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SYNOPSIS

The non-uniqueness and ubiquity nature of non-equilibrium systems let an enormous

scope for the researchers. Most of the systems we encounter and deal with in our practi-

cal life are non-equilibrium systems. A non-equilibrium system left of its own without any

external perturbation, always tries to reach its stable equilibrium state. At equilibrium the

system makes sure that the energy distribution among its constituents leads to maximum

number of microstates. Equilibrium macrostate offers highest liberty to its constituents as

per as their distribution among themselves at different energy eigen states is concerned [1].

Thus, the increasing freedom of the constituents in energy space propels the non-equilibrium

system towards equilibrium macrostate and consequently makes the equilibrium state as
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the most probable macrostate. At equilibrium the highest probable macrostate remains un-

affected over the time and hence the associated thermodynamic properties of equilibrium

system are constant quantities of time. This idea enable us to represent a thermodynam-

ically equilibrium state in terms of its uniquely defined thermodynamic parameters. Thus

equilibrium physics is uniquely defined and can be handled relatively elegant way compared

to its counterpart, the non-equilibrium physics. Comprehensive and rigorous experimental

arrangements are required to maintain the equilibrium state of a system by isolating it from

the environment. Similarly an isolated non-equilibrium state of a system cannot retain a

particular non-equilibrium state without any experimental provision because of its continu-

ous evolution towards the most probable macrostate. Thus equilibration should only be the

path of an isolated non-equilibrium system.

Most of the works on non-equilibrium physics are primarily based on linear response

theory [2]. In linear response regime the system is little away from its equilibrium state i.e.

the applied perturbation on the system is very small and the system response is proportional

to the perturbation. The governing physics in linear response regime are same as those

in regression of microscopic spontaneous fluctuations in an equilibrium system [3, 4]. No

generalized theoretical framework exists to calculate macroscopic thermodynamic properties

of a system when it is far from equilibrium. In the last two decades, exact relations have been

established relating thermodynamic parameters for systems irrespective of how far they are

driven out of equilibrium. These studies are related to the path probabilities of the individual

constituents of the non-equilibrium system [5]. Collective behavior of the constituents of

non-equilibrium systems is poorly understood. In this context the studies of this thesis are

focused on the dynamics of the equilibration process of a non-equilibrium system which

is far away from equilibrium. A non-equilibrium system which is undergoing equilibration

each and every constituent of the system participates in the equilibration process and their

collective dynamics is responsible for the attainment of equilibrium distribution. Thus, the

single particle dynamics and their collective behavior are complementary to each other to
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understand the equilibration process of a non-equilibrium system. As a whole the system

dynamics and as well as the particle dynamics, during the process of equilibration, are

studied in the scope of this work. Experimental methods deal with mere time average values

of macroscopic properties. Analytical methods are not able to solve the equation of motion

of the individual particles since they are connected with large number of particles in non-

linear fashion. Like experiments analytic methods provides only the time average values of

macroscopic quantities. This drawback of experiment and analytical methods can be solved

by the use of molecular dynamics simulation technique. Molecular dynamics deals in the

atomic level of the system under study in the time scale of the order of femtosecond. Thus

molecular dynamics simulation technique is a useful tool for the study of individual particle

dynamics of the system and in my entire study I have used this technique to generate non-

equilibrium system which is far away from equilibrium. This thesis has the scope to discuss

on the equilibration process of non-equilibrium systems of most possible simplest ensemble,

the NVE ensemble (having constant number of constituents, constant volume of the system,

and constant energy of the system) which does not interact with any source or sink to

exchange any constituent particle or energy with them. The non-equilibrium systems taken

for the analysis are composed of different crystalline materials having different crystalline

structures (Si, Ge, solid Argon, Fe, Mo, Al and Cu) and they follow variety of potential

functions in order to maintain the stability of their respective crystalline structures. In my

entire study the adopted non-equilibrium systems are generated by making average kinetic

energy and average potential energy of the system unequal. Each of these NVE systems has

an identical environment in all the three directions of the simulation cell and it is maintained

with the use of periodic boundary condition.

Atoms in the simulation cell, when brought to a non-equilibrium state by enhancing their

kinetic energy, try to redistribute their excess kinetic energy by the process of diffusion. This

process of redistribution of kinetic energy among the atoms changes their mean positions of

vibration and consequently their potential energy. Here all the atoms in the cell participate
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together in the diffusion process. Thus by analyzing the variation of the kinetic energy with

time for a single atom in the simulation cell one can account for the modality of this diffusion

process and the nature of the equilibration. The time variations of the kinetic energy with

time for each atom are found to be random since it is associated to the diffusion process.

Whether there exist any self similarity property in this random time series data and whether

the time series data is associated with a universality class, the answers of all these queries

can be made by scaling analysis of the time series data. The scaling property of the time

series of kinetic energy of individual particles are studied using two complementary scaling

analysis methods: Diffusion Entropy Analysis (DEA) and Finite Variance Scaling Method

(FVSM) [6, 7]. Application of these scaling analyses reveals that the fluctuations in the

time series of kinetic energy follow similar kind of dynamics irrespective structures and non-

equilibrium temperatures of the systems under study. Several crystal structures diamond

cubic, face centered cubic and body centered cubic structure with suitable potential functions

were used. The results of the scaling analyses conform that for all cases the time series of

the kinetic energy of system particles exhibits an anomalous diffusion and it belongs to Levy

walk process [8, 9]. In Levy walk a time series has a probability distribution function having

a long tail. Most of the natural phenomena like food foraging in hungry animals, spreading

of vector mediated disease in animals and human are examples of Levy walk with few but

effective long hops. Thus the time series of kinetic energy of non-equilibrium system particles

confirms the existence of a universality class.

Probability distribution function is the global representation of a system. Evolution

of the probability distribution function of kinetic energy of the constituent atoms of the

equilibrating system is oscillatory and subsequently the oscillation dies down after a long

time(Fig. 1). Shannon entropy [10] is a measure of uncertainty or unpredictability of in-

formation contained in a probability distribution. The time variation of global information

of the equilibrating system are studied by calculating the Shannon entropy from their time

evolution of probability

v



Figure 1: Probability distributions of kinetic energy of the Cu atoms equilibrated from non-
equilibrium temperature 500K. Each time step is of 0.5fs and the total simulation time is
1.5 ps.

distribution. For more random information the uncertainty in its prediction is higher

and the corresponding value of Shannon entropy will be more. In case of tossing coin or

rolling n-sided die outcomes lead to maximum Shannon entropy given that that the coin or

the die is fair. For unfair coin or die predictability of the outcomes becomes easy and value

of Shannon entropy drops down. For a two headed/tailed coin or for a die with all the sides

identical the outcomes become completely predictable and the entropy goes to zero. For a

physical equilibrium/non-equilibrium system the distribution of constituent particles among

energy eigen states is not as simple as the outcomes of tossing coin or rolling die. Except the

combinations among particles occurrence of the energy eigen states follow some restriction

in this case. Unlike the situation for fair coin or fair die where the all the outcomes are

equally probable the equilibrium physical system does not generate a probability distribution

with equal population in each energy eigen state. Thus the variation of Shannon entropy

for completely unfair and partially unfair coin/die should be monotonically increasing and
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ultimately reaches a constant maximum value for fair coin/die. On the other hand due

to adopted non-equilibrium nature of the system where the system kinetic energy and the

system potential energy are not equal, in the initial phase of equilibration there will be

transfer of kinetic energy into potential energy by changing the configuration of constituent

atoms. Since this process is very fast the system cannot estimate exactly how much kinetic

energy should be transferred into potential energy to make them equal. The inertia of the

process transfers more kinetic energy and a reverse situation appears with potential energy

more than the kinetic energy. This mechanism leads to an oscillatory transfer of energy

during equilibration and the oscillation gradually dies down with time [11]. Such variation

of energy and restriction in the energy states do not allow the Shannon entropy to follow

monotonic increasing behavior but is oscillatory and at equilibrium it becomes constant of

time.

The force field in crystalline system is the sum of deterministic part due to nearer atoms

and random part due to distant atoms. The affects of these two parts of the force are reflected

on the probability distribution function. The random part of the force introduces a noise

component to the system response. Hence in the study of equilibration mechanism from

the time variation of probability distribution function it is desirable to eliminate the noise

part. Use of principal component analysis helps to eliminate the noise part and reduces the

histograms of probability distribution functions into 2-3 principal dimensions and it becomes

easier to study the evolution of probability distribution function in terms of those two or

three components. The component which has highest egien value is most important (more

than 75% of total eigen value except for solid Argon where it is around 60%) and is used for

the analysis. The existence of 2-3 major eigen values ensure that the probability distribution

functions are highly correlated. A statistical method called system identification technique

[12] is used to analyze the evolution of most significant component. This method relates

the system input and output by a rational function called transfer function. The analysis

reveals that the dynamical process of equilibration takes place through two or three modes
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and the mode associated to lowest frequency which is very close to Debye frequency of the

corresponding element [13, 14, 15]. These modes are calculated from the denominator of the

transfer function of the system obtained from the system identification.

Another important aspect of non-equilibrium system is simultaneous impact of deter-

ministic and random force together on the process of equilibration. I have tried to sort out in

which region the total force field is most responsible for the equilibration process. How the

process of equilibration depends on the magnitude of the force has been studied by chang-

ing the magnitude of the force slightly. For this study two separate crystalline solid Argon

systems driven by original 12-6 Lennard Jones potential (V12−6 = 4ε[(σ/r)12 − (σ/r)6]) and

the variant of original one, the 9-6 Lennard Jones potential (V9−6 = 4ε[(σ/r)9− (σ/r)6]) [16]

are taken. The nature of the non-equilibrium state is same as defined initially. It is seen

that the force associated with 12-6 potential has the larger magnitude than that of 9-6 po-

tential in the range between first nearest neighbor and forth nearest neighbor. The observed

temperature profiles, leading to the equilibration for the two cases, indicate that the process

of equilibration is significantly affected by the modified force. This observation concludes

that force in the region between first nearest neighbor and fourth nearest neighbor is mostly

responsible for equilibration. The system identification of the temperature profiles(Fig. 2)

of the two equilibrating systems show that the equilibration driven by a force having larger

magnitude (12-6 potential) is faster and the sharing of kinetic energy and potential energy

occurs more frequently than those of the system driven by a force having smaller magnitude

(9-6 potential).

A system which consists of a large number of parts and the parts are connected to each

other in a non-linear fashion is a complex system. A crystalline system is composed of large

number atoms and the constituent atoms interact with each other through a non-linear po-

tential. The presence of non-linear interaction makes the crystalline system complex. Besides

the non-linear behavior of the interaction if the system temperature is increased the con-

stituent atoms vibrate about their mean positions with larger amplitudes making the system
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Figure 2: Time evolution of average temperature of the solid Argon systems driven by 12-6
and 9-6 potential during equilibration.

much more complex. Crystalline solid Argon systems at different equilibrium temperatures

(10K, 30K, 50K and 70K) are generated from non-equilibrium state and temperature depen-

dence of complex nature of the crystalline solid Argon are studied by measuring complexity

at different equilibrium temperatures. Complexity of a system is associated with meaningful

structural richness that gives an idea of correlation between the multiple spatio-temporal

scales. Traditional entropy measurement of a time series data only quantifies the regularity

and predictability of the time series. Complexity cannot be defined in a straightforward way

from the regularity of the time series data. This is because neither completely predictable

(e.g., periodic) data, which have minimum entropy, nor completely unpredictable (e.g., un-

correlated random) data, which have maximum entropy, are truly complex and they can be

described very compactly. The time variations of the kinetic energy of single atoms at each

equilibrium temperature are considered for complexity measurement. Sample entropy for in-

creasing scale factors (multiscale entropy) [17, 18] are calculated from the time series data of
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the kinetic energy of individual constituent atoms instead of traditional entropy calculation.

It is observed that with the increment of system temperature the complexity of the system

also increases. The scale variation of complexity is found to follow the same nature as that

of computer generated time series data of Levy process and Langevin solution. This result

confirms that the diffusion kinetic energy among the constituent atoms is a Levy process

and the atoms in crystal follow Langevin dynamics [19].

x



Bibliography

[1] David C. Schoepf, Am. J. Phys.70, 128(2002).

[2] L. Onsager, Phys. Rev. 37, 405(1931); 38, 2265(1931).

[3] M. S. Green, J. Chem. Phys. 19, 1036(1951).

[4] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

[5] Udo Seifert, Rep. Prog. Phys. 75, 126001(2002) and the references therein.

[6] Nicola Scafetta and Paolo Grigolini, Phys. Rev. E66, 036130(2002).

[7] Nicola Scafetta and Bruce J. West, Phys. Rev. Lett.92, 138501(2004).

[8] B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent

Random Variables(Addison-Wesley, Reading, Mass.) 1954.

[9] P. Barat, A. Giri, M. Bhattacharya, Nilangshu K. Dasand A. Dutta, Europhys. Lett.104,

50003(2013).

[10] C. E. Shannon, The Bell System Technical Journal 27, 379(1948).

[11] A. Giri, Nilangshu K. Das,P. Barat, arXiv: 1401.8122.

[12] Lennart Ljung, System Identification: Theory for the User (second edition), Prentice

Hall PTR (1999).

xi



[13] C. Y. Ho, R. W. Powell, and P. E. Liley, Journal of Physical and Chemical Reference

Data, Volume 3, Supplement no. 1 (1975).

[14] G. R. Stewart, Rev. Sci. Instrum. 54, 1(1983).

[15] P. Barat, A. Giri, Nilangshu K. Das,M. Bhattacharya and A. Dutta, arXiv: 1403.3237.

[16] A. Warshel and S. Lifson, J. Chem. Phys. 53, 582 (1970).

[17] Madalena Costa, Ary L. Goldberger, and C. K. Peng, Phys. Rev. E 71, 021906(2005).

[18] Madalena Costa, Ary L. Goldberger, and C. K. Peng, Phys. Rev. Lett. 89, 068102(2002).

[19] Hideo Hasegawa, Phys. Rev. E 83, 021104 (2011).

xii



Publications in Refereed Journal:

a. Published:

1. Universal Scaling property of system approaching equilibrium.

P. Barat, A. Giri, M. Bhattacharya, Nilangshu K. Das and A. Dutta, Eu-

rophys. Lett., 104(2013) 50003.

b. Communicated:

1. Oscillatory Shannon Entropy in the Process of Equilibration

of Non-equilibrium systems.

A. Giri, Nilangshu K. Das, P. Barat, arXiv: 1401.8122.

2. Modality of Equilibration in Non-equilibrium Systems.

P. Barat, A. Giri, Nilangshu K. Das, M. Bhattacharya and A. Dutta, arXiv:

1403.3237.

3. Complexity of the particle dynamics from the time series data

of KE when the system brought to equilibrium (in preparation).

4. Nature of the force that is responsible for the equilibration in

non-equilibrium system (in preparation).

xiii



xiv



 



Contents

1 Introduction 1

1.1 Equilibrium and non-equilibrium state . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Equilibrium state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Non-equilibrium state . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Consequence of non-equilibrium state: The equilibration process . . . . . . . 5

1.3 Close-to-equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Far away from equilibrium and nonlinear response theory . . . . . . . . . . . 11

1.5 Thermal fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Utility of molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 Motivation behind the choice of non-equilibrium system and scopes of the thesis 15

2 Classical Molecular Dynamics 25

2.1 Molecular dynamics: then and now . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Potential models for interatomic interaction . . . . . . . . . . . . . . . . . . 27

2.2.1 Stillinger Weber potential . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Periodic boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Molecular statics, energy minimization and stable atomic configuration . . . 32

2.4.1 Steepest-descent method . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Conjugate-gradient relaxation . . . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Fast inertial relaxation engine . . . . . . . . . . . . . . . . . . . . . . 34

xv



2.5 Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 Numerical integration of the equations of motion . . . . . . . . . . . 35

2.5.1.1 Basic verlet algorithm . . . . . . . . . . . . . . . . . . . . . 36

2.5.1.2 Verlet leapfrog algorithm . . . . . . . . . . . . . . . . . . . 37

2.5.1.3 Velocity verlet algorithm . . . . . . . . . . . . . . . . . . . 38

2.5.2 Statistical distribution at equilibrium . . . . . . . . . . . . . . . . . 39

2.5.3 Temperature initialization and its maintenance . . . . . . . . . . . . . 40

2.5.3.1 Velocity scaling . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.3.2 Berendsen thermostat . . . . . . . . . . . . . . . . . . . . . 41

2.5.3.3 Nose-Hoover thermostat . . . . . . . . . . . . . . . . . . . . 41

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Scaling Property of Kinetic Energy 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Self-Similar Process, time series and their mapping . . . . . . . . . . . . . . 51

3.3 What is Levy distribution? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Introduction to diffusion trajectory . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Diffusion entropy analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Standard deviation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.1 Scaling exponents for various kind of time series data . . . . . . . . . 56

3.7 Scaling analysis and equilibrium process . . . . . . . . . . . . . . . . . . . . 57

3.8 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.9 Result of scaling analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.11 Appendix: Matlab programs used for noise data . . . . . . . . . . . . . . . . 74

3.11.1 Gaussian white noise : . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.11.2 Fractional Brownian motion : . . . . . . . . . . . . . . . . . . . . . . 74

xvi



3.11.3 Levy noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Evolution of Shannon Entropy in Kinetic Energy Domain 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Simulation in details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Formulation of probability distribution function in kinetic energy domain . . 80

4.4 Result and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Modality of Equilibration 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 System identification technique . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Significance of poles and zeros . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Simulation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Data preparation for system identification . . . . . . . . . . . . . . . . . . . 97

5.6 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8.1 Matlab procedure to obtain transfer function of a system from its

output time series data . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Role of Repulsive force in the Equilibration of Solid Argon 108

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Modified form of the potential and molecular dynamics simulation . . . . . . 110

6.3 Impact on modified potential on the macroscopic entity: Evolution of average

system temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 System identification and results . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xvii



7 Measure of Complexity in Equilibrium Solid Argon System 117

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Traditional entropy and complexity . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Evolution of the irregularity and complexity measurement methods and in-

troduction of the idea of multi-scale factor . . . . . . . . . . . . . . . . . . . 120

7.4 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 Computation of MSE of crystalline solid Ar . . . . . . . . . . . . . . . . . . 129

7.6 Result and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8 Summary and Prospects 138

xviii



List of Figures

1 Probability distributions of kinetic energy of the Cu atoms equilibrated from

non-equilibrium temperature 500K. Each time step is of 0.5fs and the total

simulation time is 1.5 ps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

2 Time evolution of average temperature of the solid Argon systems driven by

12-6 and 9-6 potential during equilibration. . . . . . . . . . . . . . . . . . . . ix

1.1 Charging of a capacitor in a RC circuit: non-equilibrium and equilibrium state 4

1.2 Temperature profiles along a metallic bar during its continuous heating Keep-

ing its one end at constant source temperature T1. (a) Initial and an interme-

diate non-equilibrium temperature profile and (b) a steady non-equilibrium

temperature profiles are shown here . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Lennard-Jones potential for solid Argon crystal with rm = 21/6σ0 = 3.8 Å,
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Chapter 1

Introduction

The Concept of equilibrium state is ideal and delicate. It is utmost impossible to have and to

maintain a system steadfastly in equilibrium. A system very close to equilibrium is immensely

sensitive to a subtle perturbation and comes out of equilibrium. Since in nature thousands of

events are simultaneously taking place, a particular thermodynamic process can not smoothly

converge towards equilibrium unless a proper experimental arrangement is there to isolate the

said thermodynamic system. Thus non-equilibrium state of a thermodynamic system is more

probable compared to its very close-to-equilibrium condition and non-equilibrium phenomena

are existing everywhere in Nature. Except their ubiquity, the non-equilibrium systems appear

in different assorted flavors. At the same time, as a result of such huge phenomenology, a

simple definition of the concept of non-equilibrium state is clearly a delicate issue and it

necessarily requires deep exploration for its clarifications. From the perspective of text book

knowledge let us see in the first section how are the equilibrium and non-equilibrium states

affined to a thermodynamic system.
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1.1 Equilibrium and non-equilibrium state

1.1.1 Equilibrium state

Modern statistical physics is highly rich and explored as per as the thermodynamic equilib-

rium is concerned. Ideally equilibrium systems are isolated from the environment and the

macroscopic properties (pressure, temperature, energy etc) of such systems deal with most

probable macrostate of the system particles among the possible energy states. The most

probable distribution leads to maximum number of microstate and offers highest degree of

freedom to the system constituents. The maximum number of microstates does not further

dictate the macroscopic properties of the system. Rather, it ensures that the corresponding

macrostate remains time invariant and makes the system stable and in equilibrium.

An isolated equilibrium system maintains a complete balanced state. It resists exchange

of energy or matter, emission or absorption of radiation, presence of external force or unbal-

anced force and occurrence of phase change. Thermal, Mechanical and Chemical equilibrium,

thus, accomplish the balanced condition of an thermodynamic equilibrium system. The time

invariance of most probable macrostate defines an equilibrium system uniquely by an equa-

tion of state in terms of its thermodynamic parameters.

1.1.2 Non-equilibrium state

Absence of at least one of the three aforesaid equilibriums makes a system unbalanced

and brings the system to non-equilibrium state. That means, having defined a system in

(thermodynamic) equilibrium, a non-equilibrium system is anything else! Thus a system

that is neither simply isolated from the rest of the universe, nor in contact with a constant

temperature, and/or chemical potential bath, will be non-equilibrium. A system that is

in the transient before reaching equilibrium is also non-equilibrium, for example a plasma

with a non-Maxwellian velocity distribution. An interesting non-equilibrium situation that
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will arise in later examples is a system in contact with two constant temperature baths

that are at different temperatures. The non-equilibrium state may also be maintained by

external fields, such as the electric field driving an electric current around a conducting

loop. Features that may be associated with non-equilibrium are dynamics (for example the

transient relaxation towards equilibrium), and currents of the conserved quantities from one

part of the system to another. Indeed we have seen that the lifetime of the non-equilibrium

state is likely to be very short unless there are macroscopic disturbances in the conserved

quantities away from the equilibrium distribution. Accompanying these disturbances will be

macroscopic currents of the conserved quantities. A particularly interesting non-equilibrium

situation is one in which there is no time dependence (i.e. a steady state situation), but

one in which currents of the conserved variables are flowing, driven by injection at one

boundary and subtraction at another. Since the dynamics of the system are dissipative,

there will usually be an injection of energy, energy currents within the system, sometimes

a transformation between different forms of energy (e.g. mechanical or chemical to heat),

and then the subtraction of energy to maintain the steady state. For example the system

in contact with two heat baths at different, but constant, temperatures, will exhibit energy

currents transporting heat between the two baths. Such sustained non-equilibrium states

provide the opportunity of accurate experimental and theoretical investigation. The example

of transient relaxation is the charging of a capacitor in a RC circuit (Fig 1.1). Initially the

capacitor voltage increases with time rapidly and the current through the circuit is very high.

It is non-equilibrium variable state. After a long charging time (t >> 1
RC

) the current tends

to zero and the capacitor voltage becomes a constant of time in the proximity of equilibrium.

On the other hand an external condition may be imposed on a non-equilibrium system to

retain its unbalance condition. An example here is continuous heating of a metallic bar at

one end keeping the other end at lower temperature(Fig 1.2). Although after a long heating

time the temperature profile of the bar remains constant of time, there will always be a

temperature gradient along the bar which leads to a continuous heat flow from heating end

3



Figure 1.1: Charging of a capacitor in a RC circuit: non-equilibrium and equilibrium state

Figure 1.2: Temperature profiles along a metallic bar during its continuous heating Keep-
ing its one end at constant source temperature T1. (a) Initial and an intermediate non-
equilibrium temperature profile and (b) a steady non-equilibrium temperature profiles are
shown here

to other. This is also a non-equilibrium state but it is steady non-equilibrium state (heat

entering at hot end and leaving at the cold end are equal and no accumulation of heat will

be there). Due to unbalanced nature of such systems, thermodynamic parameters change

with time and space and unlike the equilibrium state the thermodynamic parameters don’t

lead to a unique non-equilibrium state but depending on the unbalanced nature the a system

can have different non-equilibrium flavor.
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1.2 Consequence of non-equilibrium state: The equili-

bration process

A non-equilibrium state is associated to one or more constraints which don’t allow the

system constituents to distribute and rearrange themselves freely in their own way among

different energy eigen states. Given a non-equilibrium state left its own, unlike the steady

non-equilibrium state, the constraints are released then and constituent particles become

free to generate new distribution with higher number of rearrangement. For a system of

total N particles having total energy E, the constituents distribute themselves among the

eigen states such that

N =
∞∑
j=0

nj, (1.1)

and

E =
∞∑
j=0

njEj, (1.2)

where nj and Ej are the number particles and energy of a single particle in jth eigen state

respectively. An analytical expression for the number of microstates corresponding to a

given macrostate can be deduced from a combinatorial argument. There are N ! ways of

selecting the N particles to be placed in all the levels [the exclamation point (!) denotes

a factorial product]. For each level, there are nj! ways of rearranging the particles within

that level such that they yield the same microstate. Thus for each energy level we divide N !

by nj! to account for the number of repetitions of the same microstate. The result of this

combinatorial analysis for the number of microstates W yields

W =
N !

n0!n1!n2!n3!...
(1.3)

Actually a macrostate (a set of njs i.e. {nj}) specifies how many particles occupy each energy

level, and a microstate specifies which particles occupy each energy level. Generally, macro-
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scopic properties such as the pressure, temperature, and energy, are determined from the

macrostate of the system. The microstates belonging to each macrostate are experimentally

indistinguishable from one another because the macroscopic properties are the same for all

the microstates. The significance of enumerating all the microstates is related to determin-

ing how likely it is for a given macrostate to occur. A fundamental postulate of statistical

mechanics is that a system in equilibrium is equally likely to be in any of its allowed mi-

crostates. That is, all microstates are equally likely. For a discussion of the validity of this

postulate, refer to the text by Reif[1]. Because not all macrostates are described by the same

number of microstates, this postulate provides the foundation for attributing the likeliness

of occurrence of a macrostate: the macrostate having the greatest number of microstates

is the most likely macrostate. In other words, the distribution {n0!n1!n2!n3!...} for which

W in Eq.1.3 assumes its greatest value is the most likely distribution of particles among

the energy levels. For a system in a macrostate that is not the most likely, the subsequent

internal redistribution of the energy among the particles takes the system, on average, to

macrostates that are more likely (that is, have larger values of W ). This behavior is based

on the interactions between random pairs of particles in which energy is transferred from

one particle to the other[2].

1.3 Close-to-equilibrium

There exist several powerful ideas and tools for studying equilibrium systems. This is the

topic covered in many textbooks kindred to the subject of thermodynamics and statistical

mechanics. It might be thought that non-equilibrium systems that are near equilibrium, i.e.

generated by small perturbations form equilibrium ones, are also amenable to treatment, and

this is indeed the case. There may be very different time scales associated with the relaxation

towards equilibrium. We will try to understand the slow relaxation processes occurring on

time scales much longer than typical microscopic time scales. This idea goes under the
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general label of the Onsager[3] approach. The slowly relaxing degrees of freedom are the ones

corresponding to the quantities of macroscopic subsystems that are the conserved variables

of the isolated system. Let us first return to the previously mentioned simple example of a

system divided into two subsystems by a partition that allows energy to flow weakly between

the two subsystems, but no flow of the other conserved quantities. The equilibrium of the two

subsystems is then given by the equality of the temperatures T1 = T2. Obviously, if a system

is prepared with the two subsystems at different temperatures, this is a non-equilibrium state,

and it is expected an energy current would flow between the subsystems moving the system

towards equilibrium. The situation is particularly simple for small temperature differences

∆T = T1 − T2 about a mean temperature T1 ' T2 ' T , because then the energy current

JE between the subsystems should be proportional to the small temperature difference by

simple Taylor expansion (it is zero for no temperature difference)

JE = K∆T, (1.4)

Here K is a “kinetic coefficient that depends on the strength of the coupling of the two

subsystems.

Eq.1.4 can then be used to describe the relaxation process. The energy current gives us

the rate of increase of energy on one side, and the rate of decrease on the other side. Since

other conserved densities are fixed, the temperatures of the subsystems will change at a rate

proportional to the rate of change of energy

Ṫ1 = Ė1/C1 (1.5)

Ṫ2 = Ė2/C2 (1.6)

where C’s are the thermal capacities of subsystems, the proportionality constant relating

small changes of temperature to small changes of energy content. A key point is that
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since the relaxation between the systems is slow, each system may be taken as internally in

equilibrium, so that the proportionality constant between changes of energy and temperature

is the equilibrium value of the specific heat. Thus we find

∆Ṫ2 = −K/C∆T (1.7)

with C−1 = C−1
1 + C−1

2 giving an effective combined thermal capacity. This equation yields

exponential relaxation with a time constant

τ = K/C (1.8)

given by macroscopic quantitieswe use the knowledge that ∆T is small to recognize that we

may take C and K to be constants, equal to their values at the mean temperature T .

Since the energy current is the process of the approach to equilibrium, the entropy must

increase in this relaxation. Using the thermodynamic identity we have

Ṡ = Ṡ1(E1) + Ṡ2(E2) =
Ė1

T1

+
Ė2

T2

' −JE∆T/T 2 = K(∆T/T )2 (1.9)

where in the third step we have kept terms up to first order in ∆T . Thus the second law

of thermodynamics, that the entropy increases as an isolated system returns to equilibrium,

tells us that the kinetic coefficient Kmust be positive.

The results are readily generalized to study continuum dynamics. Considering only

the temperature and energy variables, a macroscopic system is in equilibrium when the

temperature is uniform in space. Correspondingly, a spatially varying temperature will lead

to an energy flow, and for small, slowly varying, perturbations the energy current will be

proportional to the gradients of the temperature. It is useful to introduce the energy density

(energy per unit volume) e, and the energy current density jE (so that the energy flow across
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a surface S is
∫
S

jE.dS). The conservation of energy now takes the form

∂e

∂t
= −∇.jE, (1.10)

where the energy current is proportional to the spatial gradient of the temperature

jE = −KT∇T, (1.11)

with KT the familiar thermal conductivity. Again the law of increase of entropy imposes

constraints on the coefficient, namely that K must be positive. The equations of motion

Eqs.(1.10,1.11) are closed if we know how the energy density depends on the temperature.

This relationship is again taken to be the same one as in equilibrium, i.e. by the appropriate

specific heat, since the dynamical equations already represent the leading order expansion

in the deviation from equilibrium. The dynamical equations are linear, and for a given finite

physical system the evolution will be the sum of exponentially decaying modes of the system.

(Since an system of infinite size has an infinite number of modes, and the relaxation may

then be non-exponential.)

Eq.1.11 is the familiar equation for the conduction of heat, and could easily be writ-

ten down from phenomenological considerations. This allows us to make the obvious but

important point that the familiar macroscopic equations of continuum mechanics, heat and

particle diffusion etc. are fully consistent with the general principles of thermodynamics.

In particular, in any solution to the macroscopic dynamical equations, a positive rate of

entropy production is guaranteed by the formalism(which is not case for system away from

equilibrium, Chapter 4). If we assume that the thermal conductivity KT is independent of

temperature over the range encountered in an experiment, and also relate changes in the

energy density e to changes in temperature through the specific heat per unit volume CT

that may also be considered temperature independent, the two equations Eqs.1.10 and 1.11
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can be combined into the single equation

∂T

∂t
= kT∇2T, (1.12)

with kT = KT/CT . This equation takes the form of a time dependent diffusion equation for

the temperature, and the energy density e satisfies an identical equation. The coefficient

kT , with the dimensions of a diffusion constant, is known as the thermal diffusivity. Since

equations like 1.10 and 1.11 are a direct consequence of a conservation law and a flux pro-

portional to gradients, one can see diffusion equations, or diffusion terms supplemented by

additional terms describing other physical phenomena, commonly appear as equations for

pattern forming systems.

To summarize, we have learned from a simple example the following results:

• A state near equilibrium decays exponentially towards equilibrium.

• The dynamics is given by equations of motion that are on the one hand the usual phe-

nomenological equations (in our simple example the heat current proportional to temperature

difference) and on the other hand derivable from the fundamental laws of thermodynamics.

Necessarily the equations of motion are consistent with the laws of thermodynamics.

• The law of the increase of entropy places constraints on the coefficients of the dynamical

equations, not on the solutions to the equations. Any solution to the dynamical equations

necessarily is consistent with the law of the increase in entropy, and we do not gain additional

constraints on the solutions by applying this law.

These results may be extended to the general case of coupled equations for more than

one conserved quantity. For example in a fluid we need to consider the thermodynamic

consequences of the conservation of mass and momentum as well, leading to the familiar

equations of fluid dynamics (including viscous dissipation etc.).
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1.4 Far away from equilibrium and nonlinear response

theory

The Onsager theory[3] of near equilibrium leads to perturbations that decay exponentially

towards equilibrium. This result is derived simply from the assumption of small perturba-

tions, so that only terms linear in the deviation from equilibrium are retained(Lt→0 e
x =

1 + x)[4, 5, 6]. We may characterize a system as far from equilibrium when the linearization

is no longer valid and deviations from the linearization lead to qualitatively new effects. A

key feature of these systems is that the equations of motion will be nonlinear, since the

linear expansion must necessarily break down. Thus we no longer have the useful tools of

global thermodynamics and linearization, and the study of these systems correspondingly

becomes much harder. We will concentrate almost entirely on systems that although far

from equilibrium globally, are near equilibrium locally. This allows us to treat the systems

using the equations derived from the Onsager approach to non-equilibrium thermodynamics,

or equivalently the standard equations of fluid dynamics, chemical reaction and diffusion,

etc. The appropriate systems are macroscopic ones in which for example the temperature

deviations across the system are “large”, but the spatial gradients of the temperature are

“small”. Temperature differences on a characteristic microscopic scale (e.g. the mean free

path for collisions in a gas) will be small. We may then take pieces of the system that are

small enough that the linearization procedure above is sufficiently accurate, but large enough

that a macroscopic description is also sufficiently accurate. Thus locally the currents of the

conserved quantities are proportional to the gradients of the conjugate fields, with the same

coefficients as introduced above (maybe depending on the local values of the temperature

etc.). Furthermore the conjugate variables vary only slightly across these subsystems, so that

the relationship between changes in the conserved densities and the conjugate variables, such

as the specific heat relating energy and temperature changes, may again be taken to be the
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equilibrium equation of state. Thus the equations of motion will again be given by Eq.1.10

and Eq.1.11, but with coefficients CT and KT that in general are functions of the local

conjugate variables. Again these dynamical equations and the Onsager constraints on the

kinetic coefficients guarantee positive entropy production in any solution of the dynamical

equations.

In practice, rather than pursuing the formal Onsager approach, the equations of motion

are often written down from phenomenological considerations. In some cases, motivated by

the aim of simple tractable equations that perhaps capture specific aspects of a problem,

grossly simplified “model” equations may be used, for which there is no direct connection

to an underlying thermodynamic system. It is therefore useful to consider issues such as

equilibrium versus non-equilibrium directly from the form of the dynamical equations. Here

the important issue is whether the equations are dissipative or conservative. Dissipative

macroscopic systems are associated with a relaxation towards a single state or a reduced

set of states from a broad range of initial conditions. In the language of dynamical systems

we expect phase space volumes to contract in time. These equations must display a sense

of time, and so are not invariant under time reversal. Conservative macroscopic systems

are invariant under time reversal, and so do not show a systematic trend towards a subset

of states as time advances. Phase space volumes are preserved by the dynamics. Pattern

formation is the spontaneous development of spatial structures from a wide range of initial

conditions. In dissipative systems this tendency is expected to be more stronger.

1.5 Thermal fluctuations

The familiar macroscopic equations of fluid dynamics, thermal and particle diffusion etc.

can be thought of as averages over the underlying microscopic molecular dynamics. At

macroscopic length scales the rms fluctuations about the mean values are much smaller than

the mean values by factors of order N−1/2 where N is the number of molecular degrees of
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freedom in the averaging volume[1, 7, 8]. This is because the fluctuations tend to cancel in

the summation to form the macroscopic variable. For most of the pattern forming systems

with length scales of order mm, cm, or larger the size of the fluctuating corrections to the

macroscopic deterministic equations are very small indeed.

There are some situations however where the residual fluctuations are important. One

example is in answering how the growing perturbation about an unstable solution is initiated.

In principle even an unstable solution may persist indefinitely if there is nothing to give an

initial small kick away to establish a perturbation that then continues to grow. In almost all

cases the small kick is supplied by experimental imperfections such as slight deviations of the

geometry from the ideal, or an imperfectly controlled environment or initial condition-or from

another point of view the idea that a precise solution exists but is unstable due to theoretical

oversimplification, so that there is no issue of where an initial kick might come from. In some

systems however very careful experiments can be done to eliminate these “external” sources

driving the unstable mode, and uncover the intrinsic driving due to thermal fluctuations even

on the mm length scale. In addition, for phenomena at smaller length scales, the residual

effects of molecular fluctuations may be more apparent. One example is the formation of side

branches in the dendritic growth of crystals apparent in the pictures of snowflakes. There

is good evidence that side branches develop through the selective amplification of thermal

noise at the tip of the dendrite[9]. Fortunately we do not have to revert to molecular theory

to include these small fluctuation effects. The constraint that the fluctuating forces must

yield a distribution of the thermodynamics variables given by the Boltzmann factor (i.e.

probability proportional to exp(−βE) with β = 1/kBT with kB the Boltzmann constant

and E the energy, or more precisely the free energy, of the fluctuation), and the observation

that the stochastic effects due to individual molecular collisions act on time scales very

short compared to the macroscopic phenomenon of interest, are sufficient to pin down the

strength and character of the fluctuating forces. A profound result of statistical mechanics

known as the fluctuation-dissipation theorem[10] in fact directly relates the strength of the
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fluctuating forces to the dissipative kinetic coefficients in the macroscopic equations, and to

the temperature. Examples people may be familiar with are the expression for the voltage

noise source associated with any electrical resistance known as Johnson noise[11, 12, 13] and

the random forces on a particle immersed in a fluid that lead to Brownian motion. The

precise expression for the fluctuation corrections to the equations of fluid dynamics and heat

flow can be found in Vol. 6 of the Landau and Lifshitz series on Theoretical Physics[14]. We

emphasize again though, that it is only in very careful experiments designed specifically to

seek out the phenomenon, or in a very small number of examples of patterns in nature that

are at micron length scales, that these fluctuating forces arising from the tiny residual effects

of molecular fluctuations not quite canceling in averages over macroscopic regions become

evident.

1.6 Utility of molecular dynamics

Collective behavior of the constituents of non-equilibrium systems is poorly understood. In

this context the studies of this thesis are focused on the dynamics of the equilibration process

of a non-equilibrium system which is far away from equilibrium. A non-equilibrium system

which is undergoing equilibration each and every constituent of the system participates in

the equilibration process and their collective dynamics is responsible for the attainment of

equilibrium distribution[15]. Thus, the single particle dynamics and their collective behavior

are complementary to each other to understand the equilibration process of a non-equilibrium

system. As a whole the system dynamics and as well as the particle dynamics, during the

process of equilibration, are studied in the scope of this work. Experimental methods deal

with mere time average values of macroscopic properties. Analytical methods are not able

to solve the equation of motion of the individual particles since they are connected with

large number of particles in non-linear fashion. Like experiments analytic methods provides

only the time average values of macroscopic quantities. This drawback of experiment and
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analytical methods can be solved by the use of molecular dynamics simulation technique.

Molecular dynamics deals in the atomic level of the system under study in the time scale of

the order of femtosecond. Thus molecular dynamics simulation[16] technique is a useful tool

for the study of individual particle dynamics of the system and in this entire dissertation this

technique is used to generate non-equilibrium system which is far away from equilibrium.

1.7 Motivation behind the choice of non-equilibrium

system and scopes of the thesis

Presently the topic of collective phenomena in equilibrium systems is a mature one. Exten-

sive studies over the last six to seven decades have produced a clear understanding of the

phenomenology as well as many rigorous mathematical results. On the other hand, systems

that are not in thermodynamic equilibrium are more poorly understood. Indeed, a general

theoretical framework for the study of non-equilibrium collective phenomena is lacking and

our understanding to date has relied on the study of specific models. By “non-equilibrium

system” it refers both to systems held far from thermal equilibrium by an external driving

force and to the complementary situation of systems relaxing towards thermal equilibrium.

Such systems display a broad range of phenomena, such as phase transitions and slow collec-

tive dynamics, which we should understand at a deeper level. The study of non-equilibrium

systems arises in many different contexts such as reactiondiffusion processes, interacting

particle systems, driven diffusive systems, and the slow dynamics of both ordered and dis-

ordered glassy systems. It is a major research area which is represented in many different

scientific communities throughout the world. In recent years the study of specific model

systems has led to important breakthroughs in a variety of areas. Mathematical tools have

been developed and some rigorous results derived pertaining to specific systems. These de-

velopments bring us closer to the point where we can ask questions of generality, both of
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techniques and results. This dissertation has laid another new dimension to the diverse field

of non-equilibrium physics.

This thesis has the scope to discuss on the equilibration process of non-equilibrium

systems of most possible simplest ensemble, the NVE ensemble (having constant number

of constituents, constant volume of the system, and constant energy of the system) which

does not interact with any source or sink to exchange any constituent particle or energy

with them. The non-equilibrium systems taken for the analysis are composed of different

crystalline materials having different crystalline structures (Si, Ge, solid Argon, Fe, Mo, Al

and Cu) and they follow variety of potential functions in order to maintain the stability

of their respective crystalline structures. In my entire study the adopted non-equilibrium

systems are generated by making average kinetic energy and average potential energy of the

system unequal. It is notable that in such no-equilibrium state(when average kinetic energy

and average potential energy of the system are not equal) the configuration of crystal atoms

is different equilibrium atomic configuration. However, it does not affect the volume of the

simulation cell since the simulation is performed in NVE environment. It is the pressure of

the system which is affected because of continuous change of atomic configuration while the

system is in NVE environment. Each of these NVE systems has an identical environment in

all the three directions of the simulation cell and it is maintained with the use of periodic

boundary condition. Here is the sort introduction of the studies covered in this dissertation:

• Scaling property of the time series data of kinetic energy of individual con-

stituent particles during the process of equilibration: Atoms in the simulation cell,

when brought to a non-equilibrium state by enhancing their kinetic energy, try to redistribute

their excess kinetic energy by the process of diffusion. This process of redistribution of ki-

netic energy among the atoms changes their mean positions of vibration and consequently

their potential energy. Here all the atoms in the cell participate together in the diffusion

process. Thus by analyzing the variation of the kinetic energy with time for a single atom in

the simulation cell one can account for the modality of this diffusion process and the nature
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of the equilibration. The time variations of the kinetic energy with time for each atom are

found to be random since it is associated to the diffusion process. Whether there exist any

self similarity property in this random time series data and whether the time series data is

associated with a universality class, the answers of all these queries can be made by scaling

analysis of the time series data. The scaling property of the time series of kinetic energy of

individual particles are studied using two complementary scaling analysis methods: Diffusion

Entropy Analysis (DEA) and Finite Variance Scaling Method (FVSM) [17, 18]. Application

of these scaling analyses reveals that the fluctuations in the time series of kinetic energy

follow similar kind of dynamics irrespective structures and non-equilibrium temperatures of

the systems under study. Several crystal structures diamond cubic, face centered cubic and

body centered cubic structure with suitable potential functions were used. The results of

the scaling analyses conform that for all cases the time series of the kinetic energy of system

particles exhibits an anomalous diffusion and it belongs to Levy walk process [19, 20]. In

Levy walk a time series has a probability distribution function having a long tail. Most

of the natural phenomena like food foraging in hungry animals, spreading of vector medi-

ated disease in animals and human are examples of Levy walk with few but effective long

hops. Thus the time series of kinetic energy of non-equilibrium system particles confirms the

existence of a universality class.

• Evolution Shannon entropy during equilibration: Probability distribution func-

tion is the global representation of a system. Evolution of the probability distribution func-

tion of kinetic energy of the constituent atoms of the equilibrating system is oscillatory and

subsequently the oscillation dies down after a long time. Shannon entropy [21] is a measure

of uncertainty or unpredictability of information contained in a probability distribution. The

time variation of global information of the equilibrating system are studied by calculating

the Shannon entropy from their time evolution of probability distribution. For more ran-

dom information the uncertainty in its prediction is higher and the corresponding value of

Shannon entropy will be more. In case of tossing coin or rolling n-sided die outcomes lead to
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maximum Shannon entropy given that that the coin or the die is fair. For unfair coin or die

predictability of the outcomes becomes easy and value of Shannon entropy drops down. For

a two headed/tailed coin or for a die with all the sides identical the outcomes become com-

pletely predictable and the entropy goes to zero. For a physical equilibrium/non-equilibrium

system the distribution of constituent particles among energy eigen states is not as simple as

the outcomes of tossing coin or rolling die. Except the combinations among particles occur-

rence of the energy eigen states follow some restriction in this case. Unlike the situation for

fair coin or fair die where the all the outcomes are equally probable the equilibrium physical

system does not generate a probability distribution with equal population in each energy

eigen state. Thus the variation of Shannon entropy for completely unfair and partially un-

fair coin/die should be monotonically increasing and ultimately reaches a constant maximum

value for fair coin/die. On the other hand due to adopted non-equilibrium nature of the sys-

tem where the system kinetic energy and the system potential energy are not equal, in the

initial phase of equilibration there will be transfer of kinetic energy into potential energy by

changing the configuration of constituent atoms. Since this process is very fast the system

cannot estimate exactly how much kinetic energy should be transferred into potential energy

to make them equal. The inertia of the process transfers more kinetic energy and a reverse

situation appears with potential energy more than the kinetic energy. This mechanism leads

to an oscillatory transfer of energy during equilibration and the oscillation gradually dies

down with time [22]. Such variation of energy and restriction in the energy states do not

allow the Shannon entropy to follow monotonic increasing behavior but is oscillatory and at

equilibrium it becomes constant of time.

• Modality of equilibration process: The force field in crystalline system is the

sum of deterministic part due to nearer atoms and random part due to distant atoms. The

affects of these two parts of the force are reflected on the probability distribution function.

The random part of the force introduces a noise component to the system response. Hence

in the study of equilibration mechanism from the time variation of probability distribution
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function it is desirable to eliminate the noise part. Use of principal component analysis helps

to eliminate the noise part and reduces the histograms of probability distribution functions

into 2-3 principal dimensions and it becomes easier to study the evolution of probability

distribution function in terms of those two or three components. The component which has

highest egien value is most important (more than 75% of total eigen value except for solid

Argon where it is around 60%) and is used for the analysis. The existence of 2-3 major

eigen values ensure that the probability distribution functions are highly correlated. A

statistical method called system identification technique [23] is used to analyze the evolution

of most significant component. This method relates the system input and output by a

rational function called transfer function. The analysis reveals that the dynamical process

of equilibration takes place through two or three modes and the mode associated to lowest

frequency which is very close to Debye frequency of the corresponding element [24, 25, 26].

These modes are calculated from the denominator of the transfer function of the system

obtained from the system identification.

• Dependence of the process of equilibration on the interaction potential:

Another important aspect of non-equilibrium system is simultaneous impact of deterministic

and random force together on the process of equilibration. It is a exertion to sort out in

which region the total force field is most responsible for the equilibration process. How the

process of equilibration depends on the magnitude of the force has been studied by changing

the magnitude of the force slightly. For this study two separate crystalline solid Argon

systems driven by original 12-6 Lennard Jones potential (V12−6 = 4ε[(σ/r)12 − (σ/r)6]) and

the variant of original one, the 9-6 Lennard Jones potential (V9−6 = 4ε[(σ/r)9 − (σ/r)6])

[27] are taken. The nature of the non-equilibrium state is same as defined initially. It is

seen that the force associated with 12-6 potential has the larger magnitude than that of

9-6 potential in the range between first nearest neighbor and forth nearest neighbor. The

observed temperature profiles, leading to the equilibration for the two cases, indicate that

the process of equilibration is significantly affected by the modified force. This observation
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concludes that force in the region between first nearest neighbor and fourth nearest neighbor

is mostly responsible for equilibration. The system identification of the temperature profiles

of the two equilibrating systems show that the equilibration driven by a force having larger

magnitude (12-6 potential) is faster and the sharing of kinetic energy and potential energy

occurs more frequently than those of the system driven by a force having smaller magnitude

(9-6 potential).

• Complexity of a equilibrium system: A system which consists of a large number

of parts and the parts are connected to each other in a non-linear fashion is a complex system.

A crystalline system is composed of large number atoms and the constituent atoms interact

with each other through a non-linear potential. The presence of non-linear interaction makes

the crystalline system complex. Besides the non-linear behavior of the interaction if the sys-

tem temperature is increased the constituent atoms vibrate about their mean positions with

larger amplitudes making the system much more complex. Crystalline solid Argon systems

at different equilibrium temperatures (10K, 30K, 50K and 70K) are generated from non-

equilibrium state and temperature dependence of complex nature of the crystalline solid

Argon are studied by measuring complexity at different equilibrium temperatures. Com-

plexity of a system is associated with meaningful structural richness that gives an idea of

correlation between the multiple spatio-temporal scales. Traditional entropy measurement

of a time series data only quantifies the regularity and predictability of the time series.

Complexity cannot be defined in a straightforward way from the regularity of the time series

data. This is because neither completely predictable (e.g., periodic) data, which have min-

imum entropy, nor completely unpredictable (e.g., uncorrelated random) data, which have

maximum entropy, are truly complex and they can be described very compactly. The time

variations of the kinetic energy of single atoms at each equilibrium temperature are consid-

ered for complexity measurement. Sample entropy for increasing scale factors (multiscale

entropy) [28, 29] are calculated from the time series data of the kinetic energy of individual

constituent atoms instead of traditional entropy calculation. It is observed that with the
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increment of system temperature the complexity of the system also increases. The scale

variation of complexity is found to follow the same nature[30] as that of computer generated

time series data of Levy process and Langevin solution. This result confirms that the diffu-

sion kinetic energy among the constituent atoms is a Levy process and the atoms in crystal

follow Langevin dynamics [31].
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Chapter 2

Classical Molecular Dynamics

2.1 Molecular dynamics: then and now

Introduction of the concept of classical Newtonian mechanics has laid the path to deal with

many body processes in nature which were apparently indeterministic. This comes true when

the associated momenta of the system particles are large enough and that makes the quantum

effect insignificant. In this context although the electronic scale does not fulfill this restriction

the molecular scale and even the atomic scale also suitable enough for the application of

classical concepts over a wide range temperature. Thus, application this strength of classical

mechanics would have been an exponent for the determination of the properties of solids.

Till early 1950’s, people had to wait for appropriate numerical methods,realistic interatomic

potentials and powerful computer to deal with many body systems with realistic physical

significance. Before this era, the only theoretical alternative for predicting the properties of

matter was to employ the approximate physical models, e.g., the van-der Waals equation for

the real gases or the Boltzmann’s equation for transport properties of dilute gases.

In 1952 MANIAC computer was launched from Los Alamos National Laboratory and in

1953 it was first used for atomistic simulations of liquids followed by those of one-dimensional

anharmonic crystals by Fermi and co-workers. The first unrealistic molecular dynamics

25



simulation using hard-sphere model was performed by Alder and Wainwright in 1958 and

in 1960 the first realistic molecular dynamics simulation on the radiation damage of copper

was reported. Although with time we have seen the advancement of computer hardware and

numerical methods but the basic algorithm of classical molecular dynamics are still same.

This power of classical mechanics remained unutilized in unfolding the properties of

solids for centuries. The most crucial barrier to achieving this goal was the fact that in the

relevant many body problems, the term ‘many’ actually meant ‘too many’. Clearly, mankind

had to wait for a long time, till powerful digital computers and state of the art numerical

methods started appearing. In the early 1950’s, the electronic computers became available

for non-strategic applications. The most significant of them had been the MANIAC at the

Los Alamos National Laboratory, which was commissioned in March, 1952. Before this era,

the only theoretical alternative for predicting the properties of matter was to employ the

approximate physical models, e.g., the van-der Waals equation for the real gases or the Boltz-

mann’s equation for transport properties of dilute gases. The researchers were striving to

obtain the realistic interatomic potentials so that the new computers available to them could

use those models and churn out the numbers with realistic physical significance. In such a

scenario, the liquids were opted as the first system of choice for simulation in MANIAC,

for the simple hard-sphere model was sufficient to yield many statistical features associated

with them. Consequently, Metropolis and his colleagues were the first one to perform the

atomistic simulations of liquids on the MANIAC computer[1]. These simulations were soon

followed by those of one-dimensional anharmonic crystals by Fermi and his co-workers[2].

The first molecular dynamics (MD) simulation (using the unrealistic hard-sphere model) was

performed by Alder and Wainwright[3], while the first realistic MD (of radiation damage in

copper) was reported only in 1960[4]. Interestingly, the basic algorithm of atomistic simula-

tion has remained the same since the era of 50’s, even though the development in computer

hardware and numerical methods have taken place in leaps and bounds. Today, some of the

most powerful computing machines performing at hundreds of Teraflops are regularly being
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utilized for carrying out the different flavors of atomistic simulations. Although the Monte

Carlo simulations constitute a significant part of atomistic simulation, the studies covered in

the subsequent chapters deal with molecular statics (MS)and dynamics (MD) simulations.

Therefore, the nuts and bolts of MS and MD will be highlighted in the present chapter.

These simulations are aimed at computing the stable minimum energy configurations and

evolution of the system in time. The fundamental idea is actually quite simple. Here one

conceives a material as a many-body system consisting of atoms and directly simulates the

material’s behavior by tracking the trajectories of the atoms under a set of given conditions.

The first essential requirement for both MS and MD is a suitable interatomic potential, which

is capable of modeling the interactions among the atoms with reasonable accuracy. Once the

interatomic potential is chosen, we can compute the forces (and accelerations) experienced

by the atoms as gradients of the system’s potential energy. Thereafter, the system is either

relaxed to a mechanically stable structure or allowed to exhibit a dynamic behavior through

the integration of its equation of motion, depending upon whether the mode of simulation is

MS or MD. The following sections detail the basic ingredients for performing these atomistic

computations.

2.2 Potential models for interatomic interaction

Since periodicity of lattice points is the definition of a crystal and atoms or molecules are the

building block of a crystal, so the simulation scheme of dynamics of a crystal is studied at

atomic level and one of the most popular simulation technique at atomic level is ‘Molecular

Dynamics’ which requires appropriate interatomic potential model and the statistical distri-

bution of atomic parameters. If two atoms are closed to each other then they exert a force

and consequently an interatomic potential is involved there. The nature of this potential

can be precisely measured solving the Schroedinger equation of interacting electrons which

is referred as ab initio theory(as used in density functional theory[5]). But as in this theory
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Figure 2.1: Lennard-Jones potential for solid Argon crystal with rm = 21/6σ0 = 3.8 Å,
σ0 = 3.405 Å, and ε = 124.84 Kelvin.

the numerical calculation is based on electronic interaction so it is very expensive. For large

crystal size the amount of calculation becomes too huge to be calculated even by a powerful

computer.

Quantum mechanics suggests that two atoms can’t be closed to each other infinitely as

their potential energy increases then. Such type of potential model, similar to well known

“Lennard-Jones” potential[6] (Fig .2.1), is given by

VLJ(r) = 4ε

[(
r

σ0

)−12

−
(
r

σ0

)−6
]

= ε

[(
r

rm

)−12

− 2

(
r

rm

)−6
] (2.1)

For noble gas atoms the potential is two body. Otherwise the potential energy is many
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body and for N-body system it is

V ({ri}) =
∑
i<j

Φ(|ri − rj|) +
∑
i<j<k

Φ3(ri, rj, rk) +
∑

i<j<k<l

Φ4(ri, rj, rk, rl) + .........

, where the 1st term introduces the potential for noble gas. If the higher order terms converge

then this model is very similar to “Stillinger-Weber” potential[7]. For a metal the ions are

considered immersed in the sea of electrons and the potential model used is “Embedded-

Atom Model” (EAM)[8, 9] with form

VEAM({ri}) =
∑
i<j

Φ(|ri − rj|) + F (ρi)

, where ({ri}) = (r1, r2, .., rN) and ρi = ρ({ri}) =
∑

i<j f(|ri−rj|) is local density of bonding

electrons contributed by the atoms around ith atom with f(|ri − rj|) is the contribution

of an atom to the electron density . F (ρi) is an embedding function with special form

F (ρi) = −A√ρi leads to ‘Finnis-Sinclair’(FS) potential[10, 11]. The square root form of the

FS potential is very similar to the second moment approximation of the tight binding (TB)

theory[12], where the cohesive energy of a solid varies as square root of the coordination

number. Although the FS potential works well with some pure metals, particularly the b.c.c

structures, they are not so popular for simulating alloys. Still there are some potentials for

the noble metal alloys which have been designed in the FS framework[13, 14, 15].

2.2.1 Stillinger Weber potential

V =
∑
i<j

V2(rij) +
∑
i<j<k

V3(rij, rjk, rik)

V2 = εf2(rij/σ)

V3 = εf3(rij/σ, rij/σ, rij/σ)
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f2(r) = A(Br−p − r−q)e
1

r−a , r < a

= 0, r > a

and

f3 = h(rij, rik, θjik) + h(rij, rjk, θijk) + h(rik, rjk, θikj)

h(rij, rik, θjik) = λ

(
cos θjik +

1

3

)2

e

(
γ

rij−a

)
e

(
γ

rik−a

)
, rij < a and rik < a

= 0, rij ≥ a and rik ≥ a

rij is the distance between ith and jth particle. σ and ε being characteristic length and

energy parameter respectively. θjik is the bond angle centered on ith atom and bordered by

individual bond rij and rik.

2.3 Periodic boundary condition

While a bulk material contains atoms of the order of Avogadro number or more than

that, a supercomputer can work with at most billion atoms and a desktop is able to deal

with not more than million of atoms. This reality restricts the simulation methodologies

applicable only for the systems of atomic clusters i.e. for the systems having nanosized

volume. The feasibility of simulation methodologies can be extended above the limitation of

simulation domain size by the introduction of periodic boundary condition(PBC). In Fig. 2.2

the concept of PBC has been illustrated. It assumes, as the name suggests, that the primary

simulation supercell is repeated ad infinitum such that at any instant of time, an image

cell is essentially an exact replica of the primary supercell. Only a very small portion of

an infinite crystal is considered as the primary supercell for molecular dynamics simulation

because the atoms in remaining part are image of the atoms of selected portion and a

translation of the primary supercell, as shown in Fig .2.2(b), can alter the enclosed atomistic
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Figure 2.2: The periodic boundary condition: both the adjacent figures (a) and (b) generate,
in effect, the same tiling even though the primary cell in (b) is obtained by horizontally
translating the boundaries of the primary cell of (a).

configuration, yet the whole system consisting of the primary plus the image cells remains

invariant. Thus, the apparent boundaries of primary supercell are not effective interfaces

and unlike the simulations for nanostructures, in bulk simulations the surface effect can be

avoided using the trick of PBC. Actually in the simulations of nanostructures, PBC is not

used and the surface effect comes into play to exhibit the properties of nanomaterials. By

the introduction of PBC, computational scheme always considers the infinite system as a

whole and there is no hierarchy of preference among the primary and image cells. For the

calculation of the force between two atoms a sphere is selected such that it contains only one

closest image of each kind. Thus image convention method suggests that the radius of cut

off sphere is less than half width of simulation cell. This technique, known as the ‘minimum

image convention’, ensures that when an atom exits the primary cell and enters an adjacent

image cell, another atom must enter the primary cell from the opposite boundary[16].
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2.4 Molecular statics, energy minimization and stable

atomic configuration

For the determination of the equilibrated atomic configuration of a material molecular stat-

ics(MS) calculations are introduced .The primary concept is to start from a given initial

mechanically unstable structure and varying the atomic position coordinates until the re-

sulting structure is in mechanical equilibrium. In this case, the restriction is that the net

force in the final equilibrium system is zero although equilibration can be done both in the

presence or absence of external forces. In the second case, the system is in the local minimum

of the total potential energy. Molecular statics is an essential part of molecular mechanics.

In most of the molecular dynamics simulations, the system is initially relaxed to its minimum

energy structure using the MS algorithm. The minimum energy condition is also essential

for calculations of free energy and different Monte Carlo simulations[16, 17]. Usually, the

MS algorithms help a given system to relax to its nearest local minimum and can not cross

any energy barrier during the entire process. For the search of global minimum, the methods

like simulated annealing[18] and genetic algorithm[19] might be employed. However, these

methods are only meant for better optimization but an algorithm, which can ensure the at-

tainment of actual global optimum, does not exist so far. The work presented in this report

has extensively used the local optimization of material structures and hence, some of the

widely used algorithms employed for this purpose have been discussed in detail.

2.4.1 Steepest-descent method

It is called also as the ‘Gradient descent’ and is based upon the fact that a function, f(r),

always tends to decrease along the direction of −~∇f . Therefore, in every successive step,

the function argument, r, is updated so as to shift it along the direction of −~∇f in small

steps. Accordingly, we can use the following algorithm[16].
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Step 1: Obtain the potential energy, V (r), at the initial atomic coordinates given by the

vector, r0, using some suitable empirical potential model or ab initio method.

Step 2: Compute the norm of the force vector, −~∇ V (r) . If it does not exceed the maximum

tolerance, terminate the algorithm.

Step 3: Obtain the unit vector d̂ = −~∇f
|−~∇f |

.

Step 4: r→ r+χd̂, where χ is a small step size.

Step 5: Continue from step 2.

Steepest descent is not a preferable choice for large number of atoms or when a high

precision is required in the result. This is due to the fact that as the algorithm takes the

system nearer to the optimum point, the convergence usually becomes increasingly slow.

Therefore, we would use a more intelligent strategy as discussed below.

2.4.2 Conjugate-gradient relaxation

Alike the Steepest-descent this method also uses the atomic forces to obtain the local energy

minimum. But unlike the Steepest-descent method, instead of searching along the direction

of maximum gradient throughout the iterations, it follows a more innovative strategy. This

algorithm is based upon the idea that faster convergence is possible if each search direction

is conjugate to all the other search directions. For atomistic simulations, a nonlinear version

of this algorithm is usually employed. In principle, this algorithm would be most efficient if

the optimized function is quadratic, i.e., V (r)= 1
2
rT .G.r, where r if the coordinate vector

and (G) is a symmetric matrix. But in many practical cases, this algorithm converges fast

enough. This method can use the following algorithm for energy minimization.

Step 1: Compute the atomic force vector, F, as the negative gradient of potential. Exit if

its magnitude is within the maximum tolerance.

Step 2: At the first iteration, set the search direction s[1] → F[1]. Otherwise, for nth iteration,
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calculate k = F[n].F[n]

F[n−1].F[n−1] , s[n] → F[n] + ks[n−1].

Step 3: Relax the system to its minimum energy only along the direction of s[n].

Step 4: Continue from step 1.

Determination of the search direction, s, is done here by the so called Polak-Ribiere

formula[20]. It ensures that each search direction is conjugate to the previous one. Then it

can be proven[21] that it would be conjugate to all the previous search directions as well.

2.4.3 Fast inertial relaxation engine

In contrast to the other two methods described above, the FIRE algorithm is an inertial

(mass-dependent) technique based upon the methods of MD. This is a new method devised by

Bitzek et al.[22]. In cases where the energy landscapes are too complicated, some other well

known methods are found to have failed in converging fast enough. The present algorithm

eliminates this drawback. It suggests to integrate the following equation of motion:

dv̂

dt
=

F̂(t)

m
− γ(t)|v(t)|[v̂(t)− F̂(t)] (2.2)

where the hats (ˆ) denote the unit vectors in the directions of the corresponding velocity

and force vectors. The above equation says that to the usual Newtonian equation of motion,

an addition acceleration is provided in a direction which is steeper that the equation of

motion. With a time step, ∆t, and an initial parameter, α0, the Euler discretization of

Eq. 2.2 yields the following algorithm:

Step 1: Initialize the velocity vector,v→ 0.

Step 2: Calculate the force vector, F, and integrate the equation of motion. Even a crude

integration is satisfactory.

Step 3: Evaluate the power, P = F.v

Step 4: If P > 0 and the number of steps since P was negative is larger than Nmin, ∆t →
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min(∆tfinc,∆tmax) and α→ fα.

Step 5: If P ≤ 0, ∆t→ ∆tfdec, v→ 0 and α→ α0.

Step 6: Continue from step 2 until the algorithm converges.

The parameter Nmin is an integer. All other parameters accept finc are smaller than

1. FIRE is quite robust in the sense that the convergence is always good regardless of the

choice of the initial parameters.

2.5 Molecular dynamics

From its heart, the molecular dynamics simulation is the tool for solving the following second

order differential equation for a many body system:

d2r

dt2
=

F(r,t)

m
(2.3)

Generally, the net force, F, is the sum of internal and external forces. When the net force is

derivable from a time independent potential function, V (r), the Hamiltonian of the system

given by H(r; p) = |p|2
2m

+ V , where p is the momentum vector, remains invariant in time.

Using this Hamiltonian form, the classical equations of motion can be rewritten as

dr

dt
=
δH

δp
(2.4)

dp

dt
= −δH

δr
(2.5)

2.5.1 Numerical integration of the equations of motion

It is now clear that in principle MD involves the solutions of Eq. 2.3 or Eq. 2.4 and 2.5.

Although the idea is very simple, the actual numerical implementation is nontrivial. This is

primarily due to the fact that most of the systems we simulate consist of a large number of
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atoms; even a small system of 10,000 atoms are associated to 60,000 variables of coordinates

and momenta. So we are compelled to use the digital computers to solve such many body

problems numerically. On the other hand, digital computers, albeit precise, can only solve

discretized problems. However, discretizing an otherwise continuous mathematical form

always yields some errors. Adding more precision by taking the accuracy to higher orders

enhances the computational complexity and thus the CPU time. Hence, it is a challenging

task to design an algorithmic solver, which gives optimized trade-off between accuracy and

speed under the particular requirements of a given study. Here we shall discuss some of the

well known numerical solvers for MD simulations[17].

2.5.1.1 Basic verlet algorithm

From Taylor series expansion we have

~r (t+ ∆t) = ~r (t) + ~v (t) ∆t+ ~a (t)
∆t2

2!
+O(∆t3)

and

~r (t−∆t) = ~r (t)− ~v (t) ∆t+ ~a (t)
∆t2

2!
+O(∆t3)

~r(t), ~v(t) and ~a(t) are position, velocity and acceleration of an arbitrary atom at time t. ∆t

is the length of each time step.

Adding the above two equation

~r (t+ ∆t) = 2~r (t)− ~r (t−∆t) + 2~a (t)
∆t2

2!
+O(∆t4). (2.6)

And subtracting the 1st two equations

~v (t) =
~r (t+ ∆t)− ~r (t−∆t)

2∆t
+O(∆t2). (2.7)

36



Limitations:

Verlet algorithm is not self-starting, since it requires the positions at two previous times

(t and t − ∆t ) to get the position at the next time, t + ∆t. Here velocity is not explicit

and one step behind position and to get velocity, position of three consecutive steps are

required[17].

2.5.1.2 Verlet leapfrog algorithm

Taylor series expansion generates

~v

(
t+

∆t

2

)
= ~v (t) + ~a (t)

∆t

2
+
~̇a (t)

2!

(
∆t

2

)2

+O(∆t3)

= ~v (t)− ~a (t)
∆t

2
+ ~a (t) ∆t+

~̇a (t)

2!

(
∆t

2

)2

+O(∆t3)

= ~v (t)− ~a (t)
∆t

2
+
~̇a (t)

2!

(
∆t

2

)2

+ ~a (t) ∆t+O(∆t3)

= ~v

(
t− ∆t

2

)
+ ~a (t) ∆t+O(∆t3). (2.8)

~r (t+ ∆t) = ~r (t) + ~v (t) ∆t+ ~a (t)
∆t2

2!
+O(∆t3)

= ~r (t) +

{
~v (t) + ~a (t)

∆t

2

}
∆t+O(∆t3)

= ~r (t) + ~v

(
t+

∆t

2

)
∆t+O(∆t3). (2.9)

Limitations:

Although velocities are explicitly calculated, however, the disadvantage is that they are

not calculated at the same time as the positions. The velocities are first calculated at time

t+1/2∆t; these are used to calculate the positions, r, at time t+∆t. In this way, the velocities

leap over the positions, then the positions leap over the velocities[17]. The velocities at time

t can be approximated by the following way:
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~v

(
t+

∆t

2

)
= ~v (t) + ~a (t)

∆t

2
+
~̇a (t)

2!

(
∆t

2

)2

+O(∆t3),

~v

(
t− ∆t

2

)
= ~v (t)− ~a (t)

∆t

2
+
~̇a (t)

2!

(
∆t

2

)2

−O(∆t3).

Adding last two equations

~v (t) =
~v
(
t+ ∆t

2

)
+ ~v

(
t− ∆t

2

)
2

+O(∆t2).

2.5.1.3 Velocity verlet algorithm

Once again using Taylor series expansion

~r (t+ ∆t) = ~r (t) + ~v (t) ∆t+ ~a (t)
∆t2

2!
+O(∆t3)

= ~r (t) +

{
~v (t) + ~a (t)

∆t

2

}
∆t+O(∆t3)

= ~r (t) + ~v

(
t+

∆t

2

)
∆t+O(∆t3), (2.10)

Where,

~v

(
t+

∆t

2

)
= ~v (t) + ~a (t)

∆t

2
+
~a (t)

2!

(
∆t

2

)2

+O(∆t3)

and

~v (t+ ∆t) = ~v (t) + ~a (t) ∆t+ ~̇a (t)
∆t2

2!
+O(∆t3)

= ~v (t) + ~a (t)
∆t

2
+

∆t

2

[
~a (t) + ~̇a (t) ∆t

]
+O(∆t3)

= ~v (t) + ~a (t)
∆t

2
+ ~a (t+ ∆t)

∆t

2
+O(∆t3)

= ~v (t) +
∆t

2
[~a (t) + ~a (t+ ∆t)] +O(∆t3). (2.11)

This algorithm is free from all shortcomings which appear in the first two algorithms
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and has been used in simulation[17].

2.5.2 Statistical distribution at equilibrium

The total energy of a system, containing N atoms each of mass m and total interacting

potential V ({ri}), is the Hamiltonian of the system and is given by

H({pi, ri}) =
N∑
i=1

|pi|2

2m
+ V ({ri}),

where, pi and ri are momenta and position of ith particle and ({pi, ri}) = (p1, p2, .., pi,

.., pN ; r1, r2, .., ri, .., rN). Now the probability density of the system at absolute equilibrium

temperature T with microstate{pi, ri} is given by Boltzmann distribution[23]

f({pi, ri}) =
1

Z
exp

[
−H({pi, ri})

kBT

]
,

where,

Z =

∫ N∏
i=1

dridpi exp

[
−H({pi, ri})

kBT

]
with kB = 1.38× 10−23Joule/K, the Boltzmann’s constant and Z is the partition function.

Thus the ensemble average of a macroscopic quantity A is average over all possible mi-

crostates and is given by

〈A〉 =
1

Z

∫ N∏
i=1

dridpiA({pi, ri}) exp

[
−H({pi, ri})

kBT

]
.

The average potential energy of the system is

U = 〈V ({ri})〉 = 〈A〉 =
1

Z

∫ N∏
i=1

dridpiV ({ri}) exp

[
−H({pi, ri})

kBT

]
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=

∫ ∏N
i=1 driV ({ri}) exp

[
−V ({ri})

kBT

]
∫ ∏N

i=1 dri exp
[
−V ({ri})

kBT

] .

Similarly kinetic energy of jth atom is

〈EK.E, j〉 =

∫
dpj

|pj |2
2m

exp
[
− |pj |2

2mkBT

]
∫
dpj exp

[
− |pj |2

2mkBT

] =
3

2
kBT.

If V ({ri}) is quadratic function then U = 〈V (ri)〉 = 3
2
NkBT and total average energy of the

system is 3NkBT .

2.5.3 Temperature initialization and its maintenance

The symplectic integrator like Velocity-Verlet inherently simulate an isolated system with

conserved total energy if no explicit provision is made. However, one can seldom be interested

in simulating an isolated system and instead, the canonical (constant temperature) ensemble

needs to be simulated more often. In molecular dynamics, the thermostat algorithms are

used to maintain a system at a constant desired temperature. Following is the detailed

descriptions of three of the most commonly employed thermostats in MD.

2.5.3.1 Velocity scaling

The instantaneous temperature, T (t), of the N atom system is defined as

T (t) =

∑n
i=1miv

2
i

3Nk
. (2.12)

The velocity scaling[24] algorithm maintains the desired object temperature, Tobj, simply

by scaling the instantaneous velocities with the multiplication factor, λ, as v(t) → λv(t),

where λ =
√

Tobj
T (t)

. The obvious disadvantage of this method is that the system’s temperature

remains precisely constant throughout the simulation and no thermal fluctuation is observed,

which renders this method unrealistic. Moreover, the scaling can take the system away from
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the initial Boltzmann’s distribution.

2.5.3.2 Berendsen thermostat

This method implements a differential negative feedback to maintain the temperature. In

this case, a virtual heat bath acts as the source or sink of thermal energy and exchanges heat

with the system to either increase or decrease the temperature. Here the extent of coupling

between the system and the heat bath is tunable in terms of a relaxation constant, τ , which

further determines the velocity scaling factor, λ. The following relation is employed for this

purpose[25],

dT (t)

dt
=
Tobj − T (t)

τ
. (2.13)

Here τ is typically specified in the unit of picoseconds and the scaling factor is given by

λ =

√√√√1 +
δt

τ

{
Tobj

T (t− δt
2

)
− 1

}
. (2.14)

The change in the temperature in one time step is now

δT = δt

{
Tobj − T (t)

τ

}
. (2.15)

Unlike the velocity scaling method, the temperature fluctuations are present in the Berendsen

algorithm. A small value of τ reduces the fluctuations, whereas a large value increases them.

At τ = δt, this algorithm reduces to the velocity scaling method. Berendsen algorithm also

fails to maintain the statistical distribution of the canonical ensemble.

2.5.3.3 Nose-Hoover thermostat

Similar to the Berendsen method, the Nose-Hoover thermostat also considers a constant

temperature heat reservoir as a part of the system. In this case, the thermal mass, Q,
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dictates the extent of coupling with the heat bath and thus controls the thermal fluctuations.

Here a details of this thermostat is presented in detail. In its original form, S. Nose[26, 27]

introduced an extra degree of freedom, s, and proposed a modified Lagrangian,

L(r, ṙ, s, ṡ) =
∑
i

1

2
mis

2ṙ2
i − V (r) +

1

2
Qṡ2 − gKTobj ln s, (2.16)

where g = 3N + 1 is the total number of degrees of freedom for the 3D simulation including

the extra degree, s. Nose proposed that this extra degree of freedom can be perceived as a

scaling factor relating the real time step, say δt′, to the scaled time step, δt, as

δt′ =
δt

s
. (2.17)

Similarly, the other scaled quantities are also related to their corresponding real coun-

terparts and accordingly, ṙ′i = sṙi. The real momentum of particle i, p′i, is related to the

scaled value, pi, as ṗ′i = ṗi/s. Clearly, Eq. 2.16 expresses the Lagrangian in the scaled time

frame. Nose proved that if the Lagrangian in Eq. 2.16 is used to generate the equation of

motion, the potential term, gkTobj ln s, forces the system to sample the canonical ensemble.

Using the Lagrangian in Eq. 2.16, we obtain the following partial derivatives,

∂L

∂ṙi
= mis

2ṙi, (2.18)

∂L

∂ṡ
= Qṡ, (2.19)

∂L

∂ri
= −∂V

∂ri
, (2.20)

∂L

∂s
=
∑
i

msṙ2
i −

g

βs
, (2.21)
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where β = 1
kT

. We can now form the Lagrange’s equation of motion as

d

dt

(
∂L

∂ṙi

)
− ∂L

∂ri
= 0, (2.22)

which yields the equation of motion

r̈i = −2ṙiṡ

s
− 1

mis2

∂V

∂ri
. (2.23)

Equation Eq. 2.23 can be rescaled to the real time axis as

r̈′i = −2

s

ds

dt′
ṙ′i −

1

mi

∂V

∂ri
. (2.24)

In the same way, the Lagrange’s equation for the degree of freedom, s, can be written

as

d

dt

(
∂L

∂ṡi

)
− ∂L

∂si
= 0, (2.25)

which gives the solution,

Qs̈ =
∑
i

msṙ2
i −

g

βs
. (2.26)

Similar to Eq. 2.24, Eq. 2.26 is also re-scalable to the real time domain as

∂2s

∂t2
=

1

Q

(∑
i

msṙ′2i −
gs

β

)
. (2.27)

Using Eq. 2.16, we obtain the conjugate momenta

pi =
∂L

∂ṙi
= mis

2ṙi, (2.28)

ps =
∂L

∂ṡ
= Qṡ. (2.29)
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The Nose Hamiltonian is accordingly given by

H =
∑
i

piṙi + psṡ− L

=
1

2

∑
i

p2
i

mis2
+ V (ri) +

p2
s

2Q
+
g ln s

β
.

(2.30)

Hamilton’s equations become

ṗi = −∂H
∂ri

= −∂U
∂ri

, (2.31)

ṙi =
∂H

∂pi
=

pi
mis2

, (2.32)

ṗs = −∂H
∂s

=
∑
i

p2
i

mis3
− g

βs
, (2.33)

ṡ =
∂H

∂ps
=
ps
Q
. (2.34)

In real time frame, the conjugate equations are

p′i =
∂L′

∂r′i
= miṙ

′
i =

pi
s
, (2.35)

p′s =
∂L′

∂ṡ′
=
Q

s2

ds

dt′
=
ps
s
. (2.36)

Now, the time derivatives of the real time quantities can be obtained using the Eqs. 2.31-2.34

as

dp′i
dt′

= −p′isp
′
s

Q
− ∂V

∂ri
, (2.37)

dri
dt′

=
p′i
mi

, (2.38)

dp′s
dt′

=
1

s

(∑
i

p′2i
mi

− g

β

)
− sp′2s

Q
, (2.39)

ds

dt′
=
s2p′s
Q

. (2.40)
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Similarly the Hamiltonian given in Eq. 2.30 is expressed in terms of the real time variables

as

H ′ =
∑
i

p′2i
2mi

+ V (ri) +
s2p′2s
2Q

+
g ln s

β
. (2.41)

In spite of being a conserved quantity, H ′ is not a Hamiltonian in true sense, for it does not

provide the equations of motion, e.g.,

∂p′i
∂t′
6= −∂H

′

∂ri
. (2.42)

To further simplify the mathematical structure of the thermostat, Hoover[28] defined the

new variable

ζ ≡ ps
Q

=
sp′s
Q

= ṡ =
d ln s

dt′
. (2.43)

Thus, the Eqs. 2.37-2.40 can be rewritten as

dp′i
dt′

= −ζp′i −
∂V

∂ri
, (2.44)

dri
dt′

=
p′i
mi

, (2.45)

dζ

dt′
=

1

Q

(∑
i

p′2i
mi

− g

β

)
, (2.46)

d ln s

dt′
= ζ. (2.47)

Using Eqs. 2.44 and 2.45, we obtain

r̈′i = − 1

mi

∂V

∂ri
− ζ ṙi, (2.48)

ζ̇ ′ =
1

Q

(
mi|r′i|2 −

g

β

)
. (2.49)
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Defining the instantaneous temperature, Tinst, as

1

2
gkBTinst =

1

2

∑
i

mi|r′|2, (2.50)

we get from Eq. 2.49,

ζ̇ ′ =
gkB
Q

(Tinst − Tobj), (2.51)

where Tobj is the object temperature. The above equation indicates a differential feedback

system. If Tinst > Tobj , ζ increases until it becomes positive. Once it becomes positive,

it starts exerting a drag force on the atoms to reduce the velocities and hence, reduces the

temperature. Due to the Nose-Hoover thermostat, the instantaneous temperature always

fluctuates around the object temperature.

2.6 Summary

In this chapter several essential concepts associated to the atomistic simulations of mate-

rials are discussed. The concept of molecular dynamics simulations is articulated and the

relevant algorithms are also presented. In particular, various inter atomic potentials, the pe-

riodic boundary condition, structural relaxation, and integration algorithms for the constant

temperature simulation have been elaborated. In the subsequent chapters, we will face with

these issues frequently, when the simulation methods will be employed to solve the objective

problems of this thesis.
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Chapter 3

Scaling Property of Kinetic Energy

3.1 Introduction

Scaling as a manifestation of underlying dynamics of dynamical systems is familiar through-

out the physics fraternity. It has been instrumental in helping scientific community to gain

deeper insights into problems ranging across the entire spectrum of science and technology.

Scaling laws typically reflects the underlying generic features and the physical principles

which are independent of detailed dynamics or characteristics of a particular model. Scale

invariance has been found to hold empirically for a number of complex systems, and the

correct evaluation of the scaling exponents is of fundamental importance in assessing if any

universal class exists [1]. Scale invariance seems to be widespread in natural systems. Numer-

ous examples of scale invariance properties are found in literatures in the fields like rainfall,

econophysics, fractal, network, cloud earthquakes etc.[2, 3, 4, 5, 6, 7, 8, 9, 10].

Scaling analysis searches for property which describes the self-similarity of time series.

Actually the fractal nature of an object leads to the idea of the statistical self-similar property.

The statistical self-similarity property resemble the structure of an object by composing

its sub-unit and sub-sub-unit in successive levels. Theoretically and mathematically this

property should maintained in all possible scales. Practically, however, there exists a limit of
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upper and lower value of scale where self-similarity property is observed. For a curve in two

dimension, its self-similarity can be determined by taking a part of the curve as the subset of

the original and enlarging the subset with the help of rescaling such that its size is equal to

that of the original curve both along height and width. The statistical property of enlarged

subset and the original curve are then compared to test the self-similarity. As already

mentioned the idea of fractal structure is extendable to the analysis of complex temporal

processes. But the challenge in the determination and quantification of self-similarity of

temporal process is that unlike the fractal although the present data is also two dimensional in

nature yet the time series is associated to different physical variable. Whereas the horizontal

axis represents the ‘time’, the vertical axis may show the variation of some other physical

or biophysical variables like kinetic energy, momentum, stress, strain, heartbeat etc. Thus

two the axes have two different unit (in this case unit of time and kinetic energy ). On the

contrary, geometrical curves the situation is different, where both axes have unit of length(for

two dimension). Thus for proper comparison of original and magnified data associated to

complex temporal processes we need two different magnification factor. One for time axis

and other one for the physical quantity, the time variation of which is the focus of this work.

In terms of mathematics, in the light of above discussed paragraph, the self-similarity

of a temporal process can be represented as

y(t)
d≡ aα y

(
t

a

)

where
d≡ implies equivalence of the statistical properties of both side of the equation are

identic. In alternative words a self-similar statistical process, y(t), has the the similar prob-

ability distribution as that of a rescaled process, aα y
(
t
a

)
. That means if the time scale is

rescaled by a factor a(t→ t/a) then the variable y is rescaled by factor aα, with α as scaling

exponent or self-similarity parameter.

For two distributions to be identical, they should maintain this criteria for all the mo-
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ments similar and then the two associated processes will be self-similar. This is practically a

difficult practice and we limit ourselves this criteria up to only variance of the distributions.

Lets consider a time series, for example, and a sub-set of it. The x axis and y axis of the

sub-set are rescaled by factors Mx and My respectively in order to retrieve the original series.

The scaling exponent α is then

α =
ln aα

ln a
=

lnMy

lnMx

If the lengths of time windows of original series and sub-set series are n1 n2 respectively

then Mx = n1

n2
. Magnification factor associated to the y axis is determined by calculating

the standard deviations(s1 and s2) of y variable for time windows n1 and n2. This method

results in My = s1
s2

. Hence

α =
ln aα

ln a
=

lnMy

lnMx

=
ln s1

s2

ln n1
n2

=
ln s1− ln s2

lnn1− lnn2

Thus the scaling exponent is nothing but the slope the straight line obtained from the

log− log plot of standard deviation(s) against length of time window(n). In doing so, for

each time window, a number of sub-sets of equal size are considered to calculate average

standard deviation(s). The averaging procedure enable us to get more accurate and reliable

scaling exponent(α).

3.2 Self-Similar Process, time series and their mapping

The Previous section clearly signifies that if α > 0 then with the length of time window

the fluctuation(which is equivalent to the standard deviation, s) increases and the time

series is unbounded one. On the contrary, in reality whatever be the length of time window

the fluctuation and hence the corresponding standard deviation of the series is finite i.e.

practical time series are restricted to bounded one. For heart rate time series it is seen that

only if x axis of a sub-set is rescaled then automatically the y axis becomes self-similar.
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This implies My = 0 and hence α = 0. By randomizing the original heart rate time series if

completely uncorrelated white noise time series is generated then also the scaling exponent

remain unchanged(α = 0). Then the issue is what is the difference between the α(= 0)

of complex correlated time series and α(= 0) of randomized and uncorrelated time series.

An innovative idea to dodge this issue of times series analysis is to consider the fractal

property of integrated time series of the temporal process instead of the original time series

of the complex temporal process. Alike physiological time series, the random noise acting

on a Brownian particle is bounded in nature. However, its trajectory is the result of all

earlier random forces and is a unbounded time series having fractal property with a scaling

exponent. Similarly application of fractal scaling analysis to the integrated time series of

previously discussed original and randomized heart rate time series produces two different

similarity parameter α. In the present chapter, it is the fractal scaling analysis which is

going to be used on integrated time series.

3.3 What is Levy distribution?

Usually in traditional scaling analysis people study pick up the variance for the test of

scaling behavior. This is possible if the time series possesses a finite variance. However, Paul

Levy observed an exceptional case where the central limit theory does not hold good and

the variance and the other higher moments of the series diverge [11]. In terms of Fourier

Transform the Levy distribution can be represented by

f(k) = exp(−a|k|α) 0 ≤ α ≤ 2

and for asymptotic case, k →∞ the distribution is

f(k) = |k|−1−α
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Since Practically, in scaling analysis, finite time series is taken hence we can use variance

method given that the variance of the series is finite. Otherwise the variance would turn into

a erroneous method. In order to get escape from this serious issue Scafetta et al. [12, 13]

came with a new method of scaling analysis which study the scaling nature of probability dis-

tribution in place of its variance. This method is familiar as diffusion entropy analysis(DEA)

in the field of scaling analysis of time series and it is based on the calculation Shannon en-

tropy. In the scaling analysis of time series data of kinetic energy individual constituent

particles of non-equilibrium crystalline systems we use two methods: DEA method and Fi-

nite variance scaling method(FVSM). Simultaneous use of these two methods is necessary

to draw a conclusion whether the said process shows Gaussian or Levy nature. In the next

three sections we would discuss about the formulation DEA and FVSM methods.

3.4 Introduction to diffusion trajectory

The process of equilibration is a sort of diffusion of kinetic energy and potential energy.

For scaling analysis of a diffusion process it is required to generate diffusion trajectories for

different time windows. Lets consider a time series data {ξi : 1 ≤ i ≤ N} and consider the

following representation

ξsi = ξi+s

Total N number of diffusion trajectories are possible and the width of the time window

varies from 1 to N . For time window t, the diffusion trajectory can be represented in terms

of N − t+ 1 subsequences. The sth subsequence of diffusion trajectory corresponds to time

window t is

xs(t) =
t∑
i=1

ξsi =
t∑
i=1

ξi+s, 0 ≤ s ≤ N − t
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3.5 Diffusion entropy analysis

Dynamical systems arising from diversified disciplines of science can be quantified in a uni-

fied way from their scale invariance properties. Scafetta et al. introduced two complemen-

tary scaling analysis methods: the diffusion entropy analysis and the finite variance scaling

method (FVSM) to evaluate correct scaling that prevails in complex dynamical systems.

For time window t the subsequences of the diffusion trajectory probability distribution

function is calculated. The Shannon entropy associated to each trajectory can be expressed

as

S(t) = −
∫ +∞

−∞
p(x, t) ln[p(x, t)] dx

where, p(x, t)’s are the probabilities of the probability distribution function of the concerned

diffusion trajectory.

Considering the scaling condition p(x, t) = t−δF (xt−δ) holds appropriately, the Shannon

entropy can be easily represented as

S(t) = A+ δ ln t

where, A is a constant given by A =
∫ +∞
−∞ F (y) lnF (y) dy and δ is scaling exponent. A

semi-log plot of Shannon entropy S(t) against t is a straight line with exponent δ as its slope.

3.6 Standard deviation analysis

The other methodology (FVSM) introduced by Scafetta et al. uses the second moment of

the diffusion trajectory to examine the scaling property. Standard deviation analysis is one

version of FVSM. The evolution of standard deviation D(t) of variable xs(t) for different
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Figure 3.1: Scaling exponents of (a) Gaussian white noise and (b) fractional Brownian noise
from diffusion entropy analysis

time windows are used to test the scaling property. The standard deviation D(t) of the

diffusion trajectory having time window t is given by

D(t) =

√∑N−t
0 [xs(t)− x̄s(t)]2

N − t

where, x̄s(t) is the average of the all subsequences of diffusion trajectory of time window t.

According to the traditional wisdom of the methods based on variance, the existence of

scaling is assessed by observing, with numerical methods, the following property:

D(t) ∝ tH

lnD(t) = constant +H ln t

The exponent H is interpreted as scaling exponent of the diffusion process. The slope of
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Figure 3.2: Scaling exponents of (a) Gaussian white noise and (b) fractional Brownian noise
from standard deviation analysis

straight line obtained from log-log plot of D(t) against t provides the scaling exponent.

3.6.1 Scaling exponents for various kind of time series data

For random noise with finite variance, the diffusion distribution p(x, t) will converge, accord-

ing to the central limit theorem, to a Gaussian distribution with H = δ = 0.5. If H 6= δ, the

scaling represents anomalous behavior. Levy-walk is a kind of anomalous diffusion which is

obtained by generalizing the central limit theorem [14]. In this particular kind of diffusion

process the scaling exponents H and δ are found to obey the relation δ = (3−2H)−1 instead

of being equal [13].

Gaussian white noise : δ = H = 0.5 (Fig. 3.1(a) and Fig. 3.2(a))

Fractional Brownian noise : δ = H = 0.7 (Fig. 3.1(b) and Fig. 3.2(b))
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Levy flight : scaling exponent can not be defined properly by these two methods. Because of

long tail of the distribution of such and as a result we can not define the standard deviation

of the time series.

Levy walk : δ = 1
3−2H

When each step of a Levy motion takes the same time regardless of length, the process

is usually called a Levy flight. A Levy motion is called a Levy walk when the time taken

for each step is proportional to its length. Levy flights and walks have very different scaling

behaviors: the former are characterized by memoryless jumps governed by a heavy-tail, while

the latter, now having a fixed step size, have attained serial correlations within each huge

jump [15].

3.7 Scaling analysis and equilibrium process

Since non-equilibrium systems are ubiquitous in nature and equilibrium systems are ideal

and can only be achieved in the laboratory. Attempts have been made to understand the

dynamics of non-equilibrium systems by linear response theory [16] albeit its domains of

validity are restricted to the linear response regime. There exists no general formalism to

deal with systems that are far from equilibrium. For a system out of equilibrium, the prob-

ability of a given microstate evolves continuously with time. In the long time limit the

system reaches a stationary state in which the probability measure over the configuration

space converges to a constant distribution. Non-equilibrium systems display fluctuations

which are less sensitive to the conditions of the surroundings and carry information about

the dynamics of its present state. In the last decade certain general relations have been

discovered which are valid for non-equilibrium systems and are independent of how far the

system is driven out of equilibrium. These results include the Jarzynski equality [17, 18] and

the fluctuation theorems [19, 20, 21, 22, 23, 24, 25, 26, 27]. They have been verified for a

variety of systems theoretically as well as experimentally [28, 29, 30, 31, 32]. After the work

57



by Crooks [22] and Seifert [23], it is now understood that many of these relations are closely

related to the path probability of the systems trajectory. In the absence of any general

theory to understand the dynamics of a system far from equilibrium, one approach will be

to take a simple but nontrivial model system and try to understand its dynamics when it

approaches equilibrium from its non-equilibrium state. The general dynamical behavior of

a non-equilibrium system will consist of superposition of various dynamics on well speared

time scales which compel several thermodynamic parameters of the system like heat, work,

internal energy, kinetic energy of the particles of the system to fluctuate. To understand the

general features of the dynamics one has to apply statistical analysis to these fluctuations.

In this chapter an attempt has been made to study a universal scaling relation for systems

driven far from equilibrium by analyzing its fluctuation properties. Application of two afore-

said complementary scaling analysis methods(DEA and SDA)[12, 13] produce the universal

scaling relation for the non-equilibrium systems. The non-equilibrium systems of study are

generated by molecular dynamics simulation[33] technique.

3.8 Simulation procedure

To generate the non-equilibrium model system molecular dynamics (MD) simulation tech-

nique has been utilized the in an innovative way. Depending on the interaction potential

model, a typical MD simulation computes the trajectories of atoms in a system by solv-

ing Newtons equations of motion numerically. In this chapter, the simulations have been

performed for elements having different crystal structures like Silicon (Si) and Germanium

(Ge) with diamond cubic structure, Iron (Fe) and Molybdenum (Mo) with body centered

cubic structure and Copper (Cu), Aluminium (Al) and solid Argon (Ar) having face cen-

tered cubic structure. Thus, a variety of interaction potential models have been employed

(refer Table 3.1) in the simulations. For all these elements, periodic boundary conditions

are imposed along three directions (x,y,z) in the simulation cell. Initially, all the systems are
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equilibrated using constant energy and volume ensemble (NVE) at 100 K for 2.5 ps except

for Ar, where the equilibration run is performed at 30K for 10 ps. The kinetic energy in the

equilibrium state will follow Boltzmann distribution. The period of time for equilibration

is chosen to be sufficient to bring the total energy of the system to divide approximately

equally between kinetic energy (KE) and potential energy (PE). Details of the parameters

used in the simulations like simulation cell size, number of atoms taken in the simulation cell,

the time steps after which simulation data are recorded and the nature of the inter-atomic

potentials used for the elements under study are given in Table I. To generate the non-

equilibrium state, the three components of velocities of individual atom in the simulation

cell were changed to random values such that the instantaneous KE of the atom increases

however the average temperature of the system corresponds to T = 500 K (T = 70 K for

Ar). The atoms in the simulation cell are then allowed to equilibrate. After sufficiently

long period of time, the system is observed to attain equilibrium temperature of 300 K (50

K for Ar) and the average kinetic energy becomes equal to the average potential energy of

the respective systems. The variations of temperature (equivalent to KE) with time of the

systems of Al and Cu leading to equilibration are shown in Fig. 3.3. Atomistic simulation

data are recorded for each time step for the entire equilibration time to study the dynamic

nature of the equilibration process.

3.9 Result of scaling analysis

Few atoms in the simulation cell are identified in a sphere of radius ‘r’ whose centre is chosen

to be almost at the middle of the cell, far away from the surface. The values of ‘r’ and the

number of atoms in the sphere for each simulation are given in Table 3.1. The KE in the

consecutive time steps for the atoms in the sphere are used for further analysis. In these

simulations the atoms in the simulation cell are kept isolated from the environment and

hence there was no dissipation of energy, only there is a redistribution of KE and PE among
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Figure 3.3: Variations of temperature (equivalent to KE ) with time of the systems of (a)
Al and (b) Cu leading to the equilibration

the atoms. DEA and SDA analyses [34] are performed for the time series data (Fig. 3.4) of

the KE for an individual atom. Typical plots of DEA and SDA analysis from which δ and

H are calculated for a Copper atom are shown in Fig. 3.5.

The slopes of the curves evaluate δ and H. DEA and SDA analyses were performed
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Table 3.2: Mean values of the scaling exponents δ and H obtained from ten atoms chosen
randomly in the shell of radius ‘r’. Exponents δ and H are evaluated from the time series of
the evolution of KE for a single atom.

Material Non-equilibrium δ H
[(
δ − 1

3−2H

)
/δ
]
× 100

Temperature(K)

Si 500 0.953±0.016 0.968±0.008 1.380

Si 800 0.898±0.025 0.901±0.025 7.046

Si ( single atom ) 500 0.943 0.970 0.042

Ge 500 0.930±0.021 0.953±0.026 1.712

Ge 800 0.930±0.020 0.960±0.015 0.438

Ar 70 0.968±0.010 0.968±0.005 2.908

Ar ( single atom ) 70 0.963 0.972 1.665

Cu 500 0.920±0.020 0.955±0.022 0.279

Cu ( single atom ) 500 0.935 0.978 2.444

Fe 500 0.925±0.018 0.964±0.022 0.847

Fe ( single atom ) 500 0.959 0.974 0.879

Mo 500 0.935±0.016 0.964±0.021 0.231

Al 500 0.935±0.008 0.966±0.013 0.142

for ten atoms randomly chosen from the atoms confined in the sphere of radius ‘r’ and the

average of values of δ and H are given in Table 3.2. Simulation cell sizes, number of atoms

in the cell, sampling time, the crystal structure, and the nature of the interaction potential
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Figure 3.4: Time series data of KE of an arbitrary (a) Ar atom and a (b) Mo atom during
the course of equilibration

were varied to find the exact nature of the scaling.

To understand the process of equilibration when a single excited atom interacts with an

ensemble of atoms that are in equilibrium, another kind of exercise was performed by MD

simulation. In this case from the equilibrated ensembles of Si, Cu, Fe at 300 K and solid

Ar at 50 K one atom in the middle of the cell was excited to a KE corresponding to 500 K

and 70 K respectively. The excited atom is then allowed to equilibrate and the KE possesses

by the atom at different time steps was monitored. In these simulations the energy of the

simulation cells was also a constant of motion. All the equilibrated atoms in the cell form
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Figure 3.5: (a) DEA and (b) SDA of the variation of kinetic energy against time data
obtained from a Cu atom in an ensemble when brought to a non-equilibrium state at 500K
from 100K and allowed to equilibrate at 300K

a heat bath and the excited atom equilibrate by interacting with this heat bath by sharing

its excess KE. The time series of KE of the excited atom between consecutive time steps

are used to understand the diffusion process of KE and the nature of the dynamical process

responsible to bring the atom to the equilibrium state. The values of δ and H obtained by

DEA and SDA analysis from the time series are given in Table 3.2.
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Atoms in the simulation cell, when brought to a non-equilibrium state by enhancing

their KE, try to redistribute their excess KE by the process of diffusion. This process

of redistribution of KE among the atoms changes their mean positions of vibration and

consequently their PE. Here all the atoms in the cell participate together in the diffusion

process. Thus by analyzing the variation of the KE with time for a single atom in the cell

one can account for the modality of this diffusion process and the nature of the equilibration.

The change in the KE for an atom in the ith time step is given by ∆E =
(

2Ei
m

) 1
2 Fi∆t where

Fi is force on the atom at the ith time step. The force field experience by an atom in the

cell will consist of three parts. The deterministic force, arising from the nearest neighbor

interaction potential, and it plays the role of the external force F (t) acting on the atom.

There will be energy exchange between the atom and the surrounding atoms in a result of

which the atom loses a part of its KE for exciting various degrees of freedom of the atoms

in the ensemble as well there will be increase in the PE in the cost of KE of the atom. This

can be described with help of a frictional force Ff (t) acting on the atom. Besides loosing KE

due to frictional effect there is a possibility of gaining KE in the form of random movement

of the atom due to interactions from all other atoms in the cell and can be modeled by

a random force Γ(t) acting on the atom. Γ(t) will have the property as 〈Γ(t)〉 = 0 and

〈Γ(t1)Γ(t2)〉 = Ag(∆t) where ∆t = (t2 − t1), the function g(t) dies down rapidly with t

and A is the strength of the random force and is a function of temperature T. Thus the

dynamics of the atoms will follow Langevin type equation [35]. To see the effect of this

random force field on the scaling behavior, the ensembles of Si and Ge atoms were exited to

a higher temperature i.e. at 800 K and allowed to equilibrate at 450 K. The δ and H values

for the time series of the KE for these cases are given in Table 3.2. As the systems were

allowed to equilibrate of its own without any defined protocol, forces acting on the atoms are

time dependent through the dynamical process of equilibration. The force field experienced

by an atom in the simulation cell in the ith time step is calculated from its velocities, at

i− 1, i, i + 1th time steps. Typical mean values of these forces are 1.011654× 10−10 N and
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24.7088× 10−10 N for solid Argon and Si respectively. The fluctuating part of the force field

at different time steps was obtained by subtracting the mean values. Typical probability

distributions for the fluctuating part of the force field in case of solid Ar and Si atoms are

shown in Fig. 3.6. The distributions are Gaussian with center −6.69 × 10−12 N and width

9.59×10−11 N for Ar and the corresponding values for Si are −4.98×10−11 N and 1.95×10−9

N respectively. To understand the correlation of the fluctuating force field, vectors {|Xi〉}

are generated from the time series data of the fluctuating force field by taking consecutive n

time steps for constructing each vector. The eigen value spectrum of the covariance matrix

Σx of these vectors are calculated to establish the nature of the correlation. Fig. 3.7 shows

typical eigen value spectra for Ar and Si cases. The flatness of the spectra confirms that the

fluctuating force fields are uncorrelated.

The motion of the atoms in the simulation cell is thus governed by these forces and

dictates the variation of KE of the atoms. The memory effect of the initial velocity will

die down with time. In the long time limit the system equilibrates leading to equipartition

of energy. The characteristic of the variation of KE in terms of time series indicates the

evolution of the non-equilibrium state. To understand the universality of this evolution for

different dynamical processes as generated by MD simulations, the Shannon entropy of the

diffusion process of KE of an atom in the cell was obtained by calculating the PDF from

the sub trajectories of this time series. The high values of δ and H as given in Table 3.2

signifies a strong persistence in the fluctuations of the KE of the atoms. The values of H

are always larger than that of δ for all cases studied and are seen to fulfill the Levy-walk

diffusion relation within the error bar as shown in Table 3.2. In the work of P. Barat et al.[36]

the Portevin-Le Chatelier effect in an Al-2.5%Mg alloy also exhibits similar scaling behavior

having scaling exponent between 0.98 and 0.88.
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Figure 3.6: Probability distributions of the fluctuating forced fields experienced by (a) an
Argon and (b) a Silicon atom when brought to a non-equilibrium state at 500 K from 100
K and allowed to equilibrate at 300 K
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Figure 3.7: Eigen value spectra of the covariance matrices constructed from the time series
of the fluctuating forced fields experienced by (a) an Argon and (b) a Silicon atom when
brought to a non-equilibrium state at 500 K from 100 K and allowed to equilibrate at 300 K

3.10 Conclusions

The exact inherent dynamics of the process of transmitting excess KE of an atom to its

surroundings could not be revealed from this analysis. However, this analysis reflected the

underlying generic features and physical principles that are independent of the detailed

dynamics or characteristics of particular model. The diffusion of KE of an atom to its

surroundings is a continuous stationary stochastic process as the probability of the diffusion

trajectories follows a scaling relation. As the exponent H is greater than 0.5 for all cases,

the diffusion is anomalous super diffusion. Any diffusion is a kind of random walk and the

Levy-walk is a mathematical model to describe anomalous super diffusion where the scaling

exponent of variance against time is greater than one. Levy-walks have coupled space-

time probability distributions and are characterized by a cluster of smaller variations of the

random variable with a few large variations between them. This pattern repeats for all scales.

As the process of equilibration of KE of an atom in the ensemble from its non-equilibrium

state has to be very rapid, it cannot be Brownian type and it should be Levy-walk type as
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Levy-walk will outperform Brownian walk during the process of equilibration. The Levy-

walk type of diffusion of KE among the atoms may be due to the following reason. Excess

KE of an atom should disburse locally however there is a finite probability to transport its

excess KE to a distant atom and consequently this atom again redistributes its KE in the

same process. This process is much faster than normal diffusion when the mean squared

value of fluctuation depends on t only. Mostly three dimensional systems show normal

diffusion except in glassy systems [37]. The anomalous or super-diffusion and Levy-walks

have been observed in various real-life phenomena like fluid flow in rotating annulus [38],

low dimensional heat transport [39], light scattering in porous media [40] etc. However

the present findings show that the diffusion of KE for a single atom in its non-equilibrium

state, when embedded in an environment of atoms that are either in equilibrium or in non-

equilibrium state, show super-diffusion and Levy-walk properties throughout the process of

equilibration. In the case when a single atom interacts with the ensemble of atoms that

are in equilibrium it may be assumed that the atom is interacting with a thermal bath by

absorbing or releasing KE without appreciable change in the bath state. In this case also

the diffusion of KE of the atom is found to fallow the Levy-walk process.

Atoms of crystals when brought to a non-equilibrium state, try to redistribute its en-

ergy amongst them to converge to an equilibrium distribution. Such fundamental process is

governed by the increase in entropy of the trajectories of the individual atom and should be

identical in nature for all types of elemental atoms and will be independent of the nature of

interactions between the atoms and the perturbation which brought them to non-equilibrium

state. The calculation of Shannon entropy of the diffusion process was made for one atom.

However, the concept of entropy in statistical mechanics is for an ensemble. But the en-

tropy production for a single trajectory has been addressed in the literature [23] concerning

fluctuation theorems.

Atoms in a lattice possessing KE different from its equilibrium values at any instant

of time try to transport or accept from the nearest neighbors and arrive at a new value.
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The time series of this KE were translated in to a diffusion process in the form of diffusion

trajectories and PDF of these trajectories were estimated. The estimated Shannon entropy

production of this dynamical process with time is found to obey a universal scaling relation.

This scaling relation is exact and valid for systems no matter how far they are driven out of

equilibrium and is independent of the strength of perturbation that brought the system out of

equilibrium. In equilibrium the same scaling property of KE of constituent particles has been

studied. The result once again shows the Levy-walk nature of constituent particles in KE

space. Thus the randomness in the energy possessing of the individual constituent particles

is irrespective of the nature of the system whether it is in equilibrium or in non-equilibrium.

The only difference is that in equilibrium they jump into different energy states keeping

envelope of the probability distribution intact. Intuitively it seems that in non-equilibrium

system the randomness in the values of KE of a particle could be different because of the

low occurrence probability of the non-equilibrium state. However, this is for the first time it

is noticed that the randomness of KE of a system particle is the same regardless of the state

of the system.
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3.11 Appendix: Matlab programs used for noise data

3.11.1 Gaussian white noise :

% Box-Muller algorithm to generate Gaussian white noise

function[x] = boxmuller(n, sd)

x = zeros(n,1);

len = ceil(n/2);

rand(‘seed’, sd);

for i=1:len

u1 = rand(1,1);

u2 = rand(1,1);

x(i) = sqrt(-2*log(u1))*cos(2*pi*u2);

if(i+len¡=n)

x(i+len) = sqrt(-2*log(u1))*sin(2*pi*u2);

end

end

3.11.2 Fractional Brownian motion :

function f = fftfgn(sigma, H, n, N, M, force, varargin)

if H==1/2,

f = sigma*randn(n,N);

elseif and((H>1/2),H<=1)

t=[-M:M];

co =0.5*sigma∧2*(abs(t+1).∧(2*H) + abs(t-1).∧(2*H) - 2*abs(t).∧(2*H));

if force,
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nM = 2∧(fix(log2(2*M+1))+1);

else

nM = 2*M+1;

end;

co hat =fft(co,nM);

ft = real(ifft(abs(co hat).∧0.5, nM));

ft = [ft(fix(nM/2)+1:nM), ft(1:fix(nM/2))];

R = randn(n,2*M+N);

if ∼isempty(varargin),

fprintf(‘Generating n = %d paths’,n);

end;

f = [ ];

for i=1:n,

fi = fftconv(R(i,:),ft,force);

f = [f; fi(2*M:2*M+N-1)];

if ∼isempty(varargin),

fprintf(‘.’);

end;

end;

if ∼isempty(varargin),

fprintf(‘ done.\n’);

end;

elseif and((H<1/2),H>0)

G1=randn(n,N-1);

G2=randn(n,N-1);

G = (G1+sqrt(-1)*G2)/sqrt(2);

GN = randn(n,1);
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G0 = zeros(n,1);

H2=2*H;

R=(1-((1:N-1)/N).∧H2);

R=[1 R 0 R(N-1:-1:1)];

S=ones(n,1)*(abs(fft(R,2*N)).∧0.5);

X=[zeros(n,1) G, GN, conj(G(:,N-1:-1:1)) ].*S;

x=ifft(X’,2*N)’;

y=sqrt(N)*real((x(:,1:N)-x(:,1)*ones(1,N)));

f = sigma*N∧H*[y(:,1), diff(y‘)’];

else

error(‘The value of the Hurst parameter H is out of the range (0,1]’);

end;

3.11.3 Levy noise

function [z] = levy(alpha, c, n, N)

if (alpha < 0.3 | alpha > 1.99)

disp(‘Valid trange for alpha[0.3;1.99].’);

z = NaN * zeros(1,N);

return

end

if (c<=0)

disp(‘c must be positive.’)

z = NaN * zeros(1,N);

return

end

if (n<1)
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disp(‘n must be positive.’)

z = NaN * zeros(1,N);

return

end

if nargin<4

N = 1;

end

if (N<=0)

disp(‘N must be positive’)

z = NaN;

return

end

invalpha = 1/alpha;

sigx = ((gamma(1+alpha)*sin(pi*alpha/2))/(gamma((1+alpha)/2)...

alpha*2∧((alpha-1)/2)))∧invalpha;

v = sigx*randn(n,N)./abs(randn(n,N)).∧invalpha;

kappa = (alpha*gamma((alpha+1)/(2*alpha)))/gamma(invalpha)*....

((alpha*gamma((alpha+1)/2))/(gamma(1+alpha)*sin(pi*alpha/2)))∧invalpha;

p = [-17.7767 113.3855 -281.5879 337.5439 -193.5494 44.8754];

c = polyval(p, alpha);

w = ((kappa-1)*exp(-abs(v)/c)+1).*v;

if(n>1)

z = (1/n∧invalpha)*sum(w);

else

z=w;

end

z=c∧invalpha*z;
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Chapter 4

Evolution of Shannon Entropy in

Kinetic Energy Domain

4.1 Introduction

Most of the systems observed in nature or in the laboratories are of non-equilibrium disposi-

tion. Physical properties of systems are measured by bringing them in their non-equilibrium

state by applying external perturbations. In last two decades there was lot of impetus to

understand the process of equilibration of non-equilibrium system, far from equilibrium, by

studying the dynamical evolution of the individual constituents of the system [1]. In order

to understand the collective behavior of a non-equilibrium system, it is important to study

the behavior of the constituent atoms of the non-equilibrium system together during the

passage of equilibration. This can be achieved by studying the variation of the probability

distribution function (PDF) of the energy of the associated atoms in the system during equi-

libration. The global dynamics of equilibrium systems are studied by statistical mechanics

forging the fundamental link between the interactions of the constituents and the macro-

scopic behavior of the interacting many body systems. Boltzmann established a general

framework to evaluate the associate probability of an ensemble of an equilibrium system to
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achieve a particular energy state. Equilibrium distribution of a system is derived by maxi-

mizing the entropy. Thus, whenever an non-equilibrium system reaches an equilibrium state

it has to follow the path of steepest entropy ascent compatible with the constraints of the

system concerned. This observation is in consistent with Onsager theory of reciprocity [2]

and fluctuation-dissipation theory [3].

A non-equilibrium system continuously undergoes transitions from one state to the

other to maximize the entropy measure. Thus it is imperative to study the evolution pro-

cess of equilibration of a non-equilibrium system one has to calculate the time dependent

PDF, p(E, t) and the corresponding measure of entropy. This chapter presents the time

variation of the Shannon entropy [4] of non-equilibrium systems defined by the relation

S(t) = −
∫
p(E, t) log p(E, t) dE, where p(E, t) is obtained by molecular dynamics (MD)

simulation technique.

4.2 Simulation in details

A variety of materials having different crystal structures with widely employed empirical

interaction potentials are used to carry out the MD simulations [5]. Depending on the

potential function, the trajectories of the atoms are calculated at each time step of simulation

by solving Newton’s laws of motion. Copper (Cu), Aluminium (Al) and solid Argon (Ar)

with face centered cubic (FCC) structure, and iron (Fe) with body centered cubic (BCC)

structure are the elements considered in this study. The simulations are performed using

MD++ [6] code. The empirical potentials used are Embedded Atom Method[7][8], Aluminum

Glue[9], Lennard Jones[10] and Finnis-Sinclair[11] for Cu, Al, solid Ar and Fe respectively.

Cubic cells of size 20 × 20 × 20 unit cell (uc) containing 32000 Cu, Al and solid Ar atoms,

and 25 × 25 × 25 uc containing 31250 Fe atoms are considered as the simulation systems.

Number of atoms in the simulations are much larger than that recommended in reference

[12] to avoid the size effect. In all the cases, initially, the systems are relaxed at 100K (30K
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for solid Ar) temperature for 2.5ps (10ps for solid Ar ) using periodic boundary condition

in all three directions under constant number of atoms, volume and total energy (NVE)

ensemble. The number of time steps used for relaxations was 5000 with each time step of

0.5fs (2fs for solid Ar). To set up the non-equilibrium state the velocity components of the

atoms are redefined such that the average KE of the atoms becomes 500K (70K for solid

Ar). The systems are then released for equilibration. Consequently the systems gradually

proceed towards equilibrium.

During the equilibration process the position and velocity components of each atom are

recorded at every time steps of 0.5fs (2fs for solid Ar). The total equilibration time was 1.5ps

(20ps for solid Ar). The variation of the average system temperature for Aluminium and

copper are shown in Fig. 4.1. The figure exhibits larger fluctuation of average temperature

when the system is far away from the equilibrium temperature. The standard deviation of

this fluctuation is tabulated in Table 4.1 for all the materials.

4.3 Formulation of probability distribution function in

kinetic energy domain

An easy way to compute Shannon entropy is the construction of probability distribution

(Fig. 4.2.) and subsequently with the help of binning of probability distribution the conven-

tional formula computes the Shannon entropy. Since the quantity, Shannon entropy, provides

the information of the system, the selection of bin is an important aspect of this work. If

the bin size is not closed to the standard deviation average system temperature, informa-

tion may be lost for larger bin size and for smaller bin size larger computation time has to

be spent. Thus, in order to compromise with no loss of information value and the smaller

computation time the bin size has been chosen around the standard deviation of the average

system temperature. At each time step the KE spectrum of the atoms are divided into 200
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Figure 4.1: Variations of temperature (equivalent to KE ) with time of the systems of (a)
Al and (b) Cu leading to the equilibration.

bins (130 bins for slid Ar) with each bin corresponds to KE of 20K (5K for solid Ar) in oder

to get the histogram of the KE spectrum. The normalized probability distribution of KE of

Cu atoms expressed in terms of temperature during the process of equilibration are shown

in Fig. 4.2. After making the normalization
∑N

i=1 pi(t) = 1 ( N = number of bins and pi(t)’s

are the discrete bin values of the probability p(E, t) defined earlier) of the KE spectrum the

values of the Shannon entropy S(t) = −
∑N

i=1 pi(t) log pi(t) at different instants of time are

calculated. The variations of S(t) with time for Ar and Cu are shown in Fig. 4.3.

Ensemble of atoms in a crystal when brought to non-equilibrium state by enhancing the
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Table 4.1: Table showing the standard deviation of the average temperature variation of
solid argon, copper, iron, and Aluminium during the equilibration from their respective
initial to final temperature.

Material Initial average Final average Standard Deviation of
temperature(K) temperature(K) average temperature(K)

Solid Argon 70 50 3.07
Copper 500 300 23.02
Iron 500 300 25.08
Aluminium 500 300 20.39

Figure 4.2: The probability distribution function of the kinetic energy (expressed in terms
of temperature) of Cu atoms at initial, final and at five different time steps.

KE of the atoms from their equilibrium values, equilibrate by diffusing its excess KE. This

diffusion process is governed by the various forces acting on the atoms. The force arising

from the nearest neighbor interaction potential plays the role of the external force on the

atom. There will be energy exchange between the atom and surrounding atoms in a result of
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Figure 4.3: Variation of the Shannon entropy with time of (a) Ar and (b) Cu during the
course of equilibration.

which the atom may lose a part of its KE. Loss of KE also occurs because of its conversion

to PE in the ensemble of atoms. There will be a force acting on the atom arising from the

interactions from all other atoms in the cell. Because of their thermal vibrations the net

force will be random. Effect of these forces results in a change in the KE of the atoms and

consequently in the PDF. The PDF changes with time and ultimately equilibrates to the

stable time invariant distribution. The variation of the PDF of KE can be a measure of the

dynamical process of equilibration. In this regard Shannon entropy S(t) is evoked and it has

been calculated at each time step.

The Shannon entropy oscillates (Fig. 4.3) around the equilibrium value during the pro-
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Table 4.2: Frequencies of the first peak observed from the Fast Fourier Transform of Shannon
entropy of the elements and their respective Debye frequencies.

Material 1st peak from FFT Debye frequency at 298K[13]

Solid Argon 1.93 THz 1.77 THz(at 0K[14])
Copper 7.14 THz 7.16 THz
Iron 9.74 THz 9.79 THz
Aluminium 7.81 THz 8.21 THz

cess of equilibration. Thus high and low values of the Shannon entropy does not necessarily

signify any stable state of the system but the invariance of the Shannon entropy with time

suggests the attainment of equilibrium. Thus in equilibrium of any dynamical system Shan-

non entropy is a constant of motion. Fast Fourier Transformation (FFT) of the time evolution

of the Shannon entropy shows a frequency spectrum having two major peaks as shown in

Fig. 4.4. The first peak is closed to the Debye frequency of the element concerned as shown

in Table 4.2.

4.4 Result and discussions

In the study of the statistical interpretation of the relaxation process of non-equilibrium

systems, Boltzmann entropy plays the most important role and it attains the maximum value

at equilibrium. However, Boltzmann entropy can not be estimated based on the concept of

probabilities as defined in the field of statistics and as well difficult to measure in numerical

studies. Thermodynamic probabilities or the statistical weight of a micro-state that reflects

the Boltzmann entropy is not a probability as defined in the conventional statistics [15].

Hence, in this numerical studies of the relaxation process it is essential to evoke the Shannon

entropy to understand the dynamics. Shannon entropy is a measure of uncertainty [4] and
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Figure 4.4: FFT of Shannon entropy of (a) Ar and (b) Cu.

is a positive function of pis. Its extreme values are for the cases when all pis are equal with

S = logN and S = 0 when the system is uniquely defined with sharped peak at one of the

pis equal to 1.

When the system is far away from the equilibrium normalized values of probability in the

respective bins are much different from the equilibrium values (Fig. 4.2). When the system is

allowed to relax the values of probabilities start oscillating in such a way that these coupled

oscillators reach the final destination correspond to the equilibrium distribution. The behav-

ior of the PDF at different time steps (Fig. 4.2) shows that, initially the distribution starts

peaking at the low temperature side in an attempt to approach the equilibrium distribution.
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At 80th time step (for Cu) it peaked maximum and the corresponding Shannon entropy goes

to minimum. However, as the coupled oscillating probabilities in the bins do not reach the

equilibrium distribution it again starts flattening making the Shannon entropy to increase.

This cumulative oscillation among the bins persists but its amplitude decays with time so

long it reaches the equilibrium distribution making the Shannon entropy as a constant of

motion. This is the dynamics of these equilibrium processes.

In this micro-canonical ensemble whenever the KE is exchanged between the atoms it

generates a different micro-state for a given macro-state. This energy exchange is also re-

sponsible for the oscillations of the probabilities in the bins. These oscillators when coupled

together generate higher modes of oscillations along with their fundamental frequency. Be-

cause of these coupled oscillators a frequency spectrum associated to the time dependence

of the Shannon entropy is expected. It is presumed that the observed first peak in the fre-

quency spectrum is the Debye frequency and is one of the primary frequencies responsible

for the transfer of probabilities between the bins.

One of the characteristics of the non-equilibrium systems is that the PDF associated with

the systems are necessarily time dependent. Because of this time dependence it is difficult

to find any general analytical formalism to deal with its dynamics. The time evolution of pis

is governed by the master equation. However, it is extremely difficult to solve it numerically

because of associated large degrees of freedom. In this attempt, the evolution dynamics of

non-equilibrium systems could be justified by studying their time evolution of the Shannon

entropy and a conclusion can be drawn describing the time variation is primarily dictated

by two frequencies and one of them is the Debye frequency.

4.5 Conclusion

The motivating significance of this chapter is the oscillating nature of Shannon entropy. The

common idea about an isolated system is that it is not in equilibrium when any quan-
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tity, and in particular the quantity
∫
p(E, t) log p(E, t) dE changes systematically with

time [16]. Irrespective of the initial values of the probabilities of the bins the quantity∫
p(E, t) log p(E, t) dE tends to decrease as long as the probability distribution acquire a

form to achieve a minimum
∫
p(E, t) log p(E, t) dE value. The final distribution is most

probable one and leads to the equilibrium of the system. Application of a little disturbance

perturbs the probability distribution having occurrence probability much smaller than the

most probable one and the value of the quantity
∫
p(E, t) log p(E, t) dE again increases.

The small occurrence of the probability ensures the non-equilibrium state of the system af-

ter the introduction of disturbance. This study, for the first time, observes a contradictory

property of non-equilibrium system which establishes that Shannon entropy does not always

monotonically increase during the equilibration process.
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Chapter 5

Modality of Equilibration

5.1 Introduction

For equilibrium systems, the probability distribution function (PDF) of energy is the well

known Boltzmann distribution. Dynamic evolution of an equilibrium system through a se-

quence of equilibrium states is infinitesimally slow as it evolves in a quasi static manner

retaining the Boltzmann distribution at every stage. Practical systems are usually in the

non-equilibrium state and try to reach its equilibrium state. Thermodynamic entities of

equilibrium systems are studied by equilibrium statistical physics from the knowledge of the

interaction of the microscopic constituents of the system. Small deviation of the equilibrium

state by external perturbation in the linear response regime is analytically handled through

equilibrium correlation function[1, 2, 3]. No generalized theoretical framework exists to cal-

culate macroscopic thermodynamic properties of a system when it is far from equilibrium. In

the last two decades, exact relations have been established relating thermodynamic param-

eters for systems irrespective of how far they are driven out of equilibrium. These studies

are related to the path probabilities of the individual constituents of the non-equilibrium

system[4]. Collective behavior of the constituents of non-equilibrium systems is also to be

understood. Probably this can be studied from the time evolution of the PDF of energy of
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non-equilibrium systems as they approach equilibrium.

It is easy to bring a system to its non-equilibrium state experimentally by the application

of external perturbations like magnetic field, electric field, heat flux etc. However it is almost

impossible to estimate the PDF of energy of the non-equilibrium system and its variation

with time experimentally as one has to measure the energy of all the atoms in the system

at different instant of time. On the other hand it is quite easy to study the evolution of the

PDF of energy for a non-equilibrium system and its approach to equilibrium by molecular

dynamics (MD) simulation technique. In MD simulation, it is possible to calculate all the

attributes of an individual atom at a finer time steps. Hence, it is necessary to study the

modality of the equilibration process globally of a non-equilibrium state of a system, MD

simulation is possibly the only way. This chapter reports the mechanism of equilibration of

the PDF of energy of several prototype crystalline systems by system identification technique

[5] when they are brought to non-equilibrium state using MD simulation and allowed to

equilibrate of its own without any interaction with bath or sink.

5.2 System identification technique

Every dynamical system responses while an excitation is imposed to the system. The dy-

namical characteristics of the system are reflected in the response of the system. Thus, there

should be a fixed rule in the excitation-response characteristics for a particular system. For

a well described dynamical system it is very easy to find out the output of the system from

its description and from the input. On the other hand many times we may not know the

system description, and we may need to figure out a description of the system from the

known sample of input and output. In this chapter, as we will see later, the dynamical

system is solid Argon crystal which is far away from its equilibrium state. Left of its own,

the system gradually proceeds towards the most probable unique equilibrium state. At each

step of the equilibration the output of the previous step acts as input to the system and the
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response of system to this input is its output. Thus, it seems that we have a time series

of input and output but dont have any idea about the details of input output relationship.

No description of the system, no dynamical characteristics of the system are available from

this information in a straight forward manner. For a simple system it is possible to formu-

late a differential equation of the system and relate the input and output by an equation.

Unfortunately, the studied system is not a simple one and consists of a large number of

interacting particles. It is impossible to formulate the differential equation of that kind of

complex system. The modality of the equilibration can be looked as a self control of the

system to reach the unique equilibrium point. Thus, the process of equilibration is a self

controlled attractor, although the initial states are man-made and countless. We are looking

for an indirect methodology which can relate the input and output of the system and can

provides us substantial information about its dynamical characteristics. Transfer function of

the system can play this role significantly. The art of building this mathematical model of

the response characteristics of a dynamical system from the input-output data is the system

identification technique. The transfer function of a dynamical system is the ratio of the

output and input in Laplace domain and is given by H(s) = Y (s)
X(s)

. X(s) and Y (s) are the

Laplace transformations of input x(t) and output y(t) respectively. For a practical system

the transfer function is rational function in real or complex variable and its general form is

H(s) =
N(s)

D(s)
=
bms

m + bm−1s
m−1 + ...+ b1s+ b0

ansn + an−1sn−1 + ...+ a1s+ a0

= β

∏m
i=1(s− zi)∏n
j=1(s− pj)

(5.1)

Where, all the coefficients b’s and a’s are real values and β = bm/an is gain constant. zi’s

and pj’s are the poles and zeros of the transfer function. zi’s and pj’s occur either in purely

real form zi = σi , pj = σj or occur in complex conjugate pairs zi, zi+1 = σi ± jωi ; pj,

pj+1 = σj ± jωj(Fig. 5.1). The values of poles and zeros provide qualitative insights into the

response characteristics of the system and together with gain constant they provide complete

description of the system.
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Figure 5.1: Nature of zeros and poles occurring in a transfer function.

5.3 Significance of poles and zeros

The significance of poles and zeros is schematically explained by Fig. 5.2. A complex zero

represents the natural frequency associated with the energy-storage characteristic of a sub-

portion of the system. It is lower than the natural frequency of the system, and it corresponds

to the frequency at which the system behaves as an energy sink, such that the energy-storage

elements of a sub-portion of the original system completely trap the energy that the input

applies. Thus, no output can ever be detected at the point of measurement. The locations of

the poles and the zeros of a transfer function are the result of design decisions and can make

control easy or difficult. A complex-conjugate pole pair represents the natural frequency

associated with the energy-storage characteristics, including kinetic and potential energy,

of the physical system. At a frequency of the complex pole, energy can freely transfer

back and forth between the kinetic and the potential energy, and the system behaves as

an energy reservoir. The roots of denominator D(s) i.e. the poles of transfer function

determine whether a system is stable or not. Denominator D(s) is characteristic polynomial

of the system. A real pole pj = σj is associated with exponential response. The exponential

response is diverging when σj is positive and converging when σj is negative. A complex pole
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Figure 5.2: Stability representation of systems from different kind of transfer functions.

pj = σj ± jωj is associated with oscillatory exponential response. It is diverging oscillatory

when σj is positive and decaying oscillatory when σj is negative. Equilibrium state at which

the dynamical system is trying to reach from its non-equilibrium state is most probable

and is most stable one. Thus, in equilibration process the real part of the poles of transfer

function must be negative and the poles occupy the left side of s-plane.

5.4 Simulation Procedure

In MD[6] simulation technique the dynamics of an individual atom is governed by the New-

ton’s laws of motion. The interaction potentials among the atoms are calculated by various

techniques from which the interaction force field is calculated. Newton’s equations of mo-

tion are then integrated based on these derived force field to understand the dynamics of

individual atoms. The simulations have been performed for elements having different crys-

tal structures like Silicon (Si), Germanium (Ge) having diamond cubic structure, Iron (Fe),
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Molybdenum (Mo) having body centered cubic structure and solid Argon (Ar), Copper (Cu)

and Aluminum (Al) having face centered cubic structure. Various interaction potentials for

different elements have been used for the calculation. In each simulation adopted periodic

boundary condition has been adopted in three directions (x, y, z) in the simulation cell.

Initially all the systems are equilibrated in the NVE (constant number of particles, volume

and energy) ensemble at 100 K for 2.5 picoseconds (ps) and for solid Ar the system was

equilibrated at 30 K for 10 ps.

Figure 5.3: The probability distribution function of the kinetic energy (expressed in terms
of temperature) of Cu atoms at initial, final and at five different time steps.

To generate the non-equilibrium state the velocities of the individual atoms in the sim-

ulation cell are changed to random values maintaining the average temperature at 500 K

(70 K for solid Ar). The typical initial distribution function of KE for the Cu atoms in the
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non-equilibrium state is shown in Fig. 5.3. The atoms in the simulation cell are then allowed

to equilibrate. The KE of all the atoms are calculated in subsequent time steps to evaluate

the PDF. The PDF of KE for some discrete time steps are shown in Fig. 5.3. After sufficient

period of time the system is observed to attain an equilibrium temperature of 300 K (50 K

for solid Ar). The corresponding final equilibrium PDF is also shown in Fig. 5.3 by thick

solid line. To understand the effect of the average temperature of the non-equilibrium state

on the process of equilibration, velocity of the atoms in Si and Ge cases are also randomized

making the average temperature to 800K. The details of the parameters used in the MD

simulations[13] are given in the Table 5.1.

5.5 Data preparation for system identification

The variation of the KE of an atom is dictated by the force field experienced by it. The

primary force field experiences by an atom arises from the nearest neighbor interaction

potential whereas the interaction arising from the distant atoms generates a random force

field. Thus the dynamics of the individual atom can be represented by the Langevin type

equation[14]. Because of the existence of these force fields the KE of an atom and its reflection

to the PDF of the ensemble at any instant of time will certainly have a deterministic and a

random components. The calculated PDF of KE at different instant of time from the MD

simulation is in the form of the distribution of KE in the bins and is identified as a vector |Xi〉

of dimension n in the ith time step. The covariance matrix Σx = 1
N

∑N
i=1|Xi〉〈Xi| − |X̄〉〈X̄|

of all such vectors for a particular element is calculated. Where, |X̄〉 = 1
N

∑N
i=1|Xi〉 is

the mean vector and N is the total number of time steps required for equilibration. Thus,

each component of the data vector |Xi〉 consists of a deterministic component |Vi〉 and a

random noise component |ξi〉. As |ξi〉 is uncorrelated with |Vi〉 and with another component

of the random noise, the covariance matrix can be written as Σx = Σ̄x + 〈ξ2〉In. Where,

Σ̄x is the covariance matrix formed by the deterministic components |Vi〉 and In is the unit
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matrix of dimension n. Thus λj, the eigenvalue of Σx, will be related with the corresponding

eigenvalue λ̄j of Σ̄x by the relation λj = λ̄j + 〈ξ2〉, where j=1 to n. Hence, the noise

causes all the eigenvalues of the covariance matrix Σx to be non-zero. Thus, when the

data vectors are reconstructed with the eigenfunctions corresponding to the eigenvalues of

significant magnitude they are devoid of random noise. Typical eigen values or the principal

Figure 5.4: Eigen value spectra of the covariance matrix of (a) Ar and (b) Cu.

component spectra of Σx, for solid Ar and Cu are shown in Fig. 5.4. The prominent principal
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components for all the cases studied are found to be only two or three except for solid Ar

where it is more than 20(Fig. 5.4). This is because, solid Ar being an inert gas crystal,

the deterministic force field is reasonably weak compared to that of other studied elements.

The trajectory of the evolution of the PDF in the subspace spanned by the eigen-functions

corresponding to the primary principal components and the variation of the first principal

component with time for Cu is shown in Fig. 5.5. The time evolution of these principal

components for all the crystalline elements have a distinct oscillatory signature and a typical

representation is shown in Fig. 5.5b.

5.6 Results and discussions

During the process of equilibration the PDF of KE oscillates about the equilibrium distri-

bution as shown in Fig. 5.3. The amplitude of this oscillation reduces with time as the

system approaches towards the equilibrium. Any system left of its own will certainly ap-

proach the final equilibrium distribution irrespective of the nature of the interaction among

its constituents. Thus the dynamics of equilibration of this study is ultimately related to the

nature of the coupled oscillation of the bins of PDF around their respective mean positions,

determined by the equilibrium distribution. The existence of only 2 or 3 prominent eigen

values of the covariance matrix Σx suggests that the oscillations are highly correlated. This

modality of transforming the dynamics in reduced dimensional space helped us to analyze

the complex dynamics in a more elegant way. The oscillation of the most significant eigen

value (containing 82% to 95% of the trace of Σx in the respective cases) shows a decayed

oscillation (Fig. 5.5b) as the system approaches equilibrium. This suggests that at equilib-

rium the deterministic component of PDF goes to zero. However, it is observed that for all

studied cases the noise component remains the same. The observed nature of this oscillation

is caused by the concerned system. So the prime interest will be to identify the nature of

the system that is responsible for this oscillation by system identification technique[5]. This
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technique uses statistical methods to generate mathematical models of dynamical systems

linking the observed data from the system.

Figure 5.5: (a) Time evolution of the PDF of kinetic energy in the subspace spanned by
the three eigen functions corresponding to the three largest eigen values of the covariance
matrix Σx. The curve in the bottom plane is its projection. (b) Time evolution of the
primary principal component of Cu.

In the MD simulation the equilibrium distribution of KE of the ensemble of atoms

is purposely disturbed at time t = 0. Therefore the time evolution of the PDF can be

considered as an outcome of the finite impulse response to the KE distribution in the system.

Response of a system to a finite impulse can be used to estimate the characteristics of the

system. From this observed impulse response the system responsible for this manifestation

is identified. In system identification technique, the impulse response of a dynamical system
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is modeled from the response data and the system is estimated non-parametrically by time

domain correlation analysis[5]. Correlation analysis presupposes a linear system and it does

not require any explicit model structure.

The response to a finite impulse u(t) is equal to the convolution of the impulse response

and the transfer function h(t) of the system and is given as y(t) =
∫ +∞
τ=0

h(τ)u(t− τ) dτ .

The identified transfer function of the system is in Laplace domain which is given by

H(s) = β Πi(s−zi)
Πj(s−pj) , where β is the gain constant. H(s) is a rational function of the complex

variable s = σ+ jω. It provides the response characteristics of the system in the continuous

domain without solving the necessary differential equation, governing the dynamics. The

zi’s are the zeros and pj’s are the poles of H(s), since H(pj) = ∞ provided zi 6= pj. The

poles and zeros of H(s) together with β provide a complete description of the system. The

partial fraction extension of H(s) can be written as H(s) =
∑P

j=1Kj
1

(s−pj) . Where, Kj’s

are the residues of the particular pole pj and P is the number of poles in H(s). From the

inverse Laplace transformation of H(s) one can obtain the natural response of the system

as
∑P

j=1Kj exp(pjt), where the poles pj’s are the natural frequencies[15] of the system. The

expression of H(s) for Cu is given as

H(s) = 0.0022
(s+ 1.018)(s+ 0.0296)((s+ 0.0078)2 + 0.08422)

(s+ 0.3178)(s+ 0.1044)((s+ 0.0048)2 + 0.09302)((s+ 0.0250)2 + 0.04202)

(5.2)

For the present systems, the transfer functions have 2 to 3 complex conjugate pole pairs

that are located to the left plane of the jω axis as shown in Fig. 5.6 and the corresponding

frequencies are given in Table 5.2. This guarantees that the denominator of H(s) is never

zero for any non-negative σ. As a consequence the system can not generate a sustained sine

wave oscillation of the principal component but it will always be a decaying wave as shown

in Fig. 5.5b. The poles of solid Ar are nearer to the origin directing the system to equilibrate

over a longer period of time. This is the manifestation of the weak interaction of the atoms

of the inert gas system. The poles and the corresponding frequencies of H(s) for Si-500
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and Si-800 and for Ge-500 and Ge-800 are almost identical[Table 5.2], although their initial

non-equilibrium states are different.

Figure 5.6: Real and imaginary part of the poles of the transfer functions for different
elements. The points inside the box represents lower frequency. The poles of Si-800 and Ge-
800 are not shown as they are almost identical to those of Si-500 and Ge-500 respectively.

5.7 Conclusions

The system in the process of equilibration redistributes its KE among the atoms. This in

turn changes the spatial configuration of the atoms and the PE of the system. The impetus of

the oscillation of PDF arises because the system is being compelled to attain the equilibrium

distribution. The lowest frequencies of the poles of H(s) for different elements are very near

to the Debye frequencies[16, 17]. Other observed frequencies are much higher compared to

the frequency of the lattice vibration. The lowest frequency having higher σ value signifies

that it attenuates faster and helps the process of equilibration to the maximum extent. At

the frequencies of the poles, the transfer function blows up and then only energy can be

exchanged freely back and forth between KE and PE.
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Equilibrium state of a system is uniquely defined. Non-equilibrium state of a system can

be generated by various means and it is possible to bring it to any state far away from its

equilibrium state. Thus, it is not realistic to adopt a proper definition for a non-equilibrium

system. Consequently a question can arise whether there exists a unique way through which a

non-equilibrium system equilibrates irrespective of how far it is away from equilibrium. This

chapter tries to answer this question for certain crystalline systems. For this particular reason

not only non-equilibrium states of various elements have been generated but also different

non-equilibrium states for the same element are considered and then they are allowed it

to equilibrate. The ensemble taken, is the simplest of all i.e. NVE or the micro-canonical

ensemble. This statistical analysis of the time evolution of the PDF of KE shows that all

the systems equilibrate in a unique way irrespective of the nature of the system and how far

it is away from equilibrium.
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5.8 Appendix

5.8.1 Matlab procedure to obtain transfer function of a system

from its output time series data

Time series data(real/complex) is read by matlab. Time-series data can not be directly used

for transfer function model identification in system identification tool. Data preparation is

required for the conversion of time series data into single /multiple output time domain data.

Read time series data in matlab workspace :: imported into the ‘System Identification

Tool’ in the form of a column matrix . This data works as the time domain output data

and an unit impulse (a column matrix having same dimension as that of output column

matrix and the values of its elements are zeros except the initial one which is unity) is

used as the input to the system. The output column matrix and the impulse input column

matrix together are time domain data which the transfer function model supports. Perform

any required data preprocessing operations( if required) :: select ‘Estimate’ > ‘Transfer

Function Models’ :: ‘Transfer Functions’ window comes which requires the number of poles

and zeros. Manually these numbers are changed to find out best fit (seen by clicking the

‘Model output’ in the ‘System Identification Tool’ window) of the output of time domain

data. The corresponding polynomials of the denominator and numerator of transfer function

are obtained by a double click on ‘tf1’ in ‘System Identification Tool’ window. Thereafter

the values of poles and zeros are calculated.
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Chapter 6

Role of Repulsive force in the

Equilibration of Solid Argon

6.1 Introduction

In the previous three Chapters (3, 4 and 5) the time series evolution of kinetic energy of

the constituents atoms of the systems undergoing equilibration is primarily the mainstay of

analysis. The emphasis was entirely confined in the microscopic range since the time series

data of kinetic energy of constituent atoms falls in the atomic scale. In the present chapter

we would spread our observation into the macroscopic scale as well. Also, so far in the

last three Chapters afew materials have been used for the MD simulation with appropriate

interaction potential models. The used interaction potentials are appropriate in the sense

that those models are being extensively used in the research community and successfully

the results affirm and corroborate with experimental outcomes. It has been discussed in

Section 2.3 of Chapter 2 that MD simulation assumes a cut off radius in the simulation

supercell beyond which the affect of interaction potential is effectively considered as zero

and the integrator, velocity verlet algorithm[1], integrates the equation of motion of the

atomic trajectories of the atoms which are belongs to the sphere with radius having that cut
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off value to produce satisfying results. The central aim of this chapter would be, although

the extensively potentials are worth enough to generate results to a certain degree of satiety,

what would be the affect on the simulation results if the potential models are, keeping the

nature of the interaction almost intact, slightly modified in order to incorporate a change in

the value cut off radius.

Actually the famous review paper of S. Chandrasekhar[2] discusses in chapter 4 about

the stellar dynamics of gravitational field arising from the random distribution of the stars.

The fundamental problems of the stellar dynamics is concerned with the analysis of the

nature of force acting on a given particular star which is one of the member of the solar

system. Chandrasekhar suggested that there should be distinguishably two forces: first one

is smoothly varying function of position and time due to the whole system and the second

part is subjected to relatively rapid fluctuations due to the influence of intermediate local

neighborhood. Analogous to the stellar system an atomic system may be, whatever be the

nature of the incorporated potential model, thought of acted upon by a smoothly varying

force field(deterministic part) and also by a randomly fluctuating force field(stochastic part)

because of the random change in the atomic density in the intermediate neighborhood. This

fact is very nicely depicted by the radial distribution function or pair correlation function

of the system constituents by the fig. 7.7 in the next Chapter 7. Here on let us see what

would be the association between those force fields and the equilibration process as the slight

modification of potential model affects the cut off radius. For this purpose we would keep our

attention, as has been mentioned earlier in this section, on the evolution of average system

temperature which is a macroscopic thermodynamic entity of the system.
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6.2 Modified form of the potential and molecular dy-

namics simulation

Let us consider the simplest inert gas crystal of solid Argon having face centered cubic crystal

structure. Alike the previous three chapters(3, 4, 5), here also the system is initially set up

in non-equilibrium state following the similar procedure. Atoms in solid Argon crystal have

van der Waals bonding and are governed by Lennard-Jones potential. In the present study

two separate non-equilibrium states of solid Argon crystal are considered by incorporating

two forms of Lennard-Jones potentials. One of them is the original 12-6 potential[3] (V12−6 =

4ε[(σ/r)12 − (σ/r)6]) and the other is the variant of the original one, the 9-6 potential [4]

(V9−6 = 4ε[(σ/r)9 − (σ/r)6]) with ε = 125K and σ = 3.4A. The size of the simulation cell

for both the cases are 30 × 30 × 30 unit cells containing 108000 atoms. Periodic boundary

conditions are imposed along all three directions (x, y, and z) in the simulation cells. Initially

the systems are equilibrated using constant energy, number of particles and volume ensemble

(NVE) at 30K for 100 ps. The period of time for equilibration is chosen to be sufficient

to bring the total energy of the system to divide approximately equally between kinetic

energy (KE) and potential energy (PE). To generate the non-equilibrium state, the three

components of velocities of each of the individual atoms in the simulation cells were changed

to random values such that the instantaneous KE of the atom increases, however the average

temperature of the systems corresponds to T =70K. The atoms in the simulation cells are

then allowed to equilibrate. After a sufficiently long period of time (20 ps), the systems are

observed to attain an equilibrium temperature of 50K and the average KE becomes equal to

the average PE of the systems. Average system temperature is estimated at each time step

of 2 fs. A total 10000 steps were required for the equilibration. The variations of average

temperatures with time of the systems leading to equilibration are shown in Fig. 6.1. The

MD simulations are carried out using the LAMMPS [5] simulation package.
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Figure 6.1: Temperature profiles of solid Argon crystals during the course of equilibration.
Profile with solid line is corresponds to 12-6 crystal and dotted profile is corresponds to 9-6
crystal.

6.3 Impact on modified potential on the macroscopic

entity: Evolution of average system temperature

Fig. 6.1 depicts how the two crystals equilibrate. The temperature profiles have oscillatory

decaying nature as they proceed towards equilibrium. Apparently it is difficult to judge which

system equilibrated faster relative to the other by just observing the profile of the two curves.

By velocity rescaling when the KE energy of the simulating systems are enhanced to 70K, the

configurations of constituent atoms remain intact. The configuration of atoms is correspond

to 30K. This is the origin of unbalanced state. At higher temperature of the system the

velocity of the constituent atoms are larger. As a consequence the constituents change their

configuration according to the velocity such that the PE of the system increases. Because of

the inertia of the transfer of KE initially exact amount of KE is not converted into PE. It

make the system PE larger than the system KE and conversion occurs in opposite direction.

This phenomena leads to the oscillatory temperature profile. How fast the oscillations are

taking place in the transfer of KE into PE and PE into KE at different stages of equilibration
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and how long they sustain can not be predicted. Thus it requires further analysis. Before

we proceed for the analysis part it is important to judge the radial variation of the two

potential functions used in the simulations and the associated forces. Fig. 6.2 and Fig. 6.3

show the variation of the potential function and the force between the two Argon atoms

for the two types of potential used. It is evident from the figures that the magnitude of

negative potential and the force are always greater for the case of 12-6 potential than that

of 9-6 one. Thus, the uses of 12-6 potential and 9-6 potential are quite relevant to introduce

the variation in the magnitude of the force field in a solid Argon crystal. With out any

quantitative analysis, the difference of the temperature profiles in the Fig. 6.1 address that

the variation in the force field in the two cases has a significant impact on the equilibration

process. The frequencies responsible for the energy transfer and the sustainability of the

amplitudes correspond to these frequencies are are substantially affected due to the change

in force field.

Figure 6.2: Lennard-Jones potentials as the function of inter-atomic distance for solid Argon
crystal : (a) around a distance of lattice constant of solid Argon and (b) for larger distance..

6.4 System identification and results

The modality of equilibration is a very complex dynamical process. It is impossible to

understand this dynamics analytically. The randomized state at 70K of two systems of solid
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Figure 6.3: Lennard-Jones forces as the function of inter-atomic distance for solid Argon
crystal : (a) around a distance of lattice constant of solid Argon and (b) for larger distance.

Argon crystal undergoing the equilibration acts as the sort of excitation and the response of

the system to this finite impulse is the manifestation in the change of the average temperature

at every time step. So if we take both the systems as a black box then at every instant of

time the input to the box is the average temperature of the system and the output is the

average temperature in the next step. Thus to understand the dynamics of the dynamical

system we have to model the observed variation of the average temperature with time by

system identification technique[6]. In the previous chapter(5) in details we have come across

the working principle and the utility of system identification technique.

The poles of the transfer functionH(s) of temperature profiles of two different solid Argon

systems are presented graphically in Fig. 6.4. For the studied systems of the present chapter,

the transfer functions have three complex conjugate pole pairs(Table 6.1) that are located

to the left plane of the jω axis as shown in Fig. 6.4. This guarantees that the denominator

of H(s) is never zero for any non-negative σ which compels the non-equilibrium systems to

equilibrate in a steady equilibrium state.
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Figure 6.4: Graphical representation of the poles of the transfer functions of 12-6 crys-
tal(squares) and 9-6 crystal(circles).

Table 6.1: The frequencies and the corresponding decay constants at the poles of the transfer
functions for 12-6 and 9-6 solid Argon crystal.

pole I pole II pole III

Ar frequency decay frequency decay frequency decay
crystal (THz) constant (THz) constant (THz) constant

(1015/s) (1015/s) (1015/s)

12-6 15.11 0.019 9.07 0.004 3.18 0

9-6 11.30 0.015 6.52 0.003 2.39 0.0023

6.5 Conclusions

The existence of complex conjugate pole pairs ensures quantitatively that the temperature

profile is associated with oscillatory decaying nature. The 12-6 crystal which has larger mag-

nitude of the force field converges to the equilibrium point faster since the decay constants(the

real parts of the transfer function, see Table 6.1) are larger than those of its counterpart,

the 9-6 crystal. Fig. 6.4 and fig. 6.5 ensures quantitatively that the force associated with

12-6 potential has the larger magnitude than that of 9-6 potential in the range between

first nearest neighbor and forth nearest neighbor. Forth nearest neighbor and onwards they
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Figure 6.5: Ratio of the forces corresponds to 9-6 and 12-6 potential.

the force fields are more or less equal to each other. All these observation concludes that

force in the region between first nearest neighbor and fourth nearest neighbor is mostly re-

sponsible for equilibration and the equilibration driven by a force having larger magnitude

(12-6 potential) is faster and the sharing of kinetic energy and potential energy occurs more

frequently(frequency, the real imaginary part is larger 12-6 potential, see Table 6.1) than

those of the system driven by a force having smaller magnitude (9-6 potential).
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Chapter 7

Measure of Complexity in

Equilibrium Solid Argon System

7.1 Introduction

As the scale of human activity expands, our interaction with and dependence on Complex

Systems is increasing rapidly. Continuing failure to deal appropriately with such systems

poses a real threat whereas understanding their behavior offers the possibility of spectacular

and unforeseen advances in many areas of science and its application.

Complex Systems research is the study of collective systems and their impact on their

environment. Complex systems have emergent, non-linear properties and are able to adapt

to changing environments; their traits can be observed in man made systems such as the

Internet or the world’s stock markets, as well as more organic structures such as ant colonies

or collections of atoms and molecules.

The study of complexity is set to become a major area of interest for academia, society,

industry and commerce in the 21st Century, as the world’s political, economic, social and

scientific arenas undergo change at an unprecedented rate. The science behind it is still in

its infancy and is set to introduce a paradigm shift in our understanding of our natural,
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physical and social environment. However, the goal is not just to understand these systems

but, ultimately, to manipulate them for the benefit of society and the economy.

Most of the systems observed in nature are complex in nature. Examples of complex sys-

tems are the flow of water in a river, metabolic activities in our body, the dynamic behavior

of body cells etc. The manifestation of the dynamics of these complex systems are in the time

and spatial scale. They are complex to us as because we can not predict their behavior or

model them by a proper mathematical formalism. Modern science of this century are aiming

to understand macroscopically the complex behavior of these systems by various statistical

tools. The time series data, associated to an output variable, generated by such complex

systems generally contain deterministic and stochastic components. Stochastic component

represents the fluctuation in the output variable. The presence of this fluctuation is not sim-

ply due to contaminated noise. Rather a signature of the underlying dynamics of the system

is reflected in the fluctuation of such uncontaminated stochastic component. Generally for

time series analysis two classical approaches are used and these are related to deterministic

and stochastic mechanism [1]. Both of them can explain the underlying dynamics of the

system in a complementary manner. Instead of using any particular mechanism let us em-

phasize on a method which can quantify the degree of complexity of the time series. The

measured complexity can be used to discriminate different time series generated by different

dynamical systems or by same dynamical system having different physical conditions. In

this context it is most important to mention that the first of its kind to define a dynamical

system in terms of its complexity by Costa et al. [2]. Subsequently several works have been

reported mostly on biological systems in several journals [3, 4, 5, 6, 7, 8, 9, 10] to measure

the complexity of the dynamical systems.

The crystalline system is a very order structure as revealed by X-ray diffraction tech-

nique. In equilibrium at a fixed temperature the velocity of its constituents obey a stable

Boltzmann distribution. Apparently one may think that such a system is one of the simplest

one. However, if we go in deep and try to understand the dynamics of the system in terms
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of its constituent atoms, i.e. if the length scale is reduced and the dynamics of individual

constituents atoms is observed it will obviously be complex. The atoms in crystalline systems

can be of various types forming a cluster around a lattice point in the form of basis atoms.

Interaction among these atoms is nevertheless highly non-linear. The atoms in a crystal at

equilibrium are not static. They vibrate about their mean positions and the vibration fre-

quencies are different for different atoms even though they follow a distribution of frequency.

In addition the KE possessed by an atom of the system can have different values with finite

probability. In spite of the fact that the system is in thermodynamic equilibrium the atoms

at every moment acquire fresh KE value. The atoms vibrate about their mean position since

they posses KE but don’t have adequate space to move on in the solid structure although

and also their vibration are not independent [11]. Thus, these apparent-simple systems are

not as simple as it comes in ones thought. Moreover, for higher equilibrium temperatures

the constituent atoms vibrate with higher amplitude about their mean making the atom

dynamics much more complicated. In crystalline system the interaction with nearer neigh-

bors leads to deterministic component and stochastic component of the force field turns up

from the interaction with the distant atoms. This chapter deals with solid Ar systems at

different equilibrium temperatures and with the help of molecular dynamics [12] simulation

the temperature dependence and multiple scale factor dependence of the complexity of such

simplest system are discussed.

7.2 Traditional entropy and complexity

For every system certain amount of information is required to describe it. In case of complex

system this information is represented by the quantity complexity. By calculating complexity

from the time series of a dynamical variable of physical system some conclusion can be

drawn about the dynamics of the physical process. As per as information of a system is

concerned physicists are accustomed with traditional entropy representation of the system
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which provides the randomness or disorderedness of the system. It merely evaluates the

appearance of repetitive patterns of a time series and also no straightforward relationship

exists between the repetitive pattern of a time series and its complexity. Complexity is

related to “meaningful structural richness”[16] of the time series whereas the entropy based

measurement looks for the randomness or the absence of regularity in a time series. Thus, for

uncorrelated random noise entropy based method generates the highest value although the

time series is not complex. Neither a completely predictable nor a completely unpredictable

signal is structurally rich and both of them are not complex. In contrast, the assigned

entropy to predictable signal is minimum and it monotonically increases with randomness of

the signal to reach the maximum value for uncorrelated random signal(white noise). Thus,

in time series analysis, entropy calculation doesn’t lead to the proper understanding about

the complex nature of the time series. For instance, entropy based methods assign higher

entropy values to certain pathologic biological processes that generate irregular outputs than

to healthy biological that are acutely regulated by multiple interacting control processes[2, 3]

although the loss of complexity is a generic feature of pathologic dynamics and the biological

complexity monotonically degrades with aging and disease. This contrast indicates the need

for a thematically faithful formalism, instead of traditional entropy based measurements, for

general applications so that visual intuition matches numerical results, for broad classes of

stochastic processes as well as for dynamical systems.

7.3 Evolution of the irregularity and complexity mea-

surement methods and introduction of the idea of

multi-scale factor

Structural richness of a time series is associated to the inherent multiple spatio-temporal

scale of the complex system. Generally one tries to distinguish a chaotic complex system via
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parameter estimation. The parameters typically associated with chaotic complex systems

are the measures of dimension, rate of information generated(entropy), and the Lyapunov

spectrum. The classification of dynamical systems via entropy and the Lyapunov spectra

stems from work of Kolmogorov[13], Sinai[14], and Oseledets[15], though these works rely

on ergodic theorems, and the results are applicable to probabilistic settings. Dimension

formulas are motivated by a construction in the entropy calculation and generally resemble

Hausdorff dimension calculations. The mentioned theoretical works above was not intended

as a means to effectively and appropriately discriminate dynamical systems, given the data

is finite and noisy. Pincus [16, 17] came with a solution by proposing a family of system pa-

rameters called approximate entropy(ApEn). It can potentially distinguish low-dimensional

deterministic systems, periodic and multiply periodic systems, high-dimensional chaotic sys-

tems, stochastic, and mixed systems.

Construction of ApEn :

For any finite time series {ξi} = [ξ1, ξ2, .., ξi, ...ξN ] of N data points a vector sequences

u(1) through u(N −m+ 1), defined by u(j) = [ξj, ξj+1, .., ξj+m−1] with 1 ≤ j ≤ (N −m+ 1)

can be constructed. These vectors represent m consecutive ξ values, commencing with the

j th point. Define the distance d[u(j), u(k)] between vectors u(j) and u(k) as the maximum

difference in their respective scalar components. The vector sequence u(1),u(2), ... ,u(N-m+

1) can be used to construct, for each j ≤ (N −m+1), P ′mj (r) = (number of j ≤ (N −m+1)

such that d[u(j), u(k)] ≤ r)/(N − m + 1). The P ′mj (r)’s measure within a tolerance r the

regularity, or frequency, of patterns similar to a given pattern of window length m. Define

Um(r) = (N −m + 1)−1
∑N−m+1

j=1 lnP ′mj (r), where ln is the natural logarithm, then define

the parameter ApEn(m,r,N)=Um(r)− Um+1(r).

Mathematically, ApEn is the part of a general development as the rate of entropy for an

approximating Markov chain to a process[18]. In applications to heart rate, findings have

discriminated groups of subjects via ApEn, in instances where classical [mean, standard
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deviation (SD)] statistics did not show clear group distinctions [19, 20, 21, 22, 23]. In

applications to endocrine hormone secretion data based on as few as N =72 points, ApEn

has provided vivid distinctions between actively diseased subjects and normals, with nearly

100% specificity and sensitivity[24].

Informally, for N points, the family of parameters ApEn(m, r, N) is approximately equal

to the negative average natural logarithm of the conditional probability that two sequences

that are similar for m points remain similar, that is, within a tolerance r, at the next

point. Thus a low value of ApEn reflects a high degree of regularity. Importantly, the

ApEn algorithm counts each sequence as matching itself, in the calculations to skip the

occurrence of ln(0) a practice is carried over following the work of Eckmann and Ruelle [25].

In practice, it is found that ApEn lacks two important expected properties. First, ApEn

is heavily dependent on the record length and is uniformly lower than expected for short

records. Second, it lacks relative consistency. That is, if ApEn of one data set is higher than

that of another, it should, but does not, remain higher for all conditions tested [17]. This

shortcoming is particularly important, because ApEn has been repeatedly recommended as

a relative measure for comparing data sets [17, 21].

Following the approach of Grassberger and co-researchers[26, 27, 28, 29], Richman and

Moorman[30] developed sample entropy (SampEn(m, r, N)) which is precisely the negative

natural logarithm of the conditional probability that two sequences similar for m points

remain similar at the next point, where self-matches are excluded during the calculation of

the probability. Thus a lower value of SampEn also indicates more self-similarity in the time

series. In addition to eliminating self-matches, the SampEn algorithm is simpler than the

ApEn algorithm, requiring approximately one-half as much time to calculate. SampEn is

largely independent of record length and displays relative consistency under circumstances

where ApEn does not.

Construction of SampEn : If nmj (r) be the number of vectors u(k) with in the

distance r of any particular vector u(j)(j 6= k) the probability of that any u(k) is within r
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of u(j) is Pm
j (r) = nmj (r)/(N −m). Pm(r) is defined by

Pm(r) = 1/(N −m)
N−m∑
j=1

Pm
j (r) (7.1)

and the SampEn is defined as

SampEn(m, r,N) = ln
Pm(r)

Pm+1(r)

= ln

∑N−m
j=1 nmj (r)∑N−m
j=1 nm+1

j (r)
(7.2)

whereas,

ApEn(m, r,N) = Um(r)− Um+1(r)

≈ 1

N −m

N−m∑
j=1

ln
P ′mj (r)

P
′(m+1)
j (r)

=
1

N −m

N−m∑
j=1

ln
n′mj (r)

n
′(m+1)
j (r)

(7.3)

where nmj differs from n′mj to the extend that for SampEn self-matches are not counted

(j 6= k) and 1 ≤ j ≤ N −m. A typical example of the procedure for calculating SampEn

(m=2 and r is a arbitrarily chosen positive number) is illustrated in FIG. 7.1.

Application of both the ApEn and SampEn algorithms assign higher entropy for cer-

tain pathologic time series data than free running healthy physiological data which is a bit

confounding. Intuitively a pathologic time series represents less complex system and do not

comply with numerical results. The reason behind this unphysical result is that all these al-

gorithms are based on single scale and only the uncertainty associated to the next new point

is reflected in the entropy. As already stated that the structural richness and the complex

behavior of a time series is significantly tied with inherent multiple spatio-temporal scale

ApEn and SampEn algorithms do not account the features related to multiple scales other
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Figure 7.1: A typical time series of 48 data points [ξ1, ξ2, ...., ξ48] is considered for the il-
lustration of the SampEn calculation procedure for m = 2 and for a real positive r value.
This simulated time series provides 47 and 46 two component and three component vector se-
quences respectively. The dotted horizontal lines around data points ξ1, ξ2, ξ3 are ξ1±r, ξ2±r,
ξ3± r lines respectively. The data points which match with first three data points(ξ1, ξ2, ξ3)
are represented by symbols ◦, �, and O respectively. For first two-component ◦-� vector[ξ1,
ξ2] we find only two other matching ◦-� sequences [ξ13, ξ14] and [ξ43, ξ44]. This procedure
is repeated for all the 47 two-component vectors and the matching counts for each two-
component vectors are added up. Similarly for first three-component ◦-�-O vector[ξ1, ξ2, ξ3]
we find only one matching ◦-�-O sequence [ξ43, ξ44, ξ45]. For all the 46 three-component vec-
tors the matching procedure is repeated and the matching counts for each three-component
vectors are added up. The natural logarithm of the ratio of total number of two-component
matching and three-component matching provides the SampEn(m=2, r) for that particular
simulated time series.

than the original scale. Zhang [31] proposed an approach to take into account the multi-

scale information for large noise free data. Obviously physiological and physical signals are

bounded and are not noise free.

SampEn algorithm is free from these two limitations whereas Zhang’s method takes into

account the multi-scale effect. Thus, collective use of Pincus’s, Richman’s, and Zhang’s

approach provides(treated as MSE analysis) the exact behavior of complex systems. Costa

and co-workers used this approach, for the first time, to biological and physiological signals[2,

3, 4, 5, 6, 7, 8, 9, 10]. Afterwards, MSE analysis has been applied to metallurgical systems

[32, 33] to calculate the complexity. In the present chapter, for the first time, the aforesaid
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method is used in the time series data of KE (FIG. 7.2) of individual atoms of solid Ar at

various equilibrium temperatures.

Figure 7.2: Time series data of KE of single Ar atom at temperatures 10K, 30K, 50K, and
70K. Each series contains 104 data points.

Figure 7.3: Procedure to generate new coarse-grained time series of scale factor two and
three from the original time series({xi} = [x1, x2, ...., xN ]) which is also a coarse-grained
time series with scale factor one.

Construction of coarse-grained time series for different scale factors : Con-

sider a finite time series data of N points given by {xi} = [x1, x2, ...., xN ]. The algorithm for

the coarse-grained time series corresponding to scale factor τ can be written as:

yτj =
1

τ

jτ∑
i=(j−1)τ+1

xi (7.4)
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where yτj is the jth component of coarse-grained time series ({yτj }=[yτ1 ,yτ2 ,...,yτjmax]) with

scale factor τ and 1 ≤ j ≤ N/τ . Thus the coarse-grained series for scale factor τ = 1 is the

original time series. FIG. 7.3 is a schematic representation of coarse-graining procedure for

scale factor two and three. Application of SampEn to each of these coarse-grained time series

provides the MSE. This method is applied to white noise (FIG. 7.4a) and 1/f (FIG. 7.4b)

Figure 7.4: Time series of (a) white noise and (b) 1/f noise with 105 data points.

noise (with 105 data points) to reproduce the result(inset of FIG. 7.5) which was reported

by Costa and co-researchers [2, 3]. FIG. 7.5 shows a congruity between numerical results

and our intuition about regularity and complexity of these two types of noise. White noise

contains all the frequencies with equal probability. Hence no constraint will be there on the

similarity of the frequency of data points of white noise. This regularity is reflected in the

lower values of multi-scale entropy. On the contrary for 1/f noise lower frequencies are most

likely compared to the higher frequencies (FIG. 7.6). This particular restriction makes the

1/f noise to lose the regularity in the data points. The higher values of SampEn justifies this

idea. The linear nature of SampEn against scale factor(in log scale) indicates logarithmic

relation between SampEn and scale factor for both the noises.
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Figure 7.5: MSE analysis(m = 2, r = 15% of the standard deviation of the respective original
time series) of white noise (circular) and 1/f noise (square) with 105 data points showing
the logarithmic relation between SampEn and scale factor and the inset is exactly the result
showed by Costa et al. [2, 3]

Figure 7.6: Frequency spectrum of 1/f noise.

7.4 Simulation procedure

The required time series data, for the measurement of complexity of crystalline systems, are

generated with the help of molecular dynamics simulation technique. Molecular dynamics

provides the time series data of KE of the individual constituent atoms in the time interval

of the order of femtosecond(fs). A cubic system of solid Ar of dimension of 30 unit cells(uc)

in each of the three directions is taken as simulation cell. The crystalline solid Ar has face

centered cubic structure and the simulation cell contains 108000 atoms. Periodic boundary

condition is imposed in all the three directions of the cell to avoid any surface effect. At
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every 2fs time interval the Newtonian equations of motion of each constituent atom of the

system are solved with the help of widely used Lennard-Jones(12-6) potential [34]. Initially,

Figure 7.7: Variation of pair correlation function of solid Ar at different equilibrium tem-
peratures. The figure in the inset represents the enlarged view of the first peak.

the velocity components of all the constituent atoms of the simulation cell are defined by

random numbers such that the initial average KE of the system becomes double of the value

what is expected in equilibrium and the average potential energy(PE) is zero. Thereafter,

using constant energy and volume ensemble (NVE) the crystalline solid Ar system is left

of its own for long time(50000 steps, 100ps) to reach the equilibrium distribution. Under

equilibrium, the final average KE is equal to the average PE and because of this transfer of

KE into PE, the final average KE value reaches the desired value (half of the initial average

KE). After the system reaches the equilibrium, the simulation run is continued for another

20ps and atomistic simulation data are recorded at each time step of that 20ps(10000 steps)

interval to study the complex dynamics of the equilibrium crystalline system. For different

equilibrium temperatures(10, 30, 50 and 70K) of crystalline solid Ar system this procedure

is repeated.
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7.5 Computation of MSE of crystalline solid Ar

In FIG. 7.7 the pair correlation function (sometimes called radial distribution function) of

the Ar atoms is portrayed for different equilibrium temperatures. Pair correlation function

describes how the normalized particle density varies as a function of distance from a reference

particle. The atom residing at the center of the simulation cell is considered as the reference

particle. For closer distance it exhibits peaks at first, second, third nearest neighbor etc. and

gradually flattens to unity for larger distance. An increment in temperature enhances the

KE of individual atoms and hence the amplitude of vibration about their respective mean

positions. Gradual flattening of the first peak at the cost of peak height (in the inset of

FIG. 7.7) consolidate the concept of larger KE and larger vibration of atoms for increasing

temperatures. Thus, rise of temperature introduces more randomness and irregularity to the

dynamics of system particles. Temperature dependence of the standard deviation and the

height of the first peak of pair correlation function are shown in FIG. 7.8a and FIG. 7.8b

respectively.

Figure 7.8: Temperature variation of (a) standard deviation and (b) height of the first peak.

Few atoms (around 70) in the simulation cell are identified with in a sphere of radius

1.6uc whose center is chosen to be almost at the middle of the cell, far away from the
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surface. The time series data (104 data points) of KE of the identified atoms are used for the

analysis. Throughout the analysis the values of SampEn are estimated with m = 2 and the

r value equals to 15% of the standard deviation of original time series data. Subsequently

the average of SampEn over the identified atoms is considered for the quantification of the

complex behavior of the particle dynamics. The dependence of average SampEn on scale

factor is shown in FIG. 7.9. The corresponding figure in the inset of FIG. 7.9b provides an

idea about the temperature variation of complex nature of the system for scale factors 16-25.

It is observed that for a particular scale factor SampEn increases linearly with temperature.

Figure 7.9: Calculated SampEn for different equilibrium temperatures of solid Ar in (a)
linear scale and in (b) log scale. Dependence of SampEn on temperature for different scale
factors are shown in the inset of (b).

7.6 Result and conclusions

The pair correlation function (FIG. 7.7) and the calculated SampEn (FIG. 7.9) corroborate

each other. Pair correlation function reflects the idea what our intuition tells about the

complex dynamics of the system. Whereas, MSE is the method to quantify the irregularity
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of uncorrelated noise of a complex system. Flattening of pair correlation peak (inset of

FIG. 7.7) with the enhancement of temperature and the linear dependence of SampEn on

temperature (inset of FIG. 7.9b) both are the signature of analogous fact that temperature

makes the system dynamics more uncorrelated, noisy and irregular. Another important

Figure 7.10: A typical Levy noise with 105 data points. Hurst exponent, α = 0.7

outcome of the current MSE analysis is the peculiar random nature of time series data

of KE. Continuous coarse-graining procedure can not eliminate the uncorrelated random

component of the time series which is originally uncorrelated and irregular. Rather the

procedure progressively makes the correlation of the time series even worse. The inherent

multiple spatio-temporal scale dependence is exposed for higher scale factors. Undoubtedly,

only the asymptotic value of SampEn (scale factor one) does not make any sense about the

complexity and the introduction of multi-scale factor in the analysis of complexity affirms

its utility.

Recently P. Barat et al. have shown that in crystalline solid systems the time series data

of the KE of individual atoms exhibits Levy walk property [35]. On the other hand using

Ford-Kac model [36] and Caldeira-Leggett model [37, 38] Hideo Hasegawa has shown that

the individual particles of a classical small system coupled to finite bath [39] follow Langevin

equation [40]. In this context, synthetically Levy noise and Langevin solution are generated

and an exercise has been carried out on the complex behavior of these noisy signals. The
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Figure 7.11: Exponential decay series with different amplitude of the noise component. (a)
σ = 0.25, (b) σ = 0.3, (c) σ = 0.35, (d) σ = 0.4. Each series starts at initial value 3.

Levy noise is the time series of 105 data points having Hurst exponent 0.7 (FIG. 7.10). The

time series of Langevin solution represents an exponential decay with noise given by the

equation:

dx(t) = −x(t) dt+ σ dB(t)

In discrete form

x(i+ 1) = x(i)− x(i)∆t+ σ
√

∆t× (a random number)

where, the σ value introduce the noise component to the decay series and ∆t is the dimen-

sionless time interval. The decay constant being dimensionless unity. Eight exponential

decay series with varying σ values (0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4) are generated

(FIG. 7.11). At time t = 0 the decay starts with initial value 3 and data points are stored

at every ∆t = 8× 10−5 time interval.
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Figure 7.12: MSE analysis of exponential decay series with noise(Langevin solution) in (a)
linear scale and in (b) log scale.

For MSE analysis of Langevin solutions only the flat tail parts of decay series (contain-

ing final 5 × 104 data points) are considered. The quantified SampEn values for Langevin

solutions are illustrated in FIG. 7.12. Similar to the temperature effect (enhancement of

Figure 7.13: MSE analysis of Levy noise in (a) linear scale and in (b) log scale.

the amplitude of atomic vibrations) in solid Ar crystal the SampEn of decay series with

larger σ values quantifies higher degree of uncorrelated randomness. The scale dependence

of SampEn for both Levy noise (FIG. 7.13) and Langevin solutions exhibit similar sort of

tendency as that of the time series data of KE of individual atoms in solid Ar system. Unlike
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the white noise and 1/f noise, in case of time series data associated to molecular dynamics

generated of KE of Ar atoms, Levy noise, and Langvin solution the SampEn is not related

to scale factor by logarithmic function. With scale factor, in all these three cases, SampEn

increases with decreasing slope. Thus, the complexity analysis of time series data of KE

strengthen the remarks of references [35] and [40].
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Chapter 8

Summary and Prospects

In the previous chapters repeatedly it has been mentioned that equilibration process is

inevitable in a system when it is in non-equilibrium state. On the other hand, practically,

an equilibrium state can not retain its stable state until suitable experimental arrangement

is there to make the system thermodynamically isolated from its surroundings. Thus, in

nature most of the natural phenomena are on the way to achieve the equilibrium state but

yet to reach it due to its interaction with surroundings. In this context the happenings of

a equilibration process can not be observed with the help of experiment in atomistic scale

both spatially and temporally. Even the analytical methods become rigorously complicated

to solve the huge number(of the order of Avogadro number) of coupled differential equations.

As per as atomistic scale of the physical phenomena is concerned the advent of modern

techniques of computational methods have put up the research in the field of material science,

solid state physics, nuclear physics, biophysics etc in more prolific and fertile stage. In

the context of equilibration process, molecular dynamics simulation is the one of the most

appropriate and economical computational method at the atomistic scales of length and

time. The studies covered in this thesis make extensive use of the molecular dynamics

simulations. As this method inherently provide the numerical data at the atomistic scale,

they are extremely useful in unearthing the fundamental physics of equilibration. In addition
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to that, in future, the simulation outcome can provide newer insight of an existing theory and

compel us to revisit our understanding of equilibration phenomena. In general, the atomistic

simulations also cater to the need of obtaining some fundamental data, which are used as

inputs to other forms of simulation. For example, the size effect is quantified with the help

of one simulation and is incorporated in the other simulation for the proper quantification

of a macroscopic physical quantity, thereby forming the basis of multi scale modeling.

All the studies included in this dissertation rely heavily upon the molecular dynamics

simulation. The basic aim has been to demonstrate how these simulation tools are capable

of discovering and explaining new fundamental physics of equilibration. For this purpose,

a set of five different problems has been selected. A particular feature common to these

four problems is the scale of the involved phenomena. In all these studies, the underlying

physics associated with the explored issue is always at the atomistic scale, both temporally

and spatially. Moreover, all of these five studies are typical examples of the cases where

the experimental techniques and analytical methods are not appropriate or unavailable to

capture and measure the essential physical parameters so that the atomistic simulation

becomes the only tool, which can furnish an insight into the otherwise inaccessible aspects

of these phenomena. The studies documented in the present thesis are as follows:

� Atoms in the simulation cell, when brought to a non-equilibrium state by enhancing

their kinetic energy, try to redistribute their excess kinetic energy by the process of diffusion.

This process of redistribution of kinetic energy among the atoms changes their mean positions

of vibration and consequently their potential energy. In the process of diffusion all the atoms

in the cell participate together. The variation of the kinetic energy with time for each atom

are random since it is associated to the diffusion process. The analysis of the time series of

the kinetic energy with time for a single atom in the simulation cell provides an account for

the modality of this diffusion process and the nature of the equilibration. Few queries, like,

whether there exist any self similarity property in this random time series data and whether

the time series data is associated with a universality class, are answered by scaling analysis
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of the time series data. The scaling property of the time series of kinetic energy of individual

particles are studied using two complementary scaling analysis methods: Diffusion Entropy

Analysis (DEA) and Finite Variance Scaling Method (FVSM). Application of these scaling

analyses reveals that the fluctuations in the time series of kinetic energy follow similar kind

of dynamics irrespective structures and non-equilibrium temperatures of the systems under

study. Several crystal structures diamond cubic, face centered cubic and body centered cubic

structure with suitable potential functions were used. The results of the scaling analyses

conform that for all cases the time series of the kinetic energy of system particles exhibits

an anomalous diffusion and it belongs to Levy walk process. In Levy walk a time series has

a probability distribution function having a long tail. Most of the natural phenomena like

food foraging in hungry animals, spreading of vector mediated disease in animals and human

are examples of Levy walk with few but effective long hops. Thus the time series of kinetic

energy of non-equilibrium system particles confirms the existence of a universality class.

� Probability distribution function is the global representation of a system(in contrast

to the previous paragraph where emphasis was on single atom). Evolution of the proba-

bility distribution function of kinetic energy of the constituent atoms of the equilibrating

system is oscillatory and subsequently the oscillation dies down after a long time. Shan-

non entropy is a measure of uncertainty or unpredictability of information contained in a

probability distribution. The time variation of global information of the equilibrating sys-

tem are studied by calculating the Shannon entropy from their time evolution of probability

distribution. For more random information the uncertainty in its prediction is higher and

the corresponding value of Shannon entropy will be more. In case of tossing coin or rolling

n-sided die outcomes lead to maximum Shannon entropy given that that the coin or the

die is fair. For unfair coin or die predictability of the outcomes becomes easy and value of

Shannon entropy drops down. For a two headed/tailed coin or for a die with all the sides

identical the outcomes become completely predictable and the entropy goes to zero. For a

physical equilibrium/non-equilibrium system the distribution of constituent particles among
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energy eigen states is not as simple as the outcomes of tossing coin or rolling die. Except

the combinations among particles, occurrence of the energy eigen states follow some restric-

tion in this case. Unlike the situation for fair coin or fair die where the all the outcomes are

equally probable the equilibrium physical system does not generate a probability distribution

with equal population in each energy eigen state. Thus the variation of Shannon entropy

for completely unfair and partially unfair coin/die should be monotonically increasing and

ultimately reaches a constant maximum value for fair coin/die. On the other hand due to

adopted non-equilibrium nature of the system where the system kinetic energy and the sys-

tem potential energy are not equal, in the initial phase of equilibration there will be transfer

of kinetic energy into potential energy by changing the configuration of constituent atoms.

Since this process is very fast the system cannot estimate exactly how much kinetic energy

should be transferred into potential energy to make them equal. The inertia of the process

transfers more kinetic energy and a reverse situation appears with potential energy more

than the kinetic energy. This mechanism leads to an oscillatory transfer of energy during

equilibration and the oscillation gradually dies down with time. Such variation of energy

and restriction in the energy states do not allow the Shannon entropy to follow monotonic

increasing behavior but is oscillatory and at equilibrium it becomes constant of time.

� The force field in crystalline system is the sum of deterministic part due to nearer

atoms and random part due to distant atoms. The affects of these two parts of the force are

reflected on the probability distribution function. The random part of the force introduces a

noise component to the system response. Hence in the study of equilibration mechanism from

the time variation of probability distribution function it is desirable to eliminate the noise

part. Use of principal component analysis helps to eliminate the noise part and reduces the

histograms of probability distribution functions into 2-3 principal dimensions and it becomes

easier to study the evolution of probability distribution function in terms of those two or

three components. The component which has highest egien value is most important (more

than 75% of total eigen value except for solid Argon where it is around 60%) and is used for
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the analysis. The existence of 2-3 major eigen values ensure that the probability distribution

functions are highly correlated. A statistical method called system identification technique is

used to analyze the evolution of most significant component. This method relates the system

input and output by a rational function called transfer function. The analysis reveals that

the dynamical process of equilibration takes place through two or three modes and the mode

associated to lowest frequency which is very close to Debye frequency of the corresponding

element. These modes are calculated from the denominator of the transfer function of the

system obtained from the system identification.

� Another important aspect of non-equilibrium system is simultaneous impact of de-

terministic and random force together on the process of equilibration. How the process of

equilibration depends on the magnitude of the force has been studied by slightly changing the

magnitude of the force. For this study two separate crystalline solid Argon systems driven by

original 12-6 Lennard Jones potential (V12−6 = 4ε[(σ/r)12− (σ/r)6]) and the variant of origi-

nal one, the 9-6 Lennard Jones potential (V9−6 = 4ε[(σ/r)9− (σ/r)6]) are taken. The nature

of the non-equilibrium state is same as defined initially. It is seen that the force associated

with 12-6 potential has the larger magnitude than that of 9-6 potential in the range be-

tween first nearest neighbor and forth nearest neighbor. The observed temperature profiles,

leading to the equilibration for the two cases, indicate that the process of equilibration is

significantly affected by the modified force field. This observation concludes that force in the

region between first nearest neighbor and fourth nearest neighbor is mostly responsible for

equilibration. The system identification of the temperature profiles of the two equilibrating

systems show that the equilibration driven by a force having larger magnitude (12-6 poten-

tial) is faster and the sharing of kinetic energy and potential energy occurs more frequently

than those of the system driven by a force having smaller magnitude (9-6 potential).

� A system which consists of a large number of parts and the parts are connected to each

other in a non-linear fashion is a complex system. A crystalline system is composed of large

number atoms and the constituent atoms interact with each other through a non-linear po-
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tential. The presence of non-linear interaction makes the crystalline system complex. Besides

the non-linear behavior of the interaction if the system temperature is increased the con-

stituent atoms vibrate about their mean positions with larger amplitudes making the system

much more complex. Crystalline solid Argon systems at different equilibrium temperatures

(10K, 30K, 50K and 70K) are generated from non-equilibrium state and temperature depen-

dence of complex nature of the crystalline solid Argon are studied by measuring complexity

at different equilibrium temperatures. Complexity of a system is associated with meaningful

structural richness that gives an idea of correlation between the multiple spatio-temporal

scales. Traditional entropy measurement of a time series data only quantifies the regularity

and predictability of the time series. Complexity cannot be defined in a straightforward way

from the regularity of the time series data. This is because neither completely predictable

(e.g., periodic) data, which have minimum entropy, nor completely unpredictable (e.g., un-

correlated random) data, which have maximum entropy, are truly complex and they can be

described very compactly. The time variations of the kinetic energy of single atoms at each

equilibrium temperature are considered for complexity measurement. Sample entropy for

increasing scale factors (multiscale entropy) are calculated from the time series data of the

kinetic energy of individual constituent atoms instead of traditional entropy calculation. It

is observed that with the increment of system temperature the complexity of the system also

increases. The scale variation of complexity is found to follow the same nature as that of

synthetically generated time series data of Levy process and Langevin solution. This result

confirms that the diffusion kinetic energy among the constituent atoms is a Levy process

and the atoms in crystal follow Langevin dynamics.

So far, in most of the cases, people are interested in the study of various sort of physical

properties of matter using atomistic simulations. This dissertation tells us not only about

physics behind physical properties of matter but also the dynamics, kinetics and statistics of

the constituents of the system can be explored successfully with the help atomistic simulation.

In a nutshell, the present thesis discusses only the equilibration process of a particular non-
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equilibrium system generated using an innovative trick and efficacy of atomistic simulation

in unraveling the hidden dynamics of such process. This is another fascinating and pompous

dimension of physics and this discourse is the commencement of the proceeding to unwrap

this particular field of science. Hopefully in coming future physicists around the globe will be

passionate to work on such a beautiful branch of science to make it more and more affluent

and opulent. Keeping in mind that computer merely understands and works in its own way

to stirred out some raw data, it is the responsibility of our human society to assimilate those

numbers and elicit comprehensive scientific interpretation of physical phenomena.
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