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Introduction

Fragmentation of nuclei, also called ”multi-fragmentation”, is a phenomenon of prompt decay

of highly excited nuclear system to several fragments of different sizes. In heavy ion collisions

at intermediate energy, such an unstable excited intermediate nuclear system can be formed

due to collision of the projectile with the target, which then breaks-up instantaneously to

several fragments [[1]-[4]]. To understand the respective decay-mechanism and to explain the
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experimental data, various theoretical models have been developed. There are, mainly, two

distinct ways of approach, e.g., a) Dynamical approach simulating time evolution of the system,

b) Statistical approach assuming the system attains statistical equilibrium at some point.

The present study, using the statistical approach, can be classified into two sections:

i) Canonical-grand canonical ensemble transformation in connection with multi-fragmentation,

ii) Nuclear liquid-gas phase transition. The nuclear fragmentation is frequently described as

liquid-gas phase transition, where depending upon the excitation energy fragments can be in

liquid phase or in gaseous phase. a) The first part of the study introduces new observables that

show signatures of phase transition, which are easily accessible in experiment. b) The second

part is on the effect of hyperon on nuclear phase transition.

Canonical-Grand Canonical Ensemble Transformation in

Connection with Multi-fragmentation

In order to describe a situation from statistical point of view, one needs to take a collection of a

very large number of identically prepared system including all the micro-states, which is called

the ensemble. For a thermodynamic system this ensemble is defined by the constraints, which

the system is restricted to follow, and depending upon this one can consider any of the three

basic thermodynamic ensembles i.e.; micro-canonical, canonical or grand canonical ensemble.

For an isolated system having fixed volume V, total number of particles N and total energy E,

the ensemble to be considered is the micro-canonical ensemble. If the system is a closed system

but in thermal contact with the surroundings, it has a definite volume V and total particles N

but its total energy E can vary; now if the system is in statistical equilibrium, its temperature

T can be defined and that will take a constant value, then the system can be defined by (T,

N, V) and corresponding ensemble is the canonical ensemble. A more general situation is an

open system in thermal contact with the surroundings, which will have a fixed volume but not

the total energy or the particle number; such a system in equilibrium is defined by (T, µ, V)
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where the average of E or N has a definite value and are restricted by fixed T and µ (chemical

potential) respectively and the ensemble, in this case, one has to consider is the grand canonical

ensemble [5]. Therefore, for the statistical description of the fragmentation of nuclei, as the

fragmenting system in laboratory is practically an isolated system neither in contact with heat

reservoir nor with the particle reservoir, micro-canonical ensemble is the appropriate one.

In principle three ensembles converge for a macroscopic system at equilibrium in the thermo-

dynamic limit, so that one can be replaced by others [5] but for finite system they do not. So

for multi-fragmentation of finite nuclei, calculations considering different ensembles give differ-

ent results. Moreover these three ensembles have different levels of computational difficulties.

Calculations in grand canonical ensemble is the most easy as there is no restriction on E or

N. Canonical calculation is more easy than micro-canonical one; as in latter, there are two re-

strictions both on E and N though it is physically appropriate for the fragmentation of nuclei.

For this extreme computational difficulty in case of micro-canonical ensemble one generally use

canonical or grand canonical description of fragmentation [[1],[2],[6],[7]] and results successfully

describe the experimental data [[8]-[12]]. Among these two, grand canonical calculation is eas-

ier than canonical though latter is more appropriate. Now, if one can develop a mathematical

relation between the average values of any observable in three ensembles then one would get

the value of the average in other two ensembles when it is calculated in one ensemble. Thus

the difficulties related to the above mentioned restricted sum can be avoided. For a single com-

ponent ideal nuclear system such a relation between canonical and grand canonical averages of

any observable has already been developed [13] within some approximation. Here we have tried

to develop such a relation for realistic two component system to extrapolate canonical results

from grand canonical calculations. Then we have checked its validity using exact canonical

and grand canonical ensemble calculation since both the calculations can be done analytically

in thermodynamic models of multi-fragmentation. We have studied mass distribution, largest

cluster and other observables and the results are in good agreement except in regions which are

beyond the domain of validity.
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Nuclear Liquid-Gas Phase Transition

Liquid-Gas phase transition for ordinary water or any other substance is a very common phe-

nomenon. It is also well known that Van Der Waals equation of state and the Lennard-Jones

type interaction potential between molecules can successfully model such transition. This

similarity between inter-molecular interaction and nucleon-nucleon short range attractive in-

teraction with a hard core leads to expect the occurrence of such phase transition in nuclear

matter.

Liquid-gas phase transition in nuclear system has been studied over past few decades, both

in theoretical modeling as well as in experiment of nuclear multi-fragmentation, that establish

the existence of finite size counterpart of such transition from which one can extrapolate the

case of infinite nuclear matter [[14]-[18]]. In the phase transition study one generally examine

different thermodynamic variables like pressure, free energy and its temperature derivatives

which are related to entropy and specific heat, caloric curve. Theoretical models of nuclear

multi-fragmentation show signals of 1st order phase transition from these studies [[5],[19]-[21]].

Caloric Curves obtained from multi-fragmentation experiments give the signals of phase transi-

tion. Apart from this no direct experimental measurement is possible for other thermodynamic

variables such as free-energy or specific heat in this case. Moreover in caloric curve the mea-

surement of temperature is not unambiguous.

In this situation we have tried to find some other observables which can give the message of 1st

order phase transition and can be measured experimentally as well. We propose that the total

multiplicity of fragments produced in fragmentation of nuclei can be used to serve this pur-

pose. Total multiplicity ie., the total number of fragments produced in fragmentation, is a very

basic observable of multi-fragmentation and is measured in most of the multi-fragmentation

experiments. We have shown using Canonical Thermodynamical Model of nuclear multi-

fragmentation that, derivative of the total multiplicity with respect to temperature shows a

clear peak at transition temperature exactly like specific heat; thus multiplicity gives signature

of phase transition very successfully and predicts the same value of transition temperature as it

is from specific heat. We have also shown that these signals can be obtained from experimental

xiv



measurement as they persist after the secondary decay of the primary fragments. This implies

the cold fragments, that are detected by the detector, carry the signature of phase transition.

Another important observable is the size of the largest fragment produced in fragmentation

of nuclei, which is considered as a order parameter of nuclear phase transition. Probability

distribution of the size of the largest cluster shows double peaked distribution near phase

transition region, at transition point height of those are exactly the same. This is known in

the literature as bimodality of the distribution and is taken as a signature of 1st order phase

transition for finite system [[22]-[25]]. In recent days, bimodal behavior has been observed in

multi-fragmentation experiment of INDRA and ALADIN collaboration [[26],[27]]. But there

may be some uncertainties both theoretically and experimentally to identify the two peaks

of equal height, thereby the transition point, since the sharpness of the distribution becomes

fade due to finite size effect [28]. So we have done the similar study (as multiplicity), for this

latter observable, on its temperature derivative to get a clear view. In this connection we

also studied the normalized parameter a2 =
〈Amax〉−〈Amax2 〉
〈Amax〉+〈Amax2 〉

and its derivative with respect to

temperature. a2 is used as a measure of the bimodality [[29],[30]] where 〈Amax〉, 〈Amax2〉 are the

average size of the 1st and 2nd largest fragments produced in fragmentation respectively [23].

For one-component ideal system these give the same signatures as multiplicity. Sometimes,

experimentally, it is more advantageous to measure the size of the largest fragments or the

second largest cluster than total multiplicity.

Nuclear phase transition in presence of Λ hyperon

In peripheral collisions of relativistic heavy ions the Λ hyperons can be produced in participating

region, which may get attached with the spectator, forming a highly excited hyper-nuclear sys-

tem. This strange nuclear system may go through the process of multi-fragmentation. Therefore

we have studied how the hyperon can modify the situation.

Studies of fragmentation of normal nuclei have been extended to three component system

containing lambda hyperons with ordinary neutrons and protons. It has also been observed
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that liquid-like heavy hyper-fragments and gas-like small hyper-fragments co-exist in some

temperature range, that indicates liquid-gas type phase transition occurs in fragmentation of

hyper-nuclear system also, which is already established in case of normal nuclear fragmentation

[[31]-[34]].

Here we have extended that study of phase transition for hyper system, examined the behavior

of different thermodynamic variables e.g. entropy, specific heat, pressure over some temperature

interval and how their behavior get modified by the presence of hyperons. We have shown that in

this case the signals of phase transition get enhanced with a shift in the transition temperature.
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Chapter 1

Introduction

It has been a very long time since the curious human minds have been searching for the answers

to the questions such as; what is everything made of and what laws govern them. In this quest,

they do find that the level of fundamental constituent of matter depends on the amount of

energy used to probe it. Higher the energy, deeper into the matter it is possible to probe,

from atoms to the nucleus, nucleons to quarks [1]-[5]. Depending on the energy, dimensions

and complexity of the system, different phenomenon is experienced. The behaviour of nuclei

under extreme condition (of excess pressure, density, energy and temperature) is a fascinating

field of research in recent days. Such a condition may occur spontaneously in nature, and can

also be created artificially in a laboratory in the experiments of nuclear reaction with suitable

bombarding energy. Heavy Ion Collisions (HIC) at very high energies, ≈ a few GeV/nucleon

to TeV/n, produce the so-called ‘Quark-Gluon-Plasma(QGP)’ phase of matter [6], [7]. Our

universe at the early stage, just after the big-bang, is believed to exist in such state, and

according to some conjecture, the core of the neutron star may contain the matter in QGP

phase. At comparatively low bombarding energies, ≈ a few tens of MeV/n to a few GeV/n,

a very interesting phenomenon emerges in heavy ion collision, which is named as “Nuclear

Multifragmentation”. The phenomenon was observed to happen spontaneously, by the effect

of cosmic rays. The present work is devoted to the nuclear multifragmentation phenomenon,

and it is described in the next paragraph.
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Figure 1.1: An illustrative sketch of the events of nuclear multifragmentation.
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In the experiments of low energy nuclear collisions, depending upon the reaction energy, the

following scenario may occur. For the reactions with beam energy below 10 MeV/n, the com-

pound nucleus is formed due to the complete fusion of the target and the projectile nuclei. If

the excitation energy (ε∗) of this system is as low as, few MeV/n, the long-lived compound

nucleus will decay through either evaporation by successive emission of particles or fission. The

mechanism of these compound nuclear decay modes can be understood by the standard liquid-

drop model. At a higher excitation energy (≈ 2-3 MeV/n) emission of heavy nuclei (Z ≥ 2)

competes with the light particles (Z ≤ 2) emission. When the excitation energy is comparable

to the binding energy of the nucleus, ε∗ ≈ 5 − 8 MeV/n, the long-lived compound nucleus no

longer exists, and instead, the whole system decays through an explosion like process. The

time scale for such processes is ≈ 10−21 sec. The phenomenon of instantaneous disintegration

of a nucleus to multiple fragments of various mass is named as ‘nuclear multifragmentation’ [8]

where the term ‘multi’ stands for ‘more than two’.

1.1 Experimental Facilities

It is nearly a century ago when nuclear multifragmentation was first observed as a mysteri-

ous incident in the studies with the cosmic rays [9], [10]. Afterwards, during the 1950s, few

records of such events were registered in the laboratory experiments with accelerators [11],[12];

though the reaction mechanism, then, was not comprehensible. A systematic study of frag-

mentation of nuclei was not initiated until the 1980s when multiple fragment emission was

observed in a nuclear reaction of an emulsion target with the 250 MeV/n Carbon projectile in

Bevalac experiments at the Lawrence Berkeley Laboratory (USA)[13]. At present, the exper-

imental facilities for nuclear reactions at intermediate or high energies have been provided at

the Grand Accelerateur National D’ions Lourds (GANIL, France), the Gesellschaft fur Schwe-

rionenforschung mbH (GSI, Germany), the Superconducting Cyclotron at Laboratori Nazionali

del Sud in INFN (Catania, Italy), Joint Institute for Nuclear Research (Dubna, Russia), Riken

(Japan), National Superconducting Cyclotron Laboratory (NSCL) at Michigan State Univer-

sity (MSU, USA), Texas A and M Cyclotron (USA) etc. Experiments at these laboratories
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have enriched us with a lot of information regarding the fragmentation of the nucleus during a

nuclear reaction.

1.2 Theoretical Models

The ample resource of experimental data on intermediate energy nuclear fragmentation lead

to the theoretical investigations of this phenomenon. Several theoretical models have been

developed to understand the mechanism of the process, and to give a satisfactory explanation

of the data. According to the adopted reaction scenario, the existing theoretical studies can be

categorised, primarily, into two different approaches: i. Statistical approach and ii. Dynamical

approach, which will be introduced briefly in the following paragraphs.

1.2.1 Statistical Approach

The statistical model studies are based on the assumption that in the course of a reaction,

fragments, produced in the decay of the parent nucleus, attain a statistical equilibrium state

at some point. Then, the average quantities are calculated applying equilibrium statistical

mechanics to the (thermally and chemically) equilibrated system of fragments. The dynamical

evolution of a system, before the equilibrium is established, is not under the area of the studies

using statistical approaches. The present dissertation is entirely based on the statistical model,

so, a complete picture will be given latter. Here we are giving some historical remarks in the

field of statistical fragmentation. The statistical study of multi-nucleon clusters was initiated

by A. Mekijan [14] to describe the behaviour of a very hot nucleus. Later on, a grand canonical

model developed by J. Randrup and S. Koonin [15] made an foremost contribution to the sub-

ject. Microcanonical calculations were developed by D. H. E Gross and his co-workers [16] and

by Randrup and collaborators [17]. Statistical Multifragmentation Model (SMM) developed by

Bondorf et al. [18] in Copenhagen is another important model in this area and is extensively

used to compare experimental data. All these models need extensive numerical techniques.

A comparatively simple model based on canonical ensemble is Canonical Thermodynamical
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Model (CTM) [19] which can be implemented simply, without any complex numerical analysis.

Statistical models perform satisfactorily well to reproduce experimental data, but they alone

can not provide the complete information of the reaction at all the stages. Statistical models

overlook the dynamical stage of the reaction. Parameters in the statistical models, e.g., tem-

perature or the size of the fragmenting source are the inputs to the model, and can not be

derived in this framework, and therefore, the dynamical stage of a reaction before equilibration

needs to be explored.

1.2.2 Dynamical Approach

In the dynamical approach, the time evolution of the entire reaction process, collision, clusteri-

sation, and evolution of the fragments is studied. The dynamical models can explain collective

flow [20] , nuclear stopping [21], etc., and can provide the freeze-out conditions of statistical

approaches. Different dynamical models have been developed to describe HICs depending upon

the energy of the reaction, and how realistically the situations will be treated. Time-dependent

Hartree-Fock theory has been used for low energy Heavy Ion Collisions where the nuclear mean

fields are important in comparison to two body reaction dynamics. To describe intermediate

energy HIC, where the two body dynamics becomes significant besides the mean field, there

are mainly two types of microscopic dynamical models:

i. Boltzmann-Uehling-Uhlenbeck (BUU) Models [[22]-[26]]. In these semi-classical trans-

port models, mean-fields and hard collisions both are incorporated. The entire many-body

nuclear system of target and projectile of a nuclear reaction is approximated by a one-body

phase space distribution function f(~r, ~p, t), time evolution of which is governed by the BUU

equation,

∂f

∂t
+ ~v.∇rf−∇rU.∇pf = Icoll (1.1)

Where U is the mean-field potential and the term in the right-hand side is the collision integral

term that includes the Pauli blocking. For low energy collisions where the collision term in

the R. H. S can be neglected; the equation gives the Vlasov equation. But at the intermedi-
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ate energies, this collision term cannot be neglected, and the Eq. 1.1 needs to be solved. To

solve the equation, different numerical realisations have been employed, which leads to dif-

ferent transport models, e.g., Boltzmann-Uehling-Uhlenbeck, Boltzmann-Langevin equation,

Boltzmann-Nordheim-Vlasov, Landau-Vlasov. These transport models differ from one another

by the separate mean field parametrization U invoked or the execution of the test-particle

method.

ii. Quantum Molecular Dynamics (QMD) Models ([27]-[30]). This is an n-body micro-

scopic dynamical model which describes the formation of fragments in HIC in a more realistic

way. Here every nucleon is represented by a coherent Gaussian wave packet of width
√
L, about

the mean position ~ri(t) and mean momentum ~pi(t),

φi(~r, ~p t) =
1

(2πL)3/4
e−(~r− ~ri(t))/4L.ei~pi(t).~r/h. (1.2)

An initial n-body Wigner density is then constructed by these coherent states and time evolution

of the system is achieved by incorporating a generalized variational principle.

Based on this common primary structure, various QMD realizations have been developed which

differ in their detail descriptions, initialisation of the target and projectile. Such variants are

BQMD [31], [32] which was designed to give proper binding of a nucleus for the study of low

energy fragmentation, Isospin-QMD (IQMD) [[32]-[34]], which deals with the various nucleonic

charge states, deltas, pions. To present a Lorentz-covariant description of heavy ion reaction,

the relativistic formulation of QMD is relativistic quantum molecular dynamics (RQMD) [[35]-

[37]]. An antisymmetrized version of molecular dynamics is fermionic molecular dynamics

(FMD) which is a semi-quantal description that incorporates Fermi-Dirac statistics on the

many-body state level [38]. Another version of antisymmetrized molecular dynamics including

two-nucleon collisions is called AMD [39],[40].

Apart from the statistical and dynamical models, there are some other models like, lattice-gas

model [41], [42], probabilistic models [[43]-[49]], e.g., minimum information principle, percola-

tion model, which are used to describe the nuclear multifragmentation data. In addition, some
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hybrid models have been developed where different stages of a reaction are described by the

different approaches [[50]-[57]].

In this thesis, we will be using statistical models only, so we introduce a general reaction

scenario of a heavy ion collision at intermediate energy that has been adopted in almost all the

statistical models.

1.3 Physical Picture in the Statistical Approach

In an intermediate energy nuclear reaction experiment, the entire process of the reaction can

be, most generically, divided into three stages: i. Collision between projectile and target, and

thereby the formation of an intermediate hot chunk of nuclear matter, ii. The expansion of this

intermediate excited system and fragments production due to its break-up, iii. De-excitation

of these excited primary fragments.

We begin by considering a situation in a heavy ion collision experiment where the projectile

nucleus strikes a target nucleus. The nucleons from both of the nucleus begin to collide with each

other. After multiple collisions, they lose their identity, and form, as a whole, an intermediate

excited nuclear system which is called fragmenting system.

The target-projectile impact may cause an initial compression into this hot intermediate system

depending upon the beam energy. This initial compression, along with an internal pressure due

to the internal excitation energy in the system, results in an overall expansion. In the course

of expansion, the density fluctuation occur, and the composites start to develop in the higher

density portions. At this stage, nucleons interact with one another (at least with the nearest

neighbour) and mass, charge, energy transfer, rearrangement continues to happen between

different sections of the system. Very soon, the density decreases substantially so that the

mean free path of these processes becomes greater than the dimension of the system. At this

stage, nucleons on the surfaces of any two clusters are well separated, out of the range of

nuclear force (typically 2-3 fm) so that strong interaction between any two clusters ceases.

Here the break-up occurs, and fragments are emitted. At the time of the break-up, the average
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nucleon density decreases to 0.5 to 0.1 times the normal nuclear density (ρ0 =0.16 n/fm3).

The entire process of the fragment production is very fast. A typical time is 50-100fm/c (order

of 10−22 sec). Now the fragments interact with each other through Coulomb force only. At this

point, the whole system containing all the fragments is assumed to be in thermal and chemical

equilibrium. The chemical equilibrium is established in the sense that no further change will

occur in fragment contents within a single break-up. Now the equilibrated system is said to

attain a freeze-out condition. All the statistical model calculations start at this point, assuming

the system is at freeze-out. Equilibrium temperature of the system at freeze-out is called the

freeze-out temperature Tf , and the volume of the whole system containing all the fragments is

named as freeze-out volume Vf .

After freeze-out, the fragments evolve under the influence of Coulomb force. These fragments

are called ‘primary fragments’ or ‘pre-fragments’. They are, in general, excited, and therefore

particle unstable, and they lose excitation by sequential binary decay. The final cold frag-

ments after secondary decay are called ‘secondary fragments’, and the secondary fragments are

detected in the experimental detectors.

The fragmenting nucleus can break-up in various ways satisfying mass and charge conservation.

The number of such ways is connected to the partitions of the total charge (Z0) and mass (A0)

of the fragmenting source. For example, if we consider only the partition of the total charge

Z0, the number of partitions can be estimated from the Hardy-Ramanujan asymptotic formula

[58],

P (Z0) ≈ 1

4Z0

√
3
. eπ
√

2Z0/3. (1.3)

For Z0 = 100 one get P (Z0) ≈ 2.108. So, theoretically, the number of ways a nucleus can

fragment is huge.

Each particular way, in which a nucleus can disintegrate, is called a channel or a partition. At

an excitation energy 1−10MeV/n, all these extremely large number of decay channels open up,

and on this ground, the system is dealt with by using a statistical approach. In this approach, all

the possible decay channels are sorted out, and their relative probabilities are estimated. These
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probabilities are used to calculate the final mean values of the observables. According to the

statistical mechanics, the probability of a decay channel is proportional to its statistical weight,

i.e., the number of microstates under this break-up channel. This statistical weight is estimated

considering the constraints on total mass, charge, energy of the system. Further details can be

seen in Chapter 3 where the thermodynamic models of nuclear multifragmentation [19] have

been discussed. Before going into the subject of the present work, some important general

features of nuclear fragmentation are worth mentioning, which will be given in the following

section.

1.4 Characteristics of Fragmentation

1.4.1 Mass Distribution

0 3 0 6 0 9 0 1 2 01 E - 4
1 E - 3
0 . 0 1
0 . 1

1
1 0

 <n
A>

A

T = 4 . 7  M e V

T = 5 . 5 M e V
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Figure 1.2: Mass distribution of fragments produced in fragmentation of a system of charge
Z0 = 50 and mass A0 = 120 at three different temperatures T=3.5 MeV (solid line), T=4.7
MeV (dashed line) and T=5.5 MeV (dotted line) evaluated using CTM.

Mass distribution or multiplicity distribution means the variation of average fragment count

with fragment mass. The mass distribution of the fragments produced in the fragmentation

of a nucleus is crucial for the study of nuclear multifragmentation, and it is accessible in
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the experiments. It can clearly indicate the occurrence of fragmentation. A typical mass

distribution of fragmentation is shown in Fig. 1.2 for three different freeze-out temperatures

(T) for a fragmenting source Z0 = 50, A0 = 120. At low temperature T=3.5MeV, one get

the so-called ‘U’-shaped curve that indicates both heavy and low mass fragments are produced

in the fragmentation. At T=4.7 MeV, the curve deviates from U-shape, and one can observe

the notable presence of the intermediate fragments in between heavy and low mass limits.

This is because, at this temperature (excitation), the fragmenting source produces multiple

fragments. At a higher temperature, T=5.5 MeV, the curve becomes monotonically decreasing,

which indicates the production of small fragments only. Mass distribution plots at different

temperatures, thus, nicely indicate liquid or gaseous phase (explained latter) of the system

after fragmentation.

Figure 1.3: Variation of IMF multiplicity with incident beam energy in the central collision of
Kr+Au. [59]

1.4.2 Intermediate Mass Fragment (IMF) Production

The fragments, having charge greater than 2 and in between 20 to 30 (2 < Z < 20 to 30)

are termed as intermediate mass fragments (IMF). These are the fragments heavier than alpha
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but does not include fission like fragments. Production of IMF is a consequence of nuclear

multifragmentation events. Therefore count of such fragments is a key observable for multi-

fragmentation phenomenon. Variation of IMF number (〈NIMF 〉) with different beam energy is

shown in Fig. 1.3 [59].

1.4.3 Phase Transition

On several occasions, nuclear multifragmentation is described from the angle of the liquid-gas

phase transition in excited nuclear matter. Heavy mass nuclei are considered as a nuclear

liquid while nucleons and very light fragments are taken as nuclear gas. An early study of

multifragmentation process by Gross et al. [60] in the framework of the statistical model gave

first the possibility of a transition around 5 MeV temperature. Fragment mass distributions

at low temperatures are generally of U-shape (Fig. 1.2) indicating the presence of both heavy

mass and low mass fragments, and this is considered as liquid-gas coexistence. As temperature

increases, peak height in the large mass region begins to fall; the shape deviates from ‘U’. At

sufficiently high temperature, it becomes exponential in nature since more light fragments are

produced at a higher temperature. This can be interpreted as a passage over from co-existence

zone to the gas phase. The temperature where the peak in the greater mass region just begins

to decrease can be interpreted as transition temperature. The ordinary phase transitions are

defined for a macroscopic system (N ≈ 1023) in the thermodynamic limit. The nuclear system at

laboratory consists of at most a few hundreds of nucleons; therefore, the term ‘phase transition’

is not strictly valid in the finite nuclear system with long-range Coulomb interaction. But

the real nuclear system (atomic nuclei) is recurrently extrapolated to an idealised system of

nuclear matter. The nuclear matter is defined as an infinite sea (without surface) of neutrons

and protons interacting only through nuclear force where the Coulomb force is assumed to

be absent. Such a system gives liquid-gas type phase transition in many calculations. The

fragmentation of a finite nucleus is considered as a parallel to the phase transition in infinite

nuclear matter.
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These are some of the very basic features of multifragmentation, which will be referred often

throughout the thesis, while the major part of it is devoted to the last topic (phase transition).

Now we present a formal outline of the thesis.

1.5 Organisation of Present Work

In the present thesis, built on the foundation of Statistical Models of multifragmentation,

the focus has been on the following directions of fragmentation of the nucleus at intermediate

energy: i. Grand canonical to canonical ensemble transformation, ii. Search for new observables

showing signatures of phase transition, iii. Phase transition in the presence of hyperons within

the nucleus. Since the three are based on three different themes, in each case, an introduction

to the subject and motivation of the study have been presented at the starting of the respective

chapters. Most of the work, here, has been done using the canonical thermodynamical model;

at few places, grand canonical version of the thermodynamical model has been used. The thesis

has been organised as follows.

In Chapter 2, we discuss the introductory concepts of statistical physics, statistical ensembles

and ordinary phase transition in thermodynamic systems, briefly, since our latter works are

the perquisites of these basics. In Chapter 3, the thermodynamical models of nuclear multi-

fragmentation are discussed in detail. We derive all the important observables using canonical

and grand canonical models. In Chapter 4, we develop a relation between canonical and the

grand canonical average of any observable for a system consisting of two kinds of particles.

The relation is applied to approximate the canonical average value of multifragmentation ob-

servables, and the performance of the derived relation is judged, using the thermodynamical

models of fragmentation. In Chapter 5, we identify some fragmentation observables that show

the signature of the first-order phase transition. We propose that those observables are suit-

able for experimental studies of phase transition. In Chapter 6, we study the phase transition

in the hypernuclear system and try to find out the effect of hyperons in it. In Chapter 7,
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finally, we summarise all the results of this exploration, and indicate the provisions for further

improvement.
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Chapter 2

Statistical Physics: Overview

“Statistical mechanics is a probabilistic approach to equilibrium macroscopic properties of large

numbers of degrees of freedom” [1]. In this chapter we have tried to sketch an outline of the

basic concepts of statistical mechanics. Starting from the idea of equilibrium, we gradually

develop the theory of ensembles and see how the probabilistic approach is incorporated here.

In the context of this, we have discussed, briefly, the ideas of micro-states and macro-states,

phase-space representation etc.

In the beginning, one needs to clarify the system size in the background of statistical mechanics.

The term macroscopic is related to the size of the system of interest, and it means a large scale.

A macroscopic system is big enough (roughly greater than 1 micron) so that it could be observed

in the ordinary sense, at least with a microscope using ordinary light. On the other hand,

microscopic means small scale so that a microscopic system is one, the size of which is of the

order of atomic dimension or less (1 Angstrom or less). In statistical physics or thermodynamics,

all the systems of interests are macroscopic, consist of a large number of particles (of the order of

Avogadro’s number 1023). Therefore, it is time-honoured, for all theoretical purposes, to do the

analysis in the so-called ‘thermodynamic limit’, viz., N →∞, V →∞ so that particle density

(n = N/V ) remains fixed; all the extensive properties of the system will then be proportional

to the system size (N or V).
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2.1 Phase Space Representation and Definition of Equi-

librium

In thermodynamics, equilibrium means the particular situation where the state variables of a

system such as pressure (P), energy (E), temperature (T) etc. (which describe the macroscopic

properties of the system) are independent of time. To define it in a more sophisticated way,

one needs to consider the system from a microscopic point of view. At the microscopic level,

all the macroscopic objects are composed of interacting atoms or molecules. The interaction

between the atoms or molecules are known in principle, and their dynamics are governed by

the more fundamental laws (laws of classical or quantum mechanics).

We consider the simplest system of ideal gas consisting of N particles. At any time t, the

classical system can be completely described by specifying the instantaneous position ~q(t) and

momentum ~p(t) of each particle of the system. This set of information of the system from

the microscopic level, i.e., the microscopic configuration defines the micro-state of the system

at the time t. Thus, the definition of micro-state requires, for N-particle system, 3N position

coordinates q1, q2, ..., q3N and 3N momentum coordinates p1, p2, ..., p3N . The set of coordinates

(qi, pi), i=1, 2, ..., 3N, geometrically can be regarded as a point in a 6N-dimensional space which

is referred to as phase space Γ. A point (qi, pi) on the phase space is a representative point of

the system that represents micro-state µ(t) of the system at time t. Now, as time passes, all

the particles of the system change, continuously, their position, and momenta also get changed.

Thus the system switches from one micro-state to another, and the representative point moves

accordingly in the 6N-dimensional phase space. The trajectory of the point in phase space is

governed by the canonical equations of motion,

d~qi
dt

=
∂H

∂~pi
d~pi
dt

= −∂H
∂~qi

(2.1)

with i=1, 2, ..., 3N; where H (q, p) is the Hamiltonian of the system in terms of the set

of position coordinates q (q1, q2, ..., q3N) and momenta p (q1, q2, ..., p3N). Naturally,
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the trajectory, being restricted by the constraints of the system, remains confined within a

certain region in the phase space. The macrostate M of a thermodynamic system is defined by

prescribing the values of the state functions E, P, V, N etc. The macro-state cannot be defined

unless the system is in equilibrium. There are a large number of micro-states µ under the same

macroscopic configuration M. This ‘many-to-one’ connection between micro-states and macro-

states leads to consider a set (statistical ensemble which will be discussed latter) of micro-states.

Now if we consider a set of N copies of a given macro-state M, at a particular instant each having

different micro-state, i.e., each of them corresponds to a different representative point µ(t) in

the phase space Γ. Let there are dN(q, p, t) representative points within an elementary volume

dΓ =
∏N

i=1 d
3~qi d

3~pi around the point (q, p) in the phase space. Then phase space density or

the probability density is defined by the objective probability as,

ρ(q,p, t)dΓ = LimN→∞
dN(q,p, t)

N
. (2.2)

ρ is a normalized probability density,
∫

Γ
ρ dΓ = 1. In general, this probability density distribu-

tion is not uniform throughout the phase space Γ; in other words, all the representative points

are not equally probable. Therefore to obtain the value of any macroscopic quantity O (q,p, t)

from microscopic configurations, one needs to take an average over the entire phase space,

〈O(q,p, t) 〉 =

∫
Γ

O(q,p, t) ρ(q,p, t) dΓ, (2.3)

and thus the probabilistic description comes into the picture.

Now when a system is characterised by a particular micro-state µ, it is said that the system

is in a pure state. Again, when the description of the system is probabilistic, in terms of the

probability density function ρ(q,p, t) for a set of micro-states, the system is said to be in a

mixed state. For pure state, µ(t) in phase space changes continuously with time following

Eq. 2.1, so the definition of equilibrium cannot be given easily considering a pure state. While

for a mixed state, one can conveniently define the state of equilibrium in terms of the time

evolution of the phase space density, which follows the Liouville Equation.
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Liouville’s Theorem and Consequences

According to the Liouville’s theorem, the phase space density ρ(Γ, t) behaves like an incom-

pressible fluid and its time evolution is given by the equation,

dρ

dt
=
∂ρ

∂t
+ {ρ,H} = 0 (2.4)

Now, the time evolution of a macroscopic physical quantity can be evaluated as,

d〈O〉
dt

=
d

dt

∫
Γ

O(q,p) . ρ(q,p, t)dΓ (2.5)

=

∫
Γ

O(q,p)
∂ρ(q,p, t)

∂t
dΓ.

The ensemble will describe an equilibrium scenario i.e., the system under consideration will be

in equilibrium if the phase space average is independent of time, d〈O〉
dt

= 0. This can be reached

if ∂ρeq(q,p,t)

∂t
= 0 i.e., phase space density distribution is stationary. Thus we get the more basic

definition of a equilibrium state, where the distribution of probability density over the phase

space is independent of time; so that macroscopic quantities will take time-independent values

and the macro-states can be defined. From Liouville’s equation, this implies,

{ρeq, H} = 0.

A first possible ρeq that satisfy the above equation could be any function ρeq (q,p) =

ρ (H (q,p)), then it can be shown that

{ρeq (H) , H} (2.6)

=
∂ρ

∂H
{H,H}

= 0.

Then, at all the phase space points where H takes the same value, ρeq will also be equal.

The equilibrium probability density ρeq takes the same value over a constant energy surface

(H(q, p) = const.). It can also be shown that if there are other conserved quantities (Li(q,p)’s)
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apart from the total energy H, the equilibrium probability density function can be written as

ρeq (q,p) = ρ (H, L1, L2, ...Li...). The probability density will take the same value at all phase

space points where the conservations are maintained. In other words, all the accessible micro-

states, satisfying the conservation laws, are equally likely and is referred as postulates of “equal

a priori probabilities” of possible micro-states (this is the case of a micro-canonical ensemble

in next section); which is one of the basic postulates of statistical mechanics.

2.2 Theory of Statistical Ensemble

Consider a thermodynamic system at any time t, which is in equilibrium, i.e., in a definite

macro-state M. Now, the system is not a static one; it evolves with time. At the microscopic

dimension, all of its constituting particles are moving, and thereby, changing their positions

and momenta. Microscopic configuration changes continually as time passes. We know, there

are a very large number of accessible micro-states under a macro-state satisfying the same

macroscopic condition. As time evolves, the system switches from one micro-state to another

thus moves over all the accessible region of phase space. In this region, apart from the fixed

conserved quantities, other macroscopic observables can vary time to time leaving their time-

average value, over a sufficiently long time, stationary. What we observe is this time averaged

stationary values of the macroscopic observables. Naturally, all these micro-states are not

equally probable in general. The probability that the system will be in a particular micro-state

PM(µ) is proportional to how much time it spends in that state, i.e., within the volume element

around the corresponding representative point in phase space. So all we need is this probability

which is extremely difficult to obtain. In statistical mechanics, instead of studying the evolution

of a single system (pure state µ(t)) over a long time duration one considers a collection of a large

(theoretically infinite) number of identical copies of the given system at a particular instant.

Each system in this collection will then be characterised by the same macro-state M as the

original one but in different micro-states. This collection is known as the ensemble of micro-

states, and the probability PM(µ) is reflected in the phase space probability density function

ρ(q,p) (defined earlier). Time evolution of a system in equilibrium is, thus, represented by
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an ensemble of accessible micro-states in association with the correct probabilities PM(µ). In

other words time evolution can be represented by the distribution of probability density in phase

space. It is assumed that the average behaviour of an equilibrated system over a sufficiently

long-time is same as, therefore, can be replaced by, the average over ensemble. This is the so-

called ergodic hypothesis, one of the basic postulates of statistical mechanics. The primary aim

of the ensemble theory is therefore to estimate these probabilities (PM(µ)) for systems under

various equilibrium conditions (which leads to different representative ensembles). Then, one

can easily get all the average macroscopic observables of interest. Now we consider different

equilibrated system under different external conditions.

2.2.1 Isolated System: Microcanonical Ensemble

First, we consider an isolated thermodynamic system with a perfectly rigid and adiabatic wall

so that neither its energy nor the volume can be changed. The system, in this condition, is

completely isolated from its surroundings. It can be completely described by specifying its

total internal energy E, volume V and number of particles N. Thus, the macro-state M of

this system is defined by (E, N, V). The micro-states then lie on the constant energy surface

H(q, p) = E, as all the microstates are restricted to have the same energy. All the micro-states

of an isolated system in equilibrium are then equally probable and distributed uniformly with

uniform probability density distribution in phase space, ρeq(µ) = ρ(H) = const. Normalized

probability of any micro-state at equilibrium will be,

PM(µ) =
1

Ω(E,N, V )
, if H(µ) = E

= 0, otherwise (2.7)

Ω(E,N, V ) is the area of the constant energy surface in the phase space, which is proportional

to the number of phase space points. The representative set of micro-states of an isolated

system in equilibrium, distributed according to Eq. 2.7, is known as microcanonical ensemble.
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The entropy of the uniform probability distribution is given by,

S(E,N, V ) = kB log Ω(E,N, V ). (2.8)

2.2.2 Closed System: Canonical Ensemble

The next system of interest is a closed system with rigid diathermic walls which allow heat ex-

change but not particle exchange. The total number of particles in the system N and its volume

V are constrained to have fixed values. In equilibrium, the system will be at a temperature T

which is equal to the temperature of the surroundings. The total energy E of the system can

fluctuate, from E=0 to E=∞ in principle, but the average (Ē) of it over a reasonable time span

should be constant (independent of time). The macro-state of the system, therefore, is defined

by (T, N, V). The collection of all the accessible micro-states under M is called the canonical

ensemble. As the energy can fluctuate in the different members of the ensemble, we see that

from Liouville’s theorem, equilibrium phase space density ρeq(q,p) is not constant but varies

with energy ρeq(E). In other words, all the micro-states are not equally probable, but their

probability depends on the system energy PM(µ) = f(E). The correct probability, in this case,

can be obtained as,

PM(µ) =
e−βEµ

Z
(2.9)

where β = 1
KBT

, KB being the universal Boltzmann constant, Eµ is the energy of the system

at a micro-state µ. The normalization constant Z is given by,

Z =
∑
µ

e−βEµ (2.10)

which is the so-called canonical partition function or Gibbs partition function. One can es-

sentially calculate all the thermodynamic quantities if the partition function is known. To

get the probability, that the system has energy E at any moment t, one needs to add up the

probability of all the micro-states where the total energy is E, i.e., P (E) =
∑

µ(E) PM(µ). All
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these micro-states are equally probable, designated by the same Boltzmann factor e−βE. So,

it simply becomes, number of possible micro-states having energy E times the probability of a

micro-state having energy E (g(E)) and thus the probability is,

P (E) = g(E)
e−βE

Z
. (2.11)

Now g(E) is a rapidly increasing function of energy E. In the presence of a rapidly decreasing

factor e−βE, the product g(E) e−βE or the probability results in a sharp maximum at some

energy (most probable energy Ẽ). It can be shown that the probability shows a Gaussian

distribution. The probability, alternatively, can be written as,

P (E) = g(E)
e−βE

Z

=
1

Z
eS(E)/KB .e−βE [S(E) = kB log g(E)]

=
e−βF (E)

Z
(2.12)

Where F=E-TS is the Helmholtz free-energy. The probability P(E) has a maximum at the

most probable energy that minimises F. The partition function then can be given as,

Z =
∑
µ

e−βEµ

=
∞∑
E=0

g(E).e−βE

=
∞∑
E=0

e−βF (E)

≈ e−βF (Ẽ). (2.13)

In the last step, the summation has dropped because equilibrium P(E) distribution is sharply

peaked at Ẽ. Therefore, apart from the term corresponding to E = Ẽ, all other terms in the

summation contribute almost none. Average of any quantity can be calculated as,

〈O〉 =
∑
µ

O(µ)
e−βEµ

Z
. (2.14)
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Average energy can be obtained in terms of partition function as,

〈E〉 = −∂ logZ

∂β
(2.15)

and the energy fluctuation about mean,

〈(E − 〈E〉)2〉 = 〈E2〉 − 〈E〉2

=
∂2 logZ

∂β2

= −∂〈E〉
∂β

= kBT
2

[
∂〈E〉
∂T

]
V

= KBT
2CV , (2.16)

and it is related to the heat capacity (CV ). The relative fluctuation being O(N−1/2) is negligibly

small for a thermodynamic system, giving a very sharp peak in distribution. Then, the average

energy (〈E〉), the most probable energy (Ẽ) and the instantaneous total energy (E) become

interchangeable, so that the situation is practically the same as a micro-canonical ensemble

(Sec. 2.2.4).

2.2.3 Open System: Grand Canonical Ensemble

The most general consideration is an open system which is allowed to interchange both energy

and particle with the surroundings. The system continues to exchange energy with the sur-

roundings until a thermal equilibrium is established between them, where they both acquire the

same temperature T. Similarly, particle exchange will continue to happen between the system

and the surroundings until a chemical equilibrium is attained, which is governed by the chem-

ical potential µ. Chemical equilibrium is established between the system and the surrounding

when both of them have the same µ. At equilibrium, the total energy E or the particle number

N of the system can vary, in principle form 0 to ∞, but their average value over appropriate

time span should be constant and related to T and µ respectively. In this case, the macro-state

of the system is described by the variables (T, µ, V). The set of all accessible micro-states(r)
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under M, representing the system, is called grand canonical ensemble. The micro-states(r) in

the ensemble follow the probability distribution,

Pr(Er, Nr) =
e−βEr−βµNr

Zg
. (2.17)

Pr is the probability of rth micro-state having energy Er and particle Nr, and Zg is the nor-

malisation factor called Grand Partition Function, and it is given as,

Zg =
∑
r

e−βEr−βµNr . (2.18)

Average energy and particle number, in this case, will be,

〈E〉 = −∂ logZg
∂β

, (2.19)

and

〈N〉 = −∂ logZg
∂β

, (2.20)

similarly, all other quantities can be calculated. The grand partition function can be written,

alternatively, assembling all the micro-states r with the same number of particles (N) together,

in terms of canonical partition functions Q(T,N, V ) of different N as,

Zg =
∞∑
N=0

e−βµN
∑
r(N)

e−βEr(N)

=
∞∑
N=0

e−βµNQ(T,N, V ). (2.21)

Particle number distribution or the probability distribution of the canonical ensembles of dif-

ferent N is,

P (N) =
e−βµNQ(T,N, V )

Zg
. (2.22)
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The mean of this distribution is given in Eq. 2.19 and Eq. 2.20, and the particle number

fluctuation is related to the variance of this distribution,

〈(N − 〈N〉)2〉 = 〈N2〉 − 〈N〉2

=
∂〈N〉
∂(βµ)

. (2.23)

The relative fluctuation being of the order of O(N−1/2) vanishes for a large N at the thermo-

dynamic limit. The density (n=N/V) fluctuation can be shown from Eq. 2.23 as,

=
kBT

V
KT , (2.24)

where KT is the isothermal compressibility of the system. It is true for a thermodynamic system

that the fluctuation in N is negligible, which implies the probability distribution P(N) is sharply

peaked at a particular N (Ñ). So, the instantaneous total number (N), average number (〈N〉)

and Ñ become effectively the same, and the ensemble converges to the canonical one. The

grand partition function can, then alternatively, be written as,

Zg =
∑
N

e−βµNQ(T,N, V )

≈ e−βµÑ . Q(T, Ñ , V )

= e−βµÑ . e−βF

= e−β(F−µÑ)

= e−βG (2.25)

Where G(T, µ, V ) = E − TS − µN = −kBT logZg is the Grand Potential. In the second

line, the summation over N has dropped, and for a thermodynamic system, it can be correctly

approximated by the largest contribution from the term corresponds to Ñ(≈ 〈N〉).

2.2.4 Equivalence of Ensembles

We see that all the fluctuations, energy fluctuation in a canonical ensemble or the energy

and particle number fluctuation in a grand canonical ensemble become negligibly small for
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a thermodynamic system. So, the canonical and the grand canonical ensembles converge to

a micro-canonical ensemble where all the fluctuations are strictly zero, which implies all the

ensembles are equivalent to each other, and therefore will give the same result.

To elaborate the situation in a more physical terms, let us consider a closed system A which is

thermally connected to a heat reservoir. In that case, the energy of the system A will change

continuously with time due to the energy exchange between the system and the reservoir. The

net energy exchange will not be zero until the thermal equilibrium is established between the

system and the reservoir. Both the system and the reservoir will be at the same temperature

when the thermal equilibrium is reached. The energy exchange is still going on, but, in this

case, energy exchange over a sufficiently long period will be zero, and the energy of the system

fluctuates around a mean energy value. The micro-states of the system is then a physical

realisation of a canonical ensemble. For a macroscopic system (N is O(1023)), we have seen

earlier, the (relative) energy fluctuation at equilibrium, being O(N−1/2), becomes very small

(O(10−11)). So, at any time, the energy of the system at equilibrium will take a value, very

close to the mean value. Now, if system A is detached from the reservoir and is thermally

isolated from the surroundings, its total energy cannot vary and assumes a value very close to

the equilibrium mean value. This situation is different from the previous one in the sense that

the energy cannot fluctuate here but will remain constant. For most of the practical purpose,

though, the difference is irrelevant because all the mean values of the observables differ negligibly

in the two cases. For a macroscopic system in equilibrium, it is then unimportant whether the

mean values are obtained considering system as an isolated one, where all of its micro-states

having the exact fixed energy are equally probable, or a system in contact with a heat reservoir,

where micro-states are following the law of canonical distribution.

Similarly, when a macroscopic system is in contact with the reservoirs where it can exchange

both energy and particle, relative energy or particle number fluctuations around their mean

values become negligibly small. So, the physical properties of the system do not get changed

considerably if the system is detached from the reservoir, and remains isolated where its energy

and particle number are strictly fixed. Thus in a macroscopic system for all practical purposes,

where only the mean values are important, there are no significant differences between the
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situations, whether it is an isolated system or in thermal contact with a heat reservoir or in

contact with a reservoir with which it can exchange both energy and particle. Therefore, one

can conclude for a macroscopic system in equilibrium can be described by any of the three

ensembles and the three ensembles are equivalent to each other.

However, the situation is quite different and not true in the presence of a phase transition. We

see that the energy fluctuation is related to the specific heat CV (Eq. 2.16) and particle number

fluctuation is related to isothermal compressibility KT (Eq. 2.23), and both of them diverge

when the system passes through a 1st order phase transition. Then energy and particle number

fluctuations diverge, and the ensembles become completely inequivalent.

2.3 Phase Transition

One of the most important goals of the statistical mechanics is to derive the equation of state

of a thermodynamic system starting from the microscopic level, considering its constituent

particles and interaction between them. Derivation of the equation of states of any ordinary

substances and thus explaining their condensation or solidification, i.e., the transition from one

phase to other is one of the primary interests of statistical mechanics. We briefly discuss phase

transition for ordinary substances here since these concepts will be used in latter chapters where

the phase transition of the nuclear system will be studied. The phase of any substance can

be defined as a spatially homogeneous state of aggregation [2]. The state of a homogeneous

thermodynamic system (a single phase) is defined by any two of the thermodynamic variables,

volume V and energy E say, but the vice versa is not true in general. Not every given set

of values of E and V corresponding to the state of a system in thermodynamic equilibrium is

homogeneous. In fact, for a given (E, V) pair two distinct (homogeneous) phases of a substance

can exist, simultaneously, in contact, maintaining thermodynamic equilibrium between them.

This is known as the co-existence of two phases and main characteristics of the first-order phase

transition. The condition for equilibrium between two phases can be obtained [2] as, i. The
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Figure 2.1: A typical P - T phase diagram of a ordinary substance

temperatures of the two phases are equal, T1 = T2. ii. Pressures in two phases are equal,

P1 = P2. iii. Chemical potentials for the two phases should be the same, µ1 = µ2.

State of a thermodynamic system at any phase can be described by any two of the thermo-

dynamic variables, but it is conventional to show the phase diagram either in P-T or P-V

plane. A typical P-T diagram that most of the materials follow is shown in Fig. 2.1. In the

figure solid, liquid and vapour phases are represented by S , L, V respectively. Three lines,

each separates two corresponding phases on the two side, are phase equilibrium lines along

which the corresponding two phases exist simultaneously. Chemical potentials (which is equals

to the Gibbs free energy per particle for a single component system) for two phases become

equal on phase equilibrium curve. For example, consider liquid and vapour phases, and chem-

ical potentials are expressed as a function of pressure and temperature. In the region of P-T

plane denoted by L, the chemical potential for the liquid phase is smaller than the vapour

phase, µL(P, T ) < µV (P, T ) and the system will be in the liquid phase. On the other side, the

chemical potential for vapour phase is smaller than the liquid phase, µL(P, T ) > µV (P, T ) in

the region V and the system will be in the vapour phase. Along the phase equilibrium line,
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Figure 2.2: P Vs. V Phase diagram

µL(P, T ) = µV (P, T ), liquid coexists with vapour for all (P, T). Three phase equilibrium curves

meet at a point called the triple point where solid-liquid-vapour these three phases co-exist

together. The liquid-vapour coexistence curve terminates at a point called the critical (Tc)

point where the distinction between liquid and vapour phases vanish. Above the critical point,

i.e., P > Pc and T > Tc only a single super-fluid phase exists.

The phase diagram in the P-V plane is shown in Fig. 2.2 where isotherms at several temperatures

are drawn. The incompressible liquid phase, liquid-gas co-existence phase and vapour phase

are indicated in the figure. At the low volume region, where the curves fall off almost vertically,

is the region of incompressible liquid. The higher volume region, where the curves give a

hyperbolic nature, is the vapour region. In between these two regions, isotherms are parallel

to the volume axis, i.e., here pressure remains constant as volume increases. At this region,

the liquid-gas phase transition occurs, and liquid and gas co-exist simultaneously. If a certain

amount of energy is added to the system at this condition, the energy is then used as latent heat

and convert some amount of liquid to vapour. As temperature increases, this parallel portion
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Figure 2.3: Variation of temperature (T) with energy (E) supplied to the system in case of an
ordinary liquid.

of the curve, i.e., phase co-existence region becomes smaller and ultimately at the critical point

this region becomes extinct. Theoretical equation of state for a real gas was given by Van

Der Waals [4], and more rigorous treatment was done by Mayers [5] in his theory of cluster

expansion. Two-body interaction with the Van der Waals potentials can give an approximate

equation of state of real gas and explains phase transition. The order of phase transition,

according to Ehrenfest, is determined by the lowest order of the derivative of free energy that

shows a discontinuity. Now, free energy can be obtained in the method of statistical mechanics

from partition function (Q) of the system, F = −kT lnQ where F is the Helmholtz free energy.

Plot showing the variation of F with temperature should be continuous. Its slope, i.e., 1st

order derivative of F with respect to T gives a discontinuity at transition point if the system

undergoes a 1st order phase transition. Entropy of the system is connected to the slope,

S = −T
(
∂F

∂T

)
V

(2.26)

so entropy gives a finite discontinuity at the transition point. The discontinuity in S can be

understood in terms of latent heat. The first-order transition involves latent heat, which is

the energy required to convert a substance solely from one phase to another without affecting

its temperature. This latent heat contributes to entropy and causes the discontinuity. It is
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evident from the above discussion that the second derivative of the free energy will diverge at

the transition point. The second derivative is connected to the physical observable specific heat

at constant volume (CV ),

CV = −T
(
∂S

∂T

)
V

(2.27)

= T 2

(
∂F

∂T

)
V

. (2.28)

Therefore, CV also diverges at the transition temperature.

A very well known curve, in connection to the phase transition, is Temperature Vs Energy

curve (Fig. 2.3), and it is known as caloric curve. There is a region at low (T, E) values where

the system is in a phase, say ‘A’, and where the temperature of the system increases linearly

with the energy E supplied to the system. When T reaches a certain value the curve becomes

parallel to the X-axis, T becomes constant even if energy is supplied to the system. Then the

energy added to the system does not cause an increase of T but converts the system from phase

“A” to phase “B”, and this energy is termed as latent heat. At the end of this flat line, the

whole system in phase “A” is converted to phase “B”, and after that the temperature of phase

“B” again rises linearly if energy is added further.
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Chapter 3

Statistical Models of Fragmentation of

Nuclei

In nuclear multifragmentation, the projectile collides with the target, form a highly excited

compound system which then decays, instantaneously, to several fragment nuclei (primary

fragments). Then the whole system evolves with time, and finally reaches to a freeze-out

condition. We know that for higher excitation energy, the system can decay in a large number

of ways, so the statistical approach is reasonable. In this case, we are not interested in the

exact dynamical process through which the fragments are produced. Our system of interest is

the fragments at freeze-out where they are assumed to be in chemical and thermal equilibrium.

According to Sec. 2.2, one needs to consider an ensemble of a large number of events giving all

possible modes of decay. Then one needs to obtain the corresponding probability of occurrence

of each decay channel correctly so that all the thermodynamic observables of the system can be

evaluated taking an average on the ensemble. Now the probability of each decay mode contains

a transition probability part from initial to final state and a phase space part, i.e., statistical

weight. In the first part, the value of the relative matrix element is of the order of unity. The

number of open decay channels, on the other side, is very large, so that the statistical weight

part varies several orders of magnitude from channel to channel. The transition probability part

can be, therefore, neglected compared to the statistical weight. According to the statistical

49



model, the probability of a particular decay channel is solely given by its statistical weight

[1]. Let there are N possible decay channels in the ensemble satisfying all conservations and

a particular decay channel is given by ‘y’. Thus, ‘y’ can vary from 1 to N, and the statistical

weight corresponding to the channel y is wy. Any physical quantity O, having value Oy in the

channel y, will have the average value over the ensemble (y; y=1,N),

〈O〉 =

∑N
y=1 Oy . wy∑N
y=1wy

. (3.1)

Now we consider different statistical ensembles and proceed accordingly.

3.1 Micro-Canonical Model

A micro-canonical ensemble, according to Sec. 2.2.1, is where all the micro-states in the ensemble

strictly obey the conservation of energy and particle number. So, for a fragmenting system given

by mass A0, charge Z0, total energy E0 and freeze-out volume Vf , the conservation conditions,

that each of the micro-states is restricted to follow, are given by,∑
A . nAZ = A0∑
Z . nAZ = Z0

Ey = E0

All the micro-states are, therefore, equally probable so that the statistical weight of each par-

tition or channel (wy) will be determined by the number of micro-states under that partition

(Ωy). The number of micro-states in this case can be given in terms of entropy as,

Ωy(A0, Z0, E0, Vf ) = exp [Sy(A0, Z0, E0, Vf )] (3.2)

thus,

wy ∝ exp [Sy]. (3.3)
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The normalized probability of a particular channel is given by,

Py =
exp Sy∑
y exp [Sy]

; (3.4)

denominator being the normalization constant. The implementation of this model is extremely

difficult due to the constraints over energy and particle number, and require extensive computer

simulation to obtain the break-up channels. There are some micro-canonical model calculations

based on Monte Carlo sampling [[1]-[4]]. In the present work, we will not use any micro-canonical

calculation.

3.2 Canonical Model

First, we shall describe the one component Canonical Thermodynamical Model [6], where we

consider an ideal system of identical particles (nucleons) without distinguishing between neutron

and proton. Then we extend it to the two-component case of real nuclei considering iso-spin.

3.2.1 One Component Canonical Thermodynamical Model

Consider an excited nuclear system of A0 identical nucleons formed due to the collision in a

nuclear reaction. This system, due to its high excitation energy, has expanded to a volume

higher than normal nuclear volume Vf , produces fragments. In due course, the system contain-

ing all the fragments attains the freeze-out condition where the whole system is assumed to be

in thermodynamic equilibrium, and the temperature of the system is T. The system can break

up into various possible channels. In one channel, let there are

n1 number of clusters of mass=1, i.e., monomer;

n2 number of clusters of mass=2, i.e., dimer;

n3 number of clusters of mass=3, i.e., trimer;

. . . . . . . . . . . . . . . . . . . . . . .;

ni number of clusters of mass=i;

. . . . . . . . . . . . . . . . . . . . . . .;
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nA0 number of clusters of mass=A0.

The set of numbers (n1, n2, n3, . . ., ni, . . ., nA0) represents this particular channel. The

other possible channels can be obtained varying the values of the numbers n1, n2, n3, . . .

nA0 , maintaining the conservation. For the canonical ensemble, the total number of particles is

conserved and is equal to A0. i.e.,

A0∑
i=1

i.ni = A0. (3.5)

According to the statistical model assumption, the weight of a channel is proportional to the

corresponding available phase space volume. Now, for the channel (n1, n2, n3, . . . nA0), at

freeze-out condition, non-interacting fragments (n1 monomers, n2 dimers, n3 trimers, etc.) are

enclosed within a volume Vf at temperature T.

For ‘n’ non-interacting identical particles within a volume V, the partition function of the

system will be,

Qn =
ωn

n!

where ω is the partition function of one particle. For a spin-less particle with no internal

structure,

ω =

∫
d3~x d3~p

h3
. e−βε [ε =

p2

2m
]

=
V

h3
.(2πmT )

3
2 .

m is the mass of the particle, V is the volume available to each particle for free motion and ‘n!’

is the correction factor of Gibbs paradox.

For the channel (n1, n2, n3, . . ., ni, . . ., nA0), there are ni identical non-interacting clusters

of size ‘i’ and for them, the partition function is,

(ωi)
ni

ni!
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where ωi is the partition function of a i-size cluster. For monomer, i=1, as it is a spin-less

structureless particle (nucleon), the partition function is,

ωi =
V

h3
.(2πmT )

3
2 .

m is the mass of the particle (nucleon), and V is the volume available for each fragment for

their free motion. So, the partition function for the channel (n1, n2, n3, . . ., ni, . . ., nA0) is

Qy =
(ω1)n1

n1!
.
(ω2)n2

n2!
. . .

(ωi)
ni

ni!
. . .

(ωA0)
nA0

nA0 !

=

A0∏
i=1

(ωi)
ni

ni!
. (3.6)

Therefore the total partition function considering all the channels,

QA0 =
∑
y

Qy

=
∑
y

A0∏
i=1

(ωi)
ni

ni!
(3.7)

where the sum is over all the possible channels, restricted by the constraint Eq. 3.5. The

probability that the channel (n1, n2, n3, . . ., nA0) will occur is,

Py(n1, , n3, ..., nA0) =
Qy

QA0

=
1

QA0

.

A0∏
i=1

ωnii
ni!

.

The average number of fragments of size ‘i’, i.e., average multiplicity is given as,

< ni > =
∑
y

ni . Py(n1, n2, n3, ..., nA0)

= ωi .
∂ lnQA0

∂ ωi
. (3.8)

It can be shown that

∂ QA0

∂ ωi
= QA0−i.
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So that,

< ni >=
ωi . QA0−i

QA0

. (3.9)

Now, using Eq. 3.5, we arrive at,

QA0 =
1

QA0

.

A0∑
i=1

i ωiQA−i. (3.10)

Starting from Q0 = 1, Q1 = ω1, one can easily calculate the partition functions for systems of

different size using Eq. 3.10. This recursion relation makes the computation of CTM very easy.

For a system like say 3000 particles of one kind, it takes a few seconds for partition function

calculation on a normal computer. Otherwise, it is very difficult to calculate it using the basic

equation Eq. 3.7 due to the summation over possible channels. Once the partition function is

evaluated, one can get all the thermodynamic observables.

Up to this, the treatment is very general. Now we enter into the nuclear physics regime. We

write down the explicit expression for ω, which will carry the nuclear physics input. At freeze-

out, now, nuclear fragments are non-interacting, no interaction potential (except Coulomb for

real nuclei) is involved between the fragments so that they move freely within the freeze-out

volume. They have kinetic energies due to the translational motion (motion of the centre of

mass) as well as internal energies since they have internal structures. So, the partition function

has two parts, one is the translational part (ωt), and the other is the internal one (qi), and this

will be,

ωk = ωkt . q
k
i . (3.11)

Translational part, as we have mentioned earlier, for a fragment of size ‘k’ is

ωkt =
V

h3
. (2 πmCM T )3/2 (3.12)

where mCM is the mass of the fragment = m. k, m is the mass of one nucleon.

V is the volume available to the fragments for their free translational movement. This point

needs a bit of illustration. We know nuclear force has a hard core (repulsive at short range) so
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any two nucleons cannot penetrate each other so as two nuclear fragments. Therefore, when a

number of nuclear fragments are enclosed within a volume Vf at freeze-out, the whole freeze-out

volume Vf will not be available to any fragment for its free motion; available volume (V) should

be somewhat less than Vf . Remembering the concept of Van der Waals correction, V = Vf−Vex
where Vex is the amount of reduction and is termed as ‘excluded volume’. According to our

assumption, at the freeze-out condition, the fragments are beyond the range of the nuclear

force. So, there is no nuclear interaction between any two fragments, though they interact

through the excluded volume. Hard core nature of nuclear force is incorporated in the model

through this excluded volume. This excluded volume depends on total multiplicity, i.e., number

of fragments present in the system, but a reasonable first approximation is Vex = V0 [7], [8].

V0 is the normal nuclear volume of A0 nucleons and is equal to A0/ρ0, ρ0 being normal nuclear

density, ρ0 = 0.16 n/fm3. Throughout our calculation, this excluded volume is assumed to be

constant, independent of multiplicity and is equal to V0. This assumption will not be valid for

a non-dilute system. Therefore, in this model, there is a restriction, quite arbitrarily, on the

volume that Vf ≥ 2V0.

In the Intrinsic part, if k=1, qki = 1. For all other fragments, k ≥ 2, as the system is assumed to

be at a constant temperature T, in contact with a heat reservoir at a fixed volume, qki = e−f/T .

Where f is the free-energy of the individual cluster, f = E−TS, S being entropy, and E is the

total internal energy of the fragment, which can be written as a sum of ground-state binding

energy (EB.E.) plus excitation energy (E∗), E = EB.E.+E∗. Entropy and excitation energy are

taken from the Fermi-Gas model, S = 2aT and E∗ = aT 2, where a = k/ε0 is the level density

parameter. ε0 is a constant, its value is taken to be 16 MeV. Ground-state binding energies are

taken from the Liquid-drop model as,

EB.E. = −W0 k + σ(T ) k2/3. (3.13)

These are the volume and surface terms, respectively. All the other terms are absent because

this is a single component system, and the Coulomb interaction is switched off. W0 = 16 MeV
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and σ(T ) is the temperature dependent surface term, given as [1],

σ(T ) = σ0 .

[
T 2
c − T 2

T 2
c + T 2

]5/4

, (3.14)

where σ0 = 18 MeV, and Tc = 18 MeV. The temperature dependence is taken because fragments

are excited, and at a finite temperature T, not in the ground state at absolute zero. Many works

[9], [10] show surface tension decreases with increasing temperature and ultimately goes to zero

at a critical temperature (Tc). Now, intrinsic free-energy will be,

f = E − TS

= EB.E. + E∗ − TS

= −W0 k + σ(T )k3/2 + aT 2 − 2aT . T

= −W0 k + σ(T )k3/2 − k

ε0
T 2

[
a =

k

ε0

]
and the intrinsic partition function will be,

qki = e−f/T

= exp

[
1

T

(
W0 k − σ(T ) k2/3 +

k

ε0
T 2

)]
The final expression of the internal partition function of a fragment of size ‘k’ is,

ωk =
V

h3
(2 πmk T )3/2 . exp

[
1

T

(
W0 k − σ(T ) k2/3 +

k

ε0
T 2

)]
(3.15)

Thus, we get the total partition function of the system, and now we can calculate all the relevant

observables, some of them are given below.

Multiplicity

Multiplicity means the total number of fragments. The average multiplicity of a particular

fragment (Eq. 3.9) is

< ni >=
ωi . QA0−i

QA0

,
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and the total multiplicity (M), i.e., the average total number of fragments produced in the

fragmentation is

〈M〉 =

A0∑
i=1

〈ni〉 .

The individual and total multiplicities are very basic observables in nuclear multifragmentation

and can be measured in the experiment. The total multiplicity is, also, significant in the context

of nuclear phase transition, which will be discussed later.

Energy

Average energy carried by a fragment of size-i is ,

〈Ei〉 = −∂ ln ωi
∂ β

= T 2 .
∂ ln ωi
∂ T

=
3

2
T + i

(
−W0 +

T 2

ε0

)
+ i2/3

(
σ(T )− T ∂σ

∂T

)
, (3.16)

where the first term is due to the centre of mass motion, and the others come from the intrinsic

part of ωi. The energy of the entire system can be given by,

〈E〉 = −∂ lnQA0

∂ β

and using Eq. 3.7 and Eq. 3.8 it can be shown that,

〈E〉 =

A0∑
i=1

〈ni〉 . 〈Ei〉 . (3.17)

Thus we get an expression for energy at a given temperature T, and this gives the caloric curve

of a nuclear system which is measured in the experiment.
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Pressure

Thermodynamic pressure of the whole system can be obtained as,

P =
1

β
.
∂ lnQA0

∂ V

=
T

V

∑
〈ni〉 . (3.18)

Largest Cluster

If a channel has the largest cluster of size Zmax, this means there is at least one fragment of size

Zmax present in the channel, and no fragment present with the size greater than Zmax. The size

of the largest cluster varies from channel to channel. The size can vary from 1 (where the entire

system breaks up into nucleons) to A0 (where the fragmenting system remains unexploded

giving a single stable nucleus). Hence, each size has a finite probability of being the largest one

when we consider all the possible channels. The average size of the largest fragment produced

in fragmentation is therefore given by,

〈Zmax〉 =

A0∑
Zmax=1

Zmax . P r(Zmax) (3.19)

where Pr(Zmax) is the probability of getting size Zmax as the largest. To calculate this prob-

ability, we need to know the total partition function for those channels where size Zmax is

the largest one. Now, for the total partition function considering all the possible channels,

different channels consist of different number of monomers (ω1), dimers (ω2),..., ωi,...up to

a fragment as large as size-A0 (ωA0). So the total partition function is built up with all

ω′s, up to ωA0 and therefore, represented as QA0(ω1, ω2, ω3, . . ., ωA0). Thus, here we in-

clude all the channels where the size of the largest cluster can be 1 or 2, or, ..., up to A0.

Similarly, consider QA0(ω1, ω2, ω3, . . ., ωZmax , 0, 0, 0, . . . 0), which is built up with ω1, ω2,...,

ωZmax , 0, 0, 0,...,0. This is the total partition function including those channels where the

size of the largest cluster can be 1, 2, 3, . . ., up to Zmax. Again, consider another one

QA0(ω1, ω2, ω3, . . ., ωZmax−1, 0, 0, 0, . . . 0), which represent the total partition function, con-
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sidering those channels where the size of the largest cluster can be 1, or 2, or... up to (Zmax−1).

In the second case, all the previous channels are being considered, excluding only those where

the size of the largest cluster is exactly Zmax. The difference, we define as,

∆QA0(Zmax) = QA0(ω1, ω2, ω3, ..., ωZmax , 0, 0, ...0)−QA0(ω1, ω2, ω3, ..., ωZmax−1, 0, 0, ...0),

therefore, gives the total partition function, including only those channels where the largest

cluster has Zmax nucleons. This is valid for all Zmax except Zmax = 1. For Zmax = 1, i.e., where

each fragment is an individual nucleon, not cluster, the total partition function of the channels

having largest cluster 1, is ∆QA0(Zmax = 1) = QA0(ω1, 0, 0, ..., 0). So the probability will be,

Pr(Zmax) =
QA0(ω1, 0, 0, 0, ...0)

QA0(ω1, ω2, ω3, . . ., ωA0)
, if Zmax = 1

and

Pr(Zmax) =
∆QA0(Zmax)

QA0(ω1, ω2, ω3, . . ., ωA0)
if 2 ≤ Zmax ≤ A0.

Thus, we get the average size of the largest cluster. This size will depend on the temperature,

freeze-out volume, etc., and therefore has a significance in the context of phase transition in

the nuclear system.

3.2.2 Two Component CTM

Now we switch to the case of real nuclei and extend the Canonical Thermodynamical Model

to the two-component scenario [6]. We assume a similar system as before; the only difference

is that there are total N0 neutrons and Z0 protons instead of all identical nucleons, but the

total number is A0. Here the fragments are real nuclei consisting of protons and neutrons. So

each fragment is identified by two integers (i, j), giving the number of constituent protons and

neutrons, respectively. For different composites ‘i’ runs from 0 to Z0, and ‘j’ from 0 to N0

though all combinations of (i, j) are not possible; only those combinations, which are within

neutron and proton drip lines, give the real nuclei. The partition function for a composite

having i-protons and j-neutrons will be ωi,j instead of ωi, and the number of such fragments in
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a particular channel is ni,j. The set of numbers {ni,j}, i.e., (n1,0, n0,1, n1,1,...ni,j,...), satisfying

two conservation equations, represents a channel. In this case, the conservation equations are∑
i,j

i . ni,j = Z0 (3.20)

for protons and ∑
i,j

j . ni,j = N0 (3.21)

for neutrons, where the sum runs over all possible composites. The two-component picture

is slightly different because of the presence of Coulomb interaction as nuclei carry Coulomb

charges. The fragments are not free in this case. The partition function of a particular channel

cannot be written as the product of the partition function of the individual fragment as before.

The Coulomb interaction between the fragments is, though, managed by some realistic approx-

imation (Wigner-Seitz approximation). So here we write all the expressions and equations as

before. The total partition function can be written, from analogy to Eq. 3.7, as

QA0 =
∑∏

i,j

ω
ni,j
i,j

ni,j!
(3.22)

where the product is over all possible composites, and the sum is over all possible channels

satisfying the conservations. The average multiplicity can be written as,

〈ni,j〉 =
ωi,jQZ0−i,N0−j

QZ0,N0

, (3.23)

and using Eq. 3.20 and Eq. 3.21, we get two recursion relation as,

QZ0N0 =
1

Z0

.
∑
i,j

i . ωi,j . QZ0−i,N0−j (3.24)

and

QZ0N0 =
1

N0

.
∑
i,j

j . ωi,j . QZ0−i,N0−j. (3.25)
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The partition function of a particular composite is

ωi,j =
V

h3
. (2πmCMT )3/2 . qi,j (3.26)

where mCM = (i + j) .m = A .m, A being the mass number of the nuclei. qi,j is the internal

partition function, and this will be, as before,

qi,j = e−f/T

where

f = E − TS

= EB.E. + E∗ − 2aT 2.

Ground state binding energies (EB.E.) are taken from the liquid drop model [6],

EB.E. = −W0A+ σ(T )A2/3 + κ
i2

A1/3
+ s

(i− j)2

A
, (3.27)

and excitation energies from the Fermi-Gas model [6], E∗ = aT 2 = A
ε0
T 2. So,

qi,j = exp

[
1

T

(
W0A− σ(T )A2/3 − κ i2

A1/3
− s(i− j)2

A
+
A

ε0
T 2

)]
. (3.28)

Liquid drop model is not applicable for the low mass nuclei, as low as A=2,3 etc.; so we have used

this model for A > 4. For A ≤ 4 nuclei, only ground states have been considered, and ground

state binding energies are taken from experimental values along with spin degeneracy 2s+1. In

Eq. 3.28, one can identify each term as, volume term W0 = 15.8MeV , temperature-dependent

surface tension term, given explicitly in Eq. 3.14 with σ0 = 18.0MeV , Tc = 18.0MeV , Coulomb

energy term (Liquid drop model κ = 0.72MeV but here its value is slightly modified (see

Appendix A)), the symmetry energy term s=23.5 MeV and the last one is the contribution

due to excitation. Besides thermodynamic equilibrium, the most important assumption is that

the fragments are free, non-interacting. But in the case of real nuclei, this assumption is not

true. At freeze-out, no short-range nuclear interaction is present between the fragments. But

the nuclei carry charges and the Coulomb is a long-range interaction, so the fragments are not
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free but interacting with each other via Coulomb. Each fragment feels the Coulomb potential

of all the other fragments. This interaction is not treated exactly in this model but through

some approximation. One writes down all the expressions, as those are in one component case,

treating as if the fragments are non-interacting. Then, one includes the Coulomb interaction,

using Wigner-Seitz correction, modifying the Coulomb energy term in the liquid drop formula.

So the next step is to calculate the modified Coulomb energy for each fragment using the

approximation, which will be discussed in Appendix A. The total Coulomb energy of the

entire system, from Appendix A (Eq. A.6), can be written as,

EC =
3

5
.
Z2

0e
2

Rf

+
∑
i,j

3

5
.
i2e2

Ri,j

(1− R0

Rf

), (3.29)

where R0 is the normal radius, Rf is the radius of the whole system at break up, and Rij is

fragment radius (depends on fragment mass A=(i+j) only.) The first term in the expression

has no significance as the freeze-out volume is constant, and the contribution from the second

term needed is to be added in the expression of the corresponding qij. Finally, we see,

κ = κ0 .
i2

A1/3
.

[
1−

(
ρ

ρ0

)1/3
]

(3.30)

where κ0 = 0.72MeV.

Now, the average multiplicity of (i, j) is,

〈ni,j〉 = ωi,j
QZ0−i,N0−j

QZ0,N0

(3.31)

and the total multiplicity will be,

〈M〉 =
∑
ij

〈nij〉 . (3.32)

All other observables can be obtained similarly as that have been given for the one-component

system.
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3.3 Two Component Grand-Canonical Thermodynami-

cal Model

In this case, we consider a similar excited nuclear system as before, but here we assume that

the system is in contact with a particle bath as well as a heat bath. At freeze-out condition,

it has a finite temperature T, and its total number of particles can fluctuate, but the average

values are fixed. The fixed average values of the total charge, total numbers of neutrons, and

total mass are Z0, N0 and A0 respectively. Therefore, the constrains, in this case, are,∑
i,j

〈ni,j〉 . i = Z0, (3.33)

∑
i,j

〈ni,j〉 . j = N0. (3.34)

The partition function for a particular channel (y) is,

Qy(gc) =
∏
i,j

ω̃
ni,j
ij

nij!
, (3.35)

where ω̃ij is the grand canonical partition function of a composite. In grand-canonical case,

this partition function (ω̃ij) will be slightly different from canonical one (ωij), and it is given

by,

ω̃ij =
V

h3
. (2 πmk T )3/2 . qint

=
V

h3
. (2 πmk T )3/2 . e−(f−µzi−µnj)/T

=
V

h3
. (2 πmk T )3/2 . e−f/T . eβµzi+βµnj

= ωij e
βµzi+βµnj.[6] (3.36)

Where, ωij is the canonical partition function of the composite (i,j). µz and µn are the pro-

ton and neutron chemical potentials, respectively, and those can be calculated from the two
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constraints (Eq. 3.33 and Eq. 3.34). The total partition function, in this case,

Qgc =
∑∏(

ωij . e
βµzi+βµnj

)nij
nij!

. (3.37)

Where the summation is over all possible channels, without any restriction on total charge or

mass, and the product is over all possible composites in a particular channel. So, the numbers

of any particular composite (nij) in a channel in the grand-canonical ensemble can vary from

0 to ∞ to cover the entire ensemble. Thus, the above partition function can be written as,

Qgc =
∞∑

n01=0

∞∑
n11=0

∞∑
n12=0

...
∏
ij

ω̃
ni,j
ij

nij!

=
∏
ij

∞∑
nij=0

ω̃
nij
ij

nij!

=
∏
ij

exp(ω̃ij). (3.38)

Probability of occurring a particular channel y is

Py(gc) =
Qy(gc)

Qgc

. (3.39)

The average number of a composite (i, j) will be,

〈nij〉 =
∑
y

nij Py(gc)

=
∑
y

nij .
1

Q

∏
k,l

ω̃nklkl

nkl!

=
∞∑

n01=0

∞∑
n11=0

∞∑
n12=0

... nij .
1

Q
.
∏
kl

ω̃nklkl

nkl!

=
1

Q
.

∞∑
n01=0

∞∑
n11=0

∞∑
n12=0

... ω̃ij .
ω̃
nij−1
ij

(nij − 1)!
.
∏

k 6=i,l 6=j

ω̃nklkl

nkl!

=
1

Q
. ω̃ij .Q

= ω̃ij

= ωij . e
βµzi+βµnj. (3.40)
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So, using Eq. 3.38, the total partition function can be written in terms of multiplicity as,

Q =
∏
i,j

exp (ω̃ij)

=
∏
i,j

exp (〈nij〉) (3.41)

and so,

loge Q = loge
∏
i,j

exp (〈nij〉)

=
∑
i,j

〈nij〉

= total multiplicity M. (3.42)

In this case, if one knows the chemical potentials and ω̃ij’s, then one can easily get multiplicities,

the total partition function and other thermodynamic observables.

The size of the largest cluster in grand canonical case can be written, similar to its canonical

version, as,

〈Zmax〉 =
∑
Zmax

Zmax . Pgc (Zmax) (3.43)

where Pgc (Zmax) is the probability that the size Zmax appears as largest, and can be written,

in this case, as,

Pgc (Zmax) =

[
1− exp

(
−

∑
i=Zmax, j

〈nij〉gc

)]
.

Zup∏
i=Zmax+1, j

exp
(
−〈nij〉gc

)
. (3.44)
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Chapter 4

Ensemble Transformation

Statistical ensembles are known to become equivalent, hence, give the same result for a ther-

modynamic system at equilibrium, as discussed in Sec. 2.2.4. In handling the situation of a

macroscopic system with specific energy, the micro-canonical ensemble is commonly replaced

by a canonical or grand canonical one, in order to get the mean values, avoiding computational

difficulties. Nuclear multifragmentation phenomenon in heavy ion collision at intermediate en-

ergy is often described using the statistical ensemble theory (Chapter 3). The micro-canonical

ensemble is ideal for the actual laboratory condition in this case. The two constraints imposed

on this ensemble make the computation extremely difficult, requiring extensive numerical tech-

niques [1]. Due to this difficulty, the other ensembles are more frequently used for dealing with

nuclear fragmentations. Even in the case of canonical calculation, the constraint on particle

number makes it complicated than the grand canonical calculation, where no such constraints

arise. That’s why the grand canonical model is widely used, in spite of the canonical model

being more appropriate for HIC. Heavy ion collisions in laboratories lead to the fragmentation

of finite nuclei. For finite systems, statistical ensembles are not equivalent and different statis-

tical models of fragmentation based on separate ensembles, actually, give different results. The

term ‘inequivalent’ is not strictly appropriate, since, the results considering different ensembles

are similar though not numerically same. Moreover, experimental multifragmentation data are

observed to agree with the statistical model results, specifically with the canonical values. It
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is observed that [2] even in finite system, canonical and grand canonical model of nuclear mul-

tifragmentation give very similar result (thereby equivalent) under some conditions. The key

condition is of greater fragment multiplicity, which lowers the effect of finiteness. It has been

observed that the ensembles are completely inequivalent in the presence of phase transition.

The Sec. 2.2 shows that the ensembles are mathematically connected. The grand canonical

ensemble can be thought of as a collection of different canonical ensembles of different size.

Similarly, the canonical ensemble can be considered as a collection of a number of microcanon-

ical ensembles. This mathematical connection between the ensembles leads one to find the

connection between the average values of any observable, evaluated in different statistical mod-

els of fragmentation, based on different ensembles. Such an approximate expression, connecting

the canonical average value of any observable to its grand canonical average, has already been

developed in [3] for a single component ideal fragmenting system. The present work extends

the mathematical approximation, that transforms grand canonical average to canonical, to the

domain of real nuclei, through the inclusion of iso-spin [4].

It is mentioned that the complications, in the calculation with a micro-canonically or canoni-

cally distributed system, are usually circumvented by using grand canonical distribution, since

all the ensembles are equivalent at the thermodynamic limit (Sec. 2.2.4). For cases like multi-

fragmentation, dealing with a finite system, this direct replacement will not be correct. In that

case, the grand canonical to canonical transformation relation will be very useful. Again, we

mentioned that canonical and grand canonical model results of fragmentation of finite nuclei

converge under certain conditions, which can be verified with the help of the transformation

relation.

Besides this, the transformation will have some other practical uses. There are some parameters

such as isoscaling [5],[6] and isobaric yield ratio parameters [7],[6], which are used to study

the nuclear symmetry energy and its density dependence [9] [10] from heavy ion collision.

Isotopic temperatures are conventionally measured using double isotope ratio method [8], [11].

The above-mentioned parameters or method are described using grand canonical yields of

fragmentation. For example, grand canonical isotopic yields follow a scaling law, based on
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which the isoscaling parameters are defined (Sec. 4.2.3). Canonical yields show deviation from

such scaling behaviour, whereas the experimental data are much closer to the canonical values.

The parameters deduced in this way should not agree with the experimental results and need

to be corrected. In such cases, the transformation relation can successfully connect the grand

canonical parameter values to experimental data.

In the following sections, the mathematical relation between the average values of any observ-

able, calculated in the grand canonical model and the same in the canonical model, is derived

for the case of the two-component nuclear system. The relation is, then, applied to the nuclear

multifragmentation phenomenon, the approximated results are compared with the exact values,

and thus, the validity of the relation is checked.

4.1 Theoretical Formalism

The grand canonical ensemble of any statistical system can be thought, as a collection of a large

number of canonical ensembles of different system size, starting from 0 to∞, theoretically, along

with respective probabilities. The partition function can be expressed, accordingly, as given in

Eq. 2.21. This concept forms the basics upon which the transformation equation is built. We

consider the excited fragmenting nuclear source contains Z0 protons, N0 neutrons; therefore,

mass A0 = Z0 +N0. The system of all fragments, produced in the decay of the source nucleus,

attains the freeze-out at a volume Vf and temperature Tf . Now the canonical and grand

canonical partition functions of this system are denoted by QN0,Z0 and Qfn,fz , respectively,

where fn and fz are the chemical potentials for neutrons and protons. The Eq. 2.21 becomes,

in this case,

Qfn,fz =
∞∑

N0,Z0=0

QN0,Z0 e
fnN0+fz Z0 . (4.1)
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The probability distribution, of different canonical sources with different particle number Z0, N0,

in the grand canonical ensemble is,

Pfn,fz(N0, Z0) =
QN0,Z0 e

fnN0+fz Z0

Qfn,fz

. (4.2)

The expression for canonical or grand canonical partition functions for the nuclear system are

given in Eq. 3.22 and Eq. 3.38. The mean of the distribution, i.e., the grand canonical average

of the source size can be expressed in terms of probability,

〈N0〉fn,fz =
∞∑

N0,Z0=0

N0 . Pfn,fz(N0, Z0) (4.3)

〈Z0〉fn,fz =
∞∑

N0,Z0=0

Z0 . Pfn,fz(N0, Z0). (4.4)

The variance of the distribution, in other words, the fluctuation in particle numbers are,

σ2
n =

∂2 log Qfn,fz

∂f 2
n

=
∞∑

N0,Z0=0

(N0 − 〈N0〉fn,fz)
2 . Pfn,fz(N0, Z0) (4.5)

σ2
z =

∂2 log Qfn,fz

∂f 2
z

=
∞∑

N0,Z0=0

(Z0 − 〈Z0〉fn,fz)
2 . Pfn,fz(N0, Z0) (4.6)

σnz =
∂2 log Qfn,fz

∂fn ∂fz
=

∞∑
N0,Z0=0

(N0 − 〈N0〉fn,fz) (Z0 − 〈Z0〉fn,fz) . Pfn,fz(N0, Z0). (4.7)

The analytical connection, between the canonical and grand canonical ensembles (Eq. 4.1),

suggests that one should be able to extract grand canonical results from canonical ones and

vice versa, provided the probability distribution is known, or it is completely described by a

limited number of moments.

Now, we consider an observable R of the above mentioned nuclear system, which can be es-

timated both in the canonical ensemble and the grand canonical ensemble. When the system

is at microstate r (N0, Z0, Er), this observable takes a value Rr. The average value of this

observable, calculated in a canonical ensemble corresponding to the system of size (N0, Z0), is

Rc(N0, Z0). Its average value calculated in the grand canonical ensemble associated with the

system, where the system size can vary, but the average (〈N0〉, 〈Z0〉) is restricted to the original
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system size by the values of fn and fz, is Rgc(fn, fz). The canonical average can be written as,

Rc(N0, Z0) =
∑
r

Rr(Er) e
−βEr

QN0,Z0

, (4.8)

and the grand canonical average is,

Rgc(fn, fz) =
∑
r

Rr(N0r, Z0r, Er) e
−βEr+fnN0+fzZ0

Qfn,fz

=
∞∑

N0,Z0=0

Rc(N0, Z0) QN0,Z0
efnN0+fzZ0

Qfn,fz

=
∞∑

N0,Z0

Rc(N0, Z0) . Pfn,fz(N0, Z0). (4.9)

Rr(N0r, Z0r, Er) is the rth possible microstate in the grand canonical ensemble. Eq. 4.9 gives

the grand canonical average of R in terms of its canonical averages with respective source prob-

abilities. Now, we expand Rc(N0, Z0) in Taylor’s series about the point (〈N0〉fn,fz , 〈Z0〉fn,fz),

Rc (N0, Z0) = Rc (〈N0〉fn,fz , 〈Z0〉fn,fz) + (N0 − 〈N0〉fn,fz) .
(
∂Rc

∂N0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

+ (Z0 − 〈Z0〉fn,fz) .
(
∂Rc

∂Z0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

+
1

2!
(N0 − 〈N0〉fn,fz)

2 .

(
∂2Rc

∂N2
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

+
1

2!
(Z0 − 〈Z0〉fn,fz)

2 .

(
∂2Rc

∂N2
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

+ (N0 − 〈N0〉fn,fz) (Z0 − 〈Z0〉fn,fz) .
(

∂2Rc

∂N0∂Z0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

+ ... (4.10)
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Putting this expression for Rc(N0, Z0) in the above equation and taking up to 2nd order term

we get,

Rgc ≈ Rc (〈N0〉fn,fz , 〈Z0〉fn,fz) (4.11)

+
1

2!

∞∑
N0,Z0=0

Pfn,fz(N0, Z0) (N0 − 〈N0〉fn,fz)
2 .

(
∂2Rc

∂N2
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

+
1

2!

∞∑
N0,Z0=0

Pfn,fz(N0, Z0) (Z0 − 〈Z0〉fn,fz)
2 .

(
∂2Rc

∂N2
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

+
∞∑

N0,Z0=0

Pfn,fz(N0, Z0) (N0 − 〈N0〉fn,fz) (Z0 − 〈Z0〉fn,fz) .
(

∂2Rc

∂N0∂Z0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

(4.12)

where all the first order terms are identically zero. Using the definitions of particle number

fluctuations of Eq. 4.6 to 4.7, we get,

Rgc = Rc (〈N0〉fn,fz , 〈Z0〉fn,fz) +
1

2
σ2
n

(
∂2Rc

∂N2
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

+
1

2
σ2
z

(
∂2Rc

∂Z2
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

+ σnz

(
∂2Rc

∂N0∂Z0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

. (4.13)

Again, we define another observable as,

T n
2

c (N0, Z0) =
∂2Rc (N0, Z0)

∂N2
0

. (4.14)

Now, we expand this new observable T n
2

c in Taylor’s series and then taking the grand canonical

average, similar to Rc, using Eq. 4.13 as before,

T n
2

gc (fn, fz) = T n
2

c (〈N0〉fn,fz , 〈Z0〉fn,fz) +
1

2
σ2
n

(
∂2T n

2

c

∂N2
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

+
1

2
σ2
z

(
∂2T n

2

c

∂Z2
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

+ σnz

(
∂2T n

2

c

∂N0∂Z0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

. (4.15)
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So, the canonical value can be written as,

T n
2

c (〈N0〉fn,fz , 〈Z0〉fn,fz) = T n
2

gc (fn, fz)−
1

2
σ2
n

(
∂2T n

2

c

∂N2
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

− 1

2
σ2
z

(
∂2T n

2

c

∂Z2
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

− σnz

(
∂2T n

2

c

∂N0∂Z0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

.(4.16)

This T n
2

c (〈N0〉fn,fz , 〈Z0〉fn,fz) is actually,

=

(
∂2Rc (N0, Z0)

∂N2
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

,

and we may replace this term in the 2nd term of Eq. 4.13 by the series 4.16. But there is a

multiplicative factor σ2
n in the 2nd term of Eq. 4.13 so that,

σ2
n

(
∂2Rc

∂N2
0

)
〈N0〉fn,fz ,〈Z0〉fn,fz

= σ2
n T

n2

gc (fn, fz)−
1

2
σ4
n

(
∂4Rc

∂N4
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

− 1

2
σ2
zσ

2
n

(
∂4Rc

∂Z2
0∂N

2
0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

− σ2
nσnz

(
∂4Rc

∂N3
0∂Z0

)
〈N0〉fn,fz , 〈Z0〉fn,fz

. (4.17)

We see in the above expression, apart from the first term, all the other terms contain σ with

more than 2nd order. We consider the limit of small particle number fluctuation i.e.,

σ2
n

〈N2
0 〉fn,fz

≤ 1

σ2
z

〈Z2
0〉fn,fz

≤ 1 (4.18)

σ2
nz

〈N0〉fn,fz〈Z0〉fn,fz
≤ 1,

so, we neglect the higher order terms in Eq. 4.17, and approximated as,

σ2
n

(
∂2Rc

∂N2
0

)
〈N0〉fn,fz ,〈Z0〉fn,fz

≈ σ2
n T

n2

gc (fn, fz)

≈ σ2
n

∂2Rgc (fn, fz)

∂〈N0〉2fn,fz
. (4.19)

73



In the similar way, it can be shown that,

σ2
z

(
∂2Rc

∂Z2
0

)
〈N0〉fn,fz ,〈Z0〉fn,fz

≈ σ2
z

∂2Rgc (fn, fz)

∂〈Z0〉2fn,fz
(4.20)

σnz

(
∂2Rc

∂N0∂Z0

)
〈N0〉fn,fz ,〈Z0〉fn,fz

≈ σnz
∂2Rgc (fn, fz)

∂〈N0〉fn,fz∂〈Z0〉fn,fz
. (4.21)

Now, we can replace the last three terms of Eq. 4.13 by their approximate grand canonical

values, taking from Eq. 4.19 to Eq. 4.21,

Rgc = Rc (〈N0〉fn,fz , 〈Z0〉fn,fz) +
1

2
σ2
n

(
∂2Rgc(fn, fz)

∂〈N0〉2fn,fz

)
fn,fz

+
1

2
σ2
z

(
∂2Rgc(fn, fz)

∂〈Z0〉2fn,fz

)
fn,fz

+ σnz

(
∂2Rgc(fn, fz)

∂〈N0〉fn,fz∂〈Z0〉fn,fz

)
fn,fz

. (4.22)

or,

Rc (〈N0〉fn,fz , 〈Z0〉fn,fz) = Rgc(fn, fz)−
1

2
σ2
n

(
∂2Rgc

∂〈N0〉2

)
fn,fz

− 1

2
σ2
z

(
∂2Rgc

∂〈Z0〉2

)
fn,fz

− σnz
(

∂2Rgc

∂〈N0〉∂〈Z0〉

)
fn,fz

. (4.23)

In the last equation, all the terms in the right-hand side are calculated in the grand canon-

ical ensemble, while the left-hand side is the canonical average of the observable, Rc. Thus,

the average value of an observable in the canonical ensemble can be approximated from grand

canonical calculations, using Eq. 4.23. The assumptions made in our calculation are i. the low

particle number fluctuation, and ii. the observable that we consider should be of low convexity

(second order derivatives with respect to neutron or proton number). Otherwise, the higher

order terms in the Taylor expansion become important. We see that if the probability distri-

bution Pfn,fz(N0, Z0) is a Gaussian, which is completely described by it’s mean and variance

(σ2), all the higher order moments other than 2nd order are either zero (odd moments) or can

be given in terms of σ2 (even moments). Then, Eq. 4.23 gives the correct canonical results. As

the distribution deviates more from the Gaussian, the higher moments/higher order terms will

become more important, and the Eq. 4.23 will be less accurate. Evidently, this approximation

is not valid unless the probability distribution is entirely described by the limited number of
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moments. In the presence of the 1st order phase transition, particle number fluctuation (which

is related to the isothermal compressibility KT ) diverges. Hence, this equation is not valid in

the presence of phase transition, and Pfn,fz(N0, Z0) at such condition may deviate widely from

Gaussian.

4.2 Results

In this section, we show the results obtained using the transformation relation Eq. 4.23, for

different fragmentation observables. Both the canonical and grand canonical thermodynamical

model for fragmentation is exactly solvable so that one can check the accuracy of the trans-

formation equation. All the results are shown for the system of all the fragments produced in

fragmentation of the fragmenting source Z0 = 28, N0 = 30 at freeze-out volume Vf = 3V0.
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Figure 4.1: Grand canonical (a) proton, and (b) neutron number distributions for fragmenting
source Z0 = 28, N0 = 30 at three different temperatures, T =3.6 MeV (black solid line), 4.5
MeV (red dashed line), 10.0 MeV (blue dotted line).

Before the application of the transformation equation Eq. 4.23, we should examine its region

of validity. For this purpose, we have shown the grand canonical particle number distributions

at different freeze-out temperatures. The variance of the distribution (which is the square

of particle number fluctuation) σ2 has, also, been plotted against the freeze-out temperature.

Fig. 4.1 shows the particle number distribution for proton ( 4.1(a)) and neutron ( 4.1(b)). We

see that at higher freeze-out temperature (T=10.0 MeV) the distribution is very near to a
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Gaussian distribution. As temperature decreases, the system enters into the region of phase

transition, and the grand canonical particle number distribution deviates from the Gaussian

shape.

2 4 6 8 1 00
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0

  

T   M e V

σ n2

Figure 4.2: Variation of σ2
n with freeze-out temperature (T) for the fragmenting system of

charge 28 and mass 58. [4]

In Fig. 4.2, the variance is plotted with temperature. It shows that the particle number fluc-

tuation gives a peak at low temperature where phase transition has occurred. It is expected

from the discussion of Chapter 2 that the particle number fluctuation will diverge in the phase

transition region. For the present system, because of its finiteness, the divergence is replaced by

a maximum. Therefore, at the low-temperature region, where the system undergoes a 1st or-

der phase transition, transformation from grand canonical to canonical averages, following the

above mentioned procedure, will not be appropriate. Figure 4.3 shows 2D plot of Pfn,fz(N0, Z0).

Next, we have shown different important observables of fragmentation, obtained from the exact

canonical calculation, exact grand canonical calculation, and compared them with the extracted

canonical results from grand canonical values, using Eq. 4.23.
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Figure 4.3: Grand canonical proton and neutron number distributions for fragmenting source
Z0 = 28, N0 = 30 at temperature T =8 MeV. [4]

4.2.1 Multiplicity

Mass distribution

The mass distribution, i.e., the plot of the multiplicity na of various fragments produced in

fragmentation of nucleus with their fragment mass a, is one of the important plots of nuclear

multi-fragmentation. The Fig. 4.4 shows mass distribution at two different temperatures, 6MeV

and 8MeV. For each temperature, three different lines are shown, which corresponds to the exact

canonical model calculation, exact grand canonical calculation and the extracted canonical

results using Eq. 4.23. Evidently, the canonical results obtained using the transformation

equation, agree with the exact canonical model results, except for the region, where the value

of the multiplicity is very low. In that case, as the value itself is very small, the contribution

from the higher order terms in the expansion may not be negligible, so that the above relation

may not be valid.

Isotopic distribution

To study the multiplicity of the individual fragment nuclei, we have plotted isotopic distribution

(Fig. 4.5) which can be obtained experimentally. It shows how correctly one can extrapolate the

individual fragment multiplicity. We have shown it for fragments, having two different atomic
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Figure 4.4: Mass distribution of the fragments produced from disassembly of a source of mass
number 58 and proton number 28, calculated from canonical (black dotted line) and grand
canonical (blue dashed line) models for two different temperatures, T =6MeV (left panel) and
8MeV (right panel). There solid lines represent the canonical result obtained from the grand
canonical model by using Eq. 4.23.[4]

number, z=7 and z=12, formed in fragmentation of two fragmenting sources, containing the

same number of protons but different neutrons. This fragment multiplicity, or more explicitly,

the set of the multiplicities of different isotopes or isotones will be used latter to extract the

isoscaling parameters. These are also widely used to extract the valuable parameters, like

isobaric yield ratio, temperature, etc., other than isoscaling. We see that the transformation

equation successfully gives the canonical multiplicities. The deviation is observed, only where,

as before, the value is as low as ≈ 10−5.

4.2.2 Largest Cluster

The average size of the largest cluster (concerning the charge of the fragment) formed in frag-

mentation (can be given similar to the Sec. 3.2.1) is plotted with temperature in Fig. 4.6. The

predicted canonical results from the grand canonical calculation, are very close to the exact

canonical results in the high-temperature region. In the region, where the temperature is low,

lower than 5 MeV, Eq. 4.23 fails because, in this region, as it is explained earlier, the system

undergoes a 1st order phase transition.
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Figure 4.5: Multiplicities of Z =7 (left panels) and Z =12 (right panels) isotopes produced
from two fragmenting systems of the same atomic number 28, but different mass numbers 58
(upper panels) and 64 (lower panels), calculated from canonical (black dotted line) and grand
canonical (blue dashed line) models. The freeze-out temperature for both the system is T = 8
MeV. The red triangles represent the canonical result obtained from the grand canonical model
by using Eq. 4.23.[4]

4.2.3 Isoscaling Parameters

We consider two different fragmentation reactions, reaction 1 and reaction 2, where two different

fragmenting sources of the two reactions have different isospin asymmetry (source 2 is more

neutron-rich compared to 1). R21 is defined as the ratio of multiplicities of a nucleus (N,Z)

produced in the two different fragmentation reaction.

R21 =
n2(N,Z)

n1(N,Z)
(4.24)
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Figure 4.6: Variation of average size of the largest cluster (Zmax) with temperature (T) for
the fragmenting system of charge 28 and mass 58 calculated from canonical (black dotted line)
and grand canonical (blue dashed line) models. There solid lines represent the canonical result
obtained from the grand canonical model by using Eq. 4.23.[4]
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Figure 4.7: Ratios (R21) of multiplicities of fragments (N,Z) where mass and charge of the
fragmenting system for reaction 1 are 58 and 28 respectively and those for reaction 2 are 64
and 28. The freeze-out temperature for both the fragmenting systems is T =8MeV. The left
panel shows the ratios as a function of neutron number N for fixed Z values, while the right
panel displays the ratios as a function of proton number Z for fixed neutron numbers (N)
calculated from canonical (black dotted line) and grand canonical (blue dashed line) models.
The red triangles represent the canonical result obtained from the grand canonical model by
using Eq. 4.23. [4]
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Where n2 and n1 are multiplicities from reaction 2 and reaction 1 respectively. Now the ratio

follows a universal scaling law,

R21 =
n2(N,Z)

n1(N,Z)
= C exp (αZ + β N) (4.25)

where α, β are known as isoscaling parameters, and C is a normalization constant. Evidently, for

different isotopes corresponding to a particular Z, R21 follows a straight line. A set of isotopes

of different Z gives a set of parallel straight lines, as shown in the left of Fig. 4.7, all having the

same slope α. Similarly, isotones having the same N give another set of parallel straight lines,

as in the right panel of the figure, with slope β. In Fig. 4.7, R21 is plotted for four different Z

(left) and N (right). For each Z or N, three lines are drawn with the exact canonical values,

grand canonical values and the approximate canonical value using transformation equation.

One can get the value of isoscaling parameters from the slopes. We see that the canonical lines

deviate from the straight nature of grand canonical lines, but are successfully recovered from the

grand canonical values. This deviation is expected, since the isoscaling relation is theoretically

derived in the grand canonical model, so the canonical values may not follow it. Important

point needed to be mentioned is that the laboratory conditions are more close to canonical

conditions than grand canonical, and the experimental results closely agree with the canonical

results. Further discussion can be found in [12], [13]. The apparent disagreement between

canonical and grand canonical or experimental results are merely because of the difference

in the model description, and the connection between them is possible via transformation

relation. Similarly, the transformation relation will also be useful for other parameters, like

isotope temperature, etc., which, too, are obtained using grand canonical yields.

4.2.4 Table

At the end, all the important results are summarised and compared in the TABLE. The re-

sults are given for two different temperatures (6 MeV and 8 MeV). The observables that have

been examined are the total multiplicity 〈n〉tot, average size (charge) of the largest cluster, and

isoscaling parameters α and β. The agreement is very good at both the temperatures, irre-
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Table 4.1: The grand canonical result, as well as the approximation, Eq. 4.23, of the canonical
result from the grand canonical ensemble are compared to the exact canonical calculation for
different observables obtained from fragmentation of the source of mass number 58 and proton
number 28 at freeze-out volume Vf = 3V0 and two different temperatures T =6 and 8 MeV.

Observables Temperature (MeV) Grand Canonical Canonical Transformation

(MeV) Canonical Model Model relation

Result Result Using Eq. 4.23

〈ntot〉 6 5.994 6.155 6.116

8 9.131 9.184 9.171

〈Zmax〉 6 10.293 10.752 10.724

8 6.653 6.796 6.798

α 6 0.668 0.958 0.942

8 0.578 0.786 0.801

β 6 -0.780 -1.035 -1.048

8 -0.670 -0.856 -0.867

spective of the observable used, which ensures the accurateness of the ensemble transformation

relation, for finite nuclei formed in the fragmentation reactions at intermediate energies.
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Chapter 5

Proposition of New Observables to

Study Nuclear Phase Transistion

Atomic nuclei are often treated as the incompressible liquid. Various nuclear phenomena are

successfully described by the liquid-drop model. The standard nature of nucleon-nucleon strong

interaction potential, which is an attractive potential with a repulsive core, is very similar to the

Van Der Waals potential, except for the scale of the depth. This type of molecular interaction

successfully describes the phenomenon of phase transition in ordinary liquid, and thus, one

may expect such phase transition in the nuclear system also. In the case of ordinary liquid,

it is very well known that if energy is added continually to the system, its temperature rises

until the boiling point is attained. Then, if energy is added further, the temperature does not

rise, and the liquid starts to become vapour instead. The temperature will remain constant

until the whole amount of liquid changes to vapour, and during this transition, the liquid and

vapour phase co-exist together in equilibrium. When the entire liquid becomes vapour, the

system temperature starts to increase with the addition of energy.

To observe phase transition in the nuclear system, similarly, one has to pump energy to the

system, and the possible way is a nuclear collision. In a very high energy nuclear (heavy ion)

collision, a phase transition is expected to occur at very high nuclear density (much higher

than the normal nuclear density) and temperature (≈ 150 MeV) where normal hadronic phase
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transfers to Quark Gluon Plasma (QGP) phase. At comparatively low energy collision, in the

intermediate energy regime, multifragmentation process is observed to happen in the nuclear

system. This can be associated with a liquid-gas kind of transition at sub-saturation nuclear

density and transition temperature below 10 MeV, which is the subject of interest in the present

discussion.

Phase transition in a nuclear system in association with the fragmentation of the nucleus

in intermediate energy heavy ion collisions has drawn the attention of the nuclear physics

community for the past several decades. Theoretical models of multi-fragmentation predict

the existence of phase transition in infinite nuclear matter. Experimental evidence associated

with multi-fragmentation, also, provide signatures of change of state in finite nuclei, and this

is interpreted as finite size counterpart of the 1st order phase transition in the nuclear matter.

In the present chapter, we have proposed some new observables, which can be satisfactorily

measured in experiments, and that may furnish the signature of phase transition in the nuclear

system. We will begin with the conventional theoretical or experimental signatures of phase

transition in the nuclear system and will discuss the ambiguity in them. In Sec. 5.2 we have pro-

posed new observables, finding some similarities with the conventional ones, in the framework

of Canonical Thermodynamical Model (Sec. 3.2.2). In the next section, we have attempted to

extract phase transition signals from the proposed observables using the same model and thus

established them as observables of phase transition.

5.1 Existing Signatures of Nuclear Phase Transition

Different theoretical models predict, and experimental results indicate the occurrence of phase

transition in heavy ion collision if the beam energy is chosen appropriately. Here we are

presenting some of the theoretical and experimental signatures.
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Figure 5.1: Equation of state of nuclear matter obtained from the Nuclear Mean Field theory
considering Skyrme interaction with compressibility 201MeV.[1]

5.1.1 Signatures of Nuclear Phase Transition Obtained in Theoret-

ical Models

Study of phase transition of any thermodynamic system involves thermodynamic variables like

free-energy, specific heat, pressure, energy, etc., as discussed in Sec. 2.3. All these are equally

relevant to the theoretical study of the nuclear phase transition. Mean field calculation using

Skyrme parametrisation gives an equation of state of nuclear matter, which is very similar to

the Van der Waals EOS and is shown in Fig. 5.1 [1].
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Figure 5.2: Comparition between EOS for a Van der Waals gas and a system interacting via
Skyrme interaction.[2]

A quantitative comparison with Van der Waals EOS can be found in [2] (Fig. 5.2) where the

authors have investigated the condensation of a gas of nucleons interacting via a zero-range

Skyrme effective interaction. Equation of state is calculated using finite temperature Hartree-

Fock theory. They have studied both the infinite nuclear matter and finite nuclei. Hartree-Fock

calculations in [3] also give similar results. Mean field models alone cannot give the common

experimental observables like multiplicity, cluster composition, excitation, etc. Some realistic

model calculations [[4]-[9]] considering finite nuclei, find a peak in specific heat at around

5MeV temperature, which is supported by experiments. Canonical Thermodynamical Model

calculations give thermodynamic functions like free-energy, specific heat, excitation energy that

shows signatures of 1st order phase transition [[6]-[9]]. Fragments yield calculated in this model,

shown in Fig. 5.3, indicates transition between phases.

Variation of free-energy(F), entropy (S), specific heat (CV ) (all per particle) with temperature

for different systems are shown in Fig. 5.4.
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Figure 5.3: Mass distribution of the fragments produced in fragmentation of a source of size
A0 = 200 at three temperatures, 3.5MeV (black solid line), 4.0MeV (red dashed line) and
5.0MeV (blue dotted line).
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Figure 5.4: Variation of free-energy (F/A), entropy (S/A) and specific heat (CV /A) with tem-
perature T in the upper, middle and lower panel, respectively, for two fragmenting sources
A = 200, A = 500. T, F, S, CV all are plotted in MeV.
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One can see a break in free-energy at a certain temperature, where entropy jumps sharply from

very low to a very high value, and CV shows a maximum. It is observed that the temperature

at which CV gives the peak, coincides with the temperature where fragment yield starts to

deviate from U shape. Ideally, phase transition should be observed in an infinite system. For

a first-order phase transition, entropy should give a finite discontinuity, and specific heat a

divergence at the transition temperature. Here for finite nuclei, instead of discontinuity or

divergence, we get a sharp jump and maximum. We see, as system size increases, jump in

entropy, and the peak of CV becomes sharper. Thus, one can extrapolate that the system will

show a 1st order phase transition at the thermodynamic limit. In other words, jump in entropy,

peak in CV are the finite size-counterpart of the phase transition signals. Another important
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Figure 5.5: (a) Caloric curve and (b) the variation of normalised size of the average largest
cluster 〈Amax〉/A0 with temperature are plotted for two different fragmenting system of size
A0 = 200 and A0 = 500 using CTM.

observable for a phase transition is the average size of the largest cluster (〈Amax〉), which is

considered as an order parameter of the nuclear phase transition. A normalised size of the

largest cluster (〈Amax〉/A0) is plotted with T in Fig. 5.5(b). One can find here that at a very

low T, the normalised size is 1, that means the size of the largest cluster is practically the same

as the fragmenting source size. As the temperature increases from a low value, the size falls

off rapidly (around T=6MeV) from 1 to a very low value. Thus, 〈Amax〉/A0 can distinguish

the nuclear liquid and gas phases. Caloric curves are very important to study 1st order phase

transition in ordinary liquid-gas transition as well as in the nuclear system. For the nuclear
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case, it means excitation energy per particle (E∗/A) versus temperature T plot, which is shown

in Fig. 5.5(a). It shows a small plateau region near T=6MeV where one can find T increases

remarkably slowly with increasing E∗. It is expected that the temperature of this plateau

region is the same, where Cv gives a peak, or 〈Amax〉/A0 falls rapidly. The plots shown above

have been drawn using CTM, and without considering the Coulomb interaction. Coulomb is

neglected because we are interested in the signatures of phase transition in the nuclear system,

while the coulomb being a long-range interaction, suppress the phase transition signals.

Again, theoretically, another signature of the first-order phase transition was proposed to be

observed when it occurs in a finite system. The probability distribution of the order parameter

(Amax, a2 defined latter) will show a bimodality, near the transition temperature due to the

finiteness of the system . Bimodality means the appearance of two distinct peaks corresponding

to two different phases. The transition temperature is the temperature where the two peaks

assume the same height. Bimodality is established in theoretical calculations [[10]-[14]] as well

as in experimental signatures [15], [16]. There can be some ambiguity, both experimentally and

theoretically, regarding the identification of equal heights of the peaks, since the largest cluster

distribution loose sharpness due to the finite size of the system.

5.1.2 Experimental Signatures of Nuclear Phase Transition

Experimental studies of multifragmentation began methodically from the mid-eighties. The

fundamental problem with experimental detection is the time scale of the event. The actual

nuclear collision procedure, where the nuclear matter produces fragments in different phases,

occurs within 10−22 sec. Only the end products are detected in the detector, and one has to

reconstruct the actual collision conditions from them. However, there are a few experimental

observables that have been measured to study the multifragmentation process and nuclear

liquid-gas phase transition. Those are, multiplicities (i.e., charge particle multiplicity (Nc), low

charge fragment multiplicity (NLCP ), intermediate mass fragment multiplicity (NIMF ), etc.),

energy, the momentum of the fragments, size of the largest fragment etc. Among these, we will
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briefly discuss those observables, which are the most important concerning the phase transition

study. An extensive discussion can be found in [1].

Intermediate mass fragment (IMF) (fragments of charge 3 6 Z 6 20) production is pre-

dicted by the statistical as well as transport models, as a consequence of liquid-gas phase

transition in nuclear matter. Experimentally, it is observed that the IMFs are produced, and

their multiplicity show a “rise and fall” nature in both the central and peripheral collision

(Fig. 5.6[17](left),[18](right)) [[17]-[19]]. IMF multiplicity increases with excitation energy, at-

tains a maximum and then falls indicating vaporisation of nuclear liquid into nucleons and light

fragments.

Figure 5.6: Variation of IMF multiplicity with incident energy for the central collision of
Kr+Au (left) [17], and with impact parameters for “Au+Au” projectile fragmentation reaction.
(right)[18].

Another crucial experimental signature of phase transition is the caloric curve, and experimen-

tally, this has been measured for decades [20],[1]. Such plots have been shown in Fig. 5.7 [1].

The caloric curve is significant because the slope of this curve gives a measure of the specific

heat CV . Otherwise, CV or any other thermodynamic functions (F, S, P etc.) can not be

measured directly in the experiments.
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Figure 5.7: Caloric curves measured in the experiments. [1]

“Au+Au” curve at the bottom of the right panel is the most interesting plot, where the tem-

perature is almost constant over the energy E∗/A range 3 to 10 MeV and increases rapidly if

E∗/A increases further. This curve is very similar to the caloric curve for ordinary liquid-gas

transition, and therefore, caused much excitement in the community. Although one can observe

here, a possible signal of 1st order transition, it involves many problems and inconsistencies. It

is evident from the Fig. 5.7, that in all the other plots, except “Au+Au”, temperature increases

smoothly with the excitation energy. Such observations are not quite consistent with the nature

of the “Au+Au” plot. Since the caloric curve is considered as a significant experimental signal

of nuclear liquid-gas phase transition, we will discuss its measurement briefly.

There are many uncertainties involved in the experimental measurement of excitation energy

and temperature. Concept of temperature in case of heavy ion collision is not as traditional,

and it cannot be measured in a conventional way, keeping a thermometer in contact with

the system. In this case, instead, temperatures are being measured (or deduced), comparing
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experimental data with theoretical model calculation; it is more like a model parameter. Based

on different phenomenological models, describing heavy ion collision at intermediate energies,

several thermometers have been developed. For, example, kinetic temperatures are measured

from the slope of the particle kinetic energy spectra. Excited state temperatures of excited

nuclear systems are measured from the thermometers, based on the relative populations of

the emitted particles in excited states. Isotope temperature Tiso is deduced from the double

isotope yield ratio, considering the grand canonical model. But different factors make the

measurements inaccurate and inconsistent. One main factor is the sequential decay. Significant

differences are observed between different thermometers. Further details can be found in [1].

The total excitation energy of a hot system can be measured, by summing up the energies of

each and every fragment, produced from that particular fragmenting source. Identification of

all the fragments produced in a specific event, correctly, is not trivial. Moreover, the excited

source sometimes get de-excited through pre-equilibrium particles (neutron or light charged)

emission in a very short time (< 30 fm/c). This amount of energy, lost in the very early stage

of the reaction, is always absent in the energy measurement of the fragmenting system. If we

assume that all the fragments from a particular source are detected, and identified, the total

excitation energy of the system can be written from energy conservation as,

E∗ =
∑
i

Ei +
∑
n

En +
∑

Eγ +Q.

There are different sources of errors in the measurement of kinetic energies (Ei) of the emitted

charged particles, and Q (the mass difference between the parent nucleus and daughters). This

is because 4π detector coverage is not available in most of the experiments, and the detection

arrays have energy thresholds. The energy of neutrons En is challenging to measure, as it rarely

interacts with the matter compared to charged particles; so in most of the cases they aren’t

considered. So,
∑
En is the primary source of inaccuracy in excitation energy measurement.

Thus, we see, vagueness and various doubts are involved in the temperature and excitation

energy measurements, and therefore, in the experimental caloric curves. Experimental caloric

curves (Fig. 5.7), thus, cannot provide very satisfactory evidence of first-order phase transition.
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5.2 Search for Alternatives

In view of the uncertainties mentioned above, involving experimental detection of signals of

nuclear phase transition, one needs to think about alternatives. One can think of the observables

that can be measured with comparatively greater accuracy in experiments, and from which

one may be able to extract the signals of phase transition. Among the various observables,

a similarity can be found between the theoretical caloric curves and the variation of total

multiplicity (M) with temperature. We have shown them side by side in Fig. 5.8. Again, it is

self-evident that there exists an (anti) correlation between the total multiplicity and the size of

the largest cluster. More the system will fragment, less will be the size of the largest cluster.

We have shown three curves together in Fig. 5.8.
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Figure 5.8: Variation of (a) excitation energy E∗/A (MeV/A), (b) total multiplicity M, (c)
average size of the largest cluster Zmax with temperature T (MeV) for the fragments produced
in the fragmentation of an ideal one-component system of size A=500.
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5.3 Observables Proposed

Motivated by the similarities and the correlations discussed above, we will continue our study

of nuclear phase transition, and extraction of its signatures from these multiplicity and largest

cluster variables.

5.3.1 Multiplicity

Panel (a) and (b) of Fig. 5.8 show the variation of M and E∗/A with temperature, for a one-

component source of size A=500, at the same fragmentation condition (excitation, freeze-out

volume). We see that both of them take a very low value at a low temperature. They increase

slowly with temperature up to a particular temperature value (around 6MeV) and then increase

very rapidly within a small range of temperature. After that, they again increase slowly. It is

the same temperature range, where the two variables increase rapidly in the two plots. The

slope of the E∗/A vs. T curve gives specific heat per particle. Observing the similarity between

total multiplicity and the excitation energy, we can draw a parallel between specific heat and the

slope in multiplicity curve (dM/dT). We expect a maximum in the multiplicity derivative at the

transition temperature, just like the specific heat. Now to investigate further, we have drawn

variation of multiplicity (M) and its temperature derivative (dM/dT) with temperature for

different fragmentation conditions, e.g., various fragmenting sources, incorporating or without

incorporating Coulomb interaction. Then, we have compared M and dM/dT plots with the

specific heat and the entropy.

M and dM/dT for different fragmenting system

We have drawn the total multiplicity M and dM/dT for a fragmenting system having 82 protons

(Z=82) and 126 neutrons (N=126) in Fig. 5.9. To see the effect of Coulomb interaction, we

have plotted them for two-component real nucleus as well as a single component system of the

same mass, only switching off the Coulomb. As it is expected, the sudden rise of multiplicity
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Figure 5.9: Variation of multiplicity M (left panels) and dM/dT (right panels) with temper-
ature (bottom x axes) and excitation per nucleon (top x axes) from the CTM calculation for
fragmenting systems having Z =82 and N =126 (top panels). Bottom panels represent the
same but for a hypothetical system of one kind of particle with no Coulomb interaction but
the same mass number (A =208). E∗ = E − E0, where E0 is the ground-state energy of the
dissociating system in the liquid drop model whose parameters are given in Ref. [21].[23]
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and A =58 (bottom panels). [23]
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and peak in dM/dT are much sharper in the absence of Coulomb. In Fig. 5.10, we have drawn

the same plot as Fig. 5.9, except for the system size, which is smaller, Z=28, N=30 in this

case. In the smaller system, we still observe a rapid jump in M and a peak in its temperature

derivative. Though the sharpness of the jump and the peak is lesser for the smaller system.
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Figure 5.11: Variation of dM/dT (red solid lines) and Cv (green dashed lines) with temperature
from CTM for fragmenting systems having Z =82 and N =126 (left panel) and for hypothetical
systems of one kind of particle with no Coulomb interaction of mass number A =208. To draw
dM/dT and Cv in the same scale, Cv is normalized by a factor of 1/50. [23]

dM/dT and CV

In the next two figures, Fig. 5.11 and Fig. 5.12, we compare dM/dT and the specific heat per

particle CV for the two systems of size Z=82, N=126 and Z=28, N=30, respectively. In each

case, we also consider the situation where the Coulomb interaction is switched off. We notice

that the peak of dM/dT coincides with the peak of specific heat (CV ) in all the cases. The

variation of CV with the temperature shows a maximum at the transition temperature, and

this is a signature of the 1st order phase transition. From the last two figures, we may say

that dM/dT can possibly give a signature of phase transition alternative to CV . Even where

bimodality develops, it may be easier to locate the position of the maxima in the derivative

of M since the bimodal region is very narrow. The maximum of dM/dT, thus, can, possibly,

be used as a signature of the occurrence of 1st order phase transition in Heavy Ion Collision.
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Again, the temperature at which specific heat maximises, that is the transition temperature of

phase transition. Since peaks of CV and dM/dT occur at the same temperature, the peak of

dM/dT gives the transition temperature, too.
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Figure 5.12: Same as in Fig. 5.11, but the fragmenting systems are Z =28 and N =30 (left
panel) and A =58 (right panel). [23]

dM/dT and Entropy

It is well known that (Fig. 5.4) in case of a first-order transition, entropy shows a rapid jump

in the vicinity of the transition temperature, very similar to the total multiplicity. In the next

plot (Fig. 5.13), we have compared the temperature variation of dM/dT and the entropy for

the fragmenting system Z=82, N=126, and also for an ideal condition, neglecting the Coulomb

interaction. It is evident, for both the cases, that the region in temperature scale where dM/dT

exhibits a maximum, exactly there the entropy changes rapidly. The presence of Coulomb effect

in a real system, only, smears the rise of entropy and the peak in dM/dT. This behaviour,

further, establishes that dM/dT is giving the signature of phase transition.
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Figure 5.13: Variation of entropy (blue dashed lines) and dM/dT (red solid lines) with tem-
perature from CTM for fragmenting systems having Z =82and N =126 (top panel) and for
hypothetical system of one kind of particle with no Coulomb interaction of mass number A
=208 (bottom panel). To draw S and dM/dT in the same scale, S is normalized by a factor of
1/20 for Z =82 and N =126 system and 1/50 for hypothetical system of one kind of particle.
[23]

Study with IMF multiplicity

The multiplicity of the intermediate mass fragments (MIMF ) in HIC can indicate the occurrence

of phase transition (as discussed in Sec. 5.1.2). It is an important observable of multifragmen-

tation, which is measured in the experiment, sometimes, instead of the total multiplicity M.

Therefore, a similar study has been done on MIMF . We have plotted the variation of MIMF

and its temperature derivative with temperature for the system Z=82, N=126 in Fig. 5.14, and

compared dMIMF/dT with CV . MIMF and dMIMF/dT display a similar behaviour as that of

the total multiplicity and its derivative. Only the exception is that the position of the two

peaks, obtained from dMIMF/dT and CV , do not coincide with each other. This is expected

because the calculation of CV involves all the fragments irrespective of their mass or charge,

but in MIMF , only selected fragments are included.
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Figure 5.14: Variation of intermediate-massfragment(IMF) multiplicity MIMF (left panels) and
first-order derivative of IMF multiplicity dMIMF/dT (right panels) with temperature from
CTM calculation for fragmenting systems having Z =82 and N =126. Variation of Cv with
temperature (T) is shown by green dashed line in right panel. To draw dMIMF/dT and Cv in
the same scale, Cv is normalized by a factor of 1/100. [23]

Effects of secondary decay

In a heavy ion collision, when a nucleus instantaneously breaks up through the process of nuclear

multifragmentation, giving various composites, these composites are called primary fragments.

The primary fragments are excited in general, and lose excitation through sequential two-

body decay, and thus affect the total multiplicity. The final cold fragments, called secondary

fragments, are detected in the laboratory. The fragments that we are dealing with in our

study (using CTM), are all primary fragments. The secondary decay may affect the total

multiplicity in such a way that alters the behaviour of multiplicity discussed above. As we are

interested in the experimental signature, we assimilate the secondary decay in our calculation

(detail discussion is given in Appendix C), and do the same study with the multiplicity of

the secondary fragments. We have plotted the multiplicities of the primary and the secondary

fragments and their derivatives in Fig. 5.15. It is apparent that the effect of secondary decay

does not alter our previous observation. Moreover, it enhances the signals, the total multiplicity

jumps more rapidly, and the peak in dM/dT is sharper in case of the secondary fragments.

Thus the maxima of multiplicity derivative can be obtained successfully in experiments with a

possibly unaltered transition temperature.
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Figure 5.15: Effect of secondary decay on M (left panel) and dM/dT (right panel) for frag-
menting systems having Z =28 and N =30. Red solid lines show the results after the multifrag-
mentation stage (calculated from CTM), whereas blue dashed lines represent the results after
secondary decay of the excited fragments. [23]

5.3.2 Largest Cluster

Now, we will concentrate on the observables, the average size of the largest cluster 〈Amax〉

and a normalized variable a2. 〈Amax〉 is defined in Sec. 3.2.1 and a2, measures the asymmetry

between the two largest fragments, is defined as [16],

a2 =
〈Amax〉 − 〈Amax−1〉
〈Amax〉 + 〈Amax−1〉

.

Amax−1 is the size of the second largest cluster produced in the fragmentation, and we estimate

it using CTM in Appendix B. We have shown the connection between the multiplicity and the

size of the largest cluster in Sec. 5.2. The behaviour of a2 being very similar to the largest

cluster size, is often considered as an order parameter of the phase transition, and is measured

in the experiments.

Throughout the rest of our study, we consider an ideal system of A=200 identical nucleons

with no Coulomb force acting between them. Left panels of Fig. 5.16 ((a) to (d)) display the

variations of the four variables, the normalised size of the average largest cluster amax, a2, total

multiplicity M and entropy per particle (S/A) with temperature.

amax =
〈Amax〉
A

. (5.1)
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and (h) Cv with temperature for fragmenting system of mass A=200. [24]
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Over a temperature interval in the lower portion of the scale, up to approximately 5 MeV, amax

and a2 are almost constant and assume a value ≈ 1. This implies that in this temperature

range, the size of the largest fragment produced is almost the same as the size of the fragmenting

source. Around T=6 MeV, both of them fall suddenly to a very low value near zero, which

indicate the entire system fragments into the light mass nuclei. After that, they remain almost

unchanged. These observables, clearly, give a sharp transition near T=6 MeV and therefore

behave as an order parameter of the nuclear phase transition. Now, the last two panels ((c) and

(d)) in the left of Fig. 5.16, show the variation of the total multiplicity and entropy per nucleon

with temperature. amax and a2 display similar behaviour as that of the multiplicity and the

entropy; the sudden jump (or fall) of these four variables occur almost at the same temperature

around 6 MeV. This similarity motivates us to investigate the behaviour of the derivatives of

amax and a2. In the right panel of Fig. 5.16, temperature derivatives of all the four quantities

are plotted with the temperature. In the right bottom panel Fig. 5.16(h), we have plotted

CV , which is related to the temperature derivative of the entropy (S). The derivatives of amax

and a2 exhibit maxima just like total multiplicity and specific heat, and almost at the same

temperature. Therefore the position of these maxima also gives the transition temperature.

2 4 6 8 1 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

2 4 6 8 1 0 0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5

 

V f = 6 V 0

( a ) ( b )

T  ( M e V ) T  ( M e V )

A 0 = 2 0 0

Figure 5.17: Variation of damax/dT with temperature (a) at constant freeze-out volume Vf =
6V0 but for three fragmenting system of mass 50 (blue dotted line), 100 (red dashed line) and
200 (black solid line) and (b) for same fragmenting system of mass 200 but at three constant
freeze-out volumes Vf = 2V0 (magenta dotted line), Vf = 6V0 (black solid line) anf Vf = 8V0

(green dashed line). [24]
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Figure 5.18: Dependence of the peak position of -damax/dT , -da2/dT , dM/dT and Cv on
fragmenting system size (upper panel) and freeze-out volume (lower panel). [24]

Next, we have investigated how the position of the maximum in temperature axis varies with

the source size and the freeze-out volume. We have plotted the variation of damax/dT with

T for three different fragmenting systems of size A=50, 100, 200 at a fixed freeze-out volume

Vf = 6V0 in Fig. 5.17(a), and the same for three freeze-out volume Vf=3V0, 4V0, 8V0 with fixed

source A=200 in Fig. 5.17(b). We see that the peaks are sharper for the more massive source

and the higher freeze-out volume. The position of the peak is observed to shift at right towards

the upper-temperature region for the greater source size, and the lower temperature side for

the greater freeze-out volume. This implies that the smaller system fragments more easily at

a lower transition temperature as compared to its bigger counterparts. For freeze-out volume,

the result that we have obtained is expected, since higher freeze-out volume (lower density) will

favour the disintegration of the nucleus, resulting in lower transition temperature.
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At the end, we have plotted the transition temperatures as a function of system size at fixed

freeze-out volume (upper panel (a)), and as a function of freeze-out volume for a fixed system

(lower panel (b)) in Fig. 5.18. In each panel, four different sets of transition temperatures are

plotted. Those sets are obtained from the position of the maxima in damax/dT , da2/dT , dM/dT

and CV . The transition temperatures obtained from all the four observables give consistent

results. Small differences between them attributed to the finiteness of the fragmenting system.
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Chapter 6

Phase Transition in Hypernuclei

Hypernuclei, similar to normal nuclei, are the bound states of hyperons (strange baryons) in

addition to the ordinary nucleons, e.g., neutrons and protons [1]. This is an obvious exten-

sion of the normal nuclear sector. Hypernuclei are discovered in 1952, in the experiment of

fragmentation of emulsion nucleus, induced by high energy cosmic radiation [[1]-[3]]. In the

laboratory, they are produced in a relativistic nuclear collision [[4]-[7]]. The motivation for the

study of hypernuclei is to understand hyperon-nucleon (Y-N) and hyperon-hyperon (Y-Y) in-

teraction (where Y: Λ, Σ, Ω, Ξ hyperons), which are of fundamental interest in nuclear physics

and nuclear astrophysics. It helps us to understand the conventional nuclei [8], extend normal

nuclear chart, and thus, leads towards hadron physics from traditional nuclear physics. These

(hadronic equation of states) are important for the studies of astrophysical objects like neutron

stars. Because, different theoretical models predict the dominant presence of hyperons within

the core of neutron stars, where dense nuclear matter causes the abundance of hyperons [9].

There is no means of direct study of these N-Y or Y-Y interactions through the rudimentary

hyperon-nucleon scattering experiments since hyperons are quite short-lived particles (decay

time of the order of pico second). Instead of this, when hyperons form hypernuclei, being

captured in the atomic nuclei, their formation cross-section or decay lifetime can provide the

information about Y-N interaction or properties of strange matter, indirectly. Multi-strange

hypernuclei, especially, can reveal Y-Y interaction and strange-matter properties.
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The main problems in this study are extremely small formation probability and the lifetime of

the hypernuclei. For example, in the reaction with 3.7 GeV/n He4 and 3.7 GeV/n Li6 beams

projected on carbon target, the production cross section of H4
Λ is obtained as approximately

0.3 µb and the lifetime of H4
Λ is 0.22 ns [6]. For the other hypernuclei consisting of massive

hyperons other than Λ, the probability and decay time are lower than Λ-hypernuclei. More than

30 single-Λ hyperons, such as H3
Λ, He4

Λ,...Bi210
Λ , some double-Λ hypernuclei, e.g., He6

ΛΛ, Be11
ΛΛ,

C15
ΛΛ, etc. [10], and very few hypernuclei, involving hyperons other than Λ, are observed till

the present day. Most of the experimental data of hypernuclei production, therefore, involves

lambda hyperons. Since they are the lightest hyperons, they decay only via weak interaction.

Their lifetime is higher compared to the reaction time, so, they can be detected in the nuclear

collision experiments.

There are several theoretical approaches to the formation of hypernuclei. Those are Ultra-

relativistic Quantum Molecular Dynamics (Ur QMD) [11], Dubna cascade model [11], Covari-

ant Transport Model [12] based on coalescence picture [13], starting from the first theoretical

proposition by Kerman and Weiss [14]. These theoretical models can explain the experimental

results, quite satisfactorily.

In all the models, the physical picture is same as discussed below. The conventional picture

of high energy heavy ion collision with a general impact parameter, established in different

experimental and theoretical studies, is described in terms of participant spectator model.

According to that, the collision occurs only at the overlapping region of the target and the

projectile (participating region). The non-overlapping portions of the target and the projectile,

being excited mildly, fly off and pass through without any interaction; they are called the target

like fragment (TLF) and projectile-like fragment (PLF), respectively. Physical situation of both

the PLF and TLF are similar for a symmetric collision; they are slightly excited and due to

this excitation, break into fragments. Study of PLF is more advantageous since the fragment

velocities are centred around the projectile velocity. In the fixed target experiments, they are

emitted in the forward direction and therefore, can be detected easily. In the participating

zone, profound interactions occur between nucleons themselves and with the other hadrons

produced in the primary and secondary collision. In all the transport models, hyperons are
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considered to be produced in the participating zone due to nucleon-nucleon collision (B-B

interaction) and interaction of baryons with the secondary meson (B-M) beam (secondary pion

beam)(B+B → B+Y +K, p+n→ n+Λ+K+; B+M → Y +K, π++n→ Λ+K+). Momenta of

the produced Λs are distributed over a wide range. Some of the produced Λs, in the momentum

range close to that of the projectile, having total momenta in PLF frame up to the Fermi

momentum (ptot < 250MeV/c), can be trapped in the PLF and form hypernuclear matter.

Eventually, this mildly excited hypermatter decays to several normal and hyper fragments

[15]. Experimental evidence shows hypernuclei are produced both in a central and peripheral

collision. But the latter is preferred more since the detection of the hypernuclei is easier. In

addition to that, the formation of heavy hypernuclei is possible in the peripheral collision, while

in a central collision, mainly small fragments are produced due to high energy deposition.

Again, we mentioned that most of the experimental data are of Λ-hyperons, and very few

involve other hyperons. So, we have considered Λ-hyperons only in our study and in the rest

of the chapter, the term ‘hyperon’ indicates Λ unless it is mentioned.

Here, we explore the multifragmentation of a hypernuclear matter, which may be produced in

the laboratory in a high energy heavy ion collision. Multifragmentation, as discussed in the

previous chapters, is often described as a nuclear liquid-gas phase transition. In the present

study, we will describe the effect of hyperons (Λ) on the transition, using Canonical Ther-

modynamical Model of multifragmentation. The Canonical Thermodynamical Model(CTM),

already, has been extended to the three component system [16], and a recent study using three

component CTM shows the existence of phase transition in this case [17]. A “U”-shaped mass

distribution of the normal and hyper-fragments has been obtained in the fragmentation of

the hyper-nuclear system. The “U”-shape indicates a liquid-gas (nuclear) phase co-existence,

which is a well-known signature of the first-order phase transition [Chapter 5]. Here, that study

has been continued further, analysing the relevant thermodynamic observables and the order

parameters of the phase transition.
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6.1 Three-component Canonical Thermodynamical

Model

The theory used here is the same as the 2-component CTM in the Chapter 3, with an additional

degree of freedom. The general statistical behaviour is assumed to be unchanged due to the

presence of hyperons. We consider a fragmenting system, consists of A0 baryons, Z0 protons,

and H0 hyperons, produces different fragments of normal nuclei as well as hyper nuclei. The

total system of the fragments is at freeze-out, where its temperature is T and volume is Vf

(> V0). The total canonical partition function is given by [16],

QA0,Z0,H0 =
∑∏ (ωa,z,h)

na,z,h

na,z,h!
, (6.1)

where the product is over all the possible fragments in one decay channel. The sum is over the

all possible decay channels, satisfying baryon, proton and hyperon number conservations,∑
a .na,z,h = A0 (6.2)∑
z .na,z,h = Z0 (6.3)∑
h .na,z,h = H0. (6.4)

na,z,h is the number of hyper-nuclei in a break-up channel that contains ’a’ baryons, ’z’ protons

and ’h’ hyperons, and ωa,z,h is the partition function of such composite. The partition function

QA0,Z0,H0 is calculated, using the recursion relation,

QA0,Z0,H0 =
1

A0

∑
a,z,h

a . ωa,z,h . QA0−a,Z0−z,H0−h. (6.5)

The average number of composites, having mass ’a’, charge ’z’, hyperons ’h’, is given as,

〈na,z,h〉 =
ωa,z,h . QA0−a,Z0−z,H0−h

QA0,Z0,H0

. (6.6)

The partition function of a composite ωa,z,h is given by,

ωa,z,h =
V

h3
(2πT )3/2 {(a− h)mn + hmh}3/2 . Za,z,h(int), (6.7)
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where mn and mh are masses of the nucleons (938 MeV) and hyperons (1116 MeV for Λ),

respectively. The volume V and the intrinsic partition function Zint is similar to that of the

Chapter 3. The fundamental building blocks, in this case, are proton, neutron and Λ, and

therefore zint(1, 0, 0) = zint(1, 1, 0) = zint(1, 0, 1) = 1. For the composites, the intrinsic partition

functions are derived in the following way, using the nuclear ground state energies and the

excitations. In case of low mass composites, 1 < a ≤ 5, both for h=0 and h > 0, experimental

binding energies are used. For others, a > 5, ground state energies are obtained from a liquid

drop formula with a modification [20] due to the presence of hyperons. The excitation energies

for these composites and entropies are derived using the Fermi-gas model. The expression for

the ground state energy is [20],

E0(T ) = −16a+ σ(T )a2/3 + 0.72
κz2

a1/3
+ 25.

(a− h− 2z)2

a− h
− 10.68h+ 21.27

h

a1/3
, (6.8)

where the surface tension at finite temperature σ(T ) and the Wigner-Seitz correction factor κ

are given in the chapter 3.

Here we should mention the composite nuclei that are being considered, since all possible

combinations between n, p, and h are not physically acceptable. For heavy fragments a > 8,

the composites, that have been included, are guided by the lines of stability for neutrons

and protons. The stability lines are calculated using the liquid-drop mass formula (Eq. 6.8),

where the neutron and proton separation energies become zero, respectively. For low mass

composites, 1 < a ≤ 8, we have taken the same set as mentioned in [18]. Another well-known

parametrisation of binding energy for hypernuclei was proposed by Samanta et al. in [19]. A

comparative study of these two formulae in case of hyper nuclear fragmentation was described

in Ref. [20], and finally, the one used here was chosen because it produces results closer to the

experimental data.
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6.2 Results and Discussions

To get a clear picture of the phase transition in the strange nuclear system, we consider a

system of clusters produced in the fragmentation of a strange nucleus. We have studied the

thermodynamic observables, e.g., free energy, entropy and specific heat, the variation of pressure

with volume and the order parameter (size of the largest cluster) for that system. Throughout

the study, the fragmenting source that has been taken, is of charge 50 and baryon number 128.

To observe the effect of hyperons on phase transition, both the normal system with no hyperons

(H=0) as well as a strange system with H=8 hyperons have been considered, and the results

have been compared. The Coulomb interaction is known to distort the phase transition signals.

Therefore, in each case, until the last one, we have switched off the Coulomb interaction, since

the primary interest of the study is to get the nature of the interaction of hyperons and their

effects on phase transition. At the end, the Coulomb interaction is considered, in order to

observe whether the signatures of phase transition in strange nuclear system persist in the

presence of Coulomb, and how far the signals are distorted by it.

6.2.1 Free Energy, Entropy, Specific Heat

Free energy (F), and its first and second order derivatives with respect to temperature are the

basic thermodynamic observables to study the phase transition (Sec. 2.3). The Helmholtz’s

free energy of the fragmenting hyper system can be calculated from the partition function,

F = −T . lnQA0,Z0,H0 , (6.9)

and is plotted against temperature, in the upper panel of Fig. 6.1. Entropy can be obtained

from the derivative of F,

S = −
[
∂F

∂T

]
V

, (6.10)
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Figure 6.1: Variation of Helmholtzs free energy per nucleon (upper panel), entropy per nucleon
(middle panel), and specic heat per nucleon (bottom panel) with temperature for two frag-
menting systems having the same A0 = 128, Z0 = 50 but different H0 = 8 (black solid lines)
and H0 = 0 (red dashed lines).[21]

and its variation with temperature is plotted in the mid-panel of Fig. 6.1. In the lowest panel

of the Fig. 6.1, we have plotted the specific heat, which is given by

Cv = T

(
∂S

∂T

)
V

, (6.11)

with temperature. We do not observe much qualitative difference between the plots of normal

(solid lines) nuclei and strange (dashed lines) nuclei. Thermodynamic potential (F) shows a

continuous trend, while entropy exhibits a sudden jump around T=6 MeV. The specific heat

gives a prominent peak near the same temperature, for both the systems, as expected for
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a system undergoing the first-order phase transition. It is evident from the figures that the

jump in entropy is more profound, and the peak in the specific heat plot is sharper for the

strange system than the normal system. Therefore, it is clearly observed that the presence of

hyperons enhances the signature of phase transition. The temperature at which entropy jumps

suddenly, or specific heat gives peak, is the transition temperature. We see that the transition

temperature is lower for the strange nuclear system than the normal one. This lowering of

transition temperature is due to the presence of hyperons in the system. Therefore, the effect

of the addition of hyperons in the nuclear system can be thought of equivalent to an increase of

excitation energy of the nuclear system. Hence, the system disintegrates at a lower temperature.

0 5 1 0 1 53

6

9

1 2

 T (
Me

V)

E *  ( M e V )

Figure 6.2: Variation of temperature (T) with excitation energy (E) for two fragmenting sys-
tems having the same A0 = 128, Z0 = 50 but different H0 = 8 (black solid line) and H0 = 0
(red dashed line).[21]

6.2.2 Caloric Curve

The excitation energy of the strange fragmenting system at a given temperature can be obtained

from,

E∗A0,Z0,H0
= T 2 1

QA0,Z0,H0

(
∂QA0,Z0,H0

∂T

)
− EA0,Z0,H0(T = 0). (6.12)
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The variation of temperature with the excitation energy is plotted in Fig. 6.2. Initially, the

temperature rises steeply with the excitation, then it slows down during the phase transition

process and again, starts to increase rapidly. For a system in the thermodynamic limit, the

temperature is expected to remain constant with increasing excitation energy in the transition

region. The nuclei being much smaller in size, the signatures are suppressed; one observes a

remarkable slowing down in the rate of change of temperature, instead of T remaining constant

for a macroscopic system.
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Figure 6.3: Variation of pressure with volume for two fragmenting systems having the same
A0 = 128, Z0 = 50 but different H0 = 8 (solid lines) and H0 = 0 (dashed lines) at four different
temperatures T =5.0, 5.5, 6.0, and 6.5 MeV.[21]

6.2.3 P Vs V : Isotherms

Figure 6.3 shows isotherms, i.e., pressure vs volume plots for four different temperatures, which

are very important in case of a phase transition study. At a very low temperature, T=5

MeV, we get a flat region where pressure is almost unchanged with increasing volume. At this

physical condition, both the systems (strange as well as a normal system) are in the liquid-gas

co-existence phase. It is well known that as temperature increases, the co-existence region

becomes smaller, and at the temperature where it just vanishes is the critical temperature.

Now, at a comparatively higher temperature, T=6.0 MeV, we get a small portion of the curve
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in the lower volume, where the pressure is almost constant. This is the region of liquid-

gas phase co-existence. Beyond this small region, as volume increases, pressure gradually

decreases, and the system enters into the gaseous phase from the region of co-existence. At

high temperature T=6.5 MeV, no region of phase co-existence is observed. The P-V plots

show a rectangular hyperbolic nature that indicates both the normal nuclear system as well as

the hyper nuclear system are completely in the gaseous phase. We have found an important

observation at an intermediate temperature, T=6 MeV, where the flat portion, i.e., the region

of phase co-existence is smaller for the hyper-system than the normal system. It implies, at this

temperature, the strange nuclear system is more close to the gaseous phase than the normal

one. In other words, the strange system disintegrates at a smaller volume as compared to a

normal system.

0 1 0 2 0 3 0 4 0 5 00 . 0 0

0 . 0 2
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Figure 6.4: Largest cluster probability distribution for four different fragmenting systems having
same A0 = 128, Z0 = 50 but different H0 = 8 (black solid line), H0 = 4 (blue dotted line),
H0 = 2 (green dash-dotted line), and H0 = 0 (red dashed line). Calculations are done at
constant temperature T =6.065 MeV.[21]

6.2.4 Largest Cluster and Bimodality

The average size of the largest cluster is an order parameter (Chapter 5) for a nuclear phase

transition. It is given by the Eq. 3.19 where the probability Pr(Zm) for the strange nuclear
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Figure 6.5: Variation of transition temperature (Tp) with the total strangeness content of the
fragmenting system.[21]

system is,

Pr(Zm) =
QA0,Z0,H0(Zm)−QA0,Z0,H0(Zm − 1)

QA0,Z0,H0(Z0)
, (6.13)

which is very similar to the Eq. 3.20. The detailed discussion of the terms of Eq. 3.20 is

applicable here also. The probability distribution of the largest cluster size is plotted at tem-

perature T=6.065 MeV, in Fig. 6.4, for four different fragmenting systems containing different

strangeness content, e.g., H=0 (normal system), H=2, H=4, H=8. The theoretical calculation

shows the bimodality in the distribution of order parameter is a signature of the first-order

phase transition for a finite system. The probability distribution, hence, is expected to give

a bimodal behaviour, that means, a two-peaked curve around the transition temperature, in

the present case. At the transition point, the height of the two peaks become exactly equal.

In the figure one can see, at that temperature, the probability distribution gives a maximum

around a small value of Zm for the strange system containing 8 hyperons. For the normal

nuclear system, it exhibits a maximum near the high value of Zm. So, it is clear from the figure

that at this temperature, the hyper system containing 8 hyperons is more close to the gaseous

phase, and the normal system remains in the liquid phase. The system with 4 hyperons, at

T=6.065 MeV, is very close to the transition point since the peaks are almost of equal height.

Therefore, the transition temperature varies with the strangeness content, and is less for the
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Figure 6.6: Variation of average charge of the largest cluster (Zmax) with temperature (T) for
two fragmenting systems having the same A0 = 128, Z0 = 50 but different H0 = 8 (black solid
line) and H0 = 0 (red dashed line).[21]

more strange system, as the system with more hyperons breaks down more easily. The bimodal

behaviour [[22]-[25]] of the size of the largest cluster probability distribution, establishes the

occurrence of the first-order phase transition in the system. Variation of transition tempera-

ture with the strangeness content of the fragmenting system is displayed in Fig. 6.5, where the

transition temperatures are calculated from the bimodality of Pr(Zm). It further confirms the

observation, already obtained from the Fig. 6.4, that the phase transition temperature is less

for the more strange system, indicating that the strangeness aids in the disintegration of the

system. In the next figure (Fig. 6.6), we have shown the variation of the order parameter, i.e.,

the average size of the largest cluster with temperature. The variation for the strange system is

exactly similar to that of the normal system, except for the sharpness of the change of 〈Zmax〉

with the temperature near the phase transition region. Change of 〈Zmax〉 is more pronounced,

and the transition temperature is smaller for the strange system, which is consistent with the

previous observations.
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Figure 6.7: Variation of average charge of the largest cluster (Zmax) (upper panel) and specic
heat per nucleon (lower panel) with temperature (T) by switching on (blue dashed lines) and
switching off (black solid lines) the Coulomb interaction. All the calculations are done for the
fragmentation of a hypernucleus having A0 = 128 baryons, Z0 = 50 protons, and H0 = 8
hyperons.[21]

6.2.5 Effect of coulomb interaction

In the end, we examine the effect of the long-range Coulomb interaction on the hypernuclear

phase transition, and how the signals get disturbed due to its presence. For this purpose, the

variation of the order parameter 〈Zmax〉 and specific heat CV are plotted with temperature for

the strange system in Fig. 6.7. Two lines corresponding to two different situations, one where

the Coulomb has been taken into consideration and the other where the Coulomb interaction

is switched off, are compared. Effect of Coulomb on ordinary nuclear phase transition is well

established, and known to suppress the signals of phase transition as mentioned earlier. The

Fig. 6.7 indicates, this effect is unaltered in the case of hyper-nuclear transition. It is observed

from the figure that the size of the largest cluster falls more abruptly, and the specific heat peak

is sharper in the absence of the Coulomb interaction. Further, the region where 〈Zmax〉 falls

rapidly or CV gives peak, i.e., the transition region is shifted to the lower side of the temperature
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scale. Since the repulsive Coulomb interaction tries to break the nuclei into fragments to

minimise the Coulomb potential, the transition occurs at a lower temperature in its presence.

Thus, the effect of the Coulomb interaction in the case of hyper-nuclear phase transition is the

same as that for a normal nuclear system.
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Chapter 7

Summary and outlook

In this dissertation, some of the aspects of the fragmentation of nuclei in heavy ion collision

at intermediate energy has been explored in the framework of the statistical model, a brief

summary of which is given here:

In Chapter 4, a mathematical relation has been obtained to extract the canonical average of

an observable, knowing its grand canonical average values, in case of fragmentation of a finite

nuclear system. The approximate canonical results, obtained using the transformation, agree

nicely with the exact canonical values. The method of approximation has a few limitations.

Firstly, one should consider an observable that varies only linearly or quadratically with the

number of nucleons. Secondly, the method fails when the value of the observable itself is very

small. Also, the transformation relation (Eq. 4.23) will not be valid in the temperature or the

density region where fluctuations get maximised due to the presence of the 1st order phase

transition. In the presence of long-rang Coulomb interaction, though, the signature of phase

transition is quenched, so that the performance of the approximation is not too bad near the

phase transition temperature. In spite of these limitations, we hope the relation connecting

canonical and grand canonical averages will be useful for the extraction of certain parameters,

e.g., isoscaling parameters α, β, isotope temperature, etc. from experimental data. At last, it

should be mentioned that the laboratory condition of intermediate energy heavy ion collision

is consistent with the microcanonical ensemble distribution, though, its exact calculation is
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extremely difficult. In this context, the extension of this method of approximation to connect

microcanonical and canonical averages of observables will be very interesting, and of great

practical use.

In Chapter 5, we aimed to find new observables that can be used to observe the unique signa-

tures of nuclear phase transition, experimentally. We have done our investigation using CTM.

We chose the fragmentation observables the total multiplicity M, the average largest cluster size

amax (normalised by the system size), and a normalised variable a2, which assume distinctly

different values in the liquid and gas phases of a nuclear system, and thus can distinguish be-

tween the two phases. Specially, they are accessible in the experiment, and can be measured

more accurately than the existing observables of phase transition (e.g., excitation energy and T

in the caloric curve). We observe that the total multiplicity behaves very similarly as entropy

(or excitation energy), and its temperature derivative as specific heat. dM/dT peaks at the

same temperature as CV . So, the transition temperature can be measured theoretically from

the maximum of dM/dT, just like it is obtained from specific heat. Even in the presence of

Coulomb interaction, that is a long-range interaction which suppresses phase transition sig-

nals, the performance of dM/dT is quite satisfactory. The signature of phase transition is not

distorted, rather, it gets enhanced, when we consider the multiplicity of the cold fragments,

produced after the secondary decay of the primary fragments. Thus we see, this signature of

phase transition can be extracted experimentally, measuring the total multiplicity.

The present work on the derivative of fragment multiplicity (total or IMF multiplicity) led to

some recent theoretical and experimental exploration in this area of research. In [1], [2] the

multiplicity derivative (dM/dT) has been studied in the Statistical Multifragmentation model

for various fragmentation conditions (different source size, freeze-out volume, N/Z asymmetry,

etc.). They have found the maximum in dM/dT as in the present work. They have also shown,

within the framework of SMM model [3], that the multiplicity derivative measures the transi-

tion point most accurately in comparison to the other phase transition probes, both considering

primary and the secondary fragments. Other works [4] and [5], too, using the Isospin-dependent

Quantum Molecular Dynamics (IQMD) model [6] and the modified Nuclear Statistical Equi-

librium (NSE) model [7], respectively, on the multiplicity derivative reveal the observations
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more or less consistent to the present study. Besides the theoretical studies, an experimen-

tal investigation has also been performed in [8], where the charge particle multiplicity of the

Quasi-Projectile source exhibit the same behaviour as that of the specific heat, which is in close

agreement to our observation. A similar study has been done in case of the lattice gas model

as well as percolation model [9]. These theoretical and experimental investigations and the

observed behaviour consistent to ours establish, further, the proposition that the multiplicity

derivative can be treated as a signature of nuclear liquid-gas phase transition.

Study with the other two observables, amax and a2, reveals that they provide the phase tran-

sition signals and the transition temperature, similar to multiplicity when we consider the

fragmentation of an ideal one-component system, turning-off the Coulomb effect. It is some-

times easier to measure the largest cluster size than to count the total multiplicity, covering all

the produced nuclei in the experiment. Extensive work with these variables for real nuclei with

two types of nucleons has not been done. We will continue the study in future.

In Chapter 6, the liquid-gas phase transition has been examined for a strange nuclear system,

using the 3-component CTM, and the results obtained can be summarised into the following

points:

i. The thermodynamic variables and the order parameter show the persistence of phase tran-

sition in the presence of hyperons.

ii. Signals of the phase transition get enhanced in the presence of strangeness, while the tran-

sition temperature gets lowered.

iii. Ideally, the entropy should have a discontinuity, and the specific heat should diverge at the

transition point when a thermodynamic system undergoes a first-order phase transition but, as

discussed previously, the signals get softened here due to the finiteness of the system.

iv. Bimodal behaviour of the probability distribution of the order parameter 〈Zmax〉 is observed,

which is a signature of the first-order phase transition for a finite system.

v. The effect of long-range Coulomb interaction on the phase transition of strange matter has

also been investigated, and the result obtained is the same as that of a normal nuclear system.
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Apart from the above-mentioned points, some other points are worth mentioning. It is obvi-

ous that the observed effect of hyperons on the nuclear phase transition should give valuable

information about Y-N and Y-Y interaction. But the observations made here, such as the

enhancement of phase transition signature, the decrease of the transition temperature, or the

flat portion of the Fig. 6.5, are not unambiguous. The only input of the nature of hyperons

or Y-N/Y-Y interaction comes in the model through the hyper-nuclear binding energy. The

liquid-drop hyper term is based on the parametrisation using the experimental data, where the

experimental data are not available in sufficient amount to do such parametrisation correctly.

Therefore, in order to get the effects more reliably and in order to explain them correctly, we

need more rigorous treatment in the form of microscopic calculation. There are some works in

the literature, where the multi-strange nuclear system has been studied, and binding energies

are calculated using Relativistic Mean-Field(RMF) theory [10],[11]. These may be incorpo-

rated in 3-component CTM model. In [12] a generalised Bethe-Weizsacker mass formula has

been developed for strange hadronic system, that also, may be employed to the present model.

Further investigation incorporating this in 3-component CTM may provide interesting results.
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Appendix A

Wigner - Seitz Approximation

Here we shall present the calculation used to get the estimate of Coulomb energy of the system of

several fragments at freeze-out, using Wigner-Seitz approximation. We consider a fragmenting

system of mass number A0, the atomic number Z0 (charge =Z0e), goes through the process

of nuclear fragmentation and reaches the freeze-out condition. This is, basically, a system of

a number of charged fragments enclosed within a spherical region, of volume equal to freeze-

out volume Vf , with radius Rf . The number of fragments varies from channel to channel,

satisfying the two conservations, that total charge must be Z0, total mass A0. We calculate the

approximate Coulomb energy for a particular channel ({nij}).

The total Coulomb energy (EC) of such a system can be approximated as the sum of two terms,

EC = E0
C + E ′C . (A.1)

E0
C is the Coulomb energy of a charged sphere of volume Vf , where the total Z0 charge is

distributed uniformly over this volume with a charge density ρchf . E ′C is the total Coulomb

energy of a system, shown in Fig. A.1. To calculate the latter, we divide the entire freeze-out

volume into different spherical cells of different size, containing only one fragment in each, the

centre of each fragment being at its centre. The assumption is that the cells are not interacting

with each other. Even for two consecutive cells, there exists no Coulomb interaction between

them. Size of each cell is determined by the charge contained within it, i.e., the charge of the
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Figure A.1: Wignner-Seitz approximation

fragment in it. A cell containing a composite (i, j) has a volume, over which the charge ‘i’ can

be distributed if it is distributed uniformly at a density ρchf . Then, we calculate the Coulomb

energy, to shrink this dilute charged cell to make it a denser blob, of a normal nucleus at normal

nuclear density ρ0. Then the sum of these energies over all the fragments will give E ′C .

Mass A0 as well as charge Z0 is distributed over Vf . So, the freeze-out mass density is defined

as, ρmassf = A0

Vf
, freeze-out charge density will be ρchf = Z0

Vf
. If Rf be the radius of the sphere of

volume Vf then,

Vf = 4
3
π R3

f = Z0

ρchf
= A0

ρmassf
. First term, the Coulomb energy of a uniformly charged sphere of

total charge Z0.e will be,

E0
C =

1

4πε0
.
3

5
.
Z2

0e
2

Rf

. (A.2)

Now, we calculate the second term. For a fragment (i, j), let its normal nuclear radius be R0ij,

so the normal nuclear volume of this nucleus is

V0ij =
A

ρm0
=

i

ρch0
=

4

3
πR3

0ij [A = i+ j,mass of the nucleus]

Let the radius of the cell corresponding to this (i, j) fragment is Rfij, which is at freeze-out

density. The total amount of charge within this cell is i (actually = i.e), and we can write,

Vfij =
A

ρmf
=

i

ρchf
=

4

3
πR3

fij.
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The energy, required to shrink this dilute cell to make a normal nucleus (i, j), is the difference

in Coulomb energy between the two states, the cell at a density ρf (Ufij) and the nucleus

at normal nuclear density ρ0 (U0ij). This amount of energy will be stored in the nucleus as

Coulomb energy. Coulomb energy of the cell is,

Ufij =
1

4πε0
.
3

5
.
j2e2

Rfij

,

and coulomb energy of the nucleus is

U0ij =
1

4πε0
.
3

5
.
j2e2

R0ij

.

Therefore, the work done,

= U0ij − Ufij

=
1

4πε0
. j2e2

(
1

R0ij

− 1

Rfij

)
=

1

4πε0
.
3

5
.
j2e2

R0ij

(
1− R0ij

Rfij

)
,

which is the Coulomb energy of the fragment, modified by a factor within the first bracket.

The total Coulomb energy of the system at freeze-out condition will be,

EC =
1

4πε0
.
3

5
.
Z2

0e
2

Rf

+
∑
ij

1

4πε0
.
3

5
.
j2e2

R0ij

[
1−

(
R0ij

Rfij

)1/3
]
. (A.3)

Now,

V0ij

Vfij
=

4
3
. πR3

0ij

4
3
. πRfij

=⇒ i/ρm0
i/ρmf

=
R3

0ij

R3
fij

=⇒
ρmf
ρm0

=
R3

0ij

R3
fij

=⇒ R0ij

Rfij

=

(
ρf
ρ0

)1/3

, (A.4)
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and again,

Vf =
4

3
πR3

f

V0 =
4

3
πR3

0

A0 = Vf . ρ
m
f = V0 . ρ

m
0

=⇒ Vf
V0

=
ρm0
ρmf

=⇒
R3
f

R3
0

=
ρm0
ρmf

=⇒
R3
f

R3
0

=
R3
fij

R3
0ij

=⇒ Rf

R0

=
Rfij

R0ij

. (A.5)

Therefore,

EC =
1

4πε0
.
3

5
.
Z2

0e
2

Rf

+
∑
ij

1

4πε0
.
3

5
.
j2e2

R0ij

[
1−

(
R0

Rf

)1/3
]

(A.6)

=
1

4πε0
.
3

5
.
Z2

0e
2

Rf

+
∑
ij

1

4πε0
.
3

5
.
j2e2

R0ij

[
1−

(
ρf
ρ0

)1/3
]
. (A.7)

We can easily see, this approximated expression for EC gives the correct result at the two

extreme limits: i. For very large freeze-out volume, Rf →∞,

EC =
∑
ij

1

4πε0
.
3

5
.
j2e2

R0ij

. (A.8)

EC will be equal to the sum of the Coulomb energies of the individual fragments, as then, all

the fragments will be at an infinite distance apart from each other, and so, all will become

free. ii. If freeze-out volume = normal nuclear volume, R = R0. This will represent a single

nucleus of radius R0, and EC = 1
4πε0

. 3
5
.
Z2
0e

2

Rf
will give the Coulomb energy of that charged

sphere (nucleus).

138



Appendix B

Secondary decay scheme

The disintegration of a hot nucleus yields the hot primary fragments and this is described by the

statistical models of fragmentation. In laboratory, the primary fragments cannot be measured,

because most of the excited primary fragments lose their excitation by secondary decay, and

become stable isotopes in ground states when they reach the detectors. In order to compare

results of fragmentation models with experimental data, one should incorporate this secondary

decay part at the end of the statistical model simulation. The basic decay mechanism will be

the sequential two body processes. Primary fragments are to be taken as excited compound

nuclei, and input to the secondary decay simulations. Decay of the every fragment will be

followed, and treated as a separate event [1].

For each primary fragment, the entire decay chain will be simulated, and followed until the end

products lies in its stable ground state, thereby unable to decay further. Let us, now, consider

an excited nucleus (primary fragment) of mass A, charge Z, temperature T. The possible de-

excitation mechanism that the nucleus undergoes is assumed to be either the successive particle

emission by evaporation or the fission of the hot nucleus. Light particle emissions e.g., nucleons,

d, t, He3, α are treated according to the Weisskopf evaporation theory [2]. Fission is taken into

account according to simplified Bohr-Wheeler, although it does not contribute significantly for

the nuclei of mass smaller than 100. γ-ray emissions are also taken into consideration for the

particle stable excited states. The simulation of the entire decay chain is governed by the decay
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width of Γν for each emitted particle. The partial decay width for emission of a particle of type

ν is given by the Wiesskopf evaporation theory [2],

Γν =
gmσ0

π2~2

(E∗ − E0 − Vν)
aR

exp
(

2
√
aR(E∗ − E0 − Vν)− 2

√
aPE∗

)
(B.1)

where m is the mass of the emitted particle, g is the spin degeneracy of it, E0 is the particle

separation energy. The subscripts ν, P, R refers to the type of the emitted particle, parent and

residual daughter nucleus respectively and aP , aR are the level density parameters of parent

and daughter and given by, a = A/16 MeV−1. Excitation energies of the parent and residual

nuclei are given as,

E∗ = aPT
2
P (B.2)

E∗ − E0 − Vν = aRT
2
R

where, TP and TR are the temperatures of the parent and residual nucleus respectively. The

Coulomb barrier Vν for charged particles is given by the touching sphere approximation [3],

Vν =
Zν(ZP − Zν)e2

r′0

{
A

1/3
ν + (AP − Aν)1/3

} for Aν ≥ 2 (B.3)

=
(ZP − 1)e2

r′0A
1/3
P

for protons

where r′0 is 1.44fm, and for neutral particle the Vν will be zero.

σ0 is the cross section for the reverse process i.e., formation cross section of the emitting

compound nucleus from the residual nucleus and the emitted particle, and is given by, σ0 = πR2

where,

R = r0

[
(AP − Aν)1/3 + A1/3

ν

]
for Aν ≥ 2 (B.4)

= r0(AP − 1)1/3 for Aν = 1

where r0 = 1.2fm. The width for Γ emission [4],

Γγ =
3

ρP (E∗)

∫ E∗

0

dερR(E∗ − ε)f(ε) (B.5)
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with,

f(ε) =
4

3π

1 + κ

mnc2

e2

~c
NPZP
AP

ΓGε
4

(ΓGε)2 + (ε2 − E2
G)2

(B.6)

where, κ = 0.75, EG is the position and ΓG is the width of the giant dipole resonance. Fission

width is obtained from Bohr-Wheeler formula,

Γf =
TP
2π
e−Bf/TP , (B.7)

where the fission barrier of the compound nucleus Bf is [5],

Bf (MeV) = −1.40ZP + 0.22(AP − ZP) + 101.5. (B.8)

So, the decay width of all the possible processes are known. Next job is to simulate the complete

decay chain. One has to start by deciding which path the compound nucleus will follow, particle

evaporation or fission, and that is decided by a Monte Carlo sampling [6]. If the Monte Carlo

algorithm decides particle emission, then next step is to decide the type of the particle to

be emitted and that will be decided by another Monte Carlo in accordance with the partial

decay width Γν/Γtot. The energy of the emitted particle will be guided by the energy spectrum

of the emitted particle running another Monte Carlo sampling. The mass, charge, energy of

the residual are adjusted accordingly after each emission and the process is repeated until the

residue loses all its excitation and becomes particle stable cold nucleus. The entire scheme

is repeated over multiple events for decay of each fragment, and averaging is done over these

events, following charge and mass conservations.
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Appendix C

Second Largest Cluster

We consider an excited single component system of size A0, goes through the process of frag-

mentation and produces several nuclear clusters. The average size of the largest cluster is

denoted by 〈Amax〉, and the average size of the second largest fragment is 〈Amax−1〉. To calcu-

late 〈Amax−1〉, we proceed in a similar way of 〈Amax〉 [1]. If Pr2(Amax−1) is the probability for

Amax−1 to be the second largest fragment size, then

〈Amax−1〉 =
∑

Amax−1 . P r2(Amax−1). (C.1)

Now, we see that Amax−1 can be the size of the second largest cluster in two ways. (a) There is

at least one fragment of size Amax−1, and just one fragment of size Amax > Amax−1. (b) There

are more than one fragment of size Amax−1 but no fragment larger than it, i.e., Amax = Amax−1.

The partition function for the case (a) is

Qa =
∑

ωAmax .∆QA0−Amax(Amax−1) (C.2)

where the sum goes from (Amax−1 + 1) to its maximum possible value. For the case (b), the

partition function is

Qb = ∆QA0(Amax−1)− ωAmax−1 . QA0−Amax−1(ω1, ω2, ..., ωAmax−1−1, 0, ...). (C.3)
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Here, ∆QA0(B) is defined as,

∆QA0(B) = QA0(ω1, ω2, ..., ωB, 0, ..., 0)−QA0(ω1, ω2, ..., ωB−1, 0, ..., 0), (C.4)

and represents the total partition function in fragmentation of the system of size A0, considering

only those events where the size of the largest fragment is exactly B.

Now the first term in Qb is the total partition function for the channels where the largest cluster

size is Amax−1, but the number of such clusters can be one or more. The second term gives

the total partition function for the channels, where the number of fragments of size Amax−1

(i.e., largest cluster) is just one. So the difference is the partition function for the case (b).

Therefore, the second largest cluster probability will be,

Pr2(Amax−1) =
Qa +Qb

QA0

. (C.5)

Once we get the probability, 〈Amax−1〉 can be calculated, using Eq. C.1.
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