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SYNOPSIS

Atomic nucleus is a many body quantum system, which, by the virtue of its

intrinsic complexity, mystery and practical applications, remains an exciting en-

tity for physicists. Over the years, various tools have been unearthed to explore

deep into the nucleus and study its properties. The isovector giant dipole reso-

nance (IVGDR), a member of a broader family of collective resonances known

as giant resonances, is an excellent tool to explore the nuclear properties at

extreme conditions. Macroscopically described as the out of phase oscillation

of proton and neutron fluids, the IVGDR is a highly damped motion character-

ized by very short lifetime (∼ 10−21-10−22 sec). The resonance relaxes by the

emission of high-energy γ rays in 10-25 MeV region depending on the mass of

the system. Viscosity of the nuclear matter provides the main mechanism for

the damping of IVGDR and it is inherently related to the width (Γ) and energy

of the resonance [Aue75]. Also, these γ-transitions, being isovector in nature,

are inhibited between the states of the same isospin (I) in self-conjugate nuclei

[Wil69]. This thesis presents two crucial properties of the nucleus at finite tem-

perature utilizing the above mentioned aspects of the IVGDR. The first part

presents the crucial ratio of shear viscosity (η) to entropy density (s) for equili-

brated finite nuclear matter from A ∼ 30 to A ∼ 208 at different temperatures,

while the second part deals with the experimental study of isospin mixing at

high temperature in 32S.

The ratio of shear viscosity (η) to entropy volume density (s) has been the

subject of intense investigations in different areas of physics. It is well defined for

both relativistic and non-relativistic fluids and is important in connection with

the physics of black hole, quark-gluon plasma and the low temperature quantum
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fluids. The ratio η/s provides the crucial signature of liquid-gas phase transition

in matter. String theoretical calculations have put a universal lower bound,

known as the Kovtun-Son-Starinets (KSS) bound, such that η/s ≥ ~/4πkB, kB

being the Boltzmann constant [Kov05]. The KSS conjecture has attracted a lot

of theoretical and experimental efforts in different areas of physics. People have

tried to find out whether there exists a perfect fluid and whether they follow the

KSS conjecture. Although, there are some theoretical counterexamples [Coh07,

Cre11], no fluid that violates the KSS conjecture has been found experimentally.

Moreover, it is observed that strongly coupled systems such as low-temperature

quantum fluids and high-temperature quark-gluon plasma (QGP) have very

small η/s (∼ 5-10 ~/4πkB) characteristic of a near-perfect fluid [Sch09].

The nucleons in the nucleus are governed by strong interaction and show

highly correlated behavior. Finite nucleus, therefore, is an ideal system to search

for near perfect fluidity in matter. Different model dependent calculations for

η/s have been performed earlier at intermediate-energy heavy ion collisions in

search for a liquid-gas phase transition [Pal10, Li11, Zho13, Fan14, Den16]. The

first theoretical study for η/s, in relation to the damping of giant resonances

in nuclei, was done by Auerbach and Shlomo [Aue09] within the frame work of

Fermi liquid drop model (FLDM). They showed that η/s values for heavy and

light nuclei were ∼ (4-19) ~/4πkB and (2.5-12.5) ~/4πkB, respectively. Recently,

Dang has proposed a formalism, based on the Green-Kubo relation and the

fluctuation dissipation theorem, relating the shear viscosity to the width and

the energy of giant dipole resonance (GDR) in hot finite nuclei [Dan11]. The

empirically calculated values of η/s for different systems have been compared

by the author with various model dependent calculations. A model independent

high temperature limit of η/s has also been proponed for finite nuclear systems.
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According to this formalism

η(T ) = η(0)
ΓGDR(T )

ΓGDR(0)

{

EGDR(0)
2

EGDR(0)2 − [ΓGDR(0)/2]2 + [ΓGDR(T )/2]2

}2

(1)

where η(0) is the shear viscosity at zero temperature, ΓGDR(0) and EGDR(0) are

the ground state GDR width and energy, respectively and ΓGDR(T ) is width of

the GDR built on the state of excitation energy corresponding to temperature

T .

According to the Fermi gas model the entropy density is given by

s(T ) =
ρ

A
S(T ) (2)

where A is the nuclear mass number, nuclear density ρ = 0.16 fm−3, and the

entropy S(T ) = 2a(T )T . Here T is the nuclear temperature and a(T ) is the

nuclear level density (NLD) parameter at temperature T .

In this thesis, simultaneous measurements of the GDR widths and energies,

required for the determination of η(T ), with the NLD parameters and nuclear

temperatures, required for the extraction of s are presented at four different

mass regions, namely 31P, 97Tc, 119Sb, and 201Tl. A set of experiments were

performed at the Variable Energy Cyclotron Centre (VECC), Kolkata using α

beams from the K-130 cyclotron. The nuclei 31P, 97Tc, 119Sb and 201Tl were

populated at different excitation energies by bombarding α beam of energies 28-

50 MeV on 27Al, 93Nb, 115In, 197Au targets, respectively. The high-energy γ rays

from the decay of the GDR were measured by a part of the LAMBDA spectrom-

eter [Sup07]. A 50-element multiplicity filter [Dee10] was used to measure the

compound nuclear angular momentum (by measuring the number of low-energy

γ ray multiplicity or fold) in an event-by-event mode. Proper determination

of angular momentum is crucial for a precise evaluation of nuclear temperature

which, in turn, is important for extraction of entropy density. The cyclotron RF
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time spectrum was also recorded with respect to the multiplicity filter to ensure

the selection of beam-related events. The angular distributions of high-energy

γ spectra were also measured for 31P and 119Sb at Ebeam = 42 MeV. Different

angular-momentum-gated high-energy γ spectra were reconstructed in the off-

line analysis by the cluster summing technique. The neutron and the pile-up

events were rejected by time of flight (TOF) and pulse shape discrimination

(PSD) techniques, respectively. Evaporated neutron energy spectra were mea-

sured, in coincidence with the multiplicity γ rays, by a liquid-scintillator-based

neutron TOF detector [Kau09]. The n−γ discrimination was accomplished fol-

lowing the PSD technique comprising of TOF and zero cross-over time (ZCT).

The measured TOF spectra were converted to neutron energy spectra by taking

the prompt γ peak as a time reference.

The measured fold distributions were mapped onto the angular momentum

space by a realistic technique based on geant4 simulations. Different fold-gated

angular momentum distributions were simulated and incorporated in a modified

version of the statistical model code cascade [Pul77]. It has experimentally

been observed that the asymptotic NLD parameter (ã) depends on the angular

momentum [Pra13]. Therefore, ã were extracted by comparing the different fold-

gated neutron energy spectra, with the cascade predictions properly corrected

for detector efficiency. Simultaneously, the calculated high-energy γ spectra,

along with a bremsstrahlung component parameterized as σ = σ0 exp(−Eγ/E0),

were folded with the detector response function and compared with the exper-

imental spectra to extract the GDR parameters. The center of mass (c.m.) γ-

ray angular distribution was assumed to have the form W (Eγ, θ) = W0(Eγ)[1+

a1(Eγ)P1(cos θ) + a2(Eγ)P2(cos θ)] and the bremsstrahlung slope parameter E0

was deduced by comparing the experimentally measured a1(Eγ) with the theo-

retically calculated ones. The extracted slope parameters were consistent with
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the systematics E0 = 1.1[(Ebeam − Vc)/Ap]
0.72, where Vc is the Coulomb barrier

and Ap is the projectile mass [Nif90]. This systematics was utilized at other

beam energies for which angular distributions were not measured. The shear

viscosity was deduced from measured GDR parameters by using Eq. (1). η(0)

was taken 1u where u = 10−23 MeV·s·fm−3. The justification for taking this

value for η(0) lies in the fact that the ground state GDR widths for the four nu-

clei studied were reproduced well by the formulation of Auerbach et al. [Aue75]

which was derived using η(0) = 1u. An uncertainty in η(0) has also been de-

rived from the mass dependence of the ground state GDR width. The entropy

density was extracted from measured level density parameter and nuclear tem-

perature by using Eq. (2). Nuclear temperature was calculated by using the

relation T =
√

U/a(T ), where U = E∗−EGDR−Erot−∆P ; E∗, EGDR, Erot, and

∆P being the initial excitation energy, GDR energy, average rotational energy,

and the pairing energy, respectively. Thus, by calculating η and s at a given

temperature, η/s was deduced by taking the ratio of these two quantities.

The deduced shear viscosities are well reproduced for the systems by the

calculations based on the generalized Fermi liquid drop model (FLDM) [Aue09,

Kol04]. The model directly calculates η by utilizing two-body collisional ap-

proach and gives η(T ) = 2
5
ρǫFτcoll/[1 + (ωτcoll)

2], where ǫF is the Fermi energy,

ω is the angular frequency of excitation and τcoll is the collision relaxation time

given by τcoll = τ0/[1 + (~ω/2πT )2], τ0 = ~α/T 2. The parameter α depends

on in-medium nucleon-nucleon scattering cross section and for isovector res-

onances, its value is 4.6 MeV. The theoretical results are obtained using the

values of ǫF = 37 MeV corresponding to ρ = 0.16 fm−3 and considering ~ω as

the average GDR energy. It is observed that at low temperatures, η increases

with the increase in T , which can be understood qualitatively by the following

arguments. For an equilibrated nucleus, the momentum is transported by the
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nucleons. The kinetic theoretical calculations give η ∼ v̄λ, where v̄ is the aver-

age velocity of the nucleons and the mean free path λ ∼ v̄/Ncoll. In rare collision

region, which corresponds to the giant resonances, the collision frequency Ncoll

does not change much with temperature, while v̄ ∼
√
T . Therefore, the mean

free path as well as the nucleon momentum increases with temperature. That

means the momentum can be transported more efficiently over a large distance,

thereby increasing η with temperature. The measured entropy densities are

well reproduced by the calculations. s(T ) is estimated utilizing the relation

s(T ) = − ρ
A
×
∑

i[fi ln(fi) + (1− fi). ln(1− fi)], where fi is the occupation prob-

ability of the state with energy ei given by fi = [1 + exp{(ei − µ)/T}]−1. The

chemical potential µ is calculated from particle conservation, and the single par-

ticle energies ei are calculated using the deformed Wood Saxon potential with

the universal parameters [Cwi87]. As the temperature increases, the distortion

of the Fermi surface becomes larger, thereby increasing the number of accessible

microstates. This results in the increase of entropy density with temperature.

The deduced η/s shows a mild decrease with the increase in temperature.

Moreover, it is confined in the range (2.5-6.5) ~/4πkB for the finite nuclear

matter within the temperature range ∼ (0.8-2.1) MeV. Therefore, it could be

concluded that nuclear matter obeys the KSS conjecture. Also, the measured

values of η/s are comparable to that of the QGP. It, therefore, could be reaf-

firmed experimentally, that the strong fluidity is a universal characteristic fea-

ture of the strong interaction of the many-body nuclear systems and not just of

the state created in the relativistic collisions. Although η shows a slight increase

with the mass number at the highest available temperature for heavier nuclei,

η/s remains within (5.1-6.5) ~/4πkB and (4.6-6.1) ~/4πkB at the lowest and

highest available temperatures, respectively, for all nuclei. This indicates that

η/s is approximately independent of the nuclear size and the neutron-proton

xxii



asymmetry at a given temperature. However, it could be the artefact of incor-

porating the same η(0) for all nuclei. Also owing to large errors, the data are

not sensitive enough to draw any conclusion.

The second part of the present thesis deals with the experimental study of

isospin mixing at high temperature in 32S. The hadronic part of nuclear interac-

tions preserves the isospin quantum number. However, the presence of electro-

magnetic interactions and the charge dependent short range potential breaks the

isospin symmetry. The prime isospin violating term is the isovector Coulomb

interaction that mixes states separated by ∆I = 1. The importance of isospin

mixing lies in connection with two basic phenomena in physics. The first one is

the spreading width of the isobaric analog states, which is directly related to the

isospin mixing in parent nuclei [Suz96, Sag98]. The second and most important

one is the experimental determination of isospin symmetry breaking correction

(δc) in the measured ft value of Jπ = 0+ → 0+ superallowed Fermi β-decay.

The measured ft value, after correcting for the isospin symmetry breaking and

radiative corrections, is utilized to extract the up quark to down quark transi-

tion matrix element (Vud) in the Cabibbo-Kobayashi-Maskawa (CKM) matrix

[Har05a, Tow10, Har15] and hence plays a crucial role in determining the uni-

tarity of CKM matrix.

In general, isospin mixing can be studied by utilizing the transitions that

would have been forbidden in the absence of isospin mixing. The E1 γ-transition

originating from the decay of IVGDR is one such transition that have been em-

ployed to study isospin mixing in self-conjugate compound nuclei populated

through the self-conjugate entrance channel. Since the lifetime of the com-

pound nucleus is large compared to the time scale of IVGDR, it can probe

the evolution of compound nuclear state in the isospin degree of freedom. At
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moderate excitations, the γ rays associated with the decay of the IVGDR are

emitted from the first few stages of the compound nuclear decay. So, if a self-

conjugate nucleus is populated by bombarding a self-conjugate projectile on a

self-conjugate target, only I = 0 states are populated in the compound nucleus

with the assumption that isospin is fully conserved. Since the E1 γ-transitions

between the states of the same isospin are prohibited in self-conjugate nuclei,

only the transitions between I = 0 to I = 1 states are allowed. However, at

moderate excitation energies the density of I = 1 states to be populated by

the IVGDR γ-decay are small. This results in the suppression of the yield of

IVGDR γ rays decaying from self-conjugate nuclei populated through I = 0 en-

trance channel as compared to I 6= 0 nuclei for which all transitions are allowed.

However, in presence of an admixture of I = 1 states in the initial compound

nucleus, the IVGDR γ-yield is enhanced as these I = 1 states can decay to I =

0 states.

The above technique was first utilized by Harakeh et al. [Har86] and later

it was modified by Behr et al. [Beh93]. The statistical model code cascade

was modified to include the isospin mixing according to the formalism of Har-

ney et al. [Hrn86] who parameterized the isospin mixing probability in terms

of Coulomb spreading width (Γ↓) and compound nuclear decay width (Γ↑). By

inclusive measurement of IVGDR γ rays, Behr could infer that for 28Si, isospin

becomes a good quantum number with the increase in excitation energy (E∗).

However, for 26Al, though with large errors, reverse phenomenon was observed.

Recently, isospin mixing has been measured in 80Zr in exclusive experiments

by Corsi et al. [Cor11] and Ceruti et al. [Cer15]. They concluded that isospin

indeed becomes a good quantum number with the increase in temperature and

the Coulomb spreading width remains constant with temperature. The result

matches well with the only available calculation of Sagawa et al. [Sag98] at fi-
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nite temperature; also when extrapolated to zero temperature, the result is well

reproduced by the recent calculation of Satula et al. [Sat09]. However, at lower

mass region the measured isospin mixing seems to be large at higher temper-

ature. It should be pointed out that in all previous measurements heavy ion

fusion reactions were used to ensure the statistical nature of the evaporated γ

rays. However, in such reactions the compound nuclei are populated at higher

angular momentum which affect the high-energy γ ray spectrum, particularly

at lower mass region. In addition, in the previous measurements at lower mass

region the nuclear level density (NLD) parameter which is vital for statistical

model calculation and for precise determination of nuclear temperature was not

measured. This calls for more advanced, exclusive experiments to be performed

at lower mass region to have a comprehensive picture of the temperature vari-

ation of isospin mixing at low mass region.

In this thesis, we present exclusive measurement of isospin mixing at T = 2.6

MeV for 32S. The compound nucleus populated with light ion (α) induced fusion

reaction to minimize the angular momentum effect. The compound nuclear an-

gular momentum was measured by measuring the low-energy γ ray multiplicity

in coincidence with the high-energy IVGDR γ rays. The NLD parameter was

also extracted by measuring the evaporated neutron energy spectrum. The si-

multaneous measurements of angular momentum and NLD parameter enabled

us to determine the precise nuclear temperature. Finally, our result was com-

pared with the calculations of Sagawa et al. and was extrapolated to zero tem-

perature.

The experiments were performed at the Variable Energy Cyclotron Centre

(VECC), Kolkata. The compound nuclei 31P and 32S were populated at the

same excitation energy (E* = 40.2 MeV) and angular momentum (<J> = 12~)
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through I = 1/2 and I = 0 entrance channels by bombarding self-supporting

27Al (I = 1/2) and 28Si (I = 0) target nuclei with α-beam (I = 0) of energies 35

MeV and 38 MeV, respectively from K-130 Cyclotron. Here 31P was populated

as a reference nucleus (populated through different entrance channel isospin but

at the same E* and <J>) to find the IVGDR parameters to be used for the

analysis of 32S. As the masses of the two compound nuclei are nearly the same

and they are populated at the same excitation energy and angular momentum,

IVGDR parameters are expected to be the same for both the nuclei. It should

also be mentioned that the critical angular momentum (Jc) [Kus98], above which

noticeable effect of J on IVGDR width is observed, is 11~ for 32S. Consequently,

the high-energy γ ray spectra are expected to be sensitive to temperature only.

The experimental procedure and data reduction technique were the same as

mentioned earlier. The experimentally measured fold distribution was mapped

onto angular momentum space with Monte Carlo geant4 simulations and the

simulated fusion cross section was incorporated in the a modified version of

statistical model code cascade in which isospin quantum number was properly

taken care of. Two types of pure isospin states I< ≡ |I, I = Iz〉 and I> ≡

|I + 1, I = Iz〉 were considered where Iz = (N -Z)/2 and mixing was performed

between them. The fraction of ≷ states that mixes with ≶ states was defined

as

α2
≷ =

Γ↓
≷/Γ

↑
≷

1 + Γ↓
≷/Γ

↑
≷ + Γ↓

≶/Γ
↑
≶

(3)

The mixed populations of the compound nuclear states were defined as

σ̃< = (1− α2
<)σ< + α2

>σ> (4)

σ̃> = (1− α2
>)σ> + α2

<σ< (5)

where σ< and σ> are the population of the pure isospin states. The level density

of each type of isospin states was accounted for and the isospin Clebsch-Gordan
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was multiplied with the transmission coefficient. The calculation contains only

Γ↓
> as the free parameter which has to be derived from the experimental data.

The statistical model analysis for 31P was performed with the assumption

that the isospin is fully conserved (Γ↓
> = 0). The cascade neutron spectrum

(after correcting for detector efficiency calculated using geant4 simulations)

was compared with the experimental spectrum and χ2 minimization was done

in the energy range 4.0 - 10.0 MeV. The Reisdorf level density prescription was

used and the best fit was obtained for ã = 4.2 ± 0.3 MeV−1. Similar analysis re-

sulted in ã = 3.9 ± 0.1 MeV−1 for 32S. In the next step, the IVGDR parameters

were extracted by comparing the high-energy γ ray spectrum of 31P with the

cascade calculations along with a small bremsstrahlung component parame-

terized as σ = σ(0)e−Eγ/E0 . The slope parameter E0 = 4.9 MeV is consistent

with the parameterization E0 = 1.1[(Ebeam − Vc)/Ap]
0.72 [Nif90]. The deduced

parameters were EGDR = 17.8 ± 0.2 MeV, ΓGDR = 8.0 ± 0.4 MeV and SGDR =

1.00 ± 0.03. The uncertainties were obtained by χ2 minimization procedure in

the energy range 14 - 21 MeV. Finally, the isospin mixing parameters were de-

duced utilizing the IVGDR parameters extracted from 31P. In order to increase

the sensitivity of isospin mixing and minimize the effects of statistical model

parameters, isospin mixing was deduced from the ratio of γ ray cross sections of

32S and 31P in the GDR region. We remark here that though we could simulate

the response function of LAMBDA spectrometer, the absolute efficiency (ǫin)

of the array is not known. Therefore, we have taken the ratio of [σγ × ǫin] for

both the nuclei and compared with the ratio of cascade cross-sections properly

folded with the detector response function. The absolute values input channel

fusion cross sections were calculated using pace4 code. It should be highlighted

here that Γ↓
> was the only parameter that was varied to match the experimental

ratio with the cascade prediction. As Γ↓
> remains nearly temperature inde-
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pendent, the same Γ↓
> was used for all the decay steps. The best value for Γ↓

>

was obtained by χ2 minimization technique in the energy range 14 - 21 MeV

and was found to be 24 ± 13 keV corresponding to the average α2
< = 3.5 ±

1.8 % at T = 2.6 MeV. It should be mentioned that α2
< depends on J and our

quoted value corresponds to < J > = 12~. The temperature was calculated us-

ing the relation T =
√

(E∗ − Erot −∆P )/ã, where Erot is the rotational energy

and ∆P is the pairing energy. The quoted errors correspond to the statistical

errors as well as systematic errors owing to the presence of isotopic impurity

in the 28Si target and the uncertainty in the determination of bremsstrahlung

component.

The present results have been compared with the only reported measurement

for 32S for which Γ↓
> was 20 ± 25 keV and α2

< was 1.3 ± 1.5% at T = 2.85

MeV [Hab04]. It emphasizes the fact that Γ↓
> indeed remains constant with

temperature. It is also fascinating to note that α2
< decreases with the increase

in temperature. This is owing to the fact that the competition between the time

scale associated with the Coulomb spreading width (Γ↓) and the compound

nuclear decay width (Γ↑) leads towards the restoration of isospin symmetry.

The intrinsic decay width of the compound nuclear state becomes so large as

compared to the Coulomb spreading width that the state does not get sufficient

time to mix. However, in both the cases angular momenta were different and it

would be interesting to disentangle the effects of J and T on α2
<. It could also

be conjectured that Γ↓
> does not change much with angular momentum.

The measured α2
> at minimum angular momentum (1~) has also been com-

pared with the calculation of Sagawa et al. [Sag98]. According to the formalism

α2
> =

1

Iz + 1

ΓIAS

ΓCN + ΓIVM

(6)

where ΓIAS is the spreading width of the IAS, which is equivalent to Γ↓
>, ΓCN
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is the compound nuclear decay width and ΓIVM is the width of the isovector

monopole (IVM) state at the energy of IAS. α2
> was set at 0.7% at T = 0

from the recent calculation of Satula et al. [Sat09] This results in ΓIVM = 3.4

MeV as ΓCN = 0 at T = 0. Next, ΓCN was calculated using the cascade

code at different temperatures using our best fit parameters. ΓIVM was assumed

temperature independent and Γ↓
> was given a weak linear dependence on T as

Γ↓
>(T) = Γ↓

>(0)(1+cT) where c = 0.2 MeV−1. The parameter c was calculated

by assuming that Γ↓
>(T = 2.6 MeV) = 37 keV i.e. Γ↓

> remained within the

experimental error bar. It is observed that our measured α2
> = 3.5 ± 1.9 %

remains well above the calculated value.

The value of α2
> at T = 0 has also been extracted using the calculated value

of δc = 0.65 % in 34Cl which reproduces the corrected ft value. α2
> is extracted

utilizing the formalism of Auerbach et al. [Aur09] with the assumption that δc

is same for 34Cl and 32S. According to this formalism α2
> is defined as

α2
> =

41ξA2/3

4(I + 1)V1

δc (7)

where V1 = 100 MeV, ξ = 3. Equation (7) yields α2
> = 2.0 % which in turn

yields ΓIVM = 1.2 MeV. α2
> was extrapolated to higher temperatures using the

same procedure described before. It is observed that the calculation, though

underpredicts, better explains the measured data. It should be mentioned in

this context that Melconian et al. [Mel11] have found δc to be as high as 5.3 ±

0.9 % which was attributed to the presence of close lying I = 0 and I = 1 states

near 7.0 MeV excitation energy in 32S and it was corroborated by the shell

model calculations. So, it would be interesting to perform the statistical model

analysis with the local effects but is beyond the scope of the present thesis.

It could be that, at low mass region, the isospin mixing has some finite value

at zero temperature, then it gradually increases with temperature and then it
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decreases in the statistical region (as is conceived qualitatively). It could also

be possible that, as mentioned therein, the formalism of Sagawa et al. may be

valid in medium and heavy mass regions. However, more data are required at

still lower temperatures to understand the systematic behavior of isospin mixing

in lower mass region.

In summary, the thesis contains the experimental study of two crucial prop-

erties of atomic nucleus utilizing the IVGDR. In the first part, the crucial ratio

of shear viscosity to the entropy density has also been determined. Both η and s

increase with temperature resulting in a mild decrease in η/s with temperature.

At a given temperature, η/s is also found to be approximately independent

of the nuclear size as well as the neutron-proton asymmetry. Moreover, the

measured η/s remains confined in the range (2.5-6.5) ~/4πkB. Thus it is ob-

served experimentally that the nuclear fluid conform to the KSS conjecture

and also establishes that strong fluidity is the universal characteristic of the

strong interaction of many-body nuclear systems. This result, along the results

of low-temperature quantum fluids and high-temperature QGP, suggests that

large fluidity could possibly be the intrinsic characteristic feature of strongly

coupled systems. In the second part, the isospin mixing has been measured at

high temperature in 32S by utilizing the γ-decay of the isovector giant dipole

resonance (IVGDR). The Coulomb spreading width Γ↓
> was found to be nearly

independent of temperature and angular momentum. Moreover, isospin be-

comes a good quantum number with the increase in temperature. However,

α2
>, when extrapolated to higher temperatures, by imposing its value at zero

temperature, underpredicts the measured data.
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Chapter 1

Introduction

A natural approach to study the properties of a system is to perturb it externally

and observe its response. One has to opt for an appropriate tool or perturbation

to investigate a specific system property. Over the years, various tools have been

unearthed to explore the intriguing and exciting facets of the atomic nucleus,

which by virtue of its intrinsic complexity, mystery and practical applications,

still remains an exciting entity for physicists.

The isovector giant dipole resonance (IVGDR), a member of a broader family

of collective resonances called giant resonances, is an excellent probe to study

nuclear properties at extreme conditions. It is a collective motion of proton

and neutron fluids observed in all nuclei. The GDR can be built on the ground

state as well as every excited state of nuclei. Historically, the GDR built on

the ground state of a nucleus has been studied by the photoabsorption reaction,

while that built on the excited state has been probed by fusion evaporation and

inelastic scattering reactions. The lifetime of the GDR is very small (10−21-10−22

sec) and it decays by the emission of high-energy γ rays in 10-25 MeV regions

depending on the mass of the nucleus. The small lifetime of the resonance

makes it an excellent probe to study exotic nuclear shapes, fission time scale
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etc. Due to the presence of nuclear dissipation, the fission process is slowed

down resulting in an increased emission of pre-fission particles and γ rays. The

viscosity and hence the fission time scale is determined by using a dynamical

fission model [Pau94, Kra40]. In this context, it is interesting to note that the

dissipation parameter, which fit the pre-fission GDR γ ray multiplicities, also

agrees quite well with the pre-fission neutron multiplicities [Pau94].

The present thesis deals with the experimental study of two crucial prop-

erties of atomic nuclei at finite temperatures. The first part contains a self-

consistent experimental determination of the ratio of shear viscosity (η) to en-

tropy density (s) for equilibrated finite nuclear matter from A∼30 to A∼208 at

different temperatures, while the second part presents an exclusive experimental

study of isospin mixing at high temperature in 32S.

It is observed experimentally that the width of the GDR built on the ground

state of nucleus increases with the decrease in mass number. This suggests that

the damping mechanism of the GDR is indeed similar to that of a viscous fluid

where the modulus of decay (τ) (resonance width is inversely proportional to

τ) of the oscillation decreases with the decrease in system volume. Recent the-

oretical calculations have shown that the shear viscosity at finite temperature

is related to the width and energy of the GDR. Thus by measuring the GDR

widths and energies, η has been determined at different temperatures for vari-

ous nuclear masses. Simultaneously, the entropy density s has been extracted

by precisely measuring the nuclear level density (NLD) parameter and nuclear

temperature. Simultaneous determination of η and s enabled us to deduce η/s

in a self-consistent way at different temperatures and various mass regions.

In long wavelength limit, (qR ≪1, q being the momentum transfer and R is

2



Chapter 1. Introduction

nuclear dimension) the γ transitions from the decay of the IVGDR are forbid-

den between the states of the same isospin (I). Consequently, if a self-conjugate

compound nucleus (N=Z) is populated through a self-conjugate entrance chan-

nel (both the target and the projectile are self-conjugate), only I=0 states are

populated in the compound nucleus (CN) with the assumption that isospin is

fully conserved. Due to the above mentioned isospin selection rule, γ transitions

only between states I=0 to I=1 are allowed. However, at moderate excitation

energies there are not many I=1 final states to be populated by IVGDR γ decay.

This results in the suppression of the yield of γ rays decaying from self-conjugate

nuclei populated through I=0 entrance channel as compared to I 6=0 nuclei for

which all γ transitions are allowed. However, in presence of an admixture of

I=1 states in the initial compound nucleus, the IVGDR γ yield is enhanced

as these I=1 states can decay to I=0 states and the degree of enhancement

depends on the degree of isospin mixing.

As both subjects of this thesis include temperature and utilize GDR as a

probe, we start by giving a brief introduction of the concept of nuclear temper-

ature. Later, in this chapter, a brief introduction on the Giant resonances and

the Isovector Giant dipole resonance is presented. The theoretical formalisms

and models for describing η/s and isospin mixing have been described in chapter

2 and chapter 3, respectively. The details of the statistical model calculations

have been presented in chapter 4. The details of the detector systems, sim-

ulation studies and data reduction techniques have been depicted in chapter

5. The experimental details and results of η/s and isospin mixing have been

discussed in chapter 6 and chapter 7, respectively. Finally the summary and

future outlook have been presented in chapter 8.
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1.1 The concept of nuclear temperature

It is a well-known fact that nature favors a system to remain in its lowest

possible energy state known as the ground state. In a simplistic model, protons

and neutrons occupy the lowest single particle states in accordance with the

Pauli exclusion principle in the ground state of nucleus. The highest occupied

single particle state is called the Fermi level. When energy (E∗) is pumped into

the nucleus (say, by bombarding a target nucleus with a projectile forming a

compound nucleus; the relative kinetic energy of the projectile and the target

provides the excitation to the compound nucleus.) the protons and neutrons

near the Fermi surface are excited into the higher available single particle states

resulting in nuclear excitation, the number of particles excited being dependent

on the supplied energy E∗. At small E∗, only a few particles are excited and

the separation of the excited states (D) is large [Fig. (1.1)]. As E∗ gradually

increases, the number of excited particles increases. This enhances the number

of possible ways in which energy E∗ can be distributed resulting in large number

and small separation of the excited states. However, with the increase in E∗,

the individual excited state attains intrinsic width owing to particle decay (Γ↑).

At very high E∗, intrinsic width of the individual states becomes very large as

compared to the separation (i.e. Γ↑ ≫ D). In this case one cannot consider the

individual states, rather, one defines the density of states ρ(E∗, A) which gives

the number of accessible states in the energy interval E∗ and E∗+dE∗, A being

the mass number of the nucleus. In accordance with the statistical physics, one

defines the temperature as

1

Ts
≡

[

∂S(E)

∂E

]

E=E∗

=

[

∂

∂E
lnρ(E)

]

E=E∗

, (1.1)

where S is the entropy of the system. Ts is also called microcanonical tem-

perature. The state density ρ(E∗, A) could be calculated by taking the inverse
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x

ΓΓΓΓ ↑↑↑↑ <<<<<<<< D
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ΓΓΓΓ ↑↑↑↑ ≈ D

ΓΓΓΓ ↑↑↑↑ <<<<<<<< D

Figure 1.1: Schematic representation of the variation of the number of accessible
states as a function of excitation energy.

Laplace transform of the grand canonical partition function (Z) [Boh99a]. The

temperature at which the grand canonical partition function becomes maxi-

mum, is called the nuclear temperature (Tnucl)[Boh99a]. It is observed that

Tnucl ≡ T =
√

(E∗/a). Here a is called nuclear level density (NLD) parameter

which is a measure of the density of single particle states at the Fermi energy.

It is observed that [Mor94]

1

Ts

=
1

T
− γ′

E∗
, (1.2)

where the constant γ′ ranges from one to two. For large E∗ and particle number,

the term with constant γ′ vanishes, thus Ts and T become equivalent. Physically,

the nuclear temperature T roughly provides the average energy per excited

nucleon. In this thesis, temperature refers to the nuclear temperature, unless

mentioned otherwise.
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1.2 Giant resonances and their classifications

The giant resonances (GR), generic features of quantum many-body nuclear

system, are high-frequency, small-amplitude and highly-damped collective vi-

brations in which nearly all nucleons take part [Bor98, Har01]. These resonances

lie in 10 to 25 MeV excitations depending on the mass and type of the giant

resonance. The amplitude of oscillation is a few percent of the nuclear radius

and the resonance gets damped after a few vibrations. The resonance is called

giant because nearly all nucleons participate in the process and it exhausts a

large fraction of the energy-weighted sum rule defined by SL =
∑

f (Ef−Ei)M
2
if .

Mif is the transition matrix element between the initial and final states having

energies Ei and Ef, respectively and the summation runs over all final states.

The giant resonances are characterized by three parameters, namely, the energy,

the width and the strength. Since all nuclei participate in these resonances, the

characteristic properties do not depend on detailed microscopic structure; rather

they vary smoothly with the nuclear mass.

Depending on the interaction involved in the GR excitation, there are electric

and magnetic giant resonances. The electric GRs are excited by the interaction

of electromagnetic field (EM) with the electric charge current in the nucleus,

while the magnetic GRs are caused by the interaction of EM field with the

magnetization current and also involve the spin excitation (∆S=1). To the first

order approximation and in the long wave length limit (qR ≪1) the operator

that excites the electric giant resonances can be represented as [Har01, Wil69]

ÔE(L,M) =
1

2
ê

A
∑

k=1

rL

kYLM(Ωk)−
1

2
ê

A
∑

k=1

î3kr
L

kYLM(Ωk) , (1.3)

where î3 = 2̂iz is the isospin analog of the third component of the Pauli spin

matrix [Wil69] and its eigenvalues are +1 and -1 for neutron and proton, re-
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Figure 1.2: Schematic representation of various collective modes inside the nucleus
with L = 0 (monopole), L = 1 (dipole) and L = 2 (quadrupole). S and T are spin
and isospin quantum numbers, respectively (adopted from Ref. [Sup12b]).

spectively. The first and second parts of Eq. (1.3) correspond to the isoscalar

(IS) and the isovector (IV) part of the operator, respectively. The isovector

excitations involve the change in the isospin quantum number (I) by one unit

(∆I = 1), while the isoscalar excitations do not involve any change in I. From

the macroscopic point of view, the isoscalar and the isovector resonances corre-

spond to the in-phase and the out of phase oscillations of proton and neutron

fluids in the nucleus. Both the isoscalar and the isovector resonances can have

different multipolar excitations e.g. L = 0 means giant monopole resonance,

L = 1 corresponds to giant dipole resonance etc. However, it should be men-

tioned that in the first order approximation, there is no monopole excitation

as the operator in Eq. (1.3) is a constant for L = 0. Therefore, the monopole

resonance is purely a second order effect. Similarly, the ISGDR is also a higher

order effect because the first part of Eq. (1.3) gives the linear translation of the

centre of mass (c.m.) and involve no intrinsic excitation. The energy of different
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giant resonances is proportional to A−1/3 and the constant of proportionality is

approximately equal to 79 MeV for IVGDR, 80 MeV for ISGMR, 65 MeV for

ISGQR and 130 MeV for IVGQR. The magnetic giant resonances can also have

different multipolarities and isospin modes. Different giant resonance modes

have been schematically described in Fig. (1.2). This thesis deals with only

IVGDR and it is also referred to, unless otherwise mentioned, as the GDR.

1.3 The isovector giant dipole resonance

(IVGDR)

The isovector giant dipole resonance (IVGDR) is the oldest and best-known

GR owing to its high selectivity of excitation by γ ray absorption. In simple

hydrodynamic model, it can be thought of as the collective vibration of protons

against neutrons [Fig. (1.3)], where the restoring force comes from the nuclear

symmetry energy and effective surface stiffness [Boh99]. Microscopically, it

is described as the coherent superposition of 1p-1h dipole excitations across

one major shell (1~ω′). The residual interactions between particles and holes

shift the energy of the superimposed state at 2~ω′ and the state exhausts all

dipole strength [Bro59, Bro67]. Although, recently a counterexample has been

published [Qua17], Brink-Axel hypothesis states that the GDR can be built on

every excited state with similar properties to that built on the ground state of

the nucleus [Bri55, Axe62].

1.3.1 IVGDR built on ground state of nucleus

The first evidence of the IVGDR was observed in the photoabsorption exper-

iment of Bothe and Getner [Bot37] in 1937. They observed large (γ,n) cross

section by bombarding 17 MeV γ ray on 63Cu target. Few years later, in 1947

Baldwin and Klaiber, while performing photofission reactions in different tar-
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Figure 1.3: Schematic representation of the isovector giant dipole resonance.

gets, observed that the excitation function of U and Th having a resonance

structure with maximum at ∼ 15 MeV and a width of ∼ 5 MeV [Bal47]. Many

more photoabsorption reactions followed and it was observed that the GDR line

shape was typically a Lorentzian characterized by the energy (EGDR), the width

(ΓGDR) and the strength (SGDR)

σabs(Eγ) =
σmΓ

2
GDR

E2
γ

(E2
γ − E2

GDR
)2 + Γ2

GDR
E2

γ

. (1.4)

The energy-integrated strength of the GDR is given by
∫ ∞

0

σabs(Eγ)dEγ = 60
NZ

A
. (1.5)

Experimentally it is observed that the integrated strength remains within 20%

for medium and heavy nuclei and for light nuclei, the strength falls little short

of it. This indicates that all nuclei take part in forming the GDR.

According to the macroscopic model of Goldhaber and Teller (GT) [Gol48],

the GDR is the out of phase oscillation of rigid but interpenetrating neutron and
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proton spheres against each other keeping the centre of mass fixed. The GDR

energy, in this model, is proportional to
√

(k′/M) where k′ is the restoring force

and M is nuclear mass. The restoring force is proportional to nuclear surface

area i.e. R2 ∼ A2/3. This implies EGDR ∝
√

A2/3/A = A−1/6. On the other

hand, the model put forward by Steinwedel and Jensen (SJ) [Ste50], describes

GDR as the out of phase density oscillation of neutron fluid versus the proton

fluid within a sharp and fixed boundary keeping the total density fixed. In

this model, EGDR is proportional to R−1 = A−1/3. In practice, experimental

GDR energies of medium and heavy nuclei are well reproduced by the following

weighted sum of the above two prescriptions [Ber75]

EGDR = 31.2A−1/3 + 20.6A−1/6 . (1.6)

The GDR is a highly damped motion characterized by a very small lifetime

(10−21-10−22 sec) or large width. Owing to the short lifetime, it competes with

other modes of nuclear decay and can probe the evolution of different degrees

of freedom e.g. shape, isospin etc. A vivid picture of the origin of large width

for the GDR could be depicted microscopically. In this picture, the GDR width

comprises of three parts, namely, the Landau width (ΓLD), the spreading width

(Γ↓
sp) and the escape width (Γ↑

es). ΓLD originates from the coupling of the col-

lective 1p-1h state (the GDR state) to the non-collective 1p-1h configurations.

The spreading width Γ↓
sp arises due to the coupling of the GDR state to 2p-2h,

3p-3h and more complicated configurations, whereas, the escape width Γ↑
es is

caused by the coupling to the continuum causing direct particle decay into the

hole states of the residual nucleus. In medium and heavy nuclei, Γ↓
sp has the

major contribution while ΓLD and Γ↑
es give a minute fraction of the GDR width.

However, for light nuclei Γ↑
es (∼ 13exp[−4.69

√

A/U ] MeV, A and U being the

mass number and intrinsic excitation energy of the compound nuclear state,

10
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Figure 1.4: (a) A typical high-energy γ ray spectrum from the decay of IVGDR built
on an excited state of 31P populated at initial excitation energy of 46.2 MeV. The
filled circles represent the experimental spectrum and the continuous line is the sum
of statistical model calculation (short-dashed line) and a bremsstrahlung component
(dot-dashed line). (b) Corresponding linearized plot.

respectively [Beh91]) contributes appreciably to the total width.

1.3.2 IVGDR built on excited state of nucleus

As put forward by Brink and Axel [Bri55, Axe62], the GDR can be built on

every excited state of nucleus with similar properties to that built on the ground

state. The rationale behind this lies in the fact that typical lifetime of excited

states of nucleus is ∼ 1000 times larger than that of the GDR. Therefore, once

a nuclear excited state is formed, there is a finite probability that it evolves to a

configuration which can be thought of as the GDR built on some excited state

of the nucleus.

The first observation of the excited state GDR was made from the measure-
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ment of γ ray spectrum in spontaneous fission of 252Cf, where certain enhance-

ment was observed at Eγ ∼ 10-15 MeV which corresponds to IVGDR [Die74].

Later, in 1981, Newton et al. first studied the GDR utilizing heavy ion fusion

reactions [New81]. During the last three and a half decades, exhaustive studies

have been accomplished in excited state GDR by using two complementary tech-

niques, namely inelastic scattering and fusion evaporation reactions. In inelastic

scattering reaction [Ram96, Bau98, Hec03] the compound nucleus is populated

with low angular momentum. This method thus, though with a large uncer-

tainty in determination of initial excitation energy or temperature (T ), could

exclusively probe the T dependence of GDR parameters. On the other hand, in

fusion evaporation reaction, the compound nucleus is populated at definite ini-

tial excitation energy but with a broad range of angular momentum. Therefore,

it is difficult to disentangle the effects of temperature and angular momentum.

In this thesis, we have utilized the fusion evaporation reaction to populate the

compound nucleus. However, we have used light-ion (α) beam enabling us to

populate the compound nucleus with very low angular momentum which does

not affect the GDR parameters.

The excited state GDR relaxes by the emission of high-energy γ rays. It

competes with other modes of nuclear decay (neutron, proton, α, fission etc.)

and appears as a bump in the characteristic exponentially decaying γ ray spec-

trum. Fig. (1.4) shows a typical high-energy γ ray spectrum from the decay of

GDR built on excited states of atomic nuclei. The γ rays below 12 MeV, come

from the statistical decay of compound nuclei whose intrinsic excitation energy

lies below the particle-threshold energy (∼ 8 MeV). The apparent steepness in

the slope suggests that indeed these γ rays are emitted from the lower stages of

compound nuclear decay chain. The bump in 12-23 MeV regions comes from the

statistical decay of the GDR mostly in the initial stages of the decay chain. The
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spectra above 24 MeV arise mainly from nucleon-nucleon bremsstrahlung mech-

anism at the initial stage of equilibrium process in compound-nuclear reaction.

The GDR parameters are extracted by comparing the experimental spectrum

with the statistical model calculations (chapter 4). The bremsstrahlung com-

ponent is parameterized by an exponentially decaying function whose slope can

be determined by angular distribution measurements of high-energy γ rays.

The systematics, gathered experimentally during the last three and half

decades, show that the GDR energy and strength do not change with excitation

energy or temperature; but the width increases with the increase in temperature.

In recent years, considerable interests have been shown to study the GDR at

very low temperatures (< 1.5 MeV) [Sup12a, Dee12, Bal14] and at highest

available temperatures ( > 3.0 MeV) [Bra89, Kel99, Wie06, Cie15]. At lower

temperatures, the measured GDR width is found to be highly suppressed as

compared to theoretical predictions. On the other hand, there is heated debate

on the saturation of GDR width at higher temperatures.

Different theoretical models have been proposed to explain the increase in

apparent GDRwidth with temperature. The most successful model has been the

adiabatic thermal shape fluctuation model (TSFM) [Gal87, Alh88, Orm96]. It

says that, owing to the finite size, the shape of the compound nucleus fluctuates

around an equilibrium shape at a given temperature. As the GDR vibrations are

much faster than the thermal shape fluctuation, the resulting GDR line shape

is the superposition of different line shapes corresponding to various shapes of

the CN. As the temperature increases, the fluctuation increases resulting in the

increase in apparent GDR width. This model explains the experimental data

in the range of temperature between 1.5 MeV< T <3.0 MeV and low angular

angular momentum (J < 50~). Later Kusnezov proposed a parameterization
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based on TSFM to describe the T and J variation of GDR width [Kus98]. This

is called phenomenological thermal shape fluctuation model (pTSFM) and it

explains the experimental data in T > 1.5 MeV. However, both the models

fail to explain the data at T < 1.5 MeV. To describe the data in the unex-

plained T < 1.5 MeV, a new parameterized model, called critical temperature

included fluctuation model (CTFM), has been proposed [Dee12]. According to

CTFM, the GDR width should remain constant up to a temperature, called

critical temperature (Tc), and increase thereafter. The origin of Tc lies in the

fact that the GDR itself induces a fluctuation in shape due to which it cannot

feel the effect of thermal fluctuations. The temperature at which the intrinsic

fluctuation equals to the thermal fluctuation is called the critical temperature.

Tc is found to increase linearly with the decrease in mass number by the rela-

tion Tc = 0.7 + 37.5/A. This model well explains the recently measured low

temperature as well as the high temperature data [Dee12, Bal14, Gho16, Cer17].

Apart from the above mentioned macroscopic models, a microscopic model

has also been proposed to describe the T and J dependence of GDR width

[Dan98a, Dan98b, Dan12]. According to this model, due to the temperature-

induced distortion in the Fermi surface, new particle-particle (pp) and hole-hole

(hh) configurations are created at finite temperatures. Therefore, the GDR

state, apart from coupling to the ph configurations, also couples by collisions

to these incoherent pp and hh configurations resulting in thermal width (ΓT).

Within this model, it is observed that the GDR width gradually increases with

temperature; however, at high temperatures the width tends to saturate. It

is interesting to note that, according to the proponents of this model, the pp

and hh coupling is a microscopic description of thermal shape fluctuation. This

model well explains the experimental data at low temperatures as well as high

temperatures.
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Chapter 2

Viscosity and Entropy Density

2.1 Viscosity of a fluid

A fluid is any substance that deforms continuously when subjected to a stress, no

matter how small. A typical characteristic property of a fluid is viscosity, which

is a measure of its resistance to gradual deformation by shear or tensile stress.

The main sources of viscosity are the intermolecular cohesion and intermolecular

or interparticle momentum transfer. A fluid can be attributed with mainly three

kinds of viscosities, namely

(a) Bulk viscosity (ζ): This type of viscosity is important when a fluid is

expanded or compressed. The rate of expansion or compression is gov-

erned by the bulk viscosity which exerts an internal frictional force when

the fluid is expanded or compressed.

(b) Shear viscosity (η): It is the resistance of a fluid to the shear flow

between two adjacent layers. Let us consider a fluid as shown in Fig. (2.1).

A uniform tangential force is applied in the x-direction on the upper plate

of area A. Due to this force, the fluid layer just adjacent to the upper
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y

x
Velocity  (v)Moving boundary
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Figure 2.1: Schematic representation of the flow of a fluid between a moving plate
and a stationary plate.

plate starts moving with the velocity of the plate (v). However, the layer

just adjacent to the lower plate remains fixed. Therefore, there exists a

velocity gradient in the y-direction resulting in a shear stress between two

adjacent layers of the fluid. The shear stress τ is given by

τ = η
dv

dy
, (2.1)

where η is called shear viscosity. Physically, it gives the efficiency of

momentum transfer between the adjacent layers of the fluid.

(c) kinematic viscosity (ν): It is the ratio of shear viscosity to mass density

of a fluid (ν = η/ρm).

This thesis mainly deals with the shear viscosity of finite nuclear matter

at finite temperature. The inverse of shear viscosity is sometimes called the

fluidity. However, in section 2.3, it will be discussed qualitatively that fluidity

16



Chapter 2. Viscosity and Entropy Density

is not only governed by the transport parameter η, but by the ratio of shear

viscosity to the thermodynamic parameter entropy volume density (s).

2.2 Entropy and entropy density

Entropy (S) is an extensive thermodynamic quantity which reflects the disorder

of a system. Larger is the value of entropy, larger is its disorder, larger is the

stability of the system. Entropy density (s), on the other hand, is an intensive

quantity defined as the entropy per unit volume of a system. For an atomic

nucleus the entropy density is given by

s ≡ S

V
=

ρ

A
S , (2.2)

where A and V are the mass number and the volume of the nucleus and ρ is the

nuclear density. For a system of fermions having single particle states (energy

states of individual fermions) of energy ei, the entropy is given by

S = −kB

∑

i

[

filnfi + (1− fi)ln(1− fi)
]

, (2.3)

where kB is the Boltzmann constant and fi is the occupation probability of the

state of energy ei given by

fi =
1

1 + exp{(ei − µ)/T} . (2.4)

Here µ is the chemical potential and T is the temperature in units of MeV.

At finite temperature µ is calculated by using the particle conservation relation

viz. n =
∑

i fi (In the present case, n = N or Z, N and Z being the number of

neutron and proton, respectively).

In low temperature region such that T < ǫF (ǫF being the Fermi energy),

entropy is given by

S = 2aT , (2.5)
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where a is the nuclear level density (NLD) parameter. Note that a is a function

of temperature and is calculated using the Ignatyuk prescription [Ign75]

a = ã

[

1 +
∆S

U

{

1− exp(−γU)
}

]

, (2.6)

where ã is the asymptotic NLD parameter given by ã = (π2/6)g(ǫF), g(ǫF)

being the density of single particle states at the Fermi energy [Boh99a]. ∆S is

the ground state shell correction which is basically the difference of measured

and calculated mass of a nucleus. U is the intrinsic excitation energy given by

U = aT 2 and γ is the shell damping factor which reflects the rate of shell effect

depletion with excitation energy.

In this thesis, entropy density for finite nuclear matter has been experimen-

tally determined by precisely measuring the nuclear level density parameter and

nuclear temperature and compared with microscopic calculations performed us-

ing Eqs. (2.2) and (2.3).

2.3 Ratio of shear viscosity to the entropy den-

sity (η/s)

Experimentally it is observed that, for good fluids such as water, strongly cou-

pled low-temperature quantum fluids (4He, 6Li) [Rep64, Wil96, Har99, Blo08,

Gio08], and the high-temperature quark-gluon-plasma (QGP) [Shu08, Adl03,

Mas09, Aam10] produced at the Relativistic Heavy Ion Collider (RHIC) and

the Large Hadron Collider (LHC), the shear viscosity differs by many orders

of magnitude. For example, for 6Li, η ∼ 1.7×10−15 Pa·s, while for QGP, η ∼

5×1011 Pa·s [Sch09]. Due to this large variation in shear viscosity, one expresses

the fluidity in terms of η/s. The reason could be qualitatively understood in

the following way. From kinetic theory (though, it should be mentioned that

kinetic theory might not be valid for systems like QGP and low-temperature
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quantum fluids) the shear viscosity of a non-relativistic dilute gas is given by

η =
1

3
ρmv̄λ , (2.7)

where ρ is the molecular density, m and v̄ are the mass and the average velocity

of individual molecules, respectively, and λ is the mean free path. From Eq.

(2.7) it is obvious that η/ρ could be a possible choice for a universal scale. It is

also supported by the fact that the behavior of solutions of the Navier-Stokes

equations is governed by the Reynolds number given by

Re =
vL′

η/ρm
, (2.8)

where v is the velocity of the fluid, L′ is its characteristic length, and m is the

mass of individual molecules. Larger is the value of Re, larger is the fluidity.

From Eqs. (2.7) and (2.8) it is obvious that η/ρ could be a reasonable parameter

for representing the fluidity of non-relativistic fluids. It is also observed that

for such systems the entropy density s ∼ ρkB. Therefore, one can use η/s as a

measure of fluidity for non-relativistic fluids.

For a relativistic fluid, η/s is a necessary parameter for representing fluidity

because for such a fluid the number of particles is not conserved. In QGP,

for example, only the net number of quarks (the number of quarks minus the

number of anti-quarks) is well defined, but the number of quarks or the number

of gluons is not. The Reynolds number of a relativistic fluid is defined in terms

of η/sT , where T is the temperature [Sch09]. From the above discussions,

therefore, one could see that η/s represents a good measure of fluidity both for

relativistic and non-relativistic fluids.

2.3.1 Importance of (η/s)

The quantity η/s is important in relation to the liquid-gas phase transition

in matter. For several systems, it is observed [Fig. (2.2)] that η/s shows a
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minimum at the transition point. Another crucial importance of η/s comes

from the demonstration of Kovtun, Son, and Starinets [Kov05] that, for certain

supersymmetric gauge theories, the ratio of shear viscosity to entropy density

is given by

η

s
=

~

4πkB

. (2.9)

The authors have also conjectured, from the Heisenberg uncertainty principle,

that this ratio is the lower bound of η/s for all systems. From Eq. (2.7) one

can see that η ∼ ρmv̄λ ∼ ρmv̄2tf ∼ ρEktf, where Ek and tf are the mean

kinetic energy of individual molecules and the mean free time between colli-

sions, respectively. On the other hand, entropy density s ∼ ρkB. Therefore,

η/s ∼ (Ektf)/kB. Since Ektf ≥ ~, η/s ≥ ~/kB. Therefore, from the uncertainty

principle along with Eq. (2.9), it is evident that η/s ≥ ~/4πkB. The fluids

which obey Eq. (2.9) are called perfect fluids.

The conjecture is also supported by another calculation [Kov05, Buc05]

which gives

η

s
=

~

4πkB

[

1 +
135ξ(3)

8(2g2Nc)
3/2

+ .....

]

, (2.10)

where ξ(3) is the Apery’s constant and g2Nc is the ’t Hooft coupling. As can

seen from Fig. (2.3) that η/s approaches the lower bound of ~/4πkB for large

g2Nc.

The conjecture of Kovtun, Son, and Starinets has attracted a lot of theoret-

ical and experimental efforts in different areas of physics [Sch09, Che07, Liu06,

Sch07, Lah07]. People have tried to find out whether there exists a perfect

fluid and whether they follow the KSS conjecture. Although, there are some

theoretical counterexamples [Coh07, Che08, Cre11], no fluid that violates the

KSS conjecture has been found experimentally. Moreover it is observed that
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Figure 2.2: Variation of η/s with temperature (adopted from Ref. [Kov05]).

Figure 2.3: Dependence of the ratio η/s on g2Nc (adopted from Ref. [Kov05]).
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strongly coupled systems such that low-temperature quantum fluids and high-

temperature QGP have very small η/s (∼ 5-10 ~/4πkB) [Sch09] characteristic

of a good fluid.

2.4 η/s for finite nuclear matter

An atomic nucleus is a many-body quantum system in which the constituent

particles, called nucleons, are governed by strong interaction. There is a strong

affinity of the matter produced by ultrarelativistic collisions at RHIC and LHC

and the conventional nuclear matter. The same forces are active in both the

systems and the matter at RHIC and LHC is created due to the interaction of

finite nuclei. A finite nucleus, therefore, is an ideal system to search for near

perfect fluidity in matter as is observed for the matter produced at RHIC and

LHC.

Over the years, people have performed different model-dependent theoreti-

cal calculations for shear viscosity, entropy density, and the ratio of these two

quantities for finite nuclear matter. P. Danielewicz has derived an analytical

relation of shear viscosity for nuclear matter using Uhlenbeck-Uehling equa-

tion [Dan84]. In recent years, various model-dependent calculations of η/s have

been performed. S. Pal has done the calculations for η/s within an extended

statistical multifragmentation model for an equilibrated system of nucleons and

fragments produced in multifragmentation [Pal10]. The calculations show that

the temperature variation of η/s has similar behavior to that of water and a min-

imum, characteristic of a liquid-gas phase transition, is observed. In a series of

papers [Li11, Zho13, Fan14, Zho14, Den16], the group at the Shanghai Institute

of Applied Physics, China has calculated the temperature variation of η/s for an

evolving nucleus using various transport models, namely, Boltzmann-Uheling-
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Uhlenbeck (BUU) model, extended BUU or van der Waals BUU(VdWBUU)

model, isospin dependent Quantum Molecular Dynamic (IQMD) model etc.

These calculations show that η/s values for finite nuclear matter are not very

different from that of the QGP.

2.4.1 Shear viscosity and giant resonances

Viscosity is inherently related to the damping of giant resonances, which is

conceived, macroscopically, as in-phase (isoscalar) and out of phase oscillation

(isovector) of the proton and neutron fluids. It is seen that the ground state

width of the GRs increases with the decrease in mass number of the nucleus.

This suggests that the damping mechanism of the GRs is indeed similar to

that of a viscous fluid where the modulus of decay (τ) (resonance width is

inversely proportional to τ) of the oscillation decreases with the decrease in

system volume [Lam32]. In the hydrodynamic description of giant resonances

proposed by Auerbach and Yeverechyahu [Aue75], the viscosity of nuclear fluids

provides the main mechanism for the damping of the giant states. The viscosity

causes the energy of the collective mode to be dissipated into many noncoherent

(single particle) modes, and thus describes the damping of the waves. In their

model, the authors described the slow motion of neutron and proton fluids using

the linearized Navier-Stokes equations. The application of proper boundary

conditions yields the following equations

1− LjL(KIR)

KIRjL+1(KIR)
=

(L+ 1)jL(hIR)

hIRjL+1(hIR)
, (2.11)

where

K2
I
=

ω2 − iωγ′δI,1
u2

I
+ 4

3
iνω

,

h2
I
= −(iω + γ′δI,1)/ν .

(2.12)

Here L is the multipolarity, KI is the wave number, R is nuclear radius given by

R = R0A
1/3, R0 being 1.2 fm, I is the isospin of excitation (for isovector excita-
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tion I=1 and for isoscalar excitation I=0), uI is the velocity of wave propagation

(for isoscalar excitation u0=0.126c and for isovector excitation u1=0.241c, c be-

ing the velocity of light in free space), ν is the kinematic viscosity related to

shear viscosity by η = ρmν and γ′ is the mutual viscosity as the authors call it.

jL is the spherical Bessel’s function of order L. For a definite multipolarity L

and isospin of excitation I, Eq. (2.11) along with Eq. (2.12) can be solved for

ω. In general, ω is a complex number. The real par of ω (ωr) is related to energy

of the excitation by E = ~ωr and the imaginary part (ωi) is related to the width

by Γ = 2~ωi. It is observed that the width of isoscalar resonances is solely

dependent on ν, while that of isovector resonances is related to both ν and γ′.

The authors of Ref. [Aue75] found ν=0.6×1022 fm2· sec−1 and γ′=0.35×1022

sec−1 by equating the experimental widths of isoscalar giant quadrupole res-

onance (∼ 3 MeV) and isovector giant dipole resonance (∼ 4 MeV) of 208Pb

with the theoretical ones, respectively. ν=0.6×1022 fm2· sec−1 corresponds to

η = ρmν = 1u, where u=10−23 MeV·sec·fm−3 with ρ = ρm/m = 0.16 fm−3.

Recently, Auerbach and Sholomo [Aue09] have extended the earlier work of

Auerbach and Yeverechyahu [Aue75]. The authors have calculated shear viscos-

ity within a generalized Fermi liquid drop model [Aue09, Kol04] by employing a

collision kinetic equation, which properly accounts for the dissipative propaga-

tion of sound waves in finite nuclei. According to this model, for a temperature

T < ǫF and excitation energy ~ω < ǫF of the sound wave, the shear viscosity is

given by

η =
2

5
ρǫF

τcoll
1 + (ωτcoll)2

, (2.13)

where τcoll is the Landau approximation for the collision relaxation time de-
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ducted from the collision integral and is given by

τcoll =
τ0

1 + (~ω/2πT )2
,

τ0 = ~α/T 2 .
(2.14)

The parameter α depends on the in-medium nucleon-nucleon scattering cross

section and for isoscalar and isovector resonances its value is 9.2 and 4.6 MeV,

respectively [Kol04].

In a recent work [Dan11], Dang has proposed a formalism, based on the

Green-Kubo relation and the fluctuation dissipation theorem (FDT) [Kub57,

Kub66], relating the shear viscosity to the width and the energy of giant dipole

resonance (GDR) in hot finite nuclei. A qualitative relation between shear

viscosity and the damping of the GDR can be envisaged by the arguments of

Auerbach and Yeverechyahu [Aue75]. According to the authors viscosity causes

the energy of the GDR to be dissipated in many non-coherent single-particle

states and as pointed out in section 1.3.2, the coupling of the GDR state with

the non-coherent states is responsible for the damping of the GDR. Thus one

can draw a qualitative relation between the damping of the GDR and shear

viscosity at finite temperature.

A quantitative relation between shear viscosity and the GDR parameters

(especially width) is obtained by the FDT and the Green-Kubo relation. The

FDT says the linear response of a given system to an external perturbation is

expressed in terms of fluctuation properties of the system in thermal equilib-

rium. It basically manifests the internal relationship between the systematic

and the random parts of microscopic forces and is realized by making use of

the Green-Kubo formula which is an exact expression of the linear transport

parameter at a given temperature and density in terms of time dependence of

equilibrium fluctuations in the conjugate flux. According to this formula shear
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viscosity at temperature T is related to the shear stress tensor by the following

way

η(T ) = lim
ω→0

1

2ω

∫∫

dt dx eiωt
〈[

Txy(t, x), Txy(0, 0)
]〉

, (2.15)

where the average is carried out within an equilibrium statistical ensemble.

From the FDT it is observed that

η(T ) = lim
ω→0

1

2ωi

[

GA(ω)−GR(ω)
]

,

= lim
ω→0

Im GR(ω)

ω
,

= lim
ω→0

σ(ω, T )

C
,

(2.16)

where GA(ω) and GR(ω) are the advanced and retarded Green functions, respec-

tively, with GR(ω) = −i
∫∫

dt dx eiωt θ(T )
〈[

Txy(t, x), Txy(0, 0)
]〉

, GA(ω) is the

complex conjugate of GR(ω) and C is a constant. It should be mentioned that

Eqs. (2.15) and (2.16) have been utilized to derive the KSS conjecture [Kov05]

where σ(ω, T ) was the graviton absorption cross section. For finite nucleus, the

line shape of GDR is expressed in terms of a Lorentzian cross section given by

σ(ω, T ) = σ′ ΓGDR ω2

[ω2 −E2
GDR

]2 + ω2Γ2
GDR

. (2.17)

Note that the T dependence in σ(ω, T ) comes mainly from the T dependence

of ΓGDR. Here, ΓGDR and EGDR are the width and the energy of the GDR. It

should be mentioned that ω and EGDR have the same unit. Incorporating the

photoabsorption cross section given by Eq. (2.17) in Eq. (2.16), Dang has

obtained the following expression for shear viscosity at finite T

η(T ) = η(0)
ΓGDR(T )

ΓGDR(0)

{

EGDR(0)
2

EGDR(0)2 − [ΓGDR(0)/2]2 + [ΓGDR(T )/2]2

}2

, (2.18)

where η(0) is the shear viscosity at zero temperature. The author has also given

an alternative prescription for η(T ) by incorporating a Breit-Wigner photoab-

sorption cross section given by

σ(ω, T ) = σ′′ ΓGDR/2

[ω − EGDR]2 + [ΓGDR/2]2
. (2.19)
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In this case shear viscosity is given by

η(T ) = η(0)
ΓGDR(T )

ΓGDR(0)

EGDR(0)
2 + [ΓGDR(0)/2]

2

EGDR(T )2 + [ΓGDR(T )/2]2
. (2.20)

The author has compared the outcome of these two prescriptions and observed

that both give nearly the same results. However, in this thesis, the prescription

derived using a Lorentzian cross section has been utilized because the GDR

parameters have been extracted experimentally by incorporating a Lorentzian

photoabsorption cross section in the statistical model calculations (section 4.2).

2.5 Motivation of the present work

As has been mentioned earlier, the conjecture of Kovtun, Son, and Starinets

stimulated a lot of works, both theoretical and experimental, in different ar-

eas of physics in search for perfect fluidity in matter. The results for QGP

and low-temperature quantum fluids show that strongly coupled systems have

very small values of η/s. This motivated Auerbach and Sholomo for their pio-

neering theoretical work regarding the value of η/s for finite nuclear matter in

which the nucleons are governed by strong interaction. The authors showed that

η/s values for heavy and light nuclei were ∼ (4-19) ~/4πkB and ∼ (2.5-12.5)

~/4πkB, respectively. From their results, the authors gave a bold conjecture

that the strong fluidity is a characteristic feature of the strong interaction of

the many-body nuclear systems in general and not just of the state created

in the relativistic collisions. The theoretical work of Dang also resulted in a

similar conclusion. These theoretical results motivated us to carry out a self-

consistent, systematic experimental investigation for the ratio of shear viscosity

to entropy density in finite nuclear matter. The principal objective was to ex-

clusively probe the quantities required for determining η/s. By self-consistent

it is meant that the quantities required for the extraction of shear viscosity were
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determined simultaneously with the quantities required for determining entropy

density and these quantities are inter-related. With these motivations and ob-

jectives, a thorough experimental investigation for η, s, and thus, η/s has been

performed for equilibrated finite nuclear systems from A ∼ 30 to A ∼ 208 at

different temperatures. The shear viscosity has been extracted by utilizing the γ

decay of the isovector giant dipole resonance (prescription of Ref. [Dan11]) and

the entropy density has been evaluated from the nuclear level density parameter

and nuclear temperature, determined precisely by simultaneous measurements

of evaporated neutron energy spectra and the compound nuclear angular mo-

menta. It should be highlighted that this is the first experimental determination

of η/s for finite nuclear matter.
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Isospin Formalism and Isospin
Mixing

3.1 Isospin formalism

The concept of charge symmetry (neutron-neutron and proton-proton forces

are identical) and charge independence (neutron-neutron, proton-proton and

neutron-proton forces are identical) was mathematically formalized by Heisen-

berg by the introduction of isospin quantum number [Hei32]. In this formalism,

the neutron and the proton are considered as two states of the same particle

called nucleon. The mathematical formalism of isospin is similar to that of spin.

The isospin operator î is a set of three operators {̂ix, îy, îz} and acts in the charge

or isospin space. Acting on a state of good isospin having quantum number i

and iz, the operator î
2 and îz reproduce the same states with eigenvalues i(i+1)

and iz, respectively

î2 |i, iz〉 = i(i+ 1) |i, iz〉 ,

îz |i, iz〉 = iz |i, iz〉 .
(3.1)

Like spin, an isospin state with quantum number i can have (2i+1) projections.

For nucleon i = 1/2 and the neutron and proton are the two states of the nucleon
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having projections iz = +1/2 and iz = -1/2, respectively. The isospin analog of

Pauli spin matrix is defined as î3 = 2̂iz. The eigenvalue of î3 ≡ i3 = 2iz.

A nucleus comprises of many nucleons. For such a system, the isospin oper-

ator and its projection are defined as

Î =
∑

j

îj ,

Îz =
∑

j

îjz ,
(3.2)

and the following relations hold

Î2 |I, Iz〉 = I(I + 1) |I, Iz〉 ,

Îz |I, Iz〉 = Iz |I, Iz〉 .
(3.3)

For a nucleus with Z protons and N neutrons, Iz = (N − Z)/2 and it

basically defines the nucleus. Iz can have (2I+1) values from -I to +I for

a given I. These states of the same isospin but with different projections are

called the isobaric analog states (IAS). The state with higher value of Iz is called

parent state, while that with lower value of Iz is called daughter state which

can be obtained by operating the parent state by isospin ladder operator. For

a give Iz i.e. for a given nucleus, the isospin quantum number can have values

from |Iz| to A/2 = (N + Z)/2, where A is the mass number of the nucleus.

It is observed that, apart from a few exceptions such as 34Cl, 42Sc, and 46V,

nuclear interactions favor the lowest possible isospin state as the ground state

of nucleus. The detailed discussions on isospin and related aspects could be

found in Ref. [Wil69].

3.2 Isospin mixing

The charge independence of nuclear force guarantees that, along with space and

spin quantum numbers, each nuclear state can be assigned with isospin (I) and
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its projection (Iz). However, the presence of different electromagnetic interac-

tions e.g. Coulomb force, spin-orbit coupling and the charge-dependent part

of nuclear interaction mixes the pure isospin states [Wil69]. The Coulomb po-

tential has three parts; isoscalar, isovector, and isotensor Coulomb interactions.

The off-diagonal matrix element for isoscalar part vanishes. Therefore, it can-

not connect the states of different isospins. The isotensor part connects isospin

states separated by ∆I=2. The contribution of this part is very small. The most

important isospin violating part is the isovector Coulomb interaction given by

V 1
c = −Ze2/4R

∑

j i
j
3[3− (rj/R)2] inside the nucleus, where R is the nuclear ra-

dius. It conserves the angular momentum and parity and connects the isospin

states separated by ∆I=1. In this thesis, the mixing between I< ≡ |I, I = Iz〉

and I> ≡ |I + 1, I = Iz〉 states will be considered. The symbol α2
< denotes the

fraction of I< state that mixes with I> state and α2
> represents the fraction of

I> state that mixes with I< state.

3.2.1 Expected variation of isospin mixing with excita-

tion energy or temperature

First order perturbation theory gives

α2
> =

∑

I+1

| 〈I + 1, I = Iz|V 1
c |I, I = Iz〉 |2

[EI+1 −EI]2
. (3.4)

As the separation energy ∆I = EI+1 − EI is large at the ground state and

extremely low excited states, isospin mixing is small (∼5% for N=Z= 50) at

these low energies. As excitation energy gradually increases, the states come

closer. However, the states attains intrinsic decay width (Γ↑) which increases

exponentially with the increase in excitation energy. In this case, the generalized

perturbation theory yields [Lev82]

α2
> =

∑

I+1

∣

∣

∣

∣

〈I + 1, I = Iz| V 1
c |I, I = Iz〉

[(EI+1 + iΓ↑
I+1/2)− (EI + iΓ↑

I /2)]

∣

∣

∣

∣

2

. (3.5)
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In the low and intermediate excitation energies one can neglect the intrinsic

width compared to energy spacing the of states. As the spacing decreases with

the increase in excitations, the denominator in Eq. (3.5) decreases resulting

in larger isospin mixing. However, when Γ↑ becomes comparable to the level

spacing, the denominator in Eq. (3.5) becomes important and leads to the

decrease in α2
>. In the statistical region, |I + 1, I = Iz〉 state remains embedded

in a large ensemble of |I, I = Iz〉 states having nearly the same energy. If D be

the average spacing of |I, I = Iz〉 states and v′ be the average matrix element

between |I, I = Iz〉 and |I + 1, I = Iz〉 states, the probability of |I + 1, I = Iz〉

state per unit energy interval of the spectrum at energy E is given by [Boh99a]

PI+1(E) =
1

2π

Γ↓

(EI+1 −E)2 + (Γ↓/2)2
, (3.6)

where EI+1 is the energy of |I + 1, I = Iz〉 state and Γ↓ = 2πv′2/D is the width

of the distribution and is called Coulomb spreading width (to be more specific,

it is the Coulomb spreading width of |I + 1, I = Iz〉 state).

In time dependent picture, if a nucleus is populated in |I + 1, I = Iz〉 state

at t=0, then the amplitude of finding the system in |I + 1, I = Iz〉 state at t=t

is given by

AI+1(t) ∼ exp

[

− i

~
EI+1t−

Γ↓

2~
t

]

. (3.7)

The state, therefore, decays or mixes with |I, I = Iz〉 states with a time scale of

~/Γ↓. However, the state also decays by particle emission with a time scale of

~/Γ↑. Therefore, Wilkinson suggested that, at high excitations, an appropriate

measure of isospin mixing is given by [Wil56]

α2 ∼ Γ↓

Γ↑
. (3.8)

It is observed that Γ↓ does not change much with excitation energy or nuclear

mass [Kuh79, Hrn86]; but Γ↑ increases exponentially with the increase in exci-
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tation energy resulting in decrease in isospin mixing. Physically, the lifetime of

the states becomes so small that they decay before the isospin degree of free-

dom has time to equilibrate and mix. Therefore, isospin mixing is expected

to remain small at lower excitations, increase gradually and attain a maximum

value in the intermediate region and decrease at high excitations.

3.2.2 Calculations of isospin mixing

Due to the importance of isospin mixing in nuclear phenomena as well as in

other fundamental aspects in physics (section 3.2.3), theoretical calculations

have been performed from very early days. People have calculated isospin mix-

ing parameter in the ground state as well as in the excited states in nuclei

utilizing different models. Some of them are briefly discussed below.

In very early days, William M. MacDonald calculated the isospin impurities

in the ground state with the harmonic oscillator wave functions [Mac58]. In

the macroscopic approach, Bohr and Mottelson gave an estimate of the ground

state isospin mixing utilizing spherical hydrodynamic model by taking into ac-

count the polarization effects of isovector monopole modes [Boh99a]. In re-

cent years, microscopic calculations are mainly based on limited single particle

spaces within projected mean field approaches [Dob95, Col95]. Suzuki et al.

have performed a calculation based on Feshbach projection method by con-

necting the spreading width of the isobaric analog state and isospin mixing in

parent nucleus [Suz96]. In this thesis, we will utilize the recent calculation of

Satula et al. [Sat09]. The authors have evaluated ground state isospin mixing,

in a self-consistent non-perturbative way, within the extended mean-field ap-

proach utilizing SLy4 energy density functional (EDF) parameterization. Non-

perturbative means the method fully takes into account long-range polarization

effects associated with the Coulomb force and neutron excess. The prime ad-
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Figure 3.1: Variation of the ground state isospin mixing parameter with mass
number for even-even N = Z nuclei. The plot [square (green) with dashed line] is
devoid of spurious mixing while the same [triangle (blue) with dashed line] is affected
by spurious mixing (adopted from [Sat09]).

vantage of this method is that, it eliminates the spurious mixing that leads to

the suppression of Coulomb induced mixing in N=Z systems [Fig. (3.1)]. The

calculation yields α2
> ∼ 0.7% in the ground state of 32S nucleus.

Harney, Richter and Weidenmuller have developed a quantitative formula-

tion for isospin mixing in compound nuclear reactions by S-matrix formalism

[Hrn86]. The authors have considered the mixing between the states of two

isospin classes (I< ≡ |I, I = Iz〉 and I> ≡ |I + 1, I = Iz〉). Following the ar-

guments of Wilkinson, they have parameterized isospin mixing in terms of the

Coulomb spreading width and the compound nuclear decay width. The fraction

of ≷ states that mixes with ≶ states is given by

α2
≷ =

Γ↓
≷/Γ

↑
≷

1 + Γ↓
≷/Γ

↑
≷ + Γ↓

≶/Γ
↑
≶

, (3.9)
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Figure 3.2: Variation of isospin mixing parameter with temperature in 208Pb ac-
cording to Eq. (3.12). The solid [green] and the dashed [blue] lines correspond to two
different values of constant c that gives a mild temperature dependence of ΓIAS and
ΓM (adopted from [Sag98]).

where Γ↓ and Γ↑ are, respectively, the Coulomb spreading width and statistical

decay width of the respective states. The details of this formalism will be

discussed in section 4.4.2.

In another approach, Sagawa et al. have extended the formalism of Ref.

[Suz96] at finite temperature by taking into account the intrinsic decay width

of the states involved [Sag98]. According to this formalism, the dominant con-

tribution in the spreading width of the isobaric analog states arises owing to

the coupling with three components of the isovector giant monopole resonance

(IVGMR) and it is expressed as

Γ↓
IAS

= −2Im
∑

q

| 〈IAS|H1 |q〉 |2
E∗ − Eq + iΓc(E∗)/2 + iΓM(E∗)/2

, (3.10)

where |IAS〉 and |q〉 are the eigenstates of fully charge independent nuclear
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Hamiltonian. H1 is the isovector part of Coulomb interaction, charge symmetry

breaking as well as the charge independence interactions. Γc and ΓM are the

compound width and the spreading width of I0+1 monopole state, respectively;

I0 = Iz being the isospin projection of parent state. The sum over q mainly

runs over the three components of isospin I − 1, I and I + 1 of the IVGMR in

the daughter nucleus having energies Eq. After some simplifications, Eq. (3.10)

can be written as

Γ↓
IAS

= [Γc(E
∗) + ΓM(E

∗)](I0 + 1)α2
> . (3.11)

Eq. (3.11) can also be written as

α2
> =

1

I0 + 1

Γ↓
IAS

Γc(E∗) + ΓM(E∗)
. (3.12)

ΓIAS and ΓM are nearly temperature independent; but Γc increases exponentially

with temperature resulting in a decrease in isospin mixing with the increase in

temperature. The authors have also prescribed a mild temperature dependence

of Γ↓
IAS and ΓM as Γ↓(T ) = Γ↓(0)[1 + cT ]. Fig. (3.2) shows the calculations of

isospin mixing parameter for 208Pb utilizing this prescription.

In this thesis, we have utilized the prescription of Harney, Richter and Wei-

denmuller to extract isospin mixing in 32S using compound nuclear reactions and

tried to extrapolate it towards zero temperature with the formalism of Sagawa

et al. with several simplifying assumptions.

3.2.3 Importance of isospin mixing

The importance of isospin mixing can be summarized as follows

(a) It gives a measure of the importance of charge symmetry and charge in-

dependence breaking interactions in nuclear phenomena.
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(b) As is observed from Eq. (3.12), isospin mixing parameter is related to the

spreading width of the IAS and the width of the IVGMR. Therefore, one

can have an idea about the width of the IAS or IVGMR knowing all other

quantities in Eq. (3.12). It is observed experimentally that the width of

the IAS is very small which can be attributed to the small value of the

isospin mixing parameter.

(c) The importance for determining isospin mixing mostly lies in its rela-

tion in finding the corrected comparative half-life (Ft) from the measured

ft values of superallowed β decay between nuclear analog states of spin

Jπ = 0+ and isospin I = 1. Here f is the statistical rate function depen-

dent on proton number of daughter nucleus and measured total transition

energy (QEC). The quantity t is the partial half-life for the transition,

which is obtained from the measured half-life (t1/2) of the parent nucleus

corrected for the branching ratio of the transition (R) and the electron

capture fraction (PEC) and is given by t = (1+PEC)t1/2/R. The corrections

in ft values are required to eliminate the effects of radiative processes (ra-

diative corrections) and presence of isospin impurities in the parent and

the daughter states (isospin symmetry-breaking corrections). Hardy and

Towner defined corrected ft value as [Har05a, Har05b, Tow10, Har15]

Ft ≡ ft(1 + δ′
R
)(1 + δNS − δc) =

K

2G2
F
V 2
ud(1 + ∆V

R
)
, (3.13)

where δ′
R
and δNS are the transition dependent part of radiative correction

and ∆V

R
is the transition independent part of radiative correction. δc is

the isospin-symmetry breaking correction defined as M2
F
= (M0

F
)2[1− δc],

M2
F

and (M0
F)

2 being the transition matrix elements in presence and

in absence of isospin mixing, respectively. K is a constant given by

K/(~c)6 = 2π3
~ln2/(mec

2)5 = 8120.2776(9) × 10−10 GeV−4s. GF is
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the weak-interaction constant for pure leptonic muon decay given by

GF/(~c)
3 = 1.1663787(6) × 10−5 GeV−2. Vud is the up-quark to down-

quark transition matrix element in the Cabibbo-Kobayashi-Maskawa (CKM)

Matrix, whose unitarity validates the standard model. The isospin sym-

metry breaking correction δc is related to the isospin mixing parameter by

the following relation [Aur09].

δc = 4(I + 1)
V1

41ξA2/3
α2
> , (3.14)

where V1 = 100 MeV and ξ = 3. From Eqs. (3.13) and (3.14), it is observed

that by calculating the radiative corrections and determining the isospin

mixing parameter, one can deduce Ft and hence Vud. However, to find

Vud one needs isospin mixing parameter at the ground state of nucleus.

Therefore, by finding the isospin mixing in higher temperature, one can

extrapolate it towards zero temperature using some suitable formalism.

For radioactive nuclei, which is not accessible in the ground state, this

provides an important technique to find isospin mixing in zero temperature

[Cer15]. Also, For stable nuclei, this gives an alternative approach to

extract isospin mixing in the ground state.

In this thesis, we will attempt to extrapolate α2
> towards zero temper-

ature from our measured α2
> for 32S at high temperature utilizing the

prescription of Sagawa et al. [Sag98]. It should be explicitly mentioned

that δc depends on the particular states involved in superallowed β decay.

In addition, our measured data is not sensitive enough to draw any par-

ticular conclusion about the unitarity of the CKM matrix. However, the

extracted data will provide some idea about the order of magnitude for

isospin symmetry breaking correction in this mass region.
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3.2.4 Tools for measurement of isospin mixing

In general, isospin mixing can be studied by utilizing the transitions which

would have been forbidden in the absence of isospin mixing. For example,

(a) Electric dipole transition in self-conjugate nuclei [Far03]

(b) Splitting of the IAS studied by β-delayed γ rays [Van13]

(c) Evaporated E1 γ rays from the decay of isovector giant dipole resonance

(IVGDR) in self-conjugate nuclei [Har86].

In this thesis, the γ decay of IVGDR has been utilized to extract the isospin

mixing parameter in 32S at high excitations.

3.3 Isospin selection rule for IVGDR γ ray tran-

sitions

The isovector operator that connects the initial state and the final state to be

populated by the E1 γ decay is given by ÔIV

E (L,M) = −1
2
ê
∑A

k=1 î3kr
L

kYLM(Ωk),

with L = 1 and M = -1, 0 and +1. It is observed that the transition matrix

element Mif between the initial state |νi, Ii, Iz〉 and the final state |νf, If, Iz〉 for

such an operator is non-zero only for ∆I = 0, ±1 [Wil69], ν being the space

and spin quantum numbers. For ∆I = ±1

Mif ∝
[

I2la − I2z
Ila(2Ila − 1)(2Ila + 1)

]1/2

, (3.15)

where Ila is the larger of Ii and If. For ∆I = 0 i.e. Ii = If

Mif ∝
Iz

[

Ii(Ii + 1)(2Ii + 1)

]1/2
. (3.16)
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Therefore, it is obvious from Eq. (3.16) that for a self-conjugate nucleus (N = Z,

Iz=0) the transitions between the states of the same isospin are forbidden. How-

ever, all transitions are allowed in a non-self-conjugate nucleus (N 6= Z, Iz 6=

0). This selection rule is the mainstay for the study of isospin mixing in self-

conjugate nuclei, and, in particular, for 32S in the present case.

3.4 Isospin splitting and Pauli blocking of GDR

strength

Let us consider a nucleus of mass number A and isospin projection Iz. As

mentioned earlier, the isospin quantum number for this nucleus can have values

from I = |Iz| to I = A/2. In this thesis, we will consider only the states of

isospin I = |Iz|, I = |Iz|+1 and I = |Iz|+2. The strength function of the GDR

built on the state |ν, I, I = Iz〉 gets splitted into two components with isospin

I and I + 1 [Fal70, Aky71] [Fig. (3.3a)]. The splitting occurs owing to the

competition between the symmetry energy and the difference in particle-hole

interactions. Symmetry energy tends to move the states with higher isospin to

higher energies while the latter tries to drag it to lower energies. The size of

the energy splitting has been calculated by Akyuz [Aky71] and is given by

EI+1 −EI =
UD

A
(I + 1) ,

ED =
1

I + 1
EI+1 +

I

I + 1
EI ,

(3.17)

where EI and EI+1 are the centroid energies of the GDR component with

isospin I and I +1; UD = 60 MeV is the symmetry energy for dipole states and

ED is average energy of the total strength function (can be approximated by

Eq. (1.6). The strength distributions of the two components are given by the

isospin Clebsch-Gordan coefficients multiplied by an additional factor arising

from Pauli blocking of configurations reached by 1p1h excitations and could be

40



Chapter 3. Isospin Formalism and Isospin Mixing

SI
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Figure 3.3: Schematic representation of isospin splitting of the GDR built on (a)
|I, I = Iz〉 (b) |I + 1, I = Iz〉 states of the nucleus having isospin projection Iz.

expressed as follows [Fal70, Beh91]

SI =
I

I + 1
(1 +

p1
I
) , (3.18)

SI+1 =
1

I + 1
(1− p1) , (3.19)

where p1 = 1.5IA−2/3 is the correction for Pauli blocking. Vergados extended

this formalism to GDR built on excited states of nuclei [Ver75]. The GDR built

on the state |ν, I + 1, I = Iz〉 is splitted into three components with isospins I,

I + 1 and I + 2 [Fig. (3.3b)]. The centroid energies of these components obey

the following relations

EI′′ − EI′ =
UD

A

[

I ′′(I ′′ + 1)− I ′(I ′ + 1)
]

. (3.20)

The strength distributions of the GDR components are given by [Ver75,
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Beh91]

SI =
2I + 1

(I + 1)(2I + 3)

[

1 +
p2(I + 2)

I + 1

]

, (3.21)

SI+1 =
I2

(I + 1)(I + 2)

[

1 +
p2

I + 1

]

, (3.22)

SI+2 =
4(I + 1)

(I + 2)(2I + 3)

[

1− p2

]

, (3.23)

where p2 = 1.5(I + 1)A−2/3 is the correction for Pauli blocking. From

equations 3.18, 3.19, 3.21 to 3.23 it is obvious that for I = Iz ≫ 0, ∆I =

0 transition carries most of the strength and it remains completely absent

in self-conjugate nuclei (I = Iz = 0). These effects of isospin have indeed

been observed experimentally in light and medium non-self-conjugate nuclei

[Die71, Pau71, Pyw79, Bow82] and included in the statistical model calcula-

tions by Harakeh and Behr for analysis of the GDR built on the excited states

of nucleus [Har86, Beh91, Beh93].

3.5 Previous experimental works and motiva-

tion for the present work

The pioneering work of isospin mixing utilizing the γ decay of the IVGDR was

performed by Harakeh et al. [Har86]. The authors modified the usual statistical

model code cascade [Pul77] to perform the calculations with good isospin and

parity quantum numbers. Isospin dependent level densities were calculated and

the transmission coefficients for both particle and γ decay were multiplied by

proper Clebsch-Gordan coefficients (section 4.4). The mixing was done in level

densities as follows

ρ̃< = (1− α2)ρ< + α2ρ> ,

ρ̃> = (1− α2)ρ> + α2ρ< ,
(3.24)
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where ρ and ρ̃ are the pure and mixed level densities and α2 is the isospin

mixing parameter given by α2 = a + bE∗, where E∗ is the excitation energy,

a and b are free parameters determined from the experimental data. Utilizing

this formalism the authors extracted α2 = 3.2% for 28Si at E∗ = 34 MeV. Later,

Behr et al. [Beh93] modified the mixing formalism. Instead of mixing the level

densities, the authors mixed the population matrix according to the formalism of

Ref. [Hrn86] (section 4.4.2) where the isospin mixing parameter was calculated

by using Eq. (3.9). The authors showed, by inclusive γ ray measurements, that

for 28Si, isospin gradually becomes a good quantum number as excitation energy

increases. However, though with large errors, opposite result was found for 26Al.

Kicinska-Habior and collaborators at Warsaw university, Poland have performed

some measurements [Hab04, Hab05, Woj06, Woj07] and showed that isospin

mixing increases with the increase in the mass number and the atomic number.

However, as isospin mixing depends on both temperature and atomic number,

one should vary only one parameter at a time. Recently, Corsi [Cor11] and

Ceruti [Cer15] have performed interesting works regarding the isospin mixing

in 80Zr. They concluded that the Coulomb spreading width, in fact, remains

constant with temperature and isospin mixing decreases with the increase in

temperature. The result matches well with the calculation of Sagawa et al.

[Sag98]; also when extrapolated to zero temperature, the result agrees quite well

with the recent calculation of Satula et al. [Sat09] (section 3.2.2). However, at

lower mass regions the measured isospin mixing values seem to be a bit higher

at higher temperatures [Hab05]. It could also be mentioned here that in all the

measurements which applied the formalism of Ref. [Beh93] to extract isospin

mixing, heavy ion fusion reaction was used to ensure the statistical nature of

the evaporated γ rays. However, in such reactions the compound nuclei are

populated at higher angular momenta which in turn affect the high energy γ
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ray spectrum [Bra95], particularly at lower mass regions where different exotic

nuclear shapes arise owing to large angular momentum [Maj04, Bre07, Dee10a].

It should also be pointed out that in all the previous measurements in lower

mass regions, nuclear level density parameter, which is vital for statistical model

calculations as well as for precise determination of nuclear temperature, was not

measured.

Exclusive experiments were, therefore, performed to measure the isospin

mixing in 32S for which only one measurement exists at 58.3 MeV [Hab04]. The

primal objectives were to a) populate the compound nucleus with light-ion-

induced fusion reaction to minimize the angular momentum effect, b) precisely

measure the angular momentum populated by measuring the low energy γ ray

multiplicity, c) measure the crucial NLD parameter, for the first time in this

context, by measuring the evaporated neutron energy spectrum, d) determine

the exact temperature by simultaneous measurement of angular momentum and

NLD parameter, e) compare our result with the calculations of Ref. [Sag98] and

attempt to extrapolate the result towards zero temperature.
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Statistical Model Calculations

When a target nucleus is bombarded with a low energy projectile, an excited

compound nucleus (CN) is formed. This process conserves the total energy,

angular momentum, parity and to some extent the isospin. At these excitation

energies, the CN has a large number of available states and it equilibrates in

shape, spin and thermal degrees of freedom before decaying into various exit

channels. The statistical model calculation, therefore, is an appropriate as well

as necessary tool to interpret the experimental data. The principal assumption

of this model is that the decay of the CN is independent of its formation process

i.e. the CN completely forgets the memory of the entrance channel. The cross

section of the i-th exit channel, therefore, is given by

σi = σCN

Γi

Γ↑
(4.1)

where σCN is the compound nuclear formation cross section or fusion cross sec-

tion, Γi is the width of the i-th exit channel and Γ↑ is the total decay width of

the compound nuclear state. These quantities are calculated by using a mod-

ified version of the statistical model code cascade originally developed by F.

Puhlhofer [Pul77] based on the standard Hauser-Feshbach formalism.
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4.1 Compound nucleus formation

Let us consider a fixed target nucleus (spin, parity, mass JT, πT and MT, respec-

tively) being bombarded by a projectile (spin, parity and mass JP, πP and MP,

respectively) of energy Ebeam. The compound nucleus is formed with a definite

initial excitation energy given by E∗ = Q + {MT/(MT + MP)}Ebeam, Q being

the Q-value of the reaction but with a broad range of angular momentum. The

partial cross section σ(J, π) for the formation of a compound nucleus with spin

J and parity π is given by

σ(J, π) =
λ2

4π

(2J + 1)

(2JP + 1)(2JT + 1)

S=JP+JT
∑

S=|JP−JT|

L=J+S
∑

L=|J−S|

TL(Ebeam) (4.2)

where λ = h/
√
2µEcm is the wavelength of the projectile in centre of mass

frame. µ is reduced mass of the target and the projectile and Ecm = {MT/(MP+

MT)}Ebeam is the available energy in the centre of mass frame. TL(Ebeam) is the

transmission coefficient at radial angular momentum L and energy Ebeam. The

sum over L is restricted by the parity conservation relation π = πPπT(−1)L. In

strong absorption model TL is given by

TL(Ebeam) =
1

1 + exp[{L− L0(Ebeam)}/d]
(4.3)

where d is the diffuseness parameter. The parameter L0(Ebeam) is chosen so as

to reproduce experimentally determined total fusion cross section σCN(E
∗) =

∑

J,π σ(J, π). It should be highlighted here that, due to experimental data ac-

quisition conditions, a part of σ(J, π) was selected in the actual experiments

performed in the present thesis. This was simulated with the actual experi-

mental conditions (section 5.3.1) and was incorporated in the cascade code

(instead of calculating it within the cascade code).

46



Chapter 4. Statistical Model Calculations

E*

σ(J,π)

p

n

n

α

α

γ

J

n

n

p

γ

Figure 4.1: Schematic diagram for the decay of compound nucleus.

4.2 Compound nucleus decay

Once a compound nucleus is formed, it equilibrates in shape, thermal and spin

degrees of freedom. This equilibrated nucleus then decays into different exit

channels depending on the compound nuclear state. In this thesis, the decay

of four particles namely neutron, proton, alpha and γ has been considered.

Fig. (4.1) schematically shows the compound nuclear decay process. The decay

width of any exit channel is determined, by the reciprocity theorem, from the

absorption cross section in the inverse channel. The decay width of a particle

x with energy Ex and spin Sx is given by

(

dΓx

dEx

)

Ji

=
1

2π

ρf(Ef, Jf)

ρi(Ei, Ji)

S=Jf+Sx
∑

S=|Jf−Sx|

L=Ji+S
∑

L=|Ji−S|

T x
L
(Ex) (4.4)

where ρf(Ef, Jf) and ρi(Ei, Ji) are the level densities of the daughter and the

mother states with energy and spin Ef, Jf and Ei, Ji, respectively. The energy
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of the emitted particle is related to Ei and Ef by Ex = Ei − Ef − Bx, Bx being

the separation energy of particle x. T x
L
is the transmission coefficient of x in

the potential of the daughter nucleus. This is a crucial input in the cascade

code and calculated by solving the Schroedinger equation with the optical model

potential. In this thesis, the optical model parameters of Becchetti and Green-

lees [Bec69] were used for neutron and proton, while for α, the parameters of

Mcfadden and Satchler [Mcf66] were utilized.

The γ decay width has been calculated using the reciprocity theorem and

the Brink-Axel hypothesis [Bri55, Axe62] which states that the GDR can be

built on each and every state of atomic nuclei. For E1 (GDR) γ transition from

an initial state Ei, Ji to a final state Ef, Jf, the decay width is given by

(

dΓγ

dEγ

)

Ji

=

Jf=Ji+1
∑

Jf=Ji−1

ρf(Ef, Jf)

ρi(Ei, Ji)

σabs(Eγ)

3

E2
γ

(π~c)2
(4.5)

where Eγ = Ei − Ef and σabs(Eγ) is the photo absorption cross section for a

state at excitation energy Ef and spin Jf. σabs(Eγ) usually taken as a Lorentzian

given by

σabs(Eγ) =
4πe2~

mpc

NZ

A

SGDRΓGDRE
2
γ

(E2
γ − E2

GDR
)2 + Γ2

GDR
E2

γ

(4.6)

where mp is the proton mass, SGDR, ΓGDR, and EGDR are the strength, the width

and the peak energy of the resonance, respectively. These are given as input

for the compound nucleus in the cascade code. For other nuclei in the decay

cascade, EGDR is scaled by using the prescription of Berman and Fultz which

gives EGDR = 31.2/A1/3 + 20.6/A1/6 [Ber75].

The E2 (Giant quadrupole resonance) emission is also included in the cas-

cade code. However, the contribution of GQR is negligibly small in the region

of interest.
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4.3 Nuclear level density

The most crucial ingredient in the statistical model calculations is nuclear level

density (NLD). The decay widths of different exit channels depend significantly

on the NLD. Therefore, incorporation of proper NLD over a wide range of

excitations is crucial for correct interpretation of experimental results. The

fundamental method to calculate the NLD is to determine the number of dif-

ferent ways in which individual nucleons can be placed in various single particle

orbitals such that the excitation energy lies in the range E∗ and E∗+dE∗. Thus

the physics, in the determination of NLD, is contained in calculation procedure

of the single particle states.

The simplest possible single particle level distribution is that of equally

spaced levels [Boh99]. However, from the neutron resonance data it is observed

that

(a) In the vicinity of the closed shells, the experimental level spacings are

considerably larger than between shells.

(b) There are odd-even fluctuations in the density of states if one uses the

actual excitation energies i.e. the neutron binding energies as the reference

energies.

To take into account these effects many authors have independently developed

semiempirical prescriptions for the calculation of NLD [Ign75, Kat78, Rei81,

Sch82]. The nuclear level density, at angular momentum J and both parity

together, as a function of excitation energy is given by

ρ(E∗, J) =
2J + 1

12Θ′3/2

√
a
exp(2

√
aU)

U2
(4.7)

where Θ′ = Θ(1 + δ1J
2 + δ2J

4) is deformable liquid drop moment of inertia;

Θ = 2Ir/~
2, Ir = 2/5MR2 is the rigid body moment of inertia and δ1, δ2 are the
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deformability coefficients. U = E∗−∆P−J(J+1)/Θ′2 is the intrinsic excitation

energy, ∆P being the pairing energy. a is the nuclear level density parameter

which is proportional to the single particle density of states at the Fermi surface.

According to the prescription of Ignatyuk and Reisdorf [Ign75, Rei81] the NLD

parameter a is given by

a = ã(A)ash

ash = 1 +
∆S

U
{1− exp(−γU)}

(4.8)

where ã is the smooth or the liquid drop part and ash is the shell correction

part of the NLD parameter. γ is the shell damping factor which determines

the rate of shell effect depletion with excitation energy. The ground state shell

correction ∆S is calculated from the relation

∆P +∆S = Mexp −Mld (4.9)

Mexp andMld being the experimental and liquid drop mass of nucleus. Ignatyuk

et al. assumed ã = α+ βA [Ign75] while Reisdorf calculated ã from the density

of eigenmodes in a deformed cavity with realistic boundary conditions [Rei81].

The calculations yield

ã = avr
3
0A+ asr

2
0A

2
3BS + akr0A

1
3BK (4.10)

where av, as and ak are 0.04543 MeV−1fm−3, 0.1355 MeV−1fm−2 and 0.1426

MeV−1fm−1, respectively. Reisdorf assumed ∆P = p/
√
A. From neutron reso-

nance data for nuclei with A = 100-253 the parameters r0, p and γ were found

to be 1.153 fm, 10.5 MeV and 0.054 MeV−1, respectively. BS and BK are the

surface and curvature terms in the liquid drop model. The parameter ã is

sometimes denoted by ã = A/K, where K is called inverse level density param-

eter and is determined experimentally from evaporated neutron energy spectra

[Kau12, Pra13, Pra16].
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In this thesis, ã is determined from the measured neutron energy spectra

which are then utilized for the analysis of high energy γ ray spectra. Also,

following Kicinska-Habior [Hab90], who tested this level density prescription for

light masses, as and ak were taken as 0.1246 MeV−1fm−2 and 0.1523 MeV−1fm−1,

respectively, which are slightly different from the original values obtained by

Reisdorf from neutron resonance data in heavier masses. Also the values of BS

and BK are assumed to be unity.

4.4 Isospin and parity in statistical model cal-

culations

Isospin and parity quantum numbers were incorporated in the standard sta-

tistical model code cascade [Pul77] originally by Harakeh [Har86]; and later

it was modified by Behr [Beh91, Beh93]. In this version of cascade code,

apart from energy (E) and angular momentum (J), population cross section

matrices and level densities were assigned with definite isospin (I) and parity

(π) quantum numbers. Two lowest possible isospin states I< ≡ |I, I = Iz〉 and

I> ≡ |I + 1, I = Iz〉 were considered in each nucleus. To calculate the decay

widths Eqs. (4.4) and (4.5) were multiplied by proper Clebsch-Gordan Coeffi-

cients. Also the effect of isospin splitting and strength distribution (described

in section 3.4) for E1 γ transitions were properly taken care of. As far as parity

is concerned, it is not so important at high excitations as roughly both positive

and negative parity states are populated equally. Also, it was assumed that the

level densities are equally divided between both parity states. Consequently,

the inclusion of parity does not affect the emission of GDR γ rays which are

emitted from the initial steps of compound nuclear decay.
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4.4.1 Isospin dependence of nuclear level density

Eq. (4.7) does not involve the isospin quantum number. It refers to the total

level density at energy E∗ and angular momentum J . The level density of a state

|I, I = Iz〉 in the parent nucleus is calculated by subtracting the level density

of the isobaric analog nucleus from that of the parent nucleus. The NLD of the

isobaric analog nucleus is calculated by using Eq. (4.7) with a proper shift in

the excitation energy. For example, The level densities of |0, I = Iz = 0〉 and

|1, I = Iz = 0〉 states in 32S are calculated as follows

ρ32S(E
∗, J, I = 0) = ρ32S(E

∗, J)− ρ32P(E
∗ − EIAS,I=1, J)

ρ32S(E
∗, J, I = 1) = ρ32P(E

∗ − EIAS, I=1, J)− ρ32Si(E
∗ −EIAS,I=2, J)

(4.11)

where EIAS,I is the energy of the isobaric analog state of isospin I. In the

cascade code it is calculated as

EIAS = M(ZIAS)−M(Z) + ∆Ec − (mn −mp) for N > Z

EIAS = M(ZIAS)−M(Z)−∆Ec + (mn −mp) for N < Z
(4.12)

ZIAS is the proton number of the analog nucleus. For N > Z, ZIAS = Z − 1,

NIAS = N +1 and for N < Z, ZIAS = Z +1, NIAS = N − 1. ∆Ec is the Coulomb

displacement energy and is given by [Wil69] (in keV unit)

∆Ec =1539
Z

A1/3
− 3230

Z

A
+ 3600

Z

A4/3
− 783

[

Z

A

]1/3

+ 530

[

Z

A2

]1/3

− 17
Z

A2/3

[

Z − A

3 + 0.022484 A2/3

]

+ 60

(4.13)

where Z = Z< + 0.5, Z< being the minimum of Z and ZIAS. For 32S, ∆Ec =

5.9 MeV, EIAS, I=1=6.8 MeV, EIAS, I=2=11.8 MeV and ρ(I = 1)/ρ(I = 0) ∼ 1/3

at initial excitation energy ∼ 40 MeV.

4.4.2 Isospin mixing in the statistical model calculations

In the version of the cascade code used in this thesis, population cross sec-

tion was mixed before decay into different exit channels. The mixing was
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formalized according to the prescription of Harney, Richter and Weidenmuller

[Hrn86]. The authors considered isospin mixing in compound nuclear reaction

by Coulomb force using the S-matrix formalism. As Coulomb force conserve

angular momentum and parity, mixing between the states I< = |I, I = Iz〉 and

I> = |I + 1, I = Iz〉 of same spin and parity was considered. The Coulomb

spreading widths at a given energy and angular momentum are given by

Γ↓
< = 2π|〈I>|Vc |I<〉|2ρ(I>)

Γ↓
> = 2π|〈I<|Vc |I>〉|2ρ(I<)

(4.14)

As the matrix elements in Eq. (4.14) are roughly the same, it is obvious that

Γ↓
<

Γ↓
>

=
ρ(I>)

ρ(I<)
(4.15)

The fractions of ≷ states that goes to the ≶ states by virtue of isospin mixing

are given by

α2
≷ =

Γ↓
≷/Γ

↑
≷

1 + Γ↓
≷/Γ

↑
≷ + Γ↓

≶/Γ
↑
≶

(4.16)

where Γ↑ is the statistical decay width of the respective states. The mixed

population cross sections are obtained from the cross sections of pure isospin

states as follows

σ̃< = (1− α2
<)σ< + α2

>σ>

σ̃> = (1− α2
>)σ> + α2

<σ<

(4.17)

where σ and σ̃ are the pure and mixed population cross sections of the respective

states.

For the nuclei considered in this thesis, only I< states are populated in

the initial compound nucleus if it is assumed that isospin is conserved. The

calculations are started, therefore, using σ< 6= 0 and σ> = 0. Only Γ↓
> is given

as an input parameter and Γ↓
< is calculated by using Eq. (4.15). Once the decay
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widths are calculated within the cascade code, α2
≷ and σ̃≷ are calculated from

Eqs. (4.16) and (4.17), respectively. The cross sections of the exit channels are

then determined using these mixed population cross sections. These steps are

followed at each and every step in the decay cascade.
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Experimental Details and
Simulation Studies

This thesis deals with experimental determination of

(a) η/s for finite nuclear matter at four different mass regions (31P, 97Tc,

119Sb, 201Tl) [Deb17].

(b) Isospin mixing at high temperature in 32S [Deb16].

In both the studies, the quantities that have been measured are the high-energy

γ rays from the decay of IVGDR, evaporated neutron energy spectrum and an-

gular momentum of the compound nucleus (CN). Therefore, the experimental

set-up, detector systems, data acquisition electronics and data reduction tech-

niques were the same in both the cases. The high-energy γ ray spectra were

measured using a LargeAreaModular BaF2 Detector Array (LAMBDA) spec-

trometer [Sup07]. The CN angular momenta were determined by measuring the

low-energy γ ray multiplicity with a Gamma Multiplicity filter [Dee10], while

the evaporated neutron energy spectra were measured by using a Neutron Time

of Flight (TOF) detector [Kau07, Kau09]. In this chapter the details of these

detector systems and associated electronics, simulations studies, data reduction

techniques are discussed.
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5.1 High-energy γ ray detectors

The cross section of high-energy γ rays from the decay of IVGDR is 10−3-10−4

times smaller than the particle (neutron, proton etc.) decay cross sections.

Therefore, the detector systems used for the measurement of high-energy γ

rays should have large efficiency. The high-energy γ rays interact with the

detector material by pair production mechanism (γ → e+ − e−) and produce

electromagnetic (EM) shower. The cross section of this process is proportional

to Z2, where Z is the proton number of the detector material. The high-energy γ

ray detectors, thus, should be made of high Z material and should be sufficiently

large to contain the EM shower within its volume. Another important quality of

these detectors is the high rejection capability of neutrons which are the major

source of background in the measurement of high-energy γ rays. The neutrons

are mainly removed by TOF technique. The γ-ray detectors, therefore, should

have good time resolution so that the neutrons can be rejected even when the

detector is placed close enough to the target thereby increasing its geometrical

efficiency.

The inorganic scintillators fulfill most of the above requirements and thus

are considered to be the best detector material for high-energy γ ray detection.

The best suited and cost effective inorganic scintillator is BaF2 whose detection

efficiency is high owing to large density (4.89 gm/cm3). The scintillation light

output of BaF2 material consists of two parts namely a fast component (decay

time ∼ 600 ps) peaking at λ ∼ 220 nm and a slow component (decay time ∼

630 ns) peaking at a larger wavelength λ ∼ 320 nm. The intensity ratio of the

fast component to the slow component is of ∼ 1:4. The fast component provides

the time information, while the second component gives the energy information.

Owing to the smaller decay time and high reproducibility of the fast component,
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the time resolution of BaF2 scintillators is few hundred picoseconds. In addition,

the radiation length and Molliere radius are 2.05 cm and 3.39 cm, respectively,

resulting in smaller longitudinal and transverse spread and effective confinement

of EM shower. However, the disadvantage of BaF2 is small scintillation efficiency

(∼ 10000 photons are produced per MeV of incident γ radiation) resulting in

poor energy resolution. Also, the temperature dependence of light output leads

to gain instability necessitating frequent calibration and maintenance of steady

temperature during experiment. Apart from that, there is intrinsic α-activity

due to radium impurities, which are always present in BaF2 crystals.

Another inorganic scintillator material that is often used for high-energy

γ ray measurement is NaI(Tl). Due to large scintillation efficiency (∼ 40000

photons are produced per MeV of incident γ radiation), its energy resolution

is better than that of BaF2. Also, its efficiency is comparable to that of BaF2.

However, the time resolution of NaI(Tl) is much worse than that of BaF2. Apart

from that, NaI(Tl) is hygroscopic and difficult to handle. Its thermal neutron

capture cross section is also large making it inferior to BaF2.

In recent years, another inorganic scintillator LaBr3(Ce) has gained much

popularity in studying γ-ray spectroscopy. Due to large atomic number and

high density (5.1 gm/cm3) its detection efficiency is better than that of BaF2

and NaI(Tl). Its energy resolution is also better (∼ 60000 photons are produced

per MeV of incident γ radiation) and time resolution is comparable to that of

BaF2. However, main disadvantage of this scintillator is that it is difficult to

grow in large volume and is very costly. The material is very hygroscopic and

non-linearity is observed at high energies.

At the Variable Energy Cyclotron Centre (VECC), Kolkata, two sophisti-
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cated detector systems, namely, the LAMBDA spectrometer and the Multiplic-

ity filter have been developed with BaF2 scintillators. In the following sections

these detector systems are described in detail.

5.2 The LAMBDA spectrometer

The LAMBDA spectrometer [Sup07] consists of 162 BaF2 scintillator detectors

each having a length of 35 cm and cross sectional area of 3.5×3.5 cm2. The

prime advantages of the array are

(a) large γ-ray detection efficiency and fast timing response.

(b) high granularity which reduces γ − γ and γ − n pile-up events.

(c) modularity i.e. the array can be arranged in different matrix configura-

tions (5×5, 7×7, 9×9) depending on the experimental requirements.

Figure 5.1: Schematic diagram of the LAMBDA spectrometer arranged in three
7×7 matrix.

In this thesis, a part of the LAMBDA spectrometer arranged in a 7×7 matrix

was utilized [Fig. 5.1].
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5.2.1 Fabrication and properties of individual detectors

The detector elements were fabricated from bare BaF2 crystals using standard

procedure. The crystals were properly cleaned with dehydrated ethyl alcohol

and wrapped with 8-10 layers of 10 µm thick white teflon (C2H4) cloth which is

a good UV reflector (since BaF2 emits scintillation light in UV region). Teflon

also acts like a diffused reflector which minimizes the non-uniformity of large

detector elements. 3-4 layers of aluminium foil of thickness 10 µm were used for

efficient light collection and block the surrounding lights from entering into the

detector. Fast UV sensitive photomultiplier tubes (29 mm diameter, Phillips

XP2978) were coupled with the crystals with a highly viscous UV transmitting

optical greese (Basylone). The coupled systems were then wrapped with light

tight black tape. Specially designed aluminium collars were used around the

coupling area to provide additional support. The whole assembly was then

covered with heat shrinkable PVC tube.

The non-uniformity of individual detector elements was checked with 137Cs

source and was found to less than 5%. The energy resolution (R = ∆E/E)

of the detectors was studied with laboratory standard sources such as 137Cs,

22Na, 241Am-9Be. It was observed that R ∼ 16/
√
E(%), where E is in units

of MeV. The time resolution between two BaF2 detectors was measured with

60Co source keeping the two detectors 180◦ apart. The energy gated (1.0-1.4

MeV) time resolution was found to be 960 ps [Sup07]. The α impurities were

determined using pulse shape discrimination technique and the measured value

was 0.3 counts/sec/cm3.

5.2.2 Calibration of the LAMBDA spectrometer

Each detector element of the LAMBDA array was calibrated using the γ radi-

ation from laboratory standard sources (22Na, 241Am-9Be) and minimum ion-
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izing cosmic muon backgrounds. The sources give the low energy part of the

calibration curve, while the high-energy part is obtained from cosmic muon

backgrounds. In Figs. (5.2a) and (5.2b) the measured γ-ray spectrum of 22Na

(0.511, 1.274 MeV) and 241Am-9Be (4.43 MeV) are shown, respectively. Due to

high granularity of the array the probability of full energy deposition in a single

detector for 4.43 MeV γ rays is rather small and they leak into the neighboring

detectors. Therefore, to get the full energy deposition in a single detector data

was analyzed in no leak condition i.e. only those events were selected for which

only one detector in the whole array fired at a time. The minimum ionizing cos-

mic muons deposit 6.6 MeV of energy per centimeter in BaF2 material. When
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Figure 5.2: Energy spectrum of (a) 22Na (b) 241Am-9Be (c) minimum ionizing cosmic
muon backgrounds. The green and blue solid lines in Fig. (b) are 241Am-9Be spectra
with leak and no leak conditions, respectively. The red line in Fig. (c) represents the
landau fit to the experimental cosmic muon spectrum (green solid line).

a muon passes vertically through the array, it deposits 23.1 MeV of energy in

each detector element (3.5 cm width) of the array. In offline analysis the cosmic

spectrum in each detector element was generated when all detectors in a vertical

column fired simultaneously. The typical form of muon spectrum is of Landau

shape and the peak was obtained by fitting the experimental spectrum with

the Landau function. Fig. (5.2c) shows a typical cosmic muon spectrum fitted
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Figure 5.3: A typical energy calibration curve of a detector element of the LAMBDA
spectrometer. The green solid circles are the experimental points and the red solid
line is the best fitted straight line.

with the Landau function. In this process the whole array can be calibrated in

a short time. A typical calibration curve is shown in Fig. (5.3). As can be seen

that the detector remains linear at least up to 23.1 MeV energy. During the

experiment, the gain of the array was frequently monitored and calibration was

performed once in 30-36 hours.

5.2.3 Response of the LAMBDA spectrometer

The response function of a detector is crucial for proper interpretation of the

experimental data, specially when one is dealing with γ rays. In the present

thesis, the response of the LAMBDA spectrometer was simulated using Monte

Carlo geant4 simulation package [Ago03] with nearly exact experimental ge-

ometry and conditions. The response was then folded with the statistical model

(cascade) calculations to compare it with experimental data for extraction of
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Figure 5.4: Geometry of the LAMBDA array used in the experiments. The grey
cover is the passive lead shield. The left panel is the cross sectional view and the
right panel shows the three dimensional view.

desired quantities. The array was placed at a distance of 50 cm from the target

position. The geometry was constructed by properly taking into account the

BaF2 and other wrapping materials, passive lead shield, target chamber etc.

The γ rays of energies 0-40 MeV were thrown uniformly in 0.25 MeV interval

from the target and tracked through the detector material with proper physics

processes (pair production, photoelectric effect, Compton scattering, multiple

scattering, ionization, bremsstrahlung etc.) through which the γ rays and other

secondary particles (electron) interact with detector materials and deposit their

energies. Owing to the high granularity of the array, the high-energy γ rays leak

into different detectors. Various methods were tested for event reconstruction

and the nearest neighbor cluster summing (section 5.6.4) was found to be the

most efficient technique. The response functions of the LAMBDA spectrometer

for different energies are shown in Fig. (5.5). It should be mentioned that re-

sponse of the PM tubes was not considered in the present thesis. The response

functions for different energies were saved in 160×160 matrix and folded with

the cascade spectrum (interpolated in 0.25 MeV bin as cascade gives spec-
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Figure 5.5: Simulated response function of the LAMBDA spectrometer for different
incident γ-ray energies.

trum in 1.0 MeV bin) before comparing it with the experimentally measured

spectra.

5.3 Multiplicity filter

In fusion reaction, the compound nucleus (CN) is populated at a well defined ini-

tial excitation energy but with a broad range of angular momentum [Fig. (4.1)].

At the initial stages of decay, evaporated particles and high-energy (GDR) γ

rays mainly removes excitation energy and a little angular momentum. Below

the particle threshold energy (∼ 8 MeV above the yrast line), energy is removed

by statistical E1 γ rays. When excitation energy comes down near the yrast

line, the angular momentum is removed by stretched E2 γ rays [Fig. (4.1)].

Thus, one can have an idea about the populated CN angular momentum by

measuring the γ-ray multiplicity. Experimentally the γ-ray multiplicity is de-
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termined by an array of detectors placed close to the target. However,because

of the detector efficiency and solid angle coverage, one cannot measure the exact

number of emitted γ rays. What one measures is the number of detector fired

(fold) in each event. From this fold distribution, one can find the multiplicity

distribution and angular momentum distribution.

Figure 5.6: 50 element multiplicity filter divided in two blocks with 25 elements
each and arranged in 5×5 matrix.

At VECC, Kolkata, a 50 element multiplicity filter has been designed and

developed with BaF2 scintillator [Dee10]. Fig. (5.6) shows the multiplicity filter

divided into two blocks of 25 detectors each. During the experiment, the blocks

are placed on the top and the bottom of the target chamber. Each detector

is 5 cm long and has a cross sectional area of 3.5×3.5 cm2. The fabrication

procedure was the same as that used for LAMBDA spectrometer (section 5.2.1).

The energy resolution of the detector is ∼ 7% at 1.17 MeV and the energy

gated (1.0-1.4 MeV) time resolution, studied with a 60Co source, between two

multiplicity detector elements is ∼ 450 ps. The cross talk probability of the filter

was checked with different laboratory standard sources at different thresholds.
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For example, the cross talk probability is ∼ 5% for 662 kV γ rays at a threshold

of 300 keV.

5.3.1 Mapping of fold distribution into angular momen-

tum space

The angular momentum distributions were obtained by matching the exper-

imentally measured fold distributions with the simulated ones [Fig. (5.8a)]

obtained utilizing a realistic technique [Dee10]. The experimental fold distri-

butions were obtained, in offline analysis, by gating with high-energy γ ray

spectra (> 10 MeV) so as to get rid of the non-fusion events. The simulations

were performed using the Monte Carlo geant4 simulation package (Originally

the simulations were done using Monte Carlo geant3 code [Bru86] and later it

was upgraded to geant4). Two blocks of the multiplicity filter were placed on

the top and the bottom of the target chamber at a distance of 5 cm from the

target. Each block was arranged in a staggered castle type geometry to equalize

Figure 5.7: Geometry of the multiplicity filter used in the experiments. The left
panel is the cross sectional view and the right panel shows the three dimensional view.

the solid angle of each detector element. In each event, the γ-ray multiplicity
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was randomly generated according to the following distribution

P (M) =
2M + 1

1 + exp{(M −M0)/δm} (5.1)

where M0 is the maximum of the distribution and δm is diffuseness. The en-

ergy distribution of the multiplicity γ rays was assumed to be Gaussian with

adjustable peak and width. The γ rays were tracked through the BaF2 material

with relevant physics processes and appropriate experimental conditions (trig-

ger, threshold etc.). The parameters M0, δm, peak and width of the energy

distribution were varied judicially to match the experimental and simulated

fold distributions. The conversion of multiplicity distribution into the angu-

lar momentum space was achieved using the relation J = 2M + C, where the

free parameter C takes into account the angular momentum loss due to particle
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Figure 5.8: (a) Experimental (green symbols) and simulated (red line) fold distri-
butions for 31P populated at initial excitation energy of 46.2 MeV. The simulated
parameters are M0 = 5, δm = 1, C = 1. Peak energy and width of the energy distri-
bution are 0.65 MeV and 1.2 MeV, respectively. (b) Incident and different fold gated
angular momentum distributions.

evaporation and statistical γ ray emission. C was obtained by matching the sim-

ulated CN angular momentum distribution with the calculated one by PACE4
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code. After fixing all the parameters, different fold gated angular momentum

distributions were generated according to the experimental requirements [Fig.

(5.8b)].

5.4 Neutron time of flight detector

In the present work, the evaporated neutron energy spectra were measured to

extract the nuclear level density parameter which is crucial for determining

nuclear temperature and thus the entropy density for finite nuclear matter.

The evaporated neutrons were detected with a liquid scintillator based time

of flight (TOF) detector which is a part of the larger TOF array developed

at VECC for spectroscopic study of energetic neutrons emitted in heavy ion

induced reactions. A part of the array is shown in Fig. (5.9). Liquid scintillators

Figure 5.9: Liquid organic scintillator (BC501A) based neutron TOF array.

are widely used for neutron measurements in a mixed environment of neutrons

and γ rays due to high light output, good detection efficiency, fast decay time

and excellent n-γ discrimination. Each detector cell was cylindrical in shape (5

inch in diameter and 5 inch in length) and was made up of 3 mm thick stainless
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Figure 5.10: Experimental (symbols) and simulated (solid line) neutron detection
efficiency of BC501A based neutron TOF detector (adopted from [Bal15]).

steel. The internal wall of the cells was white painted for efficient collection

of scintillation light. The cells were filled with xylene-based liquid scintillator

BC501A which was thoroughly flushed with dry nitrogen gas of purity 99.999%

to remove the dissolved oxygen present in the liquid. The scintillator cells were

sealed with 6 mm thick pyrex glass and were coupled with a 5 inch diameter

PMT (model: 9823B, Electron tube Ltd.). The typical time resolution of a

detector element is of ∼ 1.2 ns which results in an energy resolution of ∼ 17%

at 1 MeV when placed at a distance of 150 cm from the target position. The

intrinsic detector efficiency was measured with 252Cf source and is shown in Fig.

(5.10) along with the geant4 simulations.

5.5 Experimental details

The experimental techniques were the same for both the studies reported in

this thesis. That is why, an overall picture of the experimental procedures are
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given in this section. The experiments were performed at the Variable Energy

Cyclotron Centre, Kolkata using pulsed α-beam from K-130, AVF cyclotron.

Self-supporting targets were bombarded with α-beam and different particles in

the exit channel were detected using in-house developed dedicated detector sys-

tems described in the previous sections. The data were recorded and stored in

event-by-event format by using an in-house developed VME based data acqui-

sition system.

5.5.1 Detector set-up

The experimental set-up comprised of four major detector systems as shown in

Fig. (5.11). The purpose and characteristics of each detector system have been

described earlier. The LAMBDA array was configured in a 7×7 matrix form

and was placed at a distance of 50 cm from the target position at an angle of

90◦ with respect to the beam direction. It was surrounded by 8-10 cm thick lead

bricks to block the cosmic γ ray backgrounds. It was observed by simulation

that this arrangement could eliminate 90% of γ backgrounds. Also a 3 mm

thick lead plate was placed in front of the array to cut down the low energy γ

rays from the target. The geometrical efficiency of the array was 1.8 %. The

50 element multiplicity filter was divided into two blocks of 25 detectors each.

The blocks were configured in 5×5 matrices in staggered castle type geometry

and were placed on the top and the bottom of the target chamber at a distance

of 5 cm from the target. The angular coverage of the multiplicity filter was

∼ 55 %. All the detectors of the LAMBDA array and the multiplicity filter

were gain matched so as to apply nearly equal threshold in all the detectors.

A neutron time of flight detector was placed at a distance of 150 cm from the

target and at an angle of 150◦ with respect to the beam direction. Two detector

elements of the VENUS array [Sou16] were positioned at angles 35◦ and 90◦
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Figure 5.11: Experimental set-up used in this thesis. (a) LAMBDA spectrometer,
(b) Multiplicity filter, (c) Neutron TOF detector and (d) Clover detector.

at a distance ∼ 30 cm from the target. These detectors were used for testing

purpose and also to observe any presence of isotopic impurity in the target. The

beam dump, located at ∼3 m downstream, was covered with borated paraffin

blocks and lead bricks to cut the γ and neutron backgrounds. As the gain of

BaF2 scintillators vary with temperature, arrangements were made to keep the

temperature fixed at 18◦C. The maximum variation of temperature was found

to be ±1◦C. Nevertheless, the LAMBDA array was frequently calibrated to take

care of the variation of temperature.

5.5.2 Electronics set-up for γ ray measurements

The pulse processing and the data acquisition were performed with a dedicated

CAMAC based front-end electronics and VME based data acquisition system

developed at VECC. All ancillary equipments were placed inside the experi-
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mental hall and controlled from outside over ethernet. Fig. (5.12) shows the

complete electronics and data acquisition circuit diagram for the LAMBDA

spectrometer and the multiplicity filter. In each event, three main quanti-

ties were recorded, namely, energy deposited in each detector element of the

LAMBDA spectrometer, its time (with respect to the multiplicity filter start

trigger) and the number of multiplicity detectors fired (fold). Apart from that,

the cyclotron radio frequency (RF) time was also recorded with respect to the
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Figure 5.12: Circuit diagram used for detection of high-energy γ rays.

multiplicity filter. The signals from the LAMBDA array was divided into lin-

ear (for energy information) and logic paths. The signals in the logic path

were fed into constant-fraction-discriminators (CFD) (CAEN C808) (for time

information) and leading-edge-discriminators (LED) (CAEN C894) (for gate

generation). The multiplicity detector signals were sent to CFDs and the re-
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sulting logic signals were used for master trigger generation. A level-1 trigger

was generated when any detector in the LAMBDA spectrometer fired above a

threshold of ∼ 4 MeV. A level-2 trigger was generated when any of the detec-

tors from the top multiplicity filter fired in coincidence with any of detectors

from the bottom multiplicity above a threshold of ∼ 300 keV. A coincidence

of level-1 and level-2 triggers generated the master trigger for the data acqui-

sition. This coincidence technique guarantees the selection of statistical events

as well as a significant reduction in background events. The time start was

taken from the coincidence signal of both the top and the bottom multiplicity

filters validated by the master trigger. The signals of the LAMBDA array in

the linear path were divided into parts with amplitude ratio 1:9 and were fed

into QDCs (CAEN V792), with a delay of 100 ns, through impedance adapters

(CAEN A992). This was done for pulse shape discrimination (PSD) and the

two linear signals were integrated for 2 µs (long gate) and 50 ns (short gate),

respectively. The integration times were so chosen that the PSD spectra formed

a band along 45◦. The logic signals from the CFDs were delayed properly and

fed into TDCs (CAEN V775) which were run in common start mode. The fold

of the multiplicity filter was obtained from the CFDs which give 1 mA output

current per detector fired. Total current sum in each event was acquired using

a linear fan-in module and was integrated in the short gate. The RF signal was

validated by the master trigger and after adjusting with proper delay the signal

was fed into a TDC. The signals from the clover detectors were properly shaped

and sent to an ADC (CAEN V785). It should be mentioned that, in each run,

the data were acquired in the clover detector in its own gate for 30-45 minutes

and for rest of the time the acquisition was done with the gate generated by the

master trigger.
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5.5.3 Electronics set-up for neutron measurements

The circuit diagram and trigger generation techniques for neutron TOF mea-

surements were nearly the same as that used for γ ray detection. In this case,

the level-1 trigger was generated by the neutron detector. The circuit diagram

for neutron measurements are shown in Fig. (5.13). The pulse from the neutron

detector was divided into two parts using a splitter. One part was sent to a mul-

tichannel pulse shape discriminator module (mesytec MPD-4), while the other
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Figure 5.13: Circuit diagram used for neutron measurements.

part was fed into CFD (CAEN C671). The MPD-4 module gives three outputs;

a CFD timing, a zero cross-over time (ZCT) and a pulse height (PH). Generally,

the CFD timing is used for gate generation and stop signal generation for TOF

measurements. However, there was some difficulty in adjusting the internal de-

lay of MPD-4 and making a coincidence with the multiplicity filter. That is

why a separate CFD module (CAEN C671), which also provides variable de-

lay, was used for taking the start signal as well as master trigger generation.
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The PH and the ZCT informations were recorded with an ADC (CAEN V785),

while TOF and fold informations were acquired by a TDC (CAEN V775) and a

QDC (CAEN V792), respectively. The prompt γ rays were separated from neu-

tron by TOF technique. However, there are always γ backgrounds present even

within the seemingly neutron events in TOF spectra. These γ backgrounds were

separated from the neutrons by PSD technique comprising of PH and ZCT.

5.6 Data reduction for high-energy γ rays

The GDR energy of the systems studied in this thesis, especially 31P and 32S,

is of ∼ 17-18 MeV. As the cross section of γ rays falls exponentially with the

increase in γ ray energy, it is very small at GDR energies and often comparable

or less than that of the cosmic backgrounds. Apart from that, the statistical

neutrons are the main source of background for γ ray measurements. Also, the

pile-up events add to undesired contribution in the high-energy γ ray spectra.

Special cares have been taken to eliminate all these backgrounds during the

experiments (section 5.5.1) and in the offline analysis performed in the frame-

work of CERN Physics Analysis Workstation (PAW). To ensure the selection

of beam related events, the cyclotron RF time spectrum was measured [Fig.

(5.14b)]. In offline analysis only those events were considered that were within

the prompt gate (red shaded region in Fig. (5.14b)) of the RF time spectrum.

In the following sections, the procedure of different background elimination and

data reconstruction have been described in detail.

5.6.1 Rejection of neutron background

The energy of the neutron produced in the statistical decay of the compound nu-

cleus lies mainly below 12 MeV. These neutrons interact with the BaF2 material

via capture (n, γ) and inelastic scattering (n, n′γ) reactions i.e. ultimately the
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neutron energy is deposited in the detector in the form γ rays. Thus, neutrons

cannot be separated from γ rays using PSD technique. The only mechanism to
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Figure 5.14: (a) A typical time of flight spectrum of a detector element of the
LAMBDA array. (b) A typical cyclotron RF time spectrum. Both spectra were
measured with respect to the multiplicity filter.

separate these neutron from γ rays is the time of flight technique. A typical time

of flight spectrum of a detector element of the LAMBDA array is shown in Fig.

(5.14a). The fast timing property of the BaF2 scintillators effectively separates

the neutrons from photon events. In offline analysis, only those events were

selected that fell within the prompt gate (red shaded region in Fig. (5.14a)) of

the TOF spectra of individual detectors.

5.6.2 Rejection of pile-up events

A pile-up event occurs when, along with a valid high-energy γ ray in a single

detector, another photon (γ, γ pile-up) or neutron (γ, n pile-up) enters the same

detector within the same integration gate. In such cases, the ratio of the inte-

grated charge in the long and the short gate will be different from that of a real

photon event and thus will appear away from the true γ band in short vs long

2-dimensional spectrum of the individual detectors. A typical PSD spectrum
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Figure 5.15: A typical short vs long 2d-dimensional spectrum of a detector element
of the LAMBDA array. Only those events are considered to be valid events that lie
in between the two straight lines.

for an element of the LAMBDA spectrometer is shown in Fig 5.15 along with

the 2-dimensional cut used in offline analysis. It should be mentioned that, due

to high granularity of the LAMBDA array, the contribution of pile-up events is

negligibly small.

5.6.3 Rejection of cosmic backgrounds

As mentioned earlier, the major sources of backgrounds in the measurement of

high-energy γ rays are the cosmic γ and muon (µ) backgrounds. The cosmic

γ rays are blocked by the thick passive lead shield. However, the muons can-

not be stopped by the lead shield. The high segmentation of the LAMBDA

array and the hit pattern of cosmic muons were utilized to get rid of the muon

backgrounds. As the energy of these muons are very high (∼ GeV), they pass

through the whole array and deposits energy in the detector elements. Typical
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Figure 5.16: Typical cosmic muon hit patterns in the LAMBDA spectrometer.

tracks of the muons in the arrays are shown in Fig. (5.16). These patterns are

quite different from those of true γ events [Fig. (5.17)] Therefore, in any event,

if the detectors in top-bottom, top-left, top-right, bottom-left, bottom-right and

left-right fired in coincidence, that event was rejected in offline analysis. Also,

the cosmic muons deposit 6.6 MeV energy per centimeter of the BaF2 material.

If the muons pass vertically, they deposit 23.1 MeV of energy in each detector

element. For oblique incidents, the energy deposits are even higher. When the

summing is done (section 5.6.4), the resulting energy lies much above the region

of interest and thus rejected.
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5.6.4 Data reconstruction
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Figure 5.17: Typical hit patterns of true γ events in the LAMBDA spectrometer.

The energy of the γ rays was reconstructed using nearest neighbor cluster

(3×3) summing technique. The detector with the highest energy deposition was

considered as the centre of the cluster. If the centre of the cluster was found

to be any of the side detectors then that event was rejected because, in that

case, energy might leak out of the array. Apart from that, it was also checked

whether the number of detectors fired in the cluster were the same as that fired

in the whole array. Thus finding a valid cluster, the energy was reconstructed by

summing the energy deposition in all nine detectors in the cluster. It should be

mentioned that each detector element had to satisfy the various gates (prompt
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Figure 5.18: Typical high-energy γ ray spectra for different gate conditions. (a)
Raw but time validated, (b) prompt time gated, (c) prompt time and PSD gated,
(d) prompt time, PSD and prompt RF time gated, (e) same as d with RF and
time background subtracted, (f) time background spectrum, (g) RF time background
spectrum.

time gate, prompt RF time gate, PSD gate) described in previous sections.

The sensitivities of different gates in high-energy γ ray spectra are shown in

Fig. (5.18). Finally, the cluster summed γ energy was Doppler corrected by

using the relation Ecorr = γ′(1−βcosθ)Eclus, where Eclus is the cluster summed

energy. β is the velocity of the compound nucleus in units of velocity of light

in free space and γ′ = 1/
√

1− β2. θ is the angle of the centre of the cluster

with respect to the direction of the compound nuclear velocity (equivalent to

the beam direction) which was in between 45◦-135◦. The maximum value of

β was 0.0194 for 31P compound nucleus at 42 MeV beam energy. It resulted

in maximum Doppler correction of 230 keV at Eclus = 17 MeV, which remains

within the energy bins (1 MeV). The background contributions arising due the

chance coincidence in the prompt TOF gate and prompt RF gate have also been
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subtracted to obtain the final high-energy γ ray spectra.

5.7 Data reduction for neutrons

As mentioned in section 5.5.3, the TOF and the ZCT were recorded in each

event during the neutron measurements. As the pulse shapes for neutron and

γ radiations are different, they are well separated in the two dimensional plot

of ZCT vs TOF [Fig. (5.19)]. In the off-line analysis, only those events were

selected that were within the two dimensional cut as shown in Fig. (5.19). These

are neutron events which are then converted to neutron energy spectrum from

Figure 5.19: A typical two dimensional plot of ZCT vs TOF. The events that remain
within the two dimensional cut are neutron events which are used for further analysis.

TOF spectrum using prompt γ peak as time reference. The effects of applying

only the gate in TOF spectrum and both in TOF and ZCT spectra are shown
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Figure 5.20: Typical evaporated neutron energy spectra of 31P with only neutron
gate in TOF spectrum (green solid circles) and with the two dimensional cut (i.e.
both TOF and ZCT gate) as shown in Fig. (5.19) (blue open circles).

in Fig. (5.20). The neutron energy spectra were converted to the centre of mass

frame from the laboratory frame and then compared with the statistical model

calculations, after folding with the detector efficiency, to extract the nuclear

level density parameter.
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Chapter 6

η/s for Finite Nuclear Matter:
Experiments, Results, and
Discussions

In this chapter, the work on the experimental determination of the ratio

of shear viscosity (η) to entropy density (s) is presented. This is the first

experimental study of η/s for finite nuclear matter [Deb17]. The nuclei 31P, 97Tc,

119Sb, and 201Tl were populated through following light-ion-induced compound

nuclear reactions in the temperature range of (0.8-2.1) MeV using α beams from

the K-130 cyclotron at the Variable Energy Cyclotron Centre (VECC), Kolkata,

India.

(a) 4He (Ebeam = 28, 35, 42 MeV) + 27Al → 31P∗,

(b) 4He (Ebeam = 28, 35, 42, 50 MeV) + 93Nb → 97Tc∗,

(c) 4He (Ebeam = 30, 35, 42 MeV) + 115In → 119Sb∗,

(d) 4He (Ebeam = 35, 42, 50 MeV) + 197Au → 201Tl∗.

The importance of light ion lies in the fact that the compound nuclei were popu-

lated at angular momenta (J), much less than the critical angular momenta for
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the systems (Jc = 0.6A5/6) [Kus98] above which the effect of angular momen-

tum on the GDR parameters is observed; hence exclusive temperature variation

of the GDR parameters and consequently, the shear viscosity could be probed.

However, there is a disadvantage of utilizing the light ion beam to populate the

compound nuclei. The incident energy per nucleon above the Coulomb barrier

for light ion is comparatively large, resulting in a non-statistical bremsstrahlung

component. This has to be properly taken care of during the analysis of the

experimental data. It should be mentioned that the experimental procedure

and the results for the GDR parameters of 97Tc, 119Sb, and 201Tl have been de-

scribed in detail in Refs. [Sup12a, Dee12, Bal14]. In this chapter, experimental

details will be described only for 31P. Finally, the results and discussions will be

presented for all systems.

6.1 Experimental details and data reduction

In this set of experiments, the following quantities were determined

(a) The GDR parameters (the peak energy, the width, and the strength) :

determined by measuring the high-energy γ ray spectra from the decay of

the GDR.

(b) The nuclear level density (NLD) parameter: determined by measuring the

evaporated neutron energy spectra.

(c) The compound nuclear angular momentum: determined by measuring the

low-energy γ ray multiplicity.

(d) The bremsstrahlung slope parameter: determined by measuring the an-

gular distributions of high-energy γ rays.

In this section, the experimental procedure and data reduction techniques,

which have already been described in detail in chapter 5, are briefly presented.
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The high-energy γ rays from the decay of the GDR were measured by a part

of the LAMBDA spectrometer (section 5.2) placed at a distance of 50 cm from

the target position and at an angle of 90◦ with respect to the beam direction.

The 50-element multiplicity filter (section 5.3) was divided into two blocks of 25

elements each and was placed on the top and the bottom of the target chamber

[Fig. (5.11)] to measure the γ ray multiplicity in an event-by-event mode. The

evaporated neutron energy spectra were measured by using an element of the

neutron TOF array (section 5.4) placed at a distance of 150 cm from the target

position and at an angle of 150◦ with respect to the beam direction. The

cyclotron RF time spectrum was recorded with respect to the multiplicity filter

to ensure the selection of beam-related events. The angular distributions of

high-energy γ spectra were also measured at 55◦ and 125◦ for 31P and 119Sb at

Ebeam = 42 MeV.
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Figure 6.1: (a) Experimental (green symbols) and simulated (red line) fold distri-
butions for 31P populated at initial excitation energy of 46.2 MeV. The simulated
parameters are M0 = 5, δm = 1, C = 1. Peak energy and width of the energy dis-
tribution are 0.65 MeV and 1.2 MeV, respectively (section 5.3.1). (b) Incident and
different fold gated angular momentum distributions.
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The high-energy γ rays detected in the LAMBDA spectrometer were re-

constructed using the cluster summing technique after correcting for all the

backgrounds as described in section 5.6. Different fold-gated (fold ≡ number of

multiplicity detectors fired in each event) high-energy γ ray spectra were also

reconstructed according to the requirements. The measured fold distributions

were mapped onto the angular momentum space by a realistic technique based

on geant4 simulations (section 5.3.1). Different fold-gated angular momen-

tum distributions were simulated and average angular momenta corresponding

to different folds were calculated using the relation
∑

J σ(J)J/
∑

J σ(J). In

Fig. (6.1) the measured and simulated fold distributions along with different

fold-gated angular momentum distributions are shown for 31P populated at the

initial excitation energy of 46.2 MeV. The neutron TOF spectra were converted

to neutron energy spectra using the prompt γ peak as time reference (section

5.7) and different fold-gated neutron energy spectra were extracted. The neu-

tron spectra were then converted from the laboratory frame to the centre of

mass (c.m.) frame.

6.2 Extraction of NLD and GDR parameters

The nuclear level density and the GDR parameters were extracted by compar-

ing the evaporated neutron energy spectra and the high-energy γ ray spectra,

respectively, with the statistical model calculations performed using a modified

version of the statistical model code cascade. It should be mentioned that as

all nuclei considered in this chapter are non-self-conjugate nuclei, the isospin

quantum number does not play a crucial role in statistical model calculations.

That is why experimental data were analyzed using a version of the cascade

code which does not involve isospin quantum number. The angular momentum

distributions corresponding to different folds were incorporated in the cascade
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Figure 6.2: Variation of a1(Eγ) with the γ ray energy. The green solid circles are
experimentally determined, while the red solid line is theoretically calculated for E0

= 5.3 MeV and vnn = 0.6 vbeam.

code and respective fold-gated neutron and high-energy γ ray spectra were com-

pared with the calculations. The Ignatyuk-Reisdorf prescriptions (section 4.3)

was utilized in the cascade calculations. The asymptotic nuclear level density

parameter (ã) was varied, to match the experimental and calculated neutron

energy spectra, by varying the r0 parameter (Eq. 4.10) and best fit value was

obtained by χ2 minimization procedure in the energy range 4-10 MeV. It should

be mentioned that the calculated neutron spectra were folded with the energy

dependent efficiency of the neutron TOF detector before comparing with the ex-

perimental spectra. Simultaneously, the calculated high-energy γ spectra, along

with a bremsstrahlung component, parameterized as σ = σ0 exp(−Eγ/E0), were

folded with the detector response function (section 5.2.3) and compared with

the experimental spectra to extract the GDR parameters [resonance strength

(SGDR), energy (EGDR) and width (ΓGDR)].

The bremsstrahlung slope parameter E0 was determined from the angular
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distribution of the high-energy γ rays measured at Ebeam = 42 MeV. The γ-ray

angular distribution in the c.m. frame was assumed to have the form

W (Eγ , θ) = W0(Eγ)[1 + a1(Eγ)P1(cos θ) + a2(Eγ)P2(cos θ)] (6.1)

Since P2(cos θ) = 0 for θ = 55◦ and 125◦, a1(Eγ) was determined by measuring

the γ ray yield (properly normalized with total incident beam particles) at θ =

Y
ie
ld
/M
e
V

100
101
102
103
104
105
106
107
108

101
102
103
104
105
106
107

Eγ (MeV)
10 15 20 25

10-1
100
101
102
103
104
105 Ebeam  = 28 MeV

F > 2

Ebeam = 42 MeV

F = 2

F > 3

F = 3

Ebeam  = 35 MeV

F = 2

F >2

101

102

103

104

Ebeam  = 42 MeV

F = 2

F = 3

F >3

Y
ie
ld
/0
.5
 M
e
V

101

102

103 F = 2

F > 2

Ebeam  = 35 MeV

E
n
 ( MeV)

4 6 8 10

101

102

103

Ebeam  = 28 MeV

F > 2

x10
2

x10

x10
2

x10

Figure 6.3: Different fold-gated high-energy γ ray spectra (left panel) and the
evaporated neutron energy spectra (right panel) for 31P. The green solid symbols are
experimentally measured spectra, while the red solid lines are the respective statistical
model calculations.

55◦ and 125◦. The bremsstrahlung slope parameter E0 was deduced by com-

paring the experimentally determined a1(Eγ) with the theoretically calculated

one [Fig. (6.2)]. The source of the bremsstrahlung component was assumed
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Table 6.1: Experimental GDR and asymptotic NLD parameters at the the specified
angular momentum and temperature

Ebeam < J > T ã EGDR ΓGDR

MeV ~ MeV MeV−1 MeV MeV
28 12.2±4.2 0.84±0.37 4.7±0.2 18.7±0.2 7.4±0.7
35 11.0±3.6 1.80±0.23 4.2±0.2 17.1±0.2 8.2±0.7

13.4±4.3 1.55±0.30 4.2±0.2 16.8±0.2 7.7±0.7
42 11.8±3.7 2.06±0.18 4.3±0.2 17.5±0.2 9.3±0.4

13.5±4.1 2.00±0.22 4.0±0.2 17.0±0.2 8.9±0.7
15.9±5.2 1.69±0.33 4.0±0.2 17.8±0.2 8.5±0.6

to be due to collisions among the nucleons and the angular distribution of the

radiation was assumed to be isotropic in the nucleon-nucleon (n-n) frame of

reference. The bremsstrahlung energy spectrum was then converted from n-n

frame to c.m. frame resulting in an angular distribution. Calculating these

yield at θ = 55◦ and 125◦, the value of a1(Eγ) was extracted. a1(Eγ) depends

on the slope parameter E0; thus E0 was deduced by matching the calculated

a1(Eγ) with that obtained from experiments. The extracted slope parameter

was found to be of ∼ 5.3 MeV, which could roughly be reproduced by the sys-

tematics E0 = 1.1[(Ebeam −Vc)/Ap]
0.72 [Nif90]. This systematics was utilized to

extract the slope parameters at the beam energies for which angular distribu-

tion of the high-energy γ ray was not measured. It should be mentioned that

a1(Eγ) also depends on the velocity (vnn) of the n-n frame with respect to the

laboratory frame. Ideally vnn should be 0.5vbeam. However, in the present case,

vnn was found to be 0.6vbeam. This slight difference could be attributed to the

Fermi velocity of the nucleons.

In Fig. (6.3) different fold-gated high-energy γ ray spectra and the evap-

orated neutron energy spectra for 31P are presented along with the statistical

model calculations. Resulting GDR and NLD parameters are shown in table

(6.1)
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Figure 6.4: Different fold-gated linearized γ ray spectra for 31P. The green solid sym-
bols are experimentally measured spectra, while the red solid lines are the respective
Lorentzian having the GDR parameters as shown in table 6.1.

In order to emphasize on the GDR region the corresponding linearized

spectra are shown in Fig. (6.4), using the quantity F (Eγ)Y
exp(Eγ)/Y

cal(Eγ),

where Y exp(Eγ) and Y cal(Eγ) are the experimental and the cascade spectra,

while F (Eγ) is the Lorentzian having the GDR parameters as shown in table

(6.1). The temperature was calculated using the relation T =
√

U/a(T ), where

U = E∗−Erot−EGDR−∆P ; E∗, Erot, EGDR, and ∆P being the initial excitation

energy, average rotational energy, measured GDR energy, and the pairing en-

ergy, respectively. a(T ) is the NLD parameter at temperature T corresponding

to intrinsic excitation energy U . It should be mentioned that, GDR may have
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contributions from the decay steps subsequent to the particle decay . Therefore,

one should use an average initial excitation energy instead of E∗. for 31P, the

GDR energy being high, contributions from the stages after particle decay were

very small and the effect of averaging on T was negligible. For, other nuclei, the

average temperatures were found to remain well within the quoted errors which

originate from the uncertainty in measured angular momentum, GDR energy

and the NLD parameter. The details of the GDR parameters for 97Tc, 119Sb,

and 201Tl could be found in Refs. [Bal14, Sup12a, Dee12].

6.3 Determination of the shear viscosity

The shear viscosity (η) was determined at different temperatures from the mea-

sured EGDR and ΓGDR by utilizing the formalism of Dang (section 2.4.1) according

to which

η(T ) = η(0)
ΓGDR(T )

ΓGDR(0)

{

EGDR(0)
2

EGDR(0)2 − [ΓGDR(0)/2]2 + [ΓGDR(T )/2]2

}2

, (6.2)

where η(0) is the shear viscosity at zero temperature, EGDR(0) and ΓGDR(0) are

the energy and the width of the GDR built on the ground state and ΓGDR(T )

is the width of the GDR built on the excited state at temperature T . As the

energy of the GDR built on excited states is nearly independent of temperature

(table 6.1), the ground state GDR energy EGDR(0) was taken as the average

(EAV) of the measured energies at different temperatures, while the accepted

ΓGDR(0) for
31P, 97Tc, 119Sb and 201Tl were 7.5, 5.5, 4.5, 3.5 MeV, respectively.

As can be seen from Fig. (6.5) these ground state GDR widths nicely reproduce

the variation of the measured GDR widths at higher temperatures within the

CTFM calculations [Dee12]. Following Refs. [Aue75, Aue09, Dan11], η(0) was

taken as 1u, where u = 10−23 MeV·s·fm−3 . Interestingly, the ground state GDR

widths and average GDR energies (except for 31P) were well reproduced by the
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Figure 6.5: Comparison of the measured GDR widths (symbols) with the CTFM
model calculations.

prescription of Ref. [Aue75], derived using η(0) = 1u [Fig. (6.6)]. According

to the formalism, ΓGDR(0) = 2.3+ 14/A1/3+21/A1/2 MeV. The authors derived

this relation by solving the following equations for ω

1− LjL(KIR)

KIRjL+1(KIR)
=

(L+ 1)jL(hIR)

hIRjL+1(hIR)
, (6.3)

where

K2
I
=

ω2 − iωγ′δI,1
u2

I
+ 4

3
iνω

,

h2
I
= −(iω + γ′δI,1)/ν ,

η = ρν ,

(6.4)

where ρ is the nuclear density = 0.16 fm−3. The descriptions of all parameters

are given in section (2.4.1). In the present work, η(0) was also varied, keeping

all other parameters fixed as used in Ref. [Aue75] (section (2.4.1), to reproduce

the ground state GDR widths of 97Tc (upper bound) and 201Tl (lower bound)

[Fig. (6.6)]. This results in the lower and the upper limits for η(0) as 0.55u
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and 1.25u, respectively. Interestingly, these bounds are quite similar to that

(0.6u and 1.2u) used in Ref. [Dan11], which were obtained in Ref. [Dav76] by

comparing the calculated and the experimental most probable fission-fragment

kinetic energies. These bounds have been considered as systematic errors in the

deduced quantities.

6.4 Determination of the entropy density

The entropy density was determined from the measured level density parameter

and nuclear temperature by using the Fermi gas model prescription

s(T ) =
ρ

A
S(T ) ,

S(T ) = 2a(T )T ,
(6.5)
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where the nuclear density ρ = 0.16 fm−3 and A is the mass number of the

nucleus. a(T ) was deduced from the experimentally determined asymptotic

NLD parameter ã by using the Ignatyuk parameterization a(T ) = ã[1+ ∆S
U
{1−

exp(−γU)}] [Ign75]. The ground state shell correction values ∆S, which are the

difference of experimentally measured and liquid drop masses, were -2.23, -0.20,

0.22, and -8.31 MeV for 31P, 97Tc, 119Sb, and 201Tl, respectively. These shell

correction values were calculated within the cascade code by using the droplet

model of Myers and Swiatecki [Mye74] with the Wigner term. The damping

factor γ, which determines the rate of shell effect depletion with excitation en-

ergy, was 0.054 MeV−1 [Ign75, Pra16]. It should be mentioned that ã was not

extracted from the neutron energy spectrum for 201Tl. The values of ã used

for fitting the high-energy γ ray spectra were utilized to extract the entropy

density. Except for 201Tl, ∆S is very small for all other nuclei. This results in

a minute effect of ∆S and the damping factor (γ) on deduced a(T ) and T at

the concerned nuclear excitations. However, following the recent measurements

[Rou13, Pra16], an uncertainty of 0.020 MeV−1 has been included in the damp-

ing factor. This adds to maximum systematic uncertainties of 9% and 4% in

a(T ) and T , respectively for 201Tl at the lowest excitation. For other masses,

these uncertainties are much smaller.

6.5 Results and discussions

In this work, the shear viscosity, entropy density, and the ratio of these two

quantities have been determined experimentally in a self-consistent way at dif-

ferent mass regions and at different temperatures in the range 0.8-2.1 MeV. Fig.

(6.7) shows the deduced quantities along with the respective calculations. The

errors include the statistical error as well as the systematic error arising due to

the variation in η(0). The deduced shear viscosities are well reproduced for the
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systems by the calculations based on the generalized Fermi liquid drop model

(FLDM) [Aue09, Kol04] (section 2.4.1). The model directly calculates η by uti-

lizing the two-body collisional approach and gives η(T ) = 2
5
ρǫFτcoll/[1+(ωτcoll)

2],

where ǫF is the Fermi energy, ω is the angular frequency of excitation, and τcoll is

the collision relaxation time given by τcoll = τ0/[1+(~ω/2πT )2], τ0 = ~α/T 2. In

the rare collision (zero sound) regime (which corresponds to giant resonances)

ωτ ≫ 1 and at low temperatures such that T ≪ ~ω, the shear viscosity reduces

to η(T ) = 2
5
ρǫF

~

4π2α
× [1 + (2πT/~ω)2]. The parameter α depends on the in-

medium nucleon-nucleon scattering cross section and for isovector resonances

its value is 4.6 MeV [Kol04]. The theoretical results are obtained using the

values of ǫF = 37 MeV, corresponding to ρ = 0.16 fm−3 and considering ~ω as

the average GDR energy. It is observed that at low temperatures, η increases

with T , which can be understood qualitatively by the following arguments. For

an equilibrated nucleus, the momentum is transported by the nucleons. The ki-

netic theoretical calculations give η ∼ v̄λ, where v̄ is the average velocity of the

nucleons, and the mean free path λ ∼ v̄/Ncoll. In the rare collision region, the

collision frequency Ncoll does not change much with temperature, while v̄ ∼
√
T .

Therefore, the mean free path as well as the nucleon momentum increase with

temperature. That means the momentum can be transported more efficiently

over a large distance, thereby increasing η with temperature.

It is also interesting to note that the measured entropy density is well re-

produced by the microscopic calculations (section 2.2). s(T ) was estimated, in

units of kB, utilizing the relation s(T ) = − ρ
A
×
∑

i[fi ln(fi)+ (1− fi) · ln(1− fi)],

where fi is the occupation probability of the state with energy ei given by

fi = [1 + exp{(ei − µ)/T}]−1. The chemical potential µ was calculated from

particle conservation viz. n =
∑

i fi, and the single particle energies ei for

neutron and protons were calculated using the deformed Wood-Saxon potential
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η/s (lower panel (c) & (f)) with mass number at the specified temperature range.

with the universal parameters [Cwi87]. The entropy for the neutrons and the

protons were calculated separately and were added to obtain the total entropy

for the nucleus. As the temperature increases, the distortion of the Fermi sur-

face becomes larger, thereby increasing the number of accessible microstates.

This results in the increase in entropy density with temperature.

The deduced η/s shows (lower panel of Fig. (6.7)) a mild decrease with

temperature. Moreover, it is confined in the range (2.5-6.5) ~/4πkB for the

finite nuclear matter within the temperature range ∼ (0.8-2.1) MeV. Therefore,

it could be concluded that nuclear matter obeys the KSS conjecture. Moreover,

the measured η/s is comparable to that of the QGP for which η/s < 5 ~/4πkB

[Sch09]. It, therefore, could be reaffirmed, as pointed out in Ref. [Aue09], that

97



Chapter 6. η/s for Finite Nuclear Matter: Experiments, Results, and Discussions

the strong fluidity is a universal characteristic feature of the strong interaction

of the many-body nuclear systems and not just of the state created in the rel-

ativistic collisions. This result, along the results of low-temperature quantum

fluids (for which η/s is of ∼ 6-10 ~/4πkB [Sch09]), suggests that large fluidity

could also possibly be the intrinsic characteristic feature of strongly coupled

systems. It is also fascinating to note from Fig. (6.8) that, although η shows a

slight increase with the mass number (Fig. (6.8d)) at the highest available tem-

perature for heavier nuclei, η/s remains within (5.1-6.5) ~/4πkB (Fig. (6.8c))

and (4.6-6.1) ~/4πkB (Fig. (6.8f)) at the lowest and highest available tempera-

tures, respectively, for all nuclei (since the data at higher specified temperature

range were not available for 31P, the high-temperature plots contain only three

points). This indicates that η/s is approximately independent of the nuclear

size and the neutron-proton asymmetry at a given temperature. However, it

could be the artefact of incorporating the same η(0) for all nuclei. Also owing

to large errors, the data are not sensitive enough to draw any conclusion and

thus, call for further studies.
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Chapter 7

Isospin Mixing in 32S:
Experiments, Results, and
Discussions

In this chapter, the experimental study of isospin mixing in 32S at high exci-

tation is presented. The principal objectives of this work [Deb16] were to exclu-

sively measure the isospin mixing probability using light-ion-induced reactions

and also measure the nuclear temperature which is crucial for proper interpre-

tation of the measured data. The compound nuclei 31P and 32S were populated

by the following reactions performed at the Variable Energy Cyclotron Centre,

Kolkata.

(a) 4He (Ebeam = 35 MeV) + 27Al → 31P∗,

(b) 4He (Ebeam = 38 MeV) + 28Si → 32S∗,

The nucleus 31P was populated as a reference nucleus at the same temperature

and angular momentum but with a different entrance channel isospin to extract

the GDR parameters. These parameters were then utilized for the analysis of

32S. As nearly all nucleons participate in the GDR, it is expected that the GDR
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parameters would be the same (at a given temperature and angular momen-

tum) for these two nearby nuclei. It should again be highlighted that due to

the availability of light ion beam (α), the compound nuclei were populated at

low angular momentum. Consequently, there was no influence of angular mo-

mentum on the GDR parameters and the high-energy γ ray spectra, which is

observed in compound nuclei populated through heavy-ion-induced reactions

specially at low mass regions. In such cases, the nuclei possess various exotic

shapes such as Jacobi shape, cluster structure etc. resulting in complicated

shapes of high-energy γ ray spectra [Maj04, Bre07, Dee10a].

7.1 Preparation of Silicon target

Silicon is a very brittle material and it is not easy to prepare a self-supporting

thin silicon target with rolling technique. We prepared the target from a thick

natural silicon wafer by chemical etching technique utilizing a solution of hy-

drofluoric acid (HF), nitric acid (HNO3) and acetic acid (CH3COOH) in the

ratio of 4:7:11. Silicon is oxidized by nitric acid and produces silicon dioxide

(SiO2) on the layer of Si wafer. This SiO2 layer reacts with HF and produces

hydrofluosilicic acid (H2SiF6).

HNO3 + Si → SiO2

HF + SiO2 → H2SiF6

(7.1)

H2SiF6 is easily removed from the surface and thus Si gets etched. One disad-

vantage of this method is that the side portion of the wafer gets etched very

quickly. Therefore, the uniformity of the target was ensured by encapsulating

the sides of the wafer with wax. In this method, we could prepare 10.8 mg thick

Si target.
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7.2 Experimental details and data reduction

The quantities that have been measured in the above mentioned experiments

are

(a) The high-energy γ ray spectra from the decay of the GDR measured using

a part of the LAMBDA spectrometer,

(b) The evaporated neutron energy spectra measured using TOF neutron de-

tector, and

(c) The low-energy γ ray multiplicity measured using the multiplicity detector

array.

The experimental set-up and data reduction techniques were the same as de-

scribed in detail in chapter 5 and also in section 6.1, in brief. That is why

these are not being discussed here. The only important observation that should

be pointed out that the fold distributions for both 31P and 32S are the same

[Fig. (7.1)]. This implies that both compound nuclei were populated at the

same average angular momentum. It is also evident from Fig. (7.1b) that the

selected angular momentum space was slightly inclined to higher angular mo-

menta. This is due to the fact that during data recording only those events

were selected for which both the top and the bottom multiplicity filter fired

in coincidence (section 5.5.2). This coincidence technique, despite selecting the

higher angular momentum phase space, guarantees the selection of statistical

events as well as a significant reduction in background events.

7.3 Extraction of NLD, GDR and isospin mix-

ing parameters

In this thesis, the statistical model calculations were performed by using a

modified version of the cascade code in which isospin and parity quantum
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Figure 7.1: (a) Experimental fold distributions along with the simulated one. (b)
The total fusion cross-section (arb. unit) (green solid triangles with red dot-dashed
line) and the selected angular momentum distribution (solid blue line) for statistical
model calculations.

numbers were properly taken care of. In this version of the cascade code the

isospin was first included by Harakeh [Har86] and later it was modified by Behr

[Beh91, Beh93]. The salient modifications that have been performed are

(a) Each compound nuclear state was assigned with isospin and parity quan-

tum numbers apart from the energy and angular momentum. Two lowest

possible isospin states I< ≡ |I, I = Iz〉 and I> ≡ |I + 1, I = Iz〉 were con-

sidered in each nucleus.

(b) The transmission co-efficient was multiplied by proper Clebsch-Gordan

co-efficient for both particle and γ decay.

(c) Level densities of each type of isospin states were calculated according to

the prescriptions described in section (4.4.1).

(d) Isospin splitting and strength distribution (described in section 3.4) for

E1 γ transitions were properly taken care of.
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As far as parity is concerned, it is not so important at high excitations as roughly

both positive and negative parity states are populated equally. Also, it was

assumed that the level densities are equally divided between both parity states.

The isospin mixing was performed according to the prescription of Harney,

Richter and Weidenmuller [Hrn86] (section 4.4.2). The fractions of ≷ states

that goes to the ≶ states by virtue of isospin mixing are given by

α2
≷ =

Γ↓
≷/Γ

↑
≷

1 + Γ↓
≷/Γ

↑
≷ + Γ↓

≶/Γ
↑
≶

(7.2)

where Γ↓ and Γ↑ are the spreading width and the statistical decay width of the

respective states. The mixed population cross sections are obtained from the

cross sections of pure isospin states as follows

σ̃< = (1− α2
<)σ< + α2

>σ>

σ̃> = (1− α2
>)σ> + α2

<σ<

(7.3)

where σ and σ̃ are the pure and mixed population cross sections of the respec-

tive states. The simulated compound nuclear cross sections of 31P and 32S ,

properly normalized with the absolute value of the fusion cross section obtained

from pace4 calculations, were incorporated in the cascade code with the as-

sumption that isospin is conserved i.e. σ< 6= 0 and σ> = 0. Only Γ↓
> was

incorporated as an input parameter and Γ↓
< and the decay widths were calcu-

lated within the cascade code. Once these quantities were calculated, α2
≷ and

σ̃≷ were deduced from Eqs. (7.2) and (7.3), respectively. The cross sections

of the exit channels were then determined using these mixed population cross

sections. These steps are followed at each and every step in the decay cascade.

The statistical model analysis for 31P was performed with the assumption

that the isospin is fully conserved (Γ↓
> = 0). First, the asymptotic NLD pa-

rameter (ã) was determined by comparing the measured evaporated neutron

energy spectrum with the statistical model predictions. The calculated neutron
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Figure 7.2: Experimental neutron spectra (green filled circles) along with the cas-

cade predictions corresponding to best values of ã (red solid lines) for (a) 31P and
(b) 32S.

spectrum was corrected for detector efficiency and then was compared with

the experimental spectrum. The Ignatyuk-Reisdorf level density prescription

(section 4.3) was used and χ2 minimization was performed in the energy range

4.0-10.0 MeV. The best fit value of ã was found to be 4.2±0.3 MeV−1. Similar

analysis resulted in ã = 3.9±0.1 MeV−1 for 32S. The evaporated neutron energy

spectra along with the cascade fit for both the nuclei are shown in Fig. (7.2).

In the next step, the IVGDR parameters were extracted by comparing

the high-energy γ ray spectrum of 31P with the cascade calculations along

with a small bremsstrahlung component parameterized as σ = σ(0)e−Eγ/E0.

The slope parameter E0 = 4.9 MeV is consistent with the parameterization

E0 = 1.1[(Ebeam − Vc)/Ap]
0.72 [Nif90]. The deduced parameters were EGDR =

17.8±0.2 MeV, ΓGDR = 8.0±0.4 MeV and SGDR = 1.00±0.03. The uncertainties

were obtained by χ2 minimization procedure in the energy range 14 - 21 MeV.
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The experimental high-energy γ ray spectrum for 31P along with the cascade

spectra, properly folded with the detector response function, are shown in Fig.

(7.3a). In order to emphasize on the GDR region the corresponding linearized

spectra are shown in Fig. (7.3b) using the quantity F (Eγ)Y
exp(Eγ)/Y

cal(Eγ),

where Y exp(Eγ) and Y cal(Eγ) are the experimental and the cascade spectra,

while F (Eγ) is the Lorentzian having the above mentioned parameters.

Finally, the isospin mixing parameters were deduced utilizing the IVGDR

parameters extracted from 31P. In order to increase the sensitivity of isospin
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Figure 7.4: (a) Experimental σγ × ǫin for 31P (green open circles) and 32S (blue
filled circles). (b) Experimental ratio (pink filled circles) of the γ ray cross section of
32S and 31P along with the cascade predictions for different Γ↓

>. Γ↓
> = 0 keV for

blue long-dashed line (zero mixing), Γ↓
> = 24 keV for red solid line and Γ↓

> = 10 MeV

for black short-dashed line (full mixing). χ2 as a function of Γ↓
> (inset Fig. b).

mixing and minimize the effects of statistical model parameters, isospin mixing

parameters were deduced from the ratio of γ ray cross sections of 32S and 31P in

the GDR region [Fig. (7.4b)]. We remark here that though we could simulate

the response function of LAMBDA spectrometer, the absolute efficiency (ǫin)

of the array is not known. So, we have taken the ratio of [σγ × ǫin] for both

the nuclei and compared with the ratio of the cascade cross-sections properly

folded with the detector response function. It should be highlighted here that

Γ↓
> was the only parameter that was varied to match the experimental ratio

with the cascade prediction. As Γ↓
> remains nearly temperature independent

[Hrn86, Kuh79], the same Γ↓
> was used for all the decay steps . The best value

for Γ↓
> was obtained by χ2 minimization technique in the energy range 14-21

MeV and was found to be 24 ± 13 keV. The resulting values of isospin mixing
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Table 7.1: Experimentally determined values of isospin mixing parameter

Angular Momentum Temperature Parameter Value

(~) (MeV) (%)
〈

J
〉

= 12 2.6 α2
< 3.5±1.8

J = 1 3.2 α2
> 3.5±1.9

parameters are given in table (7.1). The temperature was calculated using the

relation T =
√

(E∗ −Erot −∆P )/ã, where Erot is the rotational energy and

∆P is the pairing energy. The experimental high-energy γ ray spectrum for 32S

along with the cascade fits for Γ↓
> = 0 keV and Γ↓

> = 24 keV are shown in Fig.

(7.3c) and the corresponding linearized plots are shown in Fig. (7.3d). It is also

interesting to observe from Figs. (7.3a) and (7.3b) that Γ↓
> does not affect the

high-energy γ ray spectrum for 31P which reaffirms the fact that E1 γ transitions

in a non-self-conjugate nucleus are not influenced by isospin mixing. It should

be emphasized that the presentations [Fig. (7.3)] depend on the normalization

point of experimental and theoretical spectra; however, the extracted Γ↓
> from

the ratio of the cross section of 32S and 31P, and the resulting isospin mixing

parameters are completely independent of the normalization point. It should

also be mentioned that isospin mixing parameters depend on J . This is because

the intrinsic decay width of a nuclear state, which governs the values of isospin

mixing parameters [Eq. (7.2)], depends on angular momentum. The variation

of isospin mixing parameter with angular momentum is shown in Fig. (7.5).

The quoted errors in Γ↓
> and α2

≷ correspond to the statistical errors as well

as systematic errors owing to the presence of isotopic impurity in the 28Si tar-

get and the uncertainty in the determination of non-statistical bremsstrahlung

component. The contributions due to isotopic impurity mainly come from 29Si

and 30Si. As mentioned earlier the bremsstrahlung component was parameter-

ized with exponential function σ = σ(0)e−Eγ/E0. The slope parameter E0 is
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Figure 7.5: Variation of isospin mixing parameters with angular momentum. The
green circles represent α2

>, while the blue triangles stand for α2
<.

determined from the angular distribution of high-energy γ rays. The value σ(0)

depends on the number of n-p collisions [Nif90]. For the present systems the

number of n-p pairs are small and σ(0) was determined by fitting the high-

energy γ ray spectrum in ∼ 20-25 MeV region through eye estimation. The

contribution of bremsstrahlung was found to be less that 5% of the GDR γ ray

contribution. As Γ↓
> was determined from the ratio of γ-ray cross sections of 32S

and 31P, the effect of bremsstrahlung component is nearly nullified. However,

the bremsstrahlung contribution is additive and can not be nullified completely.

The quoted errors contain the maximum uncertainty owing to the selection of

the bremsstrahlung component.

7.4 Results and discussions

The Coulomb spreading width (Γ↓
>) for

32S extracted in this work is comparable

with other measurements as shown in Fig. (7.6). The data points are comprised

of the width of isobaric analog states (IAS) and the spreading width obtained
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Figure 7.6: Variation of the Coulomb spreading width with mass number. The red
square is the present measurement and the green circle is the measured datum of
Ref. [Hab04] for 32S. The pink circles are the measured data for 80Zr [Cor11, Cer15].
(adopted from Ref. [Cer16]).

from compound nuclear reactions. The physical origin of both widths are the

same i.e. mixing due to Coulomb interaction. It is obvious from Fig. (7.6), that

the Coulomb spreading width remains roughly constant with nuclear mass. The

slight increase at high mass region can be attributed to the increase in Coulomb

interaction owing to the increase in proton number. It is also interesting to note

that the present measured Γ↓
> (red square) is comparable to that obtained in Ref.

[Hab04] (green circle) using the same formalism. This ([Hab04]) is the only other

measurement available for 32S at temperature T = 2.85 MeV which resulted in

Γ↓
> = 20±25 keV corresponding to α2

< = 1.3±1.5%. These results emphasize the

fact that Γ↓
> indeed remains constant with temperature which was also observed

for 80Zr [Cor11, Cer15]. Also, in Ref. [Hab04], 32S was populated using heavy

ion reaction [20Ne (Ebeam=105 MeV) + 12C→ 32S] for which the average angular

momentum 16~ (obtained using pace4 calculations) as compared to the present

measurement at average angular momentum 12~. Therefore, it could also be

conjectured that the Coulomb spreading width remains constant with angular
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(b) temperature. In Fig. (b) the red square is the present measurement, while the
dark blue diamond represents the measured datum of Ref. [Hab04] for 32S.

momentum.

As shown in Fig. (7.5), the isospin mixing parameter α2
< depend on an-

gular momentum. In literature, therefore, weighted average of isospin mixing

parameter is quoted, the weight being the yield of high-energy γ rays obtained

as a product of fusion cross section and the γ branching ratio. In this thesis,

the same convention has been followed and α2
< provides the average value of

isospin mixing, unless mentioned otherwise. In Fig. (7.7) the measured isospin

mixing parameters are compared with the other measurements performed using

the same procedure [Beh93, Hab04, Cor11, Cer15] (i.e. the formalism of Har-

ney, Richter and Widenmueller [Hrn86]). As isospin mixing depends on both

temperature and nuclear charge (Z), only those results have been considered for

which measurements are available at different temperatures or excitation ener-

gies for a given system. In Fig. (7.7a), the results of the pioneering work of Behr

et al. [Beh93] are presented as a function of initial excitation energy. By inclu-

sive measurements, it has been shown that for 28Si, the isospin mixing decreases

with the increase in excitation energy. However, 26Al, though with large errors,
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isospin mixing was found to increase with excitation energy. As nuclear temper-

ature is more fundamental quantity than excitation energy, in recent years, the

results are quoted in terms of temperature. As can be seen from Figs. (7.7a)

and (7.7b), the present measurement (red square) is comparable with the other

measurements in this mass region and excitation energy. The present result,

along with the result of Ref. [Hab04] (dark blue symbol in Fig. (7.7b)), sug-

gests that isospin becomes a good quantum number at higher excitations for a

given system. Similar results were observed for 80Zr [Cor11, Cer15]. These ob-

servations are in conformity with the Wilkinson conjecture [Wil56] which states

that at high excitations the lifetime of the individual states becomes so small

that they do not get sufficient time to mix, resulting in the restoration of isospin

symmetry.

7.4.1 Comparison with the calculation at high tempera-
ture

It is interesting to compare the measured α2
> at minimum angular momentum(1~)

with the calculation of Sagawa et al. [Sag98]. According to the formalism (sec-

tion 3.2.2)

α2
> =

1

Iz + 1

ΓIAS

ΓCN + ΓIVM

, (7.4)

where ΓIAS is the spreading width of the IAS, which is equivalent to Γ↓
>. ΓCN

is the compound nuclear decay width and ΓIVM is the width of the isovector

monopole (IVM) state at the energy of the IAS. Since this formalism does not

involve angular momentum, the measured α2
> has been considered at the lowest

angular momentum. The value of α2
> was set at 0.7% at T = 0 from the recent

calculation of Satula et al. [Sat09] [Fig. (3.1)]. This results in ΓIVM = 3.4 MeV

as ΓCN = 0 at T = 0. Next, ΓCN was calculated using the cascade code at

different temperatures using the best fit parameters. The resulting calculation
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> with calculation at high temperature [Sag98].

is shown by red dot-dashed line in Fig. (7.8). It should be mentioned here that

ΓIVM was assumed temperature independent and Γ↓
> was given a weak linear

dependence [Sag98] on T as Γ↓
>(T ) = Γ↓

>(0)(1+ cT ) where c = 0.2 MeV−1. The

parameter c was calculated by assuming that Γ↓
>(T = 2.6 MeV) = 37 keV i.e.

Γ↓
> remained within the experimental error bar. As can be seen from Fig. (7.8)

that measured α2
> = 3.5±1.9 % remains well above the calculated value.

The value of α2
> at T = 0 has also been extracted using the calculated value

of δc = 0.65 % in 34Cl which nearly reproduces the corrected ft value [Har15].

At present, the corrected average ft value is 3072.27±0.62 s, while the corrected

ft value in 34Cl obtained by using δc = 0.65 % is 3070.70±1.75 s [Har15]. α2
> is

extracted utilizing the formalism of Ref. [Aur09] with the assumption that δc

is same for 34Cl and 32S. According to this formalism α2
> is defined as

α2
> =

41ξA2/3

4(I + 1)V1

δc , (7.5)

where V1 = 100 MeV, ξ = 3 [Aur09]. Eq. (7.5) yields α2
> = 2.0 % which

in turn yields ΓIVM = 1.2 MeV. α2
> was extrapolated to higher temperatures

using the same procedure described before. As can be seen from Fig. (7.8)

the calculation (solid green line), though underpredicts, better explains the
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measured datum. It should be highlighted in this context that Melconian et al.

[Mel11] have found δc to be as high as 5.3 ± 0.9 % which was attributed to the

presence of close lying I = 0 and I = 1 states near 7.0 MeV excitation energy

in 32S and it was corroborated by the shell model calculations. So, it would

be interesting to perform the statistical model analysis with the local effects

but is beyond the scope of the present thesis. It should be highlighted here

that, as mentioned therein, the formalism of Sagawa et al. [Sag98] may be valid

only in medium-heavy and heavy nuclei. It could also be possible that at low

mass region the isospin mixing has some finite value at zero temperature, then

it gradually increases with temperature and then decreases in the statistical

region (as is conceived qualitatively). Thus, in future, exclusive measurements

in the transition region are called for better understanding on the variation of

isospin mixing with temperature at low mass region.
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Chapter 8

Summary, Conclusion and
Outlook

The present thesis deals with the experimental study of two crucial aspects of

atomic nuclei at finite temperatures utilizing the isovector giant dipole resonance

as a probe. The first part contains a self-consistent experimental determination

of the ratio of shear viscosity to entropy density for equilibrated finite nuclear

matter from A ∼ 30 to A ∼ 208 at different temperatures, while the second

part presents an experimental study of isospin mixing at high temperature in

32S. The high-energy γ ray spectra from the decay of GDR, evaporated neutron

energy spectra, and the low-energy γ ray multiplicity have been measured us-

ing the LAMBDA spectrometer, neutron TOF detector and multiplicity filter,

respectively.

This is the first self-consistent experimental determination of η/s for finite

nuclear matter. The shear viscosity at finite temperature has been determined

from measured GDR width and energy. The entropy density has been deduced

from nuclear level density parameter and nuclear temperature, determined pre-

cisely by simultaneous measurements of evaporated neutron energy spectra and
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angular momenta. The importance of this work lies in the fact that the param-

eters required for the determination of shear viscosity at finite temperatures

have been extracted simultaneously with those required for the determination

of entropy density. The deduced shear viscosities for all the systems have been

reproduced quite well with the calculations based on the generalized Fermi liq-

uid model, while the microscopic calculations of entropy density match well with

extracted entropy density. The deduced values of η/s remain confined in the

range (2.5-6.5) ~/4πkB in the temperature range 0.8-2.1 MeV. Thus, this result

establishes that the nuclear fluid conform to the KSS conjecture and strong

fluidity is the universal characteristic of the strong interaction of the many-

body nuclear systems. The present result, along the results of low-temperature

quantum fluids and high-temperature quark gluon plasma, suggests that large

fluidity could also possibly be the intrinsic characteristic feature of strongly

coupled systems. It would be interesting to explore the variation of η/s with

neutron-proton asymmetry as well as the lower bound of η/s proponed in liter-

ature. Also, the proposed variation of the energy of dynamic dipole resonance

mode with η/s is an intriguing problem worth investigating in future.

In the second part of this thesis, exclusive measurement of isospin mixing in

32S at high temperature has been discussed. The compound nuclei 31P and 32S

have been populated at the same excitation energy and angular momentum but

with different entrance channel isospins to extract the isospin mixing probability

in 32S. The GDR parameters have been extracted from the high-energy γ ray

spectra of 31P. Utilizing these parameters the isospin mixing probability has

been extracted from the ratio of high-energy γ ray spectra of 32S and 31P.

Apart from that, the nuclear level density parameter and angular momentum

have been determined for both nuclei from the measured evaporated neutron

energy spectra and low-energy γ ray multiplicity, respectively. Thus, the nuclear
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temperature which is crucial for proper interpretation of the experimental data

has been determined precisely. This measurement, along with the previous ones

performed utilizing the same procedure, suggests that the Coulomb spreading

width indeed remains constant with both temperature and angular monentum.

The isospin becomes a good quantum number with the increase in temperature.

This is corroborated by Wilkinson’s prescription which states that the lifetime

of the individual states becomes so small that they do not get sufficient time to

mix. However, the theoretical model of Sagawa et al., which nicely reproduces

the measured isospin mixing probability at high mass region, underpredicts the

measured data at low mass region. This suggests that the prescription of Sagawa

et al. may be valid, as mentioned by the authors themselves, in medium and

heavy mass regions only. However, In future, systematic measurements for a

given system and more theoretical insights are required for proper understanding

of the variation of isospin mixing with temperature in lower mass region.
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