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SYNOPSIS

Motivation for studying transport properties

Transport properties of a thermodynamic system have long been employed as probes to un-

derstand the underlying dynamics of the system. For a fluid there are in general two kinds of

transport coefficients that are of primary interest : viscosity and thermal conductivity, which

are related to the transport of momenta and heat respectively. Since the microscopic mecha-

nism for such energy and momentum transfer is provided by interactions among the constituent

particles within the fluid system, investigation of transport properties in turn gives information

about the nature of interaction of the system.

In relativistic nucleus-nucleus collisions the created matter has been a subject of much interest

because of the large amount of energy involved. The hydrodynamic evolution of this matter in-

volves different dissipative processes which can be quantified by the above mentioned transport
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coefficients. They not only provide relevant insights about the fluid dynamics as mentioned

above, but also carry information on how far the system is away from an ideal hydrodynamics.

Recent results from heavy ion collision experiments show clear indication that the produced

matter behaves as a strongly interacting liquid rather than a weakly interacting gas. This is

based on the observation of experimentally measured elliptic flow v2 of hadrons in Au+Au col-

lision at Relativistic Heavy Ion Collider (RHIC), which can be interpreted in terms of viscous

hydrodynamics with a very small value of the shear viscosity over entropy density ratio η/s,

almost close to that of a perfect fluid. These observations lead to the question of whether there

is a fundamental lower limit to the values of shear viscosity as the strength of interaction in-

creases. The possible lower bound, 1/4π is conjectured by Kovtun, Starinets and Sons [5] from

their AdS/CFT calculations. Many other estimations of the transport coefficients have been

carried out in QGP [23, 24], as well as in hadronic matter [15, 41, 6, 8]. Since the results pro-

vided by viscous hydrodynamics regarding heavy ion collisions depend sensitively on the value

of η/s, it is important to use the values of the transport coefficients as accurately as possible in

those hydrodynamic models which describe the space-time evolution of the strongly interacting

thermal matter created. So far in most of the viscous hydrodynamic models constant, repre-

sentative values of the transport coefficients [23, 24] have been used to describe the dissipative

phenomena within the medium. Using η/s = 1/4π we have evaluated the direct photon spectra

and found a small but finite effect. In view of this we are motivated to estimate the realistic

values of the transport coefficients which incorporate the effects of a hot, interacting medium.

Inspired by this motivation, in this thesis, the transport coefficients of a hot pion gas have been

evaluated. There have been quite a few estimates of the transport coefficients of a pion gas. In

Ref. [37, 6] the transport coefficients of a pion gas have been evaluated using the kubo formalism

which relates the transport coefficients to retarded two-point functions. In Ref. [12, 41, 42, 20]

the kinetic theory approach has been adopted where the transport coefficients are expressed

explicitly in terms of interaction cross-section. In most of the cases of kinetic theory approach

either the lowest order chiral perturbation theory has been used [12, 16], or a phenomeno-

logical amplitude has been used which is constructed to reproduce the experimental data of

ππ interaction cross-section [8]. In [41, 42] a unitarized chiral perturbation theory was used.
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In all the above cases the temperature dependence does not occur explicitly in the dynamical

cross-sections incorporated in the expressions of transport coefficients. In this thesis an explic-

itly temperature dependent pion cross-section has been introduced and thereafter the transport

coefficients are estimated with the help of the temperature dependent cross-section.

Contents of the thesis

In this thesis the shear and bulk viscosities as well as the thermal conductivity have been

studied for a one component hot pion gas out of chemical equilibrium. There are certain

approaches available in the literature for evaluating the transport coefficients among which

the diagrammatic, two point correlator approach manifested by Kubo formula has been used

in quite a few places [37, 6]. The method that has been adopted here is the kinetic theory

approach which involves solving the relativistic transport equation. The novelty of this method

lies within its approach that corresponds between the non-equilibrium kinetic theory and viscous

hydrodynamics. The microscopic cross-section of the constituent particles enters as a dynamical

input in the expressions of the macroscopic transport coefficients explicitly. There are a few

calculations of transport coefficients which use this kinetic theory technique, also available

in the literature [13, 14]. In this thesis advancements are made in the estimation of transport

coefficients by introducing an in medium interaction cross-section, which is expected to produce

a realistic temperature dependence of the viscosities and thermal conductivity in the context

of heavy ion collision.

The basic steps that have been carried out to produce the values of temperature dependent

transport coefficients for a hot pion gas are listed as follows.

• Obtain the expressions of transport coefficients from kinetic theory by solving the rela-

tivistic transport equation in the Chapman-Enskog approximation.

• Incorporating a temperature dependent ππ cross-section evaluated using thermal field

theory with an effective Lagrangian describing ρππ and σππ interactions.
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• Inserting a temperature dependent pion chemical potential to take care of the early chem-

ical freeze out of the pion gas.

• Obtain the viscosities and thermal conductivity of a pion gas as a function of temperature.

After evaluation of those transport coefficients they have been applied to determine the time

scale over which the energy and momentum are transported utilizing the second order theories

of dissipative fluids.

Other transport coefficients, like the drag and diffusion coefficients also have been evaluated

for heavy charmed mesons like J/ψ and ηc and hence their propagation in a hadronic medium

has been investigated.

Transport coefficients of a hot pion gas

Formalism : Evaluation of transport coefficients

As mentioned earlier the transport coefficients have been evaluated in kinetic theory approach,

which involves the solution of the relativistic transport equation. The method, which has been

adopted in the present work is the well known Chapman-Enskog method. In general the pro-

gram of seeking a solution of the transport equation becomes non-trivial due to the non-linearity

of the collision term. However if the state of the system is not far from thermal equilibrium, one

can assume that a linearized form of the transport equation can provide a reasonably accurate

description of the non-equilibrium phenomena which involve dissipative processes like viscosities

and thermal conductivity. In Chapman-Enskog method the linearization is performed around

a local equilibrium distribution function with parameters which vary in space and time. So

in this method the distribution function is expanded in a series, in terms of a parameter as

following,

f(x, p) = f 0(x, p) + ǫf 1(x, p) + ǫ2f 2(x, p)+· · · · · . (1)
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Where the expansion parameter ǫ = λ
L

is the ratio of two length scales, λ being the length scale

associated with the collision term which is evidently the mean free path of the system and L is

the length associated with the spatial non-uniformities in the system which is macroscopic di-

mension over which the thermodynamic quantities describing the system vary appreciably. The

series generated by Chapman-Enskog procedure is asymptotic, which means the first Chapman-

Enskog approximation, corresponding to the linear terms of the parameter ǫ only, i.e, associated

with the linear laws of the transport phenomena, is the most significant. So one can restrict

up to the first order of this expansion. Taking L of the order of the dimension of the system

we find that this condition is fairly well satisfied and so the first Chapman-Enskog approxi-

mation suffices the need to describe the system in a near equilibrium situation. So the out of

equilibrium distribution function can be expressed in terms of a deviation function φ as follows.

f(x, p) = f (0)(x, p)[1 + f (0)(x, p)]φ(x, p). (2)

The form of the transport equation is quite well known where the rate of change of the particle

distribution function is quantified by a quantity called collision term or collision integral which

takes care of the particle interactions responsible for altering the particle distribution within

the system. When the distribution function is expanded in the manner mentioned above the

collision term becomes a linear integral operator with a symmetric kernel depending upon the

particle interaction. The local equilibrium distribution function for a Bosonic system is ex-

pressed in a form of Jüttner distribution function, with parameters µ, Uµ and T that again

depend on the time-space coordinates. When applying the derivatives on the distribution func-

tion the left hand side of the transport equation appears as a sum of terms containing the

thermodynamic forces with different tensorial ranks representing a scalar, a vector and a tensor

respectively. In order to be a solution of this equation the deviation function φ must be a linear

combination of these thermodynamic forces. Since the distribution function is a scalar quantity

and its deviation should be the same, in order to keep φ a scalar quantity the respective coeffi-

cients should be of appropriate tensorial rank. The function which is the coefficient of the trace

part of velocity gradient term, evidently is a scalar and must be related to the bulk or volume

viscosity of the system. The second term which appears as a coefficient of the temperature
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gradient term is a vector quantity associated with thermal conductivity of the system and the

last one appearing as a tensor coefficient of the traceless part of velocity gradient is related to

the shear viscosity of the system.

In this way one obtains three integral equations in terms of the coefficient functions by com-

paring the two sides of transport equation. The viscosities and the thermal conductivity can be

evaluated as a function of the deviation φ by the usual prescription of comparing the two dif-

ferent expressions of dissipative energy-momentum stress tensor and heat flow respectively. So

we can find the expressions of transport coefficients in terms of the coefficient functions which

can be obtained by solving those integral equations mentioned earlier. Then by expanding the

coefficients in terms of modified Bessel function of second kind and half integral order one can

reach the algebraic expressions for transport coefficients after some tedious algebra [15].

So we observe that in Chapman-Enskog method the distribution function is developed in terms

of its five moments - number density, hydrodynamic four-velocity, temperature and the space

gradients of last two quantities. The method yields convenient algebraic expressions of trans-

port quantities which explicitly contain the particle interaction through the linearized collision

term.

Dynamical input : ππ cross section at finite temperature

As mentioned earlier the transport coefficients consist of the differential scattering cross section

which appears explicitly in the denominator of their expressions. This reveals the significant

dependence of the transport coefficients upon the interaction cross section of the system which

serves as the crucial dynamical input. Previously the scattering amplitude was estimated from

the lowest order Lagrangian of chiral perturbation theory [16] and in [6] a unitarized amplitude

was employed for a meson gas. Phenomenological amplitudes obtained from fits to phase shift

data have been employed in [8]. But all these calculations have been done with a cross-section

in vacuum. The novelty of the present work is that we have introduced a ππ scattering cross

section evaluated at a non-zero temperature in order to incorporate the effects of a hot pionic

medium created in heavy ion collisions. The detailed evaluation of such a quantity is elaborated

as follows.
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The first task is to obtain the energy-dependent ππ cross section using a phenomenological

approach which is close to the experimental value and at the same time is theoretically amenable

to the incorporation of medium effects. It is found that the cross section resulting from lowest

order chiral perturbation theory fails to match the data beyond 600 MeV of centre of mass

energy. To this end we consider the scattering to proceed via ρ exchange since the experimental

cross section shows a resonance peaked around ∼ 780MeV which is the mass of ρ meson. The

corresponding invariant amplitude is evaluated using effective interactions taken from [11]. To

describe the ππ scattering at low energies we also introduced σ exchange diagrams. The cross

section so obtained agrees reasonably well with the experimental data.

The next task is to introduce the effect of a medium with non-zero temperature in the cross

section. In a thermal medium the ρ propagator appearing in ππ scattering amplitude is expected

to get modified which in turn modifies the cross section and as well as the transport coefficients.

The effect of medium on ρ propagation is quantified through its self energy. Using the Dyson

equation we obtain the in medium propagator in terms of the vacuum propagator and the ρ

self energy function. The one loop self energy is evaluated by using the real time formalism

of thermal field theory. The ρ self energy is evaluated for ππ loop and loops consisting of a

pion and a heavy meson, e.g. ω, a1, h1 etc. Now since these heavy mesons have substantial

3π or ρπ decay widths, the contribution from these loops of heavy mesons can be considered

as a multipion contribution to the ρ self energy. While the real part of the self energy modifies

the mass term in the denominator of the propagator, the imaginary part is related to the

decay width of ρ and is hence responsible for the medium modification of ρ-mediated ππ cross

section. Actually the imaginary part of self energy is associated with different scattering and

decay processes, which control the abundance of ρ meson in the medium. These processes

certainly affect the cross section and consequently the transport coefficients as well.

When the medium effects in the ππ scattering cross section are introduced and plotted as a

function of centre of mass energy we observe that the peak of the cross section gets suppressed

when in medium effects are included. This is because of the fact that in medium the decay

width which appears in ρ propagator increases on account of taking all the possible decay

and scattering processes and since it appears in the denominator of ππ scattering amplitude it
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reduces the cross section. For the ππ loop in the ρ self energy we obtain a moderate suppression

where the loops including heavy mesons exhibit a larger suppression in the cross section peak.

Thus it can be concluded that indeed non zero medium effects modify the dynamical cross

section of the system which affects the transport properties in a significant way.

Temperature dependent pion chemical potential

In heavy ion collisions pions are known to get out of chemical equilibrium early at T ∼ 170

MeV, resulting in stoppage of the number changing inelastic processes so that only the elastic

processes (including the resonances) dominate the kinetics of the gas. At a still lower tem-

perature T ∼ 100 MeV, kinetic freeze out occurs freezing the momentum transfer. In order

to keep the ratio of entropy density to particle number density fixed from chemical to kinetic

freeze out a chemical potential starts building up with decrease in temperature. We take the

temperature dependent pion chemical potential from Ref. [11] which implements the formalism

described in [19] and reproduces the slope of the transverse momentum spectra of identified

hadrons observed in experiments. Then this temperature dependent pion chemical potential

has been introduced both in the kinematics that is in the phase space part and as well as in

the dynamics that is in the interaction cross section of the transport coefficients.

Results

Employing all the treatments discussed above we have generated the set of our results. First

let us start with shear viscosity. The temperature dependence of shear viscosity shows an in-

creasing trend which is in accordance with [20, 15]. When the in medium cross sections are

introduced we observe this medium suppressed cross section enhances the temperature depen-

dence of transport coefficients which is larger for π-meson loop than ππ loop. Here we observe

∼ 10% change in the value of η at T=150 MeV due to medium effects compared to the vacuum

when all the loops in the ρ self-energy are considered. The effect reduces with temperature to

less than 5% at 100 MeV. Using a temperature dependent pion chemical potential we found the

same temperature trend of η with appreciable medium effects and it is noticed that the result
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interpolates between the points representing chemical and kinetic freeze out. The temperature

dependence of η/s also depicts the same decreasing trend as in [8] and visible medium effects,

where the results with temperature dependent pion chemical potential exhibit a decreasing

trend compared to the one with µπ = 0.

Next we turn to the results regarding the bulk viscosity. Unlike shear viscosity, the bulk vis-

cosity shows a decreasing trend with increasing temperature. The coefficient of bulk viscosity

ζ is also quantitatively much smaller that η, (at a particular temperature almost 10−3 times

small). Though in this case medium dependence is clearly observed when we compare the

results obtained with the vacuum cross section with the ones where the ρ and σ propagations

are modified due to ππ and πh (multipion) loops. The temperature dependent µπ also shows

visible effects on the ζ vs. T plot. Finally the ratio ζ/s is represented where also the in medium

effects are observed. In both the above cases the entropy density is taken for an interacting

pion gas, where corrections up to O(T 6) have been taken into the consideration.

Finally we have plotted the thermal conductivity times temperature as a function of tempera-

ture for a finite-temperature medium and using temperature dependent pion chemical potential.

Both the in medium modified cross section and µπ(T ) improve its temperature dependence over

the vacuum and zero chemical potential values. In all the cases we notice that the effect of

medium over the transport coefficients increases with increasing temperature.

Thus we obtain a set of temperature dependent transport coefficients for a hot pionic medium

taking the non-zero temperature contribution in their dynamical interaction cross section which

shows appreciable improvements over their values evaluated at vacuum.

Transport of thermodynamic flows

In the first order theories of relativistic dissipative fluid dynamics, the entropy four-current

contains terms up to linear order in dissipative fluxes of those quantities which are being trans-

ported. The resulting equations of motion of the thermodynamic variables do not include the

transport related flows and the relation between the thermodynamic fluxes with the thermo-

dynamic forces are expressed as linear laws without any terms containing the time derivative
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of those fluxes. These equations of motion of the first order theory are parabolic in structure

and lead to the undesirable feature that causality may not be satisfied, i.e. the fluxes may

propagate with speeds exceeding that of light. This infinite speed of flows makes it impossible

to have access to the relaxation times corresponding to the transport of flows.

To remedy this undesirable causality problem second order theory is introduced, where the

entropy four-current includes terms quadratic in dissipative fluxes. The space of the thermo-

dynamic variables is expanded to include the dissipative quantities and so the irreversible flows

appear in the equations of motion of the thermodynamic variables of the system. The resulting

equations for dissipative fluxes are hyperbolic in structure and they lead to causal propagation

of signals. These dissipative quantities are then treated as thermodynamic variables in their

own right.

In the present case we have used the Grad’s 14 moment method. In this method all the gradi-

ents of the flows are taken into consideration in the conservation laws and instead of defining

the distribution function from its first five moments, it is now expanded in terms of all its mo-

ments. Such an expansion leads to an infinite set of coupled equations for those moments. By

truncating the expansion after a relatively small number of terms, one obtains a manageable

finite set of equations. Finally from those equations one can determine the time scale over

which the energy, momentum or the thermal disturbances are transported due to inter particle

collisions. In the present work we obtain three separate equations of motion of the thermo-

dynamic fluxes, namely the bulk viscous pressure equation, heat flow equation and the shear

viscous pressure equation which contains explicit time derivatives of the thermodynamic fluxes

giving rise to finite, non-zero values of the time scale over which these fluxes decay down to

their equilibrium values. The relaxation times corresponding to different thermodynamic flows

have been evaluated for a massive pion gas at a non-zero temperature and chemical potential

where we can find that the first order transport coefficients for the respective flows serve as an

input ingredient. The corresponding results show significant modifications of the temperature

dependence of those relaxation times with the in medium cross sections compared to vacuum

ones. The temperature dependent pion chemical potential also proved to affect the results in a

significant way.
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Other transport coefficients

Drag and diffusion coefficients have been estimated for heavy mesons with charm degrees of

freedom, like J/ψ and ηc in a mesonic medium of lighter particles consisting of π, k, η, ρ, ω and

φ. The cross-sections for the necessary interactions are evaluated from an effective Lagrangian

taken from [7]. Then the transport quantities of the heavy particles are evaluated both by using

those cross sections and by scattering length technique [22]. Finally the drag and diffusion

coefficients are plotted as a function of temperature and thus the J/ψ absorption by comoving

hadrons have been investigated.
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Chapter 1

Introduction

1.1 Prelude

The physical world around us consists of many particle systems. The study of such a system

with a large number of degrees of freedom clearly becomes non tractable and the knowledge of

each generalized coordinate corresponding to each constituent particle is really not necessary in

order to determine the overall properties of the system. In order to learn about the system we

need to study its properties which are subject to measurement. We need some particular set of

tools to quantify these properties. Now if the system has a well defined boundary that separates

it from its surroundings such that there are certain processes only allowed in the interior of

the region, it is called a thermodynamic system. The properties mentioned earlier are defined

as the thermodynamic parameters or the state variables, which are experimentally measurable

macroscopic quantities. These parameters uniquely define the state of a system. The problem

then reduces to find a certain prescription to estimate these thermodynamic (macroscopic)

quantities in order to describe the many particle thermodynamic system.
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1.2 General methods to treat many-particle systems

The dynamics of a given collection of N number of particles can be described in a number

of ways. If the de Broglie wavelength associated with each particle is large compared to the

interparticle separation, the waveforms corresponding to various particles overlap and a quan-

tum mechanical description is necessary. Then the system is described by the N particle wave

functions evolving in time following the Schrödinger equation. In the opposite case, if the wave

functions of different particles are widely separated, the quantum interference is not important

and the individual wave packets evolve according to the Schrödinger equation in an isolated

fashion, moving like classical particles. In the later case the state of the system is described by

the positions and velocities of N particles, and the time evolution is described by the laws of

classical mechanics. An accurate description of such systems requires the inclusion of the inter-

particle potentials in the many particle Schroedinger equations. But handling ∼ 1023 numbers

of equations corresponding to each particle turns out to be an impossible task. So one has to

find out some convenient way to describe the properties of a system containing so many number

of particles. There exist two general ways to treat a multiparticle system,

• Kinetic theory,

• Hydrodynamics.

1.2.1 Kinetic Theory

Kinetic theory serves as the most unique technique to treat a many particle system starting from

the Hamiltonian description of the 1023 particles and ending at the equations of fluid dynamics.

The first equation of motion we obtain is the evolution of the probability distribution function

along any trajectory of the N particle phase space, known as Lioüville′s equation. But this

does not make our life simpler since it still includes a function of 1023 variables. To proceed, the

plan is to limit our ambitions. Instead of focusing on the probability distribution function of

all N particles, we define one particle distribution function by singling out each particle within
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the system. If we try to obtain the evolution equation of this one particle distribution function

we find that the single particle distribution function evolves by a Lioüville like equation with

a corrected term depending on two particle distribution function. In this manner we obtain

a set of coupled equations which tells that any group of N particles evolves in a Hamiltonian

fashion, corrected by interactions with one of the particles out side the group. This is called

the famous BBGKY hierarchy prescribed by Bogoliubov, Born, Green, Kirkwood and Yvon to

treat the time evolution of the system. At first glance it does not seem to make life any easier

since we still have to deal with N number of coupled equations. However the advantage of

working with this scheme is that it gives the opportunity to implement various approximations

to decide upto which term the problem is important so that the series can be truncated up

to that ignoring the negligible ones. In this way the hierarchy turns out to be something

manageable and convenient to use. The simplest, and most useful, of these truncations is

the Boltzmann transport equation, where it is assumed that if the time duration of collision

is sufficiently smaller than the time between two collisions to occur, the dynamical evolution

of the system can be described by the Hamiltonian evolution of single particle distribution

function with the perturbations by the collisions. The collision terms include the interaction

between the particles and thus the microscopic dynamics is embedded in the evolution equation

of single particle distribution function provided by kinetic theory. However even this equation

is not trivial to solve because of the collision term which appears as an integral making the

transport equation in an integro-differential equation. The non-linearity of the collision term

becomes the biggest problem in utilizing the transport equation. There are a number of methods

depending on certain approximations to linearize the collision term such that the collision

operator becomes a linear integral operator with symmetric kernel which is mathematically more

tractable. Once the transport equation is solved the macroscopic thermodynamic quantities

describing the system can be defined with solution of single particle distribution function. In

this manner the kinetic theory provides an analytical scheme to study a many particle system

and obtain the thermodynamic properties that can be measured experimentally. The virtue

of this approach is that it connects the macroscopic bulk properties of the system with its

microscopic dynamical interaction in a very elegant way. This is the reason that inspite of
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the technical difficulties of tackling the collision term it serves as one of the most useful and

effective way to describe a many particle system.

1.2.2 Hydrodynamics

The macroscopic quantities or the state variables mentioned earlier are related by one or more

functional relationships which are called equations of state for the system. Hydrodynamics

provides these relationships among the macroscopic quantities by simple algebraic equations.

Actually these state equations such as equation of energy, equation of motion, equation of par-

ticle number density etc. follow from some conservation laws. There are mainly two quantities,

particle flow and energy-momentum flux, whose conservation laws lead to most of the state

equations we need. So hydrodynamics gives the variation of the measurable macroscopic quan-

tities with time and space. So although kinetic theory defines the macroscopic quantities there

is no way to obtain their time profile within an evolving system. Hydrodynamics uniquely pro-

vides these evolution equations of the state variables for the system under consideration. Since

hydrodynamics only deals with bulk properties of the systems and do not care about the single

particle functions, the microscopic dynamics of the system is not included in this theory. So in

order to describe the system voyaging from kinetic theory to hydrodynamics we are proceeding

by loosing informations about the interaction dynamics but constructing newer techniques to

estimate those things which are required to study the system in terms of measurable quantities.

1.3 Irreversible processes and dissipative quantities

When a thermodynamic system under consideration experiences no net flow of matter or energy

and consequently no change in macroscopic properties, the system is said to be in a state of

thermodynamic equilibrium. Any deviation from it where the system is subjected to the net flow

of energy or matter, is called non-equilibrium state of the system. When an out of equilibrium

system is isolated, it spontaneously evolves towards its own equilibrium. In thermodynamics

a change in the thermodynamic states can not be precisely restored to its initial state by
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infinitesimal changes in some property of the system without expenditure of energy. So the

associated processes always involves dissipation. So a system that is out of equilibrium relaxes

to its equilibrium state by increasing entropy which becomes maximum for an equilibrium

system. The associated processes are called irreversible processes where the change of entropy

is always positive. Evidently non-equilibrium thermodynamics is associated with transport

processes since the system tends to restore its equilibrium by transporting matter, energy or

momentum.

Transport properties have long been employed as probing tool to understand the characteristics

of a thermodynamic system. Since the microscopic mechanism of the energy and momentum

transfer involved in transport processes is provided by interactions among the constituent par-

ticles within the system, investigation of transport properties in turn gives prediction about

the nature of interactions within the system. In all practical systems the hydrodynamic evo-

lution leads to different dissipative processes which can be quantified by some quantity called

transport coefficients. These transport coefficients not only provide the relevant insight on the

microscopic dynamics of the system under consideration, but also carry information on how

far the system appears from ideal hydrodynamics. So investigation of the transport coefficients

can be proved very useful to study a particular system. With this motivation we proceed to

evaluate the transport quantities for a very special system that will be discussed in the following

section.

1.4 Heavy Ion Collision

1.4.1 Motivation behind colliding nuclei at high energies

Nuclear physics is basically a journey towards the interior of matter. After the pioneering

discovery of positively charged protons inside the atoms by Rutherford, and charge neutral

neutrons by James Chadwick for many years nuclear physicists treated the nucleons as if they

were the most fundamental constituents of the nucleus. However in the second half of the
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twentieth century, a question was raised that whether the nucleons or more generally hadrons

can at all be treated as the most fundamental structure of matter. For this purpose highly

energetic collisions of hadrons were suggested as a possible means of “breaking them apart”

and then on a series of experimental discoveries firmly established the existence of a subnuclear

world constituted by quarks which are bound by gluons. The existence of this substructure

is strictly limited to the interior of the particles, leading to the fact that no quarks or gluons

can ever be removed from the interior of an elementary particle. It was considered that if a

substantial amount of temperature or pressure can be applied to make the particles heated or

compressed enough such that they fail to retain their identity on account of large overlap, then

one can experimentally produce a large bag of quark-matter or which is conventionally known as

“Quark-gluon plasma”(QGP). The transition of the hadrons to this new state of matter denoted

by “QGP” can be explained by the property of the Quantum Chromo Dynamics(QCD) called

Asymptotic freedom.

The possibility of a deconfined phase of QCD was first conjectured by noting that the coupling

constant appearing in the thermodynamic potentials approaches to zero at high temperature or

density. This was later interpreted that QCD becomes weakly interacting at high temperatures.

This is because at very high momentum transfer, the strength of interaction among the partons

becomes very weak. The effective coupling constant of the interaction becomes smaller at higher

momentum transfer and perturbation theory can be reliably utilized (at least in the extreme

case) to obtain quantitative results for observables which have been confirmed by high energy

scattering experiments. This behavior is known as the asymptotic freedom. On the other hand

in the low momentum domain, the interaction becomes very strong, and perturbation theory

ceases to be applicable and nonperturbative mechanisms take over. It is this regime where quark

confinement (or clustering of color charged particles to form color neutral objects) and mass

generation occur, imposing formidable challenges for their theoretical understanding. Thus,

at very high temperatures and densities in the domain of weak coupling between quarks and

gluons, the long range interactions are dynamically screened, quarks and gluons are no longer

confined to bound hadronic states, and they propagate through a larger volume allowing the

possibility of a deconfined state of partons. This leads to the formation of Quark-Gluon Plasma
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which can be formed both at high temperatures and at high densities. A direct motivation to

understand this high temperature and density region comes from cosmology as well as from

astrophysics. The Big Bang theory of cosmology suggests that a few microseconds after the

Big Bang, the universe was made up of quark-gluon plasma at a very high temperature of

about 200 MeV (∼ 2 × 1012K). Further expansion as well as cooling and probably a phase

transition (or may be a cross-over) at some critical temperature (about 170 MeV) produces a

hadronic phase from the hot and dense plasma phase. To understand the evolution of the early

universe it is necessary to study the properties of QGP at very high temperatures [1]. Another

equally important reason to study QGP is to know the properties of matter at extremely high

densities, such as in a neutron star. The neutron star is a very heavy and super dense object,

which is formed at the end of supernova explosion of a regular star. At the center of neutron

stars density is so high that quarks and gluons may not remain confined, leading to a QGP

phase at high baryon density.

These facts serve as the motivation of colliding heavy nuclei at relativistic energies. During

the collisions, both high baryon density and high temperature may be reached. Thus in a

“Heavy Ion Collision”, i.e, in the collision of two relativistically high energy heavy nuclei, a

quark-gluon plasma can be formed which will subsequently go through the phase transition

and hadronize into particles in the final states. The evolution of the matter created in high

energy nucleus-nucleus collision can be pictured in the following way. After the collision a large

amount of energy is stored in a small region resulting in a high energy density. The system of

quarks and gluons presumably reach a state of thermal equilibrium within a few fm/c and thus

the presence of a thermalized medium of quarks and gluons has been assumed. Due to high

internal pressure the medium then expands and cools. Finally it undergoes a phase transition

and transforms to a hadronic gas phase. Then the hadron gas further expands to reduce energy

density and finally reaches the freeze-out, when the mean free path becomes so large that the

final state hadrons do not interact with each other anymore. A simulation of the possible stages

of evolution of the produced matter in heavy ion collisions are depicted in Fig. (1.1). Thus

heavy ion collisions at relativistic energies provide a unique experimental opportunity to probe

nuclear matter under extreme conditions.
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Figure 1.1: Different stages of heavy ion collision.

1.4.2 Experimental milestones

The experimental study of heavy ion collisions was initiated at the BEVALAC at Berkeley.

However, the energy deposited in that experiment was not sufficiently high to create a QGP

phase. The subsequent attempts of heavy ion experiments were carried out at AGS of BNL

(since 80s) and SPS of CERN (since 1994). These were both fixed-target experiments which

studied Au+Au and Pb+Pb collisions with Elab ≈ 14 and 200 AGeV, respectively. The re-

sults from those experiments [2] have demonstrated extremely rich physics which could not be

explained by simple extrapolation of pp collisions. Through the last decade the experimental

program at Relativistic Heavy Ion collider (RHIC) at Brookhaven National Laboratory, USA

[3, 4, 5, 6] have provided a significant evidence for the formation of a hot and dense state of mat-

ter that had not been observed so clearly in the earlier experiments. Finally the Large Hadron

Collider (LHC) at CERN [7], Geneva have produced a fortune of data which have proved to

be extremely useful to characterize the properties of the thermodynamic system created out of

the matter produced in those collisions. In addition to these, an experimental facility called

FAIR at GSI Germany, is proposed to study QGP at very high densities [8].

1.4.3 Signatures of QGP

Over the years many signatures have been proposed to study different aspects of the hot/dense

matter created in heavy ion collision. We discuss a few of them in the following sections which

have relevance to the work reported in this thesis.
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Elliptic flow

In non-central nuclear collisions, or if the colliding nuclei are deformed, the nuclear overlap

region is initially spatially deformed. Interactions among the constituents of the matter formed

in that zone transfer this spatial deformation onto the momentum space. Since the interactions

among the fireball constituents are sensitive to the anisotropic density gradients in the reaction

zone, it redirect the momentum flow preferably in the direction of stronger density gradients.

The result is a momentum-space anisotropy, with more momentum flowing into the reaction

plane than out of it. Such a “momentum-space reflection” of the initial space deformation is a

unique signature for strong interactions in the fireball and proves that the fireball matter has

undergone significant nontrivial dynamics between creation and freeze out. If this anisotropic

momentum distribution with respect to the azimuthal angle of the out going particle is expanded

in Fourier series then the polar plot of the first harmonics just appear to shift the fireball with

out changing its shape. Hence the coefficient of this term is called the directed flow. However

in the polar plot of second harmonics, the fireball appears as an ellipse and so the coefficient

of this term is named as elliptic flow. The faster motion of the fireball in the reaction plane

than perpendicular to it is due to this elliptic flow and hence the experimental evidence of the

elliptic flow serves as a firm signature of the creation of a strongly interacting matter in heavy

ion collisions [9, 10]. Moreover since it is observed that all the momentum anisotropy is built

up during the first 6fm/c [11], it is also a good signature of the fast thermalization and the

existence of a partonic medium (QGP). The anisotropic flow in non-central collisions turn out

to be very sensitive to viscosity. The hydrodynamic description of elliptic flow requires the

inclusion of dissipative effects (will be discussed later in more detail) and hence leads to the

study of non-equilibrium phenomena in heavy ion collisions.

Electromagnetic probes

The quark gluon plasma is made up of quarks, anti quarks and gluons. The quarks and anti

quarks have electric charge apart from their color charge. So they take part in electromagnetic

interactions leading to production of photons and lepton pairs. For example in the lowest order,
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a quark can interact with an anti quark in order to produce a photon and a gluon or they can

form a virtual photon which subsequently decays into a lepton l− and an anti lepton l+ pair

(commonly known as dilepton pair). More over a quark or an anti quark interacts with a

gluon which results in the production of a photon. These photons and dilepton pairs are called

electromagnetic probes to investigate the properties of QGP. However they can be produced

from the hot hadronic matter also by different electromagnetic interactions among charged

hadrons. Since these particles interact with its surroundings only through electromagnetic

interactions, in an environment of strong interaction its mean free path becomes really large,

so that they pass through the collision region and reach the detector without loosing much

information. On the other hand the production rate and the momentum distribution of these

photons and dileptons depend on the momentum distribution of the initial quarks, anti quarks

and gluons in the plasma, which are governed by the thermodynamic conditions of the plasma.

Therefore the electromagnetic probes carry the information on the thermodynamic state of the

medium at the moment of their production. Moreover since they are produced from all stages

of the evolving fireball, they can extract the information from all the stages of the expanding

medium through out the evolution. So these dileptons and photons created out of the matter

produced in heavy ion collisions are regarded as deep probes of QGP [12, 13, 14, 15, 16].

J/ψ suppression

J/ψ is a bound state of a charm quark c and an anti quark c. It is well known that the c and c

quarks can only be produced in the initial stages from collision of hard partons. In the quark

gluon plasma, due to deconfinement of quarks and gluons the string tension between c and c

pair is zero. The only interaction between them is the Coulomb-type color interaction. If a J/ψ

particle is placed in the quark-gluon plasma, the Debye screening will modify the long range

Coulomb-type color interaction into the short range Yukawa-type interaction between c and c,

with the interaction range given by the Debye screening length. The Debye screening length is

inversely proportional to the temperature. At high temperatures, the range of this attractive

interaction becomes so small that it becomes impossible for the cc pair to form a bound state.

As a result the J/ψ particle placed in quark-gluon plasma will be dissociated, leading to the
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suppression of its production in high energy nucleus nucleus collisions [17]. Subsequently these

charm and anti charm quarks combine with light quarks or anti quarks to emerge as open

charm mesons such as D(cu, cd), D(cu, cd), Ds(cs) and Ds(cs). So if a quark-gluon plasma is

formed in the region of J/ψ production, then the effect of plasma will make it unbound leading

to the suppression of its production compared to the case where no quark-gluon medium has

been formed. Therefore, the suppression of J/ψ production may be used as a signature of

quark-gluon plasma.

There are many other signatures like strangeness enhancement or HBT (Hanbury-Brown-Twiss)

effect of intensity interferometry which establish the existence of quark-gluon matter. In the

next section we will explore different techniques to study such an exotic system.

1.4.4 Theoretical methods to describe the system created in heavy

ion collisions

The question now arises how this hot and dense matter created in heavy ion collisions can

be treated mathematically so as to investigate its properties. We have two Lorentz-covariant

dynamical frameworks at our disposal: (i) covariant transport theory and (ii) relativistic hy-

drodynamics. They represent opposite limits in their underlying assumptions. The transport

theory provides a microscopic description of the system and is suited for the early and late

non-equilibrium stages. Transport theories based on parton degrees of freedom can also de-

scribe the early thermalization processes. The late hadronic rescattering and freeze-out stage

requires a description in terms of a covariant hadron cascade and can be matched to the earlier

hydrodynamic evolution of QGP phase [18]. Some of the typical transport based calculations

are, A Multi Phase Transport (AMPT) model [19] and Ultra Relativistic Quantum Molecular

Dynamic (URQMD) model [20]. All these theoretical descriptions are well developed and can

be further advanced.

On the other hand relativistic hydrodynamics is a macroscopic description and assumes approx-

imate local thermal equilibrium. A system in thermodynamic equilibrium can be characterized
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by macroscopic observables such as particle number density, hydrodynamic velocity, energy

density etc. with no requirement of detailed knowledge of microscopic dynamics. Due to the

simplicity of this macroscopic approach it has a long tradition in its application in heavy ion

collisions. Starting from Landau [21] and Bjorken [22] a number of hydrodynamic approaches

have been used to study the properties of the matter created in heavy ion collisions which

proved to be quite successful in predicting the experimental data. Because of their conceptual

beauty and simplicity, models based on hydrodynamic principles have been applied to calculate

a large number of observables for various colliding systems and over a broad range of colliding

energies. One of the most important results from Au+Au collisions at RHIC is the centrality

and transverse momentum (pT ) dependence of the elliptic flow coefficient at mid rapidity [24].

For central to midperipheral collisions and for pT . 1.5GeV/c the data were found to be in

very good agreement with the hydrodynamic predictions [23].

1.4.5 Evidence of dissipation in the matter created in heavy ion

collisions

Earlier most of the predictions about the properties of the hot and dense matter created in heavy

ion collisions were made with ideal hydrodynamics without considering any dissipative effects in

it. Realizing that the created matter undergoes irreversible phenomena in its course of evolution

a few attempts were made to quantify the dissipation. In [25] the dissipative phenomena for

a quark gluon system have been discussed. The transport properties and the corresponding

relaxations have been discussed in [26, 27] for a QGP system. The transport coefficients in

ultra-relativistic heavy ion collisions have been estimated both for QGP and hadron matter

in [28]. These theoretical estimations of transport coefficients needed to be supported by the

experimental data from heavy ion collisions and first the RHIC data indeed demonstrated the

evidence of transport quantities in the matter created out of the collisions. Though earlier

attempts were made with ideal hydrodynamics considering the system as a weakly interacting

one which seems to offer first handedly a sensible description of the data, however a closer

inspection to some of the bulk observables such as multiplicity, radial or elliptic flow reveals
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that the ideal hydrodynamics do not suffice the explanation and demands the inclusion of a

dissipative hydrodynamics to describe the space-time evolution of the system. In Ref. [29] the

elliptic flow (v2) data of charged hadrons in 200 GeV per nucleon Au+Au collision at RHIC

was explained with a viscous hydrodynamic model with small but finite value of shear viscosity

to entropy density ratio (η/s), indicating that the created matter behaves much like a strongly

interacting liquid than a weakly interacting gas. In Fig. 1.2 it can be viewed that the ideal

hydrodynamics clearly overpredicts the data both from Phobos and Star where the viscous

hydrodynamics describes the experimental data reasonably. Then on it is realized that the

created matter undergoes dissipative processes on its way to space time evolution and hence

requires a non-ideal theory to describe its kinematics. A series of works has been carried out

since then [30, 31] to obtain the cooling laws for a dissipative evolving system created in heavy

ion collisions. So far the dissipative effects on the electromagnetic as well as hadron spectra have

been tested widely [32, 33, 34, 35, 36]. All these estimations require the transport coefficients

as the measure of the dissipation to incorporate in the non-ideal hydrodynamic models. That is

why the transport coefficients are needed to be evaluated with great precision. The motivation

of this thesis is to estimate the magnitude of the transport coefficients and their corresponding

temperature dependence for a system of hot interacting pion gas at finite temperature.

1.5 The scope and prospect of the present work

In this work the temperature dependence of both the first order transport coefficients, such as

viscosities and thermal conductivity as well as the second order ones which are the relaxation

times of flows have been evaluated for an interacting pion gas at finite temperature. There have

been quite a few estimates of the transport coefficients of a pion gas. In Ref. [37, 38, 39] the

transport coefficients of a pion gas have been evaluated using the Kubo formalism which relates

the transport coefficients to retarded two-point functions. In Ref. [40, 41, 42, 43] the kinetic

theory approach has been adopted where the transport coefficients are expressed explicitly in

terms of interaction cross-section. In most of the cases of kinetic theory approach either the

lowest order chiral perturbation theory has been used [40, 44], or a phenomenological ampli-
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Figure 1.2: Ideal and viscous hydrodynamic models trying to fit the experimental data of elliptic

flow of charged hadrons [29].

tude has been used which is constructed to reproduce the experimental data of ππ interaction

cross-section [45]. In [41, 42] a unitarized cross section has been used from the inverse ampli-

tude method of chiral perturbation theory. In all the above cases the temperature dependence

does not occur explicitly in the dynamical cross-sections incorporated in the expressions of

transport coefficients. In this thesis an explicit temperature dependent pion cross-section has

been introduced and thereafter the transport coefficients are estimated with the help of the

temperature dependent interaction cross-section.

The chapters of the thesis are arranged as follows. In Chapter-2 the fluid properties have been

discussed for a non-ideal system. The expression of the thermodynamic quantities have been

explicitly given in this chapter. In Chapter-3 the Chapman-Enskog method from kinetic the-
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ory has been discussed in detail from which the expressions of first order transport coefficients

such as shear and bulk viscosities and thermal conductivity have been explicitly estimated. In

Chapter-4 another formalism of kinetic theory, namely Grad’s 14 moment method has been

employed to obtain the relaxation time of dissipative flows. After obtaining the expressions of

transport coefficients, in Chapter-5 a medium modified ππ interaction cross section has been

evaluated at finite temperature. Finally in Chapter-6 the effect of this medium dependent

pion cross section on the temperature dependence of transport coefficients has been discussed.

In Chapter-7 other transport coefficients namely the drag and diffusion coefficients have been

evaluated for heavy mesons with charmed degrees of freedom like J/ψ and ηc. In Chapter-8 the

effect of viscosity on the electromagnetic spectra from QGP as well as hadronic matter is in-

vestigated. We end this thesis with Chapter-9 which contains discussions and possible outlook

of the work presented here.
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Chapter 2

Elements of fluid dynamics

The properties of a fluid which can be considered as a many particle system evidently depend

on the interactions of the constituent particles and any external forces exerted on the system.

Since the phenomena considered in fluid dynamics are macroscopic, the fluid is regarded as a

continuous medium. This requires that any small volume element in the fluid is supposed to

be so large that it can contain a very great number of molecules. So a characteristic small

fluid element corresponds to the dimension which is very small compared to the system size

under consideration, but large compared to the intermolecular distances. In general different

processes in a fluid are described by the means of a tool called kinetic theory of fluids. In this

theory the fluid dynamical properties are realized by means of a statistical description in terms

of a quantity called distribution function of the constituent particles in their phase space. It is

in general, a function of generalized co-ordinates q and the corresponding generalized momenta

p and for a non-steady state also of time t and indicated by the notation f(t, q, p). This

function may be interpreted as the average number of particles with a certain momentum at

each space-time point. Consequently the distribution function bears the concept of temperature

and as well as of a thermal equilibrium. This requires defining the local thermal equilibrium

associated with the volume element of the fluid system mentioned above. If the dimension

of the volume element dV is not large compare to the average intermolecular distance r̄, the

particle number density which is the momentum integration of the distribution function within
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that volume element, is not a macroscopic quantity. The fluctuations of the number of particles

present in the volume dV are comparable with its mean value. The number density N becomes

a macroscopic quantity only when it is defined with respect to a volume element dV which

contains many particles. This is only possible if the dimension of the volume element d satisfies

r̄ << d << L, where L is the distance over which the distribution function changes considerably.

So if such a fluid element is defined obeying the above conditions, within that volume element a

local thermal equilibrium can be defined which results in specifying the macroscopic quantities

such as temperature, number density, pressure etc [1, 2].

To describe a system of particles at its local equilibrium we need to specify these macroscopic

quantities. On the macroscopic level the state of a many particle system is described by the

particle density, the energy density and its hydrodynamic velocity. As argued above for a non-

uniform system such quantities are functions of time and space co-ordinates. In the next section

we will discuss the definition of these macroscopic thermodynamic quantities in the language

of relativistic kinetic theory.

2.1 Thermodynamic quantities

2.1.1 Particle number density

Let us start with the local particle number density discussed in earlier section. For a non-

uniform system this particle number density n(~x, t) is function of the space co-ordinates ~x and

the time co-ordinate t. This quantity actually denotes the average number of particles per unit

volume such that n(~x, t)dV gives the average number of particles in the spatial volume element

dV . So the total number of particles in some volume V of space becomes
∫

V
ndV . Since the

number of particles flowing in unit time through an element df of the surface bounding this

volume is n~v. d ~f , so the total number of particles flowing out of this volume through the closed

surface is,
∮
n~v. d ~f where ~v is the velocity of fluid particles. Since this amounts to the decrease

in number of particles within that volume per unit time which is − ∂
∂t

∫
ndV , for an arbitrary
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volume this facts lead to the famous continuity equation of fluid, ∂n
∂t

+ ~∇.~j = 0. Here we have

defined a new quantity called particle flow ~j(x, t) = n~v. So for a relativistic system of particles,

the particle density and particle flow, constitute a 4-vector field, which is indicated by [3],

Nµ(x) = (n(~x, t),~j(~x, t)), (2.1)

called particle 4-flow.

The index µ runs from 0,1,2,3 while x = xµ = (t, ~x). Now we have mentioned earlier that the

particle number density n(x) can be expressed in terms of the particle distribution function

integrated over all momenta at a particular point of space,

n(x) =

∫
d3p

(2π)3
f(x, p). (2.2)

In the same spirit we can define particle current as,

~j(x) =

∫
d3p

(2π)3
~vpf(x, p). (2.3)

Where we have used the abbreviation ~vp = ~p
p0

as the velocity of the relativistic particles with

momentum ~p. As a consequence of the above two equations the particle-4 flow can be expressed

as,

Nµ(x) =

∫
d3p

(2π)3p0
pµf(x, p). (2.4)

The last equation gives one very useful insight regarding the distribution function. Since the

quantity d3p
p0

is a Lorentz scalar and both Nµ(x) and pµ transforms like a four-vector so the

distribution function f(x, p) must be a scalar quantity. This fact holds acceptable with the

interpretation of f(x, p) as a probability density of the particles within the system.

2.1.2 Energy-momentum tensor

Let us consider a system of particles labeled by n with position co-ordinates ~xn(t) and energy-

momentum four-vector pαn(t), the density of pαn is defined as [4],

T α0(~x, t) =
∑

n

pαn(t)δ
3(~x− ~xn(t)). (2.5)
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The corresponding current is defined as,

T αi(~x, t) =
∑

n

pαn(t)
dxin(t)

dt
δ3(~x− ~xn(t)). (2.6)

These two definitions can be united in a single formula,

T αβ(x) =
∑

n

pαn(t)
dxβn(t)

dt
δ3(~x− ~xn(t)). (2.7)

From equation (2.7) for a continuous system, the average density and the flows of energy and

momentum can be written in an integral form over the particle distribution function which is

given by the following equations.

The 00-component is

T 00(x) =

∫
d3p

(2π)3
p0f(x, p). (2.8)

Since energy per particle is p0, this quantity is indicated as the macroscopic energy density ǫ.

The energy flow or energy flux along the ith axis is given by

T 0i(x) =

∫
d3p

(2π)3
p0vipf(x, p). (2.9)

Here vip is the cartesian component of the particle velocity along ith axis.

Next we define the density of ith component of momentum by,

T i0(x) =

∫
d3p

(2π)3
pif(x, p). (2.10)

This is evidently the average value of particle momentum ~p. Finally

T ij(x) =

∫
d3p

(2π)3
pivjpf(x, p) (2.11)

is the expression of momentum flow or flux along the direction of jth axis of the ith component

of momentum. So in the covariant form the energy-momentum stress tensor can be written as,

T µν =

∫
d3p

(2π)3p0
pµpνf0(x, p). (2.12)
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In the local rest frame of the fluid, the energy momentum tensor takes the following form

characteristic of the spherical symmetry,

T̃ ij = Pδij, T̃ i0 = T̃ 0i = 0, T̃ 00 = ǫ. (2.13)

Now in any general frame the energy momentum tensor can be expressed in terms of hydrody-

namic four-velocity and the metric tensor of the system in the following manner,

T µν = Auµuν +Bgµν . (2.14)

A and B are appropriate coefficients that should express (2.14) in terms of (2.13) in the local

rest frame of the fluid. Following the above prescription, in the lab frame the energy momentum

tensor takes the following form with ǫ as energy density and P as pressure,

T µν = (ǫ+ P )uµuν − Pgµν. (2.15)

Here we have used the metric gµν = (1,−1,−1,−1) and the same convention will be followed

through out the thesis.

2.1.3 Hydrodynamic four-velocity

To describe the motion of a fluid, which is considered as a continuous media, the most important

notion is the hydrodynamic four-velocity uµ(x),which is a vector field. It is defined as a time-like

vector with unit length at each space-time point

uµ(x)uµ(x) = 1. (2.16)

Let us now define a projection operator ∆µν(x) with the help of this hydrodynamic four-velocity

uµ(x) and the metric tensor gµν such as it is orthogonal to uµ,

∆µν(x)uν(x) = 0. (2.17)

The most convenient form of constructing such a projection operator which is symmetric and

orthogonal to velocity is given below,
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∆µν(x) = gµν − uµ(x)uν(x). (2.18)

Since the hydrodynamic velocity is time-like, one can consider a proper Lorentz frame at each

space-time point. This frame is identified as local rest frame and it is distinguished from

observer’s frame (x = (t, ~x)) by considering that this frame is moving with the fluid at each

space time point. In the local rest frame, abbreviated by the index LR, the hydrodynamic

velocity has the following components

uµLR = (1, 0, 0, 0). (2.19)

In this local rest frame the projection operator mentioned above takes the form,

∆µν
LR=diag(0,−1,−1,−1).

To specify hydrodynamic velocity we will discuss here two definitions which is popularly used

in literatures.

(i) Eckart’s definition-In this definition the hydrodynamic velocity is defined in terms of the

particle four-flow Nµ as [5],

uµ =
Nµ

√
NνNν

. (2.20)

It is normalized in agreement with (2.16). In this definition we can see that the hydrody-

namic velocity is parallel to the particle flow. In the view of this normalization the alternative

definition of uµ reads,

uµ =
Nµ

Nνuν
. (2.21)

These definitions invariably follow the orthogonal property of particle number density with the

projection operator in Eckart approach,

∆µν(x)N
µ(x) = 0. (2.22)

This orthogonality relation directly follows that in local rest frame the spatial components of

particle four flow Nµ(x) vanishes.

N i
LR = 0 i = 1, 2, 3. (2.23)
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Thus the hydrodynamic velocity defined in (2.20) is the mean particle velocity.

(ii) Landau and Lifshitz’s definition - According to this definition the hydrodynamic four

velocity is defined as [2] ,

uµ =
T µνuν√

uρT ρσTστuτ
. (2.24)

This definition of the hydrodynamic velocity is defined in terms of energy-momentum tensor.

The normalization condition of velocity (2.16) gives another alternative definition,

uµ =
T µνuν
uρT ρσuσ

, (2.25)

which again with the help of projector operator follows the following condition,

∆µνTνσu
σ = 0. (2.26)

This follows that in the local rest frame associated with Landau-Lifshitz velocity the momentum

density and the energy flow vanishes.

T i0LR = T 0i
LR = 0, i = 1, 2, 3. (2.27)

Thus the hydrodynamic velocity defined in (2.24) is related to the momentum density or what

amounts to the same, the flow of energy for the system of particles.

2.1.4 Other thermodynamic quantities

Based on the quantities discussed above we have define a few fundamental quantities needed

to describe the macroscopic properties of the system.

From the definition of particle four flow (2.4), one can define the particle number density, which

is a function of time-space coordinates x, as a scalar quantity

n = Nµuµ. (2.28)

In the local rest frame of the fluid, characterized by (2.19) the definition of the above quantity

takes the following form

n = N0
LR. (2.29)
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This equation clearly shows that the particle number density n(x) is indeed the density of

particles with respect to this frame.

Similarly we can define the energy density of the system as en where e is the average energy

per particle,

en = uµT
µνuν . (2.30)

In the local rest frame this reduces to en = T 00
LR, which shows in local rest frame en is indeed

the energy density.

Let us now define the heat flow function by the following equation.

Iµq = (uνT
νσ − hNσ)∆µ

σ (2.31)

The enthalpy or heat function per particle is h = e+Pn−1, where P is the hydrostatic pressure.

We can see that the heat flow so defined is also orthogonal to uµ(x). The definition (2.31) is

such that in local rest frame the heat flow has spatial components only,

I0
q(LR) = 0, I iq(LR) = T 0i

(LR) − hN i
(LR), i = 1, 2, 3. (2.32)

We will now define another quantity called pressure tensor as,

P µν = ∆µ
σT

στ∆ν
τ . (2.33)

It is a symmetric quantity if the energy-momentum tensor T µν is symmetric as discussed here.

In the local rest frame it is purely spatial,

P 00
LR = 0, P 0i

LR = P i0
LR = 0, P ij

LR = T ijLR, i, j = 1, 2, 3. (2.34)

It turns out that the pressure tensor contains a reversible and an irreversible part according to

the splitting

P µν = −P∆µν + Πµν . (2.35)

The quantity Πµν is called the viscous pressure tensor. With the help of the above relations

the energy-momentum stress tensor T µν also can be similarly decomposed into reversible and

irreversible contributions.

T µν = T (0)µν + T (1)µν , (2.36)
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where the reversible part directly follows from (2.15),

T (0)µν = enuµuν − P∆µν , (2.37)

and the irreversible part,

T (1)µν = [(Iµq + h∆µσNσ)u
ν + (Iνq + h∆νσNσ)u

µ] + Πµν . (2.38)

It can be shown now that these general definitions of heat flow and energy-momentum tensor

can be influenced by the choice of hydrodynamic velocity. If we first consider the Eckart’s

approach of (2.20) the heat flow and the dissipative part of energy-momentum tensor takes the

respective values,

Iµq = uνT
νσ∆µ

σ, (2.39)

and

T (1)µν = [(Iµq )uν + (Iνq )u
µ] + Πµν . (2.40)

On the other hand the Landau-Lifshitz condition (2.24) leads to two different sets of equations

for them such as,

Iµq = −hNσ∆µ
σ (2.41)

and

T (1)µν = Πµν . (2.42)

2.2 Equilibrium thermodynamic quantities expressed as

a sum over infinite series

The thermodynamic quantities defined in the previous section play important roles in describing

the collective dynamics of the fluid. Different observables regarding the characteristics of the

fluid are expressed in terms of these thermodynamic quantities. In relativistic kinetic theory the

macroscopic quantities are all defined with the help of scalar distribution function mentioned

above. In previous section we have seen that most of them can be expressed in integral form over

the equilibrium distribution function of the constituent particles. For the purpose mentioned
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above it is convenient to express these quantities in a simple algebraic form. Here we have

expressed them in a series sum over the modified Bessel function of second kind. But before

that we need to define the required form of the equilibrium distribution function.

2.2.1 Definition of equilibrium distribution function

Let us consider the collision between two particles, each having the initial distribution function

f(x, p) and f1(x, p1), which after the collision results into the final distribution function, f ′(x, p′)

and f ′
1(x, p

′
1) respectively. At equilibrium, from the principle of detailed balance one should

have the following condition to satisfy,

f0(x, p)f01(x, p1) = f ′
0(x, p

′)f ′
01(x, p

′
1). (2.43)

The subscript 0 here indicates the value of distribution function at equilibrium. The H-theorem

for entropy production expresses the fact that as a result of the irreversible process taking place

inside the system the entropy increases. The entropy production vanishes if and only if the

distribution functions obey the above functional relation for equilibrium distribution function

since it is the necessary condition for equilibrium. Now alongside with this above condition, we

need an equation satisfied by the particle distribution function which describes its space-time

behavior within the system. The solution will provide the shape of the equilibrium distribution

function.

The basic equation that describes the changes of distribution function along its phase path is

the Boltzmann transport equation. For a relativistic system the equation is given as,

pµ∂µf = C[f ] . (2.44)

The quantity C[f ] is referred as the collision term. This term actually involves the inter particle

collisions which is responsible for the change of distribution function. More about this will be

discussed in the later chapters. For the time being we will require the transport equation to find

a solution which in turn will give a suitable form of the equilibrium distribution function. Now

for a equilibrium system the collision term on the right hand side of equation (2.44) becomes
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zero. Again we have argued earlier that the necessary condition for equilibrium is steady state

of entropy production. This condition, together with the requirement that the equilibrium

distribution function must be a solution of the transport equation, uniquely determines its

form. The equilibrium distribution function contains the density, the temperature and the

hydrodynamic four-velocity of the system as parameters.

Now taking logarithm of equation (2.43) we find f0 to satisfy the following equation.

logf0(x, p) + logf01(x, p1) = logf ′
0(x, p

′) + logf ′
01(x, p

′
1) (2.45)

From the above equation we conclude that logf0 is a summational invariant. The most general

summational invariant is a linear combination of a constant and the four-momentum pµ, where

the coefficients are functions of the four space-time co-ordinates. So we have the desired form

for logf0 is,

logf0(x, p) = a(x) + bµ(x)p
µ . (2.46)

Here a(x) and bµ(x) are space-time dependent arbitrary parameters. The transport equation

implies that the parameters a(x) and bµ(x) must obey the following equation,

pµ∂µa(x) + pµpν∂µbν(x) = 0. (2.47)

From which we conclude,

∂µa(x) = 0

∂µbν(x) + ∂νbµ(x) = 0. (2.48)

From the above two equations it is anticipated that, aµ = µ(x)/T and bµ = −uµ(x)/T .

Following such arguments the Boltzmann distribution function for an equilibrium system reads,

{f0(p)}MB = exp(
µ − pµuµ

T
). (2.49)

Here we have used the Bose-Einstein distribution function for a Bosonic system such as,

f0(p) =
1

exp{pµuµ(x)−µ(x)
T (x)

} − 1
. (2.50)
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2.2.2 Particle density

Having specified the distribution function, the expression of particle number density as given

from equation (2.28), can be explicitly written as,

n =

∫
d3p

(2π)3p0
(pµuµ)

1

exp{pµuµ

T
− µ

T
} − 1

. (2.51)

This integral is clearly a scalar quantity. Now we intend to evaluate this quantity in the local

rest frame where the fluid velocity components are uµ = (1, 0, 0, 0). For this purpose we have

introduced two dimensionless quantities namely τ and z defined as follows,

z =
m

T
, τ =

pµuµ
T

=
1

T
{|~p|2 +m2}1/2. (2.52)

This clearly shows that the integration element can be replaced by these dimensionless quan-

tities and the polar angles in the following way,

d3p

p0
= T 2(τ 2 − z2)1/2dτdΩ. (2.53)

Where dΩ = d(cosθ)dφ is the differential solid angle. The integral can now be expressed in

terms of modified Bessel function of second kind which has the following definition.

Kn(z) =
2nn!

(2n)!

1

zn

∫ ∞

z

dτ(τ 2 − z2)n−
1
2e−τ (2.54)

Now using the expansion identity 1
z−1ex−1

=
∑∞

k=1(ze
−x)k and integrating by parts we obtain,

n =
1

2π2
Tm2

∞∑

k=1

1

k
exp{µk

T
}k2(kz). (2.55)

Now we define another function Sαn which is actually a series over the modified Bessel function

of second kind and particle fugacity associated with the chemical potential,

Sαn =
∞∑

k=1

exp{kµ
T

} 1

kα
kn(kz). (2.56)
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Utilizing this function the particle number density and the mass density of the fluid come out

to be respectively,

n =
1

2π2
m2TS1

2 , (2.57)

ρ =
1

2π2
m3TS1

2 . (2.58)

2.2.3 Energy density

The definition of energy density we have introduced earlier in (2.30) is given by,

en = uµT
µνuν

=

∫
d3p

(2π)3p0
(pµuµ)

2f0(x, p), (2.59)

which with the help of the dimensionless quantities τ and z and the polar co-ordinates turns

out to be,

ne =
1

2π2
T 4

∫ ∞

z

τ 2(τ 2 − z2)
1
2

1

e−
µ
T eτ − 1

dτ. (2.60)

Integrating by parts and using the definitions of Bessel function and Sαn it comes out as,

ne =
1

2π2
m4{S

1
3

z
− S2

2

z2
}. (2.61)

So from the above relation the energy per particle is defined as,

e = m
S1

3

S1
2

− T
S2

2

S1
2

. (2.62)

2.2.4 Pressure

The equilibrium pressure is defined as,
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P = −1

3
T µν∆µν

= −1

3

∫
d3p

(2π)3p0
pµpν(gµν − uµuν)f0(x, p)

= −1

3

∫
d3p

(2π)3p0
{p2 − (pµuµ)

2}f0(x, p) . (2.63)

Following the same prescription as before we obtain the thermodynamic pressure as follows,

P = nT
S2

2

S1
2

. (2.64)

2.2.5 Enthalpy density

The enthalpy per particle is defined as,

h = e+
P

n
. (2.65)

Evidently it can be expressed in terms of the function Sαn following the same procedure as

before,

h = m
S1

3

S1
2

. (2.66)

The enthalpy density per unit volume is then simply given by,

H = nh = ρ
S1

3

S1
2

, (2.67)

where ρ = nm is the mass density of the system.

2.3 Conservation laws

In the previous section we have mentioned that a fluid system can be described by the equation

of motion satisfied by the distribution function along the phase path of the particle ensem-
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ble. The equation of motion satisfied by the distribution functions is the relativistic transport

equation, derived by Ludwig Boltzmann in 1872.

pµk∂µfk(x, pk) =

N∑

l=1

Ckl(x, pk). (2.68)

This integro-differential equation describes the motion of the kth particle among an ensemble of

N number of particles due to their mutual interactions. The quantity C[f ], the collision term

as mentioned before, can be interpreted as the rate of change of distribution function by virtue

of collisions.

Now from the consequence of the microscopic conservation laws obeyed by various reactions, it

can be proved that the collision term possesses the following property,

N∑

k,l=1

∫
d3pk

(2π)3p0
k

ψk(x, pk)Ckl(x, pk) = 0, (2.69)

when the quantity ψ(x, p) is a linear combination of a constant and the four-vector pµ.

ψk(x, p) = ak(x) + bµ(x)p
µ
k (2.70)

The space-time function ak(x) and bµ(x) are arbitrary, except for the fact that the function

ak(x) is constrained by the following addition conservation, ak(x) + al(x) = ai(x) + aj(x) for

a binary collision k + l → i + j. This constraint along with the four-momentum conservation

pµk + pµl (x) = pµi (x) + pµj (x), the lemma (2.69) can be proved easily. Now it can be predicted

intuitively that for purely elastic collisions the constraint reduces to an identity leading to the

following equation, ∫
d3pk

(2π)3p0
k

Ckl(x, pl) = 0. (2.71)

This follows from the fact that since elastic collisions do not alter the number of particles or

their total energy, the collisional part of change in the distribution function can not affect the
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macroscopic quantities in each volume element of the fluid as well. The collisional parts of

change in total number, energy and momentum of the particles in each such volume elements

is given by zero integrals.

In the following section it will be shown that lemma (2.69) satisfied by collision term C[f ]

eventually leads to the conservation of thermodynamic quantities describing the relativistic

fluid system. In other words the conservation laws of macroscopic variables are considered as a

consequence of the microscopic conservation laws obeyed in various reactions by the constituent

particles.

2.3.1 Conservation of particle number

Let us start with the general expression of the summation invariant in lemma (2.69). If we

set bµ(x) equals to zero and the first function ak(x) is the same single function a(x) for all

the participant particles, then since a(x) is an arbitrary function from definition, then lemma

(2.69) simply reduces to,
N∑

k,l=1

∫
d3pk

(2π)3p0
k

Ckl(x, pk) = 0. (2.72)

Now if the collision term C[f ] is replaced by the left hand side of transport equation (2.68) we

obtain,
N∑

k,l=1

∫
d3pk

(2π)3p0
k

pµk∂µfk(x, pk) = 0. (2.73)

Now following the definition of particle four flow Nµ from equation (2.4), one simply reaches

the following conservation law.

∂µN
µ
k (x) = 0 (2.74)

So equation (2.74) tells us that the number of particles of each component is conserved sepa-

rately.
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2.3.2 Conservation of energy-momentum

If in lemma (2.69) the constant ak(x) is set to zero, then since bµ is arbitrary we obtain the

collision term to satisfy the following equation,

N∑

k,l=1

∫
d3pk

(2π)3p0
k

pµkCkl(x, pk) = 0. (2.75)

Again replacing the collision term C[f ] with the help of transport equation we get,

N∑

k,l=1

∫
d3pk

(2π)3p0
k

pµkp
ν
k∂νfk(x, pk) = 0. (2.76)

With the help of the definition of energy-momentum stress-tensor from equation (2.12) it results

in the following conservation law of energy-momentum stress-tensor.

∂νT
µν = 0. (2.77)

For µ = 0 in equation (2.77), the law expresses conservation of energy and for µ = 1, 2, 3 it

reveals the conservation of momentum.

2.4 Equation of motion of thermodynamic quantities

The above conservation laws give rise to equations of motion of different thermodynamic quanti-

ties. For this purpose the space-time derivative ∂µ is decomposed with the aid of hydrodynamic

four-velocity into a time like and a space like part. The identity is written as,

∂µ = uµD + ∇µ, (2.78)

where we have introduced the following notations,

D = uµ∂µ ∇µ = ∆µν∂ν . (2.79)

D is the convective time-derivative. In local rest frame it is just the partial time derivative

∂/∂t. The ∇µ is the purely spatial part. In local rest frame it is nothing but −∂/∂xi. Moreover

this quantity is orthogonal to uµ, i.e. uµ∇µ = 0. The equation of motion of thermodynamic

quantities can be expressed now in terms of these time and space like derivatives.
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2.4.1 Equation of continuity

The total particle four-flow Nµ can be split into a part carried by the hydrodynamic velocity

uµ and a remaining part V µ according to,

Nµ = nuµ + V µ. (2.80)

This function V µ is a transport quantity defined as, V µ = ∆µνNν and orthogonal to hydrody-

namic velocity, i.e, V µuµ = 0. Now with the help of the particle conservation law (2.74) and

using the identity uµDuµ = 0, we get the equation of motion for the particle number density n

as,

Dn = −n∇µuµ −∇µVµ + VµDu
µ. (2.81)

Now this quantity Vµ is related to the transport or the flows of the fluid system which is actually

given by the heat flow and energy momentum flux and found to be of first order of gradients

of thermodynamic variables. We restrict ourselves only upto the zeroth order of gradients by

ignoring such “flow quantities” in the equations of motion. In that way the continuity equation

turns out to be,

Dn = −n∇µu
µ. (2.82)

This is the equation of motion of the particle number density for a nearly perfect fluid.

2.4.2 Equation of motion

From the conservation law of energy and momentum we can get the equation of motion. Con-

tracting equation (2.77) with the projection operator one gets,

∆µ
ν∂σT

νσ = 0 . (2.83)

Now using the definition of T µν from equation (2.15), we obtain the equation of motion for the

hydrodynamic velocity uµ as follows,

Duµ =
1

nh
∇µP. (2.84)

This equation clearly depicts the relation between the hydrodynamic acceleration and the pres-

sure gradient in a linear law.
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2.4.3 Equation of energy

Again contracting equation (2.77) with the hydrodynamic velocity we obtain,

uµ∂νT
µν = 0. (2.85)

Again taking the definition of T µν from equation (2.15) we obtain two sets of equations for

energy density and energy per particle as follows,

Dǫ = −hn∂µuµ

De = −P
n
∂µu

µ. (2.86)

The quantity ǫ = ne is the energy density per unit volume.

2.4.4 Equation of enthalpy

Starting from equation (2.84) and decomposing the space gradient we get,

∆µρ∂
ρP = nhDuµ. (2.87)

Now using the relativistic Gibbs-Duhem relationship,

∂νP = nT∂ν(
µ

T
) + nhT−1∂νT, (2.88)

we obtain,

nT∂µ(
µ

T
) + nhT−1∂µ − uµDP = nhDuµ. (2.89)

Contracting the above equation by uµ from left we get the equation of motion of enthalpy per

particle,

Dh = TD(
µ

T
) + hT−1DT. (2.90)
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2.4.5 Equation of temperature and chemical potential

Let us Expand De and Dh by taking derivatives with respect to temperature T and chemical

potential over temperature µ/T .

De =
∂e

∂T

∣∣∣∣
µ/T

DT +
∂e

∂(µ/T )

∣∣∣∣
T

D(
µ

T
)

Dh =
∂h

∂T

∣∣∣∣
µ/T

DT +
∂h

∂(µ/T )

∣∣∣∣
T

D(
µ

T
) (2.91)

Now insertion of these two expansions on the left hand side of equation (2.86) and (2.90), results

in a coupled set of equations as depicted below,

[
∂e

∂( µ
T
)
]TD(

µ

T
) + [

∂e

∂T
] µ

T
dT = −(

P

n
)∂µu

µ ,

[T − { ∂h

∂( µ
T
)
}T ]D(

µ

T
) + [hT−1 − { ∂h

∂T
} µ

T
]DT = 0.

These are easily solved to arrive at

DT =
(P/n)

[
T − ∂h

∂(µ/T )

∣∣∣
T

]
∂µu

µ

∂e
∂(µ/T )

∣∣∣
T

[
hT−1 − ∂h

∂T

∣∣
µ/T

]
− ∂e

∂T

∣∣
µ/T

[
T − ∂h

∂(µ/T )

∣∣∣
T

] ,

D(
µ

T
) =

−(P/n)
[
hT−1 − ∂h

∂T

∣∣
µ/T

]
∂µu

µ

∂e
∂(µ/T )

∣∣∣
T

[
hT−1 − ∂h

∂T

∣∣
µ/T

]
− ∂e

∂T

∣∣
µ/T

[
T − ∂h

∂(µ/T )

∣∣∣
T

] . (2.92)

We next evaluate the partial derivatives of e and h with respect T and (µ/T ) using the relations

in section [2.2]. Finally we get

∂h

∂T

∣∣∣∣
µ/T

= z

[
5
S1

3

S1
2

+ z
S0

2

S1
2

− z
S1

3S
0
3

(S1
2)

2

]

∂e

∂T

∣∣∣∣
µ/T

= 4z
S1

3

S1
2

+ z
S2

2S
0
3

(S1
2)

2
− S2

2

S1
2

+ z2

[
S0

2

S1
2

− S1
3S

0
3

(S1
2)

2

]

∂h

∂(µ/T )

∣∣∣∣
T

= Tz

[
S0

3

S1
2

− S1
3S

0
2

(S1
2)

2

]

∂e

∂(µ/T )

∣∣∣∣
T

= −T
[
1 − S2

2S
0
2

(S1
2)

2

]
+ Tz

[
S0

3

S1
2

− S1
3S

0
2

(S1
2)

2

]
. (2.93)
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Putting these in (2.92) we get

T−1DT = (1 − γ′)∂µu
µ ,

TD(
µ

T
) = [(γ′′ − 1)h− γ′′′T ] ∂µu

µ , (2.94)

where

γ′ =
(S0

2/S
1
2)

2 − (S0
3/S

1
2)

2 + 4z−1S0
2S

1
3/(S

1
2)

2 + z−1S0
3/S

1
2

(S0
2/S

1
2)

2 − (S0
3/S

1
2)

2 + 3z−1S0
2S

1
3/(S

1
2)

2 + 2z−1S0
3/S

1
2 − z−2

(2.95)

γ′′ = 1 +
z−2

(S0
2/S

1
2)

2 − (S0
3/S

1
2)

2 + 3z−1S0
2S

1
3/(S

1
2)

2 + 2z−1S0
3/S

1
2 − z−2

(2.96)

γ′′′ =
S0

2/S
1
2 + 5z−1S1

3/S
1
2 − S0

3S
1
3/(S

1
2)

2

(S0
2/S

1
2)

2 − (S0
3/S

1
2)

2 + 3z−1S0
2S

1
3/(S

1
2)

2 + 2z−1S0
3/S

1
2 − z−2

. (2.97)

These are the conservation laws and equations of motion of the thermodynamic quantities we

have at our exposure. In the following chapters we will utilize them as the thermodynamic

identities to evaluate the transport coefficients for a dissipative fluid.
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Chapter 3

Evaluation of transport coefficients

In general the notion “transport phenomena” is attributed to the exchange or transport of

some physical quantity. The exchanged quantities can be mass, energy or momentum within

the system which is being studied. The transport of all these quantities are irreversible in

nature, stemming from the random continuous motion of the constituent particles within the

system. Transport properties have been long employed as probing tools to understand the

characteristics of a thermodynamic system. Since the macroscopic mechanism of the energy

and momentum transfer involved in transport processes, is provided by interactions among the

particles, investigation of transport properties in turn gives information about the nature of

the interaction of the system under consideration. The hydrodynamic evolution of the matter

created in relativistic heavy ion collisions involves different dissipative processes which can be

quantified by transport coefficients. These quantities not only provide relevant insight about

the fluid dynamics, but also carries the information about how far away the system is from

ideal hydrodynamics. These facts serve a good motivation to evaluate the transport coefficients

in the context of high energy nuclear collisions.
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3.1 Origin of transport coefficients

The description of irreversible phenomena taking place in non equilibrium systems is character-

ized by two kinds of concepts : the thermodynamic forces and thermodynamic flows. The first

one creates spatial non-uniformities of the macroscopic thermodynamic state variables where

the later tends to smooth out those non-uniformities. As a result a closed system relaxes to its

equilibrium state in course of time. Evidently the relaxation of the out of equilibrium system

to its equilibrium state is irreversible, i.e. it involves dissipation. So it can be argued that

these non-uniformities are wiped out to restore the equilibrium, at the expense of transport

of some quantities such as matter or energy-momentum. So the flow of these quantities can

be termed as the transport processes. Phenomenologically, one finds to a good approximation

that these fluxes are linearly related to the thermodynamic forces. So effectively transport co-

efficients provide a measure of the amount of energy or momentum or heat needed to transfer,

in order to eliminate the spatial inhomogeneities created by the thermodynamic forces for a

non-equilibrium system. So mathematically one can write,

Thermodynamic flows = C × thermodynamic forces, (3.1)

Where the constant of proportionality C refers to the transport coefficients.

As a consequence the irreversible part of the energy momentum tensor and the heat flow can

be expressed in a linear law, directly proportional to the corresponding thermodynamic forces

which is respectively the velocity gradient and temperature gradient. From the second law of

thermodynamics, it is known that the restoration of equilibrium is achieved by the processes

which involve increasing entropy. From these criteria the irreversible flows are expressed by the

following equations [1, 2].

Πµν = 2η〈∂µuν〉 + ζ∆µν∂ · u

Iµ = λ(∂σT − TDuσ)∆
µσ , (3.2)
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where the constant of proportionalities η, ζ and λ are referred to as the transport coefficients.

The η and ζ are coefficients of shear and bulk viscosity respectively and λ is the thermal

conductivity.

Now at the microscopic level the transport of matter or energy is basically carried out by

collisions among the constituent particles due to their mutual interactions. So at microscopic

level we find an alternative definition of the thermodynamic flows in terms of an integral over

the non-equilibrium or collisional part of the distribution function of particles and an irreducible

tensor of the quantity which is being transported. Mathematically this can be written as,

Thermodynamic flows =

∫
(phasespacefactor) × (irreducible tensor of the

quantity being transported) × (non–equilibrium part

of distribution function). (3.3)

The definition and the properties of irreducible tensor will be discussed in Appendix-A. This

alternative expression of thermodynamic flows stems from the definition of distribution function

which is the average number of particles within the momentum range p and p+ dp and within

the volume element dV . So the flow can be interpreted as the flux of that particular quantity

carried out by the collisional part of the particle numbers, integrated over total momentum

range. Following this prescription the viscous part of the energy momentum stress tensor and

the irreversible heat flow can be given by the following integral equations,

Πµν =

∫
d3p

(2π)3p0
∆µ
σ∆

ν
τp

σpτδf, (3.4)

∆Iµ =

∫
d3p

(2π)3p0
(p.u− h)pσ∆µ

σδf. (3.5)

When the two expressions of thermodynamic flows from equation (3.1) and (3.3) are compared

we find that the transport coefficients come out to be as functions of the collisional part of the

distribution function, that is the non-equilibrium contribution to the distribution function. So

this quantity is needed to be obtained by solving the equation of motion of the distribution

function which is the Boltzmann transport equation from the kinetic theory of fluids. So in the
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following sections we will find a solution of the relativistic transport equation and obtain the

transport coefficients therefrom.

3.2 Solution of the relativistic transport equation

The relativistic transport equation for an out of equilibrium system is given by,

pµ∂µf(x, p) = C[f ]. (3.6)

This equation expresses the rate of change of particle distribution function in terms of the

collision integral,

C[f ] =

∫
dΓp1 dΓp′ dΓp′1[f(x, p′)f(x, p′1){1 + f(x, p)}{1 + f(x, p1)}

−f(x, p)f(x, p1){1 + f(x, p′)}{1 + f(x, p′1)}] W . (3.7)

This is the collision term for a binary elastic collision p + p1 → p′ + p′1. The phase space

factors are given by, dΓq = d3q
(2π)3Eq

. The collision term makes the transport equation a integro

differential equation which is not trivial to solve. The factors indicate the Bose enhancement

of the final state particles in a Bosonic system, which introduces the quantum statistical effects

in the transport equation. The quantity W is the interaction rate given by,

W =
s

2

dσ

dΩ
(2π)6δ4(p+ p1 − p′ − p′1), (3.8)

where the 1/2 factor comes from the indistinguishability of the initial state particles. This

term takes care of particle interactions responsible for altering the particle distribution within

the system and explicitly contains the scattering cross-section through which the dynamical

input of the system enters into the transport equation. Kinetic theory thus gives a basis to the

phenomenological scheme mentioned earlier and expresses the transport coefficients in terms

of microscopic interactions between constituent particles. Thus kinetic theory forms a bridge
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between the microscopic dynamics of particle interaction and its macroscopic effects on the

thermodynamic system. There are a few methods of solving the transport equation for an out

of equilibrium system. Here we will mention two such methods in the following sections.

3.2.1 Relaxation time approximation

In general the program of seeking solution of transport equation becomes non-trivial due to the

non-linearity of the collision term discussed above. However if the state of the system is not

too far from the equilibrium, one may assume that a linearized form of the transport equation

provides a reasonably accurate description of the non-linear phenomena. The simplest method

of linearizing the transport equation is replacing the collision term by the rate of change of the

distribution function over a quantity called relaxation time τ , such that the transport equation

becomes,

df

dt
= −δfp

τ
= −(f − f (0))

τ
. (3.9)

Here f (0) is the local equilibrium distribution function and τ is the time over which the out of

equilibrium distribution function relaxes to its equilibrium value. The negative sign indicates

that the system always tends towards its equilibrium state. From equation (3.9) the deviation

of the particle distribution function at near equilibrium situation comes out to be,

δfp = −τ{∂f
(0)

∂t
+ ~vp · ~∇f (0)}, (3.10)

where ~vp is the velocity of p th particle. The equilibrium distribution function for a Bosonic

system is,

f (0) =
1

exp[ 1
T
{−µ+ Ep−~p·~v√

1−v2
}] − 1

. (3.11)

Here Ep and ~p are the energy and momenta of p th particle. T , µ and ~v are the temperature,

chemical potential and the hydrodynamic three velocity of the thermal bath concerning the
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system. With the help of (3.11), equation (3.10) becomes

δfp = −τ [{f
(0)(1 + f (0))}

T
{Ep − cpT

T
~vp·~∇T+

1

Ep
pαpβ(vαβ−

1

3
δαβ ~∇·~v)+ 1

3Ep
((1−3c2s)E

2
p−m2

p)
~∇·~v}] .

(3.12)

The notations we have used are as follows, cv and cp are the specific heat at constant volume

and at constant pressure respectively, cs is the velocity of sound within the medium and mp is

the particle mass. The notation vαβ is defined as vαβ = 1
2
{ ∂vα

∂xβ
+

∂vβ

∂xα
}.

Now in order to extract the coefficients of shear and bulk viscosities we will compare two

expressions of the spatial components of dissipative part of energy-momentum stress tensor

given below. The first one follows from the positive entropy production of the second law of

thermodynamics

∆T ij = −2η{1

2
∂iuj +

1

2
∂jui − 1

3
~∇ · ~vδij} − ζ ~∇ · ~vδij , (3.13)

and the second one follows from the integral representations of dissipative fluxes

∆T ij =

∫
d3p

(2π)3p0
pipjδf . (3.14)

Comparing the (3.13) and (3.14) we obtain the expression of shear viscosity and bulk viscosity

as follows,

η =
1

15T

∫
d3p

(2π)3
τ
~p4

E2
p

{f (0)(1 + f (0))} , (3.15)

ζ =
1

9T

∫
d3p

(2π)3
τ

1

E2
p

{(1 − 3c2s)E
2
p −m2

p}2{f (0)(1 + f (0))} . (3.16)

Similarly for the case of thermal conductivity from the analogous two expressions of heat flow

vector we obtain ,

λ =
1

3T 2

∫
d3p

(2π)3
τ
~p2

E2
p

(Ep − h)2{f (0)(1 + f (0))} , (3.17)
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where h is the enthalpy per particle.

The relaxation times τ is the inverse of the collision frequency ω for a particular dynamical

process such as,

τ =
1

ω(Ep)
. (3.18)

For a binary elastic collision p+ k → p′ + k′ the collision frequency is given by [3],

ω(Ep) =
1

2

∫
d3k

(2π)3

∫
d3p′

(2π)3

∫
d3k′

(2π)3
fk(Ek)(2π)4 δ

4(p+ k − p′ − k′)

2Ep2Ek2Ep′2Ek′
〈|M |2〉 , (3.19)

where M is the interaction amplitude and the half factor comes from the initial state indistin-

guishability for identical particles. After doing simplifications the collision frequency becomes,

ω(Ep) =

∫ ~k2d~k

4πEpEk
λ1/2(s,m2

p, m
2
k)

∫
d(cosθk)d(cosθCM)f(Ek){

1

2

dσ

dΩ
} . (3.20)

Here dσ
dΩ

is the differential scattering cross section of the respective interaction. θCM is the

scattering angle in the centre of mass frame and θk is the angle between the two colliding

particles. Equations (3.15), (3.16) and (3.17) gives the expressions of transport coefficients

which with the help of (3.18) and (3.20), appear to be inversely proportional to the interaction

cross section of the scattering processes.

3.2.2 Chapman-Enskog method

In the relaxation time approximation method for linearizing the transport equation the actual

integral form of the collision term is not considered. A more precise evaluation of the trans-

port quantities is based upon the perturbation techniques, where the distribution function is

expanded in a series in terms of a parameter. Before introducing a quantity which can be used

as the expansion parameter let us investigate the transport equation. If the derivative on the

left hand side of equation (3.6) is decomposed into a time-like and a space-like part, then the

resulting equation we obtain is,

pµuµDf + pµ∇µf = C[f, f ]. (3.21)
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The length scale associated with the collision term on the right hand side of the transport

equation is the mean free path (λ) of the hydrodynamic system. The length scale associated

with the terms on the left hand side of transport equation is the characteristic dimension for

the spatial non-uniformities within the system, i.e, it is the typical length L over which the

macroscopic thermodynamic quantities within the system can vary appreciably. The dimen-

sionless ratio λ/L is called the Knudsen number and let us denote it by ǫ = λ/L. The order

of magnitude of the ratio of a typical term on the right hand side of transport equation to

a typical term on the left hand side is the Knudsen number ǫ and due to this fact one can

introduce ǫ (which must be small), as a dimensionless parameter in front of the left hand side

of the transport equation depicted below to balance the magnitude of length scale of both sides

of transport equation.

ǫ{pµUµDf + pµ∇µf} = C[f, f ]. (3.22)

This dimensionless quantity ǫ can be treated now as the expansion parameter of the distribution

function mentioned earlier and the expansion should be such that if the nth term in the power

series is expressed as σn(ǫ) then, limǫ→0σn+1(ǫ)/σn(ǫ) = 0. This means the series should

be an asymptotic one rather than convergent, so that the leading terms of the series will

be contributing the most for a vanishing value of the expansion parameter ǫ. There exist

many different perturbation methods corresponding to different functional choice of ǫ. In the

Chapman-Enskog approximation for solving the transport equation which will be discussed

here, the expansion is restricted to power series in ǫ.

f =

∞∑

n=0

ǫnf (n) (3.23)

In the Chapman-Enskog method the transport equation is linearized and this linearization is

performed around a local equilibrium distribution function with parameters that vary in space

and time. The collision operator then becomes a linear integral operator with symmetric kernel

depending upon the particle interaction. The mathematical properties of the linear collision

operator are more tractable but at the same time some rigorous results can be obtained using

this method of functional analysis.
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The series expansions in powers of ǫ fail to give uniformly valid solution for specific initial and

boundary value problems. However in Chapman-Enskog procedure the problem can be avoided

since in this method we do not expand the solutions but the equations instead. To understand

the scenario lets start from the general form of Euler equation,

∂ρα

∂t
= Sα, (3.24)

where ρα are the basic macroscopic quantities (density, hydrodynamic velocity, temperature or

energy density) and Sα is some source term. The basic idea of Chapman-Enskog method is to

expand Sα while leaving ρα unchanged. To expand this equation in power series instead of its

solutions let us write it in the following form,

∂ρβ

∂t
= Dβ(ρ

α). (3.25)

Here Dβ is a non-linear operator acting upon the space dependence of the ρα. Expanding Sα

clearly means expanding Dβ as follows,

Dβ =
∞∑

n=0

ǫnD
(n)
β . (3.26)

The crucial step in the Chapman-Enskog procedure is now the observation that the distribution

function depends upon the space and time variables only through a functional dependence on

the ρα. In other words we have,

∂f

∂t
=

∞∑

k=0

∂f

∂(∇kρα)

∂(∇kρα)

∂t
(3.27)

where ∇k formally denotes the k-th order space derivatives. Since equation (3.25) gives

∂

∂t
∇kρβ = ∇kDβ(ρ

α), (3.28)

the expansion of Dβ implies an expansion of the operator giving the time evolution of f as well.

We can write this formally as follows:

∂f

∂t
=

∞∑

n=0

ǫn
∂(n)f

∂t
, (3.29)

83



where ∂(n)f/∂t denotes the contribution to ∂f/∂t coming from D
(n)
β through equation (3.26).

So in covariant notation the time derivative over distribution function is expanded as follows,

Df = (Df)0 + ǫ(Df)1 + ǫ2(Df)2 + ............. , (3.30)

where the term (Df)n simply denotes ∂(n)f/∂t. The above equation along with equation (3.23)

helps to expand transport equation in terms of the non-uniformity parameter ǫ. Substituting

them into the transport equation (3.22) and equating the coefficients of equal power in ǫ, we

obtain the hierarchy of equations,

0 = C[f (0), f (0)] (3.31)

pµuµ(Df)r−1 + pµ∇µf
r−1 =

r∑

s=0

C[f s, f r−s], r ≥ 1. (3.32)

Equation (3.31) reveals nothing but the Boltzmann transport equation for a fluid in equilibrium

where the collision term involving equilibrium distribution function reduces to zero. Equation

(3.32) provides a hierarchy of equations where in the left hand side of the transport equation

the derivatives appear on the lower order of distribution function, and the next order appear

on the right hand side only under the collision term. If the rth order of distribution func-

tion is expressed as f (r) = f (0)(1 + f (0))φ(r), then employing the principle of detailed balance

f (0)(x, p)f (0)(x, p1) = f (0)(x, p′)f (0)(x, p′1) we obtain,

C[f (0), f (r)] + C[f (r), f (0)] = −L[φ(r)]. (3.33)

The unknown function φ(r), which depends upon particle 4-momenta and fluid space-time co-

ordinates, is needed to be determined. Here we can see that the non-linear collision term

becomes linearized under the function φ and the linearized collision operator is defined as,

L[φ] = f (0)(x, p)

∫
dΓp1 dΓp′ dΓp′1f

(0)(x, p1){1 + f (0)(x, p′)}{1 + f (0)(x, p′1)}

[φ(x, p) + φ(x, p1) − φ(x, p′) − φ(x, p′1)] W (p, p1|p′, p′1) . (3.34)

Here W is the interaction cross sections for the corresponding dynamical processes. In this way

the Chapman-Enskog hierarchy becomes,

pµUµ(Df)r−1 + pµ∇µf
r−1 −

r−1∑

s=1

C[f s, f r−s] = −L[φr]. (3.35)
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From the foregoing discussion it follows that the first Chapman-Enskog approximation is de-

termined by equation (3.35) for r=1

pµUµ(Df)0 + pµ∇µf
(0) = −L[φ(1)], (3.36)

with

f0(x, p) =
1

exp[p
µuµ

T
− µ

T
] − 1

, (3.37)

and

(Df)0 =
∂f (0)

∂( µ
T
)
(D(

µ

T
)) +

∂f (0)

∂T
(DT ) +

∂f (0)

∂uµ
(Duµ). (3.38)

In equation (3.36) the quantity φ(1) is the measure of the deviation of the distribution function

in the first approximation of Chapman-Enskog method from its equilibrium value and from

here on we are restricting our estimations for φ(1) only.

From the above hierarchy of equations it is very nicely understood that the Chapman-Enskog

technique is an iterative method. With the help of the known lower order distribution function

we are able to determine the next order by successive approximation.

3.3 Evaluation of transport coefficients in Chapman-

Enskog method

In equation (3.36) the quantity φ(1) is the measure of the deviation of the distribution function

in the first approximation of Chapman-Enskog method from its equilibrium value and since

from here on we will proceed with the first Chapman-Enskog approximation, we will simply

denote this quantity by φ. So in the first approximation of Chapman-Enskog technique the

deviation of distribution function from its lowest order local equilibrium value is given by,

δf = f (0)(1 + f (0))φ(x, p). (3.39)

Equation (3.36) is the key equation for solving the relativistic transport equation in the first

Chapman-Enskog approximation which gives the evolution of the phase-space distribution of
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the constituent particles. To proceed further the space time derivative on the left hand side of

the transport equation is decomposed into a space-like and a time like part as follows,

∂µ = uµD + ∇µ. (3.40)

Where D = uµ∂µ is the convective time derivative and ∇µ = ∆µν∂ν is the spatial gradient

defined with the help of the projection operator ∆µν = gµν − uµuν .

The form of f (0)(x, p) as given in (3.37) is now used on the left side of (3.36) and after operating

the time and the spatial gradients on it we find that the transport equation takes the following

form,

{(pµu
µ)2

T 2
DT+pµuµD(

µ

T
)−p

µuµ
T

pνDuν}+pµ{
pνuν
T 2

(∇µT )+∇µ(
µ

T
)−p

ν

T
∇µuν}. = − L[φ]

f (0)(1 + f (0))
(3.41)

Eliminating the time derivative terms in the above equation with the help of equilibrium ther-

modynamic laws discussed in chapter-2 and replacing the spatial gradient of µ/T by relativistic

Gibbs-Duhem equation it leads to the following linear equation satisfied by the deviation func-

tion φ.

[Q∂νu
ν + pµ∆

µν(p · u− h)(T−1∂νT −Duν) − 〈pµpν〉〈∂µuν〉]f (0)(1 + f (0)) = −TL[φ] (3.42)

We have used the notation 〈tµν〉 ≡ [1
2
(∆µα∆νβ+∆να∆µβ)− 1

3
∆µν∆αβ]tαβ indicating a space-like

symmetric and traceless form of the tensor tµν , which is actually an irreducible tensor of rank-2.

In this equation

Q = −1

3
m2
π + (p · u)2{4

3
− γ′} + p · u{(γ′′ − 1)h− γ′′′T}. (3.43)

So it is now observed that in the left hand side of the transport equation, different thermody-

namic forces appear with different tensorial rank representing a scalar, a vector and a tensor

respectively. So now the transport equation has become a linear equation where the collision

term has been converted to a linear integral operator L[φ]. Since this integral operator only
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involves integration over the momenta of scattered particle, in order to be a solution of (3.42)

the deviation function φ must be a linear combination of the thermodynamic forces with ap-

propriate coefficients. Now since the distribution function as well as its derivative is a scalar

quantity, so in order to keep φ a scalar the respective coefficients should be of appropriate

tensorial rank. Keeping these criteria in mind the most general solution we obtain for φ is,

φ = A∂ · u+Bµ∆
µν(T−1∂νT −Duν) − Cµν〈∂µuν〉. (3.44)

The coefficient A must be scalar and since it is the coefficient of the velocity divergence term, it

must be related to volume viscosity or bulk viscosity of the system. Bµ is a vector and being the

coefficient of the temperature gradient term it must be related to the thermal conductivity of the

system. Finally the quantity Cµν which is the coefficient of the traceless part of velocity gradient

is a tensor and related to the shear viscosity. Substituting (3.44) in (3.42) and comparing

coefficients of the independent thermodynamic forces on both sides, yields the set of equations

satisfied by the coefficient functions.

L[A] = −Qf (0)(p){1 + f (0)(p)}/T (3.45)

L[Bµ] = −∆µσp
σ(p.u− h)f (0)(p){1 + f (0)(p)}/T (3.46)

L[Cµν ] = −〈pµpν〉f (0)(p){1 + f (0)(p)}/T (3.47)

Here, Cµν = C〈pµpν〉 and Bµ = B∆µνp
µ. These integral equations are needed to be solved to

get the coefficients A, Bµ and Cµν .

The next task is to link these quantities to the transport coefficients. For this purpose we

replace δf by equation (3.39) into the integral representations of the thermodynamic fluxes

displayed in (3.4) and (3.5).

The viscous pressure tensor is now modified to take the following form,

Πµν =

∫
d3p

(2π)3p0
∆µ
σ∆

ν
τp
σpτf (0)(1 + f (0))φ. (3.48)
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It is convenient to split Πµν into a traceless part and a remainder such as,

Πµν = Π̊µν + Π∆µν . (3.49)

The viscous pressure Π is defined as one third of the trace of the viscous pressure tensor,

Π =
1

3

∫
d3p

(2π)3p0
∆µνp

µpνf (0)(1 + f (0))φ. (3.50)

So the trace less part of viscous trace tensor comes out to be,

Π̊µν = Πµν − Π∆µν

=

∫
d3p

(2π)3p0
{∆µ

σ∆
ν
τ −

1

3
∆στ∆

µν}pσpτf (0)(1 + f (0))φ

=

∫
d3p

(2π)3p0
〈pµpν〉f0(1 + f0)φ. (3.51)

Again from equation (3.2) we obtain the following linear law,

Π̊µν = 2η〈∂µuν〉. (3.52)

Comparing (3.51) and (3.52) we obtain the expression of shear viscosity,

η = − 1

10

∫
d3p

(2π)3p0
f (0)(1 + f (0))C〈pαpβ〉〈pαpβ〉. (3.53)

The case for bulk viscosity is a little different. Let us start with the integral equation (3.45)

for A. We can see that equation (3.45) does not have a unique solution. For the present case

of binary elastic collisions among same species of particles, starting from one solution A(E) we

can generate an infinite number of solutions by making the replacement, A→ A(E) + a+ bE,

where a and b are arbitrary constants associated with particle number conservation and energy

conservation. For a system with zero net quantum number (such as electric charge or baryon

number) the quantity a can be set to zero, where the constant b acts like inverse of temperature

and yet to be determined [3].

We can start with the Landau-Lifshitz condition uµuν∆T
µν = 0, which actually comes from

the solubility condition
∫

d3p
(2π)3p0

(pµu
µ)2f (0)(1 + f (0))φ=0, [1]. So this equation actually sets a

constraint over the coefficient A in the following way,
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uµuν

∫
d3p

(2π)3p0
pµpνf (0)(p){1 + f (0)(p)}φ = 0. (3.54)

If in the above equation the replacement A→ A(E)+a+ bE, is performed then after few steps

of algebra the coefficient b comes to be,

b = − 1

T 2cv

∫
d3p

(2π)3
Ef (0)(1 + f (0))A(E). (3.55)

If the same replacement is done in (3.50) then the viscous pressure obtains the following form,

Π = −(∂ · u)1
3

∫
d3p

(2π)3p0
{−m2 + E2(1 − 3c2s)}f (0)(p){1 + f (0)(p)}A(E),

= −(∂ · u)
∫

d3p

(2π)3p0
{Q}{A}f (0)(p){1 + f (0)(p)}. (3.56)

It can be proved that Q = 1
3
{−m2 +E2(1−3c2s)} in a trivial way where E and m are the energy

and mass corresponding to each particle. Here we have defined the following thermodynamic

quantities such as,

cv =
1

T 2

∫
d3p

(2π)3
{E2}f (0)(p){1 + f (0)(p)},

s =
1

3T 2

∫
d3p

(2π)3
{|~p|2}f (0)(p){1 + f (0)(p)},

c2s =
∂P

∂ǫ
, (3.57)

where cv, s and c2s are respectively specific heat per unit volume, entropy density and velocity

of sound within the system. Similar to the shear viscosity case, from (3.2) we obtain,

Π = ζ(∂.u). (3.58)

Comparing (3.56) and(3.58) we obtain the expression for bulk viscosity as the following,

ζ = −
∫

d3p

(2π)3p0
QAf (0)(1 + f (0)). (3.59)

In the case of thermal conductivity the integral form of dissipative heat flow,

∆Iµ =

∫
d3p

(2π)3p0
(p.u− h)pσ∆µ

σf
(0){1 + f (0)}φ

=

∫
d3p

(2π)3p0
(p.u− h)pσ∆µ

σBµ∆
µα{T−1∂αT −Duα}f (0)(1 + f (0)) (3.60)
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Comparing (3.2) and (3.60) we obtain the expression for thermal conductivity,

λ =
1

3T

∫
d3p

(2π)3p0
Bµ∆

µ
νp

ν(p.u− h)f (0)(1 + f (0)). (3.61)

So we have integral representations of shear viscosity, bulk viscosity and thermal conductivity

depicted by equation (3.53), (3.59) and (3.61), which are now explicit functions of the unknown

coefficients A, Bµ and Cµν . These unknown coefficients are again needed to be evaluated from

their respective integral equations (3.45), (3.46) and (3.47), which involve the linearized colli-

sion term in order to produce convenient algebraic expressions of transport coefficients. The

detailed method of obtaining these is discussed in the next section. Here we note one important

thing, that the coefficient functions A, Bµ and Cµν are so constructed such that they represent

irreducible tensors of rank 0, 1 and 2 respectively. This is done because the expressions of

transport coefficients appear to be scalar product of a irreducible tensor of the transported

quantity and the coefficient functions. Due to the isotropy and the relativistic invariance of

the collision term it can be found out that thermodynamic flow and forces of different rank do

not couple while those of equal rank do couple via scalar coefficients. The inner product of two

irreducible tensors of different rank gives zero. This is the Curie’s principle in the framework of

the relativistic kinetic theory. The transport coefficients in equations (3.53), (3.59) and (3.61)

come out to be a phase space integration over the product of two irreducible tensors which are

completely contracted and finally leads to scalar values of the transport coefficients.

Oue next task is to obtain the coefficients A, Bµ and Cµν from their respective integral equa-

tions. For this purpose we adopt a technique called variational method, where the coefficients

are expanded in terms of orthogonal Laguerre polynomial of half-integral order with the argu-

ment τ = pµuµ−m
T

. For each transport coefficients the respective processes are elaborated in the

subsequent subsections.
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3.3.1 Bulk viscosity

Let us start from equation (3.45). We multiply both sides of (3.45) with Laguerre polynomial

of order 1/2 and degree n = 0, 1, 2, · · · · · · and then integrate over the phase space factor

dΓp =
∫

d3p
(2π)3p0

. We obtain the following equation,

[A(τ), L1/2
n (τ)] =

αn
n
. (3.62)

where

αn = − 1

nT

∫
dΓpf

(0)(p){1 + f (0)(p)}QL1/2
n (τ) , (3.63)

and the abbreviation

[F,G] =
1

4n2

∫
dΓpdΓp1dΓp′ dΓp′1f

(0)(p)f (0)(p1){1+ f (0)(p′)}{1+ f (0)(p′1)}δ(F )δ(G) W, (3.64)

with

δ(F ) = F (p) + F (p1) − F (p′) − F (p′1)

δ(G) = G(p) +G(p1) −G(p′) −G(p′1) . (3.65)

The quantity expressed in (3.64) is called the bracket quantity in transport theory, which

explicitly contains the dynamical cross-section for the respective processes through the rate of

interaction W .

Now we proceed to expand A as mentioned before in terms of orthogonal Laguerre polynomial

as depicted below,

A(τ) =

∞∑

m=0

amL
1/2
m (τ) (3.66)

Putting this expansion back in the bracket term in (3.62) we obtain the following summation

series,
∞∑

m=0

amamn =
αn
n
, (3.67)

where amn = [L
1/2
m (τ), L

1/2
n (τ)], (m,n = 0, 1, 2, · · · ) is called the collision bracket involving only

two Laguerre polynomial.
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Now from the solubility condition
∫

d3p
(2π)3p0

f (0)(1 + f (0))Qψ = 0, where ψ is the summation

invariant 1 or pµ one obtains,

a0n = an0 = 0 (3.68)

a1n = an1 = 0 (n = 0, 1, 2, 3 · · · · · · ) (3.69)

α0 = α1 = 0. (3.70)

An approximate solution for the first r coefficients of am of the set of equations given in (3.67)

is obtained by limiting the infinite number of equations to a finite number r,

r+1∑

m=2

a(r)
m amn =

αn
n

(n = 2, 3 · · · · · · r). (3.71)

Now putting the expansion of A from (3.66) into (3.59) we can obtain,

ζ = −
∞∑

m=0

am

∫
d3p

(2π)3p0
f (0)(1 + f (0))L1/2

m (τ)Q

= nT
∞∑

m=2

amαm. (3.72)

So in the first approximation the bulk viscosity is,

[ζ ]1 = nTa
(1)
2 α2 = T

α2

a22
. (3.73)

Where we have,

α2 = − 1

nT

∫
dΓpf

(0)(p){1 + f (0)(p)}QL1/2
2 (τ) , (3.74)

and

a22 = [L
1/2
2 (τ), L

1/2
2 (τ)] . (3.75)
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Evaluation of α2

Utilizing the property of Laguerre polynomial

Lαn(x+ y) =
n∑

k=0

Lα+k
n−k(x)

(−y)k
k!

, (3.76)

we obtain,

αn = − 1

nT

n∑

k=2

(−1)k
zk

k!
L

1/2+k
n−k (−z)uν1···νk

Qν1···νk , (3.77)

where, uν1···νk
= uν1 · · ·uνk

and the quantity Q is defined as Qν1···νk = 1
mk

∫
d3p

(2π)3p0
f (0)(1 +

f (0))pν1...νkQ. So from (3.77) we can get the expressions of α2 which is given by,

α2 = − 1

nT
L

5/2
0 (−z) 1

2!
z2uµνQ

µν . (3.78)

Now we define the moments of the distribution function by the following expression,

Fν1···νn =

∫
d3p

(2π)3p0

f (0)(1 + f (0))pν1 · · · pνn, (3.79)

which can be written down in form of the algebraic equation,

Fν1···νn =
ρ(m)n

mTS1
2

[ n
2
]∑

l=0

anl(∆u)nl, (3.80)

where,

anl =
∞∑

k=1

k

[ n
2
−l]∑

s=0

(−1)s(2l + 2s− 1)!!{(l+s)Cs}{(n)C(2l+2s)}
kn−l−s+1(kz)

(kz)l+s+1
exp{kµ

T
}, (3.81)

and,

(∆u)nl = ∆(α1α2
· · ·∆α(2l−1)α2l

uα(2l+1)uα(2l+2)
···uαn ), (3.82)

with t(α1···αn) = 1
n!

∑
P tP (α1···αn), where the summation is extended over all permutations P of

the indices.

Using the above formulas after some algebraic calculations we are able obtain the value of α2

as follows,

α2 =
z3

2
[
1

3
(
S0

3

S1
2

− z−1) + (
S0

2

S1
2

+
3

z

S1
3

S1
2

){(1 − γ′′)
S1

3

S1
2

+ γ′′′z−1)} − (
4

3
− γ′){S

0
3

S1
2

+
15

z2

S2
3

S1
2

+
2

z
}].(3.83)
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Evaluation of a22

From equation (3.75) the expression of a22 is given by,

a22 = [L
1/2
2 (τ), L

1/2
2 (τ)]

=
1

4n2

∫
dΓpdΓp′dΓp1dΓp′1f

(0)f
(0)
1 (1 + f ′(0))(1 + f ′(0)

1 )Wδ{L
1
2
2 (τ)}δ{L

1
2
2 (τ)} (3.84)

To perform this 12-dimensional integral we make proper choice of geometry by introducing

relative four-momenta before and after collision

gα ≡ 1

2
(p1α − pα), g′α ≡ 1

2
(p′1α − p′α), (3.85)

and total momentum of two particles,

Pα ≡ (p1α + pα) = (p′α + p′1α) ≡ P ′
α, (3.86)

which reduces a22 as,

a22 =
z2

4
I3, (3.87)

with the definition of the integrals Iα(z),

Iα(z) =
8z4

[S1
2(z)]

2
e(−2µπ/T )

∫ ∞

0

dψ cosh3 ψ sinh7 ψ

∫ π

0

dΘ sinΘ{1

2

dσ

dΩ
(ψ,Θ)}

∫ 2π

0

dφ

×
∫ ∞

0

dχ sinh(2α) χ

∫ π

0

dθ sin θ
e2z coshψ coshχ

(eE − 1)(eF − 1)(eG − 1)(eH − 1)
Mα(θ,Θ), (3.88)

in which the functions Mα(θ,Θ) represent

M1(θ,Θ) = 1 − cos2 Θ ,

M2(θ,Θ) = cos2 θ + cos2 θ′ − 2 cos θ cos θ′ cos Θ ,

M3(θ,Θ) = [cos2 θ − cos2 θ′]2 . (3.89)

The definitions of the integration variables used and the details of the reduction of the collision

brackets are given in Appendix-B. The product of the distribution functions with the Bose

enhancement in the final state particles in terms of the exponents of E,F,G and H is evaluated

in Appendix-C.
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3.3.2 Thermal conductivity

In the case of thermal conductivity we will start from (3.46). By multiplying both sides of

(3.46) with Laguerre polynomial of order 3/2 and degree n = 0, 1, 2, · · · · · · and then integrate

over the phase space factor dΓp we obtain the following equation,

[Bpα, L3/2
n (τ)∆αµp

µ] =
T

n
βn. (3.90)

where,

βn = − 1

nT 2

∫
dΓpf

(0)(p){1 + f (0)(p)}L3/2
n (τ)(p · u− h)∆µνp

µpν , (3.91)

and the bracket quantity has their usual meaning.

Expanding B as before in terms of orthogonal Laguerre polynomial as shown below,

B(τ) =

∞∑

m=0

bmL
3/2
m (τ), (3.92)

and putting back in the bracket term in (3.90) we obtain the following summation series,

∞∑

m=0

bmbmn =
βn
ρ
, (3.93)

where bmn = 1
mT

[L
3/2
m (τ)pµ, L

3/2
n (τ)∆µνp

ν ] is the bracket quantity discussed earlier. Arguing for

the same solubility condition it comes out to be that, b0n = bn0 = 0 for n = 0, 1, 2, 3 · · · · · · and

simultaneously β0 = 0. Now an approximate solution of the first r coefficients of bm of the set

of equations given in (3.93) is obtained by limiting the infinite number of equations to a finite

number r,

r∑

m=1

b(r)m bmn =
βn
ρ
, (n = 1, 2, 3 · · · · · · r). (3.94)
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Now putting the expansion of B from (3.92) into (3.61) we can obtain,

λ = −1

3

∞∑

m=1

bm

∫
d3p

(2π)3p0
f (0)(1 + f (0))L3/2

m (τ)∆µνp
µpνT−1(p.u− h)

=
1

3
nT

∞∑

m=1

bmβm. (3.95)

So in the first approximation the thermal conductivity is,

[λ]1 = −1

3
nTb

(1)
1 β1 = − T

3m

β2
1

b11
. (3.96)

Where we have,

β1 = − 1

nT 2

∫
dΓpf

(0)(p){1 + f (0)(p)}L3/2
1 (τ)(p.u− h)∆µνp

µpν , (3.97)

and

b11 =
1

mT
∆µν [L

3/2
1 (τ)pµ, L

3/2
1 (τ)pν ]. (3.98)

Evaluation of β1

Taking the definition of βn from (3.91) and using the property of Laguerre polynomial from

(3.76) we obtain,

βn = − 1

nT 2

n∑

k=1

(−1)k

k!
zkL

3
2
+k

n−k (−z)uν1···νk
Gν1···νk , (3.99)

where Gν1···νk = (m)−k
∫

d3p
(2π)3p0

f (0)(1+ f (0))pν1 · · · pνkG with G = (p ·u−h)∆µνp
µpν . Following

this prescription β1 comes out to be,

β1 = (
1

nT 2
)zuµG

µ, (3.100)

where from the previous definition it turns out that Gµ = (m)−1∆αβ{uνF µναβ−hF µαβ}. Finally

after doing the moment calculation we get,

β1 = 3z2[1 + 5z−1S
2
3

S1
2

− (
S1

3

S1
2

)2]. (3.101)
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Evaluation of b11

From equation (3.98) the expression of b11 is given by,

b11 =
1

mT
∆αβ [L

3/2
1 (τ)pα, L

3/2
1 (τ)pβ]

=
1

4n2mT

∫
dΓpdΓp′dΓp1dΓp′1f

(0)f
(0)
1 (1 + f ′(0))(1 + f ′(0)

1 )W (pp1|p′p′1)

× ∆αβδ{L
3
2
1 (τ)pα}δ{L

3
2
1 (τ)pβ}. (3.102)

Using the same choice of geometry as before finally we obtain,

b11 = −z{I2(z) + I3(z)}, (3.103)

where the integrals are having their usual meaning as before given in (3.88).

3.3.3 Shear viscosity

For the case of shear viscosity we will start from equation (3.47). We multiply both sides of

(3.47) with Laguerre polynomial of order 5/2 and degree n = 0, 1, 2, · · · · · · and then integrate

over the phase space factor dΓp. Finally we obtain the following equation,

[C〈pµpν〉, L5/2
n (τ)〈pµpν〉] =

mT

n
γn. (3.104)

where,

γn = − 1

ρT 2

∫
dΓpf

(0)(p){1 + f (0)(p)}L5/2
n (τ)〈pµpν〉〈pµpν〉 . (3.105)

Expanding C as before in terms of orthogonal Laguerre polynomial as shown below,

C(τ) =

∞∑

m=0

cmL
5/2
m (τ), (3.106)

and putting back in the bracket term in (3.104) we obtain the following summation series,

∞∑

m=0

cmcmn =
1

ρT
γn, (3.107)
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where cmn = 1
(mT )2

[L
5/2
m (τ)〈pµpν〉, L5/2

n (τ)〈pµpν〉] is the bracket quantity discussed earlier. Now

an approximate solution of the first r coefficients of cm of the set of equations given in (3.107)

is obtained by limiting the infinite number of equations to a finite number r,

(r−1)∑

m=0

c(r)m cmn =
1

ρT
γn, (n = 0, 1, 2, · · · · · · (r − 1)). (3.108)

Now putting the expansion of C from (3.106) into (3.53) we can obtain,

η = − 1

10

∞∑

m=0

cm

∫
d3p

(2π)3p0
f (0)(1 + f (0))L5/2

m 〈pµpν〉〈pµpν〉

=
ρT 2

10

∞∑

m=0

cmγm. (3.109)

So in the first approximation the shear viscosity is,

[η]1 =
ρT 2

10
c
(1)
0 γ0 =

T

10

γ2
0

c00
. (3.110)

Where we have,

γ0 = − 1

ρT 2

∫
dΓpf

(0)(p){1 + f (0)(p)}L5/2
0 (τ)〈pµpν〉〈pµpν〉 , (3.111)

and

c00 =
1

(mT )2
[L

5/2
0 (τ)〈pµpν〉, L5/2

0 (τ)〈pµpν〉]. (3.112)

Evaluation of γ0

Taking the definition of γn from (3.105) and using the property of Laguerre polynomial from

(3.76) we obtain,

γn = − 1

ρT 2

n∑

k=0

(−1)k

k!
zkL

5
2
+k

n−k (−z)∆αβγδuν1···νk
F αβγδν1···νk . (3.113)
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So for γ0 we obtain the following expressions,

γ0 = − 1

ρT 2
L

5
2
0 (−z)∆αβγδF

αβγδ. (3.114)

After doing all the contractions we obtain the value of γ0 as,

γ0 = −10
S2

3

S1
2

. (3.115)

Evaluation of c00

From equation (3.112) the expression of c00 is given by,

c00 =
1

(mT )2
[L

5/2
0 (τ)〈pµpν〉, L5/2

0 (τ)〈pµpν〉]

=
1

4ρ2T 2

∫
dΓpdΓp′dΓp1dΓp′1f

(0)f
(0)
1 (1 + f ′(0))(1 + f ′(0)

1 )W (pp1|p′p′1)

× δ{L
5
2
0 (τ)〈pµpν〉}δ{L

5
2
0 (τ)〈pµpν〉}. (3.116)

Using the property of Laguerre polynomial from (3.76) and reducing the collision brackets using

the proper geometrical choice discussed in Appendix-B we obtain,

c00 = 2I1(z) + 2I2(z) +
2

3
I3(z). (3.117)

The integrals have their usual meaning as before given in (3.88).

3.4 Appendix A-Irreducible tensors

The irreducible tensors of rank one and two is described below respectively,

〈tµ〉 = ∆µνtν , (3.118)

〈tµν〉 = [
1

2
(∆µα∆νβ + ∆να∆µβ) − 1

3
∆µν∆αβ ]tαβ . (3.119)

These tensors are irreducible with respect to the transformations of the little group associ-

ated with the hydrodynamic four-velocity uµ(x), i.e. the group consisting of those Lorentz

transformations Λ which leave the time-like vector uµ invariant
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Λµ
νu

ν = uµ . (3.120)

The advantage of using irreducible tensors in kinetic theory is that it arise naturally in prob-

lems involving spherical symmetry and form a complete tensor set with minimum number of

members.

3.5 Appendix B-Reduction of collision bracket

In order to reduce the collision brackets occurring in the expression of transport coefficients we

define two sets of four-momenta for the binary elastic collision p+p1 → p′+p
′

1 we are discussing

about.

The total four-momenta is defined as,

Pµ = pµ + p1µ = p′µ + p′1µ = P ′
µ, (3.121)

and the relative four-momenta is defined as,

gµ =
1

2
(p1µ − pµ) ,

g′µ =
1

2
(p′1µ − p′µ) . (3.122)

The four momenta corresponding to each set are mutually orthogonal to each other such that,

gµP
µ = g′µP

′µ = 0 . (3.123)

Now in the local rest frame of the fluid the four vector P µ is written in terms of polar coordinates

as follows,

P µ = P (coshχ, sinhχe), with e = (sinθcosφ, sinθsinφ, cosθ) . (3.124)

The set of three spatial axes with respect to which the angles θ and φ are measured are defined

to be fixed in the local rest frame of the fluid.
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After defining Pµ the relative four vectors gµ and g′µ are defined with the help of another set of

three vectors in the previous local rest frame in terms of the same polar angles θ and φ,

~e1 = (cosθcosφ, cosθsinφ,−sinθ)

~e2 = (−sinφ, cosφ, 0)

~e3 = (coshχe) , (3.125)

which are orthogonal to each other and the three momenta ~P also. So these three vectors form

an orthogonal triad. In this frame the direction of ~g with respect to (3.125) is fixed by polar

angles θ and φ in the following way,

~g = g{~e1sinθcosφ+ ~e2sinθsinφ + ~e3cosθ}. (3.126)

It is convenient to introduce instead of g a variable ψ such that,

g = msinhψ. (3.127)

From this definition it can be easily proved that,

P = 2mcoshψ. (3.128)

In order to specify ~g′ we define another set of three vectors in the centre of mass frame of the

collision as follows,

Ê1 = ê1cosθcosφ+ ê2cosθsinφ − ê3sinθ

Ê2 = −ê1sinφ + ê2cosφ

Ê3 =
~g

g
. (3.129)

These three vectors also form an orthogonal triad with the polar axis parallel to ~g. The direction

of ~g′ in this set is determined by the polar angles Θ and Φ as follows

~g′

g
= Ê1sinΘcosΦ + Ê2sinΘsinΦ + Ê3cosΘ. (3.130)
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With this prescription it comes out that

~g · ~g′
g2

= cosΘ , (3.131)

defining Θ as the scattering angle in the centre of mass system of collision. Now with the help

of these polar coordinates introduced so far six variables of ~p and ~p1 can be expressed with the

help of other six variables, namely P µ, θ and φ in the following way,

d3p

p0

d3p1

p0
1

= 8m4(sinhχcoshψsinhψ)2sinθsinθdθdθdφdφdψdχ. (3.132)

Analogously it can be proved,

d3p′

p′0
d3p1

p0
1

=
1

2
tanhψd4P ′sinΘdΘdΦ. (3.133)

Putting all these together we obtain the expression of collision bracket as,

∫
FW (pp1|p′p′1)

d3p

(2π)3p0

d3p1

(2π)3p0
1

d3p′

(2π)3p′0
d3p

′

1

(2π)3p
′0
1

= 2
m6

π4

∫
F
dσ

dΩ
(ψ,Θ)sinh2χ(sinhψcoshψ)3

sinθsinΘdχdψdθdΘdΦ , (3.134)

where F = f (0)f
(0)
1 (1+ f ′(0))(1+ f ′(0)

1 ){G(p)+G(p1)−G(p′)−G(p′1)}{H(p)+H(p1)−H(p′)−
H(p′1)}.

3.6 Appendix C-Reduction of the product of distribu-

tion functions

Utilizing the above coordinate systems defined in Appendix-B we can reduce the product of

distribution functions as follows,

f (0)f
(0)
1 (1 + f ′(0))(1 + f ′(0)

1 ) =
e−

2µ
T e2z coshψ coshχ

(eE − 1)(eF − 1)(eG − 1)(eH − 1)
, (3.135)

with
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E = z(coshψ coshχ− sinhψ sinhχ cos θ) − µ

T
,

F = z(coshψ coshχ− sinhψ sinhχ cos θ′) − µ

T
,

G = E + 2z sinhψ sinhχ cos θ ,

H = F + 2z sinhψ sinhχ cos θ′ . (3.136)

The relative angle θ′ is defined by, cos θ′ = cos θ cos Θ − sin θ sin Θ cos Φ .
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Chapter 4

Evaluation of relaxation times of the

dissipative flows

It is well established from the experimental data available from the high energy nucleus nucleus

collisions that the created matter behaves more like a strongly interacting liquid than a weakly

interacting gas. Then on it is realized that the created matter undergoes dissipative processes

on its way to space time evolution and hence requires a non-ideal theory to describe its kine-

matics. The first order theories of dissipative fluid dynamics are derived by Eckart [1] and by

Landau and Lifshitz [2] by introducing different definitions of the hydrodynamic four-velocity

as discussed in Chapter-2. The theories are based on the assumption that the entropy four-

current contains terms up to the linear order in dissipative fluxes and hence they are referred to

as the first order theories of dissipative fluids. Consequently these theories produce linear rela-

tionship between thermodynamic fluxes and forces where the first order transport coefficients

such as bulk viscosity, thermal conductivity and shear viscosity appear as the proportionality

constants. But the first order theory results in parabolic equations of motion of the thermo-

dynamic state variables leading to severe causality violation problem. This crisis requires the

introduction of a second order theory which provides hyperbolic equations of motion resulting

in finite time scale for the thermodynamic flows to dissipate. The second order theory is based

on the assumption that the entropy four-current includes quadratic terms in the dissipative
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fluxes and the space of the thermodynamic quantities is expanded to include the dissipative

quantities for the system under consideration. Thus in this case the dissipative quantities are

treated as thermodynamic variables in their own right. Moreover the equations of motion of

the thermodynamic macroscopic variables along with the dissipative quantities in the second

order theory determine the hydrodynamic evolution of the system. The relaxation times of the

corresponding flows play an important role to determine the rate of evolution of the system

with time and consequently yield the cooling rate of the system. Those hyperbolic equations

can be estimated from second law of thermodynamics as well as from kinetic theory where the

relaxation times of different flows appear to bear important contribution to the evolution of

the hydrodynamic quantities. Consequently they play an important role to set the temperature

profile, i.e, the cooling law of the system. Hence it is important to evaluate these quantities

as accurately as possible so that they usefully determine the nature of evolution of the ther-

modynamic quantities when the system under consideration expands and cools down. Kinetic

theory provides us the tool to evaluate the relaxation times explicitly in which the first order

transport coefficients go as an input. In this chapter the relaxation times corresponding to

viscous and thermal flows for an interacting pion gas system have been evaluated. Previously

in [4] the cooling law has been depicted for a relativistic QGP as well as hadronic system,

where the relaxation times have been constructed from constant values of transport coefficients

as inputs. In [5] those quantities have been evaluated using conformal quantum field theory

for strongly coupled system. There are few other estimations of the temperature dependence

of relaxation times available in the literature. In [6] those quantities have been evaluated

with constant cross sections. In [7, 8] the temperature dependence of the relaxation times has

been estimated with a parameterized cross section which was independent of temperature. The

temperature dependence in these cases only enters through the explicit temperature containing

terms along with the phase space parts. In our estimation we have taken a medium dependent

interaction cross section evaluated at finite temperature to provide a more realistic estimation

of the relaxation times of dissipative flows. In next few sections we will provide the necessary

tools to determine the relaxation times of viscous and thermal flows of an interacting pion gas

at finite temperature taking care of the early chemical freeze out.
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4.1 Conservation laws and equations of motions in dis-

sipative fluid dynamics

To describe a fluid system with the help of dissipative thermodynamics first we need to intro-

duce some macroscopic quantities, which specify the dynamical properties of the system under

consideration. We start with the particle 4-flow Nµ(x) = nuµ, where n is the particle number

density and uµ is hydrodynamic 4-velocity, for which we use Eckart’s definition. Next we define

the energy-momentum stress tensor T µν for a dissipative fluid which consists of an ideal and a

dissipative part respectively in the following way,

T µν = T (0)µν+T (1)µν , with T (0)µν = enuµuν−P∆µν and T (1)µν = (Iµq u
ν+Iνq u

µ)+Πµν . (4.1)

Here Iµq is the irreversible heat flow and Πµν is viscous pressure tensor. Following the summation

invariant technique in the transport equation we obtain the conservation of particle 4-flow and

conservation of energy-momentum respectively by the following equations.

∂µN
µ(x) = 0 (4.2)

∂µT
µν = 0 (4.3)

From (4.2) we can obtain the equation of motion for particle number density which is known

as continuity equation,

Dn = −n∂ · u. (4.4)

Contracting equation (4.3) respectively with the hydrodynamic velocity uµ and the projection

operator ∆µν = gµν − uµuν we get the equation of energy,

nDe = −P∂ · u−∇νI
ν
q , (4.5)

and equation of motion,

hnDuµ = ∇µP − ∆µ
ν∇σΠ

νσ − ∆µ
νDI

ν
q . (4.6)

In all the above cases it has been assumed that the gradients of the primary macroscopic

variables may be treated as small quantities with respect to the dissipative fluxes. Using

107



equation of energy (4.5) and implementing the relativistic Gibbs-Duhem relationship ∂σP =

nT∂σ{ µ
T
} + nhT−1∂σT , we obtain the equation of enthalpy,

Dh = TD{µ
T
} + hT−1DT − 1

n
∇νI

ν
q . (4.7)

With the help of equation of energy (4.5) and equation of enthalpy (4.7) we finally obtain the

equation of temperature and chemical potential,

T−1DT = (1 − γ′)[∂ · u+
δ

P
∇νI

ν
q ], (4.8)

TD{µ
T
} = {(γ′′ − 1)h− γ′′′T}[∂ · u+

δ

P
∇νI

ν
q ] −

δ′

n
∇νI

ν
q . (4.9)

The quantities have been used in the above expressions are given as,

γ′ =
(S0

2/S
1
2)

2 − (S0
3/S

1
2)

2 + 4z−1S0
2S

1
3/(S

1
2)

2 + z−1S0
3/S

1
2

(S0
2/S

1
2)

2 − (S0
3/S

1
2)

2 + 3z−1S0
2S

1
3/(S

1
2)

2 + 2z−1S0
3/S

1
2 − z−2

(4.10)

γ′′ = 1 +
z−2

(S0
2/S

1
2)

2 − (S0
3/S

1
2)

2 + 3z−1S0
2S

1
3/(S

1
2)

2 + 2z−1S0
3/S

1
2 − z−2

(4.11)

γ′′′ =
S0

2/S
1
2 + 5z−1S1

3/S
1
2 − S0

3S
1
3/(S

1
2)

2

(S0
2/S

1
2)

2 − (S0
3/S

1
2)

2 + 3z−1S0
2S

1
3/(S

1
2)

2 + 2z−1S0
3/S

1
2 − z−2

(4.12)

δ =
S2

2S
0
2/(S

1
2)

2

1 − z{S0
3S

1
2 − S1

3S
0
2}/(S1

2)
2

(4.13)

δ′ =
−1

1 − z{S0
3S

1
2 − S1

3S
0
2}/(S1

2)
2

(4.14)

with z = mπ/T and h = mπS
1
3/S

1
2 . The terms Sαn are defined in Chapter-2.

From the above set of equations it is observed that the contribution of transport quantities

(thermodynamic fluxes) may not affect the thermodynamic macroscopic quantities much, but

the rate of transport of those dissipative quantities affects the conservation laws in a significant

way. In a first order theory the dissipative terms are neglected considering them small in a

near equilibrium situation. In second order theory all the dissipative quantities are included in

the equations of motion and conservation laws. Hence in second order theory those dissipative

fluxes are treated as thermodynamic variables in their own right as mentioned earlier.
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4.2 The need of a second order theory - Limitations of

the first order theory

A first order theory is one in which the rate of change of entropy 4-current, sα is linearly

dependent on dissipative fluxes in the following way.

T∂µs
µ = Iµq {

1

T
∇µT −Duµ} + Πµν〈∇µuν〉 + Π∇µu

µ. (4.15)

So in first order theory the relationship between the thermodynamic flux and the corresponding

thermodynamic forces are expressed as linear laws depicted by the following two equations,

where the viscous pressure tensor and the heat flow are linearly dependent on the velocity and

temperature gradients respectively.

Πµν = 2η〈∂µuν〉 + ζ∆µν∂σu
σ (4.16)

Iµν = λ(∂σT − TDuσ)∆
µσ . (4.17)

The proportionality constants η, ζ and λ serve as the shear and bulk viscous coefficients and

the thermal conductivity respectively.

If we proceed to solve for the hydrodynamic velocity uµ from equation (4.6) with the help of

equation (4.16), then only considering the shear flow we will eventually obtain the following

equation satisfied by uµ,

Duµ +
2η

hn
[∇σ∇µuσ + ∇σ∇σuµ − 2

3
∇µ∇σuσ] =

∇µP

hn
. (4.18)

Equation (4.18) is a parabolic partial differential equation which is similar to the 1-dimensional

hear flow equation, ∂T
∂t

= k∇2T . So the equation of motion depicted in (4.18) is clearly a

parabolic equation. Its non-causal behavior can be easily visualized by taking a look that how

the signal propagates in an infinite one-dimensional medium. Assuming that the velocity is

109



zero for t < 0, and putting a source at x = x0 at t = 0, the three velocity of the system takes

the following profile for t > 0,

v ∝ 1√
t
exp[−(x − x0)

2

t
]. (4.19)

This implies that for t = 0, v(x) = δ(x − x0) and for t > 0, v(x) has a non-zero finite value

for all values of x. So it can be said that the presence of a source at x0 is instantaneously

felt everywhere, no matter how far away the spatial coordinate be from x0. It means that

the momentum transfer starts taking place simultaneously everywhere with the appearance

of the velocity gradient and vanishes instantaneously with the disappearance of the velocity

gradient. Similar case may arise if equation (4.17) is inserted into (4.9) to obtain the profile of

temperature which similarly turns out to be felt everywhere instantaneously with the ignition

of heat flow. This implies that the thermodynamic energy-momentum as well as the heat flux

propagates within the medium with infinite speed, giving rise to vanishing relaxation times

to restore back its equilibrium situation. This undesirable feature certainly violates causality

demanding a second order theory where explicit time derivative occurs over the flows in the

equation of motion along with the linear term to make it a hyperbolic theory which describes

propagation of thermodynamic fluxes with finite speed. In the next section we will derive those

causal equations of motion of the thermodynamic fluxes along with their explicit values of

relaxation times in kinetic theory approach. The technical tool we have opted for this purpose

is the Grad’s 14 moment method.

110



4.3 Evaluation of relaxation times - Grad’s 14 moment

method

4.3.1 Solving the transport equation

We start with the evolution of the phase space distribution of the pion which is governed by

the relativistic transport equation given by,

pµ∂µf(x, p) = C[f ]. (4.20)

Here the term C[f ] is the same collision integral mentioned in Chapter-3 for the binary elastic

collisions p+ k → p′ + k′.

The basic idea of the moment method is to obtain an approximate solution of the transport

equation (4.20) by expanding the distribution function f(x, p) in momentum space around its

local equilibrium value when the deviation from it is small. In such a situation the out of

equilibrium distribution function can be expressed with the help of a deviation function φ in

the following manner,

f(x, p) = f (0)(x, p)[1 + φ(x, p)], (4.21)

where the equilibrium distribution function is given by

f (0)(x, p) =

[
e

pµuµ(x)−µπ(x)

T (x) − 1

]−1

, (4.22)

with T (x), uµ(x) and µπ(x) representing the local temperature, flow velocity and chemical po-

tential respectively. Note that the metric diag(1,−1,−1,−1) is used. Also, we take uµu
µ = 1

where uµ = (1,~0) in the local rest frame.

Now we proceed to solve the transport equation (4.20) with the help of the out of equilibrium

distribution function (4.21). Unlike the first order case we should not neglect the term con-

taining derivative over φ, because though in a near equilibrium situation the deviation function

φ is a small quantify, its deviation over time and space may not be that small to ignore and

should be incorporated in a second order theory. Following this argument and considering that
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φ is sufficiently small than f0 the transport equation (4.20) turns out to be,

pµ∂
µf (0) + f (0)(1 + f (0))pµ∂

µφ = −L[φ], (4.23)

where the linearized collision term is given by,

L[φ] = f (0)(x, p)

∫
dΓk dΓp′ dΓk′f

(0)(x, k){1 + f (0)(x, p′)}{1 + f (0)(x, k′)}

[φ(x, p) + φ(x, k) − φ(x, p′) − φ(x, k′)] W , (4.24)

where dΓq is the phase-space factors defined in Chapter-3. In order to solve equation (4.23) we

will require some thermodynamic identities in form of equations of motion. Using the equations

of motions discussed in section-4.1, we observe that the first term on the left hand side of (4.23)

turns out to be,

Πµ∂µf
(0) = f (0)(1 + f (0))

[
(τ − ĥ)Πα

∇αT

T
+

1

Tn
Πα∇αP − 〈ΠµΠν〉〈∇µuν〉 − τΠµDu

µ + Q̂∂ · u

+ τ [{τ(1 − γ′) + (γ′′ − 1)ĥ− γ′′′} δ
P
∇αI

α
q − δ′

nT
∇αI

α
q ]

]
(4.25)

with Πµ = pµ

T
and Q̂ = 1

T 2Q, where, Q = −1
3
m2
π + (p · u)2{4

3
− γ′} + (p · u){(γ′′ − 1)h− γ′′′T}.

We have also defined reduced enthalpy per particle as, ĥ = h/T .

For the rest of the two terms we need to define the deviation function φ and its derivatives.

Since the distribution function is a scalar depending on the particle momentum pµ and the

space-time coordinate xµ, the deviation function should be the same and it may be expressed

as a sum of scalar products of tensors formed from pµ and tensors functions of xµ. Following

the argument φ is constructed on the basis of irreducible tensors in the following way,

φ(x, p) = A(x, τ) − Bµ(x, τ)〈Πµ〉 + Cµν(x, τ)〈ΠµΠν〉. (4.26)

The notation 〈〉 denotes the irreducible tensors defined as 〈Πµ〉 ≡ ∆µνΠν and 〈ΠµΠν〉 ≡
[1
2
(∆µα∆νβ + ∆να∆µβ) − 1

3
∆µν∆αβ ]Παβ. So now we can say that instead of only first five

moments of the first order theory (number density, energy density and hydrodynamic velocity)

now the distribution function is developed from 14 moments where the additional 9 moments

are contributing from the dissipative quantities Iµ and Πµν .
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Now the coefficient functions are further expanded in terms of τ in the following manner such

that the last power being the one which gives a non-zero contribution to the collision term,

A(x, τ) = A0(x) + A1(x)τ + A2(x)τ
2 =

2∑

s=0

As(x)τ
s, (4.27)

Bµ(x, τ) = B0µ(x) +B1τ (x)τ =

1∑

s=0

(Bs)µ(x)τ
s, (4.28)

Cµν(x, τ) = (C0)µν(x). (4.29)

4.3.2 Determination of the coefficients A, Bµ and Cµν

Our next task is to put the expression of φ into (4.23) to obtain the respective equation of

motions for the fluxes. For this purpose we first need to evaluate the unknown coefficient A, B

and C. For our present purpose it is convenient to express them in terms of the thermodynamic

fluxes. For this purpose we need to recall the definitions of bulk and shear viscous pressure as

well as the heat flow from Chapter-3.

The bulk viscous pressure is defined as,

Π =
1

3

∫
d3p

(2π)3p0
∆µνp

µpνf (0)(1 + f (0))φ. (4.30)

After substituting the expression of φ from (4.26) it takes the form,

Π = −A2

∫
d3p

(2π)3p0
Qτ 2f (0)(1 + f (0)). (4.31)

The terms consisting of A0 and A1 vanishes due to the properties of summation invariant. Now

we define a quantity called αn for our convenience in the following manner,

αn = − 1

nT

∫
d3p

(2π)3p0
f (0)(1 + f (0))Qτn. (4.32)

From the definition of αn, equation (4.31) can be expressed in terms of A2 in the following way

Π = nTα2A2. (4.33)
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Similarly the energy 4-flow is defined as,

Iµq =

∫
d3p

(2π)3p0
pσ∆µ

σ(p · u− h)f (0)(1 + f (0))φ. (4.34)

After substituting the expression of φ it takes the form,

Iµq = −T 2(B1ν)

∫
d3p

(2π)3p0
Πσ∆µ

σ(τ − ĥ)τ〈Πν〉f (0)(1 + f (0)). (4.35)

Now from the definition of βn = − 1
Tn

∫
d3p

(2π)3p0
f (0)(1 + f (0))τn(τ − ĥ)∆µνpµpν , we obtain the

heat flow in terms of the vector B1µ such as,

Iµq =
1

3
nTB1ν∆

µνβ1. (4.36)

Finally the traceless part of the viscous pressure tensor is defined as,

〈Πµν〉 =

∫
d3p

(2π)3p0
(∆µ

σ∆
ν
τ −

1

3
∆στ∆

µν)pσpτf (0)(1 + f (0))φ . (4.37)

After substituting the expression of φ it takes the form,

〈Πµν〉 = −ργ0

5
〈Cµν〉, (4.38)

where we have introduced γn = − 1
ρT 2

∫
d3p

(2π)3p0
f (0)(1 + f (0))τn〈pµpν〉〈pµpν〉.

Now from the fact that the number density of the particles, the corresponding energy density

and the hydrodynamic 4-velocity can be completely determined by the equilibrium distribution

function, we can set constraint equations between the coefficient functions A and B.

The zeroth order distribution function contains some arbitrary parameters which is identified

with some macroscopic quantities such as number densities, energy densities and hydrodynamic

4-velocity of the system. This means the number density of particles, the corresponding en-

ergy density and the hydrodynamic velocity can be completely determined by the equilibrium

distribution function in the following way,

n = g

∫
d3p

(2π)3p0
pµuµf = g

∫
d3p

(2π)3p0
pµuµf

(0), (4.39)

en = g

∫
d3p

(2π)3p0
(pµuµ)

2f = g

∫
d3p

(2π)3p0
(pµuµ)

2f (0) , (4.40)
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where g is the degeneracy of the system. Furthermore from Eckart’s definition of velocity we

get,

∆µνNν =

∫
d3p

(2π)3p0
∆µνpνf

(0) = 0 . (4.41)

From the above three equations we obtain the following set of constraint equations on φ

∫
d3p

(2π)3p0
pµuµf

(0)(1 + f (0))φ = 0, (4.42)

∫
d3p

(2π)3p0
(pµuµ)

2f (0)(1 + f (0))φ = 0, (4.43)

∫
d3p

(2π)3p0
〈pµ〉f (0)(1 + f (0))φ = 0, (4.44)

which on substituting the expression of φ gives the three following equations.

∫
d3p

(2π)3p0
τA(x, τ)f (0)(1 + f (0)) = 0, (4.45)

∫
d3p

(2π)3p0
τ 2A(x, τ)f (0)(1 + f (0)) = 0, (4.46)

∫
d3p

(2π)3p0
〈Πµ〉Bν(x, τ)〈Πν〉f (0)(1 + f (0)) = 0. (4.47)

Here we have used the properties of the irreducible tensors that the inner product of any power

of τ with an irreducible tensor or the inner product of two irreducible tensors with different

ranks vanishes.

Expanding the coefficients A and Bµ according to equations (4.28) and (4.29), finally we obtain

the following equations.

The coefficient A follow the equations,

a1A0 + a2A1 + a3A2 = 0, (4.48)

a2A0 + a3A1 + a4A2 = 0, (4.49)

with an =
∫

d3p
(2π)3p0

f (0)(1 + f (0))τn. Similarly the equation of constrain between the coefficient

Bµ is,

B0
ν∆

µνb0 +B1
ν∆

µνb1 = 0, (4.50)
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with ∆µνbn =
∫

d3p
(2π)3p0

f (0)(1 + f (0))τn〈Πµ〉〈Πν〉.

Using equations (4.33,4.36,4.38,4.48,4.49,4.50) we obtain the complete set of coefficient func-

tions in terms of the thermodynamic flows. These are given by

A0 =
(a2a4 − a2

3)

(a1a3 − a2
2)

Π

nTα2
(4.51)

A1 =
(a1a4 − a2a3)

(a2
2 − a1a3)

Π

nTα2

(4.52)

A2 =
Π

nTα2

(4.53)

B0ν =
Iµq ∆µν

nTβ1
(−b1
b0

) (4.54)

B1ν =
Iµq ∆µν

nTβ1
(4.55)

〈(C0)
µν〉 = − 5

ργ0
〈Πµν〉. (4.56)

Defining all the space-time dependent coefficients of equation (4.26) in terms of the known

functions it is now possible to specify the deviation function φ completely. Knowing φ, we now

go back and use it in the Boltzmann equation (4.23) to evaluate the equations of motion for

the dissipative fluxes.

4.3.3 Equation of motion of dissipative fluxes

Bulk viscous pressure equation

Taking inner product of both sides of equation (4.23) with τ 2 and applying the (inner product)

properties of irreducible tensors [9] we obtain the equation of motion for bulk viscous pressure

equation,

Π = ζ [∇µu
µ− 1

n2α2
2

{a
3
3 − 2a2a3a4 + a1a

2
4

a2
2 − a1a3

+ a5}DΠ

− 1

n2α2
{ 3

β1
(
b1b2
b0

− b3) + (1 − γ′)δ(
S1

2

S2
2

)a4

+ {(ĥ(γ′′ − 1) − γ′′′)δ(
S1

2

S2
2

) − δ′}a3}∇µI
µ
q ] . (4.57)
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Retaining only the first term on the right hand side of (4.57) the equation for the bulk viscous

pressure reduces to the same in the first order theory of dissipative fluids. Following the usual

convention we have defined the coefficient of this term as the bulk viscous coefficient ζ .

Note that the equation (4.57) is indeed hyperbolic and contains a time derivative of the bulk

viscous pressure. This yields a relaxation time for bulk viscous pressure given by,

τζ = ζ
1

n2α2
2

[
a3

3 − 2a2a3a4 + a1a
2
4

a2
2 − a1a3

+ a5], (4.58)

with

a1 =
n

T
{S

0
2

S1
2

},

a2 =
n

T
{zS

0
3

S1
2

− 1},

a3 =
n

T
z2{S

0
2

S1
2

+ 3z−1S
1
3

S1
2

},

a4 =
n

T
z3{15z−2S

2
3

S1
2

+ 2z−1 +
S0

3

S1
2

},

a5 =
n

T
z4[6z−1{S

1
3

S1
2

+ 15z−2S
3
3

S1
2

} + {S
0
2

S1
2

+ 15z−2S
2
2

S1
2

}]. (4.59)

α2 = z3[
1

3
(
S0

3

S1
2

− z−1) + (
S0

2

S1
2

+
3

z

S1
3

S1
2

){(1 − γ′′)
S1

3

S1
2

+ γ′′′z−1)}

−(
4

3
− γ′){S

0
3

S1
2

+ 15z−2S
2
3

S1
2

+ 2z−1}]. (4.60)

Heat flow equation

In this case we take the inner product of both sides of equation (4.23) with 〈Πµ〉τ . Following

similar techniques as above we get the equation for heat flow,

Iµq = Tλ[{∇
µT

T
− ∇µP

nh
} − 1

nT
{β ′′DIµq + γ′′∇ν〈Πµν〉 + α′′∇µΠ}], (4.61)
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with

β ′′ = − 1

β1

{ 9T

nβ1

(b3 −
b1b2
b0

) − 3T

n

b2

ĥ
}, (4.62)

γ′′ =
1

β1
{γ1

γ0
+

3T

n

b2

ĥ
}, (4.63)

α′′ =
3T

n

1

β1

[
1

α2

{b1
a2a4 − a2

3

a1a3 − a2
2

+ b2
a1a4 − a2a3

a2
2 − a1a3

+ b3} +
b2

ĥ
]. (4.64)

The thermal conductivity appears as the coefficient of the linear term on right hand side of

(4.61).

So from the above equation the relaxation time for heat flow is given by,

τλ = λT
1

nT
β ′′, (4.65)

with

b0 = − n

T
,

b1 = − n

T
z
S1

3

S1
2

,

b2 = − n

T
{5zS

2
3

S1
2

+ z2},

b3 = − n

T
{30z

S3
3

S1
2

+ 5z2S
2
2

S1
2

+ z3S
1
3

S1
2

}. (4.66)

β1 = 3z2[1 + 5z−1S
2
3

S1
2

− (
S1

3

S1
2

)2]. (4.67)

Shear viscous pressure equation

Multiplying both sides of equation (4.23) with 〈ΠµΠν〉 and using the similar technique as before

produces the equation of motion for shear viscous pressure and it is given by,

〈Πµν〉 = η[2〈∇µuν〉 − 1

nT
{γ′′′D〈Πµν〉 − β ′′′∇µIνq }], (4.68)
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with

γ′′′ =
z2[

S2
2

S1
2

+ 6z−1 S
3
3

S1
2
]

[z
S2

3

S1
2
]2

, (4.69)

β ′′′ =
6

β1
[ĥ− (6

S3
3

S2
3

+ z
S2

2

S2
3

)]. (4.70)

The coefficient of shear viscosity can be followed from the first term of the right hand side of

equation (4.68).

From (4.68) the relaxation time for shear viscous pressure is obtained as,

τη = η
1

nT
γ′′′. (4.71)
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Chapter 5

The ππ cross-section in the medium

In Chapter-3 and 4 it is shown that the evaluation of the transport coefficients consists of the

differential scattering cross sections due to mutual interactions of the constituent particles of

the system under consideration which appear explicitly in the denominator of their expressions.

These cross sections serve as the dynamical inputs of the respective transport processes and

hence bear significant consequences on the magnitude of transport coefficients. In this thesis

we intend to evaluate the transport coefficients of a one component hot pion gas, so in this

chapter we will proceed to obtain a realistic temperature dependent interaction cross section

of a hot pion gas at finite temperature including all the medium effects into consideration. In

the literature there are many estimations of transport coefficients in hadronic medium as well

as in the pion gas. A substantial amount of calculations of the cross sections have been carried

out in different approaches, a few of which are worth mentioning.

In most of the cases the lowest order (LO) chiral perturbation theory has been utilized to

evaluate the pion cross section. The corresponding Lagrangian for LOChPT is given by,

L = − 1

6f 2
π

[∂µ~π · ∂µ~π ~π · ~π − ~π · ∂µ~π ~π · ∂µ~π] +
m2
π

24f 2
π

(~π · ~π)2, (5.1)
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which results only in the contact diagrams for ππ elastic scattering. The isospin averaged ππ

scattering amplitude is found to be [1],

|M |2 =
1

9f 2
π

{21m4
π + 9s2 − 24m2

πs+ 3(t− u)2}, (5.2)

with fπ = 0.093GeV and mπ = 0.14GeV . In [2] the shear viscosity of pion gas has been

estimated employing this scattering amplitude. In [3] the cross section is evaluated employing

the hard core interaction model. In [4] the bulk viscosity of pion gas has been evaluated with

the help of inelastic scatterings from chiral perturbation theory. The problem with the lowest

order chiral perturbation theory is that it fails to reproduce the experimental ππ scattering

data beyond
√
s = 600 MeV. Due to this reason the transport coefficients have been evaluated

by many methods [5, 6, 7, 8] using a parameterized cross section for binary elastic collision

which corresponds to a resonance saturation parameterization of isoscalar and isovector phase

shifts obtained from various empirical data involving the ππ system [9]. The isospin averaged

parameterized differential cross-section is given by

dσ(s)

dΩ
=

4

q2
cm

[
1

9
sin2 δ0

0 +
5

9
sin2 δ2

0 +
1

3
· 9 sin2 δ1

1 cos2 θ

]
, (5.3)

where

δ0
0 =

π

2
+ arctan

(
E −mσ

Γσ/2

)

δ1
1 =

π

2
+ arctan

(
E −mρ

Γρ/2

)

δ2
0 = −0.12p/mπ . (5.4)

The widths are given by Γσ = 2.06p and Γρ = 0.095p
(

p/mπ

1+(p/mρ)2

)2

with mσ = 5.8mπ and

mρ = 5.53mπ .

As seen in Fig. 5.1 these phase shifts agree quite well with those obtained from solutions of

the Roy equations as given in [10]. The bands bordered by the dotted lines represent the

uncertainties in the solution. The experimentally measured phase shifts (not shown) have error

bars [10] which are not reflected in the parameterizations (5.4) plotted in Fig. 5.2.
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Figure 5.1: The ππ phaseshifts (5.4) as a function of energy compared to Roy equation solutions

given in Ref. [10]

In Fig. (5.2) it is shown that the cross-section estimated from LOChPT fails to match the data

beyond 600MeV of centre of mass energy. So far the parameterized data has served as a good

approximation of pion cross section at vacuum. We proceed to evaluate the ππ cross section

from field theoretic calculations keeping this experimental cross section as the benchmark. Our

objective is now to set up a dynamical model which agrees reasonably with the parameter-

ized vacuum cross section and at the same time is amenable to the incorporation of medium

affects at finite temperature. We observe that the cross-section below 1GeV is dominated by

a resonance peaked around 770MeV which is the mass of ρ meson. So it is appropriate to

consider the ππ interaction in the medium using ρ meson exchange with the help of an effective

Lagrangian. So in next few sections the cross section will be evaluated first in vacuum and

compared to the ’data’. Therefore we will introduce the thermal effects in the propagation of

the ρ and σ mesons.
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Figure 5.2: Cross-section as a function of C.M. energy from LOChPT which fails to represent

the experimental data beyond 600MeV .

5.1 The ππ cross section in vacuum due to ρ meson ex-

change

5.1.1 Interaction Lagrangian

We evaluate the invariant amplitude for ππ scattering using an effective Lagrangian in which

the coupling of the ρ meson to the pions is introduced through the gauge covariant derivative

of the pion field operator to obtain [11]

Lρππ =
igρππ

4
Tr[V µ, [∂µΦ,Φ]], (5.5)

where Tr indicates trace in SU(2) space. The matrix Φ collects the pion fields in the form


π0
√

2π+

√
2π− −π0


 and V µ collects the ρ meson fields analogously. So finally the interaction

Lagrangian reduces to the form

Lρππ = gρππ[ρµ, {~π × ∂µ~π}], (5.6)
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which will now be used to evaluate the scattering amplitudes. After decomposing the La-

grangian with π1 = 1√
2
(π+ + π−) and π2 = i√

2
(π+ − π−) the Lagrangian finally becomes,

Lρππ = igρππ{ρ+µπ0∂
µπ− + ρ−µπ+∂

µπ0 + ρ0µπ−∂
µπ+}

− igρππ{ρ+µπ−∂
µπ0 + ρ−µπ0∂

µπ+ + ρ0µπ+∂
µπ−}. (5.7)

gρππ is the coupling constant and will be fixed from ρ→ ππ decay width. The Lagrangian gives

rise to different Feynman diagrams that give the invariant amplitudes which finally contribute in

the scattering cross section. In next section the evaluation of these amplitudes will be discussed

in detail.

5.1.2 Setting the coupling constant gρππ

The coupling constant gρππ is fixed from the decay width of ρ meson into two pions in vacuum.

The expression of decay width is given by,

Γ =
1

2Ep

∫
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ4(p− p1 − p2)|Mρ→ππ|2, (5.8)

where p1 and p2 are momentum of the two pions into which the ρ with momentum p decays.

ρ0
π+

π−

ρ+
π+

π0

π−

π0

ρ−

Figure 5.3: Different decay modes for the ρ→ ππ process.

The amplitudes for respective diagrams are given below,

125



Mρ0→π+π− = g2
ρππ(m

2
ρ − 4m2

π),

Mρ+→π+π0 = g2
ρππ(m

2
ρ − 4m2

π),

Mρ−→π−π0 = g2
ρππ(m

2
ρ − 4m2

π).

(5.9)

Employing those amplitudes for respective decay channels the decay width finally comes to be,

Γ =
g2
ρππ

8πmρ

(m2
ρ − 4m2

π)
λ1/2(s,m2

π, m
2
π)

2s

=
g2
ρππmρ

48π
{1 − 4m2

π

m2
ρ

}3/2. (5.10)

In vacuum the value of Γ is 150MeV [12], from which the value of the coupling constant is

fixed at gρππ = 6.05.

5.1.3 Amplitudes of ππ scattering by exchanging ρ meson

It is convenient to use an isospin averaged amplitude for the estimation of the pion cross section.

The expression of the isospin averaged scattering amplitude is,

|Mππ|2 =
1∑

I(2I + 1)
{

2∑

I=0

(2I + 1)(M I
ππ)

2}, (5.11)

where I is the isospin of the respective channel. Since the initial state pions each have isospin

~1, so for binary elastic collision the total isospin of initial and final states have to be ~2,~1 and ~0

giving rise to,

|Mππ|2 =
1

9
{|M0

ππ|2 + 3|M1
ππ|2 + 5|M2

ππ|2}. (5.12)

The amplitude corresponding to each isospin state involves the interactions among the following

charge states. The amplitude for total isospin ~I = ~0 state is
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M I=0
ππ =

1

3
{〈π+π−|L|π+π−〉 + 〈π+π−|L|π−π+〉 + 〈π+π−|L|π0π0〉

+〈π−π+|L|π+π−〉 + 〈π−π+|L|π−π+〉 + 〈π−π+|L|π0π0〉

+〈π0π0|L|π+π−〉 + 〈π0π0|L|π−π+〉 + 〈π0π0|L|π0π0〉}. (5.13)

The amplitude for total isospin ~I = ~1 and Iz = +1 state is

M I=1
ππ =

1

2
{〈π+π0|L|π+π0〉 − 〈π+π0|L|π0π+〉 − 〈π0π+|L|π+π0〉 + 〈π0π+|L|π0π+〉}, (5.14)

and finally the amplitude corresponding to total isospin ~I = ~2, Iz = +2 state is

M I=2
ππ = 〈π+π+|L|π+π+〉. (5.15)

Now the interaction amplitudes between each set of charged states can be obtained from the

Feynman diagrams resulting from the Lagrangian (5.7). The Feynman diagrams for each set

of interaction along with the value of amplitudes are described below.

1. π+π+ → π+π+

π+ π+

ρ0

π+ π+

π+

π+

π+

π+

ρ0

Figure 5.4: t and u-channel diagrams for π+π+ → π+π+ scattering

The interaction amplitude for the interaction between above charge states of pion is,

〈π+π+|L|π+π+〉 = g2
ρππ[

u− s

t−m2
ρ

+
t− s

u−m2
ρ

]. (5.16)
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2. π+π0 → π+π0

π+ π+

ρ+

π0 π0

π+

π+

π0

π0

ρ+

Figure 5.5: s and u-channel diagrams for π+π0 → π+π0 scattering

The interaction amplitude for the interaction between above charge states of pion is,

〈π+π0|L|π+π0〉 = g2
ρππ[

t− u

s−m2
ρ

+
t− s

u−m2
ρ

]. (5.17)

3. π+π0 → π0π+

π+ π0

ρ+

π0 π+

π+ π0

π0 π+

ρ+

Figure 5.6: s and t-channel diagrams for π+π0 → π0π+ scattering

The interaction amplitude for the interaction between above charge states of pion is,

〈π+π0|L|π0π+〉 = g2
ρππ[

u− t

s−m2
ρ

+
u− s

t−m2
ρ

]. (5.18)

4. π0π+ → π+π0

The interaction amplitude for the interaction between above charge states of pion is,

〈π0π+|L|π+π0〉 = g2
ρππ[

u− t

s−m2
ρ

+
u− s

t−m2
ρ

]. (5.19)

128



π0 π+

ρ+

π+ π0

π0 π+

π+ π0

ρ−

Figure 5.7: s and t-channel diagrams for π0π+ → π+π0 scattering

5. π0π+ → π0π+

π0 π0

ρ+

π+ π+

π0

π0

π+

π+

ρ−

Figure 5.8: s and u-channel diagrams for π0π+ → π0π+ scattering

The interaction amplitude for the interaction between above charge states of pion is,

〈π0π+|L|π0π+〉 = g2
ρππ[

t− u

s−m2
ρ

+
t− s

u−m2
ρ

]. (5.20)

6. π+π− → π+π−

The interaction amplitude for the interaction between above charge states of pion is,

〈π+π−|L|π+π−〉 = g2
ρππ[

t− u

s−m2
ρ

+
s− u

t−m2
ρ

]. (5.21)
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π+ π+

ρ0

π− π−

π+ π+

π− π−

ρ0

Figure 5.9: s and t-channel diagrams for π+π− → π+π− scattering

π+ π−
ρ0

π− π+

π+

π−

π−

π+

ρ0

Figure 5.10: s and u-channel diagrams for π+π− → π−π+ scattering

7. π+π− → π−π+

The interaction amplitude for the interaction between above charge states of pion is,

〈π+π−|L|π−π+〉 = g2
ρππ[

u− t

s−m2
ρ

+
s− t

u−m2
ρ

]. (5.22)

8. π+π− → π0π0

π+ π0

ρ+

π− π0

π+

π0

π−

π0

ρ+

Figure 5.11: t and u-channel diagrams for π+π− → π0π0 scattering
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The interaction amplitude for the interaction between above charge states of pion is,

〈π+π−|L|π0π0〉 = g2
ρππ[

s− u

t−m2
ρ

+
s− t

u−m2
ρ

]. (5.23)

9. π−π+ → π+π−

π− π+

ρ0

π+ π−

π−

π+

π+

π−

ρ0

Figure 5.12: s and u-channel diagrams for π−π+ → π+π− scattering

The interaction amplitude for the interaction between above charge states of pion is,

〈π−π+|L|π+π−〉 = g2
ρππ[

u− t

s−m2
ρ

+
s− t

u−m2
ρ

]. (5.24)

10. π−π+ → π−π+

π− π−
ρ0

π+ π+

π− π−

π+ π+

ρ0

Figure 5.13: s and t-channel diagrams for π−π+ → π−π+ scattering

The interaction amplitude for the interaction between above charge states of pion is,

〈π−π+|L|π−π+〉 = g2
ρππ[

t− u

s−m2
ρ

+
s− u

t−m2
ρ

]. (5.25)
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11. π−π+ → π0π0

π− π0

ρ−

π+ π0

π−

π0

π+

π0

ρ−

Figure 5.14: t and u-channel diagrams for π−π+ → π0π0 scattering

The interaction amplitude for the interaction between above charge states of pion is,

〈π−π+|L|π0π0〉 = g2
ρππ[

s− u

t−m2
ρ

+
s− t

u−m2
ρ

]. (5.26)

12. π0π0 → π+π−

π0 π+

ρ−

π0 π−

π0

π+

π0

π−

ρ+

Figure 5.15: t and u-channel diagrams for π0π0 → π+π− scattering

The interaction amplitude for the interaction between above charge states of pion is,

〈π0π0|L|π+π−〉 = g2
ρππ[

s− u

t−m2
ρ

+
s− t

u−m2
ρ

]. (5.27)

13. π0π0 → π−π+

The interaction amplitude for the interaction between above charge states of pion is,

〈π0π0|L|π−π+〉 = g2
ρππ[

s− u

t−m2
ρ

+
s− t

u−m2
ρ

]. (5.28)
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π0 π−

ρ+

π0 π+

π0

π−

π0

π+

ρ−

Figure 5.16: t and u-channel diagrams for π0π0 → π−π+ scattering

The above charge state amplitudes finally give the interaction amplitude corresponding to

different isospin states mentioned in equations (5.13), (5.14) and (5.15),

M I=0
ππ = 2g2

ρππ[
s− u

t−m2
ρ

+
s− t

u−m2
ρ

], (5.29)

M I=1
ππ = g2

ρππ[2
t− u

s−m2
ρ

+
t− s

u−m2
ρ

− u− s

t−m2
ρ

], (5.30)

M I=2
ππ = g2

ρππ[
u− s

t−m2
ρ

+
t− s

u−m2
ρ

]. (5.31)

The corresponding isospin averaged amplitude for ππ scattering via ρ meson exchange can now

be given by (5.12). Now we can evaluate the cross section by the following equation,

σ =
1

16π

∫ 0

−s

|M |2
(s2 − 4m2

πs)
dt. (5.32)

So we can see that the interaction leads to ππ scattering diagrams with ρ exchange in the s, t

and u channels. In these calculations we modify the ρ propagatorD
(0)
µν = (−gµν+qµqν/m2

ρ)/(q
2−

m2
ρ + iǫ) replacing iǫ with imρΓρ(s) where the two-pion decay width Γρ(s) is taken from (5.10).

This is done only for s-channel ρ-exchange diagrams, which contribute only in the case of total

isospin I = 1, since only the s channel diagrams contribute in the resonance structure.

By ignoring the I = 2 contribution, then the integrated cross section (with an additional factor

of 1/2 for identical particles) is plotted as a function of the center-of-mass energy in Fig. 5.17.

It is seen that the evaluated cross section in vacuum is in quite good agreement with experimen-

tal data only except very low energy below 0.4GeV . In order to describe ππ scattering at low
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energies it is essential to also include σ-exchange diagrams, details of which will be discussed

in next section.
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Figure 5.17: The ππ cross-section evaluated from ρ exchange diagrams shows good agreement

with experimental data except at low energies.

5.1.4 Amplitudes of ππ scattering including both ρ and σ mesons

exchange

For the σ exchanged ππ interaction the following Lagrangian has been used,

Lσππ =
1

2
gσππmσ~π · ~πσ, (5.33)

with gσππ = 2.5. Following the same scheme as for the ρ, we obtain the amplitudes for respective

isospin channels.

M I=0
ππ = g2

σππm
2
σ[

3

s−m2
σ

+
1

t−m2
σ

+
1

u−m2
σ

], (5.34)

M I=1
ππ = g2

σππm
2
σ[

1

t−m2
σ

− 1

u−m2
σ

], (5.35)

M I=2
ππ = g2

σππm
2
σ[

1

t−m2
σ

+
1

u−m2
σ

]. (5.36)
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We have introduced as before the σ width in the s-channel diagram which now appear only

for I = 0. The values mσ = 450 MeV and Γσ = 550 MeV that we use are in conformity with

estimates in [13]. So finally we obtain the total amplitude for binary elastic scattering for pion

involving both ρ and σ meson exchange diagrams and their respective decay widths as the

following,

MI=0 = 2g2
ρ

[
s− u

t−m2
ρ

+
s− t

u−m2
ρ

]
+ g2

σm
2
σ

[
3

s−m2
σ + imσΓσ

+
1

t−m2
σ

+
1

u−m2
σ

]

MI=1 = g2
ρ

[
2(t− u)

s−m2
ρ + imρΓρ(s)

+
t− s

u−m2
ρ

− u− s

t−m2
ρ

]
+ g2

σm
2
σ

[
1

t−m2
σ

− 1

u−m2
σ

]

MI=2 = g2
ρ

[
u− s

t−m2
ρ

+
t− s

u−m2
ρ

]
+ g2

σm
2
σ

[
1

t−m2
σ

+
1

u−m2
σ

]
. (5.37)

In Fig. 5.18 it is shown that now the estimated cross section agrees really well with the param-

eterized experimental data for c.m. energy upto 1GeV . So now we can say that in vacuum we

have modeled a cross section phenomenologically which is in good agreement with the exper-

imental one into which now the effects of a thermal medium can be introduced by extending

the field theoretic calculations to finite temperature.
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Figure 5.18: The ππ cross-section evaluated from both ρ and σ exchange diagrams agrees with

the experimental data quite nicely.
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5.2 The ππ cross section at finite temperature

The effect of the medium on ρ propagation is quantified through its self-energy. The standard

procedure is to evaluate this quantity by perturbative methods using effective interactions and

then obtain the exact propagator using the Dyson equation, depicted pictorially in Fig. 5.19.

In the real time formulation of thermal field theory, all two-point functions assume a 2 × 2

matrix form [16] which can be diagonalized. The diagonal components also obey the Dyson

equation [17] by means of which the full propagator Dµν is obtained as

Dµν = D(0)
µν +D(0)

µσΠσλDλν , (5.38)

where D
(0)
µν is the vacuum propagator for the ρ meson and Πσλ is the self energy function

obtained from one-loop diagrams shown in Fig. 5.19. Following [16, 14] we write the in-medium

self-energy in terms of longitudinal and transverse parts

Πµν = PµνΠ
T +QµνΠ

L (5.39)

where Pµν and Qµν are the transverse and longitudinal projection tensors respectively. These

are defined as [14]

Pµν = −gµν +
qµqν
q2

− q2

q2 ũµũν , ũµ = uµ − (u · q)qµ/q2 (5.40)

and

Qµν =
(q2)2

q
ũµũν , q2 = (u · q)2 − q2 . (5.41)

where uµ is four velocity of the thermal bath. It is easy to see that

Pµν +Qµν/q
2 = −gµν + qµqν/q

2 . (5.42)

Note that while P and Q are four-dimensionally transverse, P is also three-dimensionally trans-

verse while Q is longitudinal. Solving (5.38), the exact ρ propagator is obtained as

Dµν(q0, ~q) = − Pµν
q2 −m2

ρ − ΠT
− Qµν/q

2

q2 −m2
ρ − q2ΠL

+
qµqν
m2
ρq

2
(5.43)
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Figure 5.19: The exact ρ propagator with π − h loop diagrams for h = π, ω, h1, a1 mesons.

where ΠT and ΠL can be obtained from the relations

ΠT = −1

2
(Πµ

µ +
q2

q̄2
Π00), ΠL =

1

q̄2
Π00, Π00 ≡ uµuνΠµν . (5.44)

As shown in [14], the three-momentum dependence of the ρ self-energy is not substantial for the

present case and we can replace ΠT and q2ΠL in the above expression by a self-energy function

which is averaged over polarization. Defining this as

Π =
1

3
(2ΠT + q2ΠL) (5.45)

and neglecting the non-pole piece in (5.43), the in-medium propagator can be written as

Dµν(q0, ~q) =
−gµν + qµqν/q

2

q2 −m2
ρ − ReΠ(q0, ~q) + iImΠ(q0, ~q)

. (5.46)

In the real-time formulation of thermal field theory the self-energy which has been used in

(5.46) assumes a 2×2 matrix structure of which the 11-component is given by

Π11
µν(q) = i

∫
d4k

(2π)4
Nµν(q, k)D

11
π (k)D11

h (q − k) (5.47)

where D11 is the 11-component of the scalar propagator which constitute the internal line of the

loop, given by D11(k) = ∆(k) + 2πif (0)(k)δ(k2 −m2), where ∆(k) is its vacuum part. It turns

out that the real and imaginary parts of the self-energy function which appear in eq. (5.46) can

be obtained in terms of the 11-component through the relations [16, 17]

Re Πµν = ReΠ11
µν

ImΠµν = ǫ(q0) tanh(βq0/2)Im Π11
µν . (5.48)

Tensor structures associated with the two vertices and the vector propagator are included in

Nµν and are available in [14] where the interactions were taken from chiral perturbation theory.

137



It is easy to perform the integral over k0 using suitable contours to obtain

Πµν(q0, ~q) =

∫
d3k

(2π)3

1

4ωπωh

[
(1 + f (0)(ωπ))N

µν
1 + f (0)(ωh)N

µν
3

q0 − ωπ − ωh + iηǫ(q0)
+

−f (0)(ωπ)N
µν
1 + f (0)(ωh)N

µν
4

q0 − ωπ + ωh + iηǫ(q0)

+
f (0)(ωπ)N

µν
2 − f (0)(ωh)N

µν
3

q0 + ωπ − ωh + iηǫ(q0)
+

−f (0)(ωπ)N
µν
2 − (1 + f (0)(ωh))N

µν
4

q0 + ωπ + ωh + iηǫ(q0)

]
(5.49)

where f (0)(ω) = 1
e(ω−µπ)/T−1

is the Bose distribution function with arguments ωπ =

√
~k2 +m2

π

and ωh =

√
(~q − ~k)2 +m2

h. The subscript i(= 1, ..4) on Nµν in (5.49) correspond to its values

for k0 = ωπ,−ωπ, q0 − ωh, q0 + ωh respectively. It is easy to read off the real and imaginary

parts from (5.49). The angular integration can be carried out using the δ-functions in each of

the four terms in the imaginary part which define the kinematically allowed regions in q0 and

~q where scattering, decay and regeneration processes occur in the medium leading to the loss

or gain of ρ mesons [14].

The real part of the self-energy modifies the pole position and the imaginary part embodies the

effect of collisions and decay processes by means of which the ρ is lost or gained in the medium.

Using interactions from chiral perturbation theory, the one-loop self energy is calculated [14].

The imaginary parts for ππ, πω, πh1 and πa1 loops were obtained from the discontinuities of

the self-energy in the complex energy plane. While for the ππ loop, the contribution at the

nominal ρ pole comes from the unitary cut, the Landau type discontinuity is responsible for

contributions from loops with heavier particles. The mesons ω, h1 and a1 all have negative

G-parity and have substantial 3π and ρπ decay widths [12]. The self-energies containing these

unstable particles in the loop graphs have thus been folded with their spectral functions as

shown in [15]. The contributions from the loops with heavy mesons may then be considered as

a multi-pion contribution to the ρ self-energy.

The (polarization averaged) self-energies containing these unstable particles in the loop graphs

have thus been folded with their spectral functions,

Π(q,mh) =
1

Nh

∫ (mh+2Γh)2

(mh−2Γh)2
dM2 1

π
Im

[
1

M2 −m2
h + iMΓh(M)

]
Π(q,M) (5.50)

with Nh =

∫ (mh+2Γh)2

(mh−2Γh)2
dM2 1

π
Im

[
1

M2 −m2
h + iMΓh(M)

]
. The contributions from the loops

with heavy mesons (the πh loops) may then be considered as a multi-pion contribution to the
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ρ self-energy.

The medium effect on propagation of the σ meson is estimated analogously as above. The

effective propagator in this case is given by

D(q0, ~q) =
−1

q2 −m2
σ − ReΠ(q0, ~q) + iImΠ(q0, ~q)

. (5.51)

Following the steps outlined above the expression for the self-energy of the σ is given by

Π(q0, ~q) = N

∫
d3k

(2π)3

1

4ωπω′
π

[
1 + f (0)(ωπ) + f (0)(ω′

π)

q0 − ωπ − ω′
π + iηǫ(q0)

+
f (0)(ω′

π) − f (0)(ωπ)

q0 − ωπ + ω′
π + iηǫ(q0)

+
f (0)(ωπ) − f (0)(ω′

π)

q0 + ωπ − ω′
π + iηǫ(q0)

− 1 + f (0)(ωπ) + f (0)(ω′
π)

q0 + ωπ + ωπ′ + iηǫ(q0)

]
(5.52)

where ω′
π =

√
(~q − ~k)2 +m2

π. The imaginary part for the kinematic region of our interest in

this case receives contribution only from the first term which essentially describes the decay of

the σ into two pions minus the reverse process of formation.

The cross-section obtained by using the in-medium ρ-propagator (5.46) in place of the vacuum

propagator D
(0)
µν along with the in medium σ propagator (5.51) in the evaluation of the ampli-

tudes is shown in Fig. 5.20. We observe a small suppression of the peak for the ππ loop and a

larger effect when all the loops (indicated by multi-pion) are considered accompanied by a small

shift in its position. This is due to the temperature dependence of the real and imaginary parts

of the self-energy and is manifested as the modified spectral function of the ρ and σ meson. The

widths occuring in the denominator of the propagator increase with increasing temperature,

reducing the cross-section peak when plotted with centre of mass energy.

5.3 Inclusion of temperature dependent pion chemical

potential

In heavy ion collisions pions are known to get out of chemical equilibrium early, at about

a temperature of T ∼ 170 MeV. Chemical freeze out indicates the stopping of the number

139



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
E

c.m.
 (GeV)

0

20

40

60

80

100

σ 
(m

b)

expt
vacuum
medium (pi-pi) T=160 MeV
medium (multi-pion) T=160 MeV

Figure 5.20: The ππ cross-section as a function of centre of mass energy. The dashed line

indicates the cross-section obtained using eq. (5.37) which agrees well with the experimental

values shown by filled circles. The dash-dotted and solid lines depict the in-medium cross-

section for ππ and multi-pion loops respectively in the ρ self-energy evaluated at T=160 MeV.

changing inelastic processes so that only the elastic processes (including the resonances), that

only involve momentum transfer dominate the kinetics of the gas, as a result of which the

chemical equilibrium of the gas is lost. At a still lower temperature T ∼ 100 MeV, momentum

transfer stops indicating the kinetic freeze out of the system. This scenario is quite compatible

with the treatment of medium modification of the ππ cross-section being employed in this work

where the ππ interaction is mediated by ρ and σ exchange and the subsequent propagation of

these mesons are modified by two-pion and effective multi-pion fluctuations. From chemical to

kinetic freeze out the temperature drops from 170MeV to 100MeV but particle number does

not change since the inelastic collisions cease to occur in this temperature range. In order to

keep the particle number fixed a temperature dependent pion chemical potential is introduced

which starts building up with decrease in temperature. We take the temperature dependent

pion chemical potential from Ref. [18] which implements the formalism described in [19] and

reproduces the slope of the transverse momentum spectra of identified hadrons observed in

experiments. Here, by fixing the ratio s/n where s is the entropy density and n the number

density, to the value at chemical freeze-out where µπ = 0, one can go down in temperature up to
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the kinetic freeze-out by increasing the pion chemical potential. This provides the temperature

dependence leading to µπ(T ) which is shown in Fig. (5.21). In this partial chemical equilibrium

scenario of [19] the chemical potentials of the heavy mesons are determined from elementary

processes. The ω chemical potential e.g. is given by µω = 3 × 0.88µπ, as a consequence of the

processes ω ↔ πππ occurring in the medium. The branching ratios are taken from [12].

80 100 120 140 160 180
T(MeV)

0

20

40

60

80

100

120

µ π(
M

eV
)

Figure 5.21: The pion chemical potential as a function of temperature [18].

This temperature dependent pion chemical potential then has been incorporated into the ππ

cross section to consider the effect of early chemical freeze out of pion gas in heavy ion collisions

in the estimation of the transport coefficients. The integrated cross section as a function of

centre of mass energy is depicted in Fig. (5.22) where the temperature dependent µπ(T ) has

been used for all three cases mentioned earlier.

141



0.4 0.5 0.6 0.7 0.8 0.9 1
E

c.m.
 (GeV)

0

20

40

60

80

100

σ 
(m

b)

expt
vacuum
medium (pi-pi)
medium (multi-pion) 

T=160 MeV
µπ=µπ(T)

Figure 5.22: The ππ cross-section as a function of centre of mass energy at T=160 MeV and

µπ = µπ(T ).
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Chapter 6

The effect of medium on the transport

coefficients and relaxation of flows in

an interacting pion gas

We have seen that the temperature dependence of the transport coefficients evaluated in

Chapter-3 and 4 originates from the phase space factors and through the interaction cross

section providing the dynamics for the respective processes. As discussed earlier in most of the

literatures the temperature dependence of the transport coefficients comes from only the phase

space factors, while the finite temperature contribution from the dynamics part is neglected.

In this chapter the effect of the medium modified cross section estimated in Chapter-5, on

the transport coefficients and relaxation times of the corresponding dissipative flows will be

discussed in detail.

We also observed that in a thermal medium a number of decay and scattering processes occur in

addition to the decay of ρ and σ mesons into two pions, which alter the abundance of the ρ and σ

mesons within the system compared to vacuum. So at finite temperature the contributions from

a thermal medium have to be taken into consideration in order to incorporate all these additional

processes. In this Chapter the in medium cross section estimated at finite temperature has been
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introduced in the expressions of the transport coefficients and then the medium modified first

order transport coefficients have been used to evaluate the relaxation times for the viscous

and thermal flows. The temperature dependence of these quantities has been depicted with

and without the medium dependent cross section to quantify the effect of the thermal medium

on the dissipative quantities. Further the effect of the temperature dependent pion chemical

potential on these quantities has been demonstrated.

6.1 Shear Viscosity

6.1.1 Effect of medium on shear viscosity

The temperature dependence of shear viscosity η obtained in the Chapman-Enskog approxima-

tion has been depicted in the η versus T plot in fig. 6.1, showing the effect of the in-medium ρ

and σ propagation in the pion gas. Shear viscosity shows an increasing trend with temperature

indicating larger momentum transfer at higher temperature. The temperature dependence of

shear viscosity is enhanced when the medium effects are taken into consideration. This is quite

evident since the interaction cross section which appears in the denominator of transport coef-

ficients gets suppressed due to the inclusion of the medium effects. This enhancement is larger

for multipion loops in the ρ propagator than only the ππ loop. Here one can observe ∼ 10%

change at T = 150 MeV due to medium effects compared to the vacuum when all the loops in

the ρ self-energy are considered. The effect reduces with temperature and reaches to less than

5% at 100 MeV. In Fig. 6.1 we have presented only the case of zero pion chemical potential, in

which a noticeable medium effect is observed as indicated by the dashed and dot-dashed lines

[1].
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Figure 6.1: The shear viscosity as a function of temperature in the Chapman-Enskog approx-

imation. The dashed and dot-dashed lines correspond to the use of in-medium cross-sections

for ππ and multi-pion loops respectively. The solid line represents the vacuum case.

6.1.2 Effect of temperature dependent chemical potential on shear

viscosity

In this section the effect of chemical potential will be discussed on the temperature dependence

of shear viscosity. First we have plotted η versus T at three different values of chemical po-

tential for vacuum cross section only. The three values of chemical potentials are µπ = 0 that

corresponds to chemical freeze out, µπ = 85MeV that corresponds to kinetic freeze out, and

finally the temperature dependent pion chemical potential, µπ = µπ(T ) that has been discussed

in Chapter-5. We recall that this temperature dependent pion chemical potential has been in-

troduced in order to keep the particle number fixed in the temperature range between chemical

and kinetic freeze out. In Fig. 6.2, the curve with µπ = µπ(T ) depicts the situation when µπ

increases as the temperature decreases as mentioned in Chapter-5. This resembles the situa-

tion encountered in the later stages of heavy ion collisions and interpolates between the results

with the constant values of the pion chemical potential mentioned above at T = 100MeV and

T = 170MeV .
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Figure 6.2: The shear viscosity as a function of temperature for different values of pion chemical

potentials using vacuum cross section.

In Fig. 6.3, the shear viscosity η has been plotted against T for both µπ = 0 and µπ = µπ(T )

case where the in medium cross section has been used along with the vacuum case. In a thermal

medium the effect of chemical potential enters into the expression of η in two ways, one in the

phase space, i.e, through the distribution functions of the interacting pions and the other in

interaction dynamics, i.e, through the distribution function of the loop particles contributing

to the in medium ρ and σ propagators. In both sets of graphs the effect of a thermal medium is

clearly visible. The three curves in each set show the effect of medium on the ππ cross-section.

The dashed lines in each of the sets depict medium effects for pion loops in the ρ propagator

and the dash-dotted lines correspond to the situation when the heavy mesons are included

i.e. for πh loops where h = π, ω, h1, a1. The clear separation between the curves in each set

displays a significant effect brought about by the medium dependence of the cross-section even

for temperature dependent pion chemical potential [2].

6.1.3 Effect of medium on shear viscosity to entropy density ratio

Viscosities for relativistic fluids are generally expressed in terms of a dimensionless ratio ob-

tained by dividing it with the entropy density of the system. The latter is obtained from the
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Figure 6.3: The shear viscosity in various scenarios as a function of T . The red (upper) and

the black (lower) sets of curves correspond to µπ = 0 MeV and µπ = µπ(T ) respectively. In

each set the solid line represents the vacuum cross-section, the dashed line represents the in-

medium modification due to pion loop and the dash-dotted line for loops with heavy particles

in addition.

thermodynamic relation

Ts = ǫ+ P − nµπ . (6.1)

For a free pion gas, the expressions of the energy density ǫ, pressure P and number density

n are derived in Chapter-2. With the help of these quantities the expression for the entropy

density comes out to be,

s =
gπ
2π2

m2
π[mπS

1
3(z) − µπS

1
2(z)] gπ = 3. (6.2)

Interactions between pions lead to corrections to this formula. ToO(T 6) this has been calculated

for finite pion chemical potential in [4] using chiral perturbation theory to give

∆s = − 3m4
π

16π4f 2
π

S1
1(z)[mπS

0
2(z) − µπS

0
1(z)] (6.3)

where fπ = 93 MeV. It is easily verified that this expression reduces for µπ = 0 to those given

in [5, 6]. This correction is ∼ 1 − 2% for values of µπ and T considered here. In Fig. 6.4 the

entropy density of an interacting pion gas as a function of temperature is shown for three values

of the pion chemical potential mentioned earlier.
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Figure 6.4: The entropy density of an interacting pion gas as a function of T for different values

of the pion chemical potential.

In Fig. 6.5 η/s is plotted as a function of T using different pion chemical potentials. The red

and the blue set of curves corresponding to µπ = 0 and µπ = 85 representing the values of µπ

at chemical and kinetic freeze out show the usual decreasing trend as seen, for example in [8, 9]

while the black set of curves with µπ = µπ(T ) increases with T in contrast with the other two

sets. The values in all cases remain well above 1/4π which is the lower bound of the η/s value

conjectured by Kovtun, Starinets and Sons [7] from their AdS/CFT calculations. The effect

of medium is still clearly visible in each set of curves portraying the effect of finite temperature

on the shear viscosity to entropy density ratio for each value of pion chemical potential. For

each value of µπ the temperature dependence of η/s ratio appears to be enhanced which turns

out to be larger for the multipion loop contribution in the in-medium thermal ρ propagator

compared to only the pion loop effect.
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Figure 6.5: η/s as a function of T for different values of µπ.

6.2 Bulk Viscosity

6.2.1 Effect of medium and temperature dependent chemical poten-

tial on bulk viscosity

In this section we present the results for bulk viscosity ζ as a function of temperature T . In

Fig. 6.6 the three sets of curves correspond to different values of the pion chemical potential.

The uppermost set of curves (with circles) show the bulk viscosity calculated with a pion

chemical potential µπ ∼ 85 MeV. The corresponding curves in the lowermost set are evaluated

with µπ = 0. These values are representative of the kinetic and chemical freeze-out in heavy ion

collisions respectively. The solid line in the lowermost set represents the case where the vacuum

cross-section has been used and agrees with the estimate in [10]. The set of curves with triangles

depicts the situation when µ is a (decreasing) function of temperature as given in [11]. This

resembles the situation encountered in the later stages of heavy ion collisions and the curves

interpolate between the sets with the constant values of the pion chemical potential discussed

above. The three curves in each set show the effect of medium on the ππ cross-section. The

short-dashed lines in each of the sets depict medium effects for pion loops in the ρ propagator

and the long dashed lines correspond to the situation when the heavy mesons are included
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Figure 6.6: The bulk viscosity in various scenarios as a function of T . The upper (with circles),

middle (with triangles) and lower sets of curves correspond to µπ = 85 MeV, µπ = µπ(T ) and

µπ = 0 respectively. In each set the solid lines represents use of vacuum cross-section, the small

dashed lines for in-medium modification due to pion loop and the long dashed lines for loops

with heavy particles in addition.

i.e. for πh loops where h = π, ω, h1, a1. The clear separation between the curves in each set

displays a significant effect brought about by the medium dependence of the cross-section. A

large dependence on the pion chemical potential is also inferred since the three sets of curves

appear nicely separated [2].

6.2.2 Effect of medium and temperature dependent chemical poten-

tial on bulk viscosity to entropy density ratio

In Fig. 6.7 we show ζ/s as a function of T using the temperature dependent pion chemical

potential. The medium dependence is clearly observed when we compare the results obtained

using the vacuum cross-section with the ones where the σ and ρ propagation is modified due

to ππ and πh (multi-pion) loops [2]. The decreasing trend with increasing temperature was

observed also in [12] and [13].
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Figure 6.7: ζ/s as a function of T for different ππ cross-section. The temperature dependent

pion chemical potential has been used in all cases.

6.3 Thermal conductivity

6.3.1 Effect of medium on thermal conductivity

The results of the temperature dependent thermal conductivity have been shown introducing

the vacuum as well as medium widths in the dynamical cross section. In fig. 6.8 the ther-

mal conductivity times the temperature T is plotted against the temperature for zero chemical

potential of the pion gas. The three different curves explicitly show the effect of a finite temper-

ature medium on the ππ cross-section, which in turn reflects on the temperature dependence of

λ. The lowermost solid-lined curve indicate the vacuum cross-section without medium effect.

The other two curves have been plotted introducing the medium dependent cross-section using

ρ and σ self-energy. The dashed line depict the medium effect when only ππ loop is taken in the

ρ self-energy. Lastly the dot-dashed line corresponds to the case when also the heavy mesons

are introduced in the ρ self-energy, i.e. ππ, πω, πa1, πh1 loops are considered.
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Figure 6.8: λT as a function of T for different ππ cross-sections with zero pion chemical

potential.

6.3.2 Effect of temperature dependent chemical potential on ther-

mal conductivity

In Fig. 6.9 again λT is plotted as a function of temperature, but this time we have used a

temperature dependent pion chemical potential. In this plot also the effect of medium depen-

dent cross-section is clearly visible when compared with the vacuum cross-section. The effect of

temperature dependent pion chemical potential shows noticeable differences on the temperature

dependence of thermal conductivity of pion gas with respect to the µπ = 0 case [3].
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Figure 6.9: λT as a function of T for different ππ cross-sections and chemical potentials.
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6.4 Effect of medium and temperature dependent chem-

ical potential on relaxation times of dissipative flows
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Figure 6.10: Relaxation time of bulk viscous pressure as a function of T for different ππ cross-

sections with different pion chemical potentials.

In this section we present the effect of the thermal medium on the temperature dependence of

the relaxation times of the dissipative flows [14]. We start with the results for the relaxation

time of the bulk viscous flow τζ , as a function of temperature. In Fig. 6.10 the three different

set of curves correspond to different values of the pion chemical potentials. The uppermost

set of curves (with squares) show the temperature dependence of τζ calculated with a pion

chemical potential µπ = 0. The corresponding curves in the lowermost set (with circles) are

evaluated with µπ ∼ 85MeV . These values are representative of the chemical and kinetic

freeze-outs in heavy ion collisions, respectively. The set in between consists of curves with

triangles use the temperature dependent pion chemical potential µπ = µπ(T ) and interpolates

between the points representing chemical and kinetic freeze-outs. In each set the τζ shows a

deceasing trend with temperature which is in accordance with [15]. The three different curves

in each set show the effect of the medium on the ππ cross section. The lowermost solid curve

in each set of Fig. 6.10 represents vacuum cross section with no medium effect which agrees

with [10] for zero chemical potential case. The dashed curves depict medium effects for pion

loops in the ρ propagator. These curves appear to be enhanced with respect to the vacuum

ones indicating the effect of a thermal medium on τζ . Finally the dot-dashed curves correspond
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to the situation when the heavy mesons are included in the ρ propagator loop, i.e., for πh loops

where h = π, ω, h1, a1. This curves appear to be further enhanced showing the larger effect

of the multipion loop propagator on τζ . The clear separation between the curves in each set

displays a significant effect brought about by the medium dependence of the ππ cross section.
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Figure 6.11: Relaxation time of heat flow as a function of T for different ππ cross-sections with

different pion chemical potentials.

Next we plot the relaxation time for the irreversible heat flow, τλ against temperature for three

different values of pion chemical potentials mentioned above. In each set the curves are plotted

for different ππ cross sections. Alike the earlier case here also we notice that the medium

modified cross sections evaluated at finite temperature influence the temperature dependence

of τλ which appear to be enhanced for the in medium cases with respect to the vacuum ones.

The multipion loop contribution due to heavier mesons in the ρ propagator turns out to be

more significant than the ππ loop in the same. In Fig. 6.11 the nicely separated three curves in

each set plotted as a function of temperature reveal the effects of medium on the temperature

dependence of τλ.

Finally we present our result of τη, i.e, the relaxation time of the shear viscous flow for a

medium induced ππ cross section. In Fig. 6.12 the three set of curves indicate three different

values of chemical potential demonstrating the effect of µπ on the values of τη. In each set

the temperature dependence of τη is shown for vacuum cross section (solid curves), medium
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Figure 6.12: Relaxation time of shear viscous pressure as a function of T for different ππ

cross-sections with different pion chemical potentials.

dependent cross section with ππ loop in the thermal ρ propagator (dashed curves) and with

multipion loops in ρ propagator (dot-dashed curves) respectively. The effect of medium is

shown by the enhancement of the curves which appears to be more significant for multipion

case than ππ loop. In all the three cases (τζ , τλ and τη) the effect of medium on relaxation

times increases with increasing temperature.

6.5 Discussions

We end this Chapter by stating that the main focus in this work has been to emphasize the role

of medium modifications of the cross-section in the evaluation of the transport coefficients. The

transport coefficients and their temperature dependence could affect the quantitative estimates

of signals of heavy ion collisions particularly where hydrodynamic simulations are involved. For

example, it has been argued in [16] that corrections to the freeze-out distribution due to bulk

viscosity can be significant. As a result the hydrodynamic description of the pT spectra and

elliptic flow of hadrons could be improved by including a realistic temperature dependence of

the transport coefficients. So a realistic evaluation of these quantities is essential to obtain

the proper temperature profile and consequently the cooling laws of the evolving system. In

addition it is found that the relaxation times of the bulk viscous flow and the heat flow to be
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of similar magnitude to that of the shear viscous flow which suggests that they should all be

taken into consideration in dissipative hydrodynamic simulations.
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Chapter 7

Drag and Diffusion of hidden charm

mesons in hadronic medium

7.1 Introduction

The experimental evidence of J/ψ suppression by NA50 [1], NA60 [2] as well as by the

PHENIX [3] collaboration has long been suggested as a signal of quark-gluon plasma for-

mation in heavy ion collisions [4, 5]. However, other mechanisms based on J/ψ absorption by

comoving hadrons have also been proposed as an alternative suppression mechanism to explain

the phenomenon [6]. In this connection the inelastic scattering rates of J/ψ in the hadronic

phase have been investigated with the help of different effective hadronic models [7, 8, 9]. In

addition, the opening of J/ψ → DD decay in the medium due to in-medium modification of D

mesons [10, 11] may also play a significant role in J/ψ suppression in a hadronic environment.

Heavy quark transport in hadronic matter is a topic of high contemporary interest [12, 13, 14,

15, 16, 17]. The drag and diffusion of open charm [14] and bottom [16] mesons and the role of

hadronic matter in their suppression in heavy ion collisions [18] have been investigated using

effective hadronic interactions based on heavy quark effective theory. The suppression of heavy

flavour in the hadronic phase was found to be more significant at RHIC than at LHC suggesting
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that the characterization of QGP at LHC could be less complicated than at RHIC. Recently

the drag and diffusion of the Λc baryon are also obtained in hadronic matter [19] and found to

be significant. In fact, the drag of the Λc being lower than that of the D mesons was seen to

non-trivially affect the pT dependence of the Λc/D ratio and thus the RAA of single electrons

originating from the decay of Λc. Motivated by these interesting results we evaluate in this

work the drag and diffusion of hidden charm mesons J/ψ and ηc and study their dependence

with temperature.

In the next few section the formulae for the drag and diffusion coefficients will be provided

followed by a discussion on the matrix elements of elastic scattering of the J/ψ with the light

vector mesons. Finally in the result section the drag and diffusion coefficients will be given for

J/ψ and ηc.

7.2 Formalism

The drag (γ) and diffusion (D) coefficients of J/ψ are obtained from the elastic scattering of

J/ψ with the light thermal hadrons (H) which constitute the equilibrated thermal medium.

For the process J/ψ(p1) +H(p2) → J/ψ(p3) +H(p4), the drag γ can be expressed as [20]:

γ = piAi/p
2 (7.1)

where Ai is given by

Ai =
1

2Ep1

∫
d3p2

(2π)3Ep2

∫
d3p3

(2π)3Ep3

∫
d3p4

(2π)3Ep4
1

gJ/ψ

∑
|M |2(2π)4δ4(p1 + p2 − p3 − p4)

f(p2){1 ± f(p4)}[(p1 − p3)i] ≡ 〈〈(p1 − p3)〉〉 ,

(7.2)

gJ/ψ is the statistical degeneracy of the probe particle, J/ψ. The thermal distribution function

f(p2) of the hadron H in the incident channel takes the form of Bose-Einstein or Fermi-Dirac

distribution depending on its spin and the terms 1±f(p4) are their corresponding Bose enhanced
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or Pauli blocked phase space factor in their final states. The drag coefficient of Eq.(8.1) is just

a measure of the thermal average of the momentum transfer, p1 − p3 weighted by the square of

the invariant amplitude | M |2.

In a similar way, the diffusion coefficient D can be defined as:

D =
1

4

[
〈〈p2

3〉〉 −
〈〈(p1 · p3)

2〉〉
p2

1

]
. (7.3)

With an appropriate choice of T (p3) both the γ and D can be obtained from a single expression,

which is given by

≪ T (p1) ≫=
1

512π4

1

Ep1

∫ ∞

0

p2
2dp2d(cosχ)

Ep2

f̂(p2){1 ± f(p4)}
λ

1
2 (s,m2

p1
, m2

p2
)√

s

∫ −1

1

d(cosθc.m.)

1

g

∑
|M |2

∫ 2π

0

dφc.m.T (p3) (7.4)

where λ(s,m2
p1, m

2
p2) = (s−m2

p1 −m2
p2)

2 − 4m2
p1m

2
p2 is the triangular function.

7.3 Dynamics

The hot hadronic matter produced in the later stages of relativistic heavy ion collisions is

populated by light pseudoscalars and vector mesons like π,K, η, ρ, ω and φ. The magnitude of

such scatterings are estimated either by introducing different perturbative or non-perturbative

approach at quark level [21, 22] or by using an effective Lagrangian to calculate Feynman

diagrams. Concerning the latter approach, SU(4) is the smallest possible symmetry group

which includes the charmonium state explicitly along with the light and heavy pseudoscalar

and vector mesons.

The corresponding pseudoscalar and vector meson matrices and as well as the chiral Lagrangian

is explicitly given in works like [23, 24]. However since SU(4) symmetry is badly broken by

the large mass of the charmed meson, terms involving hadron masses are included to the chiral

Lagrangian using the experimentally determined values.
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Since pions are identified with the Nambu-Goldstone bosons of QCD their interaction strength

with other particles should abruptly decrease in the chiral limit. We recall the standard rela-

tion [25, 26] for the s-wave scattering length of pion with a heavy meson like say J/ψ,

a
πJ/ψ
l=0 = −(1 +

mπ

mJ/ψ

)−1 mπ

4πF 2
π

~Iπ · ~IJ/ψ + O(m2
π), (7.5)

with the dot product defined as,

~Iπ · ~IJ/ψ =
1

2
[I(I + 1) − IJ/ψ(IJ/ψ + 1) − Iπ(Iπ + 1)]. (7.6)

Iπ, IJ/ψ are respectively the isospin quantum numbers of the pion and J/Ψ and I represents their

total isospin quantum number. In the chiral limit (mπ → 0), the first term of eq.(7.5) exactly

vanishes. When the other hadron is much heavier like J/ψ or ηc, this term in (7.5) vanishes

exactly, not only in the chiral limit but also for finite pion mass (because ~Iπ · ~IJ/Ψ = 0). Hence

the contribution of the pion in the charmonium scattering length starts from O(m2
π), which

shows that at least at low energy the pion-charmonium interaction should be very weak. To

support this argument we refer to the calculations of the meson exchange model of Haglin et.al

[23]. From their calculations we can see that the elastic channels of J/Ψ interaction involving

the light pseudoscalars are significantly smaller in comparison with the vector mesons. They

suggest that π, η, and K elastic cross sections with J/Ψ are of order 100 fb, 1 nb and 100 nb

respectively. On the other hand the contributions for elastic scattering with ρ, ω and φ mesons

are quantitatively much larger, up to about a few mb. We hence consider the elastic scattering

of the heavy charmonium states like J/Ψ and ηc with vector mesons only. These processes

involve vector-vector-pseudoscalar interactions which are not present in the chiral Lagrangian.

The relevant effective interaction describing J + V → ηc → J/Ψ + V processes [23] is

LJV ηc = gJV ηcǫαβσδ{∂αJ/Ψβ}{∂σV δ}ηc (7.7)

where gJV ηc = 2.44 GeV−1, 7.03 GeV−1 and 4.51 GeV−1 for V = ρ, ω and φ respectively [23].

The s and u channel diagrams for the process J/Ψ + V → ηc → J/Ψ + V are shown in the

panels (A) and (B) of Fig.7.1. The matrix elements for the two channels are respectively given
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Figure 7.1: The s and u channel of J/ψ-V scattering via ηc exchange are respectively depicted

in diagrams (A) and (B). Diagrams (C) and (D) are the same for the ηc-V scattering via J/ψ.

by,

Ms = −g2
JV ηc

[εβ(p1)ε
δ(p2)ε

∗β1(p3)ε
∗δ1(p4)

ǫαβσδp
α
1p

σ
2ǫα1β1σ1δ1p

α1
3 p

σ1
4 ]/(s−m2

ηc
) (7.8)

and

Mu = −g2
JV ηc

[εβ(p1)ε
∗δ(p4)ε

δ1(p2)ε
∗β1(p3)

ǫαβσδp
α
1p

σ
4ǫα1β1σ1δ1p

σ1
2 p

α1
3 ]/(u−m2

ηc
). (7.9)

The modulus square of the spin averaged total amplitude for the processes of J/Ψ+V → ηc →
J/Ψ + V is given by the following expression,

|M |2 = |Ms|2 + |Mu|2 + 2MsM∗
u (7.10)
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where the respective terms in the expression are given by

|Ms|2 =
g4
JV ηc

36(s−m2
ηc

)2
λ2(s,m2

J/ψ, m
2
V )

|Mu|2 =
g4
JV ηc

36(u−m2
ηc

)2
λ2(u,m2

J/ψ, m
2
V )

MsM∗
u =

g4
JV ηc

9(s−m2
ηc

)(u−m2
ηc

)
I.

where,

I =
1

8
[m8

J + s4 + 2s3(t− 2m2
V ) + 2sm4

V (t− 2m2
V )

−4m6
J (s+m2

V ) +m4
V (t2 +m4

V )

+s2(t2 − 4tm2
V + 6m4

V )

+m4
J(6s

2 + t2 + 6m4
V + 2s(t+ 2m2

V ))

−2m2
J{2s3 + 2s(t−m2

V )(s+m2
V )

+m2
V (t2 + 2m4

V )}].

and λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx is the triangular function.

Next the s and u channel diagrams of the ηc meson scattering with the thermalized vector

mesons by exchanging J/Ψ are shown in the panels (C) and (D) of Fig. 7.1. The respective

matrix elements are given by

Ms = −g2
JV ηc

[εδ(p2)ε
∗δ1(p4)ǫαβσδ(p1 + p2)

αpσ2

ǫα1β1σ1δ1(p1 + p2)
α1pσ1

4 ]{−gββ1 +

(p1 + p2)
β(p1 + p2)

β1

m2
J

}/(s−m2
J) (7.11)

and

Mu = −g2
JV ηc

[ε∗δ(p4)ε
δ1(p2)ǫαβσδ(p1 − p4)

αpσ4

ǫα1β1σ1δ1(p1 − p4)
α1pσ1

2 ]{−gββ1 +

(p1 − p4)
β(p1 − p4)

β1

m2
J

}/(u−m2
J ) (7.12)
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The spin averaged modulus square of total amplitude for the processes ηc+V → J/ψ → ηc+V

are given by

|M |2 = |Ms|2 + |Mu|2 + 2MsM∗
u (7.13)

where

|Ms|2 = (g4
JV ηc

/3){s
4
(t− 4m2

V )(s+m2
V −m2

ηc
)2

+
1

8
(s+m2

V −m2
ηc

)4

+
s2

4
(t2 − 4tm2

V + 8m4
V )}/(s−m2

J)
2.

|Mu|2 = (g4
JV ηc

/3){u
4
(t− 4m2

V )(u+m2
V −m2

ηc
)2

+
1

8
(u+m2

V −m2
ηc

)4

+
u2

4
(t2 − 4tm2

V + 8m4
V )}/(u−m2

J )
2.

and

MsM∗
u = (g4

JV ηc
/3)

1

8
[m8

ηc
+m8

V + s4 − 4m6
ηc

(m2
V + s)

+2m4
V s(3s− t) + 2s3t− st3 +m6

V (−4s+ 2t)

−2m2
V s(2s

2 + st− 2t2)

+2m4
ηc
{3m4

V +m2
V (2s+ t) + s(3s+ t)}

−2m2
ηc
{2m6

V − 2m2
V s(s− 2t) − 2m4

V (s− t)

+s(2s2 + 2st− t2)}]/(s−m2
J)(u−m2

J ).

Using these scattering amplitudes in eq. (7.4) we obtain the drag and diffusion coefficients of

the J/Ψ and ηc mesons in hadronic matter.

The low-energy interactions of J/Ψ (as well as ηc) with π, ρ or N have been investigated by

Yokokawa et. al [?] in the quenched lattice framework. From the scattering lengths, a (say) of

J/Ψ interacting with light hadrons H (where H = π, ρ and N) we can extract the dimensionless

threshold, the T -matrix element by using the relation

T = 4π(mJ +mH)a . (7.14)
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Using these |T |2 in place of |M |2 in Eq. (7.4), we can get an alternative estimation of the

diffusion (and drag) coefficients of J/Ψ as well as ηc mesons in hadronic matter. The extracted

values of T from a (in fm) are given in Table I.

J/Ψπ J/Ψρ J/ΨN

a(fm) 0.01 ± 0.003 0.23 ± 0.04 0.71 ± 0.4

T 2 ± 0.4 50 ± 15 180 ± 120

ηcπ ηcρ ηcN

a(fm) 0.01 ± 0.003 0.21 ± 0.1 0.5 ± 0.6

T 2.2 ± 0.6 50.20 ± 25 174.85 ± 150

Table 7.1: Table showing the extracted values of T-matrix from the spin averaged values of

scattering length, a, which are obtained in the framework of quenched lattice calculation by

Yokokawa et. al [?].

7.4 Results

We begin this section by plotting in Fig. 7.2 the drag coefficients of the J/ψ (solid line) and ηc

mesons (dashed line) as a function of temperature.

In Fig. 7.3 the corresponding results for the case where the amplitudes are extracted from

scattering lengths are shown. Not much difference is seen between the J/Ψ and ηc in this case.

As mentioned before the drag is a measure of the momentum transfer between the J/Ψ and

the thermal hadrons weighted by the interactions implemented through |M |2. The average

momentum of the bath particles increase with temperature. Therefore, the thermal hadrons

gain the ability to transfer larger momentum through interactions as the temperature of the

bath increases. This causes the rise of drag at high temperatures both for J/Ψ and ηc.
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Figure 7.2: The drag coefficient (γ) as a function of temperature calculated in the effective

Lagrangian approach.

Let us now show results for the diffusion coefficient D. This is plotted against T in Figs. 7.4 and

7.5 respectively corresponding to the effective Lagrangian and scattering length approaches. In

addition to the results of direct calculation using eq. (7.4), also shown are the results using

the fluctuation-dissipation theorem (in red). As for the earlier case of the drag coefficient, the

diffusion in the scattering length approach is similar for the J/Ψ and ηc mesons. The rise of

diffusion coefficients with increasing temperature has the same origin as that of drag coefficients

as explained above.

7.5 Discussions

The momentum suppression of J/Ψ at high momenta in nuclear collisions compared to proton-

proton collision may be approximately estimated as, RAA ∼ e−∆τ γ [13], where ∆τ is typically

the life time of the hadronic phase. Taking ∆τ ∼ 5 fm/c and γ ∼ 10−4 one finds that RAA is

close to unity. Thus the hadronic phase appears to play no significant role in the suppression of

J/ψ at high pT . Therefore, if a significant suppression is observed that will indicate the presence

of QGP in the evolving fireball produced in heavy ion collisions at relativistic energies.

So the drag and diffusion coefficients of J/ψ and ηc in a hot hadronic medium using effective

field theory and T matrices have been estimated. The values of these transport coefficients
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Figure 7.3: The drag coefficient (γ) as a function of temperature obtained using scattering

lengths.

turn out to be small compared to the values obtained for open charmed hadrons for the tem-

perature range relevant for the hadronic phase expected to be formed in the later stages of the

evolving matter produced in nuclear collisions at RHIC and LHC energies. It is found that the

momentum suppression of J/Ψ and ηc are not significant in the hadronic phase. Therefore,

such a suppression if observed experimentally will possibly indicate creation of QGP in heavy

ion collisions at relativistic energies.
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Figure 7.4: The diffusion coefficient (D) as a function of temperature calculated in the effective

Lagrangian approach.
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Figure 7.5: The diffusion coefficient (D) as a function of temperature obtained using scattering

lengths.
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Chapter 8

Effect of viscosity on the photon

spectra

8.1 Introduction

Nuclear collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC)

energies are aimed at creating a thermalized state of quarks and gluons called quark gluon

plasma (QGP). The weakly interacting picture of the QGP stems from the perception of asymp-

totic freedom of QCD at high temperatures and densities. However, the experimental data from

RHIC [1, 2, 3, 4] especially the measured elliptic flow of hadrons indicate that the matter pro-

duced in Au+Au collisions exhibit properties which are more like a strongly interacting liquid

than a weakly interacting gas. The magnitude of the transport coefficients can be used to un-

derstand the strength of the interaction within the QGP. Therefore, the study of the transport

properties of QGP and hot hadrons is of paramount importance in characterizing the matter

formed in heavy ion collisions (HIC) at relativistic energies. For example, the shear viscosity or

the internal friction of the fluid symbolizes the ability to transfer momentum over a distance of

about one mean free path. In a system where the constituents interact strongly the transfer of

momentum is performed easily - resulting in lower values of η. Consequently such a system may
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be characterized by a small value of η/s where s is the entropy density. On the other hand, for a

weakly interacting system the momentum transfer between the constituents becomes strenuous

which gives rise to large η. The importance of viscosity also lies in the fact that it damps out

the variation in the velocity and makes the fluid flow laminar. A very small viscosity (large

Reynold number) may make the flow turbulent. A lower bound on the value of η/s has been

found using AdS/CFT [5] (see also [6]).

Collisions between nuclei at ultra-relativistic energies produce charged particles - either in the

hadronic or in the partonic state, depending on the collision energy. Interactions among these

charged particles produce photons, both real and virtual. Because of their nature of interaction,

the mean free path of photons in the medium (hadronic or partonic) is large compared to the

size of the system formed in HIC. Therefore, photons emanating from such a system brings

out the information of the source point very efficiently [7, 8, 9] (see [10, 11, 12] for review) and

hence electromagnetic probes (photons and lepton pairs) may play crucial role in extracting

the transport coefficients.

The effects of viscosity on the photon spectra resulting from HIC enter through two main

factors: (a) the modification of the phase space factors of the constituents of the medium due

to the deviation of the system from equilibrium and (b) the space time evolution of the matter

governed by dissipative hydrodynamics. One more important issue deserves to be mentioned

here. Normally, the initial temperature (Ti) and the thermalization time (τi) are constrained

by the measured (final) hadron multiplicity (dN/dy). This approach is valid for a system where

there is no viscous loss and the time reversal symmetry is valid. However, for a viscous system

the entropy at the freeze-out point (which is proportional to the multiplicity) contains the

initially produced entropy as well as the entropy produced during the space time evolution due

to non-zero shear and bulk viscosities. Therefore, the amount of entropy generated during the

evolution has to be subtracted from the total entropy at the freeze-out point and the remaining

part which is produced initially should be used to estimate the initial temperature. As a result

for a given dN/dy (which is associated with the freeze-out point) and τi the value of Ti will be

lower in case of viscous dynamics compared to ideal flow.
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Effects of viscosity on the transverse momentum distribution of photons was earlier considered

in [13, 14] and recently the interest in this field is renewed [15, 16, 17]. Beyond a certain thresh-

old in collision energy the system is expected to be formed in the QGP phase which eventually

makes a transition to the hadronic matter. The measured spectra contain contributions from

both QGP and hadronic phases. Therefore, it becomes imperative to estimate photon emission

with viscous effects from QGP as well as hadronic matter and identify a kinematic window

where photons from QGP dominate. While in some of the earlier works [15, 16, 17] contribu-

tions from hadrons were ignored, in others [13, 14] the effects of dissipation on the phase space

factors were omitted. In the present work we show that if the effects of viscosity are taken into

account both on the phase space factor as well as in the space-time evolution self consistently

then the photon spectra alter from the ideal scenario by a quantatively small but finite amount.

8.2 Production of thermal photons

The transverse momentum (pT ) distribution of photons from a reaction of the type: 1+2 → 3+γ

taking place in a thermal bath at a temperature, T is given by [18]:

E
dR

d3p
=

N
2(2π)8

∫
d3p1

2E1

d3p2

2E2

d3p3

2E3
f1f2(1 ± f3)

δ(4)(p1 + p2 − p3 − p)|M|2 (8.1)

where R is the number of photon produced per unit four-volume, N is the overall degeneracy

for the reaction under consideration and pi, Ei and fi(Ei) are the three-momentum, energy

and thermal phase space factors of the particle i (either parton or hadron). |M|2 is the square

of the invariant amplitude for the process under consideration. After some straight forward

algebra Eq. 8.1 can be simplified to (see Appendix A):

dR

d2pTdy
=

N
16(2π)8

∫
p1Tdp1Tdp2Tdφ1dy1dy2

f1f2(1 ± f3) ×
|M|2

|p1T sin(φ1 − φ2) + pT sinφ2|φ2=φ0
2

(8.2)

The collision of nuclei at RHIC and LHC energies is expected to produce QGP. Once created the

QGP, with high internal pressure will undergo rapid expansion. Consequently it will cool down
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and make a transition to hadrons at a temperature, Tc. Thermal equilibrium is maintained

in the hot hadronic phase till the freeze-out point (achieved at a temperature, TF ) where the

mean free path of the hadrons is too large for collisions to take place.

The measured photon spectra (dN/d2pTdy) is the yield obtained after performing a space-

time integration over the entire evolution history - from the initial state to the freeze-out point.

Therefore, Eq. 8.2 needs to be integrated over the four volume to connect the theoretical results

with experiments:
dN

d2pTdy
|y=0=

∑

i=Q,H

∫
d4x

[
dR

d2pTdy
|y=0

]

i

(8.3)

where i ≡ Q and H represents QGP and hadronic phases respectively. The effects of vis-

cosity enter the photon spectra through the space time evolution governed by the dissipative

hydrodynamics and the phase space factors, fi in Eq. 8.2.

8.2.1 Thermal photons from QGP

The contribution from QGP to the spectrum of thermal photons due to annihilation (qq̄→gγ)

and Compton (q(q̄)g → q(q̄)γ) processes have been calculated in [19, 20] using hard thermal loop

(HTL) approximation [21]. Later, it was shown that photons from the processes [22]: gq→gqγ,

qq→qqγ, qqq̄→qγ and gqq̄→gγ contribute in the same order O(ααs) as the Compton and

annihilation processes. The complete calculation of emission rate from QGP to O(ααs) has been

performed by resumming ladder diagrams in the effective theory [23, 24, 25]. However, in the

present work we consider only the Compton and annihilation processes for photon production.

We expect that the shift in the photon spectra from the ideal to the viscous scenario will

not alter drastically due to the replacement of the Compton + annihilation rates by the rate

obtained in Ref. [23, 24, 25].
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8.2.2 Thermal photons from hadronic matter

In heavy ion collisions at relativistic energies the production of charged hadrons and hence

photons from hadronic matter is inevitable. Therefore, the inclusion of hadrons is mandatory

to study the viscous effects on photon production in HIC. This has been neglected in some of the

recent works [15, 16, 17]. Here, we have considered a set of hadronic reactions with all possible

iso-spin combinations to evaluate production of photons [26, 27, 28, 29] from hadronic matter.

These are (i) π π → ρ γ, (ii) π ρ → πγ (with π, ρ, ω, φ and a1 in the intermediate state [28]),

(iii)π π → η γ and (iv) π η → π γ, ρ → π π γ and ω → π γ. The corresponding vertices are

obtained from various phenomenological Lagrangians described in detail in Ref. [26, 27, 28].

We have also included dipole form factors as in [29] to take into account the finite size of the

hadrons.

8.3 Viscous correction to the distribution function

We assume that the system is slightly away from equilibrium which relaxes back to equilibrium

through dissipative processes. Here we briefly recall the main considerations leading to the

commonly used form for the first viscous correction, δf to the phase space factor, f defined as

follows [30]:

f(p) = f0(1 + δf)

= f0

(
1 +

pαpβ

2T 3
[C〈∇αuβ〉 + A∆αβ∇.u]

)
(8.4)

where f0 is the equilibrium distribution function, 〈∇αuβ〉 ≡ ∇αuβ +∇βuα− 2
3
∆αβ∇γu

γ, ∆αβ =

gαβ−uαuβ, ∇α = (gαβ−uαuβ)∂β , uµ being the four-velocity of the fluid. The coefficients C and

A can be determined in the following way. Substituting f in the expression for stress-energy

tensor, T µν we get,

T µν =

∫
d3p

(2π)3E
pµpνf0(1 + δf)

= T µν0 + ∆T µν (8.5)
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where T µν0 = (ǫ+ P )uµuν − gµνP is the energy momentum tensor for ideal fluid. From general

considerations [31] the dissipative part can be written as

∆T µν = η〈∇µuν〉 + ζ∆µν∇ · u (8.6)

Equating the part containing δf from (8.4) with (8.6), C and A can be expressed in terms of

the coefficients of shear (η) and bulk (ζ) viscosities respectively in terms of which the phase

space distribution for the system can be written as:

f = f0

(
1 +

η/s

2T 3
pαpβ〈∇αuβ〉 −

ζ/s

5T 3
pαpβ∆αβ∇ · u

)
(8.7)

For a boost invariant expansion this can be simplified to get,

f = f0[1 + δfη − δfζ ] (8.8)

where

δfη =
η/s

3T 3τ
(p2
T − 2p′ 2z ) (8.9)

and

δfζ =
ζ/s

5T 3τ
(p2
T + p′ 2z ) (8.10)

where p′z = mT sinh(y− η) is the z-component of the momentum in the fluid co-moving frame.

The phase space distribution with viscous corrections (8.8) thus enters the production rate of

photons through Eq. 8.2.

8.4 Expansion dynamics

As mentioned before the pT distribution of thermal photons is obtained by integrating the

emission rate over the evolution history of the expanding fluid. Second order relativistic viscous

hydrodynamics has been used here as a tool for the space-time dynamics of the fluid. The

evolution equation within the framework of second order relativistic fluid dynamics [32, 33] for

a boost invariant expansion [34] can be written as [35]

dT

dτ
= − T

3τ
+

Φ

12aT 3τ
(8.11)
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Figure 8.1: Variation of temperature with proper time for different phases for various values of

the shear viscosities. Inset shows the effect of viscosity on the cooling of the QGP phase (in an

amplified scale) for different values of η/s.

and
dΦ

dτ
= −2aTΦ

3b
− Φ

(
1

2τ
− 5

2T

dT

dτ

)
+

8aT 4

9τ
(8.12)

where T is the temperature, τ is the proper time, Φ is the traceless part of the viscous stress

tensor, a is a constant related to the statistical degeneracy g as a = π2g/30 and b = η/T 3. We

assume that the system is formed in QGP phase after HIC at time τi with initial temperature,

Ti. The value of Φ(τi) is taken as (4/3)(η/si)(si/τi) where si is the initial entropy density.

Eqs. 8.11 and 8.12 have simultaneously been solved numerically with lattice QCD Equation of

State (EoS) [36] to get the variation of temperature with proper time required to evlaute the

photon spectra originating from the evolving matter.

In a realistic scenario, the value of η may be different for QGP [37, 38, 39, 40, 41] and hadronic

[42, 43, 44, 45] phases. However, in the present work we take the same value of η/s both for

QGP and hadronic matter.
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8.5 Results

In case of an ideal fluid, the conservation of entropy implies that the rapidity density dN/dy is a

constant of motion for the isentropic expansion [34]. In such circumstances, the experimentally

observed (final) multiplicity, dN/dy may be related to a combination of the initial temperature

Ti and the initial time τi as T 3
i τi. Assuming an appropriate value of τi(taken to be ∼ 0.6 fm/c

in the present case), one can estimate Ti.

For dissipative systems, such an estimate is obviously inapplicable. Generation of entropy

during the evolution invalidates the role of dN/dy as a constant of motion. Moreover, the

irreversibility arising out of dissipative effects implies that estimation of the initial temperature

from the final rapidity density is no longer a trivial task. We can, nevertheless, relate the

experimental dN/dy to the freeze-out temperature, TF and the freeze-out time, τf by the

relation,
dN

dy
= πR2

A4aHT
3
F τf/κ (8.13)

where RA is the radius of the colliding nuclei(we consider AA collision for simplicity) and κ is

a constant ∼ 3.6 for massless bosons.

To estimate the initial temperature for the dissipative fluid we adopt the following algorithm.

We treat Ti as a parameter; for each Ti, we let the system evolve forward in time under the

condition of dissipative fluid dynamics (Eqs. 8.11 and 8.12) till a given freeze-out temperature

TF is reached. Thus τf is determined. We then compute dN/dy at this instant of time from

eq. 8.13 and compare it with the experimental dN/dy. The value of Ti for which the calculated

dN/dy matches the experimental number is taken to be the value of the initial temperature.

Once Ti is determined the evolution of the system from the initial to the freeze-out stage is

determined by the simultaneous solution of Eqs. 8.11 and 8.12. We found that the amount

of entropy generated during the evolution - from initial state to the freeze-out state is about

30% of the initial entropy for η/s = 1/4π, which will have crucial consequences on the photon

spectra.
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In Fig. 8.1 we display the variation of temperature with proper time. It is clear from the results

shown in the inset (Fig. 8.1) that initial temperature for system which evolves with non-zero

viscous effects is lower compared to the ideal case for a fixed dN/dy. This is because for a

non-viscous isentropic evolution scenario the multiplicity (measured at the freeze-out point) is

fixed by the initial entropy. However, for a viscous evolution scenario the generation of entropy

due to dissipative effects contributes to the entropy (proportional to multiplicity). Therefore,

for a given multiplicity at the freeze-out point one requires lower initial entropy and hence a

lower initial temperature. It is also seen (Fig. 8.1) that the cooling of the system is slower for

viscous dynamics due to the extra heat generated during the evolution.

8.5.1 Photon spectra

In this section we present the shift in the pT distribution of the photons due to viscous effects.

The integrand in Eq. 8.3 is a Lorentz scalar, consequently the Lorentz transformation of the

integrand from the laboratory to the co-moving frame of the fluid can be effected by just

transforming the argument, i.e. the energy of the photon (E = pT cosh y) in the laboratory

frame should be replaced by uµp
µ in the co-moving frame of the fluid, where pµ is the four

momentum of the photon and uµ is fluid four velocity.

The results presented here are obtained with vanishing bulk viscosity. The effects of viscosity

enters into the photon spectra through the phase space factor as well as through the space

time evolution. We would like to examine these two effects separately. For convenience we

define two scenarios: (i) where the effects of viscosity on the phase space factor is included (δfη

is non-zero in Eq. 8.8), but the viscous effects on the evolution are neglected (ideal Bjorken

hydrodynamics [34]) and (ii) the effects of η 6= 0 are taken into account in the phase space

factors as well as in the evolution dynamics.

Before presenting the results we estimate the value of pT beyond which the viscous corrections

become comparable (or more) to the equilibrium emission. In Fig. 8.2 the ratio of the transverse

momentum distribution of thermal photons with the equilibrium distribution to that with the
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viscous corrections is plotted against pT . The results indicate that the viscous corrections

become close to the equilibrium production for pT ∼ 3.5 GeV. Therefore, we set the maximum

value of pT = 3 GeV in presenting the pT spectra of photon.

The space time integrated photon yield originating from the QGP in scenario (i) is displayed

in Fig. 8.3. Note that the value of the initial temperatures for the results displayed in Fig. 8.3

is same for all η/s because the viscous effects on the evolution is ignored in scenario (i). The

viscous effects on the pT distribution of the photons is distinctly visible. The higher values of

η/s make the spectra flatter through the pT dependence of the correction, δfη. Next we assess

the effects of viscosity on photon spectra for scenario (ii). In Fig. 8.4 we depict the photon

spectra for various values of η/s. In this scenario the value of Ti is lower for higher η/s for

reasons described above. As a result the enhancement in the photon production due to change

in phase space factor, δfη is partially compensated by the reduction in Ti for non-zero η, which

can be clearly seen by comparing the results displayed in Figs. 8.3 and 8.4.

0 1 2 3 4
pT(GeV)

0

0.5

1

1.5

2

(d
N

/d
2 p T

dy
) δf

/(
dN

/d
2 p T

dy
) f0

Figure 8.2: The pT dependence of the ratio of the transverse momentum distribution of thermal

photons with the equilibrium distribution to the viscous correction.

In Figs. 8.5 and 8.6 we exhibit results for the hadronic phase for scenarios (i) and (ii) re-

spectively. The effects of dissipation on the pT distribution of photons from hadronic phase

is qualitatively similar to the QGP phase but quantitatively small. The (small) change in the

spectra due to the change in the phase space factor (in scenario (i)) can not be compensated
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by taking into account the viscous effects in the evolution (scenario (ii)) for fixed Tc and TF for

all values of η/s considered. Therefore, as indicated in Figs. 8.5 and 8.6, we observe similar

effects for scenario (i) and (ii).

1 1.5 2 2.5 3
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Figure 8.3: Transverse momentum distribution of thermal photons from QGP for various values

of η/s in the scenario (i).

Finally in Figs. 8.7 and 8.8 we plot the pT spectra of photons for the entire life time of the

thermal system obtained by summing up contributions from QGP and hadronic phases for

different values of η/s for scenarios (i) and (ii) respectively. The enhancement in the spectra

due to dissipative effects in the phase space factors (Fig. 8.7) are compensated by the reduction

in Ti and viscous evolution (Fig. 8.8). The results depicted in Fig. 8.8 indicate that the shift in

the photon spectra due to viscous effects is small. The change in the spectra for η/s = 0 and

η/s = 1/4π is within the error-bars in the photon spectra measured by PHENIX collaborations

[46].

In Fig. 8.9 we display the experimental data measured by PHENIX collaboration in Au+Au

collision (0 − 20% centrality) at
√
sNN = 200 GeV. The data contains contributions from the

(i) photons produced in the hard collision processes of the energetic partons from colliding

nuclei and (ii) contrubitions from the thermal system formed after the Au+Au collisions. The

contributions from the decays, e.g. π0 → γγ, η → γγ etc have been subtracted out from the

data. The contributions from pp collisions at a given collision energy can be used as a bench-
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mark to estimate the hard contributions. To estimate the thermal contributions we adopt

the following procedure. Thermal contributions=experimental data from heavy ion collision

provided by PHENIX collaboration minus Ncoll× contributions from pp collisions, where Ncoll

is the number of nucleon-nucleon interactions in the heavy ion collisions for 0− 20% centrality.

The data is well described by the contributions from (i) (solid line) for pT above 2 GeV.

Therefore, the scope of reproducing the data by photons from thermal processes is limited

to pT . 2 GeV. Thermal contributions, (ii) has been evaluated (see [48] for details) with

the transverse expansion of the system described by ideal hydrodynamical model [47] with

cylindrical symmetry and boost invariance along longitudinal direction. Here the value of

TF = 140 MeV is constrained to reproduce the charged pion and kaon spectra. The result is

shown by dot-dashed line in Fig. 8.9 which contains contributions from both (i) and (ii). The

radial flow of the matter provides transverse kick to the photons [49]. It is shown in [51] that

the difference in radial kick for scenarios with and without viscosity is small for low pT (. 2

GeV) domain [51]. Therefore, we expect that the shift in the transverse momentum spectra of

thermal photons obtained with longitudinal expansion will not change much by the introduction

of the radial flow. In this spirit we multiply the spectra obtained with radial flow (within the

ambit of ideal hydrodynamics, shown in Fig. 8.9 by dot-dashed line) by the shift due to viscous

effects obtained within the framework of longitudinal hydrodynamics. The result obtain in

this scenario is added with hard contributions and displayed in Fig. 8.9(dotted line). The plot

clearly shows that the relative shift in the spectra with viscous effect is much smaller than the

error bar of the PHENIX data. This indicates that the shift due to viscous effects can not be

observed through photon spectra with present experimental statistics.

The formalism discussed above has been applied to estimate the shift in the transverse mo-

mentum distribution [52] of pions due to the presence of shear viscosity. The results have been

depicted in Fig. 8.10. The spectra has been normalized to unity at pT = 0, which dose not

affect the conclusion as we are interested in the shift in the spectra due to viscous effects. The

effects seem to be more prominent in the hadron spectra than in the transverse momentum

distribution of photons.
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Figure 8.4: Transverse momentum distribution of thermal photons from QGP for various values

of η/s in the scenario (ii).

8.6 Summary and Discussions

We have studied the effects of viscosity on the evolving QGP produced in nuclear collisions at

RHIC energies. The generation of entropy due to dissipation on the final (experimentally mea-

sured) multiplicity has been taken into account. The initial temperature has been constrained

by the multiplicity (entropy) at the freeze-out point. The viscous effects on the photon spectra

has been introduced consistently through the evolution dynamics and phase space factors of

all the particles participating in the production processes. The role of hadrons in studying

the viscous effects on the photon production has been considered in contrast to some recent

works. We observe that the effects of the shear viscosity on the photon spectra originating

from QGP is small in contrast to the results obtained earlier. This is because the enhancement

due to the dissipative effects entering the production rate through the phase space factors are

partially balanced by the reduction in the emission rate due to smaller initial temperature. We

have evaluated the photon spectra with transverse expansion within the framework of ideal

relativistic hydrodynamics with cylindrical symmetry and boost invariance along longitudinal

direction. The spectra so obtained is multiplied by the shift realized due to viscous effects on

the photon spectra calculated for a longitudinally expanding system to retrieve the yield with

viscous radial expansion. Recently it is shown that (using (2+1)D hydrodynamics) the effects
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Figure 8.5: Transverse momentum distribution of photons from thermal hadrons for various

values of η/s in the scenario (i).

of shear viscosity on hadron spectra is small for low pT . In the light of this result, the proce-

dure followed here to estimate the photon spectra with viscous effects for a radially expanding

system may be considered as a good approximation. The small shift we obtained here is also

in agreement with the results obtained in Ref [50] with (3+1)D relativistic viscous evolution.

Before closing this section some comments are in order here. First, as mentioned before, for

the photon production rate from QGP we have used the Compton and annihilation processes.

We have checked that the contribution from these two processes is down by a factor of 3-

4 compared to the production rate obtained from the complete calculation of order αs done

in Ref. [23, 24, 25]. Taking these higher order processes into consideration in the present

scenario involves a reevaluation of the photon production rates with thermal distribution factors

containing viscous corrections. Secondly, we have confined only to the longitudinal flow of the

matter in the present work ignoring the transverse kick (blue shift) received by the photons

from radial flow [49]. However, both these factors will affect the photon spectra from ideal as

well as dissipative scenarios in a similar fashion. Therefore, we expect the shift in the transverse

momentum spectra of thermal photons in the presence of dissipative effects which is the main
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Figure 8.6: Transverse momentum distribution of photons from thermal hadrons for various

values of η/s in the scenario (ii).

focus of the present work, will be similar even when a more rigorous photon production rate

along with transverse expansion is employed [53].

Appendix A: Phase Space

In this appendix we derive Eq. 2 from 1.The photon production rate from the process, 1+2 →
3 + γ is given by,

E
dR

d3p
=

1

2

N
(2π)8

∫
d3p1

2E1

∫
d3p2

2E2

∫
d3p3

2E1

f1(E1)f2(E2)[1 ± f3(E3)]|M |2δ(p1 + p2 − p3 − p) (8.14)

Performing the d3p3 integration using the delta function and using d3p/E = pTdpTdydφ we get,

E
dR

d3p
=

1

16

N
(2π)8

∫
p1Tdp1Tdy1dφ1p2Tdp2Tdy2dφ2

1

E3
f1(E1)f2(E2)[1 ± f3(E3)]

|M |2δ(E1 + E2 − E3 −E) (8.15)
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Figure 8.7: Transverse momentum distribution of thermal photons from the entire evolution

history of the system for various values of η/s in the scenario (i).

where φ1 and φ2 are the angles made by the transverse momenta of first and second particles

with the transverse momentum of the emitted photon. The momentum conservation along the

z-direction: p3z = p1z + p2z − pz can be written in terms of rapidity as:

m3T sinh y3 = m1T sinh y1 +m2T sinh y2 − pT sinh y (8.16)

Now the energy, E3 can be written as:

E3 = m3T cosh y3 =
√
m2

3T +m2
3T sinh2 y3 (8.17)

Substituting Eq. 8.16 in Eq. 8.17 we get,

E3 =
√

[(m1T sinh y1 +m2T sinh y2 − pT sinh y)2 +m2
3T ] (8.18)

Considering the energy conservation (E3 = E1 + E2 − E) and writing the energies in terms of

rapidity (Ei = miT cosh yi) we get,

E3 = m1T cosh y1 +m2T cosh y2 − pT cosh y (8.19)

Equating Eqs. 8.18 and 8.19 we have,

m3T = [m2
1T +m2

2T + p2
T + 2m1Tm2T cosh(y1 − y2)

−2m1TpT cosh(y1 − y) − 2m2T pT cosh(y2 − y)]
1
2 (8.20)
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Figure 8.8: Transverse momentum distribution of thermal photons from the entire evolution

history of the system for various values of η/s in the scenario (ii).

However, we also have,

m3T = (p2
3T +m2

3)
1
2

= [(p1T + p2T − pT )2 +m2
3]

1
2

= [p2
1T + p2

2T + p2
T + 2p1T p2T cos(φ12)

−2pT p1T cos(φ1) − 2pTp2T cos(φ2)

+m2
3]

1
2 (8.21)

where,

cos(φ12) = cos(φ1) cos(φ2) + sin(φ1) sin(φ2) (8.22)

Equating Eq. 8.20 with Eq. 8.21 leads to the expression,

[(p1T cosφ1 − pT ) cosφ2 + p1T sinφ1 sin φ2] =

1

2p2T
[(m2

1 +m2
2 −m2

3) + 2m1Tm2T cosh(y1 − y2)

−2m1T pT cosh(y1 − y) − 2m2TpT cosh(y2 − y)

+2pTp1T cosφ1] (8.23)

Solving Eq. 8.23 for φ2 one gets,

φ0
2 = tan−1(

p1T sinφ1

p1T cosφ1 − pT
) − cos−1 H

2Rp2T
(8.24)
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where,

R =
√
p2

1T + p2
T − 2p1TpT cosφ1 (8.25)

and,

H = (m2
1 +m2

2 −m2
3) + 2m1Tm2T cosh(y1 − y2)

−2m1T pT cosh(y1 − y) − 2m2TpT cosh(y2 − y)

+2pTp1T cosφ1 (8.26)

Now we express the argument of the delta function in Eq. 8.15 as function of φ2 as

f(φ2) = E1 + E2 − E3 −E

= m1T cosh y1 +m2T cosh y2 − pT cosh y

−[m2
3T + (m1T sinh y1 +m2T sinh y2

−pT sinh y)2]
1
2 (8.27)
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Figure 8.10: Transverse mass distribution of pions with and without viscous effects.

and performing the φ2 integration in Eq. 8.15 we get,

E
dR

d3p
=

1

16

N
(2π)8

∫ ∞

0

p1Tdp1T

∫ ∞

0

dp2T

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2

∫ 2π

0

dφ1

f1(E1)f2(E2)[1 ± f3(E3)]

|M |2
|p1T sin(φ1 − φ2) + pT sinφ2|φ0

2

(8.28)

with the constraint

| H

2Rp2T
| ≤ 1 (8.29)

originating from | cos(φ) |≤ 1.
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Chapter 9

Summary and Outlook

In this Chapter we will briefly summarize the work reported in this thesis and then provide an

outlook that follow from the work.

In this thesis we have investigated the transport properties of the matter created in heavy ion

collisions and the effect of a thermal medium on the temperature dependence of this quanti-

ties. Motivated from the recent results of heavy ion collision experiments indicating that the

produced matter behaves as a strongly interacting liquid having small but finite values of shear

viscosity to entropy density ratio, different transport coefficients have been evaluated with an

aim to obtain a realistic temperature dependence of these quantities in hot hadronic medium.

We have studied the temperature dependence of different transport coefficients of both first and

second order in dissipative fluid dynamics for an interacting pion gas. The shear and the bulk

viscous coefficients as well as the thermal conductivity from the first order theory have been

estimated using Chapman-Enskog method and the relaxation times of dissipative flows from

the second order theory have been evaluated using Grad’s 14 moment method of the kinetic

theory of fluids.

The novelty of our work is that we have used a temperature dependent interaction cross section

instead of a constant or parameterized one as usually done in the literature. This temperature

dependence has been introduced in the cross section from first principle calculations without

196



taking any effective temperature dependent mass or decay width. Instead of estimating the

scattering amplitude from the lowest order Lagrangian of chiral perturbation theory used in

most of the literature, we have estimated the pion-pion interaction cross section by introducing

rho and sigma meson exchange, which agrees well with the experimental values and then inserted

the medium effects in the interaction cross section by modifying the propagators in the medium

accordingly. The effect of a thermal medium on ρ and σ propagation is quantified through its

self-energy, which at finite temperature is evaluated using the real time formalism of thermal

field theory. We consider the self energy loop of the ρ meson to consist of two pions or a

pion and another heavy meson like ω, h1, a1 and for σ meson two pions only. The mesons

ω, h1 and a1 all having substantial 3π and ρπ decay widths, can be considered as a multi-pion

contribution to the ρ self-energy. The cross section so obtained in a thermal medium gets

suppressed compared to the vacuum one due to the larger decay width at finite temperature.

Actually at finite temperature different scattering and decay processes occur in addition to

the two-pion decay altering the abundance of ρ and σ mesons in the medium with respect to

the vacuum. Since this cross section goes as the dynamical input for the transport processes

we have evaluated, a significant enhancement is observed in the temperature dependence of

both the first and second order transport coefficients. Moreover we have used a temperature

dependent pion chemical potential in our estimations which is required for particle number

conservation from chemical to kinetic freeze out instead of constant ones which also produce

significant effects on the temperature dependence of transport quantities.

We have also investigated other transport quantities like the drag and diffusion coefficients for

heavy mesons with charm degrees of freedom, like J/ψ and ηc in a mesonic medium of lighter

particles consisting of π, k, η, ρ, ω and φ. The drag and diffusion coefficients are obtained as a

function of temperature and the J/ψ absorption by the comoving hadrons has been investigated.

We have also shown the effects of viscosities on the photon spectra with some representative

values of η/s at RHIC energies. The effects of viscosity on the space-time evolution of quark

gluon plasma as well as hadronic matter produced in nuclear collisions at relativistic heavy ion
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collider energies have been studied, where a small change in the transverse momentum (pT )

distribution of photons is observed due to viscous effects.

The mathematical schemes we have developed so far with the tools from kinetic theory of fluid

dynamics and thermal field theory, have enabled us to furnish a hydrodynamical description

of the system created out of the heavy ion collisions. From the kinetic theory approach we

have obtained the hyperbolic equations of motion of dissipative fluxes of second order fluid

dynamics which are the Israel-Stewart equations. Though the equations can be derived from

the positive entropy change associated with irreversible processes, however the coefficients of

each term in the equations can only be explicitly estimated from kinetic theory calculations.

In this way we have obtained all the 14 equations of motion of the thermodynamic variables

including the macroscopic temperature, number density and hydrodynamic velocity of the fluid

system along its dissipative fluxes namely the shear and bulk viscous flows and heat flow,

with the explicit expressions of the coefficients which are the relaxation times and the heat-

viscous coupling lengths. Moreover within these second order transport coefficients the first

order ones such as the shear and bulk viscous coefficients and the thermal conductivity go as

inputs, which have been also evaluated explicitly. All those coefficients are evaluated at finite

temperature incorporating the effects of a thermal medium in it. In this way we have developed

a scheme of producing the hydrodynamic equations of motion of a system for a massive Bose-

Einstein gas at finite temperature. In most of the available literature the Israel-Stewart hydro

equations are provided with the coefficients that are estimated for either simple massless gases

or low mass Boltzmann gases with constant representative values of the viscous coefficients

(η/s as multiples of 1/4π). Even the temperature dependent values of viscosities and thermal

conductivity available in literature do not include the effects of a thermal medium at finite

temperature in their dynamical interactions. Hence we are trying to provide the realistic hydro

equations from first principles for an evolving system which undergoes dissipative processes.

It now remains to solve the hydro equations in order to obtain the temperature profile of the

expanding system which sets its cooling laws. Since the transport coefficients which appear in

the hydro equations play a very crucial role in their solutions we can expect that the medium
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modifications performed here have significant implication on the system’s cooling profile. Fur-

ther with these cooling laws we can construct the transverse momentum spectra of the final

state hadrons and of the electromagnetic probes as well as their collective flows. In this way

we can quantify the effects of dissipation on the bulk properties of the system created out of

the heavy ion collisions.

An exact solution of the Boltzmann equation can be obtained once the hydrodynamic equations

are solved for an evolving medium. Since in kinetic theory the out of equilibrium distribution

function is expanded in the basis of particle four-momenta with the coefficients depending on

the thermodynamic dissipative fluxes, the solution of the flux equations can give the entire out

of equilibrium distribution function. With the help of this distribution function the macro-

scopic thermodynamic quantities such as energy densities and the transverse and longitudinal

pressures of the out of equilibrium system can be exactly estimated.

Again one could extend the above calculational scheme to a multi particle system consisting of

both mesons and nucleons. The problem then turns into solving coupled transport equations

simultaneously for each component instead of just one. Moreover each equation contains as

many collision terms as contributed from the interactions between each component. For this

purpose we need to extend the single component Chapman-Enskog and Grad’s method dis-

cussed above to a multi component one. Finally it leads to a set of coupled equations which

involves a (N ×N) matrix whose elements are the interaction cross sections among respective

species of constituent particles (N being the number of components present in the fluid). Then

we need to estimate the cross section for interactions among different hadrons using effective

interactions and incorporate the effect of medium by introducing the thermal propagator at

finite temperature in each scattering channel. After obtaining the temperature dependent first

and second order transport coefficients they can be employed in the evolution equations as

before. On solving such a system of equations for a multi-component system we can obtain the

particle spectra and collective flows for a mixture of bosonic and fermionic gas which will give

us the opportunity to understand the properties of the matter created in heavy ion collisions

at a more quantitative level.
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