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Synopsis

Formation of coherent structures, their stability and their interactions have

been an important area of research in fluid dynamics as well as in plasmas as

they play a very important role in energy and particle transport in such medium.

This thesis is focused on the studies related to formation of coherent structures

and their stability that help in understating transport phenomena in space and

astrophysical plasmas as well as in laboratory plasma experiments. As is well

known, a plasma comprising of electrons, ions and neutral particles is basically a

highly nonlinear system. In presence of different free energy sources (velocity shear,

density gradient, temperature gradient, current etc.), any small wavy disturbance

inside the plasma can grow up due to different types of instabilities like drift, Kelvin

Helmholtz , Rayleigh-Taylor etc. Consequently several nonlinear phenomena such

as the harmonic generation involving fluid advection, the nonlinear Lorentz force,

trapping of particles in the wave potential, wave-wave interactions, pondermotive

force etc. become effective and together with the wave dispersion contribute to the

localization of waves, leading to different types of nonlinear coherent structures like

solitons, [1] shock waves, [2] vortices, [3, 4] rogue waves [5] etc. These structures

not only occur in space plasmas such as in the Earth’s bow shock, bow shock’s at

the boundary of the heliosphere, shock waves in interstellar plasma, vortices in the

auroral plasma, outer part of the sun and the stars etc., but also can be obtained

in the laboratory experiments. [6, 7, 8] So, the detailed studies of such nonlinear

phenomena have utmost importance to the physicists from experimental as well as

theoretical point of view.

In a plasma, a great variety of waves arises spontaneously due to the coher-

ent motions of the charged plasma particles depending on the internal and ex-

ternal physical conditions. Besides different kinds of electrostatic waves, several

electromagnetic waves such as magnetosonic wave, Alfvén wave etc. can also be

generated in a magnetized plasma. [6, 9, 10] The magnetic field with the twisted

field lines generates low frequency transverse shear Alfvén wave of phase velocity

VA = B0/
√
4πn0mi (where B0 is the magnitude of the externally applied magnetic

field, n0 is the number density andmi is the ion inertia) in which the restoring force

and inertia are provided by the magnetic field pressure and ion mass, respectively.

The dispersion relation for the Alfvén waves is obtained from the magnetohydrody-

namic (MHD) equations which is non-dispersive in nature. [9, 10] Several studies

have been reported on Alfvénic solitons which owe their existence to the interplay
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between the nonlinearities and the wave dispersion where the latter arises from

various plasma effects described by the generalized Ohms law. By using the basic

model equations describing weakly nonlinear dispersive MHD waves, Kennel et al.

have shown that parallel propagating Alfvén waves obey the Derivative Nonlinear

Schrödinger (DNLSE) equation, which describes Alfvénic soliton, Alfvén wave tur-

bulence etc. [11, 12] In this above mentioned model, they did not consider electron

inertia effect on the wave dynamics. And the wave dispersion arises due to the

coupling between the elliptically polarized magnetic field components. However,

recently it is found that electron inertia plays an important role in dispersive ef-

fects of Alfvén waves which can create nonlinear structures responsible for discrete

auroral arcs. [13, 14] This fact motivates us to investigate how the electron inertia

affects the Alfvén wave propagation in an electron-ion plasma.

In this context, we have investigated the dynamics of the linearly polarized

Alfvén wave in the framework of Lagrangian two-fluid theory [15, 16, 17] in a cold

electron-ion plasma in presence of finite electron inertia effect. However, the effect

of collisions in plasma is always inevitable and leads to many phenomena of fun-

damental importance. Therefore, electron-ion collision induced dissipation effects

are taken into consideration in our study. In the framework of two fluid dynam-

ics, finite electron inertia together with ion inertia is found to act as a source of

wave dispersion which can balance the nonlinear steepening of waves leading to

the formation of a soliton. In the quasi-linear limit, the dynamics of the nonlinear

Alfvén waves is shown to be governed by a modified Korteweg-de Vries equation

(mKdV), which can be extended to a modified Korteweg-de Vries Burgers equa-

tion (mKdVB) in presence of finite dissipation. In this mKdvB equation, the

electron-ion collisional dissipation is eventually responsible for the Burgers term

and as mentioned before, the electron inertia is responsible for the dispersive term.

These nonlinear equations have been analyzed by means of analytic calculation

and numerical simulation to elucidate the phase space dynamics of the nonlinear

wave. The numerical investigations reveal that the nonlinear wave exhibits both

oscillatory and monotonic shock structures depending on the strength of the dissi-

pation. Furthermore, another important nonlinear phenomenon i.e. the effects of

self interaction of the Alfvén waves that introduces self focussing effect (modula-

tional instability) in the system has also been investigated in the long wavelength

limit. Our investigation shows that there is a possibility of the trapping of Alfvén

wave in a hole created by the wave itself in the medium, and the dynamics of this
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modulated wave is governed by a damped Nonlinear Schrödinger equation (NLSE)

in which the damping is provided by the electron-ion collision. This nonlinear

equation has been analyzed both analytically and numerically. The analytical and

numerical simulations reveal that this modulated wave exhibits weakly dissipative

bright envelope solitons. Numerical simulation also predicts the formation of rogue

waves, giant breathers and rogue wave holes.

Next, we have investigated circularly polarized Alfvén wave propagation in

a collisionless electron-ion plasma keeping all the parameters unchanged. The

complete linear analysis indicates the saturation of right-hand polarized wave in

presence of the dispersive effect of electron inertia. In the finite amplitude limit,

the weakly nonlinear Alfvén wave dynamics is found to be governed by a new type

of Derivative Nonlinear Schrödinger equation (DNLSE) modified by third order

dispersion arising due to finite electron inertia effect. This nonlinear equation is

found to be completely integrable like the DNLSE [18] and soliton like solutions

are obtained.

In plasmas, apart from electrons and ions, dust particles are omnipresent ingre-

dients which can be found in space and astrophysical environment such as planetary

ring systems, cometary tails, white dwarf matter, interplanetary and interstellar

clouds, Stars, Solar systems etc. [19] and also in human made systems like plasma

processing and plasma etching equipments in industry, magnetic fusion plasmas,

space stations, rocket exhausts, plasma torches etc. [20, 21] The dust particles

which are massive, as large as of micron sized and highly charged (either positively

or negatively depending on the surrounding environments), together with normal

electron-ion plasma form dusty plasma system. A very interesting aspect of dusty

plasma is that it can be found in a strongly coupled state as the interaction po-

tential energy between the dust particles exceeds the kinetic energy. The strength

of the coupling between the dust particles can be characterized by the coulomb

coupling parameter [22] Γ = q2d/(kBTda), the ratio of the average potential energy

to the average kinetic energy per particle, where qd, a(� n
−1/3
d ), nd, Td and kB are

the charge on the dust particle, the average inter-particle distance, the dust num-

ber density, the temperature of the dust component and the Boltzman constant

respectively. In the regime where Γ varies from 1 to Γc (∼ 170, a critical value

beyond which the system becomes crystalline), both viscosity and elasticity are

equally important and the system behaves as a viscoelastic medium. The dynam-

ics of such a visco-elastic medium has been in the past provided by the Generalized
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Hydrodynamic (GH) model that incorporates the Maxwell’s relaxation parameter

τm to mimic this behavior. [23, 24] It has been shown in past studies that the

strong coupling enables the system to support a novel low frequency transverse

shear mode along with the longitudinal modes. [24, 25] Hence, the presence of the

dust particles make the system more complex and provide a possibility to generate

entirely new collective modes of oscillation, linear and nonlinear instabilities as

well as nonlinear coherent structures.

It has been shown analytically as well as by molecular dynamics simulations

that convective nonlinearity of the GH model plays an important role to generate

vortex like structures in strongly coupled system. [26, 27] In such system the effect

of strong coupling on vortices makes them quite different from normal viscous fluid.

Recently, evolution and interaction of vortex like structures have been studied nu-

merically by varying the strong coupling parameter ranging from hydrodynamic

to strongly coupled limit in dusty plasma without considering collisions. [28] But,

collisions always takes place between plasma and dust particles in laboratory as

well as astrophysical and space plasma environment. The dust-neutral collisional

drag force is, therefore, incorporated in our study to investigate it’s effect on the

vortex phenomena in strongly coupled plasma. We have studied vortex formation,

its evolution and interactions for different initial structures having gaussian profile

in the framework of the GH model modified by dust-neutral collisional drag. Our

main objective is to study how the interplay between the nonlinear elastic stress

(coming from the convective nonlinearity of the GH model along with the elastic-

ity) and dust-neutral collisional drag determines the dynamics of vortices in such

system. All the studies have been done by numerically integrating GH model after

transforming into fourier space using doubly periodic pseudo-spectral simulation

code with Runge-Kutta-Gill time integrator. [29] It is shown that the interplay

between the nonlinear elastic stress and the dust-neutral collisional drag results in

the generation of non-propagating monopole vortex before it starts to propagate

like transverse shear wave. It is also found that the interaction between two un-

shielded monopole Gaussian vortices having both same rotation (co-rotating) and

opposite rotation (counter rotating) produce two propagating dipole vortices of

equal and unequal strength respectively when there is a sensitive balance between

the nonlinear elastic stress and the dust-neutral collisional drag.

Next, we have carried out a stability analysis of a long scale two dimensional

equilibrium vortex (with finite ellipticity at the core) to short scale perturbation
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in presence of dust-neutral collisional drag in strongly coupled dusty plasma. The

analysis has been done using a mathematical technique employed by Bayly [30]

in the context of a fluid dynamics problem. A numerical study has also been

done to obtain the stability domain of the vortex for arbitrary values of ellipticity

and estimates of growth rate is obtained by using multiple time scale method.

It is seen that for circular vortices there is no instability because these vortices

rotate rigidly and hence have no sources of free energy. But for vortices with

finite ellipticity, it is seen that the free energy associated with the velocity shear of

the vortex can perimetrically drive secondary instabilities consisting of transverse

shear waves when the collision modified secondary wave frequency matches with the

mean rotation frequency of the vortex or one of its multiples. Thus the secondary

instability can act as a seed for the onset of turbulence by transferring the energy

from the long scale vortex to the short scale secondary wave and may in turn act

as a nonlinear saturation mechanism of the vortex structures in plasmas.

In summary, the results and conclusion on the analysis of the weakly nonlinear,

dispersive Alfvén wave propagation, could be useful for understanding the the ob-

served physical phenomena like particle energization and plasma heating and also

in interpreting the nonlinear phenomena behind the observed magnetic structures

in space plasmas. Moreover, our studies on vortex phenomena may lead a better

way to understand the transport phenomena in strongly coupled plasmas.
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Chapter 1

Introduction

An objective of this thesis is to contribute to the knowledge of some novel phe-

nomena associated with nonlinear coherent structures in the context of the non-

linear plasma theory. A detailed study on nonlinear coherent structures related to

both Alfvén wave in an electron-ion plasma as well as transverse shear wave in a

strongly coupled plasma has been presented here. In case of Alfvén wave study, the

Lagrangian two fluid model has been adopted and both analytical and numerical

analysis have been done in a very extensive way. The generalized hydrodynamic

(GH) model, coupled with the Poisson’s equation, has been adopted for the purpose

of describing strongly coupled plasma e.g. dusty plasma in strongly coupled regime.

For the numerical simulation of GH equations, a de-aliased doubly periodic pseudo-

spectral code has been employed. The results of our investigations could be useful

in understating transport phenomena in space and astrophysical plasmas as well

as in laboratory plasma experiments. This chapter describes an overview of our

investigations followed by the motivation in studying nonlinear coherent structures

associated with both the Alfvén wave in an electron-ion plasma and also transverse

shear wave in a strongly coupled plasma.

1
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1.1 Overview

A plasma, often referred as the fourth state of matter, is basically a gas of charged

particles which behaves as an electrically conducting medium. As we increase the

heat added to a solid, it will transform to the gaseous state followed by the liquid

state, and then finally the bonds binding the electrons and the ions together are

broken and the gas becomes an electrically conducting plasma. The term “plasma”,

which came from the Greek word plasma (meaning “moldable substance or jelly”),

was first introduced to describe ionized gas by Tonks and Langmuir in 1929. [1]

Since plasma is made up of electrically charged particles, it behaves differently from

those of neutral gases due to the strong electromagnetic influences generated from

localized charge and current concentrations in medium. These electromagnetic

influences affect the motion of the other charge particles residing far away in the

plasma which results in the generation of collective behavior in plasma. Plasma

can be treated as a neutral medium on a large scale because of the presence of

the equal number of positively and negatively charged particles, whereas, there

is localized charge concentrations in plasma, hence the plasma is often treated

as a “quasi-neutral medium”. So the standard definition of plasma is as follows:

“A plasma is basically a quasi-neutral gas of charged and neutral particles which

exhibits collective behavior”. [2]

The outer layers of the Sun and stars in general are made up of ionized gases

and from these regions winds blow through interstellar space contributing, along

with stellar radiation, to the ionized state of the interstellar gas. Thus more than

ninety nine percent of the known universe is in the plasma state and the rest

consisting of non plasma states of matter (the other three states of matter: solid,
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liquid and gas). The Earth and its lower atmosphere form a plasma-free oasis in a

plasma universe whereas the upper atmosphere, stretching into the ionosphere and

beyond the magnetosphere, is rich in plasma effects. Hence the physics of plasma

is very important to study the dynamics happening inside the space environment,

stellar medium and the upper atmospheric region of earth. [2–5]

Since 99% of the observable universe is in the plasma state, so it is quite obvious

to have the dust particles embedded inside the plasmas in space and astrophysical

environments such as comet tails, planetary nebula, interstellar space, planetary

rings, atmospheric aerosols, planetary upper atmosphere, Solar nebulae etc. [6]

Generally, dust means many things to different people, but in view of plasma

physics we need to be more specific. Dust particles are massive (billions times

heavier than the protons) and their sizes are of macroscopic dimensions compared

to atoms and ionized nuclei, and are typically of the order of a micron. Hence, a

plasma impregnated with heavier macroscopic sized dust particles is termed as a

dusty plasma when the charged (due to electron/ion impingement on the dust sur-

face) dust species behaves in a collective manner. In a normal plasma the potential

energy of a typical charged particle due to its nearest neighbor is much smaller than

its kinetic energy, so the plasmas like electron-ion plasma are treated as a weakly

coupled plasmas. In contrast the typical low thermal velocity and high charge

density on the macroscopic dust species often render a dusty plasma medium in a

strongly coupled state. [6] Such dusty plasmas can be prepared artificially and/or

get formed inherently in certain laboratory situations, for example, in Tokamaks

due to plasma wall interactions, rocket exhausts, plasma torches etc. The presence
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of dust particles introduces new features to the plasma dynamics which are other-

wise absent in the usual electron-ion plasma. This thesis is concerned in studying

plasma dynamics both in electron-ion plasma as well as strongly coupled dusty

plasma (commonly known as complex plasma).

Although plasmas do not usually occur naturally on earth, there are well known

phenomena related to natural plasmas including visible glows in the polar auroras,

upper-atmospheric lightning (e.g. Blue jets, Blue starters, Gigantic jets), polar

wind etc. In laboratory, artificially produced plasmas are used in technological

applications such as plasma displays, fluorescent lamps (low energy lighting) and

neon signs. Plasmas are also used for welding, sterilizing medical instruments,

lighting home and industries, cleaning up pollution, purifying contaminated water,

treating harmful wastes etc. The presence of dust particles also makes the plasma

system an important field of interest to the industrial purposes, such as, dry powder

coatings, micro electronics, semiconductor and nanoparticle physics, solar cell and

so on. [7–10]

Apart from these usefulness of plasma applications in daily life; large projects

on controlled nuclear fusion and confinement technologies in plasmas have drawn

a great attention to the plasma community because of their strong potential in

providing a cheap, long time sustainable and hazard-free source of energy, which

could eradicate energy crisis in the near future. [11] A main purpose of using

a plasma in the controlled nuclear fusion is to create a favorable situation for

the thermal-ion-fusion process to happen at the center of a fusion device like the

stellar-core, so that the process can release energy. By employing various nonlinear

processes, plasma heating can be possible to attain temperatures comparable to
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a stellar-core in plasma based fusion devices. [12–18] The three inevitable pro-

cesses, i.e. creation, heating and confinement of the plasma drive the system away

from the thermodynamic equilibrium state and thus, macroscopic changes occur

inside it. In this complicated plasma dynamics inside the plasma based devices,

excitations of plasma waves are very common phenomena. The characteristics of

the plasma waves, generated due to auto capturing by the fields of the collective

effects are different, depending on their sources. In presence of various free en-

ergy sources (velocity shear, density gradient, temperature gradient, current etc.)

in the plasma, the waves no longer be in a linear regime but grow without any

bound which results instabilities. There are numerous processes via which unsta-

ble modes can saturate and attain large amplitudes. When the amplitudes of the

waves are sufficiently large, nonlinearities play a significant role. Basically, the

nonlinearities come from the harmonic generation involving fluid advection, the

nonlinear Lorentz force, trapping of particles in the wave potential, ponderomo-

tive force etc. The nonlinearity together with the dispersion contributes to the

localization of waves, leading to different types of interesting coherent structures

formation; namely solitons, [19] shock waves, [20] vortices, [21, 22] rogue waves [23]

etc. which are mainly responsible for the enhancement of transport of heat and

particles in the system. These structures not only occur in space plasmas such as

in the Earth’s bow shock, bow shock’s at the boundary of the heliosphere, shock

waves in interstellar plasma, vortices in the auroral plasma, outer part of the sun

and the stars etc., but also can be obtained in the laboratory experiments. [24–26]

Studies on such nonlinear phenomena have attracted more profound interest to the

plasma physicists from both experimental as well as theoretical point of view due
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to two reasons: the first one is to create a confined plasma environment so that a

controlled thermonuclear fusion for energy requirements can be achieved and the

second one is to explore several phenomena related to various types of structures

observed in space and astrophysical plasma environment. Therefore, the rigor-

ous study, regarding the various phenomena associated with nonlinear coherent

structures in plasmas in different physical scenario has been pursued in this thesis.

Interestingly plasmas support various types of waves that cannot be present in

any other medium. One of the most notable and extensively studied wave is the

low frequency magnetohydrodynamic Alfvén wave which is commonly observed in

the natural environment of plasmas in space, such as the auroral ionosphere and

the interplanetary plasma, and in the solar wind. [27, 28] In this thesis, we have

explored the linear and nonlinear behavior of this wave taking into account the

electron inertial effect which is found to act as a source of dispersion. Specifically,

we have concentrated on the formation of different nonlinear coherent structures

like solitons, shocks, envelope solitons, rouge waves of Alfvén wave considering

different aspects of plasma such as presence of collisions, wave-wave nonlinear

interactions etc. We have tried to picturise such nonlinear structures by employing

the Lagrangian transformation technique.

As stated earlier dust particles are also ubiquitous in space and laboratory plas-

mas, so the effect of dust particles on the plasma dynamics has also grabbed the

attention of plasma physicists from decades. One of the main attributes of dusty

plasma is that it can be found in the strongly coupled regime where it can mimic

the physical characteristics of a broad range of fluids (both viscous and elastic

properties appear) and crystalline solids as well. [6, 29] This strong coupling effect
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enables the system to support transverse shear wave of low frequency (few HZ)

which has been obtained in the framework of generalized hydrodynamic model

(GH) [30] and experimentally verified later on. [31, 32] Such strongly coupled

system can support vortex like structures which are formed due to the nonlin-

ear saturation of transverse shear wave [6, 33–35]. In such structures the dust

particles rotate in a 2-D plane. We have explored formation, interactions and sta-

bility of such structures analytically as well as numerically in the frame-work of

the GH model in presence of dust-neutral collisional drag. The vortex dynamics

has been investigated by numerically integrating GH equation after transforming

into Fourier space using the de-aliased doubly periodic pseudo-spectral code with

Runge-Kutta-Gill time integrator. [36]

This thesis mainly presents the analytical and numerical studies on the various

nonlinear phenomena of coherent structures related to the Alfvén waves in an

electron-ion plasma and also transverse shear wave in a strongly coupled dusty

plasma which could lead to proper understanding of the transport phenomena in

space and astrophysical plasmas and also in laboratory plasmas. In recent days,

advancement of both analytical and computational techniques enables us to do

intense research in this areas.

1.2 Motivation

1.2.1 Nonlinear phenomena

Nowadays, nonlinear phenomena have become a topic of immense research inter-

est to the physics community. Plasma is inherently a highly nonlinear system. A

great varieties of nonlinear effects arise in the plasma medium which influence the



8

dynamics of plasma and lead to large amplitude phenomena in it. Like the fluid

medium, convective nonlinearity in fluid momentum equation in plasma plays an

important role to generate different structures like soliton and vortex motion, and

turbulence associated there with. Plasma contains mobile charged particles that

continuously interact with the wave via Lorentz force, which introduces nonlinear-

ity to the system. A large wave can also trap particles in its potential troughs,

thus changing the properties of the medium in which it propagates. This type

of particle trapping is also an example of nonlinear phenomena and can lead to

nonlinear damping. Parametric instabilities and self modulation appear in plasma

due to the nonlinear wave-wave interactions. Hence, these different types of non-

linearities present in the plasma give rise to many interesting phenomena, making

the plasmas very interesting and a challenging research topic.

The nonlinear phenomena in plasma can be grouped into two main categories:

the first one is the coherent phenomena which refer to circumstances where the sys-

tem developed nonlinearly keeping consistency with the phase information carried

by the waves and the second one is the incoherent or turbulent phenomena which

refer to circumstances where a large number of random collective oscillations are

excited by a linear instability resulting waves with random phases. [37] Plasma

supports a great varieties of nonlinear coherent structures such as solitons, shocks,

vortices, rouge waves etc. which involve dispersion and nonlinearities together with

or without collisional effect. However, most of the phenomena in nature are found

to be incoherent or turbulent.

In this thesis we have studied the formation of several types of nonlinear co-

herent structures, their stabilities and evolution for different physical scenarios.
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Here, we will discuss briefly on different types of nonlinear coherent structures,

their probable causes and governing equations.

1.2.1.1 Nonlinear coherent structures

Human beings are fascinated by various kinds of linear waves (for example: 1.

when a stone is thrown into a still pond, the waves spread in a circular pattern

with crests and troughs, but overall in the form of a wave packet, 2. when a girl

plays a veena, then notes are generated as a result of vibrations pulsating through

the air, 3. when a radio station broadcasts its signals, the electromagnetic energy

from its transmitter radiates outward in an identical fashion, and several such phe-

nomena) in their day to day live. In presence of dispersion, the amplitude of these

waves diminish over distance leading to the water waves in the pond to settle, the

melody to fade and the broadcasting signal to weaken. However, there are various

examples of waves having permanent form which can travel over a long distance

without any change in size and shape. All these waves can be described by the

nonlinear wave equations. In 1834, John Scott Russell first discovered such type of

wave, known as the “Russell’s solitary” wave, having hump or dip shaped of perma-

nent profile while conducting experiment on fluid dynamics. [38] He investigated

such phenomena experimentally as well as theoretically and concluded that, the

nonlinearity present in the system balances the wave dispersion (when the effect of

dissipation is negligible in comparison with those of the nonlinearity and disper-

sion) which results in the formation of non-diminishing stable wave structure i.e

known as solitary wave. However, when the dissipation effect becomes comparable

or more dominant to the dispersion present in the system then shock waves are gen-

erated. Korteweg and de Vries described the finite and small amplitude localized
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solitary wave propagation by the Korteweg-de Vries (KdV) equation, [39] while

shock waves are described by a KdV-Burgers equation. A remarkable property of

these solitary waves is that they preserve their shapes and speeds even after colli-

sions with other solitary waves. Observing such particle like properties, Zabusky

and Kruskal coined the name ‘soliton’ to the solitary waves. [40] Besides single soli-

tons, envelope solitons can propagate in dynamical system at a balanced condition

between the broadening effects of anomalous dispersion and the narrowing effects

of focusing nonlinearity. Nonlinear variation of the Schrödinger equation known as

the Nonlinear Schrödinger equation (NLSE) has become the simplest model to de-

fine such type of envelope soliton propagation. Actually, solitons are fundamental

phenomena in nonlinear dynamics and have attracted the attention of researchers

from the physical and mathematical sciences over the last few decades. Solitons

were observed in many physical systems: localized vibrational modes in biological

systems, [41] high-energy physics, sound waves, [42] matter waves in Bose-Einstein

Condensates [43, 44] and nonlinear waves in optics [45] etc. In the late 50s the

soliton concept entered into plasma physics. Various studies on ion acoustic soli-

tons, dust ion acoustic solitons, Alfvénic solitons have been reported depending

on different physical aspects of plasma. [24, 46–48] Soliton carries energy within

a nonlinear medium without energy loss, so they are very useful in transportation

of energy in that medium. Unlike solitons, the energy of a shock wave dissipates

relatively quickly with distance while propagating through plasma medium. After

the saturation of the shock waves, the energy stored in the wave is transferred back

to the plasma particles, leading to the strong plasma heating and the generation of

high energy particles. These high-energy particles are responsible for the particle
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acceleration mechanism.

There are another kind of large, unexpected and suddenly appearing surface

waves in nature, known as rouge waves, which was first observed in the ocean with

amplitudes much higher than the average wave crests around them. [49, 50] The

NLSE also describes such waves produced due to the self focussing effect like the

envelope solitons. Nonlinear wave studies related to the rogue wave phenomena

can also be found in fiber optics, [51, 52] superfluid He4, [53] optical cavities [54],

Bose-Einstein condensates [55] and also in relativistic laser-plasma interactions, as

well as plasma waves in atmosphere and astrophysical situations. [56, 57]

Besides such nonlinear structures, there are another well known coherent struc-

tures, known as vortex structures. Such structures can be generated in fluid

medium and also plasma due to their powerful self organizing capacity. Before

going to detailed discussion about vortex in plasmas, we here explain what the

term ‘vortex’ signifies. The fluid motion can be divided into three main categories

1) laminar or potential flow, 2) pure rotation or vortex motion and 3) fully turbu-

lent or disorderly motion. In a real physical situation all of three types combine

together in fluid motion. The velocity of such fluid can be well described by a

vector function of space and time and its curl gives the vorticity of the flow. It

actually represents a region in a fluid in which the flow rotates around an axis line,

which may be straight or curved. Physically, vorticity can be regarded as angular

momentum density. Thus the vortices are regarded as coherent structures with

non zero curl of the velocity field which survive for few turn over time. Vortices

are commonly occurring in nature. They form during atmospheric disturbances in

the vicinity of high and low pressure areas and are also vividly seen in the shapes
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of dust devils and in tornadoes. Vortices are also very often observed in fluid and

plasma environment like planetary fluid environment, [58] astrophysical plasma

[59, 60] and fusion plasmas. [61]

So, various types of coherent structures are generated in the fluid and also in

plasma environment; and hence a thorough understanding of the probable causes

of formation of such structures, their stabilities and evolution have been a topic of

intense interest to the physics community.

1.2.2 Alfvén waves in plasmas

Waves in plasmas have been the subject of theoretical and experimental research

work for many years because of its wide relevance in understanding space plasma

phenomena. Plasmas are basically a complex medium for the propagation of dif-

ferent types of waves having wide range of frequencies and characteristics. Among

the several waves, some low frequency magnetohydrodynamic waves (MHD) (much

smaller than the ion cyclotron frequency ωci) arise inside the plasma medium when

it is immersed in a uniform, constant magnetic field (B0). Alfvén wave, discov-

ered by a Swedish space physicist H. Alfvén, [62] is the most dominant low fre-

quency (kHz) MHD wave which propagates along the constant magnetic field at

the Alfvén speed VA = B0/
√
4πn0mi (where B0 is the magnitude of the externally

applied magnetic field, n0 is the ion number density and mi is the ion inertia).

The existence of such wave is not surprising if one considers that the wave motion

of ordinary neutral gas sound wave is ω = kV with V =
√
γP/ρ, where P is

the gas pressure and ρ is the gas density and the magnetic stress tensor scales as

∼ B2
0/4πn0mi so that Alfvén type velocities will result if P is replaced by B2

0/8π

i.e. the restoring force and inertia are provided by the magnetic field pressure and
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ion mass, respectively. Thermal motions of the plasma components are not impor-

tant for such kind of waves, thereby in low βp plasma (where βp = 8πnT/B2
0(� 1),

n is the plasma density, T is the plasma temperature and B0 is the strength of

the magnetic field i.e. the case where the magnetic pressure is considered to be

large enough compared to the kinetic pressures of plasma species) region like so-

lar system, auroral region such types of waves appear. [27, 28, 63] In Alfvén wave

propagation the fluid and field lines oscillate together as if the particles are stuck to

the field lines. It involves twisting, shearing and plucking motions of the magnetic

field lines perpendicular to the applied magnetic field. [63]

In laboratory, finite amplitude Alfvén waves are excited by many sources such

as external antennae, energetic charged particle beams, nonuniform plasma pa-

rameters, electrostatic and electromagnetic waves, and in space plasma such waves

may be observed by direct measurement of electric and magnetic fields in the waves

by artificial satellites, or via optical evidence, in the case of waves in the Sun’s at-

mosphere. [63, 64] These waves in a plasma were firstly excited and detected by

Allen Baker, Pyle and Wilcox at Berkely, California and by Jephcott in England

in 1959 during an experiment done in a hydrogen plasma created in a “slow pinch”

discharge between two electrodes aligned along a magnetic field. In the experiment

of Wilcox et al., such waves were observed with a Alfvénic speed of 2.8×105m/sec

for applied magnetic field 1T and plasma density 6× 1021m−3.

Alfvén wave is basically a long wavelength mode. It can be thought as a possi-

ble candidate for solar corona heating as it can transport energy fluxes over a large

distance. It may also play an important role in driving field aligned currents, in

particle energization in magnetized plasma, [65, 66] in self-modulation in strongly
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magnetized plasma, [67] in tokamak plasma heating [68, 69], in space plasma re-

lated issues like coronal heating, [70, 71] in auroral electron acceleration, [72, 73]

in interplanetary shocks [74], turbulence [75] etc. Because of its several such ap-

plications, the propagation of Alfvén waves including their linear and nonlinear

aspects has been a subject of great interest in succeeding decades. [63, 64, 76–78]

The dispersion relation for the Alfvén wave is obtained from the MHD equa-

tions, [62, 63] which is non-dispersive. The dispersion arises from various plasma

effects described by the nonideal Ohm’s law and this leads to the nonlinear pon-

dermotive acceleration, wave-particle interactions and the formation of nonlinear

localized structures. In a recent text book, [5] the descriptions of Alfvén waves

have been highlighted using two fluid theory besides the usual single fluid de-

scription (MHD). Various interesting physics have come out especially related to

spatial scale associated with ion and electron inertia (represented by inertial length

λi = c/ωpi and λe = c/ωpe where ωpi and ωpe are the ion and electron plasma fre-

quency respectively) in laboratory and space plasmas. Recently, it has been found

that electron inertia plays an important role in dispersive effects of the Alfvén

waves which can create nonlinear structures responsible for discrete auroral arcs.

[72, 79]

Inspired by these formulations, we have shown in this thesis that how the elec-

tron inertia (normally undermined compared to ion) could be an important issue

in Alfvén wave propagation both in linear and nonlinear regimes. An important

nonlinear effect known as the wave-wave interaction which is mainly responsible

for the wave modulation has been investigated. The second and third chapter of

this thesis are devoted to the study of Alfvén wave propagation and its nonlinear
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phenomena.

1.2.3 Transverse shear wave in strongly coupled dusty plasma

As discussed previously in the overview part, a dusty plasma is basically a system

of normal electron-ion plasma with highly charged, micron-sized dust particles

embedded in it. These additional dust particles are bigger in size and more massive

compared to the electrons and ions. The constant interaction of electrons and ions

on the surface of these particles causes them to acquire large amount of charges,

enabling them to respond strongly to electromagnetic forces and also to contribute

towards the collective dynamics of the system. Due to their large mass, the natural

time scales of their dynamics (time scale ∼ 1-100 Hz, size ∼ few micrometer and

mean inter particle separation ∼ 100 μm) are much longer compared to that of the

normal electron-ion plasma and therefore the collective dynamics associated with

them are easily observable in laboratory experiments. In 1989, first laboratory

observation of dust cloud levitation was done in a laser induced plasma processing

device. [80] Since then, theoretical and experimental research on laboratory dusty

plasma have been progressed rapidly in exploration of dusty plasma dynamics.

The charged dust particles interact through the long range Coulomb interac-

tion which enables them to make strong coupling with each other. This strong

coupling arises at low temperature when the potential energy between the dust

particles exceeds the average thermal energy. The measure of the strength of the

coupling between the dust particles is provided by the Coulomb coupling parame-

ter, [29] Γ = q2d/(kBTda), the ratio of the average potential energy to the average

kinetic energy per particle; where qd , a(� n
−1/3
d ), nd, Td and kB are the charge

on the dust particle, the average inter particle distance, the dust number density,
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the temperature of the dust component and the Boltzmann constant respectively.

However, the potential on each particle is shielded out due to the screening effect,

resulting the coupling strength to get modified with the factor of exp(−r/λD);
where λD is the Debye length. The presence of strong coupling in dusty plasma

was first predicted by Ikeji theoretically [29] and thereafter it has been experimen-

tally verified by several observations. [81–85] In the regime where Γ varies from 1

to Γc (∼ 170, a critical value beyond which the system becomes crystalline), both

viscosity and elasticity become equally important and the system can be classified

as a visco-elastic medium. [29, 86] This strong coupling enables the system to sup-

port transverse shear wave like the wave generated in elastic rod due to the elastic

deformation of particles perpendicular to the wave motion. This transverse shear

wave is a very low frequency wave (few Hz) compared to other compressional waves

present in the dusty plasma like dust acoustic wave (∼ kHz), dust ion acoustic wave

(a few tens of kHz) etc. Existence of transverse shear wave was first predicted by

Kaw and Sen theoretically in 1998 [30] and later it has also been experimentally

verified. [31, 32] After its discovery the investigation to explore different properties

in different parametric regime has grabbed a great deal of interest.

1.2.3.1 Generalized hydrodynamic model (GH) equations

One of the fundamental characteristics which differentiates solid from liquid is that,

the former one has long range ordered elastic property, whereas the latter one has

short range ordered viscous property. But at low temperature both elastic property

and viscous property coexist in case of visco-elastic fluid like dusty plasma. In

1867, Maxwell made a connection between these two properties by proposing an

experimental model, as a series connection of a purely viscous damper and a purely
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elastic spring, known as the Maxwell’s ‘relaxation theory of elasticity’. For a

particular external stress, strain rates are added combining the properties of an

idealized elastic solid and an idealized viscous liquid and it is shown that the strain

would die out after certain relaxation time. In case of viscoelastic medium, stress

relaxes exponentially as ∼ exp(−t/τm), where τm is called Maxwell’s relaxation

time. For time scales longer than τm, the medium behaves like a fluid whereas at

time scales shorter than τm, the medium retains its memory and exhibits elastic

properties. This relaxation time explicitly depends on the coupling parameter Γ

and various other parameters of the system. [87, 88] Frenkel generalized the well

known Navier Stoke’s equation of the hydrodynamics using the Maxwell’s model

of relaxation time and obtained the generalized hydrodynamic equation which has

been used in studying medium having visco-elastic phenomena. [89] In this model,

the Galilean invariant form of the dust fluid momentum equation can be written

as: [30]

[
1 + τm

(
∂

∂t
+ v · ∇

)][
ρd

(
∂

∂t
+ v · ∇

)
v +∇pd + qdndE

]
=
∂σij
∂xj

,

(1.1)

where ρd = ndmd is the dust density; nd and md are the number density and mass

of the dust respectively, qd is the charge on the individual dust particle, v is the

dust fluid velocity, pd is the dust pressure and E is electric field and σij is the

viscous tress tensor defined by [74]

σij = η

(
∂vi
∂xj

+
∂vj
∂xi

)
+

(
ζ − 2

3
η

)
δij(∇ · v),

(1.2)



18

where η and ζ are the shear and bulk dynamic viscosity coefficients respectively.

Since we are concerned to study the wave with very low frequency of the order

ω � kvth e(i); where vth e and vth i denote thermal velocities of electron and ion

respectively, therefore the electrons and ions being light fluids compared to dust

can be modeled by the standard Boltzmann distributions as:

ne = ne0 exp

(
eφ

Te

)
,

ni = ni0 exp

(
−eφ
Ti

)
, (1.3)

where ne(i) is the electron (ion) number density, |e| is the magnitude of charge on

the electron (ion), Te(i) denotes the electron (ion) temperature which is assumed to

be constant throughout and φ is the electrostatic potential. The mass conservation

of the fluid is described by the continuity equation

∂ρd
∂t

+∇ · (ρdv) = 0. (1.4)

The above momentum equation and continuity equation are closed through the

Poisson’s equation

∇ · E = 4π(eni − ene − qdnd), (1.5)

where the dust charge is assumed to be negative. The above four Eqs. (1.1-1.5)

constitute the complete set of equations for the analysis of the strongly coupled

dusty plasma.

1.2.3.2 Existence of transverse shear wave

As we are interested in studying low frequency phenomena (kλD � 1, λD is the

dust Debye length); therefore the following charge neutrality condition holds both

in the equilibrium and in presence of perturbations; 0 = eni − ene + qdnd ⇒
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(ni − ne) e = qdnd. With this charge neutrality condition, replacing the electric

field term by the pressure term as qdndE = −∇(pe + pi), [90] the Eq. (1.1) is

modified as:[
1 + τm

(
∂

∂t
+ v · ∇

)][
ρd

(
∂

∂t
+ v · ∇

)
v +∇p

]
= η∇2v +

(
ζ +

η

3

)
∇(∇ · v),

(1.6)

where p = pd + pe + pi is the total pressure of the system. The dust pres-

sure is assumed to obey the adiabatic equation of state which is given by pd =

γdμdndTd, where γd is the adiabatic index, μd = (∂pd/∂nd)Td/Td is the com-

pressibility parameter [91] and Td is the temperature of the dust fluid. A model

dependence of the compressibility coefficient on the excess internal energy, i.e.,

u(Γ) can also be written as, [30, 91] μd = 1 + u(Γ)/3 + (Γ/9)∂u(Γ)/∂Γ, where

u(Γ) = −0.81−0.89Γ+0.95Γ1/4+0.19Γ−1/4. [92, 93] As both the electron and ion

temperatures are taken to be constant throughout, therefore the system pressure

can be written as: p = neTe + niTi + γdμdndTd.

Here the dust fluid is considered as homogeneous and incompressible i.e. the case

where ∇·v = 0, so that the density fluctuation can be ignored for simplicity. With

this condition the continuity Eq. (1.4) of dust fluid leads to the constant dust den-

sity ρd = ρd0. Under this condition, the modified dust momentum equation for the

incompressible dust fluid can be written as:[
1 + τm

(
∂

∂t
+ v · ∇

)][
ρd0

(
∂

∂t
+ v · ∇

)
v +∇p

]
= η∇2v. (1.7)

Under small amplitude limit, neglecting the convective nonlinearity in Eq. (1.7)

we have the following linearized form of the dust momentum equation(
1 + τm

∂

∂t

)[
ρd0

∂v

∂t
+∇p

]
= η∇2v. (1.8)
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Here no dust flow is taken in equilibrium. The variable v and p are the perturbed

dust fluid velocity and pressure respectively. Let us take curl of the Eq. (1.8) to

obtain

(
1 + τm

∂

∂t

)
∂

∂t
(∇× v) =

η

ρd0
∇2(∇× v). (1.9)

As a consequence of (∇·v = 0), v can be expressed as v = êz×∇ψ, where ψ(x, y)

is the velocity stream function with ∇× v = êzΩ and vorticity Ω = ∇2ψ. Let us

investigate the above Eq. (1.9) in both hydrodynamic and kinetic limit.

In hydrodynamic limit (defined as τm∂/∂t � 1), z-component of the equa-

tion (1.9) is written as:

∂Ω

∂t
=

η

ρd0
∇2Ω (1.10)

which represent the diffusion equation. Considering the plane wave form Ω ∼

exp(ik · r− iωt), the dispersion relation is obtained as ω = −iηk2/ρd0, which arises

only due to the presence of the viscosity.

In kinetic limit (defined as τm∂/∂t 	 1), the linearized vorticity equation

(1.9) reduces to

∂2Ω

∂t2
= c2sh∇2Ω (1.11)

which represents wave equation where phase velocity of shear wave is c2sh = η/(τmρd0);

where τm can be expressed as:

τm =
4ηmd

3ρd0Td0

1

(1− γdμd + 4u(Γ)/15)
,

and using this relation, expression of the velocity of shear wave is given by, [30]

c2sh =
3Td0
4md

(
1− γdμd +

4

15
u(Γ)

)
. (1.12)
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Therefore, the elastic effect arising due to the strong coupling between the dust

particles enables the system to support transverse shear wave which has no coun-

terpart in weakly coupled state of the system. The shear wave has been identified

in the molecular dynamics simulation study [94] and observed to be spontaneously

excited with phase velocity csh = 4.2 mm/s for dust particle density 5× 1011 m−3

and dust particle temperature 0.03 eV in an experimental setup of a glow discharge

dusty plasma. [31] This experimentally obtained wave velocity agrees quiet well

with theoretically calculated value from the relation (1.12). The linear and nonlin-

ear behavior of this wave in strongly coupled plasma have been studied extensively

under different physical conditions both theoretically and experimentally.

1.2.3.3 Earlier investigations on dust vortex flows

As described in the Sec. 1.2.1 of this chapter, different types of coherent structures

like solitons, shocks, vortices, rouge waves have been observed in fluid as well as

plasma medium. In case of dusty plasma, as the governing dynamics is different

than that of Newtonian fluids, the existence of various coherent structures as well

as their stabilities and evolution must have significant differences. Study on dust

vortices is an interesting fundamental issue which has been reported by many

experimental and theoretical investigations.

Formation of different types of dust vortices have been studied in presence as

well as in absence of magnetic field. In plasma crystal experiment under micro-

gravity condition, different types of dust vortices have been observed around the

dust voids in the cloud of fine dust particles. [95] Later, in simulation, it has

been concluded that the dust vortices around the void get generated due to the

nonconservative forces such as, ion drag force, electric force and coulomb force,
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but thermophoretic force has no driving role for their generation. [96] Experi-

ment carried out in the laboratory rf (radio-frequency) plasma has reported the

formation of dust vortices at the wake flow regime of dust particles behind voids.

[97] The phenomena of thermal creep gives rise to the formation of Vortex like

structures of convective dust clouds in a complex plasma experiment [98]. Bock-

woldt et al. have explained in experimental and numerical studies that stable

dust vortices are generated due to the balance between the driving torques from

charge gradients and ion drag and the loss of torque by friction with the neutral

gas. [99] They have also explained that charge gradient alongwith ion drag force is

essential for the generation of quadrupole vortices. Konopka et al. and Sato et al.

have shown the rotation of dust particles experimentally in the magnetized dusty

plasma. [100, 101] Recently, Schwabe et al., have studied the properties of dust

vortices in light of turbulence and reported that velocity structure functions scale

very close to the predictions by Kolmogorov theory [102]. Agarwal et al. have

observed spontaneous rotation of a strongly coupled dusty plasma cloud in the

absence of any external magnetic field induced by charge gradients perpendicular

to the gravity [103].

In strongly coupled dusty plasma, there are also some theoretical observations

of transverse shear wave generating vortex like flows in unmagnetized situation. P.

K. Shukla [34] has reported different types of dust vortex flows such as monopolar

dust vortex, a row of identical dust vortices, and a row of counter-rotating dust

vortices which are generated from the nonlinear saturation of the transverse shear

wave. Such vortex flows are capable of describing the salient features of nonlinear

coherent waves and structures observed in laboratory dusty plasma discharges. [95]
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Later on, M. S. Janaki et al. have shown dipolar vortex like solutions exploiting the

convective nonlinearity of the generalized momentum equation of the dust fluid.

[33] Molecular dynamic simulation has also shown the formation of tripole and

dipole vortices from the perturbed shielded Gaussian vortex in strongly coupled

dusty plasma. [104]

Therefore, the vortices forming in strongly coupled dusty plasma provide the

opportunity to proper understanding of the flow of strongly coupled medium such

as elastic polymer solutions, condensed matter system and astrophysical systems,

and hence, have become topic of our research interest. The fourth chapter of this

thesis is devoted to study vortex phenomena associated with transverse shear wave

in strongly coupled dusty plasma. The physical relevance of any vortex depends

on wheatear it is stable or not, hence its stability analysis is very important. In

the fifth chapter, stability analysis of a vortex has been presented.

1.3 Lagrangian fluid description: An useful way

to treat the convective nonlinearity

There are two different approaches to study plasma dynamics. The first one is the

kinematic description based on microscopic view point, which includes effects of

motion of all individual charged particles and takes appropriate averages to obtain

a fundamental plasma kinetic equation. The other one is the fluid model which

describes the plasma based on macroscopic quantities (velocity moments of the

distribution such as density, mean velocity, mean energy, pressure etc. and their

evolution in space and time). Together with the Maxwell’s equations the fluid

approach can almost provide a complete dynamic evolution of a plasma. In our

problem, we have adopted fluid description in studying nonlinear plasma dynamics.
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Within fluid description, there are also two different methods that are widely

used to observe and analyze fluid flows, commonly known as the Eulerian and

Lagrangian description of fluid flows. The Eulerian fluid description corresponds

to a coordinate system fixed in space and measures fluid properties, like velocity,

density, temperature, etc. as a function of time as the flow passes fixed location

in the flow field. Whereas, the Lagrangian fluid description involves observing the

trajectories of specific fluid parcels as they move in space-time and also monitoring

any changes in their properties.

While studying plasma dynamics, the inherent nonlinear property of plasma is

reflected through the ‘convective derivative’ term, ∂/∂t+v·∇ in the fluid equations.

In the Eulerian fluid description, this convective term appears in the governing

equations as operating on an Eulerian field f(x, y, z, t) where the first term inside

the bracket gives the change of the function f(x, y, z, t) with t and the second

term gives the change due to the spatial variation. [2, 3] Within this framework,

the nonlinear equations governing the wave dynamics of plasma are very tough

to solve analytically. Under weak amplitude limit, linear analysis can be done by

neglecting the higher order terms, but for large amplitude the nonlinearity can be

handled mainly by visualizing a stationary picture from moving frame, where the

dynamical variables are considered as functions of the variable, ζ = x −Mt, M

being the constant velocity of the moving frame. This method is valid only if the

solutions are isolated and stable for a long time i.e. to find out solitary structures.

However, it has disadvantages regarding to know about the dynamics, which is the

time evolution of the system and also to have any information about the initial

state from which the stationary state evolved. Thus any method which allows one
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to study the time evolution explicitly would be extremely useful. One such method

is based on the utilization of a Lagrangian fluid description. [37]

In the Lagrangian fluid description, a transformation is carried out from the

conventional Eulerian coordinate to Lagrangian coordinate, through which the

nonlinear convective derivative merely reduces into a local time derivative, thereby

making the governing equation very easier to handle. The transformation from the

Eulerian variables (x,t) to Lagrangian variables (ξ, τ) can be written as:

ξ = x−
∫ τ

0

v(ξ, τ ′)dτ ′ , τ = t. (1.13)

This is basically generalization of the Galilean transformation where the fluid ve-

locity v is a function of space and time. This transformation shows that ξ is a

function of x and t, while, initially, when τ = t = 0, fluid element is located at

ξ(x, 0) = x. From Eq. (1.13) time derivative transforms according to,

∂

∂τ
≡
(
∂

∂t
+ v

∂

∂x

)
. (1.14)

The relationship between the Eulerian and Lagrangian derivatives becomes

∂

∂x
≡
[
1 +

∫ τ

0

∂v

∂ξ
dτ ′
]−1

∂

∂ξ
. (1.15)

The continuity equation in fluid can be rewritten in the newly defined Lagrangian

coordinate as:

(
∂

∂t
+ v

∂

∂x

)
n+ n

∂v

∂x
= 0 ⇒ ∂

∂τ

[
n(ξ, τ)

(
1 +

∫ τ

0

∂v

∂ξ
dτ ′
)]

= 0. (1.16)

The relation between the old and new space derivative at a certain time is deter-

mined by the Eqs. (1.15) and (1.16) as:

∂

∂x
=
n(ξ, τ)

n(ξ, 0)

∂

∂ξ
. (1.17)



26

The above expression clearly indicates that relation between old and new space

derivative is determined by the initial and instantaneous density profile. Thus

the calculations become very simple in this newly defined coordinate system and

analytical solution of the relevant physical quantities can be obtained. Further we

can revert back the solution in the laboratory frame i.e., the Eulerian coordinates

system and the effect of the fluid nonlinearity reappears resulting more explicit

visualization of the underlying physical processes related to the study.

A great deal of attention has been paid to investigate nonlinear effects in plas-

mas involving Alfvén waves. Theoretical analysis of such kind of nonlinear effects

in most cases has been performed using reductive perturbation theory, where the

nonlinearity is considered to be very weak. [105–110] But the finite-amplitude

Alfvén waves are subjected to a great variety of nonlinear effects, which can be

explored in detail exploiting the Lagrangian fluid method. In 1988, Kennel et al.,

[77] in their pioneering work, have derived governing equation for the dispersive

nonlinear Alfvén wave using Lagrangian coordinates and a two time scale method,

since then this method has become very much popular in case of Alfvén wave study.

However, there are some limitations of such techniques which are very important

to be mentioned here. This method is applicable in plasma situation where the

physical quantities have only one dimensional variation over space. On the other

hand, if any kind of multi-stream flow is developed in certain plasma situation

then this method loses its functionality in describing such system, as the transfor-

mation from the Eulerian to Lagrangian coordinate does not remain unique for all

x and t. Hence, all our study related to Alfvén waves have been restricted to one

dimensional spatial variation and all types of complications have been avoided.
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1.4 Pseudo-spectral method: An efficient numer-

ical method to handle plasma nonlinearity

Spectral methods are a class of numerical methods that are often applied in solv-

ing nonlinear partial differential equations (PDE) with certain approximations.

Among several spectral methods such as pseudo-spectral method or spectral collo-

cation method, spectral Galerkin method, Chebyshev spectral method etc., [111–

113] the pseudo-spectral method has been an efficient one in solving convective

nonlinear term (v ·∇v) in fluid dynamics using the Fast Fourier Transform (FFT).

This method is only applicable in solving problems with periodic boundary con-

ditions. So this method have been very popular in direct simulation of vortices in

fluid dynamics, in weather modeling and also in certain areas of plasma physics

with periodic domain. [114, 115]

The basic idea in applying numerical method to solve PDE is that: first try to

write the solution of the PDE as a linear combination of basis functions, and then

select the coefficients in such a way that the resulting linear combination approx-

imates the solution decently. Many different functions can be employed as basis

in the expansion, e.g. Bessel, Chebyshev, Legendre Series and Fourier etc. The

coefficients of this expansion are used to represent the solution. Differentiation in

configuration space then becomes an algebraic operation in transformation space.

The Fourier expansions which are used as basis function for the pseudo-spectral

method are best suited for computational purpose due to the availability of the

FFT algorithm.

To describe the method, let us consider a continuous, periodic function φ(x)
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on the interval 0 � x� 2π. The Fourier expansion of φ(x) is

φ(x) =
∞∑
k=0

φke
ikx, (1.18)

where

φk =
1

2π

∫ 2π

0

φ(x)e−ikxdx. (1.19)

The expansion in Eq. (1.18) requires infinitely many coefficients, so it can not be

used in numerical scheme. A finite approximation, φN(x), where

φ(x) ∼ φN(x) =
N−1∑
k=0

φ̃ke
ikx, (1.20)

can be obtained in many ways. The pseudo-spectral method determines the values

of φ̃k by solving the N linear equations

φN(xi) = φ(xi), i = 0, 1, ..., N − 1; (1.21)

where xi are the collocation points. In the case of Fourier expansion, the choice of

xi =
2π

N
i, i = 0, 1, ..., N − 1; (1.22)

allows one to use FFT algorithm. The differentiation is performed by

∂φ

∂x
∼ ∂φN

∂x
=

N/2−1∑
k=−N/2

ikφ̃ke
ikx, (1.23)

where the limits of the summation are determined by the shortest detectable length

being 2Δx.

As mentioned earlier pseudo-spectral is used in numerical plasma simulation

extensively due to its efficient ability in solving the convective nonlinear term (v ·
∇v) using FFT. If we expand the nonlinear term in fourier series in transformation

space then it yields

v(x)
∂v(x)

∂x
= ik

∑
k=p+q

v(p)v(q) =
∑
k=p+q

v(p)v′(q) = w(k). (1.24)
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This Eq. (1.24) contains convolution, which is very difficult to handle by normal

finite difference method. The computational operation required in this method is

of the order of N2, which is unacceptable for high resolution job with higher values

of N. Fortunately, the number of operations involved in a FFT is only of the order

of N logN , which is very much handy in this respect.

In this FFT method, one should first transform v(p) and v′(q) back into the

configuration space to obtain V (xi) and V
′(xi), where xi are the gridpoints, then

form the product

W̃ (xi) = V (xi)V
′(xi), (1.25)

and finally, transform into k-space to obtain

w̃(k) =
1

N

∑
xi

W̃ (xi)e
−ikxi. (1.26)

Under this FFT method, it is easily shown that

w̃(k) =
1

N

[ ∑
k=p+q

v(p)v′(q) +
∑

p+q=k+N

v(p)v′(q) +
∑

p+q=k−N
v(p)v′(q)

]
, (1.27)

which is not equal to the expression for w(k) [Eq. (1.24)]. In addition to the

term [Eq. (1.24)] we are interested in, two extra terms are present here, known as

“aliasing” errors.

The aliasing errors can be eliminated by imposing restriction on the k-variation

from the original −N/2 ≤ k ≤ N/2 − 1 to (−N/2) · 2/3 ≤ k ≤ (N/2) · 2/3 − 1

and putting the remaining values of v(k) and v′(k) out side these limits equal to

zero before doing the inverse FFT to come back to the configuration space. The

same should also be applied in case of w̃(k) after doing the final FFT. In this way,

effect of any additional terms produced by the nonlinear multiplication operation

could be avoided. This fruitful method is known as the “2/3 de-aliasing” method.

[116, 117]
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Hence, the pseudo-spectral method has been used very popularly due to its

high accuracy and low computational effort compared to ordinary finite difference

methods. However there are some limitations. They are only applicable to solve

problems with periodic boundary conditions and require the input data to be

sampled at evenly spaced gridpoints.

In case of strongly coupled dusty plasma, the dust momentum equation (1.1)

has higher order convective nonlinearity as described earlier. In our study on vortex

dynamics, we have employed a de-aliased doubly periodic pseudo-spectral code to

tackle the nonlinearity using a fourth order Runge-Kutta-Gill time integrator for

time stepping.

1.5 Outline of the thesis

The outline of the thesis is briefly described below:

In chapter-II governing equation describing linearly polarized weakly non-

linear dispersive Alfvén wave propagation has been derived in the framework of

Lagrangian two-fluid approach in a cold collisional magnetized plasma in presence

of finite electron inertial effect. The small amplitude nonlinear dynamics of the

Alfvén wave described by a modified Korteweg-de Vries-Burgers (mKdVB) equa-

tion has been investigated. It has been shown that the electron inertia provides the

dispersive effect and the electron-ion collision is responsible for the Burgers term.

In the long-wavelength limit, the wave modulational characteristic of the nonlinear

wave governed by a damped nonlinear Schrödinger equation (NLSE) has also been

investigated. All the obtained nonlinear equations have been analyzed by means

of analytical calculation and numerical simulation to elucidate the various aspects
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of the phase-space dynamics of the nonlinear wave. The numerical calculations

and results have been discussed in detail.

In continuation of the previous study chapter-III describes the circularly po-

larized Alfvén wave propagation and associated nonlinear phenomena. In this

study collisional effect has not been taken into consideration. A complete linear

analysis has been presented which indicates the saturation of right-hand circularly

polarized wave in presence of the dispersive effect of electron inertia. A new type

of modified nonlinear equation same as the Derivative Nonlinear Schrödinger equa-

tion (DNLSE) has been obtained where third order dispersion arises due to finite

electron inertia. An analytical solution has also been presented with vanishing

boundary conditions.

chapter-IV is devoted to investigate formation, evolution and interaction of

vortices in a strongly coupled dusty plasma in the framework of the GH model

modified by dust-neutral collisional drag. Nonlinear dynamical response of this

strongly coupled system in presence of dust-neutral drag has been mainly pre-

sented. All the studies have been carried out using a de-aliased doubly periodic

pseudo-spectral code with Runge-Kutta-Gill time integrator.

chapter-V extends the investigation in studying stability analysis of the long

scale equilibrium elliptical vortex structure (with finite ellipticity (ε) at the core)

to short scale secondary transverse shear wave perturbations. An extensive study

has been carried out to obtain the stability domain of the vortex for arbitrary

values of ellipticity. The estimates of the growth rate of the instability have also

been obtained by using a multiple time scale method.
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In chapter-VIII, a summary of the results and discussions made in this doc-

toral research work has been presented. The problems, remain unsolved, have also

been discussed point wise which could be interesting to pursue further.



Chapter 2

Effect of electron inertia on
linearly polarized Alfvén wave
propagation in a collisional
electron-ion plasma

In this chapter, the linearly polarized Alfvén wave propagation has been investigated

using the Lagrangian fluid approach in a collisional cold electron-ion plasma. In

the framework of two fluid dynamics, electron inertia is found to act as a source of

dispersion acting against the convective nonlinearity. Weak amplitude Alfvén wave

is found to be governed by a modified Korteweg-de Vries equation (mKdV), which

extends for finite dissipation to a mKdV-Burgers equation. In the long wavelength

limit, this weakly nonlinear Alfvén wave is shown to be governed by a damped

nonlinear Schrödinger equation (NLSE). Furthermore, these nonlinear equations

have been analyzed by means of analytical calculation and numerical simulation.

It has been found that, the nonlinear Alfvén wave exhibits the dissipation mediated

shocks, envelope solitons and breather like structures. Numerical simulations also

predict the formation of dissipative Alfvénic rogue waves, giant breathers and rogue

wave holes.

33
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2.1 Introduction

As described in the first chapter, the Alfvén wave is the fundamental low frequency

magnetohydrodynamic wave (MHD) and is important both in the laboratory [118]

and space plasma [63] because of nonlinear structures formation leading to sev-

eral applications in various physical processes related to particle energization in

magnetized plasma, [65] self-modulation in strongly magnetized plasma, [67] toka-

mak plasma heating, [68] interplanetary shocks [74] etc. Nonlinear structures are

formed due to the combining effects of nonlinearity and dispersion, mentioned ear-

lier in Sec. 1.2.1 of the first chapter. Several extensive studies have been done on

Alfvénic localized structures where it has been reported that the nonideal Ohm’s

law is responsible for the wave dispersion. In 1988, Kennel et al. in their pioneering

work, [77] have shown that, dispersive fast and slow wave, propagating at large an-

gles to the magnetic field, are governed by the Korteweg-de Vries (KdV) equation,

whereas, a modified KdV (mKdV) equation governs the dynamics of the nonlinear

intermediate frequency wave. However, in presence of Hall effects, in the limit of

wavelengths much larger than the ion inertial length, the dynamics of the nonlin-

ear Alfvén wave propagating along a direction either parallel or making a small

angle with the magnetic field, is governed by a derivative nonlinear Schrödinger

equation (DNLSE) which describes Alfvénic soliton, Alfvén wave turbulence etc.

[77, 119] In this above mentioned model, wave dispersion arises due to coupling of

the elliptically polarized magnetic field components. [77] Several theoretical works

have also been reported on the propagation of nonlinear Alfvén wave [107–109]

where the electron inertia response has been overlooked. In our present model

we have not considered two component magnetic field, rather it has been shown
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that one component magnetic field is sufficient to describe the essential features

of nonlinear and dispersive Alfvén wave in electron-ion plasma where the electron

inertia provides dispersive effect.

Moreover, the MHD waves are highly dissipative [120] and the dissipation leads

to the coronal heating in solar plasma. The Alfvén wave is thought to be a possible

candidate for solar corona heating as it can transport energy fluxes over a large

distance. The resonant absorption and plasma heating enhance the chance of

dissipation (via viscosity and/or resistivity) that leads to the Alfvén wave heating.

[121, 122] In recent past, various nonlinear phenomena of Alfvén waves from the

kinetic to inertial regime have been established by means of numerous laboratory

observations as well as theoretical analysis. [123–129] Nonlinear phenomena of

Alfvén waves in low beta plasmas now become a very important research area to

the plasma physicists. [130]

In the present work, we have investigated the dynamics of the weakly nonlinear

linearly polarized Alfvén wave in the framework of Lagrangian two-fluid theory in a

cold plasma [37, 131–133] in presence of finite electron inertial effect. The electron-

ion collision induced dissipative effect is also taken into account. Interestingly, the

effect of finite electron inertia acts as a source of wave dispersion. In the quasi-linear

limit, the dynamics of the nonlinear Alfvén mode is shown to be governed by a

mKdV-Burgers (mKdVB) equation, where the electron-ion collision is responsible

for the Burgers term and as mentioned before the electron inertia is responsible

for the dispersive term. In the long wavelength limit, we have also investigated

another important physical phenomena known as the modulational instability. It is

a destabilization mechanism for plane waves that results from the interplay between
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nonlinearity and dispersive effect. [134–136] The nonlinearity mainly originates

from the ponderomotive force. A slow parallel modulation of a finite amplitude

monochromatic plane wave can grow and in some limit leads to the formation of

a bright (envelope) soliton. In our study, the dynamics of the modulated wave is

shown to be described by a nonlinear Schrödinger equation (NLSE) with a linear

damping term arising due to electron-ion collision. These two nonlinear equations

(mKdVB and damped NLSE) have been analyzed by means of analytic calculation

and numerical simulation.

2.2 Basic equations to describe dispersive Alfvén

waves

We have considered the two-fluid model of a cold plasma, in which each distinct

species of particle is specified by the index α, with mass mα and charge qα, Each

collection of particles of a specific type is supposed to act as a fluid, with its own

velocity Uα, number density nα. Each fluid is collision dominated and acted on by

the electric and magnetic fields, and may act on the other fluids via collisions. We

have also assumed low-βp plasma, (where βp = 8πnT/B2
0(� 1), n is the plasma

density, T is the plasma temperature and B0 is the strength of the magnetic field)

so that the cold plasma approximation is justified. [137] The uniform external

magnetic field is in the êx direction (B0êx). To investigate the propagation of

the nonlinear Alfvén wave in the direction of the external magnetic field, we have

considered the equation of motion for the fluid corresponding to the species α:

mαnα

(
∂

∂t
+Uα · ∇

)
Uα = nαqα

(
E+

1

c
Uα ×B

)
+mαnαναβ(Uβ −Uα), (2.1)
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where ναβ is the collision frequency of particle of species α with particles of species

β. In this work we have considered only electron-ion plasma with singly ionized

ions (α ≡ e, i) in which qe ≡ −e and qi = e, where e is the fundamental unit of

electronic charge.

The continuity equation for each fluid is

∂nα
∂t

+∇ · (nαUα) = 0, (2.2)

and the following Maxwell’s equations are

∇× E = −1

c

∂B

∂t
, (2.3)

∇×B =
4πJ

c
+

1

c

∂E

∂t
, (2.4)

where summation convention is used. All symbols have their usual meaning. In

this work, we are interested in the low-frequency mode where ω is smaller than the

electron plasma frequency ω � ωpe, so that we have neglected the displacement

current compared to particle current in Eq. (2.4) and obtained

∇×B =
4πJ

c
=

4π

c
qαnαUα. (2.5)

Now, if we restrict that all the dynamical variables has only one space dimension,

say in x direction, then the x component of the Eq. (2.5) yields Jx ≈ 0. This

implies that the electron current can balance the ion current in the x direction,

i.e. neUex = niUix. In this condition, from the continuity equations (2.2) for both

species, we can write,

∂

∂t
(ni − ne) +

∂

∂x
(niUix − neUex) = 0. (2.6)

Now, using neUex = niUix, in Eq. (2.6) we have obtained ∂(ni−ne)/∂t = 0, which

simply shows that ‘quasi-neutrality approximation’ ni ∼ ne ∼ n is a reasonable ap-

proximation for this problem. Hereafter all the analysis will be done in one spatial
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variable x. Consequently, we have assumed that all the variables are functions of x

and t. Furthermore, we have assumed that the applied magnetic field, propagation

of the wave and the inhomogeneity are all in the x direction. Using all the above

stated approximation, from Eq. (2.6) we obtain

∂

∂x
[n(Uix − Uex)] = 0 ⇒ Uix = Uex = u (say), (2.7)

where we have assumed that Uix(0, t) = Uex(0, t) = 0. Using this fact we can

introduce a Lagrangian transformation in double species wave dynamics problem.

In Alfvén wave dynamics the perturbed magnetic field B arises from the spatial

variation of polarization current and directed along the z-direction. In component

form, Eq. (2.5) can be written as:

∂B

∂x
= −4πen

c
(Uiy − Uey), (2.8)

0 =
4πen

c
(Uiz − Uez). (2.9)

Equation (2.8) implies that the conduction current flows along y, the direction

perpendicular to the plasma motion. From Eq. (2.9) we find Uiz = Uez = v (say).

Since the quasineutrality condition and equal velocity of both the species in z direc-

tion rule out the x and z components of electric field, so the total wave electric field

becomes E(x, t) = Ey(x, t)êy. The velocity filed is Uj = Ujx(x, t)êx + Ujy(x, t)êy +

Ujz(x, t)êz , with Ujx = u(x, t) and Ujz = v(x, t) for both the species, where j ≡ e, i.

Since, the compressional Alfvén wave propagates parallel to the ambient magnetic

field directed along x, i.e., B0êx, the magnetic field arising from the fluctuation of

electric field will be directed along the z direction. Therefore, the total magnetic

field can be written as B = B0êx + B(x, t)êz . In view of these above mentioned
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conditions, from the continuity equations (2.2) for both species, we have(
∂

∂t
+ u

∂

∂x

)
n = −n∂u

∂x
, (2.10)

whereas momentum equations (2.1) can be written separately for electrons and

ions as:

me

(
∂

∂t
+ u

∂

∂x

)
Ue = −e

(
E+

1

c
Ue ×B

)
+meνei(Ui −Ue), (2.11)

mi

(
∂

∂t
+ u

∂

∂x

)
Ui = e

(
E+

1

c
Ui ×B

)
+miνie(Ue −Ui). (2.12)

Equations (2.10)-(2.12) has a symmetry in the convective operator. This nonlinear

operator can be simplified by introducing the Lagrangian variables (ξ, τ) through

the following transformation:

ξ = x−
∫ τ

0

u(ξ, τ ′)dτ ′ , τ = t. (2.13)

With this transformation the derivative operators are transformed accordingly

similar to discussed in the Sec. 1.3 of the first chapter. Using these transforma-

tions, the continuity equation (2.10) is simplified and expressed as n(ξ, τ)/n(ξ, 0) =

∂ξ/∂x. Expressing momentum equations (2.11) and (2.12) in terms of these newly

defined variables and combining the equations we have

∂

∂τ
(meUe +miUi) =

e

c
(Ui −Ue)×B, (2.14)

where we have used meνei = miνie. Expressing B = êxB0+ êzB(x, t), the x, y and

z components of Eq. (2.14) are

∂u

∂τ
=

eB(x, t)

(me +mi)c
(Uiy − Uey), (2.15)

∂

∂τ
(meUey +miUiy) = 0, (2.16)
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and

∂v

∂τ
= − eB0

(me +mi)c
(Uiy − Uey), (2.17)

respectively. From Eq. (2.16), it is evident that total momentum is conserved

along the y direction. Taking Uey(ξ, 0) = Uiy(ξ, 0) = 0, we find

Uiy = −me

mi
Uey. (2.18)

Since the magnetic field associated with the wave under study is along the z di-

rection i.e. B(x, t)êz , the current flows in y direction. This can be further verified

from Eq. (2.8) which is given by

ne(Uiy − Uey) = − c

4π

∂B

∂x
. (2.19)

Substituting (Uiy − Uey) in Eqs. (2.15) and (2.16) we obtain

∂u

∂τ
= −

[
B

4π(me +mi)n(ξ, 0)

]
∂B

∂ξ
, (2.20)

∂v

∂τ
=

[
B0

4π(me +mi)n(ξ, 0)

]
∂B

∂ξ
. (2.21)

The evolution equation for magnetic field can further be expressed by taking curl

in the electron momentum equation (2.11) as:

me∇×
(
∂

∂t
+ u

∂

∂x

)
Ue = −e∇×

(
E+

1

c
Ue ×B

)
+meνei∇× (Ui −Ue).

(2.22)

Considering only z component of the above Eq. (2.22), we get(
∂

∂t
+ u

∂

∂x

)
B +B

∂u

∂x
− B0

∂v

∂x
= −cme

e

∂

∂x

∂Uey
∂τ

+
mec

2νei
4πe2

∂

∂x

(
1

n

∂B

∂x

)
.(2.23)

In Eq. (2.19), substituting Uiy from Eq. (2.18) we have(
1 +

me

mi

)
Uey =

c

4πen

∂B

∂x
. (2.24)
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Substituting uey in Eq. (2.23) (in terms of Lagrangian variable) we have

∂B

∂τ
+

Bn

n(ξ, 0)

∂u

∂ξ
− B0n

n(ξ, 0)

∂v

∂ξ
=

c2

4πe2

(
memi

me +mi

)
n

n(ξ, 0)

∂

∂ξ

[
∂

∂τ

(
1

n(ξ, 0)

∂B

∂ξ

)]

+
mec

2νei
4πe2

n

n(ξ, 0)

∂

∂ξ

(
1

n(ξ, 0)

∂B

∂ξ

)
.

(2.25)

Now we normalize Eqs. (2.10), (2.20), (2.21), and (2.25) by n→ n/n0, v → v/vA,

B → B/B0, ξ → ξ/L and τ → τvA/L, with n0, vA, and L denoting a constant

equilibrium density, the Alfvén velocity, and an arbitrary length scale respectively.

Then Eqs. (2.10), (2.20), (2.21) and (2.25) respectively become

∂

∂τ

(
1

n

)
=

1

n(ξ, 0)

∂u

∂ξ
, (2.26)

∂u

∂τ
= − 1

2n(ξ, 0)

∂B2

∂ξ
, (2.27)

∂v

∂τ
=

1

n(ξ, 0)

∂B

∂ξ
, (2.28)

and

∂B

∂τ
= − Bn

n(ξ, 0)

∂u

∂ξ
+

n

n(ξ, 0)

∂v

∂ξ
+D

n

n(ξ, 0)

∂

∂ξ

∂

∂τ

(
1

n(ξ, 0)

∂B

∂ξ

)
+ ν

n

n(ξ, 0)

∂

∂ξ

(
1

n(ξ, 0)

∂B

∂ξ

)
, (2.29)

where D = (δ/L)2 is the dispersion parameter arising from electron’s finite mass,

and ν = (mec
2/4πn0e

2)(νei/LvA) is the dissipation parameter which arises due

to collision, δ is the skin depth defined by δ = (c2memi/[4π(me +mi)n0e
2])

1/2
.

Equations (2.26), (2.28) and (2.29) can now be combined together to give the

following equation in a more compact form as:

∂2

∂τ 2

(
B

n

)
− 1

n(ξ, 0)

∂

∂ξ

[
1

n(ξ, 0)

∂B

∂ξ

]
=

1

n(ξ, 0)

∂2

∂τ∂ξ

[
1

n(ξ, 0)

∂

∂ξ

(
D
∂B

∂τ
+ νB

)]
.

(2.30)
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Furthermore, Eqs. (2.26) and (2.27) can be combined to give

∂2

∂τ 2

(
1

n

)
= − 1

2n(ξ, 0)

∂

∂ξ

(
1

n(ξ, 0)

∂B2

∂ξ

)
. (2.31)

These two coupled nonlinear partial differential equations (2.30) and (2.31) are

the governing equations that describes the dynamics of the nonlinear, dispersive

Alfvén wave in an electron-ion plasma. It is to be noted that the above model is

appropriate for low-dense plasma as the analysis is valid for (vA/c) ≤ D � (me/mi)

i.e. for small dispersion parameter D and Alfvén velocity vA.

2.3 Linear analysis

Before going to the details of the nonlinear analysis, let us linearize equations

(2.30) and (2.31) by assuming n = 1+ ñ and B = b̃ and obtain the following linear

equation: (
∂2

∂t2
− ∂2

∂x2

)
b̃ = D

∂4b̃

∂2t∂2x
+ ν

∂3b̃

∂t∂2x
. (2.32)

Then assuming the solution in the form of Fourier mode b̃ ∼ exp[−i(ωt − kx)]

(where ω and k are the oscillation frequency and wave number), we obtain the

following dispersion relation for the linear Alfvén wave

(1 +Dk2) ω2 + iνk2ω − k2 = 0, (2.33)

where the collisional parameter ν represents the usual wave damping. In absence

of collision the above dispersion relation (in dimensional unit) becomes

ω =
kvA√

1 + k2δ2
. (2.34)

This dispersion relation clearly shows that the Alfvén wave is dispersive because of

the term δ which arises due to the finite electron inertia. Thus finite electron mass

effect acts as a source of dispersion of the Alfvén wave in electron-ion plasma.
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2.4 Nonlinear analysis by Lagrangian mass vari-

able

In this section we have tried to analyze the nonlinear system derived above by

means of a more simplified description that utilizes the Lagrangian mass variable.

The system of coupled differential Eqs. (2.30) and (2.31) can be substantially sim-

plified without the loss of generality by switching to the Lagrangian mass variable.

[132, 138] For this, let us define the following new Lagrangian mass variable ζ

instead of ξ

ζ =

∫ ξ

n(ξ′, 0)dξ′,

which yields the mathematical operator

∂

∂ζ
=

1

n(ξ, 0)

∂

∂ξ
.

Then introducing this new mass variable ζ , from Eqs. (2.30) and (2.31), we obtain

the following simplified couple equations

∂2

∂τ 2

(
B

n

)
− ∂2B

∂ζ2
=

∂2

∂ζ2

[
D
∂2B

∂τ 2
+ ν

∂B

∂τ

]
, (2.35)

∂2

∂τ 2

(
1

n

)
= −1

2

∂2B2

∂ζ2
. (2.36)

These equations (2.35) and (2.36) are complicated nonlinear equations and it is

difficult to find an exact analytical solution with its full nonlinearity. Therefore,

in the next subsection, we will investigate the finite amplitude nonlinear solutions

keeping up to third order nonlinear term.

2.4.1 Weak amplitude nonlinear wave

To study the dynamics of the finite amplitude nonlinear Alfvén wave, we write

n = 1 + ñ and B = b̃ with | ñ |, | b̃ |< 1.
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Now substituting and keeping up to second order term, from Eq. (2.35), we obtain

∂2b̃

∂τ 2
− ∂2b̃

∂ζ2
= D

∂2

∂τ 2

(
∂2b̃

∂ζ2

)
+ ν

∂

∂τ

(
∂2b̃

∂ζ2

)
− ∂2

∂τ 2

(
b̃

ñ

)
. (2.37)

The LHS of the above equation represents linear Alfvén wave whereas the RHS

implicates that the wave is modified by dispersion dissipation and nonlinearity.

Therefore this equation shows the wave steepening by nonlinearity, wave spread-

ing by dispersion and amplitude modulation by dissipation. These three physical

phenomena can lead to the well know evolution equation for finite amplitude Alfvén

Wave.

Moreover, the small amplitude nonlinear wave equations are derived by as-

suming that the equilibrium density is homogeneous i.e. n(ξ, 0) = 1, therefore

ζ = ξ [≡ x − ∫
v(ξ, τ ′)dτ ′]. Also in this weak amplitude limit ξ(ζ) ≡ x and τ ≡ t

(actually in this case, ξ(ζ) and τ are no longer remain Lagrangian variables but

become equivalent to x and t). Therefore, we rewrite the above equation (2.37) in

the following form:(
∂

∂t
− ∂

∂x

)(
∂

∂t
+

∂

∂x

)
b̃ = D

∂2

∂t2

(
∂2b̃

∂x2

)
+ ν

∂

∂t

(
∂2b̃

∂x2

)
− ∂2

∂t2
(Ṽ b̃). (2.38)

Also in absence of dissipation and for negligible dispersion (D � 1), the linear

equation (2.31) can be expressed as:(
∂

∂t
− ∂

∂x

)(
∂

∂t
+

∂

∂x

)
b̃ = 0. (2.39)

For the Alfvén wave propagating in the positive x direction only, from the above

relation, we get

∂

∂t
= − ∂

∂x
,

and this approximation yields (from Eq. (2.36))

Ṽ ≈ − b̃
2

2
.
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Then substituting all these in Eq. (2.38) and integrating the transformed equation

once with the boundary condition at x→ ∞, b̃ → 0, we obtain

∂b̃

∂t
+

[
1 +

3

4
b2
]
∂b̃

∂x
+
D

2

∂3b̃

∂x3
=
ν

2

∂2b̃

∂x2
. (2.40)

Finally, a further transformation of coordinates

x̂ = x− t and t̂ = t,

renders the following usual form of modified Korteweg-de Vries Burgers (mKdVB)

equation with b̃ ≡ φ

∂φ

∂t̂
+

3

4
φ2∂φ

∂x̂
+
D

2

∂3φ

∂x̂3
=
ν

2

∂2φ

∂x̂2
. (2.41)

For a collisionless plasma ν = 0 the above equation can be reduced to modified

Korteweg-de Vries (mKdV) equation.

It is to be noted that the nonlinear equation (2.41) under investigation can also

be obtained by the well known reductive perturbation technique. Interestingly,

here keeping only up to second order terms of the dynamical variable, we obtain

the same equation from arbitrary nonlinear equation formulated in Lagrangian

variables.

2.4.2 Moving-frame nonlinear analysis

In this section, we have presented an exact solution of the Eq. (2.41) in a frame

moving with the phase velocity of the wave. We have hoped that this will improve

our understanding on the behavior of the nonlinear system [Eq. (2.41)]. To inves-

tigate the nonlinear solution, we have transformed Eq. (2.41) to the moving frame

χ =Mt̂− x̂, whereM is the Mach number (normalized phase velocity). Then inte-

grating the transformed equation once subject to the boundary conditions φ → 0,
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all derivatives → 0 as χ→ ∞, and we have finally obtained the following nonlinear

ordinary differential equation:

D
d2φ

dχ2 +
φ3

2
− 2Mφ+ ν

dφ

dχ
= 0. (2.42)

Then we have recast this nonlinear equation (2.42) in the following two simulta-

neous equations:

dφ

dχ
= ψ,

dψ

dχ
= − ν

D
ψ +

φ

D

[
2M − φ2

2

]
. (2.43)

In the φ−ψ plane, this dynamical system has the following two physically possible

equilibrium (stationary) points

(0, 0) and
(
φ∗ ≡ 2

√
M, 0

)
.

To investigate the nature of these two stationary points, we have considered the

two cases of interest: collisionless and collisional.

In collisionless case, we have neglected the electron-ion collision (ν = 0) in the

Eq. (2.42) [i.e. in Eq. (2.43)] and calculate the variational matrix of the system

(2.43) at these two stationary points. These matrices are as follows:

J(0,0) =

[
0 1

2M
D

0

]
, J(φ∗,0) =

[
0 1

−4M
D

0

]
. (2.44)

The corresponding pair of eigen values are determined from the following charac-

teristic (quadratic) equations

λ2 − 2M

D
= 0 and Λ2 +

4M

D
= 0. (2.45)

These two characteristic equations determine the pair of eigen values as ±√2M/D

(real and distinct) and ± i 2
√
M/D (purely imaginary), respectively. This implies

that the stationary point (0, 0) is a saddle point and the stationary point (φ∗, 0) is a
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center. In case of saddle point (Left panel of Fig 2.1 shows that a small perturbation

in the neighborhood of this point forms a homoclinic orbit i.e. separetrix in the

φ − ψ phase-space which is the signature of the soliton solution), the equation

(2.41) (with ν = 0) is analytically solvable and the analytical solution gives the

following single soliton solution

φ(x, t) = 2
√
2M sech

[√
2M

D
χ

]
. (2.46)

This shows that the width of the soliton (∝ √
D) depends on the electron inertia

induced dispersion. Moreover, the numerical solution of the equation (2.41) with

ν = 0 are also provided in Sec. V.

Next, we have considered the collisional case and calculate the variational ma-

trix of the system (2.43) at these two stationary points. These matrices are as

follows:

J(0,0) =

[
0 1

2M
D

− ν
D

]
, J(φ∗,0) =

[
0 1

−4M
D

− ν
D

]
. (2.47)

The corresponding pair of eigen values are determined from the following charac-

teristic (quadratic) equations

λ2 +
( ν
D

)
λ− 2M

D
= 0,

Λ2 +
( ν
D

)
Λ +

4M

D
= 0. (2.48)

These two characteristic equations determine the following eigen values for the

stationary points (0, 0) and (φ∗, 0), respectively,

λ(0,0) =
1

2D

[
−ν ±

√
ν2 + 8DM

]
, (2.49)

and

Λ(φ∗,0) =
1

2D

[
−ν ±

√
ν2 − 16DM

]
. (2.50)
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The eigen values (2.49) corresponding to the stationary point (0, 0) are real and

distinct which indicate that the stationary point (0, 0) is a saddle point. The

eigen values (2.50) corresponding to the stationary point (φ∗, 0) are either pair of

complex conjugate with negative real part or real (and distinct) with negative sign

according as

ν ≶ 4
√
DM. (2.51)

Thus the stationary point (φ∗, 0) is either stable focus or stable node. In this

collisional case, right panel of Fig 2.1 shows that a small perturbation in the vicinity

of the point (0, 0) forms a heteroclinic orbit between this point and the point (φ∗, 0)

which is the signature of the shocklike structures. However, in this collisional case

the equation (2.41) is not exactly analytically solvable as its Hamiltonian is not

conserved. Therefore to get the insight of the solutions, we have numerically

simulated this equation (2.41) and the results are shown graphically in Sec. V.
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Figure 2.1: (color online) Phase-space trajectories in the φ − ψ plane of the dy-
namical system. The left figure (blue solid curve) is drawn for M = 0.5 and the
right figure (black solid curve) is drawn for M = 4.
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2.5 Wave modulation for small wave number: non-

linear Schrödinger equation

In the previous section, we have not considered the effects of self-interaction of the

Alfvén wave (an intrinsic character of nonlinear wave propagation) that introduces

self-focusing effect (modulational instability) in the system. [134–136, 139] In

this section, we consider this effect for the nonlinear Alfvén wave in presence

of electron-ion collision induced dissipation in the long-wavelength limit. The

nonlinear Schrödinger equation (NLSE) with cubic nonlinearity clearly explain

such self-interaction effects. [139] Moreover, it is well-known from different physical

systems [140–142] that the classical KdV as well as the extended KdV equations

can easily be transformed to the NLSE in the long-wavelength limit. Therefore,

to study the modulational instability (self-interaction effect) of nonlinear Alfvén

waves in presence of dissipation, we derive the NLSE from the above nonlinear

mKdVB equation (2.41) in the long-wave length limit. To achieve this, we have

introduced the following stretched variable ξ and τ :

ξ̂ = ε
(
x̂− Ug t̂

)
and τ̂ = ε2 t̂, (2.52)

where Ug is the group velocity of the wave and ε is a small parameter that char-

acterizes the strength of nonlinearity. This transformation separates the system

into a slowly varying part associated with the amplitude of the wave and a rapidly

varying part, which is the phase of the wave. The operators ∂/∂x̂ and ∂/∂t̂ then

take the forms

∂

∂x̂
→ ∂

∂x̂
+ ε

∂

∂ξ̂
,
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and

∂

∂t̂
→ ∂

∂t̂
− εUg

∂

∂ξ̂
+ ε2

∂

∂τ̂
,

to account for the slow variations of wave amplitude. The wave amplitude φ is

expanded in powers of ε in the following way:

φ(x̂, t̂) =
∞∑
j=1

εj
∞∑

l=−∞
φ
(j)
l (ξ̂, τ̂) exp

[
i(kx̂− ωt̂)l

]
(2.53)

with the reality condition φ
(j)
−l = (φ

(j)
l )∗. Also to incorporate the weak collisional

effects and for consistent perturbation, we have considered the following scaling:

ν ∼ O
(
ε2
)
. (2.54)

Now employing (2.52)-(2.54) in the equation (2.41), in the lowest order with l =

±1, we have obtained the dispersion relation,

ω = −D
2
k3. (2.55)

The second order terms with l = ±1 gives the following compatibility condition:

Ug = −3

2
Dk2 ≡ dω

dk
. (2.56)

Finally, we substitute the above derived equations into third order (n = 3) equa-

tions and obtain the following damped nonlinear Schrödinger equation (NLSE) for

φ
(1)
1 [≡ φ]:

i
∂φ

∂τ̂
+ P

∂2φ

∂ξ̂2
+Q|φ|2φ+ iγφ = 0. (2.57)

In this equation, the group dispersion coefficient

P = −3

2
Dk ≡ 1

2

d2ω(k)

dk2
(2.58)
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is related to the curvature of the dispersion relation ω(k) [Eq.(2.55)] which is always

negative for all wave number k. The coefficient of nonlinear term

Q = −3

4
k (2.59)

is related to the nonlinear frequency shift. The dissipative term

γ =
νk2

2
(2.60)

is related to the electron-ion collision.

2.5.1 Effect of electron-ion collision on modulational insta-
bility

Next, we have analyzed the stability of the above NLSE (2.57) for very low-

frequency Alfvén waves in presence of dissipation. In this NLSE [Eq.(2.59)], the

term −Q | φ |2 plays the role of a potential energy. The local maxima of this po-

tential energy acts as an effective potential well in the plasma. The high frequency

waves reflect from the regions of high density, and the amplitude-dependent pon-

deromotive force forms a low-density region (cavity). As a consequence the low-

frequency waves become trapped within these density depleted regions and the

wave energy will concentrate at the bottom of the well. The energy concentration

makes the well deeper by making this energy even larger. Thus the formation of

the cavity is an unstable physical process that occurs due to the energy localization

in the medium. This process is known as modulational instability. [139, 143–145]

Here, we have investigated this instability for nonlinear Alfvén waves in presence

of electron-ion collision.

For this purpose, we have assumed that in presence of collision, the amplitude
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evolution equation (2.59) possesses the following plane wave solution:

φ = φ0(τ̂) exp

(
−i
∫ τ̂

0

Δ(τ ′)dτ ′
)
, (2.61)

where, φ0(τ̂ ) and Δ(τ̂ ) are the amplitude of the pump carrier wave and the non-

linear frequency shift in presence of dissipation. Substituting this solution (2.61)

in the equation (2.57), we have obtained the following two equations:

dφ0

dτ̂
+ γφ0 = 0 ⇒ φ0(τ̂) = φ00 exp(−γτ̂ ) and

Δ(τ̂ ) = −Q|φ0(τ̂)|2 = −Q|φ00|2 exp(−2γτ̂ ), (2.62)

where φ00 is a real constant. Also note that φ0(τ̂) → 0 as τ̂ → ∞ which implies

that φ0 is bounded and stable. Therefore for stability analysis, we have considered

the perturbation about this stable solution in the following standard procedure:

φ =
[
φ0(τ̂) + φ̃(ξ̂, τ̂ )

]
exp

(
−i
∫ τ̂

0

Δ(τ ′)dτ ′
)
, (2.63)

where φ̃
(
| φ̃ |� φ0

)
is the perturbed amplitude of the modulated wave. Then

substituting this equation (2.63) in the equation (2.57), we have obtained the

following linearized two coupled equations:

∂φ̃I
∂τ̂

= P
∂2φ̃R

∂ξ̂2
+ 2Q|φ0|2φ̃R − γφ̃I

and
∂φ̃R
∂τ̂

= −P ∂
2φ̃I

∂ξ̂2
− γφ̃R. (2.64)

Here φ̃ = φ̃R + iφ̃I , φR(I) is the real (imaginary) part of φ.

Finally, the space-time dependence of the perturbation of the form φ̃ ∼ exp (iϑ),

where ϑ
(
= k̃ξ̂ − ∫ τ̂

0
ω̃(τ́)dτ́

)
is the modulated phase with k̃(� k) and ω̃(� ω)

are the wave number and modulation frequency, respectively, yields the following

dispersion relation:

(ω̃ + iγ)2 = P 2k̃4 − 2PQ | φ0 |2 k̃2. (2.65)
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This shows that the electron-ion collision provides the usual damping. Also, the

system is stable for PQ < 0. However, there is a possibility of the instability if

PQ > 0 (both P and Q are of same sign: here both P and Q are negative for all

k̃ [Eqs. (2.58) and (2.59)]). Thus the instability occurs if

k̃2 < k̃2cr =

(
2Q

P

)
| φ0 |2=

(
1

D

)
| φ00 |2 exp(−2γτ̂ ), (2.66)

provided with this values of k̃ the following inequality must holds:

γ <

√√√√P 2k̃4

(
k̃2cr
k̃2

− 1

)
. (2.67)

This determines the maximum time τmax to observe instability

τmax =
1

2γ
ln

(
2PQk̃2 | φ00 |2
γ2 + P 2k̃4

)
=

(
1

νk2

)
ln

(
18Dk̃2 | φ00 |2
k2ν2 + 18D2k̃4

)
. (2.68)

Thus, the instability growth will cease for τ̂ ≥ τmax. Now by setting ω̃ = iΓ, the

dispersion relation for instability growth rate becomes

(Γ + γ)2 = 2PQ | φ0 |2 k̃2 − P 2k̃4. (2.69)

The maximum growth rate is found by taking the derivative of the Eq. (2.69) with

respect to k̃2, and setting this to zero, we have

k̃2max =

(
Q

P

)
| φ0 |2=

(
1

2D

)
| φ00 |2 exp (−2γτ̂) , (2.70)

which is just half of the k̃cr value. With this value of k̃2max, we can find the

maximum growth rate

Γmax =| Q || φ0 |2 −γ. (2.71)

Therefore in presence of electron-ion collision, the nonlinear Alfvén waves are mod-

ulationally unstable when

| φ0 |2>= 2 νk

3
.
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2.5.2 Approximate analytical solution: Weakly dissipative

envelope (bright) soliton

In the above damped NLSE [Eq. (2.57)], the group dispersion coefficient P [Eq.

(2.58)] and the nonlinear coefficient Q [Eq. (2.59)] are all negative for all values

of the wave number k. Thus, to find the envelope (bright) soliton of the damped

NLSE [Eq. (2.57)], we have recast the equation in the following normal form:

i
∂φ

∂τ̄
− 1

2

∂2φ

∂ξ̄2
− | φ |2 φ+ iγ̄φ = 0, (2.72)

where τ̄ =| Q | τ̂ , ξ̄ = ξ̂
√| Q | /2 | P | and γ̄ = γ/ | Q |. This equation exhibits

bright or envelope soliton. This equation (2.72) is solved numerically and the

solutions are shown graphically in Fig. (2.5). However, here we have solved this

equation analytically.

In absence of dissipation (ν = 0 =⇒ γ̄ = 0), we have the usual NLSE which is

an exactly integrable Hamiltonian system, possesses infinite number of conserva-

tion. In this case let us assume a solution of the form φ(ξ̄, τ̄) = ρ(ξ̄, τ̄) exp
[
iϕ(ξ̄, τ̄ )

]
and then solve the ordinary differential equations for ϕ and ρ subject to the bound-

ary condition ρ → 0 as ξ̄ → ±∞. We have finally obtained the following single

envelope (bright) soliton which in terms of actual parameters reads as:

φ(ξ̂, τ̂) = a sech

[
a

2
√
D

(
ξ̂ +

3

2
k
√
Dκτ̂

)]

exp

[
i

2
√
D

(
κξ̂ − 3k

4

√
D
(
a2 − κ2

)
τ̂

)]
, (2.73)

where a and κ are two soliton parameters in which a is the amplitude of the

soliton. This shows that the disturbances resemble with the soliton shape with

a exponential factor making oscillation between a maxima and a minima. The

resultant structure is the envelope excitation of nonlinear Alfvén wave.
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In case of weak dissipation (here it is indeed weak as ν ∼ O(ε2)), we can solve

the above damped NLSE [Eq. (2.57)] perturbatively by taking ε(φ) as a small

perturbed quantity. To apply this perturbation, we have considered the general

solution of the perturbed soliton is of the following form: [146]

φ(ξ̄, τ̄) = a(τ̄ )sech
[
a(τ̄ )

(
ξ̄ + b(τ̄)

)]
exp

[
iξ̄κ(τ̄ )− iσ(τ̄ )

]
, (2.74)

where a, b, σ and κ are the soliton parameters. Finally, applying the conserva-

tion laws for the NLSE (conserved integral relations, [146]) we have obtained the

following bright soliton (envelope soliton) in presence of dissipation (electron-ion

collision), which in terms of actual variable reads as:

φ(ξ̂, τ̂) = a0 exp (−2γτ̂ ) sech

[
a0 exp (−2γτ̂ )

1

2
√
D

(
ξ̂ +

3k

2

√
Dκ0τ̂

)]

exp

{
i

2
√
D

[
κ0ξ̂ +

3k

4

√
D

(
κ20τ̂ + a20

(
exp (−4γτ̂ )− 1

4γ

))]}
, (2.75)

where a0 and κ0 are the initial values of a and κ respectively. In the limit γ → 0,

we recover the previous result (2.73) (with a0 = a and κ0 = κ). It is clear that as

time elapses the amplitude of the bright (envelope) soliton decreases exponentially

with decay rate ∼ 2γ. The numerical solution in Fig. (2.5) also shows similar

nature. Thus the electron-ion collisions have damping effect on the bright soliton

structure of nonlinear Alfvén waves in electron-ion plasma.

2.6 Numerical simulation

In this section, we have numerically simulated both the nonlinear equations (2.41)

and (2.57) with the help of the MATHEMATICA.
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2.6.1 Numerical solutions of modified Korteweg-de Vries-

Burgers equation

To simulate the equation (2.41) numerically, first we have solved the dynamical

system (2.43) in absence of collision ν = 0 by the Runge-Kutta-Fehlberg (RKF)

method by taking the stationary point (0, 0) as the initial condition with D =

0.1. The solutions are shown graphically in Fig. 2.2. This figure shows that

a small perturbation around the equilibrium point (0, 0) (saddle point) develops

into a soliton as expected from the analytical solution (2.46). The comparative

study between the figures (left and right) demonstrate that single soliton structure

observed for low Mach number (M = 0.5). In case of high Mach number (M = 3)

single soliton disintegrate into multi-soliton structures with higher amplitude.
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Figure 2.2: (color online) Numerical solution of the dynamical system (2.43) in
absence of dissipation (ν = 0) with D = 0.1. Formation of single soliton for φ
(dimensionless magnetic field fluctuations) in the traveling wave frame χ. The left
figure (red solid curve) is drawn for M = 0.5 and the right figure (magenta solid
curve) is drawn for M = 3.

Next we have solved the dynamical system (2.43) by RKF method by taking

the stationary point (0, 0) as the initial condition with D = 0.1 and M = 4. Then

starting from a small perturbation around the initial condition (0, 0) and upon

numerical integration of the dynamical system, it is seen that the perturbation
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develops into a shock-like structure as illustrated in Fig. 2.3 with oscillating /

monotonic transition corresponding to the second stationary point (φ∗, 0). Actu-

ally, if one assumes that for χ = −∞(x̂ = ∞) the particle was located at φ = 0,

then at χ = ∞(x̂ = −∞), it appears at the point φ = φ∗ and the solution describes

a shocklike structure. The equilibrium point (0, 0) corresponds to the equilibrium

downstream state and the point (φ∗, 0) corresponds to the upstream state. In

case of weak dissipation (ν = 0.1), the dispersion dominates over dissipation and

therefore the transition occur with an oscillating behavior that forms dispersive

(oscillatory) shock structure as illustrated in the left figure of Fig. 2.3. On the

other hand for strong dissipation (ν = 1), the dissipation dominates over dis-

persion and therefore the transition occur with a monotonic behavior that forms

monotonic shock structure as illustrated in the right figure of Fig. 2.3. Thus
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Figure 2.3: (color online) Numerical solution of the dynamical system (2.43) in
presence of dissipation (ν �= 0) with M = 4. Formation of shock-like structure for
φ in the traveling wave frame χ. The left figure (red solid curve) shows oscillatory
shock structure for weak dissipation (ν = 0.1). The right figure (magenta solid
curve) shows monotonic shock structure for strong dissipation (ν = 1).

according to the condition (2.51), the stable focus always corresponds to the os-

cillatory nature, whereas the stable node corresponds to the monotonic nature of

the solution. In the both cases the observed shock is compressive in nature. The
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shock strength (related to the extreme upstream and downstream values) is given

by [φ(+∞)− φ(−∞) =]φ∗ = 2
√
M .

Finally we have solved the dynamical system (2.43) by the RKF method with

the stationary point (φ∗, 0) as the initial condition with M = 4. The simulation

results are shown graphically in Fig. 2.4. This figure illustrated that a small

perturbation around this stationary point develops into breather structures.
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Figure 2.4: (color online) Breather solution of the dimensionless dynamical sys-
tem (2.43) with M = 4 and (φ∗, 0) as the initial condition. The left figure (red
solid curve) shows breather structure without dissipation, whereas, the right figure
(magenta solid curve) shows the same with dissipation (ν = 0.1).

A breather is a nonlinear wave in which energy concentrates in a localized and

oscillatory manner. It is a localized periodic solutions of a nonlinear system. A

breather is described as a oscillatory solution (wave-packet) about a stationary

point whose envelope and oscillatory part move with different velocities. [147]

We can see from the simulation that indeed the solutions represented in Fig. 2.4

resemble the situation of a breather.
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2.6.2 Numerical solutions of damped nonlinear Schrödinger

equation

Here we have numerically simulated the nonlinear equation (2.72) using MATHE-

MATICA based finite difference scheme. For the time-dependent numerical solu-

tion, we have used the envelope (bright) soliton solution as the initial waveform:

φ(ξ̄, 0) = a sech (aξ̄) exp(iξ̄), ξ̄ ∈ [−L, L],

where a is the amplitude of the initial waveform and L is approximately the system

size. The boundary condition is φ(−L, τ̄ ) = φ(L, τ̄ ). To obtain adequate results

through computation, we take L = 40 and a = 1. The time-dependent numerical

solutions are shown in Fig.2.5. These solutions reveal that the amplitude of the

envelope decreases (spatial width increases) with time τ̄ in presence of dissipation

(electron-ion collision). This confirms the weakly dissipative nature of the envelope

as obtained by the approximate analytical solution (2.75). The NLSE possesses
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Figure 2.5: (color online) Time-dependent numerical solution of the equation (2.72)
with γ̄ = 0.1 and initial amplitude a = 1.

another class of nonlinear solution known as rational solutions play a major role

in the theory of rogue waves. [148–150] The first-order rational solution of NLSE

is known as Peregrine Soliton [151] which is localized in both space and time.
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The solutions are the space-periodic breather [152] and the time-periodic breather

[153] type solutions. The Peregrine Solitons appear as a bright (i.e. a high peak

between two troughs) as well as dark or hole (i.e. an isolated deep trough between

two crests) Peregrine Soliton depending on the phase of the underlying carrier

wave. [151]

However, here we have considered only the formation of dissipative rouge wave,

possible breather solution and rouge wave holes. For this initial excitations of the

rouge wave in the simulation, based on the soliton solution on a continuous wave

background, we have considered the following Gaussian-type perturbation pulse as

the initial condition:

φ(ξ̄, 0) = φ00 + ε exp
(−σξ̄2) , ξ̄ ∈ [−L, L], (2.76)

where φ00 is the initial plane wave solution of NLSE (which is a non-negative

constant), ε is a weak modulation amplitude and σ represents the inverse of the

width of initial perturbation pulse. The time-dependent simulation results are

shown in Figs. 2.6 and 2.7. One can see from the left panel of the Fig. 2.6 that

in absence of dissipation (γ̄ = 0) at time τ̄ = 5, the maximum wave amplitude at

ξ̄ = 0

| φ(ξ̄ = 0, τ̄ = 5)− φ00 |max= 0.15

exceeds the modulated wave amplitude (ε = 0.05) by a factor of three, which is

the main characteristics of a bright Peregrine soliton (the localization of wave in

both space and time, where the carrier amplitude amplified by a factor of three).

[151]

Then in the simulation we have introduced the electron-ion collision induced

dissipative effects. The simulation result is shown graphically in the right panel of
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Figure 2.6: (color online) Time-dependent numerical simulation of the equation
(2.72) with Eq. (2.76) as the initial condition. The numerical values of the param-
eters are φ00 = 1, σ = 0.05 and ε = 0.05. The left figure is drawn for no dissipation,
whereas, the right figure is drawn in presence of dissipation with γ̄ = 0.05. In the
left figure, the solid (black) curve is the initial perturbation pulse and the dotted
curve (red) represents the typical profile of a bright Peregrine Soliton at τ̄ = 5.
The right figure represent the same in presence of dissipation.

the Fig. 2.6. One can see from this figure that the amplitude of the nonlinear wave

decreases in presence of dissipation, resulting dissipative rouge wave is formed.

Further, we have performed numerical simulations of the time evaluation of the

localized initial pulse given by Eq. (2.76) at time τ̄ = 8 (in absence of dissipation)

and τ̄ = 11 (in presence of dissipation). The results are summarized in Fig. 2.7

which reveals the characteristic behavior of the localized breathing soliton. The

left panel of this Fig. 2.7 demonstrate that the maximum amplitude of the breather

is eight times of the initial modulation wave amplitude in absence of dissipation.

We can see from the right panel of this Fig. 2.7 that the dissipation present in

the system lowers the amplitude of the continuous wave background as well as the

nonlinear wave as mentioned in Eq. 2.62. Thus the observed breathers are indeed

giant breathers and the collision introduces the usual damping.

Then in order to excite hole Peregrine soliton, we have performed numerical

simulations taking ε = −0.05 in the initial perturbation pulse given by Eq. 2.76.



62

Τ � 8

�40 �20 0 20 40

0.4

0.6

0.8

1.0

1.2

1.4

Ξ

�Φ
�

Τ � 11

�40 �20 0 20 40
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ξ

�Φ
�

Figure 2.7: (color online) The typical profiles of Breathers. The left figure (red
dashed) represents the Breather profile in absence of dissipation at time τ̄ = 8.
The right figure (blue solid) represents the same profile in presence of dissipation
with γ̄ = 0.05 at time τ̄ = 11. The initial condition is same as in Fig. 2.6.

The simulation results are shown in Fig. 2.8. One can see from the left panel of

the Fig. 2.8 that in absence of dissipation (ν̄ = 0) at time τ̄ = 5, the maximum

amplitude of hole at ξ̄ = 0

| φ(ξ̄ = 0, τ̄ = 5)− φ00 |max= 0.12

exceeds twice the modulated wave amplitude (|ε| = 0.05), which satisfies the char-

acteristics of a hole Peregrine Soliton (the localized soliton in both space and time,

where the amplification factor of the carrier amplitude is greater than twice the

modulated wave amplitude). [154] In presence of dissipation rouge wave holes with

smaller amplitude are observed as shown in the right panel of the Fig 2.8.

2.7 Summary

The results can be summarized as follows. We have investigated the dynamics

of the linearly polarized parallel propagating Alfvén wave. The electron iner-

tia together with ion inertia introduces the dispersive character of the parallel-

propagating Alfvén wave in the electron-ion plasma. This finding is unlike the
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Figure 2.8: (color online) Time-dependent numerical simulation of the equation
(2.72) with Eq. (2.76) as the initial condition. The numerical values of the pa-
rameters are φ00 = 1, σ = 0.05 and ε = −0.05. The left figure is drawn for
no dissipation, whereas, the right figure is drawn in presence of dissipation with
γ̄ = 0.05. In the left figure, the solid (black) curve is the initial perturbation pulse
and the dotted curve (red) represents the typical profile of a dark or hole Peregrine
Soliton at τ̄ = 5. The right figure represent the same in presence of dissipation.

case investigated earlier where the electron mass is neglected [77] which turns out

to be the source of dispersion. It has been found that, the nonlinearity and dis-

persion are balanced to form soliton like structures. We have also shown that in

quasi-linear limit, in absence of collision, the Alfvén wave dynamics satisfy mKdV

equation which also has similar solutions. And the dynamics of the weakly non-

linear shear Alfvén wave is found to be governed by a mKdV-Burgers equation.

The Burgers term which is responsible for the generation of shock arises due to the

electron-ion collision. This nonlinear equation is analyzed by means of analytic

and computation. The numerical results predict the formation of both oscillatory

(dispersive) shock for weak dissipation and monotonic shock for strong dissipa-

tion. Also, numerical solution predicts the breather-like structures of nonlinear

shear Alfvén wave.

We have also investigated the wave modulation characteristics of the nonlinear

shear Alfvén wave in the long wavelength limit. Our investigation shows that
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there is a possibility of the trapping of Alfvén wave in a hole created by the wave

itself in the medium and the dynamics of this modulated wave is governed by a

damped NLSE in which the damping is proportional to the electron-ion collision.

The analytical and numerical simulation reveal that this modulated wave exhibits

weakly dissipative bright (envelope) solitons. Numerical simulation of the damped

NLSE also predict the formation of localized (both space and time: short-lived)

large amplitude nonlinear structures known as rogue waves or freak waves, giant

breathers and rouge wave holes.

The magnetic field plays a decisive role in the dynamics of inter stellar molec-

ular clouds and the star formation process. [155] This process belongs to the

MHD regime, characterized by highly supersonic, strongly magnetized compress-

ible medium, where self-gravity overpowers the thermal pressure over a wide range

of scales. [155] The supersonic motion that observed in molecular clouds might

arise from the Alfvén type MHD waves which have B⊥/B0 = v⊥/vA, perpendicular

to the mean magnetic field B0. Numerical simulation predict that the magnetic

field significantly reduces the rate of star formation i.e. delays the process. In the

present investigation the observed shocks are compressive in nature with sufficient

magnetic field enhancement in the upstream side of the shock. Thus one can pre-

dict that generation of such strong magnetic field can be a potential mechanism

to restrict the collapse of molecular clouds due to self-gravity.

The magnetic filed energy grows with the passing of the shock and the satu-

ration occurs at the upstream side (here the saturation value is 2
√
M). After the

saturation, the energy stored in the magnetic field is transferred back to the plasma

particles, leading to the strong plasma heating and the high energy particles. This
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high energy particles are responsible for the particle acceleration mechanism. Thus

the result of the present investigation could be useful for understanding the ob-

served physical phenomena like particle energization [65, 156] and plasma heating.

[68]

Moreover the short-lived large-amplitude magnetic structures are commonly

observed in space plasmas. In the upstream of the quasi-parallel bow shock such

short-lived large amplitude pulsations with strong amplitude magnetic field en-

hancement has been observed. [157–159] Thus the observation of Alfvénic rouge

waves, giant breathers and rouge wave holes in the present work could be a viable

processes to observe short-lived large amplitude excitations in the space plasma.



Chapter 3

Effect of electron inertia on
circularly polarized Alfvén wave
propagation in an electron-ion
plasma

In this chapter, we have extended similar investigation in case of the circularly

polarized Alfvén wave propagation in absence of collision. Linear analysis of the

governing equations manifests dispersion relation of the circularly polarized Alfvén

waves where the electron inertia is found to act as a source of dispersion. In

the finite amplitude limit, the nonlinear Alfvén wave is found to be described by

the Derivative Nonlinear Schrödinger equation (DNLSE) modified by third order

dispersion arising due to finite electron inertia. It has been found that, this electron

inertia modified DNLSE is completely integrable and an analytical solution has been

demonstrated with vanishing boundary conditions.

66
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3.1 Introduction

As described in the previous chapter, the coupling between the elliptically polarized

magnetic field components introduces dispersive effect and the dynamics of the

finite amplitude nonlinear Alfvén wave (propagating parallel to the magnetic field)

is governed by the well known Derivative Nonlinear Schrödinger equation (DNLSE)

[77, 119]. The DNLSE is valid in regions with low beta plasma and magnetic

fluctuations having lower order compared to the ambient magnetic field. So near

to the Sun, the DNLSE describes the nonlinear evolution of finite-amplitude Alfvén

waves very well and also describes Alfvénic soliton, Alfvén wave turbulence etc.

[77, 119, 160] efficiently.

In the previous chapter, the weakly nonlinear and dispersive Alfvén wave prop-

agation has been investigated considering one component magnetic field and finite

electron inertia. It has been found that one component magnetic field is sufficient

to describe the essential features of nonlinear and dispersive Alfvén wave where

the electron inertia is found to act as a source of dispersion. In this chapter, we

have extended the study considering two component magnetic field and investi-

gated some other important aspects of Alfvén wave. In this case, interestingly

the electron inertia is also shown to serve as a dispersive effect causing amplitude

decay of perturbed magnetic field. In the quasi-linear limit, we have shown that

the dynamics of the weakly nonlinear Alfvén wave is governed by a new type of

modified DNLSE with third order dispersion term arising due to the consideration

of finite electron inertia. We have also investigated modulational instability which

determines the conditions of the existence of solitons. This nonlinear evolution

equation is found to be completely integrable. [161] An analytical solution of this
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novel equation has also been derived.

3.2 Basic equations

We have adopted the same model as discussed in the previous chapter. But in this

study we have neglected electron-ion collisional effect. The equation of motion of

fluid corresponding to electrons and ions in absence of collisions can written as:

mene

(
∂

∂t
+Ve · ∇

)
Ve = −neqe

(
E+

1

c
Ve ×B

)
, (3.1)

mini

(
∂

∂t
+Vi · ∇

)
Vi = niqi

(
E+

1

c
Vi ×B

)
, (3.2)

the continuity equation for both species are

∂ne
∂t

+∇ · (neVe) = 0,
∂ni
∂t

+∇ · (niVi) = 0, (3.3)

and the following Maxwell’s equations are

∇× E = −1

c

∂B

∂t
, (3.4)

∇×B =
4πJ

c
= −4πe

c
(neVe − niVi) , (3.5)

where summation convention is used. All symbols have their usual meaning. Since

Alfvén wave is a low-frequency mode (ω � ωpe, electron plasma frequency), so

we can neglect the displacement current compared to particle current in Eq. (3.5)

for our study. This low frequency assumption is also consistent with the quasi-

neutrality condition ni ≈ ne ≡ n. To describe the Alfvén wave we assume that all

the dynamical variables are functions of x and t. On the basis of the above facts,

from the continuity equations for both species Eqs. (3.3), we have obtained

∂

∂x
[n(Vix − Vex)] = 0 ⇒ Vix = Vex = v (say), (3.6)
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where we have assumed that Vix(0, t) = Vex(0, t) = 0.

In Alfvén wave dynamics the perturbed magnetic fields By and Bz arise from

the spatial variation of polarization current and directed along the y-direction and

z-direction respectively. In component form, Eq. (3.5) can be written as

∂Bz

∂x
= −4πen

c
(Viy − Vey), (3.7)

∂By

∂x
=

4πen

c
(Viz − Vez). (3.8)

The above Eqs. (3.7) and (3.8) imply that the conduction currents flow along y and

z, the directions perpendicular to the plasma motion. Since the ‘quasi-neutrality’

condition rule out the x component of electric field, so the total wave electric field

becomes E(x, t) = Ey(x, t)êy + Ez(x, t)êz . The velocity filed is Vj = Vjx(x, t)êx +

Vjy(x, t)êy + Vjz(x, t)êz, with Vjx = v(x, t) for both the species, where j ≡ e, i.

Since, the compressional Alfvén wave propagates parallel to the ambient magnetic

field directed along x, i.e., B0êx, the magnetic field arising from the fluctuations

of electric field will be directed along both the y and z direction. Therefore, the

total magnetic field can be written as B = B0êx +By(x, t)êy +Bz(x, t)êz. In view

of these above mentioned conditions, from the continuity equations (3.3) for both

species, we have (
∂

∂t
+ v

∂

∂x

)
n = −n∂v

∂x
. (3.9)

There is convective operator in the Eqs. (3.1), (3.2) and (3.9). This nonlinear

operator can be simplified by introducing the Lagrangian variables (ξ, τ) through

the following transformation:

ξ = x−
∫ τ

0

v(ξ, τ ′)dτ ′ , τ = t. (3.10)
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With this transformation the derivative operators are transformed accordingly sim-

ilar to discussed in the Sec. 1.3 of the first chapter. Using these transformations,

the continuity equation (3.9) is simplified and expressed as: n(ξ, τ)/n(ξ, 0) =

∂ξ/∂x. Expressing momentum Eqs. for both species (3.1) and (3.2) in terms of

these newly defined variables we have obtained the total momentum equation of

the fluid

∂

∂τ
(meVe +miVi) =

e

c
(Vi −Ve)×B. (3.11)

Expressing the total magnetic field as B = êxB0 + êyBy(x, t) + êzBz(x, t), the x, y

and z components of Eq. (3.11) become

∂v

∂τ
=

e

(me +mi)c
[Bz(Viy − Vey)− By(Viz − Vez)] , (3.12)

∂

∂τ
(meVey +miViy) =

eB0

c
(Viz − Vez), (3.13)

∂

∂τ
(meVez +miViz) = −eB0

c
(Viy − Vey), (3.14)

respectively. Here the magnetic field associated with the wave has two components

êyBy(x, t) and êzBz(x, t) which confirm the current propagation along the z and y

direction respectively. These facts can be further verified from the Eqs. (3.7) and

Eq. (3.8) which are given by

Viy − Vey = − c

4πen(ξ, 0)

∂Bz

∂ξ
, (3.15)

and

Viz − Vez =
c

4πen(ξ, 0)

∂By

∂ξ
, (3.16)

respectively. Finally combining these two Eqs. (3.15) and (3.16) we have in the

Lagrangian variable space,

(Vi −Ve)⊥ =
c

4πen(ξ, 0)

(
êx × ∂B⊥

∂ξ

)
. (3.17)
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Substituting Viy − Vey and Viz − Vez in Eqs. (3.12), (3.13) and (3.14) we have

obtained

∂v

∂τ
= − 1

8πn(ξ, 0)(me +mi)

∂|B⊥|2
∂ξ

, (3.18)

∂

∂τ
(meVey +miViy) =

B0

4πn(ξ, 0)

∂By

∂ξ
, (3.19)

and

∂

∂τ
(meVez +miViz) =

B0

4πn(ξ, 0)

∂Bz

∂ξ
, (3.20)

respectively. Further combining Eqs. (3.19) and (3.20) we have

∂

∂τ
(meVe⊥ +miVi⊥) =

B0

4πn(ξ, 0)

∂B⊥
∂ξ

. (3.21)

The evolution equation for magnetic field can further be expressed by taking curl

in the electron momentum equation (3.1), and using Eq. (3.4) we have

∂B⊥
∂τ

+B⊥
n

n(ξ, 0)

∂v

∂ξ
−B0

n

n(ξ, 0)

∂Ve⊥
∂ξ

=
mec

e

n

n(ξ, 0)

[
êx × ∂

∂ξ

(
∂Ve⊥
∂τ

)]
.(3.22)

The continuity equation in terms of Lagrangian variables becomes

∂

∂τ

(
1

n

)
=

1

n(ξ, 0)

∂v

∂ξ
. (3.23)

Further, combining Eqs. (3.18) and (3.23) we have

∂2

∂τ 2

(
1

n

)
= − 1

8πn(ξ, 0)(me +mi)

∂

∂ξ

(
1

n(ξ, 0)

∂|B⊥|2
∂ξ

)
. (3.24)

Next, replacing Uiy and Uiz in Eqs. (3.15) and (3.16) respectively with the help of

Eqs. (3.19) and (3.20), and further adding we have obtained

∂Ve⊥
∂τ

=
B0

4πn(ξ, 0)(me +mi)

∂B⊥
∂ξ

− mic

4πen(ξ, 0)(me +mi)

(
êx × ∂2B⊥

∂ξ∂τ

)
. (3.25)
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Now Eqs. (3.17), (3.22), (3.23) and (3.25) can be combined together to give the

following equation in a more compact form as:

∂2

∂τ 2

(
B⊥
n

)
− B2

0

4πn(ξ, 0)(me +mi)

∂

∂ξ

[
1

n(ξ, 0)

∂B⊥
∂ξ

]
=

− B0c(mi −me)

4πen(ξ, 0)(me +mi)

∂

∂ξ

[
1

n(ξ, 0)

(
êx × ∂2B⊥

∂τ∂ξ

)]
+

c2memi

4πe2n(ξ, 0)(me +mi)

∂

∂ξ

[
1

n(ξ, 0)

∂3B⊥
∂τ 2∂ξ

]
.

(3.26)

Next, we have analyzed the nonlinear system (Eqs. (3.24) and (3.26)) in a simpli-

fied form adopting the Lagrangian mass variable technique. [132, 138] For this, let

us define the following new Lagrangian mass variable ζ instead of ξ

ζ =

∫ ξ

n(ξ′, 0)dξ′,

which yields the mathematical operator

∂

∂ζ
=

1

n(ξ, 0)

∂

∂ξ
.

Then introducing this new mass variable ζ in Eqs. (3.24) and (3.26), we have

obtained the following simplified couple equations

∂2

∂τ 2

(
1

n

)
= −V

2
A

2

∂2

∂ζ2
|B⊥|2, (3.27)

∂2

∂τ 2

(
B⊥
n

)
− V 2

A

∂2B⊥
∂ζ2

= −VAλ ∂
2

∂ζ2

(
êx × ∂B⊥

∂τ

)
+ δ2

∂2

∂ζ2

(
∂2B⊥
∂τ 2

)
, (3.28)

where B⊥ ≡ B⊥/B0, n ≡ n/n0, VA = B0/
√

4πn0(me +mi) is the Alfvén ve-

locity, λ = (c2(mi −me)
2/[4πn0e

2(mi +me)])
1/2

is the ion inertial length and

δ = (c2memi/[4πn0e
2(me +mi)])

1/2
is the skin depth arising due to electron’s

finite mass. These two couple of partial differential Eqs. (3.27) and (3.28) are the
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governing equations of the nonlinear, dispersive circularly polarized Alfvén wave

in electron-ion plasma. These equations are very complicated to solve exactly

with their full nonlinearity. Therefore, in Sec. 3.4, we will investigate the finite

amplitude nonlinear solutions keeping up to third order nonlinear term.

3.3 Linear analysis

Before going to detailed nonlinear analysis we have implemented the perturbative

scheme to identify the basic linear modes involved in this study. So, we linearize

Eq. (3.28) by considering the perturbation entities with value much smaller than

unity such as n = 1 + ñ and B⊥ = B̃⊥, and obtain the following linear equation:

(
∂2

∂t2
− V 2

A

∂2

∂x2

)
B̃⊥ = −VAλêx × ∂3B̃⊥

∂t∂x2
+ δ2

∂4B̃⊥
∂t2∂x2

. (3.29)

Then assuming the solution in the form of Fourier mode f̃ ∼ fk exp[−i(ωt − kx)]

(where ω and k are the oscillation frequency and wave number), we have obtained

the following dispersion relation in dimensionless form:

(
1 + δ2k2

)2
ω4 − (

2 + 2δ2k2 + λ2k2
)
k2ω2 + k4 = 0, (3.30)

which describes the left-hand (ω−) and right-hand (ω+) circularly polarized waves

ω2
± = k2

1 + (λ2 + 2δ2)k
2

2

(1 + δ2k2)2
×

⎡
⎢⎣1±

√√√√1−
(

(1 + δ2k2)

1 + (λ2 + 2δ2)k
2

2

)2
⎤
⎥⎦ , (3.31)

where ω, k, λ and δ are made dimensionless using ω → ωL/VA, k → kL, λ→ λ/L

and δ → δ/L respectively. Here L is the typical system length and VA is the Alfvén

velocity. Here, the wave dynamics is regulated by magnetic pressure, ion inertia

and electron inertia. The dispersion relation clearly shows that the waves are

dispersive in nature. Here we have focused to study the dynamics of the right-hand
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Figure 3.1: (color online) Comparison of the dispersion curve for right-hand po-
larized wave in absence and presence of electron inertia with λ = 42.8. The left
figure (blue solid curve) is drawn in absence of electron inertia (δ = 0) and the
right figure (red solid curve) is drawn in presence of inertia (δ = 1).

polarized wave. Fig. 3.1 presents dispersion relations of right-hand polarized wave

in absence and presence of electron inertia. It shows that in absence of electron

inertia the dispersive curve asymptotically increases whereas the dispersive effect

of electron inertia arrests the wave propagation and saturation occurs.

3.4 Weak amplitude nonlinear dynamics

Having complete perception of the linear modes involved in our study, we continue

to study the nonlinear regime of nonlinear Alfvén wave under weak amplitude

limit. For dependent variables proposing

n = 1 + ñ and B⊥ = B̃⊥ with ñ, | B⊥ |< 1,

keeping up to second order term and substituting, from Eq. (3.28), we have ob-

tained(
∂2

∂τ 2
− V 2

A

∂2

∂ζ2

)
B̃⊥ = −VAλ

(
êx × ∂3B̃⊥

∂τ∂ζ2

)
+ δ2

∂4B̃⊥
∂τ 2∂ζ2

+
∂2

∂τ 2
(B̃⊥ñ). (3.32)

The above equation represents both left-hand and right-hand polarized Alfvén

waves modified by the dispersions (arising due to both ion inertia and electron
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inertia effect) and nonlinearity.

Moreover the small amplitude nonlinear wave equations are derived by assuming

that the equilibrium density is homogeneous i.e. n(ξ, 0) = 1, therefore ζ = ξ [≡
x− ∫

v(ξ, τ ′)dτ ′]. Also in this weak amplitude limit ξ(ζ) ≡ x and τ ≡ t (actually

in this case, ξ(ζ) and τ are no longer remain Lagrangian variables but become

equivalent to x and t). Therefore, we rewrite the above Eq. (3.32) in the following

form:(
∂

∂t
− VA

∂

∂x

)(
∂

∂t
+ VA

∂

∂x

)
B̃⊥ − ∂2

∂x2
(B̃⊥ñ)− VAλ

(
êx × ∂3B̃⊥

∂t∂x2

)
+ δ2

∂4B̃⊥
∂t2∂x2

.

(3.33)

For the Alfvén wave propagating in the positive x direction only, from the above

relation, we get

∂

∂t
= −VA ∂

∂x
,

and this approximation yields (from Eq. (3.24))

ñ ≈ |B̃⊥|2
2

.

Then substituting all these in Eq. (3.33) and integrating the transformed equation

once with the boundary condition at x→ ∞, |B̃⊥| → 0, we obtain(
∂

∂t
+ VA

∂

∂x

)
B̃⊥ +

VA
4

∂

∂x
(B̃⊥|B̃⊥|2) = −VAλ

2

(
êx × ∂2B̃⊥

∂x2

)
− δ2

2

∂3B̃⊥
∂x3

.(3.34)

Finally, a further transformation of coordinates

x̂ = x− VAt and t̂ = t,

renders the following equation:

∂B̃⊥
∂t̂

+
VA
4

∂

∂x̂
(B̃⊥|B̃⊥|2) = −VAλ

2

(
êx × ∂2B̃⊥

∂x̂2

)
− δ2

2

∂3B̃⊥
∂x̂3

. (3.35)
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Then normalizing the Eq. 3.35 by t̄→ t̂/t0, x̄→ x̂/L and B̃⊥ → αb⊥, we arrive at

the Vector Derivative Nonlinear Schrödinger Equation (VDNLS) with third order

dispersion

∂b⊥
∂t̄

+
∂

∂x̄
(b⊥|b⊥|2) +

(
êx × ∂2b⊥

∂x̄2

)
+
∂3b⊥
∂x̄3

= 0, (3.36)

where,

t0 =
2c(memi)

2

eB0(mi −me)3
, L =

cmemi

(mi −me)
√

4πn0e2(me +mi)
,

and α = (mi −me)

√
2

memi
.

Finally we can write the Eq. (3.36) as the complex Derivative Nonlinear Schrödinger

Equation(DNLSE) for the right-hand polarized Alfvén wave

∂φ

∂t̄
+

∂

∂x̄

(|φ|2φ)− i
∂2φ

∂x̄2
+
∂3φ

∂x̄3
= 0, (3.37)

where φ = by − ibz . It is very important to note that, the Nonlinear Schrödinger

Equation governs only nonlinear modulation of the complex amplitude of carrier

wave in contrast to this the DNLSE describes the whole nonlinear modulation of the

complex field. In our study the modified DNLSE, with the third order dispersion

term arising due to electron inertia effect, describes the nonlinear modulation of

the Alfvén wave. For the sake of more generalized equation a parameter ε can be

set to the Eq. (3.37) as

∂φ

∂t̄
+

∂

∂x̄

(|φ|2φ)− i
∂2φ

∂x̄2
+ ε

∂3φ

∂x̄3
= 0, (3.38)

where ε can either be 1 or 0. If we neglect the second order dispersive term, the

modified DNLSE (3.37) is reduced to the following well known Complex modified

Korteweg-de Vries (CMKdV) equation [162]

∂φ

∂t̄
+

∂

∂x̄

(|φ|2φ)+ ε
∂3φ

∂x̄3
= 0. (3.39)
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On the other hand, if we put ε = 0, we recover the following well known DNLSE

∂φ

∂t̄
+

∂

∂x̄

(|φ|2φ)− i
∂2φ

∂x̄2
= 0. (3.40)

Here we must emphasize that the DNLSE was derived in a fluid system (water

waves) and its solution, soliton, is applicable in nearly all branches of physics. Thus

the derived modified DNLSE (3.37) should be applicable mostly to all physical

systems and is a very generalized equation from any point of view.

3.5 Modulational instability

In this section, following the way in references [125, 126, 139, 143–145, 163] we

have analyzed the modulational characteristics of the right-hand polarized Alfvén

wave. For this purpose, we have performd a linear stability analysis of the plane

wave solution for Eq. (3.37). For the simplification of notation removing the bar

signs the Eq. (3.37) for the right-hand polarized wave becomes

∂φ

∂t
+

∂

∂x

(|φ|2φ)− i
∂2φ

∂x2
+
∂3φ

∂x3
= 0. (3.41)

It is easy to find out that Eq. (3.41) possesses the plane-wave solution with constant

amplitude as

φ = φ0 exp[−i(ax+ γt)], (3.42)

where φ0 and a are real parameters, and γ = a(a+ a2 − φ2
0). Therefor for stability

analysis, we consider the perturbation about this stable solution in the following

standard procedure,

φ = [φ0 + φ̃(x, t)] exp[−i(ax + γt)], (3.43)

where φ̃(x, t)(|φ̃| � φ0) is the perturbed amplitude of the modulated wave. then

substitution of this Eq. (3.43) into the Eq. (3.41) yields the following linearized
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two coupled equations:

∂φ̃R
∂t

+
∂3φ̃R
∂x3

+
(
3φ2

0 − 3a2 − 2a
) ∂φ̃R
∂x

+ (3a + 1)
∂2φ̃I
∂x2

= 0

and
∂φ̃I
∂t

+
∂3φ̃I
∂x3

+
(
φ2
0 − 3a2 − 2a

) ∂φ̃I
∂x

− (3a+ 1)
∂2φ̃R
∂x2

− 2aφ2
0φ̃R = 0, (3.44)

where φ̃ = φ̃R + iφ̃I , φR(I) is the real (imaginary) part of φ.

Finally, the space-time dependence of the perturbation of the form φ̃ ∼ exp (iϑ),

where ϑ (= Λx− Ωt) is the modulated phase with (Λ � a) and Ω̃(� γ) are the

wave number and modulation frequency, respectively, yields the following disper-

sion relation:

Ω = Λ(2φ2
0 − 3a2 − 2a− Λ2)± Λ

√
(3a+ 1)2Λ2 − 2a(3a+ 1)φ2

0 + φ4
0, (3.45)

from which we can say that dispersion relation depends on the values of the plane

wave amplitude φ0 together with the wave number Λ. When (3a+1)2Λ2−2a(3a+

1)φ2
0+ φ4

0 < 0, the frequency becomes complex at any value of the wave number Λ

and the disturbance will grow(decay) into bright(dark) solitons depending on the

positive(negative) complex part of the frequency.

3.6 Analytical solution

In this section, we have tried to solve the Eq. (3.37) analytically. As is well known

the DNLSE is completely integrable and preserves infinite number of conserved

quantities. [164, 165] Like the DNLSE, the newly developed modified DNLSE is

also found to be completely integrable and preserves infinite number of conserved

quantities. According to the conservation laws the first three of those conserved
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quantities are

Energy(E) =

∫ +∞

−∞
|φ|2dx, (3.46)

Momentum(M) =

∫ +∞

−∞

[
i (φφ∗

x − φ∗φx)− |φ|4] dx, (3.47)

Hamiltonian(H) =

∫ +∞

−∞

[
|φx|2 + i

4
|φ|2 (φ∗φx − φφ∗

x)

]
dx.

(3.48)

So it is possible to find the analytical solution of the derived modified DNLSE

(3.41).

Therefore, we have solved the Eq. (3.41) using moving frame analysis. To find

out nonlinear solution, we transform Eq. (3.41) into the moving frame ξ = x− ut,

where u is the phase velocity of the wave. Then the first integral of the transform

equation leads to the following equation

d2φ

dξ2
+ (|φ|2 − u)φ− i

dφ

dξ
= 0, (3.49)

subject to the boundary conditions φ→ 0 all derivatives → 0 as ξ −→ ±∞.

Assuming a stationary solution of the form

φ(ξ) =
√
ψ(ξ)eiθ(ξ), (3.50)

with real functions ψ and θ, and substituting in Eq. (3.49) we have obtained a

pair of coupled equations for ψ and θ

d2ψ

dξ2
− 1

2ψ

(
dψ

dξ

)2

− 2ψ

(
dθ

dξ

)2

+ 2ψ
dθ

dξ
+ 2(ψ − u)ψ = 0,

(3.51)

2
dψ

dξ

dθ

dξ
+ 2ψ

d2θ

dξ2
− dψ

dξ
= 0 ⇒ d

dξ

[
2ψ
dθ

dξ
− ψ

]
= 0.

(3.52)
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Integrating once using the boundary condition φ→ 0 as ξ → ±∞ we have

θ(ξ) = θ0 +
1

2
ξ. (3.53)

With Eq. (3.53) we can rewrite the Eq. (3.51) as the second order differential

equation in ψ

d2ψ

dξ2
− 1

2ψ

(
dψ

dξ

)2

+

(
1

2
− 2u

)
ψ + 2ψ2 = 0. (3.54)

Multiplying the above Eq. (3.54) by 2
ψ

dψ
dξ

we have

d

dξ

[
1

ψ

(
dψ

dξ

)2
]
=

d

dξ

[
(4u− 1)ψ − 2ψ2

]
. (3.55)

Integrating the Eq. (3.55) using the boundary conditions φ → 0 as ξ → ±∞ we

can arrive at

∫
dψ

ψ
√
a2 − 2ψ

= ξ + c1, (3.56)

where we have defined a2 = 4u− 1, and considered c1 = 0 which is consistent with

the boundary conditions.

Finally integrating the Eq. (3.56) we get

ψ =
a2

2
sech 2

(
aξ

2

)
. (3.57)

Therefore, the final solution is given by

φ =

√(
2u− 1

2

)
sech

(√
u− 1

4
(x− ut)

)
exp

[
i

(
θ0 +

1

2
(x− ut)

)]
. (3.58)

The soliton solution is shown graphically in Fig. 3.2 for wave phase velocity u = 1.

It is found that the dispersive effect caused by the electron inertia together with

ion inertia can balance the nonlinear steepening of waves leading to the formation

of a soliton.
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Figure 3.2: (color online) Formation of single soliton in moving frame ξ with u = 1

3.7 Summary

In this chapter, we have investigated the effect of electron inertia on the circularly

polarized Alfvén wave propagation in the frame work of Lagrangian two fluid model

in a cold electron-ion plasma. The right-hand circularly polarized wave dynamics

has been inspected in detail. The complete linear analysis indicates the saturation

of right-hand polarized wave in presence of the dispersive effect of electron inertia.

We have also shown that the dynamics of the weakly nonlinear Alfvén wave is

governed by modified DNLSE with third order dispersion term. The equation re-

flects that the third order dispersion arises solely due to the consideration of finite

electron inertia. This nonlinear equation has been analyzed by means of analytical

calculation and soliton type solutions are obtained. These results could be useful

in interpreting solitary Alfvén wave propagation, reported by satellites in different

parts of the auroral ionosphere and the interplanetary plasma.



Chapter 4

Vortex dynamics in a strongly
coupled dusty plasma in presence
of dust-neutral collisional drag

The formation of vortex, their evolution and interactions have been studied in

presence of dust-neutral collisional drag in a strongly coupled dusty plasma by nu-

merically integrating the generalized hydrodynamic equation (GH) after transform-

ing into fourier space using a doubly periodic pseudo-spectral simulation method.

Specifically, the nonlinear dynamical response of this strongly coupled system in

presence of dust-neutral drag has been presented. In this chapter, it has been shown

that the interplay between the nonlinear elastic stress and the dust-neutral drag re-

sults in the generation of non-propagating monopole vortex for some duration before

it starts to propagate like transverse shear wave. It has also been found that the in-

teraction between two unshielded monopole vortices having both same (co-rotating)

and opposite (counter rotating) rotations result in the formation of two propagating

dipole vortices of equal and unequal strength respectively.

82
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4.1 Introduction

As discussed in the first chapter, the dusty plasma has been found to reflect visco-

elastic property in the intermediate coupling regime of 1 < Γ < 1 (where, Γ is the

ratio of the inter-particle potential energy to the kinetic energy) and its dynamics

has been provided by the generalized hydrodynamic model (GH) that incorporates

the Maxwell’s relaxation parameter τm to mimic the viscoelastic property. [89]

The dusty plasma can often be found in the strongly coupled regime when the

coupling parameter Γ becomes greater than or equal to 1, i.e, when the inter-

particle potential energy becomes comparable or exceeds the thermal kinetic energy

of the particles. This strong coupling enables the system to support transverse

shear wave along with the other longitudinal modes, which has been reported

theoretically and later verified experimentally. [30–32] In nonlinear regime, it

has been shown theoretically that this strongly coupled dusty plasma system can

support vortex like structures exploiting the convective nonlinearity of this system

which usually comes from the nonlinear fluid advection in two dimensional flows.

[6, 33–35] Recently molecular dynamic simulation has shown formation of tripole

and dipole vortices from the perturbed shielded Gaussian vortex. [104] In such

system the effect of elasticity on vortices makes them quite different from normal

Newtonian fluids.

In dusty plasma, the dust particles are subjected to many forces such as ion-

drag force and thermophoretic forces in addition to dust-dust coupling effect. [6]

In our study, we have excluded such forces except the dust-dust coupling which

provides a simple picture of dusty plasma system. In laboratory dusty plasma, the

condensation of ‘liquid’ dusty plasma into ‘solid’ can be achieved only by increasing
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the neutral gas pressure. Hence, it is very important to take into account the

neutral gas pressure in making the dusty plasma model.

In the above mentioned references on dust vortex flows, [33–35, 104] the effect

of gas friction i.e the dust-neutral collisional drag (i.e. friction force exerted on

the dust particles due to presence of the neutral gas in complex plasma, known

as Epstein drag [6, 166]) has not been considered yet. In a recent article, the dy-

namical change of the phenomena of vortex merging has been studied numerically

by varying the strong coupling parameter ranging from hydrodynamic to strongly

coupled limit in the strongly coupled dusty plasma in the framework of the GH

model. [167] In this study, they did not consider the dust-neutral collisional drag in

their model. Therefore, it has utmost importance to study the effect of neutral gas

friction in the context of the dust vortex dynamics. The present chapter is devoted

to study the effect of both elastic stress arising due to the strong coupling effect

and dust-neutral collisional drag on the vortex dynamics in the strongly coupled

dusty plasma.

In this chapter, we have studied an important phenomenon of vortex formation

and their evolution and interactions in a strongly coupled dusty plasma in the

framework of the GH model modified by dust-neutral collisional drag. Specifically,

we have observed how the interplay between the nonlinear elastic stress and the

dust-neutral collisional drag determines the dynamics of the vortices in such a

strongly coupled system. All the studies have been done by numerically integrating

the GH equation after transforming into fourier space using a de-alised doubly

periodic pseudo-spectral simulation method.
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4.2 Governing equations

The dynamics of the strongly coupled dusty plasma medium has been described

using generalized hydrodynamic set of equations (Eqs. (1.1) to (1.5), as discussed

in section 1.2.3.1 of the first chapter). To study the phenomena associated with the

transverse shear wave, we should consider the modified dust momentum equation

(Eq. (1.7) of Sec. 1.2.3.2 of first chapter) for the incompressible dust fluid as:[
1 + τm

(
∂

∂t
+ v · ∇

)] [
ρd0

(
∂

∂t
+ v · ∇

)
v +∇p

]
= η∇2v,

(4.1)

where qd is the charge on the individual dust particle, v is the dust fluid velocity,

η is the shear dynamic viscosity coefficient, ρd0 is the equilibrium constant dust

density and p is the total pressure of the system.

In this present work, the dust fluid dynamics is studied in a two dimensional

horizontal layer of dust particles where all the spatial variations are restricted on

2-D x − y plane and z is the axis of symmetry which means a two dimensional

slab coordinate system is used here. Here, we are interested to study the vortex

dynamics in presence of dust-neutral collisional drag. So the dust momentum

equation in presence of dust-neutral drag can be modified as:[
1 + τm

(
∂

∂t
+ v · ∇

)][(
∂

∂t
+ v · ∇

)
v + νv

]
=

η

ρd0
∇2v, (4.2)

where ν is the frequency of the dust-neutral collisional drag. Here, we have taken

cold dust approximation, i.e, random thermal motion of dust grain is ignored.

Hence, the pressure term is not taken into consideration in Eq. (4.2).

The Eq. (4.2) can be written in normalized form as:[
1 + τ̂m

(
∂

∂t̂
+ v̂ · ∇̂

)][(
∂

∂t̂
+ v̂ · ∇̂

)
v̂ + ν̂v̂

]
=

1

Re
∇̂2v̂, (4.3)
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where normalized parameters are η̂ = 1/Re (Reynolds number Re = ULρd0
η

) ,

τ̂m = τmU/L, ν̂ = νL/U and v̂ = v
U
. We have normalized the length, velocity and

time by a typical length scale L , a typical velocity scale U and L/U respectively.

Then removing the hat symbols and simplifying the normalized form of the dust

momentum Eq. (4.3) we have

∂2v

∂t2
+

1

τm

[
∂v

∂t
+ v · ∇v + νv

]
+
∂

∂t
(v · ∇v) + (v · ∇)

∂v

∂t︸ ︷︷ ︸+
(v · ∇) (v · ∇)v + ν

(
∂

∂t
+ v · ∇

)
v =

1

Re τm
∇2v. (4.4)

Further simplifying the second term of the curly bracketed term in Eq. (4.4) by

using the identity ∇· (AB) = A ·∇B+(∇·A)B and the incompressible condition

(∇ · v) as:

(v · ∇)
∂v

∂t
= ∇ ·

(
v
∂v

∂t

)

=
1

2
∇ ·

[
∂

∂t
(vv)

]
=

1

2

∂

∂t
[∇ · (vv)]

=
1

2

∂

∂t
(v · ∇v) (4.5)

and substituting this term (4.5) in Eq. (4.4) we obtain

∂2v

∂t2
+

1

τm

[
∂v

∂t
+ v · ∇v + νv

]
+

3

2

∂

∂t
(v · ∇v) +

(v · ∇) (v · ∇)v + ν

(
∂

∂t
+ v · ∇

)
v =

1

Re τm
∇2v. (4.6)

Taking curl of the Eq. (4.7), we get the vorticity equation of dust fluid as:

∂

∂t

(
∂ω

∂t
+

3

2
[ψ, ω] +

ω

τm
+ νω

)
+

(
1

τm
+ ν

)
[ψ, ω] +

ν

τm
ω +

∂

∂x

[
ψ,

[
ψ,
∂ψ

∂x

]]

+
∂

∂y

[
ψ,

[
ψ,
∂ψ

∂y

]]
=

1

Re τm
∇2ω,

(4.7)
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where ψ (v ≡ êz×∇ψ) is the velocity stream function, ω ≡ êz ·(∇×v) ≡ ω = ∇2ψ

is the vorticity and [φ, χ] ≡ êz ×∇φ · ∇χ ≡ ∂xφ∂yχ− ∂yφ∂xχ is Poissons bracket

notation; where ∂j is the partial derivative with respect to the variable j. The

vortex equation is of 2nd order in time and has been broken into two the following

two 1st order time evolution equations for the sake of numerical integration as:

∂ω

∂t
+

3

2
[ψ, ω] +

(
1

τm
+ ν

)
ω = φ, (4.8)

∂φ

∂t
+

(
1

τm
+ ν

)
[ψ, ω] +

ν

τm
ω +

∂

∂x

[
ψ,

[
ψ,
∂ψ

∂x

]]
+

∂

∂y

[
ψ,

[
ψ,
∂ψ

∂y

]]
=

1

Re τm
∇2ω. (4.9)

For small amplitude perturbation, the nonlinear convective term is not effective

in first order and for large τm, the equation leads to a linear shear wave equation.

In 2d plane, it manifests the propagation of rotational structures of fluid particles

like generation of surface waves on lake when struck with stones.

4.3 Numerical investigation

For the study of evolution of vortices in strongly coupled plasmas, the Eqs. (4.8)

and (4.9) are numerically integrated using a doubly periodic de-aliased pseudo-

spectral code, discussed in the Sec. 1.4 of the first chapter. The dynamic variables

φ, ω and ψ are expanded in Fourier modes as:

ω(x, y) =

Nx/2∑
kx=−Nx/2

Ny/2∑
ky=−Ny/2

ωkx,ky exp

(
2πikxx

lx

)
exp

(
2πikyy

ly

)
.

where lx and ly are the size of the computational domain and Nx and Ny are

number of spatial grid points. The time integration is done by Runge-Kutta-gill

time integration method. In our simulations, Courant Friedrichs Lewy condition
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(CFL condition) is well satisfied. [168] For our simulation, parameters used are

of spatial grid points Nx = Ny = 512, initial vorticity ω0 = 50, step in time

δt = 0.0001, step in space δx = 2π
Nx

, CFL = ω0δt
δx

value is 0.407, which is quite

smaller than 1. Aliasing error is minimized using standard 2
3
de-aliasing method

(zero padding method). [116] The results of the spectral code simulation of the

article [36] are reproduced and matched accurately using our spectral code. The

Eq. (4.7) leads to the vortex equation (3 in the ref. [36]) in the limit τm = 0

and ν = 0. Also, our code accurately represent the results in linear regime of

shear wave propagation as shown in the article. [167] In the linear regime of the

equation (4.7), shear wave propagates with phase velocity csh =
√

1/Reτm. So, if

we start with small amplitude monopole vortex (Gaussian shaped), the structure

will propagate. The linear wave equation looks like

∂2ω

∂t2
= c2sh∇2ω (4.10)

Multiplying both side of equation (4.10) with (∂ω/∂t) and after integrating over

2d space, we get one invariant quantity

2I =

∫ (
ω2
t + c2sh∇ω · ∇ω) dxdy.

Here and throughout the study, we have used that the vorticity ω should be dif-

ferentiable in the whole domain and that it vanishes at the boundary. In fourier

space the invariant quantity can be written as:

2Ik =
∑
k

ωt(�k)ω
∗
t (
�k) + c2shk

2ω(�k)ω∗(�k).

where ∂ω
∂t

is denoted by ωt for simplicity and * denotes complex conjugate. This

invariant quantity has been checked to be constant for all time with higher accu-

racy. Now, we multiply both side of equations (4.8) and (4.9) with ω and then
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integrate over 2d space to get∫
ωωtdxdy +

3

2

∫
ω [ψ, ω] dxdy +

(
1

τm
+ ν

)∫
ω2dxdy =

∫
φωdxdy, (4.11)

∫
ωφtdxdy +

(
1

τm
+ ν

)∫
ω [ψ, ω] dxdy +

ν

τm

∫
ω2dxdy +∫

ω
∂

∂x

[
ψ,

[
ψ,
∂ψ

∂x

]]
dxdy +

∫
ω
∂

∂y

[
ψ,

[
ψ,
∂ψ

∂y

]]
dxdy

=
1

Re τm

∫
∇ω · ∇ωdxdy. (4.12)

The consistency of the balance of right and left hand sides of each equations has

been checked after few time intervals. The accuracy of difference between left and

right hand sides are found to be 10−16 to 10−18.

4.4 Dynamical evolution of vortices

A typical fluid flow contains different types of vortices. In our present study,

we have considered initial Gaussian shaped monopole vortex given by ω(x, y) =

ω0 exp(−((x − xc)
2 + (y − yc)

2)/a2c); where ωo is the total circulation (positive

sign indicates clockwise rotational direction) and ac is the vortex core radius. The

numerical investigation has been carried out for ac = 0.7 and xc = yc = 0.

After benchmerking our code with known results of the published article, [36]

we have studied evolution and interaction of vortices starting from initial Gaussian

shaped monopole vortex as mentioned above. We have mainly studied the role of

higher order nonlinearities in the GH equation and hence the effect of nonlinear

elastic stress on dust vortex motion. For the initial Gaussian shaped monopole

vortex of higher amplitude (5.8), the propagation is shown in Fig. 4.1 in different

times. At first, the initial monopole vortex starts to shrink and steepen due to

the nonlinear effect that leads to a small area vortex with higher vorticity. As
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time goes on, the nonlinear effect leads to a singular solution but the dust-neutral

drag (ν) provides the necessary damping for which a steady vortex structure is

formed between time t = 1.2 to 2.8. After time t = 2.8, the nonlinear collision

term (ν[ψ, ω]) becomes sufficiently strong so that collisions overpower the effect of

nonlinearity and finally the strength of vorticity starts to diminish. The continu-

ous damping effect with background media decreases the amplitude and when it

comes to the linear regime, the structure propagates like a linear shear wave. Such

singular behavior of nonlinear terms in GH equation has been analytically studied

and reported recently for longitudinal waves in strong coupling limit. [169]
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Figure 4.1: (Color online) Evolution of large amplitude (amplitude 5.8 in normal-
ized unit) Gaussian formed monopole vortex in time with length scale L = 1mm
and velocity scale U = 1mm/s so that the simulation box would be 20mm×20mm.
Velocity scale is chosen keeping in mind the typical shear wave velocity in mm/s.
Mode numbers are taken as 512×512 and collision frequency ν = 0.0225, Re = 0.1
and τm = 20. Here, vorticity is plotted as 3D surface on x− y plane.

For low amplitude, nonlinear terms cannot be stronger than linear propagating

term and thus the initial structure expands like propagating shear wave. The

propagation of small amplitude vortex is shown in Fig. 4.2 where it is observed

that the nonlinear term is unable to resist the spreading of monopole vortex. The

amplitude of initial disturbance should be quite high so that nonlinearity can take

necessary role for generating non-propagating monopole vortex. Then we have

explained the results from kinetic energy and total squared vorticity (enstrophy)

point of view for rotating dust fluid. The kinetic energy of dust fluid is expressed

as:

E =
1

2

∫
|�v · �v|dxdy.

In k-space energy per unit area can be written as:

Ek =
1

2

∑
kx,ky

(k2x + k2y)ψ(kx, ky)ψ
∗(kx, ky).
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Figure 4.2: (Color online) Evolution of small amplitude (1.0 in normalized unit)
Gaussian formed monopole vortex in time. Others parameters remain same like
previous Fig. 4.1. Nonlinearity could not exceed the strength of linear term and
thus initial structure propagates with shear wave velocity.
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Figure 4.3: (Color online) Normalized enstrophy per unit area is plotted for com-
parison of linear and nonlinear case. Graph on left side represents nonlinear case
and the right one is for linear case.

The enstrophy of rotating dust fluid is expressed as:

Ω =
1

2

∫
ω2dxdy,

and in k-space enstrophy per unit area can be written as:

Ωk =
1

2

∑
kx,ky

ω(kx, ky)ω
∗(kx, ky).

Fig. 4.3 shows a comparison of enstrophy per unit area with time for both low and

high amplitude. For high amplitude (left graph), the balance between the non-

linearity and the dust-neutral collisional drag helps to get steady non-propagating

vortex between time approximately t = 0.8 to t = 3.0 and the enstrophy per unit

area shows almost constant value in this time regime. After time t = 3.0, the

nonlinear collision term (ν[ψ, ω]) becomes sufficiently strong so that the collision

overpowers the effect of nonlinearity and finally the strength of vorticity diminishes

with time. For low amplitude, the enstrophy per unit area decreases rapidly with

shear wave propagation. Fig. 4.4 shows variation of corresponding kinetic energy

per unit area with time. For nonlinear case (left graph), the kinetic energy per unit
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Figure 4.4: (Color online) Normalized energy per unit area is plotted for compar-
ison of linear and nonlinear case. Graph on left side represents nonlinear case and
the right one is for linear case.

area decreases linearly upto time t = 3.0, after that it decreases more rapidly. But

the enstrophy per unit area remains almost constant within this time duration.

These observations can be understood by noticing that for the nonlinear case, the

vorticity remains almost constant within the time duration, approximately t = 1.2

to 2.8, as shown in Fig. 4.1. As we know that enstrophy depends on vorticity, so it

also remains constant. Linear velocity depends on both angular velocity (angular

velocity is nothing but vorticity) and radial size of the vortex and from Fig. 4.1,

it is clear that the radial size of the vortex decreases with time which results in

the decrease of kinetic energy per unit area with time. For linear case, the kinetic

energy per unit area diminishes more rapidly which is similar to the enstrophy per

unit area graph at low amplitude.

In our second case, we have investigated interaction between two monopole

vortices for both cases of same and opposite direction of rotation. In both cases,

dipoles are formed and for higher strength vortices, these dipoles move away from

each other. The interaction between monopole vortices in dusty plasma has been
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recently reported in non collisional regime. [167] Like as the results of this article,

[167] we have not observed any merging of co-rotating vortices. But, in our spectral

simulation, we have first time reported dipole formation from interaction between

two monopole vortices. Fig. 4.5 shows formation of dipoles of unequal strength and

their propagation after interaction between two counter rotating monopole vortices.

The overall strength of the dipole vortices remain same upto time 2.2, and then

due to the damping effect of ν the dipole vortices start to decay. Hence the dipoles

start to move away from each other. In weakly coupled limit (τm = 0.1), when we

repeat the same run, no dipole formation occurs and the initial structure decays

due to the viscosity of the dust fluid as shown in Fig. 4.6. So, this phenomena

of dipole formation and its propagation solely depends on the strong coupling

property (elastic behavior) of dust fluid. In Fig. 4.7, the generation of dipole

vortices is shown from the interaction between two counter rotating monopole

vortices of low amplitude 16. Here, we have noticed that generated dipole vortices

are of small amplitude and thus they are not propagating but due to the nature

of shear wave at linear regime they start to expand and come to bigger size. Fig.

4.8 shows the formation and propagation of dipole vortices generated from the

interaction between two co-rotating monopole vortices. Unlike counter rotating

case, generated dipoles are of equal strength and they also propagate. Fig. 4.9

shows the interaction between two co-rotating vortices of smaller amplitude 16,

resulting two non-propagating dipole vortices of equal strength.
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Figure 4.5: (Color online) Formation and evolution of dipole vortices from two
counter rotating monopole Gaussian vortices in time. Mode numbers are taken
as 512 × 512 and initial amplitude 50 in normalized unit. Collision frequency
ν = 45.5, Re = 0.1 and τm = 20. The simulation box size is 20mm × 20mm but
here we have taken 10mm× 10mm for better resolution. Here, vorticity is plotted
as contour on x− y plane.
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Figure 4.6: (Color online) Formation and evolution of dipole vortices from two
counter rotating monopole Gaussian vortices in time. Mode numbers are taken
as 512 × 512 and initial amplitude 50 in normalized unit. Collision frequency
ν = 45.5, Re = 0.1 and τm = 0.1. The simulation box size is 20mm × 20mm but
here we have taken 10mm× 10mm for better resolution. Here, vorticity is plotted
as contour on x− y plane.

4.5 Summary

The formation, evolution and interactions of gaussian vortices for a strongly cou-

pled dusty plasma in the framework of GH model have been investigated in this

chapter. The results shown here are new compared to the existing results discussed

in the recent article [167] as the collisional effect of background neutrals is taken

into account. In elastic limit, viscosity does not provide dissipative effect and

hence, only dissipative role comes from dust-neutral collisional drag. Due to shear

wave propagation in elastic limit (large τm), small amplitude initial monopole

always propagates with shear wave velocity and thus non-propagating localized

monopole vortex is not formed. This is expected as it represents linear regime

which is nothing but a simple wave equation. However, the study with the large

amplitude vortex shows that, as time increases, nonlinear effect becomes important

and the higher order nonlinearity becomes responsible for steeping and shrinking
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Figure 4.7: (Color online) Formation and evolution of dipole vortices from two
counter rotating monopole Gaussian vortices in time. Mode numbers are taken
as 512 × 512 and initial amplitude 16 in normalized unit. Collision frequency
ν = 7.36, Re = 0.1 and τm = 20. The simulation box size is 20mm × 20mm but
here we have taken 10mm × 10mm for better resolution. Here, contour plot of
vorticity on x− y plane is shown.
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Figure 4.8: (Color online) Formation and evolution of dipole vortices from two co-
rotating monopole Gaussian vortices in time. Mode numbers are taken as 512×512
and initial amplitude 50 in normalized unit. Collision frequency ν = 47.5, Re = 0.1
and τm = 20. The simulation box size is 20mm × 20mm but here we have taken
10mm× 10mm for better resolution. Here, vorticity is plotted as contour on x− y
plane.
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Figure 4.9: (Color online) Formation and evolution of dipole vortices from two co-
rotating monopole Gaussian vortices in time. Mode numbers are taken as 512×512
and initial amplitude 16 in normalized unit. Collision frequency ν = 7.36, Re = 0.1
and τm = 20. The simulation box size is 20mm × 20mm but here we have taken
10mm×10mm for better resolution. Here, contour plot of vorticity on x−y plane
is shown.
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of initial profile and finally it goes to a singular solution. But, physically, the

presence of collision provides necessary and sufficient balance to generate localized

non-propagating (means not like linear case) monopole structure for some time du-

ration. After that the damping nature of collisions finally diminishes the structure.

Although recent investigation has shown continuous generation of shear wave even

in nonlinear stage, [167] but our simulated results have no such signature. The

balance between convective nonlinearity and dissipation is analogous to soliton like

structure formation of longitudinal perturbation. But, in case of soliton, the bal-

ance against steepening behavior of convective nonlinearity is provided by physical

dispersion. So, our prediction is that one can experimentally find non-propagating

monopole vortex varying the discharge power and neutral pressure.

Furthermore, we have studied interaction between two monopoles having both

co-rotating and counter rotating initial forms. In absence of collision, the recent

investigation [167] has shown the continuous emission of waves and no dipole forma-

tion has been reported. However, our studies show that dipolar vortices are formed

due to the interaction between both same (co-rotating) and opposite (counter rotat-

ing) vortices. For large amplitude the diplole vortices move away from each other

keeping their form nearly unchanged, whereas, for relatively smaller amplitude,

the strength of the dipole falls in the linear regime and then due to wave propa-

gation property, they expand into digger sizes. The result of the dipole formation

after interaction between two monopoles at the balanced condition of convective

nonlinearity and dust-neutral collisional drag has been first time observed in our

study. There are few recent experimental observations of monopolar, dipolar and

quadrupolar dust vortices in strongly coupled dusty plasma [99, 170]. It would
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also be interesting to study experimentally the interaction between two monopo-

lar dust vortices with different rotation profiles in different coupling regime. Our

numerical results on vortices may lead to explain future experimental observations

of interaction of dust vortices. This type of study of vortex evolution could be

helpful for both basic understanding of nonlinear shear wave phenomena and also

for the characterization of different parameters in strongly coupled dusty plasma

system.



Chapter 5

Stability analysis of an elliptical
vortex in a strongly coupled dusty
plasma in presence of
dust-neutral collisional drag

The stability of a long scale equilibrium vortex structure to short scale perturbations

has been studied in a strongly coupled dusty plasma in the framework of a gener-

alized hydrodynamic model (GH) modified by dust-neutral collisional drag. The

analysis has been carried out using a mathematical technique employed by Bayly.

The stability domain of the vortex for arbitrary values of ellipticity (ε) has been

obtained by performing an extensive numerical study of the final stability equation

in the standard Hill form. It has been found that the free energy associated with

the velocity shear of the vortex can drive secondary instabilities consisting of trans-

verse shear waves when the collision modified secondary wave frequency matches

with the mean rotation frequency of the vortex or one of its integer multiples.

104
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5.1 Introduction

The break up of vortex structures is usually associated with the onset of turbulence

in the medium and hence a knowledge of the stability properties of vortices is an

important requisite for gaining a better understanding of turbulence. A number

of past studies have addressed this problem and looked at the stability of vor-

tices in fluids [74] and in weakly coupled plasmas (where the potential energies

of the constituent particles � their kinetic energies). [171] As described in the

fourth chapter, nonlinear two dimensional vortex like structures can be generated

in strongly coupled regime (where the potential energy of the constituent particles

	 their kinetic energy) of the dusty plasma in the context of the transverse shear

wave. [33, 167, 172, 173] The transverse shear wave nonlinearly saturated into

vortex like structures exploiting the convective nonlinearity of the GH equation.

The present chapter is devoted to understand the stability features of vortices in

strongly coupled regime of dusty plasma. The motivation behind such investigation

came from the question of nonlinear saturation of low frequency instabilities as fol-

lows: generally the nonlinearity present in the system leads to an accumulation of

energy to the long scale vortex structures due to inverse cascade process and thus

prevent the attainment of a stationary state, therefore how does the nonlinear sat-

uration occur? In order to investigate the saturation mechanism, we have studied

the stability of long scale vortex structures to short scale secondary perturbations.

Specifically, we have considered a model of stationary vortex at equilibrium with

finite ellipticity (ε) at the core and studied its stability to secondary shear wave

perturbations.
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In this present study, the stability analysis has been carried out using a math-

ematical technique employed by Bayly [174] in the context of a fluid dynamics

problem. The final stability equation can be cast into the form of a Hill’s equa-

tion. An extensive numerical study of this equation has been carried out to obtain

the stability domain of the vortex for arbitrary values of ellipticity (ε). We have

also obtained estimates of the growth rate of the instability by using a multiple

time scale method.

5.2 Governing equations

For this study, we have considered the same model as the previous work and started

with the normalized form of the modified dust momentum equation (Eq. (4.3) of

the fourth chapter) given as:[
1 + τm

(
∂

∂t
+ v · ∇

)][(
∂

∂t
+ v · ∇

)
v + νv

]
=

η

ρd0
∇2v, (5.1)

here hat symbols are removed for simplicity. The primary concern of this chapter is

the investigation of the vortex stability. We have obtained the vorticity evolution

equation by taking the curl of Eq. (5.1) as:

∇×
[{

1 + τm

(
∂

∂t
+ v · ∇

)}{(
∂

∂t
+ v + ν · ∇

)
v

}]
=

η

ρd0
∇2(∇× v). (5.2)

The above equation is the vorticity equation in the GH system. Taking the z

component of the above equation we have[
1 + τm

(
∂

∂t
+ êz ×∇ψ · ∇

)](
∂

∂t
+ ν + êz ×∇ψ · ∇

)

∇2
⊥ψ + τm

{(
êz ×∇∂ψ

∂x
· ∇

)(
∂

∂t
+ êz ×∇ψ · ∇

)
∂ψ

∂x(
êz ×∇∂ψ

∂y
· ∇

)(
∂

∂t
+ êz ×∇ψ · ∇

)
∂ψ

∂y

}
= η∗∇2∇2

⊥ψ,

(5.3)
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where η∗ = η/ρd0. In the recent past it has been shown [30] that in the kinetic limit

ωτm 	 1 the above equation yields a propagating shear mode and subsequently

its linear and nonlinear properties have been further studied. Nonlinear vortex

like solutions have been reported both analytically [33] as well as in molecular

dynamics simulations. [173] These nonlinearly driven vortex like solutions display

an elliptically shaped core.

5.3 Equilibrium

We have taken such an elliptical core vortex as our basic equilibrium state and

study the excitation of secondary instabilities in a localized region around it. We

have approximated the two dimensional velocity potential as:

ψ0(x, y) =
Ω

2

(
x2

ε
+ εy2

)
,

where Ω is the constant vortex rotation frequency and ε is the ellipticity parameter

of the vortex. It may be mentioned that this form represents the simplest distortion

of the equilibrium around the o-point of a vortex where the higher order distortions

like x3, y3 terms [triangularity of the constant velocity potential surfaces ψ0(x, y)]

have been ignored. In this analysis we have also assumed that the secondary wave

scales to be much shorter than the equilibrium scale. Substituting ψ0(x, y) in the

equilibrium form of the vorticity Eq. (5.3) we have

νΩ

(
1

ε
+ ε

)
− τmΩ

3

(
1

ε
+ ε

)
= 0. (5.4)

This implies Ω =
√
ν/τm. From the above relation we can say that the vortex

rotation frequency Ω, depends on the collisional drag and also on the relaxation

parameter at the equilibrium condition.
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5.4 Stability analysis of two dimensional ellipti-

cal vortex

With the equilibrium discussed above we have studied the stability of the ellipti-

cal vortex to short scale secondary perturbations. As Eq. (5.3) is a single vari-

able equation it is easy to introduce the velocity potential perturbation ψ1(x, y, t)

around the equilibrium velocity potential ψ0. Now we may write the perturbation

equation around this 2-D vortex equilibrium from Eq. (5.3) as:

[
1 + τm

(
∂

∂t
+ êz ×∇ψ0 · ∇

)](
∂

∂t
+ ν + êz ×∇ψ0 · ∇

)
∇2

⊥ψ1

+τm

[(
êz ×∇∂ψ0

∂x
· ∇

)(
∂

∂t
+ êz ×∇ψ0 · ∇

)
∂ψ1

∂x

+

(
êz ×∇∂ψ0

∂x
· ∇

)
(êz ×∇ψ1 · ∇)

∂ψ0

∂x
+

(
êz ×∇∂ψ1

∂x
· ∇

)

(êz ×∇ψ0 · ∇)
∂ψ0

∂x
+

(
êz ×∇∂ψ0

∂y
· ∇

)(
∂

∂t
+ êz ×∇ψ0 · ∇

)
∂ψ1

∂y
+

(
êz ×∇∂ψ0

∂y
· ∇

)
(êz ×∇ψ1 · ∇)

∂ψ0

∂y

+

(
êz ×∇∂ψ1

∂y
· ∇

)
(êz ×∇ψ0 · ∇)

∂ψ0

∂y

]
= η∗∇2∇2

⊥ψ1

(5.5)

and then further simplifying the final equation can be written as:[
1 + τm

{
∂

∂t
+

(
Ωx

ε

∂

∂y
− Ωεy

∂

∂x

)}]{
∂

∂t
+ ν +

(
Ωx

ε

∂

∂y
− Ωεy

∂

∂x

)}
∇2

⊥ψ1

+
τmΩ

ε

∂

∂y

{
∂

∂t
+

(
Ωx

ε

∂

∂y
− Ωεy

∂

∂x

)}
∂ψ1

∂x
− τmΩ

2

ε2
∂2ψ1

∂y2
− τmΩ

2∂
2ψ1

∂x2

−τmΩε ∂
∂x

{
∂

∂t
+

(
Ωx

ε

∂

∂y
− Ωεy

∂

∂x

)}
∂ψ1

∂y
− τmΩ

2ε2
∂2ψ1

∂x2
− τmΩ

2∂
2ψ1

∂y2
= η∗∇2∇2

⊥ψ1.

(5.6)

We have used Bayly’s method [174] to solve the above equation. In this method

one eliminates the space dependent terms arising from the equilibrium flows by

assuming the wave vector to be an explicit function of time. Taking a perturbation
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of the type ψ1 ∼ φ(t) exp[ik(t) · r] (i.e. Fourier analyzing in space and not in

time and taking the time dependent wave vector k = k(t)), one can eliminate the

equilibrium flow terms by adjusting the explicit time dependence of k. Substituting

this ψ1 in Eq. (5.6) we have

[
1 + τm

{
d

dt
+ ik̇ · r+

(
Ωx

ε
iky − Ωεyikx

)}]
{
d

dt
+ ν + ˙ik · r+

(
Ωx

ε
iky − Ωεyikx

)}
(−k2⊥φ)

+
τmΩ

ε
(iky)

{
d

dt
+ ik̇ · r+

(
Ωx

ε
iky − Ωεyikx

)}
(ikxφ)

−τmΩ
2

ε2
(−k2yφ)− τmΩ

2(−k2xφ)− τmΩε(ikx){
d

dt
+ ik̇ · r+

(
Ωx

ε
iky − Ωεyikx

)}
(ikyφ)

−τmΩ2ε2(−k2xφ)− τmΩ
2(−k2yφ) = η∗k4⊥φ,

(5.7)

where k̇ implies derivative of k with respect to time. Equating x, y dependent and

the constant terms independently the above equation may then be replaced by

dkx
dt

+
Ω

ε
ky = 0,

dky
dt

− Ωεkx = 0, (5.8)

and

(
1 + τm

d

dt

)(
d

dt
+ ν

)
Φ +

τmΩ

ε
ky
d

dt

(
kx
k2⊥

Φ

)

−τmΩ
2

ε2

(
k2y
k2⊥

Φ

)
− νΦ− τmΩεkx

d

dt

(
ky
k2⊥

Φ

)

−τmΩ2ε2
(
k2x
k2⊥

Φ

)
= −η∗k2⊥Φ, (5.9)

where k2⊥φ = Φ. The solution for the kx, ky is given by

kx = k0 cos(Ωt + δ), ky = k0ε sin(Ωt + δ), (5.10)
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where k0, δ are constants and represent the wave vector and the initial phase re-

spectively.

We have first considered the case of τm = 0 (i.e. in the weakly coupled regime).

The above Eq. (5.9) can then be simplified as:

dΦ

dt
= −η∗k2⊥Φ, (5.11)

from which the solution is given by

Φ = Φ0 exp

[
−η∗

∫
k2⊥(t)dt

]
, (5.12)

where k2⊥ = (k20/2)[(1 + ε2) + (1 − ε2) cos 2Ωt]. This suggests a decay of the per-

turbations. This is readily understood as in the weakly coupled regime the system

no longer supports the transverse shear wave (due to a lack of strong correlation

between the dust particles) and hence we get the usual damping of the wave due

to viscosity in this limit. Therefore if there is any instability in the system then

one can say that it arises only due to the finite τm. Now combining Eq. (5.9) with

Eq. (5.10), the time evolution for the perturbation Φ can be written as:

d2Φ

dt2
+ P (t)

dΦ

dt
+Q(t)Φ = 0, (5.13)

where

P (t) =

[(
ν +

1

τm

)
+

Ω(1− ε2) sin 2Ωt

(1 + ε2) + (1− ε2) cos 2Ωt

]
, (5.14)

and

Q(t) =

[ −4Ω2(sin2Ωt + ε2 cos2Ωt)

{(1 + ε2) + (1− ε2) cos 2Ωt} +
2Ω2(1− ε2)2 sin2 2Ωt

{(1 + ε2) + (1− ε2) cos 2Ωt}
+
η ∗ k20
2τm

{
(1 + ε2) + (1− ε2) cos 2Ωt

}]
. (5.15)
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For simplification of the Eq. (5.13), let us take

Φ = Ψexp−1

2

∫
P (t)dt =

Ψexp−1
2

(
ν + 1

τm

)
t

[(1 + ε2) + (1− ε2) cos 2Ωt]−1/4
, (5.16)

and then substituting the Eq. (5.16) in the Eq. (5.13) and further simplifying the

following equation is obtained

d2Ψ

dt2
+

[
k20c

2
sh

2
{(1 + ε2) + (1− ε2) cos 2Ωt} − 1

4

(
νd +

1

τm

)2

−Ω

2

(
νd +

1

τm

)
(1− ε2) sin 2Ωt

(1 + ε2) + (1− ε2) cos 2Ωt
− Ω2 2(1 + ε2)− (1− ε2) cos 2Ωt

(1 + ε2) + (1− ε2) cos 2Ωt

+
3Ω2

2

(1− ε2)2(1− cos 4Ωt)

{(1 + ε2) + (1− ε2) cos 2Ωt}2
]
Ψ = 0,

(5.17)

where the parameter csh(=
√
η ∗ /τm) stands for the shear wave velocity. Since

this is a low frequency vortex, Ω � 1, we can neglect all terms proportional to Ω2

in the above Eq. (5.17) without any loss of generality. This will help us to reduce

the algebra without taking away much from the essential physics. The simplified

equation can be written as:

d2Ψ

dt2
+

[
k20c

2
sh

2
(1 + ε2)(1 + ξ cos 2Ωt)− 1

4

(
ν +

1

τm

)2

−Ω

2

(
ν +

1

τm

)
ξ sin 2Ωt

1 + ξ cos 2Ωt

]
Ψ = 0, (5.18)

where

ξ =

(
1− ε2

1 + ε2

)
.

Normalizing time by the vortex rotation time Ω−1 i.e. Ωt = τ and considering

a rigidly rotating circular vortex flow (ε = 1, ξ = 0), the above equation (5.18) can

be written as:

d2Ψ

dτ 2
+

[
k20c

2
sh

Ω2
− 1

4Ω2

(
ν +

1

τm

)2
]
Ψ = 0. (5.19)
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Hence for a rigidly rotating circular vortex the above equation gives us a collision

modified secondary shear wave but no instability. Thus it is clear that, secondary

instabilities, if any, must be related to deviation of ε from 1 i.e. ξ �= 0. Physically, a

rigidly rotating circular vortex has no free energy source in contrast to an elliptical

vortex which has a free energy source arising due to the velocity shear of its flow.

To demonstrate the instability, we have first used a multiple time scale analysis

[175] to examine the behavior of the solution of Eq. (5.18) in the limit of weak

flow ellipticity when ξ is very small. In this limit ξ can be used as an expansion

parameter. We have applied this method by introducing a new variable τ1 = ξτ

and assuming a perturbation expansion of the form Ψ(τ) = Ψ0(τ, τ1)+ξΨ1(τ, τ1)+

ξ2Ψ2(τ, τ1) · · · . Substituting Ψ in Eq. (5.18) and equating equal powers of ξ from

both sides we get,

∂2Ψ0

∂τ 2
+

1

Ω2

[
k20c

2
sh(1 + ε2)

2
− 1

4

(
ν +

1

τm

)2
]
Ψ0 = 0, (5.20)

∂2Ψ1

∂τ 2
+

1

Ω2

[
k20c

2
sh(1 + ε2)

2
− 1

4

(
ν +

1

τm

)2
]
Ψ1 =

−2
∂

∂τ

(
∂Ψ0

∂τ1

)
− k20c

2
sh(1 + ε2)

2Ω2
Ψ0 cos 2τ +

1

2Ω

(
ν +

1

τm

)
Ψ0 sin 2τ,

(5.21)

The above equations may be solved by proposing

k20c
2
sh(1 + ε2)

2
− 1

4

(
ν +

1

τm

)2

= Ω2,

which is the condition for resonance between the dissipation modified secondary

wave frequency and the vortex rotation frequency. Under this condition the solu-

tion for Eq. (5.20) is given by

Ψ0(τ, τ1) = A(τ1) cos τ +B(τ1) sin τ, (5.22)
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where the integration constants A,B are taken to be slow functions of time. Now

the dependence of A,B on τ1 may be obtained by substituting Ψ0 in Eq. (5.21)

and demanding that the resulting equation has a solution that is free of secular

terms. This condition leads to the following dependence of A,B on τ1:(
d

dτ1
+ α

)
A = −βB, (5.23)(

d

dτ1
− α

)
B = −βA, (5.24)

where

α =
1

8Ω

(
ν +

1

τm

)
, β =

1

2

[
1 +

1

4Ω2

(
ν +

1

τm

)2
]
.

The above equations imply that both A and B grow exponentially. This is given

by A,B ∼ exp(
√
α2 + β2τ1), which implies that for small ξ, the amplitude of the

secondary perturbation grows exponentially with growth rate ∼ ξΩ. At this point

we must remember that this analysis is done for the transformed variable Ψ. For

the actual physical variable φ we have to transform back and the exponential factor

will change. Hence to obtain the actual growth rate we have to multiply the above

growth rate with the factor exp[−(τm
−1 + ν)τ/2Ω]. Essentially, in the presence of

dissipation the secondary wave still grows but the growth rate is reduced by the

above mentioned exponential factor. Since ξ is proportional to (1 − ε2) therefore

we can conclude that for a circularly symmetric vortex (ε = 1) i.e. ξ = 0, there

is no growth for the secondary perturbation. For ε �= 1 the growth rate is finite

and we can say that the ellipticity of the vortex is responsible for the growth of

the shear wave of the secondary perturbation and that it occurs at the rate of the

vortex rotation frequency.

We have next investigated the general case with arbitrary ξ i.e. with ε �= 1,

starting with Eq. (5.17). This equation has the general form of the standard Hill
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equation and can be solved by the method of the Floquet theory. [176] We have

expressed Eq. (5.18) in the standard Hill form [176]

d2Ψ

dτ 2
+

[
A0 + 2

∞∑
m=1

Am cos(2mτ + δm)

]
Ψ = 0, (5.25)

where

A0 =
k0

2csh
2

2Ω2
(1 + ε2)− 1

4Ω2

(
ν +

1

τm

)2

, Am =
√
a2 + am2,

δm = tan−1 (−am/a) , a =
ξk0

2csh
2

4Ω2
(1 + ε2), am =

ξ

4Ω

(
ν +

1

τm

)
(θm+1 − θm−1),

θj = θ0

(
1−θ0
ξθ0

)j
, and θ0 =

1√
1−ξ2

.
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Figure 5.1: (color online) Plot of [k20c
2
sh− 1

4
(ν + τm

−1)
2
]/Ω2 vs. ε (ellipticity of the

vortex). The pink colored regions show the unstable domains.

The general solution to Eq. (5.25) has the Floquet form [176]

Ψ = exp(μτ)
∑
n

an exp(2inτ), (5.26)

where the characteristic exponent is denoted by μ, which also determines the

growth rate of the solution. This μ can be obtained from the following equation

sin2

(
iπμ

2

)
= D∞(0) sin2

(
π
√
Θ0

2

)
, (5.27)
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where D∞(0) is the determinant of the infinite dimensional Hill’s matrix evaluated

at μ = 0. The elements of this matrix are given by the expression Dmm = 1 and

Dmn = −Am−n/(4m2 − A0), where both m and n take values from −∞ to ∞.

For fixed values of ν, τm and arbitrary values of ε the above characteristic

exponent equation (5.27) has to be solved numerically. In Fig. 5.4 the pink colored

regions show unstable domains in the parameter space defined by [A0, ε]. From this

figure (Fig 5.4) it is clear that when the flow ellipticity is small i.e. for ε ≈ 1 the

bands of instability originate near the resonant frequencies

k20c
2
sh

Ω2
− 1

4Ω2

(
ν +

1

τm

)2

= n2(n = 1, 2, 3 · · · ).

Note that at these resonance frequencies the elliptical vortex flow starts to drive

the instability of the dissipation modified secondary shear waves. For larger flow

ellipticities i.e. for ε > 1, the bands of instability widen significantly and for

high values of ε, the unstable domains come close to each other. Hence we find

that the flow ellipticity of the elliptical vortex acts as a free energy source and

drives these secondary waves unstable in these bands covering broad regions of

parameter space. In this context we emphasize that these secondary waves lose

their energy on leaving the vortex region and get damped by the usual natural

damping mechanisms.

5.5 Summary

In this chapter, we have investigated the stability of a long scale elliptical vortex

to short scale secondary perturbations. It is shown that for circular vortices there

is no instability because these vortices rotate rigidly and hence have no source of

free energy. Vortices with finite ellipticity are, however, shown to be unstable to
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the excitation of secondary perturbations. The basic physical mechanism for this

instability may be understood in terms of a parametrically driven oscillator. In the

frame rotating with the mean rigid angular velocity of the plasma, the waves have a

time dependent wave vector k⊥(t) whose dependence arises through the ellipticity

parameter (1− ε2). This can resonantly drive the shear waves (kcsh) provided that

certain resonance conditions are satisfied. For a large deviation from circularity, off

resonance driving is also possible as seen from the stability diagram Fig. 5.4. The

relevance of the secondary instability excitation in a complex dusty plasma is as

follows. One of the challenges faced by nonlinear theories describing low-frequency

plasma turbulence is that the conventional cascade mechanisms transfer energy

towards long scales where the natural damping mechanisms are negligible. This

can lead to an indefinite accumulation of energy in the longest scale and prevent

the attainment of a stationary state. It seems clear that when the energy in the

long scale becomes large, it must find a nonlinear mechanism of dissipation to ar-

rive at a stationary state. Our present calculation points to a possible mechanism

that can make the long scale vortex radiate energy in the form of short scale sec-

ondary waves that can propagate out of the vortex and get damped in the plasma

by conventional damping channels. Such a mechanism would happen beyond a

threshold amplitude as obtained from the instability condition described above.

The secondary instability can act as a seed for the onset of turbulence and may in

turn also act as a nonlinear saturation mechanism of the vortex structures.



Chapter 6

Conclusion

In this chapter, the results obtained in this thesis have been summarized. Some

future prospects of our study have also been discussed in addition.
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6.1 Summary

In the field of plasma physics, it has utmost importance to understand linear and

nonlinear plasma dynamics and their associated transport phenomena. In this

connection, the present thesis covers the studies on some novel aspects of nonlinear

coherent structures related to both the Alfvén wave in an electron-ion plasma and

also transverse shear wave in a strongly coupled dusty plasma which have not been

considered yet. In case of Alfvén waves study, the Lagrangian two fluid model has

been adopted and both analytical and numerical analysis have been done in a

very elaborative way. The generalized hydrodynamic model (GH) is a simplified

phenomenological model for depicting weakly coupled to strongly coupled behavior

of fluid. This model has been used for the purpose of describing the dusty plasma

medium in strongly coupled regime. For the numerical simulation of GH equations,

a de-aliased doubly periodic pseudo-spectral code has been employed.

• In chapter I, a brief overview of our work has been presented. An intro-

duction to several types of coherent structures and the probable causes of

formation of such structures in fluid medium and plasmas have been pre-

sented briefly. We have given an introduction to the Alfvén wave and the

motivation behind our work. Also, the GH equations describing the dusty

plasma dynamics and novel transverse shear wave along with its associated

nonlinear phenomena related to vortices have been described in detail. The

usefulness of the Lagrangian technique compared to the Eulerian technique in

treating convective nonlinearity in plasma has been discussed. An idea about

the efficiency of the pseudo-spectral method in handling plasma nonlinearity

has been described.
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• In chapter II, we have studied the linearly polarized Alfvén wave propagation

taking into account the electron inertial effect and also the electron-ion colli-

sional effect in a cold electron-ion plasma. It has been found that, the electron

inertia together with the ion inertia introduces the wave dispersion which is

different from the previous study where the electron mass is neglected. [77]

In the weak amplitude limit, it has been found that the Alfvén wave propa-

gation is governed by a mKdV-Burgers (mKdvB) equation. In this mKdVB

equation, the electron inertia is found to act as a source of dispersion and

the electron-ion collision serves as a dissipation. The collisional dissipation

is eventually responsible for the Burgers term in mKdVB equation. The nu-

merical results predict the formation of both oscillatory (dispersive) shock for

weak dissipation and monotonic shock for strong dissipation. Also numerical

solution predicts the breather-like structures of nonlinear Alfvén wave. In

this present study, the observed shocks are compressive in nature due to the

strong magnetic field enhancement at the upstream side of the shock, thereby

they can be a potential mechanism to restrict the collapse of molecular clouds

due to self gravity. Also, after the saturation at the upstream side, due to

the energy transfer to the plasma particles strong plasma heating is possible

which could initiate the particle acceleration.

We have also analyzed the wave modulation phenomenon in the long wave-

length limit. It has been shown that, there is a possibility of trapping of the

Alfvén wave in a hole created by the wave itself in the medium. It has been

shown that the dynamics of the modulated wave is described by a damped
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NLSE equation in which the damping is provided by the electron-ion colli-

sion. The modulated wave exhibits weakly dissipative bright soliton similar

to bright solitons described by the NLSE in optical fiber communication.

Numerical simulation of the damped NLSE also predicts the formation of

localized large amplitude nonlinear structures known as rogue waves or freak

waves, giant breathers and rouge wave holes. The results could be useful in

interpreting the nonlinear phenomena behind the observed magnetic struc-

tures in space plasmas.

• In chapter III, we have extended same investigation in case of circularly

polarized Alfvén wave propagation in absence of collision. The right-hand

circularly polarized wave dynamics has been inspected in detail. The linear

analysis shows that the right-hand polarized wave saturates due to the dis-

persive effect of electron inertia. The newly developed modified DNLSE with

third order dispersion term has also been analyzed and soliton type solutions

are obtained.

• Chapter IV contains the study on vortex formation, evolution and interaction

in strongly coupled dusty plasma in presence of dust-neutral collisional drag.

All the studies have been investigated numerically using a doubly periodic

de-aliased pseudo-spectral method. We have observed the vortex phenomena

by interplaying the nonlinear elastic stress arising from the strong coupling

between the dust particles and the dust-neutral collisional drag. In this

work we have found two interesting aspects of vortex evolution which are

as follows: 1) a sensitive balance between the nonlinear elastic stress and

the dust-neutral collisional drag results in the generation of non-propagating
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monopole vortex before it starts to propagate like shear wave and 2) the

interaction between two unshielded monopole Gaussian vortices having both

same (co-rotating) and opposite (counter rotating) rotations produce two

propagating dipole vortices of equal and unequal strength respectively when

there is a sensitive balance between the nonlinear elastic stress and the dust-

neutral collisional drag.

The results are different compared to the existing results discussed in a re-

cent article. [167] In the first study i.e. the case with monopole vortex, the

recent investigation shows continuous generation of shear wave even in non-

linear regime, whereas our analysis shows the formation of non-propagating

monopole vortex. In the second study i.e. two monopoles having both co-

rotating and counter rotating initial forms, formation of two dipoles are re-

ported while in contrary the recent investigation shows continuous emission

of wave and no dipole formation. Therefore, neutral drag has a strong impact

on the vortex dynamics in strongly coupled dusty plasma.

Our study expands the possibility of observing such types of monopole vortex

formation and also dipole formations in laboratory experiments on dusty

plasma, condensed matter system and astrophysical systems such as neutron

star, interior of white dwarfs etc.

• In chapter V, the stability analysis of the long scale equilibrium vortex to

short scale shear wave perturbation has been presented. It has been shown

that for circular vortices no instability arises, because these vortices rotate

rigidly and hence have no source of free energy. However, it has been found
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that the free energy associated with the ellipticity of the vortex can be re-

sponsible for an instability that parametrically drives secondary waves when

the collision modified secondary wave frequency matches with the mean ro-

tation frequency of the vortex or one of its multiples.

Therefore, such a process can transfer energy from the long scale vortex to the

short scale secondary wave and thereby can provide a saturation mechanism

for long scale vortices in complex plasmas.

6.2 Future scope of the work

The study on coherent structures, which is the topic of the thesis, could lead to

a better way in understanding transport phenomena in space and astrophysical

plasmas as well as in laboratory plasma experiments. We hope that our studies

and findings will provide further future scope in this direction. In this regard,

we will present point wise discussions over further possibilities leading from the

present thesis.

• In Alfvén waves study, various physical factors like finite temperature, vis-

cosity have not been taken into account. In reality, one should take these

factors to get better realistic understanding about the system.

• We have investigated the nonlinear evolution of circularly polarized Alfvén

wave by solving the modified DNLS equation in absence of collisional effect. If

we consider the collisional effect then the governing modified DNLS equation

with dissipation term no longer remain as an integrable system. However, this

non-integrable system can be investigated by treating the dissipation term

as the perturbation term by means of soliton perturbation theory. [177] It
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might lead to some other aspects of the Alfvén wave dynamics which will be

investigated in our future study.

• In the present GH model, we have considered the viscosity as a constant

parameter. In actual dusty plasma medium, the vortex dynamics would

be interesting to study where the viscosity has a functional dependence on

space and time. The effects of such investigation will help us to look at more

realistic view of dusty plasma.

• We have assumed the electrons and ions as inertialess species in this dust

vortex study. However, in actual dusty plasma experiment on vortices, the

ions dynamics is also taken into consideration along with the dust dynamics.

[178, 179] So, it would be necessary to incorporate ion dynamics along with

the dust dynamics to study vortex phenomena in dusty plasma.

• The studies on dusty plasma assume dust particles carrying static charge.

But, the charge fluctuation is an important physical phenomena in dusty

plasma research. So, the inclusion of charge fluctuation may be interesting.

• We have considered dust vortex flows in 2-D plane only. But under micro-

gravity conditions dust particles form 3-D cloud instead of 2-D layer. There-

fore, an extension to 3-D case would yield better understanding about the

realistic scenario under microgravity conditions.

• In case of vortex stability analysis, only core instability of the stationary

state vortex has been studied. There is no known analytical method to do

the stability analysis of the vortex with its full complex shape, so it would

be interesting to do the global stability analysis using numerical method.
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• We have focussed on the studies of strongly coupled dusty plasma in absence

of magnetic field. However, in laboratory experiments, there are several

studies on magnetized dust particles. [100, 101] So, consideration of magnetic

field will open up an entirely new regime of exploration of strongly coupled

dusty plasma. To carry out such investigations, the GH model used in our

study has to be modified by the inclusion of magnetic field.

Finally, we sincerely hope that the works presented in this thesis will improve

our knowledge on nonlinear physics in general and nonlinear plasma physics in

particular and will enlighten our way to proceed furthermore in this direction.
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