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SYNOPSIS

The Standard Model (SM) of particle physics has been very successful in explaining

the fundamental interactions of the elementary particles and its predictions have

been verified experimentally to a very good accuracy. Also, the recent discovery

of a SM scalar like particle has created vigorous excitement. In spite of its merits,

there are many open questions, e.g. the hierarchy problem, the existence of dark

matter etc., that are not addressed within its domain and plenty of room is left

open for beyond standard model (BSM) physics scenarios such as extra dimensions,

supersymmetry, technicolor etc. All these models are subject to experimental veri-

fication. With its unprecedented energy and luminosity, the Large Hadron Collider

(LHC) at CERN is expected to unearth many interesting phenomena which are

not (well-)known so far, thereby enriching the field of fundamental particle physics.

The ATLAS and CMS experiments at the LHC are simultaneously hunting for new

physics signals and putting stronger and stronger limits on BSM scenarios.

In order to address the hierarchy between the electroweak scale and the Planck

scale, a theoretically well motivated model with large extra dimensions (LED) is

proposed by Arkani-Hamed, Dimopoulos and Dvali and it has also gained a lot of

interests in the field of collider phenomenology. In this model, gravity is allowed

to propagate in full (4 + d) dimensional space-time, where as, all SM particles are

confined to the usual 3-brane in order to conceal the effect of those extra spatial

dimensions (d). The extra dimensions are assumed to be compactified on a torus

of common circumference and they are flat and of equal size which could be of

macroscopic size. As a consequence of these assumptions, it follows from Gauss

Law that the effective Planck scale (MP ) in 4-dimensions is related to the (4 +

d) dimensional fundamental scale (MS) through the volume of the compactified
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extra dimensions. The large volume of the compactified extra spatial dimensions

would account for the dilution of gravity in 4-dimensions and hence the hierarchy.

Current experimental limits on deviation from inverse square law constraint the

number of possible extra spatial dimensions as d ≥ 2. The space-time is factorisable

and the 4-dimensional spectrum consists of the SM confined to 4-dimensions and a

tower of Kaluza-Klein (KK) modes of the graviton propagating in the full (4 + d)

dimensional space-time. In the context of collider physics, the study of processes

with virtual graviton exchange (leading to enhanced cross section in comparison

with the SM) or real graviton emission (leading to missing energy signal) would

help the experimentalists to put stringent bounds on the model parameters.

In this thesis, production of neutral electroweak triple gauge bosons via virtual

graviton exchange in LED are studied thoroughly along with their SM signatures.

The triple gauge boson production processes in the SM are the precise predictions

of the electroweak gauge theory and gauge self-couplings. They are also potential

background to many new physics models like supersymmetry and technicolor. For

example, Zγγ in SM is a background to signals with diphotons and missing trans-

verse energy in gauge mediated super symmetric theories and γγγ production in SM

is a background to one photon plus techni-pion. Processes with three gauge bosons

can also come from the large extra dimension model as gravitons couple directly to

gauge bosons of the SM. While mono-jet or di-lepton production is more sensitive

to the parameters of models with extra-dimensions compared to the triple gauge bo-

son production, all these processes involve same universal coupling of gravity with

the SM particles and hence can provide equally important information about the

model. Moreover, in discriminating physics beyond the SM namely supersymmetry

or technicolor models using triple gauge boson production, one can not ignore the

potential contributions resulting from models with extra dimensions. Processes viz.
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γγγ, γγZ, γZZ, ZZZ are studied and results for various kinematic distributions at

the LHC are presented.

At hadron colliders, observations of the BSM signals are very difficult due to

the enormous QCD radiative background and the leading order (LO) prediction of

a process of interest is not trustworthy to describe experimental observables solely

on the basis of that approximation. It suffers from large factorisation as well as

renormalisation scale uncertainties which for some processes could be as large as a

factor of two. These issues go beyond normalisation of a cross section as the shapes

of distributions may not be modeled correctly. Therefore, to provide quantitatively

reliable theoretical predictions, higher order QCD corrections on such processes are

unavoidable at the LHC. It provides a more credible prediction rate and it reduces

the renormalisation as well as factorisation scale uncertainties.

This thesis aims to provide a complete study of the next-to-leading order (NLO)

QCD corrections to the associated production of the vector gauge boson (Z/W±) and

the graviton in the large extra dimension model at the LHC. The study of graviton

(G) plus gauge boson production will be very useful to probe the new physics at the

LHC. It is important to note that there is a Standard Model background which gives

signals similar to those of associated production of Z and G. This SM background

receives a dominant contribution coming from the ZZ production process, where

one of the Z bosons in the final state decays into a pair of neutrinos (Z → νν̄)

leading to Z boson plus missing energy signals. The other Z boson can be identified

via its decays to leptons, mostly electrons & muons and then constraining the lepton

invariant mass close to the mass of the Z boson to consider only on-shell Z bosons.

Any deviation from this SM prediction will be an indication to some beyond SM

scenario and hence a study of this process would be useful in searching new physics.

At the LHC, fixed order calculation truncated to NLO at best yields results for
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sufficiently inclusive observable. Combining fixed order NLO and parton shower

(PS) Monte Carlo would extend the coverage of the kinematical region to consis-

tently include resummation in the collinear limit and also make a more exclusive

description of the final state, that would be as realistic as possible to the experi-

mental situation. The flexibility to incorporate hadronisation models and capability

to simulate realistic final state configurations that can undergo detector simulations

are the main advantages for the experimental collaborations.

This thesis focuses on the diphoton production to NLO+PS accuracy in both

SM and LED at the LHC. The diphoton final state is an important signal for extra

dimension searches, as the branching ratio of a KK mode decay to diphoton is twice

than that of a decay to individual charged lepton pair. Both ATLAS and CMS have

analysed the diphoton invariant mass spectrum using a constant K-factor for the

full range of the invariant mass distribution to put lower bounds on extra dimension

scale to NLO accuracy. However, this choice is not sensitive to possible distortions

of distributions that can arise at NLO. That is why, diphoton final state is studied

extensively in the LED model to NLO in QCD and matching to HERWIG parton

shower is implemented using the MC@NLO formalism. Based on this work, the

event files for various number of extra dimensions (d = 2 to 6) together with the

complete code are uploaded on the website http://amcatnlo.cern.ch so that the

experimentalists can download and use them to shower with specific cuts according

to their requirement. This is the first time MC@NLO formalism has been used for

a process in the LED model and it will significantly help extra dimension searches

at the LHC to constrain the LED model parameters.
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Chapter 1

Prelude

1.1 Introduction

Advancement of collider experiments has drawn an utmost attention of all of us

since last few years. Recent discovery of the new resonance at ATLAS (A Toroidal

LHC ApparatuS) and CMS (Compact Muon Solenoid) experiments of the Large

Hadron Collider (LHC) indicating the existence of Higgs boson, has created a lot

of delight and excitement in the high energy and particle physics community. The

Standard Model (SM) of particle physics has been very successful in explaining the

fundamental interactions of the elementary particles and its predictions have been

verified experimentally to a very good accuracy. However, no signature of the one

and only elementary scalar particle, named Higgs boson, which is the outcome of

the famous Brout-Englert-Higgs mechanism [1, 2, 3, 4, 5, 6], had been found until

recently [7, 8]. Suffice it to say, with this discovery, the SM which describes the

electromagnetic, weak and strong interactions in a methodical and systematic way,

is rife with all its constituent particles, though it is true that more data is needed to

be sure whether the new particle is a SM Higgs boson or something else predicted
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by some other theories.

Quantum Chromo Dynamics (QCD) is an impartible portion of the SM. It deals

with the strong interaction between the quark and the gluon which are known to

be the most elementary particles of any hadron, namely proton, neutron etc. QCD

is a Quantum Field Theory (QFT) which describes the non-abelian nature of the

colour field. It is basically SU(3) Yang-Mills theory of the coloured fermions which

are called quarks. In QCD, gluon acts as mediator of the strong force similar to

the photon mediating electromagnetic interactions in Quantum Electro Dynamics

(QED). However, there is a major difference between the characteristics of photon

and gluon and that makes QCD a bit special. Though photon does not carry any

electric charge, gluon carries a special kind of charge, which is known as colour

charge and due to this reason, self interactions among the gluons are quite obvious

unlike photons. Confinement and asymptotic freedom are two special properties of

the QCD. Running of strong coupling is of opposite nature compared to the running

of electromagnetic or weak coupling. At some low energy of about 200 MeV, the

strong coupling diverges leading to confinement of the quarks and gluons. Whereas,

at very high energies, the interaction between the quarks and gluons becomes very

weak which in fact allows one to do perturbative calculation in this region, as they

are considered to be asymptotically free there.

There are many standard books and interesting lecture notes (viz., [9, 10, 11, 12,

13] to name a few) available in the literature describing all aspects of the SM and

QCD in great detail. We prefer not to write them down again in this thesis which

will nothing but a mere repetition of those things resulting into unnecessary large

volume of the thesis. Rather, after presenting a brief overview on the method of

higher order corrections in section 1.2, we would like to briefly introduce, in section

1.3, some beyond standard model scenarios, as we shall be going to use one of them
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extensively in the subsequent chapters.

1.2 Higher Order Corrections

Involvement of initial state partons in a hadron collider turns it into a QCD machine,

as these partons having non-zero colour charge naturally take part in strong inter-

actions. A hadron collider produces lots of QCD background due to the abundance

of partons both in the initial and final states of a given process and therefore consid-

eration of mere Leading Order (LO) approximation becomes very much unreliable.

Note that, although the smallness of the strong coupling value makes the pertur-

bation theory to work, it is not too small to take a handful of subsequent higher

order terms into account. As a consequence, QCD radiative corrections become very

significant for they can enhance the LO predictions as well as diminish the arbitrary

scale uncertainties in theoretical predictions. Next-to-Leading Order (NLO) correc-

tion provides a better estimation of the total rate and reduces the renormalisation

scale (µR) and the factorisation scale (µF ) uncertainties to a reasonable extent. Fur-

ther, the presence of hard jets in the final state, due to these radiative corrections

has the potential to modify the shapes of several kinematical distributions of the

particles that are under study at LO. Obtaining such a modification to the shapes

of the distributions is beyond the scope of normalization of the corresponding LO

distributions by a constant K-factor. Hence, it requires an explicit computation of

the cross sections or distributions to NLO in QCD. Owing to this importance of the

radiative corrections, they have been computed for several important processes in

the SM as well as in many Beyond Standard Model (BSM) scenarios. Sometimes,

it becomes also necessary to have the results with Next-to-Next-to-Leading Order

(NNLO) accuracy depending on the process of interest and the exactitude achieved
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at NLO. However, this thesis deals with calculations up to NLO.

1.2.1 Fixed Order Calculation

Let us consider an example of a SM process at the LHC, say PP → e+e− (Drell-Yan

production process) to describe higher order QCD corrections up to a fixed order

(O(αs)) in a vivid way. The partonic contribution at LO comes from the subprocess

qq̄ → e+e− as depicted in Fig. 1.1. One can easily find the LO partonic cross section

of this process following the standard method of matrix element calculation and

the 2-body phase space integration. Now, as we are interested in doing NLO QCD

correction of it, first of all, we have to find all those Feynman diagrams, which

will participate in calculating O(αs) contribution, where αs is the strong coupling

strength. NLO partonic cross section can be written as the sum of three individual

contributions in the following way,

σNLO ≃
∫

d4Φ2 B +

∫
d4Φ2

∫

loop

dnl V +

∫
dnΦ3 R , (1.1)

where B is the LO or Born contribution, V is the virtual contribution and R is the

contribution coming from the real emission processes. All of them are related to

the calculation of matrix element square (|M2|) in each sub-category. Φ2 and Φ3

denote the 2-body and 3-body phase spaces respectively. In the second and last

terms of eq. (1.1), the loop integration (with loop momenta l) and the 3-body phase

space integration have to be carried out in n space-time dimensions where we can

consider n = (4 + ǫ), ǫ being an infinitesimally small quantity (ǫ → 0), in order to

regularise the Ultra-Violet (UV) and Infra-Red (IR) divergences appearing as poles

in ǫ. This procedure is known as dimensional regularisation [14]. In this present

example, LO contribution, which comes from the partonic subprocess qq̄ → e+e−,

4



γ/Z

q

q̄

e+

e−

Figure 1.1: Leading order Feynman diagram of the process qq̄ → e+e−.
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Figure 1.2: qq̄ initiated real emission Feynman diagrams originating from the process
qq̄ → e+e−.
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Figure 1.3: Feynman diagrams appearing in virtual correction of the process qq̄ →
e+e−.

is actually O(α0
s). Apart from the qq̄ initiated real emission diagrams presented

in Fig. 1.2, O(αs) contributions also come from the squared matrix elements of

the following real emission subprocesses: (i) qg → e+e−q, (ii) q̄g → e+e−q̄. In

addition, anotherO(αs) contribution comes from the interference of the LO diagrams

with the diagrams appearing due to the virtual correction (see Fig. 1.3). Together

with all these contributions, one finally gets the complete partonic cross section at

NLO which indeed needs to be convoluted with the Parton Distribution Functions

(PDF) of the initial state quarks or gluons that are coming from the two colliding
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protons at the LHC, in order to get the final cross section of the actual process

(i.e., PP → e+e−) we started with. There are many implicit non-trivial analytic

techniques and latent semi-analytical and numerical methodologies that one has to

face at the time of doing NLO correction of a process of interest. All the ins and

outs of a complete fixed order NLO calculation of a process (real graviton emission

process in association with a vector boson) at the LHC are presented in chapter 3

in great detail.

1.2.2 Parton Shower

When we are dealing with a hard subprocess (for example, γ∗ → qq̄), the external

particles are by definition hard and they can eventually emit additional partons

which carry on emitting other ones persistently, as we know that accelerated par-

ticles radiate. At this point, it is practically impossible to calculate the matrix

q

q̄

γ∗
q

q̄

γ∗
q

q̄

γ∗
q

q̄

γ∗
. . .

g g

g g g

g

Figure 1.4: Feynman diagrams resulting from parton shower effect on the process
γ∗ → qq̄.

element square of all of these diagrams (see Fig. 1.4) and study their complete con-

tribution, as we can see that the particle multiplicity is gradually increasing which

will in practice make the calculation more tedious and cumbersome. Besides, it is

clear from Fig. 1.4 that, as we go from left to right in those diagrams, four momenta

of the additional partons become lesser due to the energy-momentum conservation.

Therefore, it would be significant enough, if we can at least take into account all

these effects in the collinear limit. This phenomena is known as Parton Shower
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(PS) which, in principle, resums large logarithmic contributions coming from such

collinear effects and continues until the hard process evolves down to the hadronisa-

tion scale. In case of initial state showering, incoming partons are evolved backward

starting from the hard subprocess scale determined by the PDF up to the scale of

the constituents in the incoming hadrons.

In this context, let us recall the universal relation of a splitted matrix element

square, as depicted in Fig. 1.5, in case of collinear factorisation:

|Mn+1|2 dΦn+1 ≃ |Mn|2 dΦn
dq2

q2
dz

dφ

2π

αs

2π
Pa→bc(z) , (1.2)

where Mn+1 is the matrix element of any 2 → n+1 process, while Mn is the matrix

θ −→ 0 Mn

a

Mn+1

θa

b

c

θ

b

c

Figure 1.5: Schematic diagram of collinear factorisation.

element of the process when the splitting of the parton ‘a’ is aborted. The (n+ 1)-

body and n-body phase spaces are denoted by Φn+1 and Φn respectively. αs is the

usual strong coupling; z = Eb/Ea, is the relative energy of the daughter parton ‘b’

with respect to the energy of the parent parton ‘a’; φ is the azimuthal angle between

the polarisation of ‘a’ with the plane of branching and Pa→bc(z) denotes the famous

Altarelli-Parisi splitting kernel. The variable q is known as the evolution variable

which can be set in a variety of ways such as the transverse momentum (PT ) of ‘a’,

the angle (θ) between the two daughter particles etc.

With the help of the Poisson statistics, we can say that, if a branching is expected
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to occur obeying the pattern p, the probability of observing such splitting n times

is,

P(n; p) =
e−p pn

n!
. (1.3)

Using this, we can now readily find that the probability of observing no such splitting

is,

P(0; p) = e−p . (1.4)

Likewise, using eq. (1.2), we can define the following Sudakov factor,

∆(Q1, Q2) = exp

[
−αs

2π

∫ Q2

Q1

dq2

q2

∫ zmax

zmin

dz P (z)

]
, (1.5)

which in practice provides the non-splitting probability of parton ‘a’, when the

evolution parameter varies from Q1 to Q2. A Monte Carlo routine can be written

based on the application of Sudakov factor to describe a chain of parton splitting.

Besides, simultaneous study of soft emissions helps in settling up the right evolution

parameter to be used in the Parton Shower Monte Carlo (PSMC), thereby ensuring

angular ordering and/or colour ordering. For example, HERWIG [15, 16, 17, 18,

19] is an angular ordered PSMC program, where as, multiple options of evolution

parameters are available in PYTHIA [20, 21, 22, 23, 24].

Nevertheless, it is obvious that the parton shower, which stands solely on the

basis of collinear and/or soft approximation, can not describe the hard radiation

correctly. Therefore, it is necessary to use the matrix elements in order to describe

hard radiations together with the PSMC, which is valid only in the soft/collinear

region. In a sense, they are complementary to each other and we need to merge
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them together avoiding double counting and ensuring regular distributions. In one

hand, it is customary to use the high multiplicity matrix elements for describing hard

radiations and merge them with parton shower following the CKKW [25, 26, 27, 28,

29] or MLM [30, 31] algorithm, whereas on the other hand, one can start with the

NLO corrected results to describe the hard radiations and match them with parton

shower using the MC@NLO [32] or POWHEG [33, 34, 35] formalism. Note that

the later approach possesses several advantages over the first one such as, consistent

inclusion of K-factor information in detector simulation, estimation of theoretical

scale dependencies in a meaningful way, impact of NLO corrected observable shapes

on acceptance studies and so on. We shall describe a complete NLO result matched

with parton shower using the MC@NLO formalism in chapter 4 for the diphoton

production process both in the SM and in a particular BSM at the LHC.

1.3 Beyond Standard Model

In spite of its merits, the SM has many open questions that are not addressed within

its domain and a plenty of room is left open for some beyond SM physics scenarios

to address them. SUperSYmmetry (SUSY), extra dimensions, technicolor models

are a few to name such BSM scenarios. With the advent of the high energetic

hadron colliders, it is quite feasible to probe these new scenarios in the laboratory

experiments. The LHC with its unprecedented center mass energy of 14 TeV and

with luminosities as high as 1034 cm−2 s−1, offers the best possibility of discovering

the possible new physics that is hidden so far at lower energies.
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1.3.1 Large Extra Dimension

One of such BSM scenarios that has gained a lot of interest and has been studied well

in the context of collider phenomenology is the Large Extra Dimension (LED) model

proposed by Arkani-Hamed, Dimopoulos and Dvali [36, 37, 38]. This model, which

is also known as the ADD model, is theoretically well motivated and it addresses the

hierarchy problem with the concept of extra spatial dimensions. A viable mechanism

to hide these extra spatial dimensions (d) from the SM particles is to confine the

latter to a 3-brane and allow only the gravity to propagate in the full (4 + d)

dimensional space-time. For simplicity, the extra dimensions can be assumed to be

flat, of the same size and compactified on a d-dimensional torus of radius R/(2π).

After the compactification, the scale Ms of the extra dimensional theory is related

to the Planck scale Mp as,

M2
p = Cd M2+d

s Rd , (1.6)

where Cd = 2 (4π)−
d
2/Γ(d/2) and R is the size of the extra dimensions. This com-

pactification implies that a massless graviton propagating in (4 + d) dimensions

manifests itself as a tower of massive graviton modes in 4-dimensions, with mass

m2
~n = 4π2~n2/R2 , (1.7)

where ~n = {n1, n2, ...., nd} and ni = {0, 1, 2, ...}. Here, the zero mode corresponds to

the 4-dimensional massless graviton. As the inverse square law of gravity has been

tested down to only few µm so far [39], the size of the extra spatial dimensions in this

model can be taken as large as this limit. The hierarchy between the electroweak

scale and the Planck scale can then be accounted for by this large volume of the
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extra dimensions, as can be seen from eq. (1.6). For Ms ∼ O(TeV), the above limit

on R constrains the number of extra dimensions to d ≥ 2.

In the effective theory valid below the scale Ms, these gravitons couple to the

SM fields through energy momentum tensor T µν of the latter with the coupling

κ =
√
16π/Mp, as given by [40, 41],

Lint = −κ

2

∞∑

~n=0

T µν(x) h(~n)
µν (x) , (1.8)

where h
(~n)
µν contains one spin-2 state, (n − 1) spin-1 states and n(n − 1)/2 spin-0

states and the zero mode of the KK tower corresponds to the massless graviton in

the 4 space-time dimensions.

Since the coupling is through the energy momentum tensor, gravitons can couple

to all the SM fields with the same coupling strength κ irrespective of their charge,

colour and flavor. The Feynman rules for the above interaction Lagrangian are

given in [40, 41]. To order κ2, the above Lagrangian allows processes involving SM

fields and virtual gravitons in the intermediate state or real gravitons in the final

state. In the context of collider phenomenology, this gives rise to a very rich and

interesting signals that can be explored at the present LHC. The virtual exchange

of the gravitons can lead to the deviation from the SM predictions whereas the real

emission of the gravitons can lead to the missing energy signal. Though the coupling

of each graviton mode to the SM fields is Mp suppressed, the large multiplicity of

the available graviton modes can give rise to observable effects. Hence, there will be

a summation over the graviton modes at the amplitude level for the virtual graviton

exchanges and at the cross section level for the real graviton emissions. As the size of

the extra dimensions could be large in this model, the mass splitting i.e., (2π/R) is

very small and hence this summation over the graviton modes can be approximated
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to be an integral in the continuum limit, with the density of the graviton modes

given by [40],

ρ(m~n) =
Rd md−2

~n

(4π)d/2 Γ(d/2)
. (1.9)

In case of virtual graviton exchange process, the effective graviton propagator,

after summing over all KK states can be expressed as,

Dij(sij) =
∑

~n

1

sij −m2
~n + iε

=

∞∫

0

dm2
~n ρ(m~n)

1

sij −m2
~n + iε

=
1

κ2

8π

M4
S

(√
sij

MS

)(d−2)

[π + 2iI(Λ/
√
sij)] , (1.10)

where sij = (pi + pj)
2 is the invariant mass of the final state particles (with 4-

momenta pi and pj), directly attached to the KK mode at the parton level and the

function I(Λ/
√
sij) is described in [40], which depends on the UV cutoff Λ. As stated

earlier, although the interaction of KK modes with the SM particles is suppressed

by the coupling κ (eq. (1.8)), the cumulative effect of summing over large number of

accessible KK modes (eq. (1.10)) compensates the suppression, making the effective

coupling significant enough to have observable effects. It is usual practice to set

the UV cutoff Λ = MS and simplify the summation of virtual KK modes [40, 41]

to do the phenomenology. In this thesis, we follow the approach of [40] all the way

through any analysis which retains the details of the number of extra dimensions.

The numerator of the spin-2 KK graviton propagator [40] in n-dimensions can be
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expressed as,

Bµν,ρσ(k) = ζµρζνσ + ζµσζνρ −
2

(n− 1)
ζµνζρσ , (1.11)

where ζµν = (gµν − kµkν/m
2−→n ). Here, k is the momentum flowing through the

propagator.

For the real graviton production process at the collider experiment, the inclusive

cross section is given by the following convolution,

dσ =

∞∫

0

dm2
~n ρ(m~n) dσm~n

, (1.12)

where dσm~n
is the cross section for the production of a single graviton of mass m~n.

This collective contribution of the graviton modes results in their non-negligible

interaction with the SM fields and offers the best possibility of probing the low scale

quantum gravity effects at the colliders experiments.

1.3.2 Warped Extra Dimension

In the warped extra dimension scenario, we briefly describe the extra dimensional

model proposed by Randall and Sundrum, in which there is only one extra spatial

dimension and this model is also known as RS model [42, 43]. In RS model, the fifth

dimension is compactified on S1/Z2 orbifold with radius Rc, which is of the order of

Planck length. The Planck 3-brane with positive tension is situated at the orbifold

fixed point y = 0, while the TeV 3-brane with negative tension is located at another

orbifold fixed point y = πRc. The geometry of this 5-dimensional space-time, which
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is warped, can be defined with the following metric,

ds2 = e−2Ky ηµνdx
µdxν + dy2 , (1.13)

where 0 < y < πRc; ηµν is the usual 4-dimensional flat Minkowski metric and K

denotes the constant negative curvature of the non-factorisable AdS5 space-time.

Gravity can propagate on the bulk, while the SM fields are localised on the TeV

brane. While gravity originates on the Planck brane, a TeV scale can be generated

on the TeV brane for KRc ∼ 10, thus solving the hierarchy between the electroweak

scale and the Planck scale. Further, it has been shown in [44, 45, 46, 47], that

the value of KRc can be stabilised against quantum fluctuations by minimising the

potential of the modulus field, which has to be introduced in the bulk for this

purpose.

The tower of KK excitations (h
(n)
µν ) of the graviton couples to the SM energy

momentum tensor (T µν) through the following interaction Lagrangian,

Lint = − 1

Mp

T µν(x)h(0)
µν (x)−

eπKRc

Mp

∞∑

n=1

T µν(x)h(n)
µν (x) , (1.14)

where Mp is the reduced Planck scale. The first term in the above Lagrangian de-

notes the contribution of the zero mode graviton which is Mp suppressed. However,

contributions coming from the massive KK modes get enhanced due to the presence

of the exponential factor eπKRc in the last term of the above mentioned Lagrangian

and they produce interactions comparable to the electroweak strength. For this rea-

son, we can only consider the interaction of the massive KK gravitons with the SM

fields without any loss of generality and the interaction Lagrangian can be written
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as follows,

Lint ≃ − c0
m0

∞∑

n

T µν(x)h(n)
µν (x) , (1.15)

where c0 = K/Mp is an effective coupling and m0 = Ke−πKRc sets a mass scale for

the massive KK mode gravitons. The masses of h
(n)
µν are given by,

Mn = xn K e−πKRc , (1.16)

where xns’ are the zeros of the Bessel function J1(x). Since K is related to the

curvature of the fifth dimension, we cannot consider large values of K in order to

get rid of the large curvature effects. Moreover, K cannot be too small compared

to the value of Mp, as it will in turn reintroduce hierarchy. These considerations

constrain the value of c0 within the limit 0.01 < c0 < 0.1. Except for the overall

warp factor, Feynman rules [40, 41] for the RS model is exactly similar to the ADD

model. However, the mass gap between the KK modes of graviton in RS case is

quite distinct from ADD scenario and the summation over such KK modes leads to

the effective graviton propagator [48] defined as,

Deff(sij) =

∞∑

n=1

1

sij −M2
n + iMnΓn

=
1

m2
0

∞∑

n=1

X2
s −X2

n − i Γn

m0
Xn

(X2
s −X2

n)
2 + Γ2

n

m2
0
X2

n

, (1.17)

where Xs =
√
sij/m0, Xn = Mn/m0 and Γn corresponds to the width of the n-th

KK mode. The summation over n is kinematically bounded and can be calculated

numerically.
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1.4 Conclusion

In this chapter, we have presented the essence of higher order QCD corrections in

the context of hadron collider, namely LHC. We have described the importance of

doing NLO correction and outlined the available standard techniques to perform

it. Necessity of incorporating parton shower effects with the fixed order results has

also been illustrated. Besides, we have briefly described some of the BSM scenarios,

namely ADD and RS model. Equipped with all these notions, we are now ready to

study the phenomenology of a process in a BSM scenario at the LHC. In the next

chapter, we will discuss the prospects of probing large extra dimension model at the

LHC through neutral triple gauge boson production processes in LO.
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Chapter 2

Triple Gauge Boson Production

2.1 Introduction

The di-lepton [49, 50, 51, 52, 53, 54], di-gauge boson [53, 54, 55, 56, 57, 58, 59, 60]

and di-jet [61, 62] final states have been extensively studied in the context of extra

dimension models. The triple gauge boson final state is also an interesting new

physics signal in some of the beyond SM scenarios [63]. In this chapter, we consider

the neutral triple gauge boson production at the LHC and study how the ADD

model would alter the SM expectation. In the SM, the triple gauge boson final state

is an important signal as it depends on the 3-point and 4-point couplings among the

gauge bosons which is a test of the electroweak theory. This process in the SM has

been studied to LO [64, 65] and its extension to the NLO was on the Les Houches

wishlist [63, 66] and has been finally achieved in [67, 68, 69, 70]. The triple gauge

boson production processes in the SM are the precise predictions of the electroweak

gauge theory and gauge self-couplings. They are also potential backgrounds to

many new physics models like SUSY and technicolor. For example, Zγγ in SM

is a background to signals with di-photons and missing transverse energy in gauge
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mediated supersymmetric theories [71] and γγγ production in SM is a background to

one photon plus techni-pion [72]. Processes with three gauge bosons can also come

from the ADD model as gravitons couple directly to gauge bosons of the SM. While

mono-jet or di-lepton production is more sensitive to parameters of the model with

extra dimensions compared to the triple gauge boson production, all these processes

involve same universal coupling of gravity with the SM particles and hence can

provide equally important information about the model. Moreover, in discriminating

physics beyond the SM namely SUSY or technicolor models using triple gauge boson

production, one can not ignore the potential contributions resulting from models

with extra dimensions.

In this analysis, we consider the process PP → V V V X, where we restrict to the

neutral gauge bosons V = γ, Z and X is some hadronic final state. The following

four final states are the subject of this analysis: (i) γγγ (ii) γγZ (iii) γZZ and (iv)

ZZZ.

2.2 Neutral Triple Gauge Boson Production

The neutral gauge boson final state at the hadron collider PP → V V V X at LO

comes from the following subprocess,

q(p1) + q̄(p2) −→ V (p3) + V (p4) + V (p5) , (2.1)

where V = γ, Z and X is any final state hadron. The SM diagram for the above

process is shown in Fig. 2.1 with all possible permutations of final states. For the

final state with at least two ZZs, Higgs boson could contribute by coupling to the

quarks, but this is negligible in the vanishing quark mass limit. In the case of ZZZ

final state, there are additional Higgs strahlung diagrams, but their contribution is
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also quite small and becomes faded in the present Higgs mass limit. Hence, we have

not included the processes with the Higgs boson. Moreover, gg → V V V subprocess,

though it is formally NNLO in QCD, could substantially contribute at O(α0
s) in the

low invariant mass region of the final state vector bosons due to large gluon densities

at small x. However, this effect starts diminishing as the invariant mass grows up to

higher values wherein the ADD model begins to dominate over the SM contribution

and therefore such effect has not been taken care of in our present study. In the ADD

q(p1)

q̄(p2)

V (p3)

V (p4)

V (p5)

Figure 2.1: Typical Feynman diagram for triple gauge boson production in SM.

model, the KK modes of the graviton (G) couple to V bosons, quarks, anti-quarks

as well as to quark-antiquark-V boson vertex [40]. Four categories of Feynman

diagrams that give a V V V final state in ADD model are shown in Fig. 2.2. We have

G

Figure 2.2: Typical Feynman diagrams for triple gauge boson production in ADD
model. Dashed line represents the KK graviton (G) and the other particle lines are
same as they are in Fig. 2.1.

used unitary gauge (ξ → ∞) for the Z boson and the Feynman gauge (ξ = 1) for

the photon.

In the SM, the LO process for the production of γγγ at hadron colliders results
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from the annihilation of a quark and an anti-quark. In the ADD model, the produc-

tion mechanism is again from the same initial states, but one of the three photons

remains attached to either of the qq̄γ, γγG, qq̄γG vertices and the other two photons

come from the decay of KK graviton. The typical Feynman diagrams that contribute

in the SM and in the ADD model are shown in Fig. 2.1 and 2.2. The Feynman rules

for the processes with KK graviton can be found in [40, 41]. All the expressions for

the matrix element squared with proper spin, color sums and averages are obtained

using a symbolic program based on FORM [73]. The KK graviton propagator Dij

and the numerator of the spin-2 propagator [40] of the KK graviton are illustrated

in eq. (1.10) and (1.11) respectively. Terms proportional to negative powers of mass

of KK mode in ζµν do not contribute as they are proportional to kµkν . This pro-

vides a useful check on our calculation. The matrix elements have been checked for

gauge invariance. We performed similar computation for evaluating the parton level

subprocesses for γγZ, γZZ and ZZZ productions. In the following we list few of

the important observations.

For the γγZ production, in the limitmZ → 0 (mZ being the mass of Z boson), we

reproduce the matrix elements for γγγ process with the changes: (C2
V + C2

A)/4 −→

Q2
f , TZ −→ e, where CV , CA are the vector and axial vector couplings of the weak

gauge boson respectively, TZ = e/(sin θw cos θw) and Qf is the electric charge of

the quark flavors. In the case of γZZ production, we find that the parton level

subprocesses in SM and ADD model are similar to those of the γγZ production

with the changes γ ↔ Z. The squared matrix element for γZZ production that

comes from ADD model alone is not related to the one coming from γγγ production.

The reason is that some of the terms proportional to m2
Z , that appear in the GZZ

vertex, cancel all the inverse power of m2
Z present in the Z boson polarisation sum,

giving contributions that have no analogous ones in the γγγ process. However,
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the expression for the SM squared matrix element of γZZ is related to that of γγγ

process in the SM if we takemZ → 0, (C4
V + 6C2

VC
2
A + C4

A)/16 −→ Q4
f and TZ −→ e.

For ZZZ production, squared matrix elements involving ADD vertices do not have

any relation with those of γγγ production for the same reason as described in γZZ

production case. The SM squared matrix element of this process is related to the

one for the γγγ process in SM with the following replacement in the limit mZ → 0,

(C6
V + 15C4

VC
2
A + 15C2

VC
4
A + C6

A)/64 −→ Q6
f , TZ −→ e. In fact, we empirically find

that the most general formula for the replacement of n number of Z boson(s) with

photon(s) in the SM squared matrix element is,

(C2
V + C2

A)
n + 2n(n− 1)(C2

VC
2
A(C

2
V + C2

A)
n−2)

4n
−→ Q2n

f , (2.2)

which works for all the above three processes with n = 1, 2, 3. We have provided

the expressions of the squared matrix elements for the γγγ production process in

Appendix A. For the rest of the processes discussed above, such expressions of the

squared matrix elements are too large to be presented in this thesis. Rather, they

could be made available upon request.

2.3 Numerical Results

In this section, we present different kinematical distributions for the production of

neutral triple gauge bosons. The predictions are for the LHC at center of mass energy
√
S = 14 TeV. We have used CTEQ6L parton densities [74]. For the strong coupling

constant that appears in CTEQ6L, we use ΛQCD = 0.226 GeV and nf = 5 flavors.

We set the factorisation scale µF = P V
T for the transverse momentum distribution

of V and µF = Q for the invariant mass (Q) distribution of the di-boson pair. In
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addition we apply the following cuts on P V
T and the rapidity yV ,

P γ,Z
T ≥ 25 GeV and yγ,Z < 2.7 . (2.3)

We also ensure that in general the invariant mass of the di-boson (i.e., any two

identical bosons among the three Vs) is less than MS. We use mZ = 91.1876 GeV

and sin2 θw = 0.2312. The fine structure constant is taken as α = 1/128.
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[8] SM+ADD (3Z)
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γ(1)≤1200 (GeV)

[4],[8] → 100≤PT
Z(1)≤1200 (GeV)

[2],[6] → 300≤Qγγ≤1800 (GeV)

[3],[7] → 300≤QZZ≤1800 (GeV)

Figure 2.3: Total cross sections for all triple neutral gauge boson production pro-
cesses, shown as a function of MS for d = 2. Horizontal lines correspond to various
SM contributions.

CMS [75] and ATLAS [76] have already reported searches for signatures of extra

dimensions in the diphoton mass spectrum at the LHC for 7 TeV p p collisions. The

95 % lower bound on MS vary between 2.27 − 3.53 TeV depending on the number

of extra dimensions d = 3 − 7 for ATLAS and MS vary between 2.3 − 3.8 TeV

depending on the number of extra dimensions d = 2−7 for CMS, both using a fixed

K-factor of about 1.6 [56, 57]. We have used the phenomenologically viable ADD
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Tranverse Momentum Distribution of γ(1)
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Figure 2.4: Transverse momentum distribution of γ1 (left panel) for MS = 3.5 TeV
and d = 3. Rapidity distribution of γ1 (right panel) for MS = 3.5 TeV and d = 3
in the region where P γ1

T ∈ (750, 1250) GeV and its dependence on the factorisation
scale in the range µF = 0.2P γ1

T and µF = 2P γ1
T .

model parameters for our present study.

For the processes involving more than one photon, it is important to isolate

photons from each other i.e., they need to be well separated in phase space so that

they can be identified as separate objects in the detector. To do this, we consider

a cone of radius R =
√
(∆y)2 + (∆φ)2 in the rapidity-azimuthal angle plane (y, φ)

and ensure that the minimum separation between any two photons is taken to be

Rγγ = 0.4. In the following, we describe our findings for the various triple gauge

boson production processes.

The total cross sections for various processes involving neutral triple gauge boson

final states as a function of MS for a fixed value of d = 2 are given in Fig. 2.3. We

set d = 2 to make the effect of varying MS on the SM+ADD cross sections visible

for all the processes considered in the present chapter. The SM contributions that
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Transverse Momentum Distribution of γ(3)
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Figure 2.5: Transverse momentum distribution of γ3 (left panel) for MS = 3.5 TeV
and d = 3. Rapidity distribution of γ3 (right panel) for MS = 3.5 TeV and d = 3 in
the region where P γ3

T ∈ (750, 1250) GeV.

do not depend on ADD model parameter MS appear as horizontal lines.

2.3.1 γγγ Production

In this case, the three photons in the final state are classified in such a way that

P γ1
T > P γ2

T > P γ3
T . We have compared our predictions for P γ1

T distribution in the

SM against those given in [70] and found a very good agreement confirming the

correct implementation of our analytical results in our numerical code. In the left

panel of Fig. 2.4, we present the transverse momentum distribution of γ1 in SM as

well as in SM+ADD (i.e., SM, ADD and the interference between them). We have

chosen MS = 3.5 TeV and d = 3 as representative parameters of the ADD model.

In the high P γ1
T region, the distribution of SM+ADD is fully controlled by processes

coming from ADD model and is enhanced due to the dominant contributions of the

KK modes. In the right panel of Fig. 2.4, rapidity distribution of the most energetic
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photon γ1 is shown for 750 < P γ1
T < 1250 GeV in SM and SM+ADD. It is seen that

the SM contribution is extremely small in this range.
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Figure 2.6: Invariant mass distribution of the photon pair in γγZ final state (top
panel) and Z boson pair in γZZ final state (bottom panel) for d = 3 with different
values of MS (left) and for MS = 3.5 TeV with different values of d (right).

In order to estimate the factorisation scale µF dependence present in our LO
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results, in the right panel of Fig. 2.4 we have plotted rapidity distributions for three

different choices of µF i.e., µF = (0.2, 1, 2)P γ1
T . In the central rapidity region, the

variation of the rapidity distribution with respect to the factorisation scale is the

largest. With respect to the central choice of µF = P γ1
T , the variation is about

23.6 % and 8.2 % for the choice of µF = 0.2 P γ1
T and µF = 2 P γ1

T respectively.

The PT distribution of γ2 is found to be similar to that of γ1, but it is different

for γ3 (the least energetic photon among the three) as shown in Fig. 2.5 (left panel).

Similarly its rapidity distribution, which is shown in Fig. 2.5 (right panel), is also

different from the most energetic photon.

2.3.2 γγZ Production

Here, the invariant mass distribution of the photon pair is a useful observable because

in the ADD model, the photon pair is one of the clean decay modes of the KK

graviton and in the region of interest, this could give an enhancement of the tail of

the distribution. In Fig. 2.6 (top left panel) we have presented the invariant mass

distributions of the photon pair for different choices of MS = (3.5, 4, 4.5) TeV fixing

d = 3, while in the top right panel the same distribution is plotted for different

choices of d = 3, 4, 6, but for a fixed value of MS = 3.5 TeV. We find that the

KK modes dominate over the SM contribution for larger values of invariant masses

(around 400 GeV or above, for a given set of MS and d values) of photon pairs

leading to a significant enhancement of the signal over the background. We plot

the factorisation scale dependence of invariant mass distributions of photon pairs in

Fig. 2.7 (left panel) for different choices of µF , i.e., µF = (0.2, 2)Q.
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Scale Variation of Inv. Mass Dist. of Photon-Pair
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Figure 2.7: Dependence of invariant mass distribution of the photon pair in γγZ
final state (left panel) and Z boson pair in γZZ final state (right panel) on the
factorisation scale for d = 3 and MS = 3.5 TeV.

2.3.3 γZZ Production

Invariant mass of Z boson pair is again a useful observable. We have done a similar

analysis as we did for γγZ and use the same choice of factorisation scale and ADD

model parameters. The invariant mass distributions are shown in the lower panels

of Fig. 2.6 for different choices of MS and d. We find that the invariant mass

distributions of photon pairs in γγZ production and Z boson pairs here have similar

qualitative behavior. In order to investigate the uncertainty resulting from the

factorisation scale µF , in Fig. 2.7 (right panel), we have plotted the invariant mass

distributions of the Z boson pair for different choices of µF , i.e., µF = (0.2, 2)Q.
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Tranverse Momentum Distribution of Z(1)
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Figure 2.8: Transverse momentum distribution of Z1 (left panel) and Z3 (right panel)
for MS = 3.5 TeV and d = 3.
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Figure 2.9: Rapidity distribution of Z1 for MS = 3.5 TeV and d = 3 in the region
where PZ1

T ∈ (900, 1400) GeV.
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2.3.4 ZZZ Production

We have classified triple Z bosons in such a way that PZ1
T > PZ2

T > PZ3
T and for

the PZi
T distribution, we make the choice of factorisation scale as µF = PZi

T , where

i = 1, 2, 3. In Fig. 2.8, we have presented the transverse momentum distributions

of Z1 (left panel) and Z3 (right panel) for SM and SM+ADD with MS = 3.5 TeV

and d = 3. Also, rapidity distribution of Z1 for SM and SM+ADD with the same

model parameters is shown in Fig. 2.9. For the rapidity distribution, we have put

the constrain: 900 < PZ1
T < 1400 GeV. As in the case of γγγ, the PZ2

T distribution

is similar to that of PZ1
T distribution. We have also shown the sensitivity of rapidity

distribution to the factorisation scale µF by varying it between µF = 0.2PZ1
T and

µF = 2PZ1
T . In the central rapidity region, we estimate the variation of the rapidity

distribution with the factorisation scale and find that for µF = 0.2PZ1
T and µF =

2PZ1
T , such variations are about 27.5 % and 8.9 % respectively with respect to those

at µF = PZ1
T . The rapidity distribution for Z2 is similar to that of Z1 while Z3 is

different.

So far, in our numerical analysis, we have put the UV cutoff Λ = MS which is the

conventional choice to do the phenomenology as mentioned earlier. The sensitivity

of the choice of UV cutoff is presented in Fig. 2.10 for P γ1
T distribution of γγγ

final state and also for the invariant mass distribution of γγ pair of γγZ process

by varying Λ = (0.9, 0.95, 1)MS. The cross section at P γ1
T = 1200 GeV varies

between 10 - 24 % as we vary Λ = (0.9, 0.95)MS as compared to Λ = MS for the

γγγ process. Similarly, for the cross section of γγZ process at Q = 2000 GeV, the

variation stands between 7 - 15 % in the same range of Λ.
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Tranverse Momentum Distribution of γ(1)

d
σ
/
d
P
T
γ
(
1
)
 
(
p
b
/
G
e
V
)

1e-08

1e-07

1e-06

1e-05

0.0001

1e-08

1e-07

1e-06

1e-05

0.0001

PT
γ(1) (GeV)

200 400 600 800 1,000 1,200

200 400 600 800 1,000 1,200

SM

SM+ADD (Λ = Ms)

SM+ADD (Λ = 0.95*Ms)

SM+ADD (Λ = 0.90*Ms)

Ms= 3.5 TeV

d = 3

Invariant Mass Distribution of Photon-Pair 

d
σ
/
d
Q
 
(
p
b
/
G
e
V
)

1e-08

1e-07

1e-06

1e-05

0.0001

1e-08

1e-07

1e-06

1e-05

0.0001

Q (GeV)
400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

SM

SM+ADD (Λ = Ms)

SM+ADD (Λ = 0.95*Ms)

SM+ADD (Λ = 0.90*Ms)

Ms = 3.5 TeV

d = 3

Figure 2.10: P γ1
T distribution of γγγ final state (left) and invariant mass dis-

tribution of the photon pair in γγZ final state (right) using the cutoff scale
Λ = (0.9, 0.95, 1)MS for MS = 3.5 TeV and d = 3.

2.4 Pentagon Reduction

To make the pavement towards NLO corrections of these processes involving tensor

couplings, reduction of 5-point tensor integrals will inevitably be required. There-

fore, in this section, we deal with the way of reducing the one loop 5-point tensor

integrals (up to rank-4) using the Passarino-Veltman reduction technique [77, 78, 79].

In fact, numerous activities have been performed in reducing one loop tensor inte-

grals and calculating the scalar ones (see for example [80, 81, 82, 83, 84]). The

following work is basically an extension of what was done in [85], where reduction of

4-point tensor integrals (up to rank-3) was taken care of. Here, we describe the usage

of projective momenta technique and define new projective momenta to perform a

complete study of reducing 4-rank 4-point and the full 5-point tensor integrals up

to rank-4. All the analytical results are given in detail so that they can easily be
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coded in any analytical or numerical programme.

2.4.1 Notation & Convention

We define up to 5-point integrals in the following way,

A0(M1) = (2πµ)4−n

∫
dnl

iπ2

1

D1

,

B{0,µ,µν}(p1,M1,M2) = (2πµ)4−n

∫
dnl

iπ2

{1, lµ, lµlν}
D1D2

,

C{0,µ,µν,µνρ}(p1, p2,M1,M2,M3) = (2πµ)4−n

∫
dnl

iπ2

{1, lµ, lµlν , lµlνlρ}
D1D2D3

,

D{0,µ,µν,µνρ,µνρλ}(p1, p2, p3,M1,M2,M3,M4)

= (2πµ)4−n

∫
dnl

iπ2

{1, lµ, lµlν , lµlνlρ, lµlνlρlλ}
D1D2D3D4

,

E{0,µ,µν,µνρ,µνρλ}(p1, p2, p3, p4,M1,M2,M3,M4,M5)

= (2πµ)4−n

∫
dnl

iπ2

{1, lµ, lµlν , lµlνlρ, lµlνlρlλ}
D1D2D3D4D5

. (2.4)

where Mis are the masses of off-shell internal lines and pis are the on-shell 4-

momentum of external particles and Dis are given here under:

D1 = l2 −M2
1 + iǫ ,
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D2 = (l + p1)
2 −M2

2 + iǫ ,

D3 = (l + p1 + p2)
2 −M2

3 + iǫ ,

D4 = (l + p1 + p2 + p3)
2 −M2

4 + iǫ ,

D5 = (l + p1 + p2 + p3 + p4)
2 −M2

5 + iǫ . (2.5)

Note that, for the sake of simplicity, we keep ourselves confined to present analytical

results involving massless internal lines in the loop. However, it is straight forward

to extend such calculation for massive internal lines with nominal changes in few

selective variables. It is evident that the above integrals listed in eq. (2.4) are

symmetric in their Lorentz indices and they can be easily demonstrated in Lorentz

covariant way as follows,

Bµ = p1µB1 ,

Bµν = p1µp1νB21 + gµνB22 , (2.6)

Cµ = p1µC11 + p2µC12 ,

Cµν = p1µp1νC21 + p2µp2νC22 + {p1p2}µνC23 + gµνC24 ,

Cµνρ = p1µp1νp1ρC31 + p2µp2νp2ρC32 + {p1p1p2}µνρC33 + {p1p2p2}µνρC34
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+ {p1g}µνρC35 + {p2g}µνρC36 , (2.7)

Dµ = p1µD11 + p2µD12 + p3µD13 ,

Dµν = p1µp1νD21 + p2µp2νD22 + p3µp3νD23

+ {p1p2}µνD24 + {p1p3}µνD25 + {p2p3}µνD26 + gµνD27 ,

Dµνρ = p1µp1νp1ρD31 + p2µp2νp2ρD32 + p3µp3νp3ρD33

+ {p1p1p2}µνρD34 + {p1p1p3}µνρD35 + {p1p2p2}µνρD36

+ {p1p3p3}µνρD37 + {p2p2p3}µνρD38 + {p2p3p3}µνρD39

+ {p1p2p3}µνρD310 + {p1g}µνρD311 + {p2g}µνρD312 + {p3g}µνρD313 ,

Dµνρλ = p1µp1νp1ρp1λD41 + p2µp2νp2ρp2λD42 + p3µp3νp3ρp3λD43

+ {p1p1p1p2}µνρλD44 + {p1p1p1p3}µνρλD45 + {p1p1p2p2}µνρλD46

+ {p1p1p2p3}µνρλD47 + {p1p1p3p3}µνρλD48 + {p1p2p2p2}µνρλD49

+ {p1p2p2p3}µνρλD410 + {p1p2p3p3}µνρλD411 + {p1p3p3p3}µνρλD412

+ {p2p2p2p3}µνρλD413 + {p2p2p3p3}µνρλD414 + {p2p3p3p3}µνρλD415

+ {p1p1g}µνρλD416 + {p2p2g}µνρλD417 + {p3p3g}µνρλD418

+ {p1p2g}µνρλD419 + {p1p3g}µνρλD420 + {p2p3g}µνρλD421 + {gg}µνρλD422 ,

(2.8)

Eµ = p1µE11 + p2µE12 + p3µE13 + p4µE14 ,

Eµν = p1µp1νE21 + p2µp2νE22 + p3µp3νE23 + p4µp4νE24

+ {p1p2}µνE25 + {p1p3}µνE26 + {p1p4}µνE27

+ {p2p3}µνE28 + {p2p4}µνE29 + {p3p4}µνE210 + gµνE211 ,
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Eµνρ = p1µp1νp1ρE31 + p2µp2νp2ρE32 + p3µp3νp3ρE33 + p4µp4νp4ρE34

+ {p1p1p2}µνρE35 + {p1p1p3}µνρE36 + {p1p1p4}µνρE37

+ {p1p2p2}µνρE38 + {p1p3p3}µνρE39 + {p1p4p4}µνρE310

+ {p1p2p3}µνρE311 + {p1p2p4}µνρE312 + {p1p3p4}µνρE313

+ {p2p2p3}µνρE314 + {p2p2p4}µνρE315 + {p2p3p3}µνρE316

+ {p2p4p4}µνρE317 + {p2p3p4}µνρE318 + {p3p3p4}µνρE319

+ {p3p4p4}µνρE320 + {p1g}µνρE321 + {p2g}µνρE322

+ {p3g}µνρE323 + {p4g}µνρE324 ,

Eµνρλ = p1µp1νp1ρp1λE41 + p2µp2νp2ρp2λE42 + p3µp3νp3ρp3λE43 + p4µp4νp4ρp4λE44

+ {p1p1p1p2}µνρλE45 + {p1p1p1p3}µνρλE46 + {p1p1p1p4}µνρλE47

+ {p1p1p2p2}µνρλE48 + {p1p1p3p3}µνρλE49 + {p1p1p4p4}µνρλE410

+ {p1p1p2p3}µνρλE411 + {p1p1p2p4}µνρλE412 + {p1p1p3p4}µνρλE413

+ {p1p2p2p2}µνρλE414 + {p1p2p2p3}µνρλE415 + {p1p2p2p4}µνρλE416

+ {p1p2p3p3}µνρλE417 + {p1p2p3p4}µνρλE418 + {p1p2p4p4}µνρλE419

+ {p1p3p3p3}µνρλE420 + {p1p3p3p4}µνρλE421 + {p1p3p4p4}µνρλE422

+ {p1p4p4p4}µνρλE423 + {p2p2p2p3}µνρλE424 + {p2p2p2p4}µνρλE425

+ {p2p2p3p3}µνρλE426 + {p2p2p3p4}µνρλE427 + {p2p2p4p4}µνρλE428

+ {p2p3p3p3}µνρλE429 + {p2p3p3p4}µνρλE430 + {p2p3p4p4}µνρλE431

+ {p2p4p4p4}µνρλE432 + {p3p3p3p4}µνρλE433 + {p3p3p4p4}µνρλE434

+ {p3p4p4p4}µνρλE435 + {p1p1g}µνρλE436 + {p1p2g}µνρλE437

+ {p1p3g}µνρλE438 + {p1p4g}µνρλE439 + {p2p2g}µνρλE440

+ {p2p3g}µνρλE441 + {p2p4g}µνρλE442 + {p3p3g}µνρλE443

+ {p3p4g}µνρλE444 + {p4p4g}µνρλE445 + {gg}µνρλE446 . (2.9)
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In the above equations (eq. (2.6)-(2.9)), we have adopted some short-hand notations

which are given here under:

{pipjpkpl}µνρλ =
∑

σ(i,j,k,l)

pσ(i)µpσ(j)νpσ(k)ρpσ(l)λ , (2.10)

with σ(i, j, k, l) denoting all different permutations of (i, j, k, l). Similar is the case

for {pipjpk}µνρ and {pipj}µν expansions.

{pipjg}µνρλ = {pipj}µνgρλ + {pipj}µρgνλ + {pipj}µλgνρ

+ {pipj}νρgµλ + {pipj}νλgµρ + {pipj}ρλgµν , (2.11)

{pig}µνρ = piµgνρ + piνgµρ + piρgµν , (2.12)

{gg}µνρλ = gµνgρλ + gµρgνλ + gµλgνρ . (2.13)

At this stage, our aim is to find all the co-efficients of Dµνρλ (in eq. (2.8)) and for all

others represented in eq. (2.9). Rest of the co-efficients of eq. (2.6),(2.7),(2.8) have

already been calculated and they are listed in [85].

2.4.2 Reduction of 4-point 4-rank Tensor

Apparently, it seems that, if we want to find out the co-efficients of Dµνρλ, we have

to deal with a 22 × 22 matrix. But, this can be reduced to a 3 × 3 matrix prob-

lem by introducing three projective momenta Pis’ which would have the following

properties:

P µ
i pjµ = δij ∀ i, j = 1, 2, 3 . (2.14)
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The existence of such projective momenta is directly related to the existence of X−1

matrix, where the X matrix is defined as follows,

X(p1, p2, p3) ≡ X[1,2,3] =




p21 p1.p2 p1.p3

p1.p2 p22 p2.p3

p1.p3 p2.p3 p23




. (2.15)

In other words, if these three 4-momenta p1, p2, p3 form an independent set resulting

det[X ] 6= 0, then only construction of such Pis would be possible. Construction of

an another projective tensor P µν is inevitable in order to find out the co-efficients

of Dµν (eq. (2.8)) and its form and properties are given below:

P µν =
1

(n− 3)

{
gµν −

3∑

i=1

P µ
i p

ν
i

}
, (2.16)

piµP
µν = 0 and gµνP

µν = 1 . (2.17)

With the correct combination of these two types of projective tensors mentioned

above, we can now define a new projective tensor which is essential to be able to

find some of the co-efficients of Dµνρλ and it is of the following form,

P µνρ
i,j,k = P µ

i P
ν
j P

ρ
k − (Pi.Pj)P

µνP ρ
k − (Pj .Pk)P

µνP ρ
i − (Pk.Pi)P

µνP ρ
j . (2.18)

For example, by applying P µνρ
1,1,1 on Dµνρλ, we get the following matrix identity which

is indeed a 3× 3 matrix relation:

P µνρ
1,1,1Dµνρλ




pλ1

pλ2

pλ3




= X[1,2,3]




D41

D44

D45




+




3D416

0

0




=




R441

R442

R443




. (2.19)
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In a like manner, we can easily get similar kind of matrix equations (see Appendix

B.1), which in fact provide the solution for the co-efficients ranging from D41 to D415

with the proper choice of Pi,j,k, provided we need to know the exact solution for the

rest of the unknown variables (e.g. D416 and R441−443 in eq. (2.19)) beforehand.

In order to find such relations involving the co-efficients D416 to D421, we need to

operate P µνP ρ
i on Dµνρλ where i = 1, 2, 3. Following is just one of these relations:

P µνP ρ
1Dµνρλ




pλ1

pλ2

pλ3




= X[1,2,3]




D416

D419

D420




+




D422

0

0




=




R4422

R4423

R4424




. (2.20)

Rest of them are listed in Appendix B.1. Now, the only co-efficient left to evaluate

is D422, which demands invocation of another new projection operator (P µνρλ), that

obeys the following relation:

P µνρλ =

(
n− 3

n− 1

)
P µνP ρλ , (2.21)

and applying this projective tensor on Dµνρλ, we finally get,

P µνρλDµνρλ = D422 . (2.22)

At this point, complete solutions for these co-efficients are one step away, as we

are to derive the solutions for the R-functions right away. The calculation is straight

forward and it will be more vivid with the following explicit derivation of R441 given

here under:

R441 = P µνρ
1,1,1Dµνρλp

λ
1
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= (2πµ)4−n

∫
dnl

iπ2
P µνρ
1,1,1

lµlνlρlλ
D1D2D3D4

pλ1

= (2πµ)4−n

∫
dnl

iπ2
[P µ

1 P
ν
1 P

ρ
1 − 3(P1.P1)P

µνP ρ
1 ]

lµlν lρ
D1D2D3D4

(l.p1)

= (2πµ)4−n

∫
dnl

iπ2
[P µ

1 P
ν
1 P

ρ
1 − 3(P1.P1)P

µνP ρ
1 ]

lµlν lρ
D1D2D3D4

× 1

2
[(l + p1)

2 − l2 − p21]

=
1

2

{
(2πµ)4−n

∫
dnl

iπ2
[P µ

1 P
ν
1 P

ρ
1 − 3(P1.P1)P

µνP ρ
1 ]

lµlνlρ
D1D3D4

− (2πµ)4−n

∫
dnl

iπ2
[P µ

1 P
ν
1 P

ρ
1 − 3(P1.P1)P

µνP ρ
1 ]

× (l − p1)µ(l − p1)ν(l − p1)ρ
l2(l + p2)2(l + p2 + p3)2

− (2πµ)4−n

∫
dnl

iπ2
[P µ

1 P
ν
1 P

ρ
1 − 3(P1.P1)P

µνP ρ
1 ]

lµlνlρ p21
D1D2D3D4

}

=
1

2
[P µ

1 P
ν
1 P

ρ
1 − 3(P1.P1)P

µνP ρ
1 ][Cµνρ(p1 + p2, p3)− Cµνρ(p2, p3)

+({llp1}µνρ − {lp1p1}µνρ + pµ1p
ν
1p

ρ
1)C0(p2, p3)− p21Dµνρ(p1, p2, p3)]

=
1

2
[C31(p1 + p2, p3) + C0(p2, p3)− p21D31(p1, p2, p3)] . (2.23)

Rest of the R-functions can be derived in the similar way and all of them are listed

in Appendix B.1.

2.4.3 Reduction of 5-point Tensor

The main thing to remember at the time of reducing 5-point tensor integrals is that,

here the number of independent external 4-momenta is four (i.e., p1, p2, p3, p4) and

one has to define all the projective momenta and projective tensors consistently.

So, to keep pace with the above statement, it is obvious that we would require four

projective momenta with the following properties,

P µ
i pjµ = δij ∀ i, j = 1, 2, 3, 4 . (2.24)
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In this case, X-matrix has to be redefined and the projective tensor P µν has to be

modified maintaining the same properties as described in eq. (2.17), in the following

way,

X(p1, p2, p3, p4) ≡ X[1,2,3,4] =




p21 p1.p2 p1.p3 p1.p4

p1.p2 p22 p2.p3 p2.p4

p1.p3 p2.p3 p23 p3.p4

p1.p4 p2.p4 p3.p4 p24




, (2.25)

P µν =
1

(n− 4)

{
gµν −

4∑

i=1

P µ
i p

ν
i

}
. (2.26)

With the help of the above two projection operators, we can easily reduce Eµ

and Eµν and their expressions are provided in detail in Appendix B.2. In order to

reduce Eµνρ and Eµνρλ, projective tensors similar to P µν
i,j and P µνρ

i,j,k would work with

the only modification therein that the latin indices will now run from 1 to 4, unlike

the 4-point reduction case, where they are running from 1 to 3, i.e.,

P µν
i,j = P µ

i P
ν
j − (Pi.Pj)P

µν , (2.27)

P µνρ
i,j,k = P µ

i P
ν
j P

ρ
k − (Pi.Pj)P

µνP ρ
k − (Pj .Pk)P

µνP ρ
i − (Pk.Pi)P

µνP ρ
j , (2.28)

where i, j, k = 1, 2, 3, 4. In addition, to find out the solution for the co-efficient E446

in eq. (2.9), one has to consider the following relation,

PµνρλEµνρλ = E446 , (2.29)

where

Pµνρλ =

(
1

2n− 7

)
P µνP ρλ . (2.30)
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All the (4 × 4) matrix relations along with the R-functions for all reduced 5-point

integrals are systematically jotted down in Appendix B.2.

2.5 Conclusion

In this chapter, we have studied the neutral triple gauge boson production pro-

cesses at the LHC in theories with large extra dimensions which are produced via

the exchange of a tower of KK graviton, taking into account the SM contributions

altogether. All the final state photons and Z bosons are taken to be real. We have

performed various checks on our analytical results and the numerical predictions are

obtained using a Monte Carlo code which allows us to implement various experi-

mental cuts. For the case in which the gauge bosons in the final state are identical

we have presented the transverse momentum distribution by ordering the transverse

momentum as P V1
T > P V2

T > P V3
T . We find that P V1

T and P V2
T distributions are similar

but the one for P V3
T is different. The rapidity distributions are also presented. For

the case where one of the gauge bosons in the final state is different, we choose to

use the invariant mass distribution of the identical di-bosons, as it would be a better

discriminator in the region of interest. We have also studied their dependencies on

the ADD model parameter MS and the number of extra dimensions d, keeping the

UV scale Λ = MS. In addition, we have reported the sensitivity of the choice of Λ

by varying it from Λ = 0.9MS to 0.95MS. We have also studied the dependence of

our LO predictions on the factorisation scale. Nevertheless, a detailed calculation of

5-point tensor integral reduction using Passarino-Veltman technique has been pre-

sented in order to reveal its analytical results in a ready-to-use format. Howsoever,

we have not yet dealt with complete calculation of any process to the NLO accu-

racy. In the next chapter, we will present NLO QCD correction to the associated
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production of the vector gauge boson (Z/W±) and the graviton in the LED model

at the LHC and discuss its effect on various kinematical observables.
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Chapter 3

Real Graviton Production

3.1 Introduction

We already know that the collective contribution of the graviton modes reveals their

non-negligible interaction with the SM fields and offers the best possibility of probing

the low scale quantum gravity effects at the collider experiments. Consequently, a

very rich and interesting collider signals of some important processes have been

reported in the literature, but most of them are available only at the leading order

in the perturbation theory [40, 41, 61, 62, 86, 87, 88]. The K-factors in some cases

are found to be as high as a factor of two. Pair production processes are the best

to exemplify the case of virtual graviton effects, where the NLO QCD corrections

are computed for di-lepton [50, 51, 52, 89], diphoton [56, 57], di-Z and W+ W−

[59, 60, 90, 91] production processes. In the context of missing energy signals in

LED model, the NLO QCD corrections are presented for the processes (i) jet plus

graviton production [92] and (ii) photon plus graviton production [93]. In each of

these two cases, it is shown that the K-factors can be as high as 1.5 at the LHC.

In this present chapter, we are going to compute the NLO QCD corrections to the
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associated production of vector gauge boson and the graviton at the LHC and give

a quantitative estimate of the impact of these radiative corrections.

The gravitons when produced at the collider experiments escape the experimental

detection due to their small couplings and negligible decays into SM particles. The

production of vector bosons (V = Z, W±) together with such an invisible gravitons

(G) can give rise to a very large missing transverse momentum signals at collider

experiments. Hence, the study of graviton plus gauge boson production, in general,

would be a useful one in probing the new physics at the LHC. This process has been

studied at LO in the context of lepton colliders [94, 95] as well as at the hadron

colliders [96] and also has been implemented in Pythia8 [97]. The process is an

important one and stands complementary to the more conventional ones involving

the graviton production, like jet plus graviton or photon plus graviton productions,

that are generally useful in the search of extra dimensions at the collider experiments.

It is important to note that there is a SM background which gives signature

similar to those of associated production of Z and G. This SM background receives

a dominant contribution coming from the ZZ production process, where one of the

Z bosons in the final state decays into a pair of neutrinos (Z → νν̄) leading to Z

boson plus missing energy signal. The other Z boson can be identified via its decays

to leptons, mostly electrons and muons and then constraining the lepton invariant

mass close to the mass of the Z boson to consider only the on-shell Z bosons. A

detailed study of the event selection and the minimization of other SM contributions

to this process ZZ → ll̄νν̄, using MC@NLO [32] and Pythia [24], is taken up in the

context of ATLAS detector simulation and is presented in [98]. Any deviation from

this SM prediction will hint some beyond SM scenario and hence a study of this

process will be useful in searching the new physics.

In the context of extra dimensions, a study of the Z plus graviton production at
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LO at the LHC is discussed in [96], where the Z boson identification is done with

the leptonic decay modes and using the cuts on the leptons as specified in [98]. It is

worth noting here that a signal of Z boson plus missing energy can also come from

the production of Z plus unparticle U , where the unparticle leads to missing energy

signal. A study of such process based on ATLAS detector simulation [96] shows

that the vector unparticles are difficult to be probed using this channel, whereas the

tensor unparticles can give signals identical to that of the graviton. In view of the

above, it is worth studying gauge boson plus missing energy signals, in particular

ZG production, which could be useful to confirm the extra dimensional signals once

they are seen in the main channels like jet or photon plus missing energy.

In what follows, we describe the computation of NLO cross sections for the pro-

cesses under study. Since our focus is on the QCD part in this work, we will confine

our calculation to the production of on-shell Z and W± bosons. A more detailed

study involving their decays into leptons requires a full detector level simulation

with the appropriate cuts at NLO and is beyond the scope of this thesis.

3.2 Analytical Details

3.2.1 Leading Order Calculation

At the lowest order in the perturbation theory, the associated production of the

vector gauge boson and the graviton takes place via the quark anti-quark initiated

subprocess given by,

qa′(p1) + q̄b′(p2) → V (p3) +G(p4) , (3.1)
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where V = Z,W± and a′, b′ are flavour indices. The corresponding Feynman dia-

grams are shown in Fig. 3.1. These diagrams are obtained by considering the tree

level qq̄V diagram and by attaching the graviton line to all possible external legs

and the qq̄V vertex. The Feynman rules and the summation of polarization tensor

q

q̄

V

G

Figure 3.1: Feynman diagrams that contribute to the associate production of the
vector boson and the graviton at the leading order.

of the graviton are given in [40, 41]. The couplings of the fermions to the Z and W

bosons are given by,

− i
eTZ

2
γµ(Cv − Caγ

5) , −i
eTW

2
γµ(1− γ5) , (3.2)

where

TZ =
1

cosθW sinθW
, TW =

1√
2 sin θW

,

and the co-efficients Cv and Ca are

Cv = T f
3 − 2 sin2θW Qf , Ca = T f

3 . (3.3)

Here, Qf and T f
3 denote the electric charge and the third component of the isospin

of the quarks respectively and θW is the weak mixing angle. For the vector gauge

boson, the propagator in the unitary gauge (ξ → ∞) has been used throughout. This
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choice of the unitary gauge in the electroweak sector has the advantage of having

vanishing goldstone and ghost contributions. The leading order matrix elements

for the associated production of Z boson and the graviton are computed using the

algebraic manipulation program FORM [73] and the square amplitude (in n space-

time dimensions) is as follows,
∑

spin

|M |2 = 1

4

1

3

1

96
(C2

v + C2
a)

κ2 T 2
Z

(D2 t2 u2)
×

[
12m10(n − 2)tu + m2tu{3(n − 2)2t4 − 2[−68 + n(104 + (−31 +

n)n)]t3u+2[284+n(−264+(63−2n)n)]t2u2−2[−68+n(104+(n−

31)n)]tu3 + 3(n − 2)2u4 − 48m6
Z(n− 2)(t + u)− 4m4

Z [3(n− 9)(n−

2)t2+2(124+3(n−21)n)tu+3(n−9)(n−2)u2]+4m2
Z(t+u)[3(n−

5)(n−2)t2−2(−90+n(n+35))tu+3(n−5)(n−2)u2]}−3m8{12(n−

2)tu(t+ u) +m2
Z [(n− 2)2t2 + 2(16 + (n− 14)n)tu+ (n− 2)2u2]} −

3m6{4m4
Z(18+(n−13)n)tu−2m2

Z(t+u)[(n−2)2t2+2(26+n(2n−

21))tu+(n− 2)2u2]− tu[(n− 2)(10+n)t2 +2(−32+3n(2+n))tu+

(n− 2)(10 + n)u2]} + 2t2u2{32m6
Z(n− 2)− 8m4

Z(−6 + n + n2)(t +

u) + (40 + (n − 17)n)(t + u)[(n− 2)t2 + 2(n − 4)tu + (n − 2)u2] −

m2
Z [(n− 2)(48 + (n− 25)n)t2 + 2(−156 + n(118 + (n− 27)n))tu+

(n− 2)(48+ (n− 25)n)u2]}+m4{48m6
Z(n− 2)tu+24m4

Z(18 + (n−

12)n)tu(t+u)−6tu(t+u)[(n−2)nt2+2(−12+n(3n−4))tu+(n−

2)nu2]−m2
Z [3(n− 2)2t4 + 12(n− 6)(3n− 5)t3u+ 2(604 + n(25n−

344))t2u2 + 12(n− 6)(3n− 5)tu3 + 3(n− 2)2u4]}
]

,

(3.4)

where D = (s−m2
Z) and s, t, u are the usual Mandelstam invariants. Here mZ and

m denote the masses of Z boson & KK graviton respectively. The over all bar in

LHS of eq. (3.4) represents that the matrix elements have been averaged over the
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spins and the colors of the initial state particles and summed over those of the final

state ones.

3.2.2 Next-to-Leading Order Calculation

At the NLO in the perturbation theory, the cross sections receive O(αs) contri-

butions from real emission as well as virtual diagrams. The integration over the

phase space of the real emission diagrams will give rise to IR divergences (soft and

collinear) in the limit where the additional parton at NLO is either soft and/or

collinear to the initial state partons. On the other hand, the integration over the

loop momenta in the virtual diagrams will also give rise to IR divergences, in ad-

dition to the UV divergences. In our calculation, we regulate all these divergences

using dimensional regularisation with n = (4+ ǫ), n being the number of space-time

dimensions. Completely anti-commuting γ5 prescription [99] is used to handle γ5 in

n dimensions. Here, it should be noted that as the gravitons couple to the energy

momentum tensor of the SM fields, which is a conserved quantity, there won’t be

any UV divergences coming from the loop diagrams.

There are several methods available in the literature to compute NLO QCD

corrections. Standard methods based on fully analytical computation deal with the

phase space and loop integrals in n-dimensions and give a finite O(αs) contribution

to the cross sections, after the real and the virtual contributions are added together

and the initial state collinear singularities are absorbed into the bare PDF. However,

these methods are not useful whenever the particles in the final state are subjected to

either experimental cuts or some isolation algorithms. In such cases, semi analytical

methods like phase space slicing method [100] or dipole subtraction method [101]

are extremely useful. In the present work, we have resorted to the former with two

cutoffs to compute the radiative corrections. In this method, the IR divergences
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appearing in the real diagrams can be handled in a convenient way by slicing the

soft and collinear divergent regions from the full three body phase space. The

advantage of this method is that the integration over the remaining phase space

can be carried out in 4-dimensions, rather than in n-dimensions, using standard

Monte Carlo techniques. In what follows, we give some of the details about the

implementation of this phase space slicing method in our NLO computation.

Real Emission Processes

There are two types of subprocesses that contribute to the associated production of

the vector gauge boson and the graviton at NLO in QCD. They proceed by qq̄ and

qg initial states. At parton level, the 2 → 3 quark anti-quark initiated subprocess

is given by,

qa′(p1) + q̄b′(p2) → V (p3) + G(p4) + g(p5) .

We find that 14 diagrams contribute to this subprocess and a few of them are

depicted in Fig. 3.2. These diagrams are obtained by taking the t-channel qq̄ → V g

diagram at tree level and by attaching the graviton line to all possible external as

well as internal lines and to the vertices. The remaining diagrams are obtained

by interchanging the vector boson and the graviton lines in Fig. 3.2. In general,

diagrams such as those involving gluons and massless quarks are prone to be singular

in the soft and collinear regions of the 3-body phase space integration. In the phase

space slicing method that we have adopted here, these soft and collinear regions

are separated from the full 3-body phase space using two small cutoff parameters,

namely δs and δc, that define these singular regions. In the center of mass frame

of the partons, the soft region is defined as: 0 ≤ E5 ≤ 1
2
δs
√
s, where E5 is the
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Figure 3.2: Real gluon emission diagrams.

gluon energy and
√
s is the parton center of mass energy. Integration of the eikonal

approximated 2 → 3 matrix elements over the soft region of the phase space gives

the O(αs) 2-body contribution,

dσ̂S = as CF F (ǫ, µR, s)

(
16

ǫ2
+

16

ǫ
ln δs + 8 ln2 δs

)
dσ̂0 , (3.5)

where

F (ǫ, µR, s) =

[
Γ(1 + ǫ

2
)

Γ(1 + ǫ)

(
4πµ2

R

s

)− ǫ
2

]
, CF =

N2 − 1

2N
and as =

αs(µR)

4π
.

Here, αs(µR) = g2s(µR)/4π with gs being the running strong coupling constant, µR is

the renormalisation scale and N is the number of colors. The region complementary

to that of the soft region (S), i.e., E5 >
1
2
δs
√
s, is defined as the hard region (H) of

the phase space. Within this hard region “H ”, the emitted gluon can be collinear to

the incoming massless quark or anti-quark and hence can give rise to hard collinear
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divergences. By introducing another small cutoff parameter (δc), we separate these

collinear divergences from the hard region. The hard collinear region (HC) can be

defined as: 0 ≤ −tij ≤ δcs (i = 1, 2 and j = 5), where tij = (pi − pj)
2. In the

collinear limit, both the 2 → 3 matrix elements and the 3-body phase space get

simplified to be expressed in terms of the born cross section as,

dσqq̄
HC = 4as dσ̂0 F (ǫ, µR, s)

(
1

ǫ

){[
Pqq(z, ǫ)fq/P (x1/z) fq̄/P (x2) + (q ↔ q̄)

]

+(x1 ↔ x2)
}dz

z

(
δc
1− z

z

) ǫ
2

dx1 dx2 , (3.6)

where fa/P (x) is the bare PDF and Pab(z, ǫ) is the unregulated splitting functions

in n-dimensions (where a, b = q, q̄, g) and it is related to the usual Altarelli-Parisi

splitting kernels as Pab(z, ǫ) = Pab(z) + ǫP ′
ab(z) [100]. Here z denotes the fraction

of the incoming parton’s (‘b’) momentum carried by the parton ‘a’. Note that for

Pqq splitting in the hard region, since a fraction of the parton momentum i.e., δs is

already carried away by the gluon, the effective limits of the integration for z will

be 0 < z < 1− δs.

Apart from the qq̄ initiated subprocess at NLO, there will also be a q(q̄)g initiated

subprocess given by,

qa′(p1) + g(p2) → V (p3) +G(p4) + qb′(p5) .

Here the emitted parton, being a quark or an anti-quark instead of a gluon, won’t

give rise to soft singularity. However, there will be hard collinear singularities when-

ever the emitted quark (anti-quark) becomes collinear to the incoming partons.

These collinear singularities are separated using the cutoff δc in the same way as in

the case of qq̄ initiated subprocess. The cross section in this collinear region turns
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out to be,

dσqg,q̄g
HC = 4as dσ̂0 F (ǫ, µR, s)

(
1

ǫ

){[
Pq̄g(z, ǫ) fq/P (x1) fg/P (x2/z) + (q ↔ q̄)

]

+ (x1 ↔ x2)
} dz

z

(
δc
1− z

z

) ǫ
2

dx1 dx2 . (3.7)

These initial state collinear divergences, appearing as poles in ǫ in eq. (3.6) & (3.7),

are purely due to the massless nature of the partons involved in the scattering

process. These divergences can be factored out from the parton level cross sections

and absorbed into the bare PDF at an arbitrary factorization scale µF , a process

called mass factorization. In the MS scheme, the scale dependent PDF fa/P (x, µF )

can be expressed in terms of the bare PDF as follows,

fa/P (x, µF ) = fa/P (x) + 2as
∑

b

(
1

ǫ

)
F (ǫ, µR, µF )

1∫

x

dz

z
Pab(z) fb/P (x/z) . (3.8)

Substituting these parton densities in dσ̂0 produces collinear singular counter terms

which when added with the hard collinear contributions results in the following

O(αs) contribution [56, 57, 59, 60, 90, 91],

dσcoll = 2as dσ̂0 F (ǫ, µR, s)
({

fq̄/p(x2, µF )[f̃q/p(x1, µF ) + fq/p(x1, µF )

(
−2

ǫ
+ ln

s

µ2
F

)
Aq→q+g] + (q ↔ q̄)

}
+ (x1 ↔ x2)

)
dx1 dx2 , (3.9)

where Aq→q+g = CF

(
2 ln δs +

3
2

)
. The tilde parton distribution functions are given

by [93, 100],

f̃q/P (x, µF ) =
∑

b=q,g

∫ 1−δsδqb

x

dy

y
fb/P (x/y, µF )× P̃qb(y) , (3.10)
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where

P̃ab(y) = Pab(y) ln
(
δc

1− y

y

s

µ2
F

)
− P ′

ab(y) . (3.11)

Note that there would be an additional factor of two, as the parton in the final state

can be collinear to either of the incoming partons, which is implicit from (q ↔ q̄)

in eq. (3.9). At this stage, one can observe that the divergent pieces, that are

proportional to (ln δs), cancel among themselves. However, there are singularities

still remaining that will get cancelled only with those coming from the loop inte-

grals in the virtual diagrams. In what follows, we present the details of the virtual

corrections to our process.

Virtual Corrections

The NLO cross sections also receive contributions coming from the virtual correc-

tions as well as the wave function renormalisation to the 2 → 2 LO processes. The

corresponding Feynman diagrams are obtained by considering possible one loop vir-

tual gluonic corrections to the tree level Feynman diagram for qq̄ → Z and then by

attaching the graviton line to all possible internal as well as external lines and to

vertices, as allowed by the Feynman rules [40, 41]. This way we find 27 diagrams,

out of which 8 diagrams correspond to external leg corrections and can be omitted

as they vanish in the massless quark limit. Out of the remaining 19 diagrams, 11 are

shown in Fig. 3.3. The rest of the diagrams can easily be obtained by inverting the

charge flow direction of the quark lines in the last eight diagrams shown in Fig. 3.3.

Interference of these one loop diagrams with the born diagrams gives O(αs) con-

tributions. Due to tensorial interaction of gravitons with the SM fields, the loop

integrals involve higher powers of loop momenta in their numerators and hence the

52



q

q̄

V

G

g

Figure 3.3: Virtual gluon emission diagrams.

reduction of tensorial integrals to scalar ones becomes complicated. We have written

a symbolic program using FORM [73] to perform this reduction in n-dimensions.

The resulting scalar integrals are then evaluated exactly (see [102]) and they are

listed in Appendix C. Substituting these scalar integrals, we can express the O(αs)

contribution resulting from the virtual processes as,

dσ̂V = as dσ̂0 F (ǫ, µR, s)CF

(
−16

ǫ2
+

12

ǫ

)

+C

[
V1 ln2

(−t

µ2

)
+ V2 Dfin

0 (p1, k, q) + V3 Dfin
0 (p2, k, q)

+V4 ln2

(−u

µ2

)
+ V5 ln2

(−m2

µ2

)
+ V6 ln2

(−m2
Z

µ2

)
+ V7 ln2

(
s

µ2

)

+V8 ln

(−t

µ2

)
+ V9 ln

(−u

µ2

)
+ V10 i C0(k, q) + V11 + V12 + V13 ln

(
mZ

µ2

)
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+V14 ln

(
m

µ2

)
+ V15 ζ2

]
, (3.12)

where C = as κ
2 (C2

v+C2
a) T

2
Z CF/(4N), Cfin

0 and Dfin
0 are the finite parts of the scalar

integrals C0 and D0 respectively and they are listed in Appendix C along with Vi,

where i = 1, 2, . . . , 15. It is clear from the above expression that the integration

over the loop momenta in (4+ ǫ) dimensions leads to soft and collinear singularities

which appear as poles in ǫ. We found that the UV divergences that appear in the

intermediate stages cancel among various diagrams thanks to the conservation of

SM energy momentum tensor to this order in perturbation theory. Now, when we

add O(αs) contributions coming from eq. (3.5), (3.9) and (3.12), we observe that

the remaining soft and collinear singularities cancel among themselves as expected,

leaving a finite expression for the 2-body contribution which can be computed using

Monte Carlo techniques. In other words, the 2-body contribution given by,

dσ2−body = dσS + dσcoll + dσV , (3.13)

is found to be free from both UV and IR singularities and hence suitable for further

numerical evaluation.

In addition to the above contribution, we also have the hard non-collinear region

HC of the phase space which does not suffer from any IR singularities by construc-

tion. The contributions from this region can be obtained by integrating the 2 → 3

matrix elements using standard Monte Carlo integrations. Owing to the divergence

free nature of the integration, the 2 → 3 matrix elements computed in 4-dimensions

will suffice our purpose. These matrix elements are again computed using FORM.

We have made several checks to ensure the correctness of our results, namely the

gauge invariances in QCD, electroweak and gravity sectors. Since contributions from
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hard non-collinear regions involve three body phase space integrals of final state par-

ticles having different masses, care is needed to parametrize as well as to determine

the limits of various integrations. We devote our next subsection to discuss this.
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Figure 3.4: Variation of the transverse momentum distribution of Z boson with δs
for Ms = 3 TeV and d = 4, keeping the ratio δs/δc = 100 fixed.

3.2.3 Three Body Contribution

In this section, we will present briefly how we have implemented various constraints

imposed by the two cutoff phase space slicing method and cuts on the phase space
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Figure 3.5: Total cross section for the associated production of Z and G as a function
of pmin

T for Ms = 3 TeV and d = 2.

integrals for the 2 → 3 subprocesses. We are interested in the following cross section:

dσ3−body =

∫

HC,cuts

dΓ3 |M2→3
qq̄,qg|2 , (3.14)

where the three-body phase space measure is given by,

dΓ3 =

(
Π3

i=1

d3pi
(2π)32Ei

)
(2π)4δ(4)(p1 + p2 − p3 − p4 − p5) . (3.15)

It is easy to parameterize all the momenta in the center of mass frame of initial state

partons and then boost them to the lab frame or the center of mass frame of the

hadrons. The 4-momenta of the massless partons in the initial state, moving along
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Figure 3.6: Total cross section for the associated production of Z and G as a function
of pmin

T for Ms = 3 TeV and d = 4.

the z-axis are given by,

p1 =

√
s

2
(1, 0, 0, 1), p2 =

√
s

2
(1, 0, 0,−1) , (3.16)

where
√
s is the parton center of mass energy. The corresponding 4-momenta of

the massive particles in the final state are given by pi = (Ei, ~pi) with masses

m2
i = E2

i − |~pi|2, for i = 3, 4, 5. For the three body case, it is easy to consider

the momentum direction of one of the final state particles, say ~p5, as the reference

direction and then parameterize the other two momenta ~p3 and ~p4 with respect to

this direction,

~p5 = |~p5| (sinθ, 0, cosθ) , (3.17)
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Figure 3.7: Total cross section for the associated production of Z boson and graviton,
shown as a function of Ms for d = 2.
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Figure 3.8: Total cross section for the associated production of Z boson and graviton,
shown as a function of Ms for d = 4.
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where θ is the angle between ~p5 and the z-axis. The momentum of ~p3 can now be

parameterized with respect to the direction of ~p5 and then followed by a rotation in

the xz-plane by an angle of θ to get ~p3 = (px3 , p
y
3, p

z
3) in the center of mass frame of

the partons as given by,

px3 = |~p3|
(
cosθ cosα sinβ + sinθ cosβ

)
,

py3 = |~p3| sinα sinβ ,

pz3 = |~p3|
(
cosθ cosβ − sinθ cosα sinβ

)
, (3.18)

where α and β are the azimuthal and polar angles of ~p3 with respect to ~p5. The

4-momentum of p4 simply follows from the energy momentum conservation. The

three body phase space in eq. (3.15) can now be expressed in terms of the angular

variables using,

d3pi
2Ei

= d4pi δ(p
2
i −m2

i ) =
|~pi|
2

dEi dΩi , (3.19)

to get

dΓ3 =
|~p3||~p5|
4(2π)5

dE3 dΩ3 dE5 dΩ5 δ(p24 −m2
4) , (3.20)

where dΩ3 = dcosβ dα and dΩ5 = dcosθ dφ. Further, the angle β can be eliminated

using,

2 |~p3| |~p5| cosβ = |~p4|2 − |~p3|2 − |~p5|2 . (3.21)

Finally, out of the nine integration variables of the three body phase space, in

eq. (3.15), we are left with four independent variables viz., E3, E5, θ and α, due to
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the presence of 4-momentum conserving delta function and the rotational invariance

over the reference momentum direction ~p5. The three body phase space can then be

written in terms of these four independent variables as,

dΓ3 =
1

8(2π)4
dE3 dE5 dcosθ dη . (3.22)

The limits of integration of E3 and E5 can be obtained from the constraint |cosβ| ≤ 1

and they are given here under [103],

Emin
5 = m5, Emax

5 =
1

2
√
s
[s+m2

5 − (m3 +m4)
2] , (3.23)

and

Emax,min
3 =

1

2B

[
A(B +m+m−)± |~p5|

√
(B −m2

+)(B −m2
−)

]
, (3.24)

where

A =
√
s− E5, B = A2 − |~p5|2 and m± = m3 ±m4 . (3.25)

Finally, all the parton momenta can be boosted back to the lab frame or to the

center of mass frame of the hadrons by a boost factor in the limit of the zero rest

mass of the hadrons given by,

β =
Pcm

Ecm
=

(x1 − x2)

(x1 + x2)
, (3.26)

where x1 and x2 are the fractions of the incoming hadron momenta carried by the

partons in the center of mass frame of the hadrons.

We have implemented this phase space parameterization in our numerical code
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written in Fortran language. We set m3 = mV (mV being the mass of vector boson),

m4 = m and p3 = k, p4 = q in our code and p5 is derived using the conservation of

4-momenta. The phase space integrations as well as various convolutions in the two

and three body contributions are done using VEGAS multi dimensional integration

package. In what follows, we present the impact of our NLO corrections on various

observables.

3.3 Numerical Results

In this section, we present various kinematic distributions for the associated pro-

duction of the graviton and the vector gauge boson to NLO in QCD at the LHC.

The results are presented for proton-proton collision energy of
√
S = 14 TeV. As

discussed before, the inclusive cross section for the graviton production involves the

summation of all possible graviton modes. This summation in the continuum limit

leads to an integral over the graviton mass. The limits of this integral are set by

the kinematics from 0 to (
√
s−mV ), where

√
s is the parton center of mass energy

and mV = mZ , mW . The masses of the gauge bosons and the weak mixing angle are

given by [104],

mZ = 91.1876 GeV, mW = 80.398 GeV, sin2θw = 0.2312 . (3.27)

The fine structure constant is taken to be α = 1/128. Throughout our study, we

have used CTEQ6L1 and CTEQ6.6M parton density sets [105] for LO and NLO

cross sections respectively. The strong coupling constant is calculated at two loop

order in theMS scheme with αs(mZ) = 0.118 (ΛQCD = 0.226 GeV). We have also set

the number of light flavours nf = 5. The following cuts are used for our numerical
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study,

pZ,WT > pmin
T , pmiss

T > pmin
T , |yZ,W | ≤ 2.5 . (3.28)

For the 2-body process, the missing transverse momentum is same as that of the

gauge boson. On the other hand for the 3-body process, it does not need to be

so due to the presence of an observable jet in the final state and hence it amounts

purely to the graviton transverse momentum. The observable jet is defined as the

one that satisfies the following conditions,

pjetT > 20 GeV and |ηjet| ≤ 2.5 . (3.29)

Whenever the jet does not satisfy the above conditions, the missing transverse mo-

mentum is approximated to be that of the gauge boson.

The LED model is an effective field theory valid below the UV cutoff scale Ms,

which is expected to be of the order of a few TeV . At the LHC energy
√
S = 14

TeV, it is very well possible that the partonic center of mass energies can exceed

this scale Ms and lead to the signals that do not correspond to the compactified

extra dimensions of the LED model. This necessitates the need to quantify the UV

sensitivity of the theory and this issue was already addressed in [41], according to

which the cross sections can be computed in two different ways, one with ‘trunca-

tion’, where the cross sections are set to zero whenever the hard scale Q involved

in the problem exceeds Ms and the other with ‘untruncation’, where there is no

such constraint imposed on the cross sections. As pointed out in [41], if these two

results converge then the predictions are valid and the model is viable, otherwise the

untruncated cross sections can dominate the truncated ones, implying the calcula-

tions are not under control. In our calculation, we choose the hard scale to be the
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invariant mass (Q) of the gauge boson and the graviton, which at LO is the same

as the center of mass energy of the partons
√
s. We have considered both truncated

as well as untruncated cases at the time of presenting few selective kinematical ob-

servables. However, most of our distributions are obtained with our default choice

of truncation scheme.

3.3.1 Neutral Gauge Boson

Before proceeding towards kinematic distributions, we would do some consistency

checks on the calculation. First, we check for the stability of the cross sections

against the variation of the slicing parameters δs and δc. The sum of the 2-body and

the 3-body contributions given in eq. (3.13) and (3.14) is expected to be independent

of the choice of these slicing parameters that are introduced in the intermediate

stages of the calculation. In Fig. 3.4, we show the dependency of the transverse

momentum distribution pZT on the slicing parameter δs keeping the ratio of δs to

δc fixed at a value of 100. This distribution is obtained using the hard truncation

scheme for a particular choice of the model parameters Ms = 3 TeV and δ = 4. It

can be seen from Fig. 3.4, that both the 2-body and the 3-body contributions vary

with δs but their sum is fairly stable against the variation of δs over a wide range.

Similar observation has been found while varying δc by keeping the ratio of these

two slicing parameters fixed. This ensures the proper implementation of the slicing

method in our NLO computation.

Another useful check on the computation is to reproduce the cross sections for

the associated production of the photon and the graviton at the LHC [93]. In order

to do this, we recalculated both real emission as well as virtual contributions for

this process and the corresponding soft and collinear pieces. We found that the

following replacements: (i)
(C2

V +C2
A)

4
→ Q2

f , (ii) mZ → 0, (iii) TZ → e, in the two
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body and three body real emission matrix elements of the Z boson with graviton

production processes correctly reproduce the corresponding matrix elements for the

photon with graviton production process. Here, Qf is the charge of the fermion

and e is the electromagnetic coupling. Using our symbolic program, we find that

the analytical expression containing virtual contributions of this process agrees with

one given in the appendix of [93]. In addition, using these recalculated quantities,

we further reconfirmed all the numerical results in [93] after taking their choice of

parameters, cuts etc. It is important to note that the NLO cross sections or the

K-factors are subject to the choice of the event selection or more precisely the cuts

on the particles in the final state. In our calculation, however, the gauge bosons

being massive, we present our results according to the cuts given in eq. (3.28) and

(3.29).

In Fig. 3.5, the total cross section for the associated production of Z boson and

the graviton is shown as a function of pmin
T to NLO in QCD at the LHC. The cross

sections are given for both truncated as well as untruncated cases and with the

choice of model parameters Ms = 3 TeV and d = 2. A similar plot is shown for

d = 4 in Fig. 3.6. The cross section for d = 2 is larger compared to that for d = 4

because the density of the graviton modes drops as d increases. The K-factors are

found to have a mild dependency on pmin
T , varying from 1.6 to 1.4. In Fig. 3.7,

we have shown the variation of the truncated as well as untruncated total cross

sections with respect to the scale Ms for the case d = 2. The difference between

the truncated and the untruncated cross sections is mainly due to the contributions

coming from the region Q > Ms. However, with increasing Ms the parton fluxes

corresponding to Q in this region rapidly fall down and hence the difference between

the two cross sections decreases with increase in Ms. Such a behaviour is evident

from Fig. 3.7 and 3.8 for d = 2 and d = 4 respectively. The corresponding K-factors
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are also shown in Fig. 3.9. In the rest of our calculation we choose pmin
T = 400 GeV

and Ms = 3 TeV.

Next, we present LO and NLO transverse momentum distributions of the Z

boson (pZT ) in Fig. 3.10 for d = 2, 4, 6 and the corresponding missing transverse

momentum distributions (pmiss
T ) in the left panel of Fig. 3.11 for d = 2, 4. The QCD

corrections enhance both pZT and pmiss
T distributions. Note that the shape of the

pZT distribution remains unaffected while this is not the case for pmiss
T distribution.

Such a pattern can be understood from the definition of pmiss
T mentioned before.

Thereafter, we present the rapidity distributions of the Z bosons. The rapidity of

massive gauge bosons is defined by,

Y =
1

2
log

(E + pz
E − pz

)
, (3.30)

where E and pz are the energy and the longitudinal momentum components of the

gauge boson in the lab frame. In the right panel of Fig. 3.11, we have plotted the

rapidity distribution of the Z boson both at LO and at NLO for two different choices

of the factorization scale: µF = pZT /2 and 2pZT . This distribution is obtained by

integrating over the transverse momentum of the Z boson from 700 GeV to 750 GeV,

for d = 4. Note that the NLO corrections increase the cross section. As expected, the

inclusion of O(αs) corrections reduces the dependence on the arbitrary factorisation

scale µF . The percentage of uncertainty in the cross sections at the central rapidity

region Y = 0, due the variation of the scale from µF = pZT /2 to µF = 2pZT , is 18.9 at

LO and it gets reduced to 8.6 at NLO.
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3.3.2 Charged Gauge Boson

In this section we discuss the impact of NLO QCD corrections on the associated

production of charged gauge bosons (W±) and the graviton at the LHC. The matrix

elements for the W± case are identical to those for the Z boson case except for the

masses of the gauge bosons and their couplings to the quarks as seen in eq. (3.2).

Further, in the case of charged gauge bosons, the parton fluxes will also be different

from those of the neutral gauge boson. The parton fluxes for the quark anti-quark

annihilation process in the case of Z boson are of the form qq̄ (q = u, d, s, c, b), while

they are of the form ud̄ (dū) for W+(W−). For W± boson production cross sections,

we consider the mixing of quarks among different quark generations, as allowed by

the CKM matrix elements Vij, with (i = u, c, t) and (j = d, s, b). In view of this, in

the above parton fluxes u and d correspond to any up-type and down-type quarks

respectively. The CKM matrix elements are given by [104],

|Vud| = 0.97425 , |Vus| = 0.2252 , |Vub| = 3.89× 10−3 ,

|Vcd| = 0.230 , |Vcs| = 1.023 , |Vcb| = 40.6× 10−3 . (3.31)

Since all our calculations are done in the massless limit of the partons, we have not

included the top quark contribution in our calculation and set all Vtj ’s to zero.

Similar to the case of Z boson, we will present the total cross sections as well

as the differential distributions for the associated production of W± boson and

a graviton. In Fig. 3.12 and 3.20, we have shown the stability of the transverse

momentum distributions of W− and W+ respectively with the slicing parameter δs.

These distributions are obtained for the choice of pWT = 500 GeV, keeping the ratio

δs/δc fixed at 100. It can be seen from the figures that the sum of the 2-body and

3-body contributions is fairly stable against the variation of the slicing parameters.

66



This ensures proper implementation of the slicing method in our numerical code,

taking into account the appropriate parton fluxes for W±. Next, we present the

total cross sections as a function of pmin
T as well as Ms. In Fig. 3.13 and 3.14, we

show truncated as well as untruncated total cross sections for W− case, as a function

of pmin
T , for d = 2 and d = 4 respectively. It can be seen from these figures that the

QCD corrections have enhanced the leading order cross sections considerably, but

there is no significant change in the shape of the cross sections. Similar plots are

shown for W+ in Fig. 3.21 and 3.22.

In Fig. 3.15 and 3.16, we show the total cross sections for W− as a function of

Ms for d = 2 and d = 4 respectively. A set of similar plots for W+ is shown in

Fig. 3.23 and 3.24. Note that, in each of the above cases, the cross sections for

W+ are somewhat higher than the corresponding ones for W−. This difference in

the total cross sections can be understood from the respective parton fluxes for W−

and W+ at the LHC. The corresponding K-factors are shown in Fig. 3.17 for W−

and in Fig. 3.25 for W+. For the choice of the parameters we have considered, the

K-factors are found to vary from 1.4 to 1.7 in case of W−, while they range from

1.05 to 1.65 for W+. Note that the K-factors for W− case are comparable but a

little higher than those for W+, which again can be accounted for the differences in

the parton fluxes. The fact that the valence quark contributions are negligible and

the parton fluxes at LO for W+ are higher compared to those for W− explains the

behaviour of the above factors.

Further, in Fig. 3.18 and 3.26, we present the transverse momentum distribution

of W− and W+ respectively as a function of the number of extra dimensions d and

for Ms = 3 TeV. Similarly, we show the missing transverse momentum distribution

of the graviton when produced in association with W− in the left panel of Fig. 3.19.

In the right panel, we present the scale uncertainties in the rapidity distribution
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of W− by varying the factorization scale from µF = pW
−

T /2 to µF = 2pW
−

T . This

rapidity distribution is obtained by integrating over the transverse momentum pW
−

T

from 700 GeV to 750 GeV. Similar plots are shown for W+ in Fig. 3.27. Note that

the uncertainty resulting from the variation of factorisation scale µF gets reduced as

we include O(αs) corrections. The percentage of uncertainty at the central rapidity

Y W±

= 0 is decreased from 19.1 to 9.3 in the case of W−, whereas it gets reduced

from 18.8 to 8.3 in the case of W+.

3.4 Conclusion

In this chapter, we have systematically computed the full NLO QCD corrections to

the associated production of the vector gauge boson and the graviton in theories

with large extra dimensions at the LHC. This process plays an important role in

probing the extra dimensions at the collider experiments, thanks to the large parton

fluxes available at the LHC. We have used a semi-analytical two cutoff phase space

slicing method to compute these corrections. We have quantified the UV sensitivity

of the theoretical predictions by studying the cross sections in the truncated as well

as the untruncated cases. In both the cases, the radiative corrections are found

to have enhanced the cross sections significantly but do not appreciably change

their shapes. The K-factors for the neutral gauge boson are found to vary from

1.2 to 1.6 depending on the number of extra dimensions d, while they vary from

1.3 to 1.8 for the case of charged gauge bosons. Although, the choice of the model

parameters has the potential to change the cross sections calculated in truncated

or untruncated cases significantly, we notice that the K-factors remain almost the

same in these two cases. In addition to the total cross sections, we have also studied

the differential distributions of the vector gauge bosons and found that the radiative
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corrections are significant and they do not affect their shapes except for the missing

transverse momentum distribution. At the hadron colliders, as we already know,

LO predictions often suffer from large uncertainties resulting from the choice of

factorisation scale. Reducing these uncertainties is one of the main motivations

for doing NLO computation. We have shown that this is indeed the case for the

rapidity distributions of the gauge bosons by varying the factorization scale from

µF = pT/2 to µF = 2pT , leading to reduction in the percentage of scale uncertainty

to 9% from 19%. As we have already discussed, by performing fixed order NLO

calculation, we usually get observables which are highly inclusive in nature. In

order to acquire an exclusive description of the final state, we need to match the

fixed order NLO result with the parton shower effect. The next chapter is designed

to discuss the diphoton production process at the LHC in both SM and ADD model

at the NLO+PS accuracy.
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Figure 3.9: K-factors of the total cross section for the associated production of Z
boson and graviton, given as a function of pmin

T (top) and the scale Ms (bottom).
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Figure 3.10: Transverse momentum distribution of Z boson for Ms = 3 TeV is
shown for different values of the number of extra dimensions d.
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Figure 3.11: Missing transverse momentum distribution of the graviton produced
in association with Z boson for Ms = 3 TeV (left). The scale uncertainties in the
rapidity distribution of Z boson for Ms = 3 TeV and d = 4 (right).
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Figure 3.12: Variation of the transverse momentum distribution of W− boson with
δs for Ms = 3 TeV and d = 4, keeping the ratio δs/δc = 100 fixed.
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Figure 3.13: Total cross section for the associated production of W− boson and
graviton as a function of pmin

T for Ms = 3 TeV and d = 2.
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Figure 3.14: Total cross section for the associated production of W− boson and
graviton, shown as a function of pmin

T for Ms = 3 TeV and d = 4.
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Figure 3.15: Total cross section for the associated production of W− boson and
graviton, given as a function of Ms for d = 2.
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Figure 3.16: Total cross section for the associated production of W− boson and
graviton, shown as a function of Ms for d = 4.
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Figure 3.17: K-factors of the total cross section for the associated production of W−

boson and graviton, given as a function of pmin
T (top) and the scale Ms (bottom).
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Figure 3.18: Transverse momentum distribution of W− boson for Ms = 3 TeV is
shown for different values of the number of extra dimensions d.
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Figure 3.19: Missing transverse momentum distribution of the graviton produced in
association with W− boson for Ms = 3 TeV (left). The scale uncertainties in the
rapidity distribution of W− boson for Ms = 3 TeV and d = 4 (right).
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Figure 3.20: Variation of the transverse momentum distribution of W+ boson with
δs for Ms = 3 TeV and d = 4, keeping the ratio δs/δc = 100 fixed.
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Figure 3.21: Total cross section for the associated production of W+ boson and
graviton, shown as a function of pmin

T for Ms = 3 TeV and d = 2.
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Figure 3.22: Total cross section for the associated production of W+ boson and
graviton, shown as a function of pmin

T for Ms = 3 TeV and d = 4.
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Figure 3.23: Total cross section for the associated production of W+ boson and
graviton, shown as a function of Ms for d = 2.
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Figure 3.24: Total cross section for the associated production of W+ boson and
graviton, shown as a function of Ms for d = 4.
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Figure 3.25: K-factors of the total cross section for the associated production of W+

boson and graviton, given as a function of pmin
T (top) and the scale Ms (bottom).
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Figure 3.26: Transverse momentum distribution of W+ boson for Ms = 3 TeV is
shown for different values of the number of extra dimensions d.
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Figure 3.27: Missing transverse momentum distribution of the graviton produced in
association with W+ boson for Ms = 3 TeV (left). The scale uncertainties in the
rapidity distribution of W+ boson for Ms = 3 TeV and d = 4 (right).
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Chapter 4

Diphoton Production

4.1 Introduction

Improved theoretical predictions to higher orders in QCD have been performed

for cross sections of pair production processes viz. di-lepton [50, 51, 52], di-gauge

boson (γγ [56, 57], ZZ [59] and W+W− [60]), which in the LED model could result

from the exchange of a virtual KK mode in addition to the usual SM contribution.

The real emission of KK modes lead to large missing ET signals viz., mono-jet

[92], mono-photon [93], mono-Z boson and mono-W± boson [106, 107]. NLO QCD

corrections in some of the above processes are quite substantial and their inclusion

in the computation also lead to a reduction of theoretical uncertainties, making it

possible for the experiments to put more stringent bounds on the extra dimension

model parameters.

The diphoton final state is an important signal for extra dimension searches, as

the branching ratio of a KK mode decay to diphoton is twice than that of a decay

to individual charged lepton pair. The quantitative impacts of the NLO QCD cor-

rection to the diphoton final state for extra dimension searches have been studied
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in [56, 57], where various IR safe observables were studied using phase space slicing

method. The factorisation scale dependence gets reduced when O(αs) corrections

are included. Fixed order calculation truncated to NLO, at best yields results for

sufficiently inclusive observable. Combining fixed order NLO and PS Monte Carlo

[32, 33], would extend the coverage of the kinematical region to consistently include

resummation in the collinear limit and also produce a more exclusive description of

the final state to make it as realistic as possible to the experimental situation. The

flexibility to incorporate hadronisation models and capabilities to simulate realis-

tic final state configurations, that can undergo detector simulations, are the main

advantages for the experimental collaborations.

ATLAS [76] and CMS [75] have analysed the diphoton invariant mass spectrum,

using a constant K-factor for the full range of the invariant mass distribution to put

lower bounds on extra dimension scale to NLO accuracy. However, this choice is not

sensitive to possible distortions of distributions that can arise at NLO. Our present

analysis will further help to put more stringent bounds on the model parameters.

Bounds on MS for different extra dimensions d have been obtained by ATLAS and

CMS collaborations [75, 76]. For our present analysis, we choose the following values:

MS = 3.7 TeV (d=2), 3.8 TeV (d=3), 3.2 TeV (d=4), 2.9 TeV (d=5), 2.7 TeV (d=6).

For relevant observables, we consider the fixed order results to NLO accuracy and

include PS. Factorisation, renormalisation scale uncertainties and PDF uncertainties

are also estimated in an automated way [108]. For photon isolation, both smooth

cone isolation and the experimental isolation criteria are considered.
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4.2 NLO+PS

Since the KK modes couple universally to the SM particles through the energy

momentum tensor, both the qq̄ and gg channel would contribute to the diphoton

final state at leading order (LO). In the SM, the gg channel starts only at NNLO

level via the finite box contribution through quark loop and the large gluon-gluon

flux at the LHC makes this contribution potentially comparable to the LO results.

In the invariant mass region of interest to extra dimension searches, the box diagram

contribution is not significant enough [56, 57].

All the partonic contributions to NLO in QCD have been calculated for the

diphoton final state [56, 57], for both ADD [36, 37, 38] and RS [42] extra dimension

models. QCD radiative corrections through virtual one loop gluon and real emission

of gluons to the q q̄ → γ γ subprocess, would contribute to both SM and extra

dimension models. The q(q̄) g → q(q̄) γ γ begins to contribute for both SM and

extra dimension models at NLO. The LO g g → γ γ extra dimension process will also

get one loop virtual gluon and real gluon emission radiative corrections. There will

also be interference between the SM and extra dimension model to give contributions

up to O(αs) and in this analysis all of them are taken care of. We have included

the O(αs) corrections as a result of the interference between the SM box diagram

contribution and LO extra dimension contribution to the g g → γ γ subprocess

for completeness, though it is quite suppressed in the region of interest to extra

dimension models and contributes only about 0.1% to the gg subprocess.

The q(q̄) g → q(q̄) γ γ NLO contribution has an additional QED collinear singu-

larity when the photon gets collinear to the emitting quark and can be absorbed into

the fragmentation function which gives the probability of a parton fragmenting into

a photon. Parton fragmentation functions are additional non perturbative inputs

which are not very well known. At the LHC, secondary photons as a result of hadron
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decaying into collinear photons and jets faking as photon are taken care of by photon

isolation criteria [75, 76] which also substantially reduces the fragmentation contri-

bution. Since the fragmentation is essentially a collinear effect, the fragmentation

function can be avoided by the smooth cone isolation proposed by Frixione [109],

which ensures that in no region of the phase space the soft radiation is eliminated.

The smooth cone isolation is able to eliminate the not so well known fragmentation

contribution and at the same time, it ensures IR safe observable. Centered in the

direction of the photon in the pseudo rapidity (η) and azimuthal angle (φ) plane, a

cone of radius r =
√
(η − ηγ)2 + (φ− φγ)2 is defined. The hadronic activity H(r)

is defined as the sum of hadronic transverse energy in a circle of radius r < r0 and

Eγ
T is the transverse energy of the photon. For all cones with r ≤ r0, the isolation

criterion H(r) < H(r)max has to be satisfied, where H(r)max is defined as,

H(r)max = ǫγ Eγ
T

(
1− cos r

1− cos r0

)n

. (4.1)

Efforts for the experimental implementation of the smooth cone isolation is on going.

Automation is an essential ingredient of this work. We have chosen to work in

the aMC@NLO framework [110], which automatises the MC@NLO formalism [32]

to match NLO computations with parton showers. In this chapter, we present re-

sults matched to HERWIG [16]. For the NLO computation, isolation of IR poles and

phase space integration are carried out by MadFKS [111], which automatises the

FKS subtraction method [112] using the MadGraph [113] matrix-element genera-

tor, whereas for one-loop amplitudes the results of [56, 57] are used. The automation

within the MadGraph framework requires a new HELAS [114] subroutine to calcu-

late helicity amplitudes with massive spin-2 particles [115, 116]. In addition, for our

present analysis, we have implemented the sum over the KK modes of the virtual
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graviton (see eq. (1.10)) in it (see Appendix D for details). We use this framework to

generate the events for 8 TeV run at the LHC. For the invariant mass distributions

we have reproduced the results of [56, 57] using the fixed order results obtained from

this set-up. Also numerical cancellation of the singularities from the real and virtual

terms have been explicitly checked.
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Figure 4.1: Transverse momentum (P γγ
T ) distributions of the diphoton for the fixed

order NLO and NLO+PS. The ADD model parameters used are d = 2 andMS = 3.7
TeV. The lower inset displays the fractional scale and PDF uncertainties of the
NLO+PS (ADD) results.

4.3 Numerical Results

In this section, we present the results for various kinematic distributions of photon

pair in SM and ADD model. We have included all the subprocess contributions to

NLO. The following input parameters are used: α−1
em = 132.507, GF = 1.16639×10−5

86



 

f
r
a
c
.
 
u
n
c
.

0.8

1

1.2

Mγγ [GeV] 
250 500 750 1,000 1,250 1,500 1,750

scale unc.

pdf unc.

 

σ
/
b
i
n
 
[
p
b
/
2
0
 
G
e
V
]

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 

NLO+PS (ADD)

LO+PS (ADD)

NLO+PS (SM)

d = 2

Ms = 3.7 TeV

ATLAS

 

f
r
a
c
.
 
u
n
c
.

0.8

1

1.2

Mγγ [GeV]
250 500 750 1,000 1,250 1,500 1,750

scale unc.

pdf unc.

 

σ
/
b
i
n
 
[
p
b
/
2
0
 
G
e
V
]

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

 

NLO+PS (ADD)

LO+PS (ADD)

NLO+PS (SM)

d = 2

Ms = 3.7 TeV

CMS

Figure 4.2: Invariant mass (Mγγ) distributions for ATLAS (left panel) and CMS
(right panel) for d = 2 and MS = 3.7 TeV. The SM contribution to NLO+PS and
ADD to LO+PS and NLO+PS have been plotted. For the NLO+PS (ADD) results,
the lower insets display the fractional scale and PDF uncertainties.

GeV−2, mZ = 91.188 GeV and MSTW2008(n)lo68cl [117] for the (N)LO PDF.

Our calculation is LO in the electroweak coupling and therefore the dependence on

the scale in this coupling constant is beyond the precision of our results. In our

electroweak scheme, mW and sin2 θW are computed from mZ , αem and GF ; this

value for the αem gives a W-boson mass (mW = 80.419 GeV) that is close to the

experimental value. The MSTW PDF also sets the value of the strong coupling

αs(mZ) at LO and NLO in QCD. The renormalisation and factorisation scales are

chosen as µF = µR = Mγγ , the invariant mass of the photon pair. The events that

have to be showered are generated using the following generation cuts: |ηγ1,2 | < 2.6,

P
γ1,2
T > 20 GeV, diphoton invariant mass 100 GeV < Mγγ < MS and the photon
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isolation is done using the Frixione isolation with r0 = 0.38, ǫγ = 1 and n = 2. More

specific analysis cuts are applied subsequently while showering the events in order

to produce unbiased results.

The dependence of the prediction of an observable on the factorisation and renor-

malisation scales, is a result of the uncalculated higher order contributions, which

can be estimated by varying µF and µR independently around the central value

µF = µR = Mγγ . The variation is done by the following assignment µF = ξF Mγγ

and µR = ξR Mγγ , where the values for (ξF , ξR) used are (1,1), (1/2,1/2), (1/2,1),

(1,1/2), (1,2), (2,1), (2,2). The various ratios of µF , µR and Mγγ that appear as

arguments of logarithms in the perturbative expansion to NLO are within the range

[1/2,2]. The variation of both µF and µR are taken as the envelope of the above

individual variations. Variation of only µF would involve the choice ξR = 1 & vary-

ing ξF and vice-versa for variation of only µR. The PDF uncertainties are estimated

in the Hessian method using the prescription given by MSTW [117]. Fractional

uncertainty defined as the ratio of the variation about the central value divided by

the central value, is a good indicator of the scale and PDF uncertainties and is

plotted in the lower insets of various figures. As described in [108], the generation

of these uncertainty bands can be done at virtually no extra CPU cost within the

aMC@NLO framework.

To begin with, we compare the fixed order NLO result with NLO+PS for the

transverse momentum of the diphoton log10 P
γγ
T using ‘generic’ cuts: Mγγ > 140

GeV, |ηγ| < 2.5, P γ1
T > 40 GeV, P γ2

T > 25 GeV and r0 = 0.4. In Fig. 4.1, log10 P
γγ
T

distribution is plotted for d = 2 with appropriateMS value. It is clear that at low P γγ
T

values, NLO+PS correctly resums the Sudakov logarithms, leading to a suppression

of the cross section, while the fixed order NLO result diverges for P γγ
T → 0. At high

P γγ
T , the NLO fixed order and NLO+PS results are in agreement. In the lower inset
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of Fig. 4.1, we have presented the scale and PDF variations of the NLO+PS, which

increase with P γγ
T as observed in [118].
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Figure 4.3: Invariant mass (Mγγ) distributions for d = 3 (left panel) and d = 4 (right
panel) are plotted for ADD and SM contributions to NLO+PS accuracy. The lower
insets give the corresponding fractional scale and PDF uncertainties for NLO+PS
(ADD).

We now present the results for the various kinematical distributions to NLO

accuracy with PS (labelled as NLO+PS), for analysis specific cuts. Both the ex-

periments ATLAS and CMS have looked for diphoton invariant mass in the region

140 GeV < Mγγ < MS. ATLAS cuts [76]: the rapidity of the individual photons

are in the region |ηγ | < 2.37, with an exclusion region 1.37 < |ηγ| < 1.52, the trans-

verse momentum of the individual photons P γ
T > 25 GeV and for photon isolation:

sum of transverse energy of hadrons
∑

ET (H) < 5 GeV with ∆r < 0.4, where

∆r =
√

∆φ2 +∆η2 is a cone in the rapidity − azimuthal angle plane. For CMS the
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corresponding cuts are [75]: |ηγ| < 1.44, P γ
T > 70 GeV, photon isolation: (i) sum

of the energy of hadrons
∑

E(H) < 0.05Eγ with ∆r < 0.15, (ii) sum of transverse

energy of hadrons
∑

ET (H) < 2.2 GeV + 0.0025 Eγ
T with 0.15 < ∆r < 0.4. We

have further checked that, in addition to the ATLAS and CMS photon isolation, if

we also include the Frixione isolation criteria, there are no appreciable changes in

the final results.

In Fig. 4.2, we have plotted invariant mass distributions dσ/dMγγ of photon pair

in the SM as well as in the ADD model for ATLAS (left panel) and CMS (right

panel). For ADD model we have obtained the distributions for MS = 3.7 TeV and

d = 2. The central value curves correspond to the choice µF = µR = Mγγ , have been

plotted for the ADD (NLO+PS) and purely SM (NLO+PS) contribution. The label

ADD refers to the total contribution coming from SM, ADD and the interference

between them. The corresponding ADD (LO+PS) contribution gives an indication

of the quantitative impact of the NLO QCD correction. At larger invariant mass

of the photon pair, the ADD effect is dominant. To demonstrate the sensitivity

of our predictions to the choice of scale and PDF uncertainties, in the lower insets

fractional uncertainties by varying (a) both µF and µR and (b) PDF error sets, are

plotted. The difference in the distributions in Fig. 4.2 for ATLAS and CMS can

be attributed to the very different cuts used for their analysis. In Fig. 4.3, the

corresponding plots for d = 3, 4 are plotted for the CMS cuts. The choice of MS

used for the plots corresponds to the lower bounds obtained by [75, 76] using the

diphoton process. By including higher order corrections, the scale dependence goes

down from about 25% at LO, to about 10% at NLO, as can be estimated from the

ratio plots. The PDF uncertainty does not change significantly and remains about

8%.

We now consider the fractional scale uncertainties on the invariant mass dis-
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Figure 4.4: For the invariant mass distribution with d = 2 and MS = 3.7 TeV,
the fractional scale uncertainties as a result of µF variation (upper left panel), µR

variation (upper right panel) and µF , µR variation (lower panel).

tribution as a result of the variation of the scales µF and µR (both independently

and simultaneously) in going from LO+PS to NLO+PS. Note that the LO cross

sections depend only on µF through the PDF sets, but at NLO level the scale µR

enters through αs(µR) and log(µF/µR) coming from the partonic cross sections after
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and d = 4 (right panel) for SM (NLO+PS) and ADD (LO+PS and NLO+PS). The
lower insets display the corresponding fractional scale and PDF uncertainties of the
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mass factorisation. As expected the inclusion of NLO QCD correction reduces the

factorisation scale dependence resulting from the LO observable which is clear from

Fig. 4.4 (upper left panel). In the high Mγγ region, the uncertainty of about 25% at

LO+PS gets reduced to 5% when NLO+PS corrections are included. On the other

hand, the µR dependence enters only at NLO level (see upper right panel of Fig. 4.4)

which will get reduced only if NNLO corrections are included. Hence, we see our

NLO corrections are sensitive to the choice of µR but the variation is only 5% and

is fairly constant for the range of invariant mass considered. If we vary both µF and

µR simultaneously as shown in Fig. 4.4 (lower panel), we find that the reduction in

the µF scale dependence at NLO level is mildly affected by the µR variation in the
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large invariant mass region. In the small invariant mass region, the LO and NLO

results exhibit smaller µF dependence compared to the large invariant mass region.

But µR dependence coming from the NLO results does not change much with the

invariant mass Mγγ . Hence variation due to µR at small Mγγ is larger compared to

that resulting from µF . This explains the behavior at small invariant mass regions

where the NLO+PS variation is in excess of the LO+PS (see lower panel of Fig. 4.4).
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Figure 4.6: Transverse momentum (P γγ
T ) distributions of the diphoton for d = 3

(left panel) and d = 4 (right panel) along with the corresponding fractional scale
and PDF uncertainties (lower inset) of the NLO+PS (ADD) results.

The rapidity (Y ) distribution of the diphoton pair is plotted in Fig. 4.5 for d = 3

(left panel) and d = 4 (right panel). For this analysis we have chosen Mγγ > 600

GeV, the region where the effects of ADD model begins to dominate over the SM

diphoton signal at NLO (see Fig. 4.3). The scale and PDF uncertainties to NLO

are displayed as insets at the bottom of each figure. The scale uncertainties are
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usually larger than the PDF uncertainties in the rapidity distribution except for the

central rapidity region where they are comparable. For d = 3 the scale uncertainties

are about 20% around the central rapidity region, which come down to about 10%

when NLO+PS corrections are included. The PDF uncertainties for LO+PS and

NLO+PS are comparable.

Finally, we plot the transverse momentum distribution in Fig. 4.6 for d = 3 (left

panel) and d = 4 (right panel), for the SM and ADD model to NLO+PS accuracy,

with Mγγ > 600 GeV. The ADD results are also plotted for LO+PS. The scale and

PDF uncertainties are displayed as insets at the bottom of the plots for NLO+PS

(ADD).

4.4 Conclusion

In this chapter, we have presented the diphoton final state in the LED model to

NLO in QCD and matching to PS is implemented using the aMC@NLO frame-

work. All the subprocesses that contribute to the diphoton final state from both the

SM and ADD model are considered to NLO in QCD. This is the first time MC@NLO

formalism has been used for a processes in the ADD model and we hope it would

significantly help extra dimension searches at the LHC to constrain the ADD model

parameters. Using a set of generic cuts, we first demonstrated the importance of

NLO+PS over the fixed order NLO computations, by considering the P γγ
T distri-

bution. We have presented our results for various observables viz., invariant mass,

rapidity and transverse momentum of the diphoton, both for the ATLAS and CMS

detector specific cuts to NLO+PS accuracy. It is important to note that there is

substantial enhancement of the various distributions due to the inclusion of NLO

corrections and both the theoretical and PDF uncertainties have been estimated.
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There is a significant decrease in theoretical uncertainties from over 20% at LO to

about 10% when NLO corrections are included. The results are presented for dif-

ferent number of extra spatial dimensions d = 2 − 6 with respective values of the

fundamental scale MS that have been experimentally bounded. The event files for

d = 2−6 are available on the website http://amcatnlo.cern.ch. Nevertheless, the

complete code is also uploaded on the website http://amcatnlo.cern.ch so that

it could be used by the experimental collaborations in the large extra dimension

searches at the LHC.
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Chapter 5

Summary

Needless to say, LHC is a QCD machine and proper illustration of an experimental

outcome demands theoretical predictions involving higher order QCD corrections to

separate it out from plenty of QCD backgrounds. In this thesis, it has been our

main objective to discuss mainly the aspects of NLO QCD corrections with a few

important and interesting processes in both SM and BSM in the context of LHC. To

present it in a more vivid way, we have gradually stepped towards NLO calculation

and then to NLO+PS matching, starting with a LO study.

We have studied triple gauge boson production processes at LO in both SM and

LED model for 14 TeV LHC run. In fact, these processes are potential backgrounds

of many new physics signals. We have calculated squared amplitudes of the partonic

subprocesses of γγγ, γγZ, γZZ and ZZZ productions in three parts: (i) pure SM,

(ii) pure LED, (iii) interference between SM and LED, using the symbolic manip-

ulation system FORM. Moreover, we have carried out a number of investigations

including gauge invariance check to ensure the correctness of these analytical re-

sults. These results are then imported in a FORTRAN based Monte Carlo code,

where we have used VEGAS for the purpose of doing phase space integration. With
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this set-up, we finally obtain numerical results for the total cross sections as well as

differential distributions of many kinematical observables for all of the above men-

tioned processes with the flexibility in choosing cuts, PDF sets etc. Later on, we

have re-calculated all these numerical results with the help of MadGraph5 package,

using proper model description in it and implementing KK mode summation of the

graviton propagator in the spin-2 HELAS routines and found excellent agreement

with our previous results.

Complete NLO QCD correction to the production of vector gauge boson in as-

sociation with LED graviton, which essentially plays a vital role in searching new

physics signal, has been studied in the context of 14 TeV LHC. In experiment,

gravitons express themselves as missing transverse energies, which undoubtedly re-

semble with the signature coming from SM neutrinos or some other particles that

arise in different BSM scenarios, thereby making the process more interesting and

compelling us to do its O(αs) QCD correction. All the squared matrix elements of

the partonic subprocesses at the Born level as well as at the O(αs) corrected level

i.e., amplitude square of the real emission Feynman diagrams with an extra radia-

tion and the interference between the Born and the virtual Feynman diagrams, are

calculated in n = (4 + ǫ) space-time dimensions using the symbolic manipulation

programme FORM and they have been passed through several other tests along

with the gauge invariance check. In addition, we have used FORM extensively also

in regulating and at the same time, in reducing one loop integrals that arise in the

virtual corrections. While performing NLO computation, the complete cross section

has been split up into two categories: (i) 2-body phase space contribution, which is

coming from the Born term, virtual corrections and the real emissions in the soft

and collinear limit, (ii) 3-body phase space contribution, which solely originates

from the divergence free hard finite part of the real emission corrections. We have
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implemented the two cutoff phase space slicing method in our numerical FORTRAN

code to deal with the real emission contribution and used VEGAS as the integra-

tor in that code. We have explicitly checked IR safety of the final result and also

found that the final result is independent of the choice of cutoff parameters while

adding the 2-body and 3-body phase space contributions. We have presented trun-

cated as well as untruncated differential distributions of several observables using

this present framework and also showed that the scale dependence gets reduced at

the NLO. This framework is totally general in nature and it can be used to study

any other process of interest involving one loop calculation at the NLO level using

the two cutoff phase space slicing method with numerous freedom in working with

different models, importing various PDF sets, defining several kinematical variables

& observables and so on.

Results of diphoton production in the SM and LED model have been produced

in NLO+PS accuracy, which would indisputably be required in extra dimension

searches at the LHC. We have used aMC@NLO for this purpose, where the real

emission contribution is dealt with FKS subtraction scheme and the matching of

fixed order NLO results with the HERWIG6 parton shower Monte Carlo is done

following the MC@NLO formalism in an automated way. We have implemented the

KK mode summation of the graviton propagator in the spin-2 HELAS routines and

provided the one loop corrected results within this framework externally. Cancella-

tions of double and single poles coming from the real and virtual contributions have

been checked in each and every phase space points while studying fixed order results.

We have presented NLO+PS accurate numerical results of differential distributions

for a choice of kinematical observables with the estimation of scale and PDF un-

certainties for 8 TeV LHC. The complete stand-alone code can be downloaded from

http://amcatnlo.cern.ch to run it for different LHC center of mass energy with
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the flexibility in making all the required changes in parameter values, cuts, PDF

etc. to obtain desired results. This present framework can easily be fitted for the

study of any process in the ADD model. Besides, with appropriate changes in the

model and the graviton propagator description, this complete layout can easily be

moulded to study processes in RS scenario.
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Appendix A

Expressions: Matrix Element

Square for qq̄ → γγγ

∑

spin

|M |2SM =
1

4

1

3

e6 Q6
f

t13t14t23t24(s12 + t13 + t14)(s12 + t23 + t24)
×

16s12
(
2s412+4s312(t13+t14+t23+t24)+3s212(t13+t14+t23+t24)

2+s12(t13+

t14 + t23 + t24)
3 +

(
t132 + t13t14 + t14

2 + t23
2 + t23t24 + t24

2
)
(t13(2t23 +

t24) + t14(t23 + 2t24))
)

(A.1)

∑

spin

|M |2
LED

=
1

4

1

3

e2 Q2
f κ4

2s12t13t14(s12 + t13 + t14)t23t24(s12 + t23 + t24)
×

D45
2t14(s12 + t13 + t14)t24(s12 + t23 + t24)

(
4s412 + (8t13 + 9t14 + 8t23 +

9t24)s
3
12 +

(
6t13

2 + (14t14 + 12t23 + 13t24)t13 + 9t14
2 + 6t23

2 + 9t24
2 +

13t14t23 + 16t14t24 + 14t23t24
)
s212 +

(
2t13

3 + (7t14 + 6(t23 + t24))t13
2 +

(
9t14

2 + 13t23t14 + 16t24t14 + 6t23
2 + 9t24

2 + 13t23t24
)
t13 + 4t14

3 +

3t14
2(3t23+4t24)+(t23+t24)

(
2t23

2+5t24t23+4t24
2
)
+2t14

(
3t23

2+8t24t23+

6t24
2
))
s12 + 2

(
t13

2 + 2t14t13 + 2t14
2 + t23

2 + 2t24
2 + 2t23t24

)
(t13(t23 +
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t24)+t14(t23+2t24))
)
(s12+t13+t23)

2+t13t23
(
D35

2(s12+t13+t14)(s12+

t23+ t24)
(
4s412+(9t13+8t14+9t23+8t24)s

3
12+

(
9t13

2+(14t14+16t23+

13t24)t13 + 6t14
2 + 9t23

2 + 6t24
2 + 13t14t23 + 12t14t24 + 14t23t24

)
s212 +

(
4t13

3+3(3t14+4t23+3t24)t13
2+

(
7t14

2+16t23t14+13t24t14+12t23
2+

6t24
2+16t23t24

)
t13+2t14

3+6t14
2(t23+t24)+(t23+t24)

(
4t23

2+5t24t23+

2t24
2
)
+ t14

(
9t23

2 + 13t24t23 + 6t24
2
))
s12 + 2

(
2t13

2 + 2t14t13 + t14
2 +

2t23
2+ t24

2+2t23t24
)
(t14(t23+ t24)+ t13(2t23+ t24))

)
(s12+ t14+ t24)

2+

2D35D34t13t23
(
t13

2+ t23
2
)(
(s12+ t13+2t14)t24

3+
(
2s212+(2t13+7t14+

2t23)s12+4t14(t13+t14)+(t13+3t14)t23
)
t24

2+
(
s312+(t13+6t14+2t23)s

2
12+

(
7t14

2 +6t23t14 + t23
2 + t13(6t14 + t23)

)
s12 + t14

(
t13

2 +3t14t13 +2t14
2 +

t23
2+4(t13+ t14)t23

))
t24+ t14(s12+ t13+ t14)(s12(s12+ t13+ t14)+(s12+

t14)t23)
)
+D34

2t14t24(s12+t13+t14+t23+t24)
2
(
(t13t14+t23t24)s

2
12+(t13+

t14 + t23 + t24)(t13t14 + t23t24)s12 +2(t13t23 + t14t24)
(
t13

2 + t14
2 + t23

2+

t24
2
)))

+2D45

(
D34t14

2
(
t14

2+t24
2
)(
(t13+t23)s

3
12+

(
2t13

2+(2t14+6t23+

t24)t13+t23(t14+2(t23+t24))
)
s212+

(
t13

3+(2t14+7t23+2t24)t13
2+

(
t14

2+

(6t23+t24)t14+t23(7t23+6t24)
)
t13+t23

(
(t23+t24)

2+t14(2t23+t24)
))
s12+

t13t23t24
2+ t23

(
(2t13+ t14)t23

2+4t13(t13+ t14)t23+ t13(t13+ t14)(2t13+

t14)
)
+

(
(t13 + t14)t13

2 + 4(t13 + t14)t23t13 + (3t13 + t14)t23
2
)
t24

)
t24

2 +

D35(s12+ t13 + t14)
2(s12 + t23+ t24)

2
(
2s212+2(t13+ t14 + t23 + t24)s12+

(t13+t14)
2+(t23+t24)

2
)(
(t13t14+t23t24)s

2
12+(t13+t14+t23+t24)(t13t14+

t23t24)s12 + t13t23t24
2 + t13t14

2t23 + t14
(
t13

2 + 4t23t13 + t23
2
)
t24

))

(A.2)

∑

spin

|M |2
INT

=
1

4

1

3

2 e4 Q4
f κ2

s12t13t14t23t24(s12 + t13 + t14)(s12 + t23 + t24)
×

2
(
D45

(
t24

(
t23(s12(s12 + t13) − 2t13t14) + s12(s12 + t13)

2
)
+ t14(s12 +

t23)(s12(s12+t13+t14)+t23(s12+t14))+t24
2(s12+t13)

2
)(
2s412+4s312(t13+

102



t14+ t23+ t24)+3s212(t13+ t14+ t23+ t24)
2+ s12(t13+ t14+ t23+ t24)

3+

t13
3(t23+ t24)+ 3t13

2t14(t23+ t24)+ t13(t23+ t24)
(
3t14

2+(t23+ t24)
2
)
+

t14(t23 +2t24)
(
t14

2 + t23
2 + t23t24 + t24

2
))

+D35

(
2s412 +4s312(t13 + t14 +

t23 + t24) + 3s212(t13 + t14 + t23 + t24)
2 + s12(t13 + t14 + t23 + t24)

3 +

t23(2t13 + t14)
(
t13

2 + t13t14 + t14
2 + t23

2
)
+ t24(t13 + t14)

(
(t13 + t14)

2 +

3t23
2
)
+ 3t23t24

2(t13 + t14) + t24
3(t13 + t14)

)(
s312(t13 + t23) + s212

(
t13

2 +

t13(t14+2t24)+t23(2t14+t23+t24)
)
+s12

(
t14t24(t13+t23)+t13t24(2t13+

t24) + t14
2t23 + 2t14t23

2
)
+ (t14t23 − t13t24)

2
)
+ D34

(
t13

3t23 + t13t23
3 +

t14t24
(
t14

2+ t24
2
))(

s212(t13t24+ t14t23)+s12(t13+ t14+ t23+ t24)(t13t24+

t14t23) + (t14t23 − t13t24)
2
))

(A.3)

Because of three indentical photons in the final state, an additional symmetry factor of 1

3!
has

to be considered while calculating cross section.
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Appendix B

Tensor Reduction

B.1 4-point 4-rank Tensor Reduction

B.1.1 Co-efficients of Dµνρλ

P µνρ
1,1,1Dµνρλ




pλ1

pλ2

pλ3




= X[1,2,3]




D41

D44

D45




+




3D416

0

0




=




R441

R442

R443




P µνρ
2,2,2Dµνρλ




pλ1

pλ2

pλ3




= X[1,2,3]




D49

D42

D413




+




0

3D417

0




=




R444

R445

R446




P µνρ
3,3,3Dµνρλ




pλ1

pλ2

pλ3




= X[1,2,3]




D412

D415

D43




+




0

0

3D418




=




R447

R448

R449
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P µνρ
1,1,2Dµνρλ




pλ1

pλ2

pλ3




= X[1,2,3]




D44

D46

D47




+




2D419

D416

0




=




R4410

R4411

R4412




P µνρ
1,1,3Dµνρλ




pλ1

pλ2

pλ3




= X[1,2,3]




D45

D47

D48




+




2D420

0

D416




=




R4413

R4414

R4415




P µνρ
2,2,3Dµνρλ




pλ1

pλ2

pλ3




= X[1,2,3]




D410

D413

D414




+




0

2D421

D417




=




R4416

R4417

R4418




P µνρ
2,3,3Dµνρλ




pλ1

pλ2

pλ3




= X[1,2,3]




D411

D414

D415




+




0

D418

2D421




=




R4419

R4420

R4421




P µνP ρ
1Dµνρλ




pλ1

pλ2

pλ3




= X[1,2,3]




D416

D419

D420




+




D422

0

0




=




R4422

R4423

R4424
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P µνP ρ
2Dµνρλ




pλ1

pλ2

pλ3




= X[1,2,3]




D419

D417

D421




+




0

D422

0




=




R4425

R4426

R4427




P µνP ρ
3Dµνρλ




pλ1

pλ2

pλ3




= X[1,2,3]




D420

D421

D418




+




0

0

D422




=




R4428

R4429

R4430




D422 =

(
n− 3

n− 1

)
P µνP ρλDµνρλ

= −1

2

(
1

n− 1

)
[f41D311 + f42D312 + f43D313 − C24(2, 3)]

B.1.2 R44 - Functions

R441 =
1

2
[f41D31 + C31(1 + 2, 3) + C0(2, 3)]

R442 =
1

2
[f42D31 + C31(1, 2 + 3)− C31(1 + 2, 3)]

R443 =
1

2
[f43D31 + C31(1, 2)− C31(1, 2 + 3)]

R444 =
1

2
[f41D32 + C31(1 + 2, 3)− C31(2, 3)]

R445 =
1

2
[f42D32 + C32(1, 2 + 3)− C31(1 + 2, 3)]

R446 =
1

2
[f43D32 + C32(1, 2)− C32(1, 2 + 3)]

R447 =
1

2
[f41D33 + C32(1 + 2, 3)− C32(2, 3)]

R448 =
1

2
[f42D33 + C32(1, 2 + 3)− C31(1 + 2, 3)]

R449 =
1

2
[f43D33 − C32(1, 2 + 3)]
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R4410 =
1

2
[f41D34 + C31(1 + 2, 3)− C11(2, 3)]

R4411 =
1

2
[f42D34 + C33(1, 2 + 3)− C31(1 + 2, 3)]

R4412 =
1

2
[f43D34 + C33(1, 2)− C33(1, 2 + 3)]

R4413 =
1

2
[f41D35 + C33(1 + 2, 3)− C12(2, 3)]

R4414 =
1

2
[f42D35 + C33(1, 2 + 3)− C33(1 + 2, 3)]

R4415 =
1

2
[f43D35 + C33(1, 2)− C33(1, 2 + 3)]

R4416 =
1

2
[f41D38 + C33(1 + 2, 3)− C33(2, 3)]

R4417 =
1

2
[f42D38 + C32(1, 2 + 3)− C33(1 + 2, 3)]

R4418 =
1

2
[f43D38 − C32(1, 2 + 3)]

R4419 =
1

2
[f41D39 + C34(1 + 2, 3)− C34(2, 3)]

R4420 =
1

2
[f42D39 + C32(1, 2 + 3)− C34(1 + 2, 3)]

R4421 =
1

2
[f43D39 − C32(1, 2 + 3)]

R4422 =
1

2
[f41D311 + C35(1 + 2, 3) + C24(2, 3)]

R4423 =
1

2
[f42D311 + C35(1, 2 + 3)− C35(1 + 2, 3)]

R4424 =
1

2
[f43D311 + C35(1, 2)− C35(1, 2 + 3)]

R4425 =
1

2
[f41D312 + C35(1 + 2, 3)− C35(2, 3)]

R4426 =
1

2
[f42D312 + C36(1, 2 + 3)− C35(1 + 2, 3)]

R4427 =
1

2
[f43D312 + C36(1, 2)− C36(1, 2 + 3)]

R4428 =
1

2
[f41D313 + C36(1 + 2, 3)− C36(2, 3)]

R4429 =
1

2
[f42D313 + C36(1, 2 + 3)− C36(1 + 2, 3)]

R4430 =
1

2
[f43D313 − C36(1, 2 + 3)]
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f41 = −p21

f42 = −(p1 + p2)
2 + p21

f43 = −(p1 + p2 + p3)
2 + (p1 + p2)

2

B.2 5-point Reduction

B.2.1 Co-efficients of Eµ

Eµ




pµ1

pµ2

pµ3

pµ4




= X[1,2,3,4]




E11

E12

E13

E14




=




R511

R512

R513

R514




B.2.2 R51 - Functions

R511 =
1

2
[f51E0 +D0(1 + 2, 3, 4)−D0(2, 3, 4)]

R512 =
1

2
[f52E0 +D0(1, 2 + 3, 4)−D0(1 + 2, 3, 4)]

R513 =
1

2
[f53E0 +D0(1, 2, 3 + 4)−D0(1, 2 + 3, 4)]

R514 =
1

2
[f54E0 +D0(1, 2, 3)−D0(1, 2, 3 + 4)]
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B.2.3 Co-efficients of Eµν

P µ
1 Eµν




pν1

pν2

pν3

pν4




= X[1,2,3,4]




E21

E25

E26

E27




+




E211

0

0

0




=




R521

R522

R523

R524




P µ
2 Eµν




pν1

pν2

pν3

pν4




= X[1,2,3,4]




E25

E22

E28

E29




+




0

E211

0

0




=




R525

R526

R527

R528




P µ
3 Eµν




pν1

pν2

pν3

pν4




= X[1,2,3,4]




E26

E28

E23

E210




+




0

0

E211

0




=




R529

R5210

R5211

R5212




P µ
4 Eµν




pν1

pν2

pν3

pν4




= X[1,2,3,4]




E27

E29

E210

E24




+




0

0

0

E211




=




R5213

R5214

R5215

R5216




E211 = P µνEµν
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= −1

2

(
1

n− 4

)
[f51E11 + f52E12 + f53E13 + f54E14 −D0(2, 3, 4)]

B.2.4 R52 - Functions

R521 =
1

2
[f51E11 +D11(1 + 2, 3, 4) +D0(2, 3, 4)]

R522 =
1

2
[f52E11 +D11(1, 2 + 3, 4)−D11(1 + 2, 3, 4)]

R523 =
1

2
[f53E11 +D11(1, 2, 3 + 4)−D11(1, 2 + 3, 4)]

R524 =
1

2
[f54E11 +D11(1, 2, 3)−D11(1, 2, 3 + 4)]

R525 =
1

2
[f51E12 +D11(1 + 2, 3, 4)−D11(2, 3, 4)]

R526 =
1

2
[f52E12 +D12(1, 2 + 3, 4)−D11(1 + 2, 3, 4)]

R527 =
1

2
[f53E12 +D12(1, 2, 3 + 4)−D12(1, 2 + 3, 4)]

R528 =
1

2
[f54E12 +D12(1, 2, 3)−D12(1, 2, 3 + 4)]

R529 =
1

2
[f51E13 +D12(1 + 2, 3, 4)−D12(2, 3, 4)]

R5210 =
1

2
[f52E13 +D12(1, 2 + 3, 4)−D12(1 + 2, 3, 4)]

R5211 =
1

2
[f53E13 +D13(1, 2, 3 + 4)−D12(1, 2 + 3, 4)]

R5212 =
1

2
[f54E13 +D13(1, 2, 3)−D13(1, 2, 3 + 4)]

R5213 =
1

2
[f51E14 +D13(1 + 2, 3, 4)−D13(2, 3, 4)]

R5214 =
1

2
[f52E14 +D13(1, 2 + 3, 4)−D13(1 + 2, 3, 4)]

R5215 =
1

2
[f53E14 +D13(1, 2, 3 + 4)−D13(1, 2 + 3, 4)]

R5216 =
1

2
[f54E14 −D13(1, 2, 3 + 4)]
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B.2.5 Co-efficients of Eµνρ

P µν
1,1Eµνρ




pρ1

pρ2

pρ3

pρ4




= X[1,2,3,4]




E31

E35

E36

E37




+




2E321

0

0

0




=




R531

R532

R533

R534




P µν
2,2Eµνρ




pρ1

pρ2

pρ3

pρ4




= X[1,2,3,4]




E38

E32

E314

E315




+




0

2E322

0

0




=




R535

R536

R537

R538




P µν
3,3Eµνρ




pρ1

pρ2

pρ3

pρ4




= X[1,2,3,4]




E39

E316

E33

E319




+




0

0

2E323

0




=




R539

R5310

R5311

R5312




P µν
4,4Eµνρ




pρ1

pρ2

pρ3

pρ4




= X[1,2,3,4]




E310

E317

E320

E34




+




0

0

0

2E324




=




R5313

R5314

R5315

R5316




111



P µν
1,2Eµνρ




pρ1

pρ2

pρ3

pρ4




= X[1,2,3,4]




E35

E38

E311

E312




+




E322

E321

0

0




=




R5317

R5318

R5319

R5320




P µν
3,4Eµνρ




pρ1

pρ2

pρ3

pρ4




= X[1,2,3,4]




E313

E318

E319

E320




+




0

0

E324

E323




=




R5321

R5322

R5323

R5324




P µνEµνρ




pρ1

pρ2

pρ3

pρ4




= X[1,2,3,4]




E321

E322

E323

E324




=




R5325

R5326

R5327

R5328




B.2.6 R53 - Functions

R531 =
1

2
[f51E21 +D21(1 + 2, 3, 4)−D0(2, 3, 4)]

R532 =
1

2
[f52E21 +D21(1, 2 + 3, 4)−D21(1 + 2, 3, 4)]

R533 =
1

2
[f53E21 +D21(1, 2, 3 + 4)−D21(1, 2 + 3, 4)]

R534 =
1

2
[f54E21 +D21(1, 2, 3)−D21(1, 2, 3 + 4)]

R535 =
1

2
[f51E22 +D21(1 + 2, 3, 4)−D21(2, 3, 4)]

R536 =
1

2
[f52E22 +D22(1, 2 + 3, 4)−D21(1 + 2, 3, 4)]

R537 =
1

2
[f53E22 +D22(1, 2, 3 + 4)−D22(1, 2 + 3, 4)]
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R538 =
1

2
[f54E22 +D22(1, 2, 3)−D22(1, 2, 3 + 4)]

R539 =
1

2
[f51E23 +D22(1 + 2, 3, 4)−D22(2, 3, 4)]

R5310 =
1

2
[f52E23 +D22(1, 2 + 3, 4)−D22(1 + 2, 3, 4)]

R5311 =
1

2
[f53E23 +D23(1, 2, 3 + 4)−D22(1, 2 + 3, 4)]

R5312 =
1

2
[f54E23 +D23(1, 2, 3)−D23(1, 2, 3 + 4)]

R5313 =
1

2
[f51E24 +D23(1 + 2, 3, 4)−D23(2, 3, 4)]

R5314 =
1

2
[f52E24 +D23(1, 2 + 3, 4)−D23(1 + 2, 3, 4)]

R5315 =
1

2
[f53E24 +D23(1, 2, 3 + 4)−D23(1, 2 + 3, 4)]

R5316 =
1

2
[f54E24 −D23(1, 2, 3 + 4)]

R5317 =
1

2
[f51E25 +D21(1 + 2, 3, 4) +D11(2, 3, 4)]

R5318 =
1

2
[f52E25 +D24(1, 2 + 3, 4)−D21(1 + 2, 3, 4)]

R5319 =
1

2
[f53E25 +D24(1, 2, 3 + 4)−D24(1, 2 + 3, 4)]

R5320 =
1

2
[f54E25 +D24(1, 2, 3)−D24(1, 2, 3 + 4)]

R5321 =
1

2
[f51E210 +D26(1 + 2, 3, 4)−D26(2, 3, 4)]

R5322 =
1

2
[f52E210 +D26(1, 2 + 3, 4)−D26(1 + 2, 3, 4)]

R5323 =
1

2
[f53E210 +D23(1, 2, 3 + 4)−D26(1, 2 + 3, 4)]

R5324 =
1

2
[f54E210 −D23(1, 2, 3 + 4)]

R5325 =
1

2
[f51E211 +D27(1 + 2, 3, 4)−D27(2, 3, 4)]

R5326 =
1

2
[f52E211 +D27(1, 2 + 3, 4)−D27(1 + 2, 3, 4)]

R5327 =
1

2
[f53E211 +D27(1, 2, 3 + 4)−D27(1, 2 + 3, 4)]

R5328 =
1

2
[f54E211 +D27(1, 2, 3)−D27(1, 2, 3 + 4)]
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B.2.7 Co-efficients of Eµνρλ

P µνρ
1,1,1Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E41

E45

E46

E47




+




3E436

0

0

0




=




R541

R542

R543

R544




P µνρ
2,2,2Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E414

E42

E424

E425




+




0

3E440

0

0




=




R545

R546

R547

R548




P µνρ
3,3,3Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E420

E429

E43

E433




+




0

0

3E443

0




=




R549

R5410

R5411

R5412




P µνρ
4,4,4Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E423

E432

E435

E44




+




0

0

0

3E445




=




R5413

R5414

R5415

R5416
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P µνρ
1,1,2Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E45

E48

E411

E412




+




2E437

E436

0

0




=




R5417

R5418

R5419

R5420




P µνρ
1,1,3Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E46

E411

E49

E413




+




2E438

0

E436

0




=




R5421

R5422

R5423

R5424




P µνρ
1,2,2Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E48

E414

E415

E416




+




E440

2E437

0

0




=




R5425

R5426

R5427

R5428




P µνρ
1,3,3Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E49

E417

E420

E421




+




E443

0

2E438

0




=




R5429

R5430

R5431

R5432
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P µνρ
1,2,3Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E411

E415

E417

E418




+




E441

E438

E437

0




=




R5433

R5434

R5435

R5436




P µνρ
2,2,3Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E415

E424

E426

E427




+




0

2E441

E440

0




=




R5437

R5438

R5439

R5440




P µνρ
2,3,3Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E417

E426

E429

E430




+




0

E443

2E441

0




=




R5441

R5442

R5443

R5444




P µνρ
1,4,4Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E410

E419

E422

E423




+




E445

0

0

2E439




=




R5445

R5446

R5447

R5448
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P µνρ
2,4,4Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E419

E428

E431

E432




+




0

E445

0

2E442




=




R5449

R5450

R5451

R5452




P µνρ
3,4,4Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E422

E431

E434

E435




+




0

0

E445

2E444




=




R5453

R5454

R5455

R5456




P µνP ρ
1Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E436

E437

E438

E439




+




E446

0

0

0




=




R5457

R5458

R5459

R5460




P µνP ρ
2Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E437

E440

E441

E442




+




0

E446

0

0




=




R5461

R5462

R5463

R5464
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P µνP ρ
3Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E438

E441

E443

E444




+




0

0

E446

0




=




R5465

R5466

R5467

R5468




P µνP ρ
4Eµνρλ




pλ1

pλ2

pλ3

pλ4




= X[1,2,3,4]




E439

E442

E444

E445




+




0

0

0

E446




=




R5469

R5470

R5471

R5472




E446 =

(
1

2n− 7

)
P µνP ρλEµνρλ

= −1

2

(
1

n− 2

)
[f51E321 + f52E322 + f53E323 + f54E324 −D27(2, 3, 4)]

B.2.8 R54 - Functions

R541 =
1

2
[f51E31 +D31(1 + 2, 3, 4) +D0(2, 3, 4)]

R542 =
1

2
[f52E31 +D31(1, 2 + 3, 4)−D31(1 + 2, 3, 4)]

R543 =
1

2
[f53E31 +D31(1, 2, 3 + 4)−D31(1, 2 + 3, 4)]

R544 =
1

2
[f54E31 +D31(1, 2, 3)−D31(1, 2, 3 + 4)]

R545 =
1

2
[f51E32 +D31(1 + 2, 3, 4)−D31(2, 3, 4)]

R546 =
1

2
[f52E32 +D32(1, 2 + 3, 4)−D31(1 + 2, 3, 4)]

R547 =
1

2
[f53E32 +D32(1, 2, 3 + 4)−D32(1, 2 + 3, 4)]

R548 =
1

2
[f54E32 +D32(1, 2, 3)−D32(1, 2, 3 + 4)]

118



R549 =
1

2
[f51E33 +D32(1 + 2, 3, 4)−D32(2, 3, 4)]

R5410 =
1

2
[f52E33 +D32(1, 2 + 3, 4)−D32(1 + 2, 3, 4)]

R5411 =
1

2
[f53E33 +D33(1, 2, 3 + 4)−D32(1, 2 + 3, 4)]

R5412 =
1

2
[f54E33 +D33(1, 2, 3)−D33(1, 2, 3 + 4)]

R5413 =
1

2
[f51E34 +D33(1 + 2, 3, 4)−D33(2, 3, 4)]

R5414 =
1

2
[f52E34 +D33(1, 2 + 3, 4)−D33(1 + 2, 3, 4)]

R5415 =
1

2
[f53E34 +D33(1, 2, 3 + 4)−D33(1, 2 + 3, 4)]

R5416 =
1

2
[f54E34 −D33(1, 2, 3 + 4)]

R5417 =
1

2
[f51E35 +D31(1 + 2, 3, 4)−D11(2, 3, 4)]

R5418 =
1

2
[f52E35 +D34(1, 2 + 3, 4)−D31(1 + 2, 3, 4)]

R5419 =
1

2
[f53E35 +D34(1, 2, 3 + 4)−D34(1, 2 + 3, 4)]

R5420 =
1

2
[f54E35 +D34(1, 2, 3)−D34(1, 2, 3 + 4)]

R5421 =
1

2
[f51E36 +D34(1 + 2, 3, 4)−D12(2, 3, 4)]

R5422 =
1

2
[f52E36 +D34(1, 2 + 3, 4)−D34(1 + 2, 3, 4)]

R5423 =
1

2
[f53E36 +D35(1, 2, 3 + 4)−D34(1, 2 + 3, 4)]

R5424 =
1

2
[f54E36 +D35(1, 2, 3)−D35(1, 2, 3 + 4)]

R5425 =
1

2
[f51E38 +D31(1 + 2, 3, 4) +D21(2, 3, 4)]

R5426 =
1

2
[f52E38 +D36(1, 2 + 3, 4)−D31(1 + 2, 3, 4)]

R5427 =
1

2
[f53E38 +D36(1, 2, 3 + 4)−D36(1, 2 + 3, 4)]

R5428 =
1

2
[f54E38 +D36(1, 2, 3)−D36(1, 2, 3 + 4)]

R5429 =
1

2
[f51E39 +D36(1 + 2, 3, 4) +D22(2, 3, 4)]

R5430 =
1

2
[f52E39 +D36(1, 2 + 3, 4)−D36(1 + 2, 3, 4)]
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R5431 =
1

2
[f53E39 +D37(1, 2, 3 + 4)−D36(1, 2 + 3, 4)]

R5432 =
1

2
[f54E39 +D37(1, 2, 3)−D37(1, 2, 3 + 4)]

R5433 =
1

2
[f51E311 +D34(1 + 2, 3, 4) +D24(2, 3, 4)]

R5434 =
1

2
[f52E311 +D36(1, 2 + 3, 4)−D34(1 + 2, 3, 4)]

R5435 =
1

2
[f53E311 +D310(1, 2, 3 + 4)−D36(1, 2 + 3, 4)]

R5436 =
1

2
[f54E311 +D310(1, 2, 3)−D310(1, 2, 3 + 4)]

R5437 =
1

2
[f51E314 +D34(1 + 2, 3, 4)−D34(2, 3, 4)]

R5438 =
1

2
[f52E314 +D32(1, 2 + 3, 4)−D34(1 + 2, 3, 4)]

R5439 =
1

2
[f53E314 +D38(1, 2, 3 + 4)−D32(1, 2 + 3, 4)]

R5440 =
1

2
[f54E314 +D38(1, 2, 3)−D38(1, 2, 3 + 4)]

R5441 =
1

2
[f51E316 +D36(1 + 2, 3, 4)−D36(2, 3, 4)]

R5442 =
1

2
[f52E316 +D32(1, 2 + 3, 4)−D36(1 + 2, 3, 4)]

R5443 =
1

2
[f53E316 +D39(1, 2, 3 + 4)−D32(1, 2 + 3, 4)]

R5444 =
1

2
[f54E316 +D39(1, 2, 3)−D39(1, 2, 3 + 4)]

R5445 =
1

2
[f51E310 +D37(1 + 2, 3, 4) +D23(2, 3, 4)]

R5446 =
1

2
[f52E310 +D37(1, 2 + 3, 4)−D37(1 + 2, 3, 4)]

R5447 =
1

2
[f53E310 +D37(1, 2, 3 + 4)−D37(1, 2 + 3, 4)]

R5448 =
1

2
[f54E310 −D37(1, 2, 3 + 4)]

R5449 =
1

2
[f51E317 +D37(1 + 2, 3, 4)−D37(2, 3, 4)]

R5450 =
1

2
[f52E317 +D39(1, 2 + 3, 4)−D37(1 + 2, 3, 4)]

R5451 =
1

2
[f53E317 +D39(1, 2, 3 + 4)−D39(1, 2 + 3, 4)]

R5452 =
1

2
[f54E317 −D39(1, 2, 3 + 4)]
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R5453 =
1

2
[f51E320 +D39(1 + 2, 3, 4)−D39(2, 3, 4)]

R5454 =
1

2
[f52E320 +D39(1, 2 + 3, 4)−D39(1 + 2, 3, 4)]

R5455 =
1

2
[f53E320 +D33(1, 2, 3 + 4)−D39(1, 2 + 3, 4)]

R5456 =
1

2
[f54E320 −D33(1, 2, 3 + 4)]

R5457 =
1

2
[f51E321 +D311(1 + 2, 3, 4) +D27(2, 3, 4)]

R5458 =
1

2
[f52E321 +D311(1, 2 + 3, 4)−D311(1 + 2, 3, 4)]

R5459 =
1

2
[f53E321 +D311(1, 2, 3 + 4)−D311(1, 2 + 3, 4)]

R5460 =
1

2
[f54E321 +D311(1, 2, 3)−D311(1, 2, 3 + 4)]

R5461 =
1

2
[f51E322 +D311(1 + 2, 3, 4)−D311(2, 3, 4)]

R5462 =
1

2
[f52E322 +D312(1, 2 + 3, 4)−D311(1 + 2, 3, 4)]

R5463 =
1

2
[f53E322 +D312(1, 2, 3 + 4)−D312(1, 2 + 3, 4)]

R5464 =
1

2
[f54E322 +D312(1, 2, 3)−D312(1, 2, 3 + 4)]

R5465 =
1

2
[f51E323 +D312(1 + 2, 3, 4)−D312(2, 3, 4)]

R5466 =
1

2
[f52E323 +D312(1, 2 + 3, 4)−D312(1 + 2, 3, 4)]

R5467 =
1

2
[f53E323 +D313(1, 2, 3 + 4)−D312(1, 2 + 3, 4)]

R5468 =
1

2
[f54E323 +D313(1, 2, 3)−D313(1, 2, 3 + 4)]

R5469 =
1

2
[f51E324 +D313(1 + 2, 3, 4)−D313(2, 3, 4)]

R5470 =
1

2
[f52E324 +D313(1, 2 + 3, 4)−D313(1 + 2, 3, 4)]

R5471 =
1

2
[f53E324 +D313(1, 2, 3 + 4)−D313(1, 2 + 3, 4)]

R5472 =
1

2
[f54E324 −D313(1, 2, 3 + 4)]
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f51 = −p21

f52 = −(p1 + p2)
2 + p21

f53 = −(p1 + p2 + p3)
2 + (p1 + p2)

2

f54 = −(p1 + p2 + p3 + p4)
2 + (p1 + p2 + p3)

2
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Appendix C

Expressions: Real Graviton

Production

C.1 Finite Part of the Virtual Contribution

All the Vi’s appearing in eq. (3.12) are given below:

V1 =
1

(t2u(m2
z − s))

×

(
(−2m8t+2m6(m2

Z(−6t+u)+ t(7t+2u))−m4(18m4
Zt−2m2

Z(24t
2+

6tu−u2)+ 3t(10t2+8tu+u2))+m2t(−8m6
Z +26t3+36t2u+15tu2+

u3 + 2m4
Z(21t + 5u) − 2m2

Z(30t
2 + 23tu + u2)) − 4t2(−2m6

Z + 2t3 +

4t2u+ 3tu2 + u3 +m4
Z(6t+ 4u)−m2

Z(6t
2 + 8tu+ 3u2))

)

(C.1)

V2 =
1

(t2u(m2
Z − s))

×
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(
16(2m8t+ 2m6(m2

Z(6t− u)− t(7t+ 2u)) +m4(18m4
Zt− 2m2

Z(24t
2 +

6tu−u2)+ 3t(10t2+8tu+u2))−m2t(−8m6
Z +26t3+36t2u+15tu2+

u3 + 2m4
Z(21t + 5u) − 2m2

Z(30t
2 + 23tu + u2)) + 4t2(−2m6

Z + 2t3 +

4t2u+ 3tu2 + u3 +m4
Z(6t+ 4u)−m2

Z(6t
2 + 8tu+ 3u2)))

)

(C.2)

V3 = V2|t↔u (C.3)

V4 = V1|t↔u (C.4)

V5 =
1

(2t2u2(−m2 + t+ u))
×

(
(4m8tu − 2m6(9tu(t + u) + m2

Z(t
2 − 12tu + u2)) + m4(36m4

Ztu +

3tu(11t2+16tu+11u2)+2m2
Z(t

3−30t2u−30tu2+u3))+4tu(−2m6
Z(t+

u)+ (t+u)2(2t2+ tu+2u2)+m4
Z(6t

2+8tu+6u2)−m2
Z(6t

3+11t2u+

11tu2 + 6u3)) − m2tu(−16m6
Z + 52m4

Z(t + u) − 2m2
Z(31t

2 + 46tu +

31u2) + 3(9t3 + 17t2u+ 17tu2 + 9u3)))
)

(C.5)

V6 =
1

(2t2u2(−m2 + t+ u))
×

(
(4m8tu − 2m6(9tu(t + u) + m2

Z(t
2 − 12tu + u2)) + m4(36m4

Ztu +

3tu(11t2+16tu+11u2)+2m2
Z(t

3−30t2u−30tu2+u3))+4tu(−2m6
Z(t+

u)+ (t+u)2(2t2+ tu+2u2)+m4
Z(6t

2+8tu+6u2)−m2
Z(6t

3+11t2u+

11tu2 + 6u3)) − m2tu(−16m6
Z + 52m4

Z(t + u) − 2m2
Z(31t

2 + 46tu +

31u2) + 3(9t3 + 17t2u+ 17tu2 + 9u3)))
)

(C.6)
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V7 = V6 (C.7)

V8 =
1

((m2 − t)2(m2
Z − t)2t2(m2 − t− u)u)

×

(
(m12m2

Zt(−3m2
Z +2t)−3m10m2

Z(m
4
Z(6t−u)+ t2(6t+u)−m2

Zt(13t+

u)) + m8(−27m8
Zt + 12t4u + 3m6

Z(38t
2 + 5tu − u2) + m2

Zt
2(48t2 +

11tu+3u2)−m4
Zt(138t

2+50tu+3u2))− 4t5u(4m6
Z − 2m4

Z(5t+4u)−

t(2t2+5tu+3u2)+m2
Z(8t

2+13tu+4u2))+m4t2(12m10
Z − 2m8

Z(39t+

7u) +m6
Z(160t

2+61tu+5u2) + t2u(56t2+69tu+12u2) +m2
Zt(34t

3 −

107t2u−99tu2−12u3)−2m4
Z(64t

3+t2u−2tu2+3u3))+m6t(−12m10
Z −

27m6
Zt(8t+3u)−6t3u(7t+4u)+m8

Z(89t+15u)+m2
Zt(−58t3+29t2u+

16tu2−2u3)+m4
Z(198t

3+94t2u+23tu2+3u3))+m2t3(4m8
Z(4t−u)+

4m4
Zt(8t

2−22tu−17u2)+4m6
Z(−10t2+6tu+u2)− t2u(34t2+65tu+

27u2) + 2m2
Zt(−4t3 + 51t2u+ 69tu2 + 18u3))

)

(C.8)

V9 = V8|t↔u (C.9)

V10 =
1

(tu(m2 − t− u)(−4m2m2
Z + (t+ u)2)2)

×

(
16(104m12m4

Z(t + u) + 4m10m2
Z(96m

4
Z(t + u) − 2m2

Z(73t
2 + 74tu +

73u2) − 3(t3 + 13t2u + 13tu2 + u3)) + 4(t + u)5(−2m6
Z(t + u) + (t +

u)2(2t2 + tu+2u2) +m4
Z(6t

2+8tu+6u2)−m2
Z(6t

3+11t2u+11tu2+

6u3))+m4(3(t+u)5(11t2+16tu+11u2)−16m10
Z (17t2+10tu+17u2)−

8m4
Z(t+u)3(25t2+132tu+25u2)−12m6

Z(t+u)2(43t2−108tu+43u2)+

4m2
Z(t+u)4(49t2+40tu+49u2)+48m8

Z(16t
3+11t2u+11tu2+16u3))−
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m2(t+u)2(−16m8
Z(4t

2+11tu+4u2)+2m2
Z(t+u)3(9t2−26tu+9u2)+

3(t+u)4(9t2+8tu+9u2)−4m4
Z(t+u)2(45t2+26tu+45u2)+8m6

Z(25t
3+

64t2u + 64tu2 + 25u3)) + 4m8(146m8
Z(t + u) + (t + u)5 + 26m2

Z(t +

u)2(t2 + 5tu+ u2)− 24m6
Z(17t

2 + 16tu+ 17u2) + 4m4
Z(69t

3 + 59t2u+

59tu2+69u3))+ 2m6(136m10
Z (t+u)− 9(t+u)6− 12m8

Z(59t
2+54tu+

59u2) − m2
Z(t + u)3(123t2 + 286tu + 123u2) − 2m4

Z(t + u)2(157t2 −

374tu+ 157u2) +m6
Z(986t

3 + 866t2u+ 866tu2 + 986u3)))π2
)

(C.10)

V11 =
1

(t2u2(m2 − t− u)(−4m2m2
Z + (t + u)2)2)

×

(
(−96m12m4

Ztu−4t2u2(t+u)3(−6m6
Z +16m4

Z(t+u)−15m2
Z(t+u)2+

5(t+u)3)+4m10m2
Z(120m

2
Ztu(t+u)+tu(−3t2+34tu−3u2)+12m4

Z(t
2−

12tu+u2))+m2tu(2m2
Z(t+u)4(t2+18tu+u2)+(t+u)5(3t2+64tu+

3u2)+2m4
Z(t+u)3(9t2−272tu+9u2)−4m6

Z(t+u)2(11t2−196tu+11u2)+

24m8
Z(t

3−13t2u−13tu2+u3))+m4(192m10
Z tu(t+u)−9tu(t+u)4(t2+

8tu+u2)−8m8
Ztu(71t

2+30tu+71u2)−2m4
Ztu(t+u)2(167t2−1060tu+

167u2) + 4m6
Ztu(167t

3− 227t2u− 227tu2 +167u3)−m2
Z(t+ u)3(3t4 −

20t3u + 674t2u2 − 20tu3 + 3u4)) − 2m8(432m8
Ztu + tu(t + u)2(3t2 −

4tu + 3u2) + 2m2
Ztu(−15t3 + 179t2u + 179tu2 − 15u3) + 8m6

Z(3t
3 −

97t2u− 97tu2 + 3u3) + 4m4
Z(3t

4 + 118t3u+ 66t2u2 + 118tu3 + 3u4)) +

m6(−384m10
Z tu + 1312m8

Ztu(t + u) + 4tu(t + u)3(3t2 + 5tu + 3u2) −

4m6
Ztu(391t

2 +294tu+391u2) +m2
Z(t+ u)2(3t4 − 70t3u+1230t2u2 −

70tu3+3u4)+8m4
Z(3t

5+111t4u−122t3u2−122t2u3+111tu4+3u5)))
)

(C.11)

V12 =
1

(3(m2 − t)t2(−m2
Z + t)(m2 − u))

×
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1

(u2(−m2
Z + u)(m2

Z − s)2(4m2m2
Z − (t+ u)2))

×

(
(−12m16m2

Ztu(22m
4
Z +20tu−21m2

Z(t+u))+3m14(20t2u2(t+u)2+

44m8
Z(t

2 − 12tu+ u2)− 10m4
Ztu(29t

2 + 118tu+ 29u2) +m6
Z(−44t3 +

852t2u+852tu2−44u3)−21m2
Ztu(t

3−13t2u−13tu2+u3))+4t3u3(t+

u)2(64m10
Z − 176m8

Z(t + u) + 8m6
Z(23t

2 + 49tu + 23u2) − 3tu(7t3 +

5t2u+ 5tu2 + 7u3)− 6m4
Z(16t

3 + 51t2u+ 51tu2 + 16u3) +m2
Z(24t

4 +

111t3u + 134t2u2 + 111tu3 + 24u4)) − 3m12(792m10
Z tu + 4m8

Z(33t
3 −

601t2u − 601tu2 + 33u3) + t2u2(79t3 + 257t2u + 257tu2 + 79u3) +

m6
Z(−121t4+2026t3u+5262t2u2+2026tu3−121u4)+m2

Ztu(−73t4+

142t3u+ 574t2u2 + 142tu3 − 73u4)−m4
Z(11t

5 + 326t4u+ 3015t3u2 +

3015t2u3 + 326tu4 + 11u5)) − 3m10(352m12
Z tu − 2428m10

Z tu(t + u) −

t2u2(t+ u)2(127t2+386tu+127u2)− 22m8
Z(6t

4− 167t3u− 430t2u2−

167tu3+6u4)+m6
Z(99t

5−1796t4u−9887t3u2−9887t2u3−1796tu4+

99u5)+m2
Ztu(104t

5+521t4u+707t3u2+707t2u3+521tu4+104u5)+

m4
Z(33t

6+87t5u+2369t4u2+6046 t3u3+2369 t2u4+87 tu5+33 u6))+

m8(2112m12
Z tu(t+u)−16m10

Z tu(453t2+1241tu+453u2)+m8
Z(−132t5+

6321t4u+36839 t3u2+36839 t2u3+6321 tu4−132u5)−3t2u2(107t5+

809t4u + 1912 t3u2 + 1912 t2u3 + 809 tu4 + 107 u5) + m6
Z(33 t6 −

1209 t5u− 20115 t4u2− 42434 t3u3− 20115 t2u4− 1209 tu5+33u6)+

3m2
Ztu(84t

6 + 943 t5u+ 3098 t4u2 + 4694t3u3 + 3098 t2u4 + 943tu5 +

84u6)+3m4
Z(33t

7−77 t6u−544 t5u2+1792 t4u3+1792 t3u4−544t2u5−

77tu6+33u7))+m2t2u2(−1024m12
Z tu−m6

Z(t+u)3(1033t2+3430tu+

1033u2) − 32m10
Z (14t3 − 37t2u − 37tu2 + 14u3) + 3tu(t + u)2(41t4 +

170t3u+194t2u2+170tu3+41u4) + 8m8
Z(142t

4 +405t3u+478t2u2 +

405tu3 + 142u4) + m4
Z(483t

6 + 4326t5u + 13853t4u2 + 20660t3u3 +
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13853t2u4 + 4326tu5 + 483u6) − 2m2
Z(69t

7 + 660t6u + 2578t5u2 +

5301t4u3+5301t3u4+2578t2u5+660tu6+69u7))+m6(−32m12
Z tu(33t2+

131tu+33u2)+4m10
Z tu(537t3+4225t2u+4225tu2+537u3)+3t2u2(t+

u)2(49t4+469t3u+862t2u2+469tu3+49u4)−4m8
Ztu(126t

4+4141t3u+

9014t2u2+4141tu3+126u4)+m6
Z(33t

7−630t6u+775t5u2+14222t4u3+

14222t3u4+775t2u5−630tu6+33u7)−3m2
Ztu(43t

7+686t6u+3478t5u2+

7861t4u3+7861t3u4+3478t2u5+686tu6+43u7)+m4
Z(−33t8+171t7u+

5013t6u2 +15053t5u3 + 18824t4u4 +15053t3u5 +5013t2u6 +171tu7 −

33u8))+m4tu(2080m12
Z tu(t+u)−6tu(t+u)3(5t4+96t3u+172t2u2+

96tu3 + 5u4) + 8m10
Z (24t4 − 485t3u − 1382t2u2 − 485tu3 + 24u4) −

m8
Z(423t

5+375t4u−8054t3u2−8054t2u3+375tu4+423u5)+m6
Z(237t

6+

3942t5u + 10563t4u2 + 11668t3u3 + 10563t2u4 + 3942tu5 + 237u6) −

m4
Z(39t

7+2514t6u+14408t5u2+29959t4u3+29959t3u4+14408t2u5+

2514tu6+39u7)+m2
Z(33t

8+777t7u+5388t6u2+16631t5u3+24742t4u4+

16631t3u5 + 5388t2u6 + 777tu7 + 33u8)))
)

(C.12)

V13 =
1

((m2
Z − t)2t2(m2

Z − u)2u2(−m2 + t+ u)(−4m2m2
Z + (t+ u)2)2)

×

(
m2

Z(−16m12m4
Ztu(6m

6
Z − 8m4

Z(t+ u)− 2tu(t+ u) +m2
Z(3t

2 + 8tu+

3u2))+8m10m2
Z(6m

10
Z (t2−12tu+u2)+m8

Z(−12t3+149t2u+149tu2−

12u3)+3m4
Ztu(t

3+45t2u+45tu2+u3)− t2u2(2t3+ t2u+ tu2+2u3)+

m2
Ztu(3t

4 − 2t3u− 54t2u2 − 2tu3+3u4) +m6
Z(6t

4 − 80t3u− 284t2u2 −

80tu3 + 6u4)) + 4t2u2(t+ u)3(6m12
Z − 28m10

Z (t+ u) + 2tu(t+ u)2(t2 +

3tu+ u2) +m8
Z(49t

2 + 110tu+ 49u2)−m6
Z(41t

3 + 155t2u+ 155tu2 +

41u3)+m4
Z(17t

4+97t3u+166t2u2+97tu3+17u4)−m2
Z(3t

5+26t4u+

71t3u2+71t2u3+26tu4+3u5))−m8(864m14
Z tu+24m12

Z (2t3−117t2u−
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117tu2+2u3)−4m8
Ztu(293t

3+1581t2u+1581tu2+293u3)+m10
Z (−72t4+

3012t3u + 7672t2u2 + 3012tu3 − 72u4) − 2t2u2(t5 + 15t4u − 20t3u2 −

20t2u3 + 15tu4 + u5)− 4m4
Ztu(t

5 + 19t4u− 54t3u2 − 54t2u3 + 19tu4 +

u5) +m2
Ztu(3t

6 + 36t5u− 23t4u2 − 688t3u3 − 23t2u4 + 36tu5 + 3u6) +

2m6
Z(12t

6 + 57t5u+ 812t4u2 + 1470t3u3 + 812t2u4 + 57tu5 + 12u6))−

m2tu(4m12
Z (t+ u)2(23t2− 352tu+23u2)− 24m14

Z (t3 − 13t2u− 13tu2+

u3)+2tu(t+u)4(t4+13t3u+38t2u2+13tu3+u4)+2m8
Z(t+u)2(59t4−

542t3u−2218t2u2−542tu3+59u4)−2m10
Z (73t5−845t4u−3284t3u2−

3284t2u3−845tu4+73u5)−m2
Z(t+u)3(3t6+48t5u+237t4u2+236t3u3+

237t2u4+48tu5+3u6)+2m4
Z(t+u)2(6t6+87t5u+104t4u2−238t3u3+

104t2u4 + 87tu5 + 6u6) +m6
Z(−49t7 − 73t6u+ 2017t5u2 + 6457t4u3 +

6457t3u4+2017t2u5−73tu6−49u7))+m6(−384m16
Z tu+1936m14

Z tu(t+

u)−4m12
Z tu(859t2+1806tu+859u2)−t2u2(t+u)2(3t4+64t3u−130t2u2+

64tu3 + 3u4) + 8m10
Z (3t5 + 347t4u + 1095t3u2 + 1095t2u3 + 347tu4 +

3u5)−m8
Z(45t

6+1146t5u+3887t4u2+3460t3u3+3887t2u4+1146tu5+

45u6)+m2
Ztu(3t

7+115t6u+165t5u2−1811t4u3−1811t3u4+165t2u5+

115tu6 + 3u7) + 2m6
Z(9t

7 + 142t6u+ 348t5u2 − 1971t4u3 − 1971t3u4 +

348t2u5 + 142tu6 + 9u7) + m4
Z(3t

8 − 32t7u − 340t6u2 + 2156t5u3 +

6490t4u4+2156t3u5−340t2u6−32tu7+3u8))+m4(192m16
Z tu(t+u)−

8m14
Z tu(101t2 + 138tu + 101u2) + 4m12

Z tu(333t3 + 379t2u + 379tu2 +

333u3)+2m10
Z tu(−581t4+30t3u+2118t2u2+30tu3−581u4)+3t2u2(t+

u)3(t4 + 18t3u − 2t2u2 + 18tu3 + u4) − m2
Ztu(t + u)2(3t6 + 96t5u +

209t4u2 − 1132t3u3 + 209t2u4 + 96tu5 + 3u6) − m8
Z(3t

7 − 613t6u +

921t5u2+11961t4u3+11961t3u4+921t2u5−613tu6+3u7)+m6
Z(6t

8−

177t7u+12t6u2+8745t5u3+18124t4u4+8745t3u5+12t2u6−177tu7+

6u8)−m4
Z(3t

9 − 13t8u− 338t7u2 + 1474t6u3 + 8410t5u4 + 8410t4u5 +
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1474t3u6 − 338t2u7 − 13tu8 + 3u9)))
)

(C.13)

V14 =
1

((m2 − t)2t2(m2 − u)2(m2 − t− u)u2(−4m2m2
Z + (t+ u)2)2)

×

(
m2(96m18m4

Ztu−4m16m2
Z(158m

2
Ztu(t+u)+ tu(−3t2+34tu−3u2)+

12m4
Z(t

2− 12tu+u2))− 4t3u3(t+ u)2(12m6
Ztu+6tu(t+ u)3+m2

Z(t+

u)2(t2−11tu+u2)−m4
Z(t

3+7t2u+7tu2+u3))+2m14(432m8
Ztu+tu(t+

u)2(3t2−4tu+3u2)−4m2
Ztu(8t

3−113t2u−113tu2+8u3)+4m6
Z(18t

3−

281t2u−281tu2+18u3)+2m4
Z(6t

4+411t3u+578t2u2+411tu3+6u4))+

m2t2u2(48m8
Ztu(3t

2−2tu+3u2)+2(t+u)4(3t4+29t3u+72t2u2+29tu3+

3u4)−m2
Z(t+ u)3(5t4 + 124t3u− 102t2u2 + 124tu3 + 5u4) + 2m4

Z(t+

u)2(7t4+86t3u−522t2u2+86tu3+7u4)−4m6
Z(3t

5+61t4u−164t3u2−

164t2u3 +61tu4+3u5)) +m12(384m10
Z tu− 2288m8

Ztu(t+ u)− 4tu(t+

u)3(6t2 + tu+ 6u2)− 16m6
Z(9t

4 − 207t3u− 416t2u2 − 207tu3 + 9u4)−

8m4
Z(9t

5+284t4u+356t3u2+356t2u3+284tu4+9u5)−m2
Z(3t

6−126t5u+

2089t4u2+4756t3u3+2089t2u4−126tu5+3u6))+m10(−576m10
Z tu(t+

u) + 672m8
Ztu(3t

2 +7tu+3u2) + tu(t+ u)2(39t4 +170t3u+222t2u2+

170tu3 + 39u4) + 16m6
Z(3t

5 − 147t4u− 424t3u2 − 424t2u3 − 147tu4 +

3u5) + 2m4
Z(36t

6 + 915t5u+ 780t4u2 − 1286t3u3 + 780t2u4 + 915tu5 +

36u6)+m2
Z(9t

7−109t6u+2141t5u2+8903t4u3+8903t3u4+2141t2u5−

109tu6 + 9u7)) −m4tu(48m8
Ztu(4t

3 + 3t2u + 3tu2 + 4u3) −m2
Ztu(t +

u)2(85t4 − 52t3u− 1286t2u2 − 52tu3 + 85u4) + (t+ u)3(3t6 + 58t5u+

303t4u2+492t3u3+303t2u4+58tu5+3u6)−4m6
Z(3t

6+108t5u−55t4u2−

608t3u3 − 55t2u4 + 108tu5 + 3u6) + m4
Z(15t

7 + 353t6u − 501t5u2 −

5475t4u3 − 5475t3u4 − 501t2u5 + 353tu6 +15u7)) +m8(192m10
Z tu(t2 +

4tu+ u2)− 32m8
Ztu(20t

3 +97t2u+97tu2+20u3)− 3tu(t+ u)3(11t4+
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80t3u + 122t2u2 + 80tu3 + 11u4) + 32m6
Ztu(27t

4 + 104t3u + 77t2u2 +

104tu3+27u4)−2m4
Z(12t

7+423t6u+483t5u2−3970t4u3−3970t3u4+

483t2u5 + 423tu6 + 12u7) − m2
Z(9t

8 − 36t7u + 880t6u2 + 7376t5u3 +

13062t4u4+7376t3u5+880t2u6−36tu7+9u8))+m6(−192m10
Z t2u2(t+

u)+16m8
Ztu(3t

4+58t3u+62t2u2+58tu3+3u4)−4m6
Ztu(41t

5+337t4u−

308t3u2−308t2u3+337tu4+41u5)+tu(t+u)2(15t6+194t5u+697t4u2+

1016t3u3+697t2u4+194tu5+15u6)+m4
Ztu(195t

6+916t5u−4815t4u2−

12032t3u3 − 4815t2u4 + 916tu5 + 195u6) + m2
Z(3t

9 − t8u − 20t7u2 +

2332t6u3 + 7838t5u4 + 7838t4u5 + 2332t3u6 − 20t2u7 − tu8 + 3u9)))
)

(C.14)

V15 =
1

(6t2u2(−m2 + t + u)2)
×

(
(144m10tu−6m8(97tu(t+u)+12m2

Z(t
2−12tu+u2))+3m6(432m4

Ztu+

tu(353t2 + 700tu + 353u2) + m2
Z(48t

3 − 746t2u − 746tu2 + 48u3)) +

12m4(48m6
Ztu−208m4

Ztu(t+u)− tu(89t3+249t2u+249tu2+89u3)+

m2
Z(−6t4+199t3u+482t2u2+199tu3−6u4))+m2tu(−696m6

Z(t+u)+

40m4
Z(39t

2+107tu+39u2)−6m2
Z(229t

3+817t2u+817tu2+229u3)+

21(27t4+98t3u+126t2u2+98tu3+27u4))− 4tu(−2m6
Z(15t

2+86tu+

15u2)+m4
Z(90t

3+406t2u+406tu2+90u3)−m2
Z(90t

4+381t3u+512t2u2+

381tu3 + 90u4) + 3(10t5 + 49t4u+ 69t3u2 + 69t2u3 + 49tu4 + 10u5)))
)

(C.15)

C.2 B0 Integrals

B0 (P) =
i

(4π)2

[
−2

ǫ
+ 2− γE − f (P)

]
(C.16)
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where P ∈ {p3, p4, p5, k, q} and

f (P) =






ln
(

−P2

4πµ2
r

)
for P = p3, p4

ln
(

P2

4πµ2
r

)
− iπ for P = p5, k, q

. (C.17)

C.3 C0 Integrals

C0 (P ′,P ′′) =
−i

(4π)2
1

[(P ′ − P ′′)2 − P ′′2]

[
−2

ǫ

{
ln

(−(P ′ − P ′′)2

P ′′2

)
+ iπ

}
+

1

2

{(
γE + ln

( P ′′2

4πµ2
r

)
− iπ

)2

−
(
γE + ln

(−(P ′ − P ′′)2

4πµ2
r

))2
}]

(C.18)

where P ′ ∈ {p1, p2} and P ′′ ∈ {k, q} .

C0 (p1, p2) =
−i

(4π)2
1

s

[
− 4

ǫ2
− 2

ǫ

{
γE + ln

(
s

4πµ2
r

)
− iπ

}
+

1

2

{
π2

6
−

(
γE + ln

(
s

4πµ2
r

)
− iπ

)2
}]

(C.19)

C0 (k, q) =
−i

(4π)2
1

sβ

[
2Li2

(
2

1− α + β

)
− 2Li2

(
2

1− α− β

)
−

ln

(
(1− α)2 − β2

4

){
ln

(
α− β + 1

α− β − 1

)
− ln

(
α + β + 1

α + β − 1

)}]
(C.20)

where α = m2−m2
z

s
and β = 1

s

√
(t + u)2 − 4m2

zm
2 .

C.4 D0 Integrals

D0 (p1, k, q) =
i

(4π)2
1

st

[
4

ǫ2
+

2

ǫ

{
γE + ln

( −t

4πµ2
r

)
+ ln

(
s

m2
z

)
+ ln

(−t

m2

)
+ iπ

}
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+

(
γE + ln

(
s

4πµ2
r

)
− iπ

)2

+

(
γE + ln

( −t

4πµ2
r

))2

−
(
γE + ln

(
m2

z

4πµ2
r

)
− iπ

)2

−
(
γE + ln

(
m2

4πµ2
r

)
− iπ

)2

+
1

2

(
γE + ln

(
m2

z

s

)
+ ln

(
m2

4πµ2
r

)
− iπ

)2

− π2

12

+
1

3

(
−3 ln2

(
1− t

m2

)
− 3 ln2

(
mz

2 − t

s

)
− π2

)
− 2Li2

(
t

m2

)

+ ln2

(
1− m2

t

)
− 2iπ ln

(
1− m2

t

)
− 2Li2

(
t

mz
2

)

+ 2 ln

(
1− mz

2

s

)(
ln

(
1− mz

2

t

)
− iπ

)

+

(
ln

(
1− mz

2

t

)
− ln

(
mz

2 − s

t

))
×

(
ln

(
mz

2 − s

t

)
+ log

(
1− mz

2

t

)
− 2iπ

)

− 2 ln

(
s

mz
2
− 1

)
ln

(
1− t

mz
2

)
+ ln2

(
1− mz

2

s

)

− ln2

(
s

mz
2

)
+ 2 ln

(
s

mz
2

)
ln

(
s

mz
2
− 1

)]
(C.21)

D0 (p2, k, q) = D0 (p1, k, q) |t→u (C.22)

D0 (k, p2, q) =
i

(4π)2
1

(tu−m2
zm

2)

[
4

ǫ

{
ln

(−t

m2
z

)
+ ln

(−u

m2

)
+ 2iπ

}

−
(
γE + ln

(
m2

z

4πµ2
r

)
− iπ

)2

−
(
γE + ln

(
m2

4πµ2
r

)
− iπ

)2

+

(
γE + ln

( −t

4πµ2
r

))2

+

(
γE + ln

( −u

4πµ2
r

))2

− 4π2

3

+ 2Li2

(
(m2 − t) (mz

2 − t)

m2mz
2 − tu

)
+ 2Li2

(
(m2 − u) (mz

2 − u)

m2mz
2 − tu

)

+ 2Li2

(
tu−m2mz

2

(m2 − t) (m2 − u)

)
+ 2Li2

(
tu−m2mz

2

(mz
2 − t) (mz

2 − u)

)

+ ln2

(
(m2 − t) (m2 − u)

tu−m2mz
2

)
+ ln2

(
(mz

2 − t) (mz
2 − u)

tu−m2mz
2

)
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− 2iπ

(
ln

(
(m2 − t) (m2 − u)

tu−m2mz
2

)
+ ln

(
(mz

2 − t) (mz
2 − u)

tu−m2mz
2

))

(C.23)
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Appendix D

ADD & RS Model in MadGraph5

D.1 ADD Model

HLZ formalism [40]

Lagrangian:

LHLZ = −κ

2

∞
∑

~n=0

Tµν(x) h
(~n)
µν (x)

where κ =
√
16πGN .

Graviton propagator:

GHLZ =
i Bµναβ

k2 −m2 + iǫ

where

Bµν,αβ =

(

ηµα − kµkα

m2

)(

ηνβ − kνkβ

m2

)

+

(

ηµβ − kµkβ

m2

)(

ηνα − kνkα

m2

)

−2

3

(

ηµν − kµkν

m2

)(

ηαβ − kαkβ

m2

)

.

GRW formalism [41]

Lagrangian:

LGRW = − 1

MP

∞
∑

~n=0

Tµν(x) h′(~n)
µν (x)

where MP = (8πGN )−1/2 .

Graviton Propagator:

GGRW =
i Pµναβ

k2 −m2 + iǫ

where

Pµν,αβ =
1

2

(

ηµαηνβ + ηµβηνα − ηµνηαβ

)

− 1

2m2

(

ηµαkνkβ + ηνβkµkα + (α ↔ β)
)

+
1

6

(

ηµν +
2 kµkν

m2

)(

ηαβ +
2 kαkβ

m2

)

.

In the above, GN denotes the Newton’s constant and k denotes the momentum of
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a massive spin-2 KK graviton with mass m and rest of the symbols and/or notations

are similar to what we have used in section 1.3.1.

We can easily find the inter-relationship between these two formalisms and they

are given here under:

1

MP

=
κ√
2

, (D.1)

Pµν,αβ =
1

2
Bµν,αβ . (D.2)

Note that, except the different couplings used in LHLZ and LGRW and the difference

in the spin-2 graviton propagator as described in the expressions of GHLZ and GGRW,

everything is same in the HLZ and GRW formalisms. Now, whatever be the formal-

ism (HLZ or GRW), the matrix element of a process should come out to be exactly

same in both ways by consistent use of a particular formalism. For example, let us

consider the following process in LO i.e., qq̄ → γγ via a massive spin-2 KK graviton,

as depicted in Fig. D.1. In Fig. D.1, V1 and V2 denote only the couplings (i.e., −κ
2

G
V1 V2

Figure D.1: Feynman diagram for qq̄ → γγ via a massive spin-2 KK graviton.

or −1/MP ) in the corresponding vertices, as used in LHLZ or LGRW. Now, we want

to calculate the factor [V1 G V2] in these two cases, as they are the only source of

difference in these two conventions:

[V1 G V2]HLZ =
κ2

4
× GHLZ , (D.3)
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[V1 G V2]GRW =

(
1

MP

)2

× GGRW

=
κ2

2
× 1

2
GHLZ (using eq. (D.1) & (D.2))

=
κ2

4
× GHLZ . (D.4)

So, it is evident from eq. (D.3) and (D.4), that consistent use of any of these for-

malisms would lead to the same result.

Now, in MadGraph5, the ADD model file is written following the HLZ conven-

tion, while the spin-2 HELAS routines use GRW formalism. So, the factor [V1 G V2]

in MadGraph5 gives the following result:

[V1 G V2]MG5 = [V1]HLZ GGRW [V2]HLZ

=
κ2

4
× 1

2
GHLZ

=
1

2
× κ2

4
× GHLZ . (D.5)

Comparing eq. (D.5) with either eq. (D.3) or (D.4), we find that there would be an

extra half factor, if one follows the MadGraph5 convention as stated above. There-

fore, that extra factor should have to be eliminated properly to get the correct result.

Also, while dealing with ADD model, one has to include a proper algorithm which

would do the summation over the KK mode propagators under the MadGraph5

environment. All these things are carefully taken care of while presenting all the

results in Chapter 4.

D.2 RS Model

On successful completion of the ADD model implementation in MadGraph5, we

can readily deal with the RS model also, as the nature of the Lagrangian is very
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similar in these two cases. A very simple and straight forward modification in the

ADD model file would make it work in the RS scenario. To discuss in detail, let us

consider the Lagrangian in the RS scenario,

LRS = − c0
m0

∞∑

~n

T µν(x) h(~n)
µν (x) , (D.6)

where c0 =
K
MP

= c0
√
8π and m0 = Ke−πKRc . It is obvious from the above discussion

of the ADD model that, within MadGraph5 framework, the graviton propagator

would naturally follow the GRW formalism. So, this time, the discussed factor

[V1 G V2] would take the following form:

[V1 G V2]RS, MG5 = [V1]RS GGRW [V2]RS

=
c0

2

m2
0

× 1

2
GHLZ . (D.7)

Comparing eq. (D.7) with eq. (D.3) we get,

1

2

c0
2

m2
0

=
κ2

4
, (D.8)

⇒ κ =

√
16π

c02

m2
0

. (D.9)

So, we need to modify the ADD model file, where we have maintained the HLZ

formalism, in such a way that it obeys the following replacement: GN ≡ c02

m2
0
properly

and that’s all. Rest of the thing will follow the same course what we have mentioned

at the time of discussing ADD model implementation in MadGraph5 environment.

However, this time, the algorithm which takes care of the summation of graviton

propagators in RS scenario, will be completely different from what is used in ADD

case depending on the nature of construction of these two models.
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