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Synopsis

The contents of this thesis provides a detailed analytical and numerical study of

low frequency waves and instabilities in a strongly coupled dusty plasma consid-

ering the effect of viscoelastic and non-Newtonian properties in presence of inho-

mogeneous dust shear flow. The transverse mechanical shear mode coming from

solid-like property in dusty plasma liquid was first proposed by Kaw and Sen[1] in

their famous theoretical work in 1998. Two years later, Nunomura et. al, in their

experiment with 2D dusty plasma crystal showed excitation of such shear wave[2].

In the year 2002, Pramanik et al., with levitating dust cloud in glow discharge

plasma experiment in strongly coupled fluid regime[3], reported the existence of

this transverse wave coupled with the longitudinal dust acoustic wave. The under-

standing of linear and nonlinear properties of such shear wave in inhomogeneous

dusty plasma forms a motivation for this thesis. The main objectives of this doc-

toral research are: (i) The role of visco-elastic effect and non-Newtonian property

on the Kelvin-Helmholtz (KH) instability of dust plasma flow. (ii) instability of

transverse shear wave triggered by viscosity gradient of shear rate in plane Couette

flow. (iii) the recurrence properties of nonlinear shear wave due to the nonlinear

effect coming from velocity shear rate dependent viscosity.

Dusty plasma is greatly affectionate to the plasma physics community due to

their natural occurrence in different places in our universe i.e. planetary rings,

cometary tails, white dwarf matter[4], interplanetary and interstellar clouds[5, 6].

It also has existence in human made systems like plasma processing and plasma
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etching equipments in industry, magnetic fusion plasmas[7], space stations[8] etc.

and for such wide occurrence it is important to characterize the different features

of this system. It is formed by the presence of the micron sized polymer or col-

loidal particles (dust particles) in normal electron-ion plasma. Since the thermal

electron velocity is much larger than the thermal ion velocity, a grain embedded

in plasma will very soon be charged negatively by thermal electron flux, then start

to reflect the electrons and attract the ions until the ion and electron flux become

equal. At low dust thermal temperature, potential energy of Coulomb interac-

tion between neighboring dust particles becomes larger than the average kinetic

energy of random thermal motion of dust grains and thus the particles remain

strongly coupled with their neighbor. This is characterized by the coupling pa-

rameter Γ = q2d/(akBTd) where qd, a(' n
−1/3
d ), kBTd and nd represent charge on

a single dust particle, average inter particle distance, the average thermal energy

of each particle and dust number density respectively. In the regime 1 ≤ Γ ≤ Γc

(a critical value beyond which system becomes solid) both viscosity and elasticity

are equally important and therefore such a plasma exhibits visco-elastic behavior

[9, 10].

The newly discovered transverse shear wave with phase velocity csh =
√
η/τmρ,

where η and ρ denote shear viscosity and density respectively, is analogous to the

transverse elastic wave propagating in a solid medium. Here, τm = η/G rep-

resents Maxwell’s relaxation time where G is the rigidity modulus. An ideal

plasma (electron-ion) does not support solid like transverse wave but magnetic
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field with the twisting nature of field lines generates transverse shear Alfven wave

of phase velocity cA = B/
√

4πρ, where B stands for magnetic field. In a strongly

coupled dusty plasma, we introduce a magneto-elastic mode of phase velocity

vp =
√

(v2A + v2sh) similar to magnetosonic mode which couples acoustic and Alfven

modes [11]. In an inhomogeneous dusty plasma, our analysis [12] with sech 2(αx)

type density profile shows that propagating shear mode is localized into differ-

ent eigenstates with a discrete set of allowed frequencies ω =
√
n(n+ 1)αcsh. In

a cylindrical geometry with parabolic density profile along radial direction, peri-

odic eigenfunctions are found to exists along poloidal direction and localized radial

modes are described by Kummer hypergeometric function.

An unbounded parallel flow separated by a laminar shear layer could be unsta-

ble to small wavy disturbance depending on the presence of inflection point ( where

second derivative of velocity vanishes) in the velocity shear profile (Rayleigh 1880).

This is a class of Kelvin-Helmholtz instability that arises in parallel shear flows,

where small scale perturbations draw kinetic energy from the mean flow. In 1908,

Orr and Sommerfeld derived a famous equation which analyzes the KH instability

in viscous incompressible fluid. Being a dissipative agent, viscosity decreases the

growth rate of instability. In a strongly coupled dusty plasma, the presence of

elasticity and viscosity together enriches the analysis of the KH instability. In the

present work, visco-elastic operator [13] is included in the famous Orr-Sommerfeld

equation to obtain the generalized hydrodynamic Orr-Sommerfeld equation includ-

ing τm. Considering proper Galilean invariant form of the equation, KH instability

3



is studied numerically for hyperbolic tangent type dust shear profile. Before that

a step profile has been chosen as simple mathematically solvable form of tanh type

profile to treat the problem analytically (without involving numerical analysis).

In weakly coupled limit, the stability of this type of piecewise continuous velocity

profile in a viscous incompressible fluid was analytically studied and an instabil-

ity [14] was predicted. In strongly coupled limit, increase of coupling parameter

Γ effectively increases relaxation time τm which manifests the increase of elastic

property as well[15]. Having energy storing property, elasticity enhances the insta-

bility which is the effect of long range correlation (solid like behaviour) in dusty

plasma fluid. Functional dependence of growth rate with wavenumber (k) also

changes with τm. For small τm, it shows parabolic dispersion but for τm > 2, dis-

persion becomes linear. Linear stability analysis with realistic tanh type profile is

done numerically using MATLAB. Here, matrix eigen value analysis of Generalized

Hydrodynamic Orr-Sommerfeld equation is performed using standard eigenvalue

subroutine(eig) after proper discretization of the equation with central difference

scheme. These results show similarity with the analysis of step profile but the finite

width of shear layer of tanh profile introduces different dispersive nature. Elastic

property also increases the range of k-space which responds to instability [16].

Ivlev et al., in their recent experiment[17] with dusty plasma in PK-4 set up

discovered the existence of non-Newtonian behaviour of dusty plasma. This impor-

tant transport property is incorporated in this thesis to investigate KH instability
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in a parabolic type bounded dust flow using linear stability analysis. The flow pro-

file is evaluated from unperturbed steady force balance equation of dust fluid with

the experimentally verified model of velocity shear rate dependent viscosity. Like

the stabilizing effect of compressibility on the KH instability, the non-Newtonian

effect in shear thickening regime suppresses the instability but on the contrary,

shear thinning property enhances it. Depending on the variable parameter ε (ra-

tio of equilibrium plasma temperature to dust crystal melting temperature) the

non-Newtonian property changes from shear thinning to shear thickening regime.

We have shown that the shear thinning property is more favorable for instability

[18]. Inclusion of compressibility (finite density fluctuation) lowers the growth rate

as a part of energy available for the instability is exhausted for the longitudinal

fluctuation in the system and thus instability weakens by some fraction.

An interesting property of non-Newtonian effect is that velocity shear rate

dependent viscosity triggers the instability of shear mode for a Couette flow of

dust fluid. The shear viscosity is modulated with velocity variation in space which

provides feedback to the velocity through the momentum equation and positive

feedback drives the instability. For a linear velocity shear profile with power law

dependence of viscosity coefficient on shear rate, both local and nonlocal analysis

are carried out and it addresses the instability of shear mode[19].

Convective nonlinearity in fluid momentum balance equation plays an impor-

tant role to generate different structure like soliton and vortex formation [20].
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Besides this nonlinearity, non-Newtonian property drives another type of nonlin-

earity coming from shear rate dependence of viscosity coefficient. In our studies, η

is modeled as function of scalar invariant quantity of strain tensor[21] and a non-

linear shear wave equation is formed incorporating the nonlinearity arising from

the non-Newtonian property. The numerical solution of this equation shows the

famous Fermi-Pasta-Ulam (FPU) recurrence of initial periodic wave[22]. The wave

energy of fundamental mode is distributed into different harmonic and after a re-

currence time the total energy gets back to initial mode and the higher harmonics

vanish.

In summary, the results and conclusion on the analysis of the KH instability

in this thesis, would enrich the understanding of dust dynamics in different type

of shear flow in strongly coupled regime. Also, our studies on the nonlinear shear

wave arising from non-Newtonian behaviour could initiate experimental studies in

the growing field of complex (dusty) plasma.
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Chapter 1

Strongly Coupled Dusty Plasma:

complex media for fundamental

studies

1.1 Introduction

With rapid progress in the theoretical and experimental exploration of strongly

coupled dusty plasma systems, it is reasonable to anticipate that study of such

system returns many realistic and interesting facts of natural science. This strong

coupling effect is seen in dusty plasma at low temperature when potential energy of

the long range Coulomb interaction exceeds average thermal energy of dust grains.

Dusty plasma contains microscopic solid particles immersed in the usual electron-

ion plasma. This grains are negative or positive in charge depending on different

charging mechanisms. For negatively charged dust particles, ions shield the large

electrostatic potential of each dust particle and hence dusty plasma is formed

satisfying the basic properties of being a plasma like collective behaviour and

quasineutrality[1]. The charged particles interact through the long range Coulomb
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interaction which is proportional to the square of charge on each dust particle.

The large amount of charge enables dust grains to make strong coupling with the

neighbours which makes dusty plasma a complex media for fundamental research.

The concept of different types of coupling (basic forces) between the constituent

elements (atoms and molecules) explains different states of matter in our nature.

In solid state, the coupling (bonding) is so strong that the molecules can only vi-

brate around their respective positions. In liquid state, bonding between molecules

are weaker than solid so that it can flow in an organized way. In gaseous phase,

coupling is very weak and the gas molecules perform random motion having no def-

inite shape or volume. In plasma, oppositely charged electrons and ions shield out

their long range Coulomb potential and the charged particles interact weakly but

perform collective motion. The role of coupling is more interesting in dusty plasma

due to the large amount of charge on each micron size dust grain. The different

charging mechanisms are charge collection[2], photoelectric emission, secondary

emission [3, 4] etc. Dusty plasma can exists in liquid phase having prominent

viscous nature[5]. At low temperature, the coupling would be more efficient so

that the plasma system can transform into crystalline state called dust crystal

[6]. The great advantage of studying dusty plasma lies in the laboratory exper-

iment where a single system can be easily transformed into different states such

as gaseous plasma, liquid plasma and plasma crystal with varying density, charge,

temperature and size of the dust particles.

The study of dusty plasma has been started after first realization in space

plasma[7, 8]. For a long period, active research has been done on the effect of dust
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particle in astrophysical plasma[9] like as interstellar clouds[10], solar wind[11], for-

mation of Saturn’s ring[12], dust particle in the magnetosphere of earth [13] and

jupiter[14], in the vicinity of artificial satellites and space stations[15, 16] etc. In

1989, first levitation of dust cloud in the laboratory was noticed in a laser induced

plasma processing device[17]. Then the theoretical and experimental research on

laboratory dusty plasma has been accelerated in studying its various properties.

The generation of dust particles in plasma based industrial devices also becomes

a problem now-a-days. For example, in plasma vapour deposition technique, dust

particles are produced in plasma reactors which need to be removed[18]. In fusion

also, the research on accurate designing is under progress to get rid of the produc-

tion of radioactive and toxic dust particles in plasma wall interactions[19, 20].

The presence of strong coupling in dusty plasma was first predicted by Ikeji[21].

With the discovery of dust crystal in the laboratory, a new field of research namely

strongly coupled dusty plasma (complex plasma) starts its golden days[22, 23, 24,

25]. The dust particles are the main constituent elements in dusty plasma like that

of atoms and molecules in solids, liquids or gases. The motion of atoms or molecules

is impossible to track individually however the dynamics of each dust particle can

be tracked with video imaging in simple laboratory experiment because of longer

time scale and large spatial scale of dust particle dynamics. Overall dynamical

time scales associated with the dust components are in the range of 1 − 100 Hz.

Typical dust particles are of few micrometer(µm) in size and the mean inter particle

separation is nearly 100 µm. So, this system can be considered as a model to

study molecular transport phenomena, phase transition at the most fundamental

kinetic level[26]. Dusty plasma is also known as Complex plasma in analogy with
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complex fluid which defines the class of soft matter systems like colloidal suspension

where the charged polymer particles are immersed in an aqueous solution[27].

However, different properties of colloids depend on the solvent but dust particles

with shielded Coulomb potential form an independent fluid in dusty plasma system

like ion or electron fluid. Unlike the colloidal grains, the rate of momentum or

energy exchange between micro particles can substantially exceeds the damping

rate due to neutral gas friction and thus virtually undamped dust particle motion

can be studied. Complex plasma is also known as non Hamiltonian system where

energy of particles is not constant due to charge variation. Some review articles are

cited here for the better knowledge of recent developments in complex plasma[28,

29, 30].

1.2 Visco-elastic and non-Newtonian properties

To form dusty plasma in the laboratory, micron size colloidal or polymer particles

are usually inserted in a dc discharge or rf discharge plasma having electrons,

ions and few neutrals. Since the thermal electron velocity is much larger than

the thermal ion velocity, a grain embedded in plasma will very soon be charged

negatively by electron flux which will then start to reflect the electrons and attract

the ions until the ion and electron flux become equal. Hence, the grain will have

a floating potential equal to the electron temperature Ze2/d ≈ Te and, for a fixed

electron temperature Te, the grain charge is proportional to its size d and attains

high negative charge. In plasma, the potential on each particle is shielded out

by a factor exp(−r/λD) due to the Debye shielding[31]. So, any pair of dust

particles separated by a distance r interact through screened Coulomb potential
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φ(r) = q2d exp(−κr)/r, where qd is the charge on each dust grain and the screening

parameter κ (inverse of the Debye length λD) is determined by the density and

temperature of electrons and ions. This type of potential is well known as the

Yukawa potential and is a good approximation for all the cases without streaming

electrons or ions.

The strength of the Coulomb coupling is characterized by the coupling param-

eter Γ = q2d/(kBTda) where a(' n
−1/3
d ) is the average distance between dust grains

with density nd, Td is the average temperature of the dust particle and kB is the

Boltzmann constant. At high temperature, with the parameter Γ� 1, the medium

belongs to weakly coupled state showing purely viscous property. But, as the cou-

pling parameter goes to the regime 1 ≤ Γ ≤ Γc (a critical value beyond which the

system becomes crystalline) the coupling becomes stronger and the system shows

elastic property as well. Hence, the dusty plasma can be classified as a visco-elastic

medium[21, 32]. When Γ > Γc, viscosity disappears and only elasticity reigns over

the system leading to crystal formation.

Complex plasma exhibits non-Newtonian behaviour that is the variation of vis-

cosity with velocity shear rate. Recent experiments[33, 34] have demonstrated this

property. For low shear rate, viscosity remains constant obeying the Newtonian

linear stress strain relation. As the shear rate increases, it goes through both

shear thinning and shear thickening phases. For shear thinning regime, viscosity

decreases with the increase of velocity shear rate. But for shear thickening regime,

viscosity increases with increasing shear rate. Comparable examples of viscoelas-

tic, non Newtonian behavior are also found in the other branches of physics such

as polymeric liquids[35], colloidal suspensions[36], human blood[37] etc.



20

1.3 Motivation

The motivation of this research work is to explore the interesting physical phe-

nomena related to some new features in dusty plasma in general and viscoelastic

non-Newtonian properties in particular. These properties are recently discovered in

different experiments in the laboratory. In the strong coupling limit, dusty plasma

liquid could sustain transverse shear wave identical to the transverse wave in elastic

rod or s-wave during earthquake. Theoretically, this wave was first predicted [38] in

1998 and subsequently experimentally verified in the laboratory[39, 40]. The study

of shear wave in presence of inhomogeneous dust particle density and velocity is

one of the aim of this thesis. The effect of strong coupling and viscosity gradient on

the Kelvin-Helmholtz instability of dust shear flow has been thoroughly analyzed.

The main ingredients in this doctoral research are summarized as:

• The density inhomogeneity results in discrete eigenstates of shear wave with

localized eigen function.

• The energy storing property of elasticity enhances the growth rate of Kelvin-

Helmholtz instability. The domain of instability in wavenumber is widened

in presence of strong coupling so that even shorter wavelengths respond to

grow.

• In a non-Newtonian dusty plasma, shear thinning property enhances the

growth rate of the Kelvin-Helmholtz instability. But, shear thickening prop-

erty stabilizes instability. Hence measuring the growth rate of the instability,

non-Newtonian property can be predicted.
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• In strongly coupled non-Newtonian dusty plasma, shear wave becomes un-

stable in presence of the dust Couette flow due to the shear rate dependence

of viscosity. In our analysis, non-Newtonian property drives the instability

with essential energy from the equilibrium shear flow.

• Non-Newtonian property introduces nonlinearity in the system which causes

shear wave to exhibit recurrence behaviour with soliton formation similar to

the famous Fermi-Pasta-Ulam (FPU) recurrence in vibrating string.

1.4 Organization of this thesis

In this thesis, detailed analytical and numerical studies of different characteristics

of low frequency transverse shear wave and the effect of visco-elastic and non-

Newtonian properties of complex plasma on velocity shear driven low frequency

instabilities are investigated.

In chapter-II, short history of the discovery of shear wave is reviewed and the

effect of inhomogeneity on shear wave is introduced analytically. Spatially varying

dust particle density is considered through different type of physically acceptable

profiles which lead to inhomogeneous partial differential equations identical to the

Schrodinger’s equation. At first, we consider wave propagation along y-direction

with variation in x where density varies as sech 2(αx). The role of inhomogeneity is

shown to give rise to a discrete set of allowed frequencies corresponding to different

localized eigen states. Finally a density profile f(r) = (1 − α2r2) in cylindrical

plasma is also analyzed and results are shown in details.

In chapter-III, instability of shear wave is reported under the effect of linear

velocity shear (Couette flow) in presence of shear thinning effect of dusty plasma.
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Viscosity gradient drives this instability with drawing free energy from velocity

shear and then by supplying it to the linear wave. The linearized generalized

hydrodynamic equation is used with non-Newtonian stress. Proper power law de-

pendence of viscosity on velocity shear rate is addressed to represent shear thinning

region only. The second order differential equation is reduced to the form of We-

ber equation which has been solved for well behaved localized eigen function. The

positive imaginary part of the eigen value serves the growth rate of instability. The

growth rate is shown to be increasing with the increase in velocity shear rate.

In chapter-IV, the effect of strong coupling on the Kelvin-Helmholtz instabil-

ity of dust shear flow is shown. The strong coupling introduces elastic property in

dusty plasma which manifests in our calculation through the Maxwell relaxation

time. Relaxation time increases with increase of coupling parameter Γ. Linear

stability analysis is carried out for unbounded laminar dust shear layer having

an inflection point in equilibrium velocity profile. The results are shown for two

types of velocity profile. First one is a step profile which is a discontinuous one

and hence physically unrealistic but we consider since it is easy to tackle mathe-

matically. So we can get primary knowledge about the effect of more complicated

realistic velocity profile. The results of strongly coupled limit are compared with

that of weakly coupled one in a recent article where the result of step profile has

been reported using non-invariant momentum equation. In our analysis, the gen-

eralized hydrodynamic equation of dust fluid is used with proper invariant form. A

comparative study is tabulated with data of growth rate which shows the growth

rate to be much higher for invariant model equation than the existing result of

non-invariant model. The graphical comparison in Fig(4.6), clearly shows distinct
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variation in dispersion. For non invariant model, a bunching of curves for different

τm can be seen at large shear rate. But this is missing in the results from proper

invariant model. Next a physically realistic tangent hyperbolic profile is used and

the equation is solved numerically in standard software Matlab. The growth rate

(positive imaginary values of eigen frequency ω) is plotted in parameter space of

wave number ky and Reynolds number R and the corresponding localized eigen-

functions in x (inhomogeneity direction) are also shown. In the complex plane

of eigen frequency(Fig-4.5), only one such positive imaginary eigen frequency is

found that has no real part which proves non propagating nature of the distur-

bance. The values of growth rate increases with the increase of solid type strong

coupling (representing through τm) and the range of k-space responding to insta-

bility also widens. The externally driven shear flow acts as an energy source to the

KH instability and the strong coupling between the particles helps to draw more

energy so that instability could be enhanced easily. However, viscosity in shear

layer dissipates energy into heat which lowers the growth rate.

In chapter-V, the role of non-Newtonian property on the stability of dust

shear flow is concerned. This property is modeled following the functional de-

pendance of η and γ given in the recent experimental paper[33]. The equilibrium

dust flow is considered as bounded and the consistent profile is generated by solv-

ing proper equilibrium equation with the experimentally verified model. Different

values of ε (ratio of equilibrium plasma temperature and melting temperature)

generate different types of velocity and corresponding viscosity profile with shear

rate. With numerical eigenvalue analysis, it is shown that shear thinning prop-

erty enhances the KH instability but shear thickening property stabilizes it. In
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Fig.(5.3), the effect of compressibility is shown with different parameter value of

Mach no.(M). The growth rate decreases with the increase in M . The dispersion

effect from Poisson’s equation is also reported.

In chapter-VI, it is shown that the dependence of viscosity on shear rate leads

to nonlinear effect in dusty plasma. This is invoked in the dust particle momen-

tum equation with popular Carreau-Bird non-Newtonian model with propagation

of shear wave in one spatial dimension. This leads to a wave equation with cu-

bic nonlinearity. The time evolution of this equation with a simple sine wave as

initial is numerically solved using a software ‘CAPOW’[41]. In this chapter, the

recurrence property of shear wave that shows re occurrence of the initial simple

sine wave passing through intermediate different localized structures are reported.

The energy of initial harmonic is distributed among different higher harmonics

but after a recurrence time total energy gets back to the initial mode again. This

results find similarity with the famous FPU recurrence in lattice[42]. This recur-

rence behaviour consolidates about the soliton formation in the system[43]. Proper

mathematical approach leads to the formation of modified KdV equation which

leads to solitary wave solution[44].

In chapter-VII, a summary of the results and discussions made in this doc-

toral research work is presented. The problems remain unsolved are also discussed

point wise which could be interesting to pursue further.



Chapter 2

Shear wave and its characteristics
in dusty plasma

2.1 Introduction

In plasmas, waves are broadly classified as ‘shear wave’ and ‘compressional wave’.

Compressional wave (also known as longitudinal wave) propagates through the

process of compression and rarefaction in the medium similar to the propagation

of sound wave in fluid. The well known compressional waves are ion-acoustic

wave in electron-ion plasma, dust acoustic wave in dusty plasma etc. Shear wave

usually comes as elastic deformation of particles perpendicular to the direction of

wave motion and hence also called as transverse wave. The well known example of

shear wave is the transverse wave in elastic rod, the secondary wave (s-wave) in the

interior of earth originating from earthquake. An ideal plasma (electron-ion) does

not support such transverse wave in absence of any elastic property but magnetic

field with the twisting nature of field lines generates another kind of transverse

wave called shear Alfven wave. In dusty plasma, strong coupling between particles

provides a long range correlation which causes birth of elastic property. This

strong coupling enables the system to support transverse shear wave. This is a

25
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low frequency wave (few Hz) compare to dust acoustic wave (∼ KHz). This shear

wave in dusty plasma was first introduced by Kaw and Sen[38] in 1998 and later

experimentally verified. Since then it has been a new direction in dusty plasma

research in studying different properties of shear wave. At high temperature, dust

particles remain in weak coupling state. So, the system no longer bears solid like

elastic nature and hence shear wave could not sustain. But, in low temperature,

Coulomb potential energy becomes much larger than dust thermal energy and

hence both fluid property (short range ordering, viscosity) and solid property (long

range ordering, elasticity) coexist. For the study of such viscoelastic media, Navier-

Stoke’s equation of momentum of dust fluid is generalized using Maxwell’s model

of relaxation time. This is the time taken by any applied stress in the medium to

be relaxed substantially. This parameter addresses both solid and fluid property

together. For ideal fluid, relaxation time is zero but for ideal solid it becomes

infinite.

In this chapter, density inhomogeneity is considered with different realistic

profile e.g., sech type, parabolic type etc. and the possible effect on shear wave

propagation is theoretically investigated. The plasma is considered incompressible

to exclude the possible coupling with acoustic mode so that the effect of inho-

mogeneity on exclusive shear mode can be studied. The continuous frequency of

shear wave is transformed into discrete eigen frequencies corresponding to well

behaved localized eigenstates. In the last section, strongly coupled magnetized

homogeneous dusty plasma is considered to study both transverse waves coming

from elastic stress and magnetic stress from a generalized model. The magnetic

filed lines can play the role of elastic string and support a kind of shear wave
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called shear Alfven wave. Like the magneto-sonic mode which is produced from

the combined effect of plasma pressure and magnetic pressure, another mode called

magneto-elastic is hereby introduced coming from the effect of elastic and magnetic

stress together.

2.2 Generalized hydrodynamic model equations

The frequency scale of the waves and instabilities studied in this thesis is of the

order ω � kvte, kvti where vte and vti denote thermal velocities of electron and

ion. For such long time scale phenomena, it is justify to assume that electrons and

ions get enough time to obey the Boltzmann distribution. The momentum of dust

fluid in strongly coupled dusty plasma is studied by the generalized hydrodynamic

(GH) equation. This equation basically treats the fluid system which bears both

viscous and elastic property together. In 1867, J C Maxwell modeled a viscoelastic

medium with his thought experimental model as a series connection of a purely

viscous damper and a purely elastic spring[45]. Then he simply added different

strain rates for a particular external stress and shown that the stress would die out

after certain relaxation time. In ideal viscous medium, any applied stress relaxes

instantaneously with the flow of the fluid particles. In solid, restoring force can

resist the effect of applied stress infinitely without any flow depending on the value

of the stress. In visco-elastic media, stress relaxes with finite time which maintains

an exponential decay in time as ∼ exp(−t/τm), where τm is called Maxwell’s relax-

ation time. This time increases with the increase of coupling parameter Γ [46] and

these two parameters are used to quantify the solid property in strongly coupled

dusty plasma. The GH equation is derived by incorporating non-local visco-elastic
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operator expressing memory effect and long range ordering developed in the dust

fluid. The generalized momentum equation of dust fluid is written as[47]

ρ

(
∂

∂t
+ v · ∇

)
v +∇p− ndZe∇φ = −

∫ t

−∞
dt′
∫
dr′η(r− r′, t− t′)v(r′, t′). (2.1)

The symbols ρ, v and nd represent mass density, velocity, number density of dust

fluid respectively. Z denotes the no of electrons on each dust particle and φ is the

electrostatic potential. The term p denotes pressure and η denotes viscosity which

is taken as memory dependent nonlocal operator. Now the Fourier transformation

of the above equation leads to the nonlocal form in (k− t) space,

Γ(k, t) = −
∫ t

−∞
dt′η(k, t− t′)v(k, t′). (2.2)

Γ(k, t) represents the Fourier transformed form of the left hand side of equation(2.1)

and k is the wave vector. The memory dependent visco-elastic operator η(k, t− t′)

can be modeled [48, 49] as,

η̄(k, t− t′) = η̄(k)
exp [−(t− t′)/τm]

τm
. (2.3)

The equation (2.2) is re-written as,

Γ(k, t) = −
∫ t

−∞
dt′η̄(k)

exp [−(t− t′)/τm]

τm
v(k, t′). (2.4)

Taking partial time derivative of equation(2.4)

∂Γ(k, t)

∂t
= −η̄(k, 0)v̄(k, t) +

∫ t

−∞
dt′
η̄(k, t− t′)

τm
v̄(k, t′) (2.5)

where we use

∂η̄(k, t− t′)
∂t

= − η̄(k)

τ 2m
exp [−(t− t′)/τm]

and Leibniz’s integral rule

∂

∂t

(∫ b(t)

a(t)

f(x, t)dx

)
=

∫ b(t)

a(t)

∂f(x, t)

∂t
dx+ f (b(t), t)

∂b(t)

∂t
− f (a(t), t)

∂a(t)

∂t
.
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Now we multiply Eq.(2.5) by τm and add with Eq.(2.2) to get(
1 + τm

∂

∂t

)
Γ̄(k, t) = −η̄(k)v̄(k, t). (2.6)

In weakly coupled limit τm∂/∂t� 1 the Eq. (2.6) reduces to

Γ̄(k, t) = −η̄(k)v̄(k, t). (2.7)

This equation can be transformed to standard Navier-Stokes equation by inverse

Fourier transform considering

η̄(k)v̄ = ηk2v̄ + (η/3 + ξ)k(k · v̄)

where η and ξ denote coefficients of shear viscosity and bulk viscosity respectively.

Applying inverse fourier transform, the equation(2.6) is transformed to[50],(
1 + τm

∂

∂t

)[
ρ

(
∂

∂t
+ v · ∇

)
v +∇p− ndZe∇φ

]
= η∇2v +

(η
3

+ ξ
)
∇(∇ · v).

(2.8)

For τm = 0, equation(2.8) reduces to the standard Navier-Stokes hydrodynamic

equation. However, this form of GH momentum equation is inconsistent with

Galilean invariance which should be maintained to describe non-relativistic phys-

ical phenomena. Otherwise the results and explanation of natural phenomena

would differ for different inertial frame. Hence a convective term τmv · ∇ must

be added with τm∂/∂t to get proper Galilean invariant GH momentum equation

of strongly coupled charged dust fluid. The equation(2.8) is re-written in proper

invariant form of generalized hydrodynamic momentum equation of dust fluid as,[
1 + τm

(
∂

∂t
+ v · ∇

)][
ρ

(
∂

∂t
+ v · ∇

)
v +∇p− ndZe∇φ

]
= η∇2v +

(η
3

+ ξ
)
∇(∇ · v). (2.9)
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Unlike dust grains, electrons and ions are weakly coupled as their thermal energy

exceeds Coulomb interaction energy. The fluid equation of electron motion can be

written as,

mene

(
∂

∂t
+ ve · ∇

)
ve = −∇pe + nee∇φ

where pe, ne and ve denote respectively pressure, number density and velocity of

electron fluid along with the mass me of each electron. Electrons may be considered

as light particles for their very small mass. This causes them to respond very

quickly to any net force and come to a steady state in balance of electric force

and pressure gradient force and hence the inertia term on the left side of electron

momentum equation can be neglected. So, the above momentum equation of

electron transforms to

kBTe∇ne − nee∇φ = 0,

where isothermal pressure is expressed as Pe = nekBTe with Boltzmann constant

kB. In contrast to the long time response of dust grains, ions can also be treated

as stationary with the force balance condition

kBTi∇ni + nie∇φ = 0.

These two conditions satisfy Boltzmann distributions of electrons and ions ex-

pressed as,

ne = ne0 exp

(
eφ

kBTe

)
, (2.10)

ni = ni0 exp

(
− eφ

kBTi

)
.

where φ is the electrostatic potential, Ti(e) stand for temperature of ion (electron)

fluid, ni(e) is the density of ion (electron). The mass conservation of dust fluid
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provides continuity equation

∂ρ

∂t
+∇ · (ρv) = 0. (2.11)

The electrostatic potential (φ) is connected with densities of different species

through Poisson’s equation

∇ · E = 4πe [ni − ne − Znd] , E = −∇φ (2.12)

which couples electric field fluctuation with density fluctuation. The above four

equations (2.9-2.12) constitute the complete set of equations for the analysis of

strongly coupled dusty plasma.

2.3 Existence of shear wave in dusty plasma

The linearized form of the generalized hydrodynamic momentum equation of dust

fluid (2.9) can be written as,(
1 + τm

∂

∂t

)[
ρ0
∂v

∂t
+∇p− Zend∇φ

]
= η∇2v. (2.13)

Here we assume incompressibility (∇·v = 0) to waive any longitudinal perturbation

coming from density fluctuation. No dust flow is taken in equilibrium and only

small amplitude wave is considered so that nonlinear convective term has trivial

effect. ρ0 denotes equilibrium homogeneous density and other variables like v, p,

φ are the perturbation in dust fluid velocity, pressure and potential. Let us take

curl of the equation (2.13) to obtain(
1 + τm

∂

∂t

)
∂

∂t
(∇× v) =

η

ρ0
∇2(∇× v). (2.14)

For a two dimensional incompressible plasma, ∇ · v = 0 implies the solution for

the velocity as v = êz × ∇ψ(x, y), where ψ(x, y) is the velocity stream function
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with ∇×v = êzΩ and vorticity Ω = ∇2ψ. Let us first consider uniform density ρ0

and investigate the above equation(2.14) in both hydrodynamic and kinetic limit.

In hydrodynamic limit defined as τm∂/∂t� 1, z-component of the equation

(2.14) is written as,

∂

∂t
Ω =

η

ρ0
∇2Ω (2.15)

which resembles the diffusion equation. With the consideration of plane wave form

Ω ∼ exp(ik · r − iωt), the above diffusion equation results the dispersion relation

ω = −iηk2/ρ0. This shows that any mode will be due to viscosity in weakly

coupled case.

In kinetic limit defined as τm∂/∂t � 1, the linearized vorticity equation

(2.14) reduces to

∂2Ω

∂t2
= c2sh∇2Ω (2.16)

which represent wave equation where phase velocity of shear wave is c2sh = η/(τmρ0).

τm can be expressed as

τm =
4ηmd

3ρ0Td0

1

(1− γdµd + 4u(Γ)/15)
,

and using this relation, expression of the velocity of shear wave becomes,

c2sh =
3Td0
4md

(
1− γdµd +

4

15
u(Γ)

)
. (2.17)

The values of µd and u can be calculated using concept of coupling parameter Γ

from expressions,

µd = 1 +
u(Γ)

3
+

Γ

9

∂u(Γ)

∂Γ

u(Γ) ≈ −0.89Γ + 0.95Γ1/4 + 0.19Γ−1/4 − 0.81 (2.18)
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where γd is the adiabatic constant, µd is the compressibility and u is the excess

internal energy of the system[38]. This is a purely mechanical transverse wave

existing in fluid phase of strongly coupled dusty plasma. Experimentally, this

has been observed in a glow discharge dusty plasma with hydrated aluminium

silicate particles of micron size using as dust grains[40]. In this reference, both dust

acoustic wave and shear wave have been reported to be excited simultaneously with

phase velocities cda = 4 cm/s and csh = 4.2 mm/s respectively for dust particle

density 5 × 1011m−3 and dust particle temperature 0.03 eV. The measured shear

wave velocity is compared with that obtained from theoretical expression (2.17).

Transverse wave has also been observed in 2D crystal phase of dusty plasma[39].

Here, 2D dust monolayer is formed in rf discharge plasma and laser beam is used

to exert radiation pressure to excite shear wave.

2.4 Effect of inhomogeneity on shear wave in dusty

plasma

Let us consider one dimensional propagation of shear wave with variation only

along x such that v = vy(x)êy and density variation f(x) = sech 2(αx) where α is

the inverse of the scale length of density inhomogeneity. The chosen density profile

is observed in plasmas mostly controlled by diffusion process. The equation(2.13)

can simply be written as,

d2vy
dx2

+ γ2sech 2(αx)vy = 0. (2.19)

Since there is no density fluctuation, the pressure and electric field terms play no

effect on wave propagation. The above equation (2.19) has well behaved solution
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for the eigen-values

γ2 =
ω2

c2sh
= n(n+ 1)α2 (2.20)

where n = 1, 2, 3 · · · . For the corresponding eigenfunction one has to solve the

following equation,

d2vy
dx2

+ n(n+ 1)α2sech 2(αx)vy = 0. (2.21)

The solution of this equation is well described in the Ref.[51]. The corresponding

eigenstates for n = 1, 2 can be shown as

vy(x) = vy0 tanh(αx),
ω2

c2sh
= 2α2

vy(x) = vy0
[
sech 2 (αx)− 2 tanh2 (αx)

]
,

ω2

c2sh
= 6α2

which are localized.

2.5 Effect of inhomogeneity on shear wave vortex

in visco-elastic fluid

In order to study mechanical shear wave vortex in two dimension, let us consider

the case of a neutral inhomogeneous visco-elastic fluid where electric force term

is absent. For inhomogeneous density ρ0(x) = ρ0f(x) (where ρ0 is constant),

perturbed velocity v = vx(x, y)êx+vy(x, y)êy and using incompressibility condition,

the z-component of the equation(2.14) takes the form

∂2

∂t2
[
f(x, y)∇2ψ +∇f · ∇ψ

]
=

η

ρ0τm
∇4ψ, (2.22)

where kinetic limit is considered. Taking Fourier transformation in time i.e,

ψ(x, y, t) = ψ(x, y) exp(−iωt)
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the equation(2.22) leads to

∇4ψ + γ2f(x, y)∇2ψ + γ2∇f · ∇ψ = 0, (2.23)

where γ2 = ω2/c2sh. We need to solve the above equation to get vortex solution.

But due to its complicated nature we would like to simplify this equation in the

following way:

∇ ·
[
∇(∇2ψ)

]
+ γ2∇ · (f∇ψ) = 0.

This can be finally written as

(∇2 + γ2f)∇ψ = êz ×∇g (2.24)

where g is some scalar function. Up to this there is no approximation involved.

For simplicity in our analysis, we shall consider the special case g = 0 and write

the above equation as[52],

(∇2 + γ2f)ψ̄ = 0 (2.25)

where ψ̄ = |∇ψ| and it represents magnitude of velocity of dust fluid.

Example-I Now, we consider f(x) = sech 2(αx) and solve the equation(
∂2

∂x2
+

∂2

∂y2

)
ψ̄ + γ2sech 2(αx)ψ̄ = 0. (2.26)

There is no inhomogeneity in y-direction so the solution can be expressed in normal

Fourier modes as ψ̄n(x, y) = φ(x) sin(nπαy) to get the form

d2φ

dx2
+

[
γ2

α2
sech 2(x)− n2π2

]
φ = 0, (2.27)

where x is normalized by α. With the transformation[53] ξ = tanhx, this equation

is reduced to

(
1− ξ2

)2 d2φ
dξ2
− 2

(
1− ξ2

)
ξ
dφ

dξ
+

[
γ2

α2

(
1− ξ2

)
− n2π2

]
φ = 0.
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With the change of variable φ = (1− ξ2)λn/2 χ(ξ) and λn = nπ, we get

(
1− ξ2

) d2χ
dξ2
− 2ξ(λn + 1)

dχ

dξ
+

(
γ2

α2
− λn − λ2n

)
χ(ξ). (2.28)

This equation gives regular Gegenbauer solution only if the mode frequencies are

discrete with the relation

γ2ns =
ω2

c2sh
= (s+ nπ)(s+ nπ + 1)α2, with s = 0, 1, 2 · · · ; n = 1, 2, 3, · · ·

For each such value of frequency, we get a corresponding shear mode eigenfunction

ψ̄n,s(x, y) = Nns

√
2α

sinnπαy

(coshαx)nπ
G
nπ + 1

2
s (tanhαx),

where G
nπ+1/2
s is a Gegenbauer polynomial, Nns is a normalization constant. The

velocity profiles and the dispersion relations for a few cases are given below

ψ̄1,0 = N10

√
2α sinπαy(sechαx)π,

ω2

c2sh
= π(π + 1)α2

ψ̄1,1 = N11

√
2α

(
π +

1

2

)
sin παy(sechαx)π tanhαx,

ω2

c2sh
= (1 + π)(2 + π)α2

ψ̄1,2 = N12

√
2α

(
π +

1

2

)
sin παy(sechαx)π

[
2

(
π +

3

2

)
tanh2 αx− 1

]
,

ω2

c2sh
= (2 + π)(3 + π)α2

(2.29)

where

N2
10 = α

Γ(π + 1/2)√
πΓ(π − 1/2)

, N2
11 =

N2
10

2(π + 1/2)
, N2

12 =
N2

10

2(π + 1/2)(π + 1)
.
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Figure 2.1: In first three graphs, monopole, dipole and tripole structures of con-
tours of magnitude of velocity of dust fluid are plotted respectively in x− y plane
as derived in the example-I. In the fourth graph, localized solutions (radial part)
of ψ̄ are shown for different values of m as derived in example-II.

Equation(2.29) shows that for a density gradient in x, we obtain periodic so-

lutions in y-direction, with localization in the x. The solutions corresponding

to n = 1, s = 0, 1 give rise to monopole and dipole vortices respectively while the

solution for n = 1, s = 2 represents a tripolar vortex which are plotted in Fig.(2.1).

Example-II, Finally, we consider a cylindrical system, with an equilibrium

density profile given by f(r) = (1 − α2r2). With using ψ̄ = χ(r) exp(imθ), the

inhomogeneous shear wave equation (2.25) leads to

1

r

∂

∂r

(
r
∂χ

∂r

)
− m2

r2
χ+ γ2(1− α2r2)χ = 0. (2.30)
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Now we take γr = r̄ and transform the equation to the form,

r̄2
d2χ

dr̄2
+ r̄

dχ

dr̄
−m2χ+

(
r̄2 − α2r̄4

γ2

)
χ = 0. (2.31)

With the change of variable χ = r̄±mΩ we get

r̄2
d2Ω

dr̄2
+ r̄(±2m+ 1)

dΩ

dr
+ r̄2

(
1− α2r̄2

γ2

)
Ω.

Again we transform the equation with r̄2 = 2ζ and get the form,

ξ
d2Ω

dξ2
+ (1±m)

dΩ

dξ
+

(
1

2
− α2ξ

γ2

)
Ω = 0.

Another transformation Ω = exp(κξ)Γ(ξ) is taken to transform the equation to

the form

ξ
d2Γ

dξ2
+ (1±m+ 2κξ)

dΓ

dξ
+

[
κ(1±m) +

1

2
+

(
κ2 − α2

γ2

)
ξ

]
Γ = 0.

Now we consider specific case for κ2 = α2/γ2 and take the relation ξ = −z/2κ.

Hence we get standard Kummer’s differential equation

z
d2Γ

dz2
+ (d− z)

dΓ

dz
− az = 0, (2.32)

with

d = 1±m; a =
κ(1±m) + 1

2

2κ
.

A physically well-behaved solution is obtained in the form [54]

χ(r) = (αr)me−γαr
2/2

1F1

(
1 +m

2
− γ

4α
, 1 +m, γαr2

)
(2.33)

where 1F1 is a Kummer confluent hypergeometric function.
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The physically acceptable solutions are obtained by considering that χ(r) van-

ishes at r = 0, rα = 1. This leads to the velocity profiles vanishing at the axis and

at the boundary. These conditions give the eigenfrequencies of the shear wave.

For the parabolic density profile chosen here, the radial part of eigenfunctions are

shown in Fig.(2.1). The corresponding eigenfrequencies ω/cshα are given by 4.62,

6.52, 8.42 for m = 1, 2, 3 respectively.

2.6 Shear wave in magnetized dusty plasma

Now we consider the effects of an external magnetic field B = B0ẑ on a strongly

coupled plasma. The presence of magnetic field exerts tensile stress which causes

propagation of shear Alfven wave. The density of dust fluid gives inertia and the

tension of magnetic field lines provides the restoring force to produce the wave. We

would like to study the propagation of shear Alfven wave along with the mechanical

elastic wave in strongly coupled magnetized dusty plasma[55]. The characteristic

wave frequency is assumed to be much smaller than the ion gyrofrequency, where

dust particle dynamics is important. In such a situation the ion and electron

inertial forces are much smaller than the corresponding Lorentz forces. Therefore

equations of motion for the electron and ion fluids can be written as:

0 = −ene(E + ve ×B), (2.34)

0 = eni(E + vi ×B), (2.35)

where, ne,i is the number density of electron and ion fluid and ve,i is the correspond-

ing velocity. The electric and magnetic fields are denoted as E and B respectively.

The momentum equation for the dust fluid can be written

mdnd
dv

dt
= −Zend(E + v ×B) + η52 v +

(
ξ +

η

3

)
∇(∇ · v), (2.36)
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where, nd is the number density of dust fluid, vd is the dust fluid velocity, Z is

the number of negative charges on a single dust particle, η and ξ are the shear

and bulk viscosity coefficients of dust fluid respectively. We assume cold plasma so

that pressure term is neglected. The notation d/dt represents total time derivative

given by

dv

dt
=
∂v

∂t
+ v · ∇ v

where v · ∇ is the convective derivative. Next we shall define the mass density,

center of mass fluid flow velocity and current density for the bulk fluid. First mass

density is defined as ρ̄ = mene +mini +mdnd. Since me,mi � md, ρ̄ = ρ ≈ mdnd.

Then average fluid velocity v̄ = (meneve + minivi + mdndv)/(mdnd) ≈ v and

finally the current density is defined as J = e(nivi − neve − Zndv). The current

density J related to the magnetic field B through Ampere’s law is given by

∇×B = µ0J = µ0e(nivi − neve − Zndv). (2.37)

By adding the equations (2.34), (2.35) and (2.36) and working in the MHD ap-

proximation for viscous dusty plasma with infinite electrical conductivity and also

with the quasineutrality condition ni ≈ ne + Znd we can write down the single

fluid momentum equation of the bulk fluid as

ρ
dv

dt
= J×B + η52 v +

(
ξ +

η

3

)
∇(∇ · v). (2.38)

Now we add equations (2.34), (2.35) and then use quasineutrality condition (ni ≈

ne + Znd) and the expression for current density to get the following form of the

generalized Ohm’s law

E = −v ×B− J×B

Zend
. (2.39)
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Taking curl of the above equation and using Faraday’s law (∇ × E = −∂B/∂t),

the time evolution of magnetic field for the bulk dusty plasma can be obtained as,

∂B

∂t
= ∇× (v ×B) +

∇× (J×B)

Zend
, (2.40)

where the first term in the right hand side is the convective term and the second

one is the Hall term.

The ratio of the Hall to the convection term can be estimated as ∼ vA/Lωcd ∼

δd/L, where ωcd(= ZeB0/md) and δd = vA/ωcd = c/ωpd are the cyclotron frequency

and skin depth of dust particle, and L and vA(= B0/
√
µ0ρ0) are the characteristic

length and Alfven velocity of the system. For waves with scale length L� δd, the

Hall term can be neglected.

Using the model described in section(2.2), we generalize the Eq.(2.38) and

obtain (
1 + τm

d

dt

)[
ρ
dv

dt
− J×B

]
= η52 v +

(
ξ +

η

3

)
∇(∇ · v) (2.41)

where τm is the relaxation time of the medium. Equations (2.37), (2.40) and

(2.41)are magnetohydrodynamic equations describing low frequency phenomena

in a strongly coupled, cold magnetized dusty plasma.
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Linear Analysis:

For simplicity we have assumed that in equilibrium, plasma is homogeneous.

The equilibrium is defined by the constant variables ρ = ρ0, v = 0, B = B0ẑ.

Now we perturbed the system with small amplitude perturbations in velocity,

magnetic field and current density respectively defined by the symbols v, B and J.

Linearizing equations (2.37), (2.40) and (2.41)around the equilibrium mentioned

above we have

∇×B = µ0J, (2.42)

∂B

∂t
= ∇× (v ×B0), (2.43)(

1 + τm
∂

∂t

)[
ρ0
∂v

∂t
− J×B0

]
= η52 v +

(
ξ +

η

3

)
∇(∇ · v). (2.44)

We consider that a wave is propagating making an angle θ with unperturbed

magnetic field B0 i.e, wave vector k and B are in the same plane with wave vector

k = kxx̂ + kz ẑ. Since the above equations are linear we can Fourier transform

these equations assuming the solutions for the perturbed variables are in the form

∼ exp[−i(ωt−k ·r)]. Here ω is the frequency and k is the wave vector of the mode

under consideration. Substituting perturbed solutions in Eqs. (2.42) - (2.44) we

find

k×B = −iµ0J, (2.45)

(1− iωτm)[−iωρ0v − J×B0] = −ηk2v −
(
ξ +

η

3

)
k(k · v), (2.46)

ωB = B0(k · v)− (B0 · k)v. (2.47)

In kinetic limit ωτm � 1, for electrostatic case B = 0 equation (2.46) yields

compressional mode with k · v 6= 0 and shear mode with k × v 6= 0. The phase

velocity of the shear wave and the compressional wave are found to be v2sh = η/τmρ0
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and v2c = (ξ+ 4
3
η)/τmρ0 as investigated before [38]. Eliminating B and J from above

three equations (2.45)-(2.47) we obtain equation in v as,

[ω2 − v2Ak2z − c2shk2]v + [(c2sh − v2c )k− x̂kxv2A](k · v) + kzvA(vA · v)k = 0. (2.48)

To find the dispersion relation we have taken two different kinds of polarization

for the velocity vector v. First let us take v = vxx̂+ vz ẑ which means the velocity

vector is polarized in the (x−z) plane i.e. in the plane where the propagation vector

lies. From Eq.(2.48), considering x and z components the dispersion equation in

matrix form can be written as,(
ω2 − v2Ak2 − c2shk2z − v2ck2x −(v2c − c2sh)kxkz
−(v2c − c2sh)kxkz ω2 − c2shk2x − v2ck2z

)(
vx

vz

)
= 0. (2.49)

The dispersion relation can be obtained equating the determinant of the matrix to

zero which is given by

ω2

k2
=

1

2
(v2A + v2c + c2sh)±

1

2

[
v4A + (v2c − c2sh)2 − 2v2A(v2c − c2sh) cos 2θ

] 1
2 (2.50)

where cos θ = kz/k. For θ = 0, we obtain

ω2 = k2(c2sh + v2A) for vz = 0

= k2v2c for vx = 0

with the two modes being transverse and longitudinal respectively. The transverse

component (vz = 0) propagating along the magnetic field, depends on the combined

effect of mechanical stress and magnetic stress.

When the direction of propagation perpendicular to the unperturbed magnetic

field i.e. θ = π/2, then we have

ω2 = k2(v2c + v2A) for vz = 0

= k2c2sh for vx = 0
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The transverse component (vx = 0) propagating perpendicular to the magnetic

field is a purely mechanical shear mode independent of magnetic field since the

Lorentz force vanishes in this case. The longitudinal component (vz = 0) depends

on the magnetic pressure as well as pressure due to viscous force. In the general

case when the propagation is oblique with respect to the magnetic field we get

mixed modes that are partially transverse and partially longitudinal type with

the polarization in the plane generated by the magnetic field and the propagation

direction.

Next, we consider the velocity perturbation perpendicular to the direction of

propagation vector i.e. v = vyŷ. From Eq.(2.48)we have

(ω2 − v2Ak2z − c2shk2)vy = 0.

For vy 6= 0, a transverse mode propagates in the x− z plane with phase velocity

vp =
ω

k
=
√

(v2A cos2 θ + c2sh)

When θ = 0 i.e, when the transverse shear wave is propagating along the unper-

turbed magnetic field(B0), the phase velocity becomes

vp =
ω

k
=
√

(v2A + c2sh) (2.51)

In the absence of magnetic field, equation (2.51) reduces to the dispersion rela-

tion for a purely elastic mode obtained in Ref.[38]. In the weakly coupled limit,

the above mode reduces to the well known shear Alfven wave. In analogy with

the magnetosonic mode [56] which is longitudinal compressional wave propagating

perpendicular to the magnetic field in presence of finite temperature, this mode

propagating in a magnetized elastic fluid can be termed as ‘magnetoelastic mode’

which propagates along the magnetic field and transverse in nature.
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2.7 Summary

Strong coupling between dust particles give rise to long range correlation in the

system. This introduces elastic nature in strongly coupled dusty plasma. These

property enables the system to support transverse shear wave. Here, a theoreti-

cal study is reported to show existence of shear wave and also its discrete nature

under density inhomogeneity. This inhomogeneity forms localized shear modes

with discrete set of eigen frequencies in contrast to the freely propagating wave

with continuous dispersion relation ω = kcsh in uniform dusty plasma. Different

type of profiles (e.g, sech profile, parabolic profile) are analyzed in this study. In

magnetized strongly coupled dusty plasma, a transverse shear mode called mag-

netoelastic mode is analytically predicted. Here two different shear modes, shear

Alfven wave and mechanical shear wave are said to be superposed. It is well known

that magnetosonic mode originates from coupled effect of magnetic pressure and

plasma pressure. In the present study, combined effect of magnetic stress and

elastic stress is responsible for the generation of magnetoelastic wave.
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Chapter 3

Instability of ‘shear mode’ in
presence of velocity shear

3.1 Introduction

Strong electrostatic coupling between dust particles due to their huge negative

charge generates some solid property. This enables the propagation of mechanical

shear mode in fluid phase of dusty plasma. The stability of such shear wave in

inhomogeneous plasma is currently being studied in both theory and experiments.

Recently, shear wave is shown to be unstable in presence of charge and size distri-

bution of dust grains[57]. In this chapter, shear wave is shown to be unstable in

presence of equilibrium linear velocity shear. The shear rate dependent viscosity

does the mechanism to extract energy from shear flow to drive the instability. This

dependance of viscosity on shear rate is known as non-Newtonian behaviour. In

their recent experiment with dust shear flow, Ivlev et. al.[33] have shown first time

the signature of such non-Newtonian behaviour in complex plasma. The experi-

ment has been done with gas induced shear flow for different discharge currents

and also by applying laser beams of different power. This has enabled measure-

ment of the shear viscosity and confirmation of the non-Newtonian property over

47
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a considerable wide range of shear rate. It has been demonstrated that for low

shear rate viscosity remains constant like Newtonian fluid. Then as shear rate

being increased, viscosity decreases which is known as shear thinning property.

After certain critical shear rate viscosity again increases with increase of shear

rate showing shear thickening behaviour. In another experimental analysis using

laser beam, Gavrikov et al. have also reported[34] this phenomenon in a dusty

plasma liquid. In this context, we should also mention of the simulation works

which have predicted the signature of non-Newtonian property in Youkawa liquids

[58, 59].

Linear stress strain relationship of Newtonian viscous stress is no longer valid

here. Instead nonlinear stress strain relation should be taken with proper modeling

of the functional dependence of viscosity on velocity shear rate. In our analysis,

we are concerned over shear thinning regime and adopt power law as used in the

Ref.[33] for analysis. The choice of appropriate model is different for different

physical system and fitting of experimental data provides correct power law expo-

nent. It is particularly useful because of the exact solutions which can be obtained

for this model. Although it is very popular model but it can not be used for the

limit of zero shear rate. In this limit(|γ| → 0), power law represents either infinite

viscosity or zero viscosity which is unphysical. To remove such inconsistencies,

many other models are studied of which Carrieu-Bird model is an well known

substitute[60]. In our analysis, only shear thinning region safely away from zero

shear rate is considered so that use of power law doesn’t make any inconsistency.



49

3.2 Model of non-Newtonian viscous stress

The viscous stress tensor of non-Newtonian plasma is expressed as[61],

σij = η(|γ|)
[(

∂vi
∂xj

+
∂vj
∂xi

)
− 2

3
δij (∇ · v)

]
, δij = 1 for i = j

= 0 for i 6= j. (3.1)

where η(|γ|) is the non-Newtonian viscosity coefficient which depends on the scalar

invariant quantity |γ| made from the rate of strain tensor

γij =

(
∂vi
∂xj

+
∂vj
∂xi

)
.

Here i, j varies as x, y in the (x − y) plane and σ and γ can be written as 2 × 2

matrix like as,

σ =

(
σxx σxy

σyx σyy

)
, γ =

(
γxx γxy

γyx γyy

)

and few components are

σxx = 2η(|γ|)
(
∂vx
∂x
− 1

3
∇ · v

)
, σyx = η(|γ|)

(
∂vy
∂x

+
∂vx
∂y

)
γyy = 2

∂vy
∂y

, γxy =

(
∂vx
∂y

+
∂vy
∂x

)
.

Viscous coefficient η is a scalar quantity but it is to depend on tensor γ. According

to tensor algebra, it should depend on scalar invariant quantity of γ. In 2×2 tensor,

two invariant quantity can be formed by taking trace of γ and γ2. These invariants

are scalar quantity and independent of the choice of co-ordinate system to which

the components of tensor γ are referred[35].
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These two invariants are known as,

I =
∑
i

γii and II =
∑
i

∑
j

γijγji, (3.2)

where i, j varies as x, y. For incompressible medium,

I = γxx + γyy = 2

(
∂vx
∂x

+
∂vy
∂y

)
= 2(∇ · v) = 0.

Finally |γ| is modeled as

|γ| =
√
II/2 =

√(
γ2xx + γ2yy + 2γxyγyx

)
/2. (3.3)

Now, we need to model the correct functional dependence of η on |γ|. In the

literature of non-Newtonian fluid, there exist many models applicable for different

physical systems. The common idea of all model is that for very small shear rate it

should go to Newtonian limit i.e, constant viscosity. In asymptotic limit, for large

shear rate it shows power law behaviour.

3.3 Basic equations and equilibrium

In kinetic limit τm∂/∂t � 1, the generalized momentum equation of dust fluid

(2.9) with non-Newtonian stress can be written as,

τm

(
∂

∂t
+ v · ∇

)[
ρ

(
∂

∂t
+ v · ∇

)
v +∇p− ndZe∇φ

]
=
∂σij
∂xj

. (3.4)

For incompressible plasma

σij = η(|γ|)
(
∂vi
∂xj

+
∂vj
∂xi

)
.

We assume, that the equilibrium velocity is directed along y direction and has

variation in x, i.e. v0 = v0y(x)êy. The left hand side of equation(3.4) will not

contribute in steady state equilibrium since time variation is zero in steady state

and for shear flow v0y(x) convective derivative also becomes zero.
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Hence, the equilibrium is described by the equation

d

dx

[
η(|γ|)dv0y

dx

]
= 0, (3.5)

where in equilibrium |γ| = dv0y/dx. The functional form of dependence of viscosity(η)

on shear rate(γ) for modeling shear thinning region is considered as[62],

η(|γ|) = η̄

[
|γ|
γ̄

]− 2δ
1+δ

, (3.6)

here, δ is a positive exponent and η̄ and γ̄ are constants having the dimension

of viscosity and shear rate. If we define 2δ/(1 + δ) = α, then the parameter α

is a positive non-zero constant. In this model, one can’t go to the limit (|γ| →

0) as viscosity diverges unphysically. In equilibrium, using this model (3.6) in

equation (3.5), we have found that dv0y/dx is constant and hence we can write the

equilibrium velocity as v0y(x) = v′0x, where v′0 is equilibrium shear rate.

3.4 Linear equations and eigenvalue analysis

Let us consider shear wave propagation in presence of equilibrium linear veloc-

ity shear. We assume small amplitude wave so that linear analysis can be used

neglecting the 2nd and higher order terms. Let us first do linearization of the

non-Newtonian viscous force term (R.H.S. of the equation(3.4)). The linearized

form of the rate of strain tensor γ takes the form

γ ≡

 2∂vx
∂x

ε0 + ε1

ε0 + ε1 2
∂vy
∂y


here

ε0 =
dv0y
dx

; ε1 =
∂vx
∂y

+
∂vy
∂x

.
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The term |γ|can be expressed in linearized form using equation(3.3)

|γ| =

√
2

(
∂vx
∂x

)2

+ 2

(
∂vy
∂y

)2

+ (ε0 + ε1)
2.

For linear analysis, quadratic shear rate fluctuation terms are neglected and the

form is simplified to

|γ| = ε0

√
1 + 2

ε1
ε0
.

For ε1 � ε0, the square root can be expanded binomially as,

|γ| = ε0 + ε1.

Now, viscosity η(|γ|) can be expanded in Taylor series form as,

η(ε0 + ε1) ' η(ε0) +
dη

dε0
ε1 = η0 + η′0ε1 (3.7)

where η′0 is the gradient of viscosity with unperturbed velocity shear rate v′0y. The

x-component of viscous force in linearized form,

∂σxx
∂x

+
∂σxy
∂y

=
∂

∂x

[
(η0 + η′0ε1)2

∂vx
∂x

]
+

∂

∂y
[(η0 + η′0ε1)(ε0 + ε1)] ,

= η0∇2vx + η′0v
′
0y

∂

∂y

(
∂vx
∂y

+
∂vy
∂x

)
+ 2η′0v

′′
0y

∂vx
∂x

.

Like as, the y-component of viscous force in linearized form,

∂σyy
∂y

+
∂σyx
∂x

= η0∇2vy +

{
2η′0v

′′
0y + η′′0v

′′
0yv
′
0y + η′0v

′
0y

∂

∂x

}(
∂vx
∂y

+
∂vy
∂x

)
,

where v′0y and v′′0y denote 1st and 2nd order derivative of velocity with x.

The linearized components of dust momentum equation(3.4) can be written as,(
∂

∂t
+ v0y

∂

∂y

)[
∂vy
∂t

+ v0y
∂vy
∂y

+ vx
dv0y
dx
− ndZe

∂φ

∂y
+
∂p

∂y

]
=

η0
τmρ0

∇2vy +
η′0v
′
0y

τmρ0

∂

∂x

(
∂vx
∂y

+
∂vy
∂x

)
, (3.8)
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and (
∂

∂t
+ v0y

∂

∂y

)[
∂vx
∂t

+ v0y
∂vx
∂y
− ndZe

∂φ

∂x
+
∂p

∂x

]
=

η0
τmρ0

∇2vx +
η′0v
′
0y

τmρ0

∂

∂y

(
∂vx
∂y

+
∂vy
∂x

)
, (3.9)

where v′′0y is zero for linear velocity shear. In many existing articles[63, 49], studies

have been done with a model which is not Galilean invariant. In those work, the

term τmv0y∂/∂y is neglected for the sake of mathematical convenience. But in

recent nonlinear study, the important role of the galilean invariant model have

been discussed[64, 65]. In this section, the analytical calculation and results of

our earlier study[62] are shown first and then a non-modal analysis with proper

Galilean invariant equation(3.8-3.9) are also discussed.

Case-I the term τmv0y∂/∂y is not taken and mathematical analysis is done to

form Weber equation. Incompressibility assumption is taken which leads to the

velocity v = êz ×∇ψ. Subtracting y-derivative of equation(3.9) from x-derivative

of equation(3.8) we get,

∂

∂t

[
∂

∂t
+ v′0x

∂

∂y

]
∇2
⊥vx = c2sh∇4

⊥vx +

(
η′0v
′
0

τmρ0

)(
∂2

∂x2
− ∂2

∂y2

)2

vx, (3.10)

where ∇2
⊥ = ∂2/∂x2 +∂2/∂y2 and vx = −∂ψ/∂y. We note here that if the velocity

shear is absent in Eqs. (3.10), we get back the shear mode dispersion relation

ω2 = (k2x + k2y)c
2
sh. We assume the solution of the form vx = v̄(x) exp(ikyy − iωt),

where ky is the wave vector in y direction and ω is the frequency of the mode.

Fourier mode is taken only in y direction since inhomogeneity is present in the

x-direction through velocity shear.
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Figure 3.1: Normalized growth rate γ/ωs as a function of α = |η′0v′0/η0|, shows the
growth rate of shear mode for different velocity shear rate v′0.

The linear equation(3.10) reduces to

ω2
s

k2y

(
1 +

η′0v
′
0

η0

)
d4v̄

dx4
+

[
ω2 − ωkyv′0x− 2ω2

s

(
1− η′0v

′
0

η0

)]
d2v̄

dx2

+

[
k2yω

2
s

(
1 +

η′0v
′
0

η0

)
− k2y(ω2 − ωkyv′0x)

]
v̄ = 0, (3.11)

where ω2
s = k2yη0/ρ0τm. Here we are looking for long radial(x) scale solution for

the differential equation and therefore the fourth order derivative is subdominant

compared with the second. The desired eigenvalue equation can be written as

d2v̄

dx2
− k2y

[
ω2 − ω2

s(1− α)− ωkyv′0x
ω2 − 2ω2

s(1 + α)− ωkyv′0x

]
v̄ = 0. (3.12)

For the condition ωkyv
′
0/[ω

2−2ω2
s(1+α)]� 1, which implies that, when the shear

rate is small compared to the frequency of the mode, the above equation can be

written in terms of the well known Weber equation which is given by

d2v̄

dξ2
− (ξ2 −K)v̄ = 0 (3.13)
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where

ξ =

[
k2yβ

2
2

(
β2 − β1
β1

)]1/4(
x+

1

2β2

)
, K = −ky

4

(
1

β2
+

3

β1

)√
β1

β2 − β1
.

and

β1 =
kyv

′
0ω

ω2 − ω2
s(1− α)

, β2 =
kyv

′
0ω

ω2 − 2ω2
s(1 + α)

.

The solution of Eq. (3.13) for the lowest order eigenmode is given by

v̄ ∼ exp

[
−1

2
kyβ2

√(
β2 − β1
β1

)(
x+

1

2β2

)2
]

(3.14)

representing the existence of an unstable eigenmode. The condition for bounded

solution is Re
(
β2[(β2/β1)− 1]1/2

)
> 0. The behaviour of the eigenfunction v̄ at

x → ±∞ is bounded and the typical mode width 4 ∼
[

1
kyβ2

√
β1

β2−β1

]1/2
. The

corresponding dispersion relation is given by

ω2 − ω2
s

4
(5− α) = −v′0ωωs

√
1 + 3α

ω2 − 2ω2
s(1 + α)

, (3.15)

where α = −η′0v′0/η0 > 1 and ω2
s = k2yη0/ρ0τm. In presence of velocity shear and

velocity shear induced viscosity gradient we have solved Eq. (3.15) and found that

for α < 2 there is one unstable root for real ω > 0. The growth rate for the

instability for the given range of α can be seen in the figure 3.1. The curves in

the figure shows that the growth rate increases with increase of shear thinning

parameter α and velocity shear rate(v′0). The shear mode becomes more unstable

for stronger velocity shear.
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Case-II, now proper Galilean invariant eaquations (3.8-3.9) are solved using

non-modal analysis. With taking the term τmv0y∂/∂y and subtracting y-derivative

of equation(3.9) from x-derivative of equation(3.8) we get,[
∂

∂t
+ v′0x

∂

∂y

]2
∇2vx + v′0

∂

∂y

[(
∂

∂t
+ v′0x

∂

∂y

)
∂vx
∂x

+ v′0
∂vx
∂y

]
= c2sh∇4vx +

η′0v
′
0

τmρ

(
∂2

∂x2
− ∂2

∂y2

)2

vx (3.16)

We consider a moving frame where temporal problem can be solved by solving

differential equation in time. For this purpose we use a spatially-inhomogeneous

Galilean transformation

ξ = y − v′0xt; τ = t

Hence, we get the transformation of the partial derivatives as

∂

∂x
= −v′0t

∂

∂ξ
,

∂

∂y
=

∂

∂ξ
,

∂

∂t
= −v′0x

∂

∂ξ
+

∂

∂τ

and the laplacian ∇2 = (1 + v′20 τ
2) ∂

2

∂ξ2
. With these transformation relations,

the equation(3.16) reduces to

d2vx
dτ 2
− v′20 τ

1 + v′20 τ
2

dvx
dτ

+

[
c2sh
(
1 + v′20 τ

2
)
k2ξ +

2v′20
1 + v′20 τ

2
− αk2ξc2sh

(1− v′20 τ 2)
2

(1 + v′20 τ
2)

]
vx = 0,

(3.17)

where inhomogeneity manifests in transformed time(τ) and velocity is taken of the

form vx = vx(τ) exp(−ikξξ). In absence of velocity shear this equation leads to

pure shear wave represented by

d2vx
dt2

+ c2shk
2
yvx = 0 (3.18)

This time evolution equation(3.17) is solved by runge-kutta time integration

method. The initial conditions are taken vx = 1 and dvx/dτ = 1. The 2nd



57

0 5 10 15 20 25 30 35 40 45 50
−10

−8

−6

−4

−2

0

2

4

6

8

10

t/τm

v
e

lo
c
it
y
 f

lu
c
tu

a
ti
o

n
 i
n

 d
im

e
n

s
io

n
le

s
s
 u

n
it

Figure 3.2: The red line curve represents sinusoidal shear wave and the blue line
curve represents amplified shear wave in presence of velocity shear rate v′0 = 1.2,
α = 1.0. The velcity of dust fluid is normalized by v′0L where L is the length of
plasma system. The amplitude increases monotonically with time.

order equation in time is decoupled in two first order equations in time as

dvx
dτ

= ṽx

dṽx
dτ
− v′20 τ

1 + v′20 τ
2
ṽx + c2sh

(
1 + v′20 τ

2
)
k2ξvx +

2v′20 vx
1 + v′20 τ

2
− αk2ξc2sh

(1− v′20 τ 2)
2

(1 + v′20 τ
2)
vx = 0.

(3.19)

In Fig.(3.2), pure oscillation shown in red line is the solution of the equation

in absence of velocity shear. In presence of velocity shear the solution is shown

in blue line curve. It is clear that the amplitude of the shear wave monotonically

increases with time. This confirms the instability of shear wave in presence of

velocity shear.
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3.5 Summary

The transverse mechanical shear wave is shown to become unstable due to shear

flow. The linear velocity shear supplies the necessary energy to drive the instabil-

ity. The non-Newtonian property plays the key role enabling the coupling between

velocity fluctuation and equilibrium flow. The variation in the velocity is respon-

sible for viscosity modulation, which provides feedback to the velocity through the

momentum equation. For positive feedback of the velocity, an instability is trig-

gered. This novel low-frequency instability disappears when viscosity is uniform

and we are left with a shear wave. The growth rate of instability increases with

increase of velocity shear rate. This interesting mechanism of instability needs

experimental verification which has not been done yet.



Chapter 4

Kelvin-Helmholtz instability of
dust shear flow in strong coupling

4.1 Introduction

Kelvin-Helmholtz (KH) instability is a well observed phenomena in nature which

causes energy transfer from mean flow to low frequency long wavelength fluctuation

in parallel shear flows. This instability occurs at the interface of two adjacent fluids

of different densities under relative motion. A well known example is the case of

wind blowing over water surface where instability causes water waves. There are

other familiar examples like ocean wave, patterns in the relative motion of cloud

layers, surface waves in Saturn’s band. This instability also plays an important

role in astrophysical plasma involving sheared plasma flow in solar wind, polar

cusps, dynamic structure of cometary tails[66]. In 1871, Kelvin[67] had given a

theoretical model to study such instability in ocean waves and later Helmholtz[68]

applied this theory to billow clouds. In 1880, Rayleigh[69, 70] with his famous

inflection point theorem established the idea that the KH instability can also occur

in a single fluid for velocity shear which has an inflection point (2nd derivative of

velocity vanishes) at some space point. Three years later, Reynolds[71] made

59



60

a series of laboratory experiment with laminar pipe flow and demonstrated KH

instability and its transition to turbulent layer. Since then the study of linear and

nonlinear KH instability has been an evergreen topic of research in oceanography,

fluid mechanics, astrophysical plasma, laboratory plasma etc.

In plasma, existence of multi-species charged fluids like electron fluid, ion fluid,

neutral fluid and the possible relative motion between them makes it a rich media

for KH instability. In fully ionized plasma, D’Angelo[72] with inhomogeneous

streaming flow of ions had formulated the condition of KH instability which was

later verified in different experiments[73, 74] in thermally ionised cesium plasma

(Q machine). For plasma flow perpendicular to field lines, magnetic field has no

effect on the instability and it behaves as the instability in neutral fluid. But, if

the plasma flow is along the magnetic field, then the condition for instability is

that the total velocity jump should exceed twice the Alfven speed[75]. In kinetic

theory, it has been shown that the KH instability is strongly damped when ion

temperature is comparable to or larger than electron temperature[76].

In dusty plasma, the effect of dust charge fluctuation on the instability of ion

flow has been studied with static dust grains[77] and later with dust flow also[78].

The effect of negatively charged dust grains on the Kelvin-Helmholtz instability of

inhomogeneous ion flow is recently studied experimentally in a magnetized cesium

plasma with static dust particles[79]. In this chapter, instability of unmagnetized

dust shear flow is studied observing the effect of strong coupling between dust

particles. Unbounded free shear layer of dust fluid is considered where the shear

layer under observation is far away from physical boundary. Both the cases of zero

shear width and finite shear width are considered for the investigation of the KH
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instability. Zero shear width correspond to vortex sheet modeled by step profile.

For finite shear width standard hyperbolic tangent profile is analyzed numerically.

4.2 Basic equations with linearized form

The generalized hydrodynamic model is utilized here to study the effects of strong

coupling between dust particles on the Kelvin-Helmholtz instability driven by dust

shear flow. The temporal scale of this fundamental instability is long enough

so that the electrons and ions are assumed to follow Boltzmann’s distribution.

Incompressible dusty plasma is considered so that density fluctuation is absent.

Hence, no part of energy is lost in exciting longitudinal compressible waves and

the most unstable situation can be achieved. The spatial scale of the instability is

much larger than plasma Debye length so that the density of dust fluid is assumed

homogeneous. The equilibrium dust flow is taken along y-direction with variation

in x so that v0 = v0y(x)êy. The total dust flow is the sum of equilibrium flow and

a small perturbation in x-y plane:

v(x, y, t) = vx(x, y, t)êx + [v0y(x) + vy(x, y, t)]êy.

We linearize the Eq. (2.9) around equilibrium flow v0y, and write scalar components

as

{
1 + τm

(
∂

∂t
+ v0y

∂

∂y

)}[(
∂

∂t
+ v0y

∂

∂y

)
vx +

1

ρ0

∂p

∂x
− eZ

md

∂φ

∂x

]
= ν∇2vx, (4.1)

{
1 + τm

(
∂

∂t
+ v0y

∂

∂y

)}[(
∂

∂t
+ v0y

∂

∂y

)
vy + vx

dv0y
dx

+
1

ρ0

∂p

∂y
− eZ

md

∂φ

∂y

]
= ν∇2vy, (4.2)



62

where kinematic viscosity coefficient ν = η/ρ0. Differentiating equation(4.1) with

respect to y, and equation(4.2) with respect to x, and taking a difference we obtain

{
1 + τm

(
∂

∂t
+ v0y

∂

∂y

)}[(
∂

∂t
+ v0y

∂

∂y

)(
∂vx
∂y
− ∂vy
∂x

)
− v′′0yvx

]
−τmv′0y

∂

∂y

[(
∂

∂t
+ v0y

∂

∂y

)
vy + v′0yvx +

1

ρ0

∂p

∂y
− Ze

md

∂φ

∂y

]
= ν∇2

(
∂vx
∂y
− ∂vy
∂x

)
(4.3)

where Z is the number of electrons on each dust grain and v′0y and v′′0y are respec-

tively 1st and 2nd derivative of velocity with x. In electrostatic limit, electric field

fluctuation only couples with the density fluctuation of charge particles which are

mathematically connected through Poisson’s equation. In incompressibility limit,

no density fluctuation occurs and hence both the pressure and the electric field per-

turbation terms in equation (4.3) will vanish. The assumption of incompressibility

condition (∇ · v = 0) permits to define a stream function ψ such that

vx = −∂ψ
∂y
, vy =

∂ψ

∂x
.

Hence the equation(4.3) can be written as,

{
1 + τm

(
∂

∂t
+ v0y

∂

∂y

)}[(
∂

∂t
+ v0y

∂

∂y

)
∇2ψ − v′′0y

∂ψ

∂y

]
+τmv

′
0y

∂

∂y

[(
∂

∂t
+ v0y

∂

∂y

)
∂ψ

∂x
− v′0y

∂ψ

∂y

]
= ν∇4ψ. (4.4)

The physical system is linear and inhomogeneous in x, so any arbitrary disturbance

may be decomposed into normal modes as

ψ(x, y, t) = ϕ(x)ei(kyy−ωt),

where ω = kyc, and c is the phase velocity of the wave. In homogeneous y-

direction, fourier mode (plane waveform) is used. Using this normal mode form,
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equation(4.4) can be written in a dimensionless form as,

(D2 − k2y)2ϕ(x) = ikyR
[
{1 + ikyτm (v0y − c)}

{
(v0y − c)

(
D2 − k2y

)
− v′′0y

}
+ikyτmv

′
0y

{
(v0y − c)D − v′0y

}]
ϕ(x) (4.5)

where, D denotes d/dx, Reynolds number R = V0Lρ0/η, L is equilibrium shear

length scale and V0 is the maximum value of equilibrium velocity. Here, we have

used normalization scheme as: x → x/L, t → tV0/L. This equation may be

called as generalized hydrodynamic Orr-Sommerfeld equation since it describes

the instability of dust shear flow in the presence of viscosity and elasticity in

the medium[80]. In the limit τm = 0, this equation leads to the celebrated Orr-

Sommerfeld equation[81, 82]

(D2 − k2y)2ϕ(x) = ikyR
[
(v0y − c)

(
D2 − k2y

)
− v′′0y

]
ϕ(x) (4.6)

which examines the behavior of small disturbances in the parallel flow of an in-

compressible viscous fluid.

4.3 Local approximation

For small wavelength of perturbation compared to inhomogeneity scale length of

equilibrium shear (kxL � 1), the equilibrium velocity can be treated as constant

parameters (x independent) in local limit and normal Fourier mode analysis is

applicable to both x and y direction. Here, v0y and v′0y are taken as constant

parameters and v′′0y = 0. In weakly coupled limit(τm → 0), local dispersion relation

of Orr-Sommerfeld equation becomes ω = −ik2yη. So, local dispersion could not

predict any instability. In strongly coupled limit (τm∂/∂t� 1), the local dispersion



64

could be written as,

ω2 +
ikxkyv

′
0y

k2x + k2y
ω +

k2yv
′2
0y

k2x + k2y
− ν

k2x + k2y
τm

= 0 (4.7)

where ω represents Doppler shifted frequency ω− kyv0y. In absence of equilibrium

velocity, local dispersion relation gives ω = kcsh which represents transverse shear

wave with phase velocity csh =
√
η/τmρ0. Roots of the equation (4.7) indicates

instability of shear mode in presence of velocity shear for the condition v′20y >

4νk2x/5τm in the limit kx � ky.

4.4 Non-local Eigenvalue Analysis

In this section, no restriction on the perturbation scale is taken and hence equi-

librium velocity can no longer be considered as independent of x. Here, long

wavelength (small k) is of special interest. Instead of choosing plane waveform in

x-direction, one has to solve ordinary differential equation in x. The standard hy-

perbolic tangent profile is chosen as a realistic shear layer. The generalized hydro-

dynamic Orr-Sommerfeld equation with this profile is difficult to solve analytically.

We have studied this problem numerically using matrix eigenvalue technique. Be-

fore showing numerical results, an analytical solution is outlined with step profile

which is chosen as approximate form of tanh profile.

4.4.1 Using step profile

The mathematical form of this type of velocity profile looks like

v0y(x) = x/|x|; −∞ ≤ x ≤ ∞, (4.8)

This is known as vortex sheet where tangential component of velocity is discon-

tinuous across the vortex sheet, but normal component of the flow velocity is
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Figure 4.1: Graphical representation of step profile (left figure) and tanh profile
(right figure) is shown. Both of these are vortex sheet with step profile of zero
thickness and tanh profile of finite thickness.

continuous. In zero shear thickness limit, hyperbolic tangent profile becomes sim-

ilar to step profile. This profile shows that at x = 0, v0y has a sudden finite jump

(from −1 to 1) but, in the regions x > 0 and x < 0, the velocity remains constant

(±1). Only at x = 0, both first and second derivatives of velocity exist. In 1961,

Drazin used such step profile and solved analytically to predict the instability of

Orr-Sommerfeld equation[83]. Here, we have used the same mathematical tools

to solve the GH Orr-Sommerfeld equation. For the regions x < 0 (velocity value

−1) and x > 0 (velocity value +1) and excluding the point x = 0, the Generalized

Hydrodynamic Orr-Sommerfeld equation (4.5) reduces to

(D2 − k2y)
2ϕ = ikyR {1 + ikyτm (∓1 − c)} (∓1− c)

(
D2 − k2y

)
ϕ. (4.9)

Note here that v′0y and v′′0y do not appear in the above equation. But, the effect of

sudden jump in the velocity profile at x = 0 would appear through the matching

condition (boundary condition at x = 0). The most general solution of equation
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(4.9) satisfying the boundary condition at infinity is of the form

ϕ = Ae−kyx +Be−β1x (x > 0)

Cekyx +Deβ2x (x < 0) (4.10)

where

β1 =
[
k2y − ikyR (c− 1) {1− iτmky (c− 1)}

]1/2
,

β2 =
[
k2y − ikyR (c+ 1) {1− iτmky (c+ 1)}

]1/2
.

So, we get solutions of equation (4.5) in x excluding the jump point x = 0. The

solutions on both sides (x > 0 and x < 0) will be matched through proper matching

conditions which are derived now. The equation (4.5) is integrated in the region

−ε to ε with the limit ε→ 0.[
d3ϕ

dx3
− 2k2y

dϕ

dx
− ikyR (v0y − c)

dϕ

dx
+ ikyRv

′
0ϕ+ β (v0y − c)2

dϕ

dx
− β

2

d

dx
(v0y − c)2 ϕ

]ε
−ε

= −k4y
∫ ε

−ε
ϕdx− ik3yR

∫ ε

−ε
(v0y − c)ϕdx+ βk2y

∫ ε

−ε
(v0y − c)2 ϕdx

The integrations on the RHS would vanish for continuous ϕ. Two successive inte-

gration of the Eq. (4.5) yields[
d2ϕ

dx2
+ ikyR (v0y − c)ϕ−

β

2
(v0y − c)2 ϕ

]ε
−ε

= 0 (4.11)

Three successive integration of the Eq.(4.5) would prove that first derivative of ϕ

is continuous for continuous stream function ϕ. After some algebraic steps, the

matching conditions can be formulated as

[ϕ] = 0, (4.12)

[Dϕ] = 0,[(
D2 + β2

)
ϕ+

Rτmk
2
y

2
(v0y − c)2 ϕ

]
= 0,[(

D2 − β2
)
Dϕ
]

= 0,
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where

β =
[
k2y − ikyR (c− v0y) {1− iτmky (c− v0y)}

]1/2
.

Third bracket indicates the jump of the variable inside from −ε to ε in the limit

ε → 0. The first two relations represent that jumps of the function ϕ and its 1st

derivative are zero i.e, they are continuous at x = 0. But the last two relations in-

dicate finite jumps or discontinuities of 2nd and 3rd derivative of ϕ. This matching

conditions at x = 0, gives four linear algebraic conditions in A,B,C and D which

are the four constants in Eq.(4.10). A non zero solution for these set of equations

exists if and only if their discriminant is zero and the eigenvalue relation is∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

−ky −β1 ky β2

k2y + β2
1 + ∆(1− c)2 2β2

1 + ∆(1− c)2 k2y + β2
2 + ∆(1 + c)2 2β2

2 + ∆(1 + c)2

−k3y + kyβ
2
1 0 k3y − kyβ2

2 0

∣∣∣∣∣∣∣∣∣∣∣
= 0

A straightforward algebra result to the eigenvalue condition

k2y + β2
1 + β2

2 − β1β2 + ky(β1 + β2) = 2∆

(
β1 − β2
β1 + β2

)
, (4.13)

where 2∆ = Rτmck
2
y.

Figure (4.2) shows a plot of growth rate vs. wave number for various values of

τm. For τm = 0, the dotted curve shows the result in a weakly coupled limit. This

figure clearly indicates that increase of relaxation time enhances the instability.

The effect of strong coupling on the KH instability manifests through τm which

increases with the coupling between dust grains. The dispersion of the instability

changes with different values of τm. In weakly coupled limit, growth rate increases

through parabolic function with wave number ky but large τm shows linear increase

of growth rate with ky.
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Figure 4.2: Growth rate (positive imaginary part of eigenvalue) is plotted against
wavenumber (ky) for step profile with Reynolds Number R = 1 and different values
of τm enlisted in the legend. Increase of relaxation time enhances the growth rate
and also changes the dispersion.

4.4.2 Shear layer of finite width

As a step profile is not a realistic one, a similar shear flow profile like standard

tanh type which is widely used in both experimental and theoretical studies[84, 85]

is taken. The expression of such a profile is given by

v0y(x) = V0 tanh(x/L) (4.14)

where L is the half-width of the velocity shear and v̄0 is the magnitude of velocity

far away from shear region. In the limit of zero shear layer width(L → 0), tanh

profile reduces to step profile. Using the expression of v0y from equation(4.14), the

equation (4.5) is written in simplified form as,

[
A0 − ωA1 − ω2A2

]
ϕ = 0, (4.15)

where Ai’s are the operators on ϕ and ω = kyc (c is the phase velocity). The

expressions of different A operators are defied below as



69

x0 x1 xn+1xnxj xj+1xj 1

Left Boundary Right Boundary

h

Figure 4.3: Discretization of x-space where white dots are inner and filled dots
represent boundary points

A0 = D4 − 2k2yD
2 + k4y + iRkyv

′′
0y(1 + ikyτmv0y)− iRkyv0y(1 + ikyτmv0y)(D

2 − k2y)

+ Rk2yτmv
′
0y(v0yD − v′0y)

A1 = −iR(1 + 2ikyτmv0y)(D
2 − k2y) + kyRτmv

′
0yD − kRτmv′′0y

A2 = −Rτm(D2 − k2y)

To solve the differential equation(4.15), We have done matrix eigenvalue anal-

ysis using eig subroutine in MATLAB[86]. The differential operators mentioned

above is transformed into matrix form with proper discretization of space and spa-

cial derivatives with central difference scheme. One dimensional space along x is

considered to be made of n+2 no equally spaced discrete points so that continuous

independent variable x becomes a set of discrete points {xj} for j = 0 · · ·n+1 with

h being the spacing between two neighboring points as depicted in the figure[4.3].

Also the continuous dependent variable ϕ is changed to a set of discrete values

{ϕj} at different discrete points xj’s.
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Following central difference scheme is used here for the purpose of discretization

d4ϕ

dx4
=
ϕj+2 − 4ϕj+1 + 6ϕj − 4ϕj−1 + ϕj−2

h4

d2ϕ

dx2
=
ϕj+1 − 2ϕj + ϕj−1

h2

dϕ

dx
=
ϕj+1 − ϕj−1

2h

and the applied boundary conditions are

ϕ = 0,
dϕ

dx
= 0, at x = x0, xn+1.

In matrix representation x and ϕ can be represented as column matrix.

ϕ→



ϕ1

ϕ2

ϕ3

.

.

.

.

ϕn−2

ϕn−1

ϕn


n×1

; x→



x1

x2

x3

.

.

.

.

xn−2

xn−1

xn


n×1

where the boundary points (x0 and xn+1) are not taken since ϕ’s are zero there.
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Different differential operators can be written as square matrix form as,

D4 → 1

h4



7 −4 1 0 0 ... 0 0 0 0

−4 6 −4 1 0 ... 0 0 0 0

1 −4 6 −4 1 ... 0 0 0 0

.

.

.

.

0 0 0 ... 0 1 −4 6 −4 1

0 0 0 ... 0 0 1 −4 6 −4

0 0 0 ... 0 0 0 1 −4 7


n×n

D2 → 1

h2



−2 1 0 0 0 ... 0 0 0 0

1 −2 1 0 0 ... 0 0 0 0

0 1 −2 1 0 ... 0 0 0 0

.

.

.

.

0 0 0 ... 0 0 1 −2 1 0

0 0 0 ... 0 0 0 1 −2 1

0 0 0 ... 0 0 0 0 1 −2


n×n
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D → 1

2h



0 1 0 0 0 ... 0 0 0 0

−1 0 1 0 0 ... 0 0 0 0

0 −1 0 1 0 ... 0 0 0 0

.

.

.

.

0 0 0 ... 0 0 −1 0 1 0

0 0 0 ... 0 0 0 −1 0 1

0 0 0 ... 0 0 0 0 −1 0


n×n

v0y, v
′
0y and v′′0y are all diagonal matrix of dimension n× n like

v0y =



v0y[1] 0 0 0 ... 0 0 0

0 v0y[2] 0 0 ... 0 0 0

0 0 v0y[3] 0 ... 0 0 0

.

.

.

.

0 0 0 0 ... v0y[n− 2] 0 0

0 0 0 0 ... 0 v0y[n− 1] 0

0 0 0 0 ... 0 0 v0y[n]


n×n

The equation(4.15) now becomes a polynomial (2nd order in ω) matrix eigen-

value problem. This can be changed into simple eigenvalue problem using the

dummy variable χ = ωϕ.
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Hence, the new eigenvalue problem is(
A0 Z

Z I

)(
ϕ

χ

)
= ω

(
A1 A2

I Z

)(
ϕ

χ

)
,

where I is identity matrix and Z is a null matrix of order n × n. This trick

simplifies original polynomial eigenvalue problem into a simple and well known

matrix eigenvalue problem as

Rϕ̄ = ωSϕ̄

where

R =

(
A0 Z

Z I

)
; S =

(
A1 A2

I Z

)
; ϕ̄ =

(
ϕ

χ

)
.

Now, we can use eig subroutine to solve the eigenvalue equation. We have cal-

culated the imaginary part of eigenvalues ω, the positive value of which indicates

the growth rate of the KH mode. First we should validate our code with respect

to existing results. In weakly coupled limit(τm � 1), equation(4.5) reduces to the

well known Orr-Sommerfeld equation which has been thoroughly studied in the

last century.
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Figure 4.4: The similarity of two figures provides the validity of eigenvalue analysis
code developed in this thesis. The left figure represents the result from this code
and the right figure is taken from the Ref.[85]. Growth rate(kyc) is calculated in
unit of V0/L and wavenumber(ky) in unit of 1/L. Viscous stabilization is clearly
seen for small R and large growth rate proceeds towards inviscid limit (R→∞).

In figure (4.4.2), we have plotted the growth rate against wave number for

different values of Reynolds number R and compare with the results of Fig.(1) in

Ref.[85]. The code also shows that instability of tanh velocity profile increases

as viscosity decreases and for very large value of Reynolds number R, the result

resemble to those obtained in the inviscid limit. Now, we investigate the growth

rate of KH instability for different values of viscosity and relaxation time. The

fact is that unstable mode has no real part i.e., it lies on the imaginary axis in the

complex plane. In figure (4.4), eigenvalues in the complex plane have been plotted

for R = 1, 10 and τm = 1 and the corresponding localized eigenfunctions are also

shown. In figures (4.6)-(4.7), growth rate vs. wave number curves are drawn for

different values of τm and R. The Generalized Hydrodynamic model is becoming
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Figure 4.5: Eigenvalues are shown in complex plane in the left two figures - the
upper figure for τm = 1 and R = 10 and the lower one for τm = 1 and R = 1.
Red (big) dot represents the only unstable mode which is purely imaginary. Cor-
responding eigenfunctions of the unstable mode are shown in the right two figures.
Blue line represents the real part of eigenfunction and the red one represents the
imaginary part.
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Figure 4.6: Growth rate vs. wavenumber curves are shown for different values τm
and R = 1 for two different cases – left one with taking τm (v · ∇) term in GH
model and right one without that term.
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τm Max Growth rate Max Growth rate
with convective term without convective term

0.0 0.01474 0.01474
1.0 0.02256 0.01499
2.0 0.07569 0.01520
3.0 0.1069 0.01575
5.0 0.2267 0.01621
8.0 0.3197 0.01690
10.0 0.3545 0.0179

Table 4.1: Comparison of growth rates for Galilean invariant and non-invariant
GH model for R = 1

an inevitable tool to study the effect of strong coupling between dust particles on

different waves and instabilities in a dusty plasma. In many cases, proper model

was not taken into consideration. For the study of Kelvin-Helmholtz instability

where equilibrium shear flow plays an important role, it is necessary to consider a

proper Galilean invariant GH model.
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Figure 4.7: In left figure, growth rate vs. ky is plotted for R = 40 and different τm.
Right figure shows growth rate variation with ky for τm = 5 but different Reynolds
numbers.

The growth rate of unstable mode is plotted against wave number in fig. (4.6)

for R = 1 in both cases of including or excluding the term τm (v · ∇). These

two figures clearly indicate that the proper Galilean invariant form of the GH

model makes a drastic change in growth rate using tanh type velocity profiles. A

comparison of growth rates is given in tabular form for different τm values(4.1). It

is also observed that the limiting value of ky beyond which instability vanishes also

changes for different values of relaxation time τm. In figure (4.8), contour plot is

being shown in 2D plane of Reynolds number and wavenumber which clearly shows

that unstable region in this parameter space increases with the effect of elasticity.
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Figure 4.8: Growth rate of KH instability is plotted in 2D plane of ky and R for
both τm = 0 and τm = 1 which shows rapid increase of unstable region in presence
of strong coupling. Colorbar indicates the values of growth rate in different color
regions.

4.5 Summary

Viscosity being a dissipative effect, acts against instability. It arises between differ-

ent shear layers in fluid and transforms available energy into heat which conducts

away. Thus free energy is lost and growth rate diminishes accordingly. In Fig.(4.4),

growth rate of instability is shown to be decreasing with increase of Reynolds’

number(R) which is inverse of viscosity. For large value of R, it approaches to in-

viscid limit. However, elasticity which has energy storing property could enhance

the instability. It opposes the dissipation of shear flow energy and supplies to the

instability. This basic idea is reflected in all the graphs regarding the growth rate.

Here, growth rate increases with increase of relaxation time τm which manifests the

elastic property coming from strong coupling. The equation(4.5) is derived using

Galilean invariant form of generalized hydrodynamic momentum equation of dust

fluid. One should keep in mind that every equation representing the dynamics of
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physical system must be independent of inertial frames. In Fig.(4.6), a compari-

son is shown between the results which are obtained both from proper invariant

model and improper non-invariant model. The table (4.1) shows the difference

of data for growth rate. So, a substantial change in growth rate and dispersion

of the unstable KH mode demands proper Galilean invariant form of generalized

hydrodynamic equation to be used. In the absence of the convective term, bunch-

ing of the curves is observed with the growth rate vanishing at a particular wave

number independent of τm. However, the inclusion of the convective term(τmv ·∇)

in the GH operator causes a wide dispersion for the growth rate curves obtained

for different values of τm. Since the shear profile is antisymmetric with respect to

its inflection point(x = 0), frequency of the unstable mode[87] becomes imaginary

complex number (real part vanishes) as shown in the figure (4.5).
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Chapter 5

Stabilization of Kelvin-Helmholtz
instability in non-Newtonian
dusty plasma

5.1 Introduction

In this chapter, Kelvin-Helmholtz instability of bounded dust shear flow has been

studied with the effect of non-Newtonian property of dusty plasma. In non-

Newtonian dusty plasma, coefficient of viscosity is not merely a constant like

Newtonian fluid but, it varies with velocity shear rate. Here, both shear thin-

ning and thickening regimes are considered for the study of KH instability with

the experimentally verified model discussed in the Ref.[33].

In the previous chapter, Kelvin-Helmholtz instability has been discussed for

unbounded dust shear flow which have inflectional points. Here, parabolic type

bounded flow without any inflectional point is considered. For such flow in inviscid

case, the perturbation cannot extract energy from the basic shear flow and it

behaves as stable flow. But onset of viscosity enable it for drawing energy and

hence viscosity could play the mechanism to destabilize such flow[88]. Since shear

thinning and thickening property depends oppositely on the values of shear rate,

81
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so it is expected that these properties may have the opposite effect on the KH

instability of inhomogeneous parabolic type flow. Motivated by these ideas, we

have studied the effect of the velocity shear rate dependent viscosity on the growth

rates and its dispersion by using the standard matrix eigenvalue technique.

5.2 Physical system and basic equations

In discharge plasma, the dust particles forming dust cloud levitate vertically (z-

direction) in presence of external vertical electric field which balances the gravity

effect on dust particles. A bounded equilibrium flow is generated along the axis of

the cylindrical vessel (y-direction) with variation in the perpendicular x-direction.

In our analysis, we consider the flow region (−L < x < L) with the maximum

flow speed in the middle of the discharge tube (x = 0) and it vanishes along the

boundary. In Newtonian fluid, such bounded flow is seen as parabolic and small

wavy disturbance could be unstable which leads to the well known KH instability.

Due to the non-Newtonian property of the dusty plasma, the unperturbed flow

would deviate from the parabolic shape.

Weakly coupled unmagnetized dusty plasma is completely described by the

three basic equations (the continuity equation obeying the mass conservation, the

Navier-Stoke’s equation showing the momentum balance and Poisson’s equation

which connects the potential fluctuation with the density variation) which are the

following:

∂nd
∂t

+∇ · (ndv) = 0, (5.1)

ρ

(
∂

∂t
+ v · ∇

)
v − ndeZ∇φ+ c2d∇ρ =

∂σij
∂xj

, (5.2)

∇ · E = −4πe(ne + Znd − ni), (5.3)
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where cd =
√
Tdµdγd/md, Td is the temperature dust particle due to random

thermal motion, µd and γd are respectively compressibility factor and adiabatic

index [38], m is mass of dust particle. The electric field is denoted as E, nd is

defined as number density of dust particles where mass density ρ = ndmd, v is the

velocity of dust fluid and Z denotes number of electronic charge on dust particle.

The non-Newtonian viscous stress tensor is written as given in the sec.(3.2),

σij = η(|γ|)
[(

∂vi
∂xj

+
∂vj
∂xi

)
− 2

3
δij (∇ · v)

]
, δij = 1 for i = j

= 0 for i 6= j.

where η(|γ|) is the non-Newtonian viscosity coefficient which depends on the mag-

nitude of the rate of strain tensor γ. For the study of low frequency instabilities

(ω � kvte, kvti, where vte, vti are thermal velocities of electrons and ions respec-

tively) electron and ion dynamics are considered to obey the Boltzmann relations,

ne = ne0 exp(eφ/Te), ni = ni0 exp(−eφ/Ti),

where Te and Ti represents electron and ion thermal temperature measured in the

Boltzmann unit, ne0 and ni0 are density of electron and ion fluid at zero potential.

5.3 Steady state and bounded flow profile

In equilibrium, the density and temperature are assumed to be constant and a con-

stant electric field (E0) is directed along the y-direction. Dust particles are drifted

along the y-direction with inhomogeneity in the x-direction (perpendicular to the

electric field). For homogeneous dust particle density, the continuity equation(5.1)

supports any form shear flow v0y(x). From equation(5.2), the y-component of the
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equilibrium momentum equation can be written as

d

dx
[η0(γ0)γ0] = eZnd0E0, (5.4)

where |γ| = γ0 = dv0y/dx. In the above equation subscript ‘0’ indicates equilib-

rium quantities. Non-Newtonian viscosity has specific functional dependence on

equilibrium shear flow rate and for analytical purpose proper mathematical model

is required in this context. In case of complex plasma, the experimentally verified

model for the kinematic viscosity ν(γ0) with shear rate γ0, given in Ref.[33] can be

written as

ν(γ0) =
2(1 + ε)√

1 + 4γ20 − 4εγ40 + 1− 2εγ20
ν̄, (5.5)

where ν̄ is the value of Newtonian viscosity, γ0 is equilibrium velocity shear rate

which is normalized by (βv2T0/ν̄)1/2. Here β is the friction rate, v2T0 is the thermal

velocity. The other parameter ε which characterizes the non-Newtonian property

is given as ε = (A/B) (T0/Tm)α+τ and α = τ = 1. Here, T0 is the temperature at

zero shear rate and Tm is the melting temperature and A,B are weak function of

density as given in the above mentioned reference. In the limit γ, ε→ 0, the model

converges to the Newtonian viscosity limit ν → ν̄. In experiment[33], gas-induced

flow is used to generate equilibrium shear flow of dust particles. To take into

account this experimental condition we have included another space dependent

term Ax2 in right hand side of Eq.(5.4) with equilibrium force F0(x) = Ax2 +

eZnd0E0 where A is the gas drag coefficient.

For the Newtonian viscosity, the solution of the Eq.(5.4) gives a parabolic

velocity profile i.e. v0y(x) = v̄(1 − (x/L)2), L is the half width of shear layer. In

our analysis, the equilibrium equation is solved with the non-Newtonian viscosity

model(5.5) for the equilibrium force term F0(x) using values of different parameters
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Figure 5.1: In the left figure, equilibrium flow profiles of dust grains are plotted for
different ε. The solid red line curve shows the same for the Newtonian limit(ε, γ →
0). In the right figure, non-Newtonian viscosity is plotted against unperturbed
velocity shear rate. For ε = 0.1, shear thinning property exists then as ε increases,
the property changes from shear thinning to shear thickening and for ε = 0.8, shear
thinning property almost ceases.

from respective experimental paper. Here, fzero function of MATLAB is used

for solving equation(5.4) to calculate numerically values of γ0 for each discrete

points of space variable x in the range [−1 : 1]. Then the array of values of

γ0 is integrated to get equilibrium velocity profile keeping in mind the boundary

conditions v0y = 0 for x = ±1 and dv0y/dx|x=0 = 0. With the numerical values

of γ0, non-Newtonian viscosity could be calculated from the model(5.5). In the

figure(5.1), both velocity and corresponding viscosity has been plotted for different

values of ε. In non-Newtonian regime, flow profiles deviates from the parabolic flow

in Newtonian limit. Viscosity is plotted against the shear rate for different values

of ε which clearly shows that the fluid property changes from shear thinning to

shear thickening with increasing ε.
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5.4 Linearized form of basic equations

We carry out linear stability analysis for the small amplitude wave so that the

higher order terms in perturbation can be ignored for the assumption |vx|, |vy| �

|v0y| where vx and vy are the components of the small disturbance in dust flow.

The total flow is the sum of the equilibrium flow and a small perturbation in flow:

v(x, y, t) = [v0y(x) + vy(x, y, t)]êy + vx(x, y, t)êx.

x, y components of the linearized dimensionless momentum equation of the dust

fluid are respectively given by,(
∂

∂t
+ v0y

∂

∂y

)
vx −

∂φ

∂x
+ c2d

∂nd
∂x

= η0∇2vx +

(
η0
3

∂

∂x
− 2

3
η′0v
′′
0y

)
(∇ · v)

+ η′0v
′
0y

∂

∂y

(
∂vx
∂y

+
∂vy
∂x

)
+ 2η′0v

′′
0y

∂vx
∂x

(5.6)

and(
∂

∂t
+ v0y

∂

∂y

)
vy + vx

dv0y
dx

− ∂φ

∂y
+ c2d

∂nd
∂y

= η0∇2vy +
η0
3

∂

∂y
(∇ · v)

+

{
2η′0v

′′
0y + η′′0v

′′
0yv
′
0y + η′0v

′
0y

∂

∂x

}(
∂vx
∂y

+
∂vy
∂x

)
(5.7)

Space and time are normalized by the Debye length λD =
√
Ti/4πZnd0e2 and dust

plasma frequency ωpd =
√

4πnd0Z2e2/md respectively. Electron, ion and dust

particle densities are normalized by nd0 and the electrostatic potential φ by Ti/e

(φ ≡ eφ/Ti) where η0 is normalized by ωpdλ
2
Dmdnd0. The η′0 and η′′0 denotes the

single and double derivative of η0 with respect to v′0y and v′0y = dv0y/dx. The

linear continuity equation in normalized variables can be written as,(
∂

∂t
+ v0y

∂

∂y

)
nd +

∂vx
∂x

+
∂vy
∂y

= 0. (5.8)
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For small potential fluctuations (φ� 1), the normalized Boltzmann relations can

be expressed as,

ne =
neo
nd0

(
1 + φ

Ti
Te

)
, ni =

nio
nd0

(1− φ) .

The linearized dimensionless Poisson’s equation is written as,

∇2φ = nd + αφ, (5.9)

where α = (ne0Ti + ni0Te) /(nd0ZTe).

5.5 Eigenvalue analysis

It is not possible to carry out Fourier analysis along the direction of inhomogeneity.

Thus the perturbed variables vx, vy, φ and n is taken as φ(x, y, t) = φ(x)ei(kyy−ωt).

So the linearized equations (5.6-5.9) can be expressed as four normalized ordinary

differential equation in y by the following equations:

kyv0y(x)nd + kyvy − i
dvx
dx

= ωnd, (5.10)

nd +

(
α− d2

dx2
+ k2y

)
φ = 0, (5.11)

−ic2d
dnd
dx

+ i
dφ

dx
+

[
kyv0y + iη0

(
d2

dx2
− k2y

)
− iη′0v′0yk2y + 2iη′0v

′′
0y

d

dx

+i

(
η0
3

d

dx
− 2

3
η′0v
′′
0y

)
d

dx

]
vx +

[
−η′0v′0y

d

dx
−
(
η0
3

d

dx
− 2

3
η′0v
′′
0y

)]
kyvy = ωvx,

(5.12)

kyc
2
dnd − kyφ+

[
−i
v′0y
ky
−
(

2η′0v
′′
0y + η′′0v

′′
0yv
′
0y + η′0v

′
0y

d

dx

)
− η0

3

d

dx

]
kvx +[

kyv0y + iη0

(
d2

dx2
− k2y

)
− i

3
k2yη0 + i

(
2η′0v

′′
0y + η′′0v

′′
0yv
′
0y + η′0v

′
0y

d

dx

)
d

dx

]
vy = ωvy,

(5.13)
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Figure 5.2: Growth rate of instability is plotted against wave number for different
values of parameter ε in incompressible limit. The solid red line curve shows that
for Newtonian limit. For ε = 0.2, the growth rate is close to that of Newtonian
limit.

We have solved these four coupled linear eigenvalue equations and investigated

the growth rate of the KH instability with the variation of different parameters like

Mach number(M = |v0y|/cd), non-Newtonian parameter(ε) and wave number(ky).

We have carried out the matrix eigenvalue analysis using the standard eigenvalue

subroutine(eig) in MATLAB. Each equation(5.10-5.13) is first discretized in matrix

form as given in section(4.4.2). Following central difference scheme has been used

for the purpose of discretization

d2φ

dx2
=
φj+1 − 2φj + φj−1

h2
,

dφ

dx
=
φj+1 − φj−1

2h
,

where h is the grid spacing.
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The discretized equations would take the form,

A1nd + Zφ+ C1vx +D1vy = ωInd

A2nd +B2φ+ Zvx + Zvy = ωZφ

A3nd +B3φ+ C3vx +D3vy = ωIvx

A4nd +B4φ+ C4vx +D4vy = ωIvy

where Ai, Bi, Ci, Di are different matrix operators of dimension (n × n) and nd,

φ, vx, vy are column matrices of dimension n with Z and I are respectively null

matrix and identity matrix of order (n×n). Now a single eigenvalue equation can

be formed as

PΘ = ωRΘ

and

P →


A1 Z C1 D1

A2 B2 Z Z

A3 B3 C3 D3

A4 B4 C4 D4


4n×4n

; R→


I Z Z Z

Z Z Z Z

Z Z I Z

Z Z Z I


4n×4n

; Θ→


nd

φ

vx

vy


4n×1

First we investigate the incompressible limit (cd � |v0y|) where the density and

the potential fluctuations are negligibly small so that equation(5.11) becomes triv-

ial and continuity equation(5.10) reduces to kyvy − idvx/dx = 0. In figure (5.2),

the growth rate is shown plotted against the wave number(ky) for different val-

ues of ε. The solid red line curve indicates the Newtonian regime and the other

curves are for values of ε = 0.05, 0.1, 0.2, 0.3 and 0.8. The kinematic viscos-

ity in Newtonian limit is considered as 1.538 × 10−4m2/s. Different values of ε

incorporates different functional dependance of viscosity with flow shear rate. In

figure(5.1), we have shown how viscosity coefficient changes its property from shear
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Figure 5.3: In the left figure, two sets of curves are shown for two different Mach
number (M) including and excluding dispersion term in Poisson’s equation for
ε = 0.1. In each set of curves, dotted line represents the curve without dispersion
effect and the solid line with dispersion term. In the right one, compressibility is
introduced by increasing the Mach number and it indicates that the growth rate
diminishes as compressibility strengthens in the medium for ε = 0.3. Here, M = 0
curves shows incompressible limit for comparison.

thinning to shear thickening one with increase of plasma temperature T0. As the

value of ε is increased to 0.3, growth rate diminishes below that of the Newtonian

case and the shear thickening property overpowers the effect of shear thinning.

Hence, we can summarize that the shear thinning property enhances the instabil-

ity but on the contrary, the shear thickening property has stabilizing role on the

KH instability. For ε = 0.8, shear thickening effect stabilizes the medium. Here,

variation of viscosity with shear rate plays the stabilizing role on the KH insta-

bility. Now, we include the effects of compressibility in our system to study the

role of density fluctuation on the instability. Figure(5.3) shows that the growth

rate decreases as we increase the Mach number i.e., compressibility weakens the

instability. Inclusion of compressibility effect enables dissipation of some energy

to drive longitudinal waves. For small mach no, compressibility effect is too weak

to stabilize but here, shear thickening property could play the role. In plasma,
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Figure 5.4: The left figure shows contour plot of growth rate in the plane of mach
number (M) and wave number for ε = 0.1. In the right figure surface plot of
growth rate is drawn on the parametric space of ε and ky for mach no. M = 2.4.

quasi-neutrality is a widely accepted approximation for wavelengths larger than

Debye length (λD) where the dispersion term of poisson’s equation has negligible

contribution. In figure(5.3), for two different values of M = 1.4, 0.9 growth rate

is plotted with and without considering the dispersion term in Poisson’s equation.

The dispersion is much prominent for higher compressibility (M = 1.4). So, in the

regime of higher mach number quasi-neutrality is not a correct approximation. In

figure (5.4), contour plot of growth rate is drawn in 2D plane of wave number and

Mach number and it is seen that as growth rate decreases from 0.3 to 0.21, the

unstable region spans. A surface plot of the growth rate vs wave number and ε is

shown for M = 2.4. The flat area addresses the stability region on the (ε − ky)

plane and the hill area indicates unstable portion. For higher temperature (large

values of ε), the unstable region shrinks and flat area widens which depicts the

stabilizing effect of shear thickening property.
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5.6 Summary

The numerical results have revealed opposite effect of shear thinning and shear

thickening property on the Kelvin Helmholtz instability of inhomogeneous bounded

dust flow. Shear thinning effect is more favorable for the instability. But thick-

ening property diminishes and hence it acts against the instability and stabilizes

the medium. So the study of the growth rate of KH instability could charac-

terize the non-Newtonian property of dusty plasma. Incompressible limit shows

the maximum growth of instability and as one include finite density fluctuation

(compressibility), a part of energy available for the instability is exhausted for

the longitudinal fluctuation in the system and thus instability weakens by some

percentage. Viscosity has dissipative effect but also it has the nature of diffus-

ing momentum of fluid. In bounded flow strong velocity shear exists in boundary

layers which is diffused inwards by viscosity which leads to instability[82].



Chapter 6

Nonlinear shear wave and
recurrence

6.1 Introduction

In this chapter, transverse shear wave of large amplitude is addressed for which

the linear assumption will no longer be valid. Linear equations are quite easy to

solve than finding the evolution of nonlinear terms. However, every physical system

usually goes to nonlinear stage as the amplitude of small fluctuation increases with

time. Hence, one has to solve the dynamical equations giving special attention to

the nonlinear terms. In strongly coupled non-Newtonian dusty plasma, nonlinear

effect arises both from convective nonlinear term (the term v ·∇ in the momentum

equation of motion of dust fluid) and non-Newtonian stress tensor through the

dependence of viscosity coefficient on the velocity shear rate tensor.

In one spatial dimension the convective nonlinearity plays no role in the prop-

agation of ‘shear wave’. The effective nonlinear contribution comes from non-

Newtonian stress tensor. Using well known Carreau-Bird non-Newtonian model[60,

89], the nonlinear shear wave equation in one spatial dimension is formed. We solve

this equation numerically in which the time evolution is studied using a standard

93
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software of nonlinear wave study[41]. As an initial solution, a simple sine wave is

used. As time goes on nonlinear term dominates and different higher harmonics

generate. But after certain recurrence time, all the higher harmonics disappear

and the total energy gets back to the initial sinusoidal mode. Hence the initial

sine wave is reached again. This result has resemblance with the cubic nonlinear

solution of famous Fermi-Pasta-Ulam (FPU) problem[42].

6.2 Nonlinear shear wave equation

In the study of nonlinear shear wave equation, we consider unmagnetized ho-

mogeneous strongly coupled non-Newtonian dusty plasma. Since the shear wave

originates due to vorticity fluctuations the density fluctuations may be ignored in

order to avoid coupling of shear wave with longitudinal dust-acoustic wave. In such

situation, continuity equation(2.11) turns out to be an incompressibility condition

∇ · v = 0. The generalized hydrodynamic momentum equation of dust fluid(2.9)

is rewritten as{
1 + τm

(
∂

∂t
+ v · ∇

)}[
ρ

(
∂

∂t
+ v · ∇

)
v − ndZe∇φ+∇p

]
=
∂σij
∂xj

(6.1)

where i, j varies from x to y and the components of viscous force are respectively

Fx =
∂σxx
∂x

+
∂σxy
∂y

, Fy =
∂σyy
∂y

+
∂σyx
∂x

.

As discussed in the section(3.10), non-Newtonian stress in incompressible limit is

taken as,

σij = η(|γ|)
(
∂vi
∂xj

+
∂vj
∂xi

)
where |γ| =

√
II/2 and scalar invariant of strain tensor[61]

II = 4

(
∂vx
∂x

)2

+ 4

(
∂vy
∂y

)2

+ 2

(
∂vx
∂y

+
∂vy
∂x

)2

.



95

In electrostatic limit, electric field fluctuation only comes from density fluc-

tuation of electron, ion and dust particles through poisson’s equation. Hence,

incompressibility assumption denies any electric field fluctuation and so explicit

electron and ion dynamics are not taken into account. In strongly coupled limit,

temperature fluctuation of dust fluid is trivial and correspondingly thermal pres-

sure can be taken as constant in time and space. With these assumptions taken,

we can drop the force terms coming from pressure and electric field. In strongly

coupled limit τm∂/∂t� 1, the Eq.(6.1) is reduced to the form,

τm

(
∂

∂t
+ v · ∇

)[
ρ

(
∂

∂t
+ v · ∇

)
v

]
=
∂σij
∂xj

(6.2)

Since the motion is considered incompressible, ρ remains constant in space and

time and the velocity is the only dynamical variable. To study only transverse

shear wave, we assume velocity fluctuation v = vy(x, t)êy i.e, velocity directs along

y-direction and it varies in perpendicular x-direction. Hence we are considering

wave for which dust particle motion is perpendicular to wave propagation. In this

situation, the usual convective nonlinearity in fluid equation would not survive as

v · ∇v = 0 but the effective nonlinearity would come from non-Newtonian viscous

force. In this case, only one component σyx exists which is expressed as(see section

3.2),

σyx = η (|γ|) ∂vy
∂x

and |γ| = ∂vy
∂x

.

To proceed further one needs to know the functional form of viscosity. For this

study, we consider well known Carreau-Bird viscosity model[35] which is mathe-

matically expressed as

η = η0

[
1 +

(csh
L
|γ|
)2](n−1)/2

. (6.3)
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This model is feasible in solving analytically and it has advantage over power

law model as it produces Newtonian viscosity(η0) in the limit |γ| → 0.The model

describes shear thinning behaviour for n < 1 and shear thickening behaviour for

n > 1. Using this expression, equation (6.2) is simplified as

∂2v

∂t2
=

∂

∂x

[
η(|γ|)∂v

∂x

]
(6.4)

To write the above equation we have used normalization as follows: v → vy/csh,

η → η/η0, x → x/L, t → tcsh/L where, η0, L, are some arbitrary viscosity and

length, csh =
√
η0/ρτm.

For small values of csh/L, this model(6.3) can be written in dimension less form

η (|γ|) = 1 + α|γ|2.

where α = (n−1)/2 and n is the power law exponent. The parameter α is used as

a measure of non-Newtonian effect and modeled as |α| < 1. For negative (positive)

α the fluid behaves like a shear thinning (thickening) medium. Substituting this

model into equation (6.4), we obtain

∂2v

∂t2
=
∂2v

∂x2
+ α

∂

∂x

(
∂v

∂x

)3

(6.5)

This is a nonlinear wave equation where the last term in right hand side illustrates

cubic nonlinearity[90]. In absence of non-Newtonian effect i.e. α = 0 we get back

the linear shear wave equation (normalized form).
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6.3 Numerical solution

In this section, we show the result of time evolution of this nonlinear equation (6.5)

numerically. Then we discuss the numerical result with possible mathematical

interpretation and show the difference between analytical and numerical results.

The equation is discretized in space with grid spacing h and the space dicretized

equation is given by

∂2v

∂t2
=

1

h2
(vj+1 − 2vj + vj−1) +

α

h4
[
(vj+1 − vj)3 − (vj − vj−1)3

]
(6.6)

where central difference scheme of 2nd order is used and j = 0, 1, 2 · · ·N + 1 with

v0 and vN+1 as two boundary points.

Next, we use mean value finite discretization in time

∂2v

∂t2
=
vk+1
j − 2vkj + vk−1j

(δt)2
.

The final discretized equation in both space and time takes the form,

vk+1
j = 2vkj −vk−1j +β2

(
vkj+1 − 2vkj + vkj−1

)
+γ
[(
vkj+1 − vkj

)3 − (vkj − vkj−1)3] (6.7)

where β = (δt/h)2 and γ = αβ/h2. In order to ensure the numerical stability,

one should follow the condition β2 ≤ 1 which is known as CFL condition in nu-

merical analysis[91]. This has to be maintained with the adjustment of δt and h

otherwise one would get incorrect result.

Here we have used standard software CAPOW to solve the equation(6.7) and

see time evolution of shear wave in presence of nonlinearity[41]. We have used in

the numerical investigation δt = 0.03, h = 0.04, γ ≈ 351.5α with α = 0.1. So, the

CFL condition is adjusted as β2 = (δt)2/(h)2 = 0.56 < 1.
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Figure 6.1: Time evolution of the shear wave structure for α = 0.1 for different
time(time increasing column wise) with initial and final state almost identical.
X-axis represents space and y-axis represents time slots
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Figure 6.2: Energy of different harmonics is plotted against normalized time for
different values of nonlinearity α. Blue line shows energy of fundamental harmonic
and other red, brown, yellow etc show for different higher harmonics. Hence,
energy sharing to higher harmonics is greater for α = 0.3 than that of 0.1 and 0.2.
Also recurrence is faster for larger values of α. Fourth graph is for shear thinning
medium.

Initially (at t=0), we perturb the system with a pure sine wave and keep observ-

ing its changes in time. As time goes on, the amplitude of the wave form diminishes

and the periodicity of the wave changes with time. After few time steps (see figure

6.1), wave is seen to change into a periodic triangular wave. Then it again gets

back to initial sine wave with almost same intensity. With an appropriate scaling

t→ ht and v → (hv
√

1/3α equation(6.6) can be written as,

vtt = (vj+1 − 2vj + vj−1) +
1

3

[
(vj+1 − vj)3 − (vj − vj−1)3

]
(6.8)

Let us express amplitudes of velocity fluctuations in normal modes decomposition



100

form as

vj(t) =

(
2

N + 1

)1/2 N∑
i=1

ai(t) sin

(
ijπ

N + 1

)
, (j = 1, 2 · · ·N)

and the equation(6.8) excluding nonlinear terms takes the form

∑
i

äi(t) sin

(
ijπ

N + 1

)
+ 2

∑
i

ai(t) sin

(
ijπ

N + 1

)[
1− cos

(
iπ

N + 1

)]
= 0

which reduces to

äi + ω2
i ai = 0; ω2

i = 4 sin2

(
iπ

2(N + 1)

)
.

Here the contribution to potential energy from nonlinear term is not taken. This

only leads to few percentage error in total energy calculation for weak nonlinearity

(small α). This is clearly seen in energy curves for different values of α. So the

individual mode oscillates independently like a simple harmonic oscillator with

frequency ωi and the modal energy takes the form

Ei =
1

2

(
ȧ2i + ω2

i a
2
i

)
.

The equation(6.8) is numerically solved using ordinary differential equation

solver ODE45 in Matlab[86]. The energy variation with time of first few modes are

graphically shown in fig.(6.2). Nonlinearity excites higher harmonics in the system

and initial energy of fundamental mode is distributed through different harmonics.

The interesting feature is that after a large number of time steps, all the high

frequency modes start to disappear and initial energy of the system accumulates

in the fundamental mode (initial sinusoidal perturbation as shown in Fig (6.1).

Therefore nonlinearity redistributes energy of the wave in different harmonics and

they interact themselves and finally come back to its initial state. This feature
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of the solution reminds us the famous Fermi-Pasta -Ulam (FPU) problem in a

completely different physical situation. Numerical analysis has also been carried

out for shear thinning medium i.e when α is negative e.g, α = −0.3. But, for this

medium, energy sharing is negligible compared to that for shear thickening media

and thus this branch is not continued further. It is shown that the solutions of

Eq.(6.5) retrace the initial condition and maintain its periodicity in spite of the

strong nonlinearity present in the equation.

6.4 Analytical approach

The mathematical analysis of nonlinear hyperbolic differential equation leads to

an unphysical singular solution[92, 93]. It has been shown that the solution blows

out after certain breaking time. This is due to a lack of presence of any dispersion

factor in the nonlinear equation so that nonlinear growth could not be balanced.

This contradicts with the numerical solution which projects stable and recurring

solution. This is probably because discretization invokes the required effects of dis-

persive corrections. Such effect leads to periodic recurrent solutions that arise due

to a balance between the discretization induced dispersion and nonlinearity present

in the equation. So in continuous equation one has to include a term which measure

the discreteness of the system. This has resemblance with famous FPU (Fermi-

Pasta-Ulam) paradox. In 1955, Enrico Fermi , J. Pasta And S. Ulam had decided

to made a computer simulation to see ergodicity and equipartition of energy among

different harmonics in irreversible statistical system. They consider a finite chain

of coupled oscillators with weak nonlinear coupling considering quadratic and cu-

bic term in interacting force term. They failed to see any equipartition but rather
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observed nonlinear recurrence of initial disturbance. Later Zabusky in his famous

paper(1965) explained this recurrence with synchronizing these results with the

birth of solitons[43]. Let us give a possible explanation transforming the discrete

equation(6.8) to the continuum limit keeping higher space derivatives in the Taylor

series expansion of the velocity function. In continuum limit, vj+1 and vj−1 can be

expanded in Taylor series form

vj+1 = v(x+ h) = v(x) + hv′(x) +
h2

2
v′′(x) +

h3

6
v′′′(x) +

h4

24
viv(x) +O(h5)

vj−1 = v(x− h) = v(x)− hv′(x) +
h2

2
v′′(x)− h3

6
v′′′(x) +

h4

24
viv(x)−O(h5)

Using these expansion we can evaluate

vj+1 − 2vj + vj−1 = h2v′′(x) +
h4

12
viv(x) +O(h6)

and

(vj+1 − vj)3 − (vj − vj−1)3 = 3h4v′2v′′ +O(h6)

Neglecting 6th and higher order terms, the equation (6.8) reduces to

vtt = h2v′′ +
h4

12
viv + h4v′2v′′ +O(h6) (6.9)

Now we make a transformation ξ = x− ht,τ = h3t/12 and use field variable

φ = − vt
2h

+
1

2

∫ vx

0

(
1− h2η2

)1/2
dη

to obtain

vtt = h2
(

2
∂φ

∂ξ
− ∂vx

∂ξ

)
+
h4

2

(
v2x
∂vx
∂ξ
− 1

6

∂φ

∂τ
+

1

12

∂vx
∂τ

)
+O(h6). (6.10)

Let us equate expression of vtt from equation(6.9) and Eq.(6.10) and then compare

same order terms to get

h2
∂2v

∂x2
= 2h2

∂φ

∂ξ
− h2∂vx

∂ξ
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and

vxxxxh
4 + 6v2xvxxh

4 + φτh
4 = 0.

From h2 order term we get φ = vx and substituting this relation in h4 order term

we obtain

φτ + 6φ2φξ + φξξξ = 0. (6.11)

This is well known modified Korteweg-deVries equation (mKdV) where nonlin-

earity is balanced by diffusion term to form solitary wave structure. The general

solution of this equation[44] can be expressed in the form of jacobian elliptical func-

tion [cn(ξ, q)] which represents periodic solution stationary in the frame ξ − Uτ .

This type of waves are known as cnoidal waves and q is called cnoidal parameter

which measures the relative importance of nonlinearity to dispersion. In the linear

limit (q → 0) the solution shows small amplitude sinusoidal wave (cnξ → cosξ)

and in the solitary wave limit(q → 1), it represents solitary wave solution (sech

type)[94]. The numerical solution of mKdV equation would show formation of

solitons, their elastic collisions and finally recurrence as shown in Ref.[43]. This

may be the case why we observe recurring solution in the numerical investigation

of nonlinear shear wave equation.
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6.5 Summary

Every nonlinear system which could support soliton like structure, shows FPU

recurrence. This interesting nonlinear phenomena is observed in many branches

of physics like magnetic films[95], ion accoustic solitons in plasma[96]. Here, we

have reported possible existence of such recurrence in complex plasma. The usual

convective nonlinearity has no role but the effect comes from newly discovered non-

Newtonian property in dusty plasma. Here we report nonlinear dust shear wave

which might be an interesting research topic in future. For the shear thickening

medium nonlinear shear waves redistribute their energy and finally come back to

the initial state while for a shear thinning medium energy distribution is negligibly

small. Therefore the propagation of transverse shear waves is an important tech-

nique for characterization of strongly coupled Yukawa fluids. The dependence of

the time period of recurrence of periodic solutions on the nonlinearity parameter

can enable the characterization of non-Newtonian properties.



Chapter 7

Conclusion of results and future
scope

7.1 Summary

The interesting topics what are covered in this doctoral thesis are listed as:

• Existence of solid like elastic property in dusty plasma fluid

in strong coupling.

• Propagation of mechanical transverse shear wave in inhomogeneous

dusty plasma.

• Viscosity gradient driven instability of shear wave in presence of

velocity shear.

• Strong coupling effect on the Kelvin-Helmholtz instability of unbounded

dust shear flow.

• Non-Newtonian stabilization of Kelvin-Helmholtz instability of bounded

inhomogeneous dust flow.

• FPU recurrence and soliton formation in nonlinear shear wave.
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A brief summary of the results and discussions of the studies made in this thesis

on these topics are drawn here.

At low temperature, potential energy of highly charged dust particle (∼ 104e)

becomes stronger than average thermal energy which leads to strong coupling

between massive dust grains. This is characterized by coupling parameter(Γ) which

is the ratio of potential energy to kinetic energy. Large values of Γ introduces

some solid like property (long range correlation, elasticity) even in the fluid phase

of plasma. The inherent fluid property also persists leading to a new visco-elastic

phase. Hence both viscosity and elasticity are on equal footing. This type of

property is first modeled by Maxwell who gave idea of relaxation time(τm). The

relaxation time increases with the increase of coupling parameter. In my thesis,

different low frequency waves and instabilities are studied in such visco-elastic

dusty plasma. For this study, we have used the generalized hydrodynamic equation

derived in the section(2.2) as in the Ref.[38]. Changing values of τm, both weakly

coupled and strongly coupled limit have been investigated.

In this phase, mechanical shear wave could propagate in plasma similar to the

transverse elastic wave in solid or s-wave during earthquake. This is a low frequency

wave(∼ few Hz) and the phase velocity(∼ mm/s) is much smaller than dust acous-

tic speed(∼ cm/s). Experimentally this shear wave is found to be coupled with

dust acoustic wave. We have studied properties of shear wave in presence of both

density inhomogeneity and inhomogeneous dust flow. The propagating shear wave

becomes modulated under the effect of density inhomogeneity. In the section(2.5),

different types density profiles like sech and parabolic are analyzed and proper

eigen states with discrete frequency of shear wave are shown.
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Shear wave is shown to be unstable in presence of linear velocity shear where

gradient of viscosity plays the mechanism to trigger the instability. In dusty plasma

viscosity does not remain constant for large shear rate. Instead it varies with ve-

locity shear rate which is experimentally verified recently. This is well known as

non-Newtonian property since linear stress strain relation of Newton stress tensor

is no longer valid. Proper model of functional dependance of viscosity has to be

chosen. Here we consider power law model to investigate the shear thinning region

where viscosity decreases with increase of shear rare. Analytical approximation

shows the formation of Weber equation which is solved for certain eigenvalue con-

dition for well behaved solution. The Fig.(3.1) shows the increase of growth rate

with velocity shear rate. A non-model analysis is also done with Galilean invariant

model.

Strong coupling between dust particles introduces elastic property which is

manifested through relaxation time(τm). Elasticity becomes dominant over viscous

property for τm � 1. In strongly coupled fluid regime, Kelvin-Helmholtz instability

of dust shear flow is investigated. Due to energy storing property, elasticity could

capture more kinetic energy from mean flow and thus enhances growth rate of

instability. Different plots of growth rate against wavenumber(ky) for different

values of τm in chapter(4), confirms this physical fact. Other way viscosity being

dissipative in nature decreases the growth rate. In our study, proper galilean

invariant form of generalized hydrodynamic momentum equation is taken instead

of existing study with non-invariant model. The growth rate and dispersion with

proper invariant equation differs from the result of improper non invariant model.

The comparison of the results are shown in the Fig.(4.6) and in the table(4.1).
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The possible application of this study is that the measure of growth rate of KH

instability could help to characterize the elastic property of dusty plasma.

Non-Newtonian property of complex plasma has active role on the Kelvin-

Helmholtz instability of dust shear flow. A linear stability analysis is done in

Chapter(5) with matrix eigenvalue analysis using MATLAB. Here, proper experi-

mentally verified non-Newtonian model is adopted from ref[33]. The parameter ε

is scanned to change from shear thinning to thickening behavior. The results of

both compressible and incompressible limit are shown in chapter(6). The growth in

incompressible limit is larger since compressibility introduces longitudinal modes

which draws some available energy. It has been shown graphically that shear

thinning behavior could enhance the growth rate whereas shear thickening behav-

ior stabilizes the instability. This study might be helpful for characterization of

non-Newtonian property of dusty plasma.

Non-Newtonian property leads to nonlinear shear wave. This nonlinearity

causes recurrence behaviour similar to famous FPU recurrence in lattice. In chap-

ter(6), mathematical formation of nonlinear shear wave equation is shown and

time evolution of such equation is done numerically. The initial sine wave is seen

to transform through different periodic structure with generation of different higher

harmonics. After recurrence time higher harmonics disapear and the initial form

of sine wave is reached again. The time evolution of modal energy of first few

harmonics is shown in Fig.(6.2). It is clearly shown that after certain recurrence

time initial energy gets back to initial sine wave and other harmonics dies out.

This property is known as recurrence. This property ensures that non-Newtonian
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complex media could support shear wave solitons that is explicitly shown in chap-

ter(6).

7.2 Future directions

• Kelvin-Helmholtz instability is studied in linearized form with the assump-

tion of small amplitude fluctuation. With the onset of instability, amplitude

starts to increase and after certain time it could enter into nonlinear phase.

Here, nonlinear terms contribute and linear analysis fails. So, one should

study nonlinear KH instability of dust shear flow as well. If it is done in

non-Newtonian phase, it would be more interesting as two different type

of nonlinearity acts together. One would come from usual convective term

and other one from non-Newtonian stress tensor. In this thesis, only one

dimensional propagation of nonlinear shear wave is investigated where usual

convective nonlinearity plays no role. So, study of nonlinear shear wave with

two dimensional propagation should be done where both convective nonlin-

earity and non-Newtonian nonlinearity works together.

• We have formulated two dimensional vortex equation[65] for the study of

evolution of vortex in strongly coupled dusty plasma. We are trying to solve

the vortex equation derived and expecting results soon. In weakly coupled

plasma, numerical study using pseudo-spectral method had shown that dif-

ferent initial state transforms to Lamb dipole vortex which is time stationary

state[97]. So, it would also be interesting to carry out such numerical study

in complex plasma in order to gain more physical insight in this direction.

• The coupling between transverse shear wave and longitudinal dust acoustic



110

wave is an challenging research topic. In recent article, coupling has been

shown to be made due to variation in charge and size of dust grains. Another

interesting way of coupling would be through velocity shear effect. We are

developing a theory and hope to see interesting results in near future.

• Kelvin-Helmholtz instability in strongly coupled non-Newtonian dusty plasma

would be interesting to study where both the effect of elasticity and viscosity

gradient effect are included. It is reported in this thesis that elasticity en-

hances the instability but shear thickening property stabilizes it. Here, these

effects are investigated differently.

• Charge fluctuation is an important physical aspect in dusty plasma research.

So it would be necessary to investigate the effect of charge fluctuation on

Kelvin-Helmholtz instability in detail in strongly coupled non-Newtonian

dusty plasma.

• Kelvin-Helmholtz instability is well studied in different experiments regard-

ing neutral fluid or weakly coupled electron-ion plasma. So, experimental

verification of the results made in my thesis is most welcome and naturally

it is in my plan for future research work.
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Morfill, G. E. Phys. Rev. Lett. 98, 145003 (2007).

[34] Gavrikov, A. V., Goranskaya, D. N., Ivanov, A. S., Petrov, O. F.,

Timirkhanov, R. A., Vorona, N. A., and Fortov, V. E. J. Plasma Physics

76, 579 (2010).

[35] Bird, R. B., Armstrong, R. C., and Hassager, O. Dynamics of polymeric

liquids Vol. 1. Wiley, New York, (1987).

[36] White, E. E. B., Chellamuthu, M., and Rothstein, J. P. Rheol Acta 49, 119

(2010).



114

[37] Thurston, G. Biophys. J. 12, 1205 (1972).

[38] Kaw, P. and Sen, A. Phys. Plasmas 5, 3552 (1998).

[39] Nunomura, S., Samsonov, D., and Goree, J. Phys. Rev. Lett. 84, 5141 (2000).

[40] Pramanik, J., Prasad, G., Sen, A., and Kaw, P. K. Phys. Rev. Lett. 88, 175001

(2002).

[41] Rucker et. al., R. http://www.cs.sjsu.edu/faculty/rucker/capow/download.html

CAPOW, free download (2007).

[42] Fermi, E., Pasta, J., and Ulam, S. Studies of Nonlinear Problems Los Alamos

Report, LA–1940 (1955).

[43] Zabusky, N. J. and Kruskal, M. D. Phys. rev. Lett. 15, 240 (1965).

[44] Driscoll, C. F. and O’Neil, T. M. Phys. Rev. Let. 37, 69 (1976).

[45] Frenkel, Y. Kinetic Theory of Liquids. Clarendon, Oxford, (1946).

[46] Feng, Y., Goree, J., and Liu, B. Phys. Rev. E 82, 036403 (2010).

[47] Berkovsky, M. A. Phys. Scripta 51, 769 (1995).

[48] Murillo, M. S. Phys. Rev. Let. 85, 2514 (2000).

[49] Veeresha, B. M., Tiwary, S. K., Sen, A., Kaw, P. K., and Das, A. Phys. Rev.

E. 81, 036407 (2010).

[50] Kaw, P. K. Phys. Plasmas 8, 1870 (2001).

[51] Lekner, J. Am. J. Phys. 75, 1151 (2007).



115

[52] Janaki, M. S., Banerjee, D., and Chakrabarti, N. Phys. Plasmas. 18, 092114

(2011).

[53] Makowski, A. J. Ann. Phys. 324, 2465 (2009).

[54] Abramowitz, M. and Stegun, I. A. Handbook of Mathematical Functions.

Dover Publications,INC., New York, (1972).

[55] Banerjee, D., janaki, M. S., and Chakrabarti, N. Phys. Plasmas 17, 113708

(2010).

[56] Bittencourt, J. A. Fundamentals of Plasma Physics. Springer, New York,

(2004).

[57] Mishra, A., Sen, P. K., and Sen, A. Phys. Plasmas 7, 3188 (2000).
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