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Synopsis

The contents of this thesis are mainly centered around the effects of externally

applied transverse magnetic field on the steady state characteristics of plasma

diodes. A detailed analytical and numerical study on plasma diodes in presence of

uniform transverse magnetic field is carried out in this doctoral research. A plasma

diode, in its simplest form, consists of two electrodes and a certain potential (V )

is applied across them. Charge carriers which are injected by the emitter and

collected by the collector, contribute a net current across the circuit. The problems

in deep space research as well as in near-earth space study, have actualized the

need of electrical energy sources of hundreds KW to tens MW power. To obtain

such values, a source with high efficiency up to more than 30 percent is needed.

This criteria is well satisfied with the Thermionic Energy Converter (TIC) of new

generation [1]. It is a diodic system which operates in a collisionless (Knudsen)

regime with surface ionization. The high-temperature TIC yields a very high

current density. As a result, there is a strong inherent magnetic field within the

interelectrode gap and it is transversal to the electron motion. This field reorients

the flow of the emitted electrons partially, resulting in lowering the output current.

The simplest example of the Knudsen diode is the Bursian diode [2], where a mono-

energetic beam of electrons is injected from the emitter. Not only in thermionic

energy converters [3], diode like phenomena are also exhibited by many physical

systems which are used for scientific and technological purposes, such as, microwave

generators [4], electronic switches [5], low pressure discharges and processing [6],

xerographic technologies [7], Q machines [8] etc. One of the most interesting

diodic features is “space-charge-limited flow” and it severely controls the operating

conditions of such systems.

In the first quarter of 20-th century, collective nature of bounded charge par-

ticles was firstly analyzed by Child and Langmuir [9, 10]. They studied a vacuum

diode with a certain potential bias V , and showed that the current transported

between two electrodes is proportional to V 3/2/L2 by assuming the velocity of the

charge particles to be zero at the emitter. It is known as the famous “Child-

Langmuir” law. Almost in the same time, the Russian scientists Bursian and

Pavlov studied a short circuited vacuum diode for monoenergetic electron beam

[2] and depending upon the values of external parameters, they found three dis-

tinct types of solutions in steady state. The solutions are as follows: stable solution

without electron reflection, unstable solution without electron reflection and stable
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solution with partial electron reflection for which potential distribution corresponds

to virtual cathode (VC). It has been shown that, if the diode gap value exceeds a

certain critical value, an aperiodic instability appears in the system. As a result of

it, the regime without electron reflection disappears and the system ends up with

a state of partial electron reflection. So, there is a threshold value of the current

that can pass through the vacuum diode in steady state. It is known as “Bursian

threshold” and the phenomena involved behind it, is called as “Bursian instabil-

ity”. This threshold situation, where the diode current reaches to its maximum

value, is called “space-charge-limit”. Later, Gill studied a vacuum diode experi-

mentally with a small velocity spread in the injected electron beam and confirmed

the existence of the threshold value of the diode current [11].

Kuznetsov et al. studied the Bursian diode, both analytically and numerically,

with arbitrary external voltage and discussed the solutions with and without elec-

tron reflections in detail [12, 13, 14, 15, 16]. In their works, all the steady state

solutions have been visualized through ε0 − δ parametric plot for a certain value

of applied voltage; where ε0 and δ are the electric field strength at emitter and

the diode gap respectively. For a particular value of external voltage, each point

on the “ε0 − δ”-curve denotes a steady state. From this diagram, they pointed

out two special situations which were mentioned as “SCL” point and “zero-point”

(or, “0”-point) in this diagram. The “SCL” point corresponds to the state with

maximum diode current and the “zero-point” appears for the situation when lon-

gitudinal velocity of an electron of the injected beam becomes zero within the

inter-electrode region for the first time. They showed that the ‘S’-shaped curves

in ε0 − δ parametric space consist of three distinct regions where each region rep-

resents a solution of particular type in steady state, and the “SCL” point and

“zero-point” differentiate these regions. Following the convention, introduced by

Fay et al. [17], these regions were termed as : “C normal branch” (ε0 ≤ ε0,SCL),

“C overlap branch” (ε0,SCL < ε0 ≤ ε0,0) and “virtual cathode branch”, the branch

corresponding to partial electron reflection (ε0 > ε0,0). Here the notations ε0,SCL

and ε0,0 represent the value of electric field strength at emitter (ε0) for SCL and

“zero-point” conditions respectively. Potential distributions corresponding to the

states for no electron reflection, maximum diode current and electron reflection

were also developed. To explain the stability properties of the steady state solu-

tions, “collector potential (ηc) vs emitter field strength (ε0)” diagram was utilized
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as well as, a relevant dispersion relation was derived by employing first order per-

turbation theory. It was shown that for every “ε0 − δ”-curve, C overlap branch is

unstable and the other two branches are stable under small aperiodic perturbation

[18].

To utilize the interesting properties of space charge limited flow for different

applications, the plasma diodes have been diagnosed extensively in recent years

[19, 20, 21, 22, 23]. In these works, a number of parameters (e.g., applied voltage,

temperature etc.) are identified to control the space charge current in diodic

systems. In this thesis, efforts are focussed to study how the presence of external

magnetic field modifies the space charge limit of the plasma diodes. For this

purpose, we have employed a simplified planar model with uniform magnetic field

which is perpendicular to the plane of electron motion. With the aid of basic fluid

equations, the relevant problems have been approached with two techniques: the

Euler and the Lagrange formalism.

In our first study, assuming the emitted electrons to be purely monoenergetic,

we have explored the steady states up to the situation where the longitudinal

velocity of an electron vanishes for the first time within the interelectrode region.

Using emitter electric field as a characteristic function, the steady state solutions

have been evaluated in accordance with the diode length, applied voltage and

magnetic field strength. This investigation shows that in a Bursian diode with a

transverse magnetic field, potential distributions remain single minimum functions,

but the height of minimum turns out to be below the initial kinetic energy of

electrons. It happens because of the fact that a part of the longitudinal kinetic

energy of the electrons is converted into transversal kinetic energy due to the

presence of magnetic field. Like the case of vacuum diode without magnetic field,

the steady-state solutions are demonstrated through the “emitter field strength vs

diode gap” diagram and the “SCL” and “zero-point” situations are investigated in

detail. It has also been explained from the energy conservation principle that, for

the case of “zero-point” solution, at the position of zero electron-velocity, potential

profile approaches to a threshold value. In presence of strong magnetic field, the

trajectories of the emitted electrons are bent and they start to lose their beam

characteristics. The value of the maximum diode current at space charge limit

also decreases with increasing strength of applied magnetic field. As a consequence,

(ε0, δ)–curves are displaced as magnetic field strength is enhanced. The SCL points

are displaced to the left, and at its right, solutions with no electron reflection are
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absent.

Next, we have investigated the stability properties of the steady state solutions

of a Bursian diode in presence of uniform transverse magnetic field. The dispersion

relation is obtained from the time dependent basic equations by using first order

perturbation theory. It is shown that the solutions corresponding to C normal

branch are always stable, and those of C overlap branch are unstable with respect

to the small aperiodic perturbation. When the strength of the magnetic field is

increased, the width of the unstable region (branch II) gradually decreases and

vanishes at a particular strength of the magnetic field. The method of “ηc − ε0”

diagram leads us to same results, where ηc is the collector potential.

In these works, emitted electrons have been assumed to be purely monoener-

getic. As soon as the potential distribution within interelectrode region reaches a

threshold value, emitted electrons are completely turned about by the magnetic

field. But, if there is a small velocity spread in the emitted electron beam, they can

be reflected back partially or completely depending on the strength of the applied

magnetic field, and as a result of it, the diode current decreases. To study this

behaviour, a reflection coefficient r is introduced, which is the ratio of reflected

to injected electron fluxes. This coefficient takes the value zero for the solution

without electron turning and one for complete electron turning. The situation

of partial electron turning appears in the limit 0 < r < 1. The branch (virtual

cathode branch or B branch) for partial electron reflection for which potential dis-

tribution corresponds to the virtual cathode formation, has been also plotted in

(ε0, δ)-diagram.

However, unlike the classical Bursian diode, a new region with non-unique

solutions has been explored. This region contains the solutions for which the

longitudinal velocity of the injected electrons vanishes for several times within the

inter-electrode space. The coefficient r, which controls the amount of the electrons

to be turned back by the magnetic field, is more than about 0.9 in this region.

Motivated by the fact that sometimes, electrons of the injected beam may

posses relativistic velocity, we next scrutinized the steady-states of a relativistic

planar vacuum diode driven by a cold relativistic electron beam in presence of

external transverse magnetic field. The situations where no electrons are turned

around by the magnetic field and they are turned around partially or totally, are

treated in a generalized way. The solutions are compared with similar ones ob-

tained for the Bursian diode with a non-relativistic electron beam. It was explained
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that the region of non unique solutions is enlarged as relativistic factor γ0 of the

emitted beam increases. It will be communicated soon.

Bursian diode is a purely non-neutral diode with only single kind of charge car-

riers (electrons). We have also attempted an analytical study of the steady states

of the plasma diodes, where the injected electron beam propagates through the

background of stationary and positively charged ions and in presence of external

transverse magnetic field. We have introduced an arbitrary neutralization param-

eter γ, which is the ratio of background ion density to injected electron density.

Note that, γ takes the value zero for the Bursian diodes and it is one for Pierce

diodes [24]. Along with the transverse magnetic field, the parameter γ is found to

play an important role to control the steady state properties as well as the stability

criteria. It will also be communicated soon.

As an application of our works, we can suggest to design the fast electronic

switches based on Bursian diode. The working mechanism of this electronic switch

involves a transition between the states of the normal C branch and the B branch.

Let us imagine a diode operating without magnetic field and the initial state lies

just to left of the SCL point. Here, the relevant current through the diode is nearly

equal to the maximum one (Jmax ∼ δ2SCL). When magnetic field is turned on, the

SCL points are displaced to the left, and to its right, the solutions without electron

reflection are absent. As a result, a transition process occurs in the diode resulting

to the final state corresponding to the branch with limited current. It is shown

that if the strength of the applied magnetic field exceeds a certain critical value,

the current turns out to be zero after switching, i. e., current cut-off is complete.

Otherwise the state corresponds to the regime with an incomplete current cut-off.

In summary, the results and conclusion presented in this thesis, would enrich

the understanding of different nonlinear aspects of plasma diodes.

The submission of this synopsis is recommended and approved by

the Doctoral committee.
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Chapter 1

Introduction

An objective of this thesis is to contribute to the knowledge of nonlinear phenomena

observed in the electron beam driven plasma diodes (like space charge limited flow,

phase-transitions, aperiodic instabilities etc.) in the context of the nonlinear diode

theory. A systematic theoretical study of the dynamics of the charge particles is

presented for the planar plasma diodes. The methods to study the solutions defining

the steady states of a plasma diode are solely based on the Eulerian and Lagrangian

descriptions. Before going deep into the investigation, we present a brief historical

overview on the past works as well as the motivation of studying a plasma diode in

presence of a transverse magnetic field.

1
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1.1 Brief Historical Overview

The space charge limited flow in a diodic system has attracted the attention since

the beginning of the twentieth century. Many systems in physical science which

are used in various technological purposes, such as, Q-machines [1, 2], thermionic

converters [3, 4, 5], microwave generators [6, 7], electronic switches[8], low-pressure

discharges and processing [9, 10], accelerators [11, 12], inertial confinement devices

[13, 14, 15, 16], pinch reflex diodes for intense ion beam generation [17], xerographic

technologies [18], semiconductor devices [19, 20, 21], ion diodes with inertial fusion

[22, 23, 24], vacuum microelectronics [25], metal-semiconductor layered cathode

[26, 27] etc., exhibit diodic behavior. In simplest form, each of the devices men-

tioned above, can be modeled as a planar diode. The space charge limit, which

usually corresponds to the condition of the maximum allowable current in diode

like systems, also restricts the optimum operation conditions in these devices. In

the Refs. [12, 28, 29, 30, 31], the basic physics and applications of the space charge

limit and virtual cathode are reviewed thoroughly. The existence of the limiting

value of the current indicates a transition from a state with high current density

to a state with negligible charge flow. Hence, it is crucial to study the impact of

the space charge limit on the operation condition for such systems systems where

diode like phenomena take place.

1.1.1 Basic structures of the Plasma Diodes

Due to its simplicity in basic structure, the particle transport in such a device,

can be well approximated as a one-dimensional, ballistic and monoenergetic flow

in a planar device. The descriptions of diodic systems by assuming such a planar
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model was started from the beginning of the twentieth century [32, 33, 34, 35, 36,

37, 38, 39, 40]. It has attracted many researchers even in modern days, mainly due

to its wide range of applicability in contemporary technologies [41, 42, 43].

Znb vb

+ B

,

n
i
;m

i
= 8

U
z=0 z=d

Figure 1.1: Schematic representation of a planar plasma diode. In case, there is any transverse
magnetic field, the direction of it is shown by the cross mark.

A diodic system generally consists of two electrodes, where charge carriers are

injected by the emitter plate and collected at the collector plate, contributing a net

current through the overall circuit. Fig. 1 shows a schematic diagram of a planar

diode model. An electron beam of density nb and velocity vb is injected into the

diode region from the emitter electrode at z=0, where it is kept at zero potential.

If no reflection occurs, all electrons reach the collector surface, at z = d. A bias

voltage U is applied across the diode region. Electrons which are reflected by

the internal space charge potential return to the emitter electrode and are totally

absorbed. The diode region can be assumed to be vacuum or to be occupied

uniformly by infinitely massive ions of constant density ni. The ratio, γ = ni/nb

determines the level of the neutralization. Depending on the operation conditions

of the diodes, the neutralization factor γ can take any values. For example, in

Bursian diodes, γ = 0, i.e., background ions are totally absent [35] and it is totally
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non-neutral system. On the other hand, the condition of charge neutrality (γ = 1)

appears in classical Pierce diodes [44]. For non-neutral Pierce diodes, γ can take

any possible values. As we are focussing mainly on the fast electron dynamics, the

ions can be treated as immobile. However, the necessary background of ions with

homogeneous distribution can also be provided if ions are injected into the diode

region with sufficiently large velocity perpendicular to the direction of the electron

motion. In this situation, the ions will leave the diode region without any change

in the density distribution in both longitudinal and transverse direction.

The adjective ballistic signifies that the charges flow within the diode gap with-

out collisions, i.e. the mean free path of the charge carriers is larger enough than

the diode length. This is a practical situation which occurs very often in diodic

devices like Q-machines [1, 2], thermionic energy converters [3, 4], cold electron

beam evaporation diode (or triode) systems etc [21]. Such a regime of a plasma

diode is referred as the Knudsen regime.

If we consider a planar diode where a monoenergetic beam of electrons is in-

jected by the emitter surface, the potential distribution [ϕ(z)] forms a minimum

within the inter-electrode region as a result of the space charge effects. This po-

tential minimum (say, ϕm) serves as a barrier to the electron flow. As long as the

kinetic energy of the injected electrons at the emitter is greater than the potential

barrier height (|eϕm|), the emitted electrons can cross the barrier and reach to the

collector surface. However, if for certain values of the relevant parameters, the

value of the potential barrier height (|eηm|) becomes equal to the kinetic energy

of an emitted electron, the longitudinal velocity of the electron vanishes at the

position of potential minima. This is the situation when potential distribution
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corresponds to the virtual cathode (VC). The steady-state solutions with a virtual

cathode arises when the potential minimum reaches a value for which longitudinal

velocities of the emitted electrons become zero for the first time. If the emitted

electrons are purely monoenergetic, i.e., if the velocity distribution function of the

emitted electron beam is a δ–function, all the electrons are reflected back by the

potential barrier (virtual cathode). But in reality, the electrons are always injected

from the emitter with a small velocity spread. So, in practical situations, there

will be always a few number of electrons which can overcome the potential barrier.

This is what happens in case of partial electron reflection.

The current-voltage characteristic curves of the diodic systems show a non-

Ohmic nature as a result of the space-charge accumulation. A current limitation

is also observed in these devices, whenever one of the following quantities exceeds

the critical value, the particle density, the current density and the gap distance.

This is space-charge-limit [32, 33, 34, 35, 45, 46, 47, 48]. In this situation, an

aperiodic instability develops in the system which destabilizes the diode. At this

critical point, the diode current reaches its maximum value and once this critical

point is crossed the system switches into a state with very negligible charge flow.

It happens due to the formation of the virtual cathode which reflects the electrons

partially or totally, depending on the parameters involved. The reason behind

such complex dynamical pattern in such devices lies in the boundary conditions.

For fixed boundary conditions, the flow characteristics at the emitter surface are

generally different from the collector end. In contrast to the periodic systems the

flow at the injection point has therefore no information about the actual status

of the diode. The linear stability analysis shows that, in case of time-dependent
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behavior, to meet the fixed boundary conditions, a small perturbation can lead to

the aperiodic instability.

The ballistic nature of the flow also provides a window to analyze the diode

phenomena in Lagrangian picture, where the dynamics is described in a reference

system co-moving with a fluid element. In some situations, the Lagrangian descrip-

tion is found to be more useful than Eulerian description, as it reduces analytical

complexity. The Lagrangian description also allows us to investigate the aperiodic

and oscillatory instabilities in the case of nonreflective equilibria.

Based on the different working conditions, plasma diodes can be classified into

few categories.

1.1.2 Bursian diode (pure electron diode)

A Bursian diode is non-neutral vacuum diode, where only electrons contribute in

charge transport between the electrodes. In the first quarter of 20-th century, the

study on the collective nature of the charge particles was initiated by Child and

Langmuir [32, 33]. Assuming zero electron velocity at the emitter, they studied a

vacuum diode and showed that, in steady state, the current transported between

two electrodes maintains a specific relation with the applied potential and inter-

electrode gap distance. It is known as the famous “Child-Langmuir” law. Almost in

the same time, the Russian scientists Bursian and Pavlov studied a short circuited

vacuum diode, where a monoenergetic electron beam of electrons is injected by the

emitter and transported toward the collector plate [35]. They explained for the

first time that, if there is a velocity spread in the emitted electron beam profile, at

some certain condition, injected electrons can be reflected back to the emitter par-

tially or totally. Depending upon the values of external parameters, they reported
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three distinct types of solutions in steady state. The solutions are as follows: the

stable solution without electron reflection, the unstable solution without electron

reflection and the stable solution with partial electron reflection for which potential

distribution corresponds to virtual cathode (VC). It has been shown that, if the

diode gap value exceeds a certain critical value, an aperiodic instability appears

in the system. As a result of it, the regime without electron reflection disappears

and the system ends up with a state of partial electron reflection. So, there is a

threshold value of the current that can pass through the vacuum diode in steady

state. It is known as “Bursian threshold” and the phenomena involved behind it, is

called as “Bursian instability”. This threshold situation, where the diode current

reaches to its maximum value is called “space-charge-limit”. Later on, this kind

of devices are named as “Bursian diode”. Gill studied a vacuum diode experi-

mentally with a small velocity spread in the injected electron beam and confirmed

the existence of the threshold value of the diode current [49]. He reported that

collector current initially grew with the increasing value of the emitter current and

after reaching a maximum value the collector current dropped down sharply. The

dependence of the collector current on the emitter current was observed to follow a

hysteresis pattern. Further experiment was carried out by a number of researchers

[50, 51, 52, 53, 54]. Fay et. al. [55] studied the stationary states of a vacuum diode

by considering cold electron flow and variable collector potential. They obtained

the analytical expressions for the potential distributions (PD) and current-voltage

relationships for the cases of no electron reflections, partial electron reflections and

total electron reflections. They introduced the notations, “normal C-flow” and

“C-overlap flow” for the respective steady state solutions when no electrons are
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reflected and when a fraction of the emitted electrons is reflected. These different

types of solutions were presented through the different regions of current-voltage

(I−V ) characteristic curves. The authors also pointed out that for specific values

of the parameters, more than one type of PD may exist. Llewellyn [56] first intro-

duced a Lagrangian-type treatment for the Bursian diodes where solutions were

presented in terms of the transit time of the electrons. This idea was later used

by Lomax [57] to study the aperiodic instabilities of the steady states. For a fixed

value of the dimensionless diode gap, different types of solutions were identified

depending on the transit times of the emitted electrons. These were as follows:

stable solutions without reflections, unstable solutions without reflection and the

solutions with electron reflections. Nezlin [58], in his study on the experimental

conditions of the beam propagation in rarefied plasmas, discussed the develop-

ment of various instabilities including the Bursian instability. Coutsias [59, 60]

used Lagrangian formalism to analyze the formation of the virtual cathode. He

also investigated the effect of thermal spread of the electron beam on the space

charge limit for a short-circuited vacuum diode and found that the current at

space charge limit decreases with increasing beam temperature. Later Alyeshin

and Kuz’menkov [61] showed that with the increasing ratio of the thermal velocity

and beam velocity at the emitter, the region narrows where two kinds of solutions

coexist with each other. When the value exceeds a critical value, only one type of

solution remains. Birdsall and Bridges [62] studied the time-dependent states of

Bursian diode with the help of particle-in-cell (PIC) code.

Kuznetsov et. al. studied the Bursian diode both analytically and numerically
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with arbitrary external voltage and discussed the solutions in detail for the situa-

tions when electrons do not suffer reflection and when they are partially reflected

[63, 64, 65, 66, 67]. In their works, all of the steady state solutions were visualized

through the ε0 − δ parametric plot for a certain value of applied voltage where

ε0 and δ are the electric field strength at emitter and diode gap respectively. For

a particular value of external voltage, each point on the “ε0 − δ”-curve denotes

a steady state. They showed that the curve in ε0 − δ parametric space consists

of three distinct regions where each region represents the solutions of a particular

type in steady state. Each curve also contains a right bifurcation point which cor-

responds to the state with maximum diode current. This point is named as “SCL”.

There is also a “zero-point” (or “0”-point) in this curve, for which an electron of

the injected beam loses its velocity within inter-electrode region for the first time.

The point “SCL” and “zero-point” define different regions of the “ε0 − δ”-curve.

Following the convention introduced by Fay et. al. [55], these regions are termed

as : “C normal branch” (ε0 ≤ ε0,SCL), “C overlap branch” (ε0,SCL < ε0 ≤ ε0,0) and

the branch corresponding to partial electron reflection which is also called “virtual

cathode branch” (ε0 > ε0,0). The symbols ε0,SCL and ε0,0 refer to the values of ε0 at

SCL and “zero-point”, respectively. In order to explain the stability properties of

the steady state solutions, “collector potential vs emitter field strength” diagram

was utilized and a relevant dispersion relation was derived employing first order

perturbation theory. It is shown that for every “ε0− δ”-curve, C overlap branch is

unstable and the other two branches are stable under small aperiodic perturbation

[68, 69]. With the help of “collector potential vs emitter field strength” plot, it

was also discussed that the solutions which belongs to virtual cathode branch, are
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stable with respect to the small perturbation. The stability of the steady states

corresponding to virtual cathode branch was also analyzed numerically using PIC

codes [70, 71]. Finally, Kolinsky and Schamel [72] studied the different states of

a Bursian diode with an arbitrary applied voltage with the help of Lagrangian

formalism. They labeled the solutions with no reflection as type-I flow, and the

other one with partial reflection as type-II flow. A dispersion relation associated

with the type-I flow was obtained which coincides with that of Lomax [57]. They

also showed that the solutions corresponding to the branches of type-II flow (the

one called C-overlap in the notation of Fay et. al. [55]) are unstable with respect

to the aperiodic perturbations. They also presented an analytical expressions for

various equilibrium quantities, such as the splitting rates in case of reflection, the

transmitted current etc.

1.1.3 Pierce diode

1.1.3.1 Neutral Pierce diodes:

Next we discuss another kind of plasma diode where the monoenergetic electron

beam leaves the emitter and is transported to the collector through the background

of uniformly distributed immobile ions. These types of diodes are called “Pierce

diode”. The term was first used by Kuhn [73, 74, 75]. In classical Pierce diode,

the emitted electrons are also completely neutralized by the uniform immobile ions

(γ = 1). Pierce [44], in his classical paper, studied theoretically a planar short-

circuited diode with a cold electron flow moving through the uniform background

of infinitely massive ions which neutralized altogether the electronic space charge.

He identified that a limiting value of the diode current also exists for this kind of

systems in the steady state. He also pointed out that this limiting value of the
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current is greater than the Bursian threshold value of current by a factor of 5.6.

He explained that the existence of this current limit arises due to the development

of the electron aperiodic instability which is also correlated with the feedback

mechanism between the electrodes through the external circuit. It is named as

“Pierce Instability” [73, 74, 76]. Pierce also derived the dispersion relation and

evaluated the maximum growth rate. Nezlin and Solntzev [77] studied a Pierce

diode experimentally to determine the threshold point of Pierce instability.

The stability properties of the stationary bounded plasma states were analyzed

by Kuznetsov and Ender [78] for an arbitrary spatial distribution of infinitely

heavy ions and for a nonzero thermal spread of the electron beam. A differential

equation for the perturbed potential was derived and solved analytically for two

cases. Firstly, they assumed emitted electrons to be monoenergetic. Secondly, the

distribution function of the emitted electrons was considered to be waterbag-like.

Boundaries of the aperiodic instability in the ηc, δ-plane were plotted for these

two cases, where ηc is the collector potential and δ is the dimensionless gap dis-

tance. They found that the perturbed potential profile can be obtained in terms

of the Bessel and Neumann functions. Later, the analysis of the stability proper-

ties of the Pierce diode was extended by many authors [79, 80, 81, 82]. Godfrey

[83] investigated the stability criteria of the short circuited Pierce diode without

electron reflection at equilibrium. With the help of an integral formalism, they

derived a dispersion relation for linear perturbations, involving aperiodic as well

as oscillatory solutions. In this study, the boundary effects to the electron dynam-

ics were also taken into account and the bifurcations were detected for δ ≈ 2.9π.

An analytic treatment of weak nonlinear oscillations in terms of three-harmonic
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approximation was presented by Hörhager and Kuhn for Pierce diodes [84]. And fi-

nally Ender et al. [85] used the Pierce diode as a basic model for a Knudsen diode

with surface ionization (abbreviated by KDSI). The effect of the finite thermal

spread was incorporated. A linear eigenmode theory of the KDSI was developed

and the profiles of the eigenmodes for the Pierce diode and the KDSI were shown to

be similar. Furthermore, the nonuniform, time-independent potential distributions

were developed corresponding to the situations of no electron reflection, electron

reflection and ion distribution corresponding to the ground states.

1.1.3.2 Non-neutral Pierce diode:

In case of non-neutralized Pierce diodes, the neutralization parameter (γ) which is

the ratio of background ion density to injected electron density, can take any value

other than ‘unity’. The steady states of non-neutralized Pierce diodes (γ0 ̸= 1)

were studied and the stability properties were analyzed by many authors [86, 87].

The case of electron reflection where the potential distributions (PD) corresponds

to the virtual cathode (VC), was also explored. Vybornov [88] studied in detail

the stationary states of the planar, short-circuited, non-neutralized Pierce diode

with infinitely massive ions and for different γ values in the regime where electron

reflection does not occur. He demonstrated different kind of solutions through the

ε0 − δ–plots, for a number of γ values. He also derived the dispersion relation to

evaluate the aperiodic stability properties for various γ values. He concluded that

for fixed γ in the range 0 < γ < 1, the steady states are aperiodically stable for

any value of diode current. Later, the Lagrangian approach was used by Chen

and Lindsay [89] to investigate the short-circuited non-neutral Pierce diode. They

reported the existence of oscillatory solutions without reflection and showed the
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regions of unstable, stable, oscillatory and chaotic solutions in the (γ, δ)-plane.

Yuan [90] and Kolyshkin [91] considered the effect of the finite ion mass and the

electron thermal spread on the aperiodic instability of a neutralized electron beam

in a planar diode. They derived a dispersion relation and plotted the branches

of the aperiodic Pierce instability. It was concluded that the finite ion mass can

increase the threshold value of the current at the transition point. An aperiodic

instability can only appear if the electron flow’s Mach number “M” exceeds unity.

The growth rate and the threshold current are found to be reduced from their

values in the cold beam case.

1.1.4 Further progress in this field

The effect of the finite velocity of the background ions on the plasma diodes was

investigated using the Lagrangian formulation by several authors [92, 93, 94, 95].

When the stability criteria of such systems were analyzed, few new growing modes

and damped oscillatory modes were observed, which in the limit vi → 0 become

Pierce-Buneman modes and undamped ion plasma oscillations, respectively. Kolin-

sky and Schamel [95] also showed that the counter injections of ions can introduce

new unstable oscillatory branches which can destabilize the diode for any values

of the Pierce parameter (δ) [94]. Kolinsky et. al. [96] tried to study theoretically

the mechanism of the Pierce-type hydrodynamic instability which is often found

experimentally in the thermionic discharges at low pressure. The influence of the

ion dynamics, collisions with neutrals and the sheath capacitance were taken into

account and the general Lagrangian description [93, 94, 95] was employed. They

asserted that few ion-neutral collisions can resist the coupling between the elec-

tron and ion dynamics on the electronic time scale. As a result, the growth of
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the oscillatory Pierce-Buneman modes is prevented. They also revealed the nature

of the “Hopf-bifurcation” at the instability threshold which is responsible for the

the nonlinear relaxation oscillations. The transient behavior during the rise of the

instability is qualitatively described with the help of hydrodynamic model.

The classical works of Child, Langmuir and Schottky were extended further to

the quantum regime by Lau et. al. [97, 98]. The limiting value of the diode current

was also reinvestigated with an external transverse magnetic field [99] as well as for

a diode where electrons are emitted in a self-regulating way [100]. The features of

the diodic systems were also explored for the multidimensional geometry [101, 103].

The analysis on the plasma diodes was also executed for the time-dependent states

by several authors [104, 105, 106]. Kuzneetsov and Ender developed a numerical

code (EK code) to study the time-dependent processes in plasma diodes [107, 108].

To utilize the interesting properties of the space charge limited flow for different

purposes, the plasma diodes were diagnosed extensively in recent years [109, 110,

111, 112, 113, 114]. In these works, a number of parameters (e.g., applied voltage,

temperature, injection velocity of electrons etc.) are identified to control the space

charge current in diodic systems.

1.2 Applications of the “Bursian-Pierce” Insta-

bilities

In the new generation of Thermionic Converters (TIC), heat energy is converted

into electrical energy when the emitter is heated up to a high temperature (&

2000K) to vaporize electrons. The electrons move across a small electrode gap

and are collected by the cooler collector surface. This kind of TIC operates in

collisionless (Knudsen) regime with surface ionization. At high temperatures, the



15

efficiency of the Knudsen TIC becomes very close to that of the Carnot cycle.

Thus, it is the most promising converter of thermal to electrical energy [115].

In the TIC, a Pierce type instability develops when operation point is switched

from the retarding potential region of the I-V-curve to the saturation current re-

gion. As a result, a virtual cathode appears within diode gap and current is

diminished. This effect was utilized to generate directly an alternating current

with the help of a TIC [116, 117]. As a basic model for the thermionic energy

converter (TIC), Gverdtziteli et. al. [118] studied experimentally the nonlinear

current oscillations in a Knudsen diode with surface ionization (KDSI) and mea-

sured the time to excite virtual cathode which in turn triggers the course of the

nonlinear oscillations at space charge limit. They also asserted that the occurrence

of the current limitation is closely related to the Pierce instability. Babanin et.

al. [119] experimentally determined the threshold condition of the large amplitude

oscillations of a KDSI (TIC) for a number of values of the neutralization parameter.

The double-layer dynamics and low-frequency oscillations of diode current were

studied by Iizuka et. al. [120] in a Q-machine which is effectively a KDSI. They

have measured the spatial potential distributions at different times which was

useful to distinguish a slow and a fast stage of the process which were developed

due to a Pierce-type instability.

As it was discussed previously, as soon as the beam current exceeds the limiting

value, the aperiodic instability is developed. As a result, virtual cathode is formed

and it begins to oscillate. The electron beam interacts with the time dependent

electric field generated between the emitter and the VC. In this process, the beam

energy is converted into microwave radiation. Devices operating on the basis of
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the VC oscillations are called vircators [121, 122].

A successful application of the SCL current was reported by Modukuru et. al.

where they showed that the numerically predicted onset of current self-quenching

in a metal/CdS/LaS cold cathode in the presence of inelastic scattering in the CdS

layer can be explained by the SCL-theory [123].

A model for fast electron switches based on the event of state transition between

high and low current branches was also proposed. Here external voltage ensures

the rapid transition of states by controlling the space charge limit [107, 124].

1.3 Motivation to study the effect of the trans-

verse magnetic field

The advancement in modern deep space research actualized the need of electri-

cal energy sources of hundreds KW to tens MW power with an efficiency more

than 30% . These criteria are well satisfied with the Thermionic Energy Converter

(TIC) of new generation. To achieve such high efficiency, the required collector

temperature is around 1300-1500 K. The device operates in a collisionless (Knud-

sen) regime with surface ionization. To decrease the relative amount of power loss

(due to the radiation) with respect to the electrical power yield, the temperature of

the emitter should be high. As a matter of fact, the efficiency of high-temperature

TIC can achieve the maximum limit which is very close to the efficiency of a Carnot

cycle. For higher emitter temperature, the optimum temperature of the collector

also becomes higher. Theoretical studies suggest that, with an emitter temper-

ature of 2600K and collector temperature of 1500K, the specific power and the

efficiency of the TIC can be achieved up to 50W/cm2 and 30%, respectively [115].
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The diodic devices like high-temperature TIC [125, 126, 127], high power mi-

crowave sources (vircators) [128, 129, 130], etc. yield a very high current density.

High injection velocity also occurs in case of ferroelectric emission and field induced

emission from plasma cathodes [131, 132]. As a result of it, a strong inherent mag-

netic field generates within the inter-electrode gap. It is generally transversal to

the electron motion. This field is strong enough to reorient partially the flow of

the emitted electrons in reverse direction reducing the net diode current. Devel-

opment of the virtual cathode and nonlinear oscillation is also common for a TIC

which operates in the Knudsen regime [5, 118, 120, 133]. It was reported that the

presence of strong magnetic field deviates the electron distribution function from

the beam like character and helps in quenching the instabilities and oscillations.

In the results [5, 118], it was shown that, with an increase in the external trans-

verse magnetic field, first, oscillation amplitude decreases, then, ultimately these

oscillations are suppressed. Thus, the investigation of the effect of the transverse

magnetic field on the development of instability and non-linear oscillations in the

Knudsen diodes are crucial for diodic systems. In order to check the effect of such

a transverse magnetic field on the diode features, throughout this thesis, we shall

consider a planar model for the plasma diode where an external magnetic field

is applied along the transverse direction. We shall also assume that the electron

beam current has little influences on this field, but the external magnetic field can

affect the beam profoundly. Such a model will allow us to obtain the analytical

results for the diode with an electron beam.



18

1.4 Outline of the thesis

The outline of this thesis is briefly described below:

In chapter-II, the analysis on the steady-states of a planar vacuum diode

driven by a cold electron beam (the Bursian diode) under an external transverse

magnetic field is presented. The analysis is performed up to the regime when the

longitudinal velocity of an electron becomes zero within the inter-electrode gap for

the first time. Solutions are represented through the different branches of “emitter

electric field vs diode gap” diagram. It is shown that the transverse magnetic field

modifies the “space-charge-limit” significantly.

In chapter-III, we have performed a stability analysis of the steady-state

solutions which have been presented in the chapter-II. For this purpose we have

used the Lagrangian description. With the help of a perturbative approach, a

dispersion relation has been derived to study the effect of the transverse magnetic

field on the stable and unstable states.

Chapter-IV covers the analysis on the Bursian diode for the situation when

the emitted electrons suffer partial or total reflection in the presence of a trans-

verse magnetic field. It is shown that an extra branch of solutions appears in the

“emitter electric field vs diode gap” diagram to represent the time-independent

states corresponding to the case of electron reflection. The dependencies of the

bifurcation points on the external magnetic field have also been studied.

In chapter-V, we have extended our study on the steady state solutions of

Bursian diode into the relativistic regime taking into account a constant magnetic

field along transverse direction.
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Chapter-VI is devoted to investigate a generalized Pierce diode in the presence

of an external magnetic field applied along the perpendicular direction. A new

family of steady states have been found along with the Bursian ones. It have been

observed that the non-Bursian solutions are very sensitive to the magnetic field

and disappear when the strength of the magnetic field crosses a critical value.

Chapter-VII extends the investigation of the steady states of the non-neutral

Pierce diode to the regime where a portion of the emitted electrons are reflected

back to the emitter due to the presence of the uniform magnetic field in transverse

direction.

In chapter-VIII, a summary of the results and discussions made in this doc-

toral research work is presented. The problems remain unsolved are also discussed

point wise which could be interesting to pursue further.
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Chapter 2

Effect of transverse magnetic field
on the steady-state solutions of a
Bursian diode

In chapter one, we have presented our analysis on the steady-states of a planar

vacuum diode driven by a cold monoenergetic electron beam (the Bursian diode)

under an external transverse magnetic field. The analysis covers the regime of no

electron reflection only. For fixed values of the diode length, the applied voltage,

and the magnetic field strength, the solutions are evaluated using emitter electric

field as a characteristic function.

21
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2.1 Introduction

A TIC in its simplest form can be modeled by a Bursian diode. In the Bursian

diode, a mono-energetic (nearly) beam of electrons enters from the emitter and

travels within the inter-electrode space under the self-consistent electric field [35,

67, 69]. For a fixed value of the applied potential (U), the steady state solutions

can be imaged as a continuous S-curve in the “electric field near emitter vs diode

gap”- parametric space. For any U , different regions of these curves represent

steady state solutions of different types. One of the regions represents the solutions

which correspond to the case where the particle flux at the collector is always lesser

than the same at the emitter. This is the solution with a virtual cathode (VC)

[134, 135]. The right boundary of each curve refers to the situation when diode

current can reach its maximum value (space charge limit). In literature, this

maximum value of the current is denoted by the term SCL-current (Space Charge

Limited current). The presence of such critical current value in diodic systems

is utilized to develop fast electronic switches [136, 137]. On the other side, an

inherent non-linear oscillation arises in the Bursian diode once virtual cathode is

formed [66, 138]. The transient processes between an open state of diode and a

state with virtual cathode are related with the development of the Bursian-Pierce

instability [136].

A number of theoretical works [139, 140, 141, 142, 143, 144, 145, 146] dealt

with the effect of the magnetic field on the Knudsen TIC parameters. In references

[144, 145], the velocity distributions (DF) of the emitted electrons were assumed

as the superposition of a large number of separate groups. The particles of each

group have the velocity in a narrow region from v0 to v0+∆v0. These are named as



23

the beams. The formulas of particle trajectories were deduced, and contributions

from each separate beam to the beam density were determined. An analytical

expression was obtained for the beam density at any point of the diode gap.

In this chapter, we investigate how the space charge limit and other charac-

teristic points of a planar vacuum diode get modified due to the presence of the

magnetic field. Our analysis is limited up to the regime when longitudinal compo-

nent of electron velocity vanishes for the first time.

2.2 The electron dynamics

We consider two planar electrodes of infinite transversal extent which are placed

at a distance d from each other. Across them, a potential difference U is applied.

The z-axis is directed perpendicular to the emitter surface (z = 0). The external

magnetic field is uniform and parallel to the emitter surface. A non-relativistic

monoenergetic electron beam is supplied by the emitter with density n0 and in-

jection velocity v0 perpendicular to the emitter surface with no proper magnetic

field. The electrons move without collisions under self-consistent electric field and

external magnetic field. They are absorbed either at the collector or at the emitter

when they are turned around by the magnetic field. In presence of the transverse

magnetic field, electrons move on the {z, x} plane perpendicular to this field and

have two components of a velocity: vz and vx. The electric field is conservative and

can be calculated from the scalar potential ϕ which depends only on z-coordinate.

This planar model will be adopted throughout the analysis of this thesis.

To explore the time-independent states, first, we study the motion of an electron

and then find the velocity distribution v⃗(z) within the inter-electrode gap. In
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next step, we obtain a second differential equation for the potential profile [φ(z)]

utilizing the basic equations. Electrons move on {z, x} plane perpendicular to the

direction of the applied magnetic field. Their velocity v⃗ obeys the equation

v⃗ · ▽v⃗ = − e

m

(
E⃗ + v⃗ × B⃗

)
. (2.1)

Taking the z-and x-components of the above equation and using E(z) =

−dφ(z)/dz, we obtain

vz
dvz
dz

=
e

m

dφ

dz
− ωvx, vz

dvx
dz

= ωvz. (2.2)

In Eq. (2.2), Larmor frequency ω and radius λL are defined as

ω =
eB

m
=

(
2e

m

)
V

1/2
0

λL

[s−1] and λL =
mv0
eB

≈ 0.3372 · 10−3V
1/2
0

B
[cm]

respectively. Here, the beam accelerating voltage V0 = W0/e = mv20/(2e) is in

Volts and the magnetic field B is in Teslas; e and m represent the charge and mass

of an electron. Eqs. (2.2) are also supplemented by the following conditions at the

emitter:

vz(0) = v0z = v0, vx(0) = v0x = 0. (2.3)

From the second equation of the system of equations (2.2) and the second

boundary condition of Eq. (2.3) we have

vx(z) = ωz. (2.4)

Eq.(2.4) indicates that vx increases linearly when an electron moves away from the

emitter. Now substituting the expression of vx in the first equation of Eqs. (2.2)

and integrating we obtain

(m/2)v2z(z)− 2eφ(z) + (m/2)ω2z2 = (m/2)v20. (2.5)
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Here the boundary conditions at the emitter for the z-component of the electron

velocity [Eq. (2.3)] and for the potential [φ(0) = 0] were used. Eq. (2.5) is the

energy conservation law for the electrons moving in a self-consistent electric field

and under the transverse external magnetic field. The presence of the term due to

the magnetic field adds some features in the distributions of the electron velocity

and density within the inter-electrode gap. The magnetic field converts a portion

of the longitudinal electron energy into transverse one. As a result, the longitudinal

electron energy diminishes and the potential barrier height for electrons turns out

to be lower than initial energy of the electrons. Additionally, due to the magnetic

field, the electrons can be turned back even at a point where φ(z) > 0.

From Eq. (2.5) we obtain

vz(z) =
[
v20 + 2(e/m)φ(z)− ω2z2

]1/2
. (2.6)

One can see that the velocity vz does not depend on the sign of B as the square

of the magnetic field enters in Eq. (2.6). In the absence of the magnetic field, the

electron velocity vanishes within the inter-electrode region of the Bursian diode

when the potential barrier height becomes equal to the electron energy at the

emitter, and it happens at the position of the virtual cathode. In this condition,

the emitted electrons are completely reflected by the potential barrier and they

are sent back to the emitter, provided that the injected beam is purely mono-

energetic. When there is an external magnetic field along the transverse direction,

the nonnegativity condition of the radicand in (2.6) demands that, PDs φ(z) should

be confined within a region which is limited by a square parabola p(z;ω) (Fig. 2.1):

φ(z) ≥ p(z;ω) ≡ (m/2e)
(
ω2z2 − v20

)
. (2.7)
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Figure 2.1: Normalized potential eφ/(mv20) as a function of normalized space z/λD for two
ε0 = eE0λD/(mv20) values: (1) ε0 = 0.6 and (2) 1.0. Dashed curve corresponds to φ = p(z, ω) =
(e/2m)(ω2z2 − v20); ω/ω0 = 1.0; U = 0.

Equality sign in (2.7), i. e. the condition

mv20/2 + eφ(zH) = mω2(zH)
2/2 (2.8)

takes place at a point where the z-component of the electron velocity vanishes

and the electron is turned around by the magnetic field. For the Bursian diode

without magnetic field, the turning of electrons happens at the position of the

potential minimum. But in the presence of the transverse magnetic field, the

event of electron turning can occur at the position which may not be the position

of potential minimum. The problem is solved by two methods: with the Euler and

the Lagrange formulation.

2.3 Steady-state solutions. The Euler method

In this section, we study the features of the steady-states in terms of the Eulerian

variables. We set a value for the potential difference U between the electrodes.

For a given value of the electric field strength at the emitter (E0), we calculate
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the velocity and electron densities, as well as the potential profile within the inter-

electrode gap. The process starts from the emitter, and terminates at the moment

when the value of the potential turns out to be equal to U . We take the rele-

vant z-coordinate as the magnitude of the interelectrode distance d. Increasing E0

gradually, we build up the dependence of E0 on d.

We derive a differential equation for the potential and it is solved using a

numerical approach with proper boundary conditions. For time-independent case,

it is sufficient to use the continuity equation, the relation between the velocity

and the potential [Eq. (2.6)], and the Poisson’s equation. The analysis presented

in this chapter is limited up to the condition when the longitudinal velocity of an

emitted electron vanishes for the first time within the diode region. When there is

no electron turning, i. e. the condition (2.8) does not hold anywhere, the continuity

equation gives

n(z)vz(z) = n0v0. (2.9)

Substituting n(z) from the Poisson’s equation and using the relationships (2.6)

and (2.9), we obtain a nonlinear differential equation for the electric potential

d2φ

dz2
=

e

ϵ0

n0v0

[v20 + 2(e/m)φ− ω2z2]
1/2

. (2.10)

Next, we introduce the dimensionless quantities by using the kinetic energy of

electrons at the emitter W0 and the Debye length λD[58] as the basic units for the

energy and length respectively

λD =

[
2ϵ0W0

e2n0

]1/2
≈ 0.3238 · 10−2V

3/4
0

J
1/2
0

[cm],

W0 = mv20/2. (2.11)
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Here, the beam current density J0 = en0v0 and the accelerating voltage V0 =

W0/e are taken in Amperes per square cm and Volts, respectively; the free-space

permittivity ϵ0 ≈ 8.854 · 10−12C2/Nm2. Then, for the dimensionless coordinate,

time, velocity, potential and electric field strength we take ζ = z/λD, τ = tω0,

u = v/v0, η = eφ/(2W0), ε = eEλD/(2W0); here ω0 = v0/λD is the plasma

frequency. The dimensionless inter-electrode gap and the applied voltage between

the electrodes are denoted by δ and V respectively.

Now, the equation (2.10) takes the form

d2η

dζ2
=
[
1 + 2η − Ω2ζ2

]−1/2
. (2.12)

Here, the dimensionless quantity Ω is the Larmor’s frequency which is written in

the unit of the characteristic frequency ω0:

Ω = ω/ω0 = λD/λL ≈ 9.603V
1/4
0 J

−1/2
0 B. (2.13)

In Eq. (2.13), V0 and J0 are taken in Volts and A/cm2, and B in Teslas. The

boundary conditions for (2.12) are

η(0) = 0, η(δ) = V. (2.14)

Now we analyze the potential distribution (PD) in detail, i.e. we solve the

Eq. (2.12) with B.C. (2.14). A diode PD is a single minimum function. We denote

the value of the potential at the point of minimum (at ζ = ζm) by ηm. We take

a certain electric field strength ε0 = ε̃0 at the emitter, and integrate the equation

(2.12) from the emitter (ζ = 0) towards the point of the minimum. The position

and the value of the potential minimum (ζm, ηm) are obtained under the condition

of zero electric field strength at this point. Further, we integrate Eq. (2.12) from a
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point ζm toward the collector with the boundary conditions

η(ζm) = ηm, dη/dζ(ζm) = 0. (2.15)

The integration terminates at the point ζ where the potential becomes equal to V .

This is the value of the collector voltage at the location δ.

While integrating Eq. (2.12), we use an approximation mode as follows. First

we take a value of the potential at minimum (ηm) for the chosen value of ε0. In

the region between the emitter and the location of the potential minimum, we

do not take a coordinate frame, but that of a potential: ηk = ηk−1 + ∆ηk, k =

1, . . . , N, η0 = 0. Then we multiply both sides of the equation (2.12) by 2dη and

integrate it once within each layer (ζk−1, ζk):

ε2k = ε2k−1 + 2

∫ ηk

ηk−1

dw

[1 + 2w − Ω2(ζ ′)2]1/2
. (2.16)

Here, εk = −(dη/dζ)|ζ=ζk and it is the electric field strength at the point ζ = ζk.

To integrate each integral, PD is approximated with a straight line

η(ζ) = ηk−1 − (ζ − ζk−1)εk,

εk = qkεk−1 + (1− qk)εk. (2.17)

In (2.17), the weights qk lie within (0, 1). In each layer, values of qk, generally,

can be different. For our purpose, we take qk = 0.5. Using the approximations

mentioned in Eq. (2.17), each integral becomes

G(ζk−1, ηk−1, εk−1, ηk, εk) =

∫ ηk

ηk−1

dw

[1 + 2w − Ω2(ζ ′)2]1/2

=

∫ ηk−ηk−1

0

dw{
(1 + 2ηk−1 − ζ2k−1Ω

2) + 2 (1 + (ζk−1/εk)Ω2)w − (Ω2/εk
2)w2

}1/2
=

∫ ηk−ηk−1

0

dw

(A+Bw + Cw2)1/2
.

(2.18)
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Here

A = 1 + 2ηk−1 − ζ2k−1Ω
2 > 0,

B = 2
[
1 + (ζk−1/εk)Ω

2
]
,

C = −(1/εk
2)Ω2 < 0.

and

∆ = 4AC −B2 = −4
{
1 + [(1 + 2ηk−1 + 2ζk−1εk)/εk

2]Ω2
}
< 0.

Depending on the value of Ω, the function G (2.18) reads as

− 1

Ω

[
arcsin

(
B − 2[(ηk − ηk−1)/εk

2]Ω2

√
−∆

)
− arcsin

(
B√
−∆

)]
, Ω > 0,√

1 + 2ηk −
√
1 + 2ηk−1, Ω = 0. (2.19)

Thus, to obtain the PD in the region to the left of the potential minimum,

within each step k, a system of the difference equations

ηk = ηk−1 +∆ηk,

ε2k = ε2k−1 + 2G(ζk−1, ηk−1, εk−1, ηk, εk),

εk = qkεk−1 + (1− qk)εk,

ζk = ζk−1 − (ηk − ηk−1)/εk (2.20)

is solved under conditions as follows:

η0 = 0, ε0 = ε̃0, ζ0 = 0. (2.21)

As a result, within each step, the value of the electric field strength εk and coor-

dinate ζk are determined. It should be noted here that, in this region, εk ≥ 0.



31

The equation for εk [the 2nd equation of the Eqs. (2.20)] is the transcendental

one. So, within each step k, an iteration is carried out, taking an approximate value

ε
(0)
k , firstly, at the right side of the 2nd equation. Then ε

(1)
k is calculated. From

the next two equations, εk
(1) and ζ

(1)
k are obtained. Next, relevant parameters for

the second approximation are calculated and so on.

For a particular value of k (k = K ≤ N), the value of the right side of the 2nd

equation of Eqs. (2.20) becomes negative. At this step, the iterations are carried

out over ηK as εK becomes zero. As a result, the required value of ηm and ζm are

determined.

When the coordinates of the potential minimum are determined, PD is calcu-

lated at the right side of the point of minimum ζm. Here, Eqs. (2.20) are solved

with the boundary conditions (2.15). The value of the potential step is taken as

(V − ηm)/N . It should be kept in mind that the electric field strength within this

area is negative. The calculation is carried out until the potential η becomes equal

to V . At this stage, the corresponding value of ζ is the diode gap δ. Thus, the PD

is obtained for the taken value of the electric field strength at the emitter. Taking

different values of ε0, the corresponding δ–values are calculated in this way.

Next, the value of the electric field strength at the emitter is smoothly increased,

and, for each value of ε0, the profiles of the potential, velocity and electron density

within the inter-electrode gap are evaluated. This calculations show that the very

weak magnetic field (Ω ≪ 1) actually has no effect on the diode characteristics.

Its effect arises as Ω ≥ 0.1. It turns out that, for the case under consideration

(V = 0), the dependence of the velocity uζ on the coordinate ζ shows to form a

single minimum (Fig. 2.2). The spatial dependence of uζ is found to be monotonic
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Figure 2.2: Velocity distribution in the interelectrode gap drawn for different ε0 values: (1)
ε0 = 0.6, (2) 0.7, (3) 0.8, and (4) 1.0; Ω = 1.0; V = 0. Closed circles mark position of the
potential minimum.

function for small ε0 values, and its minimum lies on the collector. As the strength

of ε0 is increased further, the location of the velocity minimum (ζvm) appears within

the inter-electrode gap. With increasing ε0, the position of the velocity minimum

begins to shift to the emitter and the minimum value of uζ reduces. And finally,

for a certain value of ε00(Ω), the minimum velocity vanishes. We name this state

as “zero-point” and at this condition ε0 = ε00. This is demonstrated in Fig. 2.3. As

we can also see that for higher values of ε0, the position of the velocity minimum

(ζvm) approaches to the location of the potential minimum (ζm).

Like the case of Bursian diode without magnetic field, it is convenient to denote

the steady state solutions by the points on a {ε0, δ}–plane [67, 66]. At a fixed V ,

those lie on a continuity curve named as the branch of solutions. In Fig. 2.4

these branches are shown for a number of Ω values. Here, each curve ends at

ε0 = ε00, i.e., when the longitudinal velocity distribution becomes tangent to the

line uζ = 0 for the first time. The ε0 − δ parametric plots also show a region of

non-unique solutions. On the right boundary of this region, there is a bifurcation
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Figure 2.3: Plots of positions of (1) the collector, (2) the potential minimum, as well as (3) the
velocity minimum vs ε0 for Ω = 1.0; V = 0.

point SCL (space charge limit). The left boundary point refers to the situation

when uζ becomes zero for the first time within interelectrode gap. We denote it

by an index “0” (zero-point). With increasing strength of the applied magnetic

field, the width of the region of ambiguous solutions (δ0, δSCL) narrows (Fig. 2.4)

and it vanishes at Ω ≈ 1.32. The relevant formulas for the parameters of SCL and

zero-point are derived using the Lagrangian variables.
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Figure 2.4: Curves ε0(δ) drawn for various values of Ω: (1) Ω = 0, (2) 0.3, (3) 0.6, (4) 1.0, (5)
1.2, and (6) 1.321; V = 0. In the curves uζ(ζ) > 0 everywhere.
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2.4 Features of steady-states. The Lagrange method

Now we solve the problem using the Lagrangian variables. In 1D time-independent

case, we start with the basic governing equations which are the continuity and the

momentum equations along with the Poisson’s equation. They are written in a

dimensionless form as:

d

dζ
(nuζ) = 0,

uζ
duζ

dζ
= −ε− Ωuχ, uζ

duχ

dζ
= Ωuζ ,

dε

dζ
= −n. (2.22)

The boundary conditions to be used are, n(ζ = 0) = 1, uζ(ζ = 0) = 1, uχ(ζ =

0) = 0, electric potential, φ(ζ = 0) = 0, and field ε(ζ = 0) = ε0 (ε0 is used as a

parameter).

To solve these nonlinear equations, we introduce the Lagrangian coordinate τ

and the Lagrange transformation,

ζ =

∫ τ

0

uζ(τ
′)dτ ′.

Thus, uζd/dζ = d/dτ . Eqs. (2.22) take the form

d

dτ
(nuζ) = 0,

duζ

dτ
= −ε− Ωuχ,

duχ

dτ
= Ωuζ ,

dε

dτ
= −1. (2.23)

Combining Eqs. (2.23) we can have

d2uζ

dτ 2
+ Ω2uζ = 1. (2.24)
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Using the stated boundary conditions, the solutions in terms of the Lagrangian

coordinate can be obtained as

uζ(τ) =
1

Ω2
+

(
1− 1

Ω2

)
cosΩτ − ε0

Ω
sinΩτ ,

uχ(τ) =
1

Ω
τ +

(
1− 1

Ω2

)
sinΩτ +

ε0
Ω
(cosΩτ − 1),

n =
1

uζ

,

ε(τ) = −τ + ε0. (2.25)

The relation between the Eulerian variable ζ and the Lagrangian one τ can be

derived in following form

ζ =
1

Ω2
τ +

1

Ω

(
1− 1

Ω2

)
sinΩτ +

ε0
Ω2

(cosΩτ − 1). (2.26)

The electric potential is suitable to express as

η(τ) =
1

2

[
u2
ζ(τ) + Ω2ζ2(τ)− 1

]
. (2.27)

Here the energy conservation law (2.5) was used. At the collector position [ζ = δ,

η(δ) = V ] we have

δ =
1

Ω2
T +

1

Ω

(
1− 1

Ω2

)
sinΩT +

1

Ω2
ε0 (cosΩT − 1) ,

V =
1

2

[
u2
ζ(T ) + Ω2δ2 − 1

]
,

uζ(T ) =
1

Ω2
+

[
1− 1

Ω2

]
cosΩT − 1

Ω
ε0 sinΩT . (2.28)

Here T is the time-of-flight of an electron to travel between the electrodes.

Using Eqs (2.25)–(2.27), one can determine the spatial variations of the elec-

tron velocity, density, electric field and potential within the inter-electrode space.

For some given values of Ω and ε0, the dependencies are built up by gradually in-

creasing τ , and terminated at the moment when the potential η [Eq. (2.27)] takes
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the value V (collector potential). At this situation, corresponding values of ζ and τ

respectively give the inter-electrode gap δ and the time T when an electron arrives

at the collector surface.
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Figure 2.5: Dependences (1) δSCL, (2) δ0, and (3) ζ0 (a) and (1) ε0,SCL and (2) ε00 (b) as
functions of Ω. The lines denote the calculation involving the Lagrange method, and circles –
the Euler one. V = 0.

For a particular value of ε00, a situation appears when the longitudinal velocity

of the electron vanishes for the first time. This point is denoted by “0”. At

larger values of ε0, the electrons are turned back by the magnetic field and they

fly toward the emitter. To find the coordinates of the zero velocity point we use

the conditions uζ(τ) = 0 and duζ(τ)/dτ = 0. Using Eqs. (2.25), we obtain two
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equations to determine ε00 and τ0 (τ0 determines the moment when uζ vanishes):

(1− Ω2) cos(Ωτ) + ε0Ω sin(Ωτ) = 1,

−(1− Ω2) sin(Ωτ) + ε0Ωcos(Ωτ) = 0. (2.29)

Solving these equations, we find

ε00 =
1

Ω

[
1− (1− Ω2)2

]1/2
=

√
2− Ω2,

sin(Ωτ0) = Ω
√
2− Ω2, cos(Ωτ0) = 1− Ω2. (2.30)

Substituting the terms from (2.30) into Eq. (2.26), we can find the point ζ0 where

uζ vanishes. Depending on the value of Ω, the function ζ0(Ω) reads

Ω−3
[
arcsin

(
Ω
√
2− Ω2

)
− Ω

√
2− Ω2

]
, if Ω ≤ 1,

Ω−3
[
π − arcsin

(
Ω
√
2− Ω2

)
− Ω

√
2− Ω2

]
, if Ω > 1. (2.31)

Note that with no magnetic field, ε00 =
√
2, and the relevant value of ζ0 is

√
2/3.

The dependence of ζ0 on Ω is shown in Fig. 2.5a (line 3). To obtain the dependence

of δ0 on Ω corresponding to zero-point solutions, we need to calculate the function

T0(Ω) from the equation

u2
ζ(T0,Ω) + Ω2δ2(T0,Ω)− (1 + 2V ) = 0, (2.32)

which is obtained from the 2nd relationship of (2.28). The relevant variations of

δ(T0,Ω) and uζ(T0,Ω) are determined from the 1st and 3rd equations of (2.28),

and ε00(Ω) is determined from (2.30) [note that at τ = T0, δ = δ0]. The curve δ0(Ω)

is shown in Fig. 2.5a (line 2). Fig. 2.5b shows the dependence ε00 on Ω.

We can say from the Fig. 2.4 that, at SCL point, the condition dδ/dε0 = 0 has
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to hold. We can calculate this derivative as a complex function from Eqs (2.28):

dδ

dε0
=

∂δ

∂ε0
+

∂δ

∂T

dT

dε0
=

∂δ

∂ε0
− ∂δ

∂T

(∂V /∂ε0)

(∂V /∂T )

=
∂δ

∂ε0
−
(
uζ

∂uζ

∂ε0
+ Ω2δ

∂δ

∂ε0

)
/

(
∂uζ

∂T
+ Ω2δ

)
=

(
∂δ

∂ε0

∂uζ

∂T
− uζ

∂uζ

∂ε0

)
/

(
∂uζ

∂T
+ Ω2δ

)
. (2.33)

Calculating partial derivatives in (2.33) and reducing the similar terms in the

numerator, we obtain

1

Ω
sinΩT − ε0

Ω2
(1− cosΩT ) = 0. (2.34)

Transferring to half-index argument in trigonometric functions, Eq (2.34) is re-

duced to an equation as below

2

Ω
sin

ΩT

2

(
cos

ΩT

2
− ε0

Ω
sin

ΩT

2

)
= 0. (2.35)

It also gives the relationship of T with ε0 at SCL:

TSCL =
2

Ω
arctan

Ω

ε0,SCL

. (2.36)

Substituting TSCL into the first equation of (2.28), we obtain δSCL:

δSCL =
2

Ω2

(
1

Ω
arctan

Ω

ε0,SCL

− ε0,SCL

ε20,SCL + Ω2

)
. (2.37)

Now, we need to calculate the value of ε0 at the SCL point. First, the expression

of uζ at the collector is found, then, the law of energy conservation, i.e. the second

equation in (2.28) is utilized. Substituting TSCL into the 3rd equation of (2.28),

we obtain

uζ =
2

Ω2 + ε20
− 1. (2.38)
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When we substitute uζ into the 2nd equation of (2.28), we get a transcendental

equation to calculate the desired form of ε0,SCL:(
2

ε20,SCL + Ω2
− 1

)2

+
4

Ω2

(
1

Ω
arctan

Ω

ε0,SCL

− ε0,SCL

ε20,SCL + Ω2

)2

= 1 + 2V. (2.39)

In fact, relationships (2.37) and (2.39) represent together the maximum value

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

Ω

η
m

1

2

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Ω

ζ
m

1

2

(b)

Figure 2.6: Plots of the minimum potential ηm (a) and its position ζm (b) for the PDs, relating
to (1) SCL and (2) 0 points, vs Ω; V = 0.

of the current that can pass through the diode at steady state with a uniform

magnetic field along the transverse direction (as Jmax ∼ δ2SCL).

Fig. 2.5 shows that δSCL and δ0 decrease as Ω increases. At a certain value Ω

(say Ω0), the 0 and SCL points merge together. The value of Ω0 is determined
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Figure 2.7: The PDs, relating to (1) SCL (ε0 ≈ 0.7185) and (2) 0 (ε0 ≈ 1.0) points, for Ω = 1;
V = 0. The open circles mark positions of the potential minimum, closed circle shows the place
where a velocity vanishes.

from an equation which results when we substitute the expression of ε00 from the

1st equation of (2.30) into (2.39):

2

Ω

(
1

Ω
arctan

Ω√
2− Ω2

−
√
2− Ω2

2

)
=

√
1 + 2V . (2.40)

For V = 0, we can get Ω0 ≈ 1.3212, ε00 ≈ 0.5042, and δ0 ≈ 0.7569. In Fig. 2.5, the

lines are terminated at Ω = Ω0, where the SCL point coincides with the zero-point.

Fig. 2.5a demonstrates the dependencies of δSCL, δ0 and ζ0 with respect to Ω.

The solid lines are obtained by the Lagrange method and the Eulerian approach

gives the circles. We can see that both results agree well with each other.

Fig. 2.6 depicts the dependencies of minimum value of the potential and its

position on Ω for the solutions corresponding to the SCL and zero-points. They

are calculated from the Eqs. (2.26) and (2.27) at τ = ε0 (the time when ε van-

ishes). It is interesting to note that the position of the minimum potential shows

a nonmonotonic behaviour for the zero-point. Fig. 2.7 shows the PDs relating to

the points SCL and 0, for Ω = 1. One can see that velocity vanishes to the right

of the potential minimum.
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Figure 2.8: Plots of positions of the point where a velocity vanishes (curve 1) as well as the
collector (2) and the potential minimum (3) positions vs Ω. V = 0.

Fig. 2.8 exhibits the dependence of the position where the longitudinal velocity

of the electron vanishes (ζ0) (line 1) on Ω. In this figure, the variations of the gap

value (line 2) and the position of the potential minimum (line 3) are presented,

too. It is seen that the velocity vanishes practically at the point of the potential

minimum for Ω < 0.6. For higher values of Ω, the position of zero velocity (ζ0)

approaches to the collector, and at last it falls on the collector at Ω = Ω0 for which

the zero-point merges with the SCL one.

As the zero-point falls on the collector position at Ω = Ω0, it stays there as as

Ω is increased further. However, now the condition duζ(τ)/dτ = 0 turns out to be

untrue. The condition when the SCL and zero-points coincide together and both

of them lie on the collector, can be determined from the Eqs. (2.32) with uζ = 0:

δSCL(Ω;V ) =

√
1 + 2V

Ω
. (2.41)
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2.5 Summary

The investigation presented in this chapter shows that in a Bursian diode with a

transverse magnetic field, the potential distributions remain the single minimum

functions, but the height of the minimum turns out to be lower than the initial

kinetic energy of the electrons. The steady state solutions are picturised through

the ε0, δ–diagram. There is a region on this ε0, δ–diagram where the solutions are

non-unique (the region between SCL and “zero-point”). Strong effect of the mag-

netic field occurs when the Larmor radius becomes comparable with the Bursian

threshold. In this case the region of non-uniqueness vanishes.

The magnetic field also results to the displacement of (ε0, δ)–diagram. The

SCL points are displaced to the left, and at its right, solutions without electron

turning are absent. Hence, the magnetic field can be used to design a fast electronic

switches based on the current interception mechanism of the Bursian diode. Such

a device can operate as follows. Imagine that the initial state of a Bursian diode

lies very close to the SCL point. Here, the relevant current passing through the

diode is nearly equal to the maximum value (Jmax ∼ δ2SCL). When magnetic field is

switched on, the relevant (ε0, δ)–curve is displaced to the left, and the steady state

with a net current for given δ disappears. As a result, a state-transition occurs in

the Bursian diode for which the system switches to a final state with a negligible

current. For weak magnetic field, very small current may pass through the diode

because of the incomplete current cut-off. However, for Ω > 1, the current is

totally cut off and this corresponds to the total interception of the current. When

the magnetic field is turned on, the diode returns to its initial state with a net

current.



Chapter 3

Stability analysis of the steady
state solutions of Bursian Diode
in presence of transverse
magnetic field

The stability properties of the steady state solutions of a Bursian diode in presence

of constant transverse magnetic field have been studied in this chapter. Employing

first order perturbation theory, a relevant dispersion relation has been derived for

the time dependent states. It is found that the steady state solutions which lie

on branch I (C normal branch) of “ε0 − δ” curve are stable and the solutions

which belong to branch II (C overlap branch) are unstable with respect to small

aperiodic perturbations. The width of the unstable branch gradually decreases as

the magnitude of external magnetic field is increased.

43
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3.1 Introduction

In the absence of external magnetic field, the steady state solutions of different

kind of vacuum diode systems (like Bursian diode, Pierce diode etc.) and their

stability properties have been investigated theoretically by several authors [44, 57,

72, 79, 86, 91, 92, 93, 94, 113, 135, 66, 147, 148, 149, 150]. Theoretical studies

suggest that all steady state solutions of a vacuum diode can be visualized as three

distinct branches of “ε0 − δ” parametric plot, where ε0 and δ are the electric field

strength at emitter and the diode gap respectively. These branches were termed as

“C normal branch”, “C overlap branch” and “virtual cathode branch” (the branch

corresponding to partial electron reflection). Stability of these three branches was

analyzed by introducing an apparatus of “collector potential vs emitter electric

field” diagram (η, ε–diagram)[148] as well as deriving a dispersion relation with the

help of perturbative approach [72, 94]. It was shown that one of these branches

(C overlap branch) is unstable and the other two branches are stable under small

aperiodic perturbation [67, 113, 135, 66, 150].

In the previous chapter, the stationary states of a Bursian diode are investi-

gated when there is an external magnetic field along the transverse direction. This

chapter contains the stability analysis of those steady-state solutions. The regime

within which no electrons are turned around by the external transverse magnetic

field is taken under consideration only. The results show that there is a prominent

effect of the magnetic field on the stability properties of the steady state solutions.
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3.2 Steady State Solutions

We adopt the same planar model for the Bursian diode which is discussed in the

previous chapter. The beam accelerating voltage V0 = W0/e = mv20/(2e) is in

Volts and the magnetic field B is in Teslas; e and m are electron charge and mass.

The relevant Larmor frequency and radius are ω = eB/m and λL = mv0/(eB)

respectively. Basic governing equations for time dependent states are the continuity

equation, the momentum equation and the Poisson’s equation :

∂n

∂t
+∇.(nv⃗) = 0,(

∂

∂t
+ v⃗ · ▽

)
v⃗ = − e

m

(
E⃗ + v⃗ × B⃗

)
,

∇.E⃗ = −ne

ϵ0
. (3.1)

To rewrite the above equations in terms of dimensionless quantities, we use ki-

netic energy of the electrons [W0 = (1/2)mv20] and beam Debye length [λD =

{(2ϵ0W0)/(e
2n0)}1/2] as the basic units for energy and length respectively. For

dimensionless coordinates, time, velocity, potential and electric field strength we

have (ζ, χ) = (z, x)/λD, t = tω0, u = v/v0, η = eφ/(2W0), ε = eEλD/(2W0); here

ω0 = v0/λD is the characteristic frequency. Expressing Eq. (3.1) in terms of the

components along ζ and χ directions, now we obtain

∂n

∂t
+

∂(nuζ)

∂ζ
= 0,(

∂

∂t
+ uζ

∂

∂ζ

)
uζ = −ε− Ωuχ,(

∂

∂t
+ uζ

∂

∂ζ

)
uχ = Ωuζ ,

∂ε

∂ζ
= −n. (3.2)
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In Eq. (3.2), normalized Larmor frequency Ω is given by Ω = (eB)/(mω0). Let us

fix the value of potential difference between two electrodes at V , the inter-electrode

distance δ, the Larmor frequency Ω, and the emitter electric field strength ε0.

Boundary conditions to be used are as follows, n(ζ = 0, t) = 1, uζ(ζ = 0, t) = 1,

uχ(ζ = 0, t) = 0, η(ζ = 0, t) = 0 and η(ζ = δ, t) = V .

To study the system of time dependent equations (3.2) using Lagrangian de-

scription, we introduce a “stream function”, [72, 92, 93, 94, 135, 150] t0(ζ, t), which

satisfies the following conditions: ∂ζt0 = −n and ∂tt0 = nuζ (the notation ∂ζ de-

notes partial derivative of first order with respect to ζ). Physically, t0 represents

the time of injection of an electron, i. e., ζ(t = t0) = 0. It can be easily checked

that (d/dt)t0 ≡ ∂tt0 + uζ∂ζt0 = 0. Hence, “t0” remains constant along the path of

an electron.

When we switch the basis from Eulerian (ζ, t) to Lagrangian (t0, t), the differ-

ential operators are transformed as ∂ζ ≡ −n∂t0 and ∂t ≡ ∂t + nuζ∂t0 . Hence, last

three equations of the set of equations (3.1) take the form,

∂tuζ = −ε(t0, t)− Ωuχ, (3.3)

∂tuχ = Ωuζ , (3.4)

∂t0ε(t0, t) = 1. (3.5)

Equation (3.5) gives

ε(t0, t) = −(t− t0) + ε0(t). (3.6)

Using the fact that uζ = ∂tζ, we get from Eqs. (3.3) and (3.4)

∂2ζ

∂t2
+ Ω2ζ = −ε(t0, t). (3.7)
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In steady state, electric field strength at emitter (ε0) is time-independent and the

other quantities depend only on t−t0 = τ . Thus, at steady state, ε(t0, t) = −τ+ε0,

∂t → ∂τ and ∂t0 → −∂τ . Consequently, Eq. (3.7) becomes

∂2ζ

∂τ 2
+ Ω2ζ = −τ + ε0. (3.8)

Solving Eq. (3.8), we can have the steady state solutions for ζ, η and uζ as [151]

ζ(τ) =
1

Ω2
τ +

1

Ω

(
1− 1

Ω2

)
sinΩτ +

1

Ω2
ε0 (cosΩτ − 1) ,

η(τ) =
1

2

[
u2
ζ(τ) + Ω2δ2 − 1

]
,

uζ(τ) =
1

Ω2
+

[
1− 1

Ω2

]
cosΩτ − 1

Ω
ε0 sinΩτ . (3.9)

For given values of Ω and ε0, we can evaluate the profiles of the electron velocity,

density, potential and electric field within the inter-electrode space by gradually

increasing τ . At the moment when (say, at τ = T ) the potential η takes the value

V (collector potential), ζ takes the value δ. Thus, at τ = T an electron arrives at

the collector surface.

At the collector position (ζ = δ, η(δ) = V ) we have

δ =
1

Ω2
T +

1

Ω

(
1− 1

Ω2

)
sinΩT +

1

Ω2
ε0 (cosΩT − 1) ,

V =
1

2

[
u2
ζ(T ) + Ω2δ2 − 1

]
,

uζ(T ) =
1

Ω2
+

[
1− 1

Ω2

]
cosΩT − 1

Ω
ε0 sinΩT . (3.10)

Here T is the transit time of an electron between electrodes.

It was shown in earlier works [67, 66] that, for a fixed V , the steady state solu-

tions of a Bursian diode can be represented by the points on a “ε0 − δ” continuity

curve. In Fig. 3.1, these curves are shown for V = 0 and for a number of Ω values.

In previous chapter, it is already discussed that each curve ends at such a value of
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ε0 (say, ε
0
0), when the longitudinal velocity, uζ becomes zero for the first time, i.e.,

at “zero-point”. On the right boundary of each curve, we have point SCL which

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0.4

0.6

0.8

1

1.2

1.4

δ

ε
0

2

3

4

5

6

SCL

SCL

SCL

SCL

1

Figure 3.1: Curves ε0(δ) drawn for various values of Ω: (1) Ω = 0, (2) 0.3, (3) 0.6, (4) 1.0, (5)
1.2, and (6) 1.321; V = 0. In the curves uζ(ζ) > 0 everywhere.

corresponds to the steady state solutions when current passing through the diode

gap is maximum. Each curve is consist of two branches of solutions. Branch I (C

normal branch) covers the the steady state solutions for ε0 ≤ ε0,SCL and branch II

(C overlap branch) corresponds to the steady state solution for ε0,SCL < ε0 ≤ ε00.

As we increase the strength of magnetic field, the width of the region between

endpoint and SCL (δ0, δSCL) narrows and it vanishes when Ω ≈ 1.32.

At the SCL point we can have a relationship [see previous chapter] of T and δ

with ε0 as [151]:

TSCL =
2

Ω
arctan

Ω

ε0,SCL

,

δSCL =
2

Ω2

(
1

Ω
arctan

Ω

ε0,SCL

− ε0,SCL

ε20,SCL + Ω2

)
. (3.11)

Eliminating ε0 from Eq. (3.10) for SCL point, we can find a relationship of TSCL

with δSCL

Ω3δSCL − ΩTSCL + sinΩTSCL = 0. (3.12)
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For the relevant uζ we obtain

uζ,SCL =
2

Ω2 + ε20,SCL

− 1. (3.13)

The value of desired ε0,SCL can be found from the equation:(
2

ε20,SCL + Ω2
− 1

)2

+
4

Ω2

(
1

Ω
arctan

Ω

ε0,SCL

− ε0,SCL

ε20,SCL + Ω2

)2

= 1 + 2V. (3.14)

Now we need to study the stability properties of these steady state branches shown

in Fig. 3.1.

3.3 Stability of the steady states with respect to

Aperiodic Perturbation

Firstly, we determine whether the steady state solutions are aperiodically stable

or not. We use the (η, ε)–diagram technique [63] for this purpose. This diagram

permits one (i) to find all time-independent states which are consistent with the

given boundary condition for the potential, as well as for the specific δ–values

and (ii) to determine whether these states are stable or not with respect to the

aperiodic (non-oscillatory) perturbations.

To construct the (η, ε)–diagram we use the emitter field strength ε0 as a pa-

rameter. For each value of ε0, we develop the dependence of the potential η on the

coordinate ζ [from Eqs. (3.9)] by gradually increasing τ and then we find the po-

tential η at the position of the collector δ when τ takes the value T . Varying ε0, we

complete the (η, ε)–diagram, i. e., the dependence of η(δ) on ε0. Now we intersect

this curve by the load line η = V which corresponds to the boundary condition

at the collector. Points of the intersection denote the time independent states of
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the diode corresponding to the given δ–value and the fixed collector potential V .

The state that corresponds to the negative slope is stable against small aperiodic

perturbations and the state which corresponds to the positive slope of the diagram

is unstable [150]. We should note that, an instability is developed in the diodic

systems due to the positive feed back process through the external circuit of the

diode.

ε0

η δ

0.4 0.6 0.8 1

-0.1

0

0.1

0.2

4

1

2

3

Figure 3.2: The η, ε–diagram for Ω = 1.0 and various values of δ: (1) δ = 0.85, (2) 0.90, (3)
δSCL = 0.947747, (4) 1.00; V = 0. Open circle corresponds to an unstable steady state, closed
circle – to an aperiodic stable one.

Fig. 3.2 demonstrates exemplarily the η, ε–diagram for Ω = 1 and for several

values of δ. Comparing these curves with the curves shown in Fig. 3.1 correspond-

ing to the same Ω, we see that η, ε–diagram does determine all the time independent

states of the diode. We can also see that the slope of the diagram is negative for

ε0 < ε0,SCL, it vanishes at ε0 = ε0,SCL, and it is positive for ε0,SCL < ε0 < ε00.

Thus, we can conclude that the states which correspond to lower segments of the

curves from Fig. 3.1 are stable against small aperiodic perturbations, and those

corresponding to the upper segments are unstable.

However, aperiodically stable states can still be oscillatory unstable. In order
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to complete our analysis on stability properties of the diode states, we derive the

dispersion equation and investigate its properties in following sections.

3.4 The Dispersion equation

We assume that a Bursian diode is functioning in a steady state defined by the

Eq. (3.9). The electric field at the emitter is now perturbed and it acquires a time

dependence. Accordingly, this perturbation will modify the steady state solutions.

The perturbation ansatz is assumed as [72, 150]

ε̃0(t) = ε0 + ε1 exp(σt),

ζ̃ = ζ(τ) + ζ1(τ) exp(σt),

T̃ = T + T1 exp(σt). (3.15)

Here, ε0, ζ(τ) and T are the zero-th order terms representing equilibrium solutions

[see Eqs. (3.9) and (3.10)], and, ε1, T1 and ζ1 are the first order perturbed quantities.

Therefore, for electric field, one can write upto first order, ε = ε(0) + ε(1), where

ε(0) = −τ + ε0 and ε(1) = ε1 exp(σt). Now, ζ̃(τ, t) should obey the equation

∂2ζ̃

∂t2
+ Ω2ζ̃ = −ε(τ, t). (3.16)

At first order we can get from Eq. (3.15)

∂2ζ1
∂τ 2

+ 2σ
∂ζ1
∂τ

+ (σ2 + Ω2)ζ1 = −ε1. (3.17)

Using the initial condition, ζ1(τ = 0) = 0 and ∂τζ1(τ = 0) = 0, one can readily

have

ζ1 =
ε1

σ2 + Ω2

[
e−στ

{
cosΩτ +

σ

Ω
sinΩτ

}
− 1
]
. (3.18)
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When the emitter electric field is perturbed, as a result of it, the path of the

electron trajectory gets modified from the equilibrium solution and it further leads

to the modification of the transit time T̃ = T + T1 exp(σt) from the equilibrium

value T . In first order, from the condition ζ̃(T̃ ) = δ, we can get

T1 = − ζ1(T0)

[2V + 1− Ω2δ2]1/2
. (3.19)

To derive Eq. (3.19), we have used the second equation of (3.10). We can get back

the corresponding expressions for ζ1 and T1 for the state without magnetic field, if

we put Ω = 0 in Eq. (3.18) and (3.19) [72]. If collector potential is set at V , then

V = −
∫ δ

0

ε(ζ)dζ = −
∫ T̃

0

ε(τ)uζ(τ)dτ. (3.20)

With the help of Eqs. (3.18) and (3.19), we can have a relation from Eq. (3.20) in

first order ∫ T

0

ζ1dτ + ε1δ = 0. (3.21)

Substituting the expression of ζ1 from Eq. (3.18) into Eq. (3.21), we can have the

dispersion relation of the form

F (σ; δ, T ) = −e−σT

[
2σ cosΩT +

σ2 − Ω2

Ω
sinΩT

]
+δ(σ2 + Ω2)2 + 2σ − (σ2 + Ω2)T = 0. (3.22)

It is interesting to note that this equation coincides with the dispersion rela-

tion (67), obtained in Ref. [26] for the Pierce diode, when we replace the Larmor

frequency Ω2 in place of the neutralization parameter γ, which equals to the ratio

of the constant ion background density to the emitter electron density. However,

relations between T , δ and ε0 turn out to be different for both diodes. If we set
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Ω = 0 in Eq. (3.22), we get

−e−σT [2 + σT ] + δσ3 + 2− σT = 0. (3.23)

It is the dispersion relation for the case when there is no external magnetic field

[72].

3.5 Stability Analysis

Let us now study the eigen-frequencies σ(δ, V ) = γ(δ, V )+iω(δ, V ) of the dispersion

relation (3.22). We should note that there is a countable number of eigen-modes for

each and every value of the parameters V and δ; moreover, the main eigen-mode

(one that grows at the fastest rate when the solution is unstable or is damped at

the slowest rate when the solution is stable) turns out to be an aperiodic mode. For

a fixed parameter value V , the curves of γ(δ, V ) or ω(δ, V ) are named as branches

of instability.

At first, let us consider the aperiodic branches of instability (A-branches). They

are determined by the roots of Eq. (3.22) for real σ’s (ω = 0 and σ = γ):

exp(−γT )

[
2γ cosΩT +

γ2 − Ω2

Ω
sinΩT

]
−
(
Ω2 + γ2

)2
δ +

(
Ω2 + γ2

)
T − 2γ = 0. (3.24)

For γ = 0, Eq. (3.24) gives

Ω3δ − ΩT + sinΩT = 0. (3.25)

Comparing (3.25) with (3.12), we can infer that the aperiodic growth rate vanishes

just at SCL point. The branches end at 0 points. At this stage[151] ε00 =
√
2− Ω2
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and

δ0 =
1

Ω2
T0 +

1

Ω

(
1− 1

Ω2

)
sinΩT0 +

1

Ω2

√
2− Ω2 (cosΩT0 − 1) ,

u2
ζ(T0) + Ω2δ20 − (1 + 2V ) = 0,

uζ(T0) =
1

Ω2
+

[
1− 1

Ω2

]
cosΩT0 −

1

Ω

√
2− Ω2 sinΩT0. (3.26)

The function T0(Ω) can be calculated from the second equation, and δ0 from the

first equation of Eq. (3.26).
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Figure 3.3: Growth rate γ vs gap δ for various values of Ω: (1) Ω = 0, (2) 0.3, (3) 1.0, (4) 1.32;
V = 0.

Fig. 3.3 exhibits A–branches for various values of Ω. It is seen that the growth

rate at such a branch is negative for ε0 < ε0,SCL. It signifies that corresponding

steady-state solutions are stable relative to the small aperiodic perturbations. Then

it vanishes at ε0 = ε0,SCL, and it becomes positive for ε0,SCL < ε0 < ε00, i. e.,

corresponding steady-state solutions are unstable for this region. This picture is

similar to the Fig. 3.3 presented in [66], where the stability properties of steady-

state solutions were studied for a Bursian diode with no magnetic field.

Now the oscillatory branches of instability (O–branches) are determined by the

complex roots of Eq. (3.22). Let us prove that these branches can not cross the
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Figure 3.4: (a) Imaginary part of the dispersion equation (3.22) vs ε0 for the branch II of the
steady state solutions at γ = 0; (b) the radicand of Eq. (3.29) vs ε0 for the branch I of the steady
state solutions. Positions of SCL and 0 point are marked. Ω = 1.0. V = 0.

axis γ = 0. Substituting σ = γ + iω into Eq. (3.22) and separating the real and

the imaginary parts, we get

exp(−γT )
(
2γ cosΩT cosωT + 2ω cosΩT sinωT

+
γ2 − ω2 − Ω2

Ω
sinΩT cosωT + 2

γω

Ω
sinΩT sinωT

)
−
[(
γ2 − ω2 + Ω2

)2 − 4γ2ω2
]
δ +

(
γ2 − ω2 + Ω2

)
T − 2γ = 0,

exp(−γT )
(
2ω cosΩT cosωT − 2γ cosΩT sinωT +

+2
γω

Ω
sinΩT cosωT − γ2 − ω2 − Ω2

Ω
sinΩT sinωT

)
−4γω

(
γ2 − ω2 + Ω2

)
δ + 2γωT − 2ω = 0. (3.27)
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This system of equations must be supplemented by the relations given in Eq. (3.10)
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Figure 3.5: Dispersion curves for branches I and II of steady state solutions: the solid curves
correspond to branch I, and the dashed curves, to branch II. Curves A are aperiodic branches,
and curves O are oscillatory branches. (a) Growth rate γ and (b) frequency ω. Positions of SCL
and 0 point are marked. Ω = 0.3. V = 0.

which connect T with ε0 and δ.

For γ = 0, we can have from Eq. (3.27)

2ω cosΩT sinωT − ω2 + Ω2

Ω
sinΩT cosωT

=
(
ω2 − Ω2

)2
δ +

(
ω2 − Ω2

)
T,

2ω cosΩT cosωT +
ω2 + Ω2

Ω
sinΩT sinωT = 2ω. (3.28)
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When both equations of (3.28) are squared and then added, we find

4ω2 cos2ΩT +
(ω2 + Ω2)2

Ω2
sin2 ΩT =

[(
ω2 − Ω2

)2
δ +

(
ω2 − Ω2

)
T
]2

+ 4ω2,[
(ω2 + Ω2)2

Ω2
− 4ω2

]
sin2 ΩT =

[(
ω2 − Ω2

)2
δ +

(
ω2 − Ω2

)
T
]2

,

[(
ω2 − Ω2

)
δ + T

]2 − sin2 ΩT

Ω2
= 0.(3.29)

Eq. (3.29) leads us to

ω

Ω
=

(
Ω3δ − ΩT + sinΩT

Ω3δ

)1/2

. (3.30)

However, we should keep in mind that “spurious” roots may occur as Eq. (3.28)

is squared. Therefore, each time we need to check the validity of the solution (3.30)

by substituting them into Eq. (3.28). Besides, we should note that for the negative

value of the radicand in (3.30), solution for ω can not exist.

Equation (3.12) implies that the radicand of (3.30) will vanish at SCL. It hap-

pens because of the fact that, at the SCL point the eigen-value σ = 0. In Fig. 3.4,

imaginary part of the dispersion function {Im(F )} and the radicand of Eq. (3.30)

{h = Ω3δ − ΩT + sinΩT} are built for Ω = 1.0 (ε00 = 1.0 and ε0,SCL = 0.7185).

Fig. 3.4b shows that h is negative for ε0 > ε0,SCL. On the other hand, Fig. 3.4a

demonstrates that, for ε0 < ε0,SCL, the solution (3.30) does not obey the second

equation of (3.28). Same results are obtained for any other values of Ω. Thus, we

can assert that an oscillatory branch can not cross the line γ = 0.

In Fig. 3.5 and Fig. 3.6, oscillatory dispersion branches (ω ̸= 0) are built for

Ω = 0.3 and Ω = 1 respectively. For a fixed value of V , each curve corresponds

to a particular eigen-mode. The symbol “ON” represents the oscillatory C normal

branch or branch I (ε0 < ε0,SCL) and “OO” refers to the oscillatory C overlap branch

or branch II (ε0,SCL < ε0 < ε00). The suffix indices indicate the numbers of relevant
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Figure 3.6: Dispersion curves for branches I and II of steady state solutions: the solid curves
correspond to branch I, and the dashed curves, to branch II. Curves A are aperiodic branches,
and curves O are oscillatory branches. (a) Growth rate γ and (b) frequency ω. Positions of SCL
and 0 point are marked. Ω = 1. V = 0.

dispersion branches. Two oscillatory branches are shown in Fig. 3.5 and Fig. 3.6 for

two different values of Ω. The solid curves correspond to the oscillatory C overlap

branch, and the dashed curves correspond to the oscillatory C normal branch. It is

clear from Fig. 3.5a and Fig. 3.6a that these branches have negative growth rates.

For higher numbers of oscillatory branches, the magnitude of negative growth rates

and frequency becomes higher. The characteristics of the dispersion branches for

the diode with transverse magnetic field are similar to the Bursian diode with no

magnetic field [67]. As an effect of the nonzero magnetic field, the width of the
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unstable region is diminished when the strength of the external magnetic field is

increased.

3.6 Summary

The results can be summarized as follows. We have studied the stability properties

of the steady state solutions of a Bursian diode in presence of constant transverse

magnetic field. Our analysis is valid up to the limit where the longitudinal velocity

of an electron vanishes for the first time within the inter-electrode region. With

the help of the Lagrangian description, the steady state solutions of the Bursian

diode are obtained and they are shown to be belong to two distinct branches of

“ε0−δ” diagram. The dispersion relation is obtained from the time dependent basic

equations using first order perturbation theory. Utilizing this dispersion relation,

aperiodic and oscillatory branches for the fixed value of V and δ are developed.

It is shown that the solutions corresponding to branch I (ε ≤ ε0,SCL) are always

stable, and those of branch II (ε0,SCL < ε0 ≤ ε00) are unstable with respect to the

small aperiodic perturbation. When the strength of the magnetic field is increased,

the width of the unstable region (branch II) gradually decreases and vanishes at

Ω ≈ 1.32. The method of “η − ε” diagram leads us to same results.
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Chapter 4

Stationary states of a Bursian
diode in presence of transverse
magnetic field representing
partial or total electron reflection

In this chapter, the steady-states of a planar vacuum diode are investigated in the

presence of an external transverse magnetic field when the emitted electrons are

reflected back to the emitter by the virtual cathode. With the help of a numerical

scheme, the features of the steady-state solutions are explored in the Eulerian frame.

On the other hand, exact analytical formulas for the potential and velocity profiles

have been derived with the Lagrangian description.

61
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4.1 Introduction

The results of the previous studies on the Bursian diodes show that a class of

steady-state solutions exists which corresponds to the electron reflections from

the virtual cathode [66, 67, 69, 134, 135, 138, 148, 152]. Generally, the potential

distribution within the diode gap region is a single minimum function and this

potential minimum serves as a potential barrier to the electron flow [55, 58, 113,

133, 136, 137, 146]. In the absence of magnetic field, the situation of electron

reflection appears when kinetic energy of the emitted electron becomes equal to

the potential energy at the position of minimum potential [66, 148]. If the velocity

distribution function of the emitted electron beam is a δ–function, all the electrons

are reflected back to the emitter by the potential barrier (virtual cathode). But

in reality, the electrons are always injected from the emitter with a small velocity

spread. So, in practical situations, there will be always a few number of electrons

which can overcome the potential barrier with a small but nonzero velocity [67].

In first chapter, assuming the emitted electrons to be purely monoenergetic, we

have studied the effect of the transverse magnetic field on the steady-state solutions

of the Bursian diode up to the limit, when the longitudinal component of the elec-

tron velocity becomes zero within inter-electrode region for the first time. It is also

explained from the energy conservation principle that, for the case of “zero-point”

solution, at the position of zero electron-velocity, potential profile approaches to

a threshold value. At this condition, electrons are completely turned around by

the magnetic field when they are emitted from the emitter in monoenergetic way.

But, if there is a small velocity spread in the emitted electron beam, they can be
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reflected back partially or completely depending on the value of the applied mag-

netic field. In this present work, we report the partial or complete reflection of the

electrons in a Bursian diode in presence of transverse magnetic field. The problem

has been solved with two techniques: the Euler and the Lagrange formalism. For

our purpose, we shall follow the same model and unit system which are described

in chapter two and three.

4.2 Complete electron-reflection: The Euler method

As it was shown in second chapter, the potential distributions, η(ζ) which is con-

sistent with the distributions of the electrons, should be confined within a region

limited by a square parabola p(ζ;ω) (Fig. 4.1):
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Figure 4.1: Normalized potential eφ/(mv20) as a function of normalized space ζ = z/λD for
various values of ε0 = eE0λD/(mv20): (1) ε0 = 0.6 (no electrons are turned due to a magnetic
field), (2) 1.0 and (3) 1.61 (a portion of the injected electrons is turned due to a magnetic field),
and (4) 1.7321 (all electrons are turned due to a magnetic field). Dashed curve corresponds to
φ = p(z, ω) = (e/2m)(ω2z2 − v20); ω/ω0 = 1.0; U = 0.

η(ζ) ≥ p(ζ; Ω) ≡ 1

2

(
Ω2ζ2 − 1

)
. (4.1)

We now consider the case when there is a point ζH within the inter-electrode gap

where the electrons are completely turned back and move toward emitter under
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certain emitter electric field strength. At this point, the longitudinal component of

the velocity uζ vanishes, so for the potential at this point, we can have a relationship

1 + 2ηH − Ω2ζ2H = 0. (4.2)

Here ηH = η(ζH). To the left of the point ζH , the PDs lie within a parabolic region

p(ζ; Ω) [Eq. (4.1)]. It is clear that, for any point where ζ ≤ ζH , the velocity of

electron returning toward emitter differs in sign only from that of its first passage

at this point. So, the electron density at any point in this region is twice the

density for the electrons with velocities uζ(ζ) > 0. Within the region ζ ≤ ζH , the

PD obeys the differential equation

d2η

dζ2
= 2

[
1 + 2η − Ω2ζ2

]−1/2
. (4.3)

The boundary conditions for the potential at the electrodes are

η(0) = 0, η(δ) = V. (4.4)

As derived in second chapter, the differential equation (4.3) reduces to a system

of difference equations. The potential profile is evaluated first to the left of the

potential minimum, and the coordinates of the potential minimum are calculated.

The calculation in this region is carried out via a numerical scheme shown in

chapter two. A value of the potential at the minimum ηm is taken. Its true value

is obtained in the course of calculation. In a region between the emitter and the

location of the potential minimum, a potential frame is taken: ηk = ηk−1+∆ηk, k =

1, . . . , N, η0 = 0. Within each layer (ζk−1, ζk) the PD is approximated with a
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straight line. The system of difference equations

ηk = ηk−1 +∆ηk,

ε2k = ε2k−1 + 2βG(ζk−1, ηk−1, εk−1, ηk, εk; Ω),

εk = qkεk−1 + (1− qk)εk,

ζk = ζk−1 − (ηk − ηk−1)/εk (4.5)

is solved taking β = 2 and under the conditions as follows:

η0 = 0, ε0 = ε̃0, ζ0 = 0. (4.6)

Depending on the value of Ω, the function G in (4.5) reads as

−|εk|
Ω

[
sin−1

(
B − 2[(ηk − ηk−1)/εk

2]Ω2

√
−∆

)
− sin−1

(
B√
−∆

)]
, Ω > 0,√

1 + 2ηk −
√

1 + 2ηk−1, Ω = 0. (4.7)

Here

A = 1 + 2ηk−1 − ζ2k−1Ω
2 > 0,

B = 2
[
1 + (ζk−1/εk)Ω

2
]
,

C = −(1/εk
2)Ω2 < 0,

∆ = 4AC −B2 = −4
{
1 + [(1 + 2ηk−1 + 2ζk−1εk)/εk

2]Ω2
}
< 0. (4.8)

Then, PD is calculated to the right of the point of minimum. For a certain

value of the index k (say, K), sign of the radicand in the formula for velocity (4.2)

is negative. At this step, the iteration over ηK is carried out till the radicand

vanishes. At this point ζK takes the value ζH .

To the right of the point ζH , there are no electrons as they are completely

reflected back by the magnetic field. The electric field strength at this point turns
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out to be negative. To the right of this point, the potential grows linearly as space

coordinate increases:

η = ηH − εH(ζ − ζH). (4.9)

In this region, εH = ε(ζH) < 0. For a fixed value of V (potential difference between

the electrodes), we get the value of the inter-electrode gap from Eq. (4.9):

δ = ζH − (V − ηH)/εH . (4.10)

We should note that, for the case of complete reflection, at first the PD grad-

ually approaches a point (ζH , ηH) which is lying on the parabola (4.1). Then,

it leaves this region and goes directly towards a point referring to the collector

location (line 4 in Fig. 4.1).
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Figure 4.2: The “ε0 − δ” curves are drawn for various values of Ω: (1) Ω = 0, (2) 1.0, (3) 1.35,
(4) 1.5 and (5) 1.7; V = 0. Two regimes are only included: no electrons are turned by magnetic
field, and all electrons are turned (marked by open circles).

In Fig. 4.2, the dependencies of ε0 on δ are shown for the two following cases,

when there is no reflection of electrons and when the electrons are completely

reflected by the magnetic field (marked by circles). For Ω = 1.0, the second part of

the branch (corresponding to complete reflection) begins with δ ≈ 2.5. Therefore,
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it does not appear in this figure. At Ω → 0, this part of the branch goes to

infinity. The first part of the branch contains a right bifurcation point, which was

termed as “SCL” and it ends at a “zero-point” [see chapter two]. When all of the

electrons are turned by the magnetic field, the current on the collector is zero and

it corresponds to the second part of the solution branch.

4.3 Partial electron-reflection: The Euler method

In earlier works, [66, 67, 148] for the case of Bursian diode with no magnetic field,

the region of solutions regarding the partial electron reflection was explored. Con-

sidering nearly monoenergetic electron beam with a small velocity spread, a whole

class of steady-state solutions was derived and the potential profiles corresponding

to the partial reflection of electrons were shown. These are the PD with the virtual

cathode (VC). The VC-height equals electron energy at the emitter position. The

existence of such solutions was also approved experimentally [138]. To describe this

class of solutions, the literature includes a reflection coefficient r which describes

the eventual “split” of the electron beam in terms of the reflected part from VC

and those overcoming it [35, 148].

In chapter two it was shown that, in presence of the transverse magnetic field,

the ζ–component of electron velocity decreases with space coordinate ζ and be-

comes a tangent to a line uζ = 0 at a point where uζ vanishes. Then uζ begins

to increase. Thus, zero velocity position is actually a point type. As physical

situations demand, taking into consideration a small velocity spreading within the

beam, we can assume that all the electrons would not be turned around by the

magnetic field at the point ζr (the point where uζ vanishes). A portion of such
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electrons can overcome this point with velocities little higher than zero and flow

toward collector. To involve “electron beam splitting” at a point ζr, we also intro-

duce reflection coefficient r [35, 148]. In this situation, there are two flows in the

region between the emitter and the point ζr: the direct and the reverse flow. Since

at any point ζ the velocities of direct and reverse particles coincide absolutely, the

densities of the direct and reverse particles become 1/uζ and r/uζ , respectively.

Thus, in this region, the total density of the electrons is (1 + r)/uζ . To the right

of the point ζr, there is the direct electron flow with a weight 1− r.

When a portion of the injected electrons is turned around, all PDs remain

within a region limited by a parabola p(ζ; Ω) [Eq. (4.1)], and the function η(ζ)

becomes a tangent to this parabola at the point of reflection ζr (see curves 2, 3 and

the dashed curve in Fig. 4.1). In this situation, the product of the density and the

longitudinal component of electron velocity (coming from the continuity equation

at steady state) at a point ζ should be modified as

n(ζ)uζ(ζ) = H(ζ; ζr, r) ≡ (1 + r)Θ(ζr − ζ) + (1− r)Θ(ζ − ζr). (4.11)

Here, splitting of the electron beam at the turning point ζr is taken into consider-

ation. As a result, instead of Eq. (4.3), the equation for PD becomes

d2η

dζ2
=

H(ζ; ζr, r)

[1 + 2η − Ω2ζ2]1/2
. (4.12)

One can see that, now in Eq. (4.12) an extra parameter r arises. Its value is

determined through the course of the calculations. Solution algorithm is as follows.

At a given value ε0 = ε̃0, a value of the coefficient r is taken. First, Eq. (4.12) is

integrated on a path from the emitter position to the location of potential minimum
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Figure 4.3: Coefficient r vs ε0 for Ω = 1.0; V = 0.

with the boundary conditions

η(ζ = 0) = 0,
d

dζ
[η(ζ = 0)] = −ε̃0. (4.13)

The position (ζm) and the value (ηm) of the potential minimum are determined

from the zero electric field condition. Further, Eq. (4.12) is integrated with the

boundary conditions

η(ζ = ζm) = ηm,
d

dζ
[η(ζ = ζm)] = 0, (4.14)

from the point ζm to the point ζr, where electron velocity uζ vanishes. Now,

iterating over a parameter r, we obtain that for some value of r, uζ turns out to be

a tangent to the straight line uζ = 0. As a result, we obtain the relation between

coefficient r and ε0 and we determine ζr, εr and ηr. And at last, Eq. (4.12) is

integrated from a point ζr to the collector and δ is determined.

On the path from the emitter (ζ = 0) to the electron turning point (ζr),

Eq. (4.12) reduces to the system of difference equations (4.5) with β = 1 + r and

∆ηk = ηm/N . To the right of the turning point, there is also a system of equations

as shown in Eq. (4.5) with β = 1− r and ∆ηk = (V − ηr)/N .
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Figure 4.4: Velocity profile within the interelectrode gap drawn for different ε0 values: Fig. (a):
Ω = 1; (1) ε0 = 1.20, (2) 1.55, (3) 1.60, (4) 1.65, and (5) 1.664; Fig. (b): Ω = 1.35; (1) ε0 = 1.10,
(2) 1.20, (3) 1.30, (4) 1.35, and (5) 1.375. V = 0.

In the course of these calculations, ε0 is increased gradually and for some certain

value of it (say, ε0 = ε00), electron velocity uζ vanishes first time. At this moment,

we have r = 0. When ε0 is increased further, the coefficient r grows too. The

dependence of r on ε0 is obtained in the process of the calculation, and it is shown

in Fig. 4.3 for Ω = 1.0. Fig. 4.4 exhibits the velocity profile uζ(ζ) for a number of

ε0 values. It is seen that, these curves really are the tangents to the line uζ = 0.

In Fig. 4.5, dependence of ε0 on δ is shown for several Ω values. In this figure,

the solutions corresponding to the “partial” reflection of electrons are also taken
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Figure 4.5: The “ε0 − δ” curves are drawn for various values of Ω: (1) Ω = 0, (2) 1.0, (3) 1.35,
(4) 1.5, and (5) 1.7; V = 0. The regions with partial electron turning are included here. Dashed
vertical lines corresponds to a dependence δ = 1/Ω.

into consideration. Fig. 4.5 shows that two bifurcation points arise in each curve :

SCL and BF . This feature was also reported for the case of electron reflection in

classical Bursian diode with no magnetic field [35, 69, 67]. Fig. 4.5 also shows that

the BF point does not lie on the reflection threshold (zero point) and the reflection

coefficient r > 0 at this point. For example, at a point BF , we have ε0 ≈ 1.2,

r ≈ 0.23 for Ω = 1.0, and ε0 ≈ 1.0, r ≈ 0.418 for Ω = 1.35. It is also evident

from Fig. 4.5 that the region of hysteresis (the region between SCL and BF) gets

narrowed as magnetic field increases. This area disappears practically at Ω ≈ 1.7.

Thus, a rather strong magnetic field (when Larmor radius is approximately equal to

δSCL) leads to the hysteresis disappearance. This effect arises due to the fact that

the presence of the transverse magnetic field modifies the electron trajectories and

introduces velocity spread in the injected electron beam so that its distribution

function acquires a non beam-like nature. Analogous phenomenon takes place

when we simply introduce spreading in velocity distribution function of emitted

electrons (see, e. g., [67, 152]).
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Figure 4.6: The dependence of the position of velocity minimum (curve 1), collector position
(curve 2) and the position of potential minimum (curve 3) on ε0 , for Ω = 1 and V = 0. Closed
circles refer to the bifurcation points.

Again, we return to Fig. 4.5. At Ω ≈ 1.32, a state is reached when the zero

point and the point SCL merge with each other at the collector position. With

the further increase of ε0 (and consequently the coefficient r), zero point continues

to stay on the collector and (ε0, δ)–diagram goes almost vertically. At Ω = 1.7,

the vertical section of this diagram turns out to be rather large.

The variation of the location of minimum electron velocity (ζvm) on ε0 for

Ω = 1.0 is presented in Fig. 4.6. At first, this point lies on the collector (δ), then,

with the increase of ε0, it begins to approach to the point of potential minimum

(ζm). It should be noted that, for Ω < 1.32, the turning point arises within the

inter-electrode gap for the first time (e.g., in Fig. 4.6 it is the knee point of the

curve 1 between r = 0 and r > 1). At Ω = 1.32, this knee point appears at the

collector position and takes the value δSCL. At this stage, for the relevant gap

value, we can have a relationship δ = (1 + 2V )1/2/Ω. Basically, at Ω = 1.32, the

transition to the regime with electron reflection does occur at the point SCL.

Our results also reveals that, with the increase of ε0 (and respectively r), a
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moment appears when the electron velocity uζ turns out to be zero again, i. e.,

the electrons face another turning point (see Fig. 4.7). At this very moment, the

reflection coefficient does not reach its limiting value 1. For example, we have

ε0 ≈ 1.664, r ≈ 0.9007 for Ω = 1.0, and ε0 ≈ 0.965, r ≈ 0.91819 for Ω = 1.7.

Apparently, with the further increase of ε0, the number of turning point would

increase. In addition, the distance between the turning points and the value of the

velocity maximum in each turn would decrease. At r → 1, the number of turning

points would go to infinity. This phenomena is further studied in the following

section.

ζ

u

0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

3

ζ

1

2

Figure 4.7: Velocity profile within the interelectrode gap drawn for case of several turning-
about points: (1) ε0 = 1.673499(r = 0.9003), (2) ε0 = 1.675 – second turning-about point lies
within the gap, (3) ε0 = 1.7027(r = 0.949697) – third turning-about point lies on the collector.
Ω = 1, V = 0.

4.4 Partial electron-reflection: The Lagrange method

In this section, we solve the problem using the Lagrange variables. In 1D time-

independent case, we start with the basic governing equations which are the con-

tinuity and the momentum equations along with the Poisson’s equation. When

they are written in terms of the dimensionless quantities, we get
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nuζ = H(ζ; ζr, r),

uζ
duζ

dζ
= −ε− Ωuχ, uζ

duχ

dζ
= Ωuζ ,

dε

dζ
= −n. (4.15)

Here, the functionH(ζ; ζr, r) is determined by Eq. (4.11). The boundary conditions

to be used are, n(ζ = 0) = 1, uζ(ζ = 0) = 1, uχ(ζ = 0) = 0, electric potential,

η(ζ = 0) = 0, and field ε(ζ = 0) = ε0. Here, ε0 serves as a parameter.

To solve these set of non-linear equations, we introduce the Lagrangian coor-

dinate τ and the Lagrange transformation,

ζ =

∫ τ

0

uζ(τ
′)dτ ′.

Thus, uζd/dζ = d/dτ . Eqs. (4.15) take the form

nuζ = H(ζ; ζr, r),

duζ

dτ
= −ε− Ωuχ,

duχ

dτ
= Ωuζ ,

dε

dτ
= −H(ζ; ζr, r). (4.16)

Here, we ought to take into account that the electron flow splits at the point ζr

where

uζ(τ = τr) = 0. (4.17)

Combining Eqs. (4.16) we obtain

d2uζ

dτ 2
+ Ω2uζ = H(τ ; τr, r). (4.18)

Using the stated boundary conditions, solution in terms of the Lagrange coordinate

to the left of the point ζr can be found as

uζ(τ) =
1 + r

Ω2
+

(
1− 1 + r

Ω2

)
cosΩτ − ε0

Ω
sinΩτ . (4.19)
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The relation between the Euler variable ζ and the Lagrange one τ for τ < τr can

be obtained as,

ζ =
1 + r

Ω2
τ +

1

Ω

(
1− 1 + r

Ω2

)
sinΩτ +

ε0
Ω2

(cosΩτ − 1). (4.20)

If the electrons are not turned back at all, then r = 0 and the formulas (4.19) and

(4.20) coincide with the relevant formulas given in second chapter.

To calculate the time τr when an electron is turned at the point ζr, as well as

to get a relation between r and ε0 we have two conditions

uζ(τ = τr) = 0,
duζ

dτ
(τ = τr) = 0. (4.21)

From Eq. (4.19) and conditions (4.21), we obtain two equations to determine τr,

as well as a relation between r and ε0:

(1 + r − Ω2) cosΩτr + ε0Ω sinΩτr = 1 + r,

(1 + r − Ω2) sinΩτr − ε0ΩcosΩτr = 0. (4.22)

From Eq. (4.22) we find

r =
ε20 + Ω2

2
− 1, ε0 =

√
2(1 + r)− Ω2,

sinΩτr =
Ω

1 + r

√
2(1 + r)− Ω2, cosΩτr = 1− Ω2

1 + r
. (4.23)

Eqs. (4.23) allow us to calculate maximum ε0, corresponding to the solutions with

partial electron turning, for any magnetic field strength:

ε0,max(Ω) =
√
4− Ω2. (4.24)

This maximum is attained at r = 1. From the 3rd and 4th equations of (4.23),

we find time τr when the electron velocity vanishes. Depending on the values of Ω
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and r, the function τr(Ω, r) reads

1

Ω
sin−1 Ω

√
2(1 + r)− Ω2

1 + r
, if Ω ≤

√
1 + r,

1

Ω

(
π − sin−1 Ω

√
2(1 + r)− Ω2

1 + r

)
, if Ω >

√
1 + r. (4.25)

Now, substituting (4.25) into Eq. (4.20), we find the position where the electron

velocity vanishes

ζr =
1

Ω2

[
(1 + r)τr −

√
2(1 + r)− Ω2

]
. (4.26)

To deduce the parameters of an electron trajectory within the region locating

to the right of ζr we need to solve the Eq. (4.18) with the initial conditions (4.21).

Thus, for ζ > ζr, we can have

uζ =
1− r

Ω2
[1− cosΩ(τ − τr)] ,

ζ = ζr +
1− r

Ω2
(τ − τr)−

1− r

Ω3
sinΩ(τ − τr). (4.27)

The electric potential is suitable to write in the form

η(τ) =
1

2

[
u2
ζ(τ) + Ω2ζ2(τ)− 1

]
, (4.28)

which follows from the energy conservation law. At the collector, we have

δ = ζr(Ω, r) +
1− r

Ω2
(T − τr)−

1− r

Ω3
sinΩ(T − τr),

V =
1

2

[
u2
ζ(T ; Ω, r) + Ω2δ2 − 1

]
,

uζ(T ; Ω, r) =
1− r

Ω2
[1− cosΩ(T − τr)] . (4.29)

Here, T is the time of flight for the electrons to travel between the electrodes.

Utilizing Eqs. (4.29), one can calculate the potential profile for any ε0-value and

build the dependence of ε0 on δ in the region, ζ > ζr. For this purpose, we increase
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the parameter r, starting from r = 0 (ε0 = ε00 =
√
2− Ω2). This point corresponds

to the solution for which the turning point arises for the first time. We can see

from Fig. 4.5, that at first, δ decreases and this curve goes to the left. However, at

a certain value of r, the ε0 − δ curve turns and goes to the right. This bifurcation

point is named as the BF point.

A condition dδ/dr = 0 has to hold at the BF point. We can calculate this

derivative as a complex function by using Eqs. (4.29):

dδ

dr
=

[
∂δ
∂r

∂uζ

∂(T−τr)
− uζ

∂uζ

∂r

]
[
Ω2δ +

∂uζ

∂(T−τr)

] = 0. (4.30)

For particular terms we obtain

∂uζ

∂(T − τr)
=

1− r

Ω
sinΩ(T − τr),

∂uζ

∂r
= − 1

Ω2
[1− cosΩ(T − τr)] ,

∂ζr
∂r

=
1

Ω3

[
Ωτr −

2Ω√
(2(1 + r)− Ω2)

]
,

∂δ

∂r
=

∂ζr
∂r

− 1

Ω2
(T − τr) +

1

Ω3
sinΩ(T − τr). (4.31)

Substituting the related terms from Eqs. (4.31) into Eq. (4.30) and multiplying the

result by Ω4 we obtain

{
Ωτr − 2Ω

[
2(1 + r)− Ω2

]−1/2 − Ω(T − τr) + sinΩ(T − τr)
}
×

× sinΩ(T − τr) + [1− cosΩ(T − τr)]
2 = 0. (4.32)
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Here, τr is determined by Eq. (4.25). After transforming the trigonometrical func-

tions to half arguments, Eq. (4.32) breaks into two equations:[
Ωτr −

2Ω√
2(1 + r)− Ω2

− Ω(T − τr) + sinΩ(T − τr)

]
×

× cos
Ω(T − τr)

2
+ 2

[
sin

Ω(T − τr)

2

]3
= 0 (4.33)

and

sin
Ω(T − τr)

2
= 0. (4.34)

In order to calculate the parameters corresponding to the BF point, we have to

use Eq. (4.33). This gives the first equation relating (T − τr) and r. The second

equation relating (T − τr) and r is

u2
ζ(T − τr, r; Ω) + Ω2δ2(T − τr, r; Ω)− (1 + 2V ) = 0. (4.35)

From the system of equations (4.33) and (4.35), we can calculate (T − τr)BF and

rBF . When we substitute them into Eqs. (4.23) and (4.29), we obtain the values

of ε0,BF and δBF for the BF point.
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Figure 4.8: The position of the SCL and BF points vs Ω: (1) δSCL, (2) δBF ; V = 0.



79

Fig. 4.8 demonstrates the variation of δBF with respect to Ω. Here, the depen-

dence of δSCL on Ω is also shown. It is seen that the region of hysteresis narrows

with the increase of Ω. At Ω ≈ 1.7 hysteresis disappears practically.

As it was revealed in previous section, at a certain value of r(ε0), electron

velocity uζ can vanish for the second time to the right of the point ζr. At first

this occurs at the collector. Actually, the first equation of (4.27) shows that,

depending on the values of ε0 and Ω, electron velocity can vanish for several times.

Corresponding time and relevant positions are determined by the formulas

τi = τr +
2π

Ω
i,

ζi = ζr(r; Ω) +
2π

Ω3
(1− r)i. (4.36)

Here, ζr(r; Ω) is determined by Eq. (4.25) and Eq. (4.26) and i takes the positive

integer values (i. e, i = 1, 2, . . . ). When this event occurs at the collector (T =

τi), the second equation of (4.29) shows that the value of the inter-electrode gap

is independent of the time (τi) when electron velocity vanishes. Moreover, this

particular value of the inter-electrode gap turns out to be maximum for the regime

where only a portion of the injected electrons is turned about by the magnetic

field. We denote this gap value by δmax:

δmax =

√
1 + 2V

Ω
. (4.37)

Fig. 4.9 (a) shows the dependence of δmax on Ω. The relation to calculate the

values of the parameter r corresponding to δmax can be obtained from Eqs. (4.36)

and (4.37) by taking ζi = δmax:

1

Ω2

[
(1 + r)(Ωτr)− Ω

√
2(1 + r)− Ω2 + 2πi(1− r)

]
=

√
1 + 2V . (4.38)
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We denote the value of r obtained from Eq. (4.38) for i = 1 by r1. Fig. 4.9(b)

exhibits the dependence of r1 on Ω. One can see that r1(Ω) turns out to be more

than 0.87 for the whole range of Ω.

Now, we investigate the case when the electron longitudinal velocity vanishes

repeatedly, in detail. For a certain value of r (say, r = ri), derived from Eq. (4.38),

we need to calculate uζ , ζ and η from Eqs. (4.27) and (4.28). During the calculation

of velocity and potential profiles, starting with the zero value, the value of τ is

varied up to the instant when η becomes equal to V . For each value of r we

calculate ε0 and δ. Fig. 4.10(a) represents how r varies with δ. A fragment of the

ε0−δ-plot is shown in Fig. 10(b) in the neighborhood of δmax. We can see that both

curves are many-valued over a certain range of the δ’s, and have many bifurcation

points. Each right bifurcation point corresponds to uζ(δ) = 0, and at these points

all values of δ takes the same value δmax. The relevant values of r can be calculated

from Eq. (4.38) for different values of index i. The values of the coefficient r for

the left bifurcation points are calculated from Eqs. (4.33) and (4.35). Then they

can be used to find relevant parameters, ε0 and δ accordingly from Eqs. (4.23) and

(4.29). Thus, we have revealed the existence of new bifurcation points and the

ambiguity of the solutions in the vicinity of δmax.

4.5 Total electron-reflection: The Lagrange method

In this case, we assume that under a certain emitter electric field strength there is

a point ζH within the inter-electrode gap from where all the electrons are turned

back toward the emitter. At this point the longitudinal component of the velocity

uζ vanishes, and for the PD, the relationship (4.2) takes place. To the left of the



81

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80

0.5

1

1.5

2

2.5

3

3.5

4

Ω

δ

(a)

3

2
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.80.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Ω

r 1

(b)

Figure 4.9: Fig. (a): Variation of δmax (curve 1), δmin(1) (curve 2), and δSCL (curve 3) with
Ω; Fig. (b) coefficient r1 vs Ω; V = 0.

turning point ζH , the relevant profiles of ζ, uζ and η are determined by the Eqs.

(4.19), (4.20) and

η =
1

2

[
u2
ζ(τ ; Ω, r) + Ω2ζ2 − 1

]
, (4.39)

with r = 1. To the right of this point PDs are determined by Eqs. (4.9), (4.10)

with

ηH =
1

2

[
Ω2ζ2H − 1

]
,

ζH =
2

Ω2
τH +

1

Ω

(
1− 2

Ω2

)
sinΩτH +

ε0
Ω2

(cosΩτH − 1),

εH = −2τH + ε0. (4.40)
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The value of τH is determined from the condition uζ(τH) = 0:

2

Ω2
+

(
1− 2

Ω2

)
cosΩτH − ε0

Ω
sinΩτH = 0. (4.41)

Depending on the value of Ω, τH reads

1

Ω

[
sin−1 2√

(2− Ω2)2 + ε20Ω
2
− sin−1 2− Ω2√

(2− Ω2)2 + ε20Ω
2

]
, Ω <

√
2,

1

Ω

[
sin−1 2√

(2− Ω2)2 + ε20Ω
2
+ sin−1 Ω2 − 2√

(2− Ω2)2 + ε20Ω
2

]
, Ω >

√
2, (4.42)

or,

1

Ω
sin−1 2ε0 − (2− Ω2)

√
ε20 − 4 + Ω2

(2− Ω2)2 + ε20Ω
2

Ω, Ω <
√
2,

1

Ω

[
π − sin−1 2ε0 + (Ω2 − 2)

√
ε20 − 4 + Ω2

(2− Ω2)2 + ε20Ω
2

Ω

]
, Ω >

√
2. (4.43)

The dependence of δ on ε0 for a set of Ω–values is marked in Fig. 4.5 by open

circles. At the left boundary of the region corresponding to r = 1 we have

ε0,min =
√
4− Ω2,

ζH,min =
1

Ω2

(
2τH,min −

√
4− Ω2

)
,

ηH,min =
1

2

[
1

Ω2

(
2τH,min −

√
4− Ω2

)2
− 1

]
,

εH,min = −
(
2τH,min −

√
4− Ω2

)
. (4.44)

Here depending on the value of Ω, τH,min reads

1

Ω
sin−1

√
4− Ω2

2
Ω, Ω <

√
2,

1

Ω

(
π − sin−1

√
4− Ω2

2
Ω

)
, Ω >

√
2. (4.45)

Making use of Eqs. (4.40), (4.41), (4.44) and (4.45), from (4.10) we find minimum

gap value δmin(1), corresponding to r = 1:

δmin(1) =
1

2

[
ζH,min +

1 + 2V

Ω2 ζH,min

]
. (4.46)
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As an example, for Ω = 1, we can have τH,min = π/3 ≈ 1.0472, ζH,min = 0.3623,

εH,min = −0.3623, ηH,min = −0.4344 and δmin(1) = 1.5611. Fig. 4.9(a) shows

the dependence of δmin(1) on Ω (curve 2). We can see that the distance between

δmin(1) and δmax decreases with the increase of Ω.
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Figure 4.10: Fig. (a) r and (b) ε0 vs δ. Vertical dashed line corresponds to position of the SCL
point, dashed-dotted line is for δmax, and horizontal solid line is for r = 1.0. Ω = 1.0, V = 0.

It is seen from Fig. 4.9(a), that the steady-state solutions are absent within

the region δmax < δ < δmin(1). This paradox arises owing to the fact that the

velocity distribution function of the emitted electron is taken as a δ-function for

this analysis. Such a function describes very well the solutions for r < 1. However,

when r → 1 we need to keep in mind that in reality, there is always a small amount
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of the electrons with vz > v0. To take into account this fact we can, for example,

choose the velocity distribution function of the emitted electrons in a form

f0(vz) =
n0

v0
A(α) exp

{
−α
(
v2z/v

2
0 − 1

)}
Θ(vz − v0),

A(α) =
2
√
α√

π exers(α)
. (4.47)

Here, α = v20/(2kT/m) ≫ 1 with T being an effective “temperature”; exers(α) =

exp(α)(1− erf
√
α) with erf(α) being the error integral. The characteristic velocity

v0 is determined from the equation v0 = J0/(en0)[1/{
√
πα exers(α)}] and the ki-

netic energy of electrons at the emitter can be written as,W0 = (mv20/2)[1/{
√
πα exers(α)}+

1/(2α)]. We should note that for α ≫ 1, v0 and W0 differ slightly from the corre-

sponding values associated with the monoenergetic beam.

4.6 Summary

In this chapter we have shown that, in the presence of a transverse magnetic field

in a Bursian diode, a fraction of the emitted electrons can be turned back (partially

or totally) toward the emitter and, as a result of it, the diode current decreases. To

study this behaviour, a reflection coefficient r has been introduced. This coefficient

takes the value zero for the solution without electron turning and one for complete

electron turning. The situation of partial electron turning appears when 0 < r < 1.

Two characteristic-points (SCL and BF ) of ε0, δ-curve serve as the boundaries of

a region of non-unique solutions. However, with the increase of the magnetic field,

this region of non-uniqueness disappears slowly and it occurs when the Larmor

radius becomes comparable to the Bursian threshold.

However, unlike the classical Bursian diode, the (ε0, δ)-diagram demonstrates a
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new zig-zag region. This region contains the solutions for which the longitudinal ve-

locity of the injected electrons vanishes for several times within the inter-electrode

space. Here the coefficient r, which controls the amount of the electrons to be

turned back by the magnetic field, is more than about 0.9. When r → 1, the

period and the amplitude of the velocity oscillations tend to zero.

A primary model can be suggested to design a fast electronic switches based

on Bursian diode. The working mechanism of this electronic switch involves a

transition between the states of the normal C branch (the section of “ε0 − δ”

curve for δ < δSCL, ε0 < εSCL) and the B branch (the section of “ε0 − δ” curve

for δ > δBF , ε0 > εSCL). This B branch was absent in the results discussed in

chapter two, as electron reflection was not taken into account in that case. We

can see from Eq. (4.37), that if Ω exceeds
√
1 + 2V /δSCL(0), the current turns

out to be zero after switching, i. e., current cut-off is complete. Whereas, at Ω <

√
1 + 2V /δSCL(0) the state corresponds to the regime with an incomplete current

cut-off.
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Chapter 5

Stationary states of a relativistic
Bursian diode in the presence of a
transverse magnetic field

The previous chapters were devoted to study the steady-state properties of a non-

relativistic Bursian diode. In this chapter, a comprehensive study on the steady

states of a planar vacuum diode driven by a cold relativistic electron beam in the

presence of an external transverse magnetic field is presented. The regimes, where

no electrons are turned around by the external magnetic field and where they are

reflected back to the emitter by the magnetic field, are both considered in a gen-

eralized way. The dependencies of the characteristic bifurcation points and the

transmitted current on the Larmor frequency as well as on the relativistic factor

are explored.

87
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5.1 Introduction

The physics of the relativistic electron beam driven vacuum diodes is of funda-

mental interest due to a number of important applications like plasma heating,

inertial fusion etc. Most importantly, they are also widely used as the generators

of powerful microwave radiation (vircator, reditron, reflecting triode) which are

tunable over a wide frequency range. The generation of the microwave radiation

in these high power devices generally happens when the electron beam energy is

converted into the electric field oscillations [153, 154, 155]. The operation of a

vircator as a microwave generator is based on the oscillations of the virtual cath-

ode (VC) in the electron beam when diode current crosses a critical value (space

charge limit) [138, 156, 157, 158]. The origin of the space charge limited cur-

rent in the diode like systems and the formation of the VC have been studied

extensively both in non-relativistic[66, 148, 150, 158, 159] and relativistic cases

[69, 160, 161, 162, 163, 164, 165]. Recently, Lin and Chuu considered the quasi-

stationary states of a relativistic planar diode [166] and Lopez et al. calculated

limiting emission current in a relativistic diode under the condition of magnetic

insulation [167]. It should be mentioned that the copious beams of the relativistic

electrons occur also in the pulsar magnetospheres [168].

In high power relativistic diodes, the strong inherent magnetic field (generated

due to the very high current density of the relativistic electron beam) affects the

motion of the charge particles. It was also reported that in the presence of strong

magnetic field, the oscillation amplitude and the output power of the microwave

generator decrease [118]. Several authors have diagnosed the effect of the external

magnetic field on the space charge limiting current in relativistic electron beam and
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studied the output power of the electromagnetic radiation in recent years [169, 170].

Harmov et. al. have shown that the value of the space charge limiting (critical)

current decreases as the strength of the external magnetic field is increased, and

there is an optimal value of the magnetic field induction at which the critical value

of the diode current is minimum for the onset of the virtual cathode oscillations

in the electron beam. Whereas, Kurkin et. al. have pointed out that the output

power of the vircator shows several maxima when it is plotted with respect to

the external magnetic field. They also explained that the characteristics of the

power behaviour depend on the conditions of the virtual cathode formation in the

presence of the external transverse magnetic field and the REB self-magnetic fields.

This chapter explores the impact of the external transverse magnetic field on the

steady states of a planar vacuum diode when a cold relativistic beam of electrons

is injected by the emitter surface.

5.2 The electron dynamics

To study a relativistic Bursian diode in the presence of the transverse magnetic

field, we use the planar model which is explained before (see second chapter). In

this case, a relativistic monoenergetic electron flow is supplied by the emitter with

density n0 and injection velocity v0 perpendicular to the emitter surface. The

velocity of the electrons v⃗ obeys the equation

v⃗ · ▽p⃗ = −eE⃗ − e

c
v⃗ × B⃗. (5.1)

In Eq. (5.1), the relativistic momentum p⃗ is determined as

p⃗ = γmv⃗ (5.2)
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with the relativistic Lorentz factor being

γ =
(
1− v2/c2

)−1/2
, v2 = v2z + v2x. (5.3)

Using the relation E(z) = −dφ(z)/dz and from Eq. (5.1) we obtain

vz
dpz
dz

= e
dφ

dz
− ωmvx, vz

dpx
dz

= ωmvz. (5.4)

Here e and m are the charge and the rest mass of the electron respectively, and the

Larmor frequency ω = eB/(mc). To solve Eq. (5.4), we add following boundary

conditions at the emitter:

vz(0) = v0z = v0, vx(0) = v0x = 0, φ(0) = 0,

γ(0) = γ0 ≡
(
1− v20/c

2
)−1/2

. (5.5)

Firstly, we obtain explicit expressions for the velocity components. From the

second equation of the system of equations (5.4), the second boundary condition of

Eq. (5.5), and Eq. (5.2), the x-component of the electron velocity can be obtained

as

vx(z) = px/(mγ) = ωz/γ. (5.6)

Using this expression of vx, we can find vz from Eq. (5.3) :

vz(z) =
c

γ

√
γ2 − 1− ω2

c2
z2. (5.7)

Now to get a relation between the the factor γ and φ, we substitute vx(z) and

vz(z) from Eqs. (5.6) and (5.7) in the first equation of the system of equations

(5.4). From Eqs. (5.4) we find

(γ − 1)mc2 − eφ(z) = (γ0 − 1)mc2,

or γ = γ0 + eφ/(mc2). (5.8)
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Here the boundary conditions for γ and for the potential φ at the emitter [Eq. (5.5)]

are used. The first equation of Eqs. (5.8) is the energy conservation law for the

relativistic electrons moving in the presence of the self-consistent electric field and

the transverse external magnetic field. The term (γ0 − 1)mc2 residing on the right

hand side of the first equation of Eqs. (5.8) is the kinetic energy of the electrons at

the emitter.

When we substitute γ from Eq. (5.8) into Eqs. (5.6) and (5.7), we have explicit

expression for vx(z) and vz(z):

vx(z) =
ωz

γ0 + eφ/(mc2)
,

vz(z) =
c
√

[γ0 + eφ/(mc2)]2 − 1− (ω2/c2)z2

γ0 + eφ/(mc2)
. (5.9)

In a nonrelativistic limit (γ0 → 1, v20/c
2 ≪ 1), we get

vx(z) = ωz,

vz(z) =
√

v20 + 2(e/m)φ(z)− ω2z2.

The presence of the transverse magnetic field brings some new features in the

electron velocity and density distributions within the inter-electrode gap (as com-

pared with Ref. [69]). As the magnetic field converts a portion of the longitudinal

electron energy into the transverse one, the longitudinal electron energy dimin-

ishes and the potential barrier height for the electrons turns out to be lower than

the initial energy of the electrons. Additionally, due to the presence of the trans-

verse magnetic field, now the electrons can be turned back even at a point where

φ(z) > 0.

One can see that the velocity vz does not depend on the sign of B as Eq. (5.9)

carries the square of the magnetic field. When the magnetic field is not present in
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Figure 5.1: Normalized potential eφ/(2Wb) is plotted as a function of normalized space ζ =
z/λD for various values of ε0 = eE0λD/(2Wb): (1) ε0 = 0.72 (no electrons are turned due to
the magnetic field), (2) 0.9029 and (3) 1.0793 [for (2) and (3), there is a point within the diode
gap in which the longitudinal velocity vanishes for the first time]. Dashed curve corresponds to

φ = p(z, ω) = (mc2/e)
(√

1 + (ω2/c2)z2 − γ0

)
; γ0 = 2; ω/ω0 = 1.0; U = 0.

the Bursian diode, the velocity of the emitted electron vanishes if only the potential

barrier height becomes equal to the electron energy at the emitter, and it happens

at the position of the potential minimum (virtual cathode). Here a portion of the

emitted electrons is reflected by the potential barrier towards the emitter. When

there is a magnetic field in the transverse direction, the non-negativity condition

of the radicand in Eq. (5.9) shows that PDs φ(z) should be restricted within a

region limited by the curve p(z;ω), to be consistent with the distributions of the

electrons (Fig. 5.1):

φ(z) ≥ p(z;ω) ≡ (mc2/e)
(√

1 + (ω2/c2)z2 − γ0

)
. (5.10)

Equality sign in (5.10), i. e. a condition

eφ(zr) + γ0mc2 = mc2
√

1 + (ω2/c2)z2r (5.11)

appears at a point zr where the z-component of the electron velocity vanishes and

the electron is turned around by the magnetic field. We can check that, unlike the
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case where the external magnetic field was absent, the electron turning does not

occur at the point of the potential minimum in the presence of the magnetic field

in transverse direction. In the following sections, the problem is approached by

two techniques: with the Euler and the Lagrange formulation.

5.3 Steady-state solutions. The Euler method

In this section, we study the features of the steady state solutions by using the

Eulerian variables. We approach this problem in a similar way as it was solved

for the Bursian diode in the absence of magnetic field [69]. We set a value for

the potential difference U between the electrodes. For a given value of the electric

field strength E0 at the emitter end, we calculate the velocity and the electron

density, as well as the potential distribution (PD) within the inter-electrode gap.

The process starts from the emitter, and terminates at the moment when the value

of the potential turns out to be equal to U . The relevant z-coordinate implies the

distance of any point within inter-electrode region from the emitter. Increasing

gradually E0, we build the dependence of E0 on diode gap (d).

In time-independent case, it is sufficient to use the continuity equation, the

relation between the longitudinal velocity and the potential [Eq. (5.9)], and the

Poisson’s equation. When no electrons are turned back by the magnetic field, i. e.,

when the equality condition (5.11) does not hold anywhere, the continuity equation

gives

en(z)vz(z) = en0v0 ≡ jb. (5.12)

Substituting the above expression of n(z) into the Poisson’s equation and using
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the relationship (5.9), we obtain a nonlinear differential equation for the potential

d2φ

dz2
=

e

ϵ0
n =

jb
ϵ0c

γ0 + eφ/(mc2)

{[(γ0 + eφ/(mc2)]2 − 1− (ω2/c2)z2}1/2
. (5.13)

Here, the free-space permittivity ϵ0 ≈ 8.854 · 10−12C2/Nm2.

Next we introduce dimensionless quantities by using the kinetic energy of the

electrons at the emitter (Wb) and the Debye length (λD) for the energy and length

units respectively:

Wb = (γ0 − 1)mc2, λD =

(
2ϵ0Wb

e2n0

)1/2

. (5.14)

As we follow the Ref. [69], we can see that it is convenient to use the current density

jb and the accelerating voltage Vb = Wb/e as the basic units instead of the density

n0 and the energy Wb. Thus,

λD =

(
2ϵ0eVbv0

ejb

)1/2

=

(
2ϵ0mc3

ejb

)1/2

F (Vb),

F (Vb) =

(
eVb

mc2

)3/4(
eVb

mc2
+ 2

)1/4(
eVb

mc2
+ 1

)−1/2

. (5.15)

When jb is expressed in Amperes per square centimeters, we obtain

λD ≈ 0.5205× 102F (Vb)j
−1/2
b [cm]. (5.16)

Expressing Vb in Volts, we find for the function F (Vb)

F (Vb) ≈
(1.9570× 10−6Vb)

3/4(2 + 1.9570× 10−6Vb)
1/4

(1 + 1.9570× 10−6Vb)1/2
. (5.17)

and the relativistic factor at the emitter is found to be γ0 = 1 + (e/mc2)Vb =

1+ 1.9570× 10−6Vb. Thus, for a given accelerating voltage Vb and a beam current

density jb, one can determine the Debye length from Eqs. (5.16) and (5.17) and

calculate γ0.
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Figure 5.2: Debye length λD vs Vb for jb = 1kA/cm2. The relativistic and non-relativistic
Debye lengths are represented by the solid and dashed lines respectively [69].

In Fig. 5.2, the value of jb has been chosen to be 1kA/cm2 and we can see that

the relativistic and non-relativistic Debye lengths practically coincide with each

other as long as Vb < 0.1MV . However, for large Vb, the non-relativistic Debye

length differs significantly from the relativistic one.

For the dimensionless coordinate, time, velocity, potential and electric field

strength we have (ζ, χ) = (z, x)/λD, τ = tω0, (uζ , uχ) = (vz, vx)/
√
2Wb/m,

η = eφ/(2Wb), ε = eEλD/(2Wb); here ω0 = [e2n0/(mϵ0)]
1/2 is the characteris-

tic frequency. The dimensionless forms of the inter-electrode gap and the applied

voltage between the electrodes are denoted by δ and V respectively.

Now the equation (5.13) takes the form

d2η

dζ2
=

(γ2
0 − 1)1/2

γ0

2(γ0 − 1)η + γ0

{[2(γ0 − 1)η + γ0]2 − 1− 2(γ0 − 1)Ω2ζ2}1/2
. (5.18)

Here the dimensionless Larmor’s frequency Ω is expressed in units of the frequency

ω0:

Ω =
ω

ω0

=
λD

λL

, λL =
mc
√
2Wb/m

eB
. (5.19)
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The boundary conditions for Eq. (5.18) are

η(0) = 0, η(δ) = V. (5.20)

In the non-relativistic case, the steady-state solutions are determined by two

parameters: δ and V . Whereas, in the relativistic situation, there is an additional

third parameter, which is the emitter’s relativistic factor γ0. The normalized po-

tential distribution η(ζ) should be confined within the boundary defined by

ηc =
1

2(γ0 − 1)

[√
1 + 2(γ0 − 1)Ω2ζ2 − γ0

]
.

We should note that Eq. (5.8) gives the relation between the relativistic factor

γ and the potential η:

γ = 2(γ0 − 1)η + γ0. (5.21)

Therefore, we can obtain a differential equation for γ from Eq. (5.18):

d2γ

dζ2
=

(γ2
0 − 1)1/2

γ0

γ√
γ2 − 1− 2(γ0 − 1)Ω2ζ2

(5.22)

with boundary conditions

γ(0) = γ0, γ(δ) = 2(γ0 − 1)V + γ0. (5.23)

From Eqs. (5.6) and (5.7), we obtain

uχ =
Ωζ

γ
, uζ =

1√
2(γ0 − 1)

1

γ

√
γ2 − 1− 2(γ0 − 1)Ω2ζ2. (5.24)

Eqs. (5.24) also give

p2 = p2ζ + p2χ =
γ2 − 1

2(γ0 − 1)
. (5.25)

Next we solve the Eq. (5.18) to find the space dependencies of γ and η with

the help of B.C. (5.20). A diode PD is a single minimum function. We denote the
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potential at the point of minimum ζ = ζm by ηm. We take a particular value of

the electric field strength ε0 = ε̃0 at the emitter, and integrate the equation (5.18)

from the emitter (ζ = 0) towards the point of the minimum. The position and the

value of the potential minimum (ζm, ηm) are obtained under the condition of zero

electric field strength. Further, we integrate Eq. (5.18) from the point ζm towards

the collector with the boundary conditions

η(ζm) = ηm, dη/dζ(ζm) = 0. (5.26)

While integrating Eq. (5.18), we use an approximation method which is de-

scribed in previous chapters. We take a guess-value of the potential at minimum:

ηm. The true value of it will be determined in the process of the calculations. In a

region between the emitter and the location of the potential minimum, we take the

potential frame (instead of coordinate frame): ηk = ηk−1+∆ηk, k = 1, . . . N, η0 = 0.

Then we multiply both sides of Eq. (5.18) by 2dη and integrate it once over the

potential within each layer (ζk−1, ζk):

ε2k = ε2k−1 + 2

√
γ2
0 − 1

γ0

∫ ηk

ηk−1

[2(γ0 − 1)w + γ0]dw

{[2(γ0 − 1)w + γ0]2 − 1− 2(γ0 − 1)Ω2(ζ ′)2}1/2
.

(5.27)

Here, εk = −(dη/dζ)|ζ=ζk is the electric field strength at a point ζ = ζk. After

simplification, Eq. (5.27) takes the form

ε2k = ε2k−1 +

√
2(γ0 + 1)

γ0

∫ ηk

ηk−1

[2(γ0 − 1)w + γ0]dw

[2(γ0 − 1)w2 + 2γ0w + (γ0 + 1)/2− Ω2(ζ ′)2]1/2
.

(5.28)

While integrating the integral of Eq. (5.28), PD is approximated with a straight
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line

η(ζ) = ηk−1 − (ζ − ζk−1)εk,

εk = qkεk−1 + (1− qk)εk. (5.29)

In Eq. (5.29), the weights qk lie within (0, 1). In each layer, values of qk, generally,

can be different. In our calculation, we take qk = 0.5. The relevant mathematics

which have been used to calculate the integral in Eq. (5.28) are deduced in the

Appendix.

Thus to obtain the PD in the region to the left of the potential minimum,

within each step k, a system of the difference equations

ηk = ηk−1 +∆ηk,

εk = ±
{
ε2k−1 + β [

√
2(γ0 + 1)/γ0]G(ζk−1, ηk−1, εk−1, ηk, εk)

}1/2

,

εk = qkεk−1 + (1− qk)εk,

ζk = ζk−1 − (ηk − ηk−1)/εk (5.30)

is solved under the conditions :

η0 = 0, ε0 = ε̃0, ζ0 = 0. (5.31)

Note that here we have artificially introduced a factor β which is equal to 1 for the

case of no electron turning. We shall widely use this factor in following sections.

Within each step, a value of the electric field strength εk and coordinate ζk are

determined. It should be noted here that in this region, εk ≥ 0.

The equation for εk [the 2nd equation of the system of Eqs. (5.30)] is the tran-

scendental one. So, within each step k, an iteration is carried out. Taking an

approximate value of ε
(0)
k , firstly, at the right side of the 2nd equation, ε

(1)
k is calcu-

lated. From the next two equations, εk
(1) and ζ

(1)
k are obtained. Then, the relevant
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parameters for the second approximation are calculated and so on. Under certain

value of k (k = K ≤ N), the radicand in the second equation of the system of

equations (5.30) becomes negative. At this step, the iterations are carried out over

ηK as εK becomes zero. As a result, the required values of the potential and the

position of the potential minimum (ηm and ζm) are determined.

When the coordinates of the potential minimum are determined, the PD is

calculated to the right of the point of minimum ζm. Eqs. (5.30) are solved with the

boundary conditions (5.26). The value of the potential step is taken as (V −ηm)/N .

It should be kept in mind that the electric field strength is now negative in this

region. The calculation is completed when the potential takes the value V and at

this situation, the value of ζ becomes δ. Thus, the PD related to the chosen value

of the electric field strength at the emitter is obtained. In addition, for each value

of ε0, the inter-electrode gap value δ is calculated.

δ

ε 0

0.8 1.0 1.2 1.4
0.5

0.6

0.7

0.8

0.9

1

3

1

2 SCL

SCL SCL

O

O

O

Figure 5.3: The ε0(δ) curves are drawn for various values of γ0: (1) γ0 = 1, (2) 2, (3) 10; Ω = 1.
V = 0. The regime where no electrons are turned by the magnetic field.
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5.3.1 Regime of no electron-reflection

Unlike the non-relativistic case, we have an additional parameter which is the

emitter’s relativistic factor γ0 for the relativistic Bursian diode. Now we analyse

how the diode characteristics depend on this parameter. First we fix the magnetic

field value (i. e. the parameter Ω). During the calculations, the value of the

emitter’s electric field strength is smoothly increased, and, for each value of ε0,

the profiles of the potential, velocity, and density within the inter-electrode gap

are calculated. The nature of these dependencies are similar to the non-relativistic

case. For the case under consideration (V = 0), the diode PD is found to be

a single minimum function. The dependence of the velocity uζ(ζ) on the space

coordinate shows that uζ also has a single minimum on space. This dependence is

a monotonic function for small values of ε0, and its minimum lies on the collector at

first. As ε0 is increased, the position of the velocity minimum (ζvm) appears within

the inter-electrode gap. When the value of the ε0 is increased further, the location

of the velocity minimum begins to shift towards the emitter and the minimum

value of the velocity (uζ,min) reduces. At a particular value of the emitter electric

field strength [ε0 = ε00(γ0,Ω)], the value of uζ,min vanishes and for ε0 ≥ ε00, the

electrons are turned back by the magnetic field towards the emitter.

Like the non-relativistic case, it is convenient to represent the steady state

solutions by the points of the {ε0, δ}-curves. For a fixed V , those points lie on

a continuity curve which is named as the branch of solutions. In Fig. 5.3 these

branches are shown for a number of γ0 values and Ω = 1. Here the calculation

ends at such a value of ε0 when the longitudinal velocity profile touches the line

uζ = 0 for the first time. The dependence of ε0 on δ has a region of non-unique
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Figure 5.4: The dependencies (a) δSCL(γ0) and (b) ε0,SCL(γ0) are drawn for various values of
Ω: (1) Ω = 0, (2) 0.3 and (3) 1.0; V = 0.

solutions. To the right boundary of this region, there is a bifurcation point SCL.

The end point at the left of this region refers to a situation when there is a point

within the diode gap where the velocity uζ becomes zero for the first time. We

denote it by an index “0”. With the increasing value of the relativistic factor γ0,

the width of the region of the ambiguous solutions (the region between δ0 and

δSCL) increases (Fig. 5.3).

Fig. 5.4 demonstrates the variations of δSCL and ε0,SCL with γ0 for different

values of Ω. We can see the non-monotonic behaviour of the curve ε0,SCL(γ0)

around the region of small γ0’s and it is likely to be inherent characteristic of the
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relativistic diodes [69]. The dependencies of δSCL, δ0, ε0,SCL and ε0,0 on γ0 are

shown in Fig. 5.5 for Ω = 1.
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Figure 5.5: The dependencies (a) δ(γ0) and (b) ε0(γ0) are shown for (1) “SCL”, (2) “0” and
(3) “BF” points; Ω = 1. V = 0.

5.3.2 Regime of electron reflection

In the presence of the magnetic field, the ζ–component of the electron velocity

decreases with space coordinate ζ and becomes a tangent to the line uζ = 0 at a

point where uζ vanishes. Then uζ begins to increase. Thus, we can say that the

nature of the zero velocity position is point type. This feature was also observed in

the non-relativistic case. As physical situations demand, taking into consideration
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a small velocity spreading within the beam, we can assume that all electrons would

not be turned around by the magnetic field at a point ζr where uζ vanishes. A

portion of such electrons can overcome this point with velocities little higher than

zero and flow toward collector. To involve “electron beam splitting” at a point ζr,

we introduce a reflection coefficient r. In this situation, there are two flows in the

region between the emitter and the point ζr: the direct and the reverse flow. Since

at any point ζ (ζ < ζr), the velocities of the direct and reverse particles coincide

absolutely, the densities of the direct and reverse particles become 1/uζ and r/uζ ,

respectively. Thus, in this region, the total density of the electrons is (1 + r)/uζ .

To the right of the point ζr, there is the direct electron flow with a weight 1− r.

When a portion of the injected electrons is turned back, all PDs remain within

a region limited by the curve p(ζ; Ω) [as shown in (5.10)], and the function η(ζ)

turns out to be a tangent to this curve at the point of reflection ζr (see curves 2,

3 and the dashed curve in Fig. 5.1).

Now we can continue our calculations for the region with r > 0. We utilize

Eqs. (5.30) with the factor β = 1+r to the left of the turning point ζr and β = 1−r

to the right of this point. The value of the extra parameter r is determined in the

course of solving these equations. Solution algorithm is as follows. At a given

value of ε0 (say, ε0 = ε̃0), a particular value of the coefficient r is taken. First,

Eqs. (5.30) are solved on a path from the emitter position to the location of the

potential minimum with the boundary conditions (5.31). The position (ζm) and

the value of the potential minimum (ηm) are determined from the zero electric field

condition. Beyond the point of the potential minimum, Eqs. (5.30) are solved with
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the boundary conditions

ηn = ηm, εn = 0, ζn = ζm (5.32)

from the point ζm to the point ζr, where the electron velocity uζ vanishes. Now,

iterating over a parameter r, we obtain that for some value of r, uζ turns out to

be tangent to the straight line uζ = 0. At this situation, we note the values of r

and ε0 and determine the relevant quantities like ζr, εr and ηr. At last, Eqs. (5.30)

are solved from the point ζr to the collector position and δ is determined.
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Figure 5.6: The ε0 vs r curves are drawn for various values of γ0: (1) γ0 = 1, (2) 1.5, (3) 10;
Ω = 1. V = 0.

In the course of these calculations, we increase gradually ε0 starting from the

value ε00, which corresponds to the state when the situation of zero electron velocity

(uζ = 0) arises for first time. At this moment, we have r = 0. When ε0 is increased

further, the coefficient r grows too. The dependence of r on ε0 is obtained in the

process of calculation, and it is shown in Fig. 5.6 for several values of γ0 and

Ω = 1.0.

In Fig. 5.7, the dependence of ε0 on δ is shown for several γ0 values (Ω = 1). In

this figure, the solutions corresponding to the “partial” reflection of electrons are
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also taken into consideration. Like the non-relativistic case, one can see that there

are two bifurcation points in Fig. 5.7, which are SCL and BF points. Fig. 5.7 also

shows that the BF point does not lie on the reflection threshold (zero point) and

the reflection coefficient r > 0 at this point. It is also evident from Fig. 5.7 that the

region of hysteresis (the region between δSCL and δBF ) is enlarged and the region

between δBF and δ0 is narrowed, as the value of relativistic factor γ0 increases. The

BF -point and zero point merge together at large γ0 values. These phenomena are

clearly evident from Fig. 5.5.
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Figure 5.7: The ε0(δ) curves are drawn for various values of γ0: (1) γ0 = 1, (2) 1.5, (3) 10.
Ω = 1. V = 0. Solid circles correspond to the SCL points, hollow circles refer to the BF points
and zero-points are marked by “0”.

As it was shown in Fig. 5.6, for a definite value of Ω, the value of r increases with

ε0. When r is very close to the value 1, a moment may appear when the velocity

uζ turns out to be zero again, i. e., the electrons may face another turning point.

The situation of multiple turning points was also observed in the non-relativistic

diode (see chapter four). It was reported that, at this very moment, the coefficient

r does not reach its limiting value 1 but it is very close to it. Apparently, when ε0

is increased further, the number of turning points increases and theoretically, for
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r = 1, it becomes infinity. This fact is clearly evident from the curve 1 in Fig. 5.7

[this curve belongs to non-relativistic diode (γ0 = 1)]. In relativistic situation, we

also expect to have similar type of feature. It will be detailed in the next section.

5.4 Features of the steady-states. The Lagrange

method

Now we solve the problem, using the Lagrangian variables. For 1D time-independent

case we start with the basic governing equations which are the continuity and the

momentum equations along with the Poisson’s equation. They are written in di-

mensionless form as:

nuζ = H(ζ; ζr, r),

uζ
dpζ
dζ

= −ε− Ωuχ, uζ
dpχ
dζ

= Ωuζ ,

ε = −dη

dζ
,

dε

dζ
= −n. (5.33)

HereH(ζ; ζr, r) = (1+r)Θ(ζr−ζ)+(1−r)Θ(ζ−ζr), ζr is the point where an electron

is turned around, r is the reflection coefficient; the function Θ(x) = 1 at x > 0 and

0 at x < 0. The boundary conditions to be used are, density n(ζ = 0) = 1,

components of velocity uζ(ζ = 0) = u0 ≡
√
γ0 + 1/(

√
2γ0), uχ(ζ = 0) = 0,

relativistic factor γ(ζ = 0) = γ0, electric potential, η(ζ = 0) = 0, and electric

field ε(ζ = 0) = ε0.

To solve these nonlinear equations, we introduce the Lagrangian coordinate τ

and the Lagrange transformation,

ζ =

∫ τ

0

uζ(τ
′)dτ ′.
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Thus, uζd/dζ = d/dτ . Eqs. (5.33) take the form

nuζ = H(ζ; ζr, r),

dpζ
dτ

= −ε− Ωuχ,
dpχ
dτ

= Ωuζ ,

dη

dτ
= −uζε,

dε

dτ
= −u0H(ζ; ζr, r). (5.34)

Besides, we have the conservation law of energy (5.21) and the relations (5.24) for

the velocity components.

The last equation of (5.34) gives the evolution of the electric field strength

ε = ε0 − u0(1 + r)τ, if ζ < ζr,

ε = εr − u0(1− r)(τ − τr), if ζ > ζr. (5.35)

Here τr is the time when an emitted electron is turned back and εr = ε(τr) =

ε0 − u0(1 + r)τr.

Next we have solved the system of coupled differential equations (5.34) numer-

ically. The algorithm used is as follows: First we fixed the values of Ω, γ0 and

applied potential V . For the case of no electron turning, we have taken r = 0,

H = 1 and ε = ε0 − u0τ . For a fixed value of ε0, we have gradually increased the

value of τ from zero and calculated the variations of ζ, uζ , uχ and η with respect

to τ . The ζ-dependencies of the velocity components [uζ(ζ), uχ(ζ)] and potential

[η(ζ)] are evaluated through the dependence of ζ on τ . The value of τ is increased

up to the moment when η takes the value V . At this stage, τ = T and ζ = δ,

where T is the time of flight required for an electron to cross the inter-electrode

region and δ is the inter-electrode distance in dimensionless form.

The longitudinal velocity profile [uζ(ζ)] is found to form a minimum (uζ,m)

within diode region. With the increasing value of the ε0, uζ,m starts to decrease
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Figure 5.8: The dependencies (a) ε0(δ) and (b) r(δ) are plotted for γ0 = 1.5, Ω = 1 and V = 0
in the vicinity of r → 1.

and finally a situation comes when uζ,m = 0, i.e., at this moment the longitudinal

velocity of an electron emitted with a velocity u0, becomes zero within the inter-

electrode region for the first time. The corresponding position of zero longitudinal

velocity is calculated and denoted as ζr. This is the onset of the electron reflection.

If we increase the emitter-electric field strength at further, the value of r starts

to increase too. For the case of partial electron reflection, r can take any value

between zero and one, depending on the strength of applied magnetic field and

emitter-electric field strength. For total reflection of electrons r is 1. To inspect

the dependence of ε0 on r, we have taken a fixed value of r and gradually varied the
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value of ε0. For each value of ε0, the potential distribution [η(ζ)] and the velocity
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Figure 5.9: The dependencies (a) ε0(δ) and (b) r(δ) are plotted in the vicinity of r → 1, for
a number of γ0 values: (1) γ0 = 1 (blue), (2) γ0 = 1.5 (red), (3)γ0 = 2 (green) and (4) γ0 = 3
(magenta); Ω = 1 and V = 0.

profile [uζ(ζ)] are developed. The minimum value of the longitudinal component

of the electron velocity (uζ,m) is also calculated in each case. When for some

particular value of ε0, uζ,m vanishes, we checked whether it is tangent to the line

uζ(ζ) = 0 at the point of velocity minimum. If this condition holds, the value of

the parameter ε0 is marked and we assign τ = τr, ζ = ζr and η = ηr. Otherwise

we continue to vary ε0.

Once we get the turning point ζr, we solve the equations (5.34) for the right side
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of the point ζr with proper boundary conditions [uζ(τ = τr) = 0, pζ(τ = τr) = 0

and ηζ(τ = τr) = ηr]. We increased τ starting from τ = τr and started to calculate

the necessary quantities. It continues up to the moment when η takes the value

V . At this moment, ζ = δ. Thus, for some fixed value of r, we can have the

corresponding values of ε0 and δ. We should mention that the results obtained by

the Lagrange formulation coincide with those found by the Eulerian technique.
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Figure 5.10: The profile of (a) velocity [uζ(ζ)] and (b) potential [η(ζ)] for a number of γ0 values:
(1) γ0 = 1 (blue), (2) γ0 = 2 (red), (3) γ0 = 3 (green) and (4) γ0 = 5 (magenta); r = 0.99, Ω = 1
and V = 0. The dashed curves in Fig. 10(b) refer to the corresponding ηc for each case.

For the case of the non-relativistic Bursian diode with uniform transverse mag-

netic field, an oscillatory region has been spotted in the (ε0, δ)-diagram, as the



111

reflection coefficient r approaches to the value 1 (see, e. g., curve 1 in Fig. 5.7).

The reason of this oscillatory region lies behind the fact that depending on the

strength of the transverse magnetic field, the longitudinal component of the elec-

tron velocity can vanish for several times. As the system steps into relativistic

regime, the oscillatory region disappears gradually. In our relativistic case, the

oscillatory regions are also observed for relatively small values of γ0, when r is

very close to 1. In Fig. 5.8(a) and Fig. 5.8(b), this oscillatory region is shown for

γ0 = 1.5 and Ω = 1. In Fig. 5.9, the oscillatory regions are shown for Ω = 1 and

several γ0 values in the vicinity of r → 1. It is found that for higher values of γ0,

the width of the oscillatory region gradually decreases. As we can see from Fig. 5.9,

the oscillatory region practically disappears for γ0 ≥ 3. The physical reason be-

hind this can be explained as follows: the presence of the transverse magnetic field

starts to convert some portion of the longitudinal kinetic energy of the emitted

electrons into transverse one and at zero point, for some particular strength of

it, longitudinal kinetic energy becomes zero. At this position, the longitudinal

velocity of the electrons becomes zero for the first time and this is the first turn-

ing point. If the strength of the external magnetic filed is increased further, the

electrons may suffer multiple turning points. But when the value of γ0 is raised,

the longitudinal kinetic energy of the emitted electrons increases too, reducing the

possibility of having zero longitudinal velocity for multiple times within the diode

gap. In Fig. 5.10(a), the velocity profile is plotted for Ω = 1, r = 0.99 and var-

ious γ0 values. We can see that for γ0 = 1, the longitudinal velocity component

uζ vanishes for many times. At first turning point, ζ = ζr. The velocity profiles

for γ0 = 2, 3, 5 carry a zero velocity position at ζ = ζr, as well as few nonzero
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local velocity minima for ζ > ζr. The magnitudes of the velocities at these local

minima increase with the increasing γ0 values. When γ0 is increased further, the

local velocity minima disappear. Thus we can infer that, for higher γ0 values, the

tendency of multiple zero longitudinal velocities reduces. Corresponding potential

distributions are plotted in Fig. 5.10(b).

5.5 Summary

In this chapter, we have studied the characteristics of the space charge limited

flow for a relativistic electron beam driven Bursian diode, in the presence of a

transverse magnetic field. Depending on the values of the applied magnetic field

and the electric field strength at emitter, either the emitted electrons can cross the

potential barrier and reach the collector surface or a fraction of them is reflected

back to the emitter by the magnetic field. Both of these situations are treated

separately with the help of the Eulerian and the Lagrangian descriptions.

In the relativistic vacuum diode, the width of the non-unique region (the region

between SCL and BF points in the ε0, δ-diagram) increases with the increase of

the relativistic factor of the injected beam γ0.

Similar to the case of the non-relativistic Bursian diode with the transverse

magnetic field, the ε0 − −δ-diagram demonstrates a new oscillatory region as r

approaches to 1. It arises due to the fact that in the presence of strong magnetic

field, the longitudinal velocity of the injected electrons has a tendency to vanish

for more than once within the inter-electrode space. When r is very close to 1,

the period and the amplitude of the velocity oscillations tend to zero. However,

for higher values of γ0, as the kinetic energy of the emitted energy increases, the
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oscillatory region gets suppressed.
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Chapter 6

Effect of transverse magnetic field
on non-neutral plasma diodes

This chapter covers an analytical study of the non-neutral plasma diodes in the

presence of an external transverse magnetic field for an arbitrary neutralization

parameter γ. Investigations are restricted up to the regime where no electrons are

turned around by the magnetic field. A new family of solutions appears along with

the Bursian ones. Unlike the vacuum diode, there are steady state solutions for

the negative values of the emitter field strength too. For γ > 1, the value of the

emitter’s electric field strength at the space charge limit (E0,SCL) turns out to be

negative.

115
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6.1 Introduction

The development of non-linear oscillations is typical for the Knudsen mode of

a TIC [118, 133]. It was reported in Refs. [5, 118], that with the increase of the

external transverse magnetic field, first, oscillation amplitude decreases, and finally

these oscillations are suppressed. The presence of the magnetic field is found

to be responsible for quenching instabilities and oscillations too. As shown in

Refs. [171, 172], the physical processes of the Knudsen TIC can be successfully

modeled by means of the Pierce-like diode [44] in which the electrons have the

beam-like velocity distribution function. Therefore, it is necessary to perform an

analytical treatment emphasizing the effect of the external magnetic field on the

Pierce-like diode which is driven by a mono-energetic beam of charged particles.

In previous chapters, we have studied the steady state solutions of the vacuum

diode driven by an electron beam (the Bursian diode) in the presence of an external

transverse magnetic field. We have found that the external magnetic field can

strongly influence the electron flow, when the Larmor radius becomes comparable

with the inter-electrode distance.

In this present chapter, we study the time-independent solutions of a non-

neutral diode where an electron beam is transported between the electrodes through

the uniform background of immobile ions, in the presence of an external transverse

magnetic field. Similar type of problem was studied in Ref. [173]. But, a set of

specific features of the time-independent solutions were passed unnoticed. Partic-

ularly, the solutions with a potential maximum just near the emitter as well as the

regime of solution corresponding to the electron turning by the magnetic field were

missed. Note that the time-independent solutions of the generalized Pierce diode
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in the absence of the magnetic field were studied in detail in Refs. [109, 150]. A full

list of the solutions of different types was obtained, and new family of the solutions

co-existing together with the Bursian ones was found. In the present paper, we

show how the non-Bursian branches disappear gradually with increasing value of

the applied magnetic field.

6.2 Basic equations

It is assumed that the diode region is occupied uniformly by the infinitely massive

ions of constant density ni. The emitter surface injects a non-relativistic and

monoenergetic electron beam with density nb and injection velocity vb and the

electrons travel through the uniform background of immobile ions. To measure the

effect of the ion background, we have introduced the dimensionless neutralization

parameter which is

γ = ni/nb. (6.1)

Theoretically, γ can take any arbitrary value. This implies that the charge neu-

tralization (γ = 1) is the only one state of many possible options. We name this

kind of device as the Pierce diode [44]. For Bursian diodes γ = 0, i.e., the ions

are totally absent [35]. The ions are treated as immobile. As our focus is on the

fast electron processes, this type of dynamical situation can be safely assumed to

be valid in lowest approximation. A practical example, where the ions do not

participate in the dynamics, is mentioned in Ref. [150].

With the help of the above description, we now study the time-independent

states that a plasma diode can adopt. In the presence of a transverse magnetic

field, electrons move on {z, x} plane, perpendicular to the magnetic field and have
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two components of velocity: vz and vx. In the 1D time-independent case, we

start with the basic governing equations which are continuity, momentum and the

Poisson’s equations:

d

dz
(nvz) = 0,

vz
dvz
dz

= − e

m
E − ωvx, vz

dvx
dz

= ωvz,

E = −dφ

dz
,

dE

dz
= − e

ϵ0
(n− γ). (6.2)

The beam accelerating voltage Vb = Wb/e = mv2b/(2e) is in Volts, the beam

current density jb = enbvb in Amperes per square cm and B is in Teslas; e andm are

the electron charge and mass; the free-space permittivity ϵ0 = 8.854·10−12C2/Nm2;

Larmor frequency ω = eB/m and Larmor radius λL = mvb/(eB).

To rewrite the Eqs. (6.2) in terms of dimensionless quantities, we use the en-

ergy and length units which are the kinetic energy of electrons at the emitter

[Wb = mv2b/2] and the beam Debye length [λD = {(2ϵ0Wb)/(e
2nb)}1/2], respectively

[58, 66]. The dimensionless coordinate, time, velocity, potential and electric field

strength are defined as, (ζ, χ) = (z, x)/λD, τ = tωb, (uζ , uχ) = (vz, vx)/
√
2Wb/m,

η = eφ/(2Wb), ε = eEλD/(2Wb); here ωb = [e2nb/(mϵ0)]
1/2 is the characteristic

frequency. Dimensionless inter-electrode gap and voltage between collector and

emitter are denoted via δ and V respectively. Notice that in the presence of the

ion background the solutions also depend on the additional parameter γ.

Now Eqs. (6.2) are written in a dimensionless form as:

d

dζ
(nuζ) = 0,

uζ
duζ

dζ
= −ε− Ωuχ, uζ

duχ

dζ
= Ωuζ ,

ε = −dη

dζ
,

dε

dζ
= −n+ γ. (6.3)
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Here Ω is the dimensionless Larmor frequency (Ω = ω/ωb). The boundary condi-

tions to be used are, density n(ζ = 0) = 1, components of velocity uζ(ζ = 0) = 1,

uχ(ζ = 0) = 0, electric potential η(ζ = 0) = 0, and electric field ε(ζ = 0) = ε0.

The emitter electric field ε0 will be used as a variable parameter for our following

analysis. The third equation of Eqs. (7.3) and the boundary condition for the χ-

component of the electron velocity give uchi = Ωζ. After substituting uχ into the

second equation of (7.3) and integrating we obtain the energy conservation law:

1

2
u2
ζ − η +

1

2
Ω2ζ2 =

1

2
. (6.4)

It is obvious that the potential distribution (PD) should be consistent with the

distributions of the electrons within the diode region. Therefore, when there is a

magnetic field in the transverse direction, from the above equation it follows that

the PD η(ζ) should be restricted within a region limited by a square parabola

p(ζ; Ω)

η(ζ) ≥ p(ζ; Ω) ≡ 1

2

(
Ω2ζ2 − 1

)
. (6.5)

And interestingly, this condition does not depend on the ion background.

6.3 The steady state solutions

To solve the non-linear equations (6.3), we introduce the Lagrangian coordinate τ

and the Lagrange transformation,

ζ =

∫ τ

0

uζ(τ
′)dτ ′.
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Thus, uζd/dζ = d/dτ . Then the equations (6.3) take the form

d

dτ
(nuζ) = 0,

duζ

dτ
= −ε− Ωuχ,

duχ

dτ
= Ωuζ ,

dη

dτ
= −uζε,

dε

dτ
= −1 + γuζ . (6.6)

Combining Eq. (6.6) we can have

d2

dτ
uζ + α2uζ = 1. (6.7)

with the initial conditions

uζ(0) = 1,
d

dτ
uζ(0) = −ε0. (6.8)

Here we have introduced an effective “frequency” α =
√

γ + Ω2. Using these initial

conditions, the solution of Eq. (6.7) in terms of the Lagrangian coordinate can be

obtained as

uζ(τ) =
1

α2
+

(
1− 1

α2

)
cos(α τ)− ε0

α
sin(α τ). (6.9)

Integrating Eq. (6.9) we obtain

ζ(τ) =
1

α2
τ +

1

α

(
1− 1

α2

)
sin(α τ) +

ε0
α2

[cos(α τ)− 1] . (6.10)

Now the 3rd equation of (6.6) gives

uχ(τ) = Ωζ(τ) =
Ω

α2
τ +

Ω

α

(
1− 1

α2

)
sin(α τ) +

ε0Ω

α2
[cos(α τ)− 1] . (6.11)

The 5th equation of (6.6) gives

ε(τ) = ε0 − τ + γζ(τ) =
Ω2

α2
(ε0 − τ) +

γ

α

(
1− 1

α2

)
sin(α τ) +

γε0
α2

cos(α τ).(6.12)
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And at last, from the energy conservation law we obtain for the potential

η(τ) =
1

2

[
u2
ζ(τ) + Ω2ζ2(τ)− 1

]
. (6.13)

Note that at γ = 0, we can get back the corresponding formulas for the vacuum

diodes (check chapter two).

At the collector position [τ = T , ζ = δ, η(δ) = V ], we have

δ =
1

α2
T +

1

α

(
1− 1

α2

)
sin(αT ) +

ε0
α2

[cos(αT )− 1] ,

V =
1

2

[
u2
ζ(T ) + Ω2δ2 − 1

]
, (6.14)

uζ(T ) =
1

α2
+

(
1− 1

α2

)
cos(αT )− ε0

α
sin(αT ).

Here, T is the time-of-flight of an electron between electrodes. For particular

values of γ, Ω and ε0, we can determine the profiles of relevant quantities (like

electron velocity, density, electric field and potential) from Eqs. (6.9)–(6.13), by

gradually increasing τ up to the moment (τ = T ) when the potential η takes the

value equal to the collector potential V . As a result, we find the value of the inter-

electrode gap δ, as well as the time T when an electron arrives at the collector

surface.

Fig. 6.1 demonstrates the profiles of the potential η(ζ) [6.1(a) and 6.1(b)] and

of the longitudinal velocity of the electrons uζ(ζ) [6.1(c) and 6.1(d)] within the

inter-electrode region for γ = 1.1 and a set of Ω–values. In these figures, the

maximum value of Ω corresponds to the case when uζ(ζ) vanishes for the first

time. We can see that in the absence of the magnetic field (Ω = 0), the PD is a

wavy-type function, and for a fixed external voltage V , several solutions can exist.

With increasing values of Ω, the shape of the potential changes gradually and when
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Figure 6.1: (a), (b) Potential distribution and (c), (d) electron longitudinal velocity one within
the inter-electrode space drawn for various values of Ω: (1) Ω = 0, (2) 0.1, (3) 0.2, (4) 0.3, (5)
0.4 and (6) 0.806225; (a), (c) ε0 = 0.5; (b), (d) ε0 = −0.5; γ = 1.1.

Ω exceeds a certain magnitude (Ωlim ≈ 0.3 for the cases under consideration), the

PD loses its wavy-type nature. Unlike the PD, uζ(ζ) conserves wavy form with

a period of about 2π(γ + Ω2)−3/2 for any Ω [see, e. g., Figs. 6.1(c) and 6.1(d)].

Formula (6.9) also demonstrates this periodicity.

For fixed γ and V , the steady states lie on a continuous curve which represents

a branch of solutions in ε0 − δ–plane. In Fig. 6.2, these branches are shown for

three values of γ and a number of Ω values. Here each curve ends at such a value

of ε0 for which the longitudinal velocity turns out to be tangent to the line uζ = 0

for the first time. The Bursian branches are located at the left part of Fig. 6.2 (for

δ . π) [136, 66]. This family demonstrates also a region of non-unique solutions.
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On the right boundary of this region, there is a bifurcation point – the SCL point.

The end point, at the left part, refers to the solution containing a point within

the gap in which the velocity uζ vanishes for the first time (“zero-point”). We

mark it by an index “0”. With increasing magnetic field, the width of the region

of ambiguous solutions (the region between δ0 and δSCL) narrows and it shrinks

at Ω =
√
2− γ [the curve ε0(δ) degenerates into the point ε00 = 0, δ = 0]. The

formulas for the parameters of SCL and “0” points are also derived [Eqs. (6.18)–

(6.24) and Eqs. (6.30)–(6.32)]. Note that for γ > 1, the SCL points appear only

for larger values of Ω. [for example, Fig. 6.2(c) is drawn for γ = 1.1 and SCL point

appears only at Ω ≥ 0.3].

The parameters related to the SCL points can be derived from the condition

dδ/dε0 = 0 [see Fig. 6.2]. We can calculate this derivative as a complex function

utilizing Eq. (6.14):

dδ

dε0
=

∂δ

∂ε0
+

∂δ

∂T

dT

dε0
=

∂δ

∂ε0
− ∂δ

∂T

(∂V /∂ε0)

(∂V /∂T )

=

(
∂δ

∂ε0

∂uζ

∂T
− uζ

∂uζ

∂ε0

)
/

(
∂uζ

∂T
+ Ω2δ

)
. (6.15)

Calculating the partial derivatives in (6.15) and reducing the similar terms in

numerator we obtain

1

α
sin(αT )− ε0

α2
[1− cos(αT )] = 0. (6.16)

Transferring to half-index argument in trigonometric functions, Eq (6.16) is re-

duced to an equation as below

2

α
sin
(α
2
T
) [

cos
(α
2
T
)
− ε0

α
sin
(α
2
T
)]

= 0. (6.17)

This equation gives a relationship of T with ε0. Let us consider the cases ε0 > 0
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Figure 6.2: Curves ε0(δ) drawn for three values of γ and various values of Ω: (a) γ = 0.9;
Ω = 0 (curve 1), 0.1 (2), 0.12 (3), 0.15 (4), 0.3 (5), 0.5 (6), 0.8 (7) and 1.04 (8); (b) γ = 1.0;
Ω = 0 (curve 1), 0.1 (2), 0.14 (3), 0.18 (4), 0.3 (5), 0.5 (6), 0.75 (7) and 0.99 (8); (c) γ = 1.1;
Ω = 0 (curve 1), 0.05 (2), 0.09 (3), 0.1 (4), 0.15 (5), 0.2 (6), 0.3 (7), 0.4 (8), 0.5 (9) and 0.806225
(10). V = 0. In the curves, uζ(ζ) > 0 everywhere.



125

and ε0 < 0 separately. At ε0 > 0 we have

TSCL =
2

α
arctan

α

ε0,SCL

. (6.18)

Substituting TSCL into the first equation of (6.14), we obtain δSCL:

δSCL =
2

α2

[
1

α
arctan

α

ε0,SCL

− ε0,SCL

ε20,SCL + α2

]
. (6.19)

Now we have to calculate the value ε0 for the SCL point. First, uζ(δ) is calculated,

then, the law of energy conservation, [i. e. the second equation in (6.14)] is utilized.

Substituting TSCL into the 3rd equation of (6.14), we obtain

uζ =
2

ε20 + α2
− 1. (6.20)

By substituting uζ into the 2nd equation of (6.14), we obtain the transcendental

equation to calculate the required value of ε0,SCL:

4Ω2

α4

(
1

α
arctan

α

ε0,SCL

− ε0,SCL

ε20,SCL + α2

)2

+

(
2

ε20,SCL + α2
− 1

)2

= 1 + 2V. (6.21)

Relationships (6.19) and (6.21) represent the maximum current in a diode for the

Bursian family in presence of a transverse magnetic field [because Jmax ∼ δ2SCL].

At ε0 < 0 we have

TSCL =
2

α

(
π − arctan

α

|ε0,SCL|

)
, (6.22)

δSCL =
2

α2

[
1

α

(
π − arctan

α

|ε0,SCL|

)
+

|ε0,SCL|
ε20,SCL + α2

]
, (6.23)

and the relevant ε0,SCL is calculated from the following equation:

4Ω2

α4

[
1

α

(
π − arctan

α

|ε0,SCL|

)
+

|ε0,SCL|
ε20,SCL + α2

]2

+

(
2

ε20,SCL + α2
− 1

)2

= 1 + 2V. (6.24)
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Figure 6.3: Dependencies of (a) δSCL(Ω), (b) ε0,SCL(Ω) and (c) uζ,SCL for various values of
γ: (1) γ = 0, (2) 0.5, (3) 0.8, (4) 0.9, (5) 1.0, (6) 1.05, (7) 1.1, (8) 1.2 and (9) 1.25. V = 0.
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In Fig. 6.3, the dependencies of δSCL and ε0,SCL on Ω are presented for a set of

γ values. We can see that the value of ε0 for the SCL point gets shifted to the area

of negative values with the growth of γ. When γ exceeds ≈ 1.21, ε0,SCL −Ω curve

stays below the line ε0(Ω) = 0. This feature was not observed in both the Pierce

diode (in the absence of a magnetic field) and the Bursian diode (with and without

magnetic field). These curves can be ambiguous at γ > 1. Fig. 6.3(c) shows the

dependence of uζ,SCL on Ω for several γ values which are relevant to the curves

shown in Figs. 6.3(a) and 6.3(b). One can see that the curves are nonmonotonic

and they start and terminate at the points of zero longitudinal velocity.

We can easily find the relation between Ω and γ corresponding to ε0,SCL = 0.

The relevant value of TSCL is determined from Eq. (6.16):

T 0
SCL(Ω, γ) =

π

α
, (6.25)

then δSCL and uζ(TSCL) can be obtained from Eqs. (6.19) and (6.20):

δ0SCL(Ω, γ) =
π

α3
, uζ =

2

α2
− 1, (6.26)

and after substituting them into the 2nd equation of (6.14) we obtain the relation

between Ω and γ:(
2

γ + Ω2
− 1

)2

+
π2Ω2

(γ + Ω2)3
− (1 + 2V ) = 0. (6.27)

For example, for V = 0, one can obtain an explicit dependence Ω on γ

Ω =

[
π2 + 4− 8γ ±

√
(π2 + 4)2 − 16π2γ

8

]1/2
. (6.28)

This dependency is shown in Fig. 6.4. It is seen that the curve ε0,SCL(Ω) can

cross the zero line if γ < γr ≡ [(π2 + 4)/(4π)]2 ≈ 1.2114, and the relevant Ωr is
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Figure 6.4: Dependence Ω(γ) corresponding to ε0,SCL = 0; V = 0.

equal to [(π2+4− 8γr)/8]
1/2 ≈ 0.7180. It is also seen that two solutions can occur

within the interval 1 < γ < γr. These features are evident from Fig. 6.3(b).

To find the coordinates of the zero-point, we have to use two conditions: uζ(τ) =

0 and duζ(τ)/dτ = 0. Based on these conditions, we obtain two equations from

Eq. (6.9) to determine ε00 and τ0 (the value of the electric field strength at the

emitter and time when velocity vanishes)

(
1− α2

)
cos(α τ0) + ε0α sin(α τ0) = 1,

−
(
1− α2

)
sin(α τ0) + ε0α cos(α τ0) = 0. (6.29)

Solving this system of equations, we find

ε00 = ±
√
2− (γ + Ω2),

sin(α τ0) = ±α
√
2− α2, cos(α τ0) = 1− α2. (6.30)

We can see from the 1st equation of Eqs. (6.30) that such solutions can only exist

at Ω ≤
√
2− γ. This condition predicates that the solutions corresponding to the

situation when no electron is reflected by the magnetic field cannot exist at γ > 2.
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Substituting the terms from Eq. (6.30) into Eq. (6.9), we find the coordinate of

the point ζ0 where the electron velocity vanishes. Depending on the values of γ

and Ω, the function ζ0(γ,Ω) reads for ε
0
0 ≥ 0

α−3
[
arcsin(α

√
2− α2)− α

√
2− α2

]
, if Ω2 ≤ 1− γ,

α−3
[
π − arcsin(α

√
2− α2)− α

√
2− α2)

]
, if Ω2 > 1− γ. (6.31)

We should note that with no magnetic field, ε00 =
√
2− γ, and the relevant ζ0 =

γ−3/2[arcsin
√

2γ − γ2−
√
2γ − γ2]. This coincides with formulae (9) of Ref. [136].

On the other hand, for ε00 < 0 the function ζ0(γ,Ω) reads

α−3
[
2π − arcsin(α

√
2− α2) + α

√
2− α2

]
, if Ω2 ≤ 1− γ,

α−3
[
π + arcsin(α

√
2− α2) + α

√
2− α2

]
, if Ω2 > 1− γ. (6.32)

In order to calculate the relevant inter-electrode distance δ0, we have to continue

our calculation of the PD using Eqs. (6.9), (6.10) and (6.13), starting from τ = τ0

until the moment T when η(T ) = V . We need to keep in our mind that at some

value of ε0, the condition η = V is not fulfilled anymore. It is seen from Figs. 6.1(a)

and 6.1(b) that the point of minimum of each curve η(ζ) goes up as Ω increases,

i.e. height of the potential minimum reduces and ultimately it exceeds the applied

value of the potential, V . For this reason, there is a limit for ε00.

Fig. 6.5 shows the variation of the position ζ0 (at which the longitudinal velocity

of the electrons vanishes for the first time within a gap), the relevant inter-electrode

distance δ0 as well the electric field at the emitter ε00 with Ω for various values of γ.

We see that two values of ζ0 can exist for some fixed value of Ω (excluding Ω = 0)

corresponding to positive or negative ε00 value. We can also see that a portion of

the curves in these figures are cut off. It is due to the fact that the PD does not
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Figure 6.5: Dependencies of (a) ζ0, (b) δ0, and (c) ε00 for various values of γ: (1) γ = 0, (2)
0.1, (3) 0.5, (4) 1.0, (5) 1.5, (6) 1.9. The dashed line in Fig. (a) corresponds to ε00 = 0. V = 0.
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intersect the line η(τ) = V for τ > τ0.

For some particular values of Ω and ε0, the SCL and zero points coincide (both

lie on the collector) with each other and their positions are determined from the

2nd equation of (6.14) with uζ(T ) = 0:

δ0SCL(Ω, γ;V ) =

√
1 + 2V

Ω
. (6.33)

It seems at first sight that δ0SCL(Ω) does not depend on γ. However, it is not true.

When the relevant ε00,SCL is calculated from the 1st formula of (6.30), we can check

that it depends on γ too. We can calculate the corresponding value of Ω0 from

the equation which can be obtained after substituting the expression of ε00,SCL into

Eq. (6.21) or Eq. (6.24):

2Ω

α2

(
1

α
arctan

α√
2− α2

−
√
2− α2

2

)
=

√
1 + 2V , if ε00,SCL ≥ 0, (6.34)

2Ω

α2

[
1

α

(
π − arctan

α√
2− α2

)
+

√
2− α2

2

]
=

√
1 + 2V , if ε00,SCL < 0. (6.35)

The value of Ω0 depends on γ, and thus δ0SCL depends on γ too. Figs. 4(b) shows the

variation of ε0,SCL with Ω. The curves representing ε0,SCL(Ω) finish at Ω = Ω0(γ).

In the presence of ion background, new families of the branches appear. They

are located at the right part of Figs. 6.2(a)–6.2(c) (e. g., for γ = 0.9 it occurs

at δ > 1.5π). Existence of such a family is typical for the diode with an ion

background [136]. This occurs due to the fact that the corresponding PDs are

wavy-type curves [see, Figs. 6.1(a) and 6.1(b)]. With the increase of the magnetic

field, these families die away gradually (e. g., for γ = 0.9 this happens at Ω ≈ 0.15.).
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6.4 Summary

In this chapter we have studied a generalized Pierce diode in the presence of a

transverse magnetic field by using the Lagrange technique. Analytical formulas

for the electron trajectories as well as for the potential and the electric field were

obtained. It is found that the potential profile is a wavy-type function for either

weak magnetic field or when it is absent. The spatial period of the wavy PD is

about 2π(γ + Ω2)−3/2. The wavy potential profile brings a new family of solu-

tions which exists along with the Bursian one. As the magnitude of the applied

magnetic field is increased, the PDs gradually loose the wavy nature, and non-

Bursian branches disappear slowly. When the strength of the external magnetic

field crosses a critical value only Bursian branches remain. Unlike the Bursian

diode, the emitter field strength ε0 can take both positive and negative values.

When neutralization parameter is greater than unity (γ > 1), the ε0 value of the

SCL point may turn out to be negative.

Relatively strong magnetic field causes severe velocity spreading in the electron

distribution function and the beam features are lost. This, in its turn, can weaken

the “Bursian-Pierce instability” and the aperiodic oscillations in the diode.



Chapter 7

The regime of electron-reflection
of a non-neutral plasma diode in
the presence of a transverse
magnetic field

In this chapter we investigate a non-neutral plasma diode when electrons are re-

flected back to the emitter by the transverse magnetic field for arbitrary values of

the neutralization parameter. Both the Bursian and non-Bursian families of solu-

tions are explored for the regime of electron-reflection with the help of Lagrangian

formalism.
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7.1 Introduction

In last chapter, assuming the monoenergetic emission of electron beam, we studied

the influence of the transverse magnetic field on the steady-state solutions for the

generalized Pierce diode [150] (non-neutral diode). All steady state solutions are

visualized by the “emitter field strength vs diode gap” diagram. This diagram

shows that, for relatively weak magnetic field, a new family of solutions arises

along with the Bursian one. This new non-Bursian solutions appear because of

the wavy potential distributions (PD) within the inter-electrode gap [136, 150].

The investigation was restricted up to the limit, when the longitudinal component

of the electron velocity vanishes within the inter-electrode region for the first time

(“zero-point”). At this condition potential barrier height acquires a threshold value

and all electrons are turned back to the emitter by the potential barrier (as the

emitted beam is monoenergetic). But the situation of partial electron reflection

comes when there is a small velocity spread in the emitted electron beam. In this

case, a small portion of the emitted electrons may overcome the barrier with a

velocity little higher than the zero.

In this chapter, we intend to look beyond the “zero-point”. We study the time-

independent solutions of a generalized Pierce diode when a fraction of the emitted

electrons experiences reflection at a point within the diode gap in the presence of

an external transverse magnetic field. Our primary motive is to explore both the

Bursian and non-Bursian solutions in this regime.
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7.2 Model and the dimensionless variables

We assume the same planar model for the Pierce diode as it was taken in previous

chapter. A non-relativistic electron beam is supplied by the emitter surface with

density nb and velocity vb. The emitted electrons are transported through the

inter-electrode gap which is uniformly occupied by the infinitely massive immobile

ions of constant density ni. Ion background is taken into account through the

dimensionless neutralization parameter γ = ni/nb.

Let us consider that the longitudinal velocity of an electron, emitted with a

velocity vb, vanishes at a point zr. Now to incorporate the “electron beam splitting”

at the point zr, a reflection coefficient r is introduced [67]. In this case, there are

two types of flow in the region between the emitter and the point zr: the direct

and the reverse flow. Therefore, for z < zr, the electron flux carries a weight 1+ r.

To the right of the point zr, there is the direct electron flow with a weight 1− r.

In this situation, the product of the density and the electron velocity longitu-

dinal component (coming from the continuity equation at steady state) at a point

z should be modified as

n(z)uz(z) = jbH(z; zr, r)

≡ jb[(1 + r)Θ(zr − z) + (1− r)Θ(z − zr)]. (7.1)

Here jb = enbvb is the beam current density, and the Heavyside function Θ(x) = 1

for x > 0 and Θ(x) = 0 for x < 0.

In the 1D time-independent case, we start with the basic governing equations
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which are the equation of continuity and the momentum equations and the Pois-

son’s equation:

d

dz
(nvz) = 0,

vz
dvz
dz

= − e

m
E − ωvx, vz

dvx
dz

= ωvz,

E = −dφ

dz
,

dE

dz
= − e

ϵ0
(n− γ). (7.2)

To describe the above equations in terms of the dimensionless variables, we use

the same unit system as introduced in chapter six. In terms of the dimensionless

variables, Eqs. (7.2) can be written as

nuζ = H(ζ; ζr, r),

uζ
duζ

dζ
= −ε− Ωuχ, uζ

duχ

dζ
= Ωuζ ,

ε = −dη

dζ
,

dε

dζ
= −n+ γ. (7.3)

The dimensionless Larmor frequency, Ω is defined in unit of ωb [Ω = (eB/m)/ωb].

The boundary conditions for the relevant variables at the position of the emitter

surface can be taken in following forms, the density n(ζ = 0) = 1, components

of velocity uζ(ζ = 0) = 1, uχ(ζ = 0) = 0, the electric potential, η(ζ = 0) = 0,

and the electric field ε(ζ = 0) = ε0. We shall use the emitter electric field ε0 as a

parameter to characterize the steady states.

In previous chapter, it was explained from the energy conservation principle

that, in the presence of transverse magnetic field, the PD η(ζ) should be restricted

within a region limited by a square parabola p(ζ; Ω)

η(ζ) ≥ p(ζ; Ω) ≡ 1

2

(
Ω2ζ2 − 1

)
. (7.4)
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7.3 Steady state solutions

To solve Eqs. (7.3), we introduce the Lagrangian coordinate τ and the Lagrange

transformation,

ζ =

∫ τ

0

uζ(τ
′)dτ ′.

Thus, uζd/dζ = d/dτ and Eqs. (7.3) become

nuζ = H(ζ; ζr, r),

duζ

dτ
= −ε− Ω2ζ,

dη

dτ
= −uζε,

dε

dτ
= −1 + γuζ . (7.5)

In the first equation of Eqs. (7.5), we have taken into account the electron beam

splitting at the point ζr through the Heavyside function H(ζ; ζr, r). Combining

Eqs. (7.5) we have

d2

dτ 2
uζ + α2uζ = H(ζ; ζr, r). (7.6)

and the initial conditions related to the above equation are

uζ(0) = 1,
d

dτ
uζ(0) = −ε0. (7.7)

In Eq. (7.6), we have introduced an effective “frequency” α =
√
γ + Ω2. Using

these initial conditions, the solution of Eq. (7.6) in terms of the Lagrangian coor-

dinate to the left of the point ζr can be obtained as

uζ(τ) =
1 + r

α2
+

(
1− 1 + r

α2

)
cos(α τ)− ε0

α
sin(α τ). (7.8)

Integrating Eq. (7.8) we obtain

ζ(τ) =
1 + r

α2
τ +

1

α

(
1− 1 + r

α2

)
sin(α τ) +

ε0
α2

[cos(α τ)− 1] . (7.9)
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If electrons are not turned back at all, then r = 0 and the formulas (7.8) and (7.9)

coincide with the relevant formulas given in chapter six.

To calculate the time τr when the electron is turned around at the point ζr, as

well as to get a relation between r and ε0, we have two conditions

uζ(τ = τr) = 0,
d

dτ
uζ(τ = τr) = 0. (7.10)

With the help of Eqs. (7.8) and (7.10), these two conditions lead us to

(
1 + r − α2

)
cosα τr + ε0α sinα τr = 1 + r,(

1 + r − α2
)
sinα τr − ε0α cosα τr = 0. (7.11)

From Eq. (7.11), we find

r =
ε20 + α2

2
− 1, ε0 = ±

√
2(1 + r)− α2,

sinα τr =
α

1 + r
ε0, cosα τr = 1− α2

1 + r
. (7.12)

First two equations of (7.12) are the relations between the emitter field strength

ε0 and the coefficient r. They also allow us to calculate the maximum value of ε0

for which r takes the value one

|ε0,max(γ,Ω)| =
√
4− γ − Ω2. (7.13)

From the 3rd and 4th equations of (7.12), we can calculate the time τr when the

electron velocity uζ vanishes. Depending on the values of γ and Ω, the function

τr(γ,Ω) reads for ε0 ≥ 0 as

1

α
sin−1 α

√
2(1 + r)− α2

1 + r
, if Ω2 ≤ 1 + r − γ,

1

α

(
π − sin−1 α

√
2(1 + r)− α2

1 + r

)
, if Ω2 ≥ 1 + r − γ. (7.14)
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and for ε0 < 0 τr is equal to

1

α

(
2π − sin−1 α

√
2(1 + r)− α2

1 + r

)
, if Ω2 ≤ 1 + r − γ,

1

α

(
π + sin−1 α

√
2(1 + r)− α2

1 + r

)
, if Ω2 ≥ 1 + r − γ. (7.15)

Depending on the sign of ε0, when we substitute Eq. (7.14) or (7.15) into Eq. (7.9),

we can get the coordinate of the point where the electron velocity uζ vanishes

ζr =
1

α2
[(1 + r)τr − ε0] . (7.16)

To deduce the parameters of the electron trajectory for the region locating to

the right of ζr, we need to solve Eq. (7.5) with the initial conditions (7.10). Thus,

for ζ > ζr, we have

uζ(τ) =
1− r

α2
[1− cosα(τ − τr)] ,

ζ(τ) = ζr +
1− r

α2
(τ − τr)−

1− r

α3
sinα(τ − τr). (7.17)

From the energy conservation law we obtain for the potential

η(τ) =
1

2

[
u2
ζ(τ) + Ω2ζ2(τ)− 1

]
. (7.18)

At the collector [τ = T , ζ = δ, η(δ) = V ], we have

δ = ζr +
1− r

α2
(T − τr)−

1− r

α3
sinα(T − τr),

V =
1

2

[
u2
ζ(T ) + Ω2δ2 − 1

]
, (7.19)

uζ(T ) =
1− r

α2
[1− cosα(T − τr)] .

Here, T is the time required for the electron to cross the inter-electrode gap.

Figs. 7.1(a) and 6.1(b) show the PDs for two cases: for the regime when all

electrons can arrive at the collector and for the regime when a portion of the
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Figure 7.1: (a), (b) Potential distribution and (c), (d) electron longitudinal velocity profile
within the inter-electrode space drawn for various values of ε0: (1) ε0 = 1.4, (2) 0.8, (3) -1.1,
(4) -1.1. Fig. (a), (c) correspond to Ω = 0 with r = 0.43 on curve (1), 0 (2), 0 (3), 0.055 (4);
Fig. (b), (d) – Ω = 0.1 with r = 0.435 on curve (1), 0 (2), 0 (3), 0.06 (4). γ = 0.9. The real PDs
terminate at points with V = 0. The dashed line corresponds to Eq. 10.

emitted electrons are turned back to the emitter by the magnetic field. PDs are

shown for γ = 0.9 and two values of Ω (Ω = 0 and 0.1) in those figures. One

can see that the potential distribution η(ζ) has wavy profile. Because of this wavy

potential profile, a number of steady state solutions is possible. Let us determine

the steady states when the collector potential is fixed at V . For a certain value

of ε0, the number of possible values of δ can be more than one. For some definite

values of Ω and ε0, the corresponding values of δ can be obtained from the positions

where the relevant PD [η(ζ)] intersects with the line η = V . In the absence of the

magnetic field the PDs are periodic functions and each of the potential minima
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have equal magnitude. This is also true for the potential maxima. On the other

hand, when the magnetic field is applied, the magnitudes of the minima start to

differ with each other in such a way that, below the line η = V , the minimum at

larger ζ takes smaller magnitude than the minimum at lower ζ. When Ω crosses a

certain critical value (say, Ωcr), only one solution remains. This happens because

of the fact that, for Ω > Ωcr (e. g., Ωcr ≈ 0.12 for γ = 0.9), the second and all

following potential minima stay above the straight line η(ζ) = V . Therefore, if the

collector is placed at the point where η is equal to V then for Ω > Ωcr there is only

one solution in the region between the electrodes.

For a fixed value of V , the steady states lie on a continuity curve representing

a branch of solutions in ε0 − δ–plane. At first, we build ε0 − δ–curves for the

solutions without electron reflection (r = 0). In this case, |ε0| ≤ |ε00| =
√
2− α2,

where ε00 corresponds to the emitter field strength for which the turning point

arises for the first time. Then we calculate the solutions related to the regime with

electron reflection. We begin to increase the parameter r, starting from r = 0. For

each value of r, we calculate ε0 and δ. The ε0 vs δ parametric plots are shown

in Fig. 7.2 for three γ values. We can see two types of solutions which can be

categorized in Bursian and non-Bursian families. The Bursian branches occur for

small δ-values and the non-Bursian branches appear for relatively large δ-values.

With the increase of Ω the Bursian branches shift to the left. For Ω < Ωcr(γ), we

can see that the Bursian branches meet with the non-Bursian ones (see curves 1

and 2 in Fig. 7.2) and in these branches the coefficient r is limited within a value

which is smaller than unity (r < rlim < 1). However, for Ω > Ωcr the non-Bursian

branches disappear. In the remaining Bursian branches r can take values from 0
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to 1. As the value of r becomes close to 1, a zigzag segment appears in the ε0(δ)

curves. This segment corresponds to the ambiguous solutions. With the increase

of Ω the width of this region gets narrowed.

For negative values of ε0, a potential maximum is formed near the emitter [see,

curve 4 in Fig. 7.1(a) and 3 in Fig. 7.1(b)]. The non-Bursian branches are shown

both for the cases when the electrons do not suffer reflection and when they are

turned back to the emitter by the magnetic field. For Ω > Ωcr these branches

disappear.

The Bursian branches in the Pierce diode contains two bifurcation points which

are the SCL point and the BF point. Formulas for the SCL point were calculated

in previous chapter and for this purpose the condition dδ/dε0 = 0 was used. For

ε0 > 0,

TSCL =
2

α
arctan

α

ε0,SCL

, (7.20)

δSCL =
2

α2

[
1

α
arctan

α

ε0,SCL

− ε0,SCL

ε20,SCL + α2

]
. (7.21)

A transcendental equation can be derived to calculate ε0,SCL also:

4Ω2

α4

(
1

α
arctan

α

ε0,SCL

− ε0,SCL

ε20,SCL + α2

)2

+

(
2

ε20,SCL + α2
− 1

)2

= 1 + 2V. (7.22)

For ε0 < 0, the relevant formulas take the form

TSCL =
2

α

(
π − arctan

α

|ε0,SCL|

)
, (7.23)

δSCL =
2

α2

[
1

α

(
π − arctan

α

|ε0,SCL|

)
+

|ε0,SCL|
ε20,SCL + α2

]
, (7.24)

4Ω2

α4

[
1

α

(
π − arctan

α

|ε0,SCL|

)
+

|ε0,SCL|
ε20,SCL + α2

]2
+

(
2

ε20,SCL + α2
− 1

)2

= 1 + 2V.(7.25)
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Figure 7.2: Curves ε0(δ) drawn for three values of γ and various values of Ω: (a) γ = 0.9;
Ω = 0 (curve 1), 0.1 (2), 0.2 (3), 0.3 (4), 0.5 (5), 0.8 (6) and 1.0 (7); (b) γ = 1.0; Ω = 0 (curve
1), 0.1 (2), 0.3 (3), 0.5 (4), 0.8 (5) and 0.99 (6); (c) γ = 1.1; Ω = 0 (curve 1), 0.09 (2) 0.1 (3),
0.2 (4), 0.3 (5), 0.5 (6) and 0.9 (7). Open circles correspond to the SCL points, closed circles –
to the BF points.
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It can be seen from Fig. 7.2 that the bifurcation points of the SCL type can also

arise for non-Bursian branches. They are marked by the open circles in Fig. 2(b).

Now we calculate the parameters of the BF point. A condition dδ/dr = 0 has

to hold at this point. We can calculate this derivative as a complex function using

Eqs. (7.19)

dδ

dr
=

[
∂uζ

∂(T − τr)

∂δ

∂r
− uζ

∂uζ

∂r

]
/

[
∂uζ

∂(T − τr)
+ Ω2δ

]
. (7.26)

For particular terms, we obtain

∂uζ

∂(T − τr)
=

1− r

α
sinα(T − τr),

∂uζ

∂r
= − 1

α2
[1− cosα(T − τr)],

∂δ

∂r
=

∂ζr
∂r

− 1

α2
(T − τr) +

1

α3
sinα(T − τr),

∂ζr
∂r

=
1

α2

[
τr −

2

ε0

]
. (7.27)

Substituting the related terms from Eqs. (7.27) into Eq. (7.26) and multiplying the

result by α4, we obtain

[ατr − 2α/ε0 − α(T − τr) + sinα(T − τr)] sinα(T − τr)

+[1− cosα(T − τr)]
2 = 0. (7.28)

Here, τr is determined by Eq. (7.15) and Eq. (7.16). After transforming the trigono-

metrical functions to half arguments, Eq. (7.28) breaks into two equations

[ατr − 2α/ε0 − α(T − τr) + sinα(T − τr)] cos
α(T − τr)

2

+2

[
sin

α(T − τr)

2

]3
= 0. (7.29)

and

sin
α(T − τr)

2
= 0. (7.30)
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In order to calculate the parameters corresponding to the BF point, we have to

use Eq. (7.29). This gives the first equation relating (T − τr) and r. The second

equation which relates these parameters can be obtained as

u2
ζ(T − τr, r;α) + Ω2δ2(T − τr, r;α)− (1 + 2V ) = 0. (7.31)

From the system of equations (7.29) and (7.31), we can calculate (T − τr)BF and

rBF . Substituting them into Eqs. (7.9) and (7.12), we can have ε0,BF and δBF for

the BF point.

Fig. 7.3 shows the dependencies of the bifurcation point on Ω. Here the varia-

tions of the δ0 and ε00 with respect to Ω are also shown. They correspond to the

zero-point solutions where the longitudinal electron velocity vanishes for the first

time. One can see that δBF is very closed to δ0 for Ω < 0.6. At a certain value of

Ω the SCL and 0 points merge with each other (both lie at the collector). In this

case the related parameters can be determined from the 2nd equation of (7.19)

with uζ(T ) = 0.

We can see from Fig. 2 that each ε0 − δ–curve contains a oscillating segment

as r → 1, i. e. it is many-valued over a certain range of the δ’s and it has many

bifurcation points. This situation arises due to the fact that, for a particular value

of r(ε0), the electron velocity uζ can vanish for several times in the region where

ζ > ζr. It is quite evident from the third equation of (7.19) [see, also curves 1

and 4 in Fig. 1]. Figure 2 shows that the amplitude of the oscillations diminishes

with r for each corkscrew line. It is also found that the maximum width of the

oscillating segment shrinks with the increase of Ω.

The values of the coefficient r and T for the left bifurcation points can be

calculated from the system of equations (7.29) and (7.31). Then, they are used to
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Figure 7.3: Dependencies of characteristic points (SCL, BF and 0-points) on the Bursian
family ε0(δ) for γ = 0.9 and V = 0; (a) δ(Ω), (b) ε0(Ω). Curve 1 corresponds to SCL point, 2 –
0-point, 3 – BF point.

find relevant parameters like ε0 and δ from Eqs. (7.12) and (7.19). It turns out that

each right bifurcation point on the zigzag segments corresponds to the condition

uζ(δ) = 0. The second equation of (7.19) also reveals that, at these points, all

relevant δ have the same value δmax:

δmax(V ; Ω) =
√
1 + 2V /Ω, (7.32)

and it does not depend on γ. This particular value of the inter-electrode gap is max-

imum for the regime where only a portion of the injected electrons is turned around
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by the magnetic field. Corresponding time can be calculated from Eq. (7.30):

Ti = τr(r; γ,Ω) +
2π

α
i. (7.33)

Here, τr(r; γ,Ω) is determined by Eqs. (7.14)–(7.15) and the index i takes the

positive integer values (i.e., i = 1, 2, . . . ). The coefficient r corresponding to δmax

can be obtained when we substitute Ti from Eq. (7.33) into Eqs. (7.19) and (7.31)

:

ζr(r; γ,Ω) +
2π

α3
(1− r)i =

√
1 + 2V

Ω
. (7.34)

Here ζr is determined by Eq. (7.16). Relevant values of ε0 are calculated from

Eq. (7.12). In Fig. 2, several bifurcation points are marked with the closed circles.

Thus, our study shows that, similar to the case of the Bursian diode, there is

also an ambiguity of the solutions for non-netral diodes in the vicinity of δmax.

The related parameters for the new bifurcation points are also calculated. In our

next paper, we’ll show that each bifurcation point on the curve ε0(δ) separates the

regions containing aperiodic stable and unstable steady state solutions.

7.4 Summary

In this chapter we have presented a comprehensive analysis on the steady states

of a generalized Pierce diode which includes both the regime where all electrons

arrive at the collector and the regime where a part of them is reflected back to the

emitter by the magnetic field. It was found that the potential profile is a wavy-type

function for zero and relatively weak magnetic field. This wavy PD brings a new

family of solutions which exists along with the Bursian one. With the increase of

the magnetic field, the wavy nature of the potential profile is lost. As a result,
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the non-Bursian branches disappear gradually and only Bursian branches remain.

Unlike the Bursian diode, the emitter field strength ε0 can take both positive and

negative values.

The (ε0, δ)-diagram carries a region where the solutions are non-unique. Hence,

the magnetic field can be used to design a fast electronic switch on the basis of

the generalized Pierce diode too. It was also observed that non-Bursian solutions

are very sensitive to the external magnetic field and they appear only when the

strength of the magnetic field is either zero or weak enough. The transition of the

states between the non-Bursian and Bursian branches makes it possible to control

and regulate very high current density in diodic systems. We should also note that

there is always an inherent magnetic field in real devices which is produced by the

electron beam current. For this reason, it is very difficult to detect the non-Bursian

solutions in an experiment.



Chapter 8

Conclusion

In this chapter, a quick recapitulation has been made on the works discussed in this

thesis and the general conclusions are summarized. Some future prospects of our

study have also been discussed in addition.
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8.1 A quick recapitulation

With its nonlinear nature and a number of interesting features, a plasma diode

has drawn the attention of many researchers since the beginning of the twenti-

eth century. The derivation of the famous current-voltage relationship for planar

diode by Child and Langmuir is the inception and till now it is a central topic

of research. Many physical systems, such as, Q-machines, thermionic energy con-

verters, microwave generators, low-pressure discharges and processing device etc.

follow diodic character in their basic structure. The operational conditions in these

systems are severely affected by the space-charge-limited flow which is a common

feature of all types of plasma diodes. The space charge limit indicates a transition

point between a state with high current density and a state with negligible current.

When diode current exceeds a critical value, an aperiodic instability is developed

in the system and as a result of it the transition of states occurs. The state with

very low current density arises due to the formation of the virtual cathode within

the inter-electrode region. The virtual cathode is a potential barrier which is suf-

ficiently strong to block the passage of the charge particles. Let us consider that

a monochromatic beam of charge particle is injected into the diode with a finite

velocity. When the kinetic energy of the charge particle at emitter becomes equal

to the potential barrier height, the charge particle loses all its longitudinal kinetic

energy at some point and gets reflected by the virtual cathode. In practical sit-

uations, emitter does not emit charge particles in monoenergetic way. Therefore,

there is always a very small fraction of emitted charges which can overcome the

barrier.

The presence of inherent magnetic field is inevitable for the the systems like
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thermionic energy converters, microwave generators etc, which operate with high

current density. This magnetic field is generally transversal to the motion of the

charge particle and it influences the space charge limit by reorienting their trajec-

tories. In this thesis, we have assumed a planar model for a plasma diode, where

a constant magnetic field is applied externally in transverse direction and studied

the effect of the magnetic field on the space charge limit and on other charac-

teristic parameters. The analysis is performed with the aid of the Eulerian and

Lagrangian descriptions. A numerical scheme is developed to inspect the station-

ary state properties of a plasma diode in terms of the Eulerian variables. Whereas,

the Lagrangian formalism provides us the exact analytical formulas for the poten-

tial and velocity profiles as well as the expressions for the parameters which define

characteristic bifurcation points like space charge limit, zero-point etc. A brief

summary of our obtained results is given below:

• Chapter II covers the analysis when there is no electron reflection, i.e., po-

tential distribution within diode region does not correspond to the virtual

cathode (VC). The results show that when there is a transverse magnetic

field, the potential distributions remain the single minimum functions, but

the height of the minimum turns out to be lower than the initial kinetic

energy of the electrons. The magnetic field converts a portion of the lon-

gitudinal kinetic energy into the transverse one. The steady state solutions

are represented through the (ε0, δ)–curves. The (ε0, δ)–diagram contains two

distinct regions one of which is shown to be non-unique (C-overlap branch).

The boundaries of the non-unique regions are defined by two characteristic-

points. The right boundary point is “space charge limit” or SCL-point and
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it corresponds to the state with maximum diode current. The left boundary

point is “zero-point” which defines the situation when longitudinal compo-

nent of electron velocity vanishes for the first time within inter-electrode gap.

The effect of the magnetic field becomes dominant when the Larmor radius

becomes comparable with the Bursian threshold. The distribution function

of the emitted electrons start to lose its beam nature. As a consequence,

the width of the non-unique region reduces until it vanishes at a particular

strength of the magnetic field. At this condition, the SCL and “zero-point”

of the (ε0, δ)–curve merge with each other. The (ε0, δ)–curves get displaced

as the strength of the magnetic field increases. The value of the parameters

at SCL point and zero-point also changes with this displacement. The crit-

ical value of the diode current also decreases with the increasing magnetic

field.

• In chapter III, we have performed a stability analysis of the steady states of a

vacuum diode which is kept under the uniform transverse magnetic field. The

analysis does not include the steady states with virtual cathode. With the

help of Lagrangian description and by employing a perturbative technique, a

dispersion relation is derived. It is shown that the solutions corresponding to

branch I (ε ≤ ε0,SCL) are always stable, and those of branch II (ε0,SCL < ε0 ≤

ε00) are unstable with respect to the small aperiodic perturbation. When the

strength of the magnetic field is increased, the width of the unstable region

(branch II) gradually decreases and vanishes at some particular value.

• In Chapter IV, we have studied the steady states of a Bursian diode with a

constant magnetic field in the transverse direction when the electrons of the
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emitted beam are reflected back to the emitter. The emitted electrons can

be turned around partially or totally, depending on the values of the applied

magnetic field and the electric field strength at emitter. The steady states

with electron reflection are represented with an extra branch in the ε0 − δ–

curves (virtual cathode branch or B-branch). In this case, the left boundary

of the non-unique region (C-overlap branch) is defined by BF -point.

However, unlike the classical Bursian diode, a new oscillatory region is ob-

served in the (ε0, δ)-diagram. This region arises because of the fact that the

longitudinal velocity of the injected electrons can vanish for several times

within the inter-electrode space. In this region, the reflection coefficient r

is close to the value 1. When r → 1, the period and the amplitude of the

velocity oscillations gradually become zero.

Based on the transition of states between normal C branch and B branch, a

basic model to design a fast electronic switches is suggested.

• Chapter V contains the basic properties of a relativistic Bursian diode in the

presence of a transverse magnetic field. All steady state solutions including

the solutions with electron reflection is inspected in generalized way. The

width of the C-overlap branch increases with the increasing value of the

relativistic factor (γ0) of the emitted electron beam. The variations of the

characteristic bifurcation points (zero-point, BF point and SCL point) with

respect to γ0 are shown. The magnitude of the diode current at space charge

limit increases with γ0. It is found that the magnetic field and γ0 has opposite

effects on the steady state properties. Like the non-relativistic Bursian diode

with the transverse magnetic field, the (ε0, δ)-diagram displays a oscillatory
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or zig-zag region when the reflection coefficient r is close to unity. The reason

lies in the fact that the presence of strong magnetic field can cause multiple

turning points, i.e., longitudinal velocity of the electrons can vanish for more

than once. However, for higher values of γ0, as the kinetic energy of the

emitted energy increases, the oscillatory region gets suppressed.

• In chapter VI, an effort has been made to study the steady state properties

of a generalized Pierce diode when an external magnetic field is applied along

the transverse direction. The study only includes the regime of no electron

reflection. In absence of magnetic field as well as when the strength of the

magnetic field is weak, a new family of solutions arises along with the Bursian

families. The wavy potential profile has been identified to be responsible for

the existence of the non-Bursian brunches.

• Chapter VII presents the analysis on the steady states of a generalized Pierce

diode when a portion of the emitted electrons are turned around by the the

magnetic field. The Bursian and non-Bursian branches are developed for the

solutions representing electron-reflection. When the strength of the magnetic

field is increased beyond a critical value, the non-Bursian branches disappear

and only the Bursian branches survive.

8.2 Future prospects and conclusive remarks

The motivation behind the works contained in this thesis is to provide a clear

understanding on the basic features of a plasma diode. The thesis provides an

extensive discussion on the steady state properties of a plasma diode in presence

of an external magnetic field which is applied along transverse direction. However,
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few unanswered questions still remain to address in future.

• In our study, we have considered a delta-function for the velocity distri-

bution of the injected electrons. The beam was assumed cold too. The

appearance of electron reflection has been incorporated by assuming a small

velocity spread in the injected electron beam profile. But in the devices like

TIC where charge carriers are produced by the surface ionization process, it

would be more practical, to assume a half-Maxwellian velocity distribution

for the injected electrons. Therefore, assuming a thermal spreading of the

longitudinal velocity (vz) around v0, the velocity distribution function of the

emitted electrons can be taken as

f0(vz) =
n0

v0
A(α) exp

{
−α
(
v2z/v

2
0 − 1

)}
Θ(vz − v0),

A(α) =
2
√
α√

π exers(α)
.

where, α = v20/(2kT/m) with T being the effective “temperature” of the

beam and exers(α) = exp(α)(1 − erf
√
α) [erf(α) being the error integral].

It will be interesting to check how the properties of the solutions and space

charge limit change for this type of velocity distribution function.

• The stability properties of the Normal C branch and C overlap branch is

studied with the help of η− ε0-diagram and a dispersion relation derived by

the Lagrangian technique. The η − ε0-diagram technique allows us to study

the solutions with respect to aperiodic perturbations. However, it does not

say anything about oscillatory perturbations. It will be interesting to derive

a dispersion relation for the states with electron reflection and check its

stability criteria with respect to aperiodic perturbation.
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• An attempt could be made to study the stability properties of the different

branches of steady state solutions (Normal C branch, C-overlap branch and

virtual cathode branch) of a relativistic Bursian diode in the presence of a

transverse magnetic field.

• For generalized Pierce diodes, ions are assumed to form uniform background

and their motion is ignored. But inclusion of finite ion velocity may bring

some new features in the diode characteristics. In addition, an analysis on

the plasma diodes with a nonuniform density distribution of ions is also

necessary. Steady-state properties and the transition processes should be

examined by varying spatial distributions of the ions.

• In our works, we have considered a planar model for the plasma diodes. It

should be examined how the space charge limited flow and other properties

of a plasma diode depends on the geometries (for example cylindrical or

spherical geometry).

• In this thesis work, electrons are assumed to travel the diode region without

collisions. We can check further the role of particle collisions on the Bursian-

Pierce instability and space charge limit. Note that such a problem for the

Bursian diode was partially attempted in Ref. [174].

• As an important application of our works on the plasma diodes in the pres-

ence of the transverse magnetics field, we have suggested to build an electron

switch which works on the basis of the transition of states. It is discussed

in detail in the summary sections of chapter two and three. In order to
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understand the working mechanism of the switches, we need to study time-

dependent processes of transition between the states with different currents.

It also provides an opportunity to study the whole mechanics experimentally.

The investigation presented in this dissertation on the beam plasma diodes

with an external magnetic field in perpendicular direction opens up new prospects

to study the thermionic energy converters, microwave generators, high effective

switches and other devices of the plasma electronics. To deal with the main chal-

lenges for the future investigations, we need to use an accurate numerical methods.

Because when the picture becomes more complex, it is very difficult to find an ex-

act analytical solutions. We sincerely hope that the works elaborated in this thesis

can help us to understand the complex and nonlinear aspects of the plasma diodes

and enlighten our way to proceed furthermore in this direction.
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Appendix
(Related to Chapter-5)

Using approximation (5.29), each integral (5.28) becomes as follows:

G(ζk−1, ηk−1, εk−1, ηk, εk) =

∫ ηk

ηk−1

[2(γ0 − 1)w + γ0]dw

[2(γ0 − 1)w2 + 2γ0w + (γ0 + 1)/2− Ω2(ζ ′)2]1/2

=

∫ ηk−ηk−1

0

(D + Et)dt√
A+Bt+ Ct2

=

(
D − BE

2C

)∫ ηk−ηk−1

0

dt√
A+Bt+ Ct2

+
E

C

√
A+Bt+ Ct2

∣∣∣ηk−ηk−1

0
.(A.1)

Here

A = (γ0 + 1)/2 + 2γ0ηk−1 + 2(γ0 − 1)η2k−1 − ζ2k−1Ω
2 > 0,

B = 2
[
γ0 + 2(γ0 − 1)ηk−1 + (ζk−1/εk)Ω

2
]
,

C = 2(γ0 − 1)− (1/εk
2)Ω2,

D = γ0 + 2(γ0 − 1)ηk−1, E = 2(γ0 − 1). (A.2)

and

∆ = 4AC −B2 < 0. (A.3)

At Ω > 0, the integral in (A.1) reads as (formulae (2.261) in [175])

− 1

|C|

{
arcsin

[
B + 2C(ηk − ηk−1)√

−∆

]
− arcsin

(
B√
−∆

)}
(A.4)

at C < 0 and

1√
C

ln
2
√
C
√

A+B(ηk − ηk−1) + C(ηk − ηk−1)2 +B + 2C(ηk − ηk−1)

2
√
AC +B

(A.5)

at C > 0, while at Ω = 0 E/C = 1, D −BE/2C = 0 and the function G reads as√
(γ0 + 1)/2 + 2γ0ηk + 2(γ0 − 1)η2k −

√
(γ0 + 1)/2 + 2γ0ηk−1 + 2(γ0 − 1)η2k−1.(A.6)
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