the effective/total transport coefficients because we assume that the elastic and radiative

processes are occurring independent of each other in the medium:

Xeff = Xcoll +Xrad (3.43)
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All the transport coefficients are functions of momentum of HQ and temperature of the heat

bath. Therefore, effective and collisional transport coefficients are plotted once with temper-

ature keeping momentum of charm quark as a parameter and then with momentum of charm

holding temperature as parameter [12].
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Figure 3.6: Drag of charm carrying mometum 5 GeV vs T[12]

In Fig. 3.6, we display the temperature dependence of the drag of Charm Quarks(CQ) with

momentum p = 5GeV. At low T, although the drag for radiative loss is comparable to that

for collisional loss, at high temperatures the radiative drag tends to dominate. The difference

between total and collisional transport coefficients broadens with increasing temperature. Even

at temperatures attainable at RHIC, this distinction is significant enough to have a pronounced

effect on certain experimental observables like nuclear modification factor, elliptic flow of CQs,

etc. In the temperature range that may be achieved at LHC collision conditions, the radiative

contributions to the drag may surpass the elastic contributions. Therefore, radiative processes

will play a more dominant role at LHC than at RHIC. For a CQ (mass M = 1.3 GeV) with

p = 5 GeV and T = 300 MeV, the drag coefficient attains a value almost double the value

for the collisional case when radiation is included. At a temperature of 600 MeV, total drag
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Figure 3.7: Drag of charm vs momentum at bath temperature, T=525 MeV[12]

becomes 2.12 times the collisional drag. The variation of drag with p at T = 525 MeV is

depicted in Fig. 3.7. The dominance of radiative processes, in spite of dead cone suppression,

is evident from the results for p beyond 5 GeV.

In Figs. 3.8 and 3.9, the variations of longitudinal diffusion coefficients with temperature and

momentum, respectively, are displayed. Similar to drag, the contributions from radiative pro-

cesses dominate over the collisional processes for higher T and p. For T = 300 MeV, the

radiative and collisional losses have similar contributions to B⊥, but for T beyond 500 MeV,

the radiative part exceeds the collisional part(Fig. 3.10). It is interesting to note the qualitative

change in the momentum dependence of B⊥ from B‖ at fixed T (Fig. 3.11). The variation of B⊥

with p is slower than that of B‖ . In this case, again the domination of the radiative transport

coefficient over its collisional counterpart is evident. Though the nature of the momentum de-

pendence of the diffusion coefficients is different from that of drag, it is always true that, save at

very low momentum of the CQ, the radiative contribution is more than the elastic contribution

at T = 525 MeV. Accordingly, for a relativistic CQ, inclusion of the radiative effects becomes

imperative for the analysis of experimental data from nuclear collisions at RHIC and LHC.
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Figure 3.8: Longitudinal diffusion coefficient of charm with momentum 5 GeV vs T[12]

This statement can be put on a firmer ground if we quote some quantitative results comparing

radiative and collisional contributions to the transport coefficients. The drag coefficient of a

CQ having a momentum of 10 GeV is 0.038 fm−1 in case of elastic loss, whereas the radiative

contribution is 0.047 fm−1 . Radiative B⊥ is about 1.33 times its collisional counterpart. In

the case of longitudinal diffusion coefficient, the radiative contribution is 1.2 times the elastic

one.

3.4 Highlights:

The main findings of this chapter is summarised below:

1. This chapter has been started by discussing radiation from an accelerating point charge

from the point of view of Classical Electro Dynamics (CED). The pattern of radiation

has been discussed for two cases: when velocity and acceleration of the particle are,

respectively, parallel and perpendicular to each other. In this context, it has been observed
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Figure 3.9: Longitudinal diffusion coefficient of charm vs momentum at bath temperature,
T=525 MeV[12]

that for massive particles, the radiation in the forward direction is restricted and this

region of no radiation is called dead–cone region.

2. Now, when the heavy quark is traversing through the QGP, the emission of soft gluons

as radiation has been pointed out to be similar in construction just like the case in CED.

Therefore, the phenomenon of dead-cone also happens in case of gluon bremsstrahlung

off heavy quarks. The gluon radiation spectrum has been discussed in details mentioning

various approximations.

3. The transport coefficients like drag and diffusion have been estimated for the radiative

case. it has been noted that the radiative transport coefficients can be factorised into that

for elastic interaction multiplied by an integration over the relevant phase space weighted

by the spectrum of gluon radtion in the soft gluon emission limit.

4. Drag, transverse and longitudinal diffusion coefficients are plotted against temperature of

the bath as well as the momentum of the charm quark. In later chapters, we will see that
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Figure 3.10: Transverse diffusion coefficient of charm with momentum 5 GeV vs T[12]

these radiative transport coefficients have considerable effects on different observables like

the nuclear modification factor, RAA, the shear viscosity of QGP, η/s etc.
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Figure 3.11: Transverse diffusion coefficient of charm vs momentum at bath temperature,
T=525 MeV[12]

59



Bibliography

[1] J. D. Jackson, Classical Electrodynamics, Third Edition (John Wiley and Sons, INC.,

1998).

[2] D. J. Griffiths, Introduction to Electrodynamics, Third Edition (Prentice Hall, 1999).

[3] Trambak Bhattacharyya, Thesis titled “Energy Loss of High Energy Partons in Quark

Gluon Plasma”., submitted to Homi Bhabha National Institute in 2014.

[4] M. Djordjevic and M. Gyulassy, Phys. Lett. B 560, 37(2003).

[5] M. Djordjevic and M. Gyulassy, Nucl. Phys. A 733, 265(2004).

[6] P. B. Gossiaux, J. Aichelin, T. Gousset and V. Guiho, J Phys. G 37, 094019(2010).

[7] R. Abir, C. Greiner, M. Martinez, M. G. Mustafa and J. Uphoff, Phys. Rev. D 85, 054012

(2012).

[8] T. Bhattacharyya, S. Mazumder and R. Abir, arXiv: 1307.6931 (2013).

[9] J. F. Gunion and G. Bertsch, Phys. Rev. D 25, 746(1982).

[10] Y. L. dokshitzer and D. E. Kharzeev, Phys. Lett. B 519, 199(2001).

[11] X. N. Wang, M. Gyulassy, and M. Plumer, Phys. Rev. D 51, 3436 (1995).

[12] S. Mazumder, T. Bhattacharyya and J. Alam, Phys. Rev. D 89, 014002 (2014).

60



Chapter 4

Solution of Fokker Planck Equation

and nuclear suppression factor

4.1 Solution of Fokker Planck Eqquation and nuclear

modification factor:

In the previous two chapters, we have discussed how to compute the drag and diffusion coeffi-

cients of heavy quarks traversing the QGP medium for both the cases, when the heavy quark

scatter only elastically with the medium particles as well as when gluons are radiated from

them. As those coefficients are the inputs to the Fokker Planck equation(FPE), one can now

be ready to solve FPE once the initial conditions are considered properly(which will also be

discussed in this chapter).
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4.1.1 Background assumptions:

Before mentioning the underlying assumptions of the Fokker Planck Equation, let us write

down this equation in momentum space:

∂f

∂t
=

∂

∂pi

[
Ai(~p)f +

∂

∂pj
(Bij(~p)f)

]
, (4.1)

where, f(~p, t) is the single particle distribution function of an ensemble of heavy quarks im-

mersed in the deconfined medium of light partons and Ai and Bij are the drag/diffusion co-

efficients of heavy quark. The previous chapters were devoted to calculate these transport

coefficients from pQCD when heavy quarks scatter elastically from the medium particles as

well as when they suffer gluon bremsstrahlung. We have also discussed about the fluctuation-

dissipation theorem which relates the three transport coefficients considering the ultimate equi-

libration or thermalisation of the heavy quarks. We will have a more critical into this in later

chapters.

Before proceeding towards solving FPE, we can discuss about the underlying assumptions taken

into account:

i) As the magnitude of the longitudinal diffusion coefficient, B‖ is even smaller than that of the

transverse diffusion coefficient, B⊥, we neglected B‖ while solving Fokker Planck Equation.

ii) We have calculated the transverse component of diffusion, B⊥ from the expressions of the

transport coefficients as elaborated in the previous chapters. Also, one can estimate B⊥ from

the fluctuation dissipation relation of the form B⊥ = AEpT , where Ep is the energy of HQ and

T is the temperature of the bath. This relation holds when the heavy quark is near to the

thermal equilibrium(yet not in equilibrium) and is called the well known Einstein relation.

4.1.2 Method of solution of FPE:

In this formalism of solving FPE, we have considered the full momentum dependence of the

transport coefficients in such a way that only the first derivatives of drag/diffusion coefficients
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survive. Fokker-Planck equation, under this approximation, in Cartesian coordinate system

becomes, [1]:

∂f

∂t
= C1(px, py, t)

∂2f

∂p2x
+ C2(px, py, t)

∂2f

∂p2y

+ C3(px, py, t)
∂f

∂px
+ C4(px, py, t)

∂f

∂py
+ C5(px, py, t)f + C6(px, py, t) (4.2)

where,

C1 = B⊥ (4.3)

C2 = B⊥ (4.4)

C3 = A px + 2
∂B⊥

∂pT

px
pT

(4.5)

C4 = A py + 2
∂B⊥

∂pT

py
pT

(4.6)

C5 = 2 A +
∂A

∂pT

p2x
pT

+
∂A

∂pT

p2y
pT

(4.7)

C6 = 0 . (4.8)

where the momentum, p = (pT , pz) = (px, py, pz). We numerically solve Eq. 4.2 [2] with the

boundary conditions: f(px, py, t) → 0 for px,py → ∞ and the initial (at time t = τi) momentum

distribution of charm and bottom quarks are taken from MNR code [3]. It is evident from

Eq. 4.2 that with the momentum dependent transport co-efficients the FP equation becomes

complicated and needs to be solved numerically. It is possible to write down the solution of the

FP equation in closed analytical form [4] in the special case of momentum independent drag

and diffusion co-efficients.

4.1.3 Initial conditions and definition of nuclear modification factor:

The initial temperature,Ti and the initial thermalization time, τi for the background QGP

expected to be formed at RHIC and LHC can be constrained to the total multiplicity as
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follows:

T 3
i τi ≈

2π4

45ζ(3)

1

4aeff

1

πR2
A

dN

dy
, (4.9)

where RA is the radius of the system, ζ(3) is the Riemann zeta function, aeff = π2geff/90,

and geff (= 2× 8 + 7× 2× 2× 3×NF/8) is the degeneracy of quarks and gluons in QGP and

NF is the number of flavours. The value of the transition temperature, Tc has been taken to

be 175 MeV. We have used the boost invariant model of relativistic hydrodynamics proposed

by Bjorken [5] for the space time evolution of the expanding QGP back ground. We will have

a more detailed discussion on this in the next chapter. The value of Ti and τi for the QGP

fireball are taken as Ti = 300 MeV and τi = 0.5 fm/c. The corresponding quantities for LHC

are Ti = 550 MeV and τi = 0.1 fm/c. The pressure (P )-energy density(ε) relation for the QGP

has been taken as P = ε/3.

The ratio of the solution of the Fokker Planck Equation for charm and bottom at the crit-

ical temperature, Tc, f(~p, Tc) (this is the distribution function of charm/bottom when they

emerge from QGP) to the initial distribution, fin(~p, Ti, τi) taken from MNR code (this is the

charm/bottom distribution function just before entering QGP) is the theoretical definition of

the nuclear modification factor for heavy quark:

R
c/b
AA(pT ) =

f c/b(pT , Tc)

f
c/b
in (pT , Ti)

(4.10)

The suppression of both charm and bottom quarks (before fragmentation to hadrons) are plot-

ted against pT in Figs. 4.1 and 4.2 respectively. We note from these plots that if one takes

the drag to be momentum independent (or more precisely takes the value of A at low p and

extends it upto very high p) then the drag due to collisional process causes about 50% suppres-

sion (dashed line). However, if we take into account the variation of A with p obtained from

pQCD calculation then about 20% of suppression can be achieved, i.e. the contribution from

the collisional loss becomes smaller when we consider momentum dependent drag because drag

reduces with the increasing momentum of the HQ. This means that without the momentum de-

pendence of the drag coefficient(which is the realistic scenario for the fast moving heavy quark)

one could have overestimated the nuclear suppression factor. In this way, the consideration of
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momentum dependence enables us to estimate the suppression factor more accurately. Again,

it is important to notice that the observed large suppression of the heavy quarks at RHIC is

predominantly due to radiative loss of heavy quarks. In fact, the inclusion of the radiative

processes increases the suppression to about 75%. This can be understood from the fact that

the drag due to the radiative loss is large. The suppression of the bottom quark is much less

because of the smaller values of drag and initial harder momentum distribution (Fig. 4.2).

Figure 4.1: Suppression factor of charm quarks in QGP as a function pT

Hadronisation or fragmentation of heavy quark into heavy mesons

The deconfined QGP medium formed in the heavy ion collisions lasts only for a short time span.

After a very short time(within 2-3 fm), a phase transition occurs and the deconfined quarks

and gluons again combine to form hadrons. Therefore, one cannot really measure the energy

loss or the suppression of deconfined heavy quarks, rather the suppression of the heavy mesons

like D or B mesons can be measured. So, it is also necessary to hadronise the heavy quarks

into D or B mesons, theoretically. This is done by using Peterson fragmentation function [6]:

f(z) ∝ 1

z
[
1− 1

z
− (

εQ
1−z )

]2 (4.11)
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Figure 4.2: Suppression factor of bottom quarks in QGP as a function pT

where, z is the fraction of momentum of the heavy quark carried by the hadrons, εQ for charm

and bottom are εc = 0.05 and εb = εc(
Mc

Mb
)2 respectively. We have convoluted the solution of

the Fokker Planck equation at Tc(at the end of the QGP phase) and the initial distribution

function (at the beginning of the QGP phase) for heavy quark with this fragmentation function

and have got the nuclear modification factor for D and B mesons by taking their ratios. These

are plotted in Figs. 4.3 and 4.4 at both RHIC and LHC energies respectively. There are also

other fragmentation functions available in the literatures. The sensitivity of the results on the

type of fragmentation function has been studied in details in Ref. [7].

Semi-leptonic decay

It can drawn in attention that whereas in the fig. 4.4, the theoretical results have been contrasted

with the experimental data, there is no comparison with the experimental data in case of RHIC

energies(fig. 4.3). This is because of the fact that in LHC, the direct measurement of the D-

meson RAA has been possible, but the same was not possible in RHIC. So, for comparing

our results with the experimental data obtained at RHIC at the centre of mass energy,
√
s =

200 GeV per nucleon, we have obtained the single electron spectra originated from the semi-

leptonic decay of heavy-flavoured mesons. The result illustrated in Fig. 4.6 depicts the nuclear
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Figure 4.3: RAA as a function of pT for D and B mesons at RHIC

modification factor for the electrons from D and B mesons separately as well as the combined

RAA from both the sources. The relevant decay channels are as follows:

D → Ke−ν̄e (4.12)

B → Ke−ν̄e (4.13)

In fig. 4.5, the light anti-quark of the D-meson acts like a spectator whereas the electrons

are being emitted from the weak decay of the charm quark residing inside the D-meson. The

similar type of mechanism holds true for B-meson also. Consequently, one can conclude that

measurement of the nuclear modification factor(RAA) of the electrons from the semi-leptonic

decay of D/B mesons reflects RAA of the heavy mesons which in turn gives us the modification

factor of the open heavy quarks from the QGP sector. Let, the transverse momentum carried

by electron originated from semi-leptonic decay of D/B-meson is pT and that carried by the

parent D/B meson is qT . If the pT -spectrum of non-photonic electron is dN e/pTdpT = f(pT ),

then
dN e

pTdpT
(pT ) =

∫
dqT

dND

qTdqT
F (pT , qT ), (4.14)
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Figure 4.4: RAA as a function of pT for D and B mesons at LHC. Experimental data taken
from [8].

where, a specific case of D-meson decay has been considered. dND/qTdqT is the transverse

momentum spectra of D-meson and the function F (pT , qT ) is

F (pT , qT ) = ω

∫
d( ~pT . ~qT )

2pT ( ~pT . ~qT )
g

(
pT qT cosθ

M

)
. (4.15)

Here,

ω = 96(1− 8m2 + 8m6 −m8 − 12m4ln m2)−1M−6,

d( ~pT . ~qT ) = pT qTd(cosθ)and

m =
MK

MD

. (4.16)

Therefore, we can write for F (pT , qT ) and g as follows:

F (pT , qT ) =
ω

2pT

∫
d(cosθ)

cosθ
g

(
pT qT cosθ

M

)
g

(
pT qT cosθ

M

)
=

p2T q
2
T cos

2θ(M2 −M2
X − 2pT qT cosθ)

2

M(M2 − 2pT qT cosθ)
. (4.17)

After having performed the integration 4.15 with the help of Eqs. 4.17, we can switch that into

integration 4.14 which will result into the final semi-leptonic electron spectra. This process is
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repeated for the medium-modified D/B meson spectra(solution of the Fokker Planck Equation)

as well as for that of the D/B meson spectra fragmented from the initially produced spectra

for charm and bottom quark which is unmodified by the medium. The ratio will then be the

nuclear modification factor, RAA of the electrons from the semi-leptonic decay of D/B meson:

R
D/B→e−

AA =
f
D/B→e−

final

f
D/B→e−

in

. (4.18)

Figure 4.5: Decay from D meson to electron
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Figure 4.6: RAA as a function of pT for the electrons originated from the semi-leptonic decays
of D and B mesons[9]
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Fig. 4.6 depicts the comparison of the experimental data from RHIC at the centre of mass

energy,
√
s = 200 GeV/nucleon with the theoretically calculated results from the Eq. 4.18.

We can say that this is a good agreement with the experiment with the initial temperature,

Ti = 300 MeV and square of the velocity of sound is 1/3.

Highlights

i) The momentum dependence of the drag coefficient is found to be crucial in reproducing the

trend in the the transverse momentum (pT ) dependence of the nuclear modification factor of

heavy flavour extracted from the experiments.

ii) The radiative loss due to gluon bremsstrahlung off heavy quark plays more dominant role

than elastic loss particularly at higher temperature of the bath and higher momentum of the

heavy probe.

iii) The suppression of bottom is less than that of charm owing to the smaller magnitude of the

drag and the harder initial transverse momentum distribution.

iv) The initial temperature, Ti and the initial thermalisation time, τi of the medium for RHIC

(
√
s = 200 GeV/nucleon, 0−5% centrality) are 300 MeV and 0.5 fm/c and for LHC (

√
s = 2.76

TeV/nucleon, 0− 10% centrality) are 550 MeV and 0.1 fm/c respectively.
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Chapter 5

Effect of Equation of State on the

determination of the initial conditions

5.1 Initial conditions of Quark Gluon Plasma:

In the previous chapter, we have seen that different values of initial temperature, Ti and initial

thermalisation time, τi can be extracted by contrasting the theoretical result on the nuclear

modification factor, RAA of the heavy quarks to the experimental data obtained at RHIC and

LHC energies. Therefore, it has been quite clear that those two initial parameters have not

been evaluated theoretically, rather they were adjusted/extracted phenomenologically. In the

absence of any first principle methods of the estimation of the initial conditions, our aim, here,

is to constrain those from the relevant experimental observables. Keeping in mind this inherent

ambiguity regarding the accurate determination of these parameters, we will try to predict a

particular range of values for Ti and τi in case of RHIC energy (
√
s = 200 GeV/nucleon and

0− 10% centrality) in the current chapter. The same methodology is also applicable for LHC

energies.
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5.1.1 Procedure:

Lattice QCD (LQCD) calculations indicate that at a temperature ∼ 175 MeV the entropy den-

sity (s) of the hadronic matter rises significantly due to the release of colour degrees of freedom

which are confined within the hadrons at zero temperature. Therefore, it is of foremost impor-

tance to have an estimate of the value of the initial entropy density (si) / initial temperature

(Ti) for the system formed in nuclear collisions at Relativistic Heavy Ion Collider (RHIC) and

Large Hadron Collider (LHC) and assess whether the system is formed in colour deconfined

phase or not.

One of the possible ways to estimate the value of the initial entropy density is the extrapolation

of the measured (final) observables backward in time through a suitable dynamical model.

In absence of viscous loss the time reversal symmetry of the system is valid, therefore, the

measured multiplicity at the freeze-out of the system can be used to estimate si. The si

and the thermalization time (τi) are constrained by the measured (final) hadron multiplicity

(dN/dy) by the following relation [1]:

siτi = κ
1

A⊥

dN

dy
(5.1)

where A⊥ is the transverse area of the system which can be determined from the collision

geometry and κ is a known constant (=3.7 for massless Bosons). The value of dN/dy (∼

1.5 × dNcharge/dy) which is connected to si through Eq. 5.1 is readily available for different

collision centralities [2]. In Eq. 5.1 there are two unknown quantities, τi and si both of which

can not be determined from a single equation involving a single measured quantity, dN/dy.

Therefore, we choose another experimentally measured quantity the nuclear suppression, RAA

of heavy quarks (HQ) [3, 4], which is sensitive to the initial condition and hence will be very

useful to estimate si.

In the previous chapters, we have elaborated, in detail, the procedure of evaluating the nuclear

modification factor, RAA by solving the Fokker Planck Equation for the Heavy Quarks when

they suffer elastic as well as gluon bremsstrahlung in the medium. A full account of the

calculations of the drag/diffusion coefficient of HQ for both elastic and radiative cases has been
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presented in the earlier chapters. Therefore, here, we already know the method of estimation

of RAA of the electrons originated from the semi-leptonic decays of heavy flavour for RHIC

(
√
s = 200 GeV/nucleon and 0 − 10% centrality). We can now investigate the role of the

Equation of state in deciding the initial entropy density of the medium of QGP.

5.1.2 Results:

The equation of state (EoS) plays a crucial role in describing the space time evolution of the

expanding QGP from the initial state to the quark-hadron transition point. We use boost

invariant hydrodynamic model [7] with the LQCD calculation EoS [5] for the space time

description of the matter. The velocity of sound (cs) as obtained in [5] from LQCD calculations

shows a significant variation with temperature (Fig. 5.1). It starts with a very low value of

c2s at T ∼ Tc and then increases with T to reach a maximum value (c2s ∼ 0.3) but remains

below the Stefan-Boltzmann limit [5] even at a temperature as high as 1000 MeV. The EoS

for almost baryon free QGP expected at RHIC energy is taken as: P = c2sε. The EoS sets

the expansion time scale for the system as τexp ∼ [(1/ε)dε/dτ ]−1 ∼ τ/(1 + c2s) indicating the

fact that lower value of cs makes the expansion time scale longer i.e. the rate of expansion

slower. Therefore, for given values of Ti and Tc the life time of the QGP will be longer for

smaller cs. The value of Tc is fixed at 175 MeV. The nuclear modification factor for heavy

quark electrons(Fig. 5.2) has been evaluated using this temperature dependent sound squared

velocity, c2s and it is observed that a value of Ti = 250 MeV and τi = 0.83 fm/c reproduces the

experimentally measured nuclear suppression [3, 4] reasonably well. The corresponding value

of si = 2π2geffT
3
i /45 ∼ 34/ fm3 for geff ∼ 38 extracted from the variation of s/T 3 with T

provided by the LQCD calculations [5].

As discussed above, for larger cs the expansion time scale is shorter i.e. the QGP life time

is smaller, consequently the HQ spends less time in the QGP which ultimately leads to less

suppression of the HQs. Therefore, we take the following strategy to obtain the possible range

of initial temperature allowed by the experimental data. We take the highest possible value

of c2s(= 1/3) for the space-time description of the flowing QGP background, in the present
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Figure 5.1: Velocity of sound squared as a function temperature [5][6]

approach this will lead to the maximum value of Ti. In this case the HQ will spend the lesser

amount of time in the QGP. Therefore, to achieve the experimentally measured RAA one will

need larger drag or in other word larger initial temperature. The results for c2s = 1/3 is displayed

in Fig. 5.3. The value of Ti obtained from the analysis is 300 MeV, the corresponding value of

si ∼ 59/ fm3, to be considered as the highest value of Ti or si admitted by the data.

For c2s = 1/5 the HQs spend longer time in QGP (compared to the case when c2s = 1/3).

Therefore, the observed suppression (5.4) dictates to reduce the initial temperature. In this

case the data is well reproduced with Ti = 210 MeV and si ∼ 19.66/fm3.

Further lowering of cs will make the value of τi large (for given dN/dy) enough to contradict

other results like the observation of large hadronic elliptic flow which requires small τi (see [8]

for review). That will also result in lower Ti with which it will be difficult to explain other

experimental results. For all the theoretical results displayed in Figs. 5.2, 5.3 and 5.4, we have

kept the quantity dN/dy constant and consequently the value of τi changes to 0.83, 0.48 and 1.4

fm/c for Ti = 250, 300 and 210 MeV respectively. The changes in Ti is forced by the changes in

the EoS. In Fig. 5.5 we show the variation of Ti with c
2
s obtained by constraints imposed by the

experimental data on RAA and dN/dy. The value of Ti varies from 210 to 300 MeV depending
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Figure 5.2: (colour online) Variation of RAA with pT for the space time evolution with initial
condition Ti = 250 MeV and τi = 0.84 fm/c and the EoS which includes the variation of cs
with T .[6]
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Figure 5.3: (colour online) Variation of RAA with pT for for c2s = 1/3 and Ti = 300 MeV.[6]
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Figure 5.4: (colour online) Variation of RAA with pT for c2s = 1/5 and Ti = 210 MeV.[6]

on the value of cs. In this plot the abscissa corresponding to the ordinate, Ti = 250 MeV is taken

as 0.275, which is the average value obtained from the variation of c2s with T shown in Fig. 5.1.

In this context we compare the value of Ti obtained in the work with some of those reported

earlier. In Refs. [9] the value of Ti is obtained as ∼ 375 MeV from the study of heavy quark

suppression. From the simultaneous analysis of light and heavy quarks suppressions in Ref. [10]

a value of Ti = 400 MeV is obtained. The authors in Ref. [11, 12, 13] mentioned the values of

the initial gluon rapidity distribution, dNg/dy, which may be converted to Ti = 290, 270 and

310 respectively. It is important to note that the lowest value of Ti obtained from the present

analysis is well above the quark-hadron phase transition temperature, indicating the fact that

the system formed in Au+Au collisions at
√
sNN = 200 GeV might be formed in the partonic

phase.

The main conclusions drawn from this chapter:

i)The effects of the EoS on the suppression of single electrons originating from the decays of

heavy flavours produced in Au+Au collisions at
√
sNN = 200 GeV/nucleon has been studied.

ii)We found that the initial temperature may vary from 210 to 300 MeV depending on the

magnitude of the velocity of sound, which sets the scale for the expansion of QGP.
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Figure 5.5: The variation of Ti with c
2
s for fixed dN/dy.[6]

iii)We have used experimental data (charged particle multiplicity and RAA of heavy flavours)

and LQCD results (cs, geff etc.) to keep the model dependence minimum.

iv)The effects of transverse expansion is neglected here. With the transverse expansion the HQ

will (a) travel longer path (b) with diluted density. However, the two competing effects (a) and

(b) might have some sort of cancellation due to which our final conclusion may not get altered.

5.1.3 Highlights and some critical comments:

1. Throughout the treatment in this chapter we have considered ideal longitudinal hydrody-

namic expansion. We can develop some naive critical thoughts related to the dissipative

hydro.

In case of isentropic expansion of an ideal fluid, the conservation of entropy implies that

dN/dy is a constant of motion. In such circumstances, the observed (final) multiplicity,

dN/dy may be related to si or Ti and τi through Eq. 5.1. Assuming a value of τi one can

estimate Ti. For dissipative systems, however, such an estimate is obviously inapplicable.

Generation of entropy during the evolution invalidates the role of dN/dy as a constant

of motion. Moreover, the irreversibility arising out of dissipative effects implies that
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estimation of the initial entropy (temperature) from the measured (final) dN/dy is no

longer a trivial task. Nevertheless, one can relate the experimental

T 3
f τf ∝

1

A2
⊥

dN

dy
(5.2)

To estimate the initial temperature, Ti for the dissipative fluid is treated as a parameter;

for each Ti, the system is evolved forward in time under the condition of Israel-Stewart

dissipative fluid dynamics [14] till a given freeze-out temperature Tf is reached. Thus

τf is determined. We then compute dN/dy at this τf from eq. 5.2 and compare it with

the experimental dN/dy. The value of Ti for which the calculated dN/dy matches the

experimental number is taken to be the value of the initial temperature. It is found [15]

that the value of Ti may change by about 6% for η/s = 1/(4π) for the entire evolution

of the system from the QGP initial state to the final hadronic freeze-out state via an

intermediary QGP to hadron transition. In the present work we are concerned with

evolution of the QGP phase only. In view of this one expects that the change in the value

of Ti due to viscous effects QGP phase will be even smaller than 6%.

2. It may be imperative to consider the effects of the pre-equilibrium evolution when the

equilibration time is not small. We have estimated this effects for the case when τi = 1.4

fm/c. We solved the Boltzmann transport equation with relaxation time approximations

for the pre-equilibrium stage of the partonic system to obtain a solution of the form:

fpreq = feq(1− e−τ/τR) + f0e
−τ/τR (5.3)

where τR is the relaxation time [16], f0 is the initial distribution [17] and feq is the

equilibrium momentum distribution, of the partons which interact with the HQ. The

modification of the HQ spectra can be obtained as [18] ∼ (1− e−γpreq∆τ ) < 5% with the

duration of the pre-equilibrium phase ∼ 1 fm/c. This indicates that the effects of the

pre-equilibrium stage in the present situation is not large and the value of the Ti obtained

in the present analysis may not change significantly.
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Chapter 6

Gluon bremsstrahlung from Heavy

Quark: revisited

All the preceding chapters have dealt with the elastic as well as radiative interactions of heavy

quark with the light quarks, light anti-quarks and gluons of the medium of Quark Gluon Plasma

(QGP). In this dissertation, one of the main aims is to explore the dominance of the gluon

radiation off Heavy Quarks propagating through QGP on various observables. While the third

and the fourth chapter discuss the method of calculating the relevant drag/diffusion coefficients

of HQ emitting gluons due to the phenomenon of scattering with the medium particles and see

its effect on the nuclear modification factor of heavy flavours, in the present chapter, the effect

of this gluon bremsstrahlung on other physical quantities/observables will be investigated.

6.1 Distribution Function of Charm Quark:

The Heavy Quarks are produced very early in heavy ion collisions due to hard scattering

processes. The single particle momentum distribution function of the HQ, it is going to follow

is determined by the perturbative QCD calculations. It can be shown that the transverse

momentum distribution function, fin(pT ) follows a power law:
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fin(pT ) ∝
1

(a+ bpT )c
. (6.1)

This is the distribution function of the heavy quark before it enters the medium. After that,

FPE has been used to study this modification due to its interaction with the QGP medium.

In our study, the main object will be to examine whether the distribution function of the

external probe, the heavy quark, follows that of the medium particles, i.e. whether the HQ’s

are thermalised or not. In this work, we have studied the charm quarks as probes. However,

the similar methodology applies for bottom quark as well, but being heavier than charm, it

has lesser probability to thermalise in the medium, i.e. to follow the equivalent distribution

function as followed by the bulk particles.

Let us first assume that charm quark equilibrates in the medium with the following class of

distribution:

fCQeq (p;T, q) = Ne−Φ(p;T,q) (6.2)

where, N is the normalisation factor, p is the momentum of charm, T and q are two parameters

specifying the distribution function. In the following discussion, we will analyse whether this

fCQeq is that of the Boltzmann type followed by the light partons of the medium of QGP. To

proceed in that way, we will need to make use of the generalised Einstein relation, i.e. the

fluctuation-dissipation relation, for the relativistic charm quark, already discussed in Chapter-

2. For a spatially homogeneous case, the generalised Einstein relation reads:

A(p, T ) =
1

p

dΦ

dp
B‖ −

1

p

dB‖

dp
− 2

p2
(B‖(p, T )−B⊥(p, T )) (6.3)

where these A, B⊥ and B‖ are the drag, transverse and longitudinal diffusion coefficients as

appear in the Fokker Planck equation(for further details one can refer to Chapter-2).

From Eq. 6.3, it is clear that if the three transport coefficients are known, then one can infer

the correct equilibrium distribution function obeyed by CQs and ascertain whether or not CQs

will fall under the Boltzmann-Jüttner class of statistics. It is evident from the variation of

83



dΦ/dp (calculated from Eq. 6.3) with p (Fig. 6.1) that dΦ/dp deviates significantly from

d/dp(
√
p2 +m2/T ), charm quarks seem to be away from the Boltzmann like distribution.

This figure also shows that radiative energy loss of heavy quarks does not affect the results

significantly, which means that whether we include gluon bremsstrahlung into the description

or not dΦ/dp will deviate from Boltzmann distribution. In principle, we should have ascertained

the precise form of Φ from Eq. 6.3 had we been able to estimate the accurate drag/diffusion

coefficients (like including non-perturbative effects in our pQCD calculations etc.). Therefore, to

study the equilibrium distribution of charm and its deviation from Boltzmann like distribution,

let us consider Tsallis distribution [1], where Φ is given by:

ΦTs =
1

1− q
ln [1− (1− q)E(p)/TT ] (6.4)

where TT (temperature-like) and q are parameters. ΦTs reduces to the Boltzmann distribution
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Figure 6.1: For charm propagating in QGP having temperature, T = 525 MeV.[2]

in the limit q → 0 and TT → T (where T is the temperature of the bath). The values of TT

and q will decide the form of the equilibrium distribution of charm quark. Putting Eq. 6.4 into

Eq. 6.3, we get [3]:

TT + (q − 1)E =
dE

dp

B‖

pA+
dB‖
dp

+ 2
p
(B‖ −B⊥)

(6.5)
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Our aim is to calculate the right hand side of the above equation(Eq. 6.5) and determine the

values of TT and q by studying the variation of TT + (q − 1)E and parametrising the variation

by a straight line. We will perform the same exercise with only elastic and after that with

elastic combined with the radiative transport coefficients of charm. Let us first take the elastic

processes only. The dependence of TT + (q − 1)E on E for CQs of mass, M = 1.3 GeV

propagating inside a heat bath of T = 525 MeV is plotted in Fig. 6.2, considering A, B⊥ and

B‖ for collisional energy loss as well as including effect due to gluon bremsstrahlung. We
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Figure 6.2: Plot of RHS of Eq. 6.5 vs E for collisional as well as total transport coefficients at
T = 525 MeV. Long dashed line: expected for Boltzman-Jüttner distribution[2]

get q = 1.101 and TT = 184MeV . ΦTs with these values of TT and q is far from being that

of Boltzmann-Juüttner statistics (shown by long-dashed line). Results displayed in Fig. 6.2

also indicate that the inclusion of radiative effects on the drag/diffusion coefficients does not

make any noteworthy change on the shape of the equilibrium distribution function of charm. In

Figs. 6.2 and 6.3, the long-dashed horizontal lines represent the Boltzmann distribution (q = 1

and TT = T ) which is obeyed by the bulk particles of the background Quark Gluon Plasma.

As a matter of fact, this sort of effect is not quite expected if we look at Eq. 6.5. It is not the

magnitude of the transport coefficients, but rather their ratios which decide the shape of fCQeq .

Therefore, it is not surprising that although the value of the relaxation time of CQs is dictated

by the magnitude of the drag coefficient (in which the radiative contribution is significant), the
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Figure 6.3: Plot of RHS of Eq. 6.5 vs E for collisional as well as total transport coefficients at
T = 725 MeV. Long dashed line: expected for Boltzman-Jüttner distribution[2]

shape of the equilibrium distribution is largely independent of the magnitude of the transport

coefficients. In turn, this means that the nature of the underlying interaction of the charm

quark with the bath particles, i.e. whether it suffers only elastic collisions or undergoes gluon

bremsstrahlung also, has very little to do with the ultimate fate of fCQeq . This conclusion remains

unaltered even when we increase the bath temperature, T to 725 MeV. At T = 725 MeV, the

slope the straight line remains unchanged, i.e. the value of the parameter q comes out to be

1.095, which is close to the value obtained for T = 525 MeV. This study of T + (q − 1)E vs E

at different temperatures is important because the medium we are talking about is not having

a constant temperature all through, rather the medium evolves and the temperature changes.

So, to this end, it is constructive to note that though at higher temperatures, radiative energy

loss of HQ is more, however, that does not make the equilibrium distribution function of HQ

like that of the medium particles. However, the value of the other parameter of the Tsallis

distribution, TT is found to be 335 MeV. At this temperature of the heat bath too (i.e. 725

MeV), the incorporation of the radiative drag/diffusion coefficients hardly has any bearing as

far as the shape of the equilibrium distribution function of charm quark is concerned. For the

charm quark to become a part of the background system, i.e. to follow the same statistics as

that of the bath particles, both the parameters q and TT/T need to be 1. Instead, we notice
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that q and TT/T (this second ratio is 2.85 at T = 525 MeV and 2.164 at T = 725 MeV) are

far from unity. Therefore, it might be concluded that although the CQ may equilibrate while

propagating through QGP, it may not share the same distribution with the bath particles, i.e.

with light quarks and gluons, for a wide range of CQ energies and bath temperatures.

6.2 Shear Viscosity to entropy density ratio of Quark

Gluon Plasma:

The value of the shear viscosity (η) to entropy density (s) ratio, η/s, plays a pivotal role in

deciding the nature of QGP, i.e., whether the medium behaves like a weakly coupled gas or a

strongly coupled liquid. In this work we evaluate η/s by calculating the transport parameter,

q̂, which is a measure of the squared average momentum exchange between the probe and the

bath particles per unit length [4, 5, 6]. The q̂, which has been found to be1 GeV2/fm in Ref. [6],

can be related to the transverse diffusion coefficient of the CQ, which is calculated here. When

a CQ with a certain momentum propagates in QGP, a transverse momentum exchange with

the bath particles occurs. Hence, the momentum of the energetic CQ is shared by the low-

momentum (on the average) bath particles, which is expressed through the transverse dif- fusion

coefficients. The transverse diffusion coefficients cause the minimization of the momentum (or

velocity) gradient in the system. Therefore, it must be related to the shear viscous coefficients

of the system which drive the system toward a depleted velocity gradient. The transverse

momentum diffusion coefficient B⊥ can be written as

B⊥ =
1

2

(
δij −

pipj
p2

)
Bij (6.6)

Here, we might recall the expression for the tensorial form of the diffusion coefficient:

Bij =
1

2
� (p′ − p)i(p

′ − p)j �, (6.7)
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where, �� means an integration over the relevant phase space weighted by the invariant

amplitude squared of the interaction of the heavy quark with the medium particles. Using

Eq. 6.7 with (p′ − p)i = qi, we get

B⊥ =
1

2

(
δij −

pipj
p2

)
1

2
� qiqj �

=
1

4
� ~q2 − (~p.~q)2

~p2
�

If we take ~p to be along z-axis,

B⊥ =
1

4
� ~q2 − q2z �

=
1

4
� q2⊥ �

=
1

4
q̂ (6.8)

With this definition of q̂, we calculate η/s of a weakly coupled QGP from the following

expression[4]:
η

s
≈ 1.25

T 3

q̂
(6.9)

Therefore,

4π
η

s
≈ 1.25π

T 3

B⊥
. (6.10)

Eq. 6.10 indicates that the η/s can be estimated from B⊥. We display 4π η
s
against the bath tem-

perature, T when the CQ undergoes both collisional and radiative interactions in the medium.

From the analysis of the experimental data [6], it was found that 4π η
s
= 1.4± 0.4, which may

be compared with the AdS/CFT bound 4π η
s
≥ 1 [7].

From the results shown in Fig. 6.4, it should be noted that the value of η/s changes substantially

with the inclusion of the radiative effects. The inclusion of the radiative loss in the transverse

diffusion, B⊥ brings the theoretical values closer to the experimental findings [8]. This highlights

the importance of the radiative loss of the charm quark in QGP. It is interesting to note that

the value of q̂ for T = 300 MeV is about 2 GeV 2/fm, which is close to the one obtained in

the Gyulassy- Levai-Vitev approach [9] to energy loss but lower than the value extracted from

Baier-Dokhshitzer-Mueller-Peigne-Schiff [10] or Armesto-Salgado-Wiedemann [11] approaches.
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Figure 6.4: For a charm quark with momentum, < pT >= 5 Gev propagating in QGP of
temperature, T[2]

Highlights

We summarise the findings of this chapter below:

1. We have investigated the effect of the gluon bremsstrahlung off heavy quark discussed

in the third chapter of this thesis on the shape of the equilibrium distribution function

of heavy quark. The underlying assumption of this treatment is that the heavy quark,

in the course of its journey in the QGP medium, equilibrates at the end. One may note

that even if the heavy quark comes to equilibrium, it never shares the same distribution

function like the bath particles, rather it follows a new class of distribution functions,

called Tsallis distribution. It has been observed that the shape of the HQ equilibrium

distribution depends on the ratios of the drag/diffusion coefficients and consequently, it

does not change even with the inclusion of the gluon radiation. Yet, gluon radiation does

have effect on the rate of equilibration of the heavy quark in the thermal medium as drag

is enhanced when HQ suffers radiative energy loss.
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2. The shear viscosity to the entropy density ratio(η/s) has been estimated using heavy

quark as the probe by using a relation between the transverse diffusion, B⊥ and η/s

of the medium. The radiation of gluons has been seen to affect the magnitude of η/s

considerably. It is noticed that when one takes into account the gluon bremsstrahlung,

the value of η/s comes closer to the result obtained from the analysis of the experimental

data.
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Chapter 7

A coda: Summary, conclusions and

outlook

Our quest to understand the early universe a few microseconds after the Big Bang took us to

a journey starting from re-creating the situation, similar to that existed in the early universe,

by colliding two heavy ions in the laboratories. The new state of matter thus created is called

“Quark Gluon Plasma”(QGP). We have also seen that this medium is composed of the quarks

and gluons which are not bound in the form of hadrons. This happens due to the distinctive

feature of Quantum Chromo Dynamics(QCD) governing the physics of deconfined quarks and

gluons; the asymptotic freedom. This trait of QCD made it possible to realise this state of

matter characterised by the coloured degrees of freedom.

In this dissertation, our central goal has been to study and to explore different properties of

the QGP using heavy quarks, like charm and bottom, as probes. It has been explained that

the heavy quarks, produced quite early(before the formation of QGP medium) in the heavy ion

collisions due to the hard scatterings, can be described by the Brownian motion in the thermal

bath of light quarks and gluonws. The equation describing the motion of heavy quark, i.e. the

Fokker Planck Equation(FPE) has been discussed and solved in this work. In the way of doing

so, we have calculated the transport coefficients appearing in FPE which has been solved with
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appropriate initial conditions. Let us summarise the main findings of this discourse and what

we have learnt about various properties of QGP.

1. The medium of QGP created in the heavy ion collisions, is assumed to be in thermal

equilibrium. HQs, which are produced in the early hard scatterings has been used to

probe the properties of QGP. The equation of motion of heavy quark immersed in a

QGP fluid can be described by the well-known Boltzmann Transport Equation (BTE).

It has also been explained that in the limit of the soft gluon exchange, i.e. when the

momentum transfer of the heavy quark is very small due to the elastic scattering with

the medium particles, one can approximate BTE into either Langevin Equation or Fokker

Planck Equation. Though, our work deals only with the parts and parcel of FPE, we also

gave some account of the Langevin equation, with the appropriate references, for the sake

of completeness of the discussion. Between the two equivalent formalisms we adopted

Fokker Planck formalism.

2. We have evaluated the drag and longitudinal and transverse diffusion coefficients of the

heavy quark traversing QGP within the ambit of perturbative QCD and kinetic theory.

The full dependence of the transport coefficients on the temperature of the bath as well

as on the momentum of the heavy quark is taken into account. In this way we have

computed the inputs to the Fokker Planck Equation for two cases:(i) when the heavy

quark encounters elastic scatterings with the medium particles, (ii) when the heavy quark

suffers radiative loss in the medium.

3. Before calculating the transport coefficients in case of gluon bremsstrahlung off heavy

quarks, a brief discussion about the angular distribution of radiation from a point charge

in Classical Electro Dynamics (CED) was in order. Similar to what happens in CED,

the spectrum of gluon radiation from a heavy particle includes a conical region of “no

radiation”, called the dead-cone region. This region is not present in case of a light

particle. In the radiative transport coefficients of HQ, the effect due to the dead-cone

has been taken into consideration. It has been noticed that as long as the radiated gluon

is ‘soft’, the radiative transport coefficients can be factorised into the elastic transport
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coefficients multiplied by the gluon radiation spectrum integrated over the relevant phase

space. The radiative transport coefficients thus estimated have been seen to exceed the

elastic transport coefficients in magnitude especially at higher bath temperature, T and

higher momentum, p of the heavy quark. The method of calculations of the elastic and

the radiative transport coefficients has been elaborated in Chapter-2 and 3.

4. The transport coefficients arising from the elastic scatterings of HQ with the medium

particles has been evaluated shielding the infra-red divergence(due to the soft mediatory

gluon) by the Debye mass in an ad-hoc manner. Later, an effort has been made to shield

this divergence with the HTL re-summed gluon propagator which includes the imaginary

as well as real part of the self energy of the gluon. It is observed that this self-consistent

way of shielding the divergence led to enhanced values of the transport coefficients. This

happens because of the inclusion of the typical processes occurring in medium, like Landau

damping etc. into the calculations of the relevant Feynman matrix elements. This increase

in the magnitudes of the drag/diffusion coefficients will have effect on the energy loss of

HQ and also on the equilibration rate of the heavy quark in QGP.

5. After having calculated the transport coefficients of heavy quark, we have stepped forward

to solve the FPE, with proper initial conditions which has been discussed in the fourth

chapter. The solution of the Fokker Planck Equation has led us to the theoretical estima-

tion of the nuclear modification factor, RAA of the charm and bottom quarks. The ratio of

the final solution of FPE at the critical temperature, Tc of QGP(at this temperature, QGP

ceases to exist and hadrons phase starts) to the initial distribution of heavy quark(before

entering into QGP medium) is defined as the nuclear suppression/modification factor,

RAA of the heavy quark. In order to match the theoretical results with the experimental

data obtained in heavy ion collisions at RHIC and LHC, the distribution functions have

been convoluted with the fragmentation functions to hadronise the open charm and bot-

tom quarks into D and B mesons respectively. In this way, the RAA of D and B mesons are

also calculated. In case of RHIC, the nuclear modification factor has been estimated for

the electrons originated from the semi-leptonic decays of the heavy mesons. The detailed
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calculations have been given in Chapter-4. For LHC, the D-meson spectra is measured

directly.

6. The determination of the initial conditions of QGP medium, i.e the initial temperature, Ti

and the initial thermalisation time, τi is ambiguous due to the absence of any first principle

methods of calculations of those quantities. It has been discussed in the fifth chapter

how one can estimate the initial conditions, Ti and τi by constraining the experimental

observables like total particle multiplicity and RAA of the heavy flavour. In this way, it

is possible to predict a range of the initial parameters depending upon the magnitude of

the velocity of sound used in the present calculation. Though this procedure has been

followed for RHIC energies, it is similarly applicable for LHC energies, too. A rough

estimation shows that the pre-equilibrium stage does not affect the conclusion about the

values of Ti and τi much.

7. Chapter-6 dealt with the effect of the radiation on the shape of the distribution function of

the charm quark, if it equilibrates in the course of its journey through the medium of QGP.

In this context, the generalised Einstein’s relation has been discussed for a relativistically

moving heavy quark. The shape of the equilibrium distribution has been seen to depend

upon the three drag/diffusion coefficients of the HQ. It has been conjectured that the

shape remains unaltered irrespective of the fact that whether the heavy quark interacts

elastically with the medium particles or emits gluon radiation. This happens due to the

fact that the shape depends on the ratios of the transport coefficients and not on their

absolute values.

8. At the end of this treatise, we also endeavoured to estimate the shear viscosity to the

entropy density ratio(η/s) of QGP using charm quark as a probe. A relation has been

established connecting the transverse diffusion, B⊥ of HQ to η/s of the surrounding

medium. We observe that the value of η/s becomes close to the value obtained from

the analysis of the experimental data when one adds the contribution due to the gluon

bremsstrahlung on top of the elastic scatterings of the HQ with the medium particles.
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The above mentioned points are the gist of the work which has been covered in this entire thesis.

In view of these findings, we can conclude that, in this dissertation, we were able to illustrate a

basic picture of the heavy quark travelling inside the medium of QGP and to develop an idea

about various properties of QGP by studying the equation of motion of HQ. In this way the

heavy quark successfully can be described as a good probe of the thermalised medium of Quark

Gluon Plasma.

Outlook

Now that we have investigated the main features of the medium created in heavy ion colli-

sions(HIC) using the heavy quark(formed at the early stage of HIC before the formation of

QGP medium) as probe, we can look forward to concentrate on various other aspects, applica-

tions and improvement of the formalism presented in this thesis.

1. To this end, we have considered the evolution of the bulk medium(QGP) to be governed

by boost invariant one dimensional Bjorken ideal hydrodynamics to calculate the exper-

imental observables like the nuclear modification factor, RAA of the open heavy flavour.

The higher dimensional viscous hydrodynamics is on its way to be implemented in the

present formalism.

2. With the higher dimensional viscous hydrodynamics incorporated, we can evaluate an-

other important experimental observable like the elliptic flow, v2 of heavy flavour and we

can endeavour to reproduce experimental results on RAA and v2 of HQ, simultaneously.

3. The calculation of the radiative transport coefficients with the improved technique pre-

sented here might also affect the estimation of the elliptic flow and in turn the possibility

of equilibration of heavy quark in the QGP medium. This issue of the heavy flavour

equilibrium is of contemporary interest.

4. So far, the gluon radiation spectrum has been calculated keeping the heavy quark in a

straight ‘eikonal’trajectory after elastic scattering as well as after the emission of radiation.
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We have made a recent effort to lift this eikonal approximation where a finite recoil of

the heavy quark has been considered after it elastically scatters off the medium particles.

This non-eikonality is yet to be explored on any relevant experimental observable.

Work is now in progress where we are implementing the above features to the presently discussed

formalism.

The pursuit of knowledge led us to a pathway of illumination where we have tried to learn and

discuss the most fundamental questions of all the decades:“How was the universe like at the

beginning just after the Big Bang?”and “After the miniature universe has been created due

to the heavy ion collisions in the laboratories, how can we describe the medium formed called

Quark Gluon Plasma”.
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Appendix:

In this appendix we demonstrate the calculation of matrix elements of the processes Qq → Qq

and Qg → Qg applying Hard Thermal Loop (HTL) approximation. Due to presence of medium

QCD interaction is divided into longitudinal and transverse parts. That means, the gluon self

energy is divided into longitudinal component and transverse component [1]. uµ is the fluid four-

velocity (uµu
µ = 1). Any four-vector can be decomposed into a part which is parallel to fluid

velocity and another one perpendicular to fluid-flow. We can decompose the four-momentum

transfer Qµ such that

ω = Q.u

Q̃µ = Qµ − uµ(Q.u)

(7.1)

and

Q2 = ω2 − q2

Q̃2 = −q2 (7.2)

Eqs. 7.1 and 7.2 are valid in the local rest frame of fluid, i.e. in a frame where u = (1,~0).

Similarly a tensor orthogonal to uµ can be defined,

g̃µν = gµν − uµuν (7.3)
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The full gluon propagator with momentum Q is obtained from the vacuum polarization by

using Dyson-Schwinger equation ([2],[3])

∆µν =
Pµν
T

−Q2 +ΠT

+
Pµν
L

−Q2 +ΠL

+ (α− 1)
QµQν

Q2
(7.4)

where α is a gauge-fixing parameter. The longitudinal tensor Pµν
T and the transverse tensor

Pµν
L are defined as [4]

Pµν
L = − 1

Q2q2
(ωQµ −Q2uµ)(ωQν −Q2uν) (7.5)

Pµν
T = g̃µν +

Q̃µQ̃ν

q2
(7.6)

which are orthogonal to Qµ as well as to each other

QµPµν
L = QµPµν

T = Pµ
LνP

νρ
T = 0 (7.7)

But,

Pµρ
i Piνρ = Pµ

iν , i = L/T (7.8)

The free gluon propagator in zero temperature is

Dµν =

(
−gµν + α

QµQν

Q2

)
1

Q2
(7.9)

The transverse and longitudinal self-energies are

ΠL(Q) = (1− x2)πL(x), ΠT (Q) = πT (x) (7.10)

where x = ω/q and scaled self-energies πT and πL are given by [1, 5],
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πT (x) =

m2
D

[
x2

2
+
x

4
(1− x2)ln

(
1 + x

1− x

)
− i

π

4
x(1− x2)

]
πL(x) = m2

D

[
1− x

2
ln(

1 + x

1− x
) + i

π

2
x

]
(7.11)

Non-zero imaginary parts of the self-energies signify the new processes (Landau damping)

arising due to presence of medium [1].

With this introduction, we will calculate the matrix element of the process Qq → Qq in a self-

consistent manner. We must point out at this point that all the earlier works introduced thermal

mass in an ad hoc fashion to ‘cure’ the divergence due to very low-momentum intermediary

gluon exchange. But here we make use of HTL approximation as a remedy.

7.0.1 Qq → Qq Matrix Element from HTL approximation:

Q Q

q q

p ,i p ,j

p ,lp ,k

1 3

2 4

a

µ

ν

t−channel

Figure 7.1: Qq → Qq Feynman diagram. Bold lines are for heavy quarks(Q).

From diagram fig.7.1 we can calculate the t-chennel matrix element for the process Qq → Qq.

We will use the effective gluon propagator obtained by HTL approximation[1]. Pictorially, an

effective propagator will be denoted by a bare one with a solid circle on it. We can write the

ampilitude in Feynman Gauge(α = 1) from fig. 7.1 as,
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−iMt = u(p3)(−igγµtaji)u(p1) [−i∆µν ]

u(p4)(−igγνtalk)u(p2) (7.12)

where g is strong coupling and g2 = 4παs. i, j, k, l (i 6= j, k 6= l) are quark colours and ‘a’

is the colour of intermediary gluon with polarizations µ, ν. After squaring and averaging over

spin and colour as well as using eq. 7.4 we get,

|MQq|2

4CQqg4
= 2

p4.PT .p3p2.PT .p1
(t− ΠT )

2 + 2
p4.PL.p3p2.PL.p1

(t− ΠL)
2

+ 2
p4.PT .p1p2.PT .p3

(t− ΠT )
2 + 2

p4.PL.p1p2.PL.p3
(t− ΠL)

2

+ 2A
p4.PL.p3p2.PT .p1 + p4.PT .p3p2.PL.p1

(t− ΠT )
2 (t− ΠL)

2

+ 2A
p4.PL.p1p2.PT .p3 + p4.PT .p1p2.PL.p3

(t− ΠT )
2 (t− ΠL)

2

− 2p4.p2

[
p3.PT .p1
(t− ΠT )

2 +
p3.PL.p1
(t− ΠL)

2

]
− 2p3.p1

[
p4.PT .p2
(t− ΠT )

2 +
p4.PL.p2
(t− ΠL)

2

]
+ p3.p1p4.p2

[
2

(t− ΠT )
2 +

1

(t− ΠL)
2

]
+ m2

[
2
p4.PT .p2
(t− ΠT )

2 + 2
p4.PL.p2
(t− ΠL)

2

]
− m2

[
2

p4.p2

(t− ΠT )
2 +

p4.p2

(t− ΠL)
2

]
(7.13)

where CQq =
2
9
is the Color factor [6], Q2 ≡ t = (p1−p3)2, A = t2− t(ReΠT +ReΠL)+ReΠTΠ

∗
L

and we have used the following relations.
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∆µρ∆∗ν
ρ =

Pµν
T

(t− ΠT )
2 +

Pµν
L

(t− ΠL)
2

|∆|2 = ∆µν∆∗
νµ =

2

(t− ΠT )
2 +

1

(t− ΠL)
2

(7.14)

Using eqs. 7.5, 7.6 we can show that

p1.PL.p2 = p3.PL.p4 = p4.PL.p1 = p2.PL.p3 (7.15)

where all the calculations are done in the rest frame of fluid element.

7.0.2 Qg → Qg Matrix Element fron HTL Approximation

α

δ

p +p ,k p −p ,a

p  ,i

p  ,j

p  ,ν

p  ,µ

p −p ,k

4 2

42

1 3

1 4

1

32

4

p  ,µ p  ,ν

1 2

2 4

p  ,jp  ,i
1 3 p  ,ν

p  ,i p  ,j

p  ,µ
s−channel t−channel

u−channel

Figure 7.2: Qg → Qg Feynman diagrams
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The Feynman diagram for this process contain all three channels s, t and u (fig. 7.2). Among

them the t-channel diagram contains gluon propagator. Since heavy quarks are not thermalized

we use bare fermion propagators for s channel and u channel diagrams. As a consequence, we

use naive perturbation theory results [7, 9] for |Ms|2, |Mu|2 and cross-term MsM
∗
u . On the

other hand, we have to use effective propagator for t channel diagram for consistent removal of

divergence. Hence, |Mt|2 and cross-terms |MsM
∗
t | as well as |MuM

∗
t | are drastically different

from their bare counterpart. For sake of completeness we write down Ms, Mt, and Mu for the

process under discussion (fig. 7.2).

−iMs = u(p3)(−igγνtbjk)i
p1/+ p2/

s−m2
(−igγµtcki)u(p1)εµε∗ν (7.16)

−iMu = u(p3)(−igγµtcjk)i
p1/− p4/

u−m2
(−igγνtbki)u(p1)εµε∗ν (7.17)

−iMt = u(p3)(−igγαtaji)u(p1)(−i∆αδ)gfabcCµδνεµε∗ν (7.18)

where Cµδν = [(2p4 − p2)
µgδν + (−p4 − p2)

δgµν + (2p2 − p4)
νgµδ] is the three-gluon vertex.

Mandelstam variables s, t, u are defined as usual, s = (p1 + p2)
2, t = (p1 − p3)

2 and u =

(p1 − p4)
2. While summing over gluon polarization we must exclude unphysical degrees of

freedom. We follow the trick used in ref. [9] which deletes terms like p4.ε as well as p2.ε and

uses the substitution ∑
polarization

εµε
∗
ν = −gµν (7.19)

So for all practical purposes we use

C ′µδν = [2pµ4g
δν + (−p4 − p2)

δgµν + 2pν2g
µδ] (7.20)

as three-gluon vertex along with eq. 7.19.

The matrix element square contains the following terms:

9

4g4
|Ms|2 =

(s−m2)(m2 − u) + 2m2(s+m2)

(s−m2)2
(7.21)
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9

4g4
|Mu|2 =

(s−m2)(m2 − u) + 2m2(u+m2)

(m2 − u)2
(7.22)

9

g4
ReMsM∗

u =
m2(4m2 − t)

(s−m2)(m2 − u)
(7.23)

where overbar in l.h.s denotes spin as well as color sum and averge.

As already said, the above terms contain bare heavy-quark propagator. But for gluon propa-

gator we have to use the HTL approximated effective one. The real part of effective cross-term

MsM
∗
t is as follows:

16

g4
(s−m2)ReMsM∗

t =M1
st +M2

st (7.24)
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where,

M1
st =

4m2tωE1 (t− ReΠL)

q2 (t− ΠL) 2
− 4stωE1 (t− ReΠL)

q2 (t− ΠL) 2
+

8m2tE2
1 (t− ReΠL)

q2 (t− ΠL) 2

−8stE2
1 (t− ReΠL)

q2 (t− ΠL) 2
− 8t2E2

1 (t− ReΠL)

q2 (t− ΠL) 2
+

4m2tωE2 (t− ReΠL)

q2 (t− ΠL) 2

−4stωE2 (t− ReΠL)

q2 (t− ΠL) 2
+

12m2tE1E2 (t− ReΠL)

q2 (t− ΠL) 2
− 4stE1E2 (t− ReΠL)

q2 (t− ΠL) 2

−12t2E1E2 (t− ReΠL)

q2 (t− ΠL) 2
− 4t2E2

2 (t− ReΠL)

q2 (t− ΠL) 2
− 4m2tωE3 (t− ReΠL)

q2 (t− ΠL) 2

+
4stωE3 (t− ReΠL)

q2 (t− ΠL) 2
+

24m2tE1E3 (t− ReΠL)

q2 (t− ΠL) 2
− 24stE1E3 (t− ReΠL)

q2 (t− ΠL) 2

−8t2E1E3 (t− ReΠL)

q2 (t− ΠL) 2
+

20m2tE2E3 (t− ReΠL)

q2 (t− ΠL) 2
− 12stE2E3 (t− ReΠL)

q2 (t− ΠL) 2

−8t2E2E3 (t− ReΠL)

q2 (t− ΠL) 2
− 4m2tωE4 (t− ReΠL)

q2 (t− ΠL) 2
+

4stωE4 (t− ReΠL)

q2 (t− ΠL) 2

+
12m2tE1E4 (t− ReΠL)

q2 (t− ΠL) 2
− 4stE1E4 (t− ReΠL)

q2 (t− ΠL) 2
− 4t2E1E4 (t− ReΠL)

q2 (t− ΠL) 2

−4t2E2E4 (t− ReΠL)

q2 (t− ΠL) 2
+

4m2tE3E4 (t− ReΠL)

q2 (t− ΠL) 2
+

4stE3E4 (t− ReΠL)

q2 (t− ΠL) 2

−8m4 (t− ReΠT )

(t− ΠT ) 2
+

8s2 (t− ReΠT )

(t− ΠT ) 2
+

8st (t− ReΠT )

(t− ΠT ) 2

−4m2tωE1 (t− ReΠT )

q2 (t− ΠT ) 2
+

4stωE1 (t− ReΠT )

q2 (t− ΠT ) 2
+

8m2E2
1 (t− ReΠT )

(t− ΠT ) 2

−8sE2
1 (t− ReΠT )

(t− ΠT ) 2
− 8tE2

1 (t− ReΠT )

(t− ΠT ) 2
− 8m2ω2E2

1 (t− ReΠT )

q2 (t− ΠT ) 2

+
8sω2E2

1 (t− ReΠT )

q2 (t− ΠT ) 2
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and

M2
st =

8tω2E2
1 (t− ReΠT )

q2 (t− ΠT ) 2
− 4m2tωE2 (t− ReΠT )

q2 (t− ΠT ) 2
+

4stωE2 (t− ReΠT )

q2 (t− ΠT ) 2

+
12m2E1E2 (t− ReΠT )

(t− ΠT ) 2
− 4sE1E2 (t− ReΠT )

(t− ΠT ) 2
− 12tE1E2 (t− ReΠT )

(t− ΠT ) 2

−12m2ω2E1E2 (t− ReΠT )

q2 (t− ΠT ) 2
+

4sω2E1E2 (t− ReΠT )

q2 (t− ΠT ) 2
+

12tω2E1E2 (t− ReΠT )

q2 (t− ΠT ) 2

−4tE2
2 (t− ReΠT )

(t− ΠT ) 2
+

4tω2E2
2 (t− ReΠT )

q2 (t− ΠT ) 2
+

4m2tωE3 (t− ReΠT )

q2 (t− ΠT ) 2

−4stωE3 (t− ReΠT )

q2 (t− ΠT ) 2
+

24m2E1E3 (t− ReΠT )

(t− ΠT ) 2
− 24sE1E3 (t− ReΠT )

(t− ΠT ) 2

−8tE1E3 (t− ReΠT )

(t− ΠT ) 2
− 24m2ω2E1E3 (t− ReΠT )

q2 (t− ΠT ) 2
+

24sω2E1E3 (t− ReΠT )

q2 (t− ΠT ) 2

+
8tω2E1E3 (t− ReΠT )

q2 (t− ΠT ) 2
+

20m2E2E3 (t− ReΠT )

(t− ΠT ) 2
− 12sE2E3 (t− ReΠT )

(t− ΠT ) 2

−8tE2E3 (t− ReΠT )

(t− ΠT ) 2
− 20m2ω2E2E3 (t− ReΠT )

q2 (t− ΠT ) 2
+

12sω2E2E3 (t− ReΠT )

q2 (t− ΠT ) 2

+
8tω2E2E3 (t− ReΠT )

q2 (t− ΠT ) 2
+

4m2tωE4 (t− ReΠT )

q2 (t− ΠT ) 2
− 4stωE4 (t− ReΠT )

q2 (t− ΠT ) 2

+
12m2E1E4 (t− ReΠT )

(t− ΠT ) 2
− 4sE1E4 (t− ReΠT )

(t− ΠT ) 2
− 4tE1E4 (t− ReΠT )

(t− ΠT ) 2

−12m2ω2E1E4 (t− ReΠT )

q2 (t− ΠT ) 2
+

4sω2E1E4 (t− ReΠT )

q2 (t− ΠT ) 2
+

4tω2E1E4 (t− ReΠT )

q2 (t− ΠT ) 2

−4tE2E4 (t− ReΠT )

(t− ΠT ) 2
+

4tω2E2E4 (t− ReΠT )

q2 (t− ΠT ) 2
+

4m2E3E4 (t− ReΠT )

(t− ΠT ) 2

+
4sE3E4 (t− ReΠT )

(t− ΠT ) 2
− 4m2ω2E3E4 (t− ReΠT )

q2 (t− ΠT ) 2
− 4sω2E3E4 (t− ReΠT )

q2 (t− ΠT ) 2

Similarly, the real part of effective MuM
∗
t after proper summing and avergaing becomes:

16

g4
(m2 − u)ReMuM∗

t =M1
ut +M2

ut (7.25)

106



M1
ut =

4m2tωE1 (t− ReΠL)

q2 (t− ΠL) 2
− 4stωE1 (t− ReΠL)

q2 (t− ΠL) 2
− 4t2ωE1 (t− ReΠL)

q2 (t− ΠL) 2

+
8m2tE2

1 (t− ReΠL)

q2 (t− ΠL) 2
− 8stE2

1 (t− ReΠL)

q2 (t− ΠL) 2
+

4m2tωE2 (t− ReΠL)

q2 (t− ΠL) 2

−4stωE2 (t− ReΠL)

q2 (t− ΠL) 2
− 4t2ωE2 (t− ReΠL)

q2 (t− ΠL) 2
+

4m2tE1E2 (t− ReΠL)

q2 (t− ΠL) 2

+
4stE1E2 (t− ReΠL)

q2 (t− ΠL) 2
− 4m2tωE3 (t− ReΠL)

q2 (t− ΠL) 2
+

4stωE3 (t− ReΠL)

q2 (t− ΠL) 2

+
4t2ωE3 (t− ReΠL)

q2 (t− ΠL) 2
+

24m2tE1E3 (t− ReΠL)

q2 (t− ΠL) 2
− 24stE1E3 (t− ReΠL)

q2 (t− ΠL) 2

−16t2E1E3 (t− ReΠL)

q2 (t− ΠL) 2
+

12m2tE2E3 (t− ReΠL)

q2 (t− ΠL) 2
− 4stE2E3 (t− ReΠL)

q2 (t− ΠL) 2

−4t2E2E3 (t− ReΠL)

q2 (t− ΠL) 2
− 4m2tωE4 (t− ReΠL)

q2 (t− ΠL) 2
+

4stωE4 (t− ReΠL)

q2 (t− ΠL) 2

+
4t2ωE4 (t− ReΠL)

q2 (t− ΠL) 2
+

4m2tE1E4 (t− ReΠL)

q2 (t− ΠL) 2
+

4stE1E4 (t− ReΠL)

q2 (t− ΠL) 2

−8t2E1E4 (t− ReΠL)

q2 (t− ΠL) 2
+

4t2E2E4 (t− ReΠL)

q2 (t− ΠL) 2
− 4m2tE3E4 (t− ReΠL)

q2 (t− ΠL) 2

+
12stE3E4 (t− ReΠL)

q2 (t− ΠL) 2
+

4t2E3E4 (t− ReΠL)

q2 (t− ΠL) 2
+

4t2E2
4 (t− ReΠL)

q2 (t− ΠL) 2

−24m4 (t− ReΠT )

(t− ΠT ) 2
+

32m2s (t− ReΠT )

(t− ΠT ) 2
− 8s2 (t− ReΠT )

(t− ΠT ) 2

+
16m2t (t− ReΠT )

(t− ΠT ) 2
− 8st (t− ReΠT )

(t− ΠT ) 2
− 4m2tωE1 (t− ReΠT )

q2 (t− ΠT ) 2

+
4stωE1 (t− ReΠT )

q2 (t− ΠT ) 2
+

4t2ωE1 (t− ReΠT )

q2 (t− ΠT ) 2
+

8m2E2
1 (t− ReΠT )

(t− ΠT ) 2

−8sE2
1 (t− ReΠT )

(t− ΠT ) 2
− 8m2ω2E2

1 (t− ReΠT )

q2 (t− ΠT ) 2
+

8sω2E2
1 (t− ReΠT )

q2 (t− ΠT ) 2

−4m2tωE2 (t− ReΠT )

q2 (t− ΠT ) 2
+

4stωE2 (t− ReΠT )

q2 (t− ΠT ) 2
+

4t2ωE2 (t− ReΠT )

q2 (t− ΠT ) 2
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M2
ut =

4m2E1E2 (t− ReΠT )

(t− ΠT ) 2
+

4sE1E2 (t− ReΠT )

(t− ΠT ) 2
− 4m2ω2E1E2 (t− ReΠT )

q2 (t− ΠT ) 2

−4sω2E1E2 (t− ReΠT )

q2 (t− ΠT ) 2
+

4m2tωE3 (t− ReΠT )

q2 (t− ΠT ) 2
− 4stωE3 (t− ReΠT )

q2 (t− ΠT ) 2

−4t2ωE3 (t− ReΠT )

q2 (t− ΠT ) 2
+

24m2E1E3 (t− ReΠT )

(t− ΠT ) 2
− 24sE1E3 (t− ReΠT )

(t− ΠT ) 2

−16tE1E3 (t− ReΠT )

(t− ΠT ) 2
− 24m2ω2E1E3 (t− ReΠT )

q2 (t− ΠT ) 2
+

24sω2E1E3 (t− ReΠT )

q2 (t− ΠT ) 2

+
16tω2E1E3 (t− ReΠT )

q2 (t− ΠT ) 2
+

12m2E2E3 (t− ReΠT )

(t− ΠT ) 2
− 4sE2E3 (t− ReΠT )

(t− ΠT ) 2

−4tE2E3 (t− ReΠT )

(t− ΠT ) 2
− 12m2ω2E2E3 (t− ReΠT )

q2 (t− ΠT ) 2
+

4sω2E2E3 (t− ReΠT )

q2 (t− ΠT ) 2

+
4tω2E2E3 (t− ReΠT )

q2 (t− ΠT ) 2
+

4m2tωE4 (t− ReΠT )

q2 (t− ΠT ) 2
− 4stωE4 (t− ReΠT )

q2 (t− ΠT ) 2

−4t2ωE4 (t− ReΠT )

q2 (t− ΠT ) 2
+

4m2E1E4 (t− ReΠT )

(t− ΠT ) 2
+

4sE1E4 (t− ReΠT )

(t− ΠT ) 2

−8tE1E4 (t− ReΠT )

(t− ΠT ) 2
− 4m2ω2E1E4 (t− ReΠT )

q2 (t− ΠT ) 2
− 4sω2E1E4 (t− ReΠT )

q2 (t− ΠT ) 2

+
8tω2E1E4 (t− ReΠT )

q2 (t− ΠT ) 2
+

4tE2E4 (t− ReΠT )

(t− ΠT ) 2
− 4tω2E2E4 (t− ReΠT )

q2 (t− ΠT ) 2

−4m2E3E4 (t− ReΠT )

(t− ΠT ) 2
+

12sE3E4 (t− ReΠT )

(t− ΠT ) 2
+

4tE3E4 (t− ReΠT )

(t− ΠT ) 2

+
4m2ω2E3E4 (t− ReΠT )

q2 (t− ΠT ) 2
− 12sω2E3E4 (t− ReΠT )

q2 (t− ΠT ) 2
− 4tω2E3E4 (t− ReΠT )

q2 (t− ΠT ) 2

+
4tE2

4 (t− ReΠT )

(t− ΠT ) 2
− 4tω2E2

4 (t− ReΠT )

q2 (t− ΠT ) 2

The properly summed and averaged effective |Mt|2 term becomes.

8

g4
MtM∗

t =M1
tt +M2

tt +M3
tt +M4

tt +M5
tt (7.26)
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M1
tt = − 4t3ω2

q4 (t− ΠL) (t− Π∗
L)

+
8t2ω4

q4 (t− ΠL) (t− Π∗
L)

− 8t2ω3E1

q4 (t− ΠL) (t− Π∗
L)

− 8t3ωE2

q4 (t− ΠL) (t− Π∗
L)

+
16t2ω3E2

q4 (t− ΠL) (t− Π∗
L)

− 16t2ω2E1E2

q4 (t− ΠL) (t− Π∗
L)

+
8t2ω3E3

q4 (t− ΠL) (t− Π∗
L)

− 16t2ω2E1E3

q4 (t− ΠL) (t− Π∗
L)

+
16t2ω2E2E3

q4 (t− ΠL) (t− Π∗
L)

− 32t2ωE1E2E3

q4 (t− ΠL) (t− Π∗
L)

+
8t3ωE4

q4 (t− ΠL) (t− Π∗
L)

− 16t2ω3E4

q4 (t− ΠL) (t− Π∗
L)

+
16t2ω2E1E4

q4 (t− ΠL) (t− Π∗
L)

+
16t3E2E4

q4 (t− ΠL) (t− Π∗
L)

− 32t2ω2E2E4

q4 (t− ΠL) (t− Π∗
L)

+
32t2ωE1E2E4

q4 (t− ΠL) (t− Π∗
L)

− 16t2ω2E3E4

q4 (t− ΠL) (t− Π∗
L)

+
32t2ωE1E3E4

q4 (t− ΠL) (t− Π∗
L)

− 32t2ωE2E3E4

q4 (t− ΠL) (t− Π∗
L)

+
64t2E1E2E3E4

q4 (t− ΠL) (t− Π∗
L)

− 4t2ω4

q4 (t− ΠT ) (t− Π∗
L)

+
4t2ωE1

q2 (t− ΠT ) (t− Π∗
L)

+
4t3ωE1

q4 (t− ΠT ) (t− Π∗
L)

+
4t2ω3E1

q4 (t− ΠT ) (t− Π∗
L)

+
4tω3E2

q2 (t− ΠT ) (t− Π∗
L)

− 4t2ω3E2

q4 (t− ΠT ) (t− Π∗
L)

− 4tω5E2

q4 (t− ΠT ) (t− Π∗
L)

+
8m2tE1E2

q2 (t− ΠT ) (t− Π∗
L)

− 8stE1E2

q2 (t− ΠT ) (t− Π∗
L)

+
4t3E1E2

q4 (t− ΠT ) (t− Π∗
L)

− 4tω2E1E2

q2 (t− ΠT ) (t− Π∗
L)

+
8t2ω2E1E2

q4 (t− ΠT ) (t− Π∗
L)

+
4tω4E1E2

q4 (t− ΠT ) (t− Π∗
L)

− 4t2ωE3

q2 (t− ΠT ) (t− Π∗
L)

− 4t3ωE3

q4 (t− ΠT ) (t− Π∗
L)
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M2
tt = − 4t2ω3E3

q4 (t− ΠT ) (t− Π∗
L)

+
16t2ω2E1E3

q4 (t− ΠT ) (t− Π∗
L)

+
8m2tE2E3

q2 (t− ΠT ) (t− Π∗
L)

− 8stE2E3

q2 (t− ΠT ) (t− Π∗
L)

− 8t2E2E3

q2 (t− ΠT ) (t− Π∗
L)

− 4t3E2E3

q4 (t− ΠT ) (t− Π∗
L)

+
4tω2E2E3

q2 (t− ΠT ) (t− Π∗
L)

− 8t2ω2E2E3

q4 (t− ΠT ) (t− Π∗
L)

− 4tω4E2E3

q4 (t− ΠT ) (t− Π∗
L)

− 16tωE1E2E3

q2 (t− ΠT ) (t− Π∗
L)

+
16t2ωE1E2E3

q4 (t− ΠT ) (t− Π∗
L)

+
16tω3E1E2E3

q4 (t− ΠT ) (t− Π∗
L)

− 4tω3E4

q2 (t− ΠT ) (t− Π∗
L)

+
4t2ω3E4

q4 (t− ΠT ) (t− Π∗
L)

+
4tω5E4

q4 (t− ΠT ) (t− Π∗
L)

+
8m2tE1E4

q2 (t− ΠT ) (t− Π∗
L)

− 8stE1E4

q2 (t− ΠT ) (t− Π∗
L)

− 8t2E1E4

q2 (t− ΠT ) (t− Π∗
L)

− 4t3E1E4

q4 (t− ΠT ) (t− Π∗
L)

+
4tω2E1E4

q2 (t− ΠT ) (t− Π∗
L)

− 8t2ω2E1E4

q4 (t− ΠT ) (t− Π∗
L)

− 4tω4E1E4

q4 (t− ΠT ) (t− Π∗
L)

− 16tω2E2E4

q2 (t− ΠT ) (t− Π∗
L)

+
16tω4E2E4

q4 (t− ΠT ) (t− Π∗
L)

+
16tωE1E2E4

q2 (t− ΠT ) (t− Π∗
L)

− 16t2ωE1E2E4

q4 (t− ΠT ) (t− Π∗
L)

− 16tω3E1E2E4

q4 (t− ΠT ) (t− Π∗
L)

+
8m2tE3E4

q2 (t− ΠT ) (t− Π∗
L)

− 8stE3E4

q2 (t− ΠT ) (t− Π∗
L)

+
4t3E3E4

q4 (t− ΠT ) (t− Π∗
L)

− 4tω2E3E4

q2 (t− ΠT ) (t− Π∗
L)

+
8t2ω2E3E4

q4 (t− ΠT ) (t− Π∗
L)

+
4tω4E3E4

q4 (t− ΠT ) (t− Π∗
L)

+
16tωE1E3E4

q2 (t− ΠT ) (t− Π∗
L)

− 16t2ωE1E3E4

q4 (t− ΠT ) (t− Π∗
L)

− 16tω3E1E3E4

q4 (t− ΠT ) (t− Π∗
L)

− 16tωE2E3E4

q2 (t− ΠT ) (t− Π∗
L)

+
16t2ωE2E3E4

q4 (t− ΠT ) (t− Π∗
L)

+
16tω3E2E3E4

q4 (t− ΠT ) (t− Π∗
L)

+
64tE1E2E3E4

q2 (t− ΠT ) (t− Π∗
L)

− 64tω2E1E2E3E4

q4 (t− ΠT ) (t− Π∗
L)

− 4t2ω4

q4 (t− ΠL) (t− Π∗
T )
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M3
tt =

4t2ωE1

q2 (t− ΠL) (t− Π∗
T )

+
4t3ωE1

q4 (t− ΠL) (t− Π∗
T )

+
4t2ω3E1

q4 (t− ΠL) (t− Π∗
T )

+
4tω3E2

q2 (t− ΠL) (t− Π∗
T )

− 4t2ω3E2

q4 (t− ΠL) (t− Π∗
T )

− 4tω5E2

q4 (t− ΠL) (t− Π∗
T )

+
8m2tE1E2

q2 (t− ΠL) (t− Π∗
T )

− 8stE1E2

q2 (t− ΠL) (t− Π∗
T )

+
4t3E1E2

q4 (t− ΠL) (t− Π∗
T )

− 4tω2E1E2

q2 (t− ΠL) (t− Π∗
T )

+
8t2ω2E1E2

q4 (t− ΠL) (t− Π∗
T )

+
4tω4E1E2

q4 (t− ΠL) (t− Π∗
T )

− 4t2ωE3

q2 (t− ΠL) (t− Π∗
T )

− 4t3ωE3

q4 (t− ΠL) (t− Π∗
T )

− 4t2ω3E3

q4 (t− ΠL) (t− Π∗
T )

+
16t2ω2E1E3

q4 (t− ΠL) (t− Π∗
T )

+
8m2tE2E3

q2 (t− ΠL) (t− Π∗
T )

− 8stE2E3

q2 (t− ΠL) (t− Π∗
T )

− 8t2E2E3

q2 (t− ΠL) (t− Π∗
T )

− 4t3E2E3

q4 (t− ΠL) (t− Π∗
T )

+
4tω2E2E3

q2 (t− ΠL) (t− Π∗
T )

− 8t2ω2E2E3

q4 (t− ΠL) (t− Π∗
T )

− 4tω4E2E3

q4 (t− ΠL) (t− Π∗
T )

− 16tωE1E2E3

q2 (t− ΠL) (t− Π∗
T )

+
16t2ωE1E2E3

q4 (t− ΠL) (t− Π∗
T )

+
16tω3E1E2E3

q4 (t− ΠL) (t− Π∗
T )

− 4tω3E4

q2 (t− ΠL) (t− Π∗
T )
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M4
tt =

4t2ω3E4

q4 (t− ΠL) (t− Π∗
T )

+
4tω5E4

q4 (t− ΠL) (t− Π∗
T )

+
8m2tE1E4

q2 (t− ΠL) (t− Π∗
T )

− 8stE1E4

q2 (t− ΠL) (t− Π∗
T )

− 8t2E1E4

q2 (t− ΠL) (t− Π∗
T )

− 4t3E1E4

q4 (t− ΠL) (t− Π∗
T )

+
4tω2E1E4

q2 (t− ΠL) (t− Π∗
T )

− 8t2ω2E1E4

q4 (t− ΠL) (t− Π∗
T )

− 4tω4E1E4

q4 (t− ΠL) (t− Π∗
T )

− 16tω2E2E4

q2 (t− ΠL) (t− Π∗
T )

+
16tω4E2E4

q4 (t− ΠL) (t− Π∗
T )

+
16tωE1E2E4

q2 (t− ΠL) (t− Π∗
T )

− 16t2ωE1E2E4

q4 (t− ΠL) (t− Π∗
T )

− 16tω3E1E2E4

q4 (t− ΠL) (t− Π∗
T )

+
8m2tE3E4

q2 (t− ΠL) (t− Π∗
T )

− 8stE3E4

q2 (t− ΠL) (t− Π∗
T )

+
4t3E3E4

q4 (t− ΠL) (t− Π∗
T )

− 4tω2E3E4

q2 (t− ΠL) (t− Π∗
T )

+
8t2ω2E3E4

q4 (t− ΠL) (t− Π∗
T )

+
4tω4E3E4

q4 (t− ΠL) (t− Π∗
T )

+
16tωE1E3E4

q2 (t− ΠL) (t− Π∗
T )

− 16t2ωE1E3E4

q4 (t− ΠL) (t− Π∗
T )

− 16tω3E1E3E4

q4 (t− ΠL) (t− Π∗
T )

− 16tωE2E3E4

q2 (t− ΠL) (t− Π∗
T )

+
16t2ωE2E3E4

q4 (t− ΠL) (t− Π∗
T )

+
16tω3E2E3E4

q4 (t− ΠL) (t− Π∗
T )

+
64tE1E2E3E4

q2 (t− ΠL) (t− Π∗
T )

− 64tω2E1E2E3E4

q4 (t− ΠL) (t− Π∗
T )

+
16m4

(t− ΠT ) (t− Π∗
T )

− 32m2s

(t− ΠT ) (t− Π∗
T )

+
16s2

(t− ΠT ) (t− Π∗
T )

− 16m2t

(t− ΠT ) (t− Π∗
T )

+
16st

(t− ΠT ) (t− Π∗
T )

+
4t3ω2

q4 (t− ΠT ) (t− Π∗
T )

− 8t2ωE1

q2 (t− ΠT ) (t− Π∗
T )

− 8t3ωE1

q4 (t− ΠT ) (t− Π∗
T )

− 8t2ωE2

q2 (t− ΠT ) (t− Π∗
T )

+
8t2ω3E2

q4 (t− ΠT ) (t− Π∗
T )

+
16m2E1E2

(t− ΠT ) (t− Π∗
T )

− 16sE1E2

(t− ΠT ) (t− Π∗
T )

+
8t2E1E2

q2 (t− ΠT ) (t− Π∗
T )

− 16m2ω2E1E2

q2 (t− ΠT ) (t− Π∗
T )

+
16sω2E1E2

q2 (t− ΠT ) (t− Π∗
T )

− 16t2ω2E1E2

q4 (t− ΠT ) (t− Π∗
T )

+
8t2ωE3

q2 (t− ΠT ) (t− Π∗
T )

112



M5
tt =

8t3ωE3

q4 (t− ΠT ) (t− Π∗
T )

− 16t2ω2E1E3

q4 (t− ΠT ) (t− Π∗
T )

+
16m2E2E3

(t− ΠT ) (t− Π∗
T )

− 16sE2E3

(t− ΠT ) (t− Π∗
T )

− 16tE2E3

(t− ΠT ) (t− Π∗
T )

− 8t2E2E3

q2 (t− ΠT ) (t− Π∗
T )

− 16m2ω2E2E3

q2 (t− ΠT ) (t− Π∗
T )

+
16sω2E2E3

q2 (t− ΠT ) (t− Π∗
T )

+
16tω2E2E3

q2 (t− ΠT ) (t− Π∗
T )

+
16t2ω2E2E3

q4 (t− ΠT ) (t− Π∗
T )

+
32tωE1E2E3

q2 (t− ΠT ) (t− Π∗
T )

− 32tω3E1E2E3

q4 (t− ΠT ) (t− Π∗
T )

+
8t2ωE4

q2 (t− ΠT ) (t− Π∗
T )

− 8t2ω3E4

q4 (t− ΠT ) (t− Π∗
T )

+
16m2E1E4

(t− ΠT ) (t− Π∗
T )

− 16sE1E4

(t− ΠT ) (t− Π∗
T )

− 16tE1E4

(t− ΠT ) (t− Π∗
T )

− 8t2E1E4

q2 (t− ΠT ) (t− Π∗
T )

− 16m2ω2E1E4

q2 (t− ΠT ) (t− Π∗
T )

+
16sω2E1E4

q2 (t− ΠT ) (t− Π∗
T )

+
16tω2E1E4

q2 (t− ΠT ) (t− Π∗
T )

+
16t2ω2E1E4

q4 (t− ΠT ) (t− Π∗
T )

− 16tE2E4

(t− ΠT ) (t− Π∗
T )

+
32tω2E2E4

q2 (t− ΠT ) (t− Π∗
T )

− 16tω4E2E4

q4 (t− ΠT ) (t− Π∗
T )

− 32tωE1E2E4

q2 (t− ΠT ) (t− Π∗
T )

+
32tω3E1E2E4

q4 (t− ΠT ) (t− Π∗
T )

+
16m2E3E4

(t− ΠT ) (t− Π∗
T )

− 16sE3E4

(t− ΠT ) (t− Π∗
T )

+
8t2E3E4

q2 (t− ΠT ) (t− Π∗
T )

− 16m2ω2E3E4

q2 (t− ΠT ) (t− Π∗
T )

+
16sω2E3E4

q2 (t− ΠT ) (t− Π∗
T )

− 16t2ω2E3E4

q4 (t− ΠT ) (t− Π∗
T )

− 32tωE1E3E4

q2 (t− ΠT ) (t− Π∗
T )

+
32tω3E1E3E4

q4 (t− ΠT ) (t− Π∗
T )

+
32tωE2E3E4

q2 (t− ΠT ) (t− Π∗
T )

− 32tω3E2E3E4

q4 (t− ΠT ) (t− Π∗
T )

+
64E1E2E3E4

(t− ΠT ) (t− Π∗
T )

− 128ω2E1E2E3E4

q2 (t− ΠT ) (t− Π∗
T )

+
64ω4E1E2E3E4

q4 (t− ΠT ) (t− Π∗
T )

While going through terms in eqs. 7.24 and 7.25 we encounter those like (t−ΠT )
2 and (t−ΠL)

2.

We define them in the following way:

(t− ΠT )
2 = (t− ΠT )(t− Π∗

T )

= t2 − 2tReΠT + |ΠT |2 (7.27)
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Similarly,

(t− ΠL)
2 = (t− ΠL)(t− Π∗

L)

= t2 − 2tReΠL + |ΠL|2 (7.28)
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