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Synopsis

The contents of this thesis are mainly centred around the experimental studies

and investigations of nonlinear dynamical phenomena observed in a self excited

complex system like plasma. Complex systems are composed of many small com-

ponents that interact nonlinearly. They exhibit spatial structures and dynamical

behavior ranging from simple ordering to chaotic states through complex struc-

tures, both in space as well as time. Complex systems encompass a wide range of

fields such as fluids, plasmas, condensed matter systems, biological systems, social,

traffic and financial systems [1]. Physical world, thus can be considered to mainly

consist of complex systems which exhibit nonlinear dynamical behavior such as

multiscale avalanche, self-organized criticality, chaos, turbulence, and stochastic

and coherent resonances to name a few. In the last three decades or so, with the

development of nonlinear dynamics based on large scale numerical simulations,

complex systems have become a very important interdisciplinary research subject

with enormous potential of practical applications. Dynamics of a complex system

can be understood by investigating its time evolution, i.e, change of state as a

function of time. In real life, the information about the time evolution is recorded

as a time series, a sequence of measurement taken at successive equally spaced

points in time. These time series data may have growing, decaying, constant or

oscillatory behavior. Since oscillatory behaviour is mainly due to nonlinear inter-

action between the components of complex system, the study of such behaviour

forms a major area of interest. The origin of these oscillations may be due to: 1)

xvi



interplay of internal complex system parameters, called self excited oscillation, 2)

external forcing, called forced oscillation. These two types of oscillatory behaviour

form the basis of study in self excited and forced complex systems respectively.

Plasma is a common example of complex system consisting of electrons, ions

and neutral particles. Plasma has numerous sources of free energy like energetic

electrons (having energy greater than the thermal energy of electrons in the system)

and gradients in density and temperature, that are dissipated by giving rise to sev-

eral instabilities like beam plasma and drift wave instabilities [2, 3]. Therefore, the

dynamics of plasma is highly nonlinear and complex. In general, an understanding

of the various plasma processes can be obtained by investigating the plasma equi-

librium parameters like density, electron temperature, plasma potential as well as

features related to plasma waves such as frequency and dispersion relation. How-

ever, to explain certain phenomena like plasma transport and to achieve features

like chaos control in plasma, one requires information about the underlying dy-

namics of plasma which can be extracted from the plasma oscillations. As these

oscillations are nonlinear, one needs nonlinear analysis tools to investigate the

plasma dynamics. Plasma fluctuation investigation is also important from a prac-

tical point of view since plasma systems are used to develop thin film/nanoparticle

growth and there are few reported works which indicate the correlation between

plasma fluctuation and fluctuations of nanoparticle growth [4]. Thus, investiga-

tion of nonlinear plasma fluctuations in order to extract the underlying nonlinear

dynamics of plasma is a very important area of research.
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In 1984, Boswell et al. reported the experimental evidence of deterministic

chaos and showed that the natural oscillations on an electron beam propagating

parallel to a magnetic field, undergoes a period doubling route to chaos with an

increase in the beam current [5]. First experimental observation of chaotic behav-

ior and period doubling in a pulsed plasma discharge was reported by Cheung et

al. [6] whereas first observation on deterministic chaos in dc excited glow discharge

plasma was made by Braun et al. in 1987 [7]. After that, a large number of

nonlinear phenomena like mode locking, period pulling, frequency entrainments,

synchronization, homoclinic bifurcation, period doubling and intermittency route

to chaos were observed [8, 9, 10, 11]. Nurujjaman et al. studied nonlinear phe-

nomena like chaos to order transition, stochastic and coherence resonance in a dc

glow discharge unmagnetized plasma with cylindrical geometry [3, 12].

Due to the practical importance and industrial applications of glow discharge

plasma for surface treatment [13], etching, thin film deposition, the nonlinear dy-

namical behaviour of glow discharge plasma are being diagnosed extensively in

recent years [3, 12, 14, 15, 16] to achieve better performance. In these works, a

number of parameters (e.g., discharge voltage, pressure, homogeneous magnetic

fields, external sinusoidal forcing, external noise forcing, etc.) are identified to

control the plasma dynamics of the system. Although many experiments based

on various control parameters have been carried out to study the nonlinear be-

haviour, the role of intrinsic noise and inhomogeneous magnetic field have not yet

been explored much. In this thesis, efforts are focussed to study how the presence
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of external inhomogeneous magnetic field produced by a bar magnet, external ho-

mogeneous magnetic fields and intrinsic plasma noise affect the plasma dynamics.

For this purpose, we have carried out several experiments in an argon glow dis-

charge plasma, performed analysis of plasma oscillations using various nonlinear

time series analysis tools and developed dynamical models to explain the observa-

tions. In this thesis, we mainly focus on the self excited oscillations of the plasma,

i.e., self induced due to interplay of internal plasma parameters, for the study of

plasma dynamics.

To begin with, we have explored the behaviour of an excitable glow discharge

plasma in the presence of an external magnetic field perturbation using a bar

magnet. Using the magnetic field strength as a control parameter, experimen-

tal observations of a canard orbit and mixed mode oscillations [17] (MMOs) have

been made. At low values of magnetic field, small amplitude quasiperiodic oscil-

lations were excited, and with the increase in the magnetic field large amplitude

oscillations were observed. Analyzing the experimental results it seems that the

magnetic field could be playing the role of intrinsic noise for the observation of

such nonlinear phenomena. It is observed that the noise level increases with the

increase in magnetic field strength. The experimental results have also been cor-

roborated by a numerical simulation using a FitzHugh-Nagumo [18] (FHN) like

macroscopic model derived from the basic plasma equations and phenomenology,

where the noise has been included to represent the internal plasma noise. This

macroscopic model shows MMO in the vicinity of the canard point when external
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noise is added.

Next, we change the behaviour of system from excitable state to normal oscil-

latory state. In the presence of a bar magnet placed outside the plasma chamber,

an additional effect apart from the generation of intrinsic noise like appearance

of a localized glow (fireball like structure) is observed near the cathode surface.

Since the bar magnet is placed near the cathode, it is likely that it can modify

the oscillations in a localized region near the cathode surface that can in turn

affect the bulk plasma oscillations. Floating potential fluctuations showed that

emergence of such localized structure leads the system towards chaotic state. It is

seen that the plasma density in the localized glow region and the intensity of this

structure increases with the increase of the magnetic field strength. Increasing the

magnetic field strength reveals a transition from order to chaos via period dou-

bling bifurcation. This transition is analyzed by using bifurcation diagram, phase

space plots, power spectrum plots, Hilbert Huang transform and by estimating the

largest Lyapunov exponent. In addition to this, evidence of normal homoclinic as

well as inverse homoclinic bifurcation is seen.

Further we have carried out an experiment in the presence of an axial homo-

geneous magnetic field and in which chaotic oscillations have been observed and

analyzed using multifractal detrended fluctuation [19] analysis (MF-DFA). The

generalized Hurst exponents (h(q)), local fluctuation function (Fq (s)), the Rényi

exponents (τ(q)) and the multifractal spectrum F (αh) have been calculated by

applying the MF-DFA method. The result of the MF-DFA shows the multifractal
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nature of these fluctuations. An investigation of the effect of the magnetic field

strength on the multifractal nature of the fluctuations was carried out and it is

seen that degree of multifractality is reduced with the increase in the field strength.

Obtained results suggested the existence of long-range correlations in the fluctua-

tions. Comparing the MF-DFA results for the data set with those for shuffled and

surrogate series, we found that its multifractal nature is due to the existence of

significant long-term correlation.

Motivated by the fact that some times the intrinsic noise can induce compli-

cated nonlinear phenomena like mmo, we next investigated thoroughly the effect

of intrinsic noise on excitable dynamics of the plasma in the absence of magnetic

field. For the first time, experimental evidence of intrinsic noise induced coher-

ence resonance [20] in a glow discharge plasma was observed. Initially the system

was started at a discharge voltage (DV) where it exhibited fixed point dynamics,

and then with the subsequent increase in the DV, the few spikes were excited and

with further increase of DV the number of spikes as well as their regularity in-

creased. The regularity in the interspike interval of the spikes is estimated using

normalized variance (NV). Coherence resonance was determined using normalized

variance curve and also corroborated by Hurst exponent and power spectrum plots.

We showed that the regularity of the excitable spikes in the floating potential fluc-

tuations increases with the increase in the DV, upto a particular value of DV.

Using a Wiener filter, we separated the noise component which was observed to

increase with DV and hence conjectured that noise can play an important role in
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the generation of the coherence resonance. From an anharmonic oscillator equa-

tion describing ion acoustic oscillations, we have been able to obtain a FitzHugh-

Nagumo [18] (FHN) like model which has been used to understand the excitable

dynamics in our earlier experiment. The numerical results agree quite well with

the experimental observations.

It is well known that experimental time series are always contaminated by

noise. Therefore, we have also attempted to extract coherent modes of the noise

contaminated experimental signals. In view of this, for the first time, we proposed

an empirical mode decomposition (EMD) [21] based method for coherent mode

detection of a chaotic or turbulent time series data. To establish our method, we

carried out a comparative study on the investigation of coherent modes in chaotic

time series data based on two techniques: the empirical mode decomposition and

the discrete wavelet transform. We have applied these techniques to the different

types of chaotic time series data obtained from a glow discharge plasma. The

discrete wavelet transform and EMD analysis of the chaotic time series, combined

with some simple statistical estimates like variance and correlation coefficient, help

in identification of coherent modes. Our studies clearly showed the efficiency of

EMD based coherent mode detection technique and its advantage over traditional

coherent mode detection technique like discrete wavelet transform based.
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To further consolidate our method, we have analyzed intermittent chaotic fluc-

tuation [22] data from a glow discharge plasma using empirical mode decomposi-

tion. Here the nature of the oscillations changes from an initial relaxation oscilla-

tion to a final chaotic oscillatory state via intermittent chaos. The time series data

has been decomposed into several intrinsic mode functions (IMFs) using EMD.

Furthermore, the estimation of the variance of the IMFs and the correlation of

these IMFs with the original time series helps us to identify the presence of co-

herent modes in the fluctuations. Through this analysis, we could clearly observe

that initially during the relaxation oscillations the system was dominated by one

type of coherent mode, whereas in the final chaotic state it was dominated by

another coherent mode. In the intermediate case, i.e. intermittent chaotic state,

both the coherent modes were seen to be present. Hilbert Huang spectrum [21]

of the fluctuations clearly suggests the intermittent change in the frequency with

time.

With the advent of plasma based imaging techniques, surface treatment, ther-

apeutics, etc., an understanding and control of the complex behaviour of plasma is

emerging as a challenging problem. Many of these processes have much in common

with the characteristics of glow discharge plasmas. As an application of our work,

we can suggest consideration of nonlinear dynamical features of plasma and the

effect of intrinsic noise on these dynamics while operating glow discharge plasma

devices for practical applications. Shiratani et al. proposed a simple theoretical

model that describes the correlation between plasma fluctuation and fluctuation of
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nanoparticle growth in reactive plasmas [4]. Thus our studies can be used for ex-

perimental investigation of correlation between plasma fluctuations and thin film

growth in plasma based systems. Our nonlinear dynamical experiments in the

presence of a bar magnet and their results can be useful in magnetron sputtering

devices [23] that are based on bar magnet and cross field discharges. Investiga-

tion of multifractal dynamics presented in this thesis can be useful to understand

the multifractal behaviour and transport related problem in magnetized plasma

device like tokamak [24]. The concept of multifractality is of great importance

for space plasmas [25] because it allows us to look at intermittent turbulence in

the solar wind [26]. Our proposed method for the detection of coherent mode is

a very efficient tool. The method can be very useful for extracting better results

and information from a noise contaminated time series data.

In summary, the results and conclusions presented in this thesis would enrich

the understanding of complex and nonlinear dynamics of magnetized as well as

unmagnetized plasma.
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Chapter 1

Introduction

The main objective of this thesis is to contribute to the knowledge of nonlinear

dynamical phenomena in unmagnetized and magnetized glow discharge argon plas-

mas through systematic experimental studies of plasma fluctuations. We have also

carried out theoretical modeling to understand the experimental results wherever

possible. For an experimentalist, the main component of nonlinear dynamical char-

acterisation is through different types of time series analysis like estimation of

largest Lyapunov exponent, power spectrum, Hurst exponent, etc. In addition to

these analysis techniques we have used empirical mode decomposition to not only

explore the spectral components, but also in the detection of coherent modes in

the chaotic systems. In this chapter, we present a brief overview on complex sys-

tems, nonlinear dynamics, plasma physics and our motivation for investigation of

nonlinear dynamics in plasma systems.

1



2

1.1 Complex System and Nonlinear Dynamics:

an Overview

A system composed of many small nonlinearly interacting units is usually referred

to as a complex system. The field of complex systems cuts across all traditional

disciplines of science as well as engineering, management and medicine. Social,

traffic, financial, biological and plasma systems are also examples of a complex

system which despite of their wide diversity exhibit similar universal laws and

phenomena [1]. Due to this ubiquitous nature, the study of complex systems has

emerged as a new scientific discipline and has been recognized as a interdisciplinary

research subject.

The change of state of a physical system as a function of time is in general called

dynamics. Changes take place due to the interplay of forces acting on the system

which may lead to classification as linear or nonlinear dynamics. The subject

of dynamics began when Newton discovered the laws of motion and universal

gravitation [2] and applied the differential equations [3] to solve two body problem

in order to deal with the problem of calculating the motion of the earth around the

sun. Newton started to introduce the differential computations and method was

extended to the three-body problem by the physicists. However, it was found that

three body problems being nonlinear and non-integrable are impossible to solve. In

late 1800s, Poincaré developed a geometric approach, which emphasized qualitative

rather than quantitative questions, to analyze such problems [4]. This technique

of Poincaré approach has blossomed into the modern subject of dynamics. In his

research on the three-body problem, Poincaré became the first person to discover

deterministic chaos which laid the foundations of modern chaos theory.
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In the beginning of 1900s, scientists were largely concerned with nonlinear os-

cillators as they played a vital role in the development of such technologies as

radio, radar, phase-locked loops and lasers. Theoretical study of nonlinear oscil-

lators stimulates the discovery of new mathematical techniques [5]. In the year

1963, Lorenz discovered chaotic motion on a strange attractor while solving a

simplified system of three coupled first-order nonlinear equations of the fluid con-

vection model describing the atmospheric weather conditions [6]. He found that

the solutions to his equations never settled down to an equilibrium or to a periodic

state instead they continued to oscillate in an irregular, aperiodic fashion and the

bounded non-periodic trajectories of the equations started from two nearby initial

states would soon become completely uncorrelated resulting in unpredictability

of the future state in a fully deterministic dynamical system. Such a solution

became known as chaotic and with this discovery, the field of chaotic dynamics

was born. The study of nonlinear dynamical systems experienced an explosive

growth when Ruelle and Takens proposed a new theory for the onset of turbulence

in fluids in 1971 [7]. In the late 70s, Feigenbaum discovered the constant called

the Feigenbaum constant to characterize the universal features of period doubling

bifurcation [8]. Later, bifurcation diagrams, Lyapunov exponent, correlation di-

mension, etc., derived on the basis of chaos theory, have been used to characterize

chaos and to understand the nonlinear dynamics of a system [9, 10, 11].

Nonlinearity is everywhere and it is a characteristic of a complex system. Com-

plex systems exhibit nonlinear dynamical behavior like chaos, multiscale avalanche,

self-organized criticality, turbulence, stochastic resonances, etc. [12, 13]. In the last

three decades and so, with the developments of nonlinear dynamics and large scale
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numerical simulations, complex systems have become a very important interdisci-

plinary research subject with the enormous potential of practical applications. In

recent times, increasing attention has been focussed on exploring real technological

applications of nonlinear dynamics: controlling of chaos [14, 15], synchronization

of chaos [16], secure communication [17], laser [18], etc. Applications of nonlinear

dynamics have been found very significant in plasma which is an example of a

complex system. Nonlinear dynamics found its application during explanation of

plasma instabilities, understanding of plasma transport, characterization of plasma

turbulence, etc. [13, 19].

1.2 Definition of Some Standard Oscillations

1.2.1 Periodic Oscillation

Any back and forth motion about a mean position is termed as an oscillatory

motion and if it repeat itself about after equal intervals of time such oscillation

is called periodic oscillation. Periodic oscillation is possible only for the system

having phase space dimension ≥ 2.

1.2.2 Quasiperiodic Oscillation

In addition to periodic behaviour, there exists another type of regular motion,

exhibited by a dynamical system containing two or more incommensurate frequen-

cies, known as quasiperiodic oscillation. For instance, if a system has two distinct

frequencies ω1 and ω2 then ratio of these two frequencies (ω1/ω2) should be irra-

tional for the quasiperiodic motion.
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1.2.3 Chaotic Oscillation

Chaos is a long term aperiodic behaviour in a deterministic system, and shows

sensitive dependence on initial conditions. Chaotic dynamics are neither recurring

nor settles down to a particular fixed point but behaves rather strangely. Chaotic

dynamics are possible only for the system having phase space dimension ≥ 3.

1.2.4 Canard Solution

Canard explosion is a behaviour of transition from small amplitude oscillatory state

to relaxation oscillatory states within an exponential range of control parameters,

and transition occurs through a sequence of canard cycles. Canard phenomena

occur in a system having one slow and one fast variable. It is hard to observe it

experimentally due to extreme sensitivity to control parameter.

1.2.5 Mixed Mode Oscillation

Mixed mode oscillation (MMO) is the oscillatory behavior of the system char-

acterized by an alternation of large amplitude and small amplitude oscillations.

A pattern in an MMO is described by a symbol Ls where L and s denotes the

number of large and small oscillations respectively. Regular MMO consists of a

recursive Ls pattern, whereas Ls pattern is not recursive in the irregular mixed

mode oscillation.

1.2.6 Intermittency

For any dynamical system, intermittent behaviour is characterized by an irregular

alternation between the periodic and chaotic phases or different types of chaotic
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phases. In fluid dynamics, intermittency appears when long term laminar phases

are interrupted by irregular bursts.

1.3 Plasma Physics: an Introduction

The universe consists of four fundamental constituents: solid, liquid, gas and

plasma. As temperature is increased, the state of matter changes from solid to

liquid. With further increase in temperature, the liquid turns into gas. Further

increase in temperature, the outermost electrons of the gaseous atoms can over-

come the nuclear attraction and escape thereby the gas becomes ionized. In this

process, a partially or fully ionized gas of negative electrons and positive ions

and/or neutrals may be formed. This state of the matter was called a plasma by

Irving Langmuir in 1928 [20]. The Plasma state is known to be the fourth state

of matter. Plasma is defined as a quasineutral gas of charged and neutral par-

ticles which exhibits collective behavior [21]. Due to these features of plasma, it

can be considered as a complex system. A system involving plasma is subjected

to long range electromagnetic forces. It is very difficult to predict the dynamics

of a system involving such a huge number of particles interacting over a large

scale. Since the electric field of an individual electron is shielded by the presence

of neighbouring particles, on a scale larger than shielding distance, the collective

effect dominates over individual particle interaction and individual particle need

not to be considered. The first observation of the collective motion was made by

Tonks and Langmuir in a gas discharge, showing that the gas of charged particles

behaves differently as compared to gases [22].

Plasma can be broadly characterized by the following basic parameters:
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1. density of the electrons and ions, ne,i. In the quasi-neutral state of plasma,

the density of the electrons and the ions is almost equal, ni ≈ ne ≡ n and n

is usually called the plasma density;

2. energy distributions of the particles, fn,e,i.

Here, suffices n, e and i are stand for neutral, electron and ion respectively.

For any ionized gas to be termed as plasma, the following conditions must be

fulfilled

λD << L (1.1)

ND >>> 1 (1.2)

ωτ >> 1 (1.3)

where λD =
√

(ε0KTe/ne2) is the Debye screening length, i.e., the characteristic

length over which any small electrostatic perturbation may be neutralized. L is the

dimension of the plasma. ND = n4
3
πλD

3 is the total number of plasma particles

in a Debye sphere, τ is the collision time and ω is the characteristic frequency of

standing oscillations of the electrons. The first two conditions, given above, are

actually implications of each other whereas the third condition guarantees that the

dynamics of the plasma particles are governed by long range Coulomb interactions

rather than Newtonian collisions.

1.4 Plasma Dynamics: Oscillations and Waves

It is known that a plasma is a quasineutral medium. So, any small deviation in

the neutrality gives rise to self-generated electric fields in order to limit the charge

build up. The electric field limits the charge accumulation in a region via restoring
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force which forces the electrons to exhibit oscillations. Plasma has a number of

natural modes of oscillations. The most fundamental mode is the electron plasma

frequency which is given by:

ω2
pe =

e2ne
ε0me

(1.4)

where, ε0 and me are the permittivity of free space and electron mass. The ions

can also oscillate at their own natural frequency called the ion plasma frequency,

and is given by,

ω2
pi =

e2ni
ε0mi

(1.5)

where, mi is the ion mass.

Plasma is very rich in wave phenomena [23]. In presence of warm plasma

effects, a low frequency wave with the electrons providing the restoring force and

the ions contributing to the inertia is usually observed in plasma systems and is

known as the ion acoustic wave. Dispersion relation governing this wave in the

long wavelength approximation is given by

ω = k

√
kBTe
mi

(1.6)

Here, k and kB are wave number and Boltzmann constant respectively. In presence

of ionization and recombination effects, the mode exhibits itself in the form of

ionization instabilities.

A magnetized plasma supports a large number of electrostatic and electromag-

netic modes [24, 25]. If an equilibrium state of a plasma is perturbed then plasma

responds with wave-like behavior. In general, plasma not often exists in an equi-

librium state in the laboratory as well as in nature [23]. In plasma, various free

energy sources in the form of energetic electrons (having energy greater than the
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thermal energy of electrons in the system), density gradient and spatial gradient

provides the energy to excited plasma wave as a result of which amplitude of these

wave grows unbound. These phenomena are commonly known as instability. In

a general sense, an instability represents the ability of a plasma to relax from a

non-thermal state through a collective process in a time much less than the bi-

nary collision time. These excited plasma instabilities mostly propagate as waves.

Commonly, unmagnetized plasma supports the following three natural modes:

1. electromagnetic wave with dispersion relation ω2 = ω2
pe + c2k2;

2. high frequency electrostatic wave with dispersion relation ω2 = ω2
pe + 3

2
v2thek

2;

3. low frequency electrostatic ion-acoustic wave with dispersion relation ω =

kcs.

Here, ω, vth and cs are the frequency of modes, electron thermal velocity and ion

acoustic velocity respectively.

However, in the presence of a magnetic field, the plasma supports a larger

variety of natural modes. If the driving force of the wave is strong enough, instead

of a single wave, fluctuations of continuous power spectra are observed. This

feature develops a turbulent or chaotic fluctuation.

1.5 Plasma Physics as a Complex System and its

Contribution to Nonlinear Dynamics

Plasma is a highly nonlinear and complex medium. As discussed in section 1.4,

there are many sources of free energy in the plasma which drives the plasma in-

stabilities so that the dynamics of plasma becomes highly nonlinear and complex.



10

Due to the collective behaviour of plasma (because of the electric and magnetic

fields) waves can also be developed in them. The linear conventional tools and

linear model are not sufficient to understand these nonlinear plasma processes. In

the late 60s and later, nonlinear oscillator based models like Van der Pol oscillator

were used to explain the growth and saturation of the plasma instabilities [19].

A first experimental observation of nonlinear phenomena like periodic pulling in

periodically forced self oscillatory plasmas, made by Abrams et al. in 1969, that

has been proposed to explain the transition to turbulence in a bounded plasma

characterized by weakly unstable modes [26]. This result is also supported using

Van der Pol model. Starting from a two fluid model of plasma, Keen et al. showed

that an ion acoustic instability can be described by the sinusoidally forced Van

der Pol oscillator [19]. Experimental evidence of deterministic chaos in the elec-

tron beam plasma system was reported by Boswell et al. [27] in 1984 wherein they

found that the natural oscillations on an electron beam propagating parallel to a

magnetic field, undergoes a period doubling route to chaos state with an increase

in the beam current. Cheung et al. reported the first experimental observation

of chaotic behavior and period doubling in a pulsed plasma discharge [28]. First

observation was made on deterministic chaos in a dc excited glow discharge plasma

by Braun et al. [29] in 1987. Afterwards various observations were made on deter-

ministic chaos in various plasma systems via an intermittent route to chaos, period

doubling route to chaos, quasiperiodic route to chaos and period adding route to

chaos [30, 31, 32]. In 1992, an evidence of homoclinic chaos was reported in the

electrical discharge plasma system by T. Braun, et al. [33]. Many other nonlinear

phenomena like mode locking, period pulling, frequency entrainments, etc., had
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been observed by Klinger et al. [34, 35] whereas the gradual transition from the

nonchaotic to chaotic regime had been observed by S. Ghorui, et al. [36, 37]. Nu-

rujjaman et al. showed various nonlinear phenomena like chaos to order transition,

stochastic and coherence resonance in a glow discharge unmagnetized plasma with

cylindrical geometry [30, 38]. In many other experiments almost similar phenom-

ena had been observed where different types of gases, geometric configurations and

parametric regimes were explored.

Most of the time oscillations in the plasma are self excited, i.e., self originating

due to interplay of internal plasma parameters. So, by forcing the plasma system

one can have nonlinear phenomena which had been observed in a forced oscillator

system. Various nonlinear phenomena like homoclinic chaos, intermittency, period

doubling route to chaos have been observed in the forced plasma system. Forcing

may be sinusoidal or noise. General thinking is that the system behavior in the

presence of noise forcing will be random but there are many studies which have

revealed that noise can play a constructive role like noise induced order in chaotic

dynamics, synchronization of chaotic systems, stochastic and coherence resonances.

Lin et al. and Dinklage, et al. observed stochastic resonance in plasma [39, 40].

Another complex nonlinear phenomena: mixed mode oscillation (MMO), which is

often encountered in a chemical system, has also been reported in discharge plasma

by Braun et al. [33]. Mikikian et al. [41] also reported MMO in a dusty plasma

system. Thus, one can say that plasma is a highly complex system and exhibits

various nonlinear dynamical phenomena.
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1.6 Motivation

Modern life-style is immensely dependent on plasma technologies. Plasma process-

ing of material, plasma laser, plasma torch, food packaging, plasma display, solar

photo-voltaic lighting, protective coatings, creation of exotic new materials, bio-

medical application are to name a few. There is another major role of plasma for

producing fusion energy that can fulfill the energy requirement for our growing fu-

ture needs. In Section 1.5, it is seen that the dynamics of plasma are highly nonlin-

ear and complex. In general, an understanding of the various plasma processes can

be obtained by investigating the plasma equilibrium parameters like density, elec-

tron temperature, plasma potential. Apart from these, features related to plasma

waves such as frequency and dispersion relation also give information about the

plasma process. However, to explain certain phenomena like plasma transport,

which is very important in case of fusion experiment, and to achieve features like

chaos control in plasma, one requires information about the underlying dynamics

of plasma which can be extracted from the plasma oscillations. Consideration of

plasma fluctuations is also important during development of plasma based thin

film/nanoparticle growth due to the correlation between plasma fluctuation and

fluctuations of nanoparticle growth.

Conventional plasma physicist would be interested in oscillations from a spec-

tral point of view like identification of frequencies and their power etc., but a

nonlinear dynamist would tend to explore every small details in the oscillations

e.g. plasma physics in general does not have the word mixed mode oscillation,

but it is an important phenomena in nonlinear dynamics. In conventional plasma

analysis, a plasma with no oscillations would be considered to be stable, which may
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not really be true since a small perturbation may lead the system to an unstable

state. Even in the variation of a control parameter, a conventional plasma physicist

may vary it in large steps without really going into the details of the oscillations

whereas to study nonlinear dynamics, one would vary the control parameter in

the smallest step possible. Smaller details like the various types of bifurcations

and how the system went from order to chaos or vice versa, whether features like

intermittency or crisis occur would greatly interest a nonlinear dynamist. Thus,

investigation of nonlinear plasma fluctuations in order to extract the underlying

nonlinear dynamics of plasma has emerged out as an important area of research.

All the above discussion motivates us to investigate and explore the interesting

physical phenomena related to nonlinearity of plasma. As the glow discharge

plasma device is very common and versatile in plasma technology and also very

easy to operate in a large parametric window of discharge voltage and neutral

pressure. As a result the dynamical behaviour of glow discharge plasma are being

diagnosed extensively in recent years [30, 42, 43, 44]. Although many experiments

based on various control parameters have been carried out to study the nonlinear

behaviour in glow discharge plasma, the role of intrinsic noise and inhomogeneous

magnetic field (dipolar magnetic field) have not yet been explored much. The

noise may come into the plasma system by two ways. First, externally applied

sources like noise and function generators generates the extrinsic noise. Second,

various plasma mode interactions, and experimental devices like power supply

generate the intrinsic noise. Within the scope of the present thesis a glow discharge

plasma devise was used to produce argon discharge plasma for studying various

non-linear behavior of both unmagnetized as well as magnetized plasma. Research
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work carried out in this thesis are focussed to study how the presence of external

inhomogeneous magnetic field produced by a bar magnet, external homogeneous

magnetic fields (axial magnetic field) and intrinsic plasma noise affects the plasma

dynamics.

During the investigation of plasma dynamics in the presence of dipolar mag-

netic field, various interesting nonlinear dynamical phenomena like mixed mode

oscillation, canard oscillation and period doubling have been seen. A role of in-

trinsic noise is seen in the observation of canard and mixed mode oscillations. Can

a homogeneous magnetic field perturbation also lead to such nonlinear behavior?

This question motivates us to carry out an experiment in the presence of axial

homogeneous magnetic field, and in this experiment we have seen the multifractal

behaviour of the plasma dynamics. Understanding the multifractal behaviour is

very important phenomena in magnetized plasma devices like tokamak and is of

great importance for space plasmas. Motivated by the fact that sometimes intrinsic

noise can induce complicated nonlinear phenomena as observed in our experiments

in magnetized plasma, we next inspected thoroughly the effect of intrinsic noise

on excitable dynamics of unmagnetized plasma. In general an experimental time

series is always contaminated by noisy signals as also seen in our experiments. It

has been realized that the accuracy of results can be improved by eliminating the

coherent part of a time series data from its incoherent part. This motivates us to

develop a method for coherent mode detection of a chaotic or turbulent time series

data.
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1.7 Scope and Organization of the Thesis

The scope of this thesis is to explore the effect of axial, dipolar magnetic fields and

intrinsic noise on the plasma dynamics. To achieve our goal, we have done sev-

eral experiments in a glow discharge magnetized as well as unmagnetized plasma.

Apart from the experiments, we have carried out a few numerical simulations to

understand nonlinear dynamical response of plasma in connection with the above

experiment. In addition to this, an empirical mode decomposition based coherent

mode detection technique is developed which turns out to be very efficient to filter

out the coherent part of a chaotic or turbulence data from its incoherent part.

The thesis contents are distributed through nine different chapters. It is orga-

nized as follows: chapter 1 starts with introduction of complex systems, nonlinear

dynamics, and plasma physics. It also provides a glimpse of the contribution of

plasma in the fields of nonlinear dynamics. Details about the glow discharge plasma

experimental system and the diagnostics used for plasma characterization are de-

scribed in chapter 2. It also describes the tools used for the analysis of plasma

fluctuations. Experimental results on the mixed mode oscillation and canard os-

cillation in the excited glow discharge plasma in the presence of an inhomogeneous

magnetic field are given in chapter 3. Role of intrinsic noise in the generation

of such plasma oscillation is shown, and a numerical simulation, to understand

the dynamical origin of these plasma oscillations and to verify the role of intrinsic

noise, is carried out in this chapter. Chapter 4 extended the work of chapter 3,

where glow discharge plasma system kept in a normal oscillatory state instead of

an excited one and a localized glow region of excess ionization and its associated
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nonlinear dynamics is shown. Chapter 5 presents the experimental studies of mul-

tifractal dynamics of plasma in the presence of axial magnetic field. Multifractal

dynamics of plasma are confirmed using multifractal detrended fluctuation analysis

technique. Effect of intrinsic noise on the plasma dynamics in the unmagnetized

case is demonstrated in the chapter 6. For the first time, an experimental evidence

of intrinsic noise induced coherence resonance in a plasma system is shown and

verified using numerical simulations. FitzHugh-Nagumo like model, derived from

the ion density perturbation equation, is obtained to explain the intrinsic noise

induced coherence resonance. An experimental signal is always contaminated with

the noise and an incoherent part. To address this problem, in chapter 7 we have

developed a method to extract the coherent mode in a chaotic or turbulent time se-

ries data. This method is based upon the empirical mode decomposition technique

and its efficiency is shown by applying this method on three different fluctuations

obtained from the glow discharge plasma device. Chapter 8 presents the appli-

cability of empirical mode decomposition based coherent mode detection method

on the intermittent data. Intermittent chaotic fluctuations of plasma are analyzed

using this method and the obtained results further consolidate its efficiency and its

applicability on various chaotic and turbulent data. Finally, in chapter 9, works

presented in this thesis are summarized and the future scope of work has been

presented.



Chapter 2

Experimental Setup: Glow

Discharge Plasma Device, Plasma

Diagnostics and Plasma

Fluctuations Analysis Techniques

In this chapter, detailed description of experimental setup, diagnostics and data

analysis techniques have been presented. Experiments have been carried out in a

dc glow discharge plasma device. Langmuir probe is used as a diagnostic tool for

the plasma characteristics and plasma floating potential fluctuations. A detailed

methodology of various linear, nonlinear and statistical time series analysis tools,

used for the analysis of floating potential fluctuations is presented.

17



18

In the laboratories, plasmas are created by supplying energy to the neutral

gas. There are various ways to supply the necessary energy to the neutral gas

for plasma production like exothermic chemical reaction, adiabatic compression

of the gas, etc. Supply of energy to the gas reservoir via energetic beams is also

an option. However, the electrical breakdown of the gas is the most widely used

method for the production of plasma in the laboratory. There are always some

electrons and ions in any volume of the neutral gas formed due to the interaction

of the cosmic rays and radioactive radiations. With application of external electric

field, these electrons get accelerated and collide with the atoms and molecules of

the neutral gas with sufficient energy as a result of which ionization of the neutral

gas occurs. The avalanche of charged particles, formed during this process, is

balanced by the charge carrier losses like recombination, losses to the wall of the

container, etc., so that a steady state plasma is formed. According to the temporal

behaviour of the applied electric field, discharges are classified as direct current

(dc) discharges, radio frequency (rf) discharges, microwave discharges, etc. In the

present experiments, dc discharge has been used for the plasma production.

2.1 Experimental System: Glow Discharge Plasma

In a glow discharge plasma device, plasma is created by the direct current discharge.

Glow discharge plasmas are low temperature plasmas and very useful in various

applications like plasma based discharge cleaning, plasma sputtering processes,

etc. In dc glow discharge, the electrons are energized by applying an electric field

between the electrodes containing the neutral gas.
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Figure 2.1: Schematic diagram of the dc glow discharge plasma device.

The experiments were carried out in a cylindrical hollow cathode dc glow dis-

charge plasma device. The schematic diagram of the experimental setup is shown

in the figure 2.1 whereas side and top views of the setup are shown in the figures

2.2 and 2.3 respectively. The setup consists of a cylindrical cathode of diameter

∼10 cm and length ∼20 cm, and a central anode rod of diameter ∼ 3 mm and

length ∼ 3 cm. The whole setup was mounted inside a vacuum chamber which

was evacuated to a base pressure ∼ 0.01 mbar using oil rotary pump. The neu-

tral pressure inside the vacuum chamber was controlled by a needle valve and the

range of the gas pressure in experiments was between ∼ 0.03−0.5 mbar. Argon

(Ar) plasma was produced inside the system at working pressure by applying a dis-

charge voltage (DV) between anode and cathode which could be varied in the range

of 0−1000 V. A copper coil, connected to a constant current source, is wound over

the cylindrical vessel to produce a uniform axial magnetic field (B). There was also
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Figure 2.2: Picture of the dc glow discharge plasma device: 1) vacuum chamber,
2) stand, 3) high voltage power supply, 4) argon gas cylinder, 5) rotary pump, 6)
digital oscilloscope, 7) pressure reading meter, 8) Langmuir probe, 9) power supply
connection, 10) pressure control unit: needle valve, 11) Pirani gauge, and 12) side
cylindrical chambers attached with main vacuum chamber.
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Figure 2.3: Top view of the dc glow discharge plasma device: 1) probe holder, 2)
copper coil winding on side cylindrical body having cylindrical cathode chamber,
3) power supply connection, 4) Pirani gauge, 5) pressure control unit: needle valve,
and 6) upper flange.

a provision to produce an inhomogeneous magnetic field by keeping a bar magnet

near to the cathode surface. Detail of various parts of the device is given below:

• Vacuum Chamber and Vacuum System: The vacuum chamber is made

up of stainless steel and mainly consists of three parts: cylindrical body,

bottom flange and upper flange. Upper and bottom flanges, have diameter 30

cm and, are separated by a distance of 30 cm. Upper flange consists of three

opening ports allowing us to connect the gas inlet valve, a Pirani gauge and

power connection for the electrode system, whereas bottom flange consists

of one opening port to which pumping system is connected. Main cylindrical

body of chamber is attached to four side cylindrical bodies each of length ∼

20 cm. One of these four side cylindrical bodies has been used to mount the
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cylindrical cathode chamber. These side cylinders also have flanges attached

to them with opening ports allowing for insertion of Langmuir probes. The

whole vacuum chamber is supported on a stand.

The vacuum chamber is connected to oil rotary pump with pumping speed

of 250 l/s through an opening port in bottom flange. A gate valve, placed

in between the pump and opening port, provides the isolation of the vacuum

vessel from rotary pump. The gate valve is kept open during the pumping,

and closed when the system is not under operation. A Pirani gauge head

is connected to an opening in the upper flange for the measurement of the

pressure in the chamber.

• Electrode System: A cylindrical stainless steel chamber having diameter

of ∼10 cm and ∼20 cm long is placed in the one of the side cylindrical body

attached with the vacuum vessel. The cathode chamber is attached with

negative polarity of the power supply and also covered with teflon tape to

avoid the contact between cathode chamber and vacuum vessel. A copper

rod of length ∼ 3 cm and diameter ∼ 3 mm is placed along the axial direction

of the cylindrical cathode with the help of a hanging rod and kept grounded.

Hence, copper rod acts as an anode for the system. Picture of the electrode

system is shown in figure 2.4.

• Power Supply: Power to the electrodes to initiate the discharge process

has been supplied by a high voltage dc power supply (Aplab H1010). It is a

variable power supply of range 0-1000 V and maximum output current is 1

amp.
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Figure 2.4: Picture of the electrode system.

• Magnetic Field System: A copper coil is wound over the cylindrical body

containing the cathode chamber with proper isolation to form a solenoid

like structure. Two ends of the copper coil are connected with a contact

current power supply source to produce an axial homogeneous magnetic field

inside the cathode chamber containing plasma. Apart from this, we have

also provision for applying inhomogeneous magnetic field by placing a bar

magnet out side the cathode chamber.

2.2 Plasma Diagnostic

One requires knowledge about the plasma parameters like density, temperature,

distribution function to understand the nature of plasma, its properties and various

phenomena in it. Thus, measurement of these plasma parameters experimentally

as completely and as accurately as possible is needed. Because of this, an experi-

mental plasma physicist devotes huge effort to planning, developing and providing

techniques for diagnosing the properties of plasmas. Various diagnostic tools have
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been used in plasma experiments [45, 46, 47], for measurement of plasma parame-

ters, like Langmuir probe, emissive prove.

Suitable diagnostics are needed for the characterization of plasma fluctuations

and the waves, instabilities occurring in it. The measurements require adequate

temporal as well as spatial resolution. Langmuir probe (also called electrostatic

probe) is one of the suitable and widely used diagnostic for this purpose. To serve

our purpose, i.e., investigation of nonlinear dynamics in plasma, we have used

Langmuir probe.

2.2.1 Langmuir Probe

Langmuir probe technique, developed by Irving Langmuir in 1924, is one of the

most widely used and the earliest technique in plasma diagnostics for measuring

the properties of laboratory plasma. Langmuir probe is nothing but a metallic

electrode inserted into the plasma. The greatest advantage of Langmuir probe is

that it is the simplest and cheapest diagnostic that allows the local measurement

of plasma parameters with high temporal as well as spatial resolution. It can be

used to measure various plasma parameters like electron temperature (Te), electron

density (ne), plasma potential (VP ), etc. over a wide range of plasma parameters.

However, the accuracy of the Langmuir probe measurement is not very good. In

spite of this discrepancy, it is often used for the advantages mentioned above.

The information about the plasma is obtained from the probe for measuring the

current drawn by it at various applied biased voltages. Figure 2.5 shows a typical

I-V characteristic of a cylindrical shaped Langmuir probe. Here V and I are the

applied bias voltage to the probe and the current drawn by the probe respectively.

The I-V curve has three distinct regions: i) electron saturation region, ii) transition
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Figure 2.5: A typical Langmuir probe’s I-V characteristic curve.

region and iii) ion saturation region.

• Electron Saturation Region: when the bias voltage V is equal to the

plasma potential (VP ) then electric field will vanish and perturbation to the

plasma is minimum. Thus, the current drawn by the probe at this point is

mainly due to the charge particles which reach the probe because of their

thermal velocity. Since the thermal velocity of electrons is much higher than

ions due to their lighter mass, we can neglect the effect of ions. Therefore,

at this point, current collected by the probe is mainly the electron current.

If V is increased above VP , electron current does not increase further since

all the electrons arriving at the probe are collected. This region is called the

electron saturation region and the corresponding electron saturation current
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is given by

Ie,sat = neA

√
Te

2πme

(2.1)

where n, e, A, Te and me are plasma density, electronic charge, area of

Langmuir probe, electron temperature and electron mass respectively.

• Transition Region: when V is made negative with respect to the VP , probe

starts to repel electrons and accelerate ions resulting in decrease of electron

current and increase of ion current. Hence, total probe current decreases.

Finally, at sufficiently negative value of V electron current reduces to very

small fraction of Ie,sat and overall current becomes equal to the ion current.

At this potential total current drawn by the probe is zero and the potential

is called floating potential (Vf ). An insulated probe placed inside the plasma

would assume this potential. This is because of that an insulated probe

inside the plasma is rapidly charged up negatively until the electrons are

repelled and net electrical current brought to zero. This region of the I-V

characteristics is called the transition region or retarded-field region. If the

electron distribution is Maxwellian, the shape of the curve in this region after

subtracting the ion contribution would be exponential. Electron current in

the transition region is given by

Ie = Ie,sat exp
e(V − VP )

Te
(2.2)

• Ion Saturation Region: when V is negative enough to repel all the elec-

trons then the total current collected by the probe is ion current. Probe

current remains constant with the further decrease of V resulting in a satu-

ration region. This region is called an ion saturation region. Ion saturation
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Figure 2.6: Picture of the Langmuir probe used in the experiments.

current is obtained from the Bohm sheath criterion and is given by

Ii,sat = 0.61neA

√
Te
mi

(2.3)

where mi denotes ion mass.

By measuring the probe current and applied voltage to probe, we can estimate

the electron temperature as a slope of ln(Ie) vs V curve, and can estimate plasma

density from Eq. (2.3).

Langmuir probes used in the glow discharge plasma device for the characteri-

zation of its plasma are cylindrical, and made from copper wire of diameter ∼ 1.5

mm and length ∼ 1 cm. A teflon coated stainless steel wire has been soldered to

the probe, and it has been fitted inside a ceramic block. Ceramic block is then

fitted with a stainless steel (ss) tube for the support of the probe in such a way

that the portion which will be inserted into the plasma are keeping out of the of ss

tube. Picture of a Langmuir probe used in the experiments is shown in figure 2.6.

In the present experiments, the floating potential and its fluctuations have been

measured and recorded using a tektronix digital oscilloscope (DPO 4034).



28

2.3 Data Analysis Techniques: Time Series Anal-

ysis Tools

To understand the changing behaviour of the things in the universe, observations

are made sequentially over time. A time series is a collection of such observations

made sequentially and typically equally spaced in time. These time series contain

the information about the measured physical quantities of a system. Useful infor-

mation about the underlying dynamics of the processes and other characteristics

of the data can be obtained by careful analysis of these times series. The special

feature of time series analysis is the fact that the analysis must take into account

the time order because the successive observations are usually not independent ob-

servations, whereas most other statistical theory is concerned with random samples

of independent observations. The main objective of the time series analysis is to

reveal the underlying dynamics governing by the system. Hence, time series anal-

ysis is an important area of research in many branches of science like econophysics,

plasma, geophysics, neuroscience.

In order to explore the plasma dynamics, plasma fluctuation data have been

analyzed. These fluctuations are generally oscillatory in nature. Since oscilla-

tory behaviour is mainly due to nonlinear interaction between the various plasma

components. The origin of these oscillations may be due to: 1) interplay of inter-

nal complex system parameters, called self excited oscillation, 2) external forcing,

called forced oscillation. These two types of oscillatory behaviour form the basis

of study in self excited and forced plasma systems respectively. In this thesis, we

mainly focused on the self excited oscillations of the plasma.

In this thesis, we have made sequential observation of floating potential and
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recorded its time series. These time series are analyzed using various linear and

nonlinear time series analysis tools along with some statistical tools in both time

as well as frequency domain. In linear analysis tools, power spectrum and discrete

wavelet transform have been used, whereas in nonlinear analysis tools, multifractal

detrended fluctuation analysis, Lyapunov exponent, Hurst exponent, etc., have

been used. Few statistical tools like normal variance, correlation coefficient have

also been used to characterize regularity in the fluctuations. The methodology of

the time series analysis tools used in this thesis is given bellow:

2.3.1 Power Spectrum

Any time series data can be considered as a superposition of various sine and cosine

functions with different frequencies. Presence of frequency components in a signal

is a useful information to extract physical information about a system. A time

series can be analyzed in the frequency domain by using Fourier transform. The

Fourier transform, of a function x(t) in given by

x̃(f) =
1√
N

N∑
n=1

xne
2πikn/N (2.4)

where fk = k/(N∆t), k = −N/2, ...., N/2 and ∆t is the sampling interval. N

is the total number of data points in the time series. A periodic or quasi periodic

signal shows sharp spectral line in power spectrum plot, whereas for a chaotic

signal it will show a broadband.

The Power spectrum method has been used extensively in order to find the

characteristic modes, and the dominant mode present in the plasma fluctuations.
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2.3.2 Phase Space Reconstruction

The observation of single variable, a scalar time series, of real process usually does

not provide all possible states and cannot represent the multidimensional phase

space of the dynamical system. Hence, it is necessary to extract the information

of the multidimensional structure from the available scalar time series. Since the

system variable are coupled to each other, it is possible to reconstruct the mul-

tidimensional phase space trajectory from observed time series by a time delay

reconstruction.

According to Taken’s theorem [48], for a given time series data: x0, x1, ..., xn

where xi denotes the output of variable at time i, the reconstructed attractor

(phase space vector) of the original system is given by

Xi = [xi, xi+τ , xi+2τ , ....xi+(m−1)τ ] (2.5)

where τ and m are embedding delay and embedding dimension respectively. m can

be estimated using false nearest neighbour method [49] whereas τ can be estimated

using mutual information method [50]. Using this phase space vector, one can draw

a trajectory in the phase space.

2.3.3 Lyapunov Exponent

The Lyapunov exponent describes the rate of divergence or convergence of nearby

trajectory onto the attractor in phase space. As the chaotic dynamical systems are

sensitive to initial conditions, two nearby trajectories diverge exponentially in the

phase space. Hence estimation of Lyapunov exponent (LLE) is one of the classic

and standard test for chaoticity in a dynamical system. There are various meth-

ods to estimate the Lyapunov exponent. In this thesis, we have used Rosenstein
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method [11] and Wolf method [9]. Rosenstein method has been employed using

TISEAN software package [51] whereas Wolf method has been employed using

package downloaded from webpage [52].

• Rosenstein Method: If d(0) is the initial distance between two points on

the nearby trajectories and after time t distance between them is d(t), then

for a chaotic signal they are related by a relation:

d(t) = d(0) exp (λt) (2.6)

where λ is called Lyapunov exponent.

A practical time series is basically a scalar measurement. So in order to

estimate the Lyapunov exponent, reconstruction of time series into phase

space is necessary. Let Xj and Xĵ are the jth pair of the nearest neighbour

on the reconstructed trajectory of that time series in the phase space and

dj(0) =‖ Xj −Xĵ ‖ is the distance between them. Here, ‖ ‖ denotes the

Euclidian norm. The separation after time t = i∆t, where ∆t is the sampling

time, can be written as

dj(t) = dj(0) exp (λLt) (2.7)

where λL is the rate of separation. The above equation can be written as

ln dj(t) = ln dj(0) + λLt (2.8)

There is another additional constraint, nearest neighbors have a temporal

separation greater than the mean period of the time series, imposed. This

allows us to consider each pair of neighbors as nearby initial conditions for
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different trajectories. The largest Lyapunov exponent is then estimated as

the mean rate of separation of the nearest neighbors.

• Wolf Method: Let, the initial Euclidean distance between the two neigh-

bouring points in the phase space reconstruction trajectory is d0 and the

final distance after time tevolve between the evolved points is devolve. After

each tevolve, we replace evolved point by a new point in the embedding space

whose distance to the evolved initial point is as small as possible, under the

constraint that the angular separation between the evolved and replacement

element is small. This procedure is repeated until the initial point reaches

the end of the time series [53]. Finally, Lyapunov exponent (λL) is calculated

according to the equation

λL =
1

Mtevolve

M∑
i=0

ln
d
(i)
evolve

d0
(2.9)

where M is the total number of replacement steps.

2.3.4 Multifractal Detrended Fluctuation Analysis

The MF-DFA method is the modified version of detrended fluctuation analysis

(DFA) used to detect multifractal properties of time series. The multifractal de-

trended fluctuation analysis (MF-DFA) consists of five steps. For a given time

series xk of length N , steps for MF-DFA are given below [54]:

1. Determine the profile of underline time series

Y (i) ≡
i∑

k=1

[xk− < x >] i = 1, 2, ...., N. (2.10)

2. Divide the profile Y (i) into Ns ≡ int(N/s) non-overlapping segments of equal

lengths s.
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3. Compute the local trend for each of the 2Ns segments by a least squares fit

of the series. Then determine the variance

F 2(s, ν) ≡ 1

s

s∑
i=1

{Y [(ν − 1)s+ i]− yν(i)}2, ν = 1, 2, ...., Ns (2.11)

and

F 2(s, ν) ≡ 1

s

s∑
i=1

{Y [N−(ν−Ns)s+i]−yν(i)}2, ν = Ns+1, Ns+2, ...., 2Ns

(2.12)

where yν(i) is a fitting polynomial in segment ν. Linear, quadratic, cubic

or higher order polynomials can be used in the fitting procedure. Usually, a

linear function is selected for fitting the function [55].

4. Average over all segments to obtain the qth-order fluctuation function, given

by

Fq(s) ≡ {
1

2Ns

2Ns∑
ν=1

[F 2(s, ν)]q/2}1/q. (2.13)

5. Determine the scaling behaviour of the fluctuation functions by analyzing

log-log plots of Fq(s) versus s for each value of q. If the series xk is long

range power law correlated, Fq(s) increases as a power law for large values

of s,

Fq(s) ∼ sh(q) (2.14)

In general, the exponent h(q), known as the generalized Hurst exponent, may

depend on q. For stationary time series, h(2) is identical to the well-known Hurst

exponent (H).

h(q) is independent of q for monofractal time series, since the scaling behaviour

of the variances F 2(s, ν) is identical for all segments ν. For the multifractal time
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series, there will be a significant dependence of h(q) on q. If we consider positive

values of q, the segments ν with large variance F 2(s, ν) will dominate the average

Fq(s). Thus, for positive values of q, h(q) describes the scaling behaviour of the

segments with large fluctuations. Usually the large fluctuations are characterized

by a smaller scaling exponent h(q) for multifractal series. On the other hand, for

negative values of q, the segments ν with small variance F 2(s, ν) will dominate the

average Fq(s). Hence, for negative values of q, h(q) describes the scaling behaviour

of the segments with small fluctuations, which are usually characterized by a larger

scaling exponent.

A multifractal description can also be obtained by considering partition func-

tions [56] :

Zq(s) = sτ(q) (2.15)

The relation between classical multifractal scaling exponents τ(q) (Rényi expo-

nent) obtained from standard partition function-based multifractal formalism and

generalized Hurst exponent h(q) is given by:

τ(q) = qh(q)− 1; (2.16)

The generalized multifractal dimension is given by:

D(q) ≡ τ(q)

q − 1
=
qh(q)− 1

q − 1
; (2.17)

There is another way to characterize multifractal properties of a time series by

using singularity spectrum f(α) which is related to τ(q) via a Legendre transform:

f(α) = qα− τ(q) = q(α− h(q)) + 1; (2.18)

where α = τ ′(q).
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The width and shape of the multifractal spectrum reflect the temporal variation

of the local scale invariant structure of the time series. The width of the singularity

spectrum denotes the degree of multifractality of a time series.

2.3.5 Empirical Mode Decomposition (EMD)

Empirical mode decomposition (EMD), proposed by Huang et al. [57], has emerged

as a very efficient tool for the analysis of a nonlinear and non-stationary time series

data. It is a method to decompose a signal into its inherent signals which usually

refer as intrinsic mode functions (IMFs). An IMF is just a simple oscillatory mode

satisfying the following conditions: 1) envelopes of maxima and minima must have

zero mean 2) the difference between the number of local extrema and the number

of zero-crossings must be zero or one. The first condition assures that the IMF

is symmetric, and the second condition assures that no riding waves of multiple

frequency exist in an IMF. These two conditions ensure that the IMF is monocom-

ponent in frequency [57]. Most of the experimental signals are multicomponent

in nature, i.e., there exist different scales simultaneously. These signals can be

considered as a superposition of fast oscillation with a slow one at the local level.

Therefore, we need to decompose these signals into their inherent modes for the

study of their basic structure. This EMD approach is based on the local time

scales, i.e., the detection of the local maxima and minima.

The algorithm to extract IMF from a signal x(t) involves the following steps:

1. Identify all the local maxima/minima and connect them using cubic spline

to form an envelope of maxima/minima, Emax(t)/Emin(t).

2. Compute the mean between these two envelopes m(t) = Emax(t)+Emin(t)
2

.
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3. Extract the residue h11(t) = x(t)−m(t). Ideally, h11(t) should be an IMF as

expected, However it may not satisfy the condition to be an IMF in reality.

4. Iterate step (1-3) on residue, i.e., repeat the sifting process n times, until

h1n(t) is an IMF and h1n(t) = C1(t) is designated as the first IMF.

5. Compute the residue R1(t) = x(t)− C1(t).

6. Iterate step (1-5) on R1(t) to compute the second IMF C2(t) and the residue

R2(t).

7. The sifting procedure is then repeated on residuals Rn−1(t) until Rn(t) be-

comes a monotonic function or at most has one local extreme point.

The above algorithm removes the high frequency oscillation from the data with

each repetition, resulting in higher IMFs containing a lower frequency oscillation

than the earlier one. The sifting procedure mentioned above is continued till a

particular stopping criteria is met, ideally when the two conditions for a signal

to be an IMF are fulfilled. But imposing a too low threshold for terminating the

process may lead to the generation of spurious IMFs. There are many stopping

criteria discussed in literature [57, 58]. Here, we have adopted a stopping criteria

proposed by Rilling et al. [58], based on two thresholds δ1 and δ2, the ratio of

mean to the amplitude of the envelopes i.e. on S(t) =
∣∣∣M(t)
A(t)

∣∣∣. The two threshold

conditions δ1 and δ2 are imposed to guarantee globally small fluctuations in the

mean while taking large excursions. For a given fraction of time (1 − α), S(t)

should be less than δ1 and for the rest of the time S(t) should be less than δ2.

Here, α is a constant. In our later analysis, δ1, δ2 and α are set at same values as

used by Rilling et al. [58], i.e., at 0.05, 0.5 and 0.05 respectively.
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2.3.6 Correlation Coefficient

The correlation coefficient (CC) of a time series Y(t) with another time series X(t)

is given by:

CC =

∣∣∣∣∣∣
∑N

i=1(Y (ti) ·X(ti))√∑N
i=1 Y (ti) · Y (ti)

√∑N
i=1X(ti) ·X(ti)

∣∣∣∣∣∣ (2.19)

where N is the data length of the signal. The value of CC is normalized to lies

between 0 and 1.

In our works, we have used this statistical quantities to find out the correlation

between an IMF with its original signal. The CC of an IMF, gives an idea about its

contribution to the original signal, and is calculated using the following relation:

CC =

∣∣∣∣∣∣
∑N

i=1(IMF (ti) ·X(ti))√∑N
i=1 IMF (ti) · IMF (ti)

√∑N
i=1X(ti) ·X(ti)

∣∣∣∣∣∣ (2.20)

where X(t) is a signal and N is the data length of the signal. The IMFs, whose

CC is more than 10% are considered as relevant (physically significant mode) and

the rest are considered as redundant.

2.3.7 Hilbert Huang Transform

The Hilbert Huang transform (HHT) was proposed by Huang et al. [57]. The HHT

represents the signal being analyzed in the time-frequency domain by combining

the empirical mode decomposition (EMD) and the Hilbert transform.

Hilbert transform of a time series X(t) is written as:

Y (t) =
1

π
P

∫ +∞

−∞

X(t′)

t− t′
dt′ (2.21)

where P is the Cauchy principal value. From this we can construct an analytical

signal Z(t) defined as Z(t) = X(t) + jY (t) = A(t)ejφ(t)t, where A(t) =
√
X2 + Y 2
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and φ(t) = arctan (Y/X) are the instantaneous amplitude and phase angle re-

spectively. Hence the corresponding instantaneous frequency can be defined as:

ω(t) = dφ(t)
dt

.

In order to get information about the instantaneous frequency, we need to have

a monocomponent signal, whereas almost all experimental signals are multicom-

ponent in nature. So, first we have to convert the signal into monocomponent

signals which can be achieved using empirical mode decomposition. Empirical

mode decomposition decomposes a signal into some individual monocomponent

signals which are termed as IMF for which the concept of instantaneous frequency

is valid. The Hilbert transformation of the IMF is termed as a Hilbert Huang trans-

form. The instantaneous amplitude and instantaneous frequency can be organized

in the form of a time-frequency spectrum H(ω, t), also known as the Hilbert-Huang

spectrum which is given by the relation

H(ω, t) = Re
∑
i

Ai(t) exp

[
j

∫
ωi(t)dt

]
(2.22)

2.3.8 EMD Based Bicoherency

In the section 2.3.7, we have seen that the IMFs can be represented in the form

of Zi(t) = Ai(t)e
jφi(t)t using Hilbert transform. The interaction amongst them can

be studied by estimating the Bicoherency factor [59]

γ =
< Z∗i Zi+1Zi+2 >

< AiAi+1Ai+2 >
(2.23)

where the angular bracket represents the time average.

The value < Z∗i Zi+1Zi+2 > is nearly 0 for random values of φi, φi+1 and φi+2

and equal to < AiAi+1Ai+2 > when φi = φi+1 +φi+2. Hence, γ is bounded between

0 and 1. First, we calculated the largest number of 2π phases in each of the
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triplets [59]. Since N (number of 2π phases) is an ensemble of independent wave

periods, the error in the bicoherency factor is given by σ = 1√
N

. If bicoherency

factor for a particular IMF is larger than the error value, then there is an existence

of triplet interaction between that particular IMF and two successive modes.

2.3.9 Discrete Wavelet Transform

Wavelet transform [60, 61], a tool for analysis of non-stationary time series data,

decomposes a time series x(t) into a superposition of the elementary functions

ψa,b(t) derived from a mother wavelet ψ(t) by dilation and translation, i.e.,

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
, (2.24)

where a (> 0) is a dilation parameter and b is a translation parameter. Both a

and b are real parameters.

Wavelet transform are of two types: continuous wavelet transform (CWT) and

discrete wavelet transform (DWT). If the data are confined to a discrete set, it

is important to consider a discrete version of wavelet transform. In this case, the

wavelet transform is performed only on a discrete grid of the parameters of dilation

and translation, i.e., a and b can take only integral values. The orthonormal wavelet

basis function can be obtained from Eq. (2.24) by setting a = 2−m and b = n/2m.

The DWT is defined as,

xnm =

∫ +∞

−∞
x(t)ψm,n(t)dt, (2.25)

where the orthonormal basis function is given by

ψm,n(t) = 2m/2ψ (2mt− n) . (2.26)
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Figure 2.7: Fourth order Daubechies wavelet.

The transform is simply a linear combination of basis functions. The contribu-

tion of the signal at particular scale m is given by,

xm(t) =
∑
n

xnmψm,n(t)dt. (2.27)

One can obtain the original time series using inverse transform for the orthog-

onal decomposition

x(t) =
∑
m,n

xnmψm,n(t)dt. (2.28)

In this thesis, we have employed the Daubechies wavelet ψr(t) which are in the

form of Eq. (2.24) and has the following properties [62]:

1. ψr(t) is supported in the interval of [0, 2r+1].

2. ψr(t) has r vanishing moment, i.e.,∫ +∞

−∞
trψr(t)dt = 0. (2.29)

3. The continuous derivative of ψr(t) is δr, where δ ' 0.2.

For r = 1, this orthogonal basis function reduces to Haar wavelet. The

Daubechies wavelets are determined recursively from its scaling function. Fourth

order Daubechies wavelet, shown in figure 2.7, is used during wavelet analysis in

this thesis.
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2.3.10 Hurst Exponent

The Hurst exponent (H) was first introduced by Hurst to study the long term

memory stored in a time series data. It quantifies the relative tendency of a time

series either to regress strongly to the mean or to cluster in a direction. The value

of H is bounded between 0 and 1. A value of H = 0.5 corresponds to a completely

uncorrelated series. Motion corresponding to H > 0.5 have tendency to persist

in its progression in the direction of motion, whereas for H < 0.5, motions have

a tendency to turn back upon themselves. The value of H < 0.5, > 0.5 and 1

indicate the anti-persistence (anti correlated), persistence (correlated) and periodic

nature of the time series signal. A number of estimators of long-range dependence

such as rescaled range (R/S) analysis, detrended fluctuation analysis, aggregated

variances, etc. have been proposed in the literature. The oldest and best-known

is the so-called rescaled range (R/S) analysis popularized by Mandelbrot et al.

[63, 64] and based on previous hydrological findings of Hurst [65].

For any time series signal Xi, the R/S is defined as the ratio of the maximal

range of the integrated signal normalized to the standard deviation:

R(m)

S(m)
=
max(Z1, Z2, ..., Zm)−min(Z1, Z2, ..., Zm)√

S2(m)
, (2.30)

where Zm is the cumulative-summed (integrated) time series. For a time series of

length i, X = {Xt : t = 1, 2, .., i}, Zm is given by

Zm = X1 +X2 + ....+Xm −mX̄, (2.31)

where X̄, S2(m) and m are respectively the mean, variance, and time lag of the

signal. The expected value of R/S scales like cmH as m→∞. Here, c and H are

a constant and Hurst exponent respectively. To estimate the value of the Hurst
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exponent, log10(R/S) is plotted against log10(m). The slope of linear regression

gives the value of Hurst exponent.

Presence of coherent oscillations can also be identified as a linear regime in

the plot of log10(R/S) versus log10(m) and the value where bending begins in the

curve correspond to the time period of the oscillation. It is possible to have more

than one linear regime in the plot which indicates the presence of multiple coherent

modes/oscillations [13] as well as multiple centres of rotation [66].

2.3.11 Normalized Variance

The normalized variance (NV) is a measure of the regularity of occurrence of spikes

in a time series signal. It is defined as NV = σISI/mISI , where ISI is the time

elapsed between successive spikes, σISI and mISI are standard deviation of ISI and

mean of ISI respectively. It is evident that the value of the computed NV will be

lower for the more regular induced dynamics. For purely periodic dynamics, the

NV will be zero.

All the above methods and their algorithms have been implemented using MAT-

LAB code language, and used in this thesis for the analysis of plasma fluctuations.



Chapter 3

Canard and Mixed Mode

Oscillations in an Excitable Glow

Discharge Plasma in the Presence

of a Bar Magnet

In this chapter, the effect of an inhomogeneous magnetic field produced by a bar

magnet on the excitable dynamical state of a glow discharge plasma system is inves-

tigated. The possible physical process behind the generation of nonlinear dynamical

phenomena: canard and mixed mode oscillations in the plasma is discussed. The

obtained results are explained in the light of magnetization of ions and presence

of intrinsic noise. Starting from a FitzHugh-Nagumo like macroscopic model de-

rived from the basic plasma equations and phenomenology, dynamical origin of such

nonlinear phenomena is identified and corroborated with possible physics.

43
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3.1 Introduction

An excitable system is a nonlinear dynamical system having a single stable at-

tractor, but it has two modes of returning to the equilibrium state. For small

perturbations away from the equilibrium, it returns to equilibrium in monotonic

fashion; however, for perturbations beyond a threshold value, it undergoes a large

excursion before settling down. It is well known that a change in the control pa-

rameter or external perturbation of an excitable complex system near the threshold

produces various nonlinear phenomena such as noise induced resonances, canard

oscillations and mixed mode oscillations, which have been observed experimen-

tally as well as numerically in many physical, chemical, biological and electron-

ics systems [41, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82].

However, these kind of phenomena have been observed in a very few plasma ex-

periments [38, 39, 40, 83, 84]. This is mainly because, it is not easy to achieve

excitability condition in a plasma system. So far, most of the nonlinear dynamical

experiments, which depend on the excitability of plasma were performed in the

glow discharge plasmas. In these experiments the excitability has been achieved

through Hopf bifurcation [39, 40] or homoclinic bifurcation [38]. When plasma is

perturbed at its excitable state by using noise or a periodic signal or both types of

signal, the system shows coherence resonance, stochastic resonance, frequency en-

tertainments, period pulling and other perturbation-enhanced nonlinear phenom-

ena [38, 39, 40, 83, 84, 85]. It is observed that if the change in the system control

parameter near the threshold is very small or systems are perturbed by noise,

then such systems may also show canard-enhanced phenomena. For example, the

FitzHugh-Nagumo (FHN) model or some real experiments generate canard and
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various canard-enhanced phenomena due to small change in the control parameter

and noise perturbation [67, 71, 81, 86, 87, 88, 89, 90, 91, 92].

The canard phenomena in an excitable system means the generation of small

amplitude quasiperiodic oscillations that has been observed through numerical sim-

ulation as well as in a few experiments for a small change in the control parameter

near the threshold of excitability [67, 71, 79, 80]. Though a small change in the

control parameter is easily realizable in numerical simulations to get canard phe-

nomena, it is difficult to achieve such tiny change in the case of real experiments.

In the case of a glow discharge plasma [83, 84, 38, 85], where the discharge voltage

or current acts as a control parameter, canard induced phenomena have not yet

been observed by changing the discharge voltage or current. This may be due to

the fact that discharge voltage or current acts as a coarse control parameter due to

the limitation of our present experimental setup. Small changes in the parameters

can be achieved by changing other external parameter like magnetic field or by

changing the intrinsic noise level of the system. It is also observed that very small

amount of noise perturbation excites canard orbit and MMO (oscillatory dynam-

ics involving oscillations with greatly different amplitudes). Various mechanisms

are responsible for MMOs in a deterministic system, such as the existence of a

Shilnikov type homoclinic orbit or subcritical Hopf bifurcation [93, 94]. A stochas-

tic process can also generate MMOs [80, 91]. As small amount of intrinsic/internal

noise is always present in a plasma system, it can generate various noise induced

phenomena under suitable parametric conditions. As the level of internal noise

can be changed easily by changing certain experimental parameter like discharge

voltage or external magnetic field, such changes in the noise level can generate
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noise induced phenomena like MMOs in a plasma system.

3.2 Canard and Mixed Mode Oscillations

To carry out an experiment, initially the chamber was filled with argon gas at

pressure ∼ 0.36 mbar and a discharge was initiated by increasing the discharge

voltage (DV). At this pressure, system showed an excitable fixed point dynamics

at DV ∼ 401 V . An inhomogeneous magnetic field was applied to the plasma by

using a bar magnet as shown in the schematic diagram of experimental setup (figure

2.1) in the chapter 2. When the magnet is kept far away, the field experienced

at the cathode boundary is almost negligible and on bringing it nearer to the

system, the field strength increases. The variation in the magnetic field with

distance is shown in figure 3.1 (a). Figure 3.1 (b) shows the ion cyclotron frequency

(fci) corresponding to magnetic field strengths derived using the relation fci =

1.52× 103Zµ−1B Hz, where, µ = mi

mp
; Z is charge state and B is the magnetic field

in Gauss (G). mi and mp is the argon mass and proton mass respectively. Once

the excitability is achieved through change of the DV, it was kept fixed through

out the experiment and the magnetic field, act as a control parameter, was varied

to get the desired dynamics.

Figure 3.2 shows the plasma floating potential fluctuations for different values of

magnetic fields. Figure 3.2(a) shows the quasiperiodic small amplitude oscillations

at a magnetic field of ∼ 2 G (i.e., just after the introduction of the magnetic field).

Figures 3.2(b) and 3.2(c) show the plasma fluctuations at B ∼ 6 G and B ∼ 14 G

respectively. It is seen from these plots that the large but bounded periodic limit

cycle oscillations appears between the small quasiperiodic oscillations confirming
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Figure 3.1: a) Variation of the applied magnetic field as a function of distance from
the cathode chamber. b) Estimated values of ion cyclotron frequency at different
values magnetic field strength.
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Figure 3.2: Plasma floating potential fluctuations at different values of magnetic
field: a) 2 G: small amplitude quasiperiodic oscillation, b) 6 G: emergence of
canard trajectory and spiky oscillations, c) 14 G: appearance of the irregular
mixed mode oscillation, and d) 25 G: appearance of the regular mixed mode
oscillation. DV and pressure are kept fixed at 401 V and 0.36 mbar respectively.
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the occurrence of canard orbit and spiky oscillation. In figures 3.2(b) and 3.2(c)

the appearance of sporadic long quasiperiodic sequence may be due to parametric

drifts of the system from the mean fixed point. These oscillations were observed for

wide range of magnetic field values (∼ 6 G to ∼ 20 G). When the magnetic field

became ∼ 25 G, large oscillations were observed after every two small oscillations

[Figure 3.2(d)] and this has been observed till 100 G. As the magnetic field was

applied from outside the vacuum vessel, it was not possible to go beyond the 100

G limit with the present configuration of the experimental setup.

The observed oscillations in the figures 3.2(c) and 3.2(d) show the characteris-

tics of MMO. In order to characterize these oscillations, a symbolic notation mn

is assigned to the MMO states, where m gives the number of large-amplitude os-

cillations and n the number of small-amplitude oscillations in a single pattern. A

combination of 16, 15 and 14 is seen in the figure 3.2(c), but the combination is

not in a periodic fashion. This type of MMOs are generally termed as a compound

and irregular MMOs. The nature of oscillation became regular MMO of 12 type

for the higher values of magnetic field as seen in figure 3.2(d).

Figure 3.3 shows the power spectrum corresponding to the data shown in the

figure 3.2. In the figure 3.3(a), distinct peaks approximately around ∼ 4205 Hz

and ∼ 4155 Hz are seen in the case of quasiperiodic oscillation which is lying in

the range of ion acoustic oscillations. These two frequencies are incommensurate in

the nature justifying the quasiperiodic characteristic of the oscillation. In the fig-

ure 3.3(b), a broadband is observed with dominant power around ∼ 4 kHz for the

quasiperiodic oscillation with few large amplitude spikes. For the irregular MMOs,

dominant peaks in the power spectrum [figure 3.3(c)] are observed around 600 Hz
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Figure 3.3: Power spectrum plots for: a) 2 G: quasiperiodic oscillation shown in
figure 3.2(a). Here f0(4205Hz) and f1(4155Hz) are two incommensurate frequen-
cies. b) 6 G: quasiperiod oscillation with few large amplitude spikes shown in the
figure 3.2(b), c) 14 G: irregular MMO, and d) 25 G: regular MMO shown in the
figure 3.2(c) and figure 3.2(d) respectively.

and its harmonics which is broadband in the nature. This broadband may due to

the interaction of ion acoustic and ion cyclotron modes, and the frequencies in the

broadband are lying in the range of ion cyclotron and ion acoustic frequencies. A

clear distinct peaks are seen around ∼ 960 Hz and its harmonics in the case of

regular MMO which might correspond to ion cyclotron frequency (∼ 950 Hz at 25

G) and its higher harmonics. It is also seen that the observed power for the dom-

inant frequency is approximately 100 times as compared to irregular MMOs. The

distinct peaks in the power spectrum plot for regular MMO confirm the periodic

nature of oscillation. In case of irregular MMOs power is distributed all over the

modes whereas for the regular MMO it is concentrated in the ion cyclotron mode.

Figure 3.4 shows the reconstructed phase space projection corresponding to

the experimental data shown in figure 3.2. The phase space projections show all
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Figure 3.4: Reconstructed phase space plots for the fluctuations shown in figure 3.2.
First plot (a) clearly shows the small amplitude quasiperiodic oscillation whereas
other three are showing the occurrence of spikes and canard trajectories. In these
plots the time delay, estimated using mutual information technique, τ = 0.04 ms
has been used.

the expected noisy version of canards. The phase space projection also show the

features of MMOs, i.e., small quasi periodic oscillations followed by a number of

large amplitude limit cycle oscillation.

The main feature of a system which shows MMO is that it must be nonlinear

with multiple timescales [87, 88, 91]. Occurrence of the multiscale dynamics in

an excitable plasma system has already been confirmed [38], where multiscale

dynamics has already been exploited to demonstrate noise induced coherence and

stochastic resonances [38, 85]. MMO driven by deterministic process display a

strong trend in increasing amplitude of small amplitude quasiperiodic subthreshold

oscillation, while those driven by stochastic process have a weaker trend or no trend

at all, for average amplitude of small amplitude quasiperiodic oscillation [80]. In

the present experiment, we have not observed any increasing trend in the small

amplitude quasiperiodic oscillations which suggests that the observed MMOs may

be noise driven. We feel that the internal plasma noise is responsible for the

generation of MMOs. In order to understand the role of internal plasma noise, we
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have investigated variation in the noise level with magnetic field which is presented

in the section 3.3.

3.3 Role of Magnetic Field in the Generation of

Internal Plasma Noise

Magnetic field can affect the plasma system by helping in increasing the confine-

ment of charged particles [95, 96]. The application of an inhomogeneous magnetic

field in the plasma leads to the generation of ion cyclotron oscillations with dif-

ferent frequencies and polarization characteristics which interact nonlinearly with

the different plasma modes for example ion acoustic modes [97]. This may be re-

sponsible for the broadband spectrum, which we term as an internal plasma noise.

Since electron cyclotron frequencies are very high as compared to the frequencies of

interest in the experiment we can ignore such effects. The electrons can participate

in increasing the collisions with neutrals and hence change the ionization content

in the present experiment.

Figure 3.5 shows a sketch of the magnetic field lines in the presence of the bar

magnet. The magnetic lines of force nearer to the cathode surface (-ve potential

surface) traps the electrons, clearly visualized from the figure 3.5, which gyrate

around magnetic field and move back and forth (e.g. between point A and B) along

these lines of force. Thus magnetic field leads to confinement of electrons, causing

an enhancement in the ionization due to increase in the number of collisions. An

enhancement in the ionization increases the strength of the oscillations. When

the bar magnet is close to the cathode surface, the number of trapped electrons

will be higher due to the higher density of magnetic lines of force leading to a
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Figure 3.5: Magnetic lines of force in the presence of the bar magnet when it is
close to the cathode surface. The electrons originating at point A will get reflected
at point B and vice versa.

further enhancement in the ionization and hence the amplitude of the oscillations.

This effect indicates that internal plasma noise strength will increase with the

increase in the magnetic field strength. Figure 3.6 shows the variation in the noise

level, estimated directly from the time series data using the Wiener filter matlab

subroutine, with the change in magnetic field strength. Wiener filter [98], proposed

by N. Wiener, is a class of optimum linear filter which involve linear estimation of a

desired signal sequence from another related sequence. The Wiener filter minimizes

the average squared distance between the filter output and a desired signal [99]. It

shows that noise level increases with the increase in magnetic field. As the noise

level increases with the increase in magnetic field, we may conclude that internal

plasma noise has a role in the excitation of canard orbit and MMO. The role of

magnetization is also important especially that of ions. When the magnetic field

was < 25 Gauss, the Larmor radius of ions was greater than the system dimension

(> 10 cm) which indicates that the ions were unmagnetized. A plasma system is

said to be magnetized if its characteristic length-scale is comparable to the Larmor
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Figure 3.6: Internal noise level as a function of magnetic field. It shows noise level
increases with magnetic field strength

radius [100]. So for B < 25 G, the only effect on the system may be due to the

internal noise generated by the magnetic field, whereas for B > 25 G, the ions

become magnetized (Larmor radius ∼ 8 cm). Hence it is quite likely that the

internal noise plays a less significant role in the system dynamics since the ion

cyclotron oscillations begin to dominate. However, we cannot neglect the minor

effect of internal noise which is always present in the system. The estimates of

ion cyclotron frequency and Larmor radius for different values of magnetic field

is shown in table 3.1. The ion cyclotron frequency at 25 G is 950 Hz, which is

approximately equal to the experimental observed frequency (960 Hz). We have

observed that the power of the mode for regular MMO is ∼ 100 times larger than

that of the irregular MMO indicating the dominance of ion cyclotron mode over

the internal noise effect in the case regular MMO.

Internal noise and magnetization of ions are always present in a plasma in

a magnetic field. Depending on the magnetization of the ions, the dynamics are

different. Presence of internal plasma noise leads to irregular MMOs (for B < 25 G)

wherein there is no increase in the amplitude of the subthreshold oscillations. In the

case of regular MMOs (for B > 25 G), the internal plasma noise is still present in
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Table 3.1: Estimation of ion cyclotron frequency (fci) and ion Larmor radius (Li)
for different values of applied magnetic field; q, B,mi and vth are charge, magnetic
field, ion mass and ion thermal velocity respectively.

Magnetic Field (B) fci = ( qB
mi

) Li = (mivth
qB

) Magnetization

2 G 76 Hz 102 cm Unmagnetized
6 G 228 Hz 34 cm Unmagnetized
14 G 532 Hz 14.5 cm Unmagnetized
25 G 950 Hz 8.2 cm Magnetized

addition to the ion cyclotron modes. While the ion cyclotron modes lead to regular

MMOs, the presence of the internal plasma noise probably does not allow the

increase of the amplitude of the subthreshold oscillations. When the magnetization

was low the internal noise dominates and we observed irregular MMOs whereas

when the magnetization was higher the ion cyclotron mode dominates and we

observe regular MMO.

3.4 Dynamical Model for Canard and Mixed Mode

Oscillations

Keen et al. [19] had derived an anharmonic oscillator equation for ion acoustic

instabilities treating plasma as a two fluid model with source terms to contribute to

the nonlinear effects. In an effort to understand the dynamical origin of the canards

and MMOs in an excitable system, we obtained an excitable FHN like model from

the anharmonic oscillator equation for ion acoustic instabilities [19, 101]. The

anharmonic oscillator for the ion density perturbation is given by [19]

d2n1

dt2
− (α− 2λn1 − 3µn2

1)
dn1

dt
+ ω2

0n1 = 0 (3.1)

where n1, α, λ, µ and ω0 are the perturbed plasma density, ionization term, coeffi-

cient of two body recombination, coefficient of three body recombination and ion
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acoustic frequency respectively.

By normalizing the above equation using τ = ωt; x = n1/n0; p = α/ω; q =

2λn0/ω; r = 3µn2
0/ω; s = ω2

0/ω
2 we obtain

ẍ− (p− qx− rx2)ẋ+ sx = 0 (3.2)

By using a Liénard-like coordinate, Eq. (3.2) can be decomposed into the

following system of two first order equation:

ẋ = (px− qx2

2
− rx3

3
)− sy (3.3)

ẏ = x (3.4)

We have obtained a FHN like model, by rearranging the parameters, given by

εẋ = (ax− bx2

2
− cx3

3
)− y (3.5)

ẏ = x (3.6)

where ε, a, b and c are 1/s, p/s, q/s and r/s respectively and represent system pa-

rameters. The difference between the original FHN model and our present equation

is the presence of the quadratic term.

Though we have not applied external noise in the experiment, it is observed

that internal plasma noise level increases with magnetic field strength [figure 3.6].

So a Gaussian noise term (Dξ(t)) and a constant biasing term (K) are introduced

in right hand side of Eq. (3.6) that represent the internal plasma noise and the

discharge voltage respectively. Hence we obtain

εẋ = (ax− bx2

2
− cx3

3
)− y (3.7)

ẏ = x+K +Dξ(t) (3.8)
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Figure 3.7: Oscillations obtained from numerical model. a) small amplitude
quasiperiodic oscillation at D = 0.01, b) emergence of canard oscillation and large
amplitude spikes at D = 0.1, and c) irregular MMO at D = 0.3.

where D is strength of noise and ξ(t) is Gaussian noise.

The value of K is chosen such that system shows a fixed point excitable be-

havior. As a change in the magnetic field leads to a change in the internal noise

strength, so we have used the noise strength (D) as our control parameter. Fourth

order Runge Kutta method has been used to solve the above Eqns. (3.7) and

(3.8). The parameters a, b, c, K and ε are fixed at 1, 0.9, 0.8 1.84 and 0.05 respec-

tively. For the given choice of a, b, c and ε, the dynamics corresponds to a fixed

point solution for K > 1.83, whereas for K < 1.83 a limit cycle solution exists.

Athough this model is not an exact representation of the experimental system on

microscopic level but this model is sufficient to explore the dynamical origin of the

canards and mixed mode oscillations.

Figure 3.7 shows the simulated time series of x at different D as mentioned

in the caption of the figure. Figure 3.7(a) shows the quasiperiodic behaviour just

after application of the noise in the system. When the value of D is increased the

time series shows coexistence of quasiperiodic oscillation and large amplitude limit

cycle oscillation [as seen in figure 3.7(b)]. Further increase in the value of D leads
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the system toward MMO. It is clearly seen from the figure 3.7(c) that the time

series has the characteristic behaviour of irregular MMO. A combination 11 and 12

MMO states are seen in the figure. An irregular MMO similar to the experimental

results has been observed in the numerical simulation by changing noise strength.

However regular MMO has not been observed by changing the noise strength in

the present simulation. It indicates that the origin of regular MMO might not be a

stochastic process. This fact is also observed in the experiment. For higher values

of the magnetic field, the system dynamics is driven by ion cyclotron mode rather

that stochastic process. We have obtained similar results for different combination

of system parameters: a = 0.9, b = 0.8, c = 0.7, K = 1.86 and ε = 20 with D used

as control parameter. Thus, irregular MMOs are probably dominated by stochastic

process, whereas regular MMOs are probably dominated by ion cyclotron mode.
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Figure 3.8: Phase space plots corresponding to the numerically simulated oscil-
lations shown in the figure 3.7. It is clearly showing the occurrence of canard
oscillation and spikes. The dotted lines represent the nullclines.

In figure 3.8, we have plotted a phase-space trajectory corresponding to time

series shown in figure 3.7. These phase space plots clearly show the occurrence

of canard oscillation and spikes in our numerical model. In these plots the main

large trajectory in phase space corresponds to the large amplitude variation during

spikes, and smaller loop corresponds to small amplitude oscillations.
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Since this model is developed using basic phenomenology without considering

the microscopic facts of the plasma, so exact reproduction of the experimental

signal is not possible. However, the results obtained from numerical simulation

show qualitative agreement with experimental results and its revealed that the

noise plays a significant role in the generation of canard and irregular MMO.

3.5 Summary and Conclusions

The effect of the magnetic field near the threshold of an excitable plasma system

has been studied in this chapter. As the dynamics of the system under present

experimental conditions is multiscale in nature, and when the system is perturbed

by a magnetic field, it shows canard and mixed mode oscillations. The applied

magnetic field was inhomogeneous in nature, and it generates internal plasma

noise. Strength of the plasma noise increases with the increase in the magnetic field.

Internal plasma noise triggers quasiperiodic small amplitude oscillation. When the

internal noise strength increases, the dynamics of the system goes from the small

amplitude quasiperiodic oscillations to small-amplitude oscillations with sporadic

single spikes, then to irregular MMOs. Regular MMO has been also observed for

the higher magnetic field strength. It is seen that ions were magnetized for higher

values of magnetic field whereas for lower magnetic field ions were unmagnetized.

So, the observation of regular MMO might be due to the dominance of ion cyclotron

mode over internal plasma noise. A numerical model, resembling an FHN model

obtained from anharmonic oscillator for ion acoustic instabilities, has been used to

understand the dynamics of the observed experimental results. Simulation shows

that an excitable system in the presence of noise can also produce irregular MMO
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and canard oscillation in place of coherence resonance phenomenon.

Beyond the interest in the study of these nonlinear phenomena from experi-

mental and dynamic point of view, their characterization is also very important

for experiments involving real applications in glow discharge plasma. Such studies

may be useful for various applications of discharge plasma like plasma coating,

plasma sputtering and other plasma application.
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Chapter 4

A Localized Cathode Glow in the

Presence of a Bar Magnet and its

Associated Nonlinear Dynamics

Under conditions when the plasma is displaying normal oscillatory dynamics, sub-

jecting it to a dipolar magnetic field using a bar magnet reveals formation of local-

ized regions of intense ionization known as cathode spots. The size and intensity

of such region is seen to vary with a change in the magnetic field strength, follow-

ing which the dynamics of the region also undergoes various transitions. The bulk

plasma oscillations reflect these changes and are investigated for different values

of magnetic field.

61
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4.1 Introduction

Whenever a localized region of plasma is subjected to constraints like localized

electric field, or any disturbance that affects the local thermodynamic equilibrium,

appearance of complex space charge structures are reported [102]. Fireball, sheath,

double layer and plasma bubble are various manifestations of complex space charge

configurations that have been well studied [16, 103, 104, 105]. These structures give

rise to various plasma instabilities that make plasma oscillations complex and non-

linear. In the current experiment, a localized glow region like a fireball is formed

near the cathode surface of a glow discharge plasma device when a bar magnet is

placed outside the plasma chamber close to the cathode surface. Appearance of

this structure leads to complex and nonlinear oscillations of the floating potential.

As we studied in the chapter 1, the investigation of nonlinear dynamics of plasma in

the presence of a magnetic field is a subject of great interest due to its usefulness in

various areas like plasma fusion processes, plasma processing, space plasma, mag-

netron discharges, glow discharge plasma, etc. [106, 107, 108]. Lots of theoretical

as well as experimental investigations have been done in plasma systems where the

magnetic field is unidirectional [105, 109, 110]. A dipole magnetic field is known

to bring about several interesting features in the dynamics of a single charged par-

ticle. A magnetized particle undergoes cyclotron motion around the field lines,

bounce motion between the poles as well as curvature and gradient drifts across

the magnetic field. Most of the astronomical bodies like stars as well as planets are

known to possess strong magnetic fields, and the confinement of plasmas embed-

ded in such fields poses many challenging questions. Magnetospheric plasmas are

self-organized structures of plasmas in magnetic dipoles [111] that provide natural
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confinement of charged particles. The mapping of plasma sheath in a magnetic

dipole field has been done experimentally [112] to understand the implications to

the solar wind interaction with lunar magnetic anomalies. Earth’s magnetic field

has a significant role in the oscillations of the ionospheric plasma and flow of the

plasma around the Earth [113]. In the context of laboratory plasmas, magnetron

sputtering devices use plasma discharges based on bar magnet [114, 115].

Many works exist in literature reporting studies on fireball structure and its

associated nonlinear dynamics in magnetized as well as unmagnetized plasma. Al-

though there are investigations on plasma subject to a dipole type of magnetic field

in magnetic dipole discharge experiments [116], literature does not show enough

evidence of investigations of fireball like structure and its associated nonlinear dy-

namics where the magnetic field strength of a bar magnet is used as a control

parameter.

The present work aims to study the dynamics of nonlinear oscillations associ-

ated with the localized cathode glow in a glow discharge plasma in presence of a

bar magnet placed external to the device. The analysis of recorded floating po-

tential fluctuations reveal order to chaos transition with the increase of magnetic

field strength. We observed a transition from order to chaos via period doubling

route which is associated with the cathode glow in the presence of a bar magnet.

The presence of a magnetic field is known to bring about significant modification

in the behaviour of the sheath that is formed in the vicinity of a solid surface

that is in contact with a plasma. The introduction of inhomogeneous magnetic

fields of dipole nature is capable of generating complex sheath structures with a

potential minima due to the magnetic mirror like effects leading to back and forth
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oscillations of electrons, and increased collision rates. In addition to influencing

the potentials structure near cathode surface, the dynamics of charged particles

undergoing trapping oscillations also can be expected to be reflected in the plasma

fluctuations measured in the bulk region. Hence we have also carried out a nu-

merical simulation [117] for the study of ion dynamics by considering that ions are

trapped inside a potential structure near the cathode surface.

4.2 Appearance of Localized Glow Near Cathode

Surface

In the pervious chapter, we have seen the effect of a dipolar magnetic field on

the excitable dynamics of the plasma. Here, we are concerned with a normal

oscillatory state that is subject to a magnetic field from a bar magnet. It is known

that excitable dynamics is sensitive to any small or large perturbation. However,

the stable oscillatory states, i.e, attractors are generally not sensitive to small

amount of perturbations. Thus, in all the following results we have neglected the

effect of intrinsic noise produced due to the application of dipolar magnetic field.

Generation of intrinsic noise due to application of magnetic field is discussed in

previous chapter. The strength of the field is varied by changing the distance of

the bar magnet from the cathode surface and its variation with distance is shown

in the figure 4.1.

In the present experiment, DV and pressure are kept fixed at ∼ 597 V and ∼

0.130 mbar respectively. The application of the magnetic field produces a localized

glow, a fireball like structure, near the cathode surface. As we have discussed in

chapter 3, due to the presence of a bar magnet placed near the cathode surface,
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Figure 4.1: Magnetic field strength (B) as a function of distance between the bar
magnet and the nearest cathode surface. Inset figure shows the range 8-32 cm.

the secondary electrons produced from the cathode surface travel along the dipolar

field lines (shown in the figure 3.5), get reflected by sheath near cathode surface,

ionize neutrals, and produce a dense plasma compared to the bulk plasma near the

cathode surface. Secondary emitted electrons from the cathode surface gain energy

when they traverse the cathode sheath across the magnetic field. The energized

electrons ionize the gas. The increased ionization in the present experiment leads

to the formation of a cathode glow region. From the figure 4.2, it is clearly seen that

a localized glow region appears at the cathode surface whose intensity increases

with the increase in the strength of the magnetic field. This appearance of a strong

glow at the cathode suggests additional ionization in that region. Plasma density,

measured in the glow region, increases with the magnetic field strength as depicted

in the figure 4.3. This observation also confirms the enhancement of the ionization

in the glow region.

4.3 Analysis of Order to Chaos Behaviour

In figure 4.4, we have shown the time series of floating potential fluctuations with

increasing magnetic field strength, at a constant DV ∼ 597 V and pressure ∼ 0.130
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Figure 4.2: Localized glow region, the complex space charge configuration, near
cathode surface with application of magnetic field.
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Figure 4.4: Time series plots of floating potential fluctuations, showing period
doubling bifurcation, at different values of magnetic field strength: a) 0.520 G,
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experiment, discharge voltage and pressure are kept fixed at ∼ 597 V and ∼ 0.130
mbar respectively.
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Figure 4.5: Reconstructed phase space plots corresponding to the time series shown
in the figure 4.4. In these plots, the time delay τ = 0.02 ms has been used. a)
0.520 G, b) 0.665 G, c) 1.292 G, d) 2.122 G, e) 2.992 G, and f) 9.610 G.

mbar, as mentioned in the figure caption. It is clearly seen from the figure that

the system gradually changes from periodic to chaotic state with the increase in

the magnetic field strength. The time series of the floating potential fluctuations

suggests that appearance of glow region changes the dynamics of the system. This

additional ionized region (glow region) may have different plasma characteristics

as compared to the bulk plasma region. The nonlinear interaction between the

oscillations in the two regions is probably responsible for the observations of such

nonlinear dynamics. Before appearance of the localized glow structure (< 2 G),

dynamics were in the periodic state whereas after the appearance of the structure,

dynamics becomes chaotic.

Figure 4.5 shows the reconstructed phase space projection corresponding to the

time series shown in the figure 4.4. At 0.587 G, one loop in the phase space plot is

noticed [figure 4.5(a)] whereas with the increase in the magnetic field strength two

and four loops are seen in figures 4.5(b) and 4.5(c) respectively. Further increase
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Figure 4.6: Bifurcation diagram: Plot of the local maxima of the time series as
function of magnetic field strength.

in the magnetic field strength leads to several loops in phase space plot as depicted

in figures 4.5(d)-4.5(f) indicating the chaotic nature.

The amplitude bifurcation diagram, i.e., plot of the local maxima of the fluctu-

ations as a function of the applied magnetic field is shown in figure 4.6 where one

can see a single period followed by two periods. This diagram shows a well known

period doubling bifurcation feature and offers a good insight into the mechanism

of system dynamics going from order to chaos. It would be ideal to verify the pe-

riod doubling phenomena with small variation in the control parameter. However,

small variations in the applied magnetic field are quite complicated to manage in

the experimental situation. As a result of which identifying the exact point of

bifurcation is very difficult. Hence, verification of the Feigenbaum constant for

period doubling bifurcation is not possible.

Fast Fourier transform (FFT) corresponding to the time series data [figure 4.4]

is shown in figure 4.7. It is noticed that for the periodic oscillations, distinct peaks

are observed whereas in the case of chaotic oscillations, broadband in the power

spectrum are observed. The dominant frequencies are lying in the range of 2−15
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Figure 4.7: Power spectrum plots corresponding to the time series shown in the
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corresponding to B = 2.992 G.

kHz.

The largest Lyapunov exponent (LLE), shown in figure 4.9, is estimated for

the experimental time series signals of the floating potential fluctuations using

the Wolf et al.[9] method. Typical Lyapunov spectrum with convergence of the

maximal Lyapunov exponent as a function of the sampling time for a chaotic

signal (B=2.992 G) is shown in figure 4.8. It is seen from figure 4.9 that the LLE

is oscillating around a value ∼ 0 in case of periodic oscillations whereas a sudden

jump is observed in the LLE as the oscillations change its nature from periodic
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Figure 4.10: Time-frequency-energy representation corresponding to the floating
potential fluctuations shown in the figure 4.4.

to chaotic. The jump in the LLE indicates the transition point from periodic to

chaotic.

Figure 4.10 shows the time-frequency-energy plot of the floating potential fluc-

tuations shown in the figure 4.4. The frequency band centred around ∼ 5 kHz for

the one period oscillation is seen in the figure 4.10(a) with an intrawave frequency

modulation of a magnitude range ∼ 2-8 kHz. A similar frequency modulation is

seen in figure 4.10(b) with the centre band frequency around ∼ 7.5 kHz. In the
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figure 4.10(c), ∼ 4 kHz frequency is appearing at all times whereas the higher fre-

quency shows a discontinuity and frequency modulation indicating the transition

from periodic to chaotic states [118]. The discontinuity in the lower and higher

frequency contours were seen along with a frequency modulation with centre band

frequency around ∼ 4.5 kHz in figure 4.10(d). As system changes from order to

chaos, the discontinuity starts to appear in the contours. Finally a clear discontinu-

ity in the contour plots, for the chaotic signals, is observed in figures 4.10(e)-4.10(f).

Frequency bifurcation is also seen in the plots as the dynamics changes from single

period to chaos. A single frequency band, two frequency bands, four frequency

bands and so on are observed in the figures 4.10(a)-4.10(b), 4.10(c), 4.10(d) and

4.10(e)-4.10(f) respectively.

4.4 Model for the Ion Oscillations Trapped Within

a Potential Well

In the presence of the curved magnetic field lines, the electrons, while gyrating

around the field lines, also undergo back and forth oscillations, being reflected

from the cathode surface. This results in increased collisions with the neutrals as

well as ionization events that manifest as an unstable localized spot (as seen in

the figure 4.2) in the proximity of the cathode surface. In this scenario, the usual

monotonic potential structure near the cathode surface is modified to a potential

structure with a minima [112] resembling a virtual cathode and can be represented

analytically as φ(y) = φ0(1− exp(−α(y−a))2 where a is the position of minima of

the potential structure and α is a constant. The typical potential profile is shown

in the figure 4.11 which can facilitate the trapping of ions in the potential well. As
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Figure 4.11: A typical normalized potential structure with minima.

ions are trapped in this potential, they oscillate in the potential structure. Thus, it

is quite likely that the floating potential fluctuations measured in the bulk plasma

reflect these oscillations.

Assuming the variation of the potential in one dimension only, the dynamics

of ions can be described by the following equation of motion

d2y

dt2
=

e

m
E(y)− ν dy

dt
+ fcos(ωt) (4.1)

where m, e, ν, f and ω are the mass of the ion, the charge of the ion, damping

coefficient, force per unit mass and forcing frequency respectively. The first term

in the right hand side is the electrostatic force on the ions whereas the second term

represents the dissipative term which indicates the presence of collisional effects

in the plasma. The last term in Eq. (4.1) represents a forcing term which arises

due to unstable cathode spot resulting from trapping of ions, increase of local

ionization as well as back and forth movement of electrons. With the increase in

the magnetic field, intensity of the cathode spot is seen to increase, thus forcing

strength can be considered to be a control parameter. Using E = −dφ/dy, the
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above equation becomes:

d2y

dt2
+

2eφ0α

m
exp(−α(y − a))(1− exp(−α(y − a)) + ν

dy

dt
= fcos(ωt) (4.2)

The following normalization of variables is carried out by considering X = y/y0

and τ = ωpt, where y0 is a characteristic length scale and ωp is ion plasma frequency.

Thus, Eq. (4.2) can be written as

Ẍ + AẊ +B exp(−(X − d))(1− exp(−(X − d)) = Fcos(ω̃τ)

where A = ν
ωp

, B = 2eφ0α
my0ω2

p
, d = a

y0
and F = f

y0ω2
p

are the dimensionless parameters.

α is chosen to be 1
y0

. As the above model is derived from the basic phenomenology,

it does not exactly represent the experimental system at a microscopic level but

this model is sufficient to explore the dynamical origin of observed experimental

oscillations.

Eq. (4.3) is solved numerically using fourth order Runge-Kutta method with

the initial conditions of X = 0.1 and Ẋ = 0.15 at τ = 0. The parameters A,

B, d, and ω̃ are assumed to have the following values, i.e., 0.2, 0.1, 0.1, and 0.8,

respectively.

Figure 4.12 shows the simulated time series of X at different values of forcing

strength (F ) as mentioned in the caption of the figure. Figure 4.12(a) shows the

limit cycle. It is observed that the number of periods increases with the increase

in the forcing strength and finally system becomes chaotic at forcing strength ∼

0.34.

Figure 4.13 shows the phase space plots for increasing control parameter F

values. It clearly suggests that the dynamics of the system undergoes period

doubling bifurcation with the increase of forcing strength (F ).
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Figure 4.12: Numerically simulated time series data exhibiting period doubling
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Figure 4.13: Phase space plots for control parameter F value: a) 0.1, b) 0.2, c)
0.3, d) 0.325, e) 0.350, and f) 0.375.
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The bifurcation diagram is shown in figure 4.14. It shows Xmaxima in the range

of control parameters F ∈ (0, 4) . This figure suggests that there is chaotic motion,

which appears due to period doubling bifurcation.

4.5 Summary and Conclusions

Cathode glow, in the form of localized glow region, has been seen near the cathode

surface in the presence of a bar magnet placed outside the cathode surface of a

glow discharge plasma device. This localized region is due to the enhancement

of the degree of ionization by electron confinement in dipole magnetic field and

the negative potential cathode surface. Intensity of glow region increases with the

strength of the magnetic field. An increase in the density in the glow region with

the increase in the magnetic field is also observed. Periodic to chaotic oscillations

via period doubling route has been observed in the presence of inhomogeneous

magnetic field. Keeping the discharge voltage and neutral pressure constant, the

dipole magnetic field strength was increased which led to change in the character
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of the oscillations from periodic to chaotic. System transits from periodic state to

chaotic state accompanied by the appearance of a localized glow. Since this local-

ized glow region may have different characteristics compared to the bulk plasma,

the nonlinear interaction between the oscillations in the two regions is probably

responsible for the observations of the period doubling route to chaos. Formation

of potential structures with a minima are found [112] in plasmas in presence of a

bar magnet. This has motivated development of a numerical model to study the

ion dynamics under the influence of a potential well to understand the observed

experimental results. The results obtained from the numerical simulation quali-

tatively (able to produce similar phenomena) agreeing with that of experiments.

Thus it is quite likely that obtained fluctuations are due to the ion fluctuations

trapped inside the localized glow region.

Since dipole magnetic fields are encountered in space plasma as well as in

plasma devices used in applications such as magnetron sputtering device, more

experimental and theoretical studies in dipole magnetic field need to be carried out

in order to understand and explore the underlying physics related to the nonlinear

behaviour of plasma in presence of a dipole magnetic field.
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Chapter 5

Multifractal Nature of Floating

Potential Fluctuations Obtained

From a Glow Discharge

Magnetized Plasma

In this chapter, an experimental study on the effect of an axial magnetic field on

the plasma dynamics has been carried out. Phenomena like canard and MMOs,

observed as a effect of the dipolar magnetic field on the plasma dynamics, require

very fine tuning of the control parameter which is difficult to accommodate in the

present configuration since variation of axial magnetic field in small increments is

not possible. Application of axial magnetic field can give rise to various phenomena

like order to chaos and vice versa depending on the parametric conditions like

discharge voltage and pressure. Here our primary motivation was to investigate

the multifractal behaviour exhibited by the plasma fluctuations that are found in

chaotic regime.

79
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5.1 Introduction

As of now, we have realized that the plasma fluctuations manifested in a dc glow

discharge plasma and also in other plasma devices are mostly complex and multi-

scale in nature [119, 120]. The complexity and multiscale nature varies little from

one condition of measurement to another. When a magnetic field is applied, the

system dynamics, i.e. the fluctuations, becomes more complex due to generation of

various magnetized plasma modes like cyclotron modes, E×B drift in addition to

the unmagnetized plasma modes. These fluctuations also exhibit chaotic behavior

and recognized to acquire self-similarity and also manifest strong fluctuations on all

possible scales [13, 121, 122]. Since the fractality appears as a universal property of

the complex systems, so, it is worthwhile to investigate the multifractal dynamics

of the plasma which is also a complex system. The concept of multifractality is of

great importance for space plasmas [123] because it allows us to look at intermit-

tent turbulence in the solar wind [124]. It is also very important in the study of

tokamak plasma turbulence [125]. Many attempts have been made to recover the

observed scaling exponents, using multifractal phenomenological models of turbu-

lence describing distribution of the energy flux between cascading eddies at various

scales [126]. Multifractal dynamics for plasma edge electrostatic turbulence has

been investigated using wavelet transform modulus maxima (WTMM) [127]. Here,

multifractal detrended fluctuation analysis [128] (MF-DFA) technique is deployed

to investigate the multifractal dynamics of floating potential fluctuations obtained

from the glow discharge plasma device. MF-DFA method is based on the gener-

alization of the detrended fluctuation analysis [129, 130, 131] (DFA), and is able

to determine the multifractal scaling behaviour of a signal. MF-DFA is a fairly
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robust and powerful technique for the detection of the multifractality, has been

applied successfully in diverse fields such as sunspot time series [54], traffic time

series [132], stock market data [133], EEG signals [134], heart rate data [135], geo-

physical data [136], earthquake data [137] and many others [138, 139]. MF-DFA

technique is also employed in the field of plasma to detect the multifractality in

intermittent fluctuations of discharge plasma [140], tokamak edge plasma fluctua-

tions [141], etc.

5.2 Multifractal Behaviour of Plasma Dynamics

Present experiment is carried out at constant pressure ∼ 0.18 mbar and DV ∼ 316

V . An axial magnetic field is applied by passing a constant current through copper

coil winding over the cylindrical chamber containing the cathode chamber. This

arrangement is shown in the schematic diagram of the setup in the figure 2.1 in the

chapter 2. Magnetic field strength (B) is considered as a control parameter. The

system shows a sensitive dependence on magnetic field and its dynamics changes

with the increase in the magnetic field.

Floating potential fluctuations with increasing applied magnetic field strength

are shown in the figure 5.1. At the discharge voltage chosen for this experiment,

before the application of magnetic field, a chaotic oscillation is observed [figure

5.1(a)]. Figure 5.1(b) shows that the frequencies of the oscillation remains almost

same at B ∼ 15 G as observed in the case of unmagnetized plasma. The oscillation

becomes rapidly time varying compared to the unmagnetized case, with an increase

in the magnetic field strength from ∼ 45 G and onward as depicted in the figures

5.1(c)-5.1(f). It is also noted that amplitude of the oscillation increased by a factor
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Figure 5.1: Time series of the floating potential fluctuations at DV ∼ 316 V and
pressure ∼ 0.18 mbar: a) 0 G, b) 15 G, c) 45 G, d) 75 G, e) 105 G, and f) 135 G.

∼ 10 with the application of the magnetic field. Application of axial magnetic

field reduces the losses of the charged particles which may be the probable reason

for the amplitude enhancement. Since the Larmor radius of ions is greater than

the system dimension at B ∼ 15 G the ions remain unmagnetized under these

conditions. Hence, the effect of magnetic field is not seen on the floating potential

fluctuations at B = 15 G.

The largest Lyapunov exponent(LLE), shown in figure 5.2, is calculated from
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the experimental time series signal of the floating potential fluctuations by Rosen-

stein’s technique [11] with the help of TISEAN software package [51] in order to

characterize the chaotic behavior quantitatively. A detailed methodology to cal-

culate the Lypunove exponet using the Rosenstein’s technique is discussed in the

section 2.3.3 of the chapter 2. The observation of positive LLE for the fluctuations

suggests their chaotic nature. It is seen from figure 5.2 that the LLE shows a sud-

den jump from unmagnetized case to magnetized one and remains approximately

constant for magnetised case. This observation indicates that maximum chaoticity

in the system is observed for magnetised case.

The time series plots show that fluctuations have many time scales. These

different time scales are introduced manly due to the simultaneous existence of

many plasma modes. In these cases, the dynamics can be characterised by scaling
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laws which are valid over a wide range of time scales. Such dynamics are usually

denoted as fractal or multifractal. This motivates us to carry out the multifractal

analysis for above fluctuations using MF-DFA technique which has been discussed

in detail in the section 2.3.4 of chapter 2.
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Figure 5.3: The MF-DFA fluctuation functions Fq(s) versus the scale s in log-log
plots for the time series shown in the figure 5.1: a) 0 G, b) 15 G, c) 45 G, d) 75
G, e) 105 G, and f) 135 G.

We calculated the fluctuation functions Fq(s) using MF-DFA technique for q ∈

[-5, 5] with a step of 1. Figure 5.3 shows the log-log plot of Fq(s) versus s, for q =

−5, 0, +5 for the time series shown in the figure 5.1. The different slopes of the

fluctuation curves indicate that small and large fluctuations scale differently.

The generalized Hurst exponent h(q), estimated for q = -5 to 5 using Eq. (2.14)
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of the chapter 2, is shown in figure 5.4. One can note that at all the fluctuations,

the slopes h(q) decrease nonlinearly as the moment q is increased from negative

to positive values. Different values of h(q) for different orders of q suggest that

fluctuations exhibit multifractality. For the unmagnetized case, h(q) lies in the

range of 1.6 to 1.2 which indicates the slow variation of fluctuation. In the presence

of magnetic field, i.e., for the magnetized case, range of h(q) (1-0.7) reduced. These

results are evidence of existence of long range correlation and also suggesting the

multifractal nature of the fluctuations.

Rènyi exponent (τ(q)) is calculated using the Eq. (2.16) which provides another

way to detect the multifractality behavior of the time series. The curve of the

function τ(q) with respect to the variable q is shown in figure 5.5. The nonlinear

shape of this curve reveals a multifractal behavior of the time-series data. The

function τ(q) would be a linear function of q with constant slope for a monofractal

time series.
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Figure 5.5: The q dependence of the Rényi exponent τ(q) corresponding to the
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Multifractal nature of a time series is generally due to two reasons: 1) multi-

fractality due to a broad probability distribution for the time series. In this case

the multifractality cannot be removed by shuffling the series. 2) multifractality

due to the presence of long range correlation of small and large fluctuation. The

easiest way to clarify the type of multifractality is by analyzing the corresponding

shuffled and surrogate time series. If the long range correlation contributes to mul-

tifractality, shuffled time series will exhibit a monofractal behavior as long range

correlation are destroyed by shuffling. On the other hand, surrogate time series will

have the same long range correlation but the probability function changes to the

Gaussian distribution. If multifractality in the time series is due to a broad PDF,

generalised Hurst exponent obtained by the surrogate method will be independent

of q. If both types of multifractality are present, the shuffled and surrogate series

will show weaker multifractality than the original one. In the shuffling procedure

the values are put into random order [128], and thus all correlations are destroyed
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88

0 30 60 90 120 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Magnetic Field (G)

Figure 5.7: Dependency of multifractal spectrum width (δα) on the magnetic field
strength at constant DV ∼ 316 V and pressure ∼ 0.18 mbar. The broken line
represents the values corresponding to the Brownian noise: a) 0 G, b) 15 G, c) 45
G, d) 75 G, e) 105 G, and f) 135 G.

but distribution remains intact. Surrogate data is obtained by the Fourier phase

randomization of the original data [142].

The multifractal spectrums for the original time series [figure 5.1] and corre-

sponding shuffled and surrogate time series are shown in figure 5.6. The multi-

fractal spectrum width of the original time series significantly narrows after the

series is shuffled, however, multifractal spectrum width of all the surrogate series

is less narrow compared to shuffled one. This finding suggests that the multifrac-

tal characteristic of time series significantly reduces after shuffling. Therefore, the

multifractal characteristics of the time series can be attributed to the significant

existence of the long range correlation than the broadness of the probability density

function.

We have estimated the Multifractal spectrum width (δα), difference between

the maximum and minimum singularity (αmax−αmin), from the multifractal spec-

trum. αmax and αmin are the highest value and the lowest value of α observed
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in multifractal spectrum respectively. The experimental signal spectrum width is

wider than the monofractal Brownian noise, plotted as a broken line, statistically

confirming their multifractal nature. The wider δα is corresponding to the richer

and stronger multifractality of data. In order to compute the defined parameters

for Brownian noise, we averaged the results obtained from 10 computed Brown-

ian noise like time series having the same length as our experimental time series.

Figure 5.7 shows the spectrum width for the original time series as a function

of magnetic field strength. It is observed that the width of the spectrum shows

a decreasing trend with the magnetic field strength indicating reduction in de-

gree of multifractality. It also suggests that the system is going from multifractal

dynamics to monofractal; since the Brownian noise is known to be monofractal.

This result demonstrates that, in the presence high magnetic field, the dynamics

evolves to correlated fluctuations that can be modeled as Brownian motion. In

the time series plots, we have seen an appearance of high frequency oscillation for

magnetized case whose interaction with existing low frequency oscillation probably

destroyed the multifractal nature of the fluctuations. To verify this observation,

we have carried out power spectrum analysis.

Figures 5.8(a)-5.8(f) show power spectrum plots corresponding to the floating

potential fluctuations shown in the figures 5.1(a)-5.1(f) respectively. Broadband of

frequencies within the range of 1 - 10 kHz is seen in the figure 5.8(a) and 5.8(b),

i.e., for B = 0 G and B = 15 G. These frequency bands may be due to the

domination of unmagnetized plasma modes, i.e., ion acoustic and ionization insta-

bilities. A further increase in the magnetic field leads to a broadband nature in

the 1−30 kHz (increase by a factor of 3 compared to unmagnetized case) range of
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Figure 5.8: Power spectrum corresponding to the time series shown in the figure
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the frequencies for values of magnetic field from 45 G and above. These observa-

tions clearly indicate the chaotic nature of the oscillations and also suggesting that

higher frequencies appear due to the application of magnetic field. These observed

frequency bands may be due to the domination of ion acoustic, ion cyclotron modes

and interaction of magnetized (cyclotron modes, E × B effect, drift mode, etc.)

and unmagnetized plasma modes. Hence, it is clear that system always show a

broadband turbulence but the application of magnetic field further enhanced the

broadband turbulence over a wide range of frequencies. Hence, with the enhance-

ment in magnetic field strength, an evolution of the fluctuations towards Brownian

type motion is taking place.

5.3 Summary and Conclusions

Phenomena like order to chaos and vice versa cap be obtained by applying ax-

ial magnetic field under satiable parametric conditions like discharge voltage and
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pressure [143]. However, mixed mode and canard oscillation, require small change

in control parameters, are difficult to accommodate in present setup as only large

increment in strength of axis magnetic field is possible. In this work, we are mainly

interested in the multifractal behaviour of the chaotic fluctuations since this may

have applications in toroidal fusion devices, and space plasma where the data is

always chaotic and also observed to be multifractal in nature. An investigation

on multifractal characteristics of floating potential fluctuations using multifractal

detrended fluctuation analysis (MF-DFA) is carried out. The effect of axial mag-

netic field on the multifractal property and the amplitude of the fluctuation signal

and the type of their correlation has been studied. It is seen that amplitude of

the fluctuations increase in the presence of the magnetic field. The application of

axial magnetic field can reduce the particle losses to the wall and hence the ampli-

tude of the oscillation may increase. The presence of the magnetic field can lead

to various characteristic frequencies into the system such as cyclotron frequencies,

E×B drift and ∇B drift which can enrich the nature of the fluctuations. Observed

frequencies lie in the range of ion acoustic frequency range, i.e., between 2.5 kHz

to 10 kHz range, in the case of unmagnetized plasma, whereas for the case of mag-

netized plasma, broadband frequencies in range of 1 kHz to 30 kHz is seen. This

broadband may be due to domination of ion acoustic, ion cyclotron modes and

interaction of magnetized and unmagnetized plasma modes. The values of h(q)

are restricted between 1.6-1.1 and 1-0.7 for unmagnetized and magnetized case

respectively. These results are evidence of the existence of long-range correlations

in fluctuations. They also show the self similar nature of the floating potential

fluctuations. Different values of generalised Hurst exponent for different q and
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nonlinear nature of Rènyi exponent curve strongly suggest the multifractal nature

of the fluctuations. It is observed that multifractal spectrum width decreases and

Degree of multifractality reduces with the increase in magnetic field strength.

We have produced the shuffled and surrogate time series from original data

and deduced the singularity spectrum using the MF-DFA method. It is observed

that the original time series has higher spectrum width compared with the shuffled

and surrogate time series however the spectrum width of original and surrogate

time series is comparable. This indicates that the shuffling and the surrogate tech-

niques reduces all together the multifractality strength of the original time series

and demonstrates that the long-range correlation makes a greater contribution to

multifractality of the data than the broadness of the probability density function,

i.e., fat-tail distribution. Results obtained in respect of these floating potential

fluctuations in a glow discharge plasma in presence of a homogeneous magnetic

field could also be important for the understanding of multifractal behaviour in

the plasma dynamics of other magnetized plasma devices.



Chapter 6

Intrinsic Noise Induced

Coherence Resonance in a Glow

Discharge Plasma

In chapter 3, we investigated the effect of intrinsic noise on the plasma dynamics

due to a magnetic field of a bar magnet. In this chapter, we will explore the effect

of intrinsic noise without the magnetic field. Process behind the enhancement of

intrinsic noise with DV is different with the process in the presence of a dipolar

magnetic field discussed in chapter 3. Effect of intrinsic noise in the generation of

coherence resonance phenomena is discussed and corroborated by numerical sim-

ulation. Coherence resonance is determined using normalized variance curve and

also corroborated by Hurst exponent and power spectrum plots. FitzHugh-Nagumo

like model derived in the chapter 3 is used to understand the excitable dynamics of

glow discharge plasma in the presence of noise.
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6.1 Introduction

Noise is omnipresent in all natural systems and plays a beneficial role in the dynam-

ics of nonlinear systems yielding interesting results [144, 145]. There are many stud-

ies which have revealed that noise can play a constructive role like noise induced

order in chaotic dynamics [146], synchronization of chaotic systems [147], stochastic

[148, 149, 150, 151] and coherence resonances [152, 153, 154, 155, 156, 157, 158].

Noise can be divided into two categories: extrinsic and intrinsic. The extrinsic

noise can originate from the environment [159] and an external noise generator

in experimental systems, whereas intrinsic noise is generated due to an inter-

play between the components of the systems and could be of small amplitude.

In the chapter 3, we have seen that application of dipolar magnetic field gen-

erates various plasma modes which nonlinear interact with other plasma modes

resulting a broadband intrinsic noise. Of particular interest is the phenomenon of

stochastic resonance [148, 151] (SR) in which the addition of random noise am-

plifies the pre existing subthreshold deterministic signal and has been observed

in many systems such as physical [160], chemical [149, 161], electronics [162], bi-

ological [163]and numerical model like FitzHugh-Nagumo (FHN) [164]. Coher-

ence resonance [155, 156, 157, 158] (CR), which is also called autonomous SR

or internal signal SR, is an emergence of regularity in the dynamics under the

influence of purely stochastic perturbations. In CR, the maximum regularity is

achieved at an optimum noise amplitude which has been observed in many ex-

perimental systems: optical [165], electrochemical [156], chemical reactions [166],

electronic monovibrator circuit [162] as well as in numerical simulation of the stan-

dard model like FitzHugh-Nagumo (FHN) model [157, 155] and a thermochemical
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system model [167]. The most important characteristic of CR is that the time

scale of induced oscillations is determined by the intrinsic dynamics of the system.

In the chapter 1, we have studied that free energy sources like energetic elec-

trons, density gradient, etc. in plasma dissipated by giving rise to several instabil-

ities [30, 34, 35, 168, 169] that in turn interact to produce a background plasma

noise of broadband nature ranging from low frequency ion acoustic modes to high

frequency electron plasma oscillations. The common sources of intrinsic noise in

experimental systems also include the plasma fluctuations [170], photons and fast

neutrals in the system [171]. Though they are small, they are widely used in es-

timating the plasma temperature and other parameters. The aim of this chapter

is to explore the effects of this kind of noise in generating coherent spikes when

plasma is treated to be an excitable medium. There are several research works on

the external noise induced dynamics in the plasma system [38] as well as reports

on the observation of CR in glow discharge plasma under the influence of external

noise perturbation [38] but we have observed the same phenomena without any

application of external noise.

6.2 Coherence Resonance

In the present experiments, we started the system at a DV ∼ 478 V and pressure ∼

0.37 mbar where it exhibited fixed point behavior, and then the DV was increased

monotonically and floating potential fluctuations were recorded. Magnetic fields

were absent during the experiment.

Figures 6.1(a)-6.1(l) show the time series of the floating potential fluctuation

at different values of DV as mentioned in the caption of the figure. The dynamics
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of the time series show that the system behaves as an excitable one, presenting

characteristic spiking for values of DV when it exceeds a threshold. It is also seen

from the figures 6.1(a)-6.1(l) that the number of the spikes continuously increases

with the increase in DV. Irregular bursts and higher amplitude spikes begin to

appear in the fluctuation when DV exceeds 490 V . The approximate values of

the rise and the fall time of the spikes are 0.12 msec and 0.22 msec respectively.

These time scales are comparable with the ion transit time scale ( τ = d/
√

(kBTi
m

)

∼ 0.1 msec, where d, kB, m and Ti are the electrode distance, Boltzmann constant,

ion mass and ion temperature respectively.) between two electrodes. So probably

these spikes correspond to bunches of ions excited from the anode.

The normalized variance (NV) was used to quantify the regularity in the spikes.

From chapter 2, we came to know that the value of the computed NV will be lower

for the more regular induced dynamics. For purely periodic dynamics, the NV

will be zero. Figure 6.2 is the experimental NV curve as a function of DV. Higher

value of NV at DV ∼ 479 V indicates the irregular nature of the spikes. It is

seen that NV decreases with the increase in the DV indicating the enhancement in

regularity and maximum regularity is achieved at DV ∼ 488 V . Further increase

in DV leads to irregularity in the system. The minima in NV curve suggests

that the phenomena is similar to coherence resonance. The observed minima is

almost constant exhibiting features of constant coherence resonance (CCR) [83].

Generally, noise is responsible for the CR so we have estimated the intrinsic noise

level with the help of Wiener filter [98, 172] subroutine in matlab. Figure 6.3

shows the intrinsic noise level as a function of DV depicting the enhancement

in the intrinsic noise level with the increase in DV. As the intrinsic noise level
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Figure 6.1: Time series of the floating potential fluctuation for different values of
DV: a) 479 V , b) 480 V , c) 481 V , d) 482 V , e) 483 V , f) 484 V , g) 485 V , h) 486
V , i) 487 V , j) 488 V , k) 489 V , and l) 490 V . Magnetic field = 0 G, pressure ∼
0.37 mbar.
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(H) (dashed line) as a function of DV with its corresponding noise level given in
the parenthesis.

increases with DV, it is clear that the regularity of the excitable spikes in the

floating potential fluctuation increases with the increase in the noise level, upto

an optimal value of the noise strength. The process behind the enhancement of

intrinsic noise with DV is different with the process in the presence of dipolar

magnetic field which we have discussed in chapter 3. Changing DV can accelerate

the charged particle which can enhance the ionization and also create a situation

conducive for the generation of various plasma instabilities that in turn interact to

produce a background plasma noise.

The estimation of characteristic correlation time (τ) using normalized auto-

correlation function has been shown as one of the measures of coherent behav-

ior [155, 166]. The occurrence of a maxima in the τ vs noise amplitude curve at

the point of maximum regularity has been reported for the coherence resonance

phenomena [155]. It is well known that the Hurst exponent (H) can also be used

as a measure of temporal correlation. Hence, to further characterize the coherence
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Figure 6.3: Intrinsic noise level as a function of DV.

resonance behaviour, we evaluated the Hurst exponent estimated using rescaled

range analysis (R/S) method [63]. A detailed methodology of Hurst exponent is

discussed in the chapter 2. The dependence of the Hurst exponent on the DV

and noise strength is shown in figure 6.2. The nature of the H vs DV curve has

an opposite trend with respect to NV vs DV curve. The plot clearly shows the

coherence resonance maximum at DV ∼ 488 V indicating the maximum temporal

correlation at a particular discharge voltage and hence at a particular value of

noise strength.

Power spectrum plot can also be used to compare the regularity of the sig-

nals [165]. For the regular time series signal, the power spectrum will show a nar-

row peak whereas for irregular time series signal it will show a broadband nature.

Figures 6.4(a), 6.4(b) and 6.4(c) show the power spectra of the floating potential

fluctuation for DV 487 V , 488 V and 489 V respectively. The power spectrum in

the figure 6.4(b) exhibits a narrow and sharp band than the rest of two figures

confirming the maximum regular behavior of the signal at 488 V . The power at

DV 488 V , which is the point of coherence resonance, shows a higher power than
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Figure 6.4: Power spectra for the floating potential fluctuation at DV: a) 487 V,
b) 488 V, and c) 489 V.

the other values of DV. The average power of the frequency band (0−1500 Hz) in

case figure 6.4(b) is approximately greater by a factor of 2.5 and 1.7 in comparison

with figure 6.4(a) and figure 6.4(c) respectively.

The presence of a positive value of Lyapunov exponent is the reliable signature

of chaos. The largest Lyapunov exponent(LLE), shown in figure 6.5, is calculated

from the experimental time series signal of the floating potential fluctuations by

Rosenstein’s technique [11] discussed in section 2.3.3 of chapter 2. It is seen from

figure 6.5 that the LLE is positive and approximately constant from ∼ 479 V to ∼

490 V . The positive value of the LLE indicates the chaotic nature of the observed

signal.

6.3 Dynamical Model for Coherence Resonance

To understand the dynamical origin of the intrinsic noise induced CR in our ex-

periments, we have carried out a numerical simulation using a FHN like model de-

veloped in chapter 3. The model represents an excitable system which is obtained

by suitable transformation of anharmonic oscillator equation for plasma [19, 101]
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using the Liénard like co-ordinate system. The model is given by

εẋ = (ax− bx2

2
− cx3

3
)− y (6.1)

ẏ = x (6.2)

where ε, a, b and c are 1/s, p/s, q/s and r/s respectively.

Although there is no explicit externally applied noise present in the experi-

mental system, we consider the situation where noise is generated intrinsically. In

order to investigate the behaviour of the nonlinear oscillations in the presence of

an external discharge voltage, we include an additional biasing term k and a noise

term r ∗ ξ on the right hand side of Eq. (6.2). ξ is a Gaussian noise term and r

represent the strength of the noise.

εẋ = (ax− bx2

2
− cx3

3
)− y (6.3)

ẏ = x+ k + r ∗ ξ (6.4)

This model does not exactly represent the experimental system at a microscopic

level, but we expect to describe the excitable dynamics of glow discharge plasma

as this model looks similar to FHN model. The above phenomena was observed
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in the small window of discharge voltage. Since the relative change in DV during

the observation of CR phenomena was approximately 2.3% which is much smaller

as compared to relative change in the noise level, we fixed the bias (k) at constant

value such that the dynamics exhibit the excitable fixed point behavior and varied

the noise strength. The above Eqs. (6.3) and (6.4) are solved numerically using

fourth order Runge Kutta method with initial conditions and time step x = 0,

ẏ = 1 at τ = 0 and 0.01 respectively. The parameters ε, a, b, c and k are fixed at

0.01, 1, 0.95, 0.85 and 1.8 respectively.

Figure 6.6 shows the spiking oscillation at various values of the noise strength

(r) as mentioned in the caption of the figure. It is observed that the number of

spikes increases with noise strength.

Figure 6.7 shows the numerically computed NV curve. The value of computed

NV is higher at lower noise strength indicating the irregularity in spikes and shows

a minima at r = 0.4 corresponding to an optimum noise level where the maximum

regularity of the generated spike sequence is observed. The numerically computed

NV curve is consistent with the experimental results. The Hurst exponent is almost

around 1 for all values of r probably because of the difference in the nature of the

experimental and numerical time series data.

Power spectrum plot for noise strength (r) 0.35, 0.4 and 0.5 are shown in

figure 6.8(a), 6.8(b) and 6.8(c) respectively. It is seen that the power is larger

for the figure 6.8(b). Maximum power is observed for a particular noise level,

which indicates the presence of coherence resonance phenomena. This result also

shows a good qualitative agreement with the result obtained from the numerically

computed NV curve.
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Figure 6.6: Solutions (x) of numerical model for various noise strength (r): a) 0.15,
b) 0.20, c) 0.25, d) 0.30, e) 0.35, f) 0.40, g) 0.45, h) 0.50, i) 0.55, and j) 0.60.
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Figure 6.7: Normalized variance (NV) as a function of noise strength (r).
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Figure 6.8: Power spectra of the numerical solution for noise strength (r): a) 0.35,
b) 0.4, and c) 0.5.

6.4 Summary and Conclusions

Intrinsic noise induced coherence resonance has been observed in a glow discharge

plasma. The amount of internal noise is dependent on the DV where an enhance-

ment in noise level with discharge voltage has been observed. The resonance curve

(NV curve) is used to quantify the regularity of the intrinsic noise induced oscilla-

tion and hence to verify the CR phenomena. It is shown that the floating potential

fluctuations show maximum periodicity and maximum power in the power spec-

trum for a particular DV i.e. at a particular value of intrinsic noise. The utility

of the Hurst exponent in the characterization of coherence resonance phenomena

has been explored which suggests that Hurst exponent can be used a tool to iden-

tify the CR. In ref. [38] external noise induced CR have been reported for glow

discharge. In contrast, in the present work we presented that intrinsic noise in-

duced CR is also possible in a glow discharge plasma. We have also carried out a

numerical simulation to understand the dynamics of such excitable system in the

presence of noise. The results obtained from the numerical simulation are in good

agreement with that of experiments. It is quite likely that noise induced spikes

are related to the bunches of ions emanating from the anode and drift towards the
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cathode-anode gap. We hope our finding is helpful for studying the interaction of

the intrinsic noise and plasma modes in plasma system and these results may be

utilized to characterize various plasma based devices like plasma coating devices to

improve their efficiency, plasma lasers to optimize the lasing output where intrinsic

noise can play a beneficial role. Understanding the role of intrinsic noise therefore

can be an important contribution to the study of excitable systems.
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Chapter 7

Detection of Coherent Modes in

the Chaotic Time Series Using

Empirical Mode Decomposition

and Discrete Wavelet Transform

Analysis

Our studies reveal that experimentally observed plasma fluctuations are always con-

taminated with noise and any signal is composed of two parts: a coherent part and

an incoherent noisy part. Realizing the need to separate out the coherent and in-

coherent part in a chaotic time series data, we have developed and applied an

empirical mode decomposition based technique to different types of plasma fluctua-

tion data. The results are compared with those from the well known wavelet based

coherent mode detection technique. EMD based bicoherency technique is used to

identify some of the mode-mode interactions.

107
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7.1 Introduction

It was generally believed that turbulence is a random phenomena, but it has been

observed that turbulent flows contain motion with a broadband of scales [173].

There are two different types of scales present in such a flow, one at which most

energy resides and another at which energy dissipates. The energy containing

scales exhibit the most evident structures that are usually referred to as coher-

ent structures [173]. There are several definitions of coherent structures in lit-

erature [173, 174, 175, 176] but the most relevant one was given by Robinson

et al. [176] “Coherent structure is defined as a region of flow over which at least

one fundamental flow variable exhibits significant correlation with itself or with an-

other variable over a range of space and/or time that is significantly larger than the

smallest local scale of flow”. With the advent of chaos theory, it is now recognized

that both chaos and turbulence are closely related [177]. Chaos and turbulence

differ in one aspect: chaos is produced by low-dimensional system whereas turbu-

lence is produced by very large dimensional system. However, it is seen that weak

turbulence displays all the symptoms of the chaos [177]. So, we can say a coher-

ent structure is a mode which coexists in a turbulent or chaotic flow, retaining its

form over many characteristic lengths or times and also shows a significant correla-

tion with the original flow, and hence can have significant effects on the transport

and mixing [178]. Coherent structures retain partially deterministic features of a

turbulent flow field which have been experimentally observed using schlieren and

shadowgraph pictures [179]. Incidentally, these structures which can also exist in

a chain of mutually coupled oscillators [180] need not always be periodic or linear,

and hence, for their detection, one has to resort to nonlinear techniques.
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Turbulent or chaotic time series signals are some times highly fluctuating, non

stationary and intermittent. They also have a broadband feature and may consist

of a superposition of localized structures in time. Though there is no clear defini-

tion of coherent structure/mode present in a turbulent or chaotic time series data,

Farge et al. [181] suggested that coherent modes are “not noise”. Since any exper-

imental time series is most likely to consist of noise side by side of any coherent

feature, the remaining part of time series after denoising the time series can be

considered as a coherent mode.

Currently, wavelet transform [62, 181, 182] and empirical mode decomposi-

tion [57, 58, 59, 183, 184, 185] (EMD), are two major time-frequency analysis tools

that are commonly used for the processing of non-stationary and nonlinear sig-

nals. The wavelet transform decomposes a signal into different frequency bands

and at different time points with the help of basis functions. The basis functions

have the property of localization in time and frequency. The only difficulty in

using the wavelet transforms, is that the choice of the basis functions influences

the results [182]. EMD was introduced by N. E. Huang et al. [57] for the analysis

of non stationary and nonlinear signals. It is widely deployed as non linear time

series analysis tool in various disciplines, such as plasmas [59, 186, 187, 188], neuro-

science [189], geophysics [190], earth science [191] and economy [192]. This method

has been successfully used for analysis of turbulence [193] and nonlinear time se-

ries data [194]. It does not require any predefined basis functions as in Fourier or

wavelet analysis. Fourier analysis can only be used to analyze stationary signals.

As it decomposes a signal into globally uniform harmonic components, therefore,

it needs many additional harmonic components to represent non-stationary data
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that are non-uniform globally. Fourier spectra needs additional harmonic compo-

nents to simulate the deformed wave-profiles because it uses linear superposition

of trigonometric functions. Although discrete wavelet transform (DWT) can be

applied for the decomposition of non-stationary signals, EMD has certain advan-

tages over the DWT. The levels/scales are fixed in DWT as a result of which the

frequencies of the decomposed signals are predefined, whereas in EMD the fre-

quencies of the decomposed signals are fixed according to the iteration. So EMD

offers a better option in the extraction of the natural frequencies at which the sig-

nal oscillates [195]. Flandrin et al. [183] suggested EMD as a data-driven wavelet

like expansion. The wavelet transform has been used extensively for denoising and

detection of coherent modes of a time series data [62, 181, 182, 196]. In the refer-

ence [62, 182], a coherent mode has been identified as the mode with the highest

energy concentration but it is possible to have more than one coherent mode. Since

EMD has proved to be a data driven wavelet like expansion, it can be used as a

tool for the detection of the coherent modes and in this chapter, we have identified

the highest energy mode as well as those with comparable energy to the coherent

modes. This allows us to not only identify but also study the interaction between

the coherent modes leading to the chaotic behavior.

The detection of coherent structures in a plasma turbulence or chaos is impor-

tant in view of their role in the transport of momentum and energy [197]. The aim

of this chapter is to detect the coherent modes in the chaotic time series (CTS)

data using EMD and discrete wavelet transform (DWT) analyses [62, 182]. The

versatility of these techniques has been demonstrated by applying them to experi-

mental time series data obtained from a glow discharge plasma. One can detect the
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periodic coherent modes using Fourier analysis, but the advantages of EMD and

DWT are that as well as periodicity, they can also detect short timescale coherent

modes.

7.2 Extraction of a Coherent Mode

There is not yet an universal definition of coherent mode in a chaotic or turbulent

time series data, we prefer starting from more consensual statement about them,

that coherent mode corresponds to significantly correlated and highest energy con-

centration mode of the original signal.

We propose a new method to extract coherent modes from chaotic time series

data. In order to extract the coherent mode, we first decompose the signal into its

intrinsic modes (IMFs) using EMD technique. Second, we will pick up the relevant

IMFs by computing the correlation coefficient of IMFs with original signal and

the rest of the modes are considered as redundant. Correlation coefficient (CC)

of an IMF gives an idea about its contribution to the original signal and those

IMFs which have a CC > 0.1(10%) are taken into consideration for the physically

significant modes (relevant). The methodology for the decomposition of a signal

using EMD and computation of cross correlation coefficient has been discussed in

detail in the chapter 2. Information about the energy concentration of a mode

can be obtained by estimating the variance of the modes. These two statistical

estimates ensure that we can identify the coherent modes from the IMFs.

The energy based empirical variance of an IMF is given by the relation

V [k] =
1

N

N∑
n=1

(IMFk(n))2 , (7.1)

where k and N are the mode index or IMF number and the data length of IMF
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respectively.

Since EMD can also be used as dyadic filter, the variance of the modes are

related to the mode indices through the relation [183, 198]

V [k] = C22(H−1)k, (7.2)

where C and H are constant and the Hurst exponent of the signal respectively.

It is clear from Eq. (7.2) that the plot of the log-variance of the IMFs vs mode

indices is a straight line with gradient 2(H − 1). H = 1
2

is a special case which

indicates the Gaussian noise. So the portion of the log-variance plot whose slope

is −1, i.e., Hurst exponent (H) ∼ 1
2

indicates noise, while the maximum indicates

the highest energy concentration at that IMF or at that time scale. If log-variance

plot shows a maximum for a mode, which means an energy concentration, it often

corresponds to a coherent mode.

Following steps are involved in the detection of the coherent modes:

1. Compute the IMFs of time series using EMD.

2. Compute the correlation coefficient and the variance and then plot the log-

variance vs IMF number.

3. From the relevant IMFs, one with maximum log-variance is considered to be

the coherent mode.

7.3 Test Data: Floating Potential Fluctuations

In this work, our objective was to investigate the coherent modes by applying DWT

and EMD to different types of time series data. So, we analyzed three different
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Figure 7.1: Plot of a) first experimental data, b) second experimental data, and c)
third experimental data.

floating potential fluctuations in which the system was operated at a fixed pressure

∼ 0.056 mbar and three different discharge voltages ∼ 426 V, 436 V and 440 V as

shown in figures 7.1(a), 7.1(b) and 7.1(c) respectively. For the third case [figure

7.1(c)], we had applied an axial magnetic field of about 60 G. The power spectrum

plots of the time series data are shown in figure 7.2. It is clearly seen from the

time series and power spectra plots that the oscillatory behaviour is very different

in the three signals. In order to have better resolution of the frequencies, we have

used different sampling times for the first, the second and the third cases as .4

µsec, 2 µsec and .2 µsec respectively.

The measured electron temperature (Te) and density (n) are ∼ 2 eV and ∼

109 cm−3 respectively. The value of ion temperature, ion mass and charge state of

the Ar was ∼ 0.1− 0.2 eV, 40Mp and 1 respectively, where Mp is the proton mass.
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Figure 7.2: Power spectrum plot of a) first experimental data, b) second experi-
mental data, and c) third experimental data.

So the typical values of the various frequencies, i.e., electron plasma, ion plasma,

ion acoustic, ion drift, ion transit, and the ion cyclotron were ∼ 284 MHz, ∼ 1.05

MHz, ∼ 2.5− 5 kHz, ∼ 21 kHz, ∼ 11 kHz and ∼ 2.3 kHz respectively.

7.3.1 First Experimental Time Series (Unmagnetized)

Figure 7.3 shows the first experimental time series of 10000 data points and its

IMFs. The first four IMFs are the high frequency noise components of low ampli-

tude. The higher IMFs from the sixth onwards exhibit a clear structure of lower

frequency while the 11th IMF represents the trend. Hence EMD can also be con-

sidered to be a filter to separate various frequency components. Figures 7.4(a) and

7.4(b) show the CC and the log-variance vs IMF number respectively. The CC

plot shows a peak at the fifth IMF and very small values for the others and it is

seen that the CC of almost all the IMFs is < 10%. The fifth IMF shows a peak

in the CC while the others exhibit rapid fall. Correspondingly the log-variance

also shows a maximum at the fifth IMF while the rest tend to exhibit a sharp fall.

The log-variance plot also shows an initial slope of −1 for the higher frequency

modes indicating that the first few high frequency modes are the contribution of
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noise. Hence, we can consider the fifth IMF as the coherent mode which is shown

in figure 7.6(b).

We estimated the log-variance of the wavelet coefficients of the time series at

different levels using the db4 wavelet as depicted in the figure 7.5. The log-variance

plot appears to be linear with gradient zero for the high frequency modes indicating

noise like behaviour which is also observed in the EMD analysis. Figure 7.5 shows

a peak at the 8th level which is shown in isolation in figure 7.6(c).
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Figure 7.6: Plots for the a) time series signal, b) coherent mode obtained using
EMD: 5th IMF, and c) coherent mode obtained using DWT: 8th wavelet level.

Both the EMD as well as DWT analysis show that only one coherent mode

is present in this time series data [figure 7.6(a)] which are depicted in the figures

7.6(b) and 7.6(c) respectively.

7.3.2 Second Experimental Time Series (Unmagnetized)

Figures 7.7(a), 7.7(b) and 7.7(c) show the CTS of 10000 data points, the CC and

the log-variance vs IMF number respectively. From figure 7.7(b), it is observed

that the first four and the twelfth IMFs have a CC value < 0.1(10%). The log-

variance plot shows a gradient of −1 for the higher frequency modes (i.e. 1st to 3rd

modes) indicating that the first three modes could be the contribution of noise.

There is a maxima in log-variance plot at the eighth IMF and hence from the

above criteria this would have been considered as the coherent mode. If one looks
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Figure 7.7: Plots for the second experimental data: a) chaotic time series (sampling
time 2µs), b) correlation coefficient of IMFs, and c) log2(variance) of IMFs.

at figure 7.7(c) more closely, it is also seen that the fifth to tenth IMFs exhibit

nearly same high energy concentration and hence it may be necessary to consider

these also as relevant coherent modes which are shown in figure 7.8.

The log-variance plot of the wavelet coefficient is shown in figure 7.9. Here

also the initial gradient is close to zero, representing the noise like behaviour in

the higher frequency modes which is also seen in EMD analysis. The log variance

plot suggests that the 7th to 11th wavelet levels could correspond to the coherent

modes in the CTS as seen in the figure 7.10.

The existence of multiple coherent modes is expected since the time series signal

is chaotic in nature, with a broadband of frequencies and high energy concentration

modes.

7.3.3 Third Experimental Time Series (Magnetized)

Figures 7.11(a), 7.11(b) and 7.11(c) show the CTS of 100000 data points, the

CC and the log-variance vs IMF number respectively. From figure 7.11(b) it is
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Figure 7.10: Coherent modes obtained using DWT for the second experimental
time series data.

observed that the first six IMFs have a CC value < 0.1(10%). It is also seen that

the CC values are more or less saturated after the 7th IMF compared to figures

7.4(a) and 7.7(b) where the CC values shows a sharp fall after reaching peak value.

The corresponding log-variance also shows a similar saturated behaviour with a

small peak at the 14th IMF. From the above criteria mentioned in section 7.2, 14th

IMF only would have been considered as the coherent structure. Comparing the

raw data of 7.6(a), 7.7(a) and 7.11(a) it can be said that 7.11(a) is most chaotic

or may also be considered as the most turbulent signal which may be due to

nonlinear interactions of several coherent modes with high energy concentration.

If one looks at 7.11(c) it is seen that the eight to fifteen IMFs exhibit nearly same

high energy concentration and hence it may be necessary to consider these also as
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Figure 7.11: Plots for the third experimental data: a) chaotic time series (sampling
time .2µs), b) correlation coefficient of IMFs, and c) log2(variance) of IMFs.

relevant coherent structures as depicted in figure 7.12. It is also likely that since

a magnetic field is present, there is a possibility of different oscillations like ion

acoustic, ion cyclotron and drift modes to interact and give rise to the complicated

CTS.

The log-variance plot of the wavelet coefficients as a function of wavelet level

is shown in figure 7.13. The initial gradient of the log-variance plot is close to zero

suggesting a contribution from noise as in the earlier cases. Though there is a max-

imum at 14th wavelet level this time series could be dominated by more coherent

modes since the 11th to 15th wavelet levels have a high energy concentration in

the log variance plot. Figure 7.14 depicts the coherent modes obtained after DWT

analysis.
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7.4 Estimation of the Frequencies and Compar-

ison Between EMD and DWT

Each IMF is approximately a monocomponent in frequency [57, 199]. In the chap-

ter 2, we have seen that by taking the Hilbert transform of an IMF, one can

determine the phase angle φ(t) [57, 59] and the frequency ω = dφ
dt

.

Figure 7.15 shows that the unwrapped phase angle of the IMFs increases ap-

proximately linearly with time from whose slope the instantaneous frequency can

be estimated as ω = dφ(t)
dt

. It is observed that the excursion of the instantaneous

frequency is maximum for the highest frequency and decreases for lower frequen-

cies. This technique gives instantaneous frequency of the IMF and the concept of
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Table 7.1: Estimation of approximate frequencies of coherent modes (CMs)
Time series Approx. freq. of CMs Approx. freq. of CMs

obtained using EMD (kHz) obtained using DWT (kHz)
First time series 12 7

Second time series 11, 5.2, 2.8, 2.8, 1.4, 0.7,
1.1, 0.59 and 0.29 0.35 and 0.18

Third time series 21, 10, 4.8, 2.5, 1.7, 0.87, 0.44,
1.3, 0.7, 0.25 and 0.15 0.22 and 0.11

frequency bandwidth is not applicable [200]. The time frequency spectrogram ob-

tained by applying the Hilbert transform on the IMFs of the experimental signals

is shown in figure 7.16. These plots gives the information of the instantaneous fre-

quency whose amplitude can be noted from the corresponding colour bar. Figure

7.16(a) shows distinct instantaneous frequency whereas figure 7.16(b) and 7.16(c)

show wide variations in amplitude and frequency indicating their chaotic nature.

Table 7.1 shows the estimated frequencies of the coherent modes using EMD

and DWT. The frequencies are comparable with some of the plasma mode frequen-

cies.

Figures 7.2(a), 7.2(b) and 7.2(c) show the power spectrum plots of the exper-

imental time series shown in the figures 7.6(a), 7.7(a) and 7.11(a) respectively.
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Figure 7.16: Time frequency spectrogram using Hilbert transform of a) first ex-
perimental data, b) second experimental data, and c) third experimental data.

Figure 7.2(a) clearly shows distinct peaks with dominant peak around ∼ 10 kHz

whereas a broadband nature is seen in the other two plots indicating chaotic nature

of the time series. Such broadband time series signal is represented by the finite

number of amplitude modulated single frequency modes (IMFs) using EMD.

Fourier transform of any fixed frequency amplitude modulated signal will show

two uniform-amplitude components with different frequencies. On the other hand

the Hilbert transform will yield a single frequency with modulated amplitude im-

plying a monocomponent. A more detailed treatment of this subject can be found

in reference [57, 199]. The dominant frequencies in the power spectrum plots are

in good agreement with those obtained from EMD as compared to those using

DWT.

It is seen from the table 7.1 that the frequencies of the coherent modes ob-

tained using EMD have better agreement with the estimated plasma modes as
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well as power spectra in comparison with those obtained using DWT. This could

be because the levels/scales are fixed in wavelet decomposition as a result of which

the frequencies of the decomposed signals are predefined, whereas in EMD the fre-

quencies of the decomposed signals are fixed according to the iteration. So EMD

helps in the extraction of the natural frequencies at which the signal oscillates.

7.5 Bicoherency Factor and Study of Mode In-

teraction

Using bicoherency technique, we explored the possibility of the interactions be-

tween the various coherent modes obtained from EMD. Since, the IMFs can be

represented in the form of Zi(t) = Ai(t)e
jφi(t)t using Hilbert transform, the in-

teraction amongst them can be studied by estimating the Bicoherency factor [59]

discussed in the section 2.3.8 of chapter 2.

Figures 7.17(a), 7.17(b) and 7.17(c) show the bicoherency for the first, sec-

ond and third time series respectively. The figure 7.17(a) shows that there is no

interaction between the modes since there is only one dominant/coherent mode.

Figure 7.17(b) shows that the fourth and the fifth IMFs have a bicoherency

factor higher than the error value. Hence it is possible that there are triplet

interactions amongst the fourth to seventh IMFs corresponding to 36 kHz, 11

kHz, 5.2 kHz and 2.8 kHz respectively. But we observed from figure 7.8 that the

fourth IMF is not a relevant coherent mode and hence can be discounted leaving

us with the dominant modes corresponding to only fifth, sixth and seventh IMFs

whose frequencies are 11 kHz, 5.2 kHz and 2.8 kHz respectively. Since they

correspond to ion acoustic and ion transit range of frequencies, it is quite likely
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that the chaotic behaviour is due to interaction between these modes.

Following the same technique as above we see that from the figure 7.17(c) there

could be a triplet interactions amongst the seventh to tenth IMFs corresponding

to frequencies 65 kHz, 21 kHz, 10 kHz, and 4.8 kHz respectively. Since the

seventh IMF does not fall in the relevant dominant mode, only eighth, ninth and

tenth IMFs need to be considered for possible interaction implying frequencies 21

kHz, 10 kHz and 4.8 kHz respectively. Incidentally for a plasma with Te ∼ 2 eV

and magnetic field 60 G, the 21 kHz, 10 kHz and 4.8 kHz fall in the ion drift,

ion transit, ion acoustic and ion cyclotron range of frequencies respectively. Hence

it is likely that there may be interaction between all these modes leading to the

turbulent behaviour.

The frequency analysis only gives a tentative idea about the plasma modes.

There may be other processes like ionization instability, nonlinear interaction be-

tween modes and nonlinear frequency shifts, etc. which can generate similar be-

haviour in the time series data.

We see that each of the IMFs has time localized structures suggesting the
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possible occurrence of some plasma instabilities at that instant of time which are

not clearly visible in the original time series. In these structures, the oscillations

seem to grow to a maximum amplitude before decaying. The estimation of the

growth time scales of these localized structures give the tentative time scales of

the instabilities. The typical growth time values are in the range of 2× 10−4 s to

13 × 10−4 s corresponding to the lower frequency range, i.e. 700 Hz - 5 kHz, as

observed in the power spectrum [figure 7.2].

7.6 Summary and Conclusions

We have shown the usefulness of empirical mode decomposition (EMD) in the

extraction of coherent structures from a chaotic time series (CTS) of floating po-

tential fluctuations and its effectiveness has been confirmed by comparing with the

well known discrete wavelet transform (DWT) analysis. Since the experimental

data also has some noisy components, and trends, EMD technique helps in filter-

ing both of them leaving only the intrinsic mode functions (IMFs). From the IMFs

also, it is necessary to delineate those that contribute to the coherent part. The

IMFs that contribute to the coherent modes vary from case to case depending on

the chaoticity of the signal. From the log-variance plots it was observed that the

energy concentration was primarily in only one IMF in the first data, six IMFs in

the second and eight IMFs in the third CTS data respectively.

In addition to the extraction of coherent modes from the CTS data, we have also

been able to estimate the growth times of some of the time localized structures and

the frequencies of the coherent structures. By applying the EMD based bicoherency

technique on the IMFs, we have shown that the interaction between ion acoustic
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modes of different frequencies are possibly occurring in the unmagnetized plasma,

whereas in the magnetized plasma it is quite likely that the interaction between the

ion cyclotron and the ion acoustic modes is responsible for the chaotic behaviour

in the time series.

On the evidence of our study of three time series, we feel that the EMD tech-

nique is a promising and appealing tool for the analysis of CTS. In addition, this

is perhaps for the first time to our knowledge, we have applied EMD for the de-

tection and investigation of possible interaction of the coherent structures in an

experimental CTS, and we hope that these results will inspire a further use of

EMD analysis for chaotic time series.



Chapter 8

Coherent Modes and Their Role

in Intermittent Oscillations Using

Empirical Mode Decomposition

In this chapter, applicability of the empirical mode decomposition based coherent

mode detection technique, developed in previous chapter, has been shown by apply-

ing it on intermittent chaotic time series data. During the experiment, it is seen

that these oscillations go to an ordered state from a chaotic state with increase in

the discharge voltages through intermittence chaotic state. Role of coherent mode

during this transition is given. The Hilbert Huang spectrum of the fluctuations

confirm the presence of intermittency and the intermittent change in the frequency

with time.

129
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8.1 Introduction

In the chapter 7, we have developed a Empirical mode decomposition (EMD)

based coherent mode detection technique. Efficiency of this method has been

shown irrespective of the nature of data by applying it on three different kind of

fluctuation data. Here, we will demonstrate the applicability and usefulness of this

method by applying it on intermittent chaotic signal. All our previous chapters

established that floating potential fluctuations occur at different scales and show a

complex structure like chaos, mixed mode oscillation, multifractality, etc. In this

chapter, we will focus on another complex structure known as intermittency. In

any dynamical system, intermittency is considered as the irregular alternation of

different phases like different forms of chaotic dynamics or periodic and chaotic dy-

namics [201]. In fluid dynamics, intermittency is usually referred to as a behaviour

where long time intervals of regular behavior (“laminar phases”) are interrupted

by fast irregular bursts [202]. Intermittency is a frequently observed phenomena

in many fields of science like electronics [203], plasma [211, 204, 205, 206], biol-

ogy [207, 208], laser [209] and neurology [210]. As intermittent signals can be

highly non stationary and nonlinear, EMD can give more acquaintance and better

insight regarding the intermittent phenomena as compared to conventional tech-

niques like Fourier transform and wavelet analysis [62]. EMD technique along with

Hilbert transform can give temporal as well as frequency modulation information

unlike the normal Fourier transform. All these facts motivated us to carry out

the EMD analysis of intermittent signals which can be highly non linear and non

stationary.
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8.2 Intermittent Time Series and Their Analysis

Using EMD

The experiment was performed in a cylindrical geometry dc glow discharge argon

plasma by Ghosh et al. [211]. In this present experiment, pressure was kept at

∼ 0.028 mbar and DV was varied in the range of 628 V to 674 V . The typical

plasma density, electron temperature and ion temperature were around ∼ 107

cm−3, ∼ 1− 3 eV and ∼ 0.1 eV respectively. The electron plasma frequency and

ion plasma frequency were calculated to be ∼ 28 MHz and ∼ 150 kHz respectively

while the ion acoustic frequency was found to be around ∼ 3−10 kHz. The floating

potential fluctuations, consist of 8192 data points, recorded at a sampling rate of

10 µs. Details of the experiment can be found in Ghosh et al. [211] and for ease

of comparison, the data from ref. [211] have been used in the present analysis.

Time series data of the floating potential fluctuations are shown in figures

8.1(a)-8.1(i) showing transition from the order (relaxation) state to the chaotic

behaviour via type I intermittency [211]. Figure 8.2(a′), 8.2(b′) and 8.2(c′) show

the expanded view of the time series shown in the figure 8.1(a), 8.1(d) and 8.1(i)

respectively. From the figures, we have seen two different types of oscillations:

relaxation oscillation (type A) and chaotic oscillation (type B). At lower discharge

voltages, i.e., 628 V and below, relaxation oscillations of type A are seen, while

type B oscillations appeared at and above DV 638 V . The occurrence of type A and

type B oscillations are irregular and intermittent. Beyond 648 V , the frequency of

occurrence of type B became higher compared to type A and finally the oscillations

settled to type B from 674 V onwards.

As an example, we have shown in figure 8.3 the experimental time series (figure



132

-0.4

0

0.4

-0.4

0

0.4

-0.4

0

0.4

a)

b)

c)

-0.4

0

0.4

-0.4

0

0.4

A
p
lit

u
d
e
 (

V
)

-0.4

0

0.4
f)

e)

d)

-0.4

0

0.4

-0.4

0

0.4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
-0.4

0

0.4

Time (s)

g)

h)

i)

A
m

p
li

tu
d

e
 (

V
)

Figure 8.1: Time series of the floating potential fluctuation for different values of
DV: a) 628 V, b) 638 V, c) 640 V, d) 645 V, e) 648 V, f) 655 V, g) 660 V, h) 670
V, and i) 674 V. Pressure is kept fixed at 0.028 mbar.
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8.1(b)) and its IMFs decomposed by EMD technique. From the figure, it is clear

that 1st IMF is related to high frequency low amplitude noise, 2nd-10th IMFs are

associated with signal and 11th-13th IMFs are trend terms. This visual interpre-

tation is verified by estimating the correlation of IMFs with the original signal

[figure 8.4]. It is seen that the correlation coefficient of the IMFs contributing to

the noise and trend turn out to be less than 10% and hence can be neglected for

further analysis.

In the left and right panels of the figure 8.4, we have shown the correlation coef-

ficient (CC) and the log-variance plots as a function of IMF number corresponding

to the time series shown in the figure 8.1. For the first four time series data, the

CC and log-variance plots show a maxima at 4th IMF indicating that the 4th IMF

is the mostly correlated IMF with the original signal as well as possessing higher

energy concentration. Thus, the 4th IMF can be considered as the coherent mode.

Similarly for the last four time series data, 3rd IMF turns out to be the coherent

mode. In the case of the fifth time series data, it is seen that the 3rd and the
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mode which have higher correlation with the original signal.
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Figure 8.5: Representation of log-variance of IMFs of the fluctuations in an IMF
no-DV space. Value of log-variance distributed according to colour axis.

4th IMFs exhibit the same energy concentration and hence it may be necessary

to consider both the 4th as well as the 3rd IMF as the relevant coherent modes.

This observation clearly indicates that energy is being transferred from one mode

to another thus forcing the system to change intermittently from one oscillation to

another.

As the plasma system is highly nonlinear, it is apparent from the analysis that

there is an exchange of energy between the modes. The contour plot of figure 8.5

shows a clear visualization of the transfer of energy between the modes wherein

the colour indicates the value of the log-variance (often energy). It is observed

that initially the energy is concentrated around the 4th IMF, i.e., for DV below

648 V , and for the intermediate voltage (DV ∼ 650 V ) the energy is distributed

within 3rd to 6th IMFs. For the latter case i.e DV beyond ∼ 650 V, the energy is

concentrated around the 3rd IMF.

In order to see the exchange of energy between the 4th and 3rd modes clearly,
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Figure 8.6: Comparison of energy concentration of 3rd and 4th IMFs of the time
series signals: Plot of log variance as a function of DV.

we have plotted the log-variance of the 3rd IMF and the 4th IMF as a function of

DV in the figure 8.6. It is seen from the figure that variance of the 4th IMF and

the 3rd IMFs is decreasing and increasing respectively with the discharge voltage.

Therefore, at lower discharge voltages (628-648 V ) the highest energy mode, i.e.,

the 4th IMF, loses its energy with the increase in the discharge voltage and finally

for DV > 648 V , 3rd IMF becomes highest energy mode. This gradual transfer of

energy from the 4th to the 3rd IMF leads to the change in the coherent mode of

system as a result of which one oscillation i.e relaxation oscillation changes to a

chaotic one.

We have estimated the mean frequency of each IMF in order to better see how

the decomposition is performing on the intermittent data. The relation between

IMF no. and mean frequency is displayed in figure 8.7. The straight line in log-

linear plot suggesting the following relation f̄(k) = f0ρ
−k, where f is the mean
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Figure 8.7: Mean frequency versus IMF number for the intermittent time series
(DV ∼ 648 V). There is a power law with a slope very close to 1.

frequency, f0 is a constant and ρ ∼ 2. This indicates that EMD acts as a dyadic

filter bank in the frequency domain.
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Figure 8.8: Mean frequency of IMFs as function of DV.

The mean frequencies of the first seven IMFs, having frequencies more than

500 Hz, as a function of DV is shown in the figure 8.8. It is seen that the time

series data preserves the basic structure (in terms of frequency components) with

the increase in the discharge voltage. Therefore, the IMFs have also preserved

their respective mean frequencies throughout the DV as depicted in the figure
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8.8. Information of the occurrence of the intermittent oscillations reflects as an

increase in the amplitude of the IMF which corresponds to the frequency of the

intermittently occurring mode. Different IMFs have different frequencies indicating

that they are representing different modes. We observe that the system is mainly

dominated by two distinct modes, i.e., 3rd and 4th IMFs. Initially the system is

dominated by 4th IMF at low voltages, whereas it is dominated by 3rd IMF at

high voltages.

The time frequency spectrograms obtained by applying Hilbert transform on

the IMFs of the initial relaxation [figure 8.1(a)], the intermediate intermittent

[figure 8.1(e)] and the final chaotic states [figure 8.1(i)] are shown in the figures

8.9(a), 8.9(b) and 8.9(c) respectively. The frequency band centred around ∼ 2.5

kHz for type A oscillation is seen in the figure 8.9(a) whereas frequency band cen-

tred around ∼ 5 kHz for type B oscillation as depicted in the figure 8.9(c). In the

figure 8.9(b), a clear discontinuity in the contours as well as two frequency bands

centered around ∼ 2.5 kHz and ∼ 5 kHz have been observed. The discontinuity in

the contours and irregular switching of the contours between ∼ 2.5 kHz band and

∼ 5 kHz band indicates the presence of intermittency. The electron drift velocity

for the range of DV 628−674 V is ∼ 109 cm/s which is ∼ 13 times greater than the

electron thermal velocity (∼ 7×107 cm/s) for the 3 eV electron plasma and hence

is conducive for the generation of ion acoustic instabilities which fall in the range

of 3−10 kHz. So, it is quite likely that observed frequencies are triggered by ion

acoustic instabilities. Since the observed time series is of relaxation type in nature,

its frequency changes from time to time within the oscillation thus implying the

intrawave frequency modulation of the signal. As the frequency bands have time
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variation about the centre band frequency as depicted in figure 8.9, this indicates

the frequency modulation.
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Figure 8.9: Time-frequency-energy representation, obtained using HHT, corre-
sponding to the floating potential fluctuations shown in the figures 8.1(a), 8.1(e)
and 8.1(i)

.

For the confirmation of the coherent modes obtained using EMD, we carried

out R/S analysis [63] to detect the presence of coherent modes and also identify

the respective frequencies [13]. Figures 8.10(a), 8.10(b) and 8.10(c) show the plot

of log10(R/S) versus log10(m) for the time series shown in the figures 8.1(a), 8.1(e)

and 8.1(i) respectively. In the R/S plot for type A oscillation [figure 8.10(a)],

the presence of a single linear regime suggests the presence of one coherent mode

whose frequency ∼ 2.1 kHz is obtained from the bending in the curve. A similar

observation has been made in the R/S plot, shown in the figure 8.10(c), for the
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Figure 8.10: Plot of log10(R/S) versus log10(m) corresponding to the floating po-
tential fluctuations shown in the figures 8.1(a), 8.1(e) and 8.1(i)

.

type B oscillation. The bending in the curve is due to the ∼ 4.2 kHz cycle.

However for the intermediate intermittent oscillation, the R/S curve shows the

presence of two distinct linear regimes. These two distinct linear regimes suggest

the coexistence of two coherent modes for the intermediate oscillation. These

observations corroborate the observations made by EMD.

Figure 8.11 shows the reconstructed phase space plots for the time series shown

in the figures 8.1(a), 8.1(e) and 8.1(i) respectively. A single centre of rotation

is observed in the case of the non intermittent signals whereas two centres of

rotation are observed for the intermediate intermittent oscillations. This is also

revealed by the R/S curve where we have observed a single linear regime for the

non intermittent signals and two linear regimes for the intermediate intermittent

signals.
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Figure 8.11: Reconstructed phase space plot corresponding to the floating potential
fluctuations shown in the figures 8.1(a), 8.1(e) and 8.1(i). In these plots, the time
delay, estimated using mutual information technique, τ = 20 µs has been used.
Solid red line indicates the mean trajectory.

8.3 Summary and Conclusions

We have applied here empirical mode decomposition technique to analyze the ex-

perimental intermittent time series data. After decomposition of the original time

series data into several intrinsic modes, the coherent modes have been identified by

estimating the correlation coefficient and the log variance. Comparing the log vari-

ance of the coherent modes, that signify the energy of the mode, we have observed

that the associated coherent modes in the time series change while the system

transits from one state to another i.e from relaxation to chaotic. At low discharge

voltages (< 650 V ), there is an occurrence of type A oscillations dominated by one

coherent mode represented by 4th IMF. At higher discharge voltages (> 650 V),

type B oscillations are present that are dominated by a different coherent mode

represented by IMF 3. In the intermediate stage, at a discharge voltage of ∼ 650

V , there is a crossover of energy from 4th IMF to 3rd IMF. The contour plot shows
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clearly the transfer of energy from 4th IMF to 3rd IMF. Presence of single linear

regime in the R/S plot for initial and final states suggests the existence of a single

coherent mode in each of these states whereas the presence of two linear regimes in

the case of intermittent oscillations (∼ 648 V ) indicates the coexistence of two co-

herent modes. These observations corroborate the results obtained on the basis of

EMD analysis. A single frequency band around 2.5 kHz and 5 kHz in HHT spec-

trum are seen in the initial and final non intermittent states respectively whereas

for the intermittent case a clear discontinuity and irregular frequency switching

between these frequency bands is observed. The observed frequencies which are

probably due to ion acoustic instabilities are better represented by 4th IMF at low

voltages, and by 3rd IMF at high voltages. These observed frequencies are trig-

gered by ion acoustic instabilities. EMD along with HHT technique gives a clear

confirmation about the presence of intermittency in the signal in contrast to the

other traditional analysis techniques like phase space and Fourier transforms. The

Power spectral analysis in Ghosh et al. [211] shows a broadband nature around

the 2.6 kHz and 5.2 kHz but the temporal information about the occurrence of

the intermittent frequencies was not present. This information has been clearly

extracted using the EMD and the HHT analysis. Apart from that an important

information about the intrawave frequency modulation is also extracted using the

HHT analysis which cannot be done using power spectral analysis. So we feel

that the method presented in this paper is a very powerful tool to analyze highly

intermittent and non stationary data and may be very helpful to investigate data

which are highly turbulent in nature.
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Chapter 9

Summary and Future Scope

In this chapter, a quick recapitulation has been made on the works discussed in this

thesis: “Investigation of nonlinear dynamics of a self-excited complex system like

plasma”. Some of the future scope regarding our works has also been discussed.
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9.1 Summary

With the development of nonlinear dynamics, large scale simulations and large

scale computations, scientists began to focus on research on complex systems to

understand the various phenomena like long range correlations, self-organized be-

haviour, complex co-operative behaviour of some networks and so on. Plasma be-

ing a complex system, all these developments also caught the attention of plasma

scientists and nonlinear dynamics turned out to be very useful to explain plasma

instabilities, plasma transport, characterization of plasma turbulence etc. Vari-

ous theoretical studies using nonlinear dynamical models have been carried out

to explain plasma instabilities in late 60s while experimental observations like pe-

riod pulling, period doubling have been effective in explaining the transition to

turbulence. Nonlinear phenomena like period doubling, intermittency, mode lock-

ing, mixed mode oscillations, etc. have begun to emerge in the last few decades

drawing the attention of plasma physicists into nonlinear dynamics. A conven-

tional plasma physicist would be interested in oscillations from a spectral point

of view like identification of frequencies and dispersion relations to explain vari-

ous plasma phenomena. However a nonlinear dynamist would tend to explore the

dynamics of plasma fluctuations and their dynamical origin to explain the plasma

processes like plasma transport, control of chaos, etc. In the present day scenario,

nonlinear dynamics has become an inseparable tool to understand various plasma

phenomena.

Glow discharge plasmas, very common and versatile in plasma technology, pro-

vide an excellent platform to study and understand various nonlinear phenomena

ranging from complex space charge configurations to chaotic dynamical processes.
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Owing to the various dynamical processes that are taking place in a plasma such

as ionization and recombination mechanisms, and due to the free energy sources

provided by the space charge configurations, plasma is easily susceptible to the

excitation of waves and instabilities. The potential configurations themselves are

also in a dynamical state, often undergoing makes and breaks. This in turns forms

the driving engine for more nonlinear dynamical processes that are observed in the

bulk of the plasma. For the very many reasons stated above, the glow discharge

plasma device has given way to numerous experimental observations such as de-

terministic chaos, hysteresis, homoclinic bifurcation and mixed mode oscillations,

etc. Inspite of the numerous experimental studies in glow discharge plasma under

various conditions, the role of magnetic field and intrinsic noise have not yet been

explored much. “Both these features are close companions of a plasma, while the

former is used extensively in plasma confinement, the latter is always present in

a plasma due to thermal fluctuations”. Thus, for the understanding of nonlinear

dynamical behaviour of the plasma under the influence of external dipolar as well

as axial magnetic fields and intrinsic plasma noise, we have carried out several

experiments in an argon dc glow discharge plasma device. A brief summary of the

results and discussions of the studies made in this thesis on these topics is drawn

here.

9.1.1 The Glow Discharge Plasma Device, Plasma Diag-

nostics and Fluctuations Analysis Tools

Within the scope of the present thesis, a glow discharge plasma device was used

and put into operational condition with the specific intention of studying nonlinear

dynamical behaviour of plasma fluctuations. The device consists of ∼20 cm long
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cylindrical stainless steel cathode chamber with ∼10 cm diameter and a central

wire anode of length ∼ 3 cm and diameter ∼ 3 mm. The base pressure ∼ 0.01

mbar is obtained using a rotary pump of speed 250 l/min. With argon as the

filling gas, plasma is produced by applying a high voltage power supply (0− 1000

V ) between the electrodes.

A Langmuir probe (LP) was used for the measurement of plasma density (n),

electron temperature (Te) and floating potential fluctuations which were recorded

using an oscilloscope (DPO 4034). The range of the various plasma parameters

like plasma density (n), electron temperature and ion temperature is ∼ 107 − 109

cm3, Te ∼ 1− 4 eV and Ti ∼ 0.1 eV respectively.

For analysis of the plasma fluctuations, various linear and nonlinear time se-

ries analysis tools along with statistical analysis tools have been used. These are

the following tools: Fourier transform, discrete wavelet transform, phase space

reconstruction, Lyapunov exponent, multifractal detrended fluctuation analysis,

Hurst exponent, empirical mode decomposition, Hilbert Huang transformation,

bicoherency, correlation coefficient, normalized variance etc.

9.1.2 Experiments in the Presence of Dipolar Magnetic

Field

To begin with, keeping a fixed value of neutral pressure at ∼ 0.36 mbar, a dis-

charge was initiated at ∼ 286 V , the voltage was latter set at ∼ 401 V for the

system to exhibit the excitable fixed point behaviour. Then an inhomogeneous

magnetic field was applied by placing a bar magnet near the cathode surface.

Quasiperiodic oscillation was observed at ∼ 2 G and with increase in magnetic

field strength the large, but bounded periodic limit cycle oscillations appeared
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between the small quasiperiodic oscillations, confirming the occurrence of canard

orbit. In the range of magnetic field strength ∼ 6-20 G, irregular mixed mode oscil-

lations (MMOs) were seen and they became regular mixed mode for the magnetic

field strength > 25 G. The frequency of the quasiperiod oscillations was lies in the

ion acoustic range whereas for regular mixed mode it was around ion cyclotron

frequency. The occurrence of canard and irregular MMOs has been attributed to

the effects of intrinsic noise, i.e, a stochastic process, whereas the regular MMOs

are attributed to the domination of the ion cyclotron mode. As the application

of dipolar magnetic field generates ion cyclotron mode with different frequencies

and polarization characteristics which can interact with the unmagnetized plasma

mode as well as among themselves leading to a broad band intrinsic noise. A

numerical simulation has been carried out using a FitzHugh-Nagumo (FHN) like

model to understand the dynamical origin of the canards and MMOs. The model

represents an excitable system which is obtained by a suitable transformation us-

ing the Liénard like co-ordinate system of anharmonic oscillator equation used to

explain the plasma instabilities. Obtained results from the numerical simulation

agrees with the experimental results.

In addition to the generation of intrinsic noise, dipolar magnetic field also

gives rise to the formation of a localized glow or cathode spot near the cathode

surface. The secondary electrons produced from the cathode surface travel along

the dipolar field lines (shown in the figure 3.5) and get reflected at cathode surface.

These electrons ionize neutrals, and produce a dense plasma compared to the bulk

plasma near the cathode surface. The intensity of the glow and the density of

the plasma are seen to increase with the increase in the strength of the magnetic
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field. When the system dynamics settles into an oscillatory state at DV ∼ 597

V and pressure ∼ 0.130 mbar instead of an excitable state, nonlinear dynamical

features associated with the localized glow were observed. Plasma fluctuations

showed that the emergence of such a localized structure leads the system towards

highly nonlinear dynamical regimes. Transition from order to chaos via period

doubling bifurcation is seen with increase in the magnetic field strength which

were analyzed using bifurcation diagram, phase space plots, power spectrum plots,

Hilbert Huang transform and by estimating the largest Lyapunov exponent. It

was seen that system became chaotic after the appearance of the localized glow

(for magnetic field > 2 G). Appearance of this structure near the cathode surface

modified the monotonic potential profile into a potential structure with minima.

As a result of which ions are trapped in this potential structure and oscillate

within it. Thus, it is quite possible that the observed result of period doubling in

the bulk plasma is a consequence of these ion oscillations. We have carried out a

numerical simulation of ion oscillations within a potential structure with minima

under external forcing. With the change in the external forcing strength, period

doubling bifurcation is observed agreeing with experimental observations.

9.1.3 Experiment in the Presence of Axial Magnetic Field

Here, we studied the effect of an axial magnetic field on the plasma dynamics.

Phenomena like order to chaos could be observed. However finer structures like

canards and mixed mode oscillations, observed in the case of the dipolar mag-

netic field effect on plasma, were not observed in this experiment probably due

to the constraint of last step variation in the magnetic field strength. We started
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with the normal oscillatory state of plasma dynamics at DV ∼ 316 V and pres-

sure ∼ 0.18 mbar. Chaotic fluctuation were observed at the chosen experimental

parameters which exhibited multifractal behaviour. Multifractal detrended fluctu-

ation analysis was used to analyse the dynamics, which showed a clear suggestion

that the degree of multifractality decreases with an increase in the strength of the

axial magnetic field. We also found that the generalized Hurst exponent lies in the

range of ∼ 1-1.6 suggesting a long range correlated dynamics. We also showed that

long-range correlation makes a greater contribution to multifractality of the data

than the broadness of the probability density function, i.e., fat-tail distribution.

9.1.4 Experiment in Unmagnetized Plasma

It is known that change in magnetic field and DV can lead to effects like changing

the system dynamics and enhancement in the intrinsic noise. However, the dynam-

ical process is different in the two cases. In the case of magnetic field, the effects

are mainly due to the generation of new plasma modes and interaction between

them as discussed in chapter 3-4. In the case of DV, the effects are due to acceler-

ation of charge particles which can enhance ionization, and also create a situation

conducive for the generation of plasma instabilities. Here, we tried to explore the

effect of intrinsic noise on plasma dynamics by changing DV. As the noise effect is

prominent in the case of excitable dynamics, the system was operated at neutral

pressures ∼ 0.37 mbar and DV ∼ 478 V at which an excitable fixed point dynamics

was observed. With the increase in DV, large amplitude spikes were observed. The

rising and falling time scales were comparable with the ion transit time scale be-

tween two electrodes. It was noted that the intrinsic noise increases with increase

in DV. It was seen that these excitable spikes achieved maximum regularity for a
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particular DV, i.e., at a particular value of intrinsic noise suggesting the occurrence

of coherence resonance phenomena. Since model used in the chapter 3 is valid for

any excitable dynamics, we have used same numerical model to understand the

dynamics of the observed experimental results here. This model also confirmed

the occurrence of coherence resonance phenomena.

9.1.5 Empirical Mode Decomposition Based Coherent Mode

Detection

In all the above experiments, we have seen that experimental time series are gen-

erally contaminated with noise/incoherent part. In the chapter 7, we have devel-

oped a method for separating out coherent and incoherent parts of a time series

data. For the first time, we proposed empirical mode decomposition (EMD) based

method for detection of coherent mode of a chaotic or turbulent time series. The

correlation coefficient and variance estimation are helpful to identify the coherent

modes from the intrinsic mode functions obtained by decomposing the time series

signal using EMD. We have established this method by comparing it with well es-

tablished wavelet based coherent mode detection technique. The efficiency of this

method is shown by applying it on three chaotic time series data obtained from

the glow discharge plasma. EMD based bicoherency analysis is also carried out

which suggested that chaotic/turbulent feature is due to nonlinear interactions of

various physical plasma modes.

Applicability and the usefulness of this method was demonstrated by using it for

the analysis of intermittent chaotic fluctuations from the glow discharge plasma.

Data showing a transition from periodic state to chaotic state via intermittent

chaos with the increase in the DV was used. EMD along with Hilbert Huang
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transform clearly confirmed the intermittent nature and provided the temporal

information about the signal. Using the coherent mode detection technique, it has

been clearly shown that the system is well represented by one coherent mode in

case of periodic and chaotic states whereas it is well represented by two coherent

modes in the case of intermittent data. An exchange of energy between two modes

was seen during the transition. Transfer of energy from one mode to another mode

led to transition from periodic to chaotic state. For the intermittent case, the

modes seem to have same energy. So we feel that the developed method is a very

powerful tool to analyze highly chaotic, intermittent and non stationary data.

9.2 Scope for Future Works

In this thesis, certain nonlinear dynamical phenomena of plasma have been inves-

tigated and efforts have been made to give possible explanations. The studies have

led to many interesting questions which need to be addressed in future works for

a better understanding of the plasma phenomena.

Here in the following I try to share some of the questions that have evolved out

of the investigations:

• We have used a single bar magnet placed outside the cathode surface while

investigating plasma dynamics in the presence of an inhomogeneous magnetic

field. It would be very interesting to see the plasma dynamics by placing two

bar magnets on the same line with same pole facing each other because it

will create an inhomogeneous magnetic field everywhere with a magnetic field

null region in the center of the cathode chamber.

• In the experiments, bar magnet was placed outside the chamber. One can
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put a bar magnet inside the plasma chamber and study the confinement of

plasma in a dipole magnetic field. This will be helpful to understand the

plasma confinement around planets because planets also have dipole type

magnetic fields.

• Due to constraint in the variation of the axial magnetic field, It is quite pos-

sible that we have missed out many dynamical features. So, by eliminating

this constraint one can look for nonlinear features under axial magnetic field

which will be helpful to understand nonlinear dynamical phenomena in other

magnetized plasma devices.

• We have tried to give possible physical as well as dynamical explanations

of the observation of such complex nonlinear features associated with the

plasma dynamics. However, further experimental studies like measurement

of density fluctuations and dispersion relations will help to correlate these

studies with those of conventional plasma physics.

• The models developed in this thesis are able to explain the dynamical pro-

cesses behind the origin of the observed phenomena but these models are

not one to one related with the microscopic plasma phenomena. As in the

case of MMO, we have not used the direct magnetic field term in the model

which seen to be important parameter in the generation of the regular MMO.

So, development of numerical model starting from basic plasma features are

needed to establish the direct link between the plasma and numerical model.

• In plasma based nanoparticle or thin film growth, articles have been reported
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showing that the plasma fluctuations are highly correlated with the fluctua-

tions in the nanoparticle growth. Thus, it will be worthwhile to investigate

and correlate structural surface characteristics of nanoparticle growth under

different types of nonlinear plasma fluctuations.

• The method we have developed for the detection of coherent modes is appli-

cable for scalar data (1D), i.e, for a time series data. This method can be

extended to 2D with the help of 2D EMD which will be helpful to extract

the coherent structure from a flow data.

Finally, we sincerely hope that the works presented in this thesis can help us

to understand the complex and nonlinear behaviour of plasma and enlighten our

way to proceed furthermore in this direction.



156



Bibliography

[1] Bar-Yam, Dynamics of complex systems, Addison-Wesley, Reeding, Mas-

sachusetts, (1997).

[2] I. Newton, Mathematical Principles of Natural Philosophy (A. Stranhan,

London), (1802).

[3] D. T. Whiteside, The Mathemetical Papers of Isaac Newton, Cambridge

University Press, Cambridge, U. K., (2008).

[4] D. Aubin, and A. D. Dalmedici, Historia Mathematica 29 , 273 (2002).

[5] Steven H. Strogatz, Nonlinear dynamics and Chaos, with application to

physics, biology, chemistry, and Engineering, Perseus Books, Reading, Mas-

sachusetts, (1994).

[6] E. N. Lorenz, Journal of the atmospheric sciences 20, 130 (1963).

[7] D. Ruelle, and F. Takens, Commun. Math. Phys. 20, 167 (1971).

[8] M. Feigenbaum, J. Stat. Phys. 19, 25 (1978).

[9] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Physica D 16, 285

(1985).

157



158

[10] P. Grassberger, and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983).

[11] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, Phys. D 65, 117 (1993).

[12] B. T. Milne, Ecosystems 1, 449 (1998).

[13] B. A. Carreras, B. P. Van Milligen, M. A. Pedrosa, R. Balb́ın, C. Hidalgo, D.

E. Newman, E. Sánchez, M. Frances, I. Garca-Corts, and J. Bleuel, Physics

of Plasmas 5, 3632 (1998).

[14] E. Scholl, and H. G. Schuster, Handbook of Chaos Control, WILEY-VCH

Verlag GmbH and CO., Germany, (2008).

[15] E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)

[16] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A universal

concept in Nonlinear Sciences, Cambridge University Press, (2001).

[17] C. W. Wu, and L. O. Chua, Int. J. Bif. and Chaos 3, 1619 (1993).

[18] R. Roy, K. Thornburg, and J. Scoot, Phys. Rev. Lett. 72, 2009 (1994).

[19] B. E. Keen, and W. H. Fletcher, J. Phys. D: Appl. Phys. 3, 1868 (1970).

[20] I. Langmuir, Oscillations in ionized gases, Proceedings of the National

Academy of Sciences 14, 627 (1928).

[21] F. F. Chen, Introduction to plasma physics and controlled fusion, Plenum

Press, New York, (1984).

[22] L. Tonks, and I. Langmuir, Physical Review 33, 195 (1929).



159

[23] N. A. Krall, and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-

Hill Book Company, New York, (1973).

[24] T. H. Stix, Waves in Plasmas, AIP, New York, (1992).

[25] D. G. Swanson, Plasma Waves, Academic Press, San Diego, (1989).

[26] R. H. Abrams, E. J. Yadlowsky, and H. Lashinsky, Phys. Rev. Lett. 22, 275

(1969).

[27] R. W. Boswell, Plasma Physics and Controlled Fusion 27, 405 (1985).

[28] P. Y. Cheung, and A. Y. Wong, Phys. Rev. Lett. 59, 551 (1987).

[29] T. Braun, J. A. Lisboa, R. E. Francke, and J. A. C. Gallas, Phys. Rev. Lett.

59, 613 (1987).

[30] Md. Nurujjaman, R. Narayanan, and A. N. Sekar Iyengar, Chaos 17, 043121

(2007).

[31] Jiang Yong, Wang Haida, and Yu Chagxuan, Chinese Phys. Lett. 5, 489

(1988).

[32] B. K. Sharma, A. Buragohain, and J. Chutia, Inter. J. Bifur. and Chaos 3,

455 (1993).

[33] T. Braun, J. A. Lisboa, and J. A. C. Gallas, Phys. Rev. Lett. 68, 2770

(1992).

[34] T. Klinger, F. Greiner, A. Rohde, A. Piel, and M. E. Koepke, Phys. Rev. E

52, 4316 (1995).



160

[35] T. Klinger, F. Greiner, A. Rohde, and A. Piel, Physics of Plasmas 2, 1822

(1995).

[36] S. Ghorui, S. N. Sahasrabudhe, P. S. S. Murthy, A. K. Das, and N. Venka-

tramani, IEEE Trans. Plasma Sci. 28, 253 (2000).

[37] S. Ghorui, S. N. Sahasrabudhe, P. S. S. Murthy, A. K. Das, and N. Venka-

tramani, IEEE Trans. Plasma Sci. 28, 2179 (2000).

[38] Md. Nurujjaman, A. N. Sekar Iyengar, and P. Parmananda, Phys. Rev. E

78, 026406 (2008).

[39] I. Lin, and Jeng-Mei Liu, Phys. Rev. Lett. 74, 3161 (1995).

[40] A. Dinklage, C. Wilke, and T. Klinger, Phys. Plasmas 6, 2968 (1999).
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