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Synopsis

In recent years substantial experimental and theoretical efforts have been undertaken

to investigate the versatile physics issues involved in ultra-relativistic heavy-ion col-

lisions, i.e., collisions of atomic nuclei in which center-of-mass energy per nucleon

is much larger than the nucleon rest mass. The principal goal of this initiative

is to explore the phase structure of the underlying theory of strong interactions -

Quantum Chromodynamics (QCD) - by creating in the laboratory the new state

of matter “Quark-Gluon Plasma (QGP)”. This new state of matter is predicted to

exist under extreme conditions like at high temperatures and/or densities, when a

phase transition takes place from a hadronic to a deconfined state of quarks and

gluons. In nature such new states are believed to have existed and still may be

encountered on large scales in at least two astrophysical aspects: i) in the evolution

of early universe where a few tens of microseconds after the ‘big bang’ a transient

stage of strongly interacting matter prevailed at temperatures 1012K(∼ 200MeV)

with a very small net baryon numbers; ii) in the interior of neutron stars where

mass densities are likely to exceed 1015gm/cm3 about four times the central density

of nuclei while the surface temperatures are as low as 105K or less. However, these

astrophysical objects are by far remote in space and time so that their use for the

study of QGP are quite difficult. This makes us to turn attention for a consistent

study of QGP in the laboratory through high energy heavy-ion collisions.

The collider experiments currently dedicated to this search are the Relativistic

xvii



Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and the

Large Hadron Collider (LHC) at the European Organization for Nuclear Research

(CERN). Future experiments are planned at the Facility for Antiproton and Ion

Research (FAIR) at the Gesellschaft für Schwerionenforschung (GSI) facility. These

experiments at RHIC BNL and LHC CERN have provided us wealth of informa-

tion [1–4] in understanding the properties of hot and dense matter and the theo-

retical predictions. On the other hand recent numerical lattice QCD (LQCD) has

given us information on various thermodynamic properties of the matter viz., critical

temperature [5, 6], nature of phase transition, the equation of state [7–10], various

susceptibilities [11], transport coefficients, spectral properties of pseudo-scalar and

vector meson resonances etc. at finite temperature and density. Ultimately, one

would again expect to validate this by characterizing the QGP in terms of its exper-

imentally observed properties. The commissioning of RHIC and LHC, and various

experiments performed therein have ushered in a new era. The analysis of the data

has yielded a rich abundances of results that possibly indicate a glimpse of the pre-

dicted plasma phase of QCD. This calls for a better theoretical understanding of

the particle properties in a hot and dense medium.

Quantum chromodynamics (QCD) exhibits a rich phase structure and the equa-

tion of state (EoS) which describes the matter can be characterized by different

degrees of freedom depending upon the temperature and the chemical potential.

The determination of the equation of state (EoS) of QCD matter is extremely im-

portant to QGP phenomenology. There are various effective models to describe the

EoS of strongly interacting matter; however, one would prefer to utilize systematic

first-principles QCD methods. The currently most reliable method for determining

the EoS is lattice QCD. Finite temperature lattice QCD calculations are now quite

sound; however, due to the sign problem, it is not straightforward to extend such

calculations to finite baryon chemical potential. In practice, it is possible to obtain

information about the behavior of the thermodynamic functions at small baryon
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chemical potential by making a Taylor expansion of the partition function around

zero chemical potential and extrapolating the result. This requires the calculation

of various quark-number susceptibilities evaluated at zero chemical potential. Since

extrapolations based on a finite number of Taylor coefficients can only be trusted

within the radius of convergence of the expansion, it would be nice to have an alter-

native framework for calculating the finite temperature and chemical potential QCD

thermodynamic potential and associated quantities. Perturbative QCD (pQCD) is

an alternative framework which can be applied at high temperature and/or chem-

ical potentials where the strong coupling (g2 = 4παs) is small in magnitude and

non-perturbative effects are expected to be small. However, due to infrared singu-

larities in the gauge sector, the perturbative expansion of the finite-temperature and

density QCD partition function breaks down at order g6 requiring non-perturbative

input albeit through a single numerically computable number [12]. Up to order

g6 ln(1/g) it is possible to calculate the necessary coefficients using analytic (re-

summed) perturbation theory [13] at finite temperature and chemical potential.

The hard thermal loop perturbation theory (HTLpt) is a state-of-the-art resummed

perturbation theory with a given mass prescription that reorganizes the usual per-

turbation theory at finite temperature/density quantum chromodynamics. In hard

thermal loop (HTL) approximation the loop expansion and coupling expansion are

not symmetrical as higher order diagrams contribute to the lower order one. As

a result some of the quantities, such as equation of states, various susceptibilities,

trace anomaly, speed of sound etc., calculated within a given loop order using the

hard thermal loop approximation suffer incompleteness in the corresponding per-

turbative order. At each order in HTLpt the result is an infinite series in g, the

strong coupling. Using the mass expansion one keeps terms through order g5 (if

one uses only LO mass prescription) all loop-orders of HTLpt in order to make the

calculation tractable. At leading order (LO) one obtains only the correct perturba-

tive coefficients for g0 and g3 terms when one expands in a strict power series in g.
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At next-to-leading order (NLO) one obtains the correct g0, g2 and g3 coefficients

whereas at next-to-next leading order (NNLO) one obtains the correct g0, g2, g3, g4

and g5 coefficients.

In the thesis I shall discuss a systematic computation of QCD pressure at finite

temperature and finite chemical potential in one-loop [14], two-loop [15] and three-

loop [16, 17] Hard Thermal Loop perturbation theory. The corresponding results

will be compared with recent lattice QCD data.

Fluctuations of conserved quantities have been considered as important and relevant

probes of Quark Gluon Plasma formation in relativistic heavy-ion collision. These

fluctuations measure the response to system with an external field. In particular

Quark Number Susceptibility(QNS) defines the response of conserved quark num-

ber density when we change the chemical potential of the system. Quark Number

Susceptibility can be related to the charge fluctuations of the system and is there-

fore of direct experimental relevance. This thesis will also discuss a very systemic

computation of Quark Number Susceptibilities in one-loop [14,18,19], two-loop [20]

and three-loop [16, 17] Hard Thermal Loop perturbation theory. Also in three-

loop HTLpt case, in general, off diagonal susceptibilities are non-zero, so I shall

also extend NNLO HTLpt to calculate various order diagonal and off-diagonal sus-

ceptibilities. For NNLO calculation we will use the two-loop perturbative mass

prescription for debye mass, the effective order of g becomes higher than g5. The

results of various order HTLpt are gauge invariant and in particular, NNLO results

are complete in g5. This result is completely analytic that does not require any free

fit parameter beside renormalization scale. I shall also extend three-loop HTLpt to

calculate other thermodynamical quantities, which are relevant to deconfined state

of matter, viz. energy density, trace anomaly, speed of sound, entropy density etc.

The various quantities agree very well with lattice QCD results within error bars

down to 200 MeV.
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In addition to calculations of the thermodynamic quantities, hard-thermal-loop per-

turbation theory can be use to calculate various physical quantities which are rele-

vant to the deconfined state of matter. The dilepton rate is a good probe to study

the deconfined state of matter as the mean free path for real of virtual photons are

large and accordingly thermal dileptons have been theoretically proposed as a signal

of QGP a long time ago [21]. So, this thesis will also analyze the dilepton rates from

HTLpt with various non-perturbative results obtained using Gluon condensate in

the quark propagator, ρ meson-quark interaction in an effective model and lattice

QCD in [22]. The results will also be contrasted with in-medium Hadron gas rate.

Based on this, a more realistic way of the quark-hadron duality hypothesis can be

advocated than it was done in the literature.
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CHAPTER 1

Introduction

It is now well-known that colored quarks and gluons are confined within color singlet

hadronic bound states by strong interactions [23]. The theory which describes the

behavior of quarks and gluons is known as Quantum Chromodynamics (QCD). Much

of the support for QCD derives from its ability to produce the almost noninteracting

behavior of quarks at short distances [23]. This feature of the theory, known as

asymptotic freedom, explains the approximate scaling observed in the deep inelastic

scattering of leptons off hadrons and leads to many quantitative predictions of scaling

deviations at high energy. The success of these predictions, as well as many other

confirmations of the predictions of perturbative QCD at short distances has greatly

increased the confidence in the theory.

Heating

Compression

Figure 1.1: Nuclear matter at extreme conditions.
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So it is worth to apply the knowledge of QCD to explore the properties of hadronic

matter in extreme environments, such as at high temperature and/or at high bary-

onic density. As nuclear matter is heated and compressed hadrons occupy more and

more of the available space within nucleus as schematically depicted in Fig. (1.1).

Eventually they start to overlap and quarks and gluons confined initially begin to

percolate between hadrons thus being liberated. Under this conditions quarks and

gluons are no longer remain confined within hadrons and a new state of matter

known as Quark Gluon Plasma (QGP) is produced. There are three places where

one might look for this deconfined state of matter, viz.

i) in the evolution of early universe where a few tens of microseconds after the

‘big bang’ a transient stage of strongly interacting matter prevailed at temperatures

1012K(∼ 200MeV) with a very small net baryon numbers;

ii) in the interior of neutron stars where mass densities are likely to exceed 1015gm/cm3

which is about four times the central density of nuclei while the surface temperatures

are as low as 105K or less;

iii) in the collision of heavy ions at very high energy per nucleon, in which states of

high density and temperature might be produced.

The above mentioned three situations have been schematically depicted in QCD

phase diagram in Fig. (1.2). Nevertheless, the ‘big bang’ is far remote in time and

the astrophysical objects are far remote in space and their use for the study of QGP

are quite difficult. This makes us to turn attention for a consistent study of QGP

in the laboratory through high energy heavy-ion collisions.

In heavy-ion-collisions experiments, two heavy nuclei are accelerated to ultra-relativistic

speeds and directed towards each other. During the collision, kinetic energy of the

Lorentz contracted nuclei are deposited at the collision region that produce a very

hot and dense “fireball”. This fireball expands hydrodynamically under its own

2



CHAPTER 1. INTRODUCTION

Figure 1.2: Schematic view of QCD phase diagram.

pressure, and cools while expanding. This expansion continues till all of the hot

and dense fireball is converted into the hadronic phase. Upon completion of phase

conversion, the hadronic matter continues to expand until the mean free path of

the hadrons becomes larger than the dimensions of the system and they loose ther-

mal contact. This is called freeze-out. At the freeze-out temperature, the hadrons

cease to interact with each other and they stream freely away to be detected in the

experiments.

In recent years substantial experimental efforts have been undertaken to investi-

gate the versatile physics issues involved in ultra-relativistic heavy-ion collisions,

i.e., collisions of atomic nuclei in which center-of-mass energy per nucleon is much

larger than the nucleon rest mass. The principal goal of this initiative is to ex-

plore the phase structure of QCD by creating QGP in the laboratory; in other

words, how QCD works in extreme conditions. Heavy-ion experiments have been

performed at Alternating Gradient Syncroton in Brookhaven National Laboratory

(BNL), USA with Elab ∼ 14 GeV/nucleon continued at Super Proton Syncroton

(SPS) in the European Organization for Nuclear Research (CERN) with Elab ∼ 200

GeV/nucleon. At present the relativistic heavy-ion collision experiments in Rela-

tivistic Heavy Ion Collider (RHIC) at BNL with Ecm ∼ 200 GeV/nucleon (and with
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beam energy scan down to 7.7 GeV/nucleon) and Large Hadron Collider (LHC)

at CERN [24, 25] with Ecm ∼ 2.76 and 5.5 TeV/nucleon are operational. Fur-

ther, at the forthcoming fixed target experiment at the Facility for Antiproton and

Ion Research (FAIR) [26] in Gesellschaft für Schwerionenforschung (GSI), Germany

as well as heavy-ion-collisions experiment at Nuclotron-based Ion Collider fAcility

(NICA) in Joint Institute for Nuclear Research(JINR), Russia also plan to scan

energy ranges from 10-45 GeV/nucleon and 4-11 GeV/nucleon respectively. These

past experiments in CERN-SPS [27], ongoing experiments in BNL-RHIC [1–4,28–32]

and CERN-LHC [33–38] have provided us wealth of information in understanding

the properties of hot and dense matter and the theoretical predictions.

Theoretical study of hot and dense nuclear matter which produced in early uni-

verse just after big bang or expected to exist in astrophysical objects like neu-

tron star or produced in heavy-ion experiments are very important. QCD exhibits

a rich phase structure and the equation of state (EoS) which describes that the

matter can be characterized by different degrees of freedom depending upon the

temperature and the chemical potential. The determination of the EoS of QCD

matter is extremely important to QGP phenomenology. There are various effec-

tive models to describe the EoS and various order conserved density fluctuations of

strongly interacting matter, e.g., the Nambu-Jona-Lasinio (NJL) [39–42], Polyakov-

loop extended Nambu-Jona-Lasinio (PNJL) [43–57], Renormalization Group ap-

proach [58, 59], quasi-particle models [60–68], Polyakov-loop extended quark meson

(PQM) model [69–71], AdS/CFT correspondence and holographic QCD [72–75] have

been used to calculate various thermodynamic functions and various order quark

number susceptibilities.

However, one would prefer to utilize systematic first-principles QCD methods. The

currently most reliable method for determining the EoS, various order quark num-

ber susceptibilities and other relevant quantities for deconfined matter is lattice
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QCD [8–11, 76–126]. At this point in time lattice calculations can be performed at

arbitrary temperature, however, due to the sign problem, it is not straightforward

to extend such calculations to finite baryon chemical potential. In practice, it is pos-

sible to obtain information about the behavior of the thermodynamic functions at

small baryon chemical potential [127] by making a Taylor expansion of the partition

function around µB = 0 and extrapolating the result. This requires the calculation

of various quark-number susceptibilities evaluated at zero chemical potential. Since

extrapolations based on a finite number of Taylor coefficients can only be trusted

at small chemical potential, it would be nice to have an alternative framework for

calculating the finite temperature and chemical potential QCD thermodynamic po-

tential and associated quantities. This is important in light of the ongoing beam

energy scan at the Relativistic Heavy Ion Collider (RHIC) and the forthcoming ex-

periments at the Facility for Antiproton and Ion Research (FAIR). As an alternative

to lattice QCD calculations, one natural option is to compute the thermodynamic

potential using perturbation theory.

Perturbative QCD (pQCD) can be applied at high temperature and/or chemical

potentials where the strong coupling (g2 = 4παs) is small in magnitude and non-

perturbative effects are expected to be small; however, one does not know a priori

how large the temperature should be for this method to result in a good approxima-

tion to reality. The calculation of thermodynamic functions at finite temperature

and/or finite chemical potential using perturbative approach has a long history. In

1977 free energy for electron [128] and also for quark [129] have been computed at

zero temperature and finite chemical potential up to order g4 where the coefficient

of g4 term was obtained numerically. Later this calculation was reproduced in [13]

analytically. In 1978, QCD free energy at finite temperature and zero chemical po-

tential was calculated in [130,131] up to order g2. In 1979, QCD free energy at finite

temperature and finite chemical potential was extended in [132] up to order g3. In

1983, QCD free energy up to order g4 log g at finite temperature and finite chemical
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potential was calculated in [133]. In early 1990s the free energy at finite tempera-

ture but at zero chemical potential was calculated to order g4 for massless scalar φ4

theory [134–136], quantum electrodynamics (QED) [135–137] and QCD [135, 136],

respectively. The corresponding calculations to order g5 were obtained soon after-

wards [138–144]. Later this calculation has been extended to calculate the QCD

free energy at finite temperature but at zero chemical potential up to order g6 in

Ref. [12] where the coefficient of g6 log g term was computed analytically but the

coefficient of the g6 term was fitted from lattice QCD data. In 2003, the free energy

at finite chemical potential [13, 145] and hence quark number susceptibility [146]

has been extended in up to order g6 log g. The results of QCD pressure at finite

temperature and chemical potential up to order g6 log g from Ref. [13] will be dis-

cussed in Sec. (1.3). For massless scalar theories the perturbative free energy is now

known to order g6 [147] and order g8 log g [148].

Unfortunately, for all the above-mentioned theories the resulting weak-coupling ap-

proximations, truncated order-by-order in the coupling constant, are poorly conver-

gent unless the coupling constant is tiny. Therefore, a straightforward perturbative

expansion in powers of αs for QCD does not seem to be of any quantitative use

even at temperatures many orders of magnitude higher than those achievable in

heavy-ion collisions. Also, due to infrared singularities in the gauge sector, the per-

turbative expansion of the finite-temperature and density QCD partition function

breaks down at order g6 requiring non-perturbative input albeit through a single

numerically computable number [149].

The poor convergence of finite-temperature perturbative expansions of thermody-

namic functions stems from the fact that at high temperature the classical solution

is not described by massless gluonic states. Instead one must include plasma effects

such as the screening of electric fields and Landau damping via a self-consistent

resummation [150]. The inclusion of plasma effects can be achieved by reorganizing
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perturbation theory.

There are several ways of systematically reorganizing the finite-temperature pertur-

bative expansion [60–63,151–162]. In this thesis I will focus on the hard-thermal-loop

(HTL) perturbation theory method [14–20,163–179]. The HTL perturbation theory

is inspired by variational perturbation theory [180–185]. HTL perturbation the-

ory is a gauge-invariant extension of screened perturbation theory (SPT) [186–189],

which is a perturbative reorganization for finite-temperature massless scalar field

theory. In the SPT approach, one introduces a single variational parameter which

has a simple interpretation as a thermal mass. In SPT a mass term is added to

and subtracted from the scalar Lagrangian, with the added piece kept as part of

the free Lagrangian and the subtracted piece associated with the interactions. The

mass parameter is then required to satisfy a variational equation which is obtained

by a principle of minimal sensitivity. This naturally led to the idea that one could

apply a similar technique to gauge theories by adding and subtracting a mass in the

Lagrangian. However, in gauge theories, one cannot simply add and subtract a local

mass term since this would violate gauge invariance. As a result, a gauge-invariant

generalization of SPT called hard-thermal-loop (HTL) perturbation theory was de-

veloped [150] by Braaten and Pisarski in 1990 by distinguishing soft (p ∼ gT ) and

hard (p ∼ T ) momenta scale. HTL perturbation theory is a reorganization of usual

perturbation theory at finite temperature where higher order diagrams contribute to

the lower order one. In HTL pertrbation theory one needs to add and subtract HTL

improvement term which modifies the propagators and vertices self-consistently so

that the reorganization is manifestly gauge invariant [155].

In the thesis I shall discuss a systematic computation of QCD thermodynamics in

leading order as well as beyond leading order at finite temperature and finite chem-

ical potential using HTL perturbation theory. Conserved density fluctuations and

quark number susceptibility will be discussed in leading order withing HTL perturba-
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tion theory. In next-to-leading order QCD pressure and various order quark number

susceptibilities will be discussed. In next-to-next-leading order, the computation

of all the thermodynamical quantities viz. pressure, various order quark number

susceptibilities, energy density, entropy density, speed of sound, trace anomaly etc.

will be discussed. The corresponding HTL perturbation theory results in all order

will be compared with recent lattice QCD data.

Besides the thermodynamic calculations, this thesis will also be focused to ana-

lyzed the dilepton rate from hot and dense nuclear matter. As the electromagnetic

probes, such as real photon and dileptons, are a particular example of ‘circumstan-

tial evidence’, and accordingly thermal dileptons have been theoretically proposed

long time ago [21]. At SPS energies [190–193] there was an indication for an en-

hancement of the dilepton production at low invariant mass (0.2 ≤ M(GeV) ≤ 0.8

) compared to all known sources of electromagnetic decay of the hadronic parti-

cles and the contribution of a radiating simple hadronic fireball (for comprehensive

reviews see Refs. [194–196]) . One of the possible explanations of this is the modi-

fication of the in-medium properties of the vector meson (viz., ρ-meson) by rescat-

tering in a hadronic phase along with only the lowest order perturbative rate, i.e.,

qq̄ annihilation from a QGP [194–213]. Also at RHIC energies [28] a substantial

amount of excess of electron pairs was reported in the low invariant mass region.

Models taking into account in-medium properties of hadrons with various ingredi-

ents (see for details [214, 215]) can not explain the data from RHIC in the range

0.15 ≤M(GeV) ≤ 0.5, whereas they fit the SPS data more satisfactorily, indicating

that a possible non-hadronic source becomes important at RHIC.

On the other hand, the higher order perturbative calculations [216] are also not

very reliable at temperatures within the reach of the heavy-ion collisions. Moreover,

perturbative calculations of the dilepton rate seem not to converge even in small

coupling (g) limit. Nevertheless, the lowest order perturbative qq̄ annihilation is the
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only dilepton rate from the QGP phase that is extensively used in the literatures.

However, at large invariant mass this contribution should be dominant but not at low

invariant mass, where nonperturbative effects should play an important role. Unfor-

tunately, the lattice data [217] due to its limitations also could not shed any light on

the low mass dileptons. However, the lattice calculations [7, 109–112, 218, 219] pro-

vide evidence for the existence of nonperturbative effects associated with the bulk

properties of the deconfined phase, in and around the deconfinement temperature,

Tc. Also, indications have been found that the QGP at RHIC energies behaves more

as a strongly coupled liquid than a weakly coupled gas [220]. Thus, a nonperturba-

tive analysis of the dilepton rate from the deconfined phase is essential.

The dilepton emission at low invariant mass from the deconfined phase is still an

unsettled issue in heavy-ion collisions at SPS and RHIC energies and, in particu-

lar, would be an important question for LHC energies and for compact baryonic

matter formation in future FAIR energies, and also for the quark-hadron dual-

ity [194, 195, 221] that entails a reminiscence to a simple perturbative lowest order

quark-antiquark annihilation rate [222]. In this thesis we reconsider the dilepton

production rates within the perturbative QCD, and non-perturbative models based

on lattice inputs and phenomenological ρ − q interaction in the deconfined phase.

The analysis suggests that the nonperturbative dilepton rates are indeed important

at the low invariant mass regime.

Below we give a brief introduction to statistical physics, QCD at finite temperature

and density, pQCD pressure up to g6 log g and asymptotic nature of QCD which

will be necessary to study various quantities in the following chapters.
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1.1 Statistical physics and quantum partition func-

tion

For a relativistic system which can freely exchange energy and particles with its

surroundings, the most important function in thermodynamics is the grand canonical

partition function

Z =
∑

states

e−β(Ei−µN) =
∑

states

〈Ei|e−β(H−µN )|Ei〉 = Tr e−β(H−µN ) . (1.1)

Here Ei is the energy of the state |Ei〉, N is the number of particles and H is the

Hamiltonian of the system. The inverse temperature of the system is denoted by

β = 1/T , and µ is the chemical potential of the particles in the system. All of the

thermodynamic properties can be determined from (1.1). For example, the pressure,

entropy density, particle density and energy density are given by

P =
∂(T logZ)

∂V
, (1.2)

S =
1

V

∂(T logZ)

∂T
=
∂P
∂T

, (1.3)

ni =
1

V

∂(T logZ)

∂µi
=
∂P
∂µi

, (1.4)

E = −P + TS +

Nf∑

i=1

µini , (1.5)

where V is the volume of the system and Nf is the number of flavors of the system.

Typically, the width L of a system is much larger than the inverse temperature, (i.e.

L≫ 2π/T ), such that one can use the infinite volume limit to describe the thermo-

dynamics of a finite volume to good approximation. In all calculations performed in

this thesis, this infinite volume limit is taken. Then it turns out that logZ becomes
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proportional to V , such that the pressure becomes

P =
T logZ

V
. (1.6)

The extension to field theory is straightforward. If H is the Hamiltonian of a quan-

tum field theory in d-dimensional space and hence (d + 1)-dimensional space-time,

then the partition function (1.1) is

Z = Tr e−H/T =

∫
Dϕ e−

∫
1/T
0

dτ
∫
ddxL(ϕ) , (1.7)

with L the Lagrangian density of the theory and periodic boundary conditions

ϕ(0,x) = ϕ(1/T,x) . (1.8)

for bosonic fields ϕ. For fermionic fields, it turns out that to implement Pauli

statistics one must impose anti-periodic boundary conditions

ϕ(0,x) = −ϕ(1/T,x) . (1.9)

1.2 QCD at finite temperature

Quantum Chromodynamics is a gauge theory for the strong interaction describ-

ing the interactions between quarks and gluons. The QCD Lagrangian density in

Minkowski space can be written as

LQCD = −1

2
Tr [FµνF

µν ] +
∑

i

ψ̄i [iγ
µDµ − γ0µi −mi]ψi

+ Lgf + Lghost +∆LQCD . (1.10)

11



CHAPTER 1. INTRODUCTION

where ∆LQCD contains counterterms necessary to cancel the ultraviolet divergences

in perturbative calculations. The gluon field strength is Fµν = ∂µAν − ∂νAµ −

ig[Aµ, Aν ]. The gluon field is Aµ = Aaµt
a, with generators ta of the fundamental

representation of SU(3) normalized so that Tr tatb = δab/2. In the quark sector there

is an explicit sum over the Nf quark flavors with masses mi and Dµ = ∂µ − igAµ is

the covariant derivative in the fundamental representation. The Lagrangian (1.10)

is mathematically simple and beautiful, however in order to carry out a physical

calculation with it perturbatively, a gauge fixing is needed to remove unphysical

degrees of freedom. The ghost term Lghost depends on the choice of the gauge-fixing

term Lgf . One popular choice for the gauge-fixing term that depends on an arbitrary

gauge parameter ξ is the general covariant gauge:

Lgf = −1

ξ
Tr
[
(∂µAµ)

2] . (1.11)

The corresponding ghost term in the general covariant gauge reads

Lghost = −η̄a∂2ηa + gfabcη̄a∂µ(Abµη
c) , (1.12)

where η and η̄ are anti-commuting ghosts and anti-ghosts respectively and fabc is

structure constant of SU(3).

The finite temperature QCD partition function is obtained by a Wick rotation of the

theory from Minkowski space to Euclidean space. It is achieved by the substitution

t = iτ with t being the Minkowski time and τ being the Euclidean one. The resulting

Euclidean partition function is

Z =

∫
DAµDψ̄DψDη̄Dη exp

[
−
∫ 1/T

0

dτ

∫
d3xLEQCD

]
, (1.13)

with LEQCD the Wick-rotated Lagrangian density. Feynman rules are exactly the

same as in zero-temperature field theory except that the imaginary time τ is now
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compact with extent 1/T . To go from τ to frequency space, one should perform a

Fourier series decomposition rather than a Fourier transform. The only difference

with zero-temperature Feynman rules will then be that loop frequency integrals are

replaced by loop frequency sums:

∫
d4P

(2π)4
→ T

∑

ωn

∫
d3p

(2π)3
(1.14)

with the sum over discrete imaginary-time frequencies known as Matsubara frequen-

cies

ωn = 2nπT bosons , (1.15)

ωn = (2n+ 1)πT − iµ fermions . (1.16)

to implement the periodic or anti-periodic boundary conditions in Eq. (1.8) and

Eq. (1.9) respectively.

We define the dimensionally regularized bosonic and fermionic sum-integrals as

∑∫

P

≡
(
eγEΛ2

4π

)ǫ
T

∑

P0=2nπT

∫
d3−2ǫp

(2π)3−2ǫ
, (1.17)

∑∫

{P}

≡
(
eγEΛ2

4π

)ǫ
T

∑

P0=(2n+1)πT−iµ

∫
d3−2ǫp

(2π)3−2ǫ
, (1.18)

where 3−2ǫ is the dimension of space, γE ≈ 0.577216 the Euler-Mascheroni constant

commonly known as Euler gamma, Λ is an arbitrary momentum scale, P = (P0, p)

is the bosonic loop momentum, and {P} is the fermionic loop momentum. The

factor (eγE/4π)ǫ is introduced so that, after minimal subtraction of the poles in ǫ

due to ultraviolet divergences, Λ coincides with the renormalization scale of the MS

renormalization scheme. Note that we are denoting four momentum in Euclidean

space as P = (P0, p) and in Minkowski space as P = (p0, p).
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Sometimes we use shorthand notation for d = 3− 2ǫ dimensional integration as

∫

p

≡
∫

d3−2ǫp

(2π)3−2ǫ
. (1.19)

So one needs to evaluate the frequency sum(1.14) for bosonic case as

T
∑

p0

f(p0 = iωn = 2nπiT ) =
T

2πi

∮

C

dp0
β

2
f(p0) coth

βp0
2

, (1.20)

where the contour C is as shown Fig. (1.3a): The function β
2
coth βp0

2
has poles

p0

C

Re p0

Im p0

a b

R−R

R → ∞

R

p0

C

Re p0

Im p0

−R

ǫ

Figure 1.3: Contour for bosonic frequency sum.

at p0 = 2πniT and is everywhere else bounded and analytic. The contour can be

deformed as Fig. (1.3b).
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So the frequency sum in Eq. (1.20) can be rewritten as

T
∑

p0

f(p0 = iωn = 2nπiT ) =
1

2πi

i∞+ǫ∫

−i∞+ǫ

dp0f(p0)
1

2
coth

βp0
2

+
1

2πi

−i∞−ǫ∫

i∞−ǫ

dp0f(p0)
1

2
coth

βp0
2

=
1

2πi

i∞+ǫ∫

−i∞+ǫ

dp0f(p0)

[
1

2
+

1

eβp0 + 1

]

− 1

2πi

i∞−ǫ∫

−i∞−ǫ

dp0f(p0)

[
1

2
+

1

eβp0 + 1

]
(1.21)

Below we demonstrate one examples of frequency sum for bosonic momentum:

∑

p0=2nπiT

1

P 2
=

∑

p0=2nπiT

1

p20 − p2
=

∑

p0=2nπiT

1

2p

[
1

p0 − p
− 1

p0 + p

]

=
1

2p

[
−
(
1

2
+

1

eβp − 1

)
+

(
1

2
+

1

e−βp − 1

)]

= −1

p

[
1

2
+ nB(p)

]
, (1.22)

where nB(p) = 1/ (exp(βp)− 1) is Bose-Einstein distribution function. When one

calculates (d+1) dimensional sum-integrals, the first term of the frequency sum (1.22)

vanishes due to dimensional regularization and gets the finite results for this partic-

ular sum-integration.

One can also evaluate the frequency sum(1.14) for fermionic case in the similar

manner as

T
∑

p0

f(p0 = iωn = (2n+ 1)πiT + µ) =
T

2πi

∮

C′

dp0
β

2
f(p0) tanh

β(p0 − µ)

2
(1.23)

where the contour C ′ is as shown in the Fig. (1.4). The function β
2
tanh β(p0−µ)

2
has

poles at p0 = (2n + 1)πiT + µ and is everywhere else bounded and analytic. The
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p0

C ′

Re p0

Im p0 µ p0

C ′

Re p0

Im p0
µ

ǫ

R−R

R −→ ∞

−R R

Figure 1.4: Contour for fermionic frequency sum.

contour C ′ can be deformed in the similar manner as in the bosonic case to avoid

the pole on the contour. Then the frequency sum in Eq. (1.23) can be rewritten as

T
∑

p0

f(p0 = iωn = (2n+ 1)πiT + µ) =
1

2πi

i∞+µ+ǫ∫

−i∞+µ+ǫ

dp0f(p0)
1

2
tanh

βp0
2

+
1

2πi

−i∞+µ−ǫ∫

i∞+µ−ǫ

dp0f(p0)
1

2
tanh

β(p0 − µ)

2

=
1

2πi

i∞+µ+ǫ∫

−i∞+µ+ǫ

dp0f(p0)

[
1

2
+

1

eβ(p0−µ) + 1

]

− 1

2πi

i∞+µ−ǫ∫

−i∞+µ−ǫ

dp0f(p0)

[
1

2
+

1

eβ(p0−µ) + 1

]
. (1.24)

Below we demonstrate one examples of frequency sum for fermionic momentum:

∑

p0=2nπiT

1

P 2
=

∑

p0=2nπiT

1

p20 − p2
=

∑

p0=2nπiT

1

2p

[
1

p0 − p
− 1

p0 + p

]

=
1

2p

[
−
(
1

2
− 1

eβ(p−µ) + 1

)
+

(
1

2
− 1

e−β(p+µ) + 1

)]

= − 1

2p
[1− nF (p)] , (1.25)
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where nF (p) = [eβ(p−µ) + 1]−1 + [eβ(p+µ) + 1]−1 = [n−
F (p) + n+

F (p)].

After performing the frequency sum, one is left with dimensionally regularized spa-

tial momentum integration, which will be discussed in the subsequently chapter.

However, all other frequency sums can be evaluated in similar way as discussed

above.

1.3 Perturbative pressure in QCD up to order

g6 log g

In perturbation theory one can explicitly separate the contributions coming from

the soft sector (momenta on the order of gT where g2 = 4παs) and the hard sec-

tor (momenta on the order of T ) using effective field theory/dimensional reduction

methods [12, 139, 144, 153, 223–225]. After doing this one finds that the hard-sector

contributions, which form a power series in even powers of g, converge reasonably

well; however, the soft sector perturbative series, which contains odd powers of g, is

poorly convergent. Below we present the result of QCD free energy F(T, µ) for Nf

flavor in perturbative series up to order up to order g6 log g i.e., α3
s ln(αs).

F = −8π2

45
T 4

[
F0 + F2

αs
π

+ F3

(αs
π

)3/2
+ F4

(αs
π

)2

+ F5

(αs
π

)5/2
+ F6

(αs
π

)3
+ · · ·

]
, (1.26)

where we have specialized to the case Nc = 3 and

F0 = 1 +
21

32
Nf

(
1 +

120

7
µ̂2 +

240

7
µ̂4

)
, (1.27)

F2 = −15

4

[
1 +

5Nf

12

(
1 +

72

5
µ̂2 +

144

5
µ̂4

)]
, (1.28)
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F3 = 30
[
1 + 1

6
(1 + 12µ̂2)Nf

]3/2
(1.29)

F4 = 237.223 +
(
15.963 + 124.773 µ̂2 − 319.849µ̂4

)
Nf

−
(
0.415 + 15.926 µ̂2 + 106.719 µ̂4

)
N2
f

+
135

2

[
1 + 1

6
(1 + 12µ̂2)Nf

]
log
[αs
π

(
1 + 1

6
(1 + 12µ̂2)Nf

)]

− 165

8

[
1 +

5

12

(
1 +

72

5
µ̂2 +

144

5
µ̂4

)
Nf

](
1− 2

33
Nf

)
log Λ̂ , (1.30)

F5 = −
(
1 +

1 + 12µ̂2

6
Nf

)1/2
[
799.149 +

(
21.963− 136.33 µ̂2 + 482.171 µ̂4

)
Nf

+
(
1.926 + 2.0749 µ̂2 − 172.07 µ̂4

)
N2
f

]

+
495

2

(
1 +

1 + 12µ̂2

6
Nf

)(
1− 2

33
Nf

)
log Λ̂ , (1.31)

F6 = −
[
659.175 +

(
65.888− 341.489 µ̂2 + 1446.514 µ̂4

)
Nf

+
(
7.653 + 16.225 µ̂2 − 516.210 µ̂4

)
N2
f −

1485

2

(
1 +

1 + 12µ̂2

6
Nf

)

×
(
1− 2

33
Nf

)
log Λ̂

]
log

[
αs
π

(
1 +

1 + 12µ̂2

6
Nf

)
4π2

]

− 475.587 log
[αs
π

4π2CA

]
, (1.32)

where here and throughout all hatted quantities are scaled by 2πT , e.g. µ̂ =

µ/(2πT ), Λ is the modified minimum subtraction (MS) renormalization scale, and

αs = αs(Λ̂) is the running coupling. At finite T the central value of the renormaliza-

tion scale is usually chosen to be 2πT . However, at finite T and µ we use the central

scale Λ = 2π
√
T 2 + (µ/π)2 [13, 68, 146, 226–228]. In Fig. (1.5) we plot the ratio of
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Figure 1.5: The Nf = 3 pQCD pressure specified in Eq. (1.26) as a function of
the temperature. Successive perturbative approximations are shown through order
α3
s lnαs for vanishing µ (left) and for non-vanishing µ (right). The shaded bands

indicate the variation of the pressure as the MS renormalization scale is varied around
a central value of Λ = 2π

√
T 2 + µ2/π2 [13,68,146,226–228] by a factor of two. We use

ΛMS = 290 MeV based on recent lattice calculations [229] of the three-loop running
of αs.

the pressure to an ideal gas of quarks and gluons. The figure clearly demonstrates

the poor convergence of the naive perturbative series and the increasing sensitivity

of the result to the renormalization scale as successive orders in the weak coupling

expansion are included.

The poor convergence in soft sector which contains the odd power of g in perturbative

series suggests that in order to improve the convergence of the resulting perturbative

approximation one should treat the soft sector non-perturbatively, or at least resum

soft corrections to the pressure. There have been works in the framework of di-

mensional reduction which effectively perform such soft-sector resummations by not

truncating the soft-scale contributions in a power series in g, see e.g. [12, 223, 225].

This method seems to improve the convergence of the perturbation series and pro-

vides motivation to find additional analytic methods to accomplish soft-sector re-

summations.
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1.4 Beta function and asymptotic freedom

The beta function β(αs) of a quantum field theory encodes the dependence of a

coupling parameter αs on the energy scale Λ of a given physical process. The

coupling satisfy the following relation [230, 231]:

Λ2 ∂αs
∂Λ2

= β(αs) = −α2
s

(
b0 + b1αs + b2α

2
s + b3α

3
s + · · ·

)
(1.33)

where b0, b1, b2 and b3 are referred to as beta-function coefficient in one, two, three

and four loop respectively with

b0 =
11cA − 2Nf

12π

b1 =
17c2A −Nf (5cA + 3cF )

24π2

b2 =
1

128π3

[
2857

27
c2A +Nf

(
2c2F − 205

9
cAcF − 1415

27
c2A

)

+ N2
f

(
22

9
cF +

79

27
cA

)]
(1.34)

where cA = Nc is number of colors, cF = (N2
c − 1)/2Nc.

This dependence on the energy scale is known as the running of the coupling pa-

rameter, and theory of this kind of scale-dependence in quantum field theory is

described by the renormalization group which refers to a mathematical apparatus

that allows one to investigate the changes of a physical system as one views it at

different distance scales.

To lowest order in the coupling constant a beta function is either positive indicating

the growth of charge at short distance or negative indicating the decrease of charge

at short distance. Until 1973, only examples of the former were known 1. The

1’t Hooft reported a similar discovery at the Marseille conference on renormalization of Yang-
Mills fields and applications to particle physics in 1972 without publishing it.
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discovery that only non-Abelian gauge theories allow for a negative beta function

is usually credited to Gross and Wilczek [23], and to Politzer [232]. The solution

to (1.33) for QCD in one loop level reads

αs(Λ) =
g(Λ)2

4π
=

2π(
11− 2

3
Nf

)
log (Λ/ΛQCD)

, (1.35)

which clearly shows asymptotic freedom [23, 232], i.e. αs → 0 as Λ → ∞. The

parameter ΛQCD is a scale above which the theory works as “chosen” by the world

in which we live.

Figure 1.6: QCD running coupling as a function of energy scale. This figure is
adapted from Ref. [233].

In three loop level, the solution to (1.33) is

αs(Λ) =
1

b0t

[
1− b1

b20

ln t

t
+
b21(ln

2 t− ln t− 1) + b0b2
b40t

−b
3
1

(
ln3 t− 5

2
ln2 t− 2 ln t+ 1

2

)
+ 3b0b1b2 ln t− 1

2
b20b3

b60t
3

+ · · ·
]
(1.36)
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with t = ln Λ2

ΛMS
. It is well known that QCD exhibits confinement at large distances

or low energies which terminates the validity of perturbation theory due to the

infrared growth of the coupling. However it is precisely the asymptotic freedom

that ensures the possibility of a perturbative treatment for the ultraviolet sector of

the theory which sets the stage to study the high temperature phase of non-Abelian

theory in this thesis.

1.5 Scope of the thesis

The thesis is organized as follows: In Chapter 2, we discuss the limitations of bare

perturbation theory and a brief introduction to HTL perturbation theory. In Chap-

ter 3 we discuss conserved density fluctuation and temporal correlation function in

hard thermal loop perturbation theory. In Chapter 4 we discuss thermodynamic

functions viz pressure and quark number susceptibilities using HTL perturbation

theory in two loop level. The Chapter 5 is devoted to the study of all possible three-

loop thermodynamic functions at finite temperature and finite chemical potential

using HTL perturbation theory for QCD. Low mass dilepton rate from deconfined

state of matter will be discussed in Chapter 6. We summarize in Chapter 7 together

with a brief outlook of HTL perturbation theory.
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CHAPTER 2

Hard Thermal Loop Perturbation Theory

In this chapter, and in the rest of the thesis, we consider thermal field theories at

high temperature, which means temperature much higher than all zero-temperature

masses or any mass scales generated at zero temperature.

We can apply finite temperature field theory to calculate various thermodynamic

quantities perturbatively. But naive perturbation theory have some serious prob-

lems. One of the problem is in the computation of gluon damping rate. If one uses

naive perturbation theory to calculate gluon damping rate, one gets gauge depen-

dent results and it is also negative in some gauges. This was sometimes interpreted

as signal of plasma instability. Yet one knows from general field theoretical argu-

ments that the positions of the pole of the gluon propagator, whose imaginary part

gives the gluon damping rate, is gauge-independent.

Another problem in naive perturbation theory is infrared divergence. It has been

known for many years that for naive perturbative expansion of finite temperature,

partition function breaks down due to infrared divergences. To cure those problem

of naive perturbation theory, a consistent perturbative expansion requires the re-

summation of an infinite subset of diagrams from all orders of perturbation theory.

Hard thermal loop (HTL) perturbation theory is one of such resummation. In HTL
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CHAPTER 2. HARD THERMAL LOOP PERTURBATION THEORY

perturbation theory, we define two scales of momenta viz. hard and soft. When the

momentum p ∼ T , it is called hard scale and when momenta p ∼ gT , this is called

soft scale with g coupling constant of the theory. We discuss the HTL perturbation

theory in case of scalar as well as gauge theory in the next section in details.

2.1 Scalar field theory

In this section we discuss about the simplest interacting scalar field theory, namely

a single massless scalar field with a φ4 interaction. The Lagrangian for such scalar

field in Euclidean space can be written as

L =
1

2
(∂µφ)

2 +
1

24
g2φ4 . (2.1)

The Lagrangian density in Eq. (2.1) can be divided into a free part and an interacting

part as

Lfree =
1

2
(∂µφ)

2 , (2.2)

Lint =
1

24
g2φ4 . (2.3)

Radiative corrections are then calculated in a loop expansion which is equivalent

to a power series in g2. We shall see that the perturbative expansion breaks down

at finite temperature and the weak-coupling expansion becomes an expansion in g

rather than g2.

We will first calculate the self-energy by evaluating the relevant diagrams. The

Feynman diagrams that contribute to the self-energy up to two loops are shown in

Fig. (2.1).

The one-loop diagram is independent of the external momentum and the resulting
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1 Loop :
2 Loop :

Figure 2.1: One- and two-loop scalar self-energy graphs.

integral expression is

Π(1) =
1

2
g2
∑∫

P

1

P 2
,

=
1

24
g2T 2 ,

≡ m2 , (2.4)

where the superscript indicates the number of loops. The notation P = (P0,p)

represents the Euclidean four-momentum. The Euclidean energy P0 has discrete

values: P0 = 2nπT for bosons and P0 = (2n + 1)πT for fermions, where n is an

integer. Eq. (2.4) represents the leading order thermal mass of scalar field with φ4

interaction. The sum-integral over P is defined in Eq. (1.18), represents a summa-

tion over Matsubara frequencies and integration of spatial momenta in d = 3 − 2ǫ

dimensions 1. The above sum-integral has ultraviolet power divergences that are set

to zero in dimensional regularization. We are then left with the finite result (2.4),

which shows that thermal fluctuations generate a mass for the scalar field of order

gT . This thermal mass is analogous to the Debye mass which is well-known from

the non-relativistic QED plasma.

We next focus on the two-loop diagrams and first consider the double-bubble in

Fig. (2.2b).

This diagram is also independent of the external momentum and gives the following

1For an introduction to thermal field theory and the imaginary time formalism see Refs. [234]
and [235].
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= + + + · · ·

(a) (b) (c)

Figure 2.2: Bubble diagrams contributing to the scalar self-energy.

sum-integral

Π(2b) = −1

4
g4
∑∫

PQ

1

P 2

1

Q4
. (2.5)

This integral is infrared divergent. The problem stems from the middle loop with

two propagators. In order to isolate the source of the divergence, we look at the

contribution from the zeroth Matsubara mode to the Q integration

− 1

4
g4
∑∫

P

1

P 2
T

∫

q

1

q4
. (2.6)

The integral over q in Eq. (2.6) behaves like 1/q and linearly infrared divergent

as q → 0. This infrared divergence indicates that naive perturbation theory breaks

down at finite temperature. However, in practice this infrared divergence is screened

by a thermally generated mass and we must somehow take this into account. The

thermal mass can be incorporated by using an effective propagator:

∆(P ) =
1

P 2 +m2
, (2.7)

where m can be obtained from Eq. (2.4) as m = gT/
√
24 ≪ T .

If the momenta of the propagator is of order T or hard, clearly the thermal mass

is a perturbation and can be omitted. However, if the momenta of the propagator

is of order gT or soft, the thermal mass is as large as the bare inverse propagator

and cannot be omitted. The mass term in the propagator (2.7) provides an infrared
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cutoff of order gT . The contribution from (2.6) would then be

− 1

4
g4
∑∫

P

1

P 2
T

∫

q

1

(q2 +m2)2
= −1

4
g4
(
T 2

12

)(
T

πm

)
+O

(
g4mT

)
. (2.8)

Since m ∼ gT , this shows that the double-bubble contributes at order g3T 2 to the

self-energy and not at order g4T 2 as one might have expected. Similarly, one can

show that the diagrams with any number of bubbles like Fig. (2.2c) are all of order

g3. Clearly, naive perturbation theory breaks down since the order-g3 correction to

the thermal mass receives contributions from all loop orders. On the other hand,

the three-loop diagram shown in Fig. (2.3), is of order g4T 2 and thus sub-leading.

Therefore, we only need to resum a subset of all possible Feynman graphs in order

to obtain a consistent expansion in g.

Figure 2.3: Subleading three-loop self-energy diagram.

If we use the effective propagator to recalculate the one-loop self-energy, we obtain

Π(1)(P ) =
1

2
g2
∑∫

P

1

P 2 +m2

=
1

2
g2


T
∫

p

1

p2 +m2
+
∑′∫

P

1

P 2
+O

(
m2
)



=
g2

24
T 2

[
1− g

√
6

4π
+O

(
g2
)
]
. (2.9)
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where here, and in the following, the prime on the sum-integral indicates that we

have excluded the n = 0 mode from the sum over the Matsubara frequencies. The

order g3 corresponds to the summation of the bubble diagrams in Fig. (2.2), which

can be verified by expanding the effective propagator in Eqn. (2.7) around m = 0.

Thus by taking the thermal mass into account, one is resumming an infinite set of

diagrams from all orders of perturbation theory.

TThe one loop scalar self-energy in Eq (2.4) is the first example of a hard thermal

loop (HTL). In HTL perturbation theory, loop corrections are g2T 2/P 2 times the

corresponding tree-level amplitude, where P is a momentum that characterizes the

external lines. From this definition, it is clear that, whenever the external momen-

tum P is hard i.e. P ∼ T , the loop correction is suppressed by g2 and is thus

a perturbative correction. However, when the external momentum P is soft i.e.

P (∼ gT ), the HTL correction is same order of tree-level amplitude and is therefore

as important as the tree-level contribution to the amplitude. These loop corrections

are called “hard” because the relevant integrals are dominated by momenta of order

T . Also note that the hard thermal loop in the two-point function is finite since it is

exclusively due to thermal fluctuations. Quantum fluctuations do not enter. Both

properties are shared by all hard thermal loops.

n- point functions in scalar theory

In the previous section we have discussed about two-point function in scalar field

theory. If one calculate higher order n− point functions in scalar theory, one can

show that the one-loop correction to the four-point function at high temperature

behaves as [236]

Γ(4) ∝ g4 log (T/p) , (2.10)
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where p is the external spatial momentum. Thus the loop correction to the four-

point function increases logarithmically with temperature (T ). It is therefore always

down by g2 log(1/g) as the external momentum p is soft in HTL approximation, and

one can conclude that it is sufficient to use a bare vertex. More generally, one can

show that the only hard thermal loop in scalar field theory is the tadpole diagram

in Fig. (2.1) and resummation is taken care of by including the thermal mass in

the propagator. In gauge theories, the situation is much more complicated than the

scalar theory as we shall discuss in the next section.

2.2 Gauge theories

In the previous section, we discussed about HTL resummation for scalar theory with

φ4 interaction. For scalar theories, the resummation simply amounts to include the

thermal mass in the propagator. The higher order functions such as four point

vertex depends logarithmically on the temperature, corrections to the bare vertex

are always down by powers of g2 log g. In gauge theories, the situation is much more

complicated. The equivalent HTL self-energies are no longer local, but depend in a

nontrivial way on the external momentum. In addition, it is also necessary to use

effective vertices that also depend on the external momentum. It turns out that

all hard thermal loops are gauge-fixing independent [150, 156, 237–240]. This was

shown explicitly in covariant gauges, Coulomb gauges, and axial gauges. All the

n- point functions also satisfy tree-level like Ward identities. Furthermore, there

exists a gauge invariant effective Lagrangian in gauge theory, found independently

by Braaten and Pisarski [155] and by Taylor and Wong [239], that generates all of the

hard thermal loop n-point functions. From a renormalization group point of view

this is an effective Lagrangian for the soft scale gT that is obtained by integrating

out the hard scale T .
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2.2.1 Polarization tensor

In this section we discuss in some detail the hard thermal loop for the vacuum

polarization tensor Πµν for photon. Later we extend it for gluon also. The hard

thermal loop in the photon propagator was first calculated by Silin more than forty

years ago [241]. The Feynman diagram for the one-loop self-energy photon is shown

P −→

K − P

K

Figure 2.4: One-loop photon self-energy diagram.

in Fig. (2.4) and results can be expressed in Euclidean space as

Πµν(P ) = e2
∑∫

{K}

Tr

[
K/γµ(K/− P/)γν

K2(K − P )2

]
, (2.11)

where P = (P0, p) is momentum of the external photon and Tr denotes the trace

over Dirac matrices. After taking the trace over Dirac matrices, the self-energy in

d = 3 spatial dimension can be written as

Πµν(P ) = 8e2
∑∫

{K}

KµKν

K2(K − P )2
− 4δµνe2

∑∫

{K}

1

K2

+ 2δµνP 2e2
∑∫

{K}

1

K2(K − P )2
− 4e2

∑∫

{K}

KµP ν +KνP µ

K2(K − P )2
. (2.12)

As we are interested in the high-temperature limit, we may assume that K ≫ P

because the leading contribution in T to the loop integral is given by the region
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K ∼ T . With this assumption, the self-energy in Eq. (2.12) simplifies to

Πµν(P ) = 8e2
∑∫

{K}

KµKν

K2(K − P )2
− 4δµνe2

∑∫

{K}

1

K2
. (2.13)

We first consider the spatial components of Πµν(P ). The sum over Matsubara

frequencies can be evaluated using

T
∑

{K0}

1

K2(P −K)2
=

1

4k|p− k|

{

(
1− nF (k)− nF (|p− k|)

)[ −1

iP0 − k − |p− k| +
1

iP0 + k + |p− k|

]

+
(
nF (k)− nF (|p− k|)

)[ −1

iP0 − k + |p− k| +
1

iP0 + k − |p− k|

]}
, (2.14)

which is derived from a contour integral in the complex energy plane. The second

term in Eq. (2.13) is rather simple. We obtain

Πij(P ) = −2e2δij
∫

k

1

k
(1− 2nF (k)) + 2e2

∫

k

kikj

k|k− p|

×
{(

1− nF (k)− nF (|k− p|)
)[ −1

iP0 − k − |k− p| +
1

iP0 + k + |k− p|

]

+
(
nF (k)− nF (|k− p|)

)[ −1

iP0 − k + |k− p| +
1

iP0 + k − |k− p|

]}
, (2.15)

where nF (x) = 1/(exp(βx) + 1) represents the Fermi-Dirac distribution function.

The zero-temperature part of Eq. (2.15) is logarithmically divergent in the ultraviolet

region. This term depends on the external momentum and is canceled by standard

zero-temperature wave-function renormalization. We next consider the terms that

depend on temperature. In the case that the loop momentum is soft, the Fermi-

Dirac distribution functions can be approximated by a constant. The contribution

from the integral over the magnitude of k is then of order g3 and subleading. When

the loop momentum is hard, one can expand the terms in the integrand in powers
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of the external momentum. We can then make the following approximations

nF (|k− p|) ≈ nF (k)−
dnF (k)

dk
p·k̂ , (2.16)

|k− p| ≈ k − p·k̂ , (2.17)

where k̂ = k/k is a unit vector. Thus the angular integration decouples from the

integral over the magnitude k. This implies

Πij(P ) = −2e2

π2

∫ ∞

0

dk k2
dnF (k)

dk

∫
dΩ

4π

−iP0

−iP0 + p·k̂
k̂ik̂j ,

=
e2T 2

3

∫
dΩ

4π

−iP0

−iP0 + p·k̂
k̂ik̂j . (2.18)

The results in Eq. (2.18) can be analytically continued to the Minkowski space by

replacing iP0 → p0 as

Πij(P ) =
e2T 2

3

∫
dΩ

4π

p0

p0 − p·k̂
k̂ik̂j . (2.19)

Note that the momentum in Minkowski space is denoted with P = (p0, p = |p|)

whereas momentum in Euclidean space is denoted with P = (P0, p = |p|). The

other components of the self-energy tensor Πµν(P ) are derived in the same manner

or obtained using the transversality of polarization tensor:

PµΠ
µν(P ) = 0 . (2.20)

One find the other components of the self energy tensor from [235, 242] as

Π00(P ) =
e2T 2

3

(∫
dΩ

4π

p0

p0 − p·k̂
+ 1

)
, (2.21)

Π0j(P ) =
e2T 2

3

∫
dΩ

4π

−p0
p0 − p·k̂

k̂j . (2.22)
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In d dimensions, we can compactly write the self-energy tensor as

Πµν(P ) = m2
D [T µν(P,−P )− nµnν ] , (2.23)

where n specifies the thermal rest frame is canonically given by n = (1, 0). We have

defined

m2
D = −4(d− 1)e2

∑∫

{K}

1

K2
=

e2T 2

3
, (2.24)

and the tensor T µν(P,Q), which is defined only for momenta that satisfy P +Q = 0,

is

T µν(P,−P ) =

〈
Y µY ν P ·n

P ·Y

〉

ŷ

. (2.25)

The angular brackets indicate averaging over the spatial directions of the light-like

vector Y = (1, ŷ). The tensor T µν is symmetric in µ and ν and satisfies the “Ward

identity”

PµT µν(P,−P ) = P ·n nν . (2.26)

The self-energy tensor Πµν is therefore also symmetric in µ and ν and satisfies

PµΠ
µν(P ) = 0 , (2.27)

gµνΠ
µν(P ) = −m2

D . (2.28)

The gluon self-energy tensor can be expressed in terms of two scalar functions, the

transverse and longitudinal self-energies ΠT and ΠL as

Πµν(P ) = −ΠT (P )T
µν
P +

P 2

p2
ΠL(P )L

µν
P , (2.29)

33



CHAPTER 2. HARD THERMAL LOOP PERTURBATION THEORY

where the tensor T µνP and LµνP are

T µνP = gµν − P µP ν

P 2
− nµPn

ν
P

n2
P

, (2.30)

LµνP =
nµPn

ν
P

n2
P

(2.31)

The four-vector nµP is

nµP = nµ − n·P
P 2

P µ (2.32)

and satisfies P ·nP = 0 and n2
P = 1− (n·P )2/P 2. (2.28) reduces to the identity

(d− 1)ΠT (P ) +
1

n2
P

ΠL(P ) = m2
D . (2.33)

We can express both self-energy functions in terms of the function T 00, which is

defined in Eq. (2.25), as:

ΠT (P ) =
m2
D

(d− 1)n2
P

[
T 00(P,−P )− 1 + n2

P

]
, (2.34)

ΠL(P ) = m2
D

[
1− T 00(P,−P )

]
, (2.35)

In the tensor T µν(P,−P ) defined in (2.25), the angular brackets indicate the angular

average over the unit vector ŷ. In almost all previous work, the angular average

in (2.25) has been taken in d = 3 dimensions. For consistency of higher order

corrections, it is essential to take the angular average in d = 3− 2ǫ dimensions and

analytically continue to d = 3 only after all poles in ǫ have been canceled. Expressing

the angular average as an integral over the cosine of an angle, the expression for the

00 component of the tensor is

T 00(p,−p) =
w(ǫ)

2

∫ 1

−1

dc (1− c2)−ǫ
p0

p0 − |p|c , (2.36)
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where the weight function w(ǫ) is

w(ǫ) =
Γ(2− 2ǫ)

Γ2(1− ǫ)
22ǫ =

Γ(3
2
− ǫ)

Γ(3
2
)Γ(1− ǫ)

. (2.37)

The integral in (2.36) must be defined so that it is analytic at p0 = ∞. It then has

a branch cut running from p0 = −|p| to p0 = +|p|. If we take the limit ǫ → 0, it

reduces to

T 00(P,−P ) =
p0
2|p| log

p0 + |p|
p0 − |p| , (2.38)

which is the expression that appears in the usual HTL self-energy functions.

In three dimensions, the self-energies ΠT (P ) and ΠL(P ) reduce to

ΠT (P ) =
m2
D

2

p20
p2

[
1− P 2

2p0p
log

p0 + p

p0 − p

]
, (2.39)

ΠL(P ) = m2
D

[
1− p0

2p
log

p0 + p

p0 − p

]
. (2.40)

So far the HTL approximation for photon self energy tensor has been discussed.

Now we will discuss below the HTL approximation for gluon self energy tensor.

The hard thermal loop in the gluon self-energy was first calculated by Klimov and

Weldon [243–245]. In QCD, if one calculate gluon self energy, the Feynman diagrams

that will contribute to one loop gluon self energy are shown in fig. (2.5).

If one calculate all the four diagrams, one get gluon self energy tensor in the same

form as photon self energy (2.23), but the Debye mass mD should be replaced by

m2
D = g2


(d− 1)2cA

∑∫

K

1

K2
− 4(d− 1)sF

∑∫

{K}

1

K2


 , (2.41)

where, with the standard normalization, the QCD Casimir numbers are cA = Nc
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(a) (b)

(c) (d)

Figure 2.5: Feynman diagrams for gluon self energy.

and sF = Nf/2. Nc and Nf denotes number of colors and number of flavors. In case

of three spatial dimension i.e. for d = 3, the Debye mass for gluon becomes

m2
D =

g2T 2

3

[
cA + sF

(
1 + 12µ̂2

)]
. (2.42)

2.2.2 Gluon propagator

The Feynman rule for the gluon propagator in Minkowski space is

iδab∆µν(P ) , (2.43)

where the gluon propagator tensor ∆µν depends on the choice of gauge fixing. We

consider two possibilities that introduce an arbitrary gauge parameter ξ: general

covariant gauge and general Coulomb gauge. In both cases, the inverse propagator

reduces in the limit ξ → ∞ to

∆−1
∞ (P )µν = −P 2gµν + P µP ν −Πµν(P ) . (2.44)
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This can also be written

∆−1
∞ (P )µν = − 1

∆T (P )
T µνP +

1

n2
P∆L(P )

LµνP , (2.45)

where the transverse tensor T µνP and longitudinal tensor LµνP are defined in Eq. (2.31).

∆T (P ) and ∆L(P ) are the transverse and longitudinal propagators related to ΠL(P )

ΠT (P ) as

∆T (P ) =
−1

P 2 +ΠT (P )
, (2.46)

∆L(P ) =
1

p2 +ΠL(P )
. (2.47)

The inverse propagator for general ξ is

∆−1(P )µν = ∆−1
∞ (P )µν − 1

ξ
P µP ν covariant , (2.48)

= ∆−1
∞ (P )µν − 1

ξ
(P µ − P ·n nµ) (P ν − P ·n nν) Coulomb . (2.49)

The propagators obtained by inverting the tensors in (2.49) and (2.48) are

∆µν(P ) = −∆T (P )T
µν
P +∆L(P )n

µ
Pn

ν
P − ξ

P µP ν

P 4
covariant , (2.50)

= −∆T (P )T
µν
P +∆L(P )n

µnν − ξ
P µP ν

(n2
PP

2)2
Coulomb . (2.51)

It is convenient to define the following combination of propagators:

∆X(P ) = ∆L(P ) +
1

n2
P

∆T (P ) . (2.52)

Using (2.33), (2.46), and (2.47), it can be expressed in the alternative form

∆X(P ) =
[
m2
D − dΠT (P )

]
∆L(P )∆T (P ) , (2.53)
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which shows that it vanishes in the limit mD → 0. In the covariant gauge, the

propagator tensor can be written

∆µν(P ) = [−∆T (P )g
µν +∆X(P )n

µnν ]− n·P
p2

∆X(P ) (P
µnν + nµP ν)

+

[
∆T (P ) +

(n·P )2
P 2

∆X(P )−
ξ

P 2

]
P µP νP 2 . (2.54)

This decomposition of the propagator into three terms has proved to be particularly

convenient for explicit calculations. For example, the first term satisfies the identity

[−∆T (P )gµν +∆X(P )nµnν ]∆
−1
∞ (P )νλ = gλµ −

PµP
λ

P 2
+

n·P
n2
PP

2

∆X(P )

∆L(P )
Pµn

λ
P . (2.55)

The zeros of the denominators of the Eq. (2.50) or (2.51) gives the dispersion laws

for transverse and longitudinal gluon, i.e.

∆T (p0 = ωT , p) = 0, ∆L(p0 = ωL, p) = 0. (2.56)

The dispersion laws are illustrated in Fig. (2.6).

It is possible to find approximate analytic solution of ωL,T for small and large values

of momentum.

For small value of momentum (p≪ mD),

ωT ≈ mD√
3

(
1 +

9

5

p2

m2
D

− 81

35

p4

m4
D

+
792

125

p6

m6
D

)
, (2.57)

ωL ≈ mD√
3

(
1 +

9

10

p2

m2
D

− 27

280

p4

m4
D

+
9

2000

p6

m6
D

)
(2.58)
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Figure 2.6: Dispersion laws for photon/gluon.

For large value of momentum (p≫ mD),

ωT ≈ p+
m2
D

4p
+
m4
D

32p3

[
3− 2 ln

8p2

m2
D

]
+

m6
D

128p5

[
2 ln2 8p2

m2
D

− 10 ln
8p2

m2
D

+ 7

]
, (2.59)

ωL ≈ p+ 2p exp

(
−2 (p2 +m2

D)

m2
D

)
. (2.60)

2.2.3 Fermionic propagator

We want to examine the electron (quark) propagator within HTL approximation.

We must thus evaluate the Feynman diagram in Fig.( 2.7).
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P

K

P

Figure 2.7: One loop quark self energy.

The full electron propagator in Euclidean space can be written as

S(P ) =
1

/P +m+ Σ
(2.61)

Evaluation of Σ

Electron self energy in Feynman gauge is

Σ(P ) = −e2
∑∫

K

γµ(/K − /P )γµ

K2(P −K)2
(2.62)

In HTL approximation, we can neglect P w.r.t. K. After contracting the Dirac

matrices, the electron self-energy in d = 3 dimension reduces to

Σ(P ) ≈ −2e2
∑∫

K

/K

K2(P −K)2
(2.63)

The necessary frequency sum can be performed using contour integration techniques

and the results are

T
∑

K0

1

K2(P −K)2
= − 1

4k|p− k|

{

(
1 + nB(k)− nF (|p− k|)

)[ 1

iP0 − k − |p− k| −
1

iP0 + k + |p− k|

]

+
(
nB(k) + nF (|p− k|)

)[ 1

iP0 + k − |p− k| +
1

iP0 − k + |p− k|

]}
, (2.64)

40



CHAPTER 2. HARD THERMAL LOOP PERTURBATION THEORY

and

T
∑

K0

ωn
1

K2(P −K)2
=

i

4|p− k|

{

(
1 + nB(k)− nF (|p− k|)

)[ 1

iP0 − k − |p− k| +
1

iP0 + k + |p− k|

]

−
(
nB(k) + nF (|p− k|)

)[ 1

iP0 + k − |p− k| +
1

iP0 − k + |p− k|

]}
, (2.65)

where nB(x) = 1/(exp(βx) − 1) and nF (x) = 1/(exp(βx) + 1) as before. The first

term in the square bracket of Eq. (2.64) leads to a behavior that is linear in T ,

and the corresponding term in Eq. (2.65) is even more convergent; thus these terms

are non-leading in T . Only the second terms of both the Eqs. (2.64) and (2.65)

contributes to order T 2. Using this knowledge, we can easily obtain the following

results:

∑∫

K

ki
K2(P −K)2

= −T
2

16

∫
dΩ

4π

k̂i

P · K̂
(2.66)

and

∑∫

K

ωn
K2(P −K)2

= −iT
2

16

∫
dΩ

4π

1

P · K̂
(2.67)

Which leads to

Σ(P ) =
e2T 2

8

∫
/̂K

P · K̂
K̂ = (−i, k̂)

=
e2T 2

8

∫
/Y

P · Y Y = (−i, ŷ)

= m2
fT/(P ) , (2.68)
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where

T µ(P ) = −
〈

Y µ

P · Y

〉

Ŷ

Y ≡ (−i, ŷ), (2.69)

and mf is the thermal electron mass

m2
f = −3e2

∑∫

{K}

1

K2
=
e2T 2

8
. (2.70)

In Minkowski space Σ(P ) has same form as in Euclidean space as

Σ(P ) =
e2T 2

8

∫
/Y

P · Y Y = (1, ŷ) (2.71)

The corresponding retarded dressed electron propagator for massless case reads

S(P ) =
i

/P − Σ
(2.72)

Now, one can evaluate electron self energy in Eq. (2.71) as

Σ(p0, p) =
m2
f

p0
γ0TP +

m2
f

p
γ · p̂ (1− TP ) (2.73)

where TP is 00 component of the tensor T µν(p,−p) and given in Eq. (2.36) as

TP (p,−p) =
w(ǫ)

2

∫ 1

−1

dc (1− c2)−ǫ
p0

p0 − |p|c

=

〈
p20

p20 − p2c2

〉

c

(2.74)

We can rewrite the inverse of electron propagator from Eq. (2.72) as

iS−1(P ) = /P − Σ(P ) = A0γ0 − ASγ · p̂ (2.75)

42



CHAPTER 2. HARD THERMAL LOOP PERTURBATION THEORY

with

A0 = p0 −
m2
f

p0
TP AS = p+

m2
f

p
(1− TP ) (2.76)

The above expressions can be written three spatial dimension as

A0 = p0 −
m2
f

p
ln
p0 + p

p0 − p
AS = p+

m2
f

p

(
1− p0

p
ln
p0 + p

p0 − p

)
(2.77)

The physical interpretation of any calculation is particularly transparent if we rewrite

− iS(P ) =
γ0 − γ · p̂
2D+(p0, p)

+
γ0 + γ · p̂
2D−(p0, p)

, (2.78)

where

D±(p0, p) = A0 ∓ AS

= p0 ∓ p−
m2
f

2p

[(
1∓ p0

p

)
ln
p0 + p

p0 − p
± 2

]
(2.79)

As D±(p0, p) has an imaginary part for space-like values of P (p20 < p2), it is useful

to note the parity properties for both real and imaginary values of D±(p0, p) as

Re D+(p0, p) = −Re D−(−p0, p)

Im D+(p0, p) = Im D−(−p0, p) (2.80)

The zeros of the denominators in Eq. (2.78) i.e. the solution of D±(p0, p) = 0 give

the position of the quasi-particle poles. One finds that D+(p0, p) = A0 − AS = 0

has two solutions:

p0 = ω+(p) p0 = −ω−(p), (2.81)
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and, from the parity properties of Eq. (2.80), the equation D−(p0, p) = A0+AS = 0

has also two solutions:

p0 = ω−(p) p0 = −ω+(p), (2.82)

where ω±(p) is chosen to be positive. The dispersion laws of ω±(p) are illustrated

in Fig. (2.8) along-with the dispersion law of free massless fermion(dashed line).
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Figure 2.8: Dispersion laws for fermionic excitations.

It is possible to find approximate analytic solution of ω±(p) as in the case of ωL,T (p)

for small and large values of momentum.
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For small values of momentum (p≪ mf ) the dispersion laws are

ω+(p) ≈ mf +
1

3
p+

1

3

p2

m2
f

− 16

135

p3

m3
f

,

ω−(p) ≈ mf −
1

3
p+

1

3

p2

m2
f

+
16

135

p3

m3
f

(2.83)

and for large value of momentum (mf ≪ p≪ T ),

ω+(p) ≈ p+
m2
f

p
−
m4
f

2p3
ln
m2
f

2p2
+
m6
f

4p5

[
ln2

m2
f

2p2
+ ln

m2
f

2p2
− 1

]
, (2.84)

ω−(p) ≈ p+ 2p exp

(
−
2p2 +m2

f

m2
f

)
. (2.85)

Quark Self-energy(QCD)

In the previous section, we discussed about the self energy propagator for electron.

In case of QCD, quark self energy in Feynman gauge can be written as

Σ(P )δij = −
∑∫

K

(gγµ(t
a)ik)(/K − /P )(gγµ(ta)kj)

1

K2(P −K)2
(2.86)

Using the identity (tata)ij = N2
c−1
2Nc

δij = CF δij and after doing the frequency sum,

the above quark self energy expression reduces to

Σ(P ) = m2
qT/(P ) , (2.87)

which is the same form of electron self energy as in Eq. (2.68) but thermal electron

mass mf should be replaced with quark thermal mass and which can be derive as

m2
q = −3CFg

2
∑∫

{K}

1

K2

=
g2T 2

8
CF
(
1 + 4µ̂2

)
. (2.88)
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2.2.4 Three point quark gluon vertex

In gauge theories, there are also hard thermal loops involving vertices. For instance,

the one-loop correction to the three-point function in QCD, can compactly be written

as

Γµ(P,Q,R) = γµ −m2
qT̃ µ(P,Q,R) , (2.89)

where the tensor in the HTL correction term is only defined for P −Q +R = 0:

T̃ µ(P,Q,R) =

〈
Y µ

(
Y/

(Q·Y )(R·Y )

)〉

Ŷ

. (2.90)

P

R

Q

P

R

Q

Figure 2.9: One loop correction to the three-point quark gluon vertex.

The quark-gluon vertex satisfies the Ward identity

P µΓµ(P,Q,R) = S−1(Q)− S−1(R) , (2.91)

where S(Q) is the resummed effective fermion propagator.
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2.2.5 Quark-gluon four-vertex

We define the quark-gluon four-point vertex with outgoing gluon momenta P and

Q, incoming quark momentum R, and outgoing quark momentum S. It reads

δabΓµνabij(P,Q,R, S) = −g2m2
qcF δijT̃ µν(P,Q,R, S) (2.92)

≡ g2cF δijΓ
µν , (2.93)

There is no tree-level term. The tensor in the HTL correction term is only defined

for P +Q−R + S = 0,

T̃ µν(P,Q,R, S) =

〈
Y µY ν

(
1

R·Y +
1

S ·Y

)

× /Y

[(R − P )·Y ] [(S + P )·Y ]

〉
. (2.94)

This tensor is symmetric in µ and ν and is traceless. It satisfies the Ward identity:

PµΓ
µν(P,Q,R, S)=Γν(Q,R− P, S)− Γν(Q,R, S + P ) . (2.95)

2.2.6 Three gluon vertex

The three-gluon vertex for gluons with outgoing momenta P , Q, and R, Lorentz

indices µ, ν, and λ, and color indices a, b, and c is

iΓµνλabc (P,Q,R) = −gfabcΓµνλ(P,Q,R) , (2.96)

where fabc are the structure constants and the three-gluon vertex tensor is

Γµνλ(P,Q,R) = gµν(P −Q)λ + gνλ(Q− R)µ

+ gλµ(R− P )ν −m2
DT µνλ(P,Q,R) . (2.97)
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Figure 2.10: One-loop correction to three gluon vertex.

The tensor T µνλ in the HTL correction term is defined only for P +Q +R = 0:

T µνλ(P,Q,R) = −
〈
Y µY νY λ

(
P ·n

P ·Y Q·Y − R·n
R ·Y Q·Y

)〉

ŷ

. (2.98)

This tensor is totally symmetric in its three indices and traceless in any pair of in-

dices: gµνT µνλ = 0. It is odd (even) under odd (even) permutations of the momenta

P , Q, and R. It satisfies the “Ward identity”

QµT µνλ(P,Q,R) = T νλ(P +Q,R)− T νλ(P,R +Q) . (2.99)

The three-gluon vertex tensor therefore satisfies the Ward identity

PµΓ
µνλ(P,Q,R) = ∆−1

∞ (Q)νλ −∆−1
∞ (R)νλ . (2.100)
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2.2.7 Four-gluon Vertex

The four-gluon vertex for gluons with outgoing momenta P , Q, R, and S, Lorentz

indices µ, ν, λ, and σ, and color indices a, b, c, and d is

iΓµνλσabcd (P,Q,R, S) = −ig2
{
fabxfxcd

(
gµλgνσ − gµσgνλ

)

+2m2
Dtr
[
T a
(
T bT cT d + T dT cT b

)]
T µνλσ(P,Q,R, S)

}

+ 2 cyclic permutations , (2.101)

where the cyclic permutations are of (Q, ν, b), (R, λ, c), and (S, σ, d). The matrices

T a are the fundamental representation of the SU(3) algebra with the standard nor-

malization tr(T aT b) = 1
2
δab. The tensor T µνλσ in the HTL correction term is defined

only for P +Q +R + S = 0:

T µνλσ(P,Q,R, S) =

〈
Y µY νY λY σ

(
P ·n

P ·Y Q·Y (Q +R)·Y

+
(P +Q)·n

Q·Y R·Y (R + S)·Y +
(P +Q +R)·n

R·Y S ·Y (S + P )·Y

)〉
.(2.102)

This tensor is totally symmetric in its four indices and traceless in any pair of indices:

gµνT µνλσ = 0. It is even under cyclic or anti-cyclic permutations of the momenta

P , Q, R, and S. It satisfies the “Ward identity”

qµT µνλσ(P,Q,R, S) = T νλσ(P +Q,R, S)− T νλσ(P,R+Q, S) (2.103)

and the “Bianchi identity”

T µνλσ(P,Q,R, S) + T µνλσ(P,R, S,Q) + T µνλσ(P, S,Q,R) = 0 . (2.104)

When its color indices are traced in pairs, the four-gluon vertex becomes particularly

simple:
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δabδcdiΓµνλσabcd (P,Q,R, S) = −ig2Nc(N
2
c − 1)Γµν,λσ(P,Q,R, S) , (2.105)

where the color-traced four-gluon vertex tensor is

Γµν,λσ(P,Q,R, S) = 2gµνgλσ − gµλgνσ − gµσgνλ −m2
DT µνλσ(P, S,Q,R) . (2.106)

Note the ordering of the momenta in the arguments of the tensor T µνλσ, which

comes from the use of the Bianchi identity (2.104). The tensor (2.106) is symmetric

under the interchange of µ and ν, under the interchange of λ and σ, and under the

interchange of (µ, ν) and (λ, σ). It is also symmetric under the interchange of P

and Q, under the interchange of R and S, and under the interchange of (P,Q) and

(R, S). It satisfies the Ward identity

pµΓ
µν,λσ(P,Q,R, S) = Γνλσ(Q,R + P, S)− Γνλσ(Q,R, S + P ) . (2.107)

In QED there are, in fact, infinitely many amplitudes with hard thermal loops. To

be precise, there are hard thermal loops in all n-point functions with two fermion

lines and n− 2 photon lines. In non-Abelian gauge theories such as QCD, there are

in addition hard thermal loops in amplitudes with n gluon lines [150].

2.2.8 The HTL effective lagrangian in QCD

The preceding results can be summarized in a compact way by writing an effec-

tive Lagrangian: Hard-thermal-loop perturbation theory is a reorganization of in-

medium perturbation theory for QCD. The HTL perturbation theory Lagrangian
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density can be written as

L = (LQCD + LHTL)|g→√
δg +∆LHTL , (2.108)

where the QCD Lagrangian density LQCD is defined in Eq. (1.10) of chapter 1. The

HTL improvement term LHTL can be written as [155]

LHTL = (1− δ)im2
qψ̄γ

µ

〈
Yµ
Y ·D

〉

ŷ

ψ

−1

2
(1− δ)m2

DTr

(
Fµα

〈
Y αYβ

(Y ·D)2

〉

ŷ

F µβ

)
, (2.109)

where Y µ = (1, ŷ) is a light-like four-vector with ŷ being a three-dimensional unit

vector and the angular bracket indicates an average over the direction of ŷ and

∆LHTL contains the counterterms necessary to cancel additional ultraviolet diver-

gences generated by HTL perturbation theory. The two parameters mD and mq can

be identified with the Debye screening mass and the thermal quark mass, respec-

tively, and account for screening effects. There are various prescription to choose

the parameters mD and mq. In one loop QCD thermodynamic calculations in Chap-

ter 3, one loop perturbative mass prescription as given in Eq (2.42) for mD and in

Eq (2.88) for mq , will be used. In two loop QCD thermodynamic calculations in

Chapter 4, we will see that thermodynamical quantities are correct up to g3 order if

one expand for small running coupling. So one can use variational or two loop per-

turbative mass prescription instead of one loop perturbative mass. The variational

mass prescription, which will discuused in Chapter 4 in details, will be used for NLO

calculations. But for the computation of various thermodynamic quantities in three

loop HTL perturbation theory, variational mass equations give the imaginary result

for mD, so we have only left with two loop perturbative mass prescription for mD

and that would be used in NNLO computation. We don’t have any existing two

loop perturbative mq in literature, so we will use mq = 0 (which is a variational
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solution in NNLO) and we will test our result with one loop perturbative mq also.

HTL perturbation theory is defined by treating δ as a formal expansion param-

eter. By coupling the HTL improvement term (2.109) to the QCD Lagrangian

(1.10), HTL perturbation theory systematically shifts the perturbative expansion

from being around an ideal gas of massless particles to being around a gas of mas-

sive quasi-particles which are the appropriate physical degrees of freedom at high

temperature and/or chemical potential. The HTL perturbation theory Lagrangian

(2.108) reduces to the QCD Lagrangian (1.10) if we set δ = 1. Physical observables

are calculated in HTL perturbation theory by expanding in powers of δ, truncat-

ing at some specified order, and then setting δ = 1. This defines a reorganization

of the perturbative series in which the effects of m2
D and m2

q terms in (2.109) are

included to leading order but then systematically subtracted out at higher orders

in perturbation theory by the δm2
D and δm2

q terms in (2.109). To obtain leading

order (LO), next-to-leading order (NLO), and next-to-next-leading order (NNLO)

results, one expands to orders δ0, δ1, δ2, respectively. This Lagrangian is manifestly

gauge invariant. An explicit, but tedious, computation shows that it generates the

two- and three-point functions correctly, which is sufficient to ensure that it is also

correct for all N− point functions.

Hard thermal loop perturbation has been extensively used to calculate various ther-

modynamical quantities over almost two decades. It has been used to study one

loop thermodynamic potential (or pressure) both at zero and finite chemical po-

tential but at finite temperature in Refs. [163–165, 246, 247] and to study one loop

conserved charge fluctuations in Refs. [14, 18, 19, 157, 158, 166, 168–170, 246–249].

HTL perturbation theory has also been used to study next-to-leading order thermo-

dynamic potential (or pressure) in Refs. [15, 172, 173] and hence second and fourth

order conserved change fluctuations in Ref. [20]. Recently, HTL perturbation has

been used to calculate three thermodynamic potential for pure gluonic medium in
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Refs. [174, 175], for QED in Ref. [176] and also for QCD medium in Ref. [177, 178].

Very recently this calculations have been extended in Refs. [16, 17] at finite chemi-

cal potential to calculate pressure, energy density, entropy density, speed of sound,

trace anomaly at finite temperature and finite chemical potential and various order

diagonal and off-diagonal quark number susceptibilities.

In addition to calculations of the thermodynamic potential, hard-thermal-loop per-

turbation theory has been used to calculate various physical quantities which are rel-

evant to the deconfined state of matter. Quantities such as the dilepton production

rate [22,250], photon production rate [251], single quark and quark anti-quark poten-

tials [252–261], fermion damping rate [262–264], photon damping rate [265], gluon

damping rate [156, 266], jet energy loss [267–278], plasma instabilities [279–285],

and lepton asymmetry during leptogenesis [286, 287] have also been calculated us-

ing HTL perturbation theory. In the next chapter we discuss about leading order

thermodynamics and conserved density fluctuations (quark number susceptibility)

and temporal component of the Euclidean correlation function in the vector channel

within HTL perturbation theory.
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CHAPTER 3

One loop HTL thermodynamics

In this chapter we discuss about leading order thermodynamic functions viz. number

density, entropy density, pressure and hence leading order conserved density fluc-

tuations (quark number susceptibility) and temporal component of the Euclidean

correlation function in the vector channel within HTL perturbation theory. This

chapter is based on: 1. Quark Number Susceptibility and Thermodynamics in HTL

approximation, Najmul Haque, Munshi G. Mustafa, Nucl. Phys. A 862-863, 271

(2011); 2. Conserved Density Fluctuation and Temporal Correlation Function in

HTL Perturbation Theory, Najmul Haque, Munshi G. Mustafa, Markus H. Thoma,

Phys. Rev. D 84, 054009 (2011).

3.1 Introduction

Dynamical properties of many particle system can generally be studied by employing

an external perturbation, which disturbs the system only slightly from its equilib-

rium state, and thus measuring the spontaneous response/fluctuations of the system

to this external perturbation. In general, the fluctuations are related to the correla-

tion function through the symmetry of the system, which provides important inputs
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for quantitative calculations of complicated many-body system. Also, many of the

properties (e.g. real and virtual photon production, various transport coefficients

etc.) of the deconfined strongly interacting matter are reflected in the structure of

the correlation and the spectral functions [288, 289] of the vector current.

The static thermal dilepton rate describing the production of lepton pairs is re-

lated to the spectral function in the vector current [217, 290]. Within the Hard

thermal loop perturbation theory (HTLpt) the vector spectral function has been

obtained [290–296], which is found to diverge due to its spatial part at the low en-

ergy regime. This is due to the fact that the HTL quark-photon vertex is inversely

proportional to the photon energy and it sharply rises at zero photon energy. On

the other hand, the fluctuations of conserved quantities, such as baryon number

and electric charge, are considered to be a signal [297–301] for quark-gluon plasma

(QGP) formation in heavy-ion experiments. These conserved density fluctuations

are closely related to the temporal correlation function in the vector channel through

derivatives of a thermodynamic quantity associated with the symmetry, known as

the thermodynamic sum rule [302–304]. It is expected that the temporal part of

the spectral function associated with the symmetry should be a finite quantity and

would not encounter any such infrared divergence unlike the spatial part at low en-

ergy. A very recent lattice calculation [305] has obtained the temporal part of the

Euclidean correlation function associated with the response of the conserved density

fluctuations, which is found to be a finite quantity. In view of this we compute the

temporal correlation function in the vector channel from the quark number suscepti-

bility associated with the quark number density fluctuations within the HTLpt [14]

and to compare it with recent lattice data [305].

This chapter is organized as follows. In Sec. (3.2) we briefly discuss some generalities

on correlation functions, fluctuation and its response (susceptibility) associated with

conserved charges. In this section we also obtain the relation between the response of
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the density fluctuation of the conserved charge and the corresponding temporal part

of the Euclidean correlation function in the vector current. In Sec. (3.3) we present

leading order quark number susceptibility (QNS) in HTL perturbation theory. Next

using QNS in leading order (LO) within HTL perturbation theory we compute

temporal part of the Euclidean correlation function in the vector current in HTL

perturbation theory and compare with lattice data. In Sec. (3.4) we present the

results of LO QNS and and temporal correlation fnction and compare them with

lattice QCD data. Finally, we conclude in Sec. (3.5).

3.2 Generalities

In this section we summarize some of the basic relations and also describe in details

their important features relevant as well as required for our purpose.

3.2.1 Correlation Functions

The two-point correlation function [217, 288–290] of the vector current, Jµ =

ψ̄(τ, ~x)Γµψ(τ, ~x) with three point function Γµ, is defined at fixed momentum ~p as

Gµν(τ, ~p) =

∫
d3x 〈Jµ(τ, ~x)J†

ν(0, ~0)〉 ei~p·~x , (3.1)

where the Euclidean time τ is restricted to the interval [0, β = 1/T ] and three

point function Γµ = γµ for vector channel. The thermal two-point vector correlation

function in coordinate space, Gµν(τ, ~x), can be written as

Gµν(τ, ~x) = 〈Jµ(τ, ~x)J†
ν(0, ~0)〉 = T

∞∑

n=−∞

∫
d3p

(2π)3
e−i(wnτ+~p·~x) Gµν(wn, ~p) , (3.2)
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where the Fourier transformed correlation functionGµν(wn, ~p) is given at the discrete

Matsubara modes, wn = 2πnT .

The imaginary part of the momentum space correlator gives the spectral function

σ(ω, ~p) as

GH(wn, ~p) = −
∫ ∞

−∞
dω
σH(ω, ~p)

iwn − ω

⇒ σH(ω, ~p) =
1

π
Im GH(ω, ~p) , (3.3)

where H = (00, ii, V ) denotes (temporal, spatial, vector). We have also introduced

the vector spectral function as σV = σ00 + σii, where σii is the sum over the three

space-space components and σ00 is the time-time component of σµν .

Using (3.2) and (3.3) in (3.1) the spectral representation of the thermal correlation

functions at fixed momentum can be obtained [290] as

GH(τ, ~p) =

∫ ∞

0

dω σH(ω, ~p)
cosh[ω(τ − β/2)]

sinh[ωβ/2]
. (3.4)

We note that in the analysis of lattice gauge theory, the Euclidean correlation func-

tion is usually restricted to vanishing three momentum, ~p = 0, and one can write

GH(τT ) = GH(τ, ~0). Because of the problem of analytic continuation in the lattice

gauge theory can not calculate spectral function σH(ω, ~p) directly from Eq. (3.3),

instead it uses Eq. (3.4) to extract spectral function as discussed briefly below.

A finite temperature lattice gauge theory calculation is performed on lattices with

finite temporal extent Nτ , which provides information on the Euclidean correla-

tion function, GH(τT ), only for a discrete and finite set of Euclidean times τ =

k/(NτT ), k = 1, · · · Nτ . The vector correlation function, GV (τT ), had been

computed [217] within the quenched approximation of QCD using non-perturbative

improved clover fermions [306, 307] for temporal extent Nτ = 16 and spatial extent
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Nσ = 64. Then by inverting the integral in (3.4) through a probabilistic application

based on the maximum entropy method (MEM) [308–310], the spectral function was

reconstructed [217] in lattice QCD.

3.2.2 Density Fluctuation and its Response

LetOα be a Heisenberg operator where αmay be associated with a degree of freedom

in the system. In a static and uniform external field Fα, the (induced) expectation

value of the operator Oα

(
0,−→x

)
is written [39, 40, 302–304] as

φα ≡
〈
Oα

(
0,−→x

)〉
F =

Tr
[
Oα

(
0,−→x

)
e−β(H+Hex)

]

Tr [e−β(H+Hex)]
=

1

V

∫
d3x

〈
Oα

(
0,−→x

)〉
, (3.5)

where translational invariance is assumed, V is the volume of the system and Hex

is given by

Hex = −
∑

α

∫
d3xOα

(
0,−→x

)
Fα . (3.6)

The (static) susceptibility χασ is defined as the rate with which the expectation

value changes in response to that external field,

χασ(T ) =
∂φα
∂Fσ

∣∣∣∣
F=0

= β

∫
d3x

〈
Oα

(
0,−→x

)
Oσ(0,

−→
0 )
〉
, (3.7)

where 〈Oα(0, ~x)Oσ(0, ~0)〉 is the two point correlation function with operators eval-

uated at equal times. There is no broken symmetry as

〈
Oα

(
0,−→x

)〉∣∣
F→0

=
〈
Oσ(0,

−→
0 )
〉∣∣∣

F→0
= 0 . (3.8)
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3.2.3 Thermodynamics functions and quark number suscep-

tibility

The pressure of a given system is defined as

P =
T

V
lnZ (3.9)

where T is temperature, V is the volume and Z is the partition function of a system

containing quark-antiquark gas. The entropy density is defined as

S =
∂P
∂T

(3.10)

The number density for a given quark flavor can be written as

ρ =
∂P
∂µ

=
1

V

Tr[N e−β(H−µN )]

Tr[e−β(H−µN )]
=

〈N 〉
V

(3.11)

with N is the quark number operator and µ is the chemical potential. If µ → 0,

the quark number density vanishes due to CP invariance. Then the QNS for a given

quark flavor follows can be written as

χq(T ) =
∂ρ

∂µ

∣∣∣∣
µ=0

=
∂2P
∂µ2

∣∣∣∣
µ=0

(3.12)

3.2.4 QNS and Temporal Euclidean Correlation Function

The QNS is a measure of the response of the quark number density with infinitesimal

change in the quark chemical potential, µ+ δµ. Under such a situation the external

field, Fα, in Eq. (3.6) can be identified as the quark chemical potential and the

operator Oα as the temporal component (J0) of the vector current, Jσ(t, ~x) = ψΓσψ,
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where Γσ is in general a three point function.

Then the QNS for a given quark flavor can be written from Eq. (3.7) as

χq(T ) =

∫
d4x

〈
J0(0, ~x)J0(0, ~0)

〉

= −lim
~p→0

Re GR
00(0, ~p), (3.13)

where GR
00 is the retarded correlation function. To obtain (3.13) in concise form, we

have used the fluctuation-dissipation theorem given as

G00(ω, ~p) = − 2

1− e−ω/T
ImGR

00(ω, ~p), (3.14)

and the Kramers-Kronig dispersion relation

ReGR
00(ω, ~p) =

∫ ∞

−∞

dω′

2π

ImGR
00(ω

′, ~p)

ω′ − ω
, (3.15)

where lim~p→0 ImG
R
00(ω, ~p) is proportional to δ(ω) due to the quark number conser-

vation [39, 40, 302–304].

Now, (3.7) or (3.13) indicates that the thermodynamic derivatives with respect to

the external source are related to the temporal component of the static correlation

function associated with the number conservation of the system. This relation in

(3.13) is known as the thermodynamic sum rule [302–304].

Owing to the quark number conservation the temporal spectral function σ00(ω,~0)

in (3.3) becomes

σ00(ω,~0) =
1

π
ImGR

00(ω,~0) = −ωδ(ω)χq(T ) . (3.16)

Using Eq. (3.16) in Eq. (3.4), it is straight forward to obtain the temporal correlation
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function as

G00(τT ) = −Tχq(T ), (3.17)

which is proportional to the QNS χq and T , but independent of τ .

In the next section we present LO QNS in HTLpt for our purpose.

3.3 Leading order QNS in HTLpt

The partition function including HTL improvement term can be written as

Z[µ] =

∫
D[ψ]D[ψ̄]D[A]ei

∫
d4x(LQCD+LHTL)(ψ,ψ̄,µ), (3.18)

where we have considered the external source as µ, the quark chemical potential,

and A is a background gauge field. The HTL improvement term LHTL is defined in

Eq. (2.109) of Chapter 2.

Using the Eqs. (3.9), (3.11) and (3.18), one could now write the number density as

ρ(T, µ) = NcNf

∫
d4K

(2π)4
Tr [S(K)Γ0(K,−K; 0)]

= iNcNfT

∫
d3k

(2π)3

∑

k0

Tr [S(K)Γ0(K,−K; 0)] , (3.19)

where ‘Tr’ is over Dirac indices. The quark Matsubara modes are given as k0 =

(2m + 1)πiT + µ, where m = 0, 1, 2 · · · ; Nf is the number of massless flavors and

Nc is the number of color. The quark propagator S(K ≡ (k0, k)) and temporal

component of three-point quark gluon vertex can be found in (2.78) and (2.89),

respectively. The zero momentum limit of the 3-point HTL function can also be

obtained from the Ward identity as

Γ0(K,−K; 0) =
∂

∂k0

(
−iS(k0, k)−1) = aγ0 + b~γ · k̂, (3.20)
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where

a± b = D′
±(k0, k), (3.21)

with D±(k0, k) defined in Eq. (2.79) and leads to

D′
± =

D±
k0 ∓ k

+
2m2

q

k20 − k2
. (3.22)

After performing the trace over Dirac matrices, the number density (3.19) in terms

of D±(k0, k) can be written as

ρHTL(T, µ) = 2NcNfT

∫
d3k

(2π)3

∑

k0

[
D′

+

D+

+
D′

−
D−

]

= 2NcNfT

∫
d3k

(2π)3

∑

k0

[
1

k0 − k
+

1

k0 + k
+

2m2
q

k20 − k2

(
1

D+
+

1

D−

)]
. (3.23)

Apart from the various poles due to quasiparticle (QP) in Eq. (3.23) it has landau

damping (LD) part as D±(k0, k) contain logarithmic terms which generate discon-

tinuity for k20 < k2. Eq. (3.23) can be decomposed in individual contribution as

ρHTL(T, µ) = ρQP (T, µ) + ρLD(T, µ) . (3.24)

3.3.1 Quasiparticle part (QP)

The pole part of the number density can be calculated using the contour integra-

tion method introduce in Chapter 1 and calculating the residues of each term of

Eq. (3.23), one can obtain the HTL quasiparticle contributions to the quark number

density as
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ρQP (T, µ) = −NcNf

∫
d3k

(2π)3

[
tanh

β(ω+ − µ)

2
+ tanh

β(ω− − µ)

2
− tanh

β(k − µ)

2

− tanh
β(ω+ + µ)

2
− tanh

β(ω− + µ)

2
+ tanh

β(k + µ)

2

]

= 2NcNf

∫
d3k

(2π)3
[n(ω+ − µ) + n(ω− − µ)− n(k − µ)− n(ω+ + µ)

−n(ω− + µ) + n(k + µ)] , (3.25)

where n(y) is the Fermi-Dirac distribution, ω± is defined in Chapter 2. Eq. (H6)

agrees with that of the two-loop approximately self-consistent Φ-derivable HTL re-

summation of Ref. [157] in leading order mass prescription.

Now, the pressure is obtained by integrating the first line of (3.25) w.r.t. µ as

PQP (T, µ) = 2NfNcT

∫
d3k

(2π)3

[
ln
(
1 + e−β(ω+−µ))+ ln

(
1 + e−β(ω−−µ)

1 + e−β(k−µ)

)

+ ln
(
1 + e−β(ω++µ)

)
+ ln

(
1 + e−β(ω−+µ)

1 + e−β(k+µ)

)
+ βω+ + β(ω− − k)

]
, (3.26)

where both quasiparticles with energies ω+ and ω− generate T dependent ultra-

violate (UV) divergences in LO HTL pressure due to quasiparticles. This also agrees

with the quasiparticle contribution as obtained in Ref. [165] for µ = 0 and adopting

the same technique prescribed therein one can remove the UV divergences. At very

high temperature, Eq. (3.26) reduces to free case as

P(T, µ) = 2NfNcT

∫
d3k

(2π)3
[
βk + ln

(
1 + e−β(k−µ)

)
+ ln

(
1 + e−β(k+µ)

)]
. (3.27)
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The corresponding HTL QP entropy density in LO can be obtained as

SQP (T, µ) =
∂PQP

I

∂T
= 2NcNf

∫
d3k

(2π)3

[
ln
(
1 + e−β(ω+−µ))+ ln

(
1 + e−β(ω−−µ)

1 + e−β(k−µ)

)

+ ln
(
1 + e−β(ω++µ)

)
+ ln

(
1 + e−β(ω−+µ)

1 + e−β(k+µ)

)
+

β(ω+ − µ)

eβ(ω+−µ) + 1
+

β(ω− − µ)

eβ(ω−−µ) + 1

− β(k − µ)

eβ(k−µ) + 1
+

β(ω+ + µ)

eβ(ω++µ) + 1
+

β(ω− + µ)

eβ(ω−+µ) + 1
− β(k + µ)

eβ(k+µ) + 1

]
. (3.28)

The QNS in LO due to HTL QP can also be obtained from (3.25) as

χQP (T ) =
∂

∂µ

[
ρQP

]∣∣∣∣
µ=0

= 4NcNfβ

∫
d3k

(2π)3
[n(ω+) (1− n(ω+)) + n(ω−) (1− n(ω−))

− n(k) (1− n(k))] , (3.29)

where the µ derivative is performed only to the explicit µ dependence. Obviously

(3.29) agrees well with that of the 2-loop approximately self-consistent Φ-derivable

HTL resummation [157]. The above thermodynamical quantities in LO due to HTL

quasiparticles with excitation energies ω± are similar in form to those of free case

but the hard and soft contributions are clearly separated out and one does not need

an ad hoc separating scale as used in Ref. [158].

3.3.2 Landau Damping part (LD)

The LD part of the quark number density in LO follows from (3.23) as

ρLD(T, µ) = NcNf

∫
d3k

(2π)3

k∫

−k

dω

(
2m2

q

ω2 − k2

)
β+(ω, k) [n(ω − µ)− n(ω + µ)] . (3.30)
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where β±(ω, k) is discontinuity for quark propagator D±(k0, k) for k20 < k2 and can

be obtained as

β±(ω, k) =
1

π
Disc

1

D±(k0, k)
=

1

π
Im

1

D±(k0, k)

∣∣∣∣
k0→ω+iǫ
ǫ→0

=

m2
q

2k

(
−1 ± ω

k

)
Θ(k2 − ω2)

[
ω ∓ k − m2

q

k

(
±1 − ω∓k

2k
ln k+ω

k−ω
)]2

+
[
π
m2

q

2k

(
1∓ ω

k

)]2 . (3.31)

One can obtain the pressure due to LD contribution by integrating (3.30) w.r.t. µ,

while considering mq is an implicit function of T and µ, as

PLD(T, µ) = NcNfT

∫
d3k

(2π)3

k∫

−k

dω

(
2m2

q

ω2 − k2

)
β+(ω, k)

[
ln
(
1 + e−β(ω−µ)

)

+ ln
(
1 + e−β(ω+µ)

)
+ βω

]
, (3.32)

which has UV divergence like [165] and can be removed using the prescription

therein.

The corresponding LD part of entropy density can be obtained as

SLD(T, µ) = NcNf

∫
d3k

(2π)3

k∫

−k

dω

(
2m2

q

ω2 − k2

)
β+(ω, k)

[
ln
(
1 + e−β(ω−µ)

)

+ ln
(
1 + e−β(ω+µ)

)
+

β(ω − µ)

eβ(ω−µ) + 1
+

β(ω + µ)

eβ(ω+µ) + 1

]
. (3.33)

Also the LD part of the QNS becomes

χLD(T ) =
∂

∂µ

[
ρLDI (T, µ)

]∣∣∣∣
µ=0

= 2NcNfβ

∫
d3k

(2π)3

k∫

−k

dω

(
2m2

q

ω2 − k2

)

× β+(ω, k) n(ω) (1− n(ω)) , (3.34)

where the µ derivative is again performed only to the explicit µ dependence. It is also
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to be noted that the LD contribution is of the order of m4
q . The LD contribution can

not be compared with that of the 2-loop approximately self-consistent Φ-derivable

HTL resummation [157] as it does not have any closed form for the final expression.

So total QNS can be written from Eqs. (3.29) and (3.34) as

χHTLq (T ) = χQPq + χLDq

= 4NcNfβ

∫
d3k

(2π)3

[
n(ω+) (1− n(ω+)) + n(ω−) (1− n(ω−))

−n(k) (1− n(k))
]

+ 2NcNfβ

∫
d3k

(2π)3

k∫

−k

dω

(
2m2

q

ω2 − k2

)
β+(ω, k) n(ω) (1− n(ω)) (3.35)

The QP part results in (3.29) is identical to that of the 2-loop approximately self-

consistent Φ-derivable HTL resummation approach [157,169] within LO mass pre-

scription. The LD part (3.34) cannot be compared directly to the LD part of

Ref. [157, 169] as no closed expression is given there. However, numerical results

of the both QNS agree very well. We also note that Ref. [158] used HTLpt but did

not take into account properly the effect of the variation of the external field to the

density fluctuation, which resulted in an over-counting in the LO QNS. Moreover,

it required an ad hoc separation scale is required to distinguish between soft and

hard momenta. In the HTLpt approach in Ref. [166,168] the HTL N-point functions

were used uniformly for all momenta scale, i.e., both soft and hard momenta, which

resulted in an over-counting within the LO contribution [157, 169]. The reason is

that the HTL action is accurate only for soft momenta and for hard ones only in

the vicinity of light cone.
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3.4 Results and Discussions:

In Fig. (3.1) we plot LO QNS in HTLpt for two-flavor system along-with perturbative

and various lattice QCD data.
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R. Gavai et al for Nτ=6

Figure 3.1: The 2-flavor scaled QNS with that of free one as a function of
T/TC . The solid lines are for LO in HTLpt whereas the dashed lines are for LO
in pQCD [133, 157, 169, 234]. The different choices of the renormalization scale are
Q = 2πT (red), and 4πT (blue). The symbols represent the various lattice
data [102–104,109–111,116].

It is clear from Fig. (3.1) that the dependence on renormalization scale in case of

HTLpt is less than that of pQCD [133, 157, 169, 234] results of order g2. Also the 2

flavor LO QNS in HTLpt is higher in all temperature range than pQCD results and

HTLpt results are in good aggrement with lattice QCD data. Moreover, it also shows

the same trend as the available lattice results for (2 + 1)−flavors [109–112,116,117]

as well as for 2−flavors [102–104], though there is a large variation among the

various lattice results. In Fig. (3.1), the green triangles (with Tc = 191 MeV) and

purple squares (with Tc = 185 MeV) represent p4 lattice QCD data [110, 116], the
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squares (cyan) and stars (saffron) are from asqtad lattice QCD data [111] for (2+1)-

flavor, m = 0.2ms and Tc = 186 ± 4 MeV. The solid circles (purple) represent

lattice QCD data [102–104] for Tc = 0.49ΛMS. The quark mass ranges between

(0.1 to 0.2)ms, where ms is the strange quark mass near its physical value. Note

that further lowering the quark mass to its physical value seems to have a small

effect [117] for T > 200 MeV. The details of these lattice results are also summarized

in Ref. [112]. A detailed analysis on uncertainties of the ingredients in the lattice

QCD calculations is presented in Refs. [110,117]. This calls for further investigation

both on the analytic side by improving the HTL resummation schemes and on the

lattice side by refining the various lattice ingredients.
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Figure 3.2: (Color online) Left panel: The ratio of 2-flavour HTL to free quark QNS
and also that of LO perturbative one as a function of mq/T . Right panel: R as a
function of mq/T .

In the left panel of Fig. 3.2 we display the LO HTL and perturbative QNS [157]

scaled with free one vs mq/T . In the weak coupling limit both approach unity

whereas HTL has a little slower deviation from ideal gas value. Now, in the right

panel we plot a ratio [157, 169], R ≡ (χhtl − χf)/(χp(g2) − χf), which measures the

deviation of interaction of χhtl from that of pQCD in order g2. It approaches unity

in the weak coupling limit implying the correct inclusion [157,169] of order g2 in our

approach in a truly perturbative sense.

69



CHAPTER 3. ONE LOOP HTL THERMODYNAMICS

Recently, an improved lattice calculation [305] has been performed within the quenched

approximation of QCD where the temporal correlation function is determined. Using

the LO HTLpt QNS in Eq. (3.35) we now obtain the temporal correlation function

in Eq. (3.17) and compare with the recent lattice data [305]. In Fig. (3.3) the scaled

0 0.2 0.4 0.6 0.8 1
τT

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

-G
0
0
(τ

T
)/

N
fT

3

HTL: Q=2πT
pQCD: Q=2πT
HTL: Q=4πT
pQCD: Q=4πT
Free Gas

LQCD (128
3
 x 48)

T=1.45T
C

; N
f
=1

0 0.2 0.4 0.6 0.8 1
τT

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

-G
0
0
(τ

T
)/

N
fT

3

HTL: Q=2πT
pQCD: Q=2πT
HTL: Q=4πT
pQCD: Q=4πT
Free Gas

LQCD(128
3
x48)

T=1.45T
C
 ; N

f
=3

Figure 3.3: The scaled temporal correlation function with T 3 for Nf = 1 (left panel)
and Nf = 3 (right panel) at T = 1.45TC for Q = 2πT (red) and 4πT (blue) as
a function of scaled Euclidean time, τT . The symbols represent the recent lattice
data [305] on lattices of size 1283 × 48 for quark mass 0.1T in quenched QCD.

temporal correlation function with T 3 is shown for Nf = 1 (left panel) and Nf = 3

(right panel) at T = 1.45Tc. We first note that the correlation functions both in

HTLpt and pQCD have weak flavor dependence due to the temperature dependent

coupling, αs as discussed before. The LO HTLpt result indicates an improvement

over that of the pQCD one [133,157,169,234] for different choices of the renormaliza-

tion scale as shown in Fig. (3.3). Also, the HTLpt result shows a good agreement to

that of recent lattice gauge theory calculation [305] performed on lattices up to size

1283 × 48 in quenched approximation for a quark mass ∼ 0.1T . We also note that

unlike the dynamical spatial part of the correlation function in the vector channel

the temporal part does not encounter any infrared problem in the low energy part as

it is related to the static quantity through the thermodynamic sum rule associated
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Figure 3.4: Same as Fig. (3.3) but at T = 1.2TC and the corresponding lattice data
are preliminary [311] with lattice size 1483 × 40.

with the corresponding symmetry, viz., the number conservation of the system.

We also presented two extreme cases of HTLpt temporal correlation function at

T = 1.2TC in Fig. (3.4) and at T ∼ 3TC in Fig. (3.5), respectively, for two different

flavors and compare with the corresponding preliminary lattice data [311], which

are also found to be in good agreement.

3.5 Conclusion

The LO QNS as a response of the conserved density fluctuation in HTLpt when com-

pared with the available lattice data [102–104,109–111,116] in the literature within

their wide variation shows the same trend but deviates from those in certain extent.

The same HTL QNS is used to compute the temporal part of the Euclidean corre-

lation in vector current which agrees quite well with that of improved lattice gauge

theory calculations [305,311] recently performed within quenched approximation on

lattices up to size 1283 × 48 for a quark mass ∼ 0.1T . Leaving aside the difference

in ingredients in various lattice calculations, one can expect that the HTLpt and
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Figure 3.5: Same as Fig. (3.3) but at T = 2.98TC and the corresponding lattice data
are preliminary [311] with lattice size 1483 × 16.

lattice calculations are in close proximity for quantities associated with the con-

served density fluctuation. The leading order quark number susceptibility in HTL

perturbation theory produces correct O(g2) perturbative results when expanded in

a strict power series in g. So make the results more reliable for heavy-ion-collisions

experiments, we need to go beyond leading order calculations. In the following two

chapters, we will discuss about thermodynamic calculations beyond leading order.
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CHAPTER 4

Two-loop HTL Thermodynamics

In this chapter, we study the two-loop pressure and also second and fourth or-

der quark number susceptibility of QCD using the hard-thermal-loop perturbation

theory. This chapter is based on: Two-loop HTL pressure at finite temperature and

chemical potential, N. Haque, M. G. Mustafa, and M. Strickland, Phys. Rev. D87

(2013) 105007 and Quark Number Susceptibilities from Two-Loop Hard Thermal

Loop Perturbation Theory, N. Haque, M. G. Mustafa, and M. Strickland, JHEP

1307 (2013) 184.

4.1 Introduction

In Chapter 3, HTL perturbation theory has been applied to calculate LO thermo-

dynamics to the case of finite temperature and finite chemical potential and also to

calculate LO QNS. As discussed in Chapter 3, LO QNS in HTLpt produced correct

perturbative order up to g2 in strict perturbative expansion, it will be interesting

to go beyond leading order at finite temperature and finite chemical potential in

HTLpt.

In HTL perturbation theory the next-to-leading order (NLO) thermodynamic po-
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tential was computed in [172,173] at finite temperature and zero chemical potential.

But in view of the ongoing RHIC beam energy scan and planned FAIR experiments,

one is motivated to reliably determine the thermodynamic functions at finite chem-

ical potential. In this chapter we discuss the NLO pressure of quarks and gluons

at finite T and µ. The computation utilizes a high temperature expansion through

fourth order in the ratio of the chemical potential to temperature. This allows us to

reliably access the region of high temperature and small chemical potential. We com-

pare our final result for the NLO HTLpt pressure at finite temperature and chemical

potential with state-of-the-art perturbative quantum chromodynamics (QCD) cal-

culations and available lattice QCD results.

Having the full thermodynamic potential as a function of chemical potential(s) and

temperature allows us to compute the quark number susceptibilities. For massless

quark flavors the QNS are usually defined as

χn(T ) ≡
∂nP
∂µn

∣∣∣∣
µ=0

, (4.1)

where P is the pressure of system, µ is the quark chemical potential and T is the

temperature of the system.

This chapter is organized as follows. In Sec. (4.2) we discuss various quantities

required to be calculated at finite chemical potential based on prior calculations

of the NLO thermodynamic at zero chemical potential [172, 173]. In Sec. (4.3) we

reduce the sum of various diagrams to scalar sum-integrals. A high temperature

expansion is made in Sec. (4.4) to obtain analytic expressions for both the LO and

NLO thermodynamic potential. In Secs. (4.5) and (4.6) we calculate the various

sum-integrals and d−dimensional integrals that appear in Sec. (4.4). We then use

the results of Secs. (4.4), (4.5) and (4.6) to compute the pressure in Sec. (4.7). We

compute second and fourth order quark number susceptibilities in Sec. (4.8). We

finaly conclude in Sec. (4.9).
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4.2 Ingredients for the NLO Thermodynamic po-

tential in HTLpt

The LO HTLpt thermodynamic potential, ΩLO, for an SU(Nc) gauge theory with Nf

massless quarks in the fundamental representation can be written as [164,172,173]

ΩLO = dAFg + dFFq +∆0E0 , (4.2)

where dF = NfNc and dA = N2
c − 1 with Nc is the number of colors. Fq and Fg are

the one loop contributions to quark and gluon free energies, respectively. The LO

counter-term is the same as in the case of zero chemical potential [164]

∆0E0 =
dA

128π2ǫ
m4
D . (4.3)

At NLO one must consider the diagrams shown in Fig. (4.1). The resulting NLO

Σ

Fq Fqct

F3qg F4qg

Figure 4.1: Diagrams containing fermionic lines relevant for NLO thermodynamics
potential in HTLpt with finite chemical potential. Shaded circles indicate HTL n-point
functions.
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HTLpt thermodynamic potential can be written in the following general form [173]

ΩNLO = ΩLO + dA [F3g + F4g + Fgh + Fgct] + dAsF [F3qg + F4qg]

+dFFqct +∆1E0 +∆1m
2
D

∂

∂m2
D

ΩLO +∆1m
2
q

∂

∂m2
q

ΩLO , (4.4)

where sF = Nf/2. At NLO the terms that depend on the chemical potential are Fq,

F3qg, F4qg, Fqct, ∆1m
2
q , and ∆1m

2
D as displayed in Fig. (4.1). The other terms, e.g.

Fg, F3g, F4g, Fgh and Fgct coming from gluon and ghost loops remain the same as

the µ = 0 case [172,173]. We also add that the vacuum energy counter-term, ∆1E0,

remains the same as the µ = 0 case whereas the mass counter-terms, ∆1m
2
D and

∆1m
2
q , have to be computed for µ 6= 0. These counter-terms are of order δ. This

completes a general description of contributions one needs to compute in order to

determine NLO HTLpt thermodynamic potential at finite chemical potential. We

now proceed to the scalarization of the necessary diagrams.

4.3 Scalarization of the fermionic diagrams

The one-loop quark contribution coming from the first diagram in Fig. (4.1) can be

written as

Fq = −
∑∫

{P}

log det [P/− Σ(P )] = −2
∑∫

{P}

logP 2 − 2
∑∫

{P}

log

[
A2
S − A2

0

P 2

]
, (4.5)

where A0 and AS are defined in Eq. (2.76) of Chapter 2 in Minkowski space. We

can write it in Euclidean space as

A0(P ) = iP0 −
m2
q

iP0
TP , (4.6)

AS(P ) = |p|+ m2
q

|p| [1− TP ] , (4.7)
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and TP is defined by the following integral [172, 173] in Euclidean space as

TP =

〈
P 2
0

P 2
0 + p2c2

〉

c

=
ω(ǫ)

2

1∫

−1

dc (1− c2)−ǫ
iP0

iP0 − |p|c , (4.8)

with w(ǫ) = 22ǫ Γ(2 − 2ǫ)/Γ2(1 − ǫ). In three dimensions i.e for ǫ → 0, Eq. (4.8)

reduces to

TP =
iP0

2|p| log
iP0 + |p|
iP0 − |p| , (4.9)

with P ≡ (P0,p). In practice, one must use the general form and only take the limit

ǫ→ 0 after regularization/renormalization.

The HTL quark counter-term at one-loop order can be rewritten from the second

diagram in Fig. (4.1) as

Fqct = −4
∑∫

{P}

P 2 +m2
q

A2
S − A2

0

. (4.10)

The two-loop contributions coming from the third and fourth diagrams in Fig. (4.1)

are given, respectively, by

F3qg =
1

2
g2
∑∫

P{Q}

Tr [Γµ(P,Q,R)S(Q)× Γν(P,Q,R)S(R)]∆µν(P ) , (4.11)

F4qg =
1

2
g2
∑∫

P{Q}

Tr [Γµν(P,−P,Q,Q)S(Q)]∆µν(P ) , (4.12)

where S is the quark propagator which is given by S = (γµAµ)
−1 with Aµ =

(A0(P ), AS(P )p̂) and ∆µν is the gluon propagator. The general covariant gauge

∆µν can be found in Eq. (2.54) of Chapter 2 in Minkowski space. Also above Γµ and

Γµν are HTL-resummed 3- and 4-point functions can be found in Chapter 2. Many

more details concerning the HTL n-point functions including the general Coulomb
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gauge propagator etc. can be found in Chapter 2 and also in appendices of Refs. [164,

172, 173].

In general covariant gauge, the sum of (4.11) and (4.12) reduces to

F3qg+4qg =
1

2
g2
∑∫

P{Q}

{
∆X(P )Tr

[
Γ00S(Q)

]
−∆T (P )Tr [Γ

µS(Q)ΓµS(R′)]

+∆X(P )Tr
[
Γ0S(Q)Γ0S(R′)

]
}
, (4.13)

where ∆T is the transverse gluon propagator, ∆X is a combination of the longitudinal

and transverse gluon propagators [172,173], and R′ = Q− P . After performing the

traces of the γ-matrices one obtains [172, 173]

F3qg+4qg = −g2
∑∫

P{Q}

1

A2
S(Q)−A2

0(Q)

[
2(d− 1)∆T (P )

q̂·r̂AS(Q)AS(R)− A0(Q)A0(R)

A2
S(R)−A2

0(R)

− 2∆X(P )
A0(Q)A0(R) + AS(Q)AS(R)q̂·r̂

A2
S(R)− A2

0(R)

− 4m2
q∆X(P )

〈
A0(Q)−As(Q)q̂·ŷ
(P ·Y )2 − (Q·Y )2

1

(Q·Y )

〉

ŷ

+
8m2

q∆T (P )

A2
S(R)− A2

0(R)

〈
(A0(Q)− AS(Q)q̂·ŷ)(A0(R)− AS(R)r̂·ŷ)

(Q·Y )(R·Y )

〉

ŷ

+
4m2

q∆X(P )

A2
S(R)− A2

0(R)

〈
2A0(R)AS(Q)q̂·ŷ−A0(Q)A0(R)−AS(Q)AS(R)q̂·r̂

(Q·Y )(R·Y )

〉

ŷ

]

+ O(g2m4
q) , (4.14)

where A0 and AS are defined in (4.6) and (4.7), respectively. We add that the

exact evaluation of two-loop free energy could be performed numerically and would

involve 5-dimensional integrations; however, one would need to be able to identify

all divergences and regulate the numerical integration appropriately. Short of this,

one can calculate the sum-integrals by expanding in a power series in mD/T , mq/T ,

and µ/T in order to obtain semi-analytic expressions.

78



CHAPTER 4. TWO-LOOP HTL THERMODYNAMICS

4.4 High temperature expansion

As discussed above, we make an expansion of two-loop free energies in a power series

of mD/T and mq/T to obtain a series which is nominally accurate to order g5. By

“nominally accurate” we mean that we expand the scalar integrals treating mD and

mq as O(g) keeping all terms which contribute through O(g5); however, the resulting

series is accurate to order g5 in name only.

In practice, the HTL n-point functions can have both hard and soft momenta scales

on each leg. At one-loop order the contributions can be classified “hard” or “soft”

depending on whether the loop momenta are order T or gT , respectively; however,

since the lowest fermionic Matsubara mode corresponds to P0 = πT , fermion loops

are always hard. The two-loop contributions to the thermodynamic potential can

be grouped into hard-hard (hh), hard-soft (hs), and soft-soft (ss) contributions.

However, we note that one of the momenta contributing is always hard since it

corresponds to a fermionic loop and therefore there will be no two-loop soft-soft

contribution. Below we calculate the various contributions to the sum-integrals

presented in Sec. (4.3).

4.4.1 One-loop sum-integrals

The one-loop sum-integrals (4.5) and (4.10) correspond to the first two diagrams in

Fig. (4.1). They represent the leading-order quark contribution and order-δ HTL

counterterm. We will expand the sum-integrals through order m4
q taking mq to be

of (leading) order g. This gives a result which is nominally accurate (at one-loop)

through order g5. 1

1Of course, this won’t reproduce the full g5 pQCD result in the limit g → 0. In order to repro-
duce all known coefficients through O(g5), one would need to perform a NNLO HTLpt calculation.
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Hard Contribution

The hard contribution to the one-loop quark self-energy in (4.5) can be expanded

in powers of m2
q as

F (h)
q = −2

∑∫

{P}

logP 2 − 4m2
q

∑∫

{P}

1

P 2
+ 2m4

q

∑∫

{P}

[
2

P 4
− 1

p2P 2
+

2TP
p2P 2

− (TP )2
p2P 2

0

]
. (4.15)

Note that the function TP does not appear in m2
q term. The expressions for the

sum-integrals in (4.15) are listed in Sec.( 4.5). Using those expressions, the hard

contribution to the quark free energy becomes

F (h)
q = −7π2

180
T 4

(
1 +

120

7
µ̂2 +

240

7
µ̂4

)
+

(
Λ

4πT

)2ǫ m2
qT

2

6

[ (
1 + 12µ̂2

)

+ ǫ

(
2− 2 ln 2 + 2

ζ ′(−1)

ζ(−1)
+ 24(γE + 2 ln 2)µ̂2 − 28ζ(3)µ̂4 +O

(
µ̂6
))]

+
m4
q

12π2
(π2 − 6) . (4.16)

Expanding the HTL quark counter-term in (4.10) one can write

F (h)
qct = 4m2

q

∑∫

{P}

1

P 2
− 4m4

q

∑∫

{P}

[
2

P 4
− 1

p2P 2
+

2

p2P 2
TP − 1

p2P 2
0

(TP )2
]
, (4.17)

where the expressions for various sum-integrals in (4.17) are listed in Sec. (4.5).

Using those expressions, the hard contribution to the HTL quark counter-term be-

comes

F (h)
qct = −m

2
qT

2

6

(
1 + 12µ̂2

)
− m4

q

6π2
(π2 − 6) . (4.18)

We note that the first term in (4.18) cancels the order-ǫ0 term in the coefficient of

m2
q in (4.16). There are no soft contributions either from the leading-order quark

term in (4.5) or from the HTL quark counter-term in (4.10).
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4.4.2 Two-loop sum-integrals

Since the two-loop sum-integrals given in (4.13) contain an explicit factor of g2, we

only require an expansion to order m2
qmD/T

3 and m3
D/T

3 in order to determine all

terms contributing through order g5. We note that the soft scales are given by mq

and mD whereas the hard scale is given by T , which leads to two different phase-

space regions as discussed in Sec. 4.4.1. In the hard-hard region, all three momenta

P , Q, and R are hard whereas in the hard-soft region, two of the three momenta

are hard and the other one is soft.

The hh contribution

The self-energies for hard momenta are suppressed [150,155,156,172,173] by m2
D/T

2

or m2
q/T

2 relative to the propagators. For hard momenta, one just needs to expand

in powers of gluon self-energies ΠT , ΠL, and quark self-energy Σ. So, the hard-hard

contribution of F3qg and F4qg in (4.13) can be written as

F (hh)
3qg+4qg = (d− 1)g2



∑∫

{PQ}

1

P 2Q2
− 2

∑∫

P{Q}

1

P 2Q2




+ 2m2
Dg

2
∑∫

P{Q}

[
1

p2P 2Q2
TP +

1

P 4Q2
− d− 2

d− 1

1

p2P 2Q2

]

+ m2
Dg

2
∑∫

{PQ}

[
d+ 1

d− 1

1

P 2Q2r2
− 4d

d− 1

q2

P 2Q2r4
− 2d

d− 1

P ·Q
P 2Q2r4

]
TR

+ m2
Dg

2
∑∫

{PQ}

[
3− d

d− 1

1

P 2Q2R2
+

2d

d− 1

P ·Q
P 2Q2r4

− d+ 2

d− 1

1

P 2Q2r2

+
4d

d− 1

q2

P 2Q2r4
− 4

d− 1

q2

P 2Q2r2R2

]

+ 2m2
qg

2(d− 1)
∑∫

{PQ}

[
1

P 2Q2
0Q

2
+

p2 − r2

q2P 2Q2
0R

2

]
TQ
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+ 2m2
qg

2(d− 1)
∑∫

P{Q}

[
2

P 2Q4
− 1

P 2Q2
0Q

2
TQ
]

+ 2m2
qg

2(d− 1)
∑∫

{PQ}

[
d+ 3

d− 1

1

P 2Q2R2
− 2

P 2Q4
− p2 − r2

q2P 2Q2R2

]
, (4.19)

where the various sum-integrals and integrals are evaluated in Sec. (4.5) and (4.6).

Using those results, the hh contribution becomes

F (hh)
3qg+4qg =

5π2

72

αs
π
T 4

[
1 +

72

5
µ̂2 +

144

5
µ̂4

]

− 1

72

αs
π

(
Λ

4πT

)4ǫ [
1 + 6(4− 3ζ(3)) µ̂2 − 120(ζ(3)− ζ(5)) µ̂4 +O (µ̂6)

ǫ

+ 1.3035− 59.9055 µ̂2 − 75.4564 µ̂4 +O
(
µ̂6
) ]
m2
DT

2

+
1

8

αs
π

(
Λ

4πT

)4ǫ [
1− 12 µ̂2

ǫ
+ 8.9807− 152.793 µ̂2

+115.826 µ̂4 +O
(
µ̂6
) ]
m2
qT

2 . (4.20)

The hs contribution

Following Ref. [172, 173] one can extract the hard-soft contribution from (4.13)

as the momentum P is soft whereas momenta Q and R are always hard. The

function associated with the soft propagator ∆T (0,p) or ∆X(0,p) can be expanded

in powers of the soft momentum p. For ∆T (0,p), the resulting integrals over p

are not associated with any scale and they vanish in dimensional regularization.

The integration measure
∫
p
scales like m3

D, the soft propagator ∆X(0,p) scales like

1/m2
D, and every power of p in the numerator scales like mD.

The contributions that survive only through order g2m3
DT and m2

qmDg
3T from F3qg

and F4qg in (4.13) are

F (hs)
3qg+4qg = g2T

∫

p

1

p2 +m2
D

∑∫

{Q}

[
2

Q2
− 4q2

Q4

]
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+ 2m2
Dg

2T

∫

p

1

p2 +m2
D

∑∫

{Q}

[
1

Q4
− 2(3 + d)

d

q2

Q6
+

8

d

q4

Q8

]

− 4m2
qg

2T

∫

p

1

p2 +m2
D

∑∫

{Q}

[
3

Q4
− 4q2

Q6
− 4

Q4
TQ − 2

Q2

〈
1

(Q·Y )2
〉

ŷ

]
. (4.21)

Using the sum-integrals and integrals contained in Sec. (4.5) and (4.6), the hard-soft

contribution becomes

F (hs)
3qg+4qg = −1

6
αsmDT

3(1 + 12 µ̂2)− αs
2π2

m2
qmDT +

(
Λ

4πT

)2ǫ(
Λ

2mD

)2ǫ

m3
DT

× αs
24π2

[
1

ǫ
+ 1 + 2γE + 4 ln 2− 14ζ(3) µ̂2 + 62ζ(5) µ̂4 +O

(
µ̂6
)]
. (4.22)

The ss contribution

As discussed earlier in Sec. (4.4) there is no soft-soft contribution from the diagrams

in Fig. (4.1) since at least one of the loops is fermionic.

4.4.3 Thermodynamic potential

Now we can obtain the thermodynamic potential through two-loop order in HTL

perturbation theory for which the contributions involving quark lines are computed

here whereas the ghost and gluon contributions are computed in Refs. [172,173]. We

also follow the variational mass prescription as discussed in Chapter 3 to determine

the mass parameter mD and mq from respective gap equations. The details about

the variational mass prescription will be discussed in Sec. 4.7.2.

Leading order thermodynamic potential

Using the expressions of Fq with finite quark chemical potential in (4.16) and Fg

from Ref. [172, 173], the total contributions from the one-loop diagrams including
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all terms through order g5 becomes

Ωone loop = −dA
π2T 4

45

{
1 +

7

4

dF
dA

(
1 +

120

7
µ̂2 +

240

7
µ̂4

)

− 15

2

[
1 + ǫ

(
2 + 2

ζ ′(−1)

ζ(−1)
+ 2 ln

Λ̂

2

)]
m̂2
D

− 30
dF
dA

[ (
1 + 12µ̂2

)
+ ǫ
(
2− 2 ln 2 + 2

ζ ′(−1)

ζ(−1)
+ 2 ln

Λ̂

2
+ 24(γE + 2 ln 2)µ̂2

− 28ζ(3)µ̂4 +O
(
µ̂6
)
)]

m̂2
q + 30

(
Λ

2mD

)2ǫ [
1 +

8

3
ǫ

]
m̂3
D

+
45

8

(
1

ǫ
+ 2 ln

Λ̂

2
− 7 + 2γE +

2π2

3

)
m̂4
D − 60

dF
dA

(π2 − 6)m̂4
q

}
, (4.23)

where m̂D, m̂q, Λ̂, and µ̂ are dimensionless variables:

m̂D =
mD

2πT
, (4.24)

m̂q =
mq

2πT
, (4.25)

Λ̂ =
Λ

2πT
, (4.26)

µ̂ =
µ

2πT
. (4.27)

Adding the counterterm in (4.3), we obtain the thermodynamic potential at leading

order in the δ-expansion:

ΩLO = −dA
π2T 4

45

{
1 +

7

4

dF
dA

(
1 +

120

7
µ̂2 +

240

7
µ̂4

)

− 15

2

[
1 + ǫ

(
2 + 2

ζ ′(−1)

ζ(−1)
+ 2 ln

Λ̂

2

)]
m̂2
D

− 30
dF
dA

[(
1 + 12µ̂2

)
+ ǫ
(
2− 2 ln 2 + 2

ζ ′(−1)

ζ(−1)
+ 2 ln

Λ̂

2
+ 24(γE + 2 ln 2)µ̂2

− 28ζ(3)µ̂4 +O
(
µ̂6
) )]

m̂2
q + 30

(
Λ

2mD

)2ǫ [
1 +

8

3
ǫ

]
m̂3
D

+
45

8

(
2 ln

Λ̂

2
− 7 + 2γE +

2π2

3

)
m̂4
D − 60

dF
dA

(π2 − 6)m̂4
q

}
, (4.28)
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where we have kept terms of O(ǫ) since they will be needed for the two-loop renor-

malization.

Next-to-leading order thermodynamic potential

The complete expression for the next-to-leading order correction to the thermody-

namic potential is the sum of the contributions from all two-loop diagrams, the

quark and gluon counter-terms, and renormalization counterterms. Adding the con-

tributions of the two-loop diagrams, F3qg+4qg, involving a quark line in (4.20) and

(4.22) and the contributions of F3g+4g+gh from Ref. [172, 173], one obtains

Ωtwo loop = −dA
π2T 4

45

αs
π

{
− 5

4

[
cA +

5

2
sF

(
1 +

72

5
µ̂2 +

144

5
µ̂4

)]

+ 15
(
cA + sF

(
1 + 12 µ̂2

))
m̂D − 55

8

[(
cA − 4

11
sF

[
1 + 6(4− 3ζ(3))µ̂2

− 120(ζ(3)− ζ(5)) µ̂4 +O
(
µ̂6
) ])

(
1

ǫ
+ 4 ln

Λ̂

2

)

− sF
(
0.471− 34.876 µ̂2 − 21.021 µ̂4 +O

(
µ̂6
))

− cA

(
72

11
ln m̂D − 1.969

)]
m̂2
D − 45

2
sF

[ (
1− 12µ̂2

)
(
1

ǫ
+ 4 ln

Λ̂

2

)

+ 8.981− 152.793µ̂2 + 115.826µ̂4 +O
(
µ̂6
) ]
m̂2
q

+ 180sF m̂Dm̂
2
q +

165

4

[(
cA − 4

11
sF

)(
1

ǫ
+ 4 ln

Λ̂

2
− 2 ln m̂D

)

+ cA

(
27

11
+ 2γE

)
− 4

11
sF

(
1 + 2γE + 4 ln 2− 14ζ(3) µ̂2

+ 62ζ(5) µ̂4 +O
(
µ̂6
) )]

m̂3
D

}
, (4.29)

where cA = Nc and sF = Nf/2.

The HTL gluon counter-term is the same as obtained at zero chemical potential in

Refs. [172, 173] and can be written as
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Ωgct = −dA
π2T 4

45

[
15

2
m̂2
D − 45m̂3

D − 45

4

(
1

ǫ
+ 2 ln

Λ̂

2
− 7 + 2γE +

2π2

3

)
m̂4
D

]
. (4.30)

The HTL quark counterterm as given by (4.18) is

Ωqct = −dF
π2T 4

45

[
30(1 + 12 µ̂2) m̂2

q + 120(π2 − 6) m̂4
q

]
. (4.31)

The ultraviolet divergences that remain after adding (4.29), (4.30), and (4.31) can

be removed by renormalization of the vacuum energy density E0 and the HTL mass

parameter mD and mq. The renormalization contributions [172, 173] at first order

in δ are

∆Ω = ∆1E0 +∆1m
2
D

∂

∂m2
D

ΩLO +∆1m
2
q

∂

∂m2
q

ΩLO . (4.32)

The counterterm ∆1E0 at first order in δ will be same as the zero chemical potential

counterterm

∆1E0 = − dA
64π2ǫ

m4
D . (4.33)

The mass counterterms necessary at first order in δ are found to be

∆1m̂
2
D = − αs

3πǫ

[
11

4
cA − sF − sF (1 + 6m̂D)

×
[
(24− 18ζ(3))µ̂2 + 120(ζ(5)− ζ(3))µ̂4 +O

(
µ̂6
) ]
]
m̂2
D (4.34)

and

∆1m̂
2
q = − αs

3πǫ

[
9

8

dA
cA

]
1− 12 µ̂2

1 + 12 µ̂2
m̂2
q . (4.35)

86



CHAPTER 4. TWO-LOOP HTL THERMODYNAMICS

Using the above counterterms, the complete contribution from the counterterms in

(4.32) at first order in δ at finite chemical potential becomes

∆Ω = −dA
π2T 4

45

{
45

4ǫ
m̂4
D +

αs
π

[
55

8

(
cA − 4

11
sF

[
1 + (24− 18ζ(3))µ̂2

+ 120(ζ(5)− ζ(3))µ̂4 +O
(
µ̂6
) ])

(
1

ǫ
+ 2 + 2

ζ ′(−1)

ζ(−1)
+ 2 ln

Λ̂

2

)
m̂2
D

− 165

4

(
cA − 4

11
sF

)(
1

ǫ
+ 2 + 2 ln

Λ̂

2
− 2 ln m̂D

)
m̂3
D

− 165

4

4

11
sF
[
(24− 18ζ(3))µ̂2 + 120(ζ(5)− ζ(3))µ̂4 +O

(
µ̂6
)]

×
(
2
ζ ′(−1)

ζ(−1)
+ 2 ln m̂D

)
m̂3
D

+
45

2
sF

1− 12 µ̂2

1 + 12 µ̂2

(
1 + 12 µ̂2

ǫ
+ 2 + 2 ln

Λ̂

2
− 2 ln 2 + 2

ζ ′(−1)

ζ(−1)

+ 24(γE + 2 ln 2) µ̂2 − 28ζ(3) µ̂4 +O
(
µ̂6
)
)
m̂2
q

]}
. (4.36)

Adding the contributions from the two-loop diagrams in (4.29), the HTL gluon and

quark counterterms in (4.30) and (4.31), the contribution from vacuum and mass

renormalizations in (4.36), and the leading-order thermodynamic potential in (4.28)

we obtain the complete expression for the QCD thermodynamic potential at next-

to-leading order in HTLpt:
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ΩNLO = −dA
π2T 4

45

{
1 +

7

4

dF
dA

(
1 +

120

7
µ̂2 +

240

7
µ̂4

)
− 15m̂3

D

− 45

4

(
log

Λ̂

2
− 7

2
+ γE +

π2

3

)
m̂4
D + 60

dF
dA

(
π2 − 6

)
m̂4
q

+
αs
π

[
− 5

4

(
cA +

5sF
2

(
1 +

72

5
µ̂2 +

144

5
µ̂4

))
+ 15

(
cA + sF (1 + 12µ̂2)

)
m̂D

− 55

4

{
cA

(
log

Λ̂

2
− 36

11
log m̂D − 2.001

)
− 4

11
sF

[(
log

Λ̂

2
− 2.337

)

+ (24− 18ζ(3))

(
log

Λ̂

2
− 15.662

)
µ̂2 + 120 (ζ(5)− ζ(3))

×
(
log

Λ̂

2
− 1.0811

)
µ̂4 +O

(
µ̂6
)
]}
m̂2
D − 45 sF

{
log

Λ̂

2
+ 2.198− 44.953µ̂2

−
(
288 ln

Λ̂

2
+ 19.836

)
µ̂4 +O

(
µ̂6
)
}
m̂2
q +

165

2

{
cA

(
log

Λ̂

2
+

5

22
+ γE

)

− 4

11
sF

(
log

Λ̂

2
− 1

2
+ γE + 2 ln 2− 7ζ(3)µ̂2 + 31ζ(5)µ̂4 +O

(
µ̂6
)
)}

m̂3
D

+ 15sF

(
2
ζ ′(−1)

ζ(−1)
+ 2 ln m̂D

)[
(24− 18ζ(3))µ̂2

+ 120(ζ(5)− ζ(3))µ̂4 +O
(
µ̂6
) ]
m̂3
D + 180 sF m̂Dm̂

2
q

]}
. (4.37)

4.5 The necessary Sum-Integrals

In the imaginary-time (Euclidean time) formalism for the field theory of a hot and

dense medium, the 4-momentum P = (P0,p) is Euclidean with P 2 = P 2
0 + p2.

The Euclidean energy P0 has discrete values: P0 = 2nπT for bosons and P0 =

(2n + 1)πT − iµ for fermions, where n is an integer running from −∞ to ∞, µ is

the quark chemical potential, and T = 1/β is the temperature of the medium. Loop

diagrams usually then involve sums over P0 and integrals over p. In dimensional

regularization, the integral over spatial momentum is generalized to d = 3−2ǫ spatial
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dimensions. The dimensionally regularized bosonic and fermionic sum-integrals are

defined in Eq. (1.18). All other frequency sums that appear in this chapter can be

evaluated using the contour integration technique as discussed in Chapter 2 and are

listed below:

4.5.1 Simple one loop sum-integrals

The specific fermionic one-loop sum-integrals needed are

∑∫

{P}

lnP 2 =
7π2

360
T 4

(
1 +

120 µ̂2

7
+

240 µ̂4

7

)
. (4.38)

∑∫

{P}

1

P 2
= −T

2

24

(
Λ

4πT

)2ǫ
[
1 + 12µ̂2 + ǫ

(
2− 2 ln 2 + 2

ζ ′(−1)

ζ(−1)

+ 24(γE + 2 ln 2)µ̂2 − 28ζ(3) µ̂4 +O
(
µ̂6
))

+ ǫ2
(
4 +

π2

4
− 4 ln 2 + 4(1− ln 2)

ζ ′(−1)

ζ(−1)
− 2 ln2 2

+ 2
ζ ′′(−1)

ζ(−1)
+ 94.5749 µ̂2 − 143.203 µ̂4 +O

(
µ̂6
))
]
. (4.39)

∑∫

{P}

1

P 4
=

1

(4π)2

(
Λ

4πT

)2ǫ
[
1

ǫ
+ 2γE + 4 ln 2− 14 ζ(3) µ̂2

+ 62 ζ(5) µ̂4 +O
(
µ̂6
)
+ ǫ

(
4(2γE + ln 2) ln 2

− 4γ1 +
π2

4
− 71.6013 µ̂2 + 356.329 µ̂4 +O

(
µ̂6
))
]
. (4.40)

∑∫

{P}

p2

P 4
= −T

2

16

(
Λ

4πT

)2ǫ [
1 + 12 µ̂2 + ǫ

(
4

3
− 2 ln 2 + 2

ζ ′(−1)

ζ(−1)

+8(3γE + 6 ln 2− 1) µ̂2 − 28 ζ(3) µ̂4 +O
(
µ̂6
))]

. (4.41)
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∑∫

{P}

p2

P 6
=

3

4(4π)2

(
Λ

4πT

)2ǫ
[
1

ǫ
+ 2γE − 2

3
+ 4 ln 2

− 14ζ(3)µ̂2 + 62ζ(5) µ̂4 +O
(
µ̂6
)
]
. (4.42)

∑∫

{P}

p4

P 6
= −5T 2

64

(
Λ

4πT

)2ǫ [
1 + 12 µ̂2 + ǫ

(
14

15
− 2 ln 2 + 2

ζ ′(−1)

ζ(−1)

+8

(
−8

5
+ 3γE + 6 ln 2

)
µ̂2 − 28 ζ(3) µ̂4 +O

(
µ̂6
))]

. (4.43)

∑∫

{P}

p4

P 8
=

1

(4π)2

(
Λ

4πT

)2ǫ
5

8

[
1

ǫ
+

(
2γE − 16

15
+ 4 ln 2− 14 ζ(3) µ̂2

+ 62 ζ(5) µ̂4 +O
(
µ̂6
))
]
. (4.44)

∑∫

{P}

1

p2P 2
=

1

(4π)2

(
Λ

4πT

)2ǫ

2

[
1

ǫ
+
(
2 + 2γE + 4 ln 2− 14 ζ(3) µ̂2

+ 62 ζ(5) µ̂4 +O
(
µ̂6
) )

+ ǫ
(
4 + 8 ln 2 + 4 ln2 2 + 4γE

+ 8γE ln 2 +
π2

4
− 4γ1 − 105.259 µ̂2 + 484.908 µ̂4 +O

(
µ̂6
) )
]
. (4.45)

where γ1, appearing in Eqs. (4.40) and (4.45), is the first Stieltjes gamma constant

defined by the equation

ζ(1 + z) =
1

z
+ γE − γ1z +O(z2). (4.46)

and the numerical value of γ1 ≈ −0.0728158.
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4.5.2 HTL one loop sum-integrals

We also need some more difficult one-loop sum-integrals that involve the HTL func-

tion defined in (4.8). The specific fermionic sum-integrals needed are

∑∫

{P}

1

P 4
TP =

1

(4π)2

(
Λ

4πT

)2ǫ
1

2

[
1

ǫ
+

(
1 + 2γE + 4 ln 2− 14 ζ(3) µ̂2

+ 62 ζ(5) µ̂4 +O
(
µ̂6
))
]
. (4.47)

∑∫

{P}

1

p2P 2
TP =

2

(4π)2

(
Λ

4πT

)2ǫ
[
ln 2

ǫ
+
π2

6
+ 2γE ln 2

+ ln 2
(
5 ln 2− 14 ζ(3)µ̂2 + 62 ζ(5)µ̂4 +O

(
µ̂6
) )

+ ǫ
(
17.5137− 85.398 µ̂2 + 383.629 µ̂4 +O

(
µ̂6
))
]
. (4.48)

∑∫

{P}

1

P 2P 2
0

TP =
1

(4π)2

(
Λ

4πT

)2ǫ
[
1

ǫ2
+

2

ǫ

(
γE + 2 ln 2− 7 ζ(3)µ̂2

+ 31 ζ(5)µ̂4 +O
(
µ̂6
) )

+
π2

4
+ 4 ln2 2

+ 8γE ln 2− 4γ1 − 71.601µ̂2 + 356.329µ̂4 +O
(
µ̂6
)
]
. (4.49)

∑∫

{P}

1

p2P 2
0

(TP )2 =
4

(4π)2

(
Λ

4πT

)2ǫ

ln 2

[
1

ǫ
+ (2γE + 5 ln 2)− 14 ζ(3) µ̂2

+ 62 ζ(5) µ̂4 +O
(
µ̂6
)
]
. (4.50)

∑∫

{P}

1

P 2

〈
1

(P · Y )2
〉

ŷ

= − 1

(4π)2

(
Λ

4πT

)2ǫ
[
1

ǫ
− 1 + 2γE + 4 ln 2− 14 ζ(3) µ̂2

+ 62 ζ(5) µ̂4 +O
(
µ̂6
)
]
. (4.51)
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4.5.3 Simple two loop sum-integrals

∑∫

{PQ}

1

P 2Q2R2
=

T 2

(4π)2

(
Λ

4πT

)4ǫ [
µ̂2

ǫ
+ 2(4 ln 2 + 2γE + 1)µ̂2 − 28

3
ζ(3)µ̂4 +O

(
µ̂6
)]
. (4.52)

∑∫

{PQ}

1

P 2Q2r2
= − T 2

(4π)2

(
Λ

4πT

)4ǫ
1

6

[
1

ǫ

(
1 + 12µ̂2

)
+ 4− 2 ln 2 + 4

ζ ′(−1)

ζ(−1)

+ 48 (1 + γE + ln 2) µ̂2 − 76ζ(3) µ̂4 +O
(
µ̂6
)
]
. (4.53)

∑∫

{PQ}

p2

P 2Q2r4
=

T 2

(4π)2

(
Λ

4πT

)4ǫ(
− 1

12

)[
1

ǫ

(
1 + 12µ̂2

)
+

11

3
+ 2γE

− 2 ln 2 + 2
ζ ′(−1)

ζ(−1)
+ 4 (7 + 12γE + 12 ln 2− 3ζ(3)) µ̂2

− 4 (27ζ(3)− 20ζ(5)) µ̂4 +O
(
µ̂6
)
]
. (4.54)

∑∫

{PQ}

P ·Q
P 2Q2r4

= − T 2

(4π)2

(
Λ

4πT

)4ǫ
1

36

[
1− 6γE + 6

ζ ′(−1)

ζ(−1)
+ 24 {2 + 3ζ(3)} µ̂2

+ 48(7ζ(3)− 10ζ(5)) µ̂4 +O(µ̂6)

]
. (4.55)

∑∫

{PQ}

p2

r2P 2Q2R2
= − T 2

(4π)2

(
Λ

4πT

)4ǫ
1

72

[
1

ǫ

(
1− 12(1− 3ζ(3)) µ̂2

+ 240(ζ(3)− ζ(5)) µ̂4 +O
(
µ̂6
) )

−
(
7.001− 108.218 µ̂2 − 304.034 µ̂4 +O(µ̂6)

)
]
. (4.56)
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∑∫

{PQ}

p2

q2P 2Q2R2
=

T 2

(4π)2

(
Λ

4πT

)4ǫ
5

72

[
1

ǫ

(
1− 12

5
(1 + 7ζ(3)) µ̂2

− 24

5
(14ζ(3)− 31ζ(5)) µ̂4 +O

(
µ̂6
))

+
(
9.5424− 185.706 µ̂2 + 916.268 µ̂4 +O(µ̂6)

)
]
. (4.57)

∑∫

{PQ}

r2

q2P 2Q2R2
= − T 2

(4π)2

(
Λ

4πT

)4ǫ
1

18

[
1

ǫ

(
1 + 3(−2 + 7ζ(3))µ̂2

+ 6(14ζ(3)− 31ζ(5))µ̂4 + O(µ̂6)

)

+
(
8.143 + 96.935 µ̂2 − 974.609 µ̂4 +O(µ̂6)

)
]
. (4.58)

The generalized two loop sum-integrals can be written from [173] as

∑∫

{PQ}

|F (P )G(Q)H(R) =

∫

PQ

F (P )G(Q)H(R)

−
∫

p0,p

ǫ(p0)nF (|p0|) 2 ImF (−ip0 + ε,p)Re

∫

Q

G(Q)H(R)

∣∣∣∣
P0=−ip0+ε

−
∫

p0,p

ǫ(p0)nF (|p0|) 2 ImG(−ip0 + ε,p)Re

∫

Q

H(Q)F (R)

∣∣∣∣
P0=−ip0+ε

+

∫

p0,p

ǫ(p0)nB(|p0|) 2 ImH(−ip0 + ε,p)Re

∫

Q

F (Q)G(R)

∣∣∣∣
P0=−ip0+ε

+

∫

p0,p

ǫ(p0)nF (|p0|) 2 ImF (−ip0 + ε,p)

∫

q0,q

ǫ(q0)nF (|q0|) 2 ImG(−iq0 + ε,q)ReH(R)

∣∣∣∣
R0=i(p0+q0)+ε

−
∫

p0,p

ǫ(p0)nF (|p0|) 2 ImG(−ip0 + ε,p)

∫

q0,q

ǫ(q0)nB(|q0|) 2 ImH(−iq0 + ε,q)ReF (R)

∣∣∣∣
R0=i(p0+q0)+ε

−
∫

p0,p

ǫ(p0)nB(|p0|) 2 ImH(−ip0 + ε,p)

∫

q0,q

ǫ(q0)nF (|q0|) 2 ImF (−iq0 + ε,q)ReG(R)

∣∣∣∣
R0=i(p0+q0)+ε

.

(4.59)
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After applying Eq. (4.59) and using the delta function to calculate the P0 and Q0

integrations, the sum-integral (4.56) reduces to

∑∫

{PQ}

1

P 2Q2R2
=

∫

pq

n−
F (p)− n+

F (p)

2p

n−
F (q)− n+

F (q)

2q

2p q

∆(p, q, r)
, (4.60)

where

n±
F (p) =

1

eβ(p±µ) + 1
(4.61)

and

∆(p, q, r) = p4 + q4 + r4 − 2(p2q2 + q2r2 + p2r2) = −4p2q2(1− x2) , (4.62)

and using the result of Eq. (4.92), we get sum-integral (4.52) and agree with [13].

After applying Eq. (4.59), the sum-integral (4.53) reduces to

∑∫

{PQ}

1

P 2Q2r2
= −2

∫

p

nF (p)

2p

∫

Q

1

Q2r2
+

∫

pq

nF (p)nF (q)

4pq

1

r2
, (4.63)

where nF (p) = n−
F (p) + n+

F (p) . Now using the result of 4-dimensional integrals

from [173] and applying Eq. (4.85) and Eq. (4.87), we can calculate sum-integral

Eq. (4.53). The sum-integrals (4.54) can be calculated in same way:

∑∫

{PQ}

p2

P 2Q2r4
= −2

∫

p

nF (p)

2p

∫

Q

p2

Q2r4
+

∫

pq

nF (p)nF (q)

4pq

p2

r4
. (4.64)

The sum-integral (4.55) can be written as

∑∫

{PQ}

P ·Q
P 2Q2r4

=
∑∫

{PQ}

P0Q0

P 2Q2r4
+

1

2

∑∫

{PQ}

1

P 2Q2r2
−
∑∫

{PQ}

p2

P 2Q2r4
(4.65)
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Using Eq. (4.59) and after doing P0 and Q0 integrations, first sum-integral above

reduces to

∑∫

{PQ}

P0Q0

P 2Q2r4
=

∫

pq

n−
F (p)− n+

F (p)

2 p

n−
F (q)− n+

F (q)

2 q

p q

r4
, (4.66)

and the result is given in Eq. (4.91). The second term and third terms sum-integrals

above are linear combinations of Eq. (4.53) and Eq. (4.54). Adding all of them, we

get required sum-integral.

Similarly after applying Eq. (4.59), the sum-integral (4.56) reduces to

∑∫

{PQ}

p2

r2P 2Q2R2
=

∫

p

nB(p)

p

∫

Q

r2

p2Q2R2

∣∣∣∣∣∣
P0=−ip

−
∫

p

nF (p)

2p

∫

Q

1

Q2R2

(
q2

r2
+
p2

q2

)∣∣∣∣∣∣
P0=−ip

+

∫

pq

nF (p)nF (q)

4pq

q2

r2
r2 − p2 − q2

∆(p, q, r)

−
∫

pq

nF (p)nB(q)

4pq

p2 + r2

q2
r2 − p2 − q2

∆(p, q, r)
. (4.67)

So

〈
p2 + r2

q2
r2 − p2 − q2

∆(p, q, r)

〉

p̂·q̂
=

1

2q2 ǫ
, (4.68)

and

〈
q2

r2
r2 − p2 − q2

∆(p, q, r)

〉

p̂·q̂
=

〈
q2

∆(p, q, r)

〉

x

−
〈
q2(p2 + q2)

∆(p, q, r)

〉

x

,

=
1− 2ǫ

8ǫ

1

p2
− 1

2ǫ

〈
q2

r4

〉

x

− 1− 2ǫ

8ǫ

1

p2

= − 1

2ǫ

〈
q2

r4

〉

x

. (4.69)
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Using the above angular integration, Eq. (4.67) becomes

∑∫

{PQ}

p2

r2P 2Q2R2
=

∫

p

nB(p)

p

∫

Q

r2

p2Q2R2

∣∣∣∣∣∣
P0=−ip

−
∫

p

nF (p)

2p

∫

Q

1

Q2R2

(
q2

r2
+
p2

q2

)∣∣∣∣∣∣
P0=−ip

− 1

2ǫ

∫

pq

nF (p)nF (q)

4pq

p2

r4
− 1

2ǫ

∫

pq

nF (p)nB(q)

4pq

1

q2
. (4.70)

Using the 4-dimensional integrals from [173] and Eqs. (4.84), (4.85), (4.86) and

(4.88), we obtain the sum-integral (4.56).

Similarly after applying Eq. (4.59), the sum-integral (4.57) reduces to

∑∫

{PQ}

p2

q2P 2Q2R2
=

∫

p

nB(p)

p

∫

Q

q2

Q2r2R2

∣∣∣∣∣∣
P0=−ip

−
∫

p

nF (p)

2p

∫

Q

1

Q2R2

(
p2

q2
+
q2

p2

)∣∣∣∣∣∣
P0=−ip

+

∫

pq

nF (p)nF (q)

4pq

p2

q2
r2 − p2 − q2

∆(p, q, r)

−
∫

pq

nF (p)nB(q)

4pq

(
p2

r2
+
r2

p2

)
r2 − p2 − q2

∆(p, q, r)
. (4.71)

Now

〈
p2

q2
r2 − p2 − q2

∆(p, q, r)

〉

p̂·q̂
= 0 , (4.72)

and

〈(
p2

r2
+
r2

p2

)
r2 − p2 − q2

∆(p, q, r)

〉

p̂·q̂
=

1

2ǫ

1

p2
− 1

2ǫ

〈
p2

r4

〉

x

. (4.73)
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Using the above angular average, we find

∑∫

{PQ}

p2

q2P 2Q2R2
=

∫

p

nB(p)

p

∫

Q

q2

Q2r2R2

∣∣∣∣∣∣
P0=−ip

−
∫

p

nF (p)

2p

∫

Q

1

Q2R2

(
p2

q2
+
q2

p2

)∣∣∣∣∣∣
P0=−ip

− 1

2ǫ

∫

pq

nF (p)nB(q)

2pq

1

p2
+

1

2ǫ

∫

pq

nF (p)nB(q)

2pq

p2

r4
. (4.74)

Using the 4-dimensional integrals from [173] and Eqs. (4.84), (4.85), (4.86) and

(4.89), we obtain the sum-integral (4.57).

Similarly after applying Eq. (4.59), the sum-integral (4.58) reduces to

∑∫

{PQ}

r2

p2P 2Q2R2
=

∫

p

nB(p)

p

∫

Q

p2

Q2r2R2

∣∣∣∣∣∣
P0=−ip

−
∫

p

nF (p)

2p

∫

Q

1

Q2R2

(
r2

p2
+
r2

q2

)∣∣∣∣∣∣
P0=−ip

+

∫

pq

nF (p)nF (q)

4pq

r2

p2
r2 − p2 − q2

∆(p, q, r)

−
∫

pq

nF (p)nB(q)

4pq

(
q2

r2
+
q2

p2

)
r2 − p2 − q2

∆(p, q, r)
. (4.75)

Now

〈
r2

p2
r2 − p2 − q2

∆(p, q, r)

〉

p̂·q̂
=

1

2p2ǫ
, (4.76)

and

〈(
q2

r2
+
q2

p2

)
r2 − p2 − q2

∆(p, q, r)

〉

p̂·q̂
= − 1

2ǫ

〈
q2

r4

〉

x

. (4.77)
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Using the above angular average, we have

∑∫

{PQ}

p2

q2P 2Q2R2
=

∫

p

nB(p)

p

∫

Q

q2

Q2r2R2

∣∣∣∣∣∣
P0=−ip

−
∫

p

nF (p)

2p

∫

Q

1

Q2R2

(
p2

q2
+
q2

p2

)∣∣∣∣∣∣
P0=−ip

+
1

2ǫ

∫

pq

nF (p)nB(q)

2pq

1

p2
+

1

2ǫ

∫

pq

nF (p)nB(q)

2pq

q2

r4
. (4.78)

Using the 4-dimensional integrals from [173] and Eqs. (4.84), (4.85), (4.86) and

(4.90), we obtain the sum-integral (4.57).

4.5.4 HTL two loop sum-integrals

∑∫

{PQ}

1

P 2Q2r2
TR = − T 2

(4π)2

(
Λ

4πT

)4ǫ
1

48

[
1

ǫ2

+

(
2 + 12(1 + 8 µ̂2) ln 2 + 4

ζ ′(−1)

ζ(−1)

)
1

ǫ

+
(
136.362 + 460.23 µ̂2 − 273.046 µ̂4 +O

(
µ̂6
))
]
. (4.79)

∑∫

{PQ}

p2

P 2Q2r4
TR = − 1

576

T 2

(4π)2

(
Λ

4πT

)4ǫ
[
1

ǫ2
+

(
26

3
+ 4(13 + 144µ̂2) ln 2 + 4

ζ ′(−1)

ζ(−1)

)
1

ǫ

+
(
446.397 + 2717.86 µ̂2 − 1735.61 µ̂4 +O(µ̂6)

)
]
. (4.80)

∑∫

{PQ}

P ·Q
P 2Q2r4

TR =
T 2

(4π)2

(
Λ

4πT

)4ǫ(
− 1

96

)[
1

ǫ2
+

(
4 ln 2 + 4

ζ ′(−1)

ζ ′(−1)

)
1

ǫ

+
(
69.1737 + 118.244 µ̂2 + 136.688 µ̂4 +O

(
µ̂6
))
]
. (4.81)
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∑∫

{PQ}

r2 − p2

P 2q2Q2
0R

2
TQ = − T 2

(4π)2

(
Λ

4πT

)4ǫ
1

8

[
1

ǫ2
(
1 + 4 µ̂2

)

+
1

ǫ

(
2 + 2γE +

10

3
ln 2 + 2

ζ ′(−1)

ζ(−1)

+ 2 (8γE + 16 ln 2− 7ζ(3)) µ̂2

− 2

3
(98ζ(3)− 93ζ(5)) µ̂4 +O

(
µ̂6
))

+ 46.8757− 41.1192 µ̂2 + 64.0841 µ̂4 +O
(
µ̂6
)
]
. (4.82)

4.6 Integrals

4.6.1 Three dimensional integrals

We require one integral that does not involve the Bose-Einstein distribution function.

The momentum scale in these integrals is set by the mass m = mD. The one-loop

integral is

∫

p

1

p2 +m2
= −m

4π

(
Λ

2m

)2ǫ

[1 + 2ǫ] . (4.83)

4.6.2 Thermal Integrals

Λ2ǫ

(4π)2

∫

p

nB(p)

p
p−2ǫ =

T 2

(4π)2

(
Λ

4πT

)4ǫ(
1

12

)[
1 + ǫ

(
2− 2 ln 2 + 4

ζ ′(−1)

ζ(−1)

)

+ 2ǫ2

(
7π2

8
− 2 + ln2 2− 2 ln 2 + 4(1 + ln 2)

+4(1 + ln 2)
ζ ′(−1)

ζ(−1)
+ 4

ζ ′′(−1)

ζ(−1)

)]
. (4.84)
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Λ2ǫ

(4π)2

∫

p

nF (p)

2p
p−2ǫ =

T 2

(4π)2

(
Λ

4πT

)4ǫ(
1

24

)[ (
1 + 12µ̂2

)

+ ǫ
{
2− 2 ln 2 + 4

ζ ′(−1)

ζ(−1)
+ 24 (2γE + 5 ln 2− 1) µ̂2

− 56ζ(3) µ̂4 +O
(
µ̂6
) }]

. (4.85)

Λ2ǫ

(4π)2

∫

p

nF (p)

2p

1

p2
p−2ǫ = − T 2

(4π)2

(
Λ

4πT

)4ǫ
[
1

ǫ
+ 2 + 2γE + 10 ln 2

− 28ζ(3) µ̂2 + 124ζ(5) µ̂4 +O
(
µ̂6
)
]
. (4.86)

∫

pq

nF (p)nF (q)

4pq

1

r2
=

T 2

(4π)2

[
1

3
(1− ln 2) + 4(2 ln 2− 1)µ̂2 +

10

3
ζ(3) µ̂4 +O

(
µ̂6
)]
. (4.87)

∫

pq

nF (p)nF (q)

4pq

p2

r4
=

T 2

(4π)2

(
− 1

36

)[(
5 + 6γE + 6 ln 2− 6

ζ ′(−1)

ζ(−1)

− 12(12 ln 2− 13 + 3ζ(3))µ̂2

+ 12 (20ζ(5)− 13ζ(3)) µ̂4 +O
(
µ̂6
)
)

+ ǫ
(
3.0747 + 31.2624 µ̂2 + 262.387 µ̂4 +O

(
µ̂6
))
]
. (4.88)

∫

pq

nB(p)nF (q)

2pq

p2

r4
= − 1

36

T 2

(4π)2

[{
7− 6γE − 18 ln 2 + 6

ζ ′(−1)

ζ(−1)
+ 6(21ζ(3)− 21)µ̂2

+ 6 (126ζ(3)− 155ζ(5)) µ̂4 +O
(
µ̂6
)
}

+ ǫ
(
29.5113 + 158.176 µ̂2 − 557.189 µ̂4 +O

(
µ̂6
))
]
. (4.89)
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∫

pq

nB(p)nF (q)

2pq

q2

r4
=

T 2

(4π)2

(
1

18

)[(
1− 6γE − 12 ln 2 + 6

ζ ′(−1)

ζ(−1)
+ 12µ̂2

− 6 (28ζ(3)− 31ζ(5)) µ̂4 +O
(
µ̂6
))

+ ǫ
(
31.0735 + 222.294 µ̂2 − 416.474 µ̂4 +O

(
µ̂6
) )
]
. (4.90)

∫

pq

n−
F (p)− n+

F (p)

2 p

n−
F (q)− n+

F (q)

2 q

p q

r4

=
T 2

(4π)2
1

3

[
(1− 3ζ(3)) µ̂2 − 20(ζ(3)− ζ(5)) µ̂4 +O

(
µ̂6
)]
. (4.91)

Thermal integrals containing the triangle function:

∫

pq

n−
F (p)− n+

F (p)

2p

n−
F (q)− n+

F (q)

2q

2p q

∆(p, q, r)

=
T 2

(4π)2

(
Λ

4πT

)4ǫ [
µ̂2

ǫ
+ 2(4 ln 2 + 2γE + 1) µ̂2 − 28

3
ζ(3) µ̂4 +O

(
µ̂6
)]
. (4.92)

Thermal integrals containing both the triangle function and HTL average are listed

below:

∫

pq

nF (p)nF (q)

4pq
Re

〈
c2
r2c2 − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2
[
0.01458 + 0.23807 µ̂2 + 0.82516 µ̂4 +O

(
µ̂6
)]
. (4.93)

∫

pq

nF (p)nF (q)

4pq
Re

〈
c4
r2c2 − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2
[
0.017715 + 0.28015 µ̂2 + 0.87321 µ̂4 +O

(
µ̂6
)]
. (4.94)
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∫

pq

nF (p)nF (q)

4pq
Re

〈
q2

r2
c2
r2c2 − p2 − q2

∆(p + iε, q, rc)

〉

c

= − T 2

(4π)2
[
0.01158 + 0.17449 µ̂2 + 0.45566 µ̂4 +O

(
µ̂6
)]
. (4.95)

∫

pq

nB(p)nF (q)

2pq
Re

〈
p2 − q2

r2
r2c2 − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2
[
0.17811 + 1.43775 µ̂2 − 2.45413 µ̂4 +O

(
µ̂6
)]
. (4.96)

Second set of integrals involve the variables rc = |p+ q/c|:

∫

pq

nF (p)nB(q)

2pq
Re

〈
c−1+2ǫ r2c − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2
[
0.19678 + 1.07745 µ̂2 − 2.63486 µ̂4 +O

(
µ̂6
)]
. (4.97)

∫

pq

nF (p)nB(q)

2pq
Re

〈
c1+2ǫ r2c − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2
[
0.048368 + 0.23298 µ̂2 − 0.65074 µ̂4 +O

(
µ̂6
)]
. (4.98)

∫

pq

nF (p)nB(q)

2pq

p2

q2
Re

〈
c1+2ǫ r2c − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
1

96

T 2

(4π)2

(
Λ

4πT

)4ǫ

×
[
(1 + 12 µ̂2)

ǫ
+
(
7.7724 + 81.1057 µ̂2 − 48.5858 µ̂4 +O

(
µ̂6
))
]
. (4.99)

∫

pq

nF (p)nB(q)

2pq
Re

〈
c1+2ǫ r

2
c

q2
r2c − p2 − q2

∆(p+ iε, q, rc)

〉

c

=
T 2

(4π)2

(
Λ

4πT

)4ǫ
11− 8 ln 2

288

×
[
1

ǫ

(
1 + 12 µ̂2

)
+
(
7.799 + 70.516µ̂2 − 57.928µ̂4 +O

(
µ̂6
))]

. (4.100)

102



CHAPTER 4. TWO-LOOP HTL THERMODYNAMICS

∫

pq

nF (p)nF (q)

4pq
Re

1

24

〈
c−1+2ǫ r

2
c − p2

q2
r2c − p2 − q2

∆(p+ iε, q, rc)

〉

c

= − T 2

(4π)2

(
Λ

4πT

)4ǫ

×
[
(
1 + 12 µ̂2

) 1

ǫ2
+

2

ǫ

(
1 + γE + ln 2 +

ζ ′(−1)

ζ(−1)

+ (24γE + 48 ln 2− 7ζ(3))µ̂2 + (31ζ(5)− 98ζ(3))µ̂4 +O
(
µ̂6
))

+
(
40.3158 + 261.822 µ̂2 − 1310.69 µ̂4 +O

(
µ̂6
))
]
. (4.101)

∫

pq

nB(p)nF (q)

2pq
Re

〈
c−1+2ǫ r

2
c − p2

q2
r2c − p2 − q2

∆(p+ iε, q, rc)

〉

c

= − T 2

(4π)2

(
Λ

4πT

)4ǫ
1

12

[
1

ǫ2

+
1

ǫ

(
2 + 2γE + 4 ln 2 + 2

ζ ′(−1)

ζ(−1)
− 14ζ(3)µ̂2 + 62ζ(5)µ̂4 +O

(
µ̂6
))

+
(
52.953− 190.103 µ̂2 + 780.921 µ̂4 +O

(
µ̂6
))]

. (4.102)

The integral (4.94) can be evaluated directly in three dimensions at finite chemical

potential. The other integrals Eqs. (4.95)–(4.102) can be evaluated following the

same procedure as discussed in [173] at finite chemical potential.

4.7 Pressure

In the previous section we have computed both LO and NLO thermodynamic po-

tential in presence of quark chemical potential and temperature. All other thermo-

dynamic quantities can be calculated using standard thermodynamic relations. The

pressure is defined as

P = −Ω(T, µ,mq, mD) , (4.103)
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4.7.1 LO Pressure

The LO HTLpt pressure through O(g4) at any µ can be written in leading order of

ǫ from eqn. (4.28) as

PLO = dA
π2T 4

45

[
1 +

7

4

dF
dA

(
1 +

120

7
µ̂2 +

240

7
µ̂4

)

− 15

2
m̂2
D − 30

dF
dA

(
1 + 12µ̂2

)
m̂2
q + 30m̂3

D

+
45

4

(
ln

Λ̂

2
− 7

2
+ γE +

π2

3

)
m̂4
D − 60

dF
dA

(π2 − 6)m̂4
q

]
. (4.104)

At leading order, the weak coupling expressions for the mass parameters are

m2
D =

g2T 2

3

[
cA + sF

(
1 + 12µ̂2

)]
; m2

q =
g2T 2

4

cF
2

(
1 + 4µ̂2

)
. (4.105)

4.7.2 NLOHTLpt Pressure and Variational Mass Gap Equa-

tions

The NLO HTLpt pressure through O[(µ/T )4] can be obtain from Eq. (4.37) using

(4.103) as
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PNLO = dA
π2T 4

45

{
1 +

7

4

dF
dA

(
1 +

120

7
µ̂2 +

240

7
µ̂4

)
− 15m̂3

D

− 45

4

(
log

Λ̂

2
− 7

2
+ γE +

π2

3

)
m̂4
D + 60

dF
dA

(
π2 − 6

)
m̂4
q

+
αs
π

[
− 5

4

(
cA +

5sF
2

(
1 +

72

5
µ̂2 +

144

5
µ̂4

))
+ 15

(
cA + sF (1 + 12µ̂2)

)
m̂D

− 55

4

{
cA

(
log

Λ̂

2
− 36

11
log m̂D − 2.001

)
− 4

11
sF

[(
log

Λ̂

2
− 2.337

)

+ (24− 18ζ(3))

(
log

Λ̂

2
− 15.662

)
µ̂2 + 120 (ζ(5)− ζ(3))

×
(
log

Λ̂

2
− 1.0811

)
µ̂4 +O

(
µ̂6
)
]}
m̂2
D − 45 sF

{
log

Λ̂

2
+ 2.198− 44.953µ̂2

−
(
288 ln

Λ̂

2
+ 19.836

)
µ̂4 +O

(
µ̂6
)
}
m̂2
q +

165

2

{
cA

(
log

Λ̂

2
+

5

22
+ γE

)

− 4

11
sF

(
log

Λ̂

2
− 1

2
+ γE + 2 ln 2− 7ζ(3)µ̂2 + 31ζ(5)µ̂4 +O

(
µ̂6
)
)}

m̂3
D

+ 15sF

(
2
ζ ′(−1)

ζ(−1)
+ 2 ln m̂D

)[
(24− 18ζ(3))µ̂2

+ 120(ζ(5)− ζ(3))µ̂4 +O
(
µ̂6
) ]
m̂3
D + 180 sFm̂Dm̂

2
q

]}
. (4.106)

which is accurate up to O(g3) and nominally accurate to O(g5) since it was obtained

from an expansion of two-loop thermodynamic potential in a power series in mD/T

and mq/T treating both mD and mq having leading terms proportional to g. Using

the result above, the mass parameters mD and mq can be obtained by solving the

two variational equations:

∂ΩNLO

∂m̂D

∣∣∣∣
mq=constant

= 0 ,

∂ΩNLO

∂m̂q

∣∣∣∣
mD=constant

= 0 . (4.107)
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This leads to the following two gap equations which will be solved numerically

45m̂2
D

[
1 +

(
ln

Λ̂

2
− 7

2
+ γE +

π2

3

)
m̂D

]

=
αs
π

{
15(cA + sF (1 + 12µ̂2))− 55

2

[
cA

(
ln

Λ̂

2
− 36

11
ln m̂D − 3.637

)

− 4

11
sF

{
ln

Λ̂

2
− 2.333 + (24− 18ζ(3))

(
ln

Λ̂

2
− 15.662

)
µ̂2

+ 120(ζ(5)− ζ(3))

(
ln

Λ̂

2
− 1.0811

)
µ̂4

}]
m̂D +

495

2

[
cA

(
ln

Λ̂

2
+

5

22
+ γE

)

− 4

11
sF

{
ln

Λ̂

2
− 1

2
+ γE + 2 ln 2− 7ζ(3)µ̂2 + 31ζ(5)µ̂4

−
(
ζ ′(−1)

ζ(−1)
+ ln m̂D +

1

3

)(
(24− 18ζ(3))µ̂2 + 120(ζ(5)− ζ(3))µ̂4

)}]
m̂2
D

+ 180sF m̂
2
q

}
,

(4.108)

and

m̂2
q =

dA
8dF (π2 − 6)

αssF
π

[
3

(
ln

Λ̂

2
+ 2.198− 44.953 µ̂2

−
(
288 ln

Λ̂

2
+ 19.836

)
µ̂4

)
− 12m̂D

]
.

(4.109)

For convenience and comparison with lattice data [10], we define the pressure dif-

ference

∆P (T, µ) = P (T, µ)− P (T, 0) . (4.110)

where we note that we have discarded terms of O(µ̂6) and higher above. In figs. (4.2)

and (4.3) we present a comparison of NLO HTLpt pressure with that of four-loop
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Figure 4.2: The NLO HTLpt pressure scaled with ideal gas pressure plotted along
with four-loop pQCD pressure [13, 146] for two different values of chemical potential
with Nf = 3 and 2-loop running coupling constant αs. The bands are obtained
by varying the renormalization scale by a factor of 2 around its central value Λ =
2π
√

T 2 + µ2/π2 [13,68,146,226–228]. We use ΛMS = 290 MeV based on recent lattice
calculations [229] of the three-loop running of αs.
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Figure 4.3: Same as Fig. 4.2 but for 3-loop αs.
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Figure 4.4: (Left panel) ∆P for Nf = 3 is plotted as a function of T for two-loop
HTLpt result along with those of four-loop pQCD up to α3

s lnαs [13, 146] and lattice
QCD [10] up to O

(
µ2
)
using 2-loop running coupling constant αs. (Right panel) Same

as left panel but using 3-loop running coupling. In both cases three different values
of µ are shown as specified in the legend. The bands in both HTLpt and pQCD are
obtained by varying the renormalization scale by a factor of 2 around its central value
Λ = 2π

√
T 2 + µ2/π2 [13, 68,146,226–228].

pQCD [13, 146] as a function of the temperature for two and three loop running of

αs. The only difference between Figs. (4.2) and (4.3) is the choice of order of the

running coupling used. As can be seen from these figures, the dependence on the

order of the running coupling is quite small. However, we note that in both figures

even at extremely large temperatures there is a sizable correction when going from

LO to NLO. This was already seen in the µ = 0 results of Ref. [172, 173] where

it was found that due the logarithmic running of the coupling, it was necessary to

go to very large temperatures in order for the LO and NLO predictions to overlap.

This is due to over-counting problems at LO which lead to an order-g2 perturbative

coefficient which is twice as large as it should be [20, 172, 173]. This problem is

corrected at NLO, but the end result is that there is a reasonably large correction

(∼ 5%) at the temperatures shown.

The NLO HTLpt result differs from the pQCD result through order α3
s lnαs at

low temperatures. A NNLO HTLpt calculation at finite µ would agree better with
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pQCD α3
s lnαs as found in µ = 0 case [178]. The HTLpt result clearly indicates

a modest improvement over pQCD in respect of convergence and sensitivity of the

renormalization scale. In Fig. 4.4 the pressure difference, ∆P , is also compared with

the same quantity computed using pQCD [13, 146] and lattice QCD [10]. Both LO

and NLO HTLpt results are less sensitive to the choice of the renormalization scale

than the weak coupling results with the inclusion of successive orders of approxi-

mation. Comparison with available lattice QCD data [10] suggests that HTLpt and

pQCD cannot accurately account for the lattice QCD results below approximately

3 Tc; however, the results are in very good qualitative agreement with the lattice

QCD results without any fine tuning.

4.8 Quark Number Susceptibility

We are now in a position to obtain the second and fourth-order HTLpt QNS following

Eq. (4.1). We note that the pure gluonic loops at any order do not contribute to

QNS, however, gluons contribute through the dynamical fermions through fermionic

loops. This makes QNS proportional to only quark degrees of freedom. Below we

present (semi-)analytic expressions for both LO and NLO QNS.

To obtain the second and fourth-order quark number susceptibilities in HTLpt, one

requires expressions for mD,
∂2

∂µ2
mD, mq, and

∂2

∂µ2
mq at µ = 0 from Eqs. (4.108) and

(4.109).2 We list these here for completeness. The result for the limit of the mD

2Note that odd derivatives with respect to µ vanish at µ = 0. Fourth-order derivatives at µ = 0
are nonzero, however, they appear as multiplicative factors of the gap equations and are therefore
not required, as we will see below.
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gap equation necessary is

45m̂2
D(0)

[
1 +

(
ln

Λ̂

2
− 7

2
+ γE +

π2

3

)
m̂D(0)

]

=
αs
π

{
15(cA + sF )−

55

2

[
cA

(
ln

Λ̂

2
− 36

11
ln m̂D(0)− 3.637

)

− 4

11
sF

{
ln

Λ̂

2
− 2.333

}]
m̂D(0) +

495

2

[
cA

(
ln

Λ̂

2
+

5

22
+ γE

)

− 4

11
sF

(
ln

Λ̂

2
− 1

2
+ γE + 2 ln 2

)]
m̂2
D(0) + 180sF m̂

2
q(0)

}
. (4.111)

For mq one obtains

m̂2
q(0) =

dA
8dF (π2 − 6)

αssF
π

[
3

(
ln

Λ̂

2
+ 2.198

)
− 12m̂D(0)

]
. (4.112)

For ∂2

∂µ2
mD one obtains

45

[
2 + 3

(
ln

Λ̂

2
− 7

2
+ γE +
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3
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− 2.333

)]

+495m̂′′
D(0)

[
cA

(
5

22
+ γE + ln

Λ̂

2

)
− 4

11
sF

(
ln

Λ̂

2
− 1

2
+ γE + 2 ln 2

)]
m̂D(0)

+20sF

(
ln

Λ̂

2
− 15.662

)
(24− 18ζ(3))m̂D(0)

+180sFm̂D(0)
2

[
7ζ(3) +

(
ζ ′(−1)

ζ(−1)
+ ln m̂D(0) +

1

3

)
(24− 18ζ(3))

]

+360sFm̂q(0)m̂
′′
q(0)

}
.

(4.113)

For ∂2

∂µ2
mq one obtains

m̂q(0)m̂
′′
q(0) = − 3dA

8dF (π2 − 6)

αssF
π

[44.953 + 2m̂′′
D(0)] . (4.114)
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In the expressions above, mD(0) ≡ mD(T,Λ, µ = 0), m′′
D(0) ≡ ∂2

∂µ2
mD(T,Λ, µ)

∣∣∣
µ=0

and similarly for mq.

4.8.1 LO HTLpt second-order QNS

An analytic expression for the LO HTLpt second-order QNS can be obtained using

Eq. (4.104)

χLO
2 (T ) =

∂2

∂µ2
PLO(T,Λ, µ)

∣∣∣∣
µ=0

=
1

(2πT )2
∂2

∂µ̂2
PLO(T,Λ, µ̂)

∣∣∣∣
µ̂=0

=
dFT

2

3

[
1− 3cF

4

( g
π

)2
+
cF
4

√
3(cA + sF )

( g
π

)3
− c2F

64

(
π2 − 6

) ( g
π

)4

+
cF
16

(cA + sF )

(
log

Λ̂

2
− 7

2
+ γE +

π2

3

)( g
π

)4
]
, (4.115)

where the LO Debye and quark masses listed in Eqs. (4.105) and their µ derivatives

have been used.

4.8.2 LO HTLpt fourth-order QNS

An analytic expression for the LO HTLpt fourth-order QNS can also be obtained

using Eq. (4.104)

χLO
4 (T ) =

∂4

∂µ4
PLO(T,Λ, µ)

∣∣∣∣
µ=0

=
1

(2πT )4
∂4

∂µ̂4
PLO(T,Λ, µ̂)

∣∣∣∣
µ̂=0

=
2dF
π2

[
1− 3

4
cF

(g
π

)2
+

3

8
cFsF

√
3

cA + sF

( g
π

)3
− c2F (π2 − 6)

64

( g
π

)4

+
3

16
cF sF

(
log

Λ̂

2
− 7

2
+ γE +

π2

3

)(g
π

)4
]
, (4.116)

where, once again, the LO Debye and quark masses listed in Eqs. (4.105) and their

µ derivatives have been used. We note that both χLO
2 in (4.115) and χLO

4 in (4.116)
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are the same as those recently obtained by Andersen et al. [170]; however, the

closed-form expressions obtained here have not been explicitly listed therein.

4.8.3 NLO HTLpt second-order QNS

A semi-analytic expression for the NLO HTLpt second-order QNS can be obtained

from Eq. (4.106)

χNLO
2 (T ) =

∂2

∂µ2
PNLO(T,Λ, µ)

∣∣∣∣
µ=0

=
1

(2πT )2
∂2

∂µ̂2
PNLO(T,Λ, µ̂)

∣∣∣∣
µ̂=0

=
dAT

2

2

[
2

3

dF
dA

+
αs
π
sF

{
− 1 + 4 m̂D(0) +

2

3

(
ln

Λ̂

2
− 15.662

)

× (4− 3ζ(3)) m̂2
D(0) + 44.953 m̂2

q(0)

+

[
14

3
ζ(3) +

(
ζ ′(−1)

ζ(−1)
+ ln m̂D(0)

)
(16− 12ζ(3))

]
m̂3
D(0)

}]
. (4.117)

We note that no µ derivatives of the mass parameters appear in (4.117) and, as

a result, χNLO
2 (T ) reduces to such a simple and compact form. This is because

the second derivatives of the mass parameters with respect to µ always appear as

multiplicative factors of the gap equations (4.111) and (4.112) and hence these con-

tributions vanish. Numerically solving for the variational masses using Eq. (4.111)

and (4.112) one can directly compute χNLO
2 (T ) from (4.117). Alternatively, we have

also computed χNLO
2 (T ) by performing numerical differentiation of the pressure in

(4.106) which leads to the same result within numerical errors.

In Fig. (4.5) we have plotted the Nf = 3 second-order QNS scaled by the cor-

responding free gas limit as a function of the temperature. As discussed above,

the bands shown for the HTLpt and pQCD [13] results indicate the sensitivity of

χ2 to the choice of the renormalization scale Λ. However, χ2 in both HTLpt and

pQCD depends only weakly on the chosen order of the running of the strong cou-

pling and in turn only depends weakly on ΛMS , as can be seen clearly from both
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Figure 4.5: Left panel : χ2 scaled by the free field value for LO (grey band) and NLO
(sea green band) in 2-loop HTLpt, 4-loop pQCD (sky blue band) [13], LQCD (various
symbols) [10,111,116,118],and PNJL model (thick purple line) [52,53] are plotted as a
function of the temperature. The bands in HTLpt and pQCD are obtained by varying
the MS renormalization scale (Λ) around its central value by a factor of two. We also
used ΛMS = 268 MeV and 2-loop αs for HTLpt and pQCD. Right panel : Same as left
panel but using 3-loop αs and ΛMS = 290 MeV.

panels of Fig. (4.5). The LO HTLpt prediction for χ2 seems to agree reasonably

well with the available Wuppertal-Budapest LQCD data which are obtained using

the tree-level improved Symanzik action and a stout smeared staggered fermionic

action with light quark masses ∼ 0.035ms, with ms being the strange quark mass

near its physical value; however, there is a sizable variation among different lattice

computations [10,111,116] considering improved lattice actions and a range of quark

masses. However, lowering the quark mass (0.035ms,ms is the strange quark mass)

nearer to its physical value [10] seems to have a very small effect in the temperature

range, as seen from the LQCD data. Note that for the Wuppertal-Budapest (WB)

lattice data shown in Fig. (4.5), Ref. [10] provided a parameterization of their χ2

data

χ2(T ) = e−(h3/t+h4/t2)f3 [tanh(f4t+ f5) + 1], (4.118)
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where t = T/(200MeV ), h3 = 0.5022, h4 = 0.5950, f3 = 0.1359, f4 = 6.3290, and f5 =

4.8303. The authors of Ref. [10] performed the fit for data [11] in the tempera-

ture range 125 MeV < T ≤ 400 MeV. Using the parameterization above, we dis-

play their data up to 400 MeV with a step size of 50 MeV. The RBC-Bielefeld

collaboration [118] data for χ2 shown in Fig. (4.5) used a p4 action whereas the

MILC collaboration [111] used an asqtad action. In both cases the light quark mass

ranges from (0.1-0.2)ms. The results for χ2 obtained using a nonperturbative PNJL

model [52, 53] which includes an six-quark interaction are only available very close

to the phase transition temperature. We see in Fig. (4.5) that NLO HTLpt (4.117)

exhibits a modest improvement over the pQCD calculation shown, which is accu-

rate to O(α3
s lnαs). However, the NLO χ2 is higher than the LO one at higher

temperature and it goes beyond the free gas value at lower temperatures. It should

be mentioned that, although the 2-loop calculation improves upon the LO results

by rectifying over-counting which causes incorrect coefficients in the weak coupling

limit, it does so by pushing the problem to higher order in g. The reason can be

understood in the following way: in HTLpt the loop and coupling expansion are

not symmetrical, therefore at a given loop order there are contributions from higher

orders in coupling. Since the NLO HTL pressure and thus QNS is only strictly ac-

curate to order O(g3) there is over-counting occurring at higher orders in g, namely

at O(g4) and O(g5). A next-to-next-to-leading order (NNLO) HTLpt calculation

would fix the problem through O(g5) thereby guaranteeing that, when expanded in

a strict power series in g, the HTLpt result would reproduce the perturbative result

order-by-order through O(g5).

4.8.4 NLO HTLpt fourth-order QNS

A semi-analytic expression for the NLO HTLpt fourth-order QNS can also be ob-

tained from Eq. (4.106)
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χNLO
4 (T ) =

∂4

∂µ4
PNLO(T,Λ, µ)

∣∣∣∣
µ=0

=
1

(2πT )4
∂4

∂µ̂4
PNLO(T,Λ, µ̂)

∣∣∣∣
µ̂=0

=
dA
4π2

[
8
dF
dA

+
αs
π
sF

{
− 12 + 6m̂′′

D(0)

+ 3m̂2
D(0)

[(
ζ ′(−1)

ζ(−1)
+ ln m̂D(0) +

1

3

)
(24− 18ζ(3)) + 7ζ(3)

]
m̂′′
D(0)

+ m̂D(0)m̂
′′
D(0)

(
ln

Λ̂

2
− 15.662

)
(8− 6ζ(3))

− 4m̂3
D(0)

[
31ζ(5)− 120

(
ζ ′(−1)

ζ(−1)
+ ln m̂D(0)

)
(ζ(5)− ζ(3))

]

+80m̂2
D(0)

(
ln

Λ̂

2
− 1.0811

)
(ζ(5)− ζ(3)) + 134.859 m̂q(0)m̂

′′
q (0)

}]
, (4.119)

where the double derivatives of the mass parameters with respect to µ survive, but

the fourth derivatives of the mass parameters disappear as discussed earlier. One can

now directly compute the fourth-order susceptibility by using numerical solutions

of the gap equations in (4.111) and (4.114). Alternatively, we have also computed

χNLO
4 (T ) by performing numerical differentiation of the pressure in (4.106) which

leads to the same result within numerical errors.

In Fig. (4.6) we plot the fourth-order QNS (χ4) scaled by the corresponding free

gas value for HTLpt as given in (4.116) and (4.119), pQCD, and LQCD. Both the

HTLpt and pQCD results exhibit a very weak dependence on the choice of order of

the running of αs and thus ΛMS. Nevertheless, the HTLpt results are found to be

far below the pQCD result [13] which is accurate to O(α3
s ln(αs)) and the LQCD

results [116, 126]. Also, the correction to χ4 when going from LO to NLO is quite

large. This is due to the fact that the fourth order susceptibility is highly sensitive

to the erroneous O(g4) and O(g5) terms which appear at NLO. It is expected that

carrying the HTLpt calculation to NNLO would improve this situation; however,

only explicit calculation can prove this. We note additionally that although the
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Figure 4.6: Left panel: χ4 scaled by the free field value for LO and NLO HTLpt
as given, respectively, in (4.116) and (4.119), 4-loop pQCD [13], and LQCD [116,126]
are plotted as a function of the temperature. The bands in HTLpt and pQCD are
obtained by varying the MS renormalization scale (Λ) around its central value by a
factor of two. We used ΛMS = 268 MeV and 2-loop αs for HTLpt and pQCD. Lattice
QCD results [116, 126] are represented by symbols. The Wuppertal-Budapest (WB)
lattice data are taken from Ref. [82]. Right panel: Same as left panel but using 3-loop
αs and ΛMS = 290 MeV.

pQCD result is very close to the Stefan-Boltzmann limit, the dimensional-reduction

resummation method yields a fourth-order QNS which is approximately 20% below

the Stefan-Boltzmann limit [170] which places it slightly higher than the LO HTLpt

result shown in Fig. (4.6).

4.9 Conclusions and Outlook

In this chapter we have generalized the zero chemical potential NLO HTLpt calcu-

lation of the QCD thermodynamic potential [172, 173] to finite chemical potential.

We have obtained (semi-)analytic expressions for the thermodynamic potential at

both LO and NLO in HTL perturbation theory. We have also obatained second

and fourth order quark number susceptibilities at both LO and NLO from that

(semi-)analytic expressions for the thermodynamic potential. The results for ther-
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modynamic potential obtained here are trustworthy at high temperatures and small

chemical potential since we performed an expansion in the ratio of the chemical

potential over the temperature.

This NLO thermodynamic potential will be useful for the study of finite tempera-

ture and chemical potential QCD matter. This is important in view of the ongoing

RHIC beam energy scan and proposed heavy-ion experiments at FAIR. Using the

NLO HTLpt thermodynamic potential, we have obtained a variational solution for

both mass parameters, mq and mD, and we have used this to obtain the pressure at

finite temperature and chemical potential. When compared with the weak coupling

expansion of QCD, the HTLpt pressure helps somewhat with the problem of oscilla-

tion of successive approximations found in pQCD. Furthermore, the scale variation

of the NLO HTLpt result for pressure is smaller than that obtained with the weak

coupling result.

The LO result for χ2 obtained here shows reasonable agreement with available LQCD

data; however, at this point in time there is still a fairly sizable variation of this

quantity between the different lattice groups. Moving forward it would seem that a

detailed analysis of the uncertainties in the various LQCD calculations is necessary

before detailed conclusions can be drawn. Unlike the LO results, our NLO calcula-

tion takes into account dynamical quark contributions by including two-loop graphs

which involve fermion loops; however, they suffer from the same problem that NLO

HTLpt calculations at zero chemical potential faced: the NLO χ2 in Eq. (4.117)

gets O(g3) correct but the O(g4) and O(g5) contributions are incorrect if they are

expanded out in a strict power series in g. As a result, our NLO result for χ2 scaled

to the free limit is closer to unity than the corresponding LO result and only shows

a weak dependence on the chosen value of the renormalization scale. Our NLO

result for χ4 (Eq. (4.119)) in which µ derivatives of the variational mass parameters

survive is significantly below the pQCD and lattice data.
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As was the case with the pressure at zero chemical potential, it seems that fixing

this problem will require going to NNLO. In the case of the zero chemical potential

pressure, performing such a calculation resulted in much improved agreement be-

tween HTL perturbation theory and LQCD calculations above ∼ 2Tc. At the very

least a NNLO calculation will fix the over-counting problems through O(g5) and

NNLO calculation at finite temperature and chemical potential will be discuss in

the next Chapter 5.
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CHAPTER 5

Three-loop HTLpt thermodynamics

In this chapter, we study the three loop thermodynamics of QCD using the hard

thermal loop perturbation theory. We show that at three loop order hard thermal

loop perturbation theory results are compatible with lattice results for the pressure,

energy density, entropy density, various order diagonal and off-diagonal susceptibil-

ities, speed of sound down to temperatures T ∼ 250 MeV. This chapter is based

on: Three-loop HTLpt Pressure and Susceptibilities at Finite Temperature and Den-

sity, N. Haque, J. O. Andersen, M. G. Mustafa, M. Strickland, and N. Su, Phys.

Rev. D89 (2014) 061701 and Three-loop HTLpt thermodynamics at finite tem-

perature and chemical potential, N. Haque, A. Bandyopadhyay, J. O. Andersen, M.

G. Mustafa, M. Strickland, and N. Su, JHEP 1405 (2014) 027.

As we discussed in Chapter 4, at leading order thermodynamic potential is only

correct g0 and g3 terms when one expands in a strict power series in g. Similarly,

at next-to-leading order thermodynamic potential one obtains correct g0, g2 and g3

terms when one expands in a strict power series in g. So to make the results more

reliable at moderate coupling constant g, one needs to calculate thermodynamic

functions beyond next-to-leading order in HTL perturbation theory. In this chapter

we calculate the thermodynamic potential at finite temperature (T ) and chemical
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potential (µ) to three-loop order in HTLpt. The three-loop thermodynamic potential

is renormalized using only known vacuum, mass, and coupling constant counterterms

and the final result is completely analytic. The resulting analytic thermodynamic

potential is then used to obtain expressions for the pressure, energy density, entropy

density, trace anomaly, speed of sound, and various quark number susceptibilities.

We find that there is good agreement between our NNLO HTLpt results and lattice

data down to temperatures on the order of 250 MeV.

This chapter is organized as follows. In Sec. (5.1) we discuss the diagrams that con-

tribute to the HTL perturbation theory thermodynamic potential through NNLO. In

Sec. (5.2) the necessary diagrams are reduced to scalar sum-integrals and expanded

in powers of mD/T and mq/T . We list the necessary non-trivial sum-integrals and

d− dimensional integrals in Secs. (5.3) and (5.4) respectively. In Sec. (5.5) we present

our final results for the NNLO thermodynamic potential. In Sec. (5.6) we discuss

the mass prescription for the in-medium masses mD and mq. We present our results

for the thermodynamic functions and compare them with results from lattice gauge

simulations in Sec. (5.7). In Sec. (5.8) we present our results for the second-, fourth-,

and sixth-order baryon and quark number susceptibilities and compare them with

results from lattice QCD data. In Sec. (5.9) we summarize and conclude.

5.1 Contributions to the HTLpt thermodynamic

potential through NNLO

The diagrams needed for the computation of the HTLpt thermodynamic potential

through NNLO are listed in Figs. (5.1) and (5.2). The shorthand notations used in

Fig. (5.2) have been explained in Fig. (5.3).

In Ref. [178] the authors computed the NNLO thermodynamic potential at zero
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1a Ff
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Figure 5.1: One and two loop Feynman diagrams that will contribute to the ther-
modynamic potential.

chemical potential. Here we extend the NNLO calculation to finite chemical poten-

tial. For this purpose, one needs to only consider diagrams which contain at least

one quark propagator; however, for completeness we also list the purely gluonic

contributions below. In the results we will express thermodynamic quantities in

terms of dimensionless variables: m̂D = mD/(2πT ), m̂q = mq/(2πT ), µ̂ = µ/(2πT ),

Λ̂ = Λ/(2πT ) and Λ̂g = Λg/(2πT ) where Λ and Λg are renormalization scale scales

for gluon and fermion respectively as discussed in Sec. (5.7.1).
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The complete NNLO HTLpt thermodynamic potential can be expressed in terms of

each diagrams of Figs. (5.1) and (5.2) as

ΩNNLO = dA [F g
1a + F g

1b + F g
2d + F g

3m] + dF

[
F f

1b + F f
2d + F f

3i

]

+dAcA

[
F g

2a + F g
2b + F g

2c + F g
3h + F g

3i + F g
3j + F g

3k + F g
3l

]

+dAsF

[
F f

2a + F f
2b + F f

3d + F f
3e + F f

3f + F f
3g + F f

3k + F f
3l

]

+dAc
2
A

[
F g

3a + F g
3b + F g

3c + F g
3d + F g

3e + F g
3f + F g

3g

]
+ dAs2F

[
F f

3a + F f
3b

]

+dAcAsF

[
− 1

2
F f

3a + F f
3m + F f

3n + F f
3o

]
+ dAs

2
F

[
F f

3c + F f
3j

]

+∆0E0 +∆1E0 +∆2E0 +∆1m
2
D

∂

∂m2
D

ΩLO +∆1m
2
q

∂

∂m2
q

ΩLO

+∆2m
2
D

∂

∂m2
D

ΩLO +∆2m
2
q

∂

∂m2
q
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∂

∂m2
D
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∂

∂m2
q
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1
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∂2

(∂m2
D)

2
ΩLO

] (
∆1m

2
D

)2

+
1

2

[
∂2

(∂m2
q)

2
ΩLO

] (
∆1m

2
q

)2
+ dA

[
cAF g

2a+2b+2c + sFF f
2a+2b

αs

]
∆1αs, (5.1)

where the necessary counterterms at any order in δ can be calculated using the

following counter terms

∆E0 =
dA

128π2ǫ
(1− δ)2m4

D , (5.2)

∆m2
D =

11cA − 4sF
12πǫ

αsδ(1− δ)m2
D , (5.3)

∆m2
q =

3

8πǫ

dA
cA
αsδ(1− δ)m2

q , (5.4)

δ∆αs = −11cA − 4sF
12πǫ

α2
sδ

2 , (5.5)

.

The expressions for the one- and two-loop diagrams above can be found in Refs. [172,

173]. The expressions for the three-loop bosonic diagrams F g
3a–F g

3m are presented

in section 3 of Ref. [175]. The three-loop diagrams specific to QCD, i.e. the non-
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Figure 5.2: Three loop HTL Feynman diagrams that will contribute to the thermo-
dynamic potential.
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= Dressed Gluon Propagator

= Dressed Quark Propagator

= Dressed Vertex

= One Loop Gluon Self Energy Insertion

= Vertex InsertionΓ

Σ

One-loop pure gauge contribution to gluon self-energy

+ +g =

= One Loop Gluon Self Energy InsertionΠ

Figure 5.3: The shorthand notations used in Fig. (5.2).

Abelian diagrams involving quarks, are given by

F f
3a =

1

4
g4
∑∫

P{QR}

Tr [Γµ(−P,Q− P,Q)S(Q)Γα(Q− R,Q,R)S(R)Γν(P,R,R− P )

× S(R− P )Γβ(−Q +R,R− P,Q− P )S(Q− P )
]
∆µν(P )∆αβ(Q−R) , (5.6)

F f
3b =

1

2
g4
∑∫

P{QR}

Tr
[
Γµ(P, P +Q,Q)S(Q)Γβ(−R +Q,Q,R)S(R)Γα(R−Q,R,Q)

× S(Q)Γν(−P,Q, P +Q)S(P +Q)]∆µν(P )∆αβ(R−Q) , (5.7)

F f
3c = −1

4
g4
∑∫

P{QR}

Tr
[
Γµ(P, P +Q,Q)S(Q)Γβ(−P,Q, P +Q)S(P +Q)

]

× Tr [Γν(−P,R, P +R)S(P +R)Γα(P, P +R,R)S(R)]∆µν(P )∆αβ(P ) , (5.8)

F f
3j = −1

2
g4
∑∫

P{QR}

Tr
[
Γαβ(P,−P,R,R)S(R)

]
∆αµ(P )∆βν(P )

× Tr [Γµ(P, P +Q,Q)S(Q)Γν(−P,Q, P +Q)S(P +Q)] , (5.9)

F f
3m =

1

6

∑∫

{PQR}

Tr
[
Γα(R− P,R, P )S(P )Γβ(P −Q,P,Q)S(Q)Γγ(Q− R,Q,R)S(R)

]

× Γµνδ(P −R,Q− P,R−Q)∆αµ(P − R)∆βν(Q− P )∆γδ(R−Q) , (5.10)

F f
3n = −

∑∫

P

Π̄µν
g (P )∆να(P )Π̄αβ

f (P )∆βµ(P ) , (5.11)

F f
3o = −1

2
g2
∑∫

P{Q}

Tr
[
Γαβ(P,−P,Q,Q)S(Q)

]
∆αµ(P )∆βν(P )Π̄µν

g (P ) , (5.12)
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where

Π̄µν
g (P ) =

1

2
g2
∑∫

Q

Γµν,αβ(P,−P,Q,−Q)∆αβ(Q)

+
1

2
g2
∑∫

Q

Γµαβ(P,Q,−P −Q)∆αβ(Q)Γνγδ(P,Q,−P −Q)∆γδ(−P −Q)

+ g2
∑∫

Q

Qµ(P +Q)ν

Q2(P +Q)2
, (5.13)

Π̄µν
f (P ) = −g2

∑∫

{Q}

Tr [Γµ(P,Q,Q− P )S(Q)Γν(P,Q,Q− P )S(Q− P )] . (5.14)

Thus Π̄µν(P ) is the one-loop gluon self-energy with HTL-resummed propagators and

vertices:

Π̄µν(P ) = cAΠ̄
µν
g (P ) + sF Π̄

µν
f (P ) . (5.15)

5.2 Expansion in mass parameters

In Refs. [172,173] the NLO HTLpt thermodynamic potential was reduced to scalar

sum-integrals. Evaluating these scalar sum-integrals exactly seems intractable, how-

ever, the sum-integrals can be calculated approximately by expanding them in pow-

ers of mD/T and mq/T following the method developed in Ref. [188]. We will adopt

the same strategy in this chapter and include all terms through order g5 assuming

that mD and mq are O(g) at leading order. At each loop order, the contributions

can be divided into those coming from hard and soft momenta, which are the mo-

menta proportional to the scales T and gT respectively. In the one-loop diagrams,

the contributions are either hard (h) or soft (s), while at the two-loop level, there

are hard-hard (hh), hard-soft (hs), and soft-soft (ss) contributions. At three loops

there are hard-hard-hard (hhh), hard-hard-soft (hhs), hard-soft-soft (hss), and soft-

soft-soft (sss) contributions.
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5.2.1 One-loop sum-integrals

We now review the mass expansion of the necessary one-loop sum-integrals consid-

ering separately the contributions from hard and soft momenta. We list the purely

gluonic contributions when they are necessary for simpler exposition of the final

result. Note that in order to simplify the results, when possible, it is best to add the

corresponding iterated polarization and self-energy insertions that appear at higher

order in δ, e.g. below we will also include F g
2d, F f

2d, F g
3m, and F f

3i as “one-loop”

contributions.

Hard contributions

For one loop gluon (F g
1a) and one loop ghost (F g

1b) diagrams, we need to expand in

order m2
D:

F g(h)
1a+1b =

1

2
(d− 1)

∑∫

P

lnP 2 +
1

2
m2
D

∑∫

P

1

P 2

− 1

4(d− 1)
m4
D

∑∫

P

[
1

P 4
− 2

p2P 2
− 2d

p4
TP +

2

p2P 2
TP +

d

p4
T 2
P

]
. (5.16)

The one-loop graph with a gluon self-energy insertion (F g
2d) has an explicit factor of

m2
D and, therefore, we only need to expand the sum-integral to first order in m2

D:

F g(h)
2d = −1

2
m2
D

∑∫

P

1

P 2

+
1

2(d− 1)
m4
D

∑∫

P

[
1

P 4
− 2

p2P 2
− 2d

p4
TP +

2

p2P 2
TP +

d

p4
T 2
P

]
. (5.17)

The one-loop graph with two gluon self-energy insertions (F g
3m) must be expanded

to zeroth order in m2
D

F g(h)
3m = − 1

4(d− 1)
m4
D

∑∫

P

[
1

P 4
− 2

p2P 2
− 2d

p4
TP +

2

p2P 2
TP +

d

p4
T 2
P

]
. (5.18)
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The sum of Eqs. (5.16)-(5.18) is very simple

F g(h)
1a+1b+2d+3m =

1

2
(d− 1)

∑∫

P

ln
(
P 2
)
= −π

2

45
T 4 . (5.19)

This is the free energy of an ideal gas consisting of a single massless boson.

The one-loop fermionic graph F f
1b needs to expanded to second order in m2

q :

F f(h)
1b = −2

∑∫

{P}

lnP 2 − 4m2
q

∑∫

{P}

1

P 2

+2m4
q

∑∫

{P}

[
2

P 4
− 1

p2P 2
+

2

p2P 2
TP − 1

p2P 2
0

T 2
P

]
. (5.20)

The one-loop fermion loop with a fermion self-energy insertion F f
2d must be expanded

to first order in m2
q :

F f(h)
2d = 4m2

q

∑∫

{P}

1

P 2
− 4m4

q

∑∫

{P}

[
2

P 4
− 1

p2P 2
+

2

p2P 2
TP − 1

p2P 2
0

T 2
P

]
. (5.21)

The one-loop fermion loop with two self-energy insertions F f
3i must be expanded to

zeroth order in m2
q :

F f(h)
3i = 2m4

q

∑∫

{P}

[
2

P 4
− 1

p2P 2
+

2

p2P 2
TP − 1

p2P 2
0

T 2
P

]
. (5.22)

The sum of Eqs. (5.20)-(5.22) is particularly simple

F f(h)
1b+2d+3i = −2

∑∫

{P}

lnP 2

= −7π2

180
T 4

[
1 +

120

7
µ̂2 +

240

7
µ̂4

]
. (5.23)

This is the free energy of an ideal gas consisting of a single massless fermion.
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Soft contributions

The soft contributions in the diagrams F g
1a+1b, F g

2d, and F g
3m arise from the P0 = 0

term in the sum-integral. At soft momentum P = (0,p), the HTL self-energy

functions reduce to ΠT (P ) = 0 and ΠL(P ) = m2
D. The transverse term vanishes in

dimensional regularization because there is no momentum scale in the integral over

p. Thus the soft contributions come from the longitudinal term only and read

F g(s)
1a+1b =

1

2
T

∫

p

ln
(
p2 +m2

D

)
= −m

3
DT

12π

(
Λg
2mD

)2ǫ [
1 +

8

3
ǫ

]
, (5.24)

F g(s)
2d = −1

2
m2
DT

∫

p

1

p2 +m2
D

=
m3
DT

8π

(
Λg
2mD

)2ǫ

[1 + 2ǫ] , (5.25)

F g(s)
3m = −1

4
m4
DT

∫

p

1

(p2 +m2
D)

2
= −m

3
DT

32π
. (5.26)

The total soft contribution from Eqs. (5.24)-(5.26) is

F g(s)
1a+1b+2d+3m = −m

3
DT

96π

(
Λg
2mD

)2ǫ [
1 +

8

3
ǫ

]
. (5.27)

There are no soft contributions from the leading-order fermion diagrams or HTL

counterterms (polarization and self-energy insertions).

5.2.2 Two-loop sum-integrals

For hard momenta, the self-energies are suppressed by mD/T and mq/T relative to

the inverse free propagators, so we can expand in powers of ΠT , ΠL, and Σ. As was

the case for the one-loop contributions, we once again treat the polarization and

self-energy insertion NNLO diagrams as two-loop graphs in order to simplify the

resulting expressions.
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Hard-hard (hh) contribution

We first consider the contribution from fermionic diagrams. The (hh) contribution

from F f
2a and F f

2b reads

F f(hh)
2a+2b = (d− 1)g2



∑∫

{PQ}

1

P 2Q2
−
∑∫

P{Q}

2

P 2Q2




+ 2m2
Dg

2
∑∫

P{Q}

[
1

p2P 2Q2
TP +

1

P 4Q2
− d− 2

d− 1

1

p2P 2Q2

]

+ m2
Dg

2
∑∫

{PQ}

[
d+ 1

d− 1

1

P 2Q2r2
− 4d

d− 1

q2

P 2Q2r4
− 2d

d− 1

P ·Q
P 2Q2r4

]
TR

+ m2
Dg

2
∑∫

{PQ}

[
3− d

d− 1

1

P 2Q2R2
+

2d

d− 1

P ·Q
P 2Q2r4

− d+ 2

d− 1

1

P 2Q2r2

+
4d

d− 1

q2

P 2Q2r4
− 4

d− 1

q2

P 2Q2r2R2

]
+ 2m2

qg
2(d− 1)

∑∫

{PQ}

[
d+ 3

d− 1

1

P 2Q2R2

− 2

P 2Q4
+

r2 − p2

q2P 2Q2R2

]
+ 2m2

qg
2(d− 1)

∑∫

{PQ}

[
1

P 2Q2
0Q

2
+

p2 − r2

P 2q2Q2
0R

2

]
TQ

+ 2m2
qg

2(d− 1)
∑∫

P{Q}

[
2

P 2Q4
− 1

P 2Q2
0Q

2
TQ
]
. (5.28)

We consider next the (hh) contributions from F f
3d and F f

3f . The easiest way to

calculate these term, is to expand the two-loop diagrams F f
2a and F f

2b to first order

in m2
D. This yields

F f(hh)
3d+3f = −2m2

Dg
2
∑∫

P{Q}

[
1

p2P 2Q2
TP +

1

P 4Q2
− d− 2

d− 1

1

p2P 2Q2

]

− m2
Dg

2
∑∫

{PQ}

[
d+ 1

d− 1

1

P 2Q2r2
− 4d

d− 1

q2

P 2Q2r4
− 2d

d− 1

P ·Q
P 2Q2r4

]
TR

− m2
Dg

2
∑∫

{PQ}

[
3− d

d− 1

1

P 2Q2R2

2d

d− 1

P ·Q
P 2Q2r4

− d+ 2

d− 1

1

P 2Q2r2

+
4d

d− 1

q2

P 2Q2r4
− 4

d− 1

q2

P 2Q2r2R2

]
. (5.29)
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Next we consider the (hh) contribution from the diagrams F f
3e,F f

3g,F f
3k and F f

3l

F f(hh)
3e+3g+3k+3l = −2m2

qg
2(d− 1)

∑∫

{PQ}

[
1

P 2Q2
0Q

2
+

p2 − r2

P 2q2Q2
0R

2

]
TQ

− 2m2
qg

2(d− 1)
∑∫

P{Q}

[
2

P 2Q4
+

1

P 2Q2
0Q

2
TQ
]

− 2m2
qg

2(d− 1)
∑∫

{PQ}

[
d+ 3

d− 1

1

P 2Q2R2
− 2

P 2Q4
+

r2 − p2

q2P 2Q2R2

]
. (5.30)

The sum of Eqs.(5.28)-(5.30) is

F f(hh)
2a+2b+3d+3e+3f+3g+3k+3l = (d− 1)g2



∑∫

{PQ}

1

P 2Q2
−
∑∫

P{Q}

2

P 2Q2




=
π2

72

αs
π
T 4
(
1 + 12µ̂2

) (
5 + 12µ̂2

)
. (5.31)

For completeness, the (hh) contribution coming from two-loop pure-glue diagrams

is [175]

F g(hh)
2a+2b+2c+3h+3i+3j+3k+3l =

1

4
(d− 1)2g2

∑∫

PQ

1

P 2Q2
=
π2

36

αs
π
T 4 (5.32)

Hard-soft (hs) contribution

In the (hs) region, one gluon momentum is soft but the fermionic momentum is

always hard. The terms that contribute through order g2m3
DT and g2m2

qmDT from

F f
2a and F f

2b were calculated in Ref. [15, 172, 173] and read

F f(hs)
2a+2b = 2g2T

∫

p

1

p2 +m2
D

∑∫

{Q}

[
1

Q2
− 2q2

Q4

]

+ 2m2
Dg

2T

∫

p

1

p2 +m2
D

∑∫

{Q}

[
1

Q4
− 2

d
(3 + d)

q2

Q6
+

8

d

q4

Q8

]

− 4m2
qg

2T

∫

p

1

p2 +m2
D

∑∫

{Q}

[
3

Q4
− 4q2

Q6
− 4

Q4
TQ − 2

Q2

〈
1

(Q·Y )2
〉

ŷ

]
. (5.33)
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The (hs) contribution from diagrams F f
3d and F f

3f can again be calculated from the

diagrams F f
2a and F f

2b by Taylor expanding their contribution to first order in m2
D.

This yields

F f(hs)
3d+3f = 2m2

Dg
2T

∫

p

1

(p2 +m2
D)

2

∑∫

{Q}

[
1

Q2
− 2q2

Q4

]

− 2m2
Dg

2T

∫

p

p2

(p2 +m2
D)

2

∑∫

{Q}

[
1

Q4
− 2

d
(3 + d)

q2

Q6
+

8

d

q4

Q8

]

− 4m2
Dm

2
qg

2T

∫

p

1

(p2 +m2
D)

2

∑∫

{Q}

[
3

Q4
− 4q2

Q6
− 4

Q4
TQ − 2

Q2

〈
1

(Q·Y )2
〉

ŷ

]
. (5.34)

We also need the (hs) contributions from the diagrams F f
3e,F f

3g,F f
3k and F f

3l. Again

we calculate these contributions by expanding the two-loop diagrams F f
2a and F f

2b

to first order in m2
q . This yields

F f(hs)
3e+3g+3k+3l = 4m2

qg
2T

∫

p

1

p2 +m2
D

∑∫

{Q}

[
3

Q4
− 4q2

Q6
− 4

Q4
TQ − 2

Q2

〈
1

(Q·Y )2
〉

ŷ

]
. (5.35)

The sum of Eqs. (5.33)-(5.35) is

F f(hs)
2a+2b+3d+3e+3f+3g+3k+3l

= 2g2T

[∫

p

1

p2 +m2
D

+m2
D

∫

p

1

(p2 +m2
D)

2

]
∑∫

{Q}

[
1

Q2
− 2q2

Q4

]

+ 2g2m2
DT

[∫

p

1

p2 +m2
D

−
∫

p

p2

(p2 +m2
D)

2

]
∑∫

{Q}

[
1

Q4
− 2

d
(3 + d)

q2

Q6
+

8

d

q4

Q8

]

− 4m2
qm

2
DT

∫

p

1

(p2 +m2
D)

2

∑∫

{Q}

[
3

Q4
− 4q2

Q6
− 4

Q4
TQ − 2

Q2

〈
1

(Q·Y )2
〉

ŷ

]

= −2(d− 1)g2T

[∫

p

1

p2 +m2
D

+m2
D

∫

p

1

(p2 +m2
D)

2

]
∑∫

{Q}

1

Q2

− d− 1

3
g2m4

DT

∫

p

1

(p2 +m2
D)

2

∑∫

{Q}

1

Q4
− 8

d− 3

d− 1
g2m2

qm
2
DT

∫

p

1

(p2 +m2
D)

2

∑∫

{Q}

1

Q4
. (5.36)
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Using the results from Secs. (5.3) and (5.4), Eq. (5.36) can be written as

F f(hs)
2a+2b+3d+3e+3f+3g+3k+3l = − 1

12
αs
(
1 + 12µ̂2

)
mDT

3 − αs
4π2

m2
qm

2
DT

− αs
48π2

[
1

ǫ
− 1− ℵ(z)

](
Λ

4πT

)2ǫ(
Λ

2mD

)2ǫ

.(5.37)

where ℵ(z) = Ψ(z) + Ψ(z∗) with z = 1/2 − iµ̂ and Ψ being the digamma function

(see app. A for more details and useful properties of ℵ(z)).

5.2.3 Three-loop sum-integrals

We now list the mass-expanded sum-integrals necessary at three-loops. As before we

organize the contributions according to whether the momentum flowing in a given

propagator is hard or soft.

Hard-hard-hard (hhh) contribution

The (hhh) contributions from diagrams F f
3a and F f

3b which are defind in Eqs. (5.6)

and (5.7) can be written as

F f(hhh)
3a = g4(d− 1)

[
4
(∑∫

P

1

P 2
− 2

∑∫

{P}

1

P 2

)∑∫

{QR}

1

Q2R2(Q +R)2

−1

2
(d− 7)

∑∫

{PQR}

1

P 2Q2R2(P +Q+ R)2

+(d− 3)
∑∫

{PQR}

1

P 2Q2(P − R)2(Q−R)2
+ 2

∑∫

{PQ}R

(P −Q)2

P 2Q2R2(P − R)2(Q−R)2

]

= g4(d− 1)
{
4
(
I0
1 − 2Ĩ0

1

)
τ̃ − 1

2
(d− 7)N0,0 + (d− 3)M̃0,0 + 2N1,−1

}
. (5.38)
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F f(hhh)
3b = −g4(d− 1)2

[(∑∫

P

1

P 2
−
∑∫

{P}

1

P 2

)2∑∫

{P}

1

P 4
− 2

∑∫

{PQR}

1

P 2Q2R2(Q +R)2

+
∑∫

{PQR}

1

P 2Q2(P − R)2(Q− R)2
+
∑∫

{PQR}

(P −Q)2

P 2Q2R2(P −R)2(Q− R)2

]

= −g4(d− 1)2
{(

I0
1 − Ĩ0

1

)2
Ĩ0
2 − 2Ĩ0

1 τ̃ + M̃0,0 + M̃1,−1

}
. (5.39)

Using the results of sum-integrals from Sec. (5.3), the hhh contribution of the sum

of F f
3a and F f

3b from Eqs. (5.38) and (5.39) can be written as

F f(hhh)
3a + F f(hhh)

3b

=
α2
sT

4

192

[
35− 32

ζ ′(−1)

ζ(−1)
+ 472µ̂2 + 384

ζ ′(−1)

ζ(−1)
µ̂2 + 1328µ̂4

−64
(
36iµ̂ℵ(2, z)− 6(1 + 8µ̂2)ℵ(1, z)− 3iµ̂(1 + 4µ̂2)ℵ(0, z)

)]
. (5.40)

where ℵ(n, z) is defined in appendix (A).

Hard-hard-hard contribution from the term F f
3c that has been defined in Eq. (5.8)

can be written as

F f(hhh)
3c = −5α2

s

216
T 4

(
Λ

4πT

)6ǫ
[(

1 +
72

5
µ̂2 +

144

5
µ̂4

)
1

ǫ
+

31

10
+

6

5
γE

− 68

25

ζ ′(−3)

ζ(−3)
+

12

5
(25 + 12γE)µ̂

2 + 120µ̂4 − 8

5
(1 + 12µ̂2)

ζ ′(−1)

ζ(−1)

− 144

5

[
8ℵ(3, z) + 3ℵ(3, 2z) + 12iµ̂ (ℵ(2, z) + ℵ(2, 2z))

− (3 + 20µ̂2)ℵ(1, z)− iµ̂(1 + 12µ̂2)ℵ(0, z)− 12µ̂2ℵ(1, 2z)
]]
, (5.41)
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The (hhh) contribution of the term, which is proportional to cAsF is

− 1

2
F f(hhh)

3a + F f(hhh)
3m+3n

= g2(d− 1)

{
2(d− 5)

∑∫

PQ{R}

1

P 4Q2R2
+

1

2
(d− 3)

∑∫

{PQR}

1

P 2Q2(P −Q)2(Q−R)2

−1

4
(d− 7)

∑∫

{PQ}R

1

P 2Q2(P −R)2(Q− R)2
+
∑∫

{PQ}R

(P −Q)2

P 2Q2R2(P − R)2(Q−R)2

−(d − 3)
∑∫

P{QR}

1

P 2Q2R2(Q− R)2
− 2

∑∫

{PQR}

1

P 2Q2R2(Q− R)2

+2
∑∫

{PQR}

R4

P 2Q2(P −Q)4(Q−R)4

}

= g2(d− 1)

[
2(d− 5)I0

2I0
1 Ĩ0

1 +
1

2
(d− 3)M̃00 −

1

4
(d− 7)N00

+N1,−1 − (d− 3)I0
1 τ̃ − 2Ĩ0

1 τ̃

]

= −25α2
sT

4

864

[(
1 +

72

25
µ̂2 − 1584

25
µ̂4

)(
1

ǫ
+ 6 ln

Λ̂

2

)

− 369

250

(
1 +

2840

123
µ̂2 +

28720

123
µ̂4

)
+

48

25

(
1 + 12µ̂2

)
γE

+
536

125

ζ ′(−3)

ζ(−3)
+

32

25

(
1 + 6µ̂2

) ζ ′(−1)

ζ(−1)
+

288

25

[
26ℵ(3, z)

+
(
3− 68µ̂2

)
ℵ(1, z) + 72iµ̂ℵ(2, z) + 2iµ̂ℵ(0, z)

]]
, (5.42)

where the integrals appearing above are evaluated in Sec. (5.3.3). Finally, we note

that there is no (hhh) contribution from F f
3o since this is a purely HTL diagram.
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hhs contribution

The (hhs) contribution to the F f
3a, F f

3b, and F f
3c+3j are

F f(hhs)
3a = 2(d− 1)g4T

∫

p

1

p2 +m2
D

[
∑∫

Q{R}

4Q0R0

Q2R4(Q +R)2

−
∑∫

{QR}

1

Q2R2(Q−R)2
+
∑∫

{QR}

2Q0R0

Q4R4

]
, (5.43)

F f(hhs)
3b = 2(d− 1)g4T

∫

p

1

p2 +m2
D



∑∫

Q{R}

− 4Q0R0

Q2R4(Q+R)2
+
∑∫

{QR}

1

Q2R2(Q−R)2

+ (d− 3)
∑∫

{Q}

1

Q4



∑∫

R

1

R2
−
∑∫

{R}

1

R2





 , (5.44)

F f(hhs)
3c+3j = −4g4T

∫

p

1

(p2 +m2
D)

2



∑∫

{Q}

(
1

Q2
− 2q2

Q4

)



2

+8g4T

∫

p

p2

(p2 +m2
D)

2

∑∫

{Q}

[
1

Q2
− 2q2

Q4

]∑∫

{R}

[
1

R4
− 2

d
(3 + d)

r2

R6
+

8

d

r4

R8

]

−16m2
qg

4T

∫

p

1

(p2 +m2
D)

2

∑∫

{Q}

[
1

Q2
− 2q2

Q4

]∑∫

{R}

[
3

R4
− 4r2

R6
− 4

R4
TR − 2

R2

〈
1

(R·Y )2
〉

ŷ

]

= −4g4T (d− 1)2
∫

p

1

(p2 +m2
D)

2

∑∫

{QR}

1

Q2R2
+

4

3
g4T (d− 1)2

∫

p

p2

(p2 +m2
D)

2

∑∫

{QR}

1

Q2R4

+32m2
qg

4T (d− 3)

∫

p

1

(p2 +m2
D)

2

∑∫

{QR}

1

Q2R4
. (5.45)

Computing the necessary sum-integrals one finds

F f(hhs)
3a+3b =

α2
smDT

3

4π
(1 + 12µ̂2) , (5.46)
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F f(hhs)
3c+3j =

α2
smDT

3

12π

[
1 + 12µ̂2

ǫ
+ (1 + 12µ̂2)

(
4

3
− ℵ(z)

)
+ 24ℵ(1, z)

]

− πα2
sT

5

18mD

(
1 + 12µ̂2

)2 − α2
sm

2
qT

3

3πmD

(
1 + 12µ̂2

)
. (5.47)

Similarly, one obtains

−1

2
F f(hhs)

3a + F f(hhs)
3m+3n+3o

= g2T (d− 1)

{
2(d− 1)2

∫

p

1

(p2 +m2
D)

2

∑∫

Q{R}

1

Q2R2

+
1

2
(d− 3)

∫

p

1

(p2 +m2
D)

∑∫

{QR}

1

Q2R2(Q− R)2

−
∫

p

1

(p2 +m2
D)

∑∫

{QR}

2Q0R0

Q4R4
− 1

3

(
d2 − 11d+ 46

) ∫

p

p2

(p2 +m2
D)

2

∑∫

Q{R}

1

Q4R2

−1

3
(d− 1)2

∫

p

p2

(p2 +m2
D)

2

∑∫

Q{R}

1

Q2R4

+4m2
q(d− 1)

∫

p

1

(p2 +m2
D)

2

∑∫

Q

1

Q2

∑∫

{R}

[
3

R4
− 4r2

R6
− 4

R4
TR − 2

R2

〈
1

(R.Y )2

〉

ŷ

]}
,

= g2T (d− 1)

{
2(d− 1)2

∫

p

1

(p2 +m2
D)

2

∑∫

Q{R}

1

Q2R2

−1

3

(
d2 − 11d+ 46

) ∫

p

p2

(p2 +m2
D)

∑∫

Q{R}

1

Q4R2

−1

3
(d− 1)2

∫

p

p2

(p2 +m2
D)

2

∑∫

Q{R}

1

Q2R4
+ 8m2

q(d− 3)

∫

p

1

(p2 +m2
D)

2

∑∫

Q{R}

1

Q2R4

}

= −αsmDT
3

48π

(
Λ

2mD

)2ǫ(
Λ

4πT

)4ǫ
[
1

ǫ

(
7 + 132µ̂2

)
+

88

3
+ 440µ̂2 + 22

(
1 + 12µ̂2

)
γE

−8
ζ ′(−1)

ζ(−1)
+ 4ℵ(z) + 264ℵ(1, z)

]
− πα2

sT
5

9mD

(
1 + 12µ̂2

)
− α2

s

3πmD
m2
qT

3 . (5.48)
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hss contribution

The only three loop diagram involving a fermionic line that has a (hss) contribution

is F f
3n which can be written as

F f(hss)
3n = g4T 2

∫

pq

[
4

(p2 +m2
D) (q

2 +m2
D) (p+ q)2

− 2

(p2 +m2
D) (q

2 +m2
D)

2

− 8m2
D

(p+ q)2 (p2 +m2
D) (q

2 +m2
D)

2

]
∑∫

{R}

(
1

R2
− 2r2

R4

)

= −g4T 2(d− 1)

∫

pq

[
4

(p2 +m2
D) (q

2 +m2
D) (p+ q)2

− 2

(p2 +m2
D) (q

2 +m2
D)

2

− 8m2
D

(p+ q)2 (p2 +m2
D) (q

2 +m2
D)

2

]
∑∫

{R}

1

R2

=
α2
sT

4

12

[
1 + 12µ̂2

ǫ
+ 2

(
1 + 12µ̂2 + 12ℵ(1, z)

)]( Λ

2mD

)4ǫ(
Λ

4πT

)2ǫ

(5.49)

5.3 Sum-Integrals

In Sec (4.5) of Chapter 4 we have listed all the one and two loop sum-integrals at

small chemical potential up to O(µ/T )4. In this chapter we are calculating thermo-

dynamic potential at general value of chemical potential. So we are enlisting here

all the necessary one, two and three loop sum-integrals at any value of temperature

and chemical potential.

We can define a set of “master” sum integral as in [13, 146]

Imn =
∑∫

P

Pm
0

P 2n
, (5.50)

Ĩmn =
∑∫

{P}

Pm
0

P 2n
, (5.51)

τ̃ =
∑∫

{PQ}

1

P 2Q2(P +Q)2
, (5.52)
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Mm,n =
∑∫

PQR

1

P 2Q2(R2)m[(P −Q)2]n(P − R)2(Q− R)2
, (5.53)

M̃m,n =
∑∫

{PQR}

1

P 2Q2(R2)m[(P −Q)2]n(P − R)2(Q−R)2
, (5.54)

Nm,n =
∑∫

{PQ}R

1

P 2Q2(R2)m[(P −Q)2]n(P − R)2(Q−R)2
. (5.55)

5.3.1 One loop sum-integrals

The specific bosonic sun-integrals needed are

I0
1 =

∑∫

P

1

P 2
=
T 2

12

(
Λg
4πT

)2ǫ [
1 + 2ǫ

(
1 +

ζ ′(−1)

ζ(−1)

)]
, (5.56)

I0
2 =

∑∫

P

1

P 4
=

1

(4π)2

(
Λg
4πT

)2ǫ [
1

ǫ
+ 2γE

]
. (5.57)

The specific fermionic sun-integrals needed are

Ĩ0
1 =

∑∫

{P}

1

P 2
= −T

2

24

(
Λ

4πT

)2ǫ [
1 + 12µ̂2 + 2ǫ

(
1 + 12µ̂2 + 12ℵ(1, z)

)]
, (5.58)

and

Ĩ0
2 =

∑∫

{P}

1

P 4
=

1

(4π)2

(
Λ

4πT

)2ǫ [
1

ǫ
− ℵ(z)

]
. (5.59)

Using the two basic one-loop sum-integrals above, we can construct other one-loop

sum-integrals that will be necessary here as follows:

∑∫

{P}

1

P 2
=

2

d

∑∫

{P}

p2

P 4
(5.60)
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∑∫

{P}

1

P 4
=

4

d

∑∫

{P}

p2

P 6
=

24

d(d+ 2)

∑∫

{P}

p4

P 8
,

= (d− 1)
∑∫

{P}

1

P 4
TP = − 2

d − 1

∑∫

{P}

1

P 2

〈
1

(P.Y )2

〉

ŷ

. (5.61)

This allows us to compute the following sum-integrals

∑∫

{P}

p2

P 4
= −T

2

16

(
Λ

4πT

)2ǫ [
1 + 12µ̂2 +

4

3
ǫ
(
1 + 12µ̂2 + 18ℵ(1, z)

)]
, (5.62)

∑∫

{P}

1

P 4
TP =

1

2

1

(4π)2

(
Λ

4πT

)2ǫ [
1

ǫ
+ 1− ℵ(z)

]
, (5.63)

∑∫

{P}

p2

P 6
=

3

4

1

(4π)2

(
Λ

4πT

)2ǫ [
1

ǫ
− 2

3
− ℵ(z)

]
, (5.64)

∑∫

{P}

p4

P 8
=

5

8

1

(4π)2

(
Λ

4πT

)2ǫ [
1

ǫ
− 16

15
− ℵ(z)

]
, (5.65)

∑∫

{P}

1

P 2

〈
1

(P.Y )2

〉

ŷ

= − 1

(4π)2

(
Λ

4πT

)2ǫ [
1

ǫ
− 1− ℵ(z)

]
, (5.66)

∑∫

{P}

P0

P 4
=

1

(4π)

(
Λ

4πT

)2ǫ

[iµ̂+ ℵ(0, z)ǫ] . (5.67)

139



CHAPTER 5. THREE-LOOP HTLPT THERMODYNAMICS

5.3.2 Two loop sum-integrals

For the purposes of this chapter we only need one new two-loop sum-integral

τ̃ =
∑∫

{PQ}

1

P 2Q2(P +Q)2
= − T 2

(4π)2

(
Λ

4πT

)4ǫ [
µ̂2

ǫ
+ 2µ̂2 − 2iµ̂ℵ[0, z]

]
. (5.68)

5.3.3 Three loop sum-integrals

The three-loop sum-integrals necessary are

M00 =
∑∫

PQR

1

P 2Q2R2 (P +Q+R)2

=
1

(4π)2

(
T 2

12

)2(
Λg
4πT

)6ǫ [
6

ǫ
+

182

5
− 12

ζ ′(−3)

ζ(−3)
+ 48

ζ ′(−1)

ζ(−1)

]
. (5.69)

N00 =
∑∫

{PQR}

1

P 2Q2R2 (P +Q +R)2

=
1

(4π)2

(
T 2

12

)2(
Λ

4πT

)6ǫ
[
3

2ǫ

(
1 + 12µ̂2

)2
+

173

20
+ 210µ̂2

+1284µ̂4 − 24

5

ζ ′(−3)

ζ(−3)
+ 144

(
(1 + 8µ̂2)ℵ(1, z) + 4µ̂2ℵ(1, 2z)

− 4iµ̂
[
ℵ(2, z) + ℵ(2, 2z)

]
− 2ℵ(3, z)− ℵ(3, 2z)

)]
. (5.70)

M̃00 =
∑∫

PQ{R}

1

P 2Q2R2 (P +Q+R)2

= − 1

(4π)2

(
T 2

12

)2(
Λ

4πT

)6ǫ
[
3

4ǫ

(
1 + 24µ̂2 − 48µ̂4

)
+

179

40

+ 111µ̂2 − 210µ̂4 + 48
ζ ′(−1)

ζ(−1)
µ̂2 +

24

5

ζ ′(−3)

ζ(−3)

+ 72
(
(1− 8µ̂2)ℵ(1, z) + 6ℵ(3, z) + 12iµ̂ℵ(2, z)

)]
. (5.71)
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N1,−1 = − 1

2 (4π)2

(
T 2

12

)2(
Λ

4πT

)6ǫ
[
3

2ǫ

(
1 + 12µ̂2

) (
1− 4µ̂2

)

+
173

20
+ 114µ̂2 + 132µ̂4 − 12

5

ζ ′(−3)

ζ(−3)
− 96µ̂2ζ

′(−1)

ζ(−1)

− 144
[
2ℵ(3, z) + 2ℵ(3, 2z)− 4iµ̂ℵ(2, z) + 8iµ̂ℵ(2, 2z)

−
(
1− 4µ̂2

)
ℵ(1, z)− 8µ̂2ℵ(1, 2z)− 1

3
iµ̂
(
1 + 12µ̂2

)
ℵ(0, z)

]]
. (5.72)

H3 =
∑∫

{P}QR

Q · R
P 2Q2R2 (P +Q)2 (P +R)2

=
1

(4π)2

(
T 2

12

)2(
Λ

4πT

)6ǫ
[
3

8ǫ

(
1 + 12µ̂2

)2
+

361

160
− 3

5

ζ ′(−3)

ζ(−3)

+
141

4
µ̂2 +

501

2
µ̂4 − 9

{(
1

8
+ µ̂2 + 2µ̂4

)
ℵ(z) + 2iµ̂

(
1 + 4µ̂2

)
ℵ(0, z)

+ 2
(
1− 12µ̂2

)
ℵ(1, z) + 24iµ̂ℵ(2, z) + 16ℵ(3, z)

}]
. (5.73)

M̃−2,2 =
∑∫

{PQR}

R4

P 2Q2(P −Q)4(Q− R)2(R − P )2

= − 1

(4π)2

(
T 2

12

)2(
Λ

4πT

)6ǫ
[

1

12ǫ

(
29 + 288µ̂2 − 144µ̂4

)
+

89

12
+ 4γE

+ 2(43 + 24γE)µ̂
2 − 68µ̂4 +

10

3

(
1 +

84

5
µ̂2

)
ζ ′(−1)

ζ(−1)
+

8

3

ζ ′(−3)

ζ(−3)

+ 24
[
10ℵ(3, z) + 18iµ̂ℵ(2, z) + 2(2− 5µ̂2)ℵ(1, z) + iµ̂ℵ(0, z)

]
]
. (5.74)
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5.4 Three-dimensional integrals

Dimensional regularization can be used to regularize both the ultraviolet divergences

and infrared divergences in 3-dimensional integrals over momenta. The spatial di-

mension is generalized to d = 3 − 2ǫ dimensions. Integrals are evaluated at a value

of d for which they converge and then analytically continued to d = 3. We use the

integration measure ∫

p

≡
(
eγEΛ2

4π

)ǫ ∫
d3−2ǫp

(2π)3−2ǫ
. (5.75)

5.4.1 One-loop integrals

The general one-loop integral is given by

In ≡
∫

p

1

(p2 +m2)n

=
1

8π
(eγEΛ2)ǫ

Γ(n− 3
2
+ ǫ)

Γ(1
2
)Γ(n)

m3−2n−2ǫ . (5.76)

Specifically, we need

I ′0 ≡
∫

p

ln(p2 +m2)

= −m
3

6π

(
Λ

2m

)2ǫ [
1 +

8

3
ǫ+O

(
ǫ2
)]

, (5.77)

I1 = −m

4π

(
Λ

2m

)2ǫ [
1 + 2ǫ+O

(
ǫ2
)]

, (5.78)

I2 =
1

8πm

(
Λ

2m

)2ǫ

[1 +O (ǫ)] . (5.79)
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5.4.2 Two-loop integrals

We also need a few two-loop integrals on the form

Jn =

∫

pq

1

p2 +m2

1

(q2 +m2)n
1

(p+ q)2
. (5.80)

Specifically, we need J1 and J2 which were calculated in Ref. [175]:

J1 =
1

4(4π)2

(
Λ

2m

)4ǫ [
1

ǫ
+ 2 +O(ǫ)

]
, (5.81)

J2 =
1

4(4π)2m2

(
Λ

2m

)4ǫ

[1 +O(ǫ)] . (5.82)

5.5 NNLO HTLpt thermodynamic potential

In Sec. (5.2) we expanded each term of Eq. (5.1) form small mD/T and mq/T . In

Sec. (5.3) and Sec. (5.4) we calculated necessary sum-integrals and three dimensional

integrals that arise in Sec. (5.2). In this section we will summarized the results from

Secs. (5.2), (5.3) and (5.4) to get final thermodynamic potential.

We consider first the case that all quarks have the same chemical potential µf =

µ = µB/Nf where f is a flavor index with f ∈ {µu, µd, µs, · · · , µNf
}. Here we are

considering Nf = 3, so µf = µ = µB/3. After presenting the steps needed for this

case, we give the general result with separate chemical potentials for each flavor.

5.5.1 NNLO result for equal chemical potentials

When all quarks have the same chemical potential µi = µ = µB/3 we can straight-

forwardly combine the results for the various sum-integrals. In this case, the un-

renormalized three-loop HTLpt thermodynamic potential is
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where Ω0 = −dAπ2T 4/45.

The sum of all counterterms through order δ2 is
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where ∆ΩYM is the pure-glue three-loop HTLpt counterterm [178]
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Adding the total three-loop HTLpt counterterm (5.84) to the unrenormalized three-

loop HTLpt thermodynamic potential (5.83) we obtain our final result for the NNLO

HTLpt thermodynamic potential in the case that all quarks have the same chemical
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potential
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where ΩYM
NNLO is the NNLO pure glue thermodynamic potential [175]
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It is worth to mention here that the NNLO pure glue thermodynamic potential in

Eq. (5.87) looks like chemical potential independent as there are no explicit chemical

potential dependence, but the chemical potential implicitly present within Debye

mass mD. It appears in pure glue diagrams from the internal quark loop in effective

gluon propagators and effective vertices.

Note that the full thermodynamic potential (5.86) reduces to thermodynamic po-

tential of Ref. [178] in the limit µ → 0. In addition, the above thermodynamic

potential produces the correct O(g5) perturbative result when expanded in a strict

power series in g [13, 146].

5.5.2 NNLO result – General case

It is relatively straightforward to generalize the previously obtained result (5.86) to

the case that each quark has a separate chemical potential µf . The final result is
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where the sums over f and g include all quark flavors, zf = 1/2 − iµ̂f , and ΩYM
NNLO

is the pure-glue contribution as before.
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5.6 Mass prescription

As discussed in Sec. (2.2.8) of Chapter 2 and also in Ref. [178], the two-loop per-

turbative electric gluon mass, first introduced by Braaten and Nieto in [139, 144]

is the most suitable for three-loop HTLpt calculations. We use the Braaten-Nieto

(BN) mass prescription for mD in the remainder of the chapter. Originally, the two-

loop perturbative mass was calculated in Refs. [139,144] for zero chemical potential,

however, Vuorinen has generalized it to finite chemical potential. The resulting

expression for m2
D is [13, 146]
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f
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. (5.89)

The effect of the in-medium quark mass parameter mq in thermodynamic functions

is small and following Ref. [178] we take mq = 0 which is the three loop variational

solution. The maximal effect on the susceptibilities comparing the perturbative

quark mass, m̂2
q = cFαs(T

2 + µ2/π2)/8π, with the variational solution, mq = 0, is

approximately 0.2% at T = 200 MeV. At higher temperatures, the effect is much

smaller, e.g. 0.02% at T = 1 GeV.

5.7 Thermodynamic functions

In this section we present our final results for the NNLO HTLpt pressure, en-

ergy density, entropy density, trace anomaly, and speed of sound. We will plotted

our NNLO result both using one loop(1.35) and three loop (1.36) running cou-
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pling. For both one- and three-loop running we fix the scale ΛMS by requiring that

αs(1.5 GeV) = 0.326 which is obtained from lattice measurements [229]. For one-

loop running, this procedure gives ΛMS = 176 MeV, and for three-loop running, one

obtains ΛMS = 316 MeV.

5.7.1 Scales

For the renormalization scale we use separate scales, Λg and Λ, for purely-gluonic and

fermionic graphs, respectively. We take the central values of these renormalization

scales to be Λg = 2πT and Λ = 2π
√
T 2 + µ2/π2. In all plots the thick lines indicate

the result obtained using these central values and the light-blue band indicates the

variation of the result under variation of both of these scales by a factor of two, e.g.

πT ≤ Λg ≤ 4πT . For all numerical results below we use cA = Nc = 3 and Nf = 3.

5.7.2 Pressure

The QGP pressure can be obtained directly from the thermodynamic potential (5.86)

P(T,Λ, µ) = −ΩNNLO(T,Λ, µ) , (5.90)

where Λ above is understood to include both scales Λg and Λ.

We note that in the ideal gas limit, the pressure becomes

Pideal(T, µ) =
dAπ

2T 4

45

[
1 +

7

4

dF
dA

(
1 +

120

7
µ̂2 +

240

7
µ̂4

)]
. (5.91)

In Figs. (5.4) and (5.5) we compare the scaled NNLO HTLpt pressure for µB = 0

(left) and µB = 400 MeV (right) with lattice data from Refs. [8, 9, 110]. The de-

viations below T ∼ 200 MeV are due to the fact that our calculation does not
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Figure 5.4: Comparison of the Nf = 2+1, µB = 0 (left) and µB = 400 MeV (right)
NNLO HTLpt pressure with lattice data from Borsanyi et al. [8, 9]. For the HTLpt
results a one-loop running coupling constant was used.

include hadronic degrees of freedom which dominate at low temperatures (see e.g.

fits in [312]) or nonperturbative effects [313–319]. Further, in order to gauge the sen-

sitivity of the results to the order of the running coupling, in Fig. (5.4) we show the

results obtained using a one-loop running and in Fig. (5.5) the results obtained using

a three-loop running. As can be seen by comparing these two sets, the sensitivity

of the results to the order of the running coupling is small for T & 250 MeV. As a

result, unless the order of the running coupling turns out to have a significant effect

on a given observable (see e.g. the fourth-order baryon number susceptibility), we

will show the results obtained using a one-loop running coupling consistent with the

counterterms necessary to renormalize the NNLO thermodynamic potential (5.5).

For an additional comparison we can compute the change in the pressure

∆P = P(T,Λ, µ)−P(T,Λ, 0) . (5.92)

In Fig. (5.6) we plot ∆P as a function of the temperature for µB = 300 MeV and

µB = 400 MeV. The solid lines are the NNLO HTLpt result and the dashed lines
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Figure 5.5: Same as Fig. (5.4) except with a three-loop running coupling constant.

are the result obtained in the Stefan-Boltzmann limit. We note that in Fig. (5.6)

the lattice data from the Wuppertal-Budapest group [9] is computed up to O(µ2
B),

whereas the HTLpt result includes all orders in µB. As can be seen from this figure,

the NNLO HTLpt result is quite close to the result obtained in the Stefan-Boltzmann

limit. Note that the small correction in going from the Stefan-Boltzmann limit to

NNLO HTLpt indicates that the fermionic sector is, to good approximation, weakly

coupled for T & 300 MeV.

5.7.3 Energy density

Once the pressure is known, it is straightforward to compute other thermodynamic

functions such as the energy density by computing derivatives of the pressure with

respect to the temperature and chemical potential. The energy density can be

obtained via

E = T
∂P
∂T

+ µ
∂P
∂µ

− P . (5.93)
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Figure 5.6: Comparison of the Stefan-Boltzmann limit (dashed lines) and NNLO
HTLpt (solid lines) results for the scaled pressure difference with lattice data from
Borsanyi et al. [9].

We note that in the ideal gas limit, the entropy density becomes

Eideal(T, µ) =
dAπ

2T 4

15

[
1 +

7

4

dF
dA

(
1 +

120

7
µ̂2 +

240

7
µ̂4

)]
. (5.94)

In Fig. (5.7) we plot the scaled NNLO HTLpt energy density for µB = 0 (left) and

µB = 400 MeV (right) together with µB = 0 lattice data from Ref. [8]. As we can see

from this figure, there is reasonable agreement between the NNLO HTLpt energy

density and the lattice data when the central value of the scale is used.

5.7.4 Entropy density

Similarly, we can compute the entropy density

S(T, µ) = ∂P
∂T

. (5.95)
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Figure 5.7: Comparison of the Nf = 2+1, µB = 0 (left) and µB = 400 MeV (right)
NNLO HTLpt energy density with lattice data. The µB = 0 lattice data are from [8].
For the HTLpt results a one-loop running coupling constant was used.

We note that in the ideal gas limit, the entropy density becomes

Sideal(T, µ) =
4dAπ

2T 3

45

[
1 +

7

4

dF
dA

(
1 +

60

7
µ̂2

)]
. (5.96)

In Fig (5.8) we plot the scaled NNLO HTLpt entropy density for µB = 0 (left) and

µB = 400 MeV (right) together with µB = 0 lattice data from Ref. [8]. As we can see

from this figure, there is quite good agreement between the NNLO HTLpt entropy

density and the lattice data when the central value of the scale is used.

5.7.5 Trace anomaly

Since it is typically the trace anomaly itself which is computed on the lattice and

then integrated to obtain the other thermodynamic functions,it is interesting to

compare directly with lattice data for the trace anomaly. The trace anomaly is

simply I = E − 3P. In the ideal gas limit, the trace anomaly goes to zero since
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Figure 5.8: Comparison of the Nf = 2+1, µB = 0 (left) and µB = 400 MeV (right)
NNLO HTLpt entropy density with lattice data. The µB = 0 lattice data are from [8].
For the HTLpt results a one-loop running coupling constant was used.

E = 3P. When interactions are included, however, the trace anomaly (interaction

measure) becomes non-zero.

In Fig. (5.9) we plot the scaled NNLO HTLpt trace anomaly for µB = 0 (left) and

µB = 400 MeV (right) together with lattice data from Refs. [8] and [10]. As we can

see from this figure, there is quite good agreement between the NNLO HTLpt trace

anomaly and the lattice data for T & 220 MeV when the central value of the scale

is used.

5.7.6 Speed of sound

Another quantity which is phenomenologically interesting is the speed of sound. The

speed of sound is defined as

c2s =
∂P
∂E . (5.97)
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Figure 5.9: Comparison of the Nf = 2+1, µB = 0 (left) and µB = 400 MeV (right)
NNLO HTLpt trace anomaly with lattice data. The µB = 0 lattice data are from [8]
and the µB = 400 MeV lattice data are from [10]. For the HTLpt results a one-loop
running coupling constant was used.

In Fig. (5.10) we plot the NNLO HTLpt speed of sound for µB = 0 (left) and

µB = 400 MeV (right) together with lattice data from Refs. [8] and [10]. As we can

see from this figure, there is quite good agreement between the NNLO HTLpt speed

of sound and the lattice data when the central value of the scale is used.

5.8 Quark number susceptibilities

Having the full thermodynamic potential as a function of chemical potential(s) and

temperature allows us to compute the quark number susceptibilities. In general,

one can introduce a separate chemical potential for each quark flavor giving a Nf -

dimensional vector µ ≡ (µ1, µ2, ..., µNf
). By taking derivatives of the pressure with

respect to chemical potentials in this set, we obtain the quark number susceptibili-
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Figure 5.10: Comparison of the Nf = 2+1, µB = 0 (left) and µB = 400 MeV (right)
NNLO HTLpt speed of sound squared with lattice data. The µB = 0 lattice data are
from [8] and the µB = 400 MeV lattice data are from [10]. For the HTLpt results a
one-loop running coupling constant was used.

ties 1

χijk ··· (T ) ≡ ∂i+j+k+ ··· P (T,µ)

∂µiu ∂µ
j
d ∂µ

k
s · · ·

∣∣∣∣∣
µ=0

. (5.98)

Below we will use a shorthand notation for the susceptibilities by specifying deriva-

tives by a string of quark flavors in superscript form, e.g. χuu2 = χ200, χ
ds
2 = χ011,

χuudd4 = χ220, etc.

When computing the derivatives with respect to the chemical potentials we treat

Λ as being a constant and only put the chemical potential dependence of the Λ in

after the derivatives are taken. We have done this in order to more closely match

the procedure used to compute the susceptibilities using resummed dimensional

reduction [246].2

1We have specified that the derivatives should be evaluated at µ = 0. In general, one could
define the susceptibilities at µ = µ0.

2One could instead put the chemical potential dependence of the Λ in prior to taking the
derivatives with respect to the chemical potentials. If this is done, the central lines obtained are
very close to the ones obtained using the fixed-Λ prescription, however, the scale variation typically
increases in this case.
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5.8.1 Baryon number susceptibilities

We begin by considering the baryon number susceptibilities. The nth-order baryon

number susceptibility is defined as

χnB(T ) ≡
∂nP
∂µnB

∣∣∣∣
µB=0

. (5.99)

For a three flavor system consisting of (u, d, s), the baryon number susceptibilities

can be related to the quark number susceptibilities [118]

χB2 =
1

9

[
χuu2 + χdd2 + χss2 + 2χud2 + 2χds2 + 2χus2

]
, (5.100)

and

χB4 =
1

81

[
χuuuu4 + χdddd4 + χssss4 + 4χuuud4 + 4χuuus4

+ 4χdddu4 + 4χddds4 + 4χsssu4 + 4χsssd4 + 6χuudd4

+ 6χddss4 + 6χuuss4 + 12χuuds4 + 12χddus4 + 12χssud4

]
. (5.101)

If we treat all quarks as having the same chemical potential µu = µd = µs = µ =

1
3
µB, Eqs. (5.100) and (5.101) reduce to χB2 = χuu2 and χB4 = χuuuu4 . This allows

us to straightforwardly compute the baryon number susceptibility by computing

derivatives of (5.86) with respect to µ. In Fig. (5.11) we compare the NNLO HTLpt

result for the second order baryon number susceptibility with lattice data from

various groups. In the left panel of this figure we used the one-loop running and on

the right we used the three-loop running. As one can see, for this quantity, the size

of the light-blue band becomes larger if one uses the three-loop running, however,

the central value obtained is very close in both cases.

Comparing to the lattice data we see that the NNLO HTLpt prediction is approx-
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Figure 5.11: The scaled second order baryon number susceptibility compared with
various lattice data using one loop running (left) and three-loop running (right). The
lattice data labeled WB, BNL-BI(B), BNL-BI(u,s), MILC, and TIFR come from
Refs. [11], [122], [123], [111], and [320], respectively.

imately 10% higher than the lattice data at T = 250 MeV and approximately

2% higher at T = 800 MeV. We note in this context that recently the four-loop

second-order baryon number susceptibility has been computed in Ref. [246] using

the resummed dimensional reduction method. The result from this approach lies

within the NNLO HTLpt scale variation band and is even closer to the lattice data

with the error at T = 250 MeV being approximately 2% and . 1% at T = 800 MeV.

Our result, taken together with the resummed dimensional reduction results seem to

indicate that the quark sector of the QGP can be quite accurately described using

resummed perturbation theory for temperatures above approximately 300 MeV. In

Fig. (5.12) we compare the NNLO HTLpt result for the fourth order baryon number

susceptibility with lattice data. Once again we show in the left and right panels, the

result obtain using the one-loop running coupling and three-loop running coupling,

respectively. Both the one- and three-loop running results are consistent with the

lattice data shown; however, the lattice error bars on this quantity are somewhat

large and the data are restricted to temperatures below 400 MeV, making it difficult
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Figure 5.12: The scaled fourth order baryon number susceptibility compared with
various lattice data using one loop running (left) and three-loop running (right). The
lattice data labeled WB, BNL-BI(B), BNL-BI(u,s), MILC, and TIFR come from
Refs. [11], [122], [123], [111], and [320], respectively.

to draw firm conclusions from this comparison. That being said, HTLpt makes a

clear prediction for the temperature dependence of the fourth order baryon number

susceptibility. It will be very interesting to see if future lattice data agree with this

prediction.
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Figure 5.13: Comparison of the Nf = 2 + 1 NNLO HTLpt ratio of the fourth to
second order baryon susceptibility with lattice data. For the HTLpt results a one-loop
running coupling constant was used. The data labeled WB and BNL-BI(B) come from
Refs. [82, 119] and [122], respectively.
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In Fig. (5.13) we plot the scaled ratio of the fourth and second order baryon number

susceptibilities as a function of temperature along with lattice data for this ratio. As

we can see from this figure, this ratio very rapidly approaches the Stefan-Boltzmann

limit if one considers the central NNLO HTLpt line. Comparing with the lattice

data we see that the NNLO HTLpt result is below the lattice data for temperatures

less than approximately 300 MeV. Without lattice data at higher temperatures,

it’s hard to draw a firm conclusion regarding the temperature at which HTLpt

provides a good description of this quantity. In Fig. (5.14) we show the NNLO
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Figure 5.14: The Nf = 2+1 NNLO HTLpt scaled sixth-order baryon susceptibility
as a function of temperature.

HTLpt prediction for the sixth order baryon number susceptibility. To the best of

our knowledge there is currently no publicly available lattice data for this quantity.

It will be very interesting to see if these NNLO HTLpt predictions agree with lattice

data as they becomes available.

5.8.2 Single quark number susceptibilities

We now consider the single quark number susceptibilities (5.98). For these we use

the general expression for the NNLO thermodynamic potential with different quark

chemical potentials (5.88). The resulting susceptibilities can either be diagonal
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Figure 5.15: Comparison of the Nf = 2+ 1 NNLO HTLpt ratio of the fourth order
diagonal single quark number susceptibility (left) and the only non-vanishing fourth
order off-diagonal quark number susceptibility (right) with lattice data. In the left
figure the dashed blue line indicates the Stefan-Boltzmann limit for this quantity. For
the HTLpt results a one-loop running coupling constant was used. The data labeled
BNL-BI(uudd), BNL-BI(u,s), BNL-BI(uuss), and TIFR come from Refs. [122], [123],
[124], and [320], respectively.

(same flavor on all derivatives) or off-diagonal (different flavor on some or all indices).

In HTLpt there are off-diagonal susceptibilities emerging explicitly from graphs F f
3c

and F f
3j; however, the latter vanishes when we use the variational mass prescription

for the quark mass (mq = 0), so we need only consider the F f
3c graph. Additionally,

there are potential off-diagonal contributions coming from all HTL terms since the

Debye mass receives contributions from all quark flavors. In practice, however,

because we evaluate derivatives with respect to the various chemical potentials and

then take µi → 0, one finds that all off-diagonal second order susceptibilities vanish

in HTLpt. Therefore, for the three-flavor case one has

χud2 = χds2 = χsu2 = 0 , (5.102)
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Figure 5.16: Comparison of the Nf = 2 + 1 NNLO HTLpt ratio of the fourth
to second order single quark susceptibility with lattice data. For the HTLpt results
a one-loop running coupling constant was used. The data labeled WB come from
Refs. [82, 119].

and, as a result, the single quark second order susceptibility is proportional to the

baryon number susceptibility

χuu2 =
1

3
χB2 . (5.103)

For the fourth order susceptibility, there is only one non-zero off-diagonal suscepti-

bility, namely χuudd4 = χuuss4 = χddss4 , which is related to the diagonal susceptibility,

e.g. χuuuu4 = χdddd4 = χssss4 , as

χuuuu4 = 27χB4 − 6χuudd4 . (5.104)

As a consequence, one can compute χuuuu4 directly from (5.88) or by computing χB4

using (5.86) and χuudd4 using (5.88) and applying the above relation. In our final

plots we compute χuuuu4 directly from (5.88), however, we have checked that we

obtain the same result if we use (5.104) instead.

In Fig. (5.15) (left) we plot our result for the fourth order single quark susceptibility
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χuuuu4 compared to lattice data from Refs. [123], [122], [124], and [320]. As we can

see from this figure, for the fourth order susceptibility there is very good agreement

with available lattice data. In addition, the scale variation of the HTLpt result is

quite small for this particular quantity. In Fig. (5.15) (right) we plot our result for

the fourth order off-diagonal single quark susceptibility χuudd4 compared to lattice

data. From this right panel we also see reasonably good agreement between the

NNLO HTLpt result and the available lattice data.

In Fig. (5.16) we plot the scaled ratio of the fourth- and second-order single quark

susceptibilities. Once again we see good agreement between the NNLO HTLpt

result and lattice data. Once again, for both Figs. (5.15) and (5.16), the lattice

data are confined to relatively low temperatures. It will be interesting to compare

higher temperature lattice data with the NNLO HTLpt prediction as they become

available.

1 loop Αs ; LMS=176 MeV

æ

æ
æ

æ æ

æ

æ

æ

æ

æ

æ

200 400 600 800 1000

-0.2

0.0

0.2

0.4

0.6

T @MeVD

T
2
Χ

60
0

RBC-BI , NΤ =6
RBC-BI , NΤ =4
NNLO HTLpt

Figure 5.17: The Nf = 2+1 NNLO HTLpt scaled sixth-order diagonal single quark
susceptibility χ600 as a function of temperature.

Finally, in Fig. (5.17) we plot the diagonal sixth-order quark number susceptibilities

χ600 with available lattice data. In this figure we show lattice data available from
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the RBC-Bielefeld collaboration [116]. At this point in time the lattice sizes are

small and the errors bars for χ600 are large, so it is hard to draw a firm conclusion

from this comparison.
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Figure 5.18: The Nf = 2 + 1 NNLO HTLpt scaled sixth-order off-diagonal single
quark susceptibilities χ420 (left), and χ222 (right) as a function of temperature.

In Fig. (5.18) we plot off-diagonal sixth-order quark number susceptibilities χ420

(left), and χ222 (right). We are unaware of any lattice data for off-diagonal suscepti-

bilities. As before, it will be very interesting to see if these NNLO HTLpt predictions

agree with lattice data as they becomes available.

5.9 Conclusions and outlook

In this chapter, we presented the results of a NNLO (three-loop) HTLpt calculation

of the thermodynamic potential of QCD at finite temperature and chemical poten-

tial(s). Our final result (5.88) is completely analytic and should be valid in the

region of the phase diagram for which µi . 2πT . Based on the resulting thermo-

dynamic potential we proceeded to calculate the pressure, energy density, entropy

density, trace anomaly, and speed of sound of the QGP. In all cases we found very

good agreement between the results obtained using the central values of the renor-

165



CHAPTER 5. THREE-LOOP HTLPT THERMODYNAMICS

malization scales and available lattice data. Additionally, we have made predictions

for the diagonal and off-diagonal sixth-order baryon number and single quark sus-

ceptibilities.

Looking to the future there are still many avenues for improvement in the HTLpt

approach: (1) inclusion of the effects of finite quark masses (2) extension of results to

µi & 2πT and eventually to T = 0, and (3) to potentially resum logarithms in order

to reduce the scale variation of the final results (light-blue bands in all figures). Of

these three, the second task is the most straightforward; however, in order to make

more definitive and constrained statements it now seems necessary to start moving in

directions (1) and (3) as well. In closing, we emphasize that HTLpt provides a gauge

invariant reorganization of perturbation theory for calculating static quantities in

thermal field theory. Since the NNLO HTLpt results are in good agreement with

lattice data for various thermodynamic quantities down to temperatures that are

relevant for LHC, it would therefore be interesting and challenging to apply HTLpt

to the calculation of dynamic quantities, especially transport coefficients, at these

temperatures.
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CHAPTER 6

Dileption Production Rate

In this chapter we study the low mass dilepton rate from deconfined state of mat-

ter using both perturbative and non-perturbative method. This chapter is based

on: Low Mass Dilepton Rate from the Deconfined Phase, C. Greiner, N. Haque,

M. G. Mustafa and M. H. Thoma, Phys.Rev. C83 (2011) 014908.

6.1 Introduction

The prime intention for ultra relativistic heavy-ion collisions is to study the behavior

of nuclear or hadronic matter at extreme conditions like very high temperatures

and/or high densities. A particular goal lies in the identification of a new state of

matter formed in such collisions, the quark-gluon plasma (QGP), where the quarks

and gluons are deliberated from the nucleons and move freely over an extended space-

time region. Various measurements taken in CERN-SPS [27] and BNL-RHIC [1–4,

28–32] do lead to ‘circumstantial evidence’ for the formation of QGP. Evidence is

(or can only be) ‘circumstantial’ because only indirect diagnostic probes exist.

Electromagnetic probes, such as real photon and dileptons, are a particular exam-

ple, and accordingly thermal dileptons have been theoretically proposed long time
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ago [21]. At SPS energies [190–193] there was an indication for an enhancement of

the dilepton production at low invariant mass (0.2 ≤ M(GeV) ≤ 0.8 ) compared

to all known sources of electromagnetic decay of the hadronic particles and the

contribution of a radiating simple hadronic fireball (for comprehensive reviews see

Refs. [194–196]). One of the possible explanations of this is the modification of the in-

medium properties of the vector meson (viz., ρ-meson) by rescattering in a hadronic

phase along with only the lowest order perturbative rate, i.e., qq̄ annihilation from

a QGP [194–213]. Also at RHIC energies [28] a substantial amount of excess of elec-

tron pairs was reported in the low invariant mass region. Models taking into account

in-medium properties of hadrons with various ingredients (see for details [214,215])

can not explain the data from RHIC in the range 0.15 ≤ M(GeV) ≤ 0.5, whereas

they fit the SPS data more satisfactorily, indicating that a possible non-hadronic

source becomes important at RHIC.

On the other hand, the higher order perturbative calculations [216] are also not

very reliable at temperatures within the reach of the heavy-ion collisions. Moreover,

perturbative calculations of the dilepton rate seem not to converge even in small

coupling (g) limit. Nevertheless, the lowest order perturbative qq̄ annihilation is the

only dilepton rate from the QGP phase that is extensively used in the literatures.

However, at large invariant mass this contribution should be dominant but not at low

invariant mass, where nonperturbative effects should play an important role. Unfor-

tunately, the lattice data [217] due to its limitations also could not shed any light on

the low mass dileptons. However, the lattice calculations [7, 109–112, 218, 219] pro-

vide evidence for the existence of nonperturbative effects associated with the bulk

properties of the deconfined phase, in and around the deconfined temperature, Tc.

Also, indications have been found that the QGP at RHIC energies behaves more as

a strongly coupled liquid than a weakly coupled gas [220]. Thus, a nonperturbative

analysis of the dilepton rate from the deconfined phase is essential.
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The dilepton emission at low invariant mass from the deconfined phase is still an

unsettled issue in heavy-ion collisions at SPS and RHIC energies and, in particu-

lar, would be an important question for LHC energies and for compact baryonic

matter formation in future FAIR energies, and also for the quark-hadron dual-

ity [194, 195, 221] that entails a reminiscence to a simple perturbative lowest order

quark-antiquark annihilation rate [222]. In this chapter we reconsider the dilepton

production rates within the perturbative QCD, and non-perturbative models based

on lattice inputs and phenomenological ρ − q interaction in the deconfined phase.

The analysis suggests that the nonperturbative dilepton rates are indeed important

at the low invariant mass regime.

This chapter is organised in following way. In section (6.2) we discuss the dilepton

production rate from the deconfined phase based on both perturbative and non-

perturbative models. In section (6.3) we compare the momentum integrated rates

from both QGP and Hadron gas (HG). We discuss the quark-hadron duality in

section (6.4), and conclude in section (6.5).

6.2 Dilepton Rate From Deconfined Phase

The dilepton production rate is related with the imaginary part of the photon self-

energy [21, 321] as

dR

d4xd4P
= − αem

12π4

1

eE/T − 1

ImΠµ
µ(P )

M2
, (6.1)

where αem = e2/4π is fine structure constant and P is four momentum of the virtual

photon, E is its energy, and we use the notation P ≡ (p0 = E, ~p) and p = |~p|. The

square of the invariant mass of dilepton pair is M2 = p20 − p2.
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6.2.1 Born Rate

To the lowest order the dilepton rate follows from one-loop photon self energy con-

taining bare quark propagators. This rate corresponds to a dilepton production

by the annihilation of bare quarks and antiquarks of the QGP. Alternatively, this

so-called Born-rate can also be obtained from the matrix element of the basic anni-

hilation process folded with the thermal distribution functions of quarks. In the case

of massless lepton pairs in a QGP with two massless quark flavors with chemical

potential one finds [222]

dR

d4xd4P
=

5α2
em

36π4

T

p

1

eβE − 1
ln

(x2 + exp[−β(E + µ)]) (x1 + exp[−βµ])
(x1 + exp[−β(E + µ)]) (x2 + exp[−βµ]) , (6.2)

where β = 1/T , x1 = exp[−β(E + p)/2] and x2 = exp[−β(E − p)/2]. A finite quark

mass can easily be included.

For µ = 0 the dilepton rate becomes

dR

d4xd4P
=

5α2
em

18π4

T

p

1

eE/T − 1
ln

(
cosh E+p

4T

cosh E−p
4T

)
, (6.3)

whereas that for total three momentum ~p = 0 is given as

dR

d4xd4P
=

5α2
em

36π4
n(E/2− µ) n(E/2 + µ) , (6.4)

with n(y) = (exp(βy) + 1)−1, the Fermi-Dirac distribution function.

6.2.2 Rate using Hard Thermal Loop perturbation theory

In order to judge the reliability of the lowest order result, one should consider higher

order corrections. These corrections involve quarks and gluons in the photon self

energy beyond the one-loop approximation. Using bare propagators at finite temper-
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ature, however, one encounters infrared singularities and gauge dependent results.

These problems can be resolved, at least partially, by adopting the Hard-Thermal

Loop (HTL) resummation scheme [150, 156]. The key point of this method is the

distinction between the soft momentum scale (∼ gT ) and the hard one (∼ T ), which

is possible in the weak coupling limit (g ≪ 1). Resumming one-loop self energies, in

which the loop momenta are hard (HTL approximation), effective propagators and

vertices are constructed, which are as important as bare propagators if the momen-

tum of the quark or gluon is soft. In HTLpt the bare N -point functions (propagator

and vertices) are replaced by those effective N -point HTL functions which describe

medium effects in the QGP such as the thermal masses for quarks and gluons and

Landau damping.

The importance of the medium and other higher order effects on the dilepton rate

depends crucially on the invariant mass and the momenta of the virtual photon.

Therefore, we will discuss now the different kinematical regimes:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
M/mq

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

d
R

/d
4
x

d
4
P

pole-pole
pole-cut
cut-cut
Total
Born

p=0,    g=1.0a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
M/mq

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

d
R

/d
4
x

d
4
P

g=0.5
g=1.0
g=2.0
g=3.0
g=4.0
Born

p=0

b)

Figure 6.1: Left panel (a): 1-loop dilepton rate for small invariant masses M ∼ gT
at zero momentum and Born-rate (dashed line) versus the scaled invariant photon
mass M/mq for g = 1. The van Hove peaks and energy gap are evident in the 1-loop
rate. Right panel (b): Total 1-loop rate for various g values.
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Soft Rate (M ∼ gT and p ∼ gT )

For soft invariant masses1 and momenta of order gT one has to use HTL quark

propagators and vertices in the one-loop photon self energy. These corrections are

of same order as the Born-term [250]. Physically these corrections correspond to

two different processes. First the poles of the HTL resummed quark propagators

describe quasiparticles in the QGP with an effective thermal quark mass of the

order of gT . Hence dileptons are generated by the annihilation of collective quark

modes instead of bare quarks. In particular the HTL quark dispersion contains a

so called plasmino branch which exhibits a minimum at finite momentum. This

nontrivial dispersion leads to sharp structures (van Hove singularities and energy

gap) in the dilepton production rate2 in contrast to smooth Born-rate. Secondly,

the imaginary part of the HTL quark self energy containing effective HTL N -point

(propagators and quark-photon vertex) functions corresponds to processes involving

the absorption or emission of thermal gluons.

The 1-loop dilepton rate in HTL approximation for zero momentum can be given

from [250] as

dR

d4xd4P
=

10α2
em

9π4E2

∞∫

0

k2dk

∞∫

−∞

dk0
2π

∞∫

−∞

dk′0
2π

n(k0)n(k
′
0)

× δ(E − k0 − k′0)

[
4

(
1− k20 − k′20

2kE

)2

ρ+(k0, k)ρ−(k
′
0, k)

+

(
1 +

k20 + k′20 − 2k2 − 2m2
q

2kE

)2

ρ+(k0, k)ρ+(k
′
0, k)

+

(
1− k20 + k′20 − 2k2 − 2m2

q

2kE

)2

ρ−(k0, k)ρ−(k
′
0, k)

1Note that for ultrasoft M ∼ g2T and arbitrary momentum the rate is non-perturbative and
cannot be calculated even within the HTL improved perturbation theory. This observation holds
in particular for real hard photon [322].

2For a discussion of van Hove singularities in the QGP at ~p = 0 see Refs. [250, 290, 323, 324]
and also Ref. [325] for ~p 6= 0.
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+ Θ(k2 − k20)
m2
q

4kE2

(
1− k20

k2

)[(
1 +

k0
k

)
ρ+(k

′
0, k)

+

(
1− k0

k

)
ρ−(k

′
0, k)

]]
(6.5)

where ρ±(k′0, k) is spectral functions of quark propagatorD±((k′0, k)) which is defined

in Eqn. (2.79) of chapter (2).

In Fig. (6.1) the 1-loop dilepton rate for zero momentum, containing such processes

using Eq. (6.5), is displayed as a function of the scaled invariant mass with the

thermal quark mass and is also compared with the Born-rate. In the left panel of

Fig. (6.1a) the van Hove singularities due to the nontrivial dispersion of quarks in

a medium are evident in pole-pole contributions whereas the pole-cut and cut-cut

contributions3 are smooth representing absorption and emission of gluons in the

medium. The right panel of Fig. (6.1b) displays the total one-loop contribution for

a set of values of g, where the energy gaps are smoothened due to the pole-cut and

cut-cut contributions. Also the structures due to the van Hove singularities become

also less prominent in the total contributions. The HTL rate, in particular, due

to the cut contributions is also singular at M → 0 because the HTL quark-photon

vertex is inversely proportional to photon energy.

However, these corrections are not sufficient and two-loop diagrams within HTL

perturbation scheme contribute to the same order and are even larger than the one-

loop results [216]. The total one- and two-loop rate at ~p = 0 and M ≪ T in the

leading logarithm, i.e., ln(1/g) approximation reads [216, 326]

dR

d4xd4P
=

5α2
em

9π6

m2
q

M2

[
π2m2

q

4M2
ln
T 2

m2
q

+
3m2

q

M2
ln
T 2

m2
g

+
π2

4
ln

(
MT

M2 +m2
q

)

+2 ln

(
MT

M2 +m2
g

)]
, (6.6)

3These are due to the space-like (k2 > k2
0
) part of the N -point HTL functions that acquire a

cut contribution from below the light cone.
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where the thermal gluon mass is given bym2
g = 8m2

q/3 withmq = gT/
√
6. It is worth

to mention here that the two-loop rate in 6.6 is not complete, they have consider

only gluon in two-loop photon self energy diagram as soft but other fermions as

hard. To compute complete two-loop dilepton rate in HTL perturbation theory, one

need to consider all the loop momenta as effective. Note that this expression is of

the same order in g as the Born-term for soft M ∼ gT . Now the Born-term for

~p = 0 and M ≪ T is simply given by

dR

d4xd4P
=

5α2
em

144π4
= 1.90× 10−8 . (6.7)
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Figure 6.2: Complete 2-loop dilepton rate for small invariant masses M ∼ gT at
zero momentum and Born-rate (dashed line) versus the scaled invariant photon mass
M/mq with the thermal quark mass mq.

In Fig. (6.2) the Born-rate and the complete two-loop rate for a set of values of g

are compared. It is evident from Fig. (6.2) that the 2-loop rate dominates in the

perturbative regime (g ≤ 1) over the Born-term for low mass domain, M/mq ≤ 2.

However, the van Hove singularities contained in one-loop do not appear as they are

washed out due to the leading logarithm approximation within the two-loop HTL

perturbation theory.
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Semi-hard Rate (M ∼ T and p≫ T )

For M of the order of T and hard momenta (p ≫ T ), the αs-correction to the

Born-rate has been calculated [327] within the HTLpt method as

dR

d4xd4P
=

5α2
emαs

27π3

T 2

M2
e−E/T

(
ln
T (mq + k∗)

m2
q

+ C

)
, (6.8)

where k∗ ≈ |Em2
q/M

2 −m2
q/(4E)| < (E + p)/2 and C ≈ −0.5 depends weakly on

M . In Ref. [296,328,329] it has been shown that further corrections to the rate (6.8)

are necessary. However, numerical results showed only a slight modification.
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Figure 6.3: αs-correction to the dilepton rate and Born-rate (dashed line) versus the
invariant photon mass M scaled with the thermal quark mass for T = 200 MeV and
E = 1 GeV.

Assuming typical values of the strong coupling constant and temperature, T = 200

MeV, these corrections dominate over the Born term for invariant masses below 300

MeV as shown in Fig. (6.3). Similar results have been obtained using bare quark

propagators [330]. However, the calculation within naive perturbation theory [331,
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332] resulted in αs-corrections which are of similar size as the Born-rate in the regime

M and p of the order of T .

Hard Rate (M ≫ T )

For M ≫ T naive perturbation theory using bare propagators and vertices is suffi-

cient. This is in contrast to the production of real photons, where one encounters an

infrared singularity from bare quark propagator [333, 334]. For finite M , however,

this singularity cancels [335]. Bare two-loop calculations [331,332,335] showed that

the αs-corrections are negligible in this regime. However, a recent calculation of the

αs-corrections [336] for large invariant mass M ≫ T and small momenta p ≪ T

yielded important corrections to the Born-rate for invariant masses below (2− 3)T .

However, this work has also been criticized [337].

The main problem in applying perturbative results discussed above to realistic sit-

uations is the fact that g is not small but rather we have g ∼ 1.5− 2.5. Close to the

critical temperature, Tc, even g could be as high as 6 [60,61,338]. Hence the different

momentum scales are not distinctly separated in the real sense and, even if one still

believes in perturbative results (see Fig. (6.1), 6.2 and 6.3) at least qualitatively, it

is not clear which of the above rates applies to heavy-ion collisions. However, in

all cases there are substantial corrections to the Born-rate. The perturbative rates

within their uncertainties in various regime probably suggest that the Born-rate may

not be sufficient for describing the low mass dilepton spectrum.

6.2.3 Rate using Gluon Condensate within the Green Func-

tion

An important issue towards the understanding the phase structure of QCD is to

understand the various condensates, which serve as order parameters of the broken
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symmetry phase. These condensates are non-perturbative in nature and lattice

provides a connection with bulk properties of QCD matter. However, the quark

condensate has a rather small impact on the bulk properties, e.g., on the equation

of state of QCD matter, compared to the gluon condensate [7]. The relation of the

gluon condensate to the bulk properties such as equation of states, in principle, can

be tested through hydrodynamic or transport properties sensitive to the equation

of states, but is a non-trivial task.

A semi-empirical way to consider nonperturbative aspects,e.g, gluon condensate

has been suggested by combining lattice results with Green function in momen-

tum space [339, 340]. In this approach the effective N -point functions [339, 340]

have been constructed which contain the gluon condensate in the deconfined phase,

measured in lattice QCD [7]. The resulting quark dispersion relation with a mass

mq ∼ 1.15Tc [339] in the medium shows qualitatively the same behavior as the HTL

dispersion, leading again to sharp structures (van Hove singularities, energy gap) in

the dilepton production rates [341,342], indicating that this features are universal in

relativistic plasmas independent of the approximation used [323, 324]. In Fig. (6.4)

the dilepton production rate using gluon condensate is displayed for various values

of momentum at T = 2Tc and also compared with the Born-rate. At very low invari-

ant mass (M/Tc ≤ 2; for Tc ∼ 165 MeV, M ≤ 330 MeV) with realistic momentum

the dilepton rate with gluon condensate dominates over the Born-rate. This rate

will be important at very low invariant mass as it has non-perturbative input from

lattice QCD that describes the bulk properties of the deconfined phase, and is of

course free from any uncertainty related to the strong coupling g associated with

the perturbative rates discussed in Sec. 6.2.2.

We, however, also note that the rate deviates from the Born-rate at high M/Tc

(≥ 4). The difference at high M/Tc has the origin in the asymptotic limit (large

momentum k) of the quark dispersion relation with gluon condensates. In this limit
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Figure 6.4: Van Hove singularities in the dilepton rate in the presence of gluon
condensate as a function of invariant mass scaled with Tc for a set of momenta at
T = 2Tc. The dashed curve is for Born-rate at zero momentum.

it is found that the normal quark mode behaves like w+ = k + c, where c contains

still the non-zero contribution from the condensates. The reason for which is the

use of the momentum independent condensate values. This fact has crept in the

dilepton rate at high M/Tc. One way out could be to use an ad hoc separation

scale (M/Tc ∼ 2 − 3) up to which one may employ the non-perturbative quark

dispersion associated with the gluon condensate and beyond which a free dispersion

is adopted. Alternatively, one could use a momentum dependent condensate, which

is again beyond the scope of our calculation and has to be provided by the lattice

analysis. To date we are not aware of such analysis. Nonetheless, we note that the

nonperturbative contribution is important only at low invariant mass as we would

see later in Sec. 6.3.
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6.2.4 Rate from quark and ρ0-meson Interaction (ρ-meson

in QGP)

We assume that ρ-meson like states (qq̄ correlator in the ρ-meson channel) can exist

in a deconfined phase like QGP. Then there will also be a contribution from ρ-meson

channel to the dilepton pairs (l+l−) in addition to the perturbative production. In

order to consider such a channel phenomenologically an interaction of ρ−q coupling

is introduced through the Lagrangian [343]

L = −1

4
ρaµνρ

µν
a +

1

2
m2
ρρ
a
µρ

µ
a + q̄

(
iγµ∂

µ −mq +Gργ
µ τa
2
ρaµ

)
q, (6.9)

where q is the quark field, mq is the quark mass, a is the isospin or flavor index, and

τa is the corresponding isospin matrix. The ρ− q coupling, Gρ, can be obtained in

the same spirit as the 4-point interaction, G2(q̄γµτaq)
2, in NJL-model. This suggests

Gρ =
√

8m2
ρG2 ∼ 6, by taking G2 from the literature. The similar value for Gρ can

be obtained by simply assuming that the ρ-meson couples in a universal way to

nucleons, pions and quarks [343].

Now using the Vector Meson Dominance (VMD) [321] the photon self-energy is

related to the ρ0 meson propagator, Dµν(P ), by

ImΠµ
µ(P ) =

e2

G2
ρ

m4
ρ ImD

µ
µ(P ) . (6.10)

Then the thermal dilepton production rate from the ρ-meson can be written as

dR

d4x d4P
= − 1

3π3

α2
em

G2
ρ

m4
ρ

M2

1

eEp/T − 1

(
AL
ρ + 2AT

ρ

)
, (6.11)

and the spectral functions for ρ-meson can be obtained from the self-energy of
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ρ−meson as

AL
ρ (P ) =

ImF
(
M2 −m2

ρ − ReF
)2

+ (ImF)2
, (6.12)

AT
ρ (P ) =

ImG
(
M2 −m2

ρ − ReG
)2

+ (ImG)2
, (6.13)

where F = −P 2

p2
Π00(P ) and G = ΠT (P ) with L and T stand for longitudinal and

transverse modes, respectively.

Going beyond the HTL approximation, the integral expression for the matter part

of the one-loop photon self energy for assymetric charges in the deconfined phase

(viz., with non-zero chemical potential, µ, which would be appropriate for FAIR

energies can be obtained easily by extending the results of Ref. [343] to finite chemical

potential as,

Re F =
3G2

4π2

M2

p2

∞∫

0

dk k

[
M2 + 4ω2

k

4pωk
ln |a|+ p0

p
ln |b| − 2k

ωk

]

× [n(ωk − µ) + n(ωk + µ)] ,

Im F =
3G2

4π

M2

p3

k+∫

k−

dk k

[
p0 − ωk −

M2

4ωk

]

× [n(ωk − µ) + n(ωk + µ)] ,

Re G =
3G2

4π2

∞∫

0

dk
k2

ωk

[
−
(
ω2
kM

2

2p3k
+
M2

4pk
+

M4

8p3k
+
m2
q

2pk

)
ln |a|

+2 +
M2

p2
− p0M

2ωk
2p3k

ln |b|
]
[n(ωk − µ) + n(ωk + µ)] ,

Im G =
3G2

8πp

k+∫

k−

dkk

[
−ωk +

m2
q

ωk
+
p20
p2
ωk +

M2

2ωk
+

M4

4ωkp2
− p0M

2

p2

]

× [n(ωk − µ) + n(ωk + µ)] , (6.14)
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along with

a =
(M2 + 2pk)2 − 4p20ω

2
k

(M2 − 2pk)2 − 4p20ω
2
k

, b =
M4 − 4(pk + p0ωk)

2

M4 − 4(pk − p0ωk)2
,

k− =
1

2

∣∣∣∣∣p0
√

1− 4m2
q

M2
− p

∣∣∣∣∣ , k+ =
1

2

(
p0

√
1− 4m2

q

M2
+ p

)
,

where ωk =
√
k2 +m2

q .

In Fig. (6.5) the ρ-meson spectral function related to the imaginary part of the

ρ-meson propagator (left panel) in (6.10) and the dilepton rate (right panel) are

displayed for various temperature with µ = 0 and p = 200 MeV. As the temperature

increases the peak in the imaginary part of the ρ-meson propagator D becomes

broader and is also reflected in the dilepton rate. When the invariant mass is low

(≤ 1 GeV), the rate is comparable with the Born-rate.
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Figure 6.5: Left panel: Imaginary part of ρ-meson propagator (spectral function) as
a function of the invariant mass M for a set of values T . Right panel: The dilepton
rate from ρ-meson in a QGP as a function of M . The dashed lines are corresponding
Born-rates. We have used Gρ = 6.

In Fig. (6.6) the ρ-meson spectral function (left panel) and the dilepton rate (right

panel) are displayed for various µ at T = 160 MeV and p = 200 MeV, which could
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Figure 6.6: Left panel: Imaginary part of ρ-meson propagator (spectral function)
as a function of M for a set of values of µ. Right panel: The dilepton rate from
ρ-meson in a QGP as a function of M . We chose Gρ = 6. The dash-dotted lines are
corresponding Born-rates.

be appropriate in the perspective of FAIR energies. The effect of broadening of

the ρ-meson is far less pronounced with increasing µ than increasing T , indicating

that the ρ-meson is not completely melted in the case of a system with finite baryon

density such as expected at FAIR energies even above the phase transition. However,

dilepton rates from ρ-meson as shown in Figs. (6.5) and (6.6) are comparable with

the Born-rate in QGP in the low mass region (M ≤ 1 GeV), may be an indication

for chiral restoration [194, 195, 343]. In addition this rate would be important for

invariant masses below 1 GeV.

We also note that if one includes higher mass vector mesons such as φ-meson within

VMD, then there will be a peak corresponding to an invariant mass of the order of

φ-meson mass but in low mass region (M ≤ 1 GeV) there should be a very little

change (less than 5%) in the dilepton rate. Since we are interested in the low mass

region, we have not discussed φ-meson here.
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6.2.5 Rate from Lattice Gauge Theory

The thermal dilepton rate describing the production of lepton pairs with energy

ω and momentum ~p is related to the Euclidian correlation function [290] of the

vector current, JµV = ψ̄(τ, ~x)γµψ(τ, ~x), which can be calculated numerically in the

framework of lattice gauge theory. The thermal two-point vector correlation function

in coordinate space, GV (τ, ~x), is defined as

GV (τ, ~x) = 〈JV (τ, ~x)J†
V (τ, ~x)〉 = T

∞∑

n=−∞

∫
d3p

(2π)3
e−i(wnτ−~p·~x)χV (wn, ~p) , (6.15)

where the Euclidian time τ is restricted to the interval [0, β = 1/T ], and the Fourier

transformed correlation function χV is given at the discrete Matsubara modes, wn =

2πnT . The imaginary part of the momentum space correlator gives the spectral

function σV (ω, ~p), as

χV (wn, ~p) = −
∞∫

−∞

dω
σV (ω, ~p)

iwn − ω
⇒ σV (ω, ~p) =

1

π
Im χV (ω, ~p) . (6.16)

In coordinate space, the spectral representation of the thermal correlation functions

at fixed momentum can be obtained using (6.15) and (6.16) as

G(τ, ~p) =
∞∫

0

dω σV (ω, ~p)
cosh[ω(τ − β/2)]

sinh[ωβ/2]
. (6.17)

The vector spectral function, σV , is related to the differential dilepton production

rate [290]4 as

σV (ω, ~p) =
18π2Nc

5α2
em

ω2 (eω/T − 1)
dR

d4xd4P
, (6.18)

where Nc is the number of color degree of freedom.

4A factor of 2 differs from that of Ref. [217]
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Figure 6.7: The zero momentum (~p = 0) vector spectral function, reconstructed
from the correlation function [217,305] within lattice gauge theory in quenched QCD
using MEM, scaled with M2 as a function of M/T compared with that of the free one
above the deconfinement temperature Tc. Lattice data labeled as LQCD(T=1.5Tc) and
LQCD(T=3Tc) come from [217] whereas LQCD new(T=1.45Tc) come from Ref. [305].

A finite temperature lattice gauge theory calculation can not calculate spectral func-

tion σH(ω, ~p) directly from Eq. (6.16), instead it uses Eq. (6.17) to extract spectral

function as discussed in Chapter 3. In Fig. (6.7) such a extracted spectral func-

tion [217,305] scaled with M2 (equivalently ω2 for ~p = 0) is displayed as a function

of M/T . The vector spectral functions above the deconfinement temperature (viz.,

T = 1.5Tc and 3Tc) show an oscillatory behavior compared to the free one. The

spectral functions are also found to be vanishingly small for M/T ≤ 4 due to the

sharp cut-off used in the reconstruction.

A direct calculation of the differential dilepton rate using Eq. (6.18) above the
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Figure 6.8: Comparison of various dilepton rates in a QGP and in a hadron gas
(HG) as a function of M/T for momentum ~p = 0. The critical temperature is 165
MeV [112, 219] and the value of Gρ is chosen as 6. The in-medium HG rate is from
the recent calculations of Ref. [344].

deconfined temperature (Tc) at ~p = 0 was first time done in Ref. [217] within the

lattice gauge theory in quenched QCD using the MEM. Later this calculation was

improved in Ref. [305] by choosing different ansatz for the vector spectral function.

In Fig. (6.8) the lattice dilepton rates at ~p = 0 from [217] for two temperatures

(T = 1.5Tc and 3Tc) and also from [305] for temperature T = 1.45Tc are displayed

as a function of the scaled invariant mass with temperature and M/T = ω/T , the

energy of the dileptons. We have also compared the perturbative, non-perturbative

and in-medium hadrons rates within the same normalization as shown in the plot.
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We note that the rate with gluon condensate perfectly scales with the temperature

whereas that of HTL one depends on the choice of the effective coupling, mq/T ∼

g/
√
6. The lattice results are comparable within a factor of 2 with the Born-rate

as well as that of HTLpt at high invariant mass M/T ≥ 4. The absence of peak

structures around the ρ-mass and also at higher M in the lattice dilepton rate

probably constrain the broad resonance structures in the dilepton rates. However,

for invariant mass below M/T ≤ 4 the lattice dilepton rate falls off very fast. This

is due to the fact that the sharp cut-off is used to reconstruct the spectral function

from the correlation function and the finite volume restriction in the lattice analysis.

The lattice analysis is also based on rather small statistics. These lattice artefacts

are related to the smaller invariant masses which in turn indicate that it is not yet

very clear whether there will be any low mass thermal dileptons from the deconfined

phase within the lattice gauge theory calculation. Future analysis could improve the

situation in this low mass regime. One cannot rule out [217] the existence of van

Hove singularities and energy gap, which are general features of massless fermions

in a relativistic plasma [323,324], in the low mass dileptons. This calls for a further

investigations on the lattice gauge theory side by improving and refining the lattice

ingredients and constraints.

On the other hand, in HTLpt, apart from the uncertainty in the choice of g, the

low mass (M → 0, vanishing photon energy) one-loop dilepton rate obtained from

vector meson spectral function analysis [290] diverges because the quark-photon

vertex is inversely proportional to the photon energy. This also requires a further

improvement of the HTLpt. However, we assume that the perturbative rate could

also be reliable for M ≥ 200 MeV with T ≥ 200 MeV and g ≥ 2. The other two

phenomenological models, viz., gluon condensate measured in lattice [7] and ρ − q

interaction in the deconfined phase as discussed respectively above in subsec. 6.2.3

and 6.2.4, for non-perturbative dilepton production at low mass regime are at least

cleaner than the perturbative rates which depend weakly on the choice of the strong
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coupling constant. The rate with gluon condensate is free from strong coupling

whereas that from ρ − q interaction does not depend strongly on the choice of the

coupling (see below in Fig. (6.9)). In addition to the perturbative rate these two

together could also provide a realistic part of the dilepton rate at low mass regime

(≤ 1 GeV) from the deconfined phase, as also can be seen in the next section.

As a comparison, we have also shown the recent rate from in-medium hadrons of

Ref. [344], where the analytic structure of ρ-meson propagator has been used due to

its interaction with thermal mesons.

6.3 Momentum Integrated Rate

The momentum integrated dilepton rate can be obtained as

dR

d4xdM2
=

∫
d3p

2p0

dR

d4xd4P
. (6.19)

In Fig. (6.9) the momentum integrated dilepton rates from QGP and in-medium

hadrons are displayed as a function of invariant mass. As can be seen that at very

low invariant mass (M ≤ 200 MeV) the non-perturbative contribution using gluon

condensate becomes important as this domain is beyond reach of any reliable per-

turbative calculations. The non-perturbative rate is indeed important with input

from the first principle calculations [7] that describe the bulk propertirs of the de-

confined phase. The rate from ρ− q interaction is almost of the same order as that

of the Born-rate as well as the in-medium hadrons for M ≤ 600 MeV whereas it

is higher than the perturbative one in the domain 600 ≤ M(MeV) ≤ 800 due to

the broadening of the ρ peak in the medium. We also note that this rate has a

weak dependence on the realistic range of values of the ρ − q coupling (2 − 6). In

addition the higher order perturbative rate from HTL, as discussed above, becomes

reliable for M ≥ 200 MeV and also becomes of the order of Born-rate for M ≥ 500
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Figure 6.9: Momentum integrated dilepton rate as a function of the invariant mass
M . We have used Tc = 165 MeV for the nonperturbaive rate with gluon condensate.
The in-medium hadronic rate (HG) is from Ref. [344].

MeV. We also note that the momentum integrated HTL rate used here has been

obtained recently by Rapp et al. [195] through a parametrization of the prefactor of

the zero momentum 1-loop HTL rate [250] with a temperature dependent g, which

is claimed to reproduce the Born-rate in (6.2) within the appropriate limit. Now for

a comparison, we have also shown the recent rate from the in-medium hadrons of

Ref. [344]. It is now clear that for low invariant mass (≤ 1 GeV) only the Born-rate

from the QGP is not realistic as well as insufficient for describing the dilepton rate.

Instead we suggest that the non-perturbative rate with gluon condensate should be

important forM ≤ 200 MeV whereas the rates from ρ−q interaction and HTLpt are

important for M ≥ 200 MeV. Below we discuss some aspects of the quark-hadron

duality hypothesis [221].
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6.4 Thoughts on the Quark-Hadron Duality Hy-

pothesis

It is advocated [194,221] that due to the potential broadening of the ρ-meson reso-

nance suffering in a dense hadronic environment the overall (momentum integrated)

dilepton rate out of the hadronic gas becomes equivalent to that from deconfined

phase as

dRH

d4xdM2
≈ dRQ

d4xdM2
, (6.20)

which entails a reminiscence to a simple perturbative qq̄ annihilation in the vicinity

of the expected QGP phase transition. This hypothesis of ’extended’ quark-hadron

duality for the thermal source of low mass dileptons has been claimed as an indication

for chiral symmetry restoration [194,195,221] in the deconfined phase. However, we

would like to note that in this hypothesis the volume of QGP and hadronic gas was

assumed to be same in a given instant of time and therefore, the dileptons shine

equally bright from both phases at a given instant of time per unit volume. This

denotion of quark-hadron duality should be carefully re-addressed on its general

validity, as the suggestive conclusion is indeed far-reaching. A more realistic way to

look into it is envisaged below.

The momentum integrated rate in (6.19) shall be gauged to the adequate degrees

of freedom in a particular phase. A certain measure is given by the corresponding

entropy density. Hence we suggest that for duality to hold one approximately should

have

1

sH

dRH

d4xdM2
≈ 1

sQ

dRQ

d4xdM2
, (6.21)

where si (i = H,Q) is the entropy density of the respective phase. For an isoentropic

crossing over the phase transition, one has sHdVH ≈ sQdVQ. Hence if one takes into

account the respective volume of both phases at a given instant of time, then instead
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of (6.20) one should ask for

dVH
dRH

d4xdM2
≈ dVQ

dRH

d4xdM2
, (6.22)

where dVi (i = Q, H) is the volume of the respective phase. Now, at a given instant

of time this can lead to

dRH

dtdM
≈ dRQ

dtdM
, (6.23)

where dRi/dtdM is the total yield per time from total phase i in the system at

any instant of time. Therefore, equation (6.23) means that the fireball emits the

same number of dileptons per unit time either if described by a hadronic or by a

deconfined partonic description. This could likely be a more realistic way to look

into the quark-hadron duality. Now, even if the momentum integrated rates in (6.19)

from both phases are same in some kinematic domain (e.g., see Fig. (6.9)) may not

necessarily imply a quark-hadron duality as given by (6.23) because hadronic volume

is expected to be larger than that of QGP by at least a factor of 4 to 5. Furthermore,

we also note that the quark-hadron duality should also be true for any momentum

at a given instant of time.

6.5 Conclusion

We have discussed the low mass dilepton production rate from the deconfined phase

within various models, viz., perturbative and non-perturbative, and compared with

that of first principle calculations based on lattice gauge theory and in-medium

hadrons. We also have discussed in details the limitations and uncertainties of all

those models at various domains of the invariant mass. It turns out that at very

low invariant mass (≤ 200 MeV) the non-perturbative rate using gluon condensate

measured in lattice becomes important as this domain is beyond reach of any reli-

able perturbative calculations. The other non-perturbative contribution from ρ− q
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interaction also becomes important below 1 GeV as it is almost of same order as

those of the Born and in-medium hadrons. We also note that these two rates are at

least cleaner than the perturbative rates, in the sense that the gluon condensate rate

has non-perturbative input from lattice equation of states and is thus free from any

coupling uncertainties whereas the ρ−q interaction rate does not depend strongly on

the choice of its coupling. We also discussed the ρ− q interaction in the perspective

of FAIR scenario.

On the other hand the perturbative contribution, within its various uncertainties,

becomes steady and reliable beyond M > 200 MeV and also becomes comparable

with the Born-rate and the LQCD rate for M ≥ 500 MeV. The LQCD rate also

constrains the broad resonance structure at large invariant mass. More specifically,

the rate with gluon condensate is important for M ≤ 200 MeV whereas those from

the ρ − q interaction and HTLpt would be important for M ≥ 200 MeV for the

deconfined phase in heavy-ion collisions. Instead of considering only the Born-rate

the various nonperturbative and perturbative rates from appropriate domains of

the invariant mass below 1 GeV would comprise a more realistic rate for low mass

dileptons from the deconfined phase created in heavy-ion collisions. We hope that

more elaborate future lattice gauge theory studies on dileptons above the deconfined

temperature can provide a more insight than present LQCD calculations on the low

mass region, which could then verify the various model calculations on low mass

dileptons above the deconfined temperatures. Finally, we also have discussed a more

realistic way to look into the quark-hadron duality hypothesis than it is advocated

in the literature.
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CHAPTER 7

Summary and Outlook

This thesis is mainly devoted to study the thermodynamics of hot and dense nuclear

matter at finite temperature and finite chemical potential. To study the thermo-

dynamical quantities of hot and dense matter produced in heavy ion collision, one

would prefer first principle numerical lattice QCD method. But due to sign problem,

lattice QCD can be applied to arbitrary temperature but at zero chemical potential.

Finite temperature lattice QCD can be extended to calculate thermodynamic po-

tential at small chemical potential by expanding in Taylor series and by calculating

coefficients of Taylor series up to some finite order. This expansion up to finite order

term is valid for small chemical potential. So the thermodynamic calculations at

any chemical potential or at least at any chemical potential which is same order

of temperature was essential. To perform these calculations at finite chemical po-

tential one was left with usual perturbation theory. But the poor convergence of

conventional perturbation theory at finite temperature/chemical potential has been

the main obstacle in the practical application of thermal QCD for decades. To im-

prove the results of usual perturbation theory, a considerable effort has been put

into reorganizing the perturbative series at phenomenologically relevant tempera-

tures. The application of HTL perturbation theory to the problem carried out in

this thesis leads to laudable results for non-Abelian theories at finite temperature
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and at finite chemical potential. Till date thermodynamical quantities using hard

thermal loop perturbation theory was available only at finite temperature and zero

chemical potential. In this thesis I have systematically calculated most of the rel-

evant thermodynamical quantities in all loop order at finite temperature and finite

chemical potential. This was essential to study the hot and dense nuclear medium

produced in RHIC BNL and also expected to produce in future experiment in FAIR

GSI. Finite temperature and finite chemical thermodynamical calculations were also

essential to study various order conserved density fluctuations.

In Chapter 3 we have discussed about leading order thermodynamical quantities viz.

number density, entropy density, pressure and hence quark number susceptibility and

temporal correlation function in hard thermal loop perturbation theory. In Chap-

ter 4 we have discussed about next-to-leading order pressure in HTL perturbation

theory. We have also discussed about NLO second and fourth order susceptibilities

using NLO pressure in HTL perturbation theory in Chapter 4.

In Chapter 5 we have extended the NLO calculations as discussed in Chapter 4

to NNLO at finite temperature and finite chemical potential. In this chapter we

have presented the NNLO pressure, energy density, entropy density, trace anomaly,

speed of sound at finite temperature and chemical potential and compared those

results with available lattice QCD data. We have also presented the NNLO re-

sults of various order conserved charged fluctuations viz. diagonal and off-diagonal

second-, fourth- and sixth order quark number susceptibilities. In all cases we found

very good agreement between the results obtained using the central values of the

renormalization scales and available lattice data.

Along-with the computation of thermodynamic quantities of hot and dense matter,

we have also discussed in Chapter 6 about low mass dilepton rate from hot and

dense medium within various models, viz., perturbative and non-perturbative, and

compared with that of first principle calculations based on lattice gauge theory and
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in-medium hadrons gas. It turns out that at very low invariant mass (≤ 200 MeV)

the non-perturbative rate using gluon condensate measured in lattice becomes im-

portant as this domain is beyond reach of any reliable perturbative calculations.

The other non-perturbative contribution from ρ−q interaction also becomes impor-

tant below 1 GeV as it is almost of same order as those of the Born and in-medium

hadrons. On the other hand the perturbative contribution from HTL perturba-

tion theory, within its various uncertainties, becomes steady and reliable beyond

M > 200 MeV and also becomes comparable with the Born-rate and the LQCD

rate for M ≥ 500 MeV. The LQCD rate also constrains the broad resonance struc-

ture at large invariant mass.

The HTL perturbation theory is a gauge invariant reorganization of usual pertur-

bation theory and it shifts the expansion from usual perturbation theory around an

ideal gas of massless particles to that of massive quasiparticles. The HTL Feynman

rules as discussed in this thesis for scalar as well as for gauge theory show clearly

that the propagators and vertices become dressed systematically by the thermal

medium, as a result the interactions also get screened in the medium which can be

seen that the coupling strength gets screened by the thermal mass term explicitly.

Therefore the expansion in terms of the HTL Feynman rules are self-consistently

around non-interacting quark gluon gas. The fact that the mass parameters are not

arbitrary but a function of coupling constant g, temperature T , and chemical po-

tential µ and determined variationally or perturbatively also indicates that HTLpt

doesn’t modify the original gauge theory but just reorganizes the usual perturbation

series. Although the renormalizability of HTL perturbation is not yet proven, the

fact that it can be renormalized at every order using only known counterterms viz.

vacuum energy, debye and thermal quark mass and running coupling counterterm

shows promising results till now.

So far, thermodynamics for hot and dense nuclear medium has been studied in-
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tensively, both in leading or in higher order perturbation theory or numerically

on the lattice, however real-time dynamics is still in its very early stage of devel-

opment. Transport coefficients such as coefficients of viscosity, conductivity, dif-

fusion rate etc. are of great interest since they are theoretically clean and well

defined non-equilibrium dynamical quantities. A considerable efforts have been

devoted to calculate transport coefficients at leading order in perturbation the-

ory [268, 269, 293, 294, 345–351]. However the only known transport coefficients in

next-to-leading order are shear viscosity in scalar φ4 theory [352], heavy quark dif-

fusion rate in QCD and N = 4 supersymmetric Yang-Mills theory [353, 354], and

transverse diffusion rate q̂ in QCD [355], and all of them exhibit poor convergence

as bad as pressure in bare perturbation theory. Since dynamical quantities are still

not well described by lattice gauge theory, the computation transport coefficients

using HTL perturbation theory would interesting in order to achieve a better un-

derstanding of that quantities.

Further this thesis was focused to calculate various quantities with vanishing quark

mass and µ . 2πT , it would be very interesting to include the quark mass effect in

higher order calculation using HTL perturbation theory. This would be required to

investigate various order conserved density fluctuations for massive quark along-with

massless quarks and also to investigate chiral susceptibility. Also it would be very

interesting to extend the thermodynamic calculation at µ > 2πT and eventually at

zero temperature to study the EoS of Neutron star and other astrophysical objects.

196



APPENDIX A

Properties of the ℵ functions

For some frequently occurring combinations of special functions in Chapter 5 we

will apply the following abbreviations

ζ ′(x, y) ≡ ∂xζ(x, y) , (A.1)

ℵ(n, z) ≡ ζ ′(−n, z) + (−1)n+1 ζ ′(−n, z∗) , (A.2)

ℵ(z) ≡ Ψ(z) + Ψ(z∗) , (A.3)

where n is assumed to be a non-negative integer and z is a general complex number

given here by z = 1/2 − iµ̂. Above ζ denotes the Riemann zeta function, and Ψ is

the digamma function

Ψ(z) ≡ Γ′(z)

Γ(z)
. (A.4)

Below we list Taylor expansions of the function ℵ and ℵ(n, z) for values of n nec-

essary for calculation of the susceptibilities presented in the main text. For general

application we evaluate the ℵ functions exactly using Mathematica.

ℵ(z) = −2γE − 4 ln 2 + 14ζ(3)µ̂2 − 62ζ(5)µ̂4 + 254ζ(7)µ̂6 +O(µ̂8), (A.5)
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ℵ(0, z) = 2 (2 ln 2 + γE) iµ̂− 14

3
ζ(3)iµ̂3 +

62

5
ζ(5)iµ̂5 +O(µ̂7) , (A.6)

ℵ(1, z) = − 1

12

(
ln 2− ζ ′(−1)

ζ(−1)

)
− (1− 2 ln 2− γE) µ̂

2 − 7

6
ζ(3)µ̂4

+
31

15
ζ(5)µ̂6 +O(µ̂8) , (A.7)

ℵ(1, z + z′) = −1

6

ζ ′(−1)

ζ(−1)
− (1− γE) (µ̂+ µ̂′)

2 − ζ(3)

6
(µ̂+ µ̂′)

4

+
ζ(5)

15
(µ̂+ µ̂′)6 +O(µ̂8, µ̂′8) , (A.8)

ℵ(2, z) =
1

12

(
1 + 2 ln 2− 2

ζ ′(−1)

ζ(−1)

)
iµ̂+

1

3
(3− 2γE − 4 ln 2) iµ̂3

+
7

15
ζ(3)iµ̂5 +O(µ̂7) , (A.9)

ℵ(2, z + z′) = −1

6

(
1− 2

ζ ′(−1)

ζ(−1)

)
i (µ̂+ µ̂′) +

1

3
(3− 2γE) i (µ̂+ µ̂′)3

+
ζ(3)

15
i (µ̂+ µ̂′)

5
+O(µ̂7, µ̂′7), (A.10)

ℵ(3, z) =
1

480

(
ln 2− 7

ζ ′(−3)

ζ(−3)

)
+

1

24

(
5 + 6 ln 2− 6

ζ ′(−1)

ζ(−1)

)
µ̂2

+
1

12
(11− 6γE − 12 ln 2) µ̂4 +

7

30
ζ(3)µ̂6 +O(µ̂8) , (A.11)

ℵ(3, z + z′) =
1

60

ζ ′(−3)

ζ(−3)
− 1

12

(
5− 6

ζ ′(−1)

ζ(−1)

)
(µ̂+ µ̂′)

2

+
1

12
(11− 6γE) (µ̂+ µ̂′)4 +

ζ(3)

30
(µ̂+ µ̂′)6 +O(µ̂8, µ̂′8). (A.12)

where γE =Euler gamma.
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