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Chapter 1

Introduction

1.1 General Introduction

Discovery of Pulsars [1] and its identification [2] as rotating neutron stars in 1968-69

generated a great flurry of interests in neutron star physics. Now they are believed to

be remnants of supernova explosions which are the endpoint in the evolution of massive

stars. All the quantities that characterize neutron stars are extreme. At the surface of the

star the matter density is ρ . 104 g cm−3, but at the core it can be a few times greater

than the normal nuclear matter density (ρo ⋍ 2.8× 1014 g cm−3). Various exotic forms of

matter such as hyperons, quark-hadron mixed phase, Bose-Einstein condensate of kaons

etc may appear at such high densities. Neutron Stars can also have very strong magnetic

fields (∼ 1012 G), very large spins (period P ∼ 10−3 − 1 s) and very small spin down

rates (Ṗ∼ 10−15). We cannot have matters with these kind of extreme characteristics

in our terrestrial laboratories; therefore neutron stars are very promising laboratories for

studying matter under such extreme conditions. A wide variety of theoretical models

exists in the literature to describe the properties of neutron star matter. Ultimately only

one model which would successfully interpret all the observational data will survive in

future.
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1.2 Birth of a Neutron Star

Neutron stars are final products of stellar evolution and believed to be formed in supernova

explosions. A typical star spends most of its luminous life in the hydrogen burning phase

where hydrogen is fused to produce helium accompanied by the release of a huge amount

of thermal energy, in the stellar core. The outward thermal pressure produced in this

fusion process balances the inward gravitational pull and stabilizes the star. When the

hydrogen is exhausted in the core the star begins to collapse due to its own gravity. The

matter in the core gets heated due to this collapse and when the temperature is high

enough helium fusion starts at the core with hydrogen continuing to burn in a outer

shell surrounding the core. For stars with mass M . 8M⊙, the burning process cannot

proceed beyond helium fusion as the core temperature can never become high enough

for further burning. Mainly carbon and oxygen are produced in helium burning and

these reactions are very temperature sensitive - just a few percent rise in temperature can

increase the reaction rate by manifolds. This makes the star very unstable and causes a

huge pulsation to build up which eventually expels the whole envelope into the interstellar

medium. The remaining carbon-oxygen core contracts under gravity but cannot attain

enough temperature to burn carbon, as a large portion of the stellar mass has been lost

to the interstellar medium. Eventually it becomes a white dwarf where the gravity is

balanced by the electron degeneracy pressure.

For more massive stars (M & 8M⊙) the core goes through the subsequent burning

of carbon, neon, oxygen, magnesium and silicon with the addition of concentric burning

shells surrounding the core. This gives the star a onion-shell like structure (Fig. 1.1)

with iron group elements (Fe, Ni, Co) which are the ash of silicon burning, at the center.

Burning process ends at 56Fe, as it is the most stable nucleus and therefore Fe burning

is not energetically favorable. As there is no burning and therefore no outward thermal

pressure in the core; it begins to collapse under gravity. The core also gains mass as the
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Figure 1.1: Onion-shell like structure of a massive star before core-collapse

ash of burning shells are added to it and when the mass exceeds the Chandrasekhar limit

(1.4M⊙), electron degeneracy pressure cannot balance the gravity and hence the core

continues to collapse. Very soon the density become high enough so that the inverse beta

decay, where a proton capture an electron to produce a neutron and a neutrino, becomes

energetically favorable. As the core collapses further there is a huge loss of electrons by

this process which in turn reduces the electron degeneracy pressure and thereby further

accelerating the collapse. Neutrinos produced in this process interact very little with the

matter and leave the star very quickly; but as the density reach ∼ 1012 g cm−3, diffusion

time scale of neutrinos become greater than the collapse rate and they get trapped inside

the core. When the density inside the core exceeds the nuclear density (∼ 2.8 × 1014 g

cm−3), nuclei dissolve to form nuclear matter, and the short-range repulsion of nucleons

together with the degeneracy pressure of nucleons, electrons as well as neutrinos resists

further compression. This sudden halt in collapse generates a shock wave through the

in-falling material and it eventually gathers sufficient energy to expel the whole stellar

envelope in a spectacular event called supernova explosion. If the initial mass of the star

is more than 20M⊙, the remaining core collapses further to form a black hole, while for

less massive stars the remnant form a neutron star. A newly born neutron star also called

protoneutron star is initially very hot having a temperature of 1011 − 1012 K, but it cools

down very fast by the emission of its trapped neutrinos and within a day the temperature

drops to 109 − 1010 K. The neutron star continues its cooling through neutrino emission

3
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Figure 1.2: Interior of a typical neutron star

but in a much slower rate and in the later stage the cooling is dominated by emission of

photons.

1.3 Structure and Composition of Neutron Stars

In a cold neutron star, the matter is in its absolute ground state in the sense that energy

can’t be lowered by any strong, weak or electromagnetic process. The ground state

composition changes considerably with increasing density. Figure (1.2) shows a schematic

picture of the interior of a neutron star. At the surface of the star there is an atmosphere

with thickness of few centimeters and containing plasma of H, He and possibly a trace of

heavier elements. Though it contains a negligible fraction of the total mass of the star, it

is very important in the context of observations as the observed spectra of electromagnetic

and thermal radiations originate in this region. Just below the atmosphere there is a thin

envelope which is a few meter thick and contains ionized 56Fe atoms along with a gas of

non-relativistic electrons.

56Fe nuclei become completely ionized at density ∼ 104 g cm−3, when the spacing
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between nuclei becomes small compared to the Thomas-Fermi radius of an isolated neutral

atom. This can be taken as the starting point of the outer crust and it has thickness of a

few hundred meters. The outer crust contains nuclei arranged in a body-centered cubic

(bcc) lattice and immersed in a gas of free electrons which are relativistic above the density

ρ ∼ 107 g cm−3. At ρ ∼ 104 g cm−3, 56Fe is present as the equilibrium nucleus; but with

increasing density the equilibrium nucleus become more and more neutron rich through

electron capture process (p+ e− → n+ νe). At a density ∼ 4× 1011 g cm−3, the chemical

potential of neutrons exceeds their rest mass and as a consequence neutrons begin to drip

out of the nuclei. This point is called the neutron drip point and it marks the end of the

outer crust and the beginning of the inner crust.

So the matter in the inner crust is made up of neutron-rich nuclei embedded in a

neutron gas along with the uniform electron gas and it might have a thickness of about

one kilometer. With increasing density, number of dripped neutrons as well as the volume

fraction occupied by the nuclei increases. At the bottom layer of the crust when this

volume fraction becomes & 50%, it may become energetically favorable for the nuclei to

undergo a series of transitions from spherical shape to cylinder, slab, cylindrical bubble

and spherical bubble with increasing density [3–5]. This is the so called pasta phase.

Beyond ρ ∼ 1014 g cm−3, nuclei no longer exist as they dissolve to form nuclear matter.

This is defined as the crust-core boundary.

The outer core extends upto a density ∼ 2ρ0 and can have thickness of a few kilometers.

It contains uniform matter of neutrons, protons, electrons and muons where electrons and

muons make up ideal fermi gases and neutrons and protons form a strongly interacting

fermi liquid. In this high density neutrons may behave as superfluid while protons can

show superconductivity.

The inner core is the inner most part of a neutron star. The inner core along with

the outer core accounts for most of the neutron star mass. The composition and the

equation of state (EOS) of this dense region is very much model dependent and it has
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been proposed that various exotic forms of matter such as hyperons, quark-hadron mixed

phase, Bose-Einstein condensate of kaons etc may appear at such extremely high densities.

1.4 Observational constraints

Since the theory of many-body interactions in dense matter is not fully developed yet,

there exists a great number of theoretical models which give different EOSs for neutron

star matter. To constrain these models we depend exclusively on neutron star observa-

tions, as the environment of neutron star interior cannot be reproduced in our laboratories

in earth. Two most important ingredients in this regard are masses and radii of neutron

stars. This is because each EOS of neutron star matter gives different mass-radius rela-

tionship and also predicts a different allowed maximum mass for a neutron star. So the

accurate measurement of masses and radii of neutron stars can disqualify a theoretical

model if the mass-radius relationship given by it does not satisfy measured values. Usually

theoretical models that include exotic particles at the core give softer EOS which leads

to a smaller maximum mass, as compared to the models which do not consider exotic

particles. The observed maximum mass for neutron stars thus can limit the number of

models by throwing away those which predict smaller maximum mass than that of the

observed. Exactly this thing has happened very recently after an accurate measurement

reveals a neutron star to have mass 1.97 ± .04M⊙ [6] which is significantly larger than

the earlier accurately measured neutron star masses and consequently some of the models

have been ruled out [6].

Neutron stars emit radiations in all bands of electromagnetic spectrum. Various im-

portant informations on the surface temperature, chemical composition, magnetic field,

mass, radius etc of neutron stars can be extracted from these spectra. Most of the neu-

tron stars are observed as radio pulsars and more than two thousand (2008) [7] radio

pulsars have been discovered so far of which 186 are in binaries which can be of two types
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: PSR+NS and PSR+WD. In the first case the companion star is a neutron star while

for the latter case it is a white dwarf. There are other types of binaries where the neutron

star accrete matter from the companion and thereby emit X-rays. These are called X-ray

binaries and are of two types: high mass X-ray binaries (HMXBs) and low mass X-ray

binaries (LMXBs). In a HMXB, the companion is a massive star with massMcom > 10M⊙

and for LMXBs, companions are lighter than the sun.

1.4.1 Mass measurements

The mass of a neutron star can only be measured if it is in a binary. So far masses

of only 58 neutron stars have been measured and are summarized by J M Lattimer [8]

as shown in Fig. 1.3. In a binary system, stars closely follow the Keplerian orbits and

this enables us to use the standard astronomical techniques to measure their masses. By

measuring the radial velocity of one of the components we can evaluate five Keplerian

parameters: the orbital period (Pb), the semi-major axis projected on the line of sight

(xj = a sin i, i is the orbital inclination angle to the line of sight and a is the orbital

separation), the eccentricity of the orbit (e), the periastron longitude (ω) and the time

of periastron passage (T0). These parameters give two independent equations relating

four unknowns: M1, M2, a, and sin i and therefore we have to search for other means to

obtain other two equations.

In X-ray binaries neutron stars are observed in X-rays and companions are mainly

optical but may also be seen in other bands (near infrared, ultraviolet etc). In this case

the third equation, namely the mass ratio (q = M1/M2), can be obtained by measuring

the radial velocity of the other component. For eclipsing binaries another equation can

be obtained by measuring the eclipse duration and relating it to the inclination angle

(sin i). The knowledge of the Roche lobe radius (RL) and the factor β(=R/RL, where R

is the radius of the companion) can also be important to constrain the inclination angle.

Among the 14 X-ray binaries listed in the Fig. 1.3, 9 are HMXBs all of which show eclipses
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Figure 1.3: Measured masses of neutron stars [8]
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and therefore presumably have enough observational data to calculate their masses. But

the figure shows large uncertainties in the mass measurements and for most of the cases

these arise due to the deviation of the radial velocity profile of the optical companions

from the expected Keplerian profiles. The most accurate mass measurements have been

done for LMC X-4, but its mass (M1 = 1.285 ± 0.051M⊙) is too low to constrain the

EOS. The most interesting candidate in this set is the 4U1700-377 with measured mass

of 2.44± 0.27M⊙, but there are some speculations that the compact star may be a black

hole instead of a neutron star [9]. We hope further observations will resolve the issue and

if it turns out to be a neutron star it will greatly constrain the neutron star EOS and

possibly rule out all the exotic EOSs. There are also 5 LMXBs in the list out of which

4U1822-371 (M1 = 1.96+0.36
−0.35M⊙) and B1957+20 (M1 = 2.39+0.36

−0.29M⊙) may be massive,

but unfortunately the uncertainties are too large to draw any definite conclusion.

In PSR+NS and PSR+WD binaries both the components are compact objects and

this gives us very good opportunity to study the effects of general relativity on their orbital

motions. From the pulsed radio emission of pulsars one can easily measure their radial

velocities which give first two relations to measure the masses of both the components.

For other two relations one tries to measure at least two of the five general relativistic

post-Keplerian (PK) parameters [10]: the periastron advance (ω̇), the time dilation or

gravitational redshift (γ), the orbital period decay (Ṗb) and the range (r) and shape (s)

of the Shapiro delay. The Periastron advance is only measurable if the eccentricity of

the orbit is large. By measuring it one can get the third relation namely the total mass

(M = M1 +M2) of the binary system. The parameter γ contains the quadratic Doppler

effect as well as the gravitational redshift in the field of the companion. This can also

give an independent relation for eccentric binaries. The third parameter Ṗb arises due

to the emission of gravitational radiation and measurable for binaries with small periods

(Pb . 12 hours). There can be an extra delay in pulse arrival if the signal travels close

to the compact companion. This delay is called Shapiro delay and best detected for
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binaries with large orbital inclination. These gives two independent relations through the

parameters r and s.

Figure 1.3 contains 9 PSR+NS binaries containing 18 neutron stars, masses of which

are obtained by measuring the radial velocities of the pulsars as well as some of the

PK parameters. As can be seen from the figure, except for J1829+2456, J1811-1736

and J1518+4904, masses of these binaries are measured with very good accuracy. The

Husle-Taylor pulsar (B1913+16) is the first radio pulsar detected in a binary and its mass

(1.4398± 0.0002) is the most accurately measured neutron star mass so far. The binary

containing J037-3030A and J037-3030A is an unique system where both the neutron stars

are radio pulsars and it helped to determine their masses precisely. But, unfortunately the

masses are too small to constrain the EOS. There is only one candidate J1518+4904 which

can contain a massive neutron star but the error in mass measurement (M2 = 2.00+0.58
−0.51)

is very large because of the fact that the orbit of this binary is very wide so that it is very

difficult to measure the PK parameters other than ω̇ [11].

For NS+WD binaries also PK parameters can only be measured if they are compact

enough as for wide binaries relativistic effects are very weak. But, luckily additional

relations for these systems can be obtained by optical observations of white dwarf com-

ponents [12]. Masses of white dwarfs can be obtained in several ways [13]. For example,

by estimating the radius from direct measurements of optical flux, effective temperature

and the distance, the mass can be determined from the theoretical mass-radius relation-

ship. Also, from the measurement of the surface gravity, the mass of a white dwarf can

be estimated. For binary millisecond pulsars the mass of the white dwarf companion

can also be obtained from the relation between Pb and M2 [14]. Till date masses of 24

NS-WD binaries have been measured as shown in the fig. 1.3. Here the most accurately

measured mass is of the pulsar J1141-6545. This is because the binary system is very

compact and eccentric and that allow one to measure the PK parameters accurately. The

mass (1.97 ± 0.04) of the pulsar J1614-2230 is the highest accurately measured mass so
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far and it has ruled out some of the exotic EOSs. The accurate measurement of the mass,

done by Demorest et al [6] in 2010, was possible because of the high orbital inclination

(i ≃ 89◦), which allowed the very precise determination of the Shapiro delay parameters,

of the system. There are two interesting binaries, B1516+02B and J1748-2021B, which

can have neutron stars with mass beyond 2M⊙. For B1516+02B the measured mass is

2.08 ± 0.19M⊙, so the error should be narrowed down by future observations to confirm

that possibility. The measured mass for the J1748-2021B is 2.74±0.21 i.e. even the lower

limit gives a mass greater than 2.5M⊙. In this measurement the total mass of the system

was deduced by measuring the periastron advance (ω̇) of the system with the assump-

tion that ω̇ was fully relativistic and had no contribution from the tidal or rotational

deformation of the companion [15]. But any such contribution make the measurement

unreliable and therefore further investigations are needed to justify the assumption. Any-

way, J1748-2021 along with the two X-ray binaries 4U1700-377 and B1957+20 seem to be

the strongest candidates to further constrain the EOS of neutron star matter in future.

1.4.2 Radius measurements

Simultaneous knowledge of mass and radius with very good accuracy is necessary to

constrain the neutron star EOS, as already discussed in the beginning of this section.

Although masses of several neutron stars have been measured quite accurately, (unfor-

tunately) there is no radius measurement available for them. However, there exist some

methods by which one can try to measure the radius of a neutrons star.

In one such approach the radius of a neutron star is measured by analyzing the thermal

spectrum emitted from its surface. Assuming the emission as blackbody the radiation

radius (R∞) of a star can be obtained from the relation

F∞ =

(

R∞

d

)2

σBT
4
∞, (1.1)
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where F∞ is the redshifted radiation flux at the earth and is found by measuring the

intensity of the radiation, T∞ is the redshifted surface temperature determined from the

position of spectral maximum, d is the distance of the star with respect to the observer

and σB is the Stefan-Boltzmann constant. The radius R of the star then can be obtained

from

R = R∞(1 + z)−1, (1.2)

if the gravitational redshift (z) is known. However, various systematic uncertainties can

enter in the determination of R∞. Inaccuracy in the measurement of distance of the

star is a major source of uncertainty. Temperature may not be uniform over the stellar

surface as assumed in Eq. (1.1). The detected spectrum may get distorted due to the

absorption in the interstellar hydrogen gas the column density of which is poorly known.

The real radiation spectrum deviates from that of a blackbody and is difficult to simulate

as it depends on various things such as the chemical composition of the atmosphere, the

surface gravity, magnetic field etc of the neutron star all of which are not that well known.

Clearly, measurements will be reliable only if most of these uncertainties can be controlled.

There are several isolated neutron stars like Geminga (PSR B0633+17), Vela (PSR

B0833-45), PSR B0656+14, RX J1856-3754 etc for which radius measurements have been

performed. From optical studies of Geminga and taking its distance to be ∼ 160 pc as

obtained by parallax measurements [16], Golden & Shearer [17] first estimated the radius

of Geminga as R∞ . 10 km. Later considering large uncertainties in d, Haensel [18]

obtained the limit R∞ . 17.6 km, which is too weak to constrain the EOS. Radius

of Vela pulsar was estimated by Mori et al. [19] by spectral analysis of XMM-Newton

observations. For spectral fitting they use a two-component model made up of a thermal

(blackbody or magnetized hydrogen atmosphere) as well as a non-thermal (power-law)

spectrum. With blackbody fit they obtained R∞ = 2.5±0.2 km which may be attributed

to the thermal radiation of a hot polar cap on the stellar surface. For the hydrogen

12



atmosphere model the inferred radius was R∞ = 15.0+6.5
−5.1 × d/(294 pc) km, where 294

pc is the measured distance [16] of the Vela pulsar by parallax method. For the PSR

B0656+14 the parallax measurement gives d = 288+33
−27 pc [20]. Fit of the thermal X-ray

spectra with a magnetized hydrogen atmosphere model yields 13 . R∞/km . 20 [20].

RX J1856.5-3754 is an another isolated neutron star interesting for radius measurements.

The most recent radius estimate of this source has been done by Sartore et al. [21]. They

used the data taken by XMM-Newton satellite between 2002 and 2011 and fit them with

two blackbody models: one is hard with a temperature of kT h
∞ = 62.4+0.6

−0.4 and emission

radius of Rh
∞ = 4.7+0.2

−0.3(d/120 pc) km while the other one is soft with temperature of

kT s
∞ = 38.9+4.9

−2.9 and emission radius of Rs
∞ = 11.8+5.0

−0.4(d/120 pc) km. The soft spectrum

can be associated with the emission from the whole surface while the hard spectrum

corresponds to the emission from a hot polar cap and when taken together they give a

radiation radius of R∞ =
√

Rs2
∞ +Rh2

∞ = 12.7+4.6
−0.2(d/120 pc) km. The measured parallax

distance of this pulsar is d = 123+11
−15 pc [22], which implies R∞ = 13.0+6.3

−1.8 km. In all the

last three cases the uncertainties in R∞ measurements are not small enough to be useful

for containing the EOS.

LXMBs that exhibit thermonuclear bursts are very good candidates to constrain the

neutron star EOS. These bursts are called type-I X-ray bursts and occur due to the unsta-

ble ignition of nuclear burning (mainly helium) in the accreted matter on a neutron star

surface. Some of these bursts are so intense that the radiation pressure can temporarily

lift the photosphere off the neutron star surface. During such a photospheric radius ex-

pansion (PRE) bursts, initially the temperature decreases while the flux increases rapidly.

As the photosphere comes down, the temperature increases and the flux decreases. Grad-

ually the photosphere settles down on the surface and the temperature decreases again

as the star begins to cool [23]. It is generally assumed [24] that at touchdown (when the

photosphere touches the stellar surface), the temperature becomes maximum, the radius

of the photosphere (rph) becomes equal to the stellar radius (R) and the corresponding
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flux is equal to the Eddington limited flux given by

Fedd,∞ =
GMc

κd2

√

1− 2GM/c2R, (1.3)

where the opacity of the atmosphere is κ = 0.2(1 + X) cm2 g−1, X is the hydrogen

mass fraction. The relation is obtained by assuming electron scattering as the dominant

process. After the burst, the star gradually reaches the quiescent state and the ratio

F∞/σBT
4
∞ becomes almost constant :

F∞

σBT 4
∞

= f−4
c

(

R

d

)2(

1− 2GM

c2R

)−1

, (1.4)

where fc = T∞/Teff is the color correction factor which accounts for the deviation of

the spectrum from a blackbody and depends on the composition of the atmosphere,

surface gravity and Teff [25]. Combining eqs. (1.3), (1.4) and the expression for redshift

z = (1− 2GM/c2R)−1/2 − 1, following relations are obtained :

M =
f 4
c c

5

4Gκ

F∞

σBT 4
∞

[1− (1 + z)−2]2(1 + z)−3F−1
edd,∞ ,

R =
f 4
c c

3

2κ

F∞

σBT 4
∞

[1− (1 + z)−2](1 + z)−3F−1
edd,∞ ,

d =
f 2
c c

3

2κ

F∞

σBT 4
∞

[1− (1 + z)−2](1 + z)−3F−1
edd,∞ . (1.5)

So, for neutron stars that undergo PRE bursts, simultaneous determination of mass,

radius and distance is possible if Fedd,∞, F∞/σBT∞ as well as z could be measured from

observations and sufficient knowledge of κ and fc could be acquired. Using this procedure

Özel (2006) [24] determined the mass (M = 2.10 ± 0.28M⊙), radius (R = 13.8 ± 1.8

km) and distance (d = 9.2 ± 1.0 kpc) of the source EXO 0748-676 and claimed to rule

out all the soft EOSs. If the redshift of the star is unknown then the mass and radius

can be calculated using eqs. (1.2), (1.3) and (1.4) and with the knowledge of the stellar
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distance. PRE burst sources that reside in globular clusters (GCs) are good candidates

for this method as their distances can typically be measured with good accuracy. Özel

et al (2009) [26] applied this method to a neutron star EXO 1745-248 residing in the GC

Terzan 5 and obtained tightly constrained pairs of values for the mass and radius centered

around M = 1.4M⊙ and R = 11 km or around M = 1.7M⊙ and R = 9 km. By similar

approach Güver et al [27, 28] determined masses and radii of two LXMBs, 4U1608-522

and 4U1820-20. For 4U1608-522 they found M = 1.74 ± 0.14M⊙ and R = 9.3 ± 1.0 km

and M = 1.58 ± 0.06M⊙ and R = 9.1 ± 0.4 km for 4U1820-20. The last three results

give stringent constraints on the neutron star mass and radius with Özel et al (2010) [30]

claiming that these results disfavor any EOS that contains only nucleons. However, Steiner

et al (2010) [29] found internal inconsistency in these calculations and they argued that

the inconsistency can be removed by relaxing the assumption that rph = R at touchdown

point, which is identified from the maximum in T∞. Considering extended photosphere

corresponding to T∞ maximum, they obtained larger values for radii and substantially

larger confidence intervals for masses and radii and therefore could accommodate a larger

number of EOSs some of which contain only nucleons.

Quiescent LMXBs (qLMXBs) which spend long periods in quiescent states between

episodes of accretions, are very good candidates for the mass and radius measurements,

because of several reasons: (i) there atmospheres are composed of pure hydrogen as

heavier elements obtained from accretions gradually sink in, (ii) they have very small

magnetic fields as no pulsations or cyclotron spectral features are observed from them,

(iii) their distances can be measured from PRE bursts or if they reside in globular clusters.

Therefore, fitting the spectra with a nonmagnetic hydrogen atmosphere model and using

eqs. (1.1) and (1.2), one can estimate the mass and radius of a qLMXB. Using this

approach most accurate radii which were useful to constrain the neutron star EOS [29,31],

so far are obtained for qLMXBs in globular cluster ω Cen, in M13 [31], for U24 in NGC

6397 [32] and for X7 in 47 Tuc [33].
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1.4.3 Measurements of moment of inertia

So far the most reliable determination of moment of inertia (I) has been done for the Crab

pulsar by Bejger and Haensel (2003) [34]. Assuming a time dependent acceleration for

the expansion of the Crab nebula and using the estimates of the mass (4.6± 1.8M⊙) [35]

contained in the optical filaments they obtained a lower bound for the moment of inertia

of the Crab pulsar, but unfortunately it could rule out only very soft EOSs. However,

moment of inertia measurements of relativistic binary systems can be a very important

tool to constrain the neutron star EOS. In this context, PSR J0737-3039A of the double

pulsar system is the most suitable candidate. Since I ∝MR2 and mass of this pulsar has

been measured with good accuracy, measurement of I will allow an accurate determination

of its radius. Moment of inertia of such an object can be determined by measuring the

spin-orbit coupling [36, 37], which contributes to the motion of the system in two ways.

In one hand it causes an extra advancement in the periastron angle (ω) and on the other

hand it induces a precession of the orbital plane around the direction of the total angular

momentum of the system. According to Lattimer et al (2005) [37], moment of inertia

of PSR J0737-3039A could be measured within 10% accuracy with few years of future

observations and that could put stringent constraint on the neutron star EOS.

1.4.4 Other constraints

Apart from these methods there are several other methods that can be applied to constrain

the neutron star EOS. Detection of gravitational waves can be very useful to know about

the neutron star interior. Relativistic binaries (NS+NS or NS+WD) which are close to the

merging state, are thought to be very good source of gravitational waves. Such waves can

also be emitted from a rapidly rotating neutron star if it looses its axial symmetry. Other

potential methods are study of seismic oscillations of isolated neutron stars, quasi-periodic

oscillations from LMXBs, analysis of pulse profiles in X-ray pulsars etc.
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Table 1.1: List of magnetar candidates [40]

Period (P) dP/dt BsurfName
(s) (10−11) (1014 G)

SGR 0526-66 8.0544(2) 3.8(1) 5.6
SGR 1900+14 5.19987(7) 9.2(4) 7.0
SGR 1806-20 7.6022(7) 75(4) 24.0
SGR 1627-41 2.594578(6) 1.9(4) 2.2
SGR 0501+4516 5.76209653(3) 0.582(3) 1.9
SGR 0418+5729 9.07838827(4) < 0.0006 < 0.075
SGR 1833-0832 7.5654091(8) 0.439(43) 1.8
Swift J1822.3-1606∗ 8.43771968(6) 0.0254(22) 0.47
Swift J1834.9-0846∗ 2.4823018(1) 0.796(12) 1.4
SGR 1801-23∗ − − −

SGRs

SGR 2013+34∗ − − −
4U 0142+61 8.68832877(2) 0.20332(7) 1.3
1E 1048.1-5937 6.457875(3) ∼ 2.25 3.9
1E 2259+586 6.9789484460(39) 0.048430(8) 0.59
1E 1841-045 11.7828977(10) 3.93(1) 6.9
1E 1547.0-5408 2.06983302(4) 2.318(5) 2.2
1RXS J170849.0-400910 11.003027(1) 1.91(4) 4.6
XTE J1810-19 5.5403537(2) 0.777(3) 2.1
CXOU J010043.1-721134 8.020392(9) 1.88(8) 3.9
CXO J164710.2-455216 10.6106563(1) 0.083(2) 0.95
CXOU J171405.7-381031∗ 3.82535(5) 6.40(14) 5.0
PSR J1622-4950∗ 4.3261(1) 1.7(1) 2.8

AXPs

AX J1845-0258∗ 6.97127(28) − −
∗ marked candidates are unconfirmed.

1.5 Magnetars

Recent discoveries of magnetars have created renewed interests in neutron star research.

Magnetars are highly magnetized neutron stars [38] having surface magnetic fields ∼

1014 − 1015 G which are 2-3 order of magnitude larger than the ordinary neutron stars.

They also have larger spin periods (P ∼ 2− 12 s) and spin down rates (dP/dt ∼ 10−13 −

10−10) as compared to the ordinary neutron stars.

Magnetars consist of mainly two types of stars [39] - Anomalous X-ray Pulsars (AXPs:

12 objects; 9 confirmed and 3 candidates) and Soft Gamma-ray Repeaters (SGRs: 11

objects; 7 confirmed and 4 candidates) [40], as summarized in table 1.1. In most of the
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cases their quiescent X-ray luminosity exceeds their rotational energy loss rate. SGRs

emit sporadic X-ray and γ-ray bursts (Luminosity, L ∼ 1038 − 1041 erg/s) of sub-second

duration with occasional emission of much stronger γ-rays called Giant Flares having

luminosity ( L ∼ 1044 − 1046 erg/s) much greater than the Eddington limit. Only three

such flares have been observed so far one each for SGR 0526-66 (March, 1979), SGR

1900+14 (August, 1998) and SGR 1806-20 (December, 2004). In the decaying tail of

last two flares, a number of long-lasting, quasi-periodic oscillations (QPOs) have been

detected having frequencies in the range 18-1800 Hz [41]. Study of these QPOs can give

us important information about the neutron star interior. Some of AXPs also display

X-ray bursts which are less energetic than that of SGRs. Unlike accreting pulsars, their

emission spectra don’t have any optical component and also their X-ray emissions are

much softer as compared with the accreting pulsars [42].

Features of SGRs and AXPs are best explained by the magnetar model [43]. In

this model SGRs and AXPs are assumed to be powered by extremely strong magnetic

fields. Such strong magnetic fields might be generated by dynamo processes in newly born

neutron stars [45]. Strong magnetic fields act as strong brake on magnetars’ rotation and

thereby explain their large spin down rate [39] and hence large period. Decay of such

ultra-strong magnetic fields are thought to be responsible for their high-luminosity bursts

as well as persistent emission of X-rays [43]. Giant flares of SGRs are caused by magnetic

instabilities analogous to earthquakes.

This thesis studies various properties of ordinary neutron stars as well as magnetars

and can be divided into two main parts. In the first part it describes the ground state

properties such as composition, equation of state (EOS) of the outer crust (Chapter 2)

as well as the inner crust (Chapter 3) of neutron stars, with and without magnetic fields.

Effects of strong magnetic fields on the shear modulus of the neutron star crust and its

influence on the calculations of torsional shear mode frequencies are also investigated

in this part (Chapter 4). The calculation of transport properties especially the shear
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viscosity of antikaon (K−) condensed matter in neutron star core are studied in the

second part (Chapter 6). This part also studies the role of neutrino shear viscosity on the

nucleation time of K− droplets in neutrino-trapped matter of newly born neutron stars

called proto-neutron stars (Chapter 7).
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Chapter 2

The Outer Crust

2.1 Introduction

Outer crust of a neutron star is the region just below the thin envelope at its surface and

extending upto a few hundred meters (Sec. 1.3). Although the crust contains only a few

percent of the neutron star mass, the knowledge of it is very important to understand

various aspects of neutron star evolution and dynamics. The temperature of the neutron

star core can be estimated from the observed X-ray flux, if the thermal conductivity

of the crust which controls the heat transport from the core to the surface, is known.

Electrical conductivity of the crust is necessary to understand the evolution of magnetic

fields of pulsars. The presence of nuclear lattice in the crust is mandatory to explain the

glitches in the rotational frequency of radio pulsars. A rapidly rotating neutron star can

emit gravitational waves if its shape undergoes non-axial deformations, which can only

be supported by the solid crust. Solid nature of the crust also supports the excitation of

torsional shear modes (Chapter 4) .

Discovery of magnetars has greatly enhanced the interest in the study of neutron star

properties in the presence of strong magnetic fields [44]. Their surface magnetic fields

could be quite large ∼ 1014 − 1015 G, as predicted by observations on SGRs and AXPs
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(Sec. 1.5). Such strong magnetic fields might be generated by dynamo processes in newly

born neutron star [45]. Inside the star the magnitude of the fields may be even higher. The

limiting interior field strength is set by the virial theorem and for a typical neutron star

of mass 1.5M⊙ and radius 10 km this comes out to be ∼ 1018 G [46]. Such high magnetic

fields can have significant effects on the equilibrium composition and the equation of state

of the neutron star crust as well as the core [46, 47].

Nonmagnetic equilibrium composition and equation of state for the outer crust of

cold neutron stars was reported in a seminal paper by Baym, Pethick and Sutherland

(BPS) [48]. Outer crust begins at a density ρ ∼ 104 g cm−3 and contains nuclei arranged

in a body-centered cubic (bcc) lattice which minimizes the Coulomb energy, and immersed

in a gas of free electrons which become relativistic above the density ρ ∼ 107 g cm−3.

Though the lattice effect is small on the equation of state, it changes the equilibrium

nucleus to a heavier one and lowers the total energy of the system by reducing the coulomb

energy of the nucleus. At lower densities ρ ∼ 104 − 107 g cm−3, 56Fe is present as the

equilibrium nucleus, but with increasing density equilibrium nuclei become increasingly

neutron rich through electron capture process. At a density ρ ≃ 4× 1011g cm−3 neutrons

begin to drip out of nuclei - this is called the neutron drip point which marks the end of

the outer crust.

The composition and equation of state of the outer crust of nonaccreting cold neutron

stars in the presence of strong magnetic fields were first studied by Lai and Shapiro

[46]. Magnetic fields may influence the ground state properties of crusts either through

magnetic field and nuclear magnetic moment interaction or through Landau quantization

of electrons. In a magnetic field ∼ 1017 G, magnetic field and nuclear magnetic moment

interaction would not produce any significant change [49]. However such a strong magnetic

field is expected to influence charged particles such as electrons in the crust through

Landau quantization. If the magnetic field is very strong then electrons occupy only the

low-lying Landau levels and it may affect the sequence of nuclei and the equation of state
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as well as any nonequilibrium β-processes [46].

This chapter is organized in the following way. In the next section we discuss the

effect of strong magnetic fields on the motion of electrons. We revisit the magnetic BPS

model [46] adopting recent experimental and theoretical nuclear mass tables in Section 3.

Results are discussed in section 4. Section 5 contains the summary and conclusions.

2.2 Landau quantization of electrons

In the presence of a magnetic field, the electron motion is Landau quantized in the plane

perpendicular to the field. We take the magnetic field (
−→
B ) along Z-direction and assume

that it is uniform throughout the outer crust. If the field strength exceeds a critical value

Bc = m2
e/e ≃ 4.414 × 1013G (we use natural unit i.e. ~ = c = 1), which is obtained by

equating the electron cyclotron energy with its rest-mass energy, then electrons become

relativistic. The energy eigenvalue of relativistic electrons in a quantizing magnetic field

is given by

Ee(ν, pz) =
[

p2z +m2
e + 2νeB

]1/2
, (2.1)

where pz is the Z-component of momentum, and ν is the Landau quantum number. The

Fermi momenta of electrons (pfe(ν)) are obtained from electron chemical potential µe as

pfe(ν) =
√

µ2
e − (m2

e + 2νeB) . (2.2)

The number density of electrons in a magnetic field is calculated as

ne =
eB

2π2

νmax
∑

0

gνpfe(ν), (2.3)

where gν is the spin degeneracy :

gν = 1 for ν = 0

= 2 for ν ≥ 1, (2.4)
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and νmax is the maximum Landau quantum number given by

νmax =
µ2
e −m2

e

2eB
. (2.5)

Energy density of the electron gas is,

εe =
eB

2π2

νmax
∑

ν=0

gν

∫ pfe(ν)

0

E(ν, pz)dpz (2.6)

=
eB

4π2

νmax
∑

ν=0

gν

[

pfe(ν)µe + (m2
e + 2νeB) ln

pfe(ν) + µe
√

m2
e + 2νeB

]

, (2.7)

and the pressure is calculated as

Pe = µene − εe (2.8)

=
eB

4π2

νmax
∑

ν=0

gν

[

pfe(ν)µe − (m2
e + 2νeB) ln

pfe(ν) + µe
√

m2
e + 2νeB

]

. (2.9)

2.3 Magnetic BPS Model

We revisit the BPS model to find the sequence of equilibrium nuclei and calculate the

equation state of the outer crust in the presence of strong magnetic fields B ∼ 1017G [46].

In this calculation, we include the finite size effect in the lattice energy and adopt recent

experimental and theoretical mass tables. Nuclei are arranged in a bcc lattice in the outer

crust. Here we adopt the Wigner-Seitz (WS) approximation, where the whole lattice is

divided into electrically neutral WS cells containing only one nucleus at the center. WS

cells are taken to be spherical in shape and assumed to be charge neutral such that it

contains exactly Z number of electrons, where Z is the nuclear charge. The Coulomb

interaction between cells is neglected. To find an equilibrium nucleus (A,Z) at a given

pressure P one has to minimize the Gibbs free energy per nucleon with respect to A and
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Z. The total energy density of the system is given by

Etot = nN(WN +WL) + εe(ne). (2.10)

The energy of the nucleus (including rest mass energy of nucleons) is

WN = mn(A− Z) +mpZ − bA, (2.11)

where b is the binding energy per nucleon. Binding energies for experimental nuclear

masses are obtained from the atomic mass table compiled by Audi et al (2003) [50]. For

the rest of nuclei we use the theoretical extrapolation of Möller et al (1995) [51]. WL is

the lattice energy of the cell and is given by [52]

WL = − 9

10

Z2e2

rC

(

1− 5

9

(

rN
rC

)2
)

. (2.12)

Here rC is the cell radius and rN ≃ r0A
1/3 (r0 ≃1.16 fm) is the nuclear radius. The first

term in WL is the lattice energy for point nuclei and the second term is the correction

due to the finite size of the nucleus (assuming a uniform proton charge distribution in the

nucleus). Further εe is the electron energy density which in absence of magnetic fields is

given by

εe =
1

π2

∫ pfe

0

p2dp
√

p2 +m2
e (2.13)

=
1

8π2

[

pfeµe(µ
2
e +m2

e)−m4
e ln

(

pfe + µe

me

)]

, (2.14)

with µe =
√

p2fe +m2
e, where pfe is the fermi momentum of electrons. In presence of

magnetic fields we use the results given in the previous section (Eq. (2.7)).
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The total pressure P is given by

P = Pe +
1

3
WLnN , (2.15)

where Pe is the pressure of the electron gas and can be calculated using Eq. (2.8), and

the second term is the lattice pressure.

The nucleon number density nN is related to the baryon number density nb as

nb = AnN , (2.16)

and the charge neutrality condition gives

ne = ZnN . (2.17)

At a fixed pressure P , we minimize the Gibbs free energy per nucleon

g =
Etot + P

nb
=
WN + 4/3WL + Zµe

A
, (2.18)

by varying A and Z.

2.4 Results

In Fig. 2.1, electron number density is plotted with mass density for different values of

magnetic fields (B∗ = B/Bc). For B∗ ≤ 103, large number of Landau levels are populated.

Consequently there is no significant change in the electron number density compared with

that of the field free case. However there is a significant enhancement in electron number

density for magnetic fields B∗ = 2.3 × 103 (≃ 1017 G) or higher. This happens because

only the zeroth Landau level gets populated for the whole mass density range in such high

values of the magnetic field [53]. Fig. 2.2 shows the EOS i.e. the pressure as a function of
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Figure 2.1: Electron number density as a function of mass density for different magnetic
field strengths.
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Figure 2.2: EOS of the outer crust in presence of magnetic fields
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Table 2.1: Sequence of nuclei in the outer crust of neutron stars in presence of magnetic
fields

Nuc
ρmax (g/cm3)

Z N B∗ = 0 B∗ = 102 B∗ = 103 B∗ = 2.3× 103 B∗ = 104
56Fe 26 30 8.03× 106 4.68× 108 4.32× 109 9.29× 109 −
60Ni 28 32 − − − − 5.33× 1010
62Ni 28 34 2.72× 108 1.68× 109 1.83× 1010 4.06× 1010 1.31× 1011
64Ni 28 36 1.34× 109 2.78× 109 2.34× 1010 − −
66Ni 28 38 1.50× 109 − − − −
88Sr 38 50 − − 2.59× 1010 6.44× 1010 3.58× 1011
86Kr 36 50 3.10× 109 3.87× 109 4.33× 1010 1.04× 1011 5.37× 1011
84Se 34 50 1.06× 1010 1.20× 1010 6.34× 1010 1.50× 1011 6.61× 1011
82Ge 32 50 2.79× 1010 2.89× 1010 8.69× 1010 1.99× 1011 −
80Zn 30 50 6.11× 1010 6.18× 1010 1.14× 1010 − −
78Ni 28 50 9.29× 1010 9.37× 1010 − − −
132Sn 50 82 − − − 2.39× 1011 1.15× 1012
128Pd 46 82 − − 1.29× 1011 3.01× 1011 1.42× 1012
126Ru 44 82 1.29× 1011 1.30× 1011 1.51× 1011 3.50× 1011 1.62× 1012
124Mo 42 82 1.86× 1011 1.87× 1011 1.73× 1011 4.00× 1011 1.83× 1012
122Zr 40 82 2.64× 1011 2.63× 1011 1.98× 1011 4.54× 1011 2.05× 1012
120Sr 38 82 3.77× 1011 3.78× 1011 4.34× 1011 5.18× 1011 2.32× 1012
118Kr 36 82 4.34× 1011 4.35× 1011 4.92× 1011 5.53× 1011 2.40× 1012

density of the outer crust in presence of magnetic fields. As in Ref. [46], strong magnetic

fields are found to shift zero-pressure densities to higher values. We obtain the sequence

of equilibrium nuclei by minimizing the Gibbs free energy per nucleon (Eq. (2.18)) for

various magnetic field strengths and is shown in table 2.1. When we compare our results of

magnetic fields with that of zero field case we find several new and heavier nuclei to appear

in the sequence of nuclei. For B∗ = 100, 66Ni disappear from the sequence as was also

found in Ref. [46]. When B∗ = 103, two heavier nuclei, 88Sr and 128Pd are found to appear

while the nucleus 78Ni disappears from the sequence. If the magnetic field is increased to

B∗ = 2× 103 (∼ 1017 G), another heavy nucleus 132Sn find its place in the sequence, but

80Zn no longer exists. Finally, for B∗ = 104, 56Fe is found to be replaced by 60Ni and also

82Ge disappears from the sequence. Further we note that the maximum density (ρmax)

upto which an equilibrium nucleus can exist, increases as the field strength increases and
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as a result, the neutron drip point gets shifted from 4.34 × 1011 g cm−3 in zero field to

4.92×1011 g cm−3 for B∗ = 103 and to 2.40×1012 g cm−3 for B∗ = 104. The lattice energy

correction influences our results in strong magnetic fields, e.g. 180Xe replaces 118Kr for

magnetic field B∗ = 104, if the lattice correction is not included in our calculations. It is

worth mentioning here that our results are different from those of earlier calculation [46]

because we have adopted most recent experimental and theoretical nuclear mass tables.

In Ref. [46] the last experimentally studied nucleus that appear in the sequence was 84Se,

but in our case the corresponding nucleus is 78Ni, i.e. more experimental data are in use

here. Further we performed our calculation at higher magnetic fields than the previous

calculation [46] as it has become relevant after the discovery of magnetars.

Fig. 2.3 displays the proton number as a function of neutron number. Here we

compare results obtained with two different theoretical nuclear mass models which are

used whenever experimental data are not available. We use the theoretical model of

Möller et al. [51] and relativistic mean field model with NL3 set [54,55]. It is evident from

the figure that for zero magnetic field our calculation of equilibrium nuclei initially agrees

with those of the relativistic model calculation because nuclear masses are obtained from
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the experimental mass table. However, both calculations for zero magnetic field differ

considerably beyond N=50 due to differences in theoretical mass tables used here.

2.5 Summary and Conclusions

We have revisited the BPS model of the outer crust to calculate the EOS and the sequence

of nuclei in presence of strong magnetic fields and using the recent experimental mass

table. Further we have included the correction in the lattice energy due to the finite size

of a nucleus. Several new and heavier nuclei are found to appear in the sequence when

the magnetic field is very strong. Strong magnetic fields also shift the neutron drip point

to higher densities as compared to the field free case. Our results can greatly affect the

transport properties such as thermal and electrical conductivities as well as shear viscosity

of the crust in magnetars. It can also play very important role in the calculation of crustal

shear modes as will be discussed in Chapter 4.
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Chapter 3

The Inner Crust

3.1 Introduction

In the outer crust of a neutron star, neutrons and protons are bound inside nuclei and

immersed in a uniform background of relativistic electron gas. As the density increases,

nuclei become more and more neutron rich until the neutron drip point is reached when

neutrons begin to drip out of nuclei. This is the beginning of the inner crust. The matter

in the inner crust is made up of nuclei embedded in a neutron gas along with the uniform

background of an electron gas. Further the matter is in β-equilibrium and maintains

charge neutrality. Nuclei are also in mechanical equilibrium with the neutron gas. The

ground state properties of the inner crusts of neutron stars in zero magnetic field were

studied by different groups. The early studies of the inner crust matter were based on the

extrapolations of the semiempirical mass formula to the free neutron gas regime [56, 57].

Baym, Bethe and Pethick considered the reduction of the nuclear surface energy due to

the free neutron gas in their calculation [52]. The study of nuclei in the neutron star

crust was carried out using the energy density of a many body system by Negele and

Vautherin [58]. With increasing density in the inner crust, unusual nuclear shapes might

appear there [3–5]. The properties of nuclei in the inner crust were also investigated
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using a relativistic field theoretical model [59]. The transport properties such as thermal

and electrical conductivities of neutron star crusts in magnetic fields were studied by

several groups [60, 61]. Recently the magnetized neutron star crust was studied using

the Thomas-Fermi model and Baym-Bethe-Pethick [52] and Harrison-Wheeler EOS for

nuclear matter [62].

There are two important aspects of the problem when nuclei are immersed in a neutron

gas. On the one hand we have to deal with the coexistence of two phases of nuclear matter

- denser phase inside a nucleus and low density phase outside it, in a thermodynamical

consistent manner. On the other hand, the determination of the surface energy of the

interface between two phases with good accuracy is needed. It was shown that this

problem could be solved using the subtraction procedure of Bonche, Levit and Vautherin

[63, 64]. The properties of a nucleus are isolated from the nucleus plus neutron gas in a

temperature dependent Hartree-Fock theory using the subtraction procedure. This same

method was extended to isolated nuclei embedded in a neutron gas [65] as well as nuclei

in the inner crust at zero temperature [66]. This motivates us to study the properties of

nuclei in the inner crust in the presence of strongly quantizing magnetic fields relevant to

magnetars using the subtraction procedure.

Recently the stability of nuclei embedded in an electron gas was investigated within a

relativistic mean field model in zero magnetic field [67]. It was observed in their calculation

that nuclei became more stable against α decay and spontaneous fission with increasing

electron number density. We have already observed in the previous chapter that the

electron number density increases in the presence of strong magnetic fields due to Landau

quantization compared with the zero field case. Now, the question is what the impact

of Landau quantization would be on the ground state properties of matter in the inner

crusts of magnetars. This is the focus of our calculation in this chapter.

This chapter is organized as follows. In Sec. 3.2 , the formalism for the calculation of

nuclei in the inner crust immersed in a neutron as well as an electron gas in the presence
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of strongly quantizing magnetic fields is described. The results of our calculation are

discussed in Sec. 3.3. Section 3.4 contains the summary and conclusions.

3.2 Formalism

We investigate the properties of nuclei in the inner crust in the presence of strong magnetic

fields using the Thomas-Fermi (TF) model [68]. In this case nuclei are immersed in a

neutron gas as well as a uniform background of electrons and may be arranged in a

lattice. Like in the outer crust here also each lattice volume is replaced by a spherical cell

with a nucleus at its center in the Wigner-Seitz (WS) approximation. Each cell is taken

to be charge neutral such that the number of electrons is equal to the number of protons

in it. The Coulomb interaction between cells is neglected. Electrons are assumed to be

uniformly distributed within a cell. The system maintains the β-equilibrium. We assume

that the system is placed in a uniform magnetic field. Electrons are affected by strongly

quantizing magnetic fields. Protons in the cell are affected by magnetic fields only through

the charge neutrality condition. The interaction of nuclear magnetic moment with the

field is negligible in a magnetic field ∼ 1017 G [49].

The calculation below is performed in a zero temperature TF model. In the WS cell,

a nucleus is located at the center and immersed in a low density neutron gas whereas

protons are trapped in the nucleus. However, the spherical cell does not define a nucleus.

The nucleus is realized after subtraction of the gas part from the cell as shown by Bonche,

Levit and Vautherin [63]. In an earlier calculation, it was demonstrated that the TF

formalism at finite temperature gave two solutions [64]. One solution corresponds to the

nucleus plus neutron gas and the second one represents only the neutron gas. The density

profiles of the nucleus plus neutron gas as well as that of the neutron gas are obtained

self-consistently in the TF formalism. Finally the nucleus is obtained as the difference

of two solutions. This formalism is adopted in our calculation at zero temperature as
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described below [68].

The nucleus plus gas solution coincides with the gas solution at large distance leading

to the definition of the thermodynamic potential (ΩN ) of the nucleus as [63]

ΩN = ΩNG − ΩG , (3.1)

where ΩNG is the thermodynamic potential of the nucleus plus gas phase and ΩG is that

of the gas only. The thermodynamic potential is defined as

Ω = F −
∑

q=n,p

µqAq , (3.2)

where µq and Aq are the chemical potential and number of q-th species, respectively. The

free energy is given by

F(nb, Yp) =

∫

[H + εc + εe]dr , (3.3)

where H is nuclear energy density functional, εc is the Coulomb energy density and εe is

the energy density of electrons. The free energy is a function of average baryon density

(nb) and proton fraction (Yp). The nuclear energy density is calculated using the SkM

nucleon-nucleon interaction and given by [69, 70]

H(r) =
~
2

2m∗
n

τn +
~
2

2m∗
p

τp +
1

2
t0

[

(

1 +
x0
2

)

n2 −
(

x0 +
1

2

)

(

n2
n + n2

p

)

]

− 1

16

[

t2

(

1 +
x2
2

)

− 3t1

(

1 +
x1
2

)]

(∇n)2

− 1

16

[

3t1

(

x1 +
1

2

)

+ t2

(

x2 +
1

2

)]

[

(∇nn)
2 + (∇np)

2
]

+
1

12
t3n

α

[

(

1 +
x3
2

)

n2 −
(

x3 +
1

2

)

(

n2
n + n2

p

)

]

. (3.4)

The first two terms of the nuclear energy density are the kinetic energy densities of

neutrons and protons, respectively. The third term originates from the zero-range part of
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the Skyrme interaction whereas the fourth and fifth terms are relevant for surfaces effects.

The last term is the contribution of the density dependent part of the nucleon-nucleon

interaction. The effective mass of nucleons is given by

m

m∗
q(r)

= 1 +
m

2~2

{[

t1

(

1 +
x1
2

)

+ t2

(

1 +
x2
2

)]

n

+

[

t2

(

x2 +
1

2

)

− t1

(

x1 +
1

2

)]

nq

}

, (3.5)

where the total baryon density is n = nn + np.

The Coulomb energy densities for the NG and G phases are:

εNG
c (r) =

1

2
(np

NG(r)− ne)

∫

e2

| r− r′ |(n
p
NG(r

′)− ne)dr
′ ,

εGc (r) =
1

2
(np

G(r)− ne)

∫

e2

| r− r′ |(n
p
G(r

′)− ne)dr
′

+np
N(r)

∫

e2

| r− r′ |(n
p
G(r

′)− ne)dr
′ , (3.6)

where np
NG and np

G are proton densities in the nucleus plus gas phase and in the gas phase,

respectively. Here, the coulomb energy densities (εc) represent the direct part. We do not

consider the exchange part because its contribution is small.

Thus far, the formalism described above is applicable for the zero magnetic field.

However, we study the effects of magnetic fields on ground state properties of the inner

crust. In the presence of a magnetic field, the motion of electrons get quantized in the

plane perpendicular to the field and as a result electron number density gets modified as

already discussed in the previous chapter. The Coulomb energy density and the energy

density of electrons appearing in Eq. (3.3) are also get influenced by the presence of

magnetic fields. Protons in nuclei get affected by a magnetic field through the charge

neutrality condition. We use Eq. (2.7) for energy density of electrons for magnetic cases

and for nonmagnetic case we use Eq. (2.14).

34



Weminimize the thermodynamic potential in the TF approximation with the condition

of number conservation of each species. The density profiles of neutrons and protons with

or without magnetic fields are obtained from

δΩNG

δnq
NG

= 0

δΩG

δnq
G

= 0 . (3.7)

This results in the following coupled equations [65, 66]

(3π2)
2

3

~
2

2m∗
q

(nq
NG)

2

3 + V q
NG + V c

NG(n
p
NG, ne) = µq ,

(3π2)
2

3

~
2

2m∗
q

(nq
G)

2

3 + V q
G + V c

G(ne) = µq , (3.8)

wherem∗
q is the effective mass of q-th species , V q

NG and V q
G are the single particle potentials

of nucleons in the nucleus plus gas as well as gas phases [71]. On the other hand, V c
NG and

V c
G are direct parts of the single particle Coulomb potential corresponding to the nucleus

plus gas and gas only solutions, respectively, and both are given by

V c(r) =

∫

[np
NG(r

′)− ne]
e2

| r− r′ |dr
′ . (3.9)

The average chemical potential for q-th nucleon is

µq =
1

Aq

∫

[(3π2)
2

3

~
2

2m∗
q

(nq
NG)

2

3 + V q
NG(r) + V c

NG(r)]n
q
NG(r)dr , (3.10)

where Aq refers to Ncell or Zcell of the cell which is defined by the average baryon density

nb and proton fraction Yp. The β-equilibrium condition is written as

µn = µp + µe . (3.11)
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The average electron chemical potential in magnetic fields is given by (see Sec 2.2)

µe =
[

pfe(ν)
2 + (m2

e + 2νeB)
]1/2 − < V c(r) > , (3.12)

where < V c(r) > denotes the average of the single particle Coulomb potential.

Density profiles of neutrons and protons in the cell are constrained as

Zcell =

∫

nNG
p (r)dr ,

Ncell =

∫

nNG
n (r)dr , (3.13)

where Ncell and Zcell are neutron and proton numbers in the cell, respectively.

Finally, number of neutrons (N) and protons (Z) in a nucleus with mass number

A = N + Z are obtained using the subtraction procedure as

Z =

∫

[

nNG
p (r)− nG

p (r)
]

dr ,

N =

∫

[

nNG
n (r)− nG

n (r)
]

dr . (3.14)

3.3 Results and Discussion

We present the results of our calculation with the SkM interaction in the following para-

graphs. We find the equilibrium nucleus at each density point minimizing the free energy

of the system within a WS cell maintaining charge neutrality and β-equilibrium. The vari-

ables of this problem are the average baryon density (nb), the proton fraction (Yp) and

the radius of a cell (Rc). For fixed values of nb, Yp and Rc, the total number of nucleons

(Acell) is given by Acell = Vcellnb where the volume of a cell is Vcell = 4/3πR3
C. The proton

number in the cell is Zcell = YpnbVcell and the neutron number is Ncell = Acell − Zcell. We

obtain density profiles of neutrons and protons in the cell using eqs 3.8 and 3.13 at a
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Figure 3.1: Free energy per nucleon as function of cell size for the SkM interaction and average
baryon density 0.008 fm−3 and magnetic field B∗ = 103.

given average baryon density and proton fraction. Consequently, we calculate chemical

potentials of neutrons and protons and free energy per nucleon. Next, we vary the proton

fraction, calculate chemical potentials and density profiles, and obtain the β-equilibrium

in the cell. Finally, we adjust the cell size (RC) and repeat the above mentioned steps to

get the minimum of the free energy. These values of Yp and RC are then used to calculate

neutron and proton numbers in a nucleus at an average baryon density corresponding to

the free energy minimum with the help of eq 3.14. This procedure is repeated for each

average baryon density.

The minimum of the free energy originates from the interplay between different con-

tributions. The free energy per nucleon is given by

F/A = eN + elat + eele. (3.15)

The nuclear energy including the Coulomb interaction among protons is denoted by eN ,

elat is the lattice energy which involves the Coulomb interaction between electrons and

protons and the electron kinetic energy is eele. The free energy per nucleon in the presence

of magnetic field B∗ = 103 (B∗ = B/4.414 × 1013 G) is shown in Fig. 3.1 as a function
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tion and different magnetic fields.

of the cell size for an average baryon density nb = 0.008 fm −3. We note that the nuclear

energy increases with RC . On the other hand, the lattice energy and electron kinetic

energy both decrease with increasing cell size. The competition of eN with the sum of elat

and eele determines the free energy minimum. The cell radius corresponding to the free

energy minimum is 32.1 fm for the zero field case (not shown in the figure) and 31.9 fm

for B∗ = 103. The corresponding proton fraction for B = 103 is 0.03.

In Fig. 3.2, the cell size corresponding to the free energy minimum is plotted as a

function of average baryon density for magnetic fields B∗ = 0, 103, 2.3× 103 and 104. For

magnetic fields B < 2.3×103 (≃ 1017 G), several Landau levels are populated by electrons.

Consequently we do not find any change in the cell size in the magnetic fields compared

with the zero-field case. However, we find some change in the cell size for B∗ = 2.3× 1017

when only the zeroth Landau level is populated by electrons for nb ≤ 0.004, fm−3 whereas

first two levels are populated in the density range 0.005 to 0.015 fm−3. However the cell

size is increased compared with the zero-field case due to the population of only zeroth

Landau level in the presence of a magnetic field B∗ = 104 G. The size of the cell always

decreases with increasing average baryon density.

The proton fraction in the presence of magnetic fields is shown as a function of average
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Figure 3.4: Neutron density profiles in the
nucleus plus gas phase and gas phase for the
SkM interaction and for magnetic fields B∗ =
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baryon density in Fig. 3.3. Protons in nuclei are affected by the Landau quantization

of electrons through the charge neutrality condition in a cell. For magnetic fields B∗ <

2.3×103, the proton fraction is the same as that of the zero-field case over the whole density

range considered here. We find some changes in the proton fraction below nb = 0.015 fm−3

when B∗ = 2.3× 103. Though electrons populate the zeroth Landau level for nb ≤ 0.004

fm−3, the proton fraction decreases below the corresponding proton fraction of the zero-

field case. However, for a magnetic field B∗ = 104, the proton fraction is strongly enhanced

compared with the zero-field case due to the population of only the zeroth Landau level

for nb ≤ 0.04 fm−3.

The density profiles of neutrons in the nucleus plus gas and gas phases corresponding

to nb = 0.02 fm−3 with and without magnetic fields are exhibited as a function of distance

(r) within the cell in Fig. 3.4. The green line denotes the zero-field case, whereas the

red line represents the density profile with the field B∗ = 104. The horizontal lines imply

the uniform gas phases in both cases. The proton fraction is 0.040 for the magnetic field

case whereas it is 0.022 for the zero-field case. Further, we show the subtracted density

profiles of neutrons with a magnetic field B∗ = 104 in Fig. 3.5. Though neutrons are

not directly affected by the magnetic field, the neutron chemical potential is modified
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through the β-equilibrium due to Landau quantization of electrons. As a consequence,

we find that the neutron density is higher in the gas phase for the zero-field case than

that of the magnetic field. This implies that fewer neutrons drip out of a nucleus in the

presence of strong magnetic fields. This can be attributed to the shift in the β-equilibrium

in strong magnetic fields. We encounter a similar situation in the calculation of the outer

crust in magnetic fields (see Chapter 2), i.e, the neutron drip point is shifted to higher

densities [53].

Now we know the density profiles of neutrons and protons in the nucleus plus gas

phase as well as in the nucleus at each average baryon density. We immediately calculate

the total number of neutrons and protons in the nucleus plus gas phase and in a nucleus

using Eqs. (3.13) and (3.14). We show total number of nucleons (Acell) in a cell for

magnetic fields B∗ = 0, 103, 2.3×103 and 104 with average baryon density in Fig. 3.6. In

all cases, the Acell growing with the density reaches a maximum and then decreases. Such

a trend was observed in the calculation of Negele and Vautherin [58] in the absence of a

magnetic field. We note that our predictions for B∗ = 103 do not change from the field-

free results because a large number of Landau levels are populated in that magnetic field.

For a magnetic field B∗ = 2.3× 103 (B ≃ 1017 G), the total number of nucleons decreases
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compared to the corresponding results of the field- free case in the density regime 0.005 -

0.02 fm−3. This can be understood from the behavior of the cell size around that density

regime in Fig. 3.2. For B∗ = 104, only the zeroth Landau level is populated by electrons

for densities ≤ 0.04 fm−3. This modifies the β-equilibrium and the charge neutrality

conditions which, in turn, impact the size of the cell and the total number of nucleons in

a cell. This effect is pronounced in the case of B∗ = 104. In this case, Acell is significantly

reduced compared with the zero-field case for densities ≤ 0.04 fm−3.

We obtain neutron (N), proton (Z) and total nucleon numbers (A) in the nucleus

at each average baryon density following the subtraction procedure. Total nucleon and

proton numbers are shown in Fig. 3.7 for the above mentioned magnetic fields. When the

magnetic field is 2.3× 103, it is noted that our results start oscillating from the field-free

results. This may be attributed to the fact that the population of Landau levels jumps

from zero to a few levels in the above mentioned fields as baryon density varies from lower

to higher values. In contrast to Fig. 3.6, we find that total nucleon and proton numbers

inside the nucleus at each density point beyond 0.002 upto 0.04 fm−3 are significantly

enhanced in the case of B∗ = 104 compared to the field-free case as well as other magnetic

fields considered here. This clearly demonstrates that more neutrons are inside the nucleus

in the presence of strong magnetic fields ≥ 2.3× 103 (≃ 1017 G) than in the gas phase in

that density regime. This is opposite to the situation in the zero magnetic field. This can

be easily understood from the density profiles with and without magnetic fields in Fig.

3.4 and Fig. 3.5.

We repeat the above-mentioned calculation for the SLy4 nucleon-nucleon interaction

[72]. Fig. 3.8 shows the variation of nucleon-nucleon interaction on mass and proton

numbers of nuclei as a function of average baryon density with B∗ = 0 and B∗ = 104.

Comparing results of the SkM and SLy4 interactions, we find that AN and ZN in the

latter case are higher beyond density of 0.005 fm−3. We find that symmetry energy of

the SLy4 interaction is larger in the subsaturation density regime that that of the SkM
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interaction. Higher symmetry energy results in a higher proton fraction, which, in turn,

enhances the electron density via the charge neutrality condition. This is demonstrated

in Fig. 3.9, where the electron density is plotted as a function of average baryon density

for SkM and SLy4 interactions with and without a magnetic field. Consequently, this

leads to an increase in the number of nucleons in a nucleus for the SLy4 interaction. The

values of AN and ZN for the SLy4 case in the presence of a magnetic field are enhanced

compared to the field-free case as found with the SkM interaction up to a baryon density

of ∼ 0.03 fm−3. It is noted for the SLy4 interaction that the values of AN and ZN in the

magnetic field jump when electrons move from the zeroth to the first Landau level at a

baryon density of 0.05 fm−3. We do not find such a feature for the SkM interaction case

because we have already noted that only the zeroth Landau level is populated in B∗ = 104

up to the density regime shown in Fig. 3.8.

We do not consider the nuclear shell effects in our calculations. Here we adopt the

TF formalism which reproduces average nuclear properties very well. A detailed com-

parison of properties of nuclei in Hartree-Fock as well as (extended) calculations using

the subtraction procedure and the same nucleon-nucleon interaction was performed by

Suraud [64]. It was noted that the results of semi-classical calculations, in particular the
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TF calculation [64], were in very good agreement with those of the Hartree-Fock calcu-

lation [63]. On the other hand, the washout of neutron shells may happen due to the

presence of of external neutrons in which nuclei are immersed [73, 74]. In this case, the

collisional broadening of a nuclear level due to scattering of external neutrons could make

it wider that the gap between levels.

We plot the free energy per nucleon of the system with average baryon density in Fig.

3.10. This calculation is performed using the SkM interaction. Our results for B∗ = 103

do not change much form the field-free results. However, for B∗ = 2.3 × 103 (B ≃ 1017

G), the free energy per nucleon is reduced at lower densities (< 0.004 fm−3) compared to

the field-free case. We find more pronounced reduction in the free energy per nucleon in

the field B∗ = 104 almost over the whole density regime considered here.

3.4 Summary and Conclusions

We have investigated ground-state properties of the inner crust in the presence of strong

magnetic fields of ∼ 1016 or more. Nuclei are immersed in a neutron gas and uniform

background of electrons. We have adopted the SkM and SLy4 interactions for the nuclear
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energy density and studied this problem in the TF model. Electrons are affected through

Landau quantization in strong magnetic fields because much lower Landau levels can be

occupied in these cases. Consequently, electron number density and energy density are

modified in strongly quantizing magnetic fields and the β-equilibrium condition is altered

compared with the field-free case. The enhancement of the electron number density in

magnetic fields ≥ 1017 G due to the population of only the zeroth Landau level leads to

enhancement in proton fraction through the charge neutrality condition. We minimize

the free energy of the system within a WS cell to obtain the nucleus at each average

baryon density. In this connection, we used the subtraction procedure to obtain the

density profiles of a nucleus from the nucleus plus gas and gas solutions at each average

baryon density point. We note that fewer neutrons drip out of a nucleus in the presence

of strong fields than the situation without a magnetic field. This results in larger mass

and proton numbers in a nucleus in the presence of magnetic field > 1017 G compared

to the corresponding nucleus in the field-free case. Further the free energy per nucleon

of the system is reduced in magnetic fields ≥ 1017 G. It is found that the variation of

nucleon-nucleon interaction influences mass and proton numbers of nuclei in zero as well

as strong magnetic fields.

This calculations might have observational consequences for magnetars in several ways.

Results of this chapter together with results of the outer crust (Chapter 2, [53]) can be very

important to explain the observed QPO frequencies of magnetars as will be discussed in

the chapter 4. Magnetars might eject crustal matter due to tremendous magnetic stress

on the crust [75]. The ejected matter of the inner crust might expand to much lower

densities. The decompressed crustal matter has long been considered as an important site

for r-process nuclei [73,76]. It would be worth studying the r-process in the decompressed

crust matter of magnetars using the results of our calculation as input.
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Chapter 4

Shear mode oscillations in magnetars

4.1 Introduction

Soft gamma ray repeaters (SGRs) are characterized by their sporadic and short bursts

of soft gamma rays. Luminosities in these bursts could reach as high as ∼ 1041 erg s−1.

There are about 11 SGRs (see table 1.1) known observationally. Evidences of stronger

emissions of gamma rays from SGRs were observed in several cases. These events are

known as giant flares in which luminosities are ∼ 1044 − 1046 erg s−1 . So far three cases

of giant flares were reported and those are for SGR 0526-66, SGR 1900+14 and SGR

1806-20 [77–80]. In giant flares, the early part of the spectrum was dominated by hard

flash of shorter duration followed by a softer decaying tail of a few hundreds of seconds.

SGRs are very good candidates for magnetars which are neutron stars with very high

surface magnetic fields ∼ 1015 G [38, 81] (table 1.1). Giant flares might be caused by

the evolving magnetic field and its stress on the crust of magnetars. It was argued

that starquakes associated with giant flares could excite global seismic oscillations [81].

Torsional shear modes of magnetars with lower excitation energies would be easily excited.

In this case, oscillations are restored by the Coulomb forces of crustal ions. Furthermore,

the shear modes have longer damping times. Quasi-periodic oscillations (QPOs) were
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found in the decaying tail of giant flares from the timing analysis of data [78–80]. These

findings implied that QPOs might be shear mode oscillations of magnetar crusts [81].

Frequencies of the observed QPOs ranged from 18 Hz to 1800 Hz.

It was noted from earlier theoretical models of QPOs that the observed frequencies in

particular higher frequencies could be explained reasonably well using torsional shear os-

cillations of magnetar crusts [79,81–85]. On the other hand, lower frequencies of observed

QPOs might be connected to Alfv́en modes of the fluid core. This makes the study of the

oscillations of magnetar crusts more difficult. There were attempts to explain frequencies

of QPOs using Alfv́en oscillations of the fluid core without considering a crust [86–88].

The coupling of Alfv́en oscillations of the fluid core with the shear mode oscillations in

the solid crust due to strong magnetic fields in magnetars was already studied by sev-

eral groups [89–92]. It was argued that torsional shear modes of the crust might appear

in GSOs and explain observed frequencies of QPOs for not very strong magnetic fields

despite all these complex problem [93].

Nuclear physics of crusts plays an important role on the torsional shear modes of mag-

netar crusts. In particular, the effects of the nuclear symmetry energy on the shear mode

frequencies were investigated recently [85]. It may be worth noting here that torsional

shear mode frequencies are sensitive to the shear modulus of neutron star crusts. Further-

more, the shear modulus is strongly sensitive to the composition of neutron star crusts.

Earlier studies of torsional shear mode oscillations exploited only non-magnetic crusts.

We have seen in chapters 2 and 3 that strong magnetic fields have significant effects on

the ground state properties of neutron star crusts. This, in turn, might influence the shear

modulus of crusts and shear mode oscillations in magnetars. This motivates us to study

torsional shear mode oscillations of magnetars using magnetic crusts [94].

We organize this chapter in the following way. We describe models for torsional shear

mode oscillations of magnetars in Sec. 4.2. Results of this calculation are discussed in

Sec. 4.3. Section 4.4 gives the summary and conclusions.
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4.2 Formalism

Earlier calculations of torsional shear mode oscillations were performed in Newtonian

gravity [81, 82, 95, 96] as well as in general relativity [84, 86, 93, 97, 98] with and without

magnetic fields. In many of these calculations, the magnetized crust was decoupled from

the fluid core.

As we are interested in the effects of magnetized crusts on torsional shear mode fre-

quencies, we consider a free slip between the crust and the core. Here we calculate torsional

shear mode frequencies for spherical and non-rotating stars in presence of a dipole mag-

netic field following the model of Refs. [84,98]. We neglect any deformation in the shape

of the equilibrium star due to magnetic fields considered here as the magnetic energy is

much smaller compared to the gravitational energy [84].

4.2.1 Magnetic field distribution

The equilibrium model for a non-rotating spherically symmetric neutron star can be

obtained by solving the Tolman-Oppenheimer-Volkov (TOV) equation with a line element

of the form

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2) . (4.1)

The magnetic field distribution is obtained from the Maxwell equations

F αβ
;β = 4πJα . (4.2)

For a dipole magnetic field and within ideal MHD approximation, Maxwell equations (4.2)

lead to the following equation [84]

e−2λd
2a

dr2
+ (ν ′ − λ′)e−2λda

dr
− 2a

r2
= −4πj , (4.3)
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where prime denotes the derivative with respect to r; a(r) and j(r) give the radial depen-

dence of the non-vanishing component of the electromagnetic 4-potential Aα = (0, 0, 0, Aφ)

and the 4-current Jα = (0, 0, 0, Jφ), respectively. Outside the star, this equation can be

solved analytically putting j ≡ jout = 0 [84, 99] :

aout = − 3µd

8M3
r2
[

ln

(

1− 2M

r

)

+
2M

r
+

2M2

r2

]

, (4.4)

where µd is the magnetic dipole moment observed at infinity. Inside the star the Eq. 4.3

is solved numerically with a current distribution of the form [100]

jin = c0r
2(ǫ+ P ) , (4.5)

where c0 is an arbitrary constant. Finally the magnetic field distribution is given by [84]

Br =
2eλ cos θ

r2
a , (4.6)

Bθ = −e−λ sin θ
da

dr
. (4.7)

4.2.2 Torsional shear modes

The equations of motion for the magnetized fluid is given by [84]

(

ǫ+ P +
B2

4π

)

uαu;βu
β = − △αβ

(

P +
B2

8π

)

;β

+
1

4π
△α

δ (B
δBβ);β , (4.8)

where uα = (e−ν , 0, 0, 0) is the 4-velocity which satisfies uαuα = −1 and △αβ is a projection

tensor that annihilates the component of a 4-vector parallel to uα. This equation is

obtained from the conservation of the energy-momentum tensor as following

△α
δ T

δβ
;β = 0 , (4.9)
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where T αβ is the energy-momentum tensor of the magnetized fluid given by

T αβ = T αβ
0 + T αβ

M

=
[

(ǫ+ P )uαuβ + Pgαβ
]

+
1

4π

[

1

2
B2gαβ +B2uαuβ −BαBβ

]

. (4.10)

Here T αβ
0 denotes the energy-momentum tensor of a perfect fluid and T αβ

M is the contri-

bution of the magnetic field. In the ideal MHD approximation the Maxwell’s equations

F[αβ;γ] gives [84]
(

uαBβ − uβBα
)

;α
= 0 . (4.11)

This equation can be recast to get the magnetic induction equation given by [84]

Bα
;βu

β =

(

σα
β + ωα

β −
2

3
δαβΘ

)

Bβ +Bδuδ;γu
γuα , (4.12)

where Θ = uα;α denotes the expansion of the fluid, σα
β = (uα;δ △

δ
β +uβ;δ △

δα −2
3
Θ △α

β)/2

is the shear tensor and ωα
β = (uαδ △

δ
β −uβ;δ △δα)/2 is the twist tensor.

To study the torsional shear mode oscillations we need to derive a perturbation equa-

tion in terms of axial deformations. This is done by linearizing the equation of motion

4.8 and the magnetic induction equation 4.12, within the relativistic Cowling approxima-

tion i.e. by neglecting metric perturbations (δgαβ = 0). This approximation is justified

by the fact that torsional oscillations being of axial in nature do not induce any density

perturbation in the star. Here the only non-vanishing perturbed quantity is [84]

δuφ = e−ν ∂Y(t, r)

∂t

1

sin θ

∂

∂θ
Pl(cosθ) , (4.13)

where Y(r, t) denotes the angular displacement of the matter. This displacement induce

deformations in the crystal lattice of neutron star crusts. This contribution is included

in the linearized equation of motion through the relation δTαβ = −2µδSαβ [97], where

δTαβ and δSαβ are the linearized shear stress tensor and shear tensor, respectively and
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µ is the isotropic shear modulus. With the assumption that Y has time dependence as

Y(r, t) = Y(r)eiωt, the perturbation equation lead to the eigenvalue equation given by [84]

[

µ+ (1 + 2ql)
a2

πr4

]

Y ′′ +

[(

4

r
+ ν′ − λ′

)

µ+ µ′ + (1 + 2ql)
a

πr4
{(ν′ − λ′)a+ 2a′}

]

Y ′

+

[

{(

ǫ+ P + (1 + 2ql)
a2

πr4

)

e2λ − qla
′2

2πr2

}

ω2e2ν

− (l + 2)(l − 1)

(

µe2λ

r2
− qla

′2

2πr4

)

+ (2 + 5ql)
a

2πr4
{(ν′ − λ′)a′ + a′′}

]

Y

= 0 , (4.14)

where

ql = − l(l + 1)

(2l − 1)(2l + 3)
, (4.15)

With the definitions

Y1 = Yr1−l , (4.16)

Y2 =

[

µ+ (1 + 2ql)
a2

πr4

]

eν−λY ′r2−l , (4.17)

the second order differential equation 4.14 can be transformed into two first order equa-

tions :

Y ′
1 = − l − 1

r
Y1 +

πr3

πr4µ+ (1 + 2ql)a2
e−ν+λY2 (4.18)

Y ′
2 = − l + 2

r
Y2 −

[

{

ǫ+ P + (1 + 2ql)
a2

πr4
− qla

′2

2πr2
e−2λ

}

ω2re2(λ−ν)

−(l + 2)(l − 1)

(

µe2λ

r
− qla

′2

2πr3

)

+ (2 + 5ql)
ae2λ

πr3

( a

r2
− 2πj

)

]

eν−λY1 , (4.19)

To solve this set of equations we use the boundary condition that the horizontal traction

must be zero at the top (r = R) and bottom (r = Rc) of the stellar crust. These lead to

the conditions

Y2(ri) = 0 ri = Rc, R . (4.20)
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Figure 4.1: Shear modulus as a function of normalized distance for different magnetic
field strengths.

We also use the normalization condition

Y1(R) = 1 . (4.21)

4.3 Results

Our main focus in this chapter is to study the dependence of torsional shear mode fre-

quencies on the compositions of magnetized crusts which are already described in chapters

2 and 3. Earlier calculations were performed with non-magnetized crusts [79, 84, 85, 93].

One important input for the shear mode calculation is the knowledge of shear modulus of

the magnetized crust. Here we use the expression of shear modulus as given by [101,102]

µ = 0.1194
ni(Ze)

2

a
(4.22)
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Figure 4.2: Fundamental torsional shear mode frequency with magnetic (solid line) as
well as non-magnetic crust (dashed line) as a function of normalized magnetic field (B∗ =
B/4.414× 1013G).

where a = 3/(4πni)
1/3, Z is the atomic number of a nucleus and ni is the ion density.

This zero temperature form of the shear modulus was obtained by assuming a bcc lattice

and performing directional averages [103]. Later the dependence of the shear modulus

on temperature was investigated with Monte Carlo sampling technique by Strohmayer

et al [102]. However we use the zero temperature shear modulus of Eq. (4.22) in this

calculation. Values of ni and Z are obtained from the calculations of chapters 2 and 3.

To get the torsional shear mode frequencies we have to solve Eqs. (4.18) and (4.19)

with boundary conditions (4.20). As can be seen from these equations we need to know

the pressure (P ), the energy density (ǫ) and the shear modulus (µ) of the stellar matter

as a function of distance from the center of the star, to perform this calculation. These

information can be obtained by solving the TOV equation with an appropriate neutron

star EOS. We prepare the EOS by suitably matching the EOS of the core with that of

the crust at crust-core boundary. To get the EOS of the core we use the RMF model

with the GM1 parameter set as described in chapter 5. The EOS of the crust is obtained

from the calculations of chapters 2 and 3. In Fig. 4.1 the shear modulus of the crust

52



as a function of distance normalized with respect to the stellar radius (R), is shown for

different field strengths B∗ = 0, 103 and B∗ = 104 and a neutron star of mass 1.4M⊙.

The shear modulus increases initially with decreasing distance and drops to zero at the

crust-core boundary. For field strengths of B∗ = 104 i.e 4.4 × 1017 or more, the shear

modulus is enhanced appreciably as compared with the zero-field case.
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Figure 4.3: Torsional Shear mode frequency for non-magnetic as well as magnetic crusts
with fields B∗ = 103 (left panel) and B∗ = 104 for different harmonics of n = 0 mode.

It was argued that torsional shear mode frequencies are sensitive to the shear modulus

of the crust [79, 81, 85] . Here we calculate the shear mode frequencies using the shear

modulus of non-magnetized as well as magnetized crusts. Fundamental torsional shear

mode frequencies (n = 0, l = 2) for a neutron star of mass 1.4M⊙ are shown as a function

of normalized magnetic field B∗ (≡ B/4.414 × 1013G) in Fig. 4.2. Figure 4.3 shows

torsional shear mode frequencies for different harmonics of n = 0 mode and magnetic

fields B∗ = 103 and 104. From these two figures we can see that magnetized crusts have

practically no effect on the fundamental as well as different harmonics of n = 0 torsional

shear mode frequencies. However, there are considerable changes in the frequencies of the

first radial overtone (n = 1) as can be seen from Fig. 4.4, where shear mode frequencies

for different harmonics of first radial overtone are plotted for magnetic fields B∗ = 103

and 104. We see from Fig. 4.4 that the frequencies of first overtone get reduced when we
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Figure 4.4: Torsional shear mode frequency for non-magnetic as well as magnetic crusts
with fields B∗ = 103 (left panel) and B∗ = 104 for different harmonics of first overtone
(n = 1).

use the magnetized crust and this reduction increases with increasing field strength [94].

Next, we calculate torsional shear mode frequencies of SGRs 1806-20 and 1900+14

and match them with observed frequencies as shown in table 4.1. For SGR 1900+14, the

best match is obtained for a neutron star of mass 1.4M⊙ and magnetic field B = 4× 1014

G [94]. It is evident from the table that we obtain very good match for all the four

frequencies for this SGR. However, for SGR 1806-20 the match is good only for higher

four frequencies with a neutron star of mass 1.2M⊙ and magnetic field B = 8× 1014 G.

Table 4.1: Calculated shear mode frequencies of SGRs 1806-20 and 1900+14 and com-
parison with observations.

SGR 1806-20 SGR 1900+14
Observed Calculated Observed Calculated
Frequency Frequency n ℓ Frequency Frequency n ℓ

(Hz) (Hz) (Hz) (Hz)

18 15 0 2 28 28 0 4
26 24 0 3 54 55 0 8
29 32 0 4 84 82 0 12
93 93 0 12 155 154 0 23
150 151 0 20
626 626 1 29
1838 1834 4 2
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Figure 4.5: Shear mode frequencies for n = 0; l = 2, 3 and 4 as a function of neutron star
mass.

Lower frequencies (18, 26 and 29 Hz) can’t be explained with our calculation as these fre-

quencies are too close to be matched by different harmonics of the n = 0 mode. However,

these frequencies may possibly be explained by considering the Alfvén modes [104].

In Fig. 4.5 we show the dependence of shear mode frequencies on neutron star mass

for a magnetic field B = 8 × 1014 G. For all the modes displayed here the frequency

decreases with increasing neutron star mass. If the masses of the SGRs can be measured

with good precision from observations they can put constrain on the EOS used here.

4.4 Summary and Conclusions

In this chapter, we have estimated frequencies of torsional shear modes of magnetars

assuming a dipole magnetic field configuration. Frequencies are computed using our

models of magnetized crusts. The shear modulus of magnetized crusts is found to be

enhanced in strong magnetic fields ∼ 4.414 × 1017 G because electrons populate only

the zeroth Landau level. It is observed that frequencies of fundamental (n = 0, l = 2)
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torsional shear modes are not sensitive to this enhancement in the shear modulus in strong

magnetic fields. On the other hand, frequencies of first overtones (n = 1) of torsional shear

modes in presence of strongly quantizing magnetic fields are distinctly different from those

of the field free case. We have compared our results with frequencies of observed QPOs

and found good agreement. Observed frequencies could constrain the EOS of magnetized

neutron star crusts if masses of neutron stars are known.
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Chapter 5

Neutron star Core

5.1 Introduction

In the previous chapter it was seen that the ground state of a neutron star inner crust

contains nuclei immersed in electron and neutron gases. With increasing density nuclei

come closer to each other and at a density ∼ 0.5ρ0 (ρ0 ≃ 2.8 × 1014 g cm−3 is the

saturation density of nuclear matter), nuclei no longer exist as they merge together to

form a uniform matter of neutrons, protons and electrons. The outer core begins at this

point. With increasing density Fermi energy of all the components increase. When the

Fermi energy (or, chemical potential) of electrons exceeds the muon rest mass energy

(mµ = 105.7 MeV), muons appear in the system and take part in maintaining the charge

neutrality (ne + nµ = np) and the β-equilibrium (µn = µp + µe, µe = µµ) of the system.

At density ρ & 2ρ0, inner core starts the composition of which is not known and therefore

model dependent. There are suggestions that at such high densities transition from npeµ

matter to various exotic phases such as strange baryons (Λ, Σ and Ξ hyperons), Bose-

Einstein condensation of pions and (anti)kaons may take place. At ultrahigh densities,

matter can dissolve into deconfined quark matter [105].

There are a host of theoretical models describing matter of neutron star cores. The

57



main uncertainty in the calculation of dense matter arises from poorly known many-body

interactions. However, several methods have been developed over the years to solve this

problem and can be divided into two main categories. In the first category one tries

to calculate the ground state energy of the matter starting from a bare nucleon-nucleon

(NN) interaction. Models based on Brueckner-Bethe-Goldstone (BBG) theory [106, 107],

Green’s function method [108, 109], variational method [110] etc fall under this category.

In the other category one starts from an effective NN interaction. The non-relativistic

Skyrme-type models [70], the relativistic mean field (RMF) model [105,111,112] etc belong

to this category.

Any many-body theory of neutron star matter must reproduce the empirical results

of bulk nuclear matter: the saturation density, n0 = 0.15− 0.16 fm−3; the binding energy

per nucleon, E/A = −16± 1 MeV; effective nucleon mass m∗
N = 0.7− 0.8mN ; the incom-

pressibility defined as K =
[

ρ2 d2

dρ2

(

ǫ
ρ

)]

ρ=ρ0
in the range 200 − 300 MeV and symmetry

energy at the saturation given as as =
1
2

(

∂2(ǫ/ρ)
∂t2

)

t=0
; t ≡ ρn−ρp

ρ
within 30 − 35 MeV. In

this thesis, we employ the RMF model to investigate the properties of dense matter in

neutron star interior.

5.2 Relativistic Mean Field (RMF) model

Motivated by the experimental observation of large Lorentz scalar and four-vector com-

ponents in the NN interaction Walecka [111] introduced a field-theoretical model, also

known as σ − ω model, to describe the properties of nuclei as well as nuclear matter.

In this model the interaction between nucleons is mediated by the exchange of a scalar

(σ) and a vector meson (ω). In the static limit of infinitely heavy baryons, these meson

exchanges correspond to an effective NN potential of the form [112]

V =
g2ω
4π

e−mωr

r
− g2σ

4π

e−mσr

r
, (5.1)
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which with the appropriate choices of the coupling constants (gσ, gω) and and masses

(mσ, mω), reproduces the main qualitative behaviors, namely the short range repulsion

and the long range attraction of the NN interaction. However, this model was unable

to reproduce empirical values of the incompressibility, the effective nucleon mass and the

symmetry energy. To gain control over the first two properties Boguta and Bodmer [113]

introduced non-linear self-interactions of the scalar meson (σ) in this model. The model

was further extended by including a vector-isovector meson (ρ) which accounts for the

symmetry energy of the nuclear matter.

5.2.1 Hadronic phase

To describe the pure hadronic phase we consider an extension of the σ−ω model where nu-

cleons interact with each other by the exchange of σ, ω and ρ mesons. The NN interaction

is given by the Lagrangian density [105, 114]

LN = ψ̄N

(

iγµ∂
µ −mN + gσNσ − gωNγµω

µ − 1

2
gρNγµτN · ρµ

)

ψN

+
1

2

(

∂µσ∂
µσ −m2

σσ
2
)

− U(σ)

−1

4
ωµνω

µν +
1

2
m2

ωωµω
µ − 1

4
ρµν · ρµν +

1

2
m2

ρρµ · ρµ. (5.2)

where ψN ≡ (ψp, ψn)
T is the isospin doublet of nucleons with ψp and ψn being the 4-

component Dirac spinors for proton and neutron, respectively; mN is the nucleon mass;

mσ, mω, and mρ are masses of mesons; gσN , gωN and gωN are coupling constants; ρ and

τN are vectors in isospin space (isovectors) and ωµν ,ρµν are meson field tensors given by

ωµν = ∂µων − ∂νωµ,

ρµν = ∂µρν − ∂νρµ . (5.3)
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The scalar self-interaction [105, 113] is

U(σ) =
1

3
g1mN (gσNσ)

3 +
1

4
g2(gσNσ)

4. (5.4)

The coupling constants are the parameters of the model and can be determined by re-

lating them algebraically to five empirically known quantities of bulk nuclear matter at

saturation : ρ, E/A,m∗
N , K and as.

Equations of motion for the fields are obtained from Euler-Lagrange equation

∂µ
∂L

∂(∂µφ)
=
∂L
∂φ

, (5.5)

where φ represents fields ψN , σ, ω and ρ. Using this Eq. (5.5) along with Eq. (5.2) we get

the Dirac equation for nucleons

[

γµ
(

i∂µ − gωNωµ −
1

2
gρNτN · ρµ

)

− (mN − gσNσ)

]

ψN = 0 . (5.6)

For mesons we get following equations of motions

(�+m2
σ)σ = gσN ψ̄NψN − ∂U

∂σ
, (5.7)

(�+m2
ω)ωµ = gωN ψ̄NγµψN , (5.8)

(�+m2
ρ)ρµ =

1

2
gρN ψ̄NγµτNψN , (5.9)

with � ≡ ∂µ∂µ.

The last four equations form a set of coupled nonlinear differential equations and

therefore very difficult to solve exactly. Moreover, coupling constants are expected to be

large which make perturbation approach inapplicable. However, in the context of studying

dense and uniform matter of neutron stars we can use the mean-filed approximation where
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the meson field operators are replaced by their ground state expectation values as

σ → < σ >

ωµ → < ωµ >

ρµ → < ρµ >

The validity of this approximation improves with density as at large densities source

terms of Eqs. (5.7)-(5.9) increase which in turn increase the justification of the above

replacements. The expectation values of space components of ωµ,ρµ vanish due to the

rotational symmetry of the system. The first two components of the isovector field (ρ) also

have vanishing expectation values in the ground state so that only the third component

survives. Moreover, in the rest frame of this uniform matter the fields are independent

of space and time. Considering all these together we get greatly simplified equations of

motion for nucleons as well as mesons

[

γ0
(

i∂0 − gωNω0 −
1

2
gρNτ3Nρ03

)

− (mN − gσNσ)
]

ψN = 0 , (5.10)

m2
σσ = −∂U

∂σ
+ gσN < ψ̄NψN > , (5.11)

m2
ωω0 = gωN < ψ†

NψN > , (5.12)

m2
ρρ03 =

1

2
gρN < ψ†

Nτ3NψN > . (5.13)

As there is no space-time dependence in these equations we look for the stationary solution

for nucleons of the form

ψN = u(~k)ei(
~k·~x−ε(k)t) , (5.14)

where u(k) is an 8-component spinor. When this ψN is substituted in Eq. (5.10) we get

the eigenvalue equation

(~α · ~k + βm∗
N)u(

~k) = (ε(k)− gωNω0 −
1

2
gρNτ3Nρ03)u(~k) , (5.15)
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with eigenvalue

ε(k)− gωNω0 −
1

2
gρNτ3Nρ03 = ±(~k2 +m∗2

N )1/2 ,

which yields,

ε(k) = gωNω0 +
1

2
gρNτ3Nρ03 ± (~k2 +m∗2

N )1/2 = ε±(k). (5.16)

where m∗
N is the effective nucleon mass given as

m∗
N = mN − gσNσ . (5.17)

The general solution for the field operator ψN is written as

ψN =
1√
V

∑

s

∫

d~k
[

as(~k)us(~k)e
−iε+(~k)t+i~k·~x + b†s(

~k)vs(~k)e
−iε−(~k)t−i~k·~x

]

, (5.18)

where us(~k) and vs(~k) are positive and negative energy spinors, respectively; as(~k) denotes

the annihilation operator for particles whereas b†s(
~k) stands for the creation operator for

antiparticles. However, we do not consider antiparticles in our calculation as there is no

antiparticle present in the ground state (T = 0) of uniform nuclear matter. Nucleons

being fermions occupy all the energy levels upto their Fermi energies (εf ≡ ε(k = kf)),

which are also their chemical potentials (µ), in the ground state.

The expectations value appearing in the RHS of the field equation (5.12) gives the

total baryon number density of the system

n ≡< ψ†
NψN > =

2

(2π)3

∫ kfp

0

d~k +
2

(2π)3

∫ kfn

0

d~k

=
k3fp
3π2

+
k3fn
3π2

= np + nn . (5.19)
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Similarly, for other expectation values we get scalar and vector baryon densities as

ns ≡< ψ̄NψN >=
2

π2

∫ kfp

0

k2dk
m∗

N
√

k2 +m∗2
N

+
2

π2

∫ kfn

0

k2dk
m∗

N
√

k2 +m∗2
N

, (5.20)

and

nv ≡< ψ†
Nτ3NψN > =

2

(2π)3

∫ kfp

0

d~k − 2

(2π)3

∫ kfn

0

d~k

= np − nn . (5.21)

Expression for energy density and pressure for nucleons can be obtained from Energy-

momentum tensor as

ǫN = < T 00 >= − < LN > + < ψNγ0∂0ψN > , (5.22)

PN =
1

3
< T ii >=< LN > +

1

3
< ψ̄Nγ

i∂iψN > . (5.23)

After evaluating the expectation values we get

ǫN =
1

3
g1mN (gσNσ)

3 +
1

4
g2(gσNσ)

4 +
1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

1

2
m2

ρρ
2
03

+
1

π2

[
∫ kfp

0

√

k2 +m∗2
N k2dk +

∫ kfn

0

√

k2 +m∗2
N k2dk

]

, (5.24)

PN = −1

3
g1mN (gσNσ)

3 − 1

4
g2(gσNσ)

4 − 1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

1

2
m2

ρρ
2
03

+
1

3π2

[

∫ kfp

0

k4dk
√

k2 +m∗2
N

+

∫ kfn

0

k4dk
√

k2 +m∗2
N

]

. (5.25)

Leptons form uniform Fermi gases and their energy density and pressure can be easily

calculated as

ǫL =
∑

l=e,µ

1

π2

∫ kFl

0

(k2 +m∗2
l )1/2k2dk , (5.26)

PL =
1

3

∑

l=e,µ

1

π2

∫ kFl

0

k4dk

(k2 +m∗2
l )1/2

. (5.27)
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Now, we have the total energy density and pressure of the system :

ǫ = ǫN + ǫL , (5.28)

P = PN + PL . (5.29)

So, knowing the masses and coupling constants the EOS of the nuclear matter can be

calculated using Eqs. (5.11)-(5.13), (5.19)-(5.21) and (5.24)-(5.29).

5.2.2 Kaon condensed phase

By using a chiral SU(3)L × SU(3)R Lagrangian, Kaplan and Nelson [115] first demon-

strated the possibility of the existence of an (anti)kaon (K−) condensed phase in dense

nuclear matter. (Anti)kaon begins to appear in the system when its effective in-medium

energy or the chemical potential becomes equal to the chemical potential of electrons i.e.

ωK− = µK− = µe. (5.30)

Generally µe increases as the baryon density increases. But the effective energy of K− in

the nuclear medium decreases with increasing density because of their attractive s-wave

interaction with the nuclear medium. Therefore, at some density the above threshold

condition may be fulfilled and K− may appear through the following strangeness changing

processes

n→ p+K− , e− → K− + νe . (5.31)

The appearance of K− lowers the energy of the system in two ways :

i) Because of its bosonic character K− mesons may form a condensate in the lowest

momentum (k = 0) state and thereby save the kinetic energy of electrons they replace.

ii) With the appearance of K− mesons the proton fraction of the matter also increases
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which in turn reduces the symmetry energy of nuclear matter.

A pure (anti)kaon condensed phase contains nucleons (we don’t consider hyperons),

leptons (electron, muon) as well as the (anti)kaon. For the interaction between nucleons

we consider the same Lagrangian as before in Eq. 5.2. Interaction between kaons and

nucleons can be treated in two ways - within the chiral perturbation theory [115–117] or

within the kaon-meson coupling scheme. To treat the interactions of kaons on the same

footing as nucleons we adopt the latter approach and use the Lagrangian density for the

kaon in the minimal coupling scheme introduced by Glendenning and Schaffner-Bielich

(1999) and is given by [118]

LK = D∗
µK̄D

µK −m∗2
K K̄K, (5.32)

where K ≡ (K+, K0) and K̄ ≡ (K−, K̄0) denote kaon and antikaon isospin doublets,

respectively. Dµ is the covariant derivative

Dµ = ∂µ + igωKωµ + igρKτK · ρµ , (5.33)

m∗
K is the effective mass of the kaon

m∗
K = mK − gσKσ , (5.34)

and gσK , gωK and gρK are the kaon-meson coupling constants. The equation of motion for

the kaon is

(DµD
µ +m∗2

K )K = 0. (5.35)

At this point we employ the mean-field approximation discussed in Sec. (5.2) and for

static and uniform neutron star matter we get the expression for the in-medium energy
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of K− mesons as

ωK− =
√

(k2 +m∗2
K )− gωKω0 −

1

2
gρKρ03. (5.36)

For the s-wave condensation (~k = 0) we obtain

ωK− = m∗
K − gωKω0 −

1

2
gρKρ03. (5.37)

So, we see that the interaction of K− mesons with the nuclear medium causes a reduction

in its energy which has also become density dependent through the meson fields σ, ω0 and

ρ03. With increasing density meson fields generally increase which in turn decreases ωK−

and when it becomes equal to the µe, K
− mesons appear in the system.

The meson field equations (5.11)-(5.13) get modified in the presence of the K− con-

densate as

m2
σσ = −∂U

∂σ
+ gσNns + gσKnK , (5.38)

m2
ωω0 = gωNn− gωKnK , (5.39)

m2
ρρ03 =

1

2
gρN (ρp − ρn)− gρKnK . (5.40)

where nK is the vector density of the kaon and for the s-wave condensation considered

here this is also the scalar density and is given by

nK = 2(ωK + gωKω0 + gωKρ03)K̄K = 2m∗
KK̄K (5.41)

The total charge density of the K− condensate phase is calculated as

QK = np − ne − nµ − nk (5.42)

As all the K− mesons have zero momentum in the s-wave condensation, they don’t have

any direct contribution to the total pressure and can be calculated from Eq. (5.29) using
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modified meson field equations (5.38)-(5.40) in the presence of a K− condensate . But

they do contribute to the total energy density of the system through the term

ǫK = m∗
KnK , (5.43)

so that the total energy density becomes

ǫ = ǫN + ǫL + ǫK . (5.44)

5.2.3 Mixed phase

The transition from the hadronic phase to the K− condensed phase in neutron stars is

mainly of first order, but can also be of second order. The first order transition goes

through a mixed phase where both the phases coexist in equilibrium. For a single com-

ponent system having only one conserved quantity this equilibrium is governed by the

Gibbs conditions:

µI = µII = µ

T I = T II = T

P I(µ, T ) = P II(µ, T ) = P (5.45)

For a fixed temperature the last equation of (5.45) gives an unique solution for µ which

is generally determined by using the Maxwell construction. However, the ground state of

neutron star matter is a two component system with two conserved quantities namely the

total baryon density and the total electric charge. This gives two independent chemical

potentials which we can choose as µn and µe so that the Gibbs conditions are now given
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by [105] (for T = 0)

µH
e = µK

e

µH
n = µK

n

PH(µe, µn) = PK(µe, µn) . (5.46)

Here, H and K stand for the hadronic and the K− condensed phases, respectively. Unlike

the Maxwell case here the equilibrium quantities (P, µ) don’t remain constant throughout

the mixed phase, instead they depend on the proportion of the two equilibrium phases.

In the mixed phase the charge neutrality condition reads as

(1− χ)QH + χQK = 0 , (5.47)

where χ is the volume fraction occupied by the condensed phase. Similarly for the total

baryon number density and the energy density of the mixed phase are given by

nMP = (1− χ)nH + χnK , (5.48)

ǫMP = (1− χ)ǫH + χǫK . (5.49)

where nH and ǫH are the baryon number density and the energy density in the hadronic

phase respectively and nK and ǫK are the corresponding quantities in the K− condensed

phase.

5.3 Parameter sets

The EOS of the neutron star matter can be obtained within the framework of RMF theory

if all the coupling constants appearing in the theory are known. To determine the coupling

constants we rely on the empirical values of the bulk nuclear matter properties defined
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Table 5.1: GM1 parameter set that reproduces saturation density n0 = 0.153 fm−3,
binding energy E/A = −16.3 MeV, m∗

N/mN = 0.70, incompressibility K = 300 MeV
and symmetry energy coefficient as = 32.5 MeV. Masses are taken as mN = 938 MeV,
mσ = 550 MeV, mω = 783 MeV and mρ = 770 MeV.

gσN gωN gρN g1 g2 (fm−1)
9.5708 10.5964 8.1957 12.2817 -8.9780

Table 5.2: Kaon-scalar meson coupling constants for the GM1 parameter set at different
values of K− optical potential depth UK .

UK (MeV) -100 -120 -140 -160 -180
GM1 0.9542 1.6337 2.3142 2.9937 3.6742

earlier in the chapter, at the saturation density.

5.3.1 Nucleon-Meson coupling constants

There are five unknown coupling constants gσN , gωN , gρN , g1 and g2 in the nucleon-meson

interaction Lagrangian given by Eq. (5.2). For our calculation we use the GM1 parameter

set introduced by Glendenning and Moszkowski (1991) [119] as it predicts a maximum

neutron star mass compatible with the most recent observed neutron star mass of 1.97M⊙.

The values of the parameters of this set are listed in table 5.1.

5.3.2 Kaon-Meson coupling constants

Coupling constants for the kaon-meson interaction (Eq. 5.32) are determined by using

the quark model and isospin counting rule. For the vector coupling constants we have

gωK =
1

3
gωN and gρK = gρN . (5.50)
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The real part of the K− optical potential depth at the saturation density provides the

scalar coupling constant as

UK(n0) = −gσKσ − gωKω0 . (5.51)

We have seen in the Section (5.2.2) that the interaction of K− mesons with the nuclear

matter is attractive in nature. On the one hand, the analysis of K− atomic data indicated

that the real part of the optical potential could be as large as UK = −180 ± 20 MeV at

normal nuclear matter density [120, 121]. On the other hand, chirally motivated coupled

channel models with a self-consistency requirement predicted shallow potential depths of

−40-60 MeV [122,123]. Further, the highly attractive potential depth of several hundred

MeV was obtained in the calculation of deeply bound K−-nuclear states [124, 125]. An

alternative explanation to the deeply bound K−-nuclear states was given by others [126].

This shows that the value of K− optical potential depth is still a debatable issue. The

values of kaon-scalar meson coupling constants corresponding to the GM1 parameter set

and for various values of K− optical potential depths are listed in table 5.2.
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Chapter 6

Shear viscosity in dense matter

6.1 Introduction

Shear viscosity plays important roles in neutron star physics. It might damp the r-mode

instability below the temperature ∼ 108 K [127]. The knowledge of shear viscosity is

essential in understanding pulsar glitches and free precession of neutron stars [128]. The

calculation of the neutron shear viscosity (ηn) for nonsuperfluid matter using free-space

nucleon-nucleon scattering data was first done by Flowers and Itoh [129, 130]. Cutler

and Lindblom [131] fitted the results of Flowers and Itoh [130] for the study of viscous

damping of oscillations in neutron stars. Recently the neutron shear viscosity of pure

neutron matter has been investigated in a self-consistent way [132].

It was noted that electrons, the lightest charged particles and neutrons, the most

abundant particles in neutron star matter contribute significantly to the total shear vis-

cosity. Flowers and Itoh found that the neutron viscosity was larger than the combined

viscosity of electrons and muons (ηeµ) in non-superfluid matter [130]. Further Cutler and

Lindblom argued that the electron viscosity was larger than the neutron viscosity in a

superfluid neutron star [131]. Later Andersson and his collaborators as well as Shtertin

and his collaborator showed ηeµ > ηn in the presence of proton superfluidity [128,133]. In
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the latter calculation, the effects of the exchange of transverse plasmons in the collisions

of charged particles were included and it lowered the ηeµ compared with the case when

only longitudinal plasmons were considered [133].

So far, all of those calculations of shear viscosity were done in neutron star matter

composed of neutrons, protons, electrons and muons. However, exotic forms of matter

such as hyperon or antikaon condensed matter might appear in the interior of neutron stars

as discussed in the previous chapters. Negatively charged hyperons or a K− condensate

could affect the electron shear viscosity appreciably.

Here we focus on the role of K− meson condensates on the shear viscosity. No cal-

culation of shear viscosity involving K− condensation has been carried out so far. This

motivates us to investigate the shear viscosity in the presence of a K− condensate. The

K− condensate appears at 2-3 times the normal nuclear matter density. With the onset

of the condensate, K− mesons replace electrons and muons in the core. As a result, K−

mesons along with protons maintain the charge neutrality. It was noted that the proton

fraction became comparable to the neutron fraction in a neutron star including the K−

condensate at higher densities [134–136]. The appearance of the K− condensate would

not only influence the electron and muon shear viscosities but it will also give rise to a

new contribution called the proton shear viscosity [137].

This chapter is organized in the following way. In section 6.2 , we describe the cal-

culation of shear viscosity in neutron stars involving the K− condensate. Results are

discussed in section 6.3. A summary is given in section 6.4.

6.2 Formalism

Here we are interested in calculating the shear viscosity of neutron star matter in the

presence of an antikaon condensate. We consider neutron star matter undergoing a first

order phase transition from charge neutral and beta-equilibrated nuclear matter to a K−
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condensed phase. The nuclear phase is composed of neutrons, protons, electrons and

muons whereas the K− condensed phase is made up of neutrons and protons embedded

in the Bose-Einstein condensate ofK− mesons along with electrons and muons. Antikaons

form a s-wave (with momentum k = 0) condensation in this case. Therefore, K− mesons

in the condensate do not take part in momentum transfer during collisions with other

particles. However, the condensate influences the proton fraction and equation of state

(EOS) which, in turn, might have important consequences for the shear viscosity.

6.2.1 Solving the Boltzmann transport equation

The starting point for the calculation of the shear viscosity is a set of coupled Boltzmann

transport equations [130, 133] for the i-th particle species (i = n, p, e, µ) with velocity vi

and distribution function Fi,

~vi · ~▽Fi =
∑

j=n,p,e,µ
Iij . (6.1)

The transport equations are coupled through collision integrals given by,

Iij =
V 3

(2π)9(1 + δij)

∑

si′ ,sj ,sj′

∫

dkjdki′dkj′WijF , (6.2)

where

F = [Fi′Fj′(1− Fi)(1− Fj)− FiFj(1− Fi′)(1− Fj′)] . (6.3)

Here ki, kj are momenta of incident particles and ki′ , kj′ are those of final states. The

Kronecker delta in Eq. (6.2) is inserted to avoid double counting for identical particles.

Spins are denoted by s and Wij is the differential transition rate. The non-equilibrium

distribution function for the i-th species Fi is given by

Fi = fi − φi
∂fi
∂ǫi

, (6.4)

73



where fi denotes the equilibrium Fermi-Dirac distribution function for the i-th species

f(ǫi) =
1

1 + exp[(ǫi − µi)/kBT ]
(6.5)

and φi gives the departure from the equilibrium. We adopt the following ansatz for

φi [133, 138]

φi = −τi(vikj −
1

3
vikiδij)(▽iVj +▽jVi −

2

3
δij ~▽ · ~V) , (6.6)

where τi is the effective relaxation time for the i-th species and V is the flow velocity.

To solve the transport equation (6.1) we linearize it by replacing Fi with fi in the LHS

and in the RHS we keep the lowest non-vanishing power of (Fi − fi) [139]. Multiplying

both sides of Eq. (6.1) by (2π)−3(vipj − 1
3
vipiδij)dki and summing over spin si and

integrating over dki we obtain a set of relations between effective relaxation times and

collision frequencies [133]
∑

j=n,p,e,µ

(νijτi + ν ′ijτj) = 1, (6.7)

and the effective collision frequencies are

νij =
3π2

2p5fikBTm
∗
i (1 + δij)

∑

si,si′ ,sj ,sj′

∫

dkidkjdki′dkj′

(2π)12
Wij[fifj(1− fi′)(1− fj′)]

×
[

2

3
k4i +

1

3
k2i k

2
i′ − (ki · ki′)

2

]

, (6.8)

ν ′ij =
3π2

2p5fikBTm
∗
j (1 + δij)

∑

si,si′ ,sj ,sj′

∫

dkidkjdki′dkj′

(2π)12
Wij [fifj(1− fi′)(1− fj′)]

×
[

1

3
k2i k

2
j′ −

1

3
k2i k

2
j + (ki · kj)

2 − (ki · kj′)
2

]

. (6.9)

The differential transition rate is given by

∑

si,si′ ,sj ,sj′

Wij = 4(2π)4δ(ǫi + ǫj − ǫi′ − ǫj′)δ(ki + kj − ki′ − kj′)Qij , (6.10)
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where Qij =< |Mij|2 > is the squared matrix element summed over final spins and

averaged over initial spins.

We obtain effective relaxation times for different particle species solving a matrix

equation that follows from Eq. (6.7). The matrix equation has the following form:



















νe ν ′eµ ν ′ep 0

ν ′µe νµ ν ′µp 0

ν ′pe ν ′pµ νp ν ′pn

0 0 ν ′np νn





































τe

τµ

τp

τn



















= 1 (6.11)

where,

νe = νee + ν ′ee + νeµ + νep ,

νµ = νµµ + ν ′µµ + νµe + νµp ,

νp = νpp + ν ′pp + νpn + νpe + νpµ ,

νn = νnn + ν ′nn + νnp . (6.12)

It is to be noted here that the proton-proton interaction is made up of contributions from

electromagnetic and strong interactions. As there is no interference of the electromagnetic

and strong interaction terms, the differential transition rate for the proton-proton scatter-

ing is the sum of electromagnetic and strong contributions [130]. Therefore, we can write

the strong and electromagnetic parts of the effective collision frequencies of proton-proton

scattering as [137]

νpp = νspp + νempp ,

ν ′pp = ν ′
s
pp + ν ′

em
pp . (6.13)

Here the superscripts ’em’ and ’s’ denote the electromagnetic and strong interactions.

75



Solutions of Eq. (6.11) are given below

τe =
[

(νpνn − ν ′pnν
′
np)(νµ − ν ′eµ) + (ν ′pn − νn)(νµν

′
ep − ν ′eµν

′
µp) + νnν

′
pµ(ν

′
ep − ν ′µp)

]

/detA,

τp =
[

(νn − ν ′pn)(νeνµ − ν ′eµν
′
µe) + ν ′pµνn(ν

′
eµ − νe) + ν ′peνn(ν

′
eµ − νµ)

]

/detA ,

τn =
[

(νp − ν ′np)(νeνµ − ν ′eµν
′
µe) + (ν ′np − ν ′µp)(ν

′
pµνe − ν ′eµν

′
pµ)

+(ν ′ep − ν ′np)(ν
′
µeν

′
pµ − ν ′peνµ)

]

/detA . (6.14)

where A is the 4×4 matrix of Eq. (6.11) and detA = [νeνµ(νpνn−ν ′pnν ′np)−νeν ′µpν ′pµνn−

ν ′eµν
′
µe(νpνn − ν ′pnν

′
np) − ν ′eµν

′
µpν

′
peνn + ν ′epν

′
µeν

′
pµνn − ν ′epνµν

′
peνn]. We obtain τµ from τe

replacing e by µ. In the next paragraphs, we discuss the determination of matrix element

squared for electromagnetic and strong interactions.

6.2.2 Electromagnetic interaction

First we focus on the electromagnetic scattering of charged particles. Here we adopt the

plasma screening of the interaction due to the exchange of longitudinal and transverse

plasmons as described in Refs. [133, 140, 141]. The matrix element for the collision of

identical charged particles is given by M12 = M
(1)
12 +M

(2)
12 , where the first term implies

the scattering channel 12 → 1′2′ and the second term corresponds to that of 12 → 2′1′.

The scattering of charged particles in neutron star interiors involves small momentum and

energy transfers. Consequently both channels contribute equally as the interference term

is small in this case. The matrix element for nonidentical particles is given by [133,140,141]

M12→1′2′ = 4πe2
(

J0
1′1J

0
2′2

q2 +Π2
l

− Jt1′1 · Jt2′2

q2 − ω2 +Π2
t

)

, (6.15)

where q and ω are momentum and energy transfers, respectively in the neutron star in-

terior; Jµ
i′i is the transition 4-current given as Jµ

i′i = (J0
i′i,J i′i) = (ūi′γ

µui)/2m
∗
i where ui

and ūi are, respectively, the Dirac spinor and its conjugate satisfying the normalization
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ūiui = 2mi; Jt is the transverse component of J with respect to q and the longitudinal

component is written in terms of the time-like component J0 by using the current conser-

vation relation qµJµ = ωJ0−qJl = 0 [141]. Polarization functions Πl and Πt are associated

with the plasma screening of charged particles’ interactions through the exchange of lon-

gitudinal and transverse plasmons, respectively. They are evaluated within random phase

approximation and for typical conditions of neutron star core they are given by [133]

Πl = q2l =
4e2

π

∑

i

m∗
ikfi ,

Πt = i
π

4

ω

q
q2t = ie2

ω

q

∑

i

kfi , (6.16)

where ql and qt are longitudinal and transverse plasma wave numbers respectively. After

evaluating the matrix element squared and doing the angular and energy integrations, the

effective collision frequencies are calculated following the prescription of Refs. [133, 140].

The collision frequencies of Eqs. (6.8) and (6.9) for charged particles become

νij = ν
||
ij + ν⊥ij ,

ν ′ij = ν ′
||⊥
ij , (6.17)

where ν
||
ij and ν⊥ij correspond to the charged particle interaction due to the exchange of

longitudinal and transverse plasmons and ν
||⊥
ij is the result of the interference of both

interactions. For small momentum and energy transfers, different components of the

collision frequency are given by [133, 140]

ν⊥ij =
αe4k2fj
m∗

i kfi

(kBT )
5/3

q
2/3
t

,

ν
||
ij =

e4π2m∗
im

∗2
j

k3fiql
(kBT )

2 ,

ν ′
||⊥
ij =

2e4π2m∗
i k

2
fj

k3fiql
(kBT )

2 , (6.18)
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where i, j = e, µ, p. The value of α = 2( 4
π
)1/3Γ(8/3)ζ(5/3) ∼ 6.93 where Γ(x) and ζ(x)

are gamma and Riemann zeta functions, respectively. The shear viscosities of electrons

and muons are given by [133].

ηi(=e,µ) =
nik

2
fi
τi

5m∗
i

. (6.19)

Here effective masses (m∗
i ) of electrons and muons are equal to their corresponding chem-

ical potentials because of relativistic effects. It was noted that the shear viscosity was

reduced due to the inclusion of plasma screening by the exchange of transverse plas-

mons [133, 140]. It is worth mentioning here that we extend the calculation of the col-

lision frequencies for electrons and muons in Refs. [133, 140] to that of protons due to

electromagnetic interaction. Before the appearance of the condensate in our calculation,

protons may be treated as passive scatterers as was earlier done by Ref. [133]. However,

after the onset of the antikaon condensation, electrons and muons are replaced by K−

mesons and proton fraction increases rapidly in the system [135, 136]. In this situation

protons can not be treated as passive scatterers.

6.2.3 Strong interaction

Next we focus on the calculation of collision frequencies of neutron-neutron, proton-proton

and neutron-proton scatterings due to the strong interaction. The knowledge of nucleon-

nucleon scattering cross sections are exploited in this calculation. This was first done

by Ref. [130]. Later recent developments in the calculation of nucleon-nucleon scattering

cross sections in the Dirac-Brueckner approach were considered for this purpose [140,142].

Here we adopt the same prescription of Ref. [142] for the calculation of collision frequencies

due to nucleon-nucleon scatterings. The collision frequency for the scattering of identical

particles under strong interaction is given by

νii + ν ′ii =
16m∗3

i (kBT )
2

3m2
n

Sii , (6.20)
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Sii =
m2

n

16π2

∫ 1

0

dx′
∫

√
(1−x′2)

0

dx
12x2x′2√

1− x2 − x′2
Qii , (6.21)

where i = n, p and mn is the bare nucleon mass and Qii is the matrix element squared

which appears in Eq. (6.10). Similarly we can write the collision frequency for nonidentical

particles as [137]

νij =
32m∗

im
∗2
j (kBT )

2

3m2
n

Sij ,

ν ′ij =
32m∗2

i m
∗
j(kBT )

2

3m2
n

S ′
ij , (6.22)

and

Sij =
m2

n

16π2

∫ 0.5+x0

0.5−x0

dx′
∫ f

0

dx
6(x2 − x4)
√

(f 2 − x2)
Qij ,

S ′
ij =

m2
n

16π2

∫ 0.5+x0

0.5−x0

dx′
∫ f

0

dx
[6x4 + 12x2x′2 − (3 + 12x20)x

2]
√

(f 2 − x2)
Qij . (6.23)

We define x0 =
kfj
2kfi

, x = ~q
2kfi

, x′ = q′

2kfi
, f =

√
x2
0
−(0.25+x2

0
−x′2)2

x′
, where momentum

transfers q = kj′ − kj and q′ = kj′ − ki. We find that the calculation of Sij, Sii and

S ′
ij requires the knowledge of Qii and Qij . The matrix elements squared are extracted

from the in-vacuum nucleon-nucleon differential scattering cross sections computed using

Dirac-Brueckner approach [143] from the following relations [133, 142].

dσij
dΩCM

(ǫLab, θCM) =
m2

N

16π2
Qij ,

cos θCM =
q′2 − q2

q′2 + q2
,

ǫLab =
q2 + q′2

2mN

(6.24)

where θCM is the scattering angle measured in the center of mass frame while ǫLab is the

total energy of the interacting particles in the laboratory frame. It is to be noted here
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that Spp, Spn and S ′
ij are the new results of this calculation. As soon as we know the

collision frequencies of nucleon-nucleon scatterings due to the strong interaction, we can

immediately calculate effective relaxation times of neutrons and protons from Eq. (6.14).

This leads to the calculation of the neutron and proton shear viscosities as

ηn =
nnk

2
fnτn

5m∗
n

,

ηp =
npk

2
fp
τp

5m∗
p

. (6.25)

Finally the total shear viscosity is given by

ηtotal = ηn + ηp + ηe + ηµ . (6.26)

6.2.4 Calculation of the EOS

The EOS enters into the calculation of the shear viscosity as an input. We construct the

EOS within the framework of the RMF model described in Chapter 5. Here we consider a

first order phase transition from nuclear matter to K− condensed matter. We adopt the

Maxwell construction for the first order phase transition. The constituents of matter are

neutrons, protons, electrons and muons in both phases and also (anti)kaons in the K−

condensed phase. Both phases maintain charge neutrality and β equilibrium conditions.

The detail calculations of both these phases have already been presented in Chapter 5

and we use them here to get the effective nucleon mass and Fermi momenta of particles

at different baryon densities. For the coupling constants we take GM1 [119] parameter

set given in table 5.1. The K− optical potential we choose is UK = −160 MeV, which

gives a kaon-sigma meson coupling constants gσK = 2.9937 (see table 5.2). This choice of

UK is motivated from the findings of the analysis of K− atomic data.
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Figure 6.1: Number densities of different particle species as a function of normalized
baryon density

6.3 Results and Discussions

The composition of neutron star matter including the K− condensate as a function of

normalized baryon density is shown in Fig. 6.1 The K− condensation sets in at 2.43n0.

Before the onset of the condensation, all particle fractions increase with baryon density. In

this case, the charge neutrality is maintained by protons, electrons and muons. As soon as

theK− condensate is formed, the density ofK− mesons in the condensate rapidly increases

and K− mesons replace leptons in the system. The proton density eventually becomes

equal to the K− density. The proton density in the presence of the condensate increases

significantly and may be higher than the neutron density at higher baryon densities [144].

This increase in the proton fraction in the presence of the K− condensate might result in

an enhancement in the proton shear viscosity and appreciable reduction in the electron

and muon viscosities compared with the case without the condensate. We discuss this in

detail in the following paragraphs.

Next we focus on the calculation of νii, νij and ν
′
ij . For the scatterings via the electro-
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magnetic interaction, we calculate those quantities using Eqs. (6.17) and (6.18). On the

other hand, νs corresponding to collisions through the strong interaction are estimated

using Eqs. (6.20)-(6.23). In an earlier calculation, the authors considered only Snn and

Snp [133] for the calculation of the neutron shear viscosity in nucleons-only neutron star

matter because protons were treated as passive scatterers. It follows from the discussion

in the preceding paragraph that protons can no longer be treated as passive scatterers

because of the large proton fraction in the presence of the K− condensate. Consequently

the contributions of Spp and Spn have to be taken into account in the calculation of the

proton and neutron shear viscosities. The expressions of Snn, Spp, Snp and Spn given

by Eqs. (6.21) and (6.23) involve matrix elements squared. We note that there is an

one to one correspondence between the differential cross section and the matrix element

squared [142]. We exploit the in-vacuum nucleon-nucleon cross sections of Li and Mach-

leidt [143] calculated using Bonn interaction in the Dirac-Brueckner approach for the

calculation of matrix elements squared. We fit the neutron-proton as well as proton-

proton differential cross sections and use them in Eqs. (6.21) and (6.23) to calculate Snn,

Spp, Snp and Spn which are functions of neutron (kfn) and proton (kfp) Fermi momenta.

The values of kfn ranges from 1.3 to 2.03 fm−1 whereas that of kfp spans the interval 0.35
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Figure 6.4: The shear viscosities in nuclear matter without the K− condensate corre-
sponding to this work, the parametrization of Cutler and Lindblom [131] and the EOS of
APR [110] as a function of normalized baryon density at a temperature T = 108 K.

to 1.73 fm−1. This corresponds to the density range ∼0.5 to ∼ 3.0n0. We fit the results

of our calculation.

Figures 6.2 and 6.3 display the variation of Snn, Spp, Snp and Spn with baryon density.

The value of Snn is greater than that of Snp in the absence of the condensate as evident

from Fig. 6.2. Our results agree well with those of Ref. [133]. However, Snp rises rapidly

with baryon density after the onset of the K− condensation and becomes higher than

Snn. It is noted that the effect of the condensate on Snn is not significant. Figure 6.3

shows that Spp drops sharply with increasing baryon density and crosses the curve of Spn

in the absence of the condensate. However Spp and Spn are not influenced by the K−

condensate. A comparison of Fig. 6.2 and Fig. 6.3 reveals that Spp is almost one order

of magnitude larger than Snn at lower baryon densities. This may be attributed to the

smaller proton Fermi momentum. We also compute S ′
np and S ′

pn (not shown here) and

these quantities have comparatively smaller values. Further we find that the magnitude

of S ′
pn is higher than that of S ′

np.
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Figure 6.5: The total shear viscosity as well as shear viscosities corresponding to different
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As soon as we know νs, we can calculate effective relaxation times using Eq. (6.14)

and shear viscosities using Eqs. (6.19), (6.25) and (6.26). First, we discuss the total shear

viscosity in nuclear matter without a K− condensate. This is shown as a function of

baryon density at a temperature 108K in Fig. 6.4. Here our results indicated by the red

line are compared with the calculation of the total shear viscosity using the EOS of Akmal,

Pandharipande and Ravenhall (APR) [110] denoted by the blue line and also with the

results of Flowers and Itoh [129, 130]. For the APR case, we exploit the parametrization

of the EOS by Heiselberg and Hjorth-Jensen [145]. Further we take density independent

nucleon effective masses m∗
n = m∗

p = 0.8mn for the calculation with the APR EOS which

was earlier discussed by Shternin and Yakovlev [140]. On the other hand, the results of

Flowers and Itoh were parametrized by Cutler and Lindblom (CL) [131] and it is shown

by the green line in Fig. 6.4. It is evident from Fig. 6.4 that the total shear viscosity

in our calculation is significantly higher than other cases. This may be attributed to the
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fact that our EOS is a fully relativistic one.

We exhibit shear viscosities in presence of the K− condensate as a function of baryon

density in Fig. 6.5. This calculation is performed at a temperature 108K. In the absence

of the K− condensate, the contribution of the electron shear viscosity to the total shear

viscosity is the highest. The electron, muon and neutron shear viscosities exceed the

proton shear viscosity by several orders of magnitude. Further we note that the lepton

viscosities are greater than the neutron viscosity. On the other hand, we find interesting

results in presence of theK− condensate. The electron and muon shear viscosities decrease

very fast after the onset of K− condensation whereas the proton shear viscosity rises in

this case. There is almost no change in the neutron shear viscosity. It is interesting to note

that the proton shear viscosity in presence of the condensate approaches the value of the

neutron shear viscosity as baryon density increases. The total shear viscosity decreases in

the K− condensed matter due to the sharp drop in the lepton shear viscosities. Here the

variation of shear viscosities with baryon density is shown up to 3n0. The neutron and

proton shear viscosities in neutron star matter with the K− condensate might dominate

over the electron and muon shear viscosities beyond baryon density 3n0. Consequently,

the total shear viscosity would again increase.

The temperature dependence of the total shear viscosity is shown in Fig. 6.6. In

an earlier calculation, electron and muon shear viscosities were determined by collisions

only due to the exchange of transverse plasmons because this was the dominant contri-

bution [140]. Under this approximation, the electron and muon shear viscosities had a

temperature dependence of T−5/3, whereas, the neutron shear viscosity was proportional

to T−2. The temperature dependence of the electron and muon shear viscosities deviated

from the standard temperature dependence of the shear viscosity of neutron Fermi liquid.

However, in this calculation we have not made any such approximation. We have consid-

ered all the components of effective collision frequency which have different temperature

dependence as given by Eq. (6.18). This gives rise to a complicated temperature depen-
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dence in the calculation of shear viscosity. The total shear viscosity is plotted for T = 107,

108, and 109 K in Fig. 6.6. It is noted that the shear viscosity increases as temperature

decreases.

The shear viscosity plays an important role in damping the r-mode instability in old

and accreting neutron stars [146,147]. The suppression of the instability is achieved by the

competition of various time scales associated with gravitational radiation (τGR), hyperon

bulk viscosity (τB), modified Urca bulk viscosity (τU ), and shear viscosity (τSV ). At high

temperatures the bulk viscosity damp the r-mode instability. As neutron stars cool down,

the bulk viscosity might not be the dominant damping mechanism. The shear viscosity

becomes significant in the temperature regime ≤ 108 K and might suppress the r-mode

instability effectively.

In this calculation, we consider only the K− optical potential depth UK = −160

MeV. However, this calculation could be performed for other values of UKs. As the

magnitude of the K− potential depth decreases, the threshold of the K− condensation
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is shifted to higher densities [135]. On the other hand, hyperons may also appear in

neutron star matter around 2-3n0. Negatively charged hyperons might delay the onset

of the K− condensation [114, 148, 149]. However, it was noted in an earlier calculation

that Σ− hyperons were excluded from the system because of repulsive Σ-nuclear matter

interaction and Ξ− hyperons might appear at very high baryon density [136]. However,

the appearance of Λ hyperons could compete with the threshold of K− condensation. If

Λ hyperons appear before K− condensation, the threshold of K− condensation is shifted

to higher baryon density because of softening in the equation of state due to Λ hyperons.

But the qualitative results of the shear viscosity discussed above remain the same.

6.4 Summary and Conclusions

We have investigated the shear viscosity in presence of a K− condensate in this chapter.

With the onset of K− condensation, electrons and muons are replaced by K− mesons

rapidly. The proton fraction also increases and eventually becomes equal to the neutron

fraction in the K− condensed neutron star matter. This has important consequences for

the electron, muon and proton shear viscosities. We have found that the electron and

muon shear viscosities drop steeply after the formation of the K− condensate in neutron

stars. On the other hand, the proton shear viscosity whose contribution to the total

shear viscosity was negligible in earlier calculations [130,133], now becomes significant in

presence of the K− condensate. The proton shear viscosity would exceed the neutron as

well as lepton shear viscosities beyond 3n0. The total viscosity would be dominated by

the proton and neutron shear viscosities in this case. This calculation may be extended

to neutron stars with strong magnetic fields.

It is worth mentioning here that we adopt the Maxwell construction for the first

order phase transition in this calculation. Such a construction is justified if the surface

tension between two phases is quite large [150]. Moreover the value of the surface tension
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between the nuclear and the K− condensed phases or between the hadron and quark

phases is not known correctly. Therefore, this problem could also be studied using the

Gibbs construction [151].

Besides the role of shear viscosity in damping the r-mode instability as well as in

pulsar glitches and free precession of neutron stars, it has an important contribution in

the nucleation rate of bubbles in first order phase transitions. It was shown earlier that

the shear viscosity might control the initial growth rate of a bubble [152, 153]. This will

be studied in the next chapter in connection with the K− condensation in neutron stars.
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Chapter 7

Thermal nucleation in protoneutron

stars

7.1 Introduction

A first order phase transition from nuclear matter to some exotic form of matter might be

possible in protoneutron stars. It could be either a nuclear to quark matter transition or a

first order pion/kaon condensation. Consequently, it might have tremendous implications

for compact stars [105] and supernova explosions [154]. Here the focus is the first order

phase transition proceeding through the thermal nucleation of a new phase in particular,

theK− condensed phase in hot and neutrino-trapped matter. After the pioneering work of

Kaplan and Nelson on the kaon condensation in dense baryonic matter formed in heavy

ion collisions as well as in neutron stars [115], several groups pursued the problem of

the K− condensation in (proto)neutron stars [114, 118, 135, 148, 149, 155–162]. In most

cases, the phase transition was studied using either Maxwell construction or Gibbs rules

for phase equilibrium coupled with global baryon number and charge conservation [151].

The first order phase transition driven by the nucleation of K− condensed phase was

considered in a few cases [163, 164]. In particular, the calculation of Ref. [164] dealt
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with the role of shear viscosity on the thermal nucleation of antikaon condensed phase

in hot and neutrino-free compact stars. It is to be noted here that the first order phase

transition through the thermal nucleation of quark matter droplets was also investigated

in (proto)neutron stars [153, 163, 165–169] using the homogeneous nucleation theory of

Langer [56, 163, 165]. The thermal nucleation is an efficient process than the quantum

nucleation at high temperatures [153, 169].

We adopt the homogeneous nucleation theory of Langer [56, 170] for the thermal nu-

cleation of the K− condensed phase. Nuclear matter would be metastable near the phase

transition point due to sudden change in state variables. In this respect thermal and quan-

tum fluctuations are important. Droplets of K− condensed matter are formed because

of thermal fluctuations in the metastable nuclear matter. Droplets of the new and stable

phase which are bigger than a critical radius, will survive and grow. The transportation of

latent heat from the surface of the droplet into the metastable phase favours a critical size

droplet to grow further. This heat transportation could be achieved through the thermal

dissipation and viscous damping [152, 170, 173].

A parametrized form of the shear viscosity was used in earlier calculations of the

nucleation of quark matter [153]. Recently, the influence of thermal conductivity and

shear viscosity on the thermal nucleation time was studied in a first-order phase transition

from the nuclear matter to theK− condensed matter in hot neutron stars [164]. The shear

viscosity due to neutrinos was not considered in that calculation. Here we study the effect

of shear viscosity on the thermal nucleation rate of droplets of theK− condensed matter in

neutrino-trapped matter relevant to protoneutron stars [171,172]. Besides shear viscosities

due to neutrons, protons and electrons, this involves the contribution of neutrinos to the

total shear viscosity.

We organize the paper in the following way. We describe shear viscosities of different

species including neutrinos, models for the EOS, and the calculation of thermal nucleation

rate in Sec. 7.2. Results of this calculation are discussed in Sec. 7.3 . Section 7.4 gives
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the summary and conclusions.

7.2 Formalism

It was noted in the last chapter that the main contributions to the total shear viscosity

in neutron star matter came from electrons, the lightest charged particles, and neutrons,

the most abundant particles. Neutrinos are trapped in protoneutron stars and their

contribution might be significant in transport coefficients such as shear viscosity. In

principle, we may calculate shear viscosities for different particle species (n, p, e and

νe) in neutrino-trapped matter using coupled Boltzmann transport equations of the form

of Eq. (6.1) from which we can immediately write a set of relations between effective

relaxation times (τ) and collision frequencies (νij , ν
′

ij) as

∑

i,j=n,p,e,νe

(νijτi + ν ′ijτj) = 1 , (7.1)

which can be cast into a matrix equation similar to Eq. (6.11). However, solving the

matrix equation becomes a problem because the relaxation time for neutrinos (calculated

below) is much larger than those of other species as it is evident from Fig. 7.1. So

we calculate the relaxation times of neutrons, protons and electrons in neutrino-trapped

matter from the above matrix equation as was done in the previous chapter.

7.2.1 Neutrino shear viscosity

To calculate the neutrino shear viscosity we follow the prescription of Goodwin and

Pethick [174] and get the following expression

ην =
1

5
nνkfνcτν

[

π2

12
+ λη

∑

m=odd

2(2m+ 1)

m2(m+ 1)2[m(m+ 1)− 2λη]

]

. (7.2)

91



-25

-20

-15

-10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

τ 
(s

)

nb/n0

YL=0.4

T=10 MeV
τνeτe
τn
τp

Figure 7.1: Relaxation times corresponding to different species in neutrino-trapped nu-
clear matter as a function of normalized baryon density at a temperature T = 10 MeV
and YL = 0.4.

For neutrino shear viscosity, we only consider scattering processes involving neutrinos and

other species. Various quantities in Eq.(7.2) are explained below. The neutrino relaxation

time (τν) is,

τ−1
ν =

∑

i=n,p,e

τ−1
νi , , (7.3)

τ−1
νi =

E2
fi
(kBT )

2

64π2
< I i > , (7.4)

and λη is defined as

λη = τν
∑

i

λiητ
−1
νi (7.5)

λiη =

∫

dΩ2dΩ3dΩ4
1
2

[

3(k̂1 · k̂3)
2 − 1

]

〈|M |2〉i δ(k1 + k2 − k3 − k4)
∫

dΩ2dΩ3dΩ4 〈|M |2〉i δ(k1 + k2 − k3 − k4)
(7.6)

= 1− 3

2k2fν

I i1
< I i >

+
3

8k4fν

I i2
< I i >

, (7.7)
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< Ii > =
8G2

Fπkfν
3

[

4CVi
CAi

(

kfν
Efi

)

+ (C2

Vi
+ C2

Ai
)

{

3 +

(

kfi
Efi

)2

+
2

5

(

kfν
Efi

)2
}

−
(

mi

Efi

)2

(C2

Vi
− C2

Ai
)

]

(7.8)

Ii1 =
32G2

Fπk
3

fν

15

[

12CVi
CAi

(

kfν
Efi

)

+ (C2

Vi
+ C2

Ai
)

{

5 +

(

kfi
Efi

)2

+
12

7

(

kfν
Efi

)2
}

−3

(

mi

Efi

)2

(C2

Vi
− C2

Ai
)

]

(7.9)

Ii
2

=
128G2

Fπk
5

fν

35

[

20CVi
CAi

(

kfν
Efi

)

+ (C2

Vi
+ C2

Ai
)

{

7 +

(

kfi
Efi

)2

+
10

3

(

kfν
Efi

)2
}

−5

(

mi

Efi

)2

(C2

Vi
− C2

Ai
)

]

. (7.10)

Here < |M2| > is the squared matrix element summed over final spins and averaged over

initial spins for a scattering process and CV and CA are vector and axial-vector coupling

constants.

For non-relativistic nucleons (mi/Efi) ≃ 1, (kfi/Efi) ≪ 1 and if also (kfν/Efi) ≪ 1,

λiη reduces to [174]

λiη =
11
35
C2

Vi
+ 2

7
C2

Ai

C2
Vi
+ 2C2

Ai

(7.11)

However, we do not assume non-relativistic approximation in this calculation. The total

shear viscosity is given by

ηtotal = ηn + ηp + ηe + ην , (7.12)

with

ηi(=n,p,e) =
nik

2
fi
τi

5m∗
i

. (7.13)

where mi and kfi denote the effective mass and Fermi momentum respectively, of i-

th species. The relaxation times (τi) are calculated using the method described in the

previous chapter and are given by
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τn =
[(

νpνe − ν ′peν
′
ep

)

− ν ′np
(

ν ′pe − νe
)]

/D ,

τp =
[

νn
(

νe − ν ′pe
)

− ν ′pnνe
]

/D ,

τe =
[

νn
(

νp − ν ′ep
)

− ν ′pn
(

ν ′np − ν ′ep
)]

/D , (7.14)

where D = νn(νpνe − ν ′peν
′
ep) − ν ′pnνe. Collision frequencies appearing in Eq. (7.14) are

obtained from Eqs. (6.12), (6.13), (6.17)-(6.18) and (6.20)-(6.22).

7.2.2 The EOS

The knowledge of the EOS for the nuclear as well as the K− condensed phases is essen-

tial for the computation of shear viscosity and thermal nucleation rate. As discussed in

earlier chapters we consider here a first-order phase transition from the charge neutral

and β-equilibrated (µe + µp = µn + µνe) nuclear matter to the K− condensed matter in a

protoneutron star. Those two phases are composed of neutrons, protons, electrons, elec-

tron type neutrinos and of K− mesons only in the K− condensed phase. Both phases are

governed by baryon number conservation and charge neutrality conditions. The critical

droplet of the K− condensed matter is in total phase equilibrium with the metastable nu-

clear matter. The mixed phase is governed by Gibbs phase rules along with global baryon

number conservation and charge neutrality (Sec. 5.2.3). We adopt the bulk approxima-

tion [165] which does not consider the variation of the meson fields with position inside

the droplet. Relativistic field theoretical models described in Chapter 5 are employed to

calculate the EOS in nuclear and antikaon condensed phases. Expressions for the energy

density and pressures in the nuclear matter and the K− condensed matter are given in

Secs.(5.2.1), (5.2.2). As we are interested in neutrino-trapped matter of protoneutron

stars, we have to add the contributions of neutrinos in Eqs. (5.26) and (5.27) given by

ǫνe =
kfνe
8π2

, Pνe =
kfνe
24π2

. (7.15)
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Here we use the zero temperature EOSs because it was noted earlier that the temperature

of a few tens of MeV did not modify the EOS considerably [164].

7.2.3 Nucleation rate

We are interested in a first order phase transition driven by the nucleation of droplets of

antikaon condensed phase in the neutrino-trapped nuclear matter. Droplets of antikaon

condensed phase are born in the metastable nuclear matter due to thermal fluctuations.

Droplets of antikaon condensed matter above a critical size (Rc) will grow and drive the

phase transition. According to the homogeneous nucleation formalism of Langer and

others, the thermal nucleation per unit time per unit volume is given by [56, 170]

Γ = Γ0exp

(

−△F (Rc)

T

)

, (7.16)

where △F is the free energy cost to produce a droplet with a critical size in the metastable

nuclear matter. The free energy shift of the system as a result of the formation of a droplet

is given by [167, 168]

△F (R) = −4π

3
(PK − PN)R3 + 4πσR2 , (7.17)

where R is the radius of the droplet, σ is surface tension of the interface separating two

phases and PN and PK are the pressures in the neutrino-trapped nuclear and the K−

condensed phases, respectively as discussed above. We obtain the critical radius of the

droplet from the maximum of △F (R) i.e. δR△F = 0,

RC =
2σ

(PK − PN)
. (7.18)

This relation also demonstrates the mechanical equilibrium between two phases.

We write the prefactor in Eq. (7.16) as the product of two parts - statistical and
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dynamical prefactors [152, 170, 173]

Γ0 =
κ

2π
Ω0 . (7.19)

The available phase space around the saddle point at RC during the passage of the droplet

through it is given by the statistical prefactor (Ω0),

Ω0 =
2

3
√
3

(σ

T

)3/2
(

RC

ξ

)4

, (7.20)

Here ξ is the kaon correlation length which is considered to be the width of the interface

between nuclear and antikaon condensed matter. The dynamical prefactor κ is responsible

for the initial exponential growth rate of a critical droplet and given by [152, 173]

κ =
2σ

R3
C(△w)2

[

λT + 2

(

4

3
η + ζ

)]

. (7.21)

Here △w = wK − wN is the enthalpy difference between two phases, λ is the thermal

conductivity and η and ζ are the shear and bulk viscosities of neutrino-trapped nuclear

matter. We neglect the contribution of thermal conductivity because it is smaller com-

pared with that of shear viscosity [164]. We also do not consider the contribution of bulk

viscosity in the prefactor in this calculation.

We can now calculate the thermal nucleation time (τnuc) in the interior of neutron

stars as

τnuc = (V Γ)−1 , (7.22)

where the volume V = 4π/3R3
nuc. We assume that pressure and temperature are constant

within this volume in the core.
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Figure 7.2: Comparison of EOSs corresponding to entropy density S = 0 and S = 2 for
YL = 0.4.

7.3 Results and Discussion

Like the previous chapter here also we use the GM1 parameter set (table 5.1) for nucleon-

meson coupling constants. Procedure to get the kaon-meson coupling constants is dis-

cussed in Sec. 5.3.2. Here we consider an optical potential depth of UK(n0) = −120

MeV at normal nuclear matter density and the corresponding kaon-scalar meson coupling

constant is gσK = 1.6337 (table 5.2). The value of K− optical potential adopted in this

calculation resulted in a maximum neutron star mass of 2.08 M⊙ in earlier calculations

using the Maxwell construction [135]. This is consistent with the recently observed 2M⊙

neutron star [6].

Fig. 7.2 shows EOSs of neutrino-trapped matter (YL = 0.4) for entropy density S = 0

and S = 2. It is evident from the figure that thermal effects can’t change the EOS
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Figure 7.3: Shear viscosities corresponding to different particle species in neutrino-trapped
nuclear matter as a function of the normalized baryon density at a temperature T = 10
MeV and YL = 0.4.

appreciably. Therefore, we use the EOS of neutrino-trapped nuclear and K− condensed

phases at zero temperature. In this calculation, the EOS enters in Eq. (7.17) as the

difference between pressures in two phases and in Eq. (7.21) as the enthalpy difference

between two phases. Here we exploit the zero temperature EOS for the the calculation

of shear viscosity and thermal nucleation time. The thermal nucleation of exotic phases

was earlier investigated using zero temperature EOS in Ref. [164, 168].

First we calculate shear viscosities of neutrons, protons and electrons in neutrino-

trapped nuclear matter using Eq. (7.13) in the same fashion as it was done in the last

chapter. We take lepton fraction YL = 0.4 in this calculation. Shear viscosities of different

species are shown as a function of normalized baryon density at a temperature T=10

MeV in Fig. 7.3. Here the electron viscosity is higher than the neutron and proton

shear viscosities. The total shear viscosity excluding the viscosity due to neutrinos in

neutrino-trapped nuclear matter is shown as a function of normalized baryon density for
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temperatures T = 1, 10, 30 and 100 MeV in Fig. 7.4. The shear viscosity is found to

increase with baryon density. Furthermore, the shear viscosity decreases with increasing

temperature. It is observed that the shear viscosities of neutrons, protons and electrons

in neutrino-trapped nuclear matter are of the same orders of magnitude as those of the

neutrino-free case presented in the last chapter.

Next we calculate the shear viscosity due to neutrinos. As a prelude to it, we compare

effective relaxation times corresponding to different species in neutrino-trapped nuclear

matter in Fig. 7.1. Relaxation time is plotted with normalized baryon density at a

temperature T=10 MeV in Fig. 7.1. Relaxation times of different particle species owing

to scattering under strong and electromagnetic interactions are much much shorter than

that of neutrinos undergoing scattering with other species through weak interactions.

Consequently, particles excluding neutrinos come into thermal equilibrium quickly on the

time scale of weak interactions. We calculate the shear viscosity due to neutrinos only

treating others as background and it is shown as a function of normalized baryon density

for temperatures T = 1, 10, 30 and 100 in Fig. 7.5. Like Fig. 7.4, the neutrino shear
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viscosity decreases with increasing temperature. However, the neutrino shear viscosity is

several orders of magnitude larger than shear viscosities of neutrons, protons and electrons

shown in Fig. 7.4. It is the neutrino shear viscosity which dominates the total viscosity

of Eq. (7.12) in neutrino-trapped matter. We perform the rest of our calculation using

the neutrino viscosity in the following paragraphs.

We calculate the prefactor (Γ0) according to Eqs. (7.19)-(7.21). The dynamical prefac-

tor not only depends on the shear viscosity but also on the thermal conductivity and bulk

viscosity. However, it was already noted that the thermal conductivity and bulk viscosity

in neutrino-trapped nuclear matter were negligible compared with the shear viscosity [174].

We only consider the effect of shear viscosity on the prefactor. Besides transport coeffi-

cients, the prefactor in particular, the statistical prefactor is sensitive to the correlation
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length of kaons and surface tension. The correlation length is the thickness of the inter-

face between nuclear and kaon phases [152, 153] having a value ∼ 5 fm [165]. The radius

of a critical droplet is to be greater than the correlation length (ξ) for kaons [152, 165].

We perform our calculation with K− droplets with radii greater than 5 fm. The other

important parameter in the prefactor is the surface tension. The surface tension between

nuclear and kaon phases was already estimated by Christiansen and collaborators [175]

and found to be sensitive to the EOS. We perform this calculation for a set of values of

surface tension σ = 15, 20, 25 and 30 MeV fm−2. The prefactor (Γ0) is shown as a function

of temperature in 7.6. It is shown for a baryon density nb = 4.235n0 which is just above

the critical density 3.9n0 for the K
− condensation at zero temperature [159], and surface

tension σ = 15 MeV fm−2. The prefactor was also approximated by T 4 according to the

dimensional analysis in many calculations [152, 168]. The upper curve in Fig. 7.6 shows

the prefactor of Eq. (7.19) including only the contribution of neutrino shear viscosity

whereas the prefactor approximated by T 4 corresponds to the lower curve. It is evident

from Fig. 7.6 that the approximated prefactor is very small compared with our result.

Now we discuss the nucleation time of a critical droplet of the K− condensed phase

in neutrino-trapped nuclear matter and the effect of neutrino shear viscosity on it. The

thermal nucleation rate of the critical droplet is calculated within a volume with Rnuc =

100 meters in the core of a neutron star where the density, pressure and temperature

are constant. The thermal nucleation time is plotted with temperature for a baryon

density nb = 4.235n0 in Fig. 7.7. Furthermore, this calculation is done with the kaon

correlation length ξ = 5 fm and surface tension σ = 15, 20, 25 and 30 MeV fm−2. The

size of the critical droplet increases with increasing surface tension. Radii of the critical

droplets are 7.1, 9.4, 11.7 and 14.1 fm corresponding to σ = 15, 20, 25 and 30 MeV fm−2,

respectively, at a baryon density 4.235n0. The nucleation time of the critical droplet

diminishes as temperature increases for all cases studied here. However, the temperature

corresponding to a particular nucleation time for example 10−3 s, increases as the surface
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tension increases. There is a possibility that the condensate might melt down if the

temperature is higher than the critical temperature. The critical temperature of the K−

condensation was investigated in neutrino-free matter in Ref. [162] and for neutrino matter

in Ref. [176]. We compare thermal nucleation times corresponding to different values of

the surface tension with the early post bounce time scale td ∼ 100 ms in the core collapse

supernova [154] when the central density might reach the threshold density of the K−

condensation. The time scale td is much less than the neutrino diffusion time ∼ 1 s as

obtained by Ref. [174]. Thermal nucleation of the K− condensed phase may be possible

when the thermal nucleation time is less than td. For σ = 15 MeV fm−2, the thermal

nucleation time of 10−3 s occurs at a temperature 16 MeV. It is evident from Fig. 7.7

that the thermal nucleation time is strongly dependent on the surface tension. Further

thermal nucleation of a K− droplet is possible so long as the condensate might survive

the melt down at high temperatures [162,176]. Our results of thermal nucleation time are

compared with the calculation taking into account the prefactor approximated by T 4 in

Fig. 7.8 for surface tension σ = 15 MeV fm−2 and at a density nb = 4.235n0. The upper
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curve denotes the calculation with T 4 approximation whereas the lower curve corresponds

to the influence of neutrino shear viscosity on the thermal nucleation time. The results

of the T 4 approximation overestimate our results hugely. For a nucleation time of 10−3 s

at a temperature T=16 MeV, the corresponding time in the T 4 approximation is larger

by several orders of magnitude.

7.4 Summary and Conclusions

We have studied shear viscosities of different particle species in neutrino-trapped β-

equilibrated and charge neutral nuclear matter. We have used equations of state of the

nuclear and the K− condensed phases in the relativistic mean field model for the calcula-

tion of shear viscosity. It is noted that neutrons, protons and electrons come into thermal

equilibrium in the weak interaction time scale. The shear viscosity due to neutrinos is

calculated treating other particles as background and found to dominate the total shear

viscosity.

Next we have investigated the first-order phase transition from the neutrino-trapped

nuclear matter to the K− condensed matter through the thermal nucleation of a critical

droplet of the K− condensed matter using the same relativistic EOS as discussed above.

Our emphasis in this calculation is the role of the shear viscosity due to neutrinos in the

prefactor and its consequences on the thermal nucleation rate. We have observed that

the thermal nucleation of a critical K− droplet might be possible well before the neutrino

diffusion takes place. Furthermore, a comparison of our results with that of the calculation

of thermal nucleation time in the T 4 approximation shows that the latter overestimates

our results of thermal nucleation time computed with the prefactor including the neutrino

shear viscosity. Though we have performed this calculation with the K− optical potential

depth of UK̄(n0) = −120 MeV, we expect qualitatively same results for other values of

the K− optical potential depth (see table 5.2).
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[26] F Özel, T Güver and D Psaltis Astrophys. J. 693 1775 (2009). 15

105
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[88] P Cerd́a-Duŕan, N Stergioulas and J A FontMon. Not. Astron. Soc. 397 1607 (2009).

46

[89] Y Levin Mon. Not. Astron. Soc. 368 L35 (2006). 46

[90] K Glampedakis and N Andersson Mon. Not. Astron. Soc. 371 1311 (2006). 46

[91] Y Levin Mon. Not. Astron. Soc. 377 159 (2007). 46

109



[92] U Lee Mon. Not. Astron. Soc. 374 1015 (2007); ibid 385 2069 (2008). 46

[93] H Sotani Mon. Not. Astron. Soc. 417 L70 (2011). 46, 47, 51

[94] R Nandi, D Chatterjee and D Bandyopadhyay preprint arXiv:astro-ph/1207.3247.

46, 54

[95] B W Carrol et al Astrophys. J. 305 767 (1986). 47

[96] P N McDermott, H M van Horn and C J Hansen Astrophys. J. 325 725 (1988). 47

[97] B L Schumaker and K S Thorne Mon. Not. R. Astron. Soc. 203 457 (1983). 47, 49

[98] N Messios, D B Papadopolous and N Stergioulas Mon. Not. R. Astron. Soc. 328 1161

(2001). 47

[99] I Wasserman, S L Shapiro Astrophys. J. 265 1036 (1983). 48

[100] K Konno, T Obata and Y Kojima Astron. Astrophys. 352 211 (1999). 48

[101] S Ogata and S Ichimaru Phys. Rev. A 42 4867 (1990). 51

[102] T Strohmayer, H M van Horn, S Ogata, H Iyetoni and S Ichimaru Astrophys. J.

375 679 (1991). 51, 52

[103] P Haensel in Physics of Neutron Star Interiors ed. D Blaschke, N K Glendenning

and A Sedrakian Lecture notes in physics 578 (Springer, Heidelberg) 127 (2001). 52

[104] A Colaiuda and K D Kokkotas Mon. Not. R. Astron. Soc. 414 3014 (2011). 55

[105] A K Glendenning Compact Stars (Springer, New York, 1997). 57, 58, 59, 60, 68, 89

[106] M Baldo in Nuclear Methods and Nuclear Equation of State ed. M Baldo (Singapore:

World Scientific) 1 (1999). 58

110



[107] M Baldo and F Burgio in Physics of Neutron Star Interiors, ed. D Blaschke, N K

Glendenning and A Sedrakian Lecture Notes in Physics 578 1 (2001). 58

[108] F Weber Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics

(Bristol: IOP Publishing 1999). 58

[109] F Weber and M K Weigel Phys. Rev. C 32 2141 (1985). 58

[110] A Akmal, V R Pandharipande and D G Ravenhall Phys. Rev. C 58 1804 (1998). x,

58, 83, 84

[111] J D Walecka Ann. of Phys. 83 491 (1974). 58

[112] B D Serot And J D Walecka in Advances in Nuclear Physics ed. J W Negele and E

vogt (Plenum Press, New York, 1986). 58

[113] J Boguta and A R Bodmer Nucl. Phys. A 292 413 (1977). 59, 60

[114] J Schaffner and I N Mishustin Phys. Rev. C 53 1416 (1996). 59, 87, 89

[115] D B Kaplan and A E Nelson Phys. Lett. B 175 57 (1986). 64, 65, 89

[116] A Mishra, S Schramm and W Greiner Phys. Rev. C 78 024901 (2008). 65

[117] A Mishra, A Kumar, S Sanyal, V. Dexheimer and S Schramm Eur. Phys. J. A 45

169 (2010). 65

[118] N K Glendenning and J Schaffner-Bielich Phys. Rev. C 60 025803 (1999). 65, 89

[119] N K Glendenning and S A Moszkowski Phys. Rev. Lett. 67 2414 (1991). 69, 80

[120] E Friedman, A Gal and C J Batty Nucl. Phys. A 579 518 (1994). 70
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