
Transport Coefficients of Hot

Hadronic Matter

By

Utsab Gangopadhyaya
Enrolment No: PHYS04201204004

Variable Energy Cyclotron Centre, Kolkata

A thesis submitted to
The Board of Studies in Physical Sciences

In partial fulfillment of requirements

For the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

August, 2019















List of Publications arising from this thesis

Journals :
Published

1. ”Medium effects on the relaxation of the dissipative flows in a hot pion gas”, Sukanya

Mitra, Utsab Gangopadhyaya and Sourav Sarkar; Phys. Rev. D 91, 094012 (2015).

2. ”In-medium viscous coefficients of a hot hadronic gas mixture”, Utsab Gangopadhyaya,

Snigdha Ghosh, Sukanya Mitra and Sourav Sarkar; Phys. Rev. C 94, 044914 (2016).

Communicated

1. ”In-medium thermal conductivity and diffusion coefficients of a hot hadronic gas mixture”,

Utsab Gangopadhyaya, Snigdha Ghosh and Sourav Sarkar; arXiv:1712.06287[nucl-th]

Conferences :

1. ”The effect of medium on the relaxation of the dissipative flows in an interacting pion

gas”, Utsab Gangopadhyaya, Sukanya Mitra, Sourav Sarkar; Proceedings of DAE Symp.

On Nucl. Phys. 59 E5(2014), 682

2. ”The Transport Co-efficients of Two Component Hot Hadronic

Matter”, Utsab Gangopadhyaya, Snigdha Ghosh, Sukanya Mitra, Sourav Sarkar; Pro-

ceedings of DAE Symp. On Nucl. Phys. 60 E9(2015), 722

i





Dedicated to

the important ones,

they know who they are.





ACKNOWLEDGMENTS

I thank my guide, Dr. Sourav Sarkar, and my institute VECC, HBNI for the fabulous oppor-
tunity. I thank my colleagues and teachers for the helpful and friendly conversation. I thank
my friends, my cats and my family.

iv





Contents

List of Publications i

Synopsis ix

List of Figures 3

1 Introduction 5

1.1 Nuclear interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Motivation to study high energy heavy ion collision . . . . . . . . . . . . . . . . 7

1.3 Signatures of QGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Electromagnetic probes . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Quarkonia suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Jet Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Elliptic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Collective flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Flow coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Determining flow coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Theoretical methods to treat heavy ion collision . . . . . . . . . . . . . . . . . . 16

1.5.1 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.2 Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



1.6 Scope and Organisation of present work . . . . . . . . . . . . . . . . . . . . . . 20

2 Kinetic Theory 27

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Single particle distribution function . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Particle four-flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.3 Energy-momentum tensor . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.4 Entropy four-flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.5 Hydrodynamic four-velocity . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.6 Physical quantities in local rest frame . . . . . . . . . . . . . . . . . . . 35

2.1.7 Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Relativistic Boltzmann Transport Equation . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Assumptions of Boltzmann’s equation . . . . . . . . . . . . . . . . . . . 38

2.2.2 Boltzmann’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Conservation of number . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2 Conservation of energy-momentum . . . . . . . . . . . . . . . . . . . . . 45

2.4 Equations of fluid dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.1 Time derivative and gradient . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.2 Continuty equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.3 Equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.4 Equation of energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Equilibrium distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Transport Coefficients of a hot Pion Gas 53

3.1 Linear Theory: Enskog Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Chapman-Enskog Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Transport Coefficients of Pion Gas . . . . . . . . . . . . . . . . . . . . . 61

vi



3.3 Grad’s 14 Moment Method - Evaluation of relaxation time of flows . . . . . . . 71

3.3.1 Determining A, Bµ and Cµν for the Pion Gas . . . . . . . . . . . . . . . 75

3.3.2 Equation of motion of dissipative fluxes . . . . . . . . . . . . . . . . . . 79

3.4 Appendix-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Appendix-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7 Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Transport Coefficients of a Pion-Nucleon Gas 89

4.1 Linearisation for a Non-reactive Mixture . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Relaxation Time Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.1 Transport Coefficients of a two component system . . . . . . . . . . . . . 92

4.3 Appendix-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Appendix-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Dynamic Inputs for determining Transport coefficients 103

5.1 ππ scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.1 Interaction Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.2 Amplitude of scattering due to the exchange of ρ and σ meson . . . . . . 105

5.1.3 ππ cross-section at finite temperature . . . . . . . . . . . . . . . . . . . . 107

5.1.4 Temperature dependent pion chemical potential . . . . . . . . . . . . . 111

5.2 πN scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 The ∆ self-energy in the medium . . . . . . . . . . . . . . . . . . . . . . 112

5.2.2 The π-N Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Numerical Results 126

6.1 Viscous coefficients and Thermal conductivity of Pion Gas . . . . . . . . . . . . 128

vii



6.2 Relaxation time of flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Transport coefficient of a mixture consisting of Pions and Nucleons . . . . . . . 133

6.3.1 Viscous Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3.2 Coefficients of Thermal Conduction and Diffusion . . . . . . . . . . . . . 139

7 Summary and Outlook 147

viii



Homi Bhabha National Institute
SYNOPSIS OF Ph.D. THESIS

1. Name of the Student: Utsab Gangopadhyaya

2. Name of the Constituent Institution: Variable Energy Cyclotron Centre

3. Enrolment No. : PHYS04201204004

4. Title of the Thesis: Study of Transport coefficients of Hot Hadronic Matter

5. Board of Studies: Physical Sciences

SYNOPSIS

Introduction and Motivation

The possibility that the exotic matter that might have existed in the microsecond old early

universe, or exists inside the core of a neutron star could be recreated terrestrially has led us to

ultra relativistic heavy ion collision. The exotic matter is known as quark gluon plasma (QGP),

a de-confined state with coloured degrees of freedom. Experiments at Super Proton Synchrotron

(SPS) at CERN, strongly suggested the formation of QGP [1]; confirmation of QGP phase was

obtained at RHIC [2–10] and LHC energies [11–14]. The hot dense nuclear matter created in

these heavy ion collisions may be close to local thermodynamic equilibrium. If the interaction

between the quarks and gluons is strong enough to maintain local thermodynamic equilibrium,
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then the subsequent hadronic phase will also have well-defined transport properties. From the

experimentally measured energy and momentum of the particle that reaches the detector after

kinetic freeze out (the state when the particles are so far apart that they no longer interact

with each other), it is not easy to extract the transport properties. Thus to study the transport

phenomena of QGP the properties of all the stages in the heavy ion collisions is to be studied,

starting from the collision of two Lorentz contracted heavy ions, followed by QGP formation

and its thermalization, evolution; phase transition/crossover to hadronic phase , the evolution

of the hadronic phase and eventually freeze-out.

Transport coefficients go into the hydrodynamic equation used to describe the system. These

coefficients can be estimated microscopically using either linear response theory where they

appear in the form of two-point functions or in the kinetic theory approach which is more

popular owing to better computational efficiency. Shear viscosity has been derived using a

hadron resonance gas model in Ref. [16–19]. In the kinetic theory approach viscosities have

been estimated using parametrized cross section extracted from empirical data in Refs. [20–23],

or using lowest order chiral perturbation theory in Refs. [24, 25].

The scattering cross-section that appears in the collision integral is the dynamical input in the

kinetic theory approach and it is highly suggestive that it contains the effect of the hot and/or

dense medium. For the case of a pion gas the consequences of an in-medium cross-section

on the temperature dependence of the transport coefficients were extensively discussed in [26–

28]. Using effective interactions and the techniques of thermal field theory the ππ scattering

amplitudes evaluated with self-energy corrected ρ and σ meson propagators in the internal

lines caused a significant modification in the cross-section and consequently the viscosities [26],

thermal conductivity [27] and relaxation times of flows [28].

We consider a two component system constituting of pions and nucleons. Analogous to the ρ

and σ mesons mediating the ππ interaction we consider πN scattering to proceed by exchange of

the lightest baryon resonance, the ∆, which is close to an ideally elastic πN resonance, decaying

almost entirely into pions and nucleons. We obtain the ∆ self-energy at finite temperature and

baryon density evaluating several one-loop diagrams with π, ρ, N and ∆ in the internal lines
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using standard thermal field theoretic methods. The in-medium propagator of the ∆ baryon

is then used in the scattering amplitudes to obtain the πN cross-section. The Novelty in our

approach is the use of in-medium cross-section, while almost all the earlier works in this field

dealing with transport coefficients of hadronic matter have been done using vacuum scattering

amplitudes. This feature attributes a realistic nature to the evaluation of these quantities and

makes the formalism more complete.

The transport equations for the pion and nucleon are solved to obtain the temperature and

density dependence of the shear viscosity, bulk viscosity, the thermal conductivity and diffusion

coefficients. Compared to the viscosities, the thermal conductivity and diffusion coefficients

have received much less attention. This may be due to the absence of a conserved quantum

number, the baryon number being insignificantly small for systems produced at RHIC and

LHC. However at FAIR energies [29] or in the Beam Energy Scan (BES) program at RHIC, the

baryon chemical potential is expected to be significant and baryon number will play a significant

role in determining the thermal and diffusion coefficients. A careful analysis also reveals that a

system in which the total number of particle is conserved can also sustain thermal conduction

or diffusion if the number of particles of individual species is also conserved. Such a scenario

is reached as the system expands and cools and reaches chemical freeze out as the collisions

become mostly elastic. Diffusion coefficients arise in the treatment of a multicomponent gas in

addition to thermal conductivity [30]. For the pion-nucleon system under study there arise two

thermal coefficients (thermal conductivity and Dufour coefficient) and two diffusion coefficients

(diffusion and thermal diffusion coefficient). We have not encountered an elaborate study of

the temperature and density dependence of these coefficients in the literature.

Formalism

We work within the framework of relativistic kinetic theory, and the process used to derive

the transport coefficients of the two component system constituting of nucleons and pions is
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relaxation time approximation method. The salient features of this method will be discussed

in this section.

Relaxation Time Approximation

The system is described by two Boltzmann transport equation one for each component, the

covarient form of the equation have been used.

pµk∂µfk(x, pk) =
2∑
l=1

gl
1 + δkl

Ckl(x, pk) (1)

Ckl(x, p) =

∫
d3pl

(2π)3p0l

d3p′k
(2π)3p′0k

d3p′l
(2π)3p′0l

[f ′
kf

′
l (1± fk)(1± fl) (2)

−fkfl(1± f ′
k)(1± fl)]W (pk, pk|p′k, p′l). k, l = 1, 2

Here subscript l = 1, 2 corresponds to nucleon and pion respectively. For the relaxation time

approximation the right hand side of the Boltzmann equation becomes −(pk · U)δfk/τk, Uµ

being the hydrodynamic four velocity.

[
τk(pk)

]−1
=

N∑
l=1

[
τkl(pk)

]−1 (3)

[
τkl(pk)

]
−1

=
gl

1 + δkl

csh(ϵk/2)

Ek

∫
dωldω

′
kdω

′
lWkl (4)

where dωk = dΓpk/[2csh(ϵk/2)], dΓpk = dpk
(2π)3p0k

, ϵk =
(
Ek − µk

)
and the function csh(αk) =

cosh(αk) if kth specie is a fermion, and if boson csh(αk) = sinh(αk).

We introduce the non-uniformity parameter ε in the boltzmann transport equation and expand

the distribution function and its derivative in a series in terms of the non-uniformity parameter.

pµkUµDfk = −ε pµk∇µfk +
2∑
l=1

gl
1 + δkl

Ckl(x, pk). (5)

f = f 0 + εf 1 + ε2f 2 + ...+ εrf r + ..., (6)

Df = ε
(
Df

)1
+ ε2

(
Df

)2
+ ...+ εr

(
Df

)r
+ .... (7)
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Where D = Uµ∂µ, ∇µ = ∆µν∂µ and f 0 is the equilibrium distribution function, function of

only the macroscopic parameters like temperature, chemical potential and the hydrodynamic

four velocity, while the higher times like f 1, f 2, ... are function of the space derivative of the

macroscopic parameters. The non-uniformity parameter keeps track of the order of the space

derivative of the macroscopic parameters used to define the system. We substitute the expanded

form of the distribution function and its derivative in eqn.(5) and restrict ourselves to r = 1,

thus obtaining a reduced form of the Bolzmann transport equation. We use this transport

equation to derive the different hydrodynamic equations like the energy equation, equation of

motion and continuity equation. These equation turns out to be same as that used to describe

ideal fluid. These conservation equations along with the Gibbs Duhem relation is used to

represent the reduced form of the Boltzmann equation in terms of the thermodynamic forces.

f
(0)
k (1 + f

(0)
k )

T

{[
pk · U − h+ (δkN − xN)T

2
( ∂

∂T

(µN
T

)
pxN

− ∂

∂T

(µπ
T

)
pxN

)]
pµk

∇µT

T

+
(δkN − xN)

xπ

(∂µN
∂xN

)
PT
pµk∇µxN +Qπ∂νU

ν − ⟨pµkp
ν
k⟩⟨∂µUν⟩

}
= −δfk

τk
Ek (8)

Here the subscript N represents nucleon, while k can be either nucleon or pion, h represents the

enthalpy per particle and xk is the concentration of the kth specie. From the above equation

the expression of δfk = fk − f 0
k = f 1

k can be determined, and using the expression we can

determine the irreversible flows. The hydrodynamic form of the irreversible flow are expressed

as a combination of the thermodynamic forces and flow coefficients, and they are expressed as

follows,

Īµ = Iµ −
2∑

k=1

hkN
µ
k ; Īµ = λ∇µT +D

′

Tnx1T
(∂µ1

∂x1

)
PT

∇µx1 (9)

Iµ1 = Nµ
1 − x1N

µ; Iµ1 = Dn∇µx1 +DTnx1x2∇µT (10)

T µν = enUµUν − p△µν +Πµν ; Πµν = 2η⟨∂µUν⟩+ ζ
(
∂ · U

)
△µν (11)

The irreversible flow occurs when the system is not in equilibrium and these flows helps to

bring the system back to equilibrium hence these flows should be solely depended on the part
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of distribution function that represents the deviation from equilibrium.

Īµq =
2∑

k=1

∫
dΓk(p

ν
kUν − hk)p

µ
kδfk. (12)

Iµ1 =
2∑

k=1

∫
dΓk(δ1k − xk)p

µ
kδfk (13)

Πµν = Π̊µν +Π△µν =
2∑

k=1

∫
dΓk{△µ

σ △ν
τ −

1

3
△στ △µν}pσkpτk δfk +

2∑
k=1

1

3

∫
dΓk △στ △µνpσkp

τ
k δfk (14)

From the above two set of equations (one set representing the hydrodynamic theory form and

the other representing kinetic theory form of the irreversible flow), it is quite easy to derive the

expression for the flow coefficients, The thermal conductivity λ, Dufour coefficient D′
T , diffusion

coefficient D and thermal diffusibility DT .

λ =
Lqq
T

(15)

D
′

T =
LqN

nxπxNT
(16)

D =
LNN
nxπ

(∂µN
∂xN

)
pT

(17)

DT =
LNq

nxπxNT
, (18)

η =
1

15T

2∑
k=1

∫
d3pk
(2π)3

τk
E2
k

| p⃗k |4 f (0)
k (1± f

(0)
k ) (19)

ζ =
1

T

2∑
k=1

∫
d3pk
(2π)3

τk
E2
k

{Qk}2f (0)
k (1± f

(0)
k ) (20)
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Where,

Lqq =
1

6π2T

2∑
k=1

gk

∫
p4kdpk
E2
k

(pk · U − hk)
[
pk.U − h+ (δk1 − x1)T

2β
]
τkf

(0)
k (1± f

(0)
k ), (21)

Lq1 =
1

6π2T

2∑
k=1

gk

∫
p4kdpk
E2
k

(pk · U − hk)(δk1 − x1)τkf
(0)
k (1± f

(0)
k ), (22)

L11 =
1

6π2T

2∑
k=1

gk

∫
p4kdpk
E2
k

(δk1 − x1)
2τkf

(0)
k (1± f

(0)
k ), (23)

L1q =
1

6π2T

2∑
k=1

gk

∫
p4kdpk
E2
k

[
pk · U − h+ (δk1 − x1)T

2β
]
(δk1 − x1)τkf

(0)
k (1± f

(0)
k ). (24)

Here β = ∂
∂T

(
µ1
T

)
Px1

− ∂
∂T

(
µ2
T

)
Px1

.

Dynamic Input

The kinetic theory approach is quite general, the expression of the transport coefficients

are same for any hydrodynamic system. What differentiates one system from the another is

the interaction between the constituent particles, which enter the expression of the coefficients

through the scattering amplitude in the relaxation time.

For the ππ scattering, we assume it to proceed via ρ and σ meson exchange. Using the inter-

action L = gρρ⃗
µ · π⃗ × ∂µπ⃗ + 1

2
gσmσπ⃗ · π⃗σ with gρ = 6.05 and gσ = 2.5, the matrix elements in

the isoscalar and isovector channels are given by

MI=0 = 2g2ρ

[
s− u

t−m2
ρ

+
s− t

u−m2
ρ

]
+ g2σm

2
σ

[
3

s−m2
σ +

∑
σ

+
1

t−m2
σ

+
1

u−m2
σ

]
(25)

MI=1 = g2ρ

[
2(t− u)

s−m2
ρ +

∑
ρ

+
t− s

u−m2
ρ

− u− s

t−m2
ρ

]

+ g2σm
2
σ

[
1

t−m2
σ

− 1

u−m2
σ

]
. (26)

xv



where effective propagators obtained by a Dyson-Schwinger sum of one-loop self-energy dia-

grams in vacuum has replaced the corresponding s-channel propagators. The cross-section and

the isospin averaged amplitude is defined as, σ = 1
64π2s

∫
|M|2dΩ and |M|2 = 1

9

∑
(2I+1)|MI |2.

The vacuum self energies
∑

ρ and
∑

σ are replaced with in-medium ones evaluated using ther-

mal field theory [31, 32]. For the σ meson only the ππ loop graph is evaluated in the medium

whereas in case of the ρ meson in addition to the ππ loop diagram, πω, πh1, πa1 self-energy

diagrams are included [33]. The imaginary part of the self-energy is given by

Im
∑

(q0, q⃗) = −π
∫

d3k

(2π)34ωπωh
×

[L1(1 + n+(ωπ) + n+(ωh))δ(q0 − ωπ − ωh)

+ L2(n−(ωπ)− n+(ωh))δ(q0 + ωπ − ωh)] (27)

where n±(ω) = 1
e(ω∓µ)/T−1

is the distribution function for boson, ωπ =

√
k⃗2 +m2

π and

ωh =

√
(q⃗ − k⃗)2 +m2

h. The angular integration is done using the δ-functions which define

the kinematic domains for occurrence of scattering and decay processes leading to loss or gain

of ρ (or σ) mesons in the medium. The term with L1 arises from the unitary cut and corre-

sponds to formation and decay in the medium weighted by Bose enhancement factors, while

the second term corresponds to the so-called Landau cut contribution arising from resonant

scattering in the medium. The self-energy function is convoluted with their spectral functions

in order to account for the substantial 3π and ρπ branching ratios of some of the unstable

particles in the loop.

The πN scattering is treated analogously. It is taken to proceed via the exchange of the

∆-baryon which is the lightest baryon resonance. We use the well-known interaction LπN∆ =

fπN∆

mπ
∆̄µT⃗ †∂µπ⃗ψ +H.c. with fπN∆ = 2.8 to evaluate the scattering matrix elements. Averaging

over isospin, the squared invariant amplitude for the process π(k) N(p) → π(k′) N(p′) turns

out to be,

|M|2 =
1

3

(
fπN∆

mπ

)4
[

F 4(k, p)Ts

|s−m2
∆ − Π|2

+
F 4(k, p′)Tu

(u−m2
∆)

2

+
2F 2(k, p)F 2(k, p′)Tm(s−m2

∆ − ReΠ)
3(u−m2

∆) |s−m2
∆ − Π|2

]
. (28)
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where Ts, Tu and Tm can be read off from Ref. [34]. At each vertex we consider the form

factor [34]

F (p, k) =
Λ2

Λ2 + ( p·k
mp

)2 − k2

where p and k denote the momenta of the fermion and boson respectively. The cut-off is taken

as Λ = 600 MeV [34]. At finite temperature additional contributions coming from on-shell

particles in the medium is considered, by evaluating πN , ρN , π∆ and ρ∆ self-energies using

the real time method. The expression for the spin averaged imaginary part of self-energy is

given by

ImΠ = − π

∫
d3k

(2π)3
1

4ωkωp
[N1(1 + n+(ωk)− ñ+(ωp))δ(q0 − ωk − ωp)

+ N2(n−(ωk) + ñ+(ωp))δ(q0 + ωk − ωp)] (29)

where the distribution function for the fermions is given by ñ±(ω) =
1

eβ(ω∓µ)+1
. As before the

first term is the contribution from decay and formation of the ∆ baryon weighted by thermal

factors. The second term is a result of scattering processes in the medium leading to the

absorption of the ∆. These processes contribute significantly to the imaginary part which leads

to the suppression of the πN cross-section.

Results

Here we present a few interesting recent results of work done during my PhD tenure. On

comparing the relaxation time calculated using in-medium cross section with those calculated

using the vacuum cross section we find a significant change. The value of the relaxation time

for both pion and nucleon as seen in Fig. 1, are found to be enhanced after the introduction

of the medium effect, this is due to the suppression of the cross section in the medium due

to the enhancement of the imaginary part of the ρ and ∆ self energies. This surge in the

value of the relaxation time is reflected in the transport coefficients as well, since they are

directly proportional to the relaxation time of pion as well as nucleon. The introduction of
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Figure 1: The relaxation time of pions and nucleons as a function of (a) T for µN = 500 MeV
and µπ = 80 MeV

nucleons to the system also substantially changes the transport coefficients of the system. The

effect of the introduction of the medium effect on the shear viscosity, bulk viscosity, thermal

conductivity and diffusion coefficient is quite significant, but the effect on the Dufour coefficient

and thermal diffusibility is not that pronounced. The variation of these transport coefficients

with temperature have been studied for different value of the nucleon chemical potential. The

value of the bulk and the shear viscosity goes up with increase in temperature and nucleon

chemical potential. The value of the the thermal conductivity, Dufour coefficient, Thermal

diifusibility goes down with increase in temperature and nucleon chemical potential. In Fig. 2(a)

we can see that the diffusion coefficient decreases with increase in temperature, and in Fig. 2(b)

we see it remains almost unchanged with increase in nucleon chemical potential up till µN =

0.3GeV then it goes up for temperature T = 100 MeV, or goes down for T = 160 MeV or higher

value.

Summary

With an aim to elucidate the effect of a hot and dense medium produced during the later

stages of relativistic heavy ion collision on the temperature and density dependence of transport

coefficients, we have discussed in detail the framework of relativistic kinetic theory in particular

the collision integral where in medium ππ and πN cross-section calculated using thermal field
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Figure 2: The diffusion coefficient as a function of (a) temperature and (b) nucleon density
.

theoretic techniques have been incorporated. The temperature and density dependence of shear

and bulk viscosity and thermal conductivity for the case of a πN gas have been discussed in

details. These are expected to have a non-trivial effect on the hydrodynamic evolution of the

later stages of heavy ion collisions.
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Chapter 1

Introduction

Humans have always been intrigued by the nature that surrounds it, that affects its daily life,

and one of the key things that constitute nature is matter. Humans from the very beginning

have tried to fathom what are the basic building blocks that make all the matters that are

surrounding him; it is as if they knew somehow from the very beginning that all matter no

matter how complex have a somewhat similar substructure. Nuclear physics is a modern

approach to this very ancient obsession of man.

Late nineteenth and early twentieth-century discoveries by Thompson, Rutherford, and Chad-

wick confirmed the electron, the proton and the neutron to be the building blocks of matter -

the fundamental particles. Post-1947 however, a huge number of fundamental particles began

to get discovered. So much so, William Lamb observed in his Nobel Acceptance Speech - ”find-

ers of new elementary particles used to be rewarded with a Nobel prize; but such a discovery

now ought to be punished by a $10, 000 fine”. The Deep Inelastic Scattering [DIS] experiments

at Stanford Linear Accelerator Center [SLAC] in 1968 revealed protons to have point-like in-

ternal structure, these point-like structures were named partons by Feynman. However, these

point-like structures had been proposed earlier by Murray Gell-Mann [1], who had named

them Quarks. The pursuit to probe deeper and deeper into matter requires energy. The more

energy one has, the deeper into the sub-nuclear structure one can probe. Thus was born a new
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branch of study - High Energy Nuclear Physics. As per our present understanding, the basic

constituents of matter are quarks, leptons, gauge bosons, Higgs Bosons, and their anti-particles.

1.1 Nuclear interaction

The interaction of the elementary particles in the Standard Model (SM), is governed by the

Electroweak theory and Quantum Chromodynamics (QCD). QCD the theory of strong inter-

action, governs the interaction between the quarks, anti-quarks, and gluons. These quarks

carry color, also known as color charge, which plays a role analogous to electric charge in QED

(Quantum Electrodynamics). There are three different colors that a quark can carry. The

gluons are the gauge bosons of QCD and they are bicolored (carrying one positive unit of color

and one negative unit). They mediate the interaction between the quarks and anti-quarks. The

gauge bosons of QCD interact within themselves unlike the gauge bosons of QED (photons),

since they themselves have charge (color charge). QCD is thus a non-Abelian gauge theory.

The coupling depends on the scale of momentum transfer q by the relation,

α
(
q2
)
=

α0

1 + α0
(33−2nf)

12π
ln

(
−q2
µ2

) , (1.1)

where α0 and nf are the coupling constant of momentum transfer µ and number of flavours

respectively. The running coupling of QCD shows two unique features.

For a small momentum transfer (or large distance) we have high coupling; hence the interaction

is strong. This is the reason why quarks are always confined within a hadrons (protons, pions,

kaons etc.). This phenomenon is known as Colour Confinement.

On the opposite end of the spectrum, i.e., for large momentum transfer (small distance) the

coupling asymptotically decreases, leading to weak interaction between the partons. This is

known as Asymptotic freedom. Thus if we are able to produce a nuclear matter which is at high

temperature and hence high momentum transfer and/or high density, the long-range interaction
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can be dynamically screened thus enabling the quarks and gluons to freely move in the nuclear

mass.

1.2 Motivation to study high energy heavy ion collision

Due to the properties of confinement and asymptotic freedom, QCD matter will behave like

a gas of interacting hadrons at low energies, but at high energies and or high density in the

domain of weak coupling the nuclear matter behaves as a weakly coupled gas of gluons and

quarks. This particular state in which the quarks and gluons are no longer bound inside a

hadron and they propagate through a large volume is known as Quark-Gluon Plasma (QGP).

There is expected to be a phase transition between these two states. It is accepted that just after

the Big Bang the entire universe has undergone such a phase transition at around some critical

temperature (170 MeV). In fact, the entire phase diagram is of immense physical interest, the

phase boundary the critical endpoint, etc. In particular, the zone at zero baryonic chemical

potential is of great relevance, as the early structure of the Universe has cooled down through

this zone.

QGP can also be found at the core of a neutron star. The Neutron star is the remnant of a

regular star after the supernova explosion. The gravitational field of the star collapses it into

a body of extremely high density, the density is so high at the centre of the neutron star, that

the quarks and gluons may not remain confined inside a particular hadron thus creating a QGP

phase with high baryonic density.

To produce QGP, nuclear matter at high temperature and density needs to be produced. In

order to do so heavy nuclei are collided after accelerating them to ultra-relativistic velocities.

This is achieved with the help of particle accelerators. Experiments at Super Proton Syn-

chrotron (SPS) at CERN, strongly suggested the formation of QGP [2]; confirmation of QGP

phase was obtained at RHIC energies [3–11] and LHC energies [12–15]. The hot and dense

nuclear matter created in these heavy-ion collisions may be close to thermodynamic equilibrium

(local), with thermodynamic and transport properties. If the interaction between the quarks
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and gluons is strong enough to maintain local thermodynamic equilibrium in the subsequent

phases, then those phases will also have definite transport properties. Since experimentally it

is only possible to measure the energy and momentum of the particle that reaches the detec-

tor after kinetic freeze out (the state when the particles are so far apart that they no longer

interact with each other), it is not easy to extract the transport properties. Thus to study the

transport phenomenon of QGP the properties of all the stages in the heavy ion collisions are to

be studied and modelled, starting from the two Lorentz contracted heavy ion nuclei, followed

by QGP formation and its thermalisation, evolution; phase transition to hadronic phase, and

the evolution of the hadronic phase.

Thus to study the transport properties of QGP the transport properties of the latter stages

should also be studied in order to verify our findings through experiments. Here we have

concentrated on the transport phenomena of the hadronic state.

1.3 Signatures of QGP

In order to study the properties of QGP and the interactions governing it, we need to identify

whether this exotic matter is produced in the heavy ion collision experiment. And since we are

only able to measure the energy and momentum of the particles that reach the detectors long

after hadronisation, various signatures or probes have been identified based on the emmision

spectra of these particles. These signatures or probes would indicate whether QGP was really

created during the early stages of the heavy ion collision, and will provide us with relevant

information. Here we will discuss some of these signatures.

1.3.1 Electromagnetic probes

In the hot QGP, real and virtual photons are created due to the interaction between the charged

quarks and anti-quarks. These virtual photons, in turn, give rise to the lepton pairs. These

photons and dileptons are known as the electromagnetic probe. These probes are also produced
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due to electromagnetic interaction among the hadrons. Electromagnetic probes are one of the

cleanest probes of the QGP as they do not interact with the strongly interacting medium and

have a mean free path which is quite large compared to the size of the system, and so will

be emitted mostly unaffected carrying the information of the whole evolution process. These

probe helps us to see the earliest and the hottest part of the evolution [16, 17]. One of the

major problems with this probe is that they can be emitted from any stages of the evolution

process so there will be a lot of background emission from hadronic decay, if we can differentiate

the early stage radiation from the background it will be a good signal of QGP [18,19].

1.3.2 Quarkonia suppression

The bound states of heavy quark anti-quark pairs (cc̄, bb̄) are known as Quarkonia. They can

only be produced during the early stages of the heavy ion collision before the formation of

QGP. The resonance interaction of the cc̄ system will then lead to J/ψ production. After the

formation of the QGP medium, the J/ψ will find itself in a de-confined medium with high

temperature. If the Debye screening radius for strong interaction is smaller than the size of

J/ψ, the resonance interaction will not be operative and the produced cc̄ will not result into

J/ψ, rather they will propagate separately inside the medium. For a better understanding let

us consider the vacuum cc̄ potential

V (r) = σr − αeff/r,

where σ and αeff are the string tension and the Coulomb interaction coupling respectively. For

an isolated cc̄ system at T = 0 the magnitude of the J/ψ radius comes out to be rJ/ψ = 0.2 fm,

where mass of charm has been taken to be 1.5 GeV . On varying the various parameters like

the mass, string tension and αeff , the radius turns out to be in the range: 0.2 ≤ rJ/ψ ≤ 0.5fm.

The Screening potential at T ≥ TC , when there is no string constant (as σ(Tc) = 0) is given by

V (r) = −αeff
r
exp(−r/rD), (1.2)
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where rD is the Debye screening radius. Using this formula, we can show that the smallest

radius which permits bound state is,

rminD = [0.84mαeff (T )]
−1. (1.3)

If the Debye screening radius goes below this value then the J/ψ will dissociate, and it has

been observed from different studies that this will happen when T/Tc = 1.2 or even less. There

are other quarkonia states having different sizes and binding energies. Therefore, at first, the

larger and more loosely bound excited states are dissolved and finally the smallest and the most

tightly bound states. This sequential suppression of quarkonia is good probe of the formation

of QGP hence a good probe [20, 21].

1.3.3 Jet Quenching

Hard scattering during heavy ion collision gives rise to fast partons, which in turn develops a

shower of particles around it due to strong interaction. This fast-moving parton along with

the shower constitutes a collimated beam of particles known as jet. These partons become

observable as jets of hadrons after they hadronize. When these jets of partons propagates

through the fireball it loses energy; the energy loss depends on the density of the medium the

type of interaction and the distance travelled in the medium. If the medium created is strongly

interacting (QGP) the quarks and gluons are able to interact strongly with it. When a quark or

gluon jet propagates through a QGP it loses energy by i) radiating gluons after the collision in

its course of propagation and, ii) by elastic colliding with medium particles elastically. Gluon

bremsstrahlung is a major mechanism of losing energy in the QCD medium.

As shown in Fig.1.1 the two back to back jets come out of the fireball with very different

energy, simply because one of the Jet had to cover a longer distance through the medium and so

experience greater energy loss. If the medium created is truly QGP then the energy difference

will be pronounced. Due to various low pT collective effects such as colour screening or Cronin

enhancement this effect should be most pronounced at high pT . This suppression of high pT

particles is known as Jet Quenching. To quantify this effect the heavy ion yields are compared
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Figure 1.1: Energy loss of a away side jet [22].

to the scaled yields of p+p collisions at the same energy. This is expressed through the nuclear

modification factor RAA,

RAA =
d2NAA/dpTdη

⟨TAA⟩d2σpp/dpTdη
, (1.4)

where d2NAA/dpTdη and d2σpp/dpTdη are the differential particle yield in nucleus-nucleus colli-

sions and the cross-section in proton-proton collisions respectively. The nucleus overlap function

⟨TAA⟩ is obtained from the Glauber model and is proportional to the number of binary colli-

sions. At high pT , and in the absence of medium effects, RAA is expected to be unity. In the

region of low transverse momentum, the soft scatterings are the dominant processes, and so

RAA deviates from unity.

1.3.4 Elliptic flow

The elliptic flow coefficient v2 is a measure of anisotropy of the momentum distribution of the

produced particles for non-central nucleus-nucleus collision [23]. The exact form and the way

to calculate this coefficient will be discussed in the upcoming section. The overlap region in

a non-central heavy ion collision is deformed. This initial spatial anisotropy of the almond

shape overlap region of the colliding nuclei is transformed into an anisotropy in momentum
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space through interactions between the particles. Therefore the elliptic flow is sensitive to the

collision dynamics in the early stages.

Comparing experimental values of elliptic flow with hydrodynamically calculated results, we

find that they match well if we consider thermalisation at an early stage of heavy ion collision.

This early thermalisation suggests that at the early stage, collisions are dominated by strongly

interacting matter, with short constituent mean free paths essentially a perfect liquid with

small viscosity.

1.4 Collective flow

For a non-central collision (i.e. finite value of b), the particle multiplicity has an azimuthal ϕ

dependence. The overlap region at the time of collision is characterized by the spatial eccentric

parameter εx.

εx(b) =
⟨y2 − x2⟩
⟨y2 + x2⟩

, (1.5)

where the average is over the average energy ne (discussed in the next chapter). Fig. ?? depicts

a non-central collision, the overlapping region is composed of participating nucleons, and the

non-overlapping region are composed of spectator nucleons. After the spectator nucleons have

left, the geometric anisotropy of the overlapping region, causes greater pressure gradient to

develop along the along y-axis. This, in turn, gives rise to momentum anisotropy [23].

1.4.1 Flow coefficient

The azimuthal momentum distribution can be expanded in Fourier series,

Ep
dN

d3p
=

1

2π

dN

p⊥dp⊥dyp

[
1 +

∞∑
n=1

vn(p⊥, yp) cos(nϕ− nΨR)
]
. (1.6)

Where ΨR is the reaction plane, and vn is the nth flow coefficient. The flow coefficient for n = 1,

n = 2 and n = 3 are known as direct flow, elliptic flow and the triangular flow respectively.
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Figure 1.2: Differential elliptic flow v2 vs p⊥, for ALICE collaboration. Top panel: Results for
mid-peripheral events, for two-particle correlations (blue asterisks) and for four-particle corre-
lations (red triangles); where the ’non-flow’ effects are suppressed. The result for the STAR
collaboration is represented by the grey band. Bottom panel: elliptic flow for different central-
ities calculated with four-particle correlations. The elliptic flow increases with the centrality,
having larger values for peripheral events. Figures taken from [26]. Copyright 2010 by The
American Physical Society.

The dominant flow coefficient is the elliptic flow. The odd harmonics are forbidden as has been

expressed in optical Glauber mode; however fluctuations in the initial state [24] gives rise to

nontrivial value of odd harmonics, this can be computed using Monte Carlo Glauber Model,

with the help of which random initial random initial positions of the nucleons is generated

following the Woods-Saxon distribution.

1.4.2 Determining flow coefficient

The flow coefficients are determined from experimental data employing various techniques:
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1. Event plane method: In this method nth flow coefficient is given by expression

vn{EP} =

∫
f1(p) cos[n(ϕ−ΨR)]d

3p∫
f1(p)d3p

. (1.7)

Where f1(p) = dN/d3p is determined experimentally. To find the flow the reaction

plane should also be known, here we replace the observable reaction plane ΨR with the

reconstructed event plane Ψn, as its is expected that ΨR ≃ Ψn. The reconstructed event

plane is found by plotting the angular distribution of the final particles, and choosing the

angle with the maximum number of particles.

(cos 2Ψn, sin 2Ψn) =
Q

|Q|
, Q =

(∑
i

cos 2ϕi,
∑
i

sin 2ϕi

)
. (1.8)

Where the summation over i represents the summation over all the final particles.

2. Two particle correlation: The flow coefficients can also be determined using multi particle

correlation. In this method we don’t need to determine the reaction plane. The simplest

method is to use two particle correlation. In order to cancel the dependence of the reaction

plane we combine the azimuthal distribution of the two particles

⟨cos[n(ϕ1 − ϕ2)]⟩ =
∫
f2(p1,p2) cos[n(ϕ1 − ϕ2)]d

3p1d
3p2∫

f2(p1,p2)d
3p1d3p2

, (1.9)

where the function f2(p1,p2) is the probability of finding two particles one with momen-

tum p1 and the other with p2, the two belonging to the same event

f2(p1,p2) = f(p1)f(p2) + fc(p1,p2). (1.10)

The first term to the left represents the uncorrelated part while the second term represents

the correlated part. The correlation part would be present even in the absence of the

reaction plane, and mainly comes from resonance decay, jets, etc. The correlated part

of the two-particle distribution function is suppressed by 1/Nev [25] , where Nev is the

event multiplicity. Thus the Eqn.(1.9) assumes the form,

⟨cos[n(ϕ1 − ϕ2)]⟩ = v2n +O
( 1

Nev

)
. (1.11)
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The second term is known as the non-flow contribution. Thus the method is a good

method to calculate the flow if the condition vn ≫ 1/
√
Nev is satisfied. For RHIC this

is not a good method to calculate the elliptic flow v2, since v2 is something around 0.2

while Nev ∼ 100 [25].

3. Many particle correlation, v2{4}, v2{6}, etc: By taking correlation on a larger number of

particles we can disentangle the non-flow effects in harmonic coefficients. For four particle

correlation we have,

⟨⟨cos[n(ϕ1 + ϕ2 − ϕ3 − ϕ4)]⟩⟩ = ⟨cos[n(ϕ1 + ϕ2 − ϕ3 − ϕ4)]⟩

−⟨cos[n(ϕ1 − ϕ3)]⟩⟨cos[n(ϕ2 − ϕ4)]⟩ − ⟨cos[n(ϕ1 − ϕ4)]⟩⟨cos[n(ϕ2 − ϕ3)]⟩. (1.12)

This expression reduces to,

⟨⟨cos[n(ϕ1 + ϕ2 − ϕ3 − ϕ4)]⟩⟩ = −v4n +O
( 1

N3
ev

)
+O

( v22n
N4
ev

)
. (1.13)

Since higher order flow coefficient are much smaller (vn ≫ v2n), the condition to suppress

non-flow effects is

vn ≫ 1

N
3/4
ev

. (1.14)

This condition is satisfied at RHIC. Using a higher number of particle correlation, the

non-flow effects are suppressed more. Since at LHC the energy is greater than RHIC, a

greater number of particles are produced, and hence non-flow effects are suppressed more.

Fig. 1.2 shows the differential elliptic flow with four-particle correlation as function of p⊥
for events with 40 − 50% centrality, calculated using two particle correlation (top plot),

and four particle correlation (bottom plot) for LHC (√sNN = 2.76TeV) [26] and STAR

(√sNN = 200GeV). The lower panel is for higher centrality; it is evident that for periph-

eral collisions the elliptic flow becomes larger. The Fig. 1.3 shows the integrated elliptic flow

between p⊥ϵ(0.2, 5.9)GeV as a function of centrality, for different particle correlation. The el-

liptic flow at STAR is found to be less than that at LHC; the integrated elliptic flow is larger

for collisions with higher collision energy. The full and open markers show respectively the
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centrality class 20% − 30% as a function of the beam CM energy. Figures taken from [26].
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differences when doing the multi-particle correlations among all particles and among particles

with the same charge.

1.5 Theoretical methods to treat heavy ion collision

The two main ways to treat the system created in a heavy ion collision are i) covariant trans-

port theory and ii) relativistic hydrodynamics. These processes deal with different episodes in

the evolution of the matter created in a heavy ion collision. The transport theory is used to

study the early pre-equilibrium and the late hadronic freeze-out state in a heavy ion collision.

A Multi-Phase Transport (AMPT) model [27] and Ultra-Relativistic Quantum Molecular Dy-

namic (URQMD) model [28] are some of the transport based models used to study heavy ion

collision.

Between the early pre-equilibrium and the final decoupling stage, exists an extended period

over which hydrodynamics is applicable. Here in this thesis, we will be dealing with a part of

this period of applicability of hydrodynamics, the hadronic phase.
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Figure 1.4: Comparison of hydrodynamic models to experimental data on charged hadron
integrated (left) and minimum bias (right) elliptic flow by PHOBOS and STAR, respectively.
STAR event plane data has been reduced by 20 per cent to estimate the removal of non-flow
contributions [30].

1.5.1 Hydrodynamics

The many-body systems that are produced, in a heavy ion collision, is extremely difficult to

deal with if we try to analyse the evolution of each particle constituting the system. A very

efficient way to bypass this difficulty is to use hydrodynamics to study such a system, where

we need a macroscopic description of the system. The macroscopic quantities are an average of

some microscopic quantity (energy, momentum, baryon number etc.), overall the constituent

particles. Hydrodynamics is only applicable if the magnitudes of these macroscopic quantities
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are far greater than their respective fluctuations. For our case, we will need a covariant form

of hydrodynamics.

Relativistic hydrodynamics have been quite successful in explaining many collective phenomena

in high energy physics. Quite an extensive study has been done considering ideal hydrodynam-

ics, which neglects viscous effects. But the system created in a heavy ion collision undergoes

irreversible processes, due to quantum mechanical uncertainty [29] dissipation is always present,

the ideal fluid results serve only as a benchmark. For this, we will need relativistic dissipative

fluid dynamics. In Fig.1.4 we can see clearly that ideal hydrodynamics (η/s = 10−4) overpre-

dicts the data, both for STAR and Phobos. Introduction of a significant amount of viscosity

brings down the value of elliptic flow v2 and helps to match it more accurately to experimental

data.

The first-order dissipative hydrodynamics known as Navier Stokes theory, formulated mainly

by Eckart [31] and Landau-Lifshitz [32], suffers from acausality and numerical instability.

The reason for the acausality is the parabolic form of the equations. This difficulty has been

dealt with in second-order hydrodynamics Israel Stewart theory; in this theory, the dissipative

quantities become independent dynamic variables and obeying equations that describe their

relaxation. These equations are hyperbolic in nature and are able to preserve causality.

Hydrodynamic simulation of a relativistic heavy ion collision is done using computational meth-

ods. The hydrodynamic equations are solved numerically and are matched to the momentum

distribution as observed in the experiments. If ideal hydrodynamics is employed then the input

parameters are adjusted in order to match the experimental data for radial flow. The initial en-

ergy density of the system is fixed so that the final multiplicity matches with the experimental

value. Glauber Model and Colour-Glass Condensate model are the two models mainly used to

describe the initial energy density. In the Glauber model, the energy density profile follows the

nucleon distribution. However, the Colour Glass Condensate model uses the number density

of gluons in binary collision [33, 34]. Colour Glass Condensate model has recently attracted

more interest recently because it includes information about QCD.
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For dissipative hydrodynamics; viscous coefficients, thermal conductivity go in as input. The

shear viscous coefficient normalized by entropy density (η/s) is one of the most important

coefficients and is responsible for the property of the fluid. These collective effects generate

flow-coefficients. For second order hydrodynamics, which is causal unlike the first-order hydro-

dynamics (Navier-Stokes) relaxation times of different viscous and thermal flows also go in as

input.

1.5.2 Kinetic Theory

Kinetic theory is another way of simplifying the problem of multi-body dynamics. Unlike the

previous process here we look from the microscopic point of view. Here instead of studying

the evolution of each particle, we take a statistical approach, and the interaction between

the particles determine how these statistical distributions evolve with time. Hydrodynamic

equations can be derived from kinetic theory, and hence the viscous and thermal coefficients.

Kinetic theory approach has been used to estimate the transport coefficients and their respective

relaxation time for QGP [35,36], and hadrons [7].

Here we start from the Lioüville’s equation for N particles constituting the system. Since the

number N is extremely large this equation in this form is completely useless for all practical

purposes. So we instead try to find the evolution of the probability distribution function of

a single particle, which we find is governed by Lioüville’s equation with an extra correction

term that depends on two-particle distribution function. And similarly, the evolution of the

two-particle distribution function will be governed by Lioüville’s equation with a correction

term that depends on three particle distribution function. In this way we get N coupled equa-

tions, this is known as BBGKY hierarchy prescribed by Bogoliubov, Born, Green, Kirkwood

and Yvon to treat the time evolution of the system. Though this doesn’t simplify the prob-

lem, it provides a scheme for approximation. The simplest equation obtained from this is the

Boltzmann transport equation which governs the evolution of the single particle distribution

function. Being an integrodifferential equation this equation is also very difficult to solve. Some

of the approximation methods employed to solve this equation will be discussed in this thesis.
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1.6 Scope and Organisation of present work

The scattering cross-section that appears in the collision integral is the dynamical input in the

kinetic theory approach, and it is highly suggestive that it contains the effect of the hot and

dense medium. But in earlier literature viscous coefficient of a hadronic gas mixture has been

evaluated using parametrized cross-section extracted from empirical data [7,9,14,38]. In [41,42]

quasi-particle model has also been used. In Kinetic theory approach NJL model [43] has also

been used to predict the viscous coefficients. Scattering amplitudes evaluated using lowest order

chiral perturbation theory have been used in [44, 45], and a unitarized cross-section has been

used in [46] using the inverse amplitude method to obtain an estimate of η. In [47], the bulk

viscosity of a pion gas, has been computed including number-changing inelastic processes using

chiral perturbation theory. In [48] the behaviour of ζ has been demonstrated around the point

of phase transition using the linear sigma model.

In the present work, The effect of the medium has been taken into consideration, for a gas

mixture constituting of pions and nucleons. Using effective interactions and the techniques of

thermal field theory the ππ scattering amplitudes evaluated with self-energy corrected ρ and

σ meson propagators in the internal lines cause a significant modification in the cross-section.

Similarly, for πN scattering the self-energy of the mediator ∆, at finite temperature and baryon

density is obtained, evaluating several one-loop diagrams with π, ρ, N and ∆ in the internal

lines using standard thermal field theoretic methods. Due to the upcoming CBM experiment

at FAIR, nucleons and finite baryon potential have been included. The viscous coefficients,

thermal conductivity and diffusion coefficients have been calculated for this system constituting

of pions and nucleons, using relaxation time approximation. Compared to the viscosities, the

thermal conductivity and diffusion coefficients have received much less attention. This may be

due to the absence of a conserved quantum number, the baryon number being insignificantly

small for systems produced at RHIC and LHC, however, at FAIR energies or in the Beam

Energy Scan (BES) program, the baryon chemical potential is expected to be significant. The

relaxation times of flows appearing in second-order hydrodynamics have also been calculated
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with in-medium cross-section, for a system constituted of only pions, using Grads 14-moment

method.

In Chapter 2, we discuss systems that can be described under a kinetic theory and the hydro-

dynamic model. Different parameters describing a hydrodynamic system have been defined in

terms of the single particle distribution function. Relativistic Boltzmann equation has been

derived and using it conservation equations and thus the hydrodynamic equations have been

derived. The expression of local equilibrium distribution has been derived.

In Chapter 3, transport coefficients of a single component system for the first-order as well as

second-order hydrodynamics have been introduced. Here we have discussed how to obtain the

shear viscosity, bulk viscosity and thermal conductivity of a pion gas using Chapman Enskog

approximation. The relaxation times of flows for a pion gas have been derived using Grad’s 14

Moment method.

In Chapter 4, transport coefficients of a two-component system for first-order hydrodynamics

have been introduced. Here we derive the shear viscosity, bulk viscosity, thermal conductivity,

thermal diffusibility, Diffusion coefficient and Dufour coefficient of a hadronic gas composed of

pions and nucleons. Relaxation time approximation has been employed to solve the transport

equation to derive these coefficients.

In Chapter 5, the in-medium cross-section of ππ scattering and πN scattering have been derived

using finite temperature field theory. The results have been compared to the analytically derived

vacuum cross-section, and experimental data. Finally, in Chapter 6, we summarize our results.

Here the different transport coefficients have been studied for different temperature and nucleon

chemical potential, for a mixture of pions and nucleons. While relaxation time of flows as a

function of temperature and pion chemical potential, have been studied for a system consisting

of only pions. Here how the introduction of the medium effects in the cross-section affects these

transport coefficients have been studied in full.
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In Chapter 7, we conclude the thesis, by summarising the main features and discussions in each

chapter. In this chapter, we also discuss some of the ways by which the work presented in this

thesis can be improved.
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Chapter 2

Kinetic Theory

2.1 Introduction

Kinetic theory is a way of looking at the macroscopic properties and its evolution with time, of a

system of particles from a microscopic view point. It helps us to understand the thermodynamic

and or hydrodynamic properties of a system from the basic interaction between the particles.

A system constituting of N (a very large number) of particle contains 3N spatial co-ordinates

and 3N momentum components. Calculating the evolution of these coordinates with time is

extremely difficult as the equations defining their evolution are coupled. In order to get over

these problem we take a statistical approach. This approach causes a great deal of loss of

information, but since the number of macroscopic parameters is far less than the microscopic

co-ordinates, this loss of information doesn’t pose much of a trouble.

The basic formulation of a system of many particles in kinetic theory is essentially the same,

the difference in their macroscopic properties arises from the difference in the basic interaction

between the particle and the conserved quantum numbers.
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2.1.1 Single particle distribution function

The macroscopic description of a fluid in equilibrium or close to equilibrium is given by the

specification of only a few macroscopic parameters namely the energy, pressure, temperature

and the number of particles. While on the other hand the microscopic description needs the

specification of large number of co-ordinates (i.e. 6N coordinates if there are N particles that

make up the system), namely the position xi(t) and the momentum pi(t) of all the particles.

The micro-state thus corresponds to a point µ(t) in the 6N - dimensional phase space.

This many-to-one correspondence suggests the introduction of statistical ensemble of micro-

state. Consider an ensemble of N system representing the same macro-state but different

micro-state each described by a different representative point µ(t) in the phase space Γ. Let

dN (x,p, t) be the number of representative points in an infinitesimal phase space volume dΓ =∏N
i=1 d

3xid
3pi around the point (p,x), where x = {x1,x2, ...,xN} and p = {p1,p2, ...,pN}

respectively, are the sets comprised of all position and momentum co-ordinates of all the par-

ticles. The phase space density is then defined by.

ρ(p,x, t) = limN→∞
dN (p,x, t)

N
(2.1)

From the above equation it is evident
∫
dΓρ = 1, making ρ is a properly normalized probability

density. When µ is specified then the system is said to be in the pure state, on the other

hand when our knowledge of the system is probabilistic it is said to be in the mixed state.

Equilibrium is defined in terms of the mixed state by examining the evolution of phase space

density ρ(t).

The full phase space density contains more information than generally needed to determine

the macroscopic parameters like pressure, number density, etc. from microscopic consideration.

Single particle distribution is sufficient to calculate these macroscopic quantities. Single particle

distribution function f((x,p, t)) is the probability of finding any of the N particle constituting
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the system around the location x with momentum around p at time t, which is given by.

f((x,p, t)) =
⟨ N∑

i=1

δ3(p− pi(t))δ
3(x− xi(t))

⟩
= N

∫ N∏
i=2

d3pid
3xi ρ(p1 = p,x1 = x,p2,x2, .....,pN ,xN , t) (2.2)

The second identity is obtained by assuming that the density is symmetric with respect to

permuting particle (i.e. same for all particles).

It can be shown that the single particle distribution function is a Lorentz scalar. Let us

consider a function

N(x, p) =
1

p0
δ
(
p0 −

√
p2 +m2

)
f(x, p) = 2θ(p0)δ(p2 −m2)f(x, p) (2.3)

Here x and p are the set of all space-time co-ordinates and the four momentum respectively,

and θ(p0) is a step function. By using Eqn. (2.2) the above function can be written as.

N(x, p) =

⟨ N∑
i=1

1

p0i (t)
δ4(p− pi(t)) δ

3(x− xi(t))

⟩
(2.4)

Introducing an additional integration we get.

N(x, p) =

⟨ N∑
i=1

∫
dti

1

p0i (ti)
δ(t− ti) δ

4(p− pi(t)) δ
3(x− xi(t))

⟩
(2.5)

We then change to the proper time τi from time ti, using relation

dτi =
m

p0i (t)
dti. (2.6)

and x0i = ti the relation for N(x, p) becomes.

N(x, p) =
1

m

⟨ N∑
i=1

∫
dτi δ

4(p− p̂i(τ)) δ
4(x− x̂i(τ))

⟩
(2.7)

where xi(t) = x̂i(τ) and pi(t) = p̂i(τ). From the above formula it is evident that N(x, p) is a

Lorentz scalar as all the terms on the right are scalar quantities. And on account of the Eqn.

(2.3), we can see that f(x, p) is also a Lorentz scalar.

29



2.1.2 Particle four-flow

To describe a non-uniform system we need a local density, a function of space time co-ordinates

n′(x, t). Multiplying this quantity with infinitesimal volume △3x (i.e. n′(x, t)△3x) gives the

average number of particles in the infinitesimal volume at point x at time t. To describe a non-

uniform system we also need a space and time dependent particle flow current, j(x, t). The

quantity j(x, t) · △2σ gives the average number of particles passing through the infinitesimal

surface △2σ at point x per unit time at time t. In a covariant theory these two quantities

combines to form a four vector, namely the particle four-flow.

Nµ(x) =
(
n′(x, t), j(x, t)

)
(2.8)

The index µ runs from 0 to 3; while x = xµ = (t,x) denotes time-space point, and p = pµ =

(p0,p) is the four momenta of a particle. If the particle has mass m and momentum p then the

relativistic energy p0 is given by,

p0 =
√

p2 +m2 (2.9)

Since the distribution function f(x, p) gives the probability of finding any particle constituting

a system around the point (t,x) with momentum around (p0,p), the number density and the

particle current are given by,

n′(x) =

∫
d3p

(2π)3
f(x, p) (2.10)

j(x) =

∫
d3p

(2π)3
vf(x, p) (2.11)

where v = p/p0 is the relativistic velocity of particle. As a consequence of the above formulas

and the fact that, the distribution function and the quantity d3p/p0 are Lorentz scalar, while

pµ is a Lorentz vector we have the particle four-flow; a Lorentz vector.

Nµ =

∫
d3p

(2π)3p0
pµf(x, p) (2.12)
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2.1.3 Energy-momentum tensor

The energy momentum density and their currents will also be a function of space and time

just like other thermodynamic quantities of a non-uniform system. The energy and momentum

density are given by;

n′e′ = T 00(x) =

∫
d3p

(2π)3
p0f(x, p) (2.13)

T i0(x) =

∫
d3p

(2π)3
pif(x, p), i = 1, 2, 3. (2.14)

where the quantity e′ is the average energy per particle, and T i0 is the ith component of

momentum density. Just like particle flow, the energy and momentum flow are given by.

T 0i(x) =

∫
d3p

(2π)3
p0 vif(x, p) =

∫
d3p

(2π)3p0
p0pif(x, p), i = 1, 2, 3 (2.15)

T ij(x) =

∫
d3p

(2π)3
pi vjf(x, p) =

∫
d3p

(2π)3p0
pipjf(x, p), i, j = 1, 2, 3 (2.16)

Where vi = pi/p0. Here T 0i is the average energy flow in the ith direction: and T ij is the flow

of the ithcomponent of average momentum of a fluid cell in the jth direction. The formulas

( 2.13 - 2.16 ) may be written in a compact and covariant form

T µν =

∫
d3p

(2π)3p0
pµpνf(x, p) (2.17)

where µ, ν = 0, 1, 2, 3. Thus the energy-momentum density and their flows, form a symmetric

second rank tensor, known as energy-momentum tensor. It is to be noted, that the energy-

momentum tensor takes only the rest energy and the particle energy into account, we have

assumed that the system is dilute and the interaction energy of the particles is small compared

to their kinetic energy.
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2.1.4 Entropy four-flow

The local entropy density is given by

S0(x) = −
∫

d3p

(2π)3
f(x, p)

[
log f(x, p)− 1

]
, (2.18)

and the entropy flow by,

S(x) = −
∫

d3p

(2π)3
vf(x, p)

[
log f(x, p)− 1

]
. (2.19)

Thus the entropy four flow can be defined as.

Sµ(x) = −
∫

d3p

(2π)3p0
pµf(x, p)

[
log f(x, p)− 1

]
. (2.20)

2.1.5 Hydrodynamic four-velocity

A fluid in motion is characterized by the vector field Uµ(x), the hydrodynamic four-velocity.

It is the velocity of an infinitesimal fluid cell at space time point (t,x). The vector just like

any other velocity vector in relativistic mechanics is time like, with unit length

Uµ(x)Uµ(x) = 1 (2.21)

hence the derivative of its length with respect to any of the space time co-ordinate, ∂ν = ∂/∂xν

yields zero.

Uµ(x)∂νUµ(x) = 0 (2.22)

The hydrodynamic velocity is a bit arbitrary, as will be discussed at the end of this section.

So, choice of a particular hydrodynamic velocity sets the rest frame of a fluid cell, and so

the hydrodynamic velocity is used to evaluate the particular value of any tensor or vector

quantity in the local rest frame (i.e the rest frame of the fluid cell at the space-time point under

consideration). To do this two projection operator has been defined, Uµ and △µν .

△µν = gµν − UµUν (2.23)
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where gµν = diag(1,−1 − 1 − 1) is the metric tensor. Since in the local rest frame the

hydrodynamic velocity is parallel to the time co-ordinate, Uµ = (1, 0, 0, 0); contracting it with

any vector will give the component of the time component of the vector in the local rest frame

(indicated by index LR). The operator △µν annihilates the part parallel to the hydrodynamic

velocity, hence contracted with any vector will give the spatial component of the vector in the

local rest frame.

△LRµν = △LR
µν = diag(0,−1,−1,−1), △µ

LR ν = diag(0, 1, 1, 1) (2.24)

The velocity of a fluid cell, is essentially the average velocity of the N particles constituting the

fluid cell. Depending on how the velocity of these particles are weighted, gives rise to different

definitions of velocity. In literature two choice are quite popular.

Eckart’s definition

In this definition of hydrodynamic velocity, the velocity of each particle is given a weightage

of one.

Uµ =

∑N
i=1 v

µ
i∑N

i=1 i
(2.25)

where vµi = pµi /p
0
i is the four velocity of the ith particle in infinitesimal fluid cell at x, and N is

the total number of particles in the fluid cell. This definition makes the hydrodynamic velocity

parallel to the particle four-flow, and since Uµ has unit length, we can express it as

Uµ =
Nµ

√
N νNν

=
Nµ

N νUν
(2.26)

Now since we have chosen the hydrodynamic velocity to be parallel to Nµ projecting Nµ

perpendicular to Uµ will give us zero.

△µνNν = 0 (2.27)
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Thus by adopting Eckart’s definition of hydrodynamic four-velocity, in the local rest frame the

spatial component of Nµ vanishes.

N i
LR = 0, i = 1, 2, 3 (2.28)

Landau and Lifshitz’s definition

In this case the velocity of individual particles are given a weightage equal to the relativistic

mass of the particles.

Uµ =

∑N
i=1m

′
i v

µ
i∑N

i=1m
′
i

(2.29)

the relativistic mass, m′
i = mi/

√
1− v2

i ; where mi is the rest mass of the particle. This makes

the hydrodynamic four velocity parallel to the momentum density or equivalently the energy

flow at any space time point inside the fluid. Thus, the hydrodynamic velocity can be expressed

as

Uµ =
T µνUν√

UρT ρσTσαUα
=

T µνUν
UρT ρσUσ

(2.30)

Under this definition, applying the projector operator △µν on the above equation we get,

△µνTνσU
σ = 0 (2.31)

Thus in the local rest frame under this definition of hydrodynamic velocity, the momentum

density and the energy current vanishes.

T 0i
LR = T i0LR = 0, i = 1, 2, 3 (2.32)
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2.1.6 Physical quantities in local rest frame

Once a definition of the hydrodynamic velocity have been chosen, one may define the relevant

thermodynamic quantities relative to the local rest frame,like particle density, energy density,

heat flow , pressure tensor and the entropy density. The definitions as mentioned here are quite

general, the exact form of these quantities in Eckart’s definition and Landau’s definition can

be obtained by using Eqn.(2.27) and Eqn.(2.31) respectively.

The particle density n(x) is defined as the total number of particles in the local rest frame.

n(x) = n′
LR(x) = NµUµ = N0

LR (2.33)

where n′(x) and Nµ have been defined in Eqn. (2.10) and Eqn. (2.12). similarly the scaler

energy density is the energy density in the local rest frame.

e(x)n(x) = e′LR(x)n
′
LR(x) = UµT

µνUν (2.34)

where e is the average energy per particle in the fluid cell at x, in the local rest frame. The

heat flow has been defined as the difference of energy flow and the enthalpy flow in the local

rest frame.

Iµq = (UνT
νσ − hNσ)△µ

σ (2.35)

where h = e+ pn−1 is the enthalpy per particle, and p the hydrostatic pressure in the local rest

frame. The pressure tensor is given by.

P µν = △µ
σ T

στ△ν
τ (2.36)

the pressure tensor has a reversible part and an irreversible part.

P µν = −p△µν +Πµν (2.37)

The p is the hydrostatic pressure (reversible part) and Πµν is the viscous-pressure tensor (irre-

versible part). Using the above quantities in the local rest frame the entire energy-momentum
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can be decomposed into three important parts.

UµT
µνUν = en (2.38)

UνT
νσ△µ

σ = Iµq + h△µνNν (2.39)

△µ
σT

στ△ν
σ = −p△µν +Πµν (2.40)

The energy-momentum tensor can also be decomposed into the reversible and irreversible

part.

T µν = T (0)µν + T (1)µν (2.41)

with the reversible T (0)µν , and irreversible T (1)µν contribution given as

T (0)µν = enUµUν − p△µν (2.42)

T (1)µν =
[
(Iµq + h△µσNσ)U

ν + (Iνq + h△νσNσ)U
µ
]
+Πµν (2.43)

The particle four flow can also be split up into two parts.

Nµ = nUµ +△µνNν = nUµ + V µ (2.44)

These forms will play an important role in the derivation of macroscopic laws.

2.1.7 Mixture

The formulas mentioned above are those for a system consisting of particles of a single type,

they can be quite easily generalized to fit situations where there are more than one type of

particles (i.e. mixture). Let the fluid mixture be composed of N types of particles. The

four-flow for each particle species can be represented as,

Nµ
k =

∫
d3pk

(2π)3p0k
pµkfk(x, pk), k = 1, 2, 3...,N (2.45)

where k specifies the species, of the particle. And fk(x, pk) is the distribution function of the

kth specie, and the four-momentum pk has length mk; where mk is the particle rest mass of the
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particular specie. The total particle flow is given by.

Nµ =
N∑
k=1

Nµ
k (x) (2.46)

The total mass flow and mass flow of the k species are

Mµ(x) =
N∑
k=1

Mµ
k (x) (2.47)

and

Mµ
k (x) = mkN

µ
k (2.48)

respectively. Similarly the total energy-momentum tensor will be the sum of energy momentum

tensor for each specie.

T µν(x) =
N∑
k=1

T µνk (x) =
N∑
k=1

∫
d3pk

(2π)3p0k
pµkp

ν
kfk(x, pk) (2.49)

The particle density nk of species k in the local rest frame, and its relation to the total particle

density are give by,

nk = Nµ
k Uµ, k = 1, 2, ...,N (2.50)

and

n = NµUµ =
N∑
k=1

Nµ
k Uk =

N∑
k=1

nk (2.51)

respectively. the concentration xk of the k component, is defined as,

xk = nk/n, k = 1, 2, ...,N (2.52)

and the diffusion flow of k component is the difference of the four-flow of the k component and

concentration of the k component times the total four-flow.

Iµk = Nµ
k − xkN

µ, k = 1, 2, ...,N (2.53)
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From the above definition it is evident that the sum of concentration is unity, and the sum of

diffusion flow vanishes.
N∑
k=1

xk = 1 (2.54)

N∑
k=1

Iµk = 0 (2.55)

2.2 Relativistic Boltzmann Transport Equation

The aim of Boltzmann equation is to study the evolution of the single particle distribution

with time. Since the single particle distribution function is enough to determine the necessary

macroscopic quantity, needed for the complete description of a fluid, we can follow the evolution

of a fluid in its path to global equilibrium once the initial condition are known.

The Boltzmann transport equation is a non-linear integro-differential equation. To solve this

equation, various approximation methods have been developed, a few of them will be discussed

in the next chapter. The application of Boltzmann transport equation is limited to only those

systems which satisfy certain assumptions that are used during its derivation. Here we will

derive the Boltzmann’s equation for a simple system consisting of only one type of particle,

then we will generalize it to describe mixtures.

2.2.1 Assumptions of Boltzmann’s equation

The assumptions necessary for the derivation are same as that required for non-relativistic case.

These are:

1. The medium is rarefied hence chances of more than two particle collision (interaction) is

extremely low, and so not taken into consideration.

2. Hypothesis of molecular chaos: the velocities or the momentum of the colliding particle

are uncorrelated. The number of binary collision will be proportional to the distribution
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function of the colliding particles. For quantum statistics the collision rate will also de-

pend on the states of the particles after collision (Bose enhancement and Pauli blocking).

3. The single particle distribution function varies gradually over space and time. The change

of distribution function will be significant over a length of space and time which is far

greater than the characteristic interaction length and time.

2.2.2 Boltzmann’s equation

Using the particle four-vector we can construct the scalar quantity △N

△N(x) =

∫
△3σ

d3σµN
µ(x) =

∫∫
△3σ

d3σµ
d3p

(2π)3p0
pµf(x, p) (2.56)

where △3σµ is the time-like area four-vector of an small segment of a space-like three dimen-

sional hyperplane σ, situated at x. In the frame where the d3σ is completely time-like, it has

components (d3x, 0, 0, 0). In this frame the expression gets the form.

△N(x) =

∫∫
△3x

d3x
d3p

(2π)3
f(x, p) (2.57)

The quantity mentioned in the above equation is just the number of particles in the volume

△3x, or the number of world lines crossing the segment △3σ. Thus the number of world-lines

crossing the segment △3σ and having momentum around p in the range △3p, is given by,

△N(x) =

∫
△3x

∫
△3p

d3x
d3p

(2π)3
f(x, p). (2.58)

After some time the world line that crosses segment △3σ will cross another segment △3σ̂. If

the particles do not collide or interact with each other then the momentum of each particle will

remain unchanged (i.e. around p in the range △3p). Thus∫
△3σ̂

∫
△3p

d3σµ
d3p

(2π)3p0
pµf(x, p)−

∫
△3σ

∫
△3p

d3σµ
d3p

(2π)3p0
pµf(x, p) = 0 (2.59)

Consider the tube like surface that connects the two segments △3σ̂ and△3σ, no world line

crosses this surface since we are consider a case without collision. These three surface forms a
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closed surface △3σ′; thus the above equation can be expressed as,∮
△3σ′

∫
△3p

d3σµ
d3p

(2π)3p0
pµf(x, p) = 0 (2.60)

Using Gauss’s theorem we get;∫
△4x

∫
△3p

d3σµ
d3p

(2π)3p0
pµ ∂µf(x, p) = 0 (2.61)

where ∂µ = ∂/∂xµ = (∂t,∇). Since the volume △4x and the momentum range △3p are

arbitrary, so it follows that

pµ∂µf(x, p) = 0, (2.62)

this is the Boltzmann equation for collision less case.

Now if there are collisions between the particles, then the number of particle with momentum

around p that crosses the segment △3σ is not necessarily same as the number of particles that

crosses the segment △3σ̂ with the same momentum. The change in number is given by,

△4x
△3p

(2π)3p0
C(x, p). (2.63)

Let us consider a collision of the type p + p1 → p′ + p′1, the number of collision in Minkowski-

space element △4x around x as stated in assumption (2) of the previous section is directly

proportional to:

1. the average density of the colliding particles (i.e. f(x, p)△3p/(2π)3 and

f(x, p1)△3p1/(2π)
3 ),

2. the interval △3p′/(2π)3, △3p′1(2π)
3 and △4x. For quantum statistics △3p′/(2π)3 and

△3p′1/(2π)
3 will be replaced with (1 ± f(x, p′))△3p′/(2π)3 and (1 ± f(x, p′1))△3p′1/(2π)

3

respectively, because of Bose enhancement and Pauli blocking.

The proportionality factor will be denoted by W (p, p1|p′, p′1)/p0p01p′0p′01 . The quantity

W (p, p1|p′, p′1) known as transition rate is a Lorentz scalar depending only on the four mo-

mentum.
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The particle with momentum p changes to a state with a different momentum because of

collision of the form p + p1 → p′ + p′1; where p1, p′ and p′1 can acquire any value that is

permissible. Hence the number of particles with momentum around p in the range △3p lost

due to collision is given by,

1

2
△4x

△3p

(2π)3p0

∫
d3p1

(2π)3p01

d3p′

(2π)3p′0
d3p′1

(2π)3p′01
f(x, p)f(x, p1)W (p, p1|p′, p′1) (2.64)

and for quantum statistics,

1

2
△4x

△3p

(2π)3p0

∫
d3p1

(2π)3p01

d3p′

(2π)3p′0
d3p′1

(2π)3p′01
f(x, p)f(x, p1)[1± f(x, p′)] (2.65)

[1± f(x, p′1)]W (p, p1|p′, p′1).

Similarly the gain of particle will be due to collision of the type p′ + p′1 → p + p1. And

the number of collision that will cause the gain of particle with momentum p for classical and

quantum statistics are given by,

1

2
△4x

△3p

(2π)3p0

∫
d3p1

(2π)3p01

d3p′

(2π)3p′0
d3p′1

(2π)3p′01
f(x, p′)f(x, p′1)W (p′, p′1|p, p1) (2.66)

and

1

2
△4x

△3p

(2π)3p0

∫
d3p1

(2π)3p01

d3p′

(2π)3p′0
d3p′1

(2π)3p′01
f(x, p′)f(x, p′1)[1± f(x, p)] (2.67)

[1± f(x, p1)]W (p′, p′1|p, p1).

respectively. Thus the net change of particles in the interval △4x and △3p is the amount (2.66)

minus amount (2.64 ), or amount (2.68) minus amount (2.66) depending on the statistics. Using

the theory of detailed balance the collision function C(x, p) thus has the form;

C(x, p) =
1

2

∫
d3p1

(2π)3p01

d3p′

(2π)3p′0
d3p′1

(2π)3p′01
[f(x, p′)f(x, p′1) (2.68)

−f(x, p)f(x, p1)]W (p, p1|p′, p′1)
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or,

C(x, p) =
1

2

∫
d3p1

(2π)3p01

d3p′

(2π)3p′0
d3p′1

(2π)3p′01
{f(x, p′)f(x, p′1)[1± f(x, p)][1± f(x, p1)] (2.69)

−f(x, p)f(x, p1)[1± f(x, p′)][1± f(x, p′1)]}W (p, p1|p′, p′1)

depending on the type of statistics. The distribution function and the transition rate will be

determined by the underlying dynamics of the system. Thus taking into account the collision

between the constituent particles the Eqn. (2.61) becomes,∫
△4x

∫
△3p

d3σµ
d3p

(2π)3p0
pµ ∂µf(x, p) = △4x

△3p

(2π)3p0
C(x, p). (2.70)

And since we know that the intervals △4x and △3p are arbitrary, the above equation can be

written as,

pµ∂µf(x, p) = C(x, p). (2.71)

This is the single particle Boltzmann transport equation. The Boltzmann equation for sin-

gle particle can be readily generalized to a mixture containing N species of particles. The

Boltzmann equation for the kth specie is given by,

pµk∂µfk(x, pk) =
N∑
l=1

gl
1 + δkl

Ckl(x, pk). (2.72)

where gl is the lth species and Ckl(x, p) is the collision term for elastic collision (i.e. collision of

the form k + l → k + l) is given by,

Ckl(x, p) =

∫
d3pl

(2π)3p0l

d3p′k
(2π)3p′0k

d3p′l
(2π)3p′0l

[f ′
kf

′
l − fkfl] (2.73)

W (pk, pk|p′k, p′l). k, l = 1, 2, ...,N

and

Ckl(x, p) =

∫
d3pl

(2π)3p0l

d3p′k
(2π)3p′0k

d3p′l
(2π)3p′0l

[f ′
kf

′
l (1± fk)(1± fl) (2.74)

−fkfl(1± f ′
k)(1± fl)]W (pk, pk|p′k, p′l). k, l = 1, 2, ...,N
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depending on whether statistics is classical (Maxwell Boltzmann) or quantum (Fermi-Dirac or

Bose-Einstein). The quantities fk, fl, f ′
k and f ′

l are fk(x, pk), fk(x, pl), fk(x, p′k), and fk(x, p
′
l)

respectively. The quantity γkl = 1 − 1
2
δkl ensures that the above expression are true for both

identical particle (k = l) as well as different species. Similarly for a reactive mixture the collision

term is given by,

Ckl =
1

2

N∑
i,j=1

∫
d3pl

(2π)3p0l

d3p′i
(2π)3p′0i

d3p′j
(2π)3p′0j

(fifjWij|kl − fkflWkl|ij), k, l = 1, 2, ..N . (2.75)

We have restricted ourselves to classical (Maxwell Boltzmann) statistics and reactions in which

particle number is conserved (i.e. reactions of the type k + l → i + j). The collision term

for quantum statistics can be derived easily by incorporating the Bose enhancement or Pauli

blocking

2.3 Conservation Equations

The macroscopic quantities that are used to give a macroscopic description of a system follow

several conservation laws. These conservation laws have to be postulated in a macroscopic

theory, but from the stand point of microscopic theory such as Kinetic theory these laws can

de derived using more basic laws.

Here for the sake of convenience we will use classical statistics to derive the conservation laws.

For cases where quantum statistics is applicable the same laws can be derived following similar

steps that are followed here, all we have to do is choose the appropriate collision term in the

Boltzmann equation.

Let us consider a reactive mixture made up of N species of particles. A reactive mixture is

one were inelastic collisions take place along with elastic collisions, between the constituent

particles. An inelastic collision

k + l → i+ j + ... (2.76)
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is a reaction in which two or more particles of which, at least one is of a different species than the

colliding particle are produced. In the above reaction particle of species k and l transforms into

particles of species i,j,... . Here we restrict ourselves to only those reactions, in which the total

number of particle remains the same. The distribution function fk = fk(x, pk), k = 1, 2, ..,N of

each particle evolve according to the Eqn. (2.72) and the collision term is given by Eqn.(2.75).

Then the following equation holds true (The proof is in Appendix-A).

N∑
k,l=1

∫
d3pk
p0k

ψk(x, pk)Ckl(x, pk) = 0 (2.77)

Where the variable ψk is given by,

ψk(x, pk) = ak(x) + bµ(x)p
µ
k (2.78)

where the functions ak(x) and bµ(x) are arbitrary except for the constrain that during the

reaction (k + l → i+ j) the following relation should hold true.

ak(x) + al(x) = ai(x) + aj(x) (2.79)

For a non-reactive mixture it can be shown (Appendix-A),∫
d3pk
p0k

ψk(x, pk)Ckl(x, pk) = 0 (2.80)

Using Eqn.(2.77) and Eqn.(2.80) the conservation equations can be derived.

2.3.1 Conservation of number

Now let us take bµ(x) equal to zero and ak(x) equal to one for all particles. Then Eqn.(2.77)

becomes.
N∑

k,l=1

∫
d3pk
p0k

Ckl(x, pk) = 0 (2.81)
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Now if we replace
∑N

l=1Ckl(x, pk) using Eqn.(2.72) we get,

N∑
k=1

∫
d3pk
p0k

pµk∂µfk(x, pk) = ∂µ

N∑
k=1

∫
d3pk
p0k

pµkfk(x, pk) = 0. (2.82)

Using Eqn.(2.45) and Eqn.(2.46) the above expressions can be reduced to,

∂µ

N∑
k=1

Nµ
k (x) = ∂µN

µ(x) = 0 (2.83)

This equation expresses that the total number of particle is conserved. For non-reactive mixture

using Eqn.(2.80) it can be shown than number of particle of each species is conserved.

∂µN
µ
k (x) = 0, k = 1, 2, .....,N (2.84)

2.3.2 Conservation of energy-momentum

Now taking ak(x) equal to zero and we find from Eqn.(2.77) ,

N∑
k,l=1

∫
d3pk
p0k

pµkCkl(x, pk) = 0. (2.85)

Again replacing
∑N

l=1Ckl(x, pk) with the left side of the transport equation we get,

∂µ

N∑
k=1

∫
d3pk
p0k

pµkp
ν
kfk(x, pk) = ∂µT

µν = 0. (2.86)

For µ = 0 the above equation expresses the law of conservation of energy, and for µ = 1, 2, 3

conservation of momentum.

2.4 Equations of fluid dynamics

Using the conservation equations derived in the previous section we can derive the fluid dynamic

equations, the time and spatial evolution of the macroscopic quantities, namely the particle
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density, the hydrodynamic four velocity and the energy density. Since the macroscopic quanti-

ties are defined in the local rest frame the resulting equations will depend on the choice of the

rest frame, hence the definition of the hydrodynamic velocity used.

2.4.1 Time derivative and gradient

The projection operators helps to decompose the time-space derivative into a time-like and a

space like part.

∂µ = UµUν∂ν +
(
gµν − UµUν

)
∂ν = UµD +∇µ. (2.87)

where,

D = U ν∂ν , ∇µ = △µν∂ν . (2.88)

The convective time derivative D in the local rest frame represents a pure time derivative.

DLR =
∂

∂t
(2.89)

Similarly the ∇µ is purely spatial in the local rest frame,

∇0
LR = 0, ∇i

LR = − ∂

∂xi
, i = 1, 2, 3 (2.90)

On contracting the time-space derivative with the particle four-flow we get what is known as

the substantial time derivative.

D = Nµ∂µ = nD +Nµ∇µ (2.91)

It is n times the time derivative in the frame in which the spatial part of the hydrodynamic

four-flow vanishes (rest frame as according to Eckart’s definition).
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2.4.2 Continuty equation

The total particle four-flow using the projection operators can be split into two parts, one

parallel to the hydrodynamic velocity and the other orthogonal to it.

Nµ = nUµ + V µ, V µ = △µνNν (2.92)

Where n is the particle density as defined earlier. Since in Eckart’s definition the hydrodynamic

velocity is parallel to the particle four-flow the quantity V µ is zero; in Landau’s definition

V µ = −Iµk . Replacing the above expression in Eqn.(2.83) we get the equation of continuity.

Dn = −n∇µU
µ −∇µV

µ + vµDU
µ (2.93)

Similarly for a mixture the particle four-flow for the kth specie can be expressed as,

Nµ
k = nkU

µ + V µ
k , k = 1, 2, ...,N (2.94)

Using Eqn.(2.84), Eqn.(2.53) and the above equation we get the continuity equation for a

non-reactive mixture.

nDxk = −∇µI
µ
k − V µ∇µxk + IµkDUµ (2.95)

Depending on the definition of Hydrodynamic four-flow we choose the value of V µ and replace

them in the continuity equations. On neglecting the transport quantities V µ and Iµk we get the

zeroth order equation so called Euler type.

Dn = −n∇µU
µ (2.96)

and

Dxk = 0 (2.97)

The above equation is valid for perfect fluids.
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2.4.3 Equation of motion

Contracting the energy-momentum conservation equation (2.86) with the projection operator

△µν gives us the equation of motion.

△µ
ν∂σT

νσ = 0 (2.98)

Using the decomposition of the energy-momentum tensor as expressed in Eqn.(2.42) and

Eqn.(2.43) we get,

hnDUµ = ∇µp−△µ
ν∇σΠ

νσ +
(
ΠµνDUν −△µ

νDW
ν −W µ∇νU

ν −W ν∇νU
µ
)
. (2.99)

Where W µ = UνTνσ△σµ = Iµq + hV µ, and h the average enthalpy per particle. Depending on

whether we have chosen Eckart’s definition or Landau’s definition, we take V µ = 0 or W µ = 0

respectively. For perfect fluids we neglect the transport terms Πµν and W µ.

DUµ =
1

hn
∇µp (2.100)

2.4.4 Equation of energy

The equation of energy is obtained by contracting the energy-momentum conservation equation

(2.86) with Uµ.

Uµ∂νT
µν = 0 (2.101)

Now just like in the previous section using Eqn.(2.42)and Eqn.(2.43) along with the expression

for W µ we get the energy equation.

nDe = −p∇µU
µ +Πµν∇νUµ −∇µW

µ + e∇µV
µ + (2W µ − eV µ)DUµ (2.102)
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Similarly just like the previous cases, we neglect the transport terms to get the equation valid

for perfect fluids.

nDe = −p∇µU
µ (2.103)

2.5 Equilibrium distribution function

Any system left to itself approaches a definite limit, a steady state known as equilibrium.

The distribution function describing such state is the equilibrium distribution function. The

equilibrium state is the state of maximum entropy, hence at equilibrium the entropy production

stops. This condition along with the fact that the distribution function satisfies the transport

equation uniquely determines the form of the equilibrium distribution function.

The entropy density per particle s is defined in terms of the entropy four-flow Sµ as,

sn = SµUµ. (2.104)

The substantial time derivative of the average entropy per particle is expressed as,

Ds = ∂µsN
µ = −∂µ(Sµ − sNµ) + ∂µS

µ. (2.105)

In the above equation we have used the conservation of particle equation (2.83). The above

equation can be rewritten as,

Ds = −∂µIµs + σ. (2.106)

where Iµs = Sµ − sNµ and σ = ∂µS
µ. The quantity Iµs is the change of entropy per particle

due to entropy-flow, while σ is the entropy production. Using the definition of entropy four-

flow Eqn.(2.20) and the Boltzmann transport equation (2.71 )the entropy production can be
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expressed as,

σ(x) = −
∫

d3p

(2π)3p0
[log f(x, p)

]
pµ∂µf(x, p) =

∫
d3p

(2π)3p0
[log f(x, p)

]
C(x, p). (2.107)

Clearly the entropy production stops when the collision term C(x, p) vanishes.

Classical statistics: The collision term for classical statistics is given by Eqn.(2.69),

C(x, p) =
1

2

∫
d3p1

(2π)3p01

d3p′

(2π)3p′0
d3p′1

(2π)3p′01
[f(x, p′)f(x, p′1) (2.108)

−f(x, p)f(x, p1)]W (p, p1|p′, p′1).

From the above equation it is clear that the collision term for a classical statistics is zero when,

f(x, p)f(x, p1) = f(x, p′)f(x, p′1) (2.109)

where the momentum are connected by relation,

p+ p1 = p′ + p′1 (2.110)

A distribution function that satisfies the Eqn.(2.109) will be the equilibrium distribution func-

tion as discussed above, it will be indicated by f 0(x, p). The Eqn.(2.109) can be rewritten

as,

log f 0(x, p) + log f 0(x, p1) = log f 0(x, p′) + log f 0(x, p′1) (2.111)

To ensure that the above relation is true for all momentum it is clear that the term log f(x, p)

should be such that it is same before and after the collision. Since we know what quantities

are conserved during collision, we construct the most general form out of those quantities.

log f 0(x, p) = β(x)
[
µ(x)− pµUµ(x)

]
(2.112)

The quantity µ(x) is so chosen, that integrating f(x, p) over entire momentum range will give

the total number of particle per unit volume; and β(x) = 1/T (x). Thus the distribution
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function can be written as,

f 0(x, p) = exp
(µ(x)− pµUµ(x)

T (x)

)
. (2.113)

The above distribution function describes the local equilibrium, though the change in distribu-

tion function due to collision vanishes, the change due to flow of particles still continues.

Quantum statistics: For quantum statistics the collision term is given by Eqn.(2.70).

C(x, p) =
1

2

∫
d3p1

(2π)3p01

d3p′

(2π)3p′0
d3p′1

(2π)3p′01
{f(x, p′)f(x, p′1)[1± f(x, p)][1± f(x, p1)] (2.114)

−f(x, p)f(x, p1)[1± f(x, p′)][1± f(x, p′1)]}W (p, p1|p′, p′1)

Here the collision term vanishes when,

f(x, p)f(x, p1)[1± f(x, p′)][1± f(x, p′1)] = f(x, p′)f(x, p′1)[1± f(x, p)][1± f(x, p1)] (2.115)

Just like in the previous paragraph the above equation can be written as,

log
( f 0(x, p)

1± f 0(x, p)

)
+ log

( f 0(x, p1)

1± f 0(x, p1)

)
= log

( f 0(x, p′)

1± f 0(x, p′)

)
+ log

( f 0(x, p′1
1± f 0(x, p′1)

)
(2.116)

For the above condition to hold for any momentum, each log term should satisfy,

log
( f(x, p)

1± f(x, p)

)
= β(x)

[
µ(x)− pµUµ(x)

]
(2.117)

Thus the local equilibrium distribution function for quantum statistics is given by,

f 0(x, p) =
1

exp
(
pµUµ(x)−µ(x)

T (x)

)
∓ 1

. (2.118)
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Chapter 3

Transport Coefficients of a hot Pion

Gas

A hydrodynamic system in local equilibrium evolves from one macro state to another and finally

achieves global equilibrium, due to presence of ”transport phenomena ”. Transport phenomena

involve the flow of any physical quantity, viz. energy, momentum or simply any conserved

quantum number. Transport phenomena is caused by the interaction of the constituent particles

that make up the system, and since the matter created during a heavy ion collision is believed

to behave like a hydrodynamic system (except in early pre-equilibrium state characterized by

high expansion rate, and the later de-coupled state where the mean free path becomes greater

than the Hubble radius of the expanding fireball ), the study of transport phenomena is of great

interest and it provides us with a glimpse of the interactions that exist between the particles.

In the regime where both kinetic theory and hydrodynamics are applicable, the regime in which

we are interested here, the hydrodynamic equations can be derived using the Boltzmann trans-

port equation. For a relativistic fluid the hydrodynamic equations describe the conservation

of particle number (or for reactive mixture any other conserved quantum number) and energy

momentum. They are,

∂µN
µ = 0, ∂µT

µν = 0. (3.1)
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The energy momentum tensor and the particle four-flow is given by,

T µν = T (0)µν + T (1)µν ,

T (0)µν = enUµUν − p△µν ,

T (1)µν =
[
(Iµq + h△µσNσ)U

ν + (Iνq + h△νσNσ)U
µ
]
+Πµν ,

and,

Nµ = nUµ +△µνNν = nUµ + V µ. (3.2)

In the above equations the viscous pressure tensor Πµν and the heat flow tensor Iµq constitute

the irreversible flows. These irreversible flows along with the number density and energy den-

sity have 14 unknown fields, but the conservation equations Eqn.(3.1) provides us with only

5 equations. Thus the set of equations are not closed and we need 9 additional equations

of motion. These equations are obtained from the Boltzmann transport equation employing

various approximation schemes. One of the methods for obtain such additional equations is

Chapman-Enskog expansion [1]. Here the single particle distribution function in local equilib-

rium is assumed to be a function of temperature, chemical potential and the three components

of hydrodynamic velocity. The correction to the equilibrium distribution function is arranged

symmetrically in terms of expanding power of Knudsen number. The first truncation leads

to the Navier-Stokes theory, where the dissipative flows are directly proportional to the ther-

modynamic forces (spatial gradient of macroscopic quantities like temperature T , Pressure P

etc.),

Thermodynamic flow = C × Thermodynamic forces. (3.3)

Here the term C represents the proportionality constant known as transport coefficient. These

thermodynamic forces or the spatial non-uniformity give rise to the thermodynamic forces which

drive the system away from equilibrium. The second law of thermodynamics ∂µSµ ≥ 0 requires

viscous pressure and the heat flow to be,

Πµν = 2η⟨∂µUν⟩+ ζ △µν ∂ · U,
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and,

Iµq = λ(∂σT − TDUσ)△µσ,

respectively, where ⟨Aµν⟩ = 1
2

(
△µσ △νρ +△µρ △νσ − 2

3
△µν △σρ

)
Aσρ, is the trace-less part of

tensor Aµν . The Navier stokes equation though stable in the non relativistic case, is unstable

for relativistic generalization. Keeping the second and the higher order terms we get the

Burnett and the super-Burnett equations respectively [2], these equations are unstable for

non-relativistic cases. For relativistic Navier-Stokes theory the equation of motion and the

energy equation turn out to be,

(e+ P )DUα −∇αP +△α
ν∂µΠ

µν = 0

and,

De+ (e+ P )∂µU
µ − Πµν∇µUν = o

respectively. Now introducing a perturbation of the form e = e0 + δe(x, t) and Uµ = (1, 0) +

δUµ(x, t) in the above equations [6] we get diffusion type evolution for perturbation δUµ(x, t),

∂tδU
µ − η0

e0 + P0

∂2xU
µ = O(δ2). (3.4)

Individual modes of this diffusion processes we insert a Laplace-Fourier wave ansatz in the

equation above,

δUµ(t, x) = exp(−ωt+ ikx)fω,k. (3.5)

Thus the ”dispersion-relation” of the diffusion equation turns out to be,

ω =
η0

e0 + P0

k2. (3.6)

Thus, the speed of diffusion of mode is given by

vT (k) =
dω

dk
= 2

η0
e0 + P0

k. (3.7)
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Hence the velocity increases without bound with increase in mode, and at some value of k ex-

ceeds the speed of light which violates causality. Thus, even though the Navier-Stokes equation

can describe the transport phenomenon, it is not causal.

The problem of un-stability in second-order hydrodynamics as found in Burnett and super-

Burnett equations , vanish in moments method developed by Grad [3, 4]. The relativistic

generalization is given by Muller-Israel-Stewart’s theory. In these theories, along with the bulk

viscous coefficient ζ, shear viscous coefficient η and thermal conductivity λ, we have relaxation

time for bulk viscous pressure τζ , shear viscous pressure τη, and heat flow τλ.

In the sections that follow we will try to derive these transport coefficients from a microscopic

approach or kinetic theory, since these quantities go into the hydrodynamic equations as input

and they cannot be estimated from macroscopic methods. In this chapter we will be deriving

the expression for the transport coefficients for hot pion gas. We will derive the first-order

transport coefficients i.e. shear viscosity, bulk viscosity and the thermal conductivity’ using

the Chapman-Enskog process, and the second-order coefficients (the relaxation time of flows)

using the moments method.

3.1 Linear Theory: Enskog Expansion

When the system is not far away from equilibrium it is possible to obtain a linearised form of the

transport equation. The linearisation can be performed around the global equilibrium where

the parameters governing the distribution function are constant, or the local equilibrium where

the parameters governing the distribution function are a function of space and time. In both

cases the collision term becomes a more tractable integral operator with a symmetric kernel.

In order to solve the transport equation, a special form of distribution function is chosen.

On dividing the Boltzmann transport equation

pµUµDf = −pµ∇µf + C[f, f ], (3.8)

C =
1

2

∫
d3p1

(2π)3p01

d3p′

(2π)3p′0
d3p′1

(2π)3p′01

(
f ′f ′

1 − ff1

)
W (p′, p′1|p, p1),
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by mf(x, p) we get the dimension of reciprocal length. The length Lhydro, that is associated

with the left term and the first term on the right characterizes the spatial non-uniformity of

the system, i.e. the length over which the macroscopic fluid variables that parametrize the

local equilibrium distribution function vary. This length can be defined in many ways that give

quantitatively different but similar order of magnitude results: L−1
hydro ∼ ∂µU

µ ∼ |∂µe|/e etc.

So the derivative of any function that is dependent on the parameters such as Uµ, e or T , will

have a factor with an order of magnitude equal to that of L−1
hydro, while the second term to the

right is associated with the mean free path of the particles. The later length is much smaller

than the former in the hydrodynamic regime, the ratio of these two lengths is used to expand

the Boltzmann equation. The distribution function is taken to be a function of the macroscopic

parameters like the temperature, density and their spatial gradient.

The Boltzmann equation is expressed as follows

pµUµDf = −ε pµ∇µf + C[f, f ]. (3.9)

The parameter ε is known as the non uniformity parameter (or Knudsen number, which acts as

a book-keeping factor). It keeps track of the order of derivative of the macroscopic parameters

like Uµ, T and µ, and hence the order of L−1
hydro. To find the solution of the above equation the

distribution function is expanded as follows

f = f 0 + εf 1 + ε2f 2 + ... , (3.10)

and the convective time derivative is expanded as,

Df = ε
(
Df

)1
+ ε2

(
Df

)2
+ ... .. (3.11)

Substituting the above two expansions in Eqn.(3.9) and equating for equal powers of ε we

obtain,

C[f 0, f 0] = 0, (3.12)

pµUµ
(
Df

)r
= −pµ∇µf

r−1 +
r∑
s=0

C[f s, f r−s], r ≥ 1. (3.13)

57



The term (Df)0 turns out to be zero when equated for the coefficient of ε0, and so has been

left out in Eqn.(3.11). The function f 0 has the form of local equilibrium distribution function,

depending on parameters µ,Uµ and T that are functions of space and time. Thus we have the

relation

f 0(x, p)f 0(x, p1)
[
1± f 0(x, p′)

] [
1± f 0(x, p′1)

]
= f 0(x, p′)f 0(x, p′1)[

1± f 0(x, p)
] [
1± f 0(x, p1)

]
. (3.14)

Now choosing the L[ϕr] as

−L[ϕr] = C[f 0, f r] + C[f r, f 0] (3.15)

L[ϕr] = 1

2

∫
d3p1

(2π)3p01

d3p′1
(2π)3p′0

d3p′1
(2π)3p′01

f 0f 0
1 [1± f ′0][1± f ′0

1 ]
(
ϕr + ϕr1 − ϕ

′r − ϕ
′r
1

)
W (p′, p′1|p, p1)(3.16)

where ϕr = f r/f 0, the Boltzmann equation can be rewritten as

pµUµ
(
Df

)r
+ pµ∇µf

r−1 −
r−1∑
s=0

C[f s, f r−s] = −L[ϕr] . (3.17)

This is also known as the Chapman-Enskog hierarchy. If we are dealing with classical statistics

we will not have the terms [1± f ′0] and [1± f ′0
1 ] in the integrand. The macroscopic parameters

that describe the system are completely determined by the zeroth order distribution function

f 0. They are,

n =

∫
d3p

(2π)3p0
pµUµf

0, (3.18)

ne =

∫
d3p

(2π)3p0
(pµUµ)

2f 0. (3.19)

And due to the form of the zeroth order distribution function we will have,

△µνNν =

∫
d3p

(2π)3p0
△µνpνf

0 = 0 (3.20)

and

△µνTνσU
σ =

∫
d3p

(2π)3p0
△µνpνpσU

σf 0 = 0. (3.21)
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The above four relations are satisfied if we impose on function f r for all r ≥ 0 the conditions∫
d3p

(2π)3p0
pµUµf

r = 0, (3.22)∫
d3p

(2π)3p0
(pµUµ)

2f r = 0, (3.23)

and,

△µνNν =

∫
d3p

(2π)3p0
△µνpνf

r = 0 (3.24)

or,

△µνTνσU
σ =

∫
d3p

(2π)3p0
△µνpνpσU

σf r = 0, (3.25)

depending on whether Eckart’s or Landau’s definition of hydrodynamic velocity was considered.

The above four equations are known as the condition of fit.

First Approximation Obtaining the conservation equation following the same steps as men-

tioned in previous chapter from Eqn.(3.17) and equating for same power of ε we get,∫
d3p

(2π)3p0
pµUµ

(
Df

)r
= −

∫
d3p

(2π)3p0
pµ∇µf

r−1, (3.26)∫
d3p

(2π)3p0
pµpνUν

(
Df

)r
= −

∫
d3p

(2π)3p0
pµpν∇νf

r−1. (3.27)

Since the distribution function is dependent on the independent variable n(x), T (x) and Uµ(x)

and its spatial gradients, we can write

(
Df

)r
=

r∑
s=1

[
∂f r−s

∂n

(
Dn

)s
+
∂f r−s

∂T

(
DT

)s
+
∂f r−s

∂Uµ

(
DUµ

)s]
+

r∑
s=2

[
∂f r−s

∂(∇µn)

(
D∇µn

)s
+ ...+ ...

]
+ ... , (3.28)
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replacing this expansion in Eqn.(3.26), Eqn.(3.27) and restricting ourselves to r = 1 we get the

Euler type equations, as discussed in the previous chapter’

(
Dn

)1
= −n∇µU

µ, (3.29)(
DUµ

)1
=

1

hn
∇µp, (3.30)

nDe = −p∇µU
µ. (3.31)

Using the relations

N (0)
µ = nUµ (3.32)

and,

T (0)µν = enUµUν − p△µν . (3.33)

Where,

N (r)
µ =

∫
d3p

(2π)3p0
pµf

r, (3.34)

T (r)µν =

∫
d3p

(2π)3p0
pµpνf r. (3.35)

The condition of fit for the first approximation is given by,∫
d3p

(2π)3p0
pµUµf

0ϕ1 = 0, (3.36)∫
d3p

(2π)3p0
(pµUµ)

2f 0ϕ1 = 0, (3.37)

and, ∫
d3p

(2π)3p0
△µνpνf

0ϕ1 = 0 (3.38)

or, ∫
d3p

(2π)3p0
△µνpνpσU

σf 0ϕ1 = 0 (3.39)

where ϕ1 = f 1/f 0.
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3.2 Chapman-Enskog Method

This method is applicable only for systems slightly away from local equilibrium. Here in order

to extract the hydrodynamic coefficients from the microscopic interaction of the particles, we

truncate the Chapman expansion after the first-order (i.e. terms higher than f 1 are neglected).

Employing the expansion in Eqn.(3.28) the Boltzmann equation takes the form:

(p.U)
[p.U
T 2

DT +D

(
µ

T

)
− pµ

T
DUµ

]
+ pµ

[p.U
T 2

∇µT +∇µ

(
µ

T

)
− pν

T
∇µUν

]
= − L[ϕ1]

f 0(1 + f 0)
. (3.40)

The term ϕ parametrizes the deviation of the distribution function from the local equilibrium,

and is expressed in terms of the thermodynamic forces multiplied with coefficients with appro-

priate tensorial rank so that it stays a Lorentz scalar.

ϕ =
∑

Aα1...αkXα1...αk
. (3.41)

Here Xα1...αk
is the thermodynamic force and Aα1...αk is the associated coefficient . The coef-

ficient Aα1...αk is composed of a scalar A(τ) that is a function of τ = p·U
T

and a general tensor

that can be constructed using pµ. The term A(τ) is expanded in a series before it is substituted

back into Eqn.(3.40).

3.2.1 Transport Coefficients of Pion Gas

Here Chapman Enskog approximation will be employed to derive the transport coefficient of

a hadronic gas composed only of pions. For our convenience we will consider all pions to be

identical and their collision cross-section will be averaged over isospin.

The local equilibrium distribution function f 0 determines the macroscopic parameters as dis-

cussed in the previous section. Using the form of the local equilibrium distribution function

discussed in the previous chapter i.e. f 0 = 1

exp p·U−µ
T

, the relevant macroscopic parameters turn
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out to be,

n = g

∫
dΓpp

µUµf
0 =

g

2π2
z2T 3S1

2(z) , (3.42)

e =
g

n

∫
dΓp

(
pµUµ

)2
f 0 =

T

S1
2(z)

[
zπS

1
3(z)− S2

2(z)
]
, (3.43)

P = g

∫
dΓp

p2

3
f 0 =

g

2π2
z2T 3S2

2(z) , (3.44)

h = e+
P

n
= zT

S1
3(z)

S1
2(z)

, (3.45)

where g is the degeneracy of pion, z = m/T , dΓp = dp
(2π)3p0

and Sαn (z) =
∑∞

k=1 e
kµ/Tk−αKn(kz),

Kn(kz) denoting the modified Bessel function of order n. The detailed method of calculation

and expression for Kn(kz) has been discussed in Appendix-A.

As we have seen in the previous section, truncation of the Enskog expansion after the first term

gives Euler type equations so the continuity equation, equation of motion, and energy equation

for pion gas turn out to be.

Dn = −n∇µU
µ, (3.46)

DUµ =
1

nh
∇µP, (3.47)

De = −P
n
∂µU

µ, (3.48)

respectively. The Gibbs-Duhem relation can be expressed as,

∂νP = nT∂ν(
µ

T
) + nhT−1∂νT. (3.49)

Using the energy equation, the Gibbs- Duhem relation along with the expression for the macro-

scopic parameters e and h from Eqn.(3.43) and Eqn.(3.45) respectively, to remove the time

derivatives of the macroscopic parameters in Eqn.(3.40)we get,

f 0(1 + f 0)
[
Q∂νU

ν + pµ △µν (p · U − h)(T−1∂νT −DUν)− ⟨pµpν⟩⟨∂µUν⟩
]
= TL[ϕ], (3.50)
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where, Q = −1
3
m2
π+(p·U)2

{
4
3
−γ′

}
+(p·U)

{
(γ

′′−1)h−γ′′′
T
}

. The detailed calculation needed

to get Eqn. (3.40), and the expression for γ′, γ′′ and γ′′′ has been discussed in Appendix-B.

This form of the Bolzmann equation that contains only space derivative of the macroscopic

parameters is desirable because, the transport equations that are to be derived using it contain

only space derivative of these parameters, and no time derivatives. Now taking into account

the thermodynamic forces that appear in the Boltzmann equation Eqn.(3.50) we construct

accordingly the term ϕ. Since the integration on the right of Eqn.(3.50) acts on the momentum

only, and for the right hand side to reproduce the left hand side the parameter ϕ must be a

linear combination of the thermodynamic forces with coefficients dependent on τ ,

ϕ = A∂ · U +Bµ △µν (T−1∂νT −DUν)− Cµν⟨∂µUν⟩. (3.51)

Substituting this expression in Eqn.(3.50) and equating the coefficients of the thermodynamic

forces we get,

L[A] = −Qf 0(p){1 + f 0(p)}/T, (3.52)

L[Bµ] = −△µσ p
σ(p · U − h)f 0(p){1 + f 0(p)}/T, (3.53)

L[Cµν ] = −⟨pµpν⟩f 0(p){1 + f 0(p)}/T. (3.54)

Where Cµν = C(τ)⟨pµpν⟩, Bµ = B(τ)△µν p
µ and A = A(τ). The hydrodynamic representation

of the viscous tensor and the heat conduction is given by.

Πµν = Π̊µν +Π△µν = 2η⟨∂µUν⟩+ ζ(∂ · U)△µν , (3.55)

∆Iµ = λ△µα (T−1∂αT −DUα), (3.56)

and the kinetic theory definition of the viscous tensor and the heat conduction is given by,

Πµν =

∫
d3p

(2π)3p0
△µ
σ △ν

τp
σpτf 0(1 + f 0)ϕ, (3.57)

Iµ =

∫
d3p

(2π)3p0
(p · U − h)pσ △µ

σ f
0(1 + f 0)ϕ. (3.58)

Substituting the expression of ϕ from Eqn.(3.51) comparing the two set of equations Eqn.(3.55),

Eqn.(3.56) and Eqn.(3.57), Eqn.(3.58) and equating the coefficients with appropriate tensorial
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ranks (thermodynamic forces) we get the expression of the hydrodynamic coefficients. The

thermodynamic flow and forces of different rank do not couple, the inner product of two irre-

ducible tensor gives zero; this is known as the Curie law in the framework of relativistic kinetic

theory. We finally get

η = − 1

10

∫
d3p

(2π)3p0
f 0(1 + f 0)C⟨pαpβ⟩⟨pαpβ⟩, (3.59)

ζ = −
∫

d3p

(2π)3p0
QAf 0(1 + f 0), (3.60)

λ =
1

3T

∫
d3p

(2π)3p0
Bµ △µ

ν p
ν(p · U − h)f 0(1 + f 0). (3.61)

The conditions of fit have been employed in deriving the Eqn.(3.60); this take care of the

arbitrariness of the coefficient A.

Coefficient of Bulk viscosity

To get the bulk viscosity we expand the coefficient A(τ) in terms of the Laguerre polynomial

of order 1/2 and degree m = 0, 1, 2, ....

A(τ) =
∞∑
m=0

amL
1/2
m (τ). (3.62)

Now multiplying Eqn.(3.52) with L1/2
n (τ) and integrating over entire momentum space of p, we

get.

[A(τ), L1/2
n (τ)] =

αn
n
, n = 0, 1, 2, ... (3.63)

αn = − 1

nT

∫
dΓpf

0(p)[1 + f 0(p)]QL1/2
n (τ). (3.64)

Where,

[F,G] =
1

4n2

∫
dΓpdΓp1dΓp′dΓp′1f

0
p (1 + f 0

p ) δ(F ) δ(G) W. (3.65)
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is known as the bracket quantity in transport theory containing the dynamic cross-section, and

δ(Z) = Z(p) + Z(p1)− Z(p′)− Z(p′1). (3.66)

Substituting the expression of A from Eqn.(3.62) into Eqn.(3.63) we obtain the following sum-

mation,
∞∑
m=0

amamn =
αn
n
, (3.67)

where amn = [L
1/2
m (τ), L

1/2
n (τ)] is known as the collision bracket. The above expression repre-

sents infinite set of equations, an approximate solution can be obtained by limiting the infinite

number of equation to finite number r. The truncated sum is given by,

r+1∑
m=2

a(r)m amn =
αn
n
. r = 2, 3, ..., r (3.68)

The sum begins from m = 2 because the solubility condition states
∫
dΓf 0(1+f 0)Qϕ = 0 when

ϕ is some constant or pµ. So,

a0n = an0 = 0,

a1n = an1 = 0, (n = 0, 1, 2, ...)

a0 = a1 = 0.

(3.69)

Now substituting the expression for A from Eqn.(3.62) into Eqn.(3.60)we get.

ζ = −
∞∑
m=0

am

∫
d3p

(2π)3p0
f 0(1 + f 0)L1/2

m (τ)Q

= nT
∞∑
m=0

amαm. (3.70)

So the lowest order approximation of bulk viscosity is,

[ζ]1 = nTa
(1)
2 α2 = T

α2

a22
, (3.71)
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where,

α2 = − 1

nT

∫
dΓpf

0(1 + f 0)QL
1/2
2 (τ), (3.72)

and

a22 = [L
1/2
2 (τ), L

1/2
2 (τ)]. (3.73)

Evaluation of α2: Using the properties of Laguerre polynomial Lαn(x + y) =∑n
k=0 L

α+k
n−k(x)

(−yk)
k!

we get,

αn = − 1

nT

n∑
k=2

(−1)k
zk

k!
L
1/2+k
n−k (−z)Uν1...νkQν1...νk , (3.74)

where Uν1...νk = Uν1 ...Uνk , and Qν1...νk = 1
mk

∫
dΓpf

0(1 + f 0)pν1...νkQ. Thus α2 becomes.

α2 = − 1

nT
L
5/2
0 (−z) 1

2!
z2UµνQ

µν . (3.75)

Now defining the moment of distribution function as,

Fν1...νk =

∫
dΓpf

0(1 + f 0)pν1pνk , (3.76)

where,

Fν1...νk =
ρ(m)n

mTS1
2

[n
2
]∑

l=0

anl(△U)nl, (3.77)

anl =
∞∑
k=1

k

[n
2
−l]∑

s=0

(−1)s(2l + 2s− 1)!![l+sCs][
nC2l+2s]

kn−l−s+l(kz)
(kz)l+s+1

exp{kµ
T

}, (3.78)

(△U)nl = △(α1α2)...△(α2l−1α2l) Uα2l+1
Uα2l+2

...Uαn . (3.79)

66



Now we can write t(α1...αn) =
1
n!

∑
P tP (α1...αn), where the summation is extended over all per-

mutation P of the indices. Thus the expression of α2 comes to be.

α2 =
z3

2

{
1

3

(S0
3

S1
2

− z−1
)
+
(S0

2

S1
2

+
3

z

S1
3

S1
2

)[
(1− γ

′′
)
S0
2

S1
2

+ γ
′′′
z−1

]
−

(4
3
− γ

′)(S0
3

S1
2

+
15

z2
S2
3

S1
2

+
2

z

)}
(3.80)

Evaluation of a22: According to Eqn.(3.73) the quantity a22 is expressed as;

a22 =
1

4n2

∫
dΓpdΓp1dΓp′dΓp′1f

0
p (1 + f 0

p ) δ{L
1/2
2 (τ)} δ{L1/2

2 (τ)} W. (3.81)

To solve this integral we define the quantities;

gα =
1

2
(p1α − pα), g′α =

1

2
(p′1α − p′α), (3.82)

and,

Pα = (p1α + pα) = (p′1α − p′α) = P ′
[α]. (3.83)

Using these the value of a22 comes to be,

a22 =
z2

4
I3. (3.84)

Where the quantity Iα(z) is,

Iα(z) =
8z4

[s12(z)]
2
e(−2µµ/T )

∫ ∞

0

dψ cosh3 ϕ sinh7 ψ

∫ π

0

dΘ sinΘ
[1
2

dσ

dΩ
(ϕ,Θ)

] ∫ 2π

0

dϕ∫ ∞

0

dχ sinh(2α) χ

∫ π

0

dθ sin θ
e2z coshψ coshχ

(eE − 1)(eF − 1)(eG − 1)(eH − 1)
Mα(θ,Θ). (3.85)

The quantity Mα(θ,Θ) is,

M1(θ,Θ) = 1− cos2Θ, (3.86)

M2(θ,Θ) = cos2 θ + cos2 θ′ − 2 cos θ cos θ′ cosΘ, (3.87)

M3(θ,Θ) = [cos2 θ − cos2 θ′]2. . (3.88)

The details of the variable used in the Iα(z) will be discussed in Appendix-C and Appendix-D.
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Coefficient of Thermal Conductivity

The procedure for deriving the thermal conductivity is similar to the one used for deriving bulk

viscosity. Here also we expand the coefficient C(τ) in terms of Laguerre polynomial of order

3/2.

B(τ) =
∞∑
m=0

bmL
3/2
m (τ). (3.89)

Now multiplying Eqn.(3.53) with L
3/2
n (τ)△αµ p

µ we get,

[Bpα, L3/2
n (τ)△αµ p

µ] =
T

n
βn, n = 0, 1, 2, ... (3.90)

βn = − 1

nT 2

∫
Γpf

0(1 + f 0)L3/2
n (τ)(p · U − h)△µν p

µpν . (3.91)

Substituting the expanded form of B(τ) in the above equation we get,
∞∑
m=0

bmbmn =
βn
ρ
, (3.92)

where bmn = 1
mT

[L
3/2
m (τ)pµ, L

3/2
n (τ) △µν p

ν ]. As in the case of bulk viscosity the solubility

condition dictates, b0n = bn0 = 0 for n = 0, 1, 2, .. and β0 = 0. Approximate solution is

obtained by restricting the number of equations in the above expression to r,
r∑

m=1

b(r)m bmn =
βn
ρ
. (3.93)

Substituting the value of B in Eqn.(3.61) we get,

λ = −1

3

∞∑
m=1

bm

∫
dΓpf

0(1 + f 0)L3/2
m (τ)△µν p

µpνT−1(p · U − h)

=
1

3
nT

∞∑
m=1

bmβm. (3.94)

So under first approximation (i.e. restricting ourselves to r = 1) we get,

[λ]1 = −1

3
nTb

(1)
1 βm1 = − T

3m

β2
1

b11
, (3.95)
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where,

β1 = − 1

nT 2

∫
Γpf

0(p)(1 + f 0(p))L
3/2
1 (τ)(p · U − h)△µν p

µpν , (3.96)

and

b11 =
1

mT
△µν [L

3/2
1 (τ)pµ, L

3/2
1 (τ)pν ]. (3.97)

Evaluation of β1 Using the properties of Laguerre polynomial in Eqn.(3.91) we get,

βn = − 1

nT 2

n∑
k=1

(−1)k

k!
zkL

3/2+k
n−k (−z)Uν1...νkGν1...νk , (3.98)

where, Gν1...νk = m−k ∫ dΓpf 0(1+f 0)pν1 ...pνkG, and G = (p ·U−h)△µν p
µpν . Thus β1 becomes.

β1 =

(
1

nT 2

)
zUµG

µ, Gµ = m−1 △αβ {UνF µναβ − hF µαβ}. (3.99)

The moment calculation yields,

β1 = 3z2
[
1 + 5z−1 s

2
3

s12
−

(s23
s12

)2
]
. (3.100)

Evaluation of b11 The expression of b11 is given as,

b11 =
1

mT
△αβ [L

3/2
1 (τ)pα, L

3/2
1 (τ)pβ]

=
1

4n2mT

∫
ΓpΓp1Γp′Γp′1f

0f 0
1 (1 + f

′0(1 + f
′0
1 ))W (pp1|p′p′1)

△αβδ{L3/2
1 (τ)pα}δ{L3/2

1 (τ)pβ}. (3.101)

Using the same geometric choices and process employed for a22 we get,

b11 = −z{I2(z) + I2(z)}, (3.102)

where In(z) has the same meaning as discussed earlier.
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Coefficient of Shear Viscosity

Just as in the previous cases, here too we expand C in terms of Laguerre polynomials,

C(τ) =
∞∑
m=0

cmL
5/2
m (τ). (3.103)

Following the same procedure as employed earlier we multiply L5/2
n (τ)⟨pµpν⟩ and integrate

[C⟨pµpν⟩, L5/2
n (τ)⟨pµpν⟩] = mT

n
γn, n = 0, 1, 2, ... , (3.104)

γn = − 1

ρT 2

∫
dΓpf

0(p)[1 + f 0(p)]L5/2
n (τ)⟨pµpν⟩. (3.105)

Now substituting the expanded version of C in above equation we get,
∞∑
m=0

cmcmn =
1

ρT
γn, (3.106)

where cmn = 1
(mT )2

[L
5/2
n (τ)⟨pµpν⟩, L5/2

n (τ)⟨pµpν⟩] as discussed in the previous cases is the bracket

quantity. An approximate solution is obtained by limiting the infinite number of equations to

finite number r,

(r−1)∑
m=0

c(r)m cmn =
1

ρT
γn, (n = 0, 1, 2, ..., (r − 1)). (3.107)

Substituting the expansion of C in Eqn.(3.59) we get,

η = − 1

10

∞∑
m=0

cm

∫
dΓpf

0(1 + f 0)L5/2
n (τ)⟨pµpν⟩⟨pµpν⟩ (3.108)

=
ρT 2

10

∞∑
m=0

cmγn. (3.109)

Hence the approximate value of shear viscosity we get after restricting ourselves to r = 1 is,

[η]1 =
ρT 2

10
c
(1)
0 γ0 =

T

10

γ20
c00
, (3.110)
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where,

γ0 = − 1

ρT 2

∫
dΓpf

(0)(p)[1 + f (0)(p)]L5/2
n (τ)⟨pµpν⟩⟨pµpν⟩, (3.111)

c00 =
1

(mT )2
[L5/2

n (τ)⟨pµpν⟩, L5/2
n (τ)⟨pµpν⟩]. (3.112)

Evaluation of γ0 Using the properties of Laguerre polynomial in the definition of γn we get,

γn = − 1

ρT 2

n∑
k=0

(−1)k

k!
zkL

5/2+k
n−k (−z)△αβγδ Uν1...νkF

αβγδν1...νk . (3.113)

So the expression for γ0 turns out to be,

γ0 = − 1

ρT 2
L
5/2
0 (−z)△αβγδ F

αβγδ = −10
S2
3

S1
2

. (3.114)

Evaluation of c00 The expanded form of the quantity c00 is given by,

c00 =
1

(mT )2
[L

5/2
0 (τ)⟨pµpν⟩, L5/2

0 (τ)⟨pµpν⟩]

=
1

4ρ2T 2

∫
ΓpΓp1Γp′Γp′1f

0f 0
1 (1 + f ′0)(1 + f ′0

1 )W (pp1|p′p′1)

δ{L5/2
0 (τ)⟨pµpν⟩}δ{L5/2

0 (τ)⟨pµpν⟩}. (3.115)

The quantities δ{L5/2
0 (τ)⟨pµpν⟩} and δ{L5/2

0 (τ)⟨pµpν⟩} are same as defined earlier. Using the

geometric choises as discussed in Appendix-C and Appendix-D we get.

c00 = 2I1(z) + 2I2(z) +
2

3
I3(z). (3.116)

3.3 Grad’s 14 Moment Method - Evaluation of relax-

ation time of flows

The parabolic hydrodynamic equations that we got from the Chapman-Enskog ran into the

problem of causality violation, while Grad’s 14-moment method provides hyperbolic equations

resulting in finite time scale for the thermodynamic flows. The Chapman-Enskog method of
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linearising the Boltzmann transport equations is applicable only when the mean free path of the

constituent particles are negligibly small, compared to the characteristic macroscopic length.

But when this condition is strictly not satisfied we have to use the Grads-14 method. Here

the single particle distribution function was expanded around the local equilibrium distribution

function in terms of complete set of Hermite polynomials, and then truncated so that the single

particle distribution function is dependent on variables like temperature, chemical potential

and the hydrodynamic velocity, along with the irreversible flows like heat current and the shear

stress tensor, a total of fourteen moments of the distribution function, and hence the name

14-moment method. A major flaw of this process is the lack of a small parameter, like the

Knudsen number in Chapan-Enskog expansion, which prevents us from power counting and

hence there is no way to improve the approximation. The relativistic generalization of this

process was attempted by Israel and Stewart [5, 6]. They expanded the distribution function

around the local equilibrium in terms of a series of (reducible) Lorentz tensors formed with

particle four momentum pµ, i.e., 1, pµ, pµpν , ... . The series was truncated after the second-

order in momentum, i.e., keeping only tensors 1, pµ and pµpν with 14 unknown coefficients to

describe the distribution function. There are only 14 coefficients because the trace of pµpν is

equal to m2, where m is the rest mass of the particles constituting the system. The problem

was revisited and Denicol-Neime-Molnar-Rischke theory [7] was formed, it was found that the

9 extra equations (known as the relaxation equation of flows) take a more general form than

previously derived by Israel-Stewart,

τΠDΠ+Π = −ζ∂µUµ + J +K +R,

τλDI
µ
q + Iµq = λ

(
∇µ − T

nh
∇µP

)
+ J µ +Kµ +Rµ,

τηD⟨Πµν⟩+ ⟨Πµν⟩ = 2η⟨∇µUν⟩+ J µν +Kµν +Rµν . (3.117)

All the cursive term on the right are of second-order in combined power of Knudsen number

and Reynold number associated each dissipative flow.

R−1
Π =

|Π|
P
, R−1

Π =

√
IµIµ

P
, R−1

π =

√
ΠµνΠµν

P
. (3.118)
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These Reynold’s numbers characterize the response of the system, to the thermodynamic forces

that drives the system away from equilibrium. The Israel-Stewarts equation can be obtained

from the more general set of equations mentioned above if we take all the K, R terms to be

zero and J = −4
3
τΠ(∂µU

µ)Π, J µ = τλ(∂νU
ν)Iµ and J µν = −4

3
τη(∂σU

σ)Πµν .

The method we employ here to derive the expression for the relaxation time of flows is very

similar to the one employed by Denicol et al. Here we expand the distribution function using

irreducible tensors, 1, ⟨Πµ⟩, ⟨ΠµΠν⟩, ... ; unlike Israel-Stewart. The evolution of the distribution

function will be described by the the transport equation,

pµ∂µf(x, p) = C[f ]. (3.119)

Just as with the previous methods, this method is also applicable when the system is slightly

away from equilibrium. Thus the distribution function of the pions f(x, p) is expanded around

the local equilibrium,

f(x, p) = f 0(x, p)[1 + ϕ(x, p)]. (3.120)

The term f 0(x, p) is the zeroth order distribution function describing the local equilibrium

condition, hence a Juttner’s form is chosen,

f 0(x, p) =
[
exp

(pµUµ(x)− µπ(x)

T (x)

)
− 1

]−1

. (3.121)

Where T (x), Uµ(x) and µπ(x) are the local temperature, hydrodynamic four velocity and the

pion chemical potential, respectively. Replacing the expanded form of the distribution function

in the transport equation we get,

pµ∂µf
0 + f 0(1 + f 0)pµ∂µϕ = −L[ϕ] (3.122)

Where,

L[ϕ] = f 0(x, p)

∫
dΓkdΓp′dΓk′f

0(x, p)[1 + f 0(x, p′)][1 + f 0(x, k′)][
ϕ(x, p) + ϕ(x, k)− ϕ(x, p′)− ϕ(x, k′)

]
W. (3.123)
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Unlike the Chapman-Enskog method of approximation we do not neglect the the term con-

taining the derivative of ϕ, since this quantity may be small but its derivative over time and

space may not be small and hence cannot be neglected and should be incorporated in this

second-order theory. The deviation function that parametrizes the deviation of the distribu-

tion function from local equilibrium, depends on space-time coordinates xµ and momentum pµ,

and is a scalar. Thus ϕ can be written as a sum of scalar products of tensors formed with pµ

and tensors depending on xµ. Thus ϕ constructed out of irreducible tensors assumes the form,

ϕ(x, p) = A(x, τ)−Bµ(x, τ)⟨Πµ⟩+ Cµν(x, τ)⟨ΠµΠν⟩+ ... , (3.124)

where τ = (pµUµ)/T , Πµ = pµ/T , ⟨Πµ⟩ = △µνΠnu and ⟨ΠµΠν⟩ =
[
1
2
(△µα △νβ +△να △µβ) −

1
3
△µν △αβ

]
Παβ. The zeroth order distribution defines the number density, energy density and

hydrodynamic four velocity, just like in Chapman-Enskog method,

n = g

∫
d3p

(2π)3p0
pµUµf = g

∫
d3p

(2π)3p0
pµUµf

0, (3.125)

en = g

∫
d3p

(2π)3p0
(pµUµ)

2f = g

∫
d3p

(2π)3p0
(pµUµ)

2f 0. (3.126)

Thus just as in the Chapman-Enskog method we have the conditions of fit.∫
d3p

(2π)3p0
pµUµf

0(1 + f 0)ϕ = 0, (3.127)∫
d3p

(2π)3p0
(pµUµ)

2f 0(1 + f 0)ϕ = 0, (3.128)∫
d3p

(2π)3p0
⟨pµ⟩f 0(1 + f 0)ϕ = 0 . (3.129)

Here we have chosen Eckart’s definition of hydrodynamic velocity, (i.e. △µνNν =
∫

d3p
(2π)3p0

△µν

pνf
0 = 0 ). On substituting the expression of Φ from Eqn.(3.124) we get,

d3p

(2π)3p0
τA(x, τ)f 0(1 + f 0) = 0, (3.130)

d3p

(2π)3p0
τ 2A(x, τ)f 0(1 + f 0) = 0, (3.131)

d3p

(2π)3p0
⟨Πµ⟩Bν(x, τ)⟨Πν⟩f 0(1 + f 0) = 0. (3.132)
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Here we have used the fact that the inner product of irreducible tensors of different ranks

vanishes. The continuity equation, equation of motion and energy equation can be derived from

the transport equation as expressed by, Eqn.(3.122) using the same procedure as employed in

the case of Chapman Enskog process. Using Eckarts definition as mentioned earlier the equation

turns out to be,

Dn = −n∂ · U, (3.133)

hnDUµ = ∇µP −△µ
ν∇σΠ

νσ −△µ
νDI

ν
q , (3.134)

nDe = −P∂.U −∇νI
ν
q . (3.135)

Where,

Πµν =

∫
d3p

(2π)3p0
pµpνf 0(1 + f 0)ϕ, (3.136)

and,

Iµq =

∫
d3p

(2π)3p0
pσ △µ

σ (p · U − h)f 0(1 + f 0)ϕ; (3.137)

just as in the previous approximation method. Similarly, we also get the Gibs-Duhem relation-

ship,

Dh = TD
(µ
T

)
+ hT−1DT − 1

n
∇νI

ν
q . (3.138)

3.3.1 Determining A, Bµ and Cµν for the Pion Gas

The time derivatives of the macroscopic parameters like the temperature T , hydrodynamic four

velocity Uµ and the chemical potential µπ that appear in the transport equation Eqn.(3.122)

after the introduction of the chosen expression for f(x, p), are expressed in terms of space

derivatives, using the equation of motion, energy equation and the Gibbs-Duhem relation. The

equation of motion Eqn.(3.134) gives the expression for the time derivative of the hydrodynamic

velocity. To obtain the expression for the time derivative of T and µ/T we solve Eqn.(3.135)
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and Eqn.(3.138),

T−1DT = (1− γ
′
)
[
∂ · U +

δ

P
∇νI

ν
q

]
, (3.139)

TD
(µ
T

)
= [(γ

′′ − 1)h− γ
′′
T ]
[
∂ · U +

δ

P
∇νI

ν
q

]
− δ

′

n
∇νI

ν
q . (3.140)

Where,

γ′ =
(S0

2/S
1
2)

2 − (S0
3/S

1
2)

2 + 4z−1S0
2S

1
3/(S

1
2)

2 + z−1(S0
3/S

1
2)

(S0
2/S

1
2)

2 − (S0
3/S

1
2)

2 + 3z−1S0
2S

1
3/(S

1
2)

2 + 2z−1(S0
3/S

1
2)− z−2

, (3.141)

γ
′′
= 1 +

z−2

(S0
2/S

1
2)

2 − (S0
3/S

1
2)

2 + 3z−1S0
2S

1
3/(S

1
2)

2 + 2z−1(S0
3/S

1
2)− z−2

, (3.142)

γ
′′′
=

(S0
2/S

1
2) + 5z−1(S1

3/S
1
2)− S0

3S
1
3/(S

1
2)

2

(S0
2/S

1
2)

2 − (S0
3/S

1
2)

2 + 3z−1S0
2S

1
3/(S

1
2)

2 + 2z−1(S0
3/S

1
2)− z−2

, (3.143)

and,

δ =
S2
2S

0
2/(S

1
2)

2

1− z[S0
3S

1
2 − S1

3S
0
2 ]/(S

1
2)

2
, (3.144)

δ
′
= − 1

1− z[S0
3S

1
2 − S1

3S
0
2 ]/(S

1
2)

2
. (3.145)

The terms z and Sαn has the same meaning as in the previous section (Chapman-Enskog

method). Using these equations the first term on the left hand side of the transport equa-

tion becomes,

Πµ∂µf
0 = f 0(1 + f 0)

[
(τ − ĥ)Πα

∇αT

T
+

1

Tn
Παα∇αP − ⟨ΠµΠν⟩⟨∇µUν⟩ − τΠµDU

µ + Q̂∂ · U

+τ
[
{τ(1− γ′) + (γ

′′ − 1)ĥ− γ
′′′} δ
P
∇αI

α
q − δ′

nT
∇αI

α
q

]]
. (3.146)

Where, Πµ = pµ

T
, ĥ = h/T , Q̂ = Q

T 2 and Q = −1
3
m2
π+(p ·U)2[4

3
− γ′] + (p ·U)[(γ′′ − 1)h− γ

′′′
T ].

Thus we see that, the viscous pressure and the heat flow are also macroscopic parameters that

describe the system. So in Grads-14 moment method we truncate the series for ϕ in such a way

that the viscous pressure and heat flow are retained as state variables in addition to the usual

five hydrodynamic variables. Thus we are left with,

ϕ(x, p) = A(x, τ)−Bµ(x, τ)⟨Πµ⟩+ Cµν(x, τ)⟨ΠµΠν⟩. (3.147)
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The coefficients of the term that remain are expanded in terms of τ , up to the first term that

has non-vanishing contribution to the irreversible flows,

A(x, τ) = A0(x) + A1(x)τ + A2(x)τ
2 =

2∑
s=0

As(x)τ
s, (3.148)

Bµ(x, τ) = (B0)µ(x) + (B1)µ(x)τ =
1∑
s=0

(Bs)µ(x)τ
s, (3.149)

Cµν(x, τ) = (C0)µν(x). (3.150)

As before, we find the viscous flows and the heat flow in terms of the coefficients of ϕ. The

bulk viscous pressure as defined before, is

Π =
1

3

∫
d3p

(2π)3p0
△µν p

µpνf 0(1 + f 0)ϕ. (3.151)

Substituting the value of ϕ along with the expanded form of the coefficients, and using the

condition of fit just like it has been used to derive Eqn.(3.60), the above can be expressed so,

Π = −A2

∫
d3p

(2π)3p0
Qτ 2f 0(1 + f 0). (3.152)

The terms with the coefficients A0 and A1 vanishes due the properties of summation invariant.

Thus we have,

Π = nTα2A2, (3.153)

where, αn = − 1
nT

∫
d3p

(2π)3p0
f 0(1 + f 0)Qτn. Similarly for heat flow we have

Iµq =

∫
d3p

(2π)3p0
pσ △µ

σ (p · U − h)f 0(1 + f 0)ϕ. (3.154)

Substituting the expanded form of ϕ and noting the fact that the term containing (B1)ν vanishes

we get,

Iµq = −T 2(B1ν)

∫
d3p

(2π)3p0
pσ △µ

σ (p · U − h)τ⟨Πν⟩f 0(1 + f 0) =
1

3
nT (B1)ν △µν β1, (3.155)
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where βn = − 1
Tn

∫
d3p

(2π)3p0
f 0(1 + f 0)τn(τ − h)△µν pµpν . Finally, the viscous pressure tensor,

⟨Πµν⟩ =
∫

d3p

(2π)3p0
⟨pµpν⟩f 0(1 + f 0)ϕ, (3.156)

after substitution of the expression of ϕ turns out to be,

⟨Πµν⟩ = −ργ0
5

⟨Cµν⟩. (3.157)

Here we use the definition, γn = − 1
ρT 2

∫
d3p

(2π)3p0
f 0(1 + f 0)τn⟨pµpν⟩⟨pµpν⟩.

Now, though the coefficients A0, A1 and (B0)µ do not contribute to the irreversible flows,

they cannot be put equal to zero. To find the value of those terms we introduce Eqn.(3.148)

and Eqn.(3.149) in the condition of fit. Doing so, we get

a1A0 + a2A1 + a3A2 = 0, (3.158)

a2A0 + a3A1 + a4A2 = 0, (3.159)

B0
ν △µν b0 +B1

ν △µν b1 = 0, (3.160)

where an =
∫

d3p
(2π)3p0

f 0(1+f 0)τn and △µνbn =
∫

d3p
(2π)3p0

f 0(1+f 0)τn⟨Πµ⟩⟨Πν⟩. Solving the above

equations we get the complete set of coefficients in terms of the thermodynamic flows. They

are given by,

A0 =
(a2a4 − a23)

(a1a3 − a22)

Π

nTα2

, (3.161)

A1 =
(a1a4 − a2a3)

(a22 − a1a3)

Π

nTα2

, (3.162)

A2 =
Π

nTα2

, (3.163)

(B0)ν =
Iµq△µν

nTβ1

(
− b1
b0

)
, (3.164)

(B1)ν =
Iµq△µν

nTβ1
, (3.165)

⟨(C0)
µν⟩ = − 5

ργ0
⟨Πµν⟩. (3.166)

Thus, the above expressions completely define the term ϕ, and hence the distribution function

in terms of the macroscopic parameters which include the viscous pressure and the heat flow.
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3.3.2 Equation of motion of dissipative fluxes

The equation of continuity, motion and energy are a set of five equations, whereas we have

fourteen unknowns, including the hydrodynamic variable, heat flow and the viscous pressure.

We need nine additional equations to completely determine the evolution of the system.

Bulk viscous pressure equation

To construct the bulk viscous pressure equation we take inner product on both sides of

Eqn.(3.122) with τ 2. Applying the variation approach proposed by Galerkin [10] and using

the inner product properties, we get

Π = ζ

[
∇µU

µ − 1

n2α2
2

{a33 − 2a2a3a4 + a1a
2
4

a22 − a1a3
+ a5

}
DΠ

− 1

n2α2

{
3

β1

(b1b2
b0

− b3

)
+ (1− γ

′
)δ
(S1

2

S2
2

)
a4

+
{(
ĥ(γ

′′ − 1)− γ
′′′)
δ
(S1

2

S2
2

)
− δ

′
}
a3

}
∇µI

µ
q

]
. (3.167)

Thus the equation indeed is hyperbolic, containing time derivative of the bulk viscous pressure.

From the above equation the relaxation time of the bulk viscous pressure turns out to be,

τζ = ζ
1

n2α2
2

[a33 − 2a2a3a4 + a1a
2
4

a22 − a1a3
+ a5

]
, (3.168)

where,

a1 =
n

T

(S0
2

S1
2

)
,

a2 =
n

T

(
z
S0
3

S1
2

− 1
)
,

a3 =
n

T
z2
(S0

2

S1
2

+ 3z−1S
1
3

S1
2

)
,

a4 =
n

T
z3
(
15z−2S

2
3

S1
2

+ 2z−1 +
S0
3

S1
2

)
,

a5 =
n

T
z4
[
6z−1

(S1
3

S1
2

+ 15z−2S
3
3

S1
2

)
+
(S0

2

S1
2

+ 15z−2S
2
2

S1
2

)]
; (3.169)
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and

α2 = z3
[
1

3

(S0
3

S1
2

− z−1
)
+
(S0

2

S1
2

+
3

z

S1
3

S1
2

){
(1− γ

′′
)
S1
3

S1
2

+ γ
′′′
z−1

}
−
(4
3
− γ

′
){S0

3

S1
2

+ 15z−2S
2
3

S1
2

+ 2z−1
}]
. (3.170)

Heat flow equation

Just as in the previous case the variation approach leads us to the heat flow equation. Taking

inner product on both sides of Eqn.(3.122) with ⟨Πµ⟩ we get,

Iµq = Tλ

[(∇µT

T
− ∇µP

nh

)
− 1

nT

(
β

′′
DIµq + γ

′′∇ν⟨Πµν⟩+ α
′′∇′′

Π
)]
, (3.171)

β
′′
= − 1

β1

[ 9T
nβ1

(
b3 −

b1b2
b0

)
− 3T

n

b2

ĥ

]
, (3.172)

γ
′′
=

1

β1

[γ1
γ0

+
3T

n

b2

ĥ

]
, (3.173)

α
′′
=

3T

n

1

β1

[ 1

α2

(
b1
a2a4 − a23
a1a3 − a22

+ b2
a1a4 − a2a3
a22 − a1a3

+ b3

)b2
ĥ

]
. (3.174)

The first linear term on the right hand side of Eqn.(3.171), and the coefficient of the time

derivative of the heat flow gives the relaxation time,

τλ = λT
1

nT
β

′′
, (3.175)

where,

b0 = −n

T
, (3.176)

b1 = −n

T
z
S1
3

S1
2

, (3.177)

b2 = −n

T

[
5z
S2
3

S1
2

+ z2
]
, (3.178)

b3 = −n

T

[
30z

S3
3

S1
2

+ 5z2
S2
2

S1
2

+ z3
S1
3

S1
2

]
; (3.179)

and

β1 = 3z2
[
1 + 5z−1S

2
3

S1
2

−
(S1

3

S1
2

)2]
. (3.180)
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Shear viscous pressure equation

For the shear viscous pressure equation we take an inner product of Eqn.(3.122) with ⟨ΠµΠν⟩.

The rest of the procedure is similar to the above. We get,

⟨Πµν⟩ = η
[
2⟨∇µUν⟩ − 1

nT

(
γ

′′′
D⟨Πµν⟩β ′′′∇µIνq

)]
, (3.181)

with,

γ
′′′
=
z2
[
S2
2

S1
2
+ 6z−1 S

3
3

S1
2

]
[
z
S2
3

S1
2

]2 , (3.182)

β
′′
=

6

β1

[
ĥ−

(
6
S3
3

S2
3

+ z
S2
2

S2
3

)]
. (3.183)

The coefficient of the time derivative gives the relaxation time for shear viscosity,

τη = η
1

nT
γ

′′′
. (3.184)

3.4 Appendix-A

Here the derivation for the expression of nπ has been discussed in detail. The expression for

the other quantities can be derived using the same method.

nπ = gπ

∫
d3pπ

(2π)2p0π
pµπUµf

0
π (3.185)

For our convenience we introduce two dimensionless quantities,

zπ =
mπ

T
, ζπ =

pµπUµ
T

=
1

T

[
p2
π +m2

π

]
, (3.186)

Here we have used the fact, that in the local rest frame Uµ = (1, 0, 0, 0). Using the above two

quantities, we can write.

d3pπ
p0π

= T 2
(
ζ2π − z2π

)1/2
dζπdΩ, (3.187)
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where Ω = d(cos θ)dϕ is the differential solid angle. Using the expansion identity 1
z−1ex−1

=∑∞
k=1(ze

−x)k we express the above integral as a sum

nπ =
gπ
2π2

z2πT
3

∞∑
k=1

ekµπ/Tk−1K2(kzπ), (3.188)

where Kn(z) is the modified Bessel function of second kind.

Kn(z) =
2nn!

(2n)!zn

∫
dζ

(
ζ2 − z2

)n−1/2
e−ζ =

2nn!(2n− 1)

(2n)!zn

∫
ζdζ

(
ζ2 − z2

)n−3/2
e−ζ (3.189)

3.5 Appendix-B

The energy equation, and the Gibb’s-Duhem equations for a pion gas in hydrodynamic regime

slightly away from equilibrium are:

De = −P
n
∂µU

µ , (3.190)

∂νP = nT∂ν(
µ

T
) + nhT−1∂νT, (3.191)

respectively. The Gibb’s-Duhem relation on contracting with the hydrodynamic four velocity

Uν can be rewritten as,

Dh = TD(
µ

T
) + hT−1DT . (3.192)

Expanding Eqn.(3.190) and Eqn.(3.192) in terms of derivative of temperature and chemical

potential over temperature, we get.( ∂e
∂T

)
µ/T

DT +
( ∂e

∂(µ/T )

)
T
D
(µ
T

)
= −P

n
∂µU

µ (3.193)[( ∂h
∂T

)
µ/T

− hT−1
]
DT +

[( ∂h

∂(µ/T )

)
T
− T

]
D
(µ
T

)
= 0 (3.194)
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Using Eqn.(3.43) and Eqn.(3.45) we can derive the following quantities,( ∂h
∂T

)
µ/T

= z

[
5
S1
3

S1
2

+ z
S0
2

S1
2

− z
S1
3S

0
3

(S1
2)

2

]
(3.195)( ∂e

∂T

)
µ/T

= 4z
S1
3

S1
2

+ z
S2
2S

0
3

(S1
2)

2
− S2

2

S1
2

+ z2
[
S0
2

S1
2

− S1
3S

0
3

(S1
2)

2

]
(3.196)( ∂h

∂(µ/T )

)
T

= Tz

[
S0
3

S1
2

− S1
3S

0
2

(S1
2)

2

]
(3.197)( ∂e

∂(µ/T )

)
T

= − T

[
1− S2

2S
0
2

(S1
2)

2

]
+ Tz

[
S0
3

S1
2

− S1
3S

0
2

(S1
2)

2

]
. (3.198)

Replacing these four quantities in Eqn.(3.193) and Eqn.(3.194) and solving for DT and D
(
µ
T

)
we get,

T−1DT = (1− γ′)∂µU
µ (3.199)

TD
(µ
T

)
= [(γ

′′ − 1)h− γ
′′
T ]∂µU

µ (3.200)

where,

γ′ =
(S0

2/S
1
2)

2 − (S0
3/S

1
2)

2 + 4z−1S0
2S

1
3/(S

1
2)

2 + z−1(S0
3/S

1
2)

(S0
2/S

1
2)

2 − (S0
3/S

1
2)

2 + 3z−1S0
2S

1
3/(S

1
2)

2 + 2z−1(S0
3/S

1
2)− z−2

, (3.201)

γ
′′
= 1 +

z−2

(S0
2/S

1
2)

2 − (S0
3/S

1
2)

2 + 3z−1S0
2S

1
3/(S

1
2)

2 + 2z−1(S0
3/S

1
2)− z−2

, (3.202)

γ
′′′
=

(S0
2/S

1
2) + 5z−1(S1

3/S
1
2)− S0

3S
1
3/(S

1
2)

2

(S0
2/S

1
2)

2 − (S0
3/S

1
2)

2 + 3z−1S0
2S

1
3/(S

1
2)

2 + 2z−1(S0
3/S

1
2)− z−2

. (3.203)

3.6 Appendix C

In a collision of the type p + p1 → p′ + p′1 the total momentum of the colliding particles is

defined as,

Pµ = pµ + p1µ = p′µ + p′1µ = P ′
µ. (3.204)

The relative momenta are defined as,

gµ =
1

2
(p1µ − pµ), g′µ =

1

2
(p′1µ − p′µ). (3.205)
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As a result of the above definitions we have gµP µ = g′µP
µ = 0. Now after going to the local rest

frame (depending on the definition of the hydrodynamic four velocity) we express the above

vectors in the following form.

pµ = P (coshχ, sinhχē), ē = (sin θ̄ cos ϕ̄, sin θ̄ sin ϕ̄, cos θ̄). (3.206)

Any vector can be expressed in Minkowski space in this way; the different values of χ, θ̄ and

ϕ̄ will give rise to different vectors. The angles θ̄ and ϕ̄ give the spatial orientation of the

vector in three dimensional space while the parameter χ defines the type of four vector it is

(i.e. space-like or time-like). In order to define gµ using the same parameters θ̄ and ϕ̄ we define

a set of three orthogonal vectors,

e⃗1 = (cos θ̄ cos ϕ̄, cos θ̄ cos ϕ̄,−sinθ̄)

e⃗2 = (− sin ϕ̄, cos ϕ̄, 0) (3.207)

e⃗3 = (coshχē).

The vector g⃗ is represented as

g⃗ = g{e⃗1 sin θ cosϕ+ e⃗2 sin θ sinϕ+ e⃗2 cos θ}, (3.208)

while g is expressed as,

g = m sinhψ. (3.209)

Using this definition, the quantity P can be shown to be,

P = 2m coshψ. (3.210)

Now in order to express g⃗′ we need another set of orthogonal vectors defined using the vector

set {e⃗1, e⃗2, e⃗3},

Ê1 = ê1 cos θ cosϕ+ ê2 cos θ sinψ − ê3 sin θ

Ê2 = −ê1 sinϕ+ ê2 cosϕ (3.211)

Ê3 =
g⃗

g
, (3.212)
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Thus the expression of g⃗′ turns out to be

g⃗

g
= Ê1 sinΘ cosΦ + Ê2 sinΘ sinΦ + Ê3 cosΘ, (3.213)

where angles Θ and Φ parametrise the orientation of the vector. Using these expressions we

can write,

g⃗ · g⃗
g

= cosΘ. (3.214)

Thus the angle Θ is the scattering angle in the centre of mass frame. With the help of the

parameters used to express the quantities P µ, P ′µ, gµ and g′µ we express the quantities p, p1,

p′ and p′1. Doing so we have

d3p

p0
d3p1
p01

= 8m4(sinhχ coshψ sinhψ)2 sin θ sin θ̄ dθ dθ̄ dϕ dϕ̄ dψ dχ. (3.215)

Similarly it can be proved,

d3p

p0
=

1

2
tanhϕ d4P ′ sinΘ dΘ dΨ. (3.216)

Thus, using all these expression the collision bracket can be expressed as,∫
FW (pp1|p′p′1)

d3p

(2π)3p0
d3p1

(2π)3p01

d3p′

(2π)3p′0

d3p′1
(2π)3p

′0
1

=

2
m6

π4

∫
F
dσ

dΩ
(ϕ,Θ) sinh2 χ(sinhϕ coshϕ)3 sin θ sinΘ dχ dϕ dθ dΘ dΦ. (3.217)

Where, F = f 0f 0
1 (1+f

′0)(1+f
′0
1 ){G(p)+G(p1)−G(p′)−G(p′1)}{H(p)+H(p1)−H(p′)−H(p′1)}.

3.7 Appendix D

Using the co-ordinates used to express the quantities P µ, P ′µ, gµ and g′µ as discussed in

Appendix-C, the product of the distribution function can be expressed as,

f 0f 0
1 (1 + f

′0)(1 + f
′0
1 ) =

e
2µ
T e2z coshψ cosh ξ

(eE − 1)(eF − 1)(eG − 1)(eH − 1)
. (3.218)
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Where,

E = z(coshψ coshχ− sinhψ sinhχ cos θ)− µ

T

F = z(coshψ coshχ− sinhψ sinhχ cos θ
′
)− µ

T

G = E + 2z sinhψ sinhχ cos θ (3.219)

H = F + 2z sinhψ sinhχ cos θ
′
,

The quantity θ′ is defined as follows,

θ
′
= cos−1(cos θ cosΘ− sin θ sinΘ cosΦ). (3.220)
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Chapter 4

Transport Coefficients of a

Pion-Nucleon Gas

In this chapter we shall investigate, the transport coefficients of a hot hadronic gas constituting
of pions and nucleons. In view of the upcoming CBM experiment at FAIR it is natural to ask
how the presence of a finite baryon density is likely to affect the transport property of the
system created in later stage of a heavy ion collision, that constitute mainly of pions. To study
such effects one has to include nucleons (anti nucleons have not been considered here). We
shall be deriving only the transport coefficients that appear in first-order hydrodynamics, and
due to the added complexity of an extra species of particle (i.e. nucleons) we will be using the
relaxation time approximation approach.

As seen earlier for a multi component system, each component will be described by its own single
particle distribution function fk (k = 1, 2, 3, ...N) giving the probability of finding any particle
of that particular species in the accessible phase space. The evolution of this distribution
function will be governed by N coupled Boltzmann transport equations.

pµUµDfk(x, pk) = −pµ∇µfk(x, pk) +
N∑
l=1

gl
1 + δkl

Ckl(x, pk). (4.1)

Ckl(x, p) =

∫
d3pl

(2π)3p0l

d3p′k
(2π)3p′0k

d3p′l
(2π)3p′0l

[f ′
kf

′
l (1± fk)(1± fl) (4.2)

−fkfl(1± f ′
k)(1± fl)]W (pk, pk|p′k, p′l). k, l = 1, 2, ...,N

In order to solve these equations we need to linearise the equation as we did earlier.
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4.1 Linearisation for a Non-reactive Mixture

The way to generalize the linearisation process for a multi component system starting from a
single component system is as follows. Here we use the Enskog expansion of the Boltzmann
equation and the distribution function to linearise,

pµUµDfk(x, pk) = −pµε∇µfk(x, pk) +
N∑
l=1

gl
1 + δkl

Ckl(x, pk), (4.3)

fk = f 0
k + εf 1

k + ε2f 2
k + ...., (4.4)

Dfk = ε
(
Dfk

)1
+ ε2

(
Dfk

)2
+ ... , (4.5)

where f 0
k has the form of local equilibrium distribution function as in the case for single species,

which satisfies,

f 0
k (x, pk)f

0
l (x, pl)

[
1± f 0

k (x, p
′
k)
] [
1± f 0

k (x, p
′
l)
]
= f 0

k (x, p
′
k)f

0
k (x, p

′
l)[

1± f 0
k (x, pk)

] [
1± f 0

l (x, pl)
]
. (4.6)

The relevant macroscopic parameters are determined completely by f 0
k ,

nk =

∫
d3pk

(2π)3p0k
pµkUµf

0
k , (4.7)

ne =
∑
k

nke
0
k =

∑
k

∫
d3pk

(2π)3p0k

(
pµkUµ

)2
f 0
k . (4.8)

We restrict ourself to first approximation, that is we truncate the expansion of the distribution
function after the second term in Eqn.(4.4),

fk(x, pk) = f 0
k (x, pk) + ε f 0

k (x, pk)ϕ
1
k(x, pk), k = 1, 2, .., N. (4.9)

Substituting Eqn.(4.9) and Eqn.(4.5) in Eqn.(4.3) and equating for the coefficients of ε we get,

pµkUµ
(
Dfk

)1
+ pµk∇µf

0
k = −

N∑
l=1

Lkl[ϕ1
k], k = 1, 2, ..., N (4.10)

Lkl[ϕk] =
gl

1 + δkl

∫
d3pl

(2π)3p0l

d3p′k
(2π)3p′0k

d3p′l
(2π)3p′0l

f 0
kf

0
l [1± f ′0

k ][1± f ′0
l ](

ϕk + ϕl − ϕ′
k − ϕ′

l

)
Wkl(p

′
k, p

′
l|pk, pl). (4.11)
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The solutions to this equation are subjected to the conditions of fit.∫
d3pk

(2π)3p0k
pµkUµf

0
kϕ

1
k = 0, (4.12)∑

k

∫
d3pk

(2π)3p0k
(pµkUµ)

2f 0
kϕ

1
k = 0 (4.13)

and, ∑
k

∫
d3pk

(2π)3p0k
△µ
νp

ν
kf

0
kϕ

1
k = 0 (4.14)

or, ∑
k

∫
d3pk

(2π)3p0k
△µ
νp

ν
kp
σ
kUσf

0
kϕ

1
k = 0. (4.15)

The conservation equations from Chapter 2 help us to derive the Euler type equations for a
non-reactive mixture. They are given by,(

Dnk
)1

= −nk∇µU
µ, (4.16)(

DUµ
)1

=
1

hn
∇µp, (4.17)(

De
)1

=
∑
k

xk
(
Dek

)1
= −p∇µU

µ = −
(∑

k

Pk

)
∇µU

µ, , (4.18)

where xk and Pk are the concentration and the partial pressure of the kth species of particle.

4.2 Relaxation Time Approximation

Relaxation time approximation is the most simple method of linearising the Boltzmann
equation. In this method the collision part C[f, f ] on the right hand side of the Boltzmann
equation reduces to Ep δf/τ . Where τ is the relaxation time of collision and Ep = p0, and
δf = f − f 0. For a mixture

∑N
l=1

gl
1+δkl

Ckl is replaced with Ek δfk/τk where Ek = p0k, δfk =

fk − f 0
k and τk is the relaxation time of the kth specie of particle. Expanding the distribution

function and its derivative using Chapman expansion, and equating it for the same power of ε
and restricting ourselves to r = 1 we get,

pµUµ
(
Df

)1
+ pµ∇µf

0 = −Ep
δf

τ
= −Ep

f 1

τ
, (4.19)

pµUµ
(
Dfk

)1
+ pµ∇µf

0
k = −Ek

δfk
τk

= −Ek
f 1
k

τk
. (4.20)
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This approximated form of the collision term will keep the conservation equation, and thus the
hydrodynamic equations as discussed in the previous chapter intact.

The above equation helps us to find the expression of the term f 1 in terms of the spatial and
temporal derivative of f 0, and hence time and spatial derivative of the macroscopic parameters
such as T , Uµ and, nk or µk

T
. The time derivative of the parameters will be replaced by space

derivatives using the hydrodynamic equations. The expression Ek δfk/τ can be obtained from
the collision integral [8],

N∑
l=1

Lkl[ϕ1
k] =

N∑
l=1

gl
1 + δkl

∫
d3pl

(2π)3p0l

d3p′k
(2π)3p′0k

d3p′l
(2π)3p′0l

f 0
kf

0
l [1± f ′0

k ][1± f ′0
l ](

ϕ1
k + ϕ1

l − ϕ
′1
k − ϕ

′1
l

)
Wkl(p

′
k, p

′
l|pk, pl), (4.21)

by using ϕ1
l = ϕ

′1
k = ϕ

′1
l = 0 and ϕ1

k = f 1
k/f

0
k . The relaxation time of the kth species of particle

is thus given by,

[
τk(pk)

]−1
=

N∑
l=1

[
τkl(pk)

]−1
, (4.22)

[
τkl(pk)

]−1
=

gl
1 + δkl

csh(ϵk/2)

Ek

∫
dωldω

′
kdω

′
lWkl, (4.23)

where dωk = dΓpk/[2csh(ϵk/2)], dΓpk = dpk
(2π)3p0k

, ϵk =
(
Ek − µk

)
and the function csh(αk) =

cosh(αk) if kth specie is a fermion, and if boson csh(αk) = sinh(αk).

4.2.1 Transport Coefficients of a two component system

In this subsection we derive the expression for the transport coefficients of a two component
system using relaxation time approximation. The system we consider is constituted of pions
and nucleons. For our convenience we will consider all pions to be identical and their collision
cross section will be averaged over isospin. The same thing will be done in the case of nucleons.

The functions fπ and fN signify the distribution function of the pions and the nucleons respec-
tively. The distribution functions are expanded using the Chapman expansion, and we will
restrict ourselves to the first-order approximation. Thus,

fπ(x, pπ) = f 0
π(x, pπ) + ε f 1

π(x, pπ), (4.24)
fN(x, pN) = f 0

N(x, pN) + ε f 1
N(x, pN), (4.25)

where f 0
π(x, pπ) = 1/

(
exp

(
pµπUµ − µπ

)
/T − 1

)
and f 0

N(x, pN) = 1/
(
exp

(
pµNUµ − µN

)
/T +

1
)

, and the macroscopic parameters Uµ, µπ, µN and T are functions of position and time.

92



The distribution functions f 0
π and f 0

N defines completely the macroscopic parameters the pion
density nπ, nucleon density nN , energy per pion eπ, energy per nucleon eN . Using the formula[
a− 1

]−1
=

∑∞
n=1

(
a−1

)n to expand f 0
π and f 0

N in Eqn.(4.7) and eqn(4.8) we get,

nπ = gπ

∫
dΓpπp

µ
πUµf

0
π =

gπ
2π2

z2πT
3S1

2(zπ), (4.26)

nN = gN

∫
dΓpNp

µ
NUµf

0
N =

gN
2π2

z2NT
3T 1

2 (zN), (4.27)

eπ =
gπ
nπ

∫
dΓpπ

(
pµπUµ

)2
f 0
π =

T

S1
2(zπ)

[
zπS

1
3(zπ)− S2

2(zπ)
]
, (4.28)

eN =
gN
nN

∫
dΓpN

(
pµNUµ

)2
f 0
N =

T

T 1
2 (zN)

[
zNT

1
3 (zN)− T 2

2 (zN)
]
, (4.29)

where zπ = mπ/T , zN = mN/T , Sαn (zπ) =
∑∞

k=1 e
kµπ/Tk−αKn(kzπ) and Tαn (zN) =∑∞

k=1(−1)k−1ekµN/Tk−αKn(kzN), Kn(x) denoting the modified Bessel function of order n. The
methods employed to calculate this quantities have been discussed earlier in Appendix-A of
Chapter 2. Similarly, the partial pressure of each component is given by.

Pπ = gπ

∫
dΓpπ

p2
π

3
f 0
π =

gπ
2π2

z2πT
3S2

2(zπ) , (4.30)

PN = gN

∫
dΓpN

p2
N

3
f 0
N =

gN
2π2

z2NT
3T 2

2 (zN), (4.31)

hence the enthalpy per pion and nucleon is given by,

hπ = eπ +
Pπ
nπ

= zπT
S1
3(zπ)

S1
2(zπ)

, (4.32)

hN = eN +
PN
nN

= zNT
T 1
3 (zN)

T 1
2 (zN)

. (4.33)

The Boltzmann equation for the pion and nucleon under the relaxation time approximation
after employing Chapman’s expansion turns out to be,

f 0
π(1 + f 0

π)

{
(pπ.U)

[pπ.U
T 2

DT +D

(
µπ
T

)
− pµπ
T
DUµ

]
+pµπ

[pπ.U
T 2

∇µT +∇µ

(
µπ
T

)
− pνπ
T
∇µUν

]}
= −δfπ

τπ
Eπ, (4.34)

f 0
N(1− f 0

N)

{
(pN .U)

[pN .U
T 2

DT +D

(
µN
T

)
− pµN

T
DUµ

]
+pµN

[pN .U
T 2

∇µT +∇µ

(
µN
T

)
− pνN

T
∇µUν

]}
= −δfN

τN
EN . (4.35)

Here we have employed the expansion mentioned in Eqn.(3.28). The term Ek = pk.U = p0kLR

is the energy of the particle in the local rest frame.
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The above equations are supposed to give rise to the transport equations, but the transport
equations do not contain time derivative of the macroscopic parameters; they involve only space
derivatives. To replace the time derivatives with space derivatives we employ the continuity
equation, the energy equation and the equation of motion. From the previous section we have
seen that restricting ourselves to r = 1 (i.e. the case we have at hand) we get Euler type
equations,

Dnπ = −nπ∇µU
µ, (4.36)

DnN = −nN∇µU
µ, (4.37)

De = nπDeπ + nNDeN = −
(
Pπ + PN

)
∇µU

µ, (4.38)

DUµ =
1

hn
∇µp =

1

nπhπ + nNhN
∇µ

(
Pπ + PN

)
, (4.39)

Using the expression of nπ, nN , eπ, eN , Pπ and PN from Eqn.(4.26), Eqn.(4.27), Eqn.(4.28),
Eqn.(4.29), Eqn.(4.30) and Eqn.(4.31) respectively and replacing them in Eqn.(4.36), Eqn.(4.37)
and Eqn.(4.38) and taking T , µπ/T , µN/T , Uµ to be the independent macroscopic parameters
we get the expression of DT , D(µπ/T ) and D(µN/T ) in terms of the space derivative of Uµ as,

T−1DT =
(
1− γ

′
)
∂µU

µ, (4.40)

TD
(µπ
T

)
= T

[(
γ

′′

π − 1
)
ĥπ − γ

′′′

π

]
, (4.41)

TD
(µN
T

)
= T

[(
γ

′′

N − 1
)
ĥN − γ

′′′

N

]
. (4.42)

The detailed calculation and the expressions for DT , D(µπ/T ) and D(µN/T ) are given in
Appendix-B. Replacing this in Eqn.(4.34) and Eqn.(4.35) we get,

f 0
π(1 + f 0

π)

T

[
Qπ∂νU

ν − ⟨pµπpνπ⟩⟨∂µUν⟩+ (pσπUσ)p
µ
π

(▽µT

T
− ▽µp

nh

)
+Tpµπ ▽µ

(µπ
T

)]
= −δfπ

τπ
Eπ, (4.43)

f 0
N(1 + f 0

N)

T

[
QN∂νU

ν − ⟨pµNp
ν
N⟩⟨∂µUν⟩+ (pσNUσ)p

µ
N

(▽µT

T
− ▽µp

nh

)
+TpµN ▽µ

(µN
T

)]
= −δfN

τN
EN . (4.44)

Here Qk = T 2[−1
3
z2k+ζ

2
k(

4
3
−γ)+ζk{(γ′′k−1)ĥk− γ′′′k }], where zk = mk

T
, ζk = (pk·U)

T
and ĥk = hk

T
.
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The Gibbs Duhem relation for a two component mixture is given by,

n−1∂νp = s∂νT +
2∑

k=1

xk∂νµk, (4.45)

where s is the entropy per particle. The above equation can be rewritten as,

h
(∂νT
T

− ∂νp

nh

)
+

2∑
k=1

xkT∂ν

(µk
T

)
= 0. (4.46)

The Gibbs Duhem relation represents the fact that for a two-component system which is at
rest there are only three independent intrinsic thermodynamic parameters. The Eqn.(4.45)
represents the derivative of pressure in terms of the independent thermodynamic parameters
T , µ1/T and µ2/T . If the independent parameters are changed to temperature T , pressure p
and the concentration of first species x1, Eqn.(4.46) can be rewritten as,

h
(∇νT

T
− ∇νp

nh

)
+

2∑
k=1

xk

{
T

(
∂

∂T

µk
T

)
px1

∇νT +
(∂µk
∂P

)
Tx1

∇νp+
(∂µk
∂x1

)
Tp
∇νx1

}
= 0. (4.47)

Since p, T and x1 are independent parameters, the coefficients of ∇νT , ∇νp and ∇νx1 must be
individually zero. Hence from the coefficient of ∇νx1 we get

x1

(∂µ1

∂x1

)
Tp

+ x2

(∂µ2

∂x1

)
Tp

= 0. (4.48)

Taking the first species of particles to be nucleons, and the second species to be pion and using
Eqn.(4.47), Eqn.(4.43), Eqn.(4.44) and Eqn.(4.48) we get,

f
(0)
π (1 + f

(0)
π )

T

{[
pπ · U − h+ (0− xN)T

2
( ∂

∂T

(µN
T

)
pxN

− ∂

∂T

(µπ
T

)
pxN

)]
pµπ

∇µT

T

+
(0− xN)

xπ

(∂µN
∂xN

)
PT
pµπ∇µxN +Qπ∂νU

ν − ⟨pµπpνπ⟩⟨∂µUν⟩
}

= −δfπ
τπ
Eπ, (4.49)

f
(0)
N (1 + f

(0)
N )

T

{[
pN · U − h+ (1− xN)T

2
( ∂

∂T

(µN
T

)
pxN

− ∂

∂T

(µπ
T

)
pxN

)]
pµN

▽µT

T

+
(1− xN)

xπ

(∂µN
∂xN

)
pT
pµN∇µxN +QN∂νU

ν − ⟨pµNp
ν
N⟩⟨∂µUν⟩

}
= −δfN

τN
EN . (4.50)

Here we have restricted ourselves to a situation where the system is in mechanical equilibrium
(i.e. ∇µp = 0).

As discussed earlier, we know that the relation between the different flows and the thermody-
namic forces for a linear hydrodynamic theory of a two-component mixture that satisfies the
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second law of thermodynamics is given by,

Īµ = Iµ −
2∑

k=1

hkN
µ
k ; Īµ = λ∇µT +D

′

Tnx1T
(∂µ1

∂x1

)
PT

∇µx1 (4.51)

Iµ1 = Nµ
1 − x1N

µ; Iµ1 = D′n∇µx1 +DTnx1x2∇µT (4.52)
T µν = enUµUν − p△µν +Πµν ; Πµν = 2η⟨∂µUν⟩+ ζ

(
∂ · U

)
△µν (4.53)

where λ, D′
T , D′, DT , η and ζ are the thermal conductivity, Dufour coefficient, diffusion

coefficient, thermal diffusion coefficient, shear viscosity and bulk viscosity respectively. The
irreversible flow occurs when the system is not in equilibrium and these flows help to bring the
system back to equilibrium. Hence these flows should be solely dependent on the part of the
distribution function that represents the deviation from equilibrium. The flows are

Īµq =
2∑

k=1

∫
dΓk(p

ν
kUν − hk)p

µ
kδfk, (4.54)

Iµ1 =
2∑

k=1

∫
dΓk(δ1k − xk)p

µ
kδfk (4.55)

and,

Πµν = Π̊µν +Π△µν =
2∑

k=1

∫
dΓk{△µ

σ △ν
τ −

1

3
△στ △µν}pσkpτk δfk +

2∑
k=1

1

3

∫
dΓk △στ △µνpσkp

τ
k δfk. (4.56)

Taking the 1st and the 2nd species to be nucleons and pions respectively the value of δfπ and
δfN are,

δfπ = f 1
π = f 0

π

(
1 + f 0

π

)
ϕπ, (4.57)

δfN = f 1
N = f 0

N

(
1 + f 0

N

)
ϕN . (4.58)

The quantities ϕπ and ϕN parametrise the deviation of the pion and nucleon distribution func-
tions from equilibrium. The right hand sides of Eqn.(4.54), Eqn.(4.55) and Eqn.(4.56) involve
integration over the particle three momenta and in order that they conform to the form as
expressed on the left hand side of Eqn.(4.51), Eqn.(4.52) and Eqn.(4.53) respectively; ϕπ and
ϕN must be linear combinations of the thermodynamic forces with proper coefficients having
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appropriate tensorial ranks. Thus,

ϕπ = Aπ∂ · U − Cµν
π ⟨∂µUν⟩ −B(π)q

µ

∇µT

T
−B(πN)

µ

1

xπ

(∂µN
∂xN

)
pT
∇µxN , (4.59)

ϕN = AN∂ · U − Cµν
N ⟨∂µUν⟩ −B(N)q

µ

∇µT

T
−B(NN)

µ

1

xπ

(∂µN
∂xN

)
pT
∇µxN . (4.60)

Substituting the value of ϕπ and ϕN in Eqn.(4.54), Eqn.(4.55) and Eqn.(4.56) with the help of
Eqn.(4.57) and Eqn.(4.57) and then comparing the coefficients of space derivatives of temper-
ature, concentration and velocity having the same tensorial ranks, we get

λ =
Lqq
T
, (4.61)

D
′

T =
LqN

nxπxNT
, (4.62)

D′ =
LNN
nxπ

(∂µN
∂xN

)
pT
, (4.63)

DT =
LNq

nxπxNT
, , (4.64)

η = − 1

10

2∑
k=1

∫
dΓk⟨pkµpkν⟩f (0)

k [1± f
(0)
k ]Cµν

k , (4.65)

ζ =
1

3

2∑
k=1

∫
dΓk △µν p

µ
kp

ν
kf

(0)
k [1± f

(0)
k ]Ak., (4.66)

where,

Lqq = −1

3

2∑
k=1

∫
dΓk(pk · U − hk)p

σ
k∆

α
σB

(k)q
α f

(0)
k [1± f

(0)
k ], (4.67)

LqN = −1

3

2∑
k=1

∫
dΓk(pk · U − hk)p

σ
k∆

α
σB

(k1)
α f

(0)
k [1± f

(0)
k ], (4.68)

LNN = −1

3

2∑
k=1

∫
dΓk(δk1 − xk)p

σ
k∆

α
σB

(k1)
α f

(0)
k [1± f

(0)
k ], (4.69)

LNq = −1

3

2∑
k=1

∫
dΓk(δk1 − xk)p

σ
k∆

α
σB

(k)q
α f

(0)
k [1± f

(0)
k ]. (4.70)

The coefficients B(N)q
α , B(π)q

α , B(NN)
α , B(πN)

α , Cµν
π , Cµν

N , Aπ and AN can be obtained by sub-
stituting the expression of δfπ and δfN from Eqn.(4.57) and Eqn.(4.58) into Eqn.(4.49) and
Eqn.(4.50) using expression for ϕπ and ϕN and then comparing the coefficients of the ther-
modynamic forces (i.e. space derivative of temperature T , concentration of nucleon xN and
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hydrodynamic four velocity Uµ). The coefficients turn out to be,

B(π)q
ν △µν =

τπ
EπT

[
pπ · U − h+ (0− xN)T

2
( ∂

∂T

(µN
T

)
pxN

− ∂

∂T

(µπ
T

)
pxN

)]
△µν pπν , (4.71)

B(N)q
ν △µν =

τN
ENT

[
pN · U − h+ (1− xN)T

2
( ∂

∂T

(µN
T

)
pxN

− ∂

∂T

(µπ
T

)
pxN

)]
△µν pNν , (4.72)

B(πN)
ν △µν =

τπ
EπT

(0− xN)△µν pπν , (4.73)

B(NN)
ν △µν =

τN
ENT

(0− xN)△µν pNν , (4.74)

Aπ = − τπ
TEπ

Qπ, (4.75)

AN = − τN
TEN

QN , (4.76)

Cµν
π = − τπ

TEπ
⟨pµπpνπ⟩, (4.77)

Cµν
N = − τN

TEN
⟨pµNp

ν
N⟩ . (4.78)

Substituting the expressions of these coefficients in Eqn.(4.65) to Eqn.(4.70) we get,

η =
1

15T

2∑
k=1

∫
d3pk
(2π)3

τk
E2
k

| p⃗k |4 f (0)
k (1± f

(0)
k ), (4.79)

ζ =
1

T

2∑
k=1

∫
d3pk
(2π)3

τk
E2
k

{Qk}2f (0)
k (1± f

(0)
k ), (4.80)

Lqq =
1

6π2T

2∑
k=1

gk

∫
p4kdpk
E2
k

(pk · U − hk)
[
pk.U − h+ (δk1 − x1)T

2β
]
τkf

(0)
k (1± f

(0)
k ), (4.81)

Lq1 =
1

6π2T

2∑
k=1

gk

∫
p4kdpk
E2
k

(pk · U − hk)(δk1 − x1)τkf
(0)
k (1± f

(0)
k ), (4.82)

L11 =
1

6π2T

2∑
k=1

gk

∫
p4kdpk
E2
k

(δk1 − x1)
2τkf

(0)
k (1± f

(0)
k ) (4.83)

and,

L1q =
1

6π2T

2∑
k=1

gk

∫
p4kdpk
E2
k

[
pk · U − h+ (δk1 − x1)T

2β
]
(δk1 − x1)τkf

(0)
k (1± f

(0)
k ), (4.84)

where β = ∂
∂T

(
µ1
T

)
Px1

− ∂
∂T

(
µ2
T

)
Px1

.The expressions for ∂
∂T

(
µ1
T

)
Px1

, ∂
∂T

(
µ2
T

)
Px1

and
(
∂µ1
∂x1

)
PT

needed to calculate the transport coefficients has been derived in Appendix-B.
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4.3 Appendix-A

The continuity equations and the energy equations of a mixture of pions and nucleons are,

Dnπ = −nπ∇µU
µ,

DnN = −nN∇µU
µ,

De = nπDeπ + nNDeN = −
(
Pπ + PN

)
∇µU

µ.

Expanding the equations in terms of derivative of temperature and chemical potential over
temperature we get,

∂nπ
∂T

DT +
∂nπ

∂ (µπ/T )
D

(µπ
T

)
+ 0 ·D

(µN
T

)
= −nπ∂µUµ,

∂nπ
∂T

DT + 0 ·D
(µπ
T

)
+

∂nN
∂ (µN/T )

D
(µN
T

)
= −nN∂µUµ, (4.85)[

nπ
∂eπ
∂T

+ nN
∂eN
∂T

]
DT + nπ

∂eπ
∂ (µπ/T )

D
(µπ
T

)
+ nN

∂eN
∂ (µN/T )

D
(µN
T

)
= −P∂µUµ.

Using the expression of nπ, nN , eπand eN from Eqn.(4.26), Eqn.(4.27), Eqn.(4.28) and
Eqn.(4.29) we find the expression of its derivative with respect to T , µπ/T and µN/T . They
are,

∂eπ
∂T

= 4zπ
S1
3

S1
2

+ zπ
S2
2S

0
3

(S1
2)

2
− S2

2

S1
2

+ z2π

[
S0
2

S1
2

− S1
3S

0
3

(S1
2)

2

]
;
∂eN
∂T

= 4zN
T 1
3

T 1
2

+ zN
T 2
2 T

0
3

(T 1
2 )

2
− T 2

2

T 1
2

+ z2N

[
T 0
2

T 1
2

− T 1
3 T

0
3

(T 1
2 )

2

]
∂eπ

∂(µπ/T )
= −T

[
1− S2

2S
0
2

(S1
2)

2

]
+ Tzπ

[
S0
3

S1
2

− S1
3S

0
2

(S1
2)

2

]
;

∂eN
∂(µN/T )

= −T
[
1− T 2

2 T
0
2

(T 1
2 )

2

]
+ TzN

[
T 0
3

T 1
2

− T 1
3 T

0
2

(T 1
2 )

2

]
∂nπ
∂T

=
4π

(2π)2
T 2

[
−z2πS1

2 + z3πS
0
3

]
;
∂nN
∂T

=
4π

(2π)2
T 2

[
−z2NT 1

2 + z3NT
0
3

]
∂nπ

∂ (µπ/T )
=

4π

(2π)3
z2πT

2S0
2 ;

∂nN
∂ (µN/T )

=
4π

(2π)3
z2NT

2T 0
2 .

Substituting the derivatives in the continuity equations and the energy equation, and solving
for DT , D(µπ/T ) and D(µN/T ) making use of the expression for hπ and hN from Eqn.(4.32)
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and Eqn.(4.33) we get,

T−1DT =
(
1− γ

′
)
∂µU

µ, (4.86)

TD
(µπ
T

)
= T

[(
γ

′′

π − 1
)
ĥπ − γ

′′′

π

]
, (4.87)

TD
(µN
T

)
= T

[(
γ

′′

N − 1
)
ĥN − γ

′′′

N

]
, (4.88)

where,

γ
′
=

1

|A|
{gπ

[
z3π

(
4S0

2S
1
3T

0
2 + S1

2S
0
3T

0
2

)
+ z4π

((
S0
2

)2
T 0
2 −

(
S0
3

)2
T 0
2

)]
+gN

[
z3N

(
4S0

2T
0
2 T

1
3 + S0

2T
1
2 T

0
3

)
+ z4N

(
S0
2

(
T 0
2

)2 − S0
2

(
T 0
3

)2)]}, (4.89)

γ
′′

π =
1

|A|
{gπ

[
−5z2π

(
S1
2

)2
T 0
2 + z3π

(
3S0

2S
1
3T

0
2 + 3S1

2S
0
3T

0
2

)
+ z4π

((
S0
2

)2
T 0
2 −

(
S0
3

)2
T 0
2

)]
+gN

[
−z2NS0

2

(
T 1
2

)2
+ z3N

(
3S0

2T
0
2 T

1
3 + 2S0

2T
1
2 T

0
3

)
+ z4N

(
S0
2

(
T 0
2

)2 − S0
2

(
T 0
3

)2)]}, (4.90)

γ
′′′

π =
1

|A|
{gπ

[
z4πS

1
2S

0
2T

0
2

]
+ gN [z

3
N

(
4S1

2T
0
2 T

1
3 + S1

2T
1
2 T

0
3

)
− zπz

2
NS

0
3

(
T 1
2

)2
+z4N

(
S1
2

(
T 0
2

)2 − S1
2

(
T 0
3

)2)
+ zπz

3
N

(
S0
3T

1
2 T

0
3 − S0

3T
0
2 T

1
3

)
]}, (4.91)

and,

|A| = gπ

[
−z2π

(
S1
2

)2
T 0
2 + z3π

(
3S0

2S
1
3T

0
2 + 2S1

2S
0
3T

0
2

)
+ z4π

((
S0
2

)2
T 0
2 −

(
S0
3

)2
T 0
2

)]
+gN

[
−z2NS0

2

(
T 1
2

)2
+ z3N

(
3S0

2T
0
2 T

1
3 + 2S0

2T
1
2 T

0
3

)
+ z4N

(
S0
2

(
T 0
2

)2 − S0
2

(
T 0
3

)2)]
. (4.92)

The corresponding expressions of γ′′
N and γ

′′′
N are obtained by replacing Sαβ with Tαβ and vice

versa in γ
′′
π and γ

′′′
π respectively.

4.4 Appendix-B

Using Eqn.(4.26),Eqn.(4.27), Eqn.(4.30) and Eqn.(4.31) we can calculate the partial derivative
of xπ, xN , Pπ and PN , with respect to the independent thermodynamic parameters; µπ/T ,
µN/T and T directly. Now if we change the independent thermodynamic parameters to xN , T ,
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P then(∂P
∂T

)
PxN

=
(∂P
∂T

)
µπ
T

µN
T

+
( ∂P

∂(µπ/T )

)
µN
T
T

( ∂

∂T

µπ
T

)
PxN

+
( ∂P

∂(µN/T )

)
µπ
T
T

( ∂

∂T

µN
T

)
PxN

= 0, (4.93)(∂xN
∂T

)
PxN

=
(∂xN
∂T

)
µπ
T

µN
T

+
( ∂xN
∂(µπ/T )

)
µN
T
T

( ∂

∂T

µπ
T

)
PxN

+
( ∂xN
∂(µN/T )

)
µπ
T
T

( ∂

∂T

µN
T

)
PxN

= 0. (4.94)

Using the above two equations we can calculate the value of
(

∂
∂T

µπ
T

)
PxN

and
(

∂
∂T

µN
T

)
PxN

. They
turn out to be( ∂

∂T

µπ
T

)
PxN

=
[gNxπm

3
NT

0
3 − gπxNm

3
πS

0
3 ]xN − gNhxπm

2
NT

0
2

T 2[gπx2Nm
2
πS

0
2 + gNx2πm

2
NT

0
2 ]

, (4.95)( ∂

∂T

µN
T

)
PxN

=
[gπxNm

3
πS

0
3 − gNxπm

3
NT

0
3 ]xπ − gπhxNm

2
πS

0
2

T 2[gπx2Nm
2
πS

0
2 + gNx2πm

2
NT

0
2 ]

. (4.96)

Using the above equations we can calculate β. Now:(∂xπ
∂µπ

)
TµN

( ∂µπ
∂xN

)
PT

+
( ∂xπ
∂µN

)
TµN

(∂µN
∂xN

)
PT

= 1, (4.97)( ∂P
∂µπ

)
TµN

( ∂µπ
∂xN

)
PT

+
( ∂P

∂µN

)
TµN

(∂µN
∂xN

)
PT

= 0. (4.98)

Using the above two equations we get(∂µN
∂xN

)
PT

=
2π2nπ

[gπx2Nm
2
πS

0
2 + gNx2πm

2
NT

0
2 ]
. (4.99)
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Chapter 5

Dynamic Inputs for determining

Transport coefficients

The formulas derived in Chapter 3, can be used for any single component fluid, where particle

number is conserved. Similarly, expressions for transport coefficients in Chapter 4 is applicable

for any two-component fluid. But for these expressions to represent transport coefficients of

pion gas and pion-nucleon gas, we must incorporate in them the interaction between the con-

stituent particles. These interactions differentiate one fluid from the other and are introduced

through the scattering cross-section of the constituent particles. Thus these cross-sections play

a significant role in determining the transport coefficients. Most of the earlier works in this

field have used vacuum cross-section, but for a more realistic picture, we have incorporated

medium-effect in the cross-sections. To do this, we have employed Real Time Formalism of

Thermal Field Theory.

103



5.1 ππ scattering

5.1.1 Interaction Lagrangian

To evaluate the ππ cross-section we make use of an effective Lagrangian in which the coupling

of the ρ meson to the pions have been introduced through gauge covariant derivative of the

pion field operator [1].

Lρππ =
igρππ
4

Tr
[
V µ, [∂µΦ,Φ]

]
, (5.1)

where Φ collects the pion field in the form

 π0
√
2π+

√
2π+ −π0

 while V µ collects the ρ fields .

Thus the interaction Lagrangian reduces to,

Lρππ =
igρππ
4

Tr
[
ρπ, {π⃗ × π⃗}

]
. (5.2)

Now using π1 = 1√
2
(π+ + π−) and π2 =

1√
2
(π+ − π−) the above expression becomes,

Lρππ = igρππ{ρ+µπ0∂µπ− + ρ−µπ+∂
µπ0 + ρ0µπ−∂

µπ+}

−igρππ{ρ+µπ−∂µπ0 + ρ−µπ0∂
µπ+ + ρ0µπ+∂

µπ−}, (5.3)

where gρππ is the coupling constant for ρ → ππ decay, and it is determined using the decay

width of ρ meson. The decay width of the decay of ρ meson into two pions is given by,

Γ =
1

2Ep

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

(2π)4δ4(p− p1 − p2)|Mρ→ππ|2. (5.4)

p1 and p2 being the momentum of the two pions produced due to the decay of ρ with momentum

p. The decay amplitude of the different modes of the decay are,

Mρ0→π+π− = g2ρππ(m
2
ρ − 4m2

π), (5.5)

Mρ+→π+π0 = g2ρππ(m
2
ρ − 4m2

π), (5.6)

Mρ−→π−π0 = g2ρππ(m
2
ρ − 4m2

π). (5.7)
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Using these amplitudes the expression for decay width Γ is given by,

Γ =
g2ρππ
8πmρ

(m2
ρ − 4m2

π)
λ1/2(s,m2

π,m
2
π)

2s

=
g2ρππmρ

48π

[
1− 4m2

π

m2
ρ

]3/2
. (5.8)

The value of Γ in vacuum turns out to be 150 MeV [2], from which we get gρππ = 6.05.

5.1.2 Amplitude of scattering due to the exchange of ρ and σ meson

We will be using an isospin averaged amplitudes to derive the transport coefficients. These are

given by

|Mππ|2 =
1∑

I(2I + 1)

[ I=0∑
2

(2I + 1)(M I
ππ)

2
]
, (5.9)

where I represents the isospin of different channels. The total isospin of two colliding pions can

be 0⃗, 1⃗ and 2⃗, since isospin of each pion is 1⃗. Thus the above expression for the isospin average

becomes,

|Mππ|2 =
1

9
[|M0

ππ|2 + 3|M1
ππ|2 + 5|M2

ππ|2]. (5.10)

The amplitude for total isospin I⃗ = 0⃗ is,

M I=0
ππ =

1

3

{
⟨π+π−|L|π+π−⟩+ ⟨π+π−|L|π−π+⟩+ ⟨π+π−|L|π0π0⟩

+⟨π−π+|L|π+π−⟩+ ⟨π−π+|L|π−π+⟩+ ⟨π−π+|L|π0π0⟩

+⟨π0π0|L|π+π−⟩+ ⟨π0π0|L|π−π+⟩+ ⟨π0π0|L|π0π0⟩
}
. (5.11)

Similarly the amplitude corresponding to total isospin I⃗ = 1⃗ and Iz = +1 is,

M I=1
ππ =

1

2

{
⟨π+π0|L|π+π0⟩ − ⟨π+π0|L|π0π+⟩ − ⟨π0π+|L|π+π0⟩+ ⟨π0π+|L|π0π+⟩

}
, (5.12)

and for total isospin I⃗ = 2⃗ and Iz = +2,

M I=2
ππ = ⟨π+π+|L|π+π+⟩. (5.13)
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Now to obtain the amplitude for each value of I we need to evaluate a set of Feynman’s

diagrams corresponding to each term in Eqn.(5.11), Eqn.(5.12) and Eqn.(5.13) using Lagrangian

in Eqn.(5.3) and doing so we get,

M I=0
ππ = 2g2ρππ

[ s− u

t−m2
ρ

+
s− t

u−m2
ρ

]
, (5.14)

M I=1
ππ = g2ρππ

[
2
t− u

s−m2
ρ

+
t− s

u−m2
ρ

− u− s

t−m2
ρ

]
, (5.15)

M I=2
ππ = g2ρππ

[ u− s

t−m2
ρ

+
t− s

u−m2
ρ

]
. (5.16)

Substituting the above expressions in Eqn.(5.10) we get the isospin averaged ππ scattering

amplitude due to ρ meson exchange.

To describe ππ scattering at low energies we need to include σ-exchange as well. For σ exchange

we use a Lagrangian,

Lσππ =
1

2
gσππmσπ⃗ · π⃗σ, (5.17)

where gσππ = 2.5. Following the same steps as we did for ρ we obtain the amplitude for

respective isospin channels.

M I=0
ππ = g2σππm

2
σ

[ 3

s−m2
σ

+
1

t−m2
σ

+
1

u−m2
σ

]
, (5.18)

M I=1
ππ = g2σππm

2
σ

[ 1

t−m2
σ

− 1

u−m2
σ

]
, (5.19)

M I=2
ππ = g2σππm

2
σ

[ 1

t−m2
σ

+
1

u−m2
σ

]
. (5.20)

We then introduce the vacuum width of the ρ and σ mesons in the corresponding s-channel

diagram. The total amplitude for binary elastic scattering for pions is obtained as,

M I=0
ππ = 2g2ρππ

[ s− u

t−m2
ρ

+
s− t

u−m2
ρ

]
+ g2σππm

2
σ

[ 3

s−m2
σ + imσΓσ

+
1

t−m2
σ

+
1

u−m2
σ

]
, (5.21)

M I=1
ππ = g2ρππ

[ 2(t− u)

s−m2
ρ + imρΓρ(s)

+
t− s

u−m2
ρ

− u− s

t−m2
ρ

]
+ g2σππm

2
σ

[ 1

t−m2
σ

− 1

u−m2
σ

]
, (5.22)

M I=2
ππ = g2ρππ

[ u− s

t−m2
ρ

+
t− s

u−m2
ρ

]
+ g2σππm

2
σ

[ 1

t−m2
σ

+
1

u−m2
σ

]
, (5.23)
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Figure 5.1: ππ scattering with self-energy corrections

where mσ = 450 MeV and Γσ = 550 MeV, these are in conformity with [3]. The isospin

averaged amplitude for ππ scattering via ρ and σ can be obtained using Eqn.(5.9) and thus we

can calculate the cross-section using the following equation,

σ =
1

16π

∫ −s

0

|M |2

(s2 − 4m2
πs)

dt. (5.24)

In this calculation the ρ propagator D0
µν = (−gµν + qµqν/m2

ρ)/(q
2−m2

ρ+ iϵ) has been modified,

iϵ has been replaced with imρΓ(s). Where Γρ(s) has been obtained from Eqn.(5.8). This

modification has been done only for the s-channel for total isospin I = 1, since it’s the only

channel that contributes to the resonance structure.

5.1.3 ππ cross-section at finite temperature

The self-energy is used to introduce medium-effects. It is evaluated by perturbative methods,

using effective interaction. Then the exact propagators are obtained using the Dyson equation

Fig. 5.1. In real time thermal field theory, the two-point functions assume a 2 × 2 matrix

form [6] which can be diagonalized. The diagonal component of such matrix also obey the

Dyson equation [7], and they are used to obtain the full propagator Dµν ,

Dµν = D(0)
µν +D(0)

µσΠ
σλDλν . (5.25)

Here Dµν is vacuum propagator for ρ meson and Πσλ is the self-energy function obtained from

one-loop diagram as represented in fig 5.1. We can write the in-medium self-energy in terms of
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longitudinal and transverse part, just like [4, 6]

Πµν = PµνΠ
T +QµνΠ

L. (5.26)

Here,

Pµν = −gµν +
qµqν
q2

− q2

q̄2
ũµũν , (5.27)

is the longitudinal projection tensor, where ũµ = uµ − (u · q)qµ/q2; while

Qµν =
q4

q̄
ũµuν , (5.28)

is the transverse projection tensor, where q̄2 = (u.q)2 − q2, where uµ represents the velocity of

the thermal bath. Thus we can see that,

Pµν +Qµν/q
2 = −gµν + qµqν/q

2. (5.29)

Note that while P and Q are four dimensional transverse, Q is longitudinal while P is three-

dimensional transverse. Solving Eqn.(5.25) the ρ propagator turns out to be,

Dµν(q0, q⃗) = − Pµν
q2 −m2

ρ − ΠT
− Qµν/q

2

q2 −m2
ρ − q2ΠL

+
qµqν
m2
ρq

2
, (5.30)

where,

ΠT = −1

2
(Πµ

µ +
q2

q̄2
Π00), ΠL =

1

q̄2
Π00, Π00 = UµUνΠµν , (5.31)

with

Π =
1

3
(2ΠT + q2ΠL) (5.32)

being the polarisation averaged self-energy function. Using this expressions in Eqn.(5.30), and

neglecting the non-pole piece we get,

Dµν(q0, q⃗) =
−gµν + qµqν/q

2

q2 −m2
ρ − Re Π(q0, q⃗) + iIm Π(q0, q⃗)

. (5.33)
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The self-energy term in Eqn.(5.33) assumes a 2×2 matrix structure, in the real time formalism

of thermal field theory, its 11-component is given by,

Π11
µν(q) = i

∫
d4k

(2π)4
Nµν(q, k)D

11
π (k)D11

h (q − k), (5.34)

where D11(k) = △(k) + 2πif (0)(k)δ(k2 − m2) is the 11-component of the scalar propagator

which constitutes the internal line of the loop, and △(k) is the vacuum part. The expression

for Nµν is available in [4], where the interaction has been taken from chiral perturbation theory,

and includes the tensor structure of the vector propagator and the two vertices . The real and

imaginary part of the self-energy function in Eqn.(5.33) can can be expressed as [6, 7],

ReΠµν = Re Π11
µν

ImΠµν = ϵ(q0) tanh(βq0/2)Im Π11
µν . (5.35)

Integrating over suitable contour we get,

Πµν(q0, q⃗) =

∫
d3k

(2π)3
1

4ωπωh

[(1 + f 0(ωπ))N
µν
1 + f 0(ωh)N

µν
3

q0 − ωπ − ωh + iηϵ(q0)
+

−f 0(ωπ)N
µν
1 + f 0(ωh)N

µν
4

q0 − ωπ + ωh + iηϵ(q0)

+
f 0(ωπ)N

µν
2 − f 0(ωh)N

µν
3

q0 + ωπ − ωh + iηϵ(q0)
+

−f 0(ωπ)N
µν
2 − (1 + f 0(ωh))N

µν
4

q0 + ωπ + ωh + iηϵ(q0)

]
. (5.36)

Where, f 0(ω) = 1
eω−µπ/T−1

, ωπ =

√
k⃗2 +m2

π and ωh =

√
(q⃗ − k⃗)2 +m2

h. The subscript (1 to 4)

in the above equation corresponds to k0 = ωπ,−ωπ,q0−ωh and q0+ωh respectively. The processes

like decay, scattering and regeneration of ρ which results in its gain or loss are embodied in the

imaginary part of the self-energy. The δ-functions in the imaginary part defines the region in

q0 and q⃗ where these process can occur [4], and using them the angular integration is carried

out.

The real part of the self-energy modifies the position of the pole of the spectral function. The

discontinuities of the self-energies in the complex energy plane provide us with the imaginary

parts for ππ, πω, πh1 and πa1 loops. Since the mesons ω, h1 and a1 have negative G-parity

and substantial 3π and ρπ decay widths [2], the polarization averaged self-energy of the loop
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containing the particles have been folded with their spectral functions [5]

Π(q,mh) =
1

Nh

∫ (mh+2Γh)
2

(mh−2Γh)2
dM2 1

π
Im

[ 1

M2 −m2
h + iMΓh(M)

]
Π(q,M). (5.37)

Where,

Nh =

∫ (mh+2Γh)
2

(mh−2Γh)2
dM2 1

π
Im

[ 1

M2 −m2
h + iMΓh(M)

]
. (5.38)

The contribution from loops containing the heavy mesons (the πh loops) are considered as

multi pion contribution to the ρ self-energy.

Similarly we take the effective propagator of σ as,

D(q0, q⃗) =
1

q2 −m2
σ − Re Π(q0, q⃗) + iIm Π(q0, q⃗)

. (5.39)

Following similar steps, as taken in in the previous case, the self-energy of σ turns out to be,

Π(q0, q⃗) = N

∫
d3k

(2π)3
1

4ωπω′
π

[ 1 + f 0(ωπ) + f 0(ω′
π)

q0 − ωπ − ω′
π + iηϵ(q0)

+
f 0(ω′

π)− f 0(ωπ)

q0 − ωπ + ω′
π + iηϵ(q0)

+
f 0(ωπ)− f 0(ω′

π)

q0 + ωπ − ω′
π + iηϵ(q0)

− 1 + f 0(ωπ) + f 0(ω′
π)

q0 + ωπ + ω′
π + iηϵ(q0)

]
, (5.40)

where, ω′
π =

√
(q⃗ − k⃗)2 +m2

π.

In Fig. 5.2 we plot the total ππ cross-section defined by σ(s) = 1
2

∫
dΩ |M |

64π2s
. Here we see the

effect of the introduction of the in-medium ρ propagator in place of the vacuum propagator

D0
µν along with in-medium σ propagator, on the cross-section of the ππ collision. We see

the suppression of the cross-section at the resonance and a shift of the resonance peak. The

suppression of the peak becomes greater with the introduction of multi pions. This change is

mainly due to the temperature dependence of the real and imaginary parts of the self-energy.

The width occurring in the denominator of the propagator increases with the temperature, thus

bringing down the resonance peak.
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Figure 5.2: The ππ cross-section as a function of Ec.m.. The dashed line corresponds to scat-
tering in the vacuum. The Dot-dashed line refers to the in-medium cross-section involving only
the pion loop for the σ and ρ mesons. The solid line corresponds to the additional loops in the
ρ meson self-energy.

5.1.4 Temperature dependent pion chemical potential

In relativistic heavy ion collisions, below the crossover temperature, inelastic reactions cease

and, this leads to chemical freeze-out of hadrons. Since only elastic collisions occur, the number-

density gets fixed at this temperature and to conserve it a phenomenological chemical potential

is introduced which increases with decreasing temperature until kinetic freezeout is reached [8].

In this work, we use the numerical results of the temperature-dependent pion chemical potential

from the work of [9] where the above scenario is implemented. It is depicted by the parametric

form

µT = a+ bT + cT 2 + dT 3, (5.41)

where a = 0.824, b = 3.04, c = 0.028, d = 6.05105 and T , µ in MeV. By fixing the ratio

s/n, s being the entropy density and n being the number density, to the value at chemical

freeze-out where µ = 0, one can go down in temperature up to 100 MeV the kinetic freeze-out

by increasing the pion chemical potential, thus leading to the temperature dependence leading

to µ(T ) as depicted in Fig. 5.3
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Figure 5.3: The temperature dependent pion chemical potential [9].

5.2 πN scattering

5.2.1 The ∆ self-energy in the medium

The in-medium propagators in the real time formalism

All two-point functions in real time formalism of thermal field can essentially be described

by a single analytic function, even though the two-point function assumes the form of 2 × 2

matrix [6, 10]. This is achieved by diagonalising the matrix. Since the function can be given

by any one of the components of the matrix, we obtain only that component of the self-energy

matrix. Here we will specify only the 11-component of the thermal propagator for the particle

participating in the one loop graph.

The 11-component of a free thermal propagator matrix for a particle is composed of two parts.

The first part is the vacuum propagator and the second part is a term which is determined by

the on-shell distribution function of particles of the same type as the propagator in the medium

through which it propagates. The 11-component of the thermal pion propagator is expressed

as,

D11(k,mπ) = ∆(k,mπ) + 2πiN2
1 (k,mπ)δ(k

2 −m2
π) (5.42)
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where ∆(k,m) = −1
k2−m2+iη

and, N1(k,m) = θ(k0)
√
nk+ + θ(−k0)

√
nk− with nk± = 1

eβ(ωk∓µk)−1
,

ωk =
√
k⃗2 +m2, and θ(k0) = 1 for k0 > 0 and 0 for k0 < 0. The 11-component of the thermal

ρ propagator is expressed as,

Dµν
11 (k,mρ) =

(
−gµν + kµkν

m2
ρ

)
D11(k,mρ) . (5.43)

Nucleon and ∆ being fermions their thermal matrix part is different than those for bosons, and

the 11-component of their propagator is given by,

S11(p) = (�p+mN)E
11(p,mN) (5.44)

and

S11
µν(p) = (�p+m∆)

{
−gµν +

2

3m2
∆

pµpν +
1

3
γµγν

+
1

3m∆

(γµpν − γνpµ)

}
E11(p,m∆) (5.45)

respectively, where E11(p,m) = ∆(p,m) − 2πiÑ2
1 δ(p

2 − m2), with Ñ1(p0) = θ(p0)
√
ñp+ +

θ(−p0)
√
ñp−. The complete propagator S′ in terms of the free fermion propagator S and

self-energy Π is given by the Dyson equation,

S′ = S − SΠS′. (5.46)

each bold terms represents a 2 × 2 matrix in the thermal indices. These matrices can be

diagonalised to obtained the respective analytic function denoted by a bar, so

S
′
= S − S ΠS

′
. (5.47)

Any single component of the self-energy matrix can provide the self-energy function Π. It is

related to the 11-component by

ImΠ̄(p) = ϵ(p0) coth[β(p0 − µp)/2]ImΠ11(p),

ReΠ̄(p) = ReΠ11(p), (5.48)

where ϵ(p0) = +1 for p0 > 0 and −1 for p0 < 0.
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Figure 5.4: Feynman Diagrams for ∆-Self Energy.

The ∆ self-energy

The effective Lagrangian for πN∆, ρN∆, π∆∆ and ρ∆∆ are given by the well known interac-

tions [11]

LπN∆ =
fπN∆

mπ

∆̄αOαµT⃗ †∂µπ⃗ψ +H.c. (5.49)

LρN∆ = −ifρN∆

mρ

∆̄αOαµγ5γνT⃗ †ρ⃗µνψ +H.c. (5.50)

Lπ∆∆ =
fπ∆∆

mπ

∆̄αOαµγ
5γνT⃗∆µ∂ν π⃗ (5.51)

Lρ∆∆ = −fρ∆∆∆̄
βOαβ

[
γµ − κρ∆∆

2m∆

σµν∂ν

]
ρ⃗µT⃗∆

α (5.52)

where fπN∆ = 2.8, fρN∆ = 16.03, fπ∆∆ = 1.78, fρ∆∆ = 7.67, κρ∆∆ = 6.1 and Oαβ = gαβ−aγαγβ.

The second term of O contributes only when the spin-3/2 is off the mass shell, thus keeping

the coupling constants unchanged. The form factor at the vertex has been taken as

F (p, k) =
Λ2

Λ2 + ( p·k
mp

)2 − k2
, (5.53)

where p and k denote the momenta of the fermion and boson respectively. By fitting the phase

shift and vacuum cross-section for πN scattering we get a = 0.002 and Λ = 600 MeV. We

consider an exponential form factor (Form Factor-II),

F (p) = exp[−(p2 − (mN +mπ)
2)/Λ2] (5.54)

where a = 0.002, Λ = 1.25 GeV and p represents the momentum of ∆. Using the interaction

expressed by the above set of Lagrangian the vacuum self-energy for the one loop diagrams
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shown in Fig. 5.4 turns out to be

Πµν
vac =

∑
iϵ{π,ρ}

∑
jϵ{N,∆}

Πµν
ij∆ = Πµν

πN∆ +Πµν
ρN∆ +Πµν

π∆∆ +Πµν
ρ∆∆ (5.55)

where,

Πµν
πN∆ = i

f 2
πN∆

m2
π

∫
d4k

(2π)4
F 2(p, k)OνβkβS

0(p)OαµkαD
0(k) (5.56)

Πµν
ρN∆ = i

f 2
ρN∆

m2
ρ

∫
d4k

(2π)4
F 2(p, k)Oνηγ5γϕ(gβϕkη − gβηkϕ)

S0(p)γ5γλ(gαλkσ − gασkλ)OµσDαβ
0 (k) (5.57)

Πµν
π∆∆ = i

f 2
π∆∆

m2
π

∫
d4k

(2π)4
F 2(p, k)Oνχγ5γβkβOψσgχψS

0
λσ(p)Oληγ5γαkαOϕµgηϕD

0(k)(5.58)

Πµν
ρ∆∆ = if 2

ρ∆∆

∫
d4k

(2π)4
F 2(p, k)Oνχ(γβ + i

κ∆∆ρ

2m∆

σβϵkϵ)Oψσgχψ

S0
λσ(p)Oλη(γα − i

κ∆∆ρ

2m∆

σαδkδ)OϕµgηϕD
0
αβ(k) (5.59)

with scalar propagator D0(k) = ∆(k,mπ), vector propagator D0
µν(k) = Aµν(k)∆(k,mρ), Dirac

field propagator S0(p) = (�p+m)∆(p,mN) and the Rarita-Schwinger field propagator S0
µν(p) =

Σµν(p)∆(p,m∆). The vacuum self-energy of ∆ can be expressed as,

Πµν
vac =

∑
iϵ{π,ρ}

∑
jϵ{N,∆}

i

∫
d4k

(2π)4
Nµν
ij∆(ki, pj)DF (ki,mi)DF (pj,mj) (5.60)

where,

Nµν
πN∆ =

f 2
πN∆

m2
π

F 2(p, k)
[
kαkβOνβ(�p+mp)Oαµ

]
(5.61)

Nµν
ρN∆ =

f 2
ρN∆

m2
ρ

F 2(p, k)
[
Oνηγ5 (γβkη − gβη��k) (�p+mp) γ

5 (γαkσ − gασ��k)OµσAαβ
]

(5.62)

Nµν
π∆∆ =

f 2
π∆∆

m2
π

F 2(p, k)
[
gχψgηϕOνχγ5��kOψσΣλσ(p)Oληγ5��kOϕµ

]
(5.63)

Nµν
ρ∆∆ = f 2

ρ∆∆F
2(p, k)

[
gχψgηϕOνχ

(
γβ + i

κρ∆∆

2m∆

σβϵkϵ

)
OψθΣλθ(p)

Oλη

(
γα − i

κρ∆∆

2m∆

σαδkδ

)
OϕµAαβ

]
(5.64)
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with

Aαβ(k) = −gαβ +
kαkβ
m2
k

(5.65)

and

Σαβ(q) = (�q +mq)

[
−gαβ +

1

3m2
q

qαqβ +
1

3
γαγβ +

1

3mq

(γαqβ − γβqα)

]
. (5.66)

To write down the corresponding expressions in the medium, only the 11-component Πµν
11 needs

to be calculated, as we have discussed in previous section. Thus the self-energy in the medium

is expressed as

Πµν
11 (q) = i

∫
d4k

(2π)4
NµνE11(p)D11(k) . (5.67)

On expanding D11 and E11 in the above equation we get four terms, the first term is Πµν
vac the

second and the third terms are linear in thermal distribution function, while the fourth term

is non-linear in the distribution function which is purely imaginary. We obtain the imaginary

and real parts of the self-energy function after performing the k0 integral and using Eqn.(5.48),

ImΠ̄µν(q) = −πϵ(q0)
∫

d3k

(2π)3
1

4ωkωp
×

[Nµν(k0 = ωk){(1 + nk+ − ñp+)δ(q0 − ωk − ωp) + (−nk+ − ñp−)δ(q0 − ωk + ωp)}+

Nµν(k0 = −ωk){(−1− nk− + ñp−)δ(q0 + ωk + ωp) + (nk− + ñp+)δ(q0 + ωk − ωp)}]

(5.68)

and

ReΠ̄µν(q) =

∫
d3k

(2π)3
1

2ωkωp
P
[(

nk+ωpN
µν(k0 = ωk)

(q0 − ωk)2 − ω2
p

)
+

(
nk−ωpN

µν(k0 = −ωk)
(q0 + ωk)2 − ω2

p

)
−(

ñp+ωkN
µν(k0 = q0 − ωp)

(q0 − ωp)2 − ω2
k

)
−
(
ñp−ωkN

µν(k0 = q0 + ωp)

(q0 + ωp)2 − ω2
k

)]
(5.69)

where ωk =

√
m2
k + k⃗2 and ωp =

√
m2
p + (q⃗ − k⃗)2. Each of the four terms in the imaginary

part corresponds to a scattering and decay of the ∆-baryon, and the delta functions defines
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the kinematic domain in which the processes occur. The regions in the complex q0 plane where

these terms are non-vanishing are known as branch cuts. The region q2 > (mk +mp)
2 known

as the unitary cut, already present in vacuum, is the range where the first and the third terms

are non-vanishing. While the region q2 < (mp −mk)
2 where the second and the fourth terms

are non-vanishing is known as the Landau cut, and is purely a medium-effect. We confine to

the region q0 > 0 and q2 > 0, here only the first and the fourth terms contribute. The first

term represents the decay of ∆ into baryon-pair Nπ, Nρ etc, and the Bose enhancement of

the meson and Pauli blocking of the baryon in these processes are indicated by the thermal

factor 1+nk+ − ñp+ = (1+nk+)(1− ñp+)+nk+ñ
p
+. The fourth term corresponds to the absorption

of ∆ due to scattering by a meson, leading to the production baryon and vice versa, which is

evident from the thermal weight factor nk− + ñp+ = nk−(1 − ñp+) + ñp+(1 + nk−). The self-energy

functions are folded with their spectral function in order to account for the finite width of

unstable particles, and so the sharp thresholds of the branch cuts get smeared. For unstable

mesons h we use [12],

Π(q,mh) =
1

Nh

∫ (mh+2Γh)
2

(mh−2Γh)2
dM2 1

π
Im

[
1

M2 −m2
h + iMΓh(M)

]
Π(q,M), (5.70)

where Nh =

∫ (mh+2Γh)
2

(mh−2Γh)2
dM2 1

π
Im

[
1

M2 −m2
h + iMΓh(M)

]
and Γh = Γh(mh). Here h ≡ ρ so,

Γρ(M) = Γρ→ππ(M) =

[
g2ρππ

48πM3

] [
M2 − 4m2

π

]
λ

1
2

(
M2,m2

π,m
2
π

)
(5.71)

where λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + zx). In order to obtain this expression we have

used Lρππ = gρππρ⃗µ · (π⃗ × ∂µπ⃗) with gρππ = 6.05. For baryons R with non-trivial decay width

we use

Π(q,mR) =
1

NR

∫ mR+2ΓR

mR−2ΓR

dM
1

π
Im

[
1

M −mR + i
2
ΓR(M)

]
,Π(q,M) (5.72)

in the loops, where NR =

∫ mR+2ΓR

mR−2ΓR

dM
1

π
Im

[
1

M −mR + i
2
ΓR(M)

]
and ΓR = ΓR(mR). In this

case R ≡ ∆ for which the decay formula is given by Eqn.(5.73).
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5.2.2 The π-N Cross Section

Our aim is to construct a dynamical framework by which medium-effects can be incorporated

using thermal field theoretic methods into the πN cross-section, which at the same time is

normalized to the experimental data in vacuum. considering the πN∆ interaction (5.49) we

compare it with the phase shift date, defining tan(δ33) =
Imf
Ref with the partial wave amplitude

given by f(E) ∼ 1/[E2 − m2
∆ + im∆Γ∆(E)], where the ∆ → πN decay width which follows

from the imaginary part of Eqn.(5.56) is given by,

Γ∆(E) =
1

24π

(
fπN∆

mπ

)2

F 2(E)
p⃗ 3

E2
[(E +mN)

2 −m2
π] (5.73)

with the c.m. momentum p⃗ 2 = [E2 − (mN +mπ)
2][E2 − (mN −mπ)

2]/4E2. The phase shift

thus calculated is in good agreement with the data using Λ = 600 MeV and m∆ = 1234 MeV.

We calculate the invariant amplitudes for elastic πN scattering in the isospin basis, here we

replace the vacuum ∆ propagator with an effective propagator containing the vacuum self-

energy due to the loop diagrams mentioned above. The squared invariant amplitude for the

process π(k) N(p) → π(k′) N(p′) averaged over isospin is expressed as,

¯|M|2 =

∑
(2I + 1)|MI |2∑

(2I + 1)

=
1

3

(
fπN∆

mπ

)4
[

F 4(k, p)Ts

|s−m2
∆ − Π|2

+
F 4(k, p′)Tu

(u−m2
∆)

2

+
2F 2(k, p)F 2(k, p′)Tm(s−m2

∆ − ReΠ)
3(u−m2

∆) |s−m2
∆ − Π|2

]
(5.74)

where,

Ts = Tr
[
(�p

′ +mN)Ds(�p+mN)γ
0D†

sγ
0
]

(5.75)

Tu = Tr
[
(�p

′ +mN)Du(�p+mN)γ
0D†

uγ
0
]

(5.76)

Tm = Tr
[
(�p

′ +mN)Ds(�p+mN)γ
0D†

uγ
0
]

(5.77)
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Figure 5.5: The Landau-cut contribution to the imaginary part of the self-energy function for
different T and µN . [24]

with,

Ds = kαk
′
βOβνΣµν(qs)Oµα (5.78)

Du = k′αkβOβνΣµν(qu)Oµα. (5.79)

The term Σµν has been defined in Eqn.(5.66). With these we can calculate the cross-section

using the expression,

σ(s) =
1

64π2s

∫
¯|M|2dΩ. (5.80)
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Figure 5.6: The unitary cut contribution to the imaginary part of the ∆ self-energy at T = 100
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5.2.3 Numerical results

First we show the numerical result for the spin averaged imaginary part of the function Π [14,15],

Π =
1

4

∑
s∆

Ψ̄µΠ̄
µνΨν (5.81)

where Ψ̄µ denote Rarita-Schwinger spinors. The factors Nµν of Eqn.(5.64) then go over to
1
4
Tr[NµνΣµν ].

The Landau cut contribution to the imaginary part coming from the different loop graphs

have been represented in Fig. 5.5. The upper and the lower set of panels have been calculated

for T = 100 MeV and T = 150 MeV respectively, for the panel (a) and (c) we have taken

µN = 200 MeV, while for the panel (b) and (d) we have taken µN = 500 MeV. From these, it

is evident that the ρN and ρ∆ loops start contributing to the imaginary part only at larger

baryon densities.

The unitary cut contributions from the four loops at T = 100 MeV for different values of µN have

been represented in Fig. 5.6. These are the same as in vacuum apart from the Pauli blocking

and Bose enhancement factors in the final state. The monotonous rise of these contributions at

higher q0 has been suppressed by the form factor. The contributions to the imaginary part by
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Figure 5.7: The spectral function of the ∆ for q0 from 1 to 1.8 GeV. [24]

the unitary cut is found to be much larger in magnitude than the contribution by the Landau

cut.

The unitary cut contribution in high q0 region in the vicinity of the bare ∆ mass consisting of

the contributions from the unitary cuts is shown in Fig. 5.7. The temperature and chemical

potential of the medium are found to have a significant influence over the spectral density.

Due to the larger imaginary parts in the denominator of the in-medium propagator a gradual

suppression of the peak with increasing temperature is observed.

A reasonable agreement is observed between the present work and that of [16], when the ∆

spectral function obtained by both the process are plotted side by side in Fig. 5.8 panel (a),

where continuous lines and symbols represent the one calculated by our process and by [16]

respectively . The slight disparity that does arise is due to the differences in the Lagrangian

and associated parameters, as well as due to higher order effects introduced through dressed

nucleon and pion propagators in the ∆ self-energy considered in [16] wherein vertex corrections

were included through Migdal parameters in the pion propagator.

In Fig. 5.8 panel (b) we plot the ∆ spectral function after the introduction of phenomenological

hadronic form factors, to take into account the finite size of the vertices. The introduction

of the Form Factor I with Λ = 600 MeV produces a good fit to the phase shift data and πN

cross-section. On changing to Λ = 700 MeV, we find a small reduction at the peak, though

the πN cross-section remains largely unchanged. We have also plotted the spectral function
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Figure 5.8: The ∆ spectral function vs q0: (a) in comparison with [16] and (b) for different
form factors. The results of Ref. [16] are represented by symbols. [24]

calculated using Form Factor II with Λ = 1.25 GeV (as used in [17] with Λ = 0.97 GeV), but

no appreciable difference is found with the one with Form Factor I and Λ = 600 MeV. The

symbols in the plot denote the results of [16].

In Fig. 5.9 we plot the cross-section calculated using our process and those by [5] (obtained

using phase shift and inelasticity data from [23] and [22]). The results are in good agreement

with each other. Here in the evaluation of the scattering amplitudes, we have considered

only ∆(1232) exchange so that we can fix the parameters, and thus obtaining a baseline for

estimating the effect of the modified ∆ propagator on the cross-section. After normalising the

framework with the experimental data, we introduce medium-effect. On replacing the vacuum

self-energy by the in-medium ones evaluated in the real-time formalism a significant suppression

of the peak with increasing temperature is obtained, this is due to the increase in the imaginary

part. A small upward shift is also seen at higher baryon densities, which is due to the small

positive contribution of the real part of the self-energy.
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Chapter 6

Numerical Results

In this chapter, we present the results of numerical calculations. We emphasise that most

of the literature discussing transport coefficients from kinetic theory perspective has mainly

used vacuum interaction cross-sections. The temperature dependence there comes only from

the phase space factors, the finite temperature contribution from the dynamics is generally

neglected. In the previous chapter, we have discussed the medium-effect on the ππ and πN

cross-section. Here in this chapter, we will discuss how the suppression of the cross-section

due to the introduction of medium-effect will affect the transport coefficients. The medium-

effects on the NN cross-section have not been considered, since the cross-section doesn’t have

a resonance peak.

In the first section of this chapter, we review the effect of the medium-effect on the viscous

coefficients and the thermal conductivity of a pion gas as done in [1, 15, 16]. Chapman-Enskog

approximation along with the cross-section derived in the previous chapter has been employed

to calculate these transport coefficients. The behaviour of these transport coefficients of the

pion gas with varying temperature for various values of pion chemical potential is discussed.

These coefficients are used as inputs for the calculation of the relaxation time of flows.

The second section of this chapter deals with the relaxation time of flows that appear in second-

order hydrodynamics for a pionic gas [1]. The process employed is the relativistic version of the
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Figure 6.1: The bulk viscosity as a function of T . The upper set of lines (with circles), middle
set of lines (with triangles) and lower sets of lines correspond to µπ = 85 MeV, µπ = µπ(T ) and
µπ = 0 MeV respectively. In each set the solid line represents the use of vacuum cross-section,
the dotted line for in-medium modification due to pion loop and the dashed line for loops with
heavy particles in addition.

Grads-14 moment method, first proposed by Israel-Stewart [2, 3], and then refined by Denicol

etal [4]. The property of the relaxation time has been studied for different temperature T

and pion chemical potential µπ. Further, the effect of temperature-dependent pion chemical

potential on the relaxation times of flow has been studied.

In the third section, we deal with a two-component hadronic gas composed of pions and nu-

cleons. The transport coefficients that appear in first-order hydrodynamics (Navier-Stoke’s

theory), namely shear viscosity, bulk viscosity, thermal conductivity, diffusion coefficient, ther-

mal diffusion coefficient and Dufour coefficient have been studied. These coefficients have been

derived using the relaxation time approximation as discussed in the previous chapter. The

behaviour of these coefficients at different temperature T and nucleon chemical potential µN
have been studied.

127



6.1 Viscous coefficients and Thermal conductivity of

Pion Gas

First, we consider the bulk viscosity of pion gas taken from [1, 15]. Fig. 6.1 represents the

variation of the bulk viscous coefficient with temperature. The figure has three sets of curves,

each set corresponds to a different value of pion chemical potential µπ. The lowest set of

curves corresponds to µπ = 0 while the uppermost with circles corresponds to µπ = 85 MeV,

these values are representative of the kinetic and chemical freeze-out in heavy ion collisions

respectively. The middle set of lines with triangles represent the case where µπ is a function

of temperature, as discussed in the previous chapter. Each set contains three curves, the

lowest bold line has been calculated using the vacuum cross-section, for the middle dotted lines

medium-effect was incorporated by introducing pion loops in the ρ propagator, and the long

dashed line in each set corresponds to the situation when the heavy mesons are included i.e. for

πh loops where h = π, ω, h1, a1. The clear separation between the curves in each set displays

a significant effect brought about by the medium dependence of the cross-section. A large

dependence on the pion chemical potential is also inferred since the three sets of curves appear

nicely separated.

We now turn to the shear viscosity [1,15]. Shown in Fig. 6.2 is the shear viscosity as a function

of T where the results with ππ and πh loops are contrasted with the case where the vacuum

cross-section is used. The result with the vacuum cross-section agrees with [48] and [7] for

µπ = 0. A noticeable medium-effect is observed as indicated by the short and long-dashed

lines.

We next turn to the results of thermal conductivity [1,16]. In Fig. 6.3 we plot λT as a function

of T evaluated in the Chapman-Enskog approach. The dashed line shows results where the

vacuum cross-section is used. For µπ = 0 this result agrees with those of [5,7]. The long dashed

line represents the case where medium-effects have been introduced. A substantial medium-

effect is seen even for µπ = 0 and this is seen to increase with the increase of temperature.

The bold line represents λT calculated using temperature dependent chemical potential µπ(T ),
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Figure 6.4: Relaxation time of bulk viscous flow as a function of T .

with medium-effects taken into consideration. Comparing with the long-dashed line the effect of

chemical freeze-out is seen to be more at lower temperatures since the value of µπ(T ) increases

as one approaches kinetic freeze-out.

6.2 Relaxation time of flows

Here in this section, we discuss how the relaxation time of flows is affected by the introduction

of in-medium cross-section [17]. Fig. 6.4 represents the variation of the relaxation time of bulk

viscosity with temperature. The two set of curves in the figure correspond to two different

values of the pion chemical potential. The lower set of curves with circles are evaluated with

a constant value of pion chemical potential µ = 85 MeV, this value of the chemical potential

is a representative of the kinetic freeze-out in heavy ion collisions. The upper set of curves

with triangles represent the case for a temperature T dependent chemical potential µ = µ(T ).

There are three different curves in each set, the lowest one represents the one calculated using

vacuum cross-section, while the upper two represents the behaviour of the relaxation time after

the introduction of the medium-effect. We have checked for the vacuum case with a constant

value of chemical potential with [5, 7], and find that it agrees. The middle curves in each set
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Figure 6.5: Relaxation time of heat flow as a function of T .

depict the effect of the medium corresponding to the pion loop in the σ and ρ propagators.

The effect of the thermal medium on τζ , is inflation in its value. Finally, the uppermost solid

curves correspond to the situation when the heavy mesons are included in the � propagator,

i.e. for πh loops where h = π, ω, h1, a1. The increase in the value of the relaxation time τζ is

brought about by the suppression of the cross-section which appears in the denominator. As

is apparent from the separation of the curves the introduction of medium-effect has caused a

significant change. Since the value of the time-varying chemical potential at kinetic freeze-out

(T = 100 MeV) is µ = 85 MeV the two set of curve merges at T = 100 MeV.

Next, we turn our attention to the relaxation time of the irreversible heat flow. In Fig. 6.5

the relaxation time for the irreversible heat flow, τλ is plotted against temperature for the

same pair of values of pion chemical potentials mentioned above. Just like in the previous case

the two choice of pion chemical potential produces two distinct set of curves which merges at

temperature T = 100 MeV. In each set, the curves are plotted for different ππ cross-sections,

with the lowest indicating the one with the vacuum cross-section and the highest with a cross-

section that includes the heavy mesons in the ρ propagator. Similar to the earlier case here also

we notice that the introduction of the medium-effect in the cross-sections, evaluated at finite
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Figure 6.6: Relaxation time of shear viscous flow as a function of temperature.

temperature causes an appreciable increase in the value of τλ. The multi-pion loop contribution

due to heavier mesons in the ρ propagator turns out to be more significant than the ππ loop.

Finally, we discuss the relaxation time of shear viscous flow τη, the variation with temperature

is plotted in Fig. 6.6. The curves are seen to follow the same trend corresponding to the

cases described above though the magnitudes are a little lower. The lower set of curves are

those for the constant value of µ, this has already been seen in [5, 7]. The variation of τη is

small as seen from the figure, this is expected since τη = ηβη/nT ; the increase of η with T is

largely compensated by the decrease in 1/nT , βη thus remaining approximately constant in

the temperature range shown. When µ = µ(T ) is used, an almost insignificant variation of τη
with temperature is noted. This is because the increase in n with the increase in temperature

is compensated with the decrease in µ at higher temperature.

Note though in the first-order theory we found that the magnitude of the coefficients ζ, λ

and η differs quite significantly, the respective relaxation time as plotted on the same scale in

Fig. 6.4, Fig. 6.5 and Fig. 6.6 come out to be of similar magnitude. The bulk viscosity ζ is

generally much smaller than η as seen in e.g. [15,16]. Consequently, bulk viscosity and thermal

conductivity are usually ignored in the set of hydrodynamic equations.
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Figure 6.7: The relaxation time of pions in a hadron gas mixture of pions and nucleons, for
nucleon chemical potential µN = 200 and 500 MeV; with and without medium-effects.

6.3 Transport coefficient of a mixture consisting of Pions

and Nucleons

To understand the behaviour of the transport coefficients derived using relaxation time approx-

imation method we must first study the behaviour of the average relaxation time at different

temperature and chemical potential. The average has been taken over the entire momentum

space of the projectile particle. The relaxation time contains the dynamic information of the

medium, that is embedded in the binary collision leading to the transport phenomena. The ππ

and the πN cross-section determines the relaxation time of pion τπ and; NN and πN cross-

section determines the relaxation time of nucleon τN . In Fig. 6.7 and Fig. 6.8 the temperature

dependence of the relaxation time of pions and nucleons in the mixture have been plotted. The

curves with vacuum cross-section are of similar order of magnitude as given in [5]. The cross-

section decreases with the introduction of medium-effect as discussed in the previous chapter,
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Figure 6.9: The relaxation time of pions and nucleons as a function of µ for T = 160 MeV for
µπ = 80 MeV.

leading to an increase in the relaxation time. Though at lower temperatures near kinetic freeze-

out the magnitude of the nucleon relaxation time is about a factor of two lower than that of

the pions, they are found to even out at higher temperatures. In Fig. 6.9 the dependence of the

relaxation time of pions and nucleons on the nucleon chemical potential has been shown. Here

too the relaxation times decrease with the increase in chemical potential, but the rate is much

slower. The larger gap between the results with vacuum and medium cross-sections shows the

dominant role played by temperature especially in the later stage of the evolution.

6.3.1 Viscous Coefficients

Here we show how the medium modified ππ and πN cross-sections discussed above are reflected

in the viscosities of the system, evaluated numerically. We will show results for the temperature

range 100 to 160 MeV which is typical of a hadron gas produced in the later stages of heavy ion

collisions, between kinetic and chemical freeze-out. Accordingly, we consider a non-zero value

of the pion chemical potential [8] in addition to the chemical potential for nucleons.
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Figure 6.10: Shear viscosity as a function of T for various µN with and without medium-effects.
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potential µπ = 80 MeV.
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The shear viscous coefficient as a function of temperature is depicted in Fig. 6.10. In the

lower set of curves are the ones evaluated using the vacuum cross-sections, while the upper

set is evaluated taking into consideration the medium-effect on the ππ and πN cross-sections.

The different curves in each set correspond to different values of the nucleon chemical potential

µN while the pion chemical potential µπ is taken to be 80 MeV [9]. It is apparent from the

graph that both in vacuum and medium the shear viscosity appears to increase with increasing

πN and is the result of interplay of various factors. This was already noted in [10] where by

means of a simplified estimate of the viscosity of the mixture this feature could be understood

as resulting from an enhancement of the nucleon component with increasing µN . Moreover,

due to the introduction of the medium-effect a considerable change in the value of the shear

viscous coefficient is seen. The increase in the relaxation time and hence the viscosity as can

be seen in the upper set of curves, is due to the decrease of the in-medium cross-section with

increasing T and µN .

137



0.10 0.11 0.12 0.13 0.14 0.15 0.16
0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018
 med 3
 med 4

(1
0- 3

 G
eV

3 )

T (GeV)

 vac 1
 vac 
 vac 3
 vac 
 med 
 med 

Figure 6.12: The bulk viscosity as a function of T with and without medium-effects. Legends
1,2,3 and 4 indicate µN = 200, 300, 400 and 500 MeV respectively.

A significant influence of the medium on the kinematic shear viscosity (i.e. η/s; s is the entropy

density of the system) is also found. Fig. 6.11 depicts the variation of kinematic viscosity with

temperature for nucleon chemical potential 200 MeV and 500 MeV represented by lines with and

without symbols respectively. The lower curve in each set corresponds to vacuum cross-section

while the higher one corresponds to the one calculated taking into account the medium-effect

for the same nucleon chemical potential. The monotonous decrease in η/s with T may be

attributed to the increase in the entropy density with T [10]. The decrease however, respects

the lower bound [11] around the transition temperature.

The temperature dependence of the bulk viscous coefficient is shown in Fig. 6.12. Proceeding

from the bottom of the diagram each pair of graphs corresponds to a different value of nucleon

chemical potential. The lower curve for each pair corresponds to the one where vacuum cross-

section has been used to calculate the relaxation time while the upper curve corresponds to

the one where the medium-effects have been taken into consideration. Although the magnitude

of bulk viscosity appears to be much smaller than that of shear viscosity the effects of the
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thermal medium are quite significant in this case too. Fig. 6.13 depicts the variation of the

kinematic bulk viscosity (i.e, ζ/s ), where the lines correspond to the same combination of

parameters as in Fig. 6.11. The dependence with T and µN in the vacuum and in the medium

show similar features as η/s. A significant difference is observed between the magnitude of

viscosities calculated with vacuum and medium cross-sections.

6.3.2 Coefficients of Thermal Conduction and Diffusion

The variation of thermal conductivity with temperature is depicted in Fig. 6.14(a), where the

pion chemical potential is taken as 80 MeV which is its value at kinetic freeze-out. The nucleon

chemical potential µN is taken as 500 MeV. The coefficient of thermal conductivity is found to

decrease with the increase in temperature. The introduction of medium-effect not only causes

a significant change in the value of the thermal conductivity but also changes its behaviour

with temperature though it changes only slightly with the rise in temperature after 130 MeV.
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Figure 6.14: The thermal conductivity for a mixture constituting of nucleons and pions as a
function of (a) temperature and (b) nucleon density.
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Figure 6.15: The Dufour coefficient as a function of (a) temperature and (b) nucleon density.
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The variation of the thermal conductivity with the nucleonic chemical potential at temperature

160 MeV is shown in Fig. 6.14(b). Here also we find a significant change in its value with the

introduction of medium-effect. Note that the increase in average energy with temperature is

in fact cancelled by the 1/T factor in the expression of λ and hence the coefficient of thermal

conductivity follows the trait of relaxation time. Increase in density (chemical potential) is

found to have very little effect on its behaviour.

The temperature dependence of the Dufour and the Thermal diffusion coefficients is presented

in Fig. 6.15(a) and Fig. 6.16(a) respectively. Here we see that the two coefficients are approx-

imately of similar magnitude (in fact, the values would have been identical if the Chapman-

Enskog formalism was used to derive the values of these coefficients [12, 13]). We find that

the introduction of medium-effect has very little effect on the value of these coefficients though

there is a slight increase in their magnitudes. With the increase in temperature, the coefficients

are found to fall sharply; the presence of 1/T in their expression causes the rate of decrease to

be sharper than that of the relaxation time. Fig. 6.15(b) and Fig. 6.16(b) shows the behaviour

of the Dufour coefficient and the thermal diffusion as a function of the nucleon chemical poten-

tial at T = 160 MeV. The trend followed by the coefficients is similar to that of the relaxation

time.

From Fig. 6.17(a) we can see that the diffusion coefficient decreases with temperature. The

introduction of medium-effects in the relaxation time causes a significant surge in its value.

The dependence of the diffusion coefficient on the nucleon chemical potential is depicted in

Fig. 6.17(b). It is found to behave quite differently from the relaxation time of collision and its

value depend strongly on the density of nucleons (which goes up with the increase of nucleon

chemical potential). We plot for two values of T , in this case, to show its different behaviour at

lower and higher values resulting from the interplay of the two factors. At 160 MeV temperature

the value of the diffusion coefficient is found to be quite steady up to µN = 450 MeV after which

it decreases slowly. In contrast, at lower temperatures (100 MeV) the value of the diffusion

coefficient goes up with an increase in chemical potential.
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Chapter 7

Summary and Outlook

The main aim of the thesis is the study of transport properties of the later stage of a heavy

ion collision, mainly after chemical freeze-out, from a kinetic theory approach. Transport

coefficients in first-order hydrodynamics for a mixture of pions and nucleons are investigated,

for a finite baryonic chemical potential. This study is motivated by the BES (Beam Energy

Scan) program at RHIC, where the baryon chemical potential is expected to be significant and

thus is expected to play an important role in determining the transport coefficients. The method

employed to calculate these transport coefficients of first-order hydrodynamics is the Relaxation

Time Approximation. Here we have also evaluated the transport coefficients of second-order

hydrodynamics for a system of pions. These coefficients have been calculated using the Grad’s

14-Moment Method.

As mentioned before in most of the earlier studies of transport coefficients of hadronic gas

within the kinetic theory framework, vacuum cross-sections were employed. These cross-sections

which appear in the collision integral is the dynamic input; through these cross-sections, the

interaction between the constituent particles are introduced. But for a more realistic picture we

have incorporated medium-effect in our cross-section, as the system we are studying presumably,

is at a high temperature and density. This is one of the novelties of the work reported in this

thesis. We summarise below the main findings and discussions from each chapter.
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Chapter 2 : In this chapter, we have discussed the basics of Relativistic Kinetic Theory. Here

we have described how the statistical description of the microscopic constituents of a system

is given by the single particle distribution function f(x, p). And how this single particle dis-

tribution can be used to obtain parameters like hydrodynamic velocity Uµ, energy-momentum

tensor T µν , concentration etc., which are used to provide a macroscopic description of the

system, thus acting as a bridge between microscopic and macroscopic viewpoint. We have dis-

cussed here the Boltzmann Transport Equation and how it describes the evolution of the single

particle distribution function. We have also discussed the limitation of the transport equation,

thus describing the domain where this equation is applicable. Using the Boltzmann equation

we have obtained the first-order Relativistic Hydrodynamic Equations, thus completing the full

macroscopic description of the system starting from the microscopic viewpoint. With the help

of the conservation equation, we also obtain a form of the equilibrium distribution function.

Chapter 3 : Here we evaluate the transport coefficients in second-order hydrodynamics for a

single component gas of pions using Grads 14-Moment Method. We have reviewed the Enskog

expansion, where the single particle distribution function is expanded around its equilibrium

value, and how it is used to linearise the Boltzmann transport equation. Here we have concisely

discussed the Chapman-Enskog method, and have obtained expressions for shear viscosity η,

bulk viscosity ζ, and thermal conductivity λ. We then discuss the second-order hydrodynamic

equations and how they eliminate the acausality of the first-order hydrodynamic equations.

The term ϕ used to parametrise the deviation of the single particle distribution function has

been expanded using irreducible tensors, 1, ⟨Πµ⟩, ⟨ΠµΠν⟩, ...; constructed out of momentum pµ.

Using the expressions for the transport coefficients obtained using Chapman-Enskog method

we derive the coefficients of the above mentioned irreducible tensors in ϕ, which in turn has

been expanded in terms of τ = (pµUµ)/T . Applying variation approach proposed by Gelarken

we obtain the general form of the second-order relativistic hydrodynamic equation. From these

we identify the relaxation time of flows τη, τζ and τλ which appear in Israel-Stewart equation.

Using the value of the coefficients of the irreducible tensors we obtain the expressions for these

relaxation times of flows.
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Chapter 4 : We discuss here the formalism to evaluate the transport coefficients in first-order

hydrodynamics for a gas constituting of nucleons and pions using Relaxation Time Approxi-

mation. Here we review the coupled Boltzmann equations for a mixture. The Boltzmann

equations are linearised using the same Enskog expansion. The collision integral is simplified

by considering only the projectile particles to be away from equilibrium and the rest in equi-

librium. Doing so the collision integral is expressed in terms of the relaxation times τπ and τN ,

and parameters ϕπ and ϕN . The terms ϕπ parametrises the deviation of pion single particle

distribution function from equilibrium, and ϕN does the same for nucleons. ϕπ and ϕN are

expressed as linear combination of the thermodynamic forces with proper coefficients having

appropriate tensorial rank such that, ϕπ and ϕN turn out to be Lorentz scalars. Expanding the

left-hand side of the Boltzmann equation, and equating the coefficients of the thermodynamic

forces, we get the coefficients in the expressions of ϕπ and ϕN . Using these coefficients we de-

rive the expression for the shear viscosity η, bulk viscosity ζ, thermal conductivity λ, Diffusion

coefficient D′, thermal diffusion coefficient DT and Dufour coefficient D′
T .

Chapter 5 : In this chapter, we have calculated the in-medium cross-section of ππ and πN

scattering. To construct ππ cross-section in the medium we employ an effective Lagrangian

approach which incorporates ρ and σ exchange and agrees well with experimental data. Then

we introduce medium-effect by modifying the propagator in the medium. We have quantified

the effect of a thermal medium on the ρ and σ propagator through the self-energy evaluated at

finite temperature using real time formalism of Thermal Field Theory. In the self-energy loop

of σ we consider two pions, while for ρ we consider one-loop self energy involving two pions

or one pion and another heavy meson, like ω, h1 and a1. The cross-section calculated with

medium-effect incorporated is found to be suppressed compared to the vacuum cross-section.

We have also discussed a time-varying pion chemical potential which takes care of pion number

conservation. For in-medium πN cross-section we follow the same procedure. Here we have

incorporated ∆-baryon exchange. The self-energy loop of ∆ comprises of π, ρ, N , and ∆.

Here also we find that the introduction of the medium-effect causes an appreciable amount of

suppression.
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Chapter 6 : In the first half of this chapter, we study the transport coefficients of a pion gas at

different temperatures. We find that on changing the vacuum cross-section with an in-medium

cross-section, the temperature dependence of all the transport coefficients are significantly

modified. In the second half of this chapter, we study the relaxation time of pion and nucleon

in the pion-nucleon gas at different temperatures and different nucleon chemical potentials.

Here we see that the suppression in the cross-section causes an increase in the value of the

relaxation time. This increase in the value of relaxation time is also reflected in the transport

coefficients calculated using them. We also find that on changing nucleon chemical potential

the transport coefficients change significantly.

We conclude by tabulating a few aspects of the studies reported here where possible improve-

ments could be made.

1. In Chapter 4 we have discussed the limitation of the first order hydrodynamics. It is

known to be acausal. So to overcome this problem second-order hydrodynamics was

introduced, which restored causality. But though the second-order equations are causal,

they are not guaranteed to be stable. Thus higher order hydrodynamics is needed. And

the medium-effects are expected to significantly modify the magnitudes of the transport

coefficients of higher-order hydrodynamic theory.

2. In Chapter 5 we have derived the Dufour coefficient D′
T and the thermal diffusion coeffi-

cient DT . According to Onsager’s reciprocal relation, these two coefficients are supposed

to be symmetric, but as far as our calculations suggest, they are not so. This is a limi-

tation of the relaxation time approximation, and this arises because there is no way to

implement the ”condition of fit”. So for a more accurate result for these cross terms, we

need to employ Chapman-Enskog approximation since in this process we have a provision

to implement the ”condition of fit”.

3. We have considered a mixture of pion and nucleon, but for a more realistic picture, we

will have to incorporate other significant degrees of freedom like Kaons.
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