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Synopsis

Near shore surging waves like tsunami, bore waves etc have hazardous nature when it

propagates towards the shore. In some cases it affects coastal habitation or costly instal-

lations. Such events which can often trigger extremely hazardous effects have attracted

intense attention over centuries and have been studied extensively from both theoretical

and practical points of view. The main emphasis of the investigations was to work to-

wards the development of early warning systems for minimizing the the loss of human

lives. However, there are few situations where the installation of a passive warning system

is not enough, while the demand is for more active intervention. This is particularly true

for example, in protecting nuclear reactors and related installations which are located

usually at the vicinity of the sea shore due to logistic reasons, against the tsunami threat.

Therefore along with the traditional warning systems, it is desirable to find ways and

means geared towards possible invasive procedures for taming of such hazardous wave

phenomena. There are few suggestions for effective interventions, like plantation of Man-

grove treas along the coastal lines , installation of breakwaters at strategic positions ,

stoppage of erosion by concrete bolders . However, these are mostly indirect ways to

counter the surging waves. Ways to directly attack the problem has received much less

attention. We have proposed in this thesis work, a direct method to control the near

shore surging waves, which could reduce the hazardous effects. A leakage based method

is proposed here, which would suck water at the bottom causing the properties of solitary

waves to change. It has been shown analytically that if the vertical fluid velocity at the

bottom is independent of the free surface wave profile then the phase of the solitary wave

gets changed controlled by the bottom boundary condition, whereas the amplitude re-

maining constant. But if the leakage function depends on the surface wave profile then a

variable KdV equation can be derived for slowly changing bathymetry function. An exact

solitary wave solution is obtained for a finer balance between the variable depth function

14



and leakage function .The amplitude of the solution decreases as it propagates towards

the shore in spite of the surging nature due to decreasing bathymetry. This constitutes

the first part of my thesis work.

In the second part of the thesis the deep water rogue wave phenomena has been

modelled. The most popular nonlinear model for rogue waves is the Peregrine breather

(PB) , which is an exact rational solution of Nonlinear Schrodinger equation(NLSE).

But the most problematic point is that NLSE together with its different generalizations

are equations in (1+1) dimensions and therefore all or their solutions, including the PB

and its higher order generalizations can describe the time evolution of a wave only along

a one-dimensional line. It can also be seen that the maximum amplitude of the PB

solution describing a one-dimensional rogue wave is fixed and just three times that of the

background waves. The steepness of the wave as well as the fastness of its appearance

is also fixed, as this solution admits no free parameter. Existence of rogue waves have

been analyzed in the Davey-Stewartson equation, which is an (2+1) dimensional nonlocal

generalization of NLSE. However the single peak solution is the line rogue wave, hence

it can be reduced to the PB solution by a simple rotation in the two dimensional plane.

In such a situation, an analytical (2+1) dimensional rogue wave model is desperately

needed where all of its dynamics i.e, higher amplitude, fastness of appearance, duration

of stay, steepness etc can be successfully modelled. In this context, a new completely

integrable, (2+1) dimensional, local, modulated, nonlinear, evolution, equation has been

proposed which is derivable from the basic hydrodynamic equations. The most important

part is that this equation possesses an exact two dimensional rational solution which is

analogous with the Peregrine breather in terms of mathematical form. Also it contains two

free parameters which can be chosen arbitrarily to model the full grown rogue wave. As

as extension to the problem, we have also derived this new, (2+1)D, evolution equation in

the propagation of nonlinear ion acoustic wave of lossless, magnetized plasma containing

cold ions and hot isothermal electrons.
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As an applications to these integrable models, which have been discussed, we explored

different physical systems like inhomogeneous plasma, quantum plasma and derived var-

ious interesting results.
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On a calm day, it is an enchanting sight to see the ocean waves continuously falling

on the beach. Occasionally, the ocean reveals its fury, when, where and how, nobody

knows, leading to devastation, loss of lives and destruction of property; the beauty of the

ocean transforming into a tragedy. Scientists are always trying to fathom the reasons for

such phenomena, the mysteries of nature are profound, and the scope to understand them

is limitless. The motivation of this thesis is rooted in the author’s passionate desire to

contribute in this direction, a modicum of his own concepts perhaps, a drop in the ocean

of knowledge, with the hope that such drops make up the ocean.
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Chapter 1

Introduction

1.1 General Introduction

The propagation of water waves has fascinated laymen and scientists for centuries. Water

waves come in a seemingly endless array of forms, shaped by ever-changing influences (e.g.

the topography of the sea floor, the speed and direction of the wind, and the presence of

an underlying current) and yet they are to some extent mathematically predictable.

The first successful water wave theories, discovered at the beginning of the nineteenth

century by Cauchy and Laplace , were linear and dispersive and solvable by the ordinary,

linear Fourier transform . Thereafter linear theories have dominated in explaining hy-

drodynamic and other fluid phenomena in different physical circumstances. However the

difficulties faced by the linear models in explaining phenomena related to large amplitude

waves, wave- particle, wave-wave interactions etc also concerned the scientific commu-

nity and the importance of nonlinear theories has emerged. But it is evident that, as

the nonlinearity of the partial differential equations becomes higher and complex, its ex-

act solution becomes difficult giving only approximate analytical or numerical solutions.

There lies the importance of nonlinear integrable systems as they have the generalized

mathematical method to solve themselves. The origin of the nonlinear integrable equa-
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tion came into picture long ago when John Scott Russell, a Scottish engineer and naval

architect, observed a solitary wave in the Union Canal connecting two cities, Edinburgh

and Glasgow . He identified a large solitary heap of water traveling in the shallow water

canal with undiminished speed or shape [1].

In 1895, the Dutch professor Diederik Korteweg and his doctoral student Gustav de

Vries derived a partial differential equation (PDE) which models the solitary wave that

Russell had observed [2]. But, the solitary wave was considered a relatively unimportant

curiosity in the field of nonlinear waves. That all changed in 1965, when Zabusky and

Kruskal realized that the KdV equation arises as the continuum limit of a one dimen-

sional anharmonic lattice used by Fermi, Pasta, and Ulam (1955) to investigate thermal-

ization or how energy is distributed among the many possible oscillations in the lattice

[3]. Zabusky and Kruskal (1965) simulated the collision of solitary waves in a nonlinear

crystal lattice and observed that they retain their shapes and speed after collision. In

analogy with colliding particles, they coined the word solitons to describe these elasti-

cally colliding waves. A new method called, inverse scattering method, was discovered by

Gardner, Greene, Kruskal and Miura (1967) [4] as a means for solving the initial value

problem for the KdV equation on the infinite line, for initial values that decay sufficiently

rapidly at infinity. Subsequently this method has been significantly enhanced and ex-

tended to other integrable systems, which have been discovered in both (1+1) and (2+1)

dimensions. The applicability of these models are expanded from hydrodynamics to other

subjects like plasma physics, condensed matter physics, atomic and molecular physics,

astrophysics etc. Though the study of nonlinear waves in oceanic systems has been done

extensively both in shallow as well as deep water regime, there are certain problems which

need to be addressed. We shall discuss these problems of oceanic wave phenomena in the

following sections.
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1.2 Shallow water wave propagation

A surface wave is said to be in shallow water if its wavelength is much larger than the

local water depth. The KdV equation, which is a nonlinear dispersive wave equation, was

originally derived to describe shallow water waves of long wavelength and small amplitude

[2]. The nonlinear steepening of the water wave can be balanced by dispersion. If so, the

result of these counteracting effects is a stable solitary wave with particle-like properties.

A solitary wave has a finite amplitude and propagates at constant speed and without

change in shape over a fairly long distance. But when the bottom topography varies, the

amplitude ,speed, width of the solitary wave also changes. Specially when the wave moves

towards the near shore coastal region, the water depth decreases slowly reaching zero

magnitude and the amplitude of the solitary wave rises to give surging effects. In certain

conditions such surging waves show destructing nature at the shore like tsunami waves,

bore waves [5] But one of the important facts is that KdV dynamics is relevant in modelling

tsunami only when the propagation distance is large enough, otherwise higher order effects

would not be relevant. There are several equations which are also relevant in shallow water

limit, analogous to KdV equation like modified KdV equation, Kadomtsev Petviashvili

equation which is the two dimensional extension of KdV equation with weak transverse

propagation, Boussinesq equation in both (1+ 1) and (2+1) dimension , Camassa Holm

equation, Gardener equation, (2+1) Gardener equation, which is a relatively new shallow

water wave equation characterized by enhanced nonlinearity and improved directional

spreading , KP-Gardener equation etc. Each equations can be derived as an approximate

model of the evolution of long waves of moderate amplitude propagating in shallow water

of uniform depth and each of of them possesses a rich mathematical structure called

complete integrability.

But in case of propagation in variable environment, certain changes to be made in the

structure of the solution as well as in the evolution equation in the shallow water limit.
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For example in case of propagation in shear flow or in slowly variable bathymetry, KdV

equation with some modification terms can be derived.

If the variation of bathymetry occurs very slowly compared to the evolution scale of the

solitary wave a modified KdV equation with variable coefficient was derived by Johnson[4].

Its approximate solitary wave solution shows that its amplitude varies inversely with the

water depth. Hence as the wave propagates towards the shallower region, its depth de-

creases causing its amplitude to increase giving hazardous effects. Such surging wave

events have attracted intense attention over centuries and have been studied extensively

from both theoretical and practical points of view. The main emphasis of the investiga-

tions was to work towards the development of early warning systems for minimizing the

the loss of human lives. The present development of the tsunami warning system has

definitely been reached to a satisfactory level [6]-[11].

Therefore along with the traditional warning systems, it is desirable to find ways and

means geared towards possible invasive procedures for taming of such hazardous wave

phenomena. There are few suggestions for effective interventions, like plantation of Man-

grove treas along the coastal lines [12], installation of breakwaters at strategic positions

[13]-[16], stoppage of erosion by concrete bolders . However, these are mostly indirect

ways to counter the surging waves, while we lack the proposals for directly attacking the

problem, perhaps with the exception of the proposed bubble method, aiming to stop the

incoming waves by a stream of fast and strong counter-waves, mixed with air bubbles

[17]. Though the last method was proposed more than fifty years back, its feasibility and

effectiveness has not been established yet. The attenuation of incident water waves by

a curved vane like structure positioned beneath or at the surface of a body of water is

described in a Patent [18] where the detailed design of the structure is given. An attempt

was made to reduce the devastating effects of a tsunami waves by single and double sub-

merged barrier was done in Tel Aviv University[19]. They performed their experiments

in a basin 5 m in length and 10.5 cm in depth. The wavelength of the generated wave
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was about 3 m, which allows referring to it as a tsunami.

Thus the effective control of near shore hazardous surging wave phenomena is still

an open problem in terms of theoretical and practical points of view. In recent time,

its importance as well as necessity cannot be denied. For example, in protecting nuclear

reactors and related installations which are located usually at the vicinity of the sea shore

due to logistic reasons, against the tsunami threat.

In this thesis work, we have tried to work on this problem which will be discussed

later.

1.3 Deep water wave propagation

In deep water, the nonlinear waves behave quite differently. For example, tsunami wave

in deep water is quite small wave of amplitude ≈ 1 meter but as it propagates towards the

shore it evolves completely to give hazardous surging effects. In deep water, where the

ratio of water depth to the wavelength can no longer be taken small, Nonlinear Schrodinger

equation (NLSE) describes the propagation of modulated wave packet in (1+1) dimension.

Although, NLSE can be extrapolated to be valid at an arbitrary depth. It is a completely

integrable system having rich mathematical structure. A two dimensional generalization

of NLSE is Davey Stewartson (DS) equation [20] which in the infinite depth limit becomes

NLSE in (2+1) dimensions and non-integrable. In shallow-water limit, DS equation is a

coupled nonlocal equation having a localized solution called Dromion.

One of the most popular deep wave phenomena in the recent times is rogue wave.

These mysterious ocean waves are reported to be observed in a calm sea, where they, as a

localized and isolated surface waves, apparently appear from nowhere, make a sudden hole

in the sea just before attaining surprisingly high amplitude and disappear again without

a trace [21]. The concept of rogue waves is not confined only in the oceanography alone

but also extended in the other branches of physics like condensed matter physics, plasma
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physics, astrophysics etc. Though it is mainly a deep wave phenomena but it can occur

also in the shallow water [22].

As linear models of rogue waves the following mechanisms are mainly considered: dis-

persion enhancement of transient wave groups, geometrical focusing in basins of variable

depth, and wave-current interaction[21]. Taking into account nonlinearity of the water

waves, these mechanisms remain valid but should be modified.

The most popular nonlinear model for rogue waves is the Peregrine breather (PB)

[23], which is an exact rational solution of Nonlinear Schrodinger equation. The solution

is localized in both time and space, hence have the relevance with the oceanic rogue wave

phenomena. But the most problematic point is that NLSE together with its different

generalizations are equations in (1+1) dimensions and therefore all or their solutions,

including the PB and its higher order generalizations can describe the time evolution of a

wave only along a one-dimensional line. It can also be seen that the maximum amplitude

of the PB solution describing a one-dimensional rogue wave is fixed and just three times

that of the background waves. The steepness of the wave as well as the fastness of its

appearance is also fixed, as this solution admits no free parameter. This situation can be

improved to obtain higher amplitude and steepness of the PB model by using higher order

rational solutions [24]. But the maximum amplitude and steepness reachable by this class

of solutions are fixed owing to the absence of relevant free tunable parameter, making

it difficult to adjust to the continuously varied range of shape and sizes of the observed

oceanic rogue waves. However, recently higher order rational solutions to the NLSE

allowing free parameters have been discovered[25] though they seem to represent multi-

peak waves in the x-t plane for the nontrivial choice of parameters [25]. The single peak

solution, which is suitable for describing rogue waves having a single appearance in time, is

obtained unfortunately for a trivial choice of free parameters. The trigonometric breathers

also contain free parameters, though such periodic solutions, as mentioned already are

different in nature from the single crest RW event. The crucial fact however is that the one
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dimensional spatial nature remains the same for the whole class of PB solutions, including

its higher order rational and trigonometric generalizations. Therefore, modelling of RW,

which is a two dimensional surface wave, by these class of one dimensional PB solutions

remains problematic.

Existence of rogue waves have been analyzed in the Davey-Stewarson equation, which

is an (2+1) dimensional nonlocal generalization of NLSE. However the single peak so-

lution is the line rogue wave, hence it can be reduced to the PB solution by a simple

rotation in the two dimensional plane. The Boiti-Leon-Pempinelli equation is another

(2+1) dimensional integrable equation, defined through two real coupled equations. Re-

cently a RW type solution has been found in this equation allowing free parameters [26].

However the BPL equation describes wave propagation along a channel, its applicability

in modelling the ocean RW is questionable.

In such a not so clear situation, an analytical (2+1) dimensional rogue wave model is

desperately needed where all of its dynamics i.e, higher amplitude, fastness of appearance,

duration of stay, steepness etc can be successfully modelled. This is an open problem in

recent times which has been dealt in this thesis work.

1.4 Motivation and Methods used

Motivated by the nature of the problems, which are discussed in the previous sections,

we have oriented the thesis work in two different directions.

In the first part of the thesis , we have dealt with shallow water wave phenomena. The

main aim was to control the near shore surging waves by an active method, which could

reduce the hazardous effects. A leakage based method is proposed here, which would

suck water at the bottom causing the properties of solitary waves to change. It has been

shown analytically that if the vertical fluid velocity at the bottom is independent of the

free surface wave profile then the phase of the solitary wave gets changed controlled by
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the bottom boundary condition, whereas the amplitude remaining constant. But if the

leakage function depends on the surface wave profile then a variable KdV equation can

be derived for slowly changing bathymetry function. An exact solitary wave solution is

obtained for a finer balance between the variable depth function and leakage function

.The amplitude of the solution decreases as it propagates towards the shore in spite of

the surging nature due to decreasing bathymetry.

In the second part of the thesis the deep water rogue wave phenomena has been mod-

elled. In this context, a new completely integrable, (2+1) dimensional, nonlinear, local,

modulated equation has been proposed which is derivable from the basic hydrodynamic

equations. The most important part is that this equation possesses an exact two di-

mensional rational solution which is analogous with the Peregrine breather in terms of

mathematical form. Also it contains two free parameters which can be chosen arbitrarily

to model the full grown rogue wave. As as extension to the problem, we have also derived

this new, (2+1)D, evolution equation in the propagation of nonlinear ion acoustic wave

of lossless, magnetized plasma containing cold ions and hot isothermal electrons. We

have applied the wave models used here to the other physical systems like inhomogeneous

plasma, quantum plasma to retrieve interesting features.

In the whole thesis work some analytical methods have been used and the other nu-

merical calculations have been done using the software Mathematica.

In deriving nonlinear evolution equations in various situations we have used multi

-scale reductive perturbation technique [4].

In order to solve such equations and find exact solitary wave solutions we have used

Hirota Bilinearization method [27].

For finding approximate solitary wave solution, we have used Bogoliubov Mitropolsky

approximation method which is a multi-scale method to solve perturbed equations.

All of the variables in each chapter has its own meaning and do not coincide with the

variables of the other chapters.
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1.5 Summary

We can summarize our thesis in the following way.

In chapter 2, we have studied the propagation of shallow water, unidirectional nonlin-

ear wave in constant depth with nontrivial bottom boundary conditions. We have shown

analytically that for the choice of leakage velocity functions which are independent of

the free surface wave profile, the solitary wave solution gets modified in phase where as

the amplitude remains constant. Analytic solutions have been found out for different

functional forms of the leakage velocities where we get bending of solitons in x-t plane.

In order to explore the effect of bottom boundary condition on the solitary wave

amplitude which was absent in the chapter 2, the leakage functions are assumed to depend

on the free surface wave profile in chapter 3. First the constant depth problem was

investigated to identify the profile of leakage function which would induce maximum

damping effects on the solitary wave amplitude. Taking this profile, the variable depth

problem was studied where a variable KdV equation was derived where the bathymetry

function varies slowly. For a finer balance between their Depth function and the leakage

velocity function, an exact solitary wave solutions have been found out which decays as it

propagates towards the shore in spite of the surging effects due to decreasing bathymetry.

An application to this theoretical findings have been done to a real near shore bathymetry

in Chennai, South India and the decay of amplitude due to leakage have been shown.

In chapter 4, the deep water rogue wave has been modelled using a new completely

integrable,nonlinear, (2+1) dimensional equation, proposed by us and derivable from the

basic hydrodynamic equations. An exact rational solution have been found out having two

free parameters to model the full grown rogue wave. By the tunable free parameters the

maximum amplitude of the rogue wave, steepness, position of holes can be determined. In

order to explain its dynamical behavior an ocean current term has been introduced which

will control the duration of staying of the rogue wave. Modulation instability associated
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with the new evolution equation has been found out showing asymmetric nature and

directional preference.

In chapter 5, the new (2+1) dimensional integrable equation, which was introduced

in the previous chapter, has been derived in the propagation of nonlinear ion acoustic

waves in magnetized lossless plasma containing cold ions and hot isothermal electrons. A

relation of the equation with the integrable KP equation have been established. Higher

soliton solutions have been found out using Hirota method.

These above chapters contain the main part of the thesis. As an application of the

integrable models used here we have explored other fluid systems like inhomogeneous

plasma and quantum plasma.

In chapter 6 ,the propagation of ion acoustic soliton in weak and slowly varying inho-

mogeneous plasma has been studied. It has been shown that the dynamics of the nonlinear

ion acoustic wave is controlled by KP equation. The two dimensional soliton of the evo-

lution equation gets bend in the two dimensional plane controlled by the unperturbed ion

number density, whereas the amplitude remains constant.

In chapter 7, a new field called quantum plasma has been explored using KdV model.

A quantum corrections has been done in the semi-classical limit to the nonlinear ion

acoustic wave with electron Landau damping. A new higher order KdV equation has

been derived containing nonlinear quantum correction terms and the quantum correction

to the Landau damping. Using Bogoliubov Mitropolsky approximation method the decay

of amplitude due to the Landau damping term has been calculated.

Conclusions and outlook are given in chapter 8.
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Chapter 2

Phase modulation of solitary waves

controlled by bottom boundary

conditions

2.1 Introduction

Near shore coastal regions often witness surging of the approaching waves including ex-

treme events like tsunamis [5]. Such a natural phenomenon has also been observed, though

in a miniature scale in few rivers around the world as bore waves [28, 29, 30]. Famous

examples are the river Seine [28, 5] in France and the river Hoogli in India [28]. Such

surging waves are suspected to be caused by nonlinear gravity waves, propagating over

a decreasing depth bathymetry towards the shore or along upstream river. Such events

which can often trigger extremely hazardous effects have attracted intense attention over

centuries and have been studied extensively from both theoretical and practical points of

view. The main emphasis of the investigations was to work towards the development of

early warning systems for minimizing the loss of human lives. The present development

of the tsunami warning system has definitely reached to a satisfactory level[6]-[11].
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However, there are few situations where the installation of a passive warning system

is not enough, and the demand is for more active intervention. This is particularly true

for example, in protecting nuclear reactors and related installations which are located

usually at the vicinity of the sea shore due to logistic reasons, against the tsunami threat.

As we know the tsunami of 2004 which played the devastating effects spreading over

many countries was a potential threat to the nuclear reactor at Kalpakkam of India. The

tsunami of 2010 inflected real calamities in Fukushima nuclear reactors in Japan [31, 32].

Our main aim in this chapter is to put forward an innovative proposal based on

theoretical study on the effect of sudden feedback boundary control at the bottom on

the nonlinear surface waves, governed by nonlinear equations describing unidirectional

gravitational waves, derived from basic hydrodynamic equations at the shallow water

regime. For the sake of simplicity, we shall consider here the propagation of nonlinear

waves over shallow water of constant depth.

The dynamics of the shallow water nonlinear, unidirectional, dispersive, gravity in-

duced surface waves is described by the celebrated KdV equation[2] that admits solitary

wave solutions. The derivation of such an equation assumes that the fluid is incom-

pressible and inviscid, bounded below by a rigid, impermeable bottom and above by a

free surface. The generalization of the KdV equation to higher order nonlinearities[33]

and multi-dimensions[34] lead to a multitude of nonlinear equations that found potential

applications[35] in various physical situations.

In this work, we encounter a series of forced KdV equations as the evolution equations

of shallow water, nonlinear dispersive waves over non-trivial bottom boundary conditions.

The different functional nature of this fixed bottom condition self-consistently generates

different types of forced KdV equations. These types of nontrivial bottom boundary

conditions can be considered to be generated artificially by a controlled feedback water

leakage at the bottom.

In most of the realistic situations, water waves propagate over a porous bed so that
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one needs to consider the transformation of the waves brought about by the permeability

of the bottom bed.

Mei[41] has developed several theoretical concepts needed to pursue the problems of

wave induced stresses in a porous media using the boundary layer approximation that fa-

cilitates even the nonlinear modelling of seabeds. The dynamics of the linear water waves

in a channel of permeable bottom has been one of the interesting research problems in

water wave theory undertaken from the early times[42]-[43]. Rigorous development of

mathematical models[44]-[45] for nonlinear, diffusive, weakly dispersive water waves in-

teracting with a permeable bottom has begun only in the last decade, with the description

based on the Boussinesq approximation. In shallow water, Boussinesq equation gives wave

solutions propagating in both positive and negative directions. However, for unidirectional

wave propagation in shallow water, the KdV equation appears as a reasonable dynamical

equation when the vertical fluid velocity at the bottom is assumed to be zero.

In this work, we consider the non zero vertical fluid velocity at the bottom that leads

to a series of forced KdV equations self-consistently where the functional forms of the

leakage velocity appears as forcing function. But the leakage velocity at the bottom is

not due to porosity, which occurs naturally. It is a controlled feedback leakage at the

bottom which affects the solitary wave solution at the surface. The basic features of

analysis of this work run parallel to the derivation of KdV equation[46] in a hard bottom

channel. The novelty of the present work is that exact solitary wave solutions of the

forced KdV equations have been obtained analytically for different leakage conditions.

For example, constant, time dependent, space dependent or both space-time dependent

forms of leakage velocity have been considered that control the phase modulation of the

obtained solitary wave solutions leading to different types of dynamical behavior of such

waves.
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2.2 Derivation of the free surface evolution equation

in presence of water leakage at the bottom

A one dimensional, unidirectional, surface wave motion propagating through a shallow

water channel with bottom leakage is considered. The channel is of uniform cross section

and of constant depth h. The fluid is assumed to be incompressible with the wavelength,

amplitude and velocity of the wave represented by l, a and v respectively (as shown

in Figure 2.1). The surface tension and viscosity have been neglected throughout this

calculation. At an arbitrary (x, t) the free surface displacement is denoted by η(x, t) .

Two natural small parameters ǫ = a/h and δ = h/l are introduced, both of which are

very very less than 1 , and further ǫ ≈ δ2.

Figure 2.1: Shallow water solitary wave in a water channel with controlled leakage at the
bottom

The fluid motion can be described by the velocity vector ~V = Vh~i + Vv~j where the

subscripts h, v denote horizontal and vertical components of the fluid velocity respectively.

From the condition of irrotational flow of the fluid we can introduce a velocity potential

φ(x, y, t) such that ~V = ~∇φ.

Since the fluid is incompressible, the mass conservation equation leads to

∇2φ = 0 (2.1)
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Again from the momentum conservation equation, i.e, Euler equation, we get,

∂φ

∂t
+

1

2
(~∇φ)2 + p

ρ
+ gy = 0, (2.2)

where ρ, p, g are density, pressure of the fluid and acceleration due to gravity respectively.

Eq. (2.2) is well known as the Lagrange equation. When φ is independent of time, then

the above equation is called Bernoulli’s condition. Equations (2.1), (2.2) are the two

main equations of the problem which must be supplemented by appropriate boundary

conditions.

The fluid is bounded by two surfaces, one is the fixed bottom and other is the free

boundary. Since at the upper free surface, p = 0, hence taking derivative of eq. (2.2)

along the direction of propagation, we obtain

∂Vh
∂t

+ Vh
∂Vh
∂x

+ Vv
∂Vv
∂x

+ g
∂η

∂x
= 0 (2.3)

Again, at the free surface

y(x, t) = h + η(x, t) (2.4)

Taking time derivative of eq.(2.4), we get

Vv =
∂η

∂t
+
∂η

∂x
Vh (2.5)

. These two equations (2.3) and (2.5) are defined at the free surface of the wave. Since

the upper free surface is movable, hence these equations are called variable boundary

conditions.

Since some amount of water is considered to be leaking through the fixed bottom of

the channel, hence the downward vertical fluid velocity at the bottom is nonzero. This
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constitutes the fixed boundary condition defined by the equation

Vv(x, 0, t) =
∂φ(x, 0, t)

∂y
= C(x, t) (2.6)

where C(x, t) is the vertical fluid velocity at the bottom of the channel. This equation

is called the penetration condition. Here we consider the leakage velocity C(x, t) at the

bottom to be independent of the surface wave profile η(x, t).

Thus ultimately we get two equations (2.1), (2.2) that are valid in the bulk of the fluid.

Taking the derivative of eq. (2.2) and eq. (2.4) at the free boundary, we get two nonlinear

boundary conditions (2.3), (2.5) respectively and the penetration condition given by (2.6).

The velocity potential φ is expanded in Taylor series as follows

φ(x, y, t) =
∞∑

n=0

ynφn(x, t) (2.7)

Where φn(x, t) = ∂nφ
∂yn

at y= 0. Substituting this in the Laplace’s equation (2.1) the

following recurrence relation is obtained

∂2φn

∂x2
= −(n + 2)(n+ 1)φn+2 (2.8)

Using penetration condition (2.6) we can arrive at φ1(x, t) = C(x, t) and using this in the

recurrence relation (2.8) the expression for φ(x, y, t) is obtained as -

φ(x, y, t) =

∞∑

m=0

(−1)m

(2m)!
F2my

2m +

∞∑

m=0

(−1)m

(2m+ 1)!
C2my

2m+1 (2.9)

where F = φ0(x, t) and the subscript -(2m) in C and F denotes 2m-th order derivative

w.r.to x. The horizontal and vertical components of the fluid velocity at the free surface
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are determined as,

Vh = yCx −
1

3!
Cxxxy

3 + f − 1

2!
y2fxx + h.o.t (2.10)

Vv = C − 1

2!
Cxxy

2 − yfx +
1

3!
y3fxxx + h.o.t (2.11)

where x in the subscript denotes partial derivative with respect to x, f = ∂F
∂x

and h.o.t

denotes higher order terms in y. The different dimensional variables that have made their

appearance in the problem will be made dimensionless by incorporating the following

scaling of variables so that small parameters ǫ, δ creep into the equations and smaller

terms can be neglected in comparison to them.

2.1 Scaling of variables

All the dependent and independent variables occurring in the above equations are

scaled in the following way by taking account of the smallness parameters ǫ, δ

x⇒ lx′, η ⇒ aη′, t⇒ l√
gh
t′, Vh ⇒ ǫ

√
ghV ′

h, Vv ⇒ ǫδ
√
ghV ′

v ,

f ⇒ ǫ
√
ghf ′, y ⇒ h(1 + ǫη′), C ⇒ ǫδ

√
ghC ′,

where the variables in prime are dimensionless and henceforth all terms ⋍ ǫδ2 will be

neglected by considering them to be small compared to terms of the order of ǫ or δ2. Using

this scaling in equations (2.10), (2.11) dimensionless velocity components are obtained as-

V ′
h = δ2C ′

x′ + f ′ − 1

2
δ2f ′

x′x′ (2.12)

V ′
v = C ′ − 1

2
δ2C ′

x′x′ − (1 + ǫη′)f ′
x′ +

1

6
δ2f ′

x′x′x′ (2.13)
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Hence from the two nonlinear boundary conditions (2.5), (2.3) we get

η′t′ + f ′
x′ + ǫf ′ηx′ + ǫη′f ′

x′ − 1

6
δ2f ′

x′x′x′ = C ′ − 1

2
δ2C ′

x′x′ (2.14)

η′x′ + f ′
t′ + ǫf ′f ′

x′ − 1

2
δ2f ′

x′x′t′ = −δ2C ′
x′t′ (2.15)

For notational convenience the prime symbol will be omitted in all the variables in the

subsequent analysis, remembering however that all variables correspond to rescaled quan-

tities. These are the equations related to the displacement of the free surface wave η,

function related to velocity potential f and the leakage velocity C.

In order to formulate the problem in a more general way C(x, t) is considered to have

different forms. In the next section, C is considered to be a constant i.e., leakage velocity

of water at the bottom is constant throughout its motion.

2.2.1 C is pure constant

Considering C to be constant, equations (2.14), (2.15) can be written as

ηt + fx + ǫfηx + ǫηfx −
1

6
δ2fxxx = C (2.16)

ηx + ft + ǫffx −
1

2
δ2fxxt = 0 (2.17)

Expanding f in a series of small parameters as

f = f (0) + ǫf (1) + δ2f (2) + h.o.t (2.18)

and neglecting higher order terms in ǫ or δ2, equations (2.16), (2.17) converge to -

ηt + f (0)
x + ǫ(f (1)

x + ηf (0)
x + ηxf

(0)) + δ2(f (2)
x − 1

6
f (0)
xxx) = C (2.19)
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ηx + f
(0)
t + ǫ(f

(1)
t + f (0)f (0)

x ) + δ2(f
(2)
t − 1

2
f
(0)
xxt) = 0 (2.20)

In order that equations (2.19), (2.20) are self-consistent as evolution equations for a one-

dimensional wave propagating along the positive x-axis, the following choice is made:

f (0) = η − Ct+O(ǫδ2) (2.21)

where O(ǫδ2) denote terms ∼ ǫδ2. Thus from equations (2.19), (2.20), we get,

η̃t + η̃x + ǫ(f (1)
x + 2η̃η̃x + η̃xCt) + δ2(f (2)

x − 1

6
η̃xxx) = 0 (2.22)

η̃t + η̃x + ǫ(f
(1)
t + η̃η̃x) + δ2(f

(2)
t − 1

2
η̃xxt) = 0 (2.23)

where η̃ = η − Ct.

Let f (1), f (2) be functions of η̃ and its spatial derivatives. This leads to f
(1)
t = −η̃xf (1)

η̃ +

f
(1)
η̃ O(ǫ, δ2). where O(ǫ, δ2) is the term proportional to ǫ or δ2. Since terms of the order

of ǫδ2 are being neglected in the present work, the following relations are obtained

f
(1)
t ≈ −η̃xf (1)

η̃ = −f (1)
x

f
(2)
t ≈ −η̃xf (2)

η̃ = −f (2)
x

η̃xxt ≈ −η̃xxx

Using these results in equations (2.22) and (2.23), the condition for compatibility of

these two equations leads to

f (1)
x = −1

2
η̃x(η̃ + Ct) (2.24)

f (2)
x =

1

3
η̃xxx (2.25)
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These results when substituted into any of the equations (2.22), (2.23), the following

single evolution equation is obtained as

η̃t + η̃x + ǫ(
3

2
η̃η̃x +

1

2
η̃xCt) + δ2(

1

6
η̃xxx) = 0 (2.26)

Equation (2.26) can be converted to a forced KdV equation with a constant forcing

term by redefining the dependent variable as η̄ = 3η + Ct.

Equation (2.26) is similar to KdV equation except for the 4-th term which comes from

the leakage. A suitable transformation into a moving frame can remove this term so that

the standard form of KdV equation is recovered. We use,

X = x− t− bt2, T = t

where b is a constant denoting the acceleration of the frame. In the new frame (X, T ),

equation (2.26) will look like

η̃T + ǫ(
3

2
η̃η̃X +

1

2
η̃XCT ) + δ2(

1

6
η̃XXX)− 2bT η̃X = 0 (2.27)

Choosing b = ǫC
4

and defining new variables u = (3ǫ/2δ2)η̃, T ′ = (δ2/6)T the following

standard form of KdV equation is obtained which is in the accelerated frame.

uT ′ + 6uuX + uXXX = 0 (2.28)

Nature of the solution

The well known one-Soliton solution of equation (2.28) is given by

u(X, T ′) =
β

2
Sech2[

√
β

2
(X − βT ′)] (2.29)
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where β is a constant. Back boosting the solution to the rest frame we get

u(x, t) =
β

2
Sech2[

√
β

2
(x− t{(1 + βδ2

6
)− ǫ | C |

4
t})] (2.30)

where | C | is the absolute value of C. The argument of u(x, t) contains linear and

quadratic terms in t and the term inside the second bracket behaves like the velocity of

the wave.

When t starts increasing from a very small value, the term inside the second paren-

theses decreases i.e. the wave retards.

At a critical time given by

t = tc =
4(1 + βδ2

6
)

ǫ | C | ,

the second bracketed term vanishes and the wave stops. After tc, the wave propagates

in the negative x-axis with increasing speed. Since the wave moving in positive x axis

is only of concern to us, this oppositely moving wave can be neglected in a practical

situation. Since ǫ is a small parameter, hence tc is large for small values of fluid leakage.

For large leakage velocity, tc become small causing reflection of wave at earlier time. A x-t

plot of the solution (2.30) is shown in Figure 1.2 indicating that the wave gets reflected

at time at tc and then moves in opposite direction.

Expressing the surface wave in old profile η as η̃ = η − Ct we see that a background

part −|C|t develops behind the wave. This will cause the while wave profile, η, to decrease

with time. But since we are concerned on the effect of controlled leakage on the solitary

wave, this background part doesn’t produce interesting result. The solitary wave would

be affected only in phase, not in amplitude.

2.2.2 C is function of t only

In the previous section solitary wave solution has been obtained by considering a constant

leakage velocity. The problem is now generalized by assuming C to be function of t only.
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Figure 2.2: x−t plot of the solution (2.30) with β = 1, | C |= 40000, δ = 0.01, ǫ = 0.0001.
x and t are plotted in the 2 horizontal axes and u(x, t) is plotted in the vertical axis.

From equations (2.14), (2.15)

ηt + fx + ǫfηx + ǫηfx −
1

6
δ2fxxx = C(t) (2.31)

ηx + ft + ǫffx −
1

2
δ2fxxt = 0 (2.32)

Carrying out series expansion for f as in equation (2.18) and neglecting higher order terms

in ǫ or δ2 the following equations are obtained from equations (2.31) and (2.32)

ηt + f (0)
x + ǫ(f (1)

x + ηf (0)
x + ηxf

(0)) + δ2(f (2)
x − 1

6
f (0)
xxx) = C(t) (2.33)

ηx + f
(0)
t + ǫ(f

(1)
t + f (0)f (0)

x ) + δ2(f
(2)
t − 1

2
f
(0)
xxt) = 0 (2.34)

In order to make equations (2.33) and (2.34) self-consistent, the following choice is made

f (0) = η −
∫
C(t)dt+O(ǫδ2) (2.35)

Thus from equation (2.33), (2.34) the following equations are obtained -

η̃t + η̃x + ǫ(f (1)
x + 2η̃η̃x + η̃xB(t)) + δ2(f (2)

x − 1

6
η̃xxx) = 0 (2.36)
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η̃t + η̃x + ǫ(f
(1)
t + η̃η̃x) + δ2(f

(2)
t − 1

2
η̃xxt) = 0 (2.37)

where η̃ = η − B(t) where B(t) =
∫
C(t)dt.

Considering f (1), f (2) to be functions of η̃ and its spatial derivatives, f
(1)
t = −η̃xf (1)

η̃ +

f
(1)
η̃ O(ǫ, δ2). Since terms of the order of ǫδ2 are neglected, the following relations are

obtained

f
(1)
t ≈ −η̃xf (1)

η̃ = −f (1)
x

f
(2)
t ≈ −η̃xf (2)

η̃ = −f (2)
x

η̃xxt ≈ −η̃xxx

Using these results in any of the equations (2.36) and (2.37) together with the com-

patibility condition leads to the following single equation

η̃t + η̃x + ǫ(
3

2
η̃η̃x +

1

2
η̃xB(t)) + δ2(

1

6
η̃xxx) = 0 (2.38)

Equation (2.38) can be cast in the form of a forced KdV equation by redefining a new

variable as given in the previous subsection with a time dependent forcing term. An

analytical treatment of the influence of the time dependent random external noise on

the propagation of nonlinear waves has been carried out by Orlowski[38] by considering

a forced KdV equation. Considering the Gaussian character of the noise, the nature

of deformation of the stationary solution of KdV-Burgers equation was studied[39]-[40].

during its propagation in randomly excited media.

In order to arrive at a standard form of the KdV equation from equation(2.38) a

transformation to a moving frame given by

X = x− t− a(t), T = t (2.39)
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is carried out, where a(t) is a function dependent on t. This leads to

η̃T +
3ǫ

2
η̃η̃X +

δ2

6
η̃XXX + (

ǫB(t)

2
− ∂a

∂t
)η̃X = 0 (2.40)

With the choice ∂a/∂t = ǫB(t)/2, and defining u = (3ǫ/2δ2)η̃, T ′ = (δ2/6)T , we get the

standard form of KdV equation in the moving frame

uT ′ + 6uuX + uXXX = 0 (2.41)

Nature of the Solution

One-Soliton solution of equation (2.41) is of the standard form

u(X, T ′) =
α

2
Sech2[

√
α

2
(X − αT ′)] (2.42)

where α is a constant. Transforming this solution to the rest frame

u(x, t) =
α

2
Sech2[

√
α

2
(x− (1 +

αδ2

6
)t− ǫ

2

∫
B(t)dt)] (2.43)

It should be noted that when C is constant then the integral term inside the argument of

u(x, t) is ǫCabst
2

4
which is consistent with the solution of the previous case.

The functional form of B(t) controls the motion of the solution (2.43). For different

choices of the function B(t) the 3D x-t plot of the solution will have different shapes. If

the leakage velocity is dependent on the fluid velocity such that when a large upsurge of

water arrives in a region, large leakage occurs and when t −→ ±∞ the leakage goes to

zero i.e. leakage is localized in time. As an example we can choose the functional form of

C as, C(t) = b0/(b1 + b2t
2), where b0, b1,b2 are constants , which is localized in time. The

corresponding 3D plot of the solution is given as Figure (1.3). The solution gets curved

due to the presence of nonlinear function of t.
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Here also a background part will be developed behind the soliton which doesn’t pro-

duce interesting results as described earlier.

Figure 2.3: x−t plot of the solution (2.43) with α = 1, δ = 0.01, ǫ = 0.0001, b0 = −20000,
b1 = 1,b2 = 1. x and t are plotted in the 2 horizontal axes and u(x, t) is plotted in the
vertical axis.

2.3 C is a function of x only

The next case of interest deals with the situation where the leakage velocity is dependent

on spatial coordinate only.

From equations (2.14), (2.15) we obtain

ηt + fx + ǫfηx + ǫηfx −
1

6
δ2fxxx = C − 1

2
δ2Cxx (2.44)

ηx + ft + ǫffx −
1

2
δ2fxxt = 0 (2.45)

The function f is expanded in a perturbation series as in earlier sections and the

following choice is made for f (0),

f (0)(x, t) = η(x, t) +B(x) +O(ǫδ2) (2.46)

where B(x) =
∫
C(x)dx.
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The compatibility of the 2 equations (2.44) and (2.45) leads to,

f (1)
x = −1

2
(ηxη −BC) (2.47)

f (2)
x =

1

3
(ηxxx)−

1

6
Cxx (2.48)

Substituting these values of f
(1)
x , f

(2)
x in any of the equations (2.44) and (2.45) leads

to a single evolution equation

η̄t + η̄x + ǫ
3

2
η̄η̄x +

δ2

6
η̄xxx =

2

3
Bx +

ǫ

6
BBx −

δ2

18
Bxxx (2.49)

where η̄ = η + 2
3
B and the equation(2.49) has the form of a forced KdV equation.

Nature of the Solution

For the case when the vertical fluid velocity at the bottom is a function of spatial coor-

dinate only, the nonlinear equation for water wave propagation given by equation (2.49)

is obtained as an inhomogeneous KdV equation. The right hand side of eq. (2.49) has

a space KdV like form with the time coordinate replaced by the spatial coordinate (here

x). The mathematical elegance of this equation enables one to obtain its solitary wave

solutions in a simple manner considering the following two different cases:

Case (a)

A very simple situation occurs if the right hand side of the equation (2.49) is taken

to be zero. Using the scaling (X = x/δ, B′ = ǫB), the inhomogeneous part of equation

(2.49) reduces to the following:

12B′
X + 3B′B′

X −B′
XXX = 0 (2.50)
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A one-soliton like solution of this space KdV equation is obtained as

B′(X) = (−12)sech2[
√
3(X −X0] (2.51)

and the corresponding leakage velocity is given by

C ′(X) =
∂B′

∂X
= (24

√
3)sech2[

√
3(X −X0)]tanh[

√
3(X −X0)] (2.52)

This leads to the conclusion that if B′ has the functional form that satisfies (2.50),

then the evolution equation for the waves would be the standard KdV equation. Hence

its solitary wave solution will also be given by the standard KdV solitary wave solution

moving with constant velocity. Thus for those functional forms of B′ and the corre-

sponding leakage velocity, the solitary wave solution will be practically unaffected by the

leakage. The background wave generated behind the soliton will be unimportant since

the controlled leakage doesn’t affect the solitary wave. Since the solution of this case is

the solution of standard KdV, it is not being shown explicitly. The leakage velocity given

in equation (2.52) is plotted as Figure 1.4.
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Figure 2.4: Leakage velocity profile for X0 = 0 when B′ satisfies (2.50)

Case (b):

An interesting analytic solution of the equation (2.49) arises if the leakage velocity

function has a preassigned form. Considering the leakage velocity to be localized in
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space, (that is often consistent with certain physical condition), the following relevant

form of B(x) is chosen

B(x) = m tanh(nx), (2.53)

where m and n are two external small parameters dependent on the leakage profile.

Since m,n are small parameters, in the following calculation terms upto ∼ mn will

be retained and terms beyond this order are neglected. Hence second and third terms in

r.h.s of the equation (2.49) will produce higher order terms in m,n and hence these are

neglected.

Transforming to a new variable u = η̄ − 2Bxt/3, the following equation is obtained

from equation (2.49)

ut + ux + ǫ
3

2
uux +

δ2

6
uxxx + ǫBxuxt = 0 (2.54)

Further, a transformation to a moving frame given by

X = x− ǫBx

2
t2 − t, T = t

is carried out to obtain

uT + (ǫ
3

2
)uuX + (

δ2

6
)uXXX = 0 (2.55)

The above equation is finally cast in the standard form of a KdV equation by defining

the following variables U = (3ǫ/2δ2)u, T ′ = ( δ
2

6
)T

UT ′ + 6UUX + UXXX = 0 (2.56)
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The corresponding solitary wave solution in the rest frame is given by

U(x, t) =
γ

2
Sech2[

√
γ

2
(x− ǫBx

2
t2 − t(1 +

γδ2

6
)]

=
γ

2
Sech2[

√
γ

2
(x− ǫmnSech2(nx)

2
t2 − t(1 +

γδ2

6
)], (2.57)

where γ is a constant. The critical time tc at which the velocity of the wave becomes zero

is also a function of x. The 3D plot of the solution is shown in Figure (5). Since our main

interest lies on the effect of the controlled leakage on solitary wave, the background part

which develops behind the solitary wave doesn’t produce interest. The solitary wave gets

affected only in phase by the leakage, whereas its amplitude remains unaffected.

Figure 2.5: x− t plot of the solution (2.57) with m = −0.1, n = 0.1, γ = 1

2.4 When C is function of both x and t

Finally the problem will be treated in the most general manner by treating the leakage

velocity C as a function of both x and t. The mathematical analysis is carried out in the

following way. As in all the earlier cases f is expanded as

f = f (0) + ǫf (1) + δ2f (2) + h.o.t, (2.58)
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where f (i)’s are functions of η and its spatial derivatives. In the present case, the leakage

velocity C(x, t) is also expanded in a series of small parameters in the following way

C(x, t) = ǫC1(x, t) + δ2C2(x, t) + h.o.t (2.59)

Carrying out the same kind of mathematical analysis as in the earlier cases the fol-

lowing two equations are obtained from equations (2.14) and (2.15)

ηt + f (0)
x + ǫ(f (1)

x + ηf (0)
x + ηxf

(0) − C1) + δ2(f (2)
x − 1

6
f (0)
xxx − C2) = 0 (2.60)

ηx + f
(0)
t + ǫ(f

(1)
t + f (0)f (0)

x ) + δ2(f
(2)
t − 1

2
f
(0)
xxt) = 0 (2.61)

In order to make equations (2.60), (2.61) self-consistent as evolution equation for a 1d

wave propagating to the right, the following transformation is carried out

f (0)(x, t) = η(x, t) + h.o.t (2.62)

Since terms of the order of ǫδ2 are neglected, the following relations are obtained

f
(1)
t ≈ −ηxf (1)

η = −f (1)
x

,

f
(2)
t ≈ −ηxf (2)

η = −f (2)
x

ηxxt ≈ −ηxxx

From the compatibility of the two equations (2.60) and (2.61) we get,

f (1)
x =

1

2
(C1 − ηxη)

f (2)
x =

1

3
(ηxxx) +

1

2
C2 (2.63)
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Finally, a single evolution equation is obtained utilizing these functional forms of

f
(1)
x , f

(2)
x in any of the equations (2.60), (2.61) as:

ηt + ηx + (ǫ
3

2
)ηηx + (

δ2

6
)ηxxx =

1

2
(ǫC1 + δ2C2) (2.64)

For the sake of mathematical simplicity the condition C2(x, t) = 0 is assumed. Since

ǫ ≈ δ2, it does not break the generality of the problem. Using Galilean transformation

ξ = x− t and τ = (δ2/6)t and defining the variable u(ξ, τ) = ( 3ǫ
2δ2

)η(ξ, τ), the final form

of the evolution equation is obtained as,

uτ + 6uuξ + uξξξ =
9

2
C1(ξ, τ) (2.65)

The above equation has the form of a forced kdV equation.

2.5.1 Nature of Solutions

For the sake of notational simplicity equation (3.17) is expressed in variables (x, t) as

ut + 6uux + uxxx =
9

2
C1(x, t) (2.66)

In order to obtain a solitary wave solution of the forced KdV equation, the bilinearization

technique[47] is used.

Assuming

9

2
C1(x, t) =

∂D(x, t)

∂x
(2.67)

and using the bilinear transformation

u = 2
∂2

∂x2
[ln(F )], D =

G

F

48



equation(2.66) transforms to the following bilinear equation

FFxt − FxFt + FFxxxx + 3F 2
xx − 4FxFxxx = GF (2.68)

In order to obtain similar solitary wave solutions in this case also the following choice

for the functions G and F have to be made,

G = h(t)Sech[x− vt− p(t)] (2.69)

F = h1(t)(exp[x− vt− q(t)] + exp[−x+ vt+ q(t)]), (2.70)

where h(t), h1(t), p(t) and q(t) are all arbitrary functions of time. Substituting the ex-

pressions for F and G in equation (2.68) leads to

p(t) = q(t), h1(t) = − h(t)

2(−4 + v + ∂p
∂t
)

(2.71)

Thus, the analytic solution of the forced KdV equation (2.66) is obtained as

u = 2(Sech[x− vt− p(t)])2 (2.72)

with the forcing term D given by

D(x, t) = −(−4 + v +
∂q

∂t
)(Sech[x− vt− p(t)])2 (2.73)

Hence the leakage velocity C1(x, t) is obtained in the form

C1(x, t) = −2(−4 + v +
∂p

∂t
)(Sech[x− vt− p(t)])2 tanh[x− vt− p(t)] (2.74)

Since there is an arbitrary function p(t) in the leakage velocity, as well as in the solution,
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one can observe different types of waves excited by different forcing sources, i.e. different

functional forms of p(t). Here also the amplitude of the wave solution remains constant.

Figure 2.6: x− t plot of the solution (2.72) for q(t) = Sech(10t), v = 1

2.5 Summary

The problem of shallow water, unidirectional, weakly nonlinear, surface wave propagation

in a water channel is considered (in a way distinct from existing literature) by incorporat-

ing water leakage at the bottom in the form of a non-trivial penetration condition. The

controlled feedback leakage is also considered to be a function independent of the surface

wave profile η. When the vertical fluid velocity at the bottom is constant then it is shown

that the evolution equation is given by a forced KdV equation with a constant forcing

term. The solitary wave solutions of such equation will contain a constant retardation

term in the argument of the function, while the amplitude will remain constant. When

the leakage is a function of time, a time dependent retardation appears in the argument of

the solution while the amplitude still remains constant. When the leakage velocity is only

space dependent, two different kinds of solitary wave solutions are obtained analytically.

For those functional forms of B(x), satisfying the stated space KdV like equation, the so-

lution will remain unaffected by the leakage and becomes identical to the standard KdV

soliton with constant velocity. When the leakage velocity is a slowly varying function
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localized in space a soliton solution with constant amplitude is obtained under certain

approximation related to the slowness of variation of the leakage velocity profile. When

the vertical fluid velocity at the bed is assumed to be function of both space and time,

the bilinearization technique has been employed to obtain the solutions to the evolution

equation. The technique yields a solitary wave solution with a constant amplitude and

an arbitrary function of time appearing in the argument of the solution as well as in the

argument of the leakage velocity profile. The nature of the solution can be modulated by

choosing different forms of this arbitrary function.

But the main problem in the results we obtained is that the amplitude of the solitary

wave solution remains constant whereas its phase gets modified by the feedback leakage

at the bottom which is independent of the surface wave profile. Hence the effect of the

leakage on the surface solitary wave amplitude is not observed. Again we have considered

here the nonlinear wave propagation at the constant water depth which is also an idealistic

assumption. In real situation, the bottom topography varies with distance causing the

amplitude of the solitary wave to change with propagation. These conditions will be

considered in the next chapter and the control of solitary wave amplitude with the bottom

leakage in a shallow water channel of variable bottom will also be discussed in detail.
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Chapter 3

Control of nonlinear surging waves

through bottom boundary conditions

3.1 Introduction:

In the previous chapter, we have studied the effect of controlled leakage at the bottom

which is independent of the surface wave profile on the surface solitary wave. Analytical

solitary wave solutions showed that the phase of the solitary wave gets modified controlled

by the feedback bottom leakage whereas its amplitude remains constant. Also we have

considered the propagation of solitary wave in shallow water of constant depth which

is also an idealistic approximation. In real situation the bottom topography varies and

the near shore waves show surging nature due to the decreasing bathymetry. In certain

conditions such surging waves show destructive nature at the shore like tsunami waves,

bore waves [5].

In a relatively smaller scale, the near shore waves and bore waves caused many devas-

tating effects to the coastal habitats and in-land rivers throughout the century . There-

fore along with the traditional warning systems, it is desirable to find ways and means

geared towards possible invasive procedures for taming of such hazardous wave phenom-
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ena. There are few suggestions for effective interventions, like plantation of Mangrove

treas along the coastal lines [12], installation of breakwaters at strategic positions [13]-

[16], stoppage of erosion by concrete bolders . However, these are mostly indirect ways to

counter the surging waves, while we lack the proposals for directly attacking the problem,

perhaps with the exception of the proposed bubble method, aiming to stop the incoming

waves by a stream of fast and strong counter-waves, mixed with air bubbles [17]. Though

the last method was proposed more than fifty years back, its feasibility and effectiveness

has not been established yet. The attenuation of incident water waves by a curved vane

like structure positioned beneath or at the surface of a body of water is described in a

Patent [18] where the detailed design of the structure is given. An attempt was made to

reduce the devastating effects of a tsunami waves by single and double submerged barrier

was done in Tel Aviv University[19]. They performed their experiments in a basin 5 m

in length and 10.5 cm in depth. The wavelength of the generated wave was about 3 m,

which allows referring to it as a tsunami.

Our aim here is to put forward an innovative proposal based on a theoretical study

on the effect of sudden feedback boundary control at the bottom on the surging surface

wave amplitude, governed by nonlinear equations describing unidirectional gravitational

waves, derived from the basic hydrodynamic equations at the shallow water regime. The

key factor responsible for surging of the approaching nonlinear waves to the shore (or in

upstream rivers ) is the decreasing depth bathymetry which triggers the amplitude surge

of the surface waves.

Our strategy is similar as that of the previous chapter. The main aim is to study first

the effect of the bottom boundary condition on the nonlinear solitary surface waves of

the well-known perturbed KdV equation propagating in shallow water of constant depth.

The vertical fluid velocity at the bottom is taken as a function of surface wave profile to

identify subsequently through theoretical analysis, the linear dependence as the optimal

case inducing maximum amplitude damping to the surface waves. This knowledge is
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applied through slowly varying bathymetry which without the leakage condition, as we

know would result to solitary wave solution with increasing amplitude with the water

depth decreasing along its propagation. However when the controlled bottom leakage

with optimal feedback wave profile is imposed, the surging amplitude of the wave meets

the counter damping effect, resulting to a managed propagating waves towards the shore

with reduced hazardous effect due to the effective damping of the wave. We would like to

emphasize that there could be various natural bottom boundary effects inducing damping

of the surface wave amplitudes, like porosity [42]- [45], irregularities, uneven heights,

periodic topography [53], friction [52] apart from the fluid viscosity[51] etc. while the

long obstacle can induce fission of the solitary waves[52]. However our aim here is to

induce damping effect artificially through controlled mechanism.

The privilege of our theoretical result is the exact nature of the solutions we obtain, in

spite of the variable depth bathymetry, which is rather a rare achievement. Our theoretical

results with exact solutions allows to extract finer details and precise predictions. Our

findings are extended to cover different cases of the controlled bottom leakage conditions,

ranging from space dependent to time dependent, from vanishing of effective leakage

velocity to a desirable leakage conditions etc. Our theoretical findings for the possible

control of the surging waves like tsunamis and bore waves based on our exact results are

applied next to real sea shore bathymety. We have focused in particular two high risk

coastal zones of bay of Bengal near the city of Chennai in south India as presented in the

recent in depth study of the subject [58].

Our analysis shows that a significant upsurge could have been experienced by a future

tsunami wave approaching towards these coastal points. For example at the identified

northern coastal point (N 13◦ 10.5′ - E 80◦ 18.75′) a wave of nearby 1 meters built at

a distance of 10.5 km from the shore would have been developed to a killing height of

30 meter at the shore without any control. Similarly at a southern point (N 13◦ 0′ - E

80◦ 16.2′) the bathymetry would induces equally devastating upsurge for a wave of 1 m
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created at a distance of 11.1 Km away, to develop into a 30 meter killer wave at the shore.

Applications of feedback controlled method through bottom boundary condition, that we

propose here is found to be able to regulate such upsurging waves to a considerable extent,

minimizing its hazardous effects. In particular, the surging waves at the northern point

could be regulated at the height of 1.23 meters if the leakage installation could be made

starting from a distance of 900 meters from the shore. A smaller distance could result

to a higher amplitude though significantly lesser than that without control. Similarly

the surging waves at the southern coast could be controlled to a wave amplitude of 0.4

meter, if the installation starts at a distance of 900 meters. Thus the hazardous effects

of tsunami like surging waves could possibly be neutralized to some extent through a

controlled bottom leakage condition tuned by a linearly dependent wave profile, created

through a feedback mechanism.

3.2 Effect of feedback bottom boundary condition

on nonlinear surface wave in constant depth

Figure 3.1: Solitary wave in shallow water of constant depth with leakage at the bottom

The purpose of this section is to study the effect of bottom BC with controlled leakage,

designed with a feedback from the surface wave,where the leakage function would depend
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on the wave profile and its spatial derivatives. As is well known that, the nonlinear

free surface gravity waves propagating in a shallow water in constant depth with the

traditional hard bed boundary condition in the form of solitary waves retain their constant

amplitude profile with a high degree of stability [4, 41]. However, when the boundary

condition is changed to a leakage function dependent on the wave profile itself, as we find

here, the solitary wave propagating on the surface suffer an amplitude damping along

its propagation. Different forms of the leakage velocity function at the bottom induce

different types of damping. Such a controlled leakage at the bottom may be arranged

using a functional feedback from the profile of the wave appearing on the surface over

that location and at that instant of time. Our motivation for this study is to analyze

different damping effects corresponding to different leakage functions and identify the

case when the damping would be maximum, which is the most desirable feature in the

present context.

In the following subsections we derive the corresponding free surface wave equation

and investigate the nature of the solitary wave solution with damping caused by different

cases of the bottom leakage condition.

3.2.1 Surface wave evolution equation with leakage boundary

condition

We consider here the shallow water nonlinear surface-gravity wave , propagating along the

positive x-direction in a constant water depth with the viscosity and the surface tension

of the fluid, which is assumed to be incompressible, are neglected in what follows, We

start from the dimensionless basic hydrodynamic equations [4]:

ut + ǫ(uux + wuz) = −px, δ2[wt + ǫ(uwx + wwz)] = −pz , (3.1)
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along the x and the z axis, respectively, which are reducible from the Euler equation in

the present case.

Here u, w, p, η are horizontal and vertical fluid velocity components, pressure and the

surface wave profile, respectively, with the subscripts denoting partial derivatives. ǫ is the

amplitude parameter defined by ǫ = a
h
and δ = h

l
is the shallowness parameter, expressed

through the maximum amplitude a, the water depth h and the wavelength l (see FIG

3.1). ǫ and δ are natural parameters supposed to be small, which is consistent with the

long wave and the shallow water limit. The continuity equation of the fluid yields

ux + wz = 0. (3.2)

Nonlinear variable boundary conditions, valid at the free boundary z = 1 + ǫη, on the

other hand, gives

p = η, w = ηt + ǫuηx, (3.3)

while we take the boundary condition for the vertical component of the water velocity at

the bottom: z = 0 as

w = −ǫα̃G(η, ηx, ....), (3.4)

where G(η, ηx, ....) is assumed, in general, to be an arbitrary function of η and its spatial

derivatives and α′ is a positive constant with ǫ being a small parameter as defined above.

It is important to note here, that usual hard bed scenario with no leakage one would have

w = 0 at the bottom whereas in our choice the nontrivial leakage function G may depend

functionally on the surface wave profile which could be designed through a feedback

route, sensing the surface movement. The leakage is considered here to be in the ǫ order.

Note that the negative sign in equation (3.4) appears because the leakage velocity occurs

along the negative z-direction, i.e, vertically downward. In order to model shallow water

solitary waves, there must be an appropriate balance between nonlinearity and dispersion,
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i.e, δ2 = O(ǫ) as ǫ tends to zero. Thus for any δ, there exists a region in (x, t)− plane

with ǫ tending to zero, where this balance remains valid. This region of our interest may

be defined by a scaling of independent variables as x → δ√
ǫ
x, t → δ√

ǫ
t and w →

√
ǫ
δ
w for

any values of ǫ and δ. The set of equations (3.1-3.4) thus becomes,

ut + ǫ(uux + wuz) = −px, ǫ[wt + ǫ(uwx + wwz)] = −pz, ux + wz = 0, (3.5)

together with the boundary conditions

p = η, w = ηt + ǫuηx, (3.6)

w = −ǫαG(η, ηx, ....). (3.7)

valid at the free surface and at the bottom, respectively, where α = α̃ δ√
ǫ
, with a net

outcome of the transformation is to replace δ2 by ǫ in equations (3.1-3.4). Introducing a

new frame of reference with stretched time ξ = x − t, τ = ǫt, we seek an asymptotic

solution of the system of equations and boundary conditions in the form

q(ξ, τ, z; ǫ) ∼
∞∑

n=0

ǫnqn(ξ, τ, z), η(ξ, τ ; ǫ) ∼
∞∑

n=0

ǫnηn(ξ, τ), (3.8)

where q (and related qn) represents each of the functions u, w and p for the corresponding

expansion.

Now to deduce the final evolution equation from the set of complicated nonlinear

equations (3.5-3.7) involving several variables, we have to make the asymptotic multi-

scale expansions as explained above. We carry out an explicit order by order calculation

to demonstrate the process.
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Result at ǫ0 order

At ǫ0 order the above set of equations (3.5)-(3.7) is reduced respectively to the following

set

u0ξ = p0ξ, p0z = 0, u0ξ + w0z = 0 (3.9)

p0 = η0, w0 = −η0ξ, (3.10)

w0 = 0, (3.11)

with equation (3.10) valid at z = 1 and (3.11) at z = 0. These equations lead to the

solutions expressed through η0 as p0 = η0, u0 = η0, w0 = −zη0ξ, with the appearance of

η caused only by the passage of the wave has been imposed, i.e, u0 = 0, whenever η0 = 0.

Result at ǫ order

In this order of approximation, two free boundary conditions at z = 1 + ǫη are evalu-

ated by performing Taylor expansions of the functions u, w, p around the point z = 1.

Consequently the following set of equations are obtained from (3.5)-(3.7):

− u1ξ + u0τ + u0u0ξ + w0u0z = −p1ξ, p1z = w0ξ, u1ξ + w1z = 0 (3.12)

with the boundary conditions:

p1 + η0p0z = η1, w1 + η0w0z = −η1ξ + η0τ + u0η0ξ, (3.13)
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valid at z = 1. We also get from the BC at the bottom: z = 0, the relation

w1 = −αG0(η0, η0ξ, ...) (3.14)

where G0 is the contribution of the leakage function at ǫ0 order. Using the above result,

w1 can be expressed now as

w1 = −(η1ξ + η0τ + η0η0ξ +
1

2
η0ξξξ)z +

1

6
z3η0ξξξ − αG0, (3.15)

giving thus all other functions expressed through the fields η0 and η1 only, in this order

of approximation. Finally eliminating η1 we obtain the free surface wave equation as

2η0τ +
1

3
η0ξξξ + 3η0η0ξ + αG0 = 0, (3.16)

with an additional term due to the wave profile dependent bottom leakage function ap-

pearing in the well known integrable KdV equation, which however spoils the integrability

of the system, in general. With a scaling of the variables as U = 9η0, T = τ/6 equation

(7.35) takes a normalized form

UT + UUξ + Uξξξ + βG0 = 0, (3.17)

where α is scaled to β and G0(U, Uξ, ..) is an arbitrary smooth function, originating from

the wave profile dependent leakage velocity. It is fascinating to note, that the condition,

we impose for the fluid velocity at the bottom through a boundary condition with wave

profile dependence makes it way to the nonlinear evolution equation at the surface.

Notice that equation (3.17) is an extension of the KdV equations with arbitrary higher

nonlinearity, which in general represents a non integrable system. However an approxi-

mate method due to Bogoliubov and Mitropolsky [55, 50, 51] could be applied here for
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extracting analytic solutions for the wave equation (3.17) ,in general, in an implicit form.

For explicit analytic solution, one needs to make suitable choices for function G0. We focus

below on some of such choices with lower order nonlinearities, e.g. G0 = U, U2, U3, U2
ξ

though this set, in principle, can be extended further. We do not put emphasis on the

physical meaning for the individual forms of the leakage function, since our main motiva-

tion is to compare theoretically the result of the corresponding wave solutions, to identify

the case that would induce maximum damping of the wave amplitude. It is intriguing to

note, that similar equations for some of the cases considered by us were obtained earlier

[51, 52], though in completely different physical set-ups.

In order that this approximation scheme to be consistent with the condition for the

validity of (3.17), it is required that the leakage coefficient β should be a small parameter

of order higher than ǫ as 1 ≫ β ≫ ǫ.

Introducing a phase coordinate φ(ξ, T, β) =
√

N(T,β)
12

(ξ− 1
3

∫ T

0
N(T, β)dT ), through

a time-dependent function N(T, β), assumed to vary slowly with time, with two different

time scales t0 = T, t1 = βT, we seek a solution of the wave equation following [55]. By

expanding U(φ, β, T ) in small parameter β as

U(φ, β, T ) = U0(φ, t0, t1) + βU1(φ, t0) +O(β2), (3.18)

valid for long times( as large as T ∼ O(1/β)), we obtain using (3.17) an equation con-

taining different powers of β. Equating coefficients of the same powers of β, equations at

different orders are derived, which need to be solved at each order.

3.2.2 Case G0 = U

We explore this case with some details for demonstrating the applicability of the Bogoli-

ubov method for solving perturbed KdV equation and for identifying the quantitative

trend in the influence of the bottom leakage G0 on the amplitude of the surface waves.
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Note that the equation obtained in this case mathematically coincides with the dissipation

induced evolution considered in the context of ion-sound waves damped by ion-neutral

collisions [51].

Integrating equation (3.17) for G0 = U , over the whole range of ξ we can solve for

the total wave amplitude I(T ) =
∫∞
−∞ Udξ and the total intensity of the wave P (T ) =

∫∞
−∞ U2dξ to get the explicit expressions as I(T ) = I(0) exp(−βT ) and P (T ) =

P (0) exp(−2βT ), respectively, where U(ξ, T ) and its higher order ξ derivatives are as-

sumed to vanish at infinity. It is also evident from the exponentially decaying nature,

that the wave intensity is not conserved in time, confirming that the integrability of the

perturbed KdV equation (3.17) in this case is lost due to the leakage we have considered

here.

Since estimating the damping of the solitary water waves is the main concern of our

problem, we take the following relations as the required initial and boundary conditions:

U(φ, 0, β) = N0sech
2(φ), U(±∞, T, β) = 0. The lowest order equation takes the form

ρ
∂U0

∂t0
+
∂3U0

∂φ3
− 4

∂U0

∂φ
+

12

N
U0
∂U0

∂φ
= 0, (3.19)

where ρ = 12
√
12

N
√
N

with N(t1) as an arbitrary function of t1, except for the initial condition

N(0) = N0. Solving this equation we obtain

U0(φ, t0, t1) = N(t1)sech
2(φ), (3.20)

while the β order equation takes the form

∂U1

∂t0
+ L[U1] =M [U0], (3.21)
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where,

M [U0] = −∂U0

∂t1
− φ

2N

∂U0

∂φ

dN

dt1
− U0, L[U1] =

1

ρ

∂3U1

∂φ3
− 4

ρ

∂U1

∂φ
+

12

Nρ

∂(U0U1)

∂φ
. (3.22)

The boundary and initial conditions for U1 are U1(±∞, t0) = 0, U1(φ, 0) = 0 and it is

required that U1(φ, t0) should not behave secularly with t0. To eliminate secular behavior

of U1 it is necessary that M [U0] be orthogonal to all solutions g(φ) of L+[g] = 0, where

the function g(φ) should satisfy g(±∞) = 0. Here L+ is the operator adjoint to L given

by,

L+ = −1

ρ

∂3

∂φ3
+

4

ρ

∂

∂φ
− 12

ρ
sech2(φ)

∂

∂φ
. (3.23)

One can show, that the only possible solution of L+[g] = 0, with g(±∞) = 0, is in the

solitonic form g(φ) = sech2(φ).

Thus from the orthogonality requirement we get

∫ ∞

−∞
sech2(φ)M [U0]dφ = 0, (3.24)

which yields a simple first order differential equation for N(t1), the solution of which is

N(t1) = N(0)exp(−4t1
3
), t1 = βT (3.25)

for positive small leakage parameter β at large time T . Therefore we obtain the final

result as

U = N(t1)sech
2φ(ξ, t1) +O(β), φ(ξ, t1) =

√
N(t1)

12
(ξ +

1

4β
N(t1)). (3.26)

The wave solution of equation (3.17) thus obtained for G0 = U , shows that the amplitude

of the solitary wave would decrease with time following (3.25).

Recall that similar dissipative soliton solution was derived earlier in many different
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physical situations [51, 52].

3.2.3 Case G0 = U 2

We take up this case for comparison and find that the same Bogoliubov- Mitropolsky

method discussed above is applicable also in this case with the wave equation taking the

form of a perturbed KdV equation

UT + UUξ + Uξξξ + βU2 = 0. (3.27)

Notice, that equation (3.17) with the choice for our leakage velocity function, coincides

formally with the dissipation due to friction at the bottom (Chezy law) [52], though for

completely different origin.

Using the same approximation technique, details of which we omit, the decay law of

the solitary wave amplitude for equation (3.27) can be derived as

N(T ) =
N(0)

[1 + 16N(0)β
15

T ]
. (3.28)

Observe, that in comparison with the linear choice of the leakage velocity the amplitude

decay with time becomes weaker in this nonlinear case. To confirm this trend,which is

rather anti-intuitive we take up new cases with enhanced nonlinearity and derivatives.

Interestingly, the choice of leakage function as G0 = −Uξξ would lead to very similar

decay law (3.28) and would also coincide formally with the effect of magnetosonic waves

damped by electron collisions [51].
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3.2.4 Case G = U 3

Such a choice of leakage velocity condition with cubic dependence on wave profile would

give rise to the equation

UT + UUξ + Uξξξ + βU3 = 0, (3.29)

representing a new perturbed KdV equation, apparently ignored earlier. The same ap-

proximate treatment leads to the decay law of the solitary wave amplitude of (3.29) as

N =
N(0)√

[1 + 32N(0)2β
35

T ]
, (3.30)

decreasing with time as shown in FIG 3.2. Since here for cubic nonlinearity we get the
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0.4
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N

Figure 3.2: Plot showing the dependence of the soliton amplitude N on t1, for the solution
(3.30) with N(0) = 1. The decaying nature of N(t1) is explicit.

decay rate in inverse square root power as seen from (3.30), we notice again that the same

trend of the weaker decay of the soliton amplitude with higher nonlinear dependence of

the wave profile on the leakage velocity function, continues confirming the anti intuitive

trend noticed above.
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3.2.5 Case G = U 2

ξ

For this choice of the leakage velocity function the perturbed KdV equation reduces to

UT + UUξ + Uξξξ + βU2
ξ = 0, (3.31)

apparently not investigated earlier. Through similar procedure we can derive the damped

solitary wave amplitude of (3.31) as

N =
N(0)√

[1 + 8N(0)2β
45

T ]
, (3.32)

which is graphically represented in FIG 3.3.
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Figure 3.3: The solitonic wave amplitude N(t1) (3.32) as decays with time t1 for N(0) = 1.

Comparing (3.28) with (3.32) we may conclude, that the increase of nonlinearity as well

as derivatives, of the wave profile in the leakage velocity function weakens the decay rate

of the solitonic amplitude. Analyzing the above results for linear and nonlinear choices of

G0, we may conclude that the leakage with the linear dependence on the profile G0 = U

is the optimal one capable of inducing maximum decay rate on the soliton amplitude as

exponential functions, compared to all other cases considered here. Therefore in the next

sections we take up this particular case, being the most desirable one, for controlling the

surging waves in a decreasing depth scenario.
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3.3 Effect of leakage BC on nonlinear shallow water

surface wave in variable depth bathymetry

Figure 3.4: Solitary wave in a shallow water of slowly varying depth with leakage at the
bottom

Propagation of nonlinear shallow water unidirectional waves over variable depth to-

pography has been studied intensively with rich results [4, 52, 5, 53].

It is known that the slowly variable depth in comparison to the evolution scale of

the wave, can lead to the upsurging wave amplitude, for decreasing depth, which occurs

when the wave approaches to the shore. In this section we intend to focus on such a

situation due to its potentially hazardous consequences and look for its possible regulation

through bottom leakage. Since in the previous section we have identified the maximum

damping effect of surface waves for leakage velocity function depending linearly on the

wave profile, we will apply this particular leakage condition to achieve maximal damping

effect. Therefore we take up the problem of nonlinear wave propagation over shallow water

of slowly varying depth, in the framework of KdV equation, together with a nontrivial

leakage condition at the bottom with a leakage function proportional to the surface wave

profile, sensed through a feedback mechanism.

This problem targeted towards controlling the surging waves due to decreasing depth

bathymetry has not received the needed attention.
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3.3.1 Derivation of nonlinear surface wave evolution equation

with slowly variable depth under bottom boundary leak-

age condition

Under this physical situation one has to start with the same basic dimensionless hydro-

dynamic equations considered in the previous section as:

ut + ǫ(uux + wuz) = −px, ǫ[wt + ǫ(uwx + wwz)] = −pz, ux + wz = 0, (3.33)

together with the surface boundary conditions p = η, w = ηt+ ǫuηx valid at z = 1+ ǫη.

However, the effect of variable depth and the leakage condition enter through a more

general boundary condition at the bottom, varying as z = b(x):

w = u
db

dx
− ǫg(ǫx)G(η, ηx, ....). (3.34)

Note that in comparison with the previous case (3.4) together with the variable depth

function an additional leakage function g(ǫx) independent of the wave profile η appears

with G similar to the feedback leakage function as considered in the previous section.

The bathymetry function b is assumed to depend on the small parameter ǫ, such that

b(x) = B(ǫx). As we have identified in previous section, we assume G = η to get the

maximum benefit of damping due to leakage. For detailed investigation we introduce a

new set of variables

ξ =
1

ǫ
χ(X)− t, X = ǫx, (3.35)

where χ(X) will be determined later in equation (3.38). For solving the above set of

equations we would represent the asymptotic solutions as we have used earlier.

We stress again that the hydrodynamic equations involved here are the same as those
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used in the previous section in dealing with the constant depth problem, except the crucial

BC at the bottom.

Result at ǫ0 order

At ǫ0 order, the above equations are reduced to

u0ξ = χ′p0ξ, p0z = 0, χ′u0ξ + w0z = 0, (3.36)

together with the boundary conditions p0 = η0, w0 = −η0ξ, valid at the surface and

w0 = 0, at the variable bottom z = B(X).

Using the above bulk equations and the boundary conditions we obtain

p0 = η0, u0 = χ′η0, w0 = χ′2η0ξ(B − z), χ′2 =
1

D(X)
, (3.37)

where D(X) = 1−B(X) and χ′ is the derivative of χ with respect to X . χ can be solved

explicitly through the bathymetry function for the right moving wave as

χ(X) =

∫ X

0

dX1√
D(X1)

. (3.38)

ǫ order approximation

In next order approximation we obtain the set of equations

− u1ξ + χ′u0u0ξ + w0u0z = −χ′p1ξ − p0X , p1z = w0ξ, χ′u1ξ + u0X + w1z = 0 (3.39)

together with the surface boundary conditions

p1 = η1, w1 + η0w0z = −η1ξ + u0χ
′η0ξ, (3.40)

69



and the condition

w1 = u0B
′(X)− g(X)η0, (3.41)

valid at the variable bottom with B′(X) denoting derivative in X . Our aim is to express

other field variables only through the wave functions η0 and η1 as

p1 = η1 +
1

D
η0ξξ[

1

2
(1− z2) +B(z − 1)] (3.42)

and

w1 = (
B′
√
D

− g)η0 +
(B − z)√

D
η0X + (B − z)(

η0√
D
)X +

(B − z)

D
η1ξ +

(B − z)

D2
η0η0ξ

−η0ξξξ
D2

[B(
z2

2
− z) +

(z − z3

3
)

2
− B3

3
+B2 − B

2
]. (3.43)

Using the above expressions we can finally derive the surface wave evolution equation

2
√
Dη0X +

3

D
η0η0ξ + (

D′

2
√
D

+ g)η0 +
D

3
η0ξξξ = 0. (3.44)

Note that this variable coefficient KdV equation contains explicitly the bathymetry func-

tion D(X) linked to the variable depth as well as the function g(X) related to the leakage

at the bottom. This variable coefficient KdV equation containing the combined effect of

variable depth and the leakage is an important result we have derived here. Different types

of variable coefficient KdV like equations were studied earlier for analyzing the possible

solutions [56, 57].
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3.3.2 Nature of the solitary wave solution

It is evident that in the absence of the leakage (g = 0), our equation (3.44) would reduce

to the KdV equation with variable depth [4, 52, 5]:

2
√
Dη0X +

3

D
η0η0ξ + (

D′

2
√
D
)η0 +

D

3
η0ξξξ = 0. (3.45)

When the depth variation occurs in a scale slower than the evolution scale of the

wave, the solitary wave solution of equation (3.45),as is wellknown, can be expressed as

an approximate solution

η0 =
A0

D
sech2[

√
3A0

4D3
(ξ − D−( 5

2
)A0X

2
)], (3.46)

as given in [4]. Here A0 is the amplitude of the wave for constant depth (D = 1).

It is clearly seen that the amplitude of the solitary wave increases as D decreases i.e.

the channel becomes shallower, showing that such waves would approach the shore with

surging amplitude. Note that for exponentially decreasing depth D the growing of wave

amplitude will also be exponential. This particular case will be considered in more details

in the Appendix.

It is intriguing to note that for variable bathymetry with uneven depth, irregular depth

or periodic topography in place of growing amplitude one gets a damping wave amplitude

as explained in [53]. We will be concerned however with the surging waves caused by a

smoothly decreasing depth due to their hazardous effects.

Now we will analyze the solution of equation (3.44) with nontrivial boundary leakage,

rewriting it in a more general form

a(X)η0X + b(X)η0η0ξ + c(X)η0 + d(X)η0ξξξ = 0, (3.47)

where we have denoted a(X) = 2
√
D, b(X) = 3

D
, c(X) = ( D′

2
√
D
+ g) and d(X) = D

3
. Di-
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viding (3.47) by d(X) and defining η0 =
U
b1

where a1 =
a
d
, b1 =

b
d
and c1 =

c
d
, respectively,

the equation (3.47) can be transformed to

a1UX + UUξ + Uξξξ + (c1 − a1
b1X
b1

)U = 0, (3.48)

which in general cannot be solved exactly. However, we may notice, that for a finer

balance tuned between the variable depth bathymetry and the controlled leakage velocity

function giving the condition

g = − 9D′

2
√
D
, (3.49)

the last term of (3.48) vanishes reducing the equation to a more simple form of variable

coefficient KdV equation

a1UX + UUξ + Uξξξ = 0, (3.50)

where a1 = a(X)
d(X)

. It is interesting to note, that the tuning condition (3.49) relating the

leakage function with the bathymetry function is exactly same as the solvability condition

used in [57] for obtaining analytic solutions of a general variable coefficient KdV equation,

considered in a formal mathematical setting.

Defining a new coordinate T =
∫ √

D(X)

6
dX equation (3.50) can be transformed into

the standard constant coefficient KdV equation

UT + UUξ + Uξξξ = 0, (3.51)

admitting the well known solitary wave solution U = N0sech
2[
√

N0

12
(ξ − N0

3

∫ √
D
6
dX)].

Expressing in terms of the original field variable we get finally the wave solution

η0 =
D2

9
N0sech

2[

√
N0

12
(ξ − V (X)], V (X) =

N0

3

∫ √
D

6
dX (3.52)

with the depth function D(X) and leakage velocity function g(X) are tuned as (3.49).
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Note that for decreasing depth D, which without leakage would make the wave amplitude

to surge as in (3.46), due to the controlled tuning of the leakage the resultant solitonic

wave function would suffer a damping of its amplitude as evident from (3.52). Moreover

the solitonic wave flattens down with a change in its velocity along its propagation (see

FIG 5). Thus we have achieved control over a surging wave approaching to the shore

by inducing combination of feedback and a controlled tuning of the the leakage at the

bottom.

Figure 3.5: 3D plot of the solitary wave solution (3.52) in the (ξ,X) plane. For demon-
strating the nature of the solution, we have assumed N(0) = 1 α = 0.1, g = exp [−X ],
showing exponential damping of the wave amplitude with a change in its width and ve-
locity along its propagation.

3.4 Application of the exact result to real near shore

bathymetry

In the previous sections, we have first discussed the effect of wave profile dependent leakage

to the solitary wave amplitude at constant water depth. Applying similar mathematical

procedure to a slowly changing bathymetry, we have derived next a variable coefficient

KdV equation containing terms due to both leakage and variable depth. Though in general

such equations are non integrable, a finer balance between the leakage and variable depth

function miraculously solves the equation exactly, giving a solitary wave like solution. Its
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amplitude, which without leakage would increase giving surging effects, decreases as the

wave moves towards the shallower region. These theoretical findings of exact nature with

an intension to control near shore surging waves, by creating artificial leakage, would gain

ground when it is implemented to a real sea shore bathymetry. Therefore, in this section

we apply previously obtained exact results to a near shore bathymetry in order to see the

effectiveness of our findings.

One should remember the fact that according to the estimates of the United Nations in

1992, more than half of the population lives within 60 km of the shoreline. Urbanization

and rapid growth of coastal cities have also been dominant population trends over the last

few decades, leading to the development of numerous mega cities in all coastal regions

around the world.

Our study region is the coastal zone of Chennai district of the Tamil Nadu state, in

southeast coast of India which was one of the worst affected areas during 2004 Indian

Ocean tsunami. A Coastal Vulnerability Index was developed for this region in [58] using

eight relative risk variables including near shore bathymetry to know the high and low

vulnerable areas. According to one of those risk variables, bathymetry at about 29.11

km of coastline in that area has a high risk rating having high vulnerability ,while about

18.55 km of coastline has medium risk rating and about 10.54 km shows low risk rating,

which are displayed in FIG 3.6.

The depth contour of Chennai coastline, which is constructed from the Naval Hy-

drographic Charts for 2002, is also given in [58] and is displayed in FIG 3.7. Now to

implement our exact results on this coastline, we chose one of the high risk points (N 13◦

10.5′ - E 80◦ 18.75′) , which is denoted by the red line in FIG 3.6.

We have drawn the near shore bathymetry following the depth contour (FIG.3.7) of

this shoreline point along the latitude which is given as FIG 3.8.This diagram shows that

at the near shore region, the depth function flattens down denoting a slow variation along

X . Hence the soliton gets enough time to evolve and give the surging effects. Note also
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Figure 3.6: Risk zones of Chennai coastline bathymetry ,taken from [58] with permission

that, the variation along X is in Km whereas variation along D(X) is in meter. Hence the

depth function is very slowly varying which is consistent with our theoretical assumptions.

Note that in the absence of the leakage at the bottom, the solitary wave amplitude

would increase following (3.46) with the amplitude as

A1 =
A0

D
. (3.53)

We see from FIG.3.8 that as the wave approaches the near shore region, the depth function

flattens out and therefore the soliton amplitude A1 develops rapidly to give surging effects.

Now if at a certain position in the near shore bathymetry, an artificial leakage following our

theoretical findings (3.52), is turned on then the amplitude would decrease as A2 =
N0D2

9
,
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Figure 3.7: Depth contour of the Chennai coastline,taken from [58] with permission

where N0 is a free constant as described earlier. The effectiveness of the of the amplitude

decay of the solitary waves by the leakage would be stronger, if the leakage starts at a

longer distance away from the shore. Note that the amplitude starts growing rapidly at

1.2 Km away from the shore, from where the depth function starts flattening.

Therefore, if a solitary wave of amplitude of nearly 1 meter starts approaching towards

the shore from around 10.5 Km, then it would ultimately grow to a surging wave of

amplitude ∼ 30 meter at the coast. It is obvious that such a huge wave will produce

devastating effects on coastal habitation and costly installations.

However if we implement now an artificial leakage based feedback method linked to

the surface wave profile as discussed in the previous section with exact result (3.52) the

surging amplitude would decrease when propagating towards the shore. with damping

amplitude given as (3.52)

A2 =
N0D

2

9
, (3.54)

where N0 is a free constant. One checks that if the leakage is implemented in a region of
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0.9 Km from the shore, the wave amplitude of 1 meter which would otherwise increase to

30 meter without any leakage, would decrease to an amplitude of ∼ 1.23 meter as shown

in FIG 3.9, where we have chosen N0 = 11.07.

If the leakage installation is implemented from a nearer point from the shore, the wave

amplitude decrease would also be less which is also displayed in FIG 3.9. For optimal

estimation however, the cost effectiveness and the concrete requirements should be taken

into account in deciding the range of such proposed installations. The main emphasis

should possibly be on the protection of sensitive installations like nuclear reactors at the

sea coast against the danger of tsunami like waves. The options known for the protection

of the Chennai coast area are dune afforestation, mangrove restoration and management,

periodic beach nourishment and building seawalls and groins etc. Our control mechanism

for the possible management of the potentially hazardous near shore waves, proposed

here, could be a new option, which may be implemented only in limited strategic areas

surrounding costly installations, for reducing the intensity of the approaching wave to a

safer limit.
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Figure 3.8: Bathymetry towards the shore of the shoreline point ( N 13◦ 10.5′ - E 80◦

18.75′)

The same methodology can be applied to another high risk point ( N 13◦ 10.5′ - E

80◦ 18.75′) at the shoreline, the near shore bathymetry of which is shown in FIG 10.

The increase of amplitude without leakage, and its damping due to leakage is explicit in

FIG.11.
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Figure 3.9: Surging amplitude A1 without leakage moving towards the shoreline point
( N 13◦ 10.5′ - E 80◦ 18.75′) and growing upto the point D (30 m) following eq.(3.53).
Figure also demonstrates the damping of the amplitude A2 due to leakage following eq.
(3.54) . Installations of the leakage starting from different points to the shore Q1 (9.6
km), Q2 (9.9 km), and Q3 (10.2 km), would damp the amplitude A2 to different values
( A (1.23 m), B (5.15m) and C (13.5m) respectively). N0, a free constant appearing in
eq. (3.54) is chosen as 11.60, 46.29 and 122.89 respectively at these points. It is evident
that, the further the leakage is from the shore, the more the decay of the amplitude.
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Figure 3.10: Bathymetry towards the shore of the shoreline point ( N 13◦ 0′ - E 80◦ 16.2′)

3.5 Summary

The focus of our investigation is in an innovative possibility of controlling the intensity of

near shore surging waves including tsunamis and bore waves by inducing damping effect

through a specially designed leakage mechanism at the water bed. In the previous chapter
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Figure 3.11: Surging amplitude A1 without leakage moving towards the shoreline point (
N 13◦ 10.5′ - E 80◦ 18.75′) and growing upto the point D (30 m) following eq.(3.53). Figure
also demonstrates the damping of the amplitude A2 due to leakage following eq. (3.54) .
Installations of the leakage starting from different points Q1(10.2 km), Q2 (10.5 km) and
Q3 (10.8 km), would damp the amplitude A2 to different values ( A (0.53m), B(6.24m)
and C(13.57m) respectively). N0, a free constant appearing in eq. (3.54) is chosen as
5.44, 56.91 and 122.89 respectively at these points. It is evident that, the further the
leakage is from the shore, the more the decay of the amplitude.

[54] we have seen that the leakage function which is independent to the free surface wave

profile, affects the phase of the solitary wave solution whereas the amplitude remains

constant. Dependence of leakage on the amplitude of the surface solitary wave, which

would give surging effects near the shore, has not been found out.

The majority of the earlier studies, concentrated on the damping of the waves occurring

due to natural effect like viscosity, bottom roughness, sand porosity etc. In contrast, our

main motivation here is to analyze the impact of artificially created bottom boundary

condition on the swelling wave approaching the shore with an aim to reduce the hazardous

effect of such near shore wave phenomenon.

Our crucial observation is that the surging of approaching waves caused by decreasing

water depth bathymetry may be thought of to be triggered by effective vertical fluid flow

proportional to the gradient of the depth profile acting as a virtual source emerging from
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the bottom. Our key idea for controlling the growing amplitude of the surface wave is

to counter this source by an effective sink through such leakage mechanism creating a

downward fluid velocity.

We have considered the propagation of an unidirectional, shallow water, nonlinear

free surface gravity wave based on the basic hydrodynamic equations at the shallow water

regime and identified first that a feedback leakage function at the bottom, dependent

linearly on the surface wave profile could induce maximum desirable damping effect on

the amplitude of the surface wave. This knowledge is then applied to the problem of

regulating the surging solitary waves propagating towards the shore due to the slowly

decreasing depth. The corresponding evolution equation for the combined effect of leakage

and the variable bathymetry turns out to be in the form of a variable depth KdV equation

different from the variable coefficient KdV equation obtained earlier. Though in general

this is a nonintegrable system, we have found that for a controlled tuning between the

topography and leakage velocity function, the equation becomes exactly solvable allowing

solitary wave solutions with damping amplitude.

A strong point of our result is its exact nature which allows one to access precise and

finer effects and make more accurate predictions. We have applied the result obtained

to real data from the bathymetry map of the high risk near shore regions on the Bay

of Bengal in India and tested the implications, range and predictions of our theoretical

result. As shown by the real bathymetry assessment, the more extensive installations

starting from a further distance into the sea would result to a more effective control of

the incoming surging waves, however, the cost effectiveness and the concrete requirements

should be taken into account in deciding the range of such proposed installations. The

main emphasis should possibly be on the protection of sensitive installations like nuclear

reactors at the sea cost against the danger of tsunami like waves. Therefore the control

mechanism for the possible management of the potentially hazardous near shore waves,

proposed here, may be implemented only in limited strategic areas surrounding costly
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installations, for reducing the intensity of the approaching wave to a safer limit.

We have studied also various possible extensions of the leakage boundary conditions

and their corresponding effects in modifying the nature of the surging solitary waves which

might be of practical importance of different other situations.(This material is included

as appendix.)

3.6 Appendix: Extension of boundary leakage condi-

tion with variable bathymetry

Though we have achieved our major goals in taming the surging waves as reported in the

main text, we consider below few extensions of this result for understanding the effect

of bottom boundary leakage condition on the surface wave solution, which might be of

applicable interest in other physical situation. In particular ,we have investigated

A) Leakage function at the bottom with a combination of both wave profile dependent

and independent functions,

B) Leakage condition linked to effective zero fluid velocity at the bottom with the

specific bathymetry profile.

C)Leakage function related to time.

All the studies yielding analytic result of different nature though all of them having

the effect of amplitude damping of the waves, surging otherwise due to decreasing depth

bathymetry.

3.6.1 Leakage function at the bottom with a combination of

both wave profile dependent and independent functions

In our previous paper [54], we considered the leakage function to be independent of the

wave profile that yielded a forced KdV like equation as the surface wave equation. Its
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solitary wave solution exhibits phase modification leading its velocity to change whereas

the amplitude remaining constant. In order to explore the effect of the bottom leakage

on the solitary wave amplitude we have considered in the main text, the leakage function

to be dependent on the free surface wave profile which exhibited damping of amplitude.

Now in this section, we have extended the problem such that the leakage velocity at

the bottom depends both on the wave profile dependent and independent functions as

w = u
db

dx
− ǫg(ǫx)G(η, ηx, ....) + ǫC(X). (3.55)

on z = B. Here the second term in (3.55) is the wave profile dependent term whereas the

third one is the wave profile independent term.

As we have mentioned we assume G = η to get the maximum benefit of damping due

to leakage. After a bit of mathematical calculations we can finally derive the surface wave

evolution equation

2
√
Dη0X +

3

D
η0η0ξ + (

D′

2
√
D

+ g)η0 +
D

3
η0ξξξ = −C(X). (3.56)

Note that this variable coefficient KdV equation contains explicitly the bathymetry func-

tion D(X) linked to the variable depth as well as the function g(X) and C(X) related to

the leakage at the bottom.

Now after applying the same balancing condition (3.49) the equation can be trans-

formed into

a1UX + UUξ + Uξξξ = −E1 (3.57)

where we have denoted a1(X) = 6√
D
, E1 =

27C(X)
D3 and η0 =

U
b1
.

Defining a new coordinate T =
∫ √

D(X)

6
dX equation (3.57) can be transformed into
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the standard constant coefficient KdV equation with a forcing term

UT + UUξ + Uξξξ = E1(T ), (3.58)

admitting the well known solitary wave solution U = N0sech
2[
√

N0

12
(ξ − N0

3

∫ √
D
6
dX) −

f(T )]−
∫
E1dT .

Expressing in terms of the original field variable we get finally the wave solution

η0 = (D2/9)[N0sech
2{
√
N0

12
(ξ − N0

3

∫ √
D

6
dX − f(T ))} −

∫
E1dT ] (3.59)

where ∂2f(T )
∂T 2 = −E1.

Note that if we neglect the wave profile independent part C(X), then automatically

we get C1 = E1 = F = 0 and f = constant. Thus the solution (3.59) converges to the

solution of earlier case (3.52).

3.6.2 Balancing through effective hard bottom condition with

leakage giving exact result

Here we stick to a particular choice of decreasing bathymetryD = exp (−σX), for the wave

approaching to the shore. Such solitary waves without any leakage condition would result

to an exponentially surging waves carrying potential hazards. Our aim here would be to

control such wave through bottom leakage condition inducing necessary damping. For this

purpose we consider a different balancing effect of the leakage condition, obtained from

an effective hard bottom condition amounting to the vertical fluid velocity at the water

bed w to be zero. This leads at the leading order to w0 = 0, w1 = u0B
′(X)− g(X)η0 = 0,

at z = B, which gives a new balance between the leakage and the variable depth function

as g = − D′

√
D

at z = B. For this effective hard bottom condition, we follow again similar

mathematical procedure as presented in the previous section, which leads to the surface

83



wave evolution equation

2
√
Dη0X +

3

D
η0η0ξ −

D′

2
√
D
η0 +

D

3
η0ξξξ = 0, D = D(X). (3.60)

Note that this variable coefficient KdV equation is different from the variable bathymetry

equation (3.45) obtained earlier [4]. As such this equation is also difficult to solve analyt-

ically. However interestingly for a special choice of bathymetry function D = exp (−σX),

with D decreasing with the increase of X , which is consistent with the wave propagating

towards shallower region, we can find an exact wave solution for equation (3.60).

Dividing equation (3.60) by D
3
and redefining the field as η0 =

D2

9
H, the equation with

our specific choice of D can be converted to

6 exp (σX/2)HX +HHξ +Hξξξ = (
21σ

2
) exp (σX/2)H. (3.61)

Defining a new coordinate variable as T = − exp (−σX/2)
3σ

, equation (3.61) can be trans-

formed now to a convenient form of the so called concentric KdV equation

HT +HHξ +Hξξξ +
7

2T
H = 0, (3.62)

which is a known integrable equation derivable from the hydrodynamic equations with

cylindrical symmetry [4]. An exact solution of the variable coefficient KdV equation

(3.62) is presented in [59] in the rational form as H =
(c− 5

2
ξ)

T
. Using the relation with

our original field: η0 =
D2

9
H and reverting to our old coordinates ξ,X we can transform

back the solution to obtain the required exact solution for the surface wave

η0 = −σ
3
(c− 5ξ

2
) exp (−3σX/2), (3.63)

with an arbitrary constant c. Note that this is a rational solution, not of solitonic type
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and it behaves differently for different values of ξ. For ξ < 2c
5
, η0 < 0, for ξ > 2c

5
,

η0 > 0, while at ξ = 2c
5
, η0 = 0 (see Figure 3.12). Solution (3.63) shows that, the

amplitude decays down due to the exponential damping factor, as the wave propagates

along the positive X direction. Thus the surging waves are controlled to damping wave

through balancing with the leakage at the bottom as we have aimed at. At ξ → ±∞ the

wave profile shows divergent nature. However since our intention is to consider the wave

propagation towards the shore the damping effect obtained along X is the relevant factor.

Figure 3.12: 3D plot of the exact wave solution (3.63) in the ξ,X plane with exponentially
decreasing depth with X and a bottom leakage with σ = 0.1. The amplitude decay with
the distance traveled along X , is evident. The divergent nature of the solution in ξ can
be detected from the figure.

3.6.3 Time dependent leakage:

In all the previously discussed cases, the leakage function g is assumed to depend slowly

on the space variable x as g(ǫx). As an extension to the problem, we consider here a

special kind of leakage function, which is depends slowly on time, as g(ǫt). Hence, the

bottom boundary condition at the variable bathymetry z = B(X) becomes

w = u
db

dx
− ǫg(ǫt)G(η). (3.64)
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where the leakage function g depends slowly on time t. As we have mentioned we assume

G = η to get the maximum benefit of damping due to leakage. For detailed investigation

we introduce a new set of variables

ξ =
1

ǫ
χ(X)− t, X = ǫx,Θ = ǫt (3.65)

Note that, here we have introduced a new slow time variable Θ which also depends

slowly on time. After a bit of calculations we can finally derive the surface wave evolution

equation

2
√
Dη0X +

3

D
η0η0ξ + 2η0Θ + (

D′

2
√
D

+ g(Θ))η0 +Dη0ξξξ = 0. (3.66)

Note that two extra terms arise due to the slow time Θ which can be canceled in the

following way.

Let us consider a new transformation η0 = f(Θ)φ(ξ,X). We consider g(Θ) to be such

that the extra two terms which arose due to the slow time Θ cancels each other such that

2η0Θ + g(Θ)η0 = 0 (3.67)

which finally gives f = A exp− 1
2

∫
gdΘ, where A is a constant. The equation satisfied by

the function φ is nothing but that obtained by Johnson (3.45). Hence using their solution

(3.46) as given in [4] the final solution can be written as

η0 =
A

D
exp− 1

2

∫
gdΘ sech2[

√
3A0

4D3
(ξ − D−( 5

2
)A0X

2
)], (3.68)

The dynamics of the solution (3.68) can be explained like follows. As the wave prop-

agates towards the shallower region, due to the factor 1/D the wave amplitude increases,

whereas due to the exponentially decaying factor, which depends on time the amplitude

increase is compensated to some extent. But the leakage function g(ǫt) should be syn-
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chronized in such a way that as the wave starts increasing it starts working. Such physical

mechanism and installations can be used in the other physical situations as required.
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Chapter 4

Modelling rogue waves through

exact dynamical lump soliton

controlled by ocean currents

4.1 Introduction

In the previous two chapters, we have dealt shallow water wave phenomena. But as we

move into deep water, waves behave quite differently. For example a wave of amplitude

≈ 1 meter in deep sea would evolve to give surging tsunami wave at the shore. In this

chapter, we will a discuss deep water wave phenomena called rogue waves which can also be

observed at shallow water. The mysterious ocean rogue waves (RWs) are reported to being

observed in a relatively calm sea, where they, as a localized and isolated surface waves,

apparently appear from nowhere, make a sudden hole in the sea just before attaining

surprisingly high amplitude and disappear again without a trace [60, 21, 61, 62, 63]. This

elusive freak wave caught the imagination of the broad scientific community quite recently

[64, 65, 66, 67, 68, 69, 72, 73], triggering off an upsurge in theoretical [76, 75, 74, 63] and

experimental [61, 64, 65, 66, 67, 68, 69, 72, 73] studies of this unique phenomenon. For
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identifying such extreme waves the suggested signature of these rare events is a deviation of

the probability distribution function (PDF) of the wave amplitude from its usual random

Gaussian distribution (GD), by having a long-tail, indicating that the appearance of

high intensity pulses more often, has much higher probability than that predicted by the

GD [77, 63, 67]. In conformity with this definition RWs were detected in a photonic

crystal fiber [68], in a multi-stable state of an erbium doped fiber laser [73], in chaotic

but deterministic regime of optical injected semiconductor lasers [64, 61], in nonlinear

optical cavity [67], in acoustic turbulence in He II [65] and other set ups [69, 70, 71]

including other physical systems like plasma, Bose-Einstein condensates etc. On the

formation of the ocean RWs a number of supporting linear as well as nonlinear theories

have been developed [21]. Among various possible factors contributing to the creation of

the RW, the modulation instability (MI) supported by the nonlinear effect is believed to

play a crucial role, by inducing preliminary amplification of water wave height , which

may trigger self attractive nonlinear interaction, initiating the RW formation [78]. The

MI can also cause wave-wave interaction leading to the four-wave mixing at matching

frequencies and wave numbers, inducing resonance effect which might also develop into a

RW [63, 69, 84]. Though RWs have been found both in shallow [21, 22] and deep water,

in this work we shall concentrate on the oceanic rogue waves which preferably occurs at

the deep sea. Like the four-wave nonlinear interaction, a leading order nonlinear effect in

deep-sea waves, is found also to be a dominant interaction in the nonlinear Schrödinger

(NLS) equation

iqt = qxx + 2|q|2q, (4.1)

with the subscripts denoting partial differentiation. One of the previous works of explana-

tion of RW by NLS equation was done by Smith [85] in the presence of Agulhas Current

where it was stated that the giant waves occur where the wave groups are reflected by

the current. The NLS based nonlinear models are the most accepted ones for the RW,
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though often with certain modifications to include higher oder dispersion or ocean cur-

rents, which are suspected to have a deciding role in the formation of the RW [62]. In

extended space dimensional systems the nonlinear effect due to the MI in combination

with a space-asymmetry, directional spectra and broken symmetry due to nonlocal cou-

pling is suspected to be the major causes of such extreme waves [66, 67, 74]. The NLS

equation (4.1) is a well known evolution equation with integrability properties like hav-

ing a Lax pair and exact soliton solutions [88]. Some models of RW generalize the NLS

equation with the addition of extra terms on physical grounds, like ocean current [62],

nonlinear dispersion [76, 89] etc. However such modifications of the NLS equation (4.1)

make the system nonintegrable, allowing only numerical solutions. The most popular 1D

RW model is a unique analytic rational solution of the original NLS equation (4.1) [79],

given by the Peregrine breather (PB) [68, 75, 72] or its higher order versions [24]-[25] and

the trigonometric variants [90, 23]. However, since the RW is an aperiodic event with a

single appearance, the trigonometric breather solutions, due to their periodic nature, are

not much suitable for a direct description of the RW. Nevertheless, interestingly these

breather solutions, periodic in time [90] or in space [23], degenerate to the rational PB

solution (4.2) at their periods going to infinity[94, 102].

Note that the conventional soliton solution of the NLS equation (4.1), representing a

localized translational wave behaves like a stable particle and unlike a RW propagates with

unchanged shape and amplitude. Tsunami waves, though highly devastating, also exhibits

different nature than the ocean RW. The ocean RW are mainly deep sea waves with 2D

character, localized in both space dimensions and appears as a single-peak event for a

short interval of time. Tsunami waves on the other hand are manifested only in shallow

water near the sea shore, though generated in the deep sea and propagate across a long

distance. In the deep sea tsunami waves behave like 1D translatory wave, moving very

fast with insignificant amplitude[80]. Therefore tsunamis and the RWs exhibit different

features and dynamics and need different types of modelling which for the RW is still an
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open problem. More details on the progress in the study of the ocean RW can be found

in some excellent reviews on the subject [21].

4.1.1 RW model on a 1D line

In contrast to the soliton or the trigonometric breather solutions of the NLS equation

(4.1), its exact rational PB solution

qP (x, t) = e−2it(u+ iv), u = G− 1, v = −4tG,

where G = 1/F (x, t), F (x, t) = x2 + 4t2 +
1

4
, (4.2)

represents a breather mode with unit amplitude at both distant past and future. The

amplitude of the wave rises suddenly at t = 0, attaining its maximum at x = 0, though

subsiding with time again to the same breathing state. This intriguing behavior makes

the PB a popular candidate for the RW [68, 75, 72].

Since the characteristics of the envelop wave is the most significant in the description

for the RW, the modulus of the PB solution (4.2)

|qP (x, t)| = (u2 + v2)
1
2 = [(G− 1)2 + (4tG)2]

1
2 , (4.3)

with G as in (4.2), is used in describing the RW profile. The full grown 1D RW at t = 0

therefore may be represented by

|qP (x, 0)| = (G− 1)|t=0 = [
1

x2 + 1
4

− 1], (4.4)

as shown in Fig. 4.1. The maximum amplitude as seen from (4.4) is attained at x = 0 as
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|qP (0, 0)| = 3. The modular inclination defined as

Sx
P (x) =

∂

∂x
|qP (x, 0)| = − 2x

(x2 + 1
4
)2

(4.5)

attains its maximum Sx
Pmax(xm) = 3

√
3 at xm = ± 1

2
√
3
.
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Figure 4.1: Amplitude variation of the full grown 1D rogue wave, modelled by the
modulus of the static Peregrine breather |qP (x, 0)| . The maximum amplitude 3 is attained
at x = 0, while it goes to its asymptotic value 1 at x → ±∞. The maximum inclination
attainable is 3

√
3 at x =

√
3
6
, and becomes 0 both at x = 0 and x→ ±∞.

Notice however that, the NLS equation (4.1) together with its different generalizations

are equations in (1 + 1)-dimensions and therefore all of their solutions, including the PB

and its higher order generalizations, can describe the time evolution of a wave only along

an one dimensional line (as in Fig. 4.1). Looking more closely into the PB we also realize

that the maximum amplitude of this solution describing an 1D RW is fixed, and just

three times that of the background waves (see Fig.4.1). The modular inclination of this

wave as well as the fastness of its appearance are also fixed, since solution (4.2) admits no

free parameters. This situation can be improved to obtain higher amplitude and modular

inclination of the PB model by using higher order rational solutions [24]. For example,

the next higher order PB known also as Akhmediev-Peregrine breather can enhance the

maximum wave elevation by a factor of five, while the next one by a factor of seven and

so on, with an intriguing enhancement of factors by increasing odd numbers. Thus, the
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maximum amplitude occurs at the origin and have the magnitude 2j + 1 where j is the

order of rational solution. Such increments in amplitude however are discrete and could

be achieved at the cost of going to new solutions with increasingly complicated structures

involving higher and higher order polynomials [24]. The maximum amplitude and modular

inclination reachable by this class of solutions are fixed due to the absence of relevant

free tunable parameters, making it difficult to adjust to the continuously varied range

of shape and sizes of the observed oceanic RWs. However recently higher order rational

solutions to the NLS equation allowing free parameters have been discovered [82, 25],

though they seem to represent multi-peak wave in the x− t plane for the nontrivial choice

of parameters [25]. It is shown that general N−th order rogue wave contains N − 1 free

irreducible complex parameters. For different values of these free parameters, these rogue

waves can exhibit other solution dynamics such as arrays of fundamental RW arising at

different time and spatial positions and forming interesting patterns. The single-peak

solution which is suitable for describing oceanic RW having a single appearance in time,

is obtained unfortunately for a trivial choice of the free parameters. The trigonometric

breathers [90, 23] also contain free parameters [94], though such periodic solutions, as

mentioned already, are different in nature than the single crest RW event. Along with

NLSE, RW solution was also discovered in other (1+1)D integrable equations like Hirota

equation[86] and DNLS equation [87]. The crucial fact however is that, the 1D spatial

nature remains the same for the whole class of the solutions, including its higher order

rational and trigonometric generalizations. Therefore modelling an ocean RW, which is a

2D surface wave, by this class of 1D solutions remains problematic.

4.1.2 Need for a RW model on a 2D plane

Therefore, though the well accepted class of PB or other solutions of the generalized NLS

equation could fit into the working definition of the ocean RW, saying any wave with

height more than twice the nearby significant height (average height among one-third of
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the highest waves) could be treated as the RW [77], they perhaps, with their restricted

characteristics, can explain successfully only fixed and moderately intense RW-like events

on a 1D line, as observed in water channels [72], optical fibers [68, 73] or optical lasers

[61, 64], but seem to be not satisfactory for modelling the ocean surface RWs.

Oceanic RWs are said to be consist of an almost vertical wall of water preceded by a

trough so deep, that it was referred to as a hole in the sea [83]. In march 2001, two reputed

ships named as Bremen and Calendonian Star, carrying hundreds of tourists across the

South Atlantic, had a devastating encounter with RW like events. It is reported by the

witnesses that a giant isolated wave of around 30 meter high, fell upon the ship like a wall

of water, out of no where and disappeared again without a trace [91]. At the initiatives of

11 organizations involving several countries in EU tasked the Earth - scanning satellites,

named ERS-1 and ERS-2, to send images from a localized area of 10× 5 km2 on the sea

surface at certain locations to spot the possible occurrence of rogue waves [91].

All these available facts and information suggest that unlike the tsunami and internal

waves, pictures of which can be seen through satellite images [92], ocean RWs with the

hole states must have a 2D character, localized in both the space dimensions. In 2D water

basin experiments as well as in the related simulations the amplitude and the modular

inclination of the RWs were found to be higher [66, 69, 74, 75] than those predicted and

observed in 1D [72, 75].

The above arguments should be convincing enough to go beyond the 1D equations

and search for a suitable (2+1) dimensional equations, to find a 2D alternative to the PB

and other solutions of the 1D NLS equation, for constructing a more realistic model for

the ocean RWs.

There are many nonlinear equations known in (2+1) dimensions having fruitful appli-

cations in various fields. Some of them allow exact analytic solutions, while others permit

only approximate numerical simulation.

The well known KP equation is an integrable extension of the KdV equation to 2D
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space [118, 119] describing the dynamics of a real field. However the KP equation like

the KdV is a shallow water model, whereas the oceanic RW is naturally a deep water

phenomenon.

There are also several equations extending the 1D NLS equation to (2+1) dimensions.

From the basic hydrodynamic equations, by taking the perturbation analysis to a higher

order, Dysthe has derived for the deep water waves a 2D evolution equation [94, 120] which

is applicable for a more rough sea. The Dysthe equation in general is non integrable .

The Davey-Stewartson equation [20] is a 2D generalization of NLS equation where the

existence of rogue wave has been analyzed [116, 96]. However such fundamental rogue

wave solutions of Davey-Stewartson system are line rogue waves arising from constant

background in a line profile and retreat back to constant background again. Hence, it

is reducible to the PB solution by a simple rotation in the plane. BLP equation [117]

is another (2 + 1) dimensional integrable equation, defined through two real coupled

equations. Recently a RW type solution has been found in this equation allowing a free

parameter [26]. However since the BPL equation describes wave propagation along an

infinite narrow channel of constant depth , its applicability in modelling the ocean RW is

questionable.

Zakharov have proposed several 2D equations[63], some of them are integrable [122,

121] while others are not [84, 97]. Though these equations are applicable in other fields

[97], the model proposed in [84] seem to be a successful model for the RW.

A straightforward 2D extension of the NLS equation :

iqt = d1qxx − d2qyy + 2|q|2q, (4.6)

where q(x, y, t) is a slowly varying envelop and d1, d2 represents linear dispersion coeffi-

cients [74] of the deep water gravity wave, was proposed in connection with RW [74, 75].

Note however that the 2D NLS equation (4.6) is not an integrable system and gives
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only approximate numerical solutions with no stable soliton. Nevertheless, this unlikely

candidate is found to exhibit RW like structures numerically, with higher amplitude and

modular inclination and with an intriguing directional preference [66, 74] with broken

spatial symmetry [67, 75]. However though the experimental and theoretical studies on

nonlinear systems in 2D space have shown promises in describing more realistic situations

in the formation of 2D ocean RWs, unfortunately, all of them can give only approximate

numerical results and most of this models could not consider the effect of ocean current

which is supposed to play a crucial role in the formation of ocean RWs [75, 74].

4.2 Proposed integrable 2D NLS equation

In the light of not so satisfactory present state in modelling the deep sea RWs, we propose

an integrable extension of the 2D NLS equation:

iqt = d1qxx − d2qyy + 2iq(
√
d1j

x −
√
d2j

y), ja ≡ qq∗a − q∗qa, (4.7)

allowing an exact lump-soliton as a suitable RW model. In (4.7) the linear dispersion rela-

tion is exactly same as the conventional water wave dispersion as described in (4.6), with

the only difference from this well known 2D NLS equation being in the nonlinear term.

Notice that, when the conventional amplitude-like nonlinear term in the non-integrable

equation (4.6) is replaced by a nonlinear current-like term (expressed through jx, jy), the

resulting equation (4.7) miraculously becomes a completely integrable system with all its

characteristic properties, which is much rarer in 2D than in 1D. Before proceeding fur-

ther observe, that through scaling and a π
4
rotation on the plane : (x, y) → (x̄, ȳ) with

x̄ = 1
2
(− x√

d1
+ 1√

d2
y), ȳ = 1

2
( x√

d1
+ 1√

d2
y) and t̄ = 2t, our 2D NLS equation (4.7) can be

simplified to

iqt + qxy + 2iq(qq∗x − q∗qx) = 0, (4.8)
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where the bar over the coordinates is omitted. Encouragingly, our 2D NLS equation (4.8),

at par with the well known 1D NLS equation is derivable from the more fundamental hy-

drodynamic equations and exhibits MI together with a nonlinear frequency correction, as

we show below. Equation (4.8) admits also exact soliton and breather solutions through

the standard formalism of Hirota’s bilinearization and an associated Lax pair as well as

an infinite set of conserved charges [104], proving thus the integrability of this nonlinear

equation . More satisfactorily, equation (4.8), as we see below, admits an exact 2D gener-

alization of the PB with the desirable properties of a realistic surface RW. It is promising

that many characteristic properties like directional preference, MI, appearance of higher

amplitude etc observed theoretically and experimentally in connection with the formation

of RW in 2D models [66, 67, 75, 98, 99, 100, 74], which remained as numerical approxima-

tions, get confirmed through analytic result in our model based on the integrable equation

(4.8).

4.2.1 Nonlinear frequency correction and modulation instabil-

ity

Instability of a planer wave, appearing due to the interplay between dispersion and non-

linear effect called Benjamin Feir or MI [109], which has been in the continuous focus for

many years [107, 108], has gained more importance recently in the context of the RW.

MI was first discovered by Lighthill[110], developed independently by Benjamin- Feir[109]

and Zakharov [111] and first observed experimentally by Feir[112]. The nonlinearity and

the MI are supposed to be the basic reason behind the formation of RWs. Therefore, be-

fore progressing further with our 2D NLS equation (4.8), we focus on the correction of its

linear frequency induced by the nonlinear effect and the appearance of the MI mediated

by such nonlinearity in the system. For investigating the contributions to the frequency

due to the linear dispersive and the nonlinear term in (4.8), we insert the plane wave
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solution q0 = A0 e
i(ωt+kxx+kyy), with A0 as the real constant amplitude, ω as frequency

and (kx, ky) as the wave vector . For the plane wave to be an exact solution of (4.8),

the frequency should be ω = ωL + ωNL, ωL = −kxky, ωNL = 4A2
0k

x, where ωL is the

frequency due to linear dispersion and ωNL is its nonlinear correction, which depends on

the amplitude of the wave as well as on the x component of the wave vector.

Now to explore the onset of MI in the system affecting this plane wave solution,

we perturb it by a small parameter function ǫ(x, y, t). Note that the perturbation is

considered in both the space directions since its importance in the instability in 2D is

emphasized in the context of RW formation [75]. The solution

qǫ = (A0 + ǫ) ei(ωt+kxx+kyy), (4.9)

neglecting the higher order terms in ǫ yields from (4.8) a linear equation for ǫ as

iǫt + ǫxy + i(kyǫx + kxǫy) + 2iA2
0(ǫ

∗
x − ǫx) + 4A2

0k
x(ǫ∗ + ǫ) = 0. (4.10)

The appearance of the last two terms in equation (4.10) is due to the nonlinearity.

For detecting the instability of the perturbation we represent ǫ = c1e
i(ωmt+kxmx+kymy) +

c2e
−i(ωmt+kxmx+kymy) Inserting this form of perturbation in equation (4.10) and arranging

the independent terms we get a set of two homogeneous equations for the arbitrary co-

efficients c1, c2, nontrivial solutions of which can exist only when the determinant of the

matrix vanishes leading to the necessary relation ω̄2
m = K2 − Ωc, where ω̄m = ωm − ω0,

and ω0 = 2A2
0k

x
m − kxkym − kxmk

y, K = kxmk
y
m − 4A2

0k
x, Ωc = 4A4

0(4k
x2 − kxm

2), which

gives finally

ωm = ω0 ± iωI , ωI = (Ωc −K2)
1
2 . (4.11)

Therefore, under the condition K2 < Ωc with Ωc > 0, i.e when |kxm| < 2|kx| the modu-
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lation frequency ωm can acquire an imaginary part ωI , initiating an exponential growth

of perturbation with time t and hence onsetting the MI. ωI is the growth rate of the

instability given by (4.11), a graphical form of which is presented in Fig. 4.2, showing its

dependence on the longitudinal and transverse directions through kmx , and k
m
y respectively.

Figure 4.2: The growth rate ωI of the MI given by (4.11), arising in our 2DNLS equa-
tion, exhibiting how it changes (for A0 = 1.0, kx = 1.0) along the longitudinal (kxm) and
transverse (kym) directions, showing a strong directional preference.

Both these figures show clearly, that the behavior of MI as well as the growth rate has a

strong directional preference and range as observed also earlier in 2D models [66, 75, 113,

99, 100, 74]. We have confirmed such properties through exact analytic result showing

explicitly that in the MI as well as in the growth rate the components (kxm, k
y
m) of the

wave vector do not enter symmetrically, in addition with a directional range |kxm| < 2|kx|.

A comparison here with the analysis of MI in case of the known 1D NLS equation [81]

may be illuminating. The condition for the onset of instability in the 1D case involves

only the nonlinear amplitude A0 expressed in the form |kxm| < 2A0, while in the present

situation the condition is more complicated involving all components kxm, k
y
m, k

x apart

from A0, together with an allowed range on the wave vector component, as found above

analytically and shown graphically in Fig. 4.3. Similar situation is also true for the growth
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Figure 4.3: Graphical representation of the MI region, where the instability can occur
only within the shaded area (for fixed values of A0 = 1.0, Kx = 1.0). The instability
region, showing dependence on the wave vector (kmx , k

m
y ), varies asymmetrically along the

longitudinal and transverse direction, as seen clearly from the figure.

rates, where in the 1D case it is given by ωI = |kxm|[(2A0)
2 − (kxm)

2]
1
2 [81], while in the

present case the form of ωI is more complicated and depends on both longitudinal and

transverse directions, as shown above.

Thus the overall picture for the onset of the MI is similar to that occurring in the

1D NLS equation [81], though in the case of the 2D NLS equation (4.8) the details

are different and more intricate with a directional preference and range, as seen also

for the MI, initiating RW formation in some other systems in higher space-dimensions

[66, 74, 67, 75, 101]. We emphasize however, that in place of approximate numerical

result obtained earlier [114], we found here similar properties in exact analytic form in

our model. This is a strong point of our exact model. As in the case of the well studied

1D NLS model, we may expect the MI to play a key role in the creation of RWs based on

our 2D NLS model (4.8).
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4.3 Modelling of 2D rogue waves

Apart from finding a novel 2D integrable equation (4.8), our aim, relevant to the present

problem, is to construct a 2D RW model as an exact solution of this equation.

4.3.1 Static lump soliton

Before presenting the dynamical lump solution related to (4.8) we consider first its static

2D lump-like structure:

qP (2d)(x, y) = e4iy(u+ iv), u = G− 1, v = −4yG,

where G ≡ 1

F (x, y)
, F (x, y) = αx2 + 4y2 + c, (4.12)

localized in both space directions and describing a fully developed RW. One can check

by direct insertion that (4.12), having two arbitrary parameters α and c, is an exact

static solution of the 2D nonlinear equation (4.8). Solution (4.12), in spite of its close

resemblance with the well known PB solution (4.2), marks some important differences.

The static wave profile |qP (x, 0)| (4.4), obtained from PB solution (4.2) at time t = 0 is

a curve, representing full blown 1D RWs admitting no free parameters of relevance. On

the other hand

|qP (2D)(x, y)| = (u2 + v2)
1
2 = [(G− 1)2 + (4yG)2]

1
2 , (4.13)

obtained from the static solution (4.12) represents a 2D lump with two independent free

parameters, significance of which will be is explained below and shown in Fig. 2(a-d).
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4.3.2 Rogue wave with adjustable amplitude, inclination and

hole waves

Note, that the static lump soliton (4.12), can be obtained from the dynamical RW solution

(4.19) at the static point t = 0 (Fig. 3c) similar to static PB profile obtained from (4.2),

and hence it physically represents a full grown RW solution as shown in Fig. 2 (d).

Looking more closely into solution (4.12), for understanding the physical relevance of

its free parameters c and α, we notice that the wave attains its maximum amplitude:

|qP (2D)(0, 0)| ≡ Arog(c) = (1
c
− 1), at the center (x = 0, y = 0), while at large distances

(|x| → ∞, |y| → ∞) the wave goes to the background plane wave, with its amplitude

decreasing to A∞ = 1. Therefore the maximum amplitude reachable by our RW solution,

relative to that of the background wave is Arog(c)

A∞

= (1
c
− 1). Consequently, the amplitude

of the full grown RW described by the lump soliton can be changed continuously by

changing parameter c (with Arogue(c) increasing with decreasing c) and could therefore

be adjusted to fit the heights of any observed RW. Consequently, the maximum RW

amplitude in our model can be made as high as desired, by decreasing the value of an

arbitrary smooth parameter c (see Fig. 2 (a-d), for particular examples). Comparing this

situation with the conventional 1D RWmodel given by the PB (4.2) and its generalizations

[24], as mentioned above, we conclude that, in the well known class of PB solutions, the

maximum amplitudes reachable by the 1D RW are given by the fixed discrete odd numbers

2j+1, with j = 1, 2, 3, . . . and can be obtained by going only to different higher solutions

involving more and more complicated higher order polynomials. The higher rational

solutions having free parameters [82, 25] become parameterless for a single-peak RW

solution [25]. On the other hand, in our 2D RW model the maximum amplitude Arog(c)

can be varied continuously and increased as required, by tuning an arbitrary parameter

c in the same single-peak, first order solution (4.12) or its dynamical extension (4.19)

(as shown in Fig. 2 (a-d)), making the model suitable for RWs with a diverse range of
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heights, anywhere in the range 17-30 meters in calm sea [21]-[62], as observed in deep sea

2D RWs.

Extending the modular inclination in case of 1D: Sx
P (x), as defined in (4.5) we get for

the full grown 2D RW solution (4.12) the modular inclination as

Sx
P (2D)(x, y) =

∂

∂x
|qP(2D)

(x, y)|, Sy
P (2D)(x, y) =

∂

∂y
|qP(2D)

(x, y)| (4.14)

Focusing on the inclination Sx
P (2D)(x, 0) as observed at the middle of the wave front, we

notice, that it is linked also to another free parameter α and attains its maximum

Sx
P (2D)max(xm, 0) = −2αxmG

2(xm, 0) (4.15)

at xm =
√
c√
3α

with function G(x, y) as defined in (4.12).In [63], it is mentioned that

the real RWs are more steep than that predicted from NLS equation. We see that the

maximum modular inclination of a full grown 2D RW in our model depends on both the

parameters c and α in an intricate way and can be changed continuously by varying two

arbitrary parameters to fit varied situations (Fig. 4(a-d)). Note that this inclination will

be influenced by the physical steepness of the wave, contributing from the wave vector

of the career wave. We can identify another intriguing feature of our solution, by noting

that the amplitude of the wave (4.13) falls to its minimum: A0 = 0, at y = 0, x = ±x0
where x0 =

√
1
α
(1− c), which depends again on two free parameters. This significant

feature emerging from our RW model, as will be demonstrated below in Fig. 3(a,b), is

related to the hole-wave formation observed during ocean RWs [84, 83],[75].
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(a) High amplitude (12) and high modular inclination, for c = 1/13, α = 4.0.
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(b) High amplitude (12) but low modular inclination, for c = 1/13, α = 0.4
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(c) Low amplitude (2) but low modular inclination, for c = 1/3, α = 0.4
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(d) Moderate amplitude (5) and moderate modular inclination, for c = 1/6, α = 1.2. The

last situation is the same as figure 5c, obtained at t = 0.

FIG.2: Full grown two-dimensional rogue wave modelled by the modulus (|qp(2D)|

of the static lump soliton (4.12) with different shapes and sizes, generated

from the same single- peak solution. The maximum amplitude and modular

inclination are tunable through two parameters c and α.
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4.3.3 Topological consideration

Though the static lump-solution (4.12) can describe the profile of a full grown 2D RW,

for modelling an evolving realistic RW, we need to find a time-dependent solution, which

would smoothly go to its static form (4.12) at the moment t = 0. Our next aim therefore

is to construct a dynamical lump soliton out of the static lump-solution, to create a

true picture of a RW which can appear and disappear fast with time. However, for

constructing such a solution we have to clarify first, whether it is possible in principle for

our lump soliton to disappear without a trace, i.e. whether the soliton is free from all

topological restrictions, which otherwise would prevent such a vanishing. The reason for

such suspicion is due an interesting lesson from topology stating that, when a complex

field q(x, y) is defined on a 2D space with non-vanishing boundary condition |q| → 1 at

large distances, but having vanishing values q → 0 close to the center, we can define a unit

vector φ̂ = q
|q| on an 1-sphere S1. However, this vector φ̂ = (φ1, φ2) is well defined only

at the space boundaries: ∂R2 ∼ S1 (since q = 0 at inner points), realizing a smooth map:

S1 → S1 with possible nontrivial topological charge Q = n. This charge with integer

values n = 0, 1, 2, . . ., labels the distinct homotopy classes and is defined as the degree of

the map, which unlike a Nöther charge is conserved irrespective of the dynamics of the

system. Such a situation occurs for example in type II superconductors with the charge

linked to the quantized flux of vortices for the magnetic field B(x, y) [106] :

2πQ =

∫
dS ·B =

∫

C

dl ·A, (4.16)

where B = curl A = ẑ(∂xφ
1∂yφ

2 − ∂xφ
2∂yφ

1). Notice that, our complex field solution

qP (2d)(x, y) possesses clearly the features of φ̂ discussed above, since (4.12) goes to a

constant modulation −e4iy at large distances and vanishes at points (0,±x0). Note that,

such a solution related to a sphere to sphere map can not go to a trivial configuration , if

it belongs to a homotopy class with nontrivial topological charge: Q = n, n = 1, 2, 3, ...,
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due to conservation of the charge, with the only exception for the class with zero charge

Q = 0. Therefore, for confirming the possible appearance/disappearance property of a

RW for solution (4.12), we have to establish first that in spite of defining a nontrivial

topological map, it belongs nevertheless to the sector with topological charge: Q = 0,

i.e. our lump soliton is indeed shrinkable to the vacuum solution. For this we calculate

explicitly the topological charge (4.16) associated with (4.12) as

2πQ =

∫

C

dl ·A =

∫
(dxAx + dyAx), , (4.17)

where Aa = φ1∂aφ
2, φ1 = Re q/|q|, φ2 = Im q/|q|, where the contour integral along x

and y are taken along a closed square at the boundaries of the plane. Substituting explicit

form of solution q(x, y) from (4.12) and arguing about the oddness and evenness of the

integrand with respect to x, y or checking directly by any analytic computational package

one can show that the related charge is indeed Q = 0 and therefore the solution belongs to

the trivial topological sector as we wanted. The intriguing reason behind this fact is that,

the two holes appearing here have opposite charges resulting to their combined charge

being zero.

4.3.4 Construction of dynamical lump soliton

For constructing a dynamical extension of the 2D static lump soliton (4.12) we realize

that, a sudden change of amplitude with time, as necessary to mimic the 2D RW behavior,

might result to a non-conservation of energy. This however can not be described by

an integrable equation alone, since the integrability demands a strict conservation of

all charges and therefore our integrable equation (4.8) needs certain modification for

allowing the appearing/disappearing nature of its lump-solution. On the other hand,

the importance of ocean currents in the formation of RWs is documented and repeatedly

emphasized [62, 84, 78, 103], which however is absent in equation (4.8). This motivates
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us to solve both these problems in one go, by modifying equation (4.8) with the inclusion

of the effect of an ocean current, as in [62], by adding a term in the form I = −iUcqx. For

obtaining an exact dynamical RW solution to the modified 2D NLS equation, we choose

the current flowing along longitudinal directions and changing with time and location as

Uc(x, t) =
µt
αx
. Looking closely into the structure of this current term for the RW solution

(4.19):

I(x, y, t) = i(
µt

ax
)
∂

∂x
[qP (2D)(x, y, t)] = −2µt(4y − i)G2 e4iy, (4.18)

with G as defined in (4.19), it becomes apparent, that the currents would flow to the center

of formation of the RW (x = y = 0) from both of the longitudinal and the transverse

sides, though with a directional preference, with their magnitude |I(x, y, t)| increasing as

they approach to the center, however stopping completely at the moment of the full surge

at t = 0. The picture gets reversed after the RW event with currents flowing back quickly,

away from the center with the intensity of the current |I| diminishing as the distance

increases. Such an inflow and outflow of energy seems to be physically consistent with the

formation of a 2D ocean RW. Note that, though the current factor Uc looks ill-defined,

the multiplicative factor qx makes the term I(x, y, t) well-behaved on the RW solution

(4.19), with the ocean current term becoming a smooth and bounded function in all space

and time variables, as evident from (4.18). It has been suspected in earlier studies, that

spatially nonuniform current should be responsible in the development of ocean rogue

waves [78]. Such a nonuniform dependence on space variables can be seen in our current

term I(x, y, t). Interestingly, the modified 2D NLS equation ((4.8) with the inclusion of

the current term I) admits now an exact dynamical 2D extension of the Peregrine soliton

in the analytic form, though the modified equation loses its integrability in the sense,

discussed earlier. The dynamical RW solution has a similar form as (4.12), only with the
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function G becoming dynamical by the inclusion of time variable :

qP (2d)(x, y, t) = e4iy[−1 + (1− i4y)G],

G ≡ 1

F (x, y, t)
, F (x, y, t) = αx2 + 4y2 + µt2 + c. (4.19)

The arbitrary parameter µ appearing in the solution (4.19) is related to the ocean current

and can control how fast the RW would appear and how long it would stay. Note again

that (4.19) at t = 0, representing a full grown RW (see Fig 3c)) coinciding with the exact

static lump-solution (4.12) of the 2D NLS equation (4.8) (as in Fig. 2d)), justifying the

physical relevance of the static lump solution. At this stage, a comparison between 1D

PB soliton

qP (x, t) = [−1 +
(1− 4it)

x2 + 4t2 + 1
4

]e−2it (4.20)

and our 2D lump soliton

qP (2D)(x, 0, t) = [−1 +
(1)

αx2 + µt2 + c
], at y = 0, (4.21)

might be interesting. This shows that though there is some similarity between these two

solutions, there are many differences as well at y = 0. In the absence of the transverse

coordinate, the 2D solution (4.21) of our modified equation, becomes real, though still

having 3 independent free parameters. The 1D PB soliton on the other hand is complex

with a breathing mode, but without any free parameter.

We should mention here, that the 2D extension of PB solution (4.19), unlike the

standard 1D PB, unfortunately could not be derived as a limiting case from the breather

solution of 2D NLS equation (4.8), due to the two-dimensional nature of the solution and

has to be constructed by direct insertion through an ansatz.
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4.3.5 Proposed 2D rogue wave model and its dynamics

It is convincingly demonstrated in Fig. 3 (fixing the free parameters to certain values),

how the envelop wave |qP (2D)(x, y, t)| corresponding to the exact dynamical 2D lump-

soliton (4.19), dependent on time t and two space variables x and y on a plane, evolves

from a background plane wave existing in the distance past and how it could acquire a

sudden 2D hole at the centre (x = 0, y = 0) at the moment th = −
√

1
µ
(1− c), (th = −0.83

for c = 1/6, µ = 1.2 in Fig. 3a), as told in marine-lore [63, 75, 83]. The hole subsequently

splits into two and shift apart from the centre (Fig. 3b)), to make space for a high steep

upsurge of the lump forming the full grown RW (Fig. 3c) at time t = 0. Note that we

have derived analytically the exact positions of these holes in the previous subsection.

With the passage of time the picture gets reversed and the 2D RW disappears fast into

the background waves with the 2D holes merging at the centre and vanishing again. Thus

our model describes vividly well the reported picture of the ocean surface RWs [62, 73, 84]

as well as those found in large scale 2D experiments [66]. Since our model is an exact one

, we could work out these details analytically. The surface RWs modelled by our solution

(4.19) and as visible from Fig. 3 (similarly from solution (4.12) and Fig. 2), shows a

distinct directional preference and an asymmetry between the two space variables x, y,

(similar to the report of [62, 73]). The maximum amplitude attained by the full grown

RW (as shown in Fig 3c) is five-times that of the background waves, due to our choice

c = 1/6. Examples of other amplitudes and modular inclination of full grown RWs for

some other choices of the free parameters c and α, as modelled by the static solution

(4.12), are presented already in Fig. 2 (a-d).
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(a) At t = th = −0.83 : creation of two dimensional hole at the centre.

(b) At t=-0.40: the hole splits into two, which are drifting away from the centre.
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(c) At t = 0.0 : The full grown RW corresponds also to the static lump soliton (4.12), as

shown in fig 4d.
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FIG.3: Snap shots of a two dimensional RW with two dimensional holes during its forma-

tion in different times, described by the modulus |qP (2D)(x, y, t)| of the dynamical lump

soliton 4.19 with parameter values c = 1/6, α = 1.2, µ = 1.2 at three crucial moments of

time.

4.4 Physical origin of the proposed 2D NLS equation

and its integrability

We have shown that the 2D NLS equation (4.8) which is equivalent to nonlinear equa-

tion (4.7) can give an exact model, considerably successful in describing realistic 2D rogue

waves. In this section we show the direct link of the 2D NLS equation with basic hydrody-

namic equations. Moreover we show the underlying integrable structures of the proposed

equation.

4.4.1 Derivation of the integrable 2D NLS equation from basic

hydrodynamic equations

For emphasizing the physical significance of our main nonlinear integrable equation (4.8),

on which the ocean rogue wave model is based, we show its direct link with basic hydro-

dynamic equations. The procedure is based on the asymptotic multi-scale expansion, at

par with the celebrated equations like KdV, NLS etc [105, 123], though one should include

here an extra space dimension with an asymmetric scaling in space variables, considering

the perturbative expansion to the next higher order. This is consistent however with the

modelling of an ocean rogue wave, which is a surface phenomena with a likely broken

space symmetry and directional preference [67]. Before entering into the detailed calcu-

lation, three dimensionless entities: ǫ = a
h0

, δ = h0

λx
and µ = λx

λy
are defined where a is the
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maximum amplitude, h0 is the constant water depth, λx and λy are the wavelengths of

the surface wave along longitudinal and transverse directions. The nonlinear parameter ǫ

is responsible for the slow evolution of a harmonic wave of wavenumber kx, ky. The wave

is thus slowly modulated as ǫ tends to 0 and therefore this small parameter can be used

for perturbative expansion. Smallness of ǫ is consistent with the deep water limit with

a << h0 and hence with the formation of oceanic rogue waves. Note that parameters ǫ

and δ are similar to those appearing in the derivation of the well known 1D NLS equation,

with ǫ small and δ without any restriction since h0 and λx both are large quantities for

deep water and long wavelength limit, as also true in our case. However, an additional

parameter µ, also without any restriction on its value appears in our 2D case, due to the

presence of an additional transverse direction.

The first step in the derivation is to write the basic hydrodynamic equations for invis-

cid, irrotational and incompressible fluid in dimensionless variables,

for the velocity potential field φ(t, x, y) and the gravity wave η(t, x, y) as the free

surface displacement above the mean water depth h0 in the form

φzz + δ2(φxx + µ2φyy) = 0, (4.22)

at 0 < z < 1 + ǫη, which comes from continuity equation. The equation

φz = δ2[ηt + ǫ(φxηx + µ2φyηy)], (4.23)

called kinematic condition, is valid on z = 1 + ǫη. The equation

φt + η +
1

2
ǫ[
φ2
z

δ2
+ φ2

x + µ2φ2
y] = 0 (4.24)
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is also another free surface boundary condition valid at z = 1 + ǫη, while

φz = 0 (4.25)

is the fixed boundary condition valid at z = 0, i.e. at the bottom.

We introduce new variables with different scaling through ǫ as

ξ = kxx+ kyy − ωt, ζ = ǫ(x−Mxt), Y = ǫ2y, τ = ǫ3t, (4.26)

where ω, Mx are frequency and velocity parameters to be determined later. Note, that

the two space variables are treated with a non-symmetric scaling and using these set of

variables, equations (4.22 -4.25) become

φzz + δ2(k2xφξξ + ǫ2φζζ + 2ǫkxφζξ) + µ2δ2(k2yφξξ + ǫ4φY Y + 2ǫ2kyφY ξ) = 0 (4.27)

φz = δ2[−ωηξ − ǫMxηζ + ǫ3ητ ] + ǫδ2(kxφξ + ǫφζ)(kxηξ + ǫηζ) +

µ2ǫδ2(kyφξ + ǫ2φY )(kyηξ + ǫ2ηY ) (4.28)

and

[−ωφξ − ǫMxφζ + ǫ3φτ ] + η + (
ǫ

2δ2
)φ2

z +
ǫ

2
(kxφξ + ǫφζ)

2 +
µ2ǫ

2
(kyφξ + ǫ2φY )

2 = 0(4.29)

both valid at z = 1 + ǫη, while

φz = 0, at z = 0. (4.30)

Seeking asymptotic solution of these equations in the series form

φ =

∞∑

n=0

ǫnφn(ξ, ζ, Y, τ, z), η =

∞∑

n=0

ǫnηn(ξ, ζ, Y, τ) (4.31)
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and using this expansion of dependent variables along with the scaled independent vari-

ables, different sets of equations are obtained from the basic set (4.27)-(4.30) at different

powers of ǫ. In each ǫ order different equations are obtained for various powers of E and

E∗. We would consider these equations sequentially at each order of parameter ǫ.

1) ǫ0 order : The solution of interest in this case takes the form

φ0 = f0 + F0E + F ∗
0E

∗, η = A0E + A∗
0E

∗, (4.32)

where F0(ζ, Y, τ, z) , A0(ζ, Y, τ) are complex functions with F ∗
0 , A

∗
0 as complex conjugates,

while f0(ζ, Y, τ) is a real function and E = exp(iξ).

Using (4.27) and (4.30), F0, can be determined as

F0 = G0 cosh (δK1z), where G0 =
−iA0ωδ

K1 sinh (δK1)
, K1 =

√
k2x + µ2k2y . (4.33)

Using other two nonlinear boundary conditions (4.28), (4.29) we obtain the dispersion

relation ω2 = K1

δ
tanh (δK1)

2) ǫ order : Expanding φn, ηn as

φn =
n+1∑

m=0

FnmE
m + c.c, ηn =

n+1∑

m=0

AnmE
m + c.c, (4.34)

where Fnm(ζ, Y, τ, z) and Anm(ζ, Y, τ) are to be determined for various powers of E, at

each powers of ǫ .

At ǫ order ,the components F10, F11, F12, A10, A11, A12 and the velocity parameter Mx

are determined from the equations corresponding to E, E2 and E0, explicit forms of which

are appended in A1.

3) ǫ2 order: At this order a NLS type equation (Space coordinate Y replacing the

time coordinate) is obtained, collecting the coefficients of E from (4.28), (4.29) and by

using the quantities, already determined. Before calculating the final form of this equation
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some other components namely F21, F20, f0ζ at this order need to be evaluated, which are

given in the appendix A2.

The final form of the NLS like equation is obtained eliminating the unknown terms

and expressing other terms through the single function A0 as

iα1A0Y + α2A0ζζ + β2|A0|2A0 = 0, (4.35)

where the constant coefficients α1, α2 and β2 are also given in appendix A22

Following the same procedure the components F22,A22, A20,f0Y are determined ,which

we are not furnishing here due to their cumbersome expressions.

4) ǫ3 order: In this order an evolution equation is obtained, for which some relevant

components i.e. F31,F30 etc, are also determined by continuing with the same procedure.

The explicit forms of these coefficients presented in A3.

The evolution equation obtained by using equation (4.28), (4.29) and collecting coef-

ficients of E takes the form

iaA0τ + α31A0ζY + iβ̄32A
2
0A

∗
0ζ + iβ̄31|A0|2A0ζ + ieG∗

11A
2
0 + ifG11|A0|2 +

iα32A0ζζζ = 0, (4.36)

where a, α31, β̄32, β̄31, e, f, α32 are real constants dependent on parameters kx, ky, µ, δ.

If it is assumed, that the term G11 depends also on A0 like the other terms as F0 ∼ A0

and G12, A12 ∼ A2
0 etc. (see Appendix) , then the only consistent relation would be

G11 = P1A0ζ , where P1 is a real constant, dependent only on kx, ky, µ, δ. Using this

relation in (4.36) one simplifies it in the form

iaA0τ + α31A0ζY + iα32A0ζζζ + i(β31|A0|2A0ζ + β32A
2
0A

∗
0ζ) = 0, (4.37)

where β31, β32, are another set of constant coefficients expressed through earlier coef-
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ficients. Notice that the above equation (4.37) is similar to but not the same as our

integrable 2D NLS equation due to the appearance of the term iα32A0ζζζ . However fortu-

nately we have another equation (4.35) at our disposal, obtained at a lower order. Taking

derivative of (4.35) with respect to ζ we derive the relation

iα2A0ζζζ = α1A0ζY − iβ2(|A0|2A0)ζ (4.38)

using which we can eliminate this unwanted term from (4.37) to obtain an equation in

the form

iC0A0τ + C1A0ζY + iC2A0(A0A
∗
0ζ −A∗

0A0ζ) = 0, (4.39)

under the condition on the coefficients of the original equation as

β2
α2

=
(β32 + β31)

3α32

(4.40)

Rescaling ζ , Y and τ and renaming A0 equation (4.39) goes directly to the 2D NLS

equation (4.8), which is equivalent to (4.7) proposed by us. Note that constraint (4.40), we

have to impose for deriving our integrable 2D NLS equation from the basic hydrodynamic

equations, though does not hold for general water wave problems, this loss of generality

is compensated for by the gain of our important exact results. This in general is true for

all integrable models.

4.4.2 Integrable structures of the proposed equation:

We present here the associated integrability properties of equation (4.8). The one-

soliton solution of this equation is given in the form qs(2d)(x, y, t) = sechκ(y + ρx −

vt)ei(k1x+k2y+ωt), while allowing also higher soliton solutions(given in the next chapter in

details) and infinite set of conserved quantities . One can also find the associated linear
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system

Φy = U(λ)Φ,Φt = V (λ)Φ,

with a Lax pair given by

U(λ) ≡ V2(λ) = 2λV1(λ) + V
(0)
2 , V (λ) ≡ V3(λ) = 2λV2(λ) + V

(0)
3 (4.41)

where

V1(λ) = i(λσ3 + U (0)), V
(0)
2 = σ3(U (0)

x − iU (0)2)

V
(0)
3 = −σ3U (0)

y − [U (0), U (0)
x ], U (0) = qσ+ + q∗σ−, (4.42)

with σa, a = ±, 3, Pauli matrices, the flatness condition: Ut − Vy + [U, V ] = 0, of which

generates our 2D NLS equation (4.8). Note that unlike the known Lax pair of the 1D

NLS, the pair U(λ), V (λ) associated to our system have higher order dependence on the

spectral parameter λ. It is not difficult to show, that the flatness condition yields from

(4.42) different relations at different powers of λ. The equation linked to the λ corresponds

to our (2 + 1)-dimensional NLS equation (4.8), while the relation with λ0 gives another

intriguing nonlinear equation

iqxt + qyy + 2i|q|2qy + 2qx(qq
∗
x − q∗qx) = 0. (4.43)

Our main concern here however is the 2D NLS equation (4.8), which we intend to use

for constructing a 2D rogue wave model. Note however, the modification of (4.8) by the

addition of the current term as considered in the Sect. 3 though yields exact analytic RW

solution no longer remains integrable in the sense described here.

Systems with infinite degrees of freedom like the 2D-NLS equation (4.8), when inte-

grable, should have infinite set of independent conserved quantities. We generate here
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the related infinite set of conserved charges Cn, n = 1, 2, . . . in the explicit form, demon-

strating again an important feature of the 2D NLS equation linked to its integrability.

In analogy with the 1D NLS equation we start from the linear system , but use now

the Lax equation along the y-direction: Φy = U(λ)Φ. Note, that for the wave function

Φ(λ, y) = (φ, φ̃), the component

φ(y, λ) = e
∫ y

−∞
ρ(λ,y′)dy′ ,

with
∫ +∞
−∞ dy′ρ(λ, y′) =

∑∞
n=1Cnλ

−n acts as a generator of the conserved quantities,

yielding

lnφ(y = ∞, λ) =

∞∑

n=1

Cnλ
−n.

Therefore using U(λ) as in (4.41) or in more explicit form in the Lax equation Φy = U(λ)Φ,

we can build systematically the infinite set of conserved charges: Cn, n = 1, 2, . . . through

a recurrence relation giving

C1 = i

∫
dy(q∗qx − q∗xq), C2 =

∫
dy(i

1

2
(q∗yq − q∗qy) + q∗xqx + |q|4), C3 =

∫
dy(q∗yqx + q∗xqy),

C4 =

∫
dy

(
iq∗xyqx + q∗yqy − i|q|2(q∗qy − q∗yq)− 2|q|2 q∗xqx + (q∗2q2x + q∗x

2q2)
)
, (4.44)

and so on. We note the involvement of both the space-variables x, y in this series of

independent conserved quantities, which also gives another strong argument in favor of

the integrability of the 2D nonlinear equation (4.8). Taking these conserved quantities as

Hamiltonians H ≡ Cn we can generate the integrable hierarchy for this 2D NLS equation.

4.5 Summary

We conclude by listing a few distinguishing features of our proposed dynamical lump

soliton (4.19), which are important for a realistic ocean RW model.
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1) This is the first 2D dynamical deep water RW model given in an analytic form.

2) It is a 2D extension of Peregrine like soliton, representing an exact lump solution

linked to a novel (2 + 1)-dimensional integrable NLS equation, derivable from the basic

hydrodynamic equations.

3) The dynamics of the RW solution is induced by a ocean current term and controlled

by it. Importance of the current in the formation of RW is strongly emphasized [66, 62],

though perhaps for the first time this effect in 2D is attempted to be analyzed analytically

in our model.

4) Both the height and the inclination of the single peak RW are adjustable by two

independent free parameters present of our model.

5) The fastness of appearance of the RW and the duration of its stay can be regulated

by yet another parameter linked to the ocean current.

6) The proposed solution and MI exhibit broken spatial symmetry as well as a direc-

tional preference, which are suspected to be the crucial features in the formation of a 2D

RW [66, 67, 74, 75]. Note again that these features obtained earlier through observation

or numerical simulation, found and confirmed in our model through exact analytic result.

7) Strange appearance (and disappearance) of a 2D hole just before (and after) the

formation of the rogue wave [75, 84, 83] is also confirmed in our model, graphically as

well as by analytic findings.

In comparison the original Peregrine soliton (4.2) (together with its higher order so-

lutions), by far the most popular model of the rogue wave, does not exhibit most of these

essential properties, due to its inherently one-dimensional nature and absence of free pa-

rameters. Therefore, while the class of Peregrine solitons are successful in modelling 1D

rogue wave like structures observed in many experiments, the two-dimensional rogue wave

model reported here should complement it, to stand close to a realistic model for ocean

surface rogue waves. We hope that, this breakthrough in describing large ocean RWs

by an analytic dynamical lump-soliton with adjustable height, inclination and duration

120



would also be valuable for experimental findings of two-dimensional RWs in other sys-

tems like capillary fluid waves [69] optical cavity waves [67] and basin water waves [66].

Derivation of our exact lump soliton from the breather solution of the integrable 2D NLS

equation presented here, in a systematic way as well as to find higher order rational lump

solutions would be challenging theoretical problems.

We can conclude by stating the fact that, the new two dimensional equation which we

have introduced (4.8) demands its applications like other integrable equations as KdV,

NLS, KP, DS to other physical systems like plasma, Bose-Einstein condensates etc. Since

the equation (4.8) is an integrable two dimensional extension of NLS equation its various

integrable properties might be interesting in explaining various physical properties of those

systems. Motivated by this fact we will derive and establish this 2D-NLS equation in the

propagation of an ion acoustic wave in lossless magnetized plasma of cold ions and hot

electrons in the next chapter and its various physical properties will be explored.

4.6 Appendix:

A1: Coefficients appearing in order ǫ :

F10 = G10(ζ, Y, τ), A10 =Mxf0ζ − 2δK1

sinh (2δK1)
|A0|2

F12 = G12 cosh (2δK1z), where G12 =
−3iωδ2

4 sinh4 (δK1)
A2

0,

A12 =
δK1 cosh (δK1)
2[sinh (δK1)]3

[1 + 2 cosh2(δK1)]A
2
0

F11 = G11 cosh (δK1z)− iδkx
K1
G0ζz sinh (δK1z),
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A11 = iω[G11 cosh (δK1)− iδkx
K1
G0ζ sinh (δK1)] +Mx[G0ζ cosh (δK1)]

The velocity parameter: Mx = ωkx
2K2

1
[1 + 2δK1

sinh (2δK1)
]

A2: Coefficients appearing in order ǫ2 :

F21 = G21 cosh (δK1z)− iδkx
K1
G11ζz sinh (δK1z)− iδky

K1
µ2G0Y z sinh (δK1z) +

G0ζζ[(− δ
2K1

)z sinh (δK1z) + ( δk2x
2K3

1
)z sinh (δK1z)− ( δ

2k2x
2K2

1
)z2 cosh (δK1z)],

f0ζ =
1

(1−M2
x)
[− 2MxδK1

sinh(2δK1)
− 2ωδkx coth (δK1)

K1
]|A0|2,

F20 = −δ2f0ζζ z
2

2
+G10(ζ, Y, τ),

α1 = −kyµ2 tanh (K1δ)
[2K1δ+sinh (2K1δ)]

2ω3 cosh2 (K1δ)
,

α2 =
δ

2ωK3
1
[K3

1δ{2M2
x − 1

cosh2 (K1δ)
}−K2

1 tanh (K1δ) + k2x tanh (K1δ) + 4K1kxMxδ
3ω3 −

K1k
2
xδ{1 + tanh2 (K1δ)}],

β2 = − δ2

ω(1−M2
x)
[4k2x+K1δ

1
sinh (2K1δ)

{K2
1((−1+M2

x)(8+cosh (4K1δ)
1

sinh2 (K1δ)
+2 1

cosh2 (K1δ)
)+

8kxMxω}]

A3: Coefficients appearing in order ǫ3 :

F30 = −δ2F10ζζ
z2

2
+G30(ζ, Y, τ), (4.45)
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F31 = G31 cosh (δK1z) +G21ζ{(−iδkx
K1

)z sinh (δK1z)}+G11ζζ{( iδkxK1
)2 z

2

2
cosh (δK1z)−

( iδkx
K1

)2( z
2δK1

) sinh (δK1z)− ( δ
2K1

)z sinh (δK1z)}+ ( iδkx
K1

)G0ζζζ{( δ
2K1

)(z2/2) cosh (δK1z)

− ( δ
2K1

)( z
2δK1

) sinh (δK1z)− ( δk2x
2K3

1
) z

2

2
cosh (δK1z) +

δk2x
2K3

1
(z/2δK1) sinh (δK1z) +

( δ
2K1

) z
2

2
cosh (δK1z)− ( δ

2K1
)( z

2δK1
) sinh (δK1z) +

δ2k2x
2K2

1

z3

3
sinh (δK1z)−

δ2k2x
2K2

1
(z2/2δK1) cosh (δK1z)+

δ2k2x
2K2

1
(z/2δ2K2

1) sinh (δK1z)}+G0ζY (
iδkx
K1

)( iδky
K1

)[µ2z2 cosh (δK1z)−

µ2 sinh (δK1z)(
z

δK1
) +G11Y [−( iδky

K1
)µ2z sinh (δK1z)]
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Chapter 5

A new (2+1) dimensional integrable

evolution equation for an ion

acoustic wave in a magnetized

plasma

5.1 Introduction

In the previous chapter, we have introduced a new (2+1) dimensional completely inte-

grable nonlinear evolution equation for modelling oceanic rogue wave phenomena. Since

this equation can be regarded as the integrable generalization of the (2+1) dimensional

Nonlinear Schrodinger Equation (NLSE), it demands applications like the other integrable

models, to the various physical systems. Motivated by this fact we shall try to develop

this new (2+1) dimensional integrable NLSE in the propagation of modulated ion acous-

tic wave packet in the lossless magnetized plasma system consisting of cold ions and hot

isothermal electrons. Now before entering into the main subject it is necessary to mention

the importance of the integrable models in explaining the nonlinear plasma systems.
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Active research on nonlinear phenomena in plasma physics has grown extensively and

gained much importance over the past few decades due to failure of linear theory in

explaining phenomena related to large amplitude waves, wave- particle, wave-wave inter-

actions etc [124]. However, the complexity of the associated nonlinear partial differential

equations makes the system less well understood in most of the cases. There lies the

importance of the integrable nonlinear equations because of their rich analytical beauty

and availability of generalized mathematical techniques for solving them [125]. Washimi

and Taniuti [126] were first to derive the completely integrable Korteweg de Vries (KdV)

equation for small but finite amplitude ion acoustic solitary waves for collision less plasma

composed of cold ions and hot electrons. Since then the plasma physics community has

been actively involved in nonlinear phenomena related structures such as solitons, shocks,

instabilities, wave-wave and wave-particle interactions etc. The first experimental obser-

vation of ion acoustic soliton has been made by Ikezi et.al [128, 127]. Since then the KdV

model has been used extensively in various branches like dusty plasma[129, 130, 131], Bose

Einstein gravitationally condensed gas[132], weakly relativistic magnetized plasma[133],

non-thermal plasma[134], dense plasma with degenerate electron fluids[135] in planar as

well as nonplanar geometry[136, 137] and also in other branches. Other nonlinear equa-

tions like Boussinesq equation[127], Benjamin-Bona-Mahony (BBM) equation[138], which

are not integrable also find their applications in plasma physics. It is well known that

nonlinear wave propagation is generally subject to an amplitude modulation due to car-

rier wave self interaction resulting in a slow modulation of monochromatic plane wave

leading to the formation of an envelope soliton, which may be described by the Nonlinear

Schrödinger( NLS) equation, also a completely integrable system. This equation is also

investigated extensively in various areas of plasma systems like dusty plasma[139, 140],

multicomponent plasma[141], in explaining rogue waves[140, 142, 143], relativistic laser

plasma interactions[144] and various other fields. Peregrine soliton of NLS equation which

is used to describe rogue waves is experimentally observed in a multicomponent plasma
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with negative ions[145]. A complex Ginzberg-Landau equation is derived in compressional

dispersive Alfvenic waves in a collisional magnetoplasma[143] which reduces to standard

NLS equation in a collisionless plasma. The discussed equations are all (1+1) dimen-

sional, but in practical circumstances the waves observed in laboratory and space are

certainly not bounded in one dimension. Franz[146] et.al have shown that a purely 1D

model cannot account for the observed features in the auroral region, especially at higher

polar altitudes. The best known 2D generalization of KdV equation are Kadomtsev-

Petviashvili (KP) equation and Zakharov- Kuznetsov(ZK) equation. A completely inte-

grable generalization of the KdV equation is the KP equation [119] which has also been

used in various branches of plasma such as inhomogeneous plasma with finite temperature

drifting ions[147], ultracold quantum magnetospheric plasma[148], electron positron ion

plasma [149] and also in other areas. The stability of their solutions under transverse

perturbations was also studied [150, 148]. The ZK equation [97] which is more isotropic

in transverse direction was first derived for describing weakly nonlinear ion acoustic waves

in strongly magnetized lossless plasma in 2D[152]. It was also reported that this equa-

tion is not integrable under inverse scattering method[153, 154] and till date only three

polynomial conservation laws have been given [155, 156]. This equation was also explored

vastly in the last few decades [160, 159, 158, 157] and higher dimensional solitons were

derived [162, 161]. A 2D generalization of NLS equation is DS equation which was also

derived for electrostatic ion waves [163], electron acoustic wave [164], space and laboratory

dusty plasma [165], and in cylindrical geometry [166]. For special choice of coefficients DS

equation converges to DS1 equation which is analytically integrable and admits dromion

solutions with localized structure in higher dimensions [164, 163, 165, 167, 168]. But in

case of DS1 equation additional fields are coupled in the interacting term which could

be related to the basic fields only through nonlocal transformations. Hence due to the

presence of a few integrable equations (both in 1D and 2D) in plasma systems, there is

always a requirement for the discovery of new integrable equations (specially in 2D).
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In this work we have derived a completely integrable (2+1) dimensional nonlinear

evolution equation in lossless magnetized plasma with asymmetric scaling on transverse

variable. This equation involving only local interactions of dependent variables was de-

rived earlier in hydrodynamic system [169] in explaining oceanic RW phenomena . The

2D generalizations of NLS equation available in the literature involve either nonlocal in-

teractions, or are non-integrable, whereas the equation presented here is the completely

integrable, local, (2+1) dimensional generalization of NLS equation which however pos-

sesses many properties similar to (1+1) dimensional NLS equation.

5.2 Derivation of (2+1) dimensional integrable equa-

tion for electrostatic waves propagating in a mag-

netized plasma

A new (2+1) dimensional integrable evolution equation for the propagation of nonlinear

ion acoustic waves in magnetized plasma is derived in this section. We consider the

propagation of electrostatic waves in a magnetized plasma with the magnetic field B =

B0êz, where B0 is a constant. For situations where plasma pressure is much smaller

than the magnetic pressure, plasma wave excitation is in general electrostatic. The focus

is on a plasma composed of two components, ions and electrons that are described by

fluid equations under collision-free conditions in the cartesian coordinates, which include

conservation of mass and momentum together with Poisson’s equation given by

∂n

∂t
+
−→▽· (n−→v ) = 0,

∂−→v
∂t

+(−→v ·−→▽)−→v +
−→▽φ−α(−→v ×−→

b ) = 0, ▽2φ = ne−n, ne = exp(φ)

(5.1)

where ne, n, v, B, φ are electron, ion number densities and ion fluid velocity, magnetic
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field and electrostatic potential respectively and α is a dimensionless parameter given by

ωci/ωpi. For convenience, we have used the following normalization resulting in dimen-

sionless parameters: electron and ion densities normalized by n0, coordinates by electron

Debye length λDe = vte/ωpe, fluid velocity by the acoustic speed cs =
√
kBTe/mi; time

by ion plasma period ω−1
pi , and magnetic field B by B0 = meωpi/e, where vte, ωpe, ωpi, ωci

are the electron thermal velocity, electron and ion plasma frequencies and ion cyclotron

frequency respectively.

In the above equations, the ions are assumed to be cold and on the slow ion time scale,

the electrons are assumed to be in local thermodynamic equilibrium. When the electron

inertia is neglected, the electrons can be considered to follow a Boltzmann distribution if

the propagation vector has a small component along the magnetic field, such that the angle

χ between the wave vector normal to the magnetic field and the wave vector is larger than
√
meTi/miTe, so that as a special case we can take kz → 0. This enables us to consider

propagation perpendicular to the magnetic field with the wave vector k = (kx, ky, 0). The

linear propagation of electrostatic ion cyclotron waves propagating perpendicular to the

magnetic field is governed by the dispersion relation

ω2 = k2c2s/(1 + k2λ2De) + ω2
ci

where k2 = k2x + k2y.

In order to derive the nonlinear evolution equation governing the propagation of the

electrostatic ion cyclotron waves, we assume perturbation of the form ∼ exp[i(
−→
k · −→r - ω

t)], and adopt the reductive perturbation expansion technique. All the physical quantities

are expanded about their equilibrium values as-

n = 1 +
∞∑

m=1

ǫm
m∑

l=−m

n
(m)
l exp[il(

−→
k · −→r − ωt)] (5.2)
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φ =

∞∑

m=1

ǫm
m∑

l=−m

φ
(m)
l exp[il(

−→
k · −→r − ωt)] (5.3)

vj =

∞∑

m=1

ǫm
m∑

l=−m

v
(m)
jl exp[il(

−→
k · −→r − ωt)] (5.4)

where j denotes the x and y components of ion velocities. We have introduced the

following stretched variables with asymmetric scaling on transverse direction as

ξ = ǫ(x−Mxt), η = ǫ2y, τ = ǫ3t (5.5)

where Mx is the group velocity in the x axis. The scaling used here is different from

the scaling involved in the derivation of Davey-Stewartson equation that has a symmetric

dependence on all the space variables. The stretching in this case is asymmetric with

respect to one of the space variables. Such a situation may arise in some experimental

scenario where there is a possibility of weak dependence in one of the directions.

Transforming all independent variables by equation (5.5), we expand equations (5.1)

and carry out a systematic balancing of terms at each order of ǫ. The coefficients appearing

at different orders are all given at the appendix.

At ǫ : l = 1 order we get

φ1 = K1n
(1)
1 , v

(1)
x1 = A

(1)
1 n

(1)
1 , v

(1)
y1 = B

(1)
1 n

(1)
1 (5.6)

Combining the above expressions leads to the linear dispersion relation for the ion

acoustic wave-

ω2 = |k|2K1 + α2, K1 = 1/(1 + | k |2) (5.7)

Similiarly at ǫ2 : l = 0; we get,

v
(2)
x0 = A

(2)
0 |n1|2, v

(2)
y0 = B

(2)
0 |n1|2, φ

(2)
0 = −K2

1 |n
(1)
1 |2 + n

(2)
0 (5.8)
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At ǫ2 : l = 1; we obtain,

φ
(2)
1 = K1n

(2)
1 + 2ikxK

2
1

∂n
(1)
1

∂ξ
, v

(2)
x1 = A

(2)
1 n

(2)
1 +B

(2)
1

∂n
(1)
1

∂ξ
, v

(2)
y1 = C

(2)
1 n

(2)
1 +D

(2)
1

∂n
(1)
1

∂ξ

(5.9)

The group velocity along x axis, Mx, can be found out from this order of calculation

as

Mx =
(A

(1)
1 (ω2 − α2) + kxK1ω − iK1kyα− 2K2

1kxω|k|2

(−α2 + ω2 + iB
(1)
1 kxα + A

(1)
1 kxω − iA

(1)
1 kyα +B

(1)
1 kyω)

(5.10)

At ǫ2 : l = 2;

φ
(2)
2 = D

(2)
2 (n

(1)
1 )2, v

(2)
x2 = A

(2)
2 (n

(1)
1 )2, v

(2)
y2 = B

(2)
2 (n

(1)
1 )2, n

(2)
2 = C

(2)
2 (n

(1)
1 )2 (5.11)

At ǫ3 : l = 1; order, an NLS-type equation (space co-ordinate η replacing the time

co-ordinate) is obtained as-

iA
(3)
1

∂n
(1)
1

∂η
+B

(3)
1

∂2n
(1)
1

∂ξ2
+ C

(3)
1 |n(1)

1 |2n(1)
1 = 0 (5.12)

The above space-type NLS equation has resulted because in the present work, we have

scaled the transverse variable y in the same way as time is scaled in the derivation of NLS

equation.

At ǫ3 : l = 0; order we find n
(2)
0 = 0 since n → 0 as ξ → ∞. The other quantities

determined are-

v
(3)
x0 = A

(3)
0 n

(1)∗
1

∂n
(1)
1

∂ξ
+B

(3)
0 n

(1)
1

∂n
(1)∗
1

∂ξ
+ C

(3)
0 n

(1)∗
1 n

(2)
1 + C

(3)
0 n

(1)
1 n

(2)∗
1 (5.13)

v
(3)
y0 = E

(3)
0 n

(1)∗
1

∂n
(1)
1

∂ξ
+ F

(3)
0 n

(1)
1

∂n
(1)∗
1

∂ξ
+G

(3)
0 n

(1)∗
1 n

(2)
1 +H

(3)
0 n

(1)
1 n

(2)∗
1 (5.14)
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n
(3)
0 = I

(3)
0 n

(1)∗
1

∂n
(1)
1

∂ξ
+ J

(3)
0 n

(1)
1

∂n
(1)∗
1

∂ξ
+K

(3)
0 n

(1)∗
1 n

(2)
1 + L

(3)
0 n

(1)
1 n

(2)∗
1 (5.15)

φ
(3)
0 =M

(3)
0 n

(1)∗
1

∂n
(1)
1

∂ξ
+ P

(3)
0 n

(1)
1

∂n
(1)∗
1

∂ξ
+N

(3)
0 n

(1)∗
1 n

(2)
1 +Q

(3)
0 n

(1)
1 n

(2)∗
1 (5.16)

Detailed mathematical forms of all the coefficients occurring in the above equations

are given in the Appendix. Similarly the ǫ3 : l = 2; order quantities like v
(3)
x2 , v

(3)
y2 etc can

be determined by the same procedure but the exact expressions cannot be given in view

of their extreme cumbersome nature.

Finally at ǫ4 : l = 1; order a two dimensional evolution equation is obtained in the

form

iA
(4)
1

∂n
(1)
1

∂τ
+B

(4)
1

∂2n
(1)
1

∂ξ∂η
+ iC

(4)
1

∂3n
(1)
1

∂ξ3
+ iD

(4)
1 (n

(1)
1 )2

∂n
(1)∗
1

∂ξ
+ iE

(4)
1 |n(1)

1 |2∂n
(1)
1

∂ξ

+F
(4)
1 |n(1)

1 |2n(2)
1 +G

(4)
1 (n

(1)
1 )2n

(2)∗
1 + iH

(4)
1

∂n
(2)
1

∂η
+ I

(4)
1

∂2n
(2)
1

∂ξ2
= 0 (5.17)

where the coefficients A
(4)
1 - I

(4)
1 , which are real constants dependent on parameters

kx, ky and α, are too cumbersome to be expressed in an explicit form. This is a general

two dimensional non-integrable equation of two dependent variables n
(1)
1 and n

(2)
1 . If it

is assumed that the term n
(2)
1 depends on n

(1)
1 like the other terms as v

(1)
x1 , v

(1)
y1 ∼ n

(1)
1 ,

v
(2)
x2 , v

(2)
y2 , n

(2)
2 ∼ (n

(1)
1 )2 etc, then the only possible consistent relation between n

(1)
1 and n

(2)
1

would be n
(2)
1 ∼ ∂n

(1)
1

∂ξ
. Hence we consider n

(2)
1 = iP1

∂n
(1)
1

∂ξ
where P1 is a constant dependent

on kx, ky, α. Now using (5.12) in (5.17) we see that the general nonintegrable equation

(5.17) turns into the form

iC0
∂n

(1)
1

∂τ
+ C1

∂2n
(1)
1

∂ξ∂η
+ 2iC2n

(1)
1 (n

(1)
1

∂n
(1)∗
1

∂ξ
− n

(1)∗
1

∂n
(1)
1

∂ξ
) = 0 (5.18)
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for the choice of the constant

P1 =
[
3C

(3)
1 C

(4)
1

B
(3)
1

−D
(4)
1 − E

(4)
1 ]

[F
(4)
1 −G

(4)
1 − 3I

(4)
1 C

(3)
1

B
(3)
1

]
(5.19)

where C0, C1, C2 depends on the parameters kx, ky, α. In case of the multidimensional

extension of modulated ion acoustic wave by Nishinari[163], general multidimensional

coupled equations were obtained which were converted to the integrable DS1 equation

for the specific choice (kx → 0, α1α2 > 0 and all the variables independent of ζ [163]).

Similarly, in our case, for the specific choice of P1 as given in (5.19), the general nonlinear

nonintegrable equation becomes completely integrable (5.18). As the explicit representa-

tion of the coefficients C0, C1 and C2 are too cumbersome, we will show their behavior

graphically. In Figure (5.1), we plot the variation of the coefficients C0, C1 and C2 with

α for kx = 1, ky = 1.

Now rescaling the variables τ, ξ and η in (5.18) we get

i
∂n

(1)
1

∂t
+
∂2n

(1)
1

∂x∂y
+ 2in

(1)
1 (n

(1)
1

∂n
(1)∗
1

∂x
− n

(1)∗
1

∂n
(1)
1

∂x
) = 0 (5.20)

and renaming n
(1)
1 as u it gives

iut + uxy + 2iu(uu∗x − u∗ux) = 0 (5.21)

which is our new (2+1) dimensional completely integrable evolution equation that has

been obtained at a higher perturbation order compared to the NLS equation, hence ex-

pected to address weaker effects. Similar equation was derived in the context of water

waves[169] in order to model oceanic rogue waves. It has structural similarity with the

NLS equation, where the nonlinearity comes from the ponderomotive force that depends

on the square of modulus and not on the phase of u. The present equation(5.21) has

132



a.

0.5 1.0 1.5 2.0
Α

-8

-6

-4

-2

C0

b. 0.5 1.0 1.5 2.0
Α

0.2

0.4

0.6

0.8

1.0

1.2
C1

c.

0.5 1.0 1.5 2.0
Α

-1.4
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2

C2

Figure 5.1: Variation of coefficients C0, C1, C2 with α

slightly different characteristics, with the nonlinear potential dependent on the square of

modulus of the wave profile as well as on the x-derivative of phase. The dispersive term,

is a cross derivative term dependent on both longitudinal and transverse directions.

The study of propagation of modulated ion acoustic waves in the presence of a magnetic

field has been extensively done using the NLS equation that restricts the study to one

dimension. A multidimensional generalization of the NLS equation for a modulated ion

acoustic wave packet propagating in a magnetized plasma leads to the Davey Stewartson

equation [163, 165]. However, since all the spatial directions are scaled symmetrically, this

equation certainly does not describe weak transverse propagation. In the long wave length
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regime, the KP equation is well known to describe the propagation of such waves when

weak transverse perturbation is considered [147, 150, 148]. In an effort to obtain a 2D

extension with weak transverse dependence of modulated ion wave packets propagating in

a magnetized plasma, we obtain an asymmetric (2+1) dimensional novel equation(5.21)

along with a space-like NLS equation (5.12). Hence, we observe that our equation has

resemblance to the KP equation from the point of weak transverse propagation, and to

the DS equation from its modulated structure. In case of DS or KP, the system reduces

to NLS or KdV equation respectively when the transverse coordinate is neglected, but the

present equation given in (5.21) does not reduce to the standard NLS equation in such

limit, indicating its distinctive asymmetric nature.

Being a completely integrable system, equation (5.21) possesses Lax pair, infinite

number of conserved quantities, higher soliton solutions etc some of which are discussed

in the previous chapter. In the following section we shall derive its higher soliton solutions

using Hirota bilinearisation procedure and explore its various features.

5.3 Soliton solutions

In this section we will elaborately discuss its multisoliton solutions, which can be derived

by many methods e.g, inverse scattering transform, Hirota method and various dressing

methods. The IST method is more powerful (it can handle general, initial conditions)

and at the same time more complicated. But, if one just wants to find soliton solutions,

Hirota’s method is fastest in producing results [27, 125]. Hence, following the method,

we use the bilinearizing transformation given by

u(x, y, t) =
G(x, y, t)

F (x, y, t)
, (5.22)
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where G(x, y, t) and F (x, y, t) are complex and real functions respectively. Using (5.21)

one derives a pair of bilinear equations:

i(FGt−GFt)+(FGxy+GFxy−GxFy−GyFx) = 0, 2i(GG∗
x−G∗Gx)+2(FxFy−FFxy) = 0.

(5.23)

Multisoliton solutions are obtained by finite perturbation expansions as

F = 1 + ǫ20F2 + ǫ40F4 + · · · , G = ǫ0G1 + ǫ30G3 + · · · , (5.24)

where ǫ0 is formal expansion parameter need not to be small. Collecting like powers

of ǫ0, we obtain the following series of equations:

(ǫ0) : iG1t +G1xy = 0 (5.25)

O(ǫ20) : 2F2xy = 2i[G1G
∗
1x −G∗

1G1x] (5.26)

O(ǫ30) : iG3t+G3xy = i[G1F2t−F2G1t]− [F2G1xy+G1F2xy−G1xF2y−G1yF2x] = 0 (5.27)

O(ǫ40) : 2F4xy = 2i[G3G
∗
1x +G1G

∗
3x −G∗

3G1x −G∗
1G3x] + 2[F2xF2y − F2F2xy] (5.28)

and similarly higher order equations.

5.3.1 1-soliton

To construct 1-soliton solution for (5.21) we assume the ansatz

G1 = eη1 , η1 = k1x+ p1y − w1t + η01 (5.29)

where k1, p1, w1, η
0
1 are complex constants. From equation (5.25) therefore one obtains the

associated dispersion relation w1 = −ik1p1, using which the equation (5.26) is solved
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easily to yield

F2 = i(k∗1 − k1)
e(η1+η∗1 )

(p1 + p∗1)(k1 + k∗1)
. (5.30)

We can verify using (5.29) and (5.30), that all higher order terms in ǫ beyond G1 and

F2 trivially vanish. Absorbing ǫ in arbitrary constant η01, we construct from (5.22) using

(5.29) and (5.30) the 1 soliton solution in the form

u(x, y, t) =
G1

1 + F2
=

eη1

1 + αe(η1+η∗1)
(5.31)

where α depends on the parameter k1, p1. One can identify the interesting 2d nature of

our equation (5.21) by making p1 = 0, then from eq. (5.30) we can see that F2 will diverge

and no soliton solution can be found. If additionally we use the dispersion relation of the

constraint equation

iuy + uxx + 2|u|2u = 0 (5.32)

which comes from (5.12) after rescaling, as p1 = −ik21, the soliton solution (5.31) simplifies

to yield the conventional form

q(x, y, t) = sechξ eiθ, with ξ = η(x+ vyy + vt), θ = (kxx+ kyy + ωt). (5.33)

A frozen picture of the modulus of our traveling soliton solution (5.33) at time t = 0

is shown in Fig.5.2.

5.3.2 2-Soliton

For obtaining 2-soliton solution we start with the standard procedure assuming

G1 = eη1 + eη2 , η1 = k1x+ p1y − w1t+ η01, η2 = k2x+ p2y − w2t + η02, (5.34)
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Figure 5.2: Modulus of 1 soliton with k1r = 1, k1i = 1, η01r = 1, η01i = −1 and at t=0

where the parameters involved are complex numbers. Applying similar dispersion relations

as earlier we get w1 = −ik1p1, w2 = −ik2p2 and obtain from (5.26)

F2 = [e(η1+η∗1+R1) + e(η2+η∗2+R2) + e(η2+η∗1+δ0) + e(η1+η∗2+δ∗0)], (5.35)

where all the constant parameters can be worked out explicitly (see Appendix ). Similarly

equation (5.27) at higher order expansion gives

G3 = e(η1+η∗1+η2+δ1) + e(η1+η∗2+η2+δ2), (5.36)

where the relevant parameter details are given in Appendix . Using further equation

(5.28) one obtains

F4 = e(η1+η∗1+η2+η∗2+R3), (5.37)

with the relevant parameters presented in Appendix. For simplifying the expressions,as

mentioned earlier, we can use the constraint equation (5.32), imposing the relations be-

tween k1 , p1 and k2 , p2 as p1 = −ik21 , p2 = −ik22 (see Appendix). Here we find again,

that the higher order terms in ǫ beyond G3 and F4 trivially vanish, leaving the exact 2-

soliton solution in the form

u(x, y, t) =
G1 +G3

1 + F2 + F4
(5.38)
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Figure 5.3: Modulus of 2 soliton with k1r = 1, k1i = 1, k2r = 2, k2i = −1, η01r = 1, η01i =
1, η02r = 1, η02i = 1 and at t=2

Here also we can see that for no transverse dependence i.e. p1 = p2 = 0, all the quantities

determined F2, G3, F4 diverges and two soliton solution cannot be found which indicates

the strict 2d nature of the equation. A graphical plot of the modulus of this solution in

(2 + 1)-dimensions, frozen at time t = 2, is shown in Fig. 5.3, where the 2-soliton as two

interacting 1-solitons is clearly seen on a 2D (x, y)-plane. Following the same procedure

the higher soliton solutions of our equation can be evaluated.

These one and two soliton solutions of (5.21) have similarities with the soliton solutions

of NLS equation with an additional transverse dependence. Since a purely 1D model

cannot account for the observed features of many physical situations, specially in auroral

region with higher polar altitudes[146] corresponding 2D model is necessary. There lies

the importance of the soliton solutions of our equation (5.21), which could be applied to

many research areas of this field.

5.4 Exact static 2D lump solution:

Localized wave structure in (2+1) dimensional systems are very important in terms the-

oretical and experimental aspects of plasma. Localized rational structure following KP-I

equation have been found by Janaki et.al in the propagation of oblique magnetosonic

wave in warm collisional plasma system[170], where the wave profile decays algebraically
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in both directions. Whereas, in case of modulated wave equation like Davey Stewartson

system, an exponentially localized solution called Dromion, which moves with time has

been found in magnetized electron acoustic wave system [164]. Our equation (5.21) which

has some similarity with both DS and KP equations, also possesses an exact localized wave

solution which has been discussed in the previous chapter in details, decaying rationally

in both spatial directions.

The static 2D rational lump solution is given by

ustatic(x, y) = exp(4iy)(
1− 4iy

c+ α1x2 + 4y2
− 1) (5.39)

where c , α1 are 2 free parameters. From this we can see that the wave attains the

maximum amplitude

Amax =
1− c

c
(5.40)

at the centre x=0, y=0 which can be controlled by c. At large distances(|x| → ∞,|y|

→ ∞) the amplitude goes to unity. The steepness of this static wave solution as observed

from the front is ∂
∂y
ustatic is related to another free parameter α1.The amplitude of the

wave falls to its minimum at x=0, y = ±y0, with y0 =
√

1−c
α1

. Hence the density gets

localized at the centre x=0,y=0 and the concentration can be controlled by the free

parameter c. This is an interesting feature because in actual physical situation the ion

density can change which need to be controlled by the free parameters. This is absent in

the (1+1) dimensional NLS system, where Peregrine breather which is used to describe

density localization in the x-t plane, have no free parameters and hence can achieve a

fixed maximum value (3 times than the background). Whereas our solution, having two

free parameters c and α1 can achieve any amplitude and steepness, relevant to the actual

physical condition.

Thus unlike the exponentially decaying dromion solution of DS1 equation, our system

(5.21) provides a rational solution in both space directions having similar structure to
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Figure 5.4: Absolute value of the solution (5.39) with c=1/6, α = 6/5

the rational solution of KP-I equation. There lies another connection of the equation

(5.21) with KP which has similar scaling and weaker dependence on transverse directions

as (5.21). Unfortunately, the time evolution of the rational solution (5.39) could not be

found which can be explored in future.

Time evolution of the rational solution of our equation (5.21) is presented in [172] by

the one-fold Darboux transformation from a non-zero seed solution.

5.5 Connection with Kadomtsev- Petviashvili (KP)

equation

It is interesting to note that the new integrable equation (5.21) together with the space

NLS equation derived in (5.12), has a deep connection with another well known (2+1)

dimensional evolution equation. The equation (5.21) along with (5.12) is a complex

equation denoting the propagation of ion acoustic wave with modulation. But if we are

concerned with the modulus of the wave, then our system also provides another well

known, integrable equation.
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Equation (5.21) is our new evolution equation after scaling, while the space NLS

equation (5.12) at the same scaling becomes

iuy = Buxx + A|u2|u, (5.41)

where A,B are two real constants dependent on C1, C2 as B = −B
(3)
1 C2

A
(3)
1 C1

, A = −C
(3)
1 C1

A
(3)
1 C2

.

Now, if (5.21) is multiplied by u and its complex conjugate equation by u∗ and subtracted

from one another, then taking derivative w.r.t x we get another equation containing

quadratic power in u. Now using (5.41) and its complex conjugate equation, that equation

can be simplified to yield

[4Bφt − 6ABφφx − B2φxxx]x + 3φyy = 0, (5.42)

where φ = uu∗.

Equation (5.42) is nothing but the well known KP equation where φ being the square

of modulus of the wave u, the dependent variable of equations (5.21) and (5.41). It

means that the square of the absolute value of the wave without modulation satisfies

another real equation which is also integrable and weak in the transverse perturbation.

Note that, in the derivation of (5.21) we have implied weak scaling on the transverse

coordinate, similar as the scaling involved in the derivation of KP equation. Hence our

equation (5.21) though being a modulated equation in two dimensions, has a different

structure than the DS equation which is symmetric in both the spatial variables and has

a connection with another two dimensional long wave equation which is asymmetric in

the transverse direction.

For ion acoustic wave, KP equation has been derived and its stability properties un-

der transverse perturbations have been discussed in many plasma systems like quantum

electron ion plasma[148] or in electron-positron-ion plasma with high energy tail electron

and positron distribution[149] and in other fields and using Sagdeev potential approach
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conditions of existence of stable solitary waves have been obtained. Unlike KdV equation

where the form of soliton solution does not depend on the sign of the dispersion term,

the form of soliton solution of KP equation is directly determined by the dispersion sign.

Again the stability of the soliton depends on the coefficients of the KP equation which

in this case also depends on the coefficients of (5.18) and (5.12). Depending on the signs

of A,B equation (5.42) can be transformed into KP-I or KP-II equations admitting dif-

ferent types of solutions . The square root of various solutions of (5.42) can be used for

constructing the solution of (5.21) together with a phase factor connected with (5.41),

which we plan to explore in the future. The connection of our equation (5.21) with KP

equation stresses the two dimensional and asymmetric nature of the equation.

5.6 Summary

In this chapter a completely integrable, (2+1) dimensional, modulated , nonlinear evolu-

tion equation has been derived in the propagation of an ion acoustic wave of magnetized

collisionless plasma system. It has been obtained at a higher perturbation order com-

pared to the NLS equation, hence expected to address weaker effects. The two spatial

directions are scaled asymmetrically allowing weak transverse perturbation. Thus the

equation derived (5.21), has connection with the DS equation in terms of its modulated

structure, with KP equation in terms of its weak transverse dependence. It is shown that

the square of modulus of the dependent variable of the equation satisfies KP equation

along with the space NLS like constraint(5.12) equation. Using Hirota bilinearization

scheme its higher soliton solutions are calculated which has similar structure with the 1D

soliton with an additional dependence on transverse direction. The exact algebraic lump

solution of (5.21), carrying 2 free parameters is also given and density localization of the

system is discussed. Applications of this important and novel equation to other physical

systems and identification of its different features may pave a new direction of research
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in this field.

5.7 Appendix:

i) Coefficients appearing in the derivation of the two dimensional integrable

evolution equation (5.21):

K1 =
1

1+|k|2 , |k|2 = (k2x+k
2
y),κ1 =

1
1+4|k|2 , A

(1)
1 = − (iK1kyα+K1kxω)

(α2−ω2)
, B

(1)
1 = (iK1kxα−K1kyω)

(α2−ω2)

A
(2)
0 = −2ωkx

|k|2 , B
(2)
0 = −2ωky

|k|2 ,

A
(2)
1 = − (iK1kyα+K1kxω)

(α2−ω2)
, C

(2)
1 = − (−iK1kxα3+K1kyα2ω+iK1kxαω2−K1kyω3)

(−α2+ω2)2
,

D
(2)
1 = − (−iK1kyMxα2−K1α3+2K2

1k
2
xα

3−2K1kxMxαω+2iK2
1kxkyα

2ω−iK1kyMxω2+K1αω2−2K2
1k

2
xαω

2−2iK2
1kxkyω

3)

(−α2+ω2)2
,

B
(2)
1 = −{−2K2

1kxkyα−iK1ω+2iK2
1k

2
xω−(iK1kxMxα2)/(α2−ω2)+(2K1kyMxαω)/(α2−ω2)−(iK1kxMxω2)/(α2−ω2)}

(α2−ω2)
,

A
(2)
2 = {−2K3

1kx|k|4κ1 +K1|k|2(5kxα2 + 3ikyαω + 4k3xκ1 + 4kxk
2
yκ1)

+ α2(3kxα
2 + 3ikyαω + 4kx|k|2κ1) +K2

1 |k|2(2kx|k|2 − 2kxα
2κ1 − ikyαωκ1)}/

{3α2ω|k|2 + 4|k|4ω(K1 − κ1)},

B
(2)
2 = {−2K3

1ky|k|2κ1 +K1|k|2(5kyα2 − 3ikxαω + 4k2xkyκ1 + 4k3yκ1)

+ α2(3kyα
2 − 3ikxαω + 4ky|k|2κ1) +K2

1 |k|2(2ky|k|2 − 2kyα
2κ1 + ikxαω)}/

{3α2ω|k|2 + 4|k|4ω(K1 − κ1)},

C
(2)
2 = 2{3α2+K1|k|2(3−K1κ1)}

{3α2+4|k|2(K1−κ1)} ,

D
(2)
2 =

{−4K1(−3+K2
1 )|k|2−3(−4+K2

1 )α
2}κ1

{6α2+8|k|2(K1−κ1)} ,
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A
(3)
1 = 2K1kyω(|k|2K1 − 1),

B
(3)
1 =

−K1(K1|k|2−1){K1(−k2y+3K1k2x|k|2)+(4K1k2x−1)α2}
ω

,

C
(3)
1 = |k|2ω[K1{4K1(K

3
1−3)|k|2+3(K3

1−4)α2}+{4K1(12+K
2
1(K1−3)(K1+2)}|k|2+

3(k21 − 4)2α2}κ1]/{6α2 + 8|k|2(K1 − κ1)},

A
(3)
0 = − 1

α
[A

(1)∗
1 B

(1)
1 − iB

(2)
1 B

(1)∗
1 kx + iA

(1)∗
1 D

(2)
1 kx − B

(2)
0 Mx]

B
(3)
0 = − 1

α
[A

(1)
1 B

(1)∗
1 − iB

(1)
1 B

(2)∗
1 kx − iA

(1)
1 D

(2)∗
1 kx − B

(2)
0 Mx]

C
(3)
0 = i

α
[A

(2)
1 B

(1)∗
1 − A

(1)∗
1 C

(2)
1 ]kx

D
(3)
0 = − i

α
[A

(2)∗
1 B

(1)
1 − A

(1)
1 C

(2)∗
1 ]kx

E
(3)
0 = 1

α
[A

(1)
1 A

(1)∗
1 −K2

1 + iB
(2)
1 B

(1)∗
1 ky − iA

(1)∗
1 D

(2)
1 ky − A

(2)
0 Mx]

F
(3)
0 = 1

α
[A

(1)
1 A

(1)∗
1 −K2

1 − iB
(1)
1 B

(2)∗
1 ky + iA

(1)
1 D

(2)∗
1 ky − A

(2)
0 Mx]

G
(3)
0 = i

α
[A

(2)
1 B

(1)∗
1 − A

(1)∗
1 C

(2)
1 ]ky

H
(3)
0 = − i

α
[A

(2)∗
1 B

(1)
1 − A

(1)
1 C

(2)∗
1 ]ky

L
(3)
0 = 1

Mxα
[A

(1)
1 α + A

(2)∗
1 α + iA

(1)
1 C

(2)∗
1 kx − iA

(2)∗
1 B

(1)
1 kx]

K
(3)
0 = 1

Mxα
[A

(2)
1 α + A

(1)∗
1 α+ iA

(2)
1 B

(1)∗
1 kx − iA

(1)∗
1 C

(2)
1 kx]

J
(3)
0 = 1

Mxα
[−A(1)

1 B
(1)∗
1 − iB

(1)
1 B

(2)∗
1 kx + iA

(1)
1 D

(2)∗
1 kx +B

(2)
0 Mx +B

(2)∗
1 α]

I
(3)
0 = 1

Mxα
[−B(1)

1 A
(1)∗
1 + iB

(1)∗
1 B

(2)
1 kx − iA

(1)∗
1 D

(2)
1 kx +B

(2)
0 Mx +B

(2)
1 α]

Q
(3)
0 = − 1

Mxα
[iA

(2)∗
1 B

(1)
1 kx − iA

(1)
1 C

(2)∗
1 kx − A

(1)
1 α− A

(2)∗
1 α +K2

1Mxα]
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P
(3)
0 = 1

Mxα
[−A(1)

1 B
(1)∗
1 − iB

(1)
1 B

(2)∗
1 kx+ iA

(1)
1 D

(2)∗
1 kx+B

(2)
0 Mx+B

(2)∗
1 α+2iK3

1kxMxα]

M
(3)
0 = 1

Mxα
[−A(1)∗

1 B
(1)
1 − iB

(2)
1 B

(1)∗
1 kx− iA

(1)∗
1 D

(2)
1 kx+B

(2)
0 Mx +B

(2)
1 α− 2iK3

1kxMxα]

N
(3)
0 = − 1

Mxα
[−iA(2)

1 B
(1)∗
1 kx + iA

(1)∗
1 C

(2)
1 kx − A

(2)
1 α− A

(1)∗
1 α +K2

1Mxα]

ii) Coefficients appearing in the Hirota bilinearization procedure in solving

equation (5.21):

eR1 = i
(k∗1 − k1)

(p1 + p∗1)(k1 + k∗1)
, eR2 = i

(k∗2 − k2)

(p2 + p∗2)(k2 + k∗2)
,

eδ0 = i
(k∗1 − k2)

(p2 + p∗1)(k2 + k∗1)
, eδ

∗

0 = i
(k∗2 − k1)

(p1 + p∗2)(k1 + k∗2)

eδ1 =
i

[(k2 + k∗1)(p1 + p∗1) + (k1 + k∗1)(p2 + p∗1)]
[
(k∗1 − k1)(p2 − p1)

(p1 + p∗1)
+

+
(k∗1 − k1)(k2 − k1)

(k1 + k∗1)
+

(k∗1 − k2)(p1 − p2)

(p2 + p∗1)
+

(k∗1 − k2)(k1 − k2)

(k2 + k∗1)
] (5.43)

eδ2 =
i

[(k1 + k∗2)(p2 + p∗2) + (k2 + k∗2)(p1 + p∗2)]
[
(k∗2 − k2)(p1 − p2)

(p2 + p∗2)
+

+
(k∗2 − k2)(k1 − k2)

(k2 + k∗2)
+

(k∗2 − k1)(p2 − p1)

(p1 + p∗2)
+

(k∗2 − k1)(k2 − k1)

(k1 + k∗2)
] (5.44)

eR3 =
1

(k1 + k∗1 + k2 + k∗2)(p1 + p∗1 + p2 + p∗2)
[{ieδ2(k∗1 − k1 − k2 − k∗2)

+ ieδ1(k∗2 − k1 − k2 − k∗1) + ieδ
∗

1 (k∗1 + k∗2 + k1 − k2) + ieδ
∗

2 (k∗1 + k∗2 + k2 − k1)}

+ {(k2 + k∗2 − k1 − k∗1)(p1 + p∗1) + (k1 + k∗1 − k2 − k∗2)(p2 + p∗2)}eR1+R2

+ {(k2 + k∗1 − k1 − k∗2)(p1 + p∗2) + (k1 + k∗2 − k2 − k∗1)(p2 + p∗1)}eδ0+δ∗0 ] (5.45)
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For simplifying the expressions we can impose the relations between k1 , p1 and k2 ,

p2 as p1 = −ik21 , p2 = −ik22, which would yield

eR1 =
1

(k1 + k∗1)
2
, eR2 =

1

(k2 + k∗2)
2
, eδ0 =

1

(k1 + k∗2)
2
, eδ

∗

0 =
1

(k2 + k∗1)
2
,

eδ1 =
(k1 − k2)

2

(k1 + k∗1)
2(k2 + k∗1)

2
, eδ2 =

(k2 − k1)
2

(k2 + k∗2)
2(k1 + k∗2)

2
,

eR3 =
|(k1 − k2)|4

(k1 + k∗1)
2(k2 + k∗2)

2(|(k1 + k∗2|)4
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Chapter 6

Bending of solitons in weak and

slowly varying inhomogeneous

plasma

6.1 Introduction

In chapters 1 and 2 we have discussed the modified form of completely integrable KdV

equation in modelling shallow water wave phenomena . In chapter 3 we have introduced

a new (2+1) dimensional completely integrable NLS equation in describing deep water

oceanic RW phenomena and in chapter 4 we derived this equation in the propagation of

modulated ion acoustic wave in collision-less magnetized plasma. These constitute the

main portion of the thesis. In the forgoing two chapters we shall investigate different

plasma systems namely inhomogeneous and quantum plasmas respectively and apply

these nonlinear integrable equations to explore various features. In this chapter we shall

investigate a weak and slowly varying inhomogeneous plasma and explore the bending of

ion acoustic soliton by this weak and slowly varying inhomogeneity. Before entering into

the main work, it is necessary to briefly outline the important works carried out in the
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field of inhomogeneous plasma.

In a homogeneous plasma, an ion acoustic soliton travels without change in shape,

amplitude and speed [124, 173]. But in actual experimental conditions, we encounter

inhomogeneities in plasma at the edges or boundaries of the system or in the presence

of density gradient. The propagation of ion acoustic KdV solitons in an inhomogeneous

plasma was first considered by Nishikawa and Kaw [174] who presented a WKB solution

when its spatial width is very small as compared to density gradient scale length. Gell

and Gomberoff [175] reconsidered the situation and showed that amplitude, velocity and

width of the soliton are proportional to the fractional powers of ion density which was

verified experimentally by John and Saxena[176] and modified by Rao and Verma [177]

by taking into account ion drift velocity, but allowing terms proportional to the stretched

variable ξ in their first order equations. These inconsistencies were later removed by Kuehl

and Imen [178] and their results are found to be in good agreement with those of Chang

et.al[179]. One of the most important features of ion acoustic soliton is its reflection by

plasma inhomogeneity. This phenomenon was first observed experimentally by Dahiya

et.al[180] from the sheath around a negatively biased grid, where the density gradient is

high. Popa and Oertl found reflection of ion acoustic soliton from a bipolar potential wall

structure[181], Nishida [182] and Imen - Kuehl [183] found from a finite plane boundary,

Nagasawa [184] found from a metallic mesh electrode showing nonlinear Snell’s law and

Yi and Cooney et.al found from a sheath in a negative ion plasma [185, 186]. Kuehl

investigated theoretically the reflection of ion acoustic soliton, and showed that a shelf

develops behind the soliton and the reflected wave is small compared with both trailing

shelf and soliton amplitude decrease due to energy transfer to the shelf[187, 188, 189].

Then after, many authors took the problem of soliton propagation in inhomogeneous

plasma in different physical situations like plasma with finite ion temperature[190, 191],

with negative ions [192, 193, 194, 195], with dust[196] and trapped electrons [197], in

magnetic field [198, 199], with non isothermal electrons [200], with ionization [201, 202],
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with electron inertia contribution [203] and also in other contexts [204, 205, 186].

These discussed cases are all (1+1) dimensional, but in practical circumstances the

waves observed in laboratory and space are certainly not bounded in one dimension. Nev-

ertheless, the two dimensional propagation of ion acoustic waves in inhomogeneous plasma

has received much less attention. Zakharov- Kuznetsov (ZK) equation, which is the more

isotropic 2 dimensional generalization of KdV equation, was obtained in modified form

in magnetized dusty inhomogeneous plasma with non-extensive electrons [206], with dust

charge fluctuation[207], with quantum effects [208], with non thermal ions and dust charge

variation[209] and in other situations. But if weak transverse propagation is considered

then the possible 2 dimensional generalization of KdV model is Kadomtsev- Petviashvili

(KP) equation which was first derived in the context of plasma[118]. Malik et.al derived

KP equation in modified form in inhomogeneous plasma with finite temperature drifting

ions [147] and solved it for constant density gradient. Later in quantum inhomogeneous

plasma a modified KP equation was also obtained [211, 212, 213] and line soliton solutions

were presented. Along with reflection and transmission of line solitons in inhomogeneous

plasma, its bending in two dimensional plane is also a possible relevant phenomenon which

was not explored in literature considered earlier as well as in [214, 215] in two dimensions

as far as our knowledge goes.

In this chapter, we have taken up this problem by considering ion acoustic soliton

propagation in unmagnetized plasma containing cold plasma and hot isothermal electrons.

Using reductive perturbation technique, a modified form of KP equation is obtained for

weak transverse propagation and weak and slowly varying inhomogeneous ion number

density . Exact solitary wave solutions were presented showing the bending of ion acoustic

solitons in two dimensional plane. The soliton is modified in phase which is controlled

by a function related to equilibrium ion number density, causing soliton bending in two

dimensional plane, whereas the amplitude remains constant.
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6.2 Derivation of two dimensional evolution equa-

tion for an ion acoustic wave propagating in a

weak and slowly varying inhomogeneous plasma

We consider a two dimensional, collisionless, unmagnetized, weak and slowly varying

spatially inhomogeneous plasma consisting of hot isothermal electrons and cold ions (Ti =

0). The plasma is weakly inhomogeneous with a slow variation of the equilibrium ion

density along one spatial direction. The ion continuity and momentum equations together

with Poisson’s equation and the electron Boltzmann distribution can be written in the

dimensionless form as

∂n

∂t
+
−→▽ · (n−→u ) = 0,

∂−→u
∂t

+ (−→u · −→▽)−→u +
−→▽φ = 0, ▽2φ = ne − n, ne = exp(φ) (6.1)

In equation (6.1), u ≡ (ux, uy) is the ion fluid velocity normalized by the ion acoustic

speed cs =
√

Te

mi
, n and ne are ion and electron number densities respectively normalized

by unperturbed ion number density ñ0 at an arbitrary reference point in plasma which

we chose to be x = 0, φ is the electrostatic potential normalized by Te

e
where Te, mi, e

are electron temperature, ion mass and electronic charge respectively. All the spatial

co-ordinates x, y are normalized by the Debye length λD =
√

ǫ0Te

ñ0e2
at x = 0 and time by

inverse of the ion plasma frequency ωpi =
√

ñ0e2

ǫ0mi
at x = 0, where ǫ0 is the permettivity of

free space. We have assumed that the equilibrium electron and ion number densities are

equal at x = 0 (quasi-neutrality) and that the zero reference of the equilibrium potential

is at x = 0. In the above equations, the ions are assumed to be cold and on the slow ion

time scale, the electrons are assumed to be in local thermodynamic equilibrium. When

the electron inertia is neglected, the electrons can be considered to follow a Boltzmann

distribution. Under these assumptions, in the absence of any equilibrium drift, the ion
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acoustic waves follow the dispersion relation given by

ω = kcs, (6.2)

where ω, k, cs are angular frequency, wave vector and ion acoustic speed respectively. In

order to study the ion-acoustic wave propagation and its two dimensional evolution as a

solitary wave in weak and slowly varying inhomogeneous plasma, we consider the following

appropriate stretched co-ordinates

ξ = ǫ
1
2 (x−Mt), λ = ǫy, η = ǫ

3
2x, (6.3)

where M is a constant and ǫ is a small expansion parameter. Generally, phase velocity

is taken to be a function of x in the literatures of inhomogeneous plasma, but here we

have taken M to be a constant which is similar as the scaling used by Gell in [175]. This

assumption will be shown to be consistent with the calculations for the chosen unperturbed

ion number density profile.

Chang et.al, in their experimental studies of propagation of ion acoustic solitons in

an inhomogeneous plasma [179], created a definite ion number density profile as shown

in FIG 6.1, in a large multi dipole plasma device. To create local inhomogeneity in a

previously homogeneous quiscent plasma, a perturbing object was inserted far from the

excitation region. The left portion of FIG 6.1, where the density variation is slow was

shown to be the host environment for studying soliton characteristics. It was also reported

that the experiment had a pronounced two dimensional character.

We have followed the experimental results done by Chang et.al and numerical solu-

tions obtained by Kuehl [8],[13] in the context of the propagation of ion acoustic wave

in inhomogeneous plasma. The ion density plot, which was reported in their paper is

reproduced here as FIG 6.1.

It is evident from the figure that, before insertion of the perturbing structure the
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Figure 6.1: Measured ion number density profile in the target chamber for the experiment
done by Chang et.al [179]. Continuous line denotes the profile if the perturbing structure
is absent and the broken line denotes if it is present at the right edge. The figure is taken
from the paper [179]
.

density was homogeneous (continuous curve) and the presence of the structure caused a

density inhomogeneity as shown by the broken curve. This plot is consistent with the

numerical solutions of the equilibrium density done in [8] and [13].

Following the above stated environment for soliton propagation, we have taken the

unperturbed ion number density profile to be of the form ñ0(η) = 1 + δf0(η), where

δ is a small parameter, having the same features of the left portion of FIG 6.1 . The

inhomogeneity is weak as well as slowly varying along η as shown in FIG 6.1, so that

the plasma is nearly homogeneous. Our entire work is based on this region of weak and

slowly varying inhomogeneity, showing more finer effects on the propagation of soliton.

Experimental methods of producing such density gradients have been discussed in earlier

works[176, 180].

From the steady state condition of ion continuity equation we get

∂

∂η
[ñ0ũ0] = 0, (6.4)
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where ũ0 is the equilibrium ion velocity. Hence after integration ũ0 can be determined as

ũ0 =
c1
ñ0

= c1[1− δf0], (6.5)

where c1 is an integration constant and higher order terms are neglected due to smallness.

Now from the steady state condition of the x component of momentum equation we

get

∂

∂η
[ũ0

2 + φ̃0] = 0, (6.6)

where φ̃0 is the equilibrium potential. After integration φ̃0 can be determined as

φ̃0 = C2 − ũ0
2, (6.7)

where C2 is another integration constant. Choosing C2 = c21, we get

φ̃0 = 2c21δf0(η), (6.8)

where also higher order terms are neglected due to smallness. Choosing this, we can also

see that the steady state condition of Poisson’s equation is also satisfied for these functions

of φ̃0, ñ0 if the higher order terms are neglected due to smallness.

These equilibrium quantities are obtained self consistently from the fluid equations

(6.1). To create equilibrium in a real experimental situation, external electric fields are

imposed by using appropriate biasing arrangements inside the plasma. Details of the

setup are found in [176, 180]. This also gives rise to steady drift that is space dependent

in presence of density gradients.

We give stress upon the point that equilibrium electron number density is also inhomo-

geneous. The inhomogeneity of the of the equilibrium electron density can be expressed
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clearly from equation (6.1) , from where we get

ñe0 = eφ̃0(η), (6.9)

hence it is also inhomogeneous.

A reductive perturbation method is carried out with ǫ as the expansion parameter to

obtain the two dimensional nonlinear evolution equation with weak transverse propaga-

tion. δ is a small parameter which is controlled externally to form the equilibrium density

profile. For the sake of this work we take here δ to be ≈ ǫ.

All the variables are expanded as

n = 1 + ǫf0(η) + ǫn1(ξ, η, λ) + ǫ2n2(ξ, η, λ) + ... (6.10)

φ = 2c21ǫf0(η) + ǫφ1(ξ, η, λ) + ǫ2φ2(ξ, η, λ) + ... (6.11)

ux = c1[1− ǫf0(η)] + ǫu1(ξ, η, λ) + ǫ2u2(ξ, η, λ) + ... (6.12)

uy = ǫ
3
2 v1(ξ, η, λ) + ǫ

5
2 v2(ξ, η, λ) + ... (6.13)

The set of stretched quantities and the expansion of the physical quantities given by

(6.3)and (6.10)-(6.13) are used in the fluid equations (6.1) and the coefficients of different

powers of ǫ are collected and set to zero.

At the lowest order ǫ, we get

φ1 + 2c21f0 = n1 + f0 (6.14)

At ǫ
3

2 we get,

(M − c1)
∂n1

∂ξ
=
∂u1
∂ξ

,
∂φ1

∂ξ
= (M − c1)

∂u1
∂ξ

, (6.15)
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from where we obtain (M − c1)n1 = u1 and (M − c1)u1 = φ1, where it is assumed that as

ξ → ±∞, n1, u1 → 0. Using (6.14) and (6.15) we get (M − c1)
2 = 1 and 2c21 = 1 which

gives c1 =
1√
2
,M = 1 + 1√

2
and φ1 = n1 = u1.

Because of the presence of drift, the equilibrium dispersion relation in normalized

variable is given by M = 1 + 1√
2
At ǫ2; we obtain,

∂v1
∂ξ

=
∂φ1

∂λ
,
∂2φ1

∂ξ2
+ n2 = φ2 +

1

2
(f0 + φ1)

2 (6.16)

Finally at ǫ
5

2 order we get

− ∂n2

∂ξ
+
∂

∂ξ
(−c1f0n1+u1n0)+

∂u2
∂ξ

+
∂

∂ξ
(u1n1)− c1

∂f0
∂η

+
∂u1
∂η

+
∂v1
∂λ

+ c1
∂f0
∂η

+ c1
∂n1

∂η
= 0,

(6.17)

− ∂u2
∂ξ

+
∂

∂ξ
(−c1f0n1) +

∂φ2

∂ξ
+ n1

∂

∂ξ
(n1)− c1

∂f0
∂η

+ c1
∂u1
∂η

+ 2c21
∂f0
∂η

+
∂n1

∂η
= 0, (6.18)

combination of which using (6.16), we get the final evolution equation

∂

∂ξ
[(2 + 2c1)

∂n1

∂η
+ 2n1

∂n1

∂ξ
+
∂3n1

∂ξ3
] +

∂2

∂λ2
(n1)− 2c1f0

∂2n1

∂ξ2
= 0, (6.19)

with c1 =
1√
2
, which is nothing but Kadomtsev-Petviashvili (KP) equation with an extra

term appearing due to inhomogeneity . Here we have considered the simplest configu-

ration of unmagnetized plasma with cold ions and isothermal electrons, but the similar

equation with different coefficients can be derived for more complexities like ion tempera-

ture, presence of magnetic field etc for the chosen equilibrium ion number density profile.

Note that, in [210] the modified KP equation was derived, considering the fact that the

scale length of the plasma inhomogeneity is much larger than the width of the soliton,

and solitary wave solution is given for constant density gradient. Here,the equation (6.19)

is the evolution equation for the nonlinear ion acoustic wave in two dimension where the

unperturbed ion number density profile is taken to be slowly varying and weak.
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Moving into the new frame

X = ξ + a(η), Y = λ, T = η, (6.20)

with

a(η) = (
c1

1 + c1
)

∫
f0(η)dη, (6.21)

with c1 = 1√
2
. Equation (6.19) can be transformed to the standard constant coefficient

KP equation

∂

∂X
[
∂U

∂τ
+ 6U

∂U

∂X
+
∂3U

∂X3
] +

∂2U

∂Y 2
= 0, (6.22)

where U = n1

3
and τ = T/(2+2c1). This is a standard completely integrable KP equation

which can be solved exactly giving soliton solutions. But due to the presence of the term

a(η) which is related to f0(η) via (6.21), in the new co-ordinate X , bending of solitons in

the two dimensional plane occurs which will be shown in the next section.

6.3 Bending of solitons

One soliton solution of (6.22) is given by [217, 218],

U =
k21
2
Sech2[

1

2
(k1X +m1Y − k41 +m2

1

k1
τ)]. (6.23)

Expressing the solution in old variables we get,

n1 = (
3k21
2

)Sech2[
1

2
{k1ξ + k1a(η) +m1λ− k41 +m2

1

2k1(1 + c1)
η}], (6.24)

with c1 =
1√
2
,where a(η) is given by (6.21) and k1, m1 are arbitrary constants.

Due to the presence of the quantity a(η) in the phase, the bending of soliton occurs

controlled by f0(η), related to the inhomogeneous ion number density. Here the plasma is
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inhomogeneous due to the presence of the function f0(η). For different choices of f0, the

inhomogeneities are different. For the choice of f0 = 0 the plasma becomes homogeneous

which have the usual line solitons which is represented in FIG 6.2. Thus this trivial choice

of f0 in the equilibrium ion number density profile reproduces homogeneous plasma from

the chosen inhomogeneity profile. For different functional forms of f0 dependent on the

slowly varying co-ordinate η, different types of bending occurs, which are shown in FIG.

6.2,6.3.

Since for the sake of this problem, we have chosen δ = ǫ, which is the small perturbation

parameter of our calculation. The solitary wave solution is independent of ǫ,which is here

= δ. The solution depends on the function a(η) which is related to the function f0(η)

through equation (6.21) , causing the soliton to bend in the two dimensional plane. But

the amplitude of the solitary wave solution remains constant.

Similarly, the two soliton solution is given by [217, 218],

n1 = 6
∂2

∂ξ2
(lnF2), (6.25)

with,

F2 = 1 + eη1 + eη2 + A12e
η1+η2 , (6.26)

A12 =
(K1 −K2)

2 − (M1 −M2)
2

(K1 +K2)2 − (M1 −M2)2
,

η1 = K1[ξ + a(η) +
√
3M1λ− (K2

1 + 3M2
1 )

(2 + 2c1)
η],

η2 = K2[ξ + a(η) +
√
3M2λ− (K2

2 + 3M2
2 )

(2 + 2c1)
η],

whereK1, K2,M1,M2 are arbitrary constants. Bending of two soliton solution for different

functional forms of f0(η) are also shown in FIG. 6.2,6.3. Since f0 should reach zero value at

η = 0 following FIG 6.1, it has been chosen accordingly. Now it is required to determine

how much bending is taking place by varying f0 i.e, what the condition is for larger
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bending.

Let us start from the one soliton solution (6.24). The amplitude of the ’Sech’ function

is maximum when its argument goes to zero. For static case (ξ = 0), the locus of the

highest amplitude of the solution is of the form

1

2
{k1a(η) +m1λ− k41 +m2

1

2k1(1 + c1)
η} = 0, (6.27)

where c1 =
1√
2
.

Note that, for homogeneous plasma f0 is zero making a(η) to be also zero determined

from equation (6.21). Hence the locus is straight line giving line solitons for homogeneous

plasma.

Now taking derivative w.r.to η twice in the above equation (6.27) we get

ds

dη
= − k1c1

m1(1 + c1)

df0
dη

(6.28)

where s = dλ
∂η

is the slope of the locus of the maximum amplitude. We choose k1, m1 such

that

ds

dη
=
df0
dη

(6.29)

We see from the above equation that for higher value of RHS, rate of variation of slope

will also be higher. Hence the slope of the maximum amplitude curve will vary large for

traversing unit distance in η. Larger rate of variation of slope describes larger bending.

Hence for large bending of solitons to take place, the first derivative of f0 w.r.to η

must also be high. This is incorporated in FIG 6.3 where bending of solitons occur for

different choices of f0.

For FIG 6.3(a), if we increase the amplitude of f0 then the parabola will steepen

causing larger bending. Similar thing can be observed for FIG 6.3(b) where the sine

function becomes more rapid . Now if we increase the wave vector of f0 in 6.3(b) then
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also the bending will become larger. Increase/decrease of both amplitude as well as wave

vector of f0 will increase/decrease the first derivative of f0 causing more/less bending.

The same analysis can be extended to the other figures 6.3(c), 6.3(d) too.

(a) One soliton (b) Two soliton

FIG 6.2: Static picture of one and two soliton solutions given by (6.24) and

(6.25) of the two dimensional ion acoustic wave at ξ = 0 for k1 = 1, m1 = 1, K1 =

K2 = 1
2
, P1 = −P2 = 2

3
and f0 = 0. For this choice of f0, the solution converges

to the usual line solitons as observed in the homogeneous plasma.
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(a) Bending of one and two soliton for f0 = −η/3

(b) Bending of one and two soliton for f0 = −4 sin(2η)

(c) Bending of one and two soliton for f0 = −(1 +
√
2) tanh(η)
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(d) Bending of one and two soliton for f0 = −5(
√
2 + 1)(Sech(5(η − 10)))2

FIG 6.3: Static picture of one and two soliton solutions given by (6.24) and

(6.25) of the two dimensional ion acoustic wave at ξ = 0 for k1 = 1, m1 = 1, K1 =

K2 = 1
2
, P1 = −P2 = 2

3
and for the specified functions of f0 which is related to

unperturbed ion number density. The different functional forms of f0 causes

the phase of the solitary wave to change which causes bending in the two

dimensional plane, whereas the amplitude remains constant.

Frycz and Infeld obtained the bending of soliton [216] by studying numerically the

nonlinear stability analysis of KP equation. The characteristics of KP equation state

that the initial condition must fulfill an infinite set of constraints if the solution is to

remain localized. Just adding a perturbation to one soliton solution would violate this

constraint. Thus bending is a natural perturbation which is a choice for initial condition

of this numerical simulation. But in our work, the bending of solitons were obtained

analytically showing dependence on f0 which is related to inhomogeneous ion number

density. We have exactly solved the KP equation (6.19) obtained for the two dimensional

propagation of ion acoustic wave for weak and slowly varying inhomogeneity, related to
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the arbitrary function f0(η). Since we have transformed the evolution equation into a

standard constant coefficient KP equation, its each and every solution faces the same

phase modification controlled by f0, causing the shape of the solution to change in the

two dimensional plane. The amplitude of the soliton solutions is found to remain constant.

This is in view of the weak and slowly varying inhomogeneous ion number density, so that

all variations appear only in the phase of the soliton.

We see that the weak and slowly varying equilibrium potential, which exists in the

plasma, is a function of f0, directed in the x axis (i.e, η axis). Hence due to this time inde-

pendent potential an electric field develops which exert force on the ions, constituting the

soliton. But due to the inhomogeneity of the equilibrium potential function, different ions

situated at different positions are attracted (or repelled) differently. Again an equilibrium

ion drift velocity also exists, which is also directed in the x axis and inhomogeneous. Due

to the superposed effects of the inhomogeneous equilibrium and also the time dependent

quantities, the ions change their positions. This causes the ion acoustic soliton to bend in

the two dimensional plane. Since the potential drop is weak as well as slow, the number of

ions forming soliton do not change drastically. Hence the amplitude of the soliton remains

constant causing its phase to vary with f0(η).

We see that, the one soliton solution of our evolution equation (6.19) contains the

inhomogeneous function a(η) in the phase. We see from the solution that the function

reaches its maximum value when the phase factor turns to be zero. Hence as the soliton

propagates in the two dimensional plane, η changes causing a(η) to change nonlinearly

depending on f0(η). Now if we fix the time variable ξ, then the transverse variable λ

has to adjust itself in order to make the phase factor of the ”Sech“ function zero causing

soliton bending.

These bending features of the solitons is very relevant and important in the context of

inhomogeneous plasmas along with the other features like reflection, transmission etc. But

such a feature has not been explored till now. We see in this work that if the equilibrium
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density variation is slow and weak, which is very close to the homogeneous value then

these bending features can be seen. Hence a more accurate experiment could reveal such

finer effects.

6.4 Summary

In this work, we have obtained the bending of ion acoustic solitary wave in the two dimen-

sional plane for the propagation in unmagnetized plasma with cold ions and isothermal

electrons with weak and slowly varying density inhomogeneity. We have obtained a modi-

fied KP equation with an extra term arising due to inhomogeneous equilibrium ion number

density . We have exactly solved the KP equation giving a solitary wave solution in which

the phase of the soliton gets modified by a function f0, which is related to unperturbed

ion number density, causing soliton bending, where as the amplitude remains constant.

The bending features of the solitons are very relevant and important in inhomogeneous

plasma along with the other features like reflection, transmission etc. More accurate and

precession experiments could reveal such finer and interesting features.
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Chapter 7

Quantum corrections to nonlinear

ion acoustic wave with Landau

damping

7.1 Introduction

As an application to the nonlinear integrable models, which constitute the main part of

the thesis, we explore in this chapter, a new branch of plasma system, called quantum

plasma. Before entering into the main work, we briefly outline some basic facts of quantum

plasma.

The study of plasmas, is in general limited to the domain of classical physics where

temperature is high and particle density is low. In recent years, the study of plasmas such

as dense astrophysical plasmas [219], laser plasmas [220] as well as miniature electronic

devices that are under extreme physical conditions [221],[222] requires quantum mechani-

cal effects to be taken into account. In such systems, the scale length becomes comparable

to the particle de Broglie wavelength rendering classical transport models unsuitable and

quantum mechanical effects to be relevant.
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In broad aspect there are mainly two approaches to model quantum plasmas which

are quantum hydrodynamic approach[223],[224] and quantum kinetic approach[225] i.e,

Wigner equation approach. The plasma fluid equations with the inclusion of quantum

diffraction and statistical pressure effects give rise to new physical phenomena in the

context of linear and nonlinear waves and instabilities [227]. Haas[226] et al. have ex-

amined quantum quasilinear plasma turbulence using quasilinear equation derived from

Wigner-Poisson system.

The quantum fluid equations being macroscopic in nature are relatively simple and

are easily accessible for nonlinear calculations. However, working with such macroscopic

models leads to loss of understanding in the situations where effects like Landau damping

are important which take into account the resonant interaction of many particles with

the electrostatic wave. Under certain conditions, the average effect of this interaction

appears as a damping of the wave that can be explored by moving into a kinetic picture.

The collision less damping phenomenon of electron plasma waves was first predicted by

Landau[229] in 1946 for Langmuir oscillation. At the beginning, people once thought that

Landau damping is just a mathematical result, and it did not exist in physics. Fortu-

nately, Dawson derived it from the perspective of energy exchange between particles and

waves, and meanwhile Malmberg and Wharton[230] confirmed it experimentally in 1965.

Since derived in many ways and confirmed experimentally , Landau damping has become

perhaps one of the most important phenomena in plasma physics. Landau damping of

ion-acoustic wave [234] is investigated thoroughly in different set ups like in highly ionized

[237], multicomponent [238], dusty [240] plasmas with shock solutions[235], with ion Lan-

dau damping [233] etc. The investigation in Alfven waves [231], magnetosonic wave [236],

electromagnetic waves and electron acoustic waves [241] also received wide attention and

interest.

The kinetic description of plasma possessing quantum mechanical features is provided

by the Wigner equation that can be considered as the quantum analogue of the Vlasov
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equation. It describes the evolution of the quantum mechanical phase space distribution

function given by the Wigner-Moyal distribution and can be a useful tool to look into

the microscopic nature of the system. The Wigner function is called quasi-distribution

as it can have negative values although its velocity moments give rise to various physical

variables such as density, current etc. Gardner[228] derived the full three-dimensional

quantum hydrodynamic (QHD) model for the first time by a moment expansion of the

Wigner-Boltzmann equation. So far nonlinear problems like KdV equation and BGK

modes have been tackled successfully in classical plasma. Recently, Lange et al.[232] have

provided a quantum generalization of the classical BGK modes by obtaining a solution of

the stationary Wigner-Poisson equation.

In this work we have attempted to look into the quantum KdV problem in the semi-

classical limit. For a classical plasma [50] Ott and Sudan have modeled nonlinear ion

acoustic wave in a kinetic picture taking the mass of electron into account. They obtained

a KdV equation together with a Landau damping term as an evolution equation for the

ion acoustic wave. In order to explore the quantum corrections to the nonlinear evolution

of an ion acoustic wave in presence of Landau damping terms we have to replace the

Vlasov equation by the Wigner equation.

In this chapter we have tried to investigate, in the semi-classical limit, the quantum

corrections to nonlinear ion acoustic wave with Landau damping. We have derived a

higher order KdV equation which has higher order nonlinear quantum corrections with

the usual classical Landau damping term and a term containing the quantum corrections

due to Landau damping as the dynamical evolution equation. The equation converges to

the same equation as derived by Ott and Sudan in the classical limit i.e, when ~ tends

to zero. The equation shows some features like conservation of total ion number , decay

of initial waveform due to Landau damping etc. In the next stage we have carried out

the perturbative approach of Bogoliubov and Mitropolsky to get the decay nature of

KdV solitary wave amplitude. For this purpose we have assumed the Landau damping
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parameter α1 to be of the order of the quantum factor Q. The procedure reveals that the

amplitude decays inversely with the square of time depending on the factor Q.

7.2 Derivation of the dynamical equation

The Wigner distribution function is a function of the phase-space variables (x, v) and

time, which, is given by N single particle wave function ψα(x, t) each characterized by a

probability Pα satisfying
∑N

α=1 Pα = 1.

It is given as,

f(x, v, t) =
N∑

α=1

m

2π~
Pα

∫ ∞

−∞
ψ∗
α(x+ λ/2, t)ψα(x− λ/2, t)e

imvλ
~ dλ, (7.1)

where m is the mass of the particle. The Wigner function follows the following evolution

equation called the Wigner equation

∂f

∂t
+ v

∂f

∂x
+

em

2iπ~2

∫∫
[φ(x+ λ/2)− φ(x− λ/2)]f(x, v′, t)e

imλ(v−v′)
~ dλdv′ = 0, (7.2)

where ~, φ are the reduced Planck’s constant and self- consistent electrostatic potential.

Considering semi-classical limit, we develop the integral up to O(~2) and neglect all higher

order terms containing ~ to obtain

∂f

∂t
+ v

∂f

∂x
+

e

m

∂φ

∂x

∂f

∂v
− (

e~2

24m3
)
∂3φ

∂x3
∂3f

∂v3
= 0 (7.3)

We can see from (7.3) that the Vlasov equation is recovered in the limit ~ → 0.

In our work, we consider a situation where ions are cold (Ti = 0) and electrons have

finite temperature and the quantum effects are relevant for electrons only. Therefore, we

consider the usual fluid equations for describing the dynamics of ions and the Wigner

equation for describing the electrons.
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Hence in this case the relevant normalized system of one-dimensional equations are -

∂n

∂t
+
∂(nu)

∂x
= 0, (7.4)

which is the continuity equation for ions. The momentum conservation equation for the

ions is given by

∂u

∂t
+ u

∂u

∂x
= −∂φ

∂x
, (7.5)

(
λD
L

)2
∂2φ

∂x2
= ne − n, (7.6)

which is the Poisson’s equation appropriate for the description of dispersive ion acoustic

waves. The electron number density if obtained as the velocity space average of the single

particle distribution function f

ne =

∫ ∞

−∞
fdv, (7.7)

that is described by the Wigner equation in the semi-classical limit

(
me

mi
)
1
2
∂f

∂t
+ v

∂f

∂x
+
∂φ

∂x

∂f

∂v
−Q

∂3φ

∂x3
∂3f

∂v3
= 0, , (7.8)

where ne, n, u are the electron number density, ion number density and ion velocity re-

spectively, λD =
√
KTe/4πn0e2 is the Debye Length, L is the characteristic length for

variations of n, u, φ, ne, f and Q is the quantum parameter = ~2/24m2c2sL
2.

The variables in the above equations (7.4) - (7.8) are normalized dimensionless vari-

ables. Here the following normalization scheme has been used:

x =
x̃

L
, t =

c0t̃

L
, v =

ṽ

cs
, φ =

eφ̃

KBTe
, n =

ñ

n0
, f =

f̃

n0
, u =

ũ

c0
, (7.9)

where c0 is the ion acoustic sound speed =
√
KTe/mi, cs is the electron thermal velocity

=
√
KTe/me , n0 is the ambient number density of electrons (ions) and Te is the electron
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temperature. The tilde variables appearing in (7.9) are original dimensional variables

which are made dimensionless by multiplying with appropriate scale factors.

As in case of [50], here also three basic parameters enter into the problem which are

parameters due to Landau damping by electrons, measure of nonlinearity and measure

of dispersive effects. In this calculation we do not neglect the electron to ion mass ratio

and since Ti = 0, the Landau damping is provided solely by electrons. We consider all

these three effects i.e., Landau damping, nonlinearity and dispersion to be small but of

the same order of magnitude.

1)
√
(me/mi) = α1ǫ, effect due to Landau damping by electrons.

2)△ n/n0 = α2ǫ, measure of the strength of nonlinearity.

3) (λD/L)
2 = 2α3ǫ, measure of strength of dispersive effects.

Here ǫ is smallness parameter. As is the usual mathematical procedure we transform

our co-ordinates to a moving frame with a stretched time as

ξ = x− t, τ = ǫt, (7.10)

and expand the dependent variables for small nonlinearity as

n = 1 + α2ǫn
(1) + α2

2ǫ
2n(2) + ...,

u = α2ǫu
(1) + α2

2ǫ
2u(2) + ...,

φ = α2ǫφ
(1) + α2

2ǫ
2φ(2) + ...,

ne = 1 + α2ǫn
(1)
e + α2

2ǫ
2n(2)

e + ...,

f = f (0) + α2ǫf
(1) + α2

2ǫ
2f (2) + ... (7.11)

Considering semi-classical limit, the form of f (0) is chosen as

f (0)(v) =
1√
2π

exp (
−v2
2

) (7.12)
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Substituting Eqns. (7.10), (7.11), (7.12) in (7.4)-(7.8) and equating coefficients of ǫ,

ǫ2 to zero we get first and second order equations which need to be solved.

7.2.1 ǫ order calculation:

From Eqns (7.4)-(7.6) we get

∂n(1)

∂ξ
=
∂u(1)

∂ξ
=
∂φ(1)

∂ξ
, n(1) = n(1)

e (7.13)

From equation (7.8) we get

v
∂f (1)

∂ξ
= v

∂φ(1)

∂ξ
f (0) +Q

∂3φ(1)

∂ξ3
(3v − v3)f (0), (7.14)

which yields

∂f (1)

∂ξ
=
∂φ(1)

∂ξ
f (0) +Q

∂3φ(1)

∂ξ3
(3− v2)f (0) + λ(ξ, τ)δ(v), (7.15)

where δ(v) is the Dirac delta function and λ(ξ, τ) is an arbitrary function of ξ, τ . Here

also the problem of non-uniqueness arises as in case of [50],[242] which can be removed

by taking a τ derivative term from higher ǫ order. Thus, we write

(α1ǫ
2)
∂f

(1)
ǫ

∂τ
+ v

∂f
(1)
ǫ

∂ξ
= v

∂φ(1)

∂ξ
f (0) +Q

∂3φ(1)

∂ξ3
(3v − v3)f (0), (7.16)

where the first term of (7.16) has been taken from order ǫ3 equation. Once f
(1)
ǫ is known,

f (1) can be determined uniquely by :

f (1) = lim
ǫ→0

f (1)
ǫ (7.17)

We introduce Fourier transform in ξ and τ as

f̂
(1)
ǫ (ω, k) =

1

2π

∫ ∞

ξ=−∞

∫ ∞

τ=0

f (1)
ǫ (ξ, τ) exp[i(ωτ − kξ)]dξdτ (7.18)
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Now ,
̂

(
∂f

(1)
ǫ

∂ξ
)(ω, k) = (ik)f̂

(1)
ǫ (ω, k), (7.19)

and
̂

(
∂f

(1)
ǫ

∂τ
)(ω, k) = −(iω)f̂

(1)
ǫ (ω, k)− 1

2π

∫ ∞

ξ=−∞
exp[−ikξ]f (1)

ǫ |τ=0dξ, (7.20)

and

∂̂3φ(1)

∂ξ3
(ω, k) = (−ik3)φ̂(1)(ω, k) (7.21)

Now applying these Fourier transforms on (7.16), letting ǫ→ 0 and using

lim
ǫ→0

1

(kv − ωα1ǫ2)
= P (

1

kv
) + iπδ(kv) (7.22)

we get,

f̂ (1)(ω, k) = φ̂(1)(ω, k)f (0) −Qk2(3− v2)φ̂(1)(ω, k)f (0), (7.23)

where P is the principal part of the integral. Taking inverse Fourier transform we get the

form of f (1) as,

f (1) = φ(1)f (0) +Q(3 − v2)
∂2φ(1)

∂ξ2
f (0) (7.24)

The first term of (7.24) is same with the classical case whereas the second term is the

quantum correction term. Thus the procedure yields that λ(ξ, τ) appearing in (7.15) is

zero.

7.2.2 ǫ2 order calculation:

From equations (7.4)- (7.6), we can obtain in a straightforward way,

2
∂n(1)

∂τ
+ 3α2n

(1) ∂n
(1)

∂ξ
+ 2α3

∂3n(1)

∂ξ3
= α2

∂

∂ξ
(n(2)

e − φ(2)) (7.25)
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From equation (7.8) we get,

(α1ǫ
2)
∂f

(2)
ǫ

∂τ
+ v

∂f
(2)
ǫ

∂ξ
− vf (0)∂φ

(2)

∂ξ
−Q

∂3φ(2)

∂ξ3
∂3f (0)

∂v3
= C(ξ, τ, v), (7.26)

where the τ derivative term is taken from ǫ4 order and terms which are product of quantum

term and second order perturbation term are neglected as small compared to other terms.

Here C(ξ, τ, v) is defined as

C(ξ, τ, v) = [Ca(ξ, τ) + Cb(ξ, τ)v + Cc(ξ, τ)v
2 + Cd(ξ, τ)v

3]f (0), (7.27)

where

Ca(ξ, τ) = (
α1

α2
)[
∂φ(1)

∂ξ
+ 3Q

∂3φ(1)

∂ξ3
] (7.28)

Cb(ξ, τ) = [φ(1)∂φ
(1)

∂ξ
+ 5Q

∂2φ(1)

∂ξ2
∂φ1

∂ξ
+ 3Qφ(1)∂

3φ(1)

∂ξ3
] (7.29)

Cc(ξ, τ) = −Q(α1

α2
)[
∂3φ(1)

∂ξ3
] (7.30)

Cd(ξ, τ) = [−Q∂
2φ(1)

∂ξ2
∂φ1

∂ξ
−Qφ(1)∂

3φ(1)

∂ξ3
] (7.31)

Introducing Fourier transform in (7.26) and letting ǫ tends to zero we get,

f̂ (2)(ω, k)− f (0)φ̂(2)(ω, k) = −iĈa[P (
1

kv
) + iπδ(kv)]f (0) − ivĈbP (

1

kv
)f (0)

−iv2ĈcP (
1

kv
)f (0) − iv3ĈdP (

1

kv
)f (0) (7.32)

Multiplying by (ik) and integrating over v yields

ikn̂(2) − ikφ̂(2) = i

√
π

2
Ĉasgn(k) + Ĉb + Ĉd, (7.33)
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where we have used kδ(kv) = sgn(k)δ(v).

Now taking inverse Fourier transform of equation (7.33) we obtain,

∂

∂ξ
(n(2) − φ(2)) = Cb + Cd −

1√
2π

[P

∫ ∞

−∞
(
α1

α2
)
∂n(1)

∂ξ′
dξ′

ξ − ξ′
+ P

∫ ∞

−∞
(
3Qα1

α2
)
∂3n(1)

∂ξ′3
dξ′

ξ − ξ′
],

(7.34)

Now using (7.25) and (7.34) we get finally,

∂n(1)

∂τ
+ α2n

(1)∂n
(1)

∂ξ
+ α3

∂3n(1)

∂ξ3
−Qα2

∂

∂ξ
[
∂n(1)

∂ξ
]2 −Qα2n

(1) ∂
3n(1)

∂ξ3
+

α1√
8π

[P

∫ ∞

−∞

∂n(1)

∂ξ′
dξ′

(ξ − ξ′)
] +

3α1Q√
8π

[P

∫ ∞

−∞

∂3n(1)

∂ξ′3
dξ′

(ξ − ξ′)
],= 0

(7.35)

which is the main equation of interest of this work. This equation implies the evolu-

tion equation of motion of nonlinear ion acoustic wave taking into account the Landau

damping effect with quantum corrections arising from semi-classical kinetic approach i.e,

the Wigner equation approach. Quantum correction to linear Landau damping of electron

plasma waves have been investigated earlier in [239]. The fourth and fifth terms of (7.35)

are nonlinear quantum corrections and the last term of the LHS is the quantum correction

on the Landau damping. We can see that the equation converges exactly to the equation

derived by Ott and Sudan [50] in the limit ~ → 0. The equation is like a higher order

KdV equation which have higher order nonlinear quantum correction terms and Landau

damping term with its quantum correction. Due to the nature of the equation we can

show that it conserves total number of particles. The presence of Landau damping terms

also assure that the amplitude of soliton must decay with time. These relevant facts are

derived in the next section.
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7.3 Some relevant properties

7.3.1 Conservation of ion number

The equation (7.35) is the higher order KdV equation with Landau damping terms. In-

tegrating (7.35)w.r.to ξ and assuming n(1), ∂n(1)/∂ξ, ∂2n(1)/∂ξ2 = 0 at ξ = ±∞ and

renaming n(1) = U , we can show that

∂

∂τ

∫ ∞

−∞
Udξ = 0 (7.36)

Here we have used the fact that

P

∫ ∞

−∞

dξ

ξ − ξ′
= 0 (7.37)

Hence ion number is conserved.

7.3.2 Decay of solitary wave

Ott and Sudan in their paper [50] considered α1 to be a small perturbation parameter

and used the fact that due to Landau damping the amplitude of KdV solitary wave will

decrease with time. Then using Bogoliubov- Mitropolsky approximation method, which

has been discussed in chapter 3, they found the decay rate of amplitude, which depends

on the small parameter α1 . In (7.35),we see that there are higher order KdV terms

with Landau damping term and its quantum correction. But since exact Sech- solitary

wave solution of a general higher order KdV equation of above form is possible only when

(coefficient of the term ∂U
∂ξ
[∂U
∂ξ
]2) = -2 (coefficient of the term U ∂3U

∂ξ3
), which is not present

in (7.35), hence the exact solitary wave solution of the higher order KdV equation and its

decay due to Landau damping terms cannot be worked out here. Also it can be seen that

(7.35) contains 2 small parameters α1 and Q where α2, α3 are assumed to be ≈ 1. Hence in
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the subsequent part of the work, the quantum correction terms and the Landau damping

term are treated as perturbation term to the KdV equation. But since perturbation with

multiple small parameters will include multiple time scales in the calculation, hence it

will be too complicated to be computed analytically. In order to simplify the case and

find out the nature of decay of the KdV solitary wave amplitude we will assume that

α1 ≈ α2Q. For example, in the case of hydrogen plasma α1 is approximately 0.025 and in

[243, 244], the factor Q is taken to be equal to be order of 0.01. Assuming this relation

between small parameters we can consider that the quantum correction to the Landau

damping term which appears as the last term of (7.35) is α1 ≈ Q2, and hence it can be

neglected as small compared to the other terms.

Now we have to apply the well known method of Bogoliubov and Mitropolsky with

α2Q = C as small perturbation parameter. Hence α1 can be taken as α1 = βC where β

is any number ≈ unity. In order for the perturbation analysis to be consistent with the

condition of validity of (7.35) it is also required that 1 ≫ C ≫ ǫ. Assuming a new phase

co-ordinate to have the form

φ(ξ, τ) =

√
N(τ)α2

12α3
(ξ − α2

3

∫ τ

0

N(τ)dτ), (7.38)

where N(τ) is assumed to vary slowly with time.

We introduce two time scales following [50] as

t0 = τ, t1 = Cτ, (7.39)

and N = N(C, τ) and shall seek a solution of the form

U(φ, C, τ) = U0(φ, t0, t1) +O(C), (7.40)

where (7.40) is to be valid for long times,i.e., times as large as τ ∼ O(1/C). In order to
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find such a solution, valid for long times, we first expand u(φ, τ, C) to O(C):

U(φ, τ, C) = U0(φ, t0, t1) + CU1(φ, t0) +O(C2) (7.41)

Using (7.38), (7.39), (7.41) in (7.35) we get an equation containing different powers of C

and equating coefficients of each power of C we get different order equations which need

to be solved.

Since we are interested in the damping of solitary waves, we have the following initial

and boundary conditions:

U(φ, 0, C) = N0sech
2(φ),

U(±∞, τ, C) = 0 (7.42)

Solving the order unity equation which is

ρ
∂U0

∂t0
+
∂3U0

∂φ3
− 4

∂U0

∂φ
+

12

N
U0
∂U0

∂φ
= 0, (7.43)

we get

U0(φ, t0, t1) = N(t1)sech
2(φ), (7.44)

where ρ = 24
√
3α3/(Nα2)

√
Nα2 and N(t1) is an arbitrary function of t1 except for the

initial condition N(0) = N0. Hence U0 doesn’t depend on t0.

The order C equation is

∂U1

∂t0
+ L[U1] =M [U0], (7.45)
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where

M [U0] = −∂U0

∂t1
− φ

2N

∂U0

∂φ

dN

dt1
(7.46)

+
1

(ρα3)
[
∂3U0

∂φ3
U0 + 2

∂U0

∂φ

∂2U0

∂φ2
]

− β√
8π

[P

∫ ∞

−∞

√
N(τ)α2

12α3

∂U0

∂φ′
dξ′

ξ − ξ′
],

(7.47)

L[U1] =
1

ρ

∂3U1

∂φ3
− 4

ρ

∂U1

∂φ
+

12

(Nρ)

∂(U0U1)

∂φ
(7.48)

Again the boundary and initial conditions are

U1(±∞, t0) = 0, U1(φ, 0) = 0 (7.49)

In order that (7.41) to be valid for times as large as τ ∼ O(1/C) it is required that

U1(φ, t0) does not behave secularly with t0. To eliminate secular behavior of U1 it is

necessary that M [U0] be orthogonal to all solutions, g(φ), of L+[g] = 0 which satisfy

(7.49)[i.e, g(±∞) = 0], where L+ is the operator adjoint to L given by,

L+ = −1

ρ

∂3

∂φ3
+

4

ρ

∂

∂φ
− 12

ρ
sech2(φ)

∂

∂φ
. (7.50)

The only solution of L+[g] = 0, g(±∞) = 0, is g(φ) = sech2(φ).

Thus, ∫ ∞

−∞
sech2(φ)M [U0]dφ = 0 (7.51)

In order to evaluate this integral we have to consider term by term of (7.47). The first

2 terms of M [U0] together give −dN/dt1 after integration. The third and fourth terms

which come from the nonlinear quantum correction terms give zero after integration due
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to the odd nature of the integrand. Finally using

P

∫ ∞

−∞

∫ ∞

−∞
sech2(φ)

∂(sech2(φ′))

∂φ′ dφ
dφ′

(φ− φ′)
= (24/π2)ζ(3) = 2.92 (7.52)

we get a first order differential equation in N , solving which we get

N =
N(0)

[1 + (1
2
β1α2QN(0)(

1
2
))τ ]2

, (7.53)

where β1 = (2.92)β
√
α2/96πα3.

From eqn (7.53) we see that the decay law of amplitude depends on the quantum

factor Q. A full numerical computation of (7.35) could reveal the total dynamical nature

of the solution.
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0.16

0.18

0.20

N

Figure 7.1: Decay of soliton amplitude with time when when Q = 0.01, N(0) = 1, α3 =
1, α2 = 6, and β = 1

7.4 Summary

In this work we have extended the methodology of the work of Ott and Sudan to include

the semi-classical quantum effects to obtain a new evolution equation in the context of a

nonlinear ion acoustic wave. This equation is of the form of a higher order KdV equation

having higher order nonlinear terms as quantum corrections, together with a classical

Landau damping term as well as quantum contribution coming from resonant particle
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effects.

Using the fluid equations for ions and the classical kinetic Vlasov equation for elec-

trons, Ott and Sudan obtained a KdV equation with a Landau damping term as the

evolution equation for the nonlinear ion acoustic wave. In order to introduce the quan-

tum corrections, the classical Vlasov equation is replaced by an appropriate quantum

analog i.e, the Wigner equation. In a similar approach using the Wigner equation in

place of the Vlasov equation gives rise to our higher order KdV equation with Landau

damping terms. The equation exactly converges to the equation done in [50] when ~ tends

to zero i.e, in the classical limit. The mathematical nature of the equation shows that it

conserves the total number of ions. The importance of the higher order KdV equation

derived here, lies in the fact that its solution would give the quantum modification of

the KdV solitary wave. But unfortunately, exact solitary wave solutions of this equation

cannot be obtained. Since there are two small parameters in the equation, α1 and Q, we

treat the quantum corrections as well as the Landau damping terms as perturbation to

the KdV equation. In order to carry out the Bogoliubov and Mitropolsky approximation

technique, multiple time scales stretched by these small parameters have to be introduced.

Such a technique is too complicated to comprehend analytically. Hence in order to get

a useful analytical result , we have assumed α1 ≈ Q. Hence, the quantum correction to

Landau damping term turns out to be of the order of Q2 and therefore neglected.

In the perturbative approach, the contribution to the decay rate coming from the

nonlinear quantum correction terms turns out to be zero because of the odd nature of

the integrand. The final contribution to the decay of solitary wave amplitude comes from

the classical Landau terms, whose coefficient, due to the perturbation scheme, turns out

to be of the order of Q. The amplitude is shown to decay inversely with the square of

time depending on the quantum factor Q. In our final equation of decay rate no terms

come from the quantum correction, i.e quantum nonlinear part goes to zero when the

integration over φ is performed and the quantum Landau damping terms being of order Q2
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are neglected. This is due to our chosen scheme, and application of perturbation scheme

with multiple time scales could give rise to solutions with more appropriate dependance

on quantum effects. But the importance of the equation cannot be turned down and could

be the initiator of numerical computation that would reveal the entire dynamical nature

of the solution with the inclusion of quantum mechanical effect.
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Chapter 8

Conclusion & Outlook

The thesis contains modelling of both deep and shallow water wave phenomena and

applications of those models in other fluid systems.

In the first part of my thesis, we have studied the propagation of shallow water,

unidirectional nonlinear wave with nontrivial bottom boundary conditions. Our aim was

to study the effect of the controlled leakage at the bottom to the surface solitary wave.

We have shown analytically that for the choice of leakage velocity functions which are

independent of the free surface wave profile, the solitary wave solution gets modified in

phase where as the amplitude remains constant. These studies are done in the shallow

water of constant depth whereas the actual bathymetry varies with position. In order to

explore the effect of bottom boundary condition on the surface solitary wave amplitude

which was absent in the chapter 1, the leakage functions are assumed to depend on the free

surface wave profile in chapter 2. First the constant depth problem was investigated to

identify the profile of leakage function which would induce maximum damping effects on

the solitary wave amplitude. Taking this profile, the variable depth problem was studied

where a variable KdV equation was derived where the bathymetry function varies slowly.

For a finer balance between the depth function and the leakage velocity function, exact

solitary wave solutions have been found out which decay as it propagates towards the
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shore in spite of the surging effects due to decreasing bathymetry.

We emphasize that obtaining exact solution in variable bathymetry in presence of

controlled leakage is a rare achievement. In place of approximate or numerical result

obtained earlier, we found here the decay of solitary wave amplitude in exact analytic

form. This is the strong point of our findings. Since our model gives a possible control

mechanism of near shore surging waves along with the other methods like plantation of

Mangrove treas along the coastal lines, installation of breakwaters at strategic positions

, stoppage of erosion by concrete bolders etc, it demands application to a near sea shore

bathymetry which has been done in Chennai, South India and the decay of amplitude

due to leakage have been shown. These are the basic things we have done in the first

part, which can be extended in future to involve realistic chaotic leakage and transverse

perturbation. Such investigations would require numerical modelling of the phenomena.

In the second part of my thesis, the deep water oceanic rogue waves have been mod-

elled. Rogue waves are reported to being observed in a relatively calm sea, where they,

as a localized and isolated surface waves, apparently appear from nowhere, make a sud-

den hole in the sea just before attaining surprisingly high amplitude and disappear again

without a trace. In this regard, we have introduced a new completely integrable, (2+1)

dimensional, Nonlinear Schrodinger equation which is derivable from the basic hydrody-

namic equations, to model oceanic rogue waves. Showing the discrepancies of the existing

models, an exact rational two dimensional solution containing two free parameters of the

new equation describes the full grown rogue wave. Its maximum amplitude, steepness,

position of holes can be determined by those free tunable parameters. In order to explain

its dynamical behavior an ocean current term has been introduced which will control the

duration of the rogue wave. Modulation instability associated with the new evolution

equation has been found out showing asymmetric nature and directional preference.

Since a completely integrable equation is very rich in terms of its mathematical behav-

ior, its discovery in any physical system demands exploration of its various properties. We
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have derived its Lax pair structure, infinite conserved quantities, soliton solutions etc. Its

dynamic rational solution, as the superposition of breather solutions could not be derived

which could be explored in future. He et.al [172] presented the first order rational solution

of our new equation by the one-fold Darboux transformation from a nonzero “seed” solu-

tion. They also have discussed localization of rogue waves in their paper which is related

to the amplitude of the seed solution. We have also shown that our new 2 dimensional

NLS equation is related to another completely integrable KP equation which shows the

strong 2d nature and directional preference of our equation.

The newly discovered equation demands applications in various physical systems to

explore various features. As an application, it has been derived in the context of propa-

gation of nonlinear ion acoustic waves in magnetized lossless plasma containing cold ions

and hot isothermal electrons. The discovery of this novel, (2+1) dimensional integrable

NLS type equation should pave a new direction of research in the field.

As an application of the integrable models derived here we have explored other fluid

systems like inhomogeneous plasma. The propagation of ion acoustic soliton in weak

and slowly varying inhomogeneous plasma has been studied. It has been shown that the

dynamics of the nonlinear ion acoustic wave is controlled by KP equation. The two dimen-

sional soliton of the evolution equation gets bend in the two dimensional plane controlled

by the unperturbed ion number density, whereas the amplitude remains constant.

A new field called quantum plasma has been explored using KdV model. A quantum

corrections has been done in the semi-classical limit to the nonlinear ion acoustic wave with

electron Landau damping. A new higher order KdV equation has been derived containing

nonlinear quantum correction terms and the quantum correction to the Landau damping.

Using Bogoliubov Mitropolsky approximation method the decay of amplitude due to the

Landau damping term has been calculated.

183



Bibliography

[1] G.S Emmerson John Scott Russell: A great Victorian engineer and naval archi- tect.

John Murray Publishers, London (1977) 19

[2] D.J. Korteweg and G. de Vries, Philos. Mag. 39(1895) 422. 19, 20, 29

[3] F Fermi et al Studies of nonlinear problems I. Los Alamos Sci Lab Rep LA- 1940

Reproduced in: AC Newell (ed) (1974) Nonlinear wave motion. AMS, Providence,

Rhode Island(1955) 19

[4] R. S Johnson, A Modern Introduction to the Mathematical Theory of Water Waves,

Cambridge University Press, Cambridge, (1997) and references therein. 19, 21, 25, 56,

67, 71, 84, 86

[5] A Kundu Tsunami and Nonlinear Waves Springer-Verlag Berlin Heidelberg, (2007)

20, 28, 52, 67, 71

[6] A Rudloff et. al Nat.Haz.Earth.Sys, Sci 9(2009) 1381 21, 28

[7] S. Nayak and T.S Kumar Int. Archives.Photogrammetry XXXVII(2008)B4

[8] J Lauterjung, U Munch & A. Rudloff Nat.Haz.Earth.Sys. Sci 10(2010)641

[9] D.E Barrick Remote Sensing of Environment 8(1979) 353

[10] G Blewitt et.al J. Geod 83 (2009) 335

184



[11] E. Marris Nature 433 (2005) 3 21, 28

[12] K. Katheresan & N. Rajendran Estuarine, Coastal and Shelf Sciences65 (2005) 601

21, 53

[13] N.K Liang, J.S Huang & C.F Li Ocean Engineering31(2004) 43 21, 53

[14] W.Koo Ocean Engineering 36 (2009) 723

[15] L. Martinelli, P. Ruol & B. Zanuttigh Applied Ocean Research 30 (2008)199

[16] C. Michailides & D. C Angelides Applied Ocean Research 35 (2012) 77 21, 53

[17] G. Taylor Proc. R. Soc. A 231 (1955) 466; G.I. Taylor, Admiralty Scientific research

Dept. ATR/Misc/1259 1943. 21, 53

[18] D. L. Hammond United States Patent (1974) 3,785,159 21, 53

[19] A. M Fridman et.al Physics-Uspekhi 53(8) (2010) 809 21, 53

[20] A.Davey & K. Stewartson Proc.R.Soc.Lond.A 338 (1974) 101. 22, 95

[21] C. Kharif & E. Pelinovsky Eur. J. Mech.B -Fluid 22 (2003) 603; K. Dysthe, H.

E. Krofstat & P. Muller Annu. Rev. Fluid Mech. 40 (2008) 287; C. Kharif C, E.

Pelinovsky & A. Slunyaev Rogue waves in Ocean (Springer-Verlag, Berlin Heidelberg,

2009) (with refrences therein); A. R. Osborne Nonlinear Ocean waves and the inverse

scattering transform, Int. Geophys. Ser. 97 (Acad. Press,2010). 22, 23, 88, 89, 91, 103

[22] E. Pelinovsky, T. Talipova & C. Kharif Physica D 147 (2000) 83. 23, 89

[23] N. N. Akhmediev, V. M. Eleonskii & N. E. Kulagin first-order solutions of the non-

linear Schrodinger equation. Theor. Math. Phys. 72 (1987) 809. 23, 90, 93

[24] N. Akhmediev, A. Ankiewicz & J. M. Soto-Crespo Phys. Rev. E 80(2009) 026601.

23, 90, 92, 93, 102

185



[25] A. Ankiewicz, D.J. Kedziora & N. Akhmediev Phys. Lett. A 375 (2011) 2782. 23,

90, 93, 102

[26] G. Mu, Z.Dai & Z. Zhao Pramana J. Phys. 81 (2013) 367 . 24, 95

[27] R Hirota Phys.Rev. Lett 27 (1971) 1192 25, 134

[28] E. N Dolgopolova Water Resources40 (2013)16 28

[29] H. C. Miahr J.Hydraulic. Res43(2005) 234 28

[30] S. Furuyama & H Chanson Coastal Eng. J52 215 28

[31] L.T Dauer et.al J. Nuclear Medicine52(2011)9 29

[32] T Takemura wt.al SOLA 7(2011)101 29

[33] G.I. Burde Phys. Rev. E 84 (2011) 026615 . 29

[34] E. Infeld, A. Senatorski, & A. A. Skorupski Phys. Rev. E 51 (1995) 3183 . 29

[35] M.J. Ablowitz & D.E. Baldwin Phys. Rev. E 86 (2012) 036305 . 29

[36] T.Y. Wu J. Fluid Mech. 184 (1987) 75 .

[37] W.K. Melville & K.R. Helfrich J. Fluid Mech. 178(1987) 31.

[38] A. Orlowski Phys. Rev. E 49 (1994) 2465 . 40

[39] M. Wadati, Phys. Soc. Jpn. 52 (1983) 2642. 40

[40] N. Zahibo, E. Pelinovsky & A. Sergeeva, Chaos, Solitons and Fractals 39 (2009) 1645

. 40

[41] C.C. MeiThe applied dynamics of ocean surface waves (World Scientific, Singapore,

1989). 30, 56

186



[42] R. O Reid & K. Kajiura Trans. Am. Geophys. Union 38 (1957) 662 30, 54

[43] J. M Hunt J. Geophys. Res. 64 (1959) 437 30

[44] P.L. Liu & I.C. Chan J. Fluid. Mech. 579 (2007) 467. 30

[45] P.L. Liu & J. Wen J. Fluid. Mech. 347 (1997) 119. 30, 54

[46] M. Lakshmanan & S. Rajasekar, Nonlinear dynamics: Integrability, Chaos and Pat-

terns, (Springer, Berlin). 2003. 30

[47] R. Hirota, Direct Method in Soliton Theory Springer, Berlin (1980). 48

[48] Z. Jun-Xiao & G. Bo-Ling Commun. Theor. Phys. (Beijing, China) 52 (2009) 279.

[49] M. J. Ablowitz & D. E. Baldwin, Phys. Rev.E 86 (2012) 036305 .

[50] E. Ott & R.N. Sudan Phys. Fluids 12 (1969) 11 . 60, 166, 169, 170, 173, 174, 175,

179

[51] E. Ott & R.N. Sudan, Phys. Fluids 13 (1970) 6. 54, 60, 61, 62, 64

[52] L.A. Ostrovsky, Int. J. Nonlin. Mechanics 11 (1976) 401. 54, 61, 64, 67, 71

[53] O. Nakoulima, N. Zahibo, E. Pelinovsky, T. Talipova & A. Kurkin, Chaos 15 (2005)

037107. 54, 67, 71

[54] A. Mukherjee & M.S. Janaki, Phys. Rev. E 89 (2014) 062903 . 79, 81

[55] N.N. Bogoliubov and Y.A. Mitropolsky, Asymptotic Methods in the Theory of Non-

linear Oscillations (Gordon and Breach Science Publishers, Inc, New York, 1961). 60,

61

[56] Zhi-Yuan Sun, Yi-Tian Gao, Ying Liu & Xin Yu, Phys. Rev. E 84 (2011) 026606 .

70

187



[57] Xin Yu, Yi-Tian Gao, Zhi-Yuan Sun & Ying Liu, Phys. Rev. E 83 (2011) 056601 .

70, 72

[58] A.A Kumar & P.D Kunte Nat Hazards 64 (2012) 853 . 11, 54, 74, 75, 76

[59] A.G. Johnpillai, C.M. Khalique & A. Biswas, Appl. Math. Comp. 216 (2010) 3114 .

84

[60] http://news.bbc.co.uk/2/hi/8548547.stm 88

[61] C. Bonatto et al. Phys. Rev. Lett. 107 (2011) 053901. 88, 89, 94

[62] M. Onorato, D. Proment & A. Toffoli Phys. Rev. Lett. 107 (2011) 184502 (and

references therein). 88, 90, 103, 107, 108, 110, 120

[63] V. E. Zakharov, A. I. Dyachenkov & R. V. Shamin Eur.Phys. J. Special Topics 185

(2010) 113124 88, 89, 95, 103, 110

[64] D. R. Solli, C. Ropers, P. Koonath & B. Jalali Nature 450 (2007) 06402 88, 89, 94

[65] A. N. Ganshin et al Phys. Rev. Lett. 101 (2008) 065303 88, 89

[66] M. Onorato et al Phys. Rev. Lett. 102 (2009) 114502 88, 90, 94, 96, 97, 99, 100, 110,

120, 121

[67] A. Montina, et al Phys. Rev. Lett. 103 (2009) 173901. URL

http://link.aps.org/doi/10.1103/PhysRevLett.103.173901. 88, 89, 90, 96, 97,

100, 112, 120, 121

[68] Kibler B, et al. Nature Physics 6 (2010) 790. 88, 89, 90, 91, 94

[69] M. Shats, H. Punzmann, & H. Xia Phys. Rev. Lett. 104 (2010) 104503.

http://link.aps.org/doi/10.1103/PhysRevLett.104.104503. 88, 89, 94, 121

188



[70] F.T Arecchi, U. Bortolozzo, A. Montina & S. Residori Phys. Rev. Lett. 106 (2011)

153901. 89

[71] K. Hammani, B. Kibler, C. Finot & A. Picozzi Phys. Lett. A 374 (2010) 3585. 89

[72] A. Chabchoub, N. P. Hoffmann & N. Akhmediev Phys. Rev. Lett. 106 (2011) 204502.

URL http://link.aps.org/doi/10.1103/PhysRevLett.106.204502. 88, 90, 91, 94

[73] A. N. Pisarchik, et al R. Jaimes-Reategui R, Sevilla-Escoboza R,

Huerta-Cuellar R & Taki M Phys. Rev. Lett. 107 (2011) 274101.

http://link.aps.org/doi/10.1103/PhysRevLett.107.274101. 88, 89, 94, 110

[74] B. Eliasson, & P. K. Shukla Phys. Rev. Lett. 105 (2010) 014501. URL

http://link.aps.org/doi/10.1103/PhysRevLett.105.014501. 88, 90, 94, 95, 96, 97, 99,

100, 120

[75] A. R. Osborne, M. Onorato & M. Serio Phys. Lett. A 275 (2000) 386. URL-

http://www.sciencedirect.com/science/article/pii/S03759601000057514. 88, 90, 91,

94, 95, 96, 97, 98, 99, 100, 103, 110, 120

[76] M. J. Ablowitz, J. Hammack, D. Henderson & C. M. Schober Phys. Rev. Lett. 84

(2000) 887. URLhttp://link.aps.org/doi/10.1103/PhysRevLett.84.887. 88, 90

[77] N. Akhmediev & E. Pelinovsky Eur.Phys.J.Special Topics 185 (2010) 1. 89, 94

[78] V. P. Ruban Phys. Rev. Lett. 99 (2007) 044502. 89, 107, 108

[79] D. H. Peregrine Austral. Math. Soc. B 25 (1983) 16. 90

[80] M. Lakshmanan in Tsunami and Nonlinear Waves (Ed. A. Kundu, Springer Verlag,

NY, 2006) p. 31 90

[81] G. P. Agarwal Nonlinear fiber optics (Acad. Press, London, 2007), ch. 5. 99, 100

189



[82] P. Dubard & V. B. Matveev Nat. Hazards Earth Syst. Sci. 11(2011) 667. 93, 102

[83] http://wikipedia.org/wiki/RogueW ave 94, 103, 110, 120

[84] A. I. Dyachenko & V. E. Zakharov JETP Lett. 81 (2005) 6. 89, 95, 103, 107, 110,

120

[85] R. Smith J. Fluid Mech. 77 (1976) 417. 89

[86] A. Ankiewicz, J. M. Soto-Crespo & N. Akhmediev Phys. Rev. E 81 (2010) 046602.

93

[87] S. Xu, J. He & L. Wang J. Phys. A: Math.Teor 44 (2011) 305203. 93

[88] M. Ablowitz & H. Segur Solitons and the Inverse Scattering Transform, (SIAM,

Philadelphia, 1981). 90

[89] A. Calini & C. M. Schober Phys. Lett. A 298 (2002) 335349. 90

[90] Y. C. Ma Stud. Appl. Math. 60 (1979) 43. 90, 93

[91] http://news.bbc.co.uk/2/hi/3917539.stm 94

[92] http://earthobservatory.nasa.gov/IOTD/view.php?id=44567 94

[93] Akhmediev N, Korneev V I 1986 Theor. Math. Phys. 69, 1089

[94] K. B. Dysthe & K. Trulsen Phys. Scr. 82 (1999 ) 48. 90, 93, 95

[95] Y. Ohta & J. Yang J.Phys. A:Math. Theor 46 (2013 ) 105202.

[96] Y. Ohta & J. Yang Phys. Rev. E 86 (2012 ) 036604. 95

[97] V. E. Zakharov & E.A Kuznetsov Sov.Phys 39(1974) 285. 95, 126

[98] M. Onorato, A.R Osborne & M. Serio Phys. Fluids 14(2002) L25. 97

190



[99] M. Onorato et al. J. Fluid. Mech 627(2009) 235. 97, 99

[100] O. Gramstad & K. Trulsen J. Fluid. Mech 582(2007) 463. 97, 99

[101] K. Trulsen & I. Kliakhandler Phys. Fluids12(2000)2432 100

[102] N. Akhmediev, J. M Soto-Crespo & A. Ankiewicz Phys. Rev. A 80(2009)043818.

90

[103] S. White & B. Fornberg J. Fluid. Mech 355 (1998) 113. 107

[104] A. Kundu, arXiv: 1201.0627 [nlin.SI, (2012) A. Kundu & A. Mukherjee,

arXiv:1305.4023 [nlin.SI] (2013). 97

[105] R. S. Johnson A Modern Introduction to the Mathematical Theory of Water Waves,

(Cambridge Texts in Appl. Math., 2004). 112

[106] Z. Parsa Am. J. Phys. 47 (1979) 56. 106

[107] J.W McLean J.Fluid Mech 114 (1982) 331. 97

[108] C. Kharif & A. Ramamonjiarisoa Phys.Fluids 31 (1988) 1286. 97

[109] T.B Benjamin & J.E. Feir J.Fluid Mech 27 (1967) 417. 97

[110] M.J Lighthill J. Inst. Math. Appl1(1965) 269. 97

[111] V.E Zakharov Sov. Phys. JETP24(1967) 455. 97

[112] J.E Feir Proc. Royal. Soc. A54(1967) 299. 97

[113] P.K Shukla et al Phys. Rev. Lett 97(2006)094501 99

[114] K.L Henderson, D.H Peregrine & J.W Dold Wave Motion29(1999) 341 100

[115] K.B.Dysthe Proc.R.Soc.Lond.A 369 (1979) 105.

191



[116] Y. Ohta & J. Yang J.Phys A:Math. Theor. 46 (2013) 105202. 95

[117] M. Boiti, J. Leon & F. Pempinelli Inv. Prob. 3 (1987) 37. 95

[118] B. B Kadomtsev & V.I Petviashvili Sov.Phys. 15 (1970) 539. 95, 149

[119] E. Infeld, A.Senatorski & A.A. Skorupski Phys. Rev. E. 51 (1995) 4. 95, 126

[120] K Trulsen & K.B.Dysthe Wave Motion 24 (1996) 381. 95

[121] V. E. Zakharov, in Solitons (Ed. R. K. Bullough and P. J. Caudrey, Springer, Berlin,

1980) 95

[122] V. E. Zakharov JETP Lett. 35 (1972) 908. 95

[123] M. J. Ablowitz Nonlinear Dispersive waves,Asymptotic Analysis and Solitons,

(Cambridge University Press. 2011). 112

[124] F.F Chen Introduction to Plasma physics and controlled fusion , (Plenum Press,

New York and London, 1984). 125, 148

[125] M. Lakshmanan & S. Rajasekar Nonlinear dynamics: Integrability, Chaos and Pat-

terns, (Springer, Berlin, 2003). 125, 134

[126] H. Washimi & T. Taniuti Phys. Rev. Lett 17 (1966) 19. 125

[127] M. Q. Tran Phys. Scr. 20 (1979) 317 125

[128] H. Ikezi, R Taylor & D. Bekar Phys. Rev. Lett 25 (1970) 11. 125

[129] S.E Cousens et. al Phys. Rev. E 86 (2012) 066404 . 125

[130] A.A Mamun, Phys. Rev. E 77 (2008) 026406. 125

[131] M. Bacha, M.Tribeche & P.K.Shukla Phys. Rev. E 85 (2012) 056413 . 125

[132] S. Ghosh & N. Chakrabarti Phys. Rev. E 84 (2011) 046601 . 125

192



[133] H. K. Malik, Phys. Rev. E 54 (1996) 5. 125

[134] F. Verheest, M.A Hellberg & W.A Hereman, Phys. Rev. E 86 (2012) 036402 . 125

[135] P.K Shukla, A.A Mamun & D.A Mendis, Phys. Rev. E 84 (2011) 026605 . 125

[136] G. Huang & M.G. Velarde Phys. Rev. E 53 (1996) 3. 125

[137] S. Maxon & J. Vicelli, Phys. Fluids 17 (1974) 1614. 125

[138] L.F.J Broer & F.W. Sluijter Phys. Fluids 20 (1977) 1458 . 125

[139] M.R Amin, G.E Morfill & P.K Shukla, Phys. Rev. E 58 (1998) 5. 125

[140] W.M Moslem, R. Sabry, S.K El-Labany & P.K Shukla Phys. Rev. E bf 84 (2011)

066402 . 125

[141] R Sabry, W.M Moslem, P.K Shukla & H. Saleem , Phys. Rev. E 79 (2009) 056402

. 125

[142] W.M Moslem, Phys. Plasmas 18 (2011) 032301. 125

[143] R. Sabry, W.M Moslem & P.K Shukla Phys. Rev. E 86 (2012) 036408 . 125, 126

[144] N.S Javan & F. Adili, Phys. Rev. E 88 (2013) 043102 . 125

[145] H. Bailung, S.K Sharma & Y. Nakamura Phys. Rev. Lett 107 (2011) 255005 . 126

[146] J.R Franz, P.M Kintner & J.S Pickett Geophys. Res. Lett 25 (1998) 2041. 126, 138

[147] H.K. Malik & R.P. Dahiya, Phys. Lett. A 195 (1994) 369 . 126, 134, 149

[148] A. Mushtaq & S.A. Khan Phys. Plasma 14 (2007) 052307 . 126, 134, 141

[149] M. Shahmansouri & E. Astaraki J Theor. Appl. Phys 8 (2014) 189 . 126, 141

[150] M. Kako & G. Rowlands, Plasma. Phys. 18 (1976) 165 . 126, 134

193



[151] V.E Zakharov & E.A Kuznetsov Zh. Eksp. Teor. Fiz 66 (1974) 594 .

[152] V.E Zakharov & E.A Kuznetsov Sov. Phys. 39 (1974) 285 . 126

[153] B.K Shivamoggi, Phys. Scripta 42 (1990) 641 . 126

[154] E Infeld & P Fryczs , J. Plasma. Phys. 37 (1987) 97 . 126

[155] E Infeld J. Plasma Phys. 33 (1985) 171 . 126

[156] B.K Shivamoggi , J. Plasma Phys. 41 (1989) 83 . 126

[157] A.S Bains, M Tribeche, N.S Saini & T.S Gill Phys. Plasmas 18 (2011) 104503. 126

[158] S.K El-Labany, W.F.El- Tribany & O.M El-Abbasy , Phys. Plasmas 12 (2005)

092304 . 126

[159] N.S Saini, B.S Chahal, A.S Bains & C.Bedi Phys. Plasmas 21 (2014) 022114 . 126

[160] H.L Zhen, B Tian, Y.F.Wang, H.Zhong &W.R Sun Phys. Plasmas 21 (2014) 012304

. 126

[161] A.M Wazwaz Comm. Non. Sc. Num. Sim 10 (2005) 597. 126

[162] R.L Mace & M. A Hellberg Phys. Plasmas 8 (2001) 2649 . 126

[163] K. Nishinari, K. Abe & J. Satsuma Phys. Plasmas 1 (1994) 2559 . 126, 132, 133

[164] S.S Ghosh, A Sen & G.S Lakhina Non. Processes. Geophys 9 (2002) 463 . 126, 139

[165] K. Annou & R. Annou Phys. Plasmas 19 (2012) 043705 . 126, 133

[166] J.K Xue Phys. Plasmas 12 (2005) 092107 . 126

[167] K Nishinari & T. Yajima, Phys. Rev. E 51 (1995) 5 . 126

[168] M Boiti, J.J.P Leon, L Martina & F. Pempinelli Phys. Lett. A 132 (1988). 126

194



[169] A Kundu, A Mukherjee & T Naskar Proc. R. Soc. A 470 (2014) 20130576 . 127,

132

[170] M.S Janaki, B.K Som, B. Dasgupta & M.R. Gupta J.Phys.Soc.Jpn 60 (1991) 2977

138

[171] A Kundu & A Mukherjee arxive:1305.4023

[172] D. Qiu, Y. Zhang & J. He Commun Nonlinear Sci Numer Simulat 30 (2016) 307

140, 183

[173] F. Aziz Thesis: Ion-acoustic solitons: Analytical, experimental and numerical stud-

ies, (2011) and references therein 148

[174] N. Nishikawa & and P. K.Kaw Phys. Lett A 50 (1975) 455. 148

[175] Y. Gell & L. Gomberoff Phys. Lett. A 60 (1977) 125. 148, 151

[176] P.I John & Y.C Saxena Phys. Lett. A 56 (1976) 385. 148, 152, 153

[177] N. N Rao & R. K Verma Phys. Lett. A 70 (1979) 9. 148

[178] H.H Kuehl & K Imen, Phys. Fluids. 28 (1985) 2375. 148

[179] H.Y Chang, S. Raychaudhuri, J.Hill, E.K Tsikis & K.E Lonngren Phys. Fluids. 29

(1986) 294. 13, 148, 151, 152

[180] R. P Dahiya, P.I John & Y. C Saxena Phys. Lett. A 65 (1978) 323. 148, 152, 153

[181] G. Popa & M.Oertl Phys. Lett. A 98 (1983) 110. 148

[182] Y. Nishida Phys. Fluids 27 (1984) 2176. 148

[183] K.Imen & H.H Kuehl Phys. Fluids 30 (1987) 73. 148

[184] T. Nagasawa & Y. Nishida Phys. Rev. Lett 56 (1986) 2688. 148

195



[185] S. Yi, J.L Cooney, H.Kim, A. Amin, Y. El-Zein & K.E Lonngren Phys. Plasmas 3

(1996) 529. 148

[186] J.L Cooney, M.T Gavin, J.E Williams, D. W Aossey & K.E Lonngren Phys. Fluids

B 3 (1991) 3277. 148, 149

[187] H.H Kuehl Phys. Fluids 26 (1983) 1577. 148

[188] K.Ko & H.H Kuehl Phys. Rev. Lett 40 (1978) 233. 148

[189] K. Ko & H.H Kuehl Phys. Fluids 23 (1980) 834. 148

[190] S.Singh & R.P Dahiya Phys. Fluids B 3 (1991) 255. 148

[191] S.Singh & R.P Dahiya J.Plasma Phys 41 (1989) 185. 148

[192] H.K Malik & R.P Dahiya Phys.Plasma 1 (1994) 2872. 148

[193] D.K Singh & H.K Malik Phys.Plasma 13 (2006) 082104. 148

[194] S.S Chauhan,H.K. Malik & R.P. Dahiya, Phys. Plasma 3 (1996) 3932. 148

[195] D.K Singh & H.K Malik Phys. Plasma 14 (2007) 062113. 148

[196] D.Xiao, J.X Ma, Y.Li, Y.Xia & M.Y Yu Phys. Plasma 13 (2006) 052308 148

[197] R.Kumar, H.K Malik & S.Kawata Physica. D 240 (2011) 310 148

[198] H.K Malik Phys. Lett. A 365 (2007) 224. 148

[199] E Infeld Q.Haque & S.Mahmood Phys. Plasma 15 (2008) 034501 148

[200] H.K Malik Phys. Plasma 15 (2008) 072105 148

[201] Jyoti & H.K Malik Phys. Plasmas 18 (2011) 102116. 148

[202] H.K Malik, Jyoti & R.Kumar J.Theor. Appl Phys 8 (2014) 123. 148

196



[203] K.Singh, V.Kumar & H.K Malik Phys. Plasmas 12 (2005) 072302. 149

[204] W.Duan & J.Zhao Phys. Plasmas 6 (1999) 3484. 149

[205] I. Ibrahim & H.H Kuehl Phys.Fluids 27 (1984) 962 149

[206] W.F El-Taibany,M.M Selim, N.A El-Bedwehy & O.M Al-Abbasy Phys. Plasmas 21

(2014) 073710. 149

[207] A.P Misra & A.R Chowdhury Phys. Plasmas 13 (2006) 062307. 149

[208] W.Masood Phys. Plasmas 17 (2010) 052312. 149

[209] W.F.El-Taibany, M.Wadati & R. Sabry Phys. Plasmas 14 (2007) 032304. 149

[210] H.K Malik, S.Singh & R.P dahiya Phys. Lett. A 195 (1994) 369. 155

[211] W. Masood Phys. Lett.A 373 (2009) 1455. 149

[212] W.Masood, S.Karim, H.A Shah & M.Siddiq Non. Phys.plasma 16 (2009) 042108.

149

[213] W.Masood, S.Karim & H.A Shah Phys. Scr. 82 (2010) 045503. 149

[214] J.R Yang, X.Y Tang, X.N Gao, X.P Cheng & S.Y. Lou EPL 12 (2011) 45001. 149

[215] L.P. Zhang & J.K. Xue Commun Nonlinear Sci Numer Simulat 15 (2010) 3379. 149

[216] P. Frycz & E.Infeld Phys. Rev. A 41 (1990) 3375. 161

[217] A.M Wazwaz Appl.Math.Comput 190 (2007) 633. 156, 157

[218] M.J ablowitz & D.E Baldwin Phys.Rev.E 86 (2012) 036305. 156, 157

[219] Y. D. Jung Phys. Plasma 8 (2001) 3842 164

[220] D. Kremp, Th. Bornath, M. Bonitz, & M. Schlanges Phys. Rev. E 60 (1999) 4725

164

197



[221] N. C. Kluksdahl, A. M. Kriman, D. K. Ferry, & C. Ringhofer Phys. Rev. B 39

(1989) 7720 164

[222] A. A. G. Driskill- Smith, D.G.Hasko & H.Ahmed Appl. Phys. Lett 75 (1999) 2845

164

[223] F. Haas, Quantum Plasmas- An hydrodynamic approach, Springer, New York

(2011) 165

[224] G. Manfredi & F. Haas Phys. Rev. B 64 (2001) 075316. 165

[225] M. Bonitz AIP Conf. Proc. 1421 (2012) 135 165

[226] F. Haas, B. Eliasson, P. K. Shukla & G. Manfredi, Phys. Rev. E 78 (2008) 056407

. 165

[227] F. Haas, L.G Garcia, J. Goedert & G. Manfredi Phys.Plasmas10 (2003) 3858 165

[228] C.L Gardner SIAM. J.Appl. Math 54(2) (1994) 409. 166

[229] L.D Landau J.Phys (Moscow) 10 (1946) 25 165

[230] J.H Malmberg & C.B Wharton Phys.Rev.Lett 13 (1964) 184502 165

[231] J.V Hollweg Phys.Rev.Lett 27 (1971) 1349 165

[232] H. Lange, B. Toomire & P.F. Zweifel Trans. theor. Stat .Phys. 25(6) (1996) 713

166

[233] T. Taniuti J. Phys. Soc. Japan 33 (1972) 277 165

[234] J.W Vandam & T. Taniuti J. Phys. Soc. Japan 35 (1973) 897 165

[235] Y. Saitou & Y. Nakamura Phys. Plasmas 10 (2003) 4265 165

198



[236] M.S Janaki, B. Dasgupta, M.R Gupta & B.K Som Physica Scripta 45 (1992) 368

165

[237] A.Y Wong, R.W Motley & N. D’Angelo Phys.Rev133(2A) (1964) A436 165

[238] S.N Paul, B.Paul, C.Das, S.K. Bhattacharya & B.Ghosh Bulg.J.Phys 37 (2010) 16

165

[239] J. Zhu, P.Ji & N.Lu Phys.Plasma 16 (2009) 032105 173

[240] A.Barman & A.P Misra Phys. Plasma (2014) 073708 165

[241] A.R. Chowdhuri, G.Pakira, S.N Paul Physica C 151 (1988) 518 165

[242] A. Bandyopadhyay & K.P. Das Phys. Plasma 9 (2002) 2. 170

[243] A. Luque, H. Schamel & R. Fedele Phys. Lett. A 324 (2004) 185 175

[244] D. Jovanovic & R. Fedele Phys. Lett. A 364 (2007) 304 175

[245] M. Salimullah, M. Jamil, I. Zeba, Ch. Uzma, & H. A. Shah, Phys. Plasma. 16(2009)

034593

[246] H. Ren, Z. Wu, J. Cao & P. K. Chu J. Phys. A 41 (2008) 115501.

199


