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Synopsis

It is an established fact that quantum chromodynamics (QCD) is the fundamental

theory of strong interaction and its phase structure is very rich particularly at high

temperature and/or high density. As for example there exists a phase transition

where normal hadronic matter transforms into a state in which the degrees of free-

dom are the liberated quarks and gluons. The thermalized state of such deconfined

quarks and gluons is known as quark gluon plasma (QGP) [10,11]. Apart from this

there also exist many other exotic phases like quarkyonic phase, color superconduct-

ing phase etc [9]. If we leave aside the immense physical significance of these phase

structures, the interesting intricacies alone make the study of QCD a pursue-worthy

aspect of natural phenomena. Here in this thesis, only the QGP phase has been

explored. Exploration of QGP is expected to shed lights on some less-known impor-

tant large scale physical phenomena such as evolution of early universe, properties

of neutron star etc. For example, strongly interacting hot nuclear matter is believed

to have existed after a few microseconds (∼ 10−5 s) of the big bang when the tem-

perature was of the order of 1012 K (∼200 MeV). Also a highly dense matter, much

more dense than the ordinary nuclear matter (∼ 1018kg/m3), is believed to exist in

the core of neutron star, which in turn can affect its spin and magnetic properties.

Now there are always two aspects of studying any physical phenomena. One is the

experimental part and other is the theoretical one. To study experimentally we

need to have access to QGP. But the existence of QGP in astrophysical phenomena
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so far discussed are by far remote in space and time and thus cannot be accessed.

This leads to the terrestrial based experiments known as heavy ion collisions (HIC)

through which QGP can be formed and thus studied. At present Relativistic Heavy

Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) [22–25] and the

Large Hadron Collider (LHC) at the European Organization for Nuclear Research

(CERN) [26, 27] are operational. These experiments have already produced huge

amount of data, the analysis of which has led to the indication of creation of the

predicted QGP phase. Also some future facilities are coming up, such as Facility for

Antiproton and Ion Research (FAIR) at the Gesellschaft für Schwerionenforschung

(GSI) [28,29] and Nuclotron-based Ion Collider fAcility (NICA) at Joint Institute for

Nuclear Research (JINR), Dubna [30,31]. The goals of these upcoming experiments

are basically to complement the operational ones by exploring different regions of

QCD phase diagram (particularly the high density regions) which, so far, remain

unexplored and also by corroborating many of the findings of those.

On the other side of the coin there are many theoretical tools to study the prop-

erties of QGP. The coupling constant of QCD being large at small energies (large

length) its study becomes a theoretical challenge specially in those regime because

of the nonperturbative nature. There exists a first principle QCD method known

as Lattice QCD (LQCD) which is completely a numerical technique and has some

difficulties at finite baryon density [53–56]. Analytical method such as perturbative

QCD (PQCD) works when the coupling constant is sufficiently small [59]. To deal

with the high temperature QCD, a resummation technique known as hard thermal

loop (HTL) perturbation theory [62, 66, 153], has been invented. To circumvent all

these difficulties, shortcomings of LQCD and PQCD, effective QCD models have

been designed. Since the hot and dense matter created in HIC is supposed to be

non-perturbative in nature, the use of such effective models becomes particularly

useful for the purpose.
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Eventually there exist many effective QCD models which are being extensively used.

There are Nambu–Jona-Lasinio (NJL) model [67,68] and its Polyakov loop extended

version, PNJL model [69, 70]; linear sigma model (LSM) (sometimes also called

quark-meson model) [71] and also its Polyakov loop extended version, PLSM [72];

functional methods like Dyson-Schwinger Equation (DSE) [73], matrix model [74],

different quasiparticle models [75], color singlet (CS) model [76–79] just to name a

few. The PNJL model has been further improved by considering the entanglement

between chiral and deconfinement dynamics, which is termed as EPNJL model [80].

The study of the properties of QGP in this thesis is based on the NJL, PNJL and

EPNJL models and also on the color singlet model.

Correlation function (CF) is one of the fruitful and heavily used mathematical tool

in high energy physics. There can be different types of CFs. A frequently used

one is the propagator for different types of fields. Here we will mainly focus on

current-current CFs, viz. vector meson current CF in a thermal background. These

CFs and their spectral representation reveal dynamical properties of many particle

system and many of the hadron properties.

Such properties in vacuum are very well studied in QCD [84]. The presence of a

stable mesonic state is understood by the delta function like peak in the spectral

function (SF). For a quasiparticle in the medium, the δ-like peak is expected to be

smeared due to the thermal width, which increases with the increase in temperature.

At sufficiently high temperature and density, the contribution from the mesonic state

in the SF will be broad enough so that it is not very meaningful to speak of it as a well

defined state any more. The temporal CF is related to the response of the conserved

density fluctuations due to the symmetry of the system. On the other hand, the

spatial CF exhibits information on the masses and width. So, in a hot and dense

medium the properties of hadrons, viz. response to the fluctuations, masses, width,

compressibility etc., will be affected. Hence, hadron properties at finite temperature
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and density are also encoded in the structure of its CF and the corresponding spectral

representation, which may reflect the degrees of freedom around the phase transition

point and thus the properties of the deconfined, strongly interacting matter. As for

example, the spectral representation of the vector current-current correlation can

be indirectly accessible by high energy heavy-ion experiments as it is related to the

differential thermal cross section for the production of lepton pairs [85,86]. Moreover,

in the limit of low energies (small frequencies), various transport coefficients of the

hot and dense medium can be determined from the spatial spectral representation

of the vector channel correlation.

Here in this dissertation the vector meson current-current CF have been explored

with and without the influence of isoscalar-vector interaction [93]. The inclusion

of isoscalar-vector (also called simply vector) interaction in heavy-ion physics is

important for study of the spectral property like dilepton rate at non-zero chemical

potential. On the other hand, in nuclear astrophysics the formation of stars with

quark matter core depends strongly on the existence of a quark vector repulsion.

It has been more or less accepted in the community that the QGP formed in the HIC

is a strongly interacting one [41,49], also known as sQGP. Experimentally measured

dilepton spectrum [38,39], which is considered as one of the direct signature, at low

invariant mass has been found to be higher than what was predicted by most of the

theoretical methods. This excess can be attributed to the strongly coupled nature

of the created hot and dense matter [187]. In one of the works within effective

model [93] in this thesis we have found that the dilepton rate is indeed enhanced

for the sQGP as compared to the Born rate (leading order perturbative rate) in a

weakly coupled QGP. Here the sQGP has been obtained and tuned by the inclusion

of a background gauge field, namely the Polyakov loop field. We further compared

our findings with the available Lattice data. Response of the conserved density

fluctuations, namely the quark number susceptibility (QNS) has also been studied
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in the presence of the vector interaction.

While talking about the transition from normal hadronic matter to QGP, the main

interest revolves around two phase transitions - one is the chiral transition and the

other one is the deconfinement transition. If they do not coincide, exotic phases such

as the constituent quark phase [15] or the quarkyonic phase [17] may occur. So, an

important question on the QCD thermodynamics is whether the chiral symmetry

restoration and the confinement-to-deconfinement transition happen simultaneously

or not. We note that chiral and deconfinement transitions are conceptually two dis-

tinct phenomena. Though lattice QCD simulation has confirmed that these two

transitions occur at the same temperature [119] or almost at the same tempera-

ture [120]. Whether this is a mere coincidence or some dynamics between the two

phenomena are influencing each other is not well understood and has become an

area of active research and exploration. To understand the reason behind this co-

incidence a conjecture has been proposed in [80] through a strong correlation or

entanglement between the chiral condensate (σ) and the Polyakov loop expectation

value (Φ) within the PNJL model. Such generalization is known as EPNJL model.

We consider the idea of the EPNJL model and re-explore the vector spectral function

and the spectral property such as the dilepton production rate [94] previously studied

in [93]. Because of this strong entanglement between Φ and σ, the coupling strengths

run with the temperature and chemical potential. This running has interesting

implications on the dilepton rate which has been explored in this dissertation. The

importance of inclusion of vector interaction has already been discussed, however its

inclusion also poses some problems in the fluctuation of conserved density associated

with the symmetry, namely the QNS. This issue has also been discussed in details.

In another effort, we assume the hot and dense matter (QGP) to be made of a non-

interacting quarks, antiquarks and gluons with the underlying symmetry of SU(3)

color gauge theory [95]. This assumption holds particularly for a QGP which is

xix



weakly coupled. We showed that this type of simple quantum statistical descrip-

tion exhibits very interesting features: the SU(3) color singlet has Z(3) symmetry

through the normalized character in the fundamental representation of SU(3). This

character becomes equivalent to an ensemble of Polyakov loop (Φ). Furthermore, it

was concluded that this Φ can be taken as an order parameter for color-confinement

to color-deconfinement phase transition.
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CHAPTER 1

Introduction

1.1 Prelude

It has been the foremost priority of science, particularly physical science, to explain

the universe and everything within in terms of some basic building blocks. This way

of looking at things started long back with the ancient Greek and Indian philoso-

phers trying to understand matter in terms of five fundamental building blocks. But

back then the idea was much more philosophical. This doctrine got the boost with

the proposition of atoms by John Dalton and really flourished into its modern form

after the discovery of electron by J. J. Thomson in 1897. In modern day’s termi-

nology, elementary particle physics is the branch of science which deals with such

fundamental questions.

So far, we have understood that there exist two groups of fundamental particles:

fermions ((anti)leptons, (anti)quarks) and bosons (gauge bosons and Higgs boson).

But it’s not only the types and numbers of fundamental particles which matter

the most, how these particles interact with each other is also a matter of great

importance. Such investigations also belong to the realm of elementary particle

physics. Until now four fundamental interactions have been discovered, which govern
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CHAPTER 1. INTRODUCTION

Interaction Theory Mediators Strength
Strong Quantum chromodynamics Gluons 1

Electromagnetic Quantum electrodynamics Photons 10−2

Weak Quantum flavordynamics W±,Z 10−13

Gravity
Quantum gravity
(hypothesized)

Graviton
(hypothesized)

10−38

Table 1.1: Fundamental interactions, their mediators and strength along with the
corresponding theory.

different types of particle dynamics and related phenomena. Out of these four the

quantized version of gravity is yet to be achieved and it is not included in the

standard model (SM) of particle physics which describes the other three interactions

in their quantized forms. Some of the basic characteristics of these known four

interactions are summarized in table 1.1.

Because of their richness and intricacies each of these interactions and related phe-

nomena have become branches of particle physics their own. We, in this dissertation,

will be mainly dealing with phenomena related to strong interaction. So, in the next

section we discuss some of the basic properties of quantum chromodynamics (QCD),

the theory of strong interaction.

1.2 Quantum chromodynamics

Because of its success in explaining many of the strong interaction phenomena, QCD

is believed to be the theory of strong interaction [1, 2]. Particularly, much of the

support for QCD derives from its ability to produce results against the experimental

verification at high energies (short distances) [3, 4]. It is a Yang-Mills theory with

the SU(3) color gauge group involving the strong interactions of (anti)quarks and

gluons. The non-abelianness of the theory makes it fundamentally very different

from abelian theory like quantum electrodynamics (QED). Main difference being
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the coupling of gluons among themselves, which leads to the property known as

asymptotic freedom [3,4]. Before we discuss a bit more about the asymptotic freedom

let us introduce the Lagrangian of QCD.

As already mentioned, QCD is a SU(3)c gauge theory with the (anti)quarks and

gluons belonging to its fundamental and adjoint representation, respectively. A

quark of a particular flavor comes with three colors, whereas there are eight types

of gluons. The Lagrangian has the following form,

L = ψ̄(i/D −m)ψ − 1

4
F µν
a F a

µν , (1.1)

with the field strength tensor being

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfbcaA

b
µA

c
ν ; (1.2)

where the covariant derivative is defined as Dµ = ∂µ − igTaAµa and Aa
µ is the non-

abelian gauge field with the color index a, g is the QCD coupling constant, Ta are the

generator of SU(3)c group with [Ta, Tb] = ifabcTc, fabc being the structure constant

of the group. The generators are further expressed in terms of Gell-Mann matrices

λa as Ta =
λa

2
.

The third term in equation (1.2) makes the QCD behaving a whole lot different from

QED. It is this term through which the gluons can interact among themselves. This

leads to the phenomenon known as asymptotic freedom which is discussed in the

next paragraph. Before we go into that we should be aware of the fact that apart

from this local gauge symmetry QCD also bears some global symmetries which are

the backbone of different effective QCD models at low energies. These symmetries

3
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are discussed in details in the subsection 1.2.1.

e−

e−

e−
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e+
e+

e+
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q

q
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q̄ q̄

q̄

(b)

q
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g g

q̄
g

g

(c)

Figure 1.1: Schematic representations of vacuum polarization diagrams for QED in
(a) and QCD in (b) & (c). (b) is analogous to (a); the extra contribution for QCD,
shown in (c), arises due to the gluon self interaction.

The vacuum of QCD behaves differently from that of QED because of the gluons’ self

interaction. This has been elucidated appropriately in figure 1.1. From figure 1.1(a)

it is understood that due to vacuum fluctuation an electron is considered to be

surrounded by positrons and thus its electric charge gets screened. So, as we probe

closer to the electron by increasing the energy, we experience more of the total charge

of the electron (it reminds us of the dielectric medium). Thus in QED the coupling

strength increases with the increase of energy or decreasing distance.

Figure 1.2: Running of QCD coupling constant.

On the other hand the same effect is there for quarks in QCD vacuum as shown
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in figure 1.1(b), though here we are talking about color charge. But that is not

all - there is another scenario shown in figure 1.1(c) which arises because of gluon-

gluon interaction. This makes the whole picture different and in QCD vacuum the

color charge gets antiscreened. So, in QCD the coupling constant decreases as the

probing energy is increased. This is known as asymptotic freedom. The running of

the coupling constant in QCD is further demonstrated in figure 1.2. The predictions

from the theory matches well with the experimental findings. This experimental

validation gives confidence in QCD as the theory of strong interaction [5].

Apart from asymptotic freedom there is another property of strong interaction

known as color confinement [1,2], which signifies that no color charged particles such

as (anti)quarks, gluons can be isolated and thus can never be directly observed1. The

reasons for confinement is yet to be understood and there is no analytic proof that

tells us that QCD should be confining. In other words, the QCD Lagrangian in (1.1)

gives appropriate descriptions when the degrees of freedom are quarks and gluons

at high energies (short distances), but fails to tell us how those quarks and gluons

get confined into hadrons. Now there are some way out to this through numerical

methods like lattice QCD (LQCD), which is a first principle calculation or through

effective QCD models based on symmetries of QCD, that try to mimic QCD as

closely as possible. These methods will be discussed briefly in the subsection 1.4.2.

In the next subsection we briefly discuss about the symmetries of QCD along with

their physical implications.

1In this sense the hypothesis of color charge, which was introduced to comply with Pauli’s
exclusion principle, is a strange assumption; because for the first time in subatomic physics it
introduces a difference between particles that are identical in all observable ways, viz. between
two d quarks of different color.
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1.2.1 Symmetries of QCD

We know that the SU(3)c color gauge symmetry is the most important local sym-

metry of QCD. The global symmetries of QCD are also important particularly while

building up the effective models. We begin the discussion by considering vanishing

current quark masses. In that limit the left and right handed quarks decouple and

the QCD Lagrangian possesses U(N)L ×U(N)R symmetry (we no more talk about

the SU(3)c symmetry which is always there). The left and right handed fields are

defined using the chiral projection operators,

ψL =
1− γ5

2
ψ; ψR =

1 + γ5
2

ψ. (1.3)

From group properties we can decompose U(N) into SU(N)×U(1). We can further

add and subtract the generators of left and right handed quarks to obtain a new set

of generators which correspond to the vector and axial vector symmetries [6]. The

vector and axial vector symmetries are defined under global U(1) transformations

as,

ψ → eiθψ, ψ → eiγ5θψ (1.4)

respectively; θ being the global parameter.

The U(1)A symmetry is anomalously broken which is known as axial anomaly. The

chiral symmetry SU(N)V × SU(N)A is spontaneously broken into SU(N)V . This

is known as spontaneous chiral symmetry breaking (CSB). For two flavor the pion

triplet are the Goldstone bosons, whereas for three flavor, the pion octet. If chiral

symmetry was not spontaneously broken then there would exist in the meson and

baryon spectrum a mirror multiplet with opposite parity to each isospin multiplet.

But no such chiral multiplet does exist. This spontaneously broken chiral symmetry
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SU(3)c × U(3)L × U(3)R

SU(3)c × SU(3)L × U(1)L × SU(3)R × U(1)R

SU(3)c × SU(3)V × U(1)V × SU(3)A × U(1)A

SU(3)c × SU(3)V × U(1)V × SU(3)A

SU(3)c × SU(3)V × U(1)V

SU(3)c × SU(3)f × U(1)V

SU(3)c × U(1)V

Decomposition into subgroups

Change of representations

Anomalous breaking of U(1)A

Spontaneous CSB

Nonzero but degenerate current quark masses

Nonzero and nondegenerate current quark masses

Figure 1.3: Symmetries of QCD and their physical implications with the three
lightest quark flavors up (u), down (d) and strange (s).
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is supposed to be restored at high temperature and/or density.

Once we introduce the nonzero but degenerate current quark masses the vector sym-

metry SU(N)V can be recognized as the symmetry of N flavors, namely SU(N)f .

When we consider the quark masses to be nondegenerate, SU(N)V is explicitly bro-

ken and what remains is the symmetry SU(N)c × U(1)N . The symmetry U(1)N

is responsible for the conservation of baryon number, which is a consequence of

Noether’s theorem. In the figure 1.3 these symmetries are well explained through a

flow chart [7]. There we consider the three lightest flavors, u, d and s which are the

only accessible quark flavors in the energy range of interest in this dissertation.

QCD is also known for its rich phase structure, particularly at high temperature

and/or high density associated with the symmetries and their breaking discussed so

far. In the next subsection we briefly touch upon the phase structure of QCD.

1.2.2 Phase structure of QCD

The phase diagram of hot and/or dense system of quarks and gluons predicted by the

QCD has invited a lot of serious theoretical as well as experimental investigations for

last few decades. The first prototype of the QCD phase diagram was conjectured

in [8] where it looked very simple as shown in figure 1.4(a); with the passage of

time more and more investigations culminated in a very complicated looking phase

diagram with many exotic phases [9] as displayed in figure 1.4(b). We discuss some

of its characteristics in the following paragraphs.

So far we have discussed about confining states. There is also the possibility of

creating a deconfined state in which the quarks and gluons are liberated. It can be

understood intuitively by considering nucleons in a nucleus which can be pictured

as system of quark bags. Now if we keep on increasing the density by putting more

and more nucleons, the distance among the quarks and gluons keeps on decreasing.
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Thus there will be a certain critical value of density after which a quark or gluon

will no longer be able to recognize which nucleons it belongs to and thus will be

moving freely in a volume much larger than the hadronic/nucleonic volume. We can

also create the free state of quarks and gluons by increasing the temperature, since

increasing temperature leads to pion production which is equivalent to increasing

the density. Thermalized state of such deconfined quarks and gluons is known as

quark gluon plasma (QGP) [10,11], which is a relativistic plasma since the thermal

velocities of quarks (light flavor) and gluons in it are relativistic. Its constituents

are color ionized and it also screens the color charge - the reason why it is called a

plasma. How this state of QGP can be formed is discussed in the subsection 1.4.1.

Chiral phase transition (vide figure 1.3) is another interesting aspect of the QCD

phase diagram which has been also at the center of attention.

(a) (b)

Figure 1.4: Phase diagram of QCD: (a) The first prototype and (b) it’s state of the
art avatar.

It is important to know the order of a transition, since it could reveal the charac-

teristics of the underlying mechanism. For QCD phase diagram in the T − µ plane,

the transition is supposed to be a crossover at zero density. On the other hand, at

low temperature and high density the transition is speculated to be first order [12].

So the first order transition line starting on the chemical potential axis ends up in a

critical point at finite T and µ [13]. This is a widely accepted scenario of the QCD

phase diagram and the experimental search for this critical point is on [14].
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If the deconfinement and chiral phase transitions do not coincide, exotic phases

such as the constituent quark phase [15, 16] or the quarkyonic phase, a confined

but chiral symmetric phase [17, 18], may occur. A color superconducting as well as

color-flavor-locked phase at zero or small temperature and high density have also

been conjectured. There are many more to this whole story, the details of which

can be found in the reference [9].

In this dissertation we will be dealing with the deconfinement and chiral phase

transitions particularly in connection with QGP.

1.3 Purpose of studying QGP

If we leave aside the interesting intricacies of studying QCD phase structure, its im-

mense physical significance makes the study of QGP along with the other phases, a

pursue-worthy aspect of natural phenomena. Particularly, exploration of QGP is ex-

pected to shed lights on some less-known important large scale physical phenomena

such as evolution of early universe, properties of neutron star etc.

As far as our present understanding is concerned Big Bang model is the most reliable

one regarding the creation and evolution of the universe [19]. According to this

model the universe expanded from a very high density and high temperature state.

It went through many phases and ultimately got into its present-day form. When the

inflation stopped around ∼ 10−11 s after the birth the universe is supposed to be in

a phase filled with QGP. This phase lasts up to ∼ 10µs when the temperature was of

the order of 1012 K (∼ 200 MeV), quarks and gluons get confined into hadrons [20].

So understanding of QGP will really help us to peep into the past and comprehend

the evolution of the universe in a better way.

Neutron star is the another astrophysical entity which provides us the motivation

for studying QGP. The ongoing research predicts about the structure of the neutron
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star [21] and it has been speculated that a highly dense matter, much more dense

than the ordinary nuclear matter (∼ 0.125GeV/fm3 or 1018 kg/m3), to exist in the

core of neutron star, which in turn can affect its spin and magnetic properties.

The existence of QGP in astrophysical phenomena so far discussed are by far remote

in space and time and thus cannot be accessed. But to study experimentally we

need to have access to QGP. This leads to the terrestrial based experiments known

as heavy ion collisions (HIC) through which QGP can be formed and thus studied.

In the next section, this is what we discuss along with the theoretical tools to study

QCD and its phase structure, particularly the QGP.

1.4 Methods of studying QCD

There are always two aspects of studying any physical phenomena. One is the ex-

perimental part and other is the theoretical one. Whereas the history of science

suggests that theoretical ideas can really predict new physical phenomena and dic-

tate to the experiment what it should look for, the ultimate role is played by the

experiments by deciding the fate of any theoretical advancement and choosing the

path of scientific progress. So it is very important that these two go hand in hand.

In the following subsections we will discuss in short the tools, experimental (in sub-

section 1.4.1) as well as theoretical (in subsection 1.4.2), for investigating QCD and

many facets of its phase structure.

1.4.1 Experimental methods

In recent years, a tremendous effort has been devoted to study how QCD behaves in

unusual conditions, particularly the creation of QGP in the laboratory. In all these

experiments heavy ions are accelerated to relativistic speeds in order to achieve
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extreme conditions required for the creation of such a short-lived phase. These ex-

treme conditions are achieved by increasing the energy of the colliding beam. At

present Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory

(BNL) [22–25]and the Large Hadron Collider (LHC) at the European Organization

for Nuclear Research (CERN) [26, 27] are operational. Also some future facilities

are coming up, such as Facility for Antiproton and Ion Research (FAIR) at the

Gesellschaft für Schwerionenforschung (GSI) [28, 29] and Nuclotron-based Ion Col-

lider fAcility (NICA) at Joint Institute for Nuclear Research (JINR), Dubna [30,31].

The goals of these upcoming experiments are basically to complement the opera-

tional ones by exploring different regions of QCD phase diagram (particularly the

high density regions) which, so far, remain unexplored and also by corroborating

many of the findings of those. Figure 1.4(b) shows different experiments exploring

different parts of the phase diagram in T − µ plane.

Many observables, which would work as signal of QGP, are proposed and measured

in these experiments [32, 33]. Among them multiplicity vs average pT, jet quench-

ing, elliptic flow, electromagnetic emissions (photon and dilepton production), J/ψ

suppression, strangeness enhancement, fluctuations etc have been extensively stud-

ied. In this thesis we have investigated the electromagnetic spectral function and

its spectral properties – the dilepton production rate and the conserved density

fluctuations, namely the quark number susceptibility (QNS).

In QGP a quark can interact with an antiquark to produce a virtual photon and that

virtual photon can decay into a lepton-antilepton pair (so called dilepton). These

dileptons having a mean free path larger than the system size, leave the fireball

almost without any interaction. Thus they carry almost undistorted information of

the early times when they are produced in the deconfined hot and dense matter [34,

35]. But dileptons are produced from every stages of HIC, thus it becomes difficult

to use them as a probe of QGP unless the total dilepton production rate is known.
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On the other hand study of fluctuations and correlations in HIC reveals important

characteristics of the system particularly about the nature of the phase transitions.

Critical opalescence arising from fluctuations in second order phase transitions is a

well known example. We also get to know about the effective degrees of freedom of

the system and how it behaves to any external perturbation [36].

So far various diagnostic measurements have been performed, which indicate a

strong hint for the creation of a strongly coupled QGP (not a weakly interact-

ing gas of quarks and gluons) [37] within a first few fm/c of the collisions through

the manifestation of hadronic final states. As for example the measurements at

RHIC BNL [38–47] and the new data from LHC CERN [48–52], all support for the

existence of a strongly interacting QGP (sQGP).

1.4.2 Theoretical methods

On the other side of the coin there are theoretical tools to study the properties of

QGP. The coupling constant of QCD being large at small energies (large length)

its study becomes a theoretical challenge specially in those regime because of the

nonperturbative nature of the theory.

So far we do not have any analytical way to tackle this nonperturbative nature of

the theory, but there exists a first principle QCD method known as Lattice QCD

(LQCD) which is completely a numerical technique [53–56]. If we believe that QCD

is the theory of strong interaction, then LQCD, being a first principle method, is

a numerical experiment. It can provide accurate results for zero as well as nonzero

temperature (popularly known as finite temperature) QCD within some systematic

errors depending on the lattice size and lattice spacing. But this method suffers

from a serious difficulty at finite chemical potential, known as the infamous sign

problem [57]. However, there are some ways out to it, which can only be applied in
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a limited region of the phase diagram [58].

Analytical method such as perturbative QCD (PQCD) works well when the cou-

pling constant is sufficiently small at high energies [59, 60]. To deal with the high

temperature QCD, hard thermal loop (HTL) perturbation theory, a resummation

technique, has been invented [61–65]2. In a recent study using this HTL perturba-

tion theory various thermodynamic quantities have been calculated and shown to

agree well with the available lattice data [66].

To circumvent all these difficulties, shortcomings of LQCD and PQCD, effective

QCD models have been designed. Since the hot and dense matter created in HIC is

supposed to be non-perturbative in nature, applications of such effective models be-

come particularly useful for the purpose. Eventually there exist many effective QCD

models which are being extensively used. There are Nambu–Jona-Lasinio (NJL)

model [67, 68] and its Polyakov loop extended version, PNJL model [69, 70]; Linear

Sigma Model (LSM) [71] and also its Polyakov loop extended version, PLSM [72];

functional methods like Dyson-Schwinger Equation (DSE) [73], matrix model [74],

different quasiparticle models [75], color singlet (CS) model [76–79] just to name a

few. The PNJL model has been further improved by considering the entanglement

between chiral and deconfinement dynamics, which is termed as EPNJL model [80].

The study of the properties of QGP in this thesis is based on the NJL, PNJL and

EPNJL models and also on the CS model, which have been discussed a bit elabo-

rately in the next chapter 2.

A large part of the works covered in this dissertation is based on the correlation

function (CF), current-current CF to be precise. This CF, sometimes, is also called

2Naively, one would expect from asymptotic freedom that perturbative technique will be valid
at high temperature and/or high density. But problem of infrared divergence, which arises due
to the presence of massless particles, plagues the perturbative calculations at high temperature.
The problem is solved, at least in the electric sector, by using the resummation scheme known as
HTL. In this technique, a class of loop diagrams for which the loop momenta are of the order of
the temperature are resummed, which contribute to a given order. Based on this approximation
an improved perturbation theory, known as HTL perturbation theory, is developed by performing
an expansion around a system of massive quasiparticles generated through thermal fluctuations.
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correlator. So to maintain the consistency, in the next section we develop some basic

ideas about CF and its spectral representation.

1.5 Correlation function and its physical impor-

tance

Dynamical behaviors of many particle systems are studied by employing an external

perturbation, which disturbs the system slightly from its equilibrium state, and

thus assessing the spontaneous responses/fluctuations of the system to this external

perturbation. In general, these responses/fluctuations are related to the CFs through

fluctuation-dissipation theorem [81, 82].

CF and its spectral representation are extensively used mathematical tools applied in

almost every branch of physics. Generically it describes how microscopic variables

co-vary with response to one another. Thus there can be different types of CFs.

As for example, a frequently used CF in high energy physics is the propagator for

different types of fields. Here, in these series of works, we will mainly focus on

current-current CFs, viz. vector meson current CF in a thermal background. These

CFs and their spectral representation reveal dynamical properties of many particle

system and many of the hadronic properties [81–83]. Such properties in vacuum are

very well studied in QCD [84].

While propagating through the hot and dense medium, the vacuum properties of any

particle get modified due to the change of its dispersion properties in the medium.

These changes are reflected in its CFs [85, 86]. Also the existence of resonances or

bound states in the plasma state can be investigated through the study of CFs. The

presence of a stable mesonic state is understood by the delta function like peak in

the spectral function (SF). For a quasiparticle in the medium, the δ-like peak is
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expected to be smeared due to the thermal width, which increases with the increase

in temperature. At sufficiently high temperature and density, the contribution from

the mesonic state in the SF will be broad enough so that it is not very meaningful to

speak of it as a well defined state any more. On the other hand, the inverse of equal-

time correlation lengths (screening masses) characterize the long-range properties of

a thermal system [87–89]. For example, these screening masses specify the infrared

sensitivity of various thermodynamic quantities and also the spectral properties of

a given system.

The temporal CF is related to the response of the conserved density fluctuations

due to the symmetry of the system. On the other hand, the spatial CF exhibits in-

formation on the masses and width. Now, in a hot and dense medium the properties

of hadrons, viz. response to the fluctuations, masses, width, compressibility etc.,

will be affected. Hence, hadron properties at finite temperature and density are also

encoded in the structure of its CF and the corresponding spectral representation,

which may reflect the degrees of freedom around the phase transition point and thus

the properties of the deconfined, strongly interacting matter.

As for example, the spectral representation of the vector current-current correlation

can be indirectly accessible by high energy heavy-ion experiments as it is related

to the differential thermal cross section for the production of lepton pairs [85, 86].

These lepton pairs are considered as good signal of QGP, since they leave the fireball

with minimum interaction once they are produced. But dilepton pairs are produced

in many stages of the HICs and it becomes difficult to identify the stage of the

collisions from which the pairs are coming out. Thus it is appropriate to talk about

the total rate of lepton pairs produced all over the range of the collision time. In

this dissertation, though, we will mainly focus on the dilepton pairs arising from

the QGP phase. Moreover, in the limit of low energies (small frequencies), various

transport coefficients of the hot and dense medium can be determined from the
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spatial spectral representation of the vector channel correlation.

On the other hand correlations and fluctuations of conserved charges, such as elec-

tric and baryonic numbers, are supposed to be good signals of the deconfinement

phase transition [90–92]. Here in this thesis we are specifically interested in the

quark number density fluctuation. It can be related with the temporal part of the

current-current CF through the fluctuation-dissipation theorem and also can be cal-

culated from the thermodynamic pressure. From the thermodynamic point of view

susceptibilities measure the fluctuations. For quark number density fluctuation it is

the QNS which is used as a probe for the quark-hadron phase transition.

Further details of CF and its spectral representation along with the mathematical

details are presented in the upcoming chapter 2. In the next section we sketch the

scope of the thesis.

1.6 Scope of the thesis

In chapter 2 we briefly review the basic ingredients of various effective QCD models

(viz. NJL, PNJL, EPNJL and CS) along with the features of CF and some of their

spectral properties, which have extensively been used in the thesis.

In chapter 3 we explore the vector meson current-current CF with and without the

influence of isoscalar-vector (I-V) interaction in NJL and PNJL models [93]. As a

spectral property we have computed the dilepton rate which is found to be enhanced

in sQGP as compared to the Born rate (leading order perturbative rate) in a weakly

coupled QGP. Here the sQGP has been obtained and tuned by the inclusion of a

background gauge field, namely the Polyakov loop (PL) field. We further compared

our findings with the available Lattice data.

In chapter 4 we consider the idea of the EPNJL model and re-explore the vector
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spectral function and the spectral property such as the dilepton production rate [94]

previously studied in [93] as discussed in chapter 3. Because of the strong entangle-

ment between PL field and chiral condensate, the coupling strengths run with the

temperature and chemical potential. This running has interesting implications on

the dilepton rate which has been explored.

The Euclidean vector correlator and also the response of the conserved density

fluctuations related with the temporal vector correlator, have been studied in the

chapter 5. We have considered both the scenarios, i.e. presence and absence of the

vector (I-V) interaction. The inclusion of the vector interaction also brings forth

some intriguing issues in the fluctuation of conserved density, namely the QNS. This

has also been discussed in details.

In another effort (chapter 6), we assume the hot and dense matter (QGP) to be

made of a non-interacting quarks, antiquarks and gluons with the underlying sym-

metry of SU(3) color gauge theory [95]. This assumption holds particularly for a

QGP which is weakly coupled. We showed that this type of simple quantum statis-

tical description exhibits very interesting features: the SU(3) color singlet has Z(3)

symmetry through the normalized character in the fundamental representation of

SU(3). This character becomes equivalent to an ensemble of PL fields which can be

exploited as an order parameter for color-confinement to color-deconfinement phase

transition.
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Some preliminaries

In this chapter we develop the basic ideas of effective QCD models which have been

later used in the present thesis. There exists a plethora of such models. But following

the requirement of this thesis we will only shed light on NJL, PNJL and EPNJL

models. Then we will also give a brief review on color-singlet (CS) model. Some

of the preliminaries of correlation functions (CF) and their spectral representations

have also been dealt along with their physical significance, particularly how they are

associated with dilepton rate and susceptibility.

2.1 Effective QCD models

As has been mentioned in the introduction, QCD is the theory of strong interaction

and it shows some interesting properties different from QED. Asymptotic freedom

is one of them which allows the perturbative method to be applied in the range

of large momentum transfer. But as the momentum transfer becomes smaller and

smaller the applicability of such method loses its justification due to the increase

of coupling constant and eventually fails completely when the coupling constant

becomes sufficiently large. Thus we cannot describe the hadrons and their properties
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just by starting from QCD Lagrangian. It is a strange situation, since we have the

Lagrangian which effectively carries all the dynamical informations of the system

one needs to know but it is very difficult to extract useful informations from that.

Therefore several methods have been developed to study QCD.

Lattice gauge theory is the only one of them which actually tries to solve the QCD

Lagrangian starting from first principle. It is a numerical method and can provide

accurate results for zero as well as nonzero temperature QCD within some systematic

errors depending on the lattice size and lattice spacing. But this method suffers from

a serious difficulty at finite chemical potential, known as the infamous sign problem,

which restricts its applicability in that regime [57]. Thus it becomes necessity to

look for some other way to study QCD – at least some of its low energy properties

if not all.

Now from our knowledge of atomic physics, nuclear physics or solid state physics we

know that sometimes it is really helpful to replace a many-body system by an ef-

fective one-body description to extract the essential features. The logic behind such

assumption is that many-body system can only be exactly solved if it is simplified.

So the lesson from this simplification is that it is sensible to replace a complicated

(mathematically intractable) theory like QCD by some effective ones (mathemati-

cally tractable) which carries its essential features. There are many such effective

models which are being extensively used (vide subsection 1.4.2 in the introduction).

Here we will discuss only some of them. These models can be categorized in two

types. In one type there are NJL, PNJL and EPNJL models whether in the other

one there is CS model. Let us move on to the discussion by beginning with the NJL

model.
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2.1.1 Nambu–Jona-Lasinio (NJL) model

Historically NJL model was introduced as a pre-QCD theory to describe the strong

interaction among the nucleons with the degrees of freedom being the nucleons

and mesons [67, 68]. After the discovery of the quarks [96–98] the theory has been

reinterpreted with quark degrees of freedom [99, 100]. The symmetries of QCD

discussed in subsection 1.2.1 in the introduction are the backbone of NJL model.

Among all chiral symmetry plays the most crucial role. It is not only all these

symmetries but also how they are broken characterize QCD and thus are needed

to be considered. This is well included in NJL model in which dynamical mass

generation is realized through spontaneous breaking of chiral symmetry.

Since NJL model was formulated before the discovery of quarks, the idea of con-

finement is not included in it. It is a drawback of the model but many questions

particularly related to hadronic physics, where chiral symmetry is the relevant fea-

ture, can be answered using it. In principle starting from QCD one can derive the

NJL Lagrangian by integrating out the gluonic degrees of freedom, which leaves the

quarks interaction to be a local four point one. Then there arises another prob-

lem due to this local interaction - the NJL model is not a renormalizable theory.

There are many schemes to regularize the theory, which have been elaborately dis-

cussed in the reference [101]. Here in our work we use the three momentum cut-off

scheme, which is the most popular one. In the following few paragraphs we briefly

discuss intricacies of the model. The details can be found in any of these refer-

ences [6, 101–103].

2.1.1.1 Two flavor NJL model in vacuum

The NJL model is designed to work below the momentum scale of QCD, ΛQCD ≈

0.3 GeV. Within this scale, inclusion of only three lightest flavors u, d and s remains
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relevant. We make further simplification and consider a two flavor NJL model with

up and down quark masses being the same. The nonzero quark masses break the

SU(2)A symmetry explicitly but equality of them preserves the isospin one, SU(2)V .

First we consider only the scalar and pseudoscalar-isovector interaction terms. The

corresponding Lagrangian is:

LNJL = ψ̄(iγµ∂
µ −m0)ψ +

GS

2
[(ψ̄ψ)2 + (ψ̄iγ5~τψ)

2], (2.1)

where, m0 =diag(mu, md) with mu = md and ~τ ’s are Pauli matrices; GS is the

coupling constants of local scalar type four-quark interaction. Even for a massless

system (m0 = 0), the Lagrangian is not invariant under U(1)A transformation due

to the interaction term. This is expected from the axial anomaly.

2.1.1.2 Bare quarks to constituent quarks and mesons

Hartree-Fock approximation

The idea of spontaneous chiral symmetry breaking, one of the most important fea-

tures of NJL model, was borrowed from the BCS (Bardeen, Cooper and Schrieffer)

theory [104]. It has been implemented through a so-called mass gap equation. The

mass gap arises from the quark self energy which is calculated through the Dyson

equation within Hartree-Fock or Hartree approximation. The local four point in-

teraction renders the Hartree-Fock and Hartree approximations as equivalent, since

Hartree (direct) term and the Fock (exchange) term become indistinguishable be-

cause of this contraction of the interaction to a point [103]. The equation is dia-

grammatically represented in figure 2.1 and can be mathematically written as

M = m0 + iGS

∫

d4p

(2π)4
TrS(p), (2.2)
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where S(p) = ( /p −M + iǫ) is the dressed quark propagator and M is the dressed

(constituent) quark mass. Once the traces over the Dirac, flavor and color spaces

are performed, we are left with

M = m0 + 4iGSNcNf

∫

d4p

(2π)4
M

p2 −M2 + iǫ
, (2.3)

where Nf (= 2) and Nc (= 3) are the number of flavors and number of colors

respectively. It is evident that M is different from m0 even for chiral limit (m0 =

0). This is more so for a strong coupling constant (GS). Under the mean field

= +

Figure 2.1: Dyson equation for the quark self energy in Hartree approximation. The
thick and thin lines signify the dressed and bare quark propagators respectively.

approximation the quark condensate (σ), also known as chiral condensate, is given

as

σ = 〈ψ̄ψ〉 = −i
∫

d4p

(2π)4
TrS(p). (2.4)

The pseudoscalar condensate (pion condensate) 〈ψ̄iγ5~τψ〉 becomes zero under the

approximation. Using (2.4) in (2.2) we obtain more familiar expression of the mass

gap equation,

M = m0 −GSσ. (2.5)

Random phase approximation

The meson mass spectrum can be reproduced with the dressed quarks and antiquarks

in NJL model [84, 105]. For two flavor case these are the pions which are the

Goldstone bosons and thus massless in the chiral limit (m0 = 0). For nonzero

current quarks masses they become massive. Here the mesons are imagined to be
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collective excitations of a pair of quark-antiquark, which are moving together. To

obtain the mass of such compound objects Bethe-Salpeter equation is solved in

ring approximation or random phase approximation (RPA) (figure 2.2). The quark-

antiquark T -matrix is calculated from that as,

TM(q2) =
iGS

1−GSΠM(q2)
, (2.6)

with

ΠM(q2) = i

∫

d4p

(2π)4
Tr[OMS(p+ q)OMS(p)], (2.7)

where M depends on the type of mesonic channel considered. For the pion channel

Oπa
= iγ5τa with a = 1, 2, 3. After performing the traces and then using (2.5) we

get,

= +

Figure 2.2: Bethe-Salpeter equation in random phase approximation.

Ππa
(q2) =

1

GS

(

1− m0

M

)

− 2iNcNfq
2I(q2), (2.8)

where

I(q2) = i

∫

d4p

(2π)4
1

[(p+ q)2 −M2 + iǫ][p2 −M2 + iǫ]
. (2.9)

Further use of 1−GSΠπa
(q2 = m2

π) = 0 leads to an explicit constraint on m2
π

m2
π = −m0

M

1

2iGSNcNfI(m2
π)
. (2.10)
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The pion decay constant (fπ) is calculated by using the pion to axial current matrix

element as shown in figure 2.3. The pion is connected to the vacuum through the

axial current.

ifπq
µδab = gπq̄q

∫

d4p

(2π)4
Tr[iγµγ5

τa
2
S(p+ q)iγ5τbS(p)]. (2.11)

A few more mathematical manipulations leads to the expression [101]

f 2
π = −8i

Nc

Nf
M2I(0). (2.12)

Aµ
a πb

Figure 2.3: Diagram for calculating pion decay constant. The double line represents
the pion, whereas the curly line represents axial current. They are connected via a
quark-antiquark loop.

Regularization

The local four point interaction makes the NJL model a non-renormalizable theory.

There are integrals such as equations (2.3), (2.4), (2.9) and (2.11) which are diverg-

ing. So to get finite results these integrals need to be regularized. There are many

schemes to do that all of which have some merits and demerits [101]. We prefer to

work with the three momentum cut-off (Λ). Though introduction of such cut-off

breaks the Lorentz invariance of the theory, but as it retains the analytical structure

(this becomes particularly useful while dealing with the Matsubara formalism in

presence of medium) and also being very easy to imply makes its use advantageous.

Thus Λ becomes an important parameter of NJL model. In the next subsection we

discuss how its value is determined along with GS and m0 by fitting some known

quantities.
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2.1.1.3 Parameter fitting

We have three unknown parameters GS, Λ and m0 in the model. We use equations

(2.4), (2.10) and (2.12) to determine the values of the unknowns. The pion mass

is an input for the equation (2.10) whereas pion decay constant is used in (2.12).

These two quantities are known quite accurately. Regarding the value of condensate,

which is used in (2.4), there are some uncertainties. Its value (range) is determined

using QCD sum rules as well as LQCD. The details about the parameter fitting

and the associated intricacies can be found in the references [7, 103]. We use the

parameter set from the reference [70], which is given in the table 2.1.

Input Output

mπ [MeV] fπ [MeV] 〈ψ̄ψ〉 1
3 [MeV] GS [GeV] Λ [GeV] m0 [GeV]

139.3 92.3 251 10.08 0.651 0.005

Table 2.1: Values of the three unknown parameters (GS , Λ andm0) fitted from three

given values of physical quantities (mπ, fπ and 〈ψ̄ψ〉 1
3 ).

2.1.1.4 NJL model in presence of medium

Mean field Lagrangian

So far we have discussed how to describe different vacuum properties, such as con-

structing mesonic states, using NJL model. Now we want to use it to study strong

interaction phenomena in presence of medium. Keeping that in mind we would like

to construct an effective mean field Lagrangian. We linearize the interaction terms

in the Lagrangian (2.1): (ψ̄ψ)2 ≈ 2〈ψ̄ψ〉(ψ̄ψ)− 〈ψ̄ψ〉2. There is no counterpart for

the pseudoscalar term as the corresponding condensate term is zero. A more formal

way of getting the effective mean field Lagrangian is to bosonize [101] the model to

write it in terms of auxiliary field like σ. The mean field NJL Lagrangian reads

LNJLMF
= ψ̄(iγµ∂

µ −m0 +GSσ)ψ − GS

2
σ2. (2.13)
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Thermodynamic potential

Thermodynamic potential carries all the necessary informations of a system. Once

it is known, all the other thermodynamical quantities can be estimated from it.

That is why we are motivated to construct it for studying the system in presence

of medium. First we get the action from the Lagrangian. From it we obtain the

partition function (PF). Once we know the PF we can get the potential using the

relation: Ω(T, µ) = − T
V
lnZ, where Z is the PF at temperature (T ) and chemical

potential (µ) at a given volume (V ). Then different thermodynamic quantities can

be calculated from Ω.

We apply the techniques of thermal field theory, here the Matsubara formalism [85,

86], to introduce the medium. In presence of hot and dense medium the gap equation

gets modified to

M = m0 + 2GSNcNf

∫

d3p

(2π)3
M

Ep

(

1− np(T, µ)− n̄p(T, µ)
)

. (2.14)

Here Ep =
√

~p2 +M2 is the energy of a quark having constituent mass or the

dynamical mass M . np and n̄p are the thermal distribution functions for quarks and

antiquarks respectively,

np(T, µ) =
1

e(Ep−µ)/T ) + 1
; n̄p(T, µ) =

1

e(Ep+µ)/T ) + 1
. (2.15)

At any nonzero values of T and/or µ the effective mass gets reduced as compared

to that in vacuum. This happens because of the thermal distribution functions. For

sufficiently high T and/or µ, M approaches zero. We can get the vacuum result in

(2.3) back if we put np = n̄p = 0 in (2.14), provided we perform the integration over

the temporal component in (2.3).

With all these in hand, the thermodynamic potential in mean field approximation
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is written as:

ΩNJL =
GS

2
σ2 − 2NfNc

∫

Λ

d3p

(2π)3
Ep

− 2NfNcT

∫

d3p

(2π)3
[

ln(1 + e−(Ep−µ)/T )) + ln(1 + e−(Ep+µ)/T ))
]

. (2.16)

We should mention here that the chiral condensate (σ) depends on both T and

µ, though it has not been, neither will be explicitly mentioned anywhere in this

dissertation. There are both explicit and implicit dependence, the implicit depen-

dence arises through the constituent quark mass (2.14). The potential in the equa-

tion (2.16) can be specifically divided in three parts. The first term is known as

condensation energy, the second term as the zero point energy and the third term

as thermal quark energy. The chiral condensation energy contributes negatively to

the pressure and as one increases the temperature or density, contribution becomes

less significant and eventually vanishes at sufficient higher values of T and µ. The

other two terms contribute positively to the pressure. Particularly the contribution

of zero point energy, which understandably does not depend on T and µ, largely

affects the model output.

Region of validity of the model

Effective models are called effective because they are valid within a given energy

range and cannot be applied for arbitrary energy scale. In this sense all the estab-

lished theoretical models are effective – the standard model being an epitome. So is

for effective models like NJL one. But being a model which needs to be regularized

the validity of such models have some arbitrariness depending on the choice of the

regularization scheme. Specifically, results depend heavily on the value of the cut-off

parameter and are not reliable if any of the external parameter attains value beyond

that cut-off value. That is why, while dealing a system at zero temperature the value

of the external momentum should not cross the cut-off value and while discussing

system in presence of medium values of T and µ should always be kept under that
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value to obtain legitimate results.

2.1.1.5 NJL model with isoscalar-vector interaction

Apart from the scalar and pseudoscalar channel, many more terms can be added

to the Lagrangian (2.1), provided they are allowed by the QCD symmetries 1.3.

One such term is the isoscalar-vector(I-V) channel. This term particularly becomes

important for system at nonzero densities. A major part of this thesis deals with

such scenario and further details of the reasons for inclusion of I-V term is discussed

in chapters 3, 4 and 5. The NJL Lagrangian with I-V term is,

LNJL = ψ̄(iγµ∂
µ −m0)ψ +

GS

2
[(ψ̄ψ)2 + (ψ̄iγ5~τψ)

2]− GV

2
(ψ̄γµψ)

2, (2.17)

where GV is the strength of the I-V interaction. It is another parameter in the

theory. However, its value is difficult to fix within the model formalism, since this

quantity should be fixed using the ρ meson mass which, in general, happens to be

higher than the maximum energy scale Λ of the model 1. So, we consider the vector

coupling constant GV as a free parameter and different choices are considered as

GV = x×GS, where x is chosen from 0 to 1 appropriately.

There is an additional condensate due to the added interaction term, known as

quark number density. It is given as n = 〈ψ̄γ0ψ〉 [103, 106]. Before writing the cor-

responding thermodynamic potential we have to linearize the I-V term: (ψ̄γµψ)
2 ≈

2〈ψ̄γ0ψ〉(ψ̄γ0ψ) − 〈ψ̄γ0ψ〉2. With this the potential in presence of the I-V term is

1Some efforts have also been made to estimate the value of GV mainly by fitting lattice data
through two-phase model, which is not very conclusive. Interested readers are referred to Refs. [107,
108] and references therein.
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written as

ΩNJL =
GS

2
σ2 − GV

2
n2 − 2NfNc

∫

Λ

d3p

(2π)3
Ep

− 2NfNcT

∫

d3p

(2π)3
[

ln(1 + e−(Ep−µ̃)/T )) + ln(1 + e−(Ep+µ̃)/T ))
]

, (2.18)

with the modified quark chemical potential (µ̃) related to vector condensate n

through the relation

µ̃ = µ−GV n. (2.19)

In equation (2.18) there is an extra term (the second term) than what we have in

equation (2.16). This term with the vector condensate (n), however contributes

positively to the pressure and increases as one increases the external parameters

like T and µ. Now this thermodynamic potential is minimized with respect to the

mean fields σ and n to extract informations about them. This is done by solving

the following gap equation numerically

∂ΩNJL

∂X
= 0, (2.20)

where X represents σ and n.

2.1.2 PNJL Model

Apart from the chiral symmetry breaking, which is incorporated in the NJL model,

there is another important property of QCD - known as confinement. The confine-

ment effect is completely missing in the NJL model, since the gluons are integrated

out there. This is why below the transition temperature the quark densities are over-

estimated in NJL model, since the gluons plays the utmost role in the confinement

dynamics. It has been long strived to take into account the confinement effect along

with the chiral dynamics to mimic QCD as closely as possible, particularly in the
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nonperturbative regime. PNJL model has been designed to encompass such charac-

teristics, in which the confinement transition is combined with the chiral transition.

Here in the following few paragraphs we try to depict the essence of the model.

2.1.2.1 Polyakov loop

The calculations with the pure gluons in lattice are much more accurate and cheaper

as compared to those with the inclusion of quark dynamics. As gluons can in-

teract among themselves, a pure gluonic confined system is possible - known as

glueballs. While discussing the thermodynamic behaviour of such system, specially

the phase transition, the order parameter becomes the most relevant quantity. The

confinement-deconfinement transition of a pure gluonic system is well explored using

LQCD. This transition can be shown to be related with the spontaneous breaking

of Z(Nc) symmetry, the center symmetry of SU(Nc) [109].

To describe the deconfinement transition an order parameter can be constructed

from the Wilson loop

W (x) = P exp[i

∮

c

dxµAµ(x)], (2.21)

through the Polyakov loop (PL) [110–113] which is the timelike Wilson line given as

L(~x) = P exp

[

i

∫ β

0

dx4A4(τ, ~x)

]

, (2.22)

with A4 = iA0 is the temporal component of the gauge field and P indicates the

path-ordering in imaginary time τ which runs from 0 to β = 1/T . The normalized

trace of PL with respect to fundamental representation is known as PL field and is

given as

Φ =
1

Nc

trcL(x), (2.23)
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where the Φ is complex and transforms under the global Z(Nc) symmetry as a field

with charge one as Φ → ei2πj/NcΦ with j = 0, · · · , (Nc − 1). In the Polyakov gauge,

i.e. for static and diagonal A4, the PL matrix can be expressed through a diagonal

representation [69]. Also the normalized trace over the PL in (2.23) is related with

the free energy of a heavy static quark q as Φ = exp[−βFq(T )] and is equal to that

of antiquark, Fq̄ (i.e. Φ = Φ̄). This acts as an order parameter for confinement-

deconfinement transition for a pure gauge theory. For pure gluonic system the

transition is of first order type. For confined phase the free energy diverges and

Φ becomes 0, whereas for deconfined phase at high temperature Φ attains nonzero

value.

Given the role of an order parameter for pure gauge [110–113], if Φ = 0 the Z(Nc)

is unbroken and there is no ionization of Z(Nc) charge, which is the confined phase

below a certain temperature. At high temperature the symmetry is spontaneously

broken, Φ 6= 0 corresponds to a deconfined phase of gluonic plasma and there are

Nc different equilibrium states distinguished by the phase 2πj/Nc.

But once the quarks are included the free energy no more diverges in the confined

phase and Φ never becomes strictly zero in that regime. We also note that the

Z(Nc) symmetry is explicitly broken in presence of dynamical quark, yet it can be

considered as an approximate symmetry and Φ(Φ̄) can still provide useful informa-

tion as an order parameter for deconfinement transition which essentially becomes

a crossover [114] with the inclusion of quarks. At finite density Φ and Φ̄ become

unequal [115] and use of traced PL as an order parameter becomes more restricted.

2.1.2.2 The Polyakov loop potential

Now our goal is to write down an ansatz for an effective potential which will incorpo-

rate the gluon dynamics. We have in our hands the PL fields (Φ, Φ̄) which act as the

order parameter for deconfinement transition. For pure gluonic system Φ = Φ̄ and
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a0 a1 a2 a3 b3 b4 κ
6.75 -1.95 2.625 -7.44 0.75 7.5 0.1

Table 2.2: Parameter set used in this work for the PL potential and the Vandermonde
term.

this can be considered as the starting point. The Z(Nc) symmetry provides further

guidelines while guessing such effective potential. Different forms of the potential

are available in the literature. We use the form given in [70]. But that is not all -

that form is further augmented with a Vandermonde term to keep Φ(Φ̄) within the

domain [0, 1] [116]. The Vandermonde term arises from invariant Haar measure of

SU(3)c. It is further elaborated in [95]. With all these considerations the effective

PL potential [116] reads as

U ′(Φ, Φ̄, T )

T 4
=

U(Φ, Φ̄, T )
T 4

− κ ln[J(Φ, Φ̄)] (2.24)

with

U(Φ, Φ̄, T )
T 4

= −b2(T )
2

ΦΦ̄− b3
6
(Φ3 + Φ̄3) +

b4
4
(Φ̄Φ)2, (2.25)

where b2(T ) = a0 + a1
(

T0

T

)

+ a2
(

T0

T

)2
+ a3

(

T0

T

)3
, T0 (= 270MeV) is the transition

temperature for pure gauge theory taken from lattice calculation [117] and the values

of the coefficients ai and bi are taken from [70]. The value of κ is tuned so as to

reproduce the lattice result [118]. Their values have been tabulated in 2.2. The

Vandermonde determinant J(Φ, Φ̄) is given as [95, 116]

J [Φ, Φ̄] =
27

24π2

[

1− 6ΦΦ̄ + 4(Φ3 + Φ̄3)− 3(ΦΦ̄)
2
]

. (2.26)

In the high temperature limit (T → ∞), (Φ, Φ̄) becomes unity and the equation

(2.25) reproduces the free gluonic pressure (16.π
2

90
)T 4 (Stefan-Boltzmann limit).
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2.1.2.3 Thermodynamic potential

We have learned so far how to build up the effective PL potential to describe the

deconfinement transition. Now we want to understand how it can be realized starting

from a Lagrangian. First of all, while considering the PL potential, only the spatially

constant temporal gauge field is included which acts as a background field. So

there is no spatial fluctuation of the gauge field. This is incorporated at the level

of Lagrangian by introducing a covariant derivative Dµ = ∂µ − igAµ
aλa/2 with

Aµ = δµ0A
0 and A0 = −iA4. Inclusion of such background field reduces the SU(3)c

local gauge symmetry into a global one.

We have eight degrees of freedom represented by eight Gell-Mann matrices λa’s.

But in the PL potential we have only two degrees of freedom, Φ and Φ̄. Thus we

need to get rid of the other six. This can be achieved by taking into account only

the diagonal matrices λ3 and λ8 by rotating the elements of SU(3)c in the Polyakov

gauge [69]. Thus with the inclusion of covariant derivative and the PL potential the

two flavor PNJL Lagrangian becomes

LPNJL = ψ̄(i/D −m0 + γ0µ)ψ +
GS

2
[(ψ̄ψ)2 + (ψ̄iγ5~τψ)

2]

− U(Φ[A], Φ̄[A], T ). (2.27)

Using the mean field approach described in subsection 2.1.1.2 the corresponding

potential can be obtained as

ΩPNJL = U(Φ, Φ̄, T ) + GS

2
σ2

− 2NfT

∫

d3p

(2π)3
ln
[

1 + 3
(

Φ + Φ̄e−(Ep−µ)/T
)

e−(Ep−µ)/T + e−3(Ep−µ)/T
]

− 2NfT

∫

d3p

(2π)3
ln
[

1 + 3
(

Φ̄ + Φe−(Ep+µ)/T
)

e−(Ep+µ)/T + e−3(Ep+µ)/T
]

− κT 4 ln[J(Φ, Φ̄)]− 2NfNc

∫

Λ

d3p

(2π)3
Ep . (2.28)
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Comparing between the equations (2.28) and (2.16) we observe that there are two

new terms in (2.28), whereas the expressions of thermal quark part gets modified

and those of the condensation and zero point energy remain the same. Here one

should be careful and understands that with the same expressions these two terms

will now contribute differently, since ultimately coupled gap equations will be solved

to extract information about the mean fields. The thermal quark energy part is now

regulated with the presence of PL fields. The two new terms – the pure gluonic part

and the Vandermonde term have already been explained.

2.1.2.4 PNJL model with isoscalar-vector interaction

Following the section 2.1.1.5 it is straightforward to include the I-V interaction in

PNJL model. The Lagrangian becomes

LPNJL = ψ̄(i/D −m0 + γ0µ)ψ +
GS

2
[(ψ̄ψ)2 + (ψ̄iγ5~τψ)

2]− GV

2
(ψ̄γµψ)

2

− U(Φ[A], Φ̄[A], T ) (2.29)

and the corresponding thermodynamic potential is

ΩPNJL = U(Φ, Φ̄, T ) + GS

2
σ2 − GV

2
n2

− 2NfT

∫

d3p

(2π)3
ln
[

1 + 3
(

Φ + Φ̄e−(Ep−µ̃)/T
)

e−(Ep−µ̃)/T + e−3(Ep−µ̃)/T
]

− 2NfT

∫

d3p

(2π)3
ln
[

1 + 3
(

Φ̄ + Φe−(Ep+µ̃)/T
)

e−(Ep+µ̃)/T + e−3(Ep+µ̃)/T
]

− κT 4 ln[J(Φ, Φ̄)]− 2NfNc

∫

Λ

d3p

(2π)3
Ep. (2.30)

Here the potential is minimized with respect to the fields σ, n, Φ and Φ̄ to get

informations about the mean fields themselves. The gap equation for the potential
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is given by

∂ΩPNJL

∂X
= 0, (2.31)

where X represents σ, n, Φ and Φ̄.

2.1.3 EPNJL Model

An important question on the QCD thermodynamics is whether the chiral symmetry

restoration and the confinement-to-deconfinement transition happen simultaneously

or not. We note that chiral and deconfinement transitions are conceptually two dis-

tinct phenomena. Though lattice QCD simulation has confirmed that these two

transitions occur at the same temperature [119] or almost at the same tempera-

ture [120]. Whether this is a mere coincidence or some dynamics between the two

phenomena are influencing each other is not understood yet and is matter of intense

current research exploration.

To understand the reason behind this coincidence a conjecture has been proposed

in [80] through a strong correlation or entanglement between the chiral conden-

sate (σ) and the PL expectation value (Φ) within the PNJL model. Usually, in

PNJL model, there is a weak correlation between the chiral dynamics σ and the

confinement-deconfinement dynamics Φ that is in-built through the covariant deriva-

tive between quark and gauge fields as discussed in the subsection 2.1.2.3. With

this kind of weak correlation the coincidence between the chiral and deconfinement

crossover transitions [70, 116, 121–124] can be described but it requires some fine-

tuning of parameters, inclusion of the scalar type eight-quark interaction for zero

chemical potential µ and the vector-type four-quark interaction for imaginary µ.

This reveals that there may be a stronger correlation between Φ and σ than that in

the usual PNJL model associated through the covariant derivative between quark
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and gauge fields. Also, some recent analyses [125,126] of the exact renormalization-

group (ERG) equation [127] suggest a strong entanglement interaction between Φ

and σ in addition to the original entanglement through the covariant derivative.

Based on this the two-flavor PNJL model is further generalized [80] by consider-

ing the effective four-quark scalar type interaction with the coupling strength that

depends on the PL field Φ. The effective vertex in turn generates entanglement

interaction between Φ and σ. Such generalization of the PNJL model is known as

Entangled-PNJL (EPNJL) model [80].

2.1.3.1 Modifying the scalar vertex (GS)

The weak correlation between the chiral (σ) and the deconfinement (Φ and Φ̄) dy-

namics in PNJL model has been modified into a strong one so that chiral and decon-

finement transitions coincide. This is achieved by introducing a strong entanglement

interaction between Φ and σ through an effective scalar type four-quark interaction

with the coupling strengths that depend on the Polyakov field. The Lagrangian in

EPNJL will be the same as that in (2.27) except that now the coupling constants GS

will be replaced by the effective ones G̃S(Φ). The effective vertex G̃S(Φ) generates

entanglement interaction between Φ and σ and its form is chosen [80] to preserve

chiral and Z(3) symmetry,

G̃S(Φ) = GS[1− α1ΦΦ̄− α2(Φ
3 + Φ̄3)], (2.32)

We note that for α1 = α2 = 0, G̃S(Φ) = GS: the EPNJL model reduces to PNJL

model. Also at T = 0, Φ = Φ̄ = 0 (confined phase), then G̃S = GS.

In EPNJL model, α1 and α2 are two new parameters, which are to be fixed from the

lattice QCD data. The values of other parameters are taken to be as those in PNJL

model [93] except the value of T0, which is taken as 190 MeV. The thermodynamic
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potential ΩEPNJL in EPNJL model can be obtained from (2.28) by replacing GS with

G̃S(Φ).

2.1.3.2 In presence of I-V interaction (GV )

The inclusion of vector interaction is also done in the similar fashion. The coupling

strength GV is replaced by the effective vertex G̃V , which depends on the PL field.

Here also the ansatz is chosen to maintain the Z(3) and chiral symmetry [107]. It

is given as,

G̃V (Φ) = GV [1− α1ΦΦ̄− α2(Φ
3 + Φ̄3)]. (2.33)

Due to the reason already mentioned in the previous subsection, here again the

strength of the vector interaction is taken in terms of the value of GS as GV = x×GS ,

which on using (2.33) reduces to

G̃V (Φ) = x×GS[1− α1ΦΦ̄− α2(Φ
3 + Φ̄3)] = x× G̃S(Φ). (2.34)

Now it is easy to obtain the corresponding Lagrangian and the thermodynamic

potential. One just needs to replace GS and GV by G̃S and G̃V respectively, in

(2.29) and (2.30).

2.1.4 Color singlet model

We often employ statistical thermodynamical description to study many-particle

system. Particularly it is known to be very useful to describe system of quantum

gas, such as, electrons in metal, blackbody photons in a heated cavity, phonons at

low temperature, neutron matter in neutron stars, etc. There are conservation laws

which act as guiding principles while developing such statistical models. These con-

servation laws can be related to the associated symmetries. Symmetries can be, in
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terms of physical interpretations, of two types - external and internal. Conservation

of energy, linear momentum, angular momentum etc are reflections of the external

symmetries that the system obeys. Also there are conservation of electric charges,

baryon numbers, color charges etc which are to be associated with the internal

symmetries of the system.

Here we are interested in describing a system of quarks and gluons using statistical

methods. For that SU(3)c is the major internal symmetry that needs to be taken

care of. Many QCD related phenomena such as condensation problems, critical

phenomena etc have been studied using such methods [76]. The thermodynamics

of QGP and the related phase transition are also extensively studied [79, 128–131].

Of course these phenomena should be investigated within the framework of QCD.

But due to the nonperturbative nature of QCD, which leads it to be difficult to deal

with (vide subsection 1.4.2), use of such methods becomes indeed insightful [78].

We construct a partition function (PF) for a quantum gas of quarks, antiquarks and

gluons, which is restricted by the assumption of a color singlet projection to conform

with the SU(3)c symmetry. This projection allows only the color singlet physical

states to exist [132]. Such projection is performed employing group theoretical

projection method [76, 133]. Because of the projection many physical properties

gets modified as compared to the unprojected one, particularly the deconfinement

phase transition [134]. This method is particularly useful for describing a system of

weakly interacting quarks and gluons at high temperature and/or high density. We

call such model as color singlet (CS) model [76–79].

QGP in finite volume has also been treated in a canonical color single PF [135]. But

while describing the relativistic plasma the use of canonical PF is no more justified,

since there are particle creations and annihilations. Thus the introduction of grand

canonical PF becomes mandatory [76, 78].

In the following subsection we describe how to get a color singlet PF for a quantum

39



CHAPTER 2. SOME PRELIMINARIES

gas of massless quarks, antiquarks and gluons.

2.1.4.1 Color singlet partition function

In thermal equilibrium the statistical behaviour of a quantum gas is studied through

a density matrix in an appropriate ensemble as

ρ(β) = exp(−βĤ) , (2.35)

where β = 1/T is the inverse of temperature and Ĥ is the Hamiltonian of a physical

system. The corresponding PF for a quantum gas having a finite volume can be

written as

Z = Tr
(

e−βĤ
)

=
∑

n

〈

n
∣

∣

∣
e−βĤ

∣

∣

∣
n
〉

, (2.36)

where |n〉 is a many-particle state in the full Hilbert space H. Now, the full Hilbert

space contains states which should not contribute to a desired configuration of the

system. One can restrict those states from contributing to the PF by defining a

reduced ensemble for a desired configuration through the use of projection operator

as

Z = Tr
(

P̂e−βĤ
)

=
∑

n

〈

n
∣

∣

∣
P̂e−βĤ

∣

∣

∣
n
〉

. (2.37)

Now, let G be a symmetry group with unitary representation Û(g) in a Hilbert space

H. The group theoretical projection operator [136] P̂ for a desired configuration

is defined as P̂j = dj
∫

G
dµ(g)χ⋆

j(g)Û(g) , where dj and χj are, respectively, the

dimension and the character of the irreducible representation j of G and dµ(g) is

the invariant Haar measure. The symmetry group associated with the color singlet

configuration is SU(Nc) and dj = 1 and χj = 1. Now the color singlet PF for the

system becomes,

ZS =

∫

SU(Nc)

dµ(g)Tr
(

Û(g)exp(−βĤ)
)

. (2.38)

40



CHAPTER 2. SOME PRELIMINARIES

The invariant Haar measure [78, 136] is expressed in terms of the distribution of

eigenvalues of SU(Nc) as

∫

dµ(g)=
1

Nc!





Nc
∏

l=1

π
∫

−π

dθl
2π



 δ
(

∑

i

θi

)

∏

i>j

∣

∣eiθi − eiθj
∣

∣

2
, (2.39)

where the square of the product of the differences of the eigenvalues is known as

the Vandermonde determinant. The class parameter θl obeys
∑Nc

l=1 θl = 0 (mod2π)

ensuring the requirement of unit determinant in SU(Nc). This also restricts that

the SU(3) has only two parameter abelian subgroups associated with two diagonal

generators, which would completely characterize the Û(g). Apart from the color

singlet restriction the conservation of baryon number is also taken care through

the introduction of baryon chemical potential. It is included in the definition of

Hamiltonian that we are going to use.

Now, the Hilbert space H of a composite system has a structure of a tensor product

of the individual Fock spaces as H = Hq ⊗Hq̄ ⊗Hg. The PF in (2.38) decomposes

in respective Fock spaces as

ZS =

∫

SU(Nc)

dµ(g) Tr
(

Ûqe
−βĤq

)

Tr
(

Ûq̄e
−βĤq̄

)

Tr
(

Ûge
−βĤg

)

, (2.40)

where the various Ui(g) act as link variables that link, respectively, the quarks,

antiquarks and spatial gluons in a given state of the physical system. In each Fock

space there exists a basis that diagonalizes both operators as long as Ĥi and Ûi

commute. Performing the traces in (2.40) using the standard procedure [85], the

projected PF in Hilbert space becomes

ZS =

∫

SU(Nc)

dµ(g) eΘq+Θq̄+Θg =

∫

SU(Nc)

dµ(g) eΘp ; (2.41)
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with

Θp = Θq +Θq̄ +Θg

= 2Nf

∑

α

trc ln
(

1 +Rqe
−β(ǫαq −µq)

)

+ 2Nf

∑

α

trc ln
(

1 +Rq̄e
−β(ǫαq +µq)

)

−2
∑

α

trc ln
(

1− Rge
−βǫαg

)

, (2.42)

where ǫαi =
√

(pαi )
2 +m2

i , Rq(q̄) are the finite dimensional diagonal matrices in the

basis of the color space in fundamental representation and Rg is that in adjoint

representation. Also the quark flavor (Nf), their spin and the chemical potential µ,

and the polarization of gluons are introduced.

Once we know the PF, many properties of QCD can be studied using this CS model.

As for example the phase structure resulting from HICs - specifically the deconfine-

ment phase transition, the hadron formation temperature, baryon and meson density

of states etc are particularly well investigated.

2.1.4.2 Unprojected partition function

It is straightforward to obtain the unprojected PF from (2.37) by putting P̂ = 1.

Then the colorsingletness of the physical states is lost and the PF is given as

Z = Tr
(

e−βĤ
)

=
∑

n

〈

n
∣

∣

∣
e−βĤ

∣

∣

∣
n
〉

. (2.43)

From here the unprojected PF for quarks, antiquarks and gluons can be written as

ZU = Tr
(

e−βĤq

)

Tr
(

e−βĤq̄

)

Tr
(

e−βĤg

)

. (2.44)

Performing the traces in (2.44) the unprojected PF in Hilbert space becomes

ZU = eΘq+Θq̄+Θg = eΘp ; (2.45)
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with

Θp = Θq +Θq̄ +Θg

= 2Nf

∑

α

ln
(

1 + e−β(ǫαq −µq)
)

+ 2Nf

∑

α

ln
(

1 + e−β(ǫαq +µq)
)

−2
∑

α

ln
(

1− e−βǫαg
)

, (2.46)

where the symbols have the same meaning as in the previous subsection.

2.2 Correlation function and its spectral repre-

sentation

Correlation functions (CF) is a mathematical tool which is extensively used in al-

most every branch of physics. Particularly it is ubiquitous in high energy physics,

condensed matter physics, astronomy etc. It is basically a measure of how micro-

scopic variables change with response to one another. In many occasions this mutual

response is ensemble averaged. When the CF is between the same variables at two

different space-time points, it is know as autocorrelation function and that between

different variables is known as cross-correlation function. In quantum field theory

CFs are also known as correlators. Propagator is one such example. The term

Green’s function is also, sometimes, used in place of correlator.

The physical significance of CFs in context to this dissertation have already been

discussed in the section 1.5 in the introduction. In the following subsection we

develop the mathematics of CF and its spectral representation. Then we briefly

describe how to obtain the dilepton multiplicity and quark number susceptibility

(QNS) from the spectral function (SF). We focus on the two point autocorrelation

functions and our language is being that of high energy physics for obvious reason.
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2.2.1 Mathematical formulation

In general the CF in coordinate space is given by

GAB(t, ~x) ≡ T 〈Â(t, ~x)B̂(0,~0)〉 =
∫

dω

2π

∫

d3q

(2π)3
eiωt−i~q·~x GAB(ω, ~q), (2.47)

where T is the time-ordered product of the two operators Â and B̂, and the four

momentum Q ≡ (ω, ~q) with q = |~q|.

By taking the Fourier transformation one can obtain the momentum space CF as

GAB(ω, ~q) =

∫

dt

∫

d3~x GAB(t, ~x) e−iωt+i~q·~x . (2.48)

We are specifically interested in current-current CFs. The thermal meson current-

current correlator in Euclidean time τ ∈ [0, β = 1/T ] is given as [137]

GE
M (τ, ~x) = 〈T (JM(τ, ~x)J†

M(0,~0))〉β

= T
∞
∑

n=−∞

∫

d3q

(2π)3
e−i(ωnτ+~q·~x) GE

M(iωn, ~q), (2.49)

where the mesonic current is defined as JM = ψ̄(τ, ~x)ΓMψ(τ, ~x), with ΓM =1, γ5, γµ,

γµγ5 for scalar, pseudoscalar, vector and pseudovector channel respectively. The

momentum space correlator GE
M(iωn, ~q) at the discrete Matsubara modes ωn = 2πnT

can be obtained as

GE
M(iωn, ~q) = −

∫ ∞

−∞

dω
σM (ω, ~q)

iωn − ω
. (2.50)

For a given mesonic channel H , we replace the SF σM(ω, ~q) by σH(ω, ~q) which can

be obtained from the imaginary part of the momentum space Euclidean correlator
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in (2.50) by analytic continuation as

σH(ω, ~q) =
1

π
Im GE

H(iωn = ω + iǫ, ~q). (2.51)

For a given mesonic channel, H = 00, ii and V stand for temporal, spatial and

vector SF, respectively. The vector SF is expressed in terms of temporal and spatial

components as σV = σ00 − σii.

Using (2.49) and (2.50) one obtains (vide appendix A) the spectral representation

of the thermal CF in Euclidean time but at a fixed momentum ~q as

GE
H(τ, ~q) =

∫ ∞

0

dω σH(ω, ~q)
cosh[ω(τ − β/2)]

sinh[ωβ/2]
. (2.52)

Spectral properties are heavily studied in LQCD. But because of the discretized

space-time there is difficulty in analytic continuation in LQCD the SF can not be

obtained directly using (2.51). Instead a calculation in LQCD proceeds by evaluating

the Euclidean CF. Using a probabilistic application based on maximum entropy

method (MEM) [138–140], (2.52) is then inverted to extract the SF and thus various

spectral properties are computed in LQCD.

2.2.2 Vector spectral function and dilepton rate

We know that self-energy is nothing but the current-current CF. Now photon self-

energy in thermal medium is related with the dilepton production rate at finite

temperature [141]. These lepton pairs are created from virtual photons. So the

dilepton multiplicity in medium can be calculated using the vector current-current

CF. We briefly outline the procedure here; the details can be found in [141].

Dynamics-wise there are two parts in the expression of dilepton multiplicity - one is

the leptonic part and the other one is the photon SF. Then there are terms arising
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from the kinematics and the availability of phase space. Since the medium created

in HICs is visualized to be thermalized, we have to take the average over the initial

states along with the final states, where the initial states have to be sampled by the

Boltzmann factor. Thus the dilepton multiplicity in a four volume is given by [141],

dR

d4x
= 2πe2e−βωLµνρ

µν d3p1
(2π)3E1

d3p2
(2π)3E2

, (2.53)

where the photonic tensor is given by,

ρµν(ω, ~q) = −1

π

eβω

eβω − 1

e2

q4
Im [Πµν(ω, ~q)] (2.54)

and the leptonic part is given by,

Lµν =
1

4

∑

spins

tr [ū(p2)γµv(p1)v̄(p1)γνu(p2)]

= p1µp2ν + p1νp2µ − (p1 · p2 +m2
l )gµν ; (2.55)

ml being the mass of the lepton. With all these expressions in hand the equation

(2.53) can be further simplified to

dR

d4xd4Q
= 2πe2e−βωρµν

∫

d3p1
(2π)3E1

d3p2
(2π)3E2

δ4(p1 + p2 −Q)Lµν . (2.56)

We further proceed in the calculation by taking the massless assumption which

simplifies the expression, that we use in this thesis. So we put ml = 0 in (2.55) and

then after few mathematical manipulations we obtain [137]

dR

d4xd4Q
=

5α2

54π2

1

M2

1

eω/T − 1
σV (ω, ~q) , (2.57)

where the invariant mass of the lepton pair is M2 = ω2 − q2 and α is the fine
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structure constant. We call σV as the SF function and is given by

1

π
ImΠµ

µ(ω, ~q). (2.58)

2.2.3 Temporal vector spectral function and response to

conserved density fluctuation

The quark number susceptibility (QNS), χq measures of the response of the quark

number density ρ with infinitesimal change in the quark chemical potential, µ+ δµ.

It is related to temporal CF through fluctuation-dissipation theorem [102, 142] as

χq(T ) =
∂ρ

∂µ

∣

∣

∣

∣

µ=0

=

∫

d4x
〈

J0(0, ~x)J0(0,~0)
〉

β

= lim
~q→0

β

∫

dω

2π

−2

1− e−ω/T
ImG00(ω, ~q) = −lim

~q→0
Re G00(ω = 0, ~q), (2.59)

where Kramers-Kronig dispersion relation has also been used.

The quark number conservation implies that lim~q→0ImG00(ω, ~q) ∝ δ(ω) and the

temporal SF in (2.51) becomes

σ00(ω,~0) =
1

π
ImG00(ω,~0) = −ωδ(ω)χq(T ). (2.60)

The relation of the Euclidean temporal CF and the response to the fluctuation of

conserved number density, χq, can be obtained from (2.52) as

GE
00(τT ) = −Tχq(T ), (2.61)

which is independent of the Euclidean time, τ , but depends on T . This result is

shown in appendix B
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CHAPTER 3

Dilepton production rate with and

without the isoscalar-vector interaction

In this chapter the properties of the vector meson current-current correlation func-

tion (CF) and its spectral representation are investigated in details with and without

isoscalar-vector (I-V) interaction within the framework of NJL and PNJL models at

finite temperature and finite density. Then using the vector meson spectral function

(SF) we obtained the dilepton production rate. This chapter is based on: Vector

meson spectral function and dilepton production rate in a hot and dense medium

within an effective QCD approach, Chowdhury Aminul Islam, Sarbani Majumder,

Najmul Haque and Munshi G. Mustafa, JHEP 1502 (2015) 011.

3.1 Introduction

As we have already mentioned many of the hadron properties are embedded in the

CF and its spectral representation. As for example informations on the masses and

width are encoded in the spatial CF whereas the temporal CF is related to the

response of the conserved density fluctuations; the vector current-current CF is re-

lated to the differential thermal cross section for the production of lepton pairs [141].
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Thus the study of CF and its spectral representation for the hot and dense matter

created in HICs becomes pursue-worthy investigations.

At high temperature but zero chemical potential, the structure of the vector CF,

determination of thermal dilepton rate and various transport coefficients have been

studied using LQCD framework at zero momentum [143–151] and also at nonzero

momentum [152], which is a first principle calculation that takes into account the

nonperturbative effects of QCD. Such studies for hot and dense medium are also

performed within perturbative techniques like HTL approximation [137, 153–165],

and in dimensional reduction [166, 167] appropriate for weakly interacting QGP.

Nevertheless, at RHIC and LHC energies the maximum temperature reached is not

very far from the phase transition temperature Tc and a hot and dense matter

created in these collisions is nonperturbative in nature (a strongly interacting one,

also called sQGP). So, most of the perturbative methods may not be applicable in

this temperature domain but these methods, however, are very reliable and accurate

at very high temperature [66,168–170] for usual weakly interacting QGP. In effective

QCD model framework [105, 142, 171–175], several studies have also been done in

this direction. Mesonic SFs and the Euclidean correlator in scalar, pseudoscalar and

vector channel have been discussed in Refs. [105,142,173–175] using NJL model. The

NJL model has no information related to the confinement and thus does not have

any nonperturbative effect associated with the sQGP above Tc. However, the PNJL

model [69, 176] contains nonperturbative information through Polyakov Loop [109–

114, 177, 178] that suppresses the color degrees of freedom as the Polyakov loop

(PL) expectation value decreases when T → T+
c . The thermodynamic properties of

strongly interacting matter have been studied extensively within the framework of

NJL and PNJL models [70, 116, 122, 123, 179]. The properties of the mesonic CFs

have also been studied in scalar and pseudoscalar channel using PNJL model in

references [124, 180]. We intend to study here, for the first time in PNJL model,

the properties of the vector CF and its spectral representation to understand the
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nonperturbative effect on the spectral properties, e.g., the dilepton production rate

in a hot and dense matter created in HICs.

Further, the low temperature and high density part of the phase diagram is still less

explored compared to the high temperature one. At finite densities the effect of chi-

rally symmetric vector channel interaction becomes important and it is established

that within the NJL or PNJL model this type of interaction weakens the first order

transition line [106, 115, 181–184] in contrary to the scalar coupling which tends to

favor the appearance of first order phase transitions. It is important to mention here

that the determination of the strength of vector coupling constant is crucial under

model formalism. It cannot be fixed using vector meson mass as it is beyond the

characteristic energy cut-off of the model. However, at the same time incorporation

of vector interaction is important if one intends to study the various spectral prop-

erties of the system at non-zero chemical potential [142, 185] appropriate for FAIR

scenario [29]. In this chapter, we study the nonperturbative effect of PL, in the

presence as well as the absence of the repulsive I-V interaction, on the SF, CF and

spectral property (e.g., the rate of dilepton production) in a hot and dense matter.

The influence of this repulsive vector channel interaction on the correlator and its

spectral representation has been obtained using ring resummation. The results are

compared with NJL model and the available LQCD data.

This chapter is organized as follows: In section 3.2 we obtain the vector CF and its

spectral properties through the I-V interaction within the ring resummation both

in vacuum as well as in a hot and dense medium. We present our findings relevant

for a hot and dense medium in section 3.3 and finally, conclude in section 3.4.
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= C+Π ΠC Gv

Figure 3.1: Vector correlator in ring resummation.

3.2 Vector Meson correlator in Ring Resumma-

tion

We intend here to consider the I-V interaction. Generally, from the structure of the

interaction one can write the full vector channel CF by a geometric progression of

one-loop irreducible amplitudes [84]. In the present form of our model Lagrangian

with effective coupling GV (vide equations (2.17) and (2.29)), the Dyson-Schwinger

equation (DSE) for the vector correlator Cµν within the ring approximation, as

shown in figure 3.1, reads as

Cµν = Πµν +GVΠµσC
σ
ν , (3.1)

where Πµν is one loop vector correlator (figure 3.2).

3.2.1 Ring resummation at zero temperature and chemical

potential

The general properties of a vector CF at vacuum :

Πµν(Q
2) =

(

gµν −
QµQν

Q2

)

Π(Q2), (3.2)

Cµν(Q
2) =

(

gµν −
QµQν

Q2

)

C(Q2), (3.3)
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where Π(Q2) and C(Q2) are scalar quantities with Q ≡ (q0, ~q), is the four momen-

tum.

Using (3.2) and (3.3), (3.1) can be reduced to a scalar DSE as

C = Π+GVΠC

C =
Π

1−GVΠ
(3.4)

The general structure of a vector correlator in vacuum becomes

Cµν =
Π

1−GVΠ

(

gµν −
QµQν

Q2

)

. (3.5)

Using (3.5) the spectral representation in vacuum can be obtained from (2.51). The

vacuum properties of vector meson can be studied using this SF [84] but we are

interested in those at finite temperature and density appropriate for hot and dense

medium formed in heavy-ion collisions and the vacuum, as we will see later, is in-

built therein. Below we briefly outline how the vector CF and its spectral properties

will be modified in a hot and dense medium.

3.2.2 Ring resummation at finite temperature and chemical

potential

The general structure of one-loop and resummed vector correlation function in the

medium (T and µ 6= 0) can be decomposed [85, 86, 186] as :

Πµν(Q
2) = ΠT (Q

2)P T
µν +ΠL(Q

2)PL
µν , (3.6)

Cµν(Q
2) = CT (Q

2)P T
µν + CL(Q

2)PL
µν , (3.7)
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where ΠL(T ) and CL(T ) are the respective scalar parts of Πµν and Cµν . P
L(T )
µν are

longitudinal (transverse) projection operators with their well defined properties in

the medium and can be chosen as [186],

PL
µν =

Q2

Q̃2
ŪµŪν , P T

µν = ηµν − UµUν −
Q̃µQ̃ν

Q̃2
. (3.8)

Here Uµ is the proper four velocity which in the rest frame of the heat bath has the

form Uµ = (1, 0, 0, 0). Q̃µ = (Qµ − ωUµ) is the four momentum orthogonal to Uµ

whereas Ūµ = (Uµ − ωQµ/Q
2) is orthogonal component of Uµ’s with respect to the

four momentum Qµ. Also, the respective scalar parts, ΠL(T ), of Πµν are obtained as

ΠL = −Q
2

q2
Π00; ΠT =

1

(D − 2)

[

ω2

q2
Π00 −Πii

]

, (3.9)

where D, is the space-time dimension of the theory.

Using (3.6) and (3.7) in (3.1) one obtains

CT (Q
2)P T

µν + CL(Q
2)PL

µν = [ΠT +GVΠTCT ]P
T
µν + [ΠL +GVΠLCL]P

L
µν . (3.10)

Now, the comparison of coefficients on both sides leads to two scalar DSEs: One,

for transverse mode, reads as

CT =
ΠT

1−GVΠT

, (3.11)

and the other one, for the longitudinal mode, reads as:

CL =
ΠL

1−GVΠL
(3.12)

Let us first write the temporal component of the resummed correlator: it is clear
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from (3.8) that P T
00 = 0. So we have from (3.7)

C00 =
ΠL

1−GVΠL
PL
00 =

Π00

1 +GV
Q2

q2
Π00

, (3.13)

and the imaginary part of the temporal component of C00 is obtained as

ImC00 =
ImΠ00

[

1−GV

(

1− ω2

q2

)

ReΠ00

]2

+
[

GV (1− ω2

q2
)ImΠ00

]2 . (3.14)

The spatial component of the resummed correlator (Cii) can be written as:

Cii = CTP
T
ii + CLP

L
ii =

ΠT

1−GVΠT
P T
ii +

ΠL

1−GVΠL
PL
ii . (3.15)

Using (3.11) and (3.12), it becomes for D = 4

Cii =
Πii − ω2

q2
Π00

1− GV

2
(ω

2

q2
Π00 − Πii)

+

ω2

q2
Π00

1 +GV (
Q2

q2
)Π00

= C ′
T + C ′

L. (3.16)

The imaginary part of the spatial vector correlator can be obtained as

ImCii = ImC ′
T + ImC ′

L. (3.17)

where

ImC ′
T =

ImΠii − ω2

q2
ImΠ00

[

1 + GV

2
ReΠii − GV

2
ω2

q2
ReΠ00

]2

+
G2

V

4

[

ImΠii − ω2

q2
ImΠ00

]2 , (3.18)

and,

ImC ′
L =

ω2

q2
ImΠ00

[

1−GV

(

1− ω2

q2

)

ReΠ00

]2

+
[

GV (1− ω2

q2
)ImΠ00

]2 =
ω2

q2
ImC00. (3.19)
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Following (2.51), the resummed vector SF can be written as

σV =
1

π

[

ImC00 − ImCii

]

. (3.20)

3.2.3 Vector correlation function in one-loop

γ
µ

γ
µ Q

P

K=P+Q

Q

Figure 3.2: Vector channel correlator at one-loop.

The current-current correlator in vector channel at one-loop level (figure 3.2) can

be written as

Πµν(Q) =

∫

d4P

(2π)4
TrD,c [γµS(P +Q)γνS(P )] , (3.21)

where TrD,c is trace over Dirac and color indices, respectively. We would like to

compute this in effective models, viz. NJL and PNJL models.

The NJL quark propagator in Hartree approximation is given as

SNJL(L) =
[

/l −m0 + γ0µ̃+GSσ
]−1

=
[

/l −Mf + γ0µ̃
]−1

, (3.22)

whereas for PNJL it reads as

SPNJL(L) =
[

/l −Mf + γ0µ̃− iγ0A4

]−1
(3.23)

where the four momentum, L ≡ (l0,~l ). The gap equation for constituent quark

massMf and the modified quark chemical potential µ̃ due to vector coupling GV are
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given, respectively, in (2.5) and (2.19). Now in contrast to NJL one, the presence

of background temporal gauge field A4 will make a connection to the PL field Φ

[109–114, 177, 178]. While performing the frequency sum and color trace in (3.21),

the thermal distribution function in PNJL case will be different from that of NJL

one.

For convenience, we will calculate the one-loop vector correlation in NJL model.

This NJL CF, as discussed, can easily be generalized to PNJL one by replacing the

thermal distribution functions [179, 180] as

f(Ep − µ̃) =
Φ̄e−β(Ep−µ̃) + 2Φe−2β(Ep−µ̃) + e−3β(Ep−µ̃)

1 + 3Φ̄e−β(Ep−µ̃) + 3Φe−2β(Ep−µ̃) + e−3β(Ep−µ̃)
,

f(Ep + µ̃) =
Φe−β(Ep+µ̃) + 2Φ̄e−2β(Ep+µ̃) + e−3β(Ep+µ̃)

1 + 3Φe−β(Ep+µ̃) + 3Φ̄e−2β(Ep+µ̃) + e−3β(Ep+µ̃)
, (3.24)

which at Φ(Φ̄) = 1 reduces to the thermal distributions for NJL or free as the cases

may be. On the other hand for Φ(Φ̄) = 0, the effect of confinement is clearly evident

in which three quarks are stacked in a same momentum and color state [95].

3.2.3.1 Temporal Part

The time-time component of the vector correlator in (3.21) reads as

Π00(Q) =

∫

d4P

(2π)4
Tr[γ0S(K)γ0S(P )], (3.25)
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where K = P + Q. After some mathematical simplifications (vide appendix C) we

are left with

Π00(ω, ~q) = NcNf

∫

d3p

(2π)3
1

EpEk

{

EpEk +M2
f + ~p · ~k

ω + Ep −Ek

× [f(Ep − µ̃) + f(Ep + µ̃)− f(Ek − µ̃)− f(Ek + µ̃)]

+
(

EpEk −M2
f − ~p · ~k

)

[

1

ω −Ep − Ek
− 1

ω + Ep + Ek

]

× [1− f(Ep + µ̃)− f(Ek − µ̃)]

}

. (3.26)

The real and imaginary parts (vide appendix C) of the temporal vector correlator

are, respectively, obtained as

ReΠ00(ω, ~q) = P

[

NfNc

∫

d3p

(2π)3
1

EpEk

{

EpEk +M2
f + ~p · ~k

ω + Ep −Ek

× [f(Ep − µ̃) + f(Ep + µ̃)− f(Ek − µ̃)− f(Ek + µ̃)]

+ (EpEk −M2
f − ~p · ~k)

(

1

ω −Ep − Ek
− 1

ω + Ep + Ek

)

× [1− f(Ep + µ̃)− f(Ek − µ̃)]

}]

, (3.27)

as P stands for principal value, and

ImΠ00(ω, ~q) = lim
η→0

1

2i

[

Π00(ω → ω + iη, q)−Π00(ω → ω − iη, q)
]

=− πNfNc

∫

d3p

(2π)3
1

EpEk

{

(EpEk +M2
f + ~p · ~k)

× [f(Ep − µ̃) + f(Ep + µ̃)− f(Ek − µ̃)− f(Ek + µ̃)]× δ(ω + Ep −Ek)

+ (EpEk −M2
f − ~p · ~k) [1− f(Ep + µ̃)− f(Ek − µ̃)]

× [δ(ω − Ep − Ek)]

}

. (3.28)
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It is now worthwhile to check some known results in the limit ~q → 0 and µ̃ = 0,

(3.28) can be written as:

ImΠ00(ω) = −πNfNc

∫

d3p

(2π)3
1

E2
p

(

3E2
p − 3M2

f − p2
)

(2f ′(Ep)) (−ωδ (ω)) , (3.29)

and which, in the limit Mf = m0 −GSσ = 0, further becomes

ImΠ00(ω) = −2πT 2ωδ(ω). (3.30)

The vacuum part in (3.27) is now separated as

ReΠvac
00 (ω, ~q) =

NfNc

4π2

∫ Λ

0

p dp
1

2Epq

[

4pq + 6EpX− − 6EpX+ − Y− ln

∣

∣

∣

∣

Ep +X− − ω

Ep +X+ − ω

∣

∣

∣

∣

+Y+ ln
Ep +X+ + ω

Ep +X− + ω

]

, (3.31)

with Y± = (4E2
p ± 4Epω +M2), X± =

√

E2
p ± 2pq + q2 and M2 = ω2 − q2.

We note that the ultraviolet divergence in the vacuum part is regulated by using

a finite three momentum cut-off Λ. The corresponding matter part of (3.27) is

obtained as

ReΠmat
00 (ω, ~q) =

NfNc

2π2

∫ ∞

0

p dp
[

f(Ep − µ̃) + f(Ep + µ̃)
]

[

ω

q
ln

∣

∣

∣

∣

∣

M2 − 4 (pq + ωEp)
2

M2 − 4 (pq − ωEp)
2

∣

∣

∣

∣

∣

−
(

4E2
p +M2

4qEp

)

ln

∣

∣

∣

∣

∣

(M2 − 2pq)
2 − 4ω2E2

p

(M2 + 2pq)2 − 4ω2E2
p

∣

∣

∣

∣

∣

− 2p

Ep

]

. (3.32)

The imaginary part in (3.28) can be simplified as

ImΠ00(ω, ~q) =
NfNc

4π

∫ p+

p−

p dp
4ωEp − 4E2

p −M2

2Epq

[

f(Ep − µ̃) + f(Ep + µ̃)− 1
]

(3.33)

where the vacuum part does not require any momentum cut-off as the energy con-
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serving δ-function ensures the finiteness of the limits:

p± =
ω

2

√

1−
4M2

f

M2
± q

2
, (3.34)

with a threshold restricted by a step function, Θ(M2 − 4M2
f ).

3.2.3.2 Spatial Part

The space-space component of the vector correlator in (3.21) reads as

Πii(Q) =

∫

d4P

(2π)4
Tr[γiS(K)γiS(P )], (3.35)

which can be simplified in the similar way as it is done for temporal component to

Πii(ω, ~q) = NcNf

∫

d3p

(2π)3
1

EpEk

{

3EpEk − 3M2
f − ~p · ~k

ω − Ep + Ek

× [f(Ek + µ̃) + f(Ek − µ̃)− f(Ep + µ̃)− f(Ep − µ̃)]

+
(

3EpEk + 3M2
f + ~p · ~k

)

[

1

ω −Ep − Ek
− 1

ω + Ep + Ek

]

× [1− f(Ek + µ̃)− f(Ep − µ̃)]

}

. (3.36)

In the similar way as before the imaginary part can be obtained

ImΠii(ω, ~q) =− πNfNc

∫

d3p

(2π)3
1

EpEk

{

(3EpEk − 3M2
f − ~p · ~k)

× [f(Ek + µ̃) + f(Ek − µ̃)− f(Ep + µ̃)− f(Ep − µ̃)] δ(ω + Ep − Ek)

+
(

3EpEk + 3M2
f + ~p · ~k

)

[1− f(Ek + µ̃)− f(Ep − µ̃)]

× δ(ω − Ep −Ek)

}

, (3.37)

60



CHAPTER 3. DILEPTON PRODUCTION

whereas the real part can be obtained as

ReΠii(ω, ~q) = P

[

NfNc

∫

d3p

(2π)3
1

EpEk

{

3EpEk − 3M2
f − ~p · ~k

ω −Ep + Ek

× [f(Ek − µ̃) + f(Ek + µ̃)− f(Ep − µ̃)− f(Ep + µ̃)]

+(3EpEk + 3M2
f + ~p · ~k)

(

1

ω − Ep − Ek
− 1

ω + Ep + Ek

)

× [1− f(Ek + µ̃)− f(Ep − µ̃)]

}]

. (3.38)

At this point we also check the known results in the limit ~q → 0 and µ̃ = 0, (3.37)

can be written as:

ImΠii(ω) =− πNfNc

∫

d3p

(2π)3
1

E2
p

(

3E2
p − 3M2

f − p2
)

(2f ′(Ep)) (−ωδ (ω))

− 3

2πω

√

ω2 − 4M2
f

(

ω2 + 2M2
f

)

tanh
( ω

4T

)

Θ(ω − 2Mf), (3.39)

and when Mf = m0 −GSσ = 0, it becomes

ImΠii(ω) = −2πT 2ωδ(ω)− 3

2π
ω2 tanh

( ω

4T

)

. (3.40)

As seen both massive and massless cases show a sharp peak due to the delta function

at ω → 0, which leads to pinch singularity for calculation of transport coefficients.

Now, the vacuum part in (3.38) is simplified as

ReΠvac
ii (ω, ~q) =

NfNc

4π2

∫ Λ

0

p dp
1

2Epq

[

−4pq + 10Ep(X− −X+)− Z− ln

∣

∣

∣

∣

Ep +X− − ω

Ep +X+ − ω

∣

∣

∣

∣

+Z+ ln
Ep +X+ + ω

Ep +X− + ω

]

, (3.41)
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where Z± = 4p2 ± 4Epω −M2. The corresponding matter part is obtained as

ReΠmat
ii (ω, ~q) =

NfNc

4π2

∫ ∞

0

p dp
[

f(Ep − µ̃) + f(Ep + µ̃)
]

[

2
ω

q
ln

∣

∣

∣

∣

M2 − 4(pq + Epω)
2

M2 − 4(pq −Epω)2

∣

∣

∣

∣

+

(

M2 − 4p2

2qEp

)

ln

∣

∣

∣

∣

∣

(M2 − 2pq)
2 − 4ω2E2

p

(M2 + 2pq)2 − 4ω2E2
p

∣

∣

∣

∣

∣

+ 4
p

Ep

]

. (3.42)

Finally, the imaginary part in (3.37) is simplified as

ImΠii(ω, ~q) =
NfNc

4π

∫ p+

p−

p dp
4ωEp − 4p2 +M2

2Epq
(f(Ep − µ̃) + f(Ep + µ̃)− 1)

(3.43)

where the vacuum part does not need any finite momentum cut-off as stated above.

3.3 Results

3.3.1 Gap Equations and Mean Fields
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Figure 3.3: Variation of scaled constituent quark mass with zero temperature quark
mass and the PL fields (Φ and Φ̄) with temperature at chemical potential µ = 100
MeV for (a) GV /GS = 0 and (b) GV /GS = 0.5.

The thermodynamic potentials Ω for both NJL and PNJL model are extremized
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Figure 3.4: Variation of constituent quark mass with temperature in (a) NJL and
(b) PNJL model for chemical potential µ = 100 MeV and a set of values for vector
coupling GV .

with respect to the mean fields X, i.e.,

∂Ω

∂X
= 0 (3.44)

where, X stands for σ and n for NJL model and Φ, Φ̄, σ and n for PNJL model.

The value of the parameters, GS = 10.08 GeV−2 and Λ = 0.651 GeV were taken

from literature [70] and m0 = 0.005 GeV. However, the value of GV is difficult to fix

within the model formalism, since this quantity should be fixed using the ρ meson

mass which, in general, happens to be higher than the maximum energy scale Λ of

the model. So, we consider the vector coupling constant GV as a free parameter

and different choices are considered as GV = x×GS, where x is chosen from 0 to 1

appropriately.

In figure 3.3, a comparison between the scaled quark mass with its zero temperature

value (Mf (T )/Mf(0)) in NJL and PNJL model is displayed as a function of temper-

ature T for two values of GV (= 0 and 0.5GS) with µ = 100MeV. It also contains a

variation of the PL fields (Φ(T ) and Φ̄(T )) with T . In both models the scaled quark

mass decreases with increase in T and approaches the chiral limit at very high T .

However, in the temperature range 60 ≤ T (MeV) ≤ 300, the variation of the scaled
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Figure 3.5: Comparison of the scaled quark number density with T 3 as a function of
T in NJL and PNJL model with chemical potential µ = 100 MeV for (a) GV /GS = 0
and (b) GV /GS = 0.5 .

quark mass is slower in PNJL than that of NJL model. This slow variation is due to

the presence of the confinement effect in it through the PL fields (Φ(T ) and Φ̄(T )),

as can be seen that the PL field (Φ(T )) and its conjugate (Φ̄(T )) increase from zero

in confined phase and approaches unity (free state) at high temperature. Now, we

note that Φ = Φ̄ at µ = 0 as there is equal number of quarks and antiquarks. How-

ever, because of non-zero chemical potential there is an asymmetry in quark and

antiquark numbers, which leads to an asymmetry in the PL fields Φ and Φ̄. This

asymmetry disappears for T > 300 MeV, which is much greater than µ. We also

note that the fields depend weakly with the variation of the vector coupling GV akin

to that of mass as displayed in figure 3.4 for µ = 100 MeV and GV /GS = 0 to 0.8.

In figure 3.5 the number density scaled with T 3 for both NJL and PNJL model is

displayed as a function of T with µ = 100 MeV for two values of GV . At very

high temperature, as seen in figure 3.3, the PL fields Φ(Φ̄) → 1 and masses in both

models become same. So, PNJL model becomes equivalent to NJL model because

the thermal distribution function becomes equal as can be seen from (3.24) and thus

the number density. On the other hand, for temperature T < 400 MeV and a given

µ, the PNJL number density is found to be suppressed than that of NJL case as the

thermal distribution function in (3.24) is suppressed. This is due to the combination
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of two complementary effects: (i) the nonperturbative effect through Φ and Φ̄ and

(ii) the slower variation of mass in PNJL model, which are clearly evident from

figure 3.3. It is also obvious from figure 3.5(a) and figure 3.5(b) that the presence of

vector interaction GV reduces the number density for both NJL and PNJL model,

which could be understood due to the reduction of µ̃ as given in (2.19).

3.3.2 Vector spectral function and dilepton rate

The vector SF is proportional to the imaginary part of the vector correlation function

as defined in (2.51) or (3.20). This imaginary part is restricted by, the energy

conservation, ω = Ep+Ek, as can be seen from (3.28) and (3.37). This equivalently

leads to a threshold, M2 ≥ 4M2
f , which can also be found from (3.34). Now for

a given GV and T , the resummed spectral function in (3.20) picks up continuous

contribution above the threshold, M2 > 4M2
f , which provides a finite width to a

vector meson that decays into a pair of leptons. However, below the threshold

M2 < 4M2
f , the continuous contribution of the SF in (3.20) becomes zero and the

decay to dileptons are forbidden. But if one analyses it below the threshold, one

can find bound state contributions in SFs. When imaginary part approaches zero,

the SF in (3.20) becomes discrete and can be written as:

σV (ω, ~q)
=

M<2Mf

1

π

[

δ
(

F1(ω, ~q)
)

]

,

where F1(ω, ~q) = 1 +
GV

2
ReΠii −

GV

2

ω2

q2
ReΠ00 = 0, (3.45)

where only the dominant contribution of (3.18) is considered. Using the properties

of δ-function, one can write

σV (ω, ~q)
=

M<2Mf

1

π

δ(ω − ω0)

|dF1(ω, ~q)/dω|ω=ω0

, (3.46)
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which corresponds to a sharp δ-function peak at ω = ω0. However, we are interested

here in continuous contribution M > 2Mf , which are discussed below.
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Figure 3.6: Scaled vector SF σV /ω
2 as a function of scaled invariant mass, M/T ,

in NJL and PNJL model with external momentum q = 0, quark chemical potential
µ = 0 and GV /GS = 0 for (a) T = 200 MeV and (b) T = 300 MeV.
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Figure 3.7: Scaled vector SF σV /ω
2 as a function of scaled invariant mass, M/T ,

in NJL and PNJL model with external momentum q = 200 MeV, quark chemical
potential µ = 100 MeV and GV /GS = 0 for (a) T = 200 MeV and (b) T = 300 MeV

3.3.2.1 Without vector interaction (GV = 0)

With no vector interaction (GV = 0), the SF in (3.20) is solely determined by the

imaginary part of the one loop vector self energies Π00(ω, ~q) and Πii(ω, ~q). figure 3.6

displays a comparison of vector SF with zero external momentum (~q = 0, M = ω)

in NJL and PNJL model for T = 200 MeV and 300 MeV, when there is no vector
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interaction (GV = 0). Now, for T = 200 MeV (left panel) the SF in PNJL model

has larger threshold than NJL model because the quark mass in PNJL model is

much larger than that of NJL one (see figure 3.3). Also the PNJL SF dominates

over that of NJL one, because of the presence of nonperturbative effects due to PL

fields Φ and Φ̄. At higher values of T (= 300 MeV) (right panel), the threshold

becomes almost same due to the reduction of mass effect in PNJL case whereas

the nonperturbative effects at low M/T still dominate. The reason is the following:

at zero external momentum and zero chemical potential the SF is proportional to

[1 − 2f(Ep)] (apart from the mass dependent prefactor) as can be seen from the

second term of (3.39). In PNJL case the thermal distribution function, f(Ep), is

more suppressed due to the suppression of color degrees of freedom than NJL at

moderate values of T , so the weight factor [1 − 2f(Ep)] is larger than NJL case

and causing an enhancement in the SF . All these features also persist at non-zero

chemical potential and external momentum as can also be seen from figure 3.7.
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Figure 3.8: Comparison of dilepton rates as a function of M/T for T = 240 MeV
with external momentum q = 0, quark chemical potential µ = 0 and GV /GS = 0.
The LQCD rate is from Ref. [143].

At this point it is important to note that for T > 250 MeV the mass in NJL model

almost approaches current quark mass (see figure 3.3(a)) and can be considered as

a free case since there is no vector interaction present (GV = 0). Nevertheless, the
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PNJL case is different because of the presence of the nonperturbative confinement

effect through the PL fields. The PNJL model can suitably describe a sQGP [69,176,

187] scenario having nonperturbative effect due to the suppression of color degrees of

freedom compared to NJL vis-a-vis free case above the deconfinement temperature.

The above features of the SF in a sQGP with no vector interaction will be reflected

in the dilepton rate which is related to the SF, as given in (2.57). In figure 3.8,

the dilepton rate is displayed as a function of scaled invariant mass M with T . As

already discussed, at this temperatures the quark mass in NJL approaches current

quark mass faster than PNJL, thus the dilepton rates for Born and NJL cases

become almost the same. However, the dilepton rate in PNJL model is enhanced

than those of Born or NJL case. This in turn suggests that the nonperturbative

dilepton production rate is higher in a sQGP than the Born rate in a weakly coupled

QGP. The dilepton rate is also compared with that from LQCD result [143] within

a quenched approximation. It is found to agree well for M/T ≥ 2, below which it

differs from LQCD rate. We try to understand this as follows: the SF in LQCD is

extracted using maximum entropy method from Euclidean vector CF by inverting

(2.52), which requires an ansatz for the SF. Using a free field SF as an ansatz, the SF

in a quenched approximation of QCD was obtained earlier [151] by inverting (2.52),

which was then approaching zero in the limit M/T → 0. So was the first lattice

dilepton rate [151] at low M/T whereas it was oscillating around the Born rate for

M/T > 3. Now, in a very recent LQCD calculation [143] with larger size, while

extracting the SF using maximum entropy method from Euclidean vector CF, an

ansatz for the SF, a Briet-Wigner for lowM/T plus a free field one forM/T ≥ 2, has

been used. The ansatz of Briet-Wigner at low M/T pushes up the SF and so is the

recent dilepton rate in LQCD below M/T ≤ 2. However, no such ansatz is required

in thermal QCD and we can directly calculate the SF without any uncertainty by

virtue of the analytic continuation.
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Figure 3.9: Different dilepton rates as a function of M/T at T = 300 MeV, µ = 100
MeV and GV /GS = 0 for (a) q = 0 (b) q = 200 MeV

In figure 3.9 the dilepton rate is also displayed at T = 300 MeV, non-zero chemical

potential (µ = 100 MeV) and external momentum (q = 0 and 200 MeV). We

note that this information could also be indicative for future LQCD computation of

dilepton rate at non-zero µ and q. The similar feature of sQGP as found in figure 3.8

is also seen here but with a quantitative difference especially due to higher T , which

could be understood from figure 3.3(a).

3.3.2.2 With vector interaction (GV 6= 0)
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Figure 3.10: Scaled spectral function as a function ofM/T in (a) NJL and (b) PNJL
model for a set of T with µ = 100 MeV, q = 200 MeV and GV /GS = 0.5. Note the
difference in y-scale.
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Figure 3.11: Scaled spectral function as a function of M/T for (a) NJL and (b)
PNJL model with T = 200 MeV, µ = 100 MeV, q = 200 MeV and a set of values of
GV /GS = 0, 0.2, 0.4, 0.5 and 0.6.
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Figure 3.12: Scaled spectral function as a function of M/T for (a) NJL and (b)
PNJL model with T = 300 MeV, µ = 100 MeV, q = 200 MeV and a set of values of
GV /GS = 0, 0.2, 0.4, 0.5, 0.6 and 0.7.

In figure 3.10 the SF for GV /GS = 0.5 with q = 200 MeV and µ = 100 MeV in NJL

(left panel) and PNJL (right panel) model is displayed. At T = 100 < Tc ∼ 160

MeV [95, 188–190] the SF above the respective threshold, M > 2Mf , starts with

a large value because the denominator in (3.18) is very small compared to those

in (3.14) and (3.19). This is due to the two reasons: (i) the first term in the

denominator involving real parts of Π has zero below the threshold that corresponds

to a sharp δ-like peak as discussed in (3.46), thus it also becomes a very small number

just above the threshold and (ii) the second term involving imaginary parts start
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Figure 3.13: Dilepton rates as a function of M/T (a) NJL and (b) PNJL model for
a set of values of GV /GS with T = 300 MeV with external momentum q = 200 MeV,
quark chemical potential µ = 100 MeV.

building up, which is also very small. However, the increase in T causes the SF to

decrease due to mutual effects of denominator (involving both real and imaginary

parts of Π) and numerator (involving only imaginary parts of Π). On the other

hand, with the increase in T , the threshold in NJL case reduces quickly as the

quark mass decreases faster whereas it reduces slowly for PNJL case because the

PL fields experience a slow variation of the quark mass. So, the vector meson in

NJL model acquires a width earlier than the PNJL model due to suppression of color

degrees of freedom in presence of PL fields. As seen, for NJL model at T = Tc ∼ 160

MeV the sharp peak like structure gets a substantial width than PNJL model. This

suggests that the vector meson retains its bound properties at and above Tc in PNJL

model in presence of GV along with the nonperturbative effects through PL fields.

In figures 3.11 and 3.12 we present the dependence of the SF on the vector interaction

in QGP for a set of values of the coupling GV in NJL (left panel) and PNJL (right

panel) model, respectively, for T = 200 and T = 300 MeV. In both cases the

spectral strength increases with that of GV . Nevertheless, the strength of the SF in

PNJL case at a given T and GV is always stronger than that of NJL model. This

suggests that the presence of the vector interaction further suppresses the color

degrees of freedom in addition to the PL fields. The dilepton rates corresponding
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to T = 300 MeV are also displayed in figure 3.13, which show an enhancement at

low M/T compared to GV = 0 case. The enhancement in PNJL case indicates that

more lepton pairs will be produced at low mass (M/T < 4) in sQGP with vector

interaction, which would be appropriate for the hot and dense matter likely to be

produced at FAIR energies.

3.4 Conclusion

In the present work, the behavior of the vector meson CF and its spectral represen-

tation have been studied within the effective model framework, viz. NJL and PNJL

models. PNJL model contains additional nonperturbative information through PL

fields than NJL model. In addition to this nonperturbative effect of PL, the repulsive

I-V interaction is also considered. The influence of such interaction on the correlator

and its spectral representation in a hot and dense medium has been obtained using

ring resummation known as Random Phase Approximation. The incorporation of

vector interaction is important, in particular, for various spectral properties of the

system at non-zero chemical potential. However, the value of the vector coupling

strength is difficult to fix from the mass scale which is higher than the maximum

energy scale Λ of the effective theory. So, we have made different choices of this vec-

tor coupling strength to understand qualitatively its effect on the various quantities

we have computed.

In absence of the I-V interaction, the static SF and the CF in NJL model be-

come quantitatively equivalent to those of free field theory. In case of PNJL these

quantities are different from both free and NJL case because of the presence of

the nonperturbative PL fields that suppress the color degrees of freedom in the de-

confined phase just above Tc. This suggests that some nontrivial correlation exist

among the color charges in the deconfined phase. As an important consequence, the
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nonperturbative dilepton production rate is enhanced in the deconfined phase com-

pared to the leading order perturbative rate. We note that the nonperturbative rate

with zero chemical potential agree well with the available LQCD data in quenched

approximation. We also discussed the rate in presence of finite chemical potential

and external momentum which could provide useful information if, in future, LQCD

computes them at finite chemical potential and external momentum.

In presence of the I-V interaction, appropriate for hot but very dense medium likely

to be created at FAIR GSI, it is found that the color degrees of freedoms are, further,

suppressed up to a moderate value of the temperature above the critical temperature

implying a stronger correlation among the color charges in the deconfined phase.

The CF, SF and its spectral property, e.g., the low mass dilepton rate are strongly

affected in PNJL case than NJL case. Finally, some of our results presented in this

work can be tested when LQCD computes them, in future, with the inclusion of the

dynamical fermions.
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Dilepton production rate with the

entangled vertex

In this chapter we re-explore our earlier study, discussed in previous chapter, on

the vector meson spectral function (SF) and its spectral property in the form of

dilepton rate in a two-flavour PNJL model in presence of a strong entanglement

between the chiral and Polyakov loop (PL) dynamics. It is based on: Vector meson

spectral function and dilepton rate in the presence of strong entanglement effect be-

tween the chiral and the Polyakov loop dynamics, Chowdhury Aminul Islam, Sarbani

Majumder and Munshi G. Mustafa, Phys. Rev. D 92, 096002 (2015) .

4.1 Introduction

The phase diagram of hot and/or dense system of quarks and gluons predicted by

the QCD has invited a lot of serious theoretical investigations for last few decades.

The first prototype of the QCD phase diagram was conjectured in [8] where it looked

very simple; with the passage of time more and more investigations culminated in a

very complicated looking phase diagram with many exotic phases [9]. Nevertheless,

the interest mainly revolved around two phase transitions - one is the chiral phase
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transition and the other one is the deconfinement transition. If they do not coincide,

exotic phases such as the constituent quark phase [15,16] or the quarkyonic phase [17,

18] may occur. So, an important question on the QCD thermodynamics is whether

the chiral symmetry restoration and the confinement-to-deconfinement transition

happen simultaneously or not. We note that chiral and deconfinement transitions

are conceptually two distinct phenomena. Though LQCD simulation has confirmed

that these two transitions occur at the same temperature [119] or almost at the same

temperature [120]. Whether this is a mere coincidence or some dynamics between

the two phenomena are influencing each other is not understood yet and is matter

of intense current research exploration.

To understand the reason behind this coincidence a conjecture has been proposed

in the article [80] through a strong correlation or entanglement between the chi-

ral condensate (σ) and the PL expectation value (Φ) within the PNJL model.

Usually, in PNJL model, there is a weak correlation between the chiral dynam-

ics σ and the confinement-deconfinement dynamics Φ, which is in-built through

the covariant derivative between quark and gauge fields. With this kind of weak

correlation the coincidence between the chiral and deconfinement crossover transi-

tions [70,116,121–124] can be described but it requires some fine-tuning of parame-

ters, inclusion of the scalar type eight-quark interaction for zero chemical potential

µ and the vector-type four-quark interaction for imaginary µ. This reveals that

there may be a stronger correlation between Φ and σ than that in the usual PNJL

model associated through the covariant derivative between quark and gauge fields.

Also, some recent analyses [125,126] of the exact renormalization-group (ERG) equa-

tion [127] suggest a strong entanglement interaction between Φ and σ in addition

to the original entanglement through the covariant derivative. Based on this the

two-flavor PNJL model is further generalized [80] by considering the effective four-

quark scalar type interaction with the coupling strength that depends on the PL

field Φ. The effective vertex in turn generates entanglement interaction between Φ
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and σ. Such generalization of the PNJL model is known as EPNJL model [80]. This

EPNJL model has been used to study the location of the tricritical point at real

isospin chemical potential [80] and on the location of the critical endpoint at real

quark-number chemical potential [80,107,191]. It has also been used to study [192]

the effect of dynamical generation of a repulsive vector contribution to the quark

pressure. The EPNJL model has further been generalized to the three-flavor phase

diagram [193] as a function of light- and strange-quark masses for both zero and

imaginary quark chemical potential.

The properties of the vector current CF and its spectral representation in the de-

confined phase have been studied to understand the nonperturbative effect on the

vector current spectral properties, e.g., the dilepton production rate in LQCD frame-

work [143]. In the previous chapter 3, within the PNJL model, we have analysed [93]

the effect of isoscalar-vector (I-V) interaction on the vector meson SF and spectral

property (such as, dilepton production rate1 in a hot and dense medium. In this

present chapter, we consider the idea of the EPNJL model in which the effective

vertex generates a strong entanglement interaction between the chiral condensate σ

and the PL field Φ to re-explore the vector SF and the spectral property such as

the dilepton production rate previously studied in [93]. Because of this strong en-

tanglement between Φ and σ, the coupling strengths run with the temperature and

chemical potential. First we study the characteristics of mean fields with various

constraints: with and without the I-V interaction in both PNJL and EPNJL models.

Then we further demonstrate the effect of the entanglement on vector meson SF and

dilepton rate.

This chapter is organized as follows: in section 4.2 we briefly outline the usual

PNJL model and extend it with the entanglement effect, namely the EPNJL model.

In section 4.3 we write the expression for the vector SF and its various spectral

1We also note that both the dilepton and real photon rate have been computed in a matrix
model of QGP by considering only the confinement effect [187, 194] and taking into account both
the confinement and chiral symmetry breaking effects [195].
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properties following our earlier calculation in [93]. In section 4.4 we discuss our

results and finally we conclude in section 4.5.

4.2 Parameter fitting in effective QCD models

4.2.1 PNJL Model

We start with the two flavour PNJL model Lagrangian with I-V interaction [93] given

in equation (2.29) and the corresponding thermodynamic potential is obtained as in

(2.30). Different parameters of the models are fitted as described in the section 2.1.

In the pure gauge theory the Polyakov potential is fitted to lattice QCD that yields a

first order phase transition at T0 = 270 MeV. With this value of T0 for zero chemical

potential we get, for 2-flavour case, almost a coincidence between the chiral and

deconfinement transitions2 (Tσ = 233 MeV and TΦ = 228 MeV). Thus the two

transitions almost coincide [e.g., figure 4.2(a)] but at a value higher than the range

provided by the 2-flavour3 lattice QCD [57, 196] which is Tσ ≈ TΦ ≈ (173 ± 8)

MeV. In Ref [70] the value of T0 was changed to 190 MeV but keeping all the other

parameters same and obtained a lower value of Tσ (≈ 200 MeV) and TΦ (≈ 170

MeV) [e.g., figure 4.2(b)]. Taking the average of the two while defining Tc gives a

2We note that the chiral transition temperature Tσ is obtained from the peak position of the
∂σ/∂T whereas the deconfinement transition temperature TΦ is that from the ∂Φ/∂T .

3It is worth mentioning here that the chiral transition temperature is found to be Tc = (154±9)
MeV in the recent (2+1) flavour LQCD computations by HotQCD collaboration [188]. In (2+1)
flavor QCD the chiral order parameter contains both the light quark condensate and the strange
quark condensate. Only the former is used to define the chiral transition temperature, as the
strange condensate varies very smoothly [197]. Now, the behaviour of the light quark condensate
in (2+1) flavour and 2-flavour QCD will be similar if the light quark masses are similar but will
be different at quantitative level as it leads to two different chiral transition temperatures simply
because one has two different scales in the theory. The value Tc = (154±9)MeV was extracted [188]
entirely in reference to the chiral phase transition for (2+1) flavour QCD. Further, we also note that
the Wuppertal-Budapest collaboration [190] has also extracted three somewhat different values of
Tc ranging from 147 MeV to 157 MeV, depending on the chiral observables considered for the
purpose. Since we restrict our calculation only to 2-flavour case, we stick to the corresponding
Tc = (173± 8) MeV as extracted for 2-flavour case in LQCD simulation [57, 196].
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value almost within the range provided by the lattice QCD but then the coincidence

is lost. Here in this chapter we work with the same Polyakov potential but the

entanglement between the chiral and deconfinement mechanism is introduced in the

next subsection 4.2.2.

4.2.2 EPNJL

We introduce the entanglement effect through effective vertices. The Lagrangian

in EPNJL model will be the same as that in (2.29) except that now the coupling

constants GS and GV will be replaced by the effective ones G̃S(Φ) and G̃V (Φ).

The forms of the effective vertices are chosen [80, 107] to preserve chiral and Z(3)

symmetry as given by

G̃S(Φ) = GS[1− α1ΦΦ̄− α2(Φ
3 + Φ̄3)], (4.1)

and

G̃V (Φ) = GV [1− α1ΦΦ̄− α2(Φ
3 + Φ̄3)]. (4.2)

We note that for α1 = α2 = 0, G̃S(Φ) = GS and G̃V (Φ) = GV , the EPNJL model

reduces to PNJL model. Also at T = 0, Φ = Φ̄ = 0 (confined phase), then G̃S = GS

and G̃V = GV . Due to the reason already mentioned in the section 2.1.1.5, here

again the strength of the vector interaction is taken in terms of the value of GS as

GV = x×GS, which on using (4.2) reduces to

G̃V (Φ) = x×GS[1− α1ΦΦ̄− α2(Φ
3 + Φ̄3)] = x× G̃S(Φ). (4.3)

Now in EPNJL model, α1 and α2 are two new parameters, which are to be fixed from

the lattice QCD data. The thermodynamic potential ΩEPNJL in EPNJL model can

be obtained from (2.30) by replacing GS with G̃S(Φ) and GV with G̃V (Φ). For the
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EPNJL model we take same values of the parameters as those in PNJL model [93]

except the value of T0, which is taken as 190 MeV. Then we fix the values of pa-

rameters α1 and α2 so as to reproduce the coincidence of chiral and deconfinement

transitions within the range given by lattice QCD data at zero chemical poten-

tial [57, 196] and it is found that (α1, α2)= (0.1, 0.1). We further mention that

the coincidence of Tσ and TΦ are preserved [e.g., figure 4.2(c)] within the parameter

region α1, α2 ≈ 0.10 ± 0.05. Note that the values α1 and α2 in our model differ from

that of reference [80] because of the choice of different PL potential. We chose the

form of the potential as given in reference [70] whereas that used in reference [80] is

taken from reference [198]. It is also noteworthy that the two forms of PL potentials

are consistent with each other in the validity domain of the model [115].

4.3 Vector meson spectral function and dilepton

rate

The resummed vector meson SF in presence of I-V interaction within ring approxi-

mation [93] is written as

σV (ω, ~q) =
1

π

[

ImC00(ω, ~q)− ImCii(ω, ~q)
]

, (4.4)

where Q ≡ (ω, ~q), the four momentum of the vector meson. The imaginary part

of the temporal (C00) and spatial (Cii) components of the resummed correlator are

given as

ImC00 =
ImΠ00

[

1− G̃V (Φ)
(

1− ω2

q2

)

ReΠ00

]2

+
[

G̃V (Φ)(1− ω2

q2
)ImΠ00

]2 , (4.5)
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and

ImCii =
F

[

1 + G̃V (Φ)
2

ReΠii − G̃V (Φ)
2

ω2

q2
ReΠ00

]2

+
G̃2

V
(Φ)

4

[

F
]2

+
ω2

q2
ImC00, (4.6)

respectively, which are obtained by replacing GV with the effective vertex G̃V (Φ) in

equations (3.14) and (3.17) with F = ImΠii− ω2

q2
ImΠ00. The various expressions for

one-loop self-energies, Π00 and Πii, are explicitly computed in the previous chapter 3.

The dilepton rate is obtained from the vector SF using the expression given in (2.57).

4.4 Results

4.4.1 Mean Fields

4.4.1.1 Without the isoscalar-vector interaction (GV = 0)

The gap equation for the thermodynamic potential is

∂Ω(E)PNJL

∂X
= 0, . (4.7)

The thermodynamic potential is minimized with respect to mean fields X ; with X

representing σ, Φ, Φ̄ and n. In this section we compare the variations of the mean

fields in PNJL model with that of EPNJL one without the effect of I-V interaction

i.e. GV = 0. As discussed in subsection 4.2.1 the scalar type four-quark coupling

strength (GS) in NJL/PNJL model is fixed along with three momentum cutoff Λ

and bare quark mass m0 to reproduce known zero temperature chiral physics in the

hadronic sector. We note that in principle it should depend on the parameters T

and µ but it is not usually considered in NJL model [101, 102]. However, in PNJL

model the PL field (Φ) is related to the temporal gluon which should make GS to
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depend on Φ. But this dependence is also neglected in the same spirit [69]. So, the

value of GS remains fixed as represented by solid line in figure 4.1(a).

Now we pay attention to the features of EPNJL model in figure 4.1(a). As soon

as one introduces the Φ dependence in the scalar coupling strength through (4.1)

in EPNJL model, it (G̃S) becomes dependent on both T and µ. This running is

due to the gap equation in (4.7), which is solved in a self-consistent manner for

different mean fields. As can be seen the increase in T causes G̃S to decrease for a

given µ and the decrease becomes faster as one increases µ. This can be understood

from (4.1) as for a given T if one increases µ, the PL fields (Φ and Φ̄) increase and

thus G̃S decreases. figure 4.1(b) displays the temperature dependence of the scaled

constituent quark mass and PL fields for both PNJL and EPNJL models at µ = 0.

Here we mention that for µ = 0, Φ = Φ̄ = |Φ| [70]. It clearly shows a considerable

change in the chiral condensate (σ = 〈ψ̄ψ〉) and the PL fields in EPNJL model as

compared to those in PNJL model. For nonzero chemical potential similar behaviour

of σ and Φ, Φ̄ is also observed. This is obviously due to the running of the coupling

G̃S which is arising due to the entanglement effect as shown in Fig 4.1(a).

x = 0

0.1 0.2 0.3 0.4 0.5 0.6
7.5

8.0

8.5

9.0

9.5

10.0

T@GeVD

G�
S
@G

eV
-

2
D

Μ=0.2 GeV

Μ=0.1 GeV

Μ=0 GeV

PNJL

(a)

0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

T@GeVD

M
,È
F
È

EPNJL
PNJL

(b)

Figure 4.1: Variation of (a) scalar type four-quark coupling strength G̃S(Φ) with
temperature T for different values of µ and (b) the constituent quark mass scaled with
its zero temperature value and Polyakov loop fields with T for µ = 0 for both PNJL
(solid lines) and EPNJL (dotted lines) model.

Figure 4.2 displays the variations of ∂σ
∂T

and ∂Φ
∂T

with the temperature at µ = 0 for
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various model conditions as discussed in subsections 4.2.1 and 4.2.2 in details. We

note that Tσ and TΦ coincide for EPNJL model at ≈ 184 MeV (e.g, figure 4.2(c)),

which is almost within the range, Tc = (173 ± 8) MeV, given by the two flavour

lattice QCD [57, 196].
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Figure 4.2: Plot of ∂σ/∂T and ∂Φ/∂T as function of T with µ = 0 for (a) PNJL
model with T0 = 270 MeV in [70, 116], (b) PNJL model with T0 = 190 MeV in
reference [70] and (c) present calculation in EPNJL model with T0 = 190 MeV. For
details it is referred to text in subsecs. 4.2.1 and 4.2.2, respectively.

We note that once µ is introduced in the system the transition temperatures (both

chiral and deconfinement) get reduced, which is expected. Now for a given T and

µ 6= 0, Φ 6= Φ̄ [199] generates two separate but close values of inflection points

leading to different TΦ and TΦ̄. In that case one can take the average of TΦ and TΦ̄

as the deconfinement transition temperature. For µ = 150 MeV, we found TΦ = 166

MeV and TΦ̄ = 160 MeV and the average of the them (163 MeV) is very close to the

value of Tσ = 167 MeV. With the increase of µ the transition temperatures further

get reduced; for example at µ = 200 MeV, TΦ = 153 MeV, TΦ̄ = 151 MeV and

Tσ = 153 MeV.

We now discuss the differences in quark number density in EPNJL model with that

of the PNJL one. In figure 4.3 we observe that for temperature beyond 150 MeV the

quark number density rises very sharply for EPNJL model as compared to PNJL

one. This can be understood from figure 4.1(b) in which the value of PL field rises

very sharply beyond T = 150 MeV for EPNJL model. This indicates that the PL

field provides a strong correlation among the quarks at low T whereas the strength of
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Figure 4.3: Comparison of variations of scaled quark number density between PNJL
and EPNJL model for µ = 0.15 GeV.

the correlation among the quarks decreases when the value of the PL field increases

at high T and we have more and more free quarks in the system for EPNJL model

as compared to the PNJL one.

4.4.1.2 With the isoscalar-vector interaction (GV 6= 0)

Now we deal with the same set up but the I-V interaction (G̃V ) is turned on through

(4.2). In EPNJL model both couplings in (4.1) and (4.2) are entangled and run with

T and µ by virtue of the gap equation in (4.7). We choose three different values

of the strength of the I-V interaction to demonstrate its effects within the EPNJL

model. These values are taken in terms of G̃S and the reason for which is already

mentioned in the section 4.2.

In figure 4.4(a) the variation of the scaled constituent quark mass is shown for

µ = 150 MeV. As one increases the strength of the vector interaction the rate of

mass variation with the temperature becomes slower. Since the couplings run in the

EPNJL model the effect of the vector interaction is more prominent than that of the

PNJL model with fixed values of couplings [93]. In the right panel (figure 4.4(b))

the variations of the PL fields with temperature at µ = 150 MeV are shown. We

observe that with the increase of the value of GV the rate of increase of PL fields with
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Figure 4.4: Variations of (a) scaled constituent quark mass and (b) Polyakov loop
fields with temperature for three different values of GV at µ = 0.15 GeV in EPNJL
model.

Values of GV and µ TΦ TΦ̄
TΦ+TΦ̄

2
Tσ

x = 0, µ = 150 MeV 166 160 163 167
x = 0.2, µ = 150 MeV 167 160 163.5 170
x = 0.5, µ = 150 MeV 168 159 163.5 173
x = 0.8, µ = 150 MeV 169 159 164 175

Table 4.1: Values of Tσ, TΦ and TΦ̄ for different values of GV and µ = 150 MeV.

temperature decreases. The differences in the constituent quark masses or the PL

fields for different values of GV are however more prominent within the temperature

range 165 ≤ T (MeV) ≤ 210.

We have already discussed the effects of chemical potential on the transition tem-

peratures in the previous section. Here in Table 4.1 we present the variations of the

transition temperatures by the inclusion of the vector interaction. It shows that as

we increase the strength of the vector interaction for the same chemical potential,

the values of Tσ and as well as the average of TΦ and TΦ̄ increase [191].

In figure 4.5(a) the variation of G̃S with temperature at µ = 150 MeV is shown for

different value of GV . It is found that the value of G̃S increases as the strength of the

vector interaction increases for a given value of temperature and chemical potential.

This can be understood from figure 4.4(b) where the values of PL fields decrease
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Figure 4.5: Variations of (a) scalar type four-quark coupling strength and (b) scaled
number density with temperature for three different values of GV at µ = 0.15 GeV in
EPNJL model.

with increase of GV . This in turn leads to an enhancement of G̃S according to (4.1).

In figure 4.5(b) the variation of scaled quark number density with temperature is

displayed for same µ and GV as in figure 4.5(a). For a given temperature and

chemical potential the number density is found to decrease with the increase of

GV . This is because the number of free quarks in the system is reduced since the

correlation among quarks increases due to the decrease of PL fields with the increase

of the couplings.

4.4.2 Vector spectral function and dilepton rate

4.4.2.1 Without the isoscalar-vector interaction (GV = 0)

Now we will be discussing the entanglement effect on the SF vis-a-vis the dilepton

rates without the inclusion of the vector interaction but considering only the scalar

type interaction. In figure 4.6(a) the SFs with zero external momentum (q) and zero

chemical potential (µ) i.e. q = µ = 0, for PNJL and EPNJL model along with the

free case are displayed whereas those in figure 4.6(b) are for q = µ = 200 MeV. The

corresponding dilepton rates are shown in figure 4.7. Due to the entanglement effect
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through scalar type interaction the SF vis-a-vis dilepton rate for EPNJL model gets

suppressed compared to PNJL model but is still higher than the Born rate. This

could be understood in the following way. Usually the color degrees of freedom are
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Figure 4.6: Scaled SF in PNJL and EPNJL model are compared with the free case
for (a) µ = 0 and the three momentum q = 0 and (b) µ = q = 0.2 GeV at T = 0.25
GeV with x = 0.
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Figure 4.7: Dilepton rate as a function of M/T at T = 0.25 GeV for PNJL and
EPNJL model at (a) µ = q = 0 and (b) µ = q = 0.2 GeV with x = 0. The leading
order perturbative dilepton (Born) rate is also shown.

suppressed in PNJL model due to the nonperturbative effect of the PL field that

causes an enhancement [93] of the dilepton rate compared to the Born one. As soon

as the entanglement effect is introduced through the scalar type interaction that

relatively enhances the color degrees of freedom in the system due to the running in

G̃S as evident from figure 4.3, hence the dilepton rate is reduced compared to that
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in PNJL model.

4.4.2.2 With the isoscalar-vector interaction (GV 6= 0)
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Figure 4.8: Comparison between scaled SFs in PNJL (solid lines) and EPNJL (dot-
ted lines) model for (a) a given chemical potential but different temperatures and (b)
a given temperature but different chemical potentials at x = 0.5.

The free SF, in general, has a peak that appears at infinite value of M . This is also

true for four-quark scalar type interaction as seen above. However, in presence of

I-V interaction GV the peak appears at finite M in the resummed SF in (4.4) for

given GV and T : (a) below the kinematic threshold, M < 2Mf , the resummed SF

has a δ-like peak due to the pole that can lead to bound state information of the

vector meson and (b) above the threshold M > 2Mf the resummed SF picks up a

continuous contribution along with a somewhat broader peak4. We here concentrate

on the continuous contribution (M > 2Mf) of the SF above Tc that provides a finite

width to a vector meson which decays to lepton pairs. Now we focus on the effects

of entanglement on SF and dilepton rate when the vector interaction is included in

addition to the scalar type interaction. In the left panel (figure 4.8(a)) the scaled

SFs at µ = 200 MeV in PNJL (solid line) and EPNJL (dotted line) model are shown

for three different values of T . In figure 4.8(a) the peak of the vector SF, for a given

4The width of the peak will depend on the value of T . If T is around Tc the peak will still be
sharp around the threshold [93].
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T and GV , is found to be suppressed and shifted to a higher M in EPNJL model

compared to PNJL one. This is purely due to the entangled vector interaction as the

correlation among the quarks in the deconfined states becomes weaker in EPNJL

model. In particular, the suppression is larger at lower value of T and becomes

smaller with the increase of T .

The right panel (figure 4.8(b)) displays the same quantity for three different values

of µ but at a given T = 250 MeV. Comparison with the left panel reveals that the

variation of the suppression of the SF due to entanglement is strongly temperature

dependent than the chemical potential.
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Figure 4.9: Plot of (a) scaled SF and (b) dilepton rate as a function of M/T for
PNJL (solid line) and EPNJL (dotted line) model for T = 0.25 GeV and µ = 0.2 GeV
at three different choices of GV .

In the left panel (figure 4.9(a)) the SFs in PNJL (solid line) and EPNJL (dotted

line) model at T = 250 MeV and µ = 200 MeV for three different choices of GV

are compared. As evident for any value of GV the strength of the SF for PNJL

model is greater than that in the EPNJL one. In EPNJL model both couplings are

strongly entangled through the mean fields and as one increases the strength of the

vector interaction (GV ) that enhances the strength of the both running couplings.

This in turn provides an enhancement in the strength of the SF that decays to the

dilepton pairs in the medium. The entanglement effect becomes more prominent
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than that with only the scalar type interaction. These features are well reflected

in the right panel (figure 4.9(b)) where the corresponding dilepton rates in PNJL

and EPNJL models are compared. For a given GV there is more lepton pairs at low

mass in both EPNJL and PNJL model compared to the leading order (Born) rate.

Moreover, EPNJL model produces less lepton pairs than PNJL one. This is due to

the entangled vector interaction that reduces the correlation among the quarks in

the medium. However, as the strength of the vector interaction increases, there is a

relatively more dilepton production in both models.

4.5 Conclusions

In general PNJL model contains nonperturbative information of confinement/decon-

finement dynamics through the PL fields in addition to the chiral symmetry break-

ing dynamics. This model also employs the coupling of local scalar type four-quark

interaction as well I-V interaction. The scalar type four-quark coupling strength is

fixed along with three momentum cutoff Λ and bare quark mass m0 to reproduce

known zero temperature chiral physics in the hadronic sector. However, the value

of the vector coupling is difficult to fix and there exists ambiguity about its value as

discussed. Nevertheless, the introduction of vector interaction in heavy-ion physics

is important for study of the spectral property like dilepton rate at non-zero chem-

ical potential. On the other hand, in nuclear astrophysics the formation of stars

with quark matter core depends strongly on the existence of a quark vector repul-

sion. However, in PNJL model both the couplings are considered to be constant in

the literature. Since, this model also contains temporal gluons these couplings, in

principle, should depend on the PL fields. But this dependence is usually neglected

and the correlation of the PL and chiral dynamics is a weak one as it arises through

the covariant derivative that couples the quark and the temporal gauge field in the

model.
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In this chapter we have extended the usual PNJL model by introducing a strong

entanglement between the chiral (σ) and the PL dynamics (Φ), known as EPNJL

model in the literature. The strong entanglement has been introduced via effective

four-quark scalar type interaction that obeys the centre symmetry, Z(3) of pure

SU(3) gauge group. Since the PL and chiral fields run with temperature and chem-

ical potential, the entanglement makes also those coupling run. This entanglement

effect is capable of reproducing the coincidence of chiral (Tσ) and deconfinement

(TΦ) transition temperature within the range provided by the 2-flavour lattice data.

The SF of the vector current-current correlation is related to the production of lepton

pairs, which is considered as an important probe of the deconfined hadronic matter

and has been measured in high energy heavy-ion experiments [39,40]. On the other

hand, at RHIC and LHC energies the maximum temperature reached of a hot and

dense strongly interacting matter created is not very far from the phase transition

temperature Tc and is nonperturbative in nature. In LQCD framework the dilepton

production rate [143] at finite temperature but zero chemical potential has also been

computed using a SF obtained from Euclidean CF through a probabilistic method

that involves certain uncertainties and intricacies [93]. In the previous chapter 3, the

influence of the four-quark scalar and I-V interaction without entanglement effect

on the SF vis-a-vis the dilepton production was studied within PNJL model. In the

present chapter we have updated the SF and the dilepton production rate within

the EPNJL model that takes into consideration the entanglement between the PL

and the chiral dynamics through scalar and vector interaction. In PNJL model

both scalar and vector couplings do not run and the dominance of the PL fields

substantially suppresses the color degrees of freedom around the phase transition

temperature. On the other hand EPNJL model introduces a strong entanglement

between the chiral and the PL dynamics which relatively enhances color degrees of

freedom in the deconfined phase compared to the PNJL model. Because of this the

strength of the vector SF is suppressed and the peak is shifted to a higher energy
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compared to that of PNJL model but the strength is higher than the free one at

low energy. Since the dilepton production is related to the vector SF, it is also

suppressed in EPNJL model compared to the PNJL model but is more compared

to the Born rate (leading order perturbative one) in the deconfined phase. This

indicates relatively less production of lepton pairs at low energy with entangled

vector interaction. However, as the strength of the vector interaction is increased

there is a relative increase in the strength of the SF in both EPNJL and PNJL

model, which also results in a relatively more production in lepton pairs at low

invariant mass.
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CHAPTER 5

Vector meson correlator and the

conserved density fluctuation

In this chapter we compute the Euclidean correlation function (CF) in vector chan-

nel and the conserved density fluctuation associated with temporal CF appropriate

for a hot and dense medium. The study of such conserved density fluctuation is

performed under the influence of isoscalar-vector (I-V) interaction within the ambit

of NJL, PNJL and EPNJL models. The whole discussion is based on two articles:

partly on Vector meson spectral function (SF) and dilepton production rate in a hot

and dense medium within an effective QCD approach, Chowdhury Aminul Islam,

Sarbani Majumder, Najmul Haque and Munshi G. Mustafa, JHEP 1502 (2015)

011 and Vector meson SF and dilepton rate in the presence of strong entanglement

effect between the chiral and the Polyakov loop dynamics, Chowdhury Aminul Islam,

Sarbani Majumder and Munshi G. Mustafa, Phys. Rev. D 92, 096002 (2015).

5.1 Introduction

Fluctuations of conserved charges are considered as appropriate signals for quark-

hadron phase transitions [90–92], which basically bring forth the information about
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the degrees of freedom of the system under consideration. Thus these fluctuations

are important to get a physical picture of the different phases of the strongly in-

teracting matter. Considering the thermodynamical point of view, fluctuations

of conserved charges are associated with susceptibilities. There can be diagonal

and off-diagonal susceptibilities. The diagonal ones provide the correlations among

the similar conserved charges whereas the off-diagonal ones present the same but

for different conserved charges. These fluctuations and the corresponding suscep-

tibilities are extensively studied in LQCD [57, 200–202], HTL perturbation the-

ory [163–165, 168, 203, 204] and in PNJL model [122, 123, 198, 205]. The theoretical

investigations are specifically being encouraged by the current bunch of HIC ex-

periments, in particular beam energy scan, which provide more and more detailed

accounts on fluctuations.

We investigate the conserved density fluctuation associated with the temporal CF.

Quark number density fluctuation is investigated via the quark number suscepti-

bility (QNS) which is defined as the response of the quark number density with

the infinitesimal change in quark chemical potential. As mentioned earlier it can

be calculated from the temporal component of the current-current correlator us-

ing fluctuation-dissipation theorem [102, 142]. We can also obtain it by taking the

derivative of the thermodynamic potential with respect to the quark chemical po-

tential. These two methods are equivalent [179]. The compressibility of a system is

directly related with the QNS at finite quark number density. Inclusions of vector

mesons become particularly important for a system with finite density.

At finite density QNS has been already studied in PNJL model [206]. Here we will

investigate the QNS at finite density with and without the I-V interaction (GV )

for the two lightest flavors. The IV interaction has been considered through the

random phase approximation. The effect of the vector interaction on the QNS has

been critically reviewed in NJL and PNJL models and its implications for the hot
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and dense matter created in the HICs are mentioned. Then we further take our

calculations forward and estimate the QNS in EPNJL model. We also compute

the Euclidean CF in vector channel in NJL and PNJL models. Such correlators

have been investigated in details in LQCD [143, 207, 208] and as well as in HTL

perturbative calculations [137, 163, 165, 209, 210]. The correlator can be calculated

from the polarization diagram.

The chapter is organized as follows: in section 5.2 we briefly recapitulate the math-

ematical tools required for calculating the vector correlator and the QNS from the

temporal correlator for with and without the I-V interaction. Then in section 5.3

we outline the results and finally we conclude in section 5.4.

5.2 Mathematical set up

The mathematical formula for calculating QNS is given in equation (2.59) in chap-

ter 2 through thermodynamic sum rule. There we have both the expressions - one

for obtaining it from the thermodynamical pressure and the other from the temporal

correlator in the vector channel. We have particularly used the second derivative of

pressure with respect to the quark chemical potential. But it can be equivalently

estimated from the temporal correlator [179]. While using the derivative of pressure

with respect to the chemical potential to obtain the QNS within the effective mean

field models, we have to be careful about the fact that the mean fields implicitly

depend on the chemical potential. Thus we can no more take the explicit derivative,

rather we have to take the total derivative with respect to the chemical potential,

which is given by [179]

χq =
d2P

dµ2
q

=
∂2P

∂µ2
q

+
[ ∂

∂µq

(∂P

∂σ

)

+
∂

∂σ

( ∂P

∂µq

)]

· dσ
dµq

+
∂P

∂σ
· d

2σ

dµ2
q

+
∂2P

∂σ2
·
( dσ

dµq

)2

,(5.1)
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with the pressure P obtained from the thermodynamic potential by using P =

−Ω. On the other hand, the vector correlator as well as its spatial and temporal

components separately can be calculated from equation (2.52).

5.2.1 Resummed correlator in ring approximation

The resummed vector correlator is obtained using equation (2.52), where σH(ω, ~q)

has been replaced by the σV in (3.20). The resummed temporal correlator i.e. the

QNS can be obtained in terms of the real part of the temporal CF, C00 following

the equation (2.59). The real part of C00 is obtained (vide appendix D) from (3.13)

as

ReC00(ω, ~q) =
ReΠ00(ω, ~q) +GV

(

ω2

q2
− 1
)

I(ω, ~q)

1 + 2GV

(

ω2

q2
− 1
)

ReΠ00(ω, ~q) +
(

GV (
ω2

q2
− 1)

)2

I(ω, ~q)
, (5.2)

where I(ω, ~q) =
(

ReΠ00(ω, ~q)
)2

+
(

ImΠ00(ω, ~q)
)2
. Now the resummed QNS in ring

approximation becomes

χR
q (T, µ̃) = − lim

~q→0
ReC00(0, ~q) =

χq(T, µ̃)

1 +GV χq(T, µ̃)
, (5.3)

where we have used that lim~q→0 ImΠ00(0, ~q) = 0 and for one-loop the QNS is given

by χq(T, µ̃) = − lim~q→0ReΠ00(0, ~q).

Now, we also note that at GV = 0, the resummed susceptibility in ring approxima-

tion reduces to that of one-loop. To compute the resummed one (5.3), we just need

to compute one-loop (vide figure 3.2) vector self-energy within the effective models

considered here.
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5.3 Results

5.3.1 Vector correlator in PNJL model

The vector CF can be obtained using (2.52) in the scaled Euclidean time τT ∈ [0, 1].

We note that the CF in the τT range is symmetrical around τT = 1/2 due to

the periodicity condition in Euclidean time guaranteed by the kernel cosh[ω(2τT −

1)/2T ]/ sinh(ω/2T ) in (2.52).
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Figure 5.1: Comparison of various scaled Euclidean CF with respect to that of free
field theory, GV (τT )/Gfree

V (τT ), as a function of the scaled Euclidean time τT for
T = 240 MeV with external momentum q = 0, quark chemical potential µ = 0 and
GV /GS = 0. The continuum extrapolated LQCD result is from Ref. [143].

In figure 5.1 a comparison of the ratio of the vector CF to that of free one is displayed

at T = 240 MeV, GV /GS = 0, µ = 0 and q = 0 for NJL, PNJL and the continuum

extrapolated LQCD data [143] in quenched approximation. It is plotted in the τT

range [0, 1/2] because LQCD data are available for the same range. As seen the

NJL case becomes equal to that of free one as there is no effects from background

gauge fields. On the other hand the PNJL results at τT = 0 and 1 become similar

to those of free case because σPNJL
V (ω)/σfree

V (ω) = 1 as ω → ∞. Around τT = 1/2

it deviates maximum from the free case due to the difference in SF at small ω and

thus a nontrivial correlation exists among color charges due to the presence of the
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T=0.3 GeV , Μ=0.1 GeV
q =0.2 GeV
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Figure 5.2: Ratio of Euclidean CF in PNJL model to that of NJL model as a function
of τT at T = 300 MeV, µ = 100 MeV and q = 200 MeV with a set of values of GV /GS .

nonperturbative Polyakov loop (PL) fields. This features are consistent with those

in the SF in figure 3.6 and the dilepton rate in figure 3.8. In contrary, the CF around

τT = 1/2 agrees1 better with that of LQCD in quenched approximation [143].

In figure 5.2, we display the effect of the vector interaction GV in addition to the

presence of the PL fields in QGP through the ratio of the correlation function in

PNJL model to that of NJL model. Here we have displayed the result in the full

range of the scaled Euclidean time τT ∈ [0, 1]. As discussed the ratio is symmetric

around τT = 1/2 and always stay above unity. The ratio increases with the increase

of the strength of the vector interaction. This is due to the fact that PNJL CF is

always larger than that of the NJL case since σPNJL
V (ω, ~q)/σNJL

V (ω, ~q) > 1, and it is

even stronger in particular at small ω (see figure 3.12). This indicates that the color

charges maintain a strong correlation among them due to the presence of both PL

fields and the vector interaction. Thus the vector meson retains its bound properties

in the deconfined phase.

1This is true at low ω with the lattice data as long as we are dealing with the Euclidean
correlator. But when we compare the SF at low ω it differs from that of LQCD. Because of
difficulties in performing analytic continuation in lattice calculation the continuous-time SF is
obtained from discrete Euclidean correlator, using a finite set of data, through a probabilistic
method known as maximum entropy method. Also one needs to rely on some ansatz for the
extraction of SF at low energy in such methods. So the lattice computation of SF involves some
amount of uncertainties.
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5.3.2 Quark number susceptibility in NJL and PNJL mod-

els
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Figure 5.3: Resummed QNS in (a) NJL model and (b) PNJL model at non-zero
chemical potential for two flavor (Nf = 2).

Now, we can calculate QNS associated with the temporal part of the vector SF

through the conserved density fluctuation as given in (5.3). The resummed suscep-

tibility for a set of values of GV at finite quark chemical potential (µ = 100 MeV)

is shown in figure 5.3. For positive vector coupling GV the denominator of (5.3)

is always greater than unity and as a result the resummed susceptibility gets sup-

pressed as one increases GV . Since positive GV implies a repulsive interaction, the

compressibility of the system decreases with increase of GV , hence the susceptibility

as seen from figure 5.3 decreases. We note that the QNS at finite µ shows an im-

portant feature around the phase transition temperature than that at µ = 0 [179].

This is due to the fact that the mean fields (X = σ, Φ and Φ̄) which implicitly

depend on µ contributes strongly as the change of these fields are most significant

around the transition region. This feature could be important in the perspective of

FAIR scenario where a hot but very dense matter is expected to be created. Using

(2.61) one can compute the temporal Euclidean CF associated with the QNS as

GE
00(τT )/T = −χR

q (T ), which does not depend on τ but on T . This study could also

provide useful information to future LQCD calculation at finite µ.
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5.3.3 Quark number susceptibility in EPNJL model

Compressibility of a system is proportional to QNS [102]. So at high temperature

when the susceptibility increases, the compressibility increases along with it and

the system becomes more and more compressible which implies the system being

either attractive or weakly repulsive. Once we include the vector interaction, which

becomes important specifically for a system with finite quark number density, the

susceptibility is governed by the strength of the the vector interaction (GV ). Here in

our calculation we have assumed a repulsive vector interaction. Thus as we increase

its strength the system becomes lesser and lesser compressible and the QNS decreases

(figure 5.3).
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Figure 5.4: Resummed QNS in EPNJL model at non-zero chemical potential for
two flavor (Nf = 2).

Up to this point the line of argument is appropriate, but there is one problem

with the results that we have obtained. In general the QNS should decrease with

the increase of GV but then it should approach to Stefan-Boltzmann limit as one

increases the temperature. It is obvious from the figure 5.3 that this is not the case.

The reason is the inclusion of a constant strength of the vector interaction that

neither depends on the temperature nor on the chemical potential. But in principle,

the coupling strengths (GS and GV both) should depend both on T and µ; since in

QCD the coupling strength runs.
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This problem was supposed to be solved in the EPNJL model, where due to the

entangled vertex the coupling strengths run as shown in figures 4.1(a) and 4.5(a) in

section 4.4 of chapter 4. But from figure 5.4 with running coupling within EPNJL,

one could see that the problem is not fully resolved but becomes less severe.

However, this is because of the choice of the ansatzes (vide equations 2.32 and 2.33)

that we made. At higher temperature Φ and Φ̄ go to unity. Then with the values

of α1 and α2 we considered the coupling strengths can be reduced to 70%, at best,

to their respective initial values. Thus with this form of ansatz, the problem in the

QNS with the inclusion of the vector interaction remains even in the EPNJL model.

One needs to improve on this ansatz.

5.4 Conclusion

In this chapter we have studied the behavior of the vector meson CF and conserved

density fluctuation associated with the temporal vector correlator in a hot and dense

environment. The investigations are performed with and without the I-V interaction.

This interaction is considered using ring resummation known as Random Phase

Approximation.

In absence of the I-V interaction, the CF in NJL model become quantitatively

equivalent to those of free field theory. In case of PNJL it is different from both free

and NJL ones because of the presence of the PL fields that suppress the color degrees

of freedom in the deconfined phase just above Tc. This suggests that some nontrivial

correlation exists among the color charges in the deconfined phase. We note that the

Euclidean CF with zero chemical potential agree in certain domain with the available

LQCD data in quenched approximation. We also discussed the same quantity in

presence of finite chemical potential and external momentum which could provide

useful information if, in future, LQCD computes them at finite chemical potential
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and external momentum.

In presence of the I-V interaction, we note that the response to the conserved number

density fluctuation at finite chemical potential exhibits an interesting characteristic

around the phase transition temperature than that at vanishing chemical potential.

This is because the mean fields (PL fields and condensates etc.) depend implicitly on

chemical potential and so their variations are most significant around the transition

region, in particular for PNJL model.

We have also discussed the issue with QNS in presence of I-V interaction. Some

efforts are also made to resolve the problem by introducing entangled vertex through

EPNJL model. As found that the choices for the ansatz (vide equation (2.32))

available in the literature for the entangled vertex has not yet fully cured the problem

and further work is required in this direction.
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CHAPTER 6

The consequences of SU (3)

colorsingletness

In this chapter we show, using the quantum statistical mechanics, that the SU(3)

color singlet ensemble of a quark-gluon gas exhibits a Z(3) symmetry through the

normalized character in fundamental representation and also becomes equivalent,

within a stationary point approximation, to the ensemble given by Polyakov loop

(PL). We further obtain the PL gauge potential by considering spatial gluons along

with the invariant Haar measure at each space point. This discussion is based on:

The consequences of SU(3) colorsingletness, Polyakov Loop and Z(3) symmetry on

a quark-gluon gas, Chowdhury Aminul Islam, Raktim Abir, Munshi G. Mustafa,

Sanjay K. Ghosh and Rajarshi Ray, J. Phys. G 41, 025001 (2014).

6.1 Introduction:

We aim here in this chapter to use color singlet (CS) model, introduced in chapter

two 2 to study the phase structure of strongly interacting matter created in HICs -

the deconfinement transition specifically. Within CS model we restrict the partition

function (PF) by introducing group theoretical projection operator, which takes
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care of the colorsingletness of physical states. The conservation of baryon number is

also taken care of through the introduction of baryon chemical potential. Once we

have the PF it can be used to study different thermodynamical properties of QCD,

hadronic density of states etc.

As already mentioned we are not interested in studying the thermodynamics, rather

we discuss some of the phenomenological consequences of SU(3) colorsingletness

vis-a-vis PL that may lead to the formation of center domains in QGP produced

in relativistic HICs. The implications of these center domains in the context of

HICs have also been envisaged. This chapter is organized as follows: In section 6.2

we obtain the thermodynamic potential, in section 6.3 we recognize the PL as the

normalized character of SU(3)c and in 6.4 we find out the consequences of center

symmetry and finally we conclude in 6.5.

6.2 Color singlet ensemble and the thermodynamic

potential

To start with we have the color singlet PF (2.41) which is given as

ZS=

∫

SU(Nc)

dµ(g) eΘp , (6.1)

with

Θp = Θq +Θq̄ +Θg

= 2Nf

∑

α

trc ln
(

1 +Rqe
−β(ǫαq −µq)

)

+ 2Nf

∑

α

trc ln
(

1 +Rq̄e
−β(ǫαq +µq)

)

−2
∑

α

trc ln
(

1− Rge
−βǫαg

)

, (6.2)
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where ǫαi =
√

(pαi )
2 +m2

i . Also the quark flavor (Nf), their spin and the chemical

potential µ, and the polarization of gluons are introduced.

We want to obtain the thermodynamic potential from this PF. We define the di-

agonal matrices and their respective characters for both fundamental and adjoint

representations. The finite dimensional diagonal matrix Rq(q̄) in the basis of the

color space represents the image [78, 136] of the group element in the irreducible

representation of SU(Nc) as

Rq = diag
(

eiθ1 , eiθ2 , eiθ3
)

; Rq̄ = R†
q, (6.3)

with their respective characters

χf = trcRq =

Nc
∑

i=1

eiθi; χ†
f = trcR

†
q =

Nc
∑

i=1

e−iθi . (6.4)

Similarly, the character in adjoint representation is obtained as

χadj = χfχ
†
f − 1 = trcRg = trc

[

diag
(

1, 1, ei(θ1−θ2), e−i(θ1−θ2),

ei(2θ1+θ2), e−i(2θ1+θ2), ei(θ1+2θ2), e−i(θ1+2θ2)
)]

(6.5)

We also define normalized characters by the respective dimension of the fundamental

and adjoint representations as

Φ =
1

Nc
trcRq , Φ̄ =

1

Nc
trcR

†
q , (N2

c − 1)ΦA = N2
cΦΦ̄− 1 . (6.6)

We note here that the magnitude of the normalized character, |Φ|, in fundamental

representation is related to (i) the Z(3) symmetry as shown in the section 6.4 and

(ii) thermal expectation value of the PL as argued in the section 6.3, in details.

With all these the Vandermonde term in (2.39) can now be written in terms of Φ
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and Φ̄ as (vide appendix E)

3
∏

i>j

∣

∣eiθi − eiθj
∣

∣

2
= 27[1− 6ΦΦ̄ + 4(Φ3 + Φ̄3)− 3(ΦΦ̄)2] = 27 H(Φ, Φ̄) , (6.7)

for SU(3). Further, this is in general not possible for Nc > 3 as there are more than

two independent parameters. Now the Jacobian for variable transformation from

{θ1, θ2} to {Φ, Φ̄} can be obtained as

J(Φ, Φ̄) = (1/9)
√

27H(Φ, Φ̄). (6.8)

In the infinite volume V , one also needs to replace the discrete single particle sum

by an integral as
∑

α → (V/(2π)3
∫

d3p .

After performing the color trace of the matter and gauge parts, and expressing in

terms of the characters of the fundamental and its conjugate, equation (6.1) becomes

ZS =

∫

SU(3)

dΦ dΦ̄ eΘq+Θq̄+Θg+ΘH ;

Θ = Θq +Θq̄ +Θg +ΘH

= 2V Nf

∫

d3p

(2π)3
ln
[

1 + e−3βǫ+q +Nc

(

Φ+ Φ̄e−βǫ+q
)

e−βǫ+q
]

+2V Nf

∫

d3p

(2π)3
ln
[

1 + e−3βǫ−q +Nc

(

Φ̄ + Φe−βǫ−q
)

e−βǫ−q
]

−2V

∫

d3p

(2π)3
ln
(

1 +

8
∑

m=1

am e
−mβǫg

)

+
n

2
lnH. (6.9)

with ǫ±q = ǫq ∓ µ and the coefficients am are given by

a1 = a7 = 1−N2
c Φ̄Φ , a8 = 1 ,

a2 = a6 = 1− 3N2
c Φ̄Φ +N3

c

(

Φ̄3 + Φ3
)

,

a4 = 2
[

−1 +N2
c Φ̄Φ−N3

c

(

Φ̄3 + Φ3
)

+N4
c

(

Φ̄Φ
)2
]

,

a3 = a5 = −2 + 3N2
c Φ̄Φ−N4

c

(

Φ̄Φ
)2
. (6.10)
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We note here that the square of the Vandermonde determinant in (2.39) enters at

each point in space in the action. So, in the PF the logarithm of the product of the

Vandermonde term should be proportional to n as ΘH = n ln
√
H , assuming n is

the number of points in the space. Also a constant normalization factor is dropped

as it is subleading.

Now performing the integrations using the method of stationary points, one can

write

Z0
S = eΘq+Θq̄+Θg+ΘH

∣

∣

Φ→Φ0
Φ̄→Φ̄0

, (6.11)

where the stationary values of Φ0 and Φ̄0 can be obtained from the extremum con-

ditions as

∂Θ

∂Φ
= 0 ;

∂Θ

∂Φ̄
= 0 . (6.12)

The color singlet thermodynamic potential density at the stationary points in infinite

volume limit becomes

Ω0
S = −T

V
lnZ0

S = −T
V

[

Θq +Θq̄ +Θg +ΘH
]

Φ→Φ0
Φ̄→Φ̄0

=
[

Ωq + Ωq̄ + Ωg − κT lnH
]

Φ→Φ0
Φ̄→Φ̄0

= ΩPL(Φ0, Φ̄0). (6.13)

This exhibits that the SU(3) color singlet ensemble of a quark-gluon gas is equivalent

to that of PL with quarks. A close inspection of quark (Ωq), antiquark (Ωq̄) and the

Vandermonde terms in equation (6.13) reveals that they match with the respective

terms in the thermodynamic potential in PNJL model as given in equation (2.28) in

chapter 2. The PL gauge potential is obtained here as Ωg −κT lnH , by considering

the spatial gluons in the ensemble. We also note that the gluons as quasiparticles

in PL model was also studied in some other context [74, 211–213]. But in PNJL

model [69, 70, 116, 122, 123, 176, 198, 205, 214–217] the form of the gauge potential
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has usually been used by fitting pure gauge lattice data as discussed in equation

(2.25). We emphasize that here the thermodynamic potential has been obtained

phenomenologically by imposing SU(Nc) color singlet restriction on a quark-gluon

gas.

We note here that the calculation begun with a discussion of color neutrality ef-

fects in the free quark-gluon gas [10,76,78,79,128–133,218–223]. These works were

concerned with global color neutrality and the effect of which becomes irrelevant

for a free gas in the limit where volume goes to infinity. Here, the extension to

local neutrality is considered using Haar measure at every spatial point to address

the effect of confinement. Nevertheless, the well-known calculations of the effective

potential for PL to one loop in perturbation theory [109, 114, 177, 178] show that

the local Vandermonde contribution due to the Haar measure is canceled out when

spatially longitudinal gluon fields (A0(t,x)) are integrated over. This becomes a

problem to use local Haar measure as the basis for a fundamental theory of con-

finement and presently it is not known yet how to use it. On the other hand,

allowing PL field where A0(t,x) is constant (see next section) as x → ∞, the Van-

dermonde term contributes to the PF in (6.9) and thus in the potential in (6.13).

We further note that the contribution from the Vandermonde term survives infi-

nite volume limit since the constant, κ = n/2V , is the ratio of two large numbers

leading to a finite value which has to be determined from the lattice equation of

state of pure SU(3) gauge theory. This value is found as κ ∼ 0.0075 GeV3 in the

literature [69, 70, 116, 122, 123, 176, 198, 205, 214–217]. Now, the potential in (6.13)

has been considered [69, 70, 116, 122, 123, 176, 198, 205, 214–216] as a starting point

for phenomenological models of quark-gluon thermodynamics and is also coupled

to chiral model [67, 68, 102, 142] to study extensively the deconfinement and chiral

dynamics together [69, 70, 116, 122, 123, 176, 198, 205, 214–216].

Now, in the next section we discuss some of the phenomenological consequences
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of SU(3) colorsingletness vis-a-vis PL that may lead to the formation of center

domains [110–113, 224–226] in quark-gluon plasma produced in relativistic heavy-

ion collisions.

6.3 Polyakov Loop and normalized character in SU(3)

The Polyakov loop (L(~x)) from the timelike Wilson line is given in subsection 2.1.2.1

of chapter 2 through the equation (2.22). We recall here some of the important as-

pects of the Polyakov: the normalized trace over the Polyakov loop is known as

Polyakov loop field Φ which transforms under the global Z(Nc) symmetry as a field

with charge one as Φ → ei2πj/NcΦ with j = 0, 1, · · · , (Nc − 1). It is also related

with the free energy of a quark-antiquark pair and acts as an order parameter for

confinement-deconfinement phase transition associated with the spontaneous break-

ing of Z(Nc) symmetry, the center symmetry of SU(Nc).

In the next section, it will be demonstrated in details that the magnitude of the

normalized character in the fundamental representation of SU(3)c exhibits color lo-

calized and ionized domains of center symmetry, Z(3) with three rotational angles

(viz., 0, 2π/3, 4π/3). This establishes that the normalized character in the funda-

mental representation of SU(3)c and the PL field are equivalent. We further note

that the temporal gauge field A0 can be completely characterized [213] by two diag-

onal generators1 as A0 = A3
0λ3 + A8

0λ8. Now, assuming a Gaussian approximation

in equation (6.6), one can write [110–113, 217]

|Φ| =

∣

∣

∣

∣

1

3
trcRq

∣

∣

∣

∣

=
√

ΦΦ̄ ≈ exp

[

− g2

2T 2
trc〈A2

0〉
]

. (6.14)

1Diagonal in eigenvalues of SU(Nc) group in terms of class parameter θi. Since θi obeys
∑Nc

i θi = 0(mod2π) ensuring that only (Nc−1) parameters subgroups associated with two diagonal
generators. For SU(3) only two parameters θ1 and θ2 are sufficient to describe the the finite
dimensional diagonal matrix Rq(q̄) in (6.3), which equivalent to PL matrix.
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Figure 6.1: A 3D-plot of |Φ(θ1, θ2)|, i.e., the normalized character in the fundamental
representation of SU(3) as given in (6.6) within −π ≤ θ1, θ2 ≤ π.

The dynamics of the magnitude of the normalized character, |Φ|, in fundamental

representation is governed by the thermal average of the square of the static temporal

gauge field A0. In the color confined phase |Φ| = 0 and the background temporal

gauge field fluctuates with high amplitudes whereas in the color deconfined phase

|Φ| = 1 and the fluctuations of the gauge field almost disappears. This background

gauge field in the form of PL also interacts nonpertubatively with the quarks and

gluons in the thermal medium as given in (6.13).

6.4 Normalized character, center symmetry and

consequences

In figure 6.1 a three dimensional view of the magnitude of the normalized character in

fundamental representation of SU(3), |Φ(θ1, θ2)|, is shown within the domain −π ≤

θ1, θ2 ≤ π. It has three maxima for (θ1, θ2) = (0, 0), (2π/3, 2π/3), (−2π/3,−2π/3).

There are also three minima (and three mirror images exist if one interchanges
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θ1 ↔ θ2) for (θ1, θ2) = (0, 2π/3), (0,−2π/3) and (2π/3,−2π/3). |Φ| has a three fold

degeneracy connected by a rotation of 2π/3 in both θ1 and θ2. A Monte Carlo

simulation of complex Φ is also displayed in figure 6.2 in a Argand plane with

−π ≤ (θ1, θ2) ≤ π. This shows a three pointed star in a circle of unit radius, in

which each point can be rotated by a phase 2π/3 except the origin. This clearly

indicates that Φ in fundamental representation of SU(3) has a center symmetry,

Z(3) with three rotational angles (viz., 0, 2π/3, 4π/3 or −2π/3 ). This can also

be understood from the invariant Haar measure expressed in terms of Φ in (6.7).

Now, the three minima in figure 6.1 uniquely correspond to the center of the circle

at Φ = 0 in figure 6.2, which is Z(3) symmetric phase or confined phase at low T .

On the other hand, the three maxima in figure 6.1 correspond to the three pointed

tips in figure 6.2 representing the spontaneously broken phase or deconfined phase

of Z(3) at very high T . Φ can act as an order parameter for deconfinement phase

transition. In figure 6.3 a three dimensional plot of ΦA is also displayed that exhibits

same features as figure 6.1 except minima appear in negative values, which could be

understood from (6.6). This clearly suggests that the magnitude of the normalized

character in the fundamental representation of SU(3) exhibits the center symmetry,

Z(3).

We also noticed some more interesting features of Φ in (θ1, θ2)-plane. In figure 6.4

a Monte Carlo simulation of the occurrence probability, P (|Φ|), of |Φ(θ1, θ2)| is dis-

played in SU(3) parameter space. This plot indicates that the maximum probability

for |Φ| to occur when |Φ| = 1/3 indicating a phase transition from a color confining

phase to a color deconfining phase, which has also been observed in LQCD calcu-

lation [227]. This could be better viewed from figure 6.5 which is a contour plot

corresponding to figure 6.1. As T increases, Φ increases [69, 70, 116, 122, 123, 176,

198,205,214–216] from zero in the confined phase and reaches unity for ideal gas. In

the domain 0 < |Φ| < 1/3, the color neutral states start decomposing but prefer to

reside in Z(3) minima and its mirror images minima. Color charges (partons) with
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Figure 6.2: A Monte Carlo simulation of complex Φ(θ1, θ2) in Argand plane for
which θ1 and θ2 are chosen randomly in the domain −π ≤ θ ≤ π.

Figure 6.3: Same as figure 6.1 but for ΦA(θ1, θ2).
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Figure 6.4: A Monte Carlo simulation, P (Φ), corresponds to the occurrence prob-
ability of |Φ(θ1, θ2)| in SU(3) parameter space (θ1, θ2). The values of θ1 and θ2 are
chosen randomly within the domain −π ≤ θ1, θ2 ≤ π and then the obtained value of
|Φ| is mapped in a given Φ bin, which is then normalized by the area of the bin.

thermal momentum in this domain cannot overcome the barriers provided by the

large amplitude of the thermal fluctuations of the background gauge field in (6.14).

This domain of |Φ| is shown by red dots (|Φ| ∼ 0) to purple triangles (|Φ| ∼ 0.3) in

figure 6.5. As long as such states are inside the domain of Z(3) minima, a strong

color correlation exists among the color charges like a liquid [217], because the mean

free path of the color charges is of the order of size of the domain in Z(3) min-

ima. In this |Φ| domain, the normalized character in adjoint representation varies

as −1/8 ≤ ΦA < 0 which is represented in figure 6.6.

Now for |Φ| = 1/3, the Z(3) minima disappear and get connected to each other

in Z(3) space, which is represented by the yellow mess in figure 6.5. This causes

P (|Φ|) to be maximum in figure 6.4 exhibiting a long range color correlation and

the thermal fluctuations of the background gauge field attain a critical value as

the separating barriers of minima become flat and wider. Here ΦA = 0 as is also

represented by the blue mess in figure 6.6.

When 1/3 < |Φ| ≤ 1, the correlated Z(3) domains start to get uncorrelated and the

ionization of Z(3) color charges begin which is evident from equivalued |Φ| lines in
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Figure 6.5: A 2D projection of |Φ| in θ1 and θ2 plane in which each color cor-
responds to a equivalued |Φ|. The red dots to purple triangles correspond to
|Φ| ∼ 0, 0.1, 0.2, 0.3 whereas sea-blue lines to blue dots correspond to |Φ| ∼
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. The equivalued mess connected by yellow triangles cor-
responds to |Φ| ∼ 1/3.

Figure 6.6: Same as figure 6.5 but for ΦA. The equivalued mess connected by blue
triangles is for ΦA = 0. From the blue mess to purple blobs, ΦA increases by a step
of 0.1. The red dots are for ΦA ∼ −1/8 whereas the green triangles ΦA ∼ −0.05.
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Figure 6.7: The projection of Φ in Argand plane for a fixed value, which are noted
in the respective plots. This shows a strong color correlation in the range 0 ≤ Φ ≤ 1/3
and ionization of color states in the range 1/3 < Φ ≤ 1.

figure 6.5 starting from sea-blue (|Φ| ∼ 0.4) to green lines (|Φ| ∼ 0.9) at a step of 0.1.

When |Φ| ∼ 1 a complete ionization of Z(3) charges take place and they reside at

those maxima in figure 6.1 which are also represented by blue blobs in figure 6.5. This

ionization can also be seen in figure 6.6 through purple equivalued ΦA lines to purple

blobs in the range 0.1 ≤ ΦA ≤ 1. So, in the color deconfined phase (1/3 < |Φ| ≤ 1),

there are formation of domains which are also separated by the nonperturbative

interaction of the background gauge fields. These domains of ionized color charges

can act as scattering centers in the deconfined phase lead to jet quenching. A hard

jet after losing energy through gluon emission by the scattering with those ionized

domain of color charges [217] in deconfined phase (1/3 < |Φ| ≤ 1) can enter the

confining phase (0 < |Φ| ≤ 1/3) and hadronize by recombination [132, 228, 229].

All those features of center symmetry discussed above are also reflected in complex

Φ plane in figure 6.7 indicating a snap shot of color localized and ionized domains

of Z(3). This clearly shows that there are center domains formation in the two
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distinct regions of |Φ|, which are 0 < |Φ| ≤ 1/3 (confining domain) due to the

center symmetry Z(3), and 1/3 < |Φ| ≤ 1 (deconfining or ionization domain) due to

spontaneously breaking2 of the center symmetry Z(3). The broken center domains

formed in deconfining phases (1/3 < |Φ| ≤ 1 ) will be separated by domain walls

as they are distinguished by the phases 2πj/3 with j = 0, 1, 2. Nevertheless, the

formation of the center domains, the path of ionization and the distribution of

the color charges from confining phase to deconfining phase or vice-versa will also

depend on the nature of the color singlet potential for pure gauge (where Z(3)

is spontaneously broken) and also that with matter field (where Z(3) is explicitly

broken), which we discuss below using (6.13).

6.4.1 Gauge Sector

The color singlet gauge potential is obtained in (6.13) as

Ωg
S = Ωg − κT lnH

= 2T

∫

d3p

(2π)3
ln

(

1 +

8
∑

m=1

am e
−mβǫg

)

− κT lnH, (6.15)

where the first term describes the interaction of the spatial gluons with the PL

(background temporal gauge field A0 in (6.14)) at finite T . The second term known

as Vandermonde term comes from invariant Haar measure. The Z(3) domains are

plentiful (viz., equation (6.10)) as the gluon dynamics are solely governed by the

thermal fluctuation of the background gauge field A0 in (6.14).

In figure 6.8 the color singlet gauge potential in a complex Φ plane is displayed for

three temperatures. The left panel corresponds to 3-dimensional plots whereas right

panel represents corresponding contour plots. As can be seen the gauge potential,

2Though also the Z(3) symmetry is explicitly broken with dynamical quarks unlike pure gauge
sector, yet it can be regarded as an approximate symmetry and the PL expectation value is still
useful as an order parameter as we will see later.
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below T < 270 MeV, has only one global minimum whereas for T ≥ 270 MeV, it

shows three minima representing a spontaneously broken Z(3) phase for pure gauge.

The corresponding contour plots also display the same features. So, T < 270 MeV

is color confining phase, where Z(3) is unbroken as there is no ionization of color

charges. On the other hand T ≥ 270 MeV there are ionization of color charges as

the center symmetry is spontaneously broken and those charges reside at the three

minima in the potential in figure 6.8 or three maxima in color space in Figs. 6.1

and 6.5 separated by distinct phases 2πj/3 with j = 0, 1, 2 and also by domain

walls [217]. T ∼ (265 − 270) MeV, possibly indicates a phase transition for pure

gauge and is in agreement with lattice result [117].

In asymptotically high temperatures (T ≫ Tc), Φ, Φ̄ → 1, 〈A2
0〉 → 0, one recovers

free gluon gas from ΩPL
g as

Ωg; Φ,Φ̄→1
S = 2(N2

c − 1)T

∫

d3p

(2π)3
ln
(

1− e−βǫg
)

, (6.16)

where Nc = 3. The Vandermonde term due to the invariant Haar measure disappears

and the spatial gluons are completely ionized.

At low temperature (T ≪ Tc), the amplitude of 〈A2
0〉 is high and Φ → 0, Ωg

S becomes

Ωg; Φ,Φ̄→0
S = 2T

∫

d3p

(2π)3

[

ln
(

1− e−Ncβǫg
)2

+ln
(

1− e2πi/Nce−βǫg
)

+ln
(

1− e−2πi/Nce−βǫg
)]

, (6.17)

where the color charges are frozen through color-singlet states in the confining do-

main. Now (6.17) can be viewed in the following way:

(i) The first term indicates that the PL confines Nc number of spatial gluons in

a same energy state representing a glueball. There are two such copies which is

consistent with SU(3) gauge theory as 8⊗ 8⊗ 8 generates only two singlet glueball

states. Obviously, the Z(3) charge is frozen in the color singlet glueballs through
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Figure 6.8: Left Panel: A 3D plot of Ωg − κT lnΘH in a complex Φ plane for
T = 50, 270, and 350 MeV and κ = 0.0075 GeV3. Right Panel: Corresponding contour
plots.
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the localization of Z(3) charge in the global Z(3) minimum in figure 6.8. The first

term is negative which generates positive pressure in QCD confined object.

(ii) The remaining two spatial gluons in the second and third terms are conjugate

to each other but distinguished by Z(3) phase. The potential, combining this two

spatial gluons with Z(3) phases, can then be written as

2T

∫

d3p

(2π)3
ln
[(

1− e2πi/Nce−βǫg
) (

1− e−2πi/Nce−βǫg
)]

= 2T

∫

d3p

(2π)3
ln
(

1 + e−βǫg + e−2βǫg
)

, (6.18)

which is a positive definite quantity. Such states, may be condensates, are produced

spontaneously in a nonabelian gauge theory as the pressure generated by this two

spatial gluons in terms of the center group Z(3) is negative compared to the confined

object (first term in (6.17)). This two gluons should not contribute directly to

the thermodynamics in a confined phase. Rather they provide a nonperturbative

ground state pressure which is negative and unbound from below that can be viewed

as a general confining background of strong interaction. In LQCD calculations of

equation of states this confining background is removed so that the pressure starts

from zero or positive value in the confined phase (first term in (6.17)), i.e., in the

low temperature phase (T ≪ Tc).

6.4.2 Matter sector

The full color singlet potential in presence of matter field is given by (6.13) as

ΩS = Ωq + Ωq̄ + Ωg − κT lnH. (6.19)
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Figure 6.9: Left Panel: A 3D plot of full potential Ω = Ωq + Ωq̄ + Ωg − κT lnH
in a complex Φ plane for T = 140, 149, 155, 160, 170 and 250 MeV with µ = 0 and
κ = 0.0075 GeV3. Right Panel: Corresponding contour plots.

The Z(3) symmetry with quarks and antiquarks in the full potential is explicitly

broken under the rotation of Z(3) since they also carry the Z(3) charge. This can

be viewed from figure 6.9 that displays a plot of ΩS in a complex Φ plane for a

set of temperatures. The left panel in figure 6.9 corresponds to 3-dimensional plots

whereas right panel corresponds to contour plots in a complex Φ plane. In the range

0 < T < 140 MeV, the potential has only one minimum (not shown here in figure 6.9)

that apparently represents Z(3) global minimum. This is because the Z(3) color

charges are still frozen in hadrons in the confining domain. In the temperature

domain 140 < T (MeV) < 150, there is still one minimum but has moved away from

the Z(3) center and does not remain symmetric under Z(3) rotation 2π/3. Here, the

mean free path of the color charges is determined by the effective size of the Z(3)

domains [217]. For 150 ≤ T (MeV) < 170, the potential shows one global minimum

with larger depth and two local minima with smaller but uneven depth. This implies

that all three minima are not symmetric under the Z(3) rotation 2π/3. This is unlike

the pure gauge case in figure 6.8, an indication of explicit Z(3) symmetry breaking

in presence of dynamical quarks. In this region 150 ≤ T (MeV) < 170 the mean free

path of the color charges begin to increase as they tend to move from local minima

to energetically favorable global minimum.

Interestingly, the explicit symmetry breaking due to the presence of the matter
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fields leads to a metastable state in the temperature range (145 ≤ T (MeV) ≤ 170)

and beyond which the system crosses smoothly to the deconfined phase. So, the

concept of Tc is not very well defined and LQCD calculations estimate it through

various observable 3 and find in the range (147−160) MeV. Our observation of Tc ∼

(165−170) MeV where the instability of the metastable minima stabilizes due to the

expansion of the domains as can be seen clearly from the contour plots in the right

panel of figure 6.9. Like gauge sector the depth of all three minima becomes almost

symmetric for T ≥ 170MeV as the domains expand with temperature. The color

charges, irrespective of their nature, begin to reside at those minima in figure 6.9

for T ≥ 170 MeV. These domains are separated by non-perturbative domain walls

even well above Tc because the fluctuations of the background gauge field are still

nonzero. Moreover, the mean free path of the color charges becomes of the order

of the effective size of these domains [217]. Since the domains expand, around

T ≥ Tc the domain size is usually smaller that corresponds to shorter wavelength

appropriate for hydrodynamics to be applicable whereas the perturbative QCD may

be applicable at high T as the domain size increases. There will also be plenty of

domains at high T due to the fluctuations of the background gauge field. In the color

deconfined phase these domains as well domain walls act as scattering centers that

cause high energy jet to lose energy through gluon radiations and get quenched [217].

In the asymptotically high temperature (T ≫ Tc), equation (6.19) becomes

ΩΦ,Φ̄→1
S = −2NfT

∫

d3p

(2π)3
ln
(

1 + e−β(ǫq−µ)
)Nc

−2NfT

∫

d3p

(2π)3
ln
(

1 + e−β(ǫq+µ)
)Nc

+ΩPL;Φ,Φ̄→1
g , (6.20)

3The analysis of HISQ/tree and asqtad action by HotQCD collaboration give a consistent re-
sults [188, 189] in the continuum limit Tc = (159± 9) MeV from the peak of susceptibilities. The
Wuppertal-Budapest collaboration [190] using stout action found Tc = 147(2)(3) MeV, 157(3)(3)
MeV and 155(3)(3) MeV from the peak position of susceptibility, and inflection points in chiral
and renormalized chiral condensates.
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where Nc = 3. It represents the thermodynamic potential for a free colored quark,

antiquark and gluon gas at high temperature, i.e, the color charges are completely

ionized and reside at those minima in potential of figure 6.9 or equivalently at those

maxima in color space of Figs. 6.1 and 6.5.

At low temperature (T ≪ Tc), the potential with matter part can be written as

ΩPL;Φ,Φ̄→0 = −2NfT

∫

d3p

(2π)3
ln
(

1 + e−βNc(ǫq−µ)
)

−2NfT

∫

d3p

(2π)3
ln
(

1 + e−βNc(ǫq+µ)
)

+ΩPL;Φ,Φ̄→0
g . (6.21)

This represents the thermodynamic potential for a composite color singlet object

containing three quarks(antiquarks) in a same color state with the same energy. So

is for gluons as discussed earlier. One can also combine appropriate terms in (6.21)

to get mesons, baryons, hybrid mesons, glueballs etc. In other words, the SU(3)

color singlet restriction vis-a-vis PL dynamically confines three colored charges in a

same energy state, which finally forms a color neutral object like baryon and glueball.

This is because color charges get frozen in color singlet states like hadrons in the

global minimum when T ≪ Tc . This essentially boils down to the fact that the

SU(3) color singlet restriction vis-a-vis PL dynamically provides the basis for the

recombination of partons for hadronization from quark-gluon plasma when it cools

down below Tc. In Refs. [132] the colorsingletness has explicitly shown to provide

the natural explanation of the scaling law (of the valence partons) of the elliptic

flow of the identified hadrons in heavy-ion collisions, a direct evidence of deconfined

phase [41, 228, 229].
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6.5 Conclusion

We show that the color singlet ensemble of a quark-gluon gas becomes equivalent to

that of PL model within a stationary point approximation. The calculation is based

on quantum statistical mechanics with a global SU(3) symmetry but considering

the Haar measure at each spatial points to take into account the confinement effect.

The normalized character in fundamental representation of SU(3) exhibits center

symmetry, Z(3), of SU(3) akin to PL. In the process, we have also obtained pure

gauge potential explicitly.

The color singlet gauge potential shows center symmetry which is spontaneously

broken in high temperature phase (T ≥ 270 MeV). When matter field is added

the center symmetry is found to be broken explicitly, which leads to a metastable

state in the temperature domain 145 ≤ T (MeV) ≤ 170. The instability of the

metastable state stabilizes for T ≥ 170MeV and there are domains formed in the

deconfined phase. We also discussed the phenomenological consequences of these

center domains, both in pure gauge as well as with dynamical quarks, on color

confining-deconfining phase transition or vice-versa in QCD, through the color sin-

glet vis-a-vis PL potential. The center symmetry dictates that the confined phase

appears as a color singlet object from the dynamical recombination of three par-

tons as given in (6.21), plus a confining background. This would solely describe the

thermodynamic properties of color singlet structures like baryon, antibaryon, meson

and glueball. Most of the effects of heavy-ion collisions: non-perturbative nature of

the deconfined phase, fluid nature, jet quenching, recombination of hadronization

etc can be understood in terms of the center domains. More calculations in this di-

rection are required to make quantitative predictions on the consequences of center

domains in heavy-ion phenomenology.
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Summary and prospect

The phase diagram of strong interaction, as understood so far through QCD, is a

complex one with many exotic phases. QGP, a strongly interacting hot and/or dense

medium, is one of them which can be created with the currently available collider

facilities known as HIC. In this dissertation we have studied some of the character-

istics of this QGP phase. Such investigations have huge physical implications, since

QGP is believed to have existed during the evolution of the early universe and is

also presumed to be there in the core of neutron stars. Apart from that, knowledge

of such strongly interacting phenomena also leads to a better understanding of other

strongly correlated systems in nature.

The experimental evidence of asymptotic freedom and the success of standard model

in the QCD sector, make us all believe that QCD is the theory of strong interaction.

But still, there are some problems associated with the QCD. Because of its non-

perturbative nature, the equations of motion arising from the Lagrangian of QCD

cannot be solved exactly throughout the energy scale. The coupling constant, which

runs with the energy inversely, becomes too large at low energy to be solved pertur-

batively. The failure of perturbative method poses serious problem in understanding

the strong interaction phenomena at low energy scale – specifically the formation of
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hadrons from the quark degrees of freedom.

There is a first principle numerical method, known as lattice QCD (LQCD), which

can solve the QCD Lagrangian exactly and can also describe the hadronic spectra

starting with quarks and gluons. But this method is very costly and time consuming

and also has some inherent problem at finite density, which is so far not resolved in

a desired manner. So this prohibits the application of LQCD throughout the regime

a hot and dense system.

This is exactly where the applications of effective QCD models become useful. Since

these are effective models they try to mimic QCD as closely as possible, particularly

the hadronic properties are well reproduced by them. There are many such models.

Here we work with the NJL model. The spontaneous chiral symmetry breaking is

well taken care of by it. Apart from the chiral symmetry there is another important

phase transition relevant for QGP – known as confinement-deconfinement transition.

This confinement effect is not considered in the NJL model. To take it into account,

NJL model is further augmented through the inclusion of a background gauge field

in its Polyakov loop extended version, known as PNJL model. A major portion of

the works done in this thesis uses these two models. PNJL model can further be

extended by considering an entangled vertex and the incorporating model is known

as entangled PNJL (EPNJL) model. In this model the coupling constants run with

the temperature and chemical potential due to the entangled vertex. We use another

effective model where we exploit the quantum statistical nature of QGP and the

symmetries associated with it. Particularly the SU(3)C symmetry is emphasized

through a group theoretical projection operator. This projection allows only the

color singlet physical states to exist and we call such effective model as color singlet

(CS) model.

Using the effective models we study the correlation function (CF) and the spectral

properties associated with it. We know that the hadronic properties are embed-
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ded in the CFs. We have particularly calculated the vector meson current-current

CF. The spatial part of the vector current CF is related with the dilepton multi-

plicity. The lepton pairs, having a longer mean free path, leaves the fireball with

minimum interaction and thus carrying the undistorted information. This is why

they have been considered as a reliable signal of QGP. Then we also exploit the

temporal component of the vector CF and the associated conserved quark number

density fluctuations. Thermodynamically this fluctuation is expressed in terms of

susceptibility called as quark number susceptibility (QNS). QNS is also judged as

an important probe for quark-hadron phase transition, which rises sharply in the

transition region.

In chapter 3 we explore the vector meson CF with and without the isoscalar-vector

(I-V) interaction. We use a resummation scheme known as ring approximations for

incorporating the I-V interaction, which becomes important specially for a system

at finite quark density. First we study the behaviour of the mean fields both in

absence and in presence of I-V interaction. Then we investigate the vector spectral

function (SF) and extract the dilepton rate. Without the I-V interaction we observe

that the SF and the associated dilepton rate in NJL model becomes quantitatively

equal to that in free field theory. But in the PNJL model both quantities are

enhanced in the deconfined state as compared to the free field theory or NJL model.

This happens because of the presence of Polyakov loop field that suppress the color

degrees of freedom in the deconfined phase just above Tc. We compare our findings

with the available lattice data. Then the calculation is repeated again with the

I-V interaction being included. It is observed that such inclusion further suppresses

the color degrees of freedom up to a moderate value of the temperature above Tc

implying a stronger correlation among the color charges in the deconfined phase.

This suppression is reflected in the corresponding dilepton plot with the increase in

dilepton rate. As a prospect of this investigation we can further explore the photon

rate in the ambit of these effective models. This will be interesting since photons
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are also considered as a trustworthy signal for QGP.

In chapter 4 we revisited the calculation done in chapter 3 in an entangled environ-

ment where the chiral and the confinement dynamics are strongly correlated through

some effective vertices. The choices for the effective vertices are done following some

ansatzes which are guided by the symmetry principle, namely the chiral and Z(3)

symmetries. Through such vertices the coupling constants become dependent on PL

fields and in turn on temperature and chemical potential. These dependence leads

to the running of the coupling constants. We have investigated the implications of

such running coupling constants on the SF and the corresponding dilepton rate and

compare them with those in PNJL model. Because of the strong entanglement the

color degrees of freedom in the deconfined phase gets enhanced as compared to the

PNJL model. This in turn suppresses the strength of the vector SF and the peak

is shifted to a higher energy compared to that of PNJL model but the strength

is higher than the free one at low energy. This effect is expectedly reflected in the

corresponding dilepton rate plots where the rate is suppressed in EPNJL model com-

pared to the PNJL model, though it is higher as compared to the Born rate in the

deconfined phase. This indicates that the entanglement effect leads to a relatively

less production of lepton pairs at low energy.

Then we turn our attention to the Euclidean correlator in vector channel and the con-

served density fluctuation associated with temporal correlator in chapter 5. These

quantities, particularly the QNS, are important to understand the properties of the

deconfined nuclear matter. These quantities are explored both in presence and ab-

sence of the I-V interaction. In absence of the I-V interaction, the CF in NJL model

become quantitatively equivalent to those of free field theory. In case of PNJL it

is different from both free and NJL ones because of the presence of the PL fields

that suppress the color degrees of freedom in the deconfined phase just above Tc,

which suggests that some nontrivial correlation exist among the color charges in the
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deconfined phase. On the other hand, in absence of I-V interaction the QNS rises

sharply in the crossover region and then saturates to the Stefan-Boltzmann limit at

higher value of temperature. This happens for all the three effective models we have

used textendash NJL, PNJL and EPNJL. The sharp rise remains there once we

include the I-V interaction but it never reaches or shows the tendency to approach

the Stefan-Boltzmann limit with the increase of temperature. It was expected that

with the help of entangled vertex this problem will be eradicated. But we showed

that with the available choices of ansatzes for the effective vertices this problem

persists. This leaves us with the scope of guessing proper form of ansatzes that will

eventually remove the problem. As we have discussed about the fluctuations it is

also noteworthy that so far chiral susceptibility has not been explored in the PNJL

model environment. There should be some attempt for this.

In the concluding chapter 6 we have made use of the quantum statistical nature of

the QGP restricted by the SU(3)C symmetry. This symmetry restriction allows the

existence of only color singlet physical states. We show here that the color singlet

ensemble of a quark-gluon gas becomes equivalent to that of PL model within a

stationary point approximation. It is also found that the normalized character in

fundamental representation of SU(3)C exhibits center symmetry, Z(3), akin to PL.

We further explore the deconfinement phase transition in the ambit of CS model.

What we found is that the pure gauge potential shows center symmetry which is

spontaneously broken in high temperature phase (T ≥ 270 MeV). As we add the

quarks into the system the center symmetry is found to be broken explicitly, which

leads to a metastable state in the temperature domain 145 ≤ T (MeV) ≤ 170. The

instability of the metastable state stabilizes for T ≥ 170MeV and there are domains

formed in the deconfined phase. We discuss in details the implications of these

domains both for pure gauge theory and the one with dynamical quarks. Many of

the characteristics of the fireball created in HICs such as non-perturbative nature

of the deconfined phase, fluid nature, jet quenching, recombination of hadronization
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etc can be understood in terms of these center domains.
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Correlation function and spectral

representation

From the Kramers-Kronig relation it is known that the real and imaginary parts of

a complex function are related with each other. Thus for a CF Gµν we can write

ReGµν(ωn, ~q) =
1

π
P

∫ ∞

−∞

dω
ImGµν(ω, ~q)

ω − iωn
, (A.1)

where P stands for Cauchy principal value. Now with the definition of SF as

σµν(ω, ~q) =
1
π
Im Gµν(ω, ~q) and writing Gµν in place of ReGµν we have,

Gµν(ωn, ~q) =

∫ ∞

−∞

dω
σµν(ω, ~q)

ω − iωn
=

∫ ∞

−∞

dω
σµν(ω, ~q)

ω − iωn

eβω − 1

eβω − 1

=

∫ ∞

−∞

dω σµν(ω, ~q)
(

1 + nB(ω)
) e−βω − 1

iωn − ω
, (A.2)

where nB is the Bose-Einstein distribution function. For bosons the Matsubara

frequencies are ωn = 2πnT and we can further write

Gµν(ωn, ~q) =

∫ ∞

−∞

dω σµν(ω, ~q)
(

1 + nB(ω)
) e(iωn−ω)β − 1

iωn − ω

=

∫ β

0

dτ ′eiωnτ ′
∫ ∞

−∞

dω σµν(ω, ~q)
(

1 + nB(ω)
)

eωτ
′

. (A.3)
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Using Gµν(τ, ~q) = T
∑∞

n=−∞ Gµν(ωn, ~q) e
−iωnτ and T

∑∞

n=−∞ eiωn(τ ′−τ) = δ(τ ′−τ) we

have from (A.3),

Gµν(τ, ~q) =

∫ ∞

−∞

dω σµν(ω, ~q)
(

1 + nB(ω)
)

∫ β

0

dτ ′δ(τ ′ − τ)e−ωτ ′

=

∫ ∞

−∞

dω σµν(ω, ~q)
(

1 + nB(ω)
)

e−ωτ . (A.4)

Further breaking the limits in two regions and with some mathematical manipula-

tions we have,

Gµν(τ, ~q) =

∫ ∞

0

dω σµν(ω, ~q)
(

1 + nB(ω)
)

e−ωτ

−
∫ 0

∞

dω σµν(−ω, ~q)
(

1 + nB(−ω)
)

eωτ . (A.5)

With the identity 1+nB(−ω) = −nB(ω) and also using the fact that the SF σ(ω, ~q)

is an odd function of the four momenta [143] we have

Gµν(τ, ~q) =

∫ ∞

0

dω σµν(ω, ~q)
(

e−ωτ + nB(ω)e
−ωτ + nB(ω)e

ωτ
)

=

∫ ∞

0

dω σµν(ω, ~q)
cosh[ω(τ − β/2)]

sinh[ωβ/2]
(A.6)
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Response to conserved density fluctuation

We know the CF in terms of the SF. Writing down only the temporal part we have,

G00(τ, ~q, T ) =

∫ ∞

0

dω σ00(ω, ~q, T )
cosh[ω(τ − β/2)]

sinh[ωβ/2]
. (B.1)

In the limit of vanishing three momenta it becomes,

G00(τT ) ≡ G00(τ,~0, T ) = −
∫ ∞

0

dω χq ω δ(ω)
cosh[ω(τ − β/2)]

sinh[ωβ/2]
, (B.2)

where σ00(ω) = −χq ω δ(ω), the SF is represented by a delta function [143]. Now

we do a mathematical trick and write equation (B.2) as

G00(τT ) = −1

2

∫ ∞

0

dω χq ω δ(ω)
cosh[ω(τ − β/2)]

sinh[ωβ/2]

− 1

2

∫ ∞

0

dω χq ω δ(ω)
cosh[ω(τ − β/2)]

sinh[ωβ/2]
. (B.3)

We change the variable, ω → −ω in the second term to obtain

G00(τT ) = −1

2

∫ ∞

0

dω χq ω δ(ω)
cosh[ω(τ − β/2)]

sinh[ωβ/2]

− 1

2

∫ 0

−∞

dω χq ω δ(ω)
cosh[ω(τ − β/2)]

sinh[ωβ/2]
. (B.4)
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With few more mathematical manipulations we have,

G00(τT ) = −1

2

∫ ∞

−∞

dω χq ω δ(ω)
cosh[ω(τ − β/2)]

sinh[ωβ/2]

= − T χq(T ). (B.5)
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Temporal component of correlator

The time-time (temporal) component of the vector correlator is

Π00(Q) =

∫

d4P

(2π)4
Tr
[

γ0Sf(K)γ0Sf (P )
]

, (C.1)

with Sf(P ) =
1

γµP µ −Mf + γ0µ′
; µ′

NJL = µ̃, and µ′
PNJL = µ̃− iA4,

where the symbol (Tr) implies traces over Dirac, color and flavor spaces. In the

medium we introduce the temperature and need to perform the Matsubara sum

over the discrete set of energies,

Π00(ω, ~q) = Nf

∑

n

1

β

∫

d3p

(2π)3
TrD,c

[

γ0S(k
0, ~k)γ0S(p

0, ~p)
]

with (C.2)

S(k0, ~k) =
1

γ0(iωn + ω + µ′)− ~γ · ~k −M
and S(p0, ~p) =

1

γ0(iωn + µ′)− ~γ · ~p−M
.
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Now we want to perform the traces over Dirac space. Before that we simplify the

expression of propagator and write

S(k0, ~k) =
γ0(iωn + ω + µ′)− ~γ · ~k +M

(iωn + ω + µ′)2 − (k2 +M2)
and S(p0, ~p) =

γ0(iωn + µ′)− ~γ · ~p +M

(iωn + µ′)2 − (p2 +M2)
.

(C.3)

Now we utilize properties of gamma matrices to perform the Dirac trace, which leads

to the expression

TrD,c

[

γ0S(k
0, ~k)γ0S(p

0, ~p)
]

= Trc
4
[

(iωn + ω + µ′)(iωn + µ′) + ~k · ~p+M2
]

[(iωn + ω + µ′)2 − E2
k ][(iωn + µ′)2 − E2

p ]
, (C.4)

where E2
k = k2+M2 and E2

p = p2+M2. We now do the Matsubara sums for which

we use the following identities

∑

n

1

n+ ix

1

n+ iy
=

π

x− y

(

coth(πx)− coth(πy)
)

,

∑

n

1

n− x

1

n− y
=

π

y − x

(

cot(πx)− cot(πy)
)

and tanh(x) = 1− 2nF (x); (C.5)

where nF (x) =
1

eβx+1
is the Fermi-Dirac distribution function. We use the method

of partial fraction in equation (C.4) and put it in equation (C.2) to obtain

Π00(ω, ~q) = Nf

∑

n

1

β

∫

d3p

(2π)3
1

Ek Ep

Trc

[EkEp +M2 + ~k · ~p
D−

k D
−
p

+
EkEp −M2 − ~k · ~p

D−
k D

+
p

+
EkEp −M2 − ~k · ~p

D+
k D

−
p

+
EkEp +M2 + ~k · ~p

D+
k D

+
p

]

, (C.6)

with D±
k = (iωn + ω + µ′) ± Ek and D±

p = (iωn + µ′) ± Ep. As an example let’s

evaluate the first sum:

∑

n

1

(iωn + ω + µ′)− Ek

1

(iωn + µ′)− Ep
, (C.7)
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we put the Matsubara frequencies for fermions to get

∑

n

1
(

i (2n+1)π
β

+ ω + µ′
)

− Ek

1
(

i (2n+1)π
β

+ µ′
)

−Ep

= −
∑

n

1

n + iβ
2π

(

Ek − ω − µ′ − iπ
β

)

1

n + iβ
2π

(

Ep − µ′ − iπ
β

)

( β

2π

)2

=
β

2

1

(ω −Ek + Ep)

(

(

coth(
β

2
Ek − ω − µ′)− i

π

2

)

−
(

coth(
β

2
Ep − µ′)− i

π

2

)

)

,

then using the identities in equation (C.5) the frequency sum in (C.7) reduces to

∑

n

1

(iωn + ω + µ′)− Ek

1

(iωn + µ′)− Ep

= β
1

ω − Ek + Ep

(

nF (Ep − µ′)− nF (Ek − ω − µ′)
)

(C.8)

Performing the frequency sums for the other three terms equation (C.6) becomes

Π00(ω, ~q) = Nf

∫

d3p

(2π)3
1

EpEk

{

EpEk +M2
f + ~p · ~k

ω + Ep −Ek

× [f(Ep − µ̃) + f(Ep + µ̃)− f(Ek − µ̃)− f(Ek + µ̃)]

+
(

EpEk −M2
f − ~p · ~k

)

[

1

ω −Ep − Ek
− 1

ω + Ep + Ek

]

× [1− f(Ep + µ̃)− f(Ek − µ̃)]

}

, (C.9)

which is the equation (3.26) in chapter 3 apart from a Nc factor, which comes out in

a straightforward manner for NJL model and for PNJL model the overall thermal

distribution gets modified as discussed in the subsection 3.2.3 of chapter 3. Now we

want to calculate the real and imaginary parts of the temporal correlator. For that

purpose we use the following identity

lim
η→0

1

x± iη
= PV

(1

x

)

∓ iπδ(x), (C.10)
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where PV stands for principal value. We first analytically continue ω → ω± iη and

then using the equation (C.10) we obtain

lim
η→0

1

ω + iη −Ek + Ep

= PV
( 1

ω −Ek + Ep

)

− iπδ(ω − Ek + Ep). (C.11)

Similarly the other terms can be separated into real and imaginary parts. Then

from (C.9) it is trivial to obtain equations (3.27) and (3.28) given in chapter 3.
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Quark number susceptibility in ring

approximation

We want to get the real part of the temporal resummed correlator. From equation

(3.13) in chapter 3 we have,

C00(ω, ~q) =
Π00

1 +GV (
ω2

q2
− 1)Π00

. (D.1)

Since we are interested in real part of C00 we write the the above equation in a

convenient way as

C00(ω, ~q) =
ReΠ00 + iImΠ00

1 +GV

(

ReS+iImS
q2

− 1
)

+
(

ReΠ00 + iImΠ00

)2 (D.2)

with S = ω2. Manipulating the denominator we have,

C00(ω, ~q) =
ReΠ00 + iImΠ00

1 +GV DI + iGV DII
(D.3)

with DI = 1
q2

(

ReS ReΠ00 − ImS ImΠ00

)

− ReΠ00 and DII = 1
q2

(

ReS ImΠ00 +

ImS ReΠ00

)

− ImΠ00. To separate the real and the imaginary part we write
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C00(ω, ~q) =

(

ReΠ00 + iImΠ00

)(

1 +GV DI− iGV DII
)

(

1 +GV DI
)2

+
(

GV DII
)2 . (D.4)

From it the real part is separated out as

ReC00(ω, ~q) =
ReΠ00

(

1 +GV DI
)

+ ImΠ00GV DII
(

1 +GV DI
)2

+
(

GV DII
)2 . (D.5)

Now ω being a complex quantity we write it as ω → ω+iη. Then S = ω2−η2+2iωη.

Thus ReS = ω2−η2 and ImS = 2ωη. To get the real part of the resummed temporal

correlator that we will use, we take the limit, η → 0. This leads to the expression

ReC00(ω, ~q) =
ReΠ00(ω, ~q) +GV

(

ω2

q2
− 1
)

I(ω, ~q)

1 + 2GV

(

ω2

q2
− 1
)

ReΠ00(ω, ~q) +
(

GV (
ω2

q2
− 1)

)2

I(ω, ~q)
, (D.6)

where I(ω, ~q) =
(

ReΠ00(ω, ~q))
2 + (ImΠ00(ω, ~q)

)2
.
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Vandermonde term

The Vandermonde term can be written as the product of differences of the eigenval-

ues as

H(θ) =
∏

i>j

|eiθi − eiθj |2. (E.1)

For any complex number Zi we can write

∏

i>j

(zi − zj) = det M =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 z1 z21 . . . zN−1
1

1 z2 z22 . . . zN−1
2

...
...

...
. . .

...

1 zN z2N . . . zN−1
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(E.2)

To express it in a general way,Mij = zj−1
i and (M †)ij = z̄i−1

j . Here we have zk = eiθk ,

then

H(θ) =
∏

i>j

(

eiθi − eiθj
)† (

eiθi − eiθj
)

= (zi − zj)
†(zi − zj) = det (M †M). (E.3)
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Now let us suppose that det (M †M) = det X , where

Xij = (M †M)ij =
∑

k

M †
ikMkj =

∑

k

z̄i−1
k zj−1

k =
∑

k

zj−i
k . (E.4)

Thus from (E.3), we have for i, j ≤ N = 3,

H(θ) = det (M †M) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

k z
0
k

∑

k zk
∑

k z
2
k

∑

k z̄k
∑

k z
0
k

∑

k zk
∑

k z̄
2
k

∑

k z̄k
∑

k z
0
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (E.5)

with
∑

k zk = z1 + z2 + z3 = eiθ1 + eiθ2 + eiθ3 . Now rank of SU(3) is two, so we

have two independent parameters, let us say, θ1 and θ2 and θ3 can be expressed

in terms of them two as θ3 = −(θ1 + θ2). Expressing different elements of the

matrix in equation (E.5) in terms of the normalized character of the fundamental

representation of SU(3), we get

H(θ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3 3Φ (9Φ2 − 6Φ̄)

3Φ̄ 3 3Φ

(9Φ̄2 − 6Φ) 3Φ̄ 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 27
(

1− 6ΦΦ̄ + 4(Φ3 + Φ̄3)− 3(ΦΦ̄)2
)

, (E.6)

where we have used
∑

k zk = 3Φ,
∑

k z̄k = 3Φ̄
∑

k z
2
k = 9Φ2 − 6Φ̄ and

∑

k z̄
2
k =

9Φ̄2 − 6Φ.
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Partition function calculation

F.1 Quarks

The partition function for quarks is

Zq=

∫

SU(Nc)

dµ(g) e
2Nf

∑

α trc ln
(

1+Rqe
−β(ǫαq −µq)

)

, (F.1)

where the normalized characters for quarks and antiquarks are written as Φ =

1
Nc
trcRq and Φ̄ = 1

Nc
trcRq̄, with

Rq = diag
(

eiθ1 , eiθ2 , eiθ3
)

; Rq̄ = R†
q. (F.2)

Now, as mentioned in appendix E θ3 can be expressed in terms of θ1 and θ2 as

θ3 = −(θ1 + θ2). Thus we can write,

trc ln
(

1 +Rqe
−

(ǫq−µ)

T

)

= trc ln
(

1 + diag (A,B,C)Q
)

= ln
(

1 + (A+B + C)Q+ (AB + AC + BC)Q2 + ABCQ3
)

,

(F.3)
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with A = eiθ1 , B = eiθ2 , C = e−i(θ1+θ2) and Q = e−
(ǫq−µ)

T . Then expressing the

normalized characters in terms of Φ and Φ̄ we have,

A+B + C = NcΦ,

AB + AC +BC = NcΦ̄,

ABC = 1. (F.4)

Putting these in equation (F.3) we have,

trc ln
(

1 +Rqe
− ǫ+

T

)

= ln
(

1 +Nc(Φ + Φ̄ e−
ǫ+

T )e−
ǫ+

T + e−
3ǫ+

T

)

. (F.5)

Thus in the infinite volume limit, using the equation (F.5) in equation (F.1), the

partition function for the quarks can be written as

Zq= 2V Nf

∫

d3p

(2π)3
ln
(

1 +Nc(Φ + Φ̄ e−
ǫ+

T )e−
ǫ+

T + e−
3ǫ+

T

)

. (F.6)

Similarly, the partition function for antiquarks can also be calculated.

F.2 Gluons

Here we outline the partition function calculation for gluons. For gluons we have,

Zg=

∫

SU(Nc)

dµ(g) e
−2

∑

α trc ln
(

1−Rge
−β(ǫαg )

)

, (F.7)

where the character in the adjoint representation can be written as ΦA = 1
Nc
trcRg,

with

Rg = diag
(

1, 1, ei(θ1−θ2), e−i(θ1−θ2), ei(2θ1+θ2), e−i(2θ1+θ2), ei(θ1+2θ2), e−i(θ1+2θ2)
)

. (F.8)
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Then we can write the trace as

trc ln(1−Rge
−

ǫg
T ) = trc ln

(

1− diag(1, 1, X,X−1, Y, Y −1, Z, Z−1)G
)

= ln
(

(1−G)(1−G)(1−XG)(1−X−1G)(1− Y G)(1− Y −1G)

(1− ZG)(1− Z−1G)
)

. (F.9)

After a lengthy but straightforward calculation of the trace the whole term can be

written in terms of Φ and Φ̄, which when expressed the partition function for gluons

in the infinite volume limit reads as,

Zg= −2V

∫

d3p

(2π)3
ln
(

1 +
8
∑

m=1

am e
−mβǫg

)

, (F.10)

where the coefficients am are given in equation (6.10) of section 6.2 in chapter 6
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