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Synopsis

The journey of lattice quantum chromodynamics (LQCD) was started by K.G. Wilson

through his fundamental papers [1, 2] in order to explore the non-perturbative structure

of Quantum field theories. In lattice, space-time is discretized through a lattice spacing

a which acts as a regulator. To extract the physics for a particular theory, one has to

take a→ 0 limit which is known as the continuum limit of the theory. We get a naive

lattice action of QCD introducing lattice structure on continuum QCD action. A theory

without regulator, usually, is ill-defined. Lattice is a such kind of regulator which can

maintain both chiral and gauge symmetry except Lorentz symmetry. One can restore

Lorentz symmetry by taking the continuum limit of the theory.

The naive lattice action of QCD has a problem called fermion doubling. Naive discretiza-

tion of the Dirac action on lattice leads to 16 solutions (called doublers) which are unphys-

ical in nature. In continuum, we always get only one solution. To remove 15 unwanted

doublers, Wilson added a dimension five term (Wilson term) to the naive lattice QCD

action but this Wilson term breaks chiral symmetry. Because of the explicit violation of

chiral symmetry by a dimension five operator (Wilson term), Wilson formulation of lattice

QCD [1] has been known to be difficult to simulate at light quark masses. Lack of chiral

symmetry means that the physical quark mass is no longer proportional to the bare quark

mass (the quark mass renormalization is no longer only multiplicative) and Wilson Dirac

operator is not protected from arbitrarily small eigenvalues and may lead to zero or near

zero modes for individual configurations. This is the infamous problem of exceptional
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configurations. This leads to convergence difficulties for fermion matrix inversion. This

poses difficulties for lattice simulations with Wilson fermions in the chiral region. In the

past, simulations with unimproved Wilson action has shown large scaling violations in the

observables [3, 4]. However, one should keep in mind that most of these were quenched

simulations done at large pion masses, not small enough lattice spacings and smaller vol-

umes. Further, the demonstration of the suppression of topological susceptibility with

decreasing quark mass was inconclusive [5]. The chiral behaviour of pion mass and de-

cay constant with respect to quark mass (specifically, the presence of chiral logarithms) as

dictated by chiral perturbation theory was also not convincingly demonstrable in the past

with unimproved Wilson fermions [6]. These issues raise the question whether dynamical

simulations with unimproved Wilson fermions with small enough quark masses produce

the continuum answers.

For the past few years, the chiral properties (chiral anomaly and chiral condensate) of

unimproved Wilson lattice QCD have been studied [7, 8]. Another important quantity is

the chiral behaviour of topological susceptibility. Earlier attempt [5] with naive Wilson

fermions and HMC algorithm to verify the suppression of topological susceptibility with

decreasing quark mass, expected from chiral Ward identity and chiral perturbation theory,

was unable to unambiguously confirm the suppression.

To understand this issue, we have generated configurations by means of Domain Decom-

posed Hybrid Monte Carlo (DDHMC) algorithm at two different lattice spacings (β = 5.6

and β = 5.8) using two degenerate flavours of unimproved Wilson fermions and unim-

proved Wilson gauge actions. In our work [9], we have addressed this issue and unam-

biguously demonstrated the suppression of the topological susceptibility with decreasing

quark mass, expected from chiral Ward identity and chiral perturbation theory. The ef-

fects of quark mass, lattice volume and the lattice spacing on the spanning of different

topological sectors are presented in this work.

Next, we consider the reflection positivity feature of the naive Wilson fermions action

xii



in Euclidean space because it assures the hermiticity property of the Hamiltonian in the

Minkowski space. In papers [10,11], authors have pointed out that the topological charge

density correlator (TCDC) in lattice QCD is an important observable which should be

negative to show the reflection positivity feature of the lattice action. Not only reflec-

tion positivity issue, one can understand the mechanism of decreasing susceptibility with

quark mass through TCDC in lattice. It is interesting to investigate on the lattice the prop-

erties of TCDC inferred from the continuum theory. However the signal of TCDC on

lattice is noisy and one has to resort to some smearing procedure like Wilson flow (see for

examples [12–14]) which allowes to study TCDC measured at different lattice spacings

at a given energy scale. TCDC changes with energy scale and at infinitely large energy

scale one hopes to recover continuum properties.

In our paper [15], we have shown that (1) the TCDC is negative beyond a positive core

and radius of the core shrinks as lattice spacing decreases, (2) as the volume decreases,

the magnitude of the contact term and the radius of the positive core decrease and the

magnitude of the negative peak increases resulting in the suppression of the topological

susceptibility as the volume decreases [16,17], (3) the contact term and radius of the pos-

itive core decrease with decreasing quark mass at a given lattice spacing and the negative

peak increases with decreasing quark mass resulting in the suppression of the topological

susceptibility with decreasing quark mass, (4) increasing levels of smearing suppresses

the contact term and the negative peak keeping the susceptibility intact and (5) both the

contact term and the negative peak diverge in nonintegrable fashion as lattice spacing

decreases.

When we generate configurations in LQCD through Markov chain Monte Carlo algo-

rithm, the generated configurations are not independent of each other and they are cor-

related with each other. The autocorrelation of an observable is an important estimation

to understand how many configurations are correlated with each other. We have to study

autocorrelation because the error analysis of LQCD data has to deal with the presence of
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autocorrelations.

Apart from [18], there is no systematic study about auto-correlation done so far. In our

work [19], we have studied autocorrelation for several observables in two-flavour Wilson

lattice QCD using DD-HMC algorithm. We have shown that (1) at a given lattice spacing,

autocorrelations of topological susceptibility, unsmeared plaquette and pion and nucleon

propagators with wall source show an indication of decrease with decreasing quark mass,

(2) autocorrelation of topological susceptibility and autocorrelation of topological charge

density correlator increase with decreasing lattice spacing but the effect is milder in the

latter case and (3) increasing the size and the smear level increase the autocorrelation of

the smeared Wilson loop.

In addition to the demonstration of the suppression of topological susceptibility with de-

creasing quark mass, in the paper [8], we have calculated pion mass, pion decay constant,

PCAC quark mass and nucleon mass in two flavour lattice QCD with unimproved Wilson

fermion and gauge actions. Simulations are performed using DD-HMC algorithm at two

lattice spacings and two volumes for several values of the quark mass. The cutoff effects

in pion mass (figure 6 (left) in Ref. [8]) and nucleon mass (figure 6 (right) in Ref. [8]) for

the explored region of parameter space are found to be negligible. We extract the average

value of the up-down quark mass in the MS scheme at 2 GeV, which is in good agreement

with the world data [20]. The chiral behaviours of pion mass, pion decay constant and

quark condensate are found to be qualitatively consistent with NLO chiral perturbation

theory. The extracted values of the pion decay constant and the chiral condensate are in

reasonable agreement with the world data [20].

As we have already mentioned, naive discretization of the Dirac action leads to 16 solu-

tions (called doublers) in the four dimensional theory. The sixteen doublers are classified

into five branches. Almost all of the studies so far, both analytical and numerical, have

focused on the so-called first (physical) branch. However, very recently, occurrence of an

enhanced symmetry has been discovered in the central branch [21–23] when the on-site
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terms (mass term and that from the Wilson term) are absent in the action. The enhanced

symmetry prohibits additive renormalization through radiative corrections. Since in this

case, the central branch yields six massless fermions, as suggested in the paper [22], an

alternative way to simulate twelve flavour non-abelian gauge theories emerges. Such the-

ories are of interest in the context of beyond standard model physics (for recent review

see [24]).

In our work [25], we have explored different branches of the fermion doublers with Wilson

fermion in perturbation theory, in the context of additive mass renormalization and chiral

anomaly. We have shown that by appropriately averaging over suitably chosen branches

one can reduce cut-off artifacts. The idea of reducing the cut-off artifacts by averaging

over positive and negative r (Wilson parameter) for the physical branch has been discussed

before in the literature [26–28]. We have however considered the cut-off effects for all

the branches [25]. Comparing the central branch with all other branches, we have found

that the central branch, among all the avatars of the Wilson fermion, is the most suitable

candidate for exploring near conformal lattice field theories.

An open problem in numerical simulation of lattice QCD is that sampling gauge config-

urations over different topological sectors becomes more and more difficult as the con-

tinuum limit is approached. Autocorrelation times of physical quantities grow rapidly

making the calculation of expectation values time consuming. To partially overcome this

problem, using open boundary conditions (instead of the usual periodic or anti-periodic

ones) in the temporal direction of the lattice has been proposed [29]. Lattice gauge the-

ory with such boundary conditions have no barriers between different topological sectors.

This has been shown by extensive simulations in SU(3) gauge theory [30]. Even though

the open boundary conditions introduce boundary effects and thus complicate the physics

analysis, their advantage from the point of view of ergodicity and efficiency have been

addressed in simulations of 2+1 flavours of O(a) improved Wilson quarks [31].

In the context of topology of gauge fields, an interesting quantity to study is the topo-
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logical susceptibility (χ) in pure Yang-Mills theory which is related to the η ′ mass by

the famous Witten-Veneziano formula [11]. We have generated gauge configurations in

SU(3) lattice gauge theory at different lattice volumes and gauge couplings using the

openQCD program [32]. Gauge configurations using periodic boundary conditions also

have been generated for several of the same lattice parameters (necessary changes to im-

plement periodic boundary condition in temporal direction were made in the openQCD

package for pure Yang-Mills case). To smooth the gauge field configurations, we used

Wilson flow [12, 13] technique.

In the work [33], we address the question whether an open boundary condition in the

temporal direction can yield the expected value of the topological susceptibility in SU(3)

Yang-Mills theory. We have shown that the open boundary condition in the temporal

direction can yield the expected value of the topological susceptibility in lattice SU(3)

Yang-Mills theory. The results agree with numerical simulations employing the periodic

boundary condition.

Apart from the topological susceptibility, one may ask whether open boundary condi-

tion can reproduce other observables calculated with periodic boundary condition. It is

well known in condensed matter systems that under certain circumstances open boundary

conditions sometimes give unreliable results (see for example [34]). In our another re-

cent work [35], we continue our exploration of open boundary condition in the context of

the extraction of lowest glueball mass from the temporal decay of correlators. In lattice

Yang-Mills theory, we have shown that the open boundary condition on the gauge fields

in the temporal direction of the lattice can reproduce the lowest scalar glueball mass ex-

tracted with periodic boundary condition at reasonably large lattice scales investigated in

the range 3 GeV ≤ 1
a
≤ 5 GeV. With open boundary condition we are able to overcome,

to a large extent, the problem of trapping and performed simulation and extract the glue-

ball mass at even larger lattice scale ≈ 5.7 GeV. Compared to HYP smearing, recently

proposed Wilson flow exhibits better systematics as far as the extraction of glueball mass
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is concerned. The extracted glueball mass shows remarkable insensitivity to the lattice

spacings in the range explored in this work 3 GeV≤ 1
a
≤ 5.7 GeV.
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CHAPTER 1

Introduction

Quantum Chromodynamics (QCD) is the quantum field theory of strong interactions, a

non-abelian gauge theory with symmetry group SU(3), formulated in terms of quarks and

gluons. From the early age of quantum field theory, studied with the aid of perturbation

theory, infinities and consequently the necessity for renormalization have been with us.

Perturbative methods have been very successful in predicting phenomena at small dis-

tances, where the coupling constant of QCD is small. These perturbative methods start

from a free theory and treat the coupling as a small perturbation to this. Therefore they

can only work at small coupling. At the scale of the hadronic world (about 1 fm), the

coupling constant of QCD is too large for such perturbative expansions to work.

Lattice QCD (LQCD) was introduced by Wilson who in a seminal paper in 1974 [1]

showed us that using the techniques of non-perturbative space-time lattice regulariza-

tion, field theoretic calculations can be done from first principles (also see [38]). It has

been mentioned later by Wilson himself that J. Smit also formulated lattice gauge theory

independently [39, 40]. LQCD is the nonperturbative technique with the least number

of free parameters to probe the low energy regime of QCD. LQCD is QCD formulated

on a four-dimensional Euclidean space-time lattice. It provides a non-perturbative reg-

ularization scheme of QCD: On the finite grid the infinities, which occur in the contin-
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uum, are removed. Furthermore, dimensionless ratios of measurable quantities appear to

have a finite, well behaved limit when the lattice spacing is taken to 0, the continuum

limit. Until today it is the only known gauge invariant and chiral invariant regularization

method which allows non perturbative approaches to QCD. All other known regulariza-

tion schemes are tied closely to the perturbative expansions mentioned above. Various

features of lattice quantum field theories are discussed in many excellent books (see for

example [41–45]).

Apart from regularizing QCD the lattice also provides a way of putting the theory on a

computer and simulating it. However, such simulations turned out to be computationally

very demanding. Therefore in the last thirty five years a lot of effort has been invested

into improvements of simulation algorithms and the way QCD is discretized.

Whether a lattice discretization is good or bad depends crucially on the way it deals with

the symmetries of QCD. The breaking of symmetries when discretizing is unavoidable

in many cases. This can be readily seen if one considers continuous rotations, which

simply cannot exist on a discrete grid. Breaking of symmetries is acceptable, as long as

the symmetries are restored in the continuum limit. In this case the breaking can be seen

as a discretization error which can be controlled by making the lattice fine enough. How

fine it has to be depends on the discretization. From a pragmatic point of view we could

say that one discretization is better than another one, if it allows for coarser lattices.

Putting fermion on a lattice, however, has turned out to be highly non-trivial because of the

notorious doubling problem. Naive discretization of the Dirac action leads to 16 solutions

(called doublers) in the four dimensional theory. Of course it is clearly unacceptable if

one wants to describe nature. Among the various solutions suggested to cure this problem,

Wilson fermions [1,2] are conceptually the simplest and straightforward to implement. In

the Wilson approach a dimension five operator is added to the action thereby sending the

masses of the extra fifteen fermions to the order of the cutoff. Thus the extra fermions

decouple in the continuum limit. This discretization preserves gauge invariance. On the
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other hand, the Wilson term breaks the chiral symmetry of lattice QCD and it gives rise

to additive mass renormalization for the fermion mass and one has to fine tune the mass

parameter in the action to achieve the chiral limit of the theory. Chiral symmetry is an

approximate symmetry of the light quark flavours of QCD. It would be exact for massless

quarks. The Wilson term in the action, which is introduced to remove the doublers, breaks

chiral symmetry in accordance with the well-known Nielson-Ninomiya no-go theorem

[46–48]. In their famous no-go theorem they proved that it is impossible to have exact

chiral symmetry in a formulation of QCD on a finite lattice that is local and which has

the correct number of flavours. Nevertheless, Wilson term reproduces the correct axial

anomaly [49–51] even though it leads to additive renormalization for the fermion mass.

The sixteen doublers are classified into five branches. Almost all of the studies so far, both

analytical and numerical, have focused on the so-called first (physical) branch. However,

very recently, occurrence of an enhanced symmetry has been discovered in the central

branch (third branch) [21–23] when the on-site terms (mass term and that from the Wilson

term) are absent in the action. The enhanced symmetry prohibits additive renormalization

through radiative corrections. Since in this case, the central branch yields six massless

fermions, as suggested by ref. [22], an alternative way to simulate twelve flavour non-

abelian gauge theories emerges. Such theories are of interest in the context of beyond

standard model physics (for recent reviews, see [24, 52–54]). In our work [25], by in-

troducing a generalized Wilson term containing a branch selector index, we investigate

the additive fermion mass shift and chiral anomaly to O(g2) in lattice perturbation theory

for all the branches of the fermion doublers and we have concluded that by appropriately

averaging over suitably chosen branches one can reduce cut-off artifacts. Comparing the

central branch with all other branches, we find that the central branch, among all the

branches of the Wilson fermion, is the most suitable candidate for exploring near confor-

mal lattice field theories.

It can be easily shown that with unimproved Wilson fermions the leading lattice artifact
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is in O(a) and chiral symmetry is explicitly broken in this formulation. There are other

lattice formulations which maintain lattice chiral symmetry and/or free from O(a) lattice

artifacts. But these chirally improved fermions are computationally expensive. On the

other hand, Wilson formulation is still attractive due to its conceptual simplicity (such as

the construction of lattice operators that correspond to the observables in the continuum

theory) and it is computationally cheap. However, due to lack of chiral symmetry, there

have been persistent concerns about the Wilson formulation with unimproved actions in

reproducing the chiral properties of continuum QCD [3, 4].

For the past few years, the chiral properties (chiral anomaly and chiral condensate) [7, 8,

55] of Wilson lattice QCD have been studied. Another important quantity is the chiral

behaviour of topological susceptibility. Earlier attempt [5] with naive Wilson fermions

and HMC algorithm to verify the suppression of topological susceptibility with decreas-

ing quark mass, expected from chiral Ward identity and chiral perturbation theory, was

unable to unambiguously confirm the suppression. In our paper [9], we have addressed

this issue and unambiguously demonstrated the suppression of the topological suscepti-

bility with decreasing quark mass and the effects of quark mass, lattice volume and the

lattice spacing on the spanning of different topological sectors are presented in this work.

Next, we concern about the reflection positivity feature of the naive Wilson fermions ac-

tion in Euclidean space because it assures the hermiticity property of the Hamiltonian

in the Minkowski space. In papers [10, 11], authors have pointed out that the topological

charge density correlator (TCDC) in lattice QCD is an important observable which should

be negative to show the reflection positivity feature of the lattice action. In the continuum

theory, close to the origin the two-point TCDC is negative and singular. From power

counting, the singularity∼−|x|−8 up to possible logarithms and hence is non-integrable.

As the authors of Ref. [10, 11] pointed out long time ago, divergent behaviour of TCDC

has non-trivial consequences for the derivation and interpretation of the Witten-Veneziano

(WV) expression [56,57] for the η ′ mass. The negativity of the TCDC also has non-trivial

consequences related to the nature of topological charge structure in QCD vacuum [58].
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Not only reflection positivity issue, one can understand the mechanism of decreasing

susceptibility with quark mass through TCDC in lattice. In order to obtain a positive and

finite space-time integral (susceptibility), the TCDC should have a positive non-integrable

singularity at the origin [10,11,59]. Flavour singlet axial Ward-Takahashi identity relates

the topological susceptibility χ , which is the four-volume integral of TCDC, to the chiral

condensate in the chiral limit [16,60]. Furthermore, at a given value of the quark mass, χ

is suppressed as volume decreases [16,17]. Recently in our work [9,36], we have demon-

strated the suppression of topological susceptibility with decreasing quark mass and the

suppression of χ with decreasing volume was also shown in the case of unimproved Wil-

son fermion and gauge action. In order to shed light on the mechanisms leading to these

suppressions and all these divergences behaviour, in our work [15], we carry out a detailed

study of the two-point TCDC.

The most popular algorithm to simulate lattice QCD with Dynamical fermions is the

Hybrid Monte Carlo (HMC) [61] and one of its improved variations, namely, Domain

Decomposed Hybrid Monte Carlo (DD-HMC) [62–64] aims to achieve significant accel-

eration of the numerical simulation. Dynamical Wilson fermion simulations at smaller

quark masses, smaller lattice spacings and larger lattice volumes on currently available

computers have become feasible with recent developments such as DD-HMC algorithm.

However, approach to the continuum and chiral limits may still be hampered by the phe-

nomenon of critical slowing down. One of the manifestation of critical slowing down is

the increase in autocorrelation times associated with the measurements of various observ-

ables. Thus measurements of autocorrelation times help us to evaluate the performance

of an algorithm in terms of critical slowing down. In addition, an accurate determination

of the uncertainty associated with the measurement of an observable requires a realistic

estimation of the autocorrelation of the observable which in turn depends on the various

parameters associated with the particular algorithm used. An extensive study of auto-

correlation mainly in pure SU(3) gauge theory (Wilson gauge action and Iwasaki gauge

action) using DD-HMC algorithm has been carried out by ALPHA collaboration [18].
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They have shown that the autocorrelation of some observables depend on the gauge ac-

tion. They have further shown that the autocorrelation of squared topological charge

increases dramatically with decreasing lattice spacing while Wilson loops decouple from

the modes which slow down the topological charge as lattice spacing decreases. In the

simulations with dynamical fermions, the study becomes more difficult, because the au-

tocorrelation may now depend on number of quark flavours (n f ), the quark masses and

the fermion action used [29]. In fact ALPHA collaboration [18] has shown, in the case

of n f = 2 QCD with Clover action for a given value of quark mass and lattice volume,

that squared topological charge decorrelates faster compared with pure gauge at approxi-

mately same lattice spacing. These dependencies and the one on the lattice spacing remain

to be studied in detail. In our work [19], we have studied the autocorrelations of a vari-

ety of observables measured with DD-HMC algorithm in the case of unimproved Wilson

gauge action [1] and unimproved Wilson fermions [2]. Here, we have to say that the

measurement of autocorrelation is notoriously difficult, since accurate determination of it

may require considerably larger accumulated statistics (total molecular dynamics time).

So, in our work, we mainly focus on various trends of autocorrelations we can observe

rather than the precise measurement of the integrated autocorrelation times for different

observables.

Even though lattice QCD continues to make remarkable progress in confronting exper-

imental data, certain problems have persisted. For example, the spanning of the gauge

configurations over different topological sectors become progressively difficult as the

continuum limit is approached. This is partly intimately related to the use of periodic

boundary condition on the gauge field in the temporal direction of the lattice. As a conse-

quence, in the continuum limit, different topological sectors are disconnected from each

other. Thus at smaller and smaller lattice spacings the generated gauge configurations

tend to get trapped in a particular topological sector for a very long computer simulation

time thus resulting in very large autocorrelations. This may sometime even invalidate

the results of the simulation. To partially overcome this problem, using open boundary
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conditions (instead of the usual periodic or anti-periodic ones) in the temporal direction

of the lattice has been proposed [29]. Lattice gauge theory with such boundary condi-

tions have no barriers between different topological sectors. This has been shown by

extensive simulations in SU(3) gauge theory [30]. Even though the open boundary condi-

tions introduce boundary effects and thus complicate the physics analysis, their advantage

from the point of view of ergodicity and efficiency have been addressed in simulations of

2+1 flavours of O(a) improved Wilson quarks [31]. Advantages of using open boundary

conditions have also been studied in the investigation of SU(2) lattice gauge theory at

weak coupling [65]. The spanning of different topological sectors can be studied through

topological susceptibility (χ) which is related to the η ′ mass by the Witten-Veneziano

formula [10, 56, 57] in pure Yang-Mills lattice theory. For example, some high precision

calculations of χ on periodic lattices are provided in Refs. [37, 66, 67]. We have per-

formed simulations with open boundary conditions as well periodic boundary conditions

with same set of lattice parameters. It is well known in condensed matter systems that

under certain circumstances open boundary conditions sometimes give unreliable results

(see for example [34]). In our work [33], we have addressed the question whether open

boundary condition in the temporal direction can yield the expected value of χ . We have

shown that with the open boundary it is possible to get the expected value of χ and the

result agrees with our own numerical simulation employing periodic boundary condition.

Apart from topological susceptibility, one may ask also whether open boundary condition

can reproduce any other observables calculated with periodic boundary condition. In our

work [35], we have found that the extracted scalar glueball mass using open and periodic

boundary conditions at the same lattice volume and lattice spacing agree for the range of

lattice scales explored in the range 3 GeV≤ 1
a
≤ 5 GeV. The problem of trapping is over-

come to a large extent with open boundary and we are able to extract the glueball mass at

even larger lattice scale ≈ 5.7 GeV. To smoothen the gauge fields we have used recently

proposed Wilson flow which, compared to HYP smearing, exhibits better systematics in

the extraction of glueball mass. The extracted glueball mass shows remarkable insensi-
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tivity to the lattice spacings in the range explored in our work, 3 GeV≤ 1
a
≤ 5.7 GeV.

The thesis is organized as follows. The next chapter is supposed to be a short recapit-

ulation of the QCD basics in the continuum, including the introduction of the lattice as

a regularization scheme and the discretization of the gauge part and the fermion part of

the QCD actions are defined. When discretizing the fermion part a problem, called the

fermion doubling problem, occurs. Then we have discussed how to cure this problem. Be-

ing familiar with the doubling problem and its removal, in chapter 3, light is shed on the

different branches of the doubler. To investigate the effect of radiative corrections, in this

chapter, we have calculated the additive mass renormalization in fermion self-energy and

the chiral anomaly to O(g2) in perturbation theory for all the branches. Thereafter atten-

tion is given to calculation of different observables and about the precise measurements of

errors of the different observables. In chapter 4, we have discussed the topological charge

density correlator and its different properties. Then in chapter 5, to estimate the precise

measurements of errors, we have studied the autocorrelations of a variety of observables

measured with DD-HMC algorithm in the case of unimproved Wilson fermions. After

that in chapter 6, we have talked about a mathematically well defined smearing technique

known as Wilson flow (proposed by Martin Lüscher) to reduce the effect of the fluctu-

ations of the gauge fields in order to improve the accessibility of the signals. As we

discussed previously, trapping of topological charge is an important issue as one try to

go near continuum limit. At last, in chapter 7 and 8, we have discussed about the imple-

mentation of open boundary condition to avoid the trapping problem and calculated the

topological susceptibility and the scalar glueball mass using open and periodic boundary

conditions lattice.
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CHAPTER 2

Quantum Chromodynamics on the lattice

In this chapter, we review some basics of the lattice discretization of Quantum Chromo-

dynamics (QCD). QCD, a non-abelian gauge field theory with symmetry group SU(3), is

believed to be the right description of strong interactions on the level of quarks and glu-

ons. First, we take a short look about the fundamental fields of QCD and its continuum

formulation. After a brief description of continuum QCD we discuss the construction of

lattice QCD formulation. Then we discuss construction of Wilson gauge action, naive

discretization of the fermionic part of QCD action and doubling problem followed by

Wilson fermion action.

2.1 The fields: quark and gluon

In this description quarks and antiquarks are massive spin-1
2

fermionic fields that have

spatial, Dirac, flavor and color structure. We can denote them by

ψ f
αc(x), ψ f

αc(x) (2.1)

where x is the space-time position of the field, α = 1, ...,4 gives the Dirac index, c= 1,2,3

the color index and f = 1, ...,N f the flavor of the quark in consideration. Each field ψ f (x)
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thus has 12 independent components. In addition the quarks come in six flavours called

up, down, strange, charm, bottom and top, which is indicated by flavour index f = 1,2..,6.

In many calculations it is sufficient to include only the lightest two or three flavours of

quarks. For our lattice simulations, we will restrict ourselves to two mass-degenerate

flavours of quarks.

In addition to the quarks, QCD contains gauge fields describing the gluons,

Aµ(x)cd (2.2)

where

Aµ(x) =
8

∑
i=1

A
(i)
µ (x) Ti . (2.3)

The components A
(i)
µ (x), i=1, 2, ...8, are real-valued fields, the so called color components,

and the Ti are a basis for traceless hermitian 3× 3 matrices. As for the quark fields, the

gauge field Aµ(x)cd has a space-time argument denoted by x and represents a vector field

by carrying a Lorentz index µ which labels the direction of the different components in

space-time, c,d denote color index and it has no flavour content.

2.2 The QCD action in the continuum

In a 4-dimensional Euclidean space, the action of QCD can be written as

SQCD[ψ,ψ,A] = S
QCD
F [ψ,ψ ,A]+S

QCD
G [A]

=

∫

d4x
(

N f

∑
f=1

ψ f (x)(γµDµ +m f )ψ f (x)

+
1

2
tr(Fµν(x)Fµν(x))

)

(2.4)
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with the field-strength tensor Fµν given by

Fµν(x) = ∂µ Aν(x)−∂νAµ(x)+ ig[Aµ(x),Aν(x)] .

SF stands for the fermionic part of the action, while SG denotes the purely gluonic part. ψ ,

ψ are Dirac spinors representing the quark and anti quark fields (α and c are suppressed

in eq. 2.4), Aµ is the gauge field and g is the coupling constant. Dµ is called a covariant

derivative and is given by

Dµ = ∂µ + igAµ . (2.5)

The field strength tensor Fµν and the covariant derivative Dµ are defined such that the

total action is invariant under local SU(3) gauge transformations. Notice that Aµ is a

non-abelian field and that the resulting self-interactions of the gluon fields give rise to the

complex nonlinear behavior which leads to confinement.

2.3 Path integral quantization

Up to this point, we only dealt with continuum formulation of the theory. There are many

ways to quantize a theory, all of them having advantages and disadvantages making them

especially suitable for different classes of theories. To quantize the theory, we use the path

integral formulation developed by Feynman [68]. The generating functional for QCD is

Z =
∫

D ψDψ DA e−SQCD[ψ,ψ ,A] (2.6)

where we integrate over all possible values of the fields ψ, ψ and A. Note, that in the

usual Minkowski metric we would have an additional imaginary unit in front of the action,

which would cause rapid oscillations, but in Euclidean space the imaginary unit is absent.
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Now, the expectation value of an observable F[ψ,ψ,A] is given by

〈F〉= 1

Z

∫

D ψDψ DA F[ψ,ψ,A] e−SQCD[ψ,ψ,A] . (2.7)

2.4 Lattice regularization

Quantizing a theory like QCD confronts us with a lot of mathematical challenges. For

example, we need a way to compute all possible paths of propagation between two space-

time points. One way to alter the theory such that it is mathematically well-defined is to

replace continuous space-time with a space-time lattice. For this purpose we discretize

space-time through a lattice spacing a on a four dimensional hypercubic lattice Λ, which

serves as an ultraviolet regulator. Now we need to find a way to define the elements

appearing in the QCD action.

In the following, we present the simplest formulation of a lattice action for QCD, which

has been suggested by K. G. Wilson in 1974 [1]. Wilson’s approach is to define a lattice

theory with an action that is explicitly gauge invariant at any lattice spacing a. The other

important demand is, that the lattice action approaches the continuum form in the limit

a → 0. In a naive discretization of the Dirac field, terms involving fermion fields at

different space-time points arise. As an example, terms of the type ψ(n)ψ(n+µ), where

n+ µ is the neighbor of site n in the positive µ-direction, occur. These terms are not

gauge invariant. To obtain gauge invariant expressions, we will need objects that take the

role of the gauge-transporter G(x,y) from the continuum theory. In the continuum, it is

defined as

G(x,y) = Pexp
(

∫

C
igAds

)

(2.8)

where P stands for the path ordered expression, the fields A are the usual gauge fields

from the continuum theory and the integral is along a curve C connecting the space-time
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points x and y. To construct such an object on the lattice, it is sufficient if we recover the

continuum expression in the limit a→ 0. We therefore define link variables Uµ which live

on the links between adjacent lattice sites n and n+µ and are the elements of the gauge

group SU(3). Uµ takes the form

Uµ(n)→ exp
(

igaAµ(n+
µ

2
)
)

(2.9)

in a→ 0 limit. It is straight-forward to show, that this construction approximates the

continuum gauge transporter up to terms of order a:

Uµ(n) = G(n,n+µ)+O(a) . (2.10)

Therefore, the quark fields ψ and ψ live on the lattice sites and, in analogy to the gauge

transporter of the continuum quantum field theory, the link variables live on the links

between two adjacent lattice sites.

2.5 The Wilson gauge action

It is now straight forward to discretize the gauge part of the action, as the trace over closed

loops of link variables. Any such trace over closed loops is a gauge invariant quantity as

required for Wilson’s construction. Counting each loop only once, the gauge part of the

action SG [1] can then be written as

SG =
β

3
a4 ∑

n∈Λ
∑

µ<ν

Re tr(1−Uµν(n)) (2.11)

where Uµν(n) is the so called plaquette and the quantity β is related to the coupling

β =
2Nc

g2
.

13
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Nc is the number of colors.

The plaquette is the smallest possible loop given by the product of four link variables

Uµν(n) =Uµ(n)Uν(n+µ)U−µ(n+µ +ν)U−ν(n+ν) (2.12)

and U−µ(n) =U
†
µ(n−µ).

2.6 Naive fermions and the doubling problem

A naive discretization of the fermionic part of the action using central differences for the

derivatives is given by [2]

SF [ψ,ψ ,A] = a4
N f

∑
f=1

∑
n∈Λ

(

ψ f (n)
4

∑
µ=1

γµ
Uµ(n)ψ

f (n+µ)−U
†
µ(n−µ)ψ f (n−µ)

2a

+m f ψ f (n)ψ f (n)
)

. (2.13)

Taking a look at the free theory (this corresponds to setting all link variables to 1 :Uµ(n)≡

1∀n) with massless fermions, one can obtain an analytic expression for the Dirac operator

and for its inverse, the quark propagator. In momentum space we obtain

D(p) =
i

a

4

∑
µ=1

γµ sin(apµ),

(D(p))−1 =
−ia

∑4
µ=1 γµ sin(apµ)

. (2.14)

At any finite lattice spacing, this expression has a pole not only at p = (0,0,0,0), but also

whenever pµ = π
a
,0 , which is also the case for a whole set of points

{(π

a
,0,0,0),(

π

a
,
π

a
,0,0), ...,(

π

a
,
π

a
,
π

a
,
π

a
)} .

14
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These fifteen unwanted poles are called doublers. Thus in the continuum limit (a→ 0),

there are 16 mass degenerate fermions in the theory. In reality we should get only one

fermion.

2.7 Removing doublers

To solve this problem, an irrelevant term so-called Wilson term, which vanishes in the

continuum limit, can be added to the lattice Dirac operator [2]. In momentum space this

additional term reads

W (p) = 1
r

a

4

∑
µ=1

(1− cos(apµ)) (2.15)

where r is called the Wilson parameter. and the whole momentum space Dirac operator

including the Wilson term is given by

DW = D+W

= 1m+
i

a

4

∑
µ=1

γµ sin(apµ)+1
r

a

4

∑
µ=1

(1− cos(apµ)) . (2.16)

Due to Wilson term, the pole pµ = (0,0,0,0) is the physical one where the mass of the

fermion is m. Other fifteen unwanted poles have the effective mass m+2n r
a

(where n =

1,2,3,4 for the respective poles) and in the continuum limit (a→ 0) they become infinitely

heavy and get decoupled from the spectrum. Notice that, just like a quark mass term, such

a term also breaks chiral symmetry explicitly.
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2.8 Wilson fermion and gauge actions

The standard Wilson fermion action [2] for QCD is given by (suppressing flavour index)

SF [ψ,ψ,U ] = a4 ∑
m,n

ψm

[

γµDµ +W +m
]

mn
ψn

= a4 ∑
m,n

ψm Mmn ψn (2.17)

where

[Dµ ]mn =
1

2a

[

Um,µ δm+µ,n−U
†
m−µ,µ δm−µ,n

]

−→ discretized Dirac operator,

Wmn =
r

2a
∑
µ

[

2δm,n−Um,µ δm+µ,n−U
†
m−µ,µ δm−µ,n

]

→Wilson term.

Here, one can write the action (eq. 2.17) in other parameterization also where the matrix

M takes form

Mmn = δmn−κ
[

(

r− γµ

)

Um,µδn,n+µ +
(

r+ γµ

)

U
†
m−µ,µδn,n−µ

]

(2.18)

where κ = 1
2(m+4r) is the Wilson’s hopping parameter. This also amounts to different

normalization of ψ , namely ψ →
√

2κψ . The common choice is to take r = 1 which is

also used in our numerical simulation.

It can be easily shown that in naive continuum limit i.e. a→ 0 in the lattice action

SF −→ S
QCD
F +O(a) , (2.19)

SG −→ S
QCD
G +O(a2) . (2.20)

Thus the leading lattice artifact in unimproved Wilson formulation is in O(a) and chiral

symmetry is explicitly broken in this formulation.
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CHAPTER 3

Wilson fermions: a perturbative analysis

3.1 Introduction

As we have discussed in the previous chapter, fermion on a lattice has turned out to be

highly non-trivial because of the doubling problem. Naive discretization of the Dirac ac-

tion leads to 16 solutions (called doublers) in the four dimensional theory. The sixteen

doublers are classified into five branches. Almost all of the studies so far, both ana-

lytical and numerical, have focused on the so-called first (physical) branch. However,

very recently, occurrence of an enhanced symmetry has been discovered in the central

branch [21–23] when the on-site terms (mass term and that from the Wilson term) are

absent in the action. The enhanced symmetry prohibits additive renormalization through

radiative corrections. Since in this case, the central branch yields six massless fermions,

as suggested by ref. [22], an alternative way to simulate twelve flavour non-abelian gauge

theories emerges. In gauge theory with fermions for a certain numbers of flavours, there

exists a possibility that the beta function vanishes and the theory becomes conformaly in-

variant (for example, in one-loop perturbation theory beta function changes sign between

n f = 16 and n f = 17). Such theories are of interest in the context of beyond standard

model physics; for example, dynamical electroweak symmetry breaking and technicolor

17
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theories (for recent reviews, see [24, 52–54]).

In this chapter, by introducing a generalized Wilson term containing a branch selector

index, we investigate the additive fermion mass shift and chiral anomaly to O(g2) in

lattice perturbation theory for all the branches of the fermion doublers.

3.2 Different branches of Wilson fermions

In the previous chapter, we have already briefly discussed the fermions doubling problem

and its solution proposed by Wilson. In this chapter we begin with a detail discussion of

this subject. For the sake of completeness and ease of presentation, we repeat some of the

steps already presented in the previous chapter. Consider the free massless lattice fermion

action,

S = a4 ∑
x

[

∑
µ

ψ̄(x)γµ
ψ(x+µ)−ψ(x−µ)

2a

]

. (3.1)

Free fermion propagator in momentum space, the inverse of the Dirac operator,

G(p) =
1

∑4
µ=1

i
a
γµsin(apµ)

. (3.2)

At any finite lattice spacing, this expression has a pole not only at pµ = (0,0,0,0), but also

whenever pµ = {(π
a
,0,0,0),(π

a
, π

a
,0,0), ...,(π

a
, π

a
, π

a
, π

a
)}. These fifteen unwanted poles

are called doublers. Let us now look at its behaviour at some regions where the mo-

mentum components are near zero or close to their maximum value π
a

. Let us write

pµ = kµ + pD
µ , with D = 0 to 15 where pD

µ = (0,0,0,0),(π
a
,0,0,0), ....(π

a
, π

a
, π

a
, π

a
),

so that sin(apµ) = cos(apD
µ ) sin(akµ) = ± sin(akµ).
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Branch PD
µ No. of such types New set of γ

′
s γ5

First (0,0,0,0) 1 (γ1,γ2,γ3,γ4) +γ5

(π
a

,0,0,0) (−γ1,γ2,γ3,γ4)

(0,π
a

,0,0) (γ1,−γ2,γ3,γ4)

Second (0,0,π
a

,0) 4 (γ1,γ2,−γ3,γ4) −γ5

(0,0,0,π
a

) (γ1,γ2,γ3,−γ4)

(π
a

,π
a

,0,0) (−γ1,−γ2,γ3,γ4)

(π
a

,0,π
a

,0) (−γ1,γ2,−γ3,γ4)

(π
a

,0,0,π
a

) (−γ1,γ2,γ3,−γ4)

Third (Central) (0,π
a

,π
a

,0) 6 (γ1,−γ2,−γ3,γ4) +γ5

(0,π
a

,0,π
a

) (γ1,−γ2,γ3,−γ4)

(0,0,π
a

,π
a

) (γ1,γ2,−γ3,−γ4)

(π
a

,π
a

,π
a

,0) (−γ1,−γ2,−γ3,γ4)

(π
a

,π
a

,0,π
a

) (−γ1,−γ2,γ3,−γ4)

Fourth (π
a

,0,π
a

,π
a

) 4 (−γ1,γ2,−γ3,−γ4) −γ5

(0,π
a

,π
a

,π
a

) (γ1,−γ2,−γ3,−γ4)

Fifth (π
a

,π
a

,π
a

,π
a

) 1 (−γ1,−γ2,−γ3,−γ4) +γ5

Table 3.1: Different branches of the Wilson fermions.

In a→ 0 limit the propagator takes the usual form

[

i∑
µ

γD
µ kµ

]−1

(3.3)

with γD
µ = cos(apD

µ )γµ =±γµ .

In table 3.1, we have shown that according to the distributions of poles, we can divide

them into five branches. Then we know that doublers are removed by adding dimension

five Wilson term in the action. Thus in that way, the first branch is the physical one and

all other branches (second, third, fourth and fifth), get decoupled from the spectrum when

one takes the continuum limit of the theory.

3.3 Making a particular branch physical one

Now, we can make a particular branch physical one through a branch selector index (iB).
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We denote the generalized Wilson fermion action by

SF [ψ,ψ ,U ](iB) = a4 ∑
x,y

ψxMxy(iB)ψy = a4 ∑
x,y

ψx

[

γµDµ +W (iB)+m
]

xy
ψy with

[Dµ ]xy
=

1

2a

[

Ux,µ δx+µ,y−U
†
x−µ,µ δx−µ,y

]

and

Wxy(iB) =
r

2a
∑
µ

[

2(1− 1

2
iB) δx,y−Ux,µ δx+µ,y−U

†
x−µ,µ δx−µ,y

]

. (3.4)

The factor iB is the branch selector index which takes the values 0, 1, 2, 3, and 4 for

first, second, third (central), fourth and fifth branch of the doubler respectively. Different

values of iB give different values to the Wilson mass. Particularly interesting the value of

iB = 2 which makes the Wilson mass term vanish.

Hence the free fermion propagator for the action will be

aG(p) =
1

i∑µ γµ
sinapµ

a
+m+ r

a ∑µ((1− 1
2
iB)− cosapµ)

. (3.5)

From the eq. 3.5, we can conclude that for a particular branch index (iB), corresponding

branch will be physical one and at that time other branches will be decoupled from the

spectrum.

3.4 Enhanced symmetry

In continuum we know that if the original action (massless theory) is chirally symmetric

then we can not generate mass term through perturbative calculation provided the regula-

tor respects the symmetry. But this is not the case for Wilson fermion. The Wilson term in

the action, which is introduced to remove doublers, breaks chiral symmetry and leads to

additive renormalization for the fermion mass. To prevent additive mass renormalization,

an enhanced symmetry is required in the action. This enhanced symmetry transformation
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is introduced in [22], on the fermion field,

ψx→ ψ ′x = eiθ (−1)x1+x2+x3+x4
ψx , ψx→ ψ ′x = ψxeiθ (−1)x1+x2+x3+x4

where x1,x2,x3,x4 are the site index of a site.

The action is invariant under these transformation but for the local terms. For m = 0 and

iB = 2 (massless limit of the central branch), the action thus possesses this additional

symmetry which prevents additive renormalization of the fermion mass through radiative

corrections.

3.5 Additive renormalization in fermion self energy

In this section we calculate the additive shift to O (g2) in the fermion mass (for am = 0)

using lattice perturbation theory [69, 70].

The additive shift in fermion mass due to the tadpole diagram (figure 3.1) is

δm = − r

a

1

2
g2 CF ∑

µ

cos(apµ) Z0 (3.6)

with Z0 =
∫

d4k
(2π)4

(

4∑λ sin2
(

akλ
2

)

)−1

and CF = N2−1
2N

for SU(N).

p p

k

Figure 3.1: Tadpole diagram

Results for different branches are as follows.
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First branch: apµ = (0, 0, 0, 0)→ δm =−2 r
a
g2 CF Z0 .

Second branch: apµ = (π , 0, 0, 0) or any of the other three permutations → δm =

−1 r
a
g2 CF Z0 .

Third (central) branch: apµ = (π , π , 0, 0) or any of the other five permutations →

δm = 0.

Fourth branch: apµ = (π , π , π , 0) or any of the other three permutations → δm =

+1 r
a
g2 CF Z0 .

Fifth branch: apµ = (π , π , π , π)→ δm =+2 r
a
g2 CF Z0 .

Next consider the additive mass shift in fermion mass due to sunset diagram. The gauge

boson propagator in Feynman gauge is given by

Gab
µν = δµνδ ab

{ 4

a2 ∑
λ

sin2 a(p− k)λ

2

}−1

= δµνδ ab
{

(1/a2) Wp,k

}−1

, (3.7)

whereas the fermion propagator has the form

Slm(k, iB) = δ lm

{

∑
µ

iγµ
sin(kµa)

a
+

r

a
Mk(iB)

}−1

(3.8)

with

Mk(iB) = ∑
µ

[

(

1− 1

2
iB

)

− cos(kµa)

]

(3.9)

and the fermion-gauge boson vertex is

(V a)mn
ρ (k, p) =−g(T a)mn

{

iγρ cos
a(k+ p)ρ

2
+ r sin

a(k+ p)ρ

2

}

. (3.10)
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Then the fermion self energy from sunset diagram can be evaluated as

Σ =
∫

d4k

(2π)4 ∑
ρ

Gab
ρρ(p− k)(V b)lm

ρ (k, p)Smn(k)(V a)nl
ρ (p,k) . (3.11)

The additive mass shift arising from the fermion self energy (sunset) can be written as

δm =
r

a
g2CF

∫

d4k

(2π)4

Nr

Dr

(3.12)

where Dr = Wp,k

(

Γ2 + r2M 2
k (iB)

)

with Γ2 =∑λ sin2(akλ ). We introduce Γλ = sin(akλ ),

Sρ = sin(
akρ

2
) and Cρ = cos(

akρ

2
). The expressions for Nr and Dr for different branches

are given below.

p k p

p-k

Figure 3.2: Sunset diagram

First branch: apµ = (0, 0, 0, 0).

Nr =
4

∑
ρ=1

[

Mk(iB = 0)(r2S2
ρ −C2

ρ)+Γ2
ρ

]

,

Dr = Wp,k

[

Γ2 + r2
M

2
k (iB = 0)

]

.

Second branch: apµ = (π , 0, 0, 0) or three other permutations.
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Explicitly for apµ = (π , 0, 0, 0)

Nr = −
[

Mk(iB = 1)(S2
ρ− r2C2

ρ)+Γ2
ρ

]

ρ=1
+

4

∑
ρ=2

[

Mk(iB = 1)(r2S2
ρ −C2

ρ)+Γ2
ρ

]

,

Dr = Wp,k

[

Γ2 + r2
M

2
k (iB = 1)

]

.

Third (central) branch: apµ = (π , π , 0, 0) or five other permutations.

Explicitly for apµ = (π , π , 0, 0)

Nr = −
2

∑
ρ=1

[

Mk(iB = 2)(S2
ρ− r2C2

ρ)+Γ2
ρ

]

+
4

∑
ρ=3

[

Mk(iB = 2)(r2S2
ρ −C2

ρ)+Γ2
ρ

]

,

Dr = Wp,k

[

Γ2 + r2
M

2
k (iB = 2)

]

.

Fourth branch: apµ = (π , π , π , 0) or three other permutations.

Explicitly for apµ = (π , π , π , 0)

Nr = −
3

∑
ρ=1

[

Mk(iB = 3)(S2
ρ− r2C2

ρ)+Γ2
ρ

]

+
[

Mk(iB = 3)(r2S2
ρ −C2

ρ)+Γ2
ρ

]

ρ=4
,

Dr = Wp,k

[

Γ2 + r2
M

2
k (iB = 3)

]

.

Fifth branch: apµ = (π , π , π , π).

Nr = −
4

∑
ρ=1

[

Mk(iB = 4)(S2
ρ− r2C2

ρ)+Γ2
ρ

]

,

Dr = Wp,k

[

Γ2 + r2
M

2
k (iB = 4)

]

.

In table 3.2 we present the numerical values of the additive mass shift separately from

sunset and tadpole contributions for the fermion at different branches. In figure 3.3 we

plot the magnitude of the total additive mass shift (tadpole + sunset) versus the branch

number. Note that the shift is maximum for the first and the fifth branches and is minimum

(zero) for the third (central) branch. The absence of additive renormalization in fermion

self energy for the central branch to O(g2) is explicitly shown also in ref. [23].
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Branch δ m/(g2 CF)
Sunset Tadpole

First -0.0158 -0.3099

Second +0.0148 -0.1549

Third 0.0000 0.0000

Fourth -0.0148 +0.1549

Fifth +0.0158 +0.3099

Table 3.2: Numerical values of the additive mass shift for fermion at different branches for

r = 1 and L = 200.

0 1 2 3 4 5 6
Branch

-0.1

0

0.1

0.2

0.3

0.4

0.5

|δ
m

| 
/ 

(g
2
C

F
)

Figure 3.3: The magnitude of the total additive mass shift (tadpole + sunset) plotted versus

the branch number.
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3.6 Chiral anomaly

We know that with the conventional Wilson term (iB = 0) in the continuum limit, apart

from the first branch, species corresponding to all other branches become infinitely mas-

sive and decouple from the theory thereby reproducing the correct chiral anomaly. In or-

der to explore all branches, we introduced a generalized Wilson term containing a branch

selector index (iB). By choosing iB, one can make the fermions belonging to a particular

branch physical. Now one can ask a natural question : in the continuum limit, can all the

branches reproduce correct chiral anomaly.

The following discussion is based on the Refs. [49,50] which studied the physical branch.

Consider the flavour singlet axial transformation

ψx→ ψ ′x = [1− iγ5αx]ψx, ψx→ ψ ′x = ψx [1− iγ5αx]

Then the Ward identity can be obtained from the fact that the partition function remains

invariant under this transformation. So, the flavor singlet axial Ward Identity is

〈∆b
µJ5µ(x)〉= 2m〈ψxγ5ψx〉+ 〈χx〉 (3.13)

where 〈O〉 denotes the functional average of O . Explanation of other terms are as follows:

∆b
µ f (x) =

1

a
[ f (x)− f (x−µ)] , the backward derivative, (3.14)

J5µ(x) =
1

2

[

ψxγµγ5Ux,µψx+µ +ψx+µγµ γ5U†
xµψx

]

, the axial vector current (3.15)

and 〈χx〉 = 2 g2 εµνρλ trC

(

Fµν(x)Fρλ (x)
) 1

(2π)4 ∑
p

cos(pµa) cos(pνa) cos(pρ a)

× r Mp(iB)
[

cos(pλ a) [am+ rMp(iB)]− 4r sin2(pλ a)
]

(Gp(iB))
3,

= − g2

16π2
εµνρλ trC

(

Fµν(x)Fρλ (x)
)

I(am,r,L). (3.16)
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Here

Gp(iB) =

(

∑
µ

sin2(apµ)+
[

am+ rMp(iB)
]2
)−1

(3.17)

and trC denotes the trace over the colour space and L denotes the dimensionless length of

the hypercubic box of space-time lattice. ∑p ≡ ∑p1,p2,p3,p4
where pµ = 2πnµ/L, nµ =

0,1, . . . ,L−1 for periodic boundary condition and nµ =−L/2+1,−L/2+2, . . . ,L/2 for

anti periodic boundary condition. In all our plots it is the anomaly integral denoted by the

function I(am,r,L) which we have plotted.

Following Karsten and Smit [49], the limits on the momentum sum are changed from

(−π ,+π) to (−π/2,3π/2) and further the momentum sum hypercube is divided into

16 smaller hypercubes corresponding to (−π/2,+π/2) and (+π/2,+3π/2) for each

apµ ,µ = 1,2,3,4. Thus the total anomaly contribution is decomposed into the contribu-

tions from five different types of species and the anomaly integral takes the form I = I0−

4I1 +6I2−4I3 + I4. In I0 all the four momentum integrations range from (−π/2,+π/2)

and in I4 they range from (+π/2,+3π/2). In I1 one of the momentum integrations ranges

from (+π/2,+3π/2), the rest from (−π/2,+π/2) and vice-versa for I3. In the third (cen-

tral) branch I2 two momentum integrations range from (+π/2,+3π/2) and the rest from

(−π/2,+π/2).

First, to perform the integration analytically, we set the bare mass am = 0, use the identity

[49]

[

Mp(iB)
]2

cos(apβ ) − 4 r Mp(iB) sin2(apβ ) =

[

[

Mp(iB)
]2

+∑
σ

sin2(apσ )

]3

× ∂

∂ (apβ )

[

sin(apβ )

{

[

Mp(iB)
]2

+∑
σ

sin2(apσ )

}]−2

(3.18)

and do a partial integration. In the infinite volume continuum limit, the results for the
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integrals are as follows.

First branch: I0→ 1, I1, I2, I3, I4 → 0.

Second branch: I1→ 1, I0, I2, I3, I4 → 0.

Third (central) branch: I2→ 1, I0, I1, I3, I4 → 0.

Fourth branch: I3→ 1, I0, I1, I2, I4 → 0.

Fifth branch: I4→ 1, I0, I1, I2, I3 → 0.

Since numerical simulations are performed at finite volume and finite lattice spacing, it is

of interest to study the effect of symmetry violation on the anomaly integral as a function

of the lattice fermion mass at finite volume [7, 55]. In order to avoid the zero mode

problem we have used antiperiodic boundary condition in all four directions. In figure 3.4

we plot the function I(am,r,L) for r = 1.0 and L = 100 as a function of am for the first

and fifth branches (left) and for the second and fourth branches (right). In figure 3.5, we

plot the function I(am,r,L) for r = 1.0 and L = 100 as a function of am for the central

branch. From figure 3.4 (left), we observe that the cut-off effects are almost equal and

opposite for first and fifth branches. Similar observation can be made regarding second

and fourth branches from figure 3.4 (right). Comparing figures 3.4 and 3.5, we conclude

that cut-off effects are minimal for the central branch. In a previous study [7], the finite

volume effects were studied in detail (figure 4). It was found that for the range of quark

masses studied here, L= 100 is enough to avoid finite volume effects. We have picked

L = 100 for our plots as we have reconfirmed that finite volume effects are negligible at

this volume for the range of am shown in the figures.

3.7 Discussion and conclusions

It is well known that the naive discretization of the fermionic action gives rise to sixteen

degenerate species including the desired physical one. These sixteen species are grouped

into five branches with degeneracy (chirality) given by 1(1), 4(-1), 6(1), 4(-1) and 1(1),

rendering the theory free of chiral anomaly. With the conventional Wilson term in the
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continuum limit, apart from the first branch, species corresponding to all other branches

become infinitely massive and decouple from the theory thereby reproducing the correct

chiral anomaly. The branches other than the first one are rarely explored. However,

recently the existence of an additional symmetry in the central branch which prohibits

additive renormalization of fermion mass has been discovered in the ref. [22].

In this work, in order to explore all branches we introduce a generalized Wilson term con-

taining a branch selector index (iB). By choosing iB one can make the fermions belonging

to a particular branch physical. The fermions belonging to the rest of the branches become

infinitely massive and decouple from the theory in the continuum limit. The conventional

Wilson term corresponds to iB = 0. To investigate the effect of radiative corrections, we

calculate the additive mass renormalization in fermion self-energy and the chiral anomaly

to O(g2) in perturbation theory for all the branches.

First we summarize the results of additive mass shift from tadpole and sunset contribu-

tions. The tadpole contributions for the first and fifth branches are equal in magnitude

but opposite in sign. Same is true for the sunset contributions also. Thus δm vanishes

if we average over the first and fifth branches. Similar observations hold for the second

and the fourth branches also. Coming to the central branch the additive mass shifts from

tadpole and sunset contributions separately vanish. This leads to the absence of additive

mass renormalization in accordance with theoretical expectation. In the calculation of

chiral anomaly first we perform an analytical calculation setting am = 0 and using the

Karsten-Smit identity. We find the correct value of the anomaly for different branches

with corresponding degeneracy factors and signs dictated by the chiral charges in the

continuum limit. Since numerical simulations are performed at finite volume, finite lat-

tice spacing and finite fermion mass, we have studied the effect of symmetry violation

(given in eq. 3.6) on the anomaly integral as a function of the lattice fermion mass. The

cut-off effects are almost equal in magnitude but opposite in sign for the first and the fifth

branches. Same holds for the second and the fourth branches also. The cut-off effect is
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minimal for the central branch.

In conclusion, our exploration of the different branches of the fermion doublers in per-

turbation theory, in the context of additive mass renormalization and chiral anomaly, has

shown that by appropriately averaging over suitably chosen branches one can reduce cut-

off artifacts. Comparing the central branch with all other branches, we find that the central

branch, among all the avatars of the Wilson fermion, is the most suitable candidate for ex-

ploring near conformal lattice field theories [24, 52–54].
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CHAPTER 4

Topological charge density correlator with

Wilson fermions

4.1 Introduction

We concern about the reflection positivity feature of the lattice action in Euclidean space

because it assures the hermiticity property of the Hamiltonian in the Minkowski space.

As a consequence of the reflection positivity and the pseudoscalar nature of the rele-

vant local operator in Euclidean quantum field theory, the two-point Topological Charge

Density Correlator (TCDC) is negative at arbitrary non-zero distances [10, 11]. As the

authors of Ref. [10, 11] pointed out long time ago, divergent behaviour of TCDC has

non-trivial consequences for the derivation and interpretation of the Witten-Veneziano

(WV) expression [56, 57] for the η ′ mass. In order to obtain a positive and finite space-

time integral (susceptibility), the TCDC should have a positive non-integrable singularity

at the origin [10, 11, 59]. However, it is possible to give a rigorous definition of topo-

logical susceptibility in Lattice QCD without power divergences using Ginsparg-Wilson

fermion [71–73].

The lattice operator for the topological charge density q(x) may extend over several lattice
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spacings, and thus for sufficiently small x, the continuum like behaviors are not expected.

Nevertheless, continuum properties are expected to emerge as lattice spacings become

smaller and smaller. Specifically, on a lattice with lattice spacing a, TCDC remains posi-

tive within a radius rc, which is expected to shrink to zero as a→ 0. The first investigation

of lattice spacing dependence of the radius of the positive core and the negativity beyond

the positive core of TCDC in lattice QCD was carried out in Ref. [74] in the context

of overlap based topological charge density in quenched QCD. Later, similar study was

carried out [75] for a variety of lattice QCD actions with and without quarks where dis-

cretization errors appear only at O(a2).

The issues related to two-point TCDC are best studied in the theory rigorously formulated

on a Euclidean lattice. However, the lattice theory defined by a particular action may not

be reflection positive. Fortunately, this is not a concern for the Wilson fermion. However,

the breaking of chiral symmetry by Wilson term may lead to uncanceled divergences in

topological susceptibility. Thus it is important to calculate topological susceptibility with

Wilson fermion to check whether the cancellation indeed happens.

Flavour singlet axial Ward-Takahashi identity relates the topological susceptibility χ ,

which is the four-volume integral of TCDC, to the chiral condensate in the chiral limit

[16, 60]. As a consequence, χ vanishes linearly in the quark mass in the chiral limit. Fur-

thermore, at a given value of the quark mass, χ is suppressed as volume decreases [16,17].

Recently in our work [9, 36], we have demonstrated the suppression of topological sus-

ceptibility with decreasing quark mass and the suppression of χ with decreasing volume

was also shown in the case of unimproved Wilson fermion and gauge action.

In this chapter, in order to shed light on the mechanisms leading to these suppressions and

all these divergent behaviour, we discuss a detailed study of the two-point TCDC.
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4.2 Topological charge density correlator C(r)

The topological susceptibility (χ) is the volume integral of topological charge density

correlator (TCDC)

χ =

∫

d4x C(r) (4.1)

with the TCDC,

C(r) = 〈q(x)q(0)〉, r = |x| (4.2)

where q(x) = g2

32π2 εµνρλ trc(Fµν(x)Fρλ (x)) is the topological charge density and topo-

logical charge is defined as Q =
∫

d4x q(x).

4.3 Negativity of C(r) due to reflection positivity

The following discussion is based on Ref. [74]. Reflection positivity of an Euclidean the-

ory is equivalent to the hermiticity of the Hamiltonian in the corresponding Minkowski

theory. If θ is an operator consisting of Euclidean time reflection and complex conjuga-

tion and F is an arbitrary function of the gauge fields at non negative Euclidean time, then

the general statement of the reflection positivity is 〈(θF)F〉 ≥ 0. Since C(r) is a function

of only the distance between source and sink point θ can be taken to be reflection of any

coordinate. Let us take our new coordinate along the line joining 0 and x with the ori-

gin at the midpoint between 0 and x and consider a reflection θ with respect to the axis

connecting these points. Due to the pseudoscalar nature of q(x), we have

q(x) =−θq(0), if |x|= r > 0.
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0 x

Reflection plane

Then

C(r) = 〈q(x)q(0)〉

= −〈θ(q(0))q(0)〉 ≤ 0 for x 6= 0. (4.3)

4.4 Divergences in C(r)

C(r) has negative singularity close to the origin as can be shown by operator product ex-

pansion (OPE) which is introduced by K.G. Wilson in 1969 [76]. The OPE can be written

for products of q as

q(x)q(y) =
x→y

∑
n

cn(x− y)On(y) (4.4)

where On(y)’s are the set of local fields and cn’s are the Wilson coefficients.
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Using scale transformation (see sec. III in Ref. [76]) on eq. (4.4), we get

U(s)†q(x)U(s)U(s)†q(y)U(s) = ∑
n

cn(x− y)U(s)†On(y)U(s) . (4.5)

Now U(s)†q(x)U(s) = s4q(sx) and U(s)†On(x)U(s) = sdnOn(sx). Here dn is the dimen-

sion of the local operators On.

Then from eq. (4.5), we get

q(sx) q(sy) = ∑
n

cn(x− y)s(dn−8)On(sy) . (4.6)

By variable redefinition from eq. (4.4) we get

q(sx) q(sy) = ∑
n

cn(sx− sy)On(sy) . (4.7)

From eqs. (4.6) and (4.7),

cn(sx− sy) = s(dn−8)cn(x− y) (4.8)

which implies that

cn(x− y) →
x→y

(x− y)(dn−8) . (4.9)

Since q(x)q(y) is a scalar, O0 = 1 and d0 = 0. Then

c0(x− y) →
x→y

(x− y)−8 . (4.10)

Thus C(r) has negative singularity (∼ 1
r8 ) close to the origin and it is also non-integrable

in nature.
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On the other hand

χ =
∫

d4x C(r)

=
〈Q2〉

V
(4.11)

which is positive and finite in nature. Then C(r) has to be non-integrable positive diver-

gent at x = 0.

4.5 Simulation Details

β = 5.6
tag lattice κ block N2 Ntr j τ

A2b 163×32 0.158 84 10 6816 0.5

B1b , , 0.1575 122×62 18 13128 0.5
B3b , , 0.158 122×62 18 13646 0.5
B4b , , 0.158125 122×62 18 11328 0.5
B5b , , 0.15825 122×62 18 12820 0.5

C2 323×64 0.158 83×16 8 7576 0.5
C5 , , 0.1583 83×16 8 11200 0.5

β = 5.8
tag lattice κ block N2 Ntr j τ

D1 323×64 0.1543 83×16 8 9600 0.5
D3 , , 0.15462 83×16 24 7776 0.5

Table 4.1: Lattice parameters and simulation statistics. Here block, N2, Ntr j and τ refer to

HMC block, step number for the force F2, number of HMC trajectories and the Molecular

Dynamics trajectory length respectively.

The simulation details discussed in this section are based on the Ref. [15]. We have

generated ensembles of gauge configurations by means of DDHMC algorithm [62–64]

using unimproved Wilson fermion and gauge actions with n f = 2 mass degenerate quark

flavours. At β = 5.6 the lattice volumes are 163× 32, 243× 48 and 323× 64 and the

renormalized quark mass ranges between 25 to 125 MeV (MS scheme at 2 GeV). At

β = 5.8 the lattice volume is 323×64 and the renormalized physical quark mass ranges
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from 15 to 75 MeV. The lattice spacings are determined using nucleon mass to pion

mass ratio and Sommer method. These determinations agree for the value of Som-

mer parameter r0 = 0.44 fm. The lattice spacings at β = 5.6 and 5.8 are 0.069 and

0.053 fm respectively. The number of thermalized configurations ranges from 7000 to

14000 and the number of measured configurations ranges from 200 to 500. Parameters

for a subset of our runs that are used in this paper are given in Table 4.1. For q(x),

we use the lattice approximation developed for SU(2) by DeGrand, Hasenfratz and Ko-

vacs [77], modified for SU(3) by Hasenfratz and Neiter [78] and implemented in the

MILC code [79]. It uses ten link paths described by unit lattice vector displacements

in the sequence {x,y,z,−y,−x, t,x,−t,−x,−z} and {x,y,z,−x, t,−z,x,−t,−x,−y} plus

rotations and cyclic permutations. Lattice gauge fields generated by numerical algo-

rithms are very rough in general and are far from the smooth gauge fields in the con-

tinuum. The situation can be improved using the technique namely smearing of gauge

links. We used HYP smearing with optimized smearing coefficients α = 0.75, α2 = 0.6

and α3 = 0.3 [80]. Unless otherwise stated we have used 3 smearing steps in all our

calculations.

One should keep in mind that a fixed HYP smearing level at different lattice spacings

does not correspond to a common energy scale (see subsec. 4.1 in Ref. [81]). This is to be

contrasted with Wilson flow (see chapter 6) case, which facilitates the use of a common

energy scale (Ref. [13]) to study TCDC [81].
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Figure 4.1: Effect of smearing on C(r) at β = 5.8, κ = 0.15462 and lattice volume 323×64.

4.6 Results

4.6.1 Effect of smearing

In order to extract the topological charge density reliably on the lattice, using the algebraic

definition, smearing of link field is essential. Smearing however smoothens out short

distance singularities. Excessive smearing may in fact wipe out the fine details of the

singularity structure. Both the positive and negative contributions to χ are affected in this

manner. This is illustrated in Fig. 4.1 where we show the effect of 3, 5, 10 and 20 HYP

smearing steps on C(r) at β = 5.8, κ = 0.15462 and lattice volume 323×64. However the

susceptibility is remarkably stable under smearing after three smearing steps as illustrated

in Fig. 4.2 (taken from Ref. [36]).
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Figure 4.2: Effect of smearing on the χ at β = 5.8, κ = 0.15462 and lattice volume 323×64

(taken from Ref. [36]).

4.6.2 Volume dependence

The leading order chiral perturbation theory dictates [16]

〈Q2〉=V Σ m (4.12)

where Σ is the chiral condensate and m is the quark mass. If V Σ m << 1, non-trivial

topologies are suppressed [16] leading to the suppression of χ at finite volume. In Fig.

4.3 we present the finite volume dependence of the C(r) at β = 5.6 and κ = 0.158 at

lattice volumes 163× 32, 243× 48 and 323× 64. We find that as volume decreases, the

magnitude of the contact term and radius of the positive core decrease and the magnitude

of the negative peak increases resulting in the suppression of topological susceptibility at

finite volume as volume decreases.
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Figure 4.3: Finite volume dependence of the C(r) at β = 5.6, κ = 0.158 and lattice volumes

163×32, 243×48 and 323×64.

4.6.3 Dependence on quark mass

In order to understand the detailed mechanism behind the suppression of topological sus-

ceptibility with decreasing quark mass, we need to investigate the quark mass dependence

of the various features of the C(r). In Fig. 4.4 we present the quark mass dependence of

C(r) with emphasis on the positive region at β = 5.6 and lattice volume 243× 48. The

magnitude of the contact term C(0) is seen to decrease with decreasing quark mass.

In Fig. 4.5 we present the quark mass dependence of C(r) with emphasis on the crossover

from positive to the negative region of C(r) and the negative peak region at β = 5.6 and

lattice volume 243×48. The radius of the positive core and the magnitude of the negative

peak of C(r) are seen to decrease and increase respectively with decreasing quark mass.
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Figure 4.4: The quark mass dependence of C(r) with emphasis on the positive region at

β = 5.6 and lattice volume 243×48.

The features presented in Figs. 4.4 and 4.5 result in the suppression of the topological

susceptibility with decreasing quark mass. MILC collaboration [82] has made a similar

observation regarding the dependence of the negative peak on quark mass. In Fig. 4.6 we

present the corresponding topological susceptibilities (β = 5.6, lattice volume 243× 48

and smearing step 20) as a function of the quark mass which clearly shows the suppression

as quark mass decreases. This figure includes κ = 0.158 in addition to the κ’s presented

in Figs. 4.4 and 4.5.
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Figure 4.5: The quark mass dependence of C(r) with emphasis on the crossover from positive

to the negative region of C(r) and the negative peak region at β = 5.6 and lattice volume

243×48.

4.6.4 Non-integrability of divergences and lattice spacing dependence

In Ref. [82], the MILC collaboration has carried out a detailed investigation of TCDC

using improved staggered fermions and HYP smearing. In this subsection, our main mo-

tivation is to repeat the analysis done by MILC in case unimproved Wilson fermions.

The shortcomings of smearing techniques such as HYP smearing compared to Wilson

flow which is based on solid mathematical footing have become evident only very re-

cently [83]. Due to lack of statistics and the shortcomings of HYP smearing, we attempt

only a qualitative study.

From the definition of the topological susceptibility

χ =
∫

d4x C(r) =
∫

2π2(r3)dr C(r),
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Figure 4.6: Topological susceptibility at β = 5.6 and lattice volume 243×48 as a function of

the quark mass mass.

it is useful to define [82] a local susceptibility

χ(r) =

∫ r

0
2π2(r′3)dr′ C(r′), (4.13)

in order to exhibit the lattice spacing dependence more clearly. It is also useful to define

the contributions to the susceptibility from the positive and negative parts of C(r) as [74]

χP =
∫ rc

0
2π2(r′3)dr′ C(r′) (4.14)

and

χN =
∫ ∞

rc

2π2(r′3)dr′ C(r′) (4.15)
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respectively.

tag a rc

a
C(0) |Cmin |

(fm) (fm−8) (fm−8)
C5 0.069 3.93 1336(3) 5.8(1)
D3 0.053 3.65 4537(7) 43.0(3)

Table 4.2: Lattice spacing dependence of rc

a
, C(0) and |Cmin | at comparable pion mass.

In Table 4.2 we show the lattice spacing dependence of the contact term C(0) and the

magnitude of the negative peak of C(r) (| Cmin |) at comparable pion mass in physical

units for β = 5.6 and 5.8 and lattice volume 323×64. For comparison, the corresponding

quantities for pure gauge lattice theory at β = 6.0983 (a = 0.078fm) and lattice volume

243× 48 are C(0) = 285(1)(fm−8) and | Cmin |= 0.69(5)(fm−8). Both the contact term

and the negative peak of C(r) increase with decreasing lattice spacing, in accordance with

the expectation from the continuum theory.
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Figure 4.7: The function χ(r), defined in eq. (4.13) as a function of r at β = 5.6 and 5.8 at

comparable pion masses.
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In Fig. 4.7 we plot χ(r) versus r at two lattice spacings at comparable quark masses.

The contribution from the positive part of C(r) results in a peak at short distance. This is

followed by a decrease due to the negative part of C(r). As lattice spacing decreases, the

contribution from the positive part increases resulting in the increase of the peak of χ(r).

tag a χP χN χ

(fm) (fm−4) (fm−4) (fm−4)
B3b 0.069 2.85 −1.61 1.24

D1 0.053 3.27 −2.19 1.08

Table 4.3: Lattice spacing dependence of χP, χN and χ at comparable pion mass.

According to the expectations from continuum theory, the negative singularity close to the

origin and the positive singularity at the origin are both nonintegrable. Thus the contribu-

tions to χ from positive and negative parts of C(r) are expected to diverge, nevertheless

resulting in a finite χ due to cancellation. In Table 4.3, we show the contributions to the

susceptibility from positive and negative parts of C(r) at β = 5.6 and 5.8 at comparable

pion masses. The data shown in Table 4.3 are in accordance with these expectations.

In Fig. 4.8 (see, however, the discussion in subsec. 4.1 in Ref. [81]), we compare the

radius of the positive core of C(r) at β = 5.6 and 5.8 for comparable pion masses in

physical units. The lattice volume is 323×64. The figure clearly exhibits the shrinking of

the radius of the positive core of C(r) in physical units as one approaches the continuum.

It is gratifying to note that the various trends regarding lattice spacing dependence shown

in Tables 4.2 and 4.3 and Fig. 4.8 have also been observed [74] by using topological

charge density operator based on Ginsparg-Wilson fermion [71, 72].
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Figure 4.8: Comparison of the radius of the positive core of C(r) at two different lattice

spacings for comparable pion mass. Lattice volume is 323×64.

4.7 Discussion and conclusions

It is known that the topological susceptibility decreases with decreasing quark mass and

decreasing volume. This has also been demonstrated [9, 36] using Wilson Lattice QCD

which has O(a) lattice artifacts. To understand the mechanisms leading to these sup-

pressions, in this work, we carry out a detailed study of the two-point TCDC. We have

shown that, with unimproved Wilson fermions and Wilson gauge action, (1) the two-point

TCDC is negative beyond a positive core and radius of the core shrinks as lattice spacing

decreases, (2) as volume decreases, the magnitude of the contact term and the radius of

the positive core decrease and the magnitude of the negative peak increases resulting in

the suppression of topological susceptibility as volume decreases, (3) the contact term and

radius of the positive core decrease with decreasing quark mass at a given lattice spacing

and the negative peak increases with decreasing quark mass resulting in the suppression of
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the topological susceptibility with decreasing quark mass, (4) increasing levels of smear-

ing suppresses the contact term and the negative peak keeping the susceptibility intact and

(5) both the contact term and the negative peak diverge in nonintegrable fashion as lattice

spacing decreases. Observations similar to 1 and 5 have been made using topological

charge density operator based on Ginsparg-Wilson fermion.
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Autocorrelations study with Wilson fermions

5.1 Introduction

Reliable estimation of physical quantities in lattice QCD requires that all possible sources

of both systematic and statistical error are kept under control. Dynamical Wilson fermion

simulations at smaller quark masses, smaller lattice spacings and larger lattice volumes

on currently available computers have become feasible with recent developments such

as DD-HMC algorithm. However, approach to the continuum and chiral limits may still

be hampered by the phenomenon of critical slowing down. One of the manifestation of

critical slowing down is the increase in autocorrelation times associated with the measure-

ments of various observables. The autocorrelation times are not universal quantities, they

depend upon the discretization of the theory, the algorithms used and the observables. An

extensive study of autocorrelation mainly in pure SU(3) gauge theory using DD-HMC

algorithm has been carried out by ALPHA collaboration [18]. They have shown that

the autocorrelation of squared topological charge increases dramatically with decreasing

lattice spacing while Wilson loops decouple from the modes which slow down the topo-

logical charge as lattice spacing decreases. In the simulations with dynamical fermions,

the study becomes more difficult, because the autocorrelation may now depend on num-
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ber of quark flavours (n f ), the quark masses and the fermion action used [29]. In fact

ALPHA collaboration [18] has shown, in the case of n f = 2 QCD with Clover action for

a given value of quark mass and lattice volume, that squared topological charge decor-

relates faster compared with pure gauge at approximately same lattice spacing. These

dependencies and the one on the lattice spacing remain to be studied in detail.

In this chapter, we study the autocorrelations of a variety of observables measured with

DD-HMC algorithm in the case of unimproved Wilson fermions [1, 2].

5.2 Background

In Markov Chain Monte Carlo simulations, an algorithm is a probabilistic procedure to

generate a sequence of field configurations Ui

U1→U2→U3→ ..... →UN

given by transition probability P(U ′←U). Under certain conditions, in particular stabil-

ity

π(U) = ∑
U ′

π(U ′)P(U ←U ′), (5.1)

the Ui are then distributed according to a given probability distribution π . Because of this

process, the probability distribution of Ui+1 depends on Ui, which leads to correlations

among the subsequent measurements of observables Oi = O(Ui). These are described by

autocorrelation function

CO (t) = 〈(Oi−〈O〉)(Oi+t−〈O〉)〉 (5.2)

and integrated autocorrelation time

τO
int =

1

2
+

∞

∑
t=1

CO (t)

CO (0)
. (5.3)
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The error σO for an estimate from N subsequent measurements is then given by

σO =

√

var(O)
√

(N/2τint)
. (5.4)

This is the ordinary error formula, which effectively differs from the one without correla-

tion just by the reduction of the number of measurements N by a factor of 2τint.

5.3 Detail about autocorrelations and error analysis

In this section we follow the discussions and the derivations given in the Refs. [18,84]. Let

us assume that O =
{

O(x)
}

x∈S
be a real-valued function defined on the state space S that

is square integrable with respect to π , where π is the stationary Markov chain probability

distribution with probability transition matrix P. Now consider that the Markov chain is

in equilibrium. Then the unnormalized autocorrelation function,

CO (t) = 〈O(s)O(s+ t)〉−µ2
O

= ∑
x,y

O(x)
[

πxP
(|t|)
xy −πxπy

]

O(y) (5.5)

where µO ≡ 〈O(t)〉 = ∑x πxO(x). Now if the algorithm satisfies detailed balance, i.e.

πxPxy = πyPyx for all x,y ∈ S then it is convenient to introduce the symmetric matrix

Tx,y = π
1
2
x Pxyπ

− 1
2

y (5.6)

which has real eigenvalues λn, n ≥ 0 with λ0 = 1 and | λn |< 1 for n ≥ 1, assuming an

ergodic algorithm. We order the eigenvalues as | λn |≤| λn−1 |. There is a complete set of

eigenfunctions χn(x) with χ0(x) = π
1
2
x . By using spectral representation of T , eq. (5.5)
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can be reduced to

CO (t) = ∑
n≥1

(λn)
t | ηn(O) |2 (5.7)

where ηn(O) = ∑x O(x)χn(x)π
1
2
x . Since | λn |< 1 for n≥ 1

CO (t) = ∑
n≥1

e−t/τn | ηn(O) |2 (5.8)

where τn =− 1
lnλn

, assuming λn’s are positive. Note that the time constants τn’s are com-

mon to all the observables but different observables couple with different strengths given

by | ηn(O) |2 to these modes. This results in different τint’s (eq. 5.10) for different ob-

servables.

For any particular observable O , autocorrelation among the generated configurations are

generally determined by the integrated autocorrelation time τO
int for that observable. For

this purpose, at first, one needs to calculate the unnormalized autocorrelation function of

the observable O measured on a sequence of N equilibrated configurations as

C̃O (t) =
1

N− t

N−t

∑
r=1

(

Or−O
)(

Or+t−O
)

(5.9)

which provides an approximation to the true autocorrelation function given in eq. (5.5)

where O = 1
N ∑N

r=1 Or is the ensemble average. Following the windowing method as

recommended by Ref. [84], the integrated autocorrelation time is defined as

τO
int =

1

2
+

W

∑
t=1

ΓO (t) (5.10)

where ΓO (t) = C̃O (t)/C̃O (0) is the normalized autocorrelation function and W is the

summation window. To calculate the errors, we follow the standard techniques available
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in the literature [63, 84–87]. The variance of ΓO (t) is given by

〈(δΓO (t))2〉 ≈ 1

N

∞

∑
k=1

[ΓO (k+ t)+ΓO (k− t)−2ΓO (t)ΓO (k)]2 (5.11)

and the variance of τO
int ,

〈(δτO
int)

2〉 ≈ 2(2W +1)

N
(τO

int)
2. (5.12)

Different strategies have been suggested in the literature [63, 84, 87] for choosing W . We

choose W where error of ΓO (t) becomes equal to ΓO (t) [63]. By using this strategy

priority is given to statistical errors over the systematic errors in autocorrelation function

and that in turn may result in underestimation of τint . As stated before, in this work we

mainly focus on various trends of autocorrelations that we can observe rather than the

precise measurement of τint . The above expressions are used to calculate the errors unless

otherwise stated. In case the total accumulated statistics is extremely large an alternative

procedure may be to use binning, with bin sizes much larger than τint for calculating the

error [88].

5.4 Observables

Let us denote plaquette and Wilson loop of size R× T with smear level s by Ps and

Ws(R,T ) respectively. Topological susceptibility with smear level s is denoted by Q2
s (the

normalization factor, inverse of lattice volume, is ignored). We have measured the au-

tocorrelations for the plaquette, Wilson loop, nucleon propagator, pion propagator, topo-

logical susceptibility and topological charge density correlator (C(r) = 〈q(x)q(0)〉 where

q(x) is topological charge density and r =| x |) for the saved configurations except for the

unsmeared plaquette where we have measured for all the configurations, at two values of

gauge coupling (β = 5.6 and 5.8) and several values of the hopping parameter κ . C(r)
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with smear levels s is denoted by Cs(r). For pion and nucleon we consider the following

zero spatial momentum correlation functions

C(t) = ∑
~x

〈0 | O1(t,~x)O2(0,~0) | 0〉 (5.13)

where t refers to Euclidean time. For the nucleon O1O2≡NN with N= (qT
d Cγ5qu)qu. For

the pion O1O2 ≡ PP†, AA†, AP† or PA† where P = qiγ5q j (pseudoscalar density) and A

corresponds to A4 = qiγ4γ5q j (fourth component of the axial vector current). Here i and j

stand for flavor indices for the u and d quarks and for the charged pion i 6= j. For both pion

and nucleon we use wall source and point sink. We measure the autocorrelation of the

zero spatial momentum correlation functions at an appropriate time slice corresponding

to the plateau region of the effective mass. For lattice volume 243× 48 and 323× 64

we use 12th and 15th time slices respectively. For topological charge density, we use

the lattice approximation developed for SU(2) by DeGrand, Hasenfratz and Kovacs [77],

modified for SU(3) by Hasenfratz and Nieter [78] and implemented in the MILC code

[79]. To suppress the ultraviolet lattice artifacts, smearing of link fields is employed.

Unless otherwise stated 20 HYP smear levels with optimized smearing coefficients α1 =

0.75, α2 = 0.6 and α3 = 0.3 [80] are used for the gauge observables. For observables

with hadronic operators no gauge field smearing has been used. Our data for topological

charge, susceptibility and charge density correlator are presented in [9, 15, 36].

5.5 Measurements detail

We have generated ensembles of gauge configurations by means of DD-HMC [62–64]

algorithm using unimproved Wilson fermion and Wilson gauge actions [1,2] with n f = 2

mass degenerate quark flavors. At β = 5.6 the lattice volumes are 243×48 and 323×64

and the renormalized physical quark mass (calculated using axial Ward identity) ranges

between 25 to 125 MeV (MS scheme at 2 GeV). We used non-perturbative renormaliza-
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β = 5.6
tag lattice κ block N2 Nc f g τ r0×mπ

B1b 243×48 0.1575 122×62 18 13128 0.5 1.7719(38)
B3a , , 0.158 63×8 6 7200 0.5 1.2610(59)
B3b , , 0.158 122×62 18 13646 0.5 1.2542(58)
B4a , , 0.158125 63×8 8 9360 0.5 1.1329(57)
B4b , , 0.158125 122×62 18 11328 0.5 1.0925(58)
B5a , , 0.15825 63×8 8 6960 0.5 0.9474(65)
B5b , , 0.15825 122×62 18 12820 0.5 0.8764(91)

C1 323×64 0.15775 83×16 8 6844 0.5 1.5345(54)
C2 , , 0.158 83×16 8 7576 0.5 1.2590(59)
C3 , , 0.15815 83×16 8 9556 0.5 1.0697(57)
C4 , , 0.15825 83×16 8 4992 0.25 0.9345(64)
C5 , , 0.1583 83×16 8 13232 0.25 0.8599(66)

β = 5.8
tag lattice κ block N2 Nc f g τ r0×mπ

D1 323×64 0.1543 83×16 8 9600 0.5 1.3259(76)
D5 , , 0.15475 83×16 8 6820 0.25 0.6101(138)

Table 5.1: Lattice parameters, simulation statistics and pion mass (mπ ) in the unit of r0. Here

block, N2, Nc f g, τ refer to DD-HMC block, step number for the force F2, number of DD-HMC

configurations and the Molecular Dynamics trajectory length respectively.

tion constants (ZA and ZP) for unimproved Wilson fermions calculated in [89]. At β = 5.8

the lattice volume is 323×64 and the renormalized physical quark mass ranges from 15

to 75 MeV. To determine the Sommer parameter (r0) [90], we plot (figure 9 in Ref. [8])

the ratio of lattice pion mass to lattice nucleon mass versus lattice pion mass in the unit of

r0. Extrapolation of the ratio to the physical point gives r0. Thus the value of r0 obtained

at β = 5.6 and 5.8 are 0.464 and 0.467 fm respectively. Now using the value of the chiral

limit of a
r0

[8], we have computed lattice spacing a. The lattice spacings are 0.072(2)

and 0.0568(2) fm at β = 5.6 and β = 5.8 respectively. The number of thermalized con-

figurations ranges from 4992 to 13646 with length of the Markov chain (τ ∗Nc f g) 1248

and 6823 respectively. The lattice parameters, simulation statistics and pion mass (mπ )

in the unit of r0 are given in Table 5.1. For all ensembles of configurations the average

Metropolis acceptance rates range between 75−98%.
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Figure 5.1: Autocorrelation functions for the unsmeared plaquette measured with 250, 1000

and 5620 thermalized configurations respectively at β = 5.6 for the ensemble B5b.

5.6 Results

5.6.1 Scaling properties with the gaps

Since almost all our runs are with τ = 0.5, the results presented in this thesis are normal-

ized with τ = 0.5. In Fig. 5.1 we show the autocorrelation function for the unsmeared

plaquette measured with 250,1000 and 5620 number of thermalized configurations re-

spectively at β=5.6, κ = 0.15825 and lattice volume 243×48. We notice that for smaller

statistics, the autocorrelation function touches zero earlier leading to the underestimation

of τint . This happens because of the reduction of central value of autocorrelation function

and increase of noise even at smaller t(∼ 20) for smaller statistics. Also the positivity of
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Figure 5.2: Normalized autocorrelation functions (left) and integrated autocorrelation times

(right) for unsmeared plaquette with three different gaps (4,8,32) between measurements for

the ensemble C5 at β = 5.6.

the autocorrelation function is violated for Nc f g = 250 at a few values of t (even though

the effect ∼ 1 sigma) in contrast to theoretical expectations but the situation improves as

statistics increases.

Since it is exorbitant to measure smeared Wilson loops, propagators and smeared topo-

logical charge on each and every trajectory, we have measured these observables for the

configurations saved with specific gaps. However unsmeared plaquette (P0) is measured

on each trajectory. It is useful to check that the measured autocorrelation scales appropri-

ately with the gaps. The gap of course has to be larger than the autocorrelation length to

ensure the correct determination of the autocorrelation. We have carried out such checks

and a typical result is presented in Fig. 5.2. Fig. 5.2 shows the normalized autocorrela-

tion functions (left) and integrated autocorrelation times (right) for unsmeared plaquette

with three different gaps (4,8,32) between measurements for the ensemble C5. The data

clearly exhibit the scaling properties with the gaps.

5.6.2 Autocorrelations for topological susceptibility (Q2
20)

In Fig. 5.3 we show normalized autocorrelation functions and integrated autocorrelation

times for Q2
20 at κ = 0.1543 and κ = 0.15475 for β = 5.8. Windows are chosen as
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Figure 5.3: Normalized autocorrelation functions (left) and integrated autocorrelation times

(right) for Q2
20 at β = 5.8 for the ensembles D1 and D5.

indicated by the vertical lines. Fig. 5.3 shows that at β = 5.8 autocorrelations of Q2
20

shows some trend to decrease with decreasing quark mass, eventhough the deviation is

within the error bars. In table 5.2 we present τint and R×τint where R is the active link ratio

(see for example section 3.1 in Ref. [18]) for different κ’s at β = 5.6 and β = 5.8. Table

5.2 shows there is also a decreasing trend of autocorrelations of Q2
20 with decreasing quark

mass at β = 5.6, though the effect is more prominent at β = 5.8. A possible explanation

1 for this suppression of autocorrelation with decreasing quark mass (to be confirmed in

future studies with better statistics) is that the algorithm needs to span between lesser

number of topological sectors at smaller quark mass since the width of the Gaussian

distribution of topological charge decreases with decreasing quark mass.

β = 5.6

tag τint(Q
2
20) R× τint(Q

2
20)

B3b 100(28) 36(10)
B4b 86(20) 31(7)
B5b 50(11) 18(4)

β = 5.8

tag τint(Q
2
20) R× τint(Q

2
20)

D1 523(328) 221(138)
D5 57(20) 24(8)

Table 5.2: τint and R× τint’s for Q2
20 at β = 5.6 and β = 5.8.

1Stefan Schaefer (private communication).
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5.6.3 Autocorrelations for C3(r), Q3 and Q2
3
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Figure 5.4: Trajectory histories of Q3 (left) and C3(r = r0) (right) for the ensembles B3b and

D1.

C(r), being a local observable, is very sensitive to short distance fluctuations and in Ref.

[15] we have shown that higher levels of smearing drastically change its behaviour with

r. We found that smear level 3 is optimum for this observable. In Fig. 5.4 we show

the trajectory histories of Q3 (left) and C3(r = r0) (right) for the ensembles B3b and D1.

Note that pion mass for B3b is comparable with the pion mass for D1. Visual inspection

indicates that the autocorrelation of Q3 increases substantially from B3b to D1 whereas

autocorrelation of C3(r = r0) shows only mild increase. In Fig. 5.5 we show normalized

autocorrelation functions for C3(r = r0) and Q2
3 at β = 5.6 for the ensemble B3b. Fig.

5.5 shows that at β = 5.6 the autocorrelations for C3(r = r0) and Q2
3 are very close. The

R× τint’s for C3(r = r0) and Q2
3 are 26(7) and 36(10) respectively. In Fig. 5.6 we show

normalized autocorrelation functions and integrated autocorrelation times for C3(r = r0)

(left) and Q2
3 (right) at β = 5.8 for the ensemble D1. Fig. 5.6 shows that at β = 5.8

the autocorrelation for Q2
3 is larger than the autocorrelation for C3(r = r0). The values

of R× τint’s for C3(r = r0) and Q2
3 are 32(7) and 300(149) respectively. Figs. 5.5 and

5.6 show that the autocorrelations for Q2
3 and C3(r = r0) increase with decreasing lattice

spacing but the effect is milder in latter case.
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Figure 5.5: Normalized autocorrelation functions for C3(r = r0) and Q2
3 at β = 5.6 for the

ensemble B3b.
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Figure 5.6: Normalized autocorrelation functions and integrated autocorrelation times for

C3(r = r0) (left) and Q2
3 (right) at β = 5.8 for the ensemble D1.
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5.6.4 Quark mass dependence
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Figure 5.7: Normalized autocorrelation functions (left) and integrated autocorrelation times

(right) for P0 at β = 5.6 for the ensembles B1b and B5b.

In Fig. 5.7 we present normalized autocorrelation functions (left) and integrated autocor-

relation times (right) for P0 for β = 5.6 at lattice volume 243× 48. From Fig. 5.7, no

dependence on quark mass can be deduced for the autocorrelation of P0.

In Table 5.3 we present τint and R×τint for W5(4,4) for β = 5.6 at lattice volume 243×48

(tag: B1b and B5b). The autocorrelation of W5(4,4) does not show any dependence on

quark mass.

β = 5.6
tag Wilson loops τint R× τint

B1b W5(4,4) 62(14) 23(5)
B5b W5(4,4) 62(19) 23(7)

Table 5.3: Dependence of the autocorrelations of Wilson loops on quark mass at β = 5.6.

5.6.5 Effect of size and smearing

For the measurement of static potential V (r) one needs to measure Wilson loops of various

sizes. In the measurement of a Wilson loop, to suppress unwanted fluctuations smearing

is needed. Therefore it is interesting to study how autocorrelation of smeared Wilson
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β = 5.6
tag Wilson loops τint R× τint

C2 W5(1,1) 29(6) 12(3)
C2 W5(4,4) 49(12) 21(5)
C2 W5(3,3) 44(10) 19(4)
C2 W20(3,3) 67(20) 28(8)
C2 W40(3,3) 96(33) 41(14)

Table 5.4: Dependence of the autocorrelations of Wilson loops on size and smear levels at

β = 5.6.

loops changes with sizes of the Wilson loops and smear levels. In Table 5.4 (first two

rows) we present τint and R× τint’s for W5 with different sizes for the ensemble C2. In

Table 5.4 (third, fourth and fifth rows) we show τint and R× τint’s for W (3,3) with dif-

ferent levels of HYP smearing for the ensemble C2. We observe some increasing trend of

autocorrelations of smeared Wilson loops with the increasing size of the Wilson loop and

also with the increasing smear level. In the context of Wilson loop and Polyakov loop,

SESAM collaboration has observed that geometrically extended observables suffer more

from autocorrelation [91] with HMC algorithm.

5.6.6 Autocorrelations for pion and nucleon propagators

β = 5.6

tag τPion
int R× τPion

int τNucleon
int R× τNucleon

int

B3a 99(19) 27(5) 75(18) 21(5)
B4a 50(9) 14(3) 34(9) 9(3)
B5a 40(10) 11(3) 25(9) 7(3)
C2 39(13) 17(6) 33(17) 14(7)
C3 31(15) 13(6) 26(7) 11(3)
C4 17(6) 7(3) 9(3) 4(1)

Table 5.5: Integrated autocorrelation times for pion (PP) and nucleon propagators with wall

sources at β = 5.6.

For hadronic observables the autocorrelations are quite small and since the number of

measurements are not large the errors calculated from Eqs. (5.11) and (5.12) are quite
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large and mask the trends of the central values of autocorrelations. Our emphasis is on

different trends of autocorrelations. To detect some trend of the central values of the

autocorrelations for the hadronic observables we use a rough estimate of errors by single

omission jackknife technique. In Table 5.5, τint and R× τint’s for pion (PP) and nucleon

propagators with wall sources at a given time slice for β = 5.6 are presented. Clearly

the integrated autocorrelation time decreases with increasing κ (i.e. decreasing quark

mass) both for pion and nucleon propagators. Similar observation was made by ALPHA

collaboration in the case of Clover fermion [92]. The autocorrelation times of pion and

nucleon propagators with point source and sink (not presented here) are smaller than the

gap with which configurations are saved.

5.7 Improved estimation of τint
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Figure 5.8: Normalized autocorrelation function and effective autocorrelation time for P0

(left) Q2
20 (right) for the ensemble B3b at β = 5.6.

We have seen that the autocorrelations of different observables behave differently with

the change in lattice spacing. As pointed out in [18], this behaviour is controlled by the

coupling of different observables with the slow modes of the transition matrix associated

with Monte Carlo Markov chain. In this reference authors have proposed a method to

quantify this coupling and estimate τint more reliably. Following Ref. [18], an improved

estimation of τint can be determined as follows. Let τ∗ be the best estimate of the dominant
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Figure 5.9: Integrated autocorrelation times and their upper bounds (τu
int ) for Q2

20 at β = 5.6

for the ensembles B3b, B4b (left) and at β = 5.8 for the ensembles D1, D5 (right).

time constant. If for an observable O all relevant time scales are smaller or of the same

order of τ∗ then the upper bound of τint

τu
int =

1

2
+ΣWu

t=1ΓO(t)+AO(Wu) τ∗ (5.14)

where AO = max(ΓO(Wu),2δΓO(Wu)). Wu is chosen where the autocorrelation is still

significant. One possible estimation of τ∗ is by measuring effective autocorrelation time,

which is introduced in Ref. [18] as described below. Define effective exponential auto-

correlation time

τexp
e f f (O) =

t

2ln
ΓO (t/2)

ΓO (t)

. (5.15)

τ
exp
e f f which can be an estimate of τ∗ is defined as,

τ
exp
e f f = MaxO





t

2ln
ΓO (t/2)

ΓO(t)



 . (5.16)

The estimation of τexp
e f f (O) requires good signal to noise ratio in the asymptotic region in a

case by case basis which in turn requires very long Markov chain and is beyond the scope

of the present work.
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However it is interesting to look at τexp
e f f (O) where reliable data is available and we present

such an example in Fig. 5.8 (to detect some trend of the central values of τexp
e f f (O), we use

a rough estimate of errors by single omission jackknife technique). In Fig. 5.8 it appears

that Q2
20 is coupling dominantly with slow mode, whereas P0 is coupling with more than

one modes. This is reflected in the behaviour of τexp
e f f (O), which shows a single plateau

for Q2
20, but for P0, there is more than one plateau and the data is more noisy. Nevertheless

the slowest mode appearing in P0 is approximately the same as in Q2
20. Similar behaviour

is observed in pure gauge theory in Ref. [18]. However since the strengths with which

different observables couple to slow mode are different, τint varies from observable to

observable.

In improved estimation given in eq. (5.14) central value of τint gets modified. To check if

this modification preserves the trend of autocorrelation of Q2
20 with respect to quark mass,

in Fig. 5.9 we present the integrated autocorrelation times and their upper bounds (τu
int)

with rough errors estimated by jackknife method for topological susceptibilities (Q2
20) at

β = 5.6 for the ensembles B3b, B4b (left) and at β = 5.8 for the ensembles D1, D5 (right).

At both lattice spacings, we find that both τint(Q
2
20) and τu

int(Q
2
20) decrease as quark mass

decreases.

5.8 Conclusion

In conclusion, we have carried out an extensive study of autocorrelation of several ob-

servables in lattice QCD with two degenerate flavours of unimproved Wilson fermions

and Wilson gauge action. We find that (1) at a given lattice spacing, autocorrelations of

topological susceptibility, pion and nucleon propagators with wall source show indication

of decrease with decreasing quark mass, (2) autocorrelation of topological susceptibility

and autocorrelation of topological charge density correlator increase with decreasing lat-

tice spacing but the effect is milder in latter case and (3) increasing the size and the smear

level increase the autocorrelation of smeared Wilson loop.
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Wilson flow

Introduction

Lattice gauge fields generated by numerical simulations are very rough in general and are

far from the smooth gauge fields in the continuum. So, an important ingredient in the

extraction of physical observables, namely, the smearing (smoothing) of gauge fields is

necessary to suppress unwanted fluctuations due to lattice artifacts. In the past, various

techniques have been proposed towards smearing the gauge fields [80, 93, 94]. Recently

proposed Wilson flow [12–14] puts the technique of smearing on a solid mathematical

footing. Similar flow equation in the context of four dimensional smearing has been

introduced previously in the literature [93, 95]. The same idea is referred to in the math-

ematical literature by the name of gradient flow [96–98]. Here, one has to say that this

flow is not only confined in gauge fields but for any other fields, one can perform the flow.

In this chapter, we discuss how one can arrive at the flow equation, its smoothing property

and its implementation on lattice gauge fields.
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6.1 Gradient flow and smoothing operation

Let us consider free scalar field theory action in Euclidean space

SE [φ ] =

∫

d4x [
1

2
∂µφ ∂µ φ +

1

2
m2φ 2] . (6.1)

Now taking field variation on field (φ → φ +δφ ), we get

SE [φ +δφ ] =
∫

d4x [
1

2
∂µ(φ +δφ) ∂µ(φ +δφ)+

1

2
m2(φ +δφ)2]

=
∫

d4x [
1

2
∂µφ ∂µ φ +

1

2
m2φ 2 +∂µ(δφ) ∂µφ +m2φδφ ]+O((δφ)2)

≃
∫

d4x [
1

2
∂µφ ∂µ φ +

1

2
m2φ 2 +∂µ(δφ) ∂µφ +m2φδφ ] . (6.2)

So, the difference between the actions (from eqs. (6.1) and (6.2)) is

SE [φ +δφ ]−SE [φ ] =
∫

d4x [∂µ(δφ) ∂µ φ +m2φ δφ ]

=
∫

d4x (δφ)[−∂µ ∂µφ +m2φ ] .

Then, we can arrive at the flow equation [96–98]

∂ξ (x,τ)

∂τ
= ∇2ξ (x,τ)−m2ξ (x,τ) (6.3)

where ξ (x,τ) = φ(x,τ), τ is the gradient flow time and the boundary condition is ξ (x,τ =

0) = φ(x). The eq. (6.3) is called gradient flow equation because right hand side of the

equation involves the gradient of the action.
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Go to momentum space via Fourier transform

ξ (x,τ) =
1

(2π)4

∫

d4 p eipx ξ (p,τ) . (6.4)

Now in momentum space, the eq. (6.3) takes the form

∂ξ (p,τ)

∂τ
=−(p2 +m2)ξ (p,τ) . (6.5)

Integrating the eq. (6.5) and putting the boundary condition (ξ (p,τ = 0) = φ(p)), we get

the solution

ξ (p,τ) = φ(p) e−(p2+m2)τ . (6.6)

Now, we can go back from momentum space to position space and the solution (6.6) takes

the form

ξ (x,τ) =
∫

d4y Kτ(x− y)φ(y) (6.7)

where

Kτ(z) =
e(−z2/4τ)

(4πτ)2
e−m2τ

=

∫

d4 p

(2π)4
eipze−p2τe−m2τ

and lim
τ→0

Kτ(z) = δ 4(z) .

From the expression of Kτ(z) (or from the solution (6.6)), one can understand that the high

momentum components are suppressed with increasing the flow time (τ). So, the flow is

a smoothing operation. More precisely, the scalar field is averaged over a spherical range

in space whose root mean-square radius in four dimensions is equal to
√

8t.
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6.2 Wilson flow in continuum QCD

The Wilson flow, also known as Yang-Mills gradient flow, is an analytical tool firstly

introduced in the context of LQCD by Martin Lüscher in [12, 13]. Using the word of

Martin Lüscher: “flows in field space are an interesting tool that may allow new insights

to be gained into the physical mechanisms described by highly non-linear QFT such as

QCD”.

The Yang-Mills gradient flow Bµ(t,x), t > 0, of SU(3) gauge potentials is given by the

flow equation (as discussed in the previous section for scalar theory, similarly, taking the

variation of the Yang-Mills action w.r.t. the fields, one can arrive at the flow equation.)

∂tBµ = Dν Gνµ , (6.8)

Gµν = ∂µBν −∂ν Bµ +[Bµ ,Bν ], Dµ = ∂µ +[Bµ , .], (6.9)

and the initial condition Bµ(0,x) = Aµ(x), where Aµ(x) denotes the fundamental gauge

field integrated over in the QCD functional integral. Since the flow equation is of first

order in the derivatives with respect to the flow time t, the gauge potentials Bµ(t,x) are

uniquely determined by their initial value at t = 0 and are thus well-defined functions of

the fundamental gauge field.

The term on the right of the eq. (6.8) is proportional to the gradient of the gauge action

along the flow and for this reason the equation describes a trajectory in field space that

flows towards the stationary points of the Yang-Mills action. The gradient flow has been

studied in perturbation theory: in reference [14] it has been shown that the fields Bµ(t,x)

at time t > 0 are renormalized and are connected to the renormalized boundary fields

(AR)µ(x) in a universal way that is specified by the renormalization group equation. A
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consequence is that gauge invariant quantities built from the fields Bµ(t,x) as

E(x) =
1

2
tr (Gµν(x)Gµν(x)) (6.10)

do not require renormalization. Here, E is action density observable which is gauge

invariant in nature.

The linearized form of the flow equation can be solved analytically (as discussed in the

previous section): the solution shows explicitly that the flow is a smoothing operation on

the gauge field at the boundary t = 0.

6.3 Wilson flow on lattice

The Wilson flow can also be studied non-perturbatively on the lattice. In [13, 29], Martin

Lüscher proposed the lattice discretization of the eq. (6.8). For any given lattice gauge

field U(x,µ), the first-order differential equation

∂tVt(x,µ) =−g2
0{∂x,µSw(Vt)}Vt(x,µ), Vt(x,µ)|t=0 =U(x,µ), (6.11)

defines a trajectory Vt(x,µ) of fields parameterized by the “flow time” t. In the eq. (6.11),

Sw(Vt) denotes the Wilson gauge action of the field Vt at gauge coupling g0 and ∂x,µ Sw(Vt)

its (Lie algebra valued) variation with respect to the link variable Vt(x,µ). In particular,

lattice gauge fields Vt(x,µ) reside on the links (x,µ) of the lattice at Wilson flow time

t and take values in the gauge group. The link differential operators acting on function

f (V ) of the gauge field are

∂x,µ f (V ) = T a∂ a
x,µ f (V ) =

d

ds
f (esXV )|s=0,
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where X(y,ν) = T a if (y,ν) = (x,µ), X(y,ν) = 0 if (y,ν) 6= (x,µ), s denotes parameter

and T a are the SU(3) generators. Note that the coupling cancels in the flow eq. (6.11).

The differential equation that describes the flow, eq. (6.11) must be discretized in order to

solve it with the numerical methods. We adopt the Runge-Kutta scheme described in [13]

in our numerical simulation. Then, we have to calculate an observable O at flow time t as

〈O〉t ≡ 〈O(Vt)〉.

A gauge invariant observable that can be easily computed on the lattice is the action

density observable at space time point x (discretization of eq. (6.10))

E = 2 ∑
p∈Px

Re tr {1−Vt(p)} (6.12)

where Vt(p) is the plaquette field built out of the fields Vt(x,µ) and Px is the set of unori-

ented plaquettes at space time point x. The renormalized quantity E can be used to define

the reference flow time t0 introduced in [12, 13]

t2〈E(x)〉|t=t0 = 0.3 (6.13)

where t is the Wilson flow time. On lattices with periodic boundary conditions on gauge

fields, the expectation value 〈E(x)〉 is independent of x due to translation invariance. In

the case of open boundary conditions (to be discussed later) on gauge fields, translation

invariance in time direction is broken and 〈E(x)〉 consequently depends on x0 (x0 is the

temporal coordinate of the lattice). Then, the reference flow time t0 is determined through

the implicit equation [30]

t2〈E(x0 = T/2)〉|t=t0 = 0.3 (6.14)

where T is the temporal extent of the lattice and E is the time slice average of the action

71



CHAPTER 6. WILSON FLOW

density given in Ref. [30],

E(x0) =
1

2L3 ∑
~x

tr (Gµν(x)Gµν(x)) (6.15)

where L3 is the spatial volume of the lattice. Through the eqs. (6.13) and (6.14), the

reference flow time provides a reference scale to calculate the physical quantities from

lattice data.

6.4 Concluding remarks

As previously remarked, the flow is some sort of smoothing operation, as is evident from

eq. (6.7). From eq. (6.11) it is actually possible to see that the flow on the lattice is

generated by a sequence of infinitesimal stout link smearing steps [98]. In the eqs. (6.13)

and (6.14), the arbitrary choice of 0.3 is justified by the observation that this typically

corresponds to a smoothing radius of ∼ 0.5 fm. This distance is neither too short (cutoff

effects are expected to be small) nor too large, so that finite volume effects should also be

well under control, in typical lattice volumes. Here an important thing one has to mention

is that the time t0 serves as a reference scale similar to the Sommer parameter r0 (for

detail discussion see reference [13]). With respect to the latter, t0 has the advantage that

its computation does not require any fits.
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Topological susceptibility in lattice Yang-Mills

theory with open boundary condition

Introduction

An open problem in numerical simulation of lattice QCD is that the spanning of gauge

configurations over different topological sectors becomes more and more difficult as the

continuum limit is approached. As a consequence, autocorrelation times of physical quan-

tities grow rapidly making the calculation of expectation values time consuming and it

may sometime even invalidate the results of simulation. Open boundary condition on

the gauge field in the temporal direction has been recently proposed to overcome this

problem [29–31]. Lattice gauge theory with such boundary conditions have no barriers

between different topological sectors.

In the context of topology of gauge fields, an interesting quantity to study is the topolog-

ical susceptibility (χ) in pure Yang-Mills theory which is related to the η ′ mass (mη ′) by

the famous Witten-Veneziano formula [10, 56, 57]. This formula takes its simplest form

in the chiral limit:

m2
η ′ =

2N f

F2
π

χ
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where N f is the number of flavour and Fπ is the pion decay constant. For recent high

precision calculations of χ with periodic boundary condition see, for example, Refs.

[37, 66, 67]. Ref. [66] uses Ginsparg-Wilson fermion for the topological charge density

operator whereas Ref. [67] uses the algebraic definition based on field strength tensor.

A proposal to overcome the problem of short distance singularity in the computation of

topological susceptibility is given in Refs. [73,99]. Ref. [37] employs a spectral-projector

formula which is designed to be free from singularity and compares the result with that

using the algebraic definition. The results using different approaches are in agreement

with each other within statistical uncertainties.

In this chapter, we address the question whether an open boundary condition in the tem-

poral direction can yield the expected value of the topological susceptibility in SU(3)

Yang-Mills theory. We employ the algebraic definition for the topological charge den-

sity used in Ref. [37] and for a meaningful comparison with Ref. [37] Wilson flow is

used to smoothen the gauge field. We also perform simulations with periodic boundary

conditions. In this chapter, we also discuss that using an open boundary condition is ad-

vantageous as it allows one to sample different topological sectors by removing the barrier

between them.

7.1 Open boundary conditions

The gauge and quark fields live on four-dimensional space-time manifold with Euclidean

metric, time extent T and spatial extent L. Open boundary conditions [29, 30] in time

does not wrap around in this direction, i.e. there are no terms in the action which couple

the field variables at time x0 = 0 to those at the largest time x0 = T − a, while space is

taken to be a three-dimensional torus, i.e. all the fields are required to satisfy periodic

boundary conditions in the space directions. In a simulation program for periodic lattices,

these boundary conditions can often be implemented simply be setting the time-like link
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variables at the largest time to zero. In the continuum theory, they amount to imposing

boundary conditions,

F0k(x)|x0=0 = F0k(x)|x0=T = 0, k = 1,2,3, (7.1)

on the gauge field where Fµν is the field tensor of the fundamental gauge field. Note that

these conditions preserve the gauge symmetry and therefore do not constrain the gauge

degrees of freedom of the field. With this choice of boundary conditions, the field space

becomes connected (see section 2.2 in ref. [30]). The absence of disconnected topological

sectors goes along with the fact the topological charge is not quantized. However, when

choosing open instead of periodic boundary conditions in the physical time direction,

the boundary between the topological sectors disappear, the space of the fields becomes

connected and thus one expects to observe only moderately increasing autocorrelation

times if the slowdown of the algorithm is indeed mainly caused by the separation of the

sectors.

7.2 Simulation details

We have generated gauge configurations (using unimproved Wilson gauge action) in

SU(3) lattice gauge theory at different lattice volumes and gauge couplings using the

openQCD program [32]. With open boundary conditions, the Wilson gauge action is taken

to be [30, 100, 101]

SG =
1

g2
0

∑
p

w(p) tr{1−U(p)} (7.2)

where the sum runs over all oriented plaquettes p on the lattice and U(p) denotes the

ordered product of the link variables around p. The weight w(p) is equal to 1 except for

the spatial plaquettes at time 0 and T, which have weight 1
2
.

Gauge configurations using periodic boundary conditions also have been generated for

75



CHAPTER 7. TOPOLOGICAL SUSCEPTIBILITY IN LATTICE YANG-MILLS

THEORY WITH OPEN BOUNDARY CONDITION

Lattice Volume β Ncnfg N0 τ a[fm] t0/a2

O1 243×48 6.21 3970 12 3 0.0667(5) 6.207(15)

O2 323×64 6.42 3028 20 4 0.0500(4) 11.228(31)

O3 483×96 6.59 2333 26 5 0.0402(3) 17.630(53)

P1 243×48 6.21 3500 12 3 0.0667(5) 6.197(15)

P2 323×64 6.42 1958 20 4 0.0500(4) 11.270(38)

Table 7.1: Simulation parameters for the HMC algorithm. N0 is the number of integration

steps, τ is the trajectory length and t0/a2 is the dimensionless reference Wilson flow time.

several of the same lattice parameters (necessary changes to implement periodic boundary

condition in temporal direction were made in the openQCD package for pure Yang-Mills

case). Details of the simulation parameters are summarized in table 7.1. In this table, O

and P correspond to open and periodic boundary configurations respectively.

Topological susceptibility is measured over Ncnfg number of configurations with two

successive ones separated by 32 thus making the total length of simulation time to be

Ncnfg×32. The lattice spacings quoted in table 7.1 are determined using the results from

Refs. [102,103]. To smoothen the gauge configurations, Wilson flow [12–14] is used and

the reference flow time t0 is determined through the implicit eq. (6.15). An alternative to

the t0 scale is the w0 scale proposed in Ref. [104]. We don’t see any significant difference

in our results using the two different scales.

7.3 Numerical results

7.3.1 Trajectory history of the topological charge

The open boundary condition has been proposed to make the barrier between different

topological sectors absent. To that end we first compare the trajectory history of Q for

open versus periodic boundary conditions for a reasonably small lattice spacing. In figure

7.1 we plot the fluctuation of Q versus simulation time at β = 6.59 (a = 0.0402) and lat-
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Figure 7.1: Trajectory history of topological charge (Q) versus simulation time at β = 6.59

and lattice volume 483×96 for open boundary condition (top) and periodic boundary condi-

tion (bottom). The data shown is at Wilson flow time t/a2 = 2.

tice volume 483×96 for open boundary condition (top) and periodic boundary condition

(bottom) both starting from random configurations. The data shown is at Wilson flow

time t/a2 = 2. Unless otherwise stated, all the data presented in the following are at the

reference Wilson flow time (t0). It is evident that with open boundary condition, thermal-

ization is reached very fast whereas with periodic boundary condition it takes a long time

just to reach thermalization. It is also evident that after thermalization, autocorrelation

length is much larger for the periodic boundary condition compared to the open boundary

condition. We have checked that the variation is not so marked for periodic boundary

conditions at larger lattice spacings.
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Figure 7.2: Distribution of Q versus Ncn f g. Top one (blue) is open boundary condition and

bottom (red) is periodic boundary condition at β = 6.42 and lattice volume is 323×64.

7.3.2 Distribution of Q

Next we look at the distribution of Q. In figure 7.2 along with time histories, we plot the

histogram obtained for Q. Top one (blue) is open boundary condition and bottom (red)

is periodic boundary condition at β = 6.42 and lattice volume is 323×64. We note that

(1) as expected from the boundary conditions, top (blue) Q is not an integer whereas for

bottom (red), it is an integer and (2) even for this coupling (β = 6.42) which is lower

compared to figure 7.1, taking the same number of configurations, the top one gives much

better spanning than the bottom. In the plot of histograms in this figure, we have used bin

sizes of 0.1 (top) and 1 (bottom).
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7.3.3 Distribution of Q(x0)
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Figure 7.3: Distribution of Q(x0) versus Ncn f g for the ensemble O2 where x0 = 0, 1, 2, 3, 4

and 24 from top to bottom respectively at β = 6.42 and lattice volume 323×64.

One needs to investigate the effect of open boundary condition on topological charge

density (q(x)). We denote q(x) integrated over the spatial volume at fixed Euclidean time

x0 by Q(x0). The change in the behaviour of Q(x0) as a function of time slice x0 reveals

the effect of open boundary in the temporal direction. The distribution of Q(x0) versus

Ncn f g is presented in figure 7.3 for the ensemble O2 where x0 = 0, 1, 2, 3, 4 and 24

from top to bottom respectively at β = 6.42 and lattice volume 323×64. The distribution

of Q(x0) is calculated with bin size of 0.01. As we move from close to the boundary to

deeper in the bulk, the spanning of Q(x0) steadily increases and finally settles down in the

bulk region. The same behaviour is also observed at the other end of the temporal lattice.
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7.3.4 Subvolume susceptibility
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Figure 7.4: Subvolume susceptibility (χ) versus temporal length (∆x0) for the ensembles O1,

O2 and O3.

For periodic boundary condition, the topological susceptibility is defined as

χ =
〈Q2〉

V
(7.3)

where V is the space-time volume. With open boundary condition, due to boundary arti-

facts, the above eq. (7.3) is no longer valid. To investigate the effect of open boundary on

susceptibility we define a subvolume susceptibility [105] as follows:

χ (∆x0) =
〈Q̃2〉

Ṽ
(7.4)

where Q̃ is the q(x) integrated over the spatial volume and temporal length (∆x0) which is
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taken symmetrically over the mid point of the temporal direction. The subvolume Ṽ is the

product of spatial volume and ∆x0. In figure 7.4 we plot χ versus ∆x0 for the ensembles

O1, O2 and O3. Due to open boundary in the temporal direction, there is slight dip close

to the temporal boundary which is consistent with the behaviour of Q(x0) as shown in

figure 7.3. The suppression of the susceptibility for smaller value of ∆x0 is due to finite

volume effect. We find that, overall, the effect of the open boundary on the subvolume

susceptibility is within the statistical uncertainties.

7.3.5 Stability of the topological susceptibility
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Figure 7.5: Behaviour of topological susceptibility for both open and periodic boundary

condition under Wilson flow plotted versus the flow time for different lattice spacings and

lattice volumes.

It is interesting to study the stability of χ with respect to Wilson flow time. In figure 7.5,

we show the behaviour of χ for both open and periodic boundary condition under Wilson
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flow plotted versus the flow time for different lattice spacings and lattice volumes. For

very early flow times, χ shows non-monotonous behaviour for both open and periodic

boundary condition. For later flow times, χ converges from above to a plateau for open

boundary condition whereas it converges from below for the periodic boundary condition.

7.3.6 Extraction of the topological susceptibility and its lattice spac-

ings dependence
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Figure 7.6: χ1/4 in dimensionful unit plotted versus a2 for both open and periodic boundary

condition for different lattice spacings and lattice volumes. For comparison, data from Ref.

[37] for periodic boundary condition is also plotted. Also shown are the linear fits to the data

Ref. [37] (green lines) and the data for open boundary condition (blue lines).

The values of susceptibility extracted at the reference flow time t0 are given in table 7.2

and plotted in figure 7.6. In the figure 7.6, we show χ1/4 in dimensionful unit plotted

against a2 for both open and periodic boundary condition for different lattice spacings
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Lattice a4χ/10−5 χ1/4[MeV]

O1 1.5418 (610) 185.4 (2.3)

O2 0.5217 (354) 188.6 (3.5)

O3 0.1794 (125) 179.6 (3.4)

P1 1.7430 (973) 191.1 (3.0)

P2 0.4407 (554) 180.8 (5.9)

Table 7.2: Topological susceptibility.

and volumes. We find that the results for open and periodic lattices are very close to each

other at a given physical volume within our statistical uncertainties which however are

not small.

For comparison, data from Ref. [37] for periodic boundary condition is also plotted. Also

shown are the linear fits to the data Ref. [37] (green lines) and the data for open boundary

condition (blue lines). The extracted value of χ1/4 for the open boundary condition data

is 184.7 (1.7) MeV which compares well with the result 187.4 (3.9) MeV of Ref. [37].

7.4 Conclusions

In this study we have shown that the open boundary condition in the temporal direction

can yield the expected value of the topological susceptibility in lattice SU(3) Yang-Mills

theory. The results agree with numerical simulations employing periodic boundary con-

dition. We have also found that our results support the preferability of the open boundary

condition over the periodic boundary condition as the former allows for computation at

smaller lattice spacings needed for continuum extrapolation at a lower computational cost.

The advantage of open boundary conditions over periodic boundary conditions (see, also,

Ref. [106]) are illustrated in figure 7.1.
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CHAPTER 8

The scalar glueball mass

8.1 Introduction

In this chapter, we discuss our exploration of open boundary condition in the context of

the extraction of lowest scalar glueball mass from the temporal decay of correlators. Ex-

traction of glueball masses compared to hadron masses is much more difficult due to the

presence of large vacuum fluctuations present in the correlators of gluonic observables.

Moreover the computation of low lying glueball masses which are much higher than the

masses of hadronic ground states, in principle requires relatively small lattice spacings.

To overcome these problems, anisotropic lattices together with improved actions and op-

erators have been employed [107–109] successfully to obtain accurate glueball masses.

On the other hand, the calculation of glueball masses with isotropic lattice has a long his-

tory (see for example, the reviews, Refs. [110, 111]). These calculations which employ

periodic boundary condition in the temporal direction have been pushed to lattice scale

of a−1 = 3.73(6) GeV [112, 113]. One would like to continue these calculations to even

higher lattice scale which however eventually will face the problem of efficient spanning

of the space of gauge configurations. Such trapping has been already demonstrated [33].

It is interesting to investigate whether the open boundary condition can reproduce the

84



CHAPTER 8. THE SCALAR GLUEBALL MASS

glueball masses extracted with periodic boundary condition at reasonably small lattice

spacings achieved so far and whether the former can be extended to even smaller lattice

spacings. In this chapter, our main objective is to address all these issues. An important

ingredient in the extraction of masses is the smearing of gauge field which is necessary

both to suppress unwanted fluctuations due to lattice artifacts and to increase the ground

state overlap [114]. In chapter 6, we have already discussed the Wilson flow [12–14]

which puts the technique of smearing on a solid mathematical footing. In this chapter, we

present the study of the effectiveness of Wilson flow in the extraction of masses.

8.2 Calculation of the lowest scalar glueball mass

The scalar glueball mass is calculated from the correlator

C(t = (xsink
0 − xsource

0 )) = 〈E(xsink
0 )E(xsource

0 )〉 ∼
t→∞

e−mt (8.1)

where x0 is the temporal coordinate of the lattice and E(x0) is the average of the action

density over spatial volume at a particular time slice, given in eq. (6.15). Now, one can

calculate the glueball mass from the plateau region of the effective mass

ame f f (t) =− log
C(t)

C(t−1)
. (8.2)

As already mentioned, to extract the scalar glueball mass, in this initial study we have

used the correlator of E. Since the action is a sum over the plaquettes, this is similar to

the use of plaquette-plaquette correlators which have been used in the literature [115,116].

As in the latter case, there is room for operator improvement. One may use simple four

link plaquette (unimproved) or one may use the clover definition of the field strength in

the action (improved).
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Lattice Volume β Ncnfg N0 τ a[fm] t0/a2

O1 243×48 6.21 3970 12 3 0.0667(5) 6.207(15)

O2 323×64 6.42 3028 20 4 0.0500(4) 11.228(31)

O3 483×96 6.59 2333 26 5 0.0402(3) 17.630(53)

O4 643×128 6.71 181 64 10 0.0345(4) 24.279(227)

P1 243×48 6.21 3500 12 3 0.0667(5) 6.197(15)

P2 323×64 6.42 1958 20 4 0.0500(4) 11.270(38)

P3 483×96 6.59 295 26 5 0.0402(3) 18.048(152)

Table 8.1: Simulation parameters for the HMC algorithm. N0 is the number of integration

steps, τ is the trajectory length and t0/a2 is the dimensionless reference Wilson flow time. O

and P refer to ensembles with open and periodic boundary condition in the temporal direction.

8.3 Simulation details

Using the openQCD program [32], SU(3) gauge configurations (using unimproved Wilson

gauge action) are generated with open boundary condition (denoted by O) at different

lattice volumes and gauge couplings. For comparison purposes, we have also generated

gauge configurations (denoted by P) for several of the same lattice parameters by imple-

menting periodic boundary condition in temporal direction in the openQCD package. In

table 8.1, we summarize details of the simulation parameters.

Correlator is measured over Ncnfg number of configurations. The separation by 32 is

made between two successive measurements. Thus the total length of simulation time

is Ncnfg× 32. Using the results from Refs. [102, 103], we have determined the lattice

spacings which are quoted in table 8.1. We have employed Wilson flow [12–14] to smooth

the gauge configurations. The implicit eq. (6.14) defines a reference flow time t0 which

provides a reference scale to extract physical quantities from lattice calculations.
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8.4 Numerical results

8.4.1 Effects of boundary conditions on 〈E(x0)〉
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Figure 8.1: Plot of 〈E(x0)〉 versus x0 at flow time t = t0 at β = 6.21 and lattice volume

243×48 for ensemble O1 (filled circle) and ensemble P1 (filled square).

Since we extract the scalar glueball mass from the temporal decay of the correlator of

E(x0) where x0 denotes the particular temporal slice, we first look at the effect of open

boundary on the 〈E(x0)〉. In figure 8.1 we plot 〈E(x0)〉 versus x0 at flow time t = t0 at β =

6.21 and lattice volume 243× 48 for ensemble O1. Breaking of translational invariance

due to open boundary condition in the temporal direction is clearly visible in the plot.

To calculate the correlator we need to pick the sink and source points from the region

free from boundary artifacts, which can be identified from such plot. To facilitate the

identification better, we also plot 〈E(x0)〉 for periodic boundary condition in the temporal

direction for the same lattice volume and lattice spacing (ensemble P1). Preservation of

translation invariance is evident in this case. Clearly, for open boundary condition, source

and sink points need to be chosen from the region where 〈E(x0)〉 is almost flat. We note

that for both open and periodic cases the central region 〈E(x0)〉 is not perfectly flat but

exhibits an oscillatory behaviour on a fine scale.
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8.4.2 Behaviour of 〈E(x0)〉
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Figure 8.2: Plot of 〈E(x0)〉 versus x0 at various flow times t at β = 6.21 and lattice volume

243×48 for ensemble O1 (left) and for ensemble P1 (right).

To understand the oscillatory behaviour, in figure 8.2 we plot 〈E(x0)〉 versus x0 at vari-

ous flow times t at β = 6.21 and lattice volume 243× 48 for ensemble O1 (left) and for

ensemble P1 (right). At small Wilson flow time, the fluctuations of 〈E(x0)〉 are very large

as seen from the top panel of the plots. To reduce the fluctuation we have to increase

Wilson flow time. The comparison of different panels clearly demonstrates the reduction

of fluctuations with increasing flow time (note that the scale on y axis becomes finer and

finer as flow time increases). However, with increasing flow time the data become more

correlated and longer wavelengths appear [31]. The plots show that this smoothening

behaviour is the same for both the open and periodic boundary conditions.

8.4.3 Choice of operators

Next we discuss the extraction of glueball mass. As already discussed in section 8.2, one

may use the unimproved (naive plaquette) or improved (clover) version of the operator

E(x0). In general we expect improved operator to be preferable over unimproved one.

However, for the extraction of masses Wilson flow is essential and this may diminish the

difference between the results using them. In this work we have used Wilson flow in all
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Figure 8.3: Plot of glueball effective mass ame f f (0++) versus the temporal difference x0

at Wilson flow times
√

8t = 0.28 fm, β = 6.42 and lattice volume 323× 64 for ensemble P2

for improved and unimproved choices of operators. The lower panel shows the detail of the

plateau region of the upper panel.

the four directions as originally conceived. Due to the smearing in the temporal direction

we should expect to get glueball mass for separation between source and sink which are

larger than twice the smearing radius (≈ 2×
√

8t). However a successful extraction of

glueball mass in this case requires reasonably small statistical error at such large temporal

separation. In figure 8.3 we plot glueball effective mass ame f f (0
++) versus the temporal

difference x0 (x0 = xsource
0 −xsink

0 ) at Wilson flow time
√

8t = 0.28 fm, β = 6.42 and lattice

volume 323 × 64 for ensemble P2 for improved and unimproved choices of operators

(from here onwards, we denote the temporal difference by x0). As expected the plateau

appears for relatively larger temporal separation and presumably thanks to Wilson flow

the statistical error is reasonably small. We have verified that the results are very similar

at all other Wilson flow times under consideration. Even though we find that there is no

noticeable difference between them, we employed the improved operator for the rest of

the calculations in this study.
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8.4.4 Glueball effective mass using periodic boundary condition with

Wilson flow
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Figure 8.4: Plot of lowest glueball effective mass ame f f (0++) versus x0 at four different

Wilson flow times t, β = 6.42 and lattice volume 323× 64 for ensemble P2. Also shown is

the fit to the plateau region of the data for
√

8t = 0.35 fm.

We extract the effective mass for the glueball (0++) state from the temporal decay of the

correlator 〈E(xsink
0 )E(xsource

0 )〉 where xsink
0 and xsource

0 are the sink and source points in

the temporal direction. To improve the statistics we have averaged over the source points

when we employ periodic boundary condition on the temporal direction. Further to reduce

fluctuations we have performed the Wilson flow up to flow time t = t0. In figure 8.4 we

plot the lowest glueball effective mass ame f f (0
++) versus x0 at four Wilson flow times t,

β = 6.42 and lattice volume 323×64 for ensemble P2. We find that the effective mass is

sensitive to Wilson flow time for initial temporal differences x0 but becomes independent

of different Wilson flow times in the plateau region within statistical error. Note that

as expected, the plateau region moves to the right as Wilson flow time increases. Also

shown in the figure is the fit to the plateau region of the data for
√

8t = 0.35 fm. The fit
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nevertheless passes through the plateau regions of data sets corresponding to other Wilson

flow times.

8.4.5 Glueball effective mass using periodic boundary condition with

HYP smearing
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Figure 8.5: Plot of lowest glueball effective mass ame f f (0
++) versus x0 at five HYP smearing

levels at β = 6.42 and lattice volume 323× 64 for ensemble P2. Also shown is the fit to the

plateau region of the data for smear level 18.

For comparison with traditional methods to smoothen the gauge field configurations,

in figure 8.5 we plot the lowest glueball effective mass ame f f (0++) versus x0 at five

smearing levels for four dimensional HYP smearing [80] at β = 6.42 and lattice volume

323×64 for ensemble P2. We find that the effective mass for different smear levels con-

verge in a very narrow window where we can identify the plateau region and extract the

mass. This behaviour is to be contrasted with that in the case of Wilson flow discussed

in the previous paragraph. The occurance of a very narrow window in the case of HYP

smear is probably due to the fact that the distance between source and sink is not large
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enough compared to twice the smearing radius. Also shown in the figure is the fit to the

plateau region of the data for smear level 18. In physical units the fitted mass is found to

be 1409 (59) MeV which has a marginal overlap with the same [1510 (52) Mev] obtained

with Wilson flow. We have observed from our studies with all the β values that the results

obtained with HYP smearing are systematically lower than those obtained with Wilson

flow. We note that the latter value is closer to the range of glueball mass quoted by other

collaborations. The works presented in the rest of study employ Wilson flow to smooth

the gauge fields.

8.4.6 Comparison of the lowest glueball mass using open and peri-

odic boundary conditions
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Figure 8.6: Comparison of lowest glueball mass ame f f (0
++) versus x0 at Wilson flow time

(
√

8t = 0.35 fm), β = 6.42 and lattice volume 323×64 for ensembles O2 and P2.

With open boundary condition the translational invariance in the temporal direction is

broken and hence we can not average over all the source points to improve statistical

accuracy as we have done in the case of periodic boundary condition. Nevertheless, we
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can average over few source points chosen far away from the boundary. In figure 8.6 we

plot the lowest glueball effective mass ame f f (0
++) versus x0 at Wilson flow time (

√
8t =

0.35 fm), β = 6.42 and lattice volume 323× 64 for both open and periodic boundary

conditions (ensembles O2 and P2). We find that effective mass agree for the two choices

of the boundary conditions but as expected statistical error is larger for open boundary

data.

8.4.7 Extraction of the lowest glueball mass and its lattice spacings

dependence

Lattice fit range am (0++)

O1 7-9 0.569(69)

P1 7-9 0.520(21)

O2 9-12 0.419(57)

P2 8-11 0.383(13)

O3 10-12 0.327(39)

P3 10-12 0.313(28)

O4 7-10 0.274(48)

Table 8.2: Lattice glueball 0++ mass.

In table 8.2 we have shown the fit range used to extract and the extracted lattice glueball

mass for the ensembles studied in this paper. A constant is fitted to extract the mass.

To extract the continuum value of 0++ glueball mass, in figure 8.7 we plot m (0++)

in MeV versus a2 for both open and periodic boundary condition for different lattice

spacings and lattice volumes. For the range of reasonably small lattice spacings explored

in this work, remarkably, the data does not show any deviation from scaling within the

statistical error. Hence we fit a constant to the combined data as shown in the figure

and extract the continuum value of 0++ mass, 1534(36) MeV. We note that this value

compares favorably with the range of glueball mass quoted in the literature.
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Figure 8.7: Plot of the lowest glueball mass m (0++) in MeV versus a2 for both open and

periodic boundary condition for different lattice spacings and lattice volumes. Also shown is

the fit to the combined data.

8.5 Conclusions and discussions

In lattice Yang-Mills theory, we have shown that the open boundary condition on the

gauge fields in the temporal direction of the lattice can reproduce the lowest scalar glue-

ball mass extracted with periodic boundary condition at reasonably large lattice scales

investigated in the range 3 GeV≤ 1
a
≤ 5 GeV. With open boundary condition we are able

to overcome the problem of trapping and performed simulation and extract the glueball

mass at even larger lattice scale ≈ 5.7 GeV. Compared to HYP smearing, recently pro-

posed Wilson flow exhibits better systematics as far as the extraction of glueball mass

is concerned. The extracted glueball mass shows remarkable insensitivity to the lattice

spacings in the range explored in this work 3 GeV≤ 1
a
≤ 5.7 GeV.

The interpolating point like fields perform very poorly as operators which generate hadronic

observables that extended spatially [45, 117]. In order to get clear and strong correla-
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tion signals, which allow a reliable analysis, we have to optimize the interpolating fields

through some smearing techniques. Generally speaking [114] in order to compute masses,

it is convenient to consider observables which are functional of the field smeared in space

and not in the time in order to preserve eq. (8.1). It has been pointed out [118] that

“Only spatial links participate in the averaging. Thus the transfer matrix for the smeared

operators remains unaffected and is positive definite.” In our work, however, Wilson flow

is carried out in all the four directions and our results show that one can indeed extract

mass with relatively small statistical error at relatively large temporal separations. A

critical evaluation of the strengths and weaknesses of the four-dimensional versus three-

dimensional smoothening of the gauge field in the calculation of masses is beyond the

scope of our present study.
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Summary

This dissertation is devoted to the study of perturbative and non perturbative aspects of

LQCD. In lattice literature, to solve the fermion doubling problem, the so called Wilson

term has been introduced which makes first branch physical and all other branches be-

come infinitely massive and decouple from the theory. In perturbation theory it has been

shown that the Wilson term reproduces the correct chiral anomaly. The branches other

than the first one are rarely explored. In order to explore all branches, we have intro-

duced a generalized Wilson term containing a branch selector index (iB). We have shown

that by choosing iB one can make the fermions belonging to a particular branch physical.

We have also investigated the additive fermion mass shift and chiral anomaly to O(g2) in

lattice perturbation theory for all the branches. We have observed that the additive mass

renormalization and the cut-off artifacts in chiral anomaly for non zero quark mass de-

crease monotonously as one moves from physical branch to central branch. According to

the theoretical expectation, we have shown the absence of additive mass renormalization

in the central branch and also found the correct value of the chiral anomaly for different

branches. Since unimproved Wilson fermions are notorious due to severe additive renor-

malization, our finding that averaging over suitable branches reduces the cut-off artifacts

may be investigated further to explore novel ways of putting fermions on the lattice. Fur-

ther our findings favour the use of the central branch to study near conformal field theories

96



CHAPTER 9. SUMMARY

with twelve flavours of fermions.

Next we addressed some non-perturbative issues related to the unimproved Wilson fermions

in LQCD. To understand the mechanism of decreasing topological susceptibility with

quark mass, we have studied the behaviours of the two point Topological Charge Den-

sity Correlator (TCDC). The negativity of TCDC also helps one to realize, in a computer

simulation, the consequence of reflection positivity which is a property of the Wilson ac-

tion. We have shed light on these issues and also established many important properties

of TCDC which lead to the conclusion that unimproved Wilson fermions is not differ-

ent from the other class of fermions (such as O(a) improved Wilson fermions or chiral

fermions).

Generated configurations in LQCD through an algorithm are not independent of each

other and they are correlated with each other most severely for observables related with

topology. For the precise measurement of error associated with an observable, informa-

tion on its autocorrelation is mandatory. Here, we mention that apart from the ALPHA

collaboration (mainly in pure SU(3) gauge theory), no systematic study has been done on

autocorrelation so far. We have studied the autocorrelations of a variety of observables

measured with DD-HMC algorithm in the case of unimproved Wilson fermions and es-

tablished its dependencies on quark mass, lattice spacings, smearing level and the size of

the observables.

Even though lattice QCD continues to make remarkable progress in confronting experi-

mental data, one of the difficult problems is that the spanning of the gauge configurations

over different topological sectors becomes progressively difficult as the continuum limit

is approached due to growing autocorrelations. This may sometime even invalidate the

results of the simulation. To partially overcome this problem, using open boundary condi-

tions (instead of the usual periodic or anti-periodic ones) in the temporal direction of the

lattice has been proposed recently in the literature and to smooth out gauge configurations

Martin Luscher has proposed a solid mathematical technique, known as Wilson flow (Gra-
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dient flow). To understand the advantages of using open boundary conditions over peri-

odic boundary conditions and the usefulness of the Wilson flow, we have generated gauge

configurations (using unimproved Wilson gauge action) in SU(3) lattice gauge theory at

different lattice volumes and gauge couplings and to smooth out gauge configurations we

have used Wilson flow technique. We have calculated the topological susceptibility and

the scalar glueball mass using open and periodic boundary conditions ensembles. We

have shown that the open boundary condition on the gauge fields in the temporal direc-

tion of the lattice can reproduce the expected value of the topological susceptibility and

the lowest scalar glueball mass as with periodic boundary condition at reasonably large

lattice scales. With open boundary condition we are able to overcome, to a large extent,

the problem of trapping and performed simulation and extracted the topological suscep-

tibility and the glueball mass at even larger lattice scale than what has been achieved so

far in the literature. As further avenues of investigation, to extract lowest glueball mass,

we have done a comparison study between Wilson flow and HYP (conventional smearing

technique). Compared to HYP smearing, Wilson flow exhibits better systematics as far

as the extraction of glueball mass is concerned. To summarize, we can conclude that our

results support the preferability of the open boundary condition over the periodic bound-

ary condition as the former allows for computation at smaller lattice spacings needed for

continuum extrapolation at a lower computational cost.
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