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SYNOPSIS

Apart from a very few light nuclei, all terrestrial finite nuclei are asymmetric. In other

words, for most of the finite nuclei, number of neutrons is higher than protons. Competition

between Coulomb energy and symmetry energy makes them asymmetric. On the other

extreme, astrophysical objects like neutron stars are also highly asymmetric. However,

the reason behind asymmetry in neutron star is attributed to charge neutrality and beta

equilibrium of the system. The density associated with the center of the nucleus is very

close to saturation density (ρ0 = 0.16 fm−3 = 2.7 × 1014 gm/cm3) of infinite nuclear

matter. Density at the core of a neutron star is four to five times ρ0. The symmetry energy

controls the radii of neutron stars, the thicknesses of their crusts, the rate of cooling of

neutron stars, and the properties of nuclei involved in r-process nucleosynthesis. Studying

symmetry energy and its density dependence over a wide range of density is thus a major

topic of research for past few decades. Presently, several laboratories around the world

are set up to test the limits of stability of nuclei towards the neutron drip-line or super-

heavy region. A precise understanding of density dependence of symmetry energy can

facilitate to explore new areas of research, which might help to understand the isovector

part of the effective nucleon-nucleon interaction inside the nucleus, which is still not known
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accurately.

Density dependence of symmetry energy can be characterized essentially by three

quantities, namely, symmetry energy J , slope parameter L and curvature parameter Ksym;

all of these quantities pertain to infinite nuclear matter at the density ρ0. To find reliable

constraints on J , L or Ksym one needs to relate them with experimental observables of

finite nuclei or neutron stars since infinite nuclear matter can not be accessed in laborato-

ries. Due to computational limitations, starting from no-core shell model, finding even the

ground state properties of finite nuclei e.g. binding energy, charge radii etc beyond 40Ca is

yet far fetched. Over the years mean field models with very few parameters thus became

a viable alternative to calculate the properties of finite nuclei spanning the entire periodic

table as well as of neutron stars.

Fitting few thousand observed nuclear masses within a finite range droplet model (FRDM)

or taking double differences of nuclear masses the estimated value of symmetry energy J at

saturation is∼ 32 MeV with an accuracy of 1-2 MeV [1, 2]. Droplet model (DM) suggests

that neutron-skin thickness ∆rnp (difference between root mean square radii of neutron and

proton distribution) of a heavy nucleus is linearly correlated to the slope parameter L [3, 4].

This correlation was verified by using a representative set of relativistic and non-relativistic

mean field models. There have been several attempts to measure the neutron-skin thick-

ness of 208Pb. However, the most model independent measurement at Jefferson lab (Lead

radius experiment or PREX), based on weak interaction, predicts a value with very large

uncertainty [5–7]. There have also been attempts to look for alternative isovector probes

e.g isovector giant dipole resonance (IVGDR) [8–11], isospin diffusion [12], π+−π− ratio

etc. The uncertainty associated with the value of slope parameter L still remains large. The

shrouds of uncertainty looms even larger when one tries to constrain curvature parameter

Ksym.
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In this dissertation, our primary goal is to constrain the density dependence of sym-

metry energy by obtaining tighter bounds on L and Ksym using some relativistic and non-

relativistic mean field models. The investigation has been carried out by using two different

methods. Firstly, covariance analysis is employed to study the relations among different

experimental observables and parameters of a relativistic mean field model. We attempt

to constrain the density dependence of symmetry energy by incorporating in the fit-data

the binding energies of some highly asymmetric nuclei; binding energies of finite nuclei

are the most accurately measured quantities in nuclear physics. Secondly, using different

mean field models existing in the literature, we tried to explore new model independent

correlations among different isovector sensitive quantities.

In the study based on covariance method, we observed that parameters of mean field

models obtained by fitting binding energies and charge radii of few closed shell nuclei

predict a wide range of values for the slope parameter L [13–15]. However, macroscopic

FRDM model obtained by fitting binding energies of few thousand nuclei predicts a quite

restricted value of L [1]. Inspired by this result we incorporated for the first time bind-

ing energies of some highly asymmetric nuclei (24O, 30Ne), where the neutron number is

twice to that of protons, in the fit-data in order to optimize the parameters of a relativistic

mean field model. Our detailed investigation clearly reveals that the inclusion of highly

asymmetric nuclei in the fitting protocol reduces the uncertainty on the symmetry energy

elements significantly. A sensitivity analysis is performed by including further in the fitting

protocol the binding energies of few more highly asymmetric nuclei (36Mg, 58Ca) together

with the measured maximum mass of neutron star [16]. Such an analysis reveals quanti-

tatively the sensitivity of binding energies of highly asymmetric nuclei to the symmetry

energy parameters. It also shows that maximum mass of neutron star has some sensitivity

to the symmetry energy parameters.
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Using a representative set of different mean-field models, we found that correlation

between neutron-skin thickness ∆rnp of 208Pb with slope parameter L is model dependent

[17]. A model independent correlation was found between slope parameter L and bulk part

of the neutron skin thickness ∆rbulknp of 208Pb conjectured by DM. Models from different

families predicting similar values of L, show a variation in ∆rnp which is few times higher

than what is predicted by DM. We defined an effective value of slope parameter Leff within

local density approximation, pertaining to the average density of a heavy nucleus. Variation

in Leff seems to be in harmony with variation in ∆rnp predicted by DM.

Having constrained the slope of symmetry energy L, we also explored the possibility

of constraining the symmetry curvature parameter Ksym. Considering a general form of

the density dependent nucleon nucleon interaction along with the Gibbs-Duhem relation

we found an analytical relation connecting curvature parameter Ksym, slope parameter

L and symmetry energy J . Using five hundred mean field models both relativistic and

non-relativistic, this correlation was realized between Ksym with linear combination of L

and J . The correlation stood out further for few realistic as well as finite range Gogny

interactions. The universality in the correlation of Ksym with linear combination of L and

J strongly suggests that a tight bound on Ksym can be obtained from bounds on L and J .
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CHAPTER 1

INTRODUCTION

An atom possesses a tiny positive core surrounded by negatively charged electrons. This

positive core is coined as nucleus. Although, the most of the mass of an atom is carried

by its nucleus, the size of an atom is orders of magnitude higher compared to its nucleus.

The length scale associated to an atom is few angstroms (10−10 meter) whereas size of

a nucleus is few femtometers (10−15 meter). The nucleus not only contains positively

charged protons, but also electrically neutral neutrons. Due to the presence of protons,

which are positively charged, binding of a nucleus has to overcome Coulomb repulsion.

That is why nuclear force needs to be very strong in nature. The tiny size of the nucleus

further suggests that the nuclear force is a short-range one in nature. Unlike atoms, a

nucleus is a self-bound many-body system. Perturbing a nucleus by colliding a particle or

by means of electromagnetic probes gives rise a plethora of phenomena like rotation, giant

collective vibration, deformation and unique nuclear phenomena like fission or fusion. That

is why even after a century of discovery of nucleus by Rutherford, understanding the nature

of nuclear force inside the medium presents various unique challenges both in theoretical
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Figure 1.1: Nuclear chart for ∼ 6000 nuclei in the N -Z plane. See text for details.

and experimental studies.

Since the discovery of neutron by Chadwick in 1932, the study of nuclei has become

even more fascinating. Based on the number of protons (Z) inside a nucleus, chemical

nature of the corresponding atom (element) changes. However, it is the number of neutrons

(N ) in a nucleus which plays a decisive role in its binding and eventually determining the

stability and abundance of different isotopes (A = N +Z). Based on the knowledge so far,

there exist ∼ 118 different elements with ∼ 300 stable isotopes. One should keep in mind

that by “stable” it is meant that the half-life of decay for these nuclei are of the order of the

age of the earth. In the nuclear chart depicted in Fig. 1.1, these stable isotopes are marked

as black dots. Through various experiments performed over the years, existence of ∼ 2700

unstable nuclei are also found. These unstable nuclei are displayed by yellow region in

Fig. 1.1. There exist a few nuclei with certain number of neutrons and/or protons (magic

numbers), which show a greater amount of stability compared to their neighbours. These

nuclei are called magic nuclei, which are marked with red horizontal (magic Z) and vertical
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(magic N ) lines in Fig. 1.1. The green region, largely occupying the neutron-rich region

depicts the nuclei whose existence are predicted by different theoretical conjectures, but not

yet found experimentally. During the evolution of a star, heavier nuclei are thought to be

formed through rapid neutron-capture process or r-process, which involves the nuclei lying

in the green region shown in Fig. 1.1. Beyond this green region, the boundary given by red

line depicts the neutron drip line. It signifies that beyond this line adding or subtracting a

neutron from a nucleus does not cost any energy. The neutron drip line and the red dotted

line representing N = Z points out that apart from a very few light nuclei, most of the

terrestrial finite nuclei are asymmetric.

Upon discovery of neutron star in 1967, a new dimension opened up in the research of

systems made up of nucleons i.e. neutrons and protons. When a massive star with mass

greater than 10 times the solar mass exhausts its nuclear fuel, it starts collapsing under

gravity resulting in a supernova explosion [18]. The remnant of this explosion further

collapses under gravity and end up in one of the most compact objects in the universe,

called neutron stars. Due to the enormous amount of gravitational pull, the electrons inside

the stellar matter collide with the protons forming neutrons. Further gravitational pull tries

to bring these neutrons closer and closer. However, Pauli’s exclusion principle restricts

two neutrons to occupy the same quantum state resulting in an opposing pressure to that

of the gravitational pull. In the steady state, the matter inside this compact object is in

beta equilibrium and electrically neutral. This results in the primary constituent of these

compact objects being neutrons and hence the name neutron star.

The heaviest neutron star observed so far has twice the mass of sun [19, 20] and radius

of about 10 to 15 kilometers. The compactness can be understood by looking into the fact

that the radius of sun is ∼ 6.9 × 105 kilometers. The generic features of a typical neutron

star is depicted in Fig. 1.2. It is conjectured that at the very core of a neutron star there
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Figure 1.2: Structure of a neutron star depicting constituents of different layers along with
the density and range associated with the corresponding layers. The density ρ0 depicted in
the figure is the saturation density of symmetric infinite nuclear matter.

might be a possibility of finding the matter in its most fundamental form i.e. quark-gluon

plasma. The outer core, which constitutes the major part of the volume of a neutron star

is thought be beta-equilibrated, electrically neutral nuclear matter with a typical ratio of

N/Z ≈ 6 and small amount of electron Fermi gas. The crust of the neutron star is can be

imagined to be made of an inner and outer crust. In the inner crust, there might be still

some possibility of occurring the usual nuclear reactions what happens inside a burning

star. Possibly very neutron rich nuclei along with free neutrons and electrons are thought

to be the constituents of the inner crust. The outer crust is mainly made of cold ions and

electrons.

Terrestrial finite nuclei and the neutron stars are complex many-body systems governed

by the strong force. Quantum chromodynamics (QCD) is the most fundamental theory

which can explain the properties of these nuclear systems. However, tremendous amount

of challenges are faced when one tries to solve the theory in non-perturbative regime for

a complex many-body system. Only very recently, the state-of-the-art computational fa-
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cilities made it possible for theorists to develop some ab initio approaches to calculate

the ground state properties of nuclei like binding energy or charge radius, based on QCD

[21, 22]. However, it has only been possible for lighter nuclei. To calculate the properties

of finite nuclei as well as of neutron star in the same framework has only been possible for

effective mean-field theories with a few degrees of freedom. These theories are developed

on the basis of an energy density functional (EDF) with few parameters. There are mainly

two types EDFs used in the literature: non-relativistic and relativistic. Skyrme functional

is the most popular EDF in the non-relativistic domain where the nucleons interact through

local effective potentials. Relativistic mean field models provide a covariant description of

the nuclear system which is based on quantum field theory. A comprehensive discussion on

the mean-field models can be found in Ref. [23]. The parameters of the mean-field models

are obtained by fitting gross nuclear properties which contain the many-body correlations.

That is why, even if the mean-field EDFs are constructed by one body densities, the many-

body effects get embedded in the parameters of the model. At a nominal computational

cost, mean-field models based on EDFs provide a very high accuracy on the global nuclear

properties both in the domain of finite nuclei and neutron stars.

From the discussions of Figs. 1.1 and 1.2 it is clear that most of the nuclear systems

are asymmetric across a scale of 18 orders of magnitude (length scale associated to finite

nuclei is 10−15 meter and for neutron star it is 103 meter). Inside a nucleus, strength of

the interaction of a neutron (n) - proton (p) pair is stronger compared to a n-n or p-p pair.

In other words, in the absence of any Coulomb force, all finite nuclei would be symmet-

ric with same number of neutrons and protons. In reality, there is always a competition

between the Coulomb energy and the symmetry energy what makes most of the finite nu-

clei asymmetric. In neutron star, however, the requirement of charge neutrality and beta

equilibrium is primarily responsible for the asymmetry. Nuclear symmetry energy, char-
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acterized by the variation of the energy of a nuclear system with the change in the ratio of

its neutron and proton content, plays a crucial role in the binding of the corresponding nu-

clear system. Symmetry energy also plays crucial roles in controlling the radii of neutron

stars, the thickness of their crusts and the properties of nuclei produced in the r-process

nucleosynthesis [24].

The density associated with the center of a nucleus is∼ 0.16 fm−3 or 2.7×1014 gm/cm3.

Density at the core of a neutron star is 5-6 times to this density. A microscopic description

of symmetry energy along with its density dependence over a wide range of density is thus

a major topic of research in nuclear physics. Moreover, across several laboratories nuclei

are being synthesized near the drip-lines. Nuclei near neutron-drip lines carry valuable

informations regarding the r-process nucleosynthesis in the stellar matter. Understanding

of terrestrial nuclei from the conventional theories often fail to explain the properties of

nuclides in these extremely asymmetric regions. A precise knowledge of symmetry energy

and its density dependence is thus inevitable in order to explore this region of “terra-

incognita”. Conversely, inputs from experiments performed in these asymmetric nuclei

hold the key to improve the existing nuclear theories to be applied to the physics near

drip-lines.

To understand the behavior of different nuclear systems, a hypothetical system is de-

fined which is called infinite nuclear matter. It is a system of infinite number of neutrons

and protons which is uniform in nature with no boundary and Coulomb interaction. This

simplified system helps to understand the bare nucleon-nucleon interaction. In general, nu-

clear matter can be asymmetric. The energy density of such a system can be decomposed

into a symmetric and a purely asymmetric part. The symmetric matter saturates at a certain

density where the energy density corresponding to it becomes minimum. The density is

called as saturation density ρ0. One should note that the density at the center of a heavy
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nucleus is very close to ρ0. The asymmetric part of the energy is essentially called the

symmetry energy of nuclear matter. Symmetry energy is mainly characterized by three

parameters namely, symmetry energy coefficient C0
2 , its density slope L0 and curvature pa-

rameter K0
sym; all of these quantities are defined at ρ0. Proper definitions of these nuclear

matter properties are given in Section 2.3 of Chapter 2.

Constraining quantitatively the symmetry energy parameters C0
2 , L0 andK0

sym has been

a major focus of research in present day nuclear physics. One should keep in mind that

these parameters are defined in the domain of infinite nuclear matter. As nuclear matter

is not accessible in laboratories one needs to connect these quantities to actual experimen-

tally measurable entities. These connections often imply finding correlation between the

symmetry energy parameters and some experimentally measurable quantities using the-

oretical models. Conventionally, the correlations can be studied using different models.

A classic example would be studying correlation between L0 and neutron-skin thickness

∆rnp of a heavy nucleus, where ∆rnp is defined by the difference between the root mean

square radii of the neutron and proton distributions inside a nucleus [15]. The models

which are explored in the present thesis work, are primarily based on mean-field approach.

Over the years mean-field models, both relativistic and non-relativistic, proved to be very

successful at very reasonable computing costs. The accuracies over extracted quantities,

however, are at par with theories based on more fundamental approaches e.g. ab-initio

method or configuration-interaction method. A theoretical edifice to calculate the ground

state properties like binding energy and charge radius of closed-shell spherical nuclei using

mean-field models is given in Chapter 2. It includes discussion of Skyrme models based

on a non-relativistic mean-field as well as a relativistic mean-field model. Chapter 2 also

incorporates a discussion on properties of infinite nuclear matter which are extracted used

different men-field models in the present thesis work. Different correlations mentioned
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above can also be studied using a single model by applying the method of covariance anal-

ysis. Apart from the correlations one can also study the errors on the model parameters and

calculated observables. These informations are very important to benchmark the findings

of a theoretical model. How one can study the errors on quantities of interest along with

different correlations are discussed in Chapter 3.

Out of the three symmetry energy parameters mentioned above, C0
2 has been known

to lie in good confidence in the range ∼ 32 ± 4 MeV from different experimental data.

Using the finite range droplet model [1] or studying the double differences of experimental

nuclear masses [2], the error bar is further reduced to ∼ 0.5 MeV. Exploration on the slope

parameter L0, however, shows a wide variation. The value of L0 may lie in the range from

20 MeV - 120 MeV [15]. There have been a tremendous amount of effort to constrain

the value of L0 from several experimental findings in finite nuclei and astrophysical ob-

servations [10, 15, 25–38]. Among different experimental data, binding energies are the

most accurately known experimental quantities. However, using binding energies of few

closed shell spherical nuclei, mean-field models fail to constrain the value of L0 (c.f. Fig.

4.1) in a narrow range. In Chapter 4 we reconcile this view by using binding energies of

some extremely asymmetric nuclei, where number of neutrons is twice to that of protons,

to obtain the parameters of a relativistic mean-field model [39, 40]. A covariance analysis

accompanied by a sensitivity analysis is performed further to find the merits of incorporat-

ing these highly asymmetric nuclei in the fitting protocol. Correlations existing between

different quantities are also explored.

As mentioned above, ∆rnp of a heavy nucleus like 208Pb is correlated to L0, which

was originally proposed in Ref. [15] by using Droplet Model [3, 4]. This correlation was

realized by using ∼ 40 mean-field models. We find this correlation has some degree of

model dependence [17] which is discussed in Chapter 5 in view of Droplet Model.
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Compared to L0, the uncertainty creeps in by even in larger amount for the case of

curvature parameter K0
sym. Across several mean-field models both relativistic and non-

relativistic, the values of K0
sym lie within a huge range, −700 MeV < K0

sym < 400 MeV.

The value ofK0
sym plays quite a significant role in determining the symmetry energy behav-

ior of highly asymmetric dense matter e.g. in neutron star or supernova explosion. There

has been no attempt till date to constrain the value of K0
sym from experimental data. The-

oretical calculations connecting poorly known K0
sym to other comparatively better known

nuclear matter properties may hold the key to pin down the value of K0
sym [41, 42]. In

Chapter 6 a simple model based on fundamental laws of statistical mechanics is proposed.

Analytical relations between different symmetry energy parameters are derived further.

Special importance is given to the relatively poorly known quantity K0
sym. A linear corre-

lation is suggested by the simple model between K0
sym and other nuclear matter properties.

The correlation was realized by using 500 mean-field models used in the literature which

shows the near-universality in the correlation which is proposed.

In a nutshell, this thesis aims towards constraining the different symmetry energy pa-

rameters using different mean-field models. Contents of different chapters are described

very briefly above. Special attention was given to those parameters which controls the den-

sity dependence of symmetry energy. A brief summary and future outlooks are discussed

in Chapter 7.
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CHAPTER 2

MEAN FIELD MODELS

2.1 Introduction

Ab initio methods based quantum chromodynamics (QCD) or configuration interaction are

the most fundamental theories to describe the many-body nuclear systems like finite nuclei

or neutron stars [21, 22]. However, the computational cost is too high to calculate even

the ground state properties of lighter nuclei (mass number A ≤ 40) with these methods.

Unless there is an unprecedented improvement in the modern day computing facilities, it

will be extremely unlikely to provide even the ground state description of heavy or super-

heavy nuclei with these ab-initio approaches. On the contrary, mean field models provide

a coherent description of astrophysical objects like neutron stars as well as terrestrial finite

nuclei throughout the whole nuclear chart at a very nominal computational cost with quite

high accuracy.

In this thesis work mainly two class of mean-field models are employed namely, a

non-relativistic variant based on zero range Skyrme force [43, 44] and a relativistic one

formulated on the basis of interaction between nucleons through mesons [45, 46]. The
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parameters of these two variants of mean-filed models are obtained by fitting experimental

data on binding energy and charge radii of closed shell nuclei. In this chapter, we discuss

the method to obtain the binding energy and charge radii for closed shell nuclei along with

the properties of infinite nuclear matter in the mean-field framework.

2.2 Finite nuclei

In the present thesis work, mostly we have dealt with closed shell spherical nuclei. The

ground state properties are calculated within Hartree-Fock approximation both with the

non-relativistic Skyrme and relativistic formalism. Pairing for nucleons is also discussed

in the constant BCS approximation [47].

2.2.1 Skyrme Formalism

For Hartree-Fock (HF) description [36, 48, 49] of ground state configuration, the many

body wave function ψ of a nucleus of mass number A can be given by the Slater determi-

nant as,

ψ(x1, x2, · · · , xA) =
1√
A!

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) φ1(x3) · · · φ1(xA)

φ2(x1) φ2(x2) · · · · · · · · ·

· · ·

φA(x1) φA(x2) φA(x3) · · · φA(xA)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.1)

where φi (with i = 1, 2, · · ·A) denotes the occupied single particle states and x’s run over

r, spin σ and isospin q (= p for proton and n for neutron). Then the expectation value of
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the total energy of system can be written as,

E = 〈ψ|(T + V )|ψ〉

=
∑
i

〈φi
∣∣∣∣ p2

2m

∣∣∣∣φi〉+
1

2

∑
ij

〈φiφj |v12|φiφj〉+
1

6

∑
ijk

〈φiφjφk |v123|φiφjφk〉

=

∫
H (r) d3r. (2.2)

Here, v’s denote the two-body and three body antisymmetrized matrix elements. For

Skyrme interaction the Hamiltonian density H is algebraic function of nucleon densities

ρq, kinetic energy densities τq and spin densities Jq. With some phenomenological correc-

tions [36, 49] over the actual interaction given by Skyrme [43, 44], the interaction part of

the Hamiltonian density can be given by,

V (r1, r2) = t0(1 + x0Pσ)δ(r) +
1

2
t1(1 + x1Pσ)

[
δ(r)k′

2
+ k2δ(r)

]
+ t2(1 + x2Pσ)k′ · δ(r)k

+t3ρ
α(1 + x3Pσ)δ(r) + iW0σ · [k′ × δ(r)k] , (2.3)

where, r = r1 − r2, k = ∇1−∇2

2i
, k′ is complex conjugate of k acting on the left, σ =

σ1 + σ2, and the spin exchange operator Pσ = 1
2
(1 + σ1 · σ2). Consequently following

Eq. (2.2) the Energy density functional (EDF) or the Hamiltonian density is given by,

H = K +H0 +H3 +Heff +Hfin +HSO +Hsg +HCoul +Hpair. (2.4)

Here, kinetic energy is denoted by, K = ~2

2m
τ , Coulomb energy for the protons and the

pairing energy are given by HCoul and Hpair, respectively. The rest of the terms are coming

from the Skyrme interaction given in Eq. (2.3), which are written in terms of different

12



densities as,

H0(r) =
1

4
t0
[
(2 + x0) ρ2 − (2x0 + 1)

(
ρ2
p + ρ2

n

)]
,

H3(r) =
1

24
t3ρ

α
[
(2 + x3) ρ2 − (2x3 + 1)

(
ρ2
p + ρ2

n

)]
,

Heff(r) =
1

8
[t1 (2 + x1) + t2 (2 + x2)] τρ+

1

8
[t2 (2x2 + 1)− t1 (2x1 + 1)] (τpρp + τnρn) ,

Hfin(r) =
1

32
[3t1 (2 + x1)− t2 (2 + x2)] (∇ρ)2 ,

− 1

32
[3t1 (2x1 + 1) + t2 (2x2 + 1)]

[
(∇ρp)

2 + (∇ρn)2] ,
HSO(r) =

1

2
W0 [J ·∇ρ+ J ·∇ρp + J ·∇ρn] ,

Hsg(r) =
1

16
(t1 − t2)

[
J2
p + J2

n

]
− 1

16
(t1x1 + t2x2)J2. (2.5)

The Coulomb energy for the protons is given by,

HCoul(r) =
1

2
e2ρp(r)

∫
d3r′

ρp(r
′)

|r− r′| −
3

4
e2ρp(r)

(
3ρp(r)

π

)1/3

. (2.6)

In Eqs. (2.5) and (2.6), the various densities are given by,

ρq (r) =
∑
i,σ

|φi (r, σ, q) |2,

τq (r) =
∑
i,σ

|∇φi (r, σ, q) |2,

Jq (r) = −i
∑
i,σ,σ′

φ∗i (r, σ, q) [∇φi (r, σ
′, q)× 〈σ|σ|σ′〉] . (2.7)

The total densities ρ, τ and J are calculated by summing over q = n and p.

Now the HF equations are obtained by writing E stationary with respect to variation of
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individual single particle states φi with the added condition that φi’s are normalized,

δ

δφi

(
E −

∑
i

εi

∫
|φi (r) |2d3r

)
= 0. (2.8)

An equivalent description can be obtained if the variation is performed with respect to the

densities τq, ρq and Jq instead of φi. Then the variational equation takes the form

[
−∇ ~2

2m∗q(r)
·∇ + Uq(r)− iWq(r) · (∇× σ)

]
φi(r, q) = εiφi(r, q). (2.9)

Eq. (2.9) represents the Schrödinger equation for the single particle states φi. The different

coefficients ~2

2m∗
, Uq and Wq determine the effective mass, central potential and the spin-

orbit potential, respectively. The effective mass m∗q is given by,

δH
δτq(r)

=
~2

2m∗q(r)
=

~2

2m
+

1

8
[t1(2 + x1) + t2(2 + x2)] ρ(r)

+
1

8
[t2(2x2 + 1)− t1(2x1 + 1)] ρq(r). (2.10)

The central, spin-orbit and Coulomb potentials are given by,

δH
δρq(r)

= Uq(r) =
1

2
t0 [(2 + x0)ρ(r)− (1 + 2x0)ρq(r)]

+
1

24
t3
{

(2 + x3)(2 + α)ρα+1(r)

−(2x3 + 1)
[
2ρα(r)ρq(r) + αρα−1(r)

(
ρ2
p(r) + ρ2

n(r)
)]}

+
1

8
[t1(2 + x1) + t2(2 + x2)] τ(r) +

1

8
[t2(2x2 + 1)− t1(2x1 + 1)] τq(r)

+
1

16
[t2(2 + x2)− 3t1(2 + x1)]∇2ρ(r)

+
1

16
[3t1(2x1 + 1) + t2(2x2 + 1)]∇2ρq(r)
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− 1

2
W0 (∇ · J(r) + ∇ · Jq(r)) + δq,pVCoul(r), (2.11)

δH
δJq(r)

= Wq(r) =
1

2
W0 (∇ρ(r) + ∇ρq(r)) +

1

8
(t1 − t2)Jq(r)

−1

8
(t1x1 + t2x2)J(r), (2.12)

VCoul(r) =
1

2
e2

∫
d3r′

ρp(r
′)

|r− r′| −
3

4
e2

(
3ρp(r)

π

)1/3

. (2.13)

For doubly closed shell nuclei the HF equations can be derived using,

φi(r, σ, τ ) =
Rα(r)

r
Yljm(r̂, σ)χq(τ ),

Yljm(r̂, σ) =
∑
mlms

〈l1
2
mlms|jm〉Ylml(r̂)χms(σ), (2.14)

where, Rα(r) is the radial part of the wave-function and Yljm is the spherical harmonics

representing the spin and angular part of the wave-function. In Eq. (2.14) i ≡ (q, n, l, j,m)

and α ≡ (n, l, j) convention was used, where, q is the charge, the principal quantum num-

ber n, orbital angular momentum l, total single-particle angular momentum j and magnetic

quantum number m. Consequently the densities in Eq. (2.7) get modified as [48],

ρq(r) =
1

4πr2

∑
α

(2jα + 1)R2
α(r)χ2

q,

τq(r) =
1

4π

∑
α

(2jα + 1)

[(
dϕα
dr

)2

+
lα(lα + 1)

r2
ϕ2
α

]
χ2
q,

Jq(r) =
r

r
Jq(r), with

Jq(r) =
1

4πr3

∑
α

(2jα + 1)

[
jα(jα + 1)− lα(lα + 1)− 3

4

]
R2
α(r)χ2

q, (2.15)

where, ϕα = Rα(r)
r

. Due to the symmetry in Jq in Eq. (2.15), expression of Wq in Eq.
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(2.9) gets modified as,

Wq(r) =
1

r
Wq(r)~l · σ with

Wq(r) =
1

2
W0

d

dr
(ρ+ ρq) +

1

8
(t1 − t2)Jq(r)−

1

8
(t1x1 + t2x2)J(r). (2.16)

Consequently, for closed shell spherical nuclei Eq. (2.9) takes the form,

− ~2

2m∗q
∇2φi −

(
∇ ~2

2m∗q

)
·∇φi +

(
Uq +

1

r
Wq
~l · σ

)
φi = εiφi. (2.17)

Using the expressions for gradient and Laplacian operators in spherical coordinate as,

∇2 ≡ 1

r

∂2

∂r2
r −

~l2

r2
,

∇ ~2

2m∗q
=

r

r

d

dr

~2

2m∗q
, (2.18)

one can write the coupled Schrödinger equation for radial part of the wave-function Rα(r)

as,

~2

2m∗q

[
−d

2Rα(r)

dr2
+
lα(lα + 1)

r2
Rα(r)

]
− d

dr

(
~2

2m∗q

)
dRα(r)

dr

+

{
Uq(r) +

1

r

d

dr

(
~2

2m∗q

)
+

[
jα(jα + 1)− lα(lα + 1)− 3

4

]
× 1

r
Wq(r)

}
Rα(r) = εαRα(r)

. (2.19)

The solutions for Rα in Eq. (2.19) are obtained iteratively by solving self-consistently

the Eqs. (2.10), (2.11) and (2.16). First a guess solution for the unknown Rα is taken

as Harmonic-oscillator or Wood-Saxon wave functions along with a particular occupation

probability distributions of the single particle levels. Inserting them in Eq. (2.15) ex-
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pression for densities are obtained. Consequently, the expressions for ~2

2m∗q
, Uq and Wq are

obtained from Eqs. (2.10), (2.11) and (2.16) respectively. Putting those values in Eq. (2.19)

the next guess for Rα is obtained. In case of presence of a pairing interaction, the occupa-

tion probability distribution of the single particle levels are calculated satisfying the number

of particle for a nucleus. This process iterated until a consistent solution is obtained.

2.2.2 Relativistic Mean Field formalism

The effective Lagrangian for the relativistic mean field (RMF) model employed in the

present thesis work is similar to that of the FSU one [50]. The system contains the nucle-

onic field ψ and three different types of mesons, which mediate the force, namely, isoscalar-

scalar σ, isoscalar-vector ω and isovector-vector ρ (field denoted by Rµ) [23, 51–53]. The

protons also interact through an electromagnetic field Aµ. The total Lagrangian can be

decomposed into different components as,

L =

∫
d3r
{
LBM + Lσ + Lω + Lρ + Lωρ + Lem

}
. (2.20)

The baryonic-mesonic Lagrangian containing the Yukawa couplings between the nucleon

and the mesons is given by,

LBM = ψ

[
iγµ∂µ − (M − gσσ)− γµ

(
gωωµ +

1

2
gρτ ·Rµ

)]
ψ. (2.21)

The parameters gσ, gω and gρ describe the strength of the couplings of ψ with σ, ω and ρ

mesons respectively. M is the free nucleon mass and the Dirac effective mass is denoted

by M∗
Dir = (M − gσσ). The Lagrangian for the mesons including the self-interaction terms
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are given by,

Lσ =
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
− κ3

3!M
gσm

2
σσ

3 − κ4

4!M2
g2
σm

2
σσ

4,

Lω = −1

4
ωµνω

µν +
1

2
m2
ωωµω

µ +
1

4!
ζ0g

2
ω (ωµω

µ)2 ,

Lρ = −1

4
RµνR

µν +
1

2
m2

ρRµR
µ. (2.22)

Field tensors for ω and ρ mesons are given by, ωµν = ∂µων − ∂νωµ and Rµν = ∂µRν −

∂νRµ. The cross-coupling between the ω and the ρ mesons is given by,

Lωρ =
η2ρ

4M2
g2
ωm

2
ρωµω

µRνR
ν . (2.23)

The electromagnetic interaction between the protons is given by,

Lem = −1

4
FµνF

µν − eψγµ1 + τ0

2
Aµψ, (2.24)

where Fµν = ∂µAν − ∂νAµ, e is the charge of proton and τ0 = 1 for protons and = −1 for

neutrons.

In the covariant formalism the Euler-Lagrange equation for a field ϕ is given by,

∂µ

(
∂L

∂(∂µϕ)

)
=
∂L
∂ϕ

. (2.25)

Immediately the equation of motion of the single particle wave-functions φ for the nucleons

is given by the Dirac equation as,

i
∂

∂t
φα = γ0

[
−iγ ·∇ + γµ

(
gωωµ +

1

2
gρτi ·Ri,µ + e

1 + τ0

2
Aµ

)
+ (M − gσσ)

]
φα.

(2.26)
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Here the nucleon field operator ψ̂ is already expanded over the single particle states φ by

the relation, ψ̂ =
∑

α φαaα. The quantity |aα|2 determines the probability of finding a

particle in single particle state φα. Similarly, Euler-Lagrange equations for the mesons and

the electromagnetic field Aµ are given by,

∂2

∂t2
σ =

(
∆−m2

σ

)
σ + gσρs −

κ3

2M
gσm

2
σσ

2 − κ4

3!M2
g2
σm

2
σσ

3,

∂2

∂t2
ωµ =

(
∆−m2

ω

)
ωµ + gωρµ −

1

3!
ζ0g

2
ωωνω

νωµ −
η2ρ

2M2
g2
ωm

2
ρRi,νR

ν
i ωµ,

∂2

∂t2
Ri,µ =

(
∆−m2

ρ

)
Ri,µ +

1

2
gρρi,µ −

η2ρ

2M2
g2
ωm

2
ρωνω

νRi,µ,

∂2

∂t2
Aµ = ∆Aµ + eρp,µ, (2.27)

where the different densities are given by,

ρs =
∞∑

α=−∞

wαφαφα,

ρµ =
∞∑

α=−∞

wαφαγµφα,

ρi,µ =
∞∑

α=−∞

wαφατiγµφα,

ρp,µ =
∞∑

α=−∞

wαφα
1 + τ0

2
γµφα, (2.28)

where, wα = 1 for levels below Fermi surface including both the positive and negative

energy states and wα = 0 for levels above Fermi surface.

For ground state properties of finite nuclei, only the static solutions are relevant. Due

to this reason all the mesonic fields are time-independent and the nucleon wave-function

is determined by the single particle energies εα. Moreover, ψ is even under time reversal,

meaning the vector currents e.g. ρµ or ρi,µ only survive by their µ = 0 components.
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Further due to isospin symmetry, only the component ρ0,0 survives in the current ρi,0. So

the equation of motion for the nucleons, mesons and the electromagnetic field take the

form,

εαφα = γ0

[
−iγ ·∇ + γ0

(
gωω0 +

1

2
gρτ0 ·R0,0 + e

1 + τ0

2
A0

)
+ (M − gσσ)

]
φα,(

−∆ +m2
σ

)
σ = gσρs −

κ3

2M
gσm

2
σσ

2 − κ4

3!M2
g2
σm

2
σσ

3,(
−∆ +m2

ω

)
ω0 = gωρ0 −

1

3!
ζ0g

2
ωω

3
0 −

η2ρ

2M2
g2
ωm

2
ρR

2
0,0ω0,(

−∆ +m2
ρ

)
R0,0 =

1

2
gρρ0,0 −

η2ρ

2M2
g2
ωm

2
ρω

2
0R0,0,

−∆A0 = eρp,0. (2.29)

The sum for all the densities given in Eq. (2.28) still runs over both the positive and

negative energy spectrum of the Dirac equation. The full summation is too difficult to

handle numerically. In ”No-Sea” approximation the sum runs over few positive energy

bound state or so to say the number of shell model states (= Ω) included in the numerical

calculation, where,

Ω∑
α=1

wα =


N

Z

. (2.30)

Depending on the neutron or proton occupation probability, the summation gives the total

number of particles i.e. N for neutrons and Z for protons. In these set of approximations

the different densities take the form,

ρs =
Ω∑
α=1

wαφαφα,
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ρ0 =
Ω∑
α=1

wαφαγ0φα,

ρ0,0 =
Ω∑
α=1

wαφατiγ0φα,

ρp,0 =
Ω∑
α=1

wαφα
1 + τ0

2
γ0φα. (2.31)

In the covariant formalism the stress-energy tensor T µν for a field ϕ is given by,

T µν =
∂L

∂ (∂µϕ)
∂νϕ− gµνL , (2.32)

where gµν are the components of metric tensor given by gµν = Diag[1 − 1 − 1 − 1]. The

component T 00 gives the energy of the system. So, the mean-field energy is then given by,

E =

∫
d3r

{∑
α

wαφα

[
−iγ ·∇ + γ0

(
gωω0 +

1

2
gρτ0 ·R0,0 + e

1 + τ0

2
A0

)
+ (M − gσσ)

]
φα

+
1

2

[
(∇σ)2 +m2

σσ
2
]

+
κ3

3!M
gσm

2
σσ

3 +
κ4

4!M2
g2
σm

2
σσ

4

−1

2

[
(∇ω0)2 +m2

ωω
2
0 + (∇R0,0)2 +m2

ρR
2
0, + (∇A0)2]− 1

4!
ζ0g

2
ωω

4
0 −

η2ρ

4M2
g2
ωm

2
ρω

2
0R

2
0,0

}

=
∑
α

wαεα +

∫
d3r

1

2

[
gσρsσ −

κ3

6M
gσm

2
σσ

3 − κ4

6M2
g2
σm

2
σσ

4

−gωρ0ω0 +
1

6
ζ0g

2
ωω

4
0 −

1

2
gρρ0,0R0,0 +

η2ρ

2M2
g2
ωm

2
ρω

2
0R

2
0,0 − eρp,0A0

]
. (2.33)

For spherically symmetric mean-fields i.e. σ = σ(|r|), ω0 = ω0(|r|) and so on the two

component nucleon wave-function can be expressed as,

φα =

 iGα(r)
r
Yjαlαmα

Fα(r)
r

σ·p
r
Yjαlαmα

 , (2.34)
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where Yjlm denotes the spinor spherical harmonics and Gα and Fα are the radial parts of

the two component nuclear wave-function (similar to Eq. (2.14)). Gα and Fα are further

subject to normalization,

∫ ∞
0

dr
{
|Gα|2 + |Fα|2

}
= 1. (2.35)

Here, both Gα and Fα can be considered as real. Then the densities in Eq. (2.31) take the

form,

ρs =
1

4πr2

∑
α

wα(2jα + 1)(G2
α − F 2

α),

ρ0 =
1

4πr2

∑
α

wα(2jα + 1)(G2
α + F 2

α),

ρ0,0 =
1

4πr2

∑
α

wα(2jα + 1)τ0α(G2
α + F 2

α),

ρp,0 =
1

2
(ρ0 + ρ0,0) . (2.36)

With these form of the densities, the Euler-Lagrange equations for the mesons and the

electromagnetic field look like Laplace equations,

(
− d2

dr2
+m2

σ

)
σ =

{
gσρs −

κ3

2M
gσm

2
σσ

2 − κ4

3!M2
g2
σm

2
σσ

3
}
,(

− d2

dr2
+m2

ω

)
ω0 =

{
gωρ0 −

1

3!
ζ0g

2
ωω

3
0 −

η2ρ

2M2
g2
ωm

2
ρR

2
0,0ω0

}
,(

− d2

dr2
+m2

ρ

)
R0,0 =

{
1

2
gρρ0,0 −

η2ρ

2M2
g2
ωm

2
ρω

2
0R0,0

}
,

− d2

dr2
A0 = eρp,0. (2.37)
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Similarly, the coupled Dirac equation for the radial wave-functions are given by,

εαGα =

(
− d

dr
+
aα
r

)
Fα +

(
M − gσσ + gωω0 +

1

2
gρτ0α ·R0,0 + e

1 + τ0α

2
A0

)
Gα,

εαFα =

(
d

dr
+
aα
r

)
Gα −

(
M − gσσ − gωω0 −

1

2
gρτ0α ·R0,0 − e

1 + τ0α

2
A0

)
Fα,

(2.38)

where

aα =


−
(
jα + 1

2

)
for j = l + 1

2

+
(
jα + 1

2

)
for j = l − 1

2

. (2.39)

One can eliminate Fα in Eq. (2.38) and expression for Gα can be obtained as,

εαGα = −
(
d

dr
− aα

r

)
M−1

eff

(
d

dr
+
aα
r

)
Gα + UeffGα, (2.40)

with, Meff = εα +M − gσσ − gωω0 −
1

2
gρτ0α ·R0,0 − e

1 + τ0α

2
A0,

Ueff = M − gσσ + gωω0 +
1

2
gρτ0α ·R0,0 + e

1 + τ0α

2
A0.

Eq. (2.40) looks very similar to Eq. (2.19). Fα in Eq. (2.38) is then reconstructed by,

Fα = M−1
eff

(
d

dr
+
aα
r

)
Gα. (2.41)

The solution for Fα and Gα can be obtained by the following way. First a guess solu-

tion, typically a Wood-Saxon or Harmonic oscillator function is taken for Fα and Gα with

a corresponding set of wα’s. A guess solution for σ field is taken as a Fermi function. Now,

the different densities are calculated accordingly following Eq. (2.36). Upon that, the solu-
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tions for other mesons and electromagnetic field are found from Eq. (2.37). Consequently,

Meff and Ueff are calculated from Eq. (2.40). Then new solution of Gα is found by using

Eq. (2.40) subject to the normalization,

∫
dr {GαGβ + FαFβ} = δαβ, (2.42)

where, Fα is obtained by using Eq. (2.41). With these new Gα and Fα, new set of εα’s are

obtained by solving the coupled Dirac equation as,

εα =

∫ ∞
0

dr

{
Fα

(
d

dr
+
aα
r

)
Gα +Gα

(
− d

dr
+
aα
r

)
Fα +GαUeffGα − Fα (Meff − εα)Fα

}
.

(2.43)

In the right hand side of Eq. (2.43) old set of εα’s are used. In presence of pairing inter-

action, the wα’s calculated now using Eq. (2.30). This whole process is repeated until a

self-consistent solution is obtained.

2.2.3 Pairing in BCS approximation

Pairing plays a very important role in the occupation probability of the single particle levels

near the Fermi surface. Well below the Fermi surface the occupation probability of a single-

particle state is unity and it becomes nearly zero well above the Fermi surface. However,

near the Fermi surface it becomes a fractional number lying between zero and unity. It can

be understood by means of a coupling between a single particle state with its time-reversed

partner. In this thesis work pairing for finite nuclei is treated in BCS approximation which

was originally given by Bardeen, Cooper, and Schrieffer [54, 55] for electronic systems.

A more general version of the BCS pairing can be applied using Lipkin-Nogami pairing
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model [56, 57]. However, here pairing is restricted to a constant gap model.

At second quantization Hamiltonian of nuclear system can be written as,

Ĥ =
∑
α

ε0αâ
†
αâα +

∑
α,α′>0

〈α,−α |v|α′,−α′〉 â†αâ†−αâ−α′ âα′ , (2.44)

where â†α creates a particle in single particle state |α〉 and âα annihilates a particle in quan-

tum state |α〉. | − α〉 corresponds to a time reversed state of |α〉 with opposite spin. The

first term in the right hand side of Eq. (2.44) represents the sum over all the occupied states

below the Fermi surface. The second term represents the residual interaction essentially

between a state with its time-reversed partner. Considering a constant matrix element −G

for the interaction in the second term, the pairing Hamiltonian in Eq. (2.44) can be written

as,

Ĥ =
∑
α

ε0αâ
†
αâα −G

∑
α,α′>0

â†αâ
†
−αâ−α′ âα′ . (2.45)

An analytic solution to this equation is not available. An approximate solution is provided

by the BCS state which is given by,

|ϕBCS〉 =
∞∏
α>0

(
uα + vαâ

†
αâ
†
−α

)
|0〉. (2.46)

It signifies that the state (α,−α) is occupied with probability |vα|2 and is vacant with

probability |uα|2. In practical purpose uα and vα are considered to be real numbers. The

normalization condition is given by,

〈ϕBCS|ϕBCS〉 =
∞∏
α>0

(
u2
α + v2

α

)
,
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u2
α + v2

α = 1. (2.47)

In Eq. (2.47), the quantity vα can be identified with wα in Eq. (2.30). The expectation

value of the number operator is given by,

N = 〈ϕBCS|N̂ |ϕBCS〉 = 〈ϕBCS|
∑
α>0

(
â†αâα + â†−αâ−α

)
|ϕBCS〉

=
∑
α>0

2v2
α. (2.48)

Clearly, N is not a good quantum number for the Hamiltonian in Eq. (2.44), which can be

understood by studying the particle number uncertainty as,

∆N2 = 〈ϕBCS|N̂2|ϕBCS〉 − 〈ϕBCS|N̂ |ϕBCS〉2

=
(

4
∑
α 6=α′
αα′>0

v2
αv

2
α′ + 4

∑
α>0

v2
α

)
−
(∑
α>0

2v2
α

)2

= 4
∑
α>0

u2
αv

2
α 6= 0 (if vα 6= 0 or 1). (2.49)

Clearly, N becomes a good quantum number for vα = 0 or 1. For fractional occupation

probability the values of uα and vα are found by solving a variational equation taking a

product of Lagrange multiplier λ and N and subtracting it from the Hamiltonian in Eq.

(2.44) as,

δ〈ϕBCS|Ĥ − λN̂ |ϕBCS〉 = 0

⇒ ∂

∂vα
〈ϕBCS|

∑
α

(ε0α − λ)â†αâα − G
∑
α,α′>0

â†αâ
†
−αâ−α′ âα′ |ϕBCS〉 = 0. (2.50)
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Now, using the normalization condition u2
α + v2

α = 1 one can write,

∂

∂vα
=

∂

∂vα

∣∣∣∣
uα

− vα
uα

∂

∂vα

∣∣∣∣
vα

. (2.51)

Further exploiting few expectation values,

〈ϕBCS|â†αâα|ϕBCS〉 = v2
α,

〈ϕBCS|â†αâ†−αâ−α′ âα′|ϕBCS〉 =


uαvαuα′vα′ for α 6= α′

v2
α for α = α′

, (2.52)

the second matrix element in Eq. (2.50) can be written as,

〈ϕBCS| −G
∑
α,α′>0

â†αâ
†
−αâ−α′ âα′ |ϕBCS〉 = −G

∑
α 6=α′
αα′>0

uαvαuα′vα′ −G
∑
α>0

v2
α

= −G
(∑
α>0

uαvα

)2

−G
∑
α>0

v4
α . (2.53)

So implementing the variational equation in Eq. (2.50) and using the derivative in Eq.

(2.51) one arrives at,

∂

∂vα

[
2
∑
α>0

(
ε0α − λ

)
v2
α − G

(∑
α>0

uαvα

)2

−G
∑
α>0

v4
α

 = 0

4
(
ε0α − λ

)
vα − 2G

(∑
α′

uα′vα′

)
uα − 4Gv3

α −
vα
uα

[
−2G

(∑
α′>0

uα′vα′

)
vα

]
= 0.

(2.54)
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Now with some definitions,

∆ = G
∑
α′>0

uα′vα′ ,

εα = ε0α − λ−Gv2
α, (2.55)

the variational equation [Eq. (2.50)] takes the form,

2εαvαuα + ∆
(
v2
α − u2

α

)
= 0. (2.56)

In Eq. (2.55), ∆ is called as pairing gap and λ is identified as the chemical potential. Now,

putting the condition εα →∞⇒ vα = 0 one gets,

v2
α =

1

2

(
1− εα√

ε2α + ∆2

)
,

u2
α =

1

2

(
1 +

εα√
ε2α + ∆2

)
. (2.57)

So the gap-equation is given by,

∆ = G
∑
α>0

uαvα

=
∑
α>0

G

2

√
1− ε2α

ε2α + ∆2

⇒ ∆ =
G

2

∑
α>0

∆√
ε2α + ∆2

. (2.58)

In the present thesis work, constant gap (i.e. ∆ = 11.2√
A

MeV [51]) BCS approximation

for the pairing is used. For the self-consistent determination of the radial wave functions in

Skyrme or RMF formalism, first a set of single particle energies along with a guess value
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of λ and G enter into the pairing calculation, separately for neutrons and protons. First

value of λ is determined self-consistently by using equation for εα in Eq. (2.55) and v2
α in

Eq. (2.57) fulfilling the number equation in Eq. (2.48).

Depending on the isospin of the particles concerned, N becomes number of neutrons or

protons. Finally, the value ofG is calculated from Eq. (2.58). The iteration to determine vα

and pairing strength G runs inside the iteration process of Skyrme of RMF formalism. At

the final step while determining the energy in Eq. (2.2) or (2.33), pairing energy is added

separately as,

Eq,pair =
−∆2

q

Gq

, (2.59)

where, q is either neutron or proton.

2.3 Infinite Nuclear Matter

Infinite nuclear matter is a hypothetical isotropic system of infinite number of nucleons

with no boundary and Coulomb interaction. The energy per nucleon for infinite nuclear

matter with density ρ = (ρn + ρp) and isospin asymmetry δ =
(
ρn−ρp
ρ

)
can be written as

a Taylor’s expansion as,

E(ρ, δ) ≈ E(ρ, δ = 0) +
1

2

(
∂2E(ρ, δ)

∂δ2

)
δ=0

δ2 +
1

4!

(
∂4E(ρ, δ)

∂δ4

)
δ=0

δ4

≈ E(ρ, δ = 0) + C2(ρ)δ2 + C4(ρ)δ4, (2.60)

where, E(ρ, δ = 0) represents the energy per nucleon for symmetric nuclear matter and

C2(ρ) is the symmetry energy. As the nuclear force symmetric under the exchange of neu-

trons and protons, the expansion contains only the even powers of δ. For finite nuclear
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systems the effect of asymmetry is quite less compared to the symmetric part. The maxi-

mum asymmetry associated with a nucleus is δ ∼ 0.33. So, the third term in the RHS of

Eq. (2.60) has very less contribution to the binding energy of a nucleus. However, for dense

asymmetric systems like neutron star, where the concerned asymmetry δ ∼ 0.7, C4(ρ) may

contribute non-vanishingly to the system. Throughout this thesis work the expansion is

thus restricted up to order of δ2. The symmetric nuclear matter attains a saturation where

the energy minimizes. The corresponding density is coined as ”saturation density” (= ρ0).

At the center of the nuclei the density associated with finite nuclei is very close to this den-

sity. Thus, the saturation density is a very important quantity to estimate from theoretical

models. All quantities characterizing infinite nuclear matter are evaluated at saturation den-

sity from a theoretical model, which are eventually used to construct the equation of state

relevant for dense matter, subjected to heavy ion collision experiments or astrophysical

observations.

Now, energy for symmetric matter E(ρ, δ = 0) or E(ρ, 0) can be expanded around ρ0

as,

E(ρ, 0) ≈ E(ρ0) +
1

2
K0

(
ρ0 − ρ

3ρ0

)2

− 1

6
Q0

(
ρ0 − ρ

3ρ0

)3

,

with, K0 = 9ρ2
0

(
∂2E(ρ, 0)

∂ρ2

)
ρ0

,

Q0 = 27ρ3
0

(
∂3E(ρ, 0)

∂ρ3

)
ρ0

. (2.61)

In the right hand side of Eq. (2.61), the first derivative vanishes as the energy attains its

minimum at ρ0. The quantity K0 and Q0 are called the incompressibility and skewness

parameter for symmetric matter. Similar to E(ρ, 0) in Eq. (2.61), one can also expand
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C2(ρ) in Eq. (2.60) around ρ0 as,

C2(ρ) ≈ C0
2 − L0

(
ρ0 − ρ

3ρ0

)
+

1

2
K0
sym

(
ρ0 − ρ

3ρ0

)2

− 1

6
Q0
sym

(
ρ0 − ρ

3ρ0

)3

,

with, C0
2 = C2(ρ0),

L0 = 3ρ0

(
∂C2(ρ)

∂ρ

)
ρ0

,

K0
sym = 9ρ2

0

(
∂2C2(ρ)

∂ρ2

)
ρ0

,

Q0
sym = 27ρ3

0

(
∂3C2(ρ)

∂ρ3

)
ρ0

. (2.62)

Here, L0 is slope parameter of symmetry energy, K0
sym the symmetry energy curvature pa-

rameter and Q0
sym the symmetry energy skewness parameter. These quantities play very

important roles in the study of asymmetric systems e.g. nuclei near drip line or astrophysi-

cal objects like neutron star.

For nuclear matter, single particle levels are of no interest. In mean-field formalism,

with a given set of parameters, saturation density ρ0 can be determined by minimizing the

energy for symmetric matter with respect to particle density ρ. To do so, different type of

densities in Eq. (2.7) and (2.28) are taken to be equal for neutrons and protons. Moreover,

infinite nuclear matter is uniform by definition. So gradients of all type of densities vanish

identically inside nuclear matter. Other symmetric nuclear matter properties defined in

Eq. (2.61) are then calculated accordingly by performing numerical derivatives of energy

density with respect to ρ. For asymmetric nuclear matter, symmetry energy parameters

defined in Eq. (2.62) can be calculated by taking numerical derivatives of energy with

respect to corresponding powers of δ and ρ.
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CHAPTER 3

ERROR ANALYSIS

3.1 Introduction

In 1976, George E. P. Box commented on ’Science and statistics’ as, ”Since all models are

wrong the scientist can not obtain a ”correct” one by excessive elaboration” [58]. Proba-

bly, nothing can put more aptly the hazards of extrapolating theoretical models. Any exper-

imental measurement is not acceptable without specification on the uncertainties. However,

”its all too often the case that the numerical results are presented without uncertainty es-

timates”; as pointed out by the editors of Physical Review A [59]. More often than not,

theoretical models involve prediction of observables beyond its domain of validity. For

example, models based on non-relativistic Skyrme force or relativistic mean field (RMF)

obtained by fitting experimental data on finite nuclei are often used to predict neutron-star

properties. So, estimating the statistical uncertainties for nuclear models is inevitable.

As the basic nuclear interaction between two nucleons is not known exactly, uncertain-

ties are bound to creep in for the nuclear models obtained by fitting properties of finite nu-

clei and neutron stars. If the models were exact, any prediction by the models would match
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exactly with the experiment or observation, leaving no room for new measurements to help

in any new understanding. On the contrary, for a model built without any preconceived

fundamental knowledge, all the measured or observed quantities would be independent to

each other, resulting in zero predictive power. The real scenario lies in between these two

extreme situations. Few recent calculations [60–64] put forward an extensive importance

on the error estimation in theoretical models, which includes error on the optimized pa-

rameters as well as on the predicted or estimated experimental and empirical observables.

Moreover, statistical analyses address how fast the objective function (typically a χ2 func-

tion) moves away from its minimum value when one perturbs the optimized parameter set.

Depending on the set of observables one uses to optimize the parameter space, correlation

may exist among different observables and parameters. Studying the correlations among

different observables and parameters offers a load of information which can’t be compre-

hended otherwise.

3.2 Covariance analysis

To obtain the optimized model parameters, a set of experimental data is fitted. First a

suitable objective function is minimized, which is defined as [61, 62],

χ2(p) =

Nd∑
i=1

(Othi −Oexpi

∆Oi

)2

. (3.1)

In Eq. (3.1), p (p1, p2 .... pNp) is the parameters set with typically Nd ∼ 10 for nuclear

models. Nd is the number of data used to fit the parameters. Oth is the value of an observ-

able calculated theoretically with the parameter set p. Oexp is experimental value of the

corresponding observable. The quantity ∆O represents the adopted error on any observ-
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able O which is given by ∆O2 = (∆Oth)2 + (∆Oexp)2 + (∆Onum)2, where contributions

come from theory, experiment as well as numerical methods associated with the analysis.

Out of these three contributions the most undetermined one is the theoretical error. One

needs to be very careful to estimate the adopted theoretical error. Often nuclear models

miss certain many body correlations in its formulation. Demanding too much accuracy on

certain channels may end up in erroneous optimizations. Following the definition of χ2 in

Eq. (3.1), one can also define the likelihood function of a parameter set by,

L(p) = Nexp
[
−1

2
χ2(p)

]
. (3.2)

As the name suggests, it determines the likelihood of a parameter set p to reproduce the

experimental data. Immediately the average value of a quantity A(p) can be obtained as,

A =

∫
L(p) · A(p)dp. (3.3)

Using the likelihood function, variance on A and covariance between A and B can be

expressed as,

(∆A)2 =

∫
L(p) ·

(
A(p)− A

)2
dp,

(∆A∆B) =

∫
L(p) ·

(
A(p)− A

) (
B(p)−B

)
dp. (3.4)

The correlation coefficient between A and B can be obtained as [65],

CAB =
∆A∆B√
∆A2 ∆B2

. (3.5)

The ideal way to obtain computationally the average or variance of any quantity and
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covariance between two quantities would to make samples over the whole parameter space

using a Metropolis-Monte-Carlo algorithm originally given by Metropolis et al [66]. In

a Monte-Carlo approach over a huge sample parameter space the definitions of average,

variance of a quantity and covariance between two quantities would be redefined as,

A = lim
M→∞

1

M

M∑
m=1

A(pm)

(∆A)2 = lim
M→∞

1

M

M∑
m=1

(A(pm)− A)2

(∆A∆B) = lim
M→∞

1

M

M∑
m=1

(A(pm)− A)(B(pm)−B) (3.6)

Typical calculation of the objective function χ2 with ∼ 10 parameters in a nuclear model

takes few minutes of computation time. Sampling over several thousands of parameter sets

would end up taking few months of computation time to estimate the uncertainties. So

a more efficient method is essential to perform statistical error analysis involving nuclear

models.

The most tractable method to calculate the statistical uncertainties is covariance anal-

ysis [65]. First the χ2 function is minimized following a derivative method. A typical

method would be Levenberg-Marquardt method. Once the minimum of the χ2 function is

obtained, it can be expanded around the minimum by Taylor’s expansion. Keeping upto

quadratic terms the expansion can be approximated as,

χ2(p) ≈ χ2(p0) +

Np∑
i=1

(p− p0)i

(
∂χ2(p)

∂pi

)
p0

+
1

2

Np∑
i,j=1

(p− p0)i

(
∂2χ2(p)

∂pi∂pj

)
p0

(p− p0)j,

χ2(p) ≈ χ2(p0) + 0 +

Np∑
i,j=1

(p− p0)iMij(p− p0)j . (3.7)
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The first derivative of χ2 vanishes as the objective function is at minimum. Here, Hessian

matrix is given by,

Mij =
1

2

(
∂2χ2(p)

∂pi∂pj

)
p0

. (3.8)

Now following Eq. (3.2), the likelihood function in quadratic approximation takes the

form,

L(p) = N exp
[
−1

2
χ2(p)

]
≈ N ′ exp

[
−1

2

n∑
i,j=1

(p− p0)iMij(p− p0)j

]
, (3.9)

where, contribution of χ2(p0) is absorbed in the constant N ′. In Eq. (3.9), if the quantity

inside the exponential remains constant over a sample parameter sets, it forms an ellipsoid

of constant probability surface over the multidimensional parameter space. It can also be

understood from the the Eq. (3.7) by putting the first term in the right to the left hand

side. Upon projecting this multidimensional ellipsoid along any two parameters, one can

study correlation between two parameters. One can also explore correlation between a pair

of observables by exploiting the covariance ellipsoid for parameters. For that one needs

to calculate the values of the observables of interest using the parameters lying within the

domain of covariance ellipsoid. A representative example of the covariance ellipsoid is

depicted in Fig. 3.1 taken from Ref. [61], where neutron-skin thickness ∆rnp of 208Pb is

plotted against dipole polarizability and effective mass m∗

m
of nucleon. The thinner shape

of the ellipsoid in the “∆rnp - dipole polarizability” plane contrasting to that in the “∆rnp -

m∗

m
” plane depicts stronger correlation in the former compared to the latter.

Now further, integration of the likelihood function over the whole parameter space
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Figure 3.1: Covariance ellipsoids for two pairs of observables as given in Ref. [61]. See
text for details.

gives unity,

∫ +∞

−∞
L(p)dp = N ′

∫ +∞

−∞
exp

[
−1

2
(p− p0)TM(p− p0)

]
dp = 1. (3.10)

Here all the bold notations signify matrices. If there exists an orthogonal transformation so

that,

M = OTM̃O, (3.11)

where, M̃ = diag
[
M̃1 M̃2 .....M̃Np

]
, multidimensional ellipsoid equation can

be rewritten as,

(p− p0)TM(p− p0) = (p− p0)TOTM̃O(p− p0)

= (O(p− p0))TM̃O(p− p0)

= p̃TM̃p̃

=

Np∑
k=1

p̃kM̃kp̃k =

Np∑
k=1

M̃kp̃
2
k . (3.12)
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So, using Eq. (3.10) and (3.12) value of N ′ can be obtained as,

∫ +∞

−∞
L(p)dp = N ′

∫ +∞

−∞
exp

[
−1

2

Np∑
k=1

M̃kp̃
2
kdp̃

]

= N ′
Np∏
k=1

∫ +∞

−∞
exp

[
−1

2
M̃kp̃

2
k

]
dp̃k

= N ′
Np∏
k=1

[
2π

M̃k

]1/2

⇒ 1 = N ′(2π)
Np
2 Det−

1
2 [M̃]

⇒ N ′ =

[
2π

M̃k

]−Np
2

=

{
(2π)Np

Det[M̃]

}− 1
2

. (3.13)

Now,A(p) can be expanded around the optimal parameter set p0 as in Eq. (3.7) by keeping

only upto quadratic terms as,

A(p) ≈ A(p0) +

Np∑
k=1

(p− p0)k

(
∂A

∂pk

)
p0

+
1

2

Np∑
k,l=1

(p− p0)k

(
∂2A

∂pk∂pl

)
p0

(p− p0)l

= A0 + (p− p0)TA′0 +
1

2
(p− p0)TA′′0(p− p0) . (3.14)

Upon using the expansion ofA(p) around p0 in Eq. (3.14) and taking help from Eq. (3.12),

the average A can be calculated as,

A =

∫ +∞

−∞
L(p) · A(p)dp

= N ′
∫ +∞

−∞
A(p) exp

[
−1

2
(p− p0)TM(p− p0)

]
dp

= N ′
∫ +∞

−∞

{
A0 + (p− p0)TA′0 +

1

2
(p− p0)TA′′0(p− p0)

}
exp

[
−1

2
(p− p0)TM(p− p0)

]
dp
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= A0 + 0 +
1

2
N ′
∫ +∞

−∞

{
(p− p0)TA′′0(p− p0)

}
exp

[
−1

2
(p− p0)TM(p− p0)

]
dp

= A0 +
1

2
N ′
∫ +∞

−∞

{
(p− p0)TOOTA′′0OOT (p− p0)

}
exp

[
−1

2
p̃TM̃p̃

]
dp̃

= A0 +
1

2
N ′
∫ +∞

−∞

{
p̃T Ã′′0p̃

}
exp

[
−1

2
p̃TM̃p̃

]
dp̃. (3.15)

In the last step Ã′′0 = OA′′0O
T was used. So the expression for A can be further simplified

as,

A = A0 +
1

2
N ′
∫ +∞

−∞

{
Np∑

k′,l′=1

p̃k′
(
Ã′′0

)
k′l′
p̃l′

}
exp

[
−1

2

Np∑
k=1

M̃kp̃
2
k

]
dp̃

= A0 +
1

2
N ′
∫ +∞

−∞

{
Np∑

k′,l′=1

p̃k′
(
Ã′′0

)
k′l′
p̃l′

}
Np∏
k=1

exp
[
−1

2
M̃kp̃

2
k

]
dp̃k

= A0 +
1

2
N ′
∫ +∞

−∞

{
Np∑
k′=1

p̃k′
(
Ã′′0

)
k′k′

p̃k′

}
Np∏
k=1

exp
[
−1

2
M̃kp̃

2
k

]
dp̃k . (3.16)

For the last step the fact was used that any Gaussian integral with an odd power of variable

multiplied to it vanishes. So the expression for A can be further simplified as,

A = A0 +
1

2
N ′
∫ +∞

−∞

{
Np∑
k′=1

(
Ã′′0

)
k′k′

p̃2
k′

}
exp

[
−1

2
M̃k′ p̃

2
k′

]
dp̃k′

∫ +∞

−∞

Np∏
k 6=k′,1

exp
[
−1

2
M̃kp̃

2
k

]
dp̃k

= A0 +
1

2

Np∑
k′=1

{
M̃k′

2π

}Np
2 {

2π

M̃k′

}Np−1

2 (
Ã′′0

)
k′k′

∫ +∞

−∞
p̃2
k′exp

[
−1

2
M̃k′ p̃

2
k′

]
dp̃k′

= A0 +
1

2

Np∑
k′=1

{
M̃k′

2π

} 1
2 (
Ã′′0

)
k′k′

{
2π

M̃3
k′

} 1
2
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= A0 +
1

2

Np∑
k′=1

M̃−1
k′

(
Ã′′0

)
k′k′

= A0 +
1

2
Tr
[
M̃−1Ã′′0

]
⇒ A = A0 +

1

2
Tr
[
M−1A′′0

]
. (3.17)

In the last step, simply the cyclic property during the matrix multiplication was used un-

der the orthogonal transformation. The inverse of the Hessian matrix M−1 is commonly

known as the ”curvature” matrix. Now the deviation in the observable A(p) from its aver-

age A is given by,

∆A = A(p)− A

= A0 + (p− p0)TA′0 +
1

2
(p− p0)TA′′0(p− p0)− A0 −

1

2
Tr
[
M−1A′′0

]
= (p− p0)TA′0 +

1

2
(p− p0)TA′′0(p− p0)− 1

2
Tr
[
M−1A′′0

]
. (3.18)

Similarly, the deviation in a quantity B can calculated following Eq. (3.18). So one can

write now,

∆A(p)∆B(p) ≈
{

(p− p0)TA′0 +
1

2
(p− p0)TA′′0(p− p0)− 1

2
Tr
[
M−1A′′0

]}
{
B′0

T
(p− p0) +

1

2
(p− p0)TB′′0(p− p0)− 1

2
Tr
[
M−1B′′0

]}
≈ (p− p0)TA′0B

′
0
T

(p− p0) +O{∆p3} . (3.19)

Neglecting the contribution from the terms containing beyondO{∆p2} and callingA′0B
′
0
T

as (AB)′0, covariance between A(p) and B(p) can be obtained following the definition in
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Eq. (3.4) as,

(∆A∆B) = N ′
∫ +∞

−∞

{
(p− p0)T (AB)′0(p− p0)

}
exp

[
−1

2
(p− p0)TM(p− p0)

]
dp

= N ′
∫ +∞

−∞

{
(p− p0)TOTO(AB)′0OOT (p− p0)

}
exp

[
−1

2
(p− p0)TM(p− p0)

]
dp

= N ′
∫ +∞

−∞

{
p̃T ˜(AB)

′
0p̃
}

exp
[
−1

2
p̃TM̃p̃

]
dp̃

= N ′
∫ +∞

−∞

{
Np∑

k′,l′=1

p̃k′
(

˜(AB)
′
0

)
k′l′
p̃l′

}
Np∏
k=1

exp
[
−1

2
M̃kp̃

2
k

]
dp̃k . (3.20)

Now, following the same steps as A in Eq. (3.17), the expression for covariance between

A and B can be written as,

(∆A∆B) = Tr
[
M−1(AB)′0

]
=

Np∑
k,l=1

M−1
k,l

(
A′0B

′
0
T
)
l,k

=

Np∑
k,l=1

M−1
k,l

(
A′0

T
B′0

)
k,l

=

Np∑
k,l=1

(A′0)kM−1
k,l (B′0)l

(∆A∆B) =

Np∑
k,l=1

(
∂A

∂pk

)
p0

M−1
k,l

(
∂B

∂pl

)
p0

. (3.21)

Putting A = B, variance on any quantity A can be calculated as,

(∆A)2 =

Np∑
k,l=1

(
∂A

∂pk

)
p0

M−1
k,l

(
∂A

∂pl

)
p0

. (3.22)
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As, the parameters of a model are considered to be independent to one another, one can

write,

∂pk
∂pk′

= δkk′

⇒ (∆pk∆pk′) =M−1
k,k′ & (∆pk)2 =M−1

k,k. (3.23)

So, the diagonal elements of the curvature matrix quantify the variance on the model pa-

rameters. Upon taking the square root of the diagonal elements, one can obtain the error

on the parameters.

3.3 Minimization and Sensitivity analysis

In the present thesis work, parameters of a relativistic mean-field (RMF) model are opti-

mized. A close variant of Levenberg-Marquardt [67] was employed to minimize the χ2

function as defined in Eq. (3.1). The algorithm typically uses the inverse-Hessian or cur-

vature matrix method. Using the definition of χ2 in Eq. (3.1), Hessian matrix can be

calculated as,

Mk,l =
1

2

(
∂2χ2(p0)

∂pk∂pl

)
=

1

2

∂2

∂pk∂pl

{
Nd∑
i=1

(Othi −Oexpi

∆Oi

)2
}

=

Nd∑
i=1

1

∆O2
i

[(
∂Othi
∂pk

)(
∂Othi
∂pl

)
+
(
Othi −Oexpi

)( ∂2Othi
∂pk∂pl

)]
. (3.24)

Here,
(
Othi −Oexpi

)
is the residual error in Oi. If the model space is reasonable, residual

errors are small. Moreover, one can expect that they are random in sign. Then the Hessian
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matrix is approximately obtained as [65]

Mk,l ≈
Nd∑
i=1

1

∆O2
i

(
∂Othi
∂pk

)(
∂Othi
∂pl

)

=

Nd∑
i=1

(
1

∆Oi
∂Othi
∂pk

)(
1

∆Oi
∂Othi
∂pl

)

=

Nd∑
i=1

Ji,kJi,l . (3.25)

So, the Hessian matrix and the corresponding curvature matrix can be obtained without

ever calculating any double derivative of the observables with respect to the parameters.

The J matrix is called the ”Jacobian” matrix which is nothing but the derivative of an

observable with respect to parameters weighted by the corresponding adopted error. This

approximation along with the Levenberg-Marquardt method provides a very efficient and

stable minimization procedure.

It was mentioned in the previous section that proper estimation of the adopted errors i.e.

∆Oi are very important. As there is no proper prescription to estimate ∆Oi, some arbitrari-

ness is inevitable. However, the arbitrariness can be reduced significantly by introducing a

global ’s’ factor [62, 69],

s =
χ2(p0)

Nd −Np

. (3.26)

While performing the covariance analysis as described in the previous section, ultimately

the curvature matrix M−1 is replaced by (sM−1) and rest of the procedure is followed.

To study the overall impact of each type of data on the optimized parameters a ”sensi-
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Figure 3.2: Relative Sensitivity of different parameters of UNEDF1 [68] to different type
of data used in the fit, as given in Ref. [62].

tivity matrix” S is defined as [60, 62, 68],

S(p) =
[
J(p)JT (p)

]−1
J(p) . (3.27)

For k-th row in the sensitivity matrix Si,k corresponding to a single parameter, one can

compute the partial sums over different type of data i1, i2 · · · where i = i1 + i2 + · · · .

Consequently, a percentage contribution from each type of data i1, i2 etc can be obtained

by normalizing to the summation over all type of data as 100% i.e.
∑

i Si,k = 100% for the

k-th parameter. A representative example is depicted in Fig. 3.2 as given in Ref. [62].

All the techniques described in Chapter 3 have been extensively used in Chapter 4

to test the merit of a relativistic mean field model. The numerical codes to perform the

covariance and sensitivity analysis are also developed during the present thesis work.
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CHAPTER 4

CONSTRAINING THE SYMMETRY

ENERGY PARAMETERS USING A

RELATIVISTIC MEAN FIELD MODEL

4.1 Introduction

The symmetry energy coefficient C0
2 (Eq. (2.62)) is well constrained from binding energies

of finite nuclei with its mean value ∼ 32 MeV [1, 2, 70–73]. However, symmetry energy

slope L0, shows a wide variation ∼ 20 - 120 MeV [10, 13–15, 25–27, 29–38]. It can be

realized by looking at the abscissa of Fig. (4.1), where neutron-skin thickness ∆rnp of

208Pb is plotted as a function of L0 for a set of ∼ 40 mean-filed models, which is taken

from Ref. [15]. One can also observe a linear correlation between ∆rnp of 208Pb and L0.

Thus, precise information of ∆rnp of 208Pb can constrain the value of L0 tightly. From the

analysis of data on the precisely known nuclear masses in macroscopic nuclear models,
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Figure 4.1: ∆rnp of 208Pb plotted as a function of L0 (left panel) and L0

C0
2

(right panel), for
∼ 40 mean-field models as given in Ref [15].

L0 is known with a fair amount of accuracy, L0 = 60 ± 20 MeV [1, 2, 74, 75]. Energy

density functionals (EDF) in microscopic mean field models, parametrized to reproduce

the binding energies of nuclei along with some other specific nuclear observables do not,

however, display such constraints on L0. Questions then arise how the information con-

tent of symmetry energy gets blurred in the exploration of nuclear masses in microscopic

models. For example in Ref. [76], correlation between the binding energy difference ∆B

of 132Sn and 100Sn and the ∆rnp of 132Sn for different sets of Skyrme EDFs were stud-

ied. In principle, ∆B (132Sn, 100Sn) should contain a major contribution coming from the

asymmetric part of the 132Sn, which in return should be related to symmetry energy and

consequently to ∆rnp. However, no noticeable correlation between ∆B (132Sn, 100Sn) and

∆rnp was found, which is depicted in Fig. (4.2). In the present thesis work, this lack of

correlation was reconciled by studying the binding energy difference between four pairs of
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Figure 4.2: The binding energy difference ∆B (132Sn, 100Sn) = BE(132Sn)−BE(100Sn)
plotted against neutron-skin thickness ∆rnp of the 132Sn nucleus for different mean-filed
models as shown in Ref. [76].

nuclei in different RMF models with increasing asymmetry effects namely, (68Ni −56 Ni),

(132Sn −100 Sn), (24O −16 O) and (30Ne −18 Ne). The neutron rich 68Ni and 132Sn nuclei

have asymmetries δ = 0.176 and 0.242 respectively (δ is the isospin asymmetry parameter

(N−Z)/A); 24O and 30Ne have δ ≈ 0.33 i.e. N/Z ≈ 2. The Ni and Sn isotopes are doubly

closed shell nuclei. So also the O-nuclei, 24O is recently seen to be an unexpectedly stable

doubly magic nucleus [77, 78]. The Ne-nuclei have their neutron shells closed but have

valence protons. The binding energy difference between the two Ne-nuclei is expected to

cancel the pairing and the possible core-polarization effects arising from the two valence

protons partially. In Fig.4.3 the binding energy difference between the four pairs of nu-

clei are plotted against ∆rnp of 208Pb, the ∆rnp and the binding energies being calculated

for seven models of BSR family [49, 79], NL3 [80], FSU [50] and for seven models of
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Figure 4.3: The binding energy difference ∆BE(X, Y ) = BE(X)−BE(Y ) for four dif-
ferent pairs of isotopes are plotted against neutron-skin thickness ∆rnp in the 208Pb nucleus
for 16 different RMF models (See text for details). The values of correlation coefficients r
are also displayed.

Density Dependent Meson Exchange (DDME) family [81]. The correlation coefficient for

the Ni-pair is seen to be only 0.012, for the Sn-pair, it has increased to 0.586. For the O

and Ne pairs, they are quite high, 0.980 and 0.978, respectively. One can not fail to notice

the increasingly high correlation with increasing asymmetry, particularly for the latter two

cases.
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4.2 A Covariance analysis

The method of Covariance analysis as described in Chapter 3 provides the perfect tool to

unveil the effect of extremely asymmetric nuclei to construct the model parameters of a

RMF model.

4.2.1 Fit data and model parameters

The occurrence of strong correlation for the case of O and Ne pairs probably suggest that

selective combination of suitable binding energies of nuclei of low and high isospin may be

ideally suited to better constrain the isovector part of the nuclear interaction. To explore this

idea, two RMF models (model-I and model-II) corresponding to different sets of fit-data

are constructed. The observables explored are the symmetry energy C0
2 , symmetry energy

slope L0 along with the ∆rnp of 208Pb. The effective Lagrangian density for the RMF

model employed in the present work is similar to that of the FSU one [46, 50, 82, 83] (see

Chapter 2). The values of the parameters entering the EDF of the RMF model are obtained

from an optimal χ2 fit of the experimental observables with the theoretically calculated

values, as described in Chapter 3. In model-I the binding energies and charge radii of some

standard set of nuclei (16O, 40Ca, 48Ca, 56Ni, 68Ni, 90Zr, 100Sn, 116Sn, 132Sn, 144Sm and

208Pb) spanning the entire periodic table are taken as fit-data. In model-II, we have the same

set of experimental observables, but with the addition of the binding energy difference ∆B

of (24O,16 O) and of (30Ne,18 Ne). The parameters of model-I and model-II are obtained by

optimizing [84] the objective function χ2(p) as described in Chapter 3.

Once the optimized parameter set is obtained the correlation coefficient between two

quantities A and B, which may be a parameter as well as an observable, can be evaluated

within the covariance analysis as described in Chapter 3. The parameters for model-I and II
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Table 4.1: The best fit values for the parameters of model-I and model-II. mσ is the mass
of σ meson given in units of MeV. The masses of ω and ρ mesons are kept fixed to mω=
782.5 MeV and mρ= 763 MeV and nucleon mass is taken to be M= 939 MeV. Statistical
errors on the fitted parameters are also given for both the models.

Name gσ gω gρ κ3 κ4 η2ρ ζ0 mσ

model-I -10.6246 13.8585 12.077 1.46285 -0.9673 28.33 5.2056 496.007
(Error) 0.246 0.662 2.60 0.275 3.66 29.9 3.21 12.2

model-II -10.6212 13.8599 12.436 1.46223 -0.8566 32.50 5.3220 495.815
(Error) 0.149 0.262 1.54 0.290 1.53 18.1 0.099 8.23

corresponding to minimum value of the objective function χ2(p) (=χ2(p0)) along with their

statistical errors are listed in Table 4.1. Overall, the errors on the parameters for the case

of model-II are smaller than those obtained for the model-I indicating that the inclusion

of the fit data on the binding energy differences constrain the model parameters better.

In particular, the errors on the parameters gρ and η2ρ, which govern the isovector part of

the effective Lagrangian, are smaller for the model-II. The large error on the parameters

κ3 and κ4 for both the models may be due to the fact that the fit data does not include

any observable which could constrain the value of the nuclear matter incompressibility

coefficient [83]. In Table 4.2 different observables Oi, adopted errors on them ∆Oi, their

experimental values along with the results obtained for model-I and model-II using the

corresponding best fit parameters are listed. The values of Oi and ∆Oi, except for the ∆B

of (24O,16 O) and (30Ne,18 Ne) and rch of 132Sn, are exactly same as used in Ref. [85]. The

experimental data for ∆B of (24O,16 O) and (30Ne,18 Ne) are taken from [86] and that for

the rch of 132Sn from [87].
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Table 4.2: ObservablesO of different nuclei, adopted errors on them ∆O, their experimen-
tal values and the ones obtained for model-I and II. BE and rch refers to binding energy
and charge radius of a nucleus respectively, and ∆B is binding energy difference of two
isotopes of a nucleus as indicated. BE and ∆B are in units of MeV and rch in fm.

Nucleus O ∆O Expt. model-I model-II
16O BE 4.0 127.62 127.781±0.990 127.783±0.576

rch 0.04 2.701 2.700±0.017 2.699±0.013
16O, 24O ∆B 2.0 41.34 - 40.995±1.046

18Ne, 30Ne ∆B 2.0 79.147 - 79.149±1.296
40Ca BE 3.0 342.051 342.929±1.064 342.927±0.927

rch 0.02 3.478 3.457±0.013 3.455±0.010
48Ca BE 1.0 415.99 414.883±0.720 414.751±0.541

rch 0.04 3.479 3.439±0.007 3.439±0.006
56Ni BE 5.0 483.99 483.752±2.495 483.619±1.646

rch 0.18 3.750 3.695±0.025 3.693±0.020
68Ni BE 1.0 590.43 592.294±0.784 592.162±0.736
90Zr BE 1.0 783.893 782.855±4.833 782.776±1.621

rch 0.02 4.269 4.267±0.009 4.267±0.034
100Sn BE 2.0 825.8 827.987±1.753 827.757±1.534
116Sn BE 2.0 988.32 987.169±0.946 987.072±0.760

rch 0.18 4.626 4.623±0.009 4.623±0.008
132Sn BE 1.0 1102.9 1102.851±1.146 1102.631±0.856

rch 0.02 4.71 4.711±0.011 4.712±0.010
144Sm BE 2.0 1195.74 1195.834±1.240 1195.736±1.287

rch 0.02 4.96 4.956±0.009 4.956±0.009
208Pb BE 1.0 1636.446 1636.457±4.301 1636.383±0.917

rch 0.02 5.504 5.530±0.012 5.531±0.010

4.2.2 Results

The results obtained for the model-I and model-II are compared to see up to what extent the

inclusion of the experimental data on the binding energy differences between the pair of O

and Ne nuclei can constrain the iso-vector part of the effective Lagrangian. In Fig. 4.4(a)

the covariance ellipsoids for the parameters gρ and η2ρ are displayed (see Chapter 3). For

these sets of parameters, the values of the symmetry energy slope parameter L0 and the

∆rnp in the 208Pb nucleus are displayed in Fig. 4.4(b). The inclined and elongated shapes

51



Figure 4.4: The covariance ellipsoids for the parameters gρ - η2ρ (upper panel) and the
corresponding L0 - ∆rnp (lower panel) for the model I (blue) and model II (red). The area
inside the ellipsoids indicate the reasonable domain of the parameters.

of the ellipsoids indicate that the correlations amongst gρ - η2ρ and L0 - ∆rnp are strong.

In fact, the values of the correlation coefficients (Eq. (3.5)) for these pairs of quantities for

both the models turn out to be ∼0.95. It is evident that the ellipsoids depicting the results

for the model-II (red) are narrower in comparison to those for the model-I (blue). This is

suggestive of the fact that the inclusion of the binding energies for the 24O and 30Ne put

tighter constraints on the isovector part of the effective Lagrangian density.

Nuclear matter properties for model-I and model-II are compared in Table 4.3. Errors

on the entities describing the isoscalar behavior of nuclear matter (E0, K0, ρ0 and M∗/M )

are pretty much the same for both the models concerned. For model-II, however, a signif-
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Table 4.3: The values for the binding energy per nucleon E0, incompressibility coefficient
K0, Dirac effective mass of nucleon M∗/M , symmetry energy coefficient C0

2 and density
slope parameter of symmetry energy L0 for the nuclear matter evaluated at saturation den-
sity ρ0 along with the correlated errors on them obtained within the covariance analysis for
the models I and II. The results for neutron-skin thickness ∆rnp in 48Ca, 132Sn and 208Pb
are also presented.

Observable model-I model-II
E0 (MeV) −16.036± 0.070 −16.036± 0.051
K0 (MeV) 210.12± 27.87 209.64± 28.52
ρ0 (fm−3) 0.150± 0.003 0.150± 0.003
M∗/M 0.585± 0.012 0.585± 0.010
C0

2 (MeV) 32.03± 3.08 31.69± 1.51
L0 (MeV) 57.62± 17.08 55.63± 7.00

∆rnp (48Ca) (fm) 0.191± 0.036 0.187± 0.016
∆rnp (132Sn) (fm) 0.266± 0.070 0.257± 0.031
∆rnp (208Pb) (fm) 0.201± 0.065 0.193± 0.030

icant improvement (by a factor ∼ 2) on the spread of parameters like C0
2 and L0, which

describe the symmetry behavior of nuclear matter, is achieved over model-I. Strikingly, the

errors on C0
2 and L0 for the model-II agree very well with the ones obtained for the SAMi

Skyrme force [37] which includes the variational EoS for the pure neutron matter as pseudo

data in the fitting protocol. We also provide the values of ∆rnp for 48Ca, 132Sn and 208Pb

nuclei in Table 4.3. The reduction in the errors on ∆rnp for the model-II in comparison to

those for the model-I are in harmony with the results depicted in Fig. 4.4.

In Fig. 4.5 correlation between ∆rnp of 208Pb and fit-data on binding energies for

model-II are plotted. The stronger correlation for the data on ∆B involving highly asym-

metric nuclei (δ ∼ 0.33) compared to others reproduces the similar features of Fig. 4.3,

however, analysis being done within a single model using covariance analysis. One can

notice that these correlation coefficients between ∆rnp of 208Pb and data on ∆B are not as

high as compared to those obtained from the analysis involving several models in Fig. 4.3.

Incidentally, these correlations obtained from a single model using covariance analysis and
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Figure 4.5: The correlation between ∆rnp of 208Pb and different fit-data on binding ener-
gies used to obtain the model parameters of model-II.

using several models should not be compared directly. The correlation in the covariance

analysis may depend on the set of data and the model parameters chosen for an analysis.

The correlations depicted in Fig. 4.5 is more of an indicator that ∆B of Oxygen and Neon

pair are more sensitive to the ∆rnp of 208Pb compared to other binding energy data used to

optimize the parameters of model-II.

4.3 A sensitivity analysis

To analyze the sensitivity of the symmetry energy elements of nuclear matter to highly

neutron rich systems as obtained in the previous section, a systematic analysis is essential.

For this purpose Sensitivity analysis was employed as described in Ref. [62] (see also

Chapter 3).
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Table 4.4: Optimum values of the parameters for the models SINPB and SINPA, statistical
errors on them are given. Mass of the σ meson (mσ) is given in units of MeV. The masses
of ω and ρ mesons are kept fixed to mω= 782.5 MeV and mρ= 763 MeV and nucleon mass
is taken to be M= 939 MeV.

Name gσ gω gρ κ3 κ4 η2ρ ζ0 mσ

SINPB -10.6007 13.8767 10.613 1.4868 -0.802 13.487 5.467 493.850
(Error) 0.14 0.24 1.29 0.19 1.15 12.26 0.45 4.98
SINPA -10.6292 13.8532 12.831 1.5375 -1.190 38.179 5.363 495.394
(Error) 0.16 0.33 0.82 0.06 0.47 11.92 0.45 3.86

4.3.1 The RMF models SINPB and SINPA

Two different RMF models are constructed namely, SINPB and SINPA with an expanded

data set compared to those in model-I and model-II in the previous section. A compara-

tive study on the nuclear matter properties of these two models is executed in detail. In

SINPB binding energies (BE) and charge radii (rch) of some standard set of nuclei across

the whole nuclear chart are taken as fit-data (see Tab. 4.5). The binding energies of 54Ca,

78Ni and 138Sn nuclei having somewhat larger asymmetry (δ ∼ 0.26 - 0.28) are also in-

cluded in the fitting protocol. The model SINPA includes some highly asymmetric nuclei,

namely, 24O, 30Ne, 36Mg and 58Ca (δ > 0.3) in addition to the data set used in the base

model SINPB. SINPA also contains the symmetric 20Ne and 24Mg nuclei and the observed

maximum mass of neutron star MNS
max as fit-data.

In Table 4.4, the optimal values of the parameters p0 for SINPB and SINPA are given

along with the errors on them. respectively. One can observe that the errors on the pa-

rameters gρ, κ3, κ4 and mσ decreased by a noticeable amount in SINPA in comparison

to SINPB. For the parameters gσ, ζ0 and η2ρ the errors are almost the same for both the

models and for the case of gω its value is slightly higher in SINPA than in SINPB. The

pairing is treated within the BCS approximation with cut-off energy in pairing space taken
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as ~ω0 = 41A−1/3 MeV. The BCS pairing strengths for neutron and proton for the models

SINPB and SINPA were kept fixed toGn = 20/A andGp = 25/A. The neutron and proton

pairing gaps (∆n,∆p) in MeV for the neutron rich nuclei are 30Ne (0.0, 2.3), 36Mg (2.5,

2.0), 54Ca (1.1, 0.0), 58Ca (1.0, 0.0), 138Sn (1.3, 0.0). The pairing gaps for other non-magic

nuclei are close to 12/
√
A MeV. The neutron pairing gap for 24O practically vanishes,

since, the first unoccupied 1d3/2 orbit is about 4.5 MeV above the completely filled 2s1/2

orbit [88].

In Table 4.5 different observables O pertaining to finite nuclei and neutron star, their

experimental values, their obtained values from SINPB and SINPA along with ∆O, the

adopted errors on them are listed. The experimental values of binding energies of all the

nuclei except for 54Ca used in the fit are taken from the latest compilation AME-2012

[89]. Recently, binding energy of 54Ca was measured very accurately at TRIUMF [90]

and CERN [91]. For this present calculation, the experimental value of the binding energy

for 54Ca is taken from Ref. [91]. Experimental values for the charge radii used in the fit

are obtained from the compilation by Angeli and Marinova [87]. For the optimization of

SINPA, observed maximum mass of neutron star MNS
max is taken from Ref. [19, 20]. It

may be pointed out that, experimental value for some of the fit data are little different in

the present calculation in comparison to the previous section. Except for 68Ni, ∆O for

all the fit-data common to both the models SINPB and SINPA are taken from Ref. [85].

As the obtained value of binding energy of 68Ni from both the models SINPB and SINPA

deviate by more than 2 MeV from its experimental value, demanding too much accuracy

on that particular datum costs a larger amount in total χ2 compared to other data points.

For this reason ∆O = 2 was taken MeV for the binding energy of 68Ni unlike in Ref.[85],

where ∆O = 1 MeV. Calculated errors on the binding energies and charge radii due to

uncertainties in the model parameters for the fitted nuclei for both the models SINPB and
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Table 4.5: Various observablesO, adopted errors on them ∆O, corresponding experimen-
tal data (Expt.) and their best-fit values for SINPB and SINPA. BE and rch corresponds
to binding energy and charge radius of a nucleus, respectively and MNS

max is the maximum
mass of neutron star (NS). Values of BE are given in units of MeV and rch in fm. MNS

max is
in units of Solar Mass (M�).

O ∆O Expt. SINPB SINPA
16O BE 4.0 127.62 127.78 128.35

rch 0.04 2.699 2.704 2.696
24O BE 2.0 168.96 - 169.28

20Ne BE 4.0 160.64 - 155.89
30Ne BE 3.0 211.29 - 214.37
24Mg BE 3.0 198.26 - 195.87
36Mg BE 2.0 260.78 - 261.68
40Ca BE 3.0 342.05 343.19 343.66

rch 0.02 3.478 3.460 3.452
48Ca BE 1.0 416.00 415.27 415.47

rch 0.04 3.477 3.437 3.437
54Ca BE 2.0 445.37 445.63 443.79
58Ca BE 2.0 454.43 - 456.33
56Ni BE 5.0 483.99 483.38 484.34

rch 0.18 3.750 3.700 3.686
68Ni BE 2.0 590.41 592.86 592.97
78Ni BE 2.0 641.78 642.10 641.59
90Zr BE 1.0 783.90 783.02 783.20

rch 0.02 4.269 4.266 4.264
100Sn BE 2.0 825.30 828.11 827.93
116Sn BE 2.0 988.68 987.45 987.32

rch 0.18 4.625 4.620 4.622
132Sn BE 1.0 1102.84 1103.28 1103.40

rch 0.02 4.709 4.706 4.710
138Sn BE 2.0 1119.59 1118.65 1117.05
144Sm BE 2.0 1195.73 1196.00 1195.67

rch 0.02 4.952 4.955 4.955
208Pb BE 1.0 1636.43 1636.38 1636.57

rch 0.02 5.501 5.528 5.530
NS MNS

max 0.04 2.01 - 1.98
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SINPA lie within the range from 0.51 - 1.89 MeV and 0.005 - 0.016 fm, respectively. In

model SINPA the obtained maximum neutron star mass MNS
max (1.98±0.03 M�) compares

well with the observed value. It should be noted that the two isotopes of Mg nuclei used in

the optimization of SINPA are deformed. The numerical computation is done with 20 os-

cillator shells being taken as the basis states for the nucleons. The quadrupole deformation

parameter β2 calculated from SINPA for 24Mg and 36Mg nuclei are found to be 0.47 and

0.37, respectively.

4.3.2 Results for SINPB and SINPA

Energy per nucleon E(ρ, 0) for symmetric nuclear matter (SNM) can be expressed in terms

of model parameters as (see Chapter 2),

E(ρ, 0) =
2

π2

∫ kF

0

dk k2
√
k2 +M∗2

+
1

2
m2
σσ

2 +
κ3

6M
gσm

2
σσ

3 +
κ4

24M2
g2
σm

2
σσ

4

−1

2
m2
ωω

2 − 1

24
ζ0g

2
ωω

4, (4.1)

and, C2(ρ) is expressed as,

C2(ρ) =
k2
F

6(k2
F +M∗2)1/2

+
g2
ρ

12π2

k3
F

m∗ρ
2
. (4.2)

Here, kF is the nucleon Fermi momentum in symmetric nuclear matter at density ρ (=2k3F
3π2 ).

The Dirac effective mass of nucleon M∗ is given by M∗ = M − gσσ and, the effective
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Table 4.6: Different nuclear matter properties: the binding energy per nucleon for sym-
metric matter E0, incompressibility coefficient K0, Dirac effective mass of nucleon M∗

0

(scaled by nucleon mass M ), symmetry energy coefficient C0
2 and density slope parameter

of symmetry energy L0 for the nuclear matter evaluated at saturation density ρ0 along with
the correlated errors on them for the models SINPB and SINPA. The values of C2(ρc) and
L(ρc) calculated at crossing density ρc along with the neutron skin ∆rnp in 208Pb are also
presented for these two models.

Observable SINPB SINPA
E0 (MeV) −16.04± 0.06 −16.00± 0.05
K0 (MeV) 206± 20 203± 6
ρ0 (fm−3) 0.150± 0.002 0.151± 0.001
M∗

0/M 0.59± 0.01 0.58± 0.01
C0

2 (MeV) 33.95± 2.41 31.20± 1.11
C2(ρc) (MeV) 26.08± 0.41 25.60± 0.51
L0 (MeV) 71.55± 18.89 53.86± 4.66
L(ρc) (MeV) 55.98± 13.78 38.47± 5.43

∆rnp (208Pb) (fm) 0.241± 0.040 0.183± 0.022

mass of ρ meson, m∗ρ is expressed as [92],

m∗ρ
2 = m2

ρ

(
1 +

1

2M2
η2ρg

2
ωω

2

)
. (4.3)

From Eq. (4.2) one can see that, the kinetic part of C2(ρ) depends on the effective mass of

nucleon M∗, which has dependence on the parameter gσ and the field value of σ. However,

the interaction part of C2(ρ) mainly depends on the isovector parameters gρ and η2ρ.

Once the objective functions for the models SINPB and SINPA are optimized, different

nuclear matter properties can be extracted from them and compared. In Table 4.6 values of

different nuclear matter parameters along with the corresponding errors evaluated within

the covariance analysis are listed for SINPB and SINPA. The properties associated with

symmetric nuclear matter are evaluated at the saturation density ρ0, while, those character-

izing the asymmetric nuclear matter are evaluated at ρ0 and the crossing-density ρc which
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is taken as 0.11
0.16
× ρ0 [93]. Errors on binding energy per nucleon E0 (= E(ρ0, 0)), saturation

density ρ0 and Dirac effective mass of nucleon M∗
0/M (=M∗(ρ0)/M ) are pretty much the

same for both the models concerned. However, a noticeable improvement is observed for

the model SINPA over SINPB for the calculated errors on the symmetry energy parameters

C0
2 (=C2(ρ0)), L0 (=L(ρ0)) and L(ρc). The refinement in the error in SINPA in comparison

to SINPB is also to be noted for the incompressibility coefficient at saturation density, K0.

Error on the neutron-skin ∆rnp in 208Pb also reduces by almost a factor of 2 in SINPA in

comparison to SINPB. The central values of L0 and ∆rnp of 208Pb obtained for the model

SINPB are seen to differ from those obtained from the model-I of previous section; this

can be attributed to the differences in the adopted error on the binding energy of 68Ni and

to the differences in some of the experimental fit data.

The observation of improved constraint in the symmetry elements calculated from

model SINPA over those from SINPB clearly indicates that the additional data of four

highly asymmetric nuclei (24O, 30Ne, 36Mg and 58Ca) with δ > 0.3 and the observed max-

imum mass of neutron star MNS
max contain more distilled information on isovector elements

in the nuclear interaction. It is striking to note that the addition of the binding energies of

54Ca, 78Ni and 138Sn (δ ∼ 0.26-0.28) as fit data in the optimization of the model SINPB

did not improve the uncertainties in the symmetry energy parameters as compared to those

for the model-I in the previous section. On the other hand, inclusion of highly asymmetric

(δ > 0.3) 36Mg and 58Ca nuclei in the fitting protocol of the model SINPA yields smaller

uncertainties in the symmetry energy parameters in comparison to the model-II of previ-

ous section which does not include these nuclei. This clearly emphasizes that the binding

energies of nuclei with δ > 0.3 play a crucial role in constraining the symmetry energy

parameters and is thus a pointer to the necessity of taking data for very asymmetric nuclei

in the optimization of the RMF model. In the next section we are going to analyze this
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Figure 4.6: Optimum values of the objective function (χ2
0) are plotted as a function of ∆rnp

(neutron skin of 208Pb) for two families of models, namely, SINPB-Variant and SINPA-
Variant (see text for details).

more critically.

Now the sensitivity of symmetry energy parameters to the properties of the neutron rich

systems are discussed in detail. Before embarking on the analysis in terms of sensitivity

matrix (see Chapter 3), we make a simple examination of the results. We look into the

dependence of the optimal value of the objective function on the neutron skin of 208Pb.

Fixing η2ρ to a preset value and optimizing the χ2 function by adjusting the rest of the

model parameters, one can get a particular value of ∆rnp of 208Pb for the models SINPB

and SINPA [94]. Two families of RMF models so constructed are called SINPB-Variant

and SINPA-Variant. Different input values of η2ρ would yield different ∆rnp in both these

models. In Fig. 4.6 optimal values of the objective function χ2 (i.e. χ2
0) for these two

models are displayed as a function of ∆rnp of 208Pb; the values of χ2
0 are so adjusted that

their minimum value within a family vanishes. Visual comparison of results from the two
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function of asymmetry δ.

families of models shows that there is a stronger preference to a particular value of ∆rnp of

208Pb in the SINPA-Variant family. It is worthwhile to mention that, SINPB-Variant family

has 54Ca, 78Ni and 138Sn in the fitted data set where asymmetry δ ∼ 0.26 - 0.28. The χ2
0

function is still rather flat, making it tenuous to give a reasonable bound on the value of

∆rnp of 208Pb. The role of ultra neutron-rich nuclei in the SINPA-Variant family where

nuclei with δ > 0.3 (e.g. 24O, 30Ne, 36Mg, 58Ca) are further included in the fitting protocol

are eminently evident in Fig 4.6. As ∆rnp of 208Pb is correlated to L0 [12, 15], one finds a

tighter constraint on L0 as well from SINPA as compared to SINPB (see Tab. 4.6).

The two Variant families so constructed from selective optimization of the parameter

set p0 keeping ∆rnp of 208Pb fixed should affect the calculated binding energies. In Fig.

4.7 binding energy differences of three isotopic chains of O, Ca and Ni extracted from

models SINPB and SINPA (∆rnp (208Pb) = 0.241 fm and 0.183 fm, respectively at absolute
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Figure 4.8: Relative sensitivity of different parameters of the effective Lagrangian density
to three groups of fit data used in optimization of SINPA. These groups are nuclear binding
energies (BE), charge radii (rch) and maximum mass of neutron star (MNS

max).

minima of χ2
0, see Fig. 4.6) are plotted as a function of asymmetry δ. The differences in

the binding energies so calculated for all the isotopic chains show significant enhancement

when one goes from δ just below 0.3 to higher values [88]. Nuclei beyond δ = 0.3 thus

show a high sensitivity towards ∆rnp of 208Pb. Several experimental efforts are being

made to accurately measure binding energies of these exotic nuclei. These measurements

may impose very tight constraint on the value of ∆rnp of 208Pb.

Further, the sensitivity analysis based on a sensitivity matrix was employed in model

SINPA to understand the impact of the new fit-data considered to optimize it (see Chapter

3). In Fig. 4.8 the relative sensitivity of different parameters of the effective Lagrangian

density to three broad data-types (binding energiesBE, charge radii rch of finite nuclei and

maximum mass of neutron star MNS
max) are displayed. It is evident that all the parameters

are maximally sensitive (>65%) to the binding energies of nuclei. The higher relative

sensitivity of the parameters to the binding energies of nuclei can be attributed partly to
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Figure 4.9: Same as Fig. 4.8, but, with different grouping of the fit data of finite nuclei.
One group contains binding energies of highly asymmetric nuclei (24O, 30Ne, 36Mg and
58Ca) and another contains remaining fit data on the finite nuclei.

their large number used in the fit. The parameter κ4 shows almost no sensitivity towards

the charge radii. The parameters κ3, κ4 and mσ are seen to be appreciably sensitive to the

single data of neutron star MNS
max as they have a crucial role in the determination of the high

density behavior of the nuclear EoS which in turn governs the value of MNS
max.

In Fig. 4.9 the analysis was performed by regrouping the data on binding energies and

charge radii so that the sensitivity of the RMF model parameters to the binding energies of

highly asymmetric nuclei can be assessed. One of the group consists of only the binding

energies of 24O, 30Ne, 36Mg and 58Ca nuclei, while the other group contains the remaining

data on the finite nuclei. One can not fail to notice that, the parameters gρ and η2ρ, which

control the isovector part of the effective Lagrangian, are relatively more sensitive (∼ 40%)

to the binding energies of highly asymmetric nuclei. The sensitivity of gρ and η2ρ to the

value of MNS
max is not observed in Figs. 4.8 and 4.9 partly because MNS

max is a single datum,

but mainly because it is overshadowed by the relative contributions to the sensitivity from
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Figure 4.10: Relative sensitivity of the nuclear matter properties at saturation density to
the fit data of SINPA with the same grouping as in Fig. 4.9.

the binding energies of asymmetric nuclei.

In Fig. 4.10 the sensitivity of different empirical data pertaining to the saturation den-

sity ρ0 of nuclear matter are displayed to the data-set used in the optimization of the model

SINPA. To do so, the same grouping of data was used as in Fig. 4.9. Since the param-

eters gσ, gω etc. of the effective Lagrangian are optimally determined from the full data

set, it is no wonder that the empirical nuclear matter data obtained from the energy density

functional are maximally sensitive to the group of fit data ”Rest”, as it contains the largest

number of data elements. The high sensitivity of C0
2 (∼ 30%) and L0 (∼ 40%) to the bind-

ing energies of the highly asymmetric 24O, 30Ne, 36Mg and 58Ca nuclei, which form a very

small subset of the data-set used in the optimization of SINPA (4 out of 30) is a reflection of

the high sensitivity of the model parameters gρ and η2ρ to the masses of these highly asym-

metric nuclei as seen earlier in Fig. 4.9. Appreciable sensitivity of all the nuclear matter

properties to the single data on neutron star MNS
max can not also be missed either. Accurate
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knowledge of MNS
max is required for the precision determination of the EDF involving high

densities beyond saturation, any small change in it thus may result in large change in the

value of the nuclear matter properties (E0, K0, ρ0,M
∗
0 ) calculated from the EDF. This can

be appreciated from the sensitivity of κ3, κ4 and partly ζ0 (governing the scalar mass and

the number density) on MNS
max displayed in Fig. 4.9. The not-too-insignificant sensitivity of

C0
2 and L0 to MNS

max demands attention. It stems from the dependence of the kinetic part of

C2(ρ) onM∗ (Eq. (4.2)) whose value at saturation density is found appreciably sensitive to

the maximum mass of neutron star. The value of σ-field determining the effective mass of

nucleon depends on the coupling constants gσ, κ3, κ4 and the value of mσ. High sensitivity

of these coupling constants to MNS
max (see Figs. 4.8 and 4.9) gets reflected in the sensitivity

analysis of the symmetry energy parameters to MNS
max.

4.3.3 Nuclear Matter properties at high density

The calculation of nuclear matter properties with both the models SINPB and SINPA were

extended for densities beyond saturation. This provides valuable informations to construct

theories for dense nuclear systems viz. neutron star and several other astrophysical objects

from EoS so constrained at saturation density. In Fig. 4.11 different nuclear matter prop-

erties, e.g. binding energy per nucleon for symmetric matter E (Fig. 4.11(a)), symmetry

energy coefficient C2 (Fig 4.11(b)) and its density derivative L (Fig. 4.11(c)) were plotted

as a function of density ρ/ρ0 for the models SINPB (turquoise) and SINPA (black-pattern)

along with their associated errors. The errors are calculated within the covariance analysis.

The energy per nucleon E in the explored density region for SINPB and SINPA are almost

identical as seen from Fig. 4.11(a). Most stringent constraint on the values of E appear at

ρ ∼ ρ0 for both the models and they grow as one moves away from ρ0 [95]. In Fig. 4.11(b)
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Figure 4.11: Binding energy per nucleon for symmetric matter E , symmetry energy pa-
rameter C2 and its density derivative L along with their errors as a function of density ρ/ρ0

for SINPB and SINPA.
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allowed regions of C2 show similar trend for SINPB and SINPA, both of them having their

minimum variance at ρ ∼ 0.7ρ0 [96]. However, a significant improvement is observed

over the errors on C2 for SINPA in comparison to SINPB at higher densities. Comparison

of calculated electric dipole polarizability of 208Pb from several Skyrme and RMF interac-

tions with the corresponding experimental data recently yielded a very tightly constrained

value of C2 at density ρ0/3, C2(ρ0/3) = 15.91 ± 0.99 MeV [97]. It is interesting to note

that the model SINPB has overlap with this constraint at the lower end, C2(ρ0/3) = 13.69

- 16.31 MeV, whereas SINPA agrees with this result at the higher end, C2(ρ0/3) = 16.41 -

17.67 MeV.

In Fig. 4.11(c) a curious behavior in the variance of L with density was observed. For

the model SINPB, the variance in L grows up to a certain density ∼ ρ0 and from there

onwards it remained almost constant all the way up to 2ρ0. In contrast, in SINPA error

on L grows only up to ρ ∼ 0.7ρ0 and shows a monotonically decreasing trend afterwards.

This particular result may appear intriguing. A model primarily obtained by fitting some

ground state properties of finite nuclei, where concerned central density is ∼ ρ0 and aver-

age density is∼ 0.7ρ0 is not normally expected to show better constraint on nuclear matter

properties at ultra-saturation densities. To investigate this, the expression of C2 as a func-

tion of density given in Eq. (4.2) was recalled. C2 has a dependence on m∗ρ
2, the square

of the effective mass of ρ meson. The density variation of m∗ρ
2 for both the models are

displayed in Fig. 4.12. A rapid difference in the value of m∗ρ
2 (scaled by 105) calculated in

models SINPA and SINPB builds up with increasing density. As the value of the parameter

η2ρ is much larger in SINPA (38.18) compared to that in SINPB (13.49) [see Table 4.4],

at high densities the second term in the expression of C2 (Eq. (4.2)) gets diluted due to

m∗ρ
2 (Eq. (4.3)) by a much greater rate for the model SINPA in comparison to SINPB. This

explains why the error on C2 grows at much faster rate in SINPB than in SINPA. Now, if
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one takes density derivative of C2, the second term in Eq. (4.2) gives rise to two terms with

η2ρ in the denominator for the expression of L as a function of density due to varying ω

field value. That is why η2ρ becomes a very crucial factor for the values of L at higher den-

sities. This fact explains why in SINPA error on L decreases at higher densities, whereas

in SINPB it remains almost constant as shown in Fig. 4.11(c).

4.4 Summary

To sum up, an investigation is made on the extraction of the precision information from

experimental data on the isovector content of the nuclear interaction and their observable

derivatives like the symmetry energy of nuclear matter and its density slope L0 at saturation

density. The relativistic mean field model is chosen as the framework for the realization of

this goal. A comparative study of the covariance analysis of the interaction strengths and
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the symmetry observables (C0
2 , L0, ∆rnp of 208Pb) made with two sets of models: (I) with

model-I and SINPB (these included in the fit data observables from nearly symmetric and

few asymmetric nuclei); (II) with model-II and SINPA (which included further data from

extremely asymmetric nuclei right at the edge of neutron drip line with neutron to proton

ratio ∼ 2 and the observed maximum mass MNS
max of neutron star for SINPA) shows that

the nuclear symmetry energy properties and the neutron skin thickness ∆rnp of 208Pb are

determined in much narrower constraints from the latter set of models. This is a pointer

to the necessity of inclusion of extremely neutron-rich systems in any data analysis for

filtering out information on isovector entities in the nuclear interaction. The conclusion is

further reinforced from the sensitivity analysis of the different model parameters of SINPA

entering the nuclear effective interaction to the experimental data set taken for such an

analysis.
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CHAPTER 5

MODEL DEPENDENCE IN THE

SYMMETRY ENERGY PARAMETERS

5.1 Introduction

The macroscopic nuclear droplet model (DM) given by Myers and Swiatecki [3, 4] suggests

that various symmetry energy parameters and the neutron-skin thickness in a heavy nucleus

are related to one another. The neutron skin thickness is defined as the difference between

the rms radii for the density distributions of the neutrons and protons in the nucleus:

∆rnp ≡ 〈r2〉1/2n − 〈r2〉1/2p . (5.1)

Nuclear mean-field models predict a nearly linear correlation of ∆rnp of a heavy nucleus

such as 208Pb with the slope of the equation of state of neutron matter at a subsaturation

density around 0.1 fm−3 [76, 98], with the density derivative of the symmetry energy L0

[12, 15, 99–103], and with the surface symmetry energy in a finite nucleus [15, 101, 104].
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The correlation of a finite nucleus property such as ∆rnp with a bulk property of infinite

nuclear matter such as L0 can be interpreted as basically due to the dependence of ∆rnp

on the surface symmetry energy. In a local density approximation the surface symmetry

energy can be correlated with L0, and this fact therefore implies the correlation between

∆rnp and L0. Macroscopic approaches such as the DM [3, 4] often provide insightful

guidance into the global features of many of these correlations [15, 100, 105].

Hadronic probes based on strong interaction, measure the ∆rnp of 208Pb with fair ac-

curacy [106–111]. However, being immensely dependent on the formulation of the strong

interaction, these measurements are heavily model dependent. The Lead Radius Exper-

iment (PREX) [5, 6] based on parity violating electron scattering [7], provides the most

model independent measurement of ∆rnp of 208Pb with fair accuracy. Ongoing efforts are

underway to perform an accurate and model independent measurement of the neutron-skin

thickness in the 208Pb nucleus [112]. At the same time, it may not be straightforward for

theory to extract various symmetry energy parameters from the neutron-skin thickness in

a model-independent fashion. ∆rnp of 208Pb was extracted recently from comparison of

theory with the measured electric dipole polarizability in 208Pb [8–11, 113]. However, the

focus has mainly been on the linear correlation between the neutron-skin thickness and

the slope parameter L0 of the symmetry energy [76, 98, 99, 114]. The correlation is satis-

fied to a large degree in the microscopic calculations with mean field models but it is not

perfect and a certain model dependence appears in the results [15, 98–101, 105, 114]. In

the present thesis work the correlations of ∆rnp with various symmetry energy parameters

were revisited to look for the plausible causes for the existence of a model dependence in

these correlations. This complements the calculations done in Chapter 4, where the cor-

relation between ∆rnp of 208Pb and L0 was studied within a relativistic mean field model

using covariance analysis.
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5.2 Neutron-skin thickness and symmetry energy

parameters in Droplet Model

From a geometrical point of view, the neutron skin thickness in a nucleus may be thought

as originated by two different effects. One effect is due to the separation between the mean

sharp surfaces of the neutron and proton density distributions. Since this effect corresponds

to a different extent of the bulk region of the neutron and proton densities, it is referred as

the bulk contribution to the neutron skin thickness. The other effect is due to the different

surface widths of the neutron and proton densities, which is called the surface contribution

to the neutron skin thickness. To compute the bulk and surface contributions to the neutron

skin thickness in a nucleus requires a proper definition of these quantities based on the

nuclear densities. In this respect the method described by Hasse and Myers [115] is closely

followed.

In order to determine the position of the neutron and proton effective surfaces one can

define different radii. In particular, one can define the central radius C as

C =
1

ρ(0)

∫ ∞
0

ρ(r)dr. (5.2)

Another option for the mean position of the surface is the equivalent radius R, which is

the radius of a uniform sharp distribution whose density equals the bulk value of the actual

density and has the same number of particles:

4

3
πR3ρ(bulk) = 4π

∫ ∞
0

ρ(r)r2dr . (5.3)

Finally, one can also define the equivalent rms radius Q that describes a uniform sharp
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distribution with the same rms radius as the given density:

3

5
Q2 = 〈r2〉 . (5.4)

The radii C, R, and Q are related by the expressions [115]

Q = R

(
1 +

5

2

b2

R2
+ ...

)
C = R

(
1− b2

R2
+ ...

)
, (5.5)

where b is the surface width of the density profile defined as

b2 = − 1

ρ(0)

∫ ∞
0

(r − C)2dρ(r)

dr
dr, (5.6)

which provides a measure of the extent of the surface of the nucleus. The neutron skin

thickness, which is defined through the rms radii, can be expressed by

∆rnp =

√
3

5
(Qn −Qp) , (5.7)

and using Eq.(5.5) reads:

∆rnp =

√
3

5

[
(Rn −Rp) +

5

2

(
b2
n

Rn

− b2
p

Rp

)]
, (5.8)

which clearly separates the bulk and surface contributions as

∆rbulk
np ≡

√
3

5
(Rn −Rp) , (5.9)

and

∆rsurf
np ≡

√
3

5

5

2

(
b2
n

Rn

− b2
p

Rp

)
. (5.10)
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In Eqs. (5.8) and (5.10), O [b4/R3] and higher-order terms are neglected since they rep-

resent a small correction [105] to ∆rnp – of less or around a 1-2% – that will leave the

conclusions unchanged.

The quantal proton and neutron densities obtained within the Skyrme Hartree-Fock or

the relativistic mean-field models are described in Chapter 2. In order to extract the bulk

and surface contributions to the neutron skin thickness from these distributions of neutrons

and protons, the method which was followed closely resembles Refs. [105, 116]. The self-

consistent quantal proton and neutron densities were fitted by two-parameter Fermi (2pF)

distributions

ρq(r) =
ρ0,q

1 + exp[(r − Cq)/aq]
, (5.11)

where q = n, p. The parameters ρ0,q, Cq and aq are adjusted to reproduce the nucleon

numbers as well as the values for the second and fourth moments of the actual density

distributions, i.e., 〈r2
q〉 and 〈r4

q〉. Once this fit is done, one can express Eqs. (5.8)–(5.10)

for the neutron skin thickness in terms of the parameters Cq and aq taking into account

Eq.(5.5) and the fact that for a 2pF distribution b = πa/
√

3. Therefore, the bulk and

surface contributions to the neutron skin thickness can be written as

∆rbulk
np =

√
3

5

[
(Cn − Cp) +

π2

3

(
a2
n

Cn
− a2

p

Cp

)]
, (5.12)

∆rsurf
np =

√
3

5

5π2

6

(
a2
n

Cn
− a2

p

Cp

)
, (5.13)

up to terms of order O [a4/C3]. It should be mentioned that, the ∆rnp values calculated

from the actual densities obtained self consistently match very well with the ones calcu-

lated by summing Eqs. (5.12) and (5.13) after applying our prescription to determine the

parameters of the Fermi function.
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Some insight about possible correlations between the neutron skin thickness and dif-

ferent observables related to the symmetry energy is provided by the DM [4]. Within this

model, which neglects shell correction effects, the neutron skin thickness is expressed by

∆rnp =

√
3

5

[
t− e2Z

70C0
2

+
5

2R

(
b2
n − b2

p

)]
, (5.14)

where e2Z/70C0
2 is a correction due to the Coulomb interaction, R = r0A

1/3 is the nuclear

radius, and bn and bp are the surface widths of the neutron and proton density profiles. The

quantity t in (5.14) represents the distance between the location of the neutron and proton

mean surfaces and therefore is proportional to the bulk contribution to the neutron skin

thickness. In the DM its value is given by

t =
3

2
r0

C0
2

Qstiff

I − IC
1 + xA

, (5.15)

with

IC =
3e2

5r0

Z

12C0
2

A−1/3 and xA =
9C0

2

4Qstiff

A−1/3, (5.16)

where I = (N − Z)/A, C0
2 is the bulk symmetry energy at saturation, and Qstiff is the

surface stiffness. For each mean field model, the parameters r0 and C0
2 can be obtained

from calculations in infinite nuclear matter and Qstiff from calculations performed in semi-

infinite nuclear matter [100, 117, 118].

Within the DM, the symmetry energy coefficient of a finite nucleus of mass number A

is given by

asym(A) =
C0

2

1 + xA
. (5.17)

Replacing asym(A) in Eq. (5.15), the separation distance between the mean surfaces of
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neutrons and protons can be recast as

t =
2r0

3C0
2

[C0
2 − asym(A)]A1/3(I − IC). (5.18)

The link between a property in finite nuclei such as asym(A) and some symmetry energy

parameters in infinite nuclear matter may be obtained from the observation [15] that for a

heavy nucleus there is a subsaturation density, which for 208Pb is around 0.1 fm−3, such that

the symmetry energy coefficient in the finite nucleus asym(A) equals the symmetry energy

in nuclear matter C2(ρ) computed at that density. This relation is roughly independent of

the mean field model used to compute it. Around the saturation density ρ0 the symmetry

energy can be expanded as

C2(ρ) ' C0
2 − L0

(ρ0 − ρ
3ρ0

)
+

1

2
Ksym

(ρ0 − ρ
3ρ0

)2

. (5.19)

Consequently, the distance t can be finally expressed approximately as [15]

t =
2r0

3C0
2

L0

(ρ− ρ0

3ρ0

)[
1− Ksym

2L0

(ρ− ρ0

3ρ0

)]
A1/3(I − IC). (5.20)

Equations (5.18) and (5.20) suggest correlations between the bulk neutron skin thickness

in finite nuclei and some isovector indicators such as C0
2 − asym(A), asym(A)/C0

2 and L0.

To compute the average symmetry energy of a finite nucleus with the DM (Eq. (5.17))

requires the knowledge of the surface stiffness Qstiff , which in turn requires semi-infinite

nuclear matter calculations [100]. An efficient procedure to circumvent this, is to evaluate

asym(A) within a local density approximation as [74]

asym(A) =
4π

AI2

∫
[r2ρ(r)I2(r)]C2(ρ(r))dr, (5.21)
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where I(r) = ρn(r)−ρp(r)

ρ(r)
is the local isospin asymmetry and ρ(r) is the sum of the neutron

and proton densities. This approximation works very well for medium heavy 132Sn or

heavy 208Pb nuclei [119].

5.3 Results and discussions

The neutron-skin thickness and several symmetry energy parameters are calculated us-

ing five different families of systematically varied models, namely, the SAMi-J [10, 37],

DDME [81], FSV, TSV and KDE0-J models. The energy density functional associated

with DDME, FSV, and TSV corresponds to an effective Lagrangian density typical of the

relativistic mean-field models, whereas SAMi-J and KDE0-J are based on the standard

form of the Skyrme force (see Chapter 2).

The different families of systematically varied parameter sets were obtained so that

they explore different values of the symmetry energy parameters around an optimal value,

while reasonably keeping the quality of the best fit. The values of the neutron-skin thick-

ness in a heavy nucleus like 208Pb vary over a wide range within the families due to the

variations of the symmetry energy parameters. The parameter sets for the FSV, TSV and

KDE0-J families were obtained in the present thesis work. The effective Lagrangian den-

sity employed for the FSV family is similar to that for the FSU model [50]. In addition

to the coupling of ρ meson to the nucleons as conventionally employed, the presence of

a cross-coupling between the ω and ρ mesons in the FSU model enables one to vary the

symmetry energy, and accordingly the symmetry energy slope parameter L0, over a wide

range without significantly affecting the quality of the fit to the bulk properties of the finite

nuclei. The TSV family is obtained using the effective Lagrangian density as introduced

in Ref. [53] in which the ρ−meson and its coupling to the σ−meson govern the isovector
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part of the interactions between the nucleons. The ω − ρ cross coupling in the FSV family

and the σ − ρ cross coupling in the TSV family produce different behaviors in the density

dependence of the symmetry energy, because the source term for the ω-field is governed

by the baryon density and that for the σ-field is governed by the scalar density. The ex-

perimental data employed to determine the TSV and FSV families are the total binding

energies for the 16O,40,48 Ca,68 Ni,90 Zr,100,132 Sn,208 Pb nuclei, and the root mean square

charge radii for the 16O,40,48 Ca,90 Zr,208 Pb nuclei. The energy density functional for the

KDE0-J family calculated within the Skyrme ansatz is taken from the KDE0 force of Ref.

[120]. The model parameters are constrained to yield the nuclear matter incompressibility

coefficient in the range of 225–250 MeV. The calculated values of the total binding energy

and the charge radius for the 208Pb nucleus obtained for all the models considered deviate

from the experimental data only within 0.25% and 0.8%, respectively.

5.3.1 Correlation plots associated with isovector

indicators

The DM provides a useful guideline to suggest the kind of correlations that one can expect

between the neutron skin thickness and the symmetry energy parameters. As shown in Ref.

[105], these correlations are mainly due to the bulk term of Eq.(5.14) rather than to the sur-

face contribution to ∆rnp. In the bulk part of ∆rnp, the quantity (C0
2 − asym(A)) /C0

2 de-

termines the ratio of the surface symmetry to volume symmetry energies, see Eq.(5.18); the

close relation of different isovector observables in finite nuclei with the ratio of the surface

and volume symmetry energies has been observed in several studies [30, 104]. The values

of r0 for the various models considered in the present thesis work display only a small vari-

ation indicating that the total neutron-skin thickness ∆rnp of a given heavy nucleus may
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Figure 5.1: Plots for the difference between the symmetry energy coefficient for infi-
nite nuclear matter C0

2 and that for finite nuclei asym(A) as a function of the neutron-
skin thickness (left panels) and of the bulk part of the neutron-skin thickness (right
panels). The results are obtained using five different families of mean-field models,
namely, FSV (blue squares), TSV (red circles), DDME (green triangles), SAMi-J (or-
ange diamonds) and KDE0-J (maroon inverted triangles). The correlation coefficients are:
C(C0

2 − asym(A),∆rnp) = 0.972 (0.967) and C(C0
2 − asym(A),∆rbulk

np ) = 0.988 (0.979) for
208Pb (132Sn) nuclei. The inner (outer) colored regions depict the loci of the 95% confi-
dence (prediction) bands of the regression [121].

be correlated to the ratio (C0
2 − asym(A)) /C0

2 , or also to the difference (C0
2 − asym(A))

provided the value of C0
2 does not show a large variation as compared to (C0

2 − asym(A)).

In Fig. 5.1, the values of C0
2 − asym(A) are plotted as a function of ∆rnp in the left

panel, and as a function of the bulk part of the neutron-skin thickness ∆rbulk
np in the right

panel, for 208Pb and 132Sn nuclei. The results are reported for the five different families

of systematically varied models, namely, FSV, TSV, SAMi-J, DDME and KDE0-J as indi-

cated in the figure. Fairly evident linear correlations are observed between C0
2 − asym(A)

and both ∆rnp and ∆rbulk
np . More quantitatively, the Pearson’s correlation coefficients

C(X, Y ) [65] are calculated, their values are C(C0
2 − asym(A),∆rnp) = 0.972 (0.967) and
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shaded region in the upper-left panel corresponds to asym(A) = 22.4± 0.3 [122] MeV and
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0.965 (0.959) and |C(asym(A)/C0
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bulk
np )| = 0.992 (0.989) for 208Pb (132Sn) nuclei. The

inner (outer) colored regions depict the loci of the 95% confidence (prediction) bands of
the regression [121].

C(C0
2 − asym(A),∆rbulk

np ) = 0.988 (0.979) for the 208Pb (132Sn) nuclei, respectively. Thus,

the correlation of C0
2 − asym(A) with ∆rbulk

np is a little higher than with ∆rnp for both 208Pb

and 132Sn nuclei.

Following Eq. (5.18) one can directly correlate (C0
2 − asym(A)) /C0

2 (or equivalently

asym(A)/C0
2 ) with ∆rnp of a heavy nucleus. In Fig. 5.2 the ratio asym(A)/C0

2 as a func-

tion of ∆rnp and of ∆rbulk
np are displayed for the 208Pb and 132Sn nuclei. The correlations

of asym(A)/C0
2 with ∆rnp are relatively weaker in comparison to those with ∆rbulk

np . In

the case of asym(A)/C0
2 and ∆rnp the correlation coefficient is |C(asym(A)/C0

2 ,∆rnp)| =

0.965 (0.959) for 208Pb (132Sn), whereas in the case of asym(A)/C0
2 and ∆rbulk

np the correla-
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tion coefficient increases up to high values |C(asym(A)/C0
2 ,∆r

bulk
np )| = 0.992 (0.989) for

208Pb (132Sn).

It is interesting to address the constraints on the neutron-skin thickness that may be

deduced from the present study. The rectangular shaded region in the upper-left panel of

Fig. 5.2 corresponds to asym(A) = 22.4 ± 0.3 MeV for 208Pb [122] and C0
2 = 32.3 ± 1.3

MeV [31], which yields ∆rnp = 0.193 ± 0.028 fm in the 208Pb nucleus. This value is

compatible with the recent constraints on the the neutron skin thickness of 208Pb derived

from the measured electric dipole polarizability in 68Ni, 120Sn and 208Pb [11]. The con-

straint asym(A) = 22.4 ± 0.3 MeV was evaluated in Ref. [122] using the experimental

binding energy differences. Furthermore, the effect of the Coulomb interaction on the

surface asymmetry and the effect of the surface diffuseness on the Coulomb energy were

taken into account. The value of C0
2 = 32.3± 1.3 MeV [31], as obtained by analyzing the

experimental data on the pygmy dipole resonance combined with the correlation between

L0 and C0
2 , has a quite reasonable overlap with the values of C0

2 that have been extracted

either from a version of the finite-range droplet model (FRDM) that performs very well in

reproducing the experimental mass systematics [1], or from specific manipulation of the

semi-empirical mass formula [2], or through analysis of the properties of semi-infinite nu-

clear matter [123]. This value of C0
2 also overlaps with the conclusions provided in recent

papers [11, 33, 124].

It is desirable to check the degree of consistency between the results for different heavy

nuclei, in particular between 208Pb and 132Sn which would allow to predict the neutron skin

thickness of the nucleus 132Sn assumed that the one of 208Pb is known. In the left panel of

Fig. 5.3, we plot ∆rnp for the 132Sn nucleus against that for the 208Pb nucleus. Similarly,

the results for ∆rbulk
np and ∆rsurf

np are plotted in the middle and right panels of Fig. 5.3,

respectively. It is observed that the values of ∆rnp, ∆rbulk
np and ∆rsurf

np for the 132Sn nucleus
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Figure 5.3: Neutron-skin thickness (left) and its bulk (middle) and surface (right) con-
tributions for the 132Sn nucleus plotted against the same quantities for the 208Pb nucleus.
The shaded region corresponds to the values of the neutron-skin thickness in 132Sn deter-
mined from the ones estimated for the 208Pb nucleus (see also Fig. 5.2). The correlation
coefficients obtained for the results presented in the left, middle and right panels are 0.999,
0.993 and 0.995, respectively. The inner (outer) colored regions depict the loci of the 95%
confidence (prediction) bands of the regression [121].

are very well correlated with the corresponding values in the 208Pb nucleus. This is in

harmony with earlier work [125]. Hence, the information provided by the neutron skin of

two heavy nuclei on the isovector channel of the nuclear effective interaction is mutually

inclusive. Such an observation allows one to predict ∆rnp = 0.256 ± 0.030 fm for 132Sn

nucleus by using the above estimated value for 208Pb of ∆rnp = 0.193± 0.028 fm.

As discussed in the literature [105], the correlation between the neutron-skin thickness

and (C0
2 − asym(A)) /C0

2 leads to a correlation between the neutron-skin thickness and the

symmetry energy slope parameter L0. In Fig. 5.4, the variation of L0 as a function of ∆rnp

(left), ∆rbulk
np (middle) and ∆rsurf

np (right panel) are depicted for the 208Pb nucleus for the

four families of models obtained in this present thesis work. Using the constraint on ∆rnp
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Figure 5.4: Plots for the symmetry energy slope parameter L0 as a function of the neutron-
skin thickness (left), its bulk part (middle) and its surface part (right) for the 208Pb nucleus.
The shaded region in the left panel projects out the values of L0 = 62± 15 MeV obtained
from ∆rnp = 0.193± 0.028 fm which, in turn, is obtained by using the empirical values of
C0

2 and asym(A) (see also Fig. 5.2). The arrow marks in the left panel indicate the points
with the slope parameter L0 ∼ 65 MeV. The values of the correlation coefficients are
C(L0,∆rnp) = 0.950, C(L0,∆r

bulk
np ) = 0.963 and C(L0,∆r

surf
np ) = 0.469. The inner (outer)

colored regions depict the loci of the 95% confidence (prediction) bands of the regression
[121].

(208Pb) obtained in Fig. 5.2, the bound on the value of L0 comes out to be L0 = 62 ± 15

MeV; displayed as the shaded region of left panel in Fig. 5.4. The correlation coefficients

of L0 with ∆rnp and with ∆rbulk
np are lower than in the case of the correlations displayed

in Figs. 5.1 and 5.2, suggesting that the neutron-skin thickness is slightly better correlated

withC0
2−asym(A) or the ratio asym(A)/C0

2 than with the slope parameter L0. This might be

a feature of the families chosen chosen in the present thesis and does not necessarily apply

to the situation in which one employs a large set of unbiasedly selected models [105].

The “arrow”marks in Fig. 5.4 indicate the five models, each from a different family,

with L0 varying in a narrow range of 62.1 MeV to 67.0 MeV. For these five models, there
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happens to be a spread in ∆rnp of almost 0.05 fm which is larger than expected. In compari-

son, the equation of the linear fit of the results of all models in the left panel of Fig. 5.4 gives

a variation in the value of ∆rnp (208Pb) with the change of L0 as, δ(∆rnp) ' 0.002 δL0, so

that a change in L0 of 5 MeV implies an average change in ∆rnp of about 0.01 fm only,

which is smaller than the observed spread of 0.05 fm in the five models mentioned above.

The DM supports a similar conclusion, as it can be seen from Eq. (5.20) that the DM pre-

dicts an average variation of ∆rnp (208Pb) with L0 approximately as, δ(∆rnp) ' 0.003 δL0.

The two mentioned models from the TSV and SAMi-J families have L0 = 67 MeV and

L0 = 63.2 MeV, respectively, and yield in 208Pb smaller values of ∆rnp ' 0.18 fm, whereas

the two models from the FSV and DDME families have L0 = 64.8 MeV and L0 = 62.1

MeV, respectively, and give rise to larger values of ∆rnp ' 0.22 fm. The model from

KDE0-J family with L0 = 65.7 MeV yields an intermediate value of ∆rnp (208Pb) ' 0.19

fm. Actually, it comes as an intriguing fact that the extracted values of ∆rnp differ by

∼ 0.05 fm for the two models of the FSV and TSV families with similar L0, although the

parameters for these two families are obtained by using exactly the same kind of fitting

protocol. In the next subsection, the plausible interpretations for such differences in the

neutron skin thickness corresponding to models with similar L0 values are investigated.

5.3.2 Systematic differences between the families of

functionals

In an attempt to understand the issues raised at the end of the previous subsection, a detailed

comparison is made between the results for the five models belonging to different families

but yielding almost the same values for L0. First a closer look is given in Fig. 5.5 into

the values of the symmetry energy C2(ρ) (lower panel) and its density derivative 3ρ0C
′
2(ρ)
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Figure 5.5: The nuclear symmetry energy C2 (lower panel) and its density derivative
C ′2 multiplied by 3ρ0 (upper panel) as a function of density for the five different models
associated with the slope parameter for nuclear matter L0 ∼ 65 MeV. Each of these models
belongs to a different family (see also Table 5.1).

(upper panel) as a function of density for these models. The behavior ofC2(ρ) as a function

of density seemingly appears to be similar for the five models. But the values of 3ρ0C
′
2(ρ)

show significant differences in the low density region (ρ < 0.10 fm−3). Furthermore,

one may note that the TSV and SAMi-J models corresponding to ∆rnp(208Pb) ∼ 0.18 fm

and the KDE0-J model with ∆rnp(208Pb) ∼ 0.19 fm display a relatively similar behavior

in the density dependence of C ′2(ρ). The same is true for the FSV and DDME models

corresponding to ∆rnp(208Pb) ∼ 0.22 fm.

To investigate whether such differences in the values of the density derivative of the

symmetry energy at lower densities have an influence in the finite nuclei calculations, and

motivated by Eq. (5.21), an effective value of the slope parameter Leff is defined, which

might be more sensitive to the relative distributions of neutrons with respect to protons in
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finite nuclei, as follows:

Leff =
3ρ0

∫
[r2ρ(r)I2(r)]C ′2(ρ(r))dr∫

[r2ρ(r)I2(r)] dr
. (5.22)

Here, I(r) is the local asymmetry parameter defined as, I(r) ≡ (ρn(r) − ρp(r))/ρ(r). If

one assumes C2(ρ) to be linear in density, the Leff parameter coincides with L0 (see Eq.

(5.19)). However, one can see in Fig. 5.5 that C2(ρ) can depart significantly from linearity

at low densities. Therefore, the Leff parameter as defined in Eq. (5.22) tries to take into

account this effect. At very low densities (ρ < 0.01 fm−3) C2(ρ) deviates largely from

linearity. The integrals in the numerator and denominator of Eq. (5.22) are thus evaluated

by integrating from the center of the nucleus, where the density ρ(r) is of the order of ρ0,

up to the point where the density of the nucleus falls to 0.01 fm−3, which corresponds to a

radial coordinate r of about 9 fm. It is worthwhile to mention that here the goal was to study

the effect of C ′2(ρ) but not the quantity L(ρ) (≡ 3ρC ′2(ρ)) on the ∆rnp of a heavy nucleus.

That is why ρ0 was kept outside the integral of the numerator in Eq. (5.22). The values

of Leff along with various other properties evaluated for the five models corresponding to

L0 ∼ 65 MeV are compared in Table 5.1.

It can be easily observed in Table 5.1 that though the values of L0 for these models vary

only by ∼ 5 MeV, the values of ∆rnp of heavy nuclei calculated from the same models can

differ by∼ 0.05 fm, which is larger than the average spread of the correlation between ∆rnp

and L0. Interestingly, when one looks at the extracted Leff parameter, the models from

SAMi-J and TSV families those predict ∆rnp(208Pb) ∼ 0.18 fm give similar Leff ∼ 82

MeV, and the models from FSV and DDME families those predict ∆rnp(208Pb) ∼ 0.22 fm

give similar Leff ∼ 96 MeV. The model from the KDE0-J family with ∆rnp(208Pb) ∼ 0.19

fm predicts Leff ∼ 91 MeV. That is, the models with larger Leff give larger ∆rnp and vice
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Table 5.1: Comparison of the properties of infinite nuclear matter (NM) and of the 208Pb
and 132Sn nuclei for the five different models that yield a value of L0 around 65 MeV.

SAMi-J TSV FSV DDME KDE0-J
NM ρ0(fm−3) 0.157 0.147 0.149 0.152 0.162

L0(MeV) 63.2 67.0 64.8 62.1 65.7
C0

2 (MeV) 30.00 31.29 33.16 34.00 35.00
208Pb asym(A)(MeV) 20.35 22.20 22.28 23.15 24.18

∆rnp(fm) 0.181 0.178 0.223 0.217 0.188
∆rbulk

np (fm) 0.109 0.086 0.119 0.120 0.108
Leff(MeV) 81.2 82.7 95.7 96.5 90.8

132Sn asym(A)(MeV) 19.24 21.27 21.25 22.13 23.06
∆rnp(fm) 0.245 0.239 0.289 0.279 0.249

∆rbulk
np (fm) 0.165 0.130 0.163 0.165 0.163

Leff(MeV) 84.3 85.7 101.2 98.0 97.8

versa. In fact, further inspection of Fig. 5.4 reveals that two members of the FSV and

DDME families with ∆rnp(208Pb) ∼ 0.18 fm, same as the SAMi-J and TSV models in

Table 5.1, predict departing L0 values (L0 = 53.2 MeV in the FSV model and L0 = 46.5

MeV in the DDME model). It turns out that these FSV and DDME models also explore

similar values of Leff (83.9 MeV in FSV and 86.6 MeV in DDME) as done by the models

from the SAMi-J and TSV families displayed in Table 5.1 with ∆rnp ∼ 0.18 fm. In

principle, one can also define Leff without the I2(r) terms in Eq. (5.22). That is why, the

calculations of Leff were repeated by taking I2(r) to be unity in Eq. (5.22) and similar

trends were found as explained above. In Table 5.1, concerning the properties of uniform

matter, it is also noticeable that the models do not display the same value of the saturation

density. For the non-relativistic functionals belonging to the SAMi-J and KDE0-J family

this value is about 5–10% larger than the values explored by the relativistic functionals.

This fact has some impact on the extracted values of Leff for these models (see Eq. (5.22)).

To have a better insight into the source of the differences between the values of Leff

for the models with similar values of L0 at ρ0, in Fig. 5.6 the total density distribution
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Figure 5.6: The variation of r2ρ(r)I2(r) as a function of the radial coordinate r in 208Pb
for the five models that yield a symmetry energy slope parameter L0 ∼ 65 MeV.

ρ(r) of 208Pb multiplied by r2I2(r) is plotted for the models with L0 ∼ 65 MeV. The

values of r2ρ(r)I2(r) for all the different cases are close to each other up to r ∼ 6 fm,

in this region ρ(r) > 0.1 fm−3. With further increase in r, the differences in the values

of r2ρ(r)I2(r) gradually become noticeable. One can argue that different behaviors in the

surface region may be responsible for different values of Leff and consequently lead to

different values of ∆rnp in heavy nuclei like 208Pb or 132Sn. The question still remains

whether Leff is more sensitive to the density dependence of C ′2(ρ) (upper panel of Fig.

5.5) or to the density distributions of nucleons inside the nucleus (Fig. 5.6). To unmask

this, the values of Leff were calculated using C ′2(ρ) of a given model, but with the density

distributions of nucleons from the five models that have L0 ∼ 65 MeV. This calculation

was repeated for the different choices of C ′2(ρ) of these five models. The values of Leff

so obtained did not show the trend as observed in Table 5.1, where C ′2(ρ) and the density

distributions of nucleons used correspond to the same model consistently. Thus, the values
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of Leff are sensitive to both the density dependence of the symmetry energy and the density

distributions of nucleons inside the nucleus. It should be pointed out that the differences in

the values of Leff for the models with similar L0 parameter are mainly due to the differences

in the low density behavior of C ′2(ρ) and the distributions of nucleons in the surface region

of the nucleus.

5.4 Summary

To summarize, the correlations of the neutron-skin thickness in finite nuclei with various

symmetry energy parameters pertaining to infinite nuclear matter were revisited. Particular

attention is paid to the model dependence in such correlations that can play a role in un-

derstanding the density dependence of the nuclear symmetry energy. The finite nuclei ana-

lyzed are 208Pb and 132Sn. The symmetry energy parameters considered are C0
2 − asym(A),

asym(A)/C0
2 and L0, where C0

2 and L0 are the symmetry energy and the symmetry en-

ergy slope associated with infinite nuclear matter at the saturation density, and asym(A)

corresponds to the symmetry energy parameter in finite nuclei. Five different families of

systematically varied mean-field models corresponding to different energy density func-

tionals are employed to calculate the relevant quantities for the finite nuclei and those for

the infinite nuclear matter.

In general, the correlations of the neutron-skin thickness with the different symmetry

energy parameters are strong within the individual families of the models. Once the results

for all the different families are combined, the correlation coefficients become smaller,

indicating a model dependence. The correlations of the symmetry energy parameters with

the bulk part ∆rbulk
np of the neutron-skin thickness are less model dependent than with

the total neutron-skin thickness ∆rnp. Exceptionally, the bulk part of the neutron-skin
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thickness is found to be correlated with C0
2 − asym(A) and asym(A)/C0

2 in an almost model

independent manner.

To understand better the model dependence in the various correlations considered, the

results are compared for the models belonging to different families, but yielding similar val-

ues of L0. An effective value of the symmetry energy slope parameter Leff was determined

using the density distributions of nucleons and the density derivative of the symmetry en-

ergy for these models. It is found that the values of ∆rnp, which differ for the models with

the same L0 ∼ 65 MeV, are in harmony with the values of Leff . Differences in the values of

Leff are caused by differences in the density distributions of nucleons in the surface region

and the derivative of the symmetry energy at subsaturation densities.
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CHAPTER 6

INTERDEPENDENCE AMONG THE

SYMMETRY ENERGY PARAMETERS

6.1 Introduction

The symmetry energy coefficient C2(ρ) is now known in tighter bounds at the saturation

density ρ0 [1, 2] of symmetric nuclear matter (SNM). From analysis of the giant dipole

resonance (GDR) of 208Pb nucleus, a well-constrained estimate of C2(ρ) at a somewhat

lesser density (ρ = 0.1 fm−3) [29] is also known. The value of the density slope of the

symmetry energy L0 is less certain [15, 74, 126]. Tremendous amount of efforts are be-

ing made over last decade or so to constrain the value of L0. In chapter (4) a stringent

constraint on the value of L0 is obtained in a relativistic mean-field (RMF) framework by

incorporating binding energies of highly asymmetric nuclei (number of neutrons is twice

to that of protons i.e. N ≈ 2Z) in the fitting protocol to obtain the parameters of the

model. The currently accepted value of L0 is lying between 50 and 60 MeV. However,

this is not the case for even higher order derivatives of the symmetry energy
[
e.g. K0

sym
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relativistic and non-relativistic mean-field [13, 14]. The black circles correspond to the
non-relativistic Skyrme-inspired EDFs and the red squares refer to those obtained from
relativistic mean field (RMF) models.

(
= Ksym(ρ0) = 9ρ2

0

(
∂2C2

∂ρ2

)
ρ0

)
or Q0

sym

(
= Qsym(ρ0) = 27ρ3

0

(
∂3C2

∂ρ3

)
ρ0

)]
and on the

difference between the neutron and proton effective masses ∆m∗0 [=(m∗n − m∗p)/m] in

neutron-rich matter at ρ0. The values of K0
sym and Q0

sym, in different parametrizations of

the Skyrme energy density functional (EDF) lie in very wide ranges [−700 MeV< K0
sym <

400 MeV; −800 MeV < Q0
sym < 1500 MeV ] [13, 14] whereas there are divergent pre-

dictions on the value of ∆m∗0 from theoretical studies based on microscopic many-body

theories [127, 128] or phenomenological approaches [129–132]. Such large uncertainties

belie a satisfactory understanding of the isovector part of the nuclear interaction.

There is a sliver of expectation that the entitiesC0
2 (= C2(ρ0)), L0,K0

sym, etc. may have

an intrinsic correlation among them. Finding a correlated structure for these symmetry en-

ergy elements helps in making a somewhat more precise statement on an otherwise uncer-

tain isovector indicator as it may be tied up to other quantities known with more certainty.
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Figure 6.2: The correlation between L0 and K0
sym is plotted for 500 relativistic and non-

relativistic EDFs [13, 14]. The black circles correspond to the non-relativistic Skyrme-
inspired EDFs, the red squares refer to those obtained from relativistic mean field (RMF)
models.

The correlations need to be really strong so that one can extract meaningful constraints re-

garding the uncertain symmetry energy parameters. Moreover, the correlations should not

depend on the choice of models. In Fig. (6.1) values of C0
2 are plotted against L0 using 500

mean-field models from the literature both relativistic and non-relativistic [13, 14]. Only

a weak positive correlation was observed with correlation coefficient r = 0.73. With this

degree of correlation, even with the precise information on C0
2 , one can not infer about the

value of L0 with good precision.

From observation of the computed values of L0 and K0
sym with selected sets of non-

relativistic and relativistic EDFs, an empirical linear relationship between K0
sym and L0 is

also suggested [41, 103, 123, 131, 133–135]. For example, in Ref. [103], using a selective

set of mean-field models the correlation coefficient was found to be r = 0.87. In Ref. [41],

using a different set of mean-field models the correlation coefficient between the same
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quantities was found to be r = 0.97. Clearly the correlation between K0
sym and L0 has

dependence on the choice of set of models. To understand the degree of model dependence

in the correlation between K0
sym and L0, in Fig. (6.2) K0

sym versus L0 is plotted for a

diverse set of 500 relativistic and non-relativistic mean-field models as compiled by Dutra

et al [13, 14]. The correlation coefficient was found to be r = 0.87, which is certainly not

as high as it was found in [41]. To constrain the value K0
sym from the better known nuclear

matter properties, search for a universal correlation is thus called for.

6.2 Theoretical Framework

Using few basic equations of statistical mechanics, a theoretical framework to calculate the

properties of nuclear matter is given in the following.

6.2.1 Symmetric Nuclear Matter

For symmetric nuclear matter at density ρ, with energy densityH, and at zero temperature

(T = 0), the chemical potential of the nucleon is given by

µ = EF =
P 2
F

2m∗
+ V =

P 2
F

2m
+ U, (6.1)

where EF is the Fermi energy, PF is the Fermi momentum, the effective mass m∗ and the

single-particle potential V are given by ~2/2m∗ = δH/δK and V = δH/δρ, where ~2

2m
K

is the kinetic energy density. One also can redefine the single-particle potential as U by

including within it the effective mass contribution, as done in the r.h.s. of Eq. (6.1). No

special assumption about the nucleonic interaction is made except that it is density depen-

dent to simulate many-body forces and that it depends quadratically on the momentum;
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thus, the single-particle potential U separates into three parts,

U = V0 + P 2
FV1 + V2. (6.2)

The term (V0 + P 2
FV1) on the right is the Hartree-Fock potential and the last term V2 is

the rearrangement potential that arises from the density dependence of the interaction. The

term V1 comes from the momentum dependence:

P 2
F

2m∗
=

P 2
F

2m
+ P 2

FV1

⇒ 1

m∗
=

1

m
+ 2V1 (6.3)

In general, m∗ is momentum and energy dependent, in the mean-field level the energy

dependence is ignored and the momentum dependence is taken at the Fermi surface. The

rearrangement energy does not enter explicitly in the energy expression when written in

terms of the mean-field potential [136, 137], the energy per nucleon for SNM at density ρ

is then given by,

e =
1

2m

〈
p2
〉

+
1

2

〈
p2
〉
V1 +

1

2
V0

=
〈p2〉
2m∗

(
m∗

m
+m∗V1

)
+

1

2
V0

=
〈p2〉
2m∗

(
m∗

m
+

1

2
− 1

2

m∗

m

)
+

1

2
V0

=
〈p2〉
2m∗

1

2

(
1 +

m∗

m

)
+

1

2
V0

=
1

4

(
1

m
+

1

m∗

)〈
p2
〉

+
1

2
V0

=

(
1

m
+

1

m∗

)
3P 2

F

20
+

1

2
V0. (6.4)
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Here the average of the square of the momentum 〈p2〉 is calculated by using the Fermi

distribution ñ(p) as,

〈p2〉 =

∫ PF
0

ñ(p)p2d3p∫ PF
0

ñ(p)d3p
; with ñ(p) =

1

e
E−EF
pT + 1

=
4π
∫ PF

0
ñ(p)p2p2dp

4π
∫ PF

0
ñ(p)p2dp

⇒ 〈p2〉 =
3P 2

F

5
. (6.5)

To arrive at the last step, the fact was used that at T = 0, below Fermi energy EF (i.e.

E < EF ), ñ(p) = 1. At T = 0, energy (E) of a system is given by the Helmholtz free

energy (F ) i.e.

F = E = −PV + µN. (6.6)

Here, P, V,N are the pressure, volume and number of particles of the system, respectively.

Immediately, energy per particle (nucleon) e can be connected to chemical potential µ as,

E

N
= −P V

N
+ µ

⇒ e = −P
ρ

+ µ

⇒ µ = e+
P

ρ
. (6.7)

This relation is known as the Gibbs-Duhem relation. At zero pressure this leads to the

Hugenholtz-Van Hove theorem [138] which has recently been used to link nucleon single-

particle characteristics to macroscopic isovector properties in Ref. [139]. Keeping this in

mind, starting from equating Eqs. (6.1) and (6.7) and invoking Eqs. (6.4) and (6.2) therein
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one can write,

P 2
F

2m
+ U = e+

P

ρ

⇒ P 2
F

2m
+ V0 + P 2

FV1 + V2 =

(
1

m
+

1

m∗

)
3P 2

F

20
+

1

2
V0 +

P

ρ

⇒ P 2
F

2m
+

1

2
V0 + P 2

FV1 =

(
1

m
+

1

m∗

)
3P 2

F

20
+
P

ρ
− V2

⇒
(

1

m
+

1

m
+ 2V1

)
3P 2

F

20
+

1

2
V0 =

(
1

m
+

1

m∗

)
3P 2

F

20
+
P

ρ
− V2 −

P 2
F

5m
− 7

10
P 2
FV1

⇒
(

1

m
+

1

m∗

)
3P 2

F

20
+

1

2
V0 =

(
1

m
+

1

m∗

)
3P 2

F

20
+
P

ρ
− V2 −

P 2
F

5m

− 7

20
P 2
F

(
1

m∗
− 1

m

)
(6.8)

Recognizing L.H.S of the above equation from Eq. (6.4), the energy per nucleon for SNM

can be written as [95],

e =
3

10

P 2
F

m
− 1

5

P 2
F

m∗
− V2 +

P

ρ

=
P 2
F

10m

(
3− 2

m

m∗

)
− V2 +

P

ρ
. (6.9)

The state dependence of single-particle effective potential can be taken care in terms of an

effective mass of the nucleon m∗. In a non-relativistic prescription for SNM, m
m∗

can be

expanded as a function of ρ [140]. Keeping terms only upto linear in ρ, the expansion is

given by [95]

m

m∗(ρ)
= 1 + kρ. (6.10)
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The density dependence of the rearrangement potential of SNM can be taken as [95],

V2(ρ) = aρα̃. (6.11)

Then, energy per nucleon e of SNM in Eq. (6.9) takes the form

e =
P 2
F

10m

(
3− 2

m

m∗

)
− aρα̃ +

P

ρ

=
g2
(
ρ
2

) 2
3

5 · 2m (3− 2− 2kρ)− aρα̃ +
P

ρ

=
λ

5
ρ

2
3 (1− 2kρ)− aρα̃ +

P

ρ
. (6.12)

Here, λ is given by, λ = g2

22/3·2m . The pressure for SNM is then given by,

P = ρ2 ∂e

∂ρ
=

λ

15
ρ

5
3 − 1

3
λkρ

8
3 − 1

2
α̃aρα̃+1 +

1

2
ρ
∂P

∂ρ
. (6.13)

At ρ = ρ0, the pressure vanishes (P = 0) and the incompressibility is given by K0 =

9 ∂P
∂ρ

∣∣∣
ρ=ρ0

. Extracting the value of aρα̃ from Eq. (6.12) at ρ0 (P = 0) the above equation

can give the value of α̃ as,

0 =
λ

15
ρ

5
3
0 −

1

3
λkρ

8
3
0 −

1

2
α̃aρα̃+1

0 + ρ0
K0

18

⇒ 0 =
λ

15
ρ

2
3
0 −

1

3
λkρ

5
3
0 −

1

2
α̃
(
aρα̃0
)

+
K0

18

⇒ 0 =
λ

15
ρ

2
3
0 −

1

3
λkρ

5
3
0 −

1

2
α̃

[
λ

5
ρ

2
3
0 (1− 2kρ0)− e0

]
+
K0

18

⇒ K0 = 18

{
− λ

15
ρ

2
3
0 +

1

3
λkρ

5
3
0 +

1

2
α̃

[
λ

5
ρ

2
3
0 (1− 2kρ0)− e0

]}
⇒ K0 = −6

5
λρ

2
3
0 + 6λρ

2
3
0

(
m

m∗0
− 1

)
+ 9α̃

[
λ

5
ρ

2
3
0

(
3− 2

m

m∗0

)
− e0

]
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⇒ α̃ =
K0 + 6

5
λρ

2
3
0 − 6λρ

2
3
0

(
m
m∗0
− 1
)

9
[
λ
5
ρ

2
3
0

(
3− 2 m

m∗0

)
− e0

] . (6.14)

Using the expression for Fermi energy at ρ0 as E0
F = λρ

2
3
0 the value of α̃ can be written as

α̃ =

K0

9
+

E0
F

3
(12

5
− 2 m

m∗0
)

E0
F

5
(3− 2 m

m∗0
)− e0

. (6.15)

6.2.2 Asymmetric Nuclear Matter

For asymmetric nuclear matter (ANM), the equation for the energy per nucleon can be

generalized as

e(ρ, δ) =
1

ρ

[∑
τ

P 2
F,τ

10m
ρτ

(
3− 2

m

m∗τ (ρ)

)]
− V2(ρ, δ) +

P (ρ, δ)

ρ
. (6.16)

In Eq.(6.16), τ is the isospin index, ρτ = (1+τδ)ρ/2; here, τ = 1 for neutrons and τ = −1

for protons. The Fermi momentum for the individual species can be written as PF,τ = gρ
1/3
τ

with g = (3π2)1/3~. Generalizing the expression in Eq. (6.10) density-dependent nucleon

effective mass for asymmetric matter is written as

m

m∗τ (ρ)
= 1 +

k+

2
ρ+

k−
2
ρτδ. (6.17)

The constant k+ for ANM in Eq. (6.17) is equivalent to k in Eq. (6.10) with k = k+
2

.

Following the expression of rearrangement potential for SNM in Eq. (6.11) the density de-

pendence in the rearrangement potential for asymmetric nuclear matter can be generalized
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as (keeping upto ∼ δ2)

V2(ρ, δ) = (a+ bδ2)ρα̃, (6.18)

which is independent of the isospin index τ . The constant a weighs the rearrangement

potential for SNM, whereas the constant b is a measure of the asymmetry dependence of

the rearrangement potential.

The energy per nucleon e(ρ, δ) can also be written in terms of the symmetry energy

coefficients as

e(ρ, δ) = e(ρ, δ = 0) +
1

2!

(
∂2e(ρ, δ)

∂δ2

)
δ=0

δ2 +
1

4!

(
∂4e(ρ, δ)

∂δ4

)
δ=0

δ4 + · · ·

= e(ρ, 0) + C2(ρ)δ2 + C4(ρ)δ4 + · · · (6.19)

As the nuclear force is invariant under isospin exchange, only the even powers of δ survive

in the expansion of e(ρ, δ). An expression for the pressure P (ρ, δ) = ρ2 ∂e
∂ρ

follows from

the above equation as,

P (ρ, δ)

ρ
= ρ

∂e(ρ, 0)

∂ρ
+ ρ

∂C2(ρ)

∂ρ
δ2 + ρ

∂C4(ρ)

∂ρ
δ4 + · · · . (6.20)

The right hand side of Eq.(6.16) can be expanded in powers of δ using the expressions for

P (ρ, δ) and V2(ρ, δ) and using Eq.(6.17), keeping only upto order of δ2 in P (ρ,δ)
ρ

as,

e(ρ, δ) =
1

ρ

[∑
τ

P 2
F,τ

10m
(1 + τδ)

ρ

2

(
3− 2

m

m∗τ (ρ)

)]
− V2(ρ, δ) + ρ

∂e(ρ, 0)

∂ρ
+ ρ

∂C2(ρ)

∂ρ
δ2
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=

[∑
τ

{(3π2)
1
3~ρ

1
3
τ }2

10m

(1 + τδ)

2

(
3− 2− k+ρ− k−ρτδ

)]
− V2(ρ, δ)

+ρ
∂e(ρ, 0)

∂ρ
+ ρ

∂C2(ρ)

∂ρ
δ2

=
g2

10m

1

22/3 · 2

[∑
τ

{(1 + τδ) ρ} 2
3 (1 + τδ)

(
1− k+ρ− k−ρτδ

)]
−
(
a+ bδ2

)
ρα̃

+ρ
∂e(ρ, 0)

∂ρ
+ ρ

∂C2(ρ)

∂ρ
δ2

=
g2

10m

ρ
2
3

22/3 · 2

[ ∑
τ=1,−1

(1 + τδ)
5
3

(
1− k+ρ− k−ρτδ

)]
−
(
a+ bδ2

)
ρα̃

+ρ
∂e(ρ, 0)

∂ρ
+ ρ

∂C2(ρ)

∂ρ
δ2

=
g2

10m

ρ
2
3

22/3 · 2
{[

(1 + δ)
5
3

(
1− k+ρ− k−ρδ

)]
+
[
(1− δ) 5

3

(
1− k+ρ+ k−ρδ

)]}
−
(
a+ bδ2

)
ρα̃ + ρ

∂e(ρ, 0)

∂ρ
+ ρ

∂C2(ρ)

∂ρ
δ2

⇒ e(ρ, δ) =
g2

10m

ρ
2
3

22/3 · 2

{[(
1 +

5

3
δ +

5

9
δ2

)(
1− k+ρ− k−ρδ

)]
+

[(
1− 5

3
δ +

5

9
δ2

)(
1− k+ρ+ k−ρδ

)]}
−
(
a+ bδ2

)
ρα̃ + ρ

∂e(ρ, 0)

∂ρ
+ ρ

∂C2(ρ)

∂ρ
δ2 (6.21)

6.2.3 Symmetry energy parameters

Comparing then with Eq.(6.19) and equating coefficients of the same order in δ, one gets

the expression for C2(ρ) by putting y = g2

10m
1

22/3
as,

C2(ρ) = −bρα̃ + ρ
∂C2(ρ)

∂ρ
+

g2

10m

ρ
2
3

22/3 · 2

[
−10

3
k−ρ+

10

9
(1− k+ρ)

]
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⇒ C2(ρ) = −bρα̃ + ρ
∂C2(ρ)

∂ρ
+ yρ

2
3

[
−5

3
k−ρ+

5

9
(1− k+ρ)

]
. (6.22)

The relation between C2(ρ) and its density derivative is a direct consequence of the Gibbs-

Duhem relation. Using k+ρ0 = 2( m
m∗0
− 1) [ρ0 correspond to δ = 0; see Eq. (6.17)] at

saturation, the symmetry energy coefficient C2 reads as,

C0
2 = −bρα̃0 +

L0

3
+ E0

F

[
−1

3
k−ρ0 +

1

9
(1− k+ρ0)

]
= −bρα̃0 +

L0

3
+ E0

F

[
−1

3
k−ρ0 +

1

9

(
3− 2

m

m∗0

)]
, (6.23)

whereE0
F = 5yρ

2/3
0 is the Fermi energy at ρ0. Similar equations can be obtained for higher-

order symmetry energy coefficients C4, C6, etc. which is not dealt here. The expressions

for C2 or the higher-order symmetry energy coefficients so obtained are exact within the

precincts of chosen premises. The second density derivative of C2 at ρ0 can be calculated

from Eq. (6.22) as,

(
∂2C2

∂ρ2

)
ρ0

= α̃bρα̃−2
0 + yρ

−4/3
0

[
25

27
k+ρ0 +

25

9
k−ρ0 −

10

27

]
. (6.24)

With the help of Eq. (6.23) expressions for K0
sym reads,

K0
sym = 9ρ2

0

(
∂2C2

∂ρ2

)
ρ0

= 9α̃bρα0 +
9

5
E0
F

[
25

27
· 2
(
m

m∗0
− 1

)
+

25

9
k−ρ0 −

10

27

]
= 9α̃

[
L0

3
− C0

2 + E0
F

{
−1

3
k−ρ0 +

1

9
(3− 2

m

m∗0
)

}]
+ E0

F

[
10

3

(
m

m∗0
− 1

)
+ 5k−ρ0 −

2

3

]
= 3α̃ [L0 − 3C2 (ρ0)] +

2

3
E0
F

m

m∗0
(5− 3α̃) + E0

F (3α̃− 4) + E0
F (k−ρ0)(5− 3α̃)

= −3α̃[3C0
2 − L0] + E0

F

[
(3α̃− 4) +

(
2

3

m

m∗0
+ k−ρ0

)
(5− 3α̃)

]
. (6.25)
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Using the penultimate step of the Eq. (6.25), expression for k−ρ0 can be written as,

k−ρ0 =
K0
sym − 3α̃ [L0 − 3C2 (ρ0)]− 2

3
E0
F
m
m∗0

(5− 3α̃)− E0
F (3α̃− 4)

E0
F (5− 3α̃)

. (6.26)

The third density derivative of C2 at ρ0 can be calculated from Eq. (6.22) as,

(
∂3C2

∂ρ3

)
ρ0

= α̃(α̃− 2)bρα̃−3
0 − yρ−7/3

0

[
25

81
k+ρ0 +

25

27
k−ρ0 −

40

81

]
. (6.27)

Eventually utilizing the value of k−ρ0 from Eq. (6.26), the symmetry element Q0
sym is

given by,

Q0
sym = 27ρ3

0

(
∂3C2

∂ρ3

)
ρ0

= 27α̃(α̃− 2)bρα̃0 − 27yρ
2/3
0

[
25

81
k+ρ0 +

25

27
k−ρ0 −

40

81

]
= 9α̃(α̃− 2)[L0 − 3C2(ρ0)]− E0

F

m

m∗0

{
6α̃(α̃− 2) +

10

3

}
+ E0

F [9α̃(α̃− 2) + 6]

−E0
F (k−ρ0)[9α̃(α̃− 2) + 5]

= 9α̃(α̃− 2)[L0 − 3C2(ρ0)]− E0
F

m

m∗0

{
6α̃(α̃− 2) +

10

3

}
+ E0

F [9α̃(α̃− 2) + 6]

−
E0
F [9α̃(α̃− 2) + 5]

[
K0
sym − 3α̃ [L0 − 3C2 (ρ0)]− 2

3
E0
F
m
m∗0

(5− 3α̃)− E0
F (3α̃− 4)

]
E0
F (5− 3α̃)

= 15α̃[3C0
2 − L0] +K0

sym(3α̃− 1) + E0
F (2− 3α̃). (6.28)

While exploring the standard Skyrme EDFs, exactly the same correlated structure was

found between K0
sym or Q0

sym and [3C0
2 − L0] as in Eqs. (6.25) and (6.28).
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Figure 6.3: The correlation between K0
sym and [3C0

2 − L0] as obtained from 500 EDFs
[13, 14]. The black circles correspond to the Skyrme-inspired EDFs, the red squares refer to
those obtained from RMF models. The models consistent with all the constraints demanded
by Dutra et al. are highlighted by orange circles for Skyrme EDFs [13] and blue squares for
RMF EDFs [14]. The inner (outer) colored regions around the best-fit straight line through
these points depict the loci of 95% confidence (prediction) bands of the regression analysis.

6.3 Results and discussion

Eq. (6.25) throws a hint that there is a strong likelihood that K0
sym calculated with different

EDFs may be linearly correlated to [3C0
2−L0]. This is realized from the correlated structure

ofK0
sym with [3C0

2−L0] as displayed in Fig.6.3 for five hundred energy density functionals

[13, 14] that have been in use to explain nuclear properties. The results as presented in

Fig. 6.3 span both the Skyrme-inspired nonrelativistic (black circles) EDFs which tend

to have negative values for K0
sym and also the relativistic mean-field EDFs (red squares)

that tend to have larger, sometimes positive values for K0
sym. Skyrme (orange circles)

and RMF (blue squares) models chosen by Dutra et. al. [13, 14] which were found to

satisfy specific constraints on nuclear matter and neutron star properties are highlighted.
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Figure 6.4: The correlation line between K0
sym and [3C0

2 −L0] obtained from the Skyrme-
RMF models in Fig. (6.3) is depicted. The magenta triangles are the results obtained from
EDFs with realistic interactions, MDI(0), MDI(1), MDI(-1) [131], APR [141], BHF [142],
BCPM [143] and SBM [144], respectively. The green diamonds represent results from a
few Gogny interactions [130].

The linear correlation as observed seems to be nearly universal and intrinsic to an EDF

consistent with nuclear properties. The correlation coefficient is seen to be r = −0.95. The

near-universality in the correlation is brought into sharper focus in Fig. (6.4), where results

corresponding to EDFs obtained from several realistic interactions (magenta triangles) and

a few finite-range Gogny interactions (green diamonds) are displayed. They lie nearly on

the correlation line. The linear regression analysis yields

K0
sym = d1[3C0

2 − L0] + d2, (6.29)

with d1 = −4.97 ± 0.07 and d2 = 66.80 ± 2.14 MeV. This is a robust correlation among

the symmetry energy elements. Incidentally, from the density-dependent M3Y (DDM3Y)
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Figure 6.5: The correlation between Q0
sym and [3C0

2 − L0] as obtained from 500 EDFs
[13, 14]. The black circles correspond to the Skyrme-inspired EDFs, the red squares refer
to those obtained from RMF models.

interaction, a similar kind of relation between these symmetry elements can be observed

[41]. The correlation between the K0
sym and L0 values from different effective forces and

realistic interactions has also been considered in previous literature [41, 103, 123, 131,

133–135]. The results have shown relatively varying degrees of correlation (c.f. Figs (??)

and (??)). In particular, the correlation between K0
sym and L0 from all the 500 EDFs (see

Fig. (6.2)) is not as strong as the correlated structure of K0
sym with [3C0

2 − L0].

Incidentally, a very similar correlated structure as K0
sym is also anticipated for Q0

sym,

suggested by Eq. (6.28). In Fig. (6.5), values ofQ0
sym are plotted as a function of [3C0

2−L0]

for the same 500 models as in Fig. (6.3). However, the correlation between Q0
sym with

[3C0
2 −L0] is not as good as that for K0

sym. The correlation coefficient is merely 0.66. One

of the possible reason behind this is propagation of errors from K0
sym in the right hand side

of Eq. (6.28). Moreover, all three terms in the RHS of Eq. (6.28) have similar contributions
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circles correspond to the Skyrme-inspired EDFs, the red squares refer to those obtained
from RMF models.

to the value of Q0
sym in terms of magnitude. Isoscalar properties like K0 or m∗0

m
may still

possess some variation across the plethora of mean-field models compiled in Refs. [13, 14].

This can cause reasonable variation in the value of α̃ or E0
F across different models, which

might be screening the correlation between Q0
sym and [3C0

2 − L0]. To limit the variation in

α̃ and E0
F , we restrict the values of K0 = 230 ± 30 MeV and m∗0

m
= 0.75 ± 0.1 [42, 95].

This set of constraints are followed by ∼ 110 Skyrme models and ∼ 80 RMF models

given in Refs. [13, 14]. In Fig. 6.6, Q0
sym is plotted as a function of [3C0

2 − L0] for these

∼ 200 models. The correlation improved drastically for these constrained set of models

with correlation coefficient r = 0.93. This again points out to the universal nature of the

correlated structures, which were proposed by the analytical relations.

From accumulated experimental data over several decades and their theoretical analy-

ses, there seems to be a broad consensus about the values of some of the nuclear constants.
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The saturation density ρ0 of SNM, its energy per nucleon e0 and its incompressibility co-

efficient K0 are taken as a subset of the constants characterizing symmetric nuclear matter.

The nucleon effective mass m∗0 for SNM at ρ0 is also taken as an input datum though

its value is not as certain as e0 or ρ0. Two more nuclear constants related to asymmet-

ric nuclear matter (ANM) are further considered. They are the nuclear symmetry energy

coefficients C2(ρ) at ρ0 and at a somewhat lesser density ρ1 (= 0.1 fm−3), “the crossing

density”. There is less room for uncertainty in the symmetry energy coefficient C0
2 which

has been determined from exploration of nuclear masses [1, 2]. With the realization that the

nuclear observables related to average properties of nuclei constrain the nuclear EDFs bet-

ter at around the average density of terrestrial atomic nuclei [145], the so-called “crossing

density” [146] assumes a special significance. The symmetry energy C1
2 (= C2(ρ1)) at that

density, in Skyrme EDFs is seen to be strongly correlated to the Giant Dipole Resonance

(GDR) in spherical nuclei and is now fairly well constrained [29]. From the apparently

universal, EDF-independent correlation between the isovector observables, the isovector

elements L0, K0
sym, etc. can now be threaded to the above-mentioned nuclear constants as

shown below.

With m∗0 as input, k+ is known. From given values of e0, ρ0 and K0 for SNM, α̃ can

be calculated as Eq. (6.15) [95]. The symmetry energy C2(ρ1) can be expressed as

C2(ρ1) = C0
2 − L0ε+

1

2
K0
symε

2 − 1

6
Q0
symε

3 + · · · , (6.30)

where ε = (ρ0−ρ1)
3ρ0

. From Eqs. (6.28), (6.29) and (6.30), ignoring terms beyond ε3, which

are negligible, L0, K0
sym and Q0

sym are calculated with known values of C0
2 and C1

2 . The

constant k− then follows from Eq. (6.25). From Eq. (6.17), the nucleon effective mass
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splitting at saturation density to leading order in δ is given as

∆m∗0 =

(
m∗n −m∗p

m

)
ρ0

' −k−ρ0

(
m∗0
m

)2

δ, (6.31)

where the approximation (m∗n ·m∗p) ' (m∗0)2 is made.

Comparing Eqs. (6.25) and (6.29) one would expect |d1| to be close to 3α̃. With the

input values of the isoscalar nuclear constants e0, ρ0 and K0, 3α̃ is seen to be 3.54 as

opposed to ∼ 5 for |d1|. The reason for this change seems to be two-fold, (a) all 500 EDFs

employed in Fig. 6.3 have different values for α̃, and (b) the RMF models are also included

in the fit which have no explicit counterpart of α̃.

In summary, the values of L0, K0
sym, Q0

sym and ∆m∗0 can be calculated in terms of

empirically known nuclear constants namely, ρ0, e0, K0, C0
2 , C1

2 and m∗0
m

using Eqs. (6.28)–

(6.31). From the diverse theoretical endeavours like the liquid drop type models [1, 147,

148], the microscopic ab-initio or variational calculations [143, 149], or different Skyrme

or RMF models – all initiated to explain varied experimental data, a representative set

of the input nuclear constants for SNM is chosen with ρ0 = 0.155 ± 0.008 fm−3 and

e0 = −16.0±0.2 MeV. From microscopic analysis of isoscalar giant monopole resonances

(ISGMR), the value of K0 is constrained as 230± 40 MeV [145]. Analyzing the compact

correlation between the ’experimental’ double-differences of symmetry energies of finite

nuclei and their mass number, Jiang et. al. [2] find C0
2 = 32.1 ± 0.3 MeV. This value is

included in the chosen set of nuclear constants. For C1
2 , the value C1

2 = 24.1 ± 0.8 MeV

as quoted from microscopic analysis of GDR in 208Pb [29] is taken. There is an overall

consistency of this C1
2 value with those from the best-fit Skyrme EDFs [146] and with that

given in [41]. For the nucleon effective mass, a value of m∗0
m

= 0.70± 0.05 is taken, this is

consistent with the empirical values obtained from many analyses [150, 151].
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The values of the symmetry energy elements calculated from Eqs. (6.28)–(6.31) using

the values of input nuclear constants as mentioned come out to be L0 = 60.3± 14.5 MeV,

K0
sym = −111.8± 71.3 MeV, Q0

sym = 296.8± 73.6 MeV and ∆m∗0 = (0.17± 0.24)δ. The

value of L0 is remarkably close to its global average 58.9± 16 MeV [152], obtained from

analyses of terrestrial experiments and astrophysical observations. The value of L at ρ1 is

calculated to be 49.3± 4.2 MeV. From dipole polarizability in 208Pb an empirical value of

L = 47.3± 7.8 MeV was obtained at ρ ' 0.11 fm−3 [153]. There is no experimental value

for K0
sym or Q0

sym to compare. However, the symmetry incompressibility Kδ defined at the

saturation density of nuclear matter at asymmetry δ
(
Kδ = K0

sym − 6L0 − Q0L0

K0
, where

Q0 = 27ρ3
0

(
∂3e
∂ρ3

)
ρ0

)
has been extracted from breathing mode energies of Sn-isotopes

[154]. Corrected for the nuclear surface term, Kδ is quoted to be' −350 MeV [155]. This

is in close agreement with the calculated value Kδ = −378.6 ± 17.0 MeV; Q0 has been

calculated from Eq. (6.16) to be −364.7± 27.7 MeV corresponding to δ = 0 [95] with the

input nuclear constants mentioned.

The set of nuclear constants what is chosen in the present work is a conservative set;

depending on possible new experimental inputs, their values may however change some-

what which would affect the calculated values of the density derivatives of the symmetry

energy coefficients. The evaluated isovector elements are seen to be quite sensitive to the

input quantities C0
2 , C1

2 and ρ0. There is still some variance in the choice of these input

nuclear constants [96, 156, 157] besides the ones we have chosen. The aforesaid sensitivity

can be gauged from the displayed six panels in Fig. 6.7. In the upper four panels (a)-(d),

the contours of constant L0, K0
sym, Q0

sym and ∆m∗0 are shown in the C0
2 − C1

2 plane in

color shades, the white lines within the panels are the loci of constant isovector elements

as marked when all other input elements are left unchanged. With increase in C1
2 , L0 and

K0
sym are seen to decrease whereas Q0

sym and ∆m∗0 are found to increase. The opposite
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Figure 6.7: Contours of constant L0, K0
sym, Q0

sym and ∆m∗0 in color shades (as indicated
on the right side of each panel) as functions of the input nuclear constants C0

2 , C1
2 and ρ0

depicting the interdependence between various symmetry energy elements. The values of
L0, K0

sym and Q0
sym are in units of MeV and those for ∆m∗0 are in units of the free nucleon

mass. For details, see text.
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is observed for an increase in C0
2 . This points out the interdependence between different

symmetry energy elements. The change in ρ0 has also a sizeable effect on the isovector

elements. All other inputs remaining intact, an increase in ρ0 decreases L0 and K0
sym and

increases Q0
sym and ∆m∗0. Only glimpses of these changes are shown in panels (e) and (f),

where contours of constant L0 and ∆m∗0 are drawn in the ρ0 − C1
2 plane. The isovector

elements as studied here are seen to be nearly insensitive to changes in e0 and m∗0 (not

shown here). Similarly, K0 has little effect on these isovector elements except on ∆m∗0.

An increase of K0 by, e.g., ∼ 30 MeV is seen to push ∆m∗0 drastically in the negative

domain. Uncertainties in the input nuclear constants bear signature on the uncertainties in

the calculated isovector elements.

6.4 Summary

To sum up, without reference to any specific nuclear interaction, with only a few reasonable

approximations, analytic expressions for the density derivatives of the symmetry energy

coefficient C2(ρ) at the saturation density in terms of empirical nuclear constants are found

out. The symmetry observables are seen to be sensitive to the values of the input nuclear

constants, particularly to C0
2 , C1

2 and ρ0; precise values of these constants are thus required

to narrow down the uncertainties in the density dependence of the symmetry energy. In

doing the calculations, a correlated structure connecting the different symmetry energy

elements emerged. The consonance of these structures with those inherent in the plethora

of EDFs based on relativistic and non-relativistic mean-field indicates a universality in the

correlated structure in the symmetry energy coefficients. This helps further in a better

realization of the information content of the isovector observables.
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CHAPTER 7

SUMMARY AND FUTURE OUTLOOK

In this thesis work, we start from a general introduction to the nuclear symmetry energy

arising from the asymmetry in the neutron-proton content of a nuclear system. Symme-

try energy plays crucial roles in binding and shaping the finite nuclei as well as neutron

stars. As the densities associated with finite nuclei and neutron stars are widely apart from

each other, a microscopic description of symmetry energy over a wide range of density is

very important. In this respect, importance of precise characterization of the properties of

infinite nuclear matter, specially those which determine the density dependence of symme-

try energy, is pointed out in the present work. As nuclear matter is not accessible in the

laboratory, connecting the properties of nuclear matter to the observables of finite nuclei

and neutron stars is very important. To this purpose, mean-field models both relativistic

as well as non-relativistic are used in the present thesis work. In Chapter 2, details on

the calculation of ground state properties e.g binding energy and charge radii of spheri-

cal nuclei are given in the mean-field formalism. The particulars are discussed both for a

relativistic mean-field model and a non-relativistic one based on Skyrme force. A formal
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introduction to the infinite nuclear matter properties is also given using both the relativistic

and non-relativistic frameworks.

Throughout this thesis work, one of the primary motivation was to explore correlations

of symmetry energy parameters to the properties of finite nuclei and neutron stars. Corre-

lation between two quantities can be investigated in two ways: firstly, by exploring the two

concerned quantities from a set of models or secondly, exploring them by means of a sin-

gle model through a covariance analysis. The ingredients of optimizing the parameters of a

model and eventually performing the covariance analysis is given in Chapter 3. By covari-

ance analysis one can also calculate uncertainties in various quantities of interest, which

gives a clear idea of relevance of proposing a new theoretical model. While performing the

covariance analysis one obtains derivatives of different experimental observables of inter-

est with respect to the model parameters, which can be further used to study the sensitivity

of particular observables to different model parameters. Details of this sensitivity analysis

is also given in Chapter 3.

Binding energies of finite nuclei are the most accurately known experimental quantities

in nuclear physics. Information on these precisely known quantities are exploited in the

literature to constrain the symmetry energy coefficient quite tightly. However, mean-field

models obtained by fitting binding energies and charge radii of closed shell spherical nuclei

show a wide variation in the slope of symmetry energy. In Chapter 4, it was identified that

slope of symmetry energy can be constrained in a narrow range if the binding energies of

extremely asymmetric nuclei (neutron number twice to that of protons) are included in the

fit data to optimize the model parameters of a relativistic mean-field model. A sensitivity

analysis was performed further to show quantitatively how the experimental data on bind-

ing energies of highly asymmetric nuclei help to constrain the value of different symmetry

energy parameters.
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To minimize the energy of an asymmetric nucleus, where the number of neutrons is

higher than the protons, neutrons are pushed towards the surface giving rise to a neutron

skin thickness. Droplet Model can account for this conclusion, which further suggests

that slope of symmetry energy should be correlated to neutron skin thickness of a heavy

nucleus. Exploration of microscopic mean-field models testify for the existence of this

correlation. In Chapter 5, we point out that there might be a hint of model dependence

in this correlation. Droplet Model provides a prescription for decomposing the neutron

skin thickness into a bulk and surface part. The degree of model dependence in the cor-

relation between slope of symmetry energy and neutron skin thickness of a heavy nucleus

can be reduced if one looks for the correlation involving bulk part of the neutron skin

thickness instead of total neutron skin thickness. An effective value of slope parameter is

also suggested for a heavy nucleus in Chapter 5, which might be identified better with the

experimental information on neutron skin thickness of a heavy nucleus.

In chapter 6, we start with some basic equations of statistical mechanics and arrive at

the energy density functional of infinite nuclear matter with some reasonable assumptions.

Analytical relations for different symmetry energy parameters are derived further, which

show a dependence of higher order of symmetry energy parameters on the lower order ones.

These inter-relationships are verified using 500 different mean-field models existing in the

literature. Specially the correlation between curvature parameter of symmetry energy with

linear combination of symmetry energy coefficient and its slope parameter is found to be a

universal one.

In the present thesis work, parameters controlling the density dependence of symmetry

energy are constrained by looking into different perspectives. A special attention is given

to binding energies of highly asymmetric nuclei to constrain the slope parameter of the

symmetry energy. This is realized by applying covariance analysis on a relativistic mean-
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field model. Similar analyses should be performed with other type of mean-field models

e.g. non-relativistic mean-field models based on Skyrme or Gogny force. It might clarify

the robustness of the conclusions made in the present work with a particular variant of

mean-field model.

The analytical relations we have derived using a simplistic model in Chapter 6 is fol-

lowed by well tested Skyrme formalism. The quantities like isovector splitting of nucleon

effective mass, which acquires a large range of values across different theoretical models,

can be measured experimentally in near-future. The model we propose can be tested to ex-

plain the isovector splitting of nucleon effective mass in a simple way. One may also think

of extending this formalism to explain the properties of finite nuclei, which might provide

an alternative view of the finite nuclei in comparison to the modern mean-field models.
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[29] L. Trippa, G. Colò, and E. Vigezzi, Phys. Rev. C 77, 061304(R) (2008).

120
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