


BLACK HOLES IN LOOP QUANTUM GRAVITY -

ENTROPY, THERMAL STABILITY AND ENERGY

SPECTRUM

By

ABHISHEK MAJHI

PHYS05200904005

Saha Institute of Nuclear Physics, Kolkata

A thesis submitted to the

Board of Studies in Physical Sciences

In partial fulfillment of requirements

for the Degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

October, 2014





STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced

degree at Homi Bhabha National Institute (HBNI) and is deposited in the Library to be made

available to borrowers under rules of the HBNI. Brief quotations from this dissertation are

allowable without special permission, provided that accurate acknowledgement of source is

made. Requests for permission for extended quotation from or reproduction of this manuscript

in whole or in part may be granted by the Competent Authority of HBNI when in his or

her judgment the proposed use of the material is in the interests of scholarship. In all other

instances, however, permission must be obtained from the author.

Abhishek Majhi



List of Publications arising of the

Thesis

1. A. Majhi and P. Majumdar, Class. Quant. Grav. 29 (2012) 135013; arXiv:1108.4670

2. A. Majhi, Class. Quant. Grav. 30 (2013) 055001, arXiv:1112.3457

3. A. Majhi and P. Majumdar, Class. Quant. Grav. 31 (2014) 195003, arXiv:1301.4553

4. A. Majhi, Class. Quant. Grav. 31 (2014) 095002, arXiv:1205.3487v2

5. A. Majhi, Phys. Rev. D88 024010 (2013), arXiv:1303.4829

6. A. Majhi, Energy Spectrum of equilibrium Black Holes, arXiv:1303.4832

Abhishek Majhi

http://arxiv.org/abs/1108.4670
http://arxiv.org/abs/1112.3457
http://arxiv.org/abs/1301.4553
http://arxiv.org/abs/1205.3487
http://arxiv.org/abs/1303.4829
http://arxiv.org/abs/1303.4832


DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by me. The

work is original and has not been submitted earlier as a whole or in part for a degree / diploma

at this or any other Institution / University.

Abhishek Majhi



DEDICATION

This thesis is dedicated to my dear parents – Mr. Susanta Kumar Majhi and Mrs. Malina

Majhi, to my wife – Mrs. Amrita Majumder, to the person who transfigured me as a human

being – Prof. Parthasarathi Majumdar, to Late Mr. Mrinmoy Mitra who inspired me during

my school days, to Mr. Arun Kumar Mukhopadhyay who motivated me during my college

days.



ACKNOWLEDGEMENTS

First of all, I want to express my sincere gratitude to my thesis supervisor Prof. Parthasarathi

Majumdar for giving me immense freedom in my research work, for offering me his vast wealth

of knowledge and experience through numerous lengthy and fruitful discussions throughout

my Ph.D. years and of course, most importantly for providing me moral and spiritual support

whenever I needed it during the odds.

I want to thank Prof. Debades Bandyopadhyay for being my official thesis advisor in

Saha Institute of Nuclear Physics. I want to thank all my colleagues in Saha Institute of

Nuclear Physics for being so nice to me during my stay in the institute – especially, Prof.

Pijushpani Bhattecherjee, Prof. Debasish Majumdar and Prof. Ambar Ghosal. I owe many

thanks to Dr. Srijit Bhattecherjee, Chandrachur Chakraborty, Dr. Partha Pratim Pradhan,

Atanu Kumar and Avirup Ghosh for spending with me some of their precious time for the

academic interactions that I had with them at different times. I want to thank Prof. Romesh

Kaul for the academic support that he provided me. I also want to thank all my friends in

Saha Institute of Nuclear Physics of the Post M.Sc. batch 2009 for helping me in numerous

issues during my stay at the institute.

It am grateful to Prof. Parthasarathi Mitra for being my mentor for a review project on

Entropic Gravity, which ultimately enabled me to get the chance to opt for doing research on

black hole physics.

Finally, I want to thank my parents for supporting me to pursue my research career. Last

but not the least, I want to express my sincere gratitude to my wife, Mrs. Amrita Majumder,

for standing by me during all odds.



Contents

1 Synopsis 1

2 Introduction 10

3 Microcanonical Entropy of Black Hole Horizon in LQG : A Paradigm Shift

and its Consequences 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 The Hilbert Space and Physical Chern-Simons states of the QIH . . . . . . . . . 15

3.2.1 Multinomial Expansion : The Link . . . . . . . . . . . . . . . . . . . . . 18

3.3 Microcanonical Ensemble with fixed number of punctures . . . . . . . . . . . . . 19

3.4 Microcanonical Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 The Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Bound on γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Constrained kinematical Hilbert space . . . . . . . . . . . . . . . . . . . 28

3.5.2 Local vs Asymptotic Views . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.3 Covariant Entropy Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.4 An estimate of the bound on γ . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.5 Commentary on the boundedness of γ . . . . . . . . . . . . . . . . . . . 31

3.6 Freeing γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Thermal Stability Analysis of Charged, Non-rotating Black Holes 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



4.2 Thermal Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Horizon Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Quantum Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.3 The Partition Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Stability Against Gaussian Thermal Fluctuations . . . . . . . . . . . . . . . . . 43

4.3.1 Saddle Point Approximation(S.P.A.) . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Quantum Corrected Surface Gravity . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.4 The Classical Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Validity of S.P.A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Reissner-Nordstrom black hole . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.2 AdS Reissner-Nordstrom black hole . . . . . . . . . . . . . . . . . . . . . 48

4.5 A General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 A local observer perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6.1 Energy Spectrum of QIH . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6.2 Thermodynamics of QIH . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6.3 Thermal Fluctuations in Canonical Ensemble . . . . . . . . . . . . . . . 58

4.6.4 Few remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Energy Spectrum of Equilibrium Black Holes in LQG : Model Hamiltonian 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Beginning from the quantum theory . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 The area operator revisited : Some crucial observations . . . . . . . . . 62

5.2.2 Area spectrum and Hilbert space of QIH : Punctures are the building

blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 Proposal of the model Hamiltonian . . . . . . . . . . . . . . . . . . . . . 66

5.2.4 Spectrum of the Hamiltonian operator . . . . . . . . . . . . . . . . . . . 67

5.3 Compatibility with the Classical Results . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Fixation of the model by matching with the classical results . . . . . . . 68



5.3.2 Fixing the unknown coefficients . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.3 Fixing the other parameters . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Outlook and Future Directions 76



List of Figures

3.1 The plot shows the variation of λ with k/N for the solution of λ with the ‘+’ sign in

eq.(3.29). It is quite clear that the value of λ has a discontinuity at k/N = 1 and has

positive values only for k/N > 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 In the plot of eσ as a function of λ, the coordinates of the marked point in the

graph are (1.200, 1.000). Therefore, one can conclude that eσ < 1 ⇒ σ < 0

for λ > 1.200. Since γ = λ(k/N)/2π, we obtain the required bound on the BI

parameter i.e. γ > 0.191. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



Chapter 1

Synopsis

In modern day literature an equilibrium black hole horizon is modeled as an isolated horizon

(IH) [1, 2]. IHs generalize the notion of stationary event horizons by incorporation of radiation

in their vicinity which makes the ambient spacetime non-stationary. They therefore provide a

completely local description of black hole horizons, in contrast to the globally defined notion of

event horizons. The zeroth and the first laws of black hole mechanics are completely realizable

in this local framework. Consequently, the thermodynamics of such horizons depends crucially

on the boundary conditions defining IH rather than the specific spacetime metric in the bulk.

Although the thermodynamics of a system is described in classical terms, the foundations lie

deep inside the underlying quantum structure and the corresponding statistical physics of the

relevant system. Hence, the knowledge of the quantum theory of a system forms the basis of

our understanding of the origin of the thermodynamic phenomena manifested by the system.

This is not an exception as far as IH thermodynamics is concerned. In loop quantum grav-

ity (LQG), which is arguably a strong candidate of the nonperturbative quantum theory of

gravity, the structure of a quantum isolated horizon (QIH) is depicted as an IH punctured

by the edges of the spin network graphs which span the bulk quantum geometry. This quantum

structure of the IH enables us to apply the statistical mechanical tools in the context of equi-

librium black holes to explore the corresponding thermodynamic consequences. We emphasize

that this QIH framework is background independent and generic, which does not refer to any

particular known classical black hole spacetime metric.
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Usually the microcanonical entropy of an IH used to be calculated for a fixed classical

area and arbitrary number of punctures[13, 14]. The recent proposal in ref. [15] where

an energy spectrum proportional to the area is used based on semiclassical gleanings, has an

added feature : the notion of the number of punctures of a QIH represented as a ‘quantum

hair’. The issue is whether such a characterization of a QIH can be obtained directly from the

quantum Chern-Simons(CS) theory governing the dynamics of the horizon. In the second

chapter of the thesis, we deal with the analysis of the derivation of the microcanonical entropy

directly from the quantum statistics of the QIH in the light of the recently proposed idea of

‘quantum hair’[15] and its corresponding consequence on the fate of the Barbero-Immirzi(BI)

parameter(γ). The classical phase space analysis of the IH reveals that there is a three (2+1)

dimensional CS theory on it [1] and the quantum degrees of freedom of the QIH are that of

the CS theory coupled to the punctures (which act as sources ) made by the bulk spin network

on the IH. Thus, the QIH framework provides us with the self contained quantum mechanical

structure of an equilibrium black hole horizon, based on which we can implement the statistical

mechanical tools to unravel the thermodynamical consequences. As far as the calculation of the

microcanonical entropy of a QIH is concerned, the microstates have been usually counted for

fixed classical area only (or equivalently the CS coupling constant), until in [15] where it was

first proposed that the total number of punctures (N) can also be considered as a macroscopic

parameter, termed as ‘quantum hair’. We articulate [5] the fact that the macrostates of a QIH

can be characterized in terms of two independent integer-valued parameters, viz,. the coupling

constant(k) of the source coupled quantum SU(2) CS theory describing QIH dynamics and the

total number of punctures (N) on the QIH. Taking the expression for the number of microstates

of a QIH for arbitrary spins [16], we demonstrate that the microcanonical entropy of macroscopic

(both parameters k and N assuming very large values) QIHs can be directly obtained using

standard statistical mechanical methods, without having to additionally postulate the horizon

as an ideal gas of punctures, or to incorporate any additional classical or semi-classical input

from general relativity vis-a-vis the functional dependence of the IH mass on its area, unlike

what was done in [15] in course of the proposal of the idea of ‘quantum hair’. The logarithmic
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correction to the Bekenstein-Hawking Area Law (BHAL)[58] obtained a decade ago by R.

Kaul and P. Majumdar in [17] (considering only spin 1/2 punctures), ensues straightforwardly,

with precisely the coefficient −3/2, making it a signature of the LQG approach to black hole

entropy.

In this setup where we consider the total number of punctures (N) as a macroscopic pa-

rameter alongside the CS level (k) or equivalently classical area (Acl), if we want that the final

form of entropy be given by the BHAL (ignoring log correction), then the BI parameter can

take any real positive value. This is actually revealed from the fact that the BI parameter

should be equated to a function of the macroscopic parameters (k,N) in the process, which

takes continuous values from zero to infinity. However, if we demand that the microcanonical

entropy has the form

SMC = Acl/4`
2
p +Nσ(γ) (1.1)

which has been reported in [15] to be observed by a local stationary observer, it is valid only

for values of the BI parameter(γ) greater than a certain number [6]. It can be actually argued

that the term Nσ(γ) must be negative definite, which leads to the bound on γ. Two qualitative

arguments are presented in favor of this fact which can be described briefly as follows. Firstly,

from the knowledge of the kinematical Hilbert space of an IH of fixed classical area, considering

the total number of punctures (N , which has no classical analogue and hence named to be

‘quantum’ hair) as a macroscopic parameter and fixing it to define the microcanonical ensemble

is tantamount to providing quantum information about the physical system. Hence, fixing N

is like a constraint on the full Hilbert space. Since it is already known that the consideration

of all the quantum microstates of the full Hilbert space yields the BHAL, it is quite obvious

that the entropy corresponding to some fixed-N subspace of the full Hilbert space must be less

than the BHAL. Consequently the term Nσ(γ) should be a negative definite addition to the

area law.

Our second argument is based on the observer dependence of measurements. The idea of

considering the total number of punctures N to be a macroscopic parameter was based on a
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local observer framework i.e. this quantum hair will be seen only by an observer very close to

the horizon. The topological defects will act like a gas and N will behave as a thermodynamic

parameter akin to the total number of particles of a gas. The entropy measured by the local

observer will contain the Nσ(γ) term in addition to the area law. But the effect of this ‘quantum

hair’ will not be observed at the asymptotic infinity. Thus we can argue that the topological

defects on the IH, which appear to be only quantum fluctuations for an asymptotic observer,

become accessible and apparently ‘classical-like’ macroscopic degrees of freedom. Since, entropy

is the measure of uncertainty in a system, it is quite obvious that the asymptotic entropy must

be greater than the locally measured ‘entropy’ of the same system.

Finally, it may be mentioned that considerations related to the Entropy Bound [18], as

‘covariant’-ized in [19] and sharpened within LQG in [20], places our qualitative arguments in

favor of σ(γ) < 0 on a stronger footing. As it has been pointed out in course of the presentation

of our arguments, the idea of quantum hair (N) is an observer dependent notion[15] i.e. N can

be considered as a macroscopic thermodynamic variable only by a local observer very close to

the horizon and there is no such notion of quantum hair for an asymptotic observer. Now, it is

already known in the literature that there is a covariant (observer independent) entropy bound

associated with a closed two-surface[18, 19] which has been proved quantum geometrically in

[20] leading to a tighter bound for a QIH. For a closed spatial two-surface of area Acl the

maximum associated entropy can only be Acl/4`
2
p (ignoring the logarithmic correction[20]).

Since the horizon entropy is nothing but the entropy associated with the closed two-surface

cross-sections, it is evident that whatever observer dependent entropy one can calculate, cannot

be greater than Acl/4`
2
p. Hence, the observer dependent notion of quantum hair N can only

give rise to a negative contribution to the entropy and thus there is no other choice than to

impose the condition σ(γ) < 0.

Furthermore, a quantitative estimate of the numerical value of the bound on the BI param-

eter is provided through explicit graph plots of relevant functions which can be debriefed as

follows. In the process of the calculation of the microcanonical entropy, the Lagrange multipliers

σ and λ are related by the following relationship
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eσ =
2

λ2

(
1 +

√
3

2
λ

)
e−

√
3
2
λ

If one plots eσ as a function of λ, it is seen that the value of eσ falls below 1 i.e. σ becomes

negative for λ > 1.200. Since one has to fix γ = λ(k/N)/2π in the process to obtain the

required form of entropy, one can obtain the bound on γ by dividing the allowed range of λ by

2π, which results in γ > 0.191.

However, all the above arguments and justifications are valid only if we demand that the

final form of the entropy has to be given by eq.(1.1). But, given that we have the luxury to

choose γ as par our convenience, it can as well be argued that the entropy is just given by the

BHAL after making suitable choice of γ. As a matter of fact, using the relation between k

and N at equilibrium, the entropy can also be expressed in the form SMC = λ̃(k/N)k/2, where

λ̃ = λ −
(
σ/dσ

dλ

)
. Now, requiring that the BHAL must follow one has to fit γ = λ̃(k/N)/2π.

As there is no additional term to the BHAL, therefore there is no question of any further

arguments. Study of the function λ̃ reveals that it can take values from 0 to ∞ thus resulting

in no bound on γ.

Given that IHs represent thermal equilibrium configurations, albeit in isolation, how does

one address the issue of thermal stability of black holes in general ? In standard semiclas-

sical approaches to black hole thermodynamics, the event horizon of an asymptopically flat

Schwarzschild spacetime is patently unstable, since Hawking radiation from it is characterized

by a Hawking temperature which decreases inversely as the mass of the black hole. As the mass

decreases due to radiation, the temperature continues to rise, leading to a runaway situation[].

In contrast, an anti-de Sitter Schwarzschild black hole exhibits stable thermal behaviour within

a certain range of parameters., beyond which a Hawking-Page phase transition may occur.

The first work reported in this thesis addresses the issue as to whether some general criteria

for thermal stability exists, of thermal stability of radiant black holes, independent of classical

metrical properties. Generalizing an earlier work [12] for spherical charge-less IH, we derive

some criteria of thermal stability for electrically charged quantum black holes having a large

horizon area (compared to the Planck area). We use key results of LQG and equilibrium
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statistical mechanics of a grand canonical ensemble, with Gaussian fluctuations around an

equilibrium thermal configuration assumed here to be a QIH [3]. It is to be emphasized that

the analysis is completely based on the generic QIH framework, without reference to any sort of

classical background metric. Hence, the stability criteria can be treated as investigating tools

for the thermal stability of charged, non-rotating black holes with an arbitrary semiclassical

energy spectrum. Inputting a specific energy spectrum (as a function of horizon area) leads to

a response specifying whether the horizon is thermally stable.

The Hilbert space of a quantum spacetime with boundary has the tensor product struc-

ture H = Hv ⊗ Hb, with the subscript v (b) denoting the bulk (boundary) component. The

quantum CS theory on the inner boundary coupled to the spin network edges, which span the

bulk quantum geometry, provide the boundary Hilbert. The states belonging to this Hilbert

space provide the boundary degrees of freedom. Thus, any generic state in quantum geom-

etry, |Ψ〉, admits the expansion |Ψ〉 =
∑

v,b Cvb |ψv〉 ⊗ |χb〉. In presence of electromagnetic

fields, one can consider |ψv〉 (resp. |χb〉) to be the composite quantum gravity + quantum

electrodynamics bulk (resp. boundary) state. The bulk states are annihilated by the full bulk

Hamiltonian : Ĥv|ψv〉 ≡ [Ĥg,v + Ĥe,v]|ψv〉 = 0; this is the quantum version of the classical

Hamiltonian constraint. The total Hamiltonian operator acting on the generic state |Ψ〉 has

the form ĤT |Ψ〉 = (Ĥv ⊗ Ib + Iv ⊗ Ĥb)|Ψ〉 where, Iv(Ib) corresponds to the identity operator

on Hv(Hb). The primacy of the boundary partition function of a grand canonical ensemble, in

situations where the bulk Hamiltonian is a constraint, is then quite trivial to establish consid-

ering the above information in the usual definition of the grand canonical partition function

in quantum statistics. The boundary partition function is then evaluated using saddle point

approximation, choosing an IH as the equilibrium configuration. Valid existence of the saddle

point is shown to lead to the thermal stability criteria in terms of second-order partial differen-

tial inequalities involving the equilibrium mass and the microcanonical entropy. No aspect of

classical black hole geometry is used to deduce the stability criteria. Since no particular form of

the mass function is used a priori, our stability criteria provide a platform to test the thermal

stability of a black hole with a given mass function. The mass functions of the two most fa-
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miliar charged black hole solutions, namely Reissner-Nordstrom and AdS Reissner-Nordstrom,

are tested as a fiducial check. The Reissner-Nordstrom black hole is seen to be locally unstable

against Gaussian thermal fluctuations, whereas AdS Reissner-Nordstrom black hole is seen to

be locally stable against Gaussian thermal fluctuations for certain range of parameters. Fur-

ther, we also discuss the validity of the saddle-point approximation used to incorporate thermal

fluctuations. Moreover, the equilibrium Hawking temperature is shown to have an additional

quantum correction over the usual semiclassical value.

Next, we extend our analysis of thermodynamic stability of black holes in the context of a

recent research proposal. Recently it has been argued in the literature [15], using a semiclassical

approximation, that the area and energy of a black hole are proportional as observed by an

observer very close to (in terms of proper distance) and stationary with respect to the horizon

and hence the energy spectrum of the QIH is nothing but the area spectrum scaled by a

proportionality constant. We show that a QIH, with such an energy spectrum, is locally

unstable as a thermodynamic system [4]. The result is derived in two different ways. Firstly,

the specific heat of the QIH is shown to be negative definite through a quantum statistical

analysis. Then, it is shown, in the thermal holographic approach, that the canonical partition

function of the QIH diverges under Gaussian thermal fluctuations of such energy spectrum,

implying local instability of such a QIH as a thermodynamic system. The energy spectrum

simply violates the thermal stability criterion.

In the final section of the thesis we investigate the possible structure of the Hamiltonian

operator and the corresponding energy spectrum associated with the QIH. Even though there

is a notion of classical energy associated with the IH satisfying the first law[9], there is not yet

any well defined Hamiltonian operator or an energy spectrum for the QIH.

Instead of quantizing the classical energy associated with the IH, we propose the most

general structure of the Hamiltonian operator for the QIH. The proposal is based on simple

and strong physical motivations and supported by well justified arguments which can be briefly

restated as follows :-

• The punctures are the most fundamental and elementary constituents of the QIH which

7



collectively provide an effective description of the IH in the correspondence limit.

• The model Hamiltonian shares all the necessary and relevant properties of the area op-

erator e.g. gauge-invariance, self-adjointness, etc.

• The model Hamiltonian and the area operator associated with the QIH have simultaneous

eigenstates which are those of the CS theory coupled to punctures.

• The structure of the model Hamiltonian ensures that the constant area property of IH

emerges in the correspondence limit.

The proposed structure of the Hamiltonian operator can be written as

ĤS ≡
Λ∑
n=0

pn

(
Ânj1 ⊗ Îj2 ⊗ · · · ⊗ IjN + Îj1 ⊗ Ânj2 ⊗ · · · ⊗ ÎjN + · · ·+ Îj1 ⊗ Îj2 ⊗ · · · ⊗ ÂnjN

)

whose spectrum can be explicitly written as
∑Λ

n=1

∑N
l=1 pn(8πγ`2

p)
n[jl(jl + 1)]n/2, where the

coefficients (p-s) carry the burden of endowing the Hamiltonian operator with the correct di-

mensionality and Λ is a required cut-off. It is straightforward to see that the structure of the

Hamiltonian operator ensures that all the requisite conditions discussed above are taken care

of. Now, having a well defined Hamiltonian operator for the QIH we are able to write down the

canonical partition function in the usual energy ensemble containing the actual Boltzmann fac-

tor exp[−βE], instead of using the area ensemble containing a ‘Boltzmann-like’ factor exp[−αA]

involving a fictitious parameter α conjugate to area A [36, 22, 23]. Ignoring the thermal fluc-

tuations and the stability issues, we continue to work in the microcanonical ensemble defined

by the relevant macroscopic parameters, namely k and N as discussed previously. Calculations

of the statistical expectation values of the Hamiltonian and the area operators of the QIH and

using it in the expression for the entropy yields the expression SMC = λ
8πγξ`p

E?+Nσ, where ξ is

a complicated function containing the unknown coefficients of the Hamiltonian. Identification

of the above expression with the usual form of the entropy S = βE? +Nσ reveals the form of

the equilibrium temperature T = 1/β. It is to be mentioned that this form of the entropy is

completely at par with the first law of thermodynamics associated with the QIH in the set up

8



where N is considered to be a mcroscopic variable i.e. T δS = δE + µ δN , where µ = −σ/T

is the ‘chemical potential’ corresponding to the ‘quantum hair’ N [15]. Now, applying the γ-

fit and making suitable choices of the unknown coefficients of the proposed Hamiltonian, the

equilibrium temperature is now given by T = η(1 + Λ)`p (Boltzmann constant is set to unity).

In this process, the unknown coefficients of the proposed model Hamiltonian are fixed. This

yields the relevant Hamiltonian operator and the corresponding energy spectrum of the QIH

which can be written as[7, 8]

ĤS| {sj}〉 = ηΓ(3,
√

3πγ)`p
∑
j

Λ∑
n=0

(2πγ)n

Γ
(
n+ 2 ,

√
3πγ

) sj{j(j + 1)}n/2 | {sj}〉

where | {sj}〉 is the spin configuration describing a quantum state of the QIH which is also a

simultaneous eigenstate of the corresponding area operator; η and Λ are parameters which are

required to be chosen to yield the correct temperature or surface gravity which is associated

with the classical first law for the IH; γ is the Barbero-Immirzi parameter and `p is the Planck

length.
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Chapter 2

Introduction

Perhaps the clearest description of the quantum states of generic (extremal or non-extremal)

four dimensional black hole horizons in the presence of matter and/or radiation (which do

not cross the horizons) is in terms of the quantization of the classical Isolated Horizon (IH)

phase space which yields the kinematical Hilbert space for the Quantum Isolated Horizon (QIH)

[13, 14] derived from loop quantum gravity (LQG). In this description, at the classical level, the

IH is considered as an inner boundary of spacetime with boundary conditions imposed upon

it which (a) do not require that the ambient spacetime be stationary and (b) hold the area

of spatial foliations (time-slice) of the IH fixed, precluding matter or radiation from crossing

it. It has been shown in [1] that originating from these boundary conditions is a Hamiltonian

structure of the degrees of freedom of a generic IH and their dynamics, in terms of an SU(2)

Chern-Simons (CS) theory, where the CS connection (on the chosen time-slice) belongs to a

one-parameter family of linear combination of components of the usual Levi-Civita connection

of general relativity, pulled back to the spatial slice. The CS connection couples to the bulk

spacetime geometry, namely the bulk triads on the spatial slice of bulk spacetime, which act as

sources for the CS connection, with the CS coupling being proportional to the classical area of

the spatial slice of the IH. A somewhat more direct approach to the problem, albeit restricted

to a static spacetime, namely, the Schwarzschild spacetime, has been given in [21] where the

same geometric variables as used in [1] are evaluated explicitly, with the manifest emergence

of the SU(2) CS description of horizon degrees of freedom and their dynamics, namely their
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coupling to bulk geometry. Classically therefore, a black hole horizon is nothing but an SU(2)

CS theory of connection fields on an IH (a generalization, to reiterate, of an event horizon

to non-stationary ambient spacetimes in the bulk) which are minimally coupled to sources

consisting of bulk spacetime tetrads. Since tetrads are formally like the ‘square root’ of the

metric, at the classical level, the relationship to the spacetime metric is clear.

In the quantum description, the physical states of a QIH are the gauge singlet states of

an SU(2) Chern Simons (CS) theory coupled to the punctures endowed with SU(2) spins

deposited on the QIH by the intersecting edges of the bulk spin network describing the bulk

quantum geometry. In other words, the QIH is taken to have the topology of a two-sphere

with punctures carrying spins induced by the floating lattice known as the spin network whose

edges carry spins. Such configurations are expected to arise as solutions of the full quantum

dynamical equations describing bulk quantum geometry, in particular the quantum Hamiltonian

constraint. Whether or not this actually happens remains a question for the future. In this

situation, it is worthwhile to investigate properties of the kinematical Hilbert space to see how

the issue of black hole entropy can be addressed.

There are a plethora of approaches to black hole entropy, many semiclassical ones with

diverse claims for the black hole entropy having logarithmic corrections to the area law [24,

25, 26, 27, 28, 29, 30, 31], with various coefficients – some positive and some negative. In all

these computations, one usually computes the entropy of quantum ‘matter’ fields (including

gravitons) coupled to the classical background spacetime metric of a black hole. Even in

approaches where the classical metric is ‘integrated over’, the functional integral over metrics

is invariably saturated by the classical black hole metric. In other words, non-perturbatively

large quantum fluctuations of the spacetime - which cannot meaningfully be separated into a

classical background metric and its fluctuations - are usually ignored in these computations.

Thus, these computations do not take into account the entirety of quantum states corresponding

to quantum spacetime fluctuations of a black hole spacetime. Rather, they account for non-

gravitational states entangled with the horizon, as discussed in ref. [32, 33]. In contrast, the

LQG approach focuses on the quantum states describing the quantum geometry of the horizon,
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without assuming any entanglement with quantum matter states in its vicinity. The classical

metric of the black hole plays no role in this approach. The LQG computation thus yields

what one may call the gravitational (or ‘spacetime’) entropy of a black hole, as opposed to the

non-gravitational entanglement entropy computed in other approaches, which depends rather

directly on the classical black hole metric in all cases. Indeed, the two together would most

likely constitute the total entropy of a quantum black hole spacetime, so that the results of both

directions of computation are complimentary rather than competitively comparable. In other

words, the entanglement entropy considered in the other approaches must be an additional

contribution to the horizon entropy, over and above the spacetime entropy computed within

the LQG approach.

The description of a QIH in terms of CS states coupled to bulk quantum geometry is itself

a radical departure from the general relativistic description of a classical event horizon. Of

course, a QIH does not radiate or accrete matter/radiation, and can only be a part of a more

complete description of a radiant black hole comprising of Trapping [34] or Dynamical [10]

horizons. Recently, such horizons have been argued to emit Hawking radiation [35] with the

standard black body spectrum, raising hopes that a deeper understanding of black holes within

the LQG approach might be around the corner. However, there are semi-classical assumptions

that appear to be necessary to supplement the premises of LQG, which manifest a lingering

incompleteness in basic understanding of the quantum geometry of IHs.
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Chapter 3

Microcanonical Entropy of Black Hole

Horizon in LQG : A Paradigm Shift

and its Consequences

3.1 Introduction

The subject matter of this chapter is to re-articulate the fact that a complete description of

the macrostates of a QIH is possible with two integer-valued quantum parameters (‘quantum

hairs’), namely the CS coupling constant k related to the classical horizon area Acl, and the

number N of punctures to which the CS fields couple. Thus, recent arguments regarding the

number of punctures as a ‘quantum hair’ (see, e.g., [15]) based on semiclassical reasoning are

subsumed within the Chern-Simons description of QIHs. Indeed, the microcanonical entropy

can be obtained directly from the formula derived fourteen years ago [16] for the total number

of SU(2) singlet states coupled to a fixed set of spins j1, j2, ..., jN , ji ∈ [1/2, k/2]∀i = 1, ...N .

The independence of these two parameters k and N has been quite apparent at the formulation

stage, while deriving this formula, even though their physical role and the precise path whereby

a relation between the two emerges only becomes obvious through ref. [15], (albeit upon their

invoking semiclassical arguments which we have made no use of). Summing this formula over

all spins {ji} and using the multinomial expansion of elementary algebra, this degeneracy can
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be expressed in terms of sums over spin configurations, i.e., number of punctures sj ∈ [0, N ]

for spins j = 1/2, ..., k/2. This upper bound on allowed spin-values follows directly from the

unitarity of the two dimensional conformal field theory (viz., the SU(2)k WZW model) living

on the boundary S2, whose conformal blocks capture the degeneracy information of the CS

states on the QIH.

Using standard tenets of equilibrium statistical mechanics, one then looks for the ‘Most

Probable Spin Configuration’ by maximizing the microcanonical entropy subject to the con-

straints [39] of a fixed N and fixed large QIH area differing from the classical area only to O(`2
p),

where `p is the Planck length. This extremization procedure leads to an equilibrium ‘equation of

state’ relating the two quantum parameters k and N describing the macrostates. Requiring that

the resulting formula for the microcanonical entropy of a macroscopic (k ≫ 1, N ≫ 1) QIH

reproduce the Bekenstein-Hawking area law in terms of classical IH area Acl to leading order,

imposes a restriction on the Barbero-Immirzi parameter γ in the definition of k ≡ Acl/4πγ`
2
p,

that this must lie within a specific interval on the real line [6]. Subleading corrections to the area

law ensue naturally from the derived formula, especially the leading logarithmic (in classical

area) correction with coefficient −3/2 found longer than a decade ago by Kaul and Majumdar

[17] for a dominant class of spins, as we shall see in the sequel. These results have also been

rederived recently in ref. [40, 41, 42, 43]

It may be asked how precisely this work builds upon from extant literature on microcanonical

entropy by counting of CS states in LQG. We wish to note here that in those earlier papers,

the formulation of QIH states in terms of two independent parameters (the so-called ‘quantum

hair’ as espoused in [15]) was not used explicitly. In some papers, the entropy is computed

simply by counting states of an ideal gas of punctures, so that the CS underpinning of the QIH

states is not used explicitly. In some of the very early LQG literature, the computation does

not quite use the connection with two dimensional SU(2)k WZW models which is crucial to

our approach here. Still in some other papers, the counting is restricted to a ‘dominant’ spin

configuration on the punctures, so that even though the approximation is not incorrect, the

approach appears to lack generality.
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The important value-addition in this work is to provide a direct link of the ‘quantum hair’

scenario [15] to the LQG formulation of QIH macrostates in terms of SU(2) CS states coupled to

punctures carrying spin, without any trappings of a semi-classical nature (like [15]) depending

on classical metrical properties, nor any restriction to a specific class of spin values at the

punctures. This connection of the CS formulation of the QIH to the conceptual understanding

gained recently in ref. [15] of macrostates in terms of two integer-valued parameters k and N ,

leading eventually to the same microcanonical entropy as found earlier [17] thus ties up the

older formulations with contemporary ideas in this field on a unified footing. While many of the

extant papers in the recent literature on QIH entropy within the LQG approach simply count

states of an ideal gas of spins, without much allusion to the underlying theory of QIHs in terms

of quantum CS states, our approach here has been to underline the CS theory underpinning,

and to make the argument as self-contained as possible within the original LQG approach

pioneered by Ashtekar and coworkers [44, 45], while concomitantly relating to more recent

aspects of the literature. This work has some overlap with the recent review of Kaul [46] as far

as some parts of the calculations are concerned, but the emphasis on direct link-up with the CS

theory perspective and some of the details are different and are, hopefully, of inherent merit.

3.2 The Hilbert Space and Physical Chern-Simons states

of the QIH

The Hilbert space of a quantum spacetime admitting QIH as an inner boundary is given byH =

HV ⊗HS modulo gauge transformations, where V denotes bulk and S denotes boundary(QIH)

at a particular time slice[13, 14]. Mathematically, if the 4d spacetime (R⊗Σ) admits a 3d IH (∆)

as null inner boundary, then S ≡ ∆∩Σ denotes a cross-section of the IH [10]. Hence, a generic

quantum state of the spatial geometry of such a spacetime can be written as |Ψ〉 = |ΨV 〉⊗|ΨS〉,

where |ΨV 〉 is the wave function1 corresponding to the volume(V ) or bulk states represented

1Strictly speaking, these are actually functionals of the SU(2) spatial connection variables and a smooth
function of generalized gauge-invariant connections, the holonomies along the edges of the oriented graph [47],
popularly known as the spin network.
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by an oriented graph, say Γ, consisting of edges and vertices [47] and |ΨS〉 denotes a generic

quantum state of the QIH. |ΨS〉 ∈ HS ≡ the Hilbert space of the CS theory coupled to the

punctures {P} made by the bulk spin network Γ with the IH endowing them with the spin

representations carried by the respective piercing edges which are solely responsible for all the

relevant features of the QIH, the most important being the quantum area spectrum of the QIH.

To be precise, for a given N number of punctures, with spins (j1, · · · , jN), the QIH Hilbert

space is given by HS ≡ Inv(⊗Ni=1Hji) where ‘Inv’ denotes the invariance under the local SU(2)

gauge transformations on the QIH. Now, as it is seen that at the quantum level the full Hilbert

space is the direct product space of the bulk and boundary Hilbert spaces, a generic quantum

state of the QIH (boundary) can be written in terms of basis states on HS, independent of the

bulk wave function. Hence, one should understand that a basis state of the QIH Hilbert space

is actually a generic quantum state of the full Hilbert space, since the bulk part of the wave

function is a linear combination of the basis states of the bulk geometry. In other words, a given

spin configuration on the QIH admit all possible graphs (Γ-s) in the bulk consistent with the

given configuration. This spin configurations provide the area eigenstate basis, which is the all

important material in the context of QIH entropy. Such a basis state of the QIH Hilbert space

is denoted by the ket |{sj}〉. This is an eigenstate of the area operator associated with the QIH,

having the area eigenvalue given by ÂS|{sj}〉 = 8πγ`2
p

∑k/2
j=1/2 sj

√
j(j + 1)|{sj}〉. Such a spin

configuration (eigenstate) has a (N !/
∏

j sj!)-fold degeneracy due to the possible arrangement

of the spins yielding the same area eigenvalue. Hence, a generic quantum state of the QIH can

be written as

|ΨS〉 =
∑
{sj}

c[{sj}]| {sj}〉

where |c[{sj}]|2 = ω[{sj}](say) is the probability that the QIH is found in the state | {sj}〉.

Hence, a generic quantum state of the spacetime, admitting QIH as an inner boundary, may

now be written as |Ψ〉 ≡ |ΨV 〉 ⊗
∑
{sj} c[{sj}]| {sj}〉.

The computation of the microcanonical entropy formula of Kaul and Majumdar [16] pro-

ceeds from the expression for the number of conformal blocks of SU(2)k WZW model on a
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2-sphere with marked points (punctures) carrying spin which, in the seminal work of Witten

[48], has been shown to give the dimensionality of the SU(2) singlet part of the Hilbert space

of CS states on R⊗ S2 coupled to punctures on the S2. Using this remarkable connection, the

fusion algebra and the Verlinde formula, the degeneracy of the microstates is expressed as [16]

Ω(j1, · · · , jN) =
2

k + 2

k+1∑
a=1

sin aπ(2j1+1)
k+2

· · · sin aπ(2jN+1)
k+2(

sin aπ
k+2

)N−2
(3.1)

which can be alternatively recast as a linear combination of Kronecker deltas [16], explicitly

manifesting the singlet nature of the physical states :

Ω(j1, · · · , jN) =

j1∑
m1=−j1

· · ·
jN∑

mN=−jN

[
δ(

∑N
p=1mp),0

− 1

2
δ(

∑N
p=1 mp),1

− 1

2
δ(

∑N
p=1 mp),−1

]

For the calculations we shall use the expression (3.1). To obtain the total number of conformal

blocks, this expression must be summed over all possible spin values at each puncture.

Ω(N, k) =
∑

j1,··· ,jN

Ω(j1, · · · , jN) (3.2)

Now, since we will apply the method of most probable distribution to find the microcanonical

entropy of the QIH, it is convenient to recast eq.(3.2) as sum over spin-configurations, i.e., the

number of punctures carrying a specific spin j, for all possible values of j, becomes the dynamical

variable.

Ω(N, k) =
∑
{sj}

Ω[{sj}] (3.3)

where

Ω[{sj}] =
N !∏
j sj!

g[{sj}] (3.4)

where j runs from 1/2 to k/2 as usual and
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g[{sj}] =
2

k + 2

k+1∑
a=1

sin2 aπ

k + 2

∏
j

{
sin aπ(2j+1)

k+2

sin aπ
k+2

}sj

(3.5)

The combinatorial factor in eq.(3.4) reflects the statistical distinguishability of the punctures,

a property inherited by the punctures in the quantization procedure of the classical IH due to

the nontrivial holonomies of the Chern-Simons connection on the IH along disjoint closed loops

about the punctures[14].

3.2.1 Multinomial Expansion : The Link

It is worth mentioning that, even though eq.(3.4) resembles the formula for the microstates of

an ideal gas of spins obeying Maxwell-Boltzmann statistics, it has been derived directly from

the formula (3.1) within the present scenario of QIH. One should keep in mind that eq.(3.4) is

just another form of eq.(3.2) being written in a different basis for convenience of the statistical

formulation. Hence, for the sake of clarity, let us derive eq.(3.4) directly from eq.(3.2). Using

eq.(3.1) one can write eq.(3.2) in the following explicit form

Ω(N, k) =
2

k + 2

k+1∑
a=1

sin2 aπ

k + 2

∑
j1,··· ,jN

N∏
r=1

{
sin (2jr+1)aπ

k+2

sin aπ
k+2

}

=
2

k + 2

k+1∑
a=1

sin2 aπ

k + 2

N∏
r=1

∑
j1,··· ,jN

{
sin (2jr+1)aπ

k+2

sin aπ
k+2

}

=
2

k + 2

k+1∑
a=1

sin2 aπ

k + 2

[∑
j

{
sin (2j+1)aπ

k+2

sin aπ
k+2

}]N

Using Multinomial expansion, the above expression can be recast into the following form

Ω(N, k) =
2

k + 2

k+1∑
a=1

sin2 aπ

k + 2

∑
{sj}

N !∏
j sj!

∏
j

{
sin (2j+1)aπ

k+2

sin aπ
k+2

}sj

=
∑
{sj}

[
2

k + 2

k+1∑
a=1

sin2 aπ

k + 2

N !∏
j sj!

∏
j

{
sin (2j+1)aπ

k+2

sin aπ
k+2

}sj]
(3.6)

This is exactly eq.(3.3), which is nothing but eq.(3.2) written as sum over spin-configurations.
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3.3 Microcanonical Ensemble with fixed number of punc-

tures

Here we wish to calculate the microcanonical entropy of the QIH for given k and N and study

the consequences. To obtain the microcanonical entropy, one must maximize its expression with

respect to the spin configurations, to determine the most probable spin configuration, subject

to the restriction that the mean QIH area must equal the classical area up to O(`2
p) and the

number N of punctures is fixed.

The area eigenvalue equation for a particular eigenstate of the QIH in the configuration

basis can be written as

Â| {sj}〉 = 8πγ`2
p

∑
j

sj
√
j(j + 1) | {sj}〉 (3.7)

Hence, the expectation value of the area operator for the QIH is given by

〈Â〉 = 〈ΨS|Â|ΨS〉 = 8πγ`2
p

∑
{sj}

ω[{sj}]
∑
j

sj
√
j(j + 1) = Acl ±O(`2

p) (3.8)

where Acl is the area of the classical IH closely represented by the QIH. Scaling the equation

by 8πγ`2
p and using 〈Â〉/8πγ`2

p ≈ Acl/8πγ`
2
p = k/2 [14, 36], we obtain

∑
{sj}

ω[{sj}]
∑
j

sj
√
j(j + 1) =

k

2
(3.9)

In this process we can also avoid the involvement of the ambiguous parameter γ which will be

ultimately fixed at the end by the usual argument of the validity of the BHAL.

Apart from this, the expectation value of the number of punctures for the QIH is given by

〈N̂〉 = 〈ΨS|N̂ |ΨS〉 =
∑
{sj}

ω[{sj}]
∑
j

sj = N (3.10)

where N̂ can be considered as the operator for the number of punctures for a QIH. One should
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note that unlike the case of area the expectation value of N̂ is exactly equal to the total number

of punctures N . Now, since we are doing equilibrium statistical mechanics (thus stability is

assumed) of QIH with large area (Acl � `2
p) and large number of punctures (N � 1), for

all practical purposes, we can neglect the fluctuations and also consider that the dominant

contribution to the entropy comes from a most probable configuration, {s?j} i.e. ω[{s?j}] ' 1

[39]. Thus, every spin configuration {sj} must obey the following constraints

C1 :
∑
j

sj = N (3.11a)

C2 :
∑
j

sj
√
j(j + 1) =

k

2
(3.11b)

of which {s?j} will be the most probable one. Hence, we define a microcanonical ensemble

of QIHs by assigning fixed values of k and N respectively. The obvious next step is the

computation of the microcanonical entropy of a QIH whose macrostates are characterized by k

and N .

3.4 Microcanonical Entropy

Having defined the microcanonical ensemble appropriately, we shall now derive the microcanon-

ical entropy of a QIH. The microcanonical entropy of a QIH for given values of k and N is

written as

SMC = log Ω(N, k) ' log Ω[{s?j}] (3.12)

where we have set the Boltzmann constant to unity. Variation of log Ω[{sj}] with respect to

sj, subject to the constraints C1 and C2, yields the distribution function for the most probable

configuration {s?j} which maximizes the entropy of the QIH. In other words, s?j satisfies the

variational equation written as
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δ log Ω[{sj}]− σ
∑
j

δsj − λ
∑
j

δsj
√
j(j + 1) = 0 (3.13)

where δ represents variation with respect to sj, σ and λ are the Lagrange multipliers for C1

and C2 respectively. This yields the most probable distribution given by

s?j = N exp

[
−λ
√
j(j + 1)− σ +

δ

δsj
log g[{sj}]

]
(3.14)

To proceed further we calculate g[{sj}] explicitly using saddle point approximation in the

limit k,N → ∞, which is appropriate for large black holes. First of all, we rewrite eq.(3.5)

replacing the summation over a by integration as

g[{sj}] '
2

k + 2

∫ k+1

1

sin2 aπ

k + 2

∏
j

{
sin aπ(2j+1)

k+2

sin aπ
k+2

}sj

da

=
2

π

∫ π−ε

ε

sin2 θ
∏
j

{
sin(2j + 1)θ

sin θ

}sj
dθ (3.15)

where we have applied a change in the integration variable as aπ/(k+ 2) = θ and for which the

limits follow with ε = π/(k + 2). Now, for k →∞, ε→ 0. Hence, we can safely write

g[{sj}] '
2

π

∫ π

0

sin2 θ
∏
j

{
sin(2j + 1)θ

sin θ

}sj
dθ

=
1

π

∫ π

0

exp [G(θ, k)] dθ − 1

π

∫ π

0

exp [ln(cos 2θ) +G(θ, k)] dθ (3.16)

where G(θ, k) =
∑

j sj log
{

sin(2j+1)θ
sin θ

}
. The above two integrations can be performed by the

saddle point method. To begin with, it is straightforward to show that

lim
θ0→0

G′(θ, k)|θ0 = 0 (3.17a)

lim
θ0→0
{−2 tan 2θ +G′(θ, k)}|θ0 = 0 (3.17b)

which implies that the saddle point θ0 ' 0 ( ′ denotes partial derivative with respect to θ).

Now, Taylor expanding G(θ, k) about the saddle point θ0 up to second order and applying the
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saddle point conditions from eqs.(3.17), we have

g[{sj}] '
1

π

∏
j

(2j + 1)sj
[∫ π

0

e−
1
2
αξ2

dξ −
∫ π

0

e−
1
2

(4+α)ξ2

dξ

]
(3.18)

where we have used ξ = θ − θ0 and the following limits

lim
θ0→0

exp[G(θ0, k)] =
∏
j

(2j + 1)sj

lim
θ0→0

G′′(θ, k)|θ0 = −4
∑
j

sj j(j + 1) ≡ −α

lim
θ0→0

sec2 2θ0 = 1

Evaluation of the integral yields

g[{sj}] '
1√
2π

∏
j

(2j + 1)sj

(√
1

α
Erf
[
π
√
α/2

]
−
√

1

4 + α
Erf
[
π
√

(4 + α)/2
])

(3.19)

The quantity α results from the second order approximation. Hence, while calculating α we

can only use the results up to first order i.e. we use s?j in place of sj whose expression will be

given by

s?j ' N(2j + 1) exp[−λ
√
j(j + 1)− σ] (3.20)

which follows from the fact that g[{sj}] ' 2C
π

∏
j(2j + 1)sj neglecting the second order correc-

tions, C being some constant. Now, using eq.(3.20) in eq.(3.11a) and eq.(3.11b), one obtains

exp[σ] =

k/2∑
j=1/2

(2j + 1) exp[−λ
√
j(j + 1)] (3.21a)

k/2 = N

k/2∑
j=1/2

√
j(j + 1)(2j + 1) exp[−λ

√
j(j + 1)− σ] (3.21b)

Using eq.(3.20), eq.(3.21a) and eq.(3.21b), it is straightforward to show that α ' 8N(d2σ/dλ2).

Thus, α → ∞ for N → ∞. Hence, we can approximately write Erf
[
π
√

(4 + α)/2
]
≈
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Erf
[
π
√
α/2

]
. Plotting the function Erf

[
π
√
α/2

]
with α one can see that the function attains a

constant value for large α. Hence, we can take limα→∞ Erf
[
π
√

(4 + α)/2
]
' limα→∞ Erf

[
π
√
α/2

]
'

K, some constant. Therefore, from eq.(3.19) it follows that

g[{sj}] '
K√
2π

∏
j

(2j + 1)sj

(√
1

α
−
√

1

4 + α

)

' K

√
2

π

∏
j

(2j + 1)sjα−
3
2

Therefore, we have

δ

δsj
log g[{sj}] = log(2j + 1)− 6

α
j(j + 1)

Hence, considering variation of α resulting from the inclusion of the quadratic fluctuations, the

distribution for the most probable configuration given by eq.(3.20) gets modified into

s?j ' N(2j + 1) exp[−λ
√
j(j + 1)− σ − 6

α
j(j + 1)] (3.22)

Now, using the most probable distribution given by eq.(3.20) or eq.(3.22) (result will differ by

a constant only) we calculate the microcanonical entropy of a QIH for given values of k and N

using Stirling approximation and the result comes out to be

SMC =
λk

2
+Nσ − 3

2
logN − 3

2
log(d2σ/dλ2) + · · · (3.23)

where λ and σ satisfy the two equations (3.21a) and (3.21b).

Using eq.(3.21a) and eq.(3.21b) and also finding dσ/dλ from eq.(3.21a) one can immediately

show that

k = −2N(dσ/dλ) (3.24a)

or, using k = Acl/4πγ`
2
p ,

Acl = −8πγ`2
pN(dσ/dλ) (3.24b)
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Eq.(3.24a) can be regarded as the ‘equation of state’ for the QIH at equilibrium, whereas,

eq.(3.24b) has the significance lying in the fact that there is indeed a deep underlying rela-

tionship between the so called ‘quantum hair’ defined only in the quantum domain and the

physically measurable quantity Acl which is purely classical. Hence it is justified why N should

play a very fundamental role in the thermodynamics of black holes if one tries to investigate

by beginning from the underlying quantum theory provided by the QIH framework in LQG.

It may be noted that the concept of ‘quantum hair’ N is really nothing new, because it has

been quite implicit in the large body of work on QIHs [13, 14, 17, 46, 41, 42, 44, 45, 50, 51, 52, 53].

A careful analysis of the derivation of the microcanonical entropy of QIH for given k and N

reveals that γ > 0.191 for the microcanonical entropy to be given by

SMC =
Acl
4`2
p

+Nσ(γ) (3.25)

The bound on γ follows from the fact that the term Nσ(γ) must be a negative definite quantity.

In this work, our emphasis is to discuss the implications in the context of microcanonical entropy

calculation if one accepts the idea and considers N to be an additional macroscopic parameter

for a QIH, alongside k or Acl.

3.4.1 The Lagrange Multipliers

In the limit k →∞, eq.(3.21a) and eq.(3.21b) can be approximated to be

eσ =
2

λ2

(
1 +

√
3

2
λ

)
e−

√
3
2
λ (3.26)

k

N
= 1 +

2

λ
+

4

λ(
√

3λ+ 2)
(3.27)

Since we are dealing with the microcanonical ensemble, k and N are the given quantities and

the Lagrange multipliers λ and σ can be obtained as the solutions of the equations (3.26) and

(3.27). It can be checked explicitly in the following way. Eq.(3.27) is actually a cubic equation

in λ written as
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λ
[√

3 (k/N − 1)λ2 +
(
k/N − 1−

√
3
)
λ− 8

]
= 0 (3.28)

Excluding the trivial root λ = 0 of the above equation for obvious reasons2, the other two

nontrivial roots of the above equation are given by

λ =
1√

3(k/N − 1)

[(√
3 + 1− k/N

)
±
√
k2/N2 +

(
6
√

3− 2
)
k/N +

(
4− 6

√
3
)]

(3.29)

of which we shall again exclude the one with the ‘−’ sign because it will yield negative values of

λ for all k/N > 0 and hence leading to negative values of BI parameter (it will be clear shortly).

Hence, we shall consider only the one with the ‘+’ sign as this will only give the positive values

of λ for k/N > 1. To see this, one can plot3 λ as a function of k/N considering the expression

with the ‘+’ sign. The resulting graph is shown in in FIG.(3.1). Using the desired solution of

λ as a function of k/N in eq.(3.26) it is trivial to obtain σ as a function of k/N . Hence, in the

microcanonical ensemble, λ ≡ λ(k/N) and σ ≡ σ(k/N) are functions of k and N . Eq.(3.27)

can be considered to be the equation of state relating λ, k and N only at the equilibrium and

hence can be attained only after finding the most probable distribution giving the equilibrium

configuration. It should be noted that there is no freedom to choose λ in the microcanonical

ensemble. Now, the microcanonical entropy is given by SMC = log
∑
{sj}Ω[{sj}]. Taking

into account that the dominant contribution comes from the most probable configuration {s?j}

which maximizes the entropy and taking the limit N, s?j → ∞ so as to apply the Stirling

approximation, one can calculate the microcanonical entropy as

SMC ' lim
N,s?j→∞

log Ω
[{
s?j
}]

= λ(k/N)k/2 + σ(k/N)N (3.30)

where one has to use also the eq.(3.11a) and eq.(3.11b). Thus, once we define the microcanonical

ensemble of QIHs by giving k and N , the microcanonical entropy is completely known and given

by eq.(3.30)

2λ = 0 leads to σ →∞ which will yield infinite entropy.
3All the graph plots shown in this work are performed with MATHEMATICA.
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Figure 3.1: The plot shows the variation of λ with k/N for the solution of λ with the ‘+’ sign in
eq.(3.29). It is quite clear that the value of λ has a discontinuity at k/N = 1 and has positive values
only for k/N > 1.

Digression : The above scenario is analogous to the case of an ideal gas whose equation of

state is given by E = 3
2
NT (considering Boltzmann constant to be unity and the meaning of

E,N and T are obvious). Since the microcanonical ensemble is defined by given values of E

and N , T is a derived quantity and should be viewed as T ≡ T (E,N). Thus the microcanonical

entropy of an ideal gas for given E and N must be written as

SMC = β(E,N)E +Nα(E,N) (3.31)

where β = 1/T and α are the Lagrange multipliers solved for given E and N [39]. It is only

in the canonical ensemble one can say that T can be chosen because the ensemble is defined

by specifying the equilibrium temperature (T ) and the total number of particles(N). In this

case T and N are the given quantities and E ≡ E(T,N) becomes a derived quantity i.e. we

calculate the mean energy of the system at a desired temperature and for a desired number of

particles[39]. The canonical entropy of an ideal gas for given T (or equivalently β) and N must

be written as
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SC = βE(β,N) +Nα(β,N) (3.32)

It is a very crucial point to be noted that even though the structure of the thermodynamic

equations, such as the form of entropy in eq.(3.31) and eq.(3.32), the equation of state, etc. are

independent of the ensemble we use, the point which is often overlooked is that the roles of the

parameters (E,N, T ) indeed change with the ensemble as discussed above.

Now, we can write eq.(3.30), by replacing k with Acl/4πγ`
2
p, in the following form

SMC =
λ(k/N)

2πγ

Acl
4`2
p

+ σ(k/N)N (3.33)

Our goal is to obtain the form of the microcanonical entropy given by the expression (3.25) from

the expression (3.33). Usually, in calculation of entropy only for fixed k or Acl(e.g. see [46])

(i.e. the scenario which appears by putting σ = 0 in the present case), a fixed numerical value

of γ is determined by demanding the BHAL. In that case λ comes out to be a number and γ is

chosen to get the desired result, which is consistent with the fact that γ has to have a specific

numerical value so as to have an unambiguous LQG theory. But, in the present scenario with

an additional macroscopic parameter N , λ is a function of k/N . Hence, there is no other way

than to accept that γ = λ(k/N)/2π, a function of k and N , so as to obtain the microcanonical

entropy of the form given by the expression (3.25).

This particular point may be further clarified as follows. Let us define the microcanonical

ensemble by assigning values k = k1 and N = N1, for which we have λ = λ(k1/N1) ≡ λ1. Now,

we claim that γ = λ1/2π = γ1(say) so that we can obtain the first term of (3.33) to be given by

Acl1/4`
2
p, where Acl1 = 4πγ1k1`

2
p. Similarly, one can make another choice k = k2 and N = N2,

such that (k1/N1) 6= (k2/N2), for which there exists a corresponding γ2 and Acl2 so as to obtain

the first term of (3.25) to be Acl2/4`
2
p. To be precise for every such choice of k/N there exists

an unique value of γ, given by λ(k/N)/2π, which results in the microcanonical entropy given

by (3.25).

Hence, for the microcanonical entropy to be given by (3.25), we must have γ = λ(k/N)/2π

and there is no way one can obtain a specific universal value of γ and it is indeed a function of
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k/N in this scenario where N is considered to be a macroscopic parameter for a QIH alongside

k 4. By now we can conclude that for each value of k/N , there exists a unique value of γ for

which the microcanonical entropy takes the form of expression (3.25) reported in [15]. The

allowed values of γ is restricted by the bound : γ > 0.191. This bound obviously needs an

explanation which is the subject matter of the next section.

3.5 Bound on γ

In this section we shall argue from two different viewpoints that the term Nσ(γ) should be a

negative definite quantity from which the bound on γ will follow. First of all we shall explain

this by looking at the kinematical Hilbert space structure of the QIH, which is usually studied

for calculating black hole entropy in LQG framework. The second argument originates from

the comparison of the entropy measured by a local stationary (with respect to the horizon)

observer with the one measured by the observer at asymptotic infinity for the same QIH. The

section ends with a quantitative estimate of the bound on γ.

3.5.1 Constrained kinematical Hilbert space

Imposing constraints on a system implies availability of more information about that system.

Since, entropy is a measure of unavailability of information about a system[59], thus imposition

of more constraints will result in decrement of the entropy. This is what happens also in the

case of black hole entropy which, in the LQG framework, is calculated by taking the logarithm

of the dimensionality of the associated kinematical Hilbert space. As far as the full kinematical

Hilbert space of a QIH is concerned[13, 14, 40], it is interesting to note that there is actually

a sum over all possible sets of punctures which encodes the information that the full Hilbert

space of the QIH takes into account all possible values of N compatible with a given k :

4Here one may wonder if this problematic fixation of γ is a result of considering k to be a macroscopic
parameter preferred to Acl. But one can remain assured that this is not the actual reason and to get convinced
(s)he may check by repeating this whole calculation by fixing Acl instead of k, alongside N to define the
microcanonical ensemble; the results and conclusions will still remain unaltered.
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Hk
QIH =

⊕
{P}

Inv

(
N⊗
l=1

Hjl

)
(3.34)

where {P} ≡ N ; 1
2
≤ jl ≤ k

2
∀l ∈ [1, N ] 3

∑N
l=1

√
jl(jl + 1) = k

2
± O( 1

8πγ
) and ‘Inv’ stands for

the gauge invariance. Prior to the advent of the concept of quantum hair in [15], the di-

mensionality of this full Hilbert space was considered which gave the total number of horizon

microstates for a given k and the entropy used to come out to be the BHAL for a unique

value of γ[13, 14, 44, 45]. Now, if one considers N as an independent macroscopic parameter

other than Acl or k and N is specified to define the microcanonical ensemble, then the resulting

microcanonical entropy will be that of a fixed-N subspace of the full kinematical Hilbert space.

Since the dimensionality of this subspace is bound to be less than that of the full kinematical

Hilbert space, the resulting entropy must be less than the BHAL i.e. the term Nσ(γ) should

only appear as a negative term so as to lower the entropy below BHAL.

3.5.2 Local vs Asymptotic Views

As has been clearly explained in [15] that, the proposal of the quantum hair N has been given

from the local stationary observer perspective i.e. an observer at a proper distance of few

Planck lengths from the horizon and stationary with respect to the horizon, will realize the

existence of the quantum hair N . It implies that only the local observer can treat the total

number of punctures N as a macroscopic thermodynamic parameter, but the asymptotic ob-

server does not realize the existence of this quantum hair N . The fluctuations of N appear

to the asymptotic observer as small quantum fluctuations, which has no effect on the ther-

modynamics at asymptotic infinity, as opposed to the local observer who can treat N as a

macroscopic thermodynamic parameter because the fluctuations of N indeed appear to the

local observer as particle like excitations on the horizon. This is why the chemical potential

conjugate to N which exists for the local observer, must vanish at asymptotic infinity [15]. For

the same system i.e. the QIH, there are two observers and hence two different observations.

The local observer gives us a fine grained view whereas the asymptotic observer gives us a

coarse grained view of the same system. The local observer has an access to larger amount
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of information than the asymptotic observer has about the same system, the QIH and that is

why N can be treated as a macroscopic parameter only by the local observer and not by the

asymptotic observer. Thus the entropy of the QIH measured by the local observer must be less

than the entropy of the same QIH measured by the asymptotic observer. Hence, the Nσ(γ)

term, which is seen by the local observer only, must be negative definite i.e. σ(γ) < 0.

Remarks : One should note that this above argument stands only because we know or accept

that the asymptotic observer must observe the BHAL. Due to the presence of this ‘reference’

measurement we could argue that the entropy of the QIH measured by the local observer must

be less than this ‘reference’ BHAL. In general gas thermodynamics no such difference in obser-

vations is made and the Nσ like term that appears there can be anything : positive, negative

or zero. This is a crucial point to be noted.

3.5.3 Covariant Entropy Bound

Finally, we may mention that considerations related to the Entropy Bound [18], as ‘covariant’-

ized in [19] and sharpened within LQG in [20], places our qualitative arguments in favor of

σ(γ) < 0 on a stronger footing. As it has been pointed out in course of the presentation of

our arguments, the idea of quantum hair (N) is an observer dependent notion[15] i.e. N can

be considered as a macroscopic thermodynamic variable only by a local observer very close to

the horizon and there is no such notion of quantum hair for an asymptotic observer. Now, it is

already known in the literature that there is a covariant (observer independent) entropy bound

associated with a closed two-surface[18, 19] which has been proved quantum geometrically in

[20] leading to a tighter bound for a QIH. For a closed spatial two-surface of area Acl the

maximum associated entropy can only be Acl/4`
2
p (ignoring the logarithmic correction[20]).

Since the horizon entropy is nothing but the entropy associated with the closed two-surface

cross-sections, it is evident that whatever observer dependent entropy one can calculate, cannot

be greater than Acl/4`
2
p. Hence, the observer dependent notion of quantum hair N can only

give rise to a negative contribution to the entropy and thus there is no other choice than to

impose the condition σ(γ) < 0.
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3.5.4 An estimate of the bound on γ

Following the above qualitative arguments in favour of the boundedness of γ resulting from the

bound σ(γ) < 0, it is the turn to show off a quantitative analysis on behalf of the claim. From

eq.(3.26) it is quite easy to get an estimate of the bound on γ. If one plots eσ as a function

of λ, it is seen that the value of eσ falls below 1 i.e. σ becomes negative for λ > 1.200. Now,

following the previous arguments regarding the fixation of γ, one can obtain the bound on γ

by dividing the allowed range of λ by 2π, which results in γ > 0.191.

Figure 3.2: In the plot of eσ as a function of λ, the coordinates of the marked point in the
graph are (1.200, 1.000). Therefore, one can conclude that eσ < 1⇒ σ < 0 for λ > 1.200. Since
γ = λ(k/N)/2π, we obtain the required bound on the BI parameter i.e. γ > 0.191.

3.5.5 Commentary on the boundedness of γ

The aim of all these analyses and arguments is to assert that if one accepts N as a ‘quantum

hair’ of QIH and define the microcanonical ensemble for given k or Acl and N , then to obtain

the microcanonical entropy of a QIH given by eq.(3.25), we must have γ > 0.191. This is not

quite in agreement with [15], according to which γ is a free parameter i.e. it can take any

value. Moreover, there is no way one can obtain a unique value of γ in this particular scenario.
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The BI parameter, γ, being of utmost importance in LQG, any further work following the idea

of ‘quantum hair’ N must be performed with careful attention to the bound on γ which has

been somehow overlooked in [15]. It is to be noted that the bound on γ may be calculated

more precisely by numerical methods, but the motto of this work is to catch the essence of the

boundedness of γ, which is the most essential physics content in the present context and it is

not the mathematical accuracy of the numbers that we are after. It should be reminded that the

pivotal point of this work consists of the arguments in favor of the condition Nσ(γ) < 0 which

results from viewing the problem from a very different perspective. In general, while studying

the thermodynamics of a system, we do not talk precisely about the observer and all the

measurements made are considered to be unique. But the topic of black hole thermodynamics

which is related to general relativity, the observer must play a crucial role in the measurements.

Since we have accepted by heart and soul that the observer at asymptotic infinity will measure

the entropy to be nothing other than the BHAL, then, whatever observer and corresponding

measurement we consider, there has to be a consistency with the known measured value at

asymptotic infinity. Our arguments simply stand on this ground. If there were no BHAL, then

we could not have presented any of our arguments in favor of Nσ(γ) < 0. Then, it could have

had arbitrary sign and γ would have been a free parameter.

In the present context the following few words are worth mentioning. The idea of a complex

BI parameter arising from a formulation of general relativity based on the self-dual Sen-Ashtekar

connection is an intriguing possibility. However, such a formulation necessarily deals with

a complex configuration space which leads to mathematical difficulties when quantization is

attempted [47]. As far as the black hole entropy computation is concerned, it may be noted

that the comparison of the QIH entropy, derived from a purely quantum statistical calculation,

with the semiclassical BHAL may be fraught with a slight danger since there is as yet no

complete semiclassical formulation derived from the coherent states of LQG. There is indeed

the need for an appropriate effective action of the theory which may result in a renormalized BI

parameter. The situation is reminiscent of the θ-parameter in QCD, because of the topological

character of the BI parameter [60]. In QCD, too, the comparison of phenomenological results
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based on θ-vacua with observations assumes an effective ‘renormalized’ θ parameter.

3.6 Freeing γ

However, it is indeed possible to render the BI parameter to be free even in this setup where

N is considered as an independent macroscopic parameter alongside k, if one naively demands

that the entropy be given by the BHAL only. It is only a question of fixation of γ. Using

eq.(3.24b) and the relation k = Acl/4πγ`
2
p the microcanonical entropy can be expressed as

SMC =

[
f(λ)

2πγ

]
Acl
4`2
p

− 3

2
log

Acl
4`2
p

+ · · · (3.35)

where f(λ) = λ −
(
σ/dσ

dλ

)
. It is quite clear from the above expression for the microcanonical

entropy that somehow we have to set the factor f(λ)/2πγ to be unity to obtain the Bekenstein-

Hawking area law(BHAL). Let us see how we can do that.

As mentioned earlier, since we are dealing with the microcanonical ensemble, k and N are

the given quantities which determine the Lagrange multipliers λ and σ from the solutions of

the above equations (3.26) and (3.27). Hence, in the microcanonical ensemble, λ ≡ λ(k/N) and

σ ≡ σ(k/N) are functions of k and N . It should be noted that there is no freedom to choose

λ (hence f(λ)) or σ in the microcanonical ensemble. Strictly speaking, we should write the

function f as f(k/N) and corresponding to every value of k/N there exists a unique value of

f . To retrieve the BHAL from eq.(3.35) we can choose γ = f(k/N)/2π, which results in

SMC(Acl) =
Acl
4`2
p

− 3

2
log

Acl
4`2
p

+ · · · (3.36)

Hence, the range of allowed values of γ will be dictated by the range of f . Now, one can find

f(λ) to be given by the following expression

f(λ) = λ

[
1 +

2(2 +
√

3λ){log 2− 2 log λ+ log(1 +
√

3λ/2)−
√

3λ/2}√
3λ2 + 2(

√
3 + 1)λ+ 8

]
(3.37)

From eq.(3.27) it is evident that for any value of λ between 0 and∞, k/N remains positive and
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from the above expression it is evident that for 0 < λ < ∞, we have 0 < f(λ) < ∞. Hence,

without finding the explicit form of f(k/N) one can remain assured that f takes values from 0

to ∞ for positive values of k/N . It follows that γ can take value from 0 to ∞ for the leading

term of the microcanonical entropy to follow the BHAL.

3.7 Discussion

As mentioned in the Introduction, the LQG formulation of a QIH in terms of a CS theory

coupled to spins directly involves the use of the integer parameters (‘quantum hairs’) k and

N . Strictly speaking, if the classical area Acl is taken to be a hair, the BI parameter γ (the

coefficient of a topological contribution to the classical action from the Nieh-Yan invariant [49])

is considered as an independent coupling parameter, then the only new parameter that has

appeared in the quantum theory is the number of punctures N . Equivalently, one can, as we

have in this work, take k and N to be the parameters characterizing the quantum theory. It is

significant that the requirement that the microcanonical entropy of a QIH yields the area law

for large k , N does not only allow the BI parameter γ to take any positive value on the real

line,, it also yields the subleading logarithmic correction derived in earlier literature with the

universal coefficient −3/2. Thus, the complete characterization of the macrostate of a QIH is

given by two independent parameters, namely, k and N . The limit of large k and N can thus

be taken to be the approximately the semiclassical domain, since it is in this limit that the

computation reliably yields an answer for the microcanonical entropy which can be explicitly

expressed entirely in terms of the BHAL. Although the ‘classical limit’ of bulk LQG has certain

ambiguities in extraction of a classical metric from expectation values of geometrical observables

within coherent states, as far as classical horizons are concerned, such an ambiguity can perhaps

be avoided by working with the idea of an effective QIH in this limit and comparing with

semiclassical behaviour. Of course, our approach does not take into account the entanglement

of quantum matter states in the bulk and the boundary, not entanglement between quantum

matter and quantum spacetime states, but accounts only for entanglement between bulk and

boundary quantum spacetime states. The inclusion of quantum matter together with quantum
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geometry thus remains one of the key points of our research agenda for the immediate future.

The departure from recent literature is the direct link established in this work of these

results and interpretation within the CS formulation of a QIH. The point here is that the

computation of the microcanonical entropy of a QIH is not merely a combinatoric exercise in

statistical mechanics of an ideal gas of punctures with some restrictions gleaned out of LQG as

in some part of the recent literature [15, 50, 51, 52, 53, 44, 45], with at best a weak link to the

complete formulation as a CS theory that has been available for years. Here we have shown

that the original formulation yields an understanding that is complete as a quantum theory.

An extension of the foregoing analysis to Trapping horizons and Entanglement entropy of

matter and radiation fields in their vicinity, would amount to truly new physics of radiant quan-

tum horizons beyond general relativity. This has within it the potential to surpass, because of

its firmer quantum geometric underpinning, recently proposed speculative ideas of a somewhat

ad hoc nature based on semiclassical analysis [54, 68, 56], about how classical horizon geometry

must change (become a ‘fuzzball’ or an ‘energetic curtain’ or a ‘firewall’) so as to allow the

existence of well-defined scattering amplitudes for quantum matter fields. Whether or not such

a structure emerges from LQG in an appropriate limit is not known at the moment, since there

is still no complete quantum geometric analysis of Hawking radiation and its various conundra

from an LQG standpoint. The problem at hand involves a quantization of the kinematical

phase space of a Trapping/Dynamical horizon along the lines of [13, 14] which may not be

technically so simple as a QIH because of the transient behaviour inherent in the geometry.

However, perhaps a perturbation of the CS description by a set of appropriately chosen matter

field operators might serve as a first approximation to the problem. The strength of the LQG

approach lies in the transparent manner in which the CS symplectic structure emerges from the

boundary conditions in the incipient formulation [14], without having to rely on conjectured

results. The relation of the CS Hilbert space to the conformal blocks of the WZW model on the

QIH is also not a matter of conjecture for large black holes. Thus, the LQG analysis of a QIH

geometry throws up holographic structures as emergent, without any prior notion that they

have to be there. One expects that generalizations to Trapping horizons to centre around this
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theme so as to reap the benefits of the 4 dimensional gravity - 2 dimensional conformal field

theory relation found in ref. [16]. Note however that the thermal stability of radiant trapping

horizons which approach an equilibrium QIH has been discussed within the LQG framework

yielding a criterion of stability involving the equilibrium mass and the microcanonical entropy

of the QIH in ref. [57, 12, 3].
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Chapter 4

Thermal Stability Analysis of Charged,

Non-rotating Black Holes

4.1 Introduction

The theory of QIH provides a self-contained platform for the application of the statistical me-

chanical techniques to understand the microscopic origin of the entropy of black hole horizons,

as we have seen in the previous chapter. The physical essence of the microcanonical ensemble

analysis is that the fluctuations of the macroscopic variables, which are regarded as thermal,

are completely disallowed and what we deal with are purely quantum mechanical fluctuations

of the system. Now, we shall pass on to the grand canonical ensemble scenario, to study the

effects of thermal fluctuations on the thermal stability of black hole horizons in a situation

where the black hole is allowed to interact with a thermal environment.

4.2 Thermal Holography

Quantum black holes not isolated from an ambient thermal reservoir have been considered in

the past [62], [64, 65, 57], [12]. In this approach one uses certain key results of LQG like the

discrete spectrum of the area operator [76, 77] and the central assumption that the thermal

equilibrium configuration is indeed an IH whose microcanonical entropy, including quantum
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spacetime fluctuations have already been computed via LQG. The idea here has been the study

of the interplay of thermal and quantum fluctuations, and a criterion for thermal stability of

such horizons has been obtained [57, 12, 72], using a ‘thermal holographic’ description involving

a canonical ensemble and incorporating Gaussian thermal fluctuations. The generalization to

horizons carrying charge has also been attempted, using a grand canonical ensemble, even

though a somewhat ad hoc mass spectrum has been assumed [65].

Here, we attempt to re-derive a thermal stability criterion for charged quantum horizons,

without any ad hoc assumptions on the mass spectrum. With the benefit of hindsight, arguments

which place the earlier formulation on a more solid footing are presented, together with novel

aspects which enable us to sidestep earlier restrictions. A comparison with semiclassical thermal

stability analyses of black holes [74] is made wherever possible. The range of validity of the

saddle point approximation around the equilibrium configuration is examined to ensure the

self-consistency of the Gaussian approximation.

4.2.1 Horizon Energy

For a consistent Hamiltonian evolution for spacetimes admitting internal boundaries (isolated

horizons, representing black holes at equilibrium) there must be a first law associated with

each internal boundary(b), assumed to be a null hypersurface with the properties of a ‘one-way

membrane’ [9, 10] given by

δEt
b =

κt

8π
δAb + ΦtδQb (4.1)

where Et
b is the classical energy function associated with the horizon, κt and Φt are the surface

gravity and the electric potential respectively of the horizon, Qb is the horizon charge. All the

quantities are defined for a particular choice of time evolution vector field tµ. The family of

time evolution vector fields [tµ] satisfying such first laws on the horizon are the permissible

time evolution vector fields. These evolution vector fields also need to satisfy other boundary

conditions. Each of these time evolution vector fields associates a classical energy function with

the horizon which is a function of area and charge for Einstein-Maxwell theory. In arbitrary
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non-stationary cases (radiation may be present arbitrarily close to the horizon) for a particular

time evolution vector field (t), the Hamiltonian formulation yields

H t = Et
ADM −M t

b (4.2)

where H t = Hamiltonian associated with the spacetime region in between the black hole

boundary(b) and the boundaries at infinity, M t
b = the mass associated with the horizon (b),

Et
ADM = the usual ADM energy associated with the spatial boundary at infinity for a permis-

sible vector field tµ. H t is the Hamiltonian of the covariant phase space, which is the space of

various class of solutions of the Einstein equations admitting internal boundaries. For stationary

spacetimes the global timelike Killing field (ξµ) is the time evolution vector field. On physical

ground one can say that there is nothing between the internal boundary and the boundary at

infinity for stationary spacetimes, hence Hξ = 0. On mathematical ground one can argue that

in the Hamiltonian framework, for the stationary black hole solutions, the total Hamiltonian

function Hξ(which generates evolution along ξµ), must vanish as a first class constraint on the

phase space [1, 10]. This gives M ξ
b = Eξ

ADM . This is exactly what has been proved in another

manner in the literature : that in stationary black hole spacetimes the ADM mass equals the

energy of the black hole. Hence it is logical to identify Eξ
b with the horizon mass Mb in the

stationary case. The difference for an arbitrary non-stationary case is that H t 6= 0. Thus it

can be called as the mass associated with the Isolated Horizon in an active sense, that can

change from one dynamic equilibrium situation to another satisfying the first law. Here, one

should be careful that this mass associated with the isolated horizon is completely physical and

is not to be confused with the Hamiltonian of the SU(2) Chern-Simons theory on the IH. The

Hamiltonian for Chern-Simons theory vanishes identically, since the theory is topological and

insensitive to arbitrary metric deformations.

Clearly, the horizon mass is not affected by boundary conditions at asymptopia. It is de-

fined locally on the horizon without referring to the asymptotic structure at all. The asymptotic

conditions only modify the energy associated with the boundary at infinity and the bulk equa-

tion of motion (Einstein’s equations) [10, 71]. The Hamiltonian framework discussed above is
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equally applicable for asymptotically flat and AdS spacetimes.

4.2.2 Quantum Geometry

For a classical spacetime with boundary, boundary conditions determine the boundary degrees

of freedom and their dynamics. For a quantum spacetime, on the other hand, fluctuations

of the boundary degrees of freedom have a ‘life’ of their own (see for instance ref.[13, 14]).

Consequently, the Hilbert space of a quantum spacetime with boundary has the tensor product

structure H = Hv ⊗ Hb, with the subscript v (b) denoting the bulk (boundary) component.

Thus, any generic state in quantum geometry, |Ψ〉, admits the expansion

|Ψ〉 =
∑
v,b

Cvb |ψv〉 ⊗ |χb〉 . (4.3)

In presence of electromagnetic fields, one can consider |ψv〉 (resp. |χb〉) to be the composite

quantum gravity + quantum electrodynamics bulk (resp. boundary) state. The bulk states are

annihilated by the full bulk Hamiltonian : Ĥv|ψv〉 ≡ [Ĥg,v + Ĥe,v]|ψv〉 = 0; this is the quantum

version of the classical Hamiltonian constraint [77]. The total Hamiltonian operator acting on

the generic state |Ψ〉 has the form

ĤT |Ψ〉 = (Ĥv ⊗ Ib + Iv ⊗ Ĥb)|Ψ〉 (4.4)

where, Iv(Ib) corresponds to the identity operator on Hv(Hb).

While defining the grand canonical partition function, the charge operator (Q̂) for the black

hole is also needed. It can be written in a similar fashion like the Hamiltonian as

Q̂|Ψ〉 = (Q̂v ⊗ Îb + Îv ⊗ Q̂b)|Ψ〉 (4.5)

where Q̂v and Q̂b are corresponding charge operators for the bulk states |ψv〉 and the boundary

states |χb〉 , respectively. In the classical theory the charge of a black hole is defined on the

horizon i.e the internal boundary of the four dimensional spacetime (e.g. one can see how charge
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can be properly defined for spacetimes admitting internal boundaries in Einstein-Maxwell or

Einstein-Yang-Mills theories in [9]). There is no charge associated with the bulk black hole

spacetime, i.e. Qv ≈ 0 , which is basically the Gauss law constraint for electrodynamics.

Hence, its quantum version is assumed to be

Q̂v|ψv〉 = 0 (4.6)

Combining the quantum constraints on the Hamiltonian and charge operators we can define a

new quantum constraint as

Ĥ ′v|ψv〉 = 0 (4.7)

where Ĥ ′v ≡ ĤTv−ΦQ̂v and Φ may be any function. But in our case it is a physically significant

quantity which will be defined in the next paragraph. The implications of these quantum

constraints will be seen during the construction of the grand canonical partition function.

4.2.3 The Partition Function

Let us consider a grand canonical ensemble of massive charged black holes immersed in a heat

bath at some finite temperature with which it can exchange energy and charge as well. We

construct a partition function for the thermodynamic system. Using the usual definition of the

grand canonical partition function we write

ZG = Tr exp−βĤT + βΦQ̂ (4.8)

where the trace is taken over all states. Φ is the electrostatic potential and Q̂ is the charge

operator for the black hole. To write it in the explicit form first we write down a general

quantum state of the black hole as follows

|Ψ〉 =
∑
v,b

cvb |ψv〉 ⊗ |χb〉 (4.9)
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Now, we can write the partition function as

ZG =
∑
v,b

|cvb|2〈χb| ⊗ 〈ψv| exp−βĤT + βΦQ̂|ψv〉 ⊗ |χb〉

=
∑
v,b

|cvb|2〈χb| ⊗ 〈ψv| exp−βĤ ′|ψv〉 ⊗ |χb〉 (4.10)

where, Ĥ ′ = ĤT − ΦQ̂. Writing the new operator H ′ as (Ĥ ′v ⊗ Îb + Îv ⊗ Ĥ ′b) and using

Ĥ ′v|ψv〉 = 0, the partition function comes out to be equal to the boundary partition function

only i.e. ZG = ZGb, where ZGb is the boundary partition function for the charged isolated

horizon, given by

ZGb = Trb exp−β(Ĥb − ΦQ̂b)

where it is assumed that the boundary states can be normalized through the squared norm∑
v |cvb|2〈ψv|ψv〉 = |Cb|2. This is analogous to the canonical ensemble scenario described in

[12].

Now, the spectrum of the boundary Hamiltonian operator is still unknown in LQG. So we

assume that the spectrum of the boundary Hamiltonian operator is a function of the discrete

area spectrum and the charge spectrum associated with the horizon, respectively1. The charge

spectrum is equispaced on general physics grounds of charge quantization.

The area spectrum, in LQG, can be approximately taken to be equispaced for large area

black holes due to the following reason. For large area black holes, we have already seen that

the major contribution to the entropy comes from the lowermost spins. Hence, only spin 1/2

contribution for all punctures is taken into account which yields A ∼ N for a total of N ,N � 1

punctures on the horizon. This leads to the equispaced area spectrum as an approximation. Of

course the higher spins contribute, but their contribution is exponentially suppressed. A more

rigorous calculation accounting for the contributions from higher spins may correct the final

results, but only in a minor way. Hence, the inclusion of the higher spins would be more of

1Actually this second assumption follows from the discussion in Subsection(4.2.1) [9, 10] for spacetimes
admitting weakly isolated horizons where there exists a mass function determined by the area and charge
associated with the horizon. This is an extension of that assumption to the quantum domain.
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technical importance rather than physical.

In a basis in which both area and charge operators are diagonal, the partition function can

be written as

ZG =
∑
k,l

g(k, l) exp−β [E(Ak, Ql)− ΦQl] (4.11)

where g(k, l) is the degeneracy corresponding to the area eigenvalue Ak and the charge eigen-

value Ql. k, l are the area and charge quantum numbers respectively. As we are interested in

regime of the large area and charge eigenvalues (k � 1, l � 1), Poisson resummation formula

is applied [65] to approximate the summation to an integration given by

ZG =

∫
dx dy exp−β {E [A(x), Q(y)]− ΦQ(y)} g [A(x), Q(y)] (4.12)

where x and y are area and charge quantum numbers in the continuum limit of k and l re-

spectively. Since A = A(x) and Q = Q(y), we can write dx = dA
Ax

and dy = dQ
Qy

to write the

partition function in terms of area and charge as free variables as follows

ZG ≈
∫
dA dQ eS(A)−βE(A,Q)+βΦQ (4.13)

where S(A), being the microcanonical entropy, is a function of horizon area alone, as has been

established within LQG [13, 14, 17]. Here, we have dropped out the irrelevant scaling constants

and the suffix to the area variable.

4.3 Stability Against Gaussian Thermal Fluctuations

4.3.1 Saddle Point Approximation(S.P.A.)

Having a well defined partition function, we investigate its finiteness under Gaussian thermal

fluctuations about stable equilibrium configurations of the black hole given by the saddle points{
Ā, Q̄

}
. Taylor expanding (S(A)−βE(A,Q)+βΦQ) about a saddle point (Ā, Q̄) and applying
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the saddle point conditions one can rewrite the partition function as

ZG = e[S(Ā)−βM(Ā,Q̄)+βΦQ̄]

×
∫
e−

1
2 [−{SAA(Ā)−βMAA(Ā,Q̄)}a2+βMQQ(Ā,Q̄)q2+2βMAQ(Ā,Q̄)aq] da dq (4.14)

where, we have used M(Ā, Q̄) to indicate the equilibrium isolated horizon mass as a function

of the area and charge. The saddle point conditions imply that the coefficients of a = (A− Ā)

and q = (Q− Q̄) must vanish, which yield

β(Ā, Q̄) =
SA(Ā)

MA(Ā, Q̄)
, Φ(Ā, Q̄) = MQ(Ā, Q̄) (4.15)

4.3.2 Quantum Corrected Surface Gravity

An interesting result of this statistical mechanical approach is that, it gives rise to a quantum

correction to the surface gravity which is a direct consequence of the logarithmic corrections

of the microcanonical entropy S = Ā
4
− 3

2
log Ā

4
from loop quantum gravity. If one calculates

β from the saddle point conditions and use it to find the quantum surface gravity (κquantum)

in terms of classical surface gravity (κclassical), there appear additional correction terms. One

does this by calculating β from (4.15) and then using it in the expression κquantum = 2π
β

(more

appropriately, this β can be replaced by βquantum ). The quantum corrections to the classical

surface gravity is found to be

κquantum ≈ κclassical

(
1 +

6

Ā

)
(4.16)

where higher order terms are neglected for large black holes (Ā >> 1), Ā being the area of

the weakly isolated horizon in Planck units. One can easily check the formula by applying it

to the Reissner-Nordstrom and AdS Reissner-Nordstrom cases. Since the formulation is not

dependent on any particular situation (symmetry, etc.), it will also be valid for other massive

charged black holes also.
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4.3.3 Stability Criteria

For the integral (4.14) to be convergent, the Hessian matrix H, given by (4.17) has to be positive

definite where

H =

βMAA(Ā, Q̄)− SAA(Ā) βMAQ(Ā, Q̄)

βMAQ(Ā, Q̄) βMQQ(Ā, Q̄)

 (4.17)

The necessary and sufficient condition for the real symmetric square matrix H to be positive

definite can be stated as follows [78] - ‘Determinants of all the principal submatrices, including

the determinant, of H are positive.’ It is also a crucial point that the inverse temperature β

must be positive. Hence, the necessary and sufficient conditions for the positive definiteness of

the Hessian matrix lead to the following stability criteria

β ≡ SA(Ā)

MA(Ā, Q̄)
> 0 (4.18)

βMAA(Ā, Q̄)− SAA(Ā) > 0 (4.19)

detH ≡
{
βMAA(Ā, Q̄)− SAA(Ā)

}
βMQQ(Ā, Q̄)− β2M2

AQ(Ā, Q̄) > 0 (4.20)

It should be noted that, for MQQ(Ā, Q̄) > 0, it will suffice to check only conditions (4.18)

and (4.20) (which will be the case for RN and AdS RN black holes).

Here, one may wonder that how these stability criteria (4.18)–(4.20) are related to the con-

vexity property of the entropy function, which is the usual notion for thermodynamic stability.

It is true that the usual notion of thermodynamic stability is related to the convexity property

of the entropy function. It is also true that this convexity property of the entropy function fol-

lows from the requirement of the convergence of the partition function under Gaussian thermal

fluctuations[65, 74, 61]. Our stability criterion, likewise, follows from equations (4.18)–(4.20)

which constitute the necessary and sufficient conditions for the grand canonical partition func-

tion to be well defined. Physically, the conditions to be satisfied by the entropy Hessian in

[65],[74] and [61] (which imply convexity of entropy function) and the conditions (4.18)–(4.20)

lead to the same conclusion i.e. the finiteness of the partition function under Gaussian thermal
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fluctuations. In fact, one can check that the apparent dissimilarity in the mathematical struc-

ture of the Hessian in [65] and eq. (4.17) is just a manifestation of the different variables which

are summed over2. The equivalence between our conditions and the convexity of the entropy

function is obvious for the charge-less case i.e. canonical ensemble, discussed in details in [12].

4.3.4 The Classical Metrics

Reissner-Nordstrom black hole : In this paragraph we investigate the stability of massive

charged Reissner-Nordstrom black holes against Gaussian thermal fluctuations. The classical

Reissner-Nordstrom metric which is given by

ds2 = −(1− 2M

r
+
Q2

r2
)dt2 + (1− 2M

r
+
Q2

r2
)−1dr2 + r2dΩ2 (4.21)

The mass of the black hole in terms of area and charge as independent variables and it is given

by

M =
1

2

(
A

4π

) 1
2

(1 + ρ) (4.22)

where ρ = 4πQ2

A
is a dimensionless parameter in the chosen units. The microcanonical entropy

including the logarithmic correction term from loop quantum gravity is given by

S =
A

4
− 3

2
log

A

4
(4.23)

Using (4.22) and (4.23) one finds that

β = 2
√
πA

1
2

(1− 6
Ā

)

(1− ρ̄)
(4.24)

detH = − π

2Ā

(1− 6
Ā

)(1 + 6
Ā

)

(1− ρ̄)
(4.25)

2To understand the motivation behind this choice of variables one can see Subsection (4.2.1) where a detailed
explanation is given.
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where ρ̄ = 4πQ̄2

Ā
. Conditions (4.18) and (4.24) together imply ρ̄ < 1, whereas, (4.19) and (4.25)

imply ρ̄ > 1. From this contradiction one can conclude that the Reissner-Nordstrom black hole

is locally unstable against Gaussian thermal fluctuations.3

AdS Reissner-Nordstrom black hole : In this paragraph we investigate the stability

of massive charged AdS Reissner-Nordstrom black holes against thermal fluctuations. The

classical AdS Reissner-Nordstrom metric which is given by

ds2 = −(1− 2M

r
+
Q2

r2
− Λ

3
r2)dt2 + (1− 2M

r
+
Q2

r2
− Λ

3
r2)−1dr2 + r2dΩ2 (4.26)

where, Λ
3

= − 1
l2

. The mass of the AdS Reissner-Nordstrom black hole in terms of area and

charge as the independent variables is given by

M =
1

2

(
A

4π

) 1
2

(1 + ρ+ σ) (4.27)

where we have set Λ
3

= − 1
l2

as Λ is negative for AdS spacetimes and introduced the parameter

σ = A
4πl2

= A
AΛ

. Here also the entropy is given by (4.23). Calculating the required quantities

for AdS Reissner-Nordstrom case from (4.23) and (4.27) one finds that

β = 2
√
πĀ

1
2

(1− 6
Ā

)

(1− ρ̄+ 3σ̄)

detH =
π

2Ā

(1− 6
Ā

)(1 + 6
Ā

)

(1− ρ̄+ 3σ̄)2

[
ρ̄− 1 + 3σ̄

(
1− 18

Ā

)(
1 +

6

Ā

)−1
]

where σ̄ = Ā
4πl2

= Ā
AΛ

. For the conditions (4.18) and (4.20) to be satisfied simultaneously the

parameters have the following bound given by

1− 3σ̄

(
1− 18

Ā

)(
1 +

6

Ā

)−1

< ρ̄ < 1 + 3σ̄

3This result is in agreement with what has been told in [63] i.e. an asymptotically flat, non-extremal black hole
can never achieve a state of thermal equilibrium. This work also involves a statistical mechanical formulation
without any classical metric but do not have a sound mathematical basis as a justification of the quantum
statistical formulation which has been presented in our work.
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which in the first order approximation reduces to the bound

1− 3σ̄

(
1− 24

Ā

)
< ρ̄ < 1 + 3σ̄

Hence, AdS Reissner-Nordstrom black holes are locally stable against thermal fluctuations for

the above range of parameters.

4.4 Validity of S.P.A.

To ensure the validity of the saddle point approximation, the relative r.m.s. fluctuations about

the saddle point are to be checked i.e. ∆Arms/Ā = (∆A2)1/2/Ā,∆Qrms/Q̄ = (∆Q2)1/2/Q̄

where

∆A2 = (H−1)11 =
βMQQ

detH
, ∆Q2 = (H−1)22 =

βMAA − SAA
detH

4.4.1 Reissner-Nordstrom black hole

The mean square fluctuations of area and charge in this case come out to be negative due

to the presence of the determinant of the Hessian matrix. This emphasizes the instability of

Reissner-Nordstrom black holes against Gaussian thermal fluctuations.

4.4.2 AdS Reissner-Nordstrom black hole

The relative r.m.s. fluctuations of area and charge in this case are found to be

∆Arms
Ā

=

 8(1− ρ̄+ 3σ̄)(
1 + 6

Ā

){
ρ− 1 + 3σ̄

(
1− 18

Ā

) (
1 + 6

Ā

)−1
}
 1

2

Ā−
1
2 (4.28)

∆Qrms

Q̄
=

√
3

Φ2

(1− ρ̄+ 3σ̄)
(
1− 2

Ā

){
ρ̄+ σ̄

(
1− 18

Ā

) (
1− 2

Ā

)−1 − 1
3

(
1 + 6

Ā

) (
1− 2

Ā

)−1
}

(
1− 6

Ā

) (
1 + 6

Ā

){
ρ− 1 + 3σ

(
1− 18

Ā

) (
1 + 6

Ā

)−1
}


1
2

Ā−
1
2

(4.29)
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where the equilibrium charge has been replaced in terms of the electric potential Φ which can

be easily calculated from the saddle point conditions (4.15). It is clearly seen from the above

expressions that the fluctuations fall off in the large area regime. As far as the positivity of

the mean square fluctuations(r.m.s. fluctuation to be real) is concerned one needs to be more

careful with the lower bound of ρ̄. One can show that there arise the following two cases :

1)For σ̄ < 1
3

(
1 + 24

Ā

)
, the correct lower bound for ρ̄ is what has been obtained i.e. 1 −

3σ̄
(
1− 24

Ā

)
.

2)For σ̄ > 1
3

(
1 + 24

Ā

)
, the correct lower bound for ρ̄ is given by 1− 3σ̄

(
1− 16

Ā

)
+ 8

Ā
.

4.5 A General Discussion

The first thing to say about this approach is that its origin is purely based on quantum aspects of

spacetime. During the build up of the formalism, no classical metric is used. The construction

of the partition function is purely based on the ideas and results of LQG e.g. the use of Chern-

Simons states, the splitting up of the total Hilbert space, etc. and also on the Hamiltonian

formulation of spacetimes admitting weakly isolated horizons. The entropy correction also

follows from the quantum theory. The classical metrics come to the picture only to be tested.

In course of this heuristic statistical mechanical approach of stability analysis of black

holes, broadly two assumptions are made. In classical Hamiltonian GR it is known that the

total Hamiltonian (gravity + matter) vanishes. So, it is very logical to consider that the

quantum total Hamiltonian operator annihilates the bulk states of quantum matter coupled

spacetime. A similar argument follows for the assumption of the quantum constraint on the

volume charge operator. These two assumptions may be considered to be one due to their

fundamental similarity and they ultimately give rise to a single quantum constraint.

In Section(4.2), a second assumption is made regarding the eigenvalue spectrum of the

energy of the black hole. It is already mentioned (in a footnote) that this second assumption

is not a strong one. If one studies [9] carefully, the classical mass function associated with the

horizon is stipulated to be a function of horizon area and charge. Again, this horizon area

and charge are the functions of the local fields on the horizon. Proper quantization of the
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classical horizon area and charge will obviously lead to a well defined boundary Hamiltonian

operator. The fact that there exists a quantum boundary Hamiltonian operator which acts on

the boundary Hilbert space of the black hole is an assumption, since the exact form of such a

Hamiltonian operator is still unknown. But the fact that its eigenvalue spectrum is a function

of eigenvalue spectra of the area and charge operators is most likely a valid assumption, as it is

bound to happen if such a boundary Hamiltonian operator exists. It follows from the classical

analog - the mass associated with the horizon must be a function of the horizon area and charge

for a consistent Hamiltonian evolution[9].

In ref. [65] where a similar approach has been taken, a particular functional form of the mass

in terms of the area and charge had been used on an ad hoc basis. Such an ad hoc assumption

has been shown here to be quite redundant. This, therefore, is a significant strength of this

work, relative to the earlier assay. Thus, the statistical mechanical approach adopted in this

work, though similar, now stands on a far stronger ground than in the previous version.

This statistical mechanical approach gives us a new quantum correction to the surface grav-

ity arising from the loop quantum gravity corrections to the microcanonical entropy. One can

easily check its validity. Moreover, it predicts local thermodynamic instability of the Reissner-

Nordstrom black hole and local thermodynamic stability of the AdS Reissner-Nordstrom black

hole as was shown classically in [73]. As far as the relative charge fluctuations are concerned,

in literature [75] there are problems for AdS RN black holes as it does not fall off for any

condition. This problem has been solved in this work(Section4.4). Last but not the least, once

more a word is worth mentioning that this formulation does not involve any classical metric.

The whole thing depends on quantum aspects of spacetime. One can generalize this to study

rotating and even charged-rotating black holes because there is no use of symmetry in the

theory. We look forward to give those analyses in future.

There is a more crucial issue which can be of utmost importance to have a deeper un-

derstanding of black hole thermodynamics [79]. As far as the saddle-point approximation is

concerned, the Euclidean path integral approach does look similar to our thermal holographic

approach. But there is a crucial difference between the two approaches. The path integral
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approach, within the saddle point approximation, requires information of the full black hole

spacetime (bulk and horizon) as given by the classical black hole metric solution chosen to

be the saddle point. Thus one needs global information away from horizon. In the thermal

holographic approach which we adopt, one needs only local information associated with the

equilibrium isolated horizon geometry interpreted as an inner null boundary. Thus, no detailed

knowledge of the full classical spacetime is needed. The mass of the isolated horizon is an

unspecified function of the area and charge, and we never need to specify this function to derive

our results, except as fiducial checks [Subsection (4.3.4)] appropriate to given classical metrics.

This insensitivity of our approach to an explicit classical black hole metric is a key feature of

our work and can be taken to mean that our results are in a sense more general than those

computed from the Euclidean path integral.

A further distinction is that, in contrast to the Euclidean path integral approach, where

quantum fluctuations around a classical metric are considered, our saddle point is a quantum

isolated horizon whose quantum states and their (non-perturbative) dynamics are described by

a quantum Chern Simons theory. Consequently, the equilibrium entropy is the microcanonical

entropy computed in earlier work (ref. [13, 14, 16, 17]) based on LQG, and already has an infinite

series of corrections (including those logarithmic in horizon area) beyond the Bekenstein-Hawing

area law, incorporating quantum spacetime fluctuations. In this work, additional thermal fluc-

tuations (and their physical effects) are considered, over and above the quantum spacetime

fluctuations already incorporated for the equilibrium configuration. Quantum and thermal

fluctuations are thus, treated somewhat distinctly in our approach, and the result is an inter-

esting interplay between them. In the Euclidean path integral, such distinctions are not as

clear. It might be of future interest to see better how these two somewhat disparate approaches

may be related.

4.6 A local observer perspective

Recently, there have been proposal of a quantum energy spectrum of QIH [15] based on semi-

classical approximations and arguments from classical Schwarzschild black hole, which are used
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as inputs from outside the pure quantum theory, so as to avoid a true quantization of the black

hole energy. The proposed energy spectrum of the QIH in [15] is given by

Ê |j1, · · · , jN〉 =
1

8π`
Â |j1, · · · , jN〉 (4.30)

where Ê and Â are the Hamiltonian and area operators for the QIH respectively. The proposal of

the energy spectrum in eq.(5.21) follows form the semiclassical relation E = A/8π`, elaborated

in [92], where E = the classical energy of the black hole , A = the classical area of the horizon

and ` is a constant length scale characterizing the proper distance of a class of stationary local

observers from the horizon, introduced in [92]. Similar expression for local energy (E = A/8π`)

also appears in [93, 94] with explanations on different grounds 4. Since only [15] discusses the

thermodynamic stability of the QIH and thus, more closely related to the subject matter of

this paper, we shall only refer to [15] at the relevant places.

Here, we present a detailed stability analysis of a QIH having the energy spectrum as in

eq.(5.21), to argue that such a spectrum in fact leads to the local thermodynamic instability

of the QIH. The stability analysis is carried out using two methods – one that is similar to

the one followed in [15] and the other which is a completely independent approach, namely the

thermal holographic method introduced in [12, 3]. Both methods lead to the same conclusion

which is the key result of this paper: An uncharged, non-rotating QIH, as observed by the local

observers discussed in [15, 92], is locally unstable as a thermodynamic system.

4.6.1 Energy Spectrum of QIH

In this section we shall discuss about the energy spectrum for the QIH observed by a local

observer, which have been proposed in [15, 92] as a model of a black hole. Since this work is

focused towards studying the thermodynamics of quantum Isolated Horizon having the energy

spectrum proposed in [15], we shall be very brief in discussing the aspects of classical general

relativity related to this work (e.g. definition of local observers, approximations of energy

4As far as this length scale ` is concerned there is a conflict between [15, 92] and [93]. According to [15, 92],
` ∼ `p. On the other hand, according to [93], `� `p, `p being the Planck length.
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expression) to avoid unnecessary lengthening of the paper. Of course we shall point out the

proper references where the ideas have been discussed in complete details.

Local observers : The definition of local observers used in [15, 92] originates from the ideas

extensively discussed in the textbooks on General Relativity such as [96], [97] etc. These

preferred class of observers are stationary with respect to the horizon of the black hole, which

makes them ideal for the observation of the thermodynamics of horizons according to [92]. The

four velocity of such an observer is given by u = ξ√
|ξ.ξ|

, where ξ is the time-like Killing vector

associated with the black hole spacetime and alternatively, the generator of the one-parameter

group of isometry (Lξgab = 0) for the associated black hole spacetime with the metric gab. While

infinitesimally close to the black hole event horizon these observers represent the ZAMOs of

[98]. For more details on this account one may look into [92] and the references therein.

Energy observed by a local observer : The energy spectrum used in [15] follows from the

definition of energy of a classical Schwarzschild black hole from a local observer’s perspective.

The definition of local energy [15, 92] is given by

Er = − 1

8π

∫
Sr

∇aubdSab (4.31)

where u = ξ√
|ξ.ξ|

is the four velocity of the local observer and Sr is a 2-sphere of radius r > 2M .

For a Schwarzschild black hole, it is straightforward to show that Er = M
2

(
1− 2M

r

)− 1
2 . The

near horizon limit at r = 2M + ε is obtained to be

E ≡ E2M+ε ≈
M

2

(
2M

ε

) 1
2

=
A

8π`
(4.32)

where one has to use ` = 2(2Mε)
1
2 , A = 16πM2 and consider ε � 2M . The above result has

been generalized for the case of Kerr-Newman black hole in [92].

Following the definition of energy given by eq.(4.32), the spectrum of the Hamiltonian

operator is proposed [15] to be given by eq.(5.21), which in terms of the area spectrum of the

QIH in LQG [76, 77] can be written as
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Ĥ|j1, · · · , jN〉 =
γ`2

p

`

∑
l

√
jl(jl + 1)) |j1, · · · , jN〉 (4.33)

where jl taking values from the set {1
2
, 1, 3

2
, · · · , k

2
} is the spin associated with the l-th puncture.

The length scale ` is the new object introduced, which does not belong to the quantum theory,

namely LQG. It denotes the proper distance of a stationary observer from the event horizon

of a Schwarzschild black hole at the radial coordinate r = 2M + ε and having an acceleration

1/`. Detailed explanation of the derivation of the energy spectrum is available in [15, 92]. As

far as our work is concerned the crucial point to be noted is that the derivation of the energy

spectrum in eq.(5.21) is dependent on the frame of a class of local observers introduced in [92],

characterized by the length scale `. Hence, the energy spectrum of the QIH given by eq.(5.21)

is ‘A Local Observer’s view’. It follows that the results of the thermodynamic analysis of a

QIH with such an energy spectrum, which forms the core matter of this paper, will be the

observation of ‘a local observer’. Thus, the title of this paper is justified.

Motivation for the use of the spectrum : The Hamiltonian formulation of the classical

phase space of spacetimes admitting internal boundaries (classical isolated horizons(CIH) at

equilibrium) shows that there exists an energy associated with each CIH satisfying a first law[9].

A correct quantization of such a theory must lead to a horizon energy spectrum expressed in

terms of the spectra of the operators corresponding to the other extensive variables of the first

law (namely area, charge, angular momentum, etc.). Unfortunately, such things have not been

done up till now. On the other hand, in quantum geometry[13, 14], the full Hilbert space of

a quantum black hole can be written as H = HV ⊗HS modulo some constraints, where V(S)

stands for volume (surface). Thus, any generic state |Ψ〉, of the quantum black hole can be

written as |Ψ〉 = |ΨV〉 ⊗ |ΨS〉. Hence, any operator which acts on the states of the Hilbert

space H, say the Hamiltonian Ĥ, must have a form [12] Ĥ = (ĤV ⊗ ÎS + ÎV ⊗ ĤS) where Î

represents identity operator. But the spectrum of this Hamiltonian is unknown. So, clearly

there is a missing link between the classical and quantum theories of IH as far as the energy

spectrum is concerned. As already mentioned in [15], the effort made in [15, 92] is aimed to

provide this missing link by an input from the classical theory.
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The Canonical Partition function : Now, using quantum geometry one can show[12, 3] that

the partition function of a quantum black hole is completely determined by surface states i.e.

Z = ZS = TrS exp−βĤS . This is nothing but the partition function for the QIH. Now, the

generic wave function of the QIH can be written as |ΨS〉 =
∑

j1,··· ,jN C(j1, · · · , jN)|j1, · · · , jN〉,

where |C(j1, · · · , jN)|2 is the probability of finding the QIH in the eigenstate |j1, · · · , jN〉 having

the spin sequence {j1, · · · , jN}. Hence, following eq.(4.32), the Hamiltonian acting on the

generic wave function of the QIH can be written as [15]

ĤS |ΨS〉 =
1

8π`
Â|ΨS〉 (4.34)

where Â is the area operator in LQG [76, 77]. The above equation can be explicitly written

in terms of the spectrum of ĤS which can be written in terms of the spectrum of Â following

eq.(5.21) as

ĤS |j1, · · · , jN〉 =

(
γ`2

p

`

N∑
l=1

√
jl(jl + 1)

)
|j1, · · · , jN〉 (4.35)

where γ is the Immirzi parameter and `p is the Planck length. jl is the spin associated with the

l th puncture, N being the total number of punctures. |j1, · · · , jN〉 is a microstate of the SU(2)

CS theory on the QIH, designated by the spin sequence {j1, · · · , jN} and also an eigenstate

of the Hamiltonian ĤS . Hence, to be more appropriate Ĥ ≡ ĤS in the eq.(5.10) which has

been proposed in [15]. Also, the trace over the surface states in the partition function discussed

above is the sum over all possible spin sequences.

Remarks : The energy spectrum used in [15] is based on an approximation of the energy,

observed by a stationary observer near the horizon of a classical Schwarschild black hole, result-

ing from some ad hoc arguments put forward in [92]. Obviously this is not a true quantization

of horizon energy. Nevertheless, the thermodynamic aspects of a QIH with the energy spectrum

of [15], as observed by a local observer, is worth studying as far as its importance in the current

literature is concerned, especially [93] and [94] besides several other works (not to be listed

here). In [93], the notion of a quantum Rindler horizon is introduced whose classical version
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describes the near-horizon geometry of a non-extremal black hole as seen by a stationary local

observer. The dynamics of the quantum surface, describing this system, is generated by the

boost Hamiltonion of Lorentzian Spinfoams. The crucial point is that the expectation value

of this boost Hamiltonian results in the local horizon energy introduced in [92]. On the other

hand, in [94] it has been shown that the energy expression given by eq.(4.32) comes out to be

equal to the canonical energy associated with the boundary term of the Holst action, alongside

other relevant consequences as far as horizon thermodynamics is concerned. In a nutshell, even

though the energy spectrum of a QIH given by eq.(5.21) is a very specific one, there is much

reason to pay attention to it as far as its physical consequences are concerned.

4.6.2 Thermodynamics of QIH

This section is dedicated to an exhaustive thermodynamic stability analysis of a QIH having

the energy spectrum given by eq.(5.21), as observed by a local observer.

Explicit Quantum Statistical Stability Analysis

To get an insight of the thermodynamic properties of the particular model of quantum black

hole, we explore the canonical ensemble scenario where the total number of punctures (N) is

kept fixed and the energy (E) is allowed to fluctuate. The canonical partition function can be

written as a sum over spin configurations as

Z(β,N) =
∑
{sj}

d[{sj}]e
−βE{sj} ≈ d[{s̄j}]e−βE (4.36)

where Ej = energy associated with a spin j,
∑

j s̄jEj = E = energy of the QIH for {s̄j}(thermal

equilibrium). The contributions from the sub-dominant configurations are neglected. β is the

inverse temperature of the QIH given by β = ∂SMC/∂E|N which results in

β = 2π`

(
1− 6

A

)
(4.37)
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To calculate relevant thermodynamic quantities one needs to calculate the logarithm of the

partition function in the appropriate limits (s̄j, k → ∞). A straightforward calculation using

equations (5.21), (4.36) and (4.37) yields

logZ = Nσ(γ)− 3

2
logA+

3

2
(4.38)

The average energy of the QIH in the canonical ensemble can be calculated from (4.38)

using the usual thermodynamical relation 〈E〉 = − ∂
∂β

logZ. Using dβ/dA = 12π`/A2 and

E = A/8π` it is straightforward to show that the average energy of the QIH is equal to its

equilibrium energy i.e. 〈E〉 = E. Following this, the specific heat of the QIH can be calculated

using the usual thermodynamic formula C = −β2∂〈E〉/∂β. A few steps of algebra lead to

C = − β2A2

96π2`2

where one has to use 〈E〉 = E = A/8π` and dβ/dA = 12π`/A2. The specific heat being negative

definite one can conclude that a QIH, having energy spectrum as in eq.(5.21), is locally unstable

as a thermodynamic system.

In this context, the validity of the first law can be checked using (3.30) and (5.23) and one

can easily show that dE = TdS is indeed satisfied. Also, from (4.37) one can find the local

horizon temperature to be

T =
1

2π`

(
1 +

6

A
+ .....

)
[kB = 1] (4.39)

This local horizon temperature contains a series which is identical to the correction terms

obtained for the horizon temperature in [3] considering Gaussian thermal fluctuations about

the equilibrium. The connection between these two may be a future issue of interest.

NOTE : Let us have a closer look at the canonical partition function. The exact canonical

partition function, without any approximation, can be written as

Z(β,N) = Z̄(β,N) + δ(β,N) (4.40)
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where δ(β,N) is the contribution from thermal fluctuations (sub-dominant configurations {sj}s

other than {s̄j}) about equilibrium value (Z̄) of the canonical partition function coming from

the dominant configuration {s̄j} whose spin distribution is given by eq.(3.14). Truly speaking,

eq.(4.36) is only Z̄ and not Z. The effect of the thermal fluctuations is completely neglected

( δ = 0) in eq.(4.36). This has a profound implication.

The canonical entropy is given by SC = logZ + β〈E〉, which can be recast as

SC = S̄C + log(1 + δ/Z̄)

where S̄C = log Z̄ + βE and 〈E〉 = E is used. If one calculates log Z̄ + βE, a few steps of

algebra leads to S̄C = SMC . Therefore,

SC = SMC + log(1 + δ/Z̄) (4.41)

If we do not take the effects of thermal fluctuations in canonical ensemble i.e. δ = 0, then

it is obvious that SC = SMC at all temperatures. This is a very general result concerning a

thermodynamic system [61] which also applies for black holes as has been shown earlier in the

literature [95]. In fact this extra contribution from thermal fluctuations plays a very important

role in analyzing the thermodynamic stability of the QIH [12] which we will discuss briefly

in the next subsection. Sitting at the equilibrium and ignoring the thermal fluctuations lead

to a physically incomplete scenario which apparently looks to give us an ensemble independent

result [15]. Hence, to get the complete picture, we must take into account quantum and thermal

fluctuations both.

4.6.3 Thermal Fluctuations in Canonical Ensemble

If one calculates the partition function including the Gaussian thermal fluctuations and using

E = A/8π`, it comes out to be

Z ≈ 1

4π
eSMC(Ā)−βE(Ā)

∫ ∞
0

e
3

4Ā2 a
2

da (4.42)
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where Ā is the horizon area at equilibrium(saddle point) and a is the fluctuation variable. The

partition function is clearly undefined due to the infinite integral. Also, if one calculates the

canonical entropy(SC) taking the Gaussian thermal fluctuations into account[95], it comes out

to be

SC = SMC −
1

2
log ∆

where

∆ =
K

∂E/∂A

[
∂2E

∂A2

∂SMC

∂A
− ∂2SMC

∂A2

∂E

∂A

]
(4.43)

evaluated at the saddle point(equilibrium configuration), K being an irrelevant positive con-

stant. For the canonical entropy to be well defined we must have ∆ > 0. But, using the energy

spectrum given by (5.21) it is straightforward to show that ∆ < 0. Thus the canonical entropy

can not be defined for a QIH having an energy spectrum as in eq.(5.21) which implies nothing

but the instability of the QIH as a thermodynamic system[12] from the perspective of a local

observer. (N does not play any role as it is kept fixed in canonical ensemble.)

In this Gaussian approximation method, the inverse temperature of the QIH at equilibrium

is given by β = ∂SMC/∂A
∂E/∂A

. Using eq.(5.21) and eq.(3.30) in the expression for β, it is easy to find

that β = 2π` (1− 6/A). Comparing this result with eq.(4.37), one can see that the equilibrium

temperature comes out to be the same in both the approaches. This is a consistency check.

4.6.4 Few remarks

Let us conclude with a few remarks on the thermodynamic stability analysis of the particular

model of a QIH presented in this section. The final conclusion is the local thermodynamic

instability of a QIH having energy spectrum given by the eq.(5.21). The result has been

derived in two different approaches shown in the subsections (4.6.2) and (4.6.3). The crucial

role of thermal fluctuations behind the thermodynamic instability of this particular model of

the QIH is evident from the analyses. In fact, though the quantum statistical analysis gives
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a negative specific heat, the physical picture becomes much clearer in the thermal holographic

analysis where the Gaussian thermal fluctuations manifestly control the convergence criterion

of the partition function. In this approach we can actually see that any arbitrary QIH is not

thermodynamically unstable, but only those which fail to satisfy the convergence condition

for the partition function are unstable. The particular energy spectrum of the QIH given by

eq.(5.21) considered in this paper is only one such example. This is not the stability analysis

of a generic QIH, for which we need the information about the quantum energy spectrum of a

QIH derived from a true quantization resulting from the fundamental quantum theory. It can

be only considered to be a stability analysis of the QIH from the perspective of a local observer.

Now, an alert reader will surely wonder : Why shall we make a thermodynamic analysis of

such a very specific energy spectrum of a QIH ? The answer is very simple : The particular

energy spectrum studied in this paper is of utmost importance as far as current literature is

concerned. Some of the important aspects of the particular definition of energy of a QIH studied

in this work has been mentioned in the “Remarks” at end of section(4.6.1) in connection with

current literature. But the most important consequence has been reported in [15]. Using the

energy spectrum in eq.(5.21), it has been claimed in [15] that “ as a thermodynamic system the

Isolated Horizon is locally stable”. Hence, the purpose of an extensive thermodynamic analysis

of a QIH having the particular energy spectrum given by eq.(5.21) is now clear enough and it

does not need much of an effort to understand that our results are in complete contradiction

with the above claim.

60



Chapter 5

Energy Spectrum of Equilibrium Black

Holes in LQG : Model Hamiltonian

5.1 Introduction

Although it is a known fact that the IH is associated with a classical notion of energy which

satisfies a first law [9], but there does not exist any quantized energy spectrum for a black

hole. In this work, we take an upside down approach to find the energy spectrum of a QIH.

Instead of quantizing the classical energy, taking the quantum theory as the starting point and

using our knowledge of the area operator in LQG[13, 14, 88, 81], we propose the most generic

structure of the Hamiltonian operator associated with the QIH. The motivations behind this

approach can be stated as follows. We always pass to the quantum theory only through the

quantization of the classical one. But we never originally formulate the quantum theory and

pass on to the classical one by studying the correspondence limit of the quantum theory1. To

study the correspondence limit of a quantum theory is only ‘a consistency check’ for us and

not a ‘method of derivation’ of the laws of classical physics. The first law of thermodynamics

for an IH, which results from the classical theory of IH, is nothing but the proportionality

1Nature is the way it is. We are the ones who can see it classically only, which is the sole reason for this order
of passage from classical to quantum. If human mind were sharp enough to formulate the quantum theory on
the first hand, then we would have done so. Then, many fundamental problems which arose in classical physics
and later solved in quantum theory, would not have risen at all.
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of the variation of classical energy to that of the classical area, the proportionality constant

being related to the surface gravity of the IH i.e. δEt
IH = (κtIH/8π) δAIH where t denotes the

choice of time evolution vector field[9]. Wearing the ‘quantum spectacles’ one can view that

on the right hand side of the first law, the classical area AIH is the expectation value of the

QIH area operator. Then the classical energy EIH on the left hand side must also result from

the expectation value of some Hamiltonian operator for the QIH. This clearly indicates that

there must be a gauge invariant true Hamiltonian operator in the quantum theory which will

give rise to this notion of classical energy associated with the IH in the correspondence limit.

Consideration of the quantum sources, the punctures, to play the fundamental role in the QIH

theory[13, 14], along with a close observation of the structure of the area operator [88, 81], at

once reveals the most general structure of such a Hamiltonian operator associated with the QIH

which is gauge-invariant, self-adjoint and commutes with the area operator so as to yield the

constant classical area property of IH. Finally, demanding that the first of IH thermodynamics

should follow in the classical limit the unknown coefficients and parameters of the Hamiltonian

operator can be fixed to get the final result.

5.2 Beginning from the quantum theory

5.2.1 The area operator revisited : Some crucial observations

The area operator is a gauge invariant, self-adjoint observable in loop quantum gravity(LQG)

defined for any arbitrary two dimensional surface (S) embedded in the three dimensional spatial

manifold (Σ) obtained from a specific foliation of the four dimensional spacetime manifold

(M ≡ R × Σ) by some preferred time evolution vector field (t)[88, 81]. The wave function

of the spatial geometry is a functional of the spatial SU(2) connection A. These functionals

are equipped with some specific properties and are called cylindrical functions[47]. The spatial

quantum geometry is denoted by a graph consisting of edges (links) and vertices (nodes) known

as spin network. Each edge is associated with a spin representation of the SU(2) group. The

wave function of the quantum geometry is written as
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ΨΓ,ψ[A] = ψ(hρ1(A), hρ2(A), · · · , hρn(A)) (5.1)

where hρ(A)-s are the holonomies along the edges of the spin network, Γ is the collection of the

ordered oriented paths and ψ is a smooth function on [SU(2)]n[81, 47]. The holonomy of the

connection along a curve ρ embedded in Σ is given by

h(A, ρ) ≡ P exp

∫
ρ

A (5.2)

which is a gauge invariant quantity. The momentum (E) conjugate to the connection variable

(A) [47] acts on the wave function as operators given by the following functional derivative :

1

8πγG
Êa
i (τ, x)ΨΓ,ψ[A] = −i~ δΨΓ,ψ[A]

δAia(τ, x)
(5.3)

The momentum (E) being a two form can be naturally integrated over a two surface. The

corresponding operator can also be smeared on a two surface which leads to the flux operator

in LQG which plays the key role in endowing the surface (S) with a quantum area [88, 81, 47, 76].

Since, from eq.(5.1), it is evident that ΨΓ,ψ[A] consists of the holonomies along the edges of the

spin network, the action of the momentum operator on the holonomy is the most crucial step,

which is given by the functional derivative of the holonomy with respect to the connection as

follows

δh(A, ρ)

δAia(τ, x)
=

∫ 1

0

ds ρ̇a(s) δ3(ρ(s), x)× [h(A, ρ1)τih(A, ρ2)] (5.4)

The quantity in the expression (5.4) is a two dimensional distribution and yields a well defined

operator Êi(S) when smeared over a two dimensional surface (S), embedded in the three

dimensional spatial manifold [88, 81, 76]. Geometrically, the operator Êi(S) signifies that when

the path ρ intersects the surface S at a point Q(say), separating the path into two paths ρ1 and

ρ2, Q gets associated with a matrix ±i8πγG~τi in the particular spin representation carried by

the holonomy of the path ρ. The signature depends on the relative orientation of the path (ρ)

and the surface (S). Without any intersection the result is zero. The gauge invariant operator
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that can be constructed from Êi(S) and relevant for the construction of the area operator is

simply
∑

i Ê
2
i (S). Its action on the holonomy of a path ρ carrying spin-j representation and

intersecting S at a point is given by

∑
i

Ê2
i (S) (j)h(A, ρ) = (j)h(A, ρ1)

[
−(8πγG~)2

∑
i

(j)τ 2
i

]
(j)h(A, ρ2)

Using −
∑

i
(j)τ 2

i = j(j + 1) × I, the Casimir of the SU(2) group in the spin-j representation

and the property (j)h(A, ρ) = (j)h(A, ρ1) . (j)h(A, ρ2) for ρ = ρ1 ∪ ρ2 on the right hand side of

the above equation, one obtains an eigenvalue equation with the eigenvalue (8πγG~)2j(j + 1).

The gauge-invariance of the operator
∑

i Ê
2
i (S) is manifested by the insertion of the matrix

Casimir of the group and the real eigenvalue manifests the self-adjoint property, which are all

associated only with the intersection point. This is the most crucial fact which will play the

pivotal role in the phenomenology presented in this paper. Now, comparing with the classical

definition of area of the surface S given by
∫
S
dS
√
naEa

i nbE
b
i (n being normal to the surface

S), it can be said that the path ρ upon intersecting the surface S provides it with a quantum

of area 8πγG~
√
j(j + 1).

Now, let there be N such intersections of the surface with the spin network edges. The

edges are ρ1, ρ2, · · · , ρN and the corresponding spin representations carried by the edges be

j1, j2, · · · , jN . But for multiple intersections on a surface, matrices at different points get

contracted spoiling the gauge invariance of the operator. To tackle this problem, the surface is

partitioned into N pieces Sl, l ∈ [1, N ] such that ∪lSl = S. In the limit N → ∞, the pieces

get small enough to guarantee that there is a single intersection with each piece with a single

edge. It should be remembered that the spin network is also dense enough so as to make large

number of intersections with the surface S to make the above regularization2 scheme valid. The

area operator associated with the surface S is given by

ÂS ≡ lim
N→∞

∑
l

[∑
i

Ê2
i (Sl)

]1/2

(5.5)

2 See [81, 47] for detailed account on the regularization issue.
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Hence the eigenvalue spectrum of the area operator will be given by

ÂS| · · ·〉 = 8πγ`2
p

N∑
l=1

√
jl(jl + 1) | · · ·〉 (5.6)

where | · · ·〉 denote a spin network state making intersections with the surface S and `2
p = G~.

jl are half-integers3 The real eigenvalue spectrum tells us that the area operator is self-adjoint

and the gauge-invariance has been guaranteed in the construction itself, specifically by the

Casimirs appearing at the intersections. The interesting property of the area operator that

we are interested in is that all the properties of the area operator are actually carried by the

individual intersection points where the edges of the spin network pierce the surface S.

5.2.2 Area spectrum and Hilbert space of QIH : Punctures are the

building blocks

The LQG area spectrum, in general, is unbounded above along with a vanishing lower bound for

any arbitrary surface. But, the spectrum of the area operator belonging to a QIH Hilbert space

has a positive lower bound along with a finite upper bound owing to the physical properties of

the QIH. The Hilbert space of a QIH is that of a three dimensional SU(2) Chern-Simons(CS)

theory coupled to punctures(sources), carrying spin representations of the corresponding edges

of the bulk spin network which pierce the IH (a null inner boundary of spacetime with the

topology R × S2). The level of the source coupled CS theory is given by k ≡ Acl/4πγ`
2
p ∈ I,

Acl being the classical area of the IH. The physical states of the QIH belong to the singlet

part of the Hilbert space which is given by HS ≡ Inv(⊗Nl=1Hl), where ‘Inv’ stands for gauge

invariance on the QIH. The area spectrum of a QIH with N punctures and CS level k can be

written as 8πγ`2
p

∑N
l=1

√
jl(jl + 1) with 1/2 ≤ jl ≤ k/2 ∀l ∈ [1, N ] [89]. Following the structure

of HS, which is a gauge invariant direct product space of the Hilbert spaces associated with

the individual punctures, we can further write ÂS as

3The spectrum discussed here is only a part of the full area spectrum in LQG[81], which is generally considered
to be relevant in the literature of quantum black holes and that is what we are interested in.
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ÂS ≡ Âj1 ⊗ Îj2 ⊗ · · · ⊗ IjN + Îj1 ⊗ Âj2 ⊗ · · · ⊗ ÎjN + · · ·+ Îj1 ⊗ Îj2 ⊗ · · · ⊗ ÂjN (5.7)

Even though, this above expression for the area operator usually does not appear in the litera-

ture, but it is a trivial structure to write down to ensure that ÂS acts on a quantum state of the

QIH |φS〉 ∈ HS ≡ Inv(⊗Nl=1Hl), which can also be written as |φS〉 ≡ ⊗Nl=1|φl〉 following that the

punctures are non-interacting and distinguishable[13, 14]. This particular way of writing the

area operator is also motivated by the fact that the properties of the area operator of the QIH

are actually carried by each individual punctures; recall that the Casimir of SU(2) is inserted

only at the puncture where an edge of the bulk spin network intersects the surface. Hence, the

punctures are the building blocks of the QIH in the LQG framework and must play the roles of

fundamentally important individuals while constructing an operator associated with the QIH.

5.2.3 Proposal of the model Hamiltonian

Motivated by all the facts discussed up till now and with a view to approach the problem from

a quantum viewpoint, it is prompting to write down the Hamiltonian operator for the QIH in

the form of the area operator associated with the same. Hence, we write the QIH Hamiltonian

as

ĤS ≡ Ĥj1 ⊗ Îj2 ⊗ · · · ⊗ IjN + Îj1 ⊗ Ĥj2 ⊗ · · · ⊗ ÎjN + · · ·+ Îj1 ⊗ Îj2 ⊗ · · · ⊗ ĤjN (5.8)

very similar to the area operator of the QIH given by eq.(5.7). Further, we propose that any

gauge invariant, self-adjoint operator associated with the QIH and which commutes with the area

operator of the QIH, the contribution from a single puncture, carrying a spin-j representation,

must be a polynomial of Âj. All these three properties are essential for a true Hamiltonian

operator associated with the QIH, of which the reason for the requirement of commutativity

is justified by two reasons. First of all, the area operator and the Hamiltonian associated with

the QIH will have the simultaneous eigenstates, which are the states of the CS theory coupled

to the punctures. Secondly, we must ensure that the expectation value of the area operator,

which is equal to the classical area of the corresponding classical IH, must be a constant of
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motion, implying that the quantum theory properly leads to the most crucial property of the

IH in the correspondence limit. So, we propose that the contribution to the Hamiltonian from

a single puncture of a QIH carrying a spin-j representation must be of the form

Ĥj ≡
Λ∑
n=0

pnÂ
n
j (5.9)

where the coefficients (p-s) carry the burden of endowing the Hamiltonian operator with the

correct dimensionality and Λ is a cut-off. Hence, the Hamiltonian operator associated with the

QIH with N punctures can be written as

ĤS ≡
Λ∑
n=0

pn

(
Ânj1 ⊗ Îj2 ⊗ · · · ⊗ IjN + Îj1 ⊗ Ânj2 ⊗ · · · ⊗ ÎjN + · · ·+ Îj1 ⊗ Îj2 ⊗ · · · ⊗ ÂnjN

)
(5.10)

whose spectrum can be explicitly written as
∑Λ

n=1

∑N
l=1 pn(8πγ`2

p)
n[jl(jl + 1)]n/2. Now, it is

straightforward to see from expression (5.10) that
[
ĤS, ÂS

]
≡ 0̂ which guarantees the fulfillment

of the requirements that ĤS and ÂS have the simultaneous eigenstates which are that of the

QIH Hilbert space and the expectation value of the area operator of a QIH is a constant of

motion. If there is some evolution parameter ξ which parametrizes the QIH then it is evident

that d
dξ
〈ÂS〉 = i

~〈
[
ĤS, ÂS

]
〉 = 0 i.e. in the correspondence limit the classical IH has constant

area[1, 2, 9, 10, 11].

5.2.4 Spectrum of the Hamiltonian operator

Now, from (5.9), the single puncture contribution to the energy spectrum can be written as

Ej = `p

Λ∑
n=0

bnA
n
j = `p

Λ∑
n=0

an(γ)C n
j (5.11)

where Dim[bn] = `−2n
p and an(γ) = bn(8πγ`2

p)
n. It follows that the spectrum of a QIH with N

punctures looks like
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ĤS|j1, · · · , jN〉 = `p

N∑
l=1

Λ∑
n=0

an(γ)C n
jl
|j1, · · · , jN〉 (5.12)

The above form of the energy spectrum spectrum has been written just for the sake of clarity.

We shall work in the spin configuration basis in what follows, as it will be convenient for

our calculations. For simplicity, in our model, we consider n to take only integral values and

n ≥ 0 to ensure incremental monotonicity of the energy spectrum with the area contribution

of a single puncture. Since this kind of model Hamiltonian or energy spectrum of the QIH

has not been studied previously in literature and any property of such spectrum is hitherto

unknown, to avoid any problem with the convergence of such spectrum we have used the cut-

off parameter(Λ) a priori. We shall see that, at least from the thermodynamic viewpoint, we

can assert that such a cut-off is indeed required and should emerge automatically from a true

quantization of the horizon energy, if can be done anyhow. This is because, as we proceed, the

parameter Λ will come out to be directly related to the equilibrium temperature of the QIH

and one does not expect it to diverge for thermodynamically stable systems.

5.3 Compatibility with the Classical Results

5.3.1 Fixation of the model by matching with the classical results

It follows from eq.(5.11) that the energy eigenvalue of the QIH in a state designated by the

spin configuration {sj} will be given by

ĤS| {sj}〉 = `p
∑
j

Λ∑
n=0

an(γ)sjC
n
j | {sj}〉 (5.13)

It is further supported by the fact that the Hamiltonian and the area operators have the simul-

taneous eigenstates which follow from the fact that they commute. Since |{sj}〉 is an eigenstate

of the QIH, a generic quantum state of the QIH can be written as |ΨS〉 =
∑
{sj} c{sj}|{sj}〉.

Hence, the expectation value of the Hamiltonian operator or the mean energy for the QIH is

given by
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〈ĤS〉 = 〈ΨS|ĤS|ΨS〉

= `p
∑
{sj}

ω[{sj}]
∑
j

Λ∑
n=0

an(γ)sjC
n
j

= `p
∑
j

Λ∑
n=0

an(γ)s?jC
n
j + sub-dominant contributions

= E? ± O(`p) (5.14)

where ω[{sj}] = |c[{sj}]|2 is the quantum mechanical probability of the QIH to be found in the

state |{sj}〉. Now, we can calculate E? explicitly by using s?j given by eq.(3.20) in the following

way

E? ' `p
∑
j

Λ∑
n=0

an(γ)s?jC
n
j

= `pN
∑
j

Λ∑
n=0

an(γ)(2j + 1)C n
j exp(−λCj − σ)

' `pN exp(−σ)
Λ∑
n=0

an(γ)

∫ ∞
1/2

(2x+ 1) [x(x+ 1)]n/2 exp(−λ
√
x(x+ 1)) dx

[taking the limit k →∞ and replacing the sum over j by integration over x]

= `pN exp(−σ)
Λ∑
n=0

an(γ)
2

λn+2

∫ ∞
λ
√

3
2

yn+1e−ydy

[applying the change of variable λ
√
x(x+ 1) = y ]

= `pN exp(−σ)
Λ∑
n=0

an(γ)
2

λn+2
Γ
(
n+ 2 , λ

√
3/2
)

= exp(−σ)F (Λ, λ, γ)`pN (5.15)

where F (Λ, λ, γ) =
∑Λ

n=0 an(γ) 2
λn+2 Γ

(
n+ 2 , λ

√
3/2
)
, which is obviously a positive definite

function of λ. As we are interested in the classical limit and want to match the results with

the first law derived from the classical theory in [9] devoid of any effect of quantum hair, we

must evaluate the above result for σ = 0, λ = 1.2 = λ0(say) and γ = λ0/2π = 0.191 = γ0(say)

for the BHAL to follow. To check these values one has to go back to the second chapter on

microcanonical entropy. Thus eq.(5.15), in the appropriate limit, reduces to
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EIH ' E? = F (Λ, λ0, γ0)`pN (5.16)

Hence an infinitesimal change in the energy of the IH can be written as

δEIH = F (Λ, λ0, γ0)`p δN (5.17)

Similar to the above calculation one can also derive the expression for the mean area as follows

A? ' 8πγ`2
p

∑
j

s?jCj

= 8πγ`2
pN
∑
j

(2j + 1)Cj exp(−λCj − σ)

' 8πγ`2
pN exp(−σ)

∫ ∞
1/2

(2x+ 1) [x(x+ 1)]1/2 exp(−λ
√
x(x+ 1)) dx

[taking the limit k →∞ and replacing the sum over j by integration over x]

= 8πγ`2
pN exp(−σ)

2

λ3

∫ ∞
λ
√

3
2

y2e−ydy

[applying the change of variable λ
√
x(x+ 1) = y ]

= exp(−σ)
16πγ

λ3
Γ
(

3, λ
√

3/2
)
`2
pN (5.18)

Again taking the appropriate limit similar to the earlier calculation, eq.(5.18) reduces to

AIH ' A? =
16πγ0

λ3
0

Γ
(

3, λ0

√
3/2
)
`2
pN (5.19)

Hence an infinitesimal change in the area of the IH can be written as

δAIH =
16πγ0

λ3
0

Γ
(

3, λ0

√
3/2
)
`2
p δN (5.20)

Combining eq.(5.17) and eq.(5.20), and setting `p = 1 henceforth, yields

δEIH = ξ(Λ, λ0, γ0) δAIH (5.21)
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where the quantity ξ(Λ, λ0, γ0) =
λ3

0

16πγ0

F (Λ,λ0,γ0)

Γ(3,λ
√

3/2)
can be explicitly written as

ξ(Λ, λ0, γ0) =
λ3

0

16πγ0Γ(3, λ0

√
3/2)

Λ∑
n=0

an(γ0)
2

λn+2
0

Γ
(
n+ 2 , λ0

√
3/2
)

(5.22)

Now, on identifying the eq.(5.21), with the first law of IH thermodynamics[9] and considering

that the equilibrium temperature associated with the IH is given by TIH = κIH/2π, we have

TIH =
1

Γ(3,
√

3πγ0)

Λ∑
n=0

an(γ0)

(2πγ0)n
Γ
(
n+ 2 ,

√
3πγ0

)
(5.23)

where the relation λ0 = 2πγ0 has been used.

5.3.2 Fixing the unknown coefficients

The expression for the temperature in eq.(5.23) is plagued with the unknown coefficients of the

Hamiltonian operator which originates from the single puncture contributions. From a naive

analogy with gas thermodynamics, where the results are independent of the single particle

energy spectrum of the gas, we can expect, and argue as well, that the temperature of the

IH must be independent of the single puncture energy spectrum. The form of the coefficients

which will serve the purpose can be explicitly written as

an(γ0) =
ηΓ(3,

√
3πγ0)(2πγ0)n

Γ
(
n+ 2 ,

√
3πγ0

) (5.24)

where η is some unknown positive constant which needs to be fixed. Using these above coeffi-

cients the relevant quantities to calculate the temperature can be written down as

F (Λ, γ0) =
Γ(3,
√

3πγ0)

2π2γ2
0

η(1 + Λ)

ξ(Λ, γ0) =
1

4
η(1 + Λ)

and hence, the expression of the equilibrium temperature given by eq.(5.23) reduces to
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T = η(1 + Λ)`p (5.25)

The spectrum of the Hamiltonian operator takes the form as below :

ĤS| {sj}〉 = ηΓ(3,
√

3πγ0)`p
∑
j

Λ∑
n=0

(2πγ0)n

Γ
(
n+ 2 ,

√
3πγ0

) sjC n
j | {sj}〉 (5.26)

It is evident from the expression for the temperature given by eq.(5.25) that the cut-off imposed

on the sum over n is justified because the temperature diverges for Λ→∞. Hence, we can not

model the single puncture energy spectrum with some series with infinite terms and the cut off

(Λ) seems to be absolutely necessary.

5.3.3 Fixing the other parameters

After fixing the coefficients, we are left with two independent parameters η and Λ of the model.

The fixation of these two is not unique because for every different choice of Λ, η can be suitably

redefined. So, the case we investigate here is one specific choice.

The structure of the Hamiltonian operator implies Λ should be an integer. On the other

hand, the theory of QIH requires k to be an integer and this is the only fundamental variable

in the quantum CS theory. Hence we fix (1 + Λ) = k. Therefore, the expression for the

temperature reduces to TIH = ηk = ηAIH/4πγ0.

Strictly speaking, so far we did not use any input from the classical theory and we have one

more parameter left to be fixed i.e. η. This is the same sort of ambiguity that is also present

in the derivation of the first law of IH thermodynamics in [9] which is related to the time

evolution vector fields. For each and every choice of the time evolution vector fields there is a

local first law of thermodynamics associated with the IH. This ambiguity is fixed by matching

the definition of the classical energy of the IH with the one defined at asymptotic infinity for

stationary bulk e.g. Schwarzschild or Reissner Nordstrom black hole, where the locally defined

horizon mass is equal to the one defined at asymptotic infinity.

Here also we fix the remaining ambiguous parameter η, by matching the temperature with

that of a known black hole, which can be considered as an input from the classical theory.
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Here we consider the Schwarzschild black hole, for which the temperature associated with the

horizon is TSchw = 1/8πM , M being the mass associated with the horizon but defined at

asymptotic infinity i.e. for a Schwarzschild black hole EIH = M . Matching TSchw with the TIH

and considering that AIH = 16πM2, it is obtained that η = γ0/32πM3. Expressing η in terms

of k, which is the only macroscopic parameter in the QIH theory, the energy spectrum of a

QIH is given by

ĤS| {sj}〉 =
k−3/2γ

−1/2
0

4π

k/2∑
j=1/2

k−1∑
n=0

sjΓ(3,
√

3πγ0)(2πγ0Cj)
n

Γ
(
n+ 2 ,

√
3πγ0

) | {sj}〉

The spectrum of the Hamiltonian is bounded both below and above due to the bounds on spins

and the bound on the series sum of the contribution from individual punctures, as can be seen

trivially from the expression.

5.4 Discussion

The thermodynamics associated with the kind of energy spectrum of a QIH considered here,

has never been studied earlier in literature. Generally, one considers the horizon energy as a

function of the horizon area (e.g. power law). This intuition works in our mind due to our

instinctive affinity to look at a quantum theory through the classical spectacles. To be more

explicit, in numerous cases of the study of black holes the mass formula for known black hole

solutions are expressed in terms of the area and addressed as the mass spectrum of the black

hole [57, 65, 83, 66, 84, 12]. In fact, many a times, in such formulae, the area spectrum of

LQG is used directly in the classical formula and the mass of the black hole is considered to be

quantized [65, 66, 90, 91] which is of course not a true quantization of the horizon energy and

also devoid of any physical justification, apart from being an ad hoc assumption. A genuine

energy spectrum for a QIH should be derived by quantization of the classical notion of horizon

energy similar to the quantization of area, volume and length resulting in the corresponding

operators in quantum gravity [88, 81, 85, 86, 87]. The other alternative is to propose one, based

on solid physical arguments, knowledge of the fundamental structures in the quantum theory
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and to show that the known results follow in the classical limit, which has been done here.

Now, from the perspective of thermodynamics, it is worth mentioning that unlike [82, 22, 23]

we can now deal with usual canonical energy ensemble as we have an explicit structure of

the Hamiltonian. We need not use a ‘Boltzmann-like’ factor e−αA in the canonical partition

function[82], accompanied by a fictitious conjugate parameter α, alongside the Boltzmann factor

e−βE. As far as [22, 23] are concerned, it is a pure area ensemble involving only e−αA in the

canonical partition function and devoid of the Boltzmann factor e−βE. All of these approaches

are significant and interesting by their own virtue. But none of them actually attacks the

problem of black hole horizon thermodynamics following usual canonical energy ensemble due

to the lack of knowledge of the Hamiltonian and the energy spectrum associated with the

horizon. This is where the use of the proposed model Hamiltonian reap the benefits and allow

us to follow usual canonical energy ensemble approach to thermodynamic analysis of QIHs .

We shall end with a few remarks on earlier works on energy spectrum of equilibrium black

holes and how this present work improves upon the earlier ones in spite of being only a model.

The approach taken in this paper to find the energy spectrum of black holes may look very

awkward and it is an obvious question to ask that what is the problem if we take the energy-

area relation of a horizon and quantize that. We shall discuss some issues regarding this

straightforward approach and try to answer this question which will justify the reason to pursue

this upside down approach in this work against the method of quantizing the classical expression

for the horizon energy which had been attempted earlier in [90, 91] and most recently within

the LQG framework in [99].

As far as the energy spectrum of black holes discussed in [90, 91] are concerned, these were

only heuristic proposals made on the ground that a moderately satisfactory theory of quantum

gravity or more appropriately a quantum theory for black horizon was absent at that time.

They were based mainly on the ansatz that the horizon area is linearly quantized and the

quantization of the mass follows trivially. Hence, those works should also be considered as

some sort of model rather than a true quantization of the black hole mass from an underlying

quantum theory.
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However, the quantization of the black hole horizon energy carried out in [99] within the

LQG framework needs to be discussed in the present context. For keeping things simple we

shall not consider charge and angular momentum and carry on our analysis with Schwarzschild

balck hole horizon whose mass-area relation goes as M = 1
4
√
π

√
A. There is a very fundamental

issue for which the quantization of black hole horizon energy shown in [99] is inconsistent with

the quantum theory of IH [13, 14]. Actually, the operator M̂ can not act on the quantum

states of the horizon unless it has the form given by eq.(5.8). In fact this is true for any

operator belonging to the Hilbert space of the IH and this is simply because of the many body,

Fock-space-like structure of the Hilbert space of the IH. Due to the same reason, eventhough

the classical energy is a function of area of the horizon, the commutativity of the operator

M̂ with the area operator is not manifest. As long as the operator corresponding to the

energy spectrum of the black hole horizon is shown to be consistent with the available and

well established quantum theory of geometry of IH, the candidature of the operator as a true

Hamiltonian operator for the horizon, remains in jeopardy.

Note : It should be noted that in recent years there have been some investigations regarding

certain kind of operators in loop quantum gravity framework which preserve the quantum area

of a two surface[100]. However, those operators are of least relevance in the present context

which is solely related to the case of black hole horizons. For an operator to be a candidate

Hamiltonian for the isolated horizon Hilbert space, it is not sufficient to commute with the

area operator. There are certain other necessary properties which that operator has to possess

and these have been elaborately explained in this work. The most important thing is to check

that whether the eigenvalue spectrum of the operator is compatible with the first law of of

isolated horizon mechanics. In case of these recent works[100], these particular aspects of those

area preserving operators have not been investigated and hence it remains a question whether

those are at all relevant in the context of black hole physics within the loop quantum gravity

framework. However, it would be an interesting problem for future to look upon, whether the

operators investigated in [100] can be really considered as a Hamiltonian operator for black

hole horizons.
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Chapter 6

Outlook and Future Directions

Before going on to discuss some potential future problems, I would like to put forward my own

view about the work presented in this thesis in brief. As far as the calculation of microcanonical

entropy of black hole in LQG is concerned, it appears to me that the issue of fixation of N to

define the microcanonical ensemble has been a retrogression instead of a progress. Although, in

this thesis, it has been shown that the relevant theoretical calculations in the modified paradigm

can be done completely within the Chern-Simons framework, but the physical motivation to

fix N a priori to define the ensemble and to regard it as a macroscopic variable still remains

unknown. Over and above there are strong reaons to demotivate the idea of fixing N , which can

be explained as follows. As opposed to the classical macroscopic variables of the theory like area,

charge, angular momentum, etc. which are calculable from the classical theory, the variable

N is a quantization artifact. It originates from the method of point splitting regularization

of the area operator defined over a two surface[47]. There is no way to calculate N . This

is also understandable when we look at the Hilbert space of the IH which admits arbitrary

N . Further it should be noted that the IH framework is locally defined and it is the strength

of this framework that the local microscopic degrees of freedom are well defined covariantly

(observer independent). So whatever observer measures the entropy, it should be the same.

Hence, it defies the framework itself if someone proposes that the fixation of N is an observer

dependent phenomenon (e.g. [15]). I shall prefer to work with arbitrary N , as was the case

before, in whatever I shall do in future regarding QIHs. This concludes my viewpoint towards
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the issue of considering N as a macroscopic variable. Now, I shall proceed towards discussing

some potential future research problems which are relevant in the present context.

The problems of quantum gravity are intimately related to the problems of black hole physics

because black holes are the physical objects understanding which, a theory of quantum gravity

becomes most demanding. This is one of the prime reasons why researchers pursue their queries

in this direction. The work of this thesis is a little addition to the extant literature. There is

so much to be done.

One of the major problems of the theory of loop quantum gravity is the semi-classical limit

of the theory where the smooth background spacetime geometry will emerge and this is believed

to be provided by the discovery of the proper coherent states of the theory. Although there

have been some efforts in this direction, but there has not been much success. However, in the

context of black holes, there has been hardly any attempt made till date to find the coherent

states of isolated horizon. Considering the progress in this field of research, this is a problem

which needs an immediate attention. As we know that there is an SU(2) Chern-Simons theory

on the isolated horizon, a naive attempt will be to look at the coherent state quantization of

SU(2) Chern-Simons theory. This will definitely be a step forward in understanding the issue

of black hole entropy.

Another interesting and potential future research problem is to look for the generalization

of the Chern-Simons field equations of motion on an isolated horizon in case of a dynamical

horizon. Solving this problem, one will definitely be able to have a better understanding of

a dynamical black hole which is either growing or shrinking due to intake of matter or due

to Hawking radiation respectively. Quantization of the field equations will be the next step

further.
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