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The recently observed peculiar Type Ia supernovae, e.g. SN2006gz, SN2007if, SN2009dc,

SN2003fg, [1, 2, 3, 4, 5] with exceptionally high luminosities do not fit with the explosion

of a Chandrasekhar mass white dwarf. Moreover, it has been seen that there is a corre-

lation between the surface magnetic field and the mass of white dwarfs. The magnetic

white dwarfs seem to be more massive than their nonmagnetic counterparts [6]. Lastly,

predictions from the luminosities reveal that the progenitor white dwarfs had masses sig-

nificantly higher than the Chandrasekhar limit. It seems that the Chandrasekhar limit

may be violated by highly magnetized white dwarfs [7]. To account for these facts, we

have calculated theoretically the masses of white dwarfs in presence of such high magnetic

fields in the general relativistic formalism.

We consider a completely degenerate relativistic electron gas at zero temperature but

embedded in a strong magnetic field. We do not consider any form of interactions with

the electrons. Electrons, being charged particles, occupy Landau quantized states in a

magnetic field. This changes the Equation of State (EoS), which, in turn, changes the

pressure and energy density of the white dwarf. In addition to the matter energy density

and pressure, the energy density and pressure due to magnetic field are also taken into

account. It is the combined pressure and energy density of matter and magnetic field that

determines the mass-radius relation of strongly magnetized white dwarfs. It should be

emphasized that protons also, being charged particles, are Landau quantized. But since

the proton mass is ∼ 2000 times the electron mass their cyclotron energy is ∼ 2000 times

smaller than that of the electron for the same magnetic field, and hence we neglect it.

We present stable solutions ofmagnetostatic equilibriummodels for super-Chandrasekhar

white dwarfs with varying magnetic field profiles which is maximum at the centre and

goes to 109 gauss at the surface of the star by solving the Tolman-Oppenheimer-Volkoff

(TOV) equations [8, 9] . This has been obtained by self-consistently including the effects

of the magnetic pressure gradient and total magnetic energy density in a general rela-
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Figure 1: Plot for masses of magnetized white dwarfs as a function of central magnetic

field.

tivistic framework. Nevertheless, we have also performed calculations corresponding to

very high (single Landau level) and high (multi Landau levels) magnetic field which is

constant throughout the star.

In Fig.-1 plot for masses of magnetized white dwarfs are shown as functions of central

magnetic field. Present calculations estimate that themaximum stablemass ofmagnetized

white dwarfs could be ∼3 M�. These results are quite useful in explaining the peculiar,

overluminous type Ia supernovae that do not conform to the traditional Chandrasekhar

mass-limit.

We next consider fermionic Asymmetric Dark Matter (ADM) [10, 11] particles of

mass 1 GeV and the self-interaction mediator mass of 100 MeV (low mass implying

strong interaction), mixed with rotating and non-rotating neutron stars. Similar hybrid

stellar cofigurations have been studied before [12, 13, 14]. ADM, like ordinary baryonic

matter, is charge asymmetric with only the dark baryon (or generally only the particle)

excess remains after the annihilation of most antiparticles after the Big Bang. Hence
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Figure 2: Mass-equatorial radius plots for static and rotating fermionic Asymmetric Dark

Matter stars.

these ADM particles are non self-annihilating and behaves like ordinary free particles.

The gravitational stability and mass-radius relations of static, rigidly and differentially

rotating neutron stars mixed with fermionic ADM are calculated using the LORENE code

[15]. It is important to note that we do not allow any phase transition of the nuclearmatter

and the interaction between nuclear matter and dark matter is only through gravity.

Fig.-2 depicts the plots of mass vs. equatorial radius for static and rotating pure dark

stars using self-interacting fermionic dark matter EoS. We see that the maximum mass for

non-rotating stars goes to 3.0279M� with a radius of 16.2349 kms and that for rotating

stars with frequency 400 Hz goes to 3.1460M� with equatorial radius of 19.2173 kms.

Now, if we take the dark matter particle mass mχ to be 0.5 GeV, then the maximum

mass goes to ∼ 12.6M� using the relation Mass ∝ 1/m2

χ
, thus mimicking stellar mass

black holes.

To compute the equilibriummodels of rotating and non-rotating neutron stars admixed

with fermionic ADM, we have used the nuclear matter EoS which is calculated using the
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isoscalar and the isovector components of M3Y interaction along with density dependence.

The density dependence of this DDM3Y effective interaction is completely determined

from nuclearmatter calculations. Themaximummass of a pure neutron star with DDM3Y

effective interaction goes to 1.9227M� with a radius of 9.7559 kms [16, 17, 18].

We consider two ideal fluids - the nuclear matter and fermionic dark matter with the

above two EoSs coupled gravitationally to form the structure of the mixed neutron star.In

Fig.-3 the plots of total mass vs. equatorial radius of static, rigidly and differentially

rotating neutron stars mixed with fermionic self-interacting dark matter are shown for

fixed dark matter central enthalpy (0.24c2) and varying nuclear matter central enthalpies.

The maximum mass of the neutron star mixed with strongly self-interacting dark matter

goes to 1.3640M� with a corresponding radius of 6.7523 kms for the case of differential

rotation (frequency of dark matter to be 300 Hz and that of nuclear matter to be 700

Hz) as shown in Fig.-3. In Fig.-4 the plots of total mass vs. equatorial radius of static,

rigidly and differentially rotating neutron stars mixed with fermionic self-interacting dark

matter are shown for fixed nuclear matter central enthalpy (0.24c2) and varying dark

matter central enthalpies. In this case the maximum mass goes to 1.9355M� with a

corresponding radius of 10.3717 kms for the case of differential rotation (frequency of

dark matter to be 700 Hz and that of nuclear matter to be 300 Hz) as shown in Fig.-4.

We also find that the dark matter dominated neutron star behaves differently than

the nuclear matter dominated one that show characteristics similar to low mass self-

bound strange stars. This is because of the very strong two-body repulsive interactions

of dark matter which is dominant in the low mass region where it counteracts gravity

effectively to make radius much smaller. Thus, while the nuclear matter dominance

induces gravitational binding, dark matter dominant low mass neutron star becomes more

compact. However, if the darkmatter particlemass is small compared to the nucleonmass

the maximum mass may well be above 2M�, provided no phase transition from nuclear
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to quark matter occurs.

Figure 3: Plots of total mass vs. equatorial radius of static, rigidly rotating and differen-

tially rotating neutron stars mixed with interacting fermionic Asymmetric Dark Matter

with fixed dark matter central enthalpy (0.24c2) and varying nuclear matter central en-

thalpies.

Rotational instabilities in NSs come in different flavours, but they have one general

feature in common: they can be directly associated with unstable modes of oscillation

[19]. In the present work the r-mode instability has been discussed with reference to

the EoS obtained using the density dependent M3Y (DDM3Y) effective nucleon-nucleon

(NN) interaction. The discovery of r-mode oscillation in neutron star (NS) by Anderson

[19] and confirmed by Friedman and Morsink [20] opened the window for study of the

gravitational wave emitted by NSs by using advance detecting system. Also it provides

the possible explanation for the spin down mechanism in the hot young NSs as well as in

spin up cold old accreting NSs.

The concern here is to study the evolution of the r-modes due to the competition of

gravitational radiation and dissipative influence of viscosity.The instability in the mode

v



Figure 4: Plots of total mass vs. equatorial radius of static, rigidly rotating and differen-

tially rotating neutron stars mixed with interacting fermionic Asymmetric Dark Matter

with fixed nuclear matter central enthalpy (0.24c2) and varying dark matter central en-

thalpies.

grows because of gravitational wave emission which is opposed by the viscosity. For the

instability to be relevant, it must grow fast than it is damped out by the viscosity. So

the time scale for gravitationally driven instability needs to be sufficiently short to the

viscous damping time scale. The shear viscosity time scale is obtained by considering the

shear dissipation in the viscous boundary layer between solid crust and the liquid core

with the assumption that the crust is rigid and hence static in rotating frame [21].

Bildsten and Ushomirsky [22] have first estimated this effect of solid crust on r-mode

instability and shown that the shear dissipation in this viscous boundary layer decreases

the viscous damping time scale by more than 105 in old acreting neutron stars and more

than 107 in hot, young neutron stars. Moreover, the bulk viscous dissipation is not sig-

nificant for temperature of the star below 1010 K and in this range of temperature the

shear viscosity is the dominant dissipative mechanism, We have restricted our study in
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Figure 5: Plots of critical frequency with temperature for different masses of neutron

stars. The square dots represent observational data [25].

this work to the range of the temperature T < 1010 K and included only shear dissipa-

tive mechanism. The studies is similar to the one done by Moustakidis [23], where we

have mainly examined the influence of neutron star EoS and the gravitational mass on

the instability boundary and other relevant quantities, such as, critical frequency and

temperature, etc. for a neutron star using the DDM3Y effective interaction [24].

In Fig.-5, the critical frequency is shown as a function of temperature T for several

masses of neutron stars for the DDM3Y EoS. The square dots represent observed Low

Mass X-ray Binaries(LMXBs) and Millisecond Radio Pulsars (MSRPs).The plots act as

boundaries of the r-mode instability windows. Neutron stars lying above the plots (whose

angular frequency is greater than the critical frequency) possess unstable r-modes and

hence emit gravitational waves, thus reducing their angular frequencies. Once their an-

gular velocities reach the critical frequency they enter the region below the plots, where

the r-modes become stable and hence stop emitting gravitational radiation. From Fig.-5,

it is interesting to note that according to our model of the EoS with a rigid crust and
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a relatively small r-mode amplitude, all of the observed neutron stars lie in the stable

r-mode region which is consistent with the lack of observation of gravitational radiation

due to r-mode instability. We have also pointed out the fact that the critical frequency

depends on the EoS through the radius and the symmetry energy slope parameter L.

If the dissipation of r-modes from shear viscosity acts along the boundary layer of the

crust-core interface then the r-mode instability region is enlarged to lower values of L.
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Chapter 1

INTRODUCTION

Compact stars are exotic astrophysical objects formed as stellar remnants when a normal

star runs out of nuclear fuel. Compact stars are of three types, namely, white dwarfs,

neutron stars and black holes. A star shines and thus loses its nuclear energy reservoir

in a finite time. When a star has exhausted all its energy, the gas pressure of the hot

interior can no longer support the weight of the star and the star collapses to a denser

state. The formation of the different types of compact stars depends on the mass of the

normal star prior to the gravitational collapse. Stars with masses less than 10M� at the

end of their lifetime collapse into white dwarfs, those with ∼ 10 − 20M� form neutron

stars and those with masses greater than 20M� form black holes.

A White Dwarf is a compact star whose mean mass is of the order of a Solar mass

and mean radius of the order of 1000 kms. Hence its mean density is ∼ 109 gms/cc,

making a white dwarf one of the densest objects in the Universe. A white dwarf’s interior

is degenerate, and it is supported against gravitational collapse by the pressure of the

extremely relativistic free electron gas. Since electrons are fermions and they are degener-

ate inside a white dwarf, at such densities they have extremely large kinetic energies and

hence large pressure which is enough to support them against gravity. The atomic nuclei
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contributes mainly to the gravitational mass of a white dwarf. The composition of white

dwarfs depends on the final product of nuclear fusion in the star before collapse. Very

low mass stars produce helium white dwarfs, low to intermediate stars such as the Sun

produce carbon-oxygen white dwarfs and slightly higher mass stars produce oxygen-neon-

magnesium white dwarfs. White dwarfs have a maximum possible mass of ∼ 1.44M�,

known as the Chandrasekhar limit, beyond which it is gravitationally unstable [1]. If a

white dwarf’s mass surpasses the Chandrasekhar limit, its interior undergoes runaway

nuclear fusion which makes the white dwarf explode in a Type Ia supernova explosion.

Ultrahigh magnetic fields in nature are known to be associated with white dwarfs, neu-

tron stars and black holes. Of these, the largest magnetic fields are found on the surfaces

of magnetars, Anomalous X-ray Pulsars (AXPs) and Soft Gamma Repeaters (SGRs), cer-

tain classes of neutron stars, with an order of magnitude of 1015 gauss. Recently, a strong

magnetic field of the same order of magnitude as that of a magnetar has been found at

the jet base of a supermassive black hole PKS 1830-211 [2]. These strong magnetic fields

drastically modify the Equation of State (EoS) of a compact star and its stability. Hence,

studying the EoS and equilibria of compact stars in presence of high magnetic fields is an

important and rapidly growing field of research in theoretical astrophysics. In this study

we have incorporated the Landau quantization of electron gas embedded in a density-

dependent magnetic field inside white dwarfs, consistent with observations, and showed

that such ultramagnetized white dwarfs have masses well above the Chandrasekhar limit.

These white dwarfs are hence called Super-Chandrasekhar white dwarfs.

Another class of compact stars are called Neutron Stars. A neutron star’s mass is of

the order of one solar mass but in contrast to a white dwarf, its radius is of the order

of only 10 km. Hence the mean density of a neutron star is ∼ 1015 gms/cc, making a

neutron star’s interior to be the densest matter in the Cosmos. A neutron star is born

from the violent core-collapse supernova explosion of a massive star generally known as
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Type II supernova. At the pre-supernova stage, the massive star consists of a white

dwarf-like iron core and surrounded by layers of less processed material from nuclear shell

burning. The iron core doesn’t fuse due to its highest binding energy per nucleon. As

a result when mass is added to the core by shell burning, the core mass surpasses the

Chandrasekhar limit,becomes unstable and collapses. During the collapse, the lepton

content decreases due to net electron capture on nuclei and free protons. But when the

core density approaches ∼ 1012 gms/cc, the neutrinos can no longer escape from the core

on the dynamical time-scale. The core continues to collapse until the rapidly increasing

pressure reverses the collapse at a bounce density of a few times nuclear density. This

bounce results in a shock which is largely dissipated by the energy required to dissociate

massive nuclei in the still infalling matter of the original iron core. The shock wave expels

the outer layers of gas forming a supernova and the resultant supernova remnant becomes

the newly born neutron star.

A neutron star’s interior is enriched with a plethora of exotic phases of dense matter

which makes its composition or the Equation of State (EoS) a total mystery till today.

The interior can be broadly divided into three regions : the outer crust, the inner crust and

the core. The outer crust consists of a lattice of atomic nuclei of iron-peak elements - iron,

cobalt and nickel immersed in a relativistic degenerate electron gas. It envelops the inner

crust which extends from the neutron drip density to a transition density ∼ 1.7 × 1014

gms/cc. The inner crust consists of neutron-rich nuclei immersed in a free neutron and

electron gas. Some recent results also predict presence of nuclear “pasta” phases in the

inner crust [3]. Beyond the inner crust lies the core, where as a result of increasing density,

all the atomic nuclei melt into their constituents, protons and neutrons to form a phase of

uniform nuclear matter. Due to the high Fermi energies of the nucleons in the core, more

exotic baryons such as hyperons as well as a gas of free up, down and strange quarks can

form [4, 5]. Moreover, studies have also shown the existence of pion and kaon condensates
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[6, 7].

To predict the mass-radius relationship of a neutron star, one needs to know the EoS,

which is the fundamental problem of neutron star research. The neutron star crustal EoS

has been somewhat calculated with an accuracy, sufficient to construct neutron star mod-

els. The theories are based on reliable experimental data on atomic nuclei, nucleon scat-

tering, and on the well elaborated theory of strongly coupled high density Coulomb plas-

mas. Examples are the Feynman-Metropolis-Teller (FMT) [8], Baym-Pethick-Sutherland

(BPS) [9] and Baym-Bethe-Pethick (BBP) [10] EoSs. The core EoS is much more difficult

to treat since such superdense matter cannot be reproduced in laboratories and there is a

lack of the precise relativistic many-body theory of strongly interacting particles at such

densities. Instead, there are numerous theoretical effective models of the core EoS. Mod-

ern models for the EoS of the core fall into two main categories: nonrelativistic variational

approximation and relativistic field theoretic approaches. Some of the EoSs based on the

nonrelativistic nuclear potentials are the Skyrme-Lyon(SLy) [11, 12], APR [13], FPS [14],

BPAL12 [15] etc. The Relativistic Mean Field (RMF) EoS is based on relativistic field

theory of particles [16].

Neutron stars are home to the strongest magnetic fields of the Universe. Their surface

field strengths lie in the range of ∼ 1010− 1015 gauss. Highly magnetized rapidly rotating

neutron stars are called pulsars. The magnetic field of a pulsar is dipolar and the magnetic

dipole moment axis, being misaligned with the rotation axis, a pulsar emits electromag-

netic radiation from its north and south magnetic poles. When this beam of radiation

intersects our line of sight we observe a pulse. Observations show that the pulses are

very periodic over millions of years, which means that the rotational frequency is almost

constant. Hence pulsars can be considered as precise clocks.

But sometimes sudden jumps in rotational frequencies ω which may be as large as

Δω
ω

∼ 10−6−10−9 have been observed for many pulsars. This phenomenon is called pulsar
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glitch. The hypothesis of experience of glitches [17] by all radio pulsars is substantiated

by observation of glitches. A glitch is a sudden increase in the frequency rotation of a

rotation-powered pulsar, which, due to braking provided by the emission of radiation and

high-energy particles, generally decreases steadily. This sudden increase in the rotational

frequency of pulsar is due to a short time coupling of the faster-spinning superfluid core of

the pulsar to its crust, which are usually decoupled. The transfer of angular momentum

from core to the surface caused by this brief coupling decreases the measured time period.

It is envisaged that the breaking of the magnetic dipole of pulsar ensues coupling which

applies a twisting force to the crust causing a brief coupling. The inner crust consists of a

crystal lattice of nuclei immersed in a neutron superfluid [18] where core to crust transition

occurs. With a regular array of rotational vortices created due to rotation of the pulsar,

the superfluid consisting of neutrons (both deeper inside the star and within the inner

crust) is entangled. The reason that the rotational frequency of a superfluid is proportional

to the density of vortices, as the pulsar slows down these vortices need to gradually move

outwards. Although in the crust the vortices are pinned by their interaction with the

nuclear lattice, in the star’s deep inside this process is freely allowed. Various theoretical

models [19, 20, 21, 22, 23] differ in important aspects of the stress release mechanism

of glitch which are associated with pinned vortices. The crust may get rearranged due

to the breaking of vortices or a cluster of vortices may move macroscopically outward

by overcoming the pinning force suddenly. This phenomenon results in a glitch due to

sudden decrease in the angular momentum of the superfluid within the crust causing a

sudden increase in angular momentum of the rigid crust itself. The common feature of

all the models is that they agree that the fundamental requirement is the presence of a

rigid structure which impedes the motion of rotational vortices present in a superfluid

and which encompasses enough of the volume of the pulsar to contribute significantly to

the total moment of inertia.
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The effective interactions are either of microscopic origin such as M3Y forces [24, 25]

or of phenomenological origin such as Seyler-Blanchard [26, 27, 28, 29, 30], Skyrme [31,

32, 33] and simple effective interactions [34, 35, 36]. Based upon the characterization of

nuclear matter described by the two-body density dependent M3Y effective interaction

[24, 25] (DDM3Y) based on the Brueckner-Goldstone G-matrix elements of the Reid-

Elliott NN interaction, a systematic description of the spin and isospin symmetric nuclear

matter (SNM) and the dependence of bulk behavior of isospin asymmetric nuclear matter

(IANM) on isospin have been provided. In the present work, the EoS used is obtained

from the density dependent M3Y effective nucleon-nucleon (NN) interaction (DDM3Y)

for which the incompressibility K∞ for the SNM, nuclear symmetry energy Esym(ρ0) at

saturation density ρ0, the isospin dependent part Kτ of the isobaric incompressibility

and the slope L are in excellent agreement with the constraints extracted from measured

isotopic dependence of the giant monopole resonances in even-A Sn isotopes, from the

neutron skin thickness of nuclei recently, and from analyses of experimental data on isospin

diffusion and isotopic scaling in intermediate energy heavy-ion collisions [37, 38]. The core-

crust transition in neutron stars is determined [39] by analyzing the stability of the β-

equilibrated dense nuclear matter with respect to the thermodynamic stability conditions

[40, 41, 42, 43, 44]. The mass-radius relation for neutron stars is obtained by solving the

Tolman-Oppenheimer-Volkoff Equation (TOV) [45, 46] and then the crustal fraction of

moment of inertia is determined using pressure and density at core-crust transition. Since

in the Vela pulsar the angular momentum requirements of glitches indicate that 1.4% of

the star’s moment of inertia drives these events, the allowed region for masses and radii

for Vela pulsar is determined from the condition that the crustal fraction of the total

moment of inertia ΔI
I

> 0.014 which sets a limit for its radius.

Since neutron stars are very compact they are sources of high gravity. Gravitational

waves emitted from isolated and binary neutron stars are efficient informers about the

6



interior characteristics of neutron stars. Nowadays gravitational wave astronomy with

pulsars has grown into a rich topic of study. The tidal deformabilities and gravitational

wave profiles of neutron stars in binary systems are directly connected to the EoS. The only

limitation is the extreme smallness of the wave amplitude on the Earth (∼ 10−21). But on

August 17, 2017, the first gravitational wave signal of two colliding neutron stars, named

as GW170817, was detected by the Laser Interferometer Gravitational-Wave Observatory

(LIGO), Virgo and some 70 ground- and space-based observatories [47]. The inspiralling

objects were 1.1 to 1.6M�.

Rapidly rotating neutron stars also suffer from various rotational instabilities. Quasi-

normal modes of rapidly rotating isolated and accreting compact stars also act as sensitive

probes for general relativistic effects such as gravitational waves and of the properties of

ultradense matter. Temporal changes in the rotational period of neutron stars can re-

veal the internal changes of the stars with time. Albeit orders of magnitude smaller

than the gravitational waves emitted from neutron stars in binary systems, waves emitted

from rotational instabilities can be detected in future by the advanced LIGO, advanced

Virgo, Einstein, Large Interferometer Space Antenna (LISA) and the Square Kilometer

Array (SKA) telescopes. In this work we have studied one type of rotational instability,

known as the r-mode (Rossby mode) instability using the DDM3Y EoS and calculated

the spin-down and spin-down rates.

Next, we consider neutron stars with dark matter cores. Neutron stars and white

dwarfs being very compact and dense, can accrete and efficiently capture dark matter

particles and become dark matter admixed compact stars. Even main-sequence stars can

accumulate dark matter particles within them throughout their lifetime and at the end of

their lifetimes end up as dark matter admixed compact stars. The accumulation process of

dark matter can be different for different models of dark matter. Such “hybrid” stars can

show drastically different mass-radius relationships based on the amount and properties
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of dark matter particles inside them. Their observational characteristics have been put

forward by several studies [48, 49, 50, 51, 52, 53, 54]. Hence compact stars admixed with

dark matter can act as sensitive probes of not only the nature of superdense baryonic

matter but also of the properties of dark matter itself.

We have considered pure hadronic stars with the DDM3Y effective nucleon-nucleon

interaction admixed with strongly self-interacting fermionic Asymmetric Dark Matter

with particle mass of 1 GeV, consistent with dark matter observations. The Asymmetric

Dark Matter EoS is calculated theoretically based on the massive vector field theory

similar to the meson exchange of nuclear interaction. The mass of the mediator of the

interaction is taken to be 100 MeV. We have considered equal and different rotational

frequencies of nuclear and dark matter and have employed the two-fluid formalism to

calculate the mass-radius relations. We have found that the maximum mass of a pure

dark matter star goes to ∼ 3M� while that of a neutron star admixed with dark matter

to be ∼ 1.94M� with a radius of ∼ 10.4 kms.
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Chapter 2

EQUATION OF STATE FOR

NON-MAGNETIZED AND

MAGNETIZED WHITE DWARF

MATTER

The magnitude of magnetic fields of white dwarfs is constrained by the virial theorem:

(
4

3
πR3

)
B2

8π
=

3

5

GM2

R
, (2.1)

which gives

Bmax = B�

(
M

M�

)(
R

R�

)−2

. (2.2)

Here, B, B�, M, M�, R, R� are the magnetic field, mass and radius of the white dwarf

and sun respectively. Using B� = 2 × 108 gauss, M = 1.4 M� and R = 0.0086 R�, we

get the order of magnitude as Bmax ∼ 1012 gauss.

The recently observed peculiar Type Ia supernovae, e.g. SN2006gz, SN2007if, SN2009dc,
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SN2003fg, [55, 56, 57, 58, 59] with exceptionally high luminosities do not fit with the ex-

plosion of a Chandrasekhar mass white dwarf. Moreover, it has been seen that there

is a correlation between the surface magnetic field and the mass of white dwarfs. The

magnetic white dwarfs seem to be more massive than their nonmagnetic counterparts

[60]. Lastly, predictions from the luminosities reveal that the progenitor white dwarfs

had masses significantly higher than the Chandrasekhar limit. It seems that the Chan-

drasekhar limit may be violated by highly magnetized white dwarfs. To account for these

facts, we have calculated theoretically the masses of white dwarfs in presence of such high

magnetic fields in the general relativistic formalism.

2.1 The Equation of State for non-magnetic White

Dwarfs

We consider a relativistic, completely degenerate Fermi gas at zero temperature and

neglect any form of interactions between the fermions. By the Pauli exclusion principle,

no quantum state can be occupied by more than one fermion with an identical set of

quantum numbers. Thus a noninteracting Fermi gas, unlike a Bose gas, is prohibited

from condensing into a Bose-Einstein condensate. The total energy of the Fermi gas

at absolute zero is larger than the sum of the single-particle ground states because the

Pauli principle implies a degeneracy pressure that keeps fermions separated and moving.

For this reason, the pressure of a Fermi gas is non-zero even at zero temperature, in

contrast to that of a classical ideal gas. This so-called degeneracy pressure stabilizes a

white dwarf (a Fermi gas of electrons) against the inward pull of gravity, which would

ostensibly collapse the star into a Black Hole. However if a star is sufficiently massive to

overcome the degeneracy pressure, it collapse into a singularity due to gravity. While the
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pressure inside a white dwarf is entirely due to electrons, its mass comes mostly from the

atomic nuclei.

2.1.1 Completely degenerate free electron Gas

The non-interacting assembly of fermions at zero temperature exerts pressure because of

kinetic energy from different states filled up to Fermi level. Since pressure is force per

unit area which means rate of momentum transfer per unit area, it is given by

Pe =
1

3

∫
pvnpd

3p =
1

3

∫ p2c2√
(p2c2 +m2

ec
4)
npd

3p (2.3)

where me is the rest mass, v is the velocity of the particles with momentum �p and npd
3p

is the number of particles per unit volume having momenta between �p and �p + d�p. The

factor 1

3
accounts for the fact that, on average, only 1

3
rd of total particles npd

3p are moving

in a particular direction. For fermions having spin 1

2
, degeneracy = 2, npd

3p = 8πp2dp
h3 and

hence number density neis given by

ne =
∫ pF

0

npd
3p =

8πp3F
3h3

=
x3

F

3π2λ3
e

(2.4)

where pF is the Fermi momentum which is maximum momentum possible at zero tem-

perature, xF = pF
mec

is a dimensionless quantity and λe =
h̄

mec
is the Compton wavelength.

The energy density εe is given by

εe =
∫ pF

0

Enpd
3p =

∫ pF

0

√
(p2c2 +m2

ec
4)
8πp2dp

h3
(2.5)

which along with Eq.(2.3) turns out upon integration to be

εe =
mec

2

λ3
e

χ(xF ); Pe =
mec

2

λ3
e

φ(xF ), (2.6)

where

11



χ(x) =
1

8π2
[x
√
1 + x2(1 + 2x2)− ln(x+

√
1 + x2)] (2.7)

and

φ(x) =
1

8π2
[x
√
1 + x2(

2x2

3
− 1) + ln(x+

√
1 + x2)]. (2.8)

2.1.2 Contribution of atomic nuclei to the energy density

For the EoS for non-magnetic White Dwarfs, the pressure is provided by the relativistic

electrons only and therefore, pressure P is given by

P = Pe =
mec

2

λ3
e

φ(xF ), (2.9)

whereas for energy density ε both electrons (with its kinetic energy) and atomic nuclei

contribute, so that

ε = εe + ne(mp + fmn)c
2 =

mec
2

λ3
e

χ(xF ) + ne(mp + fmn)c
2 (2.10)

where mn and mp are the masses of neutron and proton, respectively and f is the number

of neutrons per electron. Commonly, electron-degenerate stars consist of helium, carbon,

oxygen, etc., for which f = 1. To be precise, one should in fact also subtract ne(1 + f)

times binding energy per nucleon from the second term on the right hand side of the

above equation. Obviously, this correction is composition dependent and its contribution

being quite small, e.g. in case of helium star it is about 0.7% to the second term, it is

not considered in calculations. Since the kinetic energy of electrons in the above equation

contributes negligibly, the mass density for f = 1 white dwarfs can be expressed in units

of 2×109 gms/cc by multiplying number density of electrons ne expressed in units of fm−3

by the factor 1.6717305×106.
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2.2 The Equation of State for magnetizedWhite Dwarfs

Like the former case, here also we consider a completely degenerate relativistic electron

gas at zero temperature but embedded in a strong magnetic field. We do not consider any

form of interactions with the electrons. Electrons, being charged particles, occupy Landau

quantized states in a magnetic field. This changes the EoS, which, in turn, changes the

pressure and energy density of the white dwarf. In addition to the matter energy density

and pressure, the energy density and pressure due to magnetic field are also taken into

account. It is the combined pressure and energy density of matter and magnetic field that

determines the mass-radius relation of strongly magnetized white dwarfs. It should be

emphasized that protons also, being charged particles, are Landau quantized. But since

the proton mass is ∼ 2000 times the electron mass their cyclotron energy is ∼ 2000 times

smaller than that of the electron for the same magnetic field, and hence we neglect it.

2.2.1 Landau quantization and EoS for free electron gas in mag-

netic field

In order to calculate the thermodynamic quantities like the energy density and pressure

of an electron gas in a magnetic field, we need to know the density of states and the

dispersion relation. The quantum mechanics of a charged particle in a magnetic field

is presented in many texts (e.g. Sokolov and Ternov (1968) [61], Landau and Lifshitz

(1977) [62], Canuto and Ventura (1977) [63] Mészáros (1992) [64]). Here we summarize

the basics needed for our later discussion. Let us first consider the motion of a charged

particle (charge q and mass me) in a uniform magnetic field B assumed to be along the

z-axis. In classical physics, the particle gyrates in a circular orbit with radius and angular

frequency (cyclotron frequency) given by
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rc =
mecv⊥
qB

; ωc =
qB

mec
(2.11)

where v⊥ is the velocity perpendicular to the magnetic field. The hamiltonian of the

system is given by

H =
1

2me

(
�p− q �A

c

)2
(2.12)

where �B = ∇× �A with �A being the electromagnetic vector potential. To have magnetic

field in z-direction with magnitude B one must have

�A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0

Bx

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2.13)

and therefore

H =
1

2me

[p2x +
(
py − qBx

c

)2
+ p2z] (2.14)

The operator p̂y commutes with this hamiltonian since the operator y is absent. Thus

operator p̂y can be replaced by its eigenvalue h̄ky.Using cyclotron frequency ωc =
qB
mec

one

obtains

H =
p2x
2me

+
1

2
meω

2

c

(
x− h̄ky

meωc

)2
+

p2z
2me

, (2.15)

the first two terms of which is exactly the quantum harmonic oscillator with the mini-

mum of the potential shifted in co-ordinate space by x0 =
h̄ky
meωc

. Noting that translating

harmonic oscillator potential does not affect the energies, energy eigenvalues can be given

by
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En,pz = (n+
1

2
)h̄ωc +

p2z
2me

, n = 0, 1, 2.... (2.16)

The energy does not depend on the quantum number ky, so there will be degeneracies.

Each set of wave functions with same value of n is called a Landau Level. Each Landau

level is degenerate due to the second quantum number ky. If periodic boundary condition

is assumed ky can take values ky = 2πN
ly

where N is another integer and lx, ly, lz being

the dimensions of the system. The allowed values of N are further restricted by the

condition that the centre of the force of the oscillator x0 must physically lie within the

system, 0 ≤ x0 ≤ lx which implies 0 ≤ N ≤ lxlymeωc

2πh̄
= qBlxly

hc
. Hence for electrons with

spin s and charge q = −|e|, the maximum number of particles per Landau level per unit

area is |e|B(2s+1)

hc
. On solving Schrödinger’s equation for electrons with spin in an external

magnetic field in z-direction which is uniform and static, Eq.(2.16) modifies to

Eν,pz = νh̄ωc +
p2z
2me

, ν = n+
1

2
+ sz. (2.17)

Clearly for the lowest Landau level (ν = 0) the spin degeneracy gν = 1 (since only n = 0,

sz = −1

2
is allowed) and for all other higher Landau levels (ν �= 0), gν = 2 (for sz = ±1

2
).

For extremely strong magnetic fields such that h̄ωc ≥ mec
2 the motion perpendicular

to the magnetic field still remains quantized but becomes relativistic. The solution of the

Dirac equation in a constant magnetic field [65] is given by the energy eigenvalues

Eν,pz =
[
p2zc

2 +m2

ec
4 (1 + 2νBD)

] 1
2 (2.18)

where the dimensionless magnetic field defined as BD = B/Bc is introduced with Bc given

by h̄ωc = h̄ |e|Bc

mec
= mec

2 ⇒ Bc = m2
ec

3

|e|h̄ = 4.414 × 1013 gauss. Obviously, the density of

states in presence of magnetic field gets modified to
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∑
ν

2|e|B
hc

gν

∫ dpz
h

(2.19)

where the sum is on all Landau levels ν. At zero temperature the number density of

electrons is given by

ne =
νm∑
ν=0

2|e|B
h2c

gν

∫ pF (ν)

0

dpz =
νm∑
ν=0

2|e|B
h2c

gνpF (ν) (2.20)

where pF (ν) is the Fermi momentum in the νth Landau level and νm is the upper limit of

the Landau level summation. The Fermi energy EF of the νth Landau level is given by

E2

F = p2F (ν)c
2 +m2

ec
4 (1 + 2νBD) (2.21)

and νm can be found from the condition [pF (ν)]
2 ≥ 0 or

ν ≤ ε2F − 1

2BD

⇒ νm =
ε2Fmax − 1

2BD

, (2.22)

where εF = EF

mec2
is the dimensionless Fermi energy and εFmax = EFmax

mec2
the dimensionless

maximum Fermi energy of a system for a given BD and νm. Obviously, very small BD

corresponds to large number of Landau levels leading to the familiar non-magnetic EoS. νm

is taken to be the nearest lowest integer. Like the former case, if we define a dimensionless

Fermi momentum xF (ν) =
pF (ν)
mec

then Eqs.(2.20) and (2.21) may be written as

ne =
2BD

(2π)2λ3
e

νm∑
ν=0

gνxF (ν) (2.23)

and

εF =
[
x2

F (ν) + 1 + 2νBD

] 1
2 (2.24)

or
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xF (ν) =
[
ε2F − (1 + 2νBD)

] 1
2 . (2.25)

The electron energy density is given by

εe =
2BD

(2π)2λ3
e

νm∑
ν=0

gν

∫ xF (ν)

0

Eν,pzd
(

pz
mec

)

=
2BD

(2π)2λ3
e

mec
2

νm∑
ν=0

gν(1 + 2νBD)ψ

(
xF (ν)

(1 + 2νBD)1/2

)
,

(2.26)

where

ψ(z) =
∫ z

0

(1 + y2)1/2dy =
1

2
[z
√
1 + z2 + ln(z +

√
1 + z2)] (2.27)

The pressure of the electron gas is given by

Pe = n2

e

d

dne

(
εe
ne

)
= neEF − εe

=
2BD

(2π)2λ3
e

mec
2

νm∑
ν=0

gν(1 + 2νBD)η

(
xF (ν)

(1 + 2νBD)1/2

)
,

(2.28)

where

η(z) = z
√
1 + z2 − ψ(z) =

1

2
[z
√
1 + z2 − ln(z +

√
1 + z2)]. (2.29)

2.2.2 Contributions of magnetic field and atomic nuclei

In the present case of magnetic White Dwarfs, the explicit contributions from the energy

density εB = B2

8π
and pressure PB = 1

3
εB arising due to magnetic field need to be added

to the matter energy density and pressure as
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P = Pe + PB

=
2BD

(2π)2λ3
e

mec
2

νm∑
ν=0

gν(1 + 2νBD)η

(
xF (ν)

(1 + 2νBD)1/2

)

+
B2

24π
, (2.30)

and

ε = εe + ne(mp + fmn)c
2 + εB

=
2BD

(2π)2λ3
e

mec
2

νm∑
ν=0

gν(1 + 2νBD)ψ

(
xF (ν)

(1 + 2νBD)1/2

)

+ne(mp + fmn)c
2 +

B2

8π
. (2.31)

2.3 Coulomb corrections to White Dwarf EoS: The

Feynman-Metropolis-Teller Approach

The Feynman-Metropolis-Teller treatment of compressed atom [66] is extended to the

relativistic regime. Each atomic configuration is confined by a Wigner-Seitz cell and is

characterized by a positive electron Fermi energy. The nonrelativistic treatment assumes

a pointlike nucleus and infinite values of the electron Fermi energy can be attained. In

the relativistic treatment, there exists a limiting configuration, reached when the Wigner-

Seitz cell radius equals the radius of the nucleus with a maximum value of the electron

Fermi energy. FMT treatment with Coulomb screening in presence of strong quantizing

magnetic field has been applied in this work to develop the Equation of State(EoS).

The Mass-Radius relations for magnetized WDs are obtained by solving the Tolman-

Oppenheimer-Volkoff equations.
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We consider a compressed atom as a Wigner-Seitz cell consisted of a finite sized nucleus

at the center of the cell and completely degenerate relativistic electron gas embedded

in a strong magnetic field. We consider here the interaction between the nucleus and

the electrons. Electrons, being charged particles, occupy Landau quantized states in a

magnetic field. Electrons with spin s and charge q = −|e|, the maximum number of

particles per Landau level per unit area is |e|B(2s+1)

hc
in magnetic field B. On solving

Dirac’s with spin in an external magnetic field B in z-direction which is uniform and

static, energy eigenvalues are given by

Eν,pz =
[
p2zc

2 +m2

ec
4 (1 + 2νBD)

] 1
2 −mec

2 − eV (r) (2.32)

where ν=n+1

2
+sz, the Landau quantum number, me is electron rest mass and the dimen-

sionless magnetic field defined asBD=B/Bc is introduced withBc given by h̄ωc=h̄ |e|Bc

mec
=mec

2 ⇒

Bc=
m2

ec
3

|e|h̄ =4.414×1013 gauss. A constant distribution of protons confined in a radius given

by Rc=r0A
1
3 with r0=1.2fm is assumed. Using Landau quantization, electronic number

density is given by

ne =
2BD

(2π)2λ3
e

νm∑
ν=0

gν
pzc

mec2

pzc =
[
V̂ 2

(
1− ν

νm

)
+ 2mec

2V̂
(
1− ν

νm

)] 1
2

, (2.33)

where V̂ = eV + Eν,pz and Eq.(2.32) is used for its evaluation. νm is the upper limit of

Landau level can be found from the condition p2z ≥ 0 and is given by νm = V̂ 2
+2V̂ mec2

2BDm2
ec

4 .

The overall Coulomb potential outside the nucleus satisfies the poisson equation

∇2V (r) = 4πene(r)

⇒ 1

x

d2χ(x)

dx2
=

8πe2BD

4π2ch̄

mπ

me

(
λπ

λe

)3

νm∑
ν=0

gν

(
1− ν

νm

) 1
2

⎡⎣(χ(x)
x

)2

+
χ(x)

x

2me

mπ

⎤⎦ 1
2

, (2.34)
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where dimensionless quantities x= r
λπ
,χ
r
= V̂ (r)

ch̄
have been introduced. Solving Eq.(3) we find

the electrostatic potential and the electronic distribution. Hence the potential energy

density εp, kinetic energy density εk are found. The energy density ε and pressure P

expressions are given by,

εp = −ene(r)V (r)

εk =
2BDmec

2

4π2λ3
e

νm∑
ν=0

gν (1 + 2νBD)

ψ

(
xF (ν)

(1 + 2νBD)1/2

)

ε = εp + εk + ρmBc
2 +

B2

8π
(2.35)

P = PB + Pe

=
B2

24π
+

2BDmec
2

4π2λ3
e

νm∑
ν=0

gν (1 + 2νBD) η

(
xF (ν)

(1 + 2νBD)1/2

)

(2.36)

where xF (ν)=pz/mec, λe=
h̄

mec
, λπ=

h̄
mπc

, mπ is the pion mass, ρ is the baryonic number

density, mB is the baryonic mass. The magnetic energy contribution is εB=
B2

8π
while

PB=
εB
3

is the magnetic contribution to pressure and

ψ (z) =

z∫
0

(
1 + y2

) 1
2

=
1

2

[
z
√
1 + z2 + ln

(
z +

√
1 + z2

)]
η (z) = z

√
1 + z2 − ψ (z) (2.37)

We perform calculations with varying magnetic field inside WD given by the form [67]

Bd = Bs +B0[1− exp{−β(ρ/ρ0)
γ}] (2.38)
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where Bd (in units of Bc) is the magnetic field at baryonic density ρ, Bs (in units of Bc)

is the surface magnetic field and ρ0 is taken as ρ(r=0)/10 and β, γ are constants. We

choose constants β=0.8, γ=0.9, rather arbitrarily but the central and surface magnetic

fields once fixed the variations of its profile do not alter the gross results. The maximum

central magnetic field strength is kept at 10Bc which is 4.414×1014 gauss [68] and surface

magnetic field at ∼ 109 gauss estimated by observations.
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Chapter 3

MASSES & RADII OF WHITE

DWARFS

If rapidly rotating compact stars were non-axisymmetric, they would emit gravitational

waves in a very short time scale and settle down to axisymmetric configurations. There-

fore, we need to solve for rotating and axisymmetric configurations in the framework of

general relativity. For the matter and the spacetime the following assumptions are made.

The matter distribution and the spacetime are axisymmetric, the matter and the space-

time are in a stationary state, the matter has no meridional motions, the only motion

of the matter is a circular one that is represented by the angular velocity, the angular

velocity is constant as seen by a distant observer at rest and the matter can be described

as a perfect fluid. To study the rotating stars the following metric is used

ds2 = −e(γ+ρ)dt2 + e2α(dr2 + r2dθ2)

+e(γ−ρ)r2 sin2 θ(dφ− ωdt)2 (3.1)

where the gravitational potentials γ, ρ, α and ω are functions of polar coordinates r and

θ only.
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3.1 Tolman-Oppenheimer-Volkoff Equation and its nu-

merical solution for White Dwarfs

The Einstein’s field equations for the three potentials γ, ρ and α can be solved using the

Green’s-function technique [69] and the fourth potential ω can be determined from other

potentials. All the physical quantities may then be determined from these potentials.

Rotational frequency of stars is limited by Kepler’s frequency which is the mass shedding

limit. For very compact stars such as neutron stars the Kepler’s frequency is very high

and can go up to millisecond order [70, 71] whereas white dwarfs being about thousand

times bigger in size and much less dense, Kepler’s frequency is very small and one may

safely use the zero frequency limit [72] to the Einstein’s field equations. Obviously, at the

zero frequency limit corresponding to the static solutions of the Einstein’s field equations

for spheres of fluid, the present formalism yields the results for the solution of the Tolman-

Oppenheimer-Volkoff (TOV) equation [45, 46] given by

dP (r)

dr
= −G

c4
[ε(r) + P (r)][m(r)c2 + 4πr3P (r)]

r2[1− 2Gm(r)
rc2

]
(3.2)

where ε(r) = ρ(r)c2 and m(r)c2 =
∫ r

0

ε(r′)d3r′

which can be easily solved numerically using Runge-Kutta method for masses and radii.

The quantities ε(r) and P (r) are the energy density and pressure at a radial distance r

from the centre, and are given by the equation of state. The mass of the star contained

within a distance r is given by m(r). The size of the star is determined by the boundary

condition P (r) = 0 and the total mass M of the star integrated up to the surface R

is given by M = m(R) [73]. The single integration constant needed to solve the TOV

equation is Pc, the pressure at the center of the star calculated at a given central density

ρc.
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Recently, there are some important calculations for masses and radii of magnetized

white dwarfs using non-relativistic Lane-Emden equation assuming a constant magnetic

field throughout which provided masses up to 2.3-2.6 M� [74], a mass significantly greater

than the Chandrasekhar limit. However, because of the structure of the Lane-Emden

equation, pressure arising due to constant magnetic field do not contribute while for the

general relativistic TOV equation case is not the same. Moreover, the EoS needed to be

fitted to a polytropic form. In order to derive a mass limit for magnetized white dwarfs

(similar to the mass limit of ∼1.4 M� obtained by Chandrasekhar [1] for non-magnetic

white dwarfs), the same authors, under certain approximations, have been able to reduce

the EoS to a polytropic form with index 1 + 1/n = 2 for which analytic solution of

Lane-Emden equation exists (θ(ξ) = sinξ/ξ where ρ = ρcθ
n with ρ and ρc being density

and central density, respectively) and avoiding the energy density εB = B2

8π
and pressure

PB = 1

3
εB arising due to magnetic field by assuming it to be constant throughout, they

were able to set a mass limit of 2.58 M� [75, 76]. In the present work, we have calculated

masses and radii of white dwarfs by solving the general relativistic TOV equation both

for non-magnetic and magnetized white dwarfs using the exact EoS without resorting to

fit it to a polytropic form.

3.1.1 Chandrasekhar limit for White Dwarfs

We verify Chandrasekhar limit [1] for masses of white dwarfs by actually solving TOV

equation for non-magnetic white dwarfs. The masses and radii of such white dwarfs

are listed in Table-3.1. It is interesting to note that considering a very high central

density of 3.343×1010 gms/cc for f = 1 white dwarfs, one can asymptotically reach the

Chandrasekhar mass limit. It is important to mention that beyond this density at ∼

4.3×1011 gms/cc, the neutron drip point [77], the nuclei become so neutron rich that
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with increasing density the continuum neutron states begin to be filled, and the lattice

of neutron-rich nuclei becomes permeated by a sea of neutrons. In Table-3.1, masses and

radii of non-magnetic white dwarfs as a function of central density are provided. In Fig.-

3.1 plot for masses of non-magnetic white dwarfs is shown as a function of central density

whereas in Fig.-3.2 mass-radius relationship of non-magnetic white dwarfs is provided.

These results for non-magnetic white dwarfs do conform to the traditional Chandrasekhar

mass-limit.

Table 3.1: Variations of masses and radii of non-magnetic white dwarfs with central

number density of electrons which can be expressed in units of 2×109 gms/cc for mass

density by multiplying with 1.6717305×106.

ne (r=0) Radius Mass

fm−3 Kms M�

1.0×10−5 917.87 1.3904

5.0×10−6 1126.83 1.3905

4.0×10−6 1202.53 1.3896

3.8×10−6 1220.55 1.3893

3.6×10−6 1239.80 1.3890

3.4×10−6 1260.43 1.3887

3.2×10−6 1282.65 1.3883

3.0×10−6 1306.67 1.3878

2.8×10−6 1332.78 1.3873

2.6×10−6 1361.33 1.3866

2.4×10−6 1392.75 1.3859

2.2×10−6 1427.62 1.3850

2.0×10−6 1466.67 1.3839
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ne (r=0) Radius Mass

fm−3 Kms M�

1.8×10−6 1510.90 1.3825

1.6×10−6 1561.69 1.3809

1.4×10−6 1621.01 1.3788

1.2×10−6 1691.86 1.3761

1.0×10−6 1779.00 1.3724

8.0×10−7 1890.72 1.3673

6.0×10−7 2043.29 1.3594

4.0×10−7 2275.36 1.3457

2.0×10−7 2721.16 1.3138

1.0×10−7 3233.63 1.2692

1.0×10−8 5482.58 1.0051

1.0×10−9 8721.75 0.5949

3.1.2 Super-Chandrasekhar White Dwarfs

As mentioned in the beginning of this section that unlike non-relativistic Lane-Emden

equation, pressure arising due to constant magnetic field does contribute to the general

relativistic TOV equation. Presence of high constant magnetic field do not provide valid

solutions to the TOV equations. Hence, we present stable solutions of magnetostatic

equilibrium models for super-Chandrasekhar white dwarfs with varying magnetic field

profiles which is maximum at the centre and goes to 109 gauss at the surface of the star.

This has been obtained by self-consistently including the effects of the magnetic pressure

gradient and total magnetic density in a general relativistic framework. Nevertheless, we

have also performed calculations corresponding to very high (single Landau level) and

26



10-9 10-8 10-7 10-6 10-5

0.6

0.8

1.0

1.2

1.4

M
 (

so
la

r 
m

as
s)

ne(r=0) fm-3

Figure 3.1: Plot for masses of non-magnetic white dwarfs as a function of central density.

high (multi Landau levels) magnetic field which is constant throughout the star in order

to compare with the results from solutions of Lane-Emden equation described above, but

for these cases we have to ignore the explicit contributions from energy density εB and

pressure PB arising due to magnetic field. Results of such calculations are provided in

Tables-3.2 & 3.3 for magnetized white dwarfs with single and multiple Landau levels,

respectively.

Now we perform the actual calculations with varying magnetic field including the

effects of energy density and pressure arising due to magnetic field in a general relativistic

framework. The variation of magnetic field [67] inside white dwarf is taken to be of the

form

Bd = Bs +B0[1− exp{−β(ne/n0)
γ}] (3.3)

where Bd (in units of Bc) is the magnetic field at electronic number density ne, Bs (in units

of Bc) is the surface magnetic field and n0 is taken as ne(r=0)/10 and β, γ are constants.

Once central magnetic field is fixed, B0 can be determined from above equation. We
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Table 3.2: Variations of masses and radii of uniformly magnetized white dwarfs with

central number density of electrons which can be expressed in units of 2×109 gms/cc for

mass density by multiplying with 1.6717305×106. The minimum magnetic field Bdmin

corresponding to the central density required to make single Landau level throughout is

listed in units of Bc.

ne (r=0) Radius Mass Bdmin

fm−3 Kms M� in units of Bc

5.0×10−6 592.28 2.4521 253

4.0×10−6 636.54 2.4508 218

3.0×10−6 698.11 2.4461 180

2.0×10−6 792.71 2.4204 138

1.0×10−6 989.84 2.4149 86.5

Table 3.3: Variations of masses and radii of uniformly magnetized white dwarfs with

central number density of electrons which can be expressed in units of 2×109 gms/cc for

mass density by multiplying with 1.6717305×106. The magnetic field Bd (< Bdmin for the

central density) is also listed which generates multiple Landau levels.

ne (r=0) Radius Mass Bd

fm−3 Kms M� in units of Bc

4.6736×10−6 1149.77 1.3925 1.5

3.5147×10−6 663.58 2.4491 200
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Table 3.4: Variations of masses and radii of magnetized white dwarfs with central number

density of electrons which can be expressed in units of 2×109 gms/cc for mass density by

multiplying with 1.6717305×106. The maximum magnetic field Bdc at the centre is listed

in units of Bc whereas the surface magnetic field Bs is taken to be 109 gauss.

ne (r=0) Radius Mass Bdc

fm−3 Kms M� in units of Bc

4.674017×10−6 1285.91 1.4146 1.5

4.673846×10−6 1344.46 1.4236 1.75

4.674209×10−6 1349.45 1.4339 2.0

4.675374×10−6 1388.04 1.4906 3.0

4.672188×10−6 1438.94 1.5731 4.0

4.670830×10−6 1503.64 1.6863 5.0

4.678118×10−6 1581.27 1.8353 6.0

4.677677×10−6 1663.86 2.0217 7.0

4.665741×10−6 1758.40 2.2601 8.0

4.661657×10−6 1954.44 2.8997 10.
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Figure 3.2: Plot for mass-radius relationship of non-magnetic white dwarfs.

choose constants β = 0.8 and γ = 0.9, rather arbitrarily by using unequal non-unity

values, which provides stable solutions of magnetostatic equilibrium models for super-

Chandrasekhar white dwarfs. Nevertheless, the magnetic field is not taken completely in

ad hoc manner, because central and surface magnetic fields once fixed the variations of its

profile do not alter the gross results. Moreover, we have kept maximum central magnetic

field strength at 10Bc which is 4.414×1014 gauss, near to the lower of the maximum limit

suggested by N. Chamel et al. [68] and surface magnetic field ∼ 109 gauss estimated by

observations. In Table-3.4 the results of these realistic calculations are listed. In Figs.-

3.3,3.4 plots for masses and radii of magnetized white dwarfs are shown as functions of

central magnetic field. Present calculations estimate that the maximum stable mass of

magnetized white dwarfs could be ∼3 M�. These results are quite useful in explaining

the peculiar, overluminous type Ia supernovae that do not conform to the traditional

Chandrasekhar mass-limit.

The EoS for magnetized WD in presence of Coulomb screening has been explored as

further refinement and tabulated in Table 3.5. We find that the inclusion of Coulomb
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Figure 3.3: Plot for masses of magnetized white dwarfs as a function of central magnetic

field.

interaction modifies the masses of WD further upward and significantly greater than

Chandrasekhar limit.

31



2 4 6 8 10
1200

1400

1600

1800

2000

R
 (

km
)

Bdc (in units of Bc)
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Table 3.5: Variations of masses and radii of magnetized WD with coulomb interaction.

The maximum magnetic field Bdc at the centre is listed in units of Bc.

ρ (r=0) Radius Mass Bdc

fm−3 Kms M� Bc

4.674×10−7 3572.24 2.2653 1.5

4.674×10−7 3142.19 1.8405 1.2

4.674×10−7 2801.06 1.5725 0.9

4.675×10−6 2110.46 3.2624 8.0

4.672×10−6 1659.09 2.0178 5.0

4.671×10−6 1369.83 1.5157 2.0
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Chapter 4

EQUATION OF STATE FOR

NEUTRON STAR MATTER

The basic equation in neutron star matter research is the shape of the relationship between

the pressure and energy density P = P (ε), usually called the equation of state. At the

zero temperature, the state of neutron star matter should be uniquely described by the

quantities that are conserved by the process leading to equilibrium. Stable high density

nuclear matter must be in chemical equilibrium for all types of reactions including the weak

interactions, while the beta decay and orbital electron capture takes place simultaneously.

For the β-equilibrated neutron star matter we have free neutron decay n → p + β− + νe

which are governed by weak interaction and the electron capture process p+β− → n+νe.

Both types of reactions change the electron fraction and thus affect the EoS. Here we

assume that neutrinos generated in these reactions leave the system. The absence of

neutrino has a dramatic effect on the equation of state and mainly induces a significant

change on the values of proton fraction xp.
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4.1 Nuclear Equation of State

The EoS for nuclear matter is obtained by using the isoscalar and the isovector [78]

components of M3Y effective NN interaction along with its density dependence. The

nuclear matter calculation is then performed which enables complete determination of this

density dependence. The minimization of energy per nucleon determines the equilibrium

density of the symmetric nuclear matter (SNM). The variation of the zero range potential

with energy, over the entire range of the energy per nucleon ε, is treated properly by

allowing it to vary freely with the kinetic energy part εkin of ε. This treatment is more

plausible as well as provides excellent result for the SNM incompressibilityK∞. Moreover,

the EoS for SNM is not plagued with the superluminosity problem.

Employing various forms of density dependence [79, 80, 81], the EoS for nuclear matter

has also been derived using explicitly the direct and finite range exchange contributions.

Moreover, using finite range M3Y interaction, Hartree-Fock approximation has been used

to compute properties of nuclear matter and finite nuclei [82, 83, 84]. In the limiting case

of constant density, which holds true for infinite nuclear matter, the exchange integral

reduces to a constant leading to an ‘effective’ exchange interaction of J00(ε)δ(s) type [85],

typically the zero range potential used in the present calculations to evaluate the exchange

term.

The energy per nucleon ε for IANM can be derived within a Fermi gas model of

interacting neutrons and protons as [86]

ε(ρ,X) = [
3h̄2k2

F

10m
]F (X) + (

ρJvC

2
)(1− βρn) (4.1)

where isospin asymmetry X = ρn−ρp
ρn+ρp

, ρ = ρn + ρp with ρn, ρp and ρ being the neutron,

proton and nucleonic densities respectively, m is the nucleonic mass, kF=(1.5π2ρ)
1
3 which

equals Fermi momentum in case of SNM, εkin = [
3h̄2k2F
10m

]F (X) with F (X)=[ (1+X)
5/3

+(1−X)
5/3

2
]
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and Jv=Jv00 + X2Jv01, Jv00 and Jv01 represent the volume integrals of the isoscalar and

the isovector parts of the M3Y interaction. The isoscalar and isovector components tM3Y
00

and tM3Y
01

of the M3Y effective NN interaction are given by tM3Y
00

(s, ε) = 7999 exp(−4s)
4s

−

2134 exp(−2.5s)
2.5s

+ J00(1− αε)δ(s) and tM3Y
01

(s, ε) = −4886 exp(−4s)
4s

+ 1176 exp(−2.5s)
2.5s

+ J01(1−

αε)δ(s), respectively, with J00=-276 MeVfm3, J01=228 MeVfm3, α = 0.005MeV−1. The

DDM3Y effective NN interaction is given by v0i(s, ρ, ε) = tM3Y
0i (s, ε)g(ρ) where g(ρ) =

C(1 − βρn) is the density dependence with C and β being the constants of density de-

pendence. This form of density dependence was originally taken by Myers in the single

folding calculation [87] and it also has a physical meaning for n = 2/3 because then β can

be interpreted as the ‘in medium’ effective NN interaction cross section.

Differentiating Eq.(4.1) with respect to ρ one obtains equation for X = 0:

∂ε

∂ρ
= [

h̄2k2

F

5mρ
] +

Jv00C

2
[1− (n+ 1)βρn]− αJ00C[1− βρn][

h̄2k2

F

10m
]. (4.2)

The saturation condition ∂ε
∂ρ

= 0 at ρ = ρ0, ε = ε0, determines the equilibrium density

of the cold SNM. Then for fixed values of the saturation energy per nucleon ε0 and the

saturation density ρ0 of the cold SNM, Eq.(4.1) and Eq.(4.2) with the saturation condition

can be solved simultaneously to obtain the values of β and C which are given by

β =
[(1− p) + (q − 3q

p
)]ρ−n

0

[(3n+ 1)− (n+ 1)p+ (q − 3q
p
)]

(4.3)

where p =
[10mε0]

[h̄2k2

F0
]
, q =

2αε0J00
J0
v00

(4.4)

where J0

v00 = Jv00(ε
kin
0

) which means Jv00 is evaluated at εkin = εkin
0

, the kinetic energy

part of the saturation energy per nucleon of SNM, kF0 = [1.5π2ρ0]
1/3 and

C = − [2h̄2k2

F0
]

5mJ0
v00ρ0[1− (n+ 1)βρn0 −

qh̄2k2F0
(1−βρn0 )

10mε0
]
, (4.5)
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respectively. Obviously, the constants C and β determined by this methodology depend

upon ε0, ρ0, the index n of the density dependent part and through the volume integral

J0

v00, on the strengths of the M3Y interaction .

The calculations have been carried out by using the values of saturation density ρ0 =

0.1533 fm−3 [29] and saturation energy per nucleon ε0 = −15.26 MeV [88] for the SNM.

ε0 is the co-efficient av of the volume term of Bethe-Weizsäcker mass formula, calculated

by fitting the recent experimental and estimated Audi-Wapstra-Thibault atomic mass

excesses [89]. This term has been obtained by minimizing the mean square deviation

incorporating correction for the electronic binding energy [90]. In a similar work, including

surface symmetry energy term, Wigner term, shell correction and also the proton form

factor correction to Coulomb energy, av turns out to be 15.4496 MeV [91] (av = 14.8497

MeV when A0 and A1/3 terms are also included). Using the standard values of α =

0.005 MeV−1 for the parameter of energy dependence of the zero range potential and

n=2/3, the values deduced for the constants C and β and the SNM incompressibility K∞

are, respectively, 2.2497, 1.5934 fm2 and 274.7 MeV. The term ε0 is av and its value of

−15.26± 0.52 MeV encompasses, more or less, the entire range of values. For this value

of av now the values of the constants of density dependence are C = 2.2497 ± 0.0420,

β = 1.5934± 0.0085 fm2 and the SNM incompressibility K∞ turns out to be 274.7± 7.4

MeV.

4.1.1 Symmetric and isospin asymmetric nuclear matter

The EoSs of the SNM and the IANM which describes energy per nucleon ε as a function

of nucleonic density ρ can be obtained by setting isospin asymmetry X = 0 and X �= 0,

respectively, in Eq.(4.1). It is observed that the energy per nucleon ε for SNM is negative

(bound) up to nucleonic density of ∼ 2ρ0 while for pure neutron matter (PNM) ε > 0 and
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is always unbound by nuclear forces.

The compression modulus or incompressibility of the SNM, which is a measure of the

curvature of an EoS at saturation density and is defined as k2

F
∂2ε
∂k2F

|kF=kF0
. It measures

the stiffness of an EoS and can be theoretically obtained by using Eq.(4.1) for X=0. The

IANM incompressibilities are evaluated at saturation densities ρs with the condition of

vanishing pressure which is ∂ε
∂ρ
|ρ=ρs = 0. The incompressibility Ks for IANM is therefore

expressed as

Ks = −3h̄2k2

Fs

5m
F (X)− 9Js

vCn(n+ 1)βρn+1

s

2

−9αJC[1− (n+ 1)βρns ][
ρsh̄

2k2

Fs

5m
]F (X)

+[
3ρsαJC(1− βρns )h̄

2k2

Fs

10m
]F (X), (4.6)

where kFs implies that the kF is calculated at saturation density ρs. The term Js
v =

Js
v00+X2Js

v01 is Jv evaluated at εkin = εkins which is the kinetic energy part of the saturation

energy per nucleon εs and J = J00 +X2J01.

In Table-4.1, IANM incompressibility Ks as a function of X, for the standard value of

n = 2/3 and energy dependence parameter α = 0.005 MeV−1, is provided. The magnitude

of the IANM incompressibility Ks decreases with X due to lowering of the saturation

densities ρs with the isospin asymmetry X as well as decrease in the EoS curvature. At

high values of X, the IANM does not have a minimum which signify that it can never be

bound by itself due to interaction of nuclear force. However, the β equilibrated nuclear

matter which is a highly neutron rich IANM exists in the core of the neutron stars since

its energy per nucleon is lower than that of SNM at high densities. Although it is unbound

by the nuclear interaction but can be bound due to very high gravitational field that can

be realized inside neutron stars.

37



Table 4.1: IANM incompressibility at different isospin asymmetry X using the usual

values of n = 2

3
and α = 0.005 MeV−1.

X ρs Ks

fm−3 MeV

0.0 0.1533 274.69

0.1 0.1525 270.44

0.2 0.1500 257.68

0.3 0.1457 236.64

0.4 0.1392 207.62

0.5 0.1300 171.16

0.6 0.1170 127.84

0.7 0.0980 78.38
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It is worthwhile to mention that the RMF-NL3 incompressibility for SNM is 271.76

MeV [92, 93] which is very close to 274.7±7.4 MeV obtained from the present calculation.

In spite of the fact that the parameters of the density dependence of DDM3Y interaction

have been tuned to reproduce the saturation energy per nucleon ε0 and the saturation

density ρ0 of the cold SNM that are obtained from finite nuclei, the agreement of the

present EoS [94] with the experimental flow data [95], where the high density behavior

looks phenomenologically confirmed, justifies its extrapolation to high density.

The SNM incompressibility is experimentally determined from the compression modes

isoscalar giant monopole resonance (ISGMR) and isoscalar giant dipole resonance (IS-

GDR) of nuclei. The violations of self consistency in HF-RPA calculations [96] of the

strength functions of ISGMR and ISGDR cause shifts in the calculated values of the

centroid energies. These shifts may be larger in magnitude than the current experimen-

tal uncertainties. In fact, due to the use of a not fully self-consistent calculations with

Skyrme interactions [96], the low values of K∞ in the range of 210-220 MeV were pre-

dicted. Skyrme parmetrizations of SLy4 type predict K∞ values lying in the range of

230-240 MeV [96] when this drawback is corrected. Besides that bona fide Skyrme forces

can be built so that the K∞ for SNM is rather close to the relativistic value of ∼ 250-270

MeV. Conclusion may, therefore, be drawn from the ISGMR experimental data that the

magnitude of K∞ ≈ 240 ± 20 MeV.

The lower values [97, 98] for K∞ are usually predicted by the ISGDR data. However,

it is generally agreed upon that the extraction of K∞ in this case more problematic

for various reasons. Particularly, for excitation energies [96] above 30 and 26 MeV for

116Sn and 208Pb, respectively, the maximum cross-section for ISGDR at high excitation

energy decreases very strongly and can even fall below the range of current experimental

sensitivity. The upper limit of the recent values [99] for the nuclear incompressibility

K∞ for SNM extracted from experiments is rather close to the present non-relativistic
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Figure 4.1: (Color online) Plots of the nuclear symmetry energy NSE is as a function

of ρ/ρ0 for the present calculation using DDM3Y interaction and its comparison, with

those for Akmal-Pandharipande-Ravenhall (APR) [13] and the MDI interactions for the

variable x=0.0, 0.5 defined in Ref. [105].

mean field model estimate employing DDM3Y interaction which is also in agreement

with the theoretical estimates of relativistic mean field (RMF) models. With Gogny

effective interactions [100], which include nuclei where pairing correlations are important,

the results of microscopic calculations reproduce experimental data on heavy nuclei for

K∞ in the range about 220 MeV [101]. It may, therefore, be concluded that the calculated

value of 274.7±7.4 MeV is a good theoretical result and is only slightly too high compared

to the recent acceptable value [102, 103] of K∞ for SNM in the range of 250-270 MeV.

4.1.2 Nuclear symmetry energy & its slope, incompressibility

and isobaric incompressibility

The EoS of IANM, given by Eq.(4.1) can be expanded, in general, as
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Figure 4.2: (Color online) The plots of Kτ versus K∞ (Kinf ). Present calculation

(DDM3Y) is compared with other predictions as tabulated in Refs. [118, 120] and the

dotted rectangular region encompasses the values of K∞ = 250 − 270 MeV [103] and

Kτ = −370± 120 MeV [37].

ε(ρ,X) = ε(ρ, 0) + Esym(ρ)X
2 +O(X4) (4.7)

where Esym(ρ) = 1

2

∂2ε(ρ,X)

∂X2 |X=0 is termed as the nuclear symmetry energy (NSE). The

exchange symmetry between protons and neutrons in nuclear matter when one neglects

the Coulomb interaction and assumes the charge symmetry of nuclear forces results in

the absence of odd-order terms in X in Eq.(4.7). To a good approximation, the density-

dependent NSE Esym(ρ) can be obtained using the following equation [104]

Esym(ρ) = ε(ρ, 1)− ε(ρ, 0) (4.8)

as the higher-order terms in X are negligible. The above equation can be obtained using

Eq.(4.1). It represents a penalty levied on the system as it departs from the symmetric

limit of equal number of protons and neutrons. Thus, it can be defined as the energy
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required per nucleon to change the SNM to PNM. In Fig.-4.1 the plot of NSE as a

function of ρ/ρ0 is shown for the present calculation (DDM3Y) and compared with those

for Akmal-Pandharipande-Ravenhall [13] and MDI interactions [105].

A constraint on the NSE at nuclear saturation density Esym(ρ0) is provided by the

volume symmetry energy coefficient Sv which can be extracted from measured atomic

mass excesses. The theoretical estimate for value of the NSE at saturation density

Esym(ρ0)=30.71±0.26 MeV obtained from the present calculations (DDM3Y) is reason-

ably close to the value of Sv=30.048 ±0.004 MeV extracted [106] from the measured

atomic mass excesses of 2228 nuclei. The value of NSE at ρ0 remains mostly the same

which is 30.03±0.26 MeV if one uses the mathematical definition of Esym(ρ) =
1

2

∂2ε(ρ,X)

∂X2 |X=0

alternatively. The value of Esym(ρ0) ≈ 30 MeV [107, 108, 109] appears well established

empirically. The different parameterizations of RMF models, which fit observables of

isospin symmetric nuclei nicely, steers to a comparatively wide range of predictions of

24-40 MeV for Esym(ρ0) theoretically. Our present result (DDM3Y) of 30.71±0.26 MeV

is reasonably close to that obtained using Skyrme interaction SkMP (29.9 MeV) [110],

Av18+δv+UIX∗ variational calculation (30.1 MeV) [13].

The NSE Esym(ρ) can be expanded around the nuclear matter saturation density ρ0

as

Esym(ρ) = Esym(ρ0) +
L

3

(ρ− ρ0
ρ0

)
+

Ksym

18

(ρ− ρ0
ρ0

)2
(4.9)

up to second order in density where L and Ksym represents the slope and curvature

parameters of NSE at ρ0 and hence L = 3ρ0
∂Esym(ρ)

∂ρ
|ρ=ρ0 and Ksym = 9ρ2

0

∂2Esym(ρ)
∂ρ2

|ρ=ρ0 .

The Ksym and L highlights the density dependence of NSE around ρ0 and carry important

information at both high and low densities on the properties of NSE. Particularly, it is

found that the slope parameter L correlate linearly with neutron-skin thickness of heavy

42



nuclei and it can be obtained from the measured thickness of neutron skin of heavy nuclei

[111, 112, 113]. Although there are large uncertainties in the experimental measurements,

this has been possible [114] recently.

Differentiation of Eq.(4.8) twice with respect to the nucleonic density ρ using Eq.(4.1)

provides [115]

∂Esym

∂ρ
=

2

5
(22/3 − 1)

E0

F

ρ
(
ρ

ρ0
)2/3 +

C

2
[1− (n+ 1)βρn]

×Jv01(ε
kin
X=1

)− αJ01C

5
E0

F (
ρ

ρ0
)2/3[1− βρn]F (1)

−(22/3 − 1)
αJ00C

5
E0

F (
ρ

ρ0
)2/3[1− βρn]

− 3

10
(22/3 − 1)αJ00CE0

F (
ρ

ρ0
)2/3[1− (n+ 1)βρn] (4.10)

∂2Esym

∂ρ2
= − 2

15
(22/3 − 1)

E0

F

ρ2
(
ρ

ρ0
)2/3 − C

2
n(n+ 1)βρn−1

×Jv01(ε
kin
X=1

)− 2αJ01C

5

E0

F

ρ
(
ρ

ρ0
)2/3[1− (n+ 1)βρn]F (1)

+
αJ01C

15

E0

F

ρ
(
ρ

ρ0
)2/3[1− βρn]F (1)

+(22/3 − 1)
αJ00C

15

E0

F

ρ
(
ρ

ρ0
)2/3[1− βρn]

−2

5
(22/3 − 1)αJ00C

E0

F

ρ
(
ρ

ρ0
)2/3[1− (n+ 1)βρn]

+
3

10
(22/3 − 1)αJ00CE0

F (
ρ

ρ0
)2/3n(n+ 1)βρn−1. (4.11)

Here the Fermi energy is E0

F =
h̄2k2F0

2m
for the SNM at ground state and to evaluate the

values of L and Ksym, the definitions of which are provided after Eq.(4.9), along with

Eqs.(4.10,4.11) at ρ=ρ0 have been used.

The isobaric incompressibility K∞(X) for infinite IANM can be expanded in the power

series of isospin asymmetry parameter X as K∞(X) = K∞ + KτX
2 + K4X

4 + O(X6).

Compared to Kτ [37] the magnitude of the higher-order K4 parameter is quite small in

general. The former essentially characterizes the isospin dependence of the incompress-
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ibility at ρ0 and expressed as Kτ = Ksym−6L− Q0

K∞L = Kasy− Q0

K∞L where the third-order

derivative parameter of SNM at ρ0 is Q0, given by

Q0 = 27ρ3
0

∂3ε(ρ, 0)

∂ρ3
|ρ=ρ0 . (4.12)

One obtains, using Eq.(4.1), the following

∂3ε(ρ,X)

∂ρ3
= −CJv(ε

kin)n(n+ 1)(n− 1)βρn−2

2

+
8

45

E0

F

ρ3
F (X)(

ρ

ρ0
)
2
3 +

3αJC

5
n(n+ 1)βρn−1

E0

F

ρ

×F (X)(
ρ

ρ0
)
2
3 +

αJC

5
[1− (n+ 1)βρn]

E0

F

ρ2
F (X)(

ρ

ρ0
)
2
3

−4αJC

45
[1− βρn]

E0

F

ρ2
F (X)(

ρ

ρ0
)
2
3 (4.13)

where the Fermi energy E0

F=
h̄2k2F0

2m
for the SNM at ground state, kF0=(1.5π2ρ0)

1
3 and

J=J00+X2J01. Thus

∂3ε(ρ, 0)

∂ρ3
|ρ=ρ0= −CJv00(ε

kin
0

)n(n+ 1)(n− 1)βρn−2

0

2

+
8

45

E0

F

ρ30
+

3αJ00C

5
n(n+ 1)βρn−1

0

E0

F

ρ0
+

αJ00C

5

×[1− (n+ 1)βρn
0
]
E0

F

ρ20
− 4αJ00C

45
[1− βρn

0
]
E0

F

ρ20
. (4.14)

For the calculations of K∞, Esym(ρ0), L, Ksym and Kτ , the values of ρ0=0.1533 fm−3,

ε0 = −15.26±0.52 MeV for the SNM and n = 2

3
[116] have been used. Using the improved

quantum molecular dynamics transport model, the collisions involving 112Sn and 124Sn

nuclei can be simulated to reproduce isospin diffusion data from two different observables

and the ratios of proton and neutron spectra. The constraints on the density dependence

of the NSE at subnormal density can be obtained [117] by comparing these data to

calculations performed over a range of NSEs at ρ0 and different representations of the

44



density dependence of the NSE. The results for K∞, L, Esym(ρ0) and density dependence

of Esym(ρ) [116] of the present calculations are consistent with these constraints [117]. In

Table-4.2, the values of K∞, Esym(ρ0), L, Ksym and Kτ are tabulated and compared with

the corresponding quantities obtained from the RMF models [118]. The range of values of

the ten constraints (experimental and empirical) provided in Table-I of Ref.[119] compare

well with the theoretical values listed in Table-4.2 and Fig.-4.2 except incompressibility

which is only slightly overestimated.

What is a reasonable value of incompressibility [96] remains controversial. In the

following we present our results in the backdrop of others, without justifying any particular

value for K∞, but for an objective view of the current situation which, we stress, is still

progressing. In Fig.-4.2, the plot of Kτ versus K∞ for the present calculation (DDM3Y)

has been compared with the predictions of SkI3, SkI4, SLy4, SkM, SkM*, FSUGold,

NL3, Hybrid [118], NLSH, TM1, TM2, DDME1 and DDME2 as given in Table-I of Ref.

[120]. The recent values of K∞ = 250 − 270 MeV [103] and Kτ = −370 ± 120 MeV

[37] are enclosed by the dotted rectangular region. Though both DDM3Y and SkI3 are

within the above region, unlike DDM3Y the L value for SkI3 is 100.49 MeV which is

much above the acceptable limit of 58.9 ± 16 MeV [121, 122, 123, 124]. Another recent

review [125] also finds that Esym(ρ0) = 31.7 ± 3.2 MeV and L = 58.7 ± 28.1 MeV with

an error for L that is considerably larger than that for Esym(ρ0). However, DDME2 is

reasonably close to the rectangular region which has L = 51 MeV. It is worthwhile to

mention here that the DDM3Y interaction with the same ranges, strengths and density

dependence that provides L = 45.11±0.02, allows good descriptions of elastic and inelastic

scattering, proton radioactivity [86] and α radioactivity of superheavy elements [126, 127].

The present NSE increases initially with nucleonic density up to about 2ρ0 and then

decreases monotonically (hence ‘soft’) and becomes negative at higher densities (about

4.7ρ0) [86, 116] (hence ‘super-soft’). It is consistent with the recent evidence for a soft NSE
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at suprasaturation densities [105] and with the fact that the super-soft nuclear symmetry

energy preferred by the FOPI/GSI experimental data on the π+/π− ratio in relativistic

heavy-ion reactions can readily keep neutron stars stable if the non-Newtonian gravity

proposed in the grand unification theories is considered [128].

Table 4.2: Comparison of the present results obtained using DDM3Y effective interac-

tion with those of RMF models [118] for SNM incompressibility K∞, NSE at saturation

density Esym(ρ0), slope L and the curvature Ksym parameters of NSE, Kasy and isobaric

incompressibility Kτ of IANM (all in MeV).

Model K∞ Esym(ρ0) L Ksym Kasy Q0 Kτ

This work 274.7 30.71 45.11 −183.7 −454.4 −276.5 −408.97

±7.4 ±0.26 ±0.02 ±3.6 ±3.5 ±10.5 ±3.01

FSUGold 230.0 32.59 60.5 −51.3 −414.3 −523.4 −276.77

NL3 271.5 37.29 118.2 +100.9 −608.3 +204.2 −697.36

Hybrid 230.0 37.30 118.6 +110.9 −600.7 −71.5 −563.86

4.2 Equation of state of β-equilibrated nuclear mat-

ter

The β-equilibrated nuclear matter EoS is obtained by evaluating the asymmetric nuclear

matter EoS at the isospin asymmetry X determined from the β-equilibrium proton frac-

tion xp =
ρp
ρ
, obtained approximately by solving

h̄c(3π2ρxp)
1/3 = 4Esym(ρ)(1− 2xp). (4.15)

The exact way of obtaining β-equilibrium proton fraction is by solving
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h̄c(3π2ρxp)
1/3 = −∂ε(ρ, xp)

∂xp

= +2
∂ε

∂X
, (4.16)

where isospin asymmetry X = 1− 2xp.

The stability of the β-equilibrated dense matter in neutron stars is investigated and the

location of the inner edge of their crusts and core-crust transition density and pressure are

determined using the DDM3Y effective nucleon-nucleon interaction [39]. The stability of

any single phase, also called intrinsic stability, is ensured by the convexity of ε(ρ, xp). The

thermodynamical inequalities allow us to express the requirement in terms of Vthermal =

ρ2
[
2ρ ∂ε

∂ρ
+ρ2 ∂2ε

∂ρ2
−ρ2

(
∂2ε

∂ρ∂xp
)
2

∂2ε

∂x2p

]
. The condition for core-crust transition is obtained by making

Vthermal = 0. The results for the transition density, pressure and proton fraction at the

inner edge separating the liquid core from the solid crust of neutron stars are calculated

for various n. The symmetric nuclear matter incompressibility K∞, nuclear symmetry

energy at saturation density Esym(ρ0), the slope L and isospin dependent part Kτ of the

isobaric incompressibility are already tabulated in Table-4.2 and these are all in excellent

agreement with the constraints recently extracted from measured isotopic dependence of

the giant monopole resonances in even-A Sn isotopes, from the neutron skin thickness of

nuclei, and from analyses of experimental data on isospin diffusion and isotopic scaling in

intermediate energy heavy-ion collisions.

The rigorous way of dealing with core-crust transition is producing a unified EoS and

evaluating the density where the clustered phase becomes energetically disfavored with

respect to the homogeneous solution [129]. It should be clarified here that the crustal

region of the compact star in the present work consists of FMT+BPS+BBP up to number

density of 0.0582 fm−3 and β-equilibrated neutron star matter up to core-crust transition

number density of 0.0938 fm−3 which is far beyond 0.0582 fm−3, otherwise we would have

taken a unified EoS. The three different methods to calculate the transition density are
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the thermodynamical spinodal (the method used in this work), the dynamical spinodal

within the Vlasov formalism and the relativistic random phase approximation. It was

shown that the last two methods [130] give similar results, confirming previous studies

[131, 132]. The thermodynamical method also gives a good estimate of the transition

density [130, 133] and involves simpler calculations.

4.3 Crustal fraction of moment of inertia in neutron

stars

The moment of inertia of a neutron star can be calculated by assuming it to be rotating

slowly with a uniform angular velocity Ω [134, 135]. The angular velocity ω̄(r) of a point

in the star measured with respect to the angular velocity of the local inertial frame is

determined by the equation

1

r4
d

dr

[
r4j

dω̄

dr

]
+

4

r

dj

dr
ω̄ = 0 (4.17)

where

j(r) = e−φ(r)

√
1− 2Gm(r)

rc2
. (4.18)

The function φ(r) is constrained by the condition

eφ(r)μ(r) = constant = μ(R)

√
1− 2GM

Rc2
(4.19)

where the chemical potential μ(r) is defined as

μ(r) =
ε(r) + P (r)

ρ(r)
. (4.20)
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Using these relations, Eq.(4.17) can be solved subject to the boundary conditions that

ω̄(r) is regular as r → 0 and ω̄(r) → Ω as r → ∞. The moment of inertia of the star can

then be calculated using the definition I = J/Ω, where the total angular momentum J is

given by

J =
c2

6G
R4

dω̄

dr

∣∣∣
r=R

. (4.21)

The crustal fraction of the moment of inertia ΔI
I

can be expressed as a function of

gravitational mass of the star M and its radius R by the following approximate expression

[18]

ΔI

I
≈ 28πPtR

3

3Mc2

(
1− 1.67ξ − 0.6ξ2

ξ

)

×
(
1 +

2Pt

ρtmbc2
(1 + 7ξ)(1− 2ξ)

ξ2

)−1

(4.22)

where ξ = GM
Rc2

, ρt and Pt are the density and the pressure, respectively, at the core to

crust transition. As obvious from the above equation the major dependence is on the

value of Pt, since ρt enters only as a correction term. The fact that from the observations

of pulsar glitches the crustal fraction of the moment of inertia can be inferred, makes it

particularly interesting [136].

It has been shown that the glitches show a self-sustaining instability for which the

star prepares over a waiting time [18]. The glitches in the Vela pulsar suggests that the

angular momentum should be such that more than 1.4% of the moment of inertia drives

these events. Therefore, if glitches originate in the liquid of the inner crust, it would imply

that ΔI
I

> 1.4%.
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4.4 Theoretical Calculations and Results

The values of the saturation density ρ0 and the saturation energy per baryon ε0 of SNM

used in the calculations are 0.1533 fm−3 [29] and -15.26 MeV [88], respectively. The

co-efficient of the volume term av of the liquid drop model mass formula represents the

saturation energy per baryon and can be determined by fitting the atomic mass excesses

(experimental and estimated) from Audi-Wapstra-Thibault atomic mass table [89] by min-

imizing the mean square deviation. In such calculations the corrections for the electronic

binding energy [90] are included. In a recent work that includes surface symmetry energy

term, Wigner term, shell correction and proton form factor correction to Coulomb energy

also, av turns out to be 15.4496 MeV and when A0 and A1/3 terms are also included [91]

it turns out to be 14.8497 MeV. Using the usual value of α = 0.005 MeV−1 for the pa-

rameter of energy dependence of the zero range potential and n = 2

3
, the values obtained

for the constants of density dependence C and β and the SNM incompressibility K∞ are

2.2497, 1.5934 fm2 and 274.7 MeV, respectively. The value of -15.26±0.52 MeV of the

saturation energy per baryon, more or less, covers the entire range for which the values of

C=2.2497±0.0420, β=1.5934±0.0085 fm2 and the SNM incompressibility K∞=274.7±7.4

MeV [86] are obtained.

The stability of the β-equilibrated dense matter in neutron stars is investigated and

the location of the inner edge of their crusts and core-crust transition density and pres-

sure are determined using the DDM3Y effective NN interaction. The results for the

transition density, pressure and proton fraction at the inner edge separating the liquid

core from the solid crust of neutron stars are calculated and presented in Table-4.3 for

n = 2

3
. The symmetric nuclear matter incompressibility K∞, nuclear symmetry energy

at saturation density Esym(ρ0), the slope L and isospin dependent part Kτ of the iso-

baric incompressibility are also tabulated since these are all in excellent agreement with
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the recently extracted constraints from the measured isotopic dependence of the giant

monopole resonances in even-A Sn isotopes [137], from the neutron skin thickness of nu-

clei, and from analyses of experimental data on isospin diffusion and isotopic scaling in

intermediate energy heavy-ion collisions.

The calculations for masses and radii are performed using the EoS covering the crustal

region of a compact star which are Feynman-Metropolis-Teller (FMT) [8], Baym-Pethick-

Sutherland (BPS) [9] and Baym-Bethe-Pethick (BBP) [10] upto number density of 0.0582

fm−3 and β-equilibrated neutron star matter beyond. The values of I obtained by solving

Eq.(4.17) subject to the boundary conditions stated earlier are listed in Table-4.4 along

with masses M , radii R and crustal thickness ΔR of neutron stars. Once masses and

radii are determined, ΔI
I

are obtained from Eq.(4.22) and listed in Table-4.4. In Fig.-4.3,

variation of mass with central density is plotted for slowly rotating neutron stars for the

present nuclear EoS. In Fig.-4.4, the mass-radius relation of slowly rotating neutron stars

is shown. Using Eq.(4.22) again the mass-radius relation is obtained for fixed values of

ΔI
I
, ρt and Pt. This is then plotted in the same figure for ΔI

I
equal to 0.014. For Vela

pulsar, the constraint ΔI
I

> 1.4% implies that allowed mass-radius lie to the right of the

line defined by ΔI
I

= 0.014 (for ρt = 0.0938 fm−3, Pt = 0.5006 MeV fm−3). This condition

is given by the inequality R ≥ 4.10 + 3.36M/M� km.

The calculations are performed for five different n values that correspond to SNM

incompressibility ranging from ∼180-330 MeV. For each case, the constants C and β ob-

tained by reproducing the ground state properties of SNM become different leading to

five different sets of these three parameters. We certainly cannot change strengths and

ranges of the M3Y interaction. In Table-4.5, the variations of the core-crust transition

density, pressure and proton fraction for β-equilibrated neutron star matter, symmetric

nuclear matter incompressibility K∞, isospin dependent part Kτ of isobaric incompress-

ibility, neutron star’s maximum mass with corresponding radius and crustal thickness with
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parameter n are listed along with corresponding Vela pulsar constraints. It is important

to mention here that recent observations of the binary millisecond pulsar J1614-2230 by

P. B. Demorest et al. [138] suggest that the masses lie within 1.97±0.04 M� where M�

is the solar mass. Recently the radio timing measurements of the pulsar PSR J0348 +

0432 and its white dwarf companion have confirmed the mass of the pulsar to be in the

range 1.97-2.05 M� at 68.27% or 1.90-2.18 M�at 99.73% confidence [139]. The observed

1.97±0.04 M� neutron star rotates with 3.1 ms and results quoted in Table 2 are for non-

rotating case. Similar work using M3Y effective interaction using the so called CDM3Y6

[140] density dependence can predict ∼2 M� neutron stars. For rotating stars [72] present

EoS predict masses higher than the lower limit of 1.93 M� for maximum mass of neutron

stars. We used the same value of ρ0 =0.1533 fm−3 since we wanted to keep consistency

with all our previous works on nuclear matter. We would like to mention that if instead

we would have used the value of 0.16 fm−3 [141] for ρ0, the value of K∞ would have been

slightly higher by ∼2 MeV and correspondingly maximum mass of neutron stars by ∼0.01

M�.
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Figure 4.3: Variation of mass with central density for slowly rotating neutron stars for

the present nuclear EoS.
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Figure 4.4: The mass-radius relation of slowly rotating neutron stars for the present

nuclear EoS. The constraint of ΔI
I

> 1.4% (1.6%, 7%) for the Vela pulsar implies that to

the right of the line defined by ΔI
I

= 0.014 (0.016, 0.07) (for ρt = 0.0938 fm−3, Pt = 0.5006

MeV fm−3), allowed masses and radii lie.
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Table 4.3: Results of present calculations for n=2

3
of symmetric nuclear matter incom-

pressibility K∞, nuclear symmetry energy at saturation density Esym(ρ0), the slope L and

isospin dependent part Kτ of the isobaric incompressibility (all in MeV) [38] are tabu-

lated along with the density, pressure and proton fraction at the core-crust transition for

β-equilibrated neutron star matter and corresponding Vela pulsar constraint.

K∞ Esym(ρ0) L Kτ

274.7± 7.4 30.71± 0.26 45.11± 0.02 −408.97± 3.01

ρt(fm
−3) Pt(MeVfm−3) xp(t) Vela pulsar R(km)

0.0938 0.5006 0.0308 R ≥ 4.10 + 3.36M/M�
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Table 4.4: Radii, masses, total & crustal fraction of moment of inertia and crustal thick-

ness as functions of central density ρc.

ρc R M I ΔI
I

ΔR

fm−3 km M� M�km2 fraction km

2.00 8.6349 1.8277 70.88 0.0055 0.2462

1.90 8.7598 1.8467 73.83 0.0057 0.2523

1.80 8.8957 1.8651 77.00 0.0060 0.2598

1.70 9.0444 1.8824 80.38 0.0063 0.2696

1.60 9.2052 1.8980 83.97 0.0067 0.2806

1.50 9.3810 1.9109 87.70 0.0072 0.2951

1.40 9.5710 1.9197 91.52 0.0079 0.3121

1.39 9.5911 1.9203 91.91 0.0080 0.3144

1.38 9.6109 1.9208 92.29 0.0080 0.3161

1.37 9.6314 1.9213 92.67 0.0081 0.3185

1.36 9.6514 1.9217 93.05 0.0082 0.3203

1.35 9.6718 1.9220 93.43 0.0083 0.3222

1.34 9.6928 1.9223 93.81 0.0084 0.3248

1.33 9.7141 1.9225 94.18 0.0085 0.3275

1.32 9.7349 1.9226 94.55 0.0085 0.3296
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ρc R M I ΔI
I

ΔR

fm−3 km M� M�km2 fraction km

1.31 9.7559 1.9227 94.93 0.0086 0.3318

1.30 9.7770 1.9226 95.30 0.0087 0.3340

1.20 9.9995 1.9173 98.85 0.0098 0.3620

1.10 10.2371 1.9004 101.88 0.0112 0.3970

1.00 10.4902 1.8675 103.94 0.0132 0.4441

0.90 10.7544 1.8127 104.42 0.0158 0.5066

0.80 11.0239 1.7285 102.47 0.0197 0.5929

0.70 11.2865 1.6064 97.04 0.0255 0.7148

0.60 11.5245 1.4369 87.06 0.0344 0.8952

0.59 11.5456 1.4170 85.78 0.0356 0.9175

0.58 11.5666 1.3965 84.44 0.0368 0.9411

0.57 11.5874 1.3753 83.04 0.0381 0.9663

0.56 11.6073 1.3536 81.58 0.0394 0.9924

0.55 11.6262 1.3313 80.07 0.0408 1.0193

0.50 11.7135 1.2104 71.65 0.0492 1.1792
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ρc R M I ΔI
I

ΔR

fm−3 km M� M�km2 fraction km

0.45 11.7830 1.0734 61.88 0.0602 1.3897

0.40 11.8388 0.9206 51.00 0.0752 1.6801

0.30 12.0129 0.5808 28.54 0.1249 2.7618

0.25 12.3703 0.4103 19.24 0.1686 3.9149

0.24 12.5113 0.3779 17.73 0.1805 4.2542

0.23 12.6944 0.3464 16.35 0.1942 4.6511

0.22 12.9314 0.3159 15.14 0.2103 5.1189

0.21 13.2434 0.2867 14.12 0.2296 5.6802

0.20 13.6576 0.2587 13.31 0.2537 6.3643

0.19 14.2131 0.2323 12.74 0.2847 7.2125

0.18 14.9725 0.2075 12.47 0.3265 8.2904

0.17 16.0398 0.1845 12.59 0.3863 9.7057

0.16 17.5771 0.1634 13.25 0.4767 11.6254

0.15 19.8913 0.1445 14.77 0.6254 14.3634

0.14 23.5740 0.1278 17.88 0.8972 18.5215
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Table 4.5: Variations of the core-crust transition density, pressure and proton fraction for

β-equilibrated neutron star matter, symmetric nuclear matter incompressibility K∞ and

isospin dependent part Kτ of isobaric incompressibility with parameter n.

n ρt Pt xp(t) K∞ Kτ Maximum Radius Crustal

Mass Thickness

fm−3 MeVfm−3 MeV MeV M� km km

Expt. values - - → → 250-270 -370±120 1.97±0.04

1/6 0.0797 0.4134 0.0288 182.13 -293.42 1.4336 8.5671 0.4009

R(km) ≥ 4.48 + 3.37M/M�

1/3 0.0855 0.4520 0.0296 212.98 -332.16 1.6002 8.9572 0.3743

R(km) ≥ 4.31 + 3.36M/M�

1/2 0.0901 0.4801 0.0303 243.84 -370.65 1.7634 9.3561 0.3515

R(km) ≥ 4.19 + 3.36M/M�

2/3 0.0938 0.5006 0.0308 274.69 -408.97 1.9227 9.7559 0.3318

R(km) ≥ 4.10 + 3.36M/M�

1 0.0995 0.5264 0.0316 336.40 -485.28 2.2335 10.6408 0.3088

R(km) ≥ 3.99 + 3.36M/M�
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Chapter 5

R-MODE INSTABILITY IN

NEUTRON STARS

Rotational instabilities in NSs come in different flavours, but they have one general feature

in common: they can be directly associated with unstable modes of oscillation [142,

143, 144, 145, 146, 147]. In the present work the r-mode instability has been discussed

with reference to the EoS obtained using the density dependent M3Y (DDM3Y) effective

nucleon-nucleon (NN) interaction. The discovery of r-mode oscillation in neutron star

(NS) by Anderson [142] and confirmed by Friedman and Morsink [144] opened the window

for study of the gravitational wave emitted by NSs by using advance detecting system.

Also it provides the possible explanation for the spin down mechanism in the hot young

NSs as well as in spin up cold old accreting NSs.

The r-mode oscillation is analogous to Rossby wave in the ocean and results from

perturbation in velocity field of the star with little disturbance in the star’s density. In a

non-rotating star the r-modes are neutral rotational motions. In a rotating star Coriolis

effects provide a weak restoring force that gives them genuine dynamics. The r-mode

frequency always has different signs in the inertial and rotating frames. That is, although
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the modes appear retrograde in the rotating system, an observer in the inertial frame shall

view them as prograde. To the leading order, the pattern speed of the mode is [148, 149]

σ =
(l − 1) (l + 2)

l (l + 1)
Ω (5.1)

Since, 0 < σ < Ω for all l ≥ 2, where Ω is the angular velocity of the star in the iner-

tial frame, the r-modes are destabilized by the standard Chandrasekhar-Friedman-Schutz

(CFS) mechanism and are unstable because of the emission of gravitational waves. The

gravitational radiation that the r-modes emit comes from their time-dependent mass cur-

rents. This is the gravitational analogue of magnetic monopole radiation. The quadrupole

l = 2 r-mode is more strongly unstable to gravitational radiation than any other mode in

neutron stars. Further, these modes exist with velocity perturbation if and only if l = m

mode [145, 148]. This emission in gravitational waves causes a growth in the mode energy

Erot in the rotating frame, despite decrease in the inertial-frame energy Einertial. This

puzzling effect can be understood from the relation between the two energies,

Erot = Einertial − ΩJ (5.2)

where the angular momentum of the star is J. From this it is clear that Erot may increase

if both Einertial and J decrease. The frequencies of these r-modes, in the lowest order

terms in an expansion in terms of angular velocity Ω is [149, 150]

ω = −(l − 1) (l + 2)

l + 1
Ω. (5.3)

The instability in the mode grows because of gravitational wave emission which is

opposed by the viscosity [151]. For the instability to be relevant, it must grow fast than

it is damped out by the viscosity. So the time scale for gravitationally driven instability

needs to be sufficiently short to the viscous damping time scale. The amplitude of r-modes
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evolves with time dependence eiωt−t/τ as a consequence of ordinary hydrodynamics and

the influence of the various dissipative processes. The imaginary part of the frequency 1/τ

is determined by the effects of gravitational radiation, viscosity, etc. [150, 152, 153]. The

time-scale associated with the different process involve the actual physical parameters

of the neutron star. In computing these physical parameters the role of nuclear physics

comes into picture, where one gets a platform to constrain the uncertainties existing in

the nuclear EoS. The present knowledge on nuclear EoS under highly isospin asymmetric

dense situation is quite uncertain. So correlating the predictions of the EoSs obtained

under systematic variation of the physical properties, to the r-mode observables can be

of help in constraining the uncertainity associated with the EoS.

5.1 Dissipative time scales and stability of the r-modes

The concern here is to study the evolution of the r-modes due to the competition of grav-

itational radiation and dissipative influence of viscosity. For this purpose it is necessary

to consider the effects of radiation on the evolution of mode energy. This is expressed as

the integral of the fluid perturbation [150, 154],

Ẽ =
1

2

∫ [
ρδ�v.δ�v∗ +

(
δp

ρ
− δΦ

)
δρ∗

]
d3r, (5.4)

with ρ being the mass density profile of the star, δ�v, δp, δΦ and δρ are perturbations in

the velocity, pressure, gravitational potential and density due to oscillation of the mode

respectively. The dissipative time scale of an r-mode is [150],

1

τi
= − 1

2Ẽ

(
dẼ

dt

)
i

, (5.5)

where the index ‘i’ refers to the various dissipative mechanisms, i.e., gravitational wave

emissions and viscosity (bulk and shear).
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For the lowest order expressions for the r-mode δ�v and δρ the expression for energy of

the mode in Eq.(5.4) can be reduced to a one-dimensional integral [150, 155]

Ẽ =
1

2
α2

rR
−2l+2Ω2

∫ R

0

ρ(r)r2l+2dr, (5.6)

where R is the radius of the NS, αr is the dimensionless amplitude of the mode, Ω is

the angular velocity of the NS and ρ(r) is the radial dependance of the mass density of

NS. Since the expression of (dẼ
dt
) due to gravitational radiation [153, 156] and viscosity

[152, 153, 157] are known, Eq.(5.5) can be used to evaluate the imaginary part 1

τ
. It is

convenient to decompose 1

τ
as

1

τ(Ω, T )
=

1

τGR(Ω, T )
+

1

τBV (Ω, T )
+

1

τSV (Ω, T )
, (5.7)

where 1/τGR, 1/τBV and 1/τSV are the contributions from gravitational radiation, bulk

viscosity and shear viscosity, respectively, and are given by [152, 153]

1

τGR

= −32πGΩ2l+2

c2l+3

(l − 1)2l

[(2l + 1)!!]2

(
l + 2

l + 1

)(2l+2)

×
∫ Rc

0

ρ(r)r2l+2dr, (5.8)

1

τSV
=

[
1

2Ω

2l+3/2(l + 1)!

l(2l + 1)!!Il

√
2ΩR2

cρc
ηc

]−1

×
[∫ Rc

0

ρ(r)

ρc

(
r

Rc

)2l+2 dr

Rc

]−1

, (5.9)

where G and c are the gravitational constant and velocity of light respectively; Rc, ρc, ηc

in Eq.(5.9) are the radius, density and shear viscosity of the fluid at the outer edge of the

core respectively.

The shear viscosity time scale in Eq.(5.9) is obtained by considering the shear dis-

sipation in the viscous boundary layer between solid crust and the liquid core with the

assumption that the crust is rigid and hence static in rotating frame [152].
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The motion of the crust due to mechanical coupling to the core effectively increases

τSV by (Δv
v
)−2, where Δv

v
is the difference in the velocities in the inner edge of the crust

and outer edge of the core divided by the velocity of the core [158].

Bildsten and Ushomirsky [159] have first estimated this effect of solid crust on r-mode

instability and shown that the shear dissipation in this viscous boundary layer decreases

the viscous damping time scale by more than 105 in old acreting neutron stars and more

than 107 in hot, young neutron stars. Il in Eq.(5.9) has the value I2 = 0.80411, for l = 2

[152].

Moreover, the bulk viscous dissipation is not significant for temperature of the star be-

low 1010 K and in this range of temperature the shear viscosity is the dominant dissipative

mechanism, We have restricted our study in this work to the range of the temperature

T < 1010 K and included only shear dissipative mechanism. The studies is similar to

the one done by Moustakidis [160], where we have mainly examined the influence of neu-

tron star EoS and the gravitational mass on the instability boundary and other relevant

quantities, such as, critical frequency and temperature, etc. for a neutron star using the

DDM3Y effective interaction [86].

As mentioned above, we have studied the instability within T ≤ 1010 K, the dominant

dissipation mechanism is the shear viscosity in the boundary layer for which the time

scale is given in Eq.(5.7), where ηc is the viscosity of the fluid. In the temperature range

T ≥ 109 K, the dominant contribution to shear is from neutron-neutron (nn) scattering

and below T ≤ 109, it is the electron-electron (ee) scattering that contributes to shear

primarily [152]. Therefore,

1

τSV
=

1

τee
+

1

τnn
, (5.10)

where τee and τnn can be obtained from Eq.(5.9) using the corresponding value of ηeeSV
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and ηnnSV . These are given by [161, 162]

ηeeSV = 6× 106ρ2T−2 (g cm−1 s−1), (5.11)

ηnnSV = 347ρ9/4T−2 (g cm−1 s−1), (5.12)

where all the quantities are given in CGS units and T is measured in K. In order to have

transparent visualisation of the role of angular velocity and temperature on various time

scales, it is useful to factor them out by defining fiducial time scales. Thus, we define

fiducial shear viscous time scale τ̃SV such that [150, 152],

τSV = τ̃SV

(
Ω0

Ω

)1/2 ( T

108K

)
, (5.13)

and fiducial gravitational radiation time scale τ̃GR is defined through the relation [150,

152],

τGR = τ̃GR

(
Ω0

Ω

)2l+2

, (5.14)

where Ω0 =
√
πGρ̄ and ρ̄ = 3M/4πR3 is the mean density of NS having mass M and

radius R. Thus Eq.(5.7) (neglecting bulk viscosity contributions) becomes

1

τ(Ω, T )
=

1

τ̃GR

(
Ω

Ω0

)2l+2

+
1

τ̃SV

(
Ω

Ω0

)1/2
(
108K

T

)
. (5.15)

Dissipative effects cause the mode to decay exponentially as e−t/τ i.e. the mode is

stable, as long as τ > 0. From Eq.(5.8) and Eq.(5.9) it can be seen that τ̃SV > 0, while

τ̃GR < 0. Thus gravitational radiation drives these modes towards instability while vis-

cosity tries to stabilize them. For small Ω the gravitational radiation contribution to 1/τ

is very small since it is proportional to Ω2l+2. Thus for sufficiently small angular velocity,
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viscosity dominates and the mode is stable. But for sufficiently large Ω gravitational ra-

diation will dominate and drive the mode unstable. For a given temperature and mode l

the equation for critical angular velocity Ωc is obtained from the condition 1

τ(Ωc,T )
= 0. At

a given T and mode l, the equation for the critical velocity is a polynomial of order l+ 1

in Ω2

c and thus each mode has its own characteristic Ωc. Since the smallest of these, i.e.

l = 2, is the dominant contributor, study is being done for this mode only. The critical

angular velocity Ωc for this mode is obtained to be

(
Ωc

Ω0

)
=
(
− τ̃GR

τ̃SV

)2/11
(
108K

T

)2/11

. (5.16)

The angular velocity of a neutron star can never exceed the Kepler velocity ΩK ≈ 2

3
Ω0.

Thus, there is a critical temperature below which the gravitational radiation is completely

suppressed by viscosity. This critical temperature is given by [152]

Tc

108K
=
(
Ω0

Ωc

)11/2 (
− τ̃GR

τ̃SV

)
≈ (3/2)11/2

(
− τ̃GR

τ̃SV

)
. (5.17)

The critical angular velocity is now expressed in terms of critical temperature from

Eq.(5.13) and Eq.(5.14) as

(
Ωc

Ω0

)
=

ΩK

Ω0

(
Tc

T

)2/11

≈ (2/3)
(
Tc

T

)2/11

. (5.18)

So, once the neutron star EoS is ascertained, then all physical quantities necessary for

the calculation of r-mode instability can be performed.

Further, following the work of Owen et al. [153] the evolution of the angular velocity,

as the angular momentum is radiated to infinity by the gravitational radiation is given by

dΩ

dt
=

2Ω

τGR

α2

rQ

1− α2
rQ

, (5.19)

where αr is the dimensionless r-mode amplitude and Q = 3J̃/2Ĩ with,
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J̃ =
1

MR4

∫ R

0

ρ(r)r6dr (5.20)

and

Ĩ =
8π

3MR2

∫ R

0

ρ(r)r4dr. (5.21)

αr is treated as free parameter whose value varies within a wide range 1 − 10−8. Under

the ideal consideration that the heat generated by the shear viscosity is same as that

taken out by the emission of neutrinos [160, 163], Eq.(5.19) can be solved for the angular

frequency Ω(t) as

Ω(t) =
(
Ω−6

in − Ct
)−1/6

, (5.22)

where

C =
12α2

rQ

τ̃GR (1− α2
rQ)

1

Ω6
0

, (5.23)

and Ωin is considered as a free parameter whose value corresponds to be the initial angular

velocity. The spin down rate can be obtained from Eq.(5.19) to be,

dΩ

dt
=

C

6

(
Ω−6

in − Ct
)−7/6

. (5.24)

The neutron star spin shall decrease continually until it approaches its critical angular

velocity Ωc. The time tc taken by neutron star to evolve from its initial value Ωin to its

minimum value Ωc is given by

tc =
1

C

(
Ω−6

in − Ω−6

c

)
. (5.25)
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Table 5.1: Spin frequencies and core temperatures (measurements and upper limits) of

observed Low Mass X-ray Binaries (LMXBs) and Millisecond Radio Pulsars (MSRPs)

[164].

Source ν (Hz) Tcore(10
8K)

Aql X-1 550 1.08

4U 1608-52 620 4.55

KS 1731-260 526 0.42

MXB 1659-298 556 0.31

SAX J1748.9-2021 442 0.89

IGR 00291+5934 599 0.54

SAX J1808.4-3658 401 < 0.11

XTE J1751-305 435 < 0.54

XTE J0929-314 185 < 0.26

XTE J1807-294 190 < 0.27

XTE J1814-338 314 < 0.51

EXO 0748-676 552 1.58

HETE J1900.1-2455 377 < 0.33

IGR J17191-2821 294 < 0.60

IGR J17511-3057 245 < 1.10

SAX J1750.8-2900 601 3.38

NGC 6440 X-2 205 < 0.12

Swift J1756-2508 182 < 0.78

Swift J1749.4-2807 518 < 1.61

J2124-3358 203 < 0.17

J0030+0451 205 < 0.70
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5.2 Theoretical Calculations

The quantity which is of crucial importance in the evaluation of various times scales, as

can be seen from Eq.(5.8) and Eq.(5.9), is the integral
∫ Rc
0

ρ(r)r6dr. This integral can be

re-written in terms of energy density ε(r) = ρ(r)c2 and expressed in dimensionless form

as

I(Rc) =
∫ Rc

0

[
ε(r)

MeVfm−3

] (
r

km

)6

d
(

r

km

)
(5.26)
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Figure 5.1: Plots of fiducial timescales with gravitational mass of neutron stars with

DDM3Y EoS.

The fiducial gravitational radiation timescale τ̃GR from Eq.(5.8) and Eq.(5.14), is given

by

τ̃GR = −0.7429
[
R

km

]9 [1M�
M

]3
[I(Rc)]

−1 (s) (5.27)

where R and r are in km and M in M�.

The fiducial shear viscous timescale τ̃SV for electron-electron scattering and neutron-

neutron scattering can be obtained from Eq.(5.9), Eqs.(5.11-5.13) as
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τ̃ee = 0.1446× 108
[
R

km

]3/4 [1M�
M

]1/4 [km
Rc

]6

×
[
g cm−3

ρt

]1/2 [
MeVfm−3

εt

]
[I(Rc)] (s) (5.28)
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Figure 5.2: (Color online) Plots of reduced critical angular frequency with temperature

for different masses of neutron stars.

τ̃nn = 19× 108
[
R

km

]3/4 [1M�
M

]1/4 [km
Rc

]6

×
[
g cm−3

ρt

]5/8 [
MeVfm−3

εt

]
[I(Rc)] (s) (5.29)

where the transition density ρt is expressed in g cm−3 and εt is the energy density expressed

in MeV fm−3 at transition density.

5.3 Results and discussion

In Fig.-5.1 plots of the fiducial timescales with the gravitational masses of neutron stars

are shown for the DDM3Y EoS. It is seen that the gravitational radiation timescale falls
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Figure 5.3: Plots of critical temperature versus mass.

rapidly with increasing mass while the viscous damping timescales increase approximately

linearly. By knowing the fiducial gravitational radiation and shear viscous timescales, the

temperature T dependence of the critical angular velocity Ωc of the r-mode (l = 2) can

be studied from Eq.(5.16). In Fig.-5.2, Ωc

Ω0
is shown as a function of temperature T for

several masses of neutron stars for the DDM3Y EoS. The plots act as boundaries of the r-

mode instability windows. Neutron stars lying above the plots (whose angular frequency is

greater than the critical frequency) possess unstable r-modes and hence emit gravitational

waves, thus reducing their angular frequencies. Once their angular velocities reach the

critical frequency they enter the region below the plots, where the r-modes become stable

and hence stop emitting gravitational radiation. In computing the instability windows in

Fig.-5.2, the fiducial shear viscous timescale τ̃ee given in Eq.(5.28) is substituted for τ̃SV

in Eq.(5.16) for temperatures T ≤ 109 K and τnn from Eq.(5.29) is used for T > 109 K.

Fig.-5.3 depicts the plot of the critical temperature as a function of mass. The electron-

electron scattering shear viscosity timescale is used for the calculation of Tc. We see that

the critical temperature rapidly decreases with mass. The explanation is straightforward.
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Figure 5.4: (Color online) Plots of critical frequency with temperature for different masses

of neutron stars. The square dots represent observational data [164] of Table-5.1.

From Fig.-5.2 we see that for fixed T , Ωc

Ω0
rapidly decreases with increasing mass. Since

T = Tc when Ωc = ΩK and ΩK rapidly increases with mass and hence Tc falls, vide

Eq.(5.18).

From Fig.-5.2 and Fig.-5.3 we see that the critical frequency and critical temperature

decrease with mass and hence the r-mode instability window increases with the same.

This means that for the same EoS and temperature, the massive configurations are more

probable to r-mode instability and hence emission of gravitational waves than the less

massive ones. This can be indirectly inferred from Fig.-5.1 where τ̃GR is much less than

τ̃ee and τ̃nn for massive neutron stars and vice-versa for low mass neutron stars. Hence

isolated young massive neutron stars have high probability for emission of gravitational

waves through r-mode instability.

In Table-5.1, the spin frequencies and core temperatures (measurements and upper

limits) of observed Low Mass X-ray Binaries (LMXBs) and Millisecond Radio Pulsars

(MSRPs) [164] are listed and in Fig.-5.4 their positions in the critical frequency versus
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temperature plot are shown to compare with observational data. From Fig.-5.4, it is

interesting to note that according to our model of the EoS with a rigid crust and a

relatively small r-mode amplitude, all of the observed neutron stars lie in the stable r-

mode region which is consistent with the lack of observation of gravitational radiation

due to r-mode instability.

It is worth noting that Ωc is dependent on the density dependence of the symmetry

energy and thus on L. Again, R, Rc, I(Rc) and ρt depend on L. Hence, for a fixed mass

and temperature, Ωc is dependent on the above parameters via the relation,

Ωc ∼ R12/11
c

[I(Rc)]4/11
ρ
3/11
t (5.30)

In our case L, ρt and Rc are constants for a fixed neutron star mass and temperature. As a

neutron star enters into the instability region due to accretion of mass from its companion,

the amplitude of the r-mode αr increases till reaching a saturation value. At this point

the neutron star emits gravitational wave and releases its angular momentum and energy

and spins down to the region of stability. Using the ideal condition that the decrease in

temperature due to emission of gravitational wave is compensated by the heat produced

due to viscous effects, the time evolution of spin angular velocity and spin down rate can

be calculated for a neutron star from Eq.(5.22) and Eq.(5.24), respectively, provided M,

T, Ωin and αr of the star is known. For the schematic values νin = Ωin

2π
= 700 Hz and

αr = 2× 10−7 used by Moustakidis [160], the evolutions of spin are calculated for various

neutron star masses and shown in Fig.-5.5. In Fig.-5.6 the spin down rates has been

shown for these masses. In Fig.-5.7 the spin down rates as functions of spin frequency are

shown.

Some mention is to be made about the dependency of the critical frequency Ωc on the

symmetry energy slope parameter L. Although the slope L depends on the strengths and
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Figure 5.5: (Color online) Plots of time evolution of frequencies.

ranges of the Yukawas for the DDM3Y EoS, it does not depend on the power of the density

dependence n and has a constant value of 45.1066 MeV. In a recent work, the critical

frequency as a function of L of the pulsar 4U 1608-52 was plotted using an estimated core

temperature ∼ 4.55×108 K and with different models of the EoS. In accordance with the

Fig.-5.1 of [155], using the measured spin frequency and the estimated core temperature,

if the mass of 4U 1608-52 is 1.4M� then it should marginally be unstable (Ωc is smaller

than its spin frequency), since the radius obtained from our mass-radius relation (Fig.-4.4)

is ∼ 11.55 kms and higher than 11.5 kms. In case of the highest mass configuration of

1.9227 M� with a radius of ∼9.75 kms, it is also likely to be in the instability region as

L < 50 MeV for our EoS. Thus we stress the fact that the r-mode instability window is

enlarged for isolated neutron stars with a rigid crust if we consider the dissipation to be

at the crust-core interface in agreement with [165].
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Chapter 6

MASS-RADIUS RELATIONSHIP

FOR NORMAL AND DARK

MATTER ADMIXED NEUTRON

STARS

In the universe there are large empty regions and dense regions where the galaxies are

distributed. This distribution is called the cosmic web that is speculated to be governed

by the action of gravity on the invisible mysterious “dark matter”. Recently, a research

group led by Hiroshima University has suggested that the Cancer constellation has nine

such large concentrations of dark matter, each the mass of a galaxy cluster [166].

Various theoretical models of dark matter are widespread, ranging from Cold Dark

Matter to Warm Dark Matter to Hot Dark Matter and from Symmetric to Asymmetric

Dark Matter [167, 168, 169, 170, 171]. Recent advances in cosmological precision tests

further consolidate the minimal cosmological standard model, indicating that the universe

contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. Although being
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five times more abundant than ordinary matter, the basic properties of dark matter, such

as particle mass and interactions are unsolved.

A dark star composed mostly of normal matter and dark matter may have existed

early in the universe before conventional stars were able to form. Those stars generate

heat via annihilation reactions between the dark matter particles. This heat prevents

such stars from collapsing into the relatively compact sizes of modern stars and therefore

prevent nuclear fusion among the normal matter atoms from being initiated [172].

One theory is that dark matter could be made of particles called axions. Unlike

protons, neutrons and electrons that make up ordinary matter, axions can share the

same quantum energy state. They also attract each other gravitationally, so they clump

together. Dark matter is hard to study because it does not interact much with ordinary

matter, but axion dark matter could theoretically be observed in the form of Bose stars

[173]. The Bose-Einstein condensation may come from the bosonic features of dark matter

models. Phase transition to condensation can occur either when the temperature cools

below critical value or when the density exceeds the critical value [174].

The neutron stars could capture weakly interacting dark matter particles (WIMPs)

because of their strong gravitational field, high density and finite, but very small, WIMP-

to-nucleon cross section. In fact, if there is no baryon-dark matter interaction, purely

baryonic neutron star would not capture dark matter at all. A dark star of comparable

mass may as well accrete neutron star matter to form a dark matter dominated neutron

star. In 1978, Steigman et al. [48] suggested that capture of WIMPs by individual stellar

objects could affect the stellar structure and evolution. The effect of self annihilating

dark matter on first-generation stars and on the evolution path of main sequence stars

have been studied extensively [49, 50]. For non self-annihilating dark matter, its impact

on main sequence stars [51] and neutron stars [52, 53] have been studied in different dark

matter models. Gravitational effects of non self-annihilating condensate dark matter
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on compact stellar objects has been studied [54] assuming dark matter as ideal Fermi

gas and considering the accretion process through dark matter self-interaction from the

surrounding halo. The non-annihilating heavy dark matter of mass greater than 1 GeV

is predicted to accumulate at the center of neutron star leading it to a possible collapse

[175]. The effect of this accumulation is observable only in cases where the annihilation

cross section is extremely small [176, 177]. The capture is fully efficient even for WIMP-

to-nucleon cross sections (elastic or inelastic) as low as 10−18 mb. Moreover, a dark

star of comparable mass may as well accrete neutron star matter to form a dark matter

dominated neutron star. In addition to Axions and WIMPs, a general class of dark matter

candidates called, Macros have been suggested that would have macroscopic size and mass

[178].

Since dark matter interacts with normal baryonic matter through gravity, it is quite

possible for white dwarfs and neutron stars to accrete dark matter and evolve to a dark

matter admixed compact star [50, 53, 175, 179, 180, 181, 182, 183, 184]. The large baryonic

density in compact stars increases the probability of dark matter capture within the star

and eventually results in gravitational trapping. It may also be possible for dark matter

alone to form gravitationally bound compact objects and thus mimic stellar mass black

holes [185].

The hydrostatic equilibrium configuration of an admixture of degenerate dark matter

and normal nuclear matter was studied by using a general relativistic two-fluid formalism

taking non-self-annihilating dark matter particles of mass 1 GeV. A new class of com-

pact stars was predicted that consisted a small normal matter core with radius of a few

kilometers embedded in a ten-kilometer-sized dark matter halo [53].

Compact objects formed by non-self annihilating dark matter admixed with ordinary

matter has been predicted with Earth-like masses and radii from few kms to few hundred

kms for weakly interacting dark matter. For the strongly interacting dark matter case,
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dark compact planets are suggested to form with Jupiter-like masses and radii of few

hundred kms [186]. Possible implications of asymmetric fermionic dark matter for neutron

stars has been studied that applies to various dark fermion models such as mirror matter

models and to other models where the dark fermions have self-interactions [187].

Although dark matter particles can have only very weak interactions with standard

model states, it is an intriguing possibility that they experience much stronger self-

interactions and thereby alter the behavior of dark matter on astrophysical and cosmo-

logical scales in striking ways. Recent studies [188, 189, 190, 191, 192, 193] have provided

constraints on dark matter self-interaction cross-section. The constraints are based on

the Cusp-core problem and the “Too big to fail” problem of galaxies. According to them

the dark matter self-interaction cross-section per unit mass is about 0.1-100 cm2/g ∼0.1-1

barn/GeV, typical of the scale of strong interactions.

In this work, we consider fermionic Asymmetric Dark Matter (ADM) particles of mass

1 GeV and the self-interaction mediator mass of 100 MeV (low mass implying strong inter-

action), mixed with rotating and non-rotating neutron stars. ADM, like ordinary baryonic

matter, is charge asymmetric with only the dark baryon (or generally only the particle) ex-

cess remains after the annihilation of most antiparticles after the Big Bang. Hence these

ADM particles are non self-annihilating and behaves like ordinary free particles. The

gravitational stability and mass-radius relations of static, rigid and differentially rotating

neutron stars mixed with fermionic ADM are calculated using the LORENE code [194].

It is important to note that we do not allow any phase transition of the nuclear matter

and the interaction between nuclear matter and dark matter is only through gravity.
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6.1 Equation of state of non-interacting fermionic asym-

metric dark matter

We consider the non-interacting fermionic ADM to be a completely degenerate free Fermi

gas of particle massmχ at zero temperature. By the Pauli exclusion principle, no quantum

state can be occupied by more than one fermion with an identical set of quantum numbers.

Thus a non-interacting Fermi gas, unlike a Bose gas, is prohibited from condensing into

a Bose-Einstein condensate. The total energy of the Fermi gas at absolute zero is larger

than the sum of the single-particle ground states because the Pauli principle implies a

degeneracy pressure that keeps fermions separated and moving.

The non-interacting assembly of fermions at zero temperature exerts pressure because

of kinetic energy from different states filled up to Fermi level. Since pressure is force per

unit area which means rate of momentum transfer per unit area, it is given by

Pχ =
1

3

∫
pvnpd

3p =
1

3

∫ p2c2√
(p2c2 +m2

χc
4)
npd

3p (6.1)

where mχ is the rest mass of dark particles, v is the velocity of the particles with momen-

tum �p and npd
3p is the number of particles per unit volume having momenta between �p

and �p+d�p. The factor 1

3
accounts for the fact that, on average, only 1

3
rd of total particles

npd
3p are moving in a particular direction. For fermions having spin 1

2
, degeneracy = 2,

npd
3p = 8πp2dp

h3 and hence number density nχis given by

nχ =
∫ pF

0

npd
3p =

8πp3F
3h3

=
x3

F

3π2λ3
χ

(6.2)

where pF is the Fermi momentum which is maximum momentum possible at zero temper-

ature, xF = pF
mχc

is a dimensionless quantity and λχ = h̄
mχc

is the Compton wavelength.

The energy density εχ is given by
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εχ =
∫ pF

0

Enpd
3p =

∫ pF

0

√
(p2c2 +m2

χc
4)
8πp2dp

h3
(6.3)

which, along with Eq.(6.2), turns out upon integration to be

εχ =
mχc

2

λ3
χ

χ(xF ); Pχ =
mχc

2

λ3
χ

φ(xF ), (6.4)

where

χ(x) =
1

8π2
[x
√
1 + x2(1 + 2x2)− ln(x+

√
1 + x2)] (6.5)

and

φ(x) =
1

8π2
[x
√
1 + x2(

2x2

3
− 1) + ln(x+

√
1 + x2)]. (6.6)

6.2 Equation of state of strongly self-interacting fermionic

asymmetric dark matter

In order to calculate EoS of strongly interacting fermionic ADM we take course to mas-

sive vector field theory similar to the meson exchange of the nuclear interaction. The

Lagrangian density (in natural units) of a massive vector field is given by

L = −1

4
FμνF

μν +
1

2
m2

IAμA
μ − jμA

μ (6.7)

where Fμν = ∂μAν −∂νAμ , Aμ is the 4-vector field, jμ is the 4-current and mI is the mass

of the field quanta. The equation of motion is given by

(∂ν∂
ν +m2

I)A
μ = jμ. (6.8)
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Now considering a charge of magnitude g at rest at the origin we have

j0 = gδ3(�x) �j = 0. (6.9)

Substituting the above in the right side of Eq.(6.9) and also noting that A0 = V and

�A = 0 we finally get

(∇2 −m2

I)V = −gδ3(�x) (6.10)

whose solution is the Yukawa potential:

V (r) = g
e−mIr

4πr
(6.11)

Hence the potential energy of two like charges of magnitude g is

V12(r) = g2
e−mIr

4πr
(6.12)

and is repulsive in nature.

To proceed to the EoS, we calculate the total energy of a system of particles classically

by summing over the interactions of all pairs of particles. To facilitate the calculation,

we assume that the macroscopic assembly is uniformly distributed, thereby neglecting

the influence of the interaction on the mean inter-particle separation. In other words, we

ignore any correlations between particle positions due to their mutual interaction. Finally,

we assume that the number of particles is sufficiently large that we can replace sums by

integrals, and that the characteristic size of the assembly R satisfies R >> 1/mI [195].

The total Yukawa potential energy of a system of N particles in volume Ω is

EΩ =
1

2

∑
i �=j

Vij =
1

2
n2g2

∫ ∫ e−mIrij

4πrij
dΩidΩj, (6.13)

where n is the number density.
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Choosing one particle at the origin and integrating to infinity (ignoring surface terms)

we get,

EΩ =
1

2m2

I

n2g2Ω, (6.14)

so that the interaction energy density can be written as,

εint =
EΩ

Ω
=

1

2m2

I

n2g2. (6.15)

Now putting g2/2 = 1 for convenience, xf = kf/mχ, where mχ is the rest mass of the

dark matter particle and using the relation kf = (3π2n)1/3 we get putting back h̄ and c

εint =
(

1

3π2

)2 x6

fm
6

χ

(h̄c)3m2

I

(6.16)

where mχ and mI are expressed in MeV.

The pressure due to the interacting energy density can be computed with the help of

the thermodynamic relation Pint = n2 d
dn

(
εint

n

)
, which yields

Pint =
(

1

3π2

)2 x6

fm
6

χ

(h̄c)3m2

I

(6.17)

Hence the total energy density and pressure of self-interacting dark matter particles

are given by

εχint = εχ + εint =
mχ

λ3
χ

χ(xF ) +
(

1

3π2

)2 x6

fm
6

χ

(h̄c)3m2

I

(6.18)

Pχint = Pχ + Pint =
mχ

λ3
χ

φ(xF ) +
(

1

3π2

)2 x6

fm
6

χ

(h̄c)3m2

I

(6.19)

The mass of the exchange boson determines the strength and range of the interaction

implying lower the mass stronger the interaction and for non-interacting dark matter, mI
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Figure 6.1: Plots of mass vs. central density for static and rotating fermionic Asymmetric

Dark Matter stars.

is infinity and second terms in above equations are absent. Figs.-6.1 and 6.2 depict the

plots of mass vs. central dark matter density and mass vs. equatorial radius respectively

for static and rotating stars using self-interacting dark matter EoS. We see that the

maximum mass for non-rotating stars goes to 3.0279M� with a radius of 16.2349 kms and

that for rotating stars goes to 3.1460M� with equatorial radius of 19.2173 kms. Now, if

we take the dark matter particle mass mχ to be 0.5 GeV, then the maximum mass goes

to ∼ 12.6M� using the relation Mass ∝ 1/m2

χ [182], thus mimicking stellar mass black

holes.

6.3 Two-fluid TOV equations

We consider two ideal fluids - the nuclear matter and fermionic dark matter with the

above two EoSs coupled gravitationally to form the structure of the mixed neutron star.

The energy-momentum tensor of the mixed fluid can be written as [187, 196]
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Figure 6.2: Mass-equatorial radius plots for static and rotating fermionic Asymmetric

Dark Matter stars.

T μν = T μν
nuc + T μν

dark = (εnuc + Pnuc)u
μ
1u

ν
1
− Pnucg

μν

+ (εdark + Pdark)u
μ
2u

ν
2
− Pdarkg

μν (6.20)

where uμ
1 , εnuc and Pnuc are the 4-velocity, energy density and pressure of nuclear matter

respectively while the corresponding quantities in the second term are of dark matter.

For non-rotating case the metric is spherically symmetric and the hydrostatic equations

of the two fluids can be written as coupled two-fluid Tolman-Oppenheimer-Volkoff (TOV)

equations

dPnuc(r)

dr
= −GM(r)ρnuc(r)

r2

(
1 +

Pnuc

εnuc

)
×(

1 +
4πr3(Pnuc + Pdark)

M(r)c2

)(
1− 2GM(r)

rc2

)−1

dPdark(r)

dr
= −GM(r)ρdark(r)

r2

(
1 +

Pdark

εdark

)
×
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(
1 +

4πr3(Pnuc + Pdark)

M(r)c2

)(
1− 2GM(r)

rc2

)−1

dMnuc(r)

dr
= 4πr2ρnuc(r)

dMdark(r)

dr
= 4πr2ρdark(r)

M(r) = Mnuc(r) +Mdark(r) (6.21)

where ρnuc = εnuc/c
2, Mnuc is the mass density and total mass of nuclear matter while

the corresponding quantities in the second equation are of dark matter. M(r) is the total

mass of nuclear and dark matter.

6.4 Theoretical calculations

The mass-radius relationship of non-rotating, rigidly rotating and differentially rotating

neutron stars admixed with dark matter is calculated using the LORENE code. The

nuclear matter and dark matter EoSs are fitted to a polytropic form P = Kργ where P is

the pressure, ρ is the mass density, K the polytropic constant and γ the polytropic index

for the corresponding fluid. For interacting nuclear matter γ = 2.03 and K = 5.65283×

1035 in C.G.S. units. For interacting dark matter γ = 1.97562 and K = 1.33404 × 1036

in C.G.S. units. We take dark matter particle mass to be of 1 GeV and the exchange

boson mass mI = 100 MeV, typical of strong interaction. First, we keep the dark matter

central enthalpy to be 0.24c2 (fixed) and vary the nuclear matter central enthalpy for

static, rigidly rotating and differentially rotating configurations and next we reverse the

roles of nuclear and dark matter.
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Figure 6.3: Plots of total mass vs. equatorial radius of static, rigidly rotating and differ-

entially rotating neutron stars mixed with interacting fermionic Asymmetric Dark Matter

with fixed dark matter central enthalpy (0.24c2) and varying nuclear matter central en-

thalpies.

6.5 Results and Discussions

In Fig.-6.3 the plots of total mass vs. equatorial radius of static, rigidly and differentially

rotating neutron stars mixed with fermionic self-interacting dark matter are shown for

fixed dark matter central enthalpy (0.24c2) and varying nuclear matter central enthalpies.

In Fig.-6.4 the corresponding plots of mass vs. central baryonic number density are shown.

The maximum mass of the neutron star mixed with strongly self-interacting dark matter

goes to 1.3640M� with a corresponding radius of 6.7523 kms for the case of differential

rotation (frequency of dark matter to be 300 Hz and that of nuclear matter to be 700

Hz) as shown in Fig.-6.3. From Fig.-6.4 we see that the corresponding central baryonic

number density is 2.1060fm−3. In this case, while the maximum gravitational mass

is 1.3640M�, the corresponding matter mass is 1.5024M� which constitutes of nuclear
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Figure 6.4: Plots of total mass vs. central baryonic density of static, rigidly rotating and

differentially rotating neutron stars mixed with self-interacting fermionic Asymmetric

Dark Matter with fixed dark matter central enthalpy (0.24c2) and varying nuclear matter

central enthalpies.

matter 1.4719M� and dark matter 0.0305M�. In Fig.-6.5 the plots of total mass vs.

equatorial radius of static, rigidly and differentially rotating neutron stars mixed with

fermionic self-interacting dark matter are shown for fixed nuclear matter central enthalpy

(0.24c2) and varying dark matter central enthalpies. In Fig.-6.6 the corresponding plots of

mass vs. central dark baryonic number density are shown. In this case the maximum mass

goes to 1.9355M� with a corresponding radius of 10.3717 kms for the case of differential

rotation (frequency of dark matter to be 700 Hz and that of nuclear matter to be 300 Hz)

as shown in Fig.-6.5. From Fig.-6.6 we see that the corresponding central dark baryonic

number density is 1.1605fm−3. For this case, while the maximum gravitational mass

is 1.9355M�, the corresponding matter mass is 2.1105M� which constitutes of nuclear

matter 0.1179M� and dark matter 1.9926M�.

It is seen that the polytropic indices γ for nuclear and self-interacting dark matter EoSs
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Figure 6.5: Plots of total mass vs. equatorial radius of static, rigidly rotating and differ-

entially rotating neutron stars mixed with interacting fermionic Asymmetric Dark Matter

with fixed nuclear matter central enthalpy (0.24c2) and varying dark matter central en-

thalpies.

are approximately equal, but the polytropic coefficient K for dark matter is about 2.5

times larger than that of nuclear matter making dark matter EoS stiffer. Consequently,

configurations of stars with varying dark matter central enthalpy with fixed nuclear matter

central enthalpy are more massive than those obtained for the reverse case.

From Fig.-6.5 we see that the dark matter dominated neutron star behaves differently

than the nuclear matter dominated one as shown in Fig.-6.3. In Fig.-6.5, the plots of

low mass neutron stars admixed with dark matter typically show characteristics simi-

lar to low mass self-bound strange stars. This is because of the very strong two-body

repulsive interactions of dark matter which is dominant in the configuration of Fig.-6.5

which counteracts gravity effectively for low mass region and makes radius much smaller

compared to pure neutron star of similar mass (vide Fig.-4.4). Thus, while the nuclear

matter dominance induces gravitational binding, dark matter dominant low mass neutron
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Figure 6.6: Plots of total mass vs. central dark matter density of static, rigidly rotating

and differentially rotating neutron stars mixed with self-interacting fermionic Asymmetric

Dark Matter with fixed nuclear matter central enthalpy (0.24c2) and varying dark matter

central enthalpies.

star becomes gravitationally bound at much smaller radius.

The maximum mass for non-rotating dark matter stars goes to 3.0279M� with a

radius of 16.2349 kms for particle mass mχ = 1 GeV, and that for rotating stars it goes

to 3.1460M� with a radius of 19.2173 kms. However, if one takes mχ to be 0.5 GeV,

then the maximum mass goes to ∼ 12.6M� using the relation Mass ∝ 1/m2

χ [182], thus

mimicking stellar mass black holes.
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Chapter 7

CONCLUDING REMARKS

In summary, we have considered a relativistic, degenerate electron gas at zero temperature

under the influence of a density dependent magnetic field. Since the electrons are Landau

quantized, the density of states gets modified due to the presence of the magnetic field.

This, in turn, modifies the EoS of the white dwarf matter. The presence of magnetic

field also gives rise to magnetic energy density and pressure which is added to those due

to degenerate matter. We find that the masses of such white dwarfs increase with the

magnitude of the central magnetic field. Hence we obtain a conclusive result that it is

possible to have electron-degenerate magnetized white dwarfs, with masses significantly

greater than the Chandrasekhar limit in the range of ∼3 M�, provided it has an ap-

propriate magnetic field profile with high magnitude at the centre as well as high central

density.

To date there are about ∼250 magnetized white dwarfs with well determined fields

[60] and over ∼600 if objects with no or uncertain field determination [197, 198] are also

included. Surveys such as the SDSS, HQS and the Cape Survey have discovered these mag-

netized white dwarfs. The complete samples show that the field distribution of magnetized

white dwarfs is in the range 103-109 gauss which basically provides the surface magnetic
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fields. However, the central magnetic field strength, which is presumably unobserved

by the above observations, could be several orders of magnitude higher than the surface

field. In fact, it is the central magnetic field which is crucial for super-Chandrasekhar

magnetized white dwarfs. However, the softening of the EoS accompanying the onset of

electron captures and pycnonuclear reactions in the core of these stars can lead to local

instabilities which set an upper limit to the magnetic field strength at the center of the

star, ranging from 1014-1016 gauss depending on the core [68] composition.

The DDM3Y effective interaction which provides a unified description of elastic and

inelastic scattering, proton-, α-, cluster- radioactivities and nuclear matter properties,

also provides an excellent description of the β-equilibrated neutron star matter [115]

which is stiff enough at high densities to reconcile with the recent observations of the

massive compact stars [70, 71, 72] while the corresponding symmetry energy is supersoft

as preferred by the FOPI/GSI experimental data [105, 199]. The experimental range of

values quoted in Table-4.5 along with discussions provided above justifies the parameter

set of n = 2

3
, C=2.2497±0.0420 and β=1.5934±0.0085 fm2. The neutron star core-

crust transition density, pressure and proton fraction determined from the thermodynamic

stability condition to be ρt = 0.0938 fm−3, Pt = 0.5006 MeV fm−3 and xp(t) = 0.0308,

respectively, along with observed minimum crustal fraction of the total moment of inertia

of the Vela pulsar provide a limit for its radius. It is somewhat different from the other

estimates [18, 200] and imposes a constraint R ≥ 4.10+3.36M/M� km for the mass-radius

relation of Vela pulsar like neutron stars.

Next, we have studied the r-mode instability of slowly rotating neutron stars with rigid

crusts with their EoS obtained from the DDM3Y effective nucleon-nucleon interaction. We

have calculated the fiducial gravitational radiation and shear viscosity timescales within

the DDM3Y framework for a wide range of neutron star masses. It is observed that the

gravitational radiation timescale decreases rapidly with increasing neutron star mass while
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the viscous damping timescales exhibit an approximate linear increase. Next, we have

studied the temperature dependence of the critical angular frequency for different neutron

star masses. It is observed that the majority of the neutron stars do not lie in the r-mode

instability region. This fact is highlighted in Fig.-5.4 where the spin frequencies and core

temperatures of observed Low Mass X-ray Binaries and Millisecond Radio Pulsars [164]

always lie below the region of r-mode instability. The implication is that for neutron

stars rotating with frequencies greater than their corresponding critical frequencies have

unstable r-modes leading to the emission of gravitational waves. Further, our study

of the variation of the critical temperature as a function of mass shows that both the

critical frequency and temperature decrease with increasing mass. The conclusion is that

massive hot neutron stars are more susceptible to r-mode instability through gravitational

radiation. Finally we have calculated the spin down rates and angular frequency evolution

of the neutron stars through r-mode instability. We have also pointed out the fact that the

critical frequency depends on the EoS through the radius and the symmetry energy slope

parameter L. If the dissipation of r-modes from shear viscosity acts along the boundary

layer of the crust-core interface then the r-mode instability region is enlarged to lower

values of L. The effect of bulk viscosity and the shear viscosity in the core [201] using

DDM3Y effective interaction has recently been explored [202].

Further, we have consider fermionic Asymmetric Dark Matter (ADM) particles of

mass 1 GeV and the self-interaction mediator mass of 100 MeV (low mass implying strong

interaction), mixed with rotating and non-rotating neutron stars. These ADM particles

are non self-annihilating and behaves like ordinary free particles. We have shown that

massive exotic neutron star with a strong two-body self-interacting fermionic dark matter

is gravitationally stable with equal or unequal rotational frequencies of the two fluids.

This provides an alternative scenario for the existence of ∼ 2M� neutron stars with ‘stiff’

equations of states.
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The mass-radius relations of pure hadronic stars mixed with self-interacting fermionic

Asymmetric Dark Matter have been obtained using the LORENE code. For the case of

pure dark matter stars consisting of less massive dark particles we see that the maximum

masses can be comparable to that of stellar mass black holes. For the case of hadronic stars

mixed with dark matter, we considered three different configurations - static, rigid rotation

and differential rotation of nuclear matter and dark matter fluids. From the results, we

conclude that for the dark matter dominated configurations the masses are more, viz .

for the static case the maximum masses of these hybrid stars can reach upto ∼ 1.88M�

with corresponding radii ∼ 9.5 kms whereas in the rigid and differential rotational cases

the maximum masses of these hybrid stars can reach upto ∼ 1.94M� with corresponding

equatorial radii ∼ 10.4 kms.

We also find that the dark matter dominated neutron star behaves differently than

the nuclear matter dominated one that show characteristics similar to low mass self-

bound strange stars. This is because of the very strong two-body repulsive interactions

of dark matter which is dominant in the low mass region where it counteracts gravity

effectively to make radius much smaller. Thus, while the nuclear matter dominance

induces gravitational binding, dark matter dominant low mass neutron star becomes more

compact. However, if the dark matter particle mass is small compared to the nucleon mass

the maximum mass may well be above 2M�, provided no phase transition from nuclear

to quark matter occurs.

In the past, phase transition and the possible existence of exotic phases like conden-

sates or quark matter inside neutron stars have been studied extensively [203, 204, 205,

206, 207]. Since this is an era of gravitational waves, it will be interesting to find the

effect of such phases on the tidal deformabilities of neutron stars in the near future. Re-

cently crystallization of matter in white dwarfs have been observed by the Gaia satellite

[208]. The upcoming gravitational wave detectors with higher sensitivities may put light
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on these phases of matter inside white dwarfs in the not so far future. Existence of dark

matter inside compact stars also can be probed gravitationally. Such effects cannot be

predicted a priori without full calculations, and we leave them for future investigation.
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(1995).
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