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Synopsis

Vision is an extraordinary phenomenon. Dealing with under-sampled retinal input

is one of the remarkable capabilities of the visual system among its other miraculous

aptitudes. Filling-in at the blind spot is one of the examples of how brain interpolates

the informational void due to the de�cit of visual input from the retina. Because of the

absence of photoreceptors at optic disc, the retina is unable to send the corresponding

signal to the brain and thereby, hides some portion of the visual �eld. The concealed

visual �eld is known as the blind spot. However, we never notice any odd patch in our

visual �eld, even in monocular vision, but rather we see the complete scene; �lled up

in accordance with the surrounding visual attributes [1,2]. This completion is known

as perceptual �lling-in or simply �lling-in. In addition to the blind spot, �lling-in

also occurs in other visual input de�cit conditions (e.g. �lling-in at the arti�cial

and natural retinal scotoma) including visual illusions (e.g. Neon colour spreading,

Craik-O'Brien-Cornsweet illusion, Kanizsa shapes).

For years, �lling-in completion has demanded the attention of researchers from many

areas: Neurophysiology, Psychology, Computational neuroscience, and philosophy.

This resulted in various hypotheses which range from passive to active completion.

Recently, many psychophysical, physiological and imaging studies have revealed a

xix
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deeper insight of this phenomenon. These studies brought out at least two very im-

portant points [3]. Firstly, the �lling-in is an active phenomenon; there exists a neural

correlation to the �lling-in at the blind spot. And secondly, the early parts of the

visual system are mainly associated with this phenomenon. Recently, physiological

studies have reported that the neurons, in the deep layer of primary visual cortex at

the location retinotopically related to the blind spot, exhibit non-linear response dur-

ing �lling-in of a bar across the blind spot [4,5]. Psychophysical studies have further

elucidated that, though �lling-in occurs readily for the aligned pair of bars placed on

opposite sides of the blind spot, it exhibits some tolerance with the small degree of

variation in attributes (e.g. misalignment, orientation di�erence) [6]. Furthermore,

�lling-in exhibits anisotropic behavior; where the degree of �lling-in depends on the

bar orientation (certain orientation is favorable than the other) [6, 7].

Despite this early progress in the psychophysical and physiological domain, the actual

neural and computational mechanism of �lling-in has remained unexplained [5]. How

the visual system manage to �ll-in the informational void? What kind of compu-

tational principles and neural mechanisms are involved? What is the signi�cance of

observed non-linear responses in �lling-in? In this thesis, we addressed these questions

in a computational framework of predictive coding in conjugation with natural im-

ages statistics [8], which is recently argued as a general computation principle [9]and

has explained a range of properties of visual cortex [10].

The problem of vision has been argued as an inference or an estimation problem;

where an organism tries to estimate the hidden physical cause (object attributes such

as shape, texture, and luminance etc.) behind the generated image that organism

receives as an input. In the hierarchical predictive coding framework (HPC), it is as-

sumed that the image generation in the outer world involves hierarchical, multilevel,

spatial and temporal interactions between the physical causes. The goal of the visual

system is, thus, to estimate (or internally represent) these multilevel hidden phys-

ical causes e�ciently; which is accomplished using recurrent prediction-correction
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mechanism along its hierarchy using predictor-estimator module (PE module).

In this framework [8], on the arrival of an input, a PE module at each visual process-

ing level generate the prediction (or estimate) on the basis of the learned statistical

regularities of natural scenes. Each higher area (say V2) then sends the generated

prediction to its immediate lower level (say V1) by feedback connections and in re-

turn receives the error signal, by feed-forward connections, which is used to correct

the current estimate. An equilibrium state is achieved after the completion of a

few prediction-correction cycles; where the estimate matches the input signal. This

optimum-estimate is regarded as a representation of the input at that level. The

achieved optimum-estimate at di�erent levels of the network is depicted as a percep-

tion of the input image.

This computational process, and hence the architecture of the network, basically orig-

inates from probabilistic estimation theories. In Bayesian framework, the process of

prediction-correction is a manifestation of maximum a posterior probability (MAP),

where maximizing the posterior probability P (r, U |I) with respect to the activity

vector,r, and represents the estimate of the input,I, and weighting matrix U provides

the dynamics and learning rules respectively of a predictive-estimator module. In

other words, it is a process of minimizing the error between generated image and

the input image I. The generated image is a linear combination of learned weighting

vectors (ith column of U). The coe�cient (ith element of r) is the activity of ith PE

neuron. The reconstructed image, corresponding to optimal-estimate is designated

as �perceptual images� in this study.

In this work, I simulated a three-level linear hierarchical predictive network. The

middle-level network, which is equivalent to V1, consists of nine PE modules. These

modules receive input from front level, which is equivalent to the output of LGN,

and send the output to the solitary module at the last level. The last level module

is equivalent to V2. Therefore, the PE module at V2 receives input from all nine V1
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PE modules and sends back the feedback signal to all of them. This architecture is

based on the fact that the visual area higher in hierarchy operates on a higher spatial

scale.

Natural images from the di�erent environment were used for training. Variance

normalized batches of image patches extracted from randomly selected locations from

the randomly selected images were given as input to the network. For each batch

of image patches, the network was allowed to achieve optimal estimate (of r), under

the constraint of sparse coding [11], and the average of these estimates was used

to update the e�cacy matrix U of neurons, initially assigned random values. The

neurons V1 was trained �rst and subsequently the neurons in V2.

To mimic the blind spot, the feed-forward connection in a certain area was removed

from the model network, which was `pre-trained' with usual feed-forward connections.

The `pre-training', the training before the creation of the blind spot, captures the

fact that the active neurons in deep layer (5/6) corresponding to �lling-in has been

reported to be of the binocular type. These neurons were found to respond to the

inputs from both eye and hence, possess binocular receptive �eld [3,4]. We designate

the network with the blind spot as BS network and the one without the blind spot

as a non-BS network.

The learned synaptic weights of model neurons at V1 resemble the Gabor-like struc-

ture similar to the receptive �eld of simple cells at V1, distributed in the di�erent

orientation and spatial frequency, reported earlier in several studies [8, 12, 13]. The

weighting pro�le of neurons at the V2 resembles relatively more complex visual fea-

tures: long bar, curve, etc.

Both BS and non-BS network were exposed to horizontal bar stimuli of di�erent

length. One end of the bar was �xed at a position outside of the blind spot, whereas,

the position of other end was varied (by one pixel at each instant) across the blind

spot. The response of PE neurons in the central module in the model network
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(designated as BS module) at V1 and the sole module at V2 was recorded for the

di�erent end position of the bar. These responses were used to generate �perceptual

images� to explicitly bring out the correspondence between these responses and the

perceptual �lling-in completion.

We found that the response of neurons in the BS module remained constant and

relatively low as long as the bar end remained inside the blind spot and this resulted

in the perception of a bar of a constant length outside the blind spot. On the other

hand, when the bar crosses the blind spot, the responses are elevated non-linearly,

and the �lling-in completion occurred. These results are consistent with the �ndings

of physiological studies [4].

Moreover, the non-linearity involved in �lling-in was investigated explicitly. We found

that the response to aligned pair of bars, which stimulate the both sides of the blind

spot simultaneously, was larger than the sum of responses to the bar presented on

either side of blind spot individually at a time. This indicates that the abrupt change

in the magnitude of the response during �lling-in completion cannot be explained by

the stimulation of the receptive �eld extending out from the opposite side of the blind

spot.

To investigate the tolerance of �lling-in, we performed investigations with two dif-

ferent attributes: misalignment and orientation di�erence. Two bar segments were

presented on the opposite sides of the blind spot. One of these bar segments was �xed

while the other was either shifted (horizontally misaligned bars) or rotated depending

the on the chosen attribute.

We recorded the response of PE neurons, in the BS module, at V1 and generated the

corresponding �perceptual images�. The bar appears completed when both segments

are perfectly aligned and the �lling-in remains largely una�ected for some degree of

misalignments and orientations di�erence. The �lling-in fades away quickly with a

further increase in misalignment and orientation di�erence. This result indicates that
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the �lling-in completion is highly favorable for perfect alignment and is tolerant to

a certain extent to the increasing deviation. Similar results were also reported in

earlier psychophysical studies [6, 14].

To study the anisotropy in �lling-in, we �rst investigated whether our model network

could possess anisotropy via training with natural images. To do this, we obtained the

orientation tuning distribution of the neurons in V1. We used bar stimulus of di�erent

orientation and frequency to determine the orientation tuning of particular neurons

by registering their optimal response. We found that the distribution is higher for

the horizontal orientation, followed by vertical and then non-cardinal. This result is

very much in-line with the results related to the anisotropy of orientation distribution

in natural images [15, 16] and orientation tuning distribution of neurons in primary

visual cortex [17�19].

To investigate the anisotropy in �lling-in, the trained network was exposed to stimuli

consisting of a pair of bar segments in horizontal and vertical orientations (across the

blind spot). One side of both bar segments was �xed inside the blind spot, whereas

other ends were expanding in opposite direction. The responses of PE neurons were

recorded. The �lling-in-value � the average pixel value inside the blind spot in the

reconstructed �perceptual image�� starts increasing beyond a certain critical mini-

mum length of bar segments. This result exhibits the �minimum-length requirement�

properties of �lling-in. Moreover, the comparative observation of results for Horizon-

tal and vertical arrangements indicates that the critical length needed for �lling-in

is lesser for the horizontal bars. In addition, for the same length, the �lling-in per-

formance is better for the horizontal case. This anisotropic property is in complete

agreement with studies [7]. To investigate the anisotropy in tolerance of �lling-in,

we repeated the experiments (as described in the �rst part), with misaligned and

oriented bar pair in the horizontal and vertical con�guration. We found that though

the �lling-in value is larger for the aligned bar cases in the horizontal con�guration,

it drop down more quickly in comparison to the vertical con�guration with increasing
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misalignment and orientation di�erence. These results indicate that the visual sys-

tem favors the horizontal con�guration in order to �ll-in but exhibits less tolerance

to the deviation. On the other hand, the vertical con�guration is inferior for �lling-in

but it is relatively more tolerant to the deviation [6].

These results can be understood under the computational principles of predictive

coding. For an input stimulus around the blind spot, higher areas (V2) generates

uni�ed estimate (including the estimate corresponding to blind spot region) of the

input stimuli on the basis of the learned statistical regularities of natural images.

This estimate remains uncorrected due to the absence of error carrying feed-forward

connection in BS region at V1 and therefore, local optimum- estimate is achieved es-

sentially by top-down prediction. In�uenced by learned statistical regularities, higher

areas predict a long continuous bar across the blind spot and this result in the per-

ception of completion. The observed properties of �lling-in result from the degree of

similarity between statistics of stimuli around the blind spot and the natural image

statistics.

More frequent features in the natural scenes tend to be more likely for comple-

tion across the blind spot. In the perspective of anisotropy, the over-representation

of horizontally oriented feature (lines, bar etc.) in natural scene cause the over-

representation of it in the learned receptive �eld in the primary visual cortex. This

leads to the superiority of horizontal bar for the �lling-in. But what about its in-

feriority when it comes to tolerance of �lling-in? The higher population tuning to-

ward horizontal orientation could result into more speci�city about the estimate they

generate and therefore less tolerant for deviations. This could be analogous to the

orientation tuning pro�le of a single neuron in the visual cortex, where more tuned

neurons are less tolerant to the deviations.

In conclusion, in this work we have attempted to present a fresh perspective of the

computational mechanism of the �lling-in process at the blind-spot in the framework
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of hierarchical predictive coding, which provides a functional explanation for a range

of neural responses in the cortex. We demonstrate that �lling-in is a manifestation

of a hierarchical predictive coding principle and, the nature of �lling-in is predom-

inantly guided by the learned statistical regularities of the natural scene. We also

show that the anisotropies of �lling-in at the blind-spot and the associated tolerances

are the outcome of the intrinsic anisotropies of natural scenes. Our studies suggest

that natural scene statistics plays a signi�cant role in determining the �lling-in per-

formance at the blind-spot and shaping the associated anisotropies. Moreover, these

studies also advocate that Hierarchical Predictive Coding in conjugation with natural

scene statistics can provide a framework for encoding computational mechanisms of

perceptual �lling-in phenomenon (at the blind-spot) that can serve as a link between

natural scene statistics, cortical organization and the perceptual experience.

This thesis is divided into two major parts. The �rst part includes studies related

to the computational mechanism underlying the �lling-in, which includes the expla-

nation of non-linear responses and its correspondence to �lling-in. Moreover, it is

also shown that the tolerance of �lling-in could also be understood in the framework

of hierarchical predictive coding of a natural image. In the second part, it is shown

that the anisotropy in �lling-in and tolerance of �lling-in arises from the anisotropy

in natural image statistics.

This thesis is composed of �ve chapters-

� The �rst chapter contains a brief introduction, motivation and the organization

of the thesis.

� The second chapter contains an overview of the functional mechanism of early

visual systems and the hierarchical predictive coding (HPC) formalism in the

backdrop of e�cient coding hypothesis and natural scene statistics.

� In Chapter three we present our investigations, using simulation, about the

computational mechanisms of �lling-in. We show that �lling-in could be a
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manifestation of the general computational mechanism of hierarchical predictive

coding, in which the properties of �lling-in could be guided by learned statistics

of the natural scene.

� In the fourth chapter, we investigated the origin of anisotropy in �lling-in in

the light of natural image statistics. We demonstrated a general link between

the anisotropy in natural image statistics, visual cortex and the percept related

to orientation tuning.

� Chapter �ve summarizes the contributions of this thesis including limitation as

well as future directions.
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Two roads diverged in a wood, and I,

I took the one less traveled by ...

Robert Frost in �The Road Not

Taken"

1
Introduction

1.1 Motivation

Vision is an extraordinary phenomenon. Coming through lousy lens of eye the light

falls on irregular mosaic of back to front photoreceptors by passing through layer of

blood vessels over the retina. The information is then get compressed in order to

transfer from 126 million photoreceptors to one million optics nerve. Dealing with

these under-sampled retinal input is one of the remarkable capability of the visual

system among its other miraculous aptitudes. Visual cortex receives the train of

spikes corresponding to highly under-sampled fuzzy retinal images. However, we

1
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manage to acquire complete and detailed perception of the world. Filling-in at the

blind spot is an example of similar phenomena, where the visual system interpolates

the informational void originated due to the absence of photoreceptor at the blind

spot. Despite the absence of information corresponding to the blind spot, we never

perceive any odd patch in our visual �eld. Main reason behind this is, normally, the

retinal input from the fellow eye compensate for the informational void originated

due to the blind spot. However, even in monocular vision we do not notice any void

but rather we see the complete scene. Our visual system �lls that absence with the

visual attributes in the surrounding. How the visual system manages to do such

interpolation? What computational principle and neural bases are involved?

For years, �lling-in completion has demanded the attention of people from many

areas: neurophysiologists, psychologists, computational neuroscientists, and philoso-

phers. These attention has led toward various hypothesis which ranges from passive

to active completion. Recently, many psychophysical, physiological and neuroimaging

study has been carried out. These studies reveal at least two very important points.

Firstly, the �lling-in is an active phenomenon; there exists a neural correlation to

the �lling-in at the blind spot. And secondly, the early part of the visual system

are mainly associated with this phenomenon. The second one, obtained through

psychophysical studies (and validated by physiological studies), re�ect from the fact

that the simple structures like bars, lines etc completes readily across the blind spot

whereas, there are limitations for the completion of relatively complex structures. Re-

cently, neurophysiological studies have reported that the neurons, in the deep layer of

primary visual cortex at the location retinotopically related to the blind spot, exhibit

non-linear response corresponding to �lling-in of a bar across the blind spot. In the

psychophysical domain, the recent studies had reported other properties of �lling-in

like, tolerance, anisotropy, and anisotropy of tolerance. Despite this progress, the

neural and computational mechanism of �lling-in has remained unknown. In this

thesis, we address these issues in a general computational model of predictive coding
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and the natural image statistics.

A line of theoretical research has grown, recently, under the common umbrella of

Bayesian inference framework of perception. In this framework, it is argued that the

statistics of the natural scene (and hence the statistics of sensory input) imposes the

organizing principles behind the observed neural properties of the visual system. In

line with such hypothesis, hierarchical predictive coding (HPC) model assumes that

the visual system learns the statistical regularity of natural scene. And on the basis of

this, a group of neurons at each higher visual processing levels attempts to estimate

(or predict) the inputs to the lower-level, while the neurons in the lower processing

levels signal the error (to the prediction) to the higher processing level to adapt so

as to minimize the discrepancy. A multi-level optimum estimate encoded by those

neurons is therefore argued as a representation of cause of the sensory signal.

In the last two decade, various properties of the visual system have been explained

under the computational model of HPC. HPC explains how the interaction between

top-down prediction and bottom-up error signal give rise to the extra-classical recep-

tive �eld (RF) at the primary visual cortex, spatiotemporal RF at LGN, MT and

many other properties of visual cortex.

We hypothesized that the similar prediction-correction mechanism under the back-

drop of natural image statistics could account for �lling-in and the related properties.

1.2 Organization of this thesis

Chapter 2 comprises of mainly two section: 1. the biological primer and 2. The

computational primer. The �rst section contains the overview of the physiology of

visual system (mainly the early visual system) where we emphasize the origin of

the problem: blind spot. A brief overview of the existing functional mechanism

of the early visual system is also included. The second section contains the general
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theoretical framework which forms the foundation for this thesis. Firstly, the Bayesian

inference framework of perception is introduced, which is a common basic principle

for many theoretical models, and its relation to natural image statistics. Secondly, the

framework of predictive coding is explained with emphasize on hierarchical predictive

coding model. This part describes the HPCs general computational principle and its

origin from probabilistic estimation theories.

Chapter 3 investigates, using simulation, the computational mechanism of �lling-in.

This chapter explains how HPC model network, after trained with natural images,

accounts for the non-linear response observed in primary visual cortex during �lling-in

of a bar. The representation of these responses indeed shows the �lling-in completion.

Results of the investigations suggest that the �lling-in could be a manifestation of

the general computational mechanism of hierarchical predictive coding, in which the

properties of �lling-in could be guided by learned statistics of the natural scene.

In the 4th chapter, investigations on the origin of tolerance and anisotropy in �lling-

in in the light of natural image statistics is presented. The visual system favors the

�lling-in of a horizontal bar over the vertical bar. Whereas, the vertical bar gets

the upper hand in the case of tolerance of �lling-in. In this context, we analyze the

orientation-tuning density of learned receptive �eld in our model network and inves-

tigate its possible resultant e�ect as the nature of anisotropy in �lling-in. Findings

of this chapter, also demonstrate a general link between the anisotropy in natural

image statistics, visual cortex and the perception related to orientation tuning.

In chapter 5, a summary of this thesis work is presented along with discussion and

the possible limitations and scope for future investigations.



There is pleasure in recognizing old things from a new viewpoint.

Richard Feynman

2
Background

2.1 A Biological Primer

2.1.1 Filling-in at the Blind Spot

2.1.1.1 The Blind Spot

Retina is the `frontal desk clerk' of the organization called visual system. Its job

is to receive the foreign delegate, the 2-D intensity pattern: an image, extract the

5
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,

Figure 2.1: The retina and the blind spot. (Figure modi�ed form 'From Flat
World Knowledge, Introduction to Psychology, v1.0', CC-BY-NC-SA)

information, process a bit (well, in fact, a lot!) and then convey it to the visual

system in the language visual system understands: the train of spikes.

Fig 2.1 shows the structure of retina which resides in the rear part of the eye. The

photoreceptors code the image in the form of chemical signal and send it to the

subsequent level cells. The information eventually leaves the retina in the form of

the spike (action potential) as the output of ganglion cell via the optic nerve. This

picture of retinal processing is highly simpli�ed. In fact, retina performs much-

sophisticated processing before sending it to the brain, which is out of the scope of

this thesis. For a wonderful review of retinal processing see [20,21].

Fig. 2.1 shows that the ganglion cell situated at the top layer while the photo-receptors

lies on the rear side of the retina (and hence, does not receive get the direct light).

https://creativecommons.org/licenses/by-nc-sa/3.0/
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Figure 2.2: Blind-Spot demonstration

The axons of ganglion cells pass, in a bundle called optic nerve, from the surface of

the retina to the brain. Such arrangement leaves behind a photo-receptor free zone

in the retina known as the blind spot.

2.1.1.2 Filling-in

Our visual system does not get any information corresponding to the blind spot,

nevertheless, we never notice any odd patch in our visual �eld. In fact, we perceive

the same visual attributes there at the blind spot, as present in the surrounding of

the blind spot [1]. This phenomenon is called the �lling-in. One of the reasons that

we do not perceive the odd patch is that the input from the other eye compensates

for the loss. But even in monocular vision, the �lling-in occurs.

We can demonstrate this phenomenon by closing your right eye, �xate on the upper

cross sign and hold the Fig. 2.2 about 1 feet from your face. As we can observe, the

dark circle is replaced by the surrounding white plane background surface. What

happens here? Above arrangements projected the dark circle exactly inside the blind

spot of retina � causing the disappearance of the circle� and visual system somehow

managed to �ll that informational void with the information in the surrounding.

Similarly, If you �xate on the lower cross the broken bar will appear completed. How

brain perform �lling-in at the blind spot? This quest forms the basis of this thesis.
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In general, �lling-in take place in a variety of conditions. The conditions have been

broadly categorized into three type. First is, the �lling-in corresponding to the de�cit

of visual input. In this situation, �lling-in take place when a particular area of the

visual �eld is deprived of the visual input [1, 22�24]. The �lling-in at the blind

spot falls into that category. Filling-in at the scotoma� a region in the visual �eld

that get concealed due to con�ned damage to some part of the visual system �is

another example of such situation. The �lling-in, in these conditions, occurs rapidly.

Another situation arises in normal vision (without de�cit of visual input) in the case

of steady �xation and the stabilized retinal image. In these situations, a prolonged

�xation on, or a stabilized retinal image of, an object causes the object to become

invisible. The region corresponding to the object is eventually gets �lled up with

the visual attributes in the surrounding. The example of such phenomenon are:

Toxler e�ect [25, 26], �lling-in at an arti�cial scotoma [22, 27, 28], etc. The third

kind of situation arises in well-known illusions: Neon color spreading, Craik-O'Brien-

Cornsweet illusion [29, 30], Kanizsa shapes [31], etc. This is again the case of the

normal vision and prolonged �xation.

Although the discovery of �lling-in process goes back in nineteenths century, it is

recent that the coming together of the ideas from the di�erent research stream �

psychophysics, neurophysiology, neuroimaging and, computational neuroscience- re-

vitalized the potential interest in this phenomenon. Though the studies from the

various approaches have provided several important development, the understanding

of �lling-in is far from complete. What is the mechanism (neural and computational)

of �lling-in of di�erent �lling-in phenomenon? How these mechanisms are related.

These are the general question remained to be answered. In this thesis, however,

we mainly concentrate on the �lling-in mechanism at the blind spot and we would

discuss the possible mechanism sharing to the other �lling-in phenomena.

We will come back to this in the next chapter. Before that, we should acquire some

overview of the early visual pathway and it functional accounts.
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Figure 2.3: Visual pathway

2.1.2 Early Visual System

2.1.2.1 The Visual Pathway

Hierarchy exists throughout the visual processing (see Fig 2.3). The output of retina

reaches to the cortex via LGN, a sub-cortical area act as a relay station. The �rst

stage of the cortex is comprised of V1 and V2 areas, known as early cortical areas.

Then, two separate processing pathway split from the early visual area, ventral and

dorsal pathway [32]. The ventral path, comprised of V4 and IT, process the form and

color information, and also known as `What' pathway. The dorsal path, comprised of

MT, process the motion and spatial information, and also known as `Where' pathway.

(A good textbook account of these and other well-known facts, which we are going

to discuss in this section, about the visual pathway, can be found at [33,34])

Though above descriptions mainly indicate the feed-forward connectivity, there exist
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reciprocal feedback connections among the di�erent processing levels [35]. For exam-

ple, V2 sends back the feedback signal to the V1 and, V1 to LGN. The function role

of this reciprocal architecture is still not well understood. This thesis relies on one

of the propositions that are made to explain the role of feedback circuitry, which is

introduced in the next section.

Nearly 40 to 50 percent of our brain is devoted to the vision [36]. Given this grandness

and complexity, our understanding of the visual system is far from complete. Leaving

out the discussion related to higher visual areas, we here mainly overview the early

visual areas (LGN, V1, and V2) which provide the su�cient background needed to

explore the subject in this thesis.

2.1.2.2 Cortical Layers

As is usual in all the cortex, V1 possesses 6 distinct horizontal layers (see Fig. 2.3) [37].

Layer 4 receives input from LGN by the feed-forward connection, while layer 6 (and 5)

sends the feedback connection to the LGN (and other subcortical targets). Layer 2/3

sends feed-forward output to the other cortical areas while super�cial layers receive

the feedback connection from them.

2.1.2.3 Retinotopy

Both hemispheres contain the V1 area. The information of left visual �eld goes to

the V1 of right hemisphere while the information of right visual �eld goes to the left

hemisphere. Except for this discontinuity, the visual �eld is mapped in continuously

in the early visual cortex (Higher areas do not follow such scheme though). In other

words, neighboring points in the visual �eld is processed by the neighboring neurons

in the early visual cortex. This map is called retinotopic map [38] (see Fig. 2.4.
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Figure 2.4: Retinotopy in primary visual cortex. (Figure modi�ed from Wikimedia
Commons CC-BY-NC-SA)

Early visual cortex possesses a distorted retinotopic map. For example, in V1 area of

the human brain, 50% of visual area process only 2% of the central visual �eld (see

Fig.) [39] and this cause the distortion corresponding to the magni�cation of central

vision. Other than this, geometrical distortion emerges as an e�ect of translation

of radial visual �eld to the non-radial V1 area, where concentric circles and radial

lines translate into vertical and horizontal lines in V1. The Fig. 2.4 also shows the

retinotopic representation of blind spot in the V1 area.

2.1.2.4 Receptive �elds

The response of a typical neuron, in the early visual areas, depends on the intensity

structure of a tiny area of the visual �eld. Normally this area is referred as the classical

receptive �eld. But more generally, the receptive �eld of a neuron is characterized by

the intensity structure that makes that neuron responds maximally.

https://creativecommons.org/licenses/by-nc-sa/3.0/
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Figure 2.5: Receptive �elds (RF). (a) ganglion cell RF. Upper center surround
RF represents the on-center RF (indicated by '+' sign), while lower one represents
the o�-center RF (indicated by '-'). (b) Simple cell o�-center and on-center RF.

The receptive �eld of neurons in the particular areas has been considered as the

important factor in understanding the function of that area or, more speci�cally, of

those neurons. For example, ganglion cell� neurons in the outer layer of the retina

�as well as cells in the LGN, possess circular center-surrounded receptive �eld [40]

(see Fig. 2.5a). The light beam in the center of receptive �eld excites the response

of some ganglion cells whereas, stimulation in surrounding leads to the inhibition of

response. These neurons are known as on-center cells. There are other kinds of cells

known as o�-center showing response opposite to the ON-center.

Primary visual cortex accommodates, mainly, two type of neurons; simple cells and

complex cells, based on the structure of their receptive �eld [41, 42]. Simple cells

typically possess oriented elongated receptive �eld with separate on and o� sub-

regions (see Fig. 2.5b) Simple cells, respond strongly to the bar and edge stimulus of

a particular orientation and at a particular location [43]. Moreover, these cells are

strongly selective for the spatial phase of the stimulus.

Complex cells, on the other hand, do not possess separate on-o� regions, hence, they

show response invariant to spatial phase of stimulus. These cells, however, respond

to the bar and edges of a particular orientation and at a particular location [43].
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2.2 Theoretical and Computational Primer

2.2.1 Theoretical Problem of vision

How does vision work? What is the organizational principle of the physiological and

computational structure of the visual system? To understand this, we �rst have to

understand what are the computational problems visual system solves in order to

provide us a coherent, reliable visual perception of the outer world.

To start with, Our retina receives a 2D image as an e�ect, caused by an ambitious

3D world. This image is produced by a complex interaction between various pa-

rameters, for example, illumination, surface geometry, re�ectance, at multiple spatial

and temporal scales. This image is in turn sampled by� not so perfect and noisy

�photoreceptor mosaic (in addition to the fact that the light has to cross several

layers of retinal cells in order to fall on the photoreceptors in the retina. The retina

then translates this under-sampled, noisy, ambiguous, 2D image into train of spikes

and transmit it to the brain, through a very narrow channel (in compare to the

photoreceptor population) of the optic �ber.

Now, the brain has a task, seeming almost impossible, to decode correctly interpret

sensory data (in form of train of spike) to get a detailed, coherent, reliable perception

of the cause of those sensory data: the world. Moreover, the visual system has to

perform this di�cult task with its limited anatomical and metabolic capital.

We know that brain manage to accomplish that very e�ciently. So e�ciency that we

take the vision as granted phenomenon.

2.2.2 Bottom-up Approach of Vision

In the initial computational approach, pioneered by Marr [44], the problem of vision

has been seen as the problem of image analysis. In this approach, the role of the early
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visual system is to �lter the input signal to extract the feature, like edge, boundary

etc. from the image. Which is ultimately is grouped and represented in higher

areas and compare to the stored templates of the objects, in order to recognize what

information input signal is carrying about the world.

This framework centered around the processing in feed-forward manner, where neu-

rons in lower area (say V1) extracts relatively simpler features and sends it output to

the higher area (say V2). The extraction is represented as the neuronal response r as

a result of �ltering of input signal (image) I(x, y) with receptive �eld pro�le W(x, y),

which is basically weighted sum of the input pixel I(x, y)-

r =
∑
x,y

w(x, y)I(x, y) (2.1)

Where, w(x, y), elements of the vector W, is weighting element corresponding to

the input I(x, y) and it provides the mathematical means of a receptive �eld. This

equation can be re-written as-

r = W(x, y)I(x, y) (2.2)

Now, the response of a ganglion cell can be predicted by �ltering the local input image

with its receptive �eld that is modeled by the di�erence of the Gaussian (DoG) func-

tion [45] (it also modeled by Laplacian-of-Gaussian), sometimes known as Mexican

hat.

Filtering image with DoG function, which is basically a spatial band-pass �lter, brings

boundary of intensity variation [44]. And had been hypothesized as a local edge

detector. Similarly, the simple cell is modeled by the 2-d Gabor �lters and its role

has been hypothesized as an extraction of local contour information [46�49].

This approach, however, despite its early success, does not go very far in explaining

a range of property of visual cortex [50]. Moreover, it does not provide enough light
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to the problem of vision as a phenomenon in the backdrop of the complexity we

discussed in the previous section.

The main reason for this inability is its exclusion of importance of prior information

visual system seems to have acquired about the world. This prior information should

play an important role in the visual processing implemented by top-down feedback

connection in the visual system. This goes with the fact that there exists feedback

connection in roughly equal number to the feed-forward connection. But the Marr's

approach rely upon pure bottom-up computational approach, in which information

streams from lower to higher processing levels.

Second reason is, in this approach, the visual system remains independent of the type

of input (natural, or arti�cial) and it works like a general computational machine.

But the fact is our visual system is not a general processing machine. It has evolved

for performing a certain type of computations necessary for us to survive. Therefore,

Marr's approach lacks adaptive computation performing ecologically valid task.

One can expect promising outcome from the alternative frameworks which incorpo-

rate all these points.

2.2.3 Bayesian inference: Modern approach

An insight of problem of vision is that it is an inverse problem: one where the causes

of sensory data need to be inferred from sensory data [8, 51�57]. Last few decade

has seen the strongly re-emergence of a promising frameworks where vision has seen

as a `Bayesian inference' [58�60]. This notion has its root that goes back to the

Helmholtz [61], who proposed that the visual perception is a result of the knowledge

driven inference our brain make about the hidden physical cause (object attributes

such as shape, texture, and luminance etc) of the sensory signal it receives.
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In this framework, it is hypothesized that our visual system learns the internal model

of the outer world [12,57,62�66]. On the basis of this learned prior information, visual

system estimate, optimally, the hidden cause from underlying ambiguous e�ect in the

form received sensory signals [55, 59,67�69].

So, the visual system has two fundamental tasks: (i) making an estimate and (ii)

learning parameters involved in image generation. The precise estimate of cause

is impossible to compute. Because one to one mapping of cause and e�ect in our

complex world is di�cult. One cause can give rise to di�erent sets of e�ector dif-

ferent cause can give rise to similar e�ect. Therefore, in this probabilistic Bayesian

framework, the fundamental tasks reduce to the �nding the hidden physical cause r

and parameters U that maximize the posterior probability, P (r, U |I), which is the

probability distribution of causes r and parameters U and given a input signal I.

The posterior probability P (r|I) can be obtained using the Bayes theorem (for sim-

plicity assuming the r and U are statistically independent)-

P (r, U |I) = P (I|r, U)P (r)P (U)
P (I)

(2.3)

Here, probability density P (I|r, U) is the distribution of generative model and it sits

in the heart of `Bayesian inference'. It learns the causal-matrix (internal model of

cause and e�ect). On the basis of this information, it generates the hypothesis of the

hidden causes (of sensory input) by generating the sensory pattern and comparing

it to the input sensory signals. This approach quite opposite to the image analysis,

which we came through in the previous section, and sometimes known as analysis by

synthesis approach. The factor P (r) provides the bias for causes, which contribute

to the estimation of the cause by weighing up the generative model for the more

frequent occurrence of causes than the others. P (I) is the normalizing constant.
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In summary, the fundamental task is, therefore, to �nd the optimal values -

(r̂, Û) = max
r,U

(P (r, U |I)) (2.4)

Finding optimum U , for keeping r constant, is a process of learning. While �nding

optimum r on the basis of learned U is the process of estimation or representation of

physical cause.

2.2.3.1 Coding Scheme

On arrival of an input image I, a linear generative model tries to generate an image I′,

by linear combination of learned parameter ( or basis vector) vector Ui with coe�cient

ri -

I′ =
∑
i

riUi (2.5)

In neural network convention, vector Ui represents the receptive �eld of neuron with

response ri. This can be re-written as-

I′ = Ur (2.6)

Where, U is a matrix, called e�cacy matrix, encompassed Ui as a i
th row and, r is

a vector, called response vector, encompassed ri as i
th element.

In a deterministic generative model the process of �nding the optimal value of r and

U , thus, would relate to values that minimize the squire error between the input

image and generated image.

E = |I− Ur|2 = (I− Ur)T (I− Ur) (2.7)
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Where, T stands for the transpose of matrix (I− Ur).

But as our visual process is a stochastic one, a probabilistic generative model is more

appropriate to consider. We can express this by assuming error as Gaussian noise of

zero mean and variance σ -

P (I|r) = exp(−(I− Ur)T (I− Ur)
2σ2

) (2.8)

The goal of Equ.2.4 can also be realized by �nding the optimum values for the mini-

mum of −log of the posterior probability-

E = − lnP (r, U |I) = 1

2σ2
(I− Ur)T (I− Ur)︸ ︷︷ ︸

Square error term

+g(r) + h(U) (2.9)

Where, g(r) and h(U) are the negative log of prior probabilities P (r) and U respec-

tively. In information theoretic framework, E is known as coding length.

The �rst term of Equ.2.9 is a square error (weighted by the inverse of the variance).

So, the fundamental task of vision can be seen as an inferential or prediction error

minimization in the backdrop of the constraint of statistics of input (provided by

prior probabilities P (r) and P (U)).

2.2.3.2 Natural image statistics and sparse coding

A good prediction (inference/estimate), hence, a good vision, relies upon how good

the internal model of the world is. The internal model of the outer world has been

hypothesized to be a re�ection of the statistical structure of our natural environ-

ment [51, 70] (for a good overview see [71]). This assumption is made on the basis

of the fact that our visual system has been evolved to cope with the natural envi-

ronment. Our natural world is full of regularity (redundancy) and hence predictable.
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Figure 2.6: Learned RF with sparse prior

Being adaptive to the more frequent structure and regularity would provide the com-

putational advantages in the form of inference [72] as well as transmitting information

forward e�ciently by reducing redundancy [11,51,73,74].

Statistical regularity in natural scenes, therefore, could be expected to be re�ected

in the properties of visual system. Olshahausen, recently, in seminal studies [12, 75,

76] named sparse coding, showed that the training a neural network with natural

image in the constraint of of sparse, kurtotic prior probability distribution (using the

equation 2.9 with discarded last term) like, P (ri) = exp(−αlog(1 + r2i )), leads to

the development of gabor like receptive �eld (RF) of simple cell in the network (see

Fig. 2.6)

Sparse coding principle, simply, constraint the coding length such that only small set

of neurons from the available larger pool would be able to generate I′ (and hence code

I) as close as possible to an incoming signal I. This constraints is the implementation

of one of the hypothesis which comes under the umbrella of e�cient coding, which,

in the backdrop of limited anatomical and metabolic capital, argues that the goal of

early sensory systems is to recode the sensory input in a way to reduce redundancy

in natural scene without the loss of relevant information.
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Many other studies [72,76] have explored the statistical models of natural images and

its relation to the properties of the visual system. For example, the structure of the

receptive �eld of the ganglion/LGN cells [73, 74, 77], complex cells [72] and the cells

at the V2 [78], has been shown to be a direct re�ection of natural image statistics.

2.2.4 Predictive Coding

The biologically plausible theory for Bayesian inference is provided by Predictive

coding [8, 59, 68]. In this approach, the visual system achieves the fundamental goal

of encoding possible causes of sensory inputs (and learning the internal model) by

concurrent prediction - correction mechanism, which, as we have discussed, is im-

plemented by the generative model by minimizing the prediction error. The visual

system constantly attempts to generate a top-down prediction of the input driving

sensory signal on the basis of the learned regularity of natural scene, and signals for-

ward just the residual bottom-up error signal to correct the initial prediction. This

idea is based on the anatomical architecture of the visual system which is hierarchi-

cally organized and reciprocally connected [35].

More speci�cally, in a hierarchical predictive coding (HPC) model: the model of

cortical processing, it is assumed that the image generation in the outer world in-

volves hierarchical, multilevel, spatial and temporal interactions between the physical

causes. The goal of the visual system is, thus, to inference (estimate, or internally

represent) these multilevel hidden physical causes e�ciently; which is accomplished

by the visual system using recurrent prediction-correction mechanism along its hier-

archy (See Fig 2.7a)

In past decade, HPC has gained growing support as the general coding principle

of the cortex. Recently, several neuronal tuning properties in di�erent visual areas

such as the lateral geniculate nucleus (LGN), primary visual cortex (V1) and middle

temporal level (MT) have been explained using this framework [79�82]. For example,
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in his standard HPC model, Rao [8] suggested that the extra-classical properties of

neurons in V1 could be understood in terms of the predictive-feedback signal from the

secondary visual cortex (V2) which is made in a larger context and in the backdrop

of learned statistical regularity of the natural Scene.

Though HPC has supported perception, action and attention in implemented by

cortex in general (For an excellent review see [9,10,83], in this thesis we concentrate

on the visual cortex and the visual perception.

2.2.4.1 General Architecture of HPC

In this framework, on the arrival of an input, predictor estimator modules (PE mod-

ule), at each visual processing level, generate the prediction (or estimate) on the

basis of the learned statistical regularities of natural scenes. Each higher area (say

V2) then sends the generated prediction to its immediate lower level (say V1) by

feedback connections and in return receives the error signal, by feed-forward connec-

tions, which is used to correct the current estimate. An equilibrium state is achieved

after the completion of few prediction-correction cycle; where the estimate matches

the input signal. This optimum-estimate is regarded as a representation of the input

at that level. The achieved optimum-estimate at di�erent levels of the network is

depicted as a perception of the input image.

In general, a single PE module (See Fig 2.7b) consists of: (i) Predictive estimator

neurons (PE neurons) which represent the estimate of current input signal I with

response vector r (state vector), (ii) neurons, carrying prediction signal Ur (for the

input I) to lower level by feed-back connections, whose synapse encode encoding

e�cacy matrix U , (iii) neurons, carrying feed-forward error signal (I − Ur) form

lower level to higher level, whose synapses encoded rows of e�cacy matrix UT , and

(iv) error detecting neurons which carry the residual error signal (r − rtd) to the

higher level corresponding to the prediction rtd from the higher level.
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Figure 2.7: General HPC architecture(adopted from Rao. [8]). a) On arrival of
input, predictive estimator module at each higher visual processing level makes the
estimate and sends prediction signal to its next lower level by feedback connection
and receives the corresponding prediction error by a feed-forward connection. The
error signal is used by the predictive estimator module to correct the estimate for
better prediction. b) General predictive estimator (PE) module constitutes of (i)
neurons to represent the estimate of the input I by their response vector r by mini-
mizing the bottom-up (I−Ur) and top-down (r− rtd) error, (ii) feed-forward error
carrying neurons has the e�cacy matrix U , which encode the basis vectors their
synaptic weights (or receptive �elds), (iii) prediction Ur carrying neurons and (iv)
top down error detecting neurons.

2.2.4.2 Network dynamics and learning rule of HPC

The dynamics, the learning rules and hence the above-mentioned architecture of a

general PE module stem from the total coding length ET (extend form of equation 2.9,

for details see Appendix A) of hierarchical network-

ET =
1

σ2
(I− Ur)T (I− Ur) + 1

σ2
td

(rtd − r)T (rtd − r) + g(r) + h(U) (2.10)
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Here the hierarchal probabilistic generative model distributions P (I|r, U) and P (rtd|r)

are assumed to be as Gaussians of zero mean and variances σ2 and σ2
td respectively.

Minimizing the coding length E, with respect to r (using the gradient descent

method) provides the dynamics of PE module as,

dr

dt
= −k1

2

∂ET
∂r

=
k1
σ2
UT (I− Ur) + k1

σ2
td

(rtd − r)− k1
2
g′(r) (2.11)

here, k1 is a rate parameter that governs the rate of descent towards a minimum of

E, and UT is the transpose to weight matrix U . The steady state of this dynamical

equation provides an optimum-estimate, which is regarded as the representation of

the input.

As we discussed, coding length E, roughly, can be seen as the mean square error at

the input and the output level of a PE module, subjected to constraints of prior prob-

abilities. Minimization of the coding length is equivalent to optimization of estimate

by recurrently matching of estimate to the corresponding �sensory driven� input from

lower area as well as �context driven� prediction signal from the higher area. The

prediction signal Ur is the linear combination of basis vectors Ui's. The Ui is the

ith column of the matrix U , and represents the receptive �eld for ith neuron. The

weighted coe�cient in this combination, ri, represents the response of i
th neuron hav-

ing receptive �eld Ui. The visual representation of the prediction Ur corresponding

to optimum-estimate r is, in this study, termed as �perceptual image.�

Furthermore, the minimization of coding length E, with respect to U using gradient

descent method provides the learning rule for basis matrix U as,

dU

dt
= −k2

2

∂E

∂U
=
k2
σ2

(I− Ur)rT − k2
2
h′(U) (2.12)
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here k2 is learning rate, which operates on the slower time scale than the rate param-

eters k1, and rT is the transpose of state vector r. This learning rule can be seen as

of Hebbian-type.

In the studies that follows in the next chapters, the prior probability, P (r), on

state vector r, is chosen according to sparse coding. The kurtotic prior distribution

(P (ri) = exp(−αlog(1 + r2i ))) constrains the dynamics for the sparse representation

of the input. This distribution gives us:

g′(ri) = 2αri/(1 + r2i ) (2.13)

which is used in equation (2.11). The prior probability distribution, P (U) has been

chosen here to be Gaussian type, which �nally gives us:

h′(U) = 2λU (2.14)

which is used in the equation (2.12). Here α and λ are variance related parameters.



There are things known and there are things unknown, and in between are the doors

of perception.

Aldous Huxley

3
Mechanism of Filling-In at the Blind Spot

3.1 Introduction

Filling-in at the blind spot is one of the examples of how brain interpolates the

informational void due to the de�cit of visual input from the retina. Because of the

absence of photoreceptors at optic disc, the retina is unable to send the corresponding

signal to the brain and thereby, hides some portion of the visual �eld. The concealed

visual �eld is known as the blind spot. However, we never notice any odd patch

in our visual �eld, even in monocular vision, but rather we see the complete scene;

25
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�lled up in accordance with the surrounding visual attributes (i.e., color, brightness,

texture or motion) [1]. This phenomenon is known as �lling-in at the blind spot.

There have been three main hypotheses speculating the mechanism that underlie per-

ceptual �lling-in at the blind spot: active completion, passive re-mapping completion

and, completion by ignorance. In the active completion hypothesis, it has been pro-

posed that some active neural process in the retinotopic representation of the blind

spot (BS area) in the visual cortex should be responsible for �lling-in [1, 84, 85]. In

other words, there should be a correlated neuronal �lling-in corresponding to the

perceptual �lling-in in the BS area of the cortex. Whereas, passive re-mapping hy-

pothesis argues that the �lling-in at the blind spot could be a result of passive cortical

re-mapping, where the informational `hole' in the BS area is `sewn up' so that the

neighboring points in the cortex receive input from the opposite side of the blind

spot [86,87]. Completion by ignorance hypothesis, on the other hand, proposes that

the �lling-in does not involve any kind of neural process; the brain simply ignores

the informational void [88�90].

The converging evidence from the recent psychophysical, neurophysiological, neu-

roimaging studies supports the idea that the �lling-in is an active process: some

neural computation is involved in the process of �lling-in. Moreover, these studies

suggest that such process mainly occurs in the early visual cortical areas. For exam-

ple, studies [3,84] on monkeys show that perceptually correlated neural activities are

evoked in the deep layer of primary visual cortex, in the region that retinotopically

corresponds to the blind spot (BS) region, when �lling-in completion occurs. In an-

other experiment, Matsumoto et. al. [4] showed that some neuron in BS region in

deep layer of primary visual cortex (BS neurons), which possess larger receptive �elds

that extend beyond the blind spot, exhibits non-linear elevated response when a long

moving bar cross over the blind spot and perceptual completion occurs. Fig.3.1 shows

the schematic summary of Matsumoto experiment; while the drifting end of the bar

was inside the blind spot, the perception of the bar was of a short isolated one and
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Figure 3.1: Schematic illustration of bar completion experiment (adapted from
Matsumoto and Komatsu [5]). (a) The gray oval area represents the blind spot,
whereas the dashed circle represents the receptive �eld of a neuron. The actual
stimulus, the corresponding retinal input, and perception at position 1,2,3 and 4
are shown. One end of the bar stimuli was kept �xed outside the BS region, and
the other end was free to drift across the blind spot. (b) The response of a typical
neuron in BS region at the deep layer of primary visual cortex is presented. The
gray rectangle indicates the blind spot and the dotted rectangular area represent the
receptive �eld of the typical neuron. The solid line is the response obtained through
the eye connected to the blind spot (BS eye) under review, and the dotted line is the
response of the same neuron obtained through the fellow eye.

the corresponding neural responses were low and constant. However, the moment

bar end crossed the blind spot, the neural response elevated rapidly and completion

of the bar was perceived. These elevated response exhibit nonlinearity; the response

to the long bar that stimulates simultaneously the both sides of the blind spot was

larger than the sum of responses to the stimuli presented on either side of blind spot

separately.

These studies explain some fundamental question about �lling-in: whether some

neural computation is required for the �lling-in to occur, and the involvement of

early visual cortex in the computation. However, there are some more fundamental

questions that remained unanswered. What computational and neural mechanism

is involved in the �lling-in process? Whether the �lling-in is involved in a special

mechanism or some general computation mechanism can account for the same? How

the observed nonlinearity corresponding to �lling-in could be understood in that

computational framework.
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In this chapter, we will try to throw some the light on these questions under the

framework of the Hierarchical Predictive coding of natural images. To do this, we

have conducted simulation studies involving horizontal bars on three leveled (LGN-

V1-V2) HPC model network having a blind spot which was emulated by removing the

feed-forward (LGN-V1) connection. In this investigation we have employed shifting

bar stimuli as described in Fig3.1, to study the properties of our model network and

recorded the model predictive estimator neurons (PE neurons) at BS region in the

V1. We found that these neurons exhibit, similar to the one observed in experiments,

non-linear response and represent the �lling-in completion when bar crosses the blind

spot. These results suggest that the �lling-in process could naturally arise out of the

computational principle of hierarchical predictive coding of natural images.

3.2 Simulation

3.2.1 Network

A three-level linear hierarchical predictive network (See Fig 3.2) is simulated to imi-

tate the early visual cortex. Level 0, Level 1 and Level 2 is equivalent to LGN, V1,

and V2 area respectively. Level 1, consist of 9 modules, receives input from level

0 and sends the output to the solitary module at level 2. The PE module at level

2 receives input from all the nine level 1 PE modules and sends back the feedback

signal to all of them. This architecture is based on the fact that the visual area higher

in hierarchy operates on a higher spatial scale.

Each of nine PE modules at level 1 consists of 64 PE neurons, 144 prediction carrying

neurons, 64 a�erent error carrying neurons and 64 error detecting neurons for con-

veying the residual error to level 2. The layer 2 module consists of 169 PE neurons,

576 prediction carrying neurons and 169 error carrying neurons.
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Figure 3.2: Three level HPC model network. Each of nine level 1 PE modules
sends prediction to level 0 by feedback connection and receives error signal corre-
sponding to their local image patches by a feed-forward connection. On the other
hand, the PE module at level 2 sends the prediction signal to all level 1 modules
and in reply, receives the error signal collectively from all these modules. Level 2,
therefore, encodes larger visual patch and hence possess the larger receptive �eld.

3.2.2 Training

Six images of di�erent natural environment were used for the training (see Fig3.3a).

These images were preprocessed �rst to compensate the early visual processing (Gan-

glion cell, LGN) [77]. This pre-processing involved DC removal and the �ltering of

images with circular symmetric whitening/lowpass �lter with spatial frequency pro�le

W (f) = fexp(−(f/f0)4) (see [12,75]). Here, Cuto� frequency f0 was taken to be 200

cycles/image. Thereafter, Variance normalized 1000 batches of 100 image patches of

size 30 × 30 pixel, which were extracted from randomly selected locations from the

randomly selected pre-processed images, were given as input to the network. A single

30 × 30-pixel image consisted of nine tiled 12 × 12-pixel image patches, which were

overlapped by 3 pixels (see Fig3.3b) and which were fed to the corresponding level 1

PE modules. For each batch of image patches, the network was allowed to achieve

steady states (according to the equ. (2.11)) and the average of these states was used

to update the e�cacy of neurons (according to the equ. 2.12), initially assigned ran-

dom values. During training, to prevent the e�cacy vectors Ui (columns of U or rows

of UT ) from growing unbound, the gain (L2 norm), li =
√
Ui · Ui, were adapted, as



Chapter 3. Mechanism of Filling-In at the Blind Spot 30

Figure 3.3: Natural images. a) These images, taken from of di�erent natural
environments, are used for simulation. b) A typical sample of 30 × 30 pixel image
patches extracted from the natural image (top rightmost) from the position shown
by the white rectangle. Each of these patches is broken down to 9 sub-patches of
12×12 pixel each with 3 overlapping pixels. Three such sub-patches are shown here
by three dotted rectangles in yellow, magenta and white. Each of these sub-patches
forms the local input to the 9, level 0 modules in the HPC model network.

lnewi = loldi (〈r2i 〉/σ2
goal)

γ, so that the variance of ri remain at appropriate level (for the

details see [75]). Here σ2
goal is desired variance of ri and α is gain adaption rate. The

level 1 was trained �rst and then the level 2. Parameter values used in this study are:

k1 = 1, k2 = 3, σ2 = 3, σ2
td = 10, α = 0.05 at level 1 and 0.1 at level 2, λ = 0.0025,

σ2
goal = 0.05, γ = 0.02.

3.2.3 Blind spot implementation

To mimic the blind spot the feed-forward connection in a certain area was removed

from the model network, which was pre-trained with usual feed-forward connections.

The removal was implemented by setting the e�cacy of early feed-forward (level 0 -

level 1) neurons, that carry the error signal corresponding to the middle region (of

size 8×8) of input patches (of size 30×30), to zero (see Fig.3.4). This �pre-training�,

the training before the creation of the blind spot, captures the fact that the active

neurons in deep layer (5/6) corresponding to �lling-in has been reported to be of the

binocular type. These neurons were found to respond to the inputs from both eye
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Figure 3.4: Model blind spot. A 30× 30 connection map is shown. Central dark
square (8 × 8 pixel) indicates the connection-less area corresponding to the blind
spot. The outside square outside of this indicates area coded by central module (BS
module) of the network. The shaded patches indicates the overlapped areas (of 3
pixel width) shared by neighboring modules.

and hence, possess binocular receptive �eld. Additionally, these neurons also exhibit

greater sensitivity to the inputs from the other eye (non-BS eye) [3,4]. It is, therefore,

natural to assume that, in normal binocular vision the feed-forward input from the

non-BS eye will cause the receptive �elds (of these deep layer neurons) to develop.

3.3 Results

The HPC network was allowed to learn the synaptic weight of model neurons, by

exposing it to natural image patches under the constraints of the sparseness of model

neuron responses (see method). The learned synaptic weights of neurons carrying

feed-forward signal of one of the modules at level 1 and level 2 are shown in Fig 3.5.

The weighting pro�les at level 1 (Fig 3.5a) resemble the Gabor-like receptive �eld at

V1, which is similar to the results reported earlier in several studies [8, 12, 80]. The

weighting pro�le at the level 2 (Fig 3.5b) resembles the more abstract visual features:

long bar, curve, etc. The blind spot was emulated in the network by removing feed-

forward connection (see method), whereas, the training was performed on a network

by keeping this connection intact. We designate the network with the blind spot as

BS network and the one without the blind spot as a non-BS network.
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Figure 3.5: Learned synaptic weights.(a) Learned receptive �eld of 64 feed-forward
neurons of the size 12 × 12 pixels of BS module at the level 1 and, (b) Learned
receptive �eld 169 feed-forward neurons of the size 30× 30 at the level 2.

3.3.1 Filling-in of shifting bar

We simulated the bar-shifting experiment on the trained HPC model network. Both

BS and non-BS Network were exposed to images of a horizontal bar of di�erent

length. One end of the bar was �xed at a position outside of the blind spot, whereas,

the position of other end was varied (by one pixel at each instant) across the blind

spot. Images of the bar for six di�erent end positions are shown in Fig 3.6a. The

response vector, r, of PE neurons in the central module in the model network (let say

BS module) at level 1 and the sole module at level 2 was recorded for the di�erent

end position of the bar.

Fig 3.7 shows the bar plots of the response of 64 neurons in BS module at level 1 for

six di�erent bar position in both model networks(BS and non-BS). The comparison

shows that almost the same set of a small number of neurons responded in both

networks. The receptive �eld of the highly responsive neurons in this set possesses

a horizontal bar-like structure. We plotted the response of some of these highly

responsive neurons against the bar position (varying by one pixel) (see Fig 3.8) which

show that these neurons exhibited elevated response when the varying end of bar
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Figure 3.6: Shifting-bar investigation. a) A typical 30×30 pixel stimulus is shown
here. The darkened object in the stimulus is a bar, whose endpoint is represented
by the number 1. Five more stimuli were constructed by shifting the bar end to
positions 2 to 6. The larger rectangle of size 12 × 12 pixels (shown by the dotted
line at the center) indicates the extension of BS module and the smaller one of size
8×8 (shown by the solid line) indicate the extension of the blind spot. b) Generated
30×30 �perceptual images� corresponding to response pro�le of PE neurons at level
1 of the HPC network for non-BS (top row) and BS (bottom row) cases are shown.

crosses the blind spot. These elevated responses, in BS network, become reasonably

close to the maximum response exhibit by these neurons in the non-BS neuron. The

closeness of responses indicates the representation of objects in the BS network is

similar to the one in the non-BS network. This is re�ected in the corresponding

�perceptual images" (see Fig 3.6b) reconstructed using the generative process. The

response pro�le of level 2 neurons is shown in Fig 3.9. The most active PE neurons

at level 2 exhibit similar response as level 1 neurons and possess horizontal bar like

the receptive �eld, which is quite expected.

It is evident from these results that, in the case of BS Network, as long as the bar end

remained inside the blind spot the response of neurons, in the BS module, remained

constant and relatively low (Figs 3.7 and 3.8) which results in the perception of a
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Figure 3.7: Responses pro�les. Normalized responses of 64 PE neurons at BS
module, corresponding to the six stimuli discussed in Fig 3.6a are presented. The
dark blue bar represents the response of PE neurons for the BS network, whereas,
the light blue bar represents the responses for the non-BS network. Three most
highly active neurons (in bottom leftmost bar plot) are marked by red arrows.

Figure 3.8: Response elevation in BS region at level 1. Plots of the absolute value
of normalized response are shown against the bar position for three highly active
neurons (indicated by red arrows in the sixth bar blot of Fig 3.7) In these plots,
dotted rectangular area indicates the extension of BS module whereas, the solid gray
rectangular area indicates the extension of the blind spot. The receptive �elds of
these three neurons are shown at the top of the respective plots, which show that
these neurons participated in encoding information of a horizontal bar. To compare
the relative activity of the neurons we have plotted the absolute value of the responses
instead of signed values of responses
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Figure 3.9: Response pro�le at level 2. (a) The normalized response of 169 neu-
rons at level 2 corresponding to shifting bar stimuli for the end postilion 6. (b)
Plots of the normalized absolute value of response of most active neurons at level 2
(marked as red arrow in (a)). The receptive �eld of these neurons is shown in the
inset of their corresponding plots.

bar of constant length on one side of the blind spot. On the other hand, when the

bar crosses the blind spot, the responses are elevated signi�cantly, and the �lling-

in completion occurred. These could also be understood by observing the relative

deviation of the response of each neuron (typically the highly responsive neurons)

in both networks (Fig 3.7) when bar end crosses the blind spot. These results are

consistent with the �ndings of neurophysiological studies on macaque monkeys [4].
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It is evident from Fig 3.8 that when �lling-in occur, the response pro�le changes

abruptly in a non-linear fashion. In order to verify the explicit correlation between

the non-linear response and the �lling-in completion, the response of the most re-

sponsive neurons was examined by exposing the BS network with di�erent stimulus

combinations (a, b, c, ab and a+b) as described in Fig 3.10. The responses of these

neurons to these four stimuli were compared. Stimuli are shown in the inset at the

bottom of the �gure and the corresponding responses are presented as bar plots above

each stimulus. As shown in Fig 3.10, the response to ab stimulus is signi�cantly larger

than the sum of the responses to a and b (shown as a+b) even though stimuli a and

b separately stimulated similar areas of the RF exposed ab stimulus. This indicates

that the abrupt change in the magnitude of the response during �lling-in comple-

tion can not be explained by the summing over the responses of the receptive �eld

extending out from the opposite side of the blind spot. In other words, the abrupt

response increase (non-linearity) is correlated with the perceptual completion and is

not predictable from a simple summation rule.

3.4 Discussion

To understand the mechanism of �lling-in, we should recall that in HPC, feed-forward

connection propagates up the residual error, corresponding to the current prediction

made by higher area, for the betterment of the next prediction. The optimum-

estimate, where prediction closely matches the �driving sensory� input as well as

�contextual signal� from the higher area, which produces a minimum prediction error,

is then depicted as a perception of the input. However, the blind spot is characterized

by the absence of such feed-forward connection. Therefore, the estimate made by

higher areas prevails in the absence of error signal and this provides the ground for

the �lling-in completion to occur at the blind spot.
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Figure 3.10: Nonlinearity in the response pro�le. Average normalized responses
of neurons (in BS module) to various stimulus conditions are presented. Estimated
responses to stimuli a, b, c and ab, as well as the sum of the responses to a and
b, are shown, where ab is a combination of stimuli a and b. Each stimulus is
schematically shown below each bar plot, where each bar plot shows the mean of
normalized responses of 8 most responsive neurons in the BS module. Conventions
are same as shown in Fig 3.8.

Neurons at V2 learns the regular feature like long bar, curve etc. from the natural

scene and operates on a larger area and context. Therefore, the initial estimate, which

is based on these learned regular features, prevails and becomes an optimum-estimate

for the inputs which only match with those regular features in the surrounding of

the blind spot. This process initiates the �lling-in at the V2. In the absence of feed-

forward connection in BS region, the corresponding local optimum-estimate at level

1 will, therefore, evolve by matching the �context-driven" feedback signal from level

2. This process at level 1 locally captures all the course of the completion process

at level 2. Thus, the properties of the �lling-in are primarily determined by the

matching of statistics of input stimuli around the blind spot and natural statistics

learned by the network. Better the degree of matching, higher chances of completion.

For example, in the bar shifting experiment while the moving end of bar remained

inside the blind spot, the incoming sensory input, which is of a short bar residing on
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one side of the blind spot, deviates reasonably from learned statistical regularity, in

which the bars are usually longer (extended across the blind spot) [8]. That turns

out as a non-completion of the bar and PE neurons at BS module, whose response

represent bar, exhibit low response. On the other hand, when bar crosses the blind

spot, the likelihood of matching of the input signal and the learned regular features

(long and continuous bar) suddenly increases and that leads to the abrupt elevation

of the response of PE neurons which encodes the bar in BS module. This process

resembles the AND-gate functionality and re�ects the nonlinearity in response pro�les

shown above (Fig. 3.8 and 3.10).

Regarding the �pre-training� mentioned in the method section, one can argue that

in the absence of feed-forward input, even the feedback signal from the higher area

can possibly cause the associative receptive �elds to develop, which could provide

the basis for internal representation in the BS area. But this is not the case with

neurons representing the blind spot in which, as we have already discussed, there

seems to exist the feed-forward connection from the other eye (non-BS) in a normal

binocular vision to cause receptive �elds of the deep layer neurons to develop. In this

case, one can suggest that these neurons might get relatively reduce input strength

in the BS region since these are getting input from only one eye rather than from

both eyes and that can lead to di�erent weighting pro�le. Without going into details

of the integration of input, which can take the value of relative strength from half

to one depending on assumption of integration (linear or nonlinear), we can discuss

that even the reduction of input, in a reasonable amount, may not give rise to any

qualitative change in the learned receptive �elds of the neurons (see Appendix C)

because the nature of the receptive �elds is mainly governed by the statistical feature

of the input. We, therefore, argue that this situation may not alter the generality of

our approach.

In conclusion, recent studies on �lling-in at the blind spot reveal that neural activities

in BS area, in the deep layers of V1, are associated with �lling-in completion. For
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example, in the shifting bar completion experiment, nonlinear neuronal activities

are reported. Here, we have explained these activities, through modeling, in terms of

hierarchical predictive coding principles of natural images and moreover, we have also

demonstrated that these activities represent the �lling-in operation. These results

suggest that the �lling-in could be a manifestation of a hierarchical predictive coding

principle and, the nature of �lling-in could be predominantly guided by the learned

statistical regularities of the natural scene.





Man is not himself only... He is all that he sees; all that �ows

to him from a thousand sources... He is the land, the lift of its

mountain lines, the reach of its valleys. . . .

Mary Austin

4
Properties of the Filling-In

4.1 Introduction

In the previous chapter, we demonstrated how the �lling-in phenomenon could arise

from the general computational mechanism of HPC. We speculated that the proper-

ties of �lling-in could be explained on the basis of the properties of the natural image

statistics.

In this chapter, we will investigate mainly two reported properties of �lling-in: toler-

ance and anisotropy. When two aligned bars are presented on opposite sides of the

blind spot such that the gap fully falls inside the blind spot (essentially equivalent

41
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to a bar extended the both side of the blind spot, as we discussed in the previous

chapter), the bars are usually perceived as a continuous one. Moreover, this �lling-in

continues (however, in reduced strength) to occur up to a certain degree of di�er-

ences, in alignment or orientation, between the bar pair. This property is known as

tolerance of �lling-in.

Psychophysical investigations also revealed that �lling-in and the tolerance of �lling-

in are not isotropic but sensitive to orientation con�guration (horizontal, vertical)

of the stimulus (bar-pair). Araragi et. al. [7] have demonstrated that a certain

minimum critical length of bar-pair (extended beyond the blind spot) is required

in order of �lling-in to occur. For the horizontal con�guration, this critical length

is shorter in comparison to the vertical con�guration. He also showed that for the

identical length, horizontal con�guration tends to have better �lling-in over vertical

con�guration. This phenomenon is designated as anisotropy in �lling-in. In his other

studies, Araragi et. al. [6,14] showed that the anisotropy can also be observed in the

tolerance of �lling-in. However, contrary to the horizontal dominance in anisotropy in

�lling-in, vertical bar exhibited higher tolerance over the horizontal con�guration in

�lling-in: vertical bar�pair appears continuous for a comparatively larger di�erence

in alignment or orientations. This phenomenon is designated as anisotropy in �lling-

in-tolerance.

Anisotropy has also been reported in other visual phenomena related to orientation

perception. Studies with grating stimuli show that visual sensitivity and acuity of

human (and other species) is typically better at cardinal (horizontal and vertical)

orientations than at oblique orientation(those±45 degree from cardinal) [91�93]. This

has been termed the `oblique e�ect' [94]. On the other hand, studies involving natural

broadband stimuli show the opposite where oblique orientations have upper hand

over cardinal ones [15,16,19,95,96]. This phenomenon is known as 'horizontal e�ect'.

These studies brought out the di�erences in bias between horizontal and vertical

orientation and demonstrated that our visual system favors horizontal con�guration
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over vertical. It has been suggested [15,96�98] that the statistics of natural scenes is

primarily responsible for the observed anisotropy in the orientation perception. Image

analysis reveals that the orientation content in natural scenes is biased more towards

horizontal than vertical, and the least bias is observed towards the oblique. This

asymmetry raises a logical question whether the orientation-selective neurons in the

cortex are in�uenced by the prevalence of horizontal orientation in the environment

during development. Indeed, it has been demonstrated experimentally [17, 96, 99�

101] that adult ferret and cat V1 contains an over-representation of neurons coding

horizontal orientations.

How the properties of natural scene statistics in�uence our perceptual judgment? To

be more speci�c, whether the over-representation of features in the natural scene has

any role in the emergence of the observed tolerance in �lling-in at the blind spot?

We investigate this question using a three level HPC model network.

Firstly, we investigate the tolerance of �lling-in for the two stimulus con�guration:

misaligned and disoriented bar-pair. Then, secondly, we examine the anisotropy in

�lling-in and anisotropy in �lling-in-tolerance in the vertical and horizontal stimuli

con�gurations. We observed a correspondence between the anisotropies related to the

orientation of feature found in the natural scene and apparently di�erent anisotropy

observed in various psychophysical experiments. Moreover, this chapter explicitly

brings out the possible relation between natural scene statistics, cortical organization

and the perceptual experience at the blind spot.

4.2 Simulation

A similar three-level model network and training procedures as described in the

last chapter were used for simulation. However, for robust and statistical rigorous

investigation, we increased the number of neurons at each module at every level. The
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Figure 4.1: Anisotropy in orientation selectivity (a) learned weighting pro�les
of 130 neurons at one of the 9 modules at level 1 for the single training set. (b)
Orientation distribution at level 1 for all the neurons (130 × 40). The envelope
(continuous line) is obtained from the running average of 7 bins of the histogram.

modules at level 1 consist of 130 feed-forward, 130 PE neurons, and 144 feedback

neurons. The level 2 module contains 256 feed-forward neurons, 256 PE neurons,

and 1170 feedback neurons. All the parameters of the network in this chapter are

same as taken in the previous chapter. To make the investigation more rigorous we

also performed 40 di�erent training cycles to learn 40 di�erent sets of e�cacy matrix

(receptive �eld).

4.3 Results

The training resulted in 40 di�erent set of Gabor-like weighting pro�les at level

1 (Fig. 4.1a), as shown in the last chapter, which was distributed in the di�erent

orientation and spatial frequency and resembled the simple cell receptive �eld at V1.

Level 2 weighting pro�les resembled more abstract features (corner, curves, long bar

etc.)
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4.3.1 Tolerance of �lling-in

To investigate the tolerance in �lling-in for the misaligned bar, the model network was

exposed to a pair of horizontal bar segments placed on both sides of the blind spot

(see Fig.4.2a). One bar was kept �xed at one side of the blind spot while the position

of the other one was shifted vertically in small steps to vary the misalignments. The

response of PE neurons in BS module was recorded with changing misalignment. This

process was repeated 40 times with 40 di�erent cycles of training. Investigations with

the di�erent cycle of the training can be considered analogous to the psychophysical

investigation performed on the di�erent participant (human), which leads to more

statistical rigors in the results. All the subsequent investigations reported in this

chapter follows the same number of repetitions. From these responses, equivalent

�perceptual images� were reconstructed, which are shown in Fig.4.3a. Perceptual

images show that �lling-in continues to occur (though in reduced strength) for a small

degree of misalignment but cease to appear after a certain degree of misalignment.

To quantify the �lling-in, pixel values in the middle (central 2×2 pixel wide region in

the blind spot, indicated small red square in Fig.4.3a) of the perceptual image were

averaged. We de�ne this average as the `�lling-in-value', where the greater negative

value indicates better �lling in. Fig.4.3b shows the plot of this values, from all the

perceptual images corresponding to 40 training, with misalignment of bar-pair. As

we can observe, the �lling-in value is greater in the case of perfect alignment and

gradually deteriorates with increasing misalignment.

To investigate the tolerance in disorientation, the network was stimulated with a

stimulus as shown in Fig.4.2b. The stimulus consists of a �xed bar and a rotating

bar. The �xed bar is placed horizontally. The other bar, the test bar, was rotated in

steps of 10 degrees from the aligned position (0-degree di�erence in orientation) to the

perpendicular position (90-degree di�erence in orientation). We recorded the response

of PE neurons corresponding to these stimuli con�gurations and perceptual images
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Figure 4.2: Stimuli,(a) Misaligned bar stimulus: Two bar stimuli are shown at the
opposite end of the blind spot, which is indicated with the gray square (8× 8 pixels)
in the center. The dotted square (12 × 12 pixels) denotes the area exposed to the
central module (called BS module) of one of the nine level 1 modules (see Fig.3.2).
The bar at the left side of the blind spot remains �xed while the right side bar moves
in the vertical direction in steps of one pixel every time (b) Rotating bar stimulus:
In this case, the left side bar remains �xed but the bar at right side rotates in steps
of 10 degrees.(c) Expanding bar stimulus: One end of both bars was �xed inside the
blind spot, whereas other ends were expanding together in sync in steps of one pixel
in opposite directions. Extension of bars has been measured from the border of the
blind spot.

were generated accordingly. The perceptual images and the corresponding plot of

�lling-in-value for those stimuli are shown is the Fig.4.4a and Fig.4.4b, respectively.

These results show that the �lling-in performance was better for the aligned bars but

it deteriorated with increasing di�erence in orientations.

This result indicates that the �lling-in completion depends on alignment and the

�lling-in is best for perfect alignment. Moreover, this �lling-in continues(however, in

reduced strength) to occur up to a certain degree of di�erences, in alignment or orien-

tation, between the bar pair. These results are consistent with earlier psychophysical

�ndings [6, 14].

4.3.2 Anisotropy

In this section, we test the hypothesis that the prevalence of certain features in natural

scenes is capable of providing a mechanistic explanation of anisotropy related to the

perceptual �lling-in reported by human observers. Our objective is summarized in
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Figure 4.3: Tolerance in misalignment a) A typical stimulus is shown, where two
non-aligned bar segments are presented on opposite sides of the blind spot. For
our study, one bar was �xed (left one) and the other one was shifted vertically
by one pixel per instant for the seven positions emulating seven stimuli. b) The
generated �perceptual images� for those stimuli (as discussed in (a)) corresponding
to the recorded response pro�le of PE neurons at level 1.

Fig.4.5, where we have schematically depicted the proposition that there is a link

between the anisotropy present in the natural scene and the anisotropy reported in

perceptual �lling-in investigations. This supports the general speculation[6,8,10�12]

that orientation anisotropy in natural scene plays a signi�cant role in determining the

anisotropy in the cortex as well as the anisotropy in perceptual orientation preference.

As a premise, we �rst explored the capability of the HPC model network to learn the

anisotropic distribution of features present in the natural image via training, which

will validate the previously known results. Then we went on to investigate whether

the learned statistics (learned internal model) could explain the anisotropy in �lling-in

and the anisotropy in tolerance of �lling-in reported in other psychophysical studies.
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Figure 4.4: Tolerance in disorientation a) Stimulus used for the study is shown.
One part of the stimulus, the horizontal black bar, was �xed. The other part was
rotated clockwise from its initial horizontal position (dotted bar) to the vertical po-
sition in steps of 10 degrees. The central rectangle is BS and the outer rectangle
(dotted) is the receptive �eld. Rectangular regions are shown for illustration only,
b) Perceptual images, generated from the response of PE neurons at level 1, corre-
sponding to all ten orientations of stimulus are shown, c) Average response at the
center (2× 2) of the BS region in (b) is plotted as a function of orientation angle.

4.3.2.1 Anisotropy in orientation selectively

To investigate the presence of any anisotropy, we measured the orientation tuning dis-

tribution of the trained neurons in V1. To do this, we utilized bar stimulus of di�erent

orientation and frequency and determined the orientation tuning of a particular neu-

ron by registering their optimal response. Fig. 4.1b shows the distribution of orienta-

tion tuning of neurons in V1. It is evident from the distribution that greater number

of neurons are oriented towards the horizontal orientation, followed by vertical and

the non-cardinal orientation. This anisotropic distribution is very much in-line with
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Figure 4.5: Anisotropy in the natural scene, the cortex, and perception: Our aim
is schematically presented in this diagram. We want to establish the link between the
anisotropy in the contours in the natural scene, orientation preference of neurons
in the cortex and orientation bias in human perception

the reported anisotropy of orientation distribution in natural scenes [15, 16, 97] and

orientation tuning distribution of neurons in primary visual cortex [17,96,99�101].

4.3.2.2 Anisotropy in �lling-in

To investigate the anisotropy in �lling-in, the learned network was exposed to a pair

of expanding bar segments, as shown in Fig. 4.2c, oriented in the horizontal direction.

One end of both bars was �xed and other ends were free to expand together in sync

as described in the Fig. 4.2c. The network was also stimulated with similar stimuli

but oriented in the vertical direction (not shown). The responses of PE neurons were

recorded as a function of bar extension (length) for both orientation con�gurations.

Fig. 4.6b shows the plot of `�lling-in-value' as a function of the bar extension for both

con�gurations. Inspection of Fig. 4.6b shows that the �lling-in starts improving when

the lengths of the bar segments exceed a certain minimum. This can be visualized

from the perceptual images (Fig. 4.6a) where beyond a certain minimum length, the

bars appear continuous. This result is similar to the `minimum-length requirement' [7]
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of �lling-in. Moreover, the comparative investigation of results for horizontal and ver-

tical arrangements indicates that the minimum critical length needed for the onset

of �lling-in is lesser for the horizontal orientation. In addition, for the same length,

the �lling-in performance is better (more negative `�lling-in-value') for the horizon-

tal case. This anisotropic property is completely in agreement with psychophysical

studies [7].

To validate our results, a two-way ANOVA was conducted that examined the signi�-

cance of e�ect of degree of bar extension and the con�guration (horizontal /vertical)

on the �lling-in-values. We found that the e�ect of extension [F(10,858) =933.93,

p=0)], con�guration [F (1,858) =585, p=0)], and, the interaction between them

[F(10,858) =24.09, p=0)] was signi�cant.

4.3.2.3 Anisotropy in tolerance of �lling-in

We repeated the tolerance investigations (described in the section 4.3.1) for the ver-

tical con�guration. In misalignment case, the other bar (above the blind spot) was

shifted horizontally by one pixel per instant. While in the disoriented case, the other

bar was rotated by 10 degrees per instant up to 90 degrees.

The response of PE neurons in BS module was recorded with changing misalignment

and disorientation and the perceptually equivalent images were generated from these

responses, which are shown in Fig. 4.7a (bottom row) for the misalignment case and

Fig. 4.8a (bottom row) for the disorientation case. Inspection of the plot of '�lling-

in-value' in the Fig. 4.7b and Fig. 4.8b indicate that the general nature of �lling-in:

�lling-in is best in the case of perfect alignment but deteriorates with increasing

misalignment or disorientations, remains similar for the vertical con�guration. How-

ever, the two con�gurations exhibit the di�erent degree of �lling-in for the di�erent

misalignment/disorientation.
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Figure 4.6: Filling-in anisotropy. (a) Perceptually equivalent images are shown,
which are generated from the response of PE neurons while the network was stimu-
lated with stimuli depicted in Fig. 2a. (b) The plot of `�lling-in-value' in BS area of
the images in (a) as a function of bar extension measured from the edge of the blind
spot. The lines represent the average and the shaded portion indicates the standard
deviation for the 40 training set.

In misalignment case, comparison of `�lling-in-value', plotted in Fig. 4.7b, show that

it is more negative (better �lling-in) for the horizontal orientation compared to that of

the vertical orientation. This is a signature of anisotropy of �lling-in (discussed in the

previous subsection). Moreover, it is also evident that the average slope of the curves

is di�erent and it is higher for the horizontal case. This indicates that the rate of

change of the `�lling-in-value', for the horizontal orientation, is more sensitive to the

change in misalignment. In other words, �lling-in, in the case of vertical orientation,

is more tolerant to misalignment compared to that of the horizontal orientation. This

could be considered as a signature of anisotropy of tolerance of �lling-in.
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Figure 4.7: Anisotropy in tolerance of �ling-in of misaligned bars. (a) Percep-
tually equivalent images are shown, which are generated from the response of PE
neurons while the network was stimulated with stimuli depicted in Fig. 4.2b. (b)
The plot of `�lling-in-value' in BS area of the images in (a) as a function of mis-
alignment between the bars. Convention for lines and the shades are as described
in Fig. 4.3b.

In disorientation case (Fig. 4.8b), the comparison shows that for the vertical con�gu-

ration the '�lling-in' value remains less negative (indicating relatively inferior �lling-

in), throughout the entire range of di�erence from 0 degrees to 60 degrees (thereafter

the di�erence becomes indistinguishable). However, its rate of deterioration remains

lower in comparison to the horizontal con�guration. These results indicate that the

horizontal con�guration favors �lling-in but exhibit greater sensitivity to the changes

in orientation di�erence (less tolerant); on the other hand, the vertical con�guration is

little less favorable for �lling-in but less sensitive to the changes in orientation di�er-

ence (more tolerant). These qualitative signatures of anisotropic sensitivity support

the results of psychophysical studies [6].
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Figure 4.8: Anisotropy in tolerance of �ling-in of disoriented bars. (a) Percep-
tually equivalent images are shown, which are generated from the response of PE
neurons while the network was stimulated with stimuli depicted in Fig. 4.2c. (b) The
plot of `�lling-in-value' in BS area of the images in (a) as a function of orientation
di�erence between the bars. Convention for lines and the shades are as described in
Fig. 4.3b.

A two-way ANOVA was conducted that examined the signi�cance of e�ect of degree

of bar misalignment/disorientation and the con�guration on the �lling-in-values. We

found that the e�ect of misalignment [F (6,546) = 175.91, p < 0.001)], con�guration

[F (1,546) = 81.96, p < 0.001)], and, the interaction between them [F (6,546) =

26.53, p < 0.001)] was signi�cant. The e�ect of disorientation [F (9,780) = 334.4,

p < 0.001)], con�guration [F (1,780) = 104.66, p < 0.001)], and, the interaction

between them [F (9,780) = 13.12, p < 0.001)] was also very signi�cant.
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4.3.2.4 Comparison with the psychophysical results

For the purpose of direct comparison with psychophysical results [6, 7, 14], we have

redrawn our results (Fig. 4.6b, Fig. 4.7b, and Fig. 4.8b) in Fig 4.9 taking into account

the concept of visual angle (VA) and a threshold. In our study, the extent of the

blind spot is 8 × 8pixels. On the contrary, if we approximate the blind spot to be

a square region, the average size of the spot is 5 × 5 degree [3, 4]. Therefore, we

have used a scaling factor of .625 for converting pixels to degrees. Additionally, we

have introduced an arti�cial threshold (at 50 %), which is used to obtain quantitative

estimates. Bar diagrams compatible for comparison with psychophysical experiments

are plotted on the right of each of the plots.

In psychophysical investigations, the anisotropy in �lling-in (discussed in Fig. 4.6)

was measured using staircase method [7]. On the contrary, in our study, we have

measured the �lling-in-value which directly corresponds to the activity of the PE

neurons of our model network. Change in the activity of these neurons, for exposure

to di�erent stimuli, encodes properties of the �lling-in process. As shown in Fig. 4.6b,

in our model network, neurons exhibited higher activity (more negative �lling-in-

value) when exposed to horizontal bar stimulus compared to the activity induced

by vertical bar stimulus for a given bar length. Therefore, bar length that induces

similar levels of neural activity will be di�erent for di�erent con�guration (horizontal

or vertical), and this may provide an estimate of anisotropy. We have estimated

these lengths (`minimum length requirement') by considering a threshold at 50 %

�lling-in-value corresponding to the vertical case (in red) as shown in Fig. 4.9a. The

estimated bar lengths are plotted as bars in Fig. 4.9b that are similar to the results

reported in experiments [7]. We did not consider a threshold corresponding to the

50 % �lling-in value in the horizontal case because that would have estimated longer

bars, whereas our focus is to �nd the minimum lengths of bars.
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For the presentation of results related to the tolerance in �lling-in, we have conceived

a general notion of the tolerance as a rate of change of �lling-in-value, with increasing

di�erence in attributes. Faster change (higher rate) will indicate lesser tolerance, and

this is advantageous because one can predict the tolerance by inspecting the slope of

the curve representing the changing �lling-in-value, which is directly available from

the simulation study. Several psychophysical studies [6, 14], on the other hand, have

de�ned tolerance in �lling-in as the maximum di�erence in attribute above which

�lling-in is not perceivable with certainty. This de�nition is more compatible with

the outcome of psychophysical experiments. Therefore, a di�erent presentation of

our results is necessary for direct comparison with psychophysical �ndings.

For comparison, we have normalized the results shown earlier in Fig. 4.7b and

Fig. 4.8b. The normalization is performed by dividing the �lling-in values repre-

sented by a given curve (for a speci�c con�guration) by the magnitude of the maxi-

mum �lling-in value for that speci�c case, and this is repeated for each of the plots

separately. To compare with the psychometric plot of psychophysical results we have,

in the resultant plots, considered -1 to represent 100% probability and 0 to repre-

sent 0% probability. Additionally, following the general convention where the y-axis

ranges from minimum probability (at the bottom) to the maximum (at the top),

we have inverted our plots which are shown in Fig. 4.9c and 4.9e. These normal-

ized plots range from 50% probability at the bottom to the 100% probability at the

top and tolerances are estimated from these plots. We have introduced an arti�cial

threshold at the 50% probability, where it is assumed that beyond this threshold

�lling-in cannot be perceived with certainty.

In line with the de�nition of tolerance (maximum di�erence for which �lling-in cannot

be perceived with certainty) compatible with psychophysical experiments, tolerances

are represented as vertical bars in Fig. 4.9d and Fig. 4.9f. Estimated lengths for mis-

alignment shown in Fig. 4.9d corroborate the experimental �ndings presented in the

psychophysical study [6] for the vertical as well as for horizontal con�gurations. The
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estimated orientation di�erence for horizontal and vertical con�gurations are shown

in Fig. 4.9f. In this plot, the tolerances are 19 degrees and 24 degrees for horizontal

and vertical con�guration respectively while the psychophysical results [6] provides

these value as 40 degrees and 55 degrees. Though the magnitude of tolerances

obtained in our investigation di�ers from the tolerances reported in psychophysical

experiments, it is interesting to observe that the ratio (1.26) of vertical to horizontal

tolerance is very close to the value (1.37) obtained experimentally. It shows that

qualitatively our results agree well with the experimental �ndings. These results

presented in Fig 4.9d and Fig 4.9f clearly show the vertical dominance in the case

of tolerance of �lling-in for misalignment and as well as for disorientation. Filling-

in phenomenon for misaligned bars was reinvestigated recently [14] in the context

of linear and curvilinear completions at the blind spot. In this study, perceptual

completion was de�ned as the case where participants perceived continuous bar irre-

spective of the apparent shape being straight or curved. This de�nition is identical to

the misalignment case we have considered in this article as well as the one reported

earlier [6]. Though the tolerance of misalignment reported in later study [14] is higher

approximately by a factor of 2 than the results reported eariler [6], the vertical dom-

inance in �lling-in is preserved and the ratio of vertical to horizontal misalignment

remained very close to that reported in psychophysical study [6]. Therefore, our re-

sults related to misalignment investigation to some extent corroborates the results

reported in psychophysical study [14].

The common asymptotic shape, as observed in psychometric plots, near 100 % prob-

ability [14], is not apparent in our plots. The most plausible reason is the lower

resolution we have achieved in our simulation, where we have considered a 8× 8 pix-

els wide blind spot that provided 4 data points corresponding to four misalignments.

For the same limited resolution, the results of collinear experiments [14] could not

be discussed with the results of our investigation. The collinear �lling-in has been

shown for the very narrow misalignment which is not possible to investigate in the
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Figure 4.9: results of Fig 4b, 5b, and 6b are redrawn in (a), (c), and (e) re-
spectively for the comparison. The visual angle is represented as VA in the plots.
(a) The horizontal line represents the threshold corresponding to the 50 % of the
maximum �lling-in-value for vertical con�guration, and the estimated bar lengths
corresponding to this threshold are plotted as bars in (b). (c) Normalized plots, as
explained in the text, for the positive misalignments are presented, which continued
from the 100% to 50% probability (arti�cial threshold). The amount of misalign-
ment at this threshold for the horizontal and vertical cases are shown as bars in (d).
(e) Similar normalized plots for orientation di�erence are shown here and estimated
orientation di�erence at 50% threshold is shown as bar plots in (f)
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current context. However, a model network with a better resolution could be able to

shed some light on these phenomena.

4.3.2.5 Relation between natural image statistics and �lling-in at the

blind spot

How anisotropy, then, arises from the response of the model network? We have

shown (Fig. 4.1b) that, in agreement with natural scene statistics, the distribution

of the orientation preference of the learned receptive �elds at V1 re�ects the over-

representation of neurons tuned towards horizontal orientation. This demonstrates

that the model network could encode the anisotropies of natural scene statistics

through learning.

As discussed in the last chapter, the likelihood of �lling-in of features (bars with

di�erent attributes) is guided by its likelihood of occurrence in the natural scene.

Features that are more frequent tend to be more likely candidates for �lling-in. In this

perspective, we argue that the over-representation encoded by the learned receptive

�elds at V1 dominates the prediction at the blind spot that leads to �lling-in of

discontinuity. This happens because in the absence of the feed-forward connections

(in the network representing blind spot region) top-down predictions biased by the

learned internal model dominates. Thus, the prevalence of horizontally oriented

features (lines, bar etc.) in the learned internal model results in the superiority of

horizontal features in �lling-in. This is re�ected as more negative `�lling-in-value' in

all three horizontal cases (blue line) in Fig. 4.6, Fig. 4.7, and Fig. 4.8.

How vertical superiority arises in tolerance of �lling-in? The nature of variation in

�lling-in-value, shown in Fig. 4.7b (or Fig. 4.9a) and Fig. 4.8b (or 4.9b), can be ex-

plained by taking into account the orientation tuning distribution of neurons shown

in Fig. 4.1b. Inspection of Fig. 4.1b reveals that neurons tuned toward horizontal ori-

entation have a higher population and sharper distribution. In comparison, neurons
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tuned toward vertical orientation have a lower population and relatively broader dis-

tribution. The sharper distribution (and higher population) of neurons tuned toward

horizontal orientation results in a more speci�c estimate for �lling-in that would be

less tolerance despite the fact that better �lling-in will be observed for that orien-

tation. On the other hand, broader distribution (and lower population) of neurons

tuned toward vertical orientation results in higher tolerance and the lesser response

results from the comparatively lower population. Therefore, in the case of horizon-

tally oriented stimuli, the �lling-in performance deteriorates at a faster rate with

increasing di�erence in stimulus attributes compared to that of vertically oriented

one.

These arguments can be readily put forward for explaining the anisotropy in tolerance

of �lling-in for disoriented bar stimuli (Fig. 4.8). For a given con�guration (horizontal

or vertical), the rotating segment of the stimuli makes varying angles with the �xed

segment. Because of this, the �lled-in section that resides inside the blind-spot will

have to be aligned at varying angles either toward vertical or horizontal depending

on the con�guration. For every angle (0 to 90 degree), neurons having the similar

orientation preference matching that of the �lled-in section (in the blind spot) that

connects the pair of bars will be activated for �lling-in. For horizontal con�guration,

neurons having horizontal orientation preference as well as neurons having close to

horizontal orientation preference are activated (depending on the stimuli in Fig. 4.8b).

Because of the sharper distribution of neurons with orientation preference toward

horizontal, a smaller orientation di�erence (with the horizontal) of the rotating bar

will activate a certain population of neurons with similar orientation sensitivity but

this population will be comparatively much smaller compared to the population that

have been de-activated due to the increase in orientation di�erence. This will result

in a larger decrease in response of the neurons, which is re�ected as a faster decrease

(lesser tolerance) in responses with increasing stimulus deviation from the horizontal

orientation. Similar arguments can be given to explain the slower decrease (greater
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tolerance) in responses of neurons (because of broader distribution) in the case of

vertical con�guration.

In the case of misaligned bar investigation (Fig. 4.7), one bar is kept �xed and the

other is shifted (either vertically or horizontally) to simulate the varying amount

of misalignment. Because of this, the �lled-in section of the pair of bars (inside

the blind-spot) will have to be aligned at varying angles either toward vertical or

horizontal depending on the con�guration. For every misalignment, neurons having

orientation preference similar to that of the �lled-in section become activated for

�lling-in. Therefore, as discussed before, the �lling-in-value will be determined by

the population of neurons tuned to a speci�c orientation and the nature of variation

(with increasing misalignment) will be determined by the width of the distribution of

neurons. This is re�ected as better �lling-in (more −ve �lling-in-value) and faster de-

terioration in �lling-in with increasing di�erence in attributes in case of the horizontal

con�guration shown in Fig. 4.7b.

From the preceding discussions, it is evident that the predominance of horizontal

contours in natural scene results in better �lling-in operation in all three cases con-

sidered. This is re�ected as more −ve �lling-in-value as shown in Fig. 4.6, Fig. 4.7,

and Fig. 4.8(in blue). On the other hand, broader distribution of vertical contours

results in a more tolerant response in �lling-in operation with increasing di�erence in

attributes. This is re�ected in the curves (in red) with shallower gradient depicting

the changing �lling-in-value in Fig. 4.7 and 4.8.

Does the model HPC network predicts �lling-in-values in accordance with statistics of

natural images it was trained with? To validate these conclusions, we have repeated

investigations with misaligned bar stimuli (Fig.4.7) on a network trained on a natural

image and its 90-degree rotated version having vertical orientation superiority with

asymmetric distribution of contours, which is shown in Fig. 4.10a. The distribution

of orientation content of the upper-left image is shown at the bottom of Fig. 4.10a.
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We have evaluated the orientation at each pixel (upper left image in Fig. 4.10a) from

the direction of the local gradient (of the grayscale image). This was evaluated from

the arc tangent of partial derivative (in the kernel) in the vertical direction divided

by the value in the horizontal direction.

The distribution reveals the dominance of vertical contours and an asymmetric dis-

tribution around the dominant orientation (90 degrees) with a sharper rise (left side)

and a slower fall (right side). Training with these two images produced an ori-

entation preference of V1 neurons as shown in Fig. 4.10c, where the neurons are

equally sensitive to cardinal orientations and possessed similar distributions around

cardinal orientations, which nearly preserved the asymmetries of the original image

(Fig. 4.10a). This resulted in an equal �lling-in response as shown by the superim-

posed curves (representing �lling-in-values) in Fig. 4.10d. Despite the fact that the

distributions are similar, close inspection of Fig. 4.10c reveals that the distributions,

centered around cardinal angles, are asymmetric exhibiting a sharper rise at the left

side and a comparatively slower fall at the right side. This implies that as long as the

moving bar was aligned at 180−θ (90−θ) (Fig. 4.10b)), the �lling-in value altered at

a faster rate with the angle and when it was aligned at 180 + θ(90 + θ), the �lling-in

value altered at a comparatively slower rate. This is re�ected in the plot shown in

Fig. 4.10d as faster rise on the left and a slower rise on the right side. From these

results we conclude that the �lling-in-value predicted by the model HPC network is

in accordance with the statistics of images used for training, where the absence of

anisotropy in the dominance of the contours tuned to cardinal orientations results

in equal �lling-in response; and similar distribution of cardinal orientations results

in similar gradient in the changing �lling-in-value with increasing di�erence in the

attributes.
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Figure 4.10: Validation investigation. (a) Natural images with asymmetric ori-
entation distribution. The upper-left image mainly possesses contours with a bias
towards vertical orientation. The histogram exhibiting this property is shown below.
The upper-right image is 90 degrees rotated version of left one (histogram is not
shown). (b) A detailed schematic of the misaligned bar study conducted in horizon-
tal and vertical con�guration. The moving bar was shifted by a maximum amount of
3 pixels on both sides of the mean (aligned) position. For the horizontal con�gura-
tion it moved upward from the bottom and for the vertical case, it moved leftwards.
The angular deviation of the �lled-in portion (represented by dotted line inside the
BS) can be evaluated from θ = tan−1(position of the moving bar in pixels/8) (the
size of BS area is in pixels). (C) Orientation distribution of trained neurons at
level 1. The continuous line (black) plot is the envelope of the histogram, which was
obtained by convoluting the histogram, averaging over 7 bins. The shaded regions
around horizontal (in blue) and vertical (in red) orientation indicate the popula-
tion of neurons that is likely to be activated for �lling-in when the moving bar is
displaced by an amount degree (θ = tan−1(3/8) 20 degrees) around the mean posi-
tion. The height di�erence between red lines (blue lines) across this smoothed plot
is to indicate the neuronal density di�erence for the maximum misalignment (20
degrees) around the vertical orientation (horizontal orientation). The arrows above
the shadowed regions indicate the direction of the moving bar. (d) Plots of `�lling-
in-value' as a function of misalignment obtained from the response of the network.
Convention for lines and the shades are as described in Fig. 4.3.
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4.4 Discussions

In this chapter, we have studied the proposition that the properties of �lling-in at

the blind spot could be understood on the basis of natural image statistics in the

backdrop of the predictive coding mechanism. In the �rst part of this investigation we

studied the tolerance of �lling-in while in the second part, we investigated the various

anisotropies related to the �lling-in. Results of our investigations with bar stimuli

clearly show that the emergence of tolerance and anisotropies could be understood

in terms of the orientation distribution of the features in the natural scene.

This study suggests that natural scene statistics plays a signi�cant role in determin-

ing the anisotropy in perceptual �lling-in including the anisotropy in tolerance of

perceptual �lling-in at the blind spot. Over-representation of horizontal contours in

natural scene biases the orientation preference of neurons in V1 and that is possi-

bly responsible for the emergence of anisotropy, which is re�ected as a horizontal

preference in perceptual �lling-in operation. The width of the distribution of ori-

entation preference, on the other hand, determines the tolerance and anisotropy in

tolerance of �lling-in. The broader distribution of vertical contours in natural scene

possibly contributes to the greater stability towards vertical orientation in perceptual

�lling-in operation. Similar assumptions have been made in a previous study [16] to

explain the stability of information processing of cardinal orientations and its greater

sensitivity to small changes during visual perception.

These results demonstrate that there is a link between the orientation anisotropy in

the contours in the natural environment, orientation preference of neurons in V1 and

orientation bias in the perceptual �lling-in at the blind spot. Our result supports the

general speculation [15, 19, 93, 100, 101] that orientation anisotropy in natural scene

plays a signi�cant role in determining the anisotropy in the cortex as well as the

anisotropy in perceptual orientation preference.
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Firstly, we show that the model HPC network, which mimics the prediction-correction

computational paradigm of the cortex, is capable of building an internal model of the

outside environment by learning the statistics of natural scenes it is exposed to. This

is re�ected by the fact that the orientation preference, as well as the distribution

of orientation preference of model neurons in V1, is very similar to the predomi-

nance of horizontal contours and their distribution in the natural environment. The

plausibility of this paradigm can be established with the help of several previous

�ndings. In a recent survey [18], in the physiological domain, involving cells in the

cat's striate cortex indicate the preferential bias of cells towards horizontal orienta-

tion. Imaging studies also revealed [17, 96, 102] the preference of higher percentage

of the area of the exposed visual cortex towards horizontal orientation compared to

vertical. Innate speci�cation along with prolonged exposure to an anisotropic en-

vironment during development is believed to be responsible for the emergence of

over-representation of horizontal orientation preference of these neurons. In the psy-

chophysical domain, correspondence between the horizontal bias in human visual

processing and the anisotropy in the natural scene has been reported in [19, 98]. A

detailed survey in this work also shows the prevalence of horizontal contours in a

typical natural scene compared to vertical contours. In a recent study, it has been

demonstrated that visual orientation perception re�ects the knowledge of environ-

mental statistics [93]. In this work, the estimated internal model of human observers

was found to match the orientation distribution measured in photographs of environ-

ment though the di�erence between horizontal and vertical was not addressed.

Secondly, our investigations reveal that the anisotropy in orientation preference (hor-

izontal) of V1 neurons results in the similar anisotropy in the �lling-in performance

and the distribution (sharper or broader) of cardinal neurons results in the anisotropy

of tolerance in �lling-in performance. What is the biological plausibility of such a

scheme? In an imaging study [16] it has been shown that in V1 the distribution

of inputs to the cardinal neurons is narrower compared to those of oblique neurons.
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When exposed to selective perturbation induced by adaptation (oriented away from

the neuron's preferred orientation), cardinal neurons exhibited greater stability com-

pared to the neurons tuned to oblique orientation. This is attributed to the fact that

because of the narrower distribution of local inputs to the cardinal neurons, an adap-

tive stimulus would stimulate a fewer number of neurons in the vicinity compared to

that of the neurons tuned to oblique orientation. This demonstrates that the width

of the distribution (of neurons) plays a signi�cant role in determining the responses

when stimulated away from the preferred orientation. From a di�erent perspective it

indicates that for neurons having narrower distribution, a much greater change in re-

sponse will be observed with increasing deviation of the stimulus orientation from the

neuron's preferred orientation. This implies greater sensitivity and therefore, lesser

stability in the present context. Comparatively, neurons having broader distribution

will be less sensitive (more stable). This is similar to the �ndings of our observation.

Evidence in favor of larger neural population preferring horizontal orientation (com-

pared to vertical) have also been found in several studies [17, 18, 102], as discussed

earlier.





Truth are illusions whose 'illusioness' is

overlooked . . .

Friedrich Nietzsche

5
General Discussion

5.1 Summary

In this thesis, we have investigated the computational mechanism of �lling-in at

the blind spot. We postulated that this could be understood by examining the

hierarchical predictive processing inside the visual cortex. Moreover, we speculated

that the properties of �lling-in could be determined by the properties of natural

image statistic. We conducted several simulation studies related to the �lling-in of

bar stimuli in di�erent con�gurations on a three level HPC model network. The
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model network was trained with natural image patches and thereafter a blind spot

was emulated in the network by removing the bottom-up feed-forward connection.

In the �rst part of this thesis, to investigate the computational mechanism of �lling-

in, we studied the shifting bar �lling-in phenomenon. We recorded the response of

PE neurons at V1 in BS module while shifting a long bar across the blind spot, and

additionally, estimated the corresponding perceptual counterpart using the genera-

tive model. We found that the PE neurons in the BS area of model network exhibit

the non-linear response similar to the response pro�le reported in the recent phys-

iological studies [4]. Moreover, we also found that the generated perceptual image

corresponding to this response pro�le represents the course of �lling-in reported in

psychophysical studies.

In the second part of this thesis, we investigated the role of natural image statistics

in determining the properties of the �lling-in process. We conducted simulation

investigating tolerance and anisotropy in �lling-in (reported in recent psychophysical

studies) using bar-pair stimuli of di�erent arrangements (misaligned/disoriented bar-

pair) and di�erent con�gurations (horizontal/vertical bar-pair).

In tolerance investigation, we used bar-pair stimuli with varying in misalignment

and orientation across the blind spot. Results derived from the activity of the model

network, in response to these stimuli, show that the best �lling-in occurs for the com-

pletely aligned bars and it continues to occur (though in reduced strength) for a small

degree of misalignment but cease to happen after a certain degree of misalignment.

In the investigation related to the anisotropy in the �lling-in, we repeated the toler-

ance investigation for the horizontal as well as vertical bar-pair to study the anisotropy

associated to �lling-in-tolerance. Moreover, we used expanding bar stimuli to study

the anisotropy in �lling-in. We found that the model network exhibit better �lling-in

for horizontal (in compare to vertical) bar-pair for aligned arrangement. However, it

exhibits lesser tolerance when it comes to misalignment or disorientation of bar pair.
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These results are also in good agreement with the psychophysical results reported

earlier [4,6]. We discussed this results in the backdrop of the orientation distribution

of the features in the natural images and the distribution of learned receptive �eld in

our model network, which shows prevalence for the horizontal followed by the vertical

and then oblique orientation.

5.2 Discussion

This thesis proposes that the general computational principle of hierarchical predic-

tive coding could account for �lling-in at the blind spot. Moreover, this thesis also

proposes that the properties of �lling-in could be the re�ection of the properties of

natural image statistics.

For an input stimulus around the blind spot, higher areas (V2) generates uni�ed esti-

mate (including the estimate corresponding to blind spot region) of the input stimuli

on the basis of the learned statistical regularities of natural images. This estimate

remains uncorrected due to the absence of error carrying feed-forward connection

in BS region at V1 and therefore, local optimum-estimate is achieved essentially by

top-down prediction. In�uenced by learned statistical regularities, higher areas pre-

dicts a long continuous bar across the blind spot and this results in the perception

of completion. The nonlinearity observed in the responses of PE neuron and, hence,

the properties of �lling-in, result from the degree of similarity between statistics of

stimuli around the blind spot and the natural image statistics. Our results support

the general suggestions of predictive coding as a general computational principle of

visual cortex.

The anisotropy corresponding to the blind spot follows from the anisotropy in the

orientation tuning distribution of V1 neurons which was developed via learning in

the natural environment. The shape of the orientation distribution (of features)
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determines the tolerance in �lling-in, where broader (sharper) distribution contributes

to more (less) tolerant response and these results in the anisotropy of tolerance of

�lling-in. The sharper distribution (and higher population) of neurons tuned toward

horizontal orientation results into better estimate (hence better �lling-in) but more

speci�city about the estimate they generate and therefore less tolerant to deviations.

In some related studies [103�105], the role of cortico-cortical (V2-V1) interaction in

the �lling-in of illusory contours and the surfaces was suggested. Neumann [106]

proposed that the �lling-in of illusory contour could be the outcome of modulation

mechanism of the feedback signal from V2, which enhance the favorable response

pro�le of feature detecting neurons, mainly in the super�cial layers, at V1, in the

context of larger contour coded at V2. This model, therefore, has its limitation in

explaining the completion across the blind spot where the activity is mainly found

in the deep layer of the V1. In another recent study [107], authors tried to explain

the non-linear behavior of neurons in �ling-in in terms of the interaction of top-down

and bottom-up signal in a multinomial Bayesian model. In this model the interac-

tion between top-down and bottom-up signals has been assumed multiplicatively in

nature, and, consequently, feed-forward signals do not represent �prediction errors�

but �prediction matches�. However, recently, numerous electrophysiological and neu-

roimaging �ndings (for the review see [108, 109]) support the HPC assumption that

the feed-forward connection carries the �prediction-error�. In this study, considering

feed-forward neurons as error-carrying neurons, we have explained the non-linear re-

sponse of PE neurons as well as the other properties of �lling-in. These PE neurons,

in this framework, hypothetically reside in the deep layer of the cortex [59,110], which

is consistent with the physiological �ndings.

The exact neural circuitry for the implementation of predictive coding is not yet clear

to the researchers [109, 111]. Various implementations has been proposed [8, 59, 81,

108]. These proposition do agree on the idea of the separate population of PE neu-

rons and error-carrying neurons, which is recently demonstrated in the physiological
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study [112]. These propositions di�er each other on the idea of localization of PE neu-

rons and error-carrying neurons. In this context, the deep-layer activities of neurons

corresponding to the �lling-in could be regarded as a support for the location of PE

neurons in the backdrop of standard HPC proposition [59,110] and the physiological

support of deep-layer as a feedback providing layer. So this thesis not only provides

the support to the HPC as a general computational principle of visual cortex but

also suggest the link between the location of �lling-in activity and the localization of

the HPC circuitry, especially the location of PE neurons.

In the previous studies [6,14] on anisotropy in �lling-in, it was speculated that there

might be di�erent anisotropic processes responsible for di�erent kinds of anisotropy

observed in di�erent (misalignment, disorientation, and luminance di�erence) �lling-

in investigations e.g., it was speculated that the anisotropy in misalignment experi-

ment might have arisen from the anisotropy in vernier acuity. Here in this study, we

have proposed a possible alternative explanation in terms of a uni�ed principle based

on the role natural image statistics. We have demonstrated this in �lling-in investi-

gations involving misaligned and disoriented bar stimuli. Results of our studies also

suggest that the anisotropy in vernier acuity might have its origin in the statistics

of natural scenes. Evidence in support of these suggestions can be found in [113],

where it was argued that the vernier misalignment can be discussed on the premise

that the average orientation of a misaligned pair of abutting lines di�ers from that

of the aligned lines. Vernier acuity preferring horizontal directions over the vertical

including the cardinal over the oblique has been demonstrated in this work.

We speculate that the horizontal superiority [6] in the tolerance of luminance di�er-

ence could be discussed in terms of statistics of the natural scene. Luminance is a

surface property, and, therefore, for proper inference, the cortex should be capable

of encoding 3D surface information e�ciently. In a recent study [114] it has been

shown that disparity neurons are capable of encoding statistics of the natural scene.
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Studies [115] also show that the pair-wise functional connectivity between the dispar-

ity tuned neurons in V1 matches the anisotropic distribution of correlation between

disparity signals in the natural scene. Though, these studies mainly concentrated on

the cardinal vs non-cardinal aspect of the anisotropy, a close inspection of the plots

indicate a broader distribution of the horizontal features. This broader distribution

in disparity signal (or pair-wise connectivity) could be linked to the horizontal su-

periority in the tolerance of luminance di�erence. Some supportive evidence can be

found in a recent work [116] showing that relative luminance and binocular disparity

preferences are correlated in accordance with the trends of natural scene statistics.

These studies suggest a possible link between the anisotropy in the disparity signal

and the relative luminance. In a future work, incorporation of surface representa-

tion in the internal model in the HPC framework might explain the anisotropy in

luminance di�erence.

So far, very few psychophysical investigation about anisotropy at the blind spot has

been done. These investigations mainly focused on the �lling-in of the cardinal bar-

pair and do not trough light on the �lling-in of a cardinal bar pair. The conclusion of

our studies suggests that the, following the distribution of natural features, oblique

bar pair would have inferior �lling-in in compare to the horizontal and the vertical

bar pair. A psychophysical study, using oblique bar pair, could verify this suggestion.

This study does not reject any possible role of intracortical interaction in V1 in �lling-

in completion. There could be some other (or more than one) prediction-correction

pathway within V1, which can contribute to �lling-in based on contextual information

surrounding the blind spot.

What about the surface or texture �lling-in across the blind spot? In this thesis, we

mainly investigated the �lling-in phenomenon related to the bar stimuli, which in turn

mainly governed by the learned statistics of contrast information (edge, boundary,

etc.) found in natural scenes. To inference of surface and texture, the network will,
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�rst, need to learn these features from the scene. Some recent works suggest [114,117]

that the surface information can be encoded in the activity of disparity neurons in

V1. Once a representation of surface and texture is achieved in the probabilistic

framework by learning, the same prediction-correction mechanism might be able to

account for the �lling-in process related to the surface and the texture.

Whether the other �lling-in phenomena could be understood in the common frame-

work of the predictive coding? In this thesis, we investigated the �lling-in phenomena

at the blind spot under the general computational mechanism of predictive coding.

As we have discussed the absence of bottom-up feed-forward input the top-down

prediction plays an important role in the process of �lling-in. This condition may

hold for the other �lling-in related to the de�cit of the input (i.e natural or arti�cial

scotoma) and are expected to be explained in this framework. Other than that the

steady prolonged and stabilized retinal images might cause a temporary hindrance for

the feed-forward connection and ultimately �t into the condition for �lling-in we have

discussed above. Then, what about the �lling-in related to the illusions (i.e Kanizsa

shapes)? where apparently we can't �nd any absence of the feed-forward input by

any means. In such cases, a strong prediction signal might take over the feed-forward

signal [118]. These speculations could be veri�ed with a detailed and sophisticated

HPC model. Some recent advancement [81,82,119] has been made over the standard

predictive coding [8] to accommodate such sophistications. Future studies with such

extended model with the larger number of neurons, accommodating non-linearity,

surface representation, intra-cortical interaction, color etc. might provide the basis

for understanding the �lling-in as a whole.
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5.3 Conclusion

We demonstrate that the �lling-in at the blind spot is the outcome of the prediction-

correction mechanism of the cortex. In the absence of feed-forward connection cor-

responding to the blind spot the prediction made by the higher area dominates the

�lling-in process and the nature of �lling-in is guided by the statistical regularities of

the natural scene. Our results also suggest that the over-representation of horizontal

contours in natural scene biases the orientation preference of neurons in V1 and that

is responsible for the emergence of horizontal preference in perceptual �lling-in. The

width of the distribution of orientation preference, on the other hand, determines

the tolerance and anisotropy in tolerance of �lling-in, where the broader distribution

of vertical con- tours in natural scene contributes to the greater stability towards

vertical orientation in perceptual �lling-in operation.

In short, the results in this thesis suggest that the process of �lling-in completion at

the blind spot could be a manifestation of a hierarchical predictive coding principle

where �lling- in performance and associated properties are shaped by the natural

scene statistics. Moreover, this work o�ers new insights into the role of natural scene

statistics and suggests what is possibly the �rst systematic bridge linking anisotropy

in three levels: natural environment, visual cortex, and perceptual �lling-in at the

blind spot.



�Look deep into nature, and then you will understand

everything better.� �Albert Einstein
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A
Coding Length of HPC

The coding length can be derived from multivariate Bayesian theorem. For an input

signal I the task is to �nd the probability of the estimate r, context driven prediction

signal rtd and the associated parameters U . The posterior probability is therefore

(after eliminating the normalizing factor P (I) in denominator)-

P (r, rtd, U |I) ∝ P (I|r, rtd, U)P (r, rtd, U)

∝ P (I|r, U, rtd)P (rtd|r, U)P (r|U)P (U)
(A.1)
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In a strict hierarchy, I is independent of rtd. This results P (I|r, rtd, U) = P (I|r, U).

Likewise, P (rtd|r, U) = P (rtd|r). The statistical independence of r and U results

P (r|U) into P (r). Therefore the Equ. A.1 can be re-written as-

P (r, rtd, U |I) ∝ P (I|r, U)P (rtd|r)P (r)P (U) (A.2)

Assuming the probability distributions, P (I|r, U) and P (rtd|r) of the gaussian type-

P (I|r, U) = exp(−(I− Ur)2

σ
) (A.3)

P (rtd|r) = exp(−(rtd − r)
2

σtd
) (A.4)

The negative of log of the Eqn.A.2 after substituting in the equations A.3 and A.4

would provide the coding length-

ET =
1

σ2
(I− Ur)T (I− Ur) + 1

σ2
td

(rtd − r)T (rtd − r) + g(r) + h(U) (A.5)



B
Architecture of the PE Module

Fig. B.1 represents the inner architecture of a PE module. This PE module consist

of 3 PE neurons (gray colored solid circles in the upper right). On arrival of an input

I (lower left) the population of PE neurons make the estimate r of it (also consider

the feedback signal from the higher area neurons represented by green color blobs in

upper right) and sends the prediction signal Ur via feedback neurons (4 neurons in

green) to the lower area. The set of 4 neurons (left blue colored blobs) detect the

error (Ur − r) between the input vector I, with 4 element corresponding to a 2 × 2

image, and the prediction signal. The 3 error carrying neurons (red colored blobs)

then carry the error signal to the PE neurons to update its estimate.
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Figure B.1: Inner architecture of a PE module

The array of the square dot in red color (upper left or lower right) represents con-

nection or weighting matrix. Each row of which represents the e�cacy vector (or

receptive �led in the case of UT ) of a post-synaptic neuron. Each element (red squire

dot) in an e�cacy vector is the connection strength with the pre-synaptic neuron.

As we can see from the above architecture, in this kind of scheme the input image is

considered as a vector (not matrix or array) with value representing the gray level.

So how an image, which is basically an matrix of intensity pattern (pixel value)

converted to a vector? In a such scheme generally an image is coded as a column

vector by unfolding the matrix row by row (or column by column). For example an

image of size 2×2 is coded by a row vector of size 4×1 that would become the input

of I in the Fig. B.1.



C
Development of Receptive Field in BS area

In this thesis, the network was trained �rst and thereafter the blind spot was emulated

by removing the feed-forward connection in certain region. We argued that active

neurons in deep layer (5/6) corresponding to �lling-in has been reported to be of

binocular type [3, 4]. These neurons were found to respond to the inputs from both

eye and hence, possess binocular receptive �eld. It is, therefore, natural to assume

that, in normal binocular vision the feed-forward input from the non-BS eye will

cause the receptive �elds (of these deep layer neurons) to develop.

In this case, one can suggest that these neurons might get relatively reduced input

strength in the BS region since these are getting input from only one eye rather than
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from both eyes and that can lead to di�erent weighting pro�le. In this context, we

can argue that the strength of the relative input in BS area could be assumed to range

from half to the full, depending upon the nature of integration (linear or non-linear)

of the input from both eye. The simple linear summation of the input would lead

to the half of strength (in BS) while the average of inputs would give the uniform

strength. In between these two, one can assume a sigmoid non-linearity over the sum

of inputs.

For the simple summation case, Fig. C.1 shows the learned receptive �eld after

taking the reduced strength of the input into the account. As we can see that for

the relative strength of 0.5, at level 1, the features at are similar to its surrounding

though greatly reduced in strength which recovers greatly with the relative strength

of 0.7. The receptive �elds at level 2, on the other hand, appears to be una�ected

due to these strength reduction of the input in the blind spot. Hence, we argue

that the reduction of relative strength of input would not a�ect the generality of our

approach since �rstly, relative strength of 0.5 could be extreme, though it captures

(up to some extent) the similar features. And secondly, the receptive �elds at level 2

seems una�ected which should be obvious by considering theirs larger special extent.

From this result, we can reason that even the reduction of input, for the linear

summation case, in a reasonable amount, may not give rise to any qualitative change

in the learned receptive �elds of the neurons because the nature of the receptive �elds

is mainly governed by the statistical feature of the input. We, therefore, argue that

this situation may not alter the generality of our approach.
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Figure C.1: Learned receptive �elds corresponding to di�erent strengthen input at
BS region: (a) and (b) show the learned receptive �eld at level 1 (of size 12 × 12)
and level 2 (of size 30×30) after the BS region (central 8×8 pixel) were exposed to
0.5 of strength of surrounding input. Whereas, (c) and (d) show the receptive �elds
corresponding to 0.7 of strength of surrounding input.





D
Filling-in of the natural scene

The natural image shown in FigD.1a is taken as an example scene. We pre-processed

it (FigD.1b). From di�erent positions of this natural scene, �ve image patches of

30× 30 pixels were selected after preprocessing as shown in FigD.1b. These patches,

shown in FigD.1b, were fed to the to the HPC model network for investigation.

We measured the responses of neurons at level 1 for these input image patches in

both, BS and Non-BS network. The reconstructed images (`perceptual images') cor-

responding to the response of level 1 neurons is shown in the FigD.1c (second and

third row). The images in the second row represent the reconstructed patches when

85
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Figure D.1: (a) Natural image, (b) Prepossessed natural image. Black rectangles
with number indicates the 30× 30pixel image patches taken from the di�erent posi-
tions to feed into the HPC network as inputs, (c) First row corresponds to the image
patches described in (b), where di�erent positions are indicated by column numbers.
The images in the second row and the third row are the images reconstructed from
the response of level 1 neurons in Non-BS network and BS network respectively.

Hierarchical Predictive Coding network did not contain a blind spot (non-BS net-

work). The images in the third row, on the other hand, represent the reconstructed

patches when the network contained a blind spot (BS network). From the com-

parison, it is evident that the non-BS network was able to reconstruct the patches

e�ciently. On the contrary, the BS network could only reconstruct patches that con-

tained simple shapes (e.g. straight bar, slight curved bar in column 1, 2 and 3 in

FigD.1c) but failed to reconstruct patches that contained features that were relatively

complex in shape ( eg. angled bar, curvier bar in column 4, 5 in FigD.1c).
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These results are in accordance with major psychophysical observations that the

�lling-in at the blind spot occurs only for the simple structures and cease to occur

for the complex structures (curve and corner [120, 121]). However, there are a few

alternative suggestions [90, 122] that the �lling-in of curve and angle indeed occur,

though extensive studies in support of this hypothesis have not been done till date.

While results of this thesis support the �rst observation, it is not possible to make any

�nal remark. Studies with a Hierarchical Predictive Coding Network incorporating

a much more detailed model of V2 neurons may be necessary to resolve this issue

because it is generally accepted that neurons at V2 codes higher order structures.
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