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SYNOPSIS

The Standard Model (SM) of particle physics has been very successful in explaining
the fundamental interactions of the elementary particles and its predictions have
been verified experimentally to a very good accuracy. Also, the recent discovery
of a SM scalar like particle has created vigorous excitement. In spite of its merits,
there are many open questions, e.g. the hierarchy problem, the existence of dark
matter etc., that are not addressed within its domain and plenty of room is left
open for beyond standard model (BSM) physics scenarios such as extra dimensions,
supersymmetry, technicolor etc. All these models are subject to experimental veri-
fication. With its unprecedented energy and luminosity, the Large Hadron Collider
(LHC) at CERN is expected to unearth many interesting phenomena which are
not (well-)known so far, thereby enriching the field of fundamental particle physics.
The ATLAS and CMS experiments at the LHC are simultaneously hunting for new
physics signals and putting stronger and stronger limits on BSM scenarios.

In order to address the hierarchy between the electroweak scale and the Planck
scale, a theoretically well motivated model with large extra dimensions (LED) is
proposed by Arkani-Hamed, Dimopoulos and Dvali and it has also gained a lot of
interests in the field of collider phenomenology. In this model, gravity is allowed
to propagate in full (4 + d) dimensional space-time, where as, all SM particles are
confined to the usual 3-brane in order to conceal the effect of those extra spatial
dimensions (d). The extra dimensions are assumed to be compactified on a torus
of common circumference and they are flat and of equal size which could be of
macroscopic size. As a consequence of these assumptions, it follows from Gauss
Law that the effective Planck scale (Mp) in 4-dimensions is related to the (4 +

d) dimensional fundamental scale (Mg) through the volume of the compactified
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extra dimensions. The large volume of the compactified extra spatial dimensions
would account for the dilution of gravity in 4-dimensions and hence the hierarchy.
Current experimental limits on deviation from inverse square law constraint the
number of possible extra spatial dimensions as d > 2. The space-time is factorisable
and the 4-dimensional spectrum consists of the SM confined to 4-dimensions and a
tower of Kaluza-Klein (KK) modes of the graviton propagating in the full (4 + d)
dimensional space-time. In the context of collider physics, the study of processes
with virtual graviton exchange (leading to enhanced cross section in comparison
with the SM) or real graviton emission (leading to missing energy signal) would
help the experimentalists to put stringent bounds on the model parameters.

In this thesis, production of neutral electroweak triple gauge bosons via virtual
graviton exchange in LED are studied thoroughly along with their SM signatures.
The triple gauge boson production processes in the SM are the precise predictions
of the electroweak gauge theory and gauge self-couplings. They are also potential
background to many new physics models like supersymmetry and technicolor. For
example, Z~v in SM is a background to signals with diphotons and missing trans-
verse energy in gauge mediated super symmetric theories and vy production in SM
is a background to one photon plus techni-pion. Processes with three gauge bosons
can also come from the large extra dimension model as gravitons couple directly to
gauge bosons of the SM. While mono-jet or di-lepton production is more sensitive
to the parameters of models with extra-dimensions compared to the triple gauge bo-
son production, all these processes involve same universal coupling of gravity with
the SM particles and hence can provide equally important information about the
model. Moreover, in discriminating physics beyond the SM namely supersymmetry
or technicolor models using triple gauge boson production, one can not ignore the

potential contributions resulting from models with extra dimensions. Processes viz.



VYV, YV L,y 4 2, 4 Z 7 are studied and results for various kinematic distributions at
the LHC are presented.

At hadron colliders, observations of the BSM signals are very difficult due to
the enormous QCD radiative background and the leading order (LO) prediction of
a process of interest is not trustworthy to describe experimental observables solely
on the basis of that approximation. It suffers from large factorisation as well as
renormalisation scale uncertainties which for some processes could be as large as a
factor of two. These issues go beyond normalisation of a cross section as the shapes
of distributions may not be modeled correctly. Therefore, to provide quantitatively
reliable theoretical predictions, higher order QCD corrections on such processes are
unavoidable at the LHC. It provides a more credible prediction rate and it reduces
the renormalisation as well as factorisation scale uncertainties.

This thesis aims to provide a complete study of the next-to-leading order (NLO)
QCD corrections to the associated production of the vector gauge boson (Z/W*) and
the graviton in the large extra dimension model at the LHC. The study of graviton
(G) plus gauge boson production will be very useful to probe the new physics at the
LHC. It is important to note that there is a Standard Model background which gives
signals similar to those of associated production of Z and . This SM background
receives a dominant contribution coming from the ZZ production process, where
one of the Z bosons in the final state decays into a pair of neutrinos (Z — vv)
leading to Z boson plus missing energy signals. The other Z boson can be identified
via its decays to leptons, mostly electrons & muons and then constraining the lepton
invariant mass close to the mass of the Z boson to consider only on-shell Z bosons.
Any deviation from this SM prediction will be an indication to some beyond SM
scenario and hence a study of this process would be useful in searching new physics.

At the LHC, fixed order calculation truncated to NLO at best yields results for

vi



sufficiently inclusive observable. Combining fixed order NLO and parton shower
(PS) Monte Carlo would extend the coverage of the kinematical region to consis-
tently include resummation in the collinear limit and also make a more exclusive
description of the final state, that would be as realistic as possible to the experi-
mental situation. The flexibility to incorporate hadronisation models and capability
to simulate realistic final state configurations that can undergo detector simulations
are the main advantages for the experimental collaborations.

This thesis focuses on the diphoton production to NLO+PS accuracy in both
SM and LED at the LHC. The diphoton final state is an important signal for extra
dimension searches, as the branching ratio of a KK mode decay to diphoton is twice
than that of a decay to individual charged lepton pair. Both ATLAS and CMS have
analysed the diphoton invariant mass spectrum using a constant K-factor for the
full range of the invariant mass distribution to put lower bounds on extra dimension
scale to NLO accuracy. However, this choice is not sensitive to possible distortions
of distributions that can arise at NLO. That is why, diphoton final state is studied
extensively in the LED model to NLO in QCD and matching to HERWIG parton
shower is implemented using the MCQNLO formalism. Based on this work, the
event files for various number of extra dimensions (d = 2 to 6) together with the
complete code are uploaded on the website http://amcatnlo.cern.ch so that the
experimentalists can download and use them to shower with specific cuts according
to their requirement. This is the first time MC@QNLO formalism has been used for
a process in the LED model and it will significantly help extra dimension searches

at the LHC to constrain the LED model parameters.
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Chapter 1

Prelude

1.1 Introduction

Advancement of collider experiments has drawn an utmost attention of all of us
since last few years. Recent discovery of the new resonance at ATLAS (A Toroidal
LHC ApparatuS) and CMS (Compact Muon Solenoid) experiments of the Large
Hadron Collider (LHC) indicating the existence of Higgs boson, has created a lot
of delight and excitement in the high energy and particle physics community. The
Standard Model (SM) of particle physics has been very successful in explaining the
fundamental interactions of the elementary particles and its predictions have been
verified experimentally to a very good accuracy. However, no signature of the one
and only elementary scalar particle, named Higgs boson, which is the outcome of
the famous Brout-Englert-Higgs mechanism [1, 2, 3, 4, 5, 6], had been found until
recently [7, 8]. Suffice it to say, with this discovery, the SM which describes the
electromagnetic, weak and strong interactions in a methodical and systematic way,
is rife with all its constituent particles, though it is true that more data is needed to

be sure whether the new particle is a SM Higgs boson or something else predicted



by some other theories.

Quantum Chromo Dynamics (QCD) is an impartible portion of the SM. It deals
with the strong interaction between the quark and the gluon which are known to
be the most elementary particles of any hadron, namely proton, neutron etc. QCD
is a Quantum Field Theory (QFT) which describes the non-abelian nature of the
colour field. It is basically SU(3) Yang-Mills theory of the coloured fermions which
are called quarks. In QCD, gluon acts as mediator of the strong force similar to
the photon mediating electromagnetic interactions in Quantum FElectro Dynamics
(QED). However, there is a major difference between the characteristics of photon
and gluon and that makes QCD a bit special. Though photon does not carry any
electric charge, gluon carries a special kind of charge, which is known as colour
charge and due to this reason, self interactions among the gluons are quite obvious
unlike photons. Confinement and asymptotic freedom are two special properties of
the QCD. Running of strong coupling is of opposite nature compared to the running
of electromagnetic or weak coupling. At some low energy of about 200 MeV, the
strong coupling diverges leading to confinement of the quarks and gluons. Whereas,
at very high energies, the interaction between the quarks and gluons becomes very
weak which in fact allows one to do perturbative calculation in this region, as they
are considered to be asymptotically free there.

There are many standard books and interesting lecture notes (viz., [9, 10, 11, 12,
13] to name a few) available in the literature describing all aspects of the SM and
QCD in great detail. We prefer not to write them down again in this thesis which
will nothing but a mere repetition of those things resulting into unnecessary large
volume of the thesis. Rather, after presenting a brief overview on the method of
higher order corrections in section 1.2, we would like to briefly introduce, in section

1.3, some beyond standard model scenarios, as we shall be going to use one of them



extensively in the subsequent chapters.

1.2 Higher Order Corrections

Involvement of initial state partons in a hadron collider turns it into a QCD machine,
as these partons having non-zero colour charge naturally take part in strong inter-
actions. A hadron collider produces lots of QCD background due to the abundance
of partons both in the initial and final states of a given process and therefore consid-
eration of mere Leading Order (LO) approximation becomes very much unreliable.
Note that, although the smallness of the strong coupling value makes the pertur-
bation theory to work, it is not too small to take a handful of subsequent higher
order terms into account. As a consequence, QCD radiative corrections become very
significant for they can enhance the LO predictions as well as diminish the arbitrary
scale uncertainties in theoretical predictions. Next-to-Leading Order (NLO) correc-
tion provides a better estimation of the total rate and reduces the renormalisation
scale (r) and the factorisation scale (up) uncertainties to a reasonable extent. Fur-
ther, the presence of hard jets in the final state, due to these radiative corrections
has the potential to modify the shapes of several kinematical distributions of the
particles that are under study at LO. Obtaining such a modification to the shapes
of the distributions is beyond the scope of normalization of the corresponding LO
distributions by a constant K-factor. Hence, it requires an explicit computation of
the cross sections or distributions to NLO in QCD. Owing to this importance of the
radiative corrections, they have been computed for several important processes in
the SM as well as in many Beyond Standard Model (BSM) scenarios. Sometimes,
it becomes also necessary to have the results with Nezt-to-Next-to-Leading Order

(NNLO) accuracy depending on the process of interest and the exactitude achieved



at NLO. However, this thesis deals with calculations up to NLO.

1.2.1 Fixed Order Calculation

Let us consider an example of a SM process at the LHC, say PP — eTe™ (Drell-Yan
production process) to describe higher order QCD corrections up to a fixed order
(O(ay)) in a vivid way. The partonic contribution at LO comes from the subprocess
qq — ete™ as depicted in Fig. 1.1. One can easily find the LO partonic cross section
of this process following the standard method of matrix element calculation and
the 2-body phase space integration. Now, as we are interested in doing NLO QCD
correction of it, first of all, we have to find all those Feynman diagrams, which
will participate in calculating O(as) contribution, where « is the strong coupling
strength. NLO partonic cross section can be written as the sum of three individual

contributions in the following way,

Onio :/d4(1>2 B+/d4<132/ d"l V+/d"(1>3 R (1.1)
loop

where B is the LO or Born contribution, V is the virtual contribution and R is the
contribution coming from the real emission processes. All of them are related to
the calculation of matrix element square (|M?|) in each sub-category. ®, and ®;
denote the 2-body and 3-body phase spaces respectively. In the second and last
terms of eq. (1.1), the loop integration (with loop momenta [) and the 3-body phase
space integration have to be carried out in n space-time dimensions where we can
consider n = (4 + ¢), € being an infinitesimally small quantity (e — 0), in order to
regularise the Ultra-Violet (UV) and Infra-Red (IR) divergences appearing as poles
in e. This procedure is known as dimensional regularisation [14]. In this present

example, LO contribution, which comes from the partonic subprocess ¢ — e*e™,



Figure 1.2: ¢q initiated real emission Feynman diagrams originating from the process
qq — eTe .

Figure 1.3: Feynman diagrams appearing in virtual correction of the process qg —
ete.

is actually O(a?). Apart from the ¢g initiated real emission diagrams presented
in Fig. 1.2, O(as) contributions also come from the squared matrix elements of
the following real emission subprocesses: (i) qg — eTe q, (it) gg — ete g In
addition, another O(ay) contribution comes from the interference of the LO diagrams
with the diagrams appearing due to the virtual correction (see Fig. 1.3). Together
with all these contributions, one finally gets the complete partonic cross section at

NLO which indeed needs to be convoluted with the Parton Distribution Functions

(PDF) of the initial state quarks or gluons that are coming from the two colliding



protons at the LHC, in order to get the final cross section of the actual process
(i.e., PP — ete™) we started with. There are many implicit non-trivial analytic
techniques and latent semi-analytical and numerical methodologies that one has to
face at the time of doing NLO correction of a process of interest. All the ins and
outs of a complete fixed order NLO calculation of a process (real graviton emission
process in association with a vector boson) at the LHC are presented in chapter 3

in great detail.

1.2.2 Parton Shower

When we are dealing with a hard subprocess (for example, v* — ¢q), the external
particles are by definition hard and they can eventually emit additional partons
which carry on emitting other ones persistently, as we know that accelerated par-

ticles radiate. At this point, it is practically impossible to calculate the matrix

Figure 1.4: Feynman diagrams resulting from parton shower effect on the process
7= qq-

element square of all of these diagrams (see Fig. 1.4) and study their complete con-
tribution, as we can see that the particle multiplicity is gradually increasing which
will in practice make the calculation more tedious and cumbersome. Besides, it is
clear from Fig. 1.4 that, as we go from left to right in those diagrams, four momenta
of the additional partons become lesser due to the energy-momentum conservation.
Therefore, it would be significant enough, if we can at least take into account all

these effects in the collinear limit. This phenomena is known as Parton Shower
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(PS) which, in principle, resums large logarithmic contributions coming from such
collinear effects and continues until the hard process evolves down to the hadronisa-
tion scale. In case of initial state showering, incoming partons are evolved backward
starting from the hard subprocess scale determined by the PDF up to the scale of
the constituents in the incoming hadrons.

In this context, let us recall the universal relation of a splitted matrix element

square, as depicted in Fig. 1.5, in case of collinear factorisation:

s o,

d 2
|Mypir|? dBpiy ~ [ M,|? d®, q—qQ el O (1.2)

where M, is the matrix element of any 2 — n+ 1 process, while M,, is the matrix

Figure 1.5: Schematic diagram of collinear factorisation.

element of the process when the splitting of the parton ‘a’ is aborted. The (n + 1)-
body and n-body phase spaces are denoted by ®,,., and ®,, respectively. ay is the
usual strong coupling; z = E}/E,, is the relative energy of the daughter parton ‘b’
with respect to the energy of the parent parton ‘a’; ¢ is the azimuthal angle between
the polarisation of ‘a’ with the plane of branching and P, .;.(z) denotes the famous
Altarelli-Parisi splitting kernel. The variable ¢ is known as the evolution variable
which can be set in a variety of ways such as the transverse momentum (Pr) of ‘a’,
the angle () between the two daughter particles etc.

With the help of the Poisson statistics, we can say that, if a branching is expected
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to occur obeying the pattern p, the probability of observing such splitting n times

is,

P(n;p) =

(1.3)

Using this, we can now readily find that the probability of observing no such splitting

is,
P(0;p) =e7? : (1.4)
Likewise, using eq. (1.2), we can define the following Sudakov factor,

Q2d2 Zmazx
M@ = ew =52 [T [Tape] 0

which in practice provides the non-splitting probability of parton ‘a’, when the
evolution parameter varies from )7 to (J2. A Monte Carlo routine can be written
based on the application of Sudakov factor to describe a chain of parton splitting.
Besides, simultaneous study of soft emissions helps in settling up the right evolution
parameter to be used in the Parton Shower Monte Carlo (PSMC), thereby ensuring
angular ordering and/or colour ordering. For example, HERWIG [15, 16, 17, 18,
19] is an angular ordered PSMC program, where as, multiple options of evolution
parameters are available in PYTHIA [20, 21, 22, 23, 24].

Nevertheless, it is obvious that the parton shower, which stands solely on the
basis of collinear and/or soft approximation, can not describe the hard radiation
correctly. Therefore, it is necessary to use the matrix elements in order to describe
hard radiations together with the PSMC, which is valid only in the soft/collinear

region. In a sense, they are complementary to each other and we need to merge



them together avoiding double counting and ensuring regular distributions. In one
hand, it is customary to use the high multiplicity matrix elements for describing hard
radiations and merge them with parton shower following the CKKW [25, 26, 27, 28,
29] or MLM [30, 31] algorithm, whereas on the other hand, one can start with the
NLO corrected results to describe the hard radiations and match them with parton
shower using the MCQNLO [32] or POWHEG [33, 34, 35| formalism. Note that
the later approach possesses several advantages over the first one such as, consistent
inclusion of K-factor information in detector simulation, estimation of theoretical
scale dependencies in a meaningful way, impact of NLO corrected observable shapes
on acceptance studies and so on. We shall describe a complete NLO result matched
with parton shower using the MCQNLO formalism in chapter 4 for the diphoton

production process both in the SM and in a particular BSM at the LHC.

1.3 Beyond Standard Model

In spite of its merits, the SM has many open questions that are not addressed within
its domain and a plenty of room is left open for some beyond SM physics scenarios
to address them. SUperSYmmetry (SUSY), extra dimensions, technicolor models
are a few to name such BSM scenarios. With the advent of the high energetic
hadron colliders, it is quite feasible to probe these new scenarios in the laboratory
experiments. The LHC with its unprecedented center mass energy of 14 TeV and
with luminosities as high as 103 em™2 s7!, offers the best possibility of discovering

the possible new physics that is hidden so far at lower energies.



1.3.1 Large Extra Dimension

One of such BSM scenarios that has gained a lot of interest and has been studied well
in the context of collider phenomenology is the Large Eztra Dimension (LED) model
proposed by Arkani-Hamed, Dimopoulos and Dvali [36, 37, 38]. This model, which
is also known as the ADD model, is theoretically well motivated and it addresses the
hierarchy problem with the concept of extra spatial dimensions. A viable mechanism
to hide these extra spatial dimensions (d) from the SM particles is to confine the
latter to a 3-brane and allow only the gravity to propagate in the full (4 + d)
dimensional space-time. For simplicity, the extra dimensions can be assumed to be
flat, of the same size and compactified on a d-dimensional torus of radius R/(27).
After the compactification, the scale M, of the extra dimensional theory is related

to the Planck scale M, as,
M?=Cqy M7 R | (1.6)

where Cy = 2 (47)72/T'(d/2) and R is the size of the extra dimensions. This com-
pactification implies that a massless graviton propagating in (4 + d) dimensions

manifests itself as a tower of massive graviton modes in 4-dimensions, with mass

mz = 47’ /R* (1.7)
where 77 = {ny, ng, ....,ng} and n; = {0, 1,2, ...}. Here, the zero mode corresponds to

the 4-dimensional massless graviton. As the inverse square law of gravity has been
tested down to only few pm so far [39], the size of the extra spatial dimensions in this
model can be taken as large as this limit. The hierarchy between the electroweak

scale and the Planck scale can then be accounted for by this large volume of the
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extra dimensions, as can be seen from eq. (1.6). For M, ~ O(TeV), the above limit
on R constrains the number of extra dimensions to d > 2.

In the effective theory valid below the scale M, these gravitons couple to the
SM fields through energy momentum tensor T of the latter with the coupling
Kk = /167 /M,, as given by [40, 41],

K -
Ling = —§ZTW($) hfZL)(w) ’ (1.8)
=0

where h,(fy) contains one spin-2 state, (n — 1) spin-1 states and n(n — 1)/2 spin-0
states and the zero mode of the KK tower corresponds to the massless graviton in
the 4 space-time dimensions.

Since the coupling is through the energy momentum tensor, gravitons can couple
to all the SM fields with the same coupling strength & irrespective of their charge,
colour and flavor. The Feynman rules for the above interaction Lagrangian are
given in [40, 41]. To order x?, the above Lagrangian allows processes involving SM
fields and virtual gravitons in the intermediate state or real gravitons in the final
state. In the context of collider phenomenology, this gives rise to a very rich and
interesting signals that can be explored at the present LHC. The virtual exchange
of the gravitons can lead to the deviation from the SM predictions whereas the real
emission of the gravitons can lead to the missing energy signal. Though the coupling
of each graviton mode to the SM fields is M, suppressed, the large multiplicity of
the available graviton modes can give rise to observable effects. Hence, there will be
a summation over the graviton modes at the amplitude level for the virtual graviton
exchanges and at the cross section level for the real graviton emissions. As the size of
the extra dimensions could be large in this model, the mass splitting i.e., (27/R) is

very small and hence this summation over the graviton modes can be approximated
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to be an integral in the continuum limit, with the density of the graviton modes

given by [40],

d . d—2
R* mZ

Pma) = Gy T (d2)

(1.9)

In case of virtual graviton exchange process, the effective graviton propagator,

after summing over all KK states can be expressed as,

Dij(si) = 2 W
~ [ ant ek
0
- %% <\J<Z)(d2) [+ 201 (A//55)] (1.10)
where s;; = (p; + p;)? is the invariant mass of the final state particles (with 4-

momenta p; and p,), directly attached to the KK mode at the parton level and the
function I(A/,/s:;) is described in [40], which depends on the UV cutoff A. As stated
earlier, although the interaction of KK modes with the SM particles is suppressed
by the coupling  (eq. (1.8)), the cumulative effect of summing over large number of
accessible KK modes (eq. (1.10)) compensates the suppression, making the effective
coupling significant enough to have observable effects. It is usual practice to set
the UV cutoff A = Mg and simplify the summation of virtual KK modes [40, 41]
to do the phenomenology. In this thesis, we follow the approach of [40] all the way
through any analysis which retains the details of the number of extra dimensions.

The numerator of the spin-2 KK graviton propagator [40] in n-dimensions can be
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expressed as,

2

Buupo(k) = Cupcuo + CHUCVP - m@ué}m ) (1-11)

where (u = (9w — kuky/m2). Here, k is the momentum flowing through the
propagator.
For the real graviton production process at the collider experiment, the inclusive

cross section is given by the following convolution,

do = /dm% p(mg) do,.. ) (1.12)

0
where do,,, is the cross section for the production of a single graviton of mass ms.
This collective contribution of the graviton modes results in their non-negligible
interaction with the SM fields and offers the best possibility of probing the low scale

quantum gravity effects at the colliders experiments.

1.3.2 Warped Extra Dimension

In the warped extra dimension scenario, we briefly describe the extra dimensional
model proposed by Randall and Sundrum, in which there is only one extra spatial
dimension and this model is also known as RS model [42, 43]. In RS model, the fifth
dimension is compactified on S'/Z? orbifold with radius R., which is of the order of
Planck length. The Planck 3-brane with positive tension is situated at the orbifold
fixed point y = 0, while the TeV 3-brane with negative tension is located at another

orbifold fixed point y = wR,.. The geometry of this 5-dimensional space-time, which
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is warped, can be defined with the following metric,
ds® = e 1, do"dz” + dy? , (1.13)

where 0 < y < mR; 1, is the usual 4-dimensional flat Minkowski metric and K
denotes the constant negative curvature of the non-factorisable AdS; space-time.
Gravity can propagate on the bulk, while the SM fields are localised on the TeV
brane. While gravity originates on the Planck brane, a TeV scale can be generated
on the TeV brane for KR, ~ 10, thus solving the hierarchy between the electroweak
scale and the Planck scale. Further, it has been shown in [44, 45, 46, 47], that
the value of LR, can be stabilised against quantum fluctuations by minimising the
potential of the modulus field, which has to be introduced in the bulk for this
purpose.

The tower of KK excitations (hfﬁ)) of the graviton couples to the SM energy

momentum tensor (7) through the following interaction Lagrangian,

1 GW’CRC >
Lig = —=T"(@)h(2) — = T"(2)h) (z , 1.14
‘ T (@)hy (2) Mp; (@)hyy) (z) (1.14)

where M, is the reduced Planck scale. The first term in the above Lagrangian de-
notes the contribution of the zero mode graviton which is M, suppressed. However,
contributions coming from the massive KK modes get enhanced due to the presence
of the exponential factor e™ % in the last term of the above mentioned Lagrangian
and they produce interactions comparable to the electroweak strength. For this rea-
son, we can only consider the interaction of the massive KK gravitons with the SM

fields without any loss of generality and the interaction Lagrangian can be written
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as follows,
Lig ~ —— > T™(@)hi(x) | (1.15)

where ¢ = K/M, is an effective coupling and my = Ke ™ sets a mass scale for

the massive KK mode gravitons. The masses of hfﬁ) are given by,
M, =z, K e ™E: , (1.16)

where x,s’ are the zeros of the Bessel function Ji(x). Since K is related to the
curvature of the fifth dimension, we cannot consider large values of K in order to
get rid of the large curvature effects. Moreover, K cannot be too small compared
to the value of M, as it will in turn reintroduce hierarchy. These considerations
constrain the value of ¢; within the limit 0.01 < ¢; < 0.1. Except for the overall
warp factor, Feynman rules [40, 41] for the RS model is exactly similar to the ADD
model. However, the mass gap between the KK modes of graviton in RS case is
quite distinct from ADD scenario and the summation over such KK modes leads to

the effective graviton propagator [48] defined as,

1
s — M2+ iM,T,,

n=1 "%
1S X2— X2 —ilax,
= — mo : (1.17)

2 T2
2 _ yv2)2 2
my c— (X2 — X2)2 + m%Xn

Dess(si;)

where X, = /5;;/mo, X,, = M,,/mo and I',, corresponds to the width of the n-th
KK mode. The summation over n is kinematically bounded and can be calculated

numerically.
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1.4 Conclusion

In this chapter, we have presented the essence of higher order QCD corrections in
the context of hadron collider, namely LHC. We have described the importance of
doing NLO correction and outlined the available standard techniques to perform
it. Necessity of incorporating parton shower effects with the fixed order results has
also been illustrated. Besides, we have briefly described some of the BSM scenarios,
namely ADD and RS model. Equipped with all these notions, we are now ready to
study the phenomenology of a process in a BSM scenario at the LHC. In the next
chapter, we will discuss the prospects of probing large extra dimension model at the

LHC through neutral triple gauge boson production processes in LO.
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Chapter 2

Triple Gauge Boson Production

2.1 Introduction

The di-lepton [49, 50, 51, 52, 53, 54], di-gauge boson [53, 54, 55, 56, 57, 58, 59, 60]
and di-jet [61, 62] final states have been extensively studied in the context of extra
dimension models. The triple gauge boson final state is also an interesting new
physics signal in some of the beyond SM scenarios [63]. In this chapter, we consider
the neutral triple gauge boson production at the LHC and study how the ADD
model would alter the SM expectation. In the SM, the triple gauge boson final state
is an important signal as it depends on the 3-point and 4-point couplings among the
gauge bosons which is a test of the electroweak theory. This process in the SM has
been studied to LO [64, 65] and its extension to the NLO was on the Les Houches
wishlist [63, 66] and has been finally achieved in [67, 68, 69, 70]. The triple gauge
boson production processes in the SM are the precise predictions of the electroweak
gauge theory and gauge self-couplings. They are also potential backgrounds to
many new physics models like SUSY and technicolor. For example, Z~vvy in SM

is a background to signals with di-photons and missing transverse energy in gauge
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mediated supersymmetric theories [71] and v+ production in SM is a background to
one photon plus techni-pion [72]. Processes with three gauge bosons can also come
from the ADD model as gravitons couple directly to gauge bosons of the SM. While
mono-jet or di-lepton production is more sensitive to parameters of the model with
extra dimensions compared to the triple gauge boson production, all these processes
involve same universal coupling of gravity with the SM particles and hence can
provide equally important information about the model. Moreover, in discriminating
physics beyond the SM namely SUSY or technicolor models using triple gauge boson
production, one can not ignore the potential contributions resulting from models
with extra dimensions.

In this analysis, we consider the process PP — VV'V X, where we restrict to the
neutral gauge bosons V' = v, Z and X is some hadronic final state. The following
four final states are the subject of this analysis: (i) yyy (i) vvZ (i4) vZZ and (iv)
777,

2.2 Neutral Triple Gauge Boson Production

The neutral gauge boson final state at the hadron collider PP — VVV X at LO

comes from the following subprocess,

q(p1) +q(p2) — V(ps) + Vips) +Vips) (2.1)

where V' = 7,7 and X is any final state hadron. The SM diagram for the above
process is shown in Fig. 2.1 with all possible permutations of final states. For the
final state with at least two ZZs, Higgs boson could contribute by coupling to the
quarks, but this is negligible in the vanishing quark mass limit. In the case of ZZZ

final state, there are additional Higgs strahlung diagrams, but their contribution is
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also quite small and becomes faded in the present Higgs mass limit. Hence, we have
not included the processes with the Higgs boson. Moreover, gg — V'V'V subprocess,
though it is formally NNLO in QCD, could substantially contribute at O(a?) in the
low invariant mass region of the final state vector bosons due to large gluon densities
at small x. However, this effect starts diminishing as the invariant mass grows up to
higher values wherein the ADD model begins to dominate over the SM contribution

and therefore such effect has not been taken care of in our present study. In the ADD

) MWW
AV Vi)
i) MWW

Figure 2.1: Typical Feynman diagram for triple gauge boson production in SM.

model, the KK modes of the graviton (G) couple to V' bosons, quarks, anti-quarks
as well as to quark-antiquark-V boson vertex [40]. Four categories of Feynman

diagrams that give a V'V'V final state in ADD model are shown in Fig. 2.2. We have

Figure 2.2: Typical Feynman diagrams for triple gauge boson production in ADD
model. Dashed line represents the KK graviton (G) and the other particle lines are
same as they are in Fig. 2.1.

used unitary gauge (¢ — oo) for the Z boson and the Feynman gauge (§ = 1) for
the photon.

In the SM, the LO process for the production of vy at hadron colliders results
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from the annihilation of a quark and an anti-quark. In the ADD model, the produc-
tion mechanism is again from the same initial states, but one of the three photons
remains attached to either of the qqv, 7vG, qGyG vertices and the other two photons
come from the decay of KK graviton. The typical Feynman diagrams that contribute
in the SM and in the ADD model are shown in Fig. 2.1 and 2.2. The Feynman rules
for the processes with KK graviton can be found in [40, 41]. All the expressions for
the matrix element squared with proper spin, color sums and averages are obtained
using a symbolic program based on FORM [73]. The KK graviton propagator D;;
and the numerator of the spin-2 propagator [40] of the KK graviton are illustrated
in eq. (1.10) and (1.11) respectively. Terms proportional to negative powers of mass
of KK mode in ¢,, do not contribute as they are proportional to k,k,. This pro-
vides a useful check on our calculation. The matrix elements have been checked for
gauge invariance. We performed similar computation for evaluating the parton level
subprocesses for vvZ, vZ7Z and ZZZ productions. In the following we list few of
the important observations.

For the vyZ production, in the limit m; — 0 (m being the mass of Z boson), we
reproduce the matrix elements for vy process with the changes: (C% + C%)/4 —
Q?, T, — e, where Cy, C4 are the vector and axial vector couplings of the weak
gauge boson respectively, T, = e/(sinf,, cosf,) and @) is the electric charge of
the quark flavors. In the case of vZZ production, we find that the parton level
subprocesses in SM and ADD model are similar to those of the yvZ production
with the changes v <+ Z. The squared matrix element for vZZ production that
comes from ADD model alone is not related to the one coming from 7~ production.
The reason is that some of the terms proportional to m%, that appear in the GZZ
vertex, cancel all the inverse power of m? present in the Z boson polarisation sum,

giving contributions that have no analogous ones in the vy process. However,
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the expression for the SM squared matrix element of vZ 7 is related to that of yyy
process in the SM if we take m; — 0, (Cy, + 6C.C3 + C4)/16 — Qj and T, — e.
For ZZ 7 production, squared matrix elements involving ADD vertices do not have
any relation with those of vy~ production for the same reason as described in vZ 72
production case. The SM squared matrix element of this process is related to the
one for the 7y~ process in SM with the following replacement in the limit m, — 0,
(CY 4 15C3.C3 + 15C3C4 + CF) /64 — Qf, Tz — e. In fact, we empirically find
that the most general formula for the replacement of n number of Z boson(s) with
photon(s) in the SM squared matrix element is,

(CF + CR)" +2n(n — 1)(CYCA(CY + CR)" )
4n

— Q?” , (2.2)

which works for all the above three processes with n = 1,2,3. We have provided
the expressions of the squared matrix elements for the v+ production process in
Appendix A. For the rest of the processes discussed above, such expressions of the
squared matrix elements are too large to be presented in this thesis. Rather, they

could be made available upon request.

2.3 Numerical Results

In this section, we present different kinematical distributions for the production of
neutral triple gauge bosons. The predictions are for the LHC at center of mass energy
V'S = 14 TeV. We have used CTEQ6L parton densities [74]. For the strong coupling
constant that appears in CTEQGL, we use Agep = 0.226 GeV and n; = 5 flavors.
We set the factorisation scale up = PJ. for the transverse momentum distribution

of V and pup = @ for the invariant mass () distribution of the di-boson pair. In
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addition we apply the following cuts on P} and the rapidity y",

P}7 > 25 GeV and Yy < 2.7 : (2.3)

We also ensure that in general the invariant mass of the di-boson (i.e., any two
identical bosons among the three Vs) is less than Mg. We use myz = 91.1876 GeV

and sin® 0, = 0.2312. The fine structure constant is taken as o = 1/128.

Total Cross-section

2,000 2,500 3,000 3,500 4,000
45 - 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 - 45
E [1] SM (3y) E
40 3 [2]-- SM(2y+2) d=2  E4o
3 [3]— SM(2Z+y) E
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3 [5]— SM+ADD (3y) E
[71 SM+ADD (2Z+y)
-~ 8]--- SM+ADD (3Z E
5253 (8] (32) = 25
£ 3 E
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Figure 2.3: Total cross sections for all triple neutral gauge boson production pro-
cesses, shown as a function of Mg for d = 2. Horizontal lines correspond to various
SM contributions.

CMS [75] and ATLAS [76] have already reported searches for signatures of extra
dimensions in the diphoton mass spectrum at the LHC for 7 TeV p p collisions. The
95 % lower bound on Mg vary between 2.27 — 3.53 TeV depending on the number
of extra dimensions d = 3 — 7 for ATLAS and Mg vary between 2.3 — 3.8 TeV
depending on the number of extra dimensions d = 2 — 7 for CMS, both using a fixed
K-factor of about 1.6 [56, 57]. We have used the phenomenologically viable ADD
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Tranverse Momentum Distribution of y(1) Scale Variation of Rapidity Distribution of y(1)
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Figure 2.4: Transverse momentum distribution of 7, (left panel) for Mg = 3.5 TeV
and d = 3. Rapidity distribution of v, (right panel) for Mg = 3.5 TeV and d = 3
in the region where P! € (750,1250) GeV and its dependence on the factorisation
scale in the range pp = 0.2P}" and up = 2P}
model parameters for our present study.

For the processes involving more than one photon, it is important to isolate

photons from each other i.e., they need to be well separated in phase space so that

they can be identified as separate objects in the detector. To do this, we consider

a cone of radius R = /(Ay)? + (A¢)? in the rapidity-azimuthal angle plane (y, ¢)
and ensure that the minimum separation between any two photons is taken to be
R,, = 0.4. In the following, we describe our findings for the various triple gauge
boson production processes.

The total cross sections for various processes involving neutral triple gauge boson
final states as a function of Mg for a fixed value of d = 2 are given in Fig. 2.3. We
set d = 2 to make the effect of varying Mg on the SM+ADD cross sections visible

for all the processes considered in the present chapter. The SM contributions that
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Figure 2.5: Transverse momentum distribution of 3 (left panel) for Mg = 3.5 TeV
and d = 3. Rapidity distribution of 3 (right panel) for Mg = 3.5 TeV and d = 3 in
the region where P} € (750, 1250) GeV.

do not depend on ADD model parameter Mg appear as horizontal lines.

2.3.1 ~vyv Production

In this case, the three photons in the final state are classified in such a way that
P' > P > P}¥. We have compared our predictions for P}! distribution in the
SM against those given in [70] and found a very good agreement confirming the
correct implementation of our analytical results in our numerical code. In the left
panel of Fig. 2.4, we present the transverse momentum distribution of v; in SM as
well as in SM+ADD (i.e., SM, ADD and the interference between them). We have
chosen Mg = 3.5 TeV and d = 3 as representative parameters of the ADD model.
In the high P}' region, the distribution of SM+ADD is fully controlled by processes
coming from ADD model and is enhanced due to the dominant contributions of the

KK modes. In the right panel of Fig. 2.4, rapidity distribution of the most energetic
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photon v, is shown for 750 < P}' < 1250 GeV in SM and SM+ADD. It is seen that

the SM contribution is extremely small in this range.
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Figure 2.6: Invariant mass distribution of the photon pair in vyZ final state (top
panel) and Z boson pair in 7ZZ final state (bottom panel) for d = 3 with different
values of Mg (left) and for Mg = 3.5 TeV with different values of d (right).

In order to estimate the factorisation scale ur dependence present in our LLO
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results, in the right panel of Fig. 2.4 we have plotted rapidity distributions for three
different choices of up i.e., up = (0.2,1,2)P/*. In the central rapidity region, the
variation of the rapidity distribution with respect to the factorisation scale is the
largest. With respect to the central choice of ur = PJ', the variation is about
23.6 % and 8.2 % for the choice of pup = 0.2 P}' and pp = 2 P! respectively.

The Pr distribution of 7, is found to be similar to that of 1, but it is different
for 3 (the least energetic photon among the three) as shown in Fig. 2.5 (left panel).
Similarly its rapidity distribution, which is shown in Fig. 2.5 (right panel), is also

different from the most energetic photon.

2.3.2 ~vZ Production

Here, the invariant mass distribution of the photon pair is a useful observable because
in the ADD model, the photon pair is one of the clean decay modes of the KK
graviton and in the region of interest, this could give an enhancement of the tail of
the distribution. In Fig. 2.6 (top left panel) we have presented the invariant mass
distributions of the photon pair for different choices of Mg = (3.5,4,4.5) TeV fixing
d = 3, while in the top right panel the same distribution is plotted for different
choices of d = 3,4,6, but for a fixed value of Mg = 3.5 TeV. We find that the
KK modes dominate over the SM contribution for larger values of invariant masses
(around 400 GeV or above, for a given set of Mg and d values) of photon pairs
leading to a significant enhancement of the signal over the background. We plot
the factorisation scale dependence of invariant mass distributions of photon pairs in

Fig. 2.7 (left panel) for different choices of pp, i.e., ur = (0.2,2)Q.
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Scale Variation of Inv. Mass Dist. of Photon-Pair Scale Variation of Inv. Mass Dist. of Z-boson Pair
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Figure 2.7: Dependence of invariant mass distribution of the photon pair in vv2
final state (left panel) and Z boson pair in vZZ final state (right panel) on the
factorisation scale for d = 3 and Mg = 3.5 TeV.

2.3.3 ~ZZ Production

Invariant mass of Z boson pair is again a useful observable. We have done a similar
analysis as we did for vyZ and use the same choice of factorisation scale and ADD
model parameters. The invariant mass distributions are shown in the lower panels
of Fig. 2.6 for different choices of Mg and d. We find that the invariant mass
distributions of photon pairs in vyZ production and Z boson pairs here have similar
qualitative behavior.  In order to investigate the uncertainty resulting from the
factorisation scale pp, in Fig. 2.7 (right panel), we have plotted the invariant mass

distributions of the Z boson pair for different choices of ug, i.e., ur = (0.2,2)Q.
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where P7* € (900, 1400) GeV.
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2.3.4 /77 Production

We have classified triple Z bosons in such a way that P7' > P7> > P/ and for
the P/ distribution, we make the choice of factorisation scale as jp = Py, where
1 =1,2,3. In Fig. 2.8, we have presented the transverse momentum distributions
of Z; (left panel) and Z3 (right panel) for SM and SM+ADD with Mg = 3.5 TeV
and d = 3. Also, rapidity distribution of Z; for SM and SM+ADD with the same
model parameters is shown in Fig. 2.9. For the rapidity distribution, we have put
the constrain: 900 < PTZ1 < 1400 GeV. As in the case of vy, the PTZ2 distribution
is similar to that of PTZ1 distribution. We have also shown the sensitivity of rapidity
distribution to the factorisation scale ur by varying it between pup = O.2PTZ ! and
g = 2PTZ1. In the central rapidity region, we estimate the variation of the rapidity
distribution with the factorisation scale and find that for pup = 0.2P7* and pp =
2PTZ !, such variations are about 27.5 % and 8.9 % respectively with respect to those
at up = Pf '. The rapidity distribution for Z, is similar to that of Z; while Z3 is
different.

So far, in our numerical analysis, we have put the UV cutoff A = Mg which is the
conventional choice to do the phenomenology as mentioned earlier. The sensitivity
of the choice of UV cutoff is presented in Fig. 2.10 for P} distribution of v~y
final state and also for the invariant mass distribution of v+ pair of yyZ process
by varying A = (0.9, 0.95, 1)Mg. The cross section at P' = 1200 GeV varies
between 10 - 24 % as we vary A = (0.9, 0.95)Mg as compared to A = Mg for the
vy process. Similarly, for the cross section of vvZ process at @) = 2000 GeV, the

variation stands between 7 - 15 % in the same range of A.
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Figure 2.10: P;' distribution of vy final state (left) and invariant mass dis-
tribution of the photon pair in yyZ final state (right) using the cutoff scale
A =(0.9, 0.95, 1)Mg for Mg = 3.5 TeV and d = 3.

2.4 Pentagon Reduction

To make the pavement towards NLO corrections of these processes involving tensor
couplings, reduction of 5-point tensor integrals will inevitably be required. There-
fore, in this section, we deal with the way of reducing the one loop 5-point tensor
integrals (up to rank-4) using the Passarino-Veltman reduction technique [77, 78, 79].
In fact, numerous activities have been performed in reducing one loop tensor inte-
grals and calculating the scalar ones (see for example [80, 81, 82, 83, 84]). The
following work is basically an extension of what was done in [85], where reduction of
4-point tensor integrals (up to rank-3) was taken care of. Here, we describe the usage
of projective momenta technique and define new projective momenta to perform a
complete study of reducing 4-rank 4-point and the full 5-point tensor integrals up

to rank-4. All the analytical results are given in detail so that they can easily be
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coded in any analytical or numerical programme.

2.4.1 Notation & Convention

We define up to 5-point integrals in the following way,

arl 1

iﬂ'Q D1 '

Ao(a) = @) [

AL, L, LY

B{O7M7MV}<p17 My, Ms) = (27?/1)4"/ im2  DiD, ’

A1, L L, L, )
iﬂ'Q D1D2D3 '

C{O,u,uu,uup} (p17p27 M17 M27 M3) - (271-#)4_71/

D{O,,u,,ul/,uup,,ul/p)\} (pla b2, P3, Mla MZa Mg, M4)

= (2ﬂﬂ)4_n/ ﬂ{l’l“’lulV’lullevlululplA} |
ir? D1 D>Ds Dy

E{O,,LL,,LLV,/JVP,,LLVP)\} (p17p27 P3, P4, Mla MZ) Mg, M47 M5)

AL L L, L, L
— (2 4—n G L by bpbws bpbuvlps bubvlp . 94
(2mp) / i DyDyDsDyDs (2:4)

where M;s are the masses of off-shell internal lines and p;s are the on-shell 4-

momentum of external particles and D;s are given here under:

Dy =1>—-M?+ie
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Dzz(l+p1)2—M22+’L€ s

Dgz(l+p1+p2)2—M§+l€ s

D4:(l+p1+p2+p3)2—Mf+ie )

Ds = (l+p1 + p2 + ps3 +p4)2 —M52—|—i6

Note that, for the sake of simplicity, we keep ourselves confined to present analytical

results involving massless internal lines in the loop. However, it is straight forward

to extend such calculation for massive internal lines with nominal changes in few

selective variables. It is evident that the above integrals listed in eq. (2.4) are

symmetric in their Lorentz indices and they can be easily demonstrated in Lorentz

covariant way as follows,

Bu = pluBl )

B, = piup1vBar + 9B ;

Cy = p1uCii +p2.Chro )
Cuw = D1uP1Co1 + P2up2,Cos + {P1P2} 1 Cos + 91 Cos )

Civp = P1uP1wP1,C31 + D2up2uD2,Cs2 + {P101P2} 1pC33 + {P10202 }1pCa

32



1%

uvp

LV PN

2

+ {p19}10pCs5 + {029} 10pCs6 , (2.7)

P1uD1 + pouDra + p3uDis )

P1uP1vDor + p2upav Do + p3upsy Das

+ {p1p2}wDaa + {p1p3} 0 Das + {p2ps }w D26 + guw Doz )
P1uP1vP1p D31+ D2pDoup2,Dsa + p3upsupspDas

+ {p101P2} jwp Dsa + {p10103} jwp D35 + {p10202 } jwp D36

+ {P103P3} pp D7 + {p2p2p3} uwpDas + {p203ps } uwpDso

+ {p1p2ops}wp D310 + {019} wp D311 + {029} wpDsiz + {39 }wpDsis ;
P1uP1vP1pP1ADar + D2uP2uvD2oP2xDaz + P3uP3uP3pP3xDas

+ {p1v1p102 Fwpr Daa 4+ {p1010103 }rwpr Das + {p1p10202 } jwer Das

+ {p101P203 }ywpr Daz 4 {P1010303 }rwpr Das + {P102p202 } jwpr Dag

+ {p1p2paps }ywpr Daro + {p102030s }rwpr Dart + {p10303P3 } ywpr Daia

+ {p2popaps }ywpr Dars + {popapsps b rwpr Dara + {p2pspsps b uwpr Dais

+ {p1p19}wprDare + {p2p29} jwpr Darr 4+ {03p3g }ywer Dars

+ {P1029 }iwpr Daro + {01039} jwprDazo + {02039} jwprDazt + {99} wprDaze

(2.8)

Piubi + pouEis + psubig + pautig ;
P1uP1v B2 + Doupay Eoz + p3upsy Bz + paupay Eoa
+ {p1p2} v Eos + {p1p3}w Eae + {P10atuw Far

+ {p2p3}w Eas + {p2pa}twFag + {pspa}wForo + g Eont ;
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E

0N

nvp

P1uP1vP1p 31 + DouPavP2p Esa + D3,uP3uP3pE33 + PapDavDapEisa
+ {p1p1p2} v Ess + {p10103 } e Loz + {P10104 }pwp sz

+ {p1pap2} jwpLss + {10303} ywpLozg + {P1PaD4}pwpEsio

+ {p1p2ps }uvpEsin + {p1p2patiwpEsiz + {p10spatwp Eas

+ {p2p2p3},ul/pE314 + {p2p2p4}uupE315 + {p2p3p3},uupE316

+ {popapa}uwpEsir + {p2pspatwpEsis + {pspspatwp Eao

+ {p3papa}uwpLsoo + {19} wpEsar + {029} wpEae

+ {p39}wpFs2s + {19} uwpEsoa ;

P1uP1vP1pP1xEar + D2upovD2pporEas + D3,030D3pP33Ea3 + DapPavPapparFaa

+ {p1p10102 }pwpr Eas + {1010103 }wpr Fae + {P1010104 }pwpr Eaz

+ {p1p1pop2 }uwpr Eas + {01010303 } jwor Eag + {p1010aD4 } pwpr Earo
+ {p1p1pops twpr Eain + {p1p10opa b ywpr Eare + {p1010304 }pwpr Ears
+ {p1p2pops }wpr Eara + {p1p2paps b iwpr Eais + {p1pepapa b ywpr Eate
+ {p1p2psps }uwpr Eair + {p1p2pspatjwpr Eais + {p102DaDa }ywpr Earg
+ {P10303P3 } pwpr Easo + {01030304} pwpr Lot + {D1030aD4 } pwpr Eazo
+ {P10aPapa} pvpr Eaos + {p2020203} jwpr Easa + {D2p20204a } pwpr Eaos
+ {Pap2p3p3 } pwpr Bass + {D2020304} jwpr Laor + {p2popapa}jwpr Fass
+ {Pap3p3p3 } pwpr Easg + {D20303D4} ywpr Lazo + {p2p3papatjwpr Fas
+ {Popapapa} pvpr Easo + {03p303041} pwpr Lass + {p303papatjwpr Faza
+ {p3PapaPa}pwvpr Fazs + {01019} wprFaze + {01029 }iwpr Lasr

+ {139 buwpr Bass + {01049} jwor Fazo + {02029} jwpr Easo

+ {2039} wor Eaar + {02019} ywpr Eaaz + {03039 }jwpr Faas

+ {P3pa9}wor Eaas + {01019 }ywprFass + {99} wor Eaae
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In the above equations (eq. (2.6)-(2.9)), we have adopted some short-hand notations

which are given here under:

A Z Po (i), P () Po(k),Po(l) ; (2.10)
o(2,5,k,l)

with (i, 7, k,[) denoting all different permutations of (¢, j, k,1). Similar is the case

for {pip;pk }wp and {pip;},. expansions.

{pivigtwor = A{pi0jtwgor + {0} up9ur + {Pi0j }irgup

+ Apipj}opGur + {Pi0 Yorgup + {Pivs }or G ; (2.11)
{pig};wp = DipGvp + DivGup + PipGuv ) (2'12)
199} iwor = GuwGor + Gupdur + Gurdvp (2.13)

At this stage, our aim is to find all the co-efficients of D, (in eq. (2.8)) and for all
others represented in eq. (2.9). Rest of the co-efficients of eq. (2.6),(2.7),(2.8) have

already been calculated and they are listed in [85].

2.4.2 Reduction of 4-point 4-rank Tensor

Apparently, it seems that, if we want to find out the co-efficients of D\, we have
to deal with a 22 x 22 matrix. But, this can be reduced to a 3 x 3 matrix prob-
lem by introducing three projective momenta P;s” which would have the following
properties:

Pl'pj, = 6 vV ooi,j=1,23 . (2.14)
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The existence of such projective momenta is directly related to the existence of X 1

matrix, where the X matrix is defined as follows,

P pip2 PP
X(p1,p2,p3) = Xpoa = | pips P2 D2ps . (2.15)

p1-ps PP D

In other words, if these three 4-momenta py, ps, ps form an independent set resulting
det[X] # 0, then only construction of such P;s would be possible. Construction of
an another projective tensor P*” is inevitable in order to find out the co-efficients

of Dy, (eq. (2.8)) and its form and properties are given below:

3
vV 1 174 v
P = g {9" —Zﬂ“pi} : (2.16)
i=1

pipP" =0 and g, P" =1 . (2.17)

With the correct combination of these two types of projective tensors mentioned
above, we can now define a new projective tensor which is essential to be able to
find some of the co-efficients of D,,,» and it is of the following form,

P = PFPYPL — (PP)P Pl — (P, PP P! — (PuP)PP! . (218)

Z7j7k

For example, by applying P}'{"] on Dy, we get the following matrix identity which

is indeed a 3 x 3 matrix relation:

pi\ Dy 3D 16 Ran
Pfflff)lDMVpA py | =Xp23 | Du |+ 0 = | R . (219)
p3 Dys 0 Rz
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In a like manner, we can easily get similar kind of matrix equations (see Appendix
B.1), which in fact provide the solution for the co-efficients ranging from Dy; to Dy
with the proper choice of P, j, provided we need to know the exact solution for the
rest of the unknown variables (e.g. Dy and Ryq1_443 in eq. (2.19)) beforehand.
In order to find such relations involving the co-efficients Dy to Dygs1, we need to

operate P** P on D,,,» where i = 1,2, 3. Following is just one of these relations:

pi‘ D6 D99 Rys90
PMVPIPDMVP)\ p% - X[1,2,3} D419 + 0 = R4423 . (220)
Pé Do 0 Ryyo4

Rest of them are listed in Appendix B.1. Now, the only co-efficient left to evaluate
is D90, which demands invocation of another new projection operator (P#*?), that

obeys the following relation:

prver — (n_—il%) P peA ’ (2.21)
n J—

and applying this projective tensor on D, ,», we finally get,
P,ul/pADHVp)\ - D422 . (222)

At this point, complete solutions for these co-efficients are one step away, as we
are to derive the solutions for the R-functions right away. The calculation is straight
forward and it will be more vivid with the following explicit derivation of Ry given

here under:

_ HYp A
Ry = Pl,LlD,ul/p)\pl
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5[031 (p1 + p2, p3) + Co(pa, p3) — PTDa1(p1, pa, p3)]

in Appendix B.1.

2.4.3 Reduction of 5-point Tensor

projective momenta with the following properties,

-qup]uzézj v Z)] = 1727374
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Rest of the R-functions can be derived in the similar way and all of them are listed

The main thing to remember at the time of reducing 5-point tensor integrals is that,
here the number of independent external 4-momenta is four (i.e., p1, pa, ps, ps4) and
one has to define all the projective momenta and projective tensors consistently.

So, to keep pace with the above statement, it is obvious that we would require four
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In this case, X-matrix has to be redefined and the projective tensor P*” has to be
modified maintaining the same properties as described in eq. (2.17), in the following

way,

p% pP1-P2 P1-P3 P1-P4

2
P1-p2 2 P2-p3 P2-Pa
X (p1,p2,03,p4) = Xpoga = , (2.25)

pi1D3s DPaPs  Di DPapa

P1-P4 P2.P4 P3-P4 2

4
v 1 14 4
P = {gu -3 Py } . (2.26)
=1

With the help of the above two projection operators, we can easily reduce £,
and F,, and their expressions are provided in detail in Appendix B.2. In order to
reduce F,,, and E,,,\, projective tensors similar to P/ and P/} would work with
the only modification therein that the latin indices will now run from 1 to 4, unlike

the 4-point reduction case, where they are running from 1 to 3, i.e.,
P = PP — (P.P)P" (2.27)

P!"? = PI'PYPl — (P.Py)P* Pl — (P.P) PPl — (P.P,)P* P! | (2.28)

where 7,7,k = 1,2, 3,4. In addition, to find out the solution for the co-efficient F,44

in eq. (2.9), one has to consider the following relation,
P,U«VPAE“VP)\ == E446 ) (229>

where

1
Pt = (2n — 7) prprr (2.30)
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All the (4 x 4) matrix relations along with the R-functions for all reduced 5-point

integrals are systematically jotted down in Appendix B.2.

2.5 Conclusion

In this chapter, we have studied the neutral triple gauge boson production pro-
cesses at the LHC in theories with large extra dimensions which are produced via
the exchange of a tower of KK graviton, taking into account the SM contributions
altogether. All the final state photons and Z bosons are taken to be real. We have
performed various checks on our analytical results and the numerical predictions are
obtained using a Monte Carlo code which allows us to implement various experi-
mental cuts. For the case in which the gauge bosons in the final state are identical
we have presented the transverse momentum distribution by ordering the transverse
momentum as P)* > Py? > Py®. We find that P} and Py distributions are similar
but the one for P}/?’ is different. The rapidity distributions are also presented. For
the case where one of the gauge bosons in the final state is different, we choose to
use the invariant mass distribution of the identical di-bosons, as it would be a better
discriminator in the region of interest. We have also studied their dependencies on
the ADD model parameter Mg and the number of extra dimensions d, keeping the
UV scale A = Mg. In addition, we have reported the sensitivity of the choice of A
by varying it from A = 0.9Mg to 0.95Mg. We have also studied the dependence of
our LO predictions on the factorisation scale. Nevertheless, a detailed calculation of
5-point tensor integral reduction using Passarino-Veltman technique has been pre-
sented in order to reveal its analytical results in a ready-to-use format. Howsoever,
we have not yet dealt with complete calculation of any process to the NLO accu-

racy. In the next chapter, we will present NLO QCD correction to the associated
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production of the vector gauge boson (Z/W=) and the graviton in the LED model

at the LHC and discuss its effect on various kinematical observables.
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Chapter 3

Real Graviton Production

3.1 Introduction

We already know that the collective contribution of the graviton modes reveals their
non-negligible interaction with the SM fields and offers the best possibility of probing
the low scale quantum gravity effects at the collider experiments. Consequently, a
very rich and interesting collider signals of some important processes have been
reported in the literature, but most of them are available only at the leading order
in the perturbation theory [40, 41, 61, 62, 86, 87, 88]. The K-factors in some cases
are found to be as high as a factor of two. Pair production processes are the best
to exemplify the case of virtual graviton effects, where the NLO QCD corrections
are computed for di-lepton [50, 51, 52, 89|, diphoton [56, 57], di-Z and W+ W~
[59, 60, 90, 91] production processes. In the context of missing energy signals in
LED model, the NLO QCD corrections are presented for the processes (i) jet plus
graviton production [92] and (i) photon plus graviton production [93]. In each of
these two cases, it is shown that the K-factors can be as high as 1.5 at the LHC.

In this present chapter, we are going to compute the NLO QCD corrections to the
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associated production of vector gauge boson and the graviton at the LHC and give
a quantitative estimate of the impact of these radiative corrections.

The gravitons when produced at the collider experiments escape the experimental
detection due to their small couplings and negligible decays into SM particles. The
production of vector bosons (V = Z, W¥) together with such an invisible gravitons
(G) can give rise to a very large missing transverse momentum signals at collider
experiments. Hence, the study of graviton plus gauge boson production, in general,
would be a useful one in probing the new physics at the LHC. This process has been
studied at LO in the context of lepton colliders [94, 95| as well as at the hadron
colliders [96] and also has been implemented in Pythia8 [97]. The process is an
important one and stands complementary to the more conventional ones involving
the graviton production, like jet plus graviton or photon plus graviton productions,
that are generally useful in the search of extra dimensions at the collider experiments.

It is important to note that there is a SM background which gives signature
similar to those of associated production of Z and G. This SM background receives
a dominant contribution coming from the ZZ production process, where one of the
Z bosons in the final state decays into a pair of neutrinos (Z — vv) leading to Z
boson plus missing energy signal. The other Z boson can be identified via its decays
to leptons, mostly electrons and muons and then constraining the lepton invariant
mass close to the mass of the Z boson to consider only the on-shell Z bosons. A
detailed study of the event selection and the minimization of other SM contributions
to this process ZZ — llvw, using MC@QNLO [32] and Pythia [24], is taken up in the
context of ATLAS detector simulation and is presented in [98]. Any deviation from
this SM prediction will hint some beyond SM scenario and hence a study of this
process will be useful in searching the new physics.

In the context of extra dimensions, a study of the Z plus graviton production at
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LO at the LHC is discussed in [96], where the Z boson identification is done with
the leptonic decay modes and using the cuts on the leptons as specified in [98]. Tt is
worth noting here that a signal of Z boson plus missing energy can also come from
the production of Z plus unparticle U, where the unparticle leads to missing energy
signal. A study of such process based on ATLAS detector simulation [96] shows
that the vector unparticles are difficult to be probed using this channel, whereas the
tensor unparticles can give signals identical to that of the graviton. In view of the
above, it is worth studying gauge boson plus missing energy signals, in particular
Z @G production, which could be useful to confirm the extra dimensional signals once
they are seen in the main channels like jet or photon plus missing energy.

In what follows, we describe the computation of NLO cross sections for the pro-
cesses under study. Since our focus is on the QCD part in this work, we will confine
our calculation to the production of on-shell Z and W* bosons. A more detailed
study involving their decays into leptons requires a full detector level simulation

with the appropriate cuts at NLO and is beyond the scope of this thesis.

3.2 Analytical Details

3.2.1 Leading Order Calculation

At the lowest order in the perturbation theory, the associated production of the
vector gauge boson and the graviton takes place via the quark anti-quark initiated

subprocess given by,

Qo (P1) + Qv (p2) = V(ps) + G(ps) (3.1)
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where V = Z, W¥* and o, are flavour indices. The corresponding Feynman dia-
grams are shown in Fig. 3.1. These diagrams are obtained by considering the tree
level qqV diagram and by attaching the graviton line to all possible external legs

and the qqV vertex. The Feynman rules and the summation of polarization tensor

Figure 3.1: Feynman diagrams that contribute to the associate production of the
vector boson and the graviton at the leading order.

of the graviton are given in [40, 41]. The couplings of the fermions to the Z and W

bosons are given by,

Ty

- 27 7“(011 - Cafyfj) ) _ZT 7H<1 - /75) 9 (32)
where
1 1
Ty=————— Ty=——
Z costyy sinfy, v V2 sin Oy
and the co-efficients C, and C, are
_mf _ ) _mf
C,=T; —2sin“0w Qy , Co=Tj4 : (3.3)

Here, Qs and T3f denote the electric charge and the third component of the isospin
of the quarks respectively and 6y, is the weak mixing angle. For the vector gauge

boson, the propagator in the unitary gauge (§ — oo) has been used throughout. This
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choice of the unitary gauge in the electroweak sector has the advantage of having
vanishing goldstone and ghost contributions. The leading order matrix elements
for the associated production of Z boson and the graviton are computed using the
algebraic manipulation program FORM [73] and the square amplitude (in n space-

time dimensions) is as follows,

—2 111
_ 1 2
D IMP =556 (C7+CD)

k* T y
(D% 2 1)

spin

[12m10(n — tu + mPtuf3(n — 2)%* — 2[—68 + n(104 + (=31 +
n)n)]t3u + 2[284 +n(—264 + (63 — 2n)n)]t2u> — 2[—68 +n(104 + (n —
31)n)]tud + 3(n — 2)%ut — 48mS(n — 2)(t + u) — 4mL[3(n — 9)(n —
2)t* +2(124 + 3(n—21)n)tu+3(n—9)(n — 2)u?] + 4m%(t +u)[3(n —
5)(n—2)t2—2(—=90+n(n+35))tu+3(n—>5)(n—2)u2} —3ms{12(n—
2)tu(t 4+ u) + m%[(n —2)%2 + 2(16 + (n — 14)n)tu + (n — 2)%u?]} —
3mS{4m% (18 + (n — 13)n)tu — 2m%(t +u)[(n — 2)*> +2(26 +n(2n —
21))tu+ (n — 2)*u?] — tul(n — 2)(10 +n)t? + 2(=32 + 3n(2 + n) ) tu +
(n — 2)(10 + n)u?]} + 2t2u>{32m% (n — 2) — 8m%L(—6 + n + n?)(t +
u) + (40 + (n — 17)n)(t +u)[(n — 2)t2 + 2(n — 4)tu + (n — 2)u?] —
m%[(n — 2)(48 + (n — 25)n)t% + 2(—=156 + n(118 + (n — 27)n))tu +
(n—2)(48 + (n — 25)n)u?} + m*{48mS (n — 2)tu + 24m?% (18 + (n —
12)n)tu(t +u) — 6tu(t +u)[(n —2)nt? +2(—12+n(3n —4))tu+ (n —
2)nu?] — m%[3(n — 2)%* + 12(n — 6)(3n — 5)t>u + 2(604 + n(25n —
344))£2u2 + 12(n — 6)(3n — 5)tu® + 3(n — 2)2u4]}] ,

(3.4)

where D = (s —m?%) and s,t,u are the usual Mandelstam invariants. Here my  and

m denote the masses of Z boson & KK graviton respectively. The over all bar in

LHS of eq. (3.4) represents that the matrix elements have been averaged over the

46



spins and the colors of the initial state particles and summed over those of the final

state ones.

3.2.2 Next-to-Leading Order Calculation

At the NLO in the perturbation theory, the cross sections receive O(ay) contri-
butions from real emission as well as virtual diagrams. The integration over the
phase space of the real emission diagrams will give rise to IR divergences (soft and
collinear) in the limit where the additional parton at NLO is either soft and/or
collinear to the initial state partons. On the other hand, the integration over the
loop momenta in the virtual diagrams will also give rise to IR divergences, in ad-
dition to the UV divergences. In our calculation, we regulate all these divergences
using dimensional regularisation with n = (4+ ¢€), n being the number of space-time
dimensions. Completely anti-commuting s prescription [99] is used to handle 5 in
n dimensions. Here, it should be noted that as the gravitons couple to the energy
momentum tensor of the SM fields, which is a conserved quantity, there won’t be
any UV divergences coming from the loop diagrams.

There are several methods available in the literature to compute NLO QCD
corrections. Standard methods based on fully analytical computation deal with the
phase space and loop integrals in n-dimensions and give a finite O(«) contribution
to the cross sections, after the real and the virtual contributions are added together
and the initial state collinear singularities are absorbed into the bare PDF. However,
these methods are not useful whenever the particles in the final state are subjected to
either experimental cuts or some isolation algorithms. In such cases, semi analytical
methods like phase space slicing method [100] or dipole subtraction method [101]
are extremely useful. In the present work, we have resorted to the former with two

cutoffs to compute the radiative corrections. In this method, the IR divergences
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appearing in the real diagrams can be handled in a convenient way by slicing the
soft and collinear divergent regions from the full three body phase space. The
advantage of this method is that the integration over the remaining phase space
can be carried out in 4-dimensions, rather than in n-dimensions, using standard
Monte Carlo techniques. In what follows, we give some of the details about the

implementation of this phase space slicing method in our NLO computation.

Real Emission Processes

There are two types of subprocesses that contribute to the associated production of
the vector gauge boson and the graviton at NLO in QCD. They proceed by ¢q and
qg initial states. At parton level, the 2 — 3 quark anti-quark initiated subprocess

is given by,

G (1) + Gy(p2) = V(ps) + G(ps) + 9(ps)

We find that 14 diagrams contribute to this subprocess and a few of them are
depicted in Fig. 3.2. These diagrams are obtained by taking the ¢-channel gg — Vg
diagram at tree level and by attaching the graviton line to all possible external as
well as internal lines and to the vertices. The remaining diagrams are obtained
by interchanging the vector boson and the graviton lines in Fig. 3.2. In general,
diagrams such as those involving gluons and massless quarks are prone to be singular
in the soft and collinear regions of the 3-body phase space integration. In the phase
space slicing method that we have adopted here, these soft and collinear regions
are separated from the full 3-body phase space using two small cutoff parameters,
namely d, and J., that define these singular regions. In the center of mass frame

of the partons, the soft region is defined as: 0 < Ey < %53\/5, where Ej is the
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Figure 3.2: Real gluon emission diagrams.

gluon energy and /s is the parton center of mass energy. Integration of the eikonal
approximated 2 — 3 matrix elements over the soft region of the phase space gives

the O(as) 2-body contribution,

16 16
dés = as Cr F(¢, jir, S) (—2 +— In 6, + 8 In? 55) doy , (3.5)
€ €
where
D(1+5) [dru\ 2 N2 -1 s (1R)
(e pn, s) = r1+i>( sR) o Cr= gy and e =0

Here, as(ur) = ¢2(pr)/4m with g, being the running strong coupling constant, pp is
the renormalisation scale and N is the number of colors. The region complementary
to that of the soft region (5), i.e., E5 > %53\/5, is defined as the hard region (H) of
the phase space. Within this hard region “H ”, the emitted gluon can be collinear to

the incoming massless quark or anti-quark and hence can give rise to hard collinear
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divergences. By introducing another small cutoff parameter (J.), we separate these
collinear divergences from the hard region. The hard collinear region (HC') can be
defined as: 0 < —t;; < d.s (i = 1,2 and j = 5), where t;; = (p; — p;)?. In the
collinear limit, both the 2 — 3 matrix elements and the 3-body phase space get

simplified to be expressed in terms of the born cross section as,

e = tadoy P gins) (£ ([Pl Oyplion/2) Jyn(as) + a0 0)
+(ZL‘1 e 1‘2)}% (501 ; Z) ’ d[L‘l d[L‘Q s (36)

where f,/p(z) is the bare PDF and P,(z,¢€) is the unregulated splitting functions
in n-dimensions (where a,b = ¢, q, g) and it is related to the usual Altarelli-Parisi
splitting kernels as P, (z,€) = Pu(z) + €P!,(2z) [100]. Here z denotes the fraction
of the incoming parton’s (‘b’) momentum carried by the parton ‘a’. Note that for
P,, splitting in the hard region, since a fraction of the parton momentum .e., d, is
already carried away by the gluon, the effective limits of the integration for z will
be 0 < z<1— 0.

Apart from the ¢q initiated subprocess at NLO, there will also be a ¢(¢)g initiated

subprocess given by,

qor(p1) + g(p2) — Vips) +G(pa) + qu(ps)

Here the emitted parton, being a quark or an anti-quark instead of a gluon, won'’t
give rise to soft singularity. However, there will be hard collinear singularities when-
ever the emitted quark (anti-quark) becomes collinear to the incoming partons.
These collinear singularities are separated using the cutoff d, in the same way as in

the case of ¢q initiated subprocess. The cross section in this collinear region turns
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out to be,

doff# = da, doy F(e, g, s) (%){[qu(z, €) fop(x1) fop(22/2) + (q < q)]

d 1—2)?2
+ (371 < .Tg)} ?z (50 B z) d.Tl d.TQ . (37)

These initial state collinear divergences, appearing as poles in € in eq. (3.6) & (3.7),
are purely due to the massless nature of the partons involved in the scattering
process. These divergences can be factored out from the parton level cross sections
and absorbed into the bare PDF at an arbitrary factorization scale up, a process
called mass factorization. In the MS scheme, the scale dependent PDF f,/p(z, i)

can be expressed in terms of the bare PDF as follows,

forp(@, np) = forp(@) + 205 > (%) F(e, g, por) /% w(2) forp(z/2) . (3.8)

b x

Substituting these parton densities in dy produces collinear singular counter terms
which when added with the hard collinear contributions results in the following

O(a,) contribution [56, 57, 59, 60, 90, 91],

docoy = 2a, dog F(GauR,5)<{fq/p($2aW)[fq/p(xlaw)+fq/p($1aMF)

(_% +1n i) Aysgig) + (g cj)} + (1 & :EQ)) dzry dzs , (3.9)
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where A, 419 = Cr (2 Ind, + %) The tilde parton distribution functions are given

by [93, 100],

~ 1_555qbd ~
Foplw ) = 3 / Y fuelafvor) < Pal) (3.10)

b=q,9
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where

Puly) = Pal) (5 =L 5) — Ph) (3.11)

Note that there would be an additional factor of two, as the parton in the final state
can be collinear to either of the incoming partons, which is implicit from (g <+ q)
in eq. (3.9). At this stage, one can observe that the divergent pieces, that are
proportional to (Indy), cancel among themselves. However, there are singularities
still remaining that will get cancelled only with those coming from the loop inte-
grals in the virtual diagrams. In what follows, we present the details of the virtual

corrections to our process.

Virtual Corrections

The NLO cross sections also receive contributions coming from the virtual correc-
tions as well as the wave function renormalisation to the 2 — 2 LO processes. The
corresponding Feynman diagrams are obtained by considering possible one loop vir-
tual gluonic corrections to the tree level Feynman diagram for q¢ — Z and then by
attaching the graviton line to all possible internal as well as external lines and to
vertices, as allowed by the Feynman rules [40, 41]. This way we find 27 diagrams,
out of which 8 diagrams correspond to external leg corrections and can be omitted
as they vanish in the massless quark limit. Out of the remaining 19 diagrams, 11 are
shown in Fig. 3.3. The rest of the diagrams can easily be obtained by inverting the
charge flow direction of the quark lines in the last eight diagrams shown in Fig. 3.3.
Interference of these one loop diagrams with the born diagrams gives O(ag) con-
tributions. Due to tensorial interaction of gravitons with the SM fields, the loop

integrals involve higher powers of loop momenta in their numerators and hence the
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Figure 3.3: Virtual gluon emission diagrams.

reduction of tensorial integrals to scalar ones becomes complicated. We have written
a symbolic program using FORM [73] to perform this reduction in n-dimensions.
The resulting scalar integrals are then evaluated exactly (see [102]) and they are
listed in Appendix C. Substituting these scalar integrals, we can express the O(ay)
contribution resulting from the virtual processes as,

16 12
da'v = Qg da'o F(G,,MR,S)CF (——2 + —)
€

€

+C

‘/1 1n2 (E) ‘|“Vé Dg (plakaQ) +‘/3 D(J)I (pz,kf,(])

_ 2 2
e () (55 e () v 3

—t —
+Vs In (—2) + V5 In <—;L) +Vig i Co(k,q) + Vi1 + Vig+ Viz In (m—zz)
7 pu 7
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Vi In <%) Vs G , (3.12)

where C' = a, k* (C?+C?) T2 Cr/(4N), Cin and DE™ are the finite parts of the scalar
integrals Cy and Dy respectively and they are listed in Appendix C along with V;,
where ¢+ = 1,2,...,15. It is clear from the above expression that the integration
over the loop momenta in (4 + €) dimensions leads to soft and collinear singularities
which appear as poles in e. We found that the UV divergences that appear in the
intermediate stages cancel among various diagrams thanks to the conservation of
SM energy momentum tensor to this order in perturbation theory. Now, when we
add O(as) contributions coming from eq. (3.5), (3.9) and (3.12), we observe that
the remaining soft and collinear singularities cancel among themselves as expected,
leaving a finite expression for the 2-body contribution which can be computed using

Monte Carlo techniques. In other words, the 2-body contribution given by,

AoV = dog + do.y + doy , (3.13)

is found to be free from both UV and IR singularities and hence suitable for further
numerical evaluation.

In addition to the above contribution, we also have the hard non-collinear region
HC of the phase space which does not suffer from any IR singularities by construc-
tion. The contributions from this region can be obtained by integrating the 2 — 3
matrix elements using standard Monte Carlo integrations. Owing to the divergence
free nature of the integration, the 2 — 3 matrix elements computed in 4-dimensions
will suffice our purpose. These matrix elements are again computed using FORM.
We have made several checks to ensure the correctness of our results, namely the

gauge invariances in QCD, electroweak and gravity sectors. Since contributions from
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hard non-collinear regions involve three body phase space integrals of final state par-
ticles having different masses, care is needed to parametrize as well as to determine

the limits of various integrations. We devote our next subsection to discuss this.

Variation with &
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Figure 3.4: Variation of the transverse momentum distribution of Z boson with d;
for My = 3 TeV and d = 4, keeping the ratio d5/d. = 100 fixed.

3.2.3 Three Body Contribution

In this section, we will present briefly how we have implemented various constraints

imposed by the two cutoff phase space slicing method and cuts on the phase space
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Total cross section for Z and G associated production
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Figure 3.5: Total cross section for the associated production of Z and G as a function
of pn for My = 3 TeV and d = 2.

integrals for the 2 — 3 subprocesses. We are interested in the following cross section:

9,99

do® oW = / Uy [M2 21, (3.14)

HCcuts

where the three-body phase space measure is given by,

dspi
s = Hi:lm 2m)* W (p 4+ pa —ps —pa—ps) - (3.15)

It is easy to parameterize all the momenta in the center of mass frame of initial state
partons and then boost them to the lab frame or the center of mass frame of the

hadrons. The 4-momenta of the massless partons in the initial state, moving along
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Total cross section for Z and G associated production
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Figure 3.6: Total cross section for the associated production of Z and G as a function
of pin for My = 3 TeV and d = 4.

the z-axis are given by,

S S

p=Y2(1,0,0,1), po=Y2(1,0,0,—1) (3.16)

ol
ol

where /s is the parton center of mass energy. The corresponding 4-momenta of
the massive particles in the final state are given by p; = (E;, p;) with masses
m? = E? — |p;|?, for i = 3,4,5. For the three body case, it is easy to consider
the momentum direction of one of the final state particles, say ps, as the reference
direction and then parameterize the other two momenta ps3 and p; with respect to

this direction,

ﬁS = IﬁSI (Sinea Oa COSQ) ) (317)
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2 Total cross section for Z and G associated production
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Figure 3.7: Total cross section for the associated production of Z boson and graviton,
shown as a function of M for d = 2.
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Figure 3.8: Total cross section for the associated production of Z boson and graviton,
shown as a function of M, for d = 4.
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where 6 is the angle between p; and the z-axis. The momentum of p3 can now be
parameterized with respect to the direction of p5 and then followed by a rotation in
the zz-plane by an angle of 6 to get p3 = (p%, p4, p3) in the center of mass frame of

the partons as given by,

p5 = |ps] (cosf cosar sin + sinf cosf3) ,
ps = |ps| sinasing
p; = |ps (cos@ cosf3 — sinf cosa sinﬁ) , (3.18)

where o and [ are the azimuthal and polar angles of p3 with respect to ps. The
4-momentum of py simply follows from the energy momentum conservation. The
three body phase space in eq. (3.15) can now be expressed in terms of the angular

variables using,

d3p; |pi]
L= dh (2 — m2) = EL gE. 49, .
2EZ Di 5(pz mz) 9 ? 3 ) (3 9)
to get
dly = Pallps| dBs dQs dEs dQs 5(pi —mj) (3.20)
A(27)5 Y

where d€23 = dcosf3 da and d€25 = dcosf d¢. Further, the angle 8 can be eliminated

using,

2 |ps| 75| cosp = [paf* — [ps” — [ms]* - (3.21)

Finally, out of the nine integration variables of the three body phase space, in

eq. (3.15), we are left with four independent variables viz., E3, Es5, 6 and «, due to
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the presence of 4-momentum conserving delta function and the rotational invariance
over the reference momentum direction ps. The three body phase space can then be

written in terms of these four independent variables as,

1
dP3 = m dEg dE5 dcost d?7 . (322)

The limits of integration of E5 and Ej can be obtained from the constraint |cosf| < 1

and they are given here under [103],

, 1
EDM™ = ms, EP = ——[s+mz — (mg + my)’] , (3.23)

25

and

max,min 1 o
Epazmin _ o5 AB+mim_) + ‘p5\\/(B —m?2)(B — mQ_)] , (3.24)

where
A=\/s—E5, B=A*—|ps]* and ms =ms+my ) (3.25)

Finally, all the parton momenta can be boosted back to the lab frame or to the
center of mass frame of the hadrons by a boost factor in the limit of the zero rest

mass of the hadrons given by,

o Pcm o (x1_$2)
P o~ @ tes) (320

where x1 and x5 are the fractions of the incoming hadron momenta carried by the
partons in the center of mass frame of the hadrons.

We have implemented this phase space parameterization in our numerical code
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written in Fortran language. We set mg = my (my being the mass of vector boson),
my = m and p3 = k, p4 = ¢ in our code and ps is derived using the conservation of
4-momenta. The phase space integrations as well as various convolutions in the two
and three body contributions are done using VEGAS multi dimensional integration
package. In what follows, we present the impact of our NLO corrections on various

observables.

3.3 Numerical Results

In this section, we present various kinematic distributions for the associated pro-
duction of the graviton and the vector gauge boson to NLO in QCD at the LHC.
The results are presented for proton-proton collision energy of V'S = 14 TeV. As
discussed before, the inclusive cross section for the graviton production involves the
summation of all possible graviton modes. This summation in the continuum limit
leads to an integral over the graviton mass. The limits of this integral are set by
the kinematics from 0 to (y/s —my ), where /s is the parton center of mass energy
and my = myz, my. The masses of the gauge bosons and the weak mixing angle are

given by [104],

my = 91.1876 GeV, my = 80.398 GeV, sin®d, = 0.2312 .  (3.27)

The fine structure constant is taken to be v = 1/128. Throughout our study, we
have used CTEQ6L1 and CTEQG6.6M parton density sets [105] for LO and NLO
cross sections respectively. The strong coupling constant is calculated at two loop
order in the M S scheme with a(my) = 0.118 (Agep = 0.226 GeV). We have also set

the number of light flavours ny = 5. The following cuts are used for our numerical
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study,

A L A ES L (3.28)

For the 2-body process, the missing transverse momentum is same as that of the
gauge boson. On the other hand for the 3-body process, it does not need to be
so due to the presence of an observable jet in the final state and hence it amounts
purely to the graviton transverse momentum. The observable jet is defined as the

one that satisfies the following conditions,

P >20GeV and [ <25 . (3.29)

Whenever the jet does not satisfy the above conditions, the missing transverse mo-
mentum is approximated to be that of the gauge boson.

The LED model is an effective field theory valid below the UV cutoff scale Mj,
which is expected to be of the order of a few TeV . At the LHC energy v/S = 14
TeV, it is very well possible that the partonic center of mass energies can exceed
this scale M, and lead to the signals that do not correspond to the compactified
extra dimensions of the LED model. This necessitates the need to quantify the UV
sensitivity of the theory and this issue was already addressed in [41], according to
which the cross sections can be computed in two different ways, one with ‘trunca-
tion’, where the cross sections are set to zero whenever the hard scale () involved
in the problem exceeds M, and the other with ‘untruncation’, where there is no
such constraint imposed on the cross sections. As pointed out in [41], if these two
results converge then the predictions are valid and the model is viable, otherwise the
untruncated cross sections can dominate the truncated ones, implying the calcula-

tions are not under control. In our calculation, we choose the hard scale to be the
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invariant mass (Q) of the gauge boson and the graviton, which at LO is the same
as the center of mass energy of the partons /s. We have considered both truncated
as well as untruncated cases at the time of presenting few selective kinematical ob-
servables. However, most of our distributions are obtained with our default choice

of truncation scheme.

3.3.1 Neutral Gauge Boson

Before proceeding towards kinematic distributions, we would do some consistency
checks on the calculation. First, we check for the stability of the cross sections
against the variation of the slicing parameters 6, and d.. The sum of the 2-body and
the 3-body contributions given in eq. (3.13) and (3.14) is expected to be independent
of the choice of these slicing parameters that are introduced in the intermediate
stages of the calculation. In Fig. 3.4, we show the dependency of the transverse
momentum distribution pZ on the slicing parameter d, keeping the ratio of d, to
0. fixed at a value of 100. This distribution is obtained using the hard truncation
scheme for a particular choice of the model parameters My = 3 TeV and § = 4. It
can be seen from Fig. 3.4, that both the 2-body and the 3-body contributions vary
with d, but their sum is fairly stable against the variation of §, over a wide range.
Similar observation has been found while varying d. by keeping the ratio of these
two slicing parameters fixed. This ensures the proper implementation of the slicing
method in our NLO computation.

Another useful check on the computation is to reproduce the cross sections for
the associated production of the photon and the graviton at the LHC [93]. In order
to do this, we recalculated both real emission as well as virtual contributions for
this process and the corresponding soft and collinear pieces. We found that the

: . () CP+CH) 2 (i -
following replacements: (i) ~——— — Q%, (i) mz — 0, (i) Tz — e, in the two
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body and three body real emission matrix elements of the Z boson with graviton
production processes correctly reproduce the corresponding matrix elements for the
photon with graviton production process. Here, @)y is the charge of the fermion
and e is the electromagnetic coupling. Using our symbolic program, we find that
the analytical expression containing virtual contributions of this process agrees with
one given in the appendix of [93]. In addition, using these recalculated quantities,
we further reconfirmed all the numerical results in [93] after taking their choice of
parameters, cuts etc. It is important to note that the NLO cross sections or the
K-factors are subject to the choice of the event selection or more precisely the cuts
on the particles in the final state. In our calculation, however, the gauge bosons
being massive, we present our results according to the cuts given in eq. (3.28) and
(3.29).

In Fig. 3.5, the total cross section for the associated production of Z boson and
the graviton is shown as a function of p7*™ to NLO in QCD at the LHC. The cross
sections are given for both truncated as well as untruncated cases and with the
choice of model parameters My = 3 TeV and d = 2. A similar plot is shown for
d = 4 in Fig. 3.6. The cross section for d = 2 is larger compared to that for d = 4
because the density of the graviton modes drops as d increases. The K-factors are
found to have a mild dependency on p", varying from 1.6 to 1.4. In Fig. 3.7,
we have shown the variation of the truncated as well as untruncated total cross
sections with respect to the scale M, for the case d = 2. The difference between
the truncated and the untruncated cross sections is mainly due to the contributions
coming from the region () > M,. However, with increasing M, the parton fluxes
corresponding to () in this region rapidly fall down and hence the difference between
the two cross sections decreases with increase in M,. Such a behaviour is evident

from Fig. 3.7 and 3.8 for d = 2 and d = 4 respectively. The corresponding K-factors

64



are also shown in Fig. 3.9. In the rest of our calculation we choose p™ = 400 GeV
and M, = 3 TeV.

Next, we present LO and NLO transverse momentum distributions of the Z
boson (pZ) in Fig. 3.10 for d = 2,4,6 and the corresponding missing transverse
momentum distributions (p7***) in the left panel of Fig. 3.11 for d = 2,4. The QCD
corrections enhance both pZ and pis* distributions. Note that the shape of the
p# distribution remains unaffected while this is not the case for p7*s* distribution.
Such a pattern can be understood from the definition of pJ*** mentioned before.

Thereafter, we present the rapidity distributions of the Z bosons. The rapidity of

massive gauge bosons is defined by,

Y —

log (E“)Z) : (3.30)

1

where F and p, are the energy and the longitudinal momentum components of the
gauge boson in the lab frame. In the right panel of Fig. 3.11, we have plotted the
rapidity distribution of the Z boson both at LO and at NLO for two different choices
of the factorization scale: pp = p4/2 and 2pZ. This distribution is obtained by
integrating over the transverse momentum of the Z boson from 700 GeV to 750 GeV,
for d = 4. Note that the NLO corrections increase the cross section. As expected, the
inclusion of O(ay) corrections reduces the dependence on the arbitrary factorisation
scale up. The percentage of uncertainty in the cross sections at the central rapidity
region Y = 0, due the variation of the scale from pr = pZ/2 to ur = 2p%, is 18.9 at
LO and it gets reduced to 8.6 at NLO.
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3.3.2 Charged Gauge Boson

In this section we discuss the impact of NLO QCD corrections on the associated
production of charged gauge bosons (WW*) and the graviton at the LHC. The matrix
elements for the W* case are identical to those for the Z boson case except for the
masses of the gauge bosons and their couplings to the quarks as seen in eq. (3.2).
Further, in the case of charged gauge bosons, the parton fluxes will also be different
from those of the neutral gauge boson. The parton fluxes for the quark anti-quark
annihilation process in the case of Z boson are of the form ¢g (¢ = u, d, s, ¢, b), while
they are of the form ud (du) for W+ (W ™). For W* boson production cross sections,
we consider the mixing of quarks among different quark generations, as allowed by

the CKM matrix elements V;;, with (i = u,¢,t) and (j = d, s,b). In view of this, in
the above parton fluxes u and d correspond to any up-type and down-type quarks

respectively. The CKM matrix elements are given by [104],

Via| = 0.97425 , |Vis| = 0.2252, |Vip| =3.89x 1073 |

Vo] =0.230 ,  |V| =1.023, |V =406x10"" . (3.31)

Since all our calculations are done in the massless limit of the partons, we have not
included the top quark contribution in our calculation and set all V};’s to zero.
Similar to the case of Z boson, we will present the total cross sections as well
as the differential distributions for the associated production of W¥* boson and
a graviton. In Fig. 3.12 and 3.20, we have shown the stability of the transverse
momentum distributions of W~ and W respectively with the slicing parameter d;.
These distributions are obtained for the choice of pl¥ = 500 GeV, keeping the ratio
ds/6. fixed at 100. It can be seen from the figures that the sum of the 2-body and

3-body contributions is fairly stable against the variation of the slicing parameters.
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This ensures proper implementation of the slicing method in our numerical code,
taking into account the appropriate parton fluxes for W*.  Next, we present the
total cross sections as a function of p™ as well as M,. In Fig. 3.13 and 3.14, we
show truncated as well as untruncated total cross sections for W~ case, as a function
of p" for d = 2 and d = 4 respectively. It can be seen from these figures that the
QCD corrections have enhanced the leading order cross sections considerably, but
there is no significant change in the shape of the cross sections. Similar plots are
shown for W+ in Fig. 3.21 and 3.22.

In Fig. 3.15 and 3.16, we show the total cross sections for W~ as a function of
M, for d = 2 and d = 4 respectively. A set of similar plots for W7 is shown in
Fig. 3.23 and 3.24. Note that, in each of the above cases, the cross sections for
W+ are somewhat higher than the corresponding ones for W~. This difference in
the total cross sections can be understood from the respective parton fluxes for W~
and W+ at the LHC. The corresponding K-factors are shown in Fig. 3.17 for W~
and in Fig. 3.25 for W, For the choice of the parameters we have considered, the
K-factors are found to vary from 1.4 to 1.7 in case of W™, while they range from
1.05 to 1.65 for W*. Note that the K-factors for W~ case are comparable but a
little higher than those for W™, which again can be accounted for the differences in
the parton fluxes. The fact that the valence quark contributions are negligible and
the parton fluxes at LO for W are higher compared to those for W~ explains the
behaviour of the above factors.

Further, in Fig. 3.18 and 3.26, we present the transverse momentum distribution
of W~ and W respectively as a function of the number of extra dimensions d and
for My = 3 TeV. Similarly, we show the missing transverse momentum distribution
of the graviton when produced in association with W~ in the left panel of Fig. 3.19.

In the right panel, we present the scale uncertainties in the rapidity distribution
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of W~ by varying the factorization scale from pup = p¥' /2 to pp = 2p}¥ . This
rapidity distribution is obtained by integrating over the transverse momentum p "
from 700 GeV to 750 GeV. Similar plots are shown for W7 in Fig. 3.27. Note that
the uncertainty resulting from the variation of factorisation scale pp gets reduced as
we include O(ay) corrections. The percentage of uncertainty at the central rapidity
YW* = 0 is decreased from 19.1 to 9.3 in the case of W~ whereas it gets reduced

from 18.8 to 8.3 in the case of WT.

3.4 Conclusion

In this chapter, we have systematically computed the full NLO QCD corrections to
the associated production of the vector gauge boson and the graviton in theories
with large extra dimensions at the LHC. This process plays an important role in
probing the extra dimensions at the collider experiments, thanks to the large parton
fluxes available at the LHC. We have used a semi-analytical two cutoff phase space
slicing method to compute these corrections. We have quantified the UV sensitivity
of the theoretical predictions by studying the cross sections in the truncated as well
as the untruncated cases. In both the cases, the radiative corrections are found
to have enhanced the cross sections significantly but do not appreciably change
their shapes. The K-factors for the neutral gauge boson are found to vary from
1.2 to 1.6 depending on the number of extra dimensions d, while they vary from
1.3 to 1.8 for the case of charged gauge bosons. Although, the choice of the model
parameters has the potential to change the cross sections calculated in truncated
or untruncated cases significantly, we notice that the K-factors remain almost the
same in these two cases. In addition to the total cross sections, we have also studied

the differential distributions of the vector gauge bosons and found that the radiative
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corrections are significant and they do not affect their shapes except for the missing
transverse momentum distribution. At the hadron colliders, as we already know,
LO predictions often suffer from large uncertainties resulting from the choice of
factorisation scale. Reducing these uncertainties is one of the main motivations
for doing NLO computation. We have shown that this is indeed the case for the
rapidity distributions of the gauge bosons by varying the factorization scale from
Wr = pr/2 to urp = 2pr, leading to reduction in the percentage of scale uncertainty
to 9% from 19%. As we have already discussed, by performing fixed order NLO
calculation, we usually get observables which are highly inclusive in nature. In
order to acquire an exclusive description of the final state, we need to match the
fixed order NLO result with the parton shower effect. The next chapter is designed
to discuss the diphoton production process at the LHC in both SM and ADD model

at the NLO+PS accuracy.
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Figure 3.9: K-factors of the total cross section for the associated production of Z
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K-factor for total cross section
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Figure 3.17: K-factors of the total cross section for the associated production of W~
boson and graviton, given as a function of p* (top) and the scale M, (bottom).
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Figure 3.18: Transverse momentum distribution
shown for different values of the number of extra
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Figure 3.19: Missing transverse momentum distribution of the graviton produced in
association with W~ boson for My = 3 TeV (left). The scale uncertainties in the
rapidity distribution of W~ boson for My =3 TeV and d = 4 (right).

76



0.1
0.08
0.06
0.04
0.02

-0.02
-0.04
-0.06
-0.08

-0.1

0.01
0.008
0.006
0.004
0.002

Variation with &

do / dpy (W+) (fb/GeV)

T T T IIII T T T T T
M, =3 TeV
d=4
pr=500GeV

......................................................... 8,=49,/100

10 8,

*

—
=]

'
W
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Total cross section for W+ and G associated production
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Figure 3.21: Total cross section for the associated production of W' boson and
graviton, shown as a function of p*" for M, = 3 TeV and d = 2.
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Figure 3.22: Total cross section for the associated production of W' boson and
graviton, shown as a function of p7*" for M, = 3 TeV and d = 4.
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Figure 3.23: Total cross section for the associated production of W boson and
graviton, shown as a function of M, for d = 2.
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Figure 3.24: Total cross section for the associated production of W+ boson and
graviton, shown as a function of M, for d = 4.
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Figure 3.25: K-factors of the total cross section for the associated production of W+
boson and graviton, given as a function of p* (top) and the scale M, (bottom).
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Chapter 4

Diphoton Production

4.1 Introduction

Improved theoretical predictions to higher orders in QCD have been performed
for cross sections of pair production processes viz. di-lepton [50, 51, 52], di-gauge
boson (v [56, 57], ZZ [59] and W+W = [60]), which in the LED model could result
from the exchange of a virtual KK mode in addition to the usual SM contribution.
The real emission of KK modes lead to large missing Ep signals viz., mono-jet
[92], mono-photon [93], mono-Z boson and mono-W= boson [106, 107]. NLO QCD
corrections in some of the above processes are quite substantial and their inclusion
in the computation also lead to a reduction of theoretical uncertainties, making it
possible for the experiments to put more stringent bounds on the extra dimension
model parameters.

The diphoton final state is an important signal for extra dimension searches, as
the branching ratio of a KK mode decay to diphoton is twice than that of a decay
to individual charged lepton pair. The quantitative impacts of the NLO QCD cor-

rection to the diphoton final state for extra dimension searches have been studied
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in [56, 57], where various IR safe observables were studied using phase space slicing
method. The factorisation scale dependence gets reduced when O(ay) corrections
are included. Fixed order calculation truncated to NLO, at best yields results for
sufficiently inclusive observable. Combining fixed order NLO and PS Monte Carlo
(32, 33], would extend the coverage of the kinematical region to consistently include
resummation in the collinear limit and also produce a more exclusive description of
the final state to make it as realistic as possible to the experimental situation. The
flexibility to incorporate hadronisation models and capabilities to simulate realis-
tic final state configurations, that can undergo detector simulations, are the main
advantages for the experimental collaborations.

ATLAS [76] and CMS [75] have analysed the diphoton invariant mass spectrum,
using a constant K-factor for the full range of the invariant mass distribution to put
lower bounds on extra dimension scale to NLO accuracy. However, this choice is not
sensitive to possible distortions of distributions that can arise at NLO. Our present
analysis will further help to put more stringent bounds on the model parameters.
Bounds on Mg for different extra dimensions d have been obtained by ATLAS and
CMS collaborations [75, 76]. For our present analysis, we choose the following values:
Mg =3.7TeV (d=2), 3.8 TeV (d=3), 3.2 TeV (d=4), 2.9 TeV (d=5), 2.7 TeV (d=6).
For relevant observables, we consider the fixed order results to NLO accuracy and
include PS. Factorisation, renormalisation scale uncertainties and PDF uncertainties
are also estimated in an automated way [108]. For photon isolation, both smooth

cone isolation and the experimental isolation criteria are considered.
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4.2 NLO+PS

Since the KK modes couple universally to the SM particles through the energy
momentum tensor, both the ¢ and gg channel would contribute to the diphoton
final state at leading order (LO). In the SM, the gg channel starts only at NNLO
level via the finite box contribution through quark loop and the large gluon-gluon
flux at the LHC makes this contribution potentially comparable to the LO results.
In the invariant mass region of interest to extra dimension searches, the box diagram
contribution is not significant enough [56, 57].

All the partonic contributions to NLO in QCD have been calculated for the
diphoton final state [56, 57], for both ADD [36, 37, 38] and RS [42] extra dimension
models. QCD radiative corrections through virtual one loop gluon and real emission
of gluons to the ¢ § — ~ ~ subprocess, would contribute to both SM and extra
dimension models. The ¢(q) g — q(q) v 7 begins to contribute for both SM and
extra dimension models at NLO. The LO g g — v v extra dimension process will also
get one loop virtual gluon and real gluon emission radiative corrections. There will
also be interference between the SM and extra dimension model to give contributions
up to O(a,) and in this analysis all of them are taken care of. We have included
the O(a,) corrections as a result of the interference between the SM box diagram
contribution and LO extra dimension contribution to the g ¢ — ~ = subprocess
for completeness, though it is quite suppressed in the region of interest to extra
dimension models and contributes only about 0.1% to the gg subprocess.

The q(q) g — q(q) v v NLO contribution has an additional QED collinear singu-
larity when the photon gets collinear to the emitting quark and can be absorbed into
the fragmentation function which gives the probability of a parton fragmenting into
a photon. Parton fragmentation functions are additional non perturbative inputs

which are not very well known. At the LHC, secondary photons as a result of hadron
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decaying into collinear photons and jets faking as photon are taken care of by photon
isolation criteria [75, 76] which also substantially reduces the fragmentation contri-
bution. Since the fragmentation is essentially a collinear effect, the fragmentation
function can be avoided by the smooth cone isolation proposed by Frixione [109],
which ensures that in no region of the phase space the soft radiation is eliminated.
The smooth cone isolation is able to eliminate the not so well known fragmentation
contribution and at the same time, it ensures IR safe observable. Centered in the

direction of the photon in the pseudo rapidity (n) and azimuthal angle (¢) plane, a

cone of radius 7 = \/(n —n,)2 + (¢ — ¢,)? is defined. The hadronic activity H(r)
is defined as the sum of hadronic transverse energy in a circle of radius r < ry and
E7. is the transverse energy of the photon. For all cones with r < ry, the isolation
criterion H(r) < H(7)max has to be satisfied, where H (7)max is defined as,

1—cosr\"
H(r)max = €, E7 (m) : (4.1)

Efforts for the experimental implementation of the smooth cone isolation is on going.

Automation is an essential ingredient of this work. We have chosen to work in
the AMCQNLO framework [110], which automatises the MC@QNLO formalism [32]
to match NLO computations with parton showers. In this chapter, we present re-
sults matched to HERWIG [16]. For the NLO computation, isolation of IR poles and
phase space integration are carried out by MADFKS [111], which automatises the
FKS subtraction method [112] using the MADGRAPH [113] matrix-element genera-
tor, whereas for one-loop amplitudes the results of [56, 57| are used. The automation
within the MADGRAPH framework requires a new HELAS [114] subroutine to calcu-
late helicity amplitudes with massive spin-2 particles [115, 116]. In addition, for our

present analysis, we have implemented the sum over the KK modes of the virtual
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graviton (see eq. (1.10)) in it (see Appendix D for details). We use this framework to
generate the events for 8 TeV run at the LHC. For the invariant mass distributions
we have reproduced the results of [56, 57] using the fixed order results obtained from
this set-up. Also numerical cancellation of the singularities from the real and virtual

terms have been explicitly checked.
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Figure 4.1: Transverse momentum (P}”) distributions of the diphoton for the fixed
order NLO and NLO+PS. The ADD model parameters used are d = 2 and Mg = 3.7
TeV. The lower inset displays the fractional scale and PDF uncertainties of the
NLO+PS (ADD) results.

4.3 Numerical Results

In this section, we present the results for various kinematic distributions of photon
pair in SM and ADD model. We have included all the subprocess contributions to

NLO. The following input parameters are used: a_! = 132.507, G = 1.16639x107°

m
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Figure 4.2: Invariant mass (M,,) distributions for ATLAS (left panel) and CMS
(right panel) for d = 2 and Mg = 3.7 TeV. The SM contribution to NLO+PS and
ADD to LO+PS and NLO+PS have been plotted. For the NLO+PS (ADD) results,
the lower insets display the fractional scale and PDF uncertainties.

GeV™2, mz = 91.188 GeV and MSTW2008(n)lo68cl [117] for the (N)LO PDF.
Our calculation is LO in the electroweak coupling and therefore the dependence on
the scale in this coupling constant is beyond the precision of our results. In our
electroweak scheme, my and sin? 6y are computed from my, @en and Gp; this
value for the ag,, gives a W-boson mass (my = 80.419 GeV) that is close to the
experimental value. The MSTW PDF also sets the value of the strong coupling
as(myz) at LO and NLO in QCD. The renormalisation and factorisation scales are
chosen as up = pgp = M., the invariant mass of the photon pair. The events that

have to be showered are generated using the following generation cuts: |n,,,| < 2.6,

P;"? > 20 GeV, diphoton invariant mass 100 GeV < M., < Mg and the photon
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isolation is done using the Frixione isolation with 7o = 0.38, ¢, = 1 and n = 2. More
specific analysis cuts are applied subsequently while showering the events in order
to produce unbiased results.

The dependence of the prediction of an observable on the factorisation and renor-
malisation scales, is a result of the uncalculated higher order contributions, which
can be estimated by varying pp and pg independently around the central value
pr = pigp = M,,. The variation is done by the following assignment pp = {r M.,
and pp = &g M., where the values for ({p,&r) used are (1,1), (1/2,1/2), (1/2,1),
(1,1/2), (1,2), (2,1), (2,2). The various ratios of up, pr and M,, that appear as
arguments of logarithms in the perturbative expansion to NLO are within the range
[1/2,2]. The variation of both upr and g are taken as the envelope of the above
individual variations. Variation of only pp would involve the choice £ = 1 & vary-
ing £ and vice-versa for variation of only pgz. The PDF uncertainties are estimated
in the Hessian method using the prescription given by MSTW [117]. Fractional
uncertainty defined as the ratio of the variation about the central value divided by
the central value, is a good indicator of the scale and PDF uncertainties and is
plotted in the lower insets of various figures. As described in [108], the generation
of these uncertainty bands can be done at virtually no extra CPU cost within the
AMCQ@NLO framework.

To begin with, we compare the fixed order NLO result with NLO+PS for the
transverse momentum of the diphoton log,, P;" using ‘generic’ cuts: M,, > 140
GeV, |n,| < 2.5, P} > 40 GeV, P}? > 25 GeV and ro = 0.4. In Fig. 4.1, log,, P}
distribution is plotted for d = 2 with appropriate Mg value. It is clear that at low P}
values, NLO+PS correctly resums the Sudakov logarithms, leading to a suppression
of the cross section, while the fixed order NLO result diverges for P/” — 0. At high

P} the NLO fixed order and NLO+PS results are in agreement. In the lower inset
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of Fig. 4.1, we have presented the scale and PDF variations of the NLO+PS, which

increase with P}” as observed in [118].
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Figure 4.3: Invariant mass (M., ) distributions for d = 3 (left panel) and d = 4 (right

panel) are plotted for ADD and SM contributions to NLO+PS accuracy. The lower
insets give the corresponding fractional scale and PDF uncertainties for NLO+PS

(ADD).

We now present the results for the various kinematical distributions to NLO
accuracy with PS (labelled as NLO+PS), for analysis specific cuts. Both the ex-
periments ATLAS and CMS have looked for diphoton invariant mass in the region
140 GeV < M,, < Mg. ATLAS cuts [76]: the rapidity of the individual photons
are in the region |n,| < 2.37, with an exclusion region 1.37 < |n,| < 1.52, the trans-
verse momentum of the individual photons P} > 25 GeV and for photon isolation:
sum of transverse energy of hadrons > Ep(H) < 5 GeV with Ar < 0.4, where
Ar = \/m is a cone in the rapidity — azimuthal angle plane. For CMS the
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corresponding cuts are [75]: |n,| < 1.44, P} > 70 GeV, photon isolation: (i) sum
of the energy of hadrons Y E(H) < 0.05E7 with Ar < 0.15, (47) sum of transverse
energy of hadrons Y Er(H) < 2.2 GeV + 0.0025 EJ with 0.15 < Ar < 0.4. We
have further checked that, in addition to the ATLAS and CMS photon isolation, if
we also include the Frixione isolation criteria, there are no appreciable changes in
the final results.

In Fig. 4.2, we have plotted invariant mass distributions do /dM.,., of photon pair
in the SM as well as in the ADD model for ATLAS (left panel) and CMS (right
panel). For ADD model we have obtained the distributions for Mg = 3.7 TeV and
d = 2. The central value curves correspond to the choice yip = g = M,,, have been
plotted for the ADD (NLO+PS) and purely SM (NLO+PS) contribution. The label
ADD refers to the total contribution coming from SM, ADD and the interference
between them. The corresponding ADD (LO+PS) contribution gives an indication
of the quantitative impact of the NLO QCD correction. At larger invariant mass
of the photon pair, the ADD effect is dominant. To demonstrate the sensitivity
of our predictions to the choice of scale and PDF uncertainties, in the lower insets
fractional uncertainties by varying (a) both ur and pg and (b) PDF error sets, are
plotted. The difference in the distributions in Fig. 4.2 for ATLAS and CMS can
be attributed to the very different cuts used for their analysis. In Fig. 4.3, the
corresponding plots for d = 3,4 are plotted for the CMS cuts. The choice of Mg
used for the plots corresponds to the lower bounds obtained by [75, 76] using the
diphoton process. By including higher order corrections, the scale dependence goes
down from about 25% at LO, to about 10% at NLO, as can be estimated from the
ratio plots. The PDF uncertainty does not change significantly and remains about
8%.

We now consider the fractional scale uncertainties on the invariant mass dis-
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Figure 4.4: For the invariant mass distribution with d = 2 and Mg = 3.7 TeV,
the fractional scale uncertainties as a result of pup variation (upper left panel), pg
variation (upper right panel) and pp, pg variation (lower panel).

tribution as a result of the variation of the scales pup and pgr (both independently
and simultaneously) in going from LO+PS to NLO+PS. Note that the LO cross
sections depend only on ppr through the PDF sets, but at NLO level the scale pug

enters through a(pg) and log(pr/pg) coming from the partonic cross sections after
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Figure 4.5: Rapidity (Y') distributions of the diphoton pair for d = 3 (left panel)
and d = 4 (right panel) for SM (NLO+PS) and ADD (LO+PS and NLO+PS). The

lower insets display the corresponding fractional scale and PDF uncertainties of the
NLO+PS (ADD) results.

mass factorisation. As expected the inclusion of NLO QCD correction reduces the
factorisation scale dependence resulting from the LO observable which is clear from
Fig. 4.4 (upper left panel). In the high M., region, the uncertainty of about 25% at
LO+PS gets reduced to 5% when NLO+PS corrections are included. On the other
hand, the g dependence enters only at NLO level (see upper right panel of Fig. 4.4)
which will get reduced only if NNLO corrections are included. Hence, we see our
NLO corrections are sensitive to the choice of pg but the variation is only 5% and
is fairly constant for the range of invariant mass considered. If we vary both pp and
pr simultaneously as shown in Fig. 4.4 (lower panel), we find that the reduction in

the pp scale dependence at NLO level is mildly affected by the pugr variation in the
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large invariant mass region. In the small invariant mass region, the LO and NLO
results exhibit smaller ;r dependence compared to the large invariant mass region.
But pgr dependence coming from the NLO results does not change much with the
invariant mass M.,. Hence variation due to pur at small M., is larger compared to
that resulting from pp. This explains the behavior at small invariant mass regions

where the NLO+PS variation is in excess of the LO+PS (see lower panel of Fig. 4.4).
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Figure 4.6: Transverse momentum (P2”) distributions of the diphoton for d = 3
(left panel) and d = 4 (right panel) along with the corresponding fractional scale
and PDF uncertainties (lower inset) of the NLO+PS (ADD) results.

The rapidity (V') distribution of the diphoton pair is plotted in Fig. 4.5 for d = 3
(left panel) and d = 4 (right panel). For this analysis we have chosen A, > 600
GeV, the region where the effects of ADD model begins to dominate over the SM
diphoton signal at NLO (see Fig. 4.3). The scale and PDF uncertainties to NLO

are displayed as insets at the bottom of each figure. The scale uncertainties are
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usually larger than the PDF uncertainties in the rapidity distribution except for the
central rapidity region where they are comparable. For d = 3 the scale uncertainties
are about 20% around the central rapidity region, which come down to about 10%
when NLO+PS corrections are included. The PDF uncertainties for LO+PS and
NLO+PS are comparable.

Finally, we plot the transverse momentum distribution in Fig. 4.6 for d = 3 (left
panel) and d = 4 (right panel), for the SM and ADD model to NLO+PS accuracy,
with M., > 600 GeV. The ADD results are also plotted for LO+4-PS. The scale and
PDF uncertainties are displayed as insets at the bottom of the plots for NLO+PS
(ADD).

4.4 Conclusion

In this chapter, we have presented the diphoton final state in the LED model to
NLO in QCD and matching to PS is implemented using the AMCQNLO frame-
work. All the subprocesses that contribute to the diphoton final state from both the
SM and ADD model are considered to NLO in QCD. This is the first time MC@QNLO
formalism has been used for a processes in the ADD model and we hope it would
significantly help extra dimension searches at the LHC to constrain the ADD model
parameters. Using a set of generic cuts, we first demonstrated the importance of
NLO+PS over the fixed order NLO computations, by considering the P}” distri-
bution. We have presented our results for various observables viz., invariant mass,
rapidity and transverse momentum of the diphoton, both for the ATLAS and CMS
detector specific cuts to NLO+PS accuracy. It is important to note that there is
substantial enhancement of the various distributions due to the inclusion of NLO

corrections and both the theoretical and PDF uncertainties have been estimated.
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There is a significant decrease in theoretical uncertainties from over 20% at LO to
about 10% when NLO corrections are included. The results are presented for dif-
ferent number of extra spatial dimensions d = 2 — 6 with respective values of the
fundamental scale Mg that have been experimentally bounded. The event files for
d = 2—6 are available on the website http://amcatnlo.cern.ch. Nevertheless, the
complete code is also uploaded on the website http://amcatnlo.cern.ch so that
it could be used by the experimental collaborations in the large extra dimension

searches at the LHC.
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Chapter 5

Summary

Needless to say, LHC is a QCD machine and proper illustration of an experimental
outcome demands theoretical predictions involving higher order QCD corrections to
separate it out from plenty of QCD backgrounds. In this thesis, it has been our
main objective to discuss mainly the aspects of NLO QCD corrections with a few
important and interesting processes in both SM and BSM in the context of LHC. To
present it in a more vivid way, we have gradually stepped towards NLO calculation
and then to NLO+PS matching, starting with a LO study.

We have studied triple gauge boson production processes at LO in both SM and
LED model for 14 TeV LHC run. In fact, these processes are potential backgrounds
of many new physics signals. We have calculated squared amplitudes of the partonic
subprocesses of vyy, vvZ, vZZ and ZZZ productions in three parts: (i) pure SM,
(#) pure LED, (ii1) interference between SM and LED, using the symbolic manip-
ulation system FORM. Moreover, we have carried out a number of investigations
including gauge invariance check to ensure the correctness of these analytical re-
sults. These results are then imported in a FORTRAN based Monte Carlo code,

where we have used VEGAS for the purpose of doing phase space integration. With
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this set-up, we finally obtain numerical results for the total cross sections as well as
differential distributions of many kinematical observables for all of the above men-
tioned processes with the flexibility in choosing cuts, PDF sets etc. Later on, we
have re-calculated all these numerical results with the help of MADGRAPH) package,
using proper model description in it and implementing KK mode summation of the
graviton propagator in the spin-2 HELAS routines and found excellent agreement
with our previous results.

Complete NLO QCD correction to the production of vector gauge boson in as-
sociation with LED graviton, which essentially plays a vital role in searching new
physics signal, has been studied in the context of 14 TeV LHC. In experiment,
gravitons express themselves as missing transverse energies, which undoubtedly re-
semble with the signature coming from SM neutrinos or some other particles that
arise in different BSM scenarios, thereby making the process more interesting and
compelling us to do its O(as) QCD correction. All the squared matrix elements of
the partonic subprocesses at the Born level as well as at the O(ay) corrected level
i.e., amplitude square of the real emission Feynman diagrams with an extra radia-
tion and the interference between the Born and the virtual Feynman diagrams, are
calculated in n = (4 + €) space-time dimensions using the symbolic manipulation
programme FORM and they have been passed through several other tests along
with the gauge invariance check. In addition, we have used FORM extensively also
in regulating and at the same time, in reducing one loop integrals that arise in the
virtual corrections. While performing NLO computation, the complete cross section
has been split up into two categories: (i) 2-body phase space contribution, which is
coming from the Born term, virtual corrections and the real emissions in the soft
and collinear limit, (i7) 3-body phase space contribution, which solely originates

from the divergence free hard finite part of the real emission corrections. We have
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implemented the two cutoff phase space slicing method in our numerical FORTRAN
code to deal with the real emission contribution and used VEGAS as the integra-
tor in that code. We have explicitly checked IR safety of the final result and also
found that the final result is independent of the choice of cutoff parameters while
adding the 2-body and 3-body phase space contributions. We have presented trun-
cated as well as untruncated differential distributions of several observables using
this present framework and also showed that the scale dependence gets reduced at
the NLO. This framework is totally general in nature and it can be used to study
any other process of interest involving one loop calculation at the NLO level using
the two cutoff phase space slicing method with numerous freedom in working with
different models, importing various PDF sets, defining several kinematical variables
& observables and so on.

Results of diphoton production in the SM and LED model have been produced
in NLO+PS accuracy, which would indisputably be required in extra dimension
searches at the LHC. We have used AMCQ@NLO for this purpose, where the real
emission contribution is dealt with FKS subtraction scheme and the matching of
fixed order NLO results with the HERWIG6 parton shower Monte Carlo is done
following the MC@QNLO formalism in an automated way. We have implemented the
KK mode summation of the graviton propagator in the spin-2 HELAS routines and
provided the one loop corrected results within this framework externally. Cancella-
tions of double and single poles coming from the real and virtual contributions have
been checked in each and every phase space points while studying fixed order results.
We have presented NLO+PS accurate numerical results of differential distributions
for a choice of kinematical observables with the estimation of scale and PDF un-
certainties for 8 TeV LHC. The complete stand-alone code can be downloaded from

http://amcatnlo.cern.ch to run it for different LHC center of mass energy with
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the flexibility in making all the required changes in parameter values, cuts, PDF
etc. to obtain desired results. This present framework can easily be fitted for the
study of any process in the ADD model. Besides, with appropriate changes in the
model and the graviton propagator description, this complete layout can easily be

moulded to study processes in RS scenario.
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Appendix A

Expressions: Matrix Element

Square for qqg — vy

S, = 4 9 ;
S 4 3 tigtiatostos(s12 + t1s + t1a)(s12 + toz + tos)

spin

16515 (257,453, (t13+t1attag+tas) +35T5 (tis+Hl1a+taz+24)*+512(t1s+
b1y + tog 4 t24)® + (E13% + tigtig + t1a® + tos® + tagtos + t24”) (t13(2t03 +
tas) + t1a(tas + 2t24)))

(A1)

SIETIEE “g; x
HED 4 3 2s19t13t14(512 + t13 + t1a)tastos(S12 + tog + tos)

spin

D5 t1a(s12 + tis + tia)laa(s12 + tog + tog) (451, + (8tis + tis + 8tog +
Otoy) sty + (675132 + (14t14 + 12t93 + 13ta4)t13 + 9t14% + Gtoz?® + 9tos® +
13t14ta3 4 16t1atos + 14tastas) Ty + (2613 + (Ttia + 6(tos + t24))t13> +
(9t142 + 13togtia + 16tastiy + Gtag® + 9tas® + 13toglos)tiz + 4t1s® +
3t14% (Btog+4tas)+(tag+tas) (2ba32+5tostos +4tas?) +2t 14 (3tas®+8laatag+

6t242)) s12 + 2(t13% + 2t1atas + 2t14% + tos? + 2t04® + 2taslos) (tis(tas +
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> 1M

spin

2
INT

toa) +t1a(tas +2t24))) (12 -+ t1s +123)% + tigtas (D5’ (s12+ tiz +t1a) (s12+
tog +toa) (45T, + (913 + 8t1a + Itaz + 8las)siy + (913 + (14t1a + 16805 +
13t94)t13 + 6t1a? + Otoz? + Gtos® + 13t1atas + 12814t0s + 1dtoztas) s, +
(4813% 4 3(3t1a + Abos + Btos)t13? + (Tt1a? + 16ta5t14 + 13toat s + 128057 +
6toa® + 16t ogtan ) t1s + 2614 4 6t14% (tog +tog) + (fa3 -+ taa) (423 + Blagtas +
2t94%) + t14(9t23? + 13taatos + 6tos®))s12 + 2(2t13 + 2t14t1s + 14 +
2937 + tas® + 2lostos) (t1a(tas + taa) + t13(2taz +t2a))) (S12 + tia +t2a)? +
2D35 D3yt stas (tis® + tas®) ((s12 + tas + 2t1a)tas® + (257, + (2t13 + Tha +
2t93)510+4t14 (T13+t14) (b33t 14) 23 ) baa® + (5Ty+ (t13+ 6814 +2b93) 575+
(Tt14® + Gtoglia + tog® + t13(6t14 + tog)) s12 + t1a (t132 + Btiates + 2614 +
tas? +4(t13 +tia)tas) )taa +tia(s12+taz +t1a) (s12(s12 +t1s + t1a) + (S12+
t14)t23)) + D34’ t1atoa(S12+Ht13+Ht1a+toz+t2s)? ((t13t14 +togtas)sTy+ (tis+
t1a + tos + tos) (frstra + tastas)s12 + 2(trstos + tratas) (13 + t1a® + tos® +
t242) )) +2Dys5 (173475142 (15142 + 75242) ((t13 +123) 57, + (215132 + (2814 + 6t g3+
toa)tig+tos(tia+2(tas+121))) sTo+ (t13° + (214 + Thog+2t04) 15+ (t14%+
(6tog+to4)t1a+tas(Ttas+6t21) ) bz ttos ((tos+2a) > +t1a(2tag+1t21)) ) s12+
tigtogtas® + tos (2013 + tia)tos® + 413 (trs + t1a)bas + tr3(t1s + tia) (2t13 +
t14)) + ((t13 + t14)t13% + 4(t1s + t1a)tastis + (3t13 + t14)t232)t24)t242 +
Dis(s12 + 13 + t14) (512 + tag + t2a)? (2575 + 2(t13 + t1a + bag + taa)s12 +
(tig+t1a)?+(taz+124)%) ((trstrattastas)sTo+ (tiz+Hl1a+Htos+tos) (tiztiat
tagtar)s12 + tistagtos® + tistia®tos + t1a (t1s” + dtostis + t23%)t2e))

(A.2)
11 2¢et Qf K y
4 3 siotiztiatastas(si2 + tiz + t1a) (812 + toz + t24)

2(Dus (t2a (tas(s12(s12 + t13) — 2tistia) + s12(s12 + t13)?) + t1a(s12 +

tas) (s12(s12+t13tt1a) oz (s12+11a)) 24 (s12+113)?) (287, +4s8, (T3 +
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t1a +log +tos) + 357y (t13 + tia + tas +log)® + S12(t1s + tia +tog +124) +
t13% (tas + taa) + Btistia(tos + toa) + tis(tos + tog) (Btra® + (f23 + t24)?) +
t1a(tas + 2ta) (14 4 ta3® + toglog + 124%) ) + D5 (251, + 453, (t13 + ta +
tas + tas) + 3515 (t1s + tia + tog + t24)® + s12(tis + t1a + tos + tas)® +
to3(2t13 + t1a) (t1a® + tistia + ta® + tos?) + toa(trs + t1a) ((t1s + t1a)* +
3t23?) + Btagtos®(trz + tia) + t2a® (tis + t1a)) (535 (t13 + taz) + s, (t13% +
t13(tia+2tos) +taz (2t1a+tog +toa)) + S12(tratoa(tiz +taz) +tistos(2t13+
taa) + tia’tos + 2t1atos?) + (tiatos — tigtar)?) + Daa(tistos + tistas® +
tratos (t1a® +124%) ) (575 (tistaa + tratas) + s12(fis +tra + bos +tod) (tistas +
tiatos) + (tratas — tistas)?))

(A.3)

Because of three indentical photons in the final state, an additional symmetry factor of & has

3!
to be considered while calculating cross section.
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Appendix B

Tensor Reduction

B.1 4-point 4-rank Tensor Reduction

B.1.1 Co-efficients of D, )

pi‘ Dy 3D 416 Run
P Duwox | p) = Xugg | Dy |+ 0 = | Rua
p3 Dys 0 Ryy3
Pt Dy 0 Ry
P55 Dwon | ) = Xp23 | Da t+ | 3Dur | = | Rus
p§ D3 0 R
Py Do 0 Ryy7
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i D9 0 Rys05

PPy Dypx p% = Xjazg D7 + Dy = Ry496
3 Dy 0 Rys7
pi\ Do 0 Ryy8

PWPBPDWM p% = Xjazg Do + 0 = Ry499
p§ Dyig Dyao Ry430

n—3
Dy = < 1) P* PPAD,u o

n —

1 1
= — (m) [f11D311 + fazDzia + fazDz1z — C24(2,3)]

B.1.2 Ry - Functions

Run — %[fmpgl b O +2,3) + Co(2,3)]
Rus = %[f@Dgl 4+ O31(1,2 + 3) — Ca1 (1 4+ 2, 3)]
Rys = %[f43D31 + C31(1,2) — Cs1(1,2 + 3)]
R — %[fmpgg 4+ Cn(142,3) — Cn(2,3)]
Rus = %[f@DgQ + O30(1,2 + 3) — Ca1 (1 + 2, 3)]
Rys = %[f43D32 + C32(1,2) — Csp(1,2 + 3)]
Rur = 5lfaDss +Conl1+2,3) - Cop(2,3)
Rug = %[f42D33 + C3(1,2 4 3) — Ca1 (1 + 2, 3)]

1
Ry = §[f43D33 — C3(1,2+ 3)]
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Ryso
Ryan
Rys2
Ryq3
Rys14
Ryqrs
Rys6
Ryar7
Ryas
Ry
Rya20
Rys01
Rys92
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Rya04
Rys25
Rys06
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%[f41D38 + Ci(142,3) — Cis(2,3)]
%[fQDgg + C32(1,2 4 3) — Cs3(1 + 2, 3))]
%[f@pgg — C(1,2 4 3)]

%{quw + Cs4(1 +2,3) — C34(2, 3)]
%LﬁmlkgﬁCbﬂl,Zﬁ3)—-C341F2a3ﬂ
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%[1411)3H+cg5(1 +2,3) + Co4(2, 3)]
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%[f42D312 + Cag(1,2 4+ 3) — Cis(1+2,3)]
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%[f@Dglg + (1,2 + 3) — Cg(1 + 2,3)]

1
§[f43D313 - 036(17 2+ 3)]
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fu = —p%
fio = —(p; +p2)2+pf

fis = —(p1+p2 +p3)2 + (p +p2)2

B.2 5-point Reduction

B.2.1 Co-efficients of F,

Py En Rsn
i
%) FEis Rs12
E, = X234 =
Ph Eis Rs13
pﬁf Ey Rs14

B.2.2 Rj - Functions

1
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1
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1
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1
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B.2.3 Co-efficients of £,
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B.2.4 Rj - Functions
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B.2.5 Co-efficients of £,
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§[f51E21 + l)2l<1 + 27 37 4) - D0(27 37 4)]

Z%5317
}%5318
Z%5319

}%5320

}%5321
]%5322
}%5323

Z%5324

1
§[f52E21 + Ds1(1,2 4 3,4) — Doy (14 2, 3,4)]

1
§[f53E21 + D51(1,2,344) — Dy (1,2 + 3,4)]

1
§[f54E21 + Ds1(1,2,3) — Doy (1,2,3 + 4)]

1
§[f51E22 + Do (1+42,3,4) — D21(2,3,4)]

1
§[f52E22 + Dgs(1,2 4 3,4) — Doy (14 2, 3,4)]

1
§[f53E22 + Dss(1,2,344) — Das(1,2 + 3,4)]
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}%5312
}%5313
}%5314
}%5315
}%5316
}%5317
}%5318
}%5319
}%5320
}%5321
}%5322
}%5323
}%5324
}%5325
}%5326
}%5327

}%5328

%[f54E22 + Dn(1,2,3) — Dyp(1,2,3 + 4)]
%[f51E23 + Dy(1+2,3,4) — Dy(2,3,4)]
%[f52E23 + Dao(1,2 4 3,4) = Ds(1 +2,3,4)]
%[f53E23 + Do3(1,2,3+4) — Dyp(1,2 + 3, 4)]
%[f54E23 + Da3(1,2,3) — Da3(1,2,3 4 4)]
%[f51E24 + D3(1+2,3,4) — Dy3(2,3,4)]
%[f52E24 + Das(1,2 4 3,4) — D1+ 2,3,4)]
%[f53E24 + Da3(1,2,3 4+ 4) — Das(1,2 4 3,4)]
Ui Bt — Dy(1,2,3+ 4]

%[f51E25 + Dn(1+2,3,4) + Dii(2,3,4)]
%[f52E25 + D2u(1,2 4 3,4) = Do (1 +2,3,4)]
%[f53E25 + D24y(1,2,3 4 4) — Day(1,2 4 3,4)]
%[f54E25 + D24(1,2,3) — D2y(1,2,3 +4)]
%[fEJlEQlO + Das(1+2,3,4) — D(2,3,4)]
%[mezw + Dys(1,2+3,4) — Dog(1 4 2,3, 4)]
%[f53E210 + Ds(1,2,3 4 4) = Dag(1, 2+ 3,4)]
%[ fsaBato — Dag(1,2,3+ 4)]

%[meQn + Dor(1+2,3,4) — Da7(2,3,4)]
%[wam + Dy7(1,2+3,4) — Dyr(1+ 2,3, 4)]
%[f53E211 + Dy7(1,2,344) = Dar(1,2+ 3, 4)]

1
§[f54E211 + Dy7(1,2,3) — Dor(1,2,3 + 4)]
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B.2.7 Co-efficients of L, )

pvp
Py Eupa

pvp
PQ,Q,QEWP/\

uvp
}ngslsquA

pwvp
}Q#L4ZEuVPA

Y2
P3

2

%)
P3

by

- ;X?Uj2,3,4}

= ;Xfﬂﬁ2,3,4]

- ;X?Uﬂ2,3,4]

= ;XTDﬁ2,3,4]
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3 E436

3 E 440

3443

3445

Risa9
Rs410
Rsa11
Rsa12

Z%5413

}%5414

Z25415

}%5416




Ky p
P1,1,2E;u/p/\

pvp
P1,1,3EWP/\

K p
P1,2,2E;u/p/\

v p
Fﬂ,&3ZEHVPA

%)
p3

Py

= Xp234

= Xj234

= Xnp234

= X234

Ey4
Eyi5
Ey
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2E)38

Eyse

Rsq17
Rsa1s
Rsa19

}%5420

}%5421
Z%5422
}%5423

Z%5424

Rs495
Rs496
Rs497

}%5428

Z%5429
Z%5430
}%5431

Rs430




pvp
P 1,2,3Ew/p/\

v p
P 2,2,3EWP/\

pvp
P 2,3,3EMVP>\

v p
P 1,4,4EWP/\

%)
P3

Py

= Xn234

= Xj234

= Xn234

= X234
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2B
Egp

Eyys
2B

Z%5433
}%5434
Z%5435

}%5436

}%5437
Z%5438
}%5439

Z%5440

}%5441
}%5442
Z%5443

}%5444

Z%5445
Z%5446
}%5447

Z%5448




K p
P 2,4,4E;u/p/\

v p
F%,@4ZEuVPA

%)
p3

Py

= Xp234

= Xj234

= Xp234

= X234

Eyys
2B 44

12446

Rsa49
Rs450
Rsa51

}%5452

Rsys53
Rs454
Rsu55

Z%5456

]%5457
}%5458
}%5459

}%5460

}%5461
}%5462
}%5463

}%5464




pi\ Eysg 0 Rs465
by
. %) Eyp 0 Ris466
PMY PYE, 00 = X234 + =
p§ Eyas Ey6 Rsu67
) Eyyq 0 Risu6s
) Ey39 0 Risu69
by
, D5 Eyg9 0 Rs470
P PPE, o = X234 + =
p§ Eyyy 0 Rsam
pi Eyus Eya6 Rsuro

1
E446 = < 7) PWPP}\EWM

2n —

1 1
= 3 (n — 2) [f51E391 + f52E320 + f53E393 + f5aE324 — Do7(2,3,4)]

B.2.8 Rj4 - Functions

Rsyy = %[megl+D31(1+2,3,4)+D0(2,3,4)]
Rsyp = %[f52E31+D31(1,2+3,4)—D31(1+2,3,4)]
Reois — %[f53E31+D31(1,2,3+4)—D31(1,2+3,4)]
Rsuy = %[f54E31+D31(1,2,3)—D31(1,2,3+4)]
Ry — %[f51E32+D31(1+2,3,4)—D31(2,3,4)]
Rsyg = %[f52E32+D32(1,2+3,4)—D31(1+2,3,4)]
Reyr = %[f53E32+D32(1,2,3+4)—D32(1,2+3,4)]

1
Rsis = §[f54E32+D32(17273)—D32(17273+4)]
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}%5422
}%5423
}%5424
}%5425
}%5426
}%5427
}%5428
}%5429

}%5430

1

§[f51E33 + D3p(1+42,3,4) — D3y(2,3,4)]
LB |

5 fs2F33 + D3a(1,2+3,4) — D3y (1 +2,3,4)]
1 ) b
§[f53E33 + D33(1,2,3 +4) — D33(1,2 + 3,4)]
1 )
§[f54E33 + D33(1,2,3) — Ds3(1,2,3+4)]

1

§[f51E34 + D33(1+42,3,4) — D33(2,3,4)]
LB |

5 fs2F34 + D33(1,2+3,4) — D33(1 +2,3,4)]
1 ) b

5 fs3Ess + Das(1,2,3 4 4) — Dys(1,2+3,4)]
1 )
§[f54E34 — D33(1,2,3 4 4)]

1

§[f51E35 + D31(142,3,4) — D11(2,3,4)]

1 )
5lfeaEss + Daa(1,2+ 3,4) = D (1 42,3, 4)]
1 ) b

5 fs3Ess + D3a(1,2,3 4 4) = Da(1,2 4 3,4)]
1 )
§[f54E35 + D34(1,2,3) — D3a(1,2,3 + 4)]

1

§[f51E36 + D3,(142,3,4) — D12(2,3,4)]

1 )
§[f52E36 + D3,(1,2 4 3,4) — D34(1+2,3,4)]
1 ) b
§[f53E36 + D35(1,2,3 +4) — D3y(1,2 + 3,4)]
1 )
§[f54E36 + D35(1,2,3) — D35(1,2,3 4+ 4)]

1

5 [fs1E38 + Da1(1 +2,3,4) + D2 (2,3,4)]
LB |

5 fs2F3s + Dsg(1,2+3,4) — D3y (1 +2,3,4)]
1 ) b
§[f53E38 + D36(1,2,3+4) — D3g(1,2 + 3,4)]
1 )
§[f54E38 + D3(1,2,3) — D36(1,2,3+4)]

1

5 [fs1E39 + D3g(1 +2,3,4) + D2(2,3,4)]

1
— E
2[f52 39 + D3g(1,2 4 3,4) — Dsg(1 42,3, 4)]
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Rsy31
Rs430
Rsy33
Rs434
Rsu35
Rsy36
Rsy37
Rsys3s
Rs439
Rsa40
Rsa41
Rs449
Rsy43
Rsy44
Rsu45
Rsy46
R4z
Rsy48
Rsa49
Rs450
Rs451

R5452

%[1531339'+-1737(17273'+'4) — Dss(1,2 4 3,4)]
%[f%41339+1)37(1>2a3) = D3r(1,2,3 +4)]
%[]%113311'+'1734(1'+'27374) + D2 (2,3, 4)]
%[j%213311+1)36(1a2+3’4) = Day(1+2,3,4)]
%[j%313311'+'Z)310(17273'+'4) — Dss(1,2+ 3, 4)]
%[j%413311+1)310(1a2>3) = Di10(1,2,3 +4)]
%[j%113314+1)34(1+2>3’4J = D34(2,3,4)]
%[f52E314 + Daa(1,2+3,4) = Daa(1 42,3, 4)]
%[j%313314+1)38(1a2>3 +4) = Dp(1,2 4 3,4)]
%[j%413314-+-1738(17273) — Dss(1,2,3 + 4)]
%[j%11;316+1)36(1+2’3’4J = Dis(2,3,4)]
%[f52E316 + Dsp(1,2+3,4) — Dag(1 + 2,3, 4)]
%Lﬁsféus+[%90w2>344)"[k20”2%3’4ﬂ
%[f%413316+1)39(1a2>3) — Dso(1,2,3 + 4)]
%[]5113310'+'1737(1'+'27374) + D3(2,3,4)]
%[f52E310 + Dsr(1,2 4 3,4) — Dar(1 4 2,3,4)]
%Lﬁsféu)+'lk7072734"4)_'Lk7“’2_%3’4ﬂ
%[f54E310 — D37(1,2,3 + 4)]

%[mem + Dyr(1+2,3,4) — D37(2,3,4)]
%[f52E317 + Dso(1,2 4 3,4) — Dar(1 4 2,3,4)]
%Lﬁsfér74[%90w2>344)"[k90”2%3’4ﬂ

1
§LE4E%N'—[%9Ow2734‘4ﬂ
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}%5453
}%5454
}%5455
}%5456
}%5457
}%5458
}%5459
}%5460
}%5461
}%5462
}%5463
}%5464
}%5465
}%5466
}%5467
}%5468
}%5469
}%5470
}%5471

}%5472

%[megQO + Dyg(1+2,3,4) — Dyy(2,3,4)]
%[megzo + D3g(1,2 4 3,4) — Dsg(1+ 2,3, 4)]
%[f53E320 + Ds3(1,2,3 +4) = Dio(1,2 4 3, 4)]
%[f54E320 — D33(1,2,3 + 4)]

%[f51E321 + Do (1+2,3,4) + Dyr(2,3,4)]
%[f52E321 + D311(1,2 4 3,4) — D3 (1+2,3,4)]
%[f53E321 + D311(1,2,3+4) — D311(1,2 + 3,4)]
%[f54E321 + D311(1,2,3) — D311(1,2,3 + 4)]
%[f51E322 + Dsn(1+2,3,4) = D3 (2,3, 4)]
%[f52E322 + D312(1,2 +3,4) — D311(1+ 2,3,4)]
%[f53E322 + D312(1,2,3 4+ 4) — Da1a(1,2 + 3, 4)]
%[f54E322 + D312(1,2,3) — D312(1,2,3 + 4)]
%[megzg ¥ Daio(1+2,3,4) — Daia(2,3,4)]
%[f52E323 + Daia(1,2 4 3,4) = D11 + 2,3, 4)]
%[f53E323 + D313(1,2,3+4) — Da12(1,2 4+ 3, 4)]
%[f54E323 + Ds15(1,2,3) — D313(1,2,3 + 4)]
%[f51E324 + Daia(1+2,3,4) — Dya(2,3,4)]
%[f52E324 + Ds13(1,2+ 3,4) — Ds3(1 + 2,3,4)]
%[f53E324 + D313(1,2,3+4) — Da13(1,2 4+ 3, 4)]
1

§[f54E324 — D315(1,2,3 +4)]
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1
J52
J53
4

—p}
—(p1 + p2)2 + p?
—(p1 +p2 +p3)2 + (p1 +p2)2

—(p1 +pa+p3+pa)® + (p1+ 2+ p3)°
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Appendix C

Expressions: Real Graviton

Production

C.1 Finite Part of the Virtual Contribution

All the V;’s appearing in eq. (3.12) are given below:

Vi = ;x
b (Pu(m? —s))

((—=2m®t + 2mS(m%, (=6t + u) + t(7t + 2u)) — m* (18myt — 2m% (24¢* +
6tu — u?) + 3t(10t% + 8tu + u?)) +m2t(—8mS, + 263 + 36t%u + 15tu? +

u + 2m% (21t + 5u) — 2m%(30t% + 23tu + u?)) — 4t*(—2mf, + 2t* +

4t%u + 3tu® 4+ u? + m% (6t + 4u) — m% (6t + 8tu + 3u?)))
(C.1)
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&

Vi

Vs

Ve

(16(2m®t + 2m°(m% (6t — u) — t(7t + 2u)) + m*(18myt — 2m%(24¢* +
6tu — u?) + 3t(10t* + 8tu + u?)) — m*t(—8mS, + 26t% + 36t%u + 15tu* +
u® 4 2m% (21t + 5u) — 2m%(30¢% + 23tu + u?)) + 4¢3 (—2m$ + 263 +

At%u + 3tu? + u? + mi (6t + 4u) — mZ (6t + 8tu + 3u?))))

(C.2)
Viltesu (C.4)

1
X
(262u?(—m? +t 4+ u))

((4mStu — 2mS(9tu(t + u) + m%(t* — 12tu + u?)) + m*(36mytu +
Stu(118* 4+ 16tu+11u?) +2m% (12 — 30t*u — 30tu? +u®) ) + dtu(—2mS, (t+
w) + (4 w)?(26* 4 tu + 2u?) + m% (6t* + 8tu + 6u?) — m% (66> + 11%u +
1tu? + 6u?)) — m*tu(—16mS + 52m% (¢t + u) — 2m% (314 + 46tu +
31u?) + 3(9® + 17t%u + 17tu® + 9u?))))

(C.5)

1
X
(262u?(—m? + t +u))

((4mStu — 2mS(9tu(t + u) + m%(t* — 12tu + u?)) + m*(36mytu +
Stu(118* 4+ 16tu+11u?) +2m% (12 — 30t*u — 30tu? +u®) ) + dtu(—2mS, (t+
w) + (4 uw)?(26* 4 tu + 2u?) + m% (6% + 8tu + 6u?) — m% (66> + 11%u +
11tu? + 6u®)) — m2tu(—=16mS + 52m?% (¢t + u) — 2m% (31t + 46tu +
31u?) + 3(9® + 17t%u + 17tu® + 9u?))))

(C.6)
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‘/7_

Vi =

‘/9_

Vio

Ve (C.7)

1

((m? —t)2(m% — t)22(m? — t — u)u) 8

((m"2mZt(—=3m% +2t) — 3m'""m% (m?% (6t — u) + t* (6t +u) —m%t(13t +
w)) + m8(=2Tm%t + 12t*u + 3m%(38t% + 5tu — u?) + m%t? (48t +
1tu + 3u?) — m%t(138t2 + 50tu + 3u?)) — 4t°u(4m$, — 2m7% (5t + 4u) —
t(2t% + 5tu + 3u?) + m%(8t2 + 13tu + 4u?)) + m*?(12m}) — 2m%,(39t +
Tu) +mb (160t 4+ 61tu + 5u?) + t2u(56t* + 69tu + 12u?) + m%t(34t® —
107t%u —99tu® — 12u®) — 2m7, (6463 + t2u — 2tu* 4 3u®) ) + mOt(—12m % —
27TmSt (8t +3u) — 6t3u(Tt + 4u) +m$ (89t + 15u) +m%t(—58t> + 29t *u +
16tu? — 2u®) +m7 (19812 4+ 94w + 23tu? + 3u?®)) +m?t3 (4m5, (4t —u) +
Amt(81% — 22tu — 17u?) + 4mS (=10t + 6tu + u?) — t2u (34> + 65tu +
27u?) + 2m7t(—4t* + 51t%u + 69tu? + 18u?)))

(C.8)

1

(tu(m? — t — u)(—AmPmd + (t+ u)2)?) "

(16(104m™m%(t + u) + 4m''m%Z(96m7 (¢ + u) — 2m%Z(73t* + T4tu +
73u?) — 3(t3 + 13t%u + 13tu® + u®)) + 4(t + u)®(—2mG(t + u) + (¢t +
w)?(2t% + tu + 2u?) + m% (66> + 8tu + 6u?) — m% (66> + 11t%u + 11tu? +
6u®)) +m*(3(t+u)® (118> + 16tu+11u?) — 16m > (172 + 10tu+ 17u?) —
8m7, (t+u)3(25t% +132tu+25u?) — 12m8 (t+u)?(43t* — 108tu + 43u?) +

4m% (t+u)(49t% 4+ 40tu+49u?) + 48mS, (1613 + 11t2u+ 11tu? + 16u)) —
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Vii =

Vig =

m?(t+u)?(—16m%, (4% + 11tu+4u?) + 2m% (t +u)3(9t* — 26tu + 9u?) +
3(t+u)* (92 +8tu+9u?) —4m (t+u)? (452 + 26tu+45u>) +8mS, (25¢3 +
64t%u + 64tu® + 25u®)) + 4m3(146m5,(t + u) + (t + u)® + 26m%(t +
u)?(t? + 5tu + u?) — 24mS, (172 + 16tu + 17u?) + 4m7% (69> + 59t%u +
59tu® + 69u?)) + 2m°(136m P (¢ +u) — 9(t +u)® — 12m%, (59t + 5dtu +
59u?) — m%(t + u)3(123t* + 286tu + 123u?) — 2m%(t + u)*(157t* —
374tu + 157u?) + mf, (986t + 866t%u + 866tu? + 986u?)))r?)

(C.10)

1
(t2u?(m? — t — u)(—4m2>m% + (t + u)?)?) .

((—96m"2mytu— 4t2u>(t +u)*(—6m% 4+ 16m% (t +u) — 15m% (t+u)? +
5(t+u)?)+4m'Om% (120m%tu(t+u) +tu(—3t*+34tu—3u?)+12m?, (> —
12tu+u?)) + m?tu(2m%(t +u)* (1% + 18tu +u?) + (¢ +u)®(3t* + 64tu +
3u?)+2m% (t+u)? (9t —272tu+9u?) —4mS (t+u)? (1142 = 196tu+11u?)+
24m8, (¢3 — 13t2u— 13tu® +u?)) + m* (192mPtu(t +u) — dtu(t +u)* (> +
Stu+u?) —8mitu(71t* 4+ 30tu+71u?) — 2mytu(t+u)?* (167> — 1060t u +
167u?) + 4mStu (167t — 2271%u — 227Ttu? + 16Tu®) — m%(t + u)3(3t* —
206%u + 674t%u? — 20tu® + 3ut)) — 2m8(432mStu + tu(t + u)?(3t* —
dtu + 3u?) + 2mtu(—15t + 179¢%u + 179tu® — 15u?) + 8mS, (3t —
97t%u — 9Ttu? + 3u3) + 4m% (3t* + 1181%u + 66t%u> + 118tu® + 3ut)) +
mb(=384m P tu + 1312mStu(t + u) + 4tu(t + u)3(3t* + Stu + 3u?) —
AmStu (39162 + 204tu + 391u?) + m (¢ + u)?(3t* — T063u + 1230t2u? —
70tu? + 3ut) 4+ 8m% (3t° + 111t — 122¢3u* — 122%u® + 111tu’ 4 3u?)) ) )

(C.11)

(3(m? — )t*(—mZ +t)(m* — u))
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1

(2(—m2 + u)(m2, — s)>(dmPmZ — (t+ u)?)) |

((—12mMmtu(22my, + 20tu — 21m% (t + u)) + 3m'* (2062w (¢t + u)* +
44ms, (% — 12tu + u?) — 10m%tu(29t? + 118tu + 29u?) + m$, (—44t® +
852t%u +852tu? — 44u?) — 21m%tu(t® — 13t%u — 13tu® +u?)) + 4t3u3 (¢ +
u)3(64my — 176m%,(t + u) + 8m$(23t% + 49tu + 23u?) — 3tu(7t® +
5t2u + 5tu® + Tu?) — 6m% (1663 + 51t%u + 51tu? + 16u?) + m%(24t* +
11183 + 134820 + 111tu? + 24ut)) — 3m2(792mPLtu + 4ms, (333 —
601t%u — 601tu? + 33u®) + 2u(T93 + 2572 + 257tu? + T9u?) +
m (—121#* + 202663 + 5262t%u2 + 2026tu® — 121u) + mLtu(—73t4 +
142630 + 574t%u? + 142tu® — 73u?) — m% (1145 + 326t*u + 3015t3u? +
3015¢%u + 326tut + 11u®)) — 3m'(352m Ptu — 2428mPtu(t + u) —
20 (t +u)?(127t + 386tu + 127u?) — 22ms, (6t* — 167t3u — 430t%u> —
167tu? + 6ut) +mS(99t5 — 1796t u — 9887t3u? — 988712u® — 1796tu* +
99u5) + mZ (10445 + 52140 + 707632 + 707620 + 521t + 104u%) +
% (335 + 873U+ 2369t*u2 + 6046 1343 +2360 t2u* +87 tud +33 ub)) +
m8(2112m Ptu(t+u)—16mPtu(453t2+1241tu+453u?)+ms, (— 1325+
632140 + 36839 32 + 36839 203 + 6321 tut — 132u°) — 3202 (107¢° +
809t*u + 1912 #3u? + 1912 t*u® + 809 tu' + 107 u®) + m% (33 16 —
1209 t5u — 20115 thu? — 42434 3u® — 20115 t?u* — 1209 tu® + 33u’) +
3mZtu(84t5 + 943 tou + 3098 t*u? + 4694t3u> + 3098 t*u?t + 943tu’ +
84u®)+3m% (33t =77 t°u—544 tPu>+ 1792 t*u>+1792 t3u' — 544¢%u’ —
77tu’ + 33u7)) + m*t2u?(—1024m Pty — mS (t +u)? (1033t + 3430tu +
1033u?) — 32m(14t3 — 37t*u — 3Ttu? + 14u?®) + 3tu(t + u)?(41¢* +
1703w + 194¢%u? + 170tu® + 41u*) + 8m$ (142t* + 405¢3u + 478t u* +

405tu3 + 142u) + m% (4831° + 4326t°u + 13853t4u? + 20660t3u® +
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Vis

13853t2u* + 4326tu® + 483u’) — 2m%(69t7 + 660t5u + 2578t°u? +
530143 +5301t3ut 4257812’ +660tu’+69u”) ) +m®(—32m Ptu (33t +
131tu+ 33u?) +4mP2tu (5373 + 42252 + 4225tu® 4 537u?) + 3t2u?(t +
u)?(49t1 4+ 469t3u+ 862t 21>+ 469tu3 +49ut) — 4m G tu (12611 + 41413 u+
9014%u* + 4141t +126u*) +mS (33t —630t5u+ 7755 u? + 14222t 4> +
1422263u* + 775t 215 —630tuS+33u") —3m% tu (43t +686tSu-+3478tu>+
7861t 3+ 786113 ut + 347815+ 686tuS +43u") +m, (—33t5 + 171t "u+
5013t%u? + 15053t°u® + 18824t*u* + 15053t%u® + 5013¢%ub + 171tu" —
33u®)) +m*tu(2080m Ftu(t +u) — 6tu(t +u)? (5t* + 96¢3u + 172t*u> +
96tu® + Su') + 8mP(24t* — 485t3u — 1382t%u* — 485tu® + 24ut) —
m$, (423174375t u—805413u? —8054¢t 2> +375tut +423u”) +m$, (23715 +
3942t%u + 10563t4u? + 11668t3u® + 10563t2u* + 3942tu® + 237ub) —
m3 (397 4 251415 + 14408t5u? + 29959t 43 + 299593 u* 4 144081%u° +
2514tub+39u”)+m% (33t3+ 777t u+5388t0u?+16631¢ u3+24 742t u* +
16631¢3u° + 5388t%uS + 777tu” + 33u®))))

(C.12)

1

((mg — 022(m — wPd(—m? + ¢+ u)(—dmPm + (¢ + u)?)?)

(m%(—16m"?mytu(6ms, — 8m% (¢t +u) — 2tu(t + u) + m%(3t? + 8tu +
3u?)) +8m'Om% (6m Y (t* — 12tu+u?) + m%(—12t% + 149t%u + 149tu* —
12u3) + 3mytu(t? + 45t%u + 45tu® + u®) — 20 (263 + t?u + tu® + 2u®) +
mtu(3t* — 263u — 54t%u? — 2tu® + 3u*) + m$(6t* — 80t3u — 284¢%u* —
80tu? + 6ut)) + 4t*u?(t + u)?(6mF — 28mP (¢t + u) + 2tu(t + u)*(t* +
3tu + u?) + m%(49t? + 110tu + 49u?) — mb (4163 + 155¢%u + 155tu® +
41u®) +mL (17t 4 97830 + 166t%u> + 97tu® + 17ut) — m% (3t° + 26t4u +

71302 4+ 718203 + 26tu® + 3u®)) — m®(864m S tu + 24m 2 (263 — 117t%u —
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117802 +2u) — dm tu( 29363+ 158 112u+ 1581 tu?+293u) +m 9 (—72t4 +
301263u + 7672t%u* + 3012tu® — 72ut) — 2t2u?(t° + 15tu — 2063u?* —
20t%u? + 15tu* + u’) — dmptu(t® + 19t*u — 54t3u? — 54t%u® + 19tu* +
u®) + m%tu(3t0 + 36t°u — 23t u? — 688¢3u — 23t*u + 36tu® + 3u’) +
2m$ (12t° + 57t%u + 812t*u? + 147063u? + 812t%u* + 57tu® + 12u)) —
m2tu(4mP2 (t + u)?(23t? — 352tu + 23u?) — 24m L (¢3 — 13t%u — 13tu?® +
ud) + 2tu(t +u) (1 + 13830 + 38t2u? + 13tu® + ut) +2mb, (¢ +u)? (59¢* —
542t3u — 2218t%u? — 542tu? + 59ut) — 2m P (7315 — 845ty — 3284t3u* —
3284t%u? —845tut +73u) —m?%, (t+u)3 (310 +48t5u+ 237t u? + 23631 +
237t2ut 4 48tu® + 3u®) + 2m% (t 4+ u) (610 + 87tu + 104t4u? — 2383 u® +
104t%u* + 87tu’ + 6u®) + m (—49t™ — 73t5u + 2017t5u? + 6457t u® +
6457t3ut +2017t%ud — 73tu’ —49u")) +mS(—384m Ptu+1936m S tu(t +
u) —4mPZtu(859t2+1806tu+859u?) —t2u? (t+u)? (3t*+64t3u—130t2u*+
64tu® + 3ut) + 8mY(3t° + 347t u + 1095t%u? + 1095t%u® + 34Ttu* +
3u®) —mb, (45t° 4+ 1146t5u + 3887t u? + 3460t3u3 + 3887t 2u + 1146tu’ +
45u®) +mZtu(3tT + 115t + 165t°u? — 181 1¢4u3 — 1811#3u* + 16521’ +
115tuS + 3u7) + 2m8 (97 + 142t5u + 348t5u? — 1971t — 197183u* +
348t2u° + 142tu® + 9u”) + m%(3t® — 32t7u — 340t5u? + 2156t°u® +
6490t ut +215613u® — 340218 — 32tu™ + 3u®)) + m*(192m S tu(t +u) —
8m A tu(101¢% + 138tu + 101u?) + 4mFtu(333t3 + 379t%u + 379tu® +
333u?) +2mPtu( =581t + 30t3u+21184%u? + 30tu® — 581ut) + 3t2u? (1 +
u)3(t* + 18t%u — 2t2u? + 18tu® + ut) — mAtu(t + u)?(3t5 + 96t°u +
209t4u? — 1132t3u3 + 209t%u + 96tu® + 3ub) — m% (3t — 613t%u +
021¢5u2 + 11961 ¢4u® + 1196 1t3u? + 92121’ — 6131’ + 3u7) +mS, (65 —
177t u + 12t%0% + 8745150 + 18124t u* + 8745315 4+ 12t2uS — 177tu” +

6u®) — m%(3t? — 13t%u — 338tu? 4+ 1474t%° 4 8410t°u* + 8410¢*u® +
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Via

1474¢3u5 — 338¢%u"” — 13tu® + 3u?))))
(C.13)

1
((m? — t)2t2(m? — u)?(m? — t — w)u?(—4m?>m?% + (t + u)?)?)

X

(m2(96m " m%tu — 4mm% (158m%tu(t + u) + tu(—3t* + 34tu — 3u?) +
12m%, (12 — 12tu +u?)) — 430> (t + u) 2 (12mGtu + 6tu(t +u)> + m%(t +
u)2 (% = 11tu+u?) —m% (83 + TPu+ Ttu? +u?) ) +2m4 (432mS, tu+tu(t+
u)?(3t? — dtu+3u?) —dmBtu (813 — 113t%u — 113tu? + 8u?) +4mS, (1813 —
2811%u—281tu? +18u?) +2m% (6t* +411t3u+578t2u? +411tu +6ut)) +
m2t2u? (48mGtu (3t —2tu+3u?) +2(t+u)* (3t14-29t3u+72t%u> +29tu® +
3ut) — m%(t + u)3(5tt + 12413u — 102t2u? + 124tu? + 5ut) + 2m% (¢ +
w)?(Tt* + 86t%u — 522t%u? + 86tu® + Tu*) — 4mS, (3t° + 61t u — 164t3u? —
164t%u3 + 61tu* 4 3u®)) + m'?(384mPtu — 2288mStu(t + u) — dtu(t +
u)3(6t% + tu + 6u?) — 16mS(9t* — 20713u — 416t%u? — 207tu3 + Ju?t) —
8m% (9t°+284t u+35613u?+3561%u>+284tu' +9u’) —m% (3t5 —126t5u+
2089t1u? + 4756t3u> + 2089t ut — 126tu’ + 3u®)) +m!(—=576m Ltu(t +
u) + 672mEtu(3t* + Ttu + 3u?) + tu(t +u)*(39t* + 1706%u + 222t*u® +
170tu? 4 39ut) + 16mS,(3t° — 147ty — 424¢3u? — 4241%u® — 14Ttu? +
3u®) + 2m%(36t° + 915t5u + 780t*u? — 1286t3u® + 780t%u* + 915tu’® +
36u5) -+ m2 (97 — 109¢5u + 2141652 + 8903t + 8903t3u* + 21411205 —
109tu® + 9u™)) — mAtu(48mStu(4t® + 3t2u + 3tu® + 4u®) — mLtu(t +
u)?(85t* — 52t3u — 1286t%u* — 52tu? + 85u*) + (¢ + u)?(3t5 + 58t%u +
303t4u? +492t3u34-303t%u* +58tu’® + 3ub) —4mS, (3t5 4108t u — 55t *u? —
608t3u — 55t2ut + 108tu’® + 3uS) + mL(15t7 + 353t0u — 501¢5u? —
5475t4u3 — 547583ut — 501¢%u® + 353tub + 15u7)) + m8(192mPtu(t? +

dtu +u?) — 32mStu (20t + 97t%u + 97tu® + 20u®) — 3tu(t +u)3(11¢* +
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80t3u + 122t%u? + 80tu® + 11ut) + 32mGtu(27t* + 104t3u + 7T7t%u* +
104tu3 + 27ut) — 2m%, (12¢7 + 42354 + 483t°u> — 3970t u> — 3970t3u +
483t%u5 + 423tub + 12u") — m%(9t® — 36t7u + 880t°u? + 737615u +
13062t4ut + 737613u’ + 880t%ub — 36tu” + 9u®)) +mb(—192m P t2u?(t +
u)+16mGtu (3t +58t3u+62t*u> +58tu’ + 3u') — 4mStu(411° + 337t u—
308t*u? —308t%u? + 337tut + 41u”) +tu(t+u)? (15t +194t°u+ 697t u* +
101630 +697t%u* +194tu® + 15u8) +m L tu(195t° +916t°u — 4815t u* —
1203263u3 — 4815t2u* + 916tu® + 195u®) + m%(3t? — t®u — 20t"u? +
2332t5° + 7838t°u* + 7838t u” + 2332t3u8 — 20t%u” — tu® + 3u))))

(C.14)

1
(62u2(—m2 + t + u)?)

Vis =

((144m " tu—6m®(97tu(t+u)+12m% (£ —12tu+u?))+3m°(432mtu+
tu(353t? + 700tu + 353u?) + m%(48t3 — 746t>u — 746tu” + 48u3)) +
12m* (48mStu — 208m % tu(t +u) — tu(89t® + 249t u + 249tu® + 89u?) +
m%(—6t* +199t3u + 482t%u? + 199¢tu® — 6u) ) + m*tu(—696mS (t+u) +
40mL (392 + 107¢u + 39u?) — 6m2 (22943 + 817¢2u + 81Ttu? + 229u?) +
21(27t* + 98t%u + 126t%u® + 98tu> + 27u?)) — dtu(—2mS (15t + 86tu +
15u2) +1m% (90£3+406t2u+406tu-+90u) —m2 (90t + 38 13u-+51262u?+
381tu? + 90u) + 3(10° + 49t*u + 69t3u® + 69¢%u® + 49tu’ + 10u?))))

(C.15)

C.2 DBj Integrals

By (P) = —§+2—7E—f<7>) (C.16)



where 7) € {p37p47p57 k7 Q} and

P L G I (c.17)
In (4;);3) —im for P =ps.k,q

Co (P P") :(4_32 P P’})Q —p [—%{ln ( (PPHQP”) ) + m} +

2

s
1 N | P//Q - B N | PII
2 TET A 4 w2 " R 47T w2

(C.18)

where P’ € {pi,p2} and P” € {k,q} .

N
Co (k. q) :(4;32 S‘; {mg (1—Z+6) 2L (1—2—&) -

N

2_
where o = &

smi and 8 = 1\/(t +u)? — 4m2m? .

C.4 D, Integrals

114 2 —t B —t
R e R R R GO R

z
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2 2
(oo 5 (=),
2 2
<ln <mz S) + log (1 e ) — 2@71')
t t
S t 2
—2In —1)In(1- +In? (1 - =
m,2 m,2 S
s s s
— In? <mz2> +2In (sz) In <mz2 - 1)} (C.21)
DO (p27k:7q) :DO (plvkvq) |t—>u (022)

~Gr Gt E{m <%) o (r_n_u) ’ 2”}

m2 . 2 m2 . 2
(o) o) = (e o (i) )
—t 2 —u 2 gp2
] ] -
(VE o (mz)) N <ny M <4w%)) 3

(m* — t) (m.” —t)) 2L ((m2 —u) (m:? —u))

m2m.,? — tu

tu — 2 2 tu — 2 2
+2Li2< u — m?m, )+2Li2< u— m?m, )
m? — )
(

(m.2 —1t) (m.? —u)

o — 1) (m? —u)) i ((mf — 1) (m. —u))

tu — m?m,>2
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Appendix D

ADD & RS Model in MADGRAPHD

D.1 ADD Model

HLZ formalism [40]

Lagrangian:

LuLz = — TH (z) b)) (2)

N | =
]38

0

3t
Il

where k= +/167Gp .

Graviton propagator:

i B

Gy = ———tveB
k2 —m?2 4 ie
where
kuk kukg
B;Lu,aﬂ = (nua - :;;v) (nuﬂ - 2 )
kukg kukea
R [
2 k:#ky kakﬁ
e ) -
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GRW formalism [41]

Lagrangian:

oo

LoRw = —=——
GRW M 2

where Mp = (87Gn)~1/2 .

Graviton Propagator:

i Puyag

GGRW

where
Puv,as
1
2m?2

1 2 kky
+ 6 <77/,1.V + m2

T ()

B ()

pv

k2 —m?2 4 e

(=)

1
= 5 (Uuanuﬁ + NuBMve — np,l/n(,\g[})

2 kakg
m2

(n;:,ak;uk,é‘ + T]uﬂk;l,koe + (a AN B))

)t

In the above, GGy denotes the Newton’s constant and & denotes the momentum of

).



a massive spin-2 KK graviton with mass m and rest of the symbols and/or notations
are similar to what we have used in section 1.3.1.
We can easily find the inter-relationship between these two formalisms and they

are given here under:

R
f— — f—— 5 D]_
ST 7 (D.1)
1
Puu,aﬁ 5 Buu,aﬁ (D 2)

Note that, except the different couplings used in Ly, and Lsrw and the difference
in the spin-2 graviton propagator as described in the expressions of Gy, and Ggrw,
everything is same in the HLZ and GRW formalisms. Now, whatever be the formal-
ism (HLZ or GRW), the matrix element of a process should come out to be exactly
same in both ways by consistent use of a particular formalism. For example, let us
consider the following process in LO i.e., g¢ — vy via a massive spin-2 KK graviton,

as depicted in Fig. D.1. In Fig. D.1, V; and V; denote only the couplings (i.e., —5

Figure D.1: Feynman diagram for qq — ~7 via a massive spin-2 KK graviton.

or —1 /ﬁp) in the corresponding vertices, as used in Ly, or Lopw. Now, we want
to calculate the factor [V; G V5] in these two cases, as they are the only source of

difference in these two conventions:

K,2

[Vl g VQ]HLZ - Z X gHLZ ) <D3>
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1 2
[Vl g VQ]GRW = :) X Gaorw
P
K2 1
= T 5QHLZ (using eq. (D.1) & (D.2))
K/2
= Z X Gurz . (D4)

So, it is evident from eq. (D.3) and (D.4), that consistent use of any of these for-
malisms would lead to the same result.

Now, in MADGRAPH5S, the ADD model file is written following the HLZ conven-
tion, while the spin-2 HELAS routines use GRW formalism. So, the factor [V} G V5]

in MADGRAPHS gives the following result:

[‘/1 g ‘/2]MG5 = [VI]HLZ gGRW [‘/2]HLZ

2

K 1

= Z X égHLZ
1 K2
2

= —X 1 X Gurz . (D.5)

Comparing eq. (D.5) with either eq. (D.3) or (D.4), we find that there would be an
extra half factor, if one follows the MADGRAPH) convention as stated above. There-
fore, that extra factor should have to be eliminated properly to get the correct result.
Also, while dealing with ADD model, one has to include a proper algorithm which
would do the summation over the KK mode propagators under the MADGRAPHH
environment. All these things are carefully taken care of while presenting all the

results in Chapter 4.

D.2 RS Model

On successful completion of the ADD model implementation in MADGRAPHS, we

can readily deal with the RS model also, as the nature of the Lagrangian is very
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similar in these two cases. A very simple and straight forward modification in the
ADD model file would make it work in the RS scenario. To discuss in detail, let us

consider the Lagrangian in the RS scenario,
ZTW ) hiD(z) (D.6)

where ¢y = MLP = ¢oV/81 and mgy = Ke ™% Tt is obvious from the above discussion
of the ADD model that, within MADGRAPH5 framework, the graviton propagator
would naturally follow the GRW formalism. So, this time, the discussed factor
(V1 G V3] would take the following form:

[Vl g VQ]RS, MGs [Vl]Rs gGRW [VQ]RS

0?1

- —2 X §gHLZ . (D?)

Comparing eq. (D.7) with eq. (D.3) we get,

1¢° K2
om? 1 ; (D.8)

= Kk = y[lbr— . (D.9)

So, we need to modify the ADD model file, where we have maintained the HLZ
formalism, in such a way that it obeys the following replacement: Gy = % properly
and that’s all. Rest of the thing will follow the same course what we have mentioned
at the time of discussing ADD model implementation in MADGRAPH) environment.
However, this time, the algorithm which takes care of the summation of graviton
propagators in RS scenario, will be completely different from what is used in ADD

case depending on the nature of construction of these two models.
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