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Synopsis

Earlier analyses of the Lense-Thirring effect assume large distances and slow rotation

for the test gyroscope. Further, the rotating spacetime solution is usually approximated

as a Schwarzschild spacetime, and the effect of rotation is confined to a perturbative

term added on to the Schwarzschild metric. This leads to the standard result for LT

precession frequency in the weak field approximation. Most textbook calculations as

well as almost in all the research articles of the LT precession rate focus usually on the

weak-field approximation.

We derive the exact LT precession formula for full Kerr spacetime without invoking

either the weak gravity approximation or an approximation involving the Kerr parameter

(slow rotation limit). The weak-field approximation is then shown to emerge straightfor-

wardly from our general formulation. We also derive the exact LT precession rates in the

non-extremal and extremal Plebański-Demiański (PD) spacetimes. For the extremal PD

spacetimes we first derive the general extremal condition for PD spacetimes. This general

result could be applied to obtain the extremal limit in any stationary and axisymmet-

ric spacetimes. Next, we derive the exact LT precession rate in Kerr-Taub-NUT (KTN)

spacetimes which include the Kerr parameter and NUT parameter or (gravito)magnetic

monopoles. Interestingly, in the non-rotating (when Kerr parameter vanishes) and spher-

ically symmetric Taub-NUT spacetime the LT precession does not vanish. We also study

the causal geodesics in the equatorial plane of the extremal Kerr-Taub-NUT spacetime,

focusing on the Innermost Stable Circular Orbit (ISCO), and compare its behaviour with

extant results for the ISCO in the extremal Kerr spacetime.

Later, we derive the exact frame-dragging rate inside rotating neutron stars. This

formula is applied to show that the frame-dragging rate monotonically decreases from the

centre to the surface of the neutron star along the pole. In case of frame-dragging rate

along the equatorial distance, it decreases initially away from the centre, become negligibly
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small well before the surface of the neutron star, rises again and finally approaches to a

small value at the surface. The appearance of local maximum and minimum in this case

is the result of the dependence of frame-dragging frequency on the distance and angle.

Moving from the equator to the pole, it is observed that this local maximum and minimum

in the frame-dragging rate along the equator disappears after crossing a critical angle.

Currently the accretion mechanism of black holes and pulsars is not properly studied

with the exact formulation of strong gravity frame-dragging effect. It would be worth to

investigate the accretion disk theory to model the QPOs and jets using the strong gravity

LT precession formula in the astrophysicaly relevant important spacetimes. The relation

between mass and angular momentum of the black holes and pulsars could also be studied

in the light of strong gravity frame-dragging effect.
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Chapter 1

Introduction

1.1 General Introduction

Though we know that no astrophysical object in nature is exactly nonrotating, yet many

astrophysical phenomena are explained by Schwarzschild geometry as it is the simplest

metric by which the curvature of the spacetime is described easily. The another advantage

is that it is a spherically symmetric spacetime and also an excellent approximation to the

outside of nonrotating stars and black holes. There is also no star which is perfectly

spherically symmetric. Generally, the star like Sun is also slightly squeezed along the

rotation axis. However, the Schwarzschild geometry is a good approximation for the very

slowly rotating astrophysical objects.

If any stellar body rotates with a significant angular velocity the Schwarzschild geom-

etry is failed to describe the curvature of the spacetime produced by the rotating object.

The curved spacetime produced by a rotating object has a complex structure than the

Schwarzschild geometry. General relativity predicts that the curvature of spacetime is

produced not only by the distribution of mass-energy but also by its motion. In electro-

magnetism, the fields are produced not only by charge distributions but also by currents.

Considering this analogy, this effect can be called as gravitomagnetic effect. An important
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gravitomagnetic effect will be explored in this thesis- the dragging of inertial frames. If a

small part of the matter starts to rotate, the inertial frame must be dragged along slightly.

The small rotation of the earth also drags the local inertial frame along it. The dragging

rate is very small in the case of earth. It is around ∼ 0.3′′/year on the surface of the

earth. The frame-dragging effect was first derived [1] in 1918 by Austrian physicists Josef

Lense and Hans Thirring and is also known as the Lense-Thirring (LT) precession. They

showed that the rotation of a massive body could distort the spacetimes, making the spin

of nearby test gyroscope precesses [2]. This does not happen in Newtonian gravity for

which the gravitational field of a body depends only on its mass, not on its rotation.

A gyroscope is a natural test body to observe the frame-dragging effect as the spin

of a gyro points in a fixed direction in an inertial frame [3]. Thus, we should begin our

study of frame-dragging effect with a discussion of gyroscopes in curved spacetimes.

1.2 Spin precession in curved spacetimes

To explore the geometry of curved spacetime we can study the behaviour of a small test

body with spin which could be called as test gyro or test spin. Spin means either the

polarization vector of a particle (i.e., the expectation value of the spin operator for a

particle in a particular quantum mechanical state) or an intrinsic angular momentum of

a rigid body (such as a gyroscope). As in classical mechanics, the angular motion of

a constant magnitude angular momentum is called precession. In curved spacetimes, a

freely falling test gyro which moves along a timelike geodesic with its four velocity u(τ)

obeys the geodesic equation:

∇uu = 0 . (1.1)

The gyro is described by the spacelike spin four vector S(τ). S could be expressed as

S = (0, s) in a local inertial frame in which the gyro is at rest. As the gyro is at rest in

16



that frame the four velocity u could be expressed as u = (1,~0). Thus,

< S, u >= 0 . (1.2)

<,> implies the scalar product. In the absence of external forces, the equivalence principle

implies that in the local rest frame

ds(t)

dt
= 0 , (1.3)

for a gyroscope or a elementary particle. In the local rest frame we can write it in a

covariant form:

(∇uS)rest =

(

ds0

dt
,
ds

dt

)

=

(

ds0

dt
, 0

)

. (1.4)

We obtain from Eq. (1.2)

< ∇uS, u >= − < S, f > , (1.5)

if the test gyro does not move along the geodesic (where f = ∇uu is the acceleration).

Hence,

< ∇uS, u >= −ds
0

dt
|rest = − < S, f > . (1.6)

From Eq. (1.4) and Eq. (1.6) we get

(∇uS)rest = (< S, f >, 0) = (< S, f > u)|rest . (1.7)

Thus the covariant equation is

∇uS =< S, f > u . (1.8)
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From Eq. (1.8), we obtain

< u,∇uS >=< S, f >< u, u >= − < S, f >= − < S,∇uu > . (1.9)

Thus

∇u < u, S >= 0 , (1.10)

which is consistent with Eq. (1.2). If the gyroscope moves along its geodesics (f = 0) the

Eq. (1.8) reduces to

∇uS = 0 ,

or

dSβ

dτ
+ ΓβδλS

δuλ = 0 . (1.11)

We call Eq. (1.8) (when gyroscope does not move along its geodesic) and Eq. (1.11)

(when gyroscope moves along its geodesic) the gyroscope equation.

General Relativity predicts that the spin of a gyro will precess with respect to infinity

due to the (i) curvature of the spacetime produced by a body (called Geodetic precession)

and also due to the (ii) rotation of the body (called the Lense-Thirring precession). We

discuss both precessions in the next two sections.

1.3 Geodetic precession

What would be the behaviour of a gyroscope in orbit around a nonrotating spherically

symmetric spacetime? An observer riding with the gyro will see the spin of the gyro to

precess. The spin remains fixed in a local inertial frame falling with the gyro but precesses

with respect to infinity due to the curvature of spacetime produced by the spherical body.
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Suppose, an observer orients the gyro in the direction of a distant star in the equatorial

plane of an orbit. General Relativity predicts that, after completion of an orbit, the

gyro will point in a different direction making an angle ∆φgd with the starting one. The

change in the direction is called geodetic precession. In the case of static and spherically

symmetric Schwarzschild geometry, the spin in an equatorial (θ = π/2) orbit is rotated

by an angle

∆φgd = 2π

[

1−
(

1− 3M

R

)
1

2

]

, (1.12)

in the direction of motion (where M is the mass of the spacetime and R is the distance

of the gyro from the center of the spacetime).

1.4 Lense-Thirring precession

Formally, stationary spacetimes with angular momentum are known to exhibit an effect

called the LT precession whereby locally inertial frames are dragged along the rotating

spacetime, making any test gyroscope in such spacetimes precess with a certain frequency

called the LT precession frequency. Thus, the frame-dragging effect is absent in the

nonrotating spacetime, i.e., Schwarzschild spacetime.

1.4.1 Lense-Thirring precession outside of a slowly rotating body

If a spherical body set into slow rotation with a uniform angular velocity about its own

axis, the body will change from the spherically symmetric Schwarzschild geometry. This

change arises due to the rotational distortion of the body. This will also bring the change

of the first order in J (∼ IΩ, angular momentum of the rotating body) in the metric.

For J = 0, it reduces to the Schwarzschild metric and the polar axis coincides with the

rotation axis. Thus, we can express the slowly rotating metric (neglecting higher order
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term of J) in the following form:

ds2 = ds2Sch −
4J sin2 θ

r2
rdφdt+O(J2) , (1.13)

where ds2Sch represents the Schwarzschild line element. According to Hartle’s prescription

[3] of the frame-dragging effect along the pole, one must transform the polar coordinates

(r, θ, φ) into Cartesian coordinates (x, y, z) as polar coordinates are singular along the axis

in which the gyro falls. After the transformations, the metric of Eq. (1.13) is reduced to

ds2 = ds2Sch−Car −
4J

r2

(

xdy − ydx

r

)

dt+O(J2) , (1.14)

where ds2Sch−Car is the Schwarzschild metric in Cartesian coordinates (the explicit form is

not needed). According to Hartle [3], the gyroscope equation is solved to obtain the LT

precession rate; the termM/r of the Schwarzschild metric does not contribute to the final

result because it would give rise to the term MJ/r3 in the precession rate. That implies

that the leading order precession rate calculation could be carried out taking M = 0.

Thus, the ds2Sch−Car of the Schwarzschild metric in Cartesian coordinates could be taken

as the flat metric (Minkowski spacetime)

ds2Mink = −dt2 + dx2 + dy2 + dz2 . (1.15)

It has also been taken that the gyro is falling along the z-axis to simplify the calculation.

So, the four-velocity could be presented as

uβ = (ut, 0, 0, uz) , (1.16)

Sβ = (0, sx, sy, 0) . (1.17)
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Spin is taken to lie in the xy plane and the Eq. (1.2) is satisfied automatically on the

z-axis. Replacing ds2Sch−Car of Eq. (1.13) with the flat metric and calculating the non-

vanishing Christoffel symbols in the gyroscope Eq. (1.11) for sx and sy it is obtained

Γxty =
2J

z3
, (1.18)

Γytx = −2J

z3
. (1.19)

Thus,

dsx

dt
= −2J

z3
sy , (1.20)

dsy

dt
=

2J

z3
sx . (1.21)

The above equations describe that a gyroscope precesses with respect to coordinate axes

(x, y, z) in the same direction, along which the spacetime is rotating. This is called the

LT precession [3]. Thus, the LT precession rate at the distance z from the center of the

rotating body is

ΩLT =
2J

z3
. (1.22)

This precession rate is calculated in the frame in which the center of the body is at rest

and the gyroscope is falling.

A gyroscope in a realistic orbit about the slowly rotating body would experience the

LT precession which depends on the colatitude as [3, 4]

~ΩLT =
1

r3
[3( ~J.r̂)r̂ − ~J ] , (1.23)

where, r̂ is the unit vector along r direction. The above expression reduces to Eq. (1.22)

for θ = 0. This expression of the LT has a similarity with that of the magnetic/electric
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field where ~J plays the role of dipole moment.

1.4.2 Measurement of LT precession: Gravity Probe B

On 20th April, 2004 NASA launched the Grvity Probe B satellite to measure the Geodetic

and LT precession due to the rotation of Earth. The satellite carried four precession

gyroscopes which were spheres of fused quartz 1.5 inch in diameter. Each gyroscope

was eletrostatically suspended by the saucer-shaped electrodes in the two-halves of the

housing. One of the gyroscopes was used as the ‘test mass’. Other three gyroscopes were

operating in an ideal free-fall conditions. The whole system was kept in superfluid helium

(temperature 2K). The GPB satellite was flown in 642 km polar orbit and a reference

telescope enabled the satellite to be looked onto HR8703 (also known as IM Pegasi), a

binary star in the constellation Pegasus. The gyro spin was initially pointed to the guide

star and analysing the data from all four gyroscopes it was reported that the geodetic

precession rate was 6, 601.8 ± 18.3 milliarcsecond/year (mas/yr) and the LT precession

rate of 37.2 ± 7.2 mas/yr [5]. The theoretical predictions of general relativity were of

6, 606.1 mas/yr and 39.2 mas/yr, respectively. The GPB spacecraft decommissioned on

8th December, 2010.

1.5 Summary

We have already discussed that the LT precession frequency has been discovered by Lense

and Thirring and it has also been shown to decay as the inverse cube of the distance of

the test gyroscope from the source [1] for large enough distances where curvature effects

are small, and known to be proportional to the angular momentum of the source. The

largest precession frequencies (ΩLT ) are thus expected to be seen very close to the source

(like the surface of a pulsar, or the horizon of a black hole), as well as for spacetimes

rotating very fast with large angular momenta.
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Most of earlier analyses of the LT effect assumed large distances (r >> M, M is the

mass of the rotating spacetime due to a compact object like a pulsar) for the test gyro-

scope. In a recent work reported in ref. [6], an alternative approach based on solving the

geodesic equations of the test gyroscope numerically, once again within the weak gravi-

tational field approximation, was used to compute the frame-dragging effect for galactic-

centre black holes. In another related work [7], Hackman and Lämmerzahl had given an

expression of the LT precession valid up to first order in the Kerr parameter a for a general

axisymmetric Plebański-Demiański spacetime. This is obviously a good approximation

for slowly-rotating compact objects. The LT precession rate has also been derived [8, 9]

by solving the geodesic equations for both Kerr and Kerr-de-Sitter spacetimes at the polar

orbit. These results are not applicable for orbits which lie in orbital planes other than the

polar plane. We understand that observations of precession due to locally inertial frame-

dragging have so far been possible only for spacetimes whose curvatures are small enough;

e.g., the LT precession in the earth’s gravitational field which was probed recently by the

LAGEOS experiment [10] and also by Gravity Probe B [5]. Though there has been so

far no attempt to measure the LT precession effects due to the frame-dragging in strong

gravity regimes [11] but Stella and Possenti [12] had given some important discussions

regarding the LT precession in the astrophysical context in strong gravity regimes.

The physics of accretion disc regions not too far from the outer layer of rotating

neutron stars or the horizons of black holes emitting X-rays ought to entail nontrivial LT

precession of local inertial frames in their vicinity. Most extant treatments of accretion

disc physics appear to ignore these effects, even though there is not much in the way of a

computation to theoretically justify this viewpoint. Precision estimates of strong gravity

LT precession thus appear essential to ensure that errors stemming from ignoring this

are within acceptable limits. Further, upcoming X-ray observatories, as well as multi-

wavelength strong gravity space probes currently under construction, which envisage to

make observations of possible frame-dragging effects in strong gravity situations in the
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near future, make it necessary to go beyond the weak field approximation paramount. A

recent work by Stone and Loeb [13] estimated the effect of weak-field LT precession on

accreting matter close to compact accreting objects. While there are claims what has been

estimated in this work pertains more to orbital precession, rather than precession of a test

gyroscope, it is obvious that in the vicinity of the spacetime near the surface of pulsars

(respectively, the horizons of black holes), the large LT precession of test gyroscopes

ought to manifest in changes in the predicted X-ray emission behaviour originating from

modifications in the behaviour of infalling timelike geodesics of accreting matter particles

due to the LT precession. It also stands to reason that pulsar emission mechanisms may

need to be corrected due to frame dragging effects in the strong gravity regime. As a

precursor to precise estimation of these effects, a theoretical understanding of the LT

precession in strongly curved spacetimes (as near compact systems like black holes and

pulsars) is in order.

In the next chapter, we review in detail the LT precession rate [14, 15] in a strong

gravity regime in a ‘Copernican’ frame, examining its domain of validity. Recall that a

Copernican frame is a local orthonormal tetrad at rest (so moving only in the “time”

direction determined by the timelike Killing vector of the spacetime) and “locked” to the

spatial part of whatever such coordinate system is chosen, so that it is “at rest” with

respect to the local inertial frames at infinity. Within this frame, an untorqued gyro in

a stationary but not static spacetime held fixed by a support force applied to its center

of mass precesses. Since the Copernican frame does not rotate (by construction) relative

to the inertial frames at asymptotic infinity (“fixed stars”), the observed precession rate

in the Copernican frame also gives the precession rate of the gyro relative to the fixed

stars. We argue that the LT precession rate is applicable to all stationary spacetimes,

irrespective of whether they are axisymmetric or not. This result is also applicable for all

orbits (not only for polar and equatorial orbits), located at various distances and different

angles. In this sense, it is rather more general than the result of [16], whose approach was

24



discussed for comparison at the end. Also, the oft-quoted weak-field result in Eq. (1.23)

(in a ‘Copernican’ frame) for the LT precession rate is readily obtained from this general

result, inserting the metric for the desired spacetime.

Armed with this general formula for inertial frame dragging, we explore its rami-

fications for axisymmetric spacetimes like the Kerr-Taub-NUT, mainly for its intrinsic

general relativistic merits, especially in the limit of vanishing angular momentum. To

forge some link with actual astrophysical processes, we briefly consider the LT precession

in Kerr spacetime for possible phenomenological application to actual compact bodies

like pulsars. We emphasize here that though this thesis focuses on the general relativistic

aspects of the LT precession in strongly curved domains, rather than on its applications

to actual astrophysical processes, we expect that our work will eventually relate to those

very interesting aspects in the near future.

The thesis is organized in the following way. In Chapter 2, we study the general for-

mulation of the LT effect in any stationary spacetime and applying this general result we

derive the exact LT precession rate in Kerr spacetime. We derive the exact LT precession

rates in non-extremal and extremal Plebański-Demiański spacetimes in Chapter 3. Chap-

ter 4 is devoted to computation of the anomalous LT precession rates in Kerr-Taub-NUT

and Taub-NUT spacetimes. We also derive the radii of the Inner-most Stable Circular

Orbits (ISCOs) for non-extremal and extremal Kerr-Taub-NUT spacetimes and discuss

about the LT precession frequencies in these ISCOs. This chapter is basically for future

applications of the strong gravity LT effect in accretion disk theory in which ISCO plays

a very important role. Dragging of inertial frames inside the rotating neutron stars are

derived in Chapter 5. In this chapter, we show that the general formulation of the LT

precession is also applicable for realistic stellar bodies which are described by stationary

and axisymmetric metrics. Here, we have applied it for pulsars only but it could be ap-

plicable for other astronomical bodies as well. These applications would be helpful to

describe the other astronomical processes which have explicit or implicit dependency on

25



the LT precession. Finally we conclude in Chapter 6 with an overview and our future

outlook.
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Chapter 2

General formulation of

Lense-Thirring effect and its

application to Kerr spacetime

2.1 Introduction

At first, our aim was to obtain the LT precession rate in such a manner so that we can

use it to get the exact LT precession rate in Kerr spacetime as Kerr spacetime is very

useful in astrophysics. In this chapter we are going to derive the LT precession rate

in a more general sense. Kerr spacetime is an axisymmetric spacetime but we have to

remember that the LT precession rate is not a property only of an axisymmetric spacetime

rather it is a property of every stationary spacetime whether it is axisymmetric or not.

There are exceptions also in some special cases. However, we can easily say that every

stationary spacetime shows the LT precession and static spacetime is unable to do so

in any circumstances. This is due a basic difference between the stationary and static

spacetimes. It will be cleared in the following paragraph.

A spacetime is said to be stationary if it possesses a timelike Killing vector field ξa;
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further, a stationary spacetime is said to be static if there exists a spacelike hypersurface

Σ which is orthogonal to the orbits of the timelike isometry. By Frobenius’s theorem of

hypersurface orthogonality, we can write for a static spacetime

ξ[a∇bξc] = 0 . (2.1)

If ξa 6= 0 everywhere on Σ, then in a neighbourhood of Σ, every point will lie on a unique

orbit of ξa which passes through Σ. From the explicit form of a static metric, it can

be seen that the diffeomorphism defined by t → −t (the map which takes each point

on each Σt to the point with the same spatial coordinates on Σ−t), is an isometry. The

“time translation” symmetry, t→ t+ constant is possessed by all stationary spacetimes.

Static spacetimes on the other hand, possess an additional symmetry, “time reflection”

symmetry over and above the “time translation symmetry”. Physically, the fields which

are time translationally invariant can fail to be time reflection invariant if any type of

“rotational motion” is involved, since the time reflection will change the direction of

rotation. For example, a rotating fluid ball may have a time-independent matter and

velocity distribution, but is unable to possess a time reflection symmetry [17]. In the case

of stationary spacetimes, the failure of the hypersurface orthogonality condition Eq. (2.1)

implies that neighbouring orbits of ξa “twist” around each other. The twisting of the

orbits of ξa is the cause of that extra precession in stationary non-static spacetimes. This

extra precession for any stationary spacetime is now being presented in the next section.

2.2 Derivation of Lense-Thirring precession frequency

Let us consider that an observer is at rest in a stationary spacetime with a timelike Killing

field K. The observer moves along an integral curve γ(τ) of K and his 4-velocity can be

written as

u = (−K2)−
1

2K . (2.2)
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Figure 2.1: Observer moves in a stationary spacetime [14].

We can now choose an orthonormal tetrad eα along γ which is Lie-transported.

LKeα = 0 , (2.3)

where α = 0, 1, 2, 3. As e0 is just u = γ̇ (where,‘dot’ denotes the differentiation with

respect to τ), u is perpendicular to e1, e2, e3 axes. We also have

< eα, eβ >= ηαβ , (2.4)

where, ηαβ = diag(−1, 1, 1, 1).

We can interpret eα as axes at rest. We know that the spin of the gyroscope precesses

with respect to those axes of rest and we are interested in the change of the spin relative

to this system. We know that torsion

T (K, ei) = ∇Kei −∇eiK − [K, ei] = 0 . (2.5)

The rotation coefficient can be defined as

ωij =< ∇uei, ej > . (2.6)
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Now, using Eq. (2.6) and Eq. (2.2) we get,

ωij = (−K2)−
1

2 < ej ,∇Kei > , (2.7)

where ωij is related with the angular velocity Ωl as

ωij = ǫijlΩ
l . (2.8)

The gyroscope precesses with the angular velocity Ω relative to the tetrad frame eα, Ω

is considered as the angular velocity or the precession rate of the LT precession. As

[K, ei] = LKei = 0, we get from Eq. (2.5)

∇Kei = ∇eiK . (2.9)

Substituting this result in Eq. (2.7) we get,

ωij = (−K2)−
1

2 < ej ,∇eiK >= (−K2)−
1

2∇K̃(ej , ei) , (2.10)

where, K̃ is the one-form of K. Now, Eq. (2.10) reduces to (as ωij is anti-symmetric)

ωij = −(−K2)−
1

2

1

2
[∇K̃(ei, ej)−∇K̃(ej , ei)] . (2.11)

As K̃ is one-form, we can write Eq. (2.11) as

ωij =
1

2
(−K2)−

1

2dK̃(ei, ej) . (2.12)

Let {eδ} be the dual basis of {eδ}. In this basis

K̃ = (−K2)
1

2 e0 , (2.13)
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and

dK̃ = (−K2)
1

2ωije
i ∧ ej . (2.14)

We get the above expression for dK̃ from Eq. (2.12). We refer to the differential geometric

result (see section 12.6 of [14] for a derivation)

eδ ∧ (K̃ ∧ dK̃) = η < eδ, ∗(K̃ ∧ dK̃) > , (2.15)

where, η is the volume form and ‘*’ represents the hodge dual operator. For δ = 0, the

left hand side of Eq. (2.15) would be,

e0 ∧ (K̃ ∧ dK̃) = (−K2)ωije
0 ∧ e0 ∧ ei ∧ ej = 0 . (2.16)

It means that the time component of Ω is zero. For the spatial component we can take

δ = k. So,

ek ∧ (K̃ ∧ dK̃) = −K2ǫijlΩ
lek ∧ e0 ∧ ei ∧ ej . (2.17)

As ek ∧ e0 ∧ ei ∧ ej = −ηǫijk, the above equation reduces to

ek ∧ (K̃ ∧ dK̃) = 2K2ηΩk . (2.18)

Substituting this result in Eq. (2.15), we get

2K2Ωk =< ek, ∗(K̃ ∧ dK̃) > . (2.19)

So, the exact LT frequency of precession of test gyroscopes in strongly curved stationary

spacetimes analyzed within a Copernican frame, is expressed as a co-vector given in terms

of the timelike Killing vector fields K of the stationary spacetime as (in the notation of
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Ref. [14, 15])

Ω̃ =
1

2K2
∗ (K̃ ∧ dK̃) , (2.20)

or,

Ωµ =
1

2K2
η νρσ
µ Kν∂ρKσ , (2.21)

where, ηµνρσ represents the components of the volume-form in spacetime and K̃ & Ω̃

denote the one-form of K & Ω, respectively. Ω̃ will vanish if and only if (K̃ ∧ dK̃) does.

This happens only in a static spacetime. Using the coordinate basis form of K = ∂0, the

co-vector components are easily seen to be Kµ = gµ0. This co-vector could also be written

in the following form

K̃ = g00dx
0 + g0idx

i . (2.22)

Now,

dK̃ = g00,kdx
k ∧ dx0 + g0i,kdx

k ∧ dxi , (2.23)

(K̃ ∧ dK̃) = (g00g0i,j − g0ig00,j)dx
0 ∧ dxj ∧ dxi + g0kg0i,jdx

k ∧ dxj ∧ dxi , (2.24)

∗(K̃ ∧ dK̃) = (g00g0i,j − g0ig00,j) ∗ (dx0 ∧ dxj ∧ dxi) + g0kg0i,j ∗ (dxk ∧ dxj ∧ dxi) .

(2.25)

It can be shown that

∗ (dx0 ∧ dxj ∧ dxi) = η0jilglµdx
µ = − 1√−g ǫjilglµdx

µ ,

∗(dxk ∧ dxj ∧ dxi) = ηkji0g0µdx
µ = − 1√−g ǫkjig0µdx

µ . (2.26)
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Now, from Eq. (2.25) we get,

∗ (K̃ ∧ dK̃) =
ǫijl√−g [(g00g0i,j − g0ig00,j)(gl0dx

0 + glkdx
k)− g0lg0i,j(g00dx

0 + g0kdx
k)] .

(2.27)

Simplifying the above equation we get,

∗ (K̃ ∧ dK̃) =
ǫijl√−g [g0i,j (g00gkl − g0kg0l)− g0igklg00,j]dx

k . (2.28)

Now, using Eq. (2.21) we find that the spatial components of the precession rate (in the

chosen frame) is

Ωk =
1

2

ǫijl
g00

√−g [g0i,j (g00gkl − g0kg0l)− g0igklg00,j] . (2.29)

[using K2 = g00]

The vector field corresponding to the LT precession co-vector in Eq. (2.29) can be

expressed as

Ω = Ωµ∂µ = gµνΩν∂µ

= gµkΩk∂µ [as Ω0 = 0]

= g0kΩk∂0 + gnkΩk∂n

=
1

2

ǫijl√−g

[

g0i,j

(

∂l −
g0l
g00

∂0

)

− g0i
g00

g00,j∂l

]

. (2.30)

The remarkable feature of Eq. (2.30) is that it is applicable to any arbitrary stationary

spacetime (irrespective of whether it is axisymmetric or not); it gives us the exact rate of

the LT precession in such a spacetime. For instance, a Newman-Unti-Tamburino (NUT)

spacetime with vanishing ADM mass is known to be spherically symmetric, but still has

an angular momentum (dual or ‘magnetic’ mass [18]); we will use Eq. (2.30) to compute

33



the LT precession frequency in this case as well (see subsection 4.4.1). This result is rather

general, because, there is only one constraint on the spacetime : that it must be stationary,

which is the only necessary condition for the LT precession. The utility of this equation is

that; if any metric (gµν) contains all 10 (4× 4) elements non-vanishing, it can be used to

calculate the LT precession in that spacetime. In this case, the precession rate depends

only on non-zero g0i(i = 1, 2, 3) components, not on any other non-zero off-diagonal

components of the metric. So, this equation also reveals that the LT precession rate is

completely determined by the metric components g0µ(µ = 0, i), and is quite independent

of the other components (in co-ordinate basis).

2.3 Lense-Thirring precession in Kerr spacetime

One can now use Eq. (2.30) to calculate the angular momentum of a test gyroscope in a

Kerr spacetime to get the LT precession in a strong gravitational field. In Boyer-Lindquist

coordinates, the Kerr metric is written as,

ds2 = −
(

1− 2Mr

ρ2

)

dt2 − 4Mar sin2 θ

ρ2
dφdt+

ρ2

∆
dr2 + ρ2dθ2

+

(

r2 + a2 +
2Mra2 sin2 θ

ρ2

)

sin2 θdφ2 , (2.31)

where, a is Kerr parameter, defined as a = J
M
, the angular momentum per unit mass and

ρ2 = r2 + a2 cos2 θ ,∆ = r2 − 2Mr + a2 . (2.32)

For the Kerr spacetime, the only nonvanishing g0i = g0φ, i = φ and j, l = r, θ; substituting

these in Eq. (2.30), the precession frequency vector is given by

ΩLT =
1

2
√−g

[(

g0φ,r −
g0φ
g00

g00,r

)

∂θ −
(

g0φ,θ −
g0φ
g00

g00,θ

)

∂r

]

, (2.33)
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where, the various metric components can be read off from Eq. (2.31). Likewise,

√
−g = ρ2 sin θ . (2.34)

In order to make numerical predictions for the LT precession frequency in a strong

gravity domain, we need to transform the precession frequency formula from the coordi-

nate basis to the orthonormal ‘Copernican’ basis: first note that

ΩLT = Ωθ∂θ + Ωr∂r, (2.35)

Ω2
LT = grr(Ω

r)2 + gθθ(Ω
θ)2 . (2.36)

Next, in the orthonormal ‘Copernican’ basis at rest in the rotating spacetime, the

tetrad vector e0 = u is basically the tangent vector along the integral curve of the timelike

Killing vector K. In this basis, with our choice of polar coordinates, ΩLT can be written

as

~ΩLT =
√
grrΩ

r r̂ +
√
gθθΩ

θ θ̂ , (2.37)

where, r̂ is the unit vector along the direction r and θ̂ is the unit vector along the direction

θ. For the Kerr metric,

Ωθ = −J sin θ
(ρ2 − 2r2)

ρ4(ρ2 − 2Mr)
, (2.38)

Ωr = 2J cos θ
r∆

ρ4(ρ2 − 2Mr)
. (2.39)

Substituting the values of Ωr and Ωθ in Eq. (2.37), we get the following expression of LT

precession rate in Kerr spacetime

~ΩLT = 2aM cos θ
r
√
∆

ρ3(ρ2 − 2Mr)
r̂ − aM sin θ

ρ2 − 2r2

ρ3(ρ2 − 2Mr)
θ̂ . (2.40)
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The magnitude of this vector is

ΩLT (r, θ) =
aM

ρ3(ρ2 − 2Mr)

[

4∆r2 cos2 θ + (ρ2 − 2r2)2 sin2 θ
]

1

2 . (2.41)

This is the LT precession rate where no weak gravity approximation has been made. It

should therefore be applicable to any rotating black hole but it is not applicable in the

case of pulsars. This issue has been addressed at the end of this chapter.

In the next two subsections, we discuss the weak field limit of the above Eq. (2.40) and

give the preliminary comparison between the strong and weak field LT precession rates

with the observational data.

2.3.1 Weak field limit

For large distances, the Kerr metric is approximated as a Schwarzschild metric with the

cross term (gφtdφdt), that is

ds2 = ds2Sch −
4Ma sin2 θ

r
dφdt , (2.42)

and it has been shown that [3]

~ΩLT =
1

r3
[3( ~J.r̂)r̂ − ~J ] , (2.43)

where, J = aM is the angular momentum of the rotating spacetime. For a rotating

compact object J could be determined by J ≃ Iω ≃ MR2ω (following Eq. (14.23) of

Ref. [3] and for perfect formulation of Moment of inertia I, see Ref. [19]).

For large distances and in weak gravitational fields (where we can take r > M and
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r > a), the second term of Eq. (2.40) reduces to

√
gθθΩ

θ r̂ = − J sin θ

r3(1 + a2

r2
cos2 θ)

3

2

(−1 + a2

r2
cos2 θ)r̂

(1 + a2

r2
cos2 θ − 2M

r
)

≃ J sin θ

r3
r̂ . (2.44)

Similarly, from the first term of Eq. (2.40) one obtains the following,

√
grrΩ

rr̂ =
2J cos θ.r2

√

1 + a2

r2
− 2M

r

r5(1 + a2

r2
cos2 θ)

3

2

(

1 + a2

r2
cos2 θ − 2M

r

) θ̂

≃ 2J cos θ

r3
θ̂ . (2.45)

It follows that

~ΩLT (r, θ) =
J

r3

[

2 cos θr̂ + sin θθ̂
]

, (2.46)

where, θ is the colatitude. The resemblance of this equation with Eq. (1.23) is unmis-

takeable.

The LT precession for a general stationary metric in the weak field limit may also be

derived from Eq. (2.30). In this approximation,

g00 ≃ −1, gij = δij,
g0l
g00

<< 1 .

Under these conditions Eq. (2.30) reduces to,

Ω ≃ −1

2
ǫijlg0i,j∂l . (2.47)

As el ≃ ∂l, a test gyroscope precesses in such a weak gravitational field with an angular

velocity

~Ω ≃ −1

2
~∇× ~g , (2.48)
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Figure 2.2: Plot of ΩLT (in m−1) vs r (in m) at θ = 0 for a = 0.7 m & M = 1 m [28].

where, ~g ≡ (g01, g02, g03). Here, 1,2,3 indicate the space components in that spacetime.

We can visualize the difference between strong and weak gravity LT precession through

a graphical representation. In Fig. (2.2), we draw two graphs, the red straight line is for

ΩweakLT = 2aM
r3

and the green curve is for ΩstrongLT = 2aMr

(r2+a2)
3
2
√
r2−2Mr+a2

at θ = 0. We

see that ΩstrongLT is much much greater than ΩweakLT for small r, i.e., near the compact

body. As r increases, the red and the green lines overlap with each other, i.e., the linear

approximation (weak gravity) emerges as a reasonable approximation.

2.3.2 Preliminary comparison with observational data

Let us take, as an example for the LT precession in strong gravitational field, the case of

the Hulse-Taylor binary pulsar (also called PSR B1913+16) in the constellation of Aquila,

located roughly at 21,000 light-years from the earth. Its mass, radius and rotational time
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Massive objects ΩstrongLT (s
−1) ΩweakLT (s

−1)
Earth 4.02× 10−14 4.02× 10−14

Sun 4.56× 10−12 4.56× 10−12

PSR B1257+12 238 178
PSR B1913+16 24 18
PSR J1614-2230 712 463
PSR J1748-2021B 274 121

Table 2.1: Comparison between strong gravity and weak gravity LT precession (all these
values are calculated at the pole (θ = 0) and near the surface (r → R) of that massive
object).

period (T ) are, respectively,

M = 1.44M⊙ = 2120.95 m ,

R ≈ 10 km(assuming) ,

T = 59.03× 10−3 s , (2.49)

respectively. Using these numerical values, we can easily calculate the angular velocity

(ω) of the pulsar

ω =
2π

59.03× 10−3
= 105.96 s−1

= 3.53× 10−7 m−1 , (2.50)

and Kerr parameter (taking moment of inertia I ≈ 0.4MR2)

a ≈ 14.13 m . (2.51)

All numerical values are in gravitational units with G = c = 1.

Now, let us imagine a test gyroscope very close to the surface of the pulsar such that

we may capture the strong gravitational effects for LT precession. So, we take r → R.

Substituting the above values in Eq. (2.41) for θ = 0 (which indicates that we are
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measuring the LT precession at the pole of the pulsar), we get

ΩstrongLT =
2JRc

(R2 + a2)
3

2

√
R2 − 2MR + a2

≈ 24 s−1 , (2.52)

or,

ΩstrongLT

ω
≈ 0.22 . (2.53)

On the other hand, if we use our well known weak field approximation (Eq. (2.46))

for the LT precession rate, we get

ΩweakLT =
2Jc

R3
≈ 18 s−1 , (2.54)

or,

ΩweakLT

ω
≈ 0.17 . (2.55)

So, we can easily see that there is really a substantial (∼ 30 %) difference between the

weak and strong gravity LT precession rates in this case. But, the precession rate for a

gyroscope or a satellite due to the rotation of the earth or the sun, the numerical results

from the weak and strong gravity LT precession rate formulas appear to be the same. So,

for the earth or the sun, it does not matter whether one takes the strong gravity Eq.

(2.40) or the weak gravity LT Eq. (2.46).

In Table 2.1, we offer a comparative numerical study between calculated values of

ΩstrongLT and ΩweakLT for a few recently discovered pulsars, with those of the sun and the

earth. The effect of strong gravity is as high as above 100 % in one particular example,

and certainly above 30 % in general for all pulsars.

During the ΩstrongLT calculations, the backreaction effects of the binary companion

of a particular pulsar can be usually neglected, because, the distance of this companion

is ∼ 1 lt-sec(105 km) or more than that and ΩLT is inversely proportional to ρ3. The
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strong gravity LT effect computed which we focus on, is significant near the surface of

pulsars and near black hole event horizons. If the binary system under consideration has

a non-compact companion of the pulsar which is reasonably distant, backreaction effects

of this companion on the LT precession of test gyroscopes may be safely ignored.

We should be careful in pointing out, however, that the table of comparisons above

is merely to convey the importance of strong gravity effects in the rate of dragging of

inertial frames in the case of compact gravitating objects; the actual numbers may have

errors, both theoretical and observational, which have not been fully analysed yet.

2.4 Summary

The analyses presented above has two important features : (a) the LT precision frequency

of a gyroscope in a ‘Copernican’ frame within a Kerr spacetime is computed without any

assumption on the angular momentum parameter or indeed the curvature of spacetime.

The only comparable attempt in the literature is that in Ref. [16], which however is not the

same computation as ours, and the result is not the same in terms of metric coefficients.

(b) The result derived in Eq. (2.30) is in fact valid, not just for axisymmetric spacetimes,

but also for general non-static stationary spacetimes, once again without any assumptions

about the curvatures involved. This result, we believe is applicable to a very large class

of strong gravity systems.

Majority of the textbook calculations of the LT precession rate focus on the weak-field

approximation. Only in the book of Misner-Thorne-Wheeler [16], the orbital angular

velocity for locally non-rotating observers in a Kerr-Newman spacetime is given by Eq.

(33.24) as an exercise. This formula does not appear to be restricted to the weak-field

approximation. However, from an astrophysical standpoint, it is not clear that the com-

puted angular frequency corresponds to what might be measured as the LT precession

in a strong gravity situation, because it has been derived in a locally non-rotating frame
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which the authors amply clarify is not a Copernican frame. A naive limiting procedure

does not appear to reduce this frequency to the standard weak-field result of Eq. (2.43)

in ‘Copernican’ frames quoted in most other textbooks for the LT precession rate in a

weak gravitational field.

The substantial difference between the LT precession frequency arising in strong grav-

ity regime and the standard weak field precession rate for inertial frame dragging ought to

provide a strong motivation for their measurement in space probes planned for the near

future. The fascinating world of gravitational effects associated with strongly gravitating

compact objects may provide the best yet dynamical observational signatures of general

relativity.

We may reiterate that the preliminary numerical results on LT precession rates for

various systems is intended to serve as motivation for prospective measurements in strong

gravity situations, as also for further theoretical work towards understanding the emis-

sion mechanism of pulsars and x-ray emission from black holes and neutron stars. We

expect nontrivial modifications to arise from incorporation of frame-dragging effects in the

theoretical analyses of these phenomena. We hope to report on this in the near future.

There are issues related to the use of the Kerr metric for the external spacetime due

to a rotating neutron star, as pointed out in Ref. [20,21]. We note that spacetime outside

a rapidly rotating neutron star has been described in section 3 of Ref. [22] in terms of

a metric which differs from the Kerr metric and thus Eq. (2.41) should not be exactly

applicable to the pulsars. The spacetime in the vicinity of a neutron star is described

by a Kerr metric only if the angular velocity is ‘small’; otherwise, the metric receives

corrections from higher gravitational multipole moments [20]. However, there does not

appear to be a consensus in the literature as to how small the angular speed must be at

the neutron star surface, for the use of the Kerr metric as a reasonable description just

outside the region. According to Ref. [21], the product ω ·R << c where, R is the radial

size of the neutron star. Now, in the case of the millisecond pulsars PSR B1257+12,
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PSR B1913+16, PSR J1614-2230, PSR J1748-2021B this product is still < c; so the use

of the Kerr metric is perhaps not totally unjustified, although perhaps not adequately

accurate for observational purposes. But then, we reiterate our disclaimer above that

the numerical results in the table above are not meant to be taken as ‘predictions’ for

upcoming measurements. Rather, they are given merely to underline the importance of

the exact formula for the strong gravity regime, as opposed to the oft-used weak-field-

approximation. Generally, the LT precession rate could deviate by ∼ 40% from its original

value at the strong gravity regime if we use the Kerr metric instead of the general metrics

which are basically used to describe the exterior spacetimes of the pulsars. This issue

has also been addressed in Ref. [23] that due to the higher order in angular momentum,

the exterior spacetimes of the rotating neutron stars deviate from the Kerr geometry.

Clearly, results discussed in Table. 2.1 must be embellished by a more precise and careful

numerical analysis to reach observational viability.

In the next chapter (Chapter 3), we discuss the most general axisymmetric and sta-

tionary solution of Einstein’s equation given by the Plebański-Demiański metric for an

understanding of the LT precession in this spacetime [24].
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Chapter 3

Lense-Thirring precession in

Plebański-Demiański spacetime

3.1 Introduction

The axisymmetric vacuum solutions of the Einstein equations are used to describe the var-

ious characteristics of different spacetimes. The most important and physical spacetime is

the Kerr spacetime [25], describes the rotating black hole which possesses a finite angular

momentum J . The Kerr spacetime with a finite charge Q is expressed as Kerr-Newman

black hole. Actually the inclusion of Cosmological constant in these spacetimes may arise

some complexity in calculations. Without this particular constant the spacetimes possess

two horizons, such as, event horizon and Cauchy horizon. But, the presence of the cosmo-

logical constant leads to an extra horizon - the cosmological horizon. All these spacetimes

can be taken as the special cases of the most general axisymmetric spacetime of Petrov

type D which was first discovered by Plebański and Demiański (PD) [26]. This space-

time contains the seven parameters - acceleration, mass (M), Kerr parameter (a, angular

momentum per unit mass), electric charge (Qc), magnetic charge (Qm), NUT parameter

(n) and Cosmological constant. At present, this is the most general axially symmetric
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vacuum solution of Einstein field equation. This solution is important at the present time

because it is now being used in many ways. People working in semi-classical quantum

gravity have used this type of metric to investigate the pair production of black holes in

cosmological backgrounds [27]. Some people are working to extend this type of solution

to higher dimensions. But this spacetime is still not well understood at the classical level

of general relativity. In particular, the physical significance of the parameters employed

in the original forms are only properly identified in the most simplified special cases and

the most general PD metric covers all spacetimes which are well known to us till now.

It is already well known that any axisymmetric and stationary spacetime with angular

momentum (rotation) are known to exhibit an effect called the LT precession whereby

locally inertial frames are dragged along the rotating spacetime, making any test gyroscope

in such spacetimes precess with a certain frequency called the LT precession frequency [1].

More generally, we can say that the frame-dragging effect is the property of all stationary

spacetimes which may or may not be axisymmetric [14]. We have also discussed this

special feature in detail in our paper [28]. In that paper, we showed that only the Kerr

parameter was not responsible for the LT precession, NUT parameter is equally important

for the frame-dragging effect [28]. It was shown by Hackmann and Lämmerzahl that the

LT precession vanishes (Eq. (45) of Ref. [7]) in PD spacetimes (with vanishing acceleration

of the gravitating source), if the Kerr parameter a = 0. But, it is not the actual case. As

we showed in our paper [28], the same thing also happened in the PD spacetimes with zero

angular momentum (J = a = 0), the LT precession did not vanish due to the presence of

NUT charge n (angular momentum monopole [18]).

It may be noted that our LT precession formulas for different spacetimes are valid in

strong as well as weak gravitational field as we do not make any approximation to derive

the LT precession rate. We also note that the earth’s gravitational field may be described

by Kerr geometry which is physically reliable. But the most general axisymmetric PD

spacetime is not physically reliable till now because the existence of some parameters
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(e.g., NUT parameter (n), Qc, Qm) of PD spacetimes are not yet proved.

In this chapter, our aim is to derive the exact LT precession rates in non-extremal

and extremal Plebański-Demiański spacetimes without invoking the weak field approxi-

mation. So, we organize this chapter as follows. In section 3.2, we review the general LT

precession formula in stationary and axisymmetric spacetimes and derive the exact LT

precession rate in Plebański-Demiański(PD) spacetimes with vanishing acceleration of the

gravitating source and discuss the exact LT precession rates in some other stationary and

axisymmetric spacetimes as the special cases of PD spacetimes. If the Kerr parameter

vanishes in PD spacetimes, the frame-dragging effect does not vanish due to the existence

of NUT charge. It is shown in subsection 3.2.3, as a special case of the LT precession

in PD spacetimes. In section 3.3, we derive the more general extremal condition for PD

spacetimes and discuss about the exact LT precession rates in PD spacetimes and also

other various extremal axisymmetric spacetimes as the special cases of PD spacetimes.

We summarize this chapter in section 3.4.

3.2 Non-extremal case

3.2.1 Plebański-Demiański (PD) spacetimes

The PD spacetime is the most general axially symmetric vacuum solution of Einstein

equation, at present. The line element of six parameters PD spacetimes taking vanishing

acceleration can be written as (taking, G = c = 1) [7],

ds2 = −∆

p2
(dt− Adφ)2 +

p2

∆
dr2 +

p2

Ξ
dθ2 +

Ξ

p2
sin2 θ(adt− Bdφ)2 , (3.1)
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where,

p2 = r2 + (n− a cos θ)2 ,

A = a sin2 θ + 2n cos θ , B = r2 + a2 + n2 ,

∆ = (r2 + a2 − n2)

(

1− 1

ℓ2
(r2 + 3n2)

)

− 2Mr +Q2
c +Q2

m − 4n2r2

ℓ2
,

Ξ = 1 +
a2 cos2 θ

ℓ2
− 4an cos θ

ℓ2
. (3.2)

1
ℓ2

= λ denoting the Cosmological constant divided by three, represents the Plebański-

Demiański-de-Sitter (PD-dS) spacetimes and if ℓ2 is replaced by −ℓ2, it represents the

PD-AdS spacetimes. So, our metric gµν is thus following

gµν =



















− 1
p2
(∆− a2Ξ sin2 θ) 0 0 1

p2
(A∆− aBΞ sin2 θ)

0 p2

∆
0 0

0 0 p2

Ξ
0

1
p2
(A∆− aBΞ sin2 θ) 0 0 1

p2
(−A2∆+B2Ξ sin2 θ)



















. (3.3)

In the Chapter 2, we have already discussed about the exact expression of the LT pre-

cession rate. This is applicable for any non-accelerating stationary spacetimes. In this

chapter, we are going to derive the exact LT precession rate for non-accelerating PD

spacetimes and also some others axially symmetric spacetimes like this. The expression

for the LT precession rate in non-accelerating, stationary and axisymmetric spacetime

can be written as,

ΩLT =
1

2
√−g

[(

g0φ,r −
g0φ
g00

g00,r

)

∂θ −
(

g0φ,θ −
g0φ
g00

g00,θ

)

∂r

]

, (3.4)

which is same as Eq. (35) of Ref. [28]. The various metric components can be read off
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from the above metric (3.3). Likewise,

√
−g = p2 sin θ. (3.5)

Substituting the metric components into Eq. (3.4) we can easily get the LT precession

rate in PD spacetimes. But, there is a problem in that formulation as the precession

formula is in co-ordinate basis. So, we should transform the precession frequency formula

from the coordinate basis to the orthonormal ‘Copernican’ basis: first we note that

ΩLT = Ωθ∂θ + Ωr∂r , (3.6)

Ω2
LT = grr(Ω

r)2 + gθθ(Ω
θ)2 . (3.7)

Next, in the orthonormal ‘Copernican’ basis at rest in the rotating spacetime, with

our choice of polar coordinates, ΩLT can be written as

~ΩLT =
√
grrΩ

r r̂ +
√
gθθΩ

θ θ̂ , (3.8)

where, θ̂ is the unit vector along the direction θ. Our final result of the LT precession in

the non-accelerating PD spacetime is then,

~ΩPDLT =

√
∆

p

[

a(Ξ cos θ + (2n− a cos θ) a
ℓ2
sin2 θ)

∆− a2Ξ sin2 θ
− a cos θ − n

p2

]

r̂

+

√
Ξ

p
a sin θ

[

r −M − r
ℓ2
(a2 + 2r2 + 6n2)

∆− a2Ξ sin2 θ
− r

p2

]

θ̂ . (3.9)

Now, from the above expression we can easily derive the LT precession rates for various

axisymmetric stationary spacetimes as the special cases of the PD spacetime.

3.2.2 Special cases

(a) Schwarzschild and Schwarzschild-de-Sitter spacetimes : As the Schwarzschild
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and Schwarzschild-de-Sitter spacetimes both are static and a = λ = Qc = Qm = n = 0,

the inertial frames are not dragged along it. So, we can’t see any LT effect in these space-

times. This is very well known feature of static spacetime.

(b) Kerr spacetimes : The LT precession rate for non-extremal Kerr spacetimes

is already discussed in Chapter 2. Setting λ = Qc = Qm = n = 0 in Eq. (3.9) we can

recover our result (Eq. (42) of Ref. [28]) which is applicable for Kerr spacetimes.

(c) Kerr-Newman spacetime : Rotating black hole spacetimes with electric charge

Qc and magnetic chargeQm is described by Kerr-Newman metric, which is quite important

in General Relativity. Setting λ = n = 0 in Eq. (3.9), we can easily get the LT precession

in Kerr-Newman spacetime. It has the following form (taking Q2
c +Q2

m = Q2),

~ΩKNLT =
a

ρ3(ρ2 − 2Mr +Q2)

[√
∆(2Mr −Q2) cos θr̂ + (M(2r2 − ρ2) + rQ2) sin θθ̂

]

.

(3.10)

In the Kerr-Newman spacetime,

∆ = r2 − 2Mr + a2 +Q2 , and ρ2 = r2 + a2 cos2 θ . (3.11)

From the expression (3.10) of the LT precession in Kerr-Newman spacetime we can see

that at the polar plane, the LT precession vanishes for the orbit r = Q2

2M
, though

the spacetime is rotating (a 6= 0). So, if a gyroscope rotates in the polar orbit of radius

r = Q2

2M
in this spacetime, the gyroscope does not experience any frame-dragging effect.

So, if any experiment is performed in future by which we can’t see any LT precession in

that spacetime, it may happen that the specified spacetime is the Kerr-Newman black
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hole and the gyroscope is rotating at the polar orbit whose radius is r = Q2

2M
. This is a

very interesting feature of the Kerr-Newman geometry. Though the spacetime is rotating

with the angular momentum J , the nearby frames are not dragged along it. Except this

particular orbit, the LT precession is found everywhere in this spacetimes.

(d) Kerr-de-Sitter spacetimes : The Kerr-de-Sitter spacetime is more realistic,

when we do not neglect the Cosmological constant parameter (though its value is very

small, it may be very useful in some cases, where we need very precise calculation). Setting

n = Qc = Qm = 0, we get the following expression for the Kerr-de-Sitter spacetime

~ΩKdSLT =
a

ρ3(ρ2 − 2Mr − 1
ℓ2
(a4 + a2r2 − a4 sin2 θ cos2 θ))

[√
∆

(

2Mr +
1

ℓ2
ρ4
)

cos θr̂

+
√
Ξ
[

M(2r2 − ρ2) +
r

ℓ2
{a4 + a2r2 − a4 sin2 θ cos2 θ − ρ2(a2 + 2r2)}

]

sin θθ̂
]

,

(3.12)

where,

∆ = (r2 + a2)

(

1− r2

ℓ2

)

− 2Mr , and Ξ = 1 +
a2

ℓ2
cos2 θ . (3.13)

3.2.3 Non-vanishing Lense-Thirring precession in ‘zero angular

momentum’ Plebański-Demiański spacetimes

This subsection can be regarded as a special case of non-accelerating Plebański-Demiański

spacetime in where we take that PD spacetime is not rotating, we mean the Kerr param-

eter a = 0. In a very recent paper, Hackmann and Lämmerzahl showed that the LT effect

vanished (Eq. (45) of Ref. [7]) due to the vanishing Kerr parameter. But, we can find

easily from the Eq. (3.9) that if a vanishes in PD spacetime, the LT precession rate will
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be

~ΩPDLT |a=0 =
n
√

∆|a=0

p3
r̂ , (3.14)

where,

∆|a=0 = (r2 − n2)

(

1− 1

ℓ2
(r2 + 3n2)

)

− 2Mr +Q2
c +Q2

m − 4n2r2

ℓ2
,

and, p2 = r2 + n2 . (3.15)

So, it is evident that the LT precession does not vanish when the Kerr parameter is zero.

The above expression reveals that NUT charge n is responsible for the LT precession in

‘zero angular momentum’ PD spacetimes. Here, M represents the “gravitoelectric mass”

or ‘mass’ and n represents the “gravitomagnetic mass” or ‘dual’ (or ‘magnetic’) mass [29]

of this spacetime. It is obvious that the spacetime is not invariant under time reversal

t → −t, signifying that it must have a sort of ‘rotational sense’ which is analogous to a

magnetic monopole in electrodynamics. One is thus led to the conclusion that the source

of the nonvanishing LT precession is this “rotational sense” arising from a nonvanishing

NUT charge. Without the NUT charge, the spacetime is clearly hypersurface orthogonal

and frame-dragging effects vanish, as already mentioned in detail in our paper (section 3

of Ref. [28]). This ‘dual’ mass has been investigated in details in Ref. [30, 31] and it is

also referred as an ‘angular momentum monopole [18] in the Taub-NUT spacetime. This

implies that the inertial frame dragging seen here in such a spacetime can be identified

as a gravitomagnetic effect.

In Ref. [7] and Ref. [32], the authors investigated the timelike geodesic equations in

the PD spacetime and Taub-NUT spacetime, respectively. The orbital plane precession

frequencies (Ωφ−Ωθ) were computed, following the earlier works of Ref. [33] and Ref. [34],
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and the vanishing result ensued. Both of these results were then interpreted as the

signature for the null LT precession in the ‘zero angular momentum’ PD spacetime as

well as in the Taub-NUT spacetime.

We would like to say that what we have focused on in this thesis is quite different from

the ‘orbital plane precession’ considered in Ref. [7] and Ref. [32]. Using a ‘Copernican’

frame, we calculate the precession of a gyroscope which is moving in an arbitrary integral

curve (not necessarily geodesic). Within this frame, an untorqued gyro in a stationary but

not static spacetime held fixed by a support force applied to its center of mass, undergoes

the LT precession. Since the Copernican frame does not rotate (by construction) relative

to the inertial frames at asymptotic infinity (“fixed stars”), the observed precession rate in

the Copernican frame also gives the precession rate of the gyro relative to the fixed stars.

It is thus, more an intrinsic property of the classical spin of the spacetime (as an untorqued

gyro must necessarily possess), in the sense of a dual mass, rather than an orbital plane

precession effect for timelike geodesics in a ‘zero angular momentum’ PD spacetime and

a Taub-NUT spacetime. The dual mass is like the Saha spin of a magnetic monopole

in electrodynamics [29], which may have a vanishing orbital angular momentum, but to

which a spinning electron must respond so that its wavefunction acquires a geometric

phase.

More specifically, in our case, we consider the gyroscope equation [14] in an arbitrary

integral curve

∇uS =< S, f > u , (3.16)

where, f = ∇uu is the acceleration, u is the four velocity and S indicates the spacelike

classical spin four vector Sα = (0, ~S) of the gyroscope. For geodesics f = 0 ⇒ ∇uS = 0.

In contrast, Hackmann and Lämmerzahl [7] and Kagramanova et al. [32] considered

the behaviour of massive test particles with vanishing spin S = 0 [35], and computed the

orbital plane precession rate for such particles, obtaining a vanishing result. We are thus
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led to conclude that because of two different situations are being considered, there is no

inconsistency between our results and theirs.

It is important to mention here that the detailed analyses on the LT precession in Kerr-

Taub-NUT [36], Taub-NUT [37,38] and massless Taub-NUT spacetimes will be discussed

in the next chapter (Chapter 4).

3.3 Extremal case

3.3.1 Extremal Plebański-Demiański Spacetime

In this section, we would like to describe the LT precession in extremal Plebański-

Demiański spacetime, whose non-extremal case is already described in the previous sec-

tion. To get the extremal limit in PD spacetimes we should first determine the radius

of the horizons rh which can be determined by setting ∆|r=rh = 0. We can make a

comparison of coefficients in

∆ = − 1

ℓ2
r4 +

(

1− a2

ℓ2
− 6n2

ℓ2

)

r2 − 2Mr +

[

(a2 − n2)

(

1− 3n2

ℓ2

)

+Q2
c +Q2

m

]

= − 1

ℓ2
[r4 + (a2 + 6n2 − ℓ2)r2 + 2Mℓ2r + b]

= − 1

ℓ2
Π4
i=1(r − rhi) , (3.17)

where,

b = (a2 − n2)(3n2 − ℓ2)− ℓ2(Q2
c +Q2

m) , (3.18)

and rhi(i = 1, 2, 3, 4) denotes the zeros of ∆. From this comparison we can conclude

that for the PD-AdS (when λ is negative) black hole, there are two separated positive

horizons at most, and ∆ is positive outside the outer horizon of the PD black hole. In

the same way, we can conclude for the PD-dS (when λ is positive) black hole that there

are three separated positive horizons at most, and ∆ is negative outside the outer horizon
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of the black hole. When two horizons of the PD black hole coincide, the black hole is

extremal [39].

If we consider the extremal PD black hole, we have to make a comparison of coefficients

in

∆ = (r − x)2(a2r
2 + a1r + a0) (3.19)

= − 1

ℓ2
[r4 + (a2 + 6n2 − ℓ2)r2 + 2Mrℓ2 + b] ,

with a0, a1, a2 being real [7]. From this comparison we can get the following for PD

(“AdS”) spacetime,

bA
x2

− 3x2 = a2 + 6n2 + ℓ2 , (3.20)

x3 − bA
x

= −Mℓ2 , (3.21)

where, bA represents the value of b at PD (“AdS”) spacetimes.

bA = (a2 − n2)(3n2 + ℓ2) + ℓ2(Q2
c +Q2

m) . (3.22)

Solving equation (3.20) for x, we get

x =

√

1

6

[

−(ℓ2 + a2 + 6n2) +
√

(ℓ2 + a2 + 6n2)2 + 12bA

]

. (3.23)

Similarly, we can obtain for PD(“dS”) black hole ,

b

x2
− 3x2 = a2 + 6n2 − ℓ2 , (3.24)

x3 − b

x
= Mℓ2 . (3.25)

In these equation x is positive and related to the coincided horizon of the extremal
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PD (for “dS”) black hole.

Solving equation (3.24) for x, we get

x+ =

√

1

6

[

ℓ2 − a2 − 6n2 +
√

(ℓ2 − a2 − 6n2)2 + 12b
]

, (3.26)

x− =

√

1

6

[

ℓ2 − a2 − 6n2 −
√

(ℓ2 − a2 − 6n2)2 + 12b
]

, (3.27)

where, x+ and x− indicate the outer horizon and inner horizon, respectively. This can be

seen by calculating

d2∆

dr2
|r=x+ = − 2

ℓ2

√

(ℓ2 − a2 − 6n2)2 + 12b , (3.28)

and

d2∆

dr2
|r=x− =

2

ℓ2

√

(ℓ2 − a2 − 6n2)2 + 12b . (3.29)

For the PD(“dS”) black hole, on the outer extremal horizon, d∆
dr

= 0 and d2∆
dr2

< 0 and

on the inner extremal horizon d2∆
dr2

> 0. Now, we can solve M and a from the two Eqs.

(3.24) and (3.25).

M =
x [x4 + 2x2(3n2 − ℓ2) + (3n2 − ℓ2)(7n2 − ℓ2) + ℓ2(Q2

c +Q2
m)]

ℓ2(ℓ2 + x2 − 3n2)
, (3.30)

a2e =
3x4 + (6n2 − ℓ2)x2 + n2(3n2 − ℓ2) + ℓ2(Q2

c + Q2
m)

(3n2 − ℓ2 − x2)
. (3.31)

From the above values of a2e and M , we get

a2e = −Mℓ2
[3x4 + (6n2 − ℓ2)x2 + n2(3n2 − ℓ2) + ℓ2(Q2

c +Q2
m)]

x [x4 + 2x2(3n2 − ℓ2) + (3n2 − ℓ2)(7n2 − ℓ2) + ℓ2(Q2
c +Q2

m)]
. (3.32)
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The ranges of x and ae are determined from the following expressions

x2 <

(

ℓ2 + ℓ
√

ℓ2 − 12Q2

6
− n2

)

, (3.33)

0 < a2e <
[

(7ℓ2 − 24n2)−
√

(7ℓ2 − 24n2)2 − (ℓ4 − 12ℓ2(Q2
c +Q2

m))
]

. (3.34)

Due to the presence of Cosmological constant, there exist four roots of x in Eq. (3.31).

When Cosmological constant 1
l2
→ 0, Eq. (3.30) and Eq. (3.31) reduce to

x =M , (3.35)

and,

a2e = x2 + n2 −Q2
c −Q2

m , (3.36)

or,

a2e =M2 + n2 −Q2
c −Q2

m , (3.37)

respectively.

Now, the line element of extremal PD spacetimes can be written as,

ds2 = −∆e

p2e
(dt− Aedφ)

2 +
p2e
∆e

dr2 +
p2e
Ξe
dθ2 +

Ξe
p2e

sin2 θ(aedt−Bedφ)
2 , (3.38)

and, the final LT precession rate in extremal PD spacetime is,

~ΩePDLT =

√
∆e

pe

[

ae(Ξe cos θ + (2n− ae cos θ)
ae
ℓ2
sin2 θ)

∆e − a2eΞe sin
2 θ

− ae cos θ − n

p2e

]

r̂

+

√
Ξe
pe

ae sin θ

[

r −M − r
ℓ2
(a2e + 2r2 + 6n2)

∆e − a2eΞe sin
2 θ

− r

p2e

]

θ̂ , (3.39)
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where,

∆e = − 1

ℓ2
(r − x)2

(

r2 + 2rx+
b

x2

)

,Ξe = 1 +
a2e
ℓ2

cos2 θ − 4aen

ℓ2
cos θ ,

pe = r2 + (n− ae cos θ)
2 , Ae = ae sin

2 θ + 2n cos θ , Be = r2 + a2e + n2 , (3.40)

and, the value of ae is determined from the Eq. (3.31) and the range of x and ae (‘e’

stands for the extremal case) are determined from the Eqs. (3.33) and (3.34), respectively.

It could be noted that, for the extremal PD(“dS”), spacetimes, there are upper limiting

values for angular momentum and extremal horizon of the black hole. Substituting all the

above mentioned values and ranges in Eq. (3.39), we get the exact LT precession rate in

extremal PD spacetimes.

3.3.2 Extremal Kerr Spacetime

Substituting ae = M in Eq. (42) of Ref. [28] or substituting a = M and λ = Qc =

Qm = n = 0 in Eq. (3.39) we can easily get the LT precession rate in the extremal Kerr

spacetime,

~ΩeKLT =
M2[2r(r −M) cos θr̂ + (r2 −M2 cos2 θ) sin θθ̂]

(r2 +M2 cos2 θ)
3

2 (r2 − 2Mr +M2 cos2 θ)
. (3.41)

We consider two cases here.

Case I: On the polar region i.e. θ = 0, the ΩLT becomes

ΩeKLT =
2M2r

(r2 +M2)3/2(r −M)
. (3.42)

Case II: On the equator i.e. θ = π/2, the ΩLT becomes

ΩeKLT =
M2

r2(r − 2M)
. (3.43)
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It could be easily seen that ΩLT diverges at r =M . Since r =M is the only direct ISCO

in extremal Kerr geometry which coincides with the principal null geodesic generator of

the horizon [40] and it is also the radius of the horizon which is a null surface. The general

LT precession formula is derived only considering that the observer is rest in a timelike

Killing vector field. We have not incorporated the LT effect for any null geodesic. So, our

formula is valid only in timelike region.

3.3.3 Extremal Kerr-Newman Spacetime

Substituting a2 = M2 − (Q2
c + Q2

m) = M2 − Q2 and λ = n = 0 in Eq. (3.10), we can

obtain the following LT precession rate for the extremal Kerr-Newman black hole

~ΩeKNLT =

√

M2 −Q2

ρ3(ρ2 − 2Mr +Q2)

[

(r −M)(2Mr −Q2) cos θr̂ + (M(2r2 − ρ2) + rQ2) sin θθ̂
]

,

(3.44)

where,

ρ2 = r2 + (M2 −Q2) cos2 θ . (3.45)

From the above expression (Eq. (3.44)), we can make a similar comment again, like the

extremal Kerr-Newman black hole that the gyroscope which is rotating in a polar orbit

of radius r = Q2

2M
, cannot experience any frame-dragging effect. Apparently, it seems that

this argument is also true for the gyroscope which is rotating at r = M orbit. But, this

is not true. Because, this is the horizon of the extremal Kerr-Newman spacetime. So,

r = M is a null surface. The general formula which we have considered in this thesis, is

valid only in timelike spacetimes (outside the horizon), but not in any null or spacelike

regions.
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3.3.4 Extremal Kerr-de Sitter Spacetime

The extremal Kerr-de Sitter spacetime is interesting because it involves the Cosmological

constant. Setting n = Qc = Qm = 0 in Eq. (3.9), we can find the following expression of

the LT precession at extremal Kerr-de Sitter spacetimes

~ΩeKdSLT =
ae

ρ3(ρ2 − 2Mr − 1
ℓ2
(a4e + a2er

2 − a4e sin
2 θ cos2 θ))

[

√

∆e

(

2Mr +
ρ4

ℓ2

)

cos θr̂

+
√

Ξe

[

M(2r2 − ρ2) +
r

ℓ2
{a4e + a2er

2 − a4e sin
2 θ cos2 θ − ρ2(a2e + 2r2)}

]

sin θθ̂
]

,

(3.46)

where,

ρ2 = r2 + a2e cos
2 θ , Ξe = 1 +

a2e
ℓ2

cos2 θ , (3.47)

and

∆e = − 1

ℓ2
(r − x)2

(

r2 + 2xr − a2ℓ2

x2

)

.

Using Eqs. (3.30) and (3.31), we obtain the value for a and M are

a2e =
(ℓ2 − 3x2)x2

(ℓ2 + x2)
,

M =
x(ℓ2 − x2)2

ℓ2(ℓ2 + x2)
, (3.48)

where the horizons are at

x+ =

√

1

6

[

ℓ2 − a2 +
√

(ℓ2 − a2)2 − 12a2ℓ2
]

,

x− =

√

1

6

[

ℓ2 − a2 −
√

(ℓ2 − a2)2 − 12a2ℓ2
]

, (3.49)

where, x+ and x− indicate the outer horizon and inner horizon. The range of a2e and x
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are the following,

0 < a2e < (7− 4
√
3)ℓ2 , and, x2 < ℓ2/3 , (3.50)

which is already discussed in Ref. [39]. Substituting all the above values in Eq. (3.46) and

taking the ranges of ae and x, we get the exact LT precession rate in extremal Kerr-dS

spacetimes.

3.3.5 Extremal Kerr-Taub-NUT spacetime

To derive the extremal limit in the Kerr-Taub-NUT spacetime we set,

∆ = r2 − 2Mr + a2 − n2 = 0 . (3.51)

Solving for r, we get two horizons which are located at r± = M ±
√
M2 + n2 − a2. So,

the extremal condition (r+ = r−) for Kerr-Taub-NUT spacetimes is a2e =M2 + n2. If we

set Qc = Qm = λ = 0 and M2 + n2 = a2e in Eq. (3.9), we get the following exact LT

precession rate at the extremal Kerr-Taub-NUT spacetime,

~ΩeKTNLT =
(r −M)

p

[√
M2 + n2 cos θ

p2 − 2Mr − n2
−

√
M2 + n2 cos θ − n

p2

]

r̂

+

√
M2 + n2 sin θ

p

[

r −M

p2 − 2Mr − n2
− r

p2

]

θ̂ , (3.52)

where p2 = r2 + (n∓
√
M2 + n2 cos θ)2 .

3.4 Summary

In this work we have explicitly derived the LT precession frequencies for extremal and

non- extremal Plebański-Demiański(PD) spacetime. The PD family of solutions are the

solutions of Einstein field equations which contain a number of well known black hole solu-
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tions. These solutions are Schwarzschild, Schwarzschild-de-Sitter, Kerr, Kerr- ads, Kerr-

Newman, Kerr-Taub-NUT etc. We observe that the LT precession frequency strongly de-

pends upon the different parameters like mass M , spin a, Cosmological constant λ, NUT

charge n, electric charge Qc and magnetic charge Qm. An interesting point is that the LT

precession occurs solely due to the “dual mass”. This “dual mass” is equivalent to angular

momentum monopole (n) of NUT spacetime. For the completeness we have also deduced

the LT precession for the extremal PD spacetime and also for others axisymmetric PD-

like spacetimes. To get the LT precession rate in the extremal Kerr-Taub-NUT-de-Sitter

spacetime, the basic procedure is same as PD spacetimes with the additional requirement

Q2
c + Q2

m = 0 in Eqs. (3.30) and (3.31) and the range of x2 < ( ℓ
2

3
− n2) and a2e has a

range of 0 < a2e < (7ℓ2 − 24n2)− 4
√

3(ℓ2 − 3n2)(ℓ2 − 4n2). As there is no valid extremal

condition at the NUT spacetime (with M or without M), we could not get any real LT

precession rate due to the frame-dragging effect. Since, the direct ISCO coincides with

the principal null geodesic generator [40] in extremal Kerr spacetimes and Kerr-Newman

spacetimes, we are unable to discuss the LT precession at that particular geodesic. So this

formula is not valid for the domain of r ≤ M for the extremal Kerr and Kerr-Newman

spacetimes. Here, our formula is valid only for r > M . The general formula for the LT

precession in stationary spacetime is valid only outside the horizon, as the observer is

in timelike Killing vector field. The formula is not valid on the horizon and inside the

horizon. We will discuss about this problem in near future.

61



Chapter 4

Anomalous Lense-Thirring

precession in Kerr-Taub-NUT and

Taub-NUT spacetimes

4.1 Introduction

We have already obtained the exact LT precession rate in Kerr spacetime in Chapter

2. Now, in this present chapter we are going to derive the exact LT precession rate in

Kerr-Taub-NUT and Taub-NUT spacetimes. Kerr and KTN spacetimes both are the

vacuum solutions of Einstein equation. Kerr spacetime has two parameters: mass and

Kerr parameter (angular momentum per unit mass) but these are three parameters to

describe the KTN spacetime. The parameters are: mass, Kerr parameter and NUT

parameter. If the NUT parameter vanishes the KTN spacetime reduces to the Kerr

spacetime and if the Kerr parameter vanishes the KTN spacetime reduces to the Taub-

NUT spacetime. In the absence of the NUT parameter, the Taub-NUT spacetime reduces

to pure Schwarzschild spacetime which is non-rotating. The Kerr spacetime is very well

known to us and it is also physically reliable. We can easily describe the exterior geometry
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of many rotating astrophysical objects by the Kerr spacetime. So, the Kerr spacetime

is astrophysically relevant. But, the KTN spacetime is quite different than the Kerr

geometry. As it holds an additional parameter (NUT), this spacetime is not physically

relevant till now.

Lynden-Bell and Nouri-Zonoz [29] are the first to motivate investigation on the ob-

servational possibilities for NUT charges or (gravito)magnetic monopoles. They have

claimed that the signatures of such spacetime might be found in the spectra of super-

novae, quasars, or active galactic nuclei. It has been recently brought into focus by

Kagramanova et. al [32] by a detail and careful analysis of geodesics in the Taub-NUT

spacetime. A rigorous analysis in extremal and non-extremal KTN spacetimes for time-

like and spacelike geodesics has already been done by myself [41]. It should be noted

that the (gravito)magnetic monopole spacetime with angular momentum (basically the

KTN spacetime) admits relativistic thin accretion disks of a black hole in a galaxy or

quasars [42]. The accretion disks are basically formed just near the above mentioned

astrophysical objects. In this sense the accretion phenomena takes place in a very strong

gravity regime where the frame-dragging effect is expected to be very high. Thus the

frame-dragging effect should have greater impact on accretion disk phenomena. This pro-

vides us a strong motivation for studying the LT precession or frame-dragging effect in

the KTN spacetime in more detail because it will affect the accretion in such spacetimes

from massive stars, and might offer novel observational prospects.

The Kerr-Taub-NUT (KTN) spacetime is a stationary and axisymmetric vacuum so-

lution of Einstein equation. This spacetime consists of the Kerr and NUT parameters.

The Kerr parameter is responsible for the rotation of the spacetime. In general sense

the NUT charge should not be responsible explicitly for the rotation of the spacetime

but implicitly this NUT charge can add a “rotational sense” in a non-rotating spacetime.

The NUT charge is also called as ‘dual mass’ whose properties have been investigated in

detail by Ramaswamy and Sen [30]. They also called the NUT parameter as the “angular
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momentum monopole” [18] which is quite sound in this sense that it can give a “rotational

sense” of the Taub-NUT spacetime even when the Kerr parameter vanishes (see 3.2.3). In

this regards, though the Kerr parameter vanishes in the Kerr-Taub-NUT spacetime, the

Taub-NUT spacetime retains the rotational sense due to the NUT parameter. Due to the

presence of the NUT parameter the spacetime still remains stationary and violates the

time reflection symmetry. Time reflection changes the direction of rotation and thus does

not restore one to the original configuration [17]. Thus, the failure of the hypersurface

orthogonality (it also means that the spacetime preserves the time translation symmetry

but violates the time reflection symmetry) condition implies that the neighbouring orbits

of ξa (the timelike Killing vector which must exist in any stationary spacetime) “twist”

around each other. In the Kerr spacetime, the presence of the Kerr parameter makes the

spacetime stationary instead of static (this has been clearly stated at section 2.1). Simi-

larly, in the case of the Taub-NUT spacetime the NUT parameter compels the spacetime

stationary instead of static. So, the Kerr and NUT parameters both are responsible to

make the spacetime in rotation. Thus, it is needless to say that the KTN spacetime must

be stationary.

Modak, Bandyopadhyay and myself [43] recently have discovered that frame-dragging

curves are not smooth along the equator and its surroundings inside a rotating neutron star

(it will be discussed in Chapter 5). Rather, the frame-dragging effect shows an interesting

anomaly along the equator inside the pulsars. The frame-dragging rate is maximum at

the center and decreases initially away from the center, tends to zero (not exactly zero

but very small) before the surface of the neutron star, rises again and finally approaches

small value on the surface as well as outside of the pulsars. We think that this may not

be the only case where we see this anomaly. After that we start to hunt for this type

of feature in other spacetimes which are the vacuum solutions of Einstein equation and

we get the almost similar anomaly in the KTN spacetime (we note that there are many

differences between the KTN spacetime and the spacetime of a rotating neutron star;
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they are not same). Previously, the strong gravity LT precession in Plebański-Demiański

(PD) spacetimes (most general axisymmetric and stationary spacetime till now) has been

investigated by Pradhan and myself [24]. But our close observation says that due to the

presence of the NUT charge this anomaly in the frame-dragging can also arise in the PD

spacetime. In this present chapter, we are investigating the LT precession in the KTN

(sections 4.2 & 4.3) and Taub-NUT (section 4.4) spacetimes as both of these spacetimes

could be astrophysically relevant in future. In section 4.5, we would like to discuss the

geodesics of the KTN metric on the equatorial plane of precisely extremal spacetime. In

the two subsections 4.5.2 and 4.5.3, we derive the radii of ISCOs for the KTN spacetime

and also for the Taub-NUT and massless Taub-NUT spacetimes as the special cases of

KTN spacetimes for the nulllike and timelike geodesics, respectively. We conclude in

section 4.6 with a summary.

4.2 Lense-Thirring precession in Kerr-Taub-NUT space-

time

The KTN spacetime is a geometrically stationary and axisymmetric vacuum solution of

Einstein equation. This spacetime consists mainly three parameters: mass (M), angular

momentum (J) per unit mass or Kerr parameter (a = J/M) and NUT charge (n) or dual

mass. The metric of the KTN spacetime can be written as [44]

ds2 = −∆

p2
(dt− Adφ)2 +

p2

∆
dr2 + p2dθ2 +

1

p2
sin2 θ(adt− Bdφ)2 , (4.1)

with

∆ = r2 − 2Mr + a2 − n2 , p2 = r2 + (n+ a cos θ)2 ,

A = a sin2 θ − 2n cos θ , B = r2 + a2 + n2 . (4.2)
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(a) along the pole (b) along the equator

Figure 4.1: Plot of ΩLT (in m−1) vs r (in m) in the KTN spacetime for a = 0.1 m,
n = 1 m & M = 1 m [45].

The exact LT precession rate in the Kerr-Taub-NUT spacetime is (Eq. (20) of [28])

~ΩLT =

√
∆

p

[

a cos θ

ρ2 − 2Mr − n2
− a cos θ + n

p2

]

r̂ +
a sin θ

p

[

r −M

ρ2 − 2Mr − n2
− r

p2

]

θ̂ , (4.3)

where, ρ2 = r2 + a2 cos2 θ. The modulus of the above LT precession rate is

ΩLT = |~ΩLT | =
1

p

[

∆

(

a cos θ

ρ2 − 2Mr − n2
− a cos θ + n

p2

)2

+ a2 sin2 θ

(

r −M

ρ2 − 2Mr − n2
− r

p2

)2
]

1

2

. (4.4)

It could be easily seen that the above equation is valid only in timelike region, we mean,

outside the ergosphere which is located at r+ =M +
√
M2 + n2 − a2 cos2 θ.

We plot r vs ΩLT for a < n (Fig. 4.1) and a > n (Fig. 4.2). We see that the LT

precession rate curve is smooth along the equator (panel (b)) but it is not smooth along

the pole (panel (a)). The LT precession rate along the pole is very high just outside

the ergosphere and falls sharply and becomes zero, rises again and finally approaches

to a small value after crossing the very strong gravity regime. We will now discuss an

interesting situation in which the Kerr parameter a is equal to the NUT parameter n.
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(a) along the pole (b) along the equator

Figure 4.2: Plot of ΩLT (in m−1) vs r (in m) in the KTN spacetime for a = 0.7 m,
n = 0.3 m & M = 1 m [45].

Special case: a = n

The horizons of the KTN spacetime are located at r± = M ±
√
M2 + n2 − a2 [41]. One

horizon is located at r+ > 0 and another is located at r− < 0 (if n > a) [32]. The Kerr

parameter a takes any value but less than or equal to
√
M2 + n2 in case of the KTN

spacetime whereas a takes its highest value as M in case of the Kerr spacetime. Without

this restriction (if a2 > M2+n2) the both spacetimes lead to show the naked singularities.

There are two special cases in KTN spacetimes for which a can take the value M only

and for the second case a can take the value n. For the first case the angular momentum

of the KTN spacetime would be J = M2 which is similar to the case of extremal Kerr

spacetime. In this case the horizons will be located at the distances r+ = M + n and

r− =M − n. If the mass of the spacetime is greater than the dual mass of the spacetime

(M > n), the both horizons could be located at the positive distances (r± > 0) but if the

dual mass is greater than the mass of the spacetime (M < n) r− will be located at the

negative distance (r− < 0).

For the second case (a = n) the angular momentum of the KTN spacetime would be

J = Mn. It is a very interesting situation. In this case the line element of the KTN
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spacetime would be

ds2n = −∆n

p2n
(dt−Andφ)

2 +
p2n
∆n

dr2 + p2ndθ
2 +

1

p2n
sin2 θ(ndt− Bndφ)

2 , (4.5)

with

∆n = r(r − 2M) , p2n = r2 + n2(1 + cos θ)2 ,

An = n(sin2 θ − 2 cos θ) , Bn = r2 + 2n2 . (4.6)

It could be easily seen that this special rotating spacetime has outer horizon at the distance

r+ = 2M and inner horizon at r− = 0. Outer horizon at the distance r+ = 2M is just

similar to the Schwarzschild spacetime where the event horizon is located at r = 2M . This

spacetime can be treated as the rotating spacetime with the event horizon at r = 2M and

its angular momentum will be

J =Mn . (4.7)

In other words, it could be said that the KTN spacetime rotating with the angular mo-

mentum J =Mn, possessed an outer horizon at r = 2M and an inner horizon at r = 0.

There is an apparent similarity between Eq. (40) of Ref. [46] with our results but it is a

completely different situation. Furthermore, there should be an ergoregion in this special

KTN spacetime. For this special case (a = n), the radius of the ergosphere for the KTN

spacetime will be M +
√
M2 + n2 sin2 θ. The LT precession rate in this special spacetime

will be

ΩLT |a=n =
n

pn

[

∆n

(

cos θ

r2 − 2Mr − n2 sin2 θ
− 1 + cos θ

p2n

)2

+ sin2 θ

(

r −M

r2 − 2Mr − n2 sin2 θ
− r

p2n

)2
]

1

2

.

(4.8)

The above expression is valid outside the ergosphere as it diverges on the ergosphere and
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(a) along the pole (b) along the equator

Figure 4.3: Plot of ΩLT (in m−1) vs r (in m) in the KTN spacetime for a = n = 1 m &
M = 1 m [45].

we also know that the LT precession is not defined in the spacelike surface. In Fig. 4.3, we

plot r vs ΩLT for a = n = 1. We see that the curve falls smoothly with increasing distance

along the equator but it is not smooth along the pole. Similar behaviour is noticed in

Fig. 4.1 and Fig. 4.2. The LT precession rate along the pole is very high just outside

the ergosphere and falls sharply and becomes zero, rises again and finally approaches to

a small value after crossing the strong gravity regime. This is really very peculiar and

this was not observed in any other spacetimes which are the vacuum solution of Einstein

equation, previously.

4.3 Results & Discussion

We know that the LT precession varies as 1/r3 in the weak gravity regime (‘weak’ Kerr

metric) by the famous relation (Eq. 14.34 of Ref. [3])

~ΩLT =
1

r3
[3( ~J.r̂)r̂ − ~J ] , (4.9)

where, r̂ is the unit vector along r direction. We plot ΩLT vs r in the strong gravity

situation (see Eq. (42) of Ref. [28]) for maximally rotated Kerr spacetime along the pole

69



(a) along the pole (b) along the equator

Figure 4.4: Plot of strong gravity ΩLT (in m−1) vs r (in m) in the Kerr spacetime for
a =M = 1 m [45].

(panel(a)) and the equator (panel(b)) in Fig. 4.4. Close observation reveals that the LT

precession rates at the same distances (for a fixed r) along the equator and the pole are

not the same. In the strong gravity regime ΩeLT is higher than ΩpLT as the ratio (η) of

the LT precession rate along the pole (ΩpLT ) to the equator (ΩeLT ) in the strong gravity

regime is

ηstrongK =
ΩpLT
ΩeLT

=
2r3(r − 2M)

(r2 + a2)
3

2 (r2 − 2Mr + a2)
1

2

, (4.10)

but in the weak gravity regime it follows from Eq. (1.23)

ηweakK =
ΩpLT
ΩeLT

=
2J
r3

J
r3

= 2 , (4.11)

which is a constant. If we look for this ratio in the case of the KTN spacetime we find

that

ηstrongKTN =
ΩpLT
ΩeLT

< 1 . (4.12)

It holds for ever i.e. the LT precession rate along the equator (ΩeLT ) is always higher than

the LT precession rate along the pole (ΩpLT ). In the weak gravity regime the ratio is only

ηweakKTN = 1 . (4.13)
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We can plot the ratio for the clear scenario. The plot in Fig. 4.5 for the Kerr spacetime

(a) Kerr spacetime (b) Kerr-Taub-NUT spacetime

Figure 4.5: Plot of η vs r (in m) in the Kerr and Kerr-Taub-NUT spacetimes for a = n =
1 m & M = 1 m [45].

shows that ΩpLT and ΩeLT are the same at a distance r0 = 3.324 m. For r < r0, Ω
p
LT < ΩeLT

and for r > r0, Ω
p
LT > ΩeLT .

We have already seen that the plots of ΩLT vs r along the pole and along the equator

both are smooth for the Kerr spacetime but this is not the same for the KTN spacetime.

In the KTN spacetime though the curve of ΩLT vs r along the the equator is smooth, it

is not smooth along the pole. We have studied here basically three cases. These are the

following:

(i) a = n : In this case shown in Fig. 4.3, we take the Kerr parameter a is equal

to the NUT parameter n (a = n = 1 m) and mass of the spacetime M is unity. Thus,

the radius of horizon is rh ∼ 2 m. The LT precession rate along the pole (panel (a)) is

tremendously high just outside the horizon. Then it falls sharply and becomes zero (local

minima) at rmin ∼ 4.8 m. It rises again and gives a local maxima at rmax ∼ 7 m. After

that the curve of the LT precession rate follows the general inverse cube law and falls

accordingly. We cannot see the same feature along the equator. We plot a 3-D picture

of the LT precession rate in Fig. 4.6 where the Y axis represents the cosine of colatitude
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Figure 4.6: 3-D plot of ΩLT (r, θ) in the KTN spacetime for a = n = 1 m & M = 1 m [45].

(cos θ) and X axis represents the distance (r) from the centre of the spacetime. The colors

represent the value of the LT precession rate and the values of the same precession rates

are also separated by the isocurves. It shows that there is a local maximum and local

minimum along the pole but it disappears after crossing a certain ‘critical’ angle. Here,

it is around cos θ ∼ 0.6.

(ii) a > n : In the second case shown in Fig. 4.7, the Kerr parameter a = 0.7 m and

NUT parameter n = 0.3 m. Mass of the spacetime is M = 1 m. Radius of the horizon

rh ∼ 1.8 m, distance of local minimum is rmin ∼ 7 m and distance of local maximum is

rmax ∼ 10 m . The ‘critical’ angle is around cos θ ∼ 0.8.

(iii) a < n : For the third case exhibited in Fig. 4.8, the Kerr parameter a = 0.1 m

and NUT parameter n = 1 m. Mass of the spacetime is M = 1 m. Radius of the horizon

rh ∼ 2.4 m, distance of local minimum is rmin ∼ 2.6 m and distance of local maximum is

rmax ∼ 3.5 m . The ‘critical’ angle is around cos θ ∼ 0.4.

In all three cases, plots show the same feature but the numerical values are different

depending on the values of a and n. For a fixed value of n, if a decreases the value of the
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Figure 4.7: 3-D plot of ΩLT (r, θ) in the KTN spacetime for a = 0.7 m, n = 0.3 m &
M = 1 m [45].
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Figure 4.8: 3-D plot of ΩLT (r, θ) in the KTN spacetime for a = 0.1 m, n = 1 m &
M = 1 m [45].
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Figure 4.9: 3-D plot of ΩLT (r, θ) in the Kerr spacetime for a = 1 m & M = 1 m [45].

(a) plot of ΩLT (in m−1) vs r (in m)
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(b) 3-D plot

Figure 4.10: Plot of ΩLT in the Taub-NUT spacetime for n = 1 m & M = 1 m (basically,
the expression of ΩLT (see Eq. (25) of Ref. [28]) is independent of θ, thus the value
(colour) of ΩLT does not change with cos θ in panel(b)) [45].

LT precession rate at the local maximum increases and also the distance of local minimum

and maximum are shifted towards the horizon of the spacetime. If the NUT parameter

vanishes (for the Kerr spacetime) there will be no local maximum and minimum as noticed

in Fig. 4.4 and Fig. 4.9.

The local maximum along the pole in the KTN spacetime arises due to the NUT

parameter and it is clear from Fig. 4.10 (panel(a)) that it is valid only for the Taub-NUT

spacetime where the Kerr parameter vanishes but the NUT parameter does not vanish.

The local minimum along the pole in KTN spacetime arises due to the Kerr parameter.

It could not be seen directly from the Fig. 4.4(panel(a)). If we take Fig. 4.4(panel(a))
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of the Kerr spacetime and Fig. 4.10(panel(a)) of the Taub-NUT spacetime and overlap

these two figures with each other (as the KTN spacetime includes both the Kerr and

NUT parameters) just for our clear understanding, we can easily visualize the nature

of the plots of the LT precession (panel(a) of Fig. 4.1-4.3) along the pole in the KTN

spacetimes. Thus, the presence of the Kerr parameter is responsible for showing the local

minimum along the pole in the KTN spacetime.

Without the Kerr parameter the LT precession rate at a ‘local maximum’ in the

Taub-NUT spacetime is higher than the LT precession rate at a ‘local maximum’ in the

KTN spacetime. The presence of the Kerr parameter (or increasing the value of the Kerr

parameter from 0 to a finite number) shifts the ‘local maximum’ and ‘local minimum’

away from the horizon and reduces the LT precession rate at the local maximum.

We note that the Taub-NUT spacetime is a stationary and spherically symmetric

spacetime and the expression of ΩLT (see Eq. (25) of Ref. [28]) is also independent of θ

(the LT precession in the Taub-NUT spacetime has been discussed in detail in the next

section 4.4). Thus the value (colour) of ΩLT does not change with cos θ. It means that the

LT precession rate is same everywhere in that spacetime for a fixed distance r (no matter

whether it is pole or equator) and the LT precession rate curve always shows a ‘peak’ as

seen in panel(a) of Fig. 4.10 near the horizon. But, if this Taub-NUT spacetime starts to

rotate with an angular momentum J(= aM, a is the Kerr parameter), it turns out to be

the KTN spacetime. In this case, the LT precession rate curve shows a ‘peak’ (or ‘local

maximum’) along the pole but disappears after crossing the ‘critical’ angle and we cannot

see any ‘peak’ in the LT precession rate curve along the equator as discussed earlier. The

‘intrinsic’ angular momentum of the spacetime (J) is fully responsible for the no-show of

‘local maximum’ along the equator. The Kerr parameter is also responsible for reducing

the LT precession rate at the ‘local maximum’ which has already been discussed in the

previous paragraph. Thus, the ‘dual mass’ or the ‘angular momentum monopole’ n is

only responsible for the ‘anomaly’ (appearance of local maximum and local minimum in
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the LT precession rate) and the Kerr parameter or the rotation of the spacetime tries to

reduce this ‘anomaly’ as far as possible. The Kerr parameter is fully successful to reduce

this effect along the equator but slowly it loses its power of reduction of this anomaly

along the pole.

For the consistency check of the appearance of ‘local maximum’ and ‘local minimum’

if we take the derivative of Eq. (4.4) with respect to r and plot dΩLT

dr
|(r=R,θ=π/2) vs r we

cannot find any positive real root in the region rh < r <∞. But the plot of dΩLT

dr
|(r=R,θ=0)

vs r shows two positive real roots (which are basically local maximum R1 = rmax and

local minimum R2 = rmin) in the region rh < r <∞.

4.4 Lense-Thirring precession in Taub-NUT space-

time

Now, we are going to dicuss the frame-dragging effect in the Taub-NUT spacetime sep-

arately. The Taub-NUT spacetime is geometrically a stationary, spherically symmetric

vacuum solution of Einstein equation with NUT charge (n). The Einstein-Hilbert action

requires no modification to accommodate this NUT charge or “dual mass” which is per-

haps an intrinsic feature of general relativity, being a gravitational analogue of a magnetic

monopole in electrodynamics [29].

Consider the line element (of the NUT spacetime), which is presented by Newman et.

al. [36]

ds2 = −f(r)
[

dt+ 4n sin2 θ

2
dφ

]2

+
1

f(r)
dr2 + (r2 + n2)(dθ2 + sin2 θdφ2) , (4.14)

where,

f(r) =
r2 − 2Mr − n2

r2 + n2
. (4.15)
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Here, M represents the “gravitoelectric mass” or ‘mass’ and n represents the “gravito-

magnetic mass” or ‘dual’ (or ‘magnetic’) mass of this spacetime. It is obvious that the

spacetime (4.14) is not invariant under time reversal t → −t, signifying that it must

have a sort of ‘rotational sense’, once again analogous to a magnetic monopole in elec-

trodynamics. One is thus led to the conclusion that the source of the nonvanishing LT

precession is this “rotational sense” arising from a nonvanishing NUT charge. Without

the NUT charge, the spacetime is clearly hypersurface orthogonal and frame-dragging

effects vanish.

In the Schwarzschild coordinate system, f(r) = 0 at

r = r± =M ±
√
M2 + n2 . (4.16)

r± are similar to horizons in this geometry in the sense that f(r) changes sign from positive

to negative across the horizon and the radial coordinate r changes from spacelike to

timelike. But is r = r+ an event horizon in the sense of the event horizon of Schwarzschild

spacetime ? We shall focus on this issue momentarily. For the present, we note that the

LT precession rate is given by

~ΩMTN
LT =

n(r2 − 2Mr − n2)
1

2

(r2 + n2)
3

2

r̂ . (4.17)

It is clear that ΩMTN
LT = 0 on r = r±, in contrast to the LT precession frequency in the

standard Kerr spacetime which is maximum closest to the event horizon ! Further, if we

plot the magnitude of the precession rate as a function of the radial coordinate for r > r+,

as obtained from (4.17), one obtains the profile as shown in Fig. 4.11.

Thus, the precession rate is maximum very close to the ‘horizon’ r = r+, but it sharply

drops for r → r+, most likely becoming ill-defined on the ‘horizon’.
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Figure 4.11: Plot of ΩLT (in m−1) vs r (in m) for n = 3 m & M = 1 m and ΩLT vs r for
n = 3 m & M = 0 [28].

4.4.1 Analytic extension of Taub-NUT spacetime

As the metric (4.14) blows up at r = r±, we should perhaps try a different co-ordinate

system where it is smooth on the ‘horizon’. Following Ref. [47], wherein an analytic

extension of the metric (4.14) has been attempted, one obtains the transformed metric

ds2 = (r2 + n2)(dθ2 + sin2 θdφ2)

+ F 2
[

du2± − dv2± − (2n/r±)(u±dv± − v±du±) cos θdφ− (n/r±)
2(u2± − v2±) cos

2 θdφ2
]

,

(4.18)

where,

F 2 = 4r4±(r
2 + n2)−1

(

r − r∓
r±

)1− r∓
r±

exp

(

− r

r±

)

, (4.19)

u± =

(

r − r±
r±

)1/2(
r − r∓
r±

)

r∓
2r±

exp

(

r

2r±

)

cosh

(

t

2r±

)

, (4.20)

v± =

(

r − r±
r±

)1/2(
r − r∓
r±

)

r∓
2r±

exp

(

r

2r±

)

sinh

(

t

2r±

)

. (4.21)

78



In u, v co-ordinate system r could be redefined as

u2± − v2± =

(

r − r±
r±

)(

r − r∓
r±

)

r∓
r±

exp

(

r

r±

)

. (4.22)

Recall that locally every spherically symmetric four dimensional spacetime has the

structure I2⊗S2 where I2 is a two dimensional Lorentzian spacetime. In this Taub-NUT

case, the attempted analytic extension discussed immediately above leads to a vanishing

of the two dimensional Lorentzian metric on the ‘horizon’ r = r+, in contrast to the

Schwarzschild metric. This might be taken to imply that perhaps the null surface r = r+

is not quite an event horizon; rather it is a null surface where ingoing future-directed null

geodesics appear to terminate, as already noticed in Ref. [32]. So, physical effects on

this null hypersurface might not be easy to compute, as a result of which the apparent

vanishing of the LT precession on this hypersurface is to be taken with a pinch of salt.

The NUT spacetime, for the mass M = 0 is also well defined (see, for example,

appendix of Ref. [18]). We can also write down the precession rate only for massless dual

mass (NUT charge n can be regarded as dual mass) solutions of the NUT spacetime. This

turns out to be

~ΩTNLT =
n(r2 − n2)

1

2

(r2 + n2)
3

2

r̂ . (4.23)

At, the points r = ±n, the LT precession vanishes akin to the previous case, but the same

caveats apply here as well. One may plot the precession frequency as a function of the

radial coordinate as earlier.

Here, we observe that for n = 3, the LT precession is starting for r > 3 and continued

to the infinity. Setting
dΩTN

LT

dr
= 0, we get that ΩTNLT is maximum at r =

√
2n. In the Fig.

4.11, this value is r = 3
√
2 = 4.24 m. Now, we are not interested for r < 3. Our formulas

are not comfortable in that regions and r < r± is also not well defined for Taub-NUT

spacetimes. From our precession rate formulas (4.17,4.23) at dual mass spacetimes we

can see that the precession rate (ΩTNLT ) is the same, starting from the polar region to
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the equatorial plane for a fixed distance. ΩTNLT depends only on distance (r) of the test

gyroscope from the ‘dual mass’.

We have noted in this subsection several subtleties of computing the LT precession

rate on and near the ‘horizon’ of a Taub-NUT spacetime, and our results are consistent

with earlier literature where geodesic incompleteness on this null hypersurface has been

noted.

4.5 Digression : ISCOs in KTN spacetimes

4.5.1 Motivation

Now, we want to calculate the LT precession rates on the Inner-most stable circular orbit

(ISCO) in the KTN and Taub-NUT spacetimes. Thus, at first, we have to derive the radii

of the ISCOs in these spacetimes. It is already well known to us that the marginally stable

orbit (also called ISCO) plays an important role in the accretion disk theory. That fact is

important for spectral analysis of X-ray sources [3,48]. The circular orbits with r > rISCO

turn out to be stable, while those with r < rISCO are not. Basically, accretion flows of

almost free matter (stresses are insignificant in comparison with gravity or centrifugal

effects), resemble almost circular motion for r > rISCO, and almost radial free-fall for

r < rISCO. In case of thin disks, this transition in the character of the flow is expected to

produce an effective inner truncation radius in the disk. The exceptional stability of the

inner radius of the X-ray binary LMC X-3 [49], provides considerable evidence for such

a connection and, hence, for the existence of the ISCO. The transition of the flow at the

ISCO may also show up in the observed variability pattern, if variability is modulated

by the orbital motion [48]. One may expect that there will be no variability observed

with frequencies Ω > ΩISCO, i.e., higher than the Keplerian orbital frequency at ISCO,

or that the quality factor for variability, Q ∼ Ω
∆Ω

will significantly drop at ΩISCO. Several

variants of this idea have been discussed in the following references [50, 51].
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The Taub-NUT geometry [37,38] possesses gravitomagnetic monopoles. Basically, this

spacetime is a stationary and spherically symmetric vacuum solution of Einstein equation.

As already mentioned, the authors of Ref. [32] have made a complete classification of

geodesics in Taub-NUT spacetimes and describe elaborately the ‘full’ set of orbits for

massive test particles. However, there is no specific discussion on the various innermost

stable orbits in such spacetimes for null as well as timelike geodesics. This is the gap

in the literature which we wish to fulfill in this chapter. Our focus here is the the three

parameter Taub-NUT version of the Kerr spacetime which has angular momentum, mass

and the NUT parameter (n,the gravitomagnetic monopole strength), and is a stationary,

axisymmetric vacuum solution of the Einstein equation. The geodesics and the orbits of

the charged particles in Kerr-Taub-NUT (KTN) spacetimes have also been discussed by

Miller [44]. Abdujabbarov [52] et. al. discuss some aspects of these geodesics in the KTN

spacetime, although the black hole solution remains a bit in doubt. Liu et. al. [42] have

also obtained the geodesic equations but there are no discussions about the ISCOs in the

KTN spacetime. We know that ISCO plays many important roles in astrophysics as well

as in gravitational physics, hence the strong physical motivation to study them.

The presence of the NUT parameter lends the Taub-NUT spacetime a peculiar charac-

ter and makes the NUT charge into a quasi-topological parameter. For example in the case

of maximally rotating Kerr spacetime (extremal Kerr) where we can see that the time-

like circular geodesics and null circular geodesics coalesce into a zero energy trajectory.

This result and also the geodesics of the extremal Kerr spacetime have been elaborately

described in Ref. [40]. They show that the ISCOs of the extremal Kerr spacetime for null

geodesics and timelike geodesics coincide on the horizon (at r = M) which means that

the geodesic on the horizon must coincide with the principal null geodesic generator. This

is a very peculiar feature of extremal spacetimes.

In the case of the non-extremal Kerr spacetime Chandrasekhar [53] presented complete

and detailed discussion on timelike and null geodesics (including ISCOs and other circular
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orbits). However, in that reference, subtleties associated with the extremal limit and

special features of the precisely extremal Kerr spacetime had not been probed significantly.

Likewise, the behaviour of geodesics, especially those close to the horizon (in the equatorial

plane, where subtleties regarding geodesic incompleteness [32] can be avoided), had not

been considered in any detail.

Here we wish to investigate the differences of ISCOs in KTN spacetimes due to the

inclusion of the NUT parameter in the Kerr spacetime. While focusing on the set of

ISCOs, we also probe the Keplerian orbital frequencies and other important astronomical

observables (namely, angular momentum (L), energy (E), rotational velocity (v(φ)) etc.),

relevant for accretion disk physics, in the KTN and Taub-NUT spacetimes; these had not

been investigated extensively in the extant literature. The presence of the NUT parameter

in the metric always throws up some interesting phenomena in these particulars spacetimes

(KTN and Taub-NUT), arising primarily from their topological properties, which we wish

to bring out here in the context of our investigation on the ISCOs. e.g., while it had been

demonstrated in Ref. [32] that the orbital precession of spinless test particles in Taub-

NUT geodesics vanishes, investigation by us has shown that in both the massive and

massless Taub-NUT spacetimes spinning gyroscopes exhibit nontrivial frame-dragging

(Lense-Thirring) precession [28]. Even though we do not discuss inertial frame-dragging

in detail in this section, this does provide a theoretical motivation as well to probe ISCOs

in KTN spacetimes, following well established techniques [53].

A word about our rationale for explicitly restricting to causal geodesics on the equa-

torial plane : these geodesics are able to avoid issues involving geodesic incompleteness

exhibited in the spacetimes for other polar planes. Since there is a good deal of discussion

of these issues elsewhere (see Ref. [32] for a competent review), we prefer to avoid them

and concentrate instead on other issues of interest.

At first, we want to study the geodesic motions in the equatorial plane of KTN space-
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times. So, the line element of the KTN spacetime (Eq. 4.1) at the equator will be

ds2e = −r
2 − 2Mr − n2

p2e
dt2 − 4a(Mr + n2)

p2e
dφdt+

B2 − a2∆

p2e
dφ2 +

p2e
∆
dr2 , (4.24)

where,

p2e = r2 + n2 . (4.25)

From the above metric we can easily derive the velocity components (for θ = π
2
and θ̇ = 0)

of the massive test particle [24]

ṫ =
1

p2

[

B

∆
P (r) + aO(θ)

]

, (4.26)

φ̇ =
1

p2

[ a

∆
P (r) +O(θ)

]

, (4.27)

ṙ2 =
∆

p2

[

k +
1

p2

(

P 2

∆
−O2

)]

, (4.28)

where,

P (r) = BE − La , (4.29)

O(θ) = L− aE = x . (4.30)

We may set without loss of generality,

k = −1 for timelike geodesics ,

= 0 for nulllike geodesics . (4.31)

L is specific angular momentum or angular momentum per unit mass of the test particle

and, E is to be interpreted as the specific energy or energy per unit mass of the test

particle for the timelike geodesics.
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4.5.2 ISCOs for the null geodesics in Kerr-Taub-NUT space-

times

In this section, we derive the radii of ISCOs and other important astronomical quantities

for null geodesics (k = 0) in the two spacetimes, one is KTN spacetimes and another is

Taub-NUT spacetimes.

As we have noted, k = 0 for null geodesics and the radial Eq. (4.28) becomes

ṙ2 = E2 + 2(L− aE)2
(Mr + n2)

(r2 + n2)2
− (L2 − a2E2)

(r2 + n2)
. (4.32)

It will be more convenient to distinguish the geodesics by the impact parameter

D =
L

E
, (4.33)

rather than L .

We first consider the geodesics with the impact parameter

D = a or L = aE . (4.34)

Thus, in this case, Eqs. (4.26), (4.27) and (4.32) reduce to

ṙ = ±E , (4.35)

ṫ =
(r2 + n2 + a2)

∆
E , (4.36)

and,

φ̇ =
a

∆
E . (4.37)

The radial co-ordinate is described uniformly with respect to the affine parameter while
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the equations governing t and φ are

dt

dr
= ±(r2 + n2 + a2)

∆
,

and

dφ

dr
= ± a

∆
. (4.38)

The solutions of these equations are

± t = r +
r2+ + a2 + n2

r+ − r−
ln

(

r

r+
− 1

)

− r2− + a2 + n2

r+ − r−
ln

(

r

r−
− 1

)

, (4.39)

±φ =
a

r+ − r−
ln

(

r

r+
− 1

)

− a

r+ − r−
ln

(

r

r−
− 1

)

. (4.40)

These solutions exhibit the characteristic behaviors of t and φ of tending to ±∞ as the

horizons at r+ and r− are approached. The coordinate φ, like the coordinate t, is not a

‘good’ coordinate for describing what really happens with respect to a co-moving observer:

a trajectory approaching the horizon (at r+ or r−) will spiral round the spacetime an

infinite number of times even as it will take an infinite coordinate time t to cross the

horizon and neither will be the experience of the co-moving observer.

The null geodesics which are described by Eq. (4.38), are the members of the principal

null congruences and these are confined to the equatorial plane.

In general it is clear that there is a critical value of the impact parameter D = Dc

for which the geodesic equations allow an unstable circular orbit of radius rc. In case

of D < Dc, only one kind of orbit is possible: it arrives from infinity and crosses both

horizons and terminates at the singularity. For D > Dc, we can get two types of orbits:

(a) those arriving from infinity and have perihelion distances greater than rc, eventually

terminating at the singularity at r = 0 and θ = π
2

(b) those arriving from infinity, have aphelion distances less than rc, and terminate at

85



the singularity at r = 0 and θ = π
2
. For n = 0, we can recover the results in the case of

Kerr geometry (see Eq. (77) of Ref. [53]).

The equations determining the radius (rc) of the stable circular ‘photon orbit’ are (Eq.

4.32)

E2 + 2(L− aE)2
(Mrc + n2)

(r2c + n2)2
− (L2 − a2E2)

(r2c + n2)
= 0 , (4.41)

and

−(L− aE)2
(3Mr2c + 4rcn

2 −Mn2)

(r2c + n2)3
+
rc(L

2 − a2E2)

(r2c + n2)2
= 0 . (4.42)

Substituting D = L
E
in the above Eqs. (4.41,4.42), we get from Eq. (4.42)

Dc − a

Dc + a
=

rc(r
2
c + n2)

rc(3Mrc + 4n2)−Mn2
. (4.43)

Letting

y = Dc + a , (4.44)

and substituting it in Eq. (4.43) we get

y = 2a

[

1− rc(r
2
c + n2)

rc(3Mrc + 4n2)−Mn2

]−1

. (4.45)

So, the critical value of the impact parameter Dc in the KTN spacetime is

Dc = 2a

[

1− rc(r
2
c + n2)

rc(3Mrc + 4n2)−Mn2

]−1

− a . (4.46)

To get the value of rc we have to take Eq. (4.41) which reduces to

1 + 2(Dc − a)2
(Mrc + n2)

(r2c + n2)2
− (D2

c − a2)

(r2c + n2)
= 0 . (4.47)
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Substituting the value of

Dc = y − a = 2a

[

1 +
rc(r

2
c + n2)

rc(3Mrc + 4n2)−Mn2

]

− a , (4.48)

(neglecting the higher order terms of rc, we mean rc < n and rc < M) in the Eq. (4.47)

we get the equation to determine the radius (rc) of the stable circular photon orbit:

(9− 4a2M)r4cM + 4(6n2
M − a2M)r3cM + 2n2

M(8n2
M − 6a2M − 3)r2cM

+4n2
M(a2M − 2n2

M)rcM + n4
M = 0 , (4.49)

where the lower index ‘M’ of a particular parameter represents that the parameter is

divided by ‘M’ (such as, aM = a
M
). For rc < n we get the solution of rc as

rcM =
nM

6(a2M − 6n2
M)

[

(U − 18V n2
M + 3n2

MV )
1

3

+ W (U − 18V n2
M + 3n2

MV )
− 1

3 + nM(8n2
M − 6a2M − 3)

]

, (4.50)

where the values of U, V, W are given in the footnote 1. Here, the expression of rcM is

the radius of the ISCO as it is the smallest positive real root of the ISCO Eq. (4.49).

Extremal case: We know that in the KTN spacetime, the horizons are at

r± =M ±
√
M2 + n2 − a2 , (4.51)

1

U = −1584n5

M
a2
M

+ 684n3

M
a4
M

− 108nMa6
M

− 54n3

M
a2
M

− 27a4
M
nM + 1152n7

M

+ 540n5

M
+ 512n9

M
− 1152n7

M
a2
M

+ 864n5

M
a4
M

− 216n3

M
a6
M

− 27n3

M
,

V = (−192a8
M

− 432a8
M
n2

M
+ 1224n2

M
a6
M

+ 1584n4

M
a6
M

− 2808n4

M
a4
M

− 351n2

M
a4
M

− 1920n6

M
a4
M

+ 1080n4

M
a2
M

+ 1824n6

M
a2
M

+ 768n8

M
a2
M

− 108n6

M
− 162n4

M
)

1

2 .

W = (−60n2

M
a2
M

+ 12a4
M

+ 96n4

M
+ 64n6

M
− 96n4

M
a2
M

+ 36n2

M
a4
M

+ 9n2

M
) .
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where r+ and r− define the event horizon and Cauchy horizon, respectively. In case of

the extremal KTN spacetime,

r+ = r− ,

or, a2 = M2 + n2 . (4.52)

So, the horizon of the extremal KTN spacetime is at

r =M . (4.53)

Now, we can substitute the value of Eq. (4.43) in Eq. (4.41) (also take a2 = M2 + n2)

and get the equation for determining the radius (rc) of the stable circular photon orbit

r2c (r
2
c−3Mrc−3n2)2−4(M2+n2)r2c (Mrc+2n2)+2Mn2rc(r

2
c−3Mrc−n2+2M2)+M2n4 = 0 .

(4.54)

Interestingly, the solution of this sixth order non-trivial equation is

rc =M , (4.55)

This is the radius of the ISCO as it is the smallest positive real root of the ISCO Eq.

(4.54). It means that the radius of the ISCO (rc) coincides with the horizon in the

extremal KTN spacetime for null geodesics. This is the same thing which happens in the

extremal Kerr spacetime also. In the extremal Kerr spacetime, the direct ISCO coincides

with the horizon at r = M for null geodesic. Now, we can calculate the critical value of

the impact parameter in the extremal KTN spacetime:

Dc =M
3M2 + 5n2

M2 + 3n2
. (4.56)

88



The physical significance of the impact parameter Dc and the ISCO have already dis-

cussed in detail. Now, we can give our attention to the Taub-NUT spacetime which is

quite interesting.

ISCOs in Taub-NUT spacetimes :

The Taub-NUT spacetime is a stationary and spherically symmetric vacuum solution

of Einstein equation [36]. Now, we are discussing a very special case where we set a = 0,

the angular momentum of the spacetime vanishes. We note that for a = 0, the primary

metric (Eq. (4.1)) of the KTN spacetime reduce to the Taub-NUT metric in which the

constant set as C = 0. If we take the Taub-NUT metric in more general form, it would

be

ds2 = −f(r) [dt− 2n(cos θ + C)dφ]2 +
1

f(r)
dr2 + (r2 + n2)(dθ2 + sin2 θdφ2) ,

where, C is an arbitrary real constant. If we take C = 0 for the above metric, the form

of the Taub-NUT metric is same as the metric (4.1) of ‘KTN spacetimes with a = 0’.

Physically, C = 0 leads to the only possibility for NUT solutions to have a finite total

angular momentum [54]. After noting the above points, we write the line element of

Taub-NUT spacetimes at the equator as

ds2e = −r
2 − 2Mr − n2

r2 + n2
dt2 +

r2 + n2

r2 − 2Mr − n2
dr2 + (r2 + n2)dφ2 . (4.57)

To determine the radius (rcn) of the stable circular photon orbit, we put a = 0 in Eq.
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(4.54) and get the following

r2cn(r
2
cn − 3Mrcn − 3n2)2 + 2Mn2rcn(r

2
cn − 3Mrcn − 3n2) +M2n4 = 0 ,

or,

r3cn − 3Mr2cn − 3n2rcn +Mn2 = 0 . (4.58)

Solving the above equation we get,

rcn = M + 2(M2 + n2)1/2 cos

[

1

3
tan−1

( n

M

)

]

, (4.59)

or,

rMcn = 1 + 2(1 + n2
M)1/2 cos

[

1

3
tan−1 (nM)

]

. (4.60)

This is the radius of the ISCO as it is the smallest positive real root of the ISCO Eq.

(4.58). For nM = n
M

= 0, we can recover rc = 3M of Schwarzschild spacetime. We know

that the position of event horizon in the Taub-NUT spacetime is:

r+ = M +
√
M2 + n2 , (4.61)

or,

r+M = 1 +
√

1 + n2
M . (4.62)

It seems that the position of the ISCO (rcn) could be in timelike, nulllike or spacelike

surfaces depending on the value of the NUT charge (nM) in the Taub-NUT spacetime.

But, it never happens. We cannot get any solution of nM for rMcn = r+M . We plot rMcn

(green) and r+M (red) as a function of nM in Fig. 4.12. We can see that rMcn and r+M are

increasing continuously for nM ≥ 0. They cannot intersect each other at any point. So,

we can conclude that the ISCO could not be on the horizon for any value of nM . Thus,

the photon orbit is always in timelike region for any real value of nM in the Taub-NUT
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Figure 4.12: Plot of rMcn (green) and r+M (red) vs nM [41].

spacetime.

ISCOs in massless Taub-NUT spacetimes :

The NUT spacetime, for M = 0 is also well defined (see, for example, appendix of

Ref. [18]). So, we can also determine the radius (r0cn) of the stable circular photon orbit

for massless Taub-NUT spacetimes. This turns out to be

r0cn =
√
3n . (4.63)

We note that the horizons of massless Taub-NUT spacetime are at r = ±n [28]. So, the

ISCO of this spacetime for null geodesic is always outside the horizon, i.e. in the timelike

surface. Here, it should also be highlighted that in the case of the Taub-NUT spacetime,

the horizons are at

r± =M ±
√
M2 + n2 , (4.64)
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as a = 0. We can see that one horizon is located at r+ > 2M and the other at −|n| <

r− < 0.

Thus there are mainly two important features of the Taub-NUT and massless Taub-

NUT spacetime, one is that the second horizon is at a negative value of the radial

Schwarzschild coordinate and another is that the both of the spacetimes possess the

quasi-regular singularity [55]. But, the presence of the Kerr parameter (a) leads to the

naked singularity in the non-extremal KTN spacetime as well as non-extremal Kerr space-

time. In these cases, both the horizons are located at imaginary distances. This means

that we can observe the singularity from the infinity. So, this is called as a naked sin-

gularity. But, in the Taub-NUT spacetime the absence of Kerr parameter never leads to

any of the horizons at imaginary distance. So, there could not be any naked singularity in

the Taub-NUT and massless Taub-NUT spacetime. The absence of the Kerr parameter

also leads to the non-existence of any extremal case for the Taub-NUT spacetime as the

horizons of the Taub-NUT spacetime cannot act as the actual horizons like the horizons

of our other well known spacetimes (such as Kerr, Reissner-Nordström geometry). In the

extremal KTN spacetime, the horizon is located at r = M which is same as the Kerr

spacetime. We note that the NUT charge has no any effect to determine the ISCO in the

extremal KTN spacetime as the Kerr parameter takes the highest value a =
√
M2 + n2

but the ISCO radius (Eq. (4.50)) in the non-extremal KTN spacetime depends on the

NUT charge.
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4.5.3 ISCOs for the timelike geodesics in Kerr-Taub-NUT space-

times

For timelike geodesics, equations (4.26) and (4.27) for φ̇ and ṫ remain unchanged; but

equation (4.28) is reduced to

(r2 + n2)ṙ2 = 2(L− aE)2
Mr + n2

r2 + n2
+ E2(r2 + n2)− (L2 − a2E2)−∆ . (4.65)

The circular and associated orbits: We now turn to consideration of the radial

Eq. (4.65) in general. With the reciprocal radius u(= 1
r
) as the independent variable and

substituting L− aE = x, the equation takes the form

(1 + n2u2)2 u̇2u−4 = 2x2u3(M + n2u) + (1 + n2u2)

[E2(1 + n2u2)− (1 + a2u2 − n2u2 − 2Mu)− u2(x2 + 2aEx)] . (4.66)

Like the Schwarzschild, Reissner-Nordström and Kerr geometries, the circular orbits play

an important role in the classification of the orbits. Besides, they are useful for some

special features of the spacetimes, after all; the reason for studying the geodesics. When

the values of L and E are completely arbitrary, the quartic polynomial of right hand side

of Eq. (4.66) will have a triple root. The conditions for the occurrence of the triple root

from the above Eq. (4.66) we get,

2x2u3(M + n2u) + (1 + n2u2).

[E2(1 + n2u2)− (1 + a2u2 − n2u2 − 2Mu)− u2(x2 + 2aEx)] = 0 , (4.67)
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and

3Mx2u2 +M(1 + 3n2u2) + u(2E2n2 − a2)− u(x2 + 2aEx)

+2n2u3(x2 − 2aEx+ E2n2 + n2 − a2) = 0 . (4.68)

Equations (4.67) and (4.68)2 can be combined to give

E2 = 1−Mu+
Mx2u3(1− n2u2) + 2x2n2u4

(1 + n2u2)2
, (4.69)

and

2aExu(1 + n2u2) = [x2u2(3M + 3n2u−Mn2u2)− ux2]

− (1 + n2u2)[(a2 − 2n2)u−M(1 − n2u2)] . (4.70)

By eliminating E between these equations we get the following quadratic equation for x

x4u2
[

(

u(3M + 3n2u−Mn2u2)− 1
)2 − 4a2u3

(

M(1 − n2u2) + 2n2u
)

]

− 2x2u(1 + n2u2)
[(

u(3M + 3n2u−Mn2u2)− 1
) (

(a2 − 2n2)u−M(1− n2u2)
)

− 2a2u(1 + n2u2)(Mu− 1)
]

+ (1 + n2u2)2
[

(a2 − 2n2)u−M(1 − n2u2)
]2

= 0 .

(4.71)

The discriminant “1
4
(b2 − 4ac)” of this equation is

4a2u3(1 + n2u2)2[M(1 − n2u2) + 2n2u]∆2
u , (4.72)

2These two equations could also be obtained from the Eqs. (4.93) and (4.94) whose physical significance
are discussed in page 95-97.
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where,

∆u = [1− 2Mu + (a2 − n2)u2] . (4.73)

The solution of the Eq. (4.71) is

u2x2 = (1 + n2u2)
Q±∆u −Q+Q−

Q+Q−
=

(1 + n2u2)

Q∓
(∆u −Q∓) , (4.74)

where,

Q+Q− =
[

(

u(3M + 3n2u−Mn2u2)− 1
)2 − 4a2u3

(

M(1 − n2u2) + 2n2u
)

]

, (4.75)

Q± = 1− u(3M + 3n2u−Mn2u2)± 2a
√

u3[M(1− n2u2) + 2n2u] . (4.76)

We verify that,

∆u −Q∓ = u
[

a
√
u±

√

M(1 − n2u2) + 2n2u
]2

. (4.77)

So, the solution of x takes the simple form,

x = −
√

1 + n2u2

uQ∓

[

a
√
u±

√

M(1− n2u2) + 2n2u
]

. (4.78)

It will appear presently that the upper sign in the foregoing equation applies to the

retrograde orbits, while the lower sign applies to the direct orbits. We adhere to this

convention in this whole section. Substituting the value of x in Eq. (4.69), we get

E =
1

√

(1 + n2u2)Q∓

[

1− 2Mu − n2u2 ∓ a
√

u3[M(1 − n2u2) + 2n2u]
]

, (4.79)
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and the value of L which is associated with E is

L = aE + x = ∓
√

M(1− n2u2) + 2n2u

u(1 + n2u2)Q∓

[

1 + (a2 + n2)u2

±2a(M + n2u)

√

u3

M(1− n2u2) + 2n2u

]

. (4.80)

As the manner of derivation makes it explicit, E and L given by Eqs. (4.79) and (4.80)

are Energy and Angular momentum per unit mass, of a particle describing a circular

orbit of reciprocal radius u. The angular velocity Ω follows from the equation

Ω =
φ̇

ṫ
=
dφ

dt
=

aP +O∆

BP + aO∆
=

a(BE − La) + x∆

B(BE − La) + ax∆
. (4.81)

Substituting the values of x, L and E in the above equation we get the angular velocity of

a chargeless massive test particle which is moving in a particular orbit of radius R(= 1
u
)

in the KTN spacetime :

ΩKTN =

√

u3[M(1− n2u2) + 2n2u]

1 + n2u2 ∓ a
√

u3[M(1 − n2u2) + 2n2u]
. (4.82)

Generally, ΩKTN is also called as the Kepler frequency in the KTN spacetime.

The Time period (T ) of a massive chargeless test particle which is rotating in a orbit

of radius R(= 1
u
) can also be determined from the Kepler frequency by the simple relation

between Ω and T :

T =
2π

ΩKTN
. (4.83)

For n = 0, we can easily get the Kepler frequency in the Kerr spacetime:

ΩK =

√
Mu3

1∓ a
√
Mu3

=
M

1

2

R
3

2 ∓ aM
1

2

. (4.84)

96



It is already noted that the upper sign is applicable for the retrograde orbits and the lower

sign is applicable for the direct orbits.

The Rotational velocity v(φ) of a chargeless massive test particle could be deter-

mined by the following equation:

v(φ) = eψ−ν(Ω− ω) , (4.85)

where, ψ, ν and ω are defined from the general axisymmetric metric [53]

ds2 = −e2ν(dt)2 + e2ψ(dφ− ωdt)2 + e2µ2(dx2)2 + e2µ3(dx3)2 . (4.86)

In the above metric ψ, ν, ω, µ2 and µ3 are the functions of x2 and x3. In our case (for

KTN spacetimes),

e2ψ =
B2 − a2∆

p2e
,

ω =
2a(Mr + n2)

B2 − a2∆
,

e2ν =
1

p2e

[

(r2 − 2Mr − n2) +
4a2(Mr + n2)2

B2 − a2∆

]

. (4.87)

Now, substituting the above values in the Eq. (4.85), we get the Rotational velocity of

a chargeless massive test particle which is moving in a particular orbit of radius R(= 1
u
)

in the KTN spacetime :

v
(φ)
KTN =

(B2 − a2∆)(Ω− ω)

[(r2 − 2Mr − n2)(B2 − a2∆) + 4a2(Mr + n2)2]
1

2

,

=
(B2 − a2∆)(Ω− ω)

(r2 + n2)
√
∆

,

=
∓
√

u[M(1− n2u2) + 2n2u] [1 + (a2 + n2)u2]− 2au2(M + n2u)
√
∆u

[

1 + n2u2 ∓ a
√

u3[M(1− n2u2) + 2n2u]
] . (4.88)
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Here, a point, considered as describing a circular orbit (with the proper circumference πeψ)

with an angular velocity Ω (also called the Kepler frequency) in the chosen coordinate

frame, will be assigned an angular velocity,

eψ−ν(Ω− ω) , (4.89)

in the local inertial frame. Accordingly, a point which is considered as at rest in the

local inertial frame (i.e., velocity components u(1) = u(2) = u(3) = 0), will be assigned an

angular velocity ω in the coordinate frame. On this account the non-vanishing ω is said

to describe as the reason of ‘dragging of inertial frame’. In weak gravity regime

ω ∼ 2J

r3
. (4.90)

where J is the angular momentum of the spacetime.

We note that the Effective potential expression of a massive test particle plays many

interesting roles in Gravitational Physics and also in Astrophysics. Here, we need this

potential at this moment to determine the radius of the ISCO in the KTN spacetime. We

know that

E2 − 1

2
=

1

2
ṙ2 + Veff(r, E, L) , (4.91)

where the effective potential governing the radial motion is

Veff(r, E, L) =
1

2

[

(E2 − 1)− P 2 − (r2 + n2 +O2)∆

(r2 + n2)2

]

. (4.92)

For n = 0, the effective potential reduces to Eq. (15.20) of Ref. [3]. This is applicable

to the Kerr geometry. An important difference is that the potentials are energy and

angular momentum dependent in stationary spacetimes, i.e., Kerr, KTN etc. This does

not happen in static spacetimes, i.e, Schwarzschild, Reissner-Nordström etc. In static
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spacetimes, the Effective potential only depends on radial coordinate r, but not on L and

E. This difference has arisen due to the involvement of ‘rotational motion’ in stationary

spacetimes. For example, particles that fall from infinity rotating in the same direction as

the spacetime (positive values of L) move in a different effective potential than initially

counter-rotating particles (negative values of L). These differences reflect, in part,

the rotational frame dragging of the spinning spacetime and the test particles

are dragged by its rotation.

Many interesting properties of the orbits of particles in the equatorial plane could

be explored with the radial equation(4.92) and the equations of the other components

(which are already discussed) of the four velocity. We could calculate the radii of circular

orbits, the shape of bound orbits etc. These are all different, depending upon whether the

particle is rotating with the black hole (corotating) or in the opposite direction (counter-

rotating). For instance, in the geometry of an extremal Kerr black hole (a =M), there is

a corotating stable circular particle orbit at r = M (direct ISCO) and a counterrotating

stable circular orbit at r = 9M (retrograde ISCO). However, as we already mentioned,

for an introductory discussion it seems appropriate not to discuss on all these interesting

properties but rather to focus on the one property which is most important for astro-

physics, mainly for Accretion mechanism—-the binding energy of the innermost stable

circular particle orbit (ISCO).

For a particle to describe a circular orbit at radius r = R, its initial radial velocity

must vanish. Imposing this condition we get from Eq. (4.91)

E2 − 1

2
= Veff(R,E, L) . (4.93)

To stay in a circular orbit the radial acceleration must also vanish. Thus, differentiating
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Eq. (4.91) with respect to r leads to the condition:

∂Veff (r, E, L)

∂r
|r=R = 0 . (4.94)

Stable orbits are ones for which small radial displacements away from R oscillate about it

rather than accelerate away from it. Just as in newtonian mechanics, that is the condition

that the effective potential must be a minimum:

∂2Veff(r, E, L)

∂r2
|r=R > 0 . (4.95)

Eqs. (4.93-4.95) determine the ranges of E, L, R allowed for stable circular orbits in

the KTN spacetime. At the ISCO, the one just on the verge of being unstable–(Eq.

(4.95)) becomes an equality. The last three equations are solved to obtain the values of

E, L, R = rISCO that characterize the orbit. It should be mentioned here that the Eqs.

(4.93) and (4.94) have been used to obtain the Eqs. (4.67) and (4.68), respectively. Now,

we obtain the following from Eq. (4.95)

(r2 + n2)[(a2 + 2aEx)(3r2 − n2)− 2Mr3 + 6Mrn2 − 6n2r2 + 2n4]

+ 3x2(r4 − 4Mr3 − 6r2n2 + 4Mrn2 + n4) = 0 . (4.96)

Substituting the values of Ex and x2 in terms of r = R in the above equation we get,

2M2R(2n2R2 − 3n4 − 3R4) +M
[

(R6 − n6)− 15R2n2(R2 − n2) + a2(n4 + 6n2R2 − 3R4)
]

∓ 8a
[

MR(R2 − n2) + 2n2R2
] 3

2 − 8n2R3(a2 + 2n2) = 0 . (4.97)

This is the equation to obtain the radius of the ISCO in the non-extremal KTN spacetime

for timelike geodesic. Solving the above equation, we can determine the radius of the

inner-most stable circular orbit in the non-extremal KTN spacetime. But, this equation

100



cannot be solved anlytically as it is actually the twelfth order equation. So, we determine

the radius of the ISCO in the extremal KTN spacetime. For that we can substitute

a2 =M2 + n2, (4.98)

in the above equation. Defining

RM =
R

M
, nM =

n

M
, aM =

a

M
=
√

1 + n2
M , (4.99)

we can rewrite the extremal ISCO equation in the KTN spacetime as

2RM(2n2
MR

2
M − 3n4

M − 3R4
M) +

[

(R6
M − n6

M)− 15R2
Mn

2
M(R2

M − n2
M ) + (1 + n2

M).

(n4
M + 6n2

MR
2
M − 3R4

M)
]

+ 8
√

1 + n2
M

[

RM(R2
M − n2

M) + 2n2
MR

2
M

]
3

2

−8n2
MR

3
M(1 + 3n2

M) = 0 . (4.100)

Interestingly, the solution of the above non-trivial equation is

RM = 1 or, R =M . (4.101)

This is the radius of the ISCO as it is the smallest positive real root of the ISCO Eq.

(4.100). So, in the extremal KTN spacetime, the direct ISCO radius does not depend on

the value of the NUT charge. The ISCO radius is completely determined by the ADM

mass of the spacetime. We note that the horizon in the extremal KTN spacetime is at

R =M . So, we can say that at R =M , the direct ISCO is on the horizon in the extremal

KTN spacetime. It is further observed that the timelike circular geodesics and null circular

geodesics coalesce into a single zero energy trajectory (both are on the R =M)

E = 0 . (4.102)
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Thus, the geodesic on the horizon must coincide with the principal null geodesic generator.

The existence of a timelike circular orbit turning into the null geodesic generator on the

event horizon (nulllike) is a peculiar feature of the extremal KTN spacetime. It is not

only that the energy (E = 0) vanishes on the ISCO in the KTN spacetime but angular

momentum (L = 0) also vanishes on that. The same thing also happens in case of the

Kerr geometry.

Substituting n = 0, we can recover the expressions of Ω, v(φ) in Kerr spacetimes.

These were already described by Chandrasekhar [53] in details. The ISCO equation in

the Kerr spacetime is

R2 − 6MR ∓ 8a
√
MR − 3a2 = 0 . (4.103)

For the extremal Kerr spacetime we can put a = M in the above equation and solving

the above equation we get,

RdirectISCO = M ,

RretrogradeISCO = 9M . (4.104)

ISCOs in Taub-NUT spacetimes :

To get various useful expressions in Taub-NUT spacetimes, we should first take a = 0.

We don’t want to reiterate the whole process for Taub-NUT spacetimes. This is the same

as in the previous section in which we have done things in detail for KTN spacetimes.

The Energy per unit mass (ETN ) and the Angular momentum per unit mass (LTN)

of a chargeless massive test particle which is moving in a particular orbit of radius r = 1
u
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in the Taub-NUT spacetime, are

ETN =
(1− 2Mu− n2u2)
√

(1 + n2u2)QTN

, (4.105)

and

LTN =

√

(1 + n2u2)[M(1 − n2u2) + 2n2u]

uQTN
, (4.106)

where,

QTN = 1− u(3M + 3n2u−Mn2u2) . (4.107)

Now, we can find the angular velocity ΩTN of a chargeless massive test particle which is

moving in a particular orbit of radius r = 1
u
at the Taub-NUT spacetime:

ΩTN =

√

u3[M(1− n2u2) + 2n2u]

(1 + n2u2)
. (4.108)

For n = 0, we can recover the well known Kepler frequency for non-rotating star whose

geometry is described by Schwarzschild metric. The Kepler frequency which is a very

useful parameter in relativistic astrophysics, is defined as (substituting n = 0 in Eq.

(4.108))

Ω2
Kep =Mu3 =

M

R3
, (4.109)

where, M is the mass of the star, R is the distance of the satellite from the centre of the

star and ΩKep is the uniform angular velocity of the satellite, moving in a circular orbit

of radius R around the star.

The Rotational velocity v
(φ)
TN of a chargeless massive test particle which is moving
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(a) nM varies from 0 to 15 (b) nM varies from 0 to 100

Figure 4.13: Plot of radius of direct ISCO (rMISCO) along y axis vs NUT charge nM along
x axis [41].

in a particular orbit of radius r = 1
u
at the Taub-NUT spacetime:

v
(φ)
TN =

√

u[M(1− n2u2) + 2n2u]

∆u

. (4.110)

Finally, the direct ISCO equation in Taub-NUT spacetimes can be expressed as

2rM(2n2
Mr

2
M − 3n4

M − 3r4M) +
[

(r6M − n6
M)− 15r2Mn

2
M(r2M − n2

M)
]

− 16n4
Mr

3
M = 0 .(4.111)

It is a sixth order equation which is very difficult to solve analytically. So, we plot

the nM values of rMISCO as a function of nM in Fig. 4.13. In panel(a) of Fig. 4.13 nM

varies from 0 to 15 whereas it varies from 0 to 100 in panel(b). We can see from the plots

(Fig. 4.13) and also from the Table 4.1 that in the Taub-NUT spacetime, the radius of

the direct ISCO is increasing with the increasing NUT charge. We do not see this special

feature in case of the extremal KTN spacetimes.

Even though we can solve the ISCO equation in Taub-NUT spacetimes with the as-

sumption rM > nM . In this case, Eq. (4.111) reduces to

r3M − 6r2M − 15rMn
2
M − 16n4

M = 0 . (4.112)
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NUT Radius of Radius of NUT Radius of Radius of
charge horizon ISCO charge horizon ISCO
(nM) (rMhor) (rMISCO) (nM) (rMhor) (rMISCO)
0 2 6 55 56 558
5 6 29 60 61 624
10 11 65 65 66 693
15 16 107 70 71 763
20 21 153 75 76 834
25 26 203 80 81 907
30 31 256 85 86 982
35 36 312 90 91 1058
40 41 370 95 96 1135
45 46 431 100 101 1214
50 51 493 500 501 10127

Table 4.1: Comparison between the radius of the horizon (rMhor) and the radius of the
ISCO (rMISCO) at Taub-NUT spacetimes [41].

Solving the above equation, we get

rM |r>n = 2 +
1

α
1

3

[α
2

3 + 5n2
M + 4] , (4.113)

where,

α = 8n4
M + 15n2

M + 8 + n2
M

√

64n4
M + 115n2

M + 53 . (4.114)

The value of rM determines the radius of the direct ISCO in the Taub-NUT spacetime for

timelike geodesic in case of the radius of the Taub-NUT spacetime is much greater than

the value of the NUT charge nM < rM .

For, nM = 0, we can recover rM = 6 as the radius of the ISCO in Schwarzschild

spacetime.

We can make an another assumption taking r < n which helps to reduce the Eq. (4.111)

as

16r3M − 15r2M + 6rM + n2
M = 0 . (4.115)
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Solving this equation we get,

rM |r<n =
5

16
+

1

16β
[β

2

3 − 7] , (4.116)

where,

β = 16
√

64n4
M + 115n2

M + 53− 128n2
M − 115 . (4.117)

The value of rM determines the radius of the direct ISCO in the Taub-NUT spacetime

for timelike geodesic when the radius of the Taub-NUT spacetime is much less than the

value of the NUT charge nM > rM .

ISCOs in massless NUT spacetimes :

In massless NUT spacetimes, the Energy of a chargeless massive test particle which

is moving in a particular orbit of radius r = 1
u
is

E0TN =
(1− n2u2)

√

(1 + n2u2)(1− 3n2u2)
. (4.118)

and, the Angular momentum of this particle will be

L0TN =

√

2n2(1 + n2u2)

(1− 3n2u2)
, (4.119)

due to

Q0TN = (1− 3n2u2) . (4.120)

Now, we can find the Kepler frequency Ω0TN of a chargeless massive test particle which
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is moving in a particular orbit of radius r = 1
u
at the massless NUT spacetime:

Ω0TN =

√
2nu2

(1 + n2u2)
, (4.121)

and, the Rotational velocity v
(φ)
0TN of this test particle at the massless NUT spacetime

will be

v
(φ)
0TN = nu

√

2

(1− n2u2)
. (4.122)

The expressions of all astronomical observables are valid for 1
u
= r >

√
3n as L and

E would be complex for r <
√
3n and diverges for r =

√
3n. Finally, the direct ISCO

equation in massless NUT spacetimes can be expressed as

16n4r3 = 0 . (4.123)

As n 6= 0, we get

r = 0 . (4.124)

This means that the innermost stable circular orbit is in the centre of the massless NUT

spacetime. This is unphysical, because, in the classification of Ellis and Schmidt [55, 56]

the singularity of the Taub-NUT spacetime has been termed as quasiregular singularity,

since the curvature remains finite (see also Ref. [57, 58]). As r = n has the singularity

in the massless Taub-NUT spacetime, all geodesics are terminated at r = n [32] before

reaching r = 0, which may be regarded as a spacelike surface. So, we cannot go beyond

r < n to determine the ISCO. Apparently, the curvature of the Taub-NUT spacetime

shows that r = n is not a singular surface but in reality, θ = 0, π are the singularities in

Taub-NUT spacetimes, as the curvature diverges for θ = 0 and π [47]. Thus, the final
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conclusion is that there is no physically reliable innermost stable circular orbit in the

massless NUT spacetime for timelike geodesic.

4.6 Summary

We have shown that the LT precession in KTN and Taub-NUT spacetimes are quite

different than the LT precession in other spacetimes. Other vacuum solutions of Einstein

equation do not show this type of strange feature in the LT precession or frame-dragging

effect. It has been discussed that this strangeness in the KTN spacetime is due to only the

presence of the NUT parameter or (gravito)magnetic monopoles. Remarkably, it (frame-

dragging effect in the KTN spacetime) has an apparent similarity with the frame-dragging

effect inside the rotating neutron star. Exact frame-dragging effect inside the rotating

neutron star has recently been derived and discussed in detail by Modak, Bandyopadhyay

and myself [43] but this is the interior solution of the Einstein equation, not the vacuum

solution. In the case of the interior of a pulsar, the LT precession shows the same ‘anomaly’

like the KTN spacetime but there is also an another basic difference: the anomaly appears

in the LT precession rate in the KTN spacetime along the pole but it appears along the

equator in the case of a pulsar. The basic features of the plots are same for both the cases.

We do not know if there is any connection or not in these two spacetimes. We have already

stated that Lynden-Bell and Nouri-Zonoz [29] first highlighted about the observational

possibilities for NUT charges or (gravito)magnetic monopoles and they claimed that the

signatures of such spacetime might be found in the spectra of supernovae, quasars, or

active galactic nuclei. Is there any possibility to find the (gravito)magnetic monopoles

inside the rotating neutron star or there are some other reasons for this anomaly? It

would be worth investigating the answer to this question.

Side by side, we have calculated the radius of the innermost-stable circular orbit

(ISCO) exactly for extremal KTN, Taub-NUT, massless Taub-NUT spacetimes. We have
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also calculated some other important astronomical observables (i.e., L,E, v(φ),ΩKep) for

KTN (non-extremal and extremal both), Taub-NUT and massless Taub-NUT spacetimes.

All the ISCOs of the non-extremal KTN, Taub-NUT and massless Taub-NUT lie on the

timelike surface but the ISCOs of the extremal KTN spacetime (both for nulllike and

timelike geodesics) lie on the horizons, i.e, on the lightlike surface. We cannot solve the

ISCO equation of the non-extremal KTN spacetime analytically. However, one can see

intuitively from the ISCO equation that the ISCO must belong to the timelike region, i.e.,

rISCO > r+ where r+ = M +
√
M2 + n2 − a2. The Kerr parameter (ak) of the extremal

Kerr metric can take the highest value as aK =M but it takes aKTN =
√
M2 + n2 in case

of the extremal KTN spacetime. So, the highest angular momentum of a Kerr spacetime is

JK =M2 but it will be JKTN =M
√
M2 + n2 in the case of the extremal KTN spacetime.

Thus, the ratio between these two is

JK
JKTN

=
aK
aKTN

=
M√

M2 + n2
. (4.125)

But the interesting thing is that the radii of the ISCOs in the extremal KTN spacetime

is the same as R =M . Thus,

rKISCO
rKTNISCO

= 1 . (4.126)

It is quite remarkable that the NUT charge which appears in the expression of maximal

angular momentum (J) has no effect for determining the radius of the ISCO in extremal

KTN spacetimes. So, the radius of the ISCO is independent of NUT charge n. We know

that the radius of the ISCO in extremal Kerr spacetime is M [53] for both null and

timelike geodesics. It is expected that if a new parameter appears in the Kerr geometry,

the ISCO should be altered away from M . But, this is not happening in the extremal

KTN spacetime though the Kerr metric is modified with a new parameter n as KTN

spacetime. This non-dependence of ISCO behaviour in the extremal case is somewhat

mysterious. The NUT parameter in the extremal KTN spacetime behaves like a shield,
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so that the ISCO could not go away from the horizon. Another interesting thing is that

the geodesic on the horizon coincides with the principal null geodesic generator for both

extremal Kerr and extremal KTN spacetimes.

In the very non-extremal spacetime, when the Kerr parameter vanishes, i.e., in case

of the Taub-NUT spacetime, the ISCO is shifted to M +2(M2 + n2)1/2 cos
[

1
3
tan−1

(

n
M

)]

for null geodesics. For timelike geodesics, the ISCO of the Taub-NUT spacetime is also

shifted from null surface (in the case of extremal KTN spacetime) to timelike surface.

Another thing is that the massless NUT spacetime does not hold any inner stable circular

orbit for timelike geodesics. But, it holds an ISCO at
√
3n (which is outside the horizon)

for null geodesics.

There are additional avenues of further work currently being investigated for an un-

derstanding of the thin disks accretion mechanism in the KTN spacetime, applicable to

some special candidates (like, supernovae, quasars, or active galactic nuclei etc.) which

are of astrophysical importance. One could also investigate the exact LT precession rate

of a test particle which is rotating on the ISCO in strong gravity regime of extremal KTN

spacetimes. This is very important in accretion mechanism as accretion disk is mainly

formed near the ISCO which lies in the strong gravity regime. We have derived the exact

LT precession rates in the KTN, Taub-NUT and massless Taub-NUT spacetimes but this

formula is valid only in the timelike spacetime; it is not valid on the horizon, i.e., null

surface. Thus, it is not possible to derive the exact LT precession rate on the ISCO of

the extremal KTN spacetime by that formula. Again, we could not also able to solve the

ISCO equations of non-extremal Kerr (see Eq. (135) of Ref. [53]), non-extremal KTN (see

Eq. 4.97) and Taub-NUT (see Eq. 4.111) spacetimes for timelike geodesics, analytically.

Thus, we could not get the LT effect on those particular ISCOs and we have to wait for

further progression of it. But, it would be quite helpful for accretion mechanism in the

future.
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Chapter 5

Dragging of inertial frames inside

the rotating neutron stars

5.1 Introduction

Compact astrophysical objects such as neutron stars and black holes are the laboratories

for the study of Einstein’s general relativity in strong gravitational fields. The frame-

dragging is one such important general relativistic effect as demonstrated by Lense and

Thirring [1]. We have already stated in Chapter 1 that a stationary spacetime with

angular momentum shows an effect by which the locally inertial frames are dragged along

the rotating spacetime. This makes any test gyroscope in such spacetime precess with

a certain frequency called the frame-dragging frequency or the LT precession frequency

(ΩLT ). The LT frequency is proportional to the angular momentum and compactness

of the rotating astrophysical compact object. This effect for a test gyroscope had been

calculated and was shown to fall with the inverse cube of the distance of the test gyroscope

from the source and vanishes at large enough distances where the curvature effects are

small. The precession frequency is thus expected to be larger near the surface of a neutron

star and in its interior, rather than at large distance from the star.
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The precise mass measurement of PSR J0348+0432 confirmed the existence of a mas-

sive neutron star ( > 2M⊙) [59]. It is also known that some of them are observed to possess

very high angular velocities. Hence the spacetime curvature would be much higher in the

surroundings of those massive neutron stars and the frame dragging effect also becomes

very significant in the strong gravitational fields of those rotating neutron stars. It should

be noted that the inertial frames are dragged not only outside but also inside the rotating

neutron stars.

The theoretical prescription to determine the rate of the frame-dragging precession

inside the rotating neutron star was first given by Hartle [60]. In this formalism, one can

estimate the frame-dragging precession rate inside a slowly rotating (ΩR << c, where R

is the radius of the pulsar, c is the speed of the light in vacuum) neutron star. The final

expression of the frame-dragging precession rate depends solely on r, the distance from the

centre of the star, due to the slow rotation approximation, in Hartle’s formalism. It was

observed that the frame-dragging frequency was higher at the centre of the star than the

frame dragging frequency at the surface. The maximum frame dragging frequency at the

centre (r = 0) would never exceed the frequency of the rotating neutron star. The frame-

dragging effect was applied to various astrophysical problems using Hartle’s formalism.

Hartle studied this effect on the equilibrium structures of rotating neutron stars [61]. The

impact of frame dragging on the Kepler frequency was investigated by Glendenning and

Weber [62]. It was also demonstrated how this effect might influence the moment of inertia

of a rotating neutron star [63]. Furthermore, Morsink and Stella studied the role of frame

dragging in explaining the Quasi Periodic Oscillations of accreting neutron stars [64].

Morsink and Stella estimated the precession frequency νp of the disk’s orbital plane about

the star’s axis of symmetry as the difference between the frequencies of oscillations of

the particle along the longitude and latitude (2πνp = dφ/dt− dθ/dt) observed at infinity.

This expression contains the total precession frequency of the disk’s orbital plane due to

the LT effect as well as the star’s oblateness. Their calculation introduced zero angular
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momentum observer (ZAMO) and the precession frequency νp was observed at infinity.

It was found that the LT frequency was proportional to the ZAMO frequency on the

equatorial plane in the slow rotation limit. This is similar to Hartle’s formalism [60]

where the angular velocity (dφ/dt) acquired by an observer who falls freely from infinity

to the point (r, θ), is taken as the rate of rotation of the inertial frame at that point relative

to the distant stars.

In this chapter we derive the exact LT precession frequency (ΩLT ) which is measured

by a Copernican observer of a gyroscope such as the Gravity Probe B satellite in a realistic

orbit [3]. In this case, ΩLT would not only be the function of ω but a complicated function

of other metric components also even in the slow rotation limit.

We should note that inside the rapidly rotating stars, one should not a priori expect

the similar variation of the precession rates along the equatorial and polar plane. Thus

the frame-dragging frequency should depend also on the colatitude (θ) of the position of

the test gyroscope. This did not arise in the formalism of Hartle due to the slow-rotation

limit. We also note that the LT precession must depend on both the radial distance (r)

and the colatitude (θ) (see Eq. (1.23)) in very weak gravitational fields (far away from

the surface of the rotating object).

The exact LT precession rate in strongly curved stationary spacetime has been dis-

cussed in detail in Chapter 2. Later, this formulation has been applied in various station-

ary and axisymmetric spacetimes (see Chapter 3). Our main motivation is to compute

the exact LT precession rate inside the rotating neutron star. In this case, we avoid all

types of approximations and assumptions to obtain the exact LT precession rate inside

the rotating neutron stars.

Thus, this chapter is organized as follows. In section 5.2 we present the basic equations

of the frame-dragging effect inside the rotating neutron stars. The numerical method,

which has been adopted in this chapter, is discussed in section 5.3. We discuss our results

in section 5.4. Finally we conclude in section 5.5 with a summary.
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5.2 Basic equations of frame-dragging effect inside

rotating neutron stars

The rotating equilibrium models considered here are stationary and axisymmetric. Thus

we can write the metric inside the rotating neutron star as the following Komatsu-

Eriguchi-Hachisu (KEH) [65] form:

ds2 = −eγ+σdt2 + e2α(dr2 + r2dθ2) + eγ−σr2 sin2 θ(dφ− ωdt)2 , (5.1)

where γ, σ, α, ω are the functions of r and θ only. In the whole thesis we have used the

geometrized unit (G = c = 1). We assume that the matter source is a perfect fluid with

a stress-energy tensor given by

T µν = (ρ0 + ρi + P )uµuν + Pgµν , (5.2)

where ρ0 is the rest energy density, ρi is the internal energy density, P is the pressure

and uµ is the matter four velocity. We are further assuming that there is no meridional

circulation of the matter so that the four-velocity uµ is simply a linear combination of time

and angular Killing vectors. Now, we have to calculate the frame-dragging rate based on

the above metric and this will gives us the exact frame-dragging rate inside a rotating

neutron star.

The vector field corresponding to the LT precession co-vector has already been ex-

pressed in Eq. (2.30) as

ΩLT =
1

2

ǫijl√−g

[

g0i,j

(

∂l −
g0l
g00

∂0

)

− g0i
g00

g00,j∂l

]

, (5.3)

and for the axisymmetric spacetime and in orthonormal basis (as the only non-vanishing

component is g0i = g0φ, i = φ and j, l = r, θ) with our choice of polar co-ordinates, the
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above equation is reduced to (for detailed calculation see section 2.3):

~ΩLT =
1

2
√−g

[√
grr

(

g0φ,θ −
g0φ
g00

g00,θ

)

r̂ +
√
gθθ

(

g0φ,r −
g0φ
g00

g00,r

)

θ̂

]

, (5.4)

where θ̂ is the unit vector along the direction θ and r̂ is the unit vector along the direction

r. Again, we note that the above formulation is valid only in the timelike spacetimes, not

in the lightlike or spacelike regions.

Now, we can apply the above Eq. (5.4) to determine the exact frame-dragging rate

inside the rotating neutron star of which the metric could be determined from the line-

element (5.1). The various metric components can be read off from the metric. Likewise,

√
−g = r2e2α+γ sin θ , (5.5)

In orthonormal coordinate basis, the exact LT precession rate inside the rotating

neutron star is:

~ΩLT =
e−(α+σ)

2(ω2r2 sin2 θ − e2σ)
.
[

sin θ[r3ω2ω,r sin
2 θ + e2σ(2ω + rω,r−2ωrσ,r )]θ̂

+ [r2ω2ω,θ sin
3 θ + e2σ(2ω cos θ + ω,θ sin θ − 2ωσ,θ sin θ)]r̂

]

, (5.6)

and the modulus of the above LT precession rate is

ΩLT = |~ΩLT (r, θ)| =
e−(α+σ)

2(ω2r2 sin2 θ − e2σ)
.
[

sin2 θ[r3ω2ω,r sin
2 θ + e2σ(2ω + rω,r−2ωrσ,r )]

2

+ [r2ω2ω,θ sin
3 θ + e2σ(2ω cos θ + ω,θ sin θ − 2ωσ,θ sin θ)]

2
] 1

2 . (5.7)

As a vector quantity the expression of ~ΩLT (Eq. (5.6)) depends on the coordinate frame

(i.e. polar coordinates (r, θ) which is used here) but the modulus of ~ΩLT or |~ΩLT | (Eq.

5.7) must be coordinate frame independent. Here, we use only the modulus of ΩLT in the

rest of this chapter.
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To calculate the frame-dragging precession frequency at the centre of the neutron star

we substitute r = 0 in Eq. (5.7) and obtain

ΩLT |r=0 =

[

e−(α+σ)

2

[

4ω2 + (ω,θ − 2ωσ,θ)
2 sin2 θ + 4ω cos θ sin θ(ω,θ − 2ωσ,θ)

]
1

2

]

|r=0

.(5.8)

Solving numerically ω,θ and σ,θ at the centre we get the value zero for both of them. Thus,

we obtain the frame-dragging precession rate

ΩLT |r=0 = ωe−(α+σ)|r=0 , (5.9)

at the center (r = 0) of a rotating neutron star.

Following KEH we can write the general relativistic field equations determining σ, γ

and ω as

∆
[

σe
γ

2

]

= Sσ(r, µ) , (5.10)
(

∆+
1

r
∂r −

µ

r2
∂µ

)

[

γe
γ

2

]

= Sγ(r, µ) , (5.11)

(

∆+
2

r
∂r −

2µ

r2
∂µ

)

[

ωe
γ

2
−σ
]

= Sω(r, µ) , (5.12)

where

∆ ≡ ∂2r +
2

r
∂r +

1− µ2

r2
∂2µ −

2µ

r2
∂µ +

1

r2(1− µ2)
∂2φ , (5.13)

is the flat-space spherical coordinate Laplacian, µ = cos θ and Sσ, Sγ, Sω are the effective

source terms that include the nonlinear and coupling terms. The effective source terms

are given by
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Sσ(r, µ) = eγ/2
{

8π(ρ0 + ρi + P )e2α
1 + v2

1− v2
+ r2(1− µ2)e−2σ

[

ω2
,r +

1− µ2

r2
ω2
,µ

]

+
1

r
γ,r −

µ

r2
γ,µ

+
σ

2

[

16πPe2α − 1

r
γ,r +

µ

r2
γ,µ −

1

2
γ2,r −

1− µ2

2r2
γ2,µ

]}

, (5.14)

Sγ(r, µ) = eγ/2
[

16πe2αP +
γ

2

(

16πe2αP − 1

2
γ2,r −

1− µ2

2r2
γ2,µ

)]

, (5.15)

Sω(r, µ) = eγ/2−σ
{

−16π
(ρ0 + ρi + P )(Ω− ω)

1− v2
e2α + ω

[

−8π
(ρ0 + ρi)(1 + v2) + 2Pv2

1− v2
e2α

− 1

r

(

1

2
γ,r + 2σ,r

)

+
µ

r2

(

1

2
γ,µ + 2σ,µ

)

+ σ2
,r −

1

4
γ2,r +

1− µ2

4r2
(γ2,µ + 4σ2

,µ)

− r2(1− µ2)e−2σ

(

ω2
,r +

1− µ2

r2
ω2
,µ

)]}

, (5.16)

where Ω is the angular velocity of the matter as measured at infinity and v is the proper

velocity of the matter with respect to a zero angular momentum observer. The proper

velocity of the matter is given by

v = (Ω− ω)re−σ sin θ , (5.17)

and the coordinate components of the four-velocity of the matter can be written as

uµ =
e−(σ+γ)/2

√
1− v2

[1, 0, 0,Ω] . (5.18)

Following Cook, Shapiro, Teukolsky [66] we can write another field equation which
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determines α and is given by

α,µ = −1

2
(γ,µ + σ,µ)−

{

(1− µ2)(1 + rγ,r)
2 + [µ− (1− µ2)γ,µ]

2
}−1

{

1

2

[

r2(γ,rr + γ2,r)− (1− µ2)(γ2,µ + γ,µµ)
]

[−µ+ (1− µ2)γ,µ] +
3

2
µγ,µ[−µ + (1− µ2)γ,µ]

+
1

4
[−µ + (1− µ2)γ,µ]

[

r2(γ,r + σ,r)
2 − (1− µ2)(γ,µ + σ,µ)

2
]

+ rγ,r

[

µ

2
+ µrγ,r +

(1− µ2)γ,µ
2

]

−(1− µ2)r(1 + rγ,r)

[

γ,rµ + γ,µγ,r +
1

2
(γ,µ + σ,µ)(γ,r + σ,r)

]

+
1

4
(1− µ2)e−2σ.

[

r4µω2
,r + (1− µ2)[2r3ω,rω,µ − µr2ω2

,µ + 2r4γ,rω,rω,µ]− r2(1− µ2)γ,µ[r
2ω2

,r − (1− µ2)ω2
,µ]
]}

.

(5.19)

5.3 Numerical method

Here we adopt the rotating neutron star (rns) code based on the KEH [65] method and

written by Stergioulas [67] to obtain the frame-dragging rate inside the rotating neutron

stars. The equations for the gravitational and matter fields were solved on a discrete

grid using a combination of integral and finite difference techniques. The computational

domain of the problem is 0 ≤ r ≤ ∞ and 0 ≤ µ ≤ 1. It is easy to deal with finite radius

rather than the infinite domain via a coordinate transformation to a new radial coordinate

s which covers the infinite radial span in a finite coordinate interval 0 ≤ s ≤ 1. This new

radial coordinate s is defined by

r = re.
s

1− s
. (5.20)
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Thus, s = 1
2
represents the radius of the equator (re) of the pulsar and s = 1 represents

the infinity.

The three elliptical field equations (5.10)-(5.12) were solved by an integral Green’s function

approach following the KEH [65]. Taking into account the equatorial and axial symmetry

in the configurations we can find the three metric coefficients σ, γ, ω which can be written

as [66]

σ(s, µ) = −e− γ

2

∞
∑

n=0

P2n(µ)

[

(

1− s

s

)2n+1 ∫ s

0

s′2nds′

(1− s′)2n+2

∫ 1

0

dµ′P2n(µ
′)S̄σ(s

′, µ′)

+

(

s

1− s

)2n ∫ 1

s

(1− s′)2n−1ds′

s′2n+1

∫ 1

0

dµ′P2n(µ
′)S̄σ(s

′, µ′)

]

, (5.21)

γ(s, µ) = −2e−
γ

2

π

∞
∑

n=1

sin[(2n− 1)θ]

(2n− 1) sin θ

[

(

1− s

s

)2n ∫ s

0

s′2n−1ds′

(1− s′)2n+1

∫ 1

0

dµ′ sin[(2n− 1)θ′]S̄γ(s
′, µ′)

+

(

s

1− s

)2n−2 ∫ 1

s

(1− s′)2n−3ds′

s′2n−1

∫ 1

0

dµ′ sin[(2n− 1)θ′]S̄γ(s
′, µ′)

]

, (5.22)

ω̂(s, µ) ≡ reω(s, µ) = −e(σ− γ

2
)

∞
∑

n=1

P 1
2n−1(µ)

2n(2n− 1) sin θ
.

[

(

1− s

s

)2n+1 ∫ s

0

s′2nds′

(1− s′)2n+2

∫ 1

0

dµ′ sin θ′P 1
2n−1(µ

′)S̄ω̂(s
′, µ′)

+

(

s

1− s

)2n−2 ∫ 1

s

(1− s′)2n−3ds′

s′2n−1

∫ 1

0

dµ′ sin θ′P 1
2n−1(µ

′)S̄ω̂(s
′, µ′)

]

, (5.23)

where Pn(µ) are the Legendre polynomials and Pm
n (µ) are the associated Legendre poly-

nomials and sin(nθ) is a function of µ through θ = cos−1 µ. The effective sources could

be defined as

S̄σ(s, µ) = r2Sσ(s, µ) , (5.24)

S̄γ(s, µ) = r2Sγ(s, µ) , (5.25)

S̄ω̂(s, µ) = rer
2Sω(s, µ) . (5.26)
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The advantages of this Green’s function approach for solving the elliptic field equations

is that the asymptotic conditions on σ, γ, ω are imposed automatically. The numerical

integration of Eqs. (5.21)-(5.23) is straightforward. These integrations are solved using

the rns code and we obtain the value of frame-dragging precession rate inside the rotating

neutron star using the equation (5.7).

5.3.1 Equation of state (EoS) of dense matter

Recent observations of PSR J0348+0432 have reported the measurement of a 2.01±0.04

M⊙ neutron star [59]. This is the most accurately measured highest neutron star mass so

far. The accurately measured neutron star mass is a direct probe of dense matter in its

interior. This measured mass puts the strong constraint on the EoS.

Equations of state of dense matter are used as inputs in the calculation of frame-

dragging in neutron star interior. We adopt three equations of state in this calculation.

We are considering equations of state of β-equilibrated [68] hadronic matter. The chiral

EoS is based on the QCD motivated chiral SU(3)L × SU(3)R model [69] and includes

hyperons. We exploit the density dependent (DD) relativistic mean model to construct

the DD2 EoS [70]. Here the nucleon-nucleon interaction is mediated by the exchange

of mesons and the density dependent nucleon-meson couplings are obtained by fitting

properties of finite nuclei. The other EoS is the Akmal, Pandharipande and Ravenhall

(APR) EoS calculated in the variational chain summation method using Argonne V18

nucleon-nucleon interaction and a fitted three nucleon interaction along with relativistic

boost corrections [71].

We calculate the static mass limits of neutron stars using those three equations of

state. Maximum masses and the corresponding radii of neutron stars are recorded in

Table 5.1. Similarly maximum masses and the corresponding radii of rotating neutron

stars at the mass shedding limits are also shown in the tables. These results show that

maximum masses in all three cases are above 2 M⊙ and compatible with the benchmark
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EoS P(ms) εc(10
15 g/cm3) MG/M⊙ R (km)

APR static 2.78 2.190 9.93
0.6291 1.50 2.397 14.53

DD2 static 1.94 2.417 11.90
0.7836 1.00 2.677 17.53

Chiral static 1.99 2.050 12.14
0.8778 1.11 2.353 18.17

Table 5.1: Maximum gravitational masses (MG/M⊙), equatorial radii (R), and their
corresponding central energy densities (εc) for static (Ω = 0) and Keplerian limit (P =
PK = 2π/ΩK) with different EoS, where PK is the Kepler period in millisecond [43].

measurement mentioned above.

5.4 Results and Discussion

We divide our results into two parts: in the first part we show the frame-dragging effect

in some pulsars which rotate with fixed values of Kepler frequencies ΩK and central

densities εc. Next we consider pulsars whose masses and rotational periods are known

from observations. Rotational frequencies of observed pulsars are generally much lower

than their Kepler frequencies (Ω < ΩK).

5.4.1 Pulsars rotating with their Kepler frequencies Ω = ΩK

Figure 5.1 displays the frame-dragging frequency (or LT precession frequency) as a func-

tion of radial distance for APR EoS. Panel (a) of the figure represents the results along

the equator whereas panel (b) implies those along the pole. For both panels of Fig. 5.1,

we consider rotating neutron stars with central energy densities 5.2435 ×1014, 6.404 ×1014

and 7.534 ×1014 g/cm3 and their corresponding Kepler frequencies are 4000 (red), 5000

(green) and 6000 (blue) s−1, respectively whereas masses of the rotating compact stars

in three cases range from ∼ 0.6 to ∼ 1.7 M⊙. The Kepler periods PK =1.57 ms, 1.26 ms

and 1.05 ms correspond to the above Kepler frequencies. Here and throughout the chap-
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ter, ΩLT is measured in a Copernican frame. For the cases in panel (a), frame-dragging

frequencies decrease initially with increasing distance from the centre and encounters a

local minimum at a distance rmin ∼ 0.5re which is well below the surface. It is interesting

to note here that the frame-dragging frequencies in all three cases rise again and attain

a local maximum at the distance rmax ∼ 0.7re and finally drop to smaller values at the

surface. On the other hand, the frame-dragging frequencies along the pole smoothly vary

from large values at the centre to smaller values at the surface as evident from panel (b)

of Fig. 5.1.

Figure 5.2 shows the frame-dragging frequency along the equator (panel (a)) and along

the pole (panel (b)) for the DD2 EoS whereas Figure 5.3 exhibits the frame-dragging

frequency along the the equatorial distance (panel (a)) and polar distance (panel (b)) for

the Chiral EoS. In both figures, results are shown for Keplerian frequencies ΩK = 4000,

5000 and 6000 s−1. However, the central energy densities corresponding to the Keplerian

frequencies mentioned above are different for three EoSs. The behaviour of frame-dragging

frequencies along the equator and pole in Fig. 5.2 and Fig. 5.3 is qualitatively similar

to the results of Fig. 5.1. In Figs. 5.1 - 5.3, as the rotation frequency ΩK and the

central energy density εc increase, the frame-dragging frequencies increase and also the

local maxima and minima shift towards the surface of the neutron star along the equator

for all three EoSs. It reveals an important conclusion that the ratio of the positions of the

local maxima and minima to the radius of the neutron star must depend on Ω and εc for

a particular pulsar.

It could be easily seen from Eq. (5.7) that the LT frequency inside a neutron star is a

function of both the radial distance r and colatitude θ. The colatitude plays a major role

to determine the exact frame-dragging frequency at a particular point inside the rotating

neutron star as evident from Figs. 5.1 - 5.3. We obtain the LT frequency at the pole

by just plugging-in θ = 0 in Eq. (5.7) and it is given by ΩLT = e−(α+σ)ω. It should be

noted here that the LT frequency is connected to ω which appears as the non vanishing
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metric component in the metric of the rotating star. According to the theorem by Hartle,

the dragging of inertial frames as represented by ω with respect to a distant observer

decreases smoothly as a function of r from a large value at the centre of the star to a

smaller value at the surface [63] for both equatorial and polar cases. In this formalism

the frame-dragging frequency depends solely on r. For a fixed value of r, one gets the

same frequency from the equator to the pole inside the rotating neutron star. We obtain

the similar behaviour of the LT frequency along the pole in panel (b) of Figs. 5.1 - 5.3 as

obtained in Hartle’s formalism. However, our results along the equator are quite different

from what was obtained using Hartle’s formalism [63]. It is evident from Figs. 5.1-5.3

that the plots are smooth along the pole but not along the equator. For the calculation

of the LT frequency along the equator, we find that the second term of Eq. (5.7) does not

contribute. Further investigation of the first term involving metric components σ, ω and

their derivatives reveals that this term is responsible for the local maxima and minima

along the equator as reported above. The appearance of local maxima and minima in the

LT frequencies along the equator may be attributed to the dependence of ΩLT on r and

θ. As a consistency check, we obtain two solutions for local maximum and minimum after

extremising the Eq. (5.7) with respect to r and obtain

dΩLT
dr

= ΩLT

[

−(α,r + σ,r)− 2
rω sin2 θ(rω,r + ω)− σ,re

2σ

ω2r2 sin2 θ − e2σ

]

+
1

ΩLT
.

e−2(α+σ)

4(ω2r2 sin2 θ − e2σ)2

.
{

A sin2 θ
[

ωr2 sin2 θ(3ωω,r + 2rω2
,r + rωω,rr) + 2σ,re

2σ(2ω + rω,r − 2ωrσ,r)

+ e2σ(3ω,r + rω,rr − 2rω,rσ,r − 2ωσ,r − 2rωσ,rr)
]

+B
[

rω sin3 θ(2ωω,θ + 2rω,rω,θ + rωω,θr)

+ 2σ,re
2σ(2ω cos θ + ω,θ sin θ − 2ωσ,θ sin θ)

+ e2σ(2ω,r cos θ + ω,θr sin θ − 2 sin θ(ωσ,θr + ω,rσ,θ))
]}

,
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Figure 5.1: Frame-dragging effect inside the rotating neutron stars from the origin to the
surface, calculated for the APR EoS. ΩK and εc denote the Kepler frequency and the
central energy density, respectively. Surface of the neutron star along the pole located
around 0.6re but the plot is still valid beyond the surface of the pole as our formalism is
applicable for regions outside the pulsar [43].

where

A = r3ω2ω,r sin
2 θ + e2σ(2ω + rω,r−2ωrσ,r ) ,

B = r2ω2ω,θ sin
3 θ + e2σ(2ω cos θ + ω,θ sin θ − 2ωσ,θ sin θ) ,

and

ω,θr ≡
∂2ω

∂θ∂r
.

Setting dΩLT

dr
|(r=R0,θ=π/2) = 0 and solving it numerically in the region 0 < R0 < re,

we obtain two positive real roots of r inside the rotating neutron star. One of these

is R01 = rmax and another is R02 = rmin. These are basically the local maximum and

local minimum of the function ΩLT along the equator. These local maximum and local

minimum are absent for dΩLT

dr
|(r=R0,θ=0) = 0. Thus, we cannot see any such extremum for

the plots of ΩLT along the pole.

The normalised angular velocities of the local inertial frame-dragging at the surface

(Ω̃s = ΩsurfaceLT /Ω) and centre (Ω̃c = ΩcentreLT /Ω) of the star models with three EoSs are
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Figure 5.2: Same as Fig. 5.1, but calculated for the DD2 EoS [43].
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Figure 5.3: Same as Fig. 5.1, but calculated for the Chiral EoS [43].
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PK Along the equator Along the pole
(ms) APR DD2 Chiral APR DD2 Chiral

1.57 0.008 0.013 0.019 0.046 0.069 0.099

Ω̃s 1.26 0.016 0.029 0.040 0.087 0.139 0.184
1.05 0.031 0.059 0.070 0.151 0.252 0.287
1.57 0.242 0.286 0.356 0.242 0.286 0.356

Ω̃c 1.26 0.354 0.457 0.580 0.354 0.457 0.580
1.05 0.515 0.723 0.884 0.515 0.723 0.884

Table 5.2: Normalised angular velocities of the local inertial frame-dragging at the surface
Ω̃s and centre Ω̃c of the neutron stars which are rotating at their respective Kepler periods
(PK ≡ 2π/ΩK) as measured by a distant observer [43].

recorded in Table 5.2. It is noted that the normalised frame-dragging value at the star’s

center is maximum and falls off on the surfaces of the equator and pole for three EoSs

irrespective of whether the compact star is rotating slowly or fast. However, for a partic-

ular EoS, the normalised frame-dragging value at the star’s centre and surface is higher

for a fast rotating star with PK = 1.05 ms than those of a slowly rotating star with

PK = 1.57 ms for both cases along the equator and pole. One can see another interesting

thing from the Table 5.2 that Ω̃s is always higher at the pole than Ω̃s at the equator for

a particular pulsar. It is due to the effect of rotation frequency Ω (of the star) for which

pole is nearer to the center than the surface as it is evident from Table 5.2. Thus, the

inertial frame-dragging effect is higher at the surface of the neutron star along the pole

than that at the surface of the neutron star along the equator.

Now we investigate the dependence of local maxima and minima in ΩLT along the

equator on the angle θ. In Figure 5.4, ΩLT is shown as a function of s defined by Eq.

(5.20) and cos θ for DD2 (panel(a)) and Chiral (panel (b)) EoSs. The local maxima and

minima in ΩLT along the equator are clearly visible in both panels of Fig. 5.4. It has been

already noted that ΩLT along the pole decreases smoothly from the center to the surface.

As the latitude (θ′ = π/2− θ) increases from the equator to the pole, the height between

the maximum and minimum of ΩLT diminishes and after a certain ‘critical’ angle (θcr)
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Figure 5.4: 3-D plots of ΩLT of the pulsar which is rotating with ΩK = 5000 s−1 as a
function of s and cos θ for (a) DD2 EoS and (b) APR EoS [43].

both extrema disappear and the plot is smooth like the plot along the pole. The critical

angle could be seen from the 3-D plot in Fig. 5.4. This value of the critical angle is µ ≈ 0.5

or θ′cr = 30◦ where local maximum (rmax) and minimum (rmin) disappear. So, if we plot

ΩLT vs θ at the point rmax for a specific Kepler frequency, (namely ΩK = 5000 s−1), we

could find that the frame-dragging frequency increases from the equator to the pole for

the specific rmax as it is exhibited by Fig. 5.4.

5.4.2 Pulsars rotating with their frequencies Ω < ΩK

Now we apply our exact formula of ΩLT to three known pulsars. Three pulsars chosen

for this purpose are J1807-2500B, J0737-3039A and B1257+12. Periods of those pulsars

are given by Table 5.3. Masses of those pulsars are also known and range from 1.337

to 1.5 M⊙. Furthermore, we adopt the same EoSs in this calculation as considered in

the previous sub-section. Though periods of these pulsars are larger than the Keplerian

periods, the calculation of ΩLT inside these real pulsars are equally important like the

cases with Kepler frequencies demonstrated already.

We calculate the normalised angular velocity at the centre and surface of these pulsars

with APR, DD2 and Chiral EoSs. It is noted from Table 5.3 that the behaviour of the
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Name of P Along the equator Along the pole
the Pulsar (ms) APR DD2 Chiral APR DD2 Chiral

J1807-2500B 4.19 0.099 0.075 0.064 0.156 0.120 0.105

Ω̃s J0737-3039A 22.70 0.095 0.073 0.062 0.154 0.122 0.106
B1257+12 6.22 0.122 0.091 0.077 0.188 0.145 0.126
J1807-2500B 4.19 0.707 0.548 0.516 0.707 0.548 0.516

Ω̃c J0737-3039A 22.70 0.685 0.538 0.502 0.685 0.538 0.502
B1257+12 6.22 0.825 0.632 0.601 0.825 0.632 0.601

Table 5.3: Normalised angular velocities of the local inertial frame-dragging at the surface
Ω̃s and centre Ω̃c of some known rotating neutron stars [43].

normalised angular velocity from the centre to the surface or along the pole and equator

is qualitatively same as shown in Table 5.2.

We also plot the frame-dragging frequency (ΩLT ) as a function of radial distance

along the equator (panel (a)) and pole (panel (b)) for three EoSs in Figures 5.5 - 5.7.

The frame-dragging frequency behaves smoothly along the pole from the centre to the

surface as shown by panel (b) of these figures. Results of panel (a) of the figures show

similar features of local maxima and minima along the equator as found in Figs. 5.1-5.3.

We note that all the local minima of ΩLT are located around rmin ∼ 0.7re and the local

maxima are located around rmax ∼ 0.9re in Figs. 5.5 - 5.7.
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Figure 5.5: Frame-dragging effect inside the rotating neutron star from the origin to the
surface, calculated for J1807-2500B (M = 1.366M⊙,Ω = 1500.935 s−1) [43].
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Figure 5.6: Frame-dragging effect inside the rotating neutron star from the origin to the
surface, calculated for J0737-3039A (M = 1.337M⊙,Ω = 276.8 s−1) [43].
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Figure 5.7: Frame-dragging effect inside the rotating neutron star from the origin to the
surface, calculated for B1257+12 (M = 1.5M⊙,Ω = 1010.321 s−1) [43].

We also plot the ΩLT of pulsar J0737-3039A as a function of s and cos θ for DD2 (panel

(a)) and APR (panel (b)) EoSs in Figure 5.8. It is noted from Fig. 5.8 that the value of

θcr is around 30◦ for the pulsar J0737-3039A for DD2 and APR EoSs.

5.5 Summary

We have derived the exact frame dragging frequency inside the rotating neutron star

without making any assumption on the metric components and energy-momentum tensor.
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Figure 5.8: 3-D plots of ΩLT of the pulsar J0737-3039A as a function of s and cos θ for
DD2 (panel (a)) and APR (panel (b)) EoSs [43].

We show that the frequency must depend both on r and θ. It may be recalled that the

frame-dragging frequency depends only on r in Hartle’s formalism because of the slow

rotation approximation. We predict the exact frame-dragging frequencies for some known

pulsars as well as neutron stars rotating at their Keplerian frequencies. We have also

estimated LT precession frequencies at the centers of these pulsars without imposing any

boundary conditions on them. We have found local maxima and minima along the equator

due to the dependence of ΩLT on the colatitude (θ) inside pulsars. The positions of local

maximum and minimum depend on the frequency Ω and the central density εc of the

particular pulsar. Furthermore, it is observed that local maximum and minimum in ΩLT

along the equator disappear at a critical angle θcr.

Quasi periodic oscillations (QPOs) in magnetars were studied by various groups. These

studies in several cases were carried by considering spherical and non-rotating relativistic

stars having dipolar magnetic field configuration [72]. It would be worth investigating

the effect of our exact frame-dragging formulation on the magnetic field distribution in

rotating neutron stars and its implications on QPOs.
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Chapter 6

Conclusion & Outlook

In contrast to most calculations of the LT precession rate in the literature, which focus

on the weak-field approximation, this thesis has discussed in some detail the problem

of the exact LT precession formula in any stationary spacetime and derived the exact

LT precession formula for full Kerr, KTN, Plebański-Demiański and other spacetimes.

The weak-field approximation for the Kerr spacetime by Hartle (Eq. (2.43)) has been

then shown to emerge straightforwardly from our general formulation. Interestingly, we

have shown that in the non-rotating and spherically symmetric Taub-NUT spacetime the

LT precession does not vanish. Applying the general LT formula we have also obtained

the exact frame-dragging rate inside the rotating neutron stars. We have also studied

causal geodesics in the equatorial plane of the extremal KTN spacetime, focusing on the

ISCO, and compared its behaviour with extant results for the ISCO in the extremal Kerr

spacetime. This work is important due to its future applications mainly for the accretion

disk theory in the KTN spacetime.

Accretion disk theory and the related astrophysical phenomena have been investigated

using Newtonian or post-Newtonian Gravity. The strong gravity LT effect has not been

considered in those calculations. Recently, Banerjee and Mukhopadhyay [73] have claimed

to have established a relation between the Mass and the Spin of Stellar-Mass Black Holes
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within a theoretical analysis involving Post-Newtonian approximations. However, in this

work the strong gravity frame-dragging effect has not been taken into account. As the

accretion disks extend to the vicinity of black hole horizons associated with the very strong

gravity regime, the effect of the frame-dragging may have to be taken into account. It

will be interesting to investigate the changes to the standard accretion disc theory that

this inclusion might entail.

The exact frame-dragging rates have already been derived inside and outside of the ro-

tating neutron stars by us. Now, it would be worth to study the quasi-periodic-oscillations

(QPOs) in the case of accreting neutron stars. The broad peaks at frequencies ∼ 20-40 Hz

in the power spectra of three sources 4U 1728-34, 4U 0614+091 and KS 1731-260 and their

variations with the higher kHz QPO frequency have been matched by the LT precession

of the material in the innermost disk region by Stella and Vietri [74]. But surprisingly,

the preliminary LT precession rate equation which has been used here is only ΩLT = J/r3.

This is equivalent to the LT precession frequency (Eq. (2.43)) at equatorial plane θ = π/2

in the weak gravity regime. The strong gravity LT frequency formula is not used here.

The rotating neutron star also leads to a stellar oblateness; thus a quadrupole term arises

in the formulation. Török et. al [75] implied the mass-angular momentum (M − j) re-

lations by models of twin peak QPOs. They also proposed for the correction in the LT

precession model as they considered the Kerr geometry approximation in their case and

the influence of quadrupole momentum on ΩLT had not been taken into account to deter-

mine the (M − j) relations. In our formulation we do not introduce any approximation

to calculate the frame-dragging effect inside and outside of the neutron star. Thus, the

prescription of Stella and Vietri and also the (M − j) relations in the light of our strong

gravity LT precession formulation could be investigated.

In the theoretical explanation of QPOs and jets from accreting neutron stars and

black holes, the strong gravity frame-dragging effect might play an important role. It was

first suggested by Stella and Vietri [74] that QPOs were connected to the LT precession
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frequency. They predicted that the peaks observed in the power spectra of several low

mass X-ray binaries (LMXRBs) at a frequency of tens of Hz were due to the precession of

the innermost disk region and it was dominated by the LT effect. Veledina et. al [76] also

suggested that QPOs in black hole binaries were produced by the LT precession of the hot

accretion flow whose outer parts radiate in optical wavelengths. They investigate the QPO

harmonic content and find that the amplitudes have a variability which might originate

from the LT precession. In another recent paper, Stefanov [77] discusses the various

models for high-frequency QPOs with the LT precession. These papers do not provide

a detailed theoretical explanation of QPOs and jets by taking into consideration strong

gravity frame-dragging effects. Stone and Loeb [13] also discuss jets which are observed in

many accreting black hole systems but they do not consider the strong gravity LT effect

in their calculation.

There are four primary accretion disk models: Polish doughnuts (thick disks), Shakura-

Sunyaev (thin) disks, slim disks and advection-dominated accretion flows (ADAFs). Among

these Shakura-Sunyaev model is quite successful. The general relativistic version of the

Shakura-Sunyaev disk model has been worked out by Novikov and Thorne [78]. It would

be very interesting to investigate the Novikov-Thorne version of Shakura-Sunyaev disk

model and consider modifying the disk equations by using the strong gravity LT precession

rate formula.

Another important topic in this entire area is that of the ISCO. The ISCO plays an

important role in the accretion disk theory as well as QPOs. More precisely, circular

geodesic motion in the equatorial plane (θ = π/2) is of fundamental importance in the

black hole accretion disk theory [78]. That fact is important for spectral analysis of X-ray

sources. The strong gravity LT effect will also modify the variability pattern and quality

factor. Variability amplitudes are strongly related to QPOs.

Though the analytic disk solutions are stable against finite perturbations, these per-

turbations often excite oscillatory behaviour. Oscillation is a common dynamical response
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in many fluid bodies. It would be interesting to explore the nature of oscillations in the

accretion disks. This topic is important to understand physical mechanisms of QPOs.

QPOs have been discussed in the literature vis-a-vis the frame-dragging effect only for

slow rotation approximation. It would be worth investigating this problem for rapidly

rotating astrophysical objects. QPOs have frequencies of a few hundred Hz for Galactic

black hole and neutron star sources. The frequency range 100-1000 Hz formally corre-

sponds to orbital frequencies of a few gravitational radii away from the stellar-mass object.

The focus on orbital frequencies is further motivated by the stability of observed QPO

frequencies over very long periods of time. The oscillation frequencies do not depend on

magnetic field, density, temperature and accretion rate rather it depends only on mass and

spin of the black hole. Thus, one of the most important frequencies which are connected

only to these two parameters (mass & spin) is the LT precession frequency.

Among models proposed to understand QPOs in accretion phenomena, the mathe-

matical resonance model by Rebusco and Horák [79] is significant. However, it does not

explain the non-linear resonance of two “modes” (pendulum mode & spring mode) of

oscillation. What these modes are, how they are excited and many other questions are

unresolved until now. Without answering these questions the QPO puzzle will not be

resolved. The investigation of this fundamental issue is important so that it can solve the

QPO puzzle properly by the exact LT precession formula.

In another recent related paper, Nowak and Lehr [80] attempt to explain that the 67

Hz QPO feature seen in GRS 1915+105 was due to the LT effect but the LT frequency

has been taken as ΩLT = 2J/r3 = 2aM/r3 (a is the Kerr parameter and M is the mass)

which is generally considered for the weak gravity regime. In the theoretical models of

disk oscillations, a new class of modes (c-modes) has been identified and Nowak and Lehr

show that the fundamental c-mode eigenfrequency was approximately the LT frequency

for M = 1 and |a/r1/2| << 1. Physically, the mode resembles a tilted inner disk which

precesses slowly around the spin axis of the black hole. C-mode may produce very little
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intrinsic luminosity modulation due to the little temperature or pressure fluctuation in

the disk. Cui, Zhang and Chen [81] have chosen the QPO frequency as the LT frequency

at the radius at which the accretion disc effective temperature is maximum and derived

a ∼ 1 for both GRS 1915+105 and GRO J1655-40, but this is a debatable issue. However,

the tilted angle of the accretion disk can easily be determined by our basic formula of the

LT effect as well as the whole thing could be strongly modified and no approximation is

required for that. This can also help us for more accurate calculation as well as the future

observation. The conclusion of Cui et. al. [81] may also be reconsidered by the strong

gravity LT precession formula.

There is a strong observational connection between accreting black holes QPOs and

relativistic jets. The theoretical understanding of accretion disks and relativistic jets has

proceeded separately and the physical link between the two things still remains uncertain.

Veledina et.al [76] proposed that Optical and IR (OIR) wavelengths QPOs might originate

from the jet if it is entirely driven by the accretion flow and in this case the LT effect may

be the cause of jet precession. According to the strong gravity LT formula, relativistic

jets will be affected very much by the strong gravity LT precession as it forms along the

pole. A possible connection between the black hole spin and jet power was predicted

by the Blandford-Znajek mechanisms which could be modified by the strong gravity LT

precession to get the possible connection between the jet and OIR QPOs.
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[26] J. Plebański, M. Demiański, Ann. Phys. (N.Y.) 98, (1976) 44

[27] S. W. Hawking, S. F. Ross, Phys. Rev. Lett. 75, 3382 (1995) 45

[28] C. Chakraborty, P. Majumdar, Class. Quantum Grav. 31, 075006 (2014) 10, 38, 45,

47, 49, 51, 57, 66, 69, 74, 75, 78, 82, 91

[29] D. Lynden-Bell, M. Nouri-Zonoz, Rev. Mod. Phys. 70, 427445 (1998) 51, 52, 63, 76,

108

137



[30] S. Ramaswamy, A. Sen, Phys. Rev. Lett. 57, 8 (1986) 51, 63

[31] M. Mueller, M. J. Perry, Class. Quantum Grav. 3, 65-69 (1986) 51

[32] V. Kagramanova, J. Kunz, E. Hackmann, C. Lämmerzahl, Phys. Rev. D81, 124044

(2010) 51, 52, 63, 67, 79, 81, 82, 107

[33] S. Drasco, S. A. Hughes, Phys. Rev. D69, 044015 (2004) 51

[34] R. Fujita, W. Hikida, Class. Quantum Grav. 26, 135002 (2009) 51

[35] V. Kagramanova, in private communication 52

[36] C. W. Misner, J. Math. Phys., 4, 924 (1963) 53, 76, 89

[37] A. H. Taub, Ann. Maths. 53, 3 (1951) 53, 81

[38] E. Newman, L. Tamburino, T. Unti, J. Math. Phys.,4, 7 (1963) 53, 81

[39] Y. Li, J. Yang, Y-L. Li, S-W Wei, Y-X Liu, Class. Quantum Grav. 28, 225006 (2011)

54, 60

[40] P. Pradhan, P. Majumdar, Eur. Phys. J. C 73, 2470 (2013) 58, 61, 81

[41] C. Chakraborty, Eur. Phys. J. C74, 2759 (2014) 10, 12, 63, 67, 91, 104, 105

[42] C. Liu, S. Chen, C. Ding, J. Jing, Phys. Letts B 701, 285 (2011) 63, 81

[43] C. Chakraborty, K. P. Modak, D. Bandyopadhyay, ApJ 790, 2 (2014) 10, 11, 12, 64,

108, 121, 124, 125, 126, 127, 128, 129, 130

[44] J. G. Miller, J. Math. Phys. 14, 486 (1973) 65, 81

[45] C. Chakraborty, arXiv:1407.6294v2 [gr-qc] (2014) 10, 66, 67, 69, 70, 71, 72, 73, 74

[46] C. Bunster, M. Henneaux, PNAS 104, 12243 (2007) 68

138



[47] J. G. Miller, M. D. Kruskal, B. B. Godfrey, Phys. Rev. D4, 2945 (1971) 78, 107

[48] M. A. Abramowicz, P. C. Fragile, Living Rev. Rel. 16, 1 (2013) 80

[49] J. F. Steiner, J. E. McClintock, R. A. Remillard, L. Gou, S. Yamada, R. Narayan,

Astrophys. J. Lett. 718, L117-L121 (2010) 80

[50] D. Barret, J.-F. Olive, M. C. Miller, Mon. Not. R. Astron. Soc., 361, 855860 (2005)

80

[51] D. Barret, J.-F. Olive, M. C. Miller, Mon. Not. R. Astron. Soc., 376, 11391144 (2007)

80

[52] A. Abdujabbarov, F. Atamurotov, Y. Kucukakca, B. Ahmedov, U. Camci, Astrophys.

and Space Science 344, 2, 429-435 (2013) 81

[53] S. Chandrasekhar, The Mathematical Theory of Black Holes, Oxford (1992) 81, 82,

86, 97, 102, 109, 110

[54] V. S. Manko, E. Ruiz, Class. Quantum Grav. 22, 3555-3560 (2005) 89

[55] G. F. R. Ellis, B.G. Schmidt, Gen. Rel. Grav. 8, 915 (1977) 92, 107

[56] B. G. Schmidt, Gen. Rel. Grav. 1, 269 (1971) 107

[57] R. Geroch, J. Math. Phys. (N.Y.) 9, 450 (1968) 107

[58] W. Israel, Phys. Rev. D15, 935 (1977) 107

[59] J. Antoniadis et al., Science 340, 1233232 (2013) 112, 120

[60] J. B. Hartle, ApJ 150, 1005 (1967) 112, 113

[61] J. B. Hartle, ApJ 153, 807 (1968) 112

[62] N. K. Glendenning, F. Weber, Phys. Rev. D50, 3836 (1994) 112

139



[63] F. Weber, Pulsars as Astrophysical laboratories for Nuclear and Particle Physics,

IOP (1999) 112, 123

[64] S. M. Morsink, L. Stella, ApJ 513, 827 (1999) 112

[65] H. Komatsu, Y. Eriguchi, I. Hachisu, MNRAS 237, 355 (KEH) (1989) 114, 118, 119

[66] G. B. Cook, S. L. Shapiro, S. A. Teukolsky, ApJ 398, 203 (1992) 117, 119

[67] N. Stergioulas, J. L. Friedman, ApJ 444, 306 (1995) 118

[68] S. Banik, H. Matthias, D. Bandyopadhyay, W. Greiner, Phys. Rev. D 70, 123004

(2004) 120

[69] M. Hanauske, D. Zschiesche, S. Pal, S. Schramm, H. Stöcker, W. Greiner, Astrophys.
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“   েশষ নািহ েয,

          েশষ কথা েক বলেব ?”

There is no End,

What would our last whisper be?...

                                 ― Rabindranath Tagore
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