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SYNOPSIS

1 Introduction

The main aim of the heavy ion collision experiments at Relativistic Heavy Ion Collider (RHIC) and

Large Hadron Collider (LHC) is to create a new state of matter called quark gluon plasma (QGP).

Such a state of matter, i.e. QGP [1] may have existed in the early universe after a few microsecond

of the Big Bang. One of the motivations to create and study QGP in the laboratory is to understand

the state of the universe in the microsecond old era. The fluctuations of physical quantities from

their average values can be used to understand several properties of the system i.e. the transport

coefficients of the medium, the approach toward equilibrium, etc. The study of temperature (T )

fluctuation in the cosmic microwave background radiation (CMBR) has provided crucial information

about the universe when it was about 300,000 years old. This information has led to tremendous
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support to the Big Bang model of cosmology. The fluctuation of T in the CMBR is introduced

as a perturbation in the phase space distribution of photons. The evolution of this perturbation

is studied by using Boltzmann transport equation (BTE) [2] in gravitational field with Thomson

scattering in the collision term. The linear polarization resulted from the scattering is connected

with the quadrupole moment of the photon’s phase space distribution.

The fluctuations in the position of nucleons (with finite size) in the colliding nuclei lead to lumpi-

ness in the spatial distribution of initial energy density(ε) of the system formed in Relativistic Heavy

Ion Collisions Experiments (RHIC-E). The fluctuation in energy density(∆ε) may also originate due

to the energy deposition by the propagation of energetic partons produced in the early stage of the

collisions. These fluctuations may lead to observable effects similar to temperature fluctuation in

CMBR. We have adopted an approach similar to the one used to study the fluctuation in CMBR.

We study the evolution of perturbations by introducing a deviation, δf(x, p, t) to the equilibrium

distribution function, f0(p). The bulk in equilibrium evolves via relativistic hydrodynamics and the

evolution of the fluctuations, δf over the expanding background is obtained by solving BTE.

The study of the fluctuations in the space time structure of the fireball driven by the fluctuations

in the position of the nucleons in the colliding nuclei is an important contemporary issue in RHIC-E.

Fluctuations in the space-time structure of the system will cause fluctuations in the thermodynamic

quantities. How these fluctuations evolve in a hydrodynamically expanding system, what is their

power spectrum and how they are connected with the transport coefficients has been addressed in

this dissertation.

Evolution of fluctuation in a hydrodynamic medium contains information about the dissipative

properties of the medium. These dissipative properties are quantified as transport coefficients. The

effects of transport coefficients on the hydrodynamic evolution of the strongly interacting fireball and

on various observables in RHIC-E, e.g. the elliptic flow, spectra of hadronic and electromagnetically

interacting particles, etc have been studied extensively and and it has been found that that the

matter created in heavy ion collisions behaves almost like a perfect liquid [3, 4, 5, 6, 7] with η/s

close to the KSS (Kovtun, Son and Starinets) bound [8]. However, the issue of bulk viscosity is less

discussed. In the present work we estimate the bulk viscosity from solution of BTE, δf .

The bulk viscosity of hadron resonance gas (HRG) has also been calculated and compared with

other works. The phenomenological relevance of ζ has fuelled efforts to estimate it by using various

models. In this work we also provide an estimate of ζ within the ambit of HRG model which has

been quite successful in describing the low temperature QCD thermodynamics.
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2 Evolution of fluctuation

To describe fluctuations caused by perturbations we have considered as small deviation, δf(x, p) in

the equilibrium single particle distribution function. The evolution of f(x, p) = f0(x, p) + δf(x, p)

with δf = f0ψ is governed by the equation,

pµ∂µf = (p · u)C[f ] (1)

where f0 is the equilibrium distribution parametrized by temperature (T = 1/β) and velocity (~v)

of the fluid (QGP in the present case), f0(x, p) = 1/[eβ(x)(uµpµ) ± 1] with uµ = γ(1, ~v). The energy

momentum tensor can be obtained from f [9] as

T µν(x) =

∫
d3p

pµpν

p0
f(~x, ~p, t), (2)

fluctuation of hydrodynamic quantities can be obtained from δf .

Evolution equation: The evolution of δf in an expanding background can be calculated

by using Eq. 1. In relaxation time approximation(RTA) Eq. 1 reads:

(
∂

∂t
+

~p

p0
· ∂
∂~x

+
(p0u0 − ~p · ~u)

p0τR(x)

)
δf(x, p) = −

(
∂

∂t
+

~p

p0
· ∂
∂~x

)
f0(x, p) (3)

where τR is the relaxation time.

In RTA, i.e. when C[f ] = −(f − f0)/τR(x) we get the solution [10] of Eq. 3 as:

δf(~x, ~p, t) = D(t, t0)

[
δfin(~p, ~x− ~p

p0
(t− t0)) +

∫ t

t0

B(~x− ~p

p0
(t− t′), t′)D(t0, t

′)dt′
]

(4)

where

D(t2, t1) = exp

[
−
∫ t2

t1

dt′A(p, ~x− ~p

p0
(t′ − t0), t′)

]

with

A(p, ~x, t) =
p0u0(x)− ~p · ~u(x)

p0τR(x)

and

B(~x, t) = −
(
∂

∂t
+

~p

p0
· ∂
∂~x

)
f0(x, p).

This δf can be used to estimate fluctuation in various thermodynamic quantities due to perturbation.
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For static QGP medium, spatial component flow velocity is zero in local rest frame and tempera-

ture is independent of space-time, with δf = f0ψ, for massless particles the solution of BTE (Eq. 4)

reduces to

Ψ(~x, ~p, t− t0) = Ψin

(
(~x− ~p

p0

(t− t0)), ~p

)
exp

[
−(t− t0)

τR

]
. (5)

2.1 Hydrodynamically expanding background

QGP produced in RHIC-E in local equilibrium expands hydrodynamically due to high internal pres-

sure into the vacuum surrounding it. The expansion of the QGP in space and time can be studied by

using relativistic hydrodynamics. The conservation of energy and momentum of the fluid is governed

by the equation:

∂µT
µν = 0 (6)

where T µν = (ε+P )uµuν − gµνP , where ε is the energy density, P is the pressure. The conservation

of the net baryon number throughout the evolution history is controlled by the equation:

∂µ(nBu
µ) = 0 (7)

where nB is the net baryon (baryon - antibaryon) density. In the present work we are interested

in the system produced in nuclear collisions at the highest RHIC energies where nB is negligibly

small (nB will be even smaller at LHC collision conditions) and hence µB ∼ 0. Therefore, we do

not need to consider Eq. 7. In the present work Eq. 6 has been sloved numerically using standard

technique [11] in full (3+1) space-time dimension without making assumption on boost invariance

along longitudinal direction [12] and cylindrical symmetry of the system.

2.1.1 Initial conditions

The initial conditions required to solve Eq. 6 in (3+1) dimension are as follows: the Cartesian

components of initial flow velocities are: vx(τ0, x, y, z) = vy(τ0, x, y, z) = 0 and the initial energy

density profile is taken as [11]:

ε(τ0, x, y, ηs) = εGM(x, y) θ(Yb − |ηs|) exp

[
−θ(|ηs| −∆η)

(|ηs| −∆η)2

σ2
η

]
(8)

4



where εGM(x, y) is obtained from optical Glauber (OG) or Monte-Carlo Glauber (MCG) model,

having the following expression-

εGM(x, y) = ε0

[
1− f

2
npart(x, y) + fncoll(x, y)

]
(9)

where npart is number of participants and ncoll number of binary collisions between nucleons in

nucleus-nucleus collisions. We have taken the value of the inelastic nucleon-nucleon cross section,

σNN = 42 mb at RHIC in evaluating the npart and ncoll. Gaussian smearing, to get the continuous

distribution of energy density, which is required for hydrodynamic evolution, from energy deposition

at descrete points in the MCG approach, is used as:

εGM(x, y) =
1

2πσ2

∑

i

εGM(xi, yi) e
− (x−xi)2+(y−yi)2

2σ2 (10)

where εGM(xi, yi) is obtained from Eq(9). In the following Woods-Saxon distribution have been used

to sample the nucleons from nuclei (Au in this case)

ρ(r) =
ρ0

1 + e
r−R
δ

.

Table 1. The values of different parameters appeared in the above expressions are given bellow:

Parameter τ0 Yb ∆η ση ε0 f σ2 R δ σNN

Value 0.6 fm/c 5.3 1.3 2.1 7.7 Gev/fm3 0.14 0.16 6.37 0.535 42 mb

2.1.2 Equation of State (EoS)

The EoS for the QGP and the hadrons have been constructed following the procedure outlined in

Ref [13], where, excluded volume model [14] for hot hadrons and pQCD results [15, 16, 13] for

the QGP phase is used. For a smooth crossover, a switching function is used as in [13] and the

parameters are adjusted so as to match the Lattice QCD results.

EoS for HRG phase: We choose volume of hadrons to be proportional to mass, so that volume

of the hadron, vi = mi/m0 as in [13], where m0 is a constant. We take m0 = 0.9 for this work. The

5



pressure of the hadronic medium is taken to be,

pHG(T, µB) =
∑

i=1

pidi (T, µ̃i) (11)

µ̃i = µi − vipHG (12)

where µi = BµB, and B is baryon number. pidi denotes the ideal pressure of a relativistic gas

comprised of ith resonance and pHG is the pressure after excluded volume correction is taken into

account which is found by solving the above set of equations in a self-consistent way.

EoS QGP phase: The pressure of the QGP phase is taken as

P =
8π2

45
T 4

[
f0 +

(αs
π

)
f2 +

(αs
π

)3/2

f3 +
(αs
π

)2

f4 +
(αs
π

)5/2

f5 +
(αs
π

)3

f6

]
(13)

where the coefficients fn’s are given in [17]. The coupling, αs has been taken from [18] calculated

in three loop approximations.

T , µ(≡ µB) dependent switching and combined EoS: The pressure in the crossover region

is taken to be

P (T, µ) = S(T, µ)Pqgp(T, µ) + (1− S(T, µ))Ph(T, µ) (14)

where the switching function S(T, µ) is taken as

S(T, µ) = exp{−θ(T, µ)} (15)

θ(T, µ) =

[(
T

T0

)r
+

(
µ

µ0

)r]−1

(16)

We take T0 = 165 MeV, µ0 = 3πT0 and r = 4. These parameter values are taken to have a good

agreement of our results with the lattice data [19].

2.1.3 Initial anisotropic perturbation

To simulate initial spatial anisotropy of fluctuation with different geometrical shape, we choose,

δf(p, ~x, t0) = A0 exp [−r(1 + an cosnθ)] (17)

We have taken n = 2, 3, 4, 5, ... to simulate different initial anisotropy and r = |~x|. From this solution

in coordinate space one can get various modes of fluctuations using Fourier Transformation which

6



will give evolution of different Fourier modes of fluctuations. We take an = 0.3 for n = 2, 3, 4, 5.

For numerical results discussed below to see how much of initial perturbation survives over time, for

comparison of initial to final value, A0 is set to unity.

To investigate effect of such perturbation on momentum anisotropy of particles emitted from

constant temperature surfaces of the evolving QGP fluid, we take δfin with, A0 not set to unity,

rather

A0 = K
C

(1 + pT/B)β

where, C = 9.113 × 10−4(1/MeV 2); B = 1459MeV and β = 7.7, and K is chosen to be K = 3.6

so that energy density carried by the perturbation(δε) is such that, δε/ε ∼ 0.01 (results with other

values of δε/ε will also be shown). This condition ensures negligible back reaction on background

from the perturbations. This power law form of momentum dependence of perturbation, which is

inspired by jet parton distribution , also ensures non-equilibrium nature of this perturbation. It also

ensures the condition δf/f0 << 1.

2.2 Results on the evolution of perturbation

The BTE has been solved in RTA and the solution has been used to estimate the time variation

of perturbation in energy density (∆ = δε/ε). The evolution of ∆ in wave vector (~k) space evolves

as [20]:

∆(~k, t) =e−(t−t0)/τ [∆(~k, t0)
sin k(t− t0)

k(t− t0)
+

4

k

χ

s

T (~k, t0)

T̄
{k2 − iklU̇l(~k, t0)}{cos k(t− t0)

k(t− t0)
− sin k(t− t0)

k2(t− t0)2
}

+
40

3

η

s

Θ(~k, t0)

T̄
{sin k(t− t0)

k(t− t0)
+

3 cos k(t− t0)

k2(t− t0)2
− 3 sin k(t− t0)

k3(t− t0)3
}].

(18)

Eq. 18 provides the connection of the fluctuation in energy density in k- space with various transport

coefficients e.g. thermal conductivity (χ) and viscosity (η).

The spatial distribution of δε/ε for various t is depicted in Fig. 1. We observe that the maxima

of the perturbation shifts from the origin (|x| = 0) to higher x with the progress of time. However,

for expanding background, we have seen that the dissipation of fluctuation gets slower. Spatially

anisotropic fluctuation breaks as it travels in an expanding QGP background. In the final state the

broken parts will be connected through angular correlation. We have investigated angular correlation

of pressure fluctuation for such non-equilibrium deviations. The interaction of the perturbation (δf)

7



Figure 1: Evolution of the fluctuation in energy density with r coordinate at different t for a non-
expanding QGP background.

with the background is incorporated through the relaxation time which is a function of temperature

and hence depends on space-time coordinates for an expanding background. Therefore, it is expected

that various modes of the perturbations in the Fourier space will get mixed during its propagation

over the expanding background as clearly visible in Fig. 2. The peak of the fluctuation in number

density (δn/n) has reduced significantly due the exponential factor determined by the relaxation

time.

The dissipation of the perturbation gets slower with the expansion of the system. The effects of

perturbation has better chance of survivability along the smaller dimension of the system because the

expansion is faster along that direction due to larger pressure gradient. It implies that for systems

with same energy density the perturbations has larger chance to survive in smaller system. Then it

is expected that the presence of perturbations will be dominant in relatively smaller size systems.

Fig 3 shows evolution of elliptic (n = 2 in Eq. 17) perturbation on the expanding QGP background,

when the perturbation is given at a distance 3 fm from the origin along the x−axis. It is interesting

to note that the perturbation which is moving away from the centre dissipates less compared to the

one moving toward the centre. Therefore, the possibility of detection of perturbation is more if it is

created near the boundary of the system.

3 Power spectrum of fluctuation

Analyzing fluctuations in Fourier modes reveal evolution of different scale, these modes are char-

acterized by their contributions in terms of corresponding coefficients of expansion. Effect of these

fluctuations are expected to be reflected in the momentum anisotropy of produced particles from

8



(a)

Figure 2: (Left). The fluctuations in k− space at time τ = 0.6 fm/c. Right panel shows the results
after a time 4 fm/c has elapsed. The mixing of k-modes is clearly visible.

(a)

Figure 3: Evolution of the spatial anisotropy of the perturbation with initial elliptic geometry at
time τ0 = 0.6 fm/c (upper panel), given at a distance of 3 fm away from the origin along x-axis. The
middle (right) panel shows the results after a time 2 fm/c (4 fm/c) has elapsed.

constant temperature surfaces.

In RHIC-E in parallel to CMBR, we have estimate the power spectrum of the invariant momentum

distribution of particles at constant T surfaces. The invariant momentum distribution is given by:

i) without perturbation as:

E
dN0

d3p
=

gi
(2π)3

∫

Σ

dσµp
µf0(x, p)

and ii) with perturbation

E
dN

d3p
=

gi
(2π)3

∫

Σ

dσµp
µ[f0 + δf(x, p)] (19)

where, dσµ is the constant temperature hypersurface. Then, power spectrum can be calculated by

expanding it in terms of spherical harmonics, as follows. The power spectrum of EdN/d3p can be

estimated as follows:

E
dN

d3p
= N̄ +

∞∑

l=1

l∑

m=−l
alm(pT , T )Ylm(θ, φ) (20)

where

N̄ =
1

4π

∫
dΩ

dN

d2pTdy
(21)
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the coefficients, alm’s are determined as follows:

alm(pT , T ) =

∫
dΩY ∗lmE

dN

d3p
(22)

For determining power spectrum without perturbation we replace EdN/d3p by EdN0/d
3p in Eq. 22.

Using standard techniques and properties of spherical harmonics, the angular power spectrum

(Cl) of EdN/d3p can be expressed as:

Cl(pT , T ) =
1

2l + 1

∑

m

|alm|2 (23)

indicating the distribution of power of fluctuations among different angular scales determined by l.

Results on the power spectrum of the invariant momentum distribution of the par-

ticles:

In Fig. 4(a):Left) we have shown the spatial variation of perturbation, δf at initial time. The

subsequent evolution of δf is governed by Boltzmann equation in relaxation time (τR(x)) approxi-

mation. τR is a function of T (x). The space-time variation of temperature is governed by relativistic

hydrodynamics. Therefore, the evolution of perturbation is coupled to the expanding background

through the temperature dependence of relaxation time.

The power spectrum (Cl) of the perturbation is depicted at temperatures 350 MeV and 170 MeV

for pT = 0.6 GeV. By performing power spectrum analysis of the momentum anisotropy we observe

that the Cl for odd l is negligibly small initially (T = 350 MeV)as expected for a perturbation with

symmetry under the change θ ↔ −θ 4 implemented through Eq. 17 for n = 2. However, as the

system cools with the progression of time the Cl for odd l appears but remains smaller than its value

at even l.

Next we study the variation of Cl with temperature for different l. We observe that variation

of Cl with T is similar with and without perturbation at pT = 0.6 GeV, because the background

dominates the evolution at this soft value of momentum. However, the behaviour is very different at

pT = 3.0 GeV, because the perturbation dominates the evolutions at such high value of pT .

The Cl’s (for even l) is plotted in Fig. 4 as a function of T . We observe that for low pT the

variation of Cl with T , with and wthout perturbation, is qualitatively and quantitatively similar for

pT = 0.6 GeV because the perturbation is small. However, the variation is very different with and

without perturbation for higher pT = 3.0 GeV. This feature may help in tracing the non-equilibrium

10



effects in the expanding QGP medium which is produced in the relativistic heavy ion collissions.

4 Estimating bulk viscosity of quark gluon plasma from

pressure fluctuations

It is well known that the response of the system to the external perturbation that takes the sys-

tem away from equilibrium can be quantified through transport co-efficients appropriately. Green

Kubo relation expresses this fact, in the domain of linear response. Using correlation of time depen-

dent pressure fluctuation estimated from δf(x, p, t). Using Kubo relation we have estimated bulk

viscosity(ζ) of QGP, with pressure fluctuation, δP obtained from δf , as [21]

ζ =
V

T

∫ ∞

0

dt〈δP (t)δP (0)〉.

Using quasi particle mass [22] for quarks and gluons we obtained bulk viscosity, where evolution

of such pressure fluctuation is obtained from solution δf(x, p, t). The temperature variation of ζ/s,

where s is the entropy density, is shown the Fig 5. We find that the bulk viscosity of the system is

large at low T and it reduces as T increases. It is well known that conformal symmetry breaking

which is broken at low T and restored at high T . The variation of ζ/s indicates the restoration of

conformal symmetry at high T .

Bulk viscosity of hot and dense hadrons The bulk viscosity of hadronic system has also

been estimated by using the fluctuation of thermodynamic pressure. The hadronic resonance gas

model along with the Hagedorn density of states have been used to estimate ζ. The expression has

for ζ/s has been derived as [23]:

ζ

s
= −

(
∂P

∂n

)

ε

(
∂n

∂s

)
τchem.

where, τchem is the chemical equilibrium time which embodies the microscopic dynamics and for all

other variables standard notation has been used. The variation of bulk viscosity to entropy ratio

with temperature is shown in Fig 6 [23]. Again we observe that ζ/s is small at high T .
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Figure 4: a) Left: The initial perturbation imparted to the expanding QGP. Middle: The power
spectrum of the perturbation at T = 350 MeV with this perturbation. Right: The power spectrum
of the perturbation at T = 170 MeV. The red (blue) line shows results for MCG (OG) initial
conditions for pT = 0.6 GeV/c . b)The temperature variation of power spectrum with MCG initial
condition for different l values. Left panel: without perturbation at pT = 0.6 GeV, Right panel:
with perturbation at the same pT . c)The temperature variation of power spectrum with MCG initial
condition for different l values. Left panel: without perturbation at pT = 3.0 GeV, Right panel: with
perturbation at the same pT .

Figure 5: The variation of bulk viscosity to entropy ratio (ζ/s) as a function of temperature.
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Figure 6: The variation of bulk viscosity to entropy ratio (ζ/s) as a function of temperature. The
ratio is normalized at by its value at T = 150 MeV.

5 Summary

The evolution of perturbation in relativistic fluid introduced through the phase space distribution

function has been studied using Boltzmann transport equation in relaxation time approximation.

The perturbation evolves in an expanding background governed by (3+1) dimensional relativistic

hydrodynamics. The temperature in turn depends on space-time coordinates of the background.

The relaxation time appearing in the solution of the Boltzmann equation is a temperature dependent

quantity and this couples the background with the perturbation.

We have derived a relation between the fluctuations in energy density with the transport coeffi-

cients, like shear viscosity and thermal conductivity. We have also analyzed and demonstrated how

the various Fourier modes of the perturbations get mixed in an expanding background. It is shown

that if a perturbation is created near the boundary of the system then it has a better chance of

getting detected.

The evolution of the power spectrum of the invariant momentum distribution of particles has

been estimated for Optical Glauber as well as Monte-Carlo Glauber initial conditions. The power

spectrum of the momentum distribution of the particles due perturbations imparted through the

phase space distribution have been evaluated at different surfaces of fixed temperatures. We have

studied the variation of Cl with T and found that at high pT the variation of Cl clearly traces the

presence of perturbation.

The solution of the Boltzmann equation obtained here can be used to estimate various other

physical quantities. For example, we have used this solution to estimate the fluctuation in pressure

and subsequently the bulk viscosity of the QGP with the help of Kubo relation. We find that the

bulk viscosity is quite high near the transition temperature (∼ 200 MeV).

The bulk viscosity of hadronic system has been calculated by using HRG model and the Hagedorn

density of states. The fluctuation in thermodynamic pressure has been used to determine the ζ of

13



QGP. The ζ/s has been estimated by using HRG model and Hagedorn density of states. The bulk

viscosity of hadronic system is found to decrease with temperature. The result obtained here has

been compared with other similar results available in the literature.
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CHAPTER 1

Introduction

The heart of matter, the nucleus of atoms are made up of neutron and protons.

However, neutrons and protons are not fundamental particles, they are composed of

quarks [1–3]. The dynamics of quarks are governed by Quantum Chromodynamics

(QCD), which is a non-abelian SU(3) gauge theory [4–6]. The interaction between

quarks are mediated by gluons. Quarks carry fractional electric charge as well as a

new quantum number called color charge. There are six quarks named as up, down,

charm, strange, beauty and top- called quark flavors. Each quark flavor carries three

color charges called red, blue and green. The SU(3) gauge theory admits eight colors

for gluons.

The three quark bound state (like proton and neutron) are called baryons and quark-

anti-quark bound states are called mesons. Mesons and baryons are combinedly

called hadrons. The QCD is firmly established as theory of strong interaction. Two

of the very important properties of QCD are:

(i) Asymptotic freedom which means that at very high energy the color coupling

becomes weak i.e., at very high energy or at short distance the strength of interaction

between quarks are small. The coupling strength, αs = g2/(4π) varies with square

of the momentum transfer(Q2) as:
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αs(Q
2) =

12π

(33− 2Nf )
ln

Q2

Λ2
QCD

,

where Nf is the number of flavor.

(ii) Quark confinement or infrared slavery -the quarks are permanently confined

within hadrons. At the low momentum, corresponding to the characteristic scale

of bound quarks in hadrons, the coupling strength becomes very large i.e. at the

characteristic length scale of dimension of hadrons the interaction strength is very

high and hence the quarks remain bound within the hadronic size.

The question one may ask is: whether one can create a situation where quarks are

not bound within the hadronic size. According to the big bang model of cosmology

such a situation prevailed when the universe was a few microsecond old.

Just after the discovery of the asymptotic freedom in non-abelian gauge theory

[7–10] Collins and Perry [11] showed that at very high density the properties of

nuclear matter is governed by its fundamental degrees of freedom i.e., by quarks

and gluons and not by hadrons. Subsequently calculations based on lattice QCD

(Fig. 1.1) showed that at high temperature (∼ 170MeV) hadronic matter goes a

phase transition from hadrons to quarks and gluons [12, 13]. At high temperature

and density the nuclear matter will melt down to quarks and gluons, that is to say

that at high temperature and/or density the quarks will not be confined within the

hadronic size but move in a larger volume [14]. Therefore, the question is whether in

the laboratory we can create a thermalized state of quarks and gluons called Quark

Gluon Plasma(QGP) that prevailed in the microsecond old universe.

It is expected that QGP may be produced by colliding nuclei at relativistic energies

i.e., at energies of Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider

(LHC).

The main aim of heavy ion programs at RHIC and LHC is to create quark gluon
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Figure 1.1: Energy density as a function of temperature scaled by the critical tem-
perature Tc taken from Ref. [12].

plasma, a state of matter that might have existed in the micro-second old universe.

One of the compulsion to study the QCD phase transition is to understand the

non-abelian gauge theory in medium and to understand the dynamics of similar

transition in the early universe. This is especially important because the universe

has undergone several other transitions e.g. Electroweak, GUT, etc, but among

these the QCD transition is the only one which is accessible through the presently

available accelerator energy. The QGP may have existed in the micro-second old

universe [15] and may exist in the core of neutron star [16], implying that the study

of QGP is crucial in understanding the early universe and compact astrophysical

objects like neutron stars also.

In colliding experiments two relativistically contracted heavy ions are made to col-

lide (Fig. 1.2) to produce a hot and dense system of quark gluon plasma which

subsequently revert to hadrons. The hot and dense system produced in these colli-

sions will have very small life time ∼ 10fm/c and volume ∼ O(100fm3) (which can

be estimated from HBT interferometry [17]). As a consequence it is not possible to

use direct probe to characterize the system produced in such collisions. Therefore,

particles (hadrons, leptons, photons) produced in the collision through various in-

teractions are detected at various kinematic regions [18] to predict the properties of

3
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Figure 1.2: Illustration a typical non-central heavy-ion collision in which the eccen-
tric shape of initial collision geometry is translated into the elliptic flow anisotropy in
the final state momentum space, taken from Ref. [19]

the system.

Some of the well-known signals proposed as the signature of QGP formation in the

nuclear collisions at high energies are: J/ψ suppression [20–23], thermal photon

and leptons [24–27], thermal distribution of hadrons [28], jet quenching [29–32], az-

imuthal anisotropy [33–49] strangeness enhancement [50–54], fluctuation in charged

particle ratio [55, 56], heavy quark anisotropic co-efficient [57], etc.

1.1 Collision of heavy ions at relativistic energies:

The over all picture (Fig. 1.3) of the collision emerge as follows [57,58]:

Two Lorentz contracted nuclei moving with high energy collide to create a system

of quarks and gluons- generated from the nucleons of the colliding nuclei. A part of

the kinetic energy of the partons (quarks and gluons) of the colliding nucleons get

converted to thermal energy through random collisions- creating a thermal system

of quarks and gluons [60]. This hot system of quarks and gluons or QGP expands

against vacuum due to high internal pressure. The expansion of this system is de-

scribed by relativistic hydrodynamics. This is demonstrated in Fig 1.4. The two

4
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Figure 1.3: Illustration of different dynamical evolution stages in a typical heavy-ion
collision. taken from Ref. [19]

Figure 1.4: The space-time evolution of heavy-ion collision. The figure is taken from
Ref. [59]

5



CHAPTER 1. INTRODUCTION

nuclei collide at the origin and subsequently the thermalized system is formed at a

proper time τ = τ0 (where τ =
√
t2 − z2)1. The system expands and consequently

cooled down to a temperature T = Tc, where Tc is the transition temperature for

QGP to hadronic phase. That is at T = Tc the system reverts to hadronic sys-

tem. The resulting hadronic matter keeps on expanding and cools as long as they

can maintain equilibrium through interaction. The hadrons maintain chemical and

kinetic equilibrium through inelastic and elastic interaction among them. The evo-

lution point at which the in-elastic interaction ceases the number of hadronic species

get fixed is called chemical freeze-out [61]. Once the mean free path of the hadrons

becomes comparable to the dimensions of the system or their inelastic as well as

elastic scattering rate becomes less than their expansion rate, the handrons decou-

ple and hit the detector with the momentum that it had after the last scattering.

The temperature of the system at which the freeze-out occurs is called the freeze-out

temperature (Tf ).

1.2 Fluctuations and perturbations in QGP

The initial energy density used as input to the hydrodynamical equations governs the

nature of the solution of hydrodynamic equations. For example a fluctuating initial

energy density will subsequently give rise to fluctuation in hydrodynamic quantities

like, number density, pressure, energy density, etc. However, with the propagation

of time the fluctuations may dissipate. Measurement of some observable like elliptic

flow, triangular flow, etc of hadrons or of some penetrating probes(like photons and

dileptons) may help in understanding such fluctuations. In the present work the

power spectrum with initial state fluctuation has been estimated and compared with

the power spectrum originating from a smooth initial condition. The fluctuating

1One makes a coordinate transformation from (t,z) to (τ ,η),where τ =
√
t2 − z2 and η =

1
2 ln

t+z
t−z . τ is called proper time and η is called space-time rapidity.
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initial energy density has been calculated using Monte-Carlo Glauber model and

the smooth one has been calculated using Optical Glauber model.

In RHIC-E perturbation in the hydrodynamic medium may be caused by external

agencies like propagation of energetic jets through medium. How will this per-

turbation evolve in an expanding background controlled by hydrodynamics with

fluctuating and smooth initial conditions [62,63]. Such theoretical studies have also

been performed in the present dissertation.

The deviation of the system from equilibrium may be treated as response of the

system to external perturbation, or the external perturbation shifts the system away

from equilibrium. Such shift may be accounted for through the shift (δf) in the

equilibrium phase space distribution (f0). The evolution of δf can be studied by

solving Boltzmann transport equation in an expanding background, which has been

done here. The power spectrum due to external perturbation has been calculated

with fluctuating as well as smooth hydrodynamic background.

It has been shown theoretically that the variation of the power spectrum with tem-

perature in an appropriate momentum window can be used to trace the presence

of non-equilibrium process in the system. Fluctuation in pressure has been used to

estimate the bulk viscosity of QGP. For comparison, the bulk viscosity of hadronic

system has also been estimated using hadronic resonance gas model including Hage-

dorn density of state.

1.3 Organization of thesis

In the next chapter, basics of hydrodynamics and kinetic theory are briefly dis-

cussed. In chapter 3 kinetic evolution of perturbations both for static and rela-

tivistic hydrodynamically expanding background is presented. Results for kinetic

evolution of anisotropic perturbation with different geometric shape are presented
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in chapter 4. In chapter 5 we discuss the evolution of power spectrum of momentum

anisotropy of particles in the QGP phase due to non-equilibrium perturbations and

initial state inhomogeneity. We present, in chapter 6, an estimation of contribution

of phase space to the bulk viscosity of hadron resonance gas using fluctuation in

number density and also estimation of bulk viscosity of QGP phase using correla-

tion of pressure fluctuation, which is calculated using kinetic evolution, discussed in

chapter 3. We dedicate chapter 7 for summary and outlook. In the appendix we

keep some calculations related to previous chapters. We present details derivation

of correlation of fluctuation (appendix A), parameterization of equation of state,

connection between power spectrum and various flow harmonics (appendix B) and

various thermodynamic relations (appendix C) used in estimating the bulk viscosity

of hadronic matter in the appendices.
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CHAPTER 2

Theoretical Tool for Studying Fluids

2.1 Hydrodynamics: Basics

The collective behavior of the QGP produced in RHIC-E can be studied by using

relativistic hydrodynamics. In hydrodynamic description [64,65], fluid is modeled as

collection of fluid cells in spatial dimensions [66]. The fluid is characterized by fields

of quantities related to fluid cells (fluid particles). These fields are defined over such

space time points that a fluid cell is considered to be a point in this hydrodynamic

description. The field variables are local thermodynamic quantities and velocities

of the fluid cells.

These cells are defined in a manner that they contain many constituent particles.

The size of the cell is much larger than the mean free path of the particles, which

are the degree of freedom of the fluid. But the size of the cell is smaller than the

size of the system. The fields that characterizes the cells, are four velocity(uµ(x))

energy density (ε(x)) and conserved charge densities, where x = (t, ~x).

9
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2.1.1 Evolution of fluid:

In this description, fluid is characterized by hydrodynamic fields. Therefore, the

space time evolution of the fluid, is expressed in terms of evolution of these hydro-

dynamic fields.

The evolution equations for fields are obtained from conservation equations of quan-

tities that remain conserved during such evolution. To do that conserved quantities

are expressed in terms of such fields. If there are extra conditions (e.g., second law

of thermodynamics) to be fulfilled during evolution, the corresponding expressions

are devised suitably to comply with that.

Here, one gets evolution equations for velocity, temperature, chemical potential (or

any thermodynamic quantity) fields, namely, from conservation of energy momen-

tum (symmetric) tensor(T µν(x)) and current of conserved charges(JµQ(x)). For that

these conserved currents(T µν(x) and JµQ(x)) are expressed in terms of quantities

(fields) of these fluid cells. While forming the expressions, it is done in such a way

that the conservation equations become consistent with laws of thermodynamics

and thermodynamic conditions on the system. In this regard, covariant form of

thermodynamic laws are used, where fluid cell velocity are explicitly included, and

four currents corresponding to thermodynamic quantities are introduced.

The hydrodynamic evolution equation is described by the conservation of energy

momentum and conserved charges:

∂µT
µν = 0 (2.1)

and

∂µJ
µ
Q = 0, (2.2)

10
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where,

T µν(x) = ε(x)uµ(x)uν(x) + P (x)∆µν(x) (2.3)

is the energy momentum tensor for ideal (non-dissipative) fluids; where ∆µν =

gµν +uνuµ is the projection transverse to fluid four velocity uµ, with uµu
µ = −1 and

gµν = diag(−1, 1, 1, 1), ε(x) and P (x) are respectively energy density and pressure

measured in rest frame of the fluid.

The current corresponding to the conserved quantity Q( e.g. net baryon number,

net electric charge, strange number etc.) for a relativistic system is defined as

JµQ(x) = nQ(x)uµ(x). (2.4)

With these forms along and with thermodynamic [67] relations the isentropic con-

dition is reproduced as conservation of entropy current, ∂µ(s(x)uµ) = 0, where s(x)

is the entropy density of the fluid cell.

For a dissipative system energy momentum tensor is given by [68]

T µν(x) = E(x)uµ(x)uν(x)+P(x)∆µν(x)+(qµuν+qνuµ)+Σµν = T µνideal(x)+∆T µν(x),

(2.5)

where ∆T µν represents the dissipative part, and the conserved current is given by

Jµ = NQuµ + jµ, (2.6)

where qµ, Σµν and jµ are transverse to uµ, and E(x) = ε(x) + δε(x), P(x) = P (x) +

δP (x), NQ = nQ(x) + δnQ(x); ε(x),P (x) and nQ(x) follows equilibrium equation of

state. Detail form of components of this form of energy momentum tensor are chosen

by the condition that conservation equations with them, along with second law of
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thermodynamics produces the the entropy generation condition ∂µ(s(x)uµ(x)) ≥

0 [65]. Problem of causality and instability in the solutions of conservation equations

are two things that are also kept into consideration while getting form of qµ and

Σµν . If they are expressed in terms of first order gradients of these fields times

dissipative coefficient, then within the ambit of linear response theory, correlations

of them gives dissipative quantities.

In the present work we consider the expanding background as an ideal fluid of QGP.

The equation of state(EoS) required to solve hydrodynamic equations for QGP and

late hadrons are mentioned latter. The initial condition used in the current work

too to be mentioned later.

2.1.2 Hydrodynamic evolution of perturbations

Evolution of hydrodynamic perturbation can be studied in this framework. For

that perturbations should be chosen as deviation from the average local equilibrium

value. Then propagation of such hydrodynamic perturbations can be studied within

the ambit of hydrodynamics, whether it is noise or single perturbation at a point.

Due to inherent defining property of hydrodynamics, this will address only slower

or longer modes of fluctuations and perturbations present in the medium.

To study scales of shorter modes within hydrodynamic framework one use higher

order hydrodynamics [69]. But there is break down problem of second order viscous

hydrodynamics [70], corresponding limits have been investigated in [71].

Evolution of these perturbation of hydrodynamic scales can be studied using the

conservation equations Eq. 2.1 and Eq. 2.2 where field quantities are to be written

including their perturbations.

.

If there is external source that drives the evolution then that comes in the equations
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as ∂µT
µν = Sν and ∂µJ

µ
Q = sQ, where Sν is source for supplying energy momentum

to the medium cells, and sQ is source representing extra conserved charge put in the

medium during its evolution.

Thermal noise type source can also create fluctuations in the system. In case of

studying evolution of hydrodynamic fluctuations one can choose Sµ to represent

hydrodynamic noise having form Sµ = ∂ν∆T
µν
noise [62]. The source of such pertur-

bation, for QGP medium created in RHIC-E, can also be due to energy momentum

deposited in the medium by propagating heavy quarks and jets. Corresponding

equations involves evolution of background and evolution of perturbations.

2.1.3 Closer condition for hydrodynamic solution and prop-

agation of sound:

In general, for solutions of the conservation equations Eqs. 2.1 and 2.2 extra condi-

tions relating components of conserved currents are required to close the equations.

For fluids one of such condition is equation of state which represents relation between

different thermodynamic quantities.

Usually for the evolution of QGP one supplies equation state from lattice QCD cal-

culations. Propagation of fluctuations is coupled to the hydrodynamic background

through relaxation time. Propagation of perturbation encodes the dissipative prop-

erties of the medium as well as speed of sound. Correlations of these fluctuations

give information of the transport coefficient [62].

2.2 Kinetic theory: Basics

Kinetic theory describes the system in terms of single particle distribution function,

f(x, p). Number of particles in the volume d3xd3p centered at (x, p) is written as

13
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f(x, p)d3xd3p. In the domain of kinetic theory, evolution of the system is then

described in terms of evolution f(x, p). Under the assumption of molecular chaos

Ludwig Boltzmann derived the famous transport equation that governs the evolution

of f(t, ~x, ~p), which reads

pµ∂µf = C[f ],

where C[f ] is the collision term containing the collision of particles.

Under assumption of two particle local interaction C[f ] can be written as,

C[f ] =
1

2

∫
d3~k

k0

∫
d3~k′

k′0

∫
d3~p′

p′0
Wpk→p′k′{fp′fk′(1±fp)(1±fk)−fpfk(1±fp′)(1±fk′)}.

where, with four momentum notation p ≡ (p0, ~p), Wpk→p′k′ is the collisional tran-

sition rate, that involves information of interaction among the particles. The first

term within the curly bracket gives the rate for p′k′ → pk increases the number of

particles of momentum p in d3x, where as the second term gives the same for reduc-

tion rate of number of particles of momentum p in d3x. Factors like (1± fp)(1± fk)

accounts for effect of quantum statistics for availability of phase space for the out

going particles. The plus sign in these factor indicates Bose enhancement and minus

stands for Pauli blocking.

Collision term of this form, makes the evolution equation an integro-differential

equation. It is impossible to find the general analytic solution of this equation.

However numerical methods can help in this regard [72, 73]. For specific situation,

like if the system is slightly away from equilibrium, approximate methods can be

used to solve this equation. In such situation linearization of C[f ] in terms of

the deviation becomes valid. Then, relaxation time approximation can be use to
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linearize the collision term. In this approximation C[f ] reads:

C[f ] = −pµuµ
δf

τR

where δf = f − f0, f0 is equilibrium distribution function and τR is relaxation time.

To solve the equation one needs initial condition and relaxation time as input. The

relaxation time represents the interaction dynamics.

Once, f(x, p) is known all local thermodynamic quantities can be evaluated. Number

density, n(x) of the particle can be expressed as:

n(x) =

∫
d3pf(x, p).

In a similar manner particle current density in the volume element can be written

as

~j(x) =

∫
d3p

~p

p0

f(x, p),

where ~p/p0 = ~vp is velocity of on shell particles of momentum ~p. Then the particle

four current at the space time point, Nµ(x) ≡ (n(x),~j), can be written as:

Nµ(x) =

∫
d3p

p0

pµf(x, p).

Entropy density s(x) of the system can be written as

s(x) = −
∫
d3pf(x, p){lnf(x, p)− 1}

and entropy three current density

~S = −
∫
d3p~vpf(x, p){lnf(x, p)− 1}.
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For, particles flowing Fermi-Dirac(FD) and Bose-Einstein(BE) statistics, the entropy

four current takes the form,

Sµ = −
∫
d3p

p0

pµf(x, p){lnf(x, p) + af̃(x, p)lnf̃(x, p)},

where, f̃(x, p) = 1− af(x, p), a = 1 for Fermions and a = −1 for Bosons.

The equilibrium distribution is achieved when entropy is maximum. Equilibrium

form of distribution can also be obtained by requiring integrand of C[f ] to be zero,

which represents the fact that there is no net gain in respective phase space cell due

to collision [72].

The energy momentum tensor per unit volume can be defined in compact form as:

T µν =

∫
d3p

p0
pµpνf(x, p),

where

feq(x, p) =
1

eβxpµuµ−α(x) + a
,

where, a = 0, gives MB distribution, a = 1 for FD and b = −1 for BE distributions.

Where β(x) and α(x) are inverse of temperature field and chemical potential field

respectively.

To get the energy momentum tensor where dissipation is present due to gradients

of the fields, the distribution function is expressed as a sum of equilibrium and a

additional term(δf(x, p)) which takes into account gradients of hydrodynamic fields.

To get δT µν for hydrodynamic fields, δf is expressed in gradients of hydrodynamic

fields, and equation of motion for quantities forming δT µν can be obtained from

Boltzmann equation. However, this δf can be assigned to take account of any type
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of source of deviation form equilibrium. The additional part of distribution function

(δf), when expressed in the basis of these independent gradients, represents the non-

equilibrium process in a fluid cell which originates from gradients of the fields (like

velocity of the cell w.r.t the lab frame and temperature) of equilibrium distribution

of the cell. The form of the δf in terms the gradients of hydrodynamic fields can be

constructed using the Boltzmann equation. For that the fields should correspond

to the parameter fields of equilibrium part of the distribution function, where the

equilibrium part alone is assigned to give the thermodynamic quantities.

Kinetic theory is used to study the system created in RHIC-E, to understand the

approach towards equilibrium i.e. how the system of partons released from individual

nucleons due to collision of heavy ions at relativistic energies lead to the formation

of QGP [74–80]. Kinetic theory is also used to simulate the evolution of jet partons

through the QGP medium.
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CHAPTER 3

Kinetic Evolution of Perturbations

This chapter contains part of paper [81]. The microscopic evolution of perturbations,

which is examined within the ambit of Boltzmann Transport Equation (BTE) in a

static as well as a hydrodynamically expanding background, has been presented in

this chapter.

3.1 Introduction

The fluctuations of physical quantities from their average values can be used to

understand several properties of the system i.e. the transport coefficients of the

medium, the approach toward equilibrium, etc. The study of temperature (T ) fluc-

tuation in the cosmic microwave background radiation (CMBR) has provided crucial

information about the universe when it was about 300,000 years old. This infor-

mation has led to tremendous support to the Big Bang model of cosmology. The

polarization of the photons resulting from the Thomson scattering at the decoupling

surface infected by density fluctuation gets reflected in the quadrupole moment of

the phase space distribution of the incident photon. The fluctuation of T in the

CMBR is introduced as a perturbation in the phase space distribution of photons.

The evolution of this perturbation is studied by using Boltzmann transport equation
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(BTE) [82] in gravitational field. The linear polarization resulted from the Thomson

scattering is connected with the quadrupole moment of the photon’s phase space

distribution.

The fluctuations in the position of nucleons (with finite size) in the colliding nuclei

lead to lumpiness in the spatial distribution of initial energy density of the system

formed in Relativistic Heavy Ion Collisions Experiments (RHIC-E). The fluctuation

in energy density may also originate due to the energy deposition by the propagation

of energetic partons produced in the early stage of the evolution. These fluctuations

may lead to observable effects similar to temperature fluctuation in CMBR. We have

adopted an approach similar to the one followed to study the fluctuation in CMBR.

We study the evolution of perturbations by introducing a deviation, δf(x, p, t) in

the equilibrium distribution function, f0(p). The bulk in equilibrium evolves via

relativistic hydrodynamics and the evolution of the fluctuations, δf over the equili-

brated expanding background is treated within the ambit of BTE [72]. In contrast

to this the propagation of perturbation has been studied using hydrodynamics in

Refs. [62, 83–86]. δf may be used to estimate the fluctuations in various ther-

modynamic quantities as we will see below. In the present work the equilibrated

background is assumed to be quark gluon plasma (QGP) expected to be produced

in RHIC-E.

The fluctuations in the thermodynamic quantities (e.g., hot spots created in the

initial state of the collisions [87]) can be related to perturbations in the phase space

distributions in the hydrodynamic limit. Fluctuations in thermodynamic quantities

have been proposed as signals of the critical end point in the QCD phase tran-

sition [88, 89]. Dissimilar fluctuations in partonic and hadronic phases in the net

electric charge and baryon number may shed light on the QCD phase transition in

RHIC-E [90]. Event by event fluctuations in the ratio of positively to negatively

charged pions may be used as an indicator of QCD transition [91] as well as for

understanding the chemical equilibrium in the system formed in RHIC-E [92]. Evo-
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lution of these fluctuations near the critical end point has been studied by using

BTE [93]. Kinetic theory approach has also been adopted to study fluctuations in

particle and energy densities [94]. In Ref. [95] it has been argued that the perturba-

tions in hot QGP travel longer distance to reach the border of the medium giving

rise to the possibility of detectable signatures of these perturbations.

The study of the fluctuations in the space time structure of the fireball driven by

the fluctuations in the position of the nucleons in the colliding nuclei is an impor-

tant contemporary issue in RHIC-E. Fluctuations in the space-time structure of the

system will infect fluctuations in the thermodynamic quantities. How will these

fluctuations evolve with time in a hydrodynamically expanding system and how are

they connected with the transport coefficients for matter formed in RHIC-E are

addressed in this work.

In Ref. [96] role of non-equilibrium processes on the evolution of QGP was stud-

ied within the framework of Parton-Hadron String Dynamics (PHSD) transport

approach. It was found that the event-by-event fluctuations on collective variables

estimated by the microscopic PHSD model is large due to non-equilibrium processes.

However, the ensemble averaged results from these events is close to the results ob-

tained in (2+1)-dimensional viscous hydrodynamics. In this context the study of

the evolution of perturbations in the microscopic approach is crucial. Therefore, the

present study of the perturbations in a hydrodynamically expanding background

within the ambit of kinetic theory is appropriate. This is not only expected to

achieve better microscopic understanding of the physics but also avoid question of

breaking down of hydrodynamic description of fluctuation [70].

The mode by-mode analysis of the perturbation in the expanding background is

discussed bellow. In the next section we discuss the evolution of fluctuations in

a non-expanding background and present a relation between energy fluctuation in

Fourier space and viscous coefficient. Section 3.3 is devoted to discuss the progres-
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sion of fluctuations in a hydrodynamically expanding QGP background. Results

based on this formalism are presented in Ch. 4 and section 6.2 of Ch. 6 is dedicated

to summary and discussions.

3.2 Evolution of fluctuations in a non-expanding

background

In the following we discuss the connection of δf , a small deviation of phase space dis-

tribution from its equilibrium value with the fluctuations in various thermodynamic

variables and its time evolution in a non-expanding background within the frame-

work of BTE (results with expansion will be discussed in section 3.3). The phase

space distribution function, f(~x, ~p, t) of a system slightly away from equilibrium, at

time t, position ~x, momentum ~p can be written as [98],

f(~x, ~p, t) = f0(p){1 + Ψ(~x, ~p, t)} = f0(p) + f0Ψ(~x, ~p, t) (3.1)

where f0(p) is the phase space distribution function in equilibrium and Ψ(~x, ~p, t) is

the fractional deviation from f0(p). Ψ(~x, ~p, t) can be used to estimate the fluctuations

in various thermodynamic quantities in the system. The evolution of Ψ is governed

by BTE, which in turn provides the relation between the dissipative effects and

fluctuations in the hydrodynamic limit.

3.2.1 Fluctuations of various hydrodynamic quantities in

Fourier space

A given fluctuations in spatial coordinate can be expressed in terms of various k-

modes in Fourier space. These k-modes or wave number modes can be connected to

the wave length (λ = 2π/k) modes, which in turn is related to the angular size (ϑ) of
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the fluctuations through the relation: ϑ = λ/d [99], where d is the angular diameter

as is usually done in analyzing temperature fluctuations in the universe. Fourier

analysis is also important to understand what are the k-modes of the fluctuations

that dissipate during the evolution of the system. For example it is important to

determine the viscous horizon in heavy ion collisions [83]. The energy momentum

tensor, T µν of the system under study can be written as: T µν = T
µν

+ ∆T µν , where

the equilibrium (ideal) part, T
µν

is determined by f 0(p) and the dissipative part,

∆T µν is determined by Ψ, i.e.

T µν =

∫
d3p

pµpν

p0
f(~x, ~p, t) (3.2)

where f(~x, ~p, t) is given by Eq. 3.1. The T
µν

of the system in equilibrium can be

obtained from Eq. 3.2 by setting Ψ = 0. The metric, gµν , in Minkowski space-time

is taken as gµν = (−1, 1, 1, 1). We assume that the momentum, ~p can be written as

pi = pni, i.e. ~p = |~p|n̂ where n̂ is a unit vector and d3p = p2dp dΩ, dΩ being solid

angle associated with ni which satisfies
∫
dΩninj = 4πδij/3 and

∫
dΩninjnk = 0. It

is straightforward to obtain various components of T µν from Eq. 3.2. The deviation

of the components of the stress energy tensor, ∆T µν from their ideal values can be

expressed in terms of the perturbation, Ψ as follows:

∆T 0
0 = −

∫
p2dp dΩ ε f0(p)Ψ(~x, ~p, t),

∆T 0
i =

∫
p2dp dΩ pnif0(p)Ψ(~x, ~p, t),

∆T ij =

∫
p2dp dΩ

p2

ε
ninj f0(p)Ψ(~x, ~p, t)

(3.3)

where ε = p0 = −p0 =
√
p2 +m2 and m is the mass of the particle. It is to be noted

that the integral,
∫
d3p pnif0(p) = 0, since in equilibrium the system is isotropic

i.e. all directions are equally probable in its rest frame, the phase space average of

momentum vector then is zero.
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The ideal part of the stress energy tensor in the hydrodynamic limit is given by,

T
µ

ν = (ρ̄+ P̄ )UµUν − P̄ gµν , (3.4)

where Uµ = dxµ/dτ = γ(1, ~v) is the four velocity of the fluid and τ is the proper time.

The relations among various components of T
µν

and the thermodynamic variables

are: T
0

0 = −ρ̄, T 0

i = −T̄ i0 = 0, and T
i

j = P̄ δij. Therefore, ρ̄ =
∫
p2dp dΩ εf0(p), is

the average energy density. Other thermodynamic quantities like pressure, number

density etc can be estimated in a similar way. Equilibrium distribution is isotropic,

therefore, integration over dΩ will simply give 4π. If the fluid is slightly away

from equilibrium with space time dependent fluctuations in energy density, pressure,

velocity, etc., then the system will evolve toward equilibrium through dissipative

processes. In such situation the components of the energy momentum tensors can

be explicitly expressed in terms of the thermodynamic variables as:

T 0
0 (xi, t) = −{ρ̄+ δρ(xi, t)},

T 0
i (xi, t) = −T i0 = (ρ̄+ P̄ )vi,

T ij (xi, t) = {P̄ + δP (xi, t)}δij + Σi
j(xi, t),

∆T ii = 0,

(3.5)

where vi is the ith component of the velocity perturbation. One can choose a frame

which is moving with velocity close to the velocity of the fluid, so that the fluid

velocity measured from this frame is small. From Eq. 3.5, we get Σi
j = T ij − δijT kk /3.

By using Eqs. 3.3, 3.4 and 3.5 we get,

δρ(xi, t) = −δT 0
0 (xi, t),

vi(xi, t) =
δT 0

i (xi, t)

(ρ̄+ P̄ )
,

δT ij (xi, t) = δP (xi, t)δ
i
j + Σi

j(xi, t),

(3.6)
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with δP (xi, t) = δT ii (xi, t)/3. The shear stress, Σi
j(xi, t) can be expressed in terms

of shear viscous coefficient, η as Σi
j(xi, t) = −η(∂Ui

∂xj
+

∂Uj
∂xi
− 2

3
δij
∂Ul
∂xl

) and the thermal

conductivity (χ) is defined through the relation, δT 0
j = −χ( ∂T

∂xi
+ T ∂U

∂t
) [67]. The

term ∂U
∂t

is absent in non-relativistic domain.

It is useful to express these quantities, i.e. various components of δT µν in Fourier

or k-space because expansion of these quantities in terms the spherical harmonics

(Ylm) will enable to connect the angular scales set by l in terms of k analogous to

the determination of angular scale in CMBR [82]. In k-space these quantities are

marked by tilde (̃ ) as:

Σ̃l
j(ki, t) = −iη(Ũ lkj + Ũjk

l − 2

3
δljk

rŨr) (3.7)

and

δT̃ 0
i (ki, t) = −χ

[
ikiT̃ (kl, t) + T̃ (kl, t)

∂Ũi
∂t

]
. (3.8)

By using Eqs. 3.3 and 3.6 the fluctuations in k-space can be expressed in terms of

Fourier mode, Ψ as:

δρ̃(ki, t) =

∫
p2dp dΩ ε f0(p)Ψ̃(ki, p, ni, t),

ṽi(kl, t) = − 1

(ρ̄+ P̄ )

∫
p2dp dΩ pnif0(p)Ψ̃,

Σ̃i
j(kl, t) =

∫
p2dp dΩ

p2

ε
(ninj −

1

3
δij)f0(p)Ψ̃,

δP̃ (ki, t) =
1

3

∫
p2dp dΩ

p2

ε
f0(p)Ψ̃

(3.9)

where Ψ̃ is the Fourier transform of Ψ. Now we take the zenith direction along ~k and

then the angular dependence of Ψ̃(ki, p, ni, t) can be expressed in terms of angles

between k̂ and ~n. Depending on the symmetries of the problem under consideration

Ψ̃ can be expanded in a series of suitably chosen basis functions e.g, for axial sym-

metry in terms of Legendre polynomials and in absence of such symmetry it can be

25



CHAPTER 3. KINETIC EVOLUTION

expressed in terms of spherical harmonics [100].

The vector component ni and tensor components (ninj − 1
3
δij), appearing in the

expressions for vi(kl, t) and Σi
j(kl, t) respectively, can be converted into functions of θ

(angle between ~k and ~n), by taking contraction with suitable tensors made out of the

components of k̂. If we contract ni with ki then we get kk̂ · n̂ = k cos θ = kP1(k̂ · ~n)

and by contracting (ninj − 1
3
δij) with (k̂ik̂j − 1

3
δij) we get 2

3
1
2
(3(k̂ · n̂)2 − 1) =

2
3

1
2
(3 cos2 θ − 1) = 2

3
P2(k̂ · n̂), where Pl s are Legendre polynomials. For axial

symmetric distribution of ~p it helps to connect different co-efficient of expansion of

Ψ̃ in terms of Legendre polynomials with corresponding scalar quantities obtained

from vi(kl, t) and Σi
j(kl, t) due to orthogonality relation satisfied by Pl’s. We define

the scalar quantities like ∆, θ and σ as in [101], which, as will be seen later allow us

to get evolution equation for the Fourier modes. The fluctuation in energy density

in Fourier space is given by,

∆(ki, t) =
δρ̃(ki, t)

ρ̄
= −δT̃

0
0 (ki, t)

ρ̄
, (3.10)

Similarly we define energy flux,

θ(ki, t) = ikj ṽj =
ikjδT̃ 0

j (ki, t)

(ρ̄+ P̄ )
, (3.11)

and the shear stress as,

(ρ̄+ P̄ )σ(kl, t) = −(k̂ik̂j −
1

3
δij)Σ̃

i
j(kl, t), (3.12)

The quantity, θ(ki, t) = ikjvj originates from the velocity gradient. θ and σ can be

expressed in terms of the shear viscous coefficient (η) and thermal conductivity (χ)

as follows:
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σ(~k, t) = −4

3

η

ρ̄+ P̄
ikj ṽj(~k, t) (3.13)

and

θ(~k, t) =
χ

ρ̄+ P̄
(k2T̃ (kl, t)− iklT̃ (kl, t) ˙̃vl(kl, t)). (3.14)

The left hand side of both the equation above can be estimated from the solution

BTE. Fourier transformation of these equations in frequency space will lead to dis-

persion relation. This relation can be used to determine those k (wave number)

values which will dissipate due to viscous effects, and this will determine the viscous

horizon.

Now Eqs. 3.9, 3.10, 3.11 and 3.12 can be used to obtain the fluctuations in the

energy density, pressure and velocity in k-space as:

∆(ki, t) =
1

4π

∫
dΩ

∫
p2dp εf0(p)Ψ̃(ki, p, ni, t)∫

p2dp εf0(p)
,

δP̃ (ki, t)

P̄
=

1

4π

∫
dΩ

∫
p2dp (p2/ε)f0(p)Ψ̃(ki, p, ni, t)∫

p2dp (p2/ε)f0(p)
,

θ(ki, t) =
ik

4π

∫
dΩ (k̂.n̂)

∫
p2dp f0(p)Ψ̃(ki, p, ni, t)∫
p2dp (ε+ p2/3ε)f0(p)

,

σ(ki, t) = − 1

4π

∫
dΩ ((k̂.n̂)2 − 1

3
)

∫
p2dp f0(p)Ψ̃(ki, p, ni, t)∫
p2dp (ε+ p2/3ε)f0(p)

.

(3.15)

To understand the angular scale determined by the multipole number l (as used in

the appendix A to find the angular correlations) we expand Ψ̃ in terms of Legendre

polynomials for an axially symmetric distribution as:

Ψ̃(~k, n̂, p, t) =
∞∑

l=0

(−i)l(2l + 1)Ψl(~k, p, t)Pl(k̂.n̂), (3.16)

The l is related to angular resolution of the anisotropies, i.e. smaller angular scale

will require larger l and vice versa. The temperature fluctuations (∆T ) may be
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obtained from Eq. 3.16 by using the relation [101]:

∆T/T̄ = −(∂lnf0/∂lnp)
−1Ψ (3.17)

For simplicity we will consider the massless limit, m = 0 which gives the relation

ε = p. The energy density is a scalar quantity whereas the velocity and the shear

tensor are vector and tensor respectively and these aspects are also bound to reflect

in the corresponding fluctuations. Therefore, the orthogonality of Pl’s ensure that

the fluctuations in scalar, vector and tensor quantities are dictated by the coefficients

Ψ0, Ψ1 and Ψ2 which are obtained by substituting Ψ from Eq. 3.16 in Eq. 3.15 and

performing the angular integration as,

∆(ki, t) = δρ(ki, t)/ρ̄ =

∫
p2dp pf0(p)Ψ0(ki, p, t)/ρ̄,

δP (ki, t)/P̄ =

∫
p2dp pf0(p)Ψ0(ki, p, t)/ρ̄

θ(ki, t) = 3ikjδT 0
j /(4ρ̄) =

3

4
k

∫
p2dp pf0(p)Ψ1(ki, p, t)/ρ̄

σ(kl, t) =
1

2

∫
p2dp pf0(p)Ψ2(ki, p, t)/ρ̄

(3.18)

where ρ̄ =
∫
p2dp pf0(p). The above set of equations can be written in a more

compact form through the expansion of the function F (~k, n̂, t) which is obtained by

integrating δf over the magnitude of momentum, ~p.

F (~k, n̂, t) =

∫
p2dp pf0(p)Ψ(~k, p, ni, t)/ρ̄ (3.19)

therefore, F has the angular dependence of Ψ and consequently F can be expressed

as:

F (~k, n̂, t) =
∞∑

l=0

(−i)l(2l + 1)Fl(~k, t)Pl(k̂.n̂). (3.20)

with

Fl(~k, t) =

∫
p2dp pf0(p)Ψl(~k, p, t)/ε0 (3.21)
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The fluctuations in terms of Fl’s are now given by

∆(~k, t) = F0(~k, t), δP (~k, t)/P̄ = F0(~k, t), θ(~k, t) = 3/4kF1(~k, t), σ(~k, t) = 1/2F2(~k, t).

(3.22)

Using the relation σ(~k, t) = −4ηikjvj(~k, t)/3(ρ̄+ P̄ ), and writing ikjvj(~k, t) =

Θ(~k, t) we get an important relation which connects the fluctuation (F2) with the

transport coefficient (η),

F2(~k, t) = − 8η

3(ρ̄+ P̄ )
Θ(~k, t) ≡ − 8

3T̄

η

s̄
Θ(~k, t) (3.23)

where the thermodynamic relation, h̄ = ρ̄ + P̄ = s̄T̄ , among enthalpy density

(h̄), entropy density (s̄) and temperature (T̄ ) has been used. The η appears as

a coefficient of 2nd rank tensor involving gradient in the ith direction of the jth

component of velocity, as a result the l = 2 term appears in the expression for η in

Eq. 3.23. In a similar way, using Eq. 3.22 the bulk viscosity ζ can be related to the

fluctuation in pressure (F0) as: δ P = −iklvl ζ.

3.2.2 Fluctuations in Fourier space and transport coeffi-

cients in relaxation time approximation

The temperature fluctuations, ∆T (θ, φ) in CMBR is generally expanded in Laplace

series in terms of spherical harmonics, Ylm(θ, φ). The maximum value of l is deter-

mined by the angular resolution of the detector which can be connected to the wave

number (k) corresponding to the Fourier transform of the spatial anisotropy. There-

fore, in analogy with fluctuations in the CMBR the spatial anisotropy is studied

here in Fourier space. But first we briefly discuss it in coordinate space.

The BTE, pµ∂µf = C[f ] in absence of external force and in the relaxation time
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approximation (similar approximation were used e.g. in Refs [102–104]) reduces to

∂Ψ

∂t
+
pi

ε

∂Ψ

∂xi
= −Ψ(~x, ~p, t)

τR
. (3.24)

for Ψ. In Eq. 3.24 τR is the relaxation time. For the present work the relaxation

time can be estimated as the inverse of the reaction rate of the quarks and gluons

using pQCD cross sections and Hard Thermal Loop Approximations [105]. The

solution of Eq. 3.24 for a given initial (at time t0) distribution, Ψin(~x, ~p, t0) is [109]:

Ψ(~x, ~p, t− t0) = Ψin

(
(~x− ~p

p0

(t− t0)), ~p

)
exp

[
−(t− t0)

τR

]
(3.25)

Knowing Ψ it is straightforward to estimate the fluctuation in energy density from

the following expression:

∆(~x, t− t0) =

∫
p2dp dΩ εf0(p)Ψ(~x, ~p, t− t0)∫

p2dp dΩ εf0(p)
. (3.26)

The solution of Eq. 3.24 given by Eq. 3.25 is useful to study the time evolution of

spatial anisotropy of the matter.

Now we would like to derive a relation between the fluctuation in energy density

and transport coefficients. To facilitate this we write Eq. 3.24 for massless particles

(as the case may be for partonic plasma produced in RHIC-E) in k-space:

∂Ψ

∂t
+ ik(k̂.n̂)Ψ = −Ψ(~k, ~p, t)

τR
. (3.27)

With the help of Eq. 3.19, Eq. 3.27 can be reduced to an equation describing the

time evolution of F as

∂F

∂t
+ ik(k̂.n̂)F = −F (~k, t)

τR
. (3.28)
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This equation has the following solution,

F (~k, n̂, t) = F (~k, n̂, t0) exp

[
−(

1

τR
+ ikµ)(t− t0)

]
(3.29)

where k̂.n̂ = µ. The value of F (~k, n̂, t) can be obtained from its value at initial

time, t0. Eq. 3.29 is a general expression for the fluctuations in the sense that all

the quantities, e.g. ∆, θ, σ, discussed above at time t can be obtained from this

expression if their corresponding initial values are supplied. Expanding F (~k, n̂, t) as

in Eq. 3.20 and using the orthogonality relations of Pl(µ)s we get,

Fl(~k, t) =
1

2
e
− (t−t0)

τR

∞∑

s=0

(−i)(s−l)(2s+1)Fs(~k, t0)

∫ +1

−1

dµPl(µ)Ps(µ)e−ikµ(t−t0). (3.30)

For l = 0, 1, 2 we have,




F0(k, t)

F1(k, t)

F2(k, t)




=




I0 (−i)3I1 (−5)1
2
(3I2 − I0)

I1 (−i)3I2 (−5)1
2
(3I3 − I1)

1
2
(3I2 − I0) (−i)1

2
(I3 − I1) (−5)1

4
(9I4 − 6I2 + I0)







F0(k, t0)

F1(k, t0)

F2(k, t0),




where In ≡ In(k, t) and α = k (t− t0)

In(α) =

∫ +1

−1

dµµne−iµα,

for n = 0 I0 is given by

I0(α) = (−i) 2
sinα

α

The following relations may be used to obtain Ij(α) for j = 1, 2, ....

In+k(α) =
1

(−i)k
dkIn
d2α

.
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Therefore, the energy density fluctuation at time t is given by:

∆(~k, t) =
1

2
e
− (t−t0)

τR

∞∑

s=0

(−i)s(2s+ 1)Fs(~k, t0)

∫ +1

−1

dµPs(µ)e−ikµ(t−t0). (3.31)

Taking terms up to s = 2 in the expression for ∆(~k, t) we get,

∆(~k, t) =
1

2
e
− (t−t0)

τR

2∑

s=0

(−i)s(2s+ 1)Fs(~k, t0)

∫ +1

−1

dµPs(µ)e−ikµ(t−t0). (3.32)

Performing the integration over µ we get,

∆(~k, t) =e
− (t−t0)

τR [F0(~k, t0){sin k(t− t0)

k(t− t0)
}+ 3F1(~k, t0){cos k(t− t0)

k(t− t0)
− sin k(t− t0)

{k(t− t0)}2
}

− 5F2(~k, t0){sin k(t− t0)

k(t− t0)
+

3 cos k(t− t0)

(k(t− t0))2
− 3 sin k(t− t0)

(k(t− t0))3
}].

(3.33)

This is the fluctuations in energy density, from which the fluctuations in temper-

ature can be obtained by using the relation: δρ/ρ̄ = 4δT/T for ρ ∼ T 4. We use

Eqs. 3.22, 3.23 and 3.33 to obtain the energy density fluctuation in terms of transport

coefficients as:

∆(~k, t) =e−(t−t0)/τR [∆(~k, t0)
sin k(t− t0)

k(t− t0)

+
4

k

χ

s

T (~k, t0)

T̄
{k2 − iklU̇l(~k, t0)}{cos k(t− t0)

k(t− t0)
− sin k(t− t0)

k2(t− t0)2
}

+
40

3

η

s

Θ(~k, t0)

T̄
{sin k(t− t0)

k(t− t0)
+

3 cos k(t− t0)

k2(t− t0)2
− 3 sin k(t− t0)

k3(t− t0)3
}].

(3.34)

Eq. 3.34 provides the connection of the fluctuation in energy density in Fourier space

with various transport coefficients e.g. thermal conductivity (χ) and viscosity (η).

It may be easily checked that the above solution satisfies the condition, ∆(~k, t) →

∆(~k, t0) in the limit t → t0. It is interesting to note that the k ∼ 0 mode (or

large wave length mode) which is insensitive to spatial gradient is damped by the

exponential time dependence only. ∆(k = 0, t0) represents the mode of the initial
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perturbation that takes the whole system (as in k → 0, length scale of inhomogeneity

λ → ∞) slightly away from its equilibrium value. However, the non-zero k modes,

in addition to the exponential decay, are damped out also due to spatial gradient

which is signaled by the presence of terms involving shear viscosity and thermal

conductivity in Eq. 3.34.

The fluctuation in energy density in position space can be obtained by taking Fourier

transformation of Eq. 3.34 as,

δρ

ρ̄
(~x, t) =

∫
d3k

(2π)3
∆(~k, t) exp (i~k.~x) (3.35)

If the initial (t = t0) energy density fluctuation, gradient of velocity, viscosity to

entropy ratio and temperature of the system in equilibrium are known then Eqs. 3.34

and 3.35 can be used to get fluctuations at any time, t > t0. The derivation of

angular correlation function for these fluctuation has been given Angular correlation

function for these fluctuation has been given in the appendix A.

3.3 Evolution of fluctuation in a hydrodynami-

cally expanding QGP background

So far we have considered the evolution of the fluctuations in a non-expanding back-

ground. However, in a realistic scenario in RHIC-E the system expands due to high

internal pressure. Therefore, in this section we include the effects of the expansion

on the spatial anisotropy through the solutions of relativistic hydrodynamics. The

fluid velocity and all the thermodynamic quantities become function of space time

coordinates to be determined by the solution of the hydrodynamical equations.

The evolution of δf is governed by the BTE, pµ∂µf = (p · u)C[f ] [72, 73, 98]. For

an expanding system under the relaxation time approximation BTE reduces to the
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following [102–104,106–108]):

(
∂

∂t
+

~p

p0
· ∂
∂~x

+
(p0u0 − ~p · ~u)

p0τR(x)

)
δf(x, p) = −

(
∂

∂t
+

~p

p0
· ∂
∂~x

)
f0(x, p) (3.36)

The solution of Eq. 3.36 is given by [109]:

δf(x, p) = D(t, t0)

[
δfin(p, ~x− ~p

p0
(t− t0)) +

∫ t

t0

B(~x− ~p

p0
(t− t′), t′)D(t0, t

′)dt′
]

(3.37)

where

D(t2, t1) = exp

[
−
∫ t2

t1

dt′A(p, ~x− ~p

p0
(t′ − t0), t′)

]
(3.38)

with

A(p, ~x, t) =
u0(x)− ~p · ~u(x)/p0

τR(x)
(3.39)

and

B(~x, t) = −
(
∂

∂t
+

~p

p0
· ∂
∂~x

)
f0(x, p) (3.40)

For

f0(x, p) = feq =
1

eβ(x)(uµpµ) − 1
(3.41)

The expression for B reduces to:

B(~x, t) = −feq(1 + feq)
pµ

p0
∂µ [β(x)uµpµ] (3.42)

We took the relaxation time as τ−1
R (x) = 1.1αsT (x) [105] (we have taken constant

value of αs = 0.2 here), β = 1/T (x), uµ(x) = (γ, γ ~v) is the four velocity of the fluid

and γ(x) = u0(x) = (1 − v(x)2)−1/2. The interaction of the expanding background

with the fluctuation is implemented through the relaxation time which depends on

T and the space-time variation of the temperature and velocity fields are determined

by the solution of the relativistic hydrodynamic equations. Eq. 3.37 provides the

space-time evolution of fluctuation in phase space distribution for an expanding QGP

34



CHAPTER 3. KINETIC EVOLUTION

background. This equation may be used to estimate various auto-correlations and

fluctuations in thermodynamic quantities which can be measured experimentally.

3.4 Summary and discussion

We have discussed a formalism for studying evolution of perturbations in QGP

background. The formalism discussed is relevant for studying space-time evolution

of fluctuations in any relativistically expanding background. In this chapter we

have presented a theoretical study of evolution of perturbation in both expanding

and non-expanding background. For non-expanding background evolution of dif-

ferent Fourier modes of perturbations have been discussed under relaxation time

approximation. Explicit relations between fluctuations and transport coefficients

have been derived. Evolution of angular power spectrum of the anisotropies in an

non-expanding background has been estimated in the appendix A.
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CHAPTER 4

Evolution of Spatially Anisotropic

Perturbations

This chapter contains part of paper [81]. Evolution of spatially anisotropic per-

turbation created in the system formed after Relativistic Heavy Ion Collisions is

discussed in this chapter. Spatial anisotropic perturbations with different geometry

have been evolved through Boltzmann equation. It is observed that the trace of

such fluctuation survive the evolution. Within the relaxation time approximation

analytical results have been obtained for the evolution of these anisotropies. The

mixing of various Fourier (or k) modes of the perturbations during the evolution of

the system is discussed. This study is very useful in understanding the presumption

that the measured anisotropies in the data from heavy ion collisions at relativistic

energies imitate the initial state effects.

4.1 Introduction

In the previous chapter we have discussed the formalism we have developed for

studying the evolution of perturbations using Boltzmann Transport equation in both

static and hydrodynamically expanding QGP background. In this chapter we discuss
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our study of the evolution different anisotropic perturbation. Authors in Ref. [97]

has discussed deposition of energy by the away side mini-jet in the non-equilibrium

framework. Corresponding perturbation in the medium has clear anisotropic form

in space, as mini-jet deposits energy along its path. Therefore, instead of Gaussian

type perturbation, consideration of anisotropic perturbation in space will be more

appropriate in such cases.

In this work we have used BTE to study the anisotropic fluctuations. The description

of the evolution of anisotropy induced fluctuations within the ambit of kinetic theory

approach helps in getting better microscopic insight on the evolution. Moreover,

kinetic theory approach has validity over a wider range of phase space compared

to hydrodynamical descriptions. In the two sections below we present results on

the evolution of fluctuations in a static and subsequently for a realistic scenario of

expanding background respectively.

4.2 Initial Perturbation

To simulate initial spatial anisotropy with different geometry, we choose,

δf(p, ~x, t0) = A0 exp [−r(1 + an cosnφ)] (4.1)

We have taken n = 2, 3, 4, 5 and 11 to simulate different initial anisotropy. A0 is

set to unity for numerical results discussed below. From the solution in coordinate

space one can get Fourier modes of fluctuations using Fourier Transformation which

will give evolution of different Fourier modes of fluctuations. We take an = 0.3 for

n = 2, 3, 4, 5 and 11.
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Figure 4.1: Evolution of the fluctuation in energy density with r at different t for a
non-expanding QGP background.

Figure 4.2: Evolution of the spatial anisotropy of the perturbation with initial elliptic
geometry at time τ0 = 0.6 fm/c (upper panel). The lower panel shows the geometry
after a time 4 fm/c has elapsed. Hydrodynamic expansion of the QGP background has
been taken into account. The boundary of the background has an elliptic shape with
the dimension of major and minor axes are approximately 6 fm and 4 fm respectively.
The colors from red to violet represent highest to lowest values of the perturbations.
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Figure 4.3: Same as Fig. 4.2 but the spatial anisotropy has a triangular geometry at
the initial time τ0 = 0.6 fm/c (upper panel). The lower panel shows the perturbation
after a time 4 fm/c has elapsed.
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Figure 4.4: Same as Fig. 4.2 but the spatial anisotropy has a quadrangular geometry
at the initial time τ0 = 0.6 fm/c (upper panel). The lower panel shows the geometry
after a time 4 fm/c has elapsed.
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Figure 4.5: Same as Fig. 4.2 but the spatial anisotropy has a pentagonal geometry
at the initial time τ0 = 0.6 fm/c (upper panel). The lower panel shows the results
after a time 4 fm/c has elapsed.

42



CHAPTER 4. EVOLUTION OF ANISOTROPIC PERTURBATIONS

Figure 4.6: Same as Fig. 4.2 but the spatial anisotropy has a hendecagonal geometry
(n = 11) at the initial time τ0 = 0.6 fm/c (upper panel). The lower panel shows the
results after a time 4 fm/c has elapsed.
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4.3 Evolution of fluctuation in energy density for

a non-expanding system

We display the spatial variation of the fluctuation in Fig. 4.1 at different times for

a non-expanding background. We substitute Eq. 3.25 in Eq. 3.26 with Ψin as a

Gaussian in space at the initial time and evaluate the evolution of the fluctuation.

For the sake of illustration we take T = 400 MeV and τ ∼ 1 fm/c. The results

indicate a rapid dissipation and displacement of the peak of the fluctuations with

increase in time. The displacement of the peak of the initial fluctuation given by

Eq. 4.1 centered at r = |~x| = 0 is governed by the factor, ~x− ~p(t− t0)/p0 appearing

in the solution for Ψ (Eq. 3.25) and the dissipation is controlled by the relaxation

time, τR involves in the exponential factor in the same equation. The dissipation

will slow down in an expanding medium because the relaxation time will increase

with decreasing temperature due to expansion.

4.4 Evolution of fluctuation in an expanding QGP

background

In this section we would like to do some case study of how a given spatial anisotropy

characterized by some geometric shape will evolve with space and time in an expand-

ing QGP medium governed by relativistic hydrodynamics. This will give us some

idea on the evolution of elliptical or triangular anisotropic perturbations created in

the collisions.

We present the results now for a realistic scenario where the background QGP is

expanding hydrodynamically.

The space time variation of quantities such as energy density and flow velocity is
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governed by relativistic hydrodynamics. Therefore, we solve the equation:

∂µT̄
µν = 0 (4.2)

with the assumption that net baryon number density (nB) is zero at the central

rapidity region, hence we need not consider the equation ∂µ(nBu
µ) = 0. We also

assume boost invariance [110] along the longitudinal direction and solve the Eq. 4.2

numerically with equation of state P̄ = ρ̄/3 for initial condition taken from optical

Glauber at the highest RHIC energy (
√
sNN = 200 GeV) for Au+Au collision. The

hydrodynamic solutions [111] for flow velocity and temperature (T̄ = [30ρ̄/(gπ2)]1/4)

have been used to study the space time evolution of the fluctuations in an expanding

background.

Taking the value of the temperature dependent relaxation time relevant for QCD

plasma [105] the evolution of initial spatial anisotropies introduced through Ψin (or

δf) have been studied. It is to be noted that due to expansion the temperature

decreases and hence the relaxation time increases which slows down the dissipa-

tion. Therefore, the dissipation of the perturbation gets slower with the expansion

of the system. The effects of perturbation has better chance of survivability in the

direction of lesser extent because the expansion is faster along that direction due

to larger pressure gradient. It implies that systems with same energy density the

perturbations has larger chances to survive in systems with smaller size. Then it is

expected that the presence of perturbations will be dominant in relatively smaller

size systems. In Fig. 4.2 the evolution of the initial elliptic spatial anisotropy of the

perturbation (upper panel), realized by taking n = 2 in Eq. 4.1 is depicted. The

initial thermalization time is taken as τ0 = 0.6 fm/c. The evolution is studied up to

τ = 4 fm/c. The red to violet colors used in the figures for distinct visibility, rep-

resent correspondingly the highest to lowest values of the perturbations. For n = 2

the anisotropy has an elliptic shape having stronger gradient along x-axis resulting
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in faster expansion along x compared to y axis. Therefore, the propagation of the

perturbation generates a pattern similar to the one generated in water waves by the

impact of a stick on the still water surface. This kind of pattern is clearly observed

in the lower panel of Fig. 4.2 such type of fluctuation may be created by the propa-

gation of jets through the QGP. It may be observed that the solution of BTE given

in Eq. 3.37 is subjected to two different kinds of mechanism - (a) dissipation of the

fluctuations and (b) hydrodynamic expansion of the background. The expansion

velocity will be larger along x-axis than along y-axis due to different pressure gradi-

ent imposed by the initial geometry of the fluctuation. This results in the splitting

of the fluctuation as observed in the lower panel of Fig. 4.2. By switching off the

dissipation (appearing through the exponential term in D(t, t0)) we have noticed

that the fluctuation still splits in two parts but the peak of the fluctuation does not

reduce significantly. It is also important to note that the two oppositely propagating

perturbations are correlated which may have interesting observable effects.

Moreover, if the perturbation is created near the boundary of the system then the

wave propagating outward will dissipate less than the one moving inward. The

results in Fig. 4.2 indicate a rapid dissipation of the peak. The peak has been

reduced by more than 90% at a time τ = 4 fm/c. The expansion of the QGP

background is governed by the equation of state i.e. by the velocity sound in the

QGP (the maximum displacement is determined by the sound horizon: i.e. the dis-

tance traveled by the sound wave:
∫ τ
τ0
dτcs(τ)dτ . We have taken the sound velocity,

cs = 1/
√

3, independent of τ for the expanding QGP background). The displace-

ment of the fluctuation (primarily δf) is regulated by the factor: ~x − ~p(t − t0)/p0

appearing in Ψ (Eq. 3.25). Therefore, the net displacement is determined by the

combination of these two factors. The dissipation of the fluctuation is dictated by

the relaxation time which is a function of space-time coordinate through the rela-

tion: τ−1
R ∼ T (t, ~x). Therefore, the amplitude of the displacement becomes a space

time dependent quantity which is evident from the results displayed in Fig. 4.2.
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Figure 4.7: Same as Fig. 4.6 but the perturbation is given at a distance of 2.5 fm
away from the origin along x-axis. The lower panel shows the results after a time 4
fm/c has elapsed.

The spatial anisotropic structure of the system formed in RHIC-E can be understood

with the help of Fourier analysis in terms of its various coefficients. Work on the

space-time evolution of the angular power spectrum for more realistic initial condi-

tion for the hydrodynamical solution derived from Glauber Monte-Carlo techniques

is discussed in Ch. 5.

In Figs. 4.3 - 4.5 the evolution of the spatial anisotropic perturbations with different

initial geometry like triangular, quadrangular and pentagonal for n = 3, 4 and 5

respectively have been depicted. We would like to see how these anisotropies dissi-

pate. The perturbations introduce pressure gradient in the system. The magnitude

of the perturbation gets reduced by the force arising due to pressure imbalance. It

is observed that the spatial anisotropies of such perturbations dissipate fast. The
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Figure 4.8: Same as Fig. 4.2 but the perturbation is given at a distance of 3 fm away
from the origin along x-axis. The middle (lower) panel shows the results after a time
2 fm/c (4 fm/c) has elapsed.

48



CHAPTER 4. EVOLUTION OF ANISOTROPIC PERTURBATIONS

propagation of these anisotropic perturbations are affected primarily by the velocity

of sound in the QGP background as well as by the velocity of the fluctuation appear-

ing in Ψ as ~x−~p(t−t0)/p0, and hence, on the thermal mass of the degrees of freedom

that constitute the perturbation. The splitting of the peaks are resulted from the

expanding background with different magnitude of velocities due to different pres-

sure gradient imposed by the initial geometry of the fluctuation. The propagating

waves for the perturbation take shape analogous to water waves created on the calm

surface if perturbed initially with similar geometric shape. Theoretical analysis of

the angular power spectrum of the anisotropies arising from such perturbations in

the evolving stage will shed light on possibility of selecting out the signatures of the

early stage of the evolving matter.

In Fig. 4.6 we display an initial perturbation (introduced at r = 0) with smaller

angular dimension implemented through a hendecagonal (n = 11) geometric shape

to check whether such perturbations survive the evolution (upper panel). The fate of

the perturbation after space-time evolution is depicted in the lower panel of Fig. 4.6.

We observe that the perturbations of small angular size dissipate substantially. In

fact, the perturbation with size corresponding to n = 5 and n = 11 look similar at a

time 4 fm/c after the initial time. We introduce the initial perturbation at distance

2.5 fm away from the origin along the positive x-axis (upper panel, Fig. 4.7). It

is clear from the results displayed in Fig. 4.7 (lower panel) that the perturbation

moving outward (away from the centre) has suffered less dissipation compared to the

one propagating inward and hence has a better chance to carry detectable signature.

An elliptic perturbation is imparted near the boundary (Fig. 4.8, upper panel), 3 fm

away from the center along the (positive) x-axis. The fate of the perturbation after

2 fm/c and 4 fm/c are shown in the middle and lower panels of Fig 4.8 respectively.

It is interesting to note that the perturbation propagating away from the center

dissipates less and the one moving toward the center of the background QGP decay

fast. Therefore, if any perturbation is created near the boundary the possibility of
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Figure 4.9: (upper panel). The fluctuations in k-space at time τ = 0.6 fm/c (upper
panel). The lower panel shows the results after a time 4 fm/c has elapsed. The mixing
of k-modes is visible in the lower panel.

getting it detected is more.

The evolution of fluctuation, δn(kx, ky, t) obtained by integrating δf̃ over p in trans-

verse k-space is depicted in Fig. 4.9 for the initial shape at time 0.6 fm/c realized

with n = 2 (Eq.4.1). We observe that the pattern of the perturbation changes sub-

stantially from its initial distribution (upper panel) due to the mixing of various

k-modes (lower panel) at a later time (4 fm/c). The perturbation is propagating

over a hydrodynamically expanding background which makes all the variables like,

temperature (T̄ ), flow velocity (v), pressure (P̄ ), energy density (ε), etc explicit

functions of time and space. The interaction of the perturbation (δf) with the

background is incorporated through the relaxation time which is a function of tem-

perature and hence space-time coordinates. Therefore, it is expected that various
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modes of the perturbations in the Fourier space will get mixed during its propaga-

tion over the expanding background as clearly visible in Fig. 4.9 (lower panel). The

peak of the fluctuation has reduced significantly due the exponential factor deter-

mined by the relaxation time. We discuss the evolution of correlation of anisotropic

pressure perturbation in chapter 6.

4.5 Summary and discussion

The evolution of fluctuations have been studied in Refs [62,68,83–85,95,112] using

relativistic hydrodynamical model. In contrast we use a more microscopic approach

to investigate the evolution of fluctuations within the framework of BTE in a rel-

ativistically expanding QGP background. The background of the spatial fluctua-

tions has been assumed as a thermalized expanding QGP. The expansion of the

background has been dealt with the (2+1) dimensional relativistic hydrodynamical

model. The evolution of initial spatial anisotropic perturbations with different geom-

etry have been studied and analytical results have been obtained. It is found that

the perturbations dissipate during its propagation, however, the creation of such

anisotropic perturbations near the boundary of the plasma may lead to detectable

effects. Theoretical analysis of these anisotropies will help in understanding the early

stage of the matter. The mixing of various k-modes of the perturbations during the

course of evolution has been demonstrated.
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CHAPTER 5

Power Spectrum of Momentum

Anisotropy and Trace of Non-equilibrium

This chapter contains part of paper [113]. Here effect of initial state fluctuations

of produced system in RHIC, as well as effect of non-equilibrium perturbations on

power spectra of final parton momentum anisotropy is discussed.

5.1 Introduction

At Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) heavy

nuclei are made to collide to create quark matter or quark gluon plasma (QGP) -

a state of matter that prevailed in the micro-second old universe according to the

cosmological Big Bang (BB) model. In this regard the production of QGP in nu-

clear collisions at relativistic energies is dubbed as Little Bangs (LB). One of the

compulsion to study the QCD phase transition in Relativistic Heavy Ion Collision

Experiments (RHIC-E) is to understand the non-abelian gauge theory in medium

and to understand the dynamics of similar transition in the early universe. This is

especially important because the universe has undergone several other transitions

e.g. Electroweak, GUT, etc, but among these the QCD transition is the only one
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which is accessible through the presently available accelerator energy. The study of

the temperature fluctuation in the cosmic microwave background radiation (CMBR)

originated from the recombination era (about 300,000 years after the BB) has pro-

vided crucial knowledge in supports of BB model [82, 114] and matter content of

the universe. The polarization of photons due to Thomson scattering from the

anisotropic decoupling surface (where the photon had suffered the last interactions)

results in the non-zero quadrupole moment of the phase space distribution of the in-

cident photon. This anisotropic fluctuations in density, for example, may be caused

by the propagation of gravitational wave in the early universe. The temperature

fluctuation in the CMBR is introduced as a perturbation in the phase space distri-

bution of photons. The evolution of this perturbation is studied by using Boltzmann

transport equation (BTE) [82,101] in gravitational field. The linear polarization due

to the scattering is connected with the quadrupole moment of the phase space dis-

tribution of photon.

In this work we would like to perform a theoretical analysis of LB following pro-

cedure similar to the one used in the analysis of CMBR. Study of fluctuation can

be useful to characterize the state of the matter and also to put constraints on

models [63, 115–118, 120–123]. Power spectrum in RHIC-E has been discussed by

several authors in Refs. [86, 124–126]. In Ref. [86] the root mean square of various

flow harmonics has been calculated and shown strong similarities with the power

spectrum of CMBR. Mócsy and Sorensen [124] has extracted the power spectrum of

the system produced in RHIC-E by using data on transverse momentum (pT ) cor-

relations. In Ref. [126] data from ALICE collaboration has been used to estimate

pT fluctuation and subsequently expanded in Laplace series to estimate the power

spectrum analogous to temperature fluctuation in CMBR. In Ref. [125] relativistic

heavy ion collision events have been generated by using HIJING [127] and redis-

tributed the produced particles to emulate flow effects to reproduce elliptic flow to

some required value.
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As mentioned before the state of the matter, the QGP created in RHIC-E imitates

the condition that prevailed in the micro-second old universe. The space time evo-

lution of the matter is governed by fluid dynamics for both BB and LB. However,

there are glaring differences too. For example, the relevant interactions, character-

istic length and time scales in LB and BB are very different, primarily because of

the pertinence of gravity in the BB.

In the present work we will study the power spectrum due to fluctuations in the

initial energy density that may arise naturally due to the quantum fluctuation of the

finite ”lump-like” nucleons within the colliding nuclei [87, 94]. These fluctuations

evolve hydrodynamically [62, 83–85, 95, 112]. The bulk matter i.e. QGP created

in RHIC-E with very high temperature and pressure will expand relativistically

against vacuum. This expansion is treated in the present work by solving relativistic

hydrodynamic equations in (3+1) dimensions with initial conditions derived from

Optical as well as Monte-Carlo Glauber model [128]. The equation of state (EoS)

is taken from lattice QCD. The system will revert to hadrons due to the cooling

caused by the expansion. In the hadronic phase the system may continue to expand

hydrodynamically until the mean free path of the constituents become too large to

maintain equilibrium. When the hadrons cease to interact, their momenta get frozen

and hit the detector with those values of frozen momenta. However, it has been

shown that the chemical freeze-out of the hadrons takes place near the quark-hadron

transition boundary, meaning that the system may be out of chemical equilibrium

in the hadronic phase and the evolution of the hadronic phase can not be studied

using hydrodynamics, it may require hybrid model approach (hydro+URQMD [129])

which is beyond the scope of the present work. Therefore, we will evaluate the power

spectrum of QGP phase only in this work.

We will also study the power spectrum of anisotropic fluctuations in momentum

space inflicted through the phase space distribution that may drive the system

slightly away from equilibrium. The correlation that survive the evolution can be
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observed in the final state and which may be connected to the initial state correla-

tion [63, 120–122]. The variation of the power spectrum with time will indicate the

dissipation of fluctuations created during the evolution. The nature of the variation

may help in differentiating the fluctuations produced in the initial state from those

created afterward. The evolution of such anisotropic fluctuations is dictated by the

Boltzmann transport equation (BTE). The propagation of the jets through QGP

may cause such fluctuations [130]. Therefore, we intend to study the evolution of

the fluctuations through BTE in a hydrodynamically expanding QGP background.

The BTE is solved in relaxation time (τR) approximation, τR has been taken from

calculations done by using hard thermal loop approximation in QCD. In principle,

τR is a function of temperature (T ) and baryonic chemical potential (µB), however,

as discussed below in the present case we need to consider the T dependence only.

The change in T due to expansion of the bulk is controlled by relativistic hydrody-

namics. This change in T affects evolution of the fluctuation (solution of the BTE)

through the relaxation time, indicating a direct coupling between the anisotropic

fluctuation and bulk expanding background. The BTE has been solved with initial

conditions containing spatial anisotropies to be specified later.

The initial energy density distribution, ε(τ, x, y, η) of the bulk matter created in

RHIC-E can be estimated by using Glauber model. In the present work, both the

Optical Glauber (OG) as well as the Monte-Carlo Glauber (MCG) models have

been used to demonstrate the sensitivity of the results on initial conditions of the

bulk matter. The finite size of the colliding nucleons with quantum fluctuations

in the nuclear beams will create ”lumpiness” in ε(τ, x, y, η). This can be seen very

clearly in ε(τ, x, y, η) calculated using MCG. We study the evolution of the these

fluctuations using hydrodynamics at the surfaces of constant T . Power spectrum

due to fluctuations caused by phase space perturbations has also been estimated.

In the present work we make an attempt to evaluate the fluctuations in RHIC-

E in keeping close resemblance with analysis of temperature fluctuation in cosmic
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microwave radiation (CMBR). The power spectrum will be evaluated at various

stages of the evolving system to understand how it changes with time.

This chapter is organized as follows. In the next section we will briefly discuss the

evolution of the quark gluon plasma within the framework of relativistic hydrody-

namics followed by discussions on the initial conditions and equation of state used

in this work in the successive subsections. The evolution of the fluctuations within

the scope of BTE has been discussed in section 5.3. The power spectrum has been

evaluated in section 5.4. Section 5.5 is devoted to present the results and section

5.6 is dedicated to summary and discussions.

5.2 Hydrodynamic evolution of the quark gluon

plasma

The expansion of the QGP in space and time can be described by applying relativistic

hydrodynamics. The conservation of energy and momentum of the fluid is governed

by the equation:

∂µT
µν = 0 (5.1)

where T µν = (ε + P )uµuν − gµνP . Here ε is the energy density, P is the pressure,

uµ = γ(1, ~v) is the four velocity of the fluid and γ = 1/
√

1− v2. The conservation

of the net baryon number throughout the evolution history is controlled by the

equation:

∂µ(nBu
µ) = 0 (5.2)

where nB is the net baryon (baryon - antibaryon) density. However, in the present

work we are interested in the system produced in nuclear collisions at the highest

RHIC energies where nB is negligibly small (nB will be even smaller at LHC collision

conditions) and hence µB ∼ 0. Therefore, we do not need to consider Eq. 5.2. In the
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present work Eq. 5.1 has been sloved numerically using standard technique [131] in

full (3+1) space-time dimension without assuming boost invariance along longitu-

dinal direction [110] and cylindrical symmetry of the system. The initial conditions

and equation of state (EoS) used here are discussed briefly below.

5.2.1 Initial conditions

The initial conditions required to solve Eq. 5.1 in (3+1) dimension are as follows: The

Cartesian components of initial flow velocities are: vx(τ0, x, y, z) = vy(τ0, x, y, z) = 0

and the initial energy density profile is taken as [131]:

ε(τ0, x, y, ηs) = εGM(x, y) θ(Yb − |ηs|) exp

[
−θ(|ηs| −∆η)

(|ηs| −∆η)2

σ2
η

]
(5.3)

where εGM(x, y) is obtained from OG or MCG model, having the following expression

εGM(x, y) = ε0

[
1− f

2
npart(x, y) + fncoll(x, y)

]
(5.4)

We have taken the value of the inelastic nucleon-nucleon cross section at RHIC

energy as, σNN = 42 mb in evaluating the number of participants, npart and number

of collisions, ncoll. In MCG model approach the energy density is deposited at

discrete points, but for hydrodynamic evolution we need a continuous distribution

of energy density. Therefore, we use Gaussian smearing to get the energy density

as:

εGM(x, y) =
1

2πσ2

∑

i

εGM(xi, yi) e
− (x−xi)2+(y−yi)2

2σ2 (5.5)

where εGM(xi, yi) is obtained from Eq(5.4). To sample the nucleons from nuclei (Au

in this case), we use the following Woods-Saxon distribution

ρ(r) =
ρ0

1 + e
r−R
δ
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The values of different parameters appeared in the above expressions are tabulated

below.

Table 5.1: Table 5.1: Values of different parameters used in solving the hydrody-
namical equations (see text for details).

Parameter τ0 Yb ∆η ση ε0 f σ2 R δ σNN
Value 0.6 fm/c 5.3 1.3 2.1 7.7 Gev/fm3 0.14 0.16 6.37 0.535 42 mb

5.2.2 Equation of State (EoS)

The EoS for the QGP and the hadrons have been constructed following the procedure

outlined in Ref [132]. We use excluded volume model [133] for hot hadrons and

pQCD results [132,134,135] for the QGP phase. For a smooth crossover, a switching

function is used as in [132] and the parameters are adjusted so as to match the

Lattice QCD results. A brief description of the model used is as follows. We choose

volume of hadrons to be proportional to mass, vi = mi/m0 as in [132], where m0 is

a constant. We take m0 = 0.9 for this work. The pressure of the hadronic medium

is taken to be

pHG(T, µB) =
∑

i=1

pidi (T, µ̃i) (5.6)

µ̃i = µi − vipHG (5.7)

where µi = BµB and B is baryon number. pidi denotes the ideal pressure of a

relativistic gas comprised of ith resonance and pHG is the pressure after excluded

volume correction is taken into account which is found by solving the above set of

equations in a self-consistent way.
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The pressure of the QGP phase is taken as

Pqgp =
8π2

45
T 4

[
f0 +

(αs
π

)
f2 +

(αs
π

)3/2

f3 +
(αs
π

)2

f4 +
(αs
π

)5/2

f5 +
(αs
π

)3

f6

]

(5.8)

where the coefficients fn’s are given in the appendix B.1. The coupling, αs has

been taken from [136] calculated in three loop approximations. The pressure in the

crossover region is taken to be

P (T, µB) = S(T, µ)Pqgp(T, µB) + (1− S(T, µ))Ph(T, µB) (5.9)

where the switching function S(T, µ) is taken as

S(T, µB) = exp{−θ(T, µB)} (5.10)

θ(T, µB) =

[(
T

T0

)r
+

(
µB
µ0

)r]−1

(5.11)

We take T0 = 165 MeV, µ0 = 3πT0 and r = 4. With these parameter values we find

a good agreement of our results with the lattice data [137].

5.3 Evolution of anisotropies and fluctuations

Evolution of phase space perturbation(δf) is obtained as discussed in Ch. 3.3. Once

δf is known, perturbations in various thermodynamic quantities e.g. in energy

density (ε), entropy density (s) etc can be obtained as follows. Deviation from the

equilibrium value in the thermodynamic quantities may be incorporated through

the deviation in the distribution function as discussed in Ch. 3.2.1.

The evolution of the flow velocity, energy density, pressure etc can be obtained

from the solution of hydrodynamic equations. Temperature can be estimated from

its dependence on energy density. The interaction of the expanding background
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(hydrodynamics) with the perturbations (δf) at each space-time point is enforced

through temperature (appearing through τR) and flow velocity which are obtained

from the solution of the relativistic hydrodynamic equations. Therefore, the fluctua-

tions involve interaction between equilibrium (hydrodynamics) and non-equilibrium

(BTE) degrees of freedom. We assume that the effects of the out-of-equilibrium

perturbation on the equilibriated background is negligibly small.

The formalism discussed there in chapter 3 can be used to any system where the

fluctuations are evolving in an expanding background aided by: (a) initial distri-

bution δfin appearing in Eq. 3.37, (b) τR which is determined by the interaction

at the microscopic level, (c) flow velocity and temperature determined by the so-

lutions of hydrodynamic equations which needs, initial energy density and velocity

distributions as well as the EoS.

In the present work we will apply this formalism to the system formed in RHIC-E.

Therefore, we will use QCD based calculations for estimating τR(T ) as: τ−1
R (x) =

1.1αsT performed in Ref. [105] in HTL (Hard Thermal Loop approximation). We

have used QCD equation of state (section 5.2.2) for solving hydrodynamical equa-

tions.

The power spectra have been evaluated for the following two scenarios for: (i) the

fluctuation in the initial energy density obtained in OG and MCG models, (ii)

fluctuations caused by perturbations in phase space distribution. The latter one has

been evolved through BTE in an expanding thermal QGP background as discussed.

To simulate different types of initial spatial anisotropy one may choose,

δf(p, ~x, t0) = A0 exp [−r(1 + an cosnϑ)] (5.12)

where n can be taken as n = 2, 3, 4, 5, ... to simulate different geometry for the

initial anisotropy (see also [124]). We have set the perturbation centered around

r = |~x| = 0 here. To investigate effect of such perturbation on momentum anisotropy
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of particles emitted from constant temperature surfaces of the evolving QGP fluid,

we take initial perturbation, δf with

A0 = K
C

(1 + pT/B)β
(5.13)

where, C = 9.113 × 10−4 (1/MeV2), B = 1459 MeV, β = 7.7 and K = 3.6 such

that energy density carried by the perturbation(δε) satisfy δε/ε ∼ 0.01. The power

spectrum for other values of δε/ε will also be shown. This condition ensures neg-

ligible back reaction on background from the perturbations. This power law form

of momentum dependence of perturbation, which is inspired by jet parton distribu-

tion, also ensures non-equilibrium nature of this perturbation. It also ensures the

condition δf/f0 << 1.

5.4 The power spectrum

We are now equipped to study the evolution of the power spectrum of the angular

distribution of the particles which originates due to:

(i) fluctuations in initial energy density profile evaluated in OG and MCG models

by using the momentum distributions of particles at various surfaces of constant

temperatures with the help of mathematical expression given in [138]:

E
dN0

d3p
=

gi
(2π)3

∫

Σ

dσµp
µf0(x, p) (5.14)

where dσµ is the surface element, pµ is the 4-momenta of the particle and in Milne
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coordinate these are expressed as follows [64,131]:

dσµ = (τf dxf dyf dηf ,−τf dτf dyf dηf ,−τf dτf dxf dηf ,−τf dτf dxf dyf )

=

(
1,− ∂τf

∂xf
,−∂τf

∂yf
,−∂τf

∂ηf

)
τf dxf dyf dηf

pµ = (mT cosh(y − ηf ), px, py,mT sinh(y − ηf )/τf )

where ηf is the fluid rapidity, τf is the proper time, xf and yf are transverse co-

ordinate for the fluid. px, py are the fluid momenta in Cartesian coordinate, y

(= 1
2
lnp0+pz

p0−pz ) is the particle rapidity and mT =
√
p2
T +m2 is the transverse mass of

the particle. In the above equation subscript f stands for fluid. Therefore,

pµdσµ =

[
mT cosh(y − ηf )− px

∂τf
∂x
− py

∂τf
∂y
− mT sinh(y − ηf )

τf

∂τf
∂ηf

]
τf dxf dyf dηf

For massless particles, y is given by

y = −ln

[
tan

(
θ

2

)]

which is same as the pseudo-rapidity (η) of the particle.

(ii)We estimate the power spectrum of the perturbation in the momentum distri-

bution of particles. The perturbation, δf has been obtained by solving Boltzmann

equation in relaxation time approximation in an expanding QGP background. δf

can be used to estimate perturbations in thermodynamic quantities as mentioned

earlier. We use f = f0 + δf to estimate the pT distribution of particles using

Cooper-Fryer formula [138] as:

E
dN

d3p
=

gi
(2π)3

∫

Σ

dσµp
µ[f0 + δf(x, p)] (5.15)

Now the quantities, EdN0/d
3p or EdN/d3p can be expanded in Laplace series in

terms of spherical harmonics, Ylm(θ, φ) at a given transverse momentum (pT ) and
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T . We identify pseudo-rapidity, η as the polar angle through the relation, η =

−ln{tan(θ/2)}.

The power spectrum of the fluctuations in the transverse momentum (pT ) distribu-

tion of particles can be estimated at surfaces of constant temperatures to understand

its evolution as the system cooled down with the progression of time. The power

spectrum of EdN/d3p has been estimated as follows:

E
dN

d3p
= N̄ +

∞∑

l=1

l∑

m=−l
alm(pT , T )Ylm(θ, φ) (5.16)

where

N̄ =
1

4π

∫
dΩ

dN

d2pTdy
(5.17)

the coefficients, alm’s are determined as follows:

alm(pT , T ) =

∫
dΩY ∗lmE

dN

d3p
(5.18)

For determining power spectrum without perturbation we replace EdN/d3p by

EdN0/d
3p in Eq. 5.18. The terms in Eq. 5.16 with different l corresponds to different

angular scales: terms with larger l will have smaller angular resolution, θl = π/l, [82]

determines the value of the maximum l i.e. lmax. For heavy ion experiments at RHIC

and LHC the resolution in pseudo-rapidity will govern the value of lmax.

Using standard techniques and properties of spherical harmonics, the angular power

spectrum (Cl) of EdN/d3p can be written as:

Cl(pT , T ) =
1

2l + 1

∑

m

|alm|2 (5.19)

indicating the distribution of power of fluctuations among different angular scales de-

termined by l. In CMBR fluctuation, Cl for the temperature fluctuation, ∆T (θ, φ)/T

has been calculated theoretically and compared with experimental data which has
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Figure 5.1: Initial energy density profile in the transverse plane at space time rapidity
= 0 in the OG model for Au+Au central collision.

helped in understanding the matter content of the universe. The power spectrum,

Cl’s are related to the various flow harmonics [139–144] as shown in appendix B.2.

5.5 Results

We have solved the (3+1) dimensional relativistic ideal hydrodynamic equations

with initial conditions (due to OG and MCG models) and EoS described above

to study the evolving QGP. The Boltzmann transport equation has been solved in

relaxation time approximation in the evolving background to study the effects of

perturbation on the phase space. The solution of BTE has been used to estimate

the power spectrum. We present the results for the following two sets of conditions:

(i) The power spectrum of EdN0/d
3p due to fluctuations in initial energy density.

We estimate the power spectrum of the pT distributions of particles (dN0/d
2pTdy) for
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OG and MCG initial conditions at surfaces of constant temperatures, say TS, defined

as T (x, y, τ, ηs) = TS (where ηs is space-time rapidity) which implies, τ = τ(x, y) on

the surface at ηs = 0. We will evaluate the power spectrum at T = TS = 350 MeV

which is close to the initial temperature, near the transition temperature (Tc), at

TS = Tc = 170 MeV and at some intermediary temperature, T = TS = 250 MeV to

understand how the power spectrum evolve from the initial to the transition point.

(ii) The power spectrum of EdN/d3p which contains the perturbations has also been

estimated for Ts = 170, 250 and 350 MeV.

5.5.1 Initial conditions from Optical Glauber Model

First we consider (i): in Fig. 5.1 the initial energy density profile due to OG model

is displayed for central Au + Au collision at
√
sNN = 200 GeV. The thermalization

time has been taken as τi = 0.6 fm/c. Other parameters regarding the initial

condition are displayed in table 5.1 in section 5.2.1. The profile evaluated at zero

space-time rapidity has isotropic symmetry with sharp fall near the boundaries.

In Figs. 5.2 and 5.3, the surfaces of constant temperatures evolved hydrodynamically

for initial energy density (shown in Fig. 5.1) have been depicted. Fig. 5.2 (Fig. 5.3)

shows the result for T = 350 (170) MeV. We observe no qualitative change in

the shape of the surfaces except at lower temperature the space-time size of the

surface becomes larger. It is important to note that the energy density profile

and consequently the constant temperature surfaces are smooth - not showing any

distinct fluctuations because of the absence of fluctuation in the initial energy density

profile in OG model.
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Figure 5.2: The constant temperature, T = 350 MeV surface in the time-transverse
plane.

Figure 5.3: The constant temperature surface in the time-transverse plane for 170
MeV.
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Figure 5.4: Same as Fig. 4.2 with MCG initial condition for a single event.

5.5.2 Initial conditions from Monte Carlo Glauber model

Similar to the OG initial condition we plot the initial energy density profile evaluated

in MCG model for 0 − 5% centrality collision of Au + Au at
√
sNN = 200 GeV in

Fig. 5.4 at τ0 = 0.6 fm. We observe lumpiness of complicated nature in the initial

energy density profile at various position in the transverse plane due to the collisions

of nucleons with fluctuating positions in the beam nuclei.

However, averaging of energy density over 100 events smoothen the energy density

profile to a great extent. The result displayed in Fig. 5.5 has been obtained by

averaging over 100 events. We will use this profile as an input to rest of the works.

The constant temperature surface at T = 350(250) MeV is displayed in (τ, x, y, ηs)

coordinate in Fig. 5.6 (Fig. 5.7) for MCG initial condition. It is observed that the

initial energy density in MCG model has more fluctuations than that of OG model

in space time coordinate. These inhomogeneities will create pressure imbalance with
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Figure 5.5: Same as Fig. 5.1 with MCG initial condition averaged over 100 events.

the neighbouring zones - higher density domains will exert larger pressure and hence

will expand faster to smoothen the inhomogeneities. As a result the inhomogeneity

will reduce and their distributions will change. We observe that the size of the surface

in space-time coordinate has increased at lower temperature. The fluctuations at

the surface at T = 350 MeV resulting from the inhomogeneities in the initial energy

density profile have reduced in magnitude at T = 250 MeV surface as the system

evolve hydrodynamically. The domains of higher energy densities (Fig. 5.5) will

take longer time to reach a given temperature as can be seen from Fig. 5.6 where

for certain domains τ is larger compared to others. We observe that the differences

in the values of τ(x, y) at various points in x − y plane is smaller in the T = 170

MeV surface than at T = 350 or 250 MeV surfaces. Indicating that the system is

approaching toward a homogeneous one in coordinate space and through expansion

this inhomogeneities get transferred to momentum space. However, the magnitude

of fluctuations have reduced in real space at lower temperature, T = 170 MeV
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(Fig. 5.8).

5.5.3 Pseudo-rapidity and angular distributions

In Fig. 5.9, the η (upper panel) and θ (lower panel) distributions of particles have

been displayed at the surface of constant temperatures, T = 350 MeV. We find that

the fluctuations in differential particle numbers is larger at MCG than OG model,

which is clearly visible both in the η and θ distributions. However, with progress

in time or with the reduction of temperature at T = 170 MeV (Fig. 5.10) the total

number of particles increase and more particles appear at larger η enhancing the

width of the distributions. The θ distribution shows a plateau over a larger domain

of θ as compared to the distribution at T = 350 MeV. Moreover, the peak of the

invariant momentum distribution is larger at T = 170 MeV than at T = 350 MeV,

because of the increase in the normalization resulting from larger freeze-out surface.

It is also observed that the changes in fluctuation is larger for a system with MCG

initial condition than OG initial condition. The difference in fluctuation between

OG and MCG model at T = 170 MeV is smaller than the difference at T = 350

MeV.

5.5.4 Power spectrum without perturbation

Next we would like to investigate - how the power spectrum of the fluctuations

caused by initial energy density profiles evolves. We study the power spectrum of

particle spectra, EdN0/d
3p at the surfaces of constant temperatures at T = 350, 250

and 170 MeV. The angular distribution of particles at constant pT has been analyzed

by decomposing it in terms of spherical harmonics as discussed in section 4.

The power spectrum of the distribution, Cl has been plotted in Fig. 5.11 for the

angular distribution of the spectra at T = 350 MeV for the OG and MCG initial
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Figure 5.6: The constant temperature surface at T = 350 MeV for MCG initial
condition.

conditions. We clearly find that the power spectrum corresponding to the odd l’s

are negligibly small because the distribution is an even function of θ.

In Figs. 5.12 and 5.13 the power spectrum for the angular distribution at the

surface of T = 250 and 170 MeV respectively have been depicted. We observe that

there is no significant change in the power spectrum for the OG initial conditions at

lower temperatures. With time, the spatial inhomogeneities in x − y plane (which

are translated into momentum space due to force caused by pressure gradient) of

the system gets reduced as the system favours to erase out any pressure imbalance,

however, for systems without fluctuation as in OG case, does not show much change.

In case of OG initial conditions the system is symmetric, (Fig. 5.1) therefore, with the

evolution from higher to lower temperatures (Fig. 5.2 and 5.3) there is no significant

change in the power spectrum.

However, for MCG initial condition, the system is inhomogeneous (Fig. 5.5). The
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Figure 5.7: Same as Fig. 5.6 for MCG initial condition at T = 250 MeV.

Figure 5.8: Same as Fig. 5.6 at T = 170 MeV.
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Figure 5.9: The pseudo-rapidity (η) and angular (θ) distribution of particles at
pT = 0.6 GeV with OG and MCG initial conditions at T = 350 MeV.
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Figure 5.10: Same as Fig. 5.9 at T = 170 MeV.
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Figure 5.11: The power spectrum, Cl deduced from dN/d2pTdy at pT = 0.6 GeV
for both the OG and MCG initial conditions analyzed at the surface of T = 350 MeV.
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Figure 5.12: Same as Fig. 5.11 at T = 250 MeV.
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Figure 5.13: Same as Fig. 5.11 at T = 170 MeV.

Figure 5.14: The initial perturbation δf given in Eq. 5.12 with n = 2 for pT = 1
GeV at η = 0.
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Figure 5.15: The power spectrum of the perturbation at T = 350 MeV for pertur-
bation shown in Fig 5.13. The red (black) line shows results for OG (MCG) initial
conditions for pT = 0.6 GeV/c

pressure gradients caused by the inhomogeneity acts in favor of reducing it during

the course of expansion from higher to lower temperature. Therefore, it is clearly

seen that the power spectrum of the system appears to be different at T = 250

MeV (Fig. 5.12) as the contribution from odd l are enhanced compared to its value

at T = 350 MeV (Fig. 5.11). We also note that Cl’s increase with lowering of

temperatures both for OG and MCG initial conditions (see later). It is well known

that smaller (larger) l’s resolve larger (smaller) angular anisotropy. The value of

l sets the angular scale, θl = π/l. The most interesting aspect is that at lower

temperatures (T = 170 MeV, Fig. 5.13), the power spectrum at odd l’s appear with

non-zero values. The enhancement of the odd l’s is a signature of the presence of

inhomogeneities in the initial condition. The increase in Cl’s for large l at lower

temperature (T = 170 MeV) indicates appearance of smaller angular fluctuations.
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Figure 5.16: Same as Fig 5.15 at T = 250 MeV

5.5.5 Power spectrum with perturbation

So far we have discussed the evolution of power spectrum created in the initial

collision dynamics. However, fluctuations represented by δf may be caused by

other sources also, e.g. propagation of jets through the medium may create such

fluctuations. Therefore, next we make some case studies on the propagation of

fluctuations by introducing perturbations, δf(~p, ~x, t) in phase space distribution. In

Fig. 5.14 the initial perturbation δf , obtained by solving BTE (Eq. 5.12 for n = 2)

has been displayed. We study the power spectrum of EdN/d3p for the perturbation

shown in Fig. 5.14. Cl at T = 350, 250 and 170 MeV, for both OG and MCG are

depicted in Figs. 5.15, 5.16 and 5.17 respectively for pT = 0.6 GeV. We recall

that inhomogeneity is more in MCG than OG initial conditions. Therefore, this

study gives us an opportunity to learn how the local fluctuations (due to δf) evolve

with the inhomogeneities in the expanding background i.e. how the inhomogeneous

background affects the evolution of perturbation.
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Figure 5.17: Same as Fig. 5.15 at T = 170 MeV.

We find that the spectrum with OG initial condition remains largely unaltered.

However, the amplitude of the spectrum with MCG initial conditions changed sig-

nificantly. For both the initial conditions Cl’s for odd l’s are small at large T . This

is because the perturbation, δf for n = 2 has a symmetry under the transformation

θ ↔ −θ indicating the dominance of even l through spherical harmonics. How-

ever, for MCG initial condition Cl with odd l appear to be non-zero. The presence

of non-zero inhomogeneity in the background in MCG initial condition breaks the

θ ↔ θ symmetry at lower T (later time) and consequently Cl’s with odd l’s appear.

Therefore, emergence of odd l’s in this particular case indicate the presence of inho-

mogeneous background. It is to be noted that for small perturbations, characterized

by δε/ε < 1 the Cl’s with perturbation are close to Cl’s without perturbation. The

power spectrum with perturbation at pT = 1.5 GeV are displayed in Figs. 5.18,

5.19 and 5.20. The amplitude of the spectrum is qualitatively similar but quanti-

tatively smaller at all temperatures compared to the case with pT = 0.6 GeV. We

find significant enhancement of odd l’s at T = 170 MeV.
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Figure 5.18: Same as Fig 5.15 for pT = 1.5 GeV/c
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Figure 5.19: Same as Fig 5.16 at T = 170 MeV
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Figure 5.20: Same as Fig 5.17 for pT = 1.5 GeV/c

5.5.6 Variation of Cl with T

(i) First we discuss the variation of Cl with T without perturbation. The variation

of power spectrum with T for different l has been displayed in Fig. 5.21. The Cl’s

for small l decrease with T monotonically at low T and reach a plateau at higher T .

The Cl’s for larger (smaller angular scale) l does not show much variation with T .

Similar quantities have been depicted in Fig. 5.22 for MCG initial condition. The

fall is faster in case of MCG initial conditions. In Fig. 5.23 the variation of power

spectrum with T for odd l has been depicted. We clearly observe that the Cl for

odd l falls faster with T as compared to even l. At small T (late time) fluctuation

with smaller angular scale appear.

(ii) Now we discuss the T variation of power spectrum with inclusion of perturbation

(δf) for even l (the values with odd l’s are very small). In Fig. 5.24 (Fig. 5.25) the

Cl is plotted as a function of temperature for pT = 0.6 GeV for OG (MCG) initial

condition. The variation is similar to case (i). This is because at low pT ∼ 0.6 GeV
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particles from background dominates, i.e. perturbation has hardly any effect.

Fig. 5.26 shows T variation of Cl without perturbation for particles with pT = 3

GeV. We find that Cl is smaller at low T than at high T because of the Boltzmann

suppression of pT = 3 GeV particles at low temperature in the background. However,

a very different T variation of Cl is observed with the introduction of pT dependent

perturbation as given in Eq. 5.13. In the intermediate pT we find non-zero Cl which

is arising entirely due to the presence of perturbations Fig. 5.27.

To study the dependence of Cl on the strength of perturbation we change δf such

that the corresponding δε/ε = 0.3. With this value of δf we estimate Cl and plot its

variation with T for different l in Fig.5.28. We find that with increase in strength

of perturbation the effect of background gets suppressed.

We have observed a similar behavior for OG initial conditions also. It is also ob-

served that the variation of Cl with T for odd l with and without perturbation look

similar. However, for even l the variation without (Fig. 5.26) and with (Fig. 5.27)

perturbation are distinctly different and this difference originates from the perturba-

tion with θ ↔ −θ symmetry introduced thorough initial δf . Therefore, this distinct

behavior of Cl in the presence of perturbation traces the non-equilibrium aspects of

the system.

5.5.7 Relation between flow harmonics and power spectrum

The η and pT dependence of various flow harmonics can be calculated from the

power spectrum using the following relation (see appendix B.2 for derivation):

2π
dN

pTdpTdy
vk =

∞∑

l≥k

√
2l + 1

4π

(l − k)!

(l + k)!

[
al,k + (−1)kal,−k

]
P k
l (cos θ)
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Figure 5.21: The temperature variation of power spectrum with OG initial condition
for different l values.

For example, the elliptic flow can be calculated by using values of P k
l as:

v2 =

(
dN

2πpTdpTdy

)−1

sech2η
[
a′22 + a′32tanhη + a′42(7tanh2η − 1) + .....

]
(5.20)

where

a′22 =
1

3

√
5

12π
a22, a

′
32 = 15

√
7

120π
a32, a

′
42 =

15

2

√
1

40π
a42, (5.21)

where alm is a function of pT and given by Eq. 5.18. The fluctuations in v2 and

its dependence on kinematic variables can also be estimated from the analysis of

EdN/d3p presented here. The fluctuations of other harmonics and its dependence on

pT , η can also be calculated using similar procedure. In principle this mathematical

expression will be very useful in estimating the fluctuations in various harmonics

due to perturbations.
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Figure 5.22: The variation of power spectrum for even l with temperature for MCG
initial condition.
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Figure 5.23: The variation of power spectrum for odd l with temperature for MCG
initial condition.
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Figure 5.24: The variation of power spectrum with temperature for OG initial
condition with perturbation at pT = 0.6 GeV/c (see text for details).
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Figure 5.25: The variation of power spectrum of even l with temperature for MCG
initial condition with perturbation at pT = 0.6 GeV/c (see text for details).
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Figure 5.26: Same as Fig 5.22 for pT = 3 GeV/c (without perturbation).
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Figure 5.27: Same as Fig 5.25 for pT = 3 GeV/c (with perturbation δε/ε ∼ 0.01).
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Figure 5.28: Same as Fig 5.27 for pT = 3 GeV/c, but the perturbation δf , corre-
sponds to δε/ε ∼ 0.3.

5.6 Summary and discussions

The hot and dense system formed in heavy ion collisions at relativistic energies has

been evolved using (3+1) dimensional relativistic hydrodynamics. The initial energy

density profiles required to solve the hydrodynamics has been derived from OG and

MCG models. The power spectrum of momentum distribution of particles due to

fluctuations in initial conditions for both OG and MCG models have been estimated

at different surfaces of constant temperatures following the analysis procedure that

is used for CMBR spectrum. This enable us to study the evolution of the power

spectrum with decrease in temperature and hence effectively with increase in time.

We observe that the power spectrum with OG initial conditions for central colli-

sions does not change significantly with the progression of time because the initial

system is symmetric. However, the power spectrum for MCG initial condition with

negligible values for odd l’s changes, showing non-zero values for odd l’s at later

time.
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The power spectrum for perturbation introduced through phase space distribution

which derive the system away from equilibrium has also been estimated. It has been

observed that the temperature variation of power spectrum with perturbation is dis-

tinctly different from the one without perturbation at higher pT - clearly indicating

the trace of non-equilibrium in the system. Such studies will help in constraining

the initial states [145, 146]. A relation between the power spectrum with the flow

harmonics has been derived. This relation can be used to estimate the pseudo-

rapidity and pT dependence of the flow harmonics. The power spectrum of phase

space perturbation can be used to estimate the fluctuations in flow harmonics and

its dependence on kinematic variables. The connection between the experiments

and the present type of works has been nicely discussed in Ref. [126].

In this work a general method for estimating the power spectrum of an expanding

fluid has been studied. It is also shown how the power spectrum of perturbation in

the fluid that is induced through phase space distribution can be calculated. The

input required for these calculations are the initial conditions and EoS for solving

relativistic hydrodynamical equations, initial conditions for solving Boltzmann equa-

tions governing the evolution of perturbations. In the present works these inputs

are taken for matter formed in RHIC-E.

The present work remained theoretical. However, experimental data from RHIC-E

on the invariant momentum distribution of particles as a function of pT , θ or η and

φ will be very useful to contrast this work with experiments.
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CHAPTER 6

Bulk Viscosity and Fluctuations

This chapter contains part of papers [81] and [147]. Here the evolution of cor-

relation of pressure perturbations in QGP and the use of this correlation in the

estimate of bulk viscosity of QGP is discussed. We have also estimated the bulk

viscosity of hadronic system for the purpose of comparison with the bulk viscosity of

QGP. Although a different method is used for estimation of bulk viscosity of hadron

resonance gas as discussed bellow.

6.1 Introduction

It is well known that hydrodynamics is the study of the slowly varying degrees of

freedom of the system involving continuity equations of the conserved charges of the

underlying microscopic interactions. Viscous relativistic hydrodynamics has been a

very successful framework to describe the evolution of the fireball created in heavy

ion collisions at relativistic energies (RHIC-E) with a few free parameters which are

extracted by fits to data [148,149].

T ij(i , j = 1, 2, 3) for a non-viscous hydrodynamical system 3.5 in the local rest frame
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is given by,

Tij = Pδij (6.1)

where P is the isotropic thermodynamic pressure of the system. In case of Navier

Stokes viscous hydrodynamics, the system’s response to the gradients of the fluid

flow four velocity uµ can be taken into account by viscous coefficients. Upto first

order in derivatives of uµ two such transport coefficients, namely shear (η) and bulk

(ζ) viscosities appear as,

Tij = Pδij + η

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij∇ · u

)
+ ζδij∇ · u (6.2)

That is the leading order correction (δTij) to the energy momentum tensor due to

dissipation is introduced through the shear (η) and bulk (ζ) viscous coefficients such

that Tij = Pδij + δTij. The two-point correlation function (δTij) is related to the

viscosities. The effects of these transport coefficients on the hydrodynamic evolution

of the strongly interacting fireball and on various observable in RHIC-E, e.g. the

elliptic flow, spectra of hadronic and electromagnetically interacting particles, etc

have been studied extensively [150–155]. The general consensus reached is that the

matter created in heavy ion collisions behaves almost like a perfect liquid [156–

160] with η/s close to the KSS (Kovtun, Son and Starinets) bound [161]. On the

other hand, the issue of bulk viscosity is far from settled. In the earlier works

the contribution of ζ was neglected. Inspired by the AdS/CFT correspondence,

the N = 4 supersymmetric Yang-Mills theory has been used by several authors to

estimate the shear viscosity of the QGP and other strongly correlated system [161].

The ζ/s is always zero in this approach. However, it is shown in [162] that ζ/s ∼ 0.1

for certain classes of black hole solutions. Moreover, the lattice QCD (LQCD) based

studies [163, 164] has indicated that the bulk viscosity could be as large as shear

viscosity at the vicinity of the QCD phase transition. Similar conclusions have also
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been drawn from calculations done by using QCD inspired effective models [165–167].

Thus, there have been studies where ζ was included into hydrodynamic simulations.

It was found that ζ affects the low momentum hadron spectra as well as the elliptic

flow significantly [168].

The phenomenological relevance of ζ has fueled efforts to estimate it by using various

models. In this work we provide an estimate of ζ for QGP by using the pressure

correlation estimated using the formalism discussed in Ch. 3, 4. ζ for hadrons has

been estimated within the ambit of HRG model which has been quite successful in

describing the low temperature QCD thermodynamics. Lately, bulk viscosity of the

hadronic medium has been computed in various schemes [169–176]. In this work we

intend to study the role played by the phase space in deciding the bulk viscosity of

the hadronic medium.

This chapter is organized as follows. In the next section discuss evolution of pressure

correlation in QGP phase as discussed in Chapter 4 and estimate the temperature

variation of bulk viscosity in QGP medium using evolution equation of fluctuations

and time correlation of pressure. Then discuss the the estimation of bulk viscosity

of HRG phase.

6.2 Correlation in pressure fluctuation and bulk

viscosity in QGP phase:

The auto-correlation function for fluctuation in pressure arising from perturbations

is defined as:

C∆P (r, t,∆φ) =

∫
dφ δP (r, φ, t) δP (r, φ+ ∆φ, t) (6.3)

We evaluate C∆P at fixed r(= 3 fm here) as a function of t and ∆φ. The solution of

δf has been used to estimate δP . The variation of C∆P with the angular separation
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Figure 6.1: The angular auto-correlation of pressure is shown at r = 3 fm as a
function of ∆φ. The ∆φ variation of CδP is displayed at different times such as 0.6
fm/c (blue) 1 fm/c (orange), 2.5 fm/c (green), 3.5 fm/c (red) and 4 fm/c (black line).

∆φ is plotted in Fig. 6.1 for perturbation with elliptic geometry (n = 2) of the

QGP background as discussed in section. 4.3 at different times as indicated. For

t = 0.6 fm/c the correlation function decreases with ∆φ attains a dip at ∆φ ∼ π/2

and again increases to produce a symmetric behavior about the dip. At t = 1

fm/c the ∆φ variation of C∆P is similar to earlier time with an overall reduction

in the magnitude. At a later time, t = 2.5 fm/c the C∆P evolves to a plateau.

This indicates that the power spectrum, [δ ˜P (k)]2 is a Dirac delta function. It is

also interesting to note that the C∆P at a given r and ∆φ decreases monotonically

with time i.e. the correlation becomes weaker in real space as the perturbation

reduces and the system approaches toward equilibrium with the progress of time.

The evolution of correlation in the pressure fluctuation is crucial for the study of flow

harmonics in RHIC-E. The angular differential pressure will give rise to various non-

zero flow coefficients like, elliptic flow. The measured anisotropy can be extrapolated

backward in time through theoretical model to characterize the early state of the

matter formed in RHIC-E.

The bulk viscosity of matter created in RHIC-E is a field of high contemporary

interest [177]. We use the current formalism to estimate the bulk viscous coefficient

(ζ). The fluctuations in thermodynamic quantities can be used to estimate various
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Figure 6.2: The variation of bulk viscosity to entropy ratio (ζ/s) as a function of
temperature.

transport coefficients. For example, the fluctuations in pressure (δP << P̄ ) deter-

mined by the δf (Eq. 3.25) can be employed to calculate the bulk viscous coefficient

(several methods have been employed in the literature to estimate bulk viscosity of

QGP some of these are discussed in [177]) of the quarks with thermal mass [178]

by using Green-Kubo relation [179] in the domain of linear response. The bulk

viscosity (ζ) is related to the correlation of time dependent pressure fluctuation as

follows [180]:

ζ =
V

T

∫ ∞

0

dt〈δP (t)δP (0)〉 (6.4)

We estimate the ζ by using this relation and compare the bulk viscosity to entropy

density (s) ratio as a function of temperature to the results obtained in Ref. [181]

in the strong coupling limit with two flavor NJL model (Fig 6.2). We observe that

the behavior of ζ/s in the high T (> 225 MeV) regime is similar to that obtained in

Ref. [181]. This is reasonable because the relaxation time used in the present work

has been estimated for weakly coupled QGP [105] which may be realized at the high

T regime. The ζ/s calculated in [181] rises very fast with lowering of T (for T < 225

MeV) due to multi-loop contributions, inclusion of such contributions is beyond the

scope of the present work. However, it has been verified that the ζ/s obtained here

is similar to the ζ/s reported in Ref. [181] with single loop contribution which may
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be a good approximation for weakly coupled system.

6.3 Estimation of bulk viscosity in HRG phase

6.3.1 Formalism

A fluid in equilibrium can fluctuate to a non-equilibrium state in many ways. De-

pending on the mode of fluctuation there is an onset of the corresponding dissipative

process to counter this fluctuation for maintaining the equilibrium. Within the ambit

of linear response theory, the medium response allows us to compute the transport

coefficients like η, ζ etc. As seen in Eq. 6.2, η is connected to the traceless part

of Tij given by Eq. 6.2 and ζ is related to the trace of Tij for a compressible fluid

warned by the presence of ∇ · u which is related to the rate of change of volume

(V ) associated with the uniform expansion or compression through the continuity

equation:

∂n

∂t
+ ~∇ · (n~v) = 0 (6.5)

substituting the density n = N/V in Eq. 6.5 (N is the total number and V is the

volume), one obtains ∇ · u = V −1dV/dt [169]. This also indicates that the bulk

viscosity will vanish for an incompressible fluid. The deviation in the pressure due

to change in the bulk not followed from the equation of state (EoS) can be connected

to the bulk viscosity as follows:

δP = ζ∇ · ~v (6.6)

In this work we will consider the situation where such flow field arises due to change

in hadron yield from the equilibrium number. For a single component hadron gas

94



CHAPTER 6. BULK VISCOSITY AND PRESSURE FLUCTUATION

assuming adiabaticity, it has been shown in [182] that:

δP =

(
∂P

∂n

)

ε

∂n

∂s
s∇ · ~vτR (6.7)

where τR is the relaxation time scale of the system, which is the inverse of the rate of

number changing process responsible to maintain chemical equilibrium. Now within

the HRG formalism, the total pressure P is given by sum over the partial pressure,

Pi due to each hadron species, i,

P =
∑

Pi (6.8)

Thus the fluctuation in the total pressure P can be expressed as

δP =
∑

i

δPi =

[∑

i

(
∂Pi
∂ni

)

εi

∂ni
∂si

siτ
i
R

]
∇ · ~v (6.9)

τ iR is the relaxation time of the species, i. The fluid flow velocity field, ui being a

hydrodynamic variable is same for all the hadron species. On comparing Eqs. 6.6

and 6.9, we find the expression for ζ

ζ =
∑

i

(
∂Pi
∂ni

)

εi

∂ni
∂si

siτ
i
R (6.10)

This relation can be used to derive the expression for bulk viscosity (see appendix C

for details) as,

ζ =
∑

i



(
∂Pi
∂T

) (
∂εi
∂µi

)
−
(
∂Pi
∂µi

) (
∂εi
∂T

)

(
∂ni
∂T

) (
∂εi
∂µi

)
−
(
∂ni
∂µi

) (
∂εi
∂T

)



[(

∂ni
∂T

)(
∂T

∂si

)
+

(
∂ni
∂µi

)(
∂µi
∂si

)]
siτ

i
R

(6.11)

In order to estimate τ iR we need to know the cross sections of all the possible processes

through which hadron, i interacts with all the hadrons and resonances. As all these
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required cross sections are not known presently and we are interested in studying the

effects of phase space on ζ, a constant cross sections for all the hadronic processes

is assumed in the spirit of Ref. [183] and treat the relaxation time as a constant to

write down the ratio ζ/τR as:

ζ

τR
=

∑

i



(
∂Pi
∂T

) (
∂εi
∂µi

)
−
(
∂Pi
∂µi

) (
∂εi
∂T

)

(
∂ni
∂T

) (
∂εi
∂µi

)
−
(
∂ni
∂µi

) (
∂εi
∂T

)



[(

∂ni
∂T

)(
∂T

∂si

)
+

(
∂ni
∂µi

)(
∂µi
∂si

)]
si(6.12)

Eq. 6.12 has been used to estimate the ζ for HRG in this work. Each term in Eq. 6.12

can be computed from Pi and its derivatives, where Pi is given by,

Pi =
T

V
ln Zi (T, V, µi)

=
∑

i

agi
2π2

T 4

∫ ∞

0

dxx2 ln

[
1 + a exp

[
−
(√

x2 +
(mi

T

)2

− µi
T

)]]
(6.13)

where a = −1 for mesons (Bosons) and +1 for baryons (Fermions). Consequently

the corresponding entropy density (si), number density (ni) and energy density (εi)

are given by,

si =
∂Pi
∂T

, ni =
∂Pi
∂µi

, εi = T
∂Pi
∂T
− Pi + µi

∂Pi
∂µi

(6.14)

It can be easily checked from Eqs. 6.12, 6.13 and 6.14 that when the hadron, i is

massless with εi = 3Pi then ζi vanishes as
(
∂Pi
∂T

) (
∂εi
∂µi

)
−
(
∂Pi
∂µi

) (
∂εi
∂T

)
= 0. Eqs.

6.13 and 6.14 can be used to reproduce the known thermodynamic expressions for

pressure, entropy density, number density, energy density, etc., both for relativistic

and non-relativistic limits. In turn these quantities can be used in Eq. 6.12 to

estimate the bulk viscosity to relaxation time ratio.

96



CHAPTER 6. BULK VISCOSITY AND PRESSURE FLUCTUATION

Figure 6.3: Variation of (ε− 3P ) /T 4 with T/ml for different values of the ratio of
the masses of the heavy to light particle, mh/ml for vanishing chemical potential.

6.4 Results

The bulk viscosity, ζ for a HRG system can be calculated by using Eq. 6.12 where

all the particles as listed in the Particle Data Book [184] of mass upto 2.5 GeV are

included. In order to understand the results for the full HRG, we first investigate

a system with single species of hadrons of mass, ml and then the other with two

different hadronic species of masses ml and mh with mh > ml. We study the

interplay of the two different mass scales on the temperature dependence of ζ and its

correlation with the CSB (conformal symmetry breaking) measure, ∆ = ε−3P [185].

We have plotted ∆/T 4 as function of T in Fig. 6.3 for systems with different com-

position and masses to elucidate the role of hadronic masses in ∆ and subsequently

in bulk viscosity (Fig.6.5). The curves in Fig.6.3 stand for different values of the

ratio, mh/ml. The qualitative features of the plots remain same when we replace

the bosons by fermions. Results displayed in Fig. 6.3 indicate that ∆/T 4 → 0 both

for the non-relativistic m/T >> 1 and massless limits m/T → 0. To understand

the variation of ∆/T 4 with T/m, first consider a system at temperature T with

single species of mass ml. In the high temperature limit the pressure-energy density
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Figure 6.4: Variation of the square of the speed of sound with T for zero and non-zero
net baryon density.

Figure 6.5: Variation of ζ/s with T/ml for different values of the ratio of the masses
of the heavy to light particle, mh/ml for vanishing chemical potential.
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relation becomes P = ε/3 giving rise to ∆ = 0. In the limit of large m/T (small

T/m) the CSB measure varies as: ∆ ∼ e−m/T , becomes vanishingly small. That is

for both small and large T , ∆→ 0, with an intermediary peak at T/ml ∼ 0.5.

Now we consider a two-particle system with masses ml and mh (mh > ml). First

consider the case with mh/ml = ∞. The heavier particle does not contribute to

the thermodynamics. Hence this is essentially a single particle system. We find a

single peak around T ∼ 0.5ml. Next, we plot for the case with mh/ml = 10. The

large separation in the masses of the two particles results in distinct two peaks at

T/ml ∼ 0.5 and T/ml ∼ 5 (i.e. at T/mh ∼ 0.5). For mh/ml = 5, similar structure

is found with closer peaks and reduced dip between the two peaks. We observe

that the peak associated with the lighter particle has converted to a shoulder-like

structure. Finally for mh/ml = 2, the peaks have partially merged and we are left

with only a single (broader) peak at T ∼ 0.5 (0.5ml + 0.5mh) = 0.75ml.

The presence of the massive hadrons does not allow the system to satisfy the relation

ε = 3P i.e. the conformal symmetry is broken for the entire range of T both for

zero and non-zero µB. This is evident from the estimation of the speed of sound

(c2
s) which remains below 1/

√
3 (Fig. 6.4) for the entire T range considered.

It is expected that the temperature and mass dependences of CSB discussed above

will be reflected on ζ/s as these quantities are correlated [186]. For demonstrating

the phase space dependence of ζ we assume τR ∼ 1 fm/c. The results are depicted

in Fig. 6.5. The peaks corresponding to the single and two particles systems (with

mh/ml = 2) get blurred. For mh/ml = 5 and 10 the peaks at lower T/ml get

smeared, however, for higher T/ml the peaks become broader but distinctly visible.

In summary, the ζ and ∆ have similar T -variation with broader peaks in the later

quantity. For a system with many particles the ζ will be a superposition of results

obtained for each of the different hadrons with their respective masses. We use

Eqs. 6.12, 6.13 and 6.14 to estimate the ratio ζ/τR for a system of single particles
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with mass m in the limits of m/T → 0 and m/T →∞. We find that ζ/τR ∼ (m/T )2

for m/T << 1 and ζ/τR ∼ e−(m−µ)/T for m/T >> 1, i.e. the bulk viscosity

vanishes both in the relativistic and non-relativistic limits - a well known result in

the literature.

Now we turn our attention to the HRG system. The study of HRG is important

because lattice QCD results indicate that at lower temperatures, the HRG is a good

approximation for the effective degrees of freedom of the strongly interacting matter.

Therefore, it will be very useful to study the properties of HRG if it is away from

equilibrium. We estimate the bulk viscosity of the HRG when it is slightly away

from equilibrium - a situation may be confronted during the evolution of matter

formed in nuclear collisions at relativistic energies.

The lightest hadron is the pion with mπ ∼ 140 MeV and the next hadron (kaon) is

heavier by about 350 MeV. The hadronic degrees of freedom are expected to survive

upto T ∼ 150 − 160 MeV. Thus, in this temperature domain, m/T >> 1 for all

hadrons except pion. This implies that for the full HRG system, we should expect

to see features qualitatively similar to the non-relativistic end of the plots in Fig. 6.5

i.e. we should see an increasing trend of ζ with T for constant τR.

In Figs. 6.6 and 6.7 we have displayed the temperature variation of ζ/ζ0 and

Rζ = (ζ/s)/(ζ0/s0) [ζ0 = ζ(T = 150 MeV) s0 = s(T = 150 MeV)] respectively

for different values of baryonic chemical potential, µ. Please note that in the ratios

of ζ the effects of the constant relaxation time get cancelled. We find that the bulk

viscosity increases with both temperature and baryonic density as expected from

the discussions above.

The results displayed so far may be improved by the following two considerations:

(i) by making the τR a T and µ dependent quantity. We have taken constant τR so

far, however, the relaxation time τR should depend on the thermodynamic state of

the matter, i.e. it should vary with T and µ. To get the T and µ dependence of τR
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we can use the relation,

τ jR =
1

∑
i σijni

〈pi〉
〈Ei〉

(6.15)

However, as mentioned above we will assume constant cross section i.e. σij = σ and

a single relaxation time for the system, τ jR = τR. We find that the relaxation time,

τR reduces with the T and µ i.e. the hotter and denser systems relax faster.

(ii) By including the Hagedorn density of states (HDS) [187, 188] for counting the

resonances at higher temperatures in estimating the bulk viscosity [189]. For this

purpose we have used the following mass spectrum in evaluating relevant thermo-

dynamic quantities:

ρ (m) =
∑

i

diδ (m−mi) +
a0

(m2 +m2
0)

5/2
em/TH (6.16)

where the first part is the standard discrete contribution from all the PDG resonances

while the second part is the additional contribution from the continuous HDS. di =

2Si+1 is the degeneracy due to the spin of the ith hadron with mass mi. a0, m0 and

TH are parameters extracted from fits of the HDS to the observed spectrum. Here we

have used a0 = 0.744 GeV3/2, m0 = 0.529 GeV and TH = 180 MeV as in [188]. The

thermodynamic quantities like the energy density (ε) may be calculated by using the

formula: ε =
∫
dmρ(m)

∫
d3p

(2π)3

√
p2 +m2f(p), where f(p) is the appropriate thermal

distribution for Bosons or Fermions.

With the inclusion of these two effects as described above the temperature depen-

dence of Rζ , the normalized bulk viscosity has been evaluated and the result is

displayed in Fig. 6.8. The T and µ dependence of τR has changed the results both

quantitatively and qualitatively. In sharp contrast to the results displayed in Fig. 6.7

the ratio decreases with temperature as observed also in Refs. [169, 170]. However,

we recall that the results depicted in Fig.6.8 contains temperature dependent τR

which decreases with T as: τ−1
R ∝ T 2e−m/T (due to T dependent density and av-
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erage velocity) for constant cross sections. This temperature variation seems to be

stronger than the T dependent growth of the right hand side (rhs) of Eq.6.12. As a

result the ratio, Rζ which is a product of these two factors - rhs of Eq. 6.12 and τR

decreases with T . The outcome of the present work has particularly been compared

with the results obtained by solving Boltzmann equation - in (a) relaxation time ap-

proximation with excluded volume effects in HRG [172] and (b) Chapman-Enskog

approximations for interacting pion gas [170]. At higher temperature all the results

converge. At lower temperature the results from different models tend to differ.

However, the outcome of the present work with the inclusion of HDS (solid line)

agrees well with the results of Ref. [170].

In Fig.6.9 the variation of CSB measure with temperature is displayed for HRG

system with (solid line) and without (dashed line) HDS. A significant enhancement

of CSB is observed for temperature above pion mass, more so for the case where

HDS are used in addition to the standard PDG hadrons. This is expected as the

inclusion of additional Hagedorn resonances result in a stronger breaking of the

conformal symmetry. We have compared the CSB measure obtained in the HRG

model with that of LQCD data and found good agreement upto about T ∼ 1.1mπ

which is the region of interest here. It is expected that the observed variation of

CSB with T will also reflect in the T dependence of ζ.

In RHIC-E, for a given
√
sNN a hot and dense medium is created with entropy, S

and net baryon number, NB. For an isentropic expansion of the system, the S/NB

ratio remains constant throughout the evolution. Therefore, the system will evolve

along a trajectory in the T−µ plane corresponding to a constant S/NB contour. We

use this evidence to evaluate ζ along the constant S/NB contours in the T −µ plane

for S/NB =30, 45 and 300. These values of S/NB may correspond to AGS (FAIR),

SPS and RHIC collision conditions [190] (see also [191]). The variation of Rζ with T

along these contours are depicted in Fig. 6.10. The relaxation time is estimated by

using Eq. 6.15 with the value of cross section, σ = π fm2 as in [183]. It is observed
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Figure 6.6: The temperature variation of ζ(T )/ζ0 is shown here with ζ0 = ζ(T = 150)
MeV.

that the magnitude of ζ/s at low temperature domain is higher for S/NB = 30

(corresponds to higher µ) compared to S/NB = 300. At higher temperatures the

values of bulk viscosity seems to converge for all the values of S/NB.

In RHIC-E the centre of mass energy (
√
sNN) can be connected to the values of T

and µ at the chemical freeze-out curve by analyzing the hadronic yields [192, 193]

as follows. In Ref. [193] the chemical freeze-out curve has been parametrized as:

T (µ) = 0.166 − 0.139µ2 − 0.053µ4 and the
√
sNN dependence of µ has been fitted

with µ = 1.308(1 + 0.273
√
sNN)−1. Using these parameterizations the normalized

bulk viscosity has been estimated and the results have been displayed as a function

of
√
sNN in Fig 6.11 with (dashed line) and without (solid) incorporating the HDS.

At high
√
sNN the inclusion of Hagedorn spectra does not make any difference,

however, at lower values of
√
sNN Hagedorn spectra enhances the bulk viscosity.

The important point to be noted here is that at lower beam energy the bulk viscosity

is larger (for larger µ). Therefore, ζ will play a more important role at FAIR than

LHC experiments.
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Figure 6.7: Depicts the temperature variation of the bulk viscosity to entropy density
ratio normalized to the value of the ratio at T = 150 MeV (see text) with constant
relaxation time.

Figure 6.8: Variation of Rζ (see text) as a function of T for hadronic resonances
upto mass 2.5 GeV with (red line) and without (blue dashed line) HDS including T
dependent relaxation time estimated by using Eq. 6.15. We have also displayed the
same quantity as obtained in other works [170,172].
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Figure 6.9: The variation (ε − 3P )/T 4 with T/mπ with (solid line) and without
(dashed line) HDS. A comparison has been made with continuum extrapolated (2+1)
lattice QCD data with physical quark masses [194].

6.5 Summary and discussions

The evolution of correlations of perturbation in pressure has been studied using the

solution of BTE and shown that the correlation between two points in real space

reaches a plateau at later time. We have used the calculated correlation in pressure

fluctuation to estimate the bulk viscous coefficient [180].

Using grand canonical ensemble the bulk viscosity of the hadronic medium has been

estimated within the ambit of the HRG model approach. The grand canonical en-

semble of HRG provides the mean hadron number as well as the fluctuations in the

chemical composition of the hadronic medium. These fluctuations grant a non-zero

divergence for the hadronic fluid flow velocity, offering an opportunity to evaluate

the hadronic bulk viscosity ζ up to a relaxation time. First we have considered

both single and two hadronic systems with different masses to exemplify the role of

hadronic masses on the CSB and bulk viscosity. Then we proceed to evaluate the ζ

for HRG model and eventually include the HDS in the calculations. We find that

the inclusion of HDS enhances the bulk viscosity of the system at lower
√
sNN . We

would like to note here that recently it has been shown that a considerable improve-
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ment in the HRG framework in describing LQCD data is obtained by simultaneous

inclusion of the HDS as well as a hard core repulsion between the hadrons within an

excluded volume approach [195]. In the low temperature domain (T ' 150 MeV) it

is found that the pressure and energy density estimated without excluded volume

effect remain within error bars of the lattice QCD results [195]. However, the agree-

ment with the energy density turns to be better at higher T with excluded volume

effect. We leave this interesting exercise about the simultaneous role of the finite

size of the hadrons as well as the HDS on the bulk viscosity of the hadronic medium

for the future. We also estimate ζ along the constant S/NB contours and find that

ζ/s is enhanced for lower S/NB. ζ/s has also been evaluated along the chemical

freeze-out curve obtained from the parameterization of hadronic yields [193] and

found that the ζ/s is larger at FAIR than LHC energy region. This indicates that

the bulk viscosity will play more crucial role in nuclear collision at FAIR than LHC

energies.

A few words on the T and µ dependence of the bulk viscosity arising from the

phase space factors are in order here. In the present work we have assumed a

constant σ for all the hadronic processes, however, in reality the situation could be

more complex with T and µ dependent cross sections to be considered for all types

of possible reactions undergoing in the medium. As mentioned earlier the cross

sections for the hadronic reactions involving all the resonances and Hagedorn states

are not known presently. Therefore, we have assumed a constant cross section [183]

and demonstrated the T and µ dependence of the bulk viscosity originating from

the phase space factors only. The lack of these cross sections does not allow us to

estimate the relaxation time from microscopic interactions. Therefore, we assume

that the relaxation time of a hadron h is τh = τR ± δh, where τR is the average

relaxation time scale of the full system and δh is the deviation of τh from it. In

this work, it is assumed that τR >> δh for all h. The deviation of a system from

equilibrium can be regarded as its response to some external perturbation.
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Figure 6.10: The variation of bulk viscosity to entropy density ratio (normalized at
T = 150 MeV) with temperature along constant S/NB contours for S/NB = 30, 45
and 300.

Figure 6.11: The variation of Rζ as a function of
√
sNN with (red line) and without

(blue line) HDS.
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Summary and Outlook

The evolution of perturbation in relativistic fluid introduced through the phase

space distribution function has been studied using Boltzmann transport equation

in relaxation time approximation. The perturbation evolves in an expanding QGP

background governed by (3 + 1) dimensional relativistic hydrodynamics. The relax-

ation time appearing in the solution of the Boltzmann equation is a temperature

dependent quantity. The space time dependence of temperature is governed by

relativistic hydrodynamics. Thus the perturbation is coupled to the background

through relaxation time.

We have derived a relation between the fluctuations in energy density with the

transport coefficients, e.g. shear viscosity and thermal conductivity. We have also

analyzed and demonstrated how the various Fourier modes of the perturbations get

mixed in an expanding background. It is shown that if a perturbation is created

near the boundary of the system then it has a better chance of getting detected.

The evolution of the power spectrum of the invariant momentum distribution of

particles has been estimated for Optical Glauber as well as Monte-Carlo Glauber

initial conditions. The power spectrum of the momentum distribution of the parti-

cles due to perturbations imparted through the phase space distribution have been
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evaluated at different surfaces of fixed temperatures(T). We observe that the non-

equilibrium effects introduced as perturbations in the phase space distributions can

be traced from the temperature variation of the power spectrum of particles of higher

transverse momentum which is distinctly different from the case of vanishing per-

turbation. A relation has been derived between the power spectrum and the flow

harmonics.

The evolution of correlation function for the perturbation in pressure has been stud-

ied and shown that the initial correlation between two neighboring points in real

space evolves to a constant value at later time which gives rise to Dirac delta function

for the correlation function in Fourier space.

The solution of the Boltzmann equation obtained here can be used to estimate

various other physical quantities. For example, we have used this solution to estimate

the fluctuation in pressure and subsequently the bulk viscosity of the QGP with

the help of Kubo relation. We find that the bulk viscosity is quite high at low

temperature (∼ 200 MeV).

The bulk viscosity of hadronic system has been calculated by using HRG model

and the Hagedorn density of states. The fluctuation in thermodynamic pressure has

been used to determine the ζ of QGP. The bulk viscosity to entropy ratio (ζ/s)

has been estimated by using HRG model and Hagedorn density of states. We have

studied the role played by the phase space in deciding the bulk viscosity of the

hadronic medium.. The bulk viscosity of hadronic system is found to decrease with

temperature. The result obtained here has been compared with other similar results

available in the literature.

Given the possibility to trace of the non-equilibrium effect in the power spectrum

analysis of momentum anisotropy of produced particles, it would be very interesting

to extend the analysis further and investigate such effects in actual data. In this

regard the focus of this work would be to investigate it further, and estimate and
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analyze the fate of different scales of fluctuations in QGP. This will help selecting

suitable events where non-equilibrium processes are less present, and hence extract-

ing hydrodynamic quantities like shear viscosity in a more unambiguous way. It can

also help to point out the nature of the origin of finite azimuthal anisotropy in most

central collisions.

The procedure presented in the present dissertation may be used to estimate tem-

perature fluctuation in little bangs. The fluctuation in temperature, ∆T in different

azimuthal bins (∆φ) can be calculated as follows. Since the average transverse

momentum (〈pT 〉) is directly proportional to the temperature of the QGP the fluc-

tuation in temperature in a bin ∆φ is given by the relation,

∆T

∆y
∼
∫ φ2

φ1

dφ

∫ ∞

0

pTdpT

∫
d3xδf (7.1)

Therefore, the ∆φ variation of temperature fluctuation in little bang i.e. for the

system formed in RHIC-E can be estimated analogous to the temperature fluctuation

in the universe in the recombination era. This analysis will help us justify the name

”little bang” that created in the laboratory in the collision of two nuclei at relativistic

energy.
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APPENDIX A

Correlations of Fluctuations

In this appendix, we evaluate the correlation, 〈∆(n̂1)∆(n̂2)〉. The fluctuations,

∆(~x, n̂, t) can be written as:

∆(~x, n̂, t) =
∑

l,m

alm(~x, t)Ylm(n̂), (A.1)

with alm = (−i)l4π
∫
d3n̂ Y ∗lm(n̂)∆(~x, n̂, t) and 〈alm.a∗l′m′〉 = Cl(~x, t)δll′δmm′ . Using

Eq. A.1 we can find the correlations in the following way,

〈∆(~x, n̂1, t)∆(~x, n̂2, t)〉 =
∑

l,m,l′,m′

〈alm.a∗l′m′〉Ylm(n̂1)Y ∗l′m′(n̂2),

=
∑

l,m,l′,m′

Cl(~x, t)δll′δmm′Ylm(n̂1)Y ∗l′m′(n̂2),

=
∑

l,m

Cl(~x, t)Ylm(n̂1)Y ∗lm(n̂2),

(A.2)

which leads to

〈∆(~x, n̂1, t)∆(~x, n̂2, t)〉 =
1

4π

∑

l

(2l + 1)Cl(~x, t)Pl(n̂1 · n̂2),

since, Pl(n̂1 · n̂2) = 4π
2l+1

∑l
m=−l Ylm(n̂1)Y ∗lm(n̂2). Eq. A.2 defines the correlations of
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fluctuations observed from two different directions in terms of co-efficient Cls. Cl’s

are the angular power spectrum which contains the information of the anisotropies.

Work is under progress to estimate these coefficients by solving the hydrodynami-

cal equations with the initial conditions taken from Glauber Monte-Carlo method.

Similarly, one can define these co-efficients corresponding to k-space presentation of

fluctuations. Time evolution of these co-efficients can be obtained from evolution of

energy density fluctuation, ∆(~k, n̂, t) given by Eq. 3.34. Therefore, we have

〈∆(~x, n̂1, t)∆(~x, n̂2, t)〉 =

∫
d3k

(2π)3

d3k′

(2π)3
ei(

~k−~k′)·~x 〈∆(~k, n̂1, t)∆(~k′, n̂2, t)〉 (A.3)

Now,

〈∆(~k, n̂1, t)∆(~k′, n̂2, t)〉 =〈∆(~x, n̂1, t0)∆(~x, n̂2, t0)〉L(~k, t0; ~k′, t0)

+ 〈Θ(~x, n̂1, t0)Θ(~x, n̂2, t0)〉M(~k, t0; ~k′, t0)

+ 〈∆(~x, n̂1, t0)Θ(~x, n̂2, t0)〉N(~k, t0; ~k′, t0),

(A.4)

where,

L(~k, t, ~k′, t0) =e−
2(t−t0)

τ {sin k(t− t0)

k(t− t0)
}{sin k′(t− t0)

k′(t− t0)
},

M(~k, t, ~k′, t0) =e−
2(t−t0)

τ

(
40

3

η

sT̄

)2

{sin k(t− t0)

k(t− t0)
+

3 cos k(t− t0)

(k(t− t0))2
− 3 sin k(t− t0)

(k(t− t0))3
}

× {sin k′(t− t0)

k′(t− t0)
+

3 cos k′(t− t0)

(k′(t− t0))2
− 3 sin k′(t− t0)

(k′(t− t0))3
}

N(~k, t, ~k′, t0) =e−
2(t−t0)

τ
40

3
(
η

sT̄
){sin k(t− t0)

k(t− t0)
}

× {sin k′(t− t0)

k′(t− t0)
+

3 cos k′(t− t0)

(k′(t− t0))2
− 3 sin k′(t− t0)

(k′(t− t0))3
}

(A.5)

For two functions ∆ and Θ, defining the correlation as: 〈∆(~k, n̂1, t)Θ(~k′, n̂2, t)〉 =

(2π)3δ(~k−~k′)δ∆Θ〈∆(k, n̂1, t)Θ(k, n̂2, t)〉 and ∆(~k, n̂, t) =
∑

l,m a
∆
lm(~k, t)Ylm(n̂), 〈a∆

lm.a
∗Θ
l′m′〉 =

C∆Θ
l (~k, t)δll′δmm′ , we get
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〈∆(~k, n̂1, t)∆(~k′, n̂2, t)〉 = (2π)3δ(~k − ~k′)
∑

l

2l + 1

4π
Pl(n̂1 · n̂2)

× {C∆∆
l (k, t0)L(k, t, k, t0) + CΘΘ

l (k, t0)M(k, t, k, t0)}.
(A.6)

Using 〈∆(~k, n̂1, t)∆(~k′, n̂2, t)〉 = (2π)3δ(~k − ~k′)
∑

l

2l + 1

4π
C∆∆
l (k, t)Pl(n̂1 · n̂2), in Eq. A.6 we get,

C∆∆
l (~k, t) = C∆∆

l (k, t0)L(k, t, k, t0) + CΘΘ
l (k, t0)M(k, t, k, t0). (A.7)

Using Eq. A.2, A.7 in Eq A.3, we get

C∆∆
l (~x, t) =

∫
d3k{C∆∆

l (k, t0)L(k, t, k, t0) + CΘΘ
l (k, t0)M(k, t, k, t0)} (A.8)

This provides the correlations at different angular scales at time t for a given corre-

lations at initial time, t0 (t > t0).
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APPENDIX B

Equations State Parameters and Flow

Coefficients

B.1 Parameters for EoS:

In this appendix we provide the expressions for fn’s appearing in Eq. 5.8.

f0 = 1 +
3Nf

32
(7 + 120µ̂2

q + 240µ̂4
q) (B.1)

f2 = −15

4

[
1 +

Nf

12
(5 + 72µ̂2

q + 144µ̂4
q)

]
(B.2)

f3 = 30

[
1 +

Nf

6
(1 + 12µ̂2

q)

]3/2

(B.3)

f4 = 237.223 + (15.963 + 124.773µ̂2
q − 319.849µ̂4

q)Nf − (0.415 + 15.926µ̂2
q + 106.719µ̂4

q)N
2
f

+
135

2

[
1 +

Nf

6
(1 + 12µ̂2

q)

]
ln

[(αs
π

)(
1 +

Nf

6
(1 + 12µ̂2

q)

)]

− 165

2

[
1 +

Nf

12
(5 + 72µ̂2

q + 144µ̂4
q)

](
1− 2Nf

33

)
ln M̂

(B.4)
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f5 = −
√

1 +
Nf

6
(1 + 12µ̂2

q)[799.149 + (21.963− 137.33µ̂2
q + 482.171µ̂4

q)Nf

+ (1.926 + 2.0749µ̂2
q − 172.07µ̂4

q)N
2
f ] +

495

12
[6 +Nf (1 + 12µ̂2

q)]

(
1− 2Nf

33

)
ln M̂

(B.5)

f6 = −
[
659.175 + (65.888− 341.489µ̂2

q + 1446.514µ̂4
q)Nf + (7.653 + 16.225µ̂2

q − 516.210µ̂4
q)N

2
f

−1485

2

(
1 +

Nf

6
(1 + 12µ̂2

q)

)(
1− 2Nf

33

)
ln M̂

]
ln

[(αs
π

)(
1 +

Nf

6
(1 + 12µ̂2

q)

)
4π2

]

− 475.587 ln
[(αs

π

)
4π2CA

]

(B.6)

B.2 Cl and vn:

In this appendix we derive a relation between anisotropic flow coefficients, vn and

the coefficients, alm. The pT distribution can be written as:

dN

d2pTdy
(pT , θ, φ) =

1

2π

dN

pTdpTdy

(
1 +

∞∑

n=1

vncos(nφ)

)
(B.7)

which can also be written as:

dN

d2pTdy
(pT , θ, φ) = N̄ +

∞∑

l=1

l∑

m=−l
almYlm(θ, φ) (B.8)

which leads to

1

2π

dN

pTdpTdy

(
1 +

∞∑

n=1

vncos(nφ)

)
= N̄ +

∞∑

l=1

l∑

m=−l
almYlm(θ, φ)

Multiplying both sides of the above Eq. by cos(kφ) and integrating over φ we get,
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∫ 2π

0

dφ cos(kφ)
1

2π

dN

pTdpTdy

(
1 +

∞∑

n=1

vncos(nφ)

)
=

∫ 2π

0

dφ cos(kφ)

(
N0 +

∞∑

l=1

l∑

m=−l
almYlm(θ, φ)

)

This gives

1

2π

dN

pTdpTdy

∫ 2π

0

dφ cos(kφ)
∞∑

n=1

vncos(nφ) =

∫ 2π

0

dφ cos(kφ)
∞∑

l=1

l∑

m=−l
almYlm(θ, φ)

Now vk can be expressed as:

1

2π

dN

pTdpTdy
vk =

∫ 2π

0

dφ cos(kφ)
∞∑

l=1

l∑

m=−l
almYlm(θ, φ)

Writing Ylm in terms of associated Legendre polynomials and eimφ we obtain,

1

2π

dN

pTdpTdy
vk =

∫ 2π

0

dφ cos(kφ)
∞∑

l=1

l∑

m=−l
alm

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)[cos(mφ)+i sin(mφ)]

Performing the φ integration we get,

1

2π

dN

pTdpTdy
vk =

∞∑

l≥k

√
2l + 1

4π

[
al,k

√
(l − k)!

(l + k)!
P k
l (cos θ) + al,−k

√
(l + k)!

(l − k)!
P−kl (cos θ)

]

On simplification we obtain the relation between the flow harmonics and al,k as:

1

2π

dN

pTdpTdy
vk =

∞∑

l≥k

√
2l + 1

4π

(l − k)!

(l + k)!

[
al,k + (−1)kal,−k

]
P k
l (cos θ)
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APPENDIX C

Phase Space Derivatives

In this appendix we will show in details the computation of the bulk viscosity. For

simplicity we assume that the state of the hadronic matter under consideration can

be described by two independent thermodynamic variables: i.e. temperature (T )

and baryonic chemical potential (µ). When we take partial derivative w.r.t. T it

is understood that µ is constant and vice-versa and hence we do not mention this

explicitly. The differential of P (T, µ) can be written as

dP =

(
∂P

∂T

)
dT +

(
∂P

∂µ

)
dµ

∂P

∂n
=

(
∂P

∂T

)
∂T

∂n
+

(
∂P

∂µ

)
∂µ

∂n(
∂P

∂n

)

ε

=

(
∂P

∂T

)(
∂T

∂n

)

ε

+

(
∂P

∂µ

)(
∂µ

∂n

)

ε

where
(
∂n
∂T

)
ε

=
(
∂n
∂T

)
+
(
∂n
∂µ

) (
∂µ
∂T

)
ε
,
(
∂n
∂µ

)
ε

=
(
∂n
∂µ

)
+
(
∂n
∂T

) (
∂T
∂µ

)
ε
. We have

(
∂T
∂µ

)
ε

=

− ( ∂ε∂µ)
( ∂ε∂T )

along the constant ε trajectory and finally ∂n
∂s

can be written as
(
∂n
∂s

)
=

(
∂n
∂T

) (
∂T
∂s

)
+
(
∂n
∂µ

) (
∂µ
∂s

)
. Thus, bulk viscosity to entropy density ratio in units of the
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relaxation time scale can be expressed as:

ζ

sτR

= −
(
∂P

∂n

)

ε

(
∂n

∂s

)

= −




(
∂P
∂T

)

(
∂n
∂T

)
−
(
∂n
∂µ

)
( ∂ε∂T )
( ∂ε∂µ)

+

(
∂P
∂µ

)

(
∂n
∂µ

)
−
(
∂n
∂T

) ( ∂ε∂µ)
( ∂ε∂T )



((

∂n

∂T

)(
∂T

∂s

)
+

(
∂n

∂µ

)(
∂µ

∂s

))

(C.1)

Now all the derivatives in Eq. C.1 can be evaluated starting from the expression

of lnZ within the HRG model. To begin with, the partition function Z (T, V, µ) is

given by

ln ZGC(T, V, {µi}) =
∑

i

gi
2π2

V T 3

∞∑

n=1

(∓1)(n+1)

n4
x2
iK2(xi)e

yi

The pressure P is obtained by operating T ∂
∂V

on lnZGC

PGC(T, V, {µi}) =
∑

i

gi
2π2

T 4

∞∑

n=1

(∓1)(n+1)

n4
x2
iK2(xi)e

yi

where xi = nmi/T and yi = nµi/T introduced for brevity in notation. Further the

derivatives of P are obtained as

(
∂PGC

∂T

)
=

1

V

{
ln ZGC +

1

T

(
EGC −

∑

i

µiN
GC
i

)}

(
∂PGC

∂µi

)
=

1

V

∑

i

NGC
i
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The particle number and its derivatives are given by

NGC
i (T, V, µi) = T

∂ lnZGC

µi

NGC
i (T, V, µi) =

gi
2π2

V T 3

∞∑

n=1

(∓1)(n+1)

n3
x2
iK2(xi)e

yi

(
∂NGC

i

∂T

)
=

giV m
2
i

2π2

∞∑

n=1

(∓1)n+1

n
eyi
[xi

2
K1(xi) + (1− yi)K2(xi) +

xi
2
K3(xi)

]

(
∂NGC

i

∂µ

)

T

=
Bigi
2π2

V T 2

∞∑

n=1

(∓1)(n+1)

n2
x2
iK2(xi)e

yi

The energy and its derivatives are given by

EGC(T, V, {µi}) = T 2∂ lnZGC

∂T
+
∑

i

µiN
GC
i

EGC(T, V, {µi}) =
∑

i

CiT
∞∑

n=1

(∓1)(n+1)

n2
eyi
[xi

2
K1(xi)

+ (1− yi)K2(xi) +
xi
2
K3(xi)

]
+
∑

i

µiN
GC
i

(C.2)

(
∂EGC

∂T

)

µ

=
∑

i

Ci
∞∑

n=1

(∓1)n+1

n2
eyi
[
x2
i

4
K0(xi) + (−xiyi + xi)K1(xi)

+(y2
i +

x2
i

2
) + 2(1− yi)K2(xi) + (−xiyi + xi)K3(xi) +

x2
i

4
K4(xi)

]
+
∑

i

µi
∂Ni

∂T

(C.3)

(
∂EGC

∂µ

)

T

=
∑

i

Ci
∞∑

n=1

(∓1)(n+1)

n
eyi
[xi

2
K1(xi)− yiK2(xi) +

xi
2
K3(xi)

]

+
∑

i

(
Ni + µi

∂Ni

∂µ

)
(C.4)
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where

Ci = gi
V T

2π2
m2
i (C.5)

Finally the entropy and its derivatives are given by

SGC(T, V, {µi}) =
1

T

{
EGC(T, V, {µi}) + PGC(T, V, {µi})V −

∑

i

µiN
GC
i (T, V, µi)

}

(
∂SGC

∂T

)
= −S

T
+

1

T

{(
∂EGC

∂T

)
+ V

∂P

∂T
−
∑

i

µi

(
∂NGC

i

∂T

)}

(
∂SGC

∂µ

)
=

1

T

{(
∂EGC

∂µ

)
+ V

∂P

∂µ
−
∑

i

Ni −
∑

i

µi

(
∂NGC

i

∂µ

)}

where we have used

∂

∂µ
=
∑

i

∂µi
∂µ

∂

∂µi

The speed of sound, cs can be used as a regulator for CSB. A system with c2
s → 1/3

will indicate the restoration of CSB. Therefore, we the expression to estimate, cs

within the ambit of present model is recalled below.

c2
s =

(
∂P

∂ε

)

s/nB

=

(
∂P

∂T

)(
∂T

∂ε

)

s/nB

+

(
∂P

∂µ

)(
∂µ

∂ε

)

s/nB

Now for constant s/nB, d(s/nB) = ∂(s/nB)
∂T

dT + ∂(s/nB)
∂µ

dµ = 0. This implies that
(
∂T
∂µ

)
s/nB

= −
∂(s/nB)

∂µ
∂(s/nB)

∂T

. Thus

(
∂ε

∂T

)

s/nB

=
∂ε

∂T
− ∂ε

∂µ

(
∂(s/nB)
∂T

∂(s/nB)
∂µ

)

(
∂ε

∂µ

)

s/nB

=
∂ε

∂µ
− ∂ε

∂T

(
∂(s/nB)
∂µ

∂(s/nB)
∂T

)
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Thus finally the expression for cs turns out to be

c2
s =




(
∂P
∂T

)
µ

(
∂ε
∂T

)
µ
−
(
∂ε
∂µ

)
T

(
∂(s/nB)

∂T

)
(
∂(s/nB)

∂µ

) +

(
∂P
∂µ

)
T(

∂ε
∂µ

)
T
−
(
∂ε
∂T

)
µ

(
∂(s/nB)

∂µ

)
(
∂(s/nB)

∂T

)


 .
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