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SYNOPSIS

Introduction
Development of Random matrix theory (RMT) has been a cornerstone for ex-

plaining the fluctuation properties in diverse fields such as in Quantum chaos,

Nuclear physics, Number theory, wireless communications, etc. In the con-

text of physical systems, whenever the underlying dynamics is complex, or the

dimensionality involved is large, it is seen that fluctuation properties are gov-

erned by the symmetries respected by the Hamiltonian. This is the key idea

behind development and successful application of random matrix theory in Nu-

clear physics, initiated by Wigner [Wigner 1957], and, Landau and Smorodin-

sky [Landau 1955]. The invariance enjoyed by the probability measure with

respect to symmetry groups is a key to classification of the RMT ensembles,

most notably the Dyson’s 3 fold model [Dyson 1962a,Dyson 1962b,Dyson 1962c,

Dyson 1962d]. These are commonly known as Gaussian (Circular) orthogonal,

unitary and symplectic ensembles of Hermitian (Unitary) matrices. Mathemat-

ically rigorous analysis of eigenvalue density and spacing distributions were first

done by Mehta and Gaudin. The book on Random matrices by Mehta remains

a standard reference [Mehta 2004].

At around the same time, Ginibre studied the random matrix theory for

non-Hermitian matrices [Ginibre 1965]. Though general joint probability dis-

tribution function for Ginibre Unitary ensemble was obtained by Ginibre him-

self, the Ginibre orthogonal ensemble proved to be the most difficult one. The

general results could only be found very recently thanks to the efforts largely

by Sommers [Sommers 2008], Akemann [Akemann 2007], among others [Edel-

man 1997,Kanzieper 2005]. Another class of matrices has become important

after the pseudo-Hermitian extension of quantum mechanics [Bender 2002].

These non-Hermitian matrices either have completely real spectra despite being



non-Hermitian or had real and complex conjugate eigenvalues with correspond-

ing unit and zero pseudo-norm eigenfunction. A natural question arose about

the statistical distribution of eigenvalues of this class of matrices. The answer

though is not known in full detail, but some preliminary steps have been taken

by developing the random matrix theory for 2 × 2 pseudo-Hermitian matrices

by Ahmed and Jain [Ahmed 2003b].

The thesis contains a variety of somewhat different topics linked by the

common thread of RMT and complex systems. We have presented the random

matrix theory of two structured matrices, namely cyclic (pseudo-Symmetric)

and reverse cyclic (Symmetric). RMT for cyclic matrices extends our knowledge

of RMT of pseudo-Hermitian system while the same for reverse cyclic matri-

ces had brought out effect of reduction of independent parameters on spectral

properties of symmetric matrices as well as the connection with exactly solvable

model of screened harmonic potential. Going beyond random matrix theory,

we have proposed the stochasticity parameter to classify the quantum mechan-

ical dynamical systems based on underlying classical dynamics. To see the

integrable-chaos transition in eigenfunctions of standard map, we have studied

the record statistics of intensity vectors and presented various analytical and

numerical results.

Random cyclic matrices
Cyclic matrices occur in a wide variety of physical situations, including dis-

ordered linear atomic chains and the Ising model in two dimensions. For a

Gaussian ensemble of random cyclic matrices on the real field, we have studied

their spectral fluctuations [Jain 2008b]. The form of a cyclic matrix M is given



in Eq. 1.

M =




a1 a2 ... aN

aN a1 ... aN−1

aN−1 aN ... aN−2

...

a2 a3 ... a1




, η =




1 0 0 ... 0 0

0 0 0 ... 0 1

0 0 0 ... 1 0

...

0 1 0 ... 0 0




. (1)

First we have shown that cyclic matrices are pseudo-symmetric with respect

to generalized parity (η in Eq. 1) which in this case is a particular permu-

tation matrix. Utilizing the known eigendecomposition for such matrices i.e.

M = F †ΛF , F being the unitary discrete Fourier matrix, we obtained the joint

probability distribution function of eigenvalues and the spacing distributions

analytically and verified the same numerically. The joint probability distribu-

tion of eigenvalues has been obtained and given by (for even N),

P ({Ei}) =

(
A

π

)N
2

exp

[
− A

(
E2

1 + E2
N
2

+1
+

N∑

i 6=1,N
2

+1

EiEN+2−i

)]
, (2)

where E1 and EN
2

+1 are the two real eigenvalues, the rest being complex. Here,

we note that EN+2−i = E∗i for i = 2→ N except N
2

+1 when N is even. For odd

N , the above result will hold except that there will be only one real eigenvalue,

E1 and the summation in the second term will extend over all i except 1. Due

to the presence of complex eigenvalues, they can not be ordered, and hence the

Euclidian distance been used for spacing. For small spacings, the level spacing

distribution exhibits either a Gaussian (pcc(s) = 2
π
e−

s2

π ) or a linear form. The

exact form of the spacing distribution between real and complex eigenvalues is



given by Eq. 3.

prc(s) =
3
√

3π

16
c2s exp

(
−3π

16
c2s2

)
I0

(
3π

32
c2s2

)
(3)

Furthermore, for the general case of two arbitrary complex eigenvalues, leaving

out the spacings among real eigenvalues, and, among complex conjugate pairs,

we found that the spacing distribution agreed completely with the Wigner dis-

tribution for a Poisson process on a plane. A good comparison has been found

with numerical data and shown in Fig. 1.
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Figure 1: Probability distribution of various spacings are plotted in three graphs
and compared with respective analytical results.

Extension of random matrix theory for cyclic block matrices (with individual

blocks as cyclic matrix) has been a natural step forward. The form of such block

matrices are given by,

H =




A1 A2 . . . An

An A1 . . . An−1

...
...

A2 A3 . . . A1



, withAi =




ai1 ai2 ... aim

aim ai1 ... aim−1

...

ai2 ai3 ... ai1




(4)

These matrices like cyclic matrices are also examples of pseudo-Hermitian (sym-



metric) matrices. The corresponding η operator is given by,

η =




σ 0 . . . 0

0 0 . . . σ

...
...

0 σ . . . 0



, withσ =




1 0 . . . 0

0 0 . . . 1

...

0 1 . . . 0



. (5)

It is easy to verify then, H† = ηHη−1. We have shown that JPDF for this class

of block matrices are given by,

P (E1, E2, . . . EN) =

(
A

π

)N
2

e−A
∑N
i=1 |Ei|2 . (6)

Here also, like in cyclic matrix case, spacing distributions are found to be

Gaussian, Eq. 3, and Wigner spacing distribution for spacings between two

real eigenvalues or between two complex conjugate eigenvalues, between real

eigenvalues and complex eigenvalues, and between two complex (not conjugate)

eigenvalues respectively. A good comparison with numerical data has been

found and shown in Fig. 2.

Reverse Random cyclic matrices and random walk
This result was utilized to study the random walk problem on the one-dimensional

disordered lattice. From the first treatment of Brownian motion, random walks

play a very important role in topics as diverse as polymer physics, to locomo-

tion of bacteria. Systems out of equilibrium are described by a master equation

with a non-Hermitian operator, exemplified by the transfer matrix of the ran-

dom walk problem. Random walk on an ensemble of one-dimensional lattice

of N equally spaced sites with periodic boundary conditions can be formulated

as a dynamical equation. The transition matrix for biased random walk is an
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Figure 2: Probability distribution of various spacings are plotted for random
cyclic blocks and it is compared with respective analytical results.

example of the cyclic matrix. The transition matrix is given in Eq. 7

M =




(1− w) pw 0 ... qw

qw (1− w) pw ... 0

0 qw (1− w) ... pw

...

pw 0 qw ... (1− w)




, (7)

with w as jump probability while q and p as probability for jumping either

sides. When jump probability is finite for each lattice point and further taken

as random, then to calculate the evolution of the ensemble averaged entropy

we have made use of joint probability distribution obtained for random cyclic

matrices. In this work, it has been shown that asymptotically the occupation

probability goes to uniform distribution as 1/t, t being the time. The explicit



form is,

N〈p̃j(t)({λi})〉RMT ≈
π

4

e−
π
4(

−e−π/4 + Erf
[√

π
2

])
[

2

3 + t
+

π

(t+ 3)(t+ 5)
+O

(
1

t3

)]

(8)

with p̃j(t) = pj(t) − 1/N where pj(t) is occupation probability of site j. As

the Boltzmann entropy is given by sum of pj log(pj) over all the sites, the

asymptotic time dependence for the increase in entropy has been found as

log(t+ 3)/(t+ 3) [Manikandan 2011].

Random matrix theory and Exactly solvable mod-
els
The other structured matrix for which we have developed the random matrix

theory is for the class of reverse cyclic matrices. These are symmetric matrices

with very few independent parameters (only N) against the possible number

N(N + 1)/2 [Srivastava 2012]. The explicit form is given as

H =




a1 a2 ... aN

a2 a3 ... a1

... ...
...

aN a1 ... aN−1



. (9)

These class of matrices have an eigenvalue as sum of the row elements, we

have referred to it as trivial eigenvalue. Rest of the eigenvalues come as +/−

pairs in odd dimensional H. Another trivial eigenvalue occurs in case of even-

dimensional matrices and is the alternating sum of row elements. Among other

results, this one is also an explicit example of a symmetric matrix which due

to additional structure allows to have a density of eigenvalues different than

Wigner semi-circle. We have calculated the joint probability distribution func-

tion for this class of matrices and shown that it is related to an N -body exactly



solvable model. The form of JPDF for (2n+ 1) dimensional matrix is given by,

P (E1, E2, . . . , E2n+1, θ1, . . . , θ2n) =

(
A

π

)(2n+1)/2

|E2| . . . |En+1| exp[−A(E2
1 + 2

n+1∑

i=2

E2
i )].

We call this well-known model potential as a screened harmonic oscillator.

The connection enables us with all the correlations among the particle posi-

tions moving in screened harmonic potential, 4A2x2 − 1/(4x2). The density

of nontrivial eigenvalues of this ensemble is found to be of the Wigner form

(π
2
E exp(−π

4
E2)) and possess a hole at origin in contrast to the semi-circle law

of the Gaussian orthogonal ensemble of random matrices. An asymptotic result

for density have been earlier obtained by Bose and his collaborators [Bose 2009].

Here, the results are exact and valid for all orders. A numerical comparison for

density is shown in Fig. 3. Various spacings among the eigenvalues have been

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2
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Numerics π/4 |E| exp(−π/4 E2)

Figure 3: Normalized density of non-trivial eigenvalues for an ensemble of 20000
reverse cyclic matrices of size 15×15 is compared with the analytical form. The
density is normalized such that averaged density for positive eigenvalues is 1/2.

calculated and compared with numerical spacing distribution. They are found

to be in good agreement (See Fig. 4 ).

Stochasticity parameter : a measure of quantum
chaos
Classical integrability and chaotic nature of dynamics reflect also in various

quantum mechanical quantities. One of such quantity is spacing distribution of
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Figure 4: Probability distribution of various spacings are plotted for random
reverse cyclic matrices of size 15 and it is compared with respective analytical
results (not given here). It can be seen that they are in clear agreement.

eigenvalues which in generic chaotic system displays level repulsion while level

attraction for integrable systems in small spacing distribution. Random Matrix

theory works well at the small and medium scale of spectra, but at large scale

two-point correlation saturates in contrast to increasing nature predicted by

RMT. If this was not enough, some examples, which later have been known

to be examples of Arithmetic chaos, are chaotic but behave as integrable ones

as far as spacing distribution etc. is concerned [Bolte 1992]. Keeping these

in mind, we proposed the Kolmogorov stochasticity parameter, λ (Eq. 10) for

energy level spectra to classify quantum systems with corresponding classical

dynamics ranging from integrable to chaotic [Srivastava 2011]. Kolmogorov

stochasticity parameter has been defined as in (Eq. 10),

λn = sup
E

|Nn(E)−N0(E)|√
n

, (10)

with N0(E) denoting the average, smoothed cumulative density of energy levels

whileNn(E) (empirical counting function) represents the number of eigenvaluesEi

which are ≤ E. We studied the probability distribution function (PDF) of λ.

Remarkably, the PDF of all the integrable systems studied here is the same and

is found to be completely different from the PDF of chaotic systems as is seen



in Fig.5. We also note that λn for n energy levels scales as λn ∼ n−α (see Fig.
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Figure 5: Probability distribution of λ for two class of systems.

6a). This parameter helps in classifying the dynamical system on the quantum

level, based on underlying classical dynamics. This has been summed up in Fig

6b.

Record statistics for eigenfunctions
Now we turn our focus to eigenfunctions of the dynamical systems. It is well

known that intensity distribution of a system violating time reversal symmetry

follows the Gaussian (Circular) unitary ensemble. The question asked in this

thesis is more about the extreme intensities occurring in the eigenfunctions,

statistics of their positions and difference between two extreme intensities etc.

To answer these kind of questions record statistics proves to be a useful tool.

For any one dimensional sequence (real) {xt, t = 1, · · ·N}, the first element,

R1, of the corresponding records series is x1 itself and at subsequent indices t
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Figure 6

it will be Rt = max(xt, Rt−1). We first generalized the record statistics of in-

dependent and identically distributed variable to a weakly correlated sequence.

The correlation in these random vectors has been induced due to normalisation

of the sequence. The JPDF of intensities of random vectors is given by,

P (x1, . . . , xn) = Γ(N)δ

(
N∑

i=1

xi − 1

)
. (11)

The probability density that the record is R at time t, is shown to be, P (R, t) =
∑t

m=1(−1)m+1
(
t
m

)
m(N − 1)(1 −mR)N−2Θ(1 −mR). For large N and t � 1,

the tth record has been shown to be Gumbel distributed with shift and scaling

parameters as log(t)/N and 1/N (see Fig. 7).

We also have shown that average number of records in complex random
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vector is continue to given by 〈NR〉 = HN ∼ log(N) + γ as in case of indepen-

dent identically distributed random sequence despite the presence of a weak

correlation. These follow from a classic result [Renyi 1962,Arnold 1998] that

the probability of a record occurring at position j is 1/j, independent of the

past and future position of the records. In other words the probability of the

position of the records is a Bernoulli process, Ber(1/j). This can also be un-

derstood as the rank order of elements distributed in i.i.d. fashion does not

change due to normalization, not surprisingly, the average number of records

in complex vector case also turns out to be same.

To compare the results with a dynamical system, we have chosen the stan-

dard map, which has been very widely used in quantum chaos studies for over



30 years now. The eigenfunctions of quantized Floquet operator (Unitary ma-

trix) of the standard map for large classical chaos on the torus with phases α, β

around 0.25 behave as the complex random vector. We have shown that record

statistics of intensity vectors of quantum standard map captures the classical

transition to chaos. It is shown that in the mixed phase space regime, the

number of intensity records is a power law in the dimensionality of the state

in contrast to the logarithmic growth for the random states (see Fig. 8). The

exponent of this power-law is exactly one-half at the critical value of the chaos

parameter, K ' 0.98 of the standard map [Srivastava 2013]. Incidentally, in

one of the very few exact results of record statistics of correlated time series,

random walk, the record scales as square root of length of the sequence [Ma-

jumdar 2008]. These findings are based on the record statistics of complex,

normalized random states for which we have shown that the probability of a

record intensity is a Bernoulli process. Analytical results for lower records of

the complex random vector are also presented in this thesis.

Summary
In the first part of the thesis, we have presented the calculation for joint prob-

ability distribution function and various spacing distributions of two N × N

structured matrices - random cyclic, and, random reverse cyclic matrices. We

also present their relation with exactly solvable models. Since cyclic matrices

are pseudo-symmetric matrices, these calculations extend our understanding of

random matrix theory of pseudo-symmetric matrices. We have also utilized

this method to understand the random walk on a one-dimensional disordered

lattice and analytically calculated the entropy and its time-dependence as the

system approaches to a dynamical steady state. We have also shown that while

random block cyclic matrices considered are themselves not cyclic but the joint

probability distribution function has similar structure (only with more eigenval-



ues appearing) while in terms of spacing distribution they are identical. As it

is well-known that quantum signatures of chaos are reflected in eigenvalues and

eigenfunctions; random matrix theory has found quite a bit of success here too.

However, at the same time, it is also well-known in literature that these finger-

prints in terms of spacing distribution or spectral rigidity are not universally

shared by all the dynamical systems. In second part of the thesis, motivated

by this fact we have proposed a new measure, which differentiates among a

range of dynamical systems based on whether classical dynamics is integrable

or chaotic. This measure which we call stochasticity parameter is similar in

definition given by Arnold to distinguish between the levels of stochasticity

in arithmetic series and geometric series mod N . To see the order to chaos

transition in eigenfunctions of the dynamical systems, we studied record statis-

tics of intensity vectors. We have shown that order to chaos transition is not

only captured when we study number of records and how does it scale with

the dimensionality of the Hilbert space, but also we (possibly the first time)

could capture in a quantum measure the transition point when last KAM torus

breaks (i.e. K ≈ 0.98).
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Development of Random matrix theory (RMT) has been a cornerstone for

explaining the fluctuation properties in diverse fields such as in Quantum chaos,

Nuclear physics, Number theory, wireless communications, etc. Whenever the

underlying dynamics is complex, or, the dimensionality involved is large, it

is seen that fluctuation properties are governed by the symmetries respected

by the Hamiltonian. This is the key idea behind development and successful

application of random matrix theory in Nuclear physics, initiated by Wigner

[Wigner 1957] and independently by Landau and Smorodinsky [Landau 1955].

As all physical systems studied then respected Hermiticity, most of the atten-

tion was paid to Hermitian matrices. The invariance enjoyed by the probabil-

ity measure with respect to symmetry groups is the key to classify the RMT

ensembles by Dyson [Dyson 1962a, Dyson 1962b, Dyson 1962c, Dyson 1962d].

The most popular ones are known as Gaussian (circular) orthogonal, unitary

and symplectic ensembles of Hermitian ( unitary) matrices. Mathematically

rigorous analysis of eigenvalue density and spacing distributions were first car-

ried out by Mehta and Gaudin. The book on Random matrices by Mehta

remains a standard reference [Mehta 2004]. Around the same time, Ginibre

studied the random matrix theory for non-Hermitian matrices [Ginibre 1965].
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Though the joint probability distribution function for Ginibre unitary ensem-

ble was obtained by Ginibre himself, the Ginibre orthogonal ensemble proved

to be the most difficult one. The general results could only be found very re-

cently thanks to the efforts largely by Sommers [Sommers 2008], Akemann [Ake-

mann 2007], and others. Another class of matrices has become important after

the pseudo-Hermitian extension of quantum mechanics [Bender 2002]. These

non-Hermitian matrices either have completely real spectra or possess real and

complex conjugate eigenvalues with corresponding eigenfunctions with unit and

zero pseudo-norm respectively. A natural question arose about the statistical

distribution of eigenvalues of this class of matrices. Although the answer is

not known in full detail, some preliminary steps have been taken by developing

the random matrix theory for 2× 2 pseudo-Hermitian matrices by Ahmed and

Jain [Ahmed 2003b].

Since one of the first signatures of classical chaos in quantum mechanical

spectra was found in spacing distribution (local scale) and ∆3-statistic (global

scale), studies in quantum chaos involve random matrix theory to a great ex-

tent. It has been conjectured by Berry and Tabor that generic integrable sys-

tems (where number of functionally independent constant of motion which are

in involution equals the number of degree of freedom of the system) have an

exponential spacing distribution [Berry 1977b]. Similar conjecture by Bohigas,

Giannoni, and Schmit (BGS) asserts, “Spectra of time reversal-invariant sys-

tems whose classical analogs are K systems show the same fluctuation properties

as predicted by GOE” [Bohigas 1984].

Though, BGS conjecture has been successfully tested in many systems, ex-

ceptions have been found in a class of strongly chaotic systems in which the

level spacings distribution and the two-point statistics approximately behave

similar to classically integrable systems. This phenomenon gave rise to the no-
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tion of arithmetical chaos [Bolte 1992]. This also motivated to look for other

universal measures in energy level statistics which can distinguish between the

classically integrable systems from chaotic ones. One such measure has been

proposed as fluctuation in staircase function suitably normalized by ∆∞(x)

(limL→∞∆3(L, x)). Then the conjecture is that such a normalized quantity

will have a limit distribution (in a large x limit) converging to a Gaussian

for classically chaotic systems while it will be non-Gaussian for integrable sys-

tems [Aurich 1994]. This has been further verified numerically for a range of

dynamical systems [Alt 1998]. At the same time, it has been shown than to

distinguish between Gaussianity and non-Gaussianity, a very large number of

energy levels are required. This, in turn, makes this test equivalent to RMT

where a large number of levels are required.

If the bulk spectrum have been studied extensively in quantum chaos lit-

erature, a recent development has been at the edges of density of spectrum

or in fluctuation properties. Deviation of eigenvalue-density distribution from

Wigner’s semi-circle in tail region has been studied by Bronk and it has also

been shown that about 6% of the eigenvalues come with larger magnitude

than predicted by semi-circle law [Bronk 1964]. Starting from classic result

of Tracy & Widom for extremal eigenvalues in case of Gaussian random matrix

ensembles [Tracy 1994, Tracy 1996], to extremal intensities in case of com-

plex random vectors [Lakshminarayan 2008], one has discovered various ap-

plications in bringing to fore various issues in quantum chaos and entangle-

ment [Vivo 2011,Bhosale 2012].

In this thesis, we have extended the random matrix theory for two structured

matrices, namely cyclic (pseudo-symmetric) and reverse cyclic (symmetric) en-

sembles. Corresponding many body problems have been presented and solved

exactly. RMT for cyclic matrices extends our knowledge of RMT of pseudo-
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Hermitian system while the same for reverse cyclic matrices has brought out

the effect of reduction of independent matrix elements on the spectral proper-

ties of the symmetric matrices as well as the connection with exactly solvable

“screened” harmonic potential. In both these cases, we have obtained explicit

expressions for joint probability distribution function and various spacing dis-

tributions. It has been further shown that extreme value distribution for max-

imum eigenvalues of reverse random cyclic matrices is Gumbel while minimum

is distributed exponentially in scaled variable.

Going beyond random matrix theory, we have proposed a stochasticity pa-

rameter to classify the quantum dynamical systems based on underlying clas-

sical dynamics. This is, in spirit, similar to studying the error terms in Gauss

circle problem and their probability distribution functions. We show that it

is very helpful in classifying the dynamical systems with only few thousand

energy levels at our disposal. Further, to see the integrable-chaos transition in

eigenfunctions of the standard map, we have studied the record statistics of in-

tensity vectors and presented various analytical and numerical results. Record

statistics though similar in spirit with extreme value statistics, have a different

take on extremal properties. This not only asks the question about maximum

component but also where they occur in the (random) process.

1.1 Random matrix theory : overview of classi-

cal ensembles

Complexity of a many-body system (specifically, interaction in a nucleus) gave

birth to an astonishingly simple idea of Wigner, that fluctuation properties in

the level-densities of different nuclei might behave like fluctuations in eigen-

values of a large random matrix which are invariant under certain symmetry
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operations and have statistically independent matrix elements. The symmetry

properties satisfied by the Hamiltonian are time-reversal invariance, rotation

etc. If system does not possess an anti-unitary Time-reversal symmetry, then

the Hamiltonian is Hermitian and such ensembles are called unitary ensembles.

In case where system does possess anti-unitary Time-reversal symmetry T , then

it can always be written as T = UC where U is a unitary operator and C stands

for complex-conjugation. Now as we know that composition of two anti-unitary

operator is always unitary so T 2 = (UC)(UC)† = UU † and this in irreducible

subspace will be multiple of identity, therefore UU † = λI with λ = ±1 due to U

being unitary. The case with T 2 = 1 corresponds to orthogonal ensemble and

it is always possible to find a basis in which Hamiltonian is real. To show this

explicitly let’s start with a basis vector φ1 and define ψ1 = φ1 +T φ1, clearly ψ1

is an eigenvector of T with eigenvalue 1. Let’s choose φ2 orthonormal to ψ1 and

again define ψ2 = φ2 + T φ2 then it can be easily shown that ψ2 is orthogonal

to ψ1. This procedure will yield a complete set of basis which are eigenvectors

of T with eigenvalue 1. The matrix element for Hamiltonian H is

Hkl = 〈ψk|Hψl〉 = 〈T ψk|T Hψl〉∗

= 〈T ψk|HT ψl〉∗ as [H, T ] = 0

= 〈ψk|Hψl〉∗ as T ψ = ψ

= H∗kl ⇒ His real.

(1.1)

Orthogonal invariance will be guaranteed for systems where time-reversal and

space rotation symmetries hold good or if space-rotation is broken then the

spin of the particle should be integer. Symplectic ensembles are those where

Hamiltonian is invariant under the symplectic group and is valid for systems

which possess time-reversal symmetry but with space-rotation broken, they

have to have half integer spin. This corresponds to the situation when T 2 = −1,
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as it can be easily seen that every eigenvalue will be doubly degenerate with

eigenvectors φ and T φ. These two are independent eigenvectors as they can

easily be shown to be orthogonal [Verbaarschot 2005].

〈φk|T φk〉 = 〈T φk|T 2φk〉∗ = −〈T φk|φk〉∗ = −〈φk|T φk〉.

The trinity of orthogonal, unitary and symplectic ensembles is related with

the possibility of only three associative division algebra of symmetry group

representation (in terms of matrices) over real field. This is the famous “three

fold way” of Dyson [Dyson 1962d,Frobenius 1906]. In general, the probability

distribution function for H is given by

P (H) ∝ exp{−[aTr(H2) + bTr(H) + c]}. (1.2)

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

P
(x

)

Figure 1.1: Numerical density of eigenvalues (in blue bar) of Gaussian unitary
ensemble are compared with Wigner semi-circle (black line). In the bulk of the
spectrum Wigner semi-circle matched nicely, but at the edges discrepancies can
be seen which further is a subject of extreme value theory.

The joint probability distribution function of eigenvalues for the Gaussian

orthogonal, unitary and symplectic matrices can be given by one formula using
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an index β which takes values 1,2 and 4 respectively:

P ({Ei}) = Cβ
∏

i<j

(|Ei − Ej|)β e−a
∑
i=1 E

2
i . (1.3)

The density of eigenvalues for all the invariant classical ensembles is given

by what is called the Wigner semi-circle law (shown in Fig. 1.1). Another

interesting quantity that will recur quite frequently in RMT literature is the

spacing distribution of the neighbouring eigenvalues. Nearest neighbour spacing

distribution p(s), is defined as

p(s) =

∫ ∞

−∞
dE1 · · ·

∫ ∞

−∞
dENP (E1, E2, · · ·EN)δ(s− |E1 − E2|) (1.4)

in terms of the JPDF. For invariant Gaussian ensembles again, the asymptotic

spacing distribution can be given in a unified form,

p(s) = Aβs
β exp(−Bβs

2), β = 1, 2, 4. (1.5)

β = 1, 2, and 4 corresponds to Gaussian orthogonal, unitary and symplectic

ensembles respectively. A numerical comparison with spacing distributions ob-

tained in Eq. 1.5 is shown in Fig. 1.2. The fluctuation properties also hold for

non-Gaussian invariant ensembles where exponent of probability distribution

function given in Eq. 1.2 contains an even degree polynomial in H in addition

to quadratic term [Brézin 1978]. How the RMT results for invariant distribu-

tion are affected upon reducing the number of the independent matrix elements

from O(N2) to O(N) is one of the questions which we have tried to answer in

this thesis. By studying the class of reverse random cyclic matrices, we have

obtained explicit results of density which is zero at origin and a symmetric

function of eigenvalues E. Possibility of three different spacing distributions
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Figure 1.2: Numerical normalized spacing distribution for GOE (top) GUE
(middle) and GSE (bottom) is compared with analytically obtained distribu-
tion. Solid black line denote the analytical expressions while blue bars denote
numerical data.

has been identified and explicit forms have been obtained. We have obtained

an exactly solvable many body problem which admits joint probability distribu-

tion function of eigenvalues of reverse random cyclic matrices as its ground state

wavefunction. This potential is known as “screened-harmonic oscillator” poten-

tial and has been studied previously in different context [Perelomov 1971]. The

form of potential (for a single particle) has been discussed in literature in quite a

few physical situations. It has been interpreted as a screened, two-dimensional

isotropic harmonic oscillator in a different context [Davidson 1932]. It has found

use in explaining roto-vibrational states in the case of diatomic molecules by

considering a five-dimensional version of Davidson oscillator [Rowe 2005]; in

a different context of dynamical symmetries [Wu 2000], and uncertainty rela-

tions [Patil 2007].
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1.2 Pseudo-Hermitian quantum mechanics: a brief

introduction

Non-Hermitian Hamiltonians have been discussed in the literature for study-

ing delocalization transition related to depinning of flux lines in type-II su-

perconductors [Hatano 1996, Hatano 1997]. With the numerical observation

of complete real eigen spectrum of a family of non-Hermitian Hamiltonians

Hν = 1
2
p2 − (ix)ν with ν ≥ 2, Bender and his collaborators started a system-

atic study of parity-time PT -symmetric quantum mechanics [Bender 2002].

It has been argued that non-Hermitian Hamiltonian having PT -symmetry

will possess either complete real spectrum (when Hamiltonian and PT op-

erator share complete set of common eigenvectors) or complex eigenvalues will

come in complex-conjugate pairs. When Hamiltonian and PT operator have

complete set of common eigenvector, Hamiltonian is said to have exact PT -

symmetry. The other case corresponds to broken PT -symmetry. Let’s recall

that P is linear operator with the action as p̂ → −p̂, x̂ → −x̂ while T is

an ani-linear operator with action as p̂ → −p̂, x̂ → x̂, i → −i. Also notice

(PT )(PT ) = 1, hence it is an involution operator and therefore eigenvalues will

be pure phases, exp(±iφ). The necessary condition for Hamiltonian operators

of the form H = p̂2

2m
+Vr(x) + iεVi(x) to be PT -symmetric is given by real part

of the potential to be symmetric and imaginary part to be anti-symmetric in

x. The PT phase transition has been realized in simple inductively coupled

LCR-circuits, one with gain and other with loss. At transition point when two

modes coalesce, the relative phase differences of their components acquire a

definite value depending on the inductive coupling. Power oscillations reflected

in the observed capacitive energy in the system and in fact grows exponentially

beyond critical point with the growth rate controlled by the maximum imag-
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inary eigenvalue. At critical point, interestingly the capacitive energy grows

quadratically with time [Schindler 2011].

As optical beam propagation in a medium with complex refractive index

(playing the role of potential) with real part as even function of position and

imaginary part as odd function share a formal equivalence on mathematical

level with Schrödinger equation; many properties of PT -symmetric quantum

mechanics are proposed and indeed observed in optical systems [Klaiman 2008,

Makris 2008, Guo 2009, Ruter 2010]. As a function of a control parameter

present in potential, it has been shown that below a critical point system pos-

sesses exact PT -symmetry and at the critical point two eigenmodes coalesce

and eigenvalues become equal. This point is called exceptional point and has

been studied in various branches of physics [Heiss 1991, Rotter 2001, Cartar-

ius 2007]. Beyond transition point eigenvalues become complex conjugate pairs

and eigenmodes skewed. It is this skewed characteristic of eigenmodes cou-

pled with the fact that power is no more constant of motion as a function

of distance give rise to power oscillation observed in parity-time symmetric

optical lattices. Total optical power of the propagating beam is defined as

P (z) =
∫∞
−∞ |ψ(x, z)|2dx . The dependence of power on travelled distance is

derived below.

dP

dz
=

∫ ∞

−∞
(
∂ψ∗

∂z
ψ + ψ∗

∂ψ

∂z
)dx

=

∫ ∞

−∞
{(−i∂

2ψ∗
∂x2

− iV ∗(x)ψ∗)ψ + ψ∗(−i∂
2ψ

∂x2
+ iV (x)ψ)}dx

=

∫ ∞

−∞
2ndderivative

︸ ︷︷ ︸
boundary term,0

+i

∫ ∞

−∞
(V (x)− V ∗(x))ψ∗ψdx

= −2

∫ ∞

−∞
Im(V (x))|ψ|2dx.

(1.6)

Following exactly the similar steps as in Eq. 1.6, it can be easily shown that con-
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stant of motion is given by Q(z) =
∫∞
−∞ ψ(x, z)ψ(−x, z)dx called quasi-power

but then it may not necessarily be a real valued quantity. The transport proper-

ties, transmittance and reflectance in particular, of PT -symmetric system with

random index of refraction has been investigated in one-dimension. It has been

shown that the transmission processes are reciprocal to left and right-incident

waves but the reflection is enhanced from one side and is inversely suppressed

from the other, making it a potential candidate for unidirectional coherent ab-

sorbers [Kalish 2012]. Calculation has been done utilizing the transfer matrix

approach, which itself will become random as the refractive index has been

chosen as a random variable.

PT - symmetric quantum mechanics has been shown as a special case of

more general pseudo-Hermitian quantummechanics. In fact, any non-Hermitian

hamiltonian will have complete real eigen spectrum iff there exists a positive

definite inner product with respect to which given Hamiltonian is Hermitian.

This leaves a choice of choosing the inner product differently for different hamil-

tonian. Hamiltonian H will be called η-pseudo hermitian if it satisfies,

H† = ηHη−1 (1.7)

where η is an invertible Hermitian linear operator. In this formalism, the ob-

servable will be defined as in case of conventional quantum mechanics i.e. it

will be Hermitian with respect to the inner product considered to find out the

expectation value.

As we have seen that RMT has been successfully developed and applied

to study the fluctuation properties for systems which are represented by Her-

mitian matrices in variety of areas. As the analysis has been carried out by

taking into the account the various symmetry properties that system enjoys
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and not the microscopic details of interactions, universality is lurking in the

backdrop of RMT formalism. As pseudo-Hermitian systems are different from

non-Hermitian systems, it is expected that RMT for them will be different.

This is one of the motivation of studying RMT for cyclic matrices in this the-

sis. As we have not been able to construct the most general pseudo-Hermitian

matrix of dimension N(6= 2), we have fallen back to study the specific model

matrices which are pseudo-Hermitian. We have shown that cyclic matrix is

one such example and have solved the RMT problem of this class completely.

The explicit expressions for joint probability distribution function and all the

spacing distribution have been obtained and these results have further been

utilized to study the biased random walk problem on a disordered lattice.

1.3 Quantum Chaos

Bohr’s correspondence principle which states that in classical limit (~ → 0),

quantum theory should reduce to classical physics has been a cornerstone of

Quantum Mechanics [Liboff 1979,Ford 1991]. In Quantum Mechanics linearity

of Schrödinger’s equation rules out the exponential divergence in an arbitrary

difference of nearby initial conditions. But even worse is the fact that there

is no concept of trajectory in Quantum Mechanics which was very essential to

define classical chaos. Now a puzzling question will be, where is the information

hidden in quantum domain which reflects itself in classical limit by going to

integrable and chaotic dynamics for relevant systems? This study of signatures

of classical chaos in quantum domain is essentially the subject of “Quantum

Chaos” (or quantum chaology as Berry argued [Berry 1989]). Though, the

extreme sensitivity to the dynamics (Hamiltonian itself is different) persists in

quantum domain [Chaudhury 2009], the more popular signatures have been

in terms of spectral distributions and random matrix theory. As it has been
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mentioned earlier that for generic integrable system the level tend to cluster

and have an exponential spacing distribution p(s) = exp(−s) [Berry 1977b] in

contrast to varying level of level repulsion in chaotic systems depending on the

symmetry obeyed by the Hamiltonian [Bohigas 1984]. However, linear level

repulsion is also obtained in polygonal billiards1(e.g. rhombus) which are non-

chaotic [Grémaud 1998].

Just to emphasize the remarkable difference in classical and quantum do-

main for chaotic systems, let’s discuss the example of the kicked rotor. The

dynamics of this well known example of chaotic (Hamiltonian) system can be

captured by the stroboscopic map,

qn+1 = (qn + pn) mod 1

pn+1 = pn −
K

2π
sin(2πqn+1).

(1.8)

This has got a phase-space geometry of cylinder and under reasonable

assumptions of position qn being random in fully chaotic domain it can be

easily shown that 〈∆p2〉 grows linearly with number of kicks N for K � 5

[Chirikov 1979]. This diffusion is suppressed when one goes in quantum domain.

It can be shown that this dynamical localization and Anderson localization are

related [Fishman 1982]. But, at the spectral level, quasienergy spectrum of

the Anderson model is pure point with fluctuation properties following Poisson

distribution whereas the classically diffusive behaviour is possible with only ab-

solutely continuous spectrum. This lack of correspondence is resolved in the

semiclassical limit [Jain 1993].

Like eigenvalues of Schrödinger operator, eigenfunctions too carry signatures

of chaos (classical) and indeed have been a topic of study. It is known that for

1Billiards are dynamical systems consisting of a freely moving particle in an enclosure,
reflecting specularly from the boundary. The shape of the boundary is reflected in the name.
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quasi-periodic dynamics, the semiclassical eigenfunction can be written as a

superposition of plane waves,

ΨE(x) =
∑

n

an,Ee
iSn(x)/~+iφn (1.9)

where Sn(x) is the classical action, φn is Maslov phase. The sum is over the

number of ways a classical trajectory can reach position x, each with differ-

ent momentum pn. Quasiperiodicity implies the finite sum over n in Eq. 1.9

while chaotic dynamics mean the number of directions emanating or heading to

point x is infinite and direction themselves are random in nature. For a chaotic

wavefunction Berry conjectured that Eq. 1.9 is valid with random amplitude

and phase factor with n now running upto ∞ [Berry 1977a]. Berry conjec-

tured, “Each semi-classical eigenstate has a Wigner function concentrated on

the region explored by a typical orbit over infinite times” [Berry 1977a]. In case

of chaotic dynamics, a typical orbit fills up the whole available phase space

uniformly and hence the local probability density in this case or the averaged

Wigner function, under certain assumptions is given by,

ρm(x, p) = δ(E −H(x, p))/d(E) (1.10)

where d(E) is the density of states. From random wave model (Eq. 1.9), it

immediately follows that wavefunction amplitude is distributed in Gaussian

manner. This has been numerically shown for number of systems [McDon-

ald 1988,Aurich 1993]. Apart from density, spatial autocorrelation function for

random waves can be shown to follow,

C(q, δq) ..=

∫
Ψ∗(q)Ψ(q + δq)dq =

1

volΩ
J0(
√
E|δq|) (1.11)
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where Ω is area, J0 is the Bessel function of order 0. Utilizing ρm(x, p), the

intensity patterns can be found and compared with wavepacket dynamics in

chaotic billiards (in particular Stadium). It has been found that isolated unsta-

ble periodic orbits leave their mark on certain eigenfunctions rather prominently

in intensity patterns especially whenever the frequency to sum of real positive

characteristic exponents of monodromy matrix ω/λ is large. This phenomenon

is called scarring [Heller 1984]. It has been latter observed that even when ω/λ

is not very large, in ~→ 0 limit scarring persists.

Distribution of these extreme values of intensities and their position are very

important topic of studies in themselves. In case of deep chaotic regime, for sys-

tems with broken time-reversal symmetry the maximum intensities are shown

to follow Gumbel distribution asymptotically. In fact, for small N the explicit

expression has been obtained and they differ significantly from Gumbel, which

further may be utilized to extract the system size. The minimum intensities

are shown to follow the exponential distribution [Lakshminarayan 2008].

Characterization of such high intensity patterns in the wavefunction is one

of our motivations to study the record distribution of wavefunction intensities.

As the largest record is also the global maximum of the intensity vector, the

statistics of maximum has also been obtained via records distribution and this

agrees well with result obtained otherwise. Similar results have also been ob-

tained with lower records which now become the minimum of intensity vector

and again relevant statistics has been obtained. In fact we have shown that the

phase transition in standard map from integrable to chaotic dynamics can be

captured by studying how the number of records depend on length of the inten-

sity vector. Also, in terms of distribution of the position of maximum intensity,

a transition from non-quantum unique ergodicity to quantum unique ergodic-

ity can be captured as ergodicity implies that the position of the maximum
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intensity is uniformly distributed.

The thesis is broadly comprised of two parts- (i) Chapters 2-4, where we

have developed random matrix theory of cyclic and reverse cyclic matrices and

applied to case of random walk problem; (ii) Chapters 5-6, where we study two

different measures stochasticity parameter and record statistics for studying the

various aspect of quantum chaos in eigenvalues and eigenvectors respectively

(though by no means it is implied that they cannot be extended for opposite

cases).

In Chapter 2, we start with summarizing the existing RMT results in case

of non-Hermitian matrices and then discuss the preliminary steps taken for

advancing the RMT to the case of pseudo-Hermitian matrices of dimension two.

We develop then the random matrix theory for real random cyclic matrices and

obtain the joint probability distribution function. We also obtain the various

spacing distributions explicitly and compared with numerical distributions. As

this class of matrices are examples of pseudo-Hermitian matrices, by solving

the RMT problem for general N ×N dimension we have argued to find out the

glimpses of general features of RMT for pseudo-Hermitian class of matrices.

In Chapter 3, we have developed first the random matrix theory for ran-

dom reverse cyclic matrices and obtained the JPDF and explicit expressions

for spacing distributions. As reverse cyclic matrices are symmetric matrices,

one would expect the results of Gaussian orthogonal ensemble to appear. It is

shown that reduced number of independent matrix elements affects the density

and various spacing distribution too. In fact JPDF itself comes as a product

measure. We have then shown that JPDF is the ground state wavefunction of

an exactly solvable N -body problem. The potential is known as the screened

harmonic oscillator potential. In this Chapter, we also have shown the maxi-

mum of eigenvalues to be distributed as Gumbel in contrast to Tracy-Widom
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distribution of GOE while minimum positive eigenvalue is distributed as expo-

nential.

In Chapter 4, we have utilized the results obtained in Chapter 2 to study

the biased random walk problem on one dimensional disordered circular lattice.

We have obtained the ensemble-averaged entropy evolution for this system from

non-equilibrium statistical mechanics.

Carrying out further the studies in quantum chaos, in Chapter 5 we have

used the record statistics to study integrable to chaos transition in standard

map. For this, we have developed the record statistics for δ-correlated random

variables. We have obtained the explicit expressions for number of records as

a function of length of the sequence, probability of life-time of record and the

distribution of records themselves. We have shown that all the upper records

are distributed as Gumbel when properly scaled and shifted while lower records

according to exponential distribution. Looking at number of records 〈NR〉 as a

function of length for intensity vectors of unitary operator of standard map in

various regime, we have shown that 〈NR〉 varies as a power law in integrable

regime while in chaotic regime it varies as logarithmic function of length N .

The exponent in power law becomes 0.5 at K = 0.98, the value where Golden

torus breaks down in case of standard map. As we know that diffusion starts

in classical phase space as Golden torus breaks, and it is known that number of

records set goes as square-root of number of steps in random walk, we believe to

have capture this transition in a measure calculated from quantum mechanical

spectra.

In Chapter 6 we have proposed a new measure called stochasticity parameter

λ for fluctuations in staircase function of eigenvalue spectrum. We have shown

that such a measure scales as a power law (∝ n−α) with length of the spec-

trum. We numerically have found out the probability distribution function of
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stochasticity parameter Φ′(Λ) = dΦ
dλ

∣∣
λ=Λ

for typical integrable systems as well as

chaotic systems. It has been shown that two class of dynamical systems possess

two different kind of PDF of stochasticity parameter, ∼ exp(−λβ) for integrable

system while (a+λ)−γ for chaotic system where λ is the stochasticity parame-

ter. As based on just 5000 eigenlevels PDF of stochasticity parameter has been

calculated and have shown marked difference between two kind of dynamical

systems, these can be used to classify them. We finally plot a graph between α

and Φ′(Λ) which clearly shows that all the integrable systems (considered) tend

to cluster at one place while chaotic ones at other. Λ is stochasticity parameter

evaluated at last member of spectrum considered (in our case, 5000).

Finally, we summarise in Chapter 7 and present some future directions.

Some technical details have been presented in the Appendix.
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2.1 Introduction

In 1964, Ginibre initiated the studies on non-Hermitian random matrix theory

when he introduced complex, quaternion and real ensembles much alike their

Hermitian counterpart [Ginibre 1965]. The matrix ensemble is defined by spec-

ifying the algebraic set of matrices, Z (complex, quaternion, and real N × N

matrices) and the measure dµ(H) = dµL(H) exp(−Tr(H†H)/4a2) (H is generic

element of Z). The measure further satisfies the invariance under an adjoint

representation1 of Z and the elements of H are statistically invariant. dµL(H)

is a linear measure on the algebraic set of matrices, Z, and defined as a prod-

uct of independent elements of H. The joint probability distribution function

(JPDF) and the correlation function are obtained by choosing the algebraic set

1dµ(H) = dµ(U†HU)
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of matrices on a complex field:

PN(E1, E2, . . . , EN) = [1!2! . . . N !(2π)N ](−1)
∏

i<j

|Ei − Ej|2 exp[−
N∑

i=1

|Ei|2],

Rn(E1, E2, . . . , En) = (2π)−n exp[−
n∑

i=1

|Ei|2] det[exp(EiE
∗
j )]

where the n-level correlation function is defined as,

Rn(E1, E2, · · · , En) =
N !

(N − n)!

∫
· · ·
∫
PN(E1, E2, . . . , EN)dEn+1 · · · dEN .

(2.1)

The JPDF of the quaternion ensemble is

PN(E1, E2, . . . , EN) = [1!2! . . . (2N − 1)!(4π)N ](−1)

N∏

i=1

|Ei − E∗i |2

×
∏

i<j≤N

|Ei − Ej|2|Ei − E∗j |2 exp[−
N∑

i=1

|zi|2].

The correlation functions for the quaternion case are given by [Mehta 1967,

Mehta 1991]

Rn(E1, E2 . . . En) =
n∏

i=1

(Ei − E∗i )e−|Ei|
2





det



φ(Ei, Ej) φ(Ei, E

∗
j )

φ(E∗i , Ej) φ(E∗i , E
∗
j )








1/2

,

φ(u, v) =
1

2π
(v − u)euv

∫ 1

0

exp

(
1

2
(u− v)2x

)
dx√
1− x.

(2.2)

For the real non-Hermitian ensemble, Ginibre found the JPDF for a very special

situation when all the eigenvalues were real to be

PN(E1, E2, . . . , EN) =
CπN(N−1)/4

2NN !

∏

i<j

|Ei − Ej| exp[−
N∑

i=1

E2
i ].
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The real non-Hermitian ensemble proved to be the hardest among three (com-

plex, quaternion and real) and a formal solution for JPDF and correlation func-

tion were obtained very recently [Kanzieper 2005,Akemann 2007]. A very nice

summary is presented in the Section 1.2 of [Akemann 2007], we are reproducing

here the same (almost verbatim) for the sake of completeness.

Let Hk be an n × n random real matrix with k real eigenvalues such that

its entries are statistically independent random variables picked from a normal

distribution N(0, 1). Then, the JPDF of its 2` = n− k complex eigenvalues is

PHk
(E1, · · · , E`) = pn,n

`!

(
2
i

)`∏`
j=1 erfc

(
Ej−Ēj
i
√

2

)
pf



Dn(Ei, Ej) Dn(Ei, Ēj)

Dn(Ēi, Ej) Dn(Ēi, Ēj)




2`×2`

.(2.3)

Here, pf denotes the Pfaffian2 and erfc denotes the complementary error func-

tion. pn,n(= 2−n(n−1)/4) is the probability of having all the eigenvalues real

for n × n matrices H. This JPDF is supported for (ReE1, · · · ,ReE`) ∈ R`,

and (ImE1, · · · , ImE`) ∈ (R+)`. The antisymmetric kernel Dn(E,E ′) is given

explicitly by (2.4) – (2.10). For n = 2m even, the kernel function is given by

D2m(x, y) =
1

2
e−(x2+y2)/2

m−1∑

j=0

q2j+1(x) q2j(y)− q2j(x) q2j+1(y)

hj
(2.4)

while for n = 2m+ 1 odd, it equals

D2m+1(x, y) =
1

2
e−(x2+y2)/2

m−1∑

j=0

q̃2j+1(x) q̃2j(y)− q̃2j(x) q̃2j+1(y)

hj
. (2.5)

2Determinant of any even dimensional skew-symmetric matrix can be expressed as square
of a polynomial (in matrix elements), this polynomial is called Pfaffian of the matrix(Courtesy
Wikipedia). Each entry of Pfaffian if denoted by pf(a1, a2), then Pfaffian is an anti-symmetric
function of a1, a2. General even dimensional Pfaffian can be defined recursively as

pf(a1, a2, · · · , a2n) =

2n∑

i=2

pf(a1, ai)(−1)ipf(a2, · · · , ai, · · · , a2n)

where ai represents elimination of ai.
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Both representations (2.4) and (2.5) involve the polynomials qj(x) skew orthog-

onal on R with respect to the GOE skew product [Mehta 2004]

〈f, g〉 =
1

2

∫

R
dx e−x

2/2

∫

R
dy e−y

2/2sgn(y − x) f(x) g(y) (2.6)

such that

〈q2k, q2`+1〉 = −〈q2k+1, q2`〉 = hkδk,`, 〈q2k, q2`〉 = 〈q2k+1, q2`+1〉 = 0. (2.7)

The skew orthogonal polynomials qj(x) can be expressed in terms of Hermite

polynomials as 3

q2j(x) =
1

22j
H2j(x),

q2j+1(x) =
1

22j+1

[
H2j+1(x)− 4j H2j−1(x)

]
(2.8)

while “tilde” polynomials q̃j(x) 4 entering (2.5) are related to qj(x) via

q̃2j(x) = q2j(x)− (2j)!

22jj!

22mm!

(2m)!
q2m(x),

q̃2j+1(x) = q2j+1(x), (2.9)

with the normalisation,

hj = 〈q2j, q2j+1〉 =

√
π (2j)!

22j
(2.10)

Let H0 be an n× n random real matrix with no real eigenvalues such that

its entries are statistically independent random variables picked from a normal

distribution N(0, 1). Then, the p-point correlation function (1 ≤ p ≤ `) of its

3Equation (2.8) assumes that H−1(x) ≡ 0.
4Note that the q̃2j(x) is no longer a polynomial of the degree 2j.
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complex eigenvalues, equals

R
(H0)
0,p (E1, · · · , Ep;n) = pn,n

∏`−1
j=0 rj∏n

j=1 Γ(j/2)

p∏

j=1

erfc

(
Ej − Ēj
i
√

2

)
exp

(
−E

2
j + Ē2

j

2

)

× pf



κ`(Ei, Ej) κ`(Ei, Ēj)

κ`(Ēi, Ej) κ`(Ēi, Ēj)




2p×2p

.(2.11)

Here, n = 2` and the ‘pre-kernel’ κ` equals

κ`(E,E
′) = i

`−1∑

j=0

1

rj

[
p2j(E)p2j+1(E ′)− p2j(E

′)p2j+1(E)

]
. (2.12)

The polynomials pj(E) are skew orthogonal in the complex half-plane (ImE >

0),

〈p2j+1, p2k〉c = −〈p2k, p2j+1〉c = i rj δjk, (2.13)

〈p2j+1, p2k+1〉c = 〈p2j, p2k〉c = 0, (2.14)

with respect to the skew product

〈f, g〉c =

∫

ImE>0

d2E erfc

(
E − Ē
i
√

2

)
exp

(
−E

2 + Ē2

2

) [
f(E)g(Ē)− f(Ē)g(E)

]
.(2.15)

In case of Gaussian asymmetric matrices having real and complex eigen-

values, Sommers et al. [Sommers 1988] derived the expression for the average

density of eigenvalues, ρ(E) to be uniform inside a circle. It was shown that in

N →∞ limit,

ρ(E) =





1
πab
, if

(
x
a

)2
+
(
y
b

)2 ≤ 1

0, otherwise
(2.16)

where E = x + iy. It came very nicely by invoking the similarity of Green’s
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function of eigenvalues in this problem to that of 2D-Coulomb problem with a

very special potential function, given by,

Φ(E) =
1

N
ln

[∫ (
d2zi
π

)
exp

{
−ε
∑

i

|zi|2 −
∑

i,j,k

z∗i (E
∗δik −HT

ik)(Eδkj −Hkj)zj

}]

H

.

(2.17)

The bracket [. . . ]H denotes ensemble average. After realizing this connection,

it boils down to calculating potential function in the large N limit (N being the

dimension of matrix) utilizing saddle point method. It is then straightforward

to calculate the Green’s function and thereby the density.

Further the joint probability distribution function for real and complex

eigenvalues was obtained in [Lehmann 1991]. An outline of this result which

being a very important milestone is summarized in Section 2.2. Essentially the

same results were rediscovered by Edelman [Edelman 1997].

2.2 JPDF of Random Real matrices

In this Section, we will sketch the proof of joint probability distribution function

of eigenvalues given that R of them are real for Ginibre orthogonal ensemble

[Lehmann 1991]. We will then illustrate this result for 2 × 2 matrix H, it is

largely based on the reference [Sommers 2008]. Here, it will be prudent to

remind that general JPDF obtained in [Kanzieper 2005] is sum of these JPDF

for R = 0 to N . The correlation functions for this class have been obtained

in [Kanzieper 2005]. Let’s recall a simple identity that a diagonal matrix with

complex conjugate entries can be transformed into a 2 × 2 matrix with real

elements as

1√
2




1 1

i −i






a+ ib 0

0 a− ib


 1√

2




1 1

i −i


 =



a b

−b a


 (2.18)
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This enables one to write a diagonal eigenvalue matrix having R real eigenvalues

and Q complex conjugate eigenvalues into a matrix having R diagonal entries

and Q blocks of type referred in Eq. 2.18 on diagonals, with rest being zero.

From elementary algebra we know that any real matrix with distinct eigenvalues

can be reduced by a non-singular real matrix X as

H = XΛ̃X−1, det(X) 6= 0 (2.19)

where

Λ̃ = UΛU−1, Λij = λiδij (2.20)

with U given by an almost diagonal matrix such that first R diagonal entries

are 1 and next Q are 2× 2 matrices of the form

1√
2




1 1

i −i


 (2.21)

Again from (incomplete) Schur decomposition, X can be written as X = OTD̃

where O is a real orthogonal matrix, T is an upper triangular matrix with

diagonal elements as 1, and D̃ is a diagonal matrix of the same type as Λ̃. As

D̃ and Λ̃ commute, H can be written as H = OH̃O−1 with H̃ = T Λ̃T−1. One

can verify that both the sides have correct number of independent entries. H

has N2 and on right hand side both O and T have N(N − 1)/2 plus N coming

from the Λ̃.

It is then easy to show that TrHHT = TrH̃H̃T utilizing the fact that H =

OH̃O−1 and O is orthogonal matrix. Therefore it is most convenient to consider

Λ, O, and H̃ij(i < j) as independent variables. Further integration on O

(which is easy) and H̃ij(i < j) will produce the joint probability distribution



26 Chapter 2. Random cyclic matrices

function (JPDF) of Λ:

P (λ1, λ2, . . . , λN) = KN

∏

i>j

|λi − λj|
(

N∏

i=1

exp(−λ2
i )erfc(|λi − λ∗i |/

√
2)

)1/2

.

(2.22)

Let’s work through for N = 2 case which captures essentially all the inter-

esting ingredients. Through this calculation we intend to show that measure of

eigenvalues Λ+,Λ− of matrix H is given by,

dµ(Λ+,Λ−) =
1

2
√

2π
dΛ+dΛ−(Λ+ − Λ−) exp(−(Λ2

+ + Λ2
−)/2)erfc(

√
2|ImΛ+|).

We know that any real 2-dimensional matrix H can be written in the following

form,H = OH̃OT ,

H =




cosφ sinφ

− sinφ cosφ






λ1 δ

−δ λ2







cosφ − sinφ

sinφ cosφ


 (2.23)

with λ1 > λ2, 0 ≤ φ ≤ π, − ∞ < δ < ∞. λ1, λ2 are the eigenvalues of

symmetric part ofH, φ is the angle of rotation which diagonalizes the symmetric

part of H and δ determines the skew-symmetric part of H. As an anti-diagonal

matrix with δ and−δ commutes with rotation matrix, it can not be diagonalized

by rotations. As OTO = 1, so dOTO +OTdO = 0 or OTdO is skew symmetric

matrix. Let’s evaluate dH:

dH = dOH̃OT +OdH̃OT +OH̃dOT

= O(OTdOH̃ + H̃dOTO + dH̃)OT

= O(OTdOH̃ − H̃OTdO + dH̃)OT . (2.24)

As Jacobian is invariant under O-symmetry, we focus on the quantities in paren-
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thesis which can be written as

OTdOH̃ − H̃OTdO + dH̃ =




dλ1 dδ + dφ(λ2 − λ1)

−dδ + dφ(λ2 − λ1) dλ2


 . (2.25)

Hence, Jacobian is 2(λ2−λ1). Let’s go finally from λ to Λ which are eigenvalues

of H, viz.,

Λ± =
λ1 + λ2

2
±
√(

λ1 − λ2

2

)2

− δ2. (2.26)

From Eq. 2.26, it is clear that both the roots are real for
(
λ1−λ2

2

)2 ≥ δ2 and

complex conjugate otherwise. The Jacobian of transformation given in Eq. 2.26

is given by λ1−λ2
Λ+−Λ−

. This gives the spectral measure

dµ(H) =
1

(2π)2
dφdδdΛ+dΛ−2(Λ+ − Λ−) exp(−Tr(H̃H̃T ))

=
1

(2π)2
dφdδdΛ+dΛ−2(Λ+ − Λ−) exp(−(Λ2

+ + Λ2
− + 4δ2)/2)(2.27)

From 2.26, one can easily invert and write

λ1,2 =
Λ+ + Λ−

2
±
√(

Λ+ − Λ−
2

)2

+ δ2. (2.28)

Now if Λ± are real then λ1,2 being real will allow the range of δ to be (−∞,∞)

so measure for (real)eigenvalues is given by

dµ(Λ+,Λ−) =
1

(2π)2

∫ π

0

dφ

∫ ∞

−∞
dδdΛ+dΛ−2(Λ+ − Λ−) exp(−(Λ2

+ + Λ2
− + 4δ2)/2)

=
1

2
√

2π
dΛ+dΛ−(Λ+ − Λ−) exp(−(Λ2

+ + Λ2
−)/2). (2.29)

On the other hand, for δ2 >
(
λ1−λ2

2

)2 the Λ± are complex-conjugate, so for

δ-integration lower limit, will be |ImΛ+| with upper limit ∞. This gives the
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measure as

dµ(Λ+,Λ−) =
1

2
√

2π
dΛ+dΛ−(Λ+ − Λ−) exp(−(Λ2

+ + Λ2
−)/2)erfc(

√
2|ImΛ+|).

(2.30)

In contrast to this result, we will see how a smaller number of independent

elements in the matrix modify this result. The case in present will be of cyclic

matrices which even though are asymmetric matrices have very small number

of independent elements (N). Cyclic matrices are also an example of pseudo-

symmetric (Hermitian) matrix as it will be shown and discussed in Sections

2.3, 2.4.

2.3 RMT for 2× 2 pseudo-Hermitian matrices

A complete new class of matrices are being studied which though not symmet-

ric (rather generally Hermitian) possess real eigenvalues in a certain parameter

interval present in the Hamiltonian matrix. These classes are known as pseudo-

Hermitian matrices and already have captured attention of physicists both the-

oretical and experimental as well as mathematicians alike. The random matrix

theory for general N × N pseudo-Hermitian matrices has been elusive so far,

nevertheless some concrete and closed-form expressions for 2× 2 matrices have

already been found [Ahmed 2003b]. In 3 × 3 and N × N , the most general

form of pseudo-hermitian matrix is not known, thereby making the random

matrix theory untenable. It is useful to mention here that cyclic matrices form

a special cases of pseudo-hermitian matrices on the real field.

In any physical experiment we measure a (real) eigenvalue of some linear

operator belonging to a Hilbert space. Let us consider a linear wave theory(e.g.

quantum mechanics) where a system is represented at any instant by a state in

a Hilbert space, with a time-independent norm. Denoting by |ψ〉 a vector and



2.3. RMT for 2× 2 pseudo-Hermitian matrices 29

its conjugate partner by 〈ψη|, the inner product may be given by the volume

integral,
∫
ψ∗ηψdV = constant. Accordingly, the linearity and continuity of

evolution implies

d

dt

∫
ψ∗ηψdV = 0,

∫
∂ψ∗

∂t
ηψdV +

∫
ψ∗η

∂ψ

∂t
dV = 0,

∫
iψ∗H†ηψdV −

∫
iψ∗ηHψdV = 0,

∫
iψ∗η(η−1H†η −H)ψdV = 0,

H† = ηHη−1. (2.31)

We have made use of linearity (via, e.g., Schrödinger equation)

Hψ = i~
∂ψ

∂t
. (2.32)

Thus Eq. 1.7 is motivated from here (Eq. 2.31) and as a special case taking η

as identity operator will give the Hermitian quantum mechanics and the norm

as the usual Euclidean norm in Hilbert space.

Let us consider a symmetry transformations which preserves the η-norm

(〈x|ηy〉) between the vectors x and y. By considering the Cayley form, D = eiH

as a symmetry transformation acting on x, y where H is pseudo-Hermitian in

accordance with ηHη−1 = H†, it is easy to show that D† = ηD−1η−1, i.e.

pseudo-unitary with respect to η. If x, y are two vectors in Hilbert space which

transform to x′, y′ and the transformation operator is given byD, then the inner

product 〈x′|ηy′〉 is invariant under transformation D. Also the matrix element

of an arbitrary operator A will transform as 〈x′|ηA′|y′〉 = 〈x|ηA|y〉 provided

A itself transforms as DAD−1 = A′ [Ahmed 2003b]. The closure law for two

pseudo-unitary matrices is trivial if both are pseudo-unitary with respect to
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the same η. Also, D−1 is pseudo-unitary with respect to η if D is pseudo-

unitary: η−1(e−iH)†η = eiη
−1H†η = eiH . With identity matrix as a unit element

of the symmetry transformation, and with associativity guaranteed, the N ×N

pseudo-unitary matrices form a pseudo-unitary group of order N , PU(N).

Starting with the simplest case of a pseudo-Hermitian matrix [Ahmed 2003a],

H = {Hij} =



a −ib

ic a


 , (2.33)

a, b, c being real, it is easy to show that metric is

η =




0 i

−i 0


 . (2.34)

Interpreting the matrix




1 0

0 −1


 which is σz as parity (P), and usual complex

conjugation, K0 as time-reversal operator T , the matrix is PT - symmetric5.

The diagonalizing matrix for H is given by D, i.e.,

D =




1 i/r

ir 1


 . (2.35)

The eigenvalues of H are E± = a±
[
c
2r

+ br
2

]
(r =

√
c/b (r ∈ [0,∞])). Here, we

would also like to mention that H(D) may not be pseudo-Hermitian (unitary)

with respect to the same metric, as is the case here. The metric for D is

δ =




0 1

1 0


 . (2.36)

5PT symmetry implies [H,PT ] = 0 which in turn reduces to PH∗P−1 = H if T HT −1 =
H∗ i.e. T is usual complex-conjugation.
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In the parameter space, the joint probability density function for the matrix

H is taken of the Gaussian form,

P (H) = N e− 1
2σ2

Tr H†H (2.37)

and this reduces to

P (a, b, c) =
1

2(πσ2)
3
2

e−
1

2σ2
[2a2+b2+c2]. (2.38)

By inserting the relation of eigenvalues in terms of parameters and, using the

Jacobian for this transformation, we get the joint probability distribution func-

tion (JPDF) of eigenvalues:

P (E+, E−) =
|E+ − E−|
2(πσ2)

3
2

K0

(
(E+ − E−)2

4σ2

)
e−

(E++E−)2

4σ2 (2.39)

where K0(x) is 0th order modified Bessel function of second kind and it can fur-

ther be represented as K0(x) =
∫∞

0
cos(x sinh t)dt. Perhaps historically one of

the most studied quantity in random matrix literature is the nearest neighbour

level spacing distribution, P (S). It is well known that for the Wigner-Dyson

ensembles the spacing distribution very well-approximated by, P (S) ∼ Sβe−γS
2

where β is 1, 2, and 4 corresponds to the orthogonal, unitary, and symplec-

tic ensembles [Mehta 1991, Haake 1991, Zelevinsky 1996]. However, there are

systems such as billiards in polygonal enclosures, three-dimensional Anderson

model at the metal-insulator transition point, and many more which display

intermediate statistics [Parab 1996,Grémaud 1998,Bogomolny 1999].

The spacing distribution for the present case , P (S), is given in terms of
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the JPDF by

P (S) =

∫ ∞

−∞

∫ ∞

−∞
P (E+, E−)δ(S − |E+ − E−|)dE+dE−

=
|S|
πσ2

K0

(
S2

4σ2

)
. (2.40)

Remarkably, as S → 0, P (S) ∼ S log(1/S) (it is non-algebraic level repulsion,

in contrast with Wigner-Dyson ensembles). In Table 2.1, we summarize the

results for various 2×2 pseudo-Hermitian matrices which form their own class.

It is clear that unlike Hermitian cases, simply because of the presence of a

larger number of parameters, more forms of spacing distributions are expected.

The natural extension of these results to the general PU(N) case remains open.

However, we have exact results for a special kind of pseudo-Hermitian matrices,

viz. cyclic matrices or circulants, which we now turn to.

2.4 Random cyclic matrices

Let us consider an N ×N cyclic matrix with real elements, {ai}:

M =




a1 a2 ... aN

aN a1 ... aN−1

...

a2 a3 ... a1



. (2.41)
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Table 2.1: A summary of 2× 2 pseudo-hermitian random matrices

H η D δ
P(S)

(S → 0)

[
a −ib
ic a

] [
0 i
−i 0

]
1√
2

[
1 i

r

ir 1

]

(0 ≤ r <∞)

[
0 1
1 0

]
−S logS

[
a+ c ib
ib a− c

] [
1 0
0 −1

]
[

cos θ√
cos 2θ

i sin θ√
cos 2θ

−i sin θ√
cos 2θ

cos θ√
cos 2θ

]

θ = −1
2

sin−1(b/c)
(−π/4 < θ < π/4)

Not known −S logS

[
a −iεc
ic
ε

b

] [
1
ε

0
0 ε

]
[

cos θ iε sin θ
−i sin θ/ε cos θ

]

θ = −1
2

tan−1 2c
a−b

(−π/4 < θ < π/4)

[
1
ε

0
0 ε

]
Sf(γ),
ε = eγ

[
a+ ib c
d a− ib

] [
0 1
1 0

]
[
reiθ

sin θ
− reiθ

sin θ

1 1

]

r = (b/d)

cot θ =
√

cd
b2
− 1

Not known
S with
large co-
efficient

[
a+ b d+ ic
−d+ ic a− b

] [
1 0
0 −1

]

[
i cos θ eiφ sin θ
e−iφ sin θ −i cos θ

]

φ = −1
2

tan−1 c
d

(−π
2
< φ < π

2
)

sin 2θ =
√

c2+d2

b2

(0 < θ < π/2)

[
1 0
0 −1

]
S
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It is important to note that this matrix is, in fact, pseudo-Hermitian (pseudo-

symmetric) with respect to η

η =




1 0 0 ... 0 0

0 0 0 ... 0 1

0 0 0 ... 1 0

...

0 1 0 ... 0 0




, (2.42)

that is,

M† = MT = ηMη−1. (2.43)

Since η2 = identity, I, η is introduced here as “generalized parity”. Thus, we have

an ensemble of random cyclic matrices (RCM) which are pseudo-symmetric in

the sense of (Eq. 2.43). In general there are two distinct scenario with respect to

time-reversal, T and parity, P : (a) standard case where T and P are preserved,

this case is trivially PT -symmetric, and, (b) the case of PT -symmetry where T

and P both are broken. In case (a), one may study the fluctuations properties

of energy levels after classifying the eigenfunctions according to definite parity

(odd or even); however the case (b) belongs to a different class altogether.

Whereas case (a) corresponds to the invariant ensembles of random matrix

theory [Mehta 1991], case (b) has not been fully studied, only some partial

results exist [Ahmed 2003b,Ahmed 2003a, b. Gong 2012] and RCM belong to

this case. To our knowledge, the discrete symmetries for operators represented

by cyclic matrices are clearly spelt out here for the first time.

The eigenvalues of M are given by [Kowaleski 1948]

El =
N∑

p=1

ap exp
2πi

N
(p− 1)(l − 1); (2.44)
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(l = 1, 2, ..., N), the maximum real eigenvalue being
∑

i ai. The diagonalizing

matrix is given by

Ujl =
1√
N

exp
2πi

N
(j − 1)(l − 1). (2.45)

We consider a Gaussian ensemble of cyclic matrices with a distribution,

P (M) ∼ exp−A Tr (M†M) (2.46)

where A sets the scale (of energy, for instance).

For the sake of simplicity, we present the analysis for an ensemble of 3× 3

matrices. We would like to obtain the joint probability distribution function

(JPDF) of eigenvalues because all the correlations are related to it. To have a

feeling how the eigenvalues themselves are distributed in the complex domain,

a graph of eigenvalues of 3 × 3, 100 × 100 and 101 × 101 are shown in Fig.

2.1. Also, we would like to show results on the spacing distribution as they

−4 −2 0 2 4
−4

−2

0

2

4

Re(E)

Im
(E

)

(a) 3× 3, sample=25000
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Re(E)

Im
(E

)

(b) 100×100, sample = 750
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)

(c) 101×101, sample = 750

Figure 2.1: Real and imaginary part of eigenvalues of cyclic matrices are plotted
against each other. The cyclic matrix elements are chosen from Gaussian with
mean 0 and variance 1 and then the total matrix is normalized by

√
N , N being

the dimension of the matrix.

enjoy a central place in discussions in quantum chaos, universality arguments,

and rule the dominant long-time tail in correlation functions [Jain & Gaspard
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1996 unpublished]. We immediately see that TrM†M = 3(a2
1 + a2

2 + a2
3). In

effect, we have P ({ai}) =
(

3A
π

) 3
2 e−3A

∑
i a

2
i . There are three eigenvalues - one

real, E1 =
∑

i ai and a complex conjugate pair, (E2, E
∗
2). We may define

spacing as S23 := |E2 − E3| =
√

3(a3 − a2) as well as S12 := |E1 − E2| =

|3
2
(a2 + a3) + i

√
3

2
(a2 − a3)|. Obviously, S12 = S13. The JPDF of eigenvalues

P ({Ei}) can be obtained by calculating the Jacobian and trace utilizing the

relation between matrix elements and eigenvalues and is written as

P (E1, E2, E
∗
2) =

(
A

π

) 3
2

e−A(E2
1+2|E2|2). (2.47)

With this JPDF, “spacing” distributions can be found. Spacing distribution for

the complex conjugate pair, Pcc(S23) is given by

Pcc(S23) =

∫ 3∏

i=1

daiP ({ai})δ(S23 −
√

3|a3 − a2|)
√

2A

π
e−

A
2
S2
23 . (2.48)

Using this, we may define an average spacing, S23 through the first moment

and obtain finally a normalized spacing distribution in terms of the variable

z = S23/S23:

pcc(z) =
2

π
e−

z2

π . (2.49)

Similarly, the spacing distribution, Prc(S12) is obtained:

Prc(S12) =
4A√

3
S12e

− 4
3
S2
12I0

(
2

3
AS2

12

)
(2.50)

where I0(x)(= J0(ix)) is 0th order modified Bessel function of first kind. It can

also be written as I0(x) = 1
π

∫ π
0
ex cos θdθ. Mean spacing turns out to be S12 =

3
8

√
π
A
c where c = 2F1

[
3
4
, 5

4
; 1; 1

4

]
= 1.31112... (a hypergeometric function).
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Defining z = S12/S12,

prc(z) =
3
√

3π

16
c2z exp

(
−3π

16
c2z2

)
I0

(
3π

32
c2z2

)
. (2.51)

We can now make following observations : (i) the (semi-)Gaussianity of

pcc(z) implies that there is no level repulsion among the complex conjugate

pairs, at the same time there is no attraction, there is no tendency of clus-

tering as in Poissonian spacing distribution; (ii) real and complex eigenvalues

display linear level repulsion. These results are also borne out by the numerical

simulations in Fig. 2.2 and Fig. 2.3.
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p
c
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analytic

numerics (100 × 100)

Figure 2.2: Probability distribution of the absolute spacing between the com-
plex conjugate pair of eigenvalues of a Gaussian ensemble of 3 × 3 cyclic ma-
trices. The numerical result obtained by considering 10000 realizations agrees
with the analytic result (2.49). The (semi-)Gaussian spacing distribution may
be interpreted to give an accumulation of eigenvalues resulting in a maximum
at zero spacing, but no tendency to cluster as the first derivative is zero. This
is different from a Poisson distribution.

For the general case of N × N matrices, we need to invert (2.44). This

inversion leads us to the following relation:

ai =
1

N

∑

l

SilEl (2.52)
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Figure 2.3: Probability distribution of the absolute spacing between a real and
a complex eigenvalue of a Gaussian ensemble of 3 × 3 cyclic matrices. The
numerical result obtained by considering 10000 realizations for 3 × 3 matrices
and 1000 realizations of 100 × 100 matrices agrees with the analytic result
(2.51). We observe a linear level repulsion near zero spacing, however the
result is distinctly different from the Wigner surmise for GOE.

where Sil = ω(i−1)(N−(l−1)) and ω = e2πi/N is a root of unity. S is a symmetric

matrix and S2 = Nη. Employing these relations, we can find
∑

i a
2
i , and hence

the following result for the JPDF for even N :

P ({Ei}) =

(
A

π

)N
2

exp

[
− A

(
E2

1 + E2
N
2

+1
+

N∑

i 6=1,N
2

+1

EiEN+2−i

)]
(2.53)

where E1 and EN
2

+1 real and the rest of the eigenvalues may be complex.

For odd N , the above result will hold except that there will be only one real

eigenvalue, E1 and the summation in the second term will extend over all i

except 1. Employing this general result on JPDF, we can now calculate the

spacing distributions for the general case. There are three cases : (i) spacing

among the complex conjugate pair of eigenvalues is found to be distributed

again as a Gaussian; (ii) spacing between a real and a complex eigenvalue is

distributed according to (2.51); (iii) two complex eigenvalues, Ej = xj + iyj and
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Ek = xk + iyk are spaced according to

p(s) =

∫ ∏
i d<Eid=EiP ({Ei})δ(|Ej − Ek| − s)∫ ∏

i d<Eid=EiP ({Ei})
, (2.54)

which reduces to the following integral on change of variables, ξ(η)± = x(y)k±

x(y)j

p(s) =
A

π

∫
dξ−dη−e

−A(ξ2−+η2−)δ(
√
ξ2
− + η2

− − s)

=
πs

2
exp

(
−πs

2

4

)
(2.55)

which is exactly the Wigner distribution (Fig. 2.4). Let us recall that Wigner’s

result holds exactly for 2 × 2 real symmetric matrices only, it serves as an

excellent approximation for N × N matrices though. We also know that the

spacing distribution for a Poissonian random process in a plane is exactly the

same mathematical form as Wigner’s, discovered by Rayleigh. Thus our result

proves that the complex eigenvalues of random cyclic matrices describe such

a process. This is a very beautiful, non-intuitive result which brings out yet

another characteristic of RCM.

The eigenfunctions of M corresponding to the real eigenvalues (E1 and

EN
2

+1) are also simultaneously eigenfunctions of “generalized parity” η. How-

ever, the eigenfunctions of M corresponding to the complex conjugate pair of

eigenvalues are not simultaneously eigenfunctions of η. Thus, when these com-

plex eigenvalues occur, “generalized parity” is said to be spontaneously bro-

ken. Also, the eigenfunctions corresponding to the complex conjugate pair of

eigenvalues have zero PT - norm. This is expected from the earlier works [Ben-

der 2002,Ahmed 2006] on PT -symmetric quantum mechanics. This observation

then fully embeds our findings into the new random matrix theory developed

recently for pseudo-Hermitian Hamiltonians. However, we also note that the
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Figure 2.4: We observe a linear level repulsion between two eigenvalues which
are neither real nor complex conjugate pairs for an ensemble of 100 × 100
matrices with 5000 realizations. The agreement with GOE is deceptive; in fact,
this suggests that the eigenvalues describe a Poisson process on a plane.

eigenvectors ψ1 (ψ2) corresponding to complex conjugate eigenvalues, λ (λ∗)

satisfy orthogonality defined with respect to η. Since these results are found

for N×N matrices, we believe that this work extends the random matrix theory

in a significant way. The findings on the spacing distributions have led us to a

linear level repulsion among distinct complex eigenvalues, whereas the spacing

between complex-conjugate pair is Gaussian-distributed.

2.5 Random cyclic block matrices

Extension of random matrix theory for cyclic block matrices (with individ-

ual blocks as cyclic matrix) has been a natural step forward. As a matter of

notation size of the individual sub-blocks are denoted by m while that of block-

considered-as-element-matrix is by n. The size of the complete matrix, hence

is given by mn and will be denoted by N .
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A cyclic block matrix is denoted by

H =




A1 A2 . . . An

An A1 . . . An−1

...
...

A2 A3 . . . A1



, withAi =




ai1 ai2 ... aim

aim ai1 ... aim−1

...

ai2 ai3 ... ai1




(2.56)

It is easy to see that cyclic block matrices are normal matrices i.e. HH† = H†H.

Hence, these matrices will admit the spectral decomposition using unitary ma-

trices.

These matrices like cyclic matrices are examples of pseudo-Hermitian (sym-

metric) matrices. The corresponding η operator is given by,

η =




σ 0 . . . 0

0 0 . . . σ

...
...

0 σ . . . 0



, withσ =




1 0 . . . 0

0 0 . . . 1

...

0 1 . . . 0



. (2.57)

It is easy to verify then, H† = ηHη−1.

It is shown in [Friedman 1961] that if ω is the nth root of unity, then eigen-

values of H will be given by the eigenvalues of n, m-dimensional matrices, Tk

defined as,

Tk =
n∑

j=1

ω(k−1)(j−1)Aj, (1 ≤ k ≤ n). (2.58)

Now it is straightforward to find the eigenvalues of Tk, let us apply the Fourier

matrix, F from left and F † from right,

FTkF
† =

n−1∑

j=0

ωkjFAjF
† =

n−1∑

j=0

ωkjΛk. (2.59)
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Hence, the spectral decomposition of a block cyclic matrix A is given by,

H =
(
F (n) ⊗ F (m)

)
Λ
(
F (n) ⊗ F (m)

)†
= UΛU † (2.60)

where ⊗ denotes tensor product6.As the dimensionality of H is N , there are

total N eigenvalues coming from n blocks of m-dimensional matrices. We can

level the eigenvalues of H carrying the information about the block and its

place in that particular block. This helps in identifying the complex-conjugate

pair eigenvalues of H. For N odd, one of the eigenvalue is real and is given by

the sum of the first row elements of the matrix H, while rest of the eigenvalues

occur as complex conjugate pairs. Let’s recall that labeling of eigenvalues in a

cyclic matrix is done so that the first eigenvalue is sum of the first row elements

while kth eigenvalue is complex conjugate of (n+ 2− k)th eigenvalue. Here it is

always understood that n+ 2− k is taken as modn .

Similarly here, [(k − 1)m + j]th eigenvalue will be complex conjugate of

[((n+2−k)−1)m+(m+2− j)]th eigenvalue with k taking the values 1, 2, . . . n

and j from 1 to m. Again it is understood that n + 2 − k is taken as modn

while (m+ 2− j) is modm.

Let’s take an example of a block-cyclic matrix of dimension 3 with a sub-

block dimension 2. This captures all the flavours of random matrix theory of

these class of matrices. The matrix H is given by

H =




A1 A2 A3

A3 A1 A2

A2 A3 A1




withAi =



ai bi

bi ai


 (2.61)

Each Ai can be diagonalized by a Fourier matrix of order 2. The eigenvalues of

6 A tensor product of 2 matrices A = (aij) of size m× n and B = (bij) of size p× q will
produce a matrix C = aijB of size mp× nq.
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Ais are given by ai + bi and ai− bi. From Eq. 2.58, the matrices can be written

as,

T1 = A1 + A2 + A3

=



a1 + a2 + a3 b1 + b2 + b3

b1 + b2 + b3 a1 + a2 + a3




T2 = A1 + ei
2π
3 A2 + e−i

2π
3 A3

=



a1 + a2e

i 2π
3 + a3e

−i 2π
3 b1 + b2e

i 2π
3 + b3e

−i 2π
3

b1 + b2e
i 2π

3 + b3e
−i 2π

3 a1 + a2e
i 2π

3 + a3e
−i 2π

3




T3 = A1 + e−i
2π
3 A2 + ei

2π
3 A3

=



a1 + a2e

−i 2π
3 + a3e

i 2π
3 b1 + b2e

−i 2π
3 + b3e

i 2π
3

b1 + b2e
−i 2π

3 + b3e
i 2π

3 a1 + a2e
−i 2π

3 + a3e
i 2π

3




The eigenvalues of H can be easily listed now as

E1 = a1 + a2 + a3 + b1 + b2 + b3, E2 = a1 + a2 + a3 − b1 − b2 − b3

E3 = (a1 + b1) + (a2 + b2)ei
2π
3 + (a3 + b3)e−i

2π
3

E4 = (a1 − b1) + (a2 − b2)ei
2π
3 + (a3 − b3)e−i

2π
3

E5 = (a1 + b1) + (a2 + b2)e−i
2π
3 + (a3 + b3)ei

2π
3

E6 = (a1 − b1) + (a2 − b2)e−i
2π
3 + (a3 − b3)ei

2π
3 .

(2.62)

From 2.62, it is clear that for k = 1, j = 1, [(k − 1)m + j(= 1)]th eigenvalue

is complex conjugate of [((n + 2 − k) − 1)m + (m + 2 − j)(= 1)]th eigenvalue.

Similarly k = 1, j = 2, i.e. second eigenvalue is it’s own complex conjugate

(real). For k = 2, j = 1, [(k−1)m+ j(= 3)]th is complex conjugate of [((n+2−

k)− 1)m+ (m+ 2− j)(= 5)]th eigenvalue and similarly the rest. This scheme

of labeling works for all orders irrespective of N being even or odd.
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It can also be verified easily that ~E =
√

3F (3) ⊗
√

2F (2)~a where ~a is the

first row of the composite matrix H and hence inversion is rather easy, ~a =

1√
6
F (3)† ⊗ F (2)† ~E

Now let’s consider the ensemble of N = 6 with n = 3,m = 2 cyclic block

matrices drawn from a Gaussian distribution,

P (H) ∼ exp
(
−ATrH†H

)
. (2.63)

then,

P ({ai, bi}) =

(
6A

π

)3

e−6A
∑3
k=1(a2i+b

2
i ) (2.64)

Using the relation between eigenvalues and ai, bi, we can immediately find out

that Jacobian of transformation from parameter space to eigenvalue space is

given by (
√

6)6, and

3∑

k=1

(a2
i + b2

i ) = ~aT .~a =
1

6
~ET . ~E =

1

6
(E2

1 + E2
2 + 2E3E5 + 2E4E6). (2.65)

Hence, the joint probability distribution function of eigenvalues can be written

using Eq. 2.64 as,

P (E1, E2, E3, E
∗
3 , E4, E

∗
4) =

(
A

π

)3

e−A(E2
1+E2

2+2|E3|2+2|E4|2). (2.66)

After deriving the joint probability distribution function, let’s try to evaluate

the different possible spacing distributions. There can be three types altogether

(i) spacing between two real eigenvalues or between two complex conjugate

eigenvalues, (ii) spacing between a real eigenvalue and a complex eigenvalue,

and (iii) spacing between two complex eigenvalues which are not conjugate

to each other. Here, let’s remind ourselves that due to complex nature of

eigenvalues, ordering between them can not be defined and hence for spacing
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the Euclidean distance between two eigenvalues has been used.

It is easy to calculate all the three spacing distribution as has been done

in [Jain 2008b]. Let’s first consider the spacing distribution between two real

or two complex-conjugate pairs. As we know the real eigenvalues are either

sum or alternating sum of first row of the matrix, H. These elements are

normal distributed random numbers and hence spacing will be basically a linear

combination of normal distributed random numbers endowing the distribution

as normal. If we see the complex conjugate pairs the difference is simply i times

a linear combination of Gaussian distributed random numbers and as we are

using the notion of Euclidean distance, the distribution of such spacings again

become normal. The other two spacing distribution can be exactly calculated

as in [Jain 2008b], and here the results are only stated.

Let’s say Ej is the real eigenvalue while Ek is the complex one, then prob-

ability distribution of spacings between Ej and Ek, can be defined by,

prc(s) =

∫
P ({Ei})δ (s− |Ej − Ek|) d{Ei}. (2.67)

Integration over different eigenvalues will give 1(as they are properly normal-

ized) and hence we need to integrate only with respect to Ej and Ek. As Ek is

complex, let’s denote Re(Ek) = xk and Im(Ek)=yk, then the relevant integral

is,

prc(s) =

(
A

π

) 3
2
∫

2dxjdxkdyke
−A(x2j+2x2k+2y2k)δ

(
s−

√
(xk − xj)2 + y2

k

)

(2.68)

which results after proper normalization to

prc(z) =
3
√

3π

16
c2z exp

(
−3π

16
c2z2

)
I0

(
3π

32
c2z2

)
. (2.69)
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where c = 2F1

[
3
4
, 5

4
; 1; 1

4

]
= 1.31112.... Here, prc(z) is normalized spacing

distribution with mean 1.

The complex eigenvalues which are not conjugate to each other can be shown

to behave as poisson process on a plane and hence there spacing distribution is

given by,

p(s) =
πs

2
exp

(
−πs

2

4

)
(2.70)

A numerical comparison with different spacing distributions are shown in Fig.

2.5. The agreement found is good.

These results can immediately be generalized for general n and m. While

the JPDF will be given as,

P (E1, E2, . . . EN) =

(
A

π

)N
2

e−A
∑N
i=1 |Ei|2 (2.71)

the spacing distribution remain unaffected and are given by Gaussian, 2.69,

2.70 for spacing between two real or complex-conjugate eigenvalues, between

real and complex eigenvalues, between two complex (not conjugate) eigenval-

ues respectively. The indices of complex conjugate eigenvalues can again be

calculated as illustrated in previous example. The comparison with numerical

spacing distribution with analytical formulas are again excellent as shown in

Fig. 2.5.

It is interesting to note that while block cyclic matrices considered here

are themselves not cyclic but the joint probability distribution function has

similar structure (only with more eigenvalues appearing), more so in terms of

spacing distribution they are identical. To my knowledge, this is first instant

when asymmetric block structures have been considered and joint probability

distribution function, spacing distributions are calculated analytically exactly

and in closed form.
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Figure 2.5: Various spacing distributions
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Further, we present another special case of random matrices with block

entries. Firstly, let us consider

B =




A1 A2 ... AN

AN A1 ... AN−1

...

A2 A3 ... A1




(2.72)

where each entry Ai is

Ai =



ai −bi
ci ai


 . (2.73)

A realization of a random matrix is constructed by drawing real elements ai, bi,

and ci independently from a Gaussian distribution with zero mean and unit

variance. In this way, we will obtain a rather simple random matrix ensemble

with real elements. However, seen as scalar entries, the resulting matrix is not a

cyclic one. The matrix B is pseudo-symmetric with respect to the “generalized

parity”,

Σ =




σ 0 ... 0

0 0 ... σ

...

0 σ ... 0




(2.74)

where σ happens to be Pauli matrix,

σ =




0 1

1 0


 (2.75)
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for this example. Consequently, B† = ΣBΣ−1.

However, as we shall see below, the spectral fluctuations are just like the

one for the scalar cyclic matrices. For instance, numerical investigations for 50

× 50 matrix, comprised of fifty 2×2 blocks per row reveal that the spacing dis-

tributions among complex conjugate pairs, real-complex pair, complex-complex

pair follow Figures 2.6, 2.7, and 2.8 respectively.
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Figure 2.6: Log-log plot of the distribution of spacing among complex-conjugate
pairs. The result is exactly in agreement with (12) for scalar entries (Sec. II).
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Figure 2.7: Log-log plot of the distribution of spacing among real and complex
eigenvalues. The result is exactly in agreement with (13) for scalar entries (Sec.
II).

These results are not at all obvious, considering the fact that the resulting

matrix with scalar entries is not a cyclic matrix. This example encourages us

to explore a possible universal class within the pseudo-orthogonal ensemble of

random matrices.
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Figure 2.8: Log-log plot of the distribution of spacing among complex eigen-
values. The result is exactly in agreement with (15) for scalar entries (eq. (11)
from [Jain 2008b]).

2.6 Summary

We saw how the random matrix theory of Ginibre orthogonal ensemble has been

a rich and a very demanding problem, be it the spectral measure or correlation

(which we have not focussed here for the general case). Pseudo-Hermitian

(symmetric) matrices though non-hermitian (symmetric) have spectral measure

and spacing distribution which are very different from those obtained for general

asymmetric cases. For order 3 and above, a general form of a pseudo-hermitian

(symmetric) matrix has eluded us. Cyclic matrices and cyclic block matrices

are very specific examples of such matrices. We have obtained the JPDF and

spacing distributions for these matrices in full generality. We also saw that being

asymmetric matrices and having very small number of independent elements

also make them attractive for the studies. The deviation in JPDF and spacing

distribution from general results are studied in detail.
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3.1 Introduction

In this Chapter, we study random, reverse cyclic matrices, that are real-symmetric,

H =




a1 a2 ... an

a2 a3 ... a1

... ...
...

an a1 ...




(3.1)

with matrix elements chosen from an appropriate distribution function. Bose

et al. [Bose 2002] derived the limiting spectral distribution for reverse-cyclic

matrices, but the JPDF and the spacing distribution function remained open

problems. In fact it will be interesting to see how the special symmetric ma-

trices having a very small independent matrix elements (only N in this case),

differ from the results known for their counterparts having all the matrix ele-

ments independent up to restriction due to symmetry[i.e. N(N+1)
2

]. In Chapter
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2, we obtained the JPDF for the cyclic matrices, which forms another example

in which the number of the matrix elements are constrained (again only N). On

the one hand, there is a vast literature about different results for random cyclic

matrices in literature (see [Bose 2009], [Meckes 2009] etc.). However, the same is

not true for random reverse-cyclic matrices. Interestingly, reverse cyclic matri-

ces appear (albeit with the name reverse circulant and retro-circulant) in models

for particle masses, flavour mixing, and CP violation. Here families of particles

can be shown to emerge by a spontaneous breakdown of discrete Z6 (group

under congruence modulo 6) chiral symmetry, by the Higgs sector [Adler 1998].

The presence of reverse-cyclic matrices is due to S3 cyclic permutation symme-

try of the Lagrangian. Quoting Adler, “...in the limit of S3 cyclic permutation

symmetry, we shall find that the fermion mass matrices in both the three and

six doublet models are retrocirculants...” [Adler 1998]. In another instance,

while exploring whether discrete flavor symmetry S3 can explain the pattern

of neutrino masses and mixings, reverse-cyclic matrices (again referred to as

retro circulant) have been used as a perturbation matrix [Dev 2011]. It was

also shown in [Dev 2011] that after third order perturbation, neutrino mixing

depends only on perturbation parameter, consistent with experimental data.

One may speculate that the background and statistical errors may make these

matrices random.

Here, we present the JPDF, spacing distributions and extreme value distri-

bution of eigenvalues for the random reverse-cyclic matrices. In Chapter 4 we

present a connection of JPDF and an exactly solvable model that we refer to

as screened harmonic potential model.

We collect some known results related to the eigen-decomposition of reverse-

cyclic matrices. A known eigen-decomposition becomes a very advantageous

tool, to derive the joint probability distribution function for eigenvalues. Karner
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et al. [Karner 2003] have shown that the eigen-decomposition for an odd-

dimensional (n = 2k + 1) reverse cyclic matrix is given by

H = F †




1 0

0 R


Λ




1 0

0 R†


F (3.2)

Λ = (E1, |E2|, . . . , |E(n−1)/2|,−|E(n−1)/2|, . . . ,−|E2|)

Fr,s(n) =
1√
n
e2πi(r−1)(s−1)/n; r, s = 1, 2, . . . , n (3.3)

R :=




Φ† iΦ†Îk

ÎkΦ −iÎkΦÎk


 ∈ C2k×2k, k = 1, 2, . . . (3.4)

with Φ =
1√
2
diag

(
eiφ1/2, . . . , eiφk/2

)
,

Îk is an anti-diagonal identity matrix, and 0 ≤ φj < 2π while C2k×2k represents

2k dimensional matrices with complex elements. The eigen-decomposition for

an even-dimensional reverse cyclic matrix takes following form,

H = F †




1 0

0 R


Λ1




1 0

0 R†


F (3.5)

Λ1 = diag(E1, |E2|, . . . , |E(n−2)/2|, En/2,−|E(n−2)/2|, . . . ,−|E2|)

with R :=




Φ† 0 iΦ†Îk

0 1 0

ÎkΦ 0 −iÎkΦÎk



∈ C2k+1×2k+1 k = 1, 2, . . . (3.6)

where C2k+1×2k+1 represents 2k+ 1 dimensional matrices with complex ele-

ments. To prove the special form of eigenvalues, let’s recall that a reverse cyclic

matrix,Cr can be essentially written as product of a permutation matrix, say
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P with cyclic matrix, C:




a1 a2 ... aN

aN a1 ... aN−1

...

a2 a3 ... a1




=




1 0 . . . 0

0 0 . . . 1

...

0 1 . . . 0







a1 a2 ... aN

a2 a3 ... a1

... ...
...

aN a1 ...



. (3.7)

We observe that P = F †F , but P being real, complex conjugation of both side

will lead to P = F TF and P is also symmetric so P = FF T therefore once

more taking complex conjugation of both side will lead to P = FF † where F

stands for complex conjugate of F and similarly F T for transpose while F † for

Hermitian conjugate. This, along with the fact that Fourier matrix is symmetric

and unitary suffices to show that

F †CrF = F †PCF = F †FF †CF = PΛC , with

ΛC = diag(E1, E2, E3, . . . , E3, E2).

(3.8)

The characteristic determinant for Cr is |ΛI − Cr|. Using properties of deter-

minants, it is easy to show that this is equivalent to |ΛI− F †CrF | and hence,

|ΛI− Cr| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ− E1 0 0 . . . 0 0 0

0 λ 0 . . . 0 0 −E2

0 0 λ . . . 0 −E1 0

...

0 0 −E3 . . . 0 λ 0

0 −E2 0 . . . 0 0 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.9)

= (λ− E1)

(N+1)/2∏

i=2

(λ2 − |Ei|2) for odd N ; (3.10)
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|ΛI− Cr| = (λ− E1)(λ− En/2+1)

N/2∏

i=2

(λ2 − |Ei|2) for even N. (3.11)

This proves the special form of eigenvalues of reverse cyclic matrices [Aitken 1962].

All the eigenvalues of reverse cyclic matrices are real and modulus sign | | is

used to take absolute value. Let’s note in passing that eigenvectors in case of

reverse cyclic matrices display a little more freedom by having some phases Φ in

contrast to random cyclic matrices which had same set of eigenvectors namely

the discrete Fourier basis for the whole class.

3.2 JPDF, spacing distribution

Consider an ensemble of reverse cyclic (RC) matrices, drawn from a Gaussian

distribution,

P (H) ∼ exp
(
−ATr(H†H

)
). (3.12)

Let us start with the simplest case, namely an ensemble of 3 × 3 reverse

cyclic matrices,

H =




a b c

b c a

c a b



. (3.13)

The JPDF in matrix space will be given by, using (3.12),

P (a, b, c) =

(
3A

π

)(3/2)

exp[−3A
(
a2 + b2 + c2

)
]. (3.14)

From Eq. (3.2), we can diagonalize H and it is also clear that there are only

(n+ 1)/2 independent eigenvalues for odd-dimensional matrices. For the 3× 3
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case, the explicit form of R is

R =




1 0 0

0 1√
2

exp(−iθ/2) i√
2

exp(−iθ/2)

0 1√
2

exp(iθ/2) − i√
2

exp(iθ/2)



. (3.15)

It takes some simple algebra then to show that

a =
1

3
(E1 + 2|E2| cos θ),

b =
1

3

(
E1 − |E2|

(
cos θ +

√
3 sin θ

))
, (3.16)

c =
1

3

(
E1 − |E2|

(
cos θ −

√
3 sin θ

))
.

Using (3.16) in (3.14), we can find the JPDF for eigenvalues and an inde-

pendent parameter θ coming from the eigenvector. Note that in H, the in-

dependent parameters are three in number, namely a, b and c; while in the

eigen-decomposition, we have E1, E2, θ. The Jacobian for the transformation

(3.16) is given by 2|E2|
3
√

3
. The JPDF for eigenvalues is

P (E1, |E2|, θ) =
2|E2|
3
√

3

(
3A

π

)(3/2)

exp[−A
(
E2

1 + 2E2
2

)
] (3.17)

where E1 ∈ (−∞,∞), |E2| ∈ [0,∞), θ ∈ [0, 2π).

The Eq. 3.17 can also be written as to reflect the relation of E2 and E3 being

negative of each other and allowing the domain of integration now to go over

−∞ to ∞ (this can also be argued that the domain of |E2| is [0,∞), and that

the function on the right hand side is an even function of E2, so we can change

the domain) as follows,

P (E1, E2, E3) = 2π
|E2|
3
√

3

(
3A

π

)(3/2)

e−A(E2
1+E2

2+E2
3)δ(E2 + E3). (3.18)
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The θ variation has been taken as uniform as any dependence on θ will be seen

in the Jacobian which comes out to be independent of it. Thus θ integration

has been done in the JPDF causing the presence of factor 2π.

The density of E1 (called as the trivial eigenvalue and given by TrH) comes

out to be Gaussian as expected because of E1 is a sum of Gaussians. On the

other hand, the density of non-trivial eigenvalue E2 is given by (3.19).

ρ(E) = 2A|E| exp(−2AE2) (3.19)

Also, due to product structure of the JPDF, the density of non-trivial eigen-
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Numerics π/4 |E| exp(−π/4 E2)

Figure 3.1: Normalized density of non-trivial eigenvalues for an ensemble of
20000 reverse cyclic matrices of size 15×15 is compared with the analytical form.
The density is normalized such that averaged density for positive eigenvalues
is 1/2.

value will remain the same for higher-dimensional matrices. The presence of

|E| ensures that there are no non-trivial eigenvalues present at origin while they

increase linearly along both the positive and negative real axis. It is as if there

is a hole in the density of non-trivial eigenvalues (see Fig. 3.1). This has been
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independently derived by Bose et al. [Bose 2002] without obtaining the JPDF.

Also notice that, it is the limiting distribution in the case of [Bose 2002] while

here it is an exact result for any dimension (matrix). The spacing distribution

between E1, E2 can now be calculated as

P (s12) =

∫ ∞

−∞
dE1

∫ ∞

−∞
dE2P (E1, E2)δ(s12 − |E1 − E2|)

=
12
√
Ae−As

2
12

9
√
π

+
4Ae−2A

s212
3

√
3πs12erf

(√
A
3
s12

)

9
√
π

(3.20)

where erf(x)(= 2√
π

∫ x
0
e−t

2
dt) is error function. The value of A can be chosen so

that
∫∞

0
s12P (s12)ds12 = 1. A numerical histogram is compared with (3.20) in

Fig. 3.2. One could think of spacing between the second and third eigenvalue

of H, but due to their special form as |E2| and −|E2|, it is simply given by

s23 = 2|E2|, so the spacing distribution as expected is very similar to the

density of |E2| and is given by (3.21):

P (s23) = As23e
−A

2
s223 . (3.21)

Again, the value of A is chosen such that
∫∞

0
s23P (s23)ds23 = 1, which turns

out to be π/2. A comparison with the numerical data is shown in Fig. 3.3.

In the case of 5×5, a similar procedure will give the JPDF as in (3.22) with

Ei ∈ (−∞,∞) and θi ∈ [0, 2π):

P (E1, E2, E3, E4, E5, θ1, θ2) =
|E2||E3|
25
√

5

(
5A

π

)5/2

e−A
∑5
i=1 E

2
i δ(E2+E5)δ(E3+E4).

(3.22)

The density of Eis and the spacing distribution1 for the cases appearing in

3 × 3 reverse cyclic matrices remain the same. There is an additional spacing

1The spacing distribution defined here is not nearest neighbour spacing distribution, rather
distribution of all possible spacings between two concerned eigenvalues.
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Figure 3.2: Spacing distribution s12 for an ensemble of 20000 reverse cyclic
matrices of size 3× 3, 5× 5 and 15× 15 is compared with the analytical form
(Eq. 3.20).
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Figure 3.3: Spacing distribution s23 for an ensemble of 20000 reverse cyclic
matrices of size 3× 3, 5× 5 and 15× 15 is compared with the analytical form
(Eq. 3.21).
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possible, namely between two positive eigenvalues |E2| and |E3|. Let us denote

this by spp. Its distribution is

P (spp) =

∫ ∞

−∞
dE1

∫ ∞

0

dE2

∫ ∞

0

dE34P (E1, E2, E3)δ(spp − |E2 − E3|)

= Asppe
−2As2pp − 1

2

√
πAe−As

2
pp(−1 + 2As2

pp)erfc(
√
Aspp) (3.23)

where erfc(x)(= 1 − erf(x)) is complementary error function. The area under

this distribution is 1/2. Taking care of the domains of |E2| and |E3|, and ac-

counting for the spacing between these and between −|E2| and −|E3|, we obtain

the correctly normalized distribution. This can be seen to be in agreement with

the numerical data (see Fig. 3.4). This same distribution (Eq. 3.23) has been

compared with the distribution of spacings among all positive eigenvalues ex-

cept the Gaussian distributed one of an ensemble of higher-dimensional reverse-

cyclic matrices (e.g. 15 × 15). The agreement is good. For the (n = 2k + 1)-

dimensional reverse-cyclic matrix JPDF is a straightforward generalization of

(3.22) and is given by (3.24):

P (E1, E2, . . . , Ek+1, θ1, . . . , θ2k) =

(
A

π

)(2k+1)/2

|E2| . . . |Ek+1|e−A(E2
1+2

∑k+1
i=2 E

2
i ).

(3.24)

This generalization of JPDF can be understood as follows. Clearly, the nature

of the first (trivial) eigenvalue is very different from the others (nontrivial),

and its distribution will be Gaussian. We focus on the rest of the eigenvalues.

With O = F †R an orthogonal matrix [Karner 2003], the diagonalizing equation,

H = OΛOT has the correct number of independent parameters. For a (2k +

1)-dimensional matrix H, the left hand side has only (2k + 1) independent

variables while the right hand side has (k + 1) independent eigenvalues with

k angle variables in O. As dH will contain (2k + 1) independent differentials,
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Figure 3.4: Spacing distribution spp for an ensemble of 5000 and 20000 reverse
cyclic matrices of size 5×5 (in top and middle) and 20000 reverse cyclic matrices
of size 15×15 (in bottom) is compared with the analytical form (Eq. 3.23). This
figure also shows that analytical results matches very well even with ensemble
of 5000 matrices.
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a multiplication of H with a scalar a will satisfy d(aH) = a2k+1dH. Now,

(k + 1) of them will be absorbed in the scaling of measure dΛ (as independent

eigenvalues are (k+1)). Hence, from the scaling property of d(aH), dH will be a

homogeneous polynomial of degree k [Forrester 2010]. Our prototype examples

for n = 3 and 5 has shown that they vanish linearly as eigenvalues approach

the origin, hence the polynomial in the eigenvalues is necessarily proportional

to |E2| . . . |Ek+1|. The even case is not very different from the odd one, except

that Ek/2+1 appears along with E1, the rest being the same as that in (3.24).

The linear level repulsion obtained here has its origin in the product of the

absolute value of the eigenvalues in the JPDF. This is reflected in the inter-

action among eigenvalues if we write the JPDF as a partition function for an

n-particle system. This interaction, in the context of random matrices is the

Coulomb interaction in two dimensions. In contrast, the case of random-cyclic

matrices [Jain 2008b] has a JPDF which is just the exponential containing a

sum of the square of the modulus of the complex eigenvalues. The eigenvalues

are in a plane, and the level repulsion comes out as a Rayleigh distribution for

the Poisson process on a plane, which has the same functional form as Wigner’s

spacing distribution for the orthogonal ensemble. Thus, we have a very inter-

esting situation for the random reverse-cyclic and random cyclic matrices in

that we obtain the same formula for the spacing distribution but the origin is

different.

3.3 Distribution of extreme eigenvalues

The eigenvalues of a cyclic matrix is given by [Kowaleski 1948]

El =
N∑

p=1

ap exp
2πi

N
(p− 1)(l − 1); (3.25)



64 Chapter 3. Random reverse cyclic matrices

where l = 1, . . . , N these eigenvalues can equivalently be thought of being

the discrete Fourier transform of first row of the matrix. As aps are random

numbers, El in Eq. 3.25 can be interpreted as position of lth Random walker

after N steps in a 2-dimensional space where different directions possible for

walker to jump along is given by roots of unity and length of the jump in

that particular direction is given by ap. The modulus of El will then give the

distance travelled by lth Random walker from origin after N -steps (see Fig.

3.5). It is clear that in a given realization each walker can be characterized

by the combination of the directions chosen and not the length of step which

is same for each Random walker. Hence it would be interesting to ask which

walker travels maximum distance after N -step or how the records of distance

travelled by Random walkers behave? Hence distance travelled by different

Random walkers can be taken as time series.
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Figure 3.5: For N = 7 cyclic matrix, eigenvalues are given by Eq. 3.25 and here
they are graphically shown as random walk being done by different Random
walkers. The final position of Random walker is shown by an arrow. The
length of the arrow represents the net distance travelled from origin and also
the positive eigenvalues of reverse cyclic matrices. It is clear that 3 eigenvalues
are complex conjugate of each other and hence they are labelled with same
Random walker as they travel same net distance from origin (also shown in
same colour).



3.3. Distribution of extreme eigenvalues 65

As we have shown that (positive) eigenvalues of reverse cyclic matrices are

precisely the same (modulus of El). Hence, |El| can be taken as time-series

i.e. (|E1|, |E2|, . . . , |E(N+1)/2|) (for odd dimensional matrices)2 with index i sig-

nifying the eigenvalue corresponding to ith discrete Fourier basis and record

statistics for such time series can be studied. The maximum of this time-series

will also give the maximum eigenvalue of reverse-cyclic matrix. As reverse

cyclic matrix is a symmetric matrix, one would expect that edge distribution

of eigenvalues may be given by Tracy-Widom. However, we have seen that

bulk spectrum measures (JPDF, spacing distributions) for this class of matri-

ces are different despite these being symmetric. The reason may be attributed

to the specific pattern of matrix element which restricts the independent num-

ber of parameters to only N in contrast to N(N + 1)/2. Indeed, it has been

shown in [Bose 2011] that the largest eigenvalue for these class of matrices

are distributed in accordance with Gumbel distribution. Here, we are pre-

senting record statistics of non-trivial eigenvalues of RRCM. With this, it has

been shown that not only the largest eigenvalue but any record once properly

shifted and re-scaled follows Gumbel distribution. We have also shown that the

smallest positive non-trivial eigenvalue is distributed as an exponential which is

equivalent in our Random walker description to say that least distance travelled

by a Random walker is exponentially distributed. Let’s remind ourselves that

if we associate the Euclidean distance with the eigenvalues of cyclic matrices

and ask the question about statistics of farthest eigenvalue from origin in com-

plex plane, the result turns out to be same as that of distribution of largest

eigenvalue of reverse cyclic matrices. As the record statistics has been dealt in

detail in Chapter 5, let’s just briefly recall here that sequence of upper records

for a sequence which can be ordered are defined by Rt = max(xt, Rt−1) for all

2the index is restricted to (N + 1)/2 as rest of the eigenvalues will be complex conjugate
of eigenvalues E2 to E(N+1)/2
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index (time) t ≥ 2 with R1 = x1. Let P (x1, . . . , xN) be the JPDF of N random

variables. The probability that the record at time t, Rt, is less than R is given

by

Q(R, t) =

∫ R

0

dx1...dxtPt(x1, ...xt) (3.26)

where Pt(x1, . . . , xt) =
∫
P (x1, . . . , xN)dxt+1...dxN is the marginal JPDF of the

first t random variables. It follows that the probability density for the record

variable to be R, at time t, P (R, t) is given by P (R, t) = dQ(R, t)/dR.

The JPDF of non-trivial eigenvalues of reverse random cyclic matrices have

product structure, given by Eq. 3.24. As we have earlier shown that each non-

trivial eigenvalue of RRCM comes as ± pair, hence it is sufficient to look far

the positive non-trivial eigenvalues. The Q(R, t) for these eigenvalues are

Q(R, t) =
t∏

i=1

∫ R

0

dEi2Eie
−E2

i

=
(

1− e−R2
)t

(3.27)

For large t, asymptotically, Eq. 3.27 can be written as ∼ exp(− exp(−x))

(Gumbel), with x = R2−log t = (R+
√

log t)(R−√log t) ≈ 2
√

log t(R−√log t).

It is clear that last record is also the maximum eigenvalue of the sequence, and

hence the maximum eigenvalue (among non-trivial eigenvalues) are distributed

as Gumbel distribution with shift as
√

log t and scaling 2
√

log t (see Fig. 3.6a).

To calculate the record statistics the procedure followed is outlined in following

steps here, (i) take the first row of random reverse cyclic matrix (ii) obtain the

complex eigenvalues (of corresponding random cyclic matrices) using Eq. 3.25

(iii) as has been shown the nontrivial positive eigenvalues are modulus of first

(N − 1)/2 eigenvalues of corresponding cyclic matrix with order of eigenvalues

maintained (iv) these are the time-series to do the record statistics. As the

minimum of non-trivial eigenvalue is simply negative of the maximum in case
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of RRCM, hence the question of minimum eigenvalues is answered. In case of

cyclic matrices, what is the distribution of closest eigenvalue (again distance is

in Euclidean sense) or the minimum distance travelled by the walker translates

into the minimum positive eigenvalue statistics of RRCM. This again can be

answered easily in terms of record distribution only now we need to consider

the lower records. In this case Q(R, t) for lower records of non-trivial positive

eigenvalues of RRCM is given by,

Q(R, t) =
t∏

i=1

∫ ∞

R

dEi2Eie
−E2

i

= e−tR
2

. (3.28)

Again t = N will give the result for minimum (positive) eigenvalue, which is

Q = exp(−x2) where x =
√
tR with shift as 0 and scale factor as

√
t (see Fig.

3.6b).
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Figure 3.6: The probability distribution of last upper (lower) record i.e. maxi-
mum (minimum) is shown, matching with Gumbel (Wigner type) distribution
in properly shifted and scaled variables are found good. In each graph we have
also compared with a nonlinear transform which in case of maximum seems to
be better approximation. N is 101.
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3.4 Screened harmonic oscillator and Reverse cyclic

matrices

Connections between random matrix theory and exactly solvable models are

very important and interesting [Sutherland 1971, Sutherland 2005, Jain 2006,

Jain 1999, Auberson 2001]. It is well-known that the invariant random ma-

trix ensembles are related to some exactly solvable many-body problems in one

dimension, as was found by Calogero and Sutherland [Calogero 1969, Suther-

land 1972,Moser 1975]. In particular, the joint probability distribution function

(JPDF) of the eigenvalues of random matrices shares the functional form with

the probability density corresponding to the ground state of the quantum N -

body problem. This observation is important as it allows one to obtain the

correlation functions of one problem by knowing those for the other, comparing

terms using a dictionary. In the same vein, even for the explanation of inter-

mediate statistics [Grémaud 1998], a random matrix model was found [Bogo-

molny 2001] which, in turn, was related to anN -particle system with an inverse-

square, repulsive two-body interaction, and, an inverse-square, attractive three-

body interaction [Jain 1999,Auberson 2001]. Even for pseudo-Hermitian Hamil-

tonians (where there exists a metric η such thatH† = ηHη−1), a random matrix

theory can be built [Ahmed 2003b,Ahmed 2003a]. The connection of this with

exactly solvable models is explored in [Jain 2006]. In turn, the models found

in [Calogero 1969,Sutherland 1972,Moser 1975] and [Jain 1999,Auberson 2001]

can be mapped to integrable [Rey 1997] and chaotic systems [Jain 2002] for

which, quite remarkably, analytically exact eigenfunctions are obtained.

Now we show the exactly solvable n-body problem, the ground-state wave

function of which is such that the probability density has the same mathematical

form as (3.24). It can be verified that (3.24) corresponds to |Ψ(x1, x2, ..., xn)|2
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where Ψ(x1, x2, ..., xn) is the ground state wave function with eigenvalue (4n−

3)A of the n-body problem with the Hamiltonian:

H(x1, x2, ..., xn) = −∇2 +

[
A2x2

1 +
n∑

i=2

(
4A2x2

i −
1

4x2
i

)]
. (3.29)

To illustrate that this is so, let us verify for n = 2. This will also be sufficient

for general n due to the identical form of separable H. As we need to take

double derivatives of the wave function, it will be prudent to replace |Ei|s

by
√
E2
i . Hence, Ψ(x1, x2) = c

√√
x2

2 exp (−A/2 (x2
1 + 2x2

2)), the JPDF for a

corresponding three-dimensional reverse-cyclic matrix,

∂2

∂x2
1

Ψ(x1, x2) = A
(
−1 + Ax2

1

)
Ψ(x1, x2)

∂2

∂x2
2

Ψ(x1, x2) =
(−1 + 16Ax2

2 (−1 + Ax2
2))

4
Ψ(x1, x2)

(
− ∂2

∂x2
1

− ∂2

∂x2
2

+ A2x2
1 + 4A2x2

2 − 1/(4x2
2)

)
Ψ(x1, x2) = 5AΨ(x1, x2).

This proves our assertion.

This system has been the subject of a lot of work, initiated by Perelo-

mov [Perelomov 1971]. The only potential that can be added to a harmonic

interaction is 2a/x2 if we want to successfully construct the creation and anni-

hilation operators for the above model [Hoppe 1992]. For Hamiltonian,

H =
1

2

(
−∂2

x + x2 +
2α

x2

)
, α > 0, 0 < x <∞ Hψ = Eψ with ψ(0) = 0

(3.30)
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admits the solution

ψp(x) =
√

2

√
p!

Γ(p+ ε+ 1/2)
xεLε−1/2

p (x2)e−x
2/2

Ep = 2p+ ε+ 1/2, ε =
1

2
+

√
1

4
+ 2α.

L
ε−1/2
p is the Laguerre polynomial. Here ψp(x) is pth excited state of single

particle Hamiltonian given in Eq. 3.30.

This work relates this well-known model to a random matrix theory for

reverse-cyclic matrices, which constitutes a remarkable addition to the known

connections along similar lines.

3.5 Summary

In summary, we have shown that reverse-cyclic matrices though a subset of sym-

metric matrices have an unusual density and spacing distribution. In contrast

to semi-circle density, this ensemble admits a density with a hole at the origin.

Again, the spacing distribution has a variety ranging from Gaussian-looking

distributions to Wigner type distributions. We have obtained the record statis-

tics of eigenvalues and shown that the upper records, when properly shifted

and scaled, follow Gumbel distribution while lower records follow Wigner-type

distribution. As the last upper record is also largest eigenvalue of the sequence,

we have re-derived the largest eigenvalue distribution to be Gumbel. Similarly

the last lower record is the smallest eigenvalue of the given sequence of positive

non-trivial eigenvalues, we have shown that they, when properly shifted and

scaled, follow a Wigner-type distribution. The records of eigenvalues are inter-

preted is terms of records of net distance travelled by different Random walkers

after N -steps from origin in two-dimension. The jumps in this two-dimensional
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space is restricted along the directions given by roots of unity. We also ob-

served that the JPDF is just the square of the modulus of the ground-state

eigenfunction of an exactly solvable many-body Hamiltonian in one dimension,

of a screened harmonic oscillator potential. Hence the correlations between the

different particles in the potential will be the same as that derived from the

joint probability distribution function for the random matrix theory.
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4.1 Introduction

The theory of random walks is at the heart of statistical mechanics. It has been

employed in a wide range of phenomena across various disciplines of science.

Beginning from its connection with Brownian movement [Einstein 1956], it has

been applied to understand polymer physics [de Gennes 1979], locomotion of

micro-organisms [Berg 1993,Berg 2003] etc. The subject of random walks has

also been the basis of understanding in a simple manner many fundamental

ideas like universality in the language of renormalization group [Raposo 1991].

One of the paradigms for non-equilibrium physics is the asymmetric exclu-

sion process (ASEP) [Spohn 1991, Mallick 2009]. Related to it, we consider

biased random walks on a one-dimensional lattice with periodic boundary con-

ditions. We first show the connection of this problem with the spectral prop-

erties of cyclic matrices [Jain 2008b], this is a simple extension of an earlier

work [Franceschetti 1993]. Then, we treat the problem of random walk on a
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disordered medium where the randomness is modelled via the randomness of

the asymmetric cyclic matrix. The connection of master equation for exclusion

processes is known to present a difficult mathematical problem as the Hamil-

tonian turns out to be non-Hermitian. Thus, with the exact results on spectral

properties of an ensemble of asymmetric cyclic matrices, it is natural for us to

demonstrate their application in the relevant case of random walks. For this

case, we also find the entropy of the system in its nonequilibrium steady state.

Recently, there has been a lot of interest in understanding these states and

their connection with microscopic chaos [Dorfman 1999]. The well-known con-

nection of random walks and diffusion suggests application of random matrices

to nonequilibrium statistical mechanics in a more general manner.

4.2 Biased random walks on a regular lattice

Let us consider a random walk on a one-dimensional lattice of N equally spaced

sites with periodic boundary conditions. Let us assume that the particle jumps

with probability w. Let the jump probability to the left or right neighbour be pw

and qw(= (1− p)w) respectively. The case of w=1 is well known [Feller 1968].

The other special case of p = q, w 6= 1 has been studied as an eigenvalue

problem [Franceschetti 1993]. Moreover, let us consider an ensemble of lattices,

Nens =
N∑

i=1

Ni where Ni denotes the number of lattices (realizations) with

a particle occupying the ith site. This allows us to define the probability of

occupation of the site, i by

pi = Ni/Nens. (4.1)

At time t, a state of an ensemble can be written as a vector

~p(t) =

[
p1(t), ..., pN(t)

]T
, (4.2)
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where T stands for transpose. The time evolution of the ensemble is given by

~p(t+ 1) = M~p(t) (4.3)

where

M =




(1− w) pw 0 ... qw

qw (1− w) pw ... 0

0 qw (1− w) ... pw

...

pw 0 qw ... (1− w)




, (4.4)

Matrix M is a transition matrix which can be easily recognized as an asym-

metric cyclic matrix. Since this matrix is not Hermitian, its eigenvalues occur

in complex conjugate pairs, in addition to some of them being real.

For a general cyclic matrix

A =




a1 a2 ... aN

aN a1 ... aN−1

...

a2 a3 ... a1



, (4.5)

it is well-known [Kowaleski 1948] that the eigenvalues are given by

λl =
N∑

p=1

ap exp

[
2πi

N
(p− 1)(l − 1)

]
, (4.6)

(l = 1, 2, ..., N). The maximum eigenvalue is
∑N

i=1 ai for ai ≥ 0. The diagonal-
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izing matrix is discrete Fourier matrix and given by

Ujl =
1√
N

exp

[
2πi

N
(j − 1)(l − 1)

]
. (4.7)

The nth component of the lth eigenvector corresponding to λl is

(êl)n =
1√
N

exp

[
2πi

N
(n− 1)(l − 1)

]
. (4.8)

We can easily see that given an initial distribution

~p(0) =
N∑

l=1

clêl (4.9)

with

cl =
1√
N

N∑

n=1

pn(0) exp

[−2πi

N
(n− 1)(l − 1)

]
, (4.10)

the probability ~p(t) is given by a product of matrices M, acting on ~p(0). Thus

~pi(t) =
N∑

l=1

clλ
t
l êl. (4.11)

This equation is used to calculate the time evolution of pi(t) for lattices of

several different numbers of sites and for given values of w.

For calculating the entropy of this system in its non-equilibrium steady

state, we can use Boltzmann’s relation

S = kB ln Ω (4.12)

with the thermodynamic probability, Ω. Let us obtain a version of this formula

which can be used with a probability distribution of the type given in Eq. 4.11.



4.3. Biased random walks on a disordered lattice 77

The thermodynamic probability is given by

Ω =
Nens!

(N1!)(N2!)...(NN !)
. (4.13)

Using Stirling’s approximation for large m, lnm! ≈ m lnm−m, we can write

ln Ω = Nens lnNens −N1 lnN1 −N2 lnN2 − ...−NN lnNN . (4.14)

On dividing by Nens and using Eq. 4.1, the ensemble averaged entropy, s =

S/Nens an ensemble may be written as

s

kB
= −

Nsite∑

i=1

pi ln pi. (4.15)

Since, in a lattice which reaches equilibrium, all the pi will equal 1/Nsite the

limiting value of s/kB will be lnNsite.

Using the result of Eq. 4.11 in Eq. 4.15 we calculate the corresponding

entropy as a function of time (Fig.4.1).

4.3 Biased random walks on a disordered lattice

Generalizing the basic model considered above by allowing the particle to jump

not only at nearest neighbour but at any site will make transition matrix full in

contrast to almost tri-diagonal form considered in earlier section. We further

introduce randomness by making the elements of the transition matrix random.

This is achieved by considering the transition matrix to belong to a Gaussian

ensemble of cyclic matrices with a distribution,

p(M) ∼ exp
[
− αTr(M†.M)

]
. (4.16)
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The maximum eigenvalue being
∑

i ai (for ai ≥ 0). We employ the results

of theory of random cyclic matrices [Jain 2008b] to find the ensemble average.

However, there is an important modification to be made owing to the fact that

the matrix elements are probabilities and the sum of these is unity. This can

be easily done and will be used in the calculation of the average over random

matrix ensemble. To calculate numerically the entropy, the transition matrix

is populated first by Gaussian random number with a very high positive mean

and variance one, once the positivity of all elements are ensured (first row of

the transition matrix which is a cyclic matrix) they are normalized by sum of

them to have them between 0 and 1. This makes the M as correct stochastic

matrix. Let us define the average by (λ = reiθ)

〈~p(t)〉RCM =

∫ 1

0
dr
∫ π
−π dθ~p(t)ρ(r, θ)r

∫ 1

0
dr
∫ π
−π dθρ(r, θ)r

(4.17)

where ρ(r, θ) is the density of eigenvalues. As we have seen in Chapter 3 that

modulus of eigenvalues of random cyclic matrices are the eigenvalues of re-

verse random cyclic matrices upto a sign. We have also shown that these joint

probability distribution function of these eigenvalues have a product structure

and given by Eq. 3.24. Hence, the r (= |λ|) is distributed by a Wigner-like

distribution of random matrix theory.

The time evolution is given by

pj(t) =
N∑

l=1

clλ
t
l(êl)j (4.18)

substituting the eigen vector in the above equation we get,

pj(t) =
1√
N

N∑

l=1

clλ
t
l exp

[
2πi

N
(l − 1)(j − 1)

]
(4.19)
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Figure 4.1: For the case of random walkers on a periodic lattice with 22 sites,
a1 = 0.2, a2 = 0.24, a22 = 0.56 (other ai’s are zero) with the jump probability,
w = 0.8, the entropy is seen here.

pj(t) can be re-written as

pj(t) =
1

N

N∑

n=1

pn(0)

(
λt1 +

N∑

l=2

λtl exp

[
2πi

N
(l − 1)(j − n)

])

pj(t)−
1

N
=

1

N

N∑

n=1

pn(0)
N∑

l=2

λtl exp

[
2πi

N
(l − 1)(j − n)

]

pj(t)−
1

N
=

1

N

N∑

n=1

pn(0)
N∑

l=2

λtlΩ
l−1
jn (4.20)

where we have exp

[
2πi
N

(j − n)

]
:= Ωjn and also made use of

∑N
n=1 pn(0) =

1. Now, we can average over the joint probability distribution function of

eigenvalues, J(λ2, ..., λN). Denoting the average as 〈pj(t) − 1
N

({λi})〉RMT , we

can write
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〈p̃j(t)({λi})〉RMT =
1

N

N∑

n=1

pn(0)
N∑

l=2

Ωl−1
jn

∫
dλ2...dλl...dλNJ(λ2, ..., λN)λtl

=
1

N

N∑

n=1

pn(0)
N∑

l=2

Ωl−1
jn

[
1

N − 1

∫ +∞

−∞
dλλtρ(λ)

]

=
1

N(N − 1)

N∑

n=1

pn(0)
N∑

l=2

Ωl−1
jn .

[∫ +∞

0

∫ +π

−π
kdrdθ

rt exp [itθ]
π

2
r2 exp

(
−πr

2

4

)(
1

π
− δ(θ)

)]

=
k

N(N − 1)

N∑

n=1

pn(0)
N∑

l=2

Ωl−1
jn .2

1+tπ−
1
2
− t

2

[
Γ

(
3 + t

2

)

− Γ

(
3 + t

2
,
π

4

)](
−1 +

2 sin[πt]

πt

)

=
k

N(N − 1)

N∑

n=1

pn(0)(−1)21+tπ−
1
2
− t

2

[
Γ

(
3 + t

2

)

− Γ

(
3 + t

2
,
π

4

)]
(−1)

=
1

N

21+tπ−
1
2
− t

2(
−e−π/4 + erf

[√
π

2

])
[
Γ

(
3 + t

2

)
− Γ

(
3 + t

2
,
π

4

)]

=
1

N

1(
−e−π/4 + erf

[√
π

2

])
(

2√
π

)1+t

γ

(
3 + t

2
,
π

4

)
(4.21)

∀ t > 0

For the behaviour of N〈p̃j(t)({λi})〉RMT for large time t, we make use of the

identity for large a (6= 0,−1,−2, ...) and fixed z, [DLMF 2010]

γ (a, z) = zae−z
∞∑

k=0

zkΓ(a)

Γ(a+ k + 1)
(4.22)

After a little algebra,

N〈p̃j(t)({λi})〉RMT ≈ π

4

e−
π
4(

−e−π/4 + erf
[√

π
2

])
[

2

3 + t
(4.23)
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Figure 4.2: With time p becomes more and more uniform, for three different N
values the curves show how fast the uniformity sets in with time.
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Figure 4.3: After absorbing N in 〈p̃j(t)({λi})〉RMT , the exact time dependence
and first two term of asymptotic series expansion is plotted, in inset the differ-
ence between the two in % is plotted. It is clear that the convergence of the
series is very fast. Asymptotically, the time dependence is given by ∼ constant

t+3
.

In the above we have used,

Γ(a) =

∫ ∞

0

ta−1e−tdt Γ(a, z) =

∫ ∞

z

ta−1e−tdt

γ(a, z) =

∫ z

0

ta−1e−tdt with Γ(a) = Γ(a, z) + γ(a, z).
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As we have mentioned earlier, that modulus of eigenvalue are distributed as

Wigner-like distribution, the proportionality constant k has been evaluated by

normalizing the distribution of all eigenvalues except 1, to number of eigenvalue

(N-1).

∫ +∞

−∞
dλρ(λ) = k

∫ 1

0

∫ +π

−π
rdrdθρ(r)ρ(θ)

(N − 1) = k

∫ 1

0

∫ +π

−π
drdθ

π

2
r2 exp

(
−πr

2

4

)(
1

π
− δ(θ)

)

k =
(N − 1)(

−e−π/4 + erf
[√

π
2

]) (4.24)

Let’s note that θ = 0 is the case for first eigenvalue which we have excluded from

the joint probability distribution function. Hence the density of this angle (δ(θ))

is excluded from the uniform density of θ, valid for the rest of the eigenvalues.

The time dependence of 〈p̃j(t)({λi})〉RMT is shown in Fig.4.2. We see that

all the probabilities tend to 1/N , thus the evolution of the walk is shown to

produce a non-equilibrium steady state with maximum entropy given by logN .

This is not surprising.

4.4 Summary

Using the distribution functions obtained for random cyclic matrices in Chapter

2, we have applied in a problem of random walks of statistical mechanics. We

trivially generalized the biased random walk as an eigenvalue problem and have

shown that the transfer matrix is cyclic matrix. Once we demand that jump

probabilities are random in nature, this has been cast as biased random walk in

disordered lattice. The evolution of entropy has been calculated and expectedly

found as logN . Importantly, the rate of approach to equilibrium for ensemble

averaged jump probabilities has been shown to follow 1/t law. The point to
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note is that any other form of randomness or bias can be modeled using the

general scheme here by a suitable modification of the distribution of matrix

elements. The main advantage is the simplicity of the treatment given here.

We may recall the usual process where one sets up a master equation with

a non-Hermitian Hamiltonian [Mallick 2009] and solves for the steady state

solution to study the approach to equilibrium.
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5.1 Introduction

Sports and finance interest most, if not all, of the human beings and conse-

quently, the records set (or broken) in various events. How we long for a partic-

ular record to be set by our favourite sportsman or when the sensex reaches the

height it has never touched before. Similarly for engineers in designing a dam,

one of the most important data is when and by how much the river level has

exceeded it’s all the previous levels; similar questions are asked about rainfall

when the planning for agricultural policies is taken up. Naturally, these are the

requirements which have got first few applications of study of the events which
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exceed themselves in some aspect and are often called as “Record”. Questions

about how the records increase with time, or the number of records set, are of

natural interest in all these contexts and have been studied [Gembris 2002,Vo-

gel 2001, Redner 2006]. A mathematical theory of records for i.i.d. random

variables has been developed [Renyi 1962,Glick 1978,Arnold 1998]. The physics

applications started a little later, but have found use in various problems from

random walks, spin-glasses, Type II super-conductors. In this thesis, we have

applied the record statistics in quantum chaos. Now to define records more

precisely, given {xt, t = 1, · · ·N} as a finite time series, the first element, R1,

of the corresponding records series is x1 itself and at subsequent times t it will

be Rt = max(xt, Rt−1). As xt is a random variable, so is Rt and properties of

this random variable is of interest.

Some of the recent works concerning random walks and records are now

reviewed here. In case of random walks, xt represents the position of a random

walker at a time step, t. For discrete time step, and, the jump-lengths drawn

from an i.i.d. symmetric distribution, probability P (M,N) of M records in

t = N steps is given by

P (M,N) =

(
2N −M + 1

N

)
2−2N+M−1, M ≤ N + 1 (5.1)

with mean 〈M〉 ∼ 2√
π

√
N . Age statistics of record i.e., how long a record

survives before it is broken, is given by 〈l〉 ∼ N
〈M〉 ∼

√
πN
4

[Majumdar 2008]. In

case of continuous time random walk, i.e. when position of a random walker is

now observed at equal discrete time steps with time interval τ0, the probability

of finding M records within a given time duration t, P (M, t) attains a scaling
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form given as,

P (M, t) ∼ (t/τ0)−α/2gα
(
M(t/τ0)−α/2

)

gα(x) =
2

α
x−(1+2/α)Lα/2(x−2/α), 0 < α ≤ 1,

(5.2)

where Lα/2(x) is one-sided Lévy stable probability distribution function. The

moments of records, asymptotically goes as

〈Mν〉 ∼ (2/α)Γ(ν)

Γ(να/2)
(t/τ0)να/2. (5.3)

The mean-age of the record is

〈l〉 = 〈t/M〉 ∼ τ0(α/2)

Γ(1− α/2)
[ln(t/τ0)−Ψ(1− α/2)](t/τ0)(1−α), (5.4)

where Ψ(x) is di-gamma function [Sabhapandit 2011]. In another generaliza-

tion, the record distribution for a random walk with discrete time steps but

asymmetric jump distribution, has been calculated for the model governed by

xn = xn−1 + ξn + c with ξn being the jump length with symmetric distribution

while c is the constant drift. For Gaussian jump distribution with variance σ,

in the limit of small drift (smallness is compared with respect to c = 0 case)

i.e.
(
c
σ
<< 1√

n

)
, the mean number of records and record rate (i.e. probability

of nth event being a record), is given by,

〈Mn(c)〉 ≈ 2
√
n√
π

+
c

σ

√
2

π
(n arctan(

√
n)−√n),

Pn(c) ≈ 1√
πn

c

σ

√
2

π
arctan(

√
n).

(5.5)

In the large drift limit, Pn(c) approaches a constant value [Wergen 2011].

The geometric feature of random systems such as size of the largest cluster

in percolation on a finite lattice of size N , has been shown to follow Gumbel
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distribution in the large-N limit [Bazant 2000]. In Type-II superconductor,

temperature independence of magnetic creep rate i.e. rate of change of magnetic

field in the sample at a constant temperature for a range of temperatures has

been understood in terms of record dynamics, namely, the dynamical properties

of the times at which a stochastic fluctuating signal (in this case thermal noise

due to non-zero temperature) establishes records. This puzzling temperature

independence of the creep rate, which at non-zero temperatures has its origin

due to thermal fluctuations, has been sorted out by showing that the process

of vortex penetration into the sample can be described in terms of a Poisson

process with logarithmic time argument, called the log-Poisson process; a result

from record dynamics [Oliveira 2005]. The application of record statistics in

case of quantum chaos has been treated in [Srivastava 2013] and the details of

this work will be subject matter of current chapter.

This chapter focusses on record statistics of random vectors and this is com-

pared to the record statistics of eigenvectors of a quantized dynamical system,

the standard map. For this purpose, we will derive the exact record statistics

for complex random vectors, correlated via the normalization. It is known that

the eigenstate intensities in fully chaotic systems with no particular symmetries

are conjectured to behave exactly as these random vectors subject only to a

normalization constraint. These are also the statistical properties of eigenvec-

tors of the classical ensembles of random matrix theory. For chaotic systems,

the applicability of random matrix theory [Mehta 2004,Brody 1981] has been

well appreciated for long [Bohigas 1984]. As we will discuss in detail in Sections

5.4 and 5.5 that in standard map the breaking of last KAM torus allows the

diffusion in phase space and diffusion being connected with random walks, we

expect and indeed observe the average number of records in eigenvectors to

go as square-root of N . In fact this is first known instance where K values
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at which the last KAM torus breaks has been seen in a quantity derived from

quantum mechanical spectrum.

5.2 Record statistics

5.2.1 Definition

Let’s take a time-series {X1, X2, · · ·Xn}. An entry Xj will be defined as an

upper (a lower) record if

Xj = max (min){X1, X2, · · ·Xj}.

To illustrate the definition of records, let’s take a time series consisting of

just six elements, X = {0.8, 0.6, 0.3, 0.9, 0.4, 0.5}. Corresponding upper record

sequence will be R = {0.8, 0.8, 0.8, 0.9, 0.9, 0.9} while lower record sequence

will be {0.8, 0.6, 0.3, 0.3, 0.3, 0.3}. Let’s note that first element will always be

record no matter whether we are looking for upper or lower record and in gen-

eral records are fewer. From the definition of record, it is clear that last upper

(lower) record is also the global maximum (minimum) of the sequence {Xj}.

Hence, the statistics of last record will correspond to similar results of maxi-

mum or minimum from extreme value theory. A word of caution is warranted

here, as second last upper (lower) record will not be the second maximum

(minimum) of the sequence. This can be easily understood by visualizing a

sequence where global maximum (minimum) occurs before second maximum

(minimum). As in that case, record statistics will not sense the presence of sec-

ond maximum (minimum). To develop more familiarity with record sequence,

let’s take sinx, 0 ≤ x ≤ 2π as an example. In the range [0, π/2] the upper

record sequence is sinx itself and beyond that the entries will be constant 1.
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5.2.2 Independent and identically distributed (i.i.d.) ran-

dom variables

Consider entries of {Xj} being independent and identically distributed ran-

dom numbers. As we have exchangeable entries, symmetry of the sequence

determines the probability of Xj being a record to be 1/j at the jth trial

[Renyi 1962,Arnold 1998]. Consider temperatures in a particular city, despite

all the fluctuations, it is clear that it beats its own record. In a formal language,

the process of setting a record is persistent. Let’s denote the number of record

in a sequence of length n by Nn, then above statement can be rephrased as

Nn → ∞ with length of sequence n → ∞. To prove this let’s consider that in

a sequence of length n1 + n2, all the records have occurred in the first batch of

length n1; then, since there is no record set from n1 to n1 + n2, the probability

can be calculated as

(
1− 1

n1 + 1

)(
1− 1

n1 + 2

)
· · ·
(

1− 1

n1 + n2

)

and hence

P{Nn1 = Nn1+n2} =
n1

n1 + n2

.

Now by increasing n2 this value can be made arbitrarily small. Let’s take r

such batches of lengths n2, n3, · · ·nr+1; for an arbitrary ε > 0,

r∑

k=1

P{no record value in kth batch} = r(ε/r) = ε.

But the probability of obtaining at least r records in a sequence with length

n > n1 + n2 + · · ·+ nr, is then

P{Nn ≥ r} ≥ P{at least one record occurs in r batches}
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= 1− P{at least one bacth has no record}

≥ 1−
r∑

k=1

P{no record value in kth batch}

> 1− ε

As ε is small, so P{Nn ≥ r} → 1 for arbitrary large number r. This proves the

assertion [Glick 1978].

The next natural question is about the frequency of record breaking, Let’s

define an indicator function

Ij =





1 if there is a record at j ,

0 otherwise.
(5.6)

Calculating the expected value of Ij is equivalent to calculating the probability

of Ij taking the value 1, but this is precisely the probability of Xj being the

record- which is 1/j. Similarly, for variance, we note that expected value of

I2
j is the same as expected value of Ij. This immediately give the variance

as 1/j − 1/j2. Another important property of Ij being pairwise uncorrelated

(statistically independent) can be proven as follows,

〈IjIk〉 = P{Ij = 1 and Ik = 1}

= P{Xj = max{X1, · · ·Xj} and Xk = max{X1, · · ·Xk}}

= P{Xj = max{X1, · · ·Xj} < max{Xj+1, · · ·Xk} = Xk}

= P{Xj = max{X1, · · ·Xj}}×

P{Xj = max{X1, · · ·Xj} < Xk = max{X1, · · ·Xk}}

× P{max{Xj+1, · · ·Xk} = Xk}

=
1

j

k − j
k

1

k − j =
1

jk
= P{Ij = 1}P{Ik = 1} = 〈Ij〉〈Ik〉.

(5.7)
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In other words the probability of the position of the records is a Bernoulli

process, Ber(1/j).

As the total number of records Nn in a sequence {X1, X2, · · ·Xn} is
∑n

j=1 Ij,

the expectation and variance can be easily calculated:

〈Nn〉 =
n∑

j=1

〈Ij〉 =
n∑

j=1

1

j
= Hn, nthHarmonic number

V (Nn) =
n∑

j=1

V (Ij) =
n∑

j=1

1

j
−

n∑

j=1

1

j2
.

(5.8)

A remarkable, well-known fact from the theory of records is that for i.i.d. vari-

ables these quantities are distribution-free, that is independent of the particular

underlying distribution p(x) [Arnold 1998]. For example the average number of

records 〈Nn〉 = Hn ∼ log(n) + γ is indeed very small compared to the length n

of the data set; typically records are rare events. In next section onwards, we

will change the notation from Nn to NR.

5.3 δ-correlated variables

5.3.1 Upper records for complex random vectors

For a correlated sequence, let the probability density for a record variable R,

at time t be P (R, t). The average record is given by 〈R〉 =
∫
dRRP (R, t). Let

P (x1, . . . , xN) be the JPDF of N random variables. The probability that the

record at time t, Rt, is less than R is given by

Q(R, t) =

∫ R

0

dx1 · · · dxtPt(x1, ...xt) (5.9)

where Pt(x1, . . . , xt) =
∫
P (x1, . . . , xN) dxt+1 · · · dxN is the marginal JPDF of

the first t random variables. It follows that P (R, t) = dQ(R, t)/ dR.
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Let’s specialize in the δ correlated random variable i.e. sum of the random

sequence entries are constant. Components of normalized complex random

vectors zn = 〈n|ψ〉, have the JPDF:

P (z1, z2, . . . , zN) = (Γ(N)/πN)δ

(
N∑

j=1

|zj|2 − 1

)
. (5.10)

This is also the distribution of the components of the eigenvectors of the GUE

or CUE (Gaussian or Circular unitary ensembles) random matrices. It is the

invariant uniform distribution under an arbitrary unitary transformations on

the 2N −1 dimensional sphere. It is the unique (Haar) measure on S2N−1. The

normalization provides correlation among the components that becomes weak

for large N . The intensities xi = |zi|2 being the random variables of interest it

is more useful to define the JPDF directly in terms of these:

P (x1, . . . , xN ;u) = Γ(N)δ

(
N∑

i=1

xi − u
)
, (5.11)

where u is an auxiliary quantity, the actual JPDF corresponding to u = 1.

Defining

Q(R, t;u) =

∫ R

0

dx1 · · · dxt
∫ ∞

0

P (x1, . . . , xN ;u) dxt+1 · · · dxN (5.12)

leads to

∫ ∞

0

e−suQ(R, t;u) du =
Γ(N)

sN

t∑

m=0

(−1)m
(
t

m

)
e−smR. (5.13)

Using the convolution theorem, and then setting u = 1 in Q(R, t;u) gives

Q(R, t) =
t∑

m=0

(−1)m
(
t

m

)
(1−mR)N−1Θ(1−mR). (5.14)
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Hence

P (R, t) =
t∑

m=1

(−1)m+1

(
t

m

)
m(N − 1)(1−mR)N−2Θ(1−mR), (5.15)

the probability density that the record is R at time t. Note that P (R,N) is the

probability density that the maximum value of the entire data set is R, which

was calculated for the case of random GUE vectors in [Lakshminarayan 2008]

and therefore P (R, t) here is a generalization. The piecewise smooth probability

distribution found there has a similar behaviour here.

It was shown in [Lakshminarayan 2008] that P (R,N) is Gumbel distributed

asymptotically. In fact the generalization presented in Eq. 5.14 is also Gumbel

distributed for large N , as for large N and large t� 1

Q(R, t) ≈ (1− exp(−NR))t ≈ exp (−t exp(−NR)) . (5.16)

Since the Gumbel distribution is of the form exp[− exp(−(x − aN)/bN ] where

aN and bN are the shift and scaling. It follows that for the record statistics the

relevant parameters are aN = log(t)/N and bN = 1/N . The shift generalizes

from log(N)/N for the maximum, while the scaling remains the same. The

above form also appears in the limit when the correlations are ignored.

The average record as a function of time is

〈R(t)〉 = 1−
∫ 1

0

Q(R, t) dR =
1

N

t∑

m=1

(−1)m+1 1

m

(
t

m

)
=
Ht

N
=

1

N

t∑

k=1

1

k
,

(5.17)

where Ht is a Harmonic number as defined above. Known asymptotics of the

Harmonic numbers implies that

〈R(t)〉 =
1

N

(
γ + ln(t) +

1

2t
−
∞∑

k=1

B2k

2k t2k

)
, (5.18)
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where B2k are Bernoulli numbers, and γ is the Euler-Mascheroni constant.

Again, this presents a generalization of the average maximum intensity found

in [Lakshminarayan 2008] which corresponds to t = N .

It is not hard to prove that for intensities of random states too, the prob-

ability of the position of the records is a Bernoulli process although they are

correlated by the normalization constraint. Let there be records at positions

(j1 = 1 < j2 < · · · < jm) and let IJk = 1 if there is a record at jk or 0 otherwise.

Then the JPDF

Prob(Ij1 = 1, Ij2 = 1, . . . , Ijm = 1) =

∫

C
P (x1, . . . , xN ;u = 1)dx1 · · · dxN =

m∏

k=1

1

jk
.

(5.19)

Here C is the set of constraints: 0 ≤ xk ≤ xj2 , j1 ≤ k ≤ j2 − 1; 0 ≤ xk ≤ xj3 ,

j2 ≤ k ≤ j3 − 1; · · · , 0 ≤ xk ≤ xjm , jm−1 ≤ k ≤ jm − 1; 0 ≤ xk ≤ 1,

jm ≤ k ≤ N . The above result follows on using the Laplace transform to

free the constraint in Eq. 5.11. The details of the derivation is presented in

Appendix A. However this is the result for i.i.d. random variables, and implies

that the occurrence of a record at jk is an independent process, as the above

is valid for all arbitrary choices of the locations jk. Hence Prob(Ij = 1) = 1/j

and Prob(Ij = 0) = 1− 1/j, in other words the process is Ber(1/j).

The average number of records is thus

〈NR〉 =

〈
N∑

j=1

Ij

〉
=

N∑

j=1

1

j
= HN , (5.20)

while as a random variable NR has a distribution essentially given by the sign-

less Stirling numbers of the first kind, some times called the Karamata-Stirling

law [Nevzorov 1987]. Such laws hold for a variety of disparate processes in-

cluding the number of cycles in a random permutation of N objects, number of
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nodes in extreme side branch of random binary search trees etc. [Bai 1998]. Be-

ing distribution-free, the number of records is a statistics that directly detects

correlations.

The probability that the final record, which is the maximum in the en-

tire data sequence, lasts for time m can also be simply calculated: denoted

SN(m) = P (IN = 0, IN−1 = 0, · · · , IN−m+2 = 0, IN−m+1 = 1) = 1/N , it is

(somewhat surprisingly) independent of m, and uniform. This implies that the

position at which the maximum occurs is uniformly distributed. The implica-

tions of this for quantum chaotic wavefunctions where strong scarring effects

of classical periodic orbits can affect the maxima of states is of natural inter-

est [McDonald 1979,Heller 1984,Biswas 1990,Kudrolli 1995,Laurent 2007].

Let’s move on to TN(m) which is “Probability” that life-time (length) of

records is m in the string of length N . Records of exactly length m occurs as

RLL . . . L︸ ︷︷ ︸
m

R except when last entry in the string is not R i.e. RLL . . . L︸ ︷︷ ︸
m

.

Now if the first R is at position j the probability of RLm−1R is

1

j

(
1− 1

j + 1

)
. . .

(
1− 1

j +m− 1

)
1

j +m
=

1

(j +m− 1)(j +m)

=
1

j +m− 1
− 1

j +m

As the occurrence of RjL
m−1R at different j are exclusive events, and so is

the event RjL
m−1, so

TN(m) =
N−m∑

j=1

1

j +m− 1
− 1

j +m
+

1

N
=

1

m
.

5.3.2 Lower records in complex random vectors

The question of a record minimum can be asked in a similar way, the cumulative

density function for a record minimum, i.e. the probability that the record is
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“greater” than R at a time t is given by

Q(R, t) =

∫ ∞

R

dx1 · · · dxtPt(x1, . . . , xt) (5.21)

where P (x1, . . . , xN) is JPDF of N random variables, and Pt(x1, . . . , xt) is the

JPDF of t random variables given by
∫
all range

P (x1, . . . , xN) dxt+1 . . . dxN .

From Q(R, t) we can get P (R, t) as

P (R, t) = −dQ(R, t)

dR
. (5.22)

It is not difficult to calculate the probability distribution of record minima

in the case of a complex random vector, essentially following the same technique

as in the case of maximum records,

Q(R, t; s) = Γ(N)e−s
∑t
i=1 ri

[
t∏

i=1

∫ ∞

R

drie
−sri

][
N∏

i=t+1

∫ ∞

0

drie
−sri

]

=
Γ(N)

sN−t
e−sRt

st

Using identity 5.33 and then replacing u by 1, we get

Q(R, t) = (1−Rt)N−1Θ(1−Rt) (5.23)

Density,

P (R, t) = −dQ(R, t)

dR
= (N − 1)t(1−Rt)N−2Θ(1−Rt) (5.24)

and average record as a function of t can be easily found

〈R(t)〉 =

∫
RP (R, t) dR
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=

∫ 1/t

0

R(N − 1)t(1−Rt)N−2 dR

=
1

Nt
. (5.25)

Again this generalizes the results obtained in [Lakshminarayan 2008]. For large,

N limit Q(R, t) is again exponential and for t = N , it retrieves all the results

obtained in [Lakshminarayan 2008]. It is easy to show (by just changing the

conditions and hence the limits in appropriate integrations) that these are also

Bernouli process, Ber (1/n) and hence all the results for survival probability,

lifetime distribution etc. remains same in this case too.

Attention is now turned from random vectors to eigenfunction of a quantum

dynamical system that is chaotic in the classical limit. As the standard map is a

simple dynamical system which has a well-studied transition to chaos through

the usual route of smooth Hamiltonian systems it will be a good model to

study. It also allows breaking parity and time-reversal symmetries through

quantum phases and hence allows for studying GUE, GOE, (or CUE, COE),

as well as intermediate statistics. Before discussing the record statistics for

eigenvectors we are summarizing some aspects of the standard map pertaining

to quantization and the intensity distribution of its eigenvectors.

5.4 Standard map

The Hamiltonian of δ-kicked rotor is given by

H(q, p, t) =
p2

2
− g

4π2
cos(2πq)

∞∑

n=−∞

δ (t/T − n) . (5.26)
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The Hamilton’s equations of motion are

q̇ =
∂H

∂p
= p,

ṗ = −∂H
∂q

= − g

2π
sin(2πq)

∞∑

n=−∞

δ (t/T − n) . (5.27)

To integrate the Eq. 5.27 over the one time period T , let’s choose t0 = 0+ which

will help to find out the stroboscopic map after each kick. In order to find the

relation between (q+
n , p

+
n ) and (q+

n+1, p
+
n+1), it is clear that momentum does not

change after nth and before (n+ 1)th kick, it changes abruptly at (n+ 1)th kick

while position changes in between after nth and before (n + 1)th kick. After

re-scaling Tp→ p and T 2g → K, this gives the relation ,

qn+1 = (qn + pn) mod 1,

pn+1 = pn −
K

2π
sin(2πqn+1). (5.28)

which is popularly known as Chirikov-Taylor map or Standard map. The fixed

points of this map are (0, 0), (1/2, 0), stability analysis shows that (0, 0) is stable

fixed point while (1/2, 0) is unstable. In addition, this is an area-preserving

map. Cyclic property of q endows phase space with the topology of a cylinder.

Let’s give a boost of unity to momentum, and then we observe that due to

mod 1, evolution of q is not affected and because of this and periodicity of the

sinusoidal function, evolution of p also remains invariant. Hence translational

boost by n ∈ Z is a symmetry of the Standard map. This allows one to take the

modulo 1 for momentum as well and hence endows the topology of torus to the

phase space. Similarly, it also enjoys a discrete symmetry of reflection about

the centre of square i.e. p→ (1−p), q → (1− q). In the limit K = 0, this map

is completely integrable and with the increase in K, destruction and creation
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of invariant surface (i.e. KAM tori) takes place. About K ≈ 1, the last KAM

torus breaks, allowing global diffusion in the momentum space. If the standard

map is unfolded to a cylinder it displays normal diffusion in momentum for

large enough K. When K � 5, the classical map is essentially fully chaotic. In

Fig. 5.1, phase space of standard map for different K values are drawn. While

for small K(0.3), the phase space seems to constitute only invariant curves,

K = 10 display phase space completely filled with points only (a hard chaos

region) and K = 1 and 5 seems to represent the transition.
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Figure 5.1: Phase space for different K values.

To study the quantum mechanics of such systems is what essentially defines

the subject area of “Quantum Chaos” or “Quantum Chaology”. Naturally quan-

tization of such maps will be the first step. Analogous to (5.28), Heisenberg

equations can be integrated to yield similar equation for the operators. Due to

the δ-kicks, the duration of a kick is zero -this allows the integration of com-

mutators between q̂ and p̂ to become zero. For standard map on the plane, it
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is easy to see that corresponding unitary operator will be [Izrailev 1990],

Û = exp

(
− igT

2π2~
cos(2πq̂)

)
exp

(
−iT

2~
p̂2

)
. (5.29)

Due to periodicity in momentum and cyclic nature of position variable, the

natural phase space will be [0, 1)× [0, 1) so this map needs to be quantized on

torus. Due to periodicity of both the variables, quantum mechanics is to be

done in finite dimension. A very illustrative description can be found in the

notes [Lakshminarayan 2009]. The quantized standard map in position basis

on torus takes the form,

Unn′ =
1

N

N−1∑

m=0

exp

[
−iπ (m+ β)2

N
+ 2πi

(m+ β)

N
(n− n′)

]

× exp

[
i
KN

2π
cos

2π(n′ + α)

N

]
. (5.30)

β and α are the phases which a state acquires along position and momentum

directions respectively. For periodic boundary conditions, β is 0 while for anti-

periodic, β is 1/2. For all other β values, time-reversal symmetry is broken. A

similar role is played by α for parity symmetry.

We will focus for the case, β 6= 0 and α 6= 0, 1/2 when we can expect

that both the time-reversal symmetry and parity symmetry are broken and the

typical eigenstates would be like complex random states.

To develop more familiarity about the intensities in different eigenfunctions

of Standard map, we have plotted them in Fig. 5.2 for K = 0.3, 0.7 and 5. It

is clear that up to K = 1, intensities are (almost) symmetric about p = 1/2

despite α being 0.25. This will have an impact when different aspects of record

statistics of intensity vectors are considered. Again, to develop the intuition in

building up of various eigenfunctions on classical phase space structures, the
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various eigenfunctions in coherent representation for K = 0.3 is shown in Fig.

5.3, alongside the classical phase space of standard map at the same parameter

value. The various classical structure on which these states are built up can be

clearly identified.

5.4.1 Intensity Distribution

Let’s briefly recall the intensity distribution expected from random matrix the-

ory for a complex random state. Constrained only by normalization, the joint

probability distribution function is given by Eq. 5.10. Laplace transform of Eq.

5.11 is given by

L(P ) = P (x1, . . . , xn; s) =

∫ ∞

0

e−usP (x1, . . . , xn;u)du. (5.31)

To find the reduced JPDF depending only on first t variable, we need to inte-

grate over xt+1, · · · , xN ,

P (x1, . . . xt; s) = Γ (N) e−s
∑t
i=1 xi

[
N∏

i=t+1

∫ ∞

0

dxie
−sxi

]

=
Γ (N)

sN−t
e−s

∑t
i=1 xi .

For t = 1, reduced JPDF gives density distribution of the intensity of eigenvec-

tors of the standard map,

ρ(x, s) =
Γ (N)

sN−1
e−sx,

ρ(x) = (N − 1)(1− x)(N−2)Θ(1− x) (5.32)
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Figure 5.2: For different K value Husimi function, |〈q, p|ψ〉|2, of representative
states and respective intensity plots are shown where |q, p〉 is coherent state
which has been calculated following reference [Saraceno 1990]. Parity seems
to be hold good for lower K values despite the value of α being 0.25 (i.e.
maximally broken parity).
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Figure 5.3: Phase space plot of standard map at K = 0.3 and Husimi function
plot of various eigenfunctions of quantized standard map with same K.
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where we have made use of the identity given in Eq. 5.33 for evaluating the

inverse Laplace transform

L−1[e−asG(s)] = Θ(u− a)g(u− a) where G(s) = L[g(u)]. (5.33)

As the expected value of each intensity component is 1/N , it will be convenient

to transform to normalized variable y = Nx, and in the limit N → ∞; this

becomes the exponential distribution,

ρ(y) = e−y. (5.34)

For N = 2048, 2050, 4096, 4098, it is shown in Fig. 5.4. Except the tail region,

it matches very well with the exponential distribution.
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Figure 5.4: Intensity distribution for eigenvectors of standard map at K = 10,
α = 0.25, β = 0.25 for different N = 2048, 2050, 4096, 4098.

It is interesting to now talk about what is happening in the tail region, what

is the distribution of these large intensities? Is there a pattern in observing the

higher and higher intensities as we go along the index of eigenvectors? What

is the probability of occurrence of maximum intensity in, say middle of the

eigenfunction? These are some questions that we will be addressing in the

remaining part of the chapter utilizing the results obtained in Section 5.3.
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5.5 Record statistics for standard map eigenvec-

tors

For large K quantum eigenstates of standard map follow the CUE/GUE or

COE/GOE results depending on the value of the phases α and β. If β 6= 0

and α 6= 0, 1/2 we can expect that both the time-reversal symmetry and parity

symmetry is broken and the typical eigenstates would be like complex random

states.

The dimensionality of the Hilbert space N is the inverse (scaled) Planck

constant. Thus the “data” in this case are the various eigenfunctions and espe-

cially their intensities. The upper records, created in “time” are the peaks of

the eigenfunctions that outdo all the intensities prior to it as we increase the

index of the eigenfunction component. Clearly this can in general depend on

the space in which the eigenfunctions are represented. Thus for small values of

K we expect there to be many localized states in the momentum space while

being nearly uniformly distributed in the position, and this will reflect in any

studies of records or extremes. However for large K, position or momentum

basis will be equivalent up to fluctuations.

The average upper record as a function of the index, normalized by the

dimension of the Hilbert space (which acts as “time” for these vectors), for

various values of K is plotted in Fig. 5.5a. While this agrees well with the

random states result in the chaotic region, there are interesting deviations in

the mixed phase space regime of K < 5. For example when K (= 0.3), in

the position space most of the records are set up by t/N = 0.5 originating in

the very weakly broken parity symmetry. There are significant deviations from

the random state even for K = 5, while for K = 10 these disappear. The

momentum space average records are somewhat similar but mostly lie above
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Figure 5.5: The average upper record 〈R(t)〉, from the ensemble of eigenstates
of the quantum standard map. The parameters used are N = 400 and K = 10
(highly chaotic), K = 5 (mostly chaotic), K = 1 (mixed phase space), and
K = 0.3 (mostly regular). The analytical curve refers to the random state
result in Eq. 5.18. In all cases α = β = 0.25.

the random state result and are not affected as much by the weakly broken

parity symmetry due to their localization (see Fig. 5.5b). A similar picture

appears with lower records as well, the results of random vector is followed for

large K(= 10), while for smaller K the records themselves do not vary with

t as compared to chaotic cases. (see Fig. 5.6). As is clear that upper record

and lower record combined will give the variation of the values that function

assumes, let’s call it range, therefore in the case of standard map for smaller K

values (close to integrable regime), say K = 0.3, average range of the intensities

of eigenvectors is very small as compared to large K values (chaotic regime),

say K = 10 (See Fig. 5.5a and Fig. 5.6). This is consistent with semiclassical

analysis that for smaller value of K invariant rotation KAM tori are not broken

and therefore support wavefunctions with smaller range.

As has been previously discussed, the distribution of the upper (lower)

record at “time” t is Gumbel (exponential) for large N with appropriate shift

and scaling. It is shown in Fig. 5.7a (Fig. 5.7b) that indeed the upper (lower)

record for eigenfunctions of the quantum standard map in the classically chaotic
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Figure 5.6: The average lower record 〈R(t)〉lower record, from the ensemble of
eigenstates of the quantum standard map in position representation. The pa-
rameters used are N = 400 and K = 10 (highly chaotic), K = 5 (mostly
chaotic), K = 1 (mixed phase space), and K = 0.3 (mostly regular). The
analytical curve refers to the random state result in Eq. 5.25. In all cases
α = β = 0.25.

regime is Gumbel (exponentially)-distributed; also plotted is the distribution

for the “upper (lower) record” when t = N which refers to the maximum (min-

imum) intensity, thus recovering the earlier results of [Lakshminarayan 2008].

For small N , deviations from Gumbel are seen when the exact result P (R, t)

derived above is to be used; this is illustrated in the inset of this figure.

The distribution of the position of the maximum in the position represen-

tation is shown in Fig. 5.8a, where one can see a transition to the uniform

distribution along with the transition to classical chaos. The sharp peak at the

center for small K (here K = 0.3) is interesting and deserves further comment.

For small K, when there are many narrow classical resonances, a significant

fraction of eigenfunctions that are localized on separatrices possess maximum

intensity at or very close to q = 1/2. For instance, for N = 400 when K = 0.1

and 0.3, about 75% and 50% of states are peaked at q = 1/2. As we increase

K, more islands start appearing with turning points away from q = 1/2, and
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Figure 5.7: The distribution of the upper (lower) records when the index is t
for eigenfunctions of the quantum standard map with K = 10. After re-scaling
and a shift, the distributions are of the Gumbel (exponential) type. In case of
upper records for small N (see inset for upper record case) deviations are seen
from Gumbel and the exact formula for P (R, t) is to be used.

eigenstates localized in their interior, thereby the maximum intensity shifts

away from q = 1/2. This provides a qualitative mechanism leading to uniform

distribution for maximum intensity for large K. This qualitative explanation is

also well supported by the distribution of the position of minimum in the po-

sition representation. As we expect and indeed observe that most of the states

have their minimum around stable fixed point, i.e. q = 0 (see Fig. 5.8b. The

transition in classical behavior from integrable (K = 0), to mixed phase space

where islands of stability coexist within the stochastic sea (intermediate K), to

fully-developed chaos is well captured by the quantity SN(m). In the inset of

Fig. 5.8a is shown the maximum intensity of individual states (again N = 400)

vs their actual position. For K = 0.3, there are a large number of states which

have maximum intensity at q = 1/2 (index = 200). This manifests in the form

of the observed sharp peak. These get gradually destroyed on increasing K;

indeed such measures seem useful to pursue further in classifying states in the

mixed phase-space regime.

It has been shown above that for random N -dimensional vectors there are
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Figure 5.8: The distribution of the position of the last record set, which is also
the maximum in case of upper record and minimum in case of lower record, for
eigenfunctions of the standard map with N = 400 and for various values of K.
In Fig. 5.8b, inset shows a zoomed in view to clearly see the features of SN(m)
as function of m for various K values.

on the average ∼ logN + γ intensity records for both upper and lower. While

we can expect to see this for the standard map in the chaotic regime, the

mixed and near-integrable regimes show a marked departure. The correlations

lead to results that are similar to those for the random walks, with a power-

law scaling in N . The ratio of standard deviation of the number of records

to the average is found to be of order one, indicating non-stationarity of the

distribution. For very small K the number of records is simply O(N), as

the eigenfunctions are describable by smooth functions. In the mixed-regime,

and, when K < 1, a power-law along with a logarithmic dependance is clearly

indicated. Intriguingly, it is almost a pure power-law with exponent 0.5 at

the critical value K = 0.98. For moderate values such as K = 2.3 a clear

separation of the phase space into chaotic and regular regions and a subsequent

separation of the quantum spectra seems to make the numerical fits unstable.

Further, for very large K (say 9.8), the result from the random vector case

applies (Fig. 5.9a)and Fig. 5.9b. This reflects the changing nature of the

wavefunction intensities, and indicates that at criticality it is close to some
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kind of 1/f noise. Eigenvalue fluctuations in quantum chaotic systems are

known to have 1/fγ noise [Santhanam 2005a], and further work on the spectral

properties of intensities is therefore called for. The average number of records
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Figure 5.9: (a) Average number of record in eigenfunction of the quantum
standard map of lengthN vs N is plotted for variousK values. Solid line (except
K = 9.8) are fitted expression a log(N) + bN c, for K = 9.8 it is log(N) + γ. a,
b, c for different K values are,(I) K = 0.3, a = 0.45± 0.15, b = 0.306± 0.007,
c = 1.001 ± 0.003,(II) K = 0.9, a ≈ 0, b = 0.73 ± 0.06, c = 0.63 ± 0.01, (III)
K = 0.98, a ≈ 0, b = 1.2±0.2, c = 0.50±0.01 and (IV) K = 2.3, a = 0.9±0.3,
b = 0.7 ± 0.6, c = 0.21 ± 0.04. (b) For lower records representative fitted
expressions are put in legend. Here too as in case of upper records, at K ∼ 1
function N1/2 provides good fit.

as a function of K is presented in Fig. 5.10, where the effects of the scaling

in the mixed regime manifests. It is remarkable that while record numbers in

both, the momentum and the position representation, approximately converge

after K ≈ 2, it is only when K > 5 when there may be tiny islands (if at all)

that it returns to the result of the random vectors. These observations establish

the connection between classical dynamics in all the regimes with the record

statistics for the eigenvectors of the quantum standard map. Since the standard

map is a paradigmatic model, we believe this connection to hold generally.
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Figure 5.10: An appropriately scaled and shifted average number of records
〈NR〉 vs K for the eigenfunctions of the quantum standard map with N = 400.
In inset zooming up graph around K > 1.5 is plotted and a lot of structures
can be seen. It is only after K > 5, both representations converge to the result
obtained for random vector case.

5.6 Summary

In this chapter, we have derived results on upper (lower) records of intensi-

ties of correlated random vectors. Apart from deriving the average record, it

has been shown that the probability that a record appears at an index j is a

Bernoulli process, which is the same as for i.i.d. variables. The quantum stan-

dard map presents the scope of studying systems which possess increasingly

complex spectrum with the system parameter, K. For a quantum system with

random high-lying states, records’ statistics found in the Section 5.3 applies.

The study of position of the last record set in case of standard map, parameter-

ized by K suggests that beyond a certain value of K, the eigenvectors become

like random vectors insofar as the records of intensities is concerned. This is

also consistent with the finding where the number of records vs N goes through

a transition from linear to algebraic to logarithmic, as K increases. Remark-

ably, a signature of breaking of the last torus at K ' 0.98 is found to be in
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the exponent one-half in the power-law obeyed by the number of records. It

is very likely that the conclusions drawn on the quantum standard map would

hold for other quasi-integrable and mixed systems.
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6.1 Introduction

Quantum chaos presents an understanding of how classical dynamics of a sys-

tem manifests in its quantal behaviour. In this pursuit, a detailed study of

correlations among the energy levels has been undertaken and several uni-

versality classes have been identified. Based on the statistical correlations

of fluctuations in the energy level sequences, a highly successful theory in

terms of random matrices is already in place [Brack 2003, Mehta 2004, Re-

ichl 2004, Haake 1991]. Semiclassically, these fluctuation properties are stud-

ied in terms of periodic orbits by employing trace formulae [Gutzwiller 1990,
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Parab 1996,Heusler 2007]. Perhaps the most popular measure is the nearest-

neighbour level-spacing statistics [Reichl 2004, Haake 1991], P (S) giving the

frequency of occurrence of a certain spacing, S for a given spectrum of lev-

els. For generic integrable systems, it was argued by Berry and Tabor that

the spacing amongst the nearest neighbours is distributed in a Poissonian man-

ner [Berry 1977b]. It is observed that the fluctuation properties of energy

levels of quantized time-reversal invariant chaotic systems, either possessing

an additional continuous symmetry (like rotation) or with a broken rotational

symmetry but possessing an integral spin, agree with those of the Orthogonal

Ensemble of random matrices, exhibiting level repulsion as P (S) ∼ S, for small

S [Mehta 2004, Haake 1991, Bohigas 1984]. However, a linear level repulsion

is observed for quantized polygonal billiards [Date 1995,Grémaud 1998,Bogo-

molny 1999,Richens 1981] also when these are non-integrable and non-chaotic

(e.g.rhombus billiard) [Richens 1981, Eckhardt 1984, Jain 1995]. In addition,

there are some recent works where a linear level repulsion is obtained when

both parity and time-reversal invariance are broken where there exists a pseudo-

unitary symmetry [Ahmed 2003b,Ahmed 2003a,Jain 2008b,Jain 2009]. In ran-

dom matrix theory context, we have shown other examples of cyclic and reverse

cyclic matrices in Chapters 2 and 3 producing linear level repulsion.

There are other instances when fluctuation properties of the level sequences

are studied with quantities like fluctuations in average cumulative density of

states [Aurich 1994] and the conjectures given have been verified in experimental

data or numerically [Alt 1998]. In another work fluctuation in level sequences

has been treated as time-series and spectrum has been shown to display a char-

acteristic f−γ noise during order to chaos transition with γ related to classical

chaos in the system [Santhanam 2005b, Relaño 2002]. Further self-similarity

of the spectrum was studied and Hausdorff measure for the spectra of atoms
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and Gaussian ensemble has been calculated [Santhanam 2006]. Inspired by the

work of Arnold [Arnold 2008], in which he employed the stochasticity parameter

of Kolmogorov [Kolmogorov 1933] to number sequences for discussing inherent

randomness, we propose to study the fluctuation properties in cumulative level

density of quantum systems. In this work, we have shown that the probability

distribution function for the proposed measure falls in two different categories

for most of the level sequences studied. It is interesting to observe that the

sequences in one family originate from the integrable systems while the other

from classically chaotic systems. We have mostly considered billiards as the

models of our dynamical systems apart from studying the Standard map, the

Riemann zeros and the Gaussian Unitary Ensemble (GUE) of random matri-

ces. The statistic we propose has a long history for the independent, identically

distributed random variables. The limiting distribution for such random vari-

ables is the well-known Kolmogorov distribution, a well-documented subject of

study [Feller 1988,Kendall 1946]. It is well-known [Arnold 2008,Kendall 1946]

that the stochastic probability for a shorter sequence can be given if the limiting

distribution is known, an instance of this can be seen in [Arnold 2008] where

a comparison is made for two number sequences with just fifteen numbers on

the basis of the Kolmogorov distribution. We would like to derive the limiting

distributions analytically also, but this remains open.

The plan of this chapter is as follows. In Section 6.2, we present the defi-

nition of Kolmogorov stochasticity parameter, λ. Using the semiclassical trace

formulae for evaluating the oscillatory term, the stochasticity parameter is cal-

culated and compared with the numerical calculations using the eigenvalue se-

quences for different systems. Putting all these expressions together, we show

that λ scales with the length of the set of energy levels. In Section 6.3, we

present probability distribution functions (PDF) of λ for energy level sequences
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of different dynamical systems. We also present results for the zeros of the Rie-

mann zeta function, and, for the Gaussian Unitary Ensemble (GUE) of random

matrices. Finally, we conclude by showing that with these PDFs, we can dis-

tinguish the spectra from integrable and chaotic systems.

6.2 Kolmogorov stochasticity parameter

6.2.1 Definition

Consider a quantum system Si which possesses energy levels corresponding to

its bound states, E1 ≤ E2 ≤ . . . En. The cumulative density of levels is defined

as

N(E) =
n∑

i=1

giΘ(E − Ei) (6.1)

where gi denotes the degree of degeneracy of the level, Ei, and the sum over

the Heaviside step function represents the well-known staircase. The average

cumulative density of levels can be obtained by various methods for quantum

systems, be it the Thomas-Fermi method [Brack 2003] or via the Weyl formula

[Baltes 1976]. To be specific, we take simple systems that are illustrative and

popular in quantum chaos studies - the two-dimensional quantum billiards and

quantized maps.

To motivate the analogy deriving from the work of Kolmogorov, let us first

present the definition of this parameter, λKn as given by Arnold for real num-

bers, x1 ≤ x2 ≤ ... ≤ xn. Let the number of elements xi which are ≤ X be

given by an empirical counting function, Cn(X). Let us assume that there

is a theoretical counting function, C0(X) = n×(probability that an event

x ≤ X) [Arnold 2008]. The parameter is defined as

λKn = sup
X
|Cn(X)− C0(X)|/√n. (6.2)
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In analogy with the definition given by Kolmogorov [Kolmogorov 1933], let us

now introduce the stochasticity parameter in quantum mechanics,

λn = sup
E

|N(E)−N(E)|√
n

, (6.3)

with N(E) denoting the average, smoothed cumulative density of energy levels

[Baltes 1976,Balian 1970,Balian 1971]. In the large number of eigenvalue limit,

the difference N(E) − N(E) will be just the oscillating part of the density of

levels for which we can employ the trace formulae [Gutzwiller 1990] whenever

possible.

For completeness, we would like to recall that statistical investigations of

N(E) − N(E) have been carried out in the past, albeit with a different nor-

malization, as a measure of quantum chaos in spectra [Aurich 1994]. In these

studies, the measure was taken as

W (x) =
N(x)−N(x)√

∆∞(x)
(6.4)

where ∆∞(x) is the limit of the spectral rigidity, ∆3(L;E) as L → ∞. Let us

recall that spectral rigidity , ∆3(L) measures the mean square deviation of the

cumulative density N(E) from a straight line in an interval [E−L/2, E+L/2].

In [Aurich 1994], the discrete spectrum of a system {En} was studied in terms

of a variable x such that

xn = (En)α, with α =
1

2
for billiards (6.5)

It is important to note here that here too the studies are performed with

unfolded sequence of energy levels. It was shown that W (x) possesses a limit

distribution with zero mean and unit variance for bound, conservative and scal-
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ing systems. For classically (integrable) chaotic systems, the distribution was

expected to be (non-)Gaussian. These predictions were verified in a statistical

analysis of eigenmodes of a superconducting microwave billiards [Alt 1998]. For

a Bunimovich stadium, the three-dimensional Sinai billiard, and for Limacon

billiards, a Gaussian distribution was found. In contrast, for a two-dimensional

circular billiard, a non-Gaussian distribution was obtained.

Practically, to calculate λn for a given sequence of length n, the procedure

followed is sketched as follows:

1. sort the given sequence and calculate N(Ek)−N(Ek) for various Ek, k =

1, . . . n, where N(Ek) is number of eigenvalues less than or equal to energy

Ek and N(Ek) is the expected value of the same (calculated from Weyl’s

formula);

2. choose the maximum of the numbers calculated in step 1, and divide it

by
√
n where n being the length of the sequence. This is desired λn.

Our first task is to estimate the length of the sequence for systems which would

allow statistical errors that wouldn’t alter our main conclusions. To accom-

plish this, we have compared calculations of Eq. 6.3 from exact (analytically or

numerically obtained) density with the calculations based on the trace formu-

lae. The details of calculating eigenvalues for various systems considered here

and calculation of λn using trace formulae are presented in the Appendix B. In

this work, we have used Gutzwiller’s trace formula for billiard systems while a

Maclaurin series expansion (Selberg trace formula [Terras 1985]) for the Rie-

mann zeros. We see that even a finite sequence length of size 5000 reproduces

the behaviour obtained from trace formulae Fig. 6.1 quite well.

An important feature to note in the Fig. 6.1 are the prominence of disconti-

nuities in λn as a function of n for integrable cases as compared to chaotic ones.
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(a) rectangular billiard
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(b) circular billiard of unit radius
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(c) triangular billiard of side length 4
3
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(d) zeros of Riemann zeta function,the
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Figure 6.1: Stochasticity parameter calculated using the exact expression and
trace formula.

To understand this feature let’s take a re-look on the definition of λn itself. It

is clear that
√
n is providing the correct scaling to make λn bounded in large

sequence limit. The numerator as we have already discussed is supE |Nosc(E)|

is max of |Nosc(Ek)| for k = 1, . . . , n, but this is definition of record as we have

seen in Chapter 5. Hence, an irregularity occurs exactly at the point where

a new record is setup and in between two such instances the last record set

is being scaled by scaling factor
√
n. Number of discontinuities directly give

the number of records set. As we have seen in Chapter 5 that for integrable

system the number of records are given by power law in length of the sequence

while in chaotic case it is much weaker logarithmic dependance. This explains



122
Chapter 6. Kolmogorov stochasticity parameter as a measure of

quantum chaos

the comparatively smoother dependance of λn on n in case of Riemann zeros

(which behaves like chaotic system) as seen in Fig. 6.1.

6.2.2 Scaling

For the Riemann zeros, λn versus n (a log-log plot will be straight line, as

shown in Fig.6.2) suggests a power law behaviour. Surprisingly, we find a

similar behaviour for various systems. Moreover, on comparing each of them

with ∼ n−α, we extract a monotonically changing index, α varying from 0.15

for circular billiard to 0.44 for Riemann zeros with a value 0.34 for the chaotic

standard map. The values of this index are listed in Table 6.3. These show an

increasing trend as the system becomes classically chaotic.
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Figure 6.2: Stochasticity parameter for all the systems considered are displayed
here as a function of logarithm of the length of the sequence, n. This brings
out an interesting observation, λ scales as n−α and leads us to finding the best
fitted values for the index, α (R2 (goodness of fit parameter) varies from 0.80 for
circular billiard to 0.95 for Riemann zeros). As the systems become increasingly
stochastic, the value of the index increases.

To understand the scaling behaviour of λn with n, let’s take an extreme case

where |Nosc(E)| is such that largest fluctuation occurs for the first eigenvalue

itself, then in that case only one record is set and that is the λ1 then all the

λn will be given by λ1/
√
n and the scaling coefficient α will be 0.5. Due to



6.3. Probability distribution functions 123

setting up of more records α will come down from value half. As there are

more records in case of integrable system than chaotic cases or Riemann zeros,

α will be smaller in former case than latter. This provides the qualitative

understanding of ordering of α.

6.3 Probability distribution functions

For an ordered eigenvalue sequence of length n, for which we have n values of

λ which themselves are random, the probability distribution function of these

λns has been studied. The numerical evaluation of a probability distribution

function is summarized in the following steps:

• for an ordered sequence of length n, we can have n-subsequences of length

1, 2, . . . n, always starting from the lowest element and increasing by one

element;

• for each subsequence we calculate λ;

• this way, we end-up with n, λs and a histogram of these λs gives the proba-

bility distribution function (PDF) of λ for the sequence denoted by Φ′(λ).

The cumulative distribution function, Φ(Λ), is defined as,
∫ Λ

0
Φ′(λ) dλ.

For all the systems studied in this work, sequence length is kept fixed to 5000.

6.3.1 Integrable billiards

For the integrable billiards like circle, rectangle, and equilateral triangle, the

values of the stochasticity parameter, λ evaluated for n = 5000 are respectively

0.19, 0.13, and 0.12, all comparable; these values are stable with the length

of the sequence. Probability distribution functions of λ for the integrable sys-

tems are very close to each other (Fig. 6.3). The function, Φ′integrable(λ) ∼
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Table 6.1: A form c1 exp(−λβ) is fitted for the probability distribution function
Φ′(λ) for the class of integrable and almost integrable systems. The fitting co-
efficient, goodness of fit parameters and value of Φ′(Λ) at Λ = λ5000 is tabulated
here.

System Co-efficients Goodness
of fit

Λ = λ5000 Φ′(Λ)

Rectangle c1=4.163 (3.575,4.75),
β=3.196 (2.202,4.19)

SSE: 2.33,
R2: 0.8721

0.1365 1.1146

Circle c1=4.344
(3.907,4.781),
β=2.927(2.304,3.551)

SSE: 1.509,
R2: 0.9227

0.1900 1.1124

Triangle c1=4.703
(4.101,5.305),
β=3.826 (2.719,4.933)

SSE: 1.84,
R2: 0.9023

0.1212 1.1057

Rhombus c1=3.626
(3.534,3.718),
β=4.367(4.092,4.642)

SSE: 0.025,
R2: 0.9972

0.0436 1.0977

c1 exp(−λβ) fits the data reasonable well (for details, see the Table. 6.1)1. The

value of Φ at λ gives the stochastic probability of the level sequence and is listed

in Table 6.3 (It should be noted that the values quoted for the parameters are

the fitted values in the given range, but finally we have to normalize the fitted

function over zero to infinity and this normalized distribution will be used to

calculate Φ′(Λ). The numbers given in the text or Tables are obtained in this

manner).

6.3.2 Non-integrable systems

For the quantized standard map, Λstandard for 5000 levels is 0.0486. The function

that fits the probability distribution of Λ for standard map, Riemann zeros,

and eigenvalues of GUE are all close to each other, represented by (c + λ)−γ

where γ is about 3.6 - 4.4 (see Table6.2). We find the measure of stochasticity,

Φ(Λstandard) = 0.4862. Further, on considering zeros of Riemann zeta function,
1SSE is sum of squared error which measures the total deviation from fit value, while R2

measures the success of the fit in explaining the variation of the data.
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Figure 6.3: The probability distribution functions of the stochasticity parameter
are shown for three integrable billiards, viz. circle (solid), rectangle (dashed),
and equilateral triangle (dot-dashed). For these billiards, the distributions have
been fitted to a functional form, c1 exp(−λβ)), with (c1, β) taking values (4.344,
2.927), (4.163, 3.196), and (4.703, 3.826) for circle, rectangle, and equilateral
triangle respectively.

Λζ = 0.0315 and Φ(Λζ) = 0.3775. These are more than twice compared to the

values for integrable case (see Table 6.3). Since it is very well-known that the

fluctuation properties of Riemann zeros agree with those of the eigenvalues of

unitary ensemble of random matrices, we have also calculated the stochasticity

parameter and its distribution for them. We find ΛGUE = 0.035, fitting function

is identical and Φ(ΛGUE) = 0.4028. For the π/3-rhombus billiard, classical

phase space surface is topologically equivalent to a sphere with two handles

Table 6.2: A form (c + λ)−γ is fitted for the probability distribution function
Φ′(λ) for the class of chaotic system. The fitting co-efficient, goodness of fit
parameters and value of Φ′(Λ) at Λ = λ5000 is tabulated here.

System Co-efficients Goodness of
fit

Λ = λ5000 Φ′(Λ)

Standard
map

c=0.1688(0.1606,0.1771),
γ=3.632(3.463,3.8)

SSE: 0.014,
R2: 0.9972

0.0486 6.2202

GUE c=0.1932(0.1907,0.1958),
γ=4.097(4.02,4.173)

SSE: 0.001,
R2: 0.9997

0.035 8.1038

Riemann
zeros

c=0.2103(0.2091,0.2115),
γ=4.397(4.336,4.459)

SSE: 0.0002,
R2: 0.9999

0.0315 8.7443
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Table 6.3: α, Φ and Φ′ for different systems.

System α Φ Φ′

Circle 0.15 0.21 1.11
Rectangle 0.18 0.15 1.11
Triangle 0.18 0.13 1.10
Rhombus 0.25 0.05 1.09
Standard Map 0.34 0.49 6.22
GUE 0.39 0.40 8.10
Riemann zeros 0.44 0.38 8.74

[Eckhardt 1984, Jain 2008a], Lyapunov exponent is zero. The energy levels of

this almost integrable system entails an intermediate value for the stochasticity

parameter. The probability distribution function also shows a concurrence with

the family of integrable billiards (see Table 6.1).
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Figure 6.4: The probability distributions of the stochasticity parameter are
shown for standard map, Gaussian Unitary Ensemble (GUE), and Riemann
zeros. For these systems, the distributions can be fitted to a functional form,
(c+λ)−γ, with (c, γ) taking values (0.1688, 3.632), (0.1932, 4.097), and (0.2103,
4.397) for standard map, GUE, and Riemann zeros respectively.

These results point at certain interesting conclusions: (i) stochasticity pa-

rameter can characterize the level sequences coming from random matrices,

quantum systems, and number theory, (ii) probability density distributions are

distinctly different for integrable and chaotic quantum systems, (iii) we observe

the confluence of the statistical behaviour of Riemann zeros and unitary ensem-
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ble in terms of λ as in random matrix theory. In a nutshell, we show Fig.6.5

which depicts how with changing α PDF values for all systems varies.2

0.1 0.2 0.3 0.4 0.5
1

2

3

4

5

6

7

8

9

α

Φ
′(Λ

)

 

 

Circle

Rectangle

Triangle

Rhombus

Standard Map

GUE

Riemann zeros

Figure 6.5: Two measures of stochasticity, α and Φ′(Λ), are being plotted here
against each other. For calculating the PDF at stochasticity parameter for a
specific system, we have normalized the distributions. As the index α increases,
we see that the Φ′(Λ) undergoes a jump by an order of magnitude.

6.3.3 Connections with number theory

Finally, we would like to present the precise connection of our ideas with a

well-known number-theoretic problem of counting the lattice points in a cir-

cle of radius, R, first studied by Gauss [Hardy 1979]. The difference of this

number with the area of the circle, known as the error term with proper nor-

malization, has been investigated extensively [Iwaniec 1988]. A connection of

this problem with quantized integrable systems in two dimensions which have
2However as a side note, we remark that for 1000 levels, the values for rectangle and circle

billiard do not change much from 1.10 value for (Φ′) while the values for zeta function turns
out to be 4.81, and for GUE the stochastic probability comes down to 3.46. We do not know
the invariant distribution beforehand so we require considerable data (length of sequence)
to reduce statistical errors for finding the distribution; we have utilized the trace formulae
to fix the length sufficient to produce the same λn. This enables us to see the differences
among different dynamical systems in α vs Φ′ graph by considering only 5000 levels. It is
noteworthy to mention that once we have got the distribution (still numerical!) then even
1000 levels were sufficient to see the differences.
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two quantum numbers has been studied in the past [Bleher 1993], however a

measure of stochasticity was not discussed. For the rectangle billiard, if the

fundamental domain is extended over the two-dimensional plane, a trajectory

will also straighten out as a line on this plane. The vertices of the rectangular

fundamental domain make a lattice where periodic orbits correspond to lines

connecting equivalent lattice points. The trace formula giving the energy spec-

trum involves a sum over periodic orbits. The first Weyl term corresponds to

counting the points inside a circle, and the corrections are provided by fluctu-

ations. Including the normalization, this is precisely the Gauss circle problem.

For cases that cannot be cast in terms of a problem with lattice points, our dis-

cussion opens up an enormous mathematical challenge to develop arguments

which would probably result from a generalization of the classic work of Heath-

Brown [Heath-Brown 1992].

6.4 Summary

In Fig. 6.5, we have compiled the values of α and Φ′(Λ) for different systems.

As the nature of the classical behaviour of a system becomes more complicated,

we have discovered the existence of a scaling exponent α of stochasticity pa-

rameter with the number of levels. A qualitative explanation for increase in α

as from integrable to chaotic dynamical system is provided in terms of number

of records. Our studies are based on a number of systems displaying a variety

of dynamical behaviours which have been shown to belong to distinct classes,

not only in terms of this exponent but also in terms of the probability density

distribution functions, Φ′ of the stochasticity parameter. The values of Φ′ show

a jump by a factor of six to eight as we go from integrable system to chaotic

one. In a future work, we would like to understand the details of this “jump”

analytically. The cumulative distribution function Φ(λ) for chaotic systems
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rises more sharply for smaller λ than the one for the integrable systems. The

Kolmogorov distribution lies in an intermediate to these distributions.





Chapter 7

Summary and outlook

Random matrix theory has been developed for both Hermitian and pseudo-

Hermitian systems with varying degree of success. In modern days, it has found

applications in a variety of areas from basic sciences (Nuclear physics, Quan-

tum Chaos, Number theory) to more applied areas like RNA folding in biology,

wireless communication theory and financial analysis. In this thesis, we have

developed RMT for pseudo-Hermitian systems and structured matrices, along-

with developing new measures like Stochasticity parameter and record statistics

for classifying and characterizing dynamical systems quantum mechanically.

In the second chapter, our focus has been to extend the random matrix

theory to the case of cyclic matrices which happen to be pseudo-Hermitian.

We have shown that due to the special structure of these class of matrices, the

joint probability distribution function and hence all the correlation functions for

general N×N matrices can be analytically obtained. As cyclic matrices are not

symmetric, one would expect the results to be in accord with the random matrix

theory of Ginibre orthogonal ensemble. The situation however is quite different,

the deviation in JPDF and spacing distribution from general results are fully

displayed. We also saw that being asymmetric matrices and having very small

number of independent elements makes them attractive to study [Jain 2008b].

The results for the block extension of these class of matrices have been obtained

in full generality.
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The distribution functions obtained for random cyclic matrices in Chapter 2

have been applied to a problem of random walks in Chapter 4. We generalized

the biased random walk in a straightforward way as an eigenvalue problem and

have shown that the transfer matrix is a cyclic. Once we demand that jump

probabilities are random in nature, this has been cast as a biased random walk

on disordered lattices. The evolution of entropy with time has been calculated

and saturates as expected to logN . Importantly, the rate of approach to equi-

librium for ensemble averaged jump probabilities has been shown to follow a

1/t law. The point to note is that any other form of randomness or bias can

be modeled using the general scheme here by a suitable modification of the

distribution of matrix elements. The main advantage is the simplicity of the

treatment given here [Manikandan 2011]. We may recall the usual process where

one sets up a master equation with a non-Hermitian Hamiltonian [Mallick 2009]

and solves for the steady state solution to study the approach to equilibrium.

In Chapter 3, the reverse-cyclic matrices, a subset of symmetric matrices,

are shown to have an unusual density and spacing distribution. In contrast to

the semi-circle density, this ensemble admits a density with a hole at the origin.

Again, the spacing distribution has a variety, ranging from Gaussian-looking

distributions to Wigner type distributions. Along with bulk properties like den-

sity, we have also obtained the record statistics of eigenvalues and shown that

the upper records, when properly shifted and scaled, follow Gumbel distribution

while lower records follow Wigner like distribution. As the last upper record

is also the largest eigenvalue of the sequence, we have re-derived the largest

eigenvalue distribution to be Gumbel. Let’s recall that the largest eigenvalue

of general Gaussian orthogonal ensemble follow the Tracy-Widom distribution.

Similarly the last lower record is the smallest eigenvalue of the given sequence

of positive non-trivial eigenvalues. We have shown that, when properly shifted
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and scaled, they follow Wigner distribution. This complements the information

about eigenvalues from the point of view of extreme value. We also observed

that the JPDF is just the square of the modulus of the ground-state eigen-

function of an exactly solvable many-body Hamiltonian in one dimension - the

screened harmonic oscillator potential. Hence the correlations between the dif-

ferent particles in the potential will be the same as that derived from the JPDF

for the random matrix theory [Srivastava 2012]. This concludes the first part

of thesis.

In the rest of the chapters, we have focused on new measures for character-

izing quantum chaos.

The quantum signatures of chaos in wavefunctions has also been studied

for long old. Among others, signatures of periodic orbits in wavefunctions

i.e. scarring has been studied for a long time, theoretically and experimen-

tally [Heller 1984,Kudrolli 1995,Laurent 2007]. The extremum of intensities in

wavefunctions and electromagnetic modes motivates us to look for a measure

using them which can capture integrable to chaotic transitions. For the same,

we have proposed the record statistics to be such a measure. We have derived

results on upper (lower) records of intensities of correlated random vectors. In

addition to the derivation of the average record, it has been shown that the

probability that a record appears at an index j is a Bernoulli process that is

the same as that for i.i.d. variables. The quantum standard map presents

the scope of studying systems which possess increasingly complex spectrum

with the system parameter, K. For a quantum system with random high-lying

states, records’ statistics found in the Section 5.3 applies. The study of position

of the last record set in case of the standard map, parameterized by K suggests

that beyond a certain value of K, the eigenvectors become like random vectors

insofar as the records of intensities is concerned. This is also consistent with the
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finding where the number of records vs N goes through a transition from linear

to algebraic to logarithmic, as K increases. At the point where classical golden

mean torus breaks namely at K ' 0.98, the exponent in power law is found

to be one-half. It is very likely that the conclusions drawn on the quantum

standard map would hold for other quasi-integrable and mixed systems.

Random matrix theory has been very successful in describing the fluctuation

properties and correlation in eigenvalue sequences. However, there are other sit-

uations known when fluctuation properties of the energy level sequences differ

from the corresponding random matrix ensemble [Ahmed 2003b,Ahmed 2003a,

Jain 2008b,Jain 2009]. These have motivated us to study new statistical quan-

tities which can characterize the dynamical systems emphasizing their classical

nature. There are instances when fluctuation properties of the level sequences

are studied with quantities like fluctuations in average cumulative density of

states [Aurich 1994] and the conjectures given have been verified in experimen-

tal data or numerically [Alt 1998]. However, a large number of levels are needed

before dynamical systems can be distinguished if they are integrable or chaotic

on classical level.

Inspired by the work of Arnold [Arnold 2008], in which he employed the

stochasticity parameter of Kolmogorov [Kolmogorov 1933] to number sequences

for discussing inherent randomness, we have studied the fluctuation properties

in the cumulative level densities of quantum systems. In Chapter 6, we have

shown that the probability distribution function for the proposed measure falls

in two different categories for most of the level sequences studied. It is inter-

esting to observe that the sequences in one family originate from the integrable

systems while the other from classically chaotic systems. We have mostly con-

sidered billiards as models of our dynamical systems besides studying the stan-

dard map, the Riemann zeros and the Gaussian Unitary Ensemble (GUE) of
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random matrices. As the nature of the classical behaviour of a system becomes

more complicated, we have discovered the existence of a scaling exponent α of

the stochasticity parameter with the number of levels. In Fig. 6.5, we have

compiled the values of the scaling exponent of level sequences, α and the prob-

ability of having the stochasticity parameter λ taking values between λ and

λ + dλ, Φ′(λ) for different systems. Based on a number of systems displaying

a variety of dynamical behaviour which have been shown to belong to distinct

classes, we have shown that the values of Φ′ jump by a factor of six to eight as

we go from integrable systems to chaotic ones in α-Φ′(λ) plot.

Some future directions could be (i) looking for the random matrix theory for

the sparse cyclic, reverse cyclic matrices, (ii) record statistics for the other KAM

systems and generalization of records for billiard systems, (iii) understanding

the details of the “jump” in α-Φ′(λ) plot.





Appendix A

Record Statistics

A.1 JPDF of positions of records

LetX1, X2, . . . XN be drawn from JPDF P (X1, X2, . . . XN). Let there be records

at positions (1 = j1, < j2, . . . , < jm = N). Define Indicator function

Ij =





1 if there is a record at j

0 otherwise
(A.1)

Now we calculate, the probability of occurance of records at positions (1 =

j1, < j2, . . . , < (jm < N)), Prob(Ij1 = 1, . . . Ijm = 1).

Prob(Ij1 = 1, . . . Ijm = 1) =

∫

C

P (X1, X2, . . . XN)dX1 . . . dXN (A.2)

where C=set of conditions in the {Xi} space.

j1 = 1, Xj1 = X1; 0 < Xk < Xj2 k = j1, j1 + 1, . . . , j2 − 1

0 < Xk < Xj3 k = j2, j2 + 1, . . . , j3 − 1

...
...

0 < Xk < Xjm k = jm−1, jm−1 + 1, . . . , jm − 1

0 < Xk < 1 k = jm, jm + 1, . . . , N
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To derive the jpdf for positions of records in case of random variables drawn

from GUE distribution with a fictitious parameter u as in all previous cases,

P (X1, . . . , Xn;u) = Γ(N)δ

(
N∑

i=1

Xi − u
)

(A.3)

Let’s calculate Eq. A.2 for this distribution, and let’s calculate with first row

of conditions in Laplace transformed space

Prob(Ij1 = 1, . . . , Ijm = 1; s) = Γ(N)

∫

C

e−s
∑N
i=1XidX1 . . . dXN

Prob(Ij1 = 1, . . . , Ijm = 1; s) = Γ(N)

∫

C′

[
j2−1∏

i=1

∫ Xj2

0

dXie
−sXi

]

× e−s
∑N
i=j2

XidXj2 . . . dXN

= Γ(N)

∫

C′′

∫ Xj3

0

(
1− e−sXj2

s

)j2−1

e−sXj2dXj2

×
[

j3−1∏

i=j2+1

∫ Xj3

0

dXie
−sXi

]

× e−s
∑N
i=j2

XidXj3 . . . dXN

= Γ(N)

∫

C′′

1

j2sj2

(
1− e−sXj3

)j2

×
∫ Xj4

0

(
1− e−sXj3

s

)j3−j2−1

︸ ︷︷ ︸
from0<Xk<Xj3 ,k=j2+1...j3−1

e−sXj3dXj3 . . .

=
...

=
1

jmjm−1 . . . j1

1

sN

(
in last iteration

∫ ∞

0

)

Finally after taking inverse Laplace transform, and setting u = 1 we get

Prob(Ij1 = 1, . . . , Ijm = 1) =
1

jmjm−1 . . . j1

(A.4)



Appendix B

Stochasticity Parameter

Here we collect the trace formulae [Brack 2003] for different classes of dynam-

ical systems and present the calculations of the stochasticity parameter based

on them. The point is to make a comparison with the numerical results and

we shall see that with 5000 energy levels, we have a good agreement (Fig. 1).

We have chosen the following examples to guide us to the length of the se-

quence of levels required to arrive at reliable conclusions: (i) rectangle billiard -

a separable, integrable system where the quantization condition is an algebraic

relation; (ii) circular billiard - a separable, integrable system where the quanti-

zation condition is a transcendental equation; (iii) equilateral triangle billiard

- a non-separable, integrable system where the quantization condition is an

algebraic relation; (iv) Riemann zeta function - nontrivial Riemann zeros are

being considered here, the interest being due to their possible connection with

unitary ensemble of random matrices which, in turn, share spectral fluctuations

with some well-known quantum systems which are classically chaotic. 1

B.1 Rectangle billiard

Let us consider a rectangle billiard where the sides of the rectangle are a1 and

a2 for which the density of energy levels (derivative of the cumulative density)

1The eigenvalues in case of rectangular, equilateral triangle and circle billiards are obtained
from the formulae. Standard map eigenvalues are calculated by numerical diagonalization of
corresponding unitary matrix. Numerical eigenvalues for rhombus billiards have been kindly
provided by Prof. Benoît Grémaud. We acknowledge here his help. The Riemann zeros are
taken from the website of Prof. Odlyzko (www.dtc.umn.edu/∼odlyzko/zeta_tables/).
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is given by the trace formula [Brack 2003]:

d(E) =
∞∑

i=1

giδ(E − Ei)

=
ma1a2

2π~2

(∞,∞)∑

(M1,M2)=(−∞,−∞)

J0

(
SM1M2

~

)

−
∑

i=1,2

ai
4π~

√
2m

E

∞∑

M=−∞

cos
(

2Mai
√

2mE/~
)
. (B.1)

where J0(x) is the cylindrical Bessel function [Edwards 1974] and action, SM1M2

is given by

SM1M2 =
√

2mELM1M2 , LM1M2 =
√
M2

1a
2
1 +M2

2a
2
2. (B.2)

With this, putting ~2
2m

= 1 (for all the systems),

N(E)−N(E) =
a1a2

4π

(n1,n2)∑

(M1,M2)

8
√
E

LM1,M2

J1[
√
ELM1,M2 ]

+
a1a2

4π

∞∑

M1=1

4
√
E

LM1,0

J1[
√
ELM1,0]

+
a1a2

4π

∞∑

M2=1

4
√
E

L0,M2

J1[
√
EL0,M2 ]

− 1

4π

∞∑

M=1

2

M

(
sin(2Ma1

√
E) + sin(2Ma2

√
E)
)
(B.3)

where J1(x) is cylindrical Bessel function of order one.

For the denominator of (6.3), we will use Weyl’s staircase function for the

energy levels of rectangle. With the corner corrections included, this is read as

N(E ≤ E0) =
E0

4
− (1 + π)

√
E0

2π
+

1

4
. (B.4)

where area and perimeter is taken π, 2(1 + π) respectively.
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Using first 5000 energy levels of rectangle, we calculated Kolmogorov’s

stochasticity parameter (6.3) as a function of length of energy level sequence

and compared the same when (6.3) is calculated using (B.3) and (B.4). The

agreement is shown in Fig.6.1a.

B.2 Circular billiard

For a circular billiard of radius R, the treatment in terms of periodic orbits

can be seen in the work of Balian and Bloch [Balian 1972]. However, the trace

formula was given by Bogachek and Gogadze [Bogachek 1973]. The oscillatory

part of the density of eigenvalues is

gosc(E) =
1

Eo

√
~

πpR

∞∑

w=1

∞∑

v=2w

fvw
sin

3
2 φvw√
v

sin Φvw, (B.5)

where

Eo =
~2

2mR2
, φvw =

πw

v
, Lvw = 2vR sinφvw,

p =
√

2mE, Φvw =
pLvw
~
− 3v

π

2
+

3π

4
,

fvw = 1 for v = 2w

= 2 for v > 2w. (B.6)

Lvw is the length of the classical periodic orbits characterized by two integers

(v, w) denoting number of vertices and winding number around the center.

The average cumulative density of energy, E0 for a circle of area σ, circum-

ference, γ is given by [Baltes 1976]

N(E ≤ E0) =
σE0

4π
− γ
√
E0

4π
+

1

6
. (B.7)
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N(E)−N(E) =
2mR2

√
πR

∞∑

w=1

∫ E

0

dE ′
sin
[
4wR
√

2mE ′ − 3πw + 3π
4

]

(2mE ′)
1
4

+
4mR2

√
πR

∞∑

w=1

∑

v>2w

1√
v

sin
3
2

(πw
v

)

∫ E

0

dE ′
sin
[
2vR sin πw

v

√
2mE ′ − 3v π

2
+ 3π

4

]

(2mE ′)
1
4

. (B.8)

The integral involved in this expression is

I(E) =

∫ E

0

dxx−
1
4 sin(γ

√
x+ δ). (B.9)

Let
√
x = (y − δ)/γ, so dx/(2√x) = dy/γ. Then, I(E) becomes

I(E) =

∫ γ
√
E+δ

δ

dy
2

γ3/2
sin y(y − δ)1/2

=

∫ γ
√
E

0

2

γ3/2
sin(z + δ)z1/2 (z = y − δ)

= −2E1/4

γ
cos(γ

√
E + δ) +

√
2π

γ3


cos δ FresnelC



√

2γ
√
E

π




−FresnelS



√

2γ
√
E

π


 sin δ


 (B.10)

In (B.10), the terms containing FresnelC and FresnelS terms contributes at the

third decimal place which for all the numerical comparison purposes we can

ignore. The agreement is good and given in Fig.6.1b.
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B.3 Equilateral triangular billiard

Equilateral triangular billiard represents a class of dynamical systems which are

integrable but not separable. For equilateral triangular billiard, the eigenvalue

spectrum is given by

E(m,n) = E∆

(
m2 + n2 −mn

)

E∆ =
16

9

~2π2

2µL2
m = 1, 2, 3, ... (B.11)

n = 1, 2, 3, ...(m ≥ 2n).

All the eigenvalues are doubly degenerate except (m = 2n) which is singly

degenerate. Taking these in consideration the level density is given by

g(E) =
π

3
√

3E∆

∞∑

M1,M2=−∞

J0(kLM1,M2)−
1

2
√
EE∆

∞∑

M=−∞

cos(kLM1,M2) +
1

3
δ(E)

where LM1,M2 =
√

3(M2
1 +M2

2 +M1M2)L. (B.12)

The analogue of (B.3) and (B.4) for equilateral triangular billiards are

N(E)−N(E) =
π

3
√

3E∆

∞∑

(M1=0,M2=1)

8
√
E

L0,M2

J1[
√
EL0,M2 ]

+
π

3
√

3E∆

∞∑

M1,M2=1

4
√
E

LM1,M2

J1[
√
ELM1,M2 ]

+
π

3
√

3E∆

∞∑

M1=1

−1∑

M1=−∞

4
√
E

LM1,M2

J1[
√
ELM1,M2 ]

− 2

E∆

∞∑

M=1

1

LM
sin(
√
ELM) (B.13)
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N(E ≤ E0) =
πE0

3
√

3E∆

−
√
E0

E∆

+
1

3
. (B.14)

In our calculation of stochasticity parameter for this system E∆ = π2. A

comparison similar to rectangular billiard between the stochasticity parameter

calculated exactly using 5000 energy levels of equilateral triangular billiard and

using trace formula is presented in Fig.6.1c.

B.4 Zeros of Riemann zeta function

Riemann zeta function is a very important special function [Edwards 1974] with

many interesting connections with number theory. It is defined in terms of a

Dirichlet series or a product form as follows:

ζ(s) =
∞∑

n=1

1

ns

=
∏

primes, p

(
1− 1

pσ+it

)−1

. (B.15)

According to the Riemann hypothesis, all the nontrivial zeros lie on the crit-

ical line, given by sn = 1
2

+ itn. The product formula is convergent only

for σ > 1, but we employ it to write an analogue of Gutzwiller trace for-

mula [Gutzwiller 1990]. Taking logarithm of the product form above and using

log(1− x) = −∑∞k=1 x
k/k,

log ζ(s) =
∑

p

∑

k

exp(−ikt log p)

kpkσ
. (B.16)
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Taking imaginary part of both sides, and differentiating with respect to t, we

obtain for fixed σ > 1:

dσosc = − 1

π

∑

p

∑

k

log p

pkσ
cos(kt log p). (B.17)

The oscillating part of the cumulative density will be

Nσ
osc = − 1

π

∑

p

∑

k

1

kpkσ
sin(kt log p). (B.18)

For the denominator of (6.3),

N(t) = Int
[
t

2π
log

t

2π
− t

2π

]
. (B.19)

Finally, for the zeros of Riemann zeta functions on the critical line,

λ = sup
t

|Nσ
osc|√
n

= − sup
t

√
2

π

∣∣∣∣
∑

p

∞∑

k=1

sin[(k log p)t]

k(p)kσ
√
t log(t/2π)− t

∣∣∣∣. (B.20)

This expression should be doomed as its convergence is in the domain where

there are no nontrivial zeros. However, as noted in [Brack 2003], trace for-

mula contains information about the zeros on the critical line, with the short-

est orbits (corresponding to the smallest primes) contributing the most (In a

private communication to Dr Sudhir Jain, dated January 20, 2000, Dr Arul

Lakshminarayan has noted that |∑zeros, j exp(itjx)|2 shows dominant contri-

butions at log 5, log 47, log 51, the reason is not known to the author). We have

compared the values of stochasticity parameter using numerical values of the

zeros (www.dtc.umn.edu/∼odlyzko/zeta_tables/) and the expression (B.20)

in Fig.6.1d. For calculation we have utilized first 5000 only. This is done to

compare the results from various systems for same sequence length.
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