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SYNOPSIS

One of the most challenging and unsolved puzzles in the present day physics

is the existence of unknown matter or dark matter (DM) in the Universe. They do

not emit any visible light or other electromagnetic radiation and are all pervading

the Universe. Study of the cosmic microwave background radiation (CMBR) data

by PLANCK [3] and WMAP [4] satellite borne experiments claim that about 26.5%

of our Universe is made up of this mysterious dark matter. However, evidence for

the existence of dark matter are purely through their gravitational e�ects such as

the study of spiral galaxies (rotation curve), gravitational lensing e�ects of distant

galaxies and the galaxy clusters etc. The particle nature of this mysterious and

unobserved dark matter is overwhelmingly unknown. But they must be neutral,

stable and most likely very weakly interacting massive particles (WIMPs). Although

the Standard Model of particle physics (SM) is established successfully with the recent

�ndings of SM-like Higgs, the dark matter or at least a large part of it are possibly

not made up of SM particles. Also the possibility of having more than one Higgs like

scalar is not ruled out by ATLAS and CMS experiments performed at Large Hadron

Collider (LHC). There are shortcomings of Standard Model of particle physics and

extension of SM is hence called for, in order to provide a viable explanation to the

particle nature of dark matter. In this thesis, I have explored di�erent particle physics

dark matter models with SM extension in the Higgs sector. As stated earlier, dark

matter particle, though possibly interacts very weakly with the matter (SM sector)

may scatter nucleus of target materials via a mediator (scalar or boson). Based on this

simple idea of DM-nucleon scattering, di�erent direct detection experiments such as

XENON100 [27], LUX [28], CDMS [29], CoGeNT [31], DAMA [32] etc. are designed.

Direct detection experiments measure the recoil energy of the nucleus resulting from

the elastic scattering of the dark matter particle o� the target nucleus. The result



is then interpreted as DM-nucleon scattering for uniform comparison of the results

from di�erent experiments. Since, no such conclusive events have been observed yet,

direct detection experiments provide upper limit on DM-nucleon elastic scattering

cross-section (for both spin dependent and spin independent scattering) for di�erent

values of DM mass. Although direct detection experiments like CDMS, CoGeNT

etc. claimed to have observed a few events supporting low mass dark matter (∼10-30

GeV), possibility of the existence of such low mass dark matter is not supported by

XENON100 and latest results from LUX DM direct search experiment. Besides the

direct search experiments of dark matter, there are di�erent earth based and satellite

borne experiments as well for indirect search of dark matter. Dark matter particle

after su�ering several scattering events inside a massive body loses its velocity to such

an extent that it cannot escape the gravitational in�uence of the body and dark matter

gets trapped within it. This may happen at the core of the astrophysical objects such

as galactic centre, solar core etc. If accumulated in su�cient number these captured

dark matter particles may pair annihilate into gamma rays or fermion-antifermion ff̄

pairs (pp̄, e+e−, νν̄ etc.). Hence, any excess in observed gamma rays, ff̄ �ux detected

from such objects that cannot be explained by known astrophysical processes (such

as inverse Compton e�ect, synchrotron radiation etc.) may indicate to have produced

from DM annihilation at these astrophysical sites. Satellite borne γ-ray experiments

such as Fermi-LAT has reported such excess of γ-rays from the direction of galactic

centre, dwarf galaxies etc. These sites are potentially thought to be rich in dark

matter. Terrestrial experiments such as HESS [39], MAGIC [40] etc. also look for

γ-rays from various cosmic sources (both galactic and extragalactic). Other indirect

detection experiments like AMS [45], PAMELA [46] search for the excess antiparticle

such as positron, antiproton etc. while ANTARES [43] experiment measures the

observed cosmic neutrino �ux. Fluxes of gamma ray, e+e−, pp̄ etc. observed by these

di�erent experiments provide signi�cant bound on DM annihilation cross-section 〈σv〉



and mass of dark matter. In the thesis, the viabilities of the di�erent dark matter

models have been addressed. The model parameters of the proposed theoretical

models are �rst constrained by theoretical conditions and then from experimental

results and PLANCK results for dark matter relic density. It is also ensured that

limits obtained from the LHC on SM Higgs and DM direct detection is obeyed.

Two Higgs doublet model (THDM) is one of the most general non-supersymmetric

extensions of SM scalar sector, where an extra scalar doublet of same hypercharge is

invoked in the SM. Both the doublet �elds Φ1 and Φ2 acquire vacuum expectation

values under spontaneous symmetry breaking (SSB). There are several advantages

of THDM over SM as it can address the problems such as baryon asymmetry in the

Universe and provide source of CP violation. The scalar sector of THDM is rich with

charged scalars H±, two CP even scalars h and H and one CP odd scalar A. In the

thesis work, a model for singlet fermionic dark matter in two Higgs doublet model

framework has been explored. For simplicity, only CP conserving THDM is taken

into account which can be achieved by introducing a discrete Z2 symmetry between

the doublet �elds Φ1 and Φ2. There are four di�erent types of CP conserved THDM

(namely type I, II, III and IV) depending on the coupling of the doublet �elds with

the fermions (quarks and leptons). Out of these four types of THDM, type I and

type II THDM are explored in the thesis work. The stability of dark matter fermion

is ensured by an another discrete symmetry Z ′2 under which all the THDM sector

including fermions and gauge bosons are odd. The singlet fermionic dark matter

χ in THDM proposed in the thesis couples to Higgs doublets through a dimension

�ve coupling and a new physics scale Λ is introduced. Throughout the work, one

of the CP even scalar h is treated as SM-like Higgs discovered at LHC while the

other scalar H gives the essence of new physics and this is the non-SM scalar. The

Boltzmann equation is solved for the fermionic dark matter χ in the framework of

type I and type II THDM for the constrained model parameter space obtained from



vacuum stability, LHC limits on SM Higgs signal strength (denoted by R), invisible

decay branching ratio of SM scalar. The relic density is obtained by solving the

Boltzmann equation and the direct detection cross-section and other observables are

theoretically calculated for the dark matter candidate χ. The unknown parameters

(such as couplings etc.) for the fermionic dark matter χ in both type I and type II

THDM are then constrained by the relic density observed by PLANCK, bounds from

direct dark matter search experiments, vacuum stability, SM Higgs signal strength

etc.

Among other di�erent scalar dark matter models, inert doublet model (IDM)

is a simple extension of SM of particle physics which includes an additional Higgs

doublet that acquires no VEV. The newly added Higgs doublet is protected by a

discrete Z2 symmetry under which all the SM sector is odd. As a result, the lightest

inert particle (LIP) of the inert Higgs doublet can serve as a potential candidate for

dark matter. Most importantly inert doublet model is UV complete and does not

contain any non-renormalisable terms. There are also other advantages of IDM as it

can generate tiny neutrino mass and deal with problems like leptogenesis when right

handed Majorana neutrinos are added to the model. However, in the present thesis,

only the scalar sector of the IDM is investigated in order to achieve a viable particle

candidate for dark matter. In the thesis scalar sector of IDM is extended by adding

a singlet scalar s to the model itself. In the proposed model added scalar receives a

VEV after spontaneous symmetry breaking (SSB) and mixes up with the SM Higgs

producing two Higgs like physical scalar particles h1 and h2 while the dark Higgs

doublet (the LIP in IDM) remains intact. The particle spectrum of IDM involves

charged scalars H±, one CP even scalar H0 and one CP odd scalar A0. The charged

scalars of IDM are of great importance as they contribute signi�cantly to the decays

of SM Higgs into γγ and γZ. The signal strength of Higgs decay into diphoton Rγγ

are measured by CMS and ATLAS experiments. CMS has reported Higgs to diphoton



signal strength RCMS
γγ = 0.78+0.28

−0.26 while the same obtained by ATLAS experiment is

RATLAS
γγ = 1.57+0.33

−0.29 [84]. The singlet scalar extended IDM is constrained by di�erent

theoretical and experimental bounds namely vacuum stability, unitarity, LEP II, DM

relic density measured by PLANCK, Higgs to diphoton signal strength results at LHC

(CMS and ATLAS), DM direct detection experimental bounds. The valid region

(that satis�es all these constraints) of the model parameter space for the model is

thus obtained. In order to compare the Higgs signal strength obtained from LHC, one

of the CP even scalar in singlet extended IDM is treated as SM-like Higgs (h1 with

mass m1 = 125 GeV) and the other scalar h2 is the non-SM scalar which gives the

results from new physics input in the scalar sector. Correlation between the signal

strengths Rγγ and RγZ is obtained for the valid range of model parameter space

with di�erent values of the additional non-SM scalar mass m2. Our calculation show

that within the framework of present model, the constrained model parameter space

cannot simultaneously satisfy the Higgs to diphoton signal strength results obtained

from ATLAS and the direct detection limits on DM-nucleon scattering cross section

given by XENON100 or LUX. However, the same model parameter space appears

to explain the CMS predicted value of RCMS
γγ and DM direct detection experimental

observations simultaneously. Thus the proposed extension of the SM favours CMS

data over the ATLAS results.

The model, thus justi�ed and allowed parameter space obtained, the γ-ray �ux

from the annihilation of dark matter candidate in this model now calculated and

compared with the observed γ-ray �ux measured by Fermi-LAT [49] experiment from

the direction of galactic centre or GC. Analysis of the Fermi-LAT data suggests that

a 31-40 GeV dark matter annihilating into bb̄ pair with annihilation cross-section

〈σv〉 = 1.4 − 2.0 × 10−26 cm3s−1 can explain the observed inner galaxy (inner 50

of GC) gamma ray results [59]. It is also shown that the dark matter candidate

by extending the SM with an inert doublet model (IDM) only cannot explain the



observed GC gamma ray �ndings and a further extension of IDM is called for. As

discussed earlier this model is then extended by including an additional singlet scalar.

Inclusive study of the extended IDM with additional scalar singlet reveals that the

model can provide suitable explanation for the GC γ-ray �ux observation by Fermi-

LAT. In this singlet extended inert doublet model a 31-40 GeV dark matter can �t

the GC γ-ray results when the mass of the non-SM scalar in the model is about 70

GeV.

So far, all the dark matter models explored in the thesis, are similar in nature

in the sense that the stability of DM candidate is ensured by assuming discrete Z2

symmetry. On the other hand, SM of particle physics does not encourage any such

discrete symmetry. Hence, the nature of DM candidate may not be that simple as

the stabilisation of dark matter candidate by discrete symmetry is ad-hoc and dark

matter may be obtained from a hidden sector which may sort out such discrepancy

with SM. In the next work of the thesis therefore, a hidden sector dark matter model

is proposed without invoking any discrete symmetry. In this model, the hidden sector

(dark sector) follows a SU(2)H gauge theory and a doublet �eld similar to the SM

Higgs doublet is assumed. The hidden sector fermions also have a global U(1)H

symmetry which remains intact while the scalar in the dark sector is not charged

under this U(1)H. This SU(2)H gauge symmetry is broken spontaneously to generate

masses of hidden sector particles (gauge bosons and fermions). The SM Higgs doublet

mixes up with the dark Higgs doublet �eld resulting in two Higgs like scalar particles

h1 and h2 which enriches the scalar sector with new physics as well. The hidden

sector gauge bosons do not mix up with the SM gauge bosons due to the non-

abelian nature of SU(2)H while the hidden fermions behave as a singlet under the

SM sector. As the hidden sector is composed of only SU(2)H gauge, the gauge bosons

in the dark sector are of equal mass. The lightest fermion in the dark sector can

be treated as a potential candidate for dark matter. The dark sector fermion can



interact with SM sector only through the Higgs mediated channels as the SM Higgs

doublet mixes with the dark Higgs doublet. The parameter space of the hidden

dark matter scenario is constrained by several theoretical and experimental bounds

and valid model parameter space is obtained. An updated study of GC gamma ray

results has been done by Calore, Cholis and Weniger (CCW) [60]. The viability of

the present model is further tested by comparing the GC gamma ray �ux computed

for the allowed model parameter space with this updated analysis of Fermi-LAT data

of GC gamma ray. In addition, recently Fermi-LAT also investigated the gamma ray

�ux for 15 di�erent dwarf galaxies [61]. From their observation of dwarf galaxies,

Fermi-LAT provides bound on the γ-ray �ux and also give limits on DM annihilation

cross-sections for di�erent DM mass. Similar studies for eight newly found dwarf

galaxies are also given by Dark Energy Survey (DES) in collaboration with Fermi-

LAT [62]. Moreover, detailed study of the gamma ray �ux obtained for another

dwarf galaxy Reticulum 2 (Ret2) by Geringer-Sameth et. al [133] reported an excess

emission of gamma ray which can be a promising signature of dark matter as dwarf

galaxies are supposed to be enriched with dark matter. Comprehensive study of this

proposed SU(2)H fermionic dark matter is carried out thoroughly in order to compare

the gamma ray �ux obtained for dark matter annihilation calculation in this model

with the dwarf galaxy gamma ray observations (including Ret2 observation as well).

We show that the available model parameter space of hidden sector SU(2)H fermionic

dark matter can indeed explain the updated GC gamma ray results from CCW, dwarf

galaxy gamma ray �ux results and the excess of γ ray obtained from Ret2.

The thesis is composed of eight chapters and these are as follows,

Chapter 1. Prelude to dark matter :

In this chapter the primary introduction dark matter problem will be addressed.

Some astrophysical evidences for dark matter and nature of dark matter will be

discussed also in this chapter.



Chapter 2. Standard Model :

In this chapter, a brief overview of Standard Model of particle physics will be

presented and de�ciencies of SM will be discussed.

Chapter 3. Physics of Dark Matter :

In this chapter detailed study thermal evolution of dark matter will be

presented. Direct and indirect detection detection methods of dark matter

candidate will also be discussed in this chapter.

Chapter 4. Fermionic dark matter in two Higgs doublet model :

Comprehensive study of particle physics model for fermionic dark matter in two

Higgs doublet model will be explored in this chapter.

Chapter 5. Singlet scalar extension of inert doublet model (IDM) part-I :

In this chapter, detailed study of inert doublet model with additional scalar

singlet will be addressed.

Chapter 6. Singlet scalar extension of inert doublet model (IDM) part-II :

In this chapter inclusive study of galactic centre gamma ray excess with a singlet

scalar extended inert doublet dark matter model will be explored.

Chapter 7. Hidden sector Fermionic dark matter Model:

A model for hidden fermionic dark matter originating from a hidden SU(2)H

will be presented in this chapter.

Chapter 8. Summary :

In this chapter the thesis will be summarised and the future directions will be

addressed.
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Chapter 1

Prelude to dark matter

One of the most astounding and unresolved puzzle in modern physics and

cosmology in present era is dark matter (DM). Cosmological evidences from the

study of cosmic microwave background radiation (CMBR) indicate that dark matter

constitutes about 26% of our Universe while only 5% of the visible Universe is formed

by baryonic matter. The rest 69% of the Universe is made up of mysterious energy

known as dark energy. The visible Universe is mainly governed by four kind of

forces (gravitation, weak, strong and electromagnetic) which can be well explained

by Standard Model (SM) of particle physics. However, signatures of dark matter

observed in the Universe is purely gravitational and nature of dark matter still remains

unexplained. Although strong gravitational evidences in support of the presence of

dark matter in Universe is found, the pattern of dark matter distribution in the

Universe is not known. Besides, particle constituent of dark matter is also unknown

and numerous particle physics models for dark matter candidate with mass ranging

from few keV to hundreds of TeV are proposed. In this chapter we will discuss some

preliminary topics related to basic concept in dark matter physics.
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Chapter. Prelude to dark matter

1.1 Astrophysical evidences for dark matter

• Velocity distribution curves for spiral galaxies

As mentioned, most compelling evidence for dark matter is gravitational in

Figure 1.1: Rotation curve for the spiral galaxy NGC 6503 adopted from Ref. [1].

nature. One of the most prominent gravitational evidences for dark matter

is related to observation of rotation curves of spiral galaxies. Galaxy rotation

curves are basically the measure of rotational velocity v(r) of a star or gas

at a distance r from the galactic centre. According to Newtonian dynamics,

velocity of a star at a distance r from galactic centre (GC) enclosing a mass

M(r) =
∫ r

0
ρ(r′)r′2dr′ will be

v(r) =

√
GM(r)

r
, (1.1)

where ρ denotes the density of matter within the central part of the galaxy.

Hence, it is clear from Eq. 1.1 that in the inner core region of the galaxy,

velocity of star will increase with distance v(r) ∝ r. On the other hand for

star or gas residing at the outer shell of the galaxy will fall gradually following
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1.1. Astrophysical evidences for dark matter

v(r) ∝ 1√
r
when mass of outer region of the galaxy is neglected where the mass

density of visible mass is much less than that in the central region of the galaxy.

Observation of velocity distribution curves for rotating star (or gas) around

the galactic centre for di�erent spiral galaxies shows that though the velocity

of rotating matter within the central region of galaxy increases and obeys the

relation v(r) ∝ r but for regions away from the dense central regime of the

galaxy velocity distribution do not follow the predicted relation v(r) ∝ 1√
r
and

remains constant. Instead, from these observations it can be concluded that

there is considerable amount of mass present in the outer part of galaxy than

expected. This indicates the presence of dark matter halo of a galaxy whose

extent is far beyond the reaches of the galaxy and the galaxy is embedded

in this dark matter halo. In Fig. 1.1 the observed rotation curve (velocity

distribution plotted against radial distance) for NGC6503 spiral galaxy is shown

as an example. The contribution to the velocity distribution from galactic disk,

gas and dark matter halo are mentioned within the �gure.

• Gravitational lensing

Gravitational lensing e�ect also provides strong evidence for the existence of

Figure 1.2: Gravitational lensing e�ect produced by Abell 2218 galaxy cluster.
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invisible and unknown dark matter. Gravitational lensing is based on Einstein's

general theory of relativity. Light rays originated from distant sources bend due

to immense gravitational force exerted by massive astrophysical objects (such

as galaxy clusters). As a result, multiple images of a distant object behind

the galaxy cluster will be formed when seen through a telescope placed at the

foreground of the cluster. Mass of a galaxy cluster can be estimated from the

de�ection angle of light from the background cluster. Such lensing observations

of galaxy cluster provides an estimate of total mass present in the cluster. A

comparison of this total mass with the estimated visible mass (mainly from

X-ray emitting gas) shows that the total mass far exceeds the observed visible

mass con�rming the presence of huge amount of dark matter in galaxy cluster.

This indicates the existence of dark matter halo surrounding the visible part of

the cluster. Fig. 1.2 shows an example of gravitational lensing e�ect produced

by Abell 2218 cluster. The images of a background galaxy or galaxy cluster

lensed by the background Abell 2218 cluster forms a ring like at the left central

region.

• Bullet Cluster

Existence of dark matter in the Universe is also con�rmed by the study of

colliding galaxies (also known as bullet cluster). Collision of galaxies produce

hot X-ray emission due to interaction of baryonic matters within which is

observed then by X-ray telescopes. Mass of the cluster is obtained from the

study of gravitational lensing e�ects produced by the cluster. It is found that

the lensing is weak near visible mass (region of X-ray emission which contains

about 90% of the total visible matter within the cluster). Strong lensing region

suggests presence of massive substructures situated afar from the visible region.

Hence mass distribution (or gravitation potential) do not follow the baryonic

mass distribution, is governed by dark matter distribution of the galaxy cluster.
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1.1. Astrophysical evidences for dark matter

Figure 1.3: Image of Bullet cluster 1E0657-56 observed by Chandra X-ray
observatory [2].

This o�set between the visible region and massive substructure con�rms the

presence of dark matter halos which do not interact with baryonic matter and

passes through each other during the collision. In Fig. 1.3 an image of Bullet

cluster 1E0657-56 observed by Chandra X-ray observatory is shown.

• Cosmic Microwave Background Radiation

An estimate of dark matter content of the Universe is given by observing

and analysing the anisotropies in Cosmic Microwave Background Radiation

(CMBR). The satellite borne experiment namely PLANCK [3] or WMAP [4]

(Wilkinson Microwave Anisotropy Probe) look for anisotropies in CMBR. This

microwave background radiation is basically the early photons that decoupled

from the thermal bath of Universe in the recombination epoch. PLANCK (and

earlier WMAP) measures the anisotropies in the temperature of Universe. This

�uctuation in temperature can be expressed in the form of spherical harmonics

and angular power spectrum is obtained. CMB angular spectrum data is then

compared with di�erent cosmological models to �nd out best �t values of model

parameters (such as baryon density Ωbh
2, matter density Ωmh2, cosmological
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constant Λ etc.1). Analysis of CMBR by PLANCK predicts Ωbh
2 = 0.022 and

Ωmh2 = 0.1423 ± 0.0029 (68% C.L.) which ensures that most of the matter in

the Universe is made up of dark matter.

1.2 Distribution of dark matter

Name of Density distribution rs ρs α
halo pro�le ρ(r) kpc GeV/cm3

NFW [5] ρs
r3s

r(r+rs)2
20.0 0.259 -

Einasto [6] ρs exp
[
− 2
α

[(
r
rs

)α
− 1
]]

20.0 0.061 0.17

Isothermal [7] ρsr2s
(r+rs)2

3.5 2.069 -

Moore [8]
(
rs
r

)1.16
(

1 + r
rs

)−1.84

30.28 0.108 -

Burkert [9] ρs
(1+r/rs)(1+(r/rs)2)

12.67 0.727 -

Table 1.1: Dark matter halo density functions and scaling parameters.

Presence of dark matter in the Universe is well established from both cosmolog-

ical and astrophysical studies. However, dark matter distribution within the Universe

is not well de�ned. Dark matter halo provides valuable information about dark

matter density distribution ρ(r) within massive astrophysical bodies (galaxies, galaxy

clusters, dwarf galaxies etc.) where r usually denotes the distance from the centre

of the observed body. Di�erent theoretical models for dark matter halo is motivated

from the observation of spiral galaxy rotation curves in galactic scale and numerical

simulations. In general, dark matter halo pro�les are assumed to be canonical in

nature. In Table 1.1, we tabulate characteristic formulae of density distribution and

respective parameters for di�erent halo models for dark matter. Parameters rs and

ρs in Table 1.1 denote scale radius and scale density of the corresponding halo pro�le.

1Ω = ρ
ρc
, is the density ρ of a particular species normalised to the critical density ρc of the

Universe. The dimensionless quantity h denotes the Hubble parameter at present epoch normalised
to the value 100 kms−1MPc−1.
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Values of scale radius and scale density for di�erent halo pro�les tabulated in Table 1.1

are normalised in a manner such that it produce local dark matter density ρ� = 0.3

GeV/cm3 at a distance r = r� = 8.5 kpc from galactic centre. Apart from the Einasto

halo pro�le mentioned in Table 1.1, a modi�ed Einasto pro�le known as EinastoB

[10] is also preferred when contribution from baryonic matter is taken into account.

EinastoB halo pro�le is steeper than the usual Einasto pro�le having smaller value

of α = 0.11.

1.3 Candidates for dark matter

In previous section, we have discussed structural models for dark matter halos in

the Universe. Although astrophysical observation suggests strong evidence in support

of dark matter, particle nature of dark matter is still a mystery to be resolved. Also

the interaction nature of dark matter with baryonic matter is not known. There

are several particle physics models which provide a plausible candidate for dark

matter. In this section we will brie�y discuss particle physics candidates for dark

matter. Depending on the constituent of dark matter, there are two di�erent types

of dark matter candidates namely baryonic and non-baryonic. Since Standard Model

of particle physics can not account for dark matter candidates, dark matter particle

would mostly follow from a theory beyond Standard Model.Besides baryon budget of

Universe is small compared to dark matter density which indicates that dark matter

is mostly non baryonic. Before we initiate discussion on particle candidates for dark

matter, we must mention some general features of dark matter candidate,

• The dark matter candidate must be stable in nature with high decay lifetime

(more than the age of Universe.)
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• Dark matter must be very weakly interacting, almost having no interaction with

normal matter such as baryons, leptons, photons etc.

• The self interaction between dark matter particles should be small otherwise

halo evaporation will occur which is in contrast with the gravitational lensing

e�ect.

Based on these characteristic features, theoretical models for non baryonic dark mat-

ter are proposed. Dark matter candidates obtained from these models are commonly

assumed as Weakly Interacting Massive Particles or WIMPs [11]. Supersymmetry

(SUSY) is one of the popular theories beyond Standard that provides WIMP like

candidates for dark matter [1]. The lightest supersymmetric particle (LSP) appearing

in supersymmetric models is considered to be a viable candidate for dark matter.

Stability of LSP is ensured by R parity conservation of fermionic superpartners of

gauge boson and Higgs boson are highly motivated candidates for dark matter in

supersymmetric models. Axinos, gravitinos (superpartner of non SM particles such as

Axions, graviton) are also treated as plausible dark matter candidate as well. Apart

from supersymmetry based dark matter models there are also di�erent non-SUSY

dark matter models which may provide viable dark matter candidates. For example,

particle physics models with sterile neutrino dark matter and Axion dark matter

are pursued in literatures. Extra dimension models for dark matter are also explored

where lightest Kaluza Klein particle (LKP) in Universal extra dimension (UED) serves

as a potential candidate for dark matter [12]. Simple non-SUSY extension of the

Standard Model Higgs sector with singlet scalar [13], inert scalar doublet [14] where a

Z2 symmetry is invoked in order to stabilise the lightest scalar particle (dark matter

candidate) have also been explored as well. There are also proposals for fermion dark

matter models [15], vector dark matter models [16] etc. in literatures.
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1.3. Candidates for dark matter

In the above, we have mentioned di�erent non baryonic dark matter candidates

obtained from extension of Standard Model of particle physics. Based on the freeze

out temperature of dark matter (for details see Chapter 3), non baryonic dark matter

candidates can be classi�ed into three categories.

• Cold dark matter (CDM) is the type of dark matter which is non relativistic in

nature at the time of its decoupling (freeze out) from the rest of the Universe.

The freeze out temperature (TF ) of these types of dark matter is such that

xF >> 3, where xF = m/TF , m being the mass of dark matter particle.

Sneutrino, neutralino, singlet scalar dark matter, inert doublet dark matter

etc. in di�erent particle physics models are the candidates of CDM.

• Hot dark matter (HDM) particles, are those for which freeze out occurs for

xF << 3 (i.e., at higher temperature than its mass) and hence for this case,

dark matter particle is relativistic. Apart from SM neutrinos, axinos can also

be potential hot dark matter candidate.

• Warm dark matter (WDM) corresponds to the case when dark matter is neither

cold nor hot. Sterile neutrino, gravitino etc. are example of warm dark matter

candidates.

Dark matter can further be distinguished into two sectors depending on the

nature of its evolution in the Universe. If the dark matter candidate (produced at

some early stage) remains in equilibrium with the expanding Universe and decouples

from the thermal bath at some decoupling temperature (freeze out) then the dark

matter component is known as thermal dark matter. On the other hand if dark

matter component is initially absent at early stage of Universe and produced later

from out of equilibrium decay of some long lived particles or scalar �elds, then it is

called non thermal dark matter. Dark matter candidates such as singlet scalar dark
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matter, inert doublet dark matter etc. which are produced thermally and freezes out

are common example of thermal dark matter whereas axion having a non thermal

production mechanism is a plausible candidate for non thermal dark matter. Of late

there is a proposal for another category of dark matter known as Feebly Interacting

Massive Particles or FIMPs [17]-[18]. In this case some dark matter already present in

the Universe at very early epoch are not in thermal equilibrium and the interaction

is very weak (coupling strength ∼ 10−12). Such candidates grow and approaches

chemical equilibrium. While for WIMP, the particles go away from equilibrium at

freeze out, for FIMPs they approach towards equilibrium and su�er freeze in.
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Chapter 2

Standard Model

In Chapter 1, we have mentioned that only 5% of the observable Universe is

made up of visible matter. Leptons and quarks are fundamental constituents of visible

sector. Apart from the gravitational force, interactions of visible sector particle

is governed by three other forces namely strong, weak and electromagnetic force.

Standard Model (SM) of particle physics is a gauge theory (SU(3)C×SU(2)L×U(1)Y )

that uni�es the fundamental forces of strong, weak and electromagnetic interaction

where subscript C de�nes colour, L corresponds to left chiral �eld and Y is the weak

hypercharge. In SM, strong interaction between quarks is mediated via gluon while

gauge bosons W±, Z are responsible for weak interaction of quarks and leptons.

Electromagnetic interaction of charged particles in SM is mediated by massless

photon �eld. In this chapter we will discuss the uni�ed gauge theory of weak

and electromagnetic interaction developed by Sheldon Glashow [19], Abdus Salam

[20] and Steven Weinberg [21] independently which is known as electroweak theory

(SU(2)L×U(1)Y ) of SM. Despite the success of SM of particle physics, there are some

drawbacks of the model. De�ciencies of SM of particle physics will also be addressed

in this chapter to motivate theories beyond Standard Model (BSM).
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Chapter. Standard Model

Theory of strong interaction of quarks is known as quantum chromodynamics

(QCD). QCD follows a non-abelian gauge theory of SU(3) gauge group where all

the quarks are denoted by a �eld ψi, (i = 1 − 3). Thus, quarks exists in three

colours and the label i denotes the colour quantum number. Hence quarks transforms

as a triplet representation of colour SU(3) (SU(3)C). There are eight generators

of SU(3)C in triplet representation resulting eight massless gauge bosons known as

gluons. These eight gauge bosons (gluons) are the force carriers and they mediate

strong interactions. Since QCD is non-abelian, gluons have colour charge and they

can have self interaction. One of the most remarkable feature of QCD is that the

couplings of quarks and gluons (and gluon self interaction) decreases as the energy

increases. Hence at higher energy it is easy to perform perturbative calculations

for for strong interaction. Moreover, as the distance between quarks increase, the

bonding between quarks increase making it impossible to isolate quarks or gluons.

This is also an signi�cant characteristic of QCD. However, we will not discuss strong

interaction in this chapter and focus ourselves to the electroweak theory of SM.

2.1 Electroweak theory of Standard Model

In Standard Model, local invariance of SU(2)L × U(1)Y gauge symmetry

prohibits us to add mass terms for the gauge and fermion �elds. The vacuum

of gauge symmetry is spontaneously broken via Higgs mechanism which generates

mass of gauge bosons and fermions. Spontaneous symmetry breaking (SSB) of

SU(2)L × U(1)Y symmetry can be initiated by introducing a scalar �eld invariant

under SU(2)L × U(1)Y transformation. After SSB, the ground state of the scalar

potential to the SM Lagrangian acquires a non zero vacuum expectation value (VEV).

This scalar �eld with non zero VEV, having coupling with the gauge and fermion
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sector of SM, generates gauge boson and fermion mass.

• Scalar sector of SM

The SU(2)L×U(1)Y invariant Lagrangian for the scalar �eld in SM is given as

Lscalar = (DµΦ)†(DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2 , (2.1)

where Φ is a complex scalar doublet written as

Φ =

 Φ+

Φ0

 (2.2)

and is also known as Higgs doublet. In the above (Eq. 2.2) Φ+ and Φ0 =

(h + iη)/
√

2 are complex scalars with electric charge +1 and 0. The covariant

derivative Dµ in Eq. 2.1 can be expressed as

DµΦ =

(
∂µ + i

g

2

3∑
a=1

τaW
a
µ + ig′Y Bµ

)
Φ , (2.3)

where τa, a = 1− 3 are generators of SU(2)L gauge transformation representing

the weak isospin I and Y (= 1
2
) is the weak hypercharge associated with U(1)Y

of Φ doublet. The couplings g and g′ are interaction strengths of gauge �elds

W a
µ and Bµ �eld. Spontaneous symmetry breaking will generate a non zero

VEV for Φ0 which then provides mass to the gauge �elds (will be discussed

later). The scalar potential in Eq. 2.1 can be rewritten as

V = µ2Φ†Φ + λ(Φ†Φ)2 . (2.4)

Hermiticity of the potential demands that the parameters µ2 and λmust be real.

Also the potential should be bounded from below which requires λ > 0. For
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µ2 < 0, choice of particular ground state vacuum of Φ will spontaneously break

the gauge symmetry. However the vacuum of Φ may still be invariant under a

residual subgroup of the gauge group. Hence, the gauge �eld corresponding to

this subgroup will remain massless. In SM SU(2)L × U(1)Y gauge symmetry

gets spontaneously broken into U(1)em which is still a symmetry of the vacuum

resulting a massless photon responsible for electromagnetic interaction.

• Higgs mechanism of electroweak symmetry breaking

In order to explain the SSB, we start with the Lagrangian for the scalar �eld

Figure 2.1: Potential V plotted against the variation of scalar �eld Φ for µ2 > 0 and
µ2 < 0.

mentioned in Eq. 2.1. The Lagrangian expressed in Eq. 2.1 is locally invariant

under SU(2)L × U(1)Y gauge symmetry. Behaviour of the scalar potential

Eq. 2.4 at ground state depends on the parameters µ2 and λ. As mentioned

earlier, the potential must be bounded from below to achieve a stable vacuum

λ > 0. The parameter µ2 appearing in Eq. 2.4 can be either positive or negative.

In Fig. 2.1, we plot the potential VΦ as a function of Φ for both the cases

with i) µ2 > 0 and ii) µ2 < 0. It can be observed from Fig. 2.1 that for

µ2 > 0, the ground state of the potential occurs at 〈Φ〉 = 0 and the symmetry
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is conserved where 〈Φ〉 = 0 denotes the expectation value of Φ at ground state

or vacuum. Hence for µ2 > 0, both the �elds Φ0 and Φ+ are degenerate with

zero vacuum expectation value and the solution is trivial. However, for µ2 < 0

(see Fig. 2.1), the ground state is degenerate and minimum of the potential

is obtained for non zero expectation values 〈Φ〉 = ±
√
−µ2
2λ

. Therefore, for the

case when µ2 < 0, ground state of the potential can assume any one of the

solutions for minima. Once the system jumps to a certain ground state minima

and stabilises the internal symmetry of the potential is violated spontaneously.

This phenomenon when the ground state does not protect the symmetry of the

Lagrangian is known spontaneous symmetry breaking. In the present case, the

gauge symmetry will be broken spontaneously.

Let us assume that the Higgs �eld breaks the gauge symmetry spontaneously

at ground state with 〈Φ〉 ≡

 0

v√
2

 where v =
√
−µ2
λ
. Therefore the Higgs

�eld about the minima can then be expressed as

Φ =

 Φ+

v+h+iη√
2

 , (2.5)

where the �elds h and η have zero VEV. Substituting Eq. 2.5 in the Eq. 2.4 we

obtain that the real scalar �eld acquires a mass mh =
√

2λv2. This real scalar

�eld is known as Higgs boson while other �elds (Φ±, η) remain massless. These

massless modes (originated due to SSB) are known as Goldstone modes which

are absorbed by massive gauge bosons.

• Standard Model gauge bosons

We will now explore the gauge sector of SM. The electroweak theory of SM

preserves the SU(2)L×U(1)Y gauge symmetry resulting four gauge �elds (three

SU(2) gauge �eld (W a
µ , a = 1 − 3) and one U(1) gauge �eld Bµ). The gauge
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invariant Lagrangian for the gauge �elds in SM is

−Lgauge =
1

4
W a

µ νWa
µ ν +

1

4
Bµ νB

µ ν , (2.6)

are kinetic energy and self interaction terms of the Wµ gauge �elds and kinetic

term of Bµ �eld. The �eld strength tensor for Wµ and Bµ �eld can explicitly

be written as

W a
µ ν = ∂µWν − ∂νWµ − gεa b cW b

µW
c
ν ,

Bµ ν = ∂µBν − ∂νBµ . (2.7)

The Lagrangian in Eq. 2.6 does not have any mass term for the gauge �elds.

Besides the gauge symmetry will be lost if one introduces mass terms for gauge

�elds explicitly. However, in order to explain weak interaction of particles,

massive gauge �elds are needed. In SM, masses of the gauge �elds are generated

via Higgs mechanism which breaks the SU(2)L × U(1)Y gauge symmetry

spontaneously. Using the expression of Higgs �eld (Eq.2.5) and putting Y = 1
2

in Eq. 2.3, the covariant derivative term of the Higgs �eld can be rewritten as

DµΦ =

∂µ +
i

2


gW 3

µ + g′Bµ g(W 1
µ − iW 2

µ)

g(W 1
µ + iW 2

µ) − gW 3
µ + g′Bµ



 Φ+

v+h+iη√
2

 . (2.8)

In Eq. 2.8, g and g′ are the respective coupling strengths of the SU(2)L and

U(1)Y gauge sector. Substituting Eq. 2.8 in Eq. 2.1 and replacing the Higgs �eld
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only with its VEV, the e�ective kinetic term of the scalar Lagrangian becomes

(DµΦ)†(DµΦ) =
1

8

∣∣∣∣∣∣∣∣∣∣




gW 3
µ + g′Bµ g(W 1

µ − iW 2
µ)

g(W 1
µ + iW 2

µ) − gW 3
µ + g′Bµ



 0

v


∣∣∣∣∣∣∣∣∣∣

2

=
1

8
g2v2[(W 1

µ)2 + (W 2
µ)2] +

1

8
v2(−gW 3

µ + g′Bµ)(−gW 3µ + g′Bµ)

=
1

4
g2v2W+

µ W
−µ +

1

8
v2(W 3µ Bµ)

 g2 − gg′

−gg′ g′2


 W 3

µ

Bµ

 ,

(2.9)

where we have rede�ned the gauge �elds such that

W±
µ =

(W 1 ∓ iW 2)µ√
2

. (2.10)

First term in Eq. 2.9 corresponds to the mass of charged gauge bosons W±

with mass MW = 1
2
gv while the second term is o� diagonal in W 3

µ and Bµ. To

obtain the physical gauge bosons we have to diagonalise the o� diagonal mass

matrix. Diagonalisation of the mass matrix leads to two normalised neutral

bosons Zµ and Aµ of the form

Zµ =
1√

g2 + g′2

(
gW 3

µ − g′Bµ

)
,

Aµ =
1√

g2 + g′2

(
g′W 3

µ + gBµ

)
, (2.11)

which are mass eigenstates having eigen mass MZ = 1
2

√
g2 + g′2 and MA = 0.

Hence one of the physical gauge boson remains massless. From Eq. 2.11, it

can be realised that diagonalisation of mass matrix is simply an orthonormal
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transformation of the gauge �elds such that

Zµ = cos θWW
3
µ − sin θWBµ ,

Aµ = sin θWW
3
µ + cos θWBµ , (2.12)

where θW is the weak mixing angle given by

θW = tan−1 g
′

g
. (2.13)

Hence electroweak symmetry breaking triggered by Higgs mechanism in SM

leads to three massive gauge �elds W±, Z and one massless �eld Aµ. The

massless �eld respects the U(1)em (sub group of SU(2)L × U(1)Y gauge

symmetry) symmetry of electromagnetic interaction and remains invariant.

Hence, the charge corresponding to U(1)em symmetry, i.e., electric charge is

conserved and information of any electromagnetic interaction is carried by Aµ,

is the photon �eld itself.

• Fermions in SM

The fermion sector of SM is comprised of three generations of quark and

three generations of leptons. Left handed fermion �elds in SM are SU(2)L

doublets while right handed partners transform as a singlet. Hence, the

generalised Lagrangian for the fermions invariant under the SU(2)L × U(1)Y

gauge symmetry in SM is

−Lfermion = L̄i

(
∂µ + i

g

2

3∑
a=1

τaW
a
µ + ig′Y Bµ

)
Li + R̄i (∂µ + ig′Y Bµ)Ri ,

(2.14)

where Li represents left handed fermion (quark or lepton) doublet �eld and Ri

is right handed partner of the quark (lepton) �eld for ith generation which can
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2.1. Electroweak theory of Standard Model

explicitly be written as

Li =

 νi

li


L

,

 ui

di


L

; Ri = uiR, d
i
R, l

i
R, (i = 1− 3) . (2.15)

Expanding the Lagrangian expressed in Eq. 2.14, kinetic terms and interaction

terms of fermion �elds with gauge bosons and photon are obtained. From

Eq. 2.15 it can be observed that right handed neutrino �elds are absent in

SM. This is due to the fact that till date there is no experimental evidence

for the presence of right handed neutrinos. Since the Lagrangian in Eq. 2.14

preserves the gauge symmetry a fermionic mass term is not allowed as it

will break the gauge symmetry. Fermion mass can be generated from the

Yukawa interaction via Higgs mechanism when the gauge symmetry gets broken

spontaneously. Gauge invariant scalar-fermion Yukawa interaction for a single

generation fermion can be expressed as

−LY ukawa = y1L̄1ΦR1 + h.c. , (2.16)

where y1 is the Yukawa coupling constant for the �rst generation fermion. After

SSB the Higgs �eld Φ acquires a VEV v. If we write the scalar �eld Φ as

ΦT = (0 (v + h)/
√

2) (T denotes transpose), for a single fermion generation

(viz. electron) Eq. 2.16 takes the form

−LeY ukawa = ye
v√
2

(ēLeR + ēReL) + ye
h√
2

(ēLeR + ēReL) . (2.17)

The �rst term appearing in Eq. 2.17 is electron mass term and the second term

is the interaction term between the scalar Higgs �eld h and electron. Hence
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electron mass in SM is

me = ye
v√
2
. (2.18)

Masses of other leptons and quarks can also be produced in similar manner from

the idea of SSB. It is to be noted that Yukawa Lagrangian mentioned in Eq. 2.16

in principle can generate masses for down type quarks and charged leptons only.

Since there is no right handed neutrino �eld, neutrinos in SM remains massless.

In order to generate mass for up type quarks we must construct a new Higgs

doublet

Φc = iτ2Φ∗ =

 −Φ̄0

Φ−

 , (2.19)

is the charge conjugate of scalar �eld Φ. Φc transforms identically as Φ under

SU(2) transformation but has weak hypercharge opposite to Φ. For example,

Yukawa interaction term that generates mass of �rst generation up quark can

be written as

−LuY ukawa = (ū d̄)L

 −Φ̄0

Φ−

uR + h.c. . (2.20)

• Neutrinos in SM

As we have mentioned earlier, since there are no right chiral neutrinos in

Standard Model, neutrinos remain massless. Though it is possible to add

right handed Dirac neutrinos to SM and generate neutrino mass, however it

also results in several problems (such as charged lepton mixing etc. discussed

later in 2.2). Also experimental observations of neutrino helicity is found to

be −1 and there is no evidence that neutrinos can be right handed. Hence, in

order to comply with experimental results of absence of right handed neutrinos,

right handed neutrinos has not been introduced in Standard Model. However,

neutrino oscillation phenomena con�rms that neutrinos are massive. Moreover,

neutrinos being charge neutral which indicate that neutrinos can be both Dirac
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type and Majorana type. In order to explain the lightness of neutrino mass

a simple extension of SM is invoked where heavy right handed self conjugate

Majorana �elds are introduced. The Lagrangian for the neutrino sector is then

−Lneutrino = (Y ν)ijL̄iΦ̃NRj +
1

2
MRijN̄ c

RiNRj + h.c.1, (i, j = 1− 3) , (2.21)

where NR denotes the right handed Majorana �elds and MR is the mass

matrix for these heavy right handed neutrinos. In the above Eq. 2.21, Y ν
ij

are Yukawa coupling, which produce Dirac neutrino mass via spontaneous

symmetry breaking

mD =
v√
2
Y ν . (2.22)

Light neutrino mass is then generated through see-saw mechanism at tree level,

Mν = −mDMR
−1mD

T , (2.23)

where Mν is the neutrino mass matrix. The above mentioned mechanism for

neutrino mass generation is known as type I see-saw. Apart from Type I see-

saw there are also other mechanism of neutrino mass generation known as type

II, type III, inverse see-saw which can also provide neutrino mass. However,

we do not intend to discuss these topics in detail herein and can be found

in literatures. In type I see-saw, smallness of neutrino mass is ensured by

heaviness of right handed Majorana neutrinos along with smallness of Yukawa

couplings respectively. Apart from successful generation of neutrino mass these

right handed neutrinos can generate lepton asymmetry and baryon asymmetry

which is also not a part of our discussion and hence skipped.

1Here L represents lepton doublets only.
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2.2 Shortcoming of Standard Model

Although Standard Model of particle physics proposed by Glashow , Weinberg

and Salam (GWS) successfully uni�es the weak and electromagnetic interaction, there

are several shortcomings of the model which indicate that SM is only an e�ective

theory and extension of SM is required. In this section we will brie�y discuss some

phenomenological problems unexplained by SM.

• Gravitation

The �rst and the foremost issue unresolved by SM is gravitation. Despite

the fact that SM provides an uni�cation of strong, weak and electromagnetic

interaction, it does not explain gravitational interaction between particles. This

is due to the fact that Standard Model of particle physics is based on the

assumption that gravitational interaction is weak and negligible.

• Divergence of Higgs mass

Spontaneous breaking of SU(2)L × U(1)Y , i.e., the electroweak breaking scale

in SM is ∼100 GeV. Mass of Higgs boson discovered by LHC is ∼ 125 GeV.

However radiative corrections to the mass of Higgs boson due to self-energy

(contribution from fermionic one loop) is found to be quadratically divergent

(∼ Λ2, where Λ is a high energy cut-o� scale). Such divergence of Higgs mass

can be canceled by adding suitable counter term to the Lagrangian. Hence self

energy terms of Higgs lead to unnatural cancellation (�ne tuning) depending on

the cut-o� scale Λc. For example, if we consider the cut-o� is at Planck scale then

a �ne tuning cancellation of order ∼ 1030 will be required in order to obtain the

observed Higgs mass. Also this cancellation should appear at all perturbative

orders to maintain the Higgs mass at electroweak scale. Such a huge cancellation

at perturbative levels is quite unnatural. Moreover, contributions from other
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Higgs self energy diagrams via gauge bosons or Higgs itself also diverges. Thus

mass of Higgs boson is not protected by any symmetry in SM and a large mass

term can appear from self energy correction even if we set Higgs mass to zero.

• Fermion mass hierarchy

Fermion mass in SM originates from Yukawa type interactions after spontaneous

breaking of SU(2)L × U(1)Y gauge symmetry. However, there exists a large

mass hierarchy between di�erent fermion generations of SM. For instance, the

lightest fermion mass in SM is ∼0.5 MeV while the heaviest weighs about ∼173

GeV (Since electroweak theory of SM do not have any mechanism to generate

neutrino mass, neutrinos in SM are massless and as a result electron is the

lightest fermion in SM). There is no feasible explanation to this mass hierarchy

in SM.

• Neutrino mass problem

According to Standard Model of particle physics neutrinos are massless.

However neutrino oscillation phenomena observed by Super-Kamiokande collab-

oration [22] and SNO [23] indicate that neutrinos are massive and there are �nite

mass di�erences between any two of the neutrino generations. It is found that

neutrino mass eigenstates di�er from neutrino �avour eigenstates which leads to

oscillation of neutrinos from one �avour to another. Standard Model of particle

physics contains both left chiral and right chiral �elds for all fermions except

neutrinos. However one may simply add neutral SU(2)L singlet right handed

Dirac neutrinos to the model for each charged lepton doublets. This would then

generate neutrino mass in the same way mass of quarks and leptons generated

in SM. But oscillation of neutrinos indicate that the mass matrix for neutrinos

in �avour basis is not diagonal and hence one have to diagonalise the neutrino

mass matrix to �nd out the physical �elds. However this leads to a serious
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problem when we consider charge current interactions between gauge bosons

and leptons. As we replace the neutrinos in �avour basis with their physical

�elds we �nd that lepton numbers Le, Lµ, Lτ are not conserved and leads to

lepton �avour violating processes which do not occur. Also such an assumption

with right handed neutrinos do not explain the lightness of neutrinos or why

the Yukawa couplings for neutrinos should be small. The origin of mass for

the neutrinos therefore can not be explained within the framework of Standard

Model of particle physics and one may need theories beyond Standard Model

to explain how neutrinos acquire mass. Thus neutrinos provide us an window

for new physics beyond Standard Model.

• Dark Matter

Existence of dark matter has been con�rmed by various gravitational and

cosmological evidences. Study of cosmic microwave background radiation by

WMAP and PLANCK satellite experiment gives an exact measure of dark

matter relic abundance suggesting that about 80% of material Universe is made

up of dark matter2. Standard model of particle physics is unable to provide a

suitable explanation to the dark matter problem. Also SM can not account for

a stable particle candidate for dark matter. Extension of Standard Model is

apparent in order to explain particle nature of dark matter.

• Baryogenesis

Baryogenesis is one of the most astounding puzzle in the Universe that yet

remains a mystery to be solved. According to the results from WMAP the ratio

of baryon to photon density in the Universe is η ∼ 6.19× 10−10 [24], where η is

expressed as

η =
nb − nb̄
nγ

. (2.24)

2Here �dark matter� refers to cold dark matter only excluding neutrino dark matter, baryonic
dark matter etc.
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In the above Eq. 2.24, nx, (x = b, b̄, γ) denotes number density of baryon (b), anti

baryon (b̄) and photon (γ). Hence there exists a formidable amount of matter

antimatter asymmetry in the Universe. Standard Model of particle physics can

not produce the required amount of baryon to photon ratio. This suggests that

in order to explain the process of baryogenesis, SM should be extended with

new sources of CP violation.

The above mentioned problems (such as neutrino mass problem, dark matter

etc.) can not be explained by Standard Model of particle physics itself and extension

of SM required. Hence one can presume that SM is a theory which uni�es strong,

weak and electromagnetic interaction very well but fails to explain other aspects such

as dark matter, baryogenesis etc. which requires new physics input (a new energy

scale where SM cannot be treated as an exact theory) apart from SM. In this view it

can be concluded that SM is a low energy theory (or e�ective theory) and basically is

a subset of a higher gauge group which resolves all of the above mentioned problems

leading to theories like Grand Uni�ed Theory (GUT) or SUSY.
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Chapter 3

Physics of Dark Matter

In this chapter the physics of dark matter will be discussed in brief which

includes the study of thermal evolution of dark matter and prospects of direct and

indirect detection of dark matter. Study of the dynamics of dark matter in thermal

equilibrium is governed by the Boltzmann equation for the dark matter candidate.

The relic density for the dark matter can be calculated by numerical solution of this

Boltzmann equation. Detailed study of the relevant Boltzmann equation for thermal

dark matter and its solution will also be discussed in this chapter. Apart from the

physics of evolution of dark matter in early Universe, detection of dark matter (both

direct and indirect) is also signi�cant. The direct detection experiments provide upper

bounds on dark matter nucleon scattering cross-section for di�erent masses of dark

matter particle, while the possible indirect signatures can provide limits on the pair

production annihilation cross-section of dark matter. A brief account of both dark

matter direct and indirect detection experiments will be presented in this chapter.
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3.1 Thermal evolution of dark matter and relic

density

We begin with the calculation of relic densities of dark matter by solving the

Boltzmann equation. For simplicity, we consider a single component dark matter

candidate χ. The Boltzmann equation for the evolution of a particle species χ can

be obtained from the relation

L[fχ(pµχ, x
µ)] = C[fχ(pµχ, x

µ)] , (3.1)

where fχ(pµχ, x
µ) is the phase space distribution function of a particle species χ and pµχ

denotes four momentum of the particle species at any space time point xµ. In Eq. 3.1,

L and C are Liouville operator and collision operator respectively. Since Friedmann-

Robertson-Walker (FRW) model of cosmology is based on the hypothesis that the

phase space density is isotropic and homogeneous. Hence, the Liouville operator can

be expressed as

L[fχ(Eχ, t)] = Eχ
∂fχ
∂t
− H | ~pχ|2

∂fχ
∂Eχ

, (3.2)

where H denotes the Hubble parameter. Now the expression of number density is

given by

nχ(t) =
gχ

(2π)3

∫
fχ(Eχ, t) d

3pχ . (3.3)

where gχ denotes the internal degrees of freedom and fχ is the distribution function

for the species χ. Using Eqs. 3.1-3.3, the Boltzmann equation for the evolution of
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density of χ takes the form

∂nχ
∂t

+ 3 Hnχ =
gχ
2π3

∫
C[fχ(Eχ, t)]

Eχ
d3pχ . (3.4)

For a 2 ↔ 2 interaction process, the collision term appearing in the RHS of Eq. 3.4

can be expressed as

gχ
2π3

∫
C[fχ(Eχ, t)]

Eχ
d3pχ = −

∑
spin

∫
dΠχ dΠψ dΠa dΠb (2π)4δ4(pχ + pψ − pa − pb)

×

[
|M |2χ+ψ→a+b fχfψ(1± fa)(1± fb)

−|M |2a+b→χ+ψ fafb(1± fχ)(1± fψ)

]
, (3.5)

where fχ, fψ, fa, fb are respective phase space densities of particles χ, ψ, a, b and

dΠf =
d3p

f

2Ef (2π)3
.

In Eq. 3.5, +(-) used in the factor (1± fi), i = χ, ψ, a, b denotes whether the species

is a boson (fermion) particle. The square of matrix element for the forward process

is |M |2χ+ψ→a+b and the same for the backward process is |M |2a+b→χ+ψ, averaged over

the initial spins of incoming particles and �nal spins of outgoing particles. Energy

and momentum conservation for the process is ensured by delta function for four

momentum. The collision term expressed in Eq. 3.5, can be simpli�ed with well

motivated assumptions. Firstly, we assume that the �nal particles produced in the

χ+ψ → a+ b are in equilibrium with thermal bath. Hence the distribution functions

for �nal particles fa and fb are replaced by f eq
a and f eq

b . Applying principle of detailed

balance we get f eq
a f

eq
b = f eq

χ f
eq
ψ . Secondly, since the annihilation process of the

particles χ and ψ into a and b is CP invariant, square of the matrix elements for both
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forward and backward reaction are same, i.e.,

|M |2a+b→χ+ψ = |M |2χ+ψ→a+b . (3.6)

In order to solve the Boltzmann equation, a �nal assumption has been made in which

we consider that the phase space distribution functions for all the initial particles and

�nal particles appearing in the process follow classical statistics governed by Maxwell-

Boltzmann statistics. Using these assumptions mentioned above, the collision term

given by Eq. (3.5) can eventually be written as

gχ
2π3

∫
C[fχ(Eχ, t)]

Eχ
d3pχ = −〈σχ+ψ→a+b v〉 (nχ nψ − neq

a n
eq
b ) ,

(3.7)

where 〈σχ+ψ→a+b v〉 denotes the thermally averaged cross-section times relative

velocity for the process χ+ ψ → a+ b. When the initial particles are identical or

antiparticle to each other the term 〈σχ+ψ→a+b v〉 in Eq. 3.7 can be expressed as follows

[25]

〈σχ+ψ→a+bv〉 =
1

8m4TK2
2

(
m
T

) ∫ ∞
4m2

σχ+ψ→a+b (s− 4m2)
√
sK1

(√
s

T

)
ds (3.8)

where

σχ+ψ→a+b =
1

4EχEψ gχ gψ v

∑
spin

∫
dΠa dΠb (2π)4δ4(pχ + pψ − pa − pb)|M |

2
χ+ψ→a+b ,

(3.9)

is the cross-section for the process χ + ψ → a + b and the relative velocity between

two initial state particles is v. In Eq. 3.8, T denotes the temperature of thermal

bath, m is the mass of particle χ and s is the centre of momentum energy for the
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process. The factors Ki, i = 1, 2 are the modi�ed Bessel functions of order i. Using

the expression of collision term obtained in Eq. 3.7, the Boltzmann equation becomes

∂nχ
∂t

+ 3 Hnχ = −〈σχ+ψ→a+b v〉 (nχ nψ − neq
χ n

eq
ψ ) . (3.10)

It is to be noted that the process χ+ψ → a+ b can occur through di�erent channels

depending on the interaction between these particles. Since Boltzmann equation

solves for the number density of the particle species, all the channels that produce

a and b from initial particles χ and ψ must be taken into account. Moreover all

the processes which result change in modifying the number density of dark matter

particles (apart from producing a and b) are also to be included. Thus, the modi�ed

Boltzmann equation involving all possible interaction channels is written as

∂nχ
∂t

+ 3 Hnχ = −〈σ v〉 (nχ nψ − neq
χ n

eq
ψ ) , (3.11)

where σ de�nes the total cross-section attributed from all possible interaction modes.

Now we investigate the case for which the initial particles χ and ψ are identical.

In this case therefore nχ = nψ and neq
χ = neq

ψ . Hence, the Boltzmann equation for

the case of interaction of identical particles takes the form (dropping the subscripts

appearing in number density)

∂n

∂t
+ 3 Hn = −〈σ v〉 (n2 − n2

eq) . (3.12)

However, if χ is antiparticle of ψ or vice versa, a factor of 1
2
is to be multiplied on

the right hand side of Eq. 3.12 to avoid double counting of the total number density

of the species (n = nχ + nψ = 2nχ). Before we solve the Boltzmann equation for a

certain particle species we introduce a characteristic temperature TF , known as freeze

out temperature of the particle species. Freeze out temperature TF for a particle
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species χ (initially in thermal equilibrium) is de�ned as the temperature at which it

decouples from the thermal bath and cannot sustain the equilibrium between forward

and backward processes. The criterion that determines whether a particle species will

remain coupled or be decoupled from the thermal bath of Universe depends on its

interaction rate Γ and expansion rate of universe H. If Γ < H (i.e., the interaction

rate becomes smaller than the expansion rate of Universe), self annihilation process

of the particle species producing di�erent particles will be restricted. Therefore, if

the particle is long lived, as the Universe expands the interaction of the particle

freezes out (for Γ < H) and becomes relic having signi�cant relic abundance at

present. Depending on the size of the smallest dark matter halo it can form in

early Universe, dark matter, can be distinguished into two categories namely cold

dark matter (CDM) and hot dark matter (HDM). The dark matter halo is assumed

to be formed by accumulation of considerable amount of dark matter particles. Halo

formation depends on the free streaming length of constituent particles and also the

kinetic decoupling temperature (i.e., freeze out temperature) of these relic particles.

It is found that if the particles are relativistic at the time of decoupling then dark

matter is hot whereas if particles in the halo are non-relativistic then dark matter

is cold. Hence, for simplicity one can distinguish the nature of dark matter (cold or

hot) depending on freeze out temperature assuming dark matter is either cold for

xF > 3 and hot relic for xF < 3, where xF = m/TF , is the ratio of mass of the

particle and freeze out temperature TF of the dark matter particle. In this chapter

thermal evolution of the cold relic particles will be addressed. In order to study the

evolution of cold relic particles, we start initially from the expression of Boltzmann

equation (Eq. 3.12) for identical particles. For simplicity we de�ne a dimensionless

quantity Y = n/s where s is the entropy density of the Universe. We also de�ne

a dimensionless quantity x = m/T (T being the temperature). In terms of these
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quantities (Y and x) Eq. 3.12 can be written in the form [26]

dY

dx
= −ds

dx
〈σv〉

Y 2 − Y 2
eq

3H
(3.13)

In the above equation the Hubble parameter is H = (8πGρ/3)1/2.

The total energy density ρ and total entropy density s are de�ned by

ρ = geff (T )π2T 4/30 (3.14)

s = heff (T )2π2T 3/45 (3.15)

where geff (T ) and heff (T ) are e�ective degrees of freedom for energy and entropy

respectively. Using Eq. 3.15, Eq. 3.13 can be expressed as [25]

dY

dx
= −(45G/π)−1/2g1/2

∗ m〈σv〉
Y 2 − Y 2

eq

x2
(3.16)

where

g1/2
∗ =

(
1 +

T

3heff

dheff
dT

heff√
geff

)
. (3.17)

Integrating Eq. 3.16 from x = 0 to x = x0 where x0 = m/T0, T0 being the present

photon temperature, one obtains Y0 at T0. The relic density for the species χ is then

given by

ΩDM = ρDM/ρc = mDMs0Y0/ρc (3.18)

where ρc is the critical density of the Universe and T0 = 2.73K, the CMB radiation

temperature. Substituting the numerical value of ρc in Eq. 3.18 one obtains [25, 26]

ΩDMh2 = 2.755× 108Y0
mDM

GeV
, (3.19)

where we rede�ne Hubble parameter as h = H/(100 kms−1Mpc−1). Now in order
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to calculate Y0 we have to solve Eq. 3.16 at freeze out temperature TF . When

temperature of Universe is ∼ TF , we de�ne a quantity ∆ = Y − Yeq. Substituting ∆

in Eq. 3.16 we obtain

d∆

dx
= −

(
45

π
G

)−1/2
g

1/2
∗ m

x2
〈σ v〉∆(∆ + 2Yeq)− dYeq

dx
, (3.20)

where Yeq is the equilibrium density and takes the form (for the case of cold relic)

45g

4π4

x2K2(x)

heff(m/x)
, x >> 3. (3.21)

In Eq. 3.21, g denotes the number of internal degrees of freedom. Since Y approaches

equilibrium number density Yeq, the quantity d∆
dx

in Eq. 3.20 can be neglected. We

further assume that at freeze out temperature TF , ∆ = δYeq (δ is a chosen number).

Substituting the value of Yeq and using the expression for ∆, Eq. 3.20 can be rewritten

as

(
45

π
G

)−1/2
45g

4π4

K2(x)

heff(T )
g1/2
∗ m〈σ v〉δ(δ + 2) =

K1(x)

K2(x)
− 1

x

d lnhc(T )

d lnT
.

(3.22)

In the above Kn(x) are modi�ed Bessel functions of order n and hc(T ) is the

contribution to the degrees of freedom for entropy density from other coupled species

at T . Eq. 3.22 is solved numerically and self consistently to obtain the freeze out

temperature TF . The quantity Y0 can now be calculated by integrating Eq. 3.20 from

T0 to TF which yields

1

Y0

= (45G/π)−1/2

∫ TF

T0

g1/2
∗ m〈σv〉dT . (3.23)

In Eq. 3.23, Y at freeze out temperature is not taken into account as the value of YF
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is negligibly small compared to other terms in the equation. Using the above value

of Y0, relic density can now be computed for the cold relic particles.

3.2 Dark matter direct detection

Dark matter candidate (also known as WIMP) may interact with the normal

baryonic matter when it experiences a scattering phenomenon with the constituents

of matter (quarks) through a mediator. Local dark matter particles in the vicinity

of solar system move with a velocity about 200 kms−1. Thus dark matter particles

in the process of possible scattering with the baryonic matter can transfer a part of

its momentum to the nuclei of target material. A measure of the recoil energy of

the target nucleus due to the momentum transfer can provide an estimate of dark

matter nucleon scattering cross-section. A direct dark matter detection experiment

is designed to measure the recoil energy of a target nucleus, a rare event, when a

dark matter particle scatters o� the target nucleus of the detector material. Since

the recoil energy for DM-nucleon elastic scattering is very small ∼keV, a detector

with su�ciently low background and low threshold is required for direct detection.

Depending on the nature of interaction, the elastic scattering of dark matter with

the nucleus is classi�ed into two categories namely spin independent (SI) and spin

dependent (SD) cross-section. The scalar mediated interaction of dark matter and

nucleon is known as spin independent (SI) elastic scattering. Interaction Lagrangian

for such a process is given as L ∼ χ̄χq̄q, where χ represents the dark matter candidate

(WIMP). On the other hand, when the interaction between dark matter and quark

takes place via an axial process (L ∼ χ̄γµγ5χq̄γµγ5q), the interaction will become spin

dependent 1. Such type of spin dependent interaction is valid only for nuclei with non

1It is to be noted that apart from the above mentioned scalar and axial current interactions,
WIMP can also have other type interactions with quarks such as neutral current interaction mediated
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zero ground state spin. Both spin independent and spin dependent interactions are

t-channel processes. Cross-section for spin independent elastic scattering varies with

the square of atomic mass number A of the detector nucleus. The cross-section for spin

dependent scattering of dark matter with nucleus is proportional to a factor (J+1)/J ,

where J is the initial spin of the detector nucleus at ground state. Di�erent direct

dark matter experiments like XENON100 [27], LUX [28], CDMS [29], SuperCDMS

[30], CoGeNT [31], DAMA [32]-[34], EDELWEISS-II [35], CRESST [36] search for

dark matter direct detection events via spin independent scattering of dark matter

and nucleon. Study of spin dependent dark matter search is also performed by

experiments like PICASSO [37], PICO [38] etc. Till date none of the dark matter

direct detection experiments mentioned, have detected any event or signal of dark

matter-nucleon scattering. From the null results, the direct dark matter search

experiments provide exclusion limits for dark matter-nucleon scattering cross-sections

with dark matter mass. These exclusion plots given by di�erent direct dark matter

detection experiments are treated as upper bounds on dark matter-nucleon elastic

scattering cross-section. Strongest bound of spin dependent DM-nucleon interaction

cross-section have been reported by LUX [28] while the most stringent bound on spin

dependent scattering cross-section of dark matter o� the nucleus is given by PICO [38]

experiment.

3.3 Dark matter indirect detection

Indirect detection of dark matter is based on the search for excess gamma ray,

positron, anti-proton, neutrino �uxes from astrophysical objects such as the galactic

centre, galactic halo, Sun etc. These excess could be produced by annihilation of dark

matter. Dark matter can be captured by the in�uence of enormous gravitational force

via Z or Z ′ boson. Such an interaction is vector type spin independent interaction ∼ χ̄γµχγµq̄q.
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of massive heavenly bodies such as galactic centre, dwarf galaxies core of Sun etc.

when velocity of dark matter is less than the escape velocity required to overcome the

gravitational in�uences of those massive objects. When accumulated in considerable

amount over a long period, these astrophysical sites become rich in dark matter.

These astrophysical bodies are probes to dark matter indirect detection. Trapped

dark matter particles in these sites may then annihilate to produce excess energetic

gamma rays or neutrinos than what is expected from known astrophysical processes.

Ground based telescopes like HESS [39], MAGIC [40], VERITAS [41] and satellite

borne telescope Fermi-LAT [42] look for high energy gamma rays from galactic centre

and other astrophysical sites. Earth based neutrino telescopes such as ANTARES [43],

ICECUBE [44] are designed to observe the high energy cosmic neutrino �ux obtained

from di�erent galactic and extragalactic sources. Dark matter can also pair annihilate

into pair of fermions and produce excess in positron (e+) and anti-proton (p̄) �ux.

Satellite borne experiments like AMS [45] and PAMELA [46] can detect such excesses

in positron �ux. In a recent work, AMS-02 [47] has reported their �rst measurement

of anti-proton �ux.

In the last few years, the analyses of Fermi-LAT publicly available data [48, 49]

by several groups [50]- [56] have con�rmed the existence of a low energy (few GeV

range) γ-ray excess which appears to be emerging from the regions close to the centre

of our Milky way galaxy. It is to be noted that apart from dark matter, non-DM

sources such as millisecond pulsars may provide a feasible explanation to the excess

of γ-ray observed at GC [57]. Study of unresolved point sources near GC by Lee

et. al [58] suggests that point sources also contribute signi�cantly to the gamma ray

excess. However, in this work, we will consider DM as the origin of the observed

excess in GC gamma ray to explore the phenomenology of dark matter. The analysis

of Fermi-LAT data [49] by Daylan et. al. [59] shows that the the γ-ray excess from

the GC can be well explained by the annihilating dark matter scenario. They have
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also excluded all the known astrophysical processes which can act as the possible

origin of this phenomenon. In Ref. [59] it is shown that the observed γ-ray spectrum

from the GC can be well �tted by annihilating dark matter scenario with dark matter

mass in the range ∼ 30 − 40 GeV which pair annihilates into bb̄ �nal state with an

annihilation cross section 〈σvbb̄〉 ∼ (1.4 − 2.0) × 10−26cm3/s with local dark matter

density ρ� = 0.3 GeV/cm3. In this work the authors have taken an angular region of

50 around the centre of our galaxy as their region of interest (ROI) and used Navarro,

Frenk and White (NFW) halo pro�le with γ = 1.26 for the computation of γ-ray �ux.

However more recently, the authors Calore, Cholis and Weniger (CCW) of Ref. [60]

have claimed to perform a detailed analysis of Fermi-LAT data for 60 galactic di�usion

excess (GDE) models. Study of CCW shows that the observed excess in gamma ray

is best �tted with a dark matter of mass 49+6.4
−5.4 GeV that annihilates into bb̄ �nal state

having annihilation cross-section 〈σv〉bb̄ = 1.76+0.28
−0.27 × 10−26 cm3s−1. The analysis of

CCW assumes an NFW pro�le with γ = 1.2 for dark matter density distribution

and a di�erent region of interest (ROI) with galactic latitude |l| ≤ 200 and longitude

|b| ≤ 200 masking out the inner region corresponding to |b| ≤ 20.

Besides the GC, the dwarf galaxies may also be rich in dark matter. The dwarf

galaxies are a class of faint and small satellite galaxies of our Milky Way galaxy. The

huge amount of DM content within these dwarf spheroidal galaxies (dsphs) is inferred

from their mass to luminosity ratio (M
L
). The M

L
ratio for these galaxies are found

to be much higher than what is expected from the estimation of their visible mass.

The dark matter rich dsphs can also emit excess γ-rays due to the pair annihilation

of dark matter. Nine such dwarf galaxies have recently been discovered in addition

to the previously discovered 15 dwarf satellite galaxies of Milky way. Study of γ-rays

from previously known 15 di�erent dwarf galaxies by Fermi-LAT [61] and eight newly

discovered dwarf galaxies by Fermi-LAT with DES collaboration [62] provide bound

on DM mass and corresponding 〈σv〉 for di�erent annihilation channels.
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3.4 Collider searches of dark matter

Particle accelerators like large hadron collider (LHC) also looks for dark matter

particle within the accelerator. If dark matter is produced in particle collider it

would remain undetected (since dark matter is weakly interacting and stable) and a

missing energy signature will be obtained when momentum is reconstructed for the

event. Observation of such missing energy can help to determine any signal of dark

matter. Proposed accelerator experiment International Linear Collider (ILC) may

also uncover the nature of dark matter and enlighten the physics of dark matter.

ILC will probe high energy particles produced in TeV scale. In ILC direct collision

of energetic leptons will be observed. Hence, it is possible that dark matter can be

produced directly from the collision and valuable information such as spin, mass,

coupling etc. of dark matter candidate can be measured. Moreover, dark matter can

also be produced at collider from invisible decay of Higgs boson or Z boson. Invisible

decay branchings of Higgs or Z boson is constrained by experiments at LHC, LEP

which is then used to put further bound on invisible deacy (such as couplings) of

these bosons into dark matter.
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Chapter 4

Fermionic dark matter in two Higgs

doublet model

4.1 Introduction

The satellite borne experiments like Planck, WMAP etc. which study the

anisotropies of cosmic microwave background radiation (CMBR) predict that more

than a quarter of the constituents of the Universe is made of unknown dark matter.

The recent Planck data obtained from the observation of CMBR suggest that the

relic abundance for dark matter is within the range ΩDMh2 = 0.1199 ± 0.0027 [3],

where h is the Hubble parameter normalised to 100 km s−1 Mpc−1. Although the

dark matter (DM) searches are being vigorously pursued, the particle constituent

of dark matter is not known at all. In the Chapter we consider an extension of

Standard Model (SM) where a second Higgs doublet is introduced in addition to the

SM Higgs doublet. Though the recent �ndings of CMS [63] and ATLAS [64] have

con�rmed the existence of a SM like scalar with mass 125 GeV, possibility of having
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a second Higgs doublet accompanied by the SM sector Higgs doublet is not ruled out.

Such an extension of SM sector including a second Higgs doublet is preferably known

as two Higgs doublet model or THDM [65]. The two Higgs doublet model is the

most general non supersymmetric extension of Standard Model (SM) when another

complex doublet of same hypercharge is added to the SM. Also a discrete symmetry

is introduced between the Higgs doublets of THDM to avoid �avour changing neutral

current (FCNC) processes [66]. In this work, we consider a singlet fermionic dark

matter candidate in THDM framework. Possibility of a singlet scalar appearing in

THDM to provide a feasible DM candidate has been studied extensively in Refs. [67]-

[74]. The case of low mass scalar DM in the framework of THDM has been presented

in a recent work by [72]. Thus, the dark matter candidate is the singlet fermion in

our model. We then explore the viability of this singlet fermion for being a candidate

of cold dark matter in the framework of THDM. In a previous work [15], a minimal

model of singlet fermionic dark matter is proposed which is formulated by adding

a Lagrangian for the fermion to Standard Model Lagrangian. The fermionic dark

matter particle in this minimal model couples with the SM Higgs doublet through

a dimension �ve interaction term and a new physics scale Λ is introduced. However

this minimal model of fermionic dark matter requires UV completion which can be

achieved by adding a singlet scalar to the minimal model. Phenomenology of such

renormalisible singlet fermionic dark matter models with additional singlet scalar are

explored in literatures [75, 76]. In the present work, however, we consider a THDM

with an additional singlet fermion which is treated as the DM candidate. Previous

work including fermionic dark matter in THDM Ref. [69], is based on an ad-hoc

assumption that the singlet dark matter couples to the SM Higgs (h) and does not

couple to the other scalar H involved in THDM. Based on this simple assumption the

work by Cai and Li [69] only explores the low mass dark matter region (mDM ≤ 40

GeV). But in our case, the singlet fermion, which is the DM candidate in the present
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model, couples to both the Higgs doublets through a dimension �ve coupling when a

new physics scale Λ is introduced. Hence, DM candidate in present scenario couples

to both the scalar bosons h and H of THDM. The stability of such a dark matter is

ensured either by assigning a discrete Z′2 symmetry under which the singlet fermion

is odd and the THDM sector is even or by assigning the baryon and lepton charge

of the singlet fermion to be zero as taken in Ref. [15, 77]. In this work we explore

the possibility that within the framework of this model, the fermion (added to the

THDM) is a viable candidate for cold dark matter.

4.2 The Model

In the present work we add a singlet fermion χ with two Higgs doublet model.

The singlet fermion χ in the resulting model, is the dark matter candidate. The

Lagrangian for χ can be written as

Lχ = χ̄iγµ∂µχ−m0χ̄χ . (4.1)

As mentioned earlier, the stability of χ can be con�rmed either by assigning zero

lepton number and zero baryon number to the singlet fermion [15] or by assuming a

Z′2 symmetry under which χ is odd and the SM sector is even. The total Lagrangian

of the model in THDM framework can be written as

L = LTHDM + Lχ + Lint , (4.2)

43



Chapter. Fermionic dark matter in two Higgs doublet model

where Lint denotes the interaction Lagrangian. The two Higgs doublet model potential

is expressed as

V (Φ1,Φ2) = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 + (m2
12Φ†1Φ2 + h.c.) +

1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2

+λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1) +
1

2
λ5[(Φ†1Φ2)2 + h.c.] , (4.3)

where both the doublet Higgs �elds Φ1 and Φ2 have non zero vacuum expectation

values and a discrete symmetry (Z2) is imposed in between the doublet �elds in order

to avoid FCNC processes. We consider a CP conserving two Higgs doublet model

potential where all the parameters expressed in Eq. 4.3 are assumed to be real. In

addition, the imposed discrete symmetry Z2 will result in mainly four types of THDM

namely type I, type II, lepton speci�c and �ipped THDM according to the nature of

the coupling of fermions with the doublet �elds. In the present work we consider type

I and type II THDM and construct the model. Thus the two scenarios we consider in

this work are type I THDM + one singlet fermion and type II THDM + one singlet

fermion. Both the scenarios will give rise to charged Higgs pair (H±), two CP even

scalar �elds (h,H), one CP odd scalar (A) and Goldstone bosons (G±, G). The Higgs

doublets Φ1 and Φ2 expressed in terms of physical states of the particles are written

as [78],

Φ1 =

 cβG
+ − sβH+

1√
2
(v1 + cαH − sαh+ icβG− isβA)

 , (4.4)

Φ2 =

 sβG
+ + cβH

+

1√
2
(v2 + sαH + cαh+ isβG+ icβA)

 , (4.5)
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where tan β(= v2
v1

), is the ratio of the vacuum expectation values v2 and v1 of the

doublets Φ1 and Φ2 and α is the measure of mixing between two CP even scalars.

The terms cx and sx (x = α, β) denote cosx and sinx respectively. The scalar

potential for the THDM as expressed in Eq. 4.3 must be bounded from below for the

stability of vacuum. The Conditions for a stable vacuum for THDM are

λ1, λ2 > 0 , λ3 + 2
√
λ1λ2 > 0 , λ3 + λ4 − |λ5|+ 2

√
λ1λ2 > 0 .

Perturbative unitarity constraints for the THDM are also taken into account. Bounds

from the unitarity limits on THDM parameters are adopted from [65].

The interaction Lagrangian, Lint of dark matter fermion (Eq. 4.2) with Φ1 and

Φ2 doublet �elds is given by

Lint = −g1

Λ
(Φ†1Φ1)χ̄χ− g2

Λ
(Φ†2Φ2)χ̄χ , (4.6)

where Λ is a high energy scale and g1,2 are dimensionless couplings with the doublet

�elds Φ1,2. Interaction of THDM sector with the DM candidate can now be obtained

easily from Eqs. 4.2-4.6. Dark matter fermion couples to both the physical Higgs

particles h and H which are given by

gχ̄χh =
v

Λ
(−g1 sinα cos β + g2 cosα sin β) ,

gχ̄χH =
v

Λ
(g2 cosα cos β + g2 sinα sin β) , (4.7)

where Λ being a very large scale with respect to v. Hence the couplings gχ̄χh and

gχ̄χH are expected to be small. Using Eqs. 4.1-4.7, mass of the singlet is expressed as

mχ = m0 + v2
( g1

2Λ
cos2 α +

g2

2Λ
sin2 α

)
,
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where v(=
√
v2

1 + v2
2), is 246 GeV. Note that the new physics scale Λ determines the

coupling of DM particle to THDM sector and contributes signi�cantly to the singlet

fermion mass. As mentioned earlier, the discrete Z2 symmetry imposed between the

Higgs doublets will result in four di�erent types of THDM. In this work we consider

THDM of type I and type II. In type I THDM, only one scalar doublet (say Φ2)

couples to the SM particles whereas in type II THDM, up type quarks couple to one

Higgs doublet and down type quarks and leptons couple to the other. Hence type I

THDM can be implemented with discrete symmetry Φ1 → −Φ1. On the other hand

type II THDM is the case when Φ1 → −Φ1 and diR → −diR (diR, i = 1− 3 represents

down type quarks) is satis�ed. Also it is assumed that right handed leptons follows

the same discrete symmetry as the down type quarks. Higgs couplings to up type

quarks, down type quarks and leptons in case of type I THDM are given as [66]

gf̄fh = −i gmf

2MW

cosα

sin β
, gf̄fH = −i gmf

2MW

sinα

sin β
, (4.8)

where f denotes all SM fermions (up quarks, down quarks and leptons) respectively.

In case of type II THDM, Yukawa couplings are

gūuh = −i gmu

2MW

cosα

sin β
, gūuH = −i gmu

2MW

sinα

sin β
,

gd̄dh = −i gmd

2MW

− sinα

cos β
, gd̄dH = −i gmd

2MW

cosα

cos β
,

gl̄lh = −i gml

2MW

− sinα

cos β
, gl̄lH = −i gml

2MW

cosα

cos β
. (4.9)

In the above, u corresponds to up type quarks (u, c, t), d corresponds to down

type quarks (d, s, b) and l represents three families of leptons (e, µ, τ) respectively.

Couplings to the gauge bosons (V = W,Z) for THDM I and THDM II are same and

46



4.3. Collider physics phenomenology

given by [66]

gWWh = igMW sin(β − α)gµν , gWWH = igMW cos(β − α)gµν ,

gZZh = ig
MZ

cos θW
sin(β − α)gµν , gZZH = ig

MZ

cos θW
cos(β − α)gµν . (4.10)

In Eqs. 4.8-4.10, mx (x = u, d, l etc) represents the mass of quarks or leptons and

MW and MZ denote the masses of W and Z bosons respectively. In the present

framework with type I and type II THDM, we consider h to be SM-like Higgs boson

with mass mh = 125 GeV and H as the non-SM Higgs with mass mH .

It is to be noted that a term ∼ 1
Λ

Φ†1Φ2χ̄χ + h.c. can also be added to the

interaction Lagrangian (Eq. 4.6). Such a term would result in an additional mass

term ∼ v1v2 for the dark matter candidate χ in the present model. Moreover, this

term will also be responsible for interaction χ̄χ → hH. However, we have followed

the formalism of Cai and Li [69] where such an interaction term is not taken into

account. In this work we show that as we drop the ad-hoc assumption of gχ̄χh = 0

or gχ̄χH = 0 taken in [69], the results would be di�erent and the allowed low mass

region for dark matter mχ ≤ 40 GeV will disappear.

4.3 Collider physics phenomenology

The existence of a scalar boson of mass 125 GeV has been con�rmed by Large

Hadron Collider (LHC) [63, 64]. In this work we treat the new found scalar boson

to be equivalent to one of the CP even scalars (h) appearing in THDMs. We further

extend the model by including a possible fermionic dark matter (FDM) candidate.

This may necessarily a�ect the phenomenology of collider physics. If the dark matter

mass is small (mχ ≤ mh/2) then one would expect an invisible decay of SM-like Higgs
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boson (h) and the total decay width will change depending on the coupling constant

gχ̄χh and other THDM parameters α, β. Since both the scalar bosons in THDM

couple with the DM fermion in the present framework, it may change the standard

bounds on THDM sector. The signal strength of SM like Higgs boson (h) to a speci�c

channel for type I and type II THDM are given by

RI =
σI
h

σSM

BRI

BRSM
, RII =

σII
h

σSM

BRII

BRSM
, (4.11)

where σI,II
h

σSM represents the ratio of Higgs production cross-section in type I as also

in type II THDM with respect to that for SM (σSM, is the SM Higgs production

cross-section). The branching ratio (BR) to any speci�c channel for the chosen model

and for SM are given by BRX , X = I, II and BRSM. The ratio σX
h

σSM (X = I, II) in

Eq. 4.11 for 125 GeV Higgs boson can be expressed as

σXh
σSM

=
σttf

2
t + σbbf

2
b + σtbftfb

σSM
, (4.12)

where σtt, σbb are the Higgs production cross-sections from top and bottom quarks

respectively and σtb is the contribution from top-bottom interference. For the

calculation of SM Higgs signal strength, we have adopted the leading order (LO)

production cross-sections obtained from [79]. The factors ft, fb in Eq. 4.11 are the

Yukawa couplings of SM-like Higgs (h) with top and bottom quarks for the speci�c

model normalised with respect to SM. For type I THDM, ft = fb = cosα
sinβ

and for type

II THDM these factors are given as ft = cosα
sinβ

and fb = − sinα
cosβ

. As de�ned earlier,

α is the mixing angle between the CP even scalars h and H and β is given by the

ratio of the VEVs v2 and v1 of Higgs doublets Φ2 and Φ1 respectively (tan β = v2
v1
).

ATLAS and CMS experiments have measured the signal strengths of SM Higgs (h)

boson to di�erent production channels such as bb̄, τ τ̄ , γγ,WW ∗, ZZ∗. The mean

signal strengths of SM Higgs to these channels measured by ATLAS and the best
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�t value of combined signal strength of h given by CMS experiment are found to be

[80, 81]

RATLAS = 1.23± 0.18 , RCMS = 0.8± 0.14 . (4.13)

In the present scenario with THDM, we have a non-SM Higgs (H) in addition to

the SM scalar h. The signal strengths of non-SM Higgs boson for type I and type II

THDM are given as

R′I =
σI
H

σ′SM

BR′I

BR′SM
and R′II =

σII
H

σ′SM

BR′II

BR′SM
(4.14)

respectively, where σX
H (X = I, II depending on the nature of THDM considered) is

the non-SM Higgs production cross-section and BR′X is the branching ratio of H to

any speci�c channel. In Eq. 4.14, σ′SM and BR′SM represent the production cross-

section and branching ratio of the non-SM Higgs boson (H) with mass mH . The

modi�ed non-SM Higgs production cross-section ratio can be given as

σXH
σ′SM

=
σ′ttf

′2
t + σ′bbf

′2
b + σ′tbf

′
tf
′
b

σ′SM
. (4.15)

Similar to Eq. 4.11, in Eq. 4.15 also, the factors f ′t , f
′
b are the SM normasiled Yukawa

couplings of non-SM Higgs H with top and bottom quarks. For the case of type I

THDM, f ′t = f ′b = sinα
sinβ

, whereas those for type II THDM are f ′t = sinα
sinβ

and f ′b = cosα
cosβ

.

In the present work we consider two values of non-SM Higgs mass and they are chosen

as mH = 150 GeV and 200 GeV. The calculations are performed for each of these

chosen masses. We use the leading order production cross-section (σ′tt, σ
′
bb, σ

′
tb and

σ′SM) obtained from Ref. [79] for the chosen mH values in the work. Invisible decay

of the non-SM Higgs (for mχ ≤ mH/2) has also been taken into account. Since no

signature of additional Higgs has been reported by ATLAS and CMS experiment, it is

likely to assume that the non-SM Higgs signal strength is negligibly small compared
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to that of SM Higgs. Hence, throughout the work, we restrict the signal strength for

non-SM scalar satisfying the condition R′X ≤ 0.2 (X = I, II). SM branching ratios

for speci�c decay modes of SM Higgs (BRSM with mass mh = 125 GeV) and non-SM

Higgs (BR′SM for mH = 150 and 200 GeV) are adopted from Ref. [82]. It is to be

mentioned that in this work we do not consider any ad-hoc condition, e.g. by setting

gχ̄χh = 0 or gχ̄χH = 0 [69] for the SM-like scalar (assuming sin(β−α) = ±1 when h is

SM-like or sin(β − α) = 0 when H is SM-like). In the present formalism we consider

the total allowed range of available parameter space independent of these conditions

and restrict them by using limits on SM Higgs signal strength from CMS and ATLAS

(Eq. 4.13).

4.4 DM annihilation and relic density

In order to evaluate the relic density of the fermionic dark matter candidate

proposed in this work one requires to solve the Boltzmann equation [26]

dn

dt
+ 3Hn = −〈σv〉(n2 − n2

eq) (4.16)

where n is the actual number density of the particle species, H is the Hubble parameter

and neq is the number density at thermal equilibrium. An approximate expression

for relic density Ω or Ωh2 (h = H/(100 kms−1Mpc−1)) that can be obtained from Eq.

4.16 is given by

ΩDMh2 =
1.07× 109xF√
g∗MPl〈σv〉

(4.17)

where xF = mχ/TF , g∗ is the e�ective degrees of freedom andMPl = 1.22×1019 is the

Planck mass. The particle physics input to Eqs. 4.16-4.17 is the thermal averaged
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annihilation cross-section 〈σv〉 and one needs to calculate this quantity for the present

fermionic dark matter candidate in our model. The freeze out temperature TF (or

xF ) in Eq. 4.17 can be computed by iteratively solving the equation

xF = ln

mχ

2π3

√
45M2

Pl

2g∗xF
〈σv〉

 . (4.18)

The freeze out temperature thus obtained is then used to evaluate the relic density

of the dark matter candidate χ in our model. In order to solve for the freeze out

temperature, it is therefore essential to calculate the annihilation cross-section of the

dark matter candidate. Dark matter candidates in the present model annihilate to

SM particles through h or H mediated s-channel processes. The total annihilation

cross-section σv can be expressed as a sum of the three terms

σv = (s− 4m2
χ)

[
A

1

(s−m2
h)

2 +m2
hΓ

2
h

+B
1

(s−m2
H)2 +m2

HΓ2
H

+C
2(s−m2

h)(s−m2
H) + 2mhmHΓhΓH

[(s−m2
h)

2 +m2
hΓ

2
h][(s−m2

H)2 +m2
HΓ2

H ]

]
. (4.19)

In Eq. 4.19, Γh and ΓH are decay widths of light Higgs (h) and heavy Higgs particle

(H) respectively. We set the light Higgs mass mh to be 125 GeV and consider each of

the two values of non-SM Higgs mass mH = 150 GeV and 200 GeV. Thus we assume

mH > mh in the present work. The terms A, B and C in the expression for σv (Eq.

4.19) in case of THDM I are given as (with summation convention imposed on quarks

and leptons)

A = g2
χ̄χh

GF

4π
√

2

[
c2
α

s2
β

(Ncm
2
ui
γ3
ui

+Ncm
2
di
γ3
di

+m2
li
γ3
li
)

+
1

2
s2
β−αs(1− xW +

3

4
x2
W )γW +

1

4
s2
β−αs(1− xZ +

3

4
x2
Z)γZ

]
, (4.20)
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B = g2
χ̄χH

GF

4π
√

2
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α

s2
β

(Ncm
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ui

+Ncm
2
di
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+m2
li
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3

4
x2
W )γW +

1

4
c2
β−αs(1− xZ +

3

4
x2
Z)γZ

]
, (4.21)

and

C = gχ̄χhgχ̄χH
GF

4π
√

2
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cαsα
s2
β
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γ3
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+Ncm
2
di
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3

4
x2
W )γW +

1

4
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3

4
x2
Z)γZ

]
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(4.22)

For type II THDM, the expressions for A, B and C are

A = g2
χ̄χh

GF
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√
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x2
Z)γZ

]
, (4.23)

B = g2
χ̄χH

GF
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]
, (4.24)

C = gχ̄χhgχ̄χH
GF
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di
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−m2
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]
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(4.25)

In all the above expressions (Eqs. 4.20-4.25) γa = (1 − 4m2
a

s
)
1
2 (a = u, d, l, W, Z),

xB =
4m2

B

s
and Nc = 3 for quarks. Thermal average of pair annihilation cross-section
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of DM to SM particles is given by

〈σv〉 =
1

8m4
χTFK

2
2(mχ/TF )

∫ ∞
4m2

χ

ds σ(s) (s− 4m2
χ)
√
sK1(

√
s/TF ), (4.26)

where K1 and K2 are modi�ed Bessel function. Using Eqs. 4.19-4.26, the annihilation

cross-section 〈σv〉 of DM candidate into SM particles is evaluated for both type I and

type II THDM. We �rst solve for the freeze out temperature TF using Eq. 4.18.

The relic density ΩDMh2 of dark matter is obtained by solving Eq. 4.17 in order

to satisfy dark matter relic density obtained from PLANCK experimental value

ΩDMh2 = 0.1199 ± 0.0027 [3]. The DM relic density is computed with the chosen

model parameters such that 1

mχ ≤ 300 GeV ,

10−4 ≤ |gχ̄χh| ≤ 0.1 ,

10−4 ≤ |gχ̄χH | ≤ 0.1 ,

−π/2 ≤ α ≤ π/2 ,

1 ≤ tan β < 30 . (4.27)

As mentioned earlier, the calculation of dark matter relic density is performed for

two values of non-SM scalar mass mH taken to be 150 GeV and 200 GeV. We further

constrain the model parameter space using the bounds for SM Higgs signal strength

as obtained from ATLAS and CMS experiments (Section 4.3) as also using the bounds

on the signal strength of H (R′I,II ≤ 0.2).
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(a) (b)

(c)

Figure 4.1: Allowed sinα-tan β parameter space for type I THDM consistent with
RCMS within the framework of present DMmodel (Fig. 4.1a). Green and blue coloured
regions are for mH = 150 geV and 200 GeV respectively. Similar plots for the case
of type II THDM is shown in Fig. 4.1b. Valid parameter space in type II THDM
satisfying RATLAS only is depicted in Fig. 4.1c. The computation for all the plots
are performed with the constrained range of model parameter space values which
produce required DM relic density consistent with PLANCK results. For all the plots
the constrained R′I,II is respected.
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4.5 Results

In this section we present the results for our fermionic dark matter in type I

and type II THDM. We �rst obtain the relic density of the DM candidate by solving

the Boltzmann equation (Eq. 4.16). The Boltzmann equation is solved by using the

range of parameter space given in Eq. 4.27 and the relic density of the fermionic dark

matter in the present model is then calculated. The comparison with the PLANCK's

result for DM relic density, constraints the parameter space of the model considered

in this work. The signal strength RX (X = I, II; I, II corresponds to type I and

type II THDM respectively) for the SM Higgs h is computed with the parameter

space restricted by PLANCK results. As mentioned earlier, we also compute the

signal strength R′X , the signal strength of the other Higgs H and its value is kept in

the limit R′X ≤ 0.2. The calculated values of both RI and RII are compared with

the CMS and ATLAS limits for the SM signal strength. Thus the parameter space

is further constrained by the CMS and ATLAS results. In Fig. 4.1a-c we show the

allowed parameter space in sinα-tan β plane for fermionic dark matter for each of

type I and type II THDM scenarios extended with FDM. The plots in Fig. 4.1 are

obtained for two values of H mass namely mH = 150 and 200 GeV. In Fig. 4.1a

the variations of sinα with tan β for FDM extended type I THDM are shown.We

found that for type I THDM along with FDM fails to satisfy the combined signal

strength as predicted by ATLAS (RATLAS). Hence in Fig. 4.1a, only the constraints

from CMS experimental results (for signal strength, i.e. RCMS) are imposed. The

blue and green scattered regions in Fig. 4.1a-4.1c represent the respective allowed

parameter space when mH is chosen to be 150 GeV and 200 GeV respectively. It

can also be observed from Fig. 4.1a that increase in the mass of the other scalar

H associated with the model results in considerable reduction in the overall allowed

1We have checked that in order to satisfy the PLANCK results, these ranges of the parameters
su�ce.
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THDM parameter space. In Fig. 4.1b we plot the available region of sinα- tan β

plane for the case of fermionic dark matter in type II THDM consistent with the

PLANCK relic density as also SM Higgs signal strength RCMS given in Eq. 4.13 with

R′II ≤ 0.2. Similar allowed regions but RCMS replaced with RATLAS (ATLAS bound)

are shown in Fig. 4.1c for type II THDM scenario. For type II THDM, we use the

same colour convention as used in the case of type I THDM (Fig. 4.1a) to show

the valid region of parameter space for mH =150 and 200 GeV. Comparison of the

plots in Fig. 4.1b-c with the type I THDM case (Fig. 4.1a) clearly shows that there

is less allowed parameter space available for type II THDM. It is to be noted that

for type II THDM involving FDM is in agreement with both the combined (for all

�ve channels namely bb̄, τ τ̄ , γγ,WW ∗, ZZ∗) signal strengths RCMS and RATLAS as

predicted independently by CMS and ATLAS experimental results. Note that, for

the case of type II THDM shown in Fig. 4.1b-c too, the available region of sinα-tan β

plane decreases with increase of the mass of H which is similar to the trend observed

for type I THDM formalism (Fig. 4.1a).

4.5.1 Direct detection measurements

We further restrict the allowed parameter space of our model with the direct

detection experimental bounds on DM-nucleon scattering cross-section. Direct

detection of dark matter utilises the phenomenon of a possible elastic scattering

o� a nucleus of detecting material. In order to enable a uniform comparison of

experimental results from di�erent dark matter experiments with di�erent detecting

materials, the experimentally obtained DM-nucleus elastic scattering cross-section

(σscat) is reduced to DM-nucleon scattering cross-section. The experimental results

are then expressed as the allowed region in mχ−σnucleon
scat plane. This elastic scattering

cross-section can be spin independent (SI) or spin dependent (SD), depending on
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the ground state spin of detector nucleus. The elastic scattering of the dark matter

particle o� the target causes the recoil of the target nucleus. This recoil energy is

measured in the experiment and allowed region in the plane of scattering cross-section

and dark matter mass is then obtained. The spin independent dark matter-nucleon

elastic scattering cross-section in the present model is given as

σSI '
m2
r

π

(
gχ̄χhgNNh

m2
h

+
gχ̄χHgNNH

m2
H

)2

. (4.28)

In the above,mr is the reduced mass = mχmN
mχ+mN

, wheremN is the mass of the scattering

nucleon (proton or neutron) and gNNx (x = h or H) denotes the e�ective Higgs

nucleon couplings expressed as [83]

gNNh ' (1.217khd +0.493khu)×10−3 , gNNH ' (1.217kHd +0.493kHu )×10−3 . (4.29)

For the case of THDM I, parameters khu and khd in Eq. 4.29 are given as

khu = khd =
cosα

sin β
, kHu = kHd =

sinα

sin β
. (4.30)

and for the case of THDM II these parameters are

khu =
cosα

sin β
, khd = − sinα

cos β
, kHu =

sinα

sin β
, kHd =

cosα

cos β
. (4.31)

Using Eqs. 4.28-4.31, we compute σSI for the DM candidate within the

framework of our chosen speci�c model in this work and compare them with the

latest limits for σSI and mχ (in σSI −mχ plane) given by recent dark matter direct

detection experiments namely XENON100 [27] and LUX [28] 2. In Fig. 4.2a-f we plot

the variation of DM-nucleon scattering cross-section σSI with DM mass (mχ) for the

2Both the experiments use liquid Xenon as detection material.
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cases of both type I and type II THDM. The red and blue lines shown in Fig. 4.2a-f

are the limits on DM-nucleon cross-section obtained from XENON100 and LUX. The

calculations are performed with the parameter space (such as couplings etc.) of the

present model which has already been constrained by PLANCK results and collider

bounds (Fig. 4.1a-c). Thus the resultingmχ−σSI parameter space is in agreement with

the bounds from Higgs signal strength (RCMS,ATLAS), limits on the signal strength on

extra Higgs scalar of THDM (R′I,II ≤ 0.2) and also satis�es DM relic density predicted

by PLANCK. Shown in Fig. 4.2a and Fig. 4.2b are the mχ − σSI parameter space of

DM candidate in type I THDM framework for mH = 150 and 200 GeV respectively.

Needless to mention, parameters used in these two plots are restricted by RCMS, R′I

and PLANCK. It is to be noted from Fig. 4.1a that observational results of Higgs

signal strength (Fig. 4.1a) indicate that there is no valid parameter space in type I

THDM associated with our fermionic dark matter that corresponds to RATLAS. It

is clear from Fig. 4.2a-b that due to the presence of an extra scalar in the model

along with SM Higgs, an extra pole is likely to appear in the mass range mχ ∼ mH/2

with the normal SM Higgs pole occurring near mχ ∼ mh/2. This scenario also holds

for the case of type II THDM as well. Study of the plots in Fig. 4.2a-b reveals

that the fermionic DM particle χ in type I THDM can serve as a viable candidate

of dark matter with a su�cient allowed parameter space that is in agreement with

latest DM direct detection experimental results of XENON100 and LUX. Similarly

using the allowed parameter space obtained in Fig. 4.1b-c (constrained by DM relic

density, combined Higgs signal strength (RCMS,ATLAS) and bound on additional Higgs

signal (R′II)), we plot the viable parameter space in mχ − σSI plane for DM in type

II THDM (Fig. 4.2c-f). In Fig. 4.2c-d, the available mχ − σSI spaces for two values

of the scalar mass H, mH = 150 GeV and 200 GeV respectively are shown. Each of

these plots satis�es the model parameter space constrained by PLANCK, RCMS and

R′II . Analogous plots are obtained in Fig. 4.2e-f but here only RATLAS is taken into
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account instead of RCMS. It is obvious from Fig. 4.2c-f, that the region of allowed

mχ−σSI space depends on the mass of the additional scalar H. Fig. 4.2c-f also shows

that a considerable portion of DM-nucleon scattering cross-section σSI of the DM

candidate χ in type II THDM lies in the allowed region set by XENON100 and LUX

direct detection experiments. Hence, fermionic dark matter χ appearing in type II

THDM can be treated as a potential candidate for dark matter. It is also seen from

Figs. 4.2a-f that the low mass region of dark matter appearing in [69] (mχ ≤ 40 GeV)

is excluded when the condition gχ̄χh = 0 or gχ̄χH = 0 is relaxed.

59



Chapter. Fermionic dark matter in two Higgs doublet model

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Fig. 4.2a-b shows the mχ − σSI parameter space for FDM in type I THDM is

allowed by PLANCK relic density and collider bounds plotted using RCMS for mH = 150

and 200 GeV. Similar plots in mχ − σSI plane with type II THDM are shown in Fig. 4.2c-d

whereas the plots in Fig. 4.2e-f are in agreement with RATLAS and R′I,II ≤ 0.2. The red and

blue lines are respective bounds on DM-nucleon scattering cross-section from XENON100

and LUX DM direct search experiments.
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4.6 Discussion

In this chapter we have explored a singlet fermion dark matter in a framework

of two Higgs doublet model. We have explored the viability of such a fermionic dark

matter in two di�erent types of THDMs namely THDM I and THDM II and assumed

that the new found scalar boson at LHC is one of the two CP even Higgs appearing

in THDM. The fermionic dark matter candidate χ in our model couples to the CP

even Higgs-scalars appearing in THDM with a non-renormalisable dimension �ve

interaction. Hence, DM in the present model can undergo the process of annihilation

into SM particles through Higgs mediated channels. We solve the Boltzmann equation

for the DM candidate χ to calculate the DM relic density for the case of type I and

type II THDM. We have constrained the model parameter space by PLANCK relic

density criterion for dark matter, bounds on the SM Higgs signal strength obtained

from LHC experiments (CMS and ATLAS) and latest direct detection limits on DM-

nucleon scattering cross-section from XENON100 and LUX results. Since both the

models (type I and type II THDM) involve an extra Higgs boson (H), additional

bounds on the signal strength of non-SM scalar due to its non-observance are also

taken into account. Study of the model parameters reveals that an increase in the

mass of H (mH) will result in a decrease in the valid parameter space for both the

THDM's considered. The present analysis indicates that the fermionic DM χ in

THDM I and II framework (as considered in the work) can be treated as a possible

dark matter candidate satisfying the bounds on DM relic density, direct detection

and Higgs signal strength results from CMS and ATLAS. The present framework

of THDM excludes the low mass regime explored in the work [69] when the ad-hoc

assumption on the DM-Higgs coupling is relaxed. This also holds for the case of scalar

or vector dark matter candidate explored in the work [69].

It is to be noted that the present model is based on an e�ective theory
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approach of dark matter in THDM framework assuming a dimension �ve non-

renormalisable interaction of DM candidate χ with the THDM scalar doublets. This

non renormalisable interaction invokes a new physics scale Λ similar to the case of

minimal fermionic dark matter model [15]. Hence, the present model is not UV

complete. UV completion of this model can simply be obtained by removing the

dimension �ve couplings within the model and introducing a singlet scalar making

the theory renormalisable (as illustrated in literatures [75, 76]). However, adding

a singlet scalar to the THDM will change the scalar potential of the model. This

new model of THDM with scalar singlet and fermionic dark matter will provide

three Higgs like particles and also an extra resonance region apart from the THDM

scalar resonances for the DM candidate. Direct detection of DM candidate in this

model will also include all three Higgs likes states and will be modi�ed accordingly.

Integrating out the newly introduced scalar �eld is inconvenient as the information

about the scalar resonance region will be lost and direct detection results of DM-

nucleon scattering will change. Hence the study of fermionic dark matter in THDM

with additional singlet scalar will lead to a di�erent Higgs and DM phenomenology

compared to the present framework (fermionic DM in THDM) is not considered in

this work. Detailed study of the model (THDM with singlet scalar and fermionic dark

matter) is interesting and may provide other perspectives of DM phenomenology.
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Singlet scalar extension of inert

doublet model (IDM) part-I

5.1 Introduction

Existence of a newly found Higgs-like scalar boson of mass about 125 GeV

has been reported by recent LHC results. ATLAS [64] and CMS [63] independently

con�rmed the discovery of a new scalar and measured signal strengths of the Higgs-

like scalar to various decay channels separately. ATLAS has reported a Higgs to di-

photon signal strength (Rγγ) of about 1.57+0.33
−0.29 at 95% C.L. [84]. On the other hand

best �t value of Higgs to di-photon signal strength reported by CMS [85] experiment

is ∼ 0.78+0.28
−0.26 for 125 GeV Higgs boson. Despite the success of Standard Model

(SM) of particle physics, it fails to produce a plausible explanation of dark matter

(DM) in modern cosmology. Existence of dark matter is now established by the

observations such as rotation curves of spiral galaxies, gravitational lensing, analysis

of cosmic microwave background (CMB) etc. Besides, particle constituent of dark
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matter is still unknown and SM of particle physics appears inadequate to address

the issues regarding dark matter. Among various extensions of SM, another simple

model is to introduce an additional SU(2) scalar doublet which produces no VEV.

The resulting model namely inert doublet model (IDM) provides a viable explanation

for DM. Stability of this inert doublet is ensured by a discrete Z2 symmetry and the

lightest inert particle (can also be labeled as LIP, i.e., the lightest particle of the

inert Higgs doublet) in this model can be assumed to be a plausible DM candidate.

Phenomenology of IDM has been elaborately studied in literatures such as [86]-[96]. In

this chapter, we propose an extension of inert doublet model (IDM) with an additional

singlet scalar �eld S. We impose a discrete Z2 symmetry, under which all SM particles

and the singlet scalar S are even while the inert doublet is odd. This ensures the

stability of the LIP (H0) of the inert doublet to remain stable and serve as a viable

dark matter candidate. Additional scalar singlet having a non zero VEV mixes with

the SM Higgs, provides two CP even Higgs states. We consider one of the scalars,

h1, to be the SM-like Higgs. Then h1 should be compatible with SM Higgs and one

can compare the relevant calculations for h1 with that obtained in LHC experiment.

The phenomenology of dark matter is explored in the context of this model. We also

calculate the signal strength Rγγ for h1 → γγ channel in the present framework and

compare them with the experimentally obtained limits for this quantity from CMS

and ATLAS experiments which further constrain the model parameter space.
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5.2 The Model

5.2.1 Scalar Sector

In our model we add an additional SU(2) scalar doublet and a real scalar singlet

S to the SM of particle physics. Similar to the widely studied inert doublet model or

IDM where the added SU(2) scalar doublet to the SM Lagrangian is made �inert� (by

imposing a Z2 symmetry that ensures no interaction with SM fermions and the inert

doublet does not generate any VEV), here too the extra doublet is assumed to be odd

under a discrete Z2 symmetry. Under this Z2 symmetry however, all SM particles as

also the added singlet S remain unchanged. The potential is expressed as

V = m2
11Φ1

†Φ1 +m2
22Φ2

†Φ2 +
1

2
m2
sS

2 + λ1(Φ1
†Φ1)2 + λ2(Φ2

†Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2)

+ λ4(Φ†2Φ1)(Φ†1Φ2) +
1

2
λ5[(Φ†2Φ1)2 + (Φ†1Φ2)2] + ρ1(Φ†1Φ1)S + ρ′1(Φ†2Φ2)S

+ ρ2S
2(Φ†1Φ1) + ρ′2S

2(Φ†2Φ2) +
1

3
ρ3S

3 +
1

4
ρ4S

4, (5.1)

where mk(k = 11, 22, s) etc. and all the coupling parameters (λi, ρi, ρ′i, i = 1, 2, 3, ...

etc.) are assumed to be real. In Eq. 5.1, Φ1 is the ordinary SM Higgs doublet and Φ2

is the inert Higgs doublet. After spontaneous symmetry breaking Φ1 and S acquires

VEV and expressed as

Φ1 =

 0

1√
2
(v + h)

 , Φ2 =

 H+

1√
2
(H0 + iA0)

 , S = vs + s . (5.2)

In the above vs denotes the VEV of the �eld S and s is the real singlet scalar.

Relation among model parameters can be obtained from the extremum conditions of
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the potential expressed in Eq. 5.1 and are given as

m2
11 + λ1v

2 + ρ1vs + ρ2v
2
s = 0 ,

m2
s + ρ3vs + ρ4v

2
s +

ρ1v
2

2vs
+ ρ2v

2 = 0 .

Mass terms of various scalar particles as derived from the potential are

µ2
h = 2λ1v

2

µ2
s = ρ3vs + 2ρ4v

2
s −

ρ1v
2

2vs

µ2
hs = (ρ1 + 2ρ2vs)v

m2
H± = m2

22 + λ3
v2

2
+ ρ′1vs + ρ′2v

2
s

m2
H0

= m2
22 + (λ3 + λ4 + λ5)

v2

2
+ ρ′1vs + ρ′2v

2
s

m2
A0

= m2
22 + (λ3 + λ4 − λ5)

v2

2
+ ρ′1vs + ρ′2v

2
s . (5.3)

The mass eigenstates h1 and h2 are linear combinations of h and s and can be written

as

h1 = h cosα− s sinα ,

h2 = h sinα + s cosα , (5.4)

α being the mixing angle between h1 and h2, is given by

tanα ≡ x

1 +
√

1 + x2
, (5.5)

where x =
2µ2hs

(µ2h−µ2s)
. Masses of the physical neutral scalars h1 and h2 are

m2
1,2 =

µ2
h + µ2

s

2
± µ2

h − µ2
s

2

√
1 + x2. (5.6)
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We consider h1 with mass m1 = 125 GeV as the SM-like Higgs boson and the mass

of the other scalar h2 in the model is denoted as m2 with m2 > m1. Couplings of the

physical scalars h1 and h2 with SM particles are modi�ed by the factors cosα and

sinα respectively. To ensure that h1 is the SM-like Higgs, we constrain the mixing

angle by imposing the condition 0 ≤ α ≤ π/4 [97]. The coupling λ5 serves as a mass

splitting factor between H0 and A0. We consider H0 to be the lightest inert particle

(LIP) which is stable and is the DM candidate in this work. We take λ5 < 0 in order

to make H0 to be the lightest stable inert particle. It is to be noted that for very

small mixing, i.e., in the decoupling limit, the present model will be exactly identical

to IDM providing a low mass DM (mH0 ≤ 80 GeV) and a high mass DM candidate

(mH0 ≥ 500 GeV). In the present framework, both the scalars h1 and h2 couple with

the lightest inert particle H0. Couplings of the scalar bosons (h1 and h2) with the

inert dark matter H0 are given by

λh1H0H0v =

(
λ345

2
cα −

λs
2
sα

)
v ,

λh2H0H0v =

(
λ345

2
sα +

λs
2
cα

)
v (5.7)

where λ345 = λ3 + λ4 + λ5, λs =
ρ′1+2ρ′2vs

v
and sα(cα) denotes sinα(cosα). Couplings

of scalar bosons with charged scalars H± are

λh1H+H−v = (λ3cα − λssα) v ,

λh2H+H−v = (λ3sα + λscα) v. (5.8)

5.2.2 Constraints

The model parameters are bounded by theoretical and experimental constraints.
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• Vacuum Stability - Vacuum stability constraints requires the potential to

remain bounded from below. Conditions for the stability of the vacuum are [98]

λ1, λ2, ρ4 > 0 , λ3 + 2
√
λ1λ2 > 0 , λ3 + λ4 − |λ5|+ 2

√
λ1λ2 > 0 ,

ρ2 +
√
λ1ρ4 > 0 , ρ′2 +

√
λ2ρ4 > 0 ,

2ρ2

√
λ2 + 2ρ′2

√
λ1 + λ3

√
ρ4

+2
(√

λ1λ2ρ4 +

√(
λ3 + 2

√
λ1λ2

)(
ρ2 +

√
λ1ρ4

)(
ρ′2 +

√
λ2ρ4

))
> 0 ,

2ρ2

√
λ2 + 2ρ′2

√
λ1 + (λ3 + λ4 − λ5)

√
ρ4

+2
(√

λ1λ2ρ4 +

√(
λ3 + λ4 − λ5 + 2

√
λ1λ2

)(
ρ2 +

√
λ1ρ4

)(
ρ′2 +

√
λ2ρ4

))
> 0 .

(5.9)

• Pertubativity - For a theory to be acceptable in perturbative limits, we have

to constrain high energy quartic interactions at tree level. The eigenvalues |Λi|

of quartic couplings (scattering) matrix must be smaller than 4π.

• LEP - LEP[99] results constrains the Z boson decay width and masses of scalar

particles

mH0 +mA0 > mZ ,

mH± > 79.3 GeV. (5.10)

• Relic Density - Parameter space is also constrained by the experimental

measurement of relic density (WMAP, PLANCK etc.)of dark matter candidate.

Relic density of the lightest inert particle (LIP) serving as a viable candidate
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for dark matter in the present model must satisfy PLANCK results [3],

ΩDMh2 = 0.1199±0.0027 . (5.11)

• Higgs to Diphoton Rate Rγγ - Bound on Higgs to two photon channel

has been obtained from experiments performed by LHC. The measured singal

strength for the Higgs to diphoton channel obtained from ATLAS at 95% C.L.

is

Rγγ|ATLAS = 1.57+0.33
−0.29 ,

wheras the best �t value of Rγγ for a 125 GeV Higgs with 3.2σ excess in local

signi�cane corresponding to an expected value of 4.2σ measured by CMS is

Rγγ|CMS = 0.78+0.28
−0.26 .

• Direct Detection Experiments - The bounds on dark matter from direct

detection experiments are based on the elastic scattering of the dark matter

particle o� a scattering nucleus. Dark matter direct detection experiments

set constraints on the dark matter - nucleus (nucleon) elastic scattering cross-

section. Limits on scattering cross-sections for di�erent dark matter mass cause

further restrictions on the model parameters. Experiments like CDMS, DAMA,

CoGeNT, CRESST etc. provide e�ective bounds on low mass dark matter.

Stringent bounds on middle mass and high mass dark matter are obtained from

XENON100 and LUX experiments.
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5.3 Dark matter

5.3.1 Relic density

Relic density of dark matter is constrained by the results of PLANCK and

WMAP. Dark matter relic abundance for the model is evaluated by solving the

evolution of Boltzmann equation given as [26]

dnH0

dt
+ 3HnH0 = −〈σv〉(n2

H0
− n2

H0eq) . (5.12)

In Eq. 5.12, nH0(nH0eq) denotes the number density (equilibrium number density) of

dark matter H0 and H is the Hubble constant. In Eq. 5.12, 〈σv〉 denotes the thermal

averaged annihilation cross-section of dark matter particle to SM species. We solve

for the dark matter relic density by using Eq. 4.17 given in Chapter 4. The freeze out

temperature TF for the dark matter candidate is obtained from the iterative solution

to the Eq. 4.18.

5.3.2 Annihilation cross section

Annihilation of inert dark matterH0 to SM particles is governed by processes in-

volving scalar (h1, h2) mediated s(' 4m2
H0

) channels. Thermal averaged annihilation

cross-section 〈σv〉 of dark matter H0 to SM fermions are given as

〈σvH0H0→ff̄ 〉 = nc
m2
f

π
β3
f

∣∣∣∣∣ λh1H0H0 cosα

4m2
H0
−m2

1 + iΓ1m1
+

λh2H0H0 sinα

4m2
H0
−m2

2 + iΓ2m2

∣∣∣∣∣
2

. (5.13)

In the above, mx represents mass of the particle x(≡ f, H0 etc.), nc is the colour

quantum number (3 for quarks and 1 for leptons) with βa =

√
1− m2

a

m2
H0

and Γi(i = 1, 2)

denotes the total decay width of each of the two scalars h1 and h2. For DM mass
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mH0 > (mW ,mZ), annihilation of DM to gauge boson (W or Z) channels will yield

high annihilation cross-section. Since ΩDM ∼ 〈σv〉−1 (Eq. 4.17), the relic density

for the dark matter with mass mH0 > mW or mZ in the present model in fact falls

below the relic density given by WMAP or PLANCK as the four point interaction

channel H0H0 → W+W−or ZZ will be accessible and as a result increase in total

annihilation cross-section will be observed. Thus the possibility of a single component

DM in the present framework is excluded for mass mH0 > mW , mZ
1. Invisible

decay of hi(i = 1, 2) depends on DM mass mH0 and is kinematically forbidden for

mH0 > mi/2(i = 1, 2). Contributions of invisible decay widths for h1 and h2 are taken

into account when the condition mH0 < mi/2(i = 1, 2) is satis�ed. Invisible decay

width is represented by the relation

Γinv
i (hi → 2H0) =

λ2
hiH0H0

v2

16πmi

√
1−

4m2
H0

m2
i

. (5.14)

5.3.3 Modi�cation of Rγγ and RγZ

Recent studies of IDM [101, 102, 103] and two Higgs doublet models [104, 105]

have reported that a low mass charged scalar could possibly enhance the h1 → γγ

signal strength Rγγ. Correlation of Rγγ with RγZ is also accounted for as well [102,

105]. The quantities Rγγ and RγZ are expressed as

Rγγ =
σ(pp→ h1)

σ(pp→ h)SM

Br(h1 → γγ)

Br(h→ γγ)SM
(5.15)

RγZ =
σ(pp→ h1)

σ(pp→ h)SM

Br(h1 → γZ)

Br(h→ γZ)SM
, (5.16)

1Similar results for IDM are also obtained in previous work (Ref. [100]) where a two component
dark matter was considered in order to circumvent this problem.
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where σ is the Higgs production cross-section and Br represents the branching ratio

of Higgs to �nal states. Branching ratio to any �nal state is given by the ratio of

partial decay width for the particular channel to the total decay width of decaying

particle. For IDM with additional singlet scalar, the ratio σ(pp→h1)
σ(pp→h)SM

in Eqs. 5.15-5.16

is represented by a factor cos2 α. Standard Model branching ratios Br(h→ γγ)SM and

Br(h→ γZ)SM for a 125 GeV Higgs boson is 2.28×10−3 and 1.54×10−3 respectively

[82]. To evaluate the branching ratios Br(h1 → γγ) and Br(h1 → γZ), we compute

the total decay width of h1. Invisible decay of h1 to dark matter particle H0 is also

taken into account and evaluated using Eq. 5.14 when the condition mH0 < m1/2 is

satis�ed. Partial decay widths Γ(h1 → γγ) and Γ(h1 → γZ) according to the model

are given as

Γ(h1 → γγ) =
GFα

2
sm

3
1

128
√

2π3

∣∣∣∣cα(4

3
F1/2

(
4m2

t

m2
1

)
+ F1

(
4m2

W

m2
1

))
+
λh1H+H−v

2

2m2
H±

F0

(
4m2

H±

m2
1

)∣∣∣∣2 ,
Γ(h1 → γZ) =

G2
Fαs

64π4
m2
Wm

3
1

(
1−

m2
Z

m2
1

)3
∣∣∣∣∣−2cα

1− 8
3s

2
W

cW
F ′1/2

(
4m2

t

m2
1

,
4m2

t

m2
Z

)

−cαF ′1
(

4m2
W

m2
1

,
4m2

W

m2
Z

)
+
λh1H+H−v

2

2m2
H±

(1− 2s2
W )

cW
I1

(
4m2

H±

m2
1

,
4m2

H±

m2
Z

)∣∣∣∣2 ,
(5.17)

where GF is the Fermi constant,mx denotes the mass of particle x(x ≡ 1,W, Z, t,H±)

etc. and sW (cW ) represents sin θW (cos θW ), θW being the weak mixing angle.

Expressions for various loop factors (F1/2, F1, F0, F
′
1/2, F

′
1 and I1) appeared in

Eq. 5.17 are given in Appendix A. It is to be noted that a similar derivation of decay

widths and signal strengths (R′γγ or R′γZ) for the other scalar h2 can be obtained

by replacing m1, cosα, λh1H+H− with m2, sinα, λh2H+H− respectively and this is

addressed in Sec. 5.5.
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5.4 Analysis of Rγγ and RγZ

In this section we compute the quantities Rγγ and RγZ in the framework of

the present model. We restrict the allowed model parameter space for our analysis

using the vacuum stability, perturbative unitarity, LEP bounds along with the relic

density constraints described in Section 5.2.2. Dark matter relic density is evaluated

by solving the Boltzmann equation presented in Section 5.3.1 with the expression

for annihilation cross-section given in Eq. 5.13. Model parameters (λi, ρi), should

remain small in order to satisfy perturbative bounds and relic density constraints.

Calculations are made for the model parameter limits given below,

m1 = 125 GeV ,

80 GeV ≤ mH± ≤ 400 GeV ,

0 < mH0 < mH± , mA0 ,

0 < α < π/4 ,

−1 ≤ λ3 ≤ 1 ,

−1 ≤ λ345 ≤ 1 ,

−1 ≤ λs ≤ 1 . (5.18)

The enhancement of Higgs to di-photon signal depends on the contribution from

the charged scalar loop (Eq. 5.17). Since for higher value of charged scalar mass

(mH±), the contribution from charged scalar loop will reduce, we expect mass of the

charged scalar to be small. Due to this reason, we kept charged scalar mass to be

less than 400 GeV. As mentioned earlier, due to large DM annihilation cross-section

to W or Z boson channel, high mass DM in the present scenario will fail to satisfy

DM relic abundance unless we assume a TeV scale dark matter [106]. Hence, for the

range considered for charged scalar mass, we explore the low mass region only where
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Chapter. Singlet scalar extension of inert doublet model (IDM) part-I

enhancement is signi�cant. The couplings λh1H0H0 and λh2H0H0 (Eq. 5.7) are required

to calculate the scattering cross-section of the dark matter o� a target nucleon. Dark

matter direct detection experiments are based on these scattering processes whereby

the recoil energy of the scattered nucleon is measured. Thus the couplings λh1H0H0

and λh2H0H0 can be constrained by comparing the computed values of the scattering

cross-section for di�erent dark matter masses with those given by di�erent dark matter

direct detection experiments. In the present work, |λh1H0H0 , λh2H0H0 | ≤ 1 is adopted.

The following bounds on parameters will also constrain the couplings λh1H+H− and

λh2H+H− (Eq. 5.8). Using Eqs. 5.13-5.14 we solve for the Boltzmann equation for

dark matter given in Section 5.3.1 scanning over the parameter space mentioned in

Eq. 5.18 also imposing the conditions |λh1H+H− , λh2H+H−| ≤ 2 to calculate Rγγ, γZ

in the present model. Comparing the experimentally observed dark matter relic

density with the calculated value restricts the allowed model parameter space and

gives the range of mass that satis�es observed DM relic density. We have made

our calculations for two di�erent values of singlet scalar (h2) mass namely m2 =

150 and 300 GeV. Scanning of the full parameter space yields that for all the cases

considered, the limits |λh1H0H0 , λh2H0H0| ≤ 0.7 are required for satisfying observed DM

relic abundance. Our calculation reveals that |λh1H+H− , λh2H+H−| ≤ 1.5 are needed

in order to satisfy observed relic density of dark matter. Using the allowed parameter

space thus obtained, we calculate the signal strengths Rγγ and RγZ (Eqs. 5.15-5.16)

by evaluating the corresponding decay widths given in Eq. 5.17.

In Fig. 5.1(a-b), shown are the regions in the Rγγ−mH0 plane for the parameter

values that satisfy DM relic abundance. As mentioned earlier, results are presented

for two values of h2 mass namely 150 GeV and 300 GeV. Since for low mass DM region,

invisible decay channel of h1 to DM pair remains open, enhancement of Rγγ is not

possible in this regime. Rγγ becomes greater than unity near the region of resonance

wheremH0 ≈ m2/2 form2 = 150 GeV. Resonant enhancement is more pronounced for
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(a) (b)

Figure 5.1: Variation of Rγγ with DM mass mH0 satisfying DM relic density for
m2 = 150 and 300 GeV.

lighter values of mH± mass. However, no such resonant enhancement is obtained for

m2 = 300 GeV but a small enhancement occurs near mH0 ' 80 GeV for light charged

scalar (mH± ≤ 100 GeV). The region that describes the Rγγ enhancement is reduced

with increasing h2 mass and thus enhancement is not favoured for higher values of h2

mass. For the rest of the allowed DM mass parameter space, Rγγ remains less than 1

and decreases with higher values of h2 mass. The results presented in Fig. 5.1 indicate

that observed enhancement of the h1 → γγ signal could be a possible indication of

the presence of h2 since Rγγ & 1 occurs near the resonance of h2 which contributes to

the total annihilation cross section measured using Eq. 5.13. The Rγγ value depends

on the coupling λh1H+H− and becomes greater than unity only for λh1H+H− < 0

and interferes constructively with the other loop contributions. Technically, Rγγ

depends on the values of h2 mass, charged scalar mass mH± , coupling λh1H+H− and

the decay width of invisible decay channel Γinv(h1 → H0H0). A similar variation for

the h1 → γZ channel (computed using Eqs. 5.16-5.17 and Eq. 5.18) yields lesser
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enhancement for RγZ in comparison with Rγγ. This phenomenon can also be veri�ed

from the correlation between Rγγ and RγZ . The correlation between the signals Rγγ

(a) (b)

Figure 5.2: Correlation plots between Rγγ and RγZ for two choices of h2 mass
(150 and 300 GeV).

and RγZ is shown in Fig. 5.2a - Fig. 5.2b for m2 = 150, 300 GeV respectively.

Variations of Rγγ and RγZ satisfy all necessary parameter constraints taken into

account inclusive of the relic requirements for DM. Fig. 5.2 also indicates that, with

increase in the mass (m2) of h2, enhancement of Rγγ and RγZ are likely to reduce.

For m2 = 150 GeV, Rγγ enhances up to two times whereas RγZ increases nearly by a

factor 1.2 with respect to corresponding values predicted by SM. On the other hand,

for m2 = 300 GeV, Rγγ varies linearly with RγZ (Rγγ ' RγZ) without any signi�cant

enhancement. For low mass dark matter (mH0 . m1/2), invisible decay channel

of h1 remains open and the processes h1 → γγ and h1 → γZ su�er considerable

suppressions. These result in the correlation between the channels h1 → γγ and

h1 → γZ appear to become stronger and Rγγ vs RγZ plot shows more linearity with

increase in h2 mass. For larger h2 masses, the corresponding charged scalar (H±)
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masses for which Rγγ,γZ > 1, tends to increase. Since any increase in H± mass will

a�ect the contribution from charged scalar loop, the decay widths Γ(h1 → γγ, γZ) or

signal strengths Rγγ,γZ are likely to reduce. Our numerical results exhibit a positive

correlation between the signal strengths Rγγ and RγZ . This is an important feature

of the model. Since signal strengths tend to increase with relatively smaller values of

m2, possibility of having a light singlet like scalar is not excluded. The coupling of

h2 with SM sector is suppressed by a factor sinα which results in a decrease in the

signal strengths from h2 and makes their observations di�cult.

5.5 Direct Detection

In this section we further investigate whether the allowed model parameter space

(and enhancement of Rγγ,γZ) is consistent with dark matter direct search experiments.

Within the framework of our model and allowed values of parameter region obtained

in Sec. 5.4, we calculate spin independent (SI) elastic scattering cross-section for the

dark matter candidate in our model o� a nucleon in the detector material. We then

compare our results with those given by various direct detection experiments and

examine the plausibility of our model in explaining the direct detection experimental

results. The DM candidate in the present model, interacts with SM via processes led

by Higgs exchange. The spin-independent elastic scattering cross-section σSI is of the

form

σSI '
m2
r

π

(
mN

mH0

)2

f 2

(
λh1H0H0 cosα

m2
1

+
λh2H0H0 sinα

m2
2

)2

, (5.19)

where mN and mH0 are the masses of scattered nucleon and DM respectively, f

represents the scattering factor that depends on pion-nucleon cross-section and quarks

involved in the process and mr =
mNmH0

mN+mH0
is the reduced mass. In the present
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framework f = 0.3 [14] is considered. The computations of σSI for the dark matter

candidate in the present model are carried out with those values of the couplings

restricted by the experimental value of relic density. In Fig. 5.3(a,b), we present the

(a) (b)

Figure 5.3: Allowed regions in mH0 − σSI plane for m2 = 150 and 300 GeV.

variation of elastic scattering cross-section calculated using Eq. 5.19, with LIP dark

matter mass (mH0) for two values of h2 masses m2 = 150 and 300 GeV satisfying the

CMS limit of Rγγ. We assume h1 to be SM-like Higgs and restrict the mixing angle

α such that the condition cosα & 1/
√

2 is satis�ed. In each of the σSI−mH0 plots of

Fig. 5.3(a-b) the light blue region satis�es CMS limit of Rγγ for two chosen values of

m2. Also marked in black are the speci�c zones that correspond to the central value

of Rγγ|CMS = 0.78. The bounds on σSI− DM mass obtained from DM direct search

experiments such as XENON100, LUX, CDMS, CoGeNT, CRESST are shown in Fig.

5.3(a-b), superimposed on the computed results for comparison. From Fig. 5.3(a-b)

one notes that for the case of m2 = 150 GeV, the DM candidate in our model partly

satis�es bounds obtained from low mass dark matter direct detection experiments

like CoGeNT, CDMS, CRESST, DAMA but are disfavoured for m2 = 300 GeV. It is
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therefore evident from Fig. 5.3(a-b) that imposition of signal strength (Rγγ) results

obtained from LHC, further constraints the allowed scattering cross-section limits

obtained from direct detection experimental results for the DM candidate in our

model. Investigating the region allowed by LUX and XENON100 experiments along

with other direct dark matter experiments such as CDMS etc., it is evident from Fig.

5.3(a-b) that our model suggests a DM candidate within the range mH0 = 60 − 80

GeV with scattering cross-section values ∼ 10−45 − 10−49 cm2 with m1 = 125 GeV,

which is an SM-like scalar. There are however few negligibly small allowed parameter

space with σSI below ∼ 10−49 cm2. Hence, in the present model H0 can serve as

a potential dark matter candidate and future experiments with higher sensitivity

like XENON1T [107], SuperCDMS [30] etc. are expected to constrain or rule out

the viability of this model. Similar procedure has been adopted for restricting the

σSI−mH0 space using Rγγ limits from ATLAS experiment. We found that the region

of DM parameter space for the case of Higgs to di-photon signal strength predicted

by ATLAS with 95% C.L. is completely ruled out as the allowed DM mass region in

the model (for both m2 = 150 and 300 GeV) cannot satisfy the latest direct detection

bounds from XENON100 and LUX experiments. In the present model we so far adopt

(a) (b)

Figure 5.4: Allowed regions in Rγγ −R′γγ plane for m2 = 150 and 300 GeV.
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the consideration that h1 plays the role of SM Higgs and hence in our discussion we

consider h1 → γγ for constraining our parameter space. The model considered in

this work also provides us with a second scalar namely h2. Since LHC has not yet

observed a second scalar, it is likely that the other scalar h2 is very weakly coupled

to SM sector so that the corresponding branching ratios (signal strengths) are small.

Also signi�cant enhancement of the process h2 → γγ can occur due to the presence

of charge scalar (H±). Hence, in the present scenario we require h2 → γγ branching

ratio or signal strength (R′γγ) to be very small compared to that for h1. Needless to

mention that the couplings required to compute Rγγ and R′γγ are restricted by dark

matter constraints. We address these issues by computing R′γγ values and comparing

them with Rγγ
2. The computations of Rγγ and R′γγ initially involve the dark matter

model parameter space that yields the dark matter relic density in agreement with

PLANCK data [3] as also the stringent direct detection cross-section bound obtained

from LUX [28]. Rγγ values thus obtained are not found to satisfy the experimental

range given by ATLAS experiment. The resulting Rγγ −R′γγ is further restricted for

those values of Rγγ which are within the limit of Rγγ|CMS given by CMS experiment.

The region with green scattered points in Fig. 5.4(a-b) corresponds to the Rγγ −R′γγ

space consistent with the model parameters that are allowed by DM relic density

obtained from PLANCK, direct detection experiment bound from LUX and Rγγ|CMS

for m2 = 150 GeV and 300 GeV. It is to be noted that Rγγ is not the only constrain

obtained from LHC experiments, we have to consider other decay channels of h1 as

well. In the present model, signal strengths (R1) of h1 to any particular decay channel

(excluding γγ and γZ channel) can be expressed as

R1 = c4
α

ΓSM
1

Γ1

(5.20)

2Since R′γγ and R
′
γZ are correlated, any suppression in h2 → γγ will be followed by similar e�ects

in h2 → γZ.
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where ΓSM
1 represents the total SM decay width of h1, Γ1 denotes the total decay width

of h1 in the present model. Since contribution of h1 → γγ and h1 → γZ channel to

the total decay width is negligibly small, total decay width Γ1 can be written as

Γ1 = c2
αΓSM

1 + Γinv
1 (5.21)

where Γinv
1 is the invisible decay width of h1 as exprseed in Eq. 5.14. Similarly signal

strength of the singlet like scalar h2 can be given as

R2 = s4
α

ΓSM
2

Γ2

(5.22)

with Γ2 = s2
αΓSM

2 + Γinv
2 + Γ211, where Γ211 is the decay width of singlet scalar h2 to

SM Higgs h1 is given as

Γ211 =
λ2
h2h1h1

32πm2

√
1− 4m2

1

m2
2

, (5.23)

with

λh2h1h1 = 3λ1vc
2
αsα +

ρ1

2
(−2s2

αcα + c3
α) + ρ2v(−2sαc

2
α + s3

α) + ρ2vs(−2s2
αcα + c3

α)

+ ρ3s
2
αcα + 3ρ4vss

2
αcα . (5.24)

In the present work, we constraint the signal strength R1 in order to invoke h1

as the SM-like scalar and set R1 ≥ 0.8 [108]. In Fig.5.4(a,b) the region shown in black

scattered points are in agreement with the condition R1 ≥ 0.8. We found that the

signal strength R2 for the other scalar involved remains small (R2 ≤ 0.2) and may

also su�er appreciable reduction due to h2 → H0H0 channel for mH0 < m2/2.

Constraints from the signal strength R1 along with direct detection bound
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m2 mH0 mH± α λh1H0H0 λh2H0H0 Rγγ R′γγ Br(h2 → γγ) σSI Brinv

(GeV) (GeV) (GeV) (deg) in cm2

61.06 125.00 06 -5.5e-03 8.5e-02 0.875 3.59e-05 4.627e-06 5.890e-47 1.51e-02
150.00 67.05 132.00 09 9.0e-03 -8.0e-02 0.874 4.62e-04 2.659e-05 3.745e-48 -

73.07 171.00 07 -2.0e-03 5.8e-02 0.883 4.79e-04 4.541e-05 7.001e-46 -
61.72 97.00 01 -2.5e-03 -8.3e-04 0.906 2.93e-04 1.238e-05 7.245e-46 2.31e-02

300.0 64.78 144.50 08 7.0e-03 -0.30 0.876 2.88e-02 1.917e-05 2.290e-47 -
70.12 117.00 15 -2.0e-02 0.48 0.857 3.35e-03 6.461e-07 4.659e-46 -

Table 5.1: Benchmark points satisfying observed DM relic density obtained from
PLANCK data and direct detection cross-section reported by LUX results for two
di�erent choices of h2 mass.

predicted by LUX restricts the allowed model parameter space with |λh1H0H0| ≤ 0.04

and |λh2H0H0 | ≤ 0.5 for m2 = 300 GeV and couplings are even smaller for the other

scenario m2 = 150 GeV. Further reduction to the allowed limit of λh1H0H0 occurs for

DM mass mH0 ≤ m1/2 satisfying the range |λh1H0H0| ≤ 0.01 which indicates that

invisible decay branching ratio is small. Hence, according to the model, even if we

restrict the results with the conditions R′γγ ≤ 0.1 and R1 ≥ 0.8 [108] along with the

DM relic density obtained from PLANCK and direct detection bounds obtained from

LUX (σSI ≤ 10−45cm2), the model still provides a feasible DM candidate with an

appreciable range of allowed parameter space. In Table 5.1 we further demonstrate

that within the framework of our proposed model for LIP dark matter, R′γγ is indeed

small compared to Rγγ. We tabulate the values of both Rγγ and R′γγ for some

chosen values of LIP dark matter mass mH0 ful�lling the bound obtained from signal

strength R1 ≥ 0.8 [108]. These numerical values are obtained from the computational

results consistent with LUX direct DM search bound. Also given in Table 5.1 the

corresponding mixing angles α between h1 and h2, couplings λhiH0H0 (i = 1, 2), the

scalar masses mH± , h2 to di-photon branching ratio, the scattering cross-section σSI

and invisible branching ratio Brinv of h1 for two di�erent values of m2 considered in

the work. It is also evident from Table 5.1 that Rγγ >> R′γγ and mixing angles

corresponding to respective values are small. In fact for some cases such as for
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mH0 = 61.06 GeV (m2 = 150 GeV) Rγγ = 0.875 whereas R′γγ ∼ 10−5 and α is

as small as 6. Coupling λh1H0H0 remains small and is responsible for small invisible

decay branching ratio (denoted by BRinv in Table 5.1 ) of SM-like scalar h1. This

demonstrates that the scalar h1 in Eq. 5.4 is mostly dominated by SM-like Higgs

component and the major component in the other scalar is the real scalar singlet s

of the proposed model.

5.6 Summary and Outlook

We have investigated a dark matter model with an extended two Higgs doublet

model with an additional singlet scalar. The DM candidate follows by considering

one of the Higgs doublet to be an inert Higgs doublet. A Z2 symmetry imposed on

the potential ensures the lightest inert particle or LIP dark matter from the added

inert doublet is stable. The inert doublet does not generate any VEV and hence

cannot couple to Standard Model fermions directly. The scalar singlet, having no

such discrete symmetry acquires a non zero VEV and mixes up with SM Higgs.

The unknown couplings of the model, which are basically the model parameters, are

restricted with theoretical and experimental bounds. The mixing of the SM Higgs and

the singlet scalar gives rise to two scalar states namely h1 and h2. For small mixing,

h1 behaves as the SM Higgs and h2 as the added scalar. We extensively explored

the scalar sector of the model and studied the signal strengths Rγγ and RγZ for the

SM-like Higgs (h1) in the model. The range and the region of enhancement of Rγγ

depend on the mass of the singlet like scalar h2. Appreciable enhancements of both

h1 → γγ and h1 → γZ signals depend on h2 mass and occurs near the resonance of h2.

Increase in signal strengths is not allowed for heavier values of h2 mass. Enhancement

of signals is forbidden when the invisible decay channel remains open. The extent of
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enhancement depends on the charged scalar mass and occurs only when the Higgs-

charged scalar coupling λh1H+H− < 0. We �rst restrict our parameter space by

calculating the relic density of LIP dark matter in the framework of our model. Using

the resultant parameter space obtained from observed relic density bounds we evaluate

the signal strengths Rγγ and RγZ for di�erent dark matter masses. We then restrict

the parameter space by calculating the spin independent scattering cross-section and

comparing it with the existing limits from ongoing direct detection experiments like

CDMS, CoGeNT, DAMA, XENON100, LUX etc. Employing additional constraints

by requiring that Rγγ and RγZ will satisfy the CMS bounds and ATLAS bounds, we

see that the present model provides a good and viable DM candidate in mass region

60-80 GeV consistent with LUX and XENON100 bounds. We obtain that Rγγ(> 1.0)

in the present framework does not seem to be favoured by LUX and XENON100 data.

Therefore, we conclude that under the present framework, the inert doublet model

with additional scalar singlet provide a viable DM candidate with mass range 60−80

GeV which not only is consistent with the direct detection experimental bounds and

PLANCK results for relic density but also in agreement with the Higgs search results

of LHC. A singlet like scalar that couples weakly with SM Higgs may also exist that

could enrich the Higgs sector and may be probed in future collider experiments.
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Chapter 6

Singlet scalar extension of inert

doublet model (IDM) part-II

6.1 Introduction

Recent results from Fermi-Lat data [48, 49] have con�rmed the existence of

GeV scale γ-ray excess which appear to be emerging from the region of galactic

centre (GC) [50]-[59]. This excess in γ-ray can be treated as a result of dark matter

(DM) annihilation in proximity of galactic centre. There are also studies which claim

that the observed gamma ray excess can be explained by millisecond pulsar [57]

or unresolved point sources near GC [58]. In this thesis, we consider the excess

gamma ray observed purely originates from annihilation of dark matter at galactic

centre. The γ-ray excess in the energy range 1-3 GeV observed by Fermi-LAT from

the direction of galactic centre is addressed in a recent work by Dan Hooper et al

[59]. In that work they show that a dark matter candidate within the mass range

of 31-40 GeV primarily annihilating into bb̄ or a 7-10 GeV dark matter primarily
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annihilating into τ τ̄ [59],[109]-[112] can well explain this observed phenomenon of

excess gamma in 1-3 GeV energy range. Some works [55],[113] even suggest a DM

candidate with mass 61.8+6.9
−4.9 GeV can also explain this observed excess when their

annihilation cross-section 〈σv〉bb̄ to bb̄ is ∼ 3.30+0.69
−0.49 × 10−26cm3/s. Di�erent particle

physics models are studied and proposed in the literature in order to explain the

anomalous excess of gamma ray in the energy range ∼ 1-3 GeV [114]-[126]. In this

work we attempt to explore whether a dark matter candidate within the framework

of the inert doublet model can explain this reported gamma ray excess of 1-3 GeV.

Study of inert doublet model (IDM) have been pursued vigorously in literatures [86]-

[96]. In the inert doublet model, an additional scalar SU(2) doublet is added to the

Standard Model (SM) which is assumed to develop no vacuum expectation value

(VEV). An unbroken Z2 symmetry ensures that the added scalar is stable and does

not interact with the SM fermions (inert). The lightest stable inert particle (LIP) in

this model can be a viable DM candidate. Inert doublet model provides a plausible

DM candidate in low mass region that could address the observed GC γ-rays excess.

We show in this work that although LIP dark matter in IDM model may indeed

provide a 31-40 GeV dark matter which satis�es observed DM relic density, but this

candidate (of mass ∼ 31− 40 GeV) does not withstand the latest bounds from dark

matter direct detection experiments as well as the LHC bound on Rγγ. We also found

that the inert doublet model can account for a DM of mass around 60-63 GeV (i.e.,

near the SM Higgs resonance) that can satisfy the allowed relic density limits from

PLANCK experiment and direct detection limits but fails to explain the observed

GC γ-ray excess. In this work we have revisited the extension of this IDM model

proposed in Chapter 5 where an additional singlet scalar is added to the IDM model

mentioned above. This newly added scalar singlet acquires a non zero VEV and mixes

up with the SM Higgs, thus provides an extra scalar boson and scalar resonance. The

LIP dark matter candidate in this resulting extended IDM can obtain an LIP dark
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matter candidate in the mass range of 31-40 GeV which simultaneously satisfy the

relic density bound from PLANCK experiment, direct detection experimental results

and the bound on signal strength of SM Higgs from LHC experiment. We show

that the calculation of gamma ray �ux obtained from the annihilation of such a dark

matter from the extended IDM model proposed in this work can explain the 1-3 GeV

γ-ray excess observed by Fermi-LAT from GC region.

6.2 Dark matter in inert doublet model and Fermi-

LAT observed gamma ray excess

IDM is a simple extension of SM of particle physics which includes an additional

Higgs doublet that acquires no VEV. The added doublet do not interact with the SM

sector due to imposition of a discrete Z2 symmetry under which all the SM particles

are even but the doublet is odd. The most general CP conserving potential for IDM

is given as,

V = m2
11ΦH

†ΦH +m2
22ΦI

†ΦI + λ1(ΦH
†ΦI)

2 + λ2(ΦI
†ΦI)

2 + λ3(Φ†HΦH)(Φ†IΦI)

+ λ4(Φ†IΦH)(Φ†HΦI) +
1

2
λ5[(Φ†IΦH)2 + (Φ†HΦI)

2], (6.1)

where ΦH is the SM Higgs doublet and ΦI is the inert doublet assuming all the

couplings (λi, i = 1, 5) in Eq. 6.1 are real. After spontaneous symmetry breaking

(SSB), ΦH generates a VEV v = 246 GeV whereas the inert doublet does not produce

any VEV and the Z2 symmetry remains unbroken. The doublets are given as

ΦH =

 χ+

1√
2
(v + h+ iχ0)

 , ΦI =

 H+

1√
2
(H0 + iA0)

 , (6.2)
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where χ+ and χ0 are absorbed inW±, Z after spontaneous symmetry breaking. After

SSB, the masses of various scalar particles obtained are given as,

m2
h = 2λ1v

2

m2
H± = m2

22 + λ3
v2

2

m2
H0

= m2
22 + (λ3 + λ4 + λ5)

v2

2

m2
A0

= m2
22 + (λ3 + λ4 − λ5)

v2

2
. (6.3)

where mh = 125 GeV, is the mass of newly found SM Higgs boson h, as observed by

LHC experiments CMS [63] and ATLAS [64]. With λ5 < 0, the lightest inert particle

(LIP) H0 is the stable DM candidate in the model. The potential described in Eq. 6.1

must be bounded from below and the corresponding vacuum stability conditions are

given as,

λ1, λ2 > 0 , λ3 + 2
√
λ1λ2 > 0 , λ3 + λ4 − |λ5|+ 2

√
λ1λ2 > 0 . (6.4)

Apart from the bounds obtained from vacuum stability, there are several other

constraints on the model such as perturbative bounds requiring all the couplings

Λi to be less than 4π. From LEP [99] experiment constraints of the Z boson decay

width and charged scalar mass mH± , we have

mH0 +mA0 > mZ ,

mH± > 79.3 GeV. (6.5)

Apart from the constraints presented in Eqs. 6.3-6.4, the present DM candidate H0

must also satisfy the correct relic abundance of DM obtained from PLANCK [3]

ΩDMh2 = 0.1199±0.0027 , (6.6)
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where h is the Hubble parameter in the unit of 100 km s−1 Mpc−1. Dark matter

relic density is obtained by solving the Boltzmann equation for the DM species and

is given as

dnH0

dt
+ 3HnH0 = −〈σv〉(n2

H0
− n2

H0eq) . (6.7)

In Eq. 6.7 〈σv〉 is the total annihilation cross-section of the DM summing over all

possible annihilation channels, nH0 is the number density of dark matter particle H0

and nH0eq is the equilibrium number density of the same. The Hubble parameter is

denoted as H in Eq. 6.7. For the case of low mass dark matter scenario (mH0 ≤ mW ,

mW is the mass of W boson), total annihilation cross-section of DM candidate H0 to

SM particles expressed as

〈σvH0H0→ff̄〉 = nc
∑
f

m2
f

π
β3
f

(λL/2)2

(4m2
H0
−m2

h)
2 + Γ2

hm
2
h

. (6.8)

In Eq. 6.8 above, Γh is the total decay width of SM Higgs boson (including the

contribution from invisible decay channel), mf is the mass of the fermion species

involved with βf =

√
1− m2

f

m2
H0

. The Higgs-DM coupling denoted as λL in Eq. 6.8 is

of the form λL = (λ3 +λ4 +λ5) and nc is the colour quantum number with nc = 3 for

quarks and nc = 1 for leptons respectively. Invisible decay width of Higgs boson to

DM particle as also the branching fraction Brinv for such invisible decay is written as

Γinv(h→ H0H0) =
λ2
Lv

2

64πmh

√
1−

4m2
H0

m2
h

,

Brinv =
Γinv(h→ H0H0)

Γh
. (6.9)
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DM relic density is then calculated by solving the Boltzmann equation expressed in

Eq. 6.7, is given as

ΩDMh2 =
1.07× 109xF√
g∗MPl〈σv〉

, (6.10)

where xF = mH/TF is the freeze out or decoupling temperature of the DM species

H0, MPl is the Planck mass (MPl = 1.22×1019 GeV) and g∗ is the number of e�ective

degrees of freedom. The quantity xF (and subsequently the freeze out temperature

Tf ) can be obtained from the iterative solution to the equation

xF = ln

mH0

2π3

√
45M2

Pl

2g∗xF
〈σv〉

 . (6.11)

The relic density of the dark matter can be obtained using Eqs. 6.7-6.11 with the

constraints given in Eqs. 6.4-6.6. It is to be noted that in addition to the constraints

mentioned above, the present DM candidate must also satisfy the DM direct detection

experimental limits provided by the experiments like XENON [27], LUX [28]. These

experiments provide the upper bound of dark matter scattering cross-sections for

di�erent dark matter masses. The spin independent direct dark matter-nucleon

scattering cross-section for the LIP dark matter H0 of mass mH0 is expressed as

σSI =
λ2
L

4π

1

m4
h

f 2 m4
N

(mH0 +mN)2
, (6.12)

where mN is the mass of scattering nucleon and f is related to the matrix element

of Higgs-nucleon coupling is taken to be ' 0.3 [14]. We further restrict the allowed

model parameter space by assuming the invisible decay branching ratio of SM Higgs

Brinv < 20% [127]. The branching ratio Brinv is the ratio of the Higgs invisible decay

width to the total Higgs decay width as discussed below. We compute, using Eq. 6.12

and with the constraints given in Eqs. 6.4-6.6, the LIP dark matter scattering cross-
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(a) (b)

Figure 6.1: The left panel shows the mH0 − σSI space allowed by DM relic density
obtained from PLANCK. The right panel presents the variation of invisible decay
branching ratio Brinv with DM mass mH0 for the same.

section, σSI for di�erent values of LIP dark matter mass, mH0 . It is therefore ensured

that these calculations are performed for those LIP dark matter masses for which

the relic density criterion (Eq. 6.6) is satis�ed. The results are plotted in Fig. 6.1a

(in σSI − mH0 plane). Superimposed on this plot in Fig. 6.1a are the the bounds

obtained from XENON100 (red line) and LUX (green line) experimental results for

comparison. It is clear from Fig. 6.1a that an LIP dark matter within the framework

of IDM does not have a mass region in the range 31-40 GeV that satis�es the allowed

bounds given by both the XENON100 and LUX experiments in σSI − mH0 plane.

One may recall that the previous analysis to explain the Fermi-LAT γ-ray excess in

the gamma ray energy range of 1−3 GeV [59] from the annihilation of dark matter at

the galactic centre requires a dark matter candidate having mass in the range 31−40

GeV. We also compute the Higgs invisible decay branching ratio Brinv for the allowed

range of DM mass obtained in Fig. 6.1a and the results are plotted in Fig. 6.1b. It

is also evident from Fig. 6.1b that the LIP mass (mH0) in the range 31-40 GeV does
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not satisfy the Brinv limit of Brinv < 20% [127]. Thus from both Fig 1a and Fig 1b, it

can be concluded that an LIP dark matter in the inert doublet model cannot account

for a viable dark matter candidate in the mass range of 31-40 GeV.

However, from Fig 1a and 1b, it is clear we have a viable dark matter candidate

in the IDM framework in the region of Higgs resonance with mass (mH0 ' mh/2) that

not only satis�es the relic density bound for dark matter but also is consistent with

DM direct detection results and the bounds for Higgs invisible decay as well. Earlier

model independent analysis [55],[113] have reported that a dark matter with mass near

Higgs resonance can produce the observed excess of γ-ray in the gamma energy range

1− 3 GeV if the secondary γ-ray is produced out of the primary annihilation process

DM DM → bb̄ with the annihilation cross-section 〈σv〉bb̄ ∼ 3.30+0.69
−0.49 × 10−26 cm3/s.

However for IDM with mass mH0 ∼ mh/2, the respective annihilation cross-section

of LIP dark matter H0 into bb̄ (〈σv〉bb̄) channel is found to be ∼ 1.7 × 10−26 which

is almost half the required annihilation cross-section. Hence the gamma ray �ux

computed for this LIP dark matter (with bb̄ to be the primary annihilation channel)

does not comply with the observed excess in γ-ray.

Thus it is apparent that a viable dark matter candidate (mass ∼ mh/2) in

the IDM model discussed so far where only an inert SU(2) doublet is added to SM,

fails to explain the excess gamma ray in the energy range 1-3 GeV as observed by

Fermi-LAT in the direction of galactic centre. Apart from the SM Higgs resonance,

there also exists another allowed region appearing in IDM (in the vicinity of W+W−

threshold shown in Fig. 6.1a1) which satis�es the PLANCK DM relic density and

direct detection limits provided by XENON100 and LUX experiments. However, LIP

dark matter of mass ∼ 80 GeV in this narrow allowed region cannot explain the

observed GC gamma ray excess. In fact the gamma �ux obtained for this latter case

1This feature have also been reported in Ref. [95] by T. A. Chowdhury et al..
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is even smaller when compared to that obtained from the IDM dark matter with mass

mH0 ∼ mh/2. Hence we consider a feasible extension of the inert doublet model.

6.3 Inert doublet model with additional singlet

scalar

We modify the IDM formalism given in Sect. 6.2 by adding another singlet

scalar with the model as discussed earlier in Chapter 5. The resulting theory now

includes an inert SU(2) doublet as before and an additional scalar singlet added to

the Standard Model. The newly added scalar singlet generates a VEV and is even

under the discrete Z2 symmetry. The LIP of the inert doublet is the dark matter

candidate in this formalism too. We demonstrate that our proposed extended IDM

provides a viable LIP dark matter candidate in the mass range of 31 − 40 GeV and

the annihilation cross-section to bb̄ channel for such a candidate can be calculated

to be in the right ball park required to explain the excess γ peak from GC seen by

Fermi-LAT in 1-3 GeV energy range and is also consistent with the LHC constraint.

We restrict the model parameter space using the conditions from vacuum stability,

unitarity, LEP, DM relic density from PLANCK, direct detection constraints on DM-

nucleon scattering cross-section from LUX etc. as mentioned previously in Chapter 5.

The phenomenology of the singlet extension of IDM is already explored in Chapter 5.

We use the formalism of the model developed in Chapter 5 and explore the dark

matter phenomenology of this model. We have used Eqs. 5.1-5.8 to build the singlet

extended inert doublet model as given in Chapter 5. The model parameter space is

then restricted by vacuum stability, LEP etc. using Eqs. 5.9-5.10. However, instead

of taking m1 as Higgs like scalar and m2 to be the non-SM scalar (in Chapter 5), here

we consider h2 with mass m2 to be the SM-like Higgs boson having mass 125 GeV
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assuming m2 > m1 where m1 is the mass of the singlet scalar. The relic density for

the LIP is then calculated by solving Eqs. 4.17-4.18,5.12. In order to solve for the

Boltzmann equation for dark matter we have used the expression of annihilation cross-

section given by Eq. 5.13. We obtain the valid model parameter space in the present

model satisfying PLANCK dark matter relic density and direct detection cross-section

for the dark matter is then calculated using Eq. 5.19. The invisible decay widths for

the scalar h1 and h2 are also obtained from Eq. 5.14. Since in the present model h2

is SM-like scalar, we constrain the model parameter space further by the condition

Brinv < 0.2 [127] (Brinv =
Γinv
2 (h2→2H0)

Γ2
, where Γ2 is the total decay width of Higgs like

scalar with mass m2 = 125 GeV). The modi�cation of signal strength of SM Higgs

(h2) to any particular channel that may occur due to the mixing with other scalar

(h1) is also taken into account. The signal strength to any speci�c channel is given

as,

R =
σ

σSM

Br

BrSM
(6.13)

where σ and σSM are the Higgs production cross-section in the present model and

in SM respectively whereas Br and BrSM are the respective branching ratios to any

channel for the present model and SM. As the present model (extended IDM) involves

two scalars h1 and h2, signal strengths R1 and R2 for both the scalars are given as

R1 =
σ1(pp→ h1)

σSM(pp→ h1)

Br(h1 → xx)

BrSM(h1 → xx)
, R2 =

σ2(pp→ h2)

σSM(pp→ h2)

Br(h2 → xx)

BrSM(h2 → xx)
(6.14)

where xx is any SM �nal state with σi

σSM = cos2 α or sin2 α for i = 1, 2 respectively.

Since h2 is the SM-like scalar with mass m2 = 125 GeV, we take R2 ≥ 0.8 [108] for

SM-like scalar to satisfy LHC results. It is to be noted that some of the channels

(γZ, γγ) will su�er considerable changes due to the presence of inert charged scalars

(H±) addressed in [101]-[103]. E�ect of the charged scalars on those channels are
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(a) (b)

(c) (d)

Figure 6.2: The upper panel shows the valid mH0 − σSI plane obtained for m1 = 70
GeV with cosα = 0.9× 10−3 and 3.5× 10−2. The lower panel shows the variation of
signal strength R2 with σSI for mH0 = 35 GeV for the same.

also taken into account (for details see Appendix A). We put further bound on model

parameter space from the experimental limits for Higgs to diphoton signal strength

Rγγ given by ATLAS [84] with 95% C. L. along with the best �t value of Rγγ from
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CMS [85] for 125 GeV Higgs. Our calculation yields that for the allowed parameter

space obtained from vacuum stability, relic density, LEP constraints as also with the

condition R2 ≥ 0.8, Brinv ≤ 0.2, the Higgs to diphoton signal strength predicted

by ATLAS is not favoured by the present model and hence we constrain the model

with the experimental value of Rγγ only from CMS experiment. Taking all these

constraints into account, we now compute the LIP dark matter (in extended IDM)

scattering cross-sections σSI (Eq. 5.19) for the LIP masses (mH0) for two di�erent

mixing angles α given by cosα = 9.0 × 10−3 and 3.5 × 10−2. The results for two

chosen mixing angles are plotted in Fig. 6.2a and Fig. 6.2b respectively in mH0 − σSI

parameter space. The calculations are performed with a chosen value m1 = 70 GeV

for the mass of the scalar singlet h1. Diret detection bounds from XENON100 and

LUX are shown in Fig. 6.2a-b with the same color de�nitions used in Fig. 6.1a. It is

Figure 6.3: Allowed parameter space in R1−sinα plane for m1 = 70 GeV. Also shown
in blue corresponds to the parameter space for mH0 = 35 GeV.

clear from Fig. 6.2a-b that apart from obtaining a LIP dark matter of mass ∼ m2/2

(Higgs resonance) allowed by both XENON100 and LUX, we also obtain another

allowed LIP mass of 35 GeV (due to the resonance of the added scalar involved

in the model). Thus, the present modi�ed inert doublet model produces a viable
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DM candidate with a mass of 35 GeV. Fig. 6.2a-b also indicate that the resonant

behaviour is prominent for smaller values of mixing angle α. Increase in the mixing

angle broadens the allowed mH0 − σSI parameter space resulting appreciable increase

in DM-nucleon cross-section. Study of Fig. 6.2a-b reveals that, similar to the case of

IDM discussed earlier in Section 6.2, a resonance like narrow allowed region appears

just near W+W− threshold in our scalar singlet extended IDM model too. However,

this allowed region near the W+W− threshold also cannot explain the GC gamma

ray excess problem unless a di�erent case (m1 < mH0 discussed in Section 6.4) is

taken into account. In Fig. 6.2c-d we show the variation of R2 with σSI where LIP

dark matter mass mH0 = 35 GeV is considered for the two mixing angles as chosen

for Fig. 6.2a-b. Horizontal lines in green and black are the values of σSI as obtained

from the allowed regions from LUX [28] and XENON1T [107] respectively for the

dark matter mass of 35 GeV. Fig. 6.2c shows that as R2 approaches to unity there

is a sharp decrease in σSI. A similar conclusion also follows from the nature of Fig.

6.2d. Observation of Fig. 6.2c-d reveals that a 35 GeV DM satisfying relic density

obtained from PLANCK and direct detection bounds from LUX and XENON1T does

not a�ect the signal strength (R2 ∼ 1) of the SM Higgs observed in LHC. Fig. 6.2c-d

clearly demonstrate that the presence of a low mass scalar is necessary in order to

achieve a DM of mass∼ 35 GeV that (a) satisfy PLANCK relic density result, (b)

agree with the latest dark matter direct detection experimental bounds and also (c)

yields the experimental bound for Higgs invisible decay.

Since the model involves an additional scalar of low mass, yet undetected by

LHC, the corresponding signal strength for that singlet like scalar must remain small

compared to that of h2. In order to demonstrate this, we compute the signal strength

R1 (Eq. 6.14) for di�erent values of the mixing angle α. In Fig. 6.3 we plot the results

in R1 − sinα plane for low mass DM (≤ mW ). These results satisfy the conditions

R2 ≥ 0.8 [108] and Brinv ≤ 0.2 [127] with m1 = 70 GeV and also consistent with relic
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density reported by PLANCK. Scattered blue region in Fig. 6.3 corresponds to 35

GeV DM mass (mH0 = 35 GeV) with 〈σv〉bb̄ ∼ (1.62− 1.68)× 10−26cm3/s. We show

latter in Sec. 6.4 that such a value for 〈σv〉bb̄ in case of a dark matter mass of 35 GeV

can indeed explain the Fermi-LAT observed excess of γ-ray in the energy range of

1-3 GeV. Variation of sinα with R1 in Fig. 6.3 depicts that for the parameter space

constrained by di�erent experimental and theoretical bounds, the value of the signal

strength R1 remains small (≤ 0.2). Therefore, non-observance of such a scalar by

LHC is justi�ed and can possibly be probed in future experiment.

6.4 Calculation of gamma ray �ux

In this section we calculate the gamma ray �ux from the galactic centre due to

the annihilation of 35 GeV dark matter in the extended IDM discussed in Sect.6.3.

The gamma ray �ux produced from DM annihilation in galactic centre is given by

Φ =
〈σv〉

8πm2
DM

dN

dEγ
J(ψ) . (6.15)

In Eq. 6.15, 〈σv〉 is the annihilation cross-section, mDM is the mass of the dark matter

(mH0 in the present scenario), dN
dEγ

is the spectrum of photon produced due to DM

annihilation. The factor J(ψ) in Eq. 6.15 is the line of sight integral given as

J(ψ) =

∫
los

ρ2(l, ψ)dl , (6.16)

where ψ is angle between the direction of line of sight and the direction from GC

to Earth, l is the distance from line of sight. We use the generalised NFW [5] halo
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m1 mH0 m±H cosα λL λs 〈σv〉bb̄ σSI

in GeV in GeV in GeV in cm3/s in cm2

174.0 0.9×10−3 -7.89e-05 -7.91e-02 1.66×10−26 4.58×10−49

70.0 35.0
110.0 3.5×10−2 7.87e-04 1.26e-02 1.65×10−26 2.52×10−48

Table 6.1: Benchmark points of singlet extended IDM with DM mass mH0 = 35 GeV.

pro�le for the DM distribution ρ(r) given by

ρ(r) = ρ0
(r/rs)

−γ

(1 + r/rs)3−γ . (6.17)

In Eq. 6.17, ρ0 = 0.3 GeV cm−3 is the local DM density at a distance 8.5 kpc from

GC. For the present work we consider rs = 20 kpc and γ = 1.26 [59]. Using Eqs. 6.15

- 6.17, we calculate the gamma ray �ux for the present 35 GeV DM candidate in our

model with two values of mixing angles given by cosα = 0.9 × 10−3 and 3.5 × 10−2.

A chosen set of values for other parameters and the corresponding values of 〈σv〉bb̄

and σSI for each of these two mixing angles are tabulated in Table 1. The gamma

ray spectrum for these two set of parameter values given in Table 6.1 are plotted in

Fig. 6.4. The plots in Fig. 6.4 are produced using NFW pro�le with inner pro�le slope

γ = 1.26 at 50 from the galactic centre assuming local DM density ρ0 = 0.3 GeV cm−3

at a distance 8.5 kpc from GC. Green and blue lines shown in Fig. 6.4 correspond to

the benchmark points given in Table 6.1 for two sets of mixing angles (α) with values

given by cosα = 0.9× 10−3 and 3.5× 10−2 respectively. Also shown in Fig. 6.4, the

data points for the observed γ-ray by Fermi-LAT for comparison obtained from Ref.

[59]. Fig. 6.4 clearly demonstrates that the viable LIP DM candidate in our model

can very well explain the observed γ-ray �ux and its excess in the 1-3 GeV energy

range while remains consistent with the bounds from LHC and DM direct search

experiments.
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Figure 6.4: γ-ray �ux obtained from the benchmark points in Table 6.1 and compared
with the results from [59] for two di�erent mixing angles.

A discussion is in order. Throughout the work, we have considered the case

m1 > mH0 , i.e., the additional singlet scalar h1 is heavier than the lightest inert

particle H0 in order to provide a DM of mass 31-40 GeV and produce the required

DM annihilation cross-section (into bb̄) to explain the observed GC γ-ray excess. We

found that in our model, DM mass in the range of 31-40 GeV can be achieved by

adding a singlet scalar of mass m1 ∼ 2mH0 to IDM. However, it is also possible in

our model to provide an alternative explanation to GC γ-ray considering the singlet

mass to be less than the LIP dark matter (m1 < mH0). In this case, the lightest inert

particle H0 can annihilate into two singlet scalar particles (h1) which then decay into

two bb̄ pairs. As shown in Fig. 6.3a-b, apart from the resonances near the masses

of h1 and h2, there is also a resonance like appearance near W+W− threshold when

H0H0 → W+W− channel opens. Hence, dark matter particle H0 having mass ∼ 80

GeV annihilating into the scalar singlet h1 with mass m1 < mH0 , can also explain the

observed γ-ray excess in GC. Such possibilities have been explored in Ref. [119, 120].
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6.5 Summary

We have revisited the inert doublet model (IDM) of dark matter and test the

viability of the model to provide a suitable explanation for the observed excess in

low energy (1-3 GeV) γ-ray emission from GC assumed to have originated out of the

annihilation of dark matter in the mass range 31-40 GeV DM into bb̄. We show that a

dark matter candidate within mass range 31-40 GeV in IDM cannot satisfy the latest

direct detection bounds on DM-nucleon cross-section predicted by experiments like

LUX or XENON100 and also is inconsistent with the limits on Higgs invisible decay.

Our calculations also yield that although IDM can provide a DM of mass ∼ mh/2

(mh is the mass of SM Higgs) that is consistent with direct detection and invisible

decay bounds but eventually fails to produce the value of 〈σv〉bb̄ required to explain

the excess emission of γ-ray. In order to comply with the observed γ emission results

as obtained from Fermi-LAT in 1-3 GeV energy range, we extend the IDM with an

additional singlet scalar and explore the viability of the model. The extension of

IDM provides an additional scalar singlet that mixes with the SM-Higgs. We found

that presence of a low mass singlet like scalar in the model can yield a 31-40 GeV

DM that satis�es relic density bounds from PLANCK and direct detection cross-

section constraints from LUX or XENON100 experiments and also yields the right

DM annihilation cross-section 〈σv〉bb̄, that would explain the observed excess in γ-ray.

The singlet like scalar having a small mixing with the SM Higgs couples weakly to

the SM sector and acquires a very small signal strength but this signal is beyond the

present LHC detection limit and may be probed in future collider experiments.
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Chapter 7

Hidden sector Fermionic dark matter

Model

7.1 Introduction

So far, in this thesis, we have explored dark matter models with discrete

symmetries. This discrete symmetry assures the stability of dark matter to provide a

viable candidate for dark matter. However, in SM, there is no such discrete symmetry

to ensure stability of particles. In this work, we consider a �hidden sector� framework

of dark matter without pretending any such discrete symmetry associated with it.

We propose the existence of a hidden sector which has SU(2)H gauge structure. Dark

fermions in this hidden sector are charged under this SU(2)H gauge group while all

the SM particles behave like a singlet. Hence, the SM sector is decoupled from

the dark sector and could interact only through the exchange of scalar bosons that

exist in both the sector. Gauge bosons charged under SU(2)H are heavy and decay

into dark fermions. Thus, the lightest one among dark fermions is stable and can

103



Chapter. Hidden sector Fermionic dark matter Model

be treated as a viable DM candidate. We check for the viability of the model by

constraining the model parameter space by vacuum stability, LHC phenomenology,

DM relic density, direct detection cross-section and also probe whether DM in present

model can account for the indirect search results from GC and dwarf galaxy γ-ray

signals.

7.2 The Model

We consider the existence of a �dark sector� that governs the particle candidate

of dark matter. Just as the �visible sector� related to the known fundamental particles

successfully explained by the Standard Model, we propose the existence of a hidden

�dark sector� that relates the dark matter particles. We also presume that the

Lagrangian of this hidden sector remains invariant under the transformations of a

local SU(2)H as well as a global U(1)H gauge symmetries. Therefore we consider

two fermion generations χ
1
(i = 1, 2) where each generation consists of two fermions.

Consequently, in the dark sector we have altogether four fermions namely fi (i = 1, 4).

The left handed component of each fermion (fiL) transforms like a part of a doublet

under SU(2)H while its right handed part fiR behaves like a singlet under the same

gauge group. Thus, the left handed components of f1, f2 and f3, f4 form two

separate SU(2)H doublets1. However, both the left handed as well as the right handed

fermionic components are charged under the postulated global U(1)H symmetry. The

interactions between the dark sector fermions and the SM particles are possible by

the presence of an SU(2)H scalar doublet Φ through the gauge invariant interaction

term λ3H
†HΦ†Φ which introduces a �nite mixing between the SM Higgs boson and

the neutral component of the hidden sector scalar doublet Φ. This scalar doublet does

1In order to cancel the Witten anomaly [128] we need at least two (even numbers) of left handed
fermionic SU(2)H doublets in our model.
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not have any global U(1)H charge. As a result, the global U(1)H symmetry does not

break spontaneously. However, being an SU(2)H doublet Φ breaks the local SU(2)H

symmetry spontaneously when its neutral component acquires vacuum expectation

value (VEV) vs. Besides the local SU(2)H gauge symmetry, the scalar doublet Φ,

which is in the fundamental representation of SU(2)H gauge group, also possesses a

custodial SO(3) symmetry. As a result of this residual SO(3) symmetry, three dark

gauge bosons A′iµ (i = 1 to 3) which get mass due to the spontaneous breaking of

the local SU(2)H symmetry, become degenerate in mass. Non abelian nature of the

SU(2)H forbids the mixing between SM gauge bosons with dark gauge bosons A′iµ

(i = 1 to 3) [16], [129]. The scalar doublets H, Φ and the fermionic doublets can be

written as2

H =

 G+
1

h0+iG0
1√

2

 , Φ =

 G+
2

φ0+iG0
2√

2

 , χ
1L

=

 f1

f2


L

, χ
2L

=

 f3

f4


L

. (7.1)

Therefore, the most general Lagrangian of the present proposed model contains the

following gauge invariant terms

L ⊃ −1

4
F ′µνF

′µν + (DµH)†(DµH) + (D′µΦ)†(D′µΦ)− µ2
1 H

†H − µ2
2 Φ†Φ

−λ1(H†H)2 − λ2(Φ†Φ)2 − λ3 H
†HΦ†Φ +

∑
i=1,2

χ̄
i L

(iD′/ χ
i L

) +
∑
i=1,4

f̄i R(i∂/ fi R)

−y′1 χ̄1 L
Φf1 R − y′2 χ̄1 L

Φ̃f2 R,−y′3 χ̄2 L
Φf3 R − y′4 χ̄2 L

Φ̃f4 R + hc , (7.2)

2Although, in order to keep similarity with the expression of the Standard Model Higgs doublet
H, we have introduced the notation of three scalar �elds, in the expression of Φ, as G+

2 , φ
0 and

G0
2, however the symbols + and 0 appearing in the superscript of dark sector scalar �elds do not

represent the electric charge of the corresponding scalar �eld as electric charge itself is not de�ed in
the dark sector which is invariant only under SU(2)H.

105



Chapter. Hidden sector Fermionic dark matter Model

with

Dµ = (∂µ + i
g

2

∑
a=1,3

σaW
a
µ + i

g′

2
Bµ) ,

D′µ = (∂µ + i
g
H

2

∑
a=1,3

σaA′aµ) , (7.3)

are the covariant derivatives of the SU(2)L×U(1)Y doubletH and the SU(2)H doublets

Φ, χ
iL
respectively while Φ̃ = iσ2Φ? with σ2 is the Pauli spin matrix. Moreover, g, g′

and g
H
are the respective gauge couplings corresponding to the gauge groups SU(2)L,

U(1)Y and SU(2)H. In the above equation (Eq. 7.2) F ′µν is the �eld strength tensor

for the gauge �elds A′iµ (i = 1 to 3) of the SU(2)H gauge group while H is the usual

SM Higgs doublet. The global U(1)H invariance of the dark sector Lagrangian forbids

the presence of any Majorana type mass terms of the fermionic �elds (fi, i = 1, 4)

in Eq. 7.2. We have assumed at the beginning that the dark sector fermions are

charged under a global U(1)H symmetry. Therefore invariance of the dark sector

Lagrangian (Eq. 7.2) under this U(1)H symmetry requires an equal and opposite

U(1)H charges between each fermion and its antiparticle. Thus we can say that there

is some conserved quantum number in the theory which can di�erentiate between

a fermion and its antiparticle. In other words this can be stated the dark sector

fermions in the present theory are Dirac type fermions. We have also assumed that

the dark sector fermions (fi, i = 1, 4) are in �mass basis� or �physical basis� so that

the Lagrangian (Eq. 7.2) does not contain any mixing term between these fermionic

states3. The dark sector fermions can interact among themselves by exchanging dark

gauge bosons A′iµ and due to the presence of these interaction modes all the heavier

fermions such as fi (i = 2 to 4) decay into the lightest one (f1). Consequently, the

3 Alternatively, one may think that the fermions in dark sector may have mixing between
themselves similar to the case of SM fermions in quark and lepton sectors. Following the CKM
mechanism in the quark sector of SM we can assume that the mass matrix of up-type fermion
generations i.e. f1 and f3 is diagonal while the mixing takes place between down-type fermionic
states (f2, f4). Now, since we have considered the up-type fermion f1 to be the lightest of all
fermions in dark sector, thus in the present framework, the study of fermion mixing is redundant.
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lightest fermion f1 is stable and can be a viable dark matter candidate. Like the

hidden sector gauge �elds A′iµ, the dark matter candidate f1 also gets mass when the

postulated SU(2)H symmetry of the hidden sector breaks spontaneously by the VEV

of Φ. Thus, the expression of mass of the fermionic dark matter candidate can easily

be obtained using Eq. 7.2 which is

mf1 =
y′1vs√

2
. (7.4)

We have already mentioned before, that due to the presence of the gauge

invariant term λ3H
†HΦ†Φ, the neutral components of both the scalar doublets,

namely h0 and φ0, possess mass mixing between themselves. The mass squared mixing

matrix between these two real scalar �elds are given by,

M2
scalar =


2λ1v

2 λ3vvs

λ3vvs 2λ2v
2
s

 . (7.5)

After diagonalising the mass squared matrix M2
scalar, we obtain two physical

eigenstates h1 and h2 which are related to the old basis sates h0 and φ0 by an

orthogonal transformation matrix O(α) where α is the mixing angle between the

resulting physical scalars. The relation between physical scalars h1 and h2 with the

scalar �elds h0 and φ0 are given as

h1 = cosα h0 − sinα φ0 , h2 = sinα h0 + cosα φ0 .

The expressions of the mixing angle α and the masses of the physical real scalars h1
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and h2 are given by

α =
1

2
tan−1

(
λ3
λ2

v
vs

1− λ1
λ2

v2

v2s

)
, (7.6)

m1 =

√
λ1v2 + λ2v2

s +
√

(λ1v2 − λ2v2
s)

2 + (λ3vvs)2 ,

m2 =

√
λ1v2 + λ2v2

s −
√

(λ1v2 − λ2v2
s)

2 + (λ3vvs)2 . (7.7)

We assume the physical scalar h1 is the SM-like Higgs boson which has been observed

by the ATLAS and the CMS detector [63, 64]. Therefore we have adopted the mass

(m1) of h1 and VEV v of h0 to be ∼ 125.5 GeV and 246 GeV respectively. Thus,

we have three unknown model parameters which control the interactions of the dark

matter candidate f1 in the early Universe, namely the mixing angle α, the mass

(m2) of the extra physical scalar boson h2 and more importantly, the mass mf1 of

the dark matter particle f1. In the rest of our work we have computed the allowed

ranges of these model parameters using various theoretical, experimental as well as

observational results. Throughout the work, for simplicity we take mass of fermionic

DM candidate (f1) to be m.

7.3 Constraints

In this section we will discuss various constraints and bounds on model

parameters that arise from both theoretical aspects and experimental observations.

• Vacuum Stability - To ensure the stability of the vacuum, the scalar potential

for the model must remain bounded from below. The quartic terms of the scalar

potential is given as

V4 = λ1(H†H)2 + λ2(Φ†Φ)2 + λ3 H
†HΦ†Φ , (7.8)
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where H is the SM Higgs doublet and Φ is the hidden sector Higgs doublet.

Conditions for the vacuum stability in this framework is given as

λ1 > 0, λ2 > 0 , λ3 + 2
√
λ1λ2 > 0 . (7.9)

• LHC Phenomenology - In the present model of hidden sector (SU(2)H)

fermionic dark matter discussed earlier in Sect. 7.2, an extra Higgs doublet is

added to the SM. This dark SU(2)H Higgs doublet provides an additional Higgs

like scalar that mixes up with the SM Higgs. Large Hadron Collider (LHC)

performing the search of Higgs particle (ATLAS and CMS Collaboration) have

already discovered a Higgs like particle having mass about 125 GeV. The excess

in γγ channel reported independently by ATLAS [64] and CMS [63] con�rmed

the existence of Higgs like bosons. In the case of Hidden sector SU(2)H model,

the mixing between SM Higgs with Dark Higgs results in two Higgs like scalars.

In the the present scenario we take one of the scalar (h1) as the SM Higgs with

massm1 = 125 GeV. We further assume that the signal strength of scalar h1 also

satis�es the limits on the same obtained for the newly discovered boson. Thus,

h1 in the present framework is identical with the SM-like Higgs as reported by

LHC Higgs search experiments (ATLAS and CMS). The signal strength of Higgs

boson (h), decaying into a particular �nal state (xx, x is any SM particle), is

de�ned as

R =
σ(pp→ h)

σSM(pp→ h)

Br(h→ xx)

BrSM(h→ xx)
, (7.10)

where σ(pp→ h) and Br(h→ xx) are the Higgs production cross-section and its

branching ratio of any particular decay mode (x =quark, lepton or gauge boson),

obtained from LHC experiments. The corresponding quantities computed using

Standard Model of electroweak interaction are denoted by σSM(pp → h) and
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BrSM(h → xx) respectively. For the present model, the signal strength of the

SM-like scalar h1 is then de�ned as,

R1 =
σ(pp→ h1)

σSM(pp→ h)

Br(h1 → xx)

BrSM(h→ xx)
, (7.11)

where the quantities are in the numerator of Eq. 7.11 are the production cross-

section and branching ratio of SM-like Higgs boson h1 which are computed using

the present formalism. Now due to the mixing of scalar bosons, the coupling of

SM-like Higgs boson to the SM fermions and gauge bosons are modi�ed with

respect to SM Higgs boson (h) by the cosine of mixing angle α whereas, the

couplings of non-SM scalar boson h2 to SM particles are multiplied by a factor

sinα. Hence the ratio σ(pp→h1)
σSM(pp→h)

= cos2 α and from the similar argument one

can yield σ(pp→h2)
σSM(pp→h)

= sin2 α. The SM branching ratio can be expressed as

BrSM(h→ xx) = ΓSM(h→xx)
ΓSM where ΓSM(h→ xx) is the decay width of SM Higgs

boson h into any �nal state particles and ΓSM is the total SM Higgs decay

width having mass m1 = 125 GeV. Similarly one can derive the expression

for branching ratio of h1 into any speci�c decay channel in the present model

Br(h1 → xx) = Γ1(h1→xx)
Γ1

where Γ1(h1 → xx) = cos2 αΓSM(h → xx) is the

decay width of h1 decaying into xx �nal state while Γ1 is the total decay width

of h1 in the present model. Hence, the signal strength of h1 in Eq. 7.11 can be

written in the form

R1 = c4
α

ΓSM

Γ1

, (7.12)

where we have denoted cosα as cα. It is to be noted that apart from the decay

into SM particles the SM-like scalar h1 can also have invisible decay mode into

dark matter particles. Therefore the total decay width of h1, in the present
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model, can be written as

Γ1 = c2
αΓSM + Γinv

1 . (7.13)

In Eq. 7.13, Γinv
1 is the invisible decay width h1 for the channel h1 → f1f̄1. For

m1 > 2m the expression of invisible decay width of h1 is given by

Γinv
1 =

m1

8π

m2

v2
s

s2
α

(
1− 4m2

m2
1

)3/2

, (7.14)

since coupling between h1 and dark matter candidate is proportional to m
vs
sα. In

the above, vs is the VEV of SU(2)H Higgs doublet Φ and sα = sinα. Similarly

for the other scalar involved in our model, the signal strength R2 is expressed

as

R2 =
σ(pp→ h2)

σSM(pp→ h)

Br(h2 → xx)

BrSM(h→ xx)
(7.15)

with σ(pp → h2) being the production cross-section of h2 and Br(h2 → xx)

is decay branching ratio of h2 to any �nal state. However in this case, the

Standard Model predictions σSM(pp→ h) and BrSM(h→ xx) are computed for

the mass of SM Higgs boson mh = m2. Using the similar approach we used to

calculate R1 and replacing h1, cosα etc. by h2, sinα the signal strength R2 of

h2 can be expressed as

R2 = s4
α

ΓSM(mh = m2)

Γ2

, (7.16)

where ΓSM(mh = m2) is the total decay width of SM Higgs boson if it has mass

mh = m2 while Γ2 is the total decay width for the non-SM scalar boson h2

Γ2 = s2
αΓSM(mh = m2) + Γinv

2 . (7.17)
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The coupling between dark matter and h2 depends on the factor m
vs

cosα. Hence,

invisible decay width of h2 (Γinv
2 ) for m2 > 2m is given as

Γinv
2 =

m2

8π

m2

v2
s

c2
α

(
1− 4m2

m2
2

)3/2

. (7.18)

As stated earlier, we consider h1 with mass m1 = 125 GeV to be the Higgs like

scalar and infer R1 > 0.8 [108] and invisible decay branching ratio Br1
inv ≤ 0.2

[127] where Br1
inv = Γ1

inv/Γ
1 is de�ned as the ratio of invisible decay width to

the total decay width.

• Dark matter relic density - The DM relic density as measured by PLANCK

Figure 7.1: Feynman diagrams for dark matter annihilation into fermions (quarks and
leptons), gauge bosons and scalars contributing to DM annihilation cross-section.

satellite experiment is given as [3]

ΩDMh2 = 0.1199±0.0027 . (7.19)

In Eq. 7.19, h is the Hubble parameter measured in the unit of 100

km s−1 Mpc−1. Using Eqs. 4.16-4.18 described earlier in Chapter 4 (see

Sect. 4.4), we calculate the relic density for the fermionic (SU(2)H) dark matter
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candidate in dark sector in our model by solving the Boltzmann equation. In

order to obtain the freeze out temperature of DM and hence its relic density

using Eqs. 4.17-4.18 we need to calculate the thermal average of the product

between total DM annihilation cross-section (σ) and the relative velocity (v) of

two annihilating DM particles. The expression for the thermally averaged DM

annihilation cross-section into all possible �nal states is given as

〈σv〉 =
1

8m4 TF K2
2(m/TF )

∫ ∞
4m2

ds σ(s) (s− 4m2)
√
sK1(

√
s/TF ), (7.20)

where the factors Ki, (i = 1, 2) are the modi�ed Bessel functions and
√
s being

the centre of mass energy. In the present formalism dark matter candidate f1

can annihilate into the SM particles through s-channel processes mediated by

the scalar bosons h1 and h2. In the above Eq. 7.20, σ(s) denotes the total

annihilation cross-section of dark matter into all possible �nal states which are

allowed by the Lagrangian given in Eq. 7.2. Feynman diagrams for di�erent

annihilation channels of f1 are shown in Fig. 7.1. The expressions of σv for

di�erent �nal state annihilation of dark matter into SM particles are derived

from the Feynmann diagrams shown in Fig. 7.1. The value of σv obtained for

DM annihilation into SM fermion and antifermion pairs (ff̄) at the �nal state

is of the form

σvff̄ = Nc
m2

v2
s

s2
αc

2
α

8π

m2
f

v2

(
1−

4m2
f

s

)3/2

F (s,m1,m2)

(7.21)

where

F (s,m1,m2) = (s− 4m2)

[
1

(s−m2
1)2 +m2

1Γ2
1

+
1

(s−m2
2)2 +m2

2Γ2
2

− 2(s−m2
1)(s−m2

2) + 2m1m2Γ1Γ2

[(s−m2
1)2 +m2

1Γ2
1][(s−m2

1)2 +m2
1Γ2

2]

]
.
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In Eq. 7.21, m is the DM mass and mf is the mass of speci�c fermion (f =

quark or lepton). The terms v and vs in Eq. 7.21 are the vacuum expectation

values of SM Higgs doublet and dark Higgs doublet, Nc is the colour quantum

number (3 for quarks and 1 for leptons). Γ1, Γ2 in the expression of F (s,m1,m2)

are the total decay widths of the scalar bosons h1, h2 and the expressions of Γ1

and Γ2 are given in Eqs. 7.13, 7.17. We also calculate σv for W+W− and ZZ

channels which proceed through the s-channel exchange of scalar bosons h1, h2

(see Fig. 7.1). The expressions of σvW+W− and σvZZ are furnished below

σvW+W− =
m2

v2
s

s2
αc

2
α

8πs

(
1−

4m2
W

s

)1/2(
2m2

W

v

)2(
1 +

(s/2−m2
W )2

2m4
W

)
F (s,m1,m2) ,

(7.22)

and

σvZZ =
m2

v2
s

s2
αc

2
α

16πs

(
1−

4m2
Z

s

)1/2(
2m2

Z

v

)2(
1 +

(s/2−m2
Z)2

2m4
Z

)
F (s,m1,m2) .

(7.23)

In the above, mW and mZ denotes the respective masses of W and Z bosons.

Annihilations of DM particles into scalar bosons h1 and h2 are also taken

into account. The process of DM annihilation into scalars h1 or h2 is also

scalar mediated, depends on scalar couplings between h1 and h2. The s-

channel annihilation cross-section of f1 annihilating into the pairs of h1 and h2,

calculated using f1f̄1 → hihi, i = 1, 2 annihilation diagram, takes the following

form

σvh1h1 =
1

16πs

m2

v2
s

(
1− 4m2

1

s
+

4m2
1(m2

1 − 1)

s2

)1/2

(s− 4m2)

[
s2
αλ

2
111

(s−m2
1)2 +m2

1Γ2
1

+
c2
αλ

2
211

(s−m2
2)2 +m2

2Γ2
2

− 2sαcαλ111λ211((s−m2
1)(s−m2

2) + 2m1m2Γ1Γ2)

[(s−m2
1)2 +m2

1Γ2
1][(s−m2

1)2 +m2
1Γ2

2]

]
,

(7.24)
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and

σvh2h2 =
1

16πs

m2

v2
s

(
1− 4m2

2

s
+

4m2
2(m2

2 − 1)

s2

)1/2

(s− 4m2)

[
s2
αλ

2
122

(s−m2
1)2 +m2

1Γ2
1

+
c2
αλ

2
222

(s−m2
2)2 +m2

2Γ2
2

− 2sαcαλ122λ222((s−m2
1)(s−m2

2) + 2m1m2Γ1Γ2)

[(s−m2
1)2 +m2

1Γ2
1][(s−m2

1)2 +m2
1Γ2

2]

]
,

(7.25)

where, λijk is the coupling for the vertex involving three scalar �elds hihjhk.

The expressions for the scalar couplings λ111, λ211, λ122 and λ222 are given as

follows

λ111 = λ1vc
3
α − λ2vss

3
α +

1

2
λ3(vcαs

2
α − vssαc2

α) ,

λ222 = λ1vs
3
α + λ2vsc

3
α +

1

2
λ3(vsαc

2
α + vscαs

2
α) ,

λ211 = 3(λ1vc
2
αsα − λ2vss

2
αcα) +

1

2
λ3(vs(c

3
α − 2s2

αcα) + v(s3
α − 2c2

αsα)) ,

λ122 = 3(λ1vs
2
αcα − λ2vsc

2
αsα) +

1

2
λ3(vs(−s3

α + 2c2
αsα) + v(c3

α − 2s2
αcα)) .

We calculate the thermally averaged annihilation cross-section of the present

DM candidate using Eqs. 7.20-7.25 We then compute the freeze out temperature

TF by solving Eq. 4.18 and �nally obtain the relic density of f1 at the present

epoch from Eq. 4.17.

• DM Direct Detection - Direct detection of DM particle is based on the

scattering of the DM particle with the target nucleus of the detector material.

Fermionic dark matter in the present model can undergo elastic scattering with

the detector nucleus. This elastic scattering of the DM and the nucleus will

transfer a recoil energy to the target nucleus which is then calibrated. From the

non-observance of such elastic scattering events the direct detection experiments

give the upper bound of elastic scattering cross-sections for di�erent possible

masses of dark matter. The scattering cross-section is expressed as cross-
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section per nucleon for enabling direct comparison of the results from di�erent

experiments. In the present model DM fermion of mass m can interact with the

target nucleus through t-channel Higgs mediated processes through both h1 and

h2. The spin-independent (SI) elastic scattering cross-section o� the detector

material normalised to per nucleon can be written as [130]

σSI =
sin2 2α

4π

m2

v2
s

m2
r

(
1

m2
1

− 1

m2
2

)2

λ2
p (7.26)

where mr = mmp
m+mp

is the reduced mass for the DM-nucleon system and λp [130]

is given in terms of the form factors fq, proton mass mp as

λp =
mp

v

[∑
q

fq +
2

9

(
1−

∑
q

fq

)]
' 1.3× 10−3 . (7.27)

Using Eqs. 7.26-7.27, we calculate the spin independent elastic scattering cross-

section of the DM fermion o� the nucleon and compare it with the experimental

bounds from LUX [28].

Note that both DM annihilation cross-section and DM-nucleon scattering cross-

section depend on an e�ective coupling geff = |m
vs
sαcα| (Eqs. 7.21-7.26).

This e�ective coupling is a useful parameters to explain the dark matter

phenomenology in the present framework. Further discussions on the e�ective

coupling are given later in Sec. 7.4.

• DM Indirect Detection The existence of DM has now been well established

from gravitational evidences in astrophysical scale. Indirect search of DM

focuses on the non-gravitational search of DM candidate and explores the

particle physics nature of DM. The astrophysical sites such as galactic centre

(GC), dwarf galaxies etc. are of great interest since dark matter can be trapped

and accumulate at GC due to the enormous gravity in the region of GC and
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the mass to luminosity ratio of dwarf galaxies indicate the presence of dark

matter in large magnitude. These sites are suitable for indirect search of DM

as DM particles trapped in these regions can undergo annihilation into various

SM particles which can further produce gamma rays, neutrinos etc. Thus any

observed excess in the �uxes of γ-ray, positron, anti-proton from such sites

can indicate DM annihilation processes in those sites if other astrophysical

phenomena cannot explain the observed excess. Fermi-LAT [131] searches

for the excess emission of γ-rays originating from GC and dwarf galaxies.

Observation of the excess in e+/e− and p/p̄ �ux is performed by AMS [45]

experiment. In this Section we will study Fermi-LAT observed gamma ray �ux

results from the centre of Milky Way and surrounding dwarf spheroidal galaxies

(dSphs).

The expression for the di�erential γ-ray �ux obtained from a region of interest

(ROI) subtends a solid angle dΩ centered at GC is given as

dΦ

dEdΩ
=

1

8πm2
DM

J
∑
f

〈σv〉f
dNf

dEγ
, (7.28)

where 〈σv〉f is the average thermal annihilation cross-section of DM particles

annihilating into �nal state particle f and dNf
dEγ

is the photon energy spectrum

of DM annihilation into the same. The factor J appearing in Eq. 7.28 is related

to the quantity of dark matter present at the astrophysical site considered and

is expressed in terms of dark matter density as

J =

∫
los

ρ2(r(s, θ))ds . (7.29)

In Eq. 7.29 the line of sight (los) integral is performed over an angle θ , is

the angular aperture between the line connecting GC to the Earth and the

direction of line of sight. In the above Eq. 7.29, r =
√
r2
� + s2 − 2r�s cos θ
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where r� = 8.5 kpc, is the distance to the Sun from GC. It is clear from the

expression of Eq. 7.29 that value of J factor is dependent on the nature of the

chosen ρ(r) factor i.e, DM halo density pro�le ρ(r). In the present work, we

consider Navarro-Frenk-White (NFW) [5] halo pro�le. DM density distribution

for the NFW halo pro�le is given as

ρ(r) = ρ0
(r/rs)

−γ

(1 + r/rs)3−γ . (7.30)

where rs = 20 kpc is the characteristic distance and ρ0 is normalised to local

DM density i.e., ρ� = 0.4 GeV cm−3 at a distance r� from GC.

The analysis by Daylan et. al. [59] of Fermi-LAT data suggests an excess in

γ-ray in the γ energy range of 2-3 GeV at GC. The same analysis demonstrates

that this excess can be explained by the annihilation of 31-40 GeV DM into bb̄

with 〈σv〉bb̄ = 1.4− 2.0× 10−26 cm3s−1. In this work [59], inner galaxy gamma

ray �ux (50 from GC) is calibrated using NFW halo pro�le with γ = 1.26 and

local DM density ρ� = 0.3 GeV cm−3. In a recent work by Calore, Cholis and

Weniger (CCW) [60] detailed analysis is performed for the GC γ-rays along with

the systematic uncertainties using 60 galactic di�usion excess (GDE) models.

Results from CCW analysis provides a best �t for DM annihilation into bb̄

having mass 49+6.4
−5.4 GeV with 〈σv〉bb̄ = 1.76+0.28

−0.27×10−26 cm3s−1. However, CCW

analysis of galactic centre excess (GCE) for gamma ray have also considered

generalised NFW pro�le (γ=1.2, ρ� = 0.4 GeV cm−3) for a di�erent region

of interest (ROI) with galactic latitude |l| ≤ 200 and longitude |b| ≤ 200

masking out inner |b| ≤ 20. In another work P. Agrawal et. al. [132] reported

that annihilation of heavier dark matter (upto 165 GeV for bb̄ channel) can

also explain the observed GCE in γ-ray when uncertainties in DM halo pro�le

(NFW) and the J-factor are taken into account. However in the present work,
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we do not consider any such uncertainties in halo pro�les or J vaules and use

the canonical NFW halo pro�le used in CCW analysis. Using Eqs. 7.28-7.30,

we calculate the γ-ray �ux (in GeV cm−2 s sr−1) for the ROI described in

CCW analysis for Fermi-LAT data. As mentioned earlier we consider for our

calculations the NFW pro�le with γ = 1.2 and ρ� = 0.4 GeV cm−3.

Apart from the GC region, dwarf galaxies of the Milky-Way galaxy are also

of great signi�cance for indirect search of DM as these galaxies are supposed

to be rich in dark matter. Recent analyses of γ-ray �uxes from 15 Milky-

Way dSphs reported by Fermi-LAT [61] provide a limit on DM mass and

corresponding thermally averaged annihilation cross-section 〈σv〉f into di�erent

channels f (τ and b). Fermi-LAT have used their 6 year data collected by Fermi

Large area Telescope and performed an analysis for 15 dSphs using �pass-8 event

level analysis� (see [61] and references therein). In an another work [62] Fermi-

LAT in collaboration along with Dark Energy Survey (DES) collaboration also

provide similar bound on 〈σv〉f where they include data for 8 new dSphs. For

both the analysis presented in [61, 62] a canonical NFW halo pro�le (γ = 1)

is considered, and the astrophysical J factors are measured over a solid angle

∆Ω = 2.4 × 10−3 sr with angular radius 0.50. Independent searches carried

out by Fermi-LAT [61] and DES-Fermi-LAT collaboration on 15 previously

discovered and 8 recently discovered di�erent dSphs reported no signi�cant

excess in observed γ-ray. Results from the DES dSphs [62] also predicts an

upper bound to the observed γ-ray energy �ux with 95% con�dence limit (C.L.)

for 8 newly found dSphs. Gamma ray �ux for dwarf galaxies when integrated

for an energy range extending over a region of solid angle ∆Ω is expressed as

Φ =
〈σv〉

8πm2
DM

J

∫ Emax

Emin

dN

dEγ
dEγ , (7.31)
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where dN
dEγ

is the γ-ray. The expression of �ux presented in Eq. 7.31 is calculated

for a single �nal state annihilation of DM. Hence, summation over di�erent �nal

channels is not needed. Form of J factor appearing in Eq. 7.31 is di�erent from

Eq. 7.29 and written as

J =

∫
∆Ω

∫
los

ρ2(r(s, θ))ds , (7.32)

calculated over a solid angle ∆Ω = 2.4 × 10−3 sr subtended by the ROI (0.50

angular radius) for NFW halo pro�le (γ = 1). The density distribution function

for NFW pro�le with γ = 1 is then

ρ(r) = ρ0
r3
s

r(rs + r)2
, (7.33)

where rs is the NFW scale radius and ρ0 represents the characteristic density

for the dSphs. In the case of Fermi-LAT analysis, J factors for di�erent dSphs

are adopted from Ref. [61]. We use values of J factor from [62] for computing

gamma ray �ux for 8 DES dSphs for the dark matter candidates in our model.

However, it is to be noted that J factors for DES dSphs candidates are obtained

assuming the point like dSphs instead of having spatial extension (as in the case

of [61]) to avoid the uncertainties in halo pro�le arising from spatial extension.

Calculation of gamma ray �ux is also based on the assumption that the spectrum

dN
dEγ

follows the conventional power law dN
dEγ
∼ 1

E2 . As mentioned earlier, study

of 15 dSphs by Fermi-LAT and 8 other dSphs by DES-Fermi-LAT collaboration

found no signi�cant excess in γ-ray from these dwarf galaxies. However, a

recent search on a newly discovered dwarf galaxy Reticulum 2 (Ret2) in a work

by Geringer-Sameth et. al [133] has reported an excess in observed γ-ray signal.

In the present work, we calculate the γ-ray �ux for annihilation of hidden SU(2)H

fermionic dark matter into γ-ray through di�erent SM �nal states and explore
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whether the model can account for GCE in γ-ray and also satis�es the bounds

on gamma ray �ux from dwarf satellite galaxies.

As mentioned earlier, in the present model dark matter candidate (f1) is

fermionic in nature and it interacts with the visible world (SM particles) through

the exchange of two real scalar bosons h1 and h2. As a result the annihilation

cross-sections of the DM dark candidate f1 into the �nal states that composed

of SM particles (mainly light quarks and leptons) are proportional to the square

of relative velocity (v2) between the annihilating dark matter particles (p wave

process). Now the averaged DM relative velocity is proportional to ∼
√

3/x

[134]-[135] with x = m
T
is a dimensionless quantity and T being the temperature

of the Universe. Hence, in our model, the thermally averaged annihilation cross-

section used for computing DM relic density, at x ∼ 20−30, is di�erent from the

annihilation cross-section (for x ∼ 3×106 [134]-[135]) needed to calculate γ-ray

�ux at the galactic centre and dwarf galaxies. The latter quantity is velocity

suppressed as the average DM relative velocity is ∼ 10−3 when the annihilation

of DM occurs at the GC. Among all the annihilation channels of f1, the

annihilation mode f1f̄1 → bb̄ plays a signi�cant role for the γ-ray excess observed

from GC and dwarfs satellite galaxies as it is the most dominant annihilation

channel for the considered mass range of DM. In order to explain the GC

gamma-excess by DM annihilation to bb̄, the annihilation cross-section should

be ∼ 1.76+0.28
−0.27 × 10−26 cm3/s [60]. Although in the present case, the thermally

averaged annihilation cross-section for the bb̄ annihilation is quite small, however

the quantity 〈σv〉bb̄ can be signi�cantly enhanced using Breit-Wigner resonant

enhancement mechanism [134]-[135]. Breit-Wigner enhancement occurs only

when the mass of the dark matter (m) is nearly equal to half of the mediator

mass (in our case it is the mass of h2). Therefore, we have de�ned the mass

of the hidden sector scalar boson (h2) and the centre of mass energy
√
s in the
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following way

m2
2 = 4m2(1− δ) and s = 4m2(1 + z) , (7.34)

where δ < 0 represents the physical pole and z is the measure of excess centre of

momentum energy scaled by 4m2. In terms of z, Eq. 7.20 for the bb̄ annihilation

channel, can now be written as

〈σv〉bb̄ =
4x

K2
2(x)

∫ zeff

0

dz σ(z)bb̄ z
√

1 + z K1(2x
√

1 + z) (7.35)

with the expression of σ(z)bb̄ is given by 4

σ(z)bb̄ =
gc

4m2

√
z

1 + z

(
1 + z − m2

b

m2

)3/2

[(z + δ)2 + γ2
2(1− δ)2]

, (7.36)

and

gc =
Nc

16π

(
m cosα

vs

mb sinα

v

)2

(7.37)

where γ2 = Γ2

m2
, Γ2 being the total decay width of h2 of mass m2. It is to

be noted that the upper limit of the above integration should be ∞ (see Eq.

7.20), however the integrand becomes negligibly small when z approaches to

zeff ∼ max[4/x, 2|δ|] for δ < 0 [124],[135]. Using the above prescription, we

calculate the thermally averaged annihilation cross-section 〈σv〉bb̄ of the dark

matter candidate f1 for GC and dwarf spheroidal galaxies. The actual values

of 〈σv〉bb̄, γ2 and δ for the two chosen bench mark points (BP1, BP2) are given

in Table 7.1 of Sec. 7.4. We have found that for |δ| ∼ 10−3 the annihilation

4Since the Breit-Wigner enhancement occurs when m ∼ m2/2, as a result only the term
proportional to 1

(s−m2
2)2+m2

2Γ2
2
will dominantly contribute to the annihilation cross-section appearing

in Eq. 7.21.
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cross-section 〈σv〉bb̄ ∼ 1.9×10−26 cm3/s which can explain the excess of gamma

ray �ux in GC5.

7.4 Calculational procedures and Results

In this section we present the computation of dark matter annihilation cross-

sections as also the DM-nucleon elastic scattering cross-sections. They are required

for the calculation of relic densities and the comparison of the latest DM scattering

cross-section bound given by the LUX direct detection experiment. The invisible

decay widths and signal strengths for the SM-like scalar is also calculated in order to

constrain the model parameter space. The gamma ray �ux are then computed within

the framework of SU(2)H fermionic dark matter for galactic centre as also for dwarf

galaxies and the results are compared with the experimental analysis.

7.4.1 Constraining the model parameter space

The fermionic dark matter in the present model can annihilate through scalar

mediated (h1 and h2) s-channel processes. As mentioned in Sec. 7.3, the model

parameter space is �rst constrained by the vacuum stability conditions given in

Eq. 7.9. The signal strengths R1 and R2 for the Higgs doublets h1 (SM) and h2

(dark sector) are then computed using Eq. 7.12 and Eq. 7.16. With the chosen

constraints on R1 (R1 ≥ 0.8, Ref. [108]) the invisible decay branching ratio of SM-

like Higgs Br1
inv is calculated and the parameter space is further constrained by LHC

experiment limit of Br1
inv (Br1

inv ≤ 0.2 [127]). The parameter space thus constrained

is then used to compute the thermal averaged annihilation cross-section 〈σv〉 of the
5Similar results for Breit-Wigner enhancement of dark matter annihilation cross-section have

been reported in [124].
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present fermionic dark matter candidate and the relic density is obtained by solving

the Boltzmann equation (using Eqs. 4.16-4.18 and Eq. 7.20). The annihilation cross-

sections are computed with the calculated analytical formulae given in Eqs. 7.21-7.25

with two choices of VEV for Φ (dark Higgs doublet) namely vs = 246 GeV and 500

GeV. In our calculation we consider the mass m1 of the SM-like Higgs boson h1 to

be 125 GeV. The calculation is performed for two values of the dark sector scalar h2

masses and they are m2 = 100 GeV and 110 GeV. These relic densities are compared

with the dark matter relic density given by PLANCK [3]. Thus PLANCK result

further constrains the parameter space of our model. With this available parameter

space we evaluate the dark matter-nucleon spin independent scattering cross-section

(σSI) for the purpose of comparing our results with those given by the dark matter

direct detection experiments such as LUX, XENON100 etc. In this way we restrict

our model parameter space by di�erent experimental results.

(a) (b)

Figure 7.2: The allowed range of m−σSI parameter space obtained for m2 = 100 GeV
(left panel) and m2 = 110 GeV (right panel) plotted using the bounds from vacuum
stability, LHC constraints on SM Higgs and relic abundance of DM obtained from
PLANCK [3]. Limits on DM-nucleon cross-section from LUX [28] is also plotted (blue
line) for comparison.
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In Fig. 7.2a and Fig. 7.2b we show the calculated values of σSI with di�erent

DM mass in the present model where the conditions from vacuum stability, bound

on SM Higgs signal strength and DM relic density results from PLANCK have been

imposed. We �rst choose certain values ofm1 andm2 and vary the couplings λi, i = 1

to 3 (satisfying vacuum stability conditions given in Eq. 7.9) for two di�erent values

of vs which also constrain the mixing angle α through the Eq. 7.7. Here we want

to mention that we have varied λ1 and λ2 in the range 0 to 0.2 with the values of

both λ's are evenly spread within the considered range. Consequently the value of

the parameter λ3 becomes �xed by the vacuum stability criteria given in Eq. 7.9

which is also varied with equal interval in the range |λ3| < 2
√
λ1λ2. The model

parameter space thus obtained is then further constrained by imposing the conditions

R1 > 0.8 and Br1
inv < 0.2 from LHC results. Using this restricted model parameter

space satisfying both vacuum stability and LHC bounds, we therefore calculate the

relic density of the dark matter candidate f1 by solving the Boltzmann equation

(Eq. 4.16) for di�erent values of DM mass. Finally, we consider speci�c range of model

parameter space which is in agreement with DM relic density reported by PLANCK

experiment and for these parameter space we compute the spin-independent direct

detection cross-section using Eqs. 7.26-7.27. In this way the viable model parameter

space for the dark matter candidate f1 is obtained. Fig. 7.2a is for the case m2 =

100 GeV while Fig. 7.2b is for the case m2 = 110 GeV. The upper limit on σSI

for di�erent values of DM mass, obtained from LUX DM direct search experiment,

are also shown in Fig. 7.2a-b by the blue line for comparison. The red and green

scattered regions as shown in Fig. 7.2a-b correspond to two choices of vs=246 GeV

and 500 GeV respectively. From Fig. 7.2a it can be observed that only the region near

the resonances of scalar bosons h1 and h2 is in agreement with the upper limit on σSI

predicted by LUX. It is also seen from Fig. 7.2a that the choice of vs do not alter the

allowed range of parameter space. Observation of Fig. 7.2b yields that, apart from
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SM Higgs resonance region (m ∼ m1/2) there exists another allowed range of m−σSI

parameter space in the vicinity of non-SM scalar resonance (m ∼ m2/2). Note that

variation of m with σSI depicted in Fig. 7.2b depends only on the masses of scalar

bosons and does not su�er any signi�cant change due to change in vs. The non-SM

Higgs signal strength R2 (calculated using Eq. 7.16) for the valid m− σSI parameter

space shown in Figs. 7.2a-b is very small and R2 < 0.2.

(a) (b)

Figure 7.3: The valid model parameter space in λ3 − α (in deg) plane obtained for
the case of m2 = 100 GeV (lef panel) and m2 = 110 Gev (right panel) satisfying the
limits from vacuum stability, LHC �ndings, PLANCK DM relic abundance and direct
detection limits on σSI from LUX experiment.

In this work, we assumed two values for VEV vs (246 GeV and 500 GeV) for the

hidden sector Higgs doublet ΦHS. From Eq. 7.6, we observe that the mixing between

the scalars h1 and h2 depends on the VEV of ΦHS and H. Hence, the choice of vs

may change the range of available model parameter space. In Figs. 7.3a-b, we plot

the variation of Higgs mixing angle α between h1 and h2 with λ3 for m2=100 GeV

and 110 GeV with m1=125 GeV (mass of SM-like Higgs). Needless to mention the

region of α − λ3 space shown in Figs. 7.3a-b are consistent with the bounds form
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vacuum stability, SM Higgs signal strength from LHC, relic abundance of DM from

PLANCK and limits on DM-nucleon scattering cross-section from LUX direct DM

search experiment. Plots in Fig. 7.3 are produced using similar method we have

applied previously to obtain viable model parameter space for Fig. 7.2. However

α−λ3 plane in Fig. 7.3 is further constrained by imposing LUX DM direct detection

bound. The plots in Fig. 7.3a are for the case when m1 = 125 GeV and m2 = 100

GeV while plots in Fig. 7.3b represent the allowed α − λ3 parameter space when

m2 = 110 GeV for the �xed value of m1 = 125 GeV. The green and blue regions

in Fig. 7.3a and Fig. 7.3b correspond to two di�erent values for VEV of dark Higgs

doublet, vs = 246 GeV and vs = 500 GeV respectively. From Fig. 7.3a (m2 = 100

GeV case) one observes that for both the considered values of VEV vs, the mixing

parameter λ3 remains small and is con�ned within the region |λ3| < 0.01. For the

case when vs =246 GeV (the red region of Fig. 7.3a), the limit of mixing angle α

ranges between −0.1 to 0.1. However these range (of mixing angle) varies within the

limit |α| ≤ 0.2 when vs=500 GeV is chosen (green region shown in Fig. 7.3a). Study

of the λ3 − α plots in Fig. 7.3b (plotted for m2 = 110 GeV) reveals that for both the

values of vs considered in Fig. 7.3, the mixing parameter is small (|λ3| < 0.01). The

mixing angle α is bounded in the range |α| < 0.15 and |α| ≤ 0.30 for vs = 246 GeV

and 500 GeV respectively.

7.4.2 Calculation of gamma ray signals from galactic centre

and dwarf galaxies

In this Section, we calculate the γ-ray �ux from the galactic centre and dwarf

galaxies for the fermionic dark matter in framework of the present model and compare

our results with the experimental observations. For these calculations we consider

two benchmark points (BPs) from the restricted parameter space that satisfy both
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Figure 7.4: Comparison of the GC γ-ray �ux data from [60] with those calculated for
benchmark points in Table 7.1.

BP vs m2 m δ γ2 σSI 〈σv〉bb̄
in GeV in GeV in GeV in cm2 cm3/s

BP1 246.0 100.242 50.0 -4.86e-03 0.60e-06 2.89e-46 1.98e-26
BP2 500.0 110.321 55.0 -5.85e-03 0.43e-06 1.13e-46 1.90e-26

Table 7.1: Benchmark points obtained from the constrained model parameter space
in agreement with the bounds from vacuum stability, SM Higgs signal strength from
LHC, DM relic density from PLANCK and LUX DM search bounds on DM-nucleon
scattering cross-section.

theoretical and experimental bounds (mainly vacuum stability, LHC constraints on

SM Higgs signal, PLANCK results for relic abundance and direct detection limit

on m − σSI from LUX) for two choices of h2 mass, mainly, m2= 100 GeV and 200

GeV. In Table 7.1 we tabulate the chosen BPs along with model parameters. There

are two chosen sets of benchmark points in Table 7.1 and we denote them as BP1

and BP2. The GC gamma ray �ux is calculated using Eqs. 7.28-7.30 for the BPs

tabulated in Table 7.1. The annihilation cross-section 〈σv〉bb̄ for the dark matter

particle is calculated using Breit-Wigner enhancement technique using Eqs. 7.34-7.37

discussed in Sec. 7.3. The gamma ray spectrum dN
dE

in Eq. 7.28 is obtained from

128



7.4. Calculational procedures and Results

Cirelli [136] for annihilation of DM into any speci�c channel. The gamma ray spectra

for BP1 and BP2 are then calculated for the speci�ed region of interest adopted

from Ref. [60] (|l| ≤ 200, 20 ≤ |b| ≤ 200) using NFW halo pro�le (with γ = 1.2,

ρ� = 0.4 GeV cm−3). In Fig. 7.4, we show the calculated GC gamma ray �ux (in

GeV cm−2 sr−1) for our proposed DM candidate with BP1 and BP2. We also show in

Fig. 7.4 the CCW data for comparison. Green and blue lines in Fig. 7.4 represent the

calculated γ-ray spectra for BP1 and BP2 respectively. Both the benchmarks points

are in agreement with the �ndings from GC gamma ray study presented in CCW

[60]. From Fig. 7.4 it can be observed that �ux calculated using the set BP1 (m=50

GeV) is in better agreement with the �ndings from CCW analysis.

We now further investigate how well the DM candidate in our model can explain

the observed extragalactic γ-ray signatures from various dwarf galaxies. From their six

years observations on 15 dwarf galaxies, the Fermi-LAT experiment did not obtain any

signi�cant excess of γ-rays. Fermi-LAT collaboration [61] however in a recent work

provides combined bound on DMmass and thermally averaged DM annihilation cross-

section into SM particles for these 15 dSphs. A similar bound inm−〈σv〉f plane is also

presented recently in an another work [62] for eight new dSphs jointly by Fermi-LAT

and DES collaboration. In this work we calculate thermally averaged annihilation

cross-section of DM annihilating into SM sector in our model and compare them

with experimental results given by [61, 62]. In Fig. 7.5, we plot the bounds on DM

annihilation cross-section 〈σv〉bb̄ (for the annihilation channel DMDM→ bb̄) with dark

matter mass m obtained from galactic [60] and extragalactic [61, 62] γ-ray search

experiments. We calculate the variations of the same plotted in Fig. 7.5 for the

benchmark points BP1 (for m2 = 100 GeV) and BP2 (for m2 = 110 GeV) considered

in our model.

Black contours shown in Fig. 7.5 are the 1σ, 2σ and 3σ contours given by the
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Chapter. Hidden sector Fermionic dark matter Model

Figure 7.5: The allowed range of m−〈σv〉 space (for annihilation into bb̄) along with
the bounds on 〈σv〉 (into bb̄ channel only) obtained from GC γ ray search results CCW
[60] and dwarf galaxies [61, 62] compared with the same obtained from benchmark
points in Table 7.1.

CCW [60] analysis of GC gamma ray excess observations. The blue line in Fig. 7.5

describes the bounds in m − 〈σv〉bb̄ plane given by the analysis of gamma rays from

previously discovered 15 dSphs and they are adopted from [61]. Also shown in Fig. 7.5,

the yellow band which is the 95% con�dence limit (C.L.) region adopted from the

analysis in Ref. [61] for DM annihilation into bb̄. The combined bounds on 〈σv〉bb̄

for di�erent DM mass m from a recent study of the newly discovered 8 DES dwarf

galaxies [62] are given by the pink coloured line in Fig. 7.5. The green horizontal

line in Fig. 7.5 shows the annihilation cross-section for thermal dark matter that may

yield the right DM relic abundance obtained from the PLANCK experiment.

From Fig. 7.5 one readily observes that the calculated values of 〈σv〉bb̄ for the

benchmark points BP1 and BP2 in our model broadly agrees with the 1σ, 2σ and 3σ

allowed regions in m−〈σv〉bb̄ plane obtained from the experimental results. This can

also be noted from Fig. 7.5 that these benchmark points are consistent the combined

limit from DES dwarf satellite data and falls within the 95% C.L. limit predicted

by Fermi-LAT for 15 dSphs. Also the calculated values of 〈σv〉bb̄ for the benchmark
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points considered in our work lie below the upper bound on thermal DM annihilation

cross-section. Hence, DM fermion in the present model can account for the galactic

centre excess in γ-ray and is also consistent with the bounds on gamma ray �ux from

Milky-Way dwarf satellite galaxies.

We now calculate the gamma ray �ux for 8 new dwarf satellite galaxies

discovered by the DES experiment for the hidden sector fermionic dark matter

candidate proposed in this work. These calculations are performed with each of

the benchmark parameter sets BP1 and BP2 given in Table 7.1. The gamma ray �ux

for each of these 8 dSphs in the work [62] is computed using Eq. 7.31 and the values of

the J factors (Eq. 7.32) for each of the eight dSphs adopted from Ref. [62]. In Ref. [62]

these J factors are estimated by integrating the dark matter density (adopting NFW

halo pro�le for DM density distribution) along the line of sight over a solid angle

∆Ω = 2.4× 10−4 sr−1. As previously mentioned the gamma ray spectrum dN
dE

is also

obtained from Ref. [136] for this calculation. The calculated �ux for each of the eight

dSphs are shown in eight plots (a-h) of Fig. 7.6. Also shown in each of the eight

plots of Fig. 7.6, the respective upper bounds of the �ux given by the experimental

observations of gamma rays from each of the eight dSphs. These are shown as red

coloured points while the computed �ux in this work for the respective dSphs are

given by continuous lines in Fig. 7.6. The green and blue continuous lines in each

of the plots (a-h) of Fig. 7.6 correspond to the calculated �ux using the benchmark

points BP1 and BP2 respectively. It is clear from Fig. 7.6 that the �uxes calculated,

assuming the annihilation of the DM candidate in our proposed model, for all the eight

dSphs do not exceed the upper limit of γ �ux set by the experimental observations

of DES collaboration.

Besides the 15 dwarf galaxies investigated earlier and the eight other recently

explored dwarf galaxies, one more dwarf galaxy namely Reticulum 2 (Ret2) has been
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.6: Comparison of the observed upper bound on γ-ray �ux for 8 DES dSphs
with the calculated γ-ray �ux from BP1 and BP2 tabulated in Table 7.1.

probed very recently. Geringer-Sameth et. al. [133], after an analysis of observed

gamma rays from Ret2 dwarf galaxy reported an excess of gamma ray emission from

Ret2. From their analysis of Ret2 data Geringer-Sameth et. al. provide di�erent C.L.
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7.4. Calculational procedures and Results

Figure 7.7: Benchmark points BP1 and BP2 compared with the allowed region of
model parameter space shown in m− J19〈σv〉−26 plane obtained from [133]

allowed contours in m−J19〈σv〉−26 plane where m is the mass of the dark matter and

J19〈σv〉−26 is the product of the J factor in the units of 1019 GeV2 cm−5 and thermal

averaged product 〈σv〉 of annihilation cross-section and relative velocity in the units of

10−26cm3s−1 for various �nal state SM channels. As mentioned earlier in this work DM

candidate primarily annihilates into bb̄, only the contours for the DM pair annihilation

into bb̄ channel are adopted. For the present dark matter model with the constrained

parameter space discussed earlier we compute the quantity J19〈σv〉−26 for di�erent

dark matter mass m annihilating into bb̄ channel. However the value of the J factor

for Ret2 has been adopted from [133]. In their work Geringer-Sameth et. al. [133]

estimated the J values by performing line of sight integral over a circular region with

angular radius 0.50 surrounding the dwarf and over a solid angle ∆Ω = 2.4 × 10−4

sr−1. All these calculations are performed for two values of non-SM scalar mass

accounted in the present model namely m2 = 100 GeV and m2 = 110 GeV. The

results are presented for the two benchmark points BP1 and BP2 corresponding to

the calculations with m2 = 100 GeV and m2 = 110 GeV are shown in red and skyblue

points in Fig. 7.7. In Fig. 7.7, the contours from the experimental data analysis by
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Geringer-Sameth et. al. are given for comparison. In Fig. 7.7 the contours for 68%,

95% and 99.7% C.L. are shown in black coloured lines in increasing order of area

enclosed by each contour. The valid regions of m − J19〈σv〉−26 plane in our model

(calculated for DM annihilating into bb̄ pair) are presented by green coloured patches

in both the plots of Fig. 7.7. From Fig. 7.7, it can be easily observed that J19〈σv〉−26

in the present model calculated for DM annihilating into bb̄ channel (for benchmark

points with m2=100 GeV and 110 GeV) is within the 3σ C.L. limit. Hence fermionic

DM candidate in the present framework can also explain the observed excess in γ-ray

from Ret2.

7.5 Discussions and Conclusions

We have proposed the existence of a hidden sector which obeys a local SU(2)H

and a global U(1)H gauge symmetries. In order to introduce fermions which are

charged under this SU(2)H gauge group one should have at least two fermion doublets

in order to avoid �Witten anomaly�. The particle and the antiparticle of these dark

fermions are di�erent as they possess equal and opposite U(1)H charges. However,

similar to the usual Higgs doublet in the visible sector, this hidden sector also has

an SU(2)H scalar doublet which does not have any U(1)H charge. The SU(2)H gauge

symmetry breaks spontaneously when the neutral component of the scalar doublet

Φ gets VEV and thereby generates masses to the dark gauge bosons (A′µ) and dark

fermions (fi). In this work this lightest fermion is the candidate for particle dark

matter. The dark sector scalar can interact with the SM Higgs like scalar in the

visible sector and only through this interaction two sectors are mutually connected.

However the dark fermions and dark gauge bosons remain una�ected by the visible

sector due to the non abelian SU(2)H structure of the dark sector.
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We constrain the model parameters from theoretical and experimental bounds

such as vacuum stability, relic abundance of DM from PLANCK, direct detection

experimental limits on DM-nucleon scattering cross-section from LUX etc. and test

the viability of the model. Bounds from LHC on SM Higgs signal strength and

invisible decay are also used to constrain the parameter space. Implementing these

theoretical and experimental limits on the model suggests that only a small region of

the available parameter space (region near the scalar resonances) is consistent with

these bounds taken into account. Study of the model parameters thus constrained

show that the mixing between the two scalars of the model is very small and depends

on the VEV of the scalar doublets. With the allowed region of the parameter space

for the present DM candidate (dark fermion) we compute the gamma ray �ux from

the GC region by explicitly calculating the annihilation cross-section for the DM

candidate f1 in the bb̄ channel (f1f̄1 → bb̄). These computational results are then

compared with the experimental analysis of the Fermi-LAT observed GC gamma ray

�ux data considering the dark matter at the GC primarily pair annihilates into bb̄.

Our proposed DM candidate can indeed explain the results from these experimental

analyses.

In search of indirect evidence of dark matter from astrophysical sources, the

gamma rays from various dwarf satellite galaxies are also explored for possible

signature of excess gamma rays from these sites. To this end 15 such dwarf galaxies

have earlier been investigated and more recently the gamma ray observation is also

reported from eight more newly discovered dSphs. From the analyses of these

observational results di�erent C.L. bounds have been given in the parameter space

of 〈σv〉bb̄ −m plane. We compare our computational results with these experimental

bounds and found that the γ-rays that the DM candidate in our model produce on

pair annihilation can simultaneously satisfy the observational results from GC and

dwarf galaxies. We also demonstrate that the calculated �uxes in our model for
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each of the recently discovered eight dwarf galaxies lie below the corresponding upper

limits of the �uxes obtained from the observational results of these dwarf galaxies.

We further demonstrate that our calculations are also in good agreement with the

analysis of Ret2 dwarf galaxy observations.

Our work clearly demonstrate that the dark matter candidate proposed in this

work is a viable one to explain the γ-rays from both the GC region and dwarf galaxies

simultaneously. However the dark matter can also pair annihilate into fermion-

antifermion pairs and there are experiments such as AMS-02 that look for the excess

of e+/e− or pp̄ in cosmos. In a recent work, AMS-02 collaboration have reported their

�rst measurement of p/p̄ �ux [47]. A model independent analysis of this AMS-02 p/p̄

data is performed by Jin et.al. [137]. In this work [137], the upper limits in 〈σv〉

value for DM annihilation into SM particles (quarks and gauge bosons) for di�erent

considered DM halo pro�les (NFW, Isothermal, Moore) are obtained. The analysis

presented in the work [137] also considered four di�erent propagation models namely

conventional, MED, MIN and MAX6. We have also checked that the DM in our model

satis�es upper bound on 〈σv〉bb̄ given in Ref. [137] when NFW pro�le is considered.

This is found to be true for both the cases of dark sector scalar mass m2 = 100 GeV

and m2 = 110 GeV. Hence, fermionic dark matter explored in the present model

can serve as a potential candidate for dark matter. Upcoming results from LHC as

also DM direct and indirect search experiments may provide stringent limits on the

available model parameter space.

6For further studies see [137] and references therein.
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Chapter 8

Summary

In this thesis, di�erent particle physics models for viable particle dark matter

candidate have been proposed by simple extension of Standard Model of particle

physics. Viability of these dark matter models are then investigated keeping in

consideration, the observational results from LHC experiment, direct detection and

indirect dark matter search experiments and more importantly verifying that for each

of the models, the relic density results given by PLANCK CMBR anisotropy probe.

Dark matter phenomenology in the models proposed here in this thesis includes the

study of extended Higgs sector with extra Higgs doublets and singlets. Also the

thesis contains a brief overview of dark matter in the Universe, its properties and

relic densities.

In Chapter 1, preliminary ideas of dark matter such as evidences of dark matter,

distribution of dark matter halo in the Universe, possible dark matter candidates etc.

are discussed which have been used later for phenomenological studies of dark matter.

In the next Chapter (Chapter 2), Standard Model (SM) of particle physics is revisited

and limitations of SM are addressed which provides a strong motivation for beyond
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Standard Model (BSM) studies. Thermal evolution of dark matter particle (cold)

and solution to its Boltzmann equation in order to calculate the relic abundance is

described in Chapter 3. In addition, direct and indirect detection methodology of

dark matter due to interactions of dark matter with SM particles (scattering and

annihilation) is also addressed in this Chapter.

In Chapter 4 we have proposed and explored a model of fermionic dark matter

with a possible extension of Standard Model (SM) of particle physics into two Higgs

doublet model. Higgs doublets couple to the singlet fermionic dark matter (FDM)

through a non-renormalisable coupling providing a new physics scale. We explore

the viability of such dark matter candidate and constrain the model parameter

space by collider search, relic density of DM, direct detection measurements of DM-

nucleon scattering cross-section. Limitations of this non-renormalisable model is also

discussed in this chapter.

In the next Chapter (Chapter 5) we have considered a model for particle dark

matter where an extra inert Higgs doublet and an additional scalar singlet is added to

the Standard Model (SM) Lagrangian. The dark matter candidate is obtained from

only the inert doublet. The stability of this one component dark matter is ensured

by imposing a Z2 symmetry on this additional inert doublet. The additional singlet

scalar has a non zero vacuum expectation value (VEV) and mixes with the Standard

Model Higgs doublet resulting in two CP even scalars h1 and h2. We treat one of

these scalars, h1, to be consistent with the SM Higgs like boson of mass around 125

GeV reported by the LHC experiment. These two CP even scalars contribute to

the annihilation cross-section of this inert doublet dark matter resulting an allowed

region of dark matter mass that satis�es the observed relic density given by PLANCK

satellite borne experiment. Detailed analysis of the processes h1 → γγ, h1 → γZ are

presented and compared with LHC results to constrain the dark matter parameter
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space in the present model. We have found that the dark matter candidate in the mass

region 60-80 GeV is in agreement with the recent bound from LUX direct detection

experiment.

Recent studies of gamma rays originating from the region of galactic centre

have con�rmed anomalous γ-ray excess within the energy range 1-3 GeV. This can be

explained as the consequence of pair annihilation of a 31-40 GeV dark matter into bb̄

with thermal annihilation cross-section σv ∼ 1.4−2.0×10−26 cm3/s. In Chapter 6 we

revisited the inert doublet model (IDM) in order to explain this gamma ray excess.

Assuming the lightest inert particle (LIP) as a stable DM candidate we show that

a 31-40 GeV dark matter derived from IDM will fail to satisfy experimental limits

on dark matter direct detection cross-section obtained from ongoing direct detection

experiments and is also inconsistent with LHC �ndings. We show that a singlet

extended inert doublet model can easily explain the reported γ-ray excess which is as

well in agreement with Higgs search results at LHC and other observed results like

DM relic density and direct detection constraints.

In Chapter 7, a hidden sector dark matter model is explored assuming new

particles in the dark sector (both fermionic and bosonic) invariant under a local

SU(2)H gauge symmetry while behaving like a singlet under the SM gauge group.

However, the fermionic �elds of the dark sector also possess another global U(1)H

symmetry which remains unbroken. The local SU(2)H invariance of the dark sector is

broken spontaneously when a scalar �eld in this sector acquires a vacuum expectation

value (VEV) and thereby generating masses to the dark gauge bosons and dark

fermions charged under the SU(2)H. The lightest fermion in this dark SU(2)H sector

can be a potential dark matter candidate. We �rst examine the viability of the

model and constrain the model parameter space by theoretical constraints such as

vacuum stability and by the experimental constraints such as PLANCK limit on
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relic density, LHC data, limits on spin independent scattering cross-section from dark

matter direct search experiments etc. We then investigate the gamma rays from the

pair annihilation of the proposed dark matter candidate at the galactic centre region.

We also extend our calculations of gamma rays �ux for the case of dwarf galaxies and

compare the signatures of gamma rays obtained from these astrophysical sites.

Throughout the work, we have explored phenomenological models for cold

dark matter and tested the viability of these models from direct dark matter search

experiments, collider search results, vacuum stability of the model, dark matter relic

abundance etc. We further investigated whether these models can explain observed

astrophysical results obtained from indirect detection searches of dark matter (such

as excess of γ-rays from galactic centre, dwarf galaxies etc.). Apart from cold dark

matter, there are also other types of dark matter namely hot dark matter, warm dark

matter which are of great interest in order to explain the structure formation, nature

of Universe at early epoch etc. Asymmetric dark matter models are also encouraged to

explain the dark matter problem along with leptogenesis, neutrino mass etc. Study

of these dark matter models will be interesting which may enrich the physics of

dark matter and provide a better understanding of the evolution of our Universe.

In this thesis, we have considered only models with single dark matter component.

However, there is possibility that dark matter may be multicomponent in nature.

Relic abundance of dark matter in multicomponent dark matter models is calculated

by solving coupled Boltzmann equations for dark matter candidates appearing in the

model. Non thermal dark matter models are pursued in literatures to explain self

interaction of dark matter. Elaborative study of these di�erent dark matter models

can be explored to solve the dark matter puzzle in the Universe which may also

provide feasible explanation to other unsolved problems in the Universe. In future, I

wish to study these above mentioned dark matter models in detail. Besides, collider

searches of dark matter can also provide valuable information about the property of
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dark matter. I am willing to study the collider aspects of the dark matter in light of

present results of LHC and future results from both LHC and ILC.

141



Chapter. Summary

142



Appendix A

Diphoton and γZ decay width of

scalar bosons

Earlier in Chapter 5 and Chapter 6, we have discussed Inert Doublet Model

with additional singlet scalar. The inert charged scalar appearing in the model will

contribute to Higgs decay channels like γγ and γZ through the charged scalar loop

involved in the process. Decay widths of hi → γγ, γZ (i = 1, 2) are given as

Γ(hi → γγ) =
GFα

2
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∣∣∣∣ci(4

3
F1/2

(
4m2

t

m2
i

)
+ F1

(
4m2

W

m2
i

))
+
λhiH+H−v

2

2m2
H±

F0

(
4m2

H±

m2
i

)∣∣∣∣2 ,
Γ(hi → γZ) =

G2
Fαs

64π4
m2
Wm

3
i

(
1−

m2
Z

m2
i

)3
∣∣∣∣∣−2ci

1− 8
3s

2
W

cW
F ′1/2

(
4m2

t

m2
i

,
4m2

t

m2
Z

)

−ciF ′1
(

4m2
W

m2
i

,
4m2

W

m2
Z

)
+
λhiH+H−v

2

2m2
H±

(1− 2s2
W )

cW
I1

(
4m2

H±

m2
i

,
4m2

H±

m2
Z

)∣∣∣∣2 ,
where GF is the Fermi constant and sW (cW ) is sin θW (cos θW ) with θW representing

the weak mixing angle. Factor ci in the above is given as cosα or sinα for i = 1, 2.
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Couplings λh1H+H− and λh2H+H− in the expressions of decay widths are of the form

λh1H+H−v = (λ3cα − λssα) v ,

λh2H+H−v = (λ3sα + λscα) v.

In Chapter 5,6 we have calculated the decay widths hi → γγ, γZ (i = 1, 2) in terms of

the loop factors F1/2, F1, F0, F
′
1/2, F

′
1 and I1. Expressions of the factors F1/2, F1, F0

(for the measurement of h1 → γγ decay width) are given as [66]

F1/2(τ) = 2τ [1 + (1− τ)f(τ)],

F1(τ) = −[2 + 3τ + 3τ(2− τ)f(τ)],

F0(τ) = −τ [1− τf(τ)],

where the function f(x) is given as

f(x) =
arcsin2

(
1√
x

)
for x ≥ 1,

−1
4

[
log
(

1+
√

1−x
1−
√

1−x

)
− iπ

]2

for x < 1.
.

Similarly the loop factor for hi → γZ channel are [66]

F ′1/2(τ, λ) = I1(τ, λ)− I2(τ, λ),

F ′1(τ, λ) = cW

(
4

(
3− s2

W
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W

)
I2(τ, λ) +

[(
1 +

2

τ

)
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W

c2
W

−
(

5 +
2

τ

)]
I1(τ, λ)

)
.

Expressions of the factors I1 and I2 are of the form

I1(a, b) =
ab

2(a− b)
+

a2b2

2(a− b)2
[f(a)− f(b)] +

a2b

(a− b)2
[g(a)− g(b)] ,

I2(a, b) = − ab

2(a− b)
[f(a)− f(b)] .
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where f(x) is same as used in hi → γγ channel and g(x) is given as

g(x) =

√
x− 1 arcsin

√
1
x

for x ≥ 1,
√

1−x
2

(
log 1+

√
1−x

1−
√

1−x − iπ
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for x < 1.
.
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