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SYNOPSIS

The anti-de Sitter space/conformal field theory correspondence or AdS/CFT correspon-

dence for short, offers a novel approach to access the strong coupling regime of a wide

spectrum of quantum field theories. The basic recipe of the correspondence is to map (in

an appropriate sense) the strongly coupled gauge theory to a weakly coupled string dual or

classical gravity, that is amenable to perturbative treatment. Recent years have witnessed a

deluge of interest in exploiting the correspondence to unravel salient features of the plasma

phase of such theories. Besides the generic theoretical interests, the phenomenology of

ultra-relativistic heavy ion collisions has also acted as a catalyst for undertaking such stud-

ies. In fact, inspiration has acted the other way too, and insights from theoretical studies

using the correspondence has helped open up new vistas of explorations in the colliders.

Experiments at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider

(LHC) have provided fascinating insights into the properties of quantum chromodynamics

(QCD) matter at extreme high temperature and/or energy density. Experimental signatures

suggest that in the energy scale accessed at the colliders, QCD matter appears in a new

state - “quark-gluon plasma” (QGP). This new state of matter comes into being after a

phase transition from the hadronic state to a deconfined state of quarks and gluons. Ex-
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perimental evidence further indicates that the QGP formed does not behave as a weakly

coupled gas of quarks and gluons but is dominated by strong coupling effects. To cite one

instance, while computing the ratio of the shear viscosity η to the entropy density s, weak

and strong coupling results differ not only quantitatively but also parametrically, and ex-

perimental data suggests the accuracy of the strong coupling result. Thus, it is very crucial

that we have at our disposal a suitable machinery to explain the wealth of experimental

data from a theoretical standpoint. A theoretical explanation of any strongly coupled phe-

nomenon is always a challenging assignment since the strong coupling casts a question

mark upon the reliability of the time-tested tools of conventional perturbative field theory.

Lattice field theory has emerged as a viable alternative to explore such strongly coupled

phenomena in a non-perturbative framework, but not without its own baggage of short-

comings. Indeed, it has successfully explained a multitude of thermodynamic properties of

hot and dense QCD matter like critical temperature, nature of phase transition, equation of

state, etc., but the very premises upon which it is formulated, make it incapable of handling

real-time dynamics and it encounters problems - both conceptual and computational. It is

thus highly desirable that one seeks alternative avenues to investigate gauge theories with

large couplings. The AdS/CFT correspondence has been immensely successful in explain-

ing a plethora of strongly coupled phenomena across a diverse range of fields and energy

scales, be it QCD, QGP, condensed matter physics, or even fluid dynamics.

The correspondence, in its basic incarnation, advocated a duality between type IIB string

theory living on AdS5 × S5 and N = 4, SU(Nc) super Yang-Mills (SYM) theory, with Nc

being the number of colors, living on the 4-dimensional boundary of AdS5. Since then, the

duality has been generalized to embrace a wider variety of gauge theories under its ambit

and is now more appropriately called the gauge/string duality or the holographic duality.

The generalizations enable us to study less symmetric and hence, more realistic physical
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systems, making the duality more potent.

Having said so, it must be borne in mind, that the exact dual to real world QCD has still

eluded us. Presently, various “toy” gauge theories with known string duals are used to carry

out the dual computations, and most intriguingly, the results obtained, in many instances,

agree with those of QCD. The computed quantities are also in good qualitative agreement

with experimental data. In fact, many of the results exhibit a kind of universality among the

different theories pointing to the existence of a universality class. Further, in spite of the

limitations, the results are all obtained from first principle calculations in non-Abelian field

theories at non-zero temperature. This makes it worthwhile to pursue this complimentary

avenue further and understand various facets of strongly coupled gauge theories.

By now there is a large body of literature which calculates different quantities of experi-

mental interest in QCD-like gauge theories in the deconfined phase using the duality. How-

ever, most of these works concern QGP that is locally isotropic.

The primary aim of the thesis is to use holographic ideas to elicit lessons about strongly

coupled QGP when effects of anisotropy might be dominant. While a study of how anisotropy

affects quantities of experimental relevance is interesting in its own right, what makes it

more appealing is that the presence of anisotropy is one of the hallmarks of the plasma dur-

ing its early stage right after its birth. Thus, a proper understanding of anisotropy-induced

modifications is absolutely imperative in our endeavor to understand better the early-time

dynamics of QGP.

The plasma, just after its creation in heavy ion collisions, is locally anisotropic and far

away from equilibrium for a time t < τout. It settles down in an isotropic state only after

time τiso > τout, so that the standard hydrodynamic description of the plasma makes sense

only if we want to probe the plasma at time scale t > τiso. One would, of course, like to

make progress and study the plasma in the time scale t < τout when it is far away from
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equilibrium. However, it turns out to be a really challenging task. Instead, we shall focus

on an intermediate window τout < t < τiso, where the plasma is in equilibrium but yet to

attain isotropy. To probe the plasma in this time domain, it is imperative that one takes into

account the inherent anisotropy. It has been proposed that an inherently anisotropic hy-

drodynamic description, which involves a derivative expansion around an anisotropic state,

can be used to study the plasma in this regime. Motivated by the field-theoretic computa-

tions, there has been a surge in interest in investigating the anisotropic plasma in the spirit

of the gauge/string duality.

In the thesis, we consider two specific toy models of anisotropic plasma in the framework

of the duality to compute different quantities related to heavy probe quarks that are of di-

rect relevance to collider experiments. While there are many such quantities, we focus

specifically on those quantities, where there is a promise of significant interplay between

experimental data and insights obtained via the gauge/string duality. One of the quan-

tities we compute is the bound state quark-antiquark potential V (ℓ) as a function of the

quark-antiquark separation (ℓ). This provides information regarding the suppression of

quarkonium production (like J/Ψ) which, in turn sheds light upon the temperature of the

matter and the degree to which the presence of matter screens the interaction between the

color particles. An alternative mode to explore the extent to which these color particles

are screened is simply to compute the screening length Lmax, the distance beyond which

the bound states melt into the plasma. Another quantity of experimental interest is the jet

quenching parameter q̂. Jet quenching refers to the set of experiments that brings forth

what happens when a very energetic quark or gluon, (with momentum much greater than

the temperature of the thermal bath) plows through the strongly coupled plasma. While

some measurements quantify how the energetic parton loses energy others attempt to ob-

serve how the plasma in turn is affected by the parton that passes through it. There is a
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single all-inclusive parameter q̂ that measures the radiative energy loss of the energetic par-

ton. Another coefficient µ, the drag coefficient, quantifies the amount of collisional energy

loss undergone by the parton. We shall try to compute these quantities at various stages of

the thesis.

Before considering the anisotropic cases, we set the stage by studying the isotropic, strongly

coupled, thermal N = 4 SYM plasma in various space dimensions. We compute holo-

graphically the expectation values of certain time-like Wilson loops in the plasma and

hence, extract the velocity-dependent quark-antiquark potential V (ℓ) and the screening

length Lmax. We further consider light-like Wilson loops which are related to the jet

quenching parameter q̂.

Having set the stage, we consider the anisotropic models next. The anisotropic models we

study are essentially toy models having different sources of anisotropy, far removed from

the realistic hot and dense plasma. Nevertheless, by studying these models we hope to

capture the telltale signs of anisotropy at least at the qualitative level.

The first model we consider is the thermal non-commutative Yang-Mills theory (NCYM)

in (3 + 1)-dimensions. The motivation for studying NCYM plasma is primarily three-fold.

Firstly, in NCYM plasma the presence of non-commutativity reduces the symmetry of the

theory from SO(3) to SO(2) rendering the theory anisotropic. Hence, NCYM can serve

as an interesting playground for exploring the effects of anisotropy. Secondly, NCYM is

interesting in its own right since it arises quite naturally in string theory and M-theory and

it is of interest to see how non-commutativity affects the different observables. Thirdly, a

consistent gauge theory can indeed be formulated in non-commutative space-time. Even

though, so far, its existence has not been detected in low energy, one cannot rule out the

possibility that its effect may be manifested at extremely high energy scale, where the

fabric of space-time itself may be modified. The experimental lower bound on the non-
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commutativity scale reported in the literature usually gives a very small effect and is hard

to detect. So, it is desirable to search for its effect in alternative channels. High energy

heavy ion collision offers one such arena and it may be worthwhile to look whether it can

provide a better window for the effect of non-commutativity to be observed. Driven by

these motivations we perform a similar type of computation of Wilson loops in NCYM.

We find out the potential of heavy quarkonia using holographic techniques with the ve-

locity v and the non-commutativity θ as parameters. The results are compared with the

known commutative case. An analytic expression for the screening length is obtained in a

restricted domain of the parameter space. The limit v → 1 is considered from which the

expression for the jet quenching parameter q̂ is extracted. The effects of non-commutativity

upon q̂ are studied for both small and large values of θ and attempt is made to connect the

results to the recent collider data by giving some numerical estimates.

In the next stage we use holographic principles to study the second anisotropic toy model -

a topologically deformed SYM where the deformation parameter depends upon one of the

space coordinates thereby injecting anisotropy into the theory. To have analytical handle

over our computations, we confine ourselves only to small values of anisotropy whence the

metric components and the other relevant fields can be written analytically (perturbatively).

While investigating the properties of massive quark probes in this model is interesting by

itself, we were driven by the inspiration to seek whether the quantities computed in NCYM

bear any resemblance to their counterparts in the deformed SYM, that is to see whether

the effects of anisotropy are generic enough and one can speak of a universality class. The

interaction potential and the screening length of mesonic bound states are found out for

different orientations of the dipole in the plasma and the effects of anisotropy on the dis-

sociation of the mesons explored. The general observation is that in a weakly anisotropic

plasma, the screening length decreases and the potential becomes weaker so that the dipole
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becomes more susceptible to dissociation. The findings are compared with those obtained

in other anisotropic models. In particular, results for the static dipole potential obtained are

different from those found using Hard Thermal Loop (HTL) approach in field theory. On

the other hand, all our results are remarkably similar with those obtained for hot NCYM

pointing to the suggestion that there may indeed be some universal class of anisotropic

plasma. This notion is further strengthened in the analysis of the Brownian motion of

a non-relativistic heavy probe quark in weakly anisotropic hot plasma. The concomitant

Langevin equation supplies information regarding the drag force, the random force auto-

correlator and the relaxation time. The validity of the fluctuation-dissipation theorem in

anisotropic plasma is verified from a holographic perspective. To study the Langevin equa-

tion in the gravity dual a probe string is considered and its fluctuations around the classical

solution quantized, all the while confining only to the low frequency, weak anisotropy do-

main to have analytical control over the calculations. An interesting qualitative agreement

of the results with their NCYM cousins is noticed. It is important to check the validity

of this comparison for arbitrary strength of anisotropy. However, this is beyond the scope

of analytic computation and would make an interesting course of future study. Another

potential avenue will be to investigate Brownian motion in more general scenarios, like

in the relativistic setting and for fluctuations of any frequency. What transpires from the

above investigations is that although the source of anisotropy in the two models discussed

are drastically different we observe qualitatively similar effects on diverse experimentally

pertinent observables. This leads us to speculate on a more general note, that since the

computations hinge upon the coupling of the string to the background metric, any source

of anisotropy leading to similar types of background will lead to qualitatively similar effect

upon the heavy quark observables.
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5.6 V (ℓ)-ℓ for η = 0 for same set of ã and same orientation (as in Figure 5.5) . . . 124

5.7 ℓ-K̃ for η = 1 for different ã with dipole along x3 and v in transverse plane . . 126
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5.12 V (ℓ)-ℓ for η = 0 for same set of ã and same orientation (as in Figure 5.11) . . . 131
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5.24 V (ℓ)-ℓ for η = 2 for same set of ã and same orientation (as in Figure 5.23) . . . 146
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CHAPTER 1

PROLOGUE

1.1 Overview

One of the spectacular developments in string theory has been the conjectured duality be-

tween a conformal field theory (CFT) and a theory of gravity in anti-de Sitter (AdS) space-

time, which goes by the name of the “Anti de-Sitter space/Conformal Field Theory corre-

spondence” in string theory parlance, or the “AdS/CFT correspondence” [1–3]∗ in short.

The correspondence offers an innovative approach to access the strong coupling regime of

a wide class of quantum field theories, that are otherwise inaccessible by standard field-

theoretic techniques. The essence of the correspondence is to establish a mapping in an

well-defined sense between a gauge theory respecting conformal invariance and a string

theory in AdS space-time. It can be shown that under certain conditions a strongly coupled

gauge theory can be mapped to a weakly coupled string theory, which reduces to classical

gravity thereby, permitting a perturbative analysis. This is what makes the correspondence

∗A comprehensive review of the correspondence can be found in [4].
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2 CHAPTER 1. PROLOGUE

so appealing - one just solves the problem perturbatively in the weakly coupled string dual

and reverts back to the strongly coupled gauge theory of interest! In the process one in-

vokes the so-called “AdS/CFT dictionary” that relates gauge-theoretic quantities to their

string theory counterparts. In recent years, a considerable effort has been directed towards

exploiting this remarkable correspondence to unravel the salient features of the plasma

phase of gauge theories that admit a dual string description. Apart from generic theoret-

ical interests, the phenomenology of ultra-relativistic heavy ion collisions, i.e., collisions

of atomic nuclei where the center-of-mass energy per nucleon far exceeds the nucleon rest

mass, has also acted as a catalyst for undertaking such studies. In fact, inspiration has

acted the other way too, and precious insights gained from theoretical studies using the

correspondence have paved way for exploring uncharted frontiers in the collider experi-

ments. It is this thriving symbiotic relationship between heavy ion phenomenology and the

AdS/CFT correspondence that will be the underlying theme of the thesis.

Experiments currently underway at the Relativistic Heavy Ion Collider (RHIC) at the

Brookhaven National Laboratory and the Large Hadron Collider (LHC) at the European

Organization for Nuclear Research (CERN) have provided fascinating insights into prop-

erties of Quantum Chromodynamics (QCD) matter at extreme high temperature and/or

energy density. Experimental signatures suggest that in the energy scale accessed at the

colliders, QCD matter appears in the guise of a new phase - “Quark-Gluon Plasma” (QGP)

which emerges after a phase transition from the hadronic state to a deconfined state of

quarks and gluons. Experimental evidence further indicates that the QGP formed does not

behave as a weakly coupled gas of quarks and gluons but resembles a strongly coupled

fluid [5–7]. For instance, while computing the ratio of the shear viscosity η to the entropy

density s, weak and strong coupling results [8,9] are found to differ not only quantitatively

but also parametrically, and experimental data [10] supports the strong coupling result.
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Later this ratio was shown to be universal for all strongly coupled gauge theories in the

limit of large number of colors and permitting a dual gravitational description [11]. In such

a scenario one of the major questions confronting us is whether the perturbative framework

suffices to explain the relevant physics issues at a temperature of few hundred MeV’s (as

attained in the colliders) or we should take recourse to a formalism that is robust at strong

coupling. Although in a non-Abelian plasma weak coupling effects are distinctly different

from strong coupling ones, a priori it is not apparent which observations and features owe

their origin to weak coupling and which of them can be attributed to the strong coupling

behavior. Hence, one of the exigent task at hand is to systematically disentangle the ef-

fects of strong coupling and weak coupling. Thus, in our endeavor to explain the wealth

of experimental data accumulated from heavy ion collisions, a pressing requirement is a

cross-fertilization of perturbative and non-perturbative ideas. Conventional field theory,

which is essentially based on a perturbative framework, is well-suited to explain the weak

coupling features. On the other hand, it is very crucial that we also have at our disposal

a suitable machinery to explain the effects stemming from a large value of the coupling.

A theoretical explanation of any strongly coupled phenomenon is always a challenging

assignment since strong coupling imposes severe restrictions upon the applicability of the

time-tested tools of traditional perturbative field theory. Lattice field theory has emerged as

a viable alternative to investigate systems bearing the stamp of strong coupling effects, in

a non-perturbative framework, but not without its own baggage of shortcomings. Indeed,

it has successfully explained a multitude of thermodynamic properties of hot and dense

QCD matter like critical temperature, nature of phase transition, equation of state, etc., but

the very premises upon which it is formulated, make it incapable of handling real-time

dynamics that are of relevance to QGP physics. It is thus highly desirable that one seeks al-

ternative avenues to investigate gauge theories characterized by high values of the coupling
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parameter. This makes us turn our attention to the AdS/CFT correspondence which has

been immensely successful in explaining a plethora of strongly coupled phenomena across

a diverse range of fields and energy scales, be it QCD, QGP, condensed matter physics, or

even fluid dynamics.

The correspondence, in its primitive incarnation [1], conjectured a bold duality between

type IIB string theory living on AdS5 × S5 and N = 4, SU(Nc) super Yang-Mills (SYM)

theory, with Nc being the number of colors, living on the 4-dimensional boundary of AdS5.

Since then, the duality has been the subject of intense theoretical investigations and gen-

eralized to encompass a wider variety of gauge theories under its ambit and is now more

appropriately called the gauge/string duality or the holographic duality (since it relates a

field theory to a theory of gravity in one higher dimension). The generalizations empower

us to study less symmetric and hence, more realistic physical systems, making the duality

even more potent.

Having said so, it must be admitted, that this approach is plagued by its own limitations.

The duality does not provide precision tools for QCD physics and can at best be consid-

ered a complementary toolkit offering a semi-quantitative insight into the strong coupling

regime of QCD. In spite of intense efforts the exact dual to QCD has remained elusive.

But the duality does hold for a large class of solvable models that share many features with

QCD. In the absence of any well-controlled machinery, the duality remains our best bet

for deciphering the rich structure underlying QCD physics. Presently, various “toy” gauge

theories admitting string duals are engaged to carry out the dual computations, and most

intriguingly, the results extracted, in many instances, agree with those of QCD predictions

and experimental observations (at least qualitatively). In fact, many of the results exhibit a

kind of universality among the different theories hinting at the existence of a universality

class. Further, in spite of the limitations, the results are all obtained from first principle
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calculations in non-Abelian field theories. This makes it worthwhile to pursue this com-

plementary path further and try to obtain a better understanding of strongly coupled gauge

theories.

By now there is a vast literature computing, holographically, different quantities of exper-

imental interest in QCD-like gauge theories in the deconfined phase. However, most of

the works concern QGP that is locally isotropic. The primary aim of the thesis is to use

holographic ideas to elicit lessons about strongly coupled QGP when effects of anisotropy

might be dominant. While a study of how anisotropy affects quantities of experimental

relevance is interesting in its own right, what makes it more appealing is that anisotropy

is one of the hallmarks of the plasma during its early stage right after its birth. Thus, a

proper understanding of anisotropy-induced modifications is absolutely imperative in our

endeavor to understand better the early-time dynamics of QGP.

In collisions with a non-zero impact parameter, i.e., when the nuclei do not collide head-on,

anisotropic pressure gradient develops in the overlapping region of two colliding nuclei,

transforming the initial coordinate-space anisotropy into an observed momentum-space

anisotropy, through interactions between the produced particles, leading to an anisotropic

particle distribution. The early success of relativistic ideal hydrodynamics in explaining

various results at RHIC provided empirical evidence in favor of fast thermalization and

isotropization - at time scales τiso ∼ 0.5 fm. In an attempt to make better agreement with

experimental results this was subsequently generalized to relativistic viscous hydrodynam-

ics, which, however, predicted the presence of a sizable pressure anisotropy. It was found

that the transverse pressure exceeds the longitudinal (along the beam direction) one with

the difference being the largest for time ≤ 2 fm. Thus viscous hydrodynamical simulations

suggest that isotropization may occur as late as τiso ∼ 2 fm. Currently, the question of the

degree of momentum-space anisotropy in QGP is open to intense theoretical debate and is
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deemed worthy of an in-depth study. Recent studies [12,13] suggest that large momentum-

space anisotropies may be present for most part of the time evolution both at weak and

strong coupling.

The plasma, just after its birth in relativistic heavy ion collisions, is locally anisotropic and

far away from equilibrium for a time t < τout. It settles down in an isotropic state only

after time τiso > τout, so that the standard hydrodynamic description of the plasma makes

sense only if we want to probe the plasma at time scale t > τiso. One would, of course,

like to make progress and study the plasma in the time scale t < τout when it is far away

from equilibrium. However, in the present state of development, studying the far-from-

equilibrium dynamics of the hot plasma and its temporal evolution to an equilibrium state,

is a rather difficult task. Instead, we focus our attention upon an intermediate temporal

window τout < t < τiso, where the plasma is in equilibrium but yet to attain isotropy, and

which is much more accessible via our current theoretical tools. To probe the plasma in this

time domain, it is essential that one takes into account the inherent anisotropy present in

the system. It is suspected that the magnitude of this momentum-space anisotropy can be

so high that it may even violate the central assumption of canonical viscous hydrodynam-

ical treatments - which is to linearize around an isotropic background. It has been shown

that large linear corrections result in unphysical results such as negative particle pressures,

negative one-particle distribution functions, etc. [14]. Another closely related aspect of

the same problem is that microscopic models of the early stages of relativistic heavy ion

collisions indicate that the produced system is highly anisotropic [15]. In the theory of

the Color Glass Condensate (CGC), at very early proper times, τ ≪ 1/Qs, where Qs is

the saturation scale, the classical gluon fields lead to an energy-momentum tensor of the

form Tµν = diag(ε, ε, ε,−ε) [16,17] implying a negative value of the longitudinal pressure

with the transverse pressure equal to the energy density. At later proper times, τ ≫ 1/Qs,
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both analytical perturbative approaches [18] and full numerical simulations [19] furnish

the form Tµν = diag(ε, ε/2, ε/2, 0) showing that the longitudinal pressure is zero. Conse-

quently, proper matching of the results of the microscopic models with the hydrodynamic

description (where the energy-momentum tensor should be close to the isotropic form) is

not easy. Another vital issue is that physically one expects entropy production to vanish in

two limits: the ideal hydrodynamical limit (vanishing shear viscosity) and the free stream-

ing limit (infinite shear viscosity). However, within the realm of viscous hydrodynamics,

entropy production is a monotonically increasing function of the shear viscosity. In the

large shear viscosity limit, viscous hydrodynamics becomes a poor approximation and one

has to seek an alternative framework. The afore-mentioned difficulties spurred the devel-

opment of a reorganization of viscous hydrodynamics in which one incorporates the pos-

sibility of large momentum-space anisotropies at the leading order. The inclusion of large

anisotropies also allows for direct matching with theories such as CGC. This framework

has been dubbed anisotropic hydrodynamics [20–26]. Motivated by these field-theoretic

developments, there has also been a surge in interest in investigating anisotropic plasma in

the spirit of the gauge/string duality.

In the thesis, we consider two specific holographic toy models of anisotropic plasma to

compute different quantities related to heavy probe quarks that are of direct relevance to

collider experiments. While there are many such quantities, we focus specifically on those

quantities, where there is a promise of significant cross-fertilization between experimental

data and insights obtained via the gauge/string duality. One of the quantities we compute is

the bound state quark-antiquark (Q-Q̄ ) potentialE(L)† as a function of the quark-antiquark

separation (L). This provides information regarding the suppression of quarkonium pro-

duction (like J/Ψ states) which, in turn, sheds light upon the temperature of the matter and

†We shall also denote the bound state potential by V (L) interchangeably.
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the degree of color screening. An alternative mode to explore this screening is simply to

compute the screening length Lmax, the distance beyond which the bound states melt into

the plasma. Other quantities that we evaluate include the jet quenching parameter q̂ that

measures the radiative energy loss of an energetic parton plowing through the plasma and

the drag coefficient γ, which encodes the amount of collisional energy loss undergone by

a probe quark as it executes stochastic motion in the plasma. The drag coefficient is, in

turn, related to the relaxation time, trelax, which is a characteristic time scale beyond which

the plasma thermalizes. We shall try to compute these quantities at various stages of the

thesis and observe how they carry the imprint of anisotropy. In this context let us also

issue the caveat that since all the computations will be performed using “toy” models, one

should exercise utmost care in attempting to connect our results to realistic QCD plasma.

Nevertheless, it is a fruitful undertaking since many of the toy models belong to the same

universality class as QCD and hence, provide precious qualitative insights into the rich dy-

namics that underlies QCD. In fact, remarkably, we find that the stamp of anisotropy on

many of the quantities that we compute are qualitatively very similar.

1.2 Plan of the Thesis

To help the reader navigate through the thesis, we provide here a short description of the

ensuing chapters and their contents. Chapter 2 aims to provide a concise overview of as-

pects of QCD and QGP relevant to our purpose and to heavy ion phenomenology. This is

followed by a lightning review of the AdS/CFT correspondence. We further establish the

relevance of the gauge/string duality in the context of QGP. In chapter 3 we discuss holo-

graphic computation of Wilson loops in strongly coupled thermal N = 4 SYM plasma

following well-defined prescription in the literature and learn how to extract various heavy
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quark observables from the expectation values of different Wilson loops. Thereby we set

the stage for the computations to be carried out in the more general scenarios of anisotropic

plasma in the subsequent chapters. Chapter 4 concerns the first of our anisotropic models

- the finite temperature, strongly coupled, non-commutative Yang-Mills (NCYM) plasma.

To start with we compute the jet quenching parameter q̂NCYM from a light-like Wilson loop

and working in light-cone coordinates right from the outset. Then we compute the dipole‡

potential E(L) as a function of the dipole length L when the dipole is moving along the

commutative direction. We show numerically how E(L) varies with L with the dipole

velocity v and the non-commutativity θ as parameters. We are also able to arrive at an ana-

lytical expression for the screening length in a restricted domain of the parameter space of v

and θ. Finally, for the sake of completeness, by taking the limit v → 1 we recompute the ex-

pectation value of a light-like Wilson loop to extract the expression for q̂NCYM that matches

with the expression found out earlier. We consider the effect of non-commutativity upon

q̂NCYM for both small and large values of θ and attempt to connect our results with recent

collider data by giving some numerical estimates using benchmark values of θ available in

the literature. Chapter 5 deals with different aspects of massive probe quarks in a topologi-

cally deformed SYM theory - the second of our anisotropic models, where the deformation

parameter depends upon one of the space coordinates thereby injecting anisotropy into

the theory. To have analytical handle over our computations, we confine ourselves only

to small values of anisotropy whence the metric components and the other relevant fields

can be written analytically (perturbatively). The interaction potential and the screening

length of mesonic bound states are found out for different orientations of the dipole in the

plasma and the effect of anisotropy on the dissociation of mesons is discussed. The find-

ings are compared with those obtained in other anisotropic models. We further analyze the

‡We shall frequently refer to a heavy quark-antiquark pair as a dipole.
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Brownian motion of a non-relativistic heavy probe quark in the plasma. The concomitant

Langevin equation supplies information regarding the drag force, the random force auto-

correlator and the relaxation time. The validity of the fluctuation-dissipation theorem in

an anisotropic medium is verified from a holographic perspective. Finally, we conclude in

chapter 6 with a summary of the work done. We also outline potential future avenues along

which the work done in the thesis can be advanced further to know more about anisotropy-

induced modifications in hot and dense strongly coupled QGP.



CHAPTER 2

QGP AND ADS/CFT - A GUIDE FOR

THE BEGINNERS

2.1 Overview

This chapter aims to present a concise overview of the various collateral ideas that will be

relevant to the rest of the thesis. In §2.2 we briefly outline aspects of QCD and QGP∗,

that will be required to appreciate the contents of the thesis, in particular, focusing on the

energy loss of heavy quarks in §2.2.1 and the phenomenon of quarkonium suppression in

§2.2.2. §2.3 provides a crash course on the AdS/CFT correspondence. We skim through

the basics of string theory in §2.3.1 and motivate the correspondence in §2.3.2. In §2.4

we attempt to uncover the interplay between the gauge/string duality and QGP. Finally, we

conclude in §2.5 and lay down the path to be followed in the rest of the thesis.

∗Our discussion is, by no means, complete. For a more insightful discussion the reader is referred to [27],

from which we draw heavily.
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2.2 A Primer on Heavy Ion Phenomenology

Four decades since the discovery of asymptotic freedom [28, 29], QCD - the theory strong

interactions, continues to fascinate us with its vast array of unsolved mysteries and unan-

swered questions. While considerable advancement has been made to unravel the intrica-

cies of QCD, much progress remains to be achieved [30].

QCD predicts that at a certain temperature (or energy density) hadronic matter undergoes

a phase transition to a deconfined state of quarks and gluons, or QGP. Subsequently, lattice

calculations have confirmed this transition to be not a true phase transition, but rather a

rapid crossover occurring around a temperature Tc ∼ 160 MeV. This novel state of matter

is believed to have existed during the nascent stages of the evolution of the Universe [31]

and presently, in high density astrophysical objects like neutron stars [32]. Thus a compre-

hensive understanding of strongly interacting matter under extreme conditions is essential

not only in nuclear physics but also in astrophysics. Experimentally, heavy ion collision

provides us access to explore bulk QCD matter within the realms of a laboratory. Different

collider facilities have helped us enrich our understanding of the QCD phase transition by

probing different regimes of temperature and baryon number density in the phase diagram.

At peak RHIC and LHC energies, the produced matter is marked by weak baryon densities

and high temperatures, while upcoming programs at the Facility for Antiproton Ion Re-

search at the Gesellschaft für Schwerionenforschung, Germany and the Neuclotron-based

Ion Collider fAcility at the Joint Institute of Nuclear Research, Russia are poised to scan the

phase diagram at high baryon chemical potential and low temperature. Results from heavy

ion experiments have unveiled a multitude of remarkable features of bulk QCD that can not

be explained by a naive extrapolation of results of proton-proton collisions. It was inferred

from CERN Super Proton Synchrotron [33] results that in the energy window accessed
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there, a new state of matter is created that bears some of the most crucial theoretically pre-

dicted signatures of QGP like thermalization, chiral symmetry restoration, deconfinement,

etc. This notion is further corroborated by RHIC data [5–7] which indicates the creation

of strongly coupled QGP. The strong coupling feature came as a surprise since asymptotic

freedom forbids any strong interaction at sufficiently high temperature. This entails that

any analysis of strongly coupled QGP should be based on a formalism that is faithful and

robust at strong coupling. Presently, it is the turn of LHC to probe further this exotic state

of matter in higher energy regime and luminosity and with increased precision. Among the

issues that the ongoing collider experiments aim to address are [30]:

1. Dynamical quantities like the jet quenching parameter, the diffusion coefficient of

heavy quark, the coefficient of drag, etc.

2. Melting of heavy quark bound states in thermal QGP due to color screening.

We emphasize upon these two issues since in both the cases there is the prospect of sig-

nificant and fruitful interplay between results garnered from analyzing experimental data

and those obtained from employing the gauge/string duality. In the following we briefly

discuss these two issues.

2.2.1 Energy loss - radiative and collisional

The basic program in a heavy ion collision is to collide large nuclei, such as gold (at RHIC)

or lead (at LHC) against each other at an ultra-relativistic center-of-mass energy
√
s. The

purpose of using heavy ions is that it enables one to create a large volume of matter at

high energy density. This provides the best opportunity to observe phenomena related to

macroscopic amount of strongly interacting matter. Earlier experiments involved electron-
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positron or proton-proton (pp) collisions that produced many hadrons in the final state.

But the origin of these hadrons were attributed to the few partons in the initial stage that

subsequently disintegrated, rather than to the presence of bulk matter. Thus, at heavy ion

colliders one expects to capture the vast array of rich phenomena associated with bulk in-

teracting matter that were so far unobserved in the more elementary electron-positron or

pp collisions. Heavy ion physicists have devised elaborate machinery to analyze collective

phenomena associated with collisions of heavy nuclei. Generically, these tools quantify

deviations from benchmark measurements (obtained in pp collisions) where such collec-

tive phenomena are not present.

Jet quenching is one such experimental phenomena, which reveals what transpires when a

very energetic parton (quark or gluon) moves through the matter with a momentum much

greater than the temperature of the thermal bath. It should be noted that these energetic

partons are not external probes of QGP. Rather, they are produced within the plasma itself.

In a tiny fraction of pp collisions with
√
s ∼ 200 GeV, partons from incident protons scatter

with large momentum transfer (which is referred to as a hard process) producing back-to-

back partons in the final stage that carry transverse momenta ∼ 10 GeV. The occurrence

of such a hard process is a rarity, but nevertheless, there is no dearth of experimental data

so that these processes are well-studied. Concomitantly, there also exists elaborate field-

theoretic framework that provides well-controlled calculations for the rates of these hard

processes. Experimental data along with theoretical tools provide a solid foundation that

enables us to study departures from benchmark values when such hard processes occur

in high density thermal medium. The characteristic feature of heavy ion collision is that

once an energetic parton is created, unless it is produced right at the edge of the fireball,

it has to traverse a small distance ∼ 10 fm through the hot and dense medium created in

the collision. Hence, these partons can be used to probe the plasma which produces them.
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The presence of the medium ensures that the parton suffers energy loss and alters direction

as it moves. This alteration in the direction of its momentum is what we refer to as the

“transverse momentum broadening”. “Transverse” implies direction perpendicular to the

original direction of the parton.

It is well-known from electromagnetism that bremsstrahlung is the dominant mode of en-

ergy loss of an electron moving through matter in the high energy limit. The same holds

true in calculations of QCD parton energy loss in the high energy limit [34–36]. The hard

parton suffers multiple inelastic interactions with the spatially extended medium, which

induces gluon bremsstrahlung. In this context, by high parton energy limit we mean the set

of limits

E ≫ ω ≫ |k|, |q| ≡
∣

∣

∣
Σiqi

∣

∣

∣
≫ T,ΛQCD (2.1)

where E is the energy of the high energy projectile parton, ω and k are the typical energy

and the momentum of the gluons radiated in the elementary radiative processes q → qg or

g → gg, and q is the transverse momentum (transverse to its initial direction) accumulated

by the projectile parton through many radiative interactions in the medium. T and ΛQCD

represent any energy scales that characterize the properties of the medium itself. This set

of approximations underlies all analytical calculations of radiative parton energy loss to

date [34, 35, 37–39].

The analysis of energy loss has its roots in the eikonal formalism. So here we briefly review

the essence of this formalism. From the point of view of the projectile, the target appears

to have a finite spatial extension and width but is Lorentz-contracted. So viewed from the

projectile rest frame, it passes through the target in a very short time interval during which

its transverse position does not change appreciably. So, at ultra-relativistic energies, the

primary impact of the target on the projectile is a “rotation” of the parton’s color due to the
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color field of the target. These rotation phases are given by Wilson lines along the (straight

line) trajectories of the propagating projectile:

W (x) = Pexp

[

i

∫

dz−T aA+
a (x, z

−)

]

. (2.2)

Here x denotes the transverse position of the projectile, which remains unchanged as the

projectile moves at the speed of light along the z− ≡ (z − t)/
√
2 light-like direction. A+

is the large component of the target color field and T a is the generator of the SU(Nc) in

the representation of the projectile, i.e., fundamental if the parton is a quark or adjoint if it

is a gluon. In the eikonal approach to scattering it is assumed that the projectile impinges

on the target from outside. Analyzing the problem one finally arrives at the number N(k)

of radiated gluons with momentum k,

N(k) =
αSCF

2π

∫

dxdyeik.(x−y) x.y

x2y2

[

1− 1

N2 − 1
〈Tr
[

WA†(x)WA(0)
]

〉

− 1

N2 − 1
〈Tr
[

WA†(y)WA(0)
]

〉+ 1

N2 − 1
〈Tr
[

WA†(y)WA(x)
]

〉
]

(2.3)

where the CF prefactor is for the case when the projectile is a quark in the fundamental rep-

resentation. The projectile is located at transverse position 0, and the 〈...〉 denotes averaging

over the gluon fields of the target. If the target is in thermal equilibrium, these are thermal

averages. Although Eq. 2.3 is not applicable to the physically relevant case, nevertheless,

we can obtain valuable insights from this relation. For one, we see that the entire medium-

dependence is captured in the target expectation values of the form 〈Tr
[

WA†(y)WA(x)
]

〉

of two eikonal Wilson lines. The jet quenching parameter q̂ defines the fall-off properties

of this two-point correlator in the transverse direction L ≡ |x − y|
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〈Tr
[

WA(Clight-like)
]

〉 ≈ exp

[

− 1

4
√
2
q̂L−L2

]

(2.4)

in the limit of small L. We have boxed the equation to emphasize that we are going to use

it extensively during the course of the thesis. Let us also take this opportunity to clarify

the symbols used. L− denotes the light-cone length of the Wilson lines or the extent of the

target along the light-like z− direction, x and y denote the transverse positions of the gluon

amplitude and the complex conjugate amplitude respectively. C is a contour that spans a

distance L− along the light-cone direction z− and finally returns at transverse position y.

These two long straight light-like lines are connected by short transverse segments located

at z− = ±L−/2, far outside the target. Also it is evident from Eq. 2.3 that L is conjugate to

the momentum |k|. We have also made the assumption that L− ≫ L. Eq. 2.3 reveals that

all the information regarding the medium is encoded in the quantity q̂ which we designate

as the jet quenching parameter. Making use of Eq. 2.4 in Eq. 2.3 we find that k2 ∼ q̂L−.

This suggests that q̂ can be interpreted as the transverse momentum squared picked up by

the parton per unit distance L−. In fact, this intuitive idea can be rigorously established via

other approaches [40, 41] and it can be shown that

q̂ =
〈k2〉
L− =

1

L−

∫

dk

(2π)2
k2Pk (2.5)

where Pk, the probability that the gluon picks up a transverse momentum k while traversing

a distance L− through the medium is suitably normalized as,

∫

dk

(2π)2
Pk = 1. (2.6)
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It is to be noted that the way we have defined q̂ in Eq. 2.5, it depends upon transverse mo-

mentum broadening only. Notions of radiation and energy loss do not enter the definition

directly. We remark that instead of viewing Eq. 2.4 as an approximation, we shall, hence-

forth, treat it as the non-perturbative definition of q̂ to be used subsequently in the thesis.

Thus all one has to do is just find an expression for the expectation value of the light-like

Wilson loop 〈WA(Clight-like)〉 and from there extract q̂ via Eq. 2.4.

The reason that the eikonal formalism as outlined here cannot be applied straight away to

the problem of parton energy loss in heavy ion collisions is that the high energy partons

do not impinge on the target from some distant production site. Rather they are produced

within the same collision that produces the medium whose properties they subsequently

probe. As a consequence, they are produced with significant virtuality implying that even

if there were no medium present, they would radiate copiously and would fragment in a par-

ton shower. The analysis of medium-induced parton energy loss then requires understand-

ing the interference between radiation in vacuum and the medium-induced bremsstrahlung

radiation and the problem goes beyond the eikonal approximation. In this case the eikonal

Wilson lines are replaced by retarded Green’s functions. However, it turns out that even

after the Wilson lines have been replaced by the Green’s functions the only attribute of

the medium that enters the analysis of parton energy loss is the jet quenching parameter,

defined in Eq. 2.4, and which already appeared in the eikonal approximation.

The preceding discussion only focused upon the radiative energy loss suffered by a parton.

In passing let us mention that although this is the dominant mode of energy dissipation in

the high energy regime, there exists yet another mechanism - the collisional energy loss. A

massive quark, when immersed in QGP, interacts with the constituents of the medium and

undergoes a chaotic motion which can be captured through the Langevin equation and in

the process undergoes collisional energy loss. The resulting phenomenon is well-known
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as the Brownian motion of the test particle. The energy loss is proportional to the quark’s

momentum, the proportionality factor being called the drag coefficient γ, which measures

the extent of collisional energy loss. We shall discuss in chapter 5 how to compute the drag

coefficient from an analysis of Langevin dynamics of a heavy quark invoking the principles

of the gauge/string duality.

2.2.2 Quarkonium suppression

Next we focus upon the issue of quarkonium suppression. As mentioned earlier, QCD

matter undergoes a crossover to a deconfined state of quarks and gluons at a temperature

Tc ∼ 160 MeV. Creation of the deconfined phase implies that a bound state of quarks no

longer exists. It is then only natural to moot the question - “what prevents the formation

of such bound states in QGP?” An intuitive answer is that in QGP, the attractive force that

holds a meson together is screened by the presence of the medium. Intuitively, we also

expect the degree of screening to increase with the separation distance between the con-

stituent quarks in the meson. Thus, one anticipates the existence of a critical separation

Lmax up to which the attractive force is sufficient to bind the meson. We shall, hence-

forth, designate Lmax as the screening length. One can then ponder, how close should the

quark and the antiquark be such that the attractive force between them is the same as that

when they are in vacuum? It was suggested by Matsui and Satz [42] that measurements of

quarkonia production in heavy ion collisions can lead us to the answer to this question.

The generic term quarkonium refers to the charm-anticharm (c-c̄) or charmonium mesons

(J/Ψ,Ψ′, χc, ...) and the bottom-antibottom (b-b̄) or bottomonium mesons (Υ,Υ′, ...). The

first quarkonium state to be discovered was J/Ψ, the 1s state of c-c̄ bound system. It mea-

sures about half the size of a typical meson like ρ. The bottomonium state Υ is still smaller
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by a factor of two. Hence, if the temperature of the QGP is steadily increased, we expect

the J/Ψ mesons to survive as a bound state up to a high temperature T > Tc. This is

because, by definition, Tc indicates the temperature at which normal mesons and baryons

made up of light quarks dissociate. Going by the proposal of Matsui and Satz, if the tem-

perature of the QGP is high enough, color screening will prevent charm and anticharm

quarks from forming a bound state and consequently, the number of J/Ψ mesons produced

in the collision will be suppressed. However, one expects the Υ’s to survive up to a still

higher temperature on account of their small size, until the attractive force is screened even

on the short length scale corresponding to their size. Till now, this proposal by Matsui and

Satz remains the most direct signature of the formation of deconfined matter. Generically,

one expects the attraction that binds a meson to decrease with rise in temperature T . One

can give a heuristic argument to justify this behavior. Typical momentum scale in QGP

will be ∼ T so that if the separation between the quark and the antiquark is less than 1/T

then the medium is incapable of resolving them and the pair exists as a bound state. On the

other hand, if the distance exceeds 1/T then the medium is able to resolve the separation

and the color charge on the quark and the antiquark is screened by the medium. Thus in a

QGP at a temperature T , only those quarkonia will be formed whose radii is smaller than

1/T . These arguments, though not rigorous, nevertheless, support the idea that quarkonia

production rates can be taken to be a measuring yardstick of whether QGP has been formed

and, if formed, at what temperature.

Lattice methods are presently capable of computing the free energy FQQ̄(r) of a heavy

quark-antiquark pair. At zero temperature, lattice results for FQQ̄(r) in QCD without dy-

namical quarks are well approximated by the ansatz

FQQ̄(r) = σr − α

r
(2.7)
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where the linear term is dominant at large distance. At short distance the perturbative

Coulombic attraction is more significant. The string tension σ ∼ 0.2 GeV2. If now one

introduces the pair in a thermal medium, the free energy ansatz is modified as [43, 44]

FQQ̄(r) = −α

r
+ σr

(

1− e−mDr

mDr

)

(2.8)

where mD ≡ mD(T ) is interpreted at high temperatures as the temperature-dependent

Debye screening mass. By taking the form of FQQ̄(r) as the potential in the Schrödinger

equation it is possible to determine which bound states in this potential survive as the po-

tential is weakened with increasing temperature. Studies using such potential models have

been successful in predicting the dissociation temperature Td of various quarkonia. For

example, it is found that Td(J/Ψ) ≃ 2.1Tc, whereas, for the more loosely bound and larger

2s state Ψ′, one has Td(Ψ
′) ≃ 1.1Tc. For the 1s state of the bottomonium family it is

estimated that Td(Υ(1s)) > 4Tc. For the corresponding 2s and 3s states estimates suggest

Td(Υ(2s)) ≃ 1.6Tc and Td(Υ(3s)) ≃ 1.2Tc respectively [43, 44]. Thus we find that the

estimates obtained by using the potential model fits well with the heuristic argument given

earlier supporting that deeply bound quarkonia (1s states) survive to higher temperatures

compared to their loosely bound sisters. It must be admitted that the potential model does

lack rigor and thus it is even difficult to predict the uncertainties associated with the above

estimates. Nevertheless, in conjunction with lattice QCD results, it still provides strong

qualitative support to the central idea of Matsui and Satz that quarkonium mesons melt

in hot QGP and that this melting process takes place sequentially, with smaller quarkonia

living up to higher temperatures.

Thus we find that an analysis of quarkonia potential and how it is screened in presence

of the medium provides a handle to understand quarkonia suppression. Motivated by this,



22 CHAPTER 2. QGP AND ADS/CFT - A GUIDE FOR THE BEGINNERS

we shall evaluate the quark-antiquark potential in thermal SYM plasma (both isotropic and

anisotropic) employing the ideas of the AdS/CFT correspondence.

To summarize, in this section we have discussed at length two salient features associated

with heavy ion collisions, namely energy loss (both collisional and radiative) and quarko-

nium suppression. Of course, there are other important issues that need to be addressed but

we have focused specifically on these two features since there is a possibility of consider-

able overlap between experimental observations and theoretical predictions extracted from

the gauge/string duality with the phenomenological modeling acting as a bridge between

the two. In the ensuing sections, we discuss, albeit very briefly, the most important aspects

of string theory and try to motivate the remarkable gauge/string duality that will form the

backbone of all our calculations.

2.3 AdS/CFT for the Layman

In this section we discuss the basics of the gauge/string duality. We begin our little tour

of the underlying concepts of string theory, commencing with a discussion of D-branes

and gauge theories and culminating in establishing the AdS/CFT correspondence from a

heuristic point of view.

2.3.1 A little tour of string theory

Contrary to ordinary quantum field theory that describes the dynamics of point particles,

the fundamental constituents of string theory are one-dimensional objects called strings.

Strings have a characteristic length, which is the Planck length lP = 1.6× 10−33 cm. This

is, of course, much smaller than the smallest length scale we can resolve in present day
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experiments. That is why, in the energy scale accessed in these experiments, strings will

behave effectively as point-like objects and quantum field theory works so well. Strings

are characterized by the string tension Tstring and by a dimensionless coupling constant gs,

that controls the strength of all interactions. The string tension can be written in terms of

the string length ls as,

Tstring ≡
1

2πα′ α′ ≡ l2s . (2.9)

Just as a point particle describes a world-line in space-time, similarly a string sweeps out

a two-dimensional world-sheet. For a closed string, a world-sheet will have no bound-

ary. Mimicking the action for a point particle which is simply the length of its world-

line, we shall postulate that the action for a string is given by the area of its world-

sheet. We parametrize the two-dimensional string world-sheet by coordinates τ and σ

which we collectively designate as ξα with α = 0, 1 respectively for τ and σ. We as-

sume that the string propagates in a D-dimensional space-time described by coordinates

xM , {M = 0, 1, ..., D− 1}. The trajectory of the string is then described by specifying the

functions xM = xM(ξ). The two-dimensional metric induced on the string world-sheet is,

gαβ = GMN
∂xM

∂ξα
∂xN

∂ξβ
(2.10)

where GMN describes the D-dimensional space-time metric. The string action (also called

the Nambu-Goto action) is then given by,

S =
1

2πα′

∫

dτdσ
√

−detgαβ. (2.11)

We will have to fall back on these two boxed equations time and again through the the-

sis. Quantization of the above action yields the quantum states of a single string. It turns
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out that the quantization process imposes severe constraint on the space-time dimension in

which the string propagates - not all space-time dimensions allow for a consistent string

propagation. For example, if we start with a D-dimensional Minkowski space-time then

one must have D = 26. Physically, different states in the string spectrum are nothing but

different vibration modes of the string. From the perspective of the background space-time

each of these modes corresponds to a particle with a specific mass m and spin s. The

spectrum typically consists of a finite number of massless modes and an infinite tower of

massive modes with masses of the order of ms ≡ l−1
s . Quite remarkably, it turns out that

the closed string spectrum always consists of a particle with m = 0 and s = 2, which we

interpret as the graviton. This is why, string theory is referred to as a quantum theory of

gravity. The graviton describes small fluctuations of the space-time metric signifying that

the space-time that we initially started with is actually dynamical.

It is possible to construct other string theories by incorporating more degrees of freedom to

the string world-sheet. In this thesis, we shall be primarily talking about the supersymmet-

ric theory of strings, the so-called type IIB superstring theory [45, 46] which is obtained

by adding two-dimensional world-sheet fermions to the above action. Although, at the end

of the day, we shall be interested in breaking this supersymmetry to get as near to QCD

as possible, existence of this symmetry is necessary to ensure stability of the construction.

In case of superstring theories it turns out that ruling out negative norm states requires that

we fix the space-time dimension D = 10. Apart from the graviton, the spectrum of type

IIB superstring theory also contains two scalars, a number of antisymmetric tensor fields,

and various fermionic partners as dictated by supersymmetry. At low energy E ≪ ms, one

may integrate out the massive modes so that it is possible to write down an effective action

involving only the massless modes. Since the massless string spectrum always contains the

graviton, the low energy effective action, to second order in derivatives, has the form of
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Einstein gravity coupled to other massless modes,

Slow =
1

16πGD

∫

dDx
√
−detGR+ ... (2.12)

where R is the Ricci scalar in D-dimensional space-time and the “...” stands for additional

terms containing other massless modes. One of the scalars, the dilaton φ will play a vital

role in our discussion later. gs, the string coupling, is given by the expectation value of the

dilaton, gs = eφ. As such gs may vary over space and time. In such a scenario, we may

still, however, speak of a coupling constant implying the asymptotic value of the dilaton at

infinity, i.e., gs = eφ∞ .

The fermions in the closed string spectrum can have either left-handed chirality (left mov-

ing) or right-handed chirality (right moving). Further, they can enjoy either periodic (Ra-

mond sector) or antiperiodic (Neveu-Schwarz sector) boundary conditions. Depending

upon the handedness and the nature of the boundary conditions one can distinguish be-

tween four different sectors: R-R, NS-NS, R-NS and NS-R. The R-R and the NS-NS sec-

tors give space-time bosons while the R-NS and the NS-R sectors give space-time fermions.

The NS-NS sector contains the graviton GMN , the two-form field BMN and the dilaton φ

whereas the R-R sector contains the (p + 1)-form field Ap+1 in the massless sector. De-

pending upon whether p is even or odd we accordingly have type IIA or IIB string theory.

D-branes and gauge theories

Perturbatively, string theory is a theory of strings. Non-perturbatively, string theory also

contains higher-dimensional solitonic objects called D-branes [47]. A Dp-brane is a (p+1)-

dimensional object in (9 + 1)-dimensional space-time with which strings can interact. A

closed string can break on a Dp-brane whereas an open string can end on a Dp-brane. The
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end-points of open strings can move freely along the (p + 1) directions of the Dp-brane

but can not leave it and move along the transverse directions. Thus the open string satisfies

Neumann boundary conditions along the (p + 1) D-brane directions and Dirichlet bound-

ary conditions along the (9 − p) directions transverse to the Dp-brane. A Dp-brane spans

a (p + 1)-dimensional world-volume in space-time. D0-branes are particle-like objects,

D1-branes are string-like, D2-branes are membrane-like and so on.

Introduction of Dp-branes enriches the structure of string theory vastly. As we had men-

tioned earlier, a closed string can break by encountering a Dp-brane and turn into an open

string. Just as the quantization of the closed string resulted in dynamical fluctuations of

the space-time, a similar quantization of open strings culminates in a spectrum that con-

tains fluctuations of the Dp-brane. The open string spectrum comprises of a finite number

of massless modes and an infinite tower of massive modes with masses ∼ ms = l−1
s .

For the case of a single Dp-brane the massless spectrum contains an Abelian gauge field

Aµ(x), {µ = 0, 1, ..., p}, (9 − p) scalar fields φi(x), {i = 1, 2, ..., (9 − p)}, and their su-

perpartners. Since the fields are supported on the D-brane they depend only upon the

world-volume coordinates of the Dp-brane and not on the directions transverse to the D-

brane. The (9− p) scalars describe fluctuations of the D-brane in the transverse directions

that include possible deformations of the D-brane as also linear motion. The Dp-branes

are also charged under the (p + 1)-form field, Ap+1 coming from the R-R sector of type

II string theory. A very peculiar property of D-branes is the appearance of a non-Abelian

gauge field when multiple D-branes are brought close to each other. Apart from the degrees

of freedom pertaining to each brane, now there arise new degrees of freedom from strings

that stretch from one brane to another. As a specific example, we can consider two parallel

branes separated by a distance d. Now, there can be four types of strings depending upon

the brane on which the end-points of the strings lie as seen from Figure 2.1. The strings
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D−brane 1 D−brane 2

Figure 2.1: Parallel set of D-branes supporting open strings

with both end-points lying on the same brane give rise to massless gauge fields as discussed

earlier. Let us denote these gauge fields as (Aµ)
1
1 and (Aµ)

2
2. Here the upper (lower) index

denotes the brane on which the string starts (ends). Now, we have the additional possibility

that a string can start from brane 1(2) and end on 2(1). These strings give birth to two

more vector fields which we call (Aµ)
1
2 and (Aµ)

2
1. These are massive fields with mass

given by m = d/2πα′. Now let us consider the case when the two D-branes are put on

top of each other, i.e., we make their separation d = 0. This implies that the vector fields

(Aµ)
2
1 and (Aµ)

1
2 become massless in this limit. So, now the spectrum consists of four

massless vector fields which we denote as (Aµ)
a
b with a, b = 1, 2. Now this is exactly the

gauge field of a non-Abelian U(2) gauge group. Similarly, the (9 − p) massless scalars

also become 2×2 matrices (φi)ab which transform in the adjoint representation of the U(2)

gauge group. Having got the basic intuition, it is straight forward to generalize the notion

when Nc branes are stacked together. We have a U(Nc) multiplet of non-Abelian gauge

field with the (9− p) scalars transforming in the adjoint representation of U(Nc). The low

energy dynamics can be obtained by integrating out the massive modes and it turns out that

it is governed by a non-Abelian gauge theory [48]. Let us now take a concrete example. We

consider Nc D3-branes in type IIB superstring theory. The massless spectrum is now made

up of a gauge field Aµ, six scalar fields φi, {i = 1, 2, ..., 6}, and four Weyl fermions, all
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transforming in the adjoint representation of U(Nc). It was shown in [48] that if we confine

ourselves only to theories with at most second derivative then the low energy effective ac-

tion for these massless modes is exactly that of N = 4 SYM theory in (3 + 1)-dimensions

with gauge group U(Nc) [49, 50]. The bosonic part of the Lagrangian is

Lboson = − 1

gYM

Tr

(

1

4
F µνFµν +

1

2
Dµφ

iDµφi + [φi, φj]2
)

(2.13)

where the Yang-Mills coupling constant is,

g2YM = 4πgs. (2.14)

Eq. 2.13 is the bosonic part of the most general renormalizable Lagrangian consistent

with N = 4 global supersymmetry. Due to the high degree of supersymmetry the the-

ory enjoys many interesting features. For example, the β-function vanishes, so that the

coupling constant is independent of scale and the theory respects conformal invariance.

Another notable aspect of the Lagrangian is that the U(1) part is free and can be decou-

pled. Physically, this can be understood as follows. Excitations of the overall diagonalU(1)

subgroup of U(Nc) describe the center-of-mass motion of the whole system of branes. Ow-

ing to the overall translational invariance this symmetry decouples itself from the remnant

SU(Nc) ⊂ U(Nc), which is a symmetry of the motion of the branes relative to one another.

The Lagrangian (Eq. 2.13) also receives higher order correction suppressed by α′E2. For

a single Dp-brane with constant Fµν and ∂µφ
i, all the higher order correction terms can be

resummed exactly in the Dirac-Born-Infeld action [51],

SDBI = −TDp

∫

dp+1xe−φ
√

−det (gµν + 2πl2sFµν) (2.15)
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where TDp is the Dp-brane tension, the mass per unit spatial volume given as,

TDp =
1

(2π)pgsl
p+1
s

. (2.16)

Here φ is the dilaton and gµν is the metric induced on the Dp-brane. Owing to their infinite

extent D-branes are infinitely massive. However, the mass per unit volume is finite as seen

above. The dependence of the tension on the string length is dictated by considerations

of dimensional analysis. As is typical in field theory, the tension depends inversely upon

gs. However, contrary to solitons in field theory where the tension varies with coupling as

1/g2 here the tension varies as 1/gs. In the limit of vanishing coupling, gs → 0, the tension

becomes extremely large, and the D-brane decouples from the spectrum.

D-branes and space-time geometry

Since D-branes are massive objects they distort space-time in their vicinity. The space-

time metric sourced by Nc Dp-branes is found out by solving the supergravity equations of

motion. The low energy effective action of type II supergravity is given by (in the Einstein

frame) [52],

S =
1

16πG10

∫

d10x
√
−detG

(

R− 1

2
GMN∂

Mφ∂Nφ− 1

2

∑

n

1

n!
eanφF 2

n + ...

)

(2.17)

with an = −1
2
(n − 5) and GMN denoting the ten-dimensional space-time metric. Here

the “...” represents the fermionic term and the NS-NS three-form field strength term. The

n-form field strengths we have used belong to the R-R sector. For type IIA (IIB) theory n

is even (odd). In type IIB theory for n = 5 the form field F5 is self-dual. The equations of

motion following from the above action are [53–55]
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RM
N =

1

2
∂Mφ∂Nφ+

1

2n!
eaφ
[

nFMK2...KnFNK2...Kn
− n− 1

8
δMNF

2
n

]

,

∇2φ =
1√
G
∂M

(√
G∂NφG

MN
)

=
a

2n!
F 2
n ,

∂M (
√
GeaφFMK2...Kn) = 0. (2.18)

This is supplemented by the Bianchi identity,

∂[K1FK2...Kn] = 0. (2.19)

Also for the sake of simplicity we have assumed that Fn exists only for one value of n and

write an ≡ a. After solving the equations of motion it is possible to find out the space-time

metric sourced by the Dp-branes. In particular, it can be shown that for the metric to reduce

to the familiar form AdSq×S10−q one must require the coupling with the dilaton to vanish.

This happens when the dilaton is a constant, in particular, zero and n = 5. In this case, we

obtain the metric corresponding to D3-brane

ds2 = H−1/2
(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

+H1/2
(

dr2 + r2dΩ2
5

)

(2.20)

where,

H(r) = 1 +
R4

r4
(2.21)

and

R4 = 4πgsNcl
4
s . (2.22)
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Here {t, x1, x2, x3} are the world-volume coordinates on the D3-brane and yi, {i = 1, 2, ..., 6}

are the coordinates transverse to the D3-brane with

r2 =
6
∑

i=1

y2i . (2.23)

To have a feel of the geometry induced by the D3-brane, let us consider its limit in two

different regimes. In the limit r ≫ R, H → 1 and the metric tends to that of flat Minkowski

space-time R
1,9. In the other limit r ≪ R the metric would at first appear to be singular.

This is often referred to as the throat geometry. However, a clever redefinition of the

coordinates circumvents the difficulty. We define a new coordinate,

U =
r

l2s
(2.24)

and consider the limit l2s → 0 in conjunction with r → 0 such that U remains a meaningful

variable. In the new coordinate, the metric reads,

ds2 = l2s

(

U2dx2
(4)√

4πgsNc

+
√

4πgsNc

(

dU2

U2
+ dΩ2

5

)

)

(2.25)

=
U2

R2
dx̃2

(4) +
R2

U2
dU2 +R2dΩ2

5

where we have defined

dx2
(4) = −dt2 +

3
∑

i=1

(dxi)2 (2.26)

and x̃ ≡ l2s(t, x
1, x2, x3). The metric, written in this form, is manifestly in the form of a

product geometry. One component is S5 with metric R2dΩ2
5 and the remaining component

is AdS5. As we shall see shortly, in the Maldacena conjecture we are required to take

the “near-horizon limit” which amounts to taking ls → 0. In that case, for U to remain
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a meaningful coordinate, we must also let r → 0. Thus we consider a region very close

to the surface of the D3-brane. In this region, we only need to consider the AdS5 × S5

structure whereas the dynamics in the asymptotically flat space-time decouples from the

theory. So this also goes by the name of the decoupling limit.

2.3.2 The AdS/CFT correspondence

In the preceding subsection we had prepared the groundwork for discussing the AdS/CFT

correspondence. In this section we shall try to motivate the AdS/CFT correspondence [1–3]

(see [4] for a comprehensive review) by studying string theory in the presence of D-branes

from two different perspectives. To start with we consider type IIB string theory in ten-

dimensional Minkowski space-time and a set of Nc parallel D3-branes. String theory in

this background comprises of two types of excitations: closed strings and open strings.

Closed strings are excitations of empty space whereas open strings encode excitations of

D-branes. If we confine our attention to a study of this theory in the low energy regime then

only the massless string states will survive. It is then possible to write down an effective

Lagrangian describing the string interactions. The closed string spectrum gives a gravity

supermultiplet in ten dimensions and the corresponding low energy Lagrangian is that of

type IIB supergravity (as discussed in the previous section). On the other hand, we found

that the open string massless states give a N = 4 supermultiplet and is described by the

low energy effective Lagrangian of N = 4 SYM theory.

The complete effective action of the massless modes can be written as,

Seff = Sbulk + Sbrane + Sint. (2.27)
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Sbulk denotes the action of ten-dimensional gravity with some higher derivative correc-

tions. The brane action Sbrane, which is defined on the D3-brane world-volume, contains

the N = 4 SYM theory plus some higher derivative corrections. Lastly, Sint stands for

the interaction between the brane modes and the bulk modes. The bulk action can be

expanded as a free quadratic part describing the propagation of free massless modes (in-

cluding graviton) plus some interactions within the bulk. Upon taking the low energy limit,

all the interaction terms and also the higher derivative terms cease to make any contribu-

tion. So what we are left with is just the pure N = 4 SYM theory in (3 + 1)-dimensions

and a free theory of gravity in the bulk.

We shall now look at the same problem, albeit from a slightly different perspective. In the

preceding section, we saw how D-branes arise as solutions of type II supergravity. We now

wish to focus on the low energy sector in this description. This implies looking at those

excitations that have arbitrarily small energy with respect to an observer in asymptotically

Minkowski space-time. We can distinguish between two distinct sets of excitations. One

is the set of massless excitations propagating in the bulk. Another is the set of excitations

in the throat region. For such excitations, we can allow for any value of proper energy.

This is because to an observer sitting at asymptotic Minkowski space-time, the energy E is

measured to be

E =
√

−GttEp = H−1/4Ep (2.28)

where Ep is the energy measured at a point P located at a radial coordinate r. Now as we

approach the throat r → 0, and for fixed Ep, the energy measured by the observer, i.e., E

approaches zero. Thus even the massive modes living in the throat region will appear to be

massless. If we consider only the low energy domain, these modes are pushed deeper into

the throat and ultimately decouple from the massless modes populating the bulk. Thus the
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low energy regime consists of two decoupled pieces: a theory of free gravity in the bulk

and the other is the near-horizon geometry which corresponds to AdS5 × S5.

We note that from both points of view we have two decoupled theories in the low energy

limit. Of these, the theory of gravity is common to both the views. It is then only natural

to identify the remaining sectors. Thus we are led to the equivalence of two theories

• type IIB string theory on AdS5×S5 where both the subspaces have a common radius

R and the string coupling is gs.

• N = 4 SYM theory in (3+1)-dimensions with gauge group SU(Nc) and Yang-Mills

coupling constant gYM, which is known to be a conformally-invariant theory.

For two theories to be equivalent a reasonable demand is that they should have the same

symmetries. So let us now discuss the symmetries of these two theories. AdS5 can be

viewed as embedded in a six-dimensional flat space-time R
2,4 which has a symmetry

group SO(2, 4). In fact, this is the same symmetry group as the conformal symmetry

in (3 + 1)-dimensions. In the bulk there also exists a SO(6) symmetry corresponding to

the five-sphere S5. So the total symmetry is SO(2, 4) × SO(6). However, since spinors

are involved, the relevant groups are the covering groups SU(4) of SO(6) and SU(2, 2)

of SO(2, 4) so that we speak of a SU(4) × SU(2, 2) symmetry. But the thirty-two Majo-

rana spinor supercharges of type IIB theory transform in such a way that the full symmetry

group is the Lie supergroup SU(2, 2|4). On the gauge theory side, the SO(6) symme-

try is realized as the R-symmetry of the theory under which the non-Abelian gauge fields

transform as singlets, the complex Majoranas as {4} and {4̄} of SU(4) and the scalars as

{6} of the SO(6) or as antisymmetric tensors of rank two under SU(4). On the other hand,

N = 4 SYM, being a scale-invariant theory, also enjoys a SO(2, 4) ∼ SU(2, 2) space-time

symmetry. This, in the presence of supersymmetry, leads to a larger symmetry group with
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sixteen new fermionic generators. Altogether, on the gauge theory side too the symmetry

is SU(2, 2|4).

We have also seen how the coupling constant in the two theories are related in Eq. 2.14. Nc

is the rank of the gauge group and also equals the number of D3-branes stacked upon each

other on the string theory side. The common radius R is given by Eq. 2.22. We define the

’t Hooft coupling λ as

λ ≡ g2YMNc (2.29)

so that Eq. 2.22 can be recast as

R4 = g2YMNcl
4
s = λl4s . (2.30)

By “equivalence” of the two theories we mean a matching between the states and the fields

on the superstring side and the local gauge-invariant operators on the N = 4 SYM side and

also a correspondence between the correlators of the two theories. The correspondence we

have stated here is said to be in its strong form. In this form it holds for all values of Nc and

gs. However, at present string quantization on curved space is a rather complicated task. In

such a scenario, we seek special limits in which the conjecture becomes more tractable but

at the same time reveals useful information, which we are going to discuss now.

’t Hooft limit

In the ’t Hooft limit we keep λ fixed but allow Nc → ∞. On the gauge theory side this

limit is well-defined in perturbation theory and corresponds to a 1/Nc expansion of the field

theory’s Feynman diagrams. On the string theory side, a large Nc implies that the string

coupling gs ∼ λ/Nc → 0. We can thus do calculations in the string theory side simply by

restricting ourselves to tree-level diagrams without the need to do any loop calculations.
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The full quantum non-perturbative description of N = 4 SYM theory is then obtained

from this classical theory of strings in the large Nc limit.

Large λ limit

In the next stage we impose the further condition that λ must be very large. We can make

use of Eq. 2.30 to fully appreciate the significance of imposing this constraint. If we keep

R, the common radius fixed, then this limit means that l2s → 0 so that we are in the low

energy limit whence classical string theory reduces to classical supergravity. Alternatively,

we may fix ls. In that case a large λ ensures that R → ∞. Then all curvatures are small

and quantum gravity corrections can be ignored so that classical supergravity is sufficient

to capture the essential physics. Either way we observe that taking λ to be large ensures

that classical string theory simplifies to classical supergravity that is much easier to access.

On the contrary, for perturbation theory to be valid on the gauge theory side in the large Nc

limit, we require gYM to be small which is evident from Eq. 2.29. Thus we find that the two

descriptions - perturbative gauge theory and string theory on AdS5 × S5 are valid in two

different regimes. It is in this sense that the two theories are said to be dual to each other.

2.4 AdS/CFT in Quark-Gluon Plasma

In the previous section we have conjectured an equivalence between string theory and N =

4 SYM theory at zero temperature, since we had considered the stack of Nc D3-branes to

be in their ground state. On the supergravity side this corresponds to the so-called extremal

solutions. A very natural generalization is to consider the case when the gauge theory has

a non-zero temperature, which will be of more interest to us. Correspondingly, we need

to excite the degrees of freedom on the D-branes to a finite temperature. This yields the
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non-extremal solutions in supergravity [56, 57]. It is found that the effect of incorporating

a non-zero temperature is to only modify the AdS5 part of the metric as,

ds2 =
r2

R2

(

−fdt2 + dx2
1 + dx2

2 + dx2
3

)

+
R2

r2f
dr2 +R2dΩ2

5 (2.31)

with

f(r) = 1− r40
r4
. (2.32)

Note that by setting r0 = 0 we recover the familiar AdS5 × S5 space-time,

ds2 = ds2AdS5
+R2dΩ2

5 (2.33)

with

ds2AdS5
=

r2

R2
ηµνdx

µdxν +
R2

r2
dr2, r ∈ (0,∞). (2.34)

Here {xµ} refers to the coordinates of the Minkowski space-time or the gauge theory co-

ordinates. It can be easily seen from Eq. 2.34 that for a r = constant slice, the metric

reduces to the familiar Minkowski space-time up to a conformal factor of r2

R2 . As r → ∞

we approach the “boundary” of the space-time. This is a boundary in the conformal sense,

not in the topological sense since the scale factor r2

R2 blows up near the boundary. However,

we shall not go into such subtleties and simply refer to the r → ∞ limit as the boundary.

It is customary to define the new coordinate z = R2/r ∈ (0,∞) in terms of which the

AdS5 metric assumes the form,

ds2AdS5
=

R2

z2
(

−dt2 + dx2
1 + dx2

2 + dx2
3 + dz2

)

. (2.35)
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Here the boundary theory lives at z → 0. Introducing finite temperature the AdS5-black

hole metric is written as,

ds2 =
R2

z2

(

−fdt2 + dx2
1 + dx2

2 + dx2
3 +

dz2

f

)

z ∈ (0, z0) (2.36)

now with,

f(z) = 1− z4

z40
(2.37)

with the event horizon at z0 = 1/r0.

String theory in this background is dual to N = 4 SYM theory at finite temperature. In the

thesis we shall be concerned with various deformations of the thermal SYM theory.

The Hawking temperature of the black D3-brane can be computed in the standard proce-

dure [58] of demanding that the Euclidean continuation of the metric (Eq. 2.36) obtained

via the substitution t → −itE ,

ds2 =
R2

z2

(

fdt2E + dx2
1 + dx2

2 + dx2
3 +

dz2

f

)

(2.38)

be regular at z = z0. This requires that tE be identified with a period β given as

β =
1

T
= πz0. (2.39)

This temperature is, in turn, identified with the temperature of the N = 4 SYM theory

on the boundary. This is reasonable, since tE corresponds to precisely the Euclidean time

coordinate in the boundary theory. Having generalized the speculated equivalence to the

finite temperature case, we can make some further generalizations. For example, one can

introduce a chemical potential µ into our theory. For a boundary theory enjoying a U(1)
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symmetry like the N = 4 SYM, it is possible to incorporate a chemical potential µ cor-

responding to the U(1) charge. If we represent the boundary current by Jµ then by the

AdS/CFT dictionary the bulk gauge field Aµ is related to this current respecting the bound-

ary condition,

lim
z→0

At = µ. (2.40)

This condition, complemented by the requirement that the gauge field is well-behaved at

the horizon, effectively means that there is an electric field in the bulk, i.e., the black hole

is now charged. We shall not consider charged black holes and their gauge theory duals

in details here. The interested reader is referred to [59–64] for more details. It is also

possible to generalize the correspondence in other directions. For instance, keeping in

mind realistic QCD, theories with lesser number of supersymmetries or theories which are

not scale-invariant have been studied via their string duals. In particular, the two models of

thermal SYM theory that we shall explore in this thesis both violate conformal invariance.

Wilson loops

Let us now turn to a discussion of Wilson loops. In course of the thesis we shall have

occasions to compute the expectation values of various types of Wilson loops in different

contexts. Hence, it is worthwhile to devote some space to an elaborate discussion of Wilson

loops and their computation in the holographic context.

The expectation values of Wilson loops,

W (C) = Tr P exp

[

i

∫

C
dxµAµ(x)

]

(2.41)

form an important class of non-local observables in any gauge theory. The expectation val-

ues of Wilson loops contain a wealth of information about the non-perturbative physics of
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Σ

∂Σ ≡ C

Figure 2.2: String world-sheet and Wilson Loop

non-Abelian gauge theories. For example, they find applications in studying confinement,

thermal phase transitions, quark screening, etc. In many of the applications it is useful to

take C to be the path traversed by a quark. We shall here describe how to compute the

expectation values of Wilson loops in strongly coupled non-Abelian gauge theories using

the dual string description. For the sake of definiteness, we shall talk about N = 4 SYM

theory as the prototype gauge theory. Let us recall that the field content of N = 4 SYM

theory includes six scalar fields φi in the adjoint representation. This allows us to slightly

generalize Eq. 2.41 to [65, 66],

W (C) = 1

Nc
Tr P exp

[

i

∮

C
ds
(

Aµẋ
µ + ~n · ~φ

√
ẋ2
)

]

(2.42)

with ~φ = {φ1, φ2, ..., φ6}, ~n a unit vector in R
6 that parametrizes a path in this space (in

S5) just as xµ(s) parametrizes a path in R
1,3. The factor

√
ẋ2 is necessary to make the

second term a density under world-line parametrizations. The quantity in Eq. 2.42 can be

interpreted in terms of the string world-sheet. We take C to be the path traced out by a

quark. Although we have seen that the field content of N = 4 SYM has no quark, it is

possible to include quarks in our theory by introducing open strings attached to a D-brane

located at some radial coordinate r = rm. The mass of the quark so introduced is then
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proportional to rm. The end-point of the open string that terminates on the D-brane is the

holographic dual of a quark in the gauge theory. It is then natural to speculate that the

boundary ∂Σ of the string world-sheet Σ must be the path C of the quark, i.e., we are led

to the identification, ∂Σ ≡ C as depicted in Figure 2.2. We then identify the expectation

value of the Wilson loop operator, which furnishes the partition function or the amplitude

of the quark traversing C, with the partition function of the dual string world-sheet Σ,

〈W (C)〉 = Zstring[∂Σ = C]. (2.43)

Also, to keep things simple we shall consider only infinitely heavy, i.e., non-dynamical

quarks. In the gravity picture this is equivalent to the statement that the D-brane is located

at infinite radial position, i.e., rm → ∞. This essentially ensures that the boundary of the

string world-sheet (∂Σ) lies in the boundary of AdS. Now recall that the string end-point

couples to the fields living on the D-brane, i.e., it couples with both the gauge field Aµ

and the scalars. The coupling with the scalars reflects that the string pulls the D-brane

and distorts its shape. The pull is orthogonal to the directions spanned by the D-brane and

we indicate this direction by ~n. The coupling to the gauge field indicates that the string

end-point behaves as a point particle charged under this gauge field. Thus we see that the

correct Wilson loop operator dual to the string world-sheet should be Eq. 2.42 rather than

Eq. 2.41. Note that the two operators match only when the Wilson loop is light-like and ẋ

vanishes.

In the limit when the number of colors Nc is very large and also the ’t Hooft coupling is

large the string partition function simplifies greatly and takes the form,

Zstring[∂Σ = C] = eiS(C) (2.44)
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which relates the Wilson loop operator to the classical string action as

〈W (C)〉 = eiS(C). (2.45)

Evaluating the expectation value of the Wilson loop thus boils down to finding the classical

action S(C), which, in turn, is obtained by extremizing the Nambu-Goto action and impos-

ing the proper boundary condition that the string ends on the curve C.

It is important to be able to appreciate that both the large Nc limit and the large λ limit are

essential for Eq. 2.44 to hold. Taking Nc → ∞ at fixed λ ensures that gs → 0 which allows

us to ignore the possibility of strings breaking off from the string world-sheet and forming

loops. Moreover, λ → ∞ guarantees that the string tension becomes very large and we can

rule out fluctuations of the string so that the string assumes its classical configuration.

Let us now compute holographically a prototype Wilson loop in a simple case for illustra-

tive purpose. We consider an infinitely heavy static quark, which implies that C is now just

a straight line of length T along the time direction. On the field theory side, we expect,

〈W (C)〉 = eiMT (2.46)

where M is the quark mass. Symmetry suggests that on the string theory side, the cor-

responding string world-sheet will also be a straight line with the string hanging straight

down from the boundary to the horizon and translating along the time direction. The action

for such a world-sheet will be infinite since the proper distance of the boundary from the

AdS center is, in fact, infinite. This is consistent with the gauge theory picture where we

have taken the quark to be infinitely massive. To obtain a finite value for the quark mass,

we introduce a regulator in the bulk so that now the boundary is effectively at z = ǫ in-
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stead of at z = 0. On the field theory side this corresponds to introducing a short distance

cut-off. To explicitly evaluate the world-sheet action we require to suitably parametrize the

world-sheet. We choose ξ0 ≡ τ = t and ξ1 ≡ σ = z. For a static quark we further have

xi = constant. The induced metric on the two-dimensional string world-sheet is given by,

ds2 =
R2

σ2

(

−dτ 2 + dσ2
)

. (2.47)

This yields the desired solution,

S =
T R2

2πα′

∫ ∞

ǫ

dz

z2
=

√
λ

2πǫ
T . (2.48)

In the process we have called into action the AdS/CFT dictionary R2/α′ =
√
λ. Combining

Eqs. 2.45 and 2.46 we finally obtain the expression for the quark mass M as

M =

√
λ

2πǫ
. (2.49)

Note that as ǫ → 0, the quark mass M becomes very large, which is consistent with what

we started with - massive non-dynamical quark at rest in the boundary theory.

2.5 Summary

In this chapter we have outlined the essential features pertaining to QGP and AdS/CFT

that are relevant for our purpose. In particular, we skimmed through the basics of string

theory and motivated the conjectured equivalence between N = 4, SU(Nc) SYM theory

and type IIB string theory on AdS5 × S5. We further got a feel of computing Wilson loops

in gauge theories employing holographic techniques. Armed with these prerequisites we
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now proceed to compute expectation values of Wilson loops in more general scenarios.

In the next chapter, we shall perform such computations in the context of N = 4 SYM

theories at finite temperature and in (p + 1)-dimensions whose gravity dual is given by

black Dp-branes. We shall also relate the expectation values so obtained to various heavy

quark observables in the deconfined (high temperature) phase of N = 4 SYM plasma.

Subsequently, we shall see more of Wilson loops when we investigate the two models of

anisotropic plasma in chapters 4 and 5 and extract information about various heavy quark

observables from expectation values of such loops.



CHAPTER 3

WILSON LOOPS IN HOT YANG-MILLS

THEORY IN (p + 1)-DIMENSIONS

3.1 Overview

In the present chapter we set the stage for the anisotropic models to be investigated later,

by considering heavy probe quarks in the background of isotropic N = 4, SU(Nc) SYM

theory at finite temperature. Following the well-defined recipe available in the literature

and discussed in chapter 2, we evaluate expectation values of certain Wilson loops in ther-

mal SYM plasma in various dimensions in the limit of large ’t Hooft coupling and large

number of colors via holography and relate them to various heavy quark observables that

are of relevance to the recent collider experiments at RHIC and LHC∗.

We compute the expectation value of a special time-like Wilson loop to extract the static

quark-antiquark potential [68] in a flowing strongly coupled quark-gluon plasma. In a

∗The present chapter is based on [67].

45
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similar vein, the expectation value of a particular light-like Wilson loop furnishes the ex-

pression of the jet quenching parameter [69]. The velocity-dependent interaction potential

E of a quarkonium bound state moving with an arbitrary velocity v through hot QGP, the

screening length Lmax [70–73] as well as the jet quenching parameter q̂ [74,75]† have been

calculated in (3 + 1)-dimensional N = 4 SYM plasma using the AdS/CFT correspon-

dence. Here we follow the footsteps and generalize the computations to other dimensions.

In space-time dimensions other than (3 + 1), the gauge theory does no longer respect con-

formal invariance and it is thus an added motivation to see how the lack of conformal

invariance affects the heavy quark observables‡.

Starting from non-extremal Dp-brane solution [54], a particular decoupling limit [76] of

which defines the gravity dual of (p + 1)-dimensional SU(Nc) SYM theory at large Nc

we apply the fundamental string probe approach to compute the Nambu-Goto world-sheet

action for this background. As discussed earlier, the expectation value of the required Wil-

son loop corresponds to the minimal area of the string world-sheet whose boundary is the

loop in question [65]. In §3.2 we consider time-like Wilson loop when the velocity v of

the bound state Q-Q̄ pair (which we shall frequently refer to as the “dipole”) is 0 < v < 1

and obtain the potential E of a dipole moving through (p + 1)-dimensional SYM plasma

with v as a parameter. Next we extract expressions for the screening length of the dipole§

in various dimensions. §3.3 concerns the calculation of q̂ from light-like Wilson loop, i.e.,

by taking the v → 1 limit of the previous calculation. q̂ has been calculated earlier in [74]

for p = 3. Here we follow their method to generalize the results for any p. Finally, we

conclude in §3.4 with a summary of the results obtained and future program.

†Also see [27] for a recent review.
‡Non-conformal theories have also been considered, among other things, in [71] and we thank Makoto

Natsuume for bringing this reference to our attention.
§Screening length of a dipole moving with velocity v has been calculated in [71] at the leading order.
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3.2 Q-Q̄ Potential and Screening Length

Using the AdS/CFT correspondence, we calculate in this section expectation values of

time-like Wilson loops in (p + 1)-dimensional SYM theory by calculating the Nambu-

Goto action of a fundamental string in the background of a non-extremal Dp-brane in a

particular decoupling limit. From this we obtain the velocity-dependent Q-Q̄ potential E

and the screening length Lmax of the heavy quark bound state.

3.2.1 Supergravity dual

Let us first try to understand the holographic dual to thermal SU(Nc) SYM theory in (p+

1)-dimensions. The metric (given in string frame), the dilaton and the form field of the

non-extremal Dp-brane solution of type II supergravity are given as [54],

ds2 = H− 1
2

(

−fdt2 +

p
∑

i=1

(dxi)2

)

+H
1
2

(

dr2

f
+ r2dΩ2

8−p

)

e2(φ−φ0) = H
3−p

2 , F[p+2] = cothα dH−1 ∧ dt ∧ dx1 ∧ . . . ∧ dxp (3.1)

where,

H(r) = 1 +
r7−p
0 sinh2 α

r7−p
, f(r) = 1− r7−p

0

r7−p
(3.2)

with r0 and α being two parameters related to the mass and the charge of the black Dp-

brane. There is an event horizon at r = r0 and eφ0 = gs is the string coupling constant

where φ0 is the asymptotic value of the dilaton φ. The form field F[p+2] has to be made

self-dual for p = 3. In the decoupling limit we zoom into the region,

r7−p
0 < r7−p ≪ r7−p

0 sinh2 α (3.3)
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so that α is a very large angle and

H(r) ≈ r7−p
0 sinh2 α

r7−p
(3.4)

and the metric now takes the form,

ds2 =
r

7−p

2

r
7−p

2
0 sinhα

(

−fdt2 +

p
∑

i=1

(dxi)2

)

+
r

7−p

2
0 sinhα

r
7−p

2

dr2

f
+

r
7−p

2
0 sinhα

r
3−p

2

dΩ2
8−p. (3.5)

Along with the other field configurations this is the gravity dual of (p + 1)-dimensional

finite temperature SU(Nc) SYM theory [76]. We shall use this as the background in the

following for computing Wilson loops.

3.2.2 Q-Q̄ potential

Let us recall that the N = 4 SYM theory spectrum does not include any quark. Hence, to

compute the Q-Q̄ interaction potential we need to introduce these quarks from the outside.

On the gravity side this amounts to introducing open strings attached to D-branes. How-

ever, it must also be remembered that in heavy ion collision these quarks are not introduced

externally but are rather produced in the collision itself. These quarks act as probes of the

plasma. Going by the standard custom, we shall also assume the quarks to be infinitely

heavy which ensures that the D-branes to which the open strings are attached are pushed

all the way to the boundary of the space-time. On the gravity side, the open string acts as a

probe implying that we ignore any back-reaction that the string (or the D-brane to which it

is attached) may have upon the space-time sourced by the Nc Dp-branes. The string starts

from a D-brane, hangs downwards along the radial direction, reaches a turning point from

where it again rises upwards to terminate on the D-brane. The end-points of the string
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on the D-brane correspond to a quark and an antiquark in the fundamental representation.

Let the line joining the end-points of the open string along the D-brane, i.e., the dipole lie

along the x1 direction and move with an arbitrary velocity 0 < v < 1 along the xp direc-

tion. Since the dipole lies perpendicular to its direction of propagation, p must be greater

than one. Since we are interested in computing the potential of a moving mesonic bound

state it turns out to be convenient to go to the rest frame of the Q-Q̄ pair. This explicitly

introduces the velocity parameter v into our calculations. To go to the rest frame (t′, xp ′),

we inflict a boost as,

dt = cosh η dt′ − sinh η (dxp)′

dxp = − sinh η dt′ + cosh η (dxp)′ (3.6)

where the boost parameter η is related to the dipole velocity v as tanh η = v. Viewed from

this frame the meson is static and the QGP is flowing with velocity v in the negative xp

direction. The Wilson loop lies in the t′-x1 ′ plane and we denote the lengths as T and L

respectively in those directions. We further assume T ≫ L such that the string world-sheet

is time-translation invariant. Using Eq. 3.6 in the metric of Eq. 3.5 we get,

ds2 = −A(r)dt2 − 2B(r)dtdxp + C(r)(dxp)2 +
r

7−p

2

r
7−p

2
0 sinhα

p−1
∑

i=1

(dxi)2

+
r

7−p

2
0 sinhα

r
7−p

2

dr2

f
+

r
7−p

2
0 sinhα

r
3−p

2

dΩ2
8−p

≡ GMNdx
MdxN (3.7)

where M,N are ten-dimensional space-time indices. We have also defined,
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A(r) =
r

7−p

2

r
7−p

2
0 sinhα

(

1− r7−p
0 cosh2 η

r7−p

)

,

B(r) =
r

7−p

2
0

r
7−p

2 sinhα
sinh η cosh η,

C(r) =
r

7−p

2

r
7−p

2
0 sinhα

(

1 +
r7−p
0 sinh2 η

r7−p

)

.

Also note that since we will be using the primed coordinates from now on, we have dropped

the ‘prime’ in writing Eq. 3.7 for brevity. We will evaluate the world-sheet action (Eq.

2.11) using Eq. 2.10, with the static gauge condition τ = t, σ = x1, where −L/2 ≤ x1 ≤

L/2 and r = r(σ) and the xi’s (i = 2, ..., p) are constants. r(σ) is the string embedding

we want to determine with the boundary condition, r(±L
2
) = r0Λ where r0Λ denotes the

location of the boundary. With the above gauge choice we have,

S =
T

2πα′

∫ L/2

−L/2

dσ

[

A(r)

(

r
7−p

2

r
7−p

2
0 sinhα

+
r

7−p

2
0 sinhα

r
7−p

2

(∂σr)
2

f

)]

1
2

. (3.8)

At this point, we introduce new dimensionless quantities y = r/r0, σ̃ = σ/(r0 sinhα),

and ℓ = L/(r0 sinhα) = 4πLT/(7− p), where T is the Hawking temperature that can be

obtained from the non-extremal Dp-brane metric in Eq. 3.1 as T = (7 − p)/(4πr0 sinhα)

to recast Eq. 3.8 as,

S =
T r0
πα′

∫ ℓ/2

0

dσ̃L =
T d

1
5−p
p λ

1
5−p (4πT )

2
5−p

π(7− p)
2

5−p

∫ ℓ/2

0

dσL (3.9)

where

L =

√

(

y7−p − cosh2 η
)

(

1 +
y′2

y7−p − 1

)

(3.10)
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with y′ = ∂y/∂σ. Here we exploited the fact that y is an even function of σ by symmetry.

In the second expression in Eq. 3.9, we have omitted the ‘tilde’ in σ for brevity and invoked

the AdS/CFT dictionary [76],

r7−p
0 sinh2 α = dpg

2
YMNcα

′5−p = dpλα
′5−p

r0 sinhα =
7− p

4πT
(3.11)

where dp = 27−2pπ(9−3p)/2Γ((7 − p)/2) and we have taken p < 5¶. y(σ) is determined by

extremizing Eq. 3.9. Since the Lagrangian density in Eq. 3.10 does not depend explicitly

on σ, it at once leads us to a conserved quantity

H = L− y′
∂L
∂y′

=
y7−p − cosh2 η

√

(

y7−p − cosh2 η
)

(

1 + y′2

y7−p−1

)

= constant. (3.12)

In the following we distinguish between two cases: (i) cosh
2

7−p η < Λ, whence, the action

is real and the Wilson loop is time-like leading us to the Q-Q̄ potential and the screening

length. This will be the content of this section. (ii) cosh
2

7−p η > Λ so that the action is

imaginary and the Wilson loop is light-like. From this case we compute q̂. This case will

be attended to in the next section. For cosh
2

7−p η < Λ, let us denote the constant of motion

in Eq. 3.12 as q and solve for y′ as,

y′ =
1

q

√

(y7−p − 1)
(

y7−p − y7−p
c

)

(3.13)

where y7−p
c = cosh2 η + q2 > 1, denotes the largest turning point where y′ vanishes.

Integrating Eq. 3.13 at once yields the expression for the Q-Q̄ separation in terms of the

¶We will mention about the cases p = 5 and 6 later.
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integration constant q

2

∫ ℓ/2

0

dσ = ℓ(q) = 2q

∫ ∞

yc

dy
√

(y7−p − 1)
(

y7−p − y7−p
c

)

(3.14)

where we have taken the boundary Λ → ∞. In general, it is not possible to perform the

above integration analytically and provide an analytical expression for ℓ(q). However, as

we shall see shortly, for large rapidity η or large yc, it is possible to analytically evaluate

the above integral and obtain the form of Lmax. Substituting y′ from Eq. 3.13 into Eq. 3.9

along with Eq. 3.10 and inflicting a change of variables from σ to y, we have,

S(ℓ) = T d
1

5−p
p λ

1
5−p (4πT )

2
5−p

π(7− p)
2

5−p

∫ ∞

yc

dy
y7−p − cosh2 η

√

(y7−p − 1)
(

y7−p − y7−p
c

)

(3.15)

where we have expressed S completely in terms of gauge theory parameters by invoking

the gauge/string dictionary. A cursory glance reveals that the above action is divergent.

In the dual gauge theory this implies that the bound state energy diverges. The reason

for this divergence is, in fact, not far to seek. The bound state potential Etot(ℓ) has two

contributions. One, E(ℓ), arising due to the interaction between the quark and the antiquark

while the other contribution stems from the self-energy terms, Eself, of the quark and the

antiquark, which diverge. Since we are interested in finding out the interaction energy, we

shall make use of the AdS/CFT dictionary,

ei(S(C)−S0) = 〈W (C)〉 = eiT (Etot(ℓ)−2Eself). (3.16)

Hence, to calculate E(ℓ) we must subtract from S the self-energy of the free quark-

antiquark pair which, in the dual string picture translates to the action S0 corresponding
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to two disjoint strings hanging down radially,

E(ℓ) =
S(ℓ)− S0

T . (3.17)

To computeS0, we consider an open string along the radial direction, i.e., a single quark and

use the static gauge condition τ = t, σ = r, xp = xp(σ) and xi = constant (i = 2, ..., p).

With these we evaluate the world-sheet action and multiply by 2 to get the contribution for

two strings. From Eq. 2.11 we get in this case,

S0 =
2T
2πα′

∫ ∞

r0

dr

√

r
7−p

2
0 sinhα

r
7−p

2

A(r)

f
+ (A(r)C(r) +B(r)2) .(xp ′)2. (3.18)

Note that the string stretches all the way up to the horizon r0. Introducing new dimension-

less variables as before y = r/r0 and z = xp/(r0 sinhα) and substituting r0/α
′ in terms of

the parameters of the gauge theory we get from Eq. 3.18,

S0 =
T d

1
5−p
p λ

1
5−p (4πT )

2
5−p

π(7− p)
2

5−p

∫ ∞

1

dy

√

y7−p − cosh2 η

y7−p − 1
+ (y7−p − 1)

(

∂z

∂y

)2

. (3.19)

which yields the equation of motion (with q̃ being a constant)

(

∂z

∂y

)2

= q̃2
y7−p − cosh2 η

(y7−p − 1)2 (y7−p − q̃2 − 1)
. (3.20)

Since y varies from 1 to ∞, the R.H.S. can, in general, be negative and unphysical for

arbitrary values of η and q̃. Hence, to get physical solution we constrain the value of the

constant as q̃ = sinh η whence,
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Figure 3.1: Q-Q̄ separation ℓ as a function of q for p = 2 at different rapidities η of the dipole

∂z

∂y
=

sinh η

(y7−p − 1)
⇒ z(y) = constant − y sinh η 2F1

(

1,
1

7− p
,
8− p

7− p
; y7−p

)

(3.21)

where 2F1 is the hypergeometric function. Plugging in ∂z/∂y into Eq. 3.19 we get

S0 =
T d

1
5−p
p λ

1
5−p (4πT )

2
5−p

π(7− p)
2

5−p

∫ ∞

1

dy (3.22)

So, the quarkonium bound state potential in Eq. 3.17 has the form,

E(ℓ) =
d

1
5−p
p λ

1
5−p (4πT )

2
5−p

π(7− p)
2

5−p





∫ ∞

yc

dy





y7−p − cosh2 η
√

(y7−p − 1)(y7−p − y7−p
c )

− 1



+ 1− yc



 .

(3.23)

The integration appearing in Eq. 3.23 is not amenable to analytical handling. Hence, we
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Figure 3.2: Normalized Q-Q̄ potential E(ℓ) as a function of ℓ for p = 2 at the same set of rapidities

(as in Figure 3.1)

first plot ℓ(q)-q for fixed values of η from Eq. 3.14 which can then be numerically inverted

to obtain q as a function of ℓ. Plugging in this in Eq. 3.23 we plot E(ℓ)-ℓ. We provide

the plots for p = 2, 4 and 5 in Figures 3.1-3.6 respectively. Also, for comparison among

the different p’s we give the plots of ℓ(q)-q and E(ℓ)-ℓ in Figures 3.7 and 3.8 respectively

at η = 1 (which corresponds to v = 0.76). We have previously constrained p to be less

than 5. This is because the constant (expressed in terms of the parameters of the gauge

theory by Eq. 3.11) in front of the second expression in Eq. 3.9 is ill-defined for p = 5.

But no such problem arises if we continue with r0 and α′. This may be an indication that

in this case complete decoupling does not occur. However, we can still plot ℓ(q)-q and

E(ℓ)-ℓ keeping the constant in terms of the gravity parameters. For p = 6, it is known

that the decoupling does not occur and so, we do not consider the p = 6 case here. The

general features of the plots for p = 2 and 4 remain very similar (although the details, as



56 CHAPTER 3. WILSON LOOPS IN HOT YANG-MILLS THEORY IN (p+ 1)-DIMENSIONS

shown in Figures 3.7 and 3.8, are quite different) to the p = 3 case discussed in [70, 74].

It is clear from Eq. 3.14 that as q → 0, ℓ ∼ q for all p, whereas for large q, we find

ℓ ∼ q−(5−p)/(7−p) for p < 5. However, for p = 5, ℓ goes to a constant for large q. These

can be seen in Figures 3.1-3.6. Also, for p < 5, the plots bear out that the Q-Q̄ separation

has a maximum ℓmax beyond which there is no solution to Eq. 3.14. From Figures 3.1 and

3.3 we see that the peak of the ℓ(q) curve reduces and shifts towards right, i.e., towards

a larger value of q as we increase η. From Figure 3.7, we see that at a fixed value of η,

the peak reduces as we increase p and shifts towards left, i.e., towards a lower value of q.

As ℓ(q) decreases from ℓmax, there are two dipoles at a fixed ℓ for two different values of

q. The Q-Q̄ potential, in general, decreases with increasing values of η at each p and has

two branches corresponding to the two values of q. The smaller value of q corresponds to

the upper branch and has higher energy, whereas the larger value of q corresponds to the

lower branch and has lower energy. So, the dipole with lower q will be metastable and

will go to the state with higher q as it is energetically more favorable. Also, there exists a

critical η = ηc above which the whole upper branch of the E(ℓ) curve is negative. But for

η < ηc the E(ℓ) curve crosses zero at ℓ = ℓc, continues to rise till ℓ = ℓmax and turns back

crossing zero again at ℓ = ℓ′c > ℓc. Below ℓc, the upper branch is metastable. A dipole on

the upper branch on slight perturbation will come down to the lower branch. At ℓ = ℓc, the

dipole in the upper branch and the two isolated string configurations (or dissociated quark

and antiquark) have the same energy. So, both the states can coexist. However, with slight

disturbance it will settle down to the dipole in the lower branch. In the regime ℓc < ℓ < ℓ′c

the upper branch has positive energy while the lower one has negative energy. So a dipole

sitting on the upper branch, when perturbed, may either come down and settle in the lower

branch or it may dissociate into a free quark-antiquark pair. At ℓ = ℓ′c, the dipole in the

lower branch and the two isolated string states (or dissociated quark and antiquark) can
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Figure 3.3: Q-Q̄ separation ℓ as a function of q for p = 4 at different rapidities η of the dipole
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coexist and both are stable configurations. In the domain ℓ′c < ℓ < ℓmax both the branches

have positive energy and so a dipole sitting on either of them will dissociate when slightly

disturbed. Beyond ℓmax no dipole will be formed at all. Some of these features were

mentioned in [70, 74] for p = 3, but here we find that these features continue to hold for

the p = 2 and 4 cases as well. For p = 5, since there is no maximum for ℓ(q) plot, there is

no lower branch in the E(ℓ)-ℓ plot. The plot of E(ℓ) for different values of p are given in

Figure 3.8 for comparison.
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Figure 3.5: Q-Q̄ separation ℓ as a function of q for p = 5 at different rapidities η of the dipole

We had mentioned that, in general, it is not feasible to arrive at an analytical expression for

ℓ(q). However, for large η or large yc, we can expand ℓ(q) in powers of 1/yc as,

ℓ(q) = 2q

∫ ∞

yc

dy

y
7−p

2 (y7−p − y7−p
c )

1
2

+ q

∫ ∞

yc

dy

y
3(7−p)

2 (y7−p − y7−p
c )

1
2

+
3q

4

∫ ∞

yc

dy

y
5(7−p)

2 (y7−p − y7−p
c )

1
2

+ · · · . (3.24)
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Figure 3.6: Normalized Q-Q̄ potential E(ℓ) as a function of ℓ for p = 5 at the same set of rapidities

(as in Figure 3.5)

The above integrations can be handled analytically, and we have the following expressions

of ℓ(q) for p = 2, 3 and 4,

ℓ(q)p=2 =
2q
√
π

5y4c

[

Γ(4
5
)

Γ(13
10
)
+

Γ(9
5
)

10Γ(23
10
)

1

y5c
+

3Γ(14
5
)

8Γ(33
10
)

1

y10c
+ · · ·

]

, (3.25)

ℓ(q)p=3 =
2q
√
π

y3c

[

Γ(3
4
)

Γ(1
4
)
+

Γ(7
4
)

8Γ(9
4
)

1

y4c
+

3Γ(11
4
)

32Γ(13
4
)

1

y8c
+ · · ·

]

, (3.26)

ℓ(q)p=4 =
4q
√
π

y2c

[

Γ(2
3
)

Γ(1
6
)
+

Γ(5
3
)

12Γ(13
6
)

1

y3c
+

Γ(8
3
)

16Γ(19
6
)

1

y6c
+ · · ·

]

. (3.27)

Truncating the series up to the second term we can calculate ℓmax as,

ℓp=2
max =

2 · 33/10√πΓ(4
5
)

84/5
√
5Γ(13

10
)

[

1

cosh
3
5 η

+
3

130

1

cosh
13
5 η

+ · · ·
]

(3.28)

= 0.54

[

1

cosh
3
5 η

+
3

130

1

cosh
13
5 η

+ · · ·
]

,
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ℓp=3
max =

2
√
2πΓ(3

4
)

33/4Γ(1
4
)

[

1

cosh
1
2 η

+
1

10

1

cosh
5
2 η

+ · · ·
]

(3.29)

= 0.74

[

1

cosh
1
2 η

+
1

10

1

cosh
5
2 η

+ · · ·
]

,

ℓp=4
max =

41/3
√
3πΓ(2

3
)

Γ(1
6
)

[

1

cosh
1
3 η

+
1

14

1

cosh
7
3 η

+ · · ·
]

(3.30)

= 1.18

[

1

cosh
1
3 η

+
1

14

1

cosh
7
3 η

+ · · ·
]

.

The quantity Lmax = (7 − p)ℓmax/(4πT ) can be thought of as the screening length of the

dipole in the medium since this is the maximum value of L beyond which we have two

dissociated quark and antiquark or two disjoint world-sheet corresponding to E(L) = 0.

It has been pointed out in [70, 74] for p = 3 that if we set η = 0 in the above result, then

Eq. 3.29, which was derived for large η, is not too far off from the actual result at η = 0

and so the screening length decreases with increasing velocity according to the scaling

Lp=3
max(v) ≃ Lp=3

max(0)/ cosh
1/2 η = Lp=3

max(0)/
√
γ, where γ = 1/

√
1− v2. By looking at the

similarity of the behavior of ℓ(q) and E(ℓ) for p = 2, 4, with p = 3, we may conclude that

similar behavior will also hold true for p = 2, 4 as well. The velocity-dependence of the

screening lengths thus assumes the following forms for different values of p,

Lp=2
max(v) ≃ Lp=2

max(0)

cosh
3
5 η

=
Lp=2
max(0)

γ
3
5

, (3.31)

Lp=3
max(v) ≃ Lp=3

max(0)

cosh
1
2 η

=
Lp=3
max(0)

γ
1
2

, (3.32)

Lp=4
max(v) ≃ Lp=4

max(0)

cosh
1
3 η

=
Lp=4
max(0)

γ
1
3

. (3.33)

The velocity-scaling of the screening length as found out above does have significant phe-

nomenological consequences. If such a scaling does really hold for QCD in heavy ion
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collisions then it should have qualitative bearing upon dissociation of quarkonia states like

J/Ψ [70]. Let us elaborate on this with a specific illustration. Consider, for instance,

the explanation of J/Ψ suppression observed in SPS and RHIC as proposed in [44, 77].

Lattice computations of Q-Q̄ potential suggest that J/Ψ(1s) dissociates at a temperature

Td ∼ 2.1Tc whereas the states χc(2p) and Ψ′(2s) melt at Td ∼ 1.2Tc. Hence, if colli-

sions at SPS and RHIC attain a temperature T such that 1.2Tc < T < 2.1Tc then the

anomalous suppression of J/Ψ can be attributed to the complete loss of the “secondary”

J/Ψ’s that arise from the decay of excited states rather than the dissociation of the original

J/Ψ themselves. Now for p = 3 we find that the screening length scales with velocity as

Lmax ∼ γ− 1
2 . Then, roughly speaking, the temperature Td required to dissolve the bound

state should also scale as Td ∼ γ− 1
2 . This points to the fact that J/Ψ suppression may

witness a sharp increase (from the melting of actual J/Ψ’s themselves) for J/Ψ’s with

transverse momentum pT that is at most ∼ 9 GeV. If the temperature at RHIC reaches

around 1.5Tc then the same suppression can be observed at a lower threshold of pT ∼ 5

GeV. This range of energy where such quarkonium suppression may take place lies well

within the range of future runs at RHIC and will be studied intensely at LHC for both J/Ψ

and Upsilon channels.

It was pointed out in [71] that in the large η limit one generically has,

Lmax ∝ 1

ǫ(η)ν
(3.34)

where ǫ(η) = cosh
1
2 ǫ(0) is the boosted energy density. In particular, for any gauge the-

ory that is dual to asymptotically AdS5 geometry one finds ν = 4. For non-conformal

theories this scaling index can deviate from 1/4. This is exactly what we find here for

Lmax for the cases p = 2 and 4. So the bottom line of the above computation is that when
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the heavy meson is moving with an ultra-relativistic velocity v then the screening length

Lmax decreases. The dependence of Lmax upon v has been found out here in various space

dimensions. The suppression in screening length points to the fact that when the quarko-

nium is moving through the plasma with a large momentum (which is most likely to be the

case) then it is more prone to dissociation than when it is static and a marked increase in

quarkonium suppression is expected.

3.3 Jet Quenching Parameter

So far in our discussion we assumed that the rapidity η is finite and cosh
2

7−p η < Λ. So, the

velocity of the string is in the range 0 < v < 1 and the Wilson loop is time-like. Now we

will consider case cosh
2

7−p η > Λ. In order to extract the jet quenching parameter we take

η → ∞ or v → 1, so that the Wilson loop is light-like and then take Λ → ∞‖. Note from

Eq. 3.9 that since now cosh
2

7−p η > Λ, the action is imaginary and we write the second

expression in Eq. 3.9 as,

S = i
T d

1
5−p
p λ

1
5−p (4πT )

2
5−p

π(7− p)
2

5−p

∫ ℓ/2

0

dσL (3.35)

where

L =

√

(

cosh2 η − y7−p
)

(

1 +
y′2

y7−p − 1

)

. (3.36)

‖We will be brief here since the jet quenching parameter for (p+ 1)-dimensional Yang-Mills theory has

already been given in [74, 75]. But here we obtain it by taking the v → 1 limit of the time-like Wilson loop

as was done there for the p = 3 case.
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Absence of any explicit σ-dependence at once leads to

H = L − y′
∂L
∂y′

= constant ⇒ cosh2 η − y7−p

√

(cosh2 η − y7−p)
(

1 + y′2

y7−p−1

)

= q0 (3.37)

where we have denoted the constant as q0. Eq. 3.37 can be solved for y′ as,

y′ =
1

q0

√

(y7−p − 1)(y7−p
m − y7−p) (3.38)

where y7−p
m = cosh2 η − q20 . On integration Eq. 3.38 gives us,

ℓ = 2q0

∫ Λ

1

dy
√

(y7−p
m − y7−p)(y7−p − 1)

. (3.39)

Substituting the value of y′ from Eq. 3.38 into Eq. 3.35 we get,

S(ℓ) = i
T d

1
5−p
p λ

1
5−p (4πT )

2
5−p

π(7− p)
2

5−p

∫ Λ

1

dy
cosh2 η − y7−p

√

(y7−p
m − y7−p)(y7−p − 1)

. (3.40)

When η is large, ℓ in Eq. 3.39 permits an expansion as follows,

ℓ =
2q0

cosh η

∫ Λ

1

dy
√

y7−p − 1
+O

(

q30
cosh3 η

,
Λ7−p

cosh3 η

)

. (3.41)

Next, with η → ∞, the second term in Eq. 3.41 drops out and taking Λ → ∞ we get,

ℓ =
2q0

cosh η
ap, with, ap =

2

5− p

√
π
Γ
(

1 + 5−p
2(7−p)

)

Γ
(

6−p
7−p

) . (3.42)
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Further, since L is much smaller than the other length dimensions of the problem, ℓ =

(4πLT )/(7− p) ≪ 1 implying q0 = (ℓ cosh η)/(2ap) ≪ 1. In this limit, S(ℓ) in Eq. 3.40

can be expanded as,

S(ℓ) = S(0) + q20S(1) +O(q40) (3.43)

where

S(0) = i
T d

1
5−p
p λ

1
5−p (4πT )

2
5−p

π(7− p)
2

5−p

∫ Λ

1

dy
cosh2 η − y7−p

√

y7−p − 1
(3.44)

q20S(1) = i
T d

1
5−p
p λ

1
5−p (4πT )

2
5−p

π(7− p)
2

5−p

q20

∫ Λ

1

dy
√

(y7−p − 1)(cosh2 η − y7−p)

≃ −i
(T cosh η)d

1
5−p
p λ

1
5−pL2

8πap

(

4πT

7− p

)
2(6−p)
5−p

. (3.45)

From physical expectation it has been argued in [74] that as ℓ or q0 goes to zero, S(0) is the

self-energy of two dissociated quark and antiquark or the area of two disjoint world-sheet.

T cosh η in Eq. 3.45 can be identified as L−/
√
2, where L− is the length of the Wilson

loop in the light-like direction. Invoking Eqs. 2.4 and 2.45 we obtain

〈W (C)〉 = e2i(S(C)−S0) = e
− 1

4
√

2
q̂L−L2

(3.46)

where the factor of two in the exponent in the second expression is due to the fact that for

evaluating the jet quenching parameter we need to compute the expectation value of the

adjoint Wilson loop, whereas, here we have actually found out the expectation value of a



66 CHAPTER 3. WILSON LOOPS IN HOT YANG-MILLS THEORY IN (p+ 1)-DIMENSIONS

fundamental Wilson loop. The third expression is valid for L ≪ 1∗∗. Thus from Eq. 3.46

and using Eq. 3.45 we extract the value of the jet quenching parameter as,

q̂ = −i
8
√
2
(

S(ℓ)− S(0)
)

L−L2
=

d
1

5−p
p λ

1
5−p

πap

(

4πT

7− p

)
2(6−p)
5−p

. (3.47)

Substituting the explicit values of ap and dp given earlier it takes the form,

q̂ =
4T 2

[

27−2pπ
9−3p

2 Γ
(

7−p
2

)

]
1

5−p

(4π)
7−p

5−pΓ
(

6−p
7−p

)

√
πΓ
(

5−p
14−2p

)

(7− p)
7−p

5−p

(

T
√
λ
)

2
5−p

. (3.48)

It can be easily verified that by defining an effective dimensionless coupling constant λeff =

λT p−3 at temperature T , as given in [74], the above expression can be recast as,

q̂ =
8
√
πΓ
(

6−p
7−p

)

Γ
(

5−p
14−2p

) b
1
2
p λ

p−3
2(5−p)

eff (T )
√

λeff(T )T
3 ≡

√

a(λeff)
√

λeffT
3 (3.49)

where b
(5−p)/2
p = [216−3pπ(13−3p)/2Γ((7− p)/2)]/[(7− p)7−p] and a(λeff) characterizes the

number of degrees of freedom at temperature T .

3.4 Conclusion

To conclude, in this chapter using the gauge/string duality and the Maldacena prescrip-

tion we have computed expectation values of special Wilson loops in (p + 1)-dimensional

strongly coupled SYM theory and related them to observables of QGP obtained in heavy

ion experiments. We have considered both time-like and light-like Wilson loops. From

time-like Wilson loops we obtained the Q-Q̄ separation (Eq. 3.14) and the velocity-

∗∗This is automatically satisfied since in the limit v → 1 for the constant q0 to be finite L has to approach

zero.
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dependent Q-Q̄ potential (Eq. 3.23) when the quarkonium moves through the plasma with

an arbitrary velocity v < 1 and plotted the relevant functions in Figures 3.1-3.6. We further

obtained the form of the screening length and its velocity-dependence in Eqs. 3.31-3.33.

By taking the v → 1 limit, the time-like Wilson loop reduces to a light-like one and from

there we obtained the jet quenching parameter in (p + 1)-dimensional SYM theory. In

the next chapter we use these techniques to perform similar computations in the first of

our anisotropic models - the non-commutative Yang-Mills theory at finite temperature and

strong ’t Hooft coupling and explore the effect of non-commutativity (or anisotropy) on the

heavy quark observables.



CHAPTER 4

HEAVY QUARKS IN NON-COMMUTATIVE

HOT SUPER YANG-MILLS PLASMA

4.1 Introduction

In the previous chapter we have learnt to compute expectation values of Wilson loops that

contain a wealth of information about various properties of quark-gluon plasma. We have

learnt to relate the expectation values to various heavy quark observables like the bound

state interaction potential, the screening length and the jet quenching parameter. In this

chapter, we examine the first of our anisotropic models - the thermal non-commutative

Yang-Mills theory at strong ’t Hooft coupling and large number of colors∗. The purpose of

studying non-commutative gauge theory is 3-fold†. Firstly, in NCYM plasma the presence

∗The present chapter is based on [78, 79].
†Space-time non-commutativity is an old idea introduced first by Heisenberg and Pauli [80] in order

to evade the infinities in quantum field theory before renormalization was successful. It was Snyder [81]

and then Connes who took the idea seriously. Connes along with Chamseddine [82] even introduced non-

commutative geometry as a generalization to Riemannian geometry and obtained gauge theory as a com-

panion to general relativity giving rise to a true geometric unification. In this framework parameters of the

68
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of non-commutativity reduces the symmetry of the theory from SO(3) to SO(2) render-

ing the theory anisotropic. Hence, NCYM theory can serve as an interesting playground

for exploring the effects of anisotropy. The presence of non-commutativity singles out a

particular direction in space respecting a remnant SO(2) symmetry in the transverse, non-

commutative plane. In the context of heavy ion collisions, this particular direction may be

thought of as the beam direction. Secondly, NCYM is interesting in its own right since

it arises quite naturally in string theory [83–85] and M-theory [86] and it is of interest to

see how non-commutativity affects the different observables. Thirdly, a consistent gauge

theory can indeed be formulated in non-commutative space-time. Even though, so far, its

existence has not been detected in low energy, one can not rule out the possibility that its ef-

fect may be manifested at extremely high energy scale, where the fabric of space-time itself

may be modified. The experimental lower bound on the non-commutativity scale reported

in the literature [87] usually gives a very small effect and is hard to detect. So, it is desirable

to search for its effect in alternative channels. High energy heavy ion collision offers one

such arena and it may be worthwhile to look whether it can provide a better window for

the effect of non-commutativity to be observed‡. Driven by these motivations we perform

a similar type of computation of Wilson loops in thermal NCYM plasma. The plan of the

present chapter is as follows: In §4.2 we explain the dual string theory background that

we shall use for performing the computations. §4.3 is devoted to the computation of the

jet quenching parameter q̂NCYM in strongly coupled NCYM plasma in (3 + 1)-dimensions

using light-cone coordinates. The effects of non-commutativity upon q̂NCYM are studied

standard model appear as geometric invariants.
‡One might wonder how would space-time non-commutativity appear in heavy ion collision in the first

place? It is known that one of the mechanisms for the appearance of spatial non-commutativity is the presence

of an intense magnetic field in the background. It has been shown in both analytic calculations [88] and

numerical simulations [89] that such an intense magnetic field is indeed possible in heavy ion collision in

RHIC (or in LHC). So, it may be quite relevant to consider such a possibility in the present context.
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for both small and large values of θ, the non-commutativity parameter, and attempt is made

to connect the results to the recent collider data by giving some numerical estimates. In

§4.4 we find out the potential of heavy quarkonia using holographic techniques with the

velocity v and the non-commutativity θ as parameters. The results are compared with the

known commutative case. An analytic expression for the screening length is obtained in

a restricted domain of the parameter space. The limit v → 1 is considered from which

the expression for the jet quenching parameter q̂NCYM is extracted. Finally, we conclude in

§4.5 with a summary of the results obtained.

4.2 Gravity Dual to Thermal NCYM Plasma

A particular form of anisotropy is manifested in non-commutative gauge theories. In this

chapter we consider the 4-dimensional maximally supersymmetric SU(Nc) Yang-Mills

theory living on R
1,1 ×R

2
θ. The non-commutativity parameter is non-vanishing only in the

R
2
θ-plane which defined by the Moyal algebra,

[x2, x3] = iθ (4.1)

where x2, x3 define the coordinates along the non-commutative gauge theory directions.

The gravity dual to NCYM theory is given by a particular decoupling limit [84, 85] of

non-extremal (D1,D3) bound state of type IIB string theory. (D1,D3) bound state [90, 91]

contains a non-zero B-field that becomes asymptotically very large in the decoupling limit

and sources space-space non-commutativity [83]. The non-extremal (D1,D3) bound state

solution of type IIB string theory is given by the following metric (in the string frame), the
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dilaton φ, the NS-NS B-field and the R-R form fields [91],

ds2 = H− 1
2

(

−f(dt)2 + (dx1)2 +
H

F

(

(dx2)2 + (dx3)2
)

)

+H
1
2

(

dr2

f
+ r2dΩ2

5

)

e2φ = g2s
H

F
, B23 =

tanα

F

A01 =
1

gs
(H−1 − 1) sinα cothϕ, A0123 =

1

gs

(1−H)

F
cosα cothϕ+ T. T. (4.2)

where the various functions appearing above are,

f = 1− r40
r4
, H = 1 +

r40 sinh
2 ϕ

r4
, F = 1 +

r40 cos
2 α sinh2 ϕ

r4
. (4.3)

The D3-branes span x1, x2 and x3 directions while the D1-branes lie along x1. α measures

the relative number of D1 and D3 branes through cosα = N/
√
N2 +M2, with N being

the number of D3-branes and M the number of D1-branes per unit codimension two sur-

face transverse to D1-branes [92]. ϕ is the boost parameter, r0 denotes the horizon of the

non-extremal (D1,D3) bound state and gs is the string coupling constant. A01 and A0123

are R-R form fields corresponding to D1-brane and D3-brane respectively. T.T. denotes

a term, involving transverse part of the brane to make the field-strength self-dual, whose

explicit form is not required for our discussion. B23 is the NS-NS form responsible for the

appearance of non-commutativity in the decoupling limit. The NCYM decoupling limit is

a low energy limit for which we zoom into the region [84],

r0 < r ∼ r0
√

sinhϕ cosα ≪ r0
√

sinhϕ. (4.4)

In this limit ϕ is a large parameter and α is close to π/2 so that,
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H ≈ r40 sinh
2 ϕ

r4
,

H

F
≈ 1

cos2 α(1 + a4r4)
≡ h

cos2 α
(4.5)

where we have defined

h ≡ 1

1 + a4r4
, with, a4 ≡ 1

r40 sinh
2 ϕ cos2 α

. (4.6)

From Eq. 4.2 we notice that asymptotically the B-field becomes very large in the de-

coupling limit. The non-vanishing component of the B-field is B23 which gives rise to

a magnetic field in the D3-brane world-volume and is responsible for making x2 and x3

directions non-commutative [93]. Using Eq. 4.5, we rewrite the metric in Eq. 4.2 as,

ds2 =
r2

r20 sinhϕ

(

−fdt2 + (dx1)2 + h
[

(dx2)2 + (dx3)2
])

+
r20 sinhϕ

r2

(

dr2

f
+ r2dΩ2

5

)

.

(4.7)

where we have scaled x2, 3 → cosα x2, 3. The metric along with the other fields (Eq. 4.2)

in the decoupling limit is the gravity dual of (3 + 1)-dimensional thermal NCYM theory.

Before proceeding further, let us also make some comments about the geometry. First note

that if we set r0 = 0, the geometry reduces to the familiar AdS5 × S5 case. With some

hindsight let us also note that unlike the AdS5 case, now the boundary (ultra-violet) is not

located at r → ∞ but rather at r = r0Λ which is taken to be very large but finite. When

we send Λ → ∞, we have h → 0 and the geometry degenerates. Hence, we need to

impose r < r0Λ. Also note that the background above can be obtained as a chain of T-

duality transformations on the AdS5×S5 geometry. The non-trivial B-field and the dilaton

are generated due to this sequence of T-duality transformations. Thus, one can view the

{x2, x3} directions as a 2-torus T2
θ
∼= R

2
θ/Z2. The limit Λ → ∞ can thus be considered as

a degeneration of this 2-torus.
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4.3 Jet Quenching Parameter in Thermal NCYM Plasma

In this section we first compute the jet quenching parameter, which measures the radiative

energy loss of an energetic parton, in NCYM plasma. We have already seen in the previous

chapter, that this is furnished by the expectation value of a light-like Wilson loop. Hence,

it proves convenient to recast the space-time metric (Eq. 4.7) in light-cone coordinates,

ds2 =
r2

r20 sinhϕ

[

−(1 + f)dx+dx− +
1

2
(1− f)

[

(dx+)2 + (dx−)2
]

+h
[

(dx2)2 + (dx3)2
]

]

+
r20 sinhϕ

r2
dr2

f
+ r20 sinhϕdΩ

2
5

≡ GMNdx
MdxN (4.8)

where we have defined x± = (t± x1)/
√
2.

By the AdS/CFT dictionary, the light-like Wilson loop is related via Eq. 3.46 to the ex-

tremized action S(C) of the string world-sheet Σ whose boundary ∂Σ is the mentioned

loop C [74, 75]. The Nambu-Goto action is easily calculated from Eqs. 2.10 and 2.11 with

GMN obtained from Eq. 4.8. We set τ = x− and σ = x2. The length of the rectangular

loop C along x2 and x− are L and L− respectively and we assume L− ≫ L. As a result

the surface is invariant under τ -translation and we have xM (τ, σ) = xM (σ). Furthermore,

the Wilson loop lies at x+ = constant and x3 = constant. Note that one of the sides of the

rectangular Wilson loop is chosen along a non-commutative direction (x2) so that q̂NCYM

evaluated from this Wilson loop will carry the effect of non-commutativity. The radial co-

ordinate r(σ) gives the string embedding and we impose the condition that the world-sheet

has C as its boundary, i.e., r(±L/2) = r0Λ, for some finite Λ. The configuration is shown

clearly in Fig. 4.1. The action (Eq. 2.11) now reduces to,
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S =

√
2L−

2πα′ sinhϕ

∫ L/2

0

dσ

[

1

1 + a4r4
+

r40 sinh
2 ϕ

r4 − r40
(r′)2

]

1
2

(4.9)

where r′ = ∂σr. Defining new dimensionless variables y = r/r0, σ̃ = σ/(r0 sinhϕ) and

ℓ = L/(r0 sinhϕ), we can rewrite the action as,

x2

x−

r0

r

r(σ)

string
L/2−L/2

r0Λ

Boundary space− time

Figure 4.1: String configuration for evaluating q̂NCYM

S =

√
2L−r0
2πα′

∫ ℓ/2

0

dσ

[

1

1 + a4r40y
4
+

(y′)2

y4 − 1

]
1
2

. (4.10)

(Note that we have omitted the ‘tilde’ from σ) from which equation of motion follows,

y′ =
[

1− q20(1 + a4r40y
4)
]

1
2

√

y4 − 1

q0(1 + a4r40y
4)

(4.11)

where q0 is an integration constant. From the first factor in Eq. 4.11 we have q0 < 1/(1 +

a4r40y
4)

1
2 for all values of y. In fact, q0 has more stringent restriction to be mentioned later.
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The above equation has a solution§ where y starts from Λ coming all the way down to the

turning point at y = 1 with y′ = 0 and goes back again to Λ. Integration of Eq. 4.11 yields,

ℓ = 2

∫ ℓ/2

0

dσ = 2q0

∫ Λ

1

dy
1 + a4r40y

4

√

(y4 − 1) [1− q20(1 + a4r40y
4)]

. (4.12)

Since ℓ = L/(r0 sinhϕ) is very small compared to any other length scale of the problem,

it implies from Eq. 4.12 that q0 must be very small, i.e., q0 ≪ 1/
√

1 + a4r40Λ
4 and so, we

can expand Eq. 4.12 in powers of q0 and from there we formally obtain its value as,

q0 =
ℓ

2

[

∫ Λ

1

dy
1 + a4r40y

4

√

y4 − 1

]−1

. (4.13)

Substituting Eq. 4.11 in Eq. 4.10 and expanding in powers of q0, we obtain

S − S0 =

√
2L−r0q

2
0

4πα′

∫ Λ

1

dy
1 + a4r40y

4

√

y4 − 1
=

√
2L−r0ℓ

2

16πα′

[

∫ Λ

1

dy
1 + a4r40y

4

√

y4 − 1

]−1

(4.14)

where use has been made Eq. 4.13. S0 denotes the action for the world-sheet of two free

strings (or the self-energy of the quark-antiquark pair). The integral in square brackets

in Eq. 4.14 diverges if we take the boundary (Λ) where the NCYM theory lives, to ∞.

The evaluation of the action here differs from the commutative case. In the commutative

version the action, after subtracting the self-energy of the quarks, becomes finite. This is

evident if we put a4r40, which is a measure of non-commutativity (to be discussed later), to

zero. However, for the non-commutative case, the action in Eq. 4.14 is still divergent if

we put Λ → ∞. This is because in the non-commutative case the gauge theory does not

§Here we discard another solution at UV corresponding to the surface at infinity. Since q̂ is a property of

the thermal medium and does not describe UV physics, the surface at infinity is not physically relevant [75].
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live at r = ∞¶, the usual boundary of the AdS5-space, but rather lives on a surface which

is at a finite distance. Instead of directly evaluating this distance we shall, instead, first

evaluate the integral in Eq. 4.14 for finite Λ and then subtract the divergent part obtained

by letting Λ → ∞. This way we regularize the integral in order to give any meaning to the

extremized action‖. Once the subtraction is made the NCYM theory can be considered to

be living effectively at r = ∞. So, we first evaluate the integral for finite Λ as follows,

∫ Λ

1

dy
1 + a4r40y

4

√

y4 − 1
= −Λ

√
Λ4 − 1 +

1

3
(3 + a4r40)

√
πΓ
(

5
4

)

Γ
(

3
4

)

+
1

3
(3 + a4r40)Λ

3
2F1

(

−3

4
,
1

2
;
1

4
;
1

Λ4

)

(4.15)

where 2F1(a, b; c; 1/Λ
4) is a hypergeometric function. For large Λ it has an expansion

2F1

(

a, b; c;
1

Λ4

)

= 1 +
ab

c

1

Λ4
+

a(a+ 1)b(b+ 1)

2c(c+ 1)

1

Λ8
+ · · · . (4.16)

Using the above expansion in Eq. 4.15 and finally setting Λ → ∞, we find that apart from

a finite part the above integral has a single divergent piece of the form (a4r40/3)Λ
3 and all

other terms vanish. So, removing the divergent part we get the regularized integral as,

∫ ∞

1

dy
1 + a4r40y

4

√

y4 − 1
=

(

1 +
a4r40
3

)
√
πΓ
(

5
4

)

Γ
(

3
4

) . (4.17)

¶This is implicit in the quark-antiquark potential calculation done in [84] (see also [94]). There it was

not possible to fix the position of the string at infinity since a small perturbation would change it violently.

So, the calculation was performed by going to a conjugate ‘momentum’ variable and the energy was found

to be divergent. A finite answer was obtained only after subtracting the divergent part. This, in turn, implies

that the boundary screen is not at infinity but at a finite radial distance [94].
‖There are two ways to describe the finiteness of the integral in the action (Eq. 4.14). Either we take Λ

to be finite in which case the integral is obviously finite (in this case the integral can be evaluated only if we

know the exact position of the boundary) or we take Λ to be infinite and subtract the unique divergent part

(as explicitly calculated below) of the integral and obtain a finite result. In the former case the boundary is

at a finite radial distance, but for the latter case it is at infinity. But, effectively, they describe the same thing.

Here we have adopted the second approach.
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Substituting Eq. 4.17 in Eq. 4.14 yields,

S − S0 =

√
2L−r0ℓ

2

16πα′
Γ
(

3
4

)

√
πΓ
(

5
4

)

(

1 +
a4r40
3

)−1

. (4.18)

Now to extract q̂NCYM we invoke Eq. 3.46 whence, we obtain

q̂NCYM =
r0

πα′r20 sinh
2 ϕ

Γ
(

3
4

)

√
πΓ
(

5
4

)

(

1 +
a4r40
3

)−1

(4.19)

where we have reinserted ℓ = L/(r0 sinhϕ). Since q̂NCYM is a gauge-theoretic quantity, we

replace all the parameters of string theory appearing in Eq. 4.19 by the corresponding gauge

theory parameters making use of the gauge/string dictionary [84]. The temperature of the

non-extremal (D1,D3) bound state, which by the gauge/string duality is the temperature of

the NCYM theory, can be obtained from Eq. 4.2,

T =
1

πr0 coshϕ
≈ 1

πr0 sinhϕ
(4.20)

where in the last expression we have used the fact that in the decoupling limit (Eq. 4.4), ϕ

is large. Also from the charge of the D3-brane we have

r40 sinh
2 ϕ = 2λ̂α′2. (4.21)

Here λ̂ = ĝ2YMNc is the ’t Hooft coupling of NCYM theory and ĝYM is the NCYM coupling.

The NCYM ’t Hooft coupling is related to the ordinary ’t Hooft coupling by λ = (α′/θ)λ̂.

Here θ is a finite parameter and in the decoupling limit as α′ → 0, λ̂ remains finite. Using

Eqs. 4.20 and 4.21 we obtain,
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sinhϕ =
1

π2
√

2λ̂ T 2α′
, and r0 = π

√

2λ̂ Tα′. (4.22)

Also we have

a4r40 =
1

sinh2 ϕ cos2 α
= π4(2λ̂)T 4θ2. (4.23)

In the above we have used the decoupling limit cosα = α′/θ and as α′ → 0, α → π/2

as we mentioned earlier. Also, from Eq. 4.23 we notice that since a2r20 is proportional to

θ, therefore, ar0 is a measure of non-commutativity. Now using Eqs. 4.22 and 4.23 in Eq.

4.19 we find that for small non-commutativity (a2r20 ∼ θ ≪ 1)

q̂NCYM =
π

3
2Γ
(

3
4

)

Γ
(

5
4

)

√

λ̂T 3

[

1− π4λ̂T 4θ2

3
+O(θ4)

]

. (4.24)

As expected, by setting θ = 0, we recover the SYM result. In this case the NCYM ’t

Hooft coupling λ̂ equals the ordinary ’t Hooft coupling λ and also in writing Eq. 4.24

we have replaced 2λ̂ by λ̂ to match the commutative results in [75]. This difference in a

factor of 2 is just a convention as mentioned in [74]. In the presence of non-commutativity

the jet quenching parameter gets reduced from its commutative value and the reduction

gets enhanced with temperature as T 7, keeping other parameters fixed. This reduction in

radiative energy loss for the non-commutative case can be intuitively understood as non-

commutativity introduces a non-locality in space due to space uncertainty and there is no

point-like interaction among the partons. So, the parton energy loss would be less in this

case. We can try to estimate the correction (the second term in Eq. 4.24) arising due

to non-commutativity from the experimental bound on the non-commutativity scale. In

the literature various disparate experimental bounds on θ have been obtained from various

physical considerations. The bound on θ has been claimed to be ∼ (1-10 TeV)−2 in [87],
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whereas, it is ∼ (1012-1013 GeV)−2 in [95] or even stronger ∼ (1015 GeV)−2 in [96]. In

theories of gravity it can be of the order of Planck scale ∼ (1019 GeV)−2 [97]. It is clear

that in all these cases except the first one there is no hope of getting a significant correction

due to non-commutativity in collider experiments. At RHIC collision energy ∼ 200 GeV

where the temperature attained by QGP is ∼ 300 MeV, even the first case does not give

a significant correction (π4λ̂T 4θ2/3 ∼ 4.96 × 10−12 taking∗∗ λ̂ = 6π and T = 300 MeV

relevant for the Au-Au collision at RHIC and taking θ = 1 TeV−2) compared to the leading

order term. At LHC where the collision energy would be much higher, the temperature

of the QGP may rise and is expected to go up to 1-10 GeV. In that case the correction to

the jet quenching due to non-commutativity can be estimated to be π4λ̂T 4θ2/3 ∼ (6.12×

10−6-6.12× 10−10), still too low to be detected. Conversely, to get a 10% correction on the

jet quenching parameter due to non-commutativity, the temperature of the plasma would

have to be T ∼ 200 GeV. For large non-commutativity (ar0 ∼
√
θ ≫ 1), on the other

hand, the jet quenching parameter in Eq. 4.19 takes the form,

q̂NCYM =
3Γ
(

3
4

)

π
5
2Γ
(

5
4

)

1
√

λ̂ T θ2

[

1− 3

π4λ̂T 4θ2
+O

(

1

θ4

)]

. (4.25)

We thus find that for large non-commutativity, the jet quenching varies inversely with tem-

perature and also inversely with the square-root of the NCYM ’t Hooft coupling.

As discussed earlier, the presence of non-commutativity singles out the x1 direction so that

all the space coordinates are no longer on equal footing. Introduction of non-commutativity

alters the Minkowskian boundary space-time R1,3 toR1,1×R
2
θ where the non-commutativity

parameter θ is non-vanishing only on the Moyal plane R
2
θ. Thus, we can think of non-

∗∗We have taken the ’t Hooft coupling of the NCYM theory to be the same as that of the commutative

theory, although there is no concrete reason for this. This is taken just for the estimate. Actually these two

couplings are related as given earlier and as α′ → 0, λ → 0, but λ̂ remains finite. We have taken this finite

value to be 6π for better comparison.
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commutativity as the source of anisotropy in the gauge theory and treat θ as a measure of

anisotropy. Our results suggest that the introduction of anisotropy leads to a suppression

in jet quenching whose direct fallout will be a reduction in the suppression of quarkonium

states like J/Ψ.

4.4 Q-Q̄ Potential in Thermal NCYM Plasma

In this section we compute the quarkonium bound state potential in hot NCYM plasma in

(3+1)-dimensions from gauge/string duality. Since we have already discussed the compu-

tation of Q-Q̄ potential in the preceding chapter we shall be brief in our discussion here.

Using a fundamental open string as a probe we consider its dynamics in the given back-

ground. The line joining the end-points of the string or the dipole lie along x2, one of the

non-commutative directions and move along x1 with a velocity v where 0 < v < 1 ††. We

boost to the rest frame (t′, x1 ′) of the dipole through the transformation,

dt = cosh ηdt′ − sinh ηdx1 ′

dx1 = − sinh ηdt′ + cosh ηdx1 ′. (4.26)

The rectangular Wilson loop lies along t′ and x2 directions and we denote the lengths

along those directions as T and L respectively. Eq. 4.7 written in terms of the boosted

††There are various other possibilities one can consider, for example, the dipole lies along the commutative

direction x1 and moves along one of the non-commutative directions x2 (say) or the dipole lies along one of

the non-commutative directions x2 and moves along the other non-commutative direction x3. The dipole can

even have an arbitrary orientation with respect to its motion and the motion can also be in arbitrary direction

in the mixed commutative-non-commutative boundary. Here we consider only the simplest case to see the

non-commutative effect.
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coordinates assumes the form,

ds2 = −A(r)dt2 − 2B(r)dtdx1 + C(r)(dx1)2 +
r2h

r20 sinhϕ

[

(dx2)2 + (dx3)2
]

+
r20 sinhϕ

r2
dr2

f
+ r20 sinhϕdΩ

2
5

≡ G̃MNdx
MdxN (4.27)

where

A(r) =
r2

r20 sinhϕ

(

1− r40 cosh
2 η

r4

)

,

B(r) =
r20 sinh η cosh η

r2 sinhϕ
,

C(r) =
r2

r20 sinhϕ

(

1 +
r40 sinh

2 η

r4

)

. (4.28)

Note that since we will be using the ‘primed’ coordinates from now on, we have dropped

the prime for simplicity. Using the space-time metric defined in Eq. 4.27 we evaluate the

Nambu-Goto action employing the static gauge τ = t, σ = x2, where −L/2 ≤ x2 ≤ L/2

and r = r(σ), x1(σ), x3(σ) = constant, to we get,

S =
T

2πα′

∫ L/2

−L/2

dσ

[

A(r)

(

r2h

r20 sinhϕ
+

r20 sinhϕ

r2
(∂σr)

2

f

)]
1
2

(4.29)

with A(r) as given in Eq. 4.28. Introducing the dimensionless quantities y = r/r0, σ̃ =

σ/(r0 sinhϕ) and ℓ = L/(r0 sinhϕ), Eq. 4.29 can be rewritten as,

S =
T r0
πα′

∫ ℓ/2

0

dσL = T T
√

λ̂

∫ ℓ/2

0

dσL (4.30)

where
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L =

√

(

y4 − cosh2 η
)

(

1

1 + a4r40y
4
+

y′2

y4 − 1

)

. (4.31)

We shall, henceforth, not use the ‘tilde’ on σ̃ anymore. Here y′ ≡ dy/dσ and we have used

the fact that y is an even function of σ by symmetry. In writing the second expression in

Eq. 4.30 we have made use of the standard gauge/string relations [84, 85], given in Eqs.

4.20, 4.21 and 4.23 now with λ̂ replaced by 2λ̂. To find the string profile we will compute

y(σ) by extremizing the action in Eq. 4.30. Now since the Lagrangian density in Eq. 4.30

does not explicitly depend on σ, we have the following constant of motion,

H = L − y′
∂L
∂y′

=
y4 − cosh2 η

(1 + a4r40y
4)

√

(y4 − cosh2 η)
(

1
1+a4r40y

4 +
y′2

y4−1

)

= q = constant.

(4.32)

As in the commutative theory [74] discussed in chapter 3 we will consider two different

regimes: (a) we take
√
cosh η < Λ and then take Λ → ∞. The rapidity in this case

remains finite, the Wilson loop is time-like and the action is real. We shall compute the Q-

Q̄ potential in this case and also provide an expression of the screening length in a specific

case. (b) we take
√
cosh η > Λ and then take η → ∞, keeping Λ finite. The Wilson loop

in this case is light-like and the action is imaginary. We will take Λ → ∞ in the end to

obtain an expression for q̂NCYM in hot NCYM plasma. As we shall shortly, this will match

with the expression for the jet quenching parameter found out in the previous section. We

consider case (a) in this section and postpone the discussion of case (b) to the next section.

When
√
cosh η < Λ, the action would be real and from Eq. 4.32 y′ can be solved as,

y′ =

√

1− a4r40q
2

q(1 + a4r40y
4)

√

(y4 − 1) (y4 − y4c ) (4.33)
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where y4c = (cosh2 η + q2)/(1 − a4r40q
2) > 1 denotes the larger turning point where y′

vanishes. Integrating Eq. 4.33 we obtain,

2

∫ ℓ/2

0

dσ = ℓ(q) =
2q

√

1− a4r40q
2

∫ Λ

yc

1 + a4r40y
4

√

(y4 − 1)(y4 − y4c )
dy. (4.34)

Observe that if we naively take Λ, where the boundary theory is supposed to live, to ∞, the

above integral diverges. Here ℓ is related to the dipole length L by ℓ = L/(r0 sinhϕ) =

πLT and so the divergence in ℓ(q) is physically meaningless. Note that ℓ(q) in the commu-

tative theory is indeed finite as can be seen from Eq. 4.34 by putting a2r20 = 0. However,

for the non-commutative case ℓ(q) is divergent if we take Λ → ∞. The reason why this

divergence crops up is the same as that discussed in §4.3 in the discussion of q̂NCYM.

In the context of Wilson loop calculation, it has been noticed before [98] that the string end-

points for a static string can not be fixed at a finite length at Λ → ∞ in a non-commutative

theory. Therefore, the dipole length L indeed diverges. The reason for this divergence has

been argued to be the non-local interaction between the Q-Q̄ pair in a magnetic field [99].

To be precise, the interaction point in terms of the center-of-mass coordinate gets shifted

by a momentum-dependent term. Thus if the only non-zero component of the B-field is

B23, as in our case, then by placing the dipole along x2, it automatically gets a momentum

along x3. So, if we keep the dipole static along x3, the length will diverge at infinity. To

compensate the momentum along x3, the dipole must move along x3 with a particular ve-

locity [100]. In that case, the end-points of the string can be fixed at a finite length on the

boundary at infinity and thus the divergence in the dipole length gets removed.

In the following, we, however, take recourse to the same strategy as in the preceding section

in the evaluation of q̂NCYM to get rid of the divergence, i.e., we first perform the integration

for finite Λ and then identify the unique divergent part by allowing Λ → ∞. Then we
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subtract this divergent piece from the integral to cure it of the divergence. After regulariza-

tion, the non-commutative theory may be thought of as living at Λ = ∞. By inspection it

can be seen that the divergent piece is of the form 2qa4r40Λ/
√

1− a4r40q
2. Removing the

divergent part the finite ℓ(q) can be written as,

ℓ(q) =
2q

√

1− a4r40q
2

[

∫ Λ

yc

1 + a4r40y
4

√

(y4 − 1)(y4 − y4c )
dy − a4r40Λ

]∣

∣

∣

∣

∣

Λ→∞

. (4.35)

The above equation, therefore, gives us the Q-Q̄ separation L(q) = ℓ(q)/(πT ) of the bound

state as a function of the constant of motion q.

Substituting y′ from Eq. 4.33 into the action (Eq. 4.30) results in,

S(ℓ) = T T
√

λ̂
√

1− a4r40q
2

∫ Λ

yc

y4 − cosh2 η
√

(y4 − 1)(y4 − y4c )
dy. (4.36)

As in the commutative case, this action is divergent as it contains contribution from the

Q-Q̄ self-energy S0

S0 = T T
√

λ̂

∫ Λ

1

dy. (4.37)

So, subtracting S0 from S(ℓ) we get,

S(ℓ)− S0 =
T T
√

λ̂
√

1− a4r40q
2

[

∫ Λ

yc

dy

{

y4 − cosh2 η
√

(y4 − 1)(y4 − y4c )
−
√

1− a4r40q
2

}

−
√

1− a4r40q
2(yc − 1)

]

. (4.38)

However, owing to the fact that the NCYM theory does not live at Λ → ∞ this action still

diverges after regularization. Hence, to obtain a well-behaved action, we shall subtract the

divergent term Sdiv from Eq. 4.38 and then take Λ → ∞. Doing that we find the finite
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quark-antiquark potential in the quarkonium bound state as,

E(ℓ) =
S − S0 − Sdiv

T

=
T
√

λ̂
√

1− a4r40q
2

[

∫ Λ

yc

dy

{

y4 − cosh2 η
√

(y4 − 1)(y4 − y4c )
−
√

1− a4r40q
2

}

−
√

1− a4r40q
2(yc − 1)−

(

1−
√

1a4r40q
2

)

Λ

]∣

∣

∣

∣

Λ→∞
(4.39)

where in the above Sdiv = (1−
√

1− a4r40q
2)Λ with Λ → ∞. Here too it is not possible to

perform the integration in Eq. 4.39 in a closed form. So, we will obtain the Q-Q̄ potential

numerically. We first plot ℓ(q)-q using Eq. 4.35 and use it to plot E(ℓ)-ℓ from Eq. 4.39 at

different fixed values of η and ar0. In the ensuing subsection we provide the various plots

along with a discussion of the results.

4.4.1 Plots and discussion of the results

In this subsection we give and discuss the various plots of Q-Q̄ separation ℓ(q) as a func-

tion of constant of motion q and the velocity-dependent Q-Q̄ potential E(ℓ) as a function

of the Q-Q̄ separation length ℓ for various values of the rapidity η as well as the non-

commutativity parameter ar0 ∼
√
θ.

In Figures 4.2-4.5, η is fixed at η = 0.1. In Figures 4.2 and 4.3 ar0 takes small values

starting from 0 (where there is no non-commutativity) to 1.0, whereas, in Figures 4.4 and

4.5 ar0 takes fairly large values starting from 2.0 to 10.0. The main difference between the

commutative results and the non-commutative results is that in the former case the constant

of motion q can take arbitrarily large values, but in the latter case q can not exceed certain

finite value (qmax) since beyond this value the Q-Q̄ separation ℓ(q) becomes negative which

is unphysical. The reason behind this cut-off is the regularization of the integral performed
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Figure 4.2: Q-Q̄ separation ℓ(q) as a function of q for different values of ar0 at η = 0.1

in Eq. 4.35 - the last term in Eq. 4.35 is subtracted to make ℓ(q) finite as Λ → ∞. How-

ever, as q increases, yc increases which makes the last term dominate over the integral

and therefore, ℓ(q) becomes negative. Thus this effect is due to the non-commutativity of

the underlying boundary theory. We see from Figure 4.2 that as ar0 increases, ℓ(q) curve

deviates more and more from the commutative curve, the maximum value of ℓ, i.e., ℓmax

falls and the peak shifts towards the left (i.e., the maximum occurs at a smaller value of

q). In particular, the deviation from the commutative case becomes more pronounced after

ℓmax is reached. However this feature continues upto certain value of ar0 ∼ 2.0 and as it

is increased further (see Figure 4.4) the ℓ(q) curve now deviates more from the commu-

tative case throughout the allowed range of q, but the maximum value, ℓmax, again starts

rising and the peak as before shifts further towards left, i.e., towards smaller values of

q. Figures 4.3 and 4.5 show the plot of the velocity-dependent Q-Q̄ potential E(ℓ) with

the Q-Q̄ separation length ℓ for η = 0.1 with various values of ar0. Each curve has two



4.4. Q-Q̄ POTENTIAL IN THERMAL NCYM PLASMA 87

branches corresponding to the two dipole solutions obtained in Figures 4.2 and 4.4. The

slight deviation of ℓ(q) from the commutative case for small values of q, i.e., below the

value of q corresponding to ℓ(q) = ℓmax, (see Figure 4.2) is reflected in the fact that in

Figure 4.3 the upper branches almost merge with the commutative counterpart whereas the

greater deviation in ℓ(q) after ℓmax is reached leads to a rise in the lower branch of the

E(ℓ) curve from the commutative case in Figure 4.3. However, as the non-commutativity

parameter is increased the overall deviation (particularly in the lower branch) of the E(ℓ)

curve is more pronounced from its commutative value. In contrast, in Figure 4.5 as the

non-commutativity parameter is further increased, E(ℓ), in general, dips slightly for both

the branches. The feature that the screening length (∼ ℓmax) initially drops and then rises

and correspondingly the lower branch of the potential E(ℓ) rises and then drops as we go

on increasing ar0 (with the transition occurring at around atr0 ∼ ar0 = 2.0), occurs only
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Figure 4.3: Normalized Q-Q̄ potential E(ℓ) as a function of ℓ for the same set of ar0 (as in Figure

4.2) at η = 0.1
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Figure 4.4: Q-Q̄ separation ℓ(q) as a function of q for different large values of ar0 at η = 0.1

for the smaller value of the rapidity, η = 0.1. There exists a critical value of η = ηc above

which this transition is not observed. As the rapidity becomes higher than ηc its effect starts

to dominate and the transition (from falling ℓmax to rising ℓmax as the non-commutativity

parameter is increased) is suppressed so that now the screening length continuously drops

and the lower branch of the Q-Q̄ potential continuously rises. We have seen this to happen

for η = 0.5 and η = 1.0. That is why we have given those plots only for the smaller

values of ar0 in Figures 4.6-4.9. Although the details of these plots are different, the

general features remain very similar to those of η = 0.1 (for small non-commutativity)

and hence, we refrain from an elaborate discussion for these cases. Therefore, we shall

take the η = 0.1 case as the prototype and discuss the generic features of the plots. We

see from the plots in Figure 4.2 that ℓmax drops as the non-commutativity is increased.

This implies that with increase of non-commutativity, the quarkonia bound states will be

more vulnerable to dissociation with the consequence that there will be an increase in J/Ψ
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suppression [101]. On the other hand, from the plots in Figure 4.3 we observe that with

increase of non-commutativity the Q-Q̄ potential rises (the lower curves which correspond

to the stable states) in value which means that the quark and the antiquark will be more and

more loosely bound and eventually there will be no bound state formation. This may be

expected since there is a fuzziness in the direction of the dipole due to non-commutativity.

However, in Figure 4.4, when the non-commutativity is large (and the rapidity remains

small) we see that around ar0 = 2.0, ℓmax starts rising again and so more dipoles can form,

but from Figure 4.5 we see (from the lower curve) that in this case the quark-antiquark

pair will be very very loosely bound. This does not happen when the rapidity is large (we

have not shown the plots for this case with large non-commutativity). In contrast to Figures

4.2-4.9, where we plot ℓ(q)-q and E(ℓ)-ℓ for fixed values of η but with varying values of

ar0, in Figures 4.10-4.13, we plot the same functions for fixed values of ar0, but varying
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Figure 4.5: Normalized Q-Q̄ potential E(ℓ) as a function of ℓ for the same set of ar0 (as in Figure

4.4) at η = 0.1



90 CHAPTER 4. HEAVY QUARKS IN HOT NCYM PLASMA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.001  0.01  0.1  1  10  100  1000

l(
q)

q

η=0.5

ar0=0.0
ar0=0.1
ar0=0.2
ar0=0.5
ar0=1.0

Figure 4.6: Q-Q̄ separation ℓ(q) as a function of q for different values of ar0 at η = 0.5

values of η. In Figures 4.10 and 4.11, ar0 is fixed to a small value 0.1 whereas in Figures

4.12 and 4.13, it is fixed to a large value 10.0. In Figure 4.10 we find that as the rapidity

increases the screening length decreases (which means there will be less dipole formation

i.e., more J/Ψ suppression) and the peaks shift towards right, i.e., to a larger value of q.

This is expected as in the commutative case also there is a decrease in screening length

with increase in rapidity. Further note that for large q, ℓ(q) becomes independent of q. This

is also manifest in the E(ℓ)-ℓ plots in Figure 4.11, i.e., the lower branches of the curves

merge. Contrast this to the case when ar0 is changed (but still kept small) keeping η fixed,

when the lower part of the ℓ(q) curve (i.e., small q) does not exhibit significant deviation,

the peak shifts towards left and the upper branch of the E(ℓ) curves merge. So we can think

of η and ar0 as sort of having opposite effects. These features are also evident for large

values of ar0 given in Figures 4.12 and 4.13. In Figure 4.12 as the rapidity η increases the

screening length decreases and the peaks shift towards right, but since now the scale of the
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q-axis is very much enlarged this is not much visible (this is also due to the fact that η now

changes by a very small amount). The independence of ℓ(q) with q for larger values of q

is not evident in this case due to the differences in scale along the q-axis in Figures 4.10

and 4.12. Unlike in Figure 4.11, the lower branches of the E(ℓ) curves do not merge for

different values of η as is evident from Figure 4.13. However, the spread is again due to

the enlarged (compared to Figure 4.11) scale of the E(ℓ)-axis which is chosen to show the

two branches of the E(ℓ) curve distinctly.

So let us summarize our result about the bound state quarkonium potential in NCYM

plasma at finite temperature. For our purpose, we can treat the non-commutativity pa-

rameter θ as a measure of anisotropy in the gauge theory. We can then distinguish between

different regimes. Firstly, there exists a critical value ηc below which the screening length

and the Q-Q̄ potential exhibits interesting phenomena. For η < ηc there is again two differ-
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Figure 4.7: Normalized Q-Q̄ potential E(ℓ) as a function of ℓ for the same set of ar0 (as in Figure

4.6) at η = 0.5
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Figure 4.8: Q-Q̄ separation ℓ(q) as a function of q for different values of ar0 at η = 1.0

ent regimes depending upon ar0 ≷ atr0. For ar0 < atr0 as the value of ar0 is increased, the

screening length steadily decreases and correspondingly, the potential rises showing that

the bound state becomes more and more unstable. In the opposite regime where ar0 > atr0

as the non-commutativity parameter is increased, the screening now witnesses a marked

rise while, on the other hand, the potential falls slightly with rising non-commutativity.

But, the potential becomes almost flat so that the quark-antiquark pair is now very very

loosely bound. On the other hand, in the regime η > ηc the effect of rapidity dominates

over that of anisotropy and as the anisotropy parameter rises, the screening length continu-

ally drops and the bound states become progressively loosely bound. Thus, the bottom line

of our analysis is that for quarkonia with high momentum, the generic effect of anisotropy

is to make the bound state more susceptible to melting which leads to suppression in the

yield of various quarkonia that is measured in the collider experiments.
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4.4.2 Screening length in a special case

In this section we find out an analytical expression for the screening length ℓmax in a re-

stricted regime of the parameter space of the rapidity η and the non-commutativity param-

eter θ. The expression for the regularized Q-Q̄ separation length ℓ(q) as a function of the

constant of motion q is given in Eq. 4.35. However, as we have mentioned, it is not pos-

sible to perform the integration, in general, and give an exact analytic expression for ℓ(q)

which compelled us to resort to numerical means to solve Eq. 4.35 and plot ℓ(q) against

q in the previous subsection. It must be realized that this has nothing to do with the non-

commutativity of the underlying gauge theory and this happens also for the case of com-

mutative theory. For the case of commutative theory it is possible to give an exact analytic

expression of ℓ(q) only in the large velocity or large rapidity limit. Non-commutativity, on
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Figure 4.9: Normalized Q-Q̄ potential E(ℓ) as a function of ℓ for the same set of ar0 (as in Figure

4.8) at η = 1.0
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Figure 4.10: Q-Q̄ separation ℓ(q) as a function of q for different values of η at ar0 = 0.1

the other hand, makes the analysis a little bit more involved and in this case it is possible to

obtain the analytic expression only when the rapidity is large and the non-commutativity is

small with the product remaining small. For large η or large yc, the expression for ℓ(q) in

Eq. 4.35 can be expanded as follows,

ℓ(q) =

[

2q
√

1− a4r40q
2

∫ Λ

yc

1 + a4r40y
4

y2
√

y4 − y4c
dy +

q
√

1− a4r40q
2

∫ Λ

yc

1 + a4r40y
4

y6
√

y4 − y4c
dy

+
3q

4
√

1− a4r40q
2

∫ Λ

yc

1 + a4r40y
4

y10
√

y4 − y4c
dy + · · · − 2qa4r40

√

1− a4r40q
2
Λ

]∣

∣

∣

∣

∣

Λ→∞

.(4.40)

When Λ → ∞, the above integrals can be evaluated and ℓ(q) can be written as a series

expansion in inverse powers of yc as,
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ℓ(q) =
q
√
πyc

√

1− a4r40q
2

[

−2a4r40
Γ
(

3
4

)

Γ
(

1
4

) + (2 + a4r40)
Γ
(

3
4

)

Γ
(

1
4

)

1

y4c

+

(

1 +
3

4
a4r40

)

Γ
(

7
4

)

4Γ
(

9
4

)

1

y8c
+ · · ·

]

(4.41)

By construction the divergent last term in Eq. 4.40 gets canceled with the divergent term

in the first integral when Λ → ∞. The other integrals are convergent and makes the

expression for ℓ(q) finite. By taking the first three terms in the series we can obtain the

values of q and yc which maximize ℓ(q) as,

q2 = 2 cosh2 η(1− 15a4r40 cosh
2 η)

y4c =
cosh2 η + q2

(1− a4r40q
2)

= 3 cosh2 η(1− 8a4r40 cosh
2 η). (4.42)
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Figure 4.11: Normalized Q-Q̄ potential E(ℓ) as a function of ℓ for the same set of η (as in Figure

4.10) at ar0 = 0.1
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In obtaining the above expressions we have assumed a4r40 ≪ 1 and a4r40 cosh
2 η ≪ 1.

Using Eq. 4.42 we obtain the maximum value of ℓ up to next to leading order as,

ℓmax =
2
√
2πΓ

(

3
4

)

33/4Γ
(

1
4

)

cosh
1
2 η

[

1− 7

2
a4r40 cosh

2 η + · · ·
]

=
0.74333

cosh
1
2 η

[

1− 7

2
a4r40 cosh

2 η + · · ·
]

. (4.43)

By using Eqs. 4.20, 4.21 and 4.23 we can rewrite ℓmax in Eq. 4.43 in terms of the gauge

theory parameters as,

ℓmax = 0.74333(1− v2)
1
4

[

1− 7

2

π4λ̂T 4θ2

1− v2
+ · · ·

]

(4.44)

where we have used cosh η = γ = 1/
√
1− v2, with v being the velocity of the dipole.

In Eq. 4.44 the term outside the square bracket is the commutative result (when we put
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θ = 0) and represents the usual J/Ψ suppression of the high velocity Q-Q̄ pair produced

in the QGP in the heavy ion collision observed in RHIC [70, 101]. However, we note that

non-commutativity reduces this result due to the second term in the square bracket in Eq.

4.44. The quantity Lmax = ℓmax/(πT ) can be thought of as the screening length of the

dipole since this is the maximum value of L beyond which we have two dissociated quark

and antiquark or two disjoint world-sheet for which E(ℓ) = 0. As the screening length

gets smaller less and less dipoles will be created and there will be more suppression of

quark-antiquark bound states like J/Ψ. Non-commutativity makes the interaction between

the quark and the antiquark weaker due to non-locality and that is the reason it makes the

screening length shorter. Note that the velocity of the dipole has an opposite effect in the

correction term due to non-commutativity, i.e., higher the velocity, lower would be the

correction term due to non-commutativity. Also the correction term is more pronounced
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Figure 4.13: Normalized Q-Q̄ potential E(ℓ) as a function of ℓ for the same set of η (as in Figure

4.12) at ar0 = 10
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at higher temperature. We would also like to remark that non-commutativity gives a range

for the temperature. Eq. 4.44 is valid when a4r40 cosh
2 η ≪ 1 which, in turn, gives a range

for the temperature as,

T ≪
(

1

π4λ̂(1− v2)θ2

)
1
4

. (4.45)

When the temperature is above this value the expansion in Eq. 4.43 will break down and

the screening length will no longer be given by Eq. 4.44. In that case the screening length

has to be computed in the opposite limit where a4r40 cosh
2 η ≫ 1. However, in this limit

we have not been able to write a closed form analytic expression for the screening length.

4.4.3 Jet quenching parameter - another look

In the previous section we alluded to the two different regimes in which we can compute the

Wilson loops. In the regime discussed just now, the rapidity η remains finite and
√
cosh η <

Λ. So, the velocity of the background is in the range 0 < v < 1 and the Wilson loop is

time-like. Here we discuss the other regime where
√
cosh η > Λ whence, the Wilson loop

becomes light-like. Now we can recover the expression for the jet quenching parameter

q̂NCYM which we had already obtained in §4.3. Here we rederive the result just for the sake

of completeness. This also provides us the excuse to be brief in our discussion here.

Note that as cosh2 η is now greater than Λ4, where Λ is the upper limit of y, the factor

(y4 − cosh2 η) appearing in the action (Eqs. 4.30 and 4.31) is negative and the action

becomes imaginary. So, we rewrite the action in Eq. 4.30 as,

S =
iT r0
πα′

∫ ℓ/2

0

dσL = iT T
√

λ̂

∫ ℓ/2

0

dσL (4.46)
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where

L =

√

(

cosh2 η − y4
)

(

1

1 + a4r40y
4
+

y′2

y4 − 1

)

. (4.47)

which supplies the equation of motion

y′ =

√

1 + a4r40q
2
0

√

(y4 − 1)(y4m − y4)

q0(1 + a4r40y
4)

(4.48)

where

y4m =
cosh2 η − q20
1 + a4r40q

2
0

(4.49)

and q0 is the constant of motion. On integration, Eq. 4.4.3 gives us,

ℓ = 2

∫ ℓ/2

0

dσ =
2q0

√

1 + a4r40q
2
0

∫ Λ

1

1 + a4r40y
4

√

(y4 − 1)(y4m − y4)
dy. (4.50)

Substituting the value of y′ from Eq. 4.4.3 into the action (Eq. 4.47), we simplify it as,

S(ℓ) = iT T
√

λ̂
√

1 + a4r40q
2
0

∫ Λ

1

cosh2 η − y4
√

(y4 − 1)(y4m − y4)
dy. (4.51)

Now since ℓ is very small compared to other length scales in the theory from Eq. 4.50 it is

evident that q0 is also a small parameter whence one has

q0 =
ℓ cosh η

2

[

∫ Λ

1

1 + a4r40y
4

√

y4 − 1
dy

]−1

. (4.52)

In this limit S(ℓ) in Eq. 4.51 can be expanded as,

S(ℓ) = S(0) + q20S(1) +O(q40) (4.53)
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where

S(0) = iT T
√

λ̂

∫ Λ

1

√

cosh2 η − y4
√

y4 − 1
dy

q20S(1) =
iT T

√

λ̂

2
q20

∫ Λ

1

1 + a4r40y
4

√

cosh2 η − y4
√

y4 − 1
dy. (4.54)

It can be shown [74, 75] that as q0 → 0, S(0) above is equal to S0, the self-energy of the

dissociated quark and antiquark or area of the two disjoint world-sheets. So, subtracting

the self-energy we obtain the action as

S − S0 = q20S(1) =
iT T

√

λ̂

4
ℓ2 cosh η

[

∫ Λ

1

1 + a4r40y
4

√

y4 − 1
dy

]−1

(4.55)

where we have used Eq. 4.52 and have taken η → ∞. Now T cosh η in Eq. 4.55 can be

identified as L−/
√
2, where L− is the length of the Wilson loop in the light-like direction.

Using the relation in Eq. 3.46, we get

q̂NCYM = π2
√

λ̂T 3

[

∫ Λ

1

1 + a4r40y
4

√

y4 − 1
dy

]−1

. (4.56)

As expected the above integral diverges as Λ → ∞ and hence, needs to be regularized.

Here we just furnish the expression for the regularized integral,

∫ ∞

1

1 + a4r40y
4

√

y4 − 1
dy =

(

1 +
a4r40
3

)

a3, with, a3 =

√
πΓ
(

5
4

)

Γ
(

3
4

) . (4.57)

Substituting Eq. 4.57 in Eq. 4.56 and expressing a4r40 in terms of the gauge theory param-

eters from Eqs. 4.20, 4.21 and 4.23 we obtain,



4.5. CONCLUSION 101

q̂NCYM =
π

3
2Γ
(

3
4

)

Γ
(

5
4

)

√

λ̂T 3

(

1 +
π4T 4λ̂θ2

3

)−1

. (4.58)

So, for small non-commutativity, θ ≪ 1, the jet quenching parameter is given as,

q̂NCYM =
π

3
2Γ
(

3
4

)

Γ
(

5
4

)

√

λ̂T 3

(

1− π4T 4λ̂θ2

3
+O(θ4)

)

(4.59)

whereas, for large non-commutativity, θ ≫ 1, the jet quenching parameter takes the form,

q̂NCYM =
3Γ
(

3
4

)

π
5
2Γ
(

5
4

)

1
√

λ̂T θ2

(

1− 3

π4T 4λ̂θ2
+O(

1

θ4
)

)

. (4.60)

This is in perfect agreement with our findings in §4.3. For small non-commutativity we

have a4r40 ≪ 1, which yields a range for the temperature due to non-commutativity,

T ≪
(

1

π4λ̂θ2

)
1
4

. (4.61)

When the temperature is above this value, the jet quenching expression will no longer be

given by Eq. 4.59. In that case we have to use the expression Eq. 4.60 which is valid when

the temperature is given by the limit

T ≫
(

1

π4λ̂θ2

)
1
4

. (4.62)

4.5 Conclusion

In this concluding section let us recapitulate the results of this chapter. In this chapter we

considered the first of our anisotropic models - the non-commutative Yang-Mills theory at
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finite temperature. We took the non-commutativity parameter θ as a measure of anisotropy

that breaks the SO(3) symmetry of the gauge theory living on the Minkowski space R
1,3

at the boundary to a SO(2) symmetry in the non-commutative Moyal plane R
2
θ. The four-

dimensional space-time now decomposes as R
1,1 × R

2
θ. The presence of anisotropy thus

singles out a particular direction, in this case x1, in space which should have qualitative

effects on the experimental observables in the heavy ion colliders. Translated into the

language of the heavy ion colliders we thus have a special direction in the thermal medium,

which we can reasonably take as the direction along which the collisions take place. We

studied the propagation of heavy Q-Q̄ bound states in this anisotropic thermal medium.

First, we computed the jet quenching parameter and found out how it picks up corrections

arising from a non-zero value of θ. Then we considered two limits when θ is very small

or very high and found analytical expression for the jet quenching parameter. We also

explored any possibility of whether any signature of non-commutativity can be detected

in the present collider experiments. Using some benchmark values of θ available in the

literature we computed the correction to the jet quenching parameter coming from the

presence of non-commutativity and concluded that even if non-commutativity is present,

its existence is too weak to have any appreciable effect on the heavy quark observables in

the accessible range of energies. Its presence can only be felt in higher energy domain that

may be reached in some future collider. Next we evaluated the expectation values of time-

like Wilson loops using the standard recipe and from there extracted information about

the bound state interaction potential. To keep the discussion simple, we considered only

the case when the dipole is aligned along a non-commutative direction and moves along

the commutative direction. We found out how the potential varies with the separation

between the quark and the antiquark with the dipole velocity and the non-commutativity as

parameters. We explored various regimes of this parameter space and plotted the results.
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While the details vary, we observed that generically, introduction of non-commutativity

aka anisotropy makes the bound state prone to dissociation. We were also successful in

obtaining an analytical expression of the screening length in a restricted domain of the

parameter space. Finally, by considering the limit v → 1 we considered light-like Wilson

loop and from there recovered the form of the jet quenching parameter calculated in an

earlier section. In the case of jet quenching parameter also, we found that turning on a small

non-commutativity leads to a decrease in the value of q̂NCYM. A plausible explanation of this

decrease can be attributed to the intrinsic non-locality of the underlying non-commutative

theory that rules out point-like interactions among the partons. The underlying fuzziness

of the theory is thus responsible for an increase in suppression of the yield of quarkonia

like J/Ψ.



CHAPTER 5

MASSIVE QUARKS IN HOT DEFORMED

SUPER YANG-MILLS PLASMA

5.1 Introduction

The present chapter deals with the second model of anisotropic SYM plasma at finite tem-

perature∗. We consider a deformed N = 4, SU(Nc) thermal SYM theory where the de-

formation introduces the effect of anisotropy. The gravity dual to this gauge theory was

first proposed in [104, 105] inspired by an earlier work [106]. In this medium, we eval-

uate expectation values of time-like Wilson loops to extract information about how the

bound state Q-Q̄ potential V varies with the quarkonia size ∼ L and the screening length

Lmax of heavy quarkonia. We examine in detail how the presence of anisotropy affects

these quantities. In chapter 4 we had already found out the bound state observables like

the potential, the screening length and also the jet quenching parameter when the medium

∗The chapter is based on [102, 103].

104
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is hot NCYM theory. Carrying out similar computations in a different model enables us

to pit the two models against one another and directly compare the anisotropy-induced

modifications in the two models. We take into account various orientations of the dipole

and make a comparative study among these cases. The static Q-Q̄ potential and Lmax for

heavy quarkonia in this medium were considered in [107]. Here we extend the analysis to

the velocity-dependent case by considering a heavy Q-Q̄ pair moving through the plasma

with a velocity v. While we have not restricted the value to be taken by v, we consider only

small values of the anisotropy parameter, in which case the dual gravity solution is known

perturbatively. To compute V (L) we take recourse to the standard algorithm described in

chapter 3 and faithfully followed in chapter 4. We plot the the potential V (L) against the

Q-Q̄ separation L for various values of v and the anisotropy parameter ã and study how

the introduction of a small anisotropy influences the potential. Unlike in the static case

(described in [107]) where there were only two possible configurations of the dipole, here

we shall see that introduction of the velocity parameter gives rise to a plethora of possibili-

ties. We further probe the effect of anisotropy on L and consequently, the screening length

Lmax. We are able to obtain an analytic expression for Lmax in the anisotropic plasma in a

special domain of the parameter space spanned by v and ã. Although the static Q-Q̄ poten-

tial has been provided in [107], we reproduce it here since it is recovered naturally in the

v = 0 limit of our analysis and nicely complements our results for the static Q-Q̄ separa-

tion. In [108] the authors analyze the screening length when the infinitely massiveQ-Q̄ pair

moves in hot, anisotropic plasma. In our work, one can read off the screening length from

the plot of the Q-Q̄ separation. Wherever the results overlap, they are in perfect agreement

with those obtained in [108].

In addition to studying the heavy quark bound states, we further investigate the dynamics

of a massive quark in the background of deformed SYM plasma. The motion of a heavy
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quark through QGP is reminiscent of the Brownian motion. Based on a simple phenomeno-

logical model, encoded in the Langevin equation, we study various quantities related to the

propagation of heavy quarks in QGP, like the drag force, the diffusion constant, the relax-

ation time, the random force auto-correlator, etc. from a holographic perspective.

The present chapter is organized as follows. In §5.2, we review the model and the dual ge-

ometry and discuss the general set-up. In §5.3 we compute the Q-Q̄ potential and provide

numerical results. We also calculate the screening length analytically in a special case. §5.3

is divided into five subsections corresponding to the different cases we consider. In §5.4

we compare our results for the different cases considered and also with some other models

available in the literature. §5.5 concerns studying the dynamics of a single massive quark

in the same background. The section is split into three subsections. In §5.5.1 we introduce

and define the problem that we wish to address and discuss the field-theoretic background

of the problem. In §5.5.2 and §5.5.3 we address the problem using the techniques of the

gauge/string duality. Finally, in §5.6 we summarize our work and conclude.

5.2 The Dual Geometry

In this section we elaborate upon the gravity dual of the gauge theory we are interested

in following [104] and discuss the general set-up of the problem. We will take the gauge

theory as a deformed version of N = 4, SU(Nc) SYM at large ’t Hooft coupling λ where

the deformation is achieved by introducing a θ-term in the action as

S = SSYM +
1

8π2

∫

θ(x3)TrF ∧ F (5.1)
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where θ(x3) ∝ x3 (we take {t, x1, x2, x3} as the gauge theory coordinates). The presence

of the non-zero θ-term breaks the SO(3) rotational symmetry down to a SO(2) symmetry

in the x1-x2 plane and makes the theory anisotropic. In the context of heavy ion collisions,

x3 will correspond to the direction of beam whereas the x1 and x2 directions span the

transverse plane. On the supergravity side the starting point is to consider ten-dimensional

type IIB supergravity. Following [106] one can seek a solution where only the metric,

the dilaton, the axion and the R-R five-form are excited. The solutions can be obtained

consistently from the equations of motion which are furnished by the action,

S(10) =
1

2κ2
10

∫

d10x
√−g

(

e−2φ
(

R+ 4∂Mφ∂Mφ
)

− 1

2
F 2
1 − 1

4!5!
F 2
5

)

. (5.2)

Here, as usual, M = 0, 1, 2, ...9 is the ten-dimensional space-time index, 2κ2
10 = 16πG10

is the ten-dimensional gravitational coupling, φ and χ are the dilatonic and the axionic

excitations respectively and F1 = dχ is the axion-strength. g is the determinant of the

ten-dimensional metric and R is the ten-dimensional Ricci scalar. The dilaton is governed

by the equation of motion,

R+ 4gMN (∇Mφ∇Nφ− ∂φM∂φN ) = 0 (5.3)

while the Einstein equations read,

RMN +2∇M∇Nφ+
1

4
gMNe

2φ∂Pχ∂
Pχ− 1

2
e2φ
(

FMFN +
1

48
FMABCDF

ABCD
N

)

. (5.4)

The form fields obey the equations of motion, Bianchi identities and the self-duality con-

dition,

d ∗ F1 = 0 = d ∗ F5, dF1 = 0 = dF5, F5 = ∗F5. (5.5)
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Here ∗ is the ten-dimensional Hodge dual operator. To consider an anisotropic solution we

assume the following form of the ansatz,

ds2 = r2
(

−FBdt2 + (dx1)2 + (dx2)2 +H(dx3)2 +
dr2

r4F

)

+ ZdΩ2
5. (5.6)

Here the boundary is located at r → ∞ and dΩ2
5 is the metric on the five-sphere S5. We

have exploited reparametrization invariance to set g11 and g22 as in Eq. 5.6. Once this is

done, it is not possible to get rid of B in general, still we can use the scaling symmetry to

set B at the boundary, i.e., Br→∞ = 1. Similarly, one also sets Hr→∞ = 1 using the scaling

symmetry in x3. F ,B,H,Z and φ are considered to be functions of the radial coordinate r

alone. F is the ‘blackening factor’ which vanishes at the horizon rh, i.e., Fr=rh = 0. The

magnetic part of the five-form is proportional to the volume form of the five-sphere, i.e.,

F5 = α(ΩS5 + ∗ΩS5). (5.7)

where α = 4 [104]. Moreover the axion χ is taken to be linearly proportional to x3,

χ = ax3. (5.8)

We further set,

H = e−φ, and Z = e
1
2
φ. (5.9)

With the choices as discussed above, the ten-dimensional metric factorizes in Einstein

frame into a five-sphere S5 and an asymptotically AdS5 space, i.e., now we seek solu-

tions of the form M× S5. In such a scenario, the action (Eq. 5.2) reduces to the action of

five-dimensional axion-dilaton AdS gravity given by,
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S(5) =
1

2κ2
5

∫

M

√−g

[

R+ 12− 1

2
(∂φ)2 +

1

2
e2φ(∂χ)2

]

+
1

2κ2

∫

∂M

√−γ2K (5.10)

Here 2κ2
5 = 16πG5 is the five-dimensional gravitational coupling and now g and R denote

the metric and the Ricci scalar in five dimensions. The five-form flux F5 gives rise to the

cosmological constant Λ = −6/R2 with R being set to unity here. Further, the last term,

defined on the boundary ∂M of the manifold, is the usual Gibbons-Hawking boundary

term with γ being the metric on ∂M. The dual gravity solution is given in the string frame,

ds2 = r2
(

−FBdt2 + (dx1)2 + (dx2)2 +H(dx3)2 +
dr2

r4F

)

. (5.11)

In the above solution anisotropy is introduced through the axion, the dual to the gauge

theory θ-term. The anisotropy parameter a turns out to be [104] a = λnD7/4πNc where

nD7 is the density of D7-branes (which act as the magnetic source of the axion) along the

x3 direction. The D7-branes wrap around S5 and extend along the transverse directions,

x1, x2. Thus in the gravity dual the presence of anisotropy can be attributed to the existence

of anisotropic extended objects. Note that the D7-branes do not extend along the radial

direction. Hence, they do not reach the boundary and do not contribute any new degrees of

freedom to the theory. The fact that the D7-branes wrap around S5 also leads to significant

simplification of the problem since it implies that the SO(6) symmetry of the undeformed

theory is preserved. Consequently, none of the Kaluza-Klein modes on S5 are excited

which permits us to find the solution working in five-dimensional supergravity coupled

with a few matter fields. F ,B and H are all functions of the radial coordinate r and are

known analytically only in the limiting cases when the temperature is very high or low.
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Otherwise, they are known numerically in the intermediate range. The degree of anisotropy

can be controlled by tuning the parameter a. In this work, we shall be concerned with

weakly anisotropic plasma (the small a or high temperature T limit, such that a/T ≪ 1)

in which case the functions F ,B and H can be expanded to leading order in a around the

black D3-brane solution,

F(y) = 1− 1

y4
+ a2F2(y) +O(a4),

B(y) = 1 + a2B2(y) +O(a4),

H(y) = e−φ(y) with φ(y) = a2φ2(y) +O(a4) (5.12)

where

F2(y) =
1

24r2hy
4

[

8(y2 − 1)− 10 log 2 + (3y4 + 7) log

(

1 +
1

y2

)]

,

B2(y) = − 1

24r2h

[

10

1 + y2
+ log

(

1 +
1

y2

)]

,

φ2(y) = − 1

4r2h
log

(

1 +
1

y2

)

(5.13)

and we have defined the dimensionless quantity y = r/rh. The temperature is given by

T =
rh
π

+
a2

rh

(5 log 2− 2)

48π
+O(a4) (5.14)

which can be inverted to yield the horizon position in terms of the temperature, which, in

the limit a/T ≪ 1, reads

rh ∼ πT

[

1− a2
5 log 2− 2

48π2T 2

]

. (5.15)
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The entropy density is simply obtained from the horizon area. The area element at a t =

constant, r = rh hypersurface is

dAh = e−
5
4
φhr3hdx

1dx2dx3 (5.16)

from which one finds the entropy density s to be ,

s =
Ah

4GV3
=

1

2π
N2

c × e−
5
4
φhr3h. (5.17)

In the small anisotropy regime this yields,

s =
π2N2

c T
3

2
+

N2
c T

16
a2 +O(a)4. (5.18)

To compute the quarkonium potential we follow the usual procedure of introducing a fun-

damental string in this background and evaluate the Nambu-Goto action S. By extremizing

this action we find the expectation value of the relevant Wilson loop. Assuming the string

to move along xi with a velocity v and the string end-points to lie along xj , separated by

a distance L (which in the dual gauge theory translates to the Q-Q̄ separation), the Wil-

son loop so formed is a rectangle with a short side L along xj and a long side T along

any time-like direction in the t-xi plane. For the static Q-Q̄ separation and potential one

needs to consider only two possibilities: the dipole lying along the anisotropic direction x3

or in the transverse plane. However, introduction of the velocity opens up the following

possibilities:

1. Dipole in transverse plane, aligned perpendicular to velocity.

2. Dipole along x3, velocity in transverse plane.
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3. Dipole in transverse plane, velocity along x3.

4. Dipole aligned parallel to velocity in transverse plane.

5. Dipole aligned parallel to velocity along anisotropic direction.†

5.3 Q-Q̄ Separation and Q-Q̄ Potential

In this section we discuss the different cases, alluded to above, one in each subsection,

and for each case we numerically study the Q-Q̄ separation L with varying values of the

rapidity η and the anisotropy parameter a and see how L and hence, the screening length

Lmax gets affected when we turn on a small value of a. We also compute the Q-Q̄ potential

V (L) (both velocity-dependent and static) and observe the modifications brought about by

anisotropy. Further, we provide an analytic expression for Lmax in a special case.

5.3.1 Dipole in transverse plane, perpendicular to velocity

In the first case that we consider the motion is wholly contained in the transverse plane

spanned by x1 and x2 and the dipole presents itself perpendicular to the direction of its

motion. Without any loss of generality, we first set our axes such that the dipole moves

along x1 while itself being aligned along x2. Then we go to the rest frame (t′, x1′) of the

Q-Q̄ pair via the following coordinate transformation,

dt = cosh ηdt′ − sinh ηdx1′,

dx1 = − sinh ηdt′ + cosh ηdx1′.

(5.19)

†Of course, there exist other possibilities where the dipole can have any arbitrary orientation with respect

to its velocity, which, itself, can be in any arbitrary direction. However, we do not consider these cases here.
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Now the Q-Q̄ pair and hence, the Wilson loop can be regarded as static in a plasma that is

moving with a velocity v along −x1′ direction. This implies that the Wilson loop spans t′

(since x1′ is fixed in this rest frame) and x2 directions with sides T and L respectively. In

terms of the boosted coordinates the metric in Eq. 5.11 can be rewritten as

ds2 =−A(r)dt2 − 2B(r)dtdx1 + C(r)(dx1)2 + r2
(

(dx2)2 +H(dx3)2 +
dr2

r4F

)

+ e
1
2
φdΩ2

5

≡ GMNdx
MdxN (5.20)

where

A(y) = (yrh)
2

[

1− cosh2 η

y4
+ a2 cosh2 η

{

F2 + B2

(

1− 1

y4

)}]

,

B(y) = (yrh)
2 sinh η cosh η

[

1

y4
− a2

{

F2 + B2

(

1− 1

y4

)}]

,

C(y) = (yrh)
2

[

1 +
sinh2 η

y4
− a2 sinh2 η

{

F2 + B2

(

1− 1

y4

)}]

. (5.21)

(Note that since we shall be using the primed coordinates from now on, we have got rid

of the primes for simplicity. Also, we have suppressed the y-dependence of the quantities

F2,B2. Further, we have expressed A,B and C as functions of the scaled radial coordinate

y.) In this background we evaluate the Nambu-Goto string world-sheet action (Eq. 2.11)

using Eq. 2.10, with GMN given by Eq. 5.20 and the gauge choice, τ = t, σ = x2 where

−L/2 ≤ x2 ≤ +L/2 and r = r(σ), x1(σ), x3(σ) = constant. We wish to determine the

string embedding r(σ) supplemented by the boundary condition r (x2 = ±L/2) → ∞.

Equipped with the above parametrization, the Nambu-Goto action (Eq. 2.11) becomes,

S =
T

2πα′

L/2
∫

−L/2

dσ
√

A (G22 +Grr(∂σr)2). (5.22)
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Defining the dimensionless quantities, σ̃ = σ/rh and ℓ = L/rh, we can rewrite the above

action as

S =
T rh
2πα′

ℓ/2
∫

−ℓ/2

dσ̃L (5.23)

where

L =
√

A (G22 +Grry′2) (5.24)

is the Lagrangian density and ∂σ̃y = y′. Note that L does not have any explicit σ̃-

dependence which at once allows us to extract the conserved quantity,

L − y′
∂L
∂y′

=
AG22

√

A(G22 +Grry′2)
= K (5.25)

which, in turn, yields,

y′ =
1

K

√

G22

Grr

√

AG22 −K2. (5.26)

Upon integration we obtain

ℓ = 2

ℓ/2
∫

0

dσ̃ = 2K

∞
∫

yt

dy

√

Grr

G22

1√
AG22 −K2

. (5.27)

The limits in the second integration require a little explanation. Recall that y is the scaled

radial coordinate and the string hangs down starting from y = ∞ (where the boundary

gauge theory lives) up to yt (which we shall find shortly), where it turns back and rises

again up to y = ∞. Plugging in the explicit expressions for the metric components, we

arrive at,

ℓ =
2K̃

r2h

∞
∫

yt

dy
1

√

(

y4 − 1 + ã2

24
Σ(y)

) (

y4 − y4c +
ã2

24
Λ(y) cosh2 η

)

(5.28)
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where we have defined,

Σ(y) = 8(y2 − 1)− 10 log 2 + (3y4 + 7) log

(

1 +
1

y2

)

, (5.29)

Λ(y) = 2(1− y2)− 10 log 2 + 2(y4 + 4) log

(

1 +
1

y2

)

, (5.30)

and ã = a/rh(∼ a/πT ), K̃ = K/r2h, y
4
c = cosh2 η+ K̃2. Using Eq. 5.15 one can now find

the actual Q-Q̄ separation as

L =
2K̃

πT

(

1 +
ã2

48
(5 log 2− 2)

)

∞
∫

yt

dy
1

√

(

y4 − 1 + ã2

24
Σ(y)

) (

y4 − y4c +
ã2

24
Λ(y) cosh2 η

)

.

(5.31)

As mentioned earlier, to perform the integration, one needs to specify yt. The turning point

is found out by demanding that the terms in the denominator vanish separately (which

is equivalent to demanding that y′ vanishes at these points) and accepting the larger one

among them. As one can easily verify, the first term in the denominator vanishes at y = 1,

since Σ(1) = 0, thereby, furnishing a turning point at yt1 = 1 up to O(a2). To find the

turning point yt2 arising from the second term, we assume the anisotropy parameter ã‡ to

be small and we need to find a solution to

y4t2 − y4c +
ã2

24
Λ(yc) cosh

2 η = 0. (5.32)

Note that we have evaluated Λ at y = yc since the term is already at O(ã2) and conse-

quently, the error incurred is ∼ O(ã4). This has a solution

‡Since in our analysis a always appears in the form a2/r2
h

≡ ã2, we shall, henceforth, call ã the

anisotropy parameter.
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yt2 = yc

(

1− ã2

24y4c
Λ(yc) cosh

2 η

)1/4

. (5.33)

It can be shown that yt2 > 1 always, so that we take it to be the actual turning point yt.

As expected, by setting ã = 0 we recover the turning point yc in the isotropic case. Now

Eq. 5.31 gives L as a function of the constant K̃. We shall later show how L is affected by

the presence of anisotropy for various values of the rapidity parameter η and the anisotropy

parameter ã. Further, by setting η = 0 we obtain the static Q-Q̄ separation. We postpone

the discussion of our numerical results till we give the Q-Q̄ potential.

Changing the integration variable from σ̃ to y we can rewrite the action (Eq. 5.23) as

S =
T rh
πα′

∞
∫

yt

dyA

√

G22Grr

AG22 −K2
. (5.34)

Putting the explicit expression for the metric components one finally has

S =
T rh
πα′

∞
∫

yt

dy
y4 − cosh2 η + ã2

24
Λ(y) cosh2 η

√

(

y4 − 1 + ã2

24
Σ(y)

) (

y4 − y4c +
ã2

24
Λ(y) cosh2 η

)

≡ T rh
πα′

∞
∫

yt

dyŜani. (5.35)

Finally, the potential V (L) is obtained from Eq. 3.17 where S0 is the diverging part of

the action corresponding to two free strings. To compute S0 we employ the static gauge

condition, τ = t, σ = r, x1 = x1(σ) and x2, x3 are independent of τ, σ to have,

S0 =
T
πα′

∞
∫

r0

dr
√

AGrr + (x1′)2(AC +B2) ≡ T
πα′

∞
∫

r0

drL0. (5.36)
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As before, S0 too does not have any explicit x1-dependence implying that there exists a

conserved quantity,

∂L0

∂x1′ =
(

AC +B2
) x1′

L0

= constant = K0 (5.37)

which yields,

(x1′)2 = K2
0

AGrr

(AC +B2)(AC +B2 −K2
0 )

=
K̃2

0

r4h

(

y4 − cosh2 η + ã2

24
Λ(y) cosh2 η

)

(

y4 − 1 + ã2

24
Λ
) (

y4 − 1 + ã2

24
Σ
)

(

y4 − 1− K̃2
0 +

ã2

24
Λ
) (5.38)

(we have used the scaling K̃0 = K0/r
2
h and omitted the functional-dependence of Σ and Λ

on y). Note that in the expression for S0 we have not specified the lower limit of the inte-

gration r0 (or y0 after scaling), which we shall now determine. For a string (corresponding

to a free quark/antiquark) hanging down we expect it to extend all the way to the horizon

at y = 1. This is the case when the string moves through the isotropic background. In

particular, this implies that the string can not encounter a turning point before y = 1. In

our case, the possible turning points can be found out from Eq. 5.38 by demanding that

x1′ = ∞ at those points. Now the first two terms in the denominator of Eq. 5.38 give

the turning point y0 = 1 up to O(ã2) since Σ(1) = Λ(1) = 0. However, the third term

(which contains the unspecified constant K̃0) gives a turning point y40 ∼ 1 + K̃2
0 +O(ã2)

which is greater than zero even for the isotropic case. Taking cue from the isotropic case

we eliminate this possibility by constraining the value of K̃0 such that the zero of this term

coincides with the zero of the numerator. This at once provides us an expression for K̃0 as
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K̃2
0 = sinh2 η

(

1− ã2

24
Λ
(

y =
√

cosh η
)

)

. (5.39)

Thus we conclude that even in the presence of anisotropy the string extends right up to the

horizon (like in the isotropic case) without picking up any correction at least to O(ã2). We

can now recast the action as

S0 =
T
πα′

∞
∫

rh

dr
√

AGrr

√

AC +B2

AC +B2 −K2
0

=
T rh
πα′

∞
∫

1

dy

√

(

y4 − cosh2 η + ã2

24
Λ(y) cosh2 η

) (

y4 − 1 + ã2

24
Λ(y)

)

√

(

y4 − 1 + ã2

24
Σ(y)

)

(

y4 − cosh2 η + ã2

24

(

Λ(y) + Λ
∣

∣

y=
√
cosh η

sinh2 η
))

≡ T rh
πα′

∞
∫

1

dyŜani
0 . (5.40)

Inserting Eqs. 5.35 and 5.40 in Eq. 3.17 and then using Eq. 5.15 we can now write

V

T
=

√
λ

(

1− ã2

48
(5 log 2− 2)

)





∞
∫

yt

dyŜani −
∞
∫

1

dyŜani
0



 (5.41)

where we have used the standard AdS/CFT dictionary R4 = λα′2 (with R set to unity here)

to express our final result in terms of quantities pertaining to the gauge theory. Evaluat-

ing Eq. 5.41 involves performing integrals which can not be handled analytically. We,

therefore, fall back upon numerical means to perform these integrals and numerically show

our results. We compute L for various values of η and ã as a function of the constant K̃ ,

numerically invert Eq. 5.31 to express K̃ in terms of L and plug it in Eq. 5.35 to finally

obtain V (L) as a function of L. Here we shall provide our numerical results for both the

Q-Q̄ separation and the Q-Q̄ potential. In particular, by setting η = 0 we recover the static



5.3. Q-Q̄ SEPARATION AND Q-Q̄ POTENTIAL 119

0.5 1 2 5 10
0.3

0.4

0.5

0.6

K
�

LHK
�
L

a
�
=1.0

a
�
=0.6

a
�
=0.0

Η =1

Figure 5.1: Q-Q̄ separation L (normalized) as a function of K̃ with η = 1 for different

values of ã when dipole lies in transverse plane perpendicular to its velocity

Q-Q̄ potential, which was found earlier in [107]. In Figures 5.1-5.4 we have provided

the plots for L(K̃)-K̃ and V (L)-L for η = 1 (v = 0.76) and η = 4 (v = 0.99) respectively.

While the qualitative pattern of the L(K̃)-K̃ and the V (L)-L plots are the same for both

the values of v, the details differ. So we shall take Figures 5.1 and 5.2 as the prototype

case and discuss the results. First of all, we find from Figure 5.1 that as K̃ increases the

separation L(K̃) increases till it reaches a maximum Lmax after which it again falls off.

Lmax is interpreted as the screening length§ of the dipole, i.e., beyond this critical value of

L the screening effect of the plasma is sufficient to break the dipole. We observe that the

effect of anisotropy is to suppress the screening length thereby encouraging the melting of

the dipole. In particular, the degree of suppression of Lmax is more for stronger anisotropy.

The deviation from the isotropic curve is more pronounced for lower K̃ (before Lmax is

§Note that our definition of the screening length differs slightly from that used in [108].
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Figure 5.2: Normalized Q-Q̄ potential V as a function of L with η = 1 for the same set of

ã and same orientation (as in Figure 5.1)

attained) than for higher K̃ (after Lmax). For L < Lmax there can be two dipoles at a

fixed L for two different values of K̃. To understand at which one of the K̃ values the

dipole will actually exist we need to analyze the V (L)-L plot. The Q-Q̄ potential has two

branches corresponding to two different values of K̃. The upper branch corresponds to

smaller value of K̃ whereas the lower branch corresponds to higher value of K̃. Of course,

the lower branch has lower energy and consequently, it is the preferred state of the dipole.

So, even if a dipole is in the upper branch it will not be in a stable configuration and the

dipole will make a transition to the lower branch. As we turn on a small anisotropy both

the branches of the potential shift slightly upwards. Since the upper branch is physically

insignificant, corresponding to an unstable state, we shall confine our discussion to the

lower branch only. The marginal upward shift in the potential indicates that the dipole is

now loosely bound, the shift being more prominent for higher values of the anisotropy pa-
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Figure 5.3: Q-Q̄ separation L (normalized) as a function of K̃ with η = 4 for different

values of ã when dipole lies in transverse plane perpendicular to its velocity

rameter ã. This fits in with our conclusion from the L(K̃)-K̃ plot that anisotropy enhances

the screening effect of the medium. Further notice that in both cases the potential is always

negative. In Figures 5.5 and 5.6 the plots for the static case are shown. Since the basic

nature is the same, we shall not elaborate upon our results and briefly mention the salient

features of the plots emphasizing the differences from the velocity-dependent cases. First

of all, notice that unlike the moving dipole case, now the deviation from the isotropic curve

in the L(K̃)-K̃ plot is appreciable on either side of Lmax. Also note that now Lmax is much

higher for the η = 0 case and steadily decreases as we increase ã. In the V (L)-L plot the

lower branch suffers a small elevation whereas, the insignificant upper branch is largely

insensitive to changes in ã. The new feature that now emerges is that the static potential

crosses zero and becomes positive at a particular value L = Lp. In the presence of the

medium the potential has two parts - the Coulomb part (varying inversely with L) and the
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Figure 5.4: Normalized Q-Q̄ potential V as a function of L with η = 4 for the same set of

ã and same orientation (as in Figure 5.3)

confining part (which goes as L)

V (L) = −α

L
+ σL. (5.42)

Lp denotes the separation beyond which the confining part starts to dominate. This feature

is nicely captured in the plot here in a qualitative manner. In fact, there will be a critical

velocity vp = tanh ηp (whose value will, in general, also depend upon ã) beyond which the

potential will not contain any positive piece.

We shall now obtain an analytical expression for the screening length, albeit in a special

case. The Q-Q̄ separation L has already been given in Eq. 5.31. We have mentioned

earlier that, in general, the integration appearing in Eq. 5.31 can not be done analytically.

Of course, this is not to be thought of as an artifact of our anisotropic background. Rather,
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Figure 5.5: Q-Q̄ separation L (normalized) as a function of K̃ with η = 0 for different

values of ã when dipole lies in transverse plane

it is a handicap present in the isotropic case, too. Here, to facilitate analytical manipulation,

we shall confine ourselves to the ultra-relativistic regime where η is large, in which case the

turning point yt also becomes very large but assume the product ã2 cosh2 η is sufficiently

small. In this special case the first term in the denominator in Eq. 5.31 lends itself to a

binomial expansion. Here, for the sake of simplicity, we shall consider only the leading

order term in the afore-said expansion in which case one can write

L =
2K̃

πT

(

1 +
ã2

48
(5 log 2− 2)

)

∞
∫

yt

dy
1

y2
√

(

y4 − y4c +
ã2

24
Λ(y) cosh2 η

)

+ · · · . (5.43)

Also, in the limit η becoming very large, Λ(y) reduces to Λ(y) = 1− 10 log 2, which is, in

fact, independent of y. In this simplified scenario, the integral can be handled analytically
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Figure 5.6: Normalized Q-Q̄ potential V as a function of L with η = 0 for the same set of

ã and same orientation (as in Figure 5.5)

and we have,

L =
2K̃

πT

(

1 +
ã2

48
(5 log 2− 2)

) √
π

y3t

Γ(3/4)

Γ(1/4)
. (5.44)

It is now a straight forward exercise to compute the value of K̃ and hence, yt which maxi-

mize L as

K̃2 = 2 cosh2 η +
ã2 cosh2 η (10 log 2− 1)

12

yt = yc

(

1 +
ã2 (10 log 2− 1)

96
cosh2 η

)

. (5.45)

Incorporating these values we arrive at the final expression for the screening length Lmax,

Lmax =
1√
πT

Γ(3/4)

Γ(1/4)

2
√
2

33/4
1√

cosh η

(

1− ã2

16
(2.96 cosh2 η − 0.48)

)



5.3. Q-Q̄ SEPARATION AND Q-Q̄ POTENTIAL 125

=
1√
πT

Γ(3/4)

Γ(1/4)

2
√
2

33/4
(1− v2)1/4

(

1− ã2

16

(

2.96

(1− v2)
− 0.48

))

. (5.46)

The proportional change brought by anisotropy is,

∆Lmax

L
max

∣

∣

ã=0

= − ã2

16
(2.96 cosh2 η − 0.48). (5.47)

Having deduced the analytical expression for Lmax, a few comments are in order here.

First, as expected, by setting ã = 0 here one recovers the usual screening length in an

isotropic plasma [27,70]. Second, it is obvious that the correction factor is always negative

so that Lmax decreases in the presence of anisotropy. Third, when ã increases, the fall

in Lmax is greater. Again, keeping ã fixed, if η increases, Lmax falls. These conclusions

drawn from the analytic expression in Eq. 5.46 are in agreement with all our numerical

results in the L(K̃)-K̃ plots discussed earlier. Observe that the correction in the screening

length arising due to the presence of anisotropy depends on the rapidity parameter as well.

One also finds that Lmax depends inversely upon the temperature and scales with velocity

as (1− v2)1/4. The velocity-scaling obtained here is in agreement with that found in [108],

where, of course, arbitrary orientation of the dipole with respect to its velocity was allowed

and the analysis was not restricted only to weak anisotropy. One infers from Eq. 5.45 that

the value of K̃ which maximizes L increases when we turn on the anisotropy parameter.

This is also nicely exposed in the L(K̃)-K̃ plot in Figures 5.1 and 5.3 where the peaks

gradually shift towards right as the anisotropy gets larger. With this we close our discussion

of this configuration and move over to the next case.
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Figure 5.7: Q-Q̄ separation L (normalized) as a function of K̃ with η = 1 for different

values of ã when velocity is in transverse plane and dipole along anisotropic direction

5.3.2 Dipole along x3, velocity in transverse plane

In this case the dipole lies along the anisotropic direction x3 and moves in the transverse

plane with a velocity v. Without any loss of generality, we can take the direction of motion

to be along x1. The calculation in this case proceeds in pretty much the same way. So

we shall be brief in this section, pointing out only the differences that crops up in the

calculations as we go along. Firstly, note that the choice of the static gauge is slightly

altered. Now we take τ = t, σ = x3, r = r(σ) with x1,2 being independent of τ or

σ. Enforcing this choice of gauge in the Nambu-Goto action (Eq. 2.11) results in the

following form of the action
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Figure 5.8: Normalized Q-Q̄ potential V as a function of L with η = 1 for the same set of

ã and same orientation (as in Figure 5.7)

S =
T rh
2πα′

+ℓ/2
∫

−ℓ/2

dσ̃
√

(A (G33 +Grry′2)). (5.48)

As before, the absence of any explicit σ̃-dependence leads to the conserved quantity,

K =
AG33

√

A (G33 +Grry′2)
(5.49)

and the scaled Q-Q̄ separation assumes the form,

ℓ = 2K

∞
∫

yt

dy

√

Grr

G33

1√
AG33 −K2

. (5.50)

Plugging in the explicit expressions of the metric components, we finally obtain L as
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Figure 5.9: Q-Q̄ separation L (normalized) as a function of K̃ with η = 1 for different

values of ã when velocity is in transverse plane and dipole along anisotropic direction

L =
2K̃

πT

(

1 +
ã2(5 log 2− 2)

48

)

∞
∫

yt

dy
H−1

√

(

y4 − 1 + ã2

24
Σ
)

(

y4 − (1− ã2

24
Λ) cosh2 η − K̃2H−1

)

(5.51)

where we have suppressed the explicit y-dependence of Σ(y),Λ(y) and H(y) for conve-

nience. The turning point yt is then found out by demanding that the second term in the

denominator vanishes at yt, i.e., yt is obtained as a solution to,

y4t − cosh2 η +
ã2

24
Λ(yt) cosh

2 η − K̃2H(yt)
−1 = 0. (5.52)

Using Eq. 5.49, the action is given by

S =
T rh
πα′

∞
∫

yt

dyA

√

G33Grr

AG33 −K2
(5.53)
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Figure 5.10: Normalized Q-Q̄ potential V as a function of L with η = 4 for the same set

of ã and same orientation (as in Figure 5.9)

which can be rewritten as

S =
T rh
πα′

∞
∫

yt

dy
y4 − cosh2 η + ã2

24
Λ cosh2 η

√

(

y4 − 1 + ã2

24
Σ
)

(

y4 − (1− ã2

24
Λ) cosh2 η − K̃2H−1

)

≡ T rh
πα′

∞
∫

yt

dyŜani. (5.54)

To evaluate the Q-Q̄ potential one also needs to subtract the self-energy term S0. It is easy

to convince oneself that in this case the expression for S0 as given in Eq. 5.40 remains

unaltered and the Q-Q̄ potential will be given by Eq. 5.41 with Ŝani now taken to be as in

Eq. 5.54. We have given the L(K̃)-K̃ and the V (L)-L plots in Figures 5.7-5.10 for η = 1

and η = 4 respectively. Figures 5.11 and 5.12 show the static Q-Q̄ separation and the static
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Figure 5.11: Q-Q̄ separation L (normalized) as a function of K̃ with η = 0 for different

values of ã when dipole lies along anisotropic direction

Q-Q̄ potential respectively. We observe that in all the cases the general pattern of the plots

(like the rightwards shift of the peak in the L(K̃) curves, attenuation of Lmax and rise in

the V (L) plots with increasing ã) mimic those obtained earlier in §5.3.1 and hence does

not merit a separate discussion.

5.3.3 Dipole in transverse plane, velocity along x3

Third in our list is the case where the dipole is aligned in the transverse plane and it has a

velocity along the anisotropic direction. For the sake of simplicity we have taken the dipole

to lie along x1. While we shall proceed along the same line as in the previous cases, this

time the calculations will be a little different since we now need to give a boost along the

anisotropic direction, x3. First of all, we go to the rest frame (t′, x3′) of the Q-Q̄ pair by
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Figure 5.12: Normalized Q-Q̄ potential V as a function of L with η = 0 for the same set

of ã and same orientation (as in Figure 5.11)

inflicting the boost

dt = cosh ηdt′ − sinh ηdx3′,

dx3 = − sinh ηdt′ + cosh ηdx3′.

(5.55)

The Wilson loop so formed spans the t′ and x1 directions. In terms of the boosted coordi-

nates the metric (Eq. 5.11) can be rewritten as

ds2 =−Ã(r)dt2 − 2B̃(r)dtdx3 + C̃(r)(dx3)2 + r2
(

(dx1)2 + (dx2)2 +
dr2

r4F

)

+ e
1
2
φdΩ2

5

≡ G̃MNdx
MdxN (5.56)

where

Ã(y) =

(

rh
y

)2 [

y4 − cosh2 η +
ã2

24
Λ cosh2 η + y4 sinh2 η(1−H)

]

, (5.57)
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B̃(y) =

(

rh
y

)2

sinh η cosh η

[

1− ã2

24
Λ + y4(H− 1)

]

, (5.58)

C̃(y) =

(

rh
y

)2 [

y4 + sinh2 η − ã2

24
Λ sinh2 η + y4 cosh2 η(H− 1)

]

. (5.59)

To evaluate the Nambu-Goto string world-sheet action we employ the following choice of

gauge: τ = t, σ = x1, r = r(σ) with x2,3 having no τ - or σ-dependence. The action (Eq.

2.11) can now be written as

S =
T rh
2πα′

+ℓ/2
∫

−ℓ/2

dσ̃

√

Ã
(

G̃11 + G̃rry′2
)

. (5.60)

Again the absence of any explicit σ-dependence furnishes the conserved quantity,

K =
ÃG̃11

√

Ã
(

G̃11 + G̃rry′2
)

. (5.61)

Proceeding in the same way as before we get the scaled Q-Q̄ separation,

ℓ = 2K

∞
∫

yt

dy

√

G̃rr

G̃11

1
√

ÃG̃11 −K2
(5.62)

from which one can read off the actual Q-Q̄ separation

L =
2K̃

πT

(

1 +
ã2(5 log 2− 2)

48

)

∞
∫

yt

dy
1

√

(

y4 − 1 + ã2

24
Σ
)

×

1
√

y4 − y4c +
ã2

24
Λ cosh2 η + y4 sinh2 η(1−H)

. (5.63)

The turning point yt is found from the solution of
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y4t − y4c +
ã2

24
Λ(yt) cosh

2 η + y4t sinh
2 η(1−H) = 0. (5.64)

The factor (1 − H) goes as ã2

4
log
(

1 + 1
y2

)

up to O(ã2) and for large y its contribution

to the second factor in the denominator is ã2

4
y2 sinh2 η. This is greater than the other

anisotropic term by O(y2) for large y. Since, the integration over y extends up to y = ∞,

the contribution from this term can be quite large. Hence, unlike in the previous cases,

this time we do not expect the turning point yt to appear in the form of a correction to

the isotropic value yc since the presence of this O(y2) term renders the applicability of

perturbative methods to solve the above equation futile. Thus, one has to depend solely

upon numerical techniques to solve Eq. 5.64 in order to extract yt. In fact, numerical

evaluation shows yt to be markedly different from yc, particularly for low values of K̃.

Once we have obtained yt, we use it in Eq. 5.63 to numerically study the Q-Q̄ separation.

The string world-sheet action is

S =
T rh
πα′

∞
∫

yt

dyÃ

√

G̃11G̃rr

ÃG̃11 −K2
(5.65)

which, written explicitly, assumes the following form,

S =
T rh
πα′

∞
∫

yt

dy
y4 − cosh2 η + ã2

24
Λ cosh2 η + y4 sinh2 η(1−H)

√

(

y4 − 1 + ã2

24
Σ
) (

y4 − y4c +
ã2

24
Λ cosh2 η + y4 sinh2 η(1−H)

)

≡ T rh
πα′

∞
∫

yt

dyŜani. (5.66)

As in the preceding cases, this action is divergent which is cured by taking away the self-

energy contribution S0 of the Q-Q̄ pair. To compute S0 we consider an open string hanging
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down the radial direction in the following gauge, τ = t, σ = r, x3 = x3(σ) and x1, x2 are

independent of τ, σ. Repeating the same exercise as in §5.3.1 one finds S0 to be

S0 =
T
πα′

∞
∫

rh

dr

√

ÃG̃rr

√

ÃC̃ + B̃2

ÃC̃ + B̃2 −K2
0

=
T rh
πα′

∞
∫

1

dy

√

y4 − cosh2 η + ã2

24
Λ cosh2 η + y4 sinh2 η(1−H)

√

y4 − 1− K̃2
0 +

ã2

24
ΛH + (H− 1)(y4 − 1)

×

√

y4 − 1 + ã2

24
ΛH + (H− 1)(y4 − 1)

√

y4 − 1 + ã2

24
Σ

≡ T rh
πα′

∞
∫

1

dyŜani
0 (5.67)

where K0 is the conserved quantity owing its origin to the absence of any explicit x3-

dependence in the action. The second terms each in the numerator and the denominator

separately vanish at y = 1 providing a potential turning point yt = 1. The first term in the

denominator can contribute another turning point yt > 1 but that possibility is ruled out by

judiciously choosing the constant K̃0 such that the zero of the first term in the numerator

coincides with that of the first term in the denominator. We are now in a position to finally

compute the Q-Q̄ potential (Eq. 5.41) with Ŝani provided in Eq. 5.66 and the corresponding

self-energy term Ŝani
0 in Eq. 5.67. Using the above information we have plotted the Q-

Q̄ separation and the Q-Q̄ potential in Figures 5.13-5.16 ¶. While the gross features of the

plots remain almost unaltered, observe that all the signatures of the presence of anisotropy

are far more pronounced (particularly in the high rapidity regime) than in either of the

preceding cases. This has its roots in the presence of the O(y2) term in the anisotropic

¶Note that we have not given the static Q-Q̄ separation and the static Q-Q̄ potential in this case since

these will be the same as in §5.3.1.



5.3. Q-Q̄ SEPARATION AND Q-Q̄ POTENTIAL 135

contribution to the Q-Q̄ separation and the Q-Q̄ potential as mentioned earlier. The heavy

Q-Q̄ potential for this configuration has also been found in [108], using different values of

the parameters and we find that our results tally with those presented in [108].
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Figure 5.13: Q-Q̄ separation L (normalized) as a function of K̃ with η = 1 for different

values of ã when velocity is along anisotropic direction and dipole lies in transverse plane

5.3.4 Dipole parallel to velocity in transverse plane

We now come to the case where the dipole is aligned parallel to its direction of motion.

This common direction can be in the transverse plane or along the anisotropic direction.

We consider the former case in this subsection. For simplicity we shall take this common

direction to be along x1. Boosting to the rest frame, choosing the static gauge, τ = t, σ =
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Figure 5.14: Normalized Q-Q̄ potential V as a function of L with η = 1 for the same set

of ã and same orientation (as in Figure 5.13)

x1, r = r(σ) and x2 = x3 = constant leads us to the action,

S =
T rh
2πα′

l/2
∫

−l/2

dσ̃
√

A (C +Grry′2) +B2 (5.68)

which, in turn, supplies the constant of motion,

K =
AC +B2

√

A (C +Grry′2) +B2
. (5.69)

Proceeding along the lines of the earlier cases, we compute,

y′ =
r20
K̃

√

(

y4 − 1 + ã2

24
Σ
) (

y4 − 1 + ã2

24
Λ
)

(

y4 − 1− K̃2 + ã2

24
Λ
)

√

y4 − cosh2 η + ã2

24
Λ cosh2 η

(5.70)
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Figure 5.15: Q-Q̄ separation L (normalized) as a function of K̃ with η = 3 for different

values of ã when velocity is along anisotropic direction and dipole lies in transverse plane
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Figure 5.16: Normalized Q-Q̄ potential V as a function of L with η = 3 for the same set

of ã and same orientation (as in Figure 5.15)
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from which we find the Q-Q̄ separation to be

L =
2K̃

πT

(

1 +
ã2(5 log 2− 2)

48

)

∞
∫

yt

dy

√

y4 − cosh2 η + ã2

24
Λ cosh2 η

√

(

y4 − 1 + ã2

24
Σ
) (

y4 − 1 + ã2

24
Λ
)

×

1
√

y4 − 1− K̃2 + ã2

24
Λ
. (5.71)

The turning point yt is obtained from Eq. 5.70 which satisfies

y4t − 1− K̃2 +
ã2

24
Λ (yt) = 0. (5.72)

At the same time, note that y′ now encounters a singularity at ys, given by,

y4s − cosh2 η +
ã2

24
Λ(ys) cosh

2 η = 0. (5.73)

Further, it is evident that for y < ys, the numerator in Eq. 5.71 becomes imaginary. So any

potential turning point has to satisfy

y4t − cosh2 η +
ã2

24
Λ(yt) cosh

2 η > 0 (5.74)

which imposes a lower bound on K̃ that turns out to be‖,

K̃2 > K̃2
min = sinh2 η

(

1− ã2

24
Λ
(

y =
√

cosh η
)

)

. (5.75)

Incidentally, note that this lower bound turns out to be the same as the constant K̃0 that

appeared in §5.3.1. Upon simplification the action boils down to,

‖The existence of this lower bound is found in the isotropic case too as given in [74].
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Figure 5.17: Q-Q̄ separation L (normalized) as a function of K̃ with η = 1 for different

values of ã when the dipole is parallel to its velocity and both lie in the transverse plane

S =
T rh
πα′

∞
∫

yt

dy
√

AGrr

√

AC +B2

AC +B2 −K2

=
T rh
πα′

∞
∫

yt

dy

√

(

y4 − cosh2 η + ã2

24
Λ cosh2 η

) (

y4 − 1 + ã2

24
Λ
)

√

(

y4 − 1 + ã2

24
Σ
)

(

y4 − 1− K̃2 + ã2

24
Λ
)

≡ T rh
πα′

∞
∫

yt

dyŜani (5.76)

with K̃ respecting the inequality in Eq. 5.75. The self-energy contribution S0 is also given

by Eq. 5.76 but now with K̃ saturating the bound in Eq. 5.75 so that S0 becomes identical

with that given in Eq. 5.40. We can now compute the Q-Q̄ potential using Eqs. 5.40 and

5.76 in Eq. 5.41 with Eq. 5.15. The Q-Q̄ separation and the potential have been plotted in

Figures 5.17-5.20 for η = 1 and η = 4 respectively. The L(K̃)-K̃ plots show that curves
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Figure 5.18: Normalized Q-Q̄ potential V as a function of L with η = 1 for the same set

of ã and same orientation (as in Figure 5.17)

for higher value of K̃ (after Lmax is attained) exhibit the same pattern as in the earlier

cases but for lower values of K̃ there is an inaccessible region for K̃ ≤ K̃min for which

there is no solution to the dipole separation. This is reflected in the V (L)-L plot where the

upper branch of the potential terminates abruptly at L = Lmin whereas the lower branch

shows the usual behavior . A closer scrutiny of the figures suggest that K̃min increases with

increasing ã and concomitantly, Lmin decreases. However, this is manifested only in the

unstable, high energy branch, which, in any case, is devoid of much physical significance,

being energetically unfavorable.
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Figure 5.19: Q-Q̄ separation L (normalized) as a function of K̃ with η = 4 for different

values of ã when dipole is parallel to its velocity and both lie in transverse plane

5.3.5 Dipole parallel to velocity along x3

Finally, we take up the case where the dipole is oriented along the anisotropic direction x3

and it moves in the same direction. This time we shall make use of the metric (Eq. 5.56)

as obtained in §5.3.3 and use the gauge choice of §5.3.2. All the calculations proceed in

identically the same fashion as in §5.3.4 and we end up with the Q-Q̄ separation

L =
2K̃

πT

(

1 +
ã2(5 log 2− 2)

48

)

∞
∫

yt

dy

√

y4 − cosh2 η + ã2

24
Λ cosh2 η + y4 sinh2 η(1−H)

√

y4 − 1− K̃2 + ã2

24
ΛH + (H− 1)(y4 − 1)

×

1
√

(

y4 − 1 + ã2

24
Σ
) (

y4 − 1 + ã2

24
ΛH+ (H− 1)(y4 − 1)

)

. (5.77)
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Figure 5.20: Normalized Q-Q̄ potential V as a function of L with η = 4 for the same set

of ã and same orientation (as in Figure 5.19)

The first term in the denominator provides the turning point yt which, in turn, is constrained

by the condition that the numerator must be real. This results in a lower cut-off on the value

of K̃. We can read off this lower bound by demanding that the zeros of the numerator

and the first factor in the denominator occur at the same value of y. As was the case in

§5.3.3 due to the presence of the y4 sinh2 η(1 − H) term here we do not expect the effect

of anisotropy to be small enough so as to employ perturbative methods. Hence, we have

evaluated the lower limit K̃min and yt completely numerically. Finally, the action becomes,

S =
T rh
πα′

∞
∫

yt

dy

√

y4 − cosh2 η + ã2

24
Λ cosh2 η + y4 sinh2 η(1−H)

√

y4 − 1− K̃2 + ã2

24
ΛH + (H− 1)(y4 − 1)

×

√

y4 − 1 + ã2

24
ΛH + (H− 1)(y4 − 1)

√

y4 − 1 + ã2

24
Σ
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Figure 5.21: Q-Q̄ separation L (normalized) as a function of K̃ with η = 1 for different

values of ã when dipole is parallel to its velocity and both lie along anisotropic direction

≡ T rh
πα′

∞
∫

yt

dyŜani. (5.78)

In similar fashion, one finds the self-energy contribution S0 to be the same as in Eq. 5.67

(and, in fact, Eq. 5.78 with K̃ replaced by its minimum value K̃min). Equipped with this

much information we can now obtain the plots for the dipole separation and the potential

which are given in Figures 5.21-5.24 for η = 1 and η = 2 (corresponding to v = 0.96)

respectively. The plots are very similar to those in §5.3.4 and so we refrain from giving a

detailed description. However, note that now the effect of anisotropy is made more con-

spicuous by the significant deviation of the curves from the corresponding isotropic ones.

Here too, we observe the appearance of a minimal value of the dipole separation for the

upper unstable branch arising out of the lower bound that was clamped upon K̃.
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Figure 5.22: Normalized Q-Q̄ potential V as a function of L with η = 1 for the same set

of ã and same orientation (as in Figure 5.21)

5.4 Comparison Among the Different Cases

In the previous section we have computed the Q-Q̄ separation and the Q-Q̄ potential for

different orientations of the dipole and its velocity. Before concluding, let us do a com-

parative study of the effects of anisotropy in all the cases. In Figures 5.25 and 5.26 we

have given the L(K̃)-K̃ and the V (L)-L plots for the three surviving cases∗∗ for η = 0 and

ã = 0.6. The legend in the figure needs a little explanation. While the blue line indicates

the isotropic curve, ‘perp’ indicates the dipole is lying in the transverse plane, perpendic-

ular to the direction of anisotropy and ‘para’ denotes the case where the dipole presents

itself along the anisotropic direction. While the presence of anisotropy makes itself felt

∗∗ A little deliberation shows that in the static limit many of the cases collapse into each other and need

not be considered separately.
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Figure 5.23: Q-Q̄ separation L (normalized) as a function of K̃ with η = 2 for different

values of ã when dipole is parallel to its velocity and both lie along anisotropic direction

in both the cases, the dipole is more affected when it is aligned parallel to the direction

of anisotropy so that one can write, Lmax(para) < Lmax(perp) < Lmax(isotropic) and

Visotropic < Vperp < Vpara. This observation corroborates the findings in [107]. In Figures

5.27 and 5.28 we have plotted the same quantities, now for η = 2 and for all the config-

urations considered. Before delving into the details of the plots, let us again clarify the

legend used. Note that now there are two isotropic plots, denoted by ‘perp’ and ‘para’ indi-

cating the cases where the dipole lies perpendicular and parallel to the direction of motion

respectively. (ij) denotes the configuration where the dipole moves along xi and is aligned

along xj . Basically, one can distinguish between two sectors: one in which the dipole is

perpendicular to its velocity (this contains ‘perp’, (12), (13), (31)) and the one where it is

parallel to its velocity (comprising of ‘para’, (11), (33)). The general observation is that

the screening length diminishes and the potential is weaker for all the cases (ij) shown
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Figure 5.24: Normalized Q-Q̄ potential V as a function of L with η = 2 for the same set

of ã and same orientation (as in Figure 5.23)

compared to the corresponding isotropic cases. The cases (12) and (31) which merged in

the static case now splits up and we find that (31) is severely affected when the combined

effects of velocity and anisotropy are taken into account. This is evident both from the

L(K̃)-K̃ and the V (L)-L plots. For this configuration Lmax drops drastically and also the

rise in V (L) is appreciable. As discussed earlier too, this is accounted for by the presence

of the O(y2) term in the anisotropic contribution, which makes the effect of anisotropy

quite pronounced in this configuration. Both (13) and (12) cases are mildly affected when

effects of velocity and anisotropy act in conjunction. For these cases L is slightly sup-

pressed from the isotropic value whereas V (L) registers a small increase. Turning to the

other sector, we see that in (11), L decreases marginally which is accompanied by a cor-

responding small increase in the interaction potential when we introduce the anisotropy

and the velocity parameter together. However, the (33) plots show a significant departure
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Figure 5.25: Q-Q̄ separation L (normalized) as a function of K̃ with η = 0, ã = 0.6 for

different orientations of dipole and its velocity

from the isotropic case. For the unstable high energy branch of the potential, the minimum

allowed separation Lmin decreases in the order, Lmin(33) < Lmin(11) < Lmin(isotropic).

On the whole, the plots suggest that the dipole separation and the potential are affected the

most when the dipole moves along the anisotropic direction (both for the perpendicular and

the parallel orientation and we hope, it will hold true for an other orientation in between

these two extreme cases), and irrespective of the configuration, the presence of anisotropy

makes the dipole more susceptible to dissociation.

In this context, it will be interesting to compare our observations with those extracted from

other models of anisotropic plasma. In [109] the heavy quark-antiquark static potential

was computed in an anisotropic plasma employing the hard thermal loop approach. It was

found out that the presence of anisotropy reduces the screening so that the potential, in

general gets strengthened and approaches the vacuum potential. The deviation from the

isotropic potential increases as the value of the anisotropy parameter is increased. Further,
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Figure 5.26: Normalized V as a function of L with η = 0, ã = 0.6 for the same set of

orientations and velocity

the effects are strongest when the dipole is aligned along the direction of anisotropy (this

is in agreement with our findings here). However, the direction of the shift in potential

(i.e., decrease or increase from the isotropic case) are opposite here (and in [107]) and

what was found in [109]. By introducing the velocity, we have shown here that for suffi-

ciently large velocity the effects of anisotropy on the dipole moving along the anisotropic

direction will be the strongest. It might be interesting to attempt a similar study in the

perturbative approach and see if introduction of the dipole velocity leads to results simi-

lar to that presented here. Another difference is that the results of [109] hold for length

scales ∼ λD = 1/mD where mD is the Debye mass. At this length scale the Coulomb

part of the potential dominates over the linear confining part. However, our analysis here

is not constrained in this aspect and in fact, in the static case we have identified a range

Lp < L < Lmax where the confining part dominates over the Coulomb one. Of course,

it will be naive on our part to read too much into these comparisons, since the physical
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Figure 5.27: L (normalized) as a function of K̃ with η = 2, ã = 0.6 for different orienta-

tions of the dipole and directions of velocity

models in the two cases are completely different, the primary difference being that our

analysis holds for strongly coupled theories whereas the perturbative calculations are valid

only in the weak coupling limit. Another curious comparison can be drawn with the results

obtained in chapter 4 for the case of NCYM plasma. The presence of non-commutativity

breaks the isotropy and this is reflected in the background metric, where the x1 direction is

taken to be the anisotropic one. The configuration considered in chapter 4 corresponds to

that in §5.3.3 here. Surprisingly, we find that the gross characteristics of the results are the

same in both models. In NCYM, too, increasing the non-commutativity parameter leads to

a depreciation of the screening length and a weakening of the interaction potential. This

entices us to think that the two models of anisotropic plasma do show qualitative similarity

and there might be some universal features in holographic models of anisotropic plasma.

Of course, there were some additional features in NCYM (like the presence of a cut-off)

not encountered here.
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Figure 5.28: Normalized V as a function of L with η = 2, ã = 0.6 for the same set of

orientations and velocity

With this we close our discussion of heavy quark bound states in deformed SYM and move

over to examining the motion of a heavy quark in strongly coupled QGP in the next section.

5.5 Heavy Quark Dynamics in Anisotropic Background

A particle immersed in a hot fluid exhibits an incessant, random dynamics known as the

Brownian motion. Brownian motion originates from the collisions experienced by the par-

ticle with the constituents of the fluid undergoing a random thermal motion. The consider-

ation of these random collisions requires the fact that the fluid medium is not a continuum

but made of finite-size constituents. Hence, Brownian motion actually offers a better un-

derstanding of the underlying microscopic physics of the medium. The random dynamics

of a Brownian particle is encoded in the Langevin equation describing the total force acting

on the particle as a sum of dissipative and random forces. Although both of these forces
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have the same microscopic origin, phenomenologically the dissipative force describes the

in-medium frictional effect and the random force stands for a source of random kicks from

the medium. Brownian motion is a universal phenomenon for all finite temperature sys-

tems. Therefore, a heavy probe quark immersed in QGP undergoes the same thermal mo-

tion [110]. Recently, Brownian motion of a probe particle has been successfully studied

using the framework of the AdS/CFT correspondence [111, 112]. The bulk interpretation

of Brownian motion of a heavy probe quark immersed in a SU(Nc) Yang-Mills theory with

N = 4 supersymmetries emerges from the consideration of a probe fundamental string in

the dual AdS-black hole background, stretching between the AdS boundary and the hori-

zon. The end-point of the string attached to the boundary is holographically mapped to

the boundary probe quark. The transverse modes of the probe string are thermally excited

by the black hole environment. This excitation propagates up to the boundary and holo-

graphically incorporates the Brownian motion of the boundary quark. In an intuitive way,

the fact that, semi-classically, the traverse string modes are thermally excited by Hawking

radiation reflects the bulk interpretation of random force in the boundary Langevin equa-

tion. On the other hand, the fact that the string excitation is absorbed by the black hole

environment stands for the bulk realization of boundary frictional force. In the detailed

course of computation, we need to quantize the transverse string modes. As explained

in [113], the Hawking radiation associated with the string excitations occurs upon quan-

tizing these modes. Once these modes are quantized, using holographic prescription, the

erratic motion of string end-point attached to the boundary can be realized as Brownian

motion. There are two independent approaches available in the literature to obtain these

results. In the first approach, the state of the quantized scalar fields are identified with the

Hartle-Hawking vacuum representing the black hole at thermal equilibrium [111]. In the

second approach, the GKPW prescription [2, 3] of computing retarded Green’s function is
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utilized. The computation of Langevin equation is done by exploring the correspondence

between Kruskal extension of the AdS-black hole geometry and the Schwinger-Keldysh

formalism [112]. The detailed comparison between the two independent approaches is

given in [114]. There are further generalizations in this direction. Holographic Brownian

motion has been studied in the case of charged plasma [115], rotating plasma [116–118],

non-Abelian SYM plasma [119], non-conformal plasma [120] and (1 + 1)-dimensional

strongly coupled CFT at finite temperature [121]. It has also been studied in the low tem-

perature domain (near criticality) [122, 123]. The relativistic formulation of holographic

Langevin dynamics has been successfully addressed in [124]. Moreover, some important

universality related issues regarding the Langevin coefficients computed along the longi-

tudinal as well as the transverse directions to the probe quark’s motion has been studied

in [125]. Here, we study the holographic Brownian motion of a heavy probe quark mov-

ing in a strongly coupled anisotropic plasma at finite temperature. For simplicity, we only

consider the non-relativistic limit, i.e., we take v ≪ 1 where v is the velocity of the heavy

quark that undergoes Brownian motion. We also take the medium to have small anisotropy

and consider only the low-lying modes of the string fluctuations. These conditions are

imposed only to facilitate analytical computation. With the gravity background described

in §5.2, following [111], we study the bulk interpretation of the boundary Brownian mo-

tion. In particular, we explicitly compute the friction coefficient, the diffusion constant

and the random force correlator from a holographic perspective when the thermal back-

ground has an inherent anisotropy and verify the fluctuation-dissipation theorem and the

Einstein-Sutherland relation. In our bulk analysis, we include fluctuations of the probe

string modes along both isotropic and anisotropic directions and systematically study the

effect of anisotropy in the low frequency limit of the thermal fluctuations.
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5.5.1 Brownian motion in the boundary theory

We begin by presenting a brief review of the field-theoretic aspect of the problem following

[111,115,119]. The simplest phenomenological model which attempts to explain Brownian

motion of a non-relativistic particle of mass m immersed in a thermal bath is given by the

Langevin equation along the i-th spatial direction††,

ṗi(t) = −γ(i)
o pi(t) +Ri(t), (5.79)

where pi(t) = mẋi is the non-relativistic momentum of the Brownian particle along the

i-th direction. The model, though simple, is capable of capturing the salient features of a

particle undergoing Brownian motion. The particle is acted upon by a random force Ri(t)

arising out of its interaction with the thermal bath and, at the same time, it is suffering

energy dissipation due to the presence of the frictional term with γ
(i)
0 being the friction

coefficient. Under the effect of these two competing forces the particle undergoes random

thermal motion. The interaction between the Brownian particle and the fluid particles at

a temperature T allows for an exchange of energy between the Brownian particle and the

fluid leading to the establishment of a thermal equilibrium. In an isotropic medium the

friction coefficient does not depend upon the particular space direction under considera-

tion. However, if the medium in which the particle is immersed has an anisotropy then

we expect the drag coefficient along the anisotropic direction γ
||
0 to be different from that

in the isotropic plane γ⊥
0 . The random force Ri(t) can be approximated by a sequence of

independent impulses, each of random sign and magnitude, such that the average vanishes.

Each such impulse is an independent random event, i.e., Ri(t) is independent of Ri(t
′) for

††We shall explicitly keep track of the direction index i in our discussion since we need to distinguish

between the anisotropic direction and the directions transverse to it.
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t 6= t′. Such a noise source goes by the name of white noise. These considerations imply

〈Ri(t)〉 = 0, 〈Ri(t)Rj(t
′)〉 = κ

(i)
0 δijδ(t− t′) (5.80)

where we call κ
(i)
0 the Langevin coefficient. Again, the presence of anisotropy inflicts a

direction-dependence upon κ
(i)
0 . Note that, in particular, the random forces at two different

instants are not correlated. The two parameters γ
(i)
0 and κ

(i)
0 completely characterize the

Langevin equation (Eq. 5.79). As we shall see, γ
(i)
0 and κ

(i)
0 are not independent, which is

not unexpected since they are related by the fluctuation-dissipation theorem,

γ
(i)
0 =

κ
(i)
0

2mT
. (5.81)

The relation between the two quantities has its root in the fact that both the frictional force

and the random force have the same origin - microscopically, they arise due to the interac-

tion of the particle with the thermal medium. In this sense, the separation of the R.H.S. of

Eq. 5.79 in two parts is ad hoc from the microscopic point of view, being only dictated by

considerations of phenomenological simplicity. Assuming the theorem of equipartition of

energy which states that each degree of freedom contributes 1
2
T to the energy (T being the

temperature and we have set the Boltzmann constant kB = 1), it is possible to derive the

the temporal variation of the displacement squared of the particle [111]

〈si(t)2〉 = 〈(xi(t)− xi(0))2〉 = 2D(i)

γ
(i)
0

(

γ
(i)
0 t− 1 + e−γ

(i)
0 t
)

(5.82)

where D(i) is defined to be the diffusion constant. It is related to the friction coefficient γ
(i)
0

through the Einstein-Sutherland relation,
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D(i) =
T

γ
(i)
0 m

. (5.83)

The solution to Eq. 5.79 has a homogeneous part determined by the initial conditions

and an inhomogeneous part proportional to the random force. The homogeneous part will

decay to zero in a time of order t
(i)
relax = 1/γ

(i)
0 and the long-time dynamics will be governed

entirely by the inhomogeneous part, independent of the initial conditions. Based on these

considerations, one can distinguish between two different temporal domains: t ≪ 1/γ
(i)
0

whence si ∼
√

T/m t showing that the particle moves under inertia as if no force is acting

upon it. The speed in this case is fixed by the equipartition theorem. In the opposite regime

t ≫ 1/γ
(i)
0 one obtains si ∼

√
2D(i)t which is reminiscent of the random walk problem.

In this time domain, Brownian particle loses its memory of the initial value of the velocity.

The transition from one regime to another occurs at the critical value of

t
(i)
relax ∼

1

γ
(i)
0

(5.84)

which represents a characteristic time-scale of the theory, called the relaxation time, be-

yond which the system thermalizes.

The model we have considered above is based on two assumptions: i) the friction to be

instantaneous and ii) the random forces at two different instants to be uncorrelated. The

validity of these assumptions holds good only when the Brownian particle is very heavy

compared to the constituents of the medium. However, this does not give the correct picture

when the Brownian particle and the constituents of the medium have comparable masses.

To overcome these pitfalls the Langevin equation is generalized such that the friction now

depends upon the past history of the particles and also the random forces at different in-

stants are correlated. To incorporate these effects we modify Eq. 5.79 to the generalized
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µ(i)(ω) ≡ 1

−iω + γ[ω]
(5.91)

is called the admittance and since it depends upon γ it inherits the anisotropic effect. The

admittance is a measure of the response of the Brownian particle to external perturbations.

In particular, if the external force is taken as

Ki(t) = K
(0)
i e−iωt (5.92)

then the response is,

〈pi(t)〉 = µ(i)(ω)K
(0)
i e−iωt. (5.93)

If the memory kernel γ(t− t′) is sharply peaked around t′ = t then

∫ ∞

0

dt′γ(i)(t− t′)pi(t
′) ≈

∫ ∞

0

dt′γ(i)(t′)pi(t) =
1

t
(i)
relax

pi(t). (5.94)

Thus, for the generalized Langevin equation, described by Eq. 5.85, the generalization of

the relaxation time is

t
(i)
relax ∼

(
∫ ∞

0

dtγ(t)

)−1

=
1

γ[ω = 0]
= µ(i)(ω = 0). (5.95)

The Wiener-Khintchine theorem relates the power spectrum IO(ω) of any quantity O with

its two-point function as follows,

〈O(ω)O(ω′)〉 = 2πδ(ω + ω′)IO(ω) (5.96)

where the power spectrum IO(ω) is defined as
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IO(ω) =

∫ ∞

−∞
dt〈O(t0)O(t0 + t)〉eiωt. (5.97)

For stationary systems this does not depend upon the choice of t0 and hence, we can as

well set t0 = 0. Now if we turn off the external force Ki(t) then from Eq. 5.87 we get,

pi(ω) =
Ri(ω)

−iω + γ[ω]
= µ(i)(ω)Ri(ω) (5.98)

which leads to the obvious result

Ipi(ω) =
IRi

(ω)

|γ[ω]− iω|2 = |µ(i)(ω)|2IRi
(ω). (5.99)

Making use of Eqs. 5.86 and 5.99 we are lead to the result,

κ(i) = IRi
=

Ipi(ω)

|µ(i)(ω)|2 . (5.100)

The random force correlator κ(i) provides yet another time scale involved in Brownian

motion. If we take κ(i) to be of the form,

κ(i)(t) = κ(i)(0)e
− t

tcol (5.101)

then tcol is the width of the correlator. It is the temporal span over which the random forces

are correlated and gives the time scale for the duration of a collision.

In the next subsection, following holographic techniques prescribed in [111], we investi-

gate the bulk realization of the boundary Brownian motion of a heavy probe moving in an

anisotropic thermal plasma. In doing so, we first describe the profile of the probe string

stretching between the AdS boundary and the horizon. Then we describe how to compute
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bulk correlators of the transverse fluctuations of the probe string.

5.5.2 The holographic story

To incorporate heavy dynamical probe quark in the boundary theory, one introduces Nf

D7-flavor branes located at r = rm. We work within probe approximation meaning Nf ≪

Nc and neglect the backreaction of the flavor brane on the background (for simplicity we

take Nf = 1). On the gauge theory side this is tantamount to working in the quenched

approximation. The probe string stretches from the boundary at r = rm to the black hole

horizon r = rh. The flavor brane spans the four gauge theory directions, the radial direction

and also a three-sphere S3 ⊂ S5. We take the boundary gauge theory to live at the radial

coordinate r = rm. We assume that the source of the fluctuations of the string modes is

purely Hawking radiation. Moreover, keeping the string coupling gs small ensures that we

can ignore the interaction between the transverse fluctuation modes and the closed string

modes in the bulk.

5.5.3 Bulk view of Brownian motion

To study the dynamics of the fundamental string in the background given by Eq. 5.11

we need to evaluate the Nambu-Goto string world-sheet action provided in Eq. 2.11. We

choose the static gauge for evaluating Eq. 2.11 as τ = t, σ = r. The trivial solution that

satisfies the equation of motion obtained by variation of S is given by Xm = {t,~0, r}.

This corresponds to a quark that is in equilibrium in a thermal bath and in the bulk picture

to a string hanging straight down radially. We now wish to consider fluctuations around

this classical solution. We want to see the effects of anisotropy both along the anisotropic

direction as well as in the isotropic plane. To this end we consider fluctuations of the
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form: Xm = {t, X1(t, r), 0, X3(t, r), r} where X1(t, r) is a fluctuation along an isotropic

direction while X3(t, r) is a perturbation along the anisotropic direction. The position of

the quark is given by, xµ = {t, X1(t, rm), 0, X3(t, rm)}. Using this parametrization we find

out the components of the world-sheet metric as,

gττ = r2
(

−FB + (Ẋ1)
2 +H(Ẋ3)

2
)

,

gσσ = r2
(

(X ′
1)

2 +H(X ′
3)

2 +
1

r4F

)

,

gτσ = r2
(

HẊ1X
′
3 +HX ′

1Ẋ3

)

(5.102)

where X ′
i ≡ ∂σXi and Ẋi ≡ ∂τX

i. From now on, we suppress the explicit r-dependence of

the metric elements F ,B,H. If we restrict ourselves to small perturbation around the clas-

sical solution we can safely leave out terms higher than quadratic order in the fluctuations

whence the action reduces to ‡‡

S =
1

4πα′

∫

dτdσ
√
B
[

Fr4
(

(X ′
1)

2 +H(X ′
3)

2
)

− 1

FB
(

(Ẋ1)
2 +H(Ẋ3)

2
)

]

. (5.103)

While writing Eq. 5.103 we have omitted a constant factor that is independent of Xi.

Variation of the above action yields the equation of motion for the fluctuation X3

Ẍ3 −
F
√
B

H r2h∂y

(√
BHFy4X ′

3

)

= 0 (5.104a)

where we have used the new scaled coordinate, y = r/rh and now the prime (′) denotes

derivative with respect to y. The equation of motion for X1 is obtained in a similar fashion,

‡‡This essentially means that we are in the regime |∂tXi| ≪ 1 which, in turn, implies taking the non-

relativistic limit. Hence, on the gauge theory side, the dual picture will also be non-relativistic.
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Ẍ1 − F
√
Br2h∂y

(√
BFy4X ′

1

)

= 0 (5.104b)

which is the same as Eq. 5.104a with H = 1. Later on, we shall also consider forced

motion of the quark under the effect of an electromagnetic field. This is simply achieved

by switching on a U(1) electromagnetic field on the flavor D7-brane. Since the string

end-point on the boundary represents a quark, it is charged, and hence will couple to the

electromagnetic field. Consequently, we need to incorporate this effect at the level of the

action. The action S is then generalized to Stotal = S + Sb where

Sb =

∫

∂Σ

(

At + AiẊi

)

dt. (5.105)

Since it is just a boundary term it will not affect the dynamics of the string in the bulk.

However, it will modify the boundary conditions that we need to impose upon the string

end-point. We need to find solutions to Eqs. 5.104a and 5.104b near the boundary which

we shall do by employing the matching technique. The solutions are, in general, quite

complicated. However, they are readily obtained near the horizon. So before finding out

the actual solutions let us see how these solutions behave in the vicinity of y → 1. First of

all, we inflict a coordinate transformation r → r∗ which takes us to the tortoise coordinates

so that

d

dr
=

1

r2F
√
B

d

dr∗
(5.106)

and

dr = r2F
√
Bdr∗. (5.107)

In this new coordinate system, the Nambu-Goto action assumes the form,
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S =
1

4πα′

∫

dτdr∗r
2
[(

(∂r∗X1)
2 − (Ẋ1)

2
)

+H
(

(∂r∗X3)
2 − (Ẋ3)

2
)]

. (5.108)

Near the horizon it simplifies to,

S =
1

4πα′ r
2
h

∫

dτdr∗

[(

(∂r∗X1)
2 − (Ẋ1)

2
)

+H(rh)
(

(∂r∗X3)
2 − (Ẋ3)

2
)]

. (5.109)

The equation of motion for both X1 and X3 obtained by varying this action turns out to be

the same,

(

∂2
r∗ − ∂2

τ

)

X1,3 = 0. (5.110)

So near the boundary, the fluctuations are governed by a Klein-Gordon equation for mass-

less scalars. From now on, in this section, we shall refer to the fluctuations as Xi, it being

understood that everything we discuss here holds true for both X1 as well as X3. From Eq.

5.11 it is clear that t is an isometry of the background and hence we can try solutions of the

form,

Xi(t, r) ∼ e−iωtgω(r). (5.111)

Eq. 5.110 has two independent solutions corresponding to ingoing and outgoing waves

respectively which we write as,

Xout
i (r) = e−iωtgout

i (r) ∼ e−iω(t−r∗) (5.112a)

X in
i (r) = e−iωtgin

i (r) ∼ e−iω(t+r∗). (5.112b)

To find r∗ we need to solve Eq. 5.107 which yields,
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r∗ =
1

4rh
log

(

r

rh
− 1

)[

1− ã2

48
(5 log 2− 2)

]

(5.113)

where we have defined ã = a
rh

∼ a
πT

. Hence,

gout/in
i (r) =

(

r

rh
− 1

)± iν
4

(

1− ã2

48
(5 log 2−2)

)

(5.114)

where ν = ω
rh

. One thus finds that, gout
i = (gin

i )
∗.

Following standard quantization techniques of scalar fields in curved space-time we can

perform a mode expansion of the fluctuations as

Xi(t, r) =

∫ ∞

0

dω

2π
[aωuω(t, r) + a†ωuω(t, r)

∗]. (5.115)

Here uω(t, r) is a set of positive frequency basis. These modes can in turn be expressed as

a linear combination of the ingoing and the outgoing waves

uω(t, r) = A[gout(r) +Bgin(r)]e−iωt. (5.116)

The constant B is determined by imposing boundary condition at r = rm. However, as

we shall later see, B turns to be a pure phase. This implies that the outgoing and the

ingoing modes have the same amplitude. This signifies that the black hole environment

which can emit Hawking radiation is in a state of thermal equilibrium. One is then left

with determining the constant A which is fixed by demanding normalization of the modes

through the conventional Klein-Gordon inner product defined via,

(fi, gj)σ = − i

2πα′

∫

σ

√

g̃nµGij(fi∂µg
∗
j − ∂µfig

∗
j ). (5.117)
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Here, σ defines a Cauchy surface in the (t, r) subspace of the ten-dimensional space-time

metric, g̃ is the induced metric on the surface σ and nµ denotes a unit normal to σ in the

future direction. Without any loss of generality we can take the surface σ to be a constant t

surface since the inner product does not depend upon the exact choice of the surface in the

(t, r)-plane. Following [115] we argue that the primary contribution to the above integral

arises from the IR region. Of course, regions away from the horizon do contribute but since

the horizon is semi-infinite in the tortoise coordinate, the normalization is completely fixed

by the near-horizon regime. For the anisotropic direction this gives,

(fi, gj)σ = −iδijr
2
hH(rh)

2πα′

∫

r∗→−∞

dr∗(fiġj
∗ − ḟig

∗
j ) (5.118)

from which we can extract A to be,

A =

√

πα′

ωr2hH(rh)
. (5.119)

On the other hand, for fluctuations along the isotropic direction we have,

(fi, gj)σ = −iδijr
2
h

2πα′

∫

r∗→−∞

dr∗(fiġj
∗ − ḟig

∗
j ) (5.120)

which fixes A as,

A =

√

πα′

ωr2h
. (5.121)

The normalisation ensures that the inner product (uω, uω) = 1 which, in turn, guarantees

that the canonical commutation relations are satisfied,

[aω, aω′ ] = [a†ω, a
†
ω′] = 0, [aω, a

†
ω′ ] = 2πδ(ω + ω′). (5.122)
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In the semi-classical approximation the string modes are thermally excited by the Hawking

radiation of the world-sheet horizon and obey the Bose-Einstein distribution,

〈aωa†ω〉 =
2πδ(ω + ω′)

eβω − 1
. (5.123)

Equipped with this much machinery we are now ready to compute the displacement squared

for the test quark in the boundary. This is required if we wish to find out an expression for

the diffusion constant. Recalling that the position of the Brownian particle is specified by

xi(t) = Xi(t, rm), we have

〈xi(t)xi(0)〉 =
∫ ∞

0

dωdω′

(2π)2
[〈aωa†ω′〉uω(t, rm)uω′(0, rm)

∗ + 〈a†ωaω′〉uω(t, rm)
∗uω′(0, rm)].

(5.124)

However, this is afflicted by a divergence that can be attributed to the zero point energy

which persists even we go to the zero temperature limit. The way to bypass this catastrophe

is to invoke the normal ordering of products

〈: xi(t)xi(0) :〉 =
∫ ∞

0

dω

2π

2|A|2 cosωt
eβω − 1

|gout(rm) +Bgin(rm)|2. (5.125)

Finally, after a little algebra we arrive at the expression for displacement squared,

s2i (t) ≡ 〈: [xi(t)− xi(0)]
2 :〉 = 4

π

∫ ∞

0

dω|A|2 sin
2 ωt/2

eβω − 1
|gout(rm) +Bgin(rm)|2. (5.126)

With the general formalism in place, we are now in a position to take up the problem of an-

alyzing Brownian motion in an anisotropic strongly coupled plasma from the holographic

point of view.
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Brownian motion along anisotropic direction

To analyze Brownian motion along the anisotropic direction our first task will be to solve

Eq. 5.104a in the asymptotic limit. To achieve this, we recast Eq. 5.104a making use of

Eq. 5.111 as,

ν2g(y) +
F
√
B

H ∂y

(√
BHFy4g′(y)

)

= 0. (5.127)

Inserting the explicit expressions of the various functions, this can be written as,

g′′(y) + 4
y3

y4 − 1

[

1 + ã2Ψ(y)
]

g′(y) +
y4ν2

(y4 − 1)2
[

1 + ã2Υ(y)
]

g(y) = 0 (5.128)

where

Ψ(y) =
1

96y4(y4 − 1)

[

3− 9y2 − 23y6 + y4(29 + 40 log 2)− 40y4 log

(

1 +
1

y2

)]

Υ(y) =
1

24(y4 − 1)

[

6− 6y2 + 20 log 2− 5(3 + y4) log

(

1 +
1

y2

)]

.

(5.129)

We need to find a solution to this equation. However, as it turns out, obtaining an analytic

solution is a notoriously difficult problem for any arbitrary frequency ν. To circumvent

this difficulty we work only in the low frequency approximation and then attempt to solve

the equation by the ‘matching technique’. Since we only require the solution near the

boundary, we just give here the expression of the required solution. The interested reader

is referred to appendix for the details of the solution. We shall have two solutions corre-

sponding to the ingoing and the outgoing waves

gout/in = kout/in
1

[

1 +
ν2

2y2
+O

(

1

y4

)]

+ kout/in
3

[

1

y3
+O

(

1

y5

)]

(5.130)

where
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kout/in
1 =1∓ iν

8
(π − 2 log 2)± iνã2

768

[

28− 16β(2)− 20(log 2)2

+π(−8 + π + 14 log 2) + 8 log 2] +O(ν2)

kout/in
3 =∓ iν

3
(1 +

ã2

4
log 2) +O(ν2)

(5.131)

where β(s) is the Dirichlet beta function given by β(s) =
∞
∑

n=0

(−1)n

(2n+1)s
and β(2) ∼ 0.915966.

We find that the relation, gout = gin∗, obtained earlier in the near-horizon analysis, contin-

ues to hold true in the asymptotic limit. We can now use these solutions, supplemented

by the appropriate boundary conditions to find out various quantities of interest. How-

ever, before going into the intricacies of the actual computation, let us digress a little bit

to clarify the boundary conditions involved in the problem. Although we are interested in

the world-sheet theory of the probe string, the choice of the static gauge implies that the

characteristics of the background space-time is encoded in the induced metric. Hence, we

can exploit the rules of the AdS/CFT correspondence to understand the boundary condi-

tions. When working in the Lorentzian AdS/CFT it is customary to choose normalisable

boundary conditions [126] for the modes. In the present scenario this amounts to pushing

the boundary all the way up to y → ∞. However, the AdS/CFT dictionary tells us that the

radial distance is mapped holographically to the mass of the probe quark so that placing

the boundary at y → ∞ essentially means that we are considering our probe quark to be

infinitely massive. Of course, this at once rules out any possibility of the quark undergoing

Brownian motion. The problem can be solved if, instead, we impose a UV cut-off in our

theory. More specifically, we introduce a UV cut-off surface and identify it with the bound-

ary where the gauge theory lives. In fact, this is exactly the location of the flavor brane ym

to which the end-point of the string is attached. The relation between the position of the

UV cut-off and the mass of the probe can be read off easily as,
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m =
1

2πα′

∫ rm

rh

dr
√−gttgrr =

1

2πα′

[

ym − 1 +
ã2

24
(log 2− 3π)

]

(5.132)

and the world-sheet metric elements gtt, grr are written for the classical string configura-

tion, i.e., omitting the contribution arising out of the fluctuations. On this surface we can

impose Neumann boundary condition, ∂rXi = 0. One can not impose Dirichlet condition

since it implies no fluctuation on the boundary at all. However, this works only when we

consider the free Brownian motion of the particle in the absence of any external force. In

the case of forced motion this is modified to,

Πy
i

∣

∣

∂Σ
≡ ∂L

∂X ′
i

= Ki = K
(0)
i e−iωt (5.133)

where we have assumed a fluctuating external force. Now the general solution Xi is a linear

combination of the outgoing and the ingoing modes at the horizon,

Xi = AoutXout
i + AinX in

i . (5.134)

where Xout/in
i = e−iωtgout/in and gout/in is given in Eq. 5.130. In the semi-classical approxi-

mation the outgoing modes are thermally excited by the Hawking radiation emanating from

the black hole whereas the ingoing modes can be arbitrary. Since the Hawking radiation

is a random phenomena the phase of Aout takes random values and and its average 〈Aout〉

vanishes. So we can omit the first term in Eq. 5.134 and consider only the ingoing wave.

When one plugs in the form of the Lagrangian in Eq. 5.133 one finds that, like the equa-

tions of motion, the boundary conditions along the anisotropic direction and the isotropic

directions decouple which allows us to treat each direction separately. Coming back to
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the particular case of the anisotropic direction, the boundary condition given in Eq. 5.133

assumes the form,

1

2πα′HF
√
By4r3hX ′

3

∣

∣

y=ym
= K3 = K

(0)
3 e−iωt. (5.135)

This yields

Ain =
2πα′K

(0)
3

HF
√
By4r3hg′(y)

∣

∣

∣

∣

∣

y=ym

. (5.136)

where g(y) represents the ingoing solution in Eq. 5.130. So, on the boundary the average

position of Brownian quark is given by,

〈x3(t)〉 = 〈X3(t, ym)〉 = K
(0)
3 e−iωt 2πα′g

HF
√
By4r3hg′

∣

∣

∣

∣

∣

y=ym

. (5.137)

The average momentum is,

〈p3(t)〉 = m〈ẋ3〉 = −K3
2iπα′mνg

HF
√
By4r2hg′

∣

∣

∣

∣

∣

y=ym

. (5.138)

Comparison with Eq. 5.90 results in,

µ||(ν) ≡ µ(3)(ν) = − 2iπα′mνg

HF
√
By4r2hg′

∣

∣

∣

∣

∣

y=ym

. (5.139)

Here we have used the superscript “||” to denote quantities along the anisotropic direction

(the x3 direction). Reinstating the expressions for the various functions and expanding

up to O(ã2) in the low frequency regime we obtain the relaxation time for heavy quark

diffusing along the anisotropic direction,
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µ||(0) = t
||
relax =

2m

π
√
λT 2

[

1− a2

24π2T 2
(2 + log 2)

]

(5.140)

from which one gets the drag coefficient along the anisotropic direction

γ||[0] =
π
√
λT 2

2m

[

1 +
a2

24π2T 2
(2 + log 2)

]

= γiso

[

1 +
a2

24π2T 2
(2 + log 2)

]

(5.141)

where γiso represents the drag coefficient when the quark moves in an isotropic SYM

plasma. Here we have used the standard AdS/CFT dictionary, R4 = (α′)2λ with R = 1

in our convention. Our expression for the friction coefficient γ|| matches exactly with that

obtained in [127] in the non-relativistic limit v ≪ 1 along the anisotropic direction. Note

that the drag force increases compared to its isotropic counterpart when the quark moves

along the anisotropic direction.

Next we turn towards computing the displacement squared for the Brownian particle from

which we can extract the expression for the diffusion constant D||. We have already pro-

vided a generic expression for s2i in Eq. 5.126. The details of the calculation will depend

upon the background metric. Let us again return to the boundary condition Eq. 5.133, but

now with the gauge fields turned off. Eq. 5.133 then reads for the anisotropic direction,

∂L
∂X ′

3

=
1

2πα′HF
√
By4r3hX ′

3

∣

∣

∣

∣

y=ym

= 0 (5.142)

which translates to X ′
3 = 0 at the boundary. The fluctuations Xi(t, y) can be expressed as

a sum of the outgoing and the ingoing modes as,

Xi(t, y) = A[gout(y) +Bgin(y)]e−iωt. (5.143)
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It then easily follows that, X ′
3 = 0 implies

B = −gout′

gin′

∣

∣

∣

∣

y=ym

= 1 +O(ν) (5.144)

which gives,

|gout(ym) +Bgin(ym)|2 = 4 +O(ν). (5.145)

Using Eqs. 5.119 and 5.145 in Eq. 5.126 one then has,

s23 =
4t

πT
√
λ

[

1− a2

24π2T 2
(2 + log 2)

]

. (5.146)

Hence, the diffusion constant along the anisotropic direction is,

D|| =
2

πT
√
λ

[

1− a2

24π2T 2
(2 + log 2)

]

=
T

mγ|| . (5.147)

This is nothing but the Einstein-Sutherland relation (Eq. 5.83) mentioned earlier. We have

thus performed an explicit verification of the relation from the bulk point of view.

Finally, we proceed to verify the fluctuation-dissipation theorem for which we need to

know the random force correlator. First of all, we compute the two-point correlator of the

momentum along the i-th direction,

〈: pi(t)pi(0) :〉 ≡ −m2∂2
t 〈: xi(t)xi(0) :〉

=

∫ ∞

0

dω

2π

2m2ω2|A|2 cosωt
eβω − 1

|gout(ym) +Bgin(ym)|2.
(5.148)

Invoking the Wiener-Khintchine theorem (Eq. 5.96), and the expression for A (Eq. 5.119)

and specialising to the anisotropic direction we find,
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Ip3(ω) = 4
m2π

r2hα
′H(y = 1)β

βω

eβω − 1
. (5.149)

Expanding in ω and keeping only the leading order term one has

Ip3(ω) =
4m2

√
λπT

(

1 +
a2

24π2T 2
(5 log 2− 2)

)(

1− a2

4π2T 2
log 2

)

+O(ω). (5.150)

Now, the Langevin coefficient along the direction of anisotropy is

κ|| = IR3 =
Ip3(ω)

|µ||(ω)|2

= 2mT
π
√
λT 2

2m

[

1 +
a2

24π2T 2
(2 + log 2)

]

= 2mTγ||

= κiso

[

1 +
a2

24π2T 2
(2 + log 2)

]

(5.151)

(where κiso is the Langevin coefficient in isotropic plasma) which is nothing but the state-

ment of the fluctuation-dissipation theorem. We thus observe that the strength of the auto-

correlator along the anisotropic direction increases in the presence of anisotropy. Thus, we

explicitly check the validity of the fluctuation-dissipation theorem for a heavy test quark

executing Brownian motion in a strongly coupled, anisotropic plasma when the fluctuations

are aligned with the direction of anisotropy.

Brownian motion transverse to the anisotropic direction

Next we discuss the case of Brownian motion in the isotropic plane. For definiteness, we

take the motion to be along X1 direction. The calculations in this case proceeds in almost

the same way as in the preceding case. As is evident upon comparing Eqs. 5.104a and

5.104b the equation of motion in the isotropic direction can be simply obtained by setting
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Langevin equation,

ṗi(t) = −
∫ t

−∞
dt′γ(i)(t− t′)pi(t

′) +Ri(t) +Ki(t). (5.85)

Note that now the history of the particle is encoded in the function γ(t − t′) and we have

also included the possibility of an external force impressed upon the particle through the

term Ki(t). Ri(t) now obeys,

〈Ri(t)〉 = 0, 〈Ri(t)Ri(t
′)〉 = κ(i)(t− t′). (5.86)

At this stage it is convenient to go over to the Fourier space representation of the general-

ized Langevin equation

pi(ω) =
Ri(ω) +Ki(ω)

−iω + γ[ω]
(5.87)

where pi(ω), Ri(ω) and Ki(ω) are the Fourier transforms of pi(t), Ri(t) and Ki(t) respec-

tively, i.e.,

pi(ω) =

∫ ∞

−∞
dt pi(t)e

iωt (5.88)

and so on. On the other hand, causality restricts γ(t) = 0 for t < 0 so that γ[ω] is the

Fourier-Laplace transform

γ[ω] =

∫ ∞

0

dtγ(t)eiωt. (5.89)

Upon taking statistical average in Eq. 5.87, one finds,

〈pi(ω)〉 = µ(i)(ω)Ki(ω) (5.90)

where we have made use of Eq. 5.86.



5.5. HEAVY QUARK DYNAMICS IN ANISOTROPIC BACKGROUND 173

H = 1 in the anisotropic case. This can also be understood by looking at the metric in Eq.

5.11. So we shall be brief in our discussion here. The equation to solve is

ν2g(y) + F
√
B∂y

(√
BFy4g′(y)

)

= 0 (5.152)

which can be recast as,

g′′(y) + 4
y3

y4 − 1

[

1 + ã2Ψ̃(y)
]

g′(y) +
y4ν2

(y4 − 1)2

[

1 + ã2Υ̃(y)
]

g(y) = 0 (5.153)

where

Ψ̃(y) =
1

96y4(y4 − 1)

[

15− 21y2 − 11y6 + y4(17 + 40 log 2)− 40y4 log

(

1 +
1

y2

)]

Υ̃(y) =
1

24(y4 − 1)

[

6− 6y2 + 20 log 2− 5(3 + y4) log

(

1 +
1

y2

)]

.

(5.154)

As in the anisotropic version, here, too, we look for solutions by resorting to the matching

technique. Here we present only the final form of the solution in the asymptotic limit,

gout/in = k̃out/in
1

[

1 +
ν2

2y2
+O

(

1

y4

)]

+ k̃out/in
3

[

1

y3
+O

(

1

y5

)]

(5.155)

where

k̃out/in
1 =1∓ iν

8
(π − 2 log 2)∓ iνã2

768
[−80β(2)

+π(8 + 5π)− 4(7 + 2 log 2) + 10(π + 2 log 2) log 2] +O(ν2)

k̃out/in
3 =∓ iν

3
.

(5.156)
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We thus find that the y-dependence is the same as in the anisotropic counterpart, only the

coefficients k̃1 and k̃3 are different. Note that in particular, the coefficient k̃3 does not pick

up any contribution from anisotropy. The boundary condition now reads in the presence of

the gauge field on the boundary

1

2πα′F
√
By4r3hX ′

1

∣

∣

y=ym
= K1 = K

(0)
1 e−iωt (5.157)

which fixes the normalisation factor

Ain =
2πα′K

(0)
1

F
√
By4r3hg′

∣

∣

∣

∣

∣

y=ym

. (5.158)

One can now easily obtain expressions for the position and hence, the momentum of the

Brownian quark from which follows the expression for the admittance,

µ⊥(ν) = − 2iπα′νmg

F
√
By4r2hg′

∣

∣

∣

∣

∣

y=ym

(5.159)

with g(y) now being the ingoing solution in Eq. 5.155. Here we denote the direction trans-

verse to the anisotropic one as “⊥”. Reinstating the expressions for the various functions

and expanding upto O(ã2) in the low frequency domain we obtain the relaxation time for

fluctuations in the transverse plane.

µ⊥(0) = t⊥relax =
2m

π
√
λT 2

[

1 +
a2

24π2T 2
(5 log 2− 2)

]

(5.160)

from which one gets the drag coefficient along the isotropic direction
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γ⊥[0] =
π
√
λT 2

2m

[

1− a2

24π2T 2
(5 log 2− 2)

]

= γiso

[

1− a2

24π2T 2
(5 log 2− 2)

]

.

(5.161)

This expression for the friction coefficient γ⊥ in the isotropic direction agrees with that ob-

tained in [127] in the non-relativistic limit v ≪ 1. It is to be observed, that the isotropic di-

rection also picks up correction from anisotropy, i.e., even the isotropic plane can “feel” the

presence of anisotropy in the normal direction. Moreover, while the presence of anisotropy

increases the drag force along the anisotropic direction it leads to a suppression in the drag

force in the isotropic plane.

The computation for the displacement squared for the Brownian particle proceeds in ex-

actly similar fashion as in the previous case. Switching off the external field we impose the

free Neumann condition,

∂L
∂X ′

i

=
1

2πα′F
√
By4r3hX ′

1

∣

∣

∣

∣

y=ym

= 0 (5.162)

which translates to X ′
1 = 0 at the boundary that furnishes,

B = −gout′

gin′

∣

∣

∣

∣

y=ym

= 1 +O(ν) (5.163)

which implies,

|gout(ym) +Bgin(ym)|2 = 4 +O(ν). (5.164)

Using Eqs. 5.164 and 5.121 in Eq. 5.126 one then has,

s21 =
4t

πT
√
λ

[

1 +
a2

24π2T 2
(5 log 2− 2)

]

. (5.165)
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We can now easily read off the diffusion constant to be,

D⊥ =
2

πT
√
λ

[

1 +
a2

24π2T 2
(5 log 2− 2)

]

. (5.166)

A comparison of Eqs. 5.161 and 5.166 reveals the relation,

D⊥ =
T

mγ⊥ (5.167)

which verifies the validity of the Einstein-Sutherland relation in the isotropic plane.

Next we find the random force correlator κ⊥ along the isotropic direction. We have,

Ip1(ω) = 4
m2π

r2hα
′β

βω

eβω − 1

=
4m2

√
λπT

(

1 +
a2

24π2T 2
(5 log 2− 2)

)

+O(ω).

(5.168)

Now,

κ⊥ = IR1 =
Ip1(ω)

|µ⊥(ω)|2

= 2mT
π
√
λT 2

2m

[

1− a2

24π2T 2
(5 log 2− 2)

]

= 2mTγ⊥

= κiso

[

1− a2

24π2T 2
(5 log 2− 2)

]

.

(5.169)

Hence, we find that the fluctuation-dissipation theorem continues to hold true in the isotropic

plane too and also the random forces are less correlated in the isotropic plane due to the

presence of anisotropy in the perpendicular direction.
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5.6 Conclusion

Finally, we conclude with a brief review of the results obtained in the chapter. In the first

part, we found the velocity-dependent Q-Q̄ separation L and the Q-Q̄ potential V in a

strongly coupled, anisotropic SYM plasma at finite temperature via the gauge/string dual-

ity. The gauge theory we took is a deformation of N = 4 SYM theory whose gravity dual

has been proposed in [104, 105]. Barring the screening length Lmax in a special case, in

all other cases we presented numerical results. The general observation is that when we

turn on a small value of the anisotropy parameter ã, the screening length decreases and

the Q-Q̄ interaction becomes weaker so that the dipole becomes more prone to dissocia-

tion. We considered five different cases, depending upon the direction of velocity of the

dipole and the direction along which it is aligned. While the generic features are the same

in all the cases, the minute details vary from case to case. In particular, when the dipole

lies along the direction of anisotropy the effects are manifested more prominently in the

static case. However, for finite velocity v, it is the dipole moving along the anisotropic

direction that is affected the most. We also set the rapidity parameter η = 0 and recovered

the static Q-Q̄ separation and the static Q-Q̄ potential. In these cases, our observations are

consistent with those recently obtained in [107]. So our calculations suggest that in the

initial stages of QGP formation, presence of anisotropy can act as an agent for quarkonium

dissociation. Finally, we also compared the results obtained in this model vis-a-vis some

other models. In particular, all our results are remarkably similar with those obtained for

hot NCYM theory where the presence of non-commutativity can be seen as a source of

anisotropy. In the next stage we studied holographic Brownian motion of a non-relativistic

heavy probe quark in the same thermal medium. Our computation in the bulk theory in-

volved an explicit solution of the transverse fluctuation modes of the probe string in the
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low frequency regime along anisotropic as well as isotropic directions. The above restric-

tions were imposed to have an analytic handle upon the computations. One might try to

relax some of these restrictions, like considering general values of the parameter a/T . For

large values of a/T or, small values of T , the gravity background is known analytically and

one might try to perform a similar computation. However, in that regime of the parameter

space, quantum fluctuations will dominate over random fluctuations. For intermediate val-

ues of a/T no analytical results are available and one will have to fall back upon numerical

means right from the outset. It might also be possible that some of the results obtained in

this paper, get modified away from these limits we have considered. Hence, it might be

interesting to investigate Brownian motion in more general scenarios. In this context one

might refer to the recent paper [128], where the authors study relativistic Langevin diffu-

sion of a heavy quark in strongly coupled, anisotropic Yang-Mills plasma for both small

and large values of the anisotropy parameter. It is important to note that if we could pre-

cisely measure Brownian dynamics in the boundary, it would have been a very promising

step towards learning the quantum dynamics of black hole physics. However, that requires

the knowledge of non-perturbative gauge theory correlators which is beyond the scope of

this paper. In this work, using the holographic prescription, we have computed the drag

coefficient, the diffusion constant and the strength of the random force in low frequency as

well as non-relativistic limits. The expressions for the drag coefficient and the Langevin

coefficient along the anisotropic direction clearly signify an enhancement over the corre-

sponding isotropic counterparts. The fluctuations along the isotropic direction also respond

to the anisotropy in the bulk. As a result, in the boundary theory, we observe that both the

drag coefficient and the coefficient of auto-correlator take lower value compared to the

case of ordinary SYM plasma. We also find that even in the presence of anisotropy, the

fluctuation-dissipation theorem is still valid for random variation along both isotropic and
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anisotropic directions. Moreover, we compute the diffusion constant and reproduce the

Einstein-Sutherland relation in a holographic sense. We observe an interesting qualitative

agreement of our results with those obtained in the case of NCYM plasma. In [119] the

drag force, the diffusion constant and the Langevin coefficient were holographically com-

puted for strongly coupled NCYM theory. In the case of NCYM plasma, an unbroken

SO(2) symmetry is confined to the non-commutative plane whereas for spatially deformed

anisotropic SYM plasma, the unbroken SO(2) symmetry lives on the isotropic plane (x1-x2

plane). Therefore, it is reasonable to compare the result in the isotropic plane in the present

work with the NCYM result. Within the small anisotropy approximation, it is observed that

in both cases, the drag force coefficient is weaker than the one computed in the context of

ordinary SYM plasma. This observation is also true for the relevant Langevin coefficient.

It is important to check the validity of this comparison for arbitrary strength of anisotropy.

However, this is beyond the scope of analytic computation and is left for a future work.



CHAPTER 6

EPILOGUE

In this concluding chapter we summarize the main results of the thesis. The primary goal

of the present thesis was to investigate the effects of anisotropy upon various heavy quark

observables in quark-gluon plasma that may be relevant to heavy ion collisions. Recently,

there has accumulated a large body of experimental findings indicating that the plasma

produced in the collider is dominated by strong coupling effects. This requires that our

formalism to probe the plasma should be reliable at strong coupling. This made us take re-

course to the gauge/string duality which is tailor-made to suit strong coupling situations. In

particular, we focused on those issues where we expect the duality to provide precious in-

formation in the strongly coupled regime where perturbative tools may not work well. We

examined two specific models of anisotropic plasma - in one model anisotropy is sourced

by the presence of space-space non-commutativity while in another model anisotropy is

achieved by deforming its isotropic version via a topological term. Most of our analysis was

based upon computing the expectation values of various types of Wilson loops in the gauge

theory, which, by the gauge/string dictionary is mapped to evaluating the string world-
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sheet action supplemented by proper boundary conditions. As a warm-up exercise we thus

evaluated expectation values of Wilson loops in (p + 1)-dimensional N = 4 super Yang-

Mills theory at finite temperature and strong ’t Hooft coupling from which we could extract

information about the heavy quark potential, the screening length and the jet quenching.

Then in the non-commutative Yang-Mills theory we studied the heavy quark potential, the

jet quenching and the screening length. An added motivation to consider non-commutative

theories was to explore the possibility if any signature of non-commutativity can be ob-

tained in the present day collider experiments. To this end we also made some estimates

of the correction picked up by the jet quenching parameter due to non-commutativity and

concluded that at the energy scale reached in the current collider experiments the pres-

ence of non-commutativity, if any at all, can not be detected. In the deformed Yang-Mills

theory we studied the quarkonia potential for various orientations of the dipole with re-

spect to the direction of anisotropy and also the stochastic motion of a heavy quark which

supplied information about the drag force, the diffusion coefficient and the random force

auto-correlator. Quite intriguingly, it was found that the effects of anisotropy are qualita-

tively very similar on the bound state potential and the drag force in both these models.

This is an important step forward towards our understanding of anisotropic QGP since in

the absence of a string dual to real world QCD the toy models are our best source of infor-

mation about the strongly coupled domain of QGP.

As a concluding note, let us also point to some future directions based on the work done

in the thesis. In p-p collisions, a large fraction of the observed yield of J/Ψ mesons arises

from the production of excited states, Ψ′ and χc, which subsequently decay to J/Ψ. In a

nucleus-nucleus collision, one expects the suppression of the excited states to be triggered

at a lower temperature since they are larger in size than the ground state J/Ψ. In fact, it

has been even proposed that the observed suppression of the J/Ψ mesons at RHIC and at
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the SPS may arise solely from the dissociation of the more loosely bound Ψ′ and χc states,

with the J/Ψ’s themselves remaining bound in the quark-gluon plasma produced [44]. Ir-

respective of whether this proposal is correct or not, it is clear that in the absence of separate

measurements of the production of the excited states, any conclusions about the observed

J/Ψ suppression require careful modeling of, and inferences about, the contribution of the

decays of excited states. An interesting line of research can be to study the decay of ex-

cited states. A distinguishing feature of the excited states is that they are endowed with

a non-zero angular momentum. Holographically, such states can be realized via rotating

strings where the rotation imparts a non-zero angular momentum to the string and hence

the quark-antiquark pair.

We had mentioned earlier that in the time domain that we focus upon the plasma is anisotropic

but in equilibrium. An obvious question that crops up is what happens when the plasma is

away from equilibrium. While recently there have been advances in studying the far-from-

equilibrium dynamics of the plasma, an important issue to answer is how the presence of

anisotropy affects this temporal evolution.

While we have found tantalizing similarities between the effects of anisotropy upon var-

ious quantities computed in the two models of anisotropic plasma, this is not enough to

establish the existence of a universality class. To make any robust statement along such

lines, one needs to see how far these similarities survive while computing other quantities

of interest. In the same spirit it is also necessary to see if these qualitative features hold

in other holographic models of anisotropic plasma. Exploring these issues can make for

interesting topics of future studies.

Another line of progress will be to try to understand the effects of anisotropy in more de-

tail. The possibility of the presence of a sizable anisotropy has prompted developing field-

theoretic models of anisotropic hydrodynamics. A very important as well as interesting
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direction of research will be to try to study anisotropic hydrodynamics in the framework of

the gauge/string duality. A possible starting point can be to borrow the idea of fluid/gravity

correspondence [129, 130] and try to generalize to the anisotropic scenario. While this

will be highly challenging, nevertheless, it is worthwhile to attempt such a study as it can

potentially teach us valuable lessons on anisotropic hydrodynamics from a holographic

perspective. Once such a model is in place a possible avenue of future explorations will

be to study the signatures of QGP like quarkonia melting, heavy quark energy loss, excess

photon and dilepton production, etc. in such a hydrodynamic model.

It is hoped that pursuing these lines of investigation can hopefully teach us important

lessons about strongly coupled QGP and empower us to obtain a better understanding of

the rich physics underlying QCD.



APPENDIX A

SOLUTION ALONG ANISOTROPIC

DIRECTION

In this appendix we present the details of the solution (Eq. 5.130). We employ the so-called

matching technique. The solution to Eq. 5.128 is extremely difficult to obtain analytically

for any frequency. To make the problem tractable we focus only on the behavior of the

solution in the low frequency domain. In this frequency domain we resort to the matching

technique whereby we find the solutions in three different regimes and then match these

solutions to leading order in the frequency at the interface of two domains. To be more

specific, we find solutions to Eq. 5.128 in the following three limiting cases: (A) Near

the horizon, i.e., y → 1 for arbitrary frequency and then take the low frequency limit. (B)

Throughout the bulk (i.e., arbitrary y) but for low frequency ν ≪ 1 and then take the near-

horizon limit. We match this solution with the low frequency limit of the solution obtained

in (A). Finally, in (C) we solve the equation in the asymptotic limit (y → ∞) for arbitrary

ν. Then taking the low frequency limit we match it with the solution of (B). Below we
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elucidate the details of the solutions for each regime.

A.1 Near-horizon limit

In this regime we solve Eq. 5.128 near the horizon, i.e., in the limit y → 1 whence, Eq.

5.128 simplifies to,

g′′A(y) +
1

y − 1
g′A(y) +

ν2

16(y − 1)2

[

1 +
ã2

24
(5 log 2− 2)

]

gA(y) = 0. (A.1)

This has a solution,

gA(y) = Aout(y − 1)
iν
4

[

1− ã2

48
(5 log 2−2)

]

+ Ain(y − 1)
− iν

4

[

1− ã2

48
(5 log 2−2)

]

(A.2)

where the coefficients Aout/in correspond to outgoing and ingoing modes respectively. We

normalize these modes according to Eq. 5.114 and expand for low frequencies to obtain,

gout/in
A (y) ∼ 1± iν

4
log(y − 1)

[

1− ã2

48
(5 log 2− 2)

]

+O(ν2). (A.3)

A.2 Low frequency limit

Next we attempt to solve Eq. 5.128 in the low frequency limit but for arbitrary y, i.e.,

throughout the bulk. We can perform a series expansion in powers of ν to write the solution

in the generic form,

gB(y) = g0(y) + νg1(y) + ν2g2(ν) + .... (A.4)
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Inserting this ansatz in Eq. 5.128, setting the coefficient of each power of ν to zero and

solving the resulting equations we can find g0, g1, g2. At the zeroth order, the equation to

solve is,

g′′0(y) +
4y3

y4 − 1

[

1 + ã2Ψ(y)
]

g′0(y) = 0 (A.5)

with Ψ(y) being given in Eq. 5.129. The solution to the equation for general y is quite

complicated and is given by,

g0(y) =
1

2
C1(tan

−1 y + tanh−1 y) + C2 +
ã2

768(y4 − 1)
C1

{

− 16y + 16y3 + 80y log 2

+ log

(

1 +
1

y2

)

(−80y − 51(y4 − 1) log(1− y)− 9(y4 − 1) log(y − 1)

+ 60(y4 − 1) log(1 + y))− (y4 − 1)

[

log(y − 1)
[

− 17− 9 log

(

1 +
1

y2

)

]

+ log(1− y)(25 + 102 log y + 17 log(y2 + 1))

− 8(1 + 17 log y) log(1 + y)− 8 log(y2 + 1) log(1 + y)

+ 4 log(−i+ y)
[

2i log(1− iy) + 2 log

(

i
y + 1

y − 1

)

− i log(4(−i+ y))
]

+ 4 log(i+ y)
[

− 2i log(1 + iy) + 2 log

(

i
y + 1

1− y

)

+ i log(4(i+ y))
]

]

− 8(y4 − 1) tanh−1 y(15 log 2 + 17 log(1 + y2))

+ 8(y4 − 1) tan−1 y(4− 15 log 2 + 4 log y)

+ 8(y4 − 1)

[

2Li2(1− y)− iLi2

(

1

2
(1 + iy)

)

+ 2Li2(−y)− 2iLi2(−iy)

+ 2iLi2(iy)− Li2

(

1

2
(−1 + i)(y − i)

)

+ Li2

(

1

2
(1 + i)(−i+ y)

)

− Li2

(

1

2
(−1− i)(i+ y)

)

+ iLi2

(

1

2
(1− iy)

)

+ Li2

(

1

2
(1− i)(i+ y)

)]

}

+O(ã4)

(A.6)
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with C1 and C2 being the constants of integration and Lin(z) is the Polylogarithm function.

Upon taking the near-horizon limit it reduces to ∗

g0(y) = C2 + C1

[(

1

8
− i

4

)

π +
log 2

4
− log(y − 1)

4

]

+
ã2C1

2304
[84− 48β(2) + (24− 75i− π)π − 90(1− 2i)π log 2

−204(log 2)2 + 24 log 2− 24 log(y − 1) + 204 log 2 log(y − 1)
]

.

(A.7)

Upon comparison with Eq. A.3 we can extract the coefficients C1 and C2 as,

C1 = 0, C2 = 1 (A.8)

for both outgoing and ingoing waves. Next we proceed to find g1(y). Now note that

g1(y) satisfies the same equation as g0 and so has the same solution (Eqs. A.6 and A.7)

albeit with different constants of integration, but now the matching has to be done with the

coefficient of ν in Eq. A.3. Replacing C1 and C2 in Eq. A.7 with C̃1 and C̃2 respectively

and comparing with Eq. A.3 we can extract the constants for both outgoing and ingoing

waves as

C̃out/in
1 = ∓i

[

1 +
ã2

4
log 2

]

+O(ã4),

C̃out/in
2 = ±

(

1

4
+

i

8

)

π ± 1

4
i log 2∓ i

ã2

2304
[−84 + 48β(2)− (24− 75i− π)π

+ (18(1− 2i)π + 60 log 2− 24) log 2] +O(ã4).

(A.9)

∗While taking the near-horizon limit we have let y → 1 + ǫ and used the following expansion

Lin (z + (a+ ib)ǫ) = Lin (z) + ǫ
a+ ib

z
Lin−1 (z) +O(ǫ2)
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The constants so evaluated can now be used in the full solution for gB(y) and not just in

the near-horizon limit (the restriction to low frequency regime still holds, though), which

now reads

gB(y) = 1 + ν

[

1

2
C̃1(tan

−1 y + tanh−1 y) + C̃2

]

+
νã2

768(y4 − 1)
C̃1

{

− 16y + 16y3

+ 80y log 2 + log

(

1 +
1

y2

)

(−80y − 51(y4 − 1) log(1− y)− 9(y4 − 1) log(y − 1)

+ 60(y4 − 1) log(1 + y))− (y4 − 1)

[

log(y − 1)
[

− 17− 9 log

(

1 +
1

y2

)

]

+ log(1− y)(25 + 102 log y + 17 log(y2 + 1))

− 8(1 + 17 log y) log(1 + y)− 8 log(y2 + 1) log(1 + y)

+ 4 log(−i+ y)
[

2i log(1− iy) + 2 log

(

i
y + 1

y − 1

)

− i log(4(−i+ y))
]

+ 4 log(i+ y)
[

− 2i log(1 + iy) + 2 log

(

i
y + 1

1− y

)

+ i log(4(i+ y))
]

]

− 8(y4 − 1) tanh−1 y(15 log 2 + 17 log(1 + y2))

+ 8(y4 − 1) tan−1 y(4− 15 log 2 + 4 log y)

+ 8(y4 − 1)

[

2Li2(1− y)− iLi2

(

1

2
(1 + iy)

)

+ 2Li2(−y)− 2iLi2(−iy)

+ 2iLi2(iy)− Li2

(

1

2
(−1 + i)(y − i)

)

+ Li2

(

1

2
(1 + i)(−i+ y)

)

− Li2

(

1

2
(−1− i)(i+ y)

)

+ iLi2

(

1

2
(1− iy)

)

+ Li2

(

1

2
(1− i)(i+ y)
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}

+O(ã4).

(A.10)
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Next we can take the asymptotic limit of the full solution to arrive at,

gout/in
B ∼1∓ iν

8
(π − 2 log 2)

± iνã2

768

[

28− 16β(2)− 20(log 2)2 + π(−8 + π + 14 log 2) + 8 log 2
]

+O(ν2)

∓ 1

y3

[

iν

3

(

1 +
ã2

4
log 2

)

+O(ν2)

]

+O(1/y4).

(A.11)

A.3 Asymptotic limit

Finally, we are to solve Eq. 5.128 in the asymptotic limit, i.e., near the boundary where the

gauge theory lives. We attempt a power series in the form,

gC(y) = k0 + k1/y + k2/y
2 + k3/y

3. (A.12)

It turns out that only the constants k0 and k3 are independent and the solution assumes the

form,

gC(y) = k0

[

1 +
ν2

2y2
+O(1/y4)

]

+ k3

[

1

y3
+O(1/y5)

]

. (A.13)

Matching the coefficients with Eq. A.11 in the low frequency limit furnishes the two unde-

termined constants k0 and k3 as follows,

kout/in
0 =1∓ iν

8
(π − 2 log 2)

± iνã2

768

[

28− 16β(2)− 20(log 2)2 + π(−8 + π + 14 log 2) + 8 log 2
]

+O(ν2)

kout/in
3 =∓

[

iν

3

(

1 +
ã2

4
log 2

)

+O(ν2)

]

.

(A.14)

The final result is then given in Eq. 5.130.
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