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SYNOPSIS

Introduction

A time machine helps us move in time as we walk or move in space. Heavy-ion Collision

(HIC) experiments are like the time-machines which help us understand Quark-Gluon Plasma

(QGP), the form of matter existed when the universe was only micro-second (µS) old. When

hadrons are subjected to an ambience of 3-4 times the density of nuclear matter (∼.16 fm−3),

the individual quarks and gluons of the hadrons would no longer be confined within them but

melt into a deconfined state of quarks and gluons. The idea that Quark Matter might form

by compressing protons and neutrons was suggested in 1970 by Naoki Itoh [1]. Just after the

discovery of asymptotic freedom [2, 3, 4], Collins and Perry [5] also suggested that at very high

density the degrees of freedom of the strongly interacting matters are not hadrons but quarks

and gluons. The same is true when the quantum chromodynamic (QCD) vacuum is excited to

high temperatures, too ([6]). With increasing temperature, new and new hadrons are produced

thereby increasing the corresponding number density; and at a certain temperature (∼ 175

MeV), there is an overlap of hadrons. Such a phase of matter is called Quark Gluon Plasma

(QGP) and its study needs QCD, the theory of strong interaction which is extremely successful

in vacuum, to be applied in a thermal medium. So, the deconfined state of quarks and gluons

gives an opportunity to peruse ‘condensed matter physics’ [7] of elementary particles in the

new domain of non-abelian gauge theory.

After big bang took place, the universe has undergone several phase transitions like GUT,

Electro-weak, quarks and gluons to hadrons etc. Quarks to hadrons phase transition can be

simulated by the present day accelerators like RHIC and LHC (200 GeV/A and ∼ 2.76 TeV/A

respectively). The study of this transition demands special importance in understanding the

evolution of the µS old early universe. The issue is very crucial for astrophysics too, as the
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core of the compact astrophysical objects like neutron stars may contain quark matter at high

baryon density and low temperature. So there is a multitude of reasons behind creating and

studying the properties of QGP in laboratories.

Once QGP is created, we must try to understand the transport properties of it. In general,

the interaction of probes with a medium brings out useful information about the nature of

the bath. The magnitudes of the transport coefficients are sensitive to the coupling strength

and so these quantities are used to characterize a medium. In the present discussion, we make

use of high energy gluons/light quarks/heavy quarks for probes. The probes interact with the

medium mainly via elastic and/or radiative processes. While for transverse momentum (pT ) ∼

2 GeV we expect elastic losses to be dominant, the radiative loss overrides in larger pT regions.

The present dissertation will mainly concentrate on radiative energy loss of high energy particle

probes inside the quark-gluon plasma medium. The integration of radiation spectrum over the

phase space yields the energy depletion due to radiation. The energy loss, thus obtained, can

be utilized to get the transport coefficients of the medium. However, before embarking upon

the discussion about the energy loss of swift partons in quark-gluon plasma, we must briefly

explain the physical scenarios and the succession of events while energy loss of a high energy

parton takes place in the QGP.

The physical scenarios behind the energy loss phe-

nomenon

Heavy ion collision is about colliding two heavy nuclei with large energies. Quarks and gluons,

the constituents of protons, neutrons etc. are also in a Lorentz boosted frame. Now, every

charge, electric or colour, in a Lorentz boosted frame acquires photons/gluons/sea quarks.

This picture of imagining the field of a rapidly (but uniformly) moving charge as collection of
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virtual particles is called the Weizsäcker-Williams picture. This picture relies on the fact that

there is a similarity between the fields of a rapidly moving charge and the fields of a pulse [8].

A violent collision of nuclei results in acceleration imparted to the moving charges. While the

fast Fourier components of the field, whose transverse momenta k ≥ a0, where a0 is the inverse

acceleration time, can manage to follow the charge, the softer part is ‘left behind’ [9]. The

Weizsäcker-Williams gluons which are now detached from the charge are regenerated along a

new direction. So, there is a radiation – the vacuum radiation of highly virtual ( Virtuality

Q ∼ pT , the transverse momentum of parton) particles.

The fast particle alongwith the associated gluons is called the jet-shower (loosely jet); and we

observe the interaction of this jet shower with the medium formed after the softer particles,

produced much after the birth of the hard partons, jostle among themselves and thermalize.

There are two main processes, the elastic and the radiative processes, by which the jet interacts

with the medium. The radiative energy loss of a representative particle in the jet-shower, called

the leading particle, calls for counting the number of gluons emitted. The more the number

of gluons given off, the more the radiative loss is. So we want the distribution of gluons for

computing the energy depletion due to radiation.

Approximations widely used in energy loss models

Finding out the radiation distribution involves kinematics and dynamics of interaction. The

dynamics is obtained by dint of the Feynman diagrams method applied for the perturbative

QCD (pQCD). As far as the kinematics is concerned, we will perform all the calculations in

the centre of momentum (COM) frame. The kinematic approximations widely used in these

calculations are:

• soft radiation (energy of radiation is much smaller compared to the parent parton)
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• eikonal approximation (no recoil of the leading parton due to scattering and radiation)

and

• collinear radiation (radiated gluons almost graze the trajectory of the parent particle).

Works presented in the dissertation

A significant part of the present dissertation is devoted to the discussions about relaxing kine-

matic approximations used in computing the radiation distribution. While successful attempts

have been observed in calling off the collinearity (in [10]) and the eikonal approximation due

to scattering (in [11]), withdrawal of the soft approximation, which implies and is implied by

the eikonal approximation due to radiation, still awaits.

After a broad classification of the nature of the work presented in the thesis, we will devote few

paragraphs for a pithier description of what the thesis is about emphasizing the findings of the

thesis. We will try to order them in the next few paragraphs.

Examination of the Gunion-Bertsch formula for soft gluon radiation.

Non-eikonal corrections to the Gunion-Bertsch formula [12] for the radiation distribution has

been found out from the unapproximated matrix element of the gg → ggg process obatined

from [13]. Non-eikonality becomes of particular importance if we consider the recoil of the

incident jet due to scattering with the medium particles. The distribution, thus obtained, has

been employed to compute the equilibration rate and the energy loss of gluons in gluonic plasma

[14]. The radiation distribution off gluon jets with non-eikonal corrections is given by:
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Figure 1: Temeprature variation of radiative energy losses of 10 GeV gluon, obtained from
Refs. [14, 15, 16] scaled by that obtained from Ref. [12]
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, ng is the

number of gluons, k⊥ is the transverse momentum, ηg is the gluon rapidity, t(≈ −q2⊥) and s are

the Mandelstam variables, CA is the Casimir factor and αs is the strong coupling.

The radiative energy losses obtained by two earlier papers ([15, 16]) with non-eikonal correc-

tions (but no O(k⊥) corrections) have been compared with the present work (Fig.1) where

the radiation depletion per collision beyond the first one has been calculated by the following

formula:
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Figure 2: Emission spectrum versus k⊥ of gluon for varied non-eikonality, ζ , for a 10 GeV
Charm jet.

∆Erad =

∫

d2k⊥dηg
dng

d2k⊥dη
ωθ1(τm − τF )θ2(E − k⊥coshη) (2)

where ω is the energy of the emitted gluon, the first θ-function constrains the phase space as a

result of a radiative suppression due to interference of scattering amplitudes (the LPM effect)

and the second θ-function is due to the fact that the energy of emitted gluon cannot be greater

than that of its parent.

In the soft limit, the terms proportional to k⊥ approaches zero, but due to the presence of

k−2
⊥ inside Gunion-Bertsch distribution formula, the terms inside D(1) are O(k−2

⊥ ), O(k−1
⊥ ) and

O(k0⊥) respectively. Hence the formula in Eq.1 is more general (compared to Refs.[15, 16])

correction to the Gunion-Bertsch formula within O(t3/s3).

Gluon radiation off heavy flavor jets
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Effects of recoil due to scattering of heavy-flavours with the medium particles has been inves-

tigated in the thesis. Dokshitzer and Kharzeev in Ref. [17] find out the radiation distribution

off heavy flavour (charm, bottom etc.) and show the presence of a radiation-free conical zone,

the ‘dead-cone’, along and around the direction of propagation of the hevay quark. But that

study considered all the three kinematic approximations viz. the soft-eikonal-collinear approx-

imations.

The collinearity approximation has been removed in [10]. The present study [11] removes

the eikonality approximation during scattering with the bath particles. Emission spectrum

with respect to gluon emission angle is plotted in Fig.2 for varying non-eikonality ζ = q⊥/
√
s,

where q⊥ is the transverse momentum transfer by the heavy quark and
√
s is the energy in the

COM frame. Calculations in Refs.[10, 11] have shown a reduction of the respective modified

distribution formulae to the Dokshitzer and Kharzeev formula for radiation distribution in

proper limits.

Radiation distribution off a nearly on-shell parton

So far we have computed the Feynman amplitudes from pQCD to get the radiation distributions

off energetic partons. But the calculations are all done for on-shell partons which obey Einstein’s

energy-momentum relation. But the energetic partons, energy losses of which inside QGP

medium is under discussion, may refrain from being on-shell even after QGP is formed [18]

because it gains high virtuality from the momentum transfer owing to the heavy-ion collision.

So is there any way to take into account this virtuality and calculate the radiation distribution

? There is, if the virtuality of the particle is assumed to be sufficiently low so that the equation

of motion for the field associated with the particle (the Dirac’s equation) is approximately valid.

The radiation distribution off a slightly off-shell particle has been calculated in Ref.[19] and

the calculation of energy loss using this distribution function (Fig.3) shows that slightly virtual
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Figure 3: Variation of radiative energy loss off a nearly on-shell particle with length. The
energy of the particle is taken to be 20 GeV.

partons, heavy or light, show similar radiative loss. Only after traversing a sufficient length,

the energy losses between heavy and light partons become differentiable (see also [18]).

Summary and Outlook

In the present thesis, the radiative amplitudes for processes like gluon-gluon→gluon-gluon-gluon

or quark-quark→quark-quark-gluon, where ‘quark’ stands for both heavy and light quarks,

have been calculated from the methods of perturbative Quantum Chromodynamics. In the

limit where the emitted radiation is of much less energy compared to that of the parent parton

emitting the radiation, the radiative amplitude for two particles going to three particles can be

written as that due to two particles going to two particles times the radiation distribution. The

eikonal approximation (due to scattering) lingering inside the radiation distribution formula

has been examined. An endeavour of removing the soft approximation may come afterwards.
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Once the jet interacts with the medium, however, the possibility of multiple scattering can

hardly be ruled out. The present thesis calculates the radiation distribution for single emis-

sion kernel in single scattering processes, dn
(1)
g /(d2~k⊥dηg). The multiple scattering has been

introduced as a factor being multiplied with the single emission distribution.

So, given the fact that different approximations used in different energy loss models has been

tried to be removed in single emission kernel scenario, the rigorous treatment of multiple scat-

tering still awaits.
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Chapter 1

Introduction

1.1 From Kanad to Quark-Gluon Plasma

Two thousand years before, one day, Indian philosopher Kanad was walking with food in his

hand. As he nibbled at the food throwing away some small pieces, it occurred to him, suddenly,

that he could divide the food up to a certain extent only. Further division was not possible.

This indivisible matter was called anu [1] by him. This story [2] how Kanad embarked upon the

thought of a matter which cannot be divided any further may be fictitious; but is instructive. It

shows the beginning of an incessant endeavor of humankind to find the building blocks of matter

we are surrounded by or are constituted of. As a matter of fact, it won’t be an exaggeration

to state that one of the underlying philosophies of the modern Physics is to build more and

more developed ‘microscopes’ which will be able to ‘peek’ inside the matter. Great men like

Dalton, Einstein, Rutherford are the successors of Kanad who eventually have either talked

of or have proven the existence of atoms, and in an even smaller scale, nuclei. Comes later

the accelerators which tear apart the nuclei, too. Partons, the imaginative name coined by

Richard P. Feynman, stands for quarks and gluons which make nuclei. We have now a zoo of

fundamental particles, characterized by quarks, leptons, neutrinos and the gauge bosons.
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Now, life would have been mundane without the talking terms among the particles. There are

interactions like Gravity, Weak Interaction, Strong Interaction and Electromagnetism which

strive hard to make things interesting. There are objects like vapour, water or ice which,

apparently are different as far as their appearances are concerned. But we know that it all

depends on the interplay of the potential energy and the kinetic energy of an individual atom.

For solids, the kinetic energy is way behind the potential energy. For liquids, the situation is

more liberal but unlike gas where the particles are violent and constantly jostle with others.

The average kinetic energy per particle of a system is termed as the temperature (T ) and when

we can define such a temperature, the medium is told to have been thermalized1 .

So far so good and we have come up to quarks, gluons (the gauge bosons of strong interaction)

and we have mentioned about the nature of interactions among the particles. Let us imagine an

overall charge neutral soup of quarks and gluons where the average kinetic energy per particle

leaves the potential energy way behind. Such a soup of particles will be called Plasma2. A

plasma of quarks and gluons will be called Quark Gluon Plasma (QGP). As evident from the

title we are going to study the energy loss of energetic particles inside QGP thereby trying to

make out the nature of the medium formed. Now let us pose a string of questions:

• Q1: Why should we study QGP ?

Ans 1: 10−6 second after the big bang, the universe existed in the state of Quark Gluon

Plasma. So by studying QGP we wish to access the micro-second old early universe.

• Q2: Can we create it now ?

Ans 2: Yes. That is one of the goals of Relativistic Heavy Ion Collision in LHC and

RHIC. There two nuclei are collided with large energies (2.7 TeV/nucleon in LHC or 200

1We can define something called kinetic temperature also if we don’t assume thermalization. But in our
context, temperature will imply thermalization.

2see [3] for the criteria satisfying which a medium will be called plasma
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GeV/nucleon in RHIC) the resulting quarks and gluons interact and eventually evolve to

QGP.

• Q3: Why so complicated ? We can take quarks, gluons and make merry !

Ans 3: That is difficult. Quarks and gluons are not freely available. The further they

are, the stronger they bind. But that is an issue of ‘asymptotic freedom’ which also tells

that they interact weakly when they are close together.

• Q4: How to make them close together ?

Ans 4: Let us imagine lots of bags of quarks, i.e. say nucleons in a box. We increase the

number of nucleons per unit volume by compressing the box until the nucleons overlap.

Then there will be a region in space where the quarks are unable to identify themselves

as belonging to the nucleon which was bouncing around the corner or the one dancing at

the centre of the box. Since they interact weakly when they are close, they form a Quark

Gluon Plasma.

This is the way N. Itoh [4] thought of a quark matter. Just after the discovery of asymptotic

freedom [5, 6, 7], Collins and Perry [8] also suggested that at very high density the degrees

of freedom of the strongly interacting matters are not hadrons but quarks and gluons. In

other words, when the vacuum is excited to high temperatures ([9]) new hadrons are produced

and we observe overlap of them at a certain temperature. Such a phase of matter is called

Quark Gluon Plasma (QGP). It is interesting to note that we are dealing with the hadronic

as well as the partonic degrees of freedom and there is a relativistic system in which creation

and annihilation of particles take place. So we are going to need Quantum Chromodynamics

(QCD), the theory of strong interaction which is extremely successful in vacuum, to be applied

in a thermal (also dense, if necessary) medium. Like the phase diagram of water, we can think

of a ‘phase diagram’ of Quantum Chromodynamics where the ‘phases’ we are talking about
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right now are the hadronic and the QGP phase (see Fig. 1.1). Depending on the temperature

(T ) and net-baryon density (nB) different other phases of QCD exist.

The most important property of QCD is the ‘asymptotic freedom’ which tells how the QCD cou-

pling evolves when we change the length scale between the interacting particles. The coupling is

small at small distances (equivalently at large momentum transfer) and large at large distances

(equivalently small momentum transfer). The general treatment of the ‘flow’ of the coupling

is treated by the Renormalization Group (RG) Equation. The RG equation is a differential

equation which dictates the evolution of the coupling with length scale. The differential change

in the coupling is given by the ‘β-function’ and unlike Quantum Electrodynamics (QED), the

QCD β-function is negative [11], a fact which is responsible for the asymptotic freedom which,

in turn, is the raison d’être of Quark Gluon Plasma. Obviously, the medium sets another

scale, temperature of bath, in the consideration; and hence the strong coupling now runs with

temperature, too.

Figure 1.1: QCD Phase diagram [10].

• Q5: So, by making QGP in Relativistic HIC can we really study early universe ? Is there

no difference ?

Ans 5: We will be addressing this question and some related aspects at length in Sec.1.4.
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1.2 Creating Quark-Gluon Plasma: Critical values of

Density and Temperature; and the evolution

Once we have motivated the creation of a state of matter called QGP, we may ask, what may

be the external parameters which will help creating this state. There are certain recipes:

• As we have already pointed out, we can go on compressing the box containing nucleons

until they overlap. The critical density needed for the creation of QGP is ρc ∼ (3− 4)×

ρNM , where ρNM is normal nuclear matter density (∼ 0.16 fm−3).

• An alternative way of making nucleons overlap is to thermally generate the nucleons by

exciting the QCD vacuum. An interesting study which tells us at what temperature

nucleons overlap may be made by seeing the variation of the inter-nucleon distance with

temperature. If n(T ) is the number density of nucleons at temperature T , the average

inter-particle distance rav (at temperature T ) is given by ∼ n−1/3. As n ∼ T 3, rav ∼ T−1.

The temperature at which the inter-particle distance3 becomes less than the nucleon

diameter, the QGP is said to have formed.

As, for relativistic systems, the energy density is proportional to the fourth power of tempera-

ture, the energy density for creation of QGP can also be estimated ( ∼ 1 GeV/fm3 ) knowing

the temperature for hadron to quark phase transition 4. This high energy density or tempera-

ture ( 100 MeV temperature is equivalent to 1012 Kelvin, 106 times hotter than the centre of

sun ! ) can be attained by relativistic collision of two heavy nuclei (like lead or gold).

3Actually the average separation can be shown to be 0.55396 n−1/3 assuming random distribution of particles
[12]

4it is doubted whether this phase transition, temperature of which is ∼ 170 MeV, is a phase transition
in proper sense [13] . Transformation of hadrons to QGP is, rather, identified as a cross-over, i.e. just like
ionization.
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However, the state just after the quarks and gluons are liberated is the out of equilibrium state

as the liberated particles are to interact in order to get thermalized5. So, this pre-equilibrium

state evolves to a (locally) equilibrated QGP phase within ∼1 fm and freezes-out to hadrons

within ∼10 fm (in Pb-Pb collision in RHIC, for example). The space-time diagram of the

evolution of the liberated matter can be summarized in the Fig. 1.2.

Figure 1.2: Light-cone diagram of the longitudinal evolution [15].

1.3 Ways to know there is a medium

In heavy ion-collision, once we have the recipes to create QGP, how do we know that it has been

created after following those ? There are, in fact, different indirect proofs which will be able

to detect and characterize the formed QGP medium. The most important probe as far as the

relevance of the present thesis is concerned, is the high-energy particles produced very early just

after the collision between two heavy-ions with energies hundreds of GeVs per nucleon. This is

worth mentioning at this point that the life time of QGP is roughly ∼10 fm and hence we cannot

5how the particles thermalize is addressed by the classical field theory techniques [14]
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employ an external probe for investigation. So we rely on the internal probe like collimated

beam of high-energy particles generated just after the collision of two nuclei (crashing which

we intend to liberate the quarks and gluons). Moreover we know that one whose de Broglie

wavelength is much greater compared to the matter intended for investigation can barely act as

a probe. Hence we must compare the characteristic wavelength of those high-energy particles

with that of the QGP medium. Now, we have the scale ΛQCD ∼ 200 MeV which corresponds

to a length scale of 1 fm — the length scale corresponding to the QGP medium. So particles

with energies much higher than 200 MeV will act as good probes. Energy loss of high-energy

particles inside QGP hence can act as a good proof that there exists a medium created due to

collisions of two heavy nuclei. Now, jet quenching is only a proof that there is a medium. The

energy loss of a quark (heavy or light) can be due to electromagnetic interaction, too. So the

corresponding inference is: we cannot tell unambiguously that energy loss of a quark jet is the

proof for the existence of a colored medium. But the energy loss of gluon jet tells this without

doubt.

Quarkonium ( bound states of heavy quark and anti-quark ) is a probe which, if it melts, is

the proof that it is residing in a color ambiance because Quarkonia melting is due to the color

screening effect of the colored medium produced. J/ψ, a bound state of charm (c) and anti-

charm (c̄) quarks, for example, melts due to color charge screening present in a color medium.

In this case also, the radius of J/ψ is 0.25 fm, much smaller than the QGP length scale. Had it

not been so, melting of J/ψ would not be possible and it would not act as probe. This instance

re-emphasizes the importance of the length scale in choosing a probe to QGP.

Photons and dileptons serve as the cleanest probes of QGP as they decouple immediately from

the space-time point at which they are formed. So there is no distortion in their energy-

momentum. Electromagnetic probes are emitted from the whole volume of QGP. The only

problem with this probe is the large background due to hadrons decaying to photons (the
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Dalitz decay, for example). Several experimental processes have been devised to subtract the

background photons.

1.4 Discussion about Question 5, Section 1.1

Once we are done with the discussion on how to create QGP in HIC and what the possible

signals are, we may ask, naturally, how this QGP is similar to the early universe QGP; or, is

the evolution of the QGP fireball similar to that created after the big bang ? This question is

already put forward in a previous section and the answer was promised. The QGPs produced at

the two cases, albeit being plasmas of quarks and gluons, are different as far as their nature of

evolutions are concerned. While the early universe evolves quasi-statically, i.e., at every instant

the plasma temperature deviates infinitesimally from the equilibrium, the QGP produced in

heavy-ion collision is not like that.

In case of an evolving fireball, this quasi-static evolution is guaranteed if the expansion rate

(Rexp) of QGP is comparable with the interaction rate (Rint). In other words, we can say, if

Rexp is not so high so that it refrains the particles from interacting, we may safely use the quasi-

static approximation. Since interaction gives birth to momentum exchange, the medium can

maintain the thermal equilibrium during arbitrarily small scale of time slices. This assumption

is called the local thermal equilibrium.

So far, we constrained ourselves within the evolution of medium created. But how do the

quantum mechanical states evolve inside an evolving plasma ? We can take the example of

an open heavy quark or heavy quark-antiquark (quarkonia) bound states evolving inside QGP.

This question will be of importance while one intends to study the evolution of probe particles

inside plasma and relates the modification of the distribution of probes with some experimental

observable. We may here find out two characteristic time-scales involved in this problem: the

internal time scale, Tint, and the time scale over which the thermodynamic parameters of the
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plasma change appreciably, Tp. If Tp ≫ Tint, the ‘smoothness’ in motion is guaranteed. The

gradual change in external conditions defines an adiabatic process. From quantum mechanics

point of view also, this means, if a system is in ith eigenstate of a (time-evolving) Hamiltonian

H(t1)at time t1, then the system remains to be the ith eigenstate of the Hamiltonian H(t2).

This consideration is the essential content about the adiabatic approximation [16] in quantum

mechanics.

For all practical purposes, the medium is assumed to be evolving quasi-statically. Whereas

the QCD phase transition in early universe QGP takes place over micro-seconds, HIC QGP

is a much more violently expanding system than the early universe QGP having the QCD

phase transition time-duration roughly ∼10 fm. So the assumption of quasi-static evolution

of HIC QGP is questionable. Also, there are very recent proofs from the basic Quantum

Mechanical conditions [10] that the adiabatic evolution of heavy-quarkonia in QGP is not a

valid approximation. So, a dynamic theory without the assumption of quasi-static evolution is

necessary at this moment.

1.5 Our aims and expectations

The present dissertation takes up high-energy particles as investigators of the colored plasma.

More specifically, the energy loss of the energetic particles will be studied. Once we declare

in the title of the thesis that we have studied the energy loss phenomenon of high energy

particles inside the QGP medium to see what changes do the particles undergo, we must

think about the interaction of the high energy particles with the medium particles. There

may be two types of interactions, the collisional (elastic) and the radiative. The radiation loss

dominates when the energy is high (i.e. momentum >2 GeV roughly). The present thesis

is about the radiative energy loss of high energy particles with the medium. To be more

precise, we have counted the number of gluons radiated from the highly energetic partons.
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This counting is termed as the distribution of the radiation, which is calculated from the

perturbative Quantum Chromodynamics (pQCD). We focus on the kinematic approximation

like the eikonal approximation lingering inside the radiation distribution at the level of single

scattering processes and we find out the non-eikonal corrections to the widely used Gunion-

Bertsch formula (chapter 4). Also the non-eikonal radiation distribution off heavy-quarks have

been calculated (chapter 5). The radiation distribution off highly virtual quarks has been

calculated in chapter 6. Multiplying the radiation distribution with the energy per quantum of

radiation we get the radiative energy loss in a single scattering.

This concludes the discussion on what QGP is and what are the physical considerations we

must have while creating and/or studying QGP. We have briefly discussed what we aim to

achieve or calculate during the course of our discussion. The next two chapters (chapters 2

and 3) will be devoted to clarify, in a greater detail, our objective and the motivations behind

the present study. We will return to the same discussion again in chapter 3 and we hope that

during this journey we will be in a better niche to appreciate the goals and the techniques used

to achieve them.
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Chapter 2

Radiation: ‘What’s and ‘How’s

In the previous chapter we gave a general introduction on the physical considerations we must

have before studying the QGP Physics. Once the QGP fluid is created, we will try to know

the properties of it; and we have discussed that we need internal probes for looking into such a

short lived (life-time ∼10 fm) medium. The internal probes being used in the present discussion

are the high energy particles produced very early, just after the collision takes place. They

lose energy inside the medium and for a very high energy particle the radiative energy loss

dominates. Radiative energy loss of high energy internal probes being the subject matter of

the present dissertation, in this chapter we will emphasize on the physical considerations which

ensure the radiation. Later, the phenomenon of radiation will be discussed from a very general

perspective, mostly adapted from the Classical Electrodynamics1 textbooks, to understand the

basic assumptions and analogies one use in calculating the radiation loss.

1Why do we expect that this adaptation from electrodynamics will work in chromodynamics? We will discuss
it in the long run.
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a b

Figure 2.1: Formation length

2.1 Radiation: What do we mean?

When can we tell that radiation is given off by a particle? First of all, radiation means pho-

tons/gluons oozed out from a parent parton. That means, the emitted particle is ‘well separated’

from its parent particle. As long as the radiation is in coherence with the parent particle, it

is not radiated. The time needed for the radiation to be well-separated (by, say, one Compton

length) from its parent parton is called the formation time. Similarly, for pair-production the

required distance of separation between the pairs is two Compton wavelength for the pair to be

‘seen’ as a collection of two distinct particles. Quantitative estimate [1] of the formation time,

l0 shows (in natural unit) that

l0 =
2E(E − k)

m2k
(2.1)

where E and k are the energies of the radiating and the radiated particle respectively and m

is the mass of the emitting particle. Formation length actually comes due to uncertainty in

momentum transfer [2] which blurs the information at which point of the trajectory of the

radiating particle the radiation has taken place. Hence, formation length is also an extended

region in space anywhere within which the radiation might have taken place. Apparently, there

are different ways one can explain the formation length as far as different physical contexts are

concerned [1].

The concept of formation length plays a very important role in case of determining the radiation

distribution off a particle undergoing multiple scattering inside a medium. Fig. 2.1 may help
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understand the effect it may have on the spectrum. Formation length is the maximum distance

within which two radiations, if emitted, will not be resolved by the detector. So, according

to Fig. 2.1, ab is the formation length. Now, emissions are results of scattering events (as

free particles cannot radiate). As a result, the above scenario translates into the fact that,

two scatterings, if take place within the formation time, can reduce the counting of number

of radiation quanta emitted. This phenomenon of suppression is, clearly, an interplay of two

time-scales (or equivalently, lengths), the formation time (τf) and the mean free time (τm) and

is the famous Landau-Pomeranchuk-Migdal suppression[3].

2.2 Radiation: What do we mean and How ?

Radiation means dissipation of power even at infinite distance. It is calculated by integrating

the Poynting’s vector ~S over a large surface. We know,

~S ∼ ~E × ~B (2.2)

where ~E( ~B) is the electric (magnetic) field. The power radiated (over area a) is given by:

P(r) =

∮

~S.d~a (2.3)

If limr→∞P(r) 6= 0, then we get radiation. This is the way we calculate the radiated power of

an electric dipole or a point charge [4].

But we can examine the idea of radiation in a more intuitive picture with the help of Ref. [5].

We assume a particle travelling right and bouncing off a wall at the point ‘e’ (see Fig. 2.2). Its

present position is ‘g’; and ‘f’ would be its position at present had there been no wall. Since, the

message that the particle has bounced off travels with a finite speed c (the velocity of light in
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Figure 2.2: Explanation of radiation
in terms of field lines. (adapted from
[5])

Figure 2.3: Transverse and radial fields. (adapted
from [5])

vacuum), the lines of force within a circle of radius cT0, where T0 is the time difference between

the points e and g, will reorient themselves according to the new position of the particle (Fig.

2.2). The field lines outside radius cT0 will point towards the ‘would-have-been’ present position

of the particle. Now, if we consider the surface encompassed by the lines abcda, we see that

there is an imbalance in the density 2 of lines of forces (LOFs) penetrating the surface ad and

surface bc. The density ratio corresponding to the surfaces is 2:3. According to the Gauss’s law,

which tells that the net number of lines of forces penetrating a surface must be zero, we must

have transverse field entering across ad or bc. Now, if the acceleration (bounce) of the particle

occurs for a time t0 << T0, we have a ring of width ct0 (see Fig. 2.3) which connects the field

lines oriented according to the present position of the particle and those oriented according to

the position ‘f’ of the particle .

Now, we want to find out the field inside the ring (the shaded region in Fig. 2.3). The field has

two components, the transverse component, Et and the radial component Er. From Fig. 2.3,

2As there are infinite number of LOFs passing through any surface, we can talk of density and not the
numbers of them.
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Et

Er
=
v0 T0 sinθ

cto
=
f ′ T0 sinθ

c
(2.4)

where f ′ = v0/t0 is the acceleration. We can find out the radial field from the Gauss’s law

considering a Gaussian pillbox across the inner radius of the ring . Since the sides of the

pillbox are of vanishing width, the radial component of field is almost same on the each side of

the shell’s inner surface. If we remember Er ∼ 1/R2, the transverse field is given by,

Et ∝
f ′ sinθ

R
(2.5)

and since Et ∼ 1/R (hence electric energy density ∼ 1/R2), the integral over infinitely large

surface will give constant value of power dissipation. Hence the transverse field will be respon-

sible for radiation. We notice from Eq. 2.5 that Et is dependent on θ. It is maximum at θ = 900

and minimum at θ = 00, 1800. Hence density of ‘kinks’ will be greater along the perpendicular

direction of motion, and it decreases as θ approaches 0 or 180. Also, the transverse (or radia-

tion) field depends on the magnitude of acceleration. Greater the acceleration (or deceleration,

because the magnitude matters, anyway) greater the radiation.

2.3 Calculating radiation loss: Count or Find Poynting’s

Vector

So, we learn that an accelerated charge radiates. The radiated power is calculated by integrating

the Poynting’s vector over an infinitely large surface. But, in section 1.5 we demand that we

have ‘counted’ the ‘number’ of emitted quanta given off by an accelerated charge. Are the two

approaches equivalent ? In next few paragraphs we will endeavour to bridge the gap between
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Figure 2.4: Particle of charge q moves with constant velocity v and passes P at a distance b

them. For that, we need to study fields of a uniformly moving charge and the fate of it when

acceleration occurs.

The fields of a uniformly moving charge are given in [6]. Our aim is to extract some ideas

which will help us understand how we can find radiation loss by ‘counting’ the number of

emitted quanta. If a particle of charge q is moving along X-axis with velocity v and passes an

observation point P on Y-axis with the closest distance of approach b (see Fig. 2.4), the fields

in the observer’s frame (i.e. laboratory frame) are given by [6],

Ex = − qγvt

(b2 + γ2v2t2)3/2

Ey =
γqb

(b2 + γ2v2t2)3/2

Bz = vE2 (2.6)

where γ = (1 − v2)−1/2, vt is the X distance at which the charge is (as observed by P) after a

time t. It will be interesting if we study the variation of the fields Ex and Ey with vt. We see
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Figure 2.5: Variation of Ey with vt

Ey =
γq

b2
1

(

1 + γ2v2t2

b2

)3/2
(2.7)

We observe that Ey is maximum at vt = 0 and decays along the ±vt axes. The maximum value

of Ey is Ey,max = γq/b2 and the time duration within which the field assumes an appreciable

value is (see Fig. 2.5).

∆t ∼ b(γv)−1 (2.8)

Similarly, the longitudinal field rapidly varies from +ve to −ve values. So the observer observes

a pulse of plane polarized radiation. This observation leads us to picturize that a rapidly moving

charge, when Lorentz boosted, acquires virtual quanta (up to frequency ωmax ∼ 1/∆t [7]), called

Weizsäcker-Williams (WW) quanta [6]. A violent collision of particles results in acceleration

imparted to the moving charges. While the fast Fourier components of the field (or equivalently,

WW quanta), whose transverse momenta k ≥ a0, where a0 is the inverse acceleration time, can

manage to follow the charge, the softer part is ‘left behind’ [8]. The WW quanta which are now

detached from the charge are regenerated along a new direction. So, there is radiation — the
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radiation off accelerated charge particles in the form of real particles. So it makes no harm if we

start counting the number of such quanta emitted (which can be done by the help of quantum

field theory techniques) in stead of finding out the Poynting’s vector and integrating it over a

large surface. But, we must remember one thing, we use the word ‘count’ in a sense that we

want to find out the number of quanta emitted within certain range of variables. It should

better be called the radiation distribution which means, probability of finding a particle with

certain values of some physical quantities (like momentum or the angle of emission) is always

zero. So what we will ‘count’ is the number of particles emitted within a range of momentum

and angle the emission makes with the parent parton.

Before the curtain down of this chapter, let us be familiar with the jargons which are popularly

used in stead of the terms used in the discussion so far. Hence, the high-energy (i.e at an energy

where the mass difference between heavy and light particles becomes irrelevant), collimated

beam of internal probes along with the WW gluons (a jargon which we have already discussed)

is called a jet shower (loosely jet). The probe particle around which hovers the WW cloud is

called the leading particle3; and the energy loss phenomenon of jets is called jet quenching.

3with which the medium interacts. The WW gluons become noticeable only after they metamorphose as
radiations.
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Chapter 3

Radiation Spectrum and energy loss

due to scattering: A general

perspective

3.1 Potential picture of single scattering

In the previous chapter we have established that finding out the radiation distribution off

an energetic particle will enable us calculate the radiative dissipation. Since the degrees of

freedom in the present case are the fundamental coloured objects like quarks and gluons, the

dynamics will be dictated by the perturbative techniques for dynamics of colours–perturbative

Quantum Chromodynamics (pQCD). The basic process we are going to study is the QCD

gluon bremsstrahlung (means ‘breaking radiation’). But the gluon bremsstrahlung off coloured

particles is not much different, under certain approximation, from the photon emission off

(electrically) charged particles. We can see [1] that the approximated radiation four-current

has nothing to do with the underlying process it has been formed through. The current depends,
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in stead, on the four momenta. The four current has a classical nature and is derivable from the

classical electrodynamics by considering the potential induced by charge of an electromagnetic

current due to scattering. So, often we will be able to draw the analogies between the radiation

spectrum obtained for particles moving with different kinematic constraints in electrodynamics

with those in QCD. We will also notice that these kinematic constraints are going to play a

major role in deciding the shape of the emission spectrum.

3.1.1 Advantage of being ‘soft’

We have mentioned that ‘under certain approximation’, the electrodynamic radiation current

resembles colour radiation1. That approximation is the ‘soft radiation approximation’. To see

how this approximation really helps draw the analogy, let us consider the photon bremsstrahlung

off a charged particle (massm) induced by a static electromagnetic source. If we write down the

quantum amplitudes for the two Feynman diagrams (see Fig. 3.1) representing the scattering,

we see that in the soft approximation, i.e. when the energy of the emitted radiation ω is much

less than that of the parent partons E, we can write the radiation amplitude in terms of a

product of elastic part times the soft radiation current. Writing down the Feynman amplitudes

from Fig. 3.1,

Mµ
pre = eū(k3)V

m+ k1/− k/

m2 − (k1 − k)2
γµu(k1)

Mµ
post = eū(k3)γ

µV
m+ k3/+ k/

m2 − (k3 + k)2
u(k1)

(3.1)

1Then why do we need to do ‘soft radiation QCD’ in stead of classical calculations ? We discuss it in Sec.
3.3
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Figure 3.1: Feynman diagrams of photon radiation off a charged particle scattered by a static
source with interaction V

where ‘pre’ and ‘post’ denote the pre-emission (i.e. emission from k1) and post-emission (i.e.

emission from k3) respectively. Neglecting k/ with respect to k1/, k3/ and putting ki/γ
ρ = −γρki/+

2kρi we get,

(m+ k1/)γ
αu(k1) = (γα[m− k1/] + 2kα1 )u(k1) = 2kα1 u(k1)

ū(k3)γ
β(m+ k3/) = ū(k3)([m− k3/]γ

β + 2kβ3 ) = 2kβ3 ū(k3) (3.2)

with the help of Dirac’s equation for fermions. Considering on-shell (k2 = 0) gluon emission

we obtain the total amplitude as:

Mrad = ejµ ×Mel,where jµ =
kµ1
k1.k

− kµ3
k3.k

(3.3)

and e is the coupling. The radiation current jµ is exactly that obtained from the classical

calculations also. This clearly shows an universality in the radiation current which, upon

squaring, yields the radiation distribution. So, to find out the radiation distribution, we may

proceed by calculating the radiative amplitude from which the elastic part is separable by virtue

of the soft approximation. Then the remaining part will yield the desired spectrum. The soft

approximation is, thus, a very convenient one which implies inability of the emitted gluon to
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probe the elastic part of the process. Also, the form of radiation current jµ in Eq. 3.3 shows

that the radiation current is dependent only on the momenta of the particles. No reference to

the process they undergo in the elastic part is necessary. So, in the same spirit of discussion

about the classical nature of the soft radiation, it will really be interesting to see (in chapter 5)

how the soft radiation spectrum off a heavy quark takes after that of a heavy classical charged

particle or dipole under certain kinematic constraints.

3.1.2 Softness ‘burns’?

We have already discussed that the square of the radiation current provides us the radiation

spectrum. The radiation probability can be written multiplying the (Lorentz invariant) phase

space factor as below:

dWrad =
∑

β=1,2

|ǫβµjµ|2
d3k

2ω(2π)3
dWel (3.4)

where ǫβµ is the polarization of the emitted radiation. Using the Feynman gauge2, for which
∑

β=1,2 ǫ
β
µǫ

β
ν ⇒ −gµν , we get

dN =
dWrad

dWel

∼ (jµ)2
d3k

2ω(2π)3

∼ dω

ω

dΩ

2π

(1− cos θ13)

(1− cos θ1)(1− cos θ3)
(3.5)

from Eq. 3.3, where θ13 stands for the angle between incoming and the scattered particle,

i.e. the angle between k1 and k3. θ1(θ3) is the angle the emission, with momentum k, makes

with the particle with momentum k1(k3). We also neglect the term (m/E)2 ( energy of parent

2In the next section, we will repeat the same calculation in a different gauge, called the light cone gauge, for
some added advantages.
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particles are ∼ E) with respect to the terms involving angles. Now let us assume that the

emitted gluon is almost collinear with the incoming particle so that θ13 ≈ θ3, then

dN =
dWrad

dWel

∼ dω

ω

dΩ

2π

1

(1− cos θ1)
(3.6)

assuming the z direction to be along that of the incoming particle, we get, for θ1 → 0,

dN ∼ dω

ω

sin θ1dθ1
(1− cos θ1)

∼ dω

ω

dθ21
θ21

(3.7)

Treating the emission to be i) soft ii) collinear (with incoming particle) and iii) treating m2 <<

E2, we get a double logarithm [2] distribution for emission spectrum. For ω, θ → 0 there exists

divergences (called soft and collinear divergence respectively). The soft divergence exists if

we consider the radiative bremsstrahlung processes only3. However, for the physical scenarios,

these divergences are not present because there the radiative process cannot be separated.

The collinear divergence, i.e. emission of huge number of photons/gluons almost grazing the

trajectory of the parent quark, is regulated once we consider mass of emitting particles. It can

also be shown from the classical electrodynamics [4] that there exists a conical region around

the direction of motion of a massive particle, whose velocity is parallel to acceleration, where

radiation is negligible. This region is called the ‘dead cone’ region and is a classical phenomenon.

3for regularization of soft divergence see [3]
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3.1.3 Potential picture of single scattering in a different gauge

Single scattering is the building block for a multiple-scattering scenario; and so we must under-

stand how single radiative scattering amplitudes can be calculated. But, we have done so just

in the last section, and what makes us redo the same calculation ? As hinted in the footnote

[2], light cone gauge is preferred to the Feynman gauge, used for treating the single scattering

and for understanding the divergences therein, because the light cone gauge calculations allow

one to neglect the Feynman diagrams arising due to the radiation off the target partons as

the amplitudes corresponding to the said diagrams are kinematically suppressed. So, much

complexities (i.e. number of diagrams) can be avoided while treating the multiple scattering

with the help of the single scattering.

Now, let us consider the quark(q)-quark radiative (i.e. radiation of gluons (g)) scattering in

scalar QCD (i.e. spin neglected). The scattering amplitudes, however, are calculated [5] in the

soft-eikonal limit and the radiation distribution , i.e. number of gluons (ng) per unit transverse

momentum of emission (k⊥) and per unit rapidity (η) is obtained as below:

[
dng

d2k⊥dη

]

GB

=
CAαs

π2

q2⊥

k2⊥(
~k⊥ − ~q⊥)2

(3.8)

where q⊥ is the transverse momentum transfer, CA is the Casimir factor and αs is the strong

coupling. The above result is the celebrated Gunion-Bertsch formula which was derived by the

authors of [6] who found out the Eq. 3.8 for the emitted gluon emitted making a substantial

angle (∼ π/2, i.e. the gluon mid-rapidity, η ∼ 0) with the incoming or the scattered particle.

Now, there are two singularities in the formula – the noted soft singularity for the radiative

processes and the singularity at ~k⊥ = ~q⊥. It can be shown [7] that for ~k⊥ << ~q⊥, the contri-

bution from the diagrams with three-gluon (3g) vertices can be neglected compared to that of

the other diagrams. The corresponding radiative matrix element can be written as:
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Mµ
rad =

~k⊥
k2⊥

Mel + (a term, constant as k⊥ → 0) (3.9)

So we have the Gribov’s bremsstrahlung theorem which states that there exists a factorization

of elastic and radiation current provided k⊥ << q⊥. The corresponding limit is called the

Gribov limit [1].

But the inequality k⊥ ≥ q⊥ makes the diagrams with 3g vertices important. So while considering

the corresponding amplitude, we must shield the k⊥ = q⊥ singularity by the thermal mass of

gluon.

3.2 Potential picture of multiple scattering: The energy

loss model

After a brief introduction to the single particle scattering by a potential, we encounter a very

similar situation where multitple scatterings off static centres occur in a colour neutral ensemble.

The medium partons are considered to be static at the positions xi = (zi, ~x⊥i) such that

zi+1 > zi and the inter-scatterer longitudinal distance is much larger compared to the color

screening length. Then we can model the potential offered by the scatterer as a static Debye

screening potential:

V a
i,AA′(~q) =

gT a
i,AA′

~q2 + µ2
(3.10)

for the i th scatterer with colorsA,A′ and Ti is the di dimensional generator of the representation

corresponding to the target parton at the i th position. In each scattering the amount of the

transferred momentum is, on the average small compared to the incident parton energy, E.

Also, in the high temperature limit (i.e. g << 1), it can be shown [8] that the energy transfer
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is g times smaller than the transverse momentum transfer, thereby providing a justification

of the use of the potential model in which energy transfer must be negligible. The Born

amplitudes, neglecting the spin of the particles are written down with the soft, eikonal and

collinear approximations, where soft approximation enables to neglect the energy of the emission

with respect to the incident particle, eikonality allows to neglect the transverse momenta of

the scattered/radiated particles with respect to the energies of the scattered/radiating particle;

and collinearity makes us assume that radiation almost grazes the parent particle. With these

three assumptions, the multiple scattering and hence the jet energy loss model calculations are

done. It may be a good opportunity to discuss the physical scenarios, though general, of the

Gyulassy-Wang Potential Model (GWPM) with which we have computed the energy loss for a

gluonic jet in a gluonic plasma in the next chapter.

3.2.1 Multiple scattering in potential model: the radiation distri-

bution

So, the question we may ask is: ‘is multiple scattering just like adding the probabilities of

the single scatterings or we have to add the amplitudes, not the probabilities?’ This is a

general concern of basic quantum mechanics where we add the probabilities when we know

that two processes are independent whereas we add the amplitudes when the processes are not

independent. In the present scenario what we mean by this is: the answer of the question,

just asked, depends on how frequently the scatterings are taking place and how much time

does the radiation take to form, the formation time (see section 2.1 for a discussion on the

formation time). Actually, when the scattering centres are well separated so that the radiation

gets ample time to be formed, then the single scattering amplitudes are independent and it

suffices to add the squared amplitudes or the probabilities (the cross-sections). But, because

of a scattering which has taken place before the radiation is formed, the amplitudes interfere

and then the basic quantum mechanics tells us to add the quantum mechanical amplitudes and
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not the probabilities. This is, as already mentioned in the previous chapter, the famous issue

of Landau-Pomeranchuk-Migdal (LPM) suppression where the two time scales, the formation

time τf and the time between two scatterings τm become important. τf >> τm gives the

factorization limit where the resulting radiation distribution is not just the addition of all

the single scattering radiation distribution patterns. The other limit dictated by τf << τm

is the Bethe-Heitler (BH) limit in which the scattering centres act independently. We may

write down a relation between the multiple collision differential radiation distribution and the

corresponding single scattering one as below:

dn
(m)
g

d2k⊥dη
= Cm(k)

dn
(1)
g

d2k⊥dη
, (3.11)

where ‘1’ stands for single scattering and ‘m’ stands for multiple scattering. Cm is called

radiation formation factor characterizing the interference pattern due to multiple scattering. η

is the gluon rapidity related with its emission angle θ with respect to the emitting particle as:

η = −ln

(

tan
θ

2

)

(3.12)

Naturally, in the BH limit, Cm ≈ m, i.e. the scatterings add up to give the resultant intensity

with no interference pattern. On the other hand, the factorization limit gives [7, 8],

Cm(k) ≈ 8

9
[1 − (−1/8)m] for quarks

≈ 2(1− 1/2m) for gluons (3.13)

Eq. 3.13 shows that the interference effect due to many multiple scatterings for quarks leaves

corresponding radiation spectrum a factor of ∼ 8/9 of that due to single scattering. It can

also be checked that the gluon intensity radiated by gluon jet is 9/4 times higher than that
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radiated by quark jets in multiple scattering. Thus, the LPM effect in QCD depends on colour

representation due to non-abelian nature of the problem under discussion.

3.2.2 Energy loss models: general considerations and approxima-

tions

We have already discussed about the radiation distribution due to multiple scattering off an

energetic particle inside a thermal bath considered to be consisting of static scattering centres.

But for ‘not-so-high’ momenta (i.e. ∼2 GeV) there is collisional loss also and the partonic

energy loss in QGP Considering elastic partonic interaction with thermal quarks and gluons

(see Fig. 3.2a) was estimated by Bjorken [9]. The energy loss per unit length can be shown to

be:

dE

dx
=
g4

6π

(

1 +
Nf

6

)

T 2ln

(
qmax

qmin

)

(3.14)

where g is the strong coupling, qmax(qmin) is the maximum(minimum) momentum transfer, T

is the bath temperature and Nf is the number of quark flavors. The energy loss taking into

account the plasma effects has also been calculated in Ref. [10] and is shown to be:

dE

dx
=

g4

12π

(

1 +
Nf

6

)

T 2ln

(

a
ET

m2
D

)

(3.15)

where mD is the Debye screening mass and a is a constant (O(1)). Also, Ref. [11] calculates

the partonic energy loss for both hard and soft momentum exchange for two-body going to two-

body (2 → 2) scattering. Cancellation of the intermediate energy scale q∗ below(above) which

the momentum transfer is considered to be soft(hard) while summing the energy dissipation

from two sectors is also shown. They exhibit the existence of a cut-off energy Ec below which

the collisional energy loss dominates. The closed form of the energy loss is given by:
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dE

dx
=
νg2

48π
ω2
pln

(
E

g2T

)

(3.16)

where ν is the statistical degeneracy factor and ωp is the plasma frequency.

(a)

(b)

Figure 3.2: (a) Collisional and (b) radiative energy loss of high energy particles.

However, as already depicted in Fig. 3.2b, the multiple scattering of the incident particle with

the soft (i.e. energy ∼ T ) medium particles has to be incorporated and to meet that end

there are a handful of other energy loss models4 like those by Baier-Dokshitzer-Mueller-Peigne-

Schiff (the BDMPS formalism)[13], Gyulassy-Levai-Vitev (the GLV formalism) [14], Armesto,

Salgado, Wiedemann (the ASW formalism) [15], Arnold, Moore and Yaffe (AMY) (the thermal

perturbative approach) [16], Higher twist approach [17] etc. The energy loss models make use

of the following three approximations:

• soft i.e. energy of radiation, ω, is much smaller compared to that of the parent parton,

E. Only AMY formalism, however, refrains from using this limit.

• eikonal i.e. no recoil of the leading parton due to scattering and radiation i.e. if q⊥ is the

transverse momentum transfer and k⊥ is the transverse momentum of radiation, then,

k⊥, q⊥ << E, where E is the order of energy values of the radiating/ scattered particle;

4For a detailed comparison of all the energy loss models see [12]
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and

• collinear i.e. gluons/photons almost graze the trajectory of the parent particle. From the

on shell condition for the radiated particle,

k2 = 0, ⇒ ω2 − k2⊥ − k2z = 0

⇒ ω = k⊥sinθ, kz = k⊥cosθ

(3.17)

if we parametrize ω and kz in terms of the radiation emission angle θ. Hence ω/k⊥ << 1

implies the emission angle is very small. Hence the condition for collinearity boils down

to ω << k⊥.

3.2.3 Energy loss from the radiative distribution

All the above kinematic constraints are generally imposed while obtaining the radiation distri-

bution and once we have the radiation distribution, the radiative energy loss can be obtained

by integrating the distribution function multiplied by the energy of each gluon (ω) over the

transverse momentum (k⊥) and the rapidity (η) of the gluon. Hence we can write the additive

energy loss for each collision after the first one as:
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∆Erad =
Em+1 − Em

m+ 1−m

=

∫

d2k⊥dη
dng

d2k⊥dη
ω
Cm+1 − Cm

m+ 1−m
θ(E − k⊥ cosh η)

=

∫

d2k⊥dη
dng

d2k⊥dη
ω
dCm

dm
θ(E − k⊥ cosh η)

∼
∫

d2k⊥dη
dng

d2k⊥dη
ωθ(τm − τF )θ(E − k⊥ cosh η) (3.18)

where dCm

dm
has been approximated as a θ-function following [7] and the second θ-function

imposes the constraint that the emission cannot have energy more than that of the emitting

particle. The differential energy loss per unit length can be obtained by multiplying the energy

loss per collision ∆Erad with the scattering rate Λ.

3.3 ‘Our aims and expectations’ revisited

Now, as pledged in the section 1.5, after general discussion on energy loss phenomenon and

its estimation in the radiative domain, we return to review our ‘aims and expectations’ again

and we can modify the statement made there that the present thesis is about counting the

number of emitted radiation. The reason is, we have already established that counting is same

as finding out the radiation distribution. The two issues related to calculating the distribution

which have been addressed are:

• Keeping in mind the kinematic approximations used in the energy loss models we endeav-

our to calculate the radiation distribution off energetic particles like gluon or heavy quark

relaxing them (the eikonal approximation due to scattering, to be specific) at the level of

single scattering. During this course we have calculated the non-eikonal gluon distribu-

tion off gluon jets and expect to find out non-eikonal corrections to the Gunion-Bertsch
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distribution. Non-eikonal corrections to the heavy quark radiation distribution has also

been found out with a view to re-explore the noted ‘dead-cone’ spectrum off heavy quarks

which we have mentioned about in the beginning of this chapter.

The important messages we will get from these parts are:

– The non-eikonal corrections to the Gunion-Bertsch distribution create significant

differences in the energy loss of gluons specifically in the lower temperature region.

The non-eikonal corrections become important while considering the chemical equi-

libration of the gluons in thermal bath, too.

– The non-eikonal corrections to the heavy quark radiation spectrum helps display the

absence of the ‘dead-cone’ region along the direction of propagation of the heavy

quark.

• The second issue is a bit different because this problem deals with the radiation distribu-

tion off quarks whose virtuality due to the acceleration received in heavy-ion collision is

taken in to account.

We have already discussed the Weizsäcker-Williams (WW) picture of the energy loss

where the WW gluons associated with a parton are detached from its parent due to

acceleration and there is radiation in the form of these detached quanta. Now, along with

the acceleration received by an incoming particle by the medium particles, there exists

already a huge acceleration imparted upon them at the beginning when we collide two

heavy nuclei to produce these jet particles, and, much later, the QGP. When comes the

context of radiation distribution due to scattering inside medium, there is also a question

whether the radiation is same as the radiation due to off-shellness, or a mix. A rigorous

field theoretic technique of their interplay is necessary. The radiation off virtual quarks

has been addressed and distribution of radiation given off by them has been calculated.
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This part of thesis infers that the radiation distribution off virtual quarks, heavy or light,

are similar and it is only after they become real that the difference between their spectra

become distinguishable.

In all these calculations just mentioned above, it is not surprising to see the radiation

distributions resembling with those obtained from the Classical Electrodynamics. We will

see it most vividly in chapter 5 while dealing with the radiation distribution off the heavy

quarks. But we should keep in mind that the dynamics is after all dictated by QCD and

while calculating the energy loss we have the asymptotically free strong coupling in our

calculation. So, though the radiation current is same as the classical current, the QCD

plays its part in the radiation distribution where the property of asymptotic freedom

becomes important.
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Chapter 4

Gluon Radiation off gluons

So far, we have been engaged into the general discussion on radiation and the corresponding

energy loss. We have tried to relate the facts that we can either calculate the Poynting’s vector

or can find out the radiation distribution in order to estimate the power dissipation. The latter

is the approach taken in our calculations (and in many other pQCD calculations) to find out

the radiation distribution.

The present chapter will discuss about the non-eikonal correction to the Gunion-Bertsch radi-

ation distribution formula obtained from the gg → ggg scattering. This process is nothing but

the radiative energy loss of high energy gluons in gluonic plasma.

First of all, is purely gluonic plasma an idealization ? It may be opportune to discuss the point

here. We have already discussed that a charge, when Lorentz boosted , becomes dressed by

Weizsäcker-Williams (WW) virtual quanta. After the head-on encounter of two nuclei in heavy-

ion collision, the virtual quanta are excited and after some time, they become real quarks and

gluons. Now, the WW virtual quanta are also known as ‘sea’ partons1 and from the variation

of the distribution of sea-partons with the momentum fraction x of the nucleon they carry, we

1and the Lorentz boosted charge is nothing but the valence parton, which we termed as the leading parton

in section 2.3
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see that the sea quanta distribution becomes larger and larger as x → 0. In addition to that,

gluon distribution dominates over the sea quarks at very small x (see Fig. 4.1). So, the gluons

outnumber the quarks for low-x (equivalently, high energy transfer) region which is the case

for, at least, the heavy-ion collision experiments at Large Hadron Collider (LHC) at CERN

and Relativistic Heavy-Ion Collider (RHIC) at BNL. Hence, we may very well treat the matter

produced in the central rapidity region as dominantly gluonic.

It will be interesting to take the help of Eq. 2.8 which might be able to provide an alter-

native explanation to the increase of parton distribution with energy. We observe that with

increasing energy (equivalently, γ), the upper limit of energy in frequency spectrum of virtual

particles associated with the charge (ωmax ∼ 1/∆t) increases. So, the number of associated

particles increase and hence the density of them goes up with increasing energy. Also, there are

possibilities of gluons fluctuating into quark-antiquark pairs which contribute to the sea-quark

distribution coupled with three-gluon as well as four-gluon vertices. But due to gluon-gluon

color factor, the sea-gluons are expected to dominate.

After all these, why gg → ggg ? First of all, it is more important process than other similar (i.e.

2→3) processes involving one or more quarks. Second of all, inelastic, number non-conserving

processes help maintain the chemical equilibrium of the system. In the present discussion we

will employ the 2-gluon→3-gluon process for revisiting the Gunion-Bertsch (GB) distribution

formula widely used in transport models [1, 2, 3, 4, 5, 6] keeping in mind the recent trend of

the similar efforts observed in Refs. [7, 8, 9].
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Figure 4.1: Variation of parton distribution function with x[10].

4.1 The radiation spectrum off a gluon in gluonic

plasma

The square of the invariant amplitude for the process g(k1)+ g(k2) → g(k3)+ g(k4)+ g(k5) can

be written elegantly as [11]:

|Mgg→ggg|2 =
1

2
g6

N3
c

N2
c − 1

N
D × [(12345) + (12354) + (12435) + (12453) + (12534)

+ (12543) + (13245) + (13254) + (13425) + (13524) + (14235)

+ (14325)] (4.1)
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where

N = (k1.k2)
4 + (k1.k3)

4 + (k1.k4)
4 + (k1.k5)

4 + (k2.k3)
4 + (k2.k4)

4 + (k2.k5)
4

+ (k3.k4)
4 + (k3.k5)

4 + (k4.k5)
4 (4.2)

D = (k1.k2)(k1.k3)(k1.k4)(k1.k5)(k2.k3)(k2.k4)(k2.k5)(k3.k4)(k3.k5)(k4.k5) (4.3)

and

(ijklm) = (ki.kj)(kj.kk)(kk.kl)(kl.km)(km.ki) (4.4)

Nc(= 3) is the number of colors, g =
√
4παs is the color charge, and αs is the strong coupling.

The quantity, |Mgg→ggg|2 after simplifying up to O(t3/s3) and O(1/k2⊥) can be written as[12]

(calculation given in Appendix A also):

|M gg→ggg|2
|Mgg→gg|2

=

12g2
1

k2⊥

[(

1 +
t

2s
+

5t2

2s2
− t3

s3

)

−
(

3

2
√
s
+

4t

s
√
s
− 3t2

2s2
√
s

)

k⊥ +

(
5

2s
+

t

2s2
+

5t2

s3

)

k2⊥

]

︸ ︷︷ ︸

D(1)

(4.5)

where |Mgg→gg|2 = (9/2)g4s2/t2, Mandelstam variables: s = (k1 + k2)
2, t = (k1 − k3)

2, u =

(k1 − k4)
2, k⊥ is the magnitude of the transverse momentum of the radiated gluon.

The Mandelstam variable t ≈ −q2⊥ and q2⊥, the square of the transverse momentum transfer, is

replaced by the corresponding average value:

〈q2⊥〉 =
1

σel

∫ s
4

m2
D

dq2⊥
dσel
dq2⊥

q2⊥ (4.6)
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where

σel =

∫ s
4

m2
D

dq2⊥
dσel
dq2⊥

(4.7)

For dominant small-angle scattering (t→ 0),

dσel
dq2⊥

= Ci
2πα2

s

q4⊥
(4.8)

Ci is 9/4, 1 and 4/9 for gg, qg, and qq scattering. 〈q2⊥〉 is then obtained as,

〈q2⊥〉 =
sm2

D

s− 4m2
D

ln

(
s

4m2
D

)

(4.9)

mD =
√

2παs(T )(CA + NF

2
)/3 T , is the thermal mass of the gluon [13], NF is the number of

flavors contributing in the gluon self-energy loop, CA = 3 is the Casimir invariant for the SU(3)

adjoint representation. With the replacement as in Eq. 4.9, the emission distribution can be

obtained by the following steps [14]:

∫

dng =

∫
d4k

(2π)4
2πδ(k2)

|M gg→ggg|2
|Mgg→gg|2

=

∫
d3~k

(2π)3
dk0δ(k

2
0 − |~k|2)

|Mgg→ggg|2
|Mgg→gg|2

=

∫
d3~k

(2π)3
dk0δ(k

2
0 − k2⊥ − k2z)

|M gg→ggg|2
|Mgg→gg|2

(4.10)

Where k0(kz) is the energy(longitudinal momentum) of the emitted gluon. But if we parametrize

k0 = k⊥cosh η and kz = k⊥ sinh η in terms of the gluon rapidity η, then kz = 0 at η = 0. So,

we can write Eq. 4.10 as,
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∫

dng =
12g2

2(2π)3

∫
1

k2⊥
d2~k⊥dηD(1)

dng

d2~k⊥dη
=

CAαs

π2

1

k2⊥
D(1)

≈ CAαs

π2

q2⊥

k2⊥(
~k⊥ − ~q⊥)2

D(1)

=

[
dng

d2~k⊥dη

]

GB

D(1) (4.11)

in the limit, transverse momentum transfer q⊥ >> k⊥ (see Eq. 3.8 and the discussions there-

after). In the light of the discussion of Sec. 3.2.2 about the eikonal approximation due to

scattering where q⊥ <<
√
s, we identify Eq. 4.5 as the non-eikonal correction to the noted GB

radiation distribution. Though it seems that O(kn⊥), n = 0, 1, 2 terms introduce corrections

beyond the ‘soft approximation’, they are actually divided by the factor 1/k2⊥ in front, and

hence are the most dominant terms in the soft approximation limit. Other terms for n > 2

will have a k⊥ in the numerator and so those will tend to zero in the soft limit. So Eq. 4.5

refers to the more general modification (compared to those in Refs.[7, 8]) to the Gunion-Bertsch

distribution within O(t3/s3).

4.2 Reaction rate of gg → ggg

Why are we interested to know the rate of this reaction ? The rate is important because

the number/particle identity non-conserving processes are important maintain the chemical

equilibration of the plasma medium. So processes like gg → ggg (number non-conserving)

or gg → qq̄ (particle identity non-conserving) coupled with the reverse processes will signifi-

cantly contribute to the chemical equilibrium. When the inelastic processes cease, the medium

restrains from being chemically equilibrated and the number of gluons gets fixed.
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Figure 4.2: Temperature variation of the ratio of the equilibration rate obtained in Ref. [12]
(solid line), Ref. [7] (dashed line), and [8] (dot-dashed) normalized by the corresponding value
putting GB distribution for the process gg → ggg.

The reaction rate of gg → ggg, R3, has been estimated by finding out σgg→ggg, the corre-

sponding cross-section, and multiplying it with the gluon density ρg ∼ T 3, where T is the bath

temperature. The σgg→ggg can be found out by integrating the triple differential cross-section

dσgg→ggg

d2~q⊥dηd2~k⊥
≈ dσgg→gg

d2~q⊥

[
dng

d2~k⊥dη

]

(4.12)

over q⊥ and the emitted gluon phase space. We find out 2 → 3 reaction rate putting the

corrections to the GB distribution obtained in Refs. [7, 8, 12] in Eq. 4.12 and compare their

respective ratios to the reaction rate putting GB distribution in Fig. 4.2. We see that the

non-eikonal correction has significant contribution to the equilibration rate of gluon.
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4.3 Energy loss by energetic gluons

Energy loss of energetic gluon in a gluonic plasma can be obtained with the help of Eq. 3.18. As

long as we are in the additive (Bethe-Heitler) region, the energy loss for each collision beyond

the first one is given by the formula. Hence the energy loss obtained by Eq. 3.18 yields that

over the distance of mean free path of plasma. The mean free path of the plasma is obtainable

from the inverse interaction rate which can evaluated using pQCD in the same way as [15]. The

θ-functions in the formula constrain the phase space of emitted gluon because the energy loss

formula demands τm > τF as well as E > k⊥coshη. We put mean free path τm ∼ Λ−1, where

Λ is the interaction rate obtained from [15] and τF ∼ coshη/k⊥ is the formation time of gluon.

So we get E/coshη > k⊥ > Λcoshη.

0.3 0.4 0.5 0.6 0.7
T(GeV)

0

5

10

15

∆ 
Ε R

Present Work
Abir et al.
Das & Alam

Figure 4.3: Temperature variation of the energy loss of 10 GeV gluon, obtained from Refs. [12]
(solid line), [7](dashed), [8](dot-dashed) and scaled by that obtained from Ref. [14]. The ratio
is denoted by ∆ER,

Keeping the above considerations in mind, we find out the energy losses obtained using the

distributions of Refs. [7, 8, 12] and scaled by the corresponding value obtained from Ref. [14].

The difference in the scaled energy loss obtained from Ref [12] with those from Refs. [7, 8]
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is more prominent in the lower temperature region than the upper temperature realm. So it

is expected that the distribution function will have considerable effect in case of energy loss

calculations around the RHIC energy (see Fig. 4.3).

The qualitative difference of the ∆ER in different cases can be attributed to the fact that while

the correction terms in [7, 8] contain terms like (t/s)n only, the present calculation shows the

existence of (at O(k−2,−1
⊥ )) terms like s−1/2,−1 (see Eq. 4.5). Given s = 18T 2 in the COM

frame of the colliding particles, the temperature variation of t
k2⊥s

is negligible in comparison

with 1
k⊥

√
s
(for a given k⊥) or 1/s — a fact which results in the qualitative difference in the

present radiation distribution formula, and hence, in energy loss. So, in conclusion, we can tell

that the qualitative difference in the energy loss using modified Gunion-Bertsch formula will

compel us rethink the radiation distribution to be used in phenomenological models; as also,

this may be seen as a step towards the continuous endeavour of removing the approximations

prevailing inside the energy loss calculations.
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Chapter 5

Scattering of heavy-quarks

5.1 The radiation intensity spectrum off a heavy parti-

cle: Classical approach

Let us begin our discussion with the reference to the computation of radiation spectrum off

heavy particles from classical electrodynamics. Why classical electrodynamics ? Because, we

have already discussed, in chapter 3 that, there is nothing ‘quantum’ in soft radiation current

(Eq. 3.3). At this point, it may be worthwhile compare the radiation spectra off heavy,

relativistic particles obtained with the help of classical electrodynamics and the Quantum field

theory.

The power spectrum off a non-relativistic heavy particle is given by Ref. [1],

dP

dΩ
∼ |~̇β|2sin2θ (5.1)

where ~β is the velocity of the particle, Ω is the solid angle the observer makes with the direction

of motion of the particle. We observe that the power spectrum dips at θ = 0, 1800 and shows
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Figure 5.1: Polar plot of the power spectrum off a relativistic, heavy particle.

a peak at θ = 900. The radiation free zone around θ = 0, which signifies the direction of

propagation of the heavy particle, is called the ‘dead-cone’ region. The use of the term ‘cone’

will be apparent if we study the angular distribution of power emitted by a heavy, relativistic

particle with acceleration parallel to its velocity (i.e., no bending. See Fig. 5.1). The angular

dependence of the power spectrum looks like,

dP

dΩ
∼ |~̇β|2 sin2θ

(1− βcosθ)5
(5.2)

Now, a natural question which may arise at this point is how the power spectrum dP/dΩ in

classical electrodynamics is related to the radiation spectrum dng/(d
2k⊥dη). They cannot be

equivalent in a sense that though the small angle behaviours of both of them are similar, they

hardly resemble in large angles. Second of all, dimensionally they are not same. So there is

a hint that we must look for some other quantity for establishing the correspondence. Let us

search for it.
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If we consider a time-dependent function ~A(t) which is related to the retarded acceleration field

(see Ref. [1] for details) then the power spectrum can be written as

dP

dΩ
= | ~A(t)|2 (5.3)

The total energy (W ) radiated per unit solid angle is the integration of the r.h.s. of Eq. 5.3

dW

dΩ
=

∫

| ~A(t)|2dt (5.4)

which in the Fourier domain can be written as

dW

dΩ
=

∫

| ~A(ω)|2dω (5.5)

by dint of the Parseval’s theorem, where ω is the frequency of radiation. From Eq. 5.5 we

identify

| ~A(ω)|2 = dI

dωdΩ
(5.6)

Now, if we can show that the angular dependence in dI/(dωdΩ), the intensity spectrum, is

same as that in dng/(d
2k⊥dη) (for small angle, say), then we can find out the correspondence

between the intensity spectrum in classical field theory and the radiation spectrum in quantum

field theory. As expected, we can show that the said angular dependences are same, at least,

for small angle emissions.
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5.2 Elastic and radiative scattering cross-sections of a

heavy quark : Perturbative QCD

So far we have emphasized on finding out the radiation distribution off an energetic parton so

that we can find out the radiative dissipation of the particle. But the radiative dissipation is not

the only energy loss mechanism of a fast particle inside the QGP medium. The elastic loss has

to be incorporated, too. Transport coefficients like drag and diffusion can be estimated [2] from

the elastic and/or radiative scattering amplitudes in case of heavy quarks(Q) scattering with

light quarks(q) or gluons(g). The drag and diffusion coefficients act as inputs to the Fokker-

Planck equation (FPE) (an approximation of the Boltzmann Transport Equation (BTE)), which

dictates the evolution of the heavy quark distribution in the background of the evolving QGP

medium. The distribution the FPE spits out is divided by the initial distribution fed to it to

obtain the nuclear suppression factor (RAA) [3, 4] which is experimentally measured by the

relative value of the hadronic multiplicity distribution (in terms of their transverse momentum

pT and rapidity y) in HIC (Pb-Pb or Au-Au collision) with respect to that in proton-proton

collision and is scaled by the number of collisions (Ncoll). Hence,

RAA =

(
dN

d2pT dy

)AA

Ncoll

(
dN

d2pT dy

)pp (5.7)

Essentially, with the help of the Feynman amplitudes we have to find out the values for some

experimental observables which will not entertain infinite results, anyway. So, let us review

various infinities playing their parts in the heavy quark scattering amplitudes and possible

measures to shield them.
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5.2.1 Mass lifts collinear divergence in radiation spectrum

The number of gluons emitted off a light particle, its radiation distribution, is characterized by

the soft and the collinear divergence (see chapter 3 for discussion). But unlike light particles,

the collinear divergence in the emission spectrum of a heavy particle is regulated by the mass of

the particles and the shielding of collinear divergence for heavy quarks is manifested in the form

of the existence of dead-cone. The radiation distribution of soft gluons (energy ω, transverse

momentum k⊥) off a heavy quark (of mass m and energy E) is given by Ref. [5].

dN ∼ dω

ω

k2⊥dk
2
⊥

k2⊥ + ω2θ20
(θ0 =

m

E
) (5.8)

which with the help of Eq. 3.17 and in small angle approximation can be written as

dN ∼ dω

ω

θ2dθ2

(θ2 + θ20)
2
→ dω

ω

dθ2

θ2
, when E >> m (5.9)

So the presence of mass shields the collinear divergence. But this shielding works only when the

energy of heavy quark is comparable to its mass. Otherwise, in the limit E >> m, θ0 becomes

very small and the collinear divergence starts to become prominent again.

5.2.2 Divergence due to soft gluon exchange

This divergence is termed as the ‘t-channel divergence’ as the softness in exchanged gluon (i.e.

its energy and momentum is much less than those of the the other particles) is manifested

through a small value of the Mandelstam variable t in the elastic heavy quark scattering am-

plitudes. In centre of momentum frame, small t translates into small angle scattering. So the

corresponding cross-section of the Qq → Qq and/or Qg → Qg processes are dominated by the

t-channel diagrams and hence dσQq→Qq/dt ∼ 1/t2. Since the radiative cross section is given by
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the product of elastic cross-section and the radiation distribution, the radiative part encounters

the same divergence, too. This divergence can be shielded in an ad hoc manner just by putting

a cut-off of thermal mass (mD) of gluons inside thermal bath i.e. by replacing 1/t terms by

1/(t−m2
D).

For a more rigorous shielding, however, one may use thermally modified gluon propagators,

the Hard Thermal Loop (HTL) resummed propagators in calculating the Feynman amplitudes.

Resummation in propagator is necessary when quantum corrections to it are of same magnitude

as that of the uncorrected part. Actually, in thermal bath, the existence of the scales1, the

‘hard’ scale (when momenta ∼ T , temperature of the bath) and the ‘soft’ scale (∼ gT , where

g is the coupling), may lead to quantum corrections with magnitudes same as that of the

uncorrected value. The loop integrals which are of less importance (i.e. of higher order in g

where g << 1)in comparison with tree level calculations in vacuum field theory, may become,

in thermal field theory, as important as the tree-level diagrams.

Matrix elements for the processes Qq → Qq and Qg → Qg in large angle scattering limit has

been calculated using resummed (HTL) propagators in Ref. [6](see Ref. [7] for small angle

scattering calculations for light quarks). The details of the calculations and the comparison

between the values of drag and diffusion coefficients obtained using thermal mass shielding and

that using HTL propagator can be obtained in Ref. [8]. The Feynman diagrams calculated

for Qg elastic scattering are given in Fig. 5.2. Replacing gluons by quarks in the t-channel

diagram, one can get the diagram for the Qq scattering. The solid black dot on the propagator

line denotes the HTL resummation. It is noteworthy that the heavy quark lines (solid) in Fig.

5.2, even when they appear as propagators, are never resummed. This is due to the fact that

the heavy quarks are not assumed to be thermalized, and hence bare propagators for them

suffice.

1Actually the scale gT is called the electric scale and that corresponding to g2T is called magnetic scale
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Figure 5.2: Tree level Feynman diagrams for Qg elastic scattering.

Now, generically speaking, HTL approximation and resummation needs examination of cor-

relation functions in high temperature limit and the ∼ T 2 contributions of them are known

to give rise to the HTLs. But the ‘correlation function’ does not mean ‘two-point correlation

functions’, i.e. propagators only. Though the φ4 field theory yields HTL in the propagator only,

the situation is far more complicated in case of a non-abelian gauge theory like QCD, where

three-point and even four point correlation functions can yield HTLs. So what about HTL

three-gluon/quark-gluon vertex correction ? From Ref. [9] we can compare the contributions

of the 1-loop vertex corrections to N -gluon vertex or two-quark N − 2 gluon vertex with their

bare counterparts in terms of powers of g (coupling) and T (temperature). Assuming g << 1,

if the corrections become sub-leading to the bare values, we can neglect the vertex corrections.

Putting N = 3 in the present case, and for hard external momenta (∼ T ) for heavy quarks,

light quarks and gluons we can easily verify that vertex corrections are not necessary for this

tree-level calculations.
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5.3 Radiation distribution off heavy quarks recoiling due

to scattering

The radiation distribution off heavy quarks as obtained in Ref. [5] considers the soft-eikonal-

collinear kinematic approximations (see Eq. 5.8 and Sec. 3.2.2). The factor θ2/(θ2+ θ20) in Eq.

5.8 is called the heavy quark dead-cone factor and is extensively used in finding out the drag,

diffusion, and hence the RAA [3, 4]. There are some recent attempts to relax the kinematic

approximations like collinearity and eikonal approximation due to scattering (henceforth to

be called eikonal 1 approximation) in calculating heavy quark radiation distribution. While

Ref. [10] calls off the collinearity assumption, the present dissertation will concentrate on the

removal of the eikonal 1 approximation.

The motivations behind these revisions are, first of all, an ad hoc use of the modified dead

cone factor sin2θ/(sin2θ + θ20) (which becomes θ2/(θ2 + θ20) at small angles) for large angles

of emitted gluons (with the heavy quark) may not be accurate. Second of all, removal of the

eikonal 1 approximation will be of importance in case of heavy quarks with moderate energies

[11] because the effect of recoil will come into play.

In general, the radiation spectrum for heavy quarks can be obtained with the help of Feyn-

man diagram techniques of pQCD. For the present discussion, we will consider heavy quarks

scattering with light quarks (q) and there exists recoil due to this scattering (no eikonal 1 ap-

proximation). The tree level Feynman diagrams for the Qq → Qqg scattering are given in Fig.

5.3. As discussed in Sec. 3.1.1, we have to find out the soft radiation current by separating

the Qq → Qq amplitude from the the radiative part. Squaring the radiation current gives the

radiation distribution.

The dynamics of the process is obtained once we find out the amplitudes from the pQCD. For

sake of finding out energy loss we need to incorporate the kinematic approximations. Generally
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Figure 5.3: Tree level Feynman diagrams for Qq → Qqg scattering. The double line denotes
the heavy quark.

the calculations are done in centre of momentum (COM) frame. We begin with the process

Q(k1)q(k2)→ Q(k3)q(k4)g(k5), where the four momenta of the particles are indicated inside the

brackets. For the 2→3 process obeying the four momentum conservation relation k1 + k2 =

k3 + k4 + k5, we have six Mandelstam variables s, s′, t, t′, u, u′ where

s = (k1 + k2)
2, t = (k1 − k3)

2

u = (k1 − k4)
2, s′ = (k3 + k4)

2

t′ = (k2 − k4)
2, u′ = (k2 − k3)

2, (5.10)

subject to the constraint equation,

s+ t + u+ s′ + t′ + u′ = 4m2. (5.11)
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Hence, we need five kinematic variables for 3-body phase space. At this point, we may assume

the four-momentum of the emitted gluon, k5, to be small enough so that the corresponding

kinematics reduces to one due to 2→2 scattering. This approximation is called the ‘soft gluon

emission approximation’. In k5 → 0 approximation, s→ s′, t→ t′ and u → u′ which lead to

s + t+ u→ 2m2 (5.12)

Hence, the kinematics we are dealing with, is similar to, as already said, two-body kinematics

which need two Mandelstam variables, s and t (say), square of COM scattering energy and

COM scattering angle respectively, to be specified. We may write down s in the following way,

s = (k1 + k2)
2 = k21 + k22 + 2k1.k2 = m2 + 2(E1E2 − ~k1. ~k2)

= m2 + 2E1|~k2|+ 2|~k1|2 = m2 + 2E1|~k2|+ 2E2
1 − 2m2 (COM frame)

= 2E1|~k1|+ 2E2
1 −m2 = 2E2

1 −m2 + 2E1

√

E2
1 −m2,

(5.13)

in COM frame in terms of mass (m) and energy (E1) of incoming heavy quark. Similarly, t can

be written as

t = (k1 − k3)
2 = 2m2 − 2k1.k3 = 2m2 − 2E1E3 + 2~p1. ~p3

= 2m2 − 2E2
1 + 2|~p1|2 cos θ13,CM = −2|~p1|2 + 2|~p1|2 cos θ13,CM

= −(s−m2)2

2s
(1− cos θ13,CM ),

(5.14)

where θ13,CM is the COM scattering angle between incoming HQ (momentum k1) and the

scattered HQ (momentum k3). We can form, for 2-body scattering processes, two dimensionless

variables from the available quantities of our present problem. One is m/
√
s and another is t/s.
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Besides, there may be another set of four, k5/
√
s, which remind us of the fact that we are dealing

with a 3-body phase space, in reality. Now, k5 = (ω, ~k⊥, kz); and from Sec. 3.2.2 we know that

|~k⊥| = k⊥ = ω sin θ, where θ is the angle the radiation makes with the parent quark. If we

note that kz =
√

ω2 − k2⊥ for on-shell radiated gluon, then kz = ω cos θ. Consequently, all the

components of k5 are now expressible in terms of ω and θ; and the third dimensionless quantity

k5/
√
s becomes ω/

√
s. We consider ω → 0 as the soft approximation limit. Or, we may tell

that we are assuming ω/
√
s→ 0 when we speak about soft limit of emitted gluon. Under this

approximation, we explore the effect of O(t/s) terms and higher in Feynman amplitude (M).

O(t/s) terms will exist if we remove the eikonal 1 approximation. To be precise, we look for

terms only O(1/ω2) as well as terms O(t/s) and higher in our calculation of radiative matrix

element of Qq→Qqg process. We can also see that, as shown in Ref. [10], with the choice of

four momenta as given in Eq. 5.15 one may be able to call off the collinearity approximation of

the emitted gluon, too. So the amplitude we are going to find out will be free from collinearity

and the eikonal 1 approximation. The heavy quark scattering amplitude, thus obtained, in

the present dissertation will generalize the soft, non-eikonal, mid rapidity amplitude for light

quarks calculated in Ref. [11], will be reduced to the soft, eikonal (but not collinear) matrix

element of Ref. [10] and reproduces the soft, eikonal, collinear amplitude as obtained in Ref.

[5] (the kinematic regions I, II and IV respectively in Sec. 5.3.2).

We hereby specify our choice of four momenta (ki, i = 1 → 5) of interacting particles in

COM frame assuming that the incoming particles have no transverse momentum, i.e. they are

travelling along the z-axis, say.

k1 ≡ (E1,~0⊥, k1z), k2 ≡ (E2,~0⊥,−k1z),

k3 ≡ (E3, ~q⊥, k3z), k4 ≡ (E4,−~q⊥,−k3z)

k5 ≡ (ω, ω sin θk̂⊥, ω cos θ) (5.15)
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The scattered particles are assumed to acquire a transverse momentum q⊥. Since we are working

in COM frame in the soft gluon radiation limit, we may approximately assume E1(2),CM ≈

E3(4),CM and |~p1(2),CM | ≈ |~p3(4),CM |, where approximation sign is replaced by equality for 2 → 2

case.

5.3.1 Radiative matrix elements

There are five Feynman diagrams pertaining to the process under discussion, Qq→Qqg. We

denote a generic matrix element by,

Mij = MiM†
j; i, j = 1 → 5 ∀ i ≤ j (5.16)

Clearly, i (or j) denotes the Feynman diagram being indicated among five of them (fig. 5.3).

Below, we list down the matrix elements, Mij, up to terms O(1/ω2) with all large t corrections

in M. The detailed derivation is deferred to the Appendix B. ∀i ≤ j, we list down Mij and

MS
ij , where MS

ij = Mij +Mji. Mij = Mji, in point of fact, and hence MS
ij = 2Mij.
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t2
1

ω2

1

sin2 θ

1

4
(1−∆2

M)J
(

1− f3
(1−∆2

M)3

)

MS
34 =

128

27
g6
s2

t2
1

ω2

1

sin2 θ

1

4
(1−∆2

M)J
(
1− f3

(1−∆2
M

)3

F35F45

)

MS
14 =

128

27
g6
s2

t2
1

ω2

1

sin2 θ

7

8
(1−∆2

M)J
(
1 + f4

(1−∆2
M

)3

F45

)

MS
23 =

128

27
g6
s2

t2
1

ω2

1

sin2 θ

7

8
(1−∆2

M)J
(
1 + f4

(1−∆2
M

)3

F35

)

MS
24 =

128

27
g6
s2

t2
1

ω2

1

sin2 θ

1

8

t

s
tan2 θ

2






1 +
t
s(1+

t
2s)

(1−∆2
M

)2

F45




 ,

(5.17)

M22 = M44 = 0; and Mi5, ∀i = 1 → 5 do not contribute in O(1/ω2). The definitions of the

quantities used in describing the matrix elements in Eq. 5.17 are written below:
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∆M =
m√
s
; J =

1−∆2
M

1 +
∆2

M

tan2 θ
2

;

f1 = ∆2
M

t

s

(

1 +
t

2s

)

; f2 =
∆4

M t

2s
− 2

∆2
M t

s
+

t

2s
− ∆2

M t
2

2s2
+

t2

2s2
+

t3

4s3
;

f3 = ∆2
M

t

s
− t

s
− t2

2s2
+

∆2
M t

2

2s2
; f4 = ∆4

M

t

s
− 3∆2

M

t

s
+ 2

t

s
− ∆2

M t
2

2s2
+

3t2

2s2
+

t3

2s3
;

F35 = 1 +

[

cot θ

(

1−
√

1− 4
(

q⊥√
s

)2

(1−∆2
M

)2

)

− 2
(

q⊥√
s

)

(1−∆2
M

)

]

(1−∆2
M)

tan θ
2

(

1 +
∆2

M

tan2 θ
2

)

F45 = 1−

[

cot θ

(

1−
√

1− 4
(

q⊥√
s

)2

(1−∆2
M

)2

)

− 2
(

q⊥√
s

)

(1−∆2
M

)

]

(1−∆2
M)

cot θ
2

(5.18)

However, that q⊥√
s
is related to t

s
can be seen from the following few steps:

t = (k1 − k3)
2

= (E1 − E3)
2 − q2⊥ − (k1z − k3z)

2

= −q2⊥ − (k1z − k3z)
2

= −q2⊥ − k21z

(

1−
√

1− q2⊥
k21z

)2

= −q2⊥ − (s−m2)2

4s

(

1−
√

1− 4sq2⊥
(s−m2)2

)2

∴
t

s
= −q

2
⊥
s

− 1

4

(
1−∆2

M

)2




1−

√
√
√
√1− 4

q2⊥
s

(1−∆2
M )

2






2

(5.19)

Now, to define the total matrix element, MQq→Qqg, we need the following functions obtainable

from Eq. 5.18,
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A = ∆2
M +

f1
(1−∆2

M )2
; B = ∆2

M − f2
(1−∆2

M )2
C = 1− f3

(1−∆2
M)3

;

D = 1 +
f4

(1−∆2
M)3

(5.20)

With the help of Eqs. 5.18 and 5.20 we can write,

|MQq→Qqg|2 =
128

27
g6
s2

t2
1

ω2 sin2 θ

×





C1(1−∆2

M)2
(

1 +
∆2

M

tan2 θ
2

) +
C2(1−∆2

M)2

tan2 θ
2

(

1 +
∆2

M

tan2 θ
2

)2 + (1−∆2
M)2C0 tan2 θ

2






(5.21)

where C1, C2 and C0 are given by,

C2 = −
(

A +
A

F2
35

+
B

4F35

)

;

C1 =
C

4

(

1 +
1

F35F45

)

+
7

8
D

(
1

F45

+
1

F35

)

;

C0 =
1

8F45(1−∆2
M )4

[

(1−∆2
M)2z2 + z4 +

1

2
z6
]

;

(5.22)

Using gluon rapidity η = −ln
(
tan θ

2

)
and the light cone variable x = k⊥e

η/
√
s, we can get
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|MQq→Qqg|2 =
16

3
g2 |MQq→Qq|2

1

ω2

1

sin2 θ

[
∑

n=2,1,0

Cn e2(n−1)η

(
k2⊥

k2⊥ + x2M2

)n
]

︸ ︷︷ ︸

W(x,k2⊥)

(5.23)

Where we use,

|MQq→Qq|2 =
8

9
g4
s2

t2
(1−∆2

M)2 (5.24)

5.3.2 Behaviour of non-eikonal heavy quark spectrum at different

kinematic regions:

While treating different kinematic regions, we keep in mind the following cartoon depicting

the angles θg which the gluons make with the parent heavy quark and θq, the heavy quark

scattering angle. According to this figure (Fig. 5.4), the eikonal approximation implies θq = 0

and the collinearity implies θg = 0.

θqθg

Heavy Quark

Chomodynamic Scattering Centre

Figure 5.4: Deviation from straight eikonal trajectory. Angle between incoming and outgoing
momentum of heavy quark is θq and direction of emission of gluon with that of incoming
momentum of heavy quark is θg.
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Region I: Massless quark with non-eikonal trajectory

We may obtain the non-eikonal gluon radiation spectrum of light quarks from Eq. 5.21 if we

take its masses limit. Below we jot down the forms of the functions fi, ∀i = 1 → 5, A → D

and C1, C2, C0 when we take massless limit, i.e. m→ 0 ⇒ ∆M → 0,

(i)J → 1

(ii) f1 → 0 ; f2 →
t

2s
+

t2

2s2
+

t3

4s3
;

f3 → − t

s
− t2

2s2
; f4 →

2t

s
+

3t2

2s2
+

t3

2s3

(iii) F35 → F0
35 = 1 +

[

cot θ

(

1−
√

1− 4
q2⊥
s

)

− 2q⊥√
s

]

cot
θ

2
;

F45 → F0
45 = 1 +

[

cot θ

(

1−
√

1− 4
q2⊥
s

)

− 2q⊥√
s

]

tan
θ

2

(iv)A→ 0 ; B → B0 = − t

2s
− t2

2s2
− t3

4s3
;

C → C0 = 1 +
t

s
+

t2

2s2
; D → D0 = 1 +

2t

s
+

3t2

2s2
+

t3

2s3

(v)C1 → C0
1 =

C0

4
+

C0

4F0
35F0

45

+
7D0

8F0
35

+
7D0

8F0
45

;

C2 → C0
2 = − B0

4F0
35

C0 → C0
0 =

1

8F0
45

t

s

(

1 +
t

s

(

1 +
t

2s

))

(5.25)

Hence,

|Mqq′→qq′g|2 = 12g2
s2

t2
1

k2⊥
|Mqq′→qq′ |2

{

C0
1 +

C0
2

tan2 θ
2

+ C0
0 tan

2 θ

2

}

(5.26)
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Keeping up to O( t
s
) of B0, C0, D0 and putting F35 = 1 = F45we get

|Mqq′→qq′g|2 =
128

27
g6
s2

t2
1

k2⊥

{

2
1

4

(

1 +
t

s

)

+ 2
7

8

(

1 +
2t

s

)

+
t

8s

1

tan2 θ
2

+
t

8s
tan2 θ

2

}

= 12g2
{
8

9
g4
s2

t2

}
1

k2⊥

(

1 +
16t

9s
+

t

9s
cosh 2η

)

(5.27)

In the limit η → 0 Eq. 5.27 boils down to the light quark non-eikonal (up to O(t/s)) matrix

element obtained in Ref. [11].

Region II: Massive quark with eikonal trajectory

This region considers

q⊥√
s
→ 0 ⇒ t

s
→ 0

(5.28)

Hence, from Eq. 5.18,

fi = 0 ∀ i = 1 → 5 ; F35 = F45 = 1 (5.29)

From Eq. 5.20 we get, in the same limit,

A = B = ∆2
M ; C = D = 1 ; F35 = F45 = 1 (5.30)

Hence

C1 =
9

4
; C2 = −9∆2

M

4
; C0 = 0 (5.31)
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In Eq. 5.22.

With the help of Eqs. 5.29, 5.30, 5.31 we can write Eq. 5.21 as,

|MQq→Qqg|2 =
128

27
g6
s2

t2
1

k2⊥

9

4
J 2

=
128

27
g6
s2

t2
1

k2⊥
(1−∆2

M )2
9

4

1
(

1 +
∆2

M

tan2 θ
2

)2

= 12g2
[
8

9
g4
s2

t2
(1−∆2

M)2
]

1

k2⊥

1
(

1 +
∆2

M

tan2 θ
2

)2

= 12g2 |MQq→Qq|2
{

1

k2⊥

(

1 +
m2

s
e2η
)−2

}

(5.32)

with η = − ln
(
tan θ

2

)
; and the expression embraced by the curly braces is the radiated gluon

spectrum (∼ |MQq→Qqg|2/|MQq→Qq|2) for this case. Evidently, the present calculation yields

the calculation in Ref. [10] in the small angle scattering limit (Eq. 5.32).

Region III: Massless quark with eikonal trajectory

Now we explore the behaviour of the radiation spectrum in the following limits,

(i)
q⊥√
s
→ 0 ⇒ t

s
→ 0

(ii) m = 0 ⇒ ∆M = 0 ⇒ J → 1

(5.33)

The above limits force Eq. 5.32 to take the form given below,

|MQq→Qqg|2 = 12g2 |MQq→Qq|2
1

k2⊥
(5.34)
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which in the limit q⊥ >> k⊥ can be written as,

|Mqq′→qq′g|2 ≈ 12g2 |Mqq′→qq′ |2
[

q2⊥

k2⊥(
~k⊥ − ~q⊥)2

]

, (5.35)

where q, q′ are two different light quark flavors. The part within the square braces can very

well be identified with the celebrated Gunion-Bertsch gluon spectrum [12] emitted from light

quarks.

Region IV: Massive quark with eikonal trajectory emitting collinear gluons

This region considers the following limits

(i) m <<
√
s⇒ s ≈ 4E2

1

(ii)
q⊥√
s
→ 0 and

(iii) θ → 0 ⇒ tan
θ

2
≈ θ

2
(5.36)

In the above limit Eq. 5.21 yields the dead-cone factor of Ref. [5],

|MQq→Qqg|2 = 12g2 |MQq→Qq|2
1

k2⊥

(

1 +
θ20
θ2

)−2

, (5.37)

with θ0 =
m
E1
.
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5.3.3 The non-eikonal radiation spectrum off Heavy Quarks

In Fig. 5.5 we plot the radiation spectrum off heavy quarks with varying k⊥ of gluons for

different ζ values. ζ = q⊥/
√
s signifies the extent of transverse momentum transferred to the

heavy quark due to scattering with light quarks. Hence, ζ can be treated as the non-eikonality

parameter in our calculation.

Figure 5.5: Variation of gluon spectrum off 10 GeV heavy quark with gluon transverse momen-
tum with different extents of recoil of heavy quarks.

The polar plots of the radiation distribution for different ζ values are really interesting. Fig.

5.6 is the QCD counterpart of the polar plot of the intensity spectrum off a heavy, relativistic

particle in Fig. 5.1. Figs. 5.7-5.9 are analogous to the generalization of the emission spectrum

for instantaneous circular motion of the heavy particle with different radii of curvature. The

magnitude of the radius vector of any point on the polar plot (joined by red lines) gives the

number of gluons emitted at the angle the radius vector makes with the direction of propagation

of heavy quark (denoted by the arrow). It is noteworthy that the dead cone present along and

around the direction of propagation of heavy quark exists no more when it recoils. This may be

understood if we think the polar plots as composed of two parts, the spectrum before collision

and the spectrum after the collision. For the eikonal case (i.e. no recoil, ζ = 0) the spectra are
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along the same direction. When the heavy quark bends, the spectra before and after scattering

make an angle and hence the composition results in non-zero radiation even along the direction

of propagation of the scattered heavy quark.

If we want to calculate the energy loss and its effect on the nuclear suppression factor we have to

consider the Qg → Qgg scattering which will have more cross-section than the Qq → Qqg, too.

While in the eikonal case [10], the Qg → Qgg matrix element differs from that of Qq → Qqg

just by a number due to color factor, the non-eikonal case is not going to be so simple and

we have to calculate the Feynman amplitudes of a lot more diagrams. The present calculation

may, in principle, be useful when quarks dominate in the medium, i.e. in case of Compressed

Baryonic Matter experiment energies, for example2. But that needs a consistent treatment

of the multiple scattering process. Once that is done, we can easily find out the effect of

non-eikonality in energy loss.

2There may be some questions about the abundance of heavy-quarks and about the possibility of its radiation
at this energy.
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5

2

Figure 5.6: Polar plot of W(θ, ω)
(at a typical ω) with ζ(=
q⊥/

√
s) = 0 for a 10 GeV Charm

jet.

5

2

Figure 5.7: Polar plot of W(θ, ω)
(at a typical ω) with ζ(=
q⊥/

√
s) = 0.15 for a 10 GeV

Charm jet.

5

2

Figure 5.8: Polar plot of W(θ, ω)
(at a typical ω) with ζ(=
q⊥/

√
s) = 0.30 for a 10 GeV

Charm jet.

5

2

Figure 5.9: Polar plot of W(θ, ω)
(at a typical ω) with ζ(=
q⊥/

√
s) = 0.45 for a 10 GeV

Charm jet.
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Chapter 6

Gluon Radiation off slightly virtual

quarks

6.1 Radiation spectrum off a slightly virtual quark

We have already discussed the Weizsäcker-Williams (WW) picture of the energy loss where the

WW gluons associated with a parton are detached from its parent due to acceleration and there

is radiation in the form of these detached quanta. Now, along with the acceleration received by

an incoming particle by the medium particles, there exists already a huge acceleration imparted

upon them at the beginning when we collide two heavy nuclei to produce these high energy

particles, and, much later, the QGP. So the high energy particles whose interaction with the

QGP bath particles is under study, are highly virtual.

The present study endeavors to find out the radiation distribution off slightly off-shell particles.

We take e+e− → QQ̄g process where Q stands for heavy quark and radiates gluons. The

assumption of very small off-shellness (or virtuality) enables us to use Dirac’s equation in

our calculation as an approximate equation of motion for the femionic fields associated with
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the quarks. We will follow the line of arguments proposed in Ref. [1] to give a formula for

the radiation distribution off slightly virtual heavy quarks. It will be argued that for non-

zero virtuality the distribution is independent of the current mass of quark. The absence of

virtuality in heavy quarks results in a behaviour similar to that obtained in [2]; we will also

verify the absence of ‘conventional’ dead-cone suppression for on-shell light quarks from the

same formula. Lastly, The radiation distribution off the virtual particles will be employed to

find out the energy loss inside QGP.

The tree-level Feynman diagrams for gluon radiation by quarks/anti-quarks in the process

e+e− −→ QQ̄g are depicted in Fig. 6.1. The amplitude for the process shown in Fig. 6.1a can

e

e

Q

Q
Q

Q
e

e

p

p

p

p

p

p

p

p

1

2 3

4

1 4

2
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k
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(a) (b)

−

+

−

+

Figure 6.1: Tree-level Feynman diagram for gluon radiation by (a) quark and (b) anti-quark.

be written as:

Ma =
gseQe

2

s
(ta)ij [v̄(p2)γµu(p1)][ūi(p4)ǫ/

a∗(k)
(p/4 + k/+m)

((p4 + k)2 −m2)
γµvj(p3)] (6.1)

where gs is the colour coupling, eQ is the quark electric charge, e is electric charge, a, i, j are

the color indices and s = (p1 + p2)
2. We assume that p23 = p24 6= m2. For off-shell particles the

virtuality can be defined through the parameter V as:

V 2 = q2 −m2, (6.2)
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where q2 is four-momentum square of external virtual particles, q2 = m2 implies V = 0, i.e.

the particle becomes on-shell. We build our calculation on very small value of V so that the

off-shell external quarks are at the vicinity of being on-shell. Under such approximations we

can use the Dirac’s equation for quark and anti-quark.

The denominator of Eq. 6.1 can be expanded in terms of V to get,

(p4 + k)2 −m2 = p24 + 2p4.k + k2 −m2

= V 2 + 2p4.k (6.3)

with k2 = 0 for on-shell radiated gluon. The numerator of Eq. 6.1 can be simplified by using

the anti-commutator, {pi/, pj/} = 2pi.pj and Dirac equation ū(p)(p/−m) = 0 as follows:

ūi(p4)ǫ/
a∗(k)(p/4 + k/+m) = ūi(p4)ǫ/

a∗(k)(p/4 +m) + ūi(p4)ǫ/
a∗(k)k/

= ūi(p4)(−p/4 +m)ǫ/a
∗
(k) + 2p4.ǫ

a∗(k)ūi(p4)

+ūi(p4)ǫ/
a∗(k)k/

= 2p4.ǫ
a∗(k)ūi(p4) + ūi(p4)ǫ/

a∗(k)k/ (6.4)

The first term of Eq. 6.4 which is proportional to p4.ǫ
a∗(k) can be defined as the soft part

of amplitude [1] which dominates in the soft radiation limit. Using similar arguments for the

process depicted in Fig. 6.1b, we get the total soft amplitude given by:

[Msoft]a+b ∼ 2

(
p4.ǫ

a∗(k)

V 2 + 2p4.k
− p3.ǫ

a∗(k)

V 2 + 2p3.k

)

(6.5)
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This part of the amplitude originates from the gluon radiation. We call it the ‘radiation factor’

R. To obtain the cross-section of the process we square the amplitude and sum over the

relevant colour and spin degrees of freedom. In the limit V = 0, algebraic manipulation of

|R|2 gives rise to the conventional dead-cone suppression of on-shell massive quarks. Now, with

our assumption of low virtuality of quarks, R is, again, expected to lead us to a quantitative

understanding of the radiation distribution off off-shell quarks.

The radiation factor R, when squared and summed over spin, gives

∑

spin

|R|2 =

(
pα4

V 2 + 2p4.k
− pα3
V 2 + 2p3.k

)(

pβ4
V 2 + 2p4.k

− pβ3
V 2 + 2p3.k

)
∑

ǫa
∗

α (k)ǫa
′

β (k)

=

(
pα4

V 2 + 2p4.k
− pα3
V 2 + 2p3.k

)(

pβ4
V 2 + 2p4.k

− pβ3
V 2 + 2p3.k

)

(−gαβ(k)δaa
′
)

= −
∣
∣
∣
∣

p4
V 2 + 2p4.k

− p3
V 2 + 2p3.k

∣
∣
∣
∣

2

δaa
′

=

(
2p4.p3

(V 2 + 2p4.k)(V 2 + 2p3.k)
− p24

(V 2 + 2p4.k)2
− p23

(V 2 + 2p3.k)2

)

δaa
′

= (2R43 − R44 − R33)δ
aa′ (6.6)

modulo the color factor, where gαβ is the metric. Our problem now boils down to simplify the

quantity, 2R43 − R44 − R33 to get the necessary distribution.

To proceed further, we take the following form of the four-momenta for the radiating and the

radiated particles:

p4 = E4(1, ~β4)

p3 = E3(1, ~β3)

k = ω(1, ~n) (6.7)
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where ~βi is the velocity of the quark carrying a momentum ~pi and energy Ei and the gluon is

emitted along direction ~n with energy ω. If the radiating quark and antiquark were on-shell

then one could write, for quark, say,

p24 = m2 = E2
4(1− β2

4)

⇒ (1− β2
4) =

m2

E2
4

=
1

γ24
(6.8)

where γ is the Lorentz factor. But, for our present purpose we define,

(1− β2
4) =

q2

E2
4

=
1

γ24
; and β4 =

p4
E4

=
p4

√

p24 + p2
(6.9)

Here γ4 is almost but not exactly the Lorentz factor as we have considered small off-shellness

of the partons here. Had β been that for an on-shell quark, it would have been

β4 =
p4
E4

=
p4

√

p24 +m2
(6.10)

But p2 6= m2 for the present case and in that respect the relation in Eq. 6.9 becomes under-

standable.

The factor ω2R43 can be written as:

ω2R43 =
ω2E3E4(1− β3β4 cos θ34)

(V 2 + 2E4ω(1− β4 cos θ4))(V 2 + 2E3ω(1− β3 cos θ3))

(6.11)
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In the equal-β frame, where both particles have equal velocities back to back such that β3 =

β4; θ ≡ θ3 = θ4 − π; and θ34 = θ4 − θ3 = π, we have E3 = E4 = E. In this frame we can write

[3],

ω2R43 =
(1 + β2)

(
V 2

ωE
+ 2(1− β cos θ)

) (
V 2

ωE
+ 2(1 + β cos θ)

)

ω2R33 =
(1− β2)

( V
2

ωE
+ 2(1 + β cos θ))2

ω2R44 =
(1− β2)

( V
2

ωE
+ 2(1− β cos θ))2

(6.12)

Hence the radiation factor reads:

F = ω2(2R43 − R44 −R33)

= 4β2

(
V 4

ω2E2 +
4V 2

ωE
+ 4 sin2 θ

( V 4

ω2E2 +
4V 2

ωE
+ 4(1− β2 cos2 θ))2

)

(6.13)

The full radiation distribution, considering the color factors, can, however, be obtained from

|Me+e−→QQ̄g|2/|Me+e−→QQ̄|2 using Eq. 4.10. So, the radiation distribution off virtual quarks

heavy or light can be written as:

dng

d2~k⊥dη
=

64g2β2

2(2π)3
χ2 + 4χω + 4ω2 sin2 θ

(χ2 + 4χω + 4ω2(1− β2 cos2 θ))2

=
16αsβ

2

π2

χ2 + 4χω + 4ω2 sin2 θ

(χ2 + 4χω + 4ω2(1− β2 cos2 θ))2
(6.14)

, where χ = V 2/E and g2 = 4παs(αs:strong coupling).
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Next we explore different limits of F given in Eq. 6.13.

• For zero virtuality (V = 0) of the massive quark, Eq. 6.13 reduces to the conventional

dead cone factor:

F = ω2(2R43 −R44 − R33) −→
β2 sin2 θ

(1− β2 cos2 θ)2
(6.15)

This is the well-known conventional dead cone for a gluon emitted by a massive quark.

The divergence of the factor is shielded by the quark mass or virtuality through β(< 1).

In fact, for on-shell quarks with small θ one can show that Eq. 6.15 (see [2]) boils down

to:

F =
1

θ2
1

(1 + θ20/θ
2)2

, θ0 = m/E (6.16)

• Now we investigate the light quark limit (β = 1). For V = 0, β = 1,

F ∼ 1

sin2 θ
(6.17)

For light quarks Eq. 6.17 ensures the absence of dead-cone suppression at θ = 0 and π

for vanishing virtuality.

6.2 The radiation distribution off a virtual particle

For quantitative variation of F with energy E of the radiating partons, and angle θ between the

radiating and radiated partons, we replace the virtuality by V =
√

q2 −m2 =
√

E2 − p2 −m2.

The emitted gluon carry a fraction of parent parton energy. The variation of FRHθ = F (E =

1.5GeV, θ)/F (E = 1.5GeV, θ = 0) with θ is depicted in Fig. 6.2. In Fig. 6.3 the variation of

FRHE = F (E, θ = π/4)/F (E = 100GeV, θ = π/4) with E is displayed for heavy quarks. The

results displayed in Figs. 6.2, 6.3 are evaluated for heavy quark mass, m = 1.27 GeV, emitted
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gluon energy, ω = 20 MeV, β = 0.5 and V 2 = E2 − β2E2 − m2. It is interesting to note in

Fig. 6.2 that for vanishingly small virtuality (V 2 = 0.0746 GeV2), the θ variation of the scaled

spectrum shows the conventional dead cone that appears for massive on-shell quarks. In Fig.

6.3, larger the virtuality1 is (which increases with parton energy, E) smaller the FRHE becomes.
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Figure 6.2: The variation of
FRHθ(E, θ) with θ for E = 1.5
GeV.
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Figure 6.3: The variation of FRHE

with E for θ = π/4.

In Fig. 6.4 the variation of FRLθ = F (E = 3GeV, θ)/F (E = 3GeV, θ = 0) with θ is shown for

light partons. In Fig. 6.5 the variation of FRLE = F (E, θ = π/4)/F (E = 100GeV, θ = π/4) with

E is depicted. The results displayed in Figs. 6.4, 6.5 are evaluated for light quark mass m = 0

GeV, emitted gluon energy, ω = 30 MeV, β = 0.98 and V 2 = E2−β2E2. It is important to note

in Fig. 6.4 that the variation of FRLθ with θ for light quark with low virtuality (V 2 = 0.36 GeV2)

is drastically different from the corresponding quantity, FRHθ for heavy quark. This is obvious

because for V → 0 the light partons are not subjected to any dead cone suppression at θ = 0

and π unlike heavy quarks. Moreover, the sin−2θ behaviour for light quarks (Eq. 6.17) ensures

a minimum at θ = π/2 as opposed to a maximum at the same θ for heavy quarks. However, for

Fig. 6.5 we note that the behaviour of FRLE with E is similar to that of FRHE which indicates

that the suppression due to virtuality overwhelm the effects due to the conventional dead cone.

1If we take the liberty to extrapolate our calculation for large virtuality at all
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Figure 6.4: The variation of
FRLθ(E, θ) with θ for E = 3 GeV.
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Figure 6.5: The variation of FRLE

with E for θ = π/4

6.3 The Energy loss by a virtual particle

The high virtuality of a particle is an effect of large amount of momentum transferred to it due

to nucleus-nucleus scattering. From the field line viewpoint, the lines of forces of an accelerated

particle is highly tampered and since lines of forces are infinitely extended, all of its parts cannot

reorient themselves according to the acceleration given to it (see chapter 2 for detailed discussion

about this issue). Essentially, the produced high momentum parton is lacking the part of field

which does not follow it. The charged particle will try to get back its old configuration of lines

of forces by radiating and this radiation stops as soon as the particle regains it [4]. So when a

virtual particle scatters and gives off some radiation before it has regained its old configuration,

the emitted radiation spectrum can only have the high frequency part of the field which could

follow it. More the energy (equivalently, virtuality) of the particle is, less and less portion of

the field associated with the charge particle becomes available for energy loss; and hence the

radiation spectrum off virtual particles decreases with increasing energy. This phenomenon is

reflected in Figs. 6.3 and 6.5. The spectrum of heavy and light virtual particles are similarly

suppressed when subjected to the similarly high virtuality (Figs. 6.3 and 6.5). Consequently,

they will lose similar energy [5].

We can estimate the energy loss by a virtual particle after the traversal of a path length L

due to gluons which have lost coherence during this time following [5] but using the radiation
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spectrum of Eq. 6.14. When we plot energy loss with respect to the path length, as in Fig.

6.6, we see that up to the length 0.1 − 1 fm, which is of the order of the lifetime of QGP, the

heavy and light partons lose similar energy. This finding is similar to that of Ref. [5]. Only

after the said length, the dead-cone of heavy quark starts playing its part and heavy partons

lose less energy. For a charm, quark, for example, of energy 10 GeV, the length after which

the heavy quark energy loss will be less than the light partons, is ∼ 1/pg fm [5], where pg is

the momentum fraction of the emitted gluon. Since the radiation spectrum is dominated by

very small pg gluons, there exists a likelihood that the virtual particles do not get back their

‘on-shellness’ before hadronization.

So, our message is, the energy loss of energetic partons, which enter QGP as probes, must be

treated with caution as the virtuality of quarks is seen to play an important part. On that

note, the present work may throw some light on the similar suppression of electrons from heavy

and light quarks in RHIC experiments ([6]).
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Figure 6.6: Variation of vacuum energy loss of a virtual particle with length.
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Chapter 7

Summary and Outlook

We wrap up our discussion with the summary of the works presented in this dissertation and we

will try to explore where the present works may lead to. Any work is, by no means, complete

and there will always be scopes of improvements over the existing formalism. The summary

and future scopes will thus be an intertwined platform of discussion where, at places, after

summarizing some part of our work we will indicate the future scopes of generalizations.

As far as the subject matter of this dissertation, the study of energy loss of energetic par-

ticles, is concerned, it is an age-old topic where we have tried to make a continuous transi-

tion from the calculation of Classical Electrodynamics to that of the Quantum Electro(and/or

Chromo)dynamics. Given all that, we find it an opportunity to learn the physical (sometimes

philosophical) niceties of this beautiful phenomenon of nature. We concentrated on explain-

ing the meaning of radiation i.e what physical situations will compel one to tell that there is

radiation at all. We have defined the formation length of radiation — the length the radiated

photons/gluons take to be separated from the parent particle by one Compton length. We

have also calculated the electric field off a moving charge and argued that a (colour or electric)

charge, when Lorentz boosted, acquire sea of virtual particles, the Weizsäcker-Williams parti-

cles and have discussed how they can metamorphose into radiation once there is acceleration.
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In conclusion, we commented that to find the Poynting’s vector and integrating it over a sur-

face, large enough, is equivalent to calculating the number of gluons emitted from the Feynman

diagram technique of Quantum Field Theory. We hope that by dint of these discussions, we

are able to show how the classical theory can have a smooth voyage towards the quantum

calculations (chapter 2).

We have emphasized on a strange fact that when the radiation is soft i.e. its energy is much

smaller than that of the emitting particle, the distribution of radiation is independent of what

type of process the emitting particle has undergone in the collisional or elastic part of the

diagram. Based on this we are able to factorize the square of the radiation current, the radiation

distribution, from the elastic part. We must remember that the situation becomes complicated

when there is medium. Not only that the mass and life-time of the propagating particle change,

it undergoes multiple scattering also. When there is radiation in multiple scattering, there

are possibilities of quantum interference among the scattering amplitudes, the LPM effect as

opposed to the Bethe-Heitler case where the scattering processes add up and hence the total

energy loss adds up with increasing number of scatterings. As far as the title goes, our main

aim is to estimate the energy loss of an energetic particle inside QGP. What we mean by

energetic particle is a particle whose energy is so high that the radiative loss will dominate.

The potential model (the Gyulassy-Wang potential model, GWPM, to be precise) for multiple

scattering has been discussed where the calculations are done in a frame where motion of the

bath particles (average momentum ∼ T , T : temperature) is neglected compared to that of

the incoming particle having energies of several GeVs. In the potential model calculations, the

radiation distribution off fast particles can be calculated and the multiple scattering scenario

can be introduced. Due to negligible motion of the bath particles in comparison with the

fast incoming particles, the Feynman diagrams with the bath particles radiating are kinetically

suppressed (chapter 3).
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When we calculate the radiation distributions off either gluons or quarks in Chapters 4, 5 and

6 respectively, relaxing kinematic approximations like non-eikonality or considerations of on-

shellness , we calculate it for the single scattering. We see in chapter 4 that the non-eikonal

correction to the widely used Gunion-Bertsch formula significantly modifies the energy loss

and the gluon thermalization rate inside QGP obtainable from Refs. [1, 2]. In chapter 5, the

non-eikonal radiation distribution off moderately energetic heavy quarks has been calculated

and the ‘dead cone’ region is seen to vanish. The proper limits of the formula of Eq. 5.23

generalizes the main results of Refs. [3, 4]. In chapter 7 we wanted to find out the radiation

distribution off quarks whose off-shellness due to huge acceleration received from collision is

taken in to account. We derived a formula for the corresponding radiation distribution and

showed that with vanishing virtuality the formula reproduces those for the on-shell quarks.

Now, the distribution due to multiple scattering is what energy loss models primarily talk about.

If we announce that we are going to relax the kinematic approximations in energy loss models,

we must find a way to incorporate the multiple scattering, too. The computation of multiple

scattering has so far been done in scalar QCD approach (potential model), thermal QCD

approach (AMY) etc. The potential picture helps reduce the number of Feynman diagrams to

a considerable extent because one, then, neglects the diagrams containing the radiation from

the bath particles. But the single scattering amplitudes calculated in the present dissertation

is done in the Feynman gauge and then the distribution is multiplied with the factor due to

multiple scattering appearing in the GWPM in an ad hoc way. So, if we are to find a consistent

way to incorporate multiple scattering in Feynman gauge, we are going to meet with larger

number of diagrams than that in light cone gauge calculations in potential model. So, it

remains to find out how we can tackle this problem of large number of diagrams in multiple

scattering.

All the calculations of radiation distributions in the present dissertation assumes the Gribov’s

limit (see Sec. 3.1.3). We must find out how to remove the Gribov limit approximation in the
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calculation; and this leads to considering the diagrams with non-abelian three-gluon vertices in

the propagator – the gluon radiation off a propagator gluon, for example. Ultimately, all these

results in the removal of ‘soft approximation’ in energy loss models, the next possible venture

in relaxing the approximations at the level of single scattering, at least.

After a consistent way of incorporating multiple scattering with unapproximated matrix ele-

ments, we can set out for finding out the nuclear suppression factor for the energetic particles.

The medium evolution has also to be incorporated in which arena the study of adiabatic ap-

proximation in evolution equations of both the probe and the medium will be worth perusing.

While it is interesting to see how the collisional effects modify the radiation distribution off

heavy quarks and the dead-cone vanishes, the effect of collision (or recoil due to collision, more

precisely) on observables is yet to find out.

When comes the context of collision, who can forget the divergences in collisional cross-section

due to massless particle exchange ? While the infra-red divergence in the longitudinal spectral

functions are shielded by the HTL resummation, the magnetic scale divergence is shielded by

adding magnetic screening mass much in the same way as the divergence in electric scale (t

channel divergence) was shielded by Debye screening mass. The shielding of magnetic scale

divergence calls for the consideration of density. So, Hard Dense Loop (HDL) calculations are

natural extensions. But HDL is for zero-temperature plasma only. So, density plus temperature,

still we don’t know how to tackle.

So, these are all we wanted to say. We tried to present a consistent and continuous story about

radiations, or rather, our tryst with radiation. It was an interesting journey — adding an extra

bit of information to a text-book based on the information we have. It is exciting — telling a

story. It is exciting — to cook up the story. It gives pleasure — if someone enjoys the story.
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Appendix A:

In this appendix we derive Eq. 4.5 for the square of the invariant amplitude for the radiative

process, gg → ggg upto orders O(k⊥
0) and O( t

3

s3
). Consider the reaction

g(k1) + g(k2) → g(k3) + g(k4) + g(k5), (A.1)

where k5 is the four-momentum of the radiated gluon. The Mandelstam variables for the above

process are defined as

s = (k1 + k2)
2, t = (k1 − k3)

2

u = (k1 − k4)
2, s′ = (k3 + k4)

2

t′ = (k2 − k4)
2, u′ = (k2 − k3)

2. (A.2)

Because gluons massless we can write

k1.k2 =
s

2
, k1.k3 = − t

2

k1.k4 = −u
2
, k3.k4 =

s′

2

k2.k4 = −t
′

2
, k2.k3 = −u

′

2
. (A.3)
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We also have the relations

k1.k5 =
s+ t+ u

2
, k2.k5 =

s + t′ + u′

2

k3.k5 =
s+ t′ + u

2
, k4.k5 =

s+ t+ u′

2
. (A.4)

For soft gluon emission,

s+ t+ u+ s′ + t′ + u′ = 0. (A.5)

The matrix element square of the radiative process gg → ggg is given by [1]

|Mgg→ggg|2 =
1

2
g6

N3
c

N2
c − 1

N
D [(12345) + (12354) + (12435)

+ (12453) + (12534) + (12543) + (13245) + (13254) + (13425)

+ (13524) + (14235) + (14325)], (A.6)

where Nc is the number of colors, g =
√
4παs is the strong coupling,

N = (k1.k2)
4 + (k1.k3)

4 + (k1.k4)
4 + (k1.k5)

4 + (k2.k3)
4 + (k2.k4)

4 + (k2.k5)
4

+ (k3.k4)
4 + (k3.k5)

4 + (k4.k5)
4, (A.7)

D = (k1.k2)(k1.k3)(k1.k4)(k1.k5)(k2.k3)(k2.k4)(k2.k5)(k3.k4)(k3.k5)(k4.k5), (A.8)

and

(ijklm) = (ki.kj)(kj.kk)(kk.kl)(kl.km)(km.ki). (A.9)

Simplifying Eq. A.6 we get,
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|Mgg→ggg|2 = 16g6
N3

c

N2
c − 1

N [
1

s′(s+ u+ t)(s+ u′ + t′)

[
1

tt′
+

1

uu′

]

+
1

s(s+ u+ t)(s + u′ + t)
[
1

tt′
+

1

uu′
]− 1

t′(s+ u+ t)(s+ u+ t′)
[
1

uu′
+

1

ss′
]

− 1

u′(s + u+ t)(s+ u′ + t)
[
1

tt′
+

1

ss′
]− 1

u(s+ u′ + t′)(s+ u+ t′)
[
1

tt′
+

1

ss′
]

− 1

t(s+ u′ + t′)(s+ u′ + t)
[
1

uu′
+

1

ss′
]; (A.10)

and N can now be written as

N =
1

16
[s4 + t4 + u4 + s′

4
+ t′

4
+ u′

4
+ (s+ t + u)4 + (s+ t′ + u′)4

+(s+ t′ + u)4 + (s+ t+ u′)4]. (A.11)

For a soft gluon emission (k5 → 0) s → s′, t → t′, u → u′. We can express the transverse

momentum of the emitted gluon as

k2⊥ = 4(k1.k5)(k2.k5)/s

= (s+ t+ u)(s+ t′ + u′)

= (s+ t+ u)2/s

. (A.12)
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Using Eqs. A.10, A.11 and A.12, the square of the matrix element can be written as

|M |2gg→ggg =
27

2
g6(s4 + t4 + u4 + 2s2k4⊥)

1

sk2⊥

[
1

s

(
1

t2
+

1

u2

)

− 1

t

(
1

s2
+

1

u2

)

− 1

u

(
1

t2
+

1

s2

)]

= g2
(
27

2
g4s4

)(

1 +
t4

s4
+
u4

s4
+ 2

k4⊥
s2

)
1

s2k2⊥t
2

[

1 +
t2

u2
− t

s
− st

u2
− s

u
− t2

us

]

= g2
(
9

2
g4
s2

t2

)(

3 + 3
t4

s4
+ 3

u4

s4
+ 6

k4⊥
s2

)
1

k2⊥

×
[

1 +
t2

u2
− t

s
− st

u2
− s

u
− t2

us

]

= g2
(
9

2
g4
s2

t2

)(

3

(

1 +
u4

s4

)

+ 3
t4

s4
+ 6

k4⊥
s2

)
1

k2⊥

×
[

1− s

u
−
(

1 +
s2

u2

)
t

s
+

(
s2

u2
− s

u

)
t2

s2

]

= g2|Mgg→gg|2
(

3

(

1 +
u4

s4

)

+ 3
t4

s4
+ 6

k4⊥
s2

)
1

k2⊥

×
[

(1− s

u
)−

(

1 +
s2

u2

)
t

s
+

(
s2

u2
− s

u

)
t2

s2

]

, (A.13)

where the subscript GB stands for the approximation used by Gunion and Bertsch [2]. For the

elastic process,

|Mgg→gg|2 =
9

2
g4
s2

t2
. (A.14)

On simplifying Eq. A.13 we obtain,

|M |2gg→ggg = g2|Mgg→gg|2
1

k2⊥
[(3− 3

s

u
+ 3

u4

s4
− 3

u3

s3
)− (3

t

s
+ 3

st

u2
+ 3

u4t

s5
+ 3

u2t

s3
)

+(3
t2

u2
− 3

t2

us
+ 3

u2t2

s4
− 3

u3t2

s5
) + (3

t4

s4
− 3

t4

us3
)

−(3
t5

s5
+ 3

t5

u2s3
) + (3

t6

u2s4
− 3

t6

us5
) + (6

k4⊥
s2

− 6
k4⊥
us

)− (6
k4⊥t

s3
+ 6

k4⊥t

u2s
)

+(6
k4⊥t

2

u2s2
− 6

k4⊥t
2

us3
)]. (A.15)

94



In the proposed kinematic limit we set terms which are linear in k⊥ to zero and keep terms

O(k0⊥),O(k−1
⊥ ), and O(k−2

⊥ ) in |M |2gg→ggg. We also neglect terms O( t
4

s4
) and higher order in the

matrix element. To proceed further one needs to express the Mandelstam variable u in terms

of s, t, and k⊥ by using the following relation:

k⊥
2 =

(s+ t+ u)2

s

⇒ u =
√
sk⊥ − s− t

⇒ 1

u
=

1

(
√
sk⊥ − s− t)

⇒ 1

u
= −1

s

[

1−
(
k⊥√
s
− t

s

)]−1

⇒ 1

u
≈ −1

s

[

1 +

(
k⊥√
s
− t

s

)

+

(
k⊥√
s
− t

s

)2

+

(
k⊥√
s
− t

s

)3

+

(
k⊥√
s
− t

s

)4

+

(
k⊥√
s
− t

s

)5

+ ...

]

(A.16)

The binomial expansion of [1− ( k⊥√
s
− t

s
)]−1 converges if ( k⊥√

s
− t

s
) < 1. For the kinematic limit

mentioned above i.e. for k⊥ → 0 and keeping terms upto O( t
3

s3
), the inequality ( k⊥√

s
− t

s
) < 1 is

satisfied. We have checked that terms beyond ( k⊥√
s
− t

s
)5 in the expression of 1

u
are not required

for the kinematic limit under consideration. With all these we get,

1

u
= −1

s

[(

1− t

s
+
t2

s2
− t3

s3

)

+

(
1√
s
− 2t

s
√
s
+

3t2

s2
√
s

)

k⊥ +

(
1

s
− 3t

s2
+

6t2

s3

)

k2⊥

]

(A.17)

Similarly 1/u2 can be written as

1

u2
=

1

s2

[(

1− 2t

s
+

3t2

s2
− 4t3

s3

)

+

(
2√
s
− 6t

s
√
s
+

12t2

s2
√
s

)

k⊥ +

(
3

s
− 12t

s2
+

30t2

s3

)

k2⊥

]

(A.18)
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For the assumed kinematic conditions u4/s4 can be expressed as follows:

u4

s4
=

[(

1 +
4t

s
+

6t2

s2
+

4t3

s3

)

−
(

4√
s
+

12t

s
√
s
+

12t2

s2
√
s

)

k⊥ +

(
6

s
+

12t

s2
+

6t2

s3

)

k2⊥

]

(A.19)

Similarly,

u3

s3
= −

[(

1 +
3t

s
+

3t2

s2
+
t3

s3

)

−
(

3√
s
+

6t

s
√
s
+

3t2

s2
√
s

)

k⊥ +

(
3

s
+

3t2

s2

)

k2⊥

]

(A.20)

and

u2

s2
=

[(

1 +
2t

s
+
t2

s2

)

−
(

2√
s
+

2t

s
√
s

)

k⊥ +
1

s
k2⊥

]

(A.21)

Putting Eqs. A.17 to A.21 in A.15 we get,

|M |2gg→ggg = 12g2|Mgg→gg|2
1

k2⊥

×
[(

1 +
t

2s
+

5t2

2s2
− t3

s3

)

−
(

3

2
√
s
+

4t

s
√
s
− 3t2

2s2
√
s

)

k⊥ +

(
5

2s
+

t

2s2
+

5t2

s3

)

k2⊥

]

(A.22)

The terms O(k−1
⊥ ) and O(k0⊥) contribute to the energy loss of the gluons in a gluonic plasma

and hence are important for heavy-ion phenomenology at RHIC and LHC energies. These

terms were absent in the previous work [3] (also in [4])
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Appendix B:

In this Appendix we show the calculation of the binary combination of amplitudes of the

Qq → Qqg process.

1. Finding out the dot products with gluon momentum

Let us find out the dot products of the quark momenta with that of the emitted gluon which

appear in the denominator of the matrix elements considering the following choice of four-

momenta in centre of momentum (COM) frame in soft limit:

k1 ≡ (E1,~0⊥, k1z), k2 ≡ (E2,~0⊥,−k1z),

k3 ≡ (E3, ~q⊥, k3z), k4 ≡ (E4,−~q⊥,−k3z)

k5 ≡ (ω = k⊥cosec θ, ~k⊥, kz = k⊥ cot θ) (B.1)

Hence
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k1.k5 = E1k⊥cosec θ − k1zk⊥ cot θ

=
√

k21z +M2 k⊥ cosec θ − k1zk⊥ cot θ

= k1zk⊥

(√

1 +M2/k21z cosec θ − k1zk⊥ cot θ

)

=
s−M2

2
√
s
k⊥

(√

1 +
4M2/s

(1−M2/s)2
cosec θ − cot θ

)

(

putting k1z =
(s−M2)

2
√
s

)

(B.2)

k2.k5 = E2k⊥cosec θ + k1zk⊥ cot θ

= k1z k⊥ cosec θ + k1zk⊥ cot θ

= k1zk⊥ (cosec θ + cot θ) (B.3)

Unlike the previous (eikonal) case where k1.k5 = k3.k5 and k2.k5 = k4.k5 (because q⊥ is zero),

we can express k3.k5 and k4.k5 as factors of k1.k5 and k2.k5 respectively in the following way,

k3.k5 = E3k⊥cosec θ − q⊥k⊥ − k3zk⊥ cot θ

= k1zk⊥

(√

1 +
4M2/s

(1−M2/s)2
cosec θ −

√

1− q2⊥
k21z

cot θ − q⊥
k1z

)

= k1zk⊥

(√

1 +
4M2/s

(1−M2/s)2
cosec θ − cot θ

)

×



1 +

cot θ
(

1−
√

1− q2⊥
k21z

)

− q⊥
k1z

(√

1 + 4M2/s
(1−M2/s)2

cosec θ − cot θ
)






︸ ︷︷ ︸

F35

= k1.k5 F35 (B.4)
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So we see that the effect of non-eikonality is contained inside the factor F35. Much in the same

way, the factor F45 below appears once we consider the bending of the heavy quark jet.

k4.k5 = E4k⊥cosec θ + q⊥k⊥ + k3zk⊥ cot θ

= k1zk⊥

(

cosec θ +

√

1− q2⊥
k21z

cot θ +
q⊥
k1z

)

= k1zk⊥(cosec θ + cot θ)




1−

cot θ
(

1−
√

1− q2⊥
k21z

)

− q⊥
k1z

(cosec θ + cot θ)






︸ ︷︷ ︸

F45

= k2.k5 F45 (B.5)

So, once we know the dot products in terms of the gluon emission angle θ, we can replace them

in the denominator as will be done in the section to come.

2. The matrix elements

In the present section, we deliniate the calculation of amplitudes (genuine and interference)

for the process Q(k1, k)q(k2, n) → Q(k3, i)q(k2, l)g(k5, b), where ki denote the four momenta of

heavy quark (Q) or light quark (q) or gluon (g) with i, k, n, b denoting the colors.

Interference of Amplitudes with themselves (Genuine Amplitudes)

In the non-eikonal limit and within O(1/k2⊥) we have the following ‘genuine’ amplitudes.

100



M1 ⊗M†
1 ≈ −g6 8

3× 36

(64M6 − 128M4s+ 64M2s2 + 64M2st+ 32M2t2)

t2(2k1.k5)2

= −g6 8

3× 36
64M2s2






(

1− M2

s

)2

+ t
s
+ t2

2s2

t2(2k1.k5)2






≈ −g6 8

3× 36
64M2s2

(

1− M2

s

)2

+ t
s
+ 1

2
t2

s2

(s−M2)2

s
k2⊥

(√

1 +
4M2

s
(

1−M2

s

)2 cosec θ − cot θ

)2

=
128

27
g6
s2

t2
1

k2⊥

(

−M2

s tan2 θ
2

)


1− M2

s

1 + M2

s tan2 θ
2





2 [

1 +
t
s

(
1 + t

2s

)

(
1− M2

s

)2

]

=
128

27
g6
s2

t2
1

k2⊥

(

−1− M2

s tan2 θ
2

+ 1

)


1− M2

s

1 + M2

s tan2 θ
2





2 [

1 +
t
s

(
1 + t

2s

)

(
1− M2

s

)2

]

=
128

27
g6
s2

t2
1

k2⊥




M2

s
− 1 +

1− M2

s

1 + M2

s tan2 θ
2








1− M2

s

1 + M2

s tan2 θ
2





[

1 +
t
s

(
1 + t

2s

)

(
1− M2

s

)2

]

=
128

27
g6
s2

t2
1

k2⊥
(∆2

M − 1 + J )J
(

1 +
f1

(1−∆2
M )2

)

(B.6)
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As well as,

M3 ⊗M†
3 ≈ −g6 8

3× 36

(

1− M2

s

)2

+ t
s
+ t2

2s2

4 (s−M2)2

4s
k2⊥

(√

1 +
4M2

s
(

1−M2

s

)2 cosec θ − cot θ

)2

F2
35

=
128

27
g6
s2

t2
1

k2⊥

(

−M2

s tan2 θ
2

)


1− M2

s

1 + M2

s tan2 θ
2





2 [

1 +
t
s

(
1 + t

2s

)

(
1− M2

s

)2

]

1

F2
35

=
128

27
g6
s2

t2
1

k2⊥

(

−1− M2

s tan2 θ
2

+ 1

)


1− M2

s

1 + M2

s tan2 θ
2





2 [

1 +
t
s

(
1 + t

2s

)

(
1− M2

s

)2

]

1

F2
35

=
128

27
g6
s2

t2
1

k2⊥




M2

s
− 1 +

1− M2

s

1 + M2

s tan2 θ
2








1− M2

s

1 + M2

s tan2 θ
2





[

1 +
t
s

(
1 + t

2s

)

(
1− M2

s

)2

]

1

F2
35

=
128

27
g6
s2

t2
1

k2⊥
(∆2

M − 1 + J )J
(

1 +
f1

(1−∆2
M)2

)
1

F2
35

(B.7)
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Once we are done with the genuine (i.e. interference of any amplitude with itself) amplitudes,

we turn towards the interference amplitudes which, again, can be divided into several types:

Interference between initial and final state radiations

M1 ⊗M†
3 ≈ −g6 1

3× 36
(64M6 − 128M4s+ 64M2s2 − 32M4t+ 128M2st− 32s2t + 32M2t2 − 32st2 − 16t3)

t2(4k1.k5k3.k5)

= −g6 1

3× 36
64M2s2






(

1− M2

s

)2

− M2t
2s2

+ 2t
s
− t

2M2 +
t2

2s2
− t2

2M2s
− t3

4M2s2

t2(4k1.k5k3.k5)






= −g6 1

3× 36
64M2s2










(

1− M2

s

)2

− M2t
2s2

+ 2t
s
− t

2M2 +
t2

2s2
− t2

2M2s
− t3

4M2s2

4 (s−M2)2

4s
k2⊥

(√

1 +
4M2

s
(

1−M2

s

)2 cosec θ − cot θ

)2










1

F35

=
128

27
g6
s2

t2
1

k2⊥

1

8

(

−M2

s tan2 θ
2

)


1− M2

s

1 + M2

s tan2 θ
2





2

×
[

1−
M2t
2s2

− 2t
s
+ t

2M2 − t2

2s2
+ t2

2M2s
+ t3

4M2s2
(
1− M2

s

)2

]

1

F35

=
128

27
g6
s2

t2
1

k2⊥

1

8

(

−1− M2

s tan2 θ
2

+ 1

)


1− M2

s

1 + M2

s tan2 θ
2





2 [

1− f2
(
1− M2

s

)2

]

1

F35

=
128

27
g6
s2

t2
1

k2⊥

1

8




M2

s
− 1 +

1− M2

s

1 + M2

s tan2 θ
2








1− M2

s

1 + M2

s tan2 θ
2





[

1− f2
(
1− M2

s

)2

]

1

F35

=
128

27
g6
s2

t2
1

k2⊥

1

8
(∆2

M − 1 + J )J
(

1− f2
(1−∆2

M)2

)
1

F35

(B.8)
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M2 ⊗M†
4 ≈ g6

1

3× 36

32M4t− 64M2st+ 32s2t + 32st2 + 16t3

4t2k2.k5k4.k5

= g6
1

3× 36
32s2t






(

1− M2

s

)2

+ t2

2s2
+ t

s

4t2k2.k5k4.k5






=
128

27
g6
s2

t2
1

k2⊥

1

16
tan2 θ

2

[

t

s

(

1 +
t
s

(
1 + t

2s

)

(
1− M2

s

)2

)]

1

F45

(B.9)

M2 ⊗ M†
3 ≈ g6

7

3× 36
−32M6 + 96M4s+ 32M4t− 96M2s2 − 96M2st− 16M2t2 + 16s6t3 + 32s3 + 64s2t+ 48st2

t2(4k2.k5k3.k5)

= g6
7

3× 36
32s3

(

1− M2

s

)3

+ M4t
s3

− 3M2t
s2

+ 2t
s
− M2t2

2s3
+ 3t2

2s2
+ t3

2s3

t2(4k2.k5k3.k5)

=
128

27
g6
s2

t2
1

k2⊥

7

16

(

1− M2

s

)2
1

(

1 + M2

s tan2 θ
2

)

×
[

1 +
M4t
s3

− 3M2t
s2

+ 2t
s
− M2t2

2s3
+ 3t2

2s2
+ t3

2s3
(
1− M2

s

)3

]

1

F35

=
128

27
g6
s2

t2
1

k2⊥

7

16

(

1− M2

s

)

J
[

1 +
f4

(
1− M2

s

)3

]

1

F35

(B.10)
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M1 ⊗ M†
4 ≈ g6

7

3× 36
−32M6 + 96M4s+ 32M4t− 96M2s2 − 96M2st− 16M2t2 + 16s6t3 + 32s3 + 64s2t+ 48st2

t2(4k1.k5k4.k5)

= g6
7

3× 36
32s3

[(

1− M2

s

)3

+ M4t
s3

− 3M2t
s2

+ 2t
s
− M2t2

2s3
+ 3t2

2s2
+ t3

2s3

]

t2(4k1.k5k4.k5)

=
128

27
g6
s2

t2
1

k2⊥

7

16

(

1− M2

s

)2
1

(

1 + M2

s tan2 θ
2

)

×
[

1 +
M4t
s3

− 3M2t
s2

+ 2t
s
− M2t2

2s3
+ 3t2

2s2
+ t3

2s3
(
1− M2

s

)3

]

1

F45

=
128

27
g6
s2

t2
1

k2⊥

7

16

(

1− M2

s

)

J
[

1 +
f4

(
1− M2

s

)3

]

1

F45
(B.11)

Interference of final state radiations

M3 ⊗M†
4 = g6

2

3× 36

32s3

F35F45










(

1− M2

s

)3

− M2t
s2

+ t
s
− M2t2

2s3
+ t2

2s2

4 (s−M2)2

4s
k2⊥

(√

1 +
4M2

s
(

1−M2

s

)2 cosec θ − cot θ

)

(cosec θ + cot θ)










=
128

27
g6
s2

t2
1

k2⊥

1

8

(

1− M2

s

)2








1−
M2t
s2

− t
s
− t2

2s2
+M2t2

2s3
(

1−M2

s

)3

(

1 + M2

s tan2 θ
2

)








1

F35F45

=
128

27
g6
s2

t2
1

k2⊥

1

8

(

1− M2

s

)

J
[

1− f3
(
1− M2

s

)3

]

1

F35F45
(B.12)

Interference of initial state radiations
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M1 ⊗M†
2 = g6

2

3× 36
32s3










(

1− M2

s

)3

− M2t
s2

+ t
s
− M2t2

2s3
+ t2

2s2

4 (s−M2)2

4s
k2⊥

(√

1 +
4M2

s
(

1−M2

s

)2 cosec θ − cot θ

)

(cosec θ + cot θ)










=
128

27
g6
s2

t2
1

k2⊥

1

8

(

1− M2

s

)2








1−
M2t
s2

− t
s
− t2

2s2
+M2t2

2s3
(

1−M2

s

)3

(

1 + M2

s tan2 θ
2

)








=
128

27
g6
s2

t2
1

k2⊥

1

8

(

1− M2

s

)

J
[

1− f3
(
1− M2

s

)3

]

(B.13)

3. Color factors of the diagrams

The calculation of colour factor is pretty straightforward. However, for sake of completeness

we show here the calculation of C11, the colour factor corresponding to M11. We may easily

find out that the factor taijt
b
jkt

a
ln, (t

a = λa

2
, where λa are Gell-Mann matrices; and b (a) is the

color of the emitted (propagator) gluon.) when squared yields C11. Hence,

C11 = taijt
b
jkt

a
ln{taijtbjktaln}†

= (tatb)ikt
a
ln{(tatb)iktaln}†

= χ†
kt

atbχiχ
†
nt

aχlχ
†
l t

a′χnχ
†
i t

bta
′
χk

= χ†
nt

aχlχ
†
l t

a′χn
︸ ︷︷ ︸

χ†
kt

atbχiχ
†
i t

bta
′
χk

︸ ︷︷ ︸

= Tr(tata
′
)Tr(tatbtbta

′
)

=
4

3
I Tr(tata

′
)Tr(tata

′
)

[

tbtb =
4

3
I (I : Identity matrix)

]

=
4

3
I.1
2
δaa

′
.
1

2
δaa

′

=
8

3
(B.14)
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where χi, χj , χk are the quark colour states denoted by three mutually orthogonal vectors:

(1,0,0), (0,1,0) and (0,0,1). Below we list down all the Cij s we have obtained corresponding to

Mij s in Eq. 5.17.

1 2 3 4

1 8
3

-2
3

-1
3

7
3

2 7
3

-1
3

3 8
3

-2
3

4
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