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Synopsis

The contents of this thesis are mainly centered around the investigation of
nonlinearity, complexity dynamics and the evidence of phase coherence in floating
potential fluctuation (FPF) acquired from the self and externally excited glow dis-
charge plasma (GDP). A detailed analysis of the study of nonlinearity has been
carried out for increasing discharge voltage (DV), externally applied sinusoidal
forcing as well as magnetic field using methods based on surrogate data technique.
Most statistical signal nonlinearity analyses adopt the approach namely the surro-
gate data method [1, 2] which is generated as a realization of the null hypothesis
of linearity. A measure (test statistic) is computed for the original time series and
it is compared to those computed for an ensemble of surrogates. If the test statis-
tic computed for the original is significantly different from that computed for the
surrogates, the null hypothesis is rejected, and the original time series is judged

nonlinear.

Nonlinear dynamics started with the work of Henri Poincare in the late 1800s
to solve the three body problem. Things like predictability, nonlinearity [3, 4]
have gained ample attention from various areas of science like physiology, earth
science [5], geoscience [6], biology or especially complex plasma system which is a
typical complex medium exhibiting a wide variety of nonlinear phenomena such
as self oscillations, chaos and intermittency [7, 8]. The investigation of nonlinear-
ity and the introduction of new methods for nonlinear time-series analysis are of
great interest in this context. The effect of nonlinearity is manifested as hysteresis
[9], wave breaking [10], chaos and turbulence [11], and different kinds of coherent
structures like solitons [12] and shocks. Sudeshna et al. [13] have observed the

phenomena of hysteresis in amplitude and frequency bifurcations of floating po-
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verify the existence of the underlying nonlinear processes that convey information
concerning the absence or presence of nonlinearity. In the field of biomedical signal
processing [17] techniques such as electrocardiogram, electroencephalogram reveal

information about nonlinearity that help us to glean about health condition.

Much effort has been endeavoured to study the intricacies involving the topics
like finite nonlinear interactions and its associated phase coherence index. The
investigation of the nonlinear wave wave interaction is based on the decomposition
of a signal into its amplitude and phase part albeit we have to assume implicitly
weak nonlinearity. From this point of view the amplitude along with the phase
information obtained from the Fourier transform is convenient for our analysis
permitting us wave number /frequency decomposition. Koga et al. have evaluated
the experimental evidence of phase coherence index [18, 19] of magnetohydrody-
namic turbulence in the solar wind. The result demonstrate the existence of finite
phase correlation indicating the nonlinear wave wave interaction are in progress.
Structure function or path length analysis [19, 20] bears a significant aspect in
this regard. Besides the approach nonlinearity, phase coherence index, the aspect
of nonstationarity [21] have also gained ample attention in the field of time se-
ries analysis encompassing a wide range of interdisciplinary phenomena. Many
signals that are output of complex physical and biological system [22] are said to
contain the trace of nonstationarity. Almost all methods of time series analysis,
traditional linear or nonlinear, must assume some kind of stationarity. A number
of statistical tests for stationarity [23] in a time series have been proposed in the
literature. Most of the tests we are aware of are based on ideas similar to the fol-
lowing: Estimate a certain parameter using different parts of the sequence. If the
observed variations are found to be significant, that is outside the expected sta-
tistical fluctuations, the time series is regarded as nonstationarity which allows us

carrving out modified root mean square analysis termed as detrended fluctuation
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fluctuations self similarity and scaling in physics and socio economic sciences in the
last several years has brought in new insights and new ideas for modeling them.
For instance one of the important empirical results of the market dynamics is that
the probability distribution of price returns r in a typical market displays a power

law i.e P(r) ~ r* with « being the power law exponent and a =3.

In our first study we have investigated the appearance of inverse and normal
homoclinic bifurcation and the associated complexity dynamics in the relaxation
oscillations of the glow discharge plasma system (GDP) exhibiting an order-chaos-
order transitions. In order to comprechend the complex dynamics, we have carried
out a detailed analysis using standard nonlinear techniques like Correlation di-
mension (CD) [26] and largest Lyapunov Exponent (LLE) for the two regimes
of observations. The estimation of Renyi number conforms well with the obser-
vations of complexity in the fluctuating data. In the second chapter we have
described elaborately our experimental setups, diagnostics and acquainted us with
various nonlinear techniques required for data analysis and interpreting the system
dynamics. The experiments were conducted in a cylindrical hollow cathode glow
discharge argon plasma with a typical density and temperature of ~ 107/em?® and
2-4eV respectively. It has a cylindrical cathode of length and diameter ~ 17 cm
and ~ 10 cm, respectively, and a central anode rod of diameter ~ 1.6 mm. The
whole assembly was mounted inside a vacuum chamber and was pumped down to
a pressure of about 0.001 mbar using a rotary pump. To carry out the observations
in presence of magnetic field, an external magnetic field (axial) was applied to the
plasma by passing a steady current through the coils wound over the cylindrical
chamber. GDP operating under steady state conditions is subjected to an oscil-
latory external voltage that constitutes forcing. For this, a signal generator was
coupled with the discharge voltage (DV) through a capacitor. We have also con-

ducted our experiment in the toroidal vessel of SINP tokamak with major radius of
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excited due to nonlinear processes. Rejection of null hypothesis has been verified by
performing the rank test method that further confirms the presence of nonlinearity
quantitatively. In the next chapter we have explored the feature of nonlinearity in
an experimental time series data obtained in the FPF’s of GDP for various values
of external forcing as well as magnetic field (B) by providing some easy to inter-
pret diagrams obtained using the novel DVV analysis. An estimate of the Zscore
[28] has been carried out to detect the presence of nonlinearity in a somewhat
quantitative sense. The experimental DVV plots have been compared with those
obtained from the numerical model depicting ion acoustic fluctuation in presence
of ionization and recombination effect. An informal test for bicoherency has been
applied to detect the interaction amongst different modes obtained by perform-
ing empirical mode decomposition to strengthen the analysis on nonlinearity. The
nonlinear effects obtained from DVV plots turn out to be almost similar with the
results of bicoherency analysis and quantitative estimation of Zscore confirming

the robustness of all the methods.

After exploring the nonlinearity with increasing DV, forcing, magnetic field we
approach to find the evidence of finite nonlinear interaction in GDP by estimating
phase coherence index for different types external forcing techniques likewise noise,
sinusoidal, square etc to characterise the correlation of phases among Fourier modes
in a given time series by employing surrogate data technique. The existence of fi-
nite phase coherence index (Cy) i.e finite correlation corroborates our nonlinearity
analysis using DVV. The positive correlation in the value of Cy are in agreement
with the finite nonlinearity. Origin of this type of correlation is illustrated using
continuous wavelet transform with Morlet wavelet. Characterization of the dif-
ference in the phase distribution by the difference in the waveform in real space
instead of dealing in Fourier space has been facilitated by introducing structure

function or path length for different orders to study and identify the dynamical
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experiments in the glow discharge plasma of toroidal vacuum vessel of the SIND
tokamak to observe the interplay of transition of floating potential fluctuations
and its associated phase coherence index. Fluctuations display nearly regular —
relaxation oscillations — inverted relaxation oscillations — regular sinusoidal os-
cillations. However for small value of toroidal magnetic field the transitions follow
relaxation — chaotic oscillations — and prevails that chaotic nature with high
value of toroidal magnetic field. Evolution of the associated anode fireball dynam-
ics under the action of vertical, toroidal magnetic fields as well as the composition
of the both field with different strengths has been presented.

Glow discharge plasma being rich in high energy electrons and ions are ca-
pable of exhibiting many such nonlinear phenomenon mentioned above and are
widely used in various industrial applications [29]. Nonlinear phenomena including
nonlinear structures are observed in laboratory plasmas, fusion devices, radiofre-
quency plasmas, microwave devices, and in naturally occurring plasmas such as in
magnetosphere, inter stellar plasma. Interpretation of any plasma phenomena is
dependent on an understanding of nonlinear dynamics. So as an potential applica-
tion of our work we can suggest characterising the devices using various nonlinear
methods and techniques which is extremely beneficial in improving their perfor-
mance. We also believe that our work will enrich the understanding of the concept
of nonlinearity not only in GDP but also in other plasma devices.

The submission of this synopsis is recommended and approved by

the Doctoral committee.
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Chapter 1

Introduction

The objective of this thesis is to contribute to the investigation of monlinearity,
complexity dynamics in a self and externally excited DC' glow discharge plasma. A
detailed analysis for the detection of nonlinearity has been carried out in floating
potential fluctuations (FPF) measured in the glow discharge plasma for various
values of discharge voltage, externally applied sinusoidal perturbations as well as
magnetic field. We introduce delay vector variance analysis (DVV) for the first
time in our analysis of experimental floating potential fluctuations acquired from
glow discharge plasma, which allows reliable detection of nonlinearity and provides
some easy-to-interpret diagram conveying information about the nature of the FPF.

The emergence of monlinearity has been ensured by taking into consideration the



observe the critical regime dynamical transitions. The existence of finite nonlin-
ear interaction has been demonstrated by estimating phase coherence index using
a method based on the surrogate data technique. A comprehensive study of the dy-
namics of the fireball in the glow discharge plasma in a toroidal vacuum vessel has
been corroborated with the values of phase coherence and scaling index estimated
using detrended fluctuation analysis (DFA). An attempt to model the experimen-
tal observations by a second order nonlinear ordinary differential equation derived
from the fluid equations of plasma has validated our experimental results. The ori-
gin of the self and externally excited oscillations has also been explained from the
perspective of plasma physics. Before going deep into the investigation, we present
a brief historical overview on the past works as well as the motivation of studying
nonlinearity and nonstationarity, phase coherence index in self, externally excited

glow discharge plasma.



1.1 Plasma Physics: An introduction and its im-
portance

Neutral gas transforms into a cloud of electrons and ions when its molecules/atoms
are ionized by some means of energy absorption mechanisms (electron impact,
photo-detachment, photo-ionization, electrical discharge etc.). In this process, a
partially or fully ionized gas of negative electrons and positive ions and/or neutrals
may be formed. The cloud is generally known as plasma and the state is known to
be the fourth state of matter. Examples of plasma are ubiquitous i.e in the sun, in
the solar wind, in the magnetosphere and the ionosphere, in fluorescence tube, in
flames, etc. In fact, most of the matter (~ 99 percent) in the known universe exists
as plasma. The word plasma comes from the Greek and means something molded.
It was applied for the first time by Tonks and Langmuir [1] in 1929 to describe
the inner region remote from the boundaries, of a glowing ionized gas produced by
electric discharge in a tube, the ionized gas as a whole remaining electrically neu-
tral. The most important application of the man made plasmas is in the control
of thermonuclear fusion reactions which hold a vast potential for the generation of
power. The nuclear fusion reaction is the source of energy in the stars including

the sun. So for studying various phenomena occurring in the magnetosphere and



dynamics of a system involving such a huge number of particles interacting over a
large scale. It is obvious that charge particles (ions and electrons) would respond
collectively to any applied electromagnetic fields or internal perturbation through
long range electromagnetic interactions and would try to shield, i.e., minimize their
effects on plasma. This collective behavior then suggests that the motion of charge
particles not only depend on local conditions, but also on the state of the plasma in
remote regions as well. Thus, the wealth of important physical phenomena arises
in plasma because of the collective effect, where a charged particle interacts simul-
taneously with a large number of other charged particles. Due to these features of

plasma, it can be considered as a complex system.

1.2 Brief historical backdrop of Nonlinearity and
relevance with Plasma Physics

The origin of nonlinear dynamics dates back to mid 1600’s in the guise of planetary
motion, when Newton discovered his laws of motion and universal gravitation and
invented the theory of differential equations to solve the two body problem: the
motion of earth around the sun, given the inverse square law of gravitational at-
traction between them. The force being nonlinear in nature gave rise to nonlinear

differential equation of motion, embarking the development of nonlinear dynam-



qualitative nature of the solutions rather than quantitative questions. The advent
of high speed computers in 1950’s served as the stepping stone for nonlinear dy-
namics. It accelerated the study of nonlinear systems by allowing the exploration
of equations via numerical simulations which were impossible before. Following
Lorenz’s discovery of chaos [2] the subject of nonlinear dynamics has gained ample
attention and found its application in various areas of science like fluid mechan-
ics [7], earth science [3], geoscience [4], biology [5]. In any physical system it
is of utmost significance to detect the presence of nonlinearity and identify the
underlying nonlinear process. Due to the interdisciplinary nature of nonlinear
dynamics, it has found numerous applications throughout the realms of physics,
biology, engineering, chemistry [6], especially complex plasma system [8, 9]. Dissi-
pative physical system like plasma being highly nonlinear dynamical medium with
a large number of degrees of freedom is capable of sustaining a wide spectrum of
waves, instabilities and the nonlinear coupling between the waves results in several
interesting phenomena such as self-oscillation, period doubling, bifurcation, period
subtracting, period adding, chaos, intermittency and various complex structures
[10, 11, 12]. DC glow discharge plasma, which is widely used in various applica-
tions like laser production, plasma processing [13], exhibits different types of non

linear oscillations [24] depending on the control parameters like neutral pressure



[7] proposed a new theory for the onset of turbulence in the fluids. Those at-
tempting to evaluate the practical relevance of this subject confront a confusing
array of terms and concepts, such as non-linearity, fractals, periodic oscillations,
bifurcations, and complexity, as well as chaos [16]. Feigenbaum in the late 70s
discovered the universal constant called the Feigenbaum constant to characterize
the universal features of the period doubling bifurcation [17], one important class
of abrupt, non-linear transitions. Later bifurcation diagrams , Lyapunov expo-
nent, correlation dimension, etc., derived on the basis of chaos theory, have been
used to characterize chaos and its different routes. Study of the nonlinear pro-
cesses in plasmas started in the sixties. Many nonlinear phenomenon had been
observed and nonlinear dynamics experiments had been performed in different
types of laboratory plasmas. Since the development of nonlinear dynamics, most
applications have been in the field of fluid dynamics, particularly fluid turbulence
and as fluid and plasma turbulence are closely related, the concepts of nonlinear
dynamics have been successfully utilized in plasmas. Koepke et al. [18] have iden-
tified a periodic nonlinear interaction between pairs of self-excited, propagating,
ionization waves simultaneously present in the positive column of a neon glow dis-
charge with no external oscillatory driving force. In one of the theoretical works

by Chung and Yoon [19], they have shown that in an RF plasma system, period



synchronization of paced chaotic plasma discharge have been reported by Ticos
et al.[25]. Current and plasma potential in a magnetized thermionic plasma dis-
charge have been investigated by Klinger et al.[26]. Investigation of nonlinearity
using harmonic detection method [27, 28] has been performed in RF discharge and
glow discharge plasma respectively. M. Ciszak et al. [29] studied the response of
excitable systems driven by random forcing. Talking about the phase coherence,
Koga et al. [30] introduced a method to examine the experimental evidence of
phase coherence index [32, 31] of magnetohydrodynamic turbulence in the solar
wind. The result demonstrate the existence of finite phase correlation indicating
that nonlinear wave wave interaction are in progress. Their discovery serves as
an excellent subject for the research of nonlinear phenomena in the solar wind of
magnetohydrodynamic turbulence (MHD) which is ubiquitous in space. In their
study the phase correlation in MHD turbulence observed by the geotail satellite

near the upstream region of earth bow shock was evaluated.

1.3 Definition of nonlinearity and approach to
complexity dynamics

Nonlinearity of a system is defined as a property which indicates a system response

that is not directly proportional to the input. From our everyday perception we



of surrogates. If the test statistic computed for the original is significantly dif-
ferent from that computed for the surrogates, the null hypothesis is rejected, and
the original time series is judged nonlinear which is taken to be the definition of
nonlinearity in this thesis work. A novel delay vector variance (DVV) method for
detecting the presence of nonlinearity in a time series is introduced. This pro-
vides consistent and easy-to-interpret diagrams, which convey information about
the nature of a time series using the optimal embedding dimension of the original
time series. One of the key issues in signal nonlinearity analysis is the definition
of a linear signal. Linear systems are well behaved. Further, linear systems can
be fully understood and predicted by dissecting out their components. The sub-
units of a linear system add up so there are no surprises or anomalous behaviours.
The standard definition is that such a signal is generated by a Gaussian linear
stochastic process. A linear signal x, is generally defined as the output of a linear
shift-invariant system that is driven by Gaussian, white noise. By contrast, for
non-linear systems proportionality does not hold: small changes can have strik-
ing and unanticipated effects. Another complication is that non-linear systems
cannot be understood by analysing their components individually. In terms of
mathematics linear phenomenon are describable by equations in which dependent

variable occurs to no higher than the first power. This is generally called the



amplitude exponentially. A wave can undergo a number of changes such as chang-
ing its shape when its amplitude gets large. This is same as saying that Fourier
components at other frequencies are generated. Nonlinear effects also occur when
a large amplitude plasma wave is excited by an external means. For example, the
dispersion in the ion acoustic wave can be counter-balanced by nonlinearity and
an ion acoustic soliton can propagate without appreciable deformation. Nonlin-
ear effects tend to limit the growth of instabilities through nonlinear saturation.
Also, through mode coupling, energy transfer occurs toward modes which are lin-
early stable. From the perspective of the concept of plasma physics, modes with
growing amplitudes resulting from the various instabilities would attribute to the
study of nonlinearity. So the conventional plasma physics would generally give
emphasis on oscillation from the spectral point of view such as the identification of
frequencies, measuring the amplitude of the frequency carrying maximum power,
detecting the interaction amongst the dominant modes. In a rf dusty plasma exper-
iment, Flanagan and Goree [27] have studied nonlinearity in a naturally occurring
dust density wave using neutral gas pressure as the control parameter, with the
nonlinearity indicated by the presence of harmonics and quantified by total har-
monic distortion. Now from the perspective of nonlinear dynamics the analysis of

the nonlinearity resting on the surrogate data strategy can often provide insights
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combination with the surrogate data method, the measures yield a reliable two
tailed test for nonlinearity. The concept of complexity dynamics encompassing the
broader area of nonlinearity (including phase coherence), chaoticity is also well
explored in our thesis work. So far the following approaches have been undertaken
to illustrate the idea of complexity dynamics of the fluctuations associated with
noise both qualitatively and quantitatively. a) Entropy measures (Renyi Entropy)
derived in the framework of information and calculated on the basis of probabilistic
models. b) Estimate of correlation dimension on the basis of Gaussian kernel al-
gorithm, Grassberger Proccacia techniques ¢) Recurrence plot in conjunction with
recurrence quantification measure to identify the transitions between the differ-
ent complex states d) Detrended fluctuation analysis technique for characterizing
the persistent behaviour of the plasma time series to explore the complexity in
terms of long range correlation. Our work presented in this thesis work enrich the
complexity study of the plasma instability and its associated nonlinear dynamical

phenomenon.

1.4 Nonlinear Oscillations in Plasma and transi-
tions amongst them

A plasma is inherently a nonlinear medium and the waves and oscillations that
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Under various operating conditions the glow discharge plasma device has given
way to numerous experimental observations. Periodic, different kind of intermit-
tent oscillations [35, 36], relaxation oscillations [11], various types of chaos etc.
are a few among many nonlinear oscillations observed in the plasma systems. If
any oscillatory motion repeats itself about after equal intervals of time then such
oscillation is called periodic oscillation. The plasma system that can exhibit nice
relaxation oscillations is capable of manifesting chaotic oscillations. Talking about
chaos it is a long term aperiodic behaviour in a deterministic system, and shows
sensitive dependence on initial conditions. Chaotic dynamics are neither recurring
nor settles down to a particular fixed point and are possible only for the system
having phase space dimension > 3. It is often observed in plasma system that one
kind of nonlinear oscillation transforms into another kind of nonlinear oscillation
when some control parameter is varied. Sometimes very small change in the sys-
tem parameters can trigger this kind of a transition. This qualitative changes in
the dynamics of the system with the change in the control parameter values are
generally classified as bifurcation and the parameter values at which they occur
are called bifurcation points. Bifurcations are important scientifically as they pro-
vide models of transitions and instabilities when some control parameter is varied.

Amongst several kind of bifurcations there are scenarios like homoclinic and in-
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a particular kind of nonlinear oscillation can be observed in various systems but
to find a system that can exhibit various kinds of nonlinear oscillations is not that

trivial. For that kind of a system our consideration is that of a plasma system.

1.4.1 Motivation to study the nonlinearity, phase coher-
ence index in glow discharge plasma

Plasmas are intrinsically nonlinear whose effects manifest in the form of various
exotic structures such as double layers, solitons, vortices, different types of waves,
instabilities and turbulence. Glow discharge plasmas being rich in high energy
electrons and ions are capable of exhibiting many such nonlinear phenomena. Non-
linear phenomena including nonlinear structures are observed in laboratory plas-
mas, fusion devices, radio-frequency plasmas [40], microwave devices [41], laser
devices[42] and in naturally occurring plasmas such as in magnetosphere, inter
stellar plasma. Interpretation of any plasma phenomena is dependent on an un-
derstanding of nonlinear dynamics. Characterising the devices like GDP and their
counterparts such as magnetrons [39] used in the industrial application with the
help of various nonlinear methods and techniques is extremely beneficial in improv-
ing their performance. So exploring the idea of nonlinearity is important not only

for glow discharge plasma but also for many other devices. Hence nonlinearities
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geometry with the scope of applying different magnetic fields. The study of mat-
ters pertaining to phase information can be best explored by the study of phase
coherence index. A wealth of nonlinear phenomena can be found in the solar wind
especially in the vicinity of planetary bow shock interplanetary shocks wherein the
magnetic, electric field and velocity fields show turbulent fluctuations. MHD tur-
bulence is considered to play crucial role in heating of plasma and acceleration of
energetic particles. In space plasma research in the context of geomagnetic pulsa-
tion and the power law type spectrum of magnetic field turbulence [43] amplitude
spectrum has always been in discussion in the literature for many years. The in-
vestigation of the nonlinear wave wave interaction is based on the decomposition
of a signal into its amplitude and phase part albeit we have to assume implicitly
weak nonlinearity. From this point of view the amplitude along with the phase
information obtained from the Fourier transform is convenient for our analysis
permitting us wave number/frequency decomposition. The phase distribution on
the other hand has not achieved much attention in space plasma application. A
possible reason may be that the phase distribution in Fourier space appears to be
completely random. In fact the purpose of their work was to discuss the experi-
mental evidence of nonlinear wave-wave interaction in MHD turbulence detected

in the solar wind. Their results prove that the finite phase coherence is the origin



14

biomedical signals, such as heart rate variability (HRV), electrocardiogram (ECG),
hand tremor and electro-encephalogram (EEG) [48], there is a need to assess the
presence or absence of nonlinear behaviour within the signal, as opposed to that
of the system, because the linear/nonlinear nature of the signal conveys informa-
tion concerning the health condition of a subject. Although there exist several
established methods for performing signal nonlinearity analysis, the outcome of a
test, e.g., the rejection of a null hypothesis of linearity ensured from surrogate data
analysis [33, 45], needs to be interpreted with due caution. For real-life time series,
estimation of invariant quantities are not problem free. Further, both correlated
stochastic noise and noise-free deterministic signals produce convergent invariant
measures, a sign of low-dimensional nonlinearity. Thus, any absolute quantity does
not provide concrete information about the underlying dynamics. Now, a chaotic
system is a low-dimensional nonlinear system. So, the detection of nonlinearity
is a necessary condition for observation of chaos. The variety of approaches with
the difficulty of interpretation of the results, clearly indicate the need for a uni-
tying approach with straightforwardly interpretable results which is consummated

especially using surrogate data analysis and backed by physical interpretation.

1.4.3 Time series Analysis: Its Motivation
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study. A time series is nothing but a sequence of data points of an observed
variable at equally spaced time intervals. Many quantities in nature fluctuate
in time. Examples are the stock market, the weather, seismic waves, sunspots,
heartbeats, and plant, animal populations. Until recently it was assumed that
such fluctuations are a consequence of random and unpredictable events. With
the discovery of chaos, it has come to be understood that some of these cases
may be a result of deterministic chaos and hence predictable in the short term
and amenable to simple modeling. The fluctuations that we have studied in this
thesis were recorded in the form of time dependent floating potential fluctuations.
With probability law governing the time series formulated by the statisticians , we
can understand the underlying dynamics, forecast future events, and control them
via suitable intervention. The analysis of a time series should be able to detect
the stochastic [60]or deterministic nature of the underlying process, the presence
of nonlinearity or non-stationarity[61] and finally the predicability of the future
states. Time series analysis can be categorized in two classes: linear and nonlinear

time series analysis. Examples of time series include
e Weather [62], ECG and EEG data [63]

e Financial markets [64]
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analysis while the latter consists of estimating the auto-correlation and cross-
correlation in the time series. Linear analysis tools treat all the irregular or chaotic
behavior as a stochastic processes though these instabilities may be generated by
deterministic dynamics. Based on chaos theory, nonlinear tools have been devel-
oped to characterize such complicated data. Nonlinear methods (for chaoticunder-

lying dynamical system) consist of estimating or analysing the following

e State space reconstruction [69]

Correlation dimension and Entropy [71]

e Lyapunov exponent [73]

Surrogate data [68]

Recurrence plot [74]

Multifractal spectrum [75]

Principle component analysis [76]

So many tests have been developed to determine whether a time series is ran-
dom or chaotic, and if the latter, to quantify the chaos. Chaos refers to a seemingly

random type of variability that can arise from the operation of even the most simple
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1.4.4 Nonstationarity, Detrended fluctuation analysis and
its motivation

Almost all methods of time series analysis, traditional linear or nonlinear, must
assume some kind of stationarity [61]. Traditional approaches such as power spec-
trum, correlation analysis are suited to quantify correlations in a stationary signal
[77, 78]. However many signals that are output of complex physical [79] and bi-
ological system are said to contain nonstationarity. A number of statistical tests
for stationarity [80, 82] in a time series have been proposed in literature. Most of
the tests we are aware of are based on ideas similar to the following: Estimate a
certain parameter using different parts of the sequence. If the observed variations
are found to be significant, that is, outside the expected statistical fluctuations,
the time series is regarded as nonstationary. In case of traces of nonstationarity
being detected, we are allowed to carry out modified root mean square analysis
termed as detrended fluctuation analysis (DFA) [83]. The advantages of DFA is
that it permits the detection of long range correlation embedded [85] in a seem-
ingly non- stationary time series and allows the detection of scaling exponent in
noisy signal with embedded trend that can mask the true correlations. In the last

one decade DFA has emerged as an important technique to study scaling and long
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cubic higher order polynomial in a piecewise manner. Most real time series exhibit
persistence i.e subsequent element of the time series are correlated [86]. Persistence
literally means that an increase in the values of the time series will most likely be
followed by an increase in short term and decrease in the values will be followed
by another decrease. The study of the self similarity and scaling in physics, socio
economic sciences in the last several years has brought in new insights and new
ideas for modeling them. For instance one of the important empirical results of the
market dynamics is that the probablity distribution of price returns r in a typical
market displays a power law [141] i.e P(r) ~ r* where o =3. Similar power laws
appear for the cumulative frequency distribution of earthquake magnitudes [142].
So the investigation and study of scaling exponents relevant in case of stock mar-
ket, econophysics, foreign exchange rates, neuron spiking, that is in diverse areas
of research field will also be beneficial for our case in exploring, understanding and
developing the nonlinear dynamical system theory of plasma oscillation in different
plasma systems like glow discharge, double plasma device, dusty plasma device.
So all of the aforementioned overview of nonlinearity, non-stationarity, phase co-
herence nicely orchestrate the aim of exploring the complexity dynamics of the

system under control.



Chapter 2

Experiment, diagnostics and data
analysis procedures

In this chapter we present a detailed description of the experimental devices on
which we carried out our experiments. The floating potential fluctuations (FPF)
were acquired with the help of langmuir probe. A comprehensive discussion of the
data analysis has been presented in the framework of linear and nonlinear analysis

tools. The experiments have been carried out in the following devices.

e DC discharge plasma in a cylindrical vacuum vessel

e DC discharge in the toroidal vacuum vessel of the SINP tokamak

21 Fwperimental Setiin
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assembly was mounted inside a vacuum chamber and was pumped down to a pres-
sure of about 0.001 mbar using a rotary pump. The chamber was subsequently
filled with argon gas up to a predetermined value of neutral pressure by a needle
valve. Finally a discharge was struck by a direct current discharge voltage, which
could be varied in the range of 0-1000 V shown in the laboratory view of the whole
experimental system in Fig. 2.3. To carry out the observations in presence of a
magnetic field, an external magnetic field (axial) was applied to the plasma by
passing a steady current through the coils wound over the cylindrical chamber as
shown in the right panel of Fig 2.1. A glow discharge plasma operating under
steady state conditions is subjected to an oscillatory external voltage that consti-
tutes forcing. For this, a signal generator was coupled with the discharge voltage
(DV) through a capacitor for observing fluctuations as shown in the left panel of
Fig 2.1. The schematic of the measurement circuit for floating potential measure-
ment is also depicted in Fig. 2.2 which shows that the probe is connected to the
oscilloscope having input resistance and capacitance of the order of 1M(2 and 13pF
respectively. So the maximum values of frequencies obtained must lie in the regime
much less than the cut off frequency of the low pass filter combined between the
sheath resistance (Rg, ~ 0.2M€) and stray capacitance (Cy ~ in order of tens of

pF) in Fig. 2.2.
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Figure 2.3: Picture of the dc glow discharge plasma device: 1) Vacuum chamber,
2) Stand, 3) High voltage power supply, 4) Argon gas cylinder, 5) Rotary pump,
6) Digital oscilloscope, 7) Pressure reading meter, 8) Langmuir probe, 9) Power
supply connection, 10) Pressure control unit: needle valve, 11) Pirani gauge, and
12) Side cylindrical chambers attached with main vacuum chamber

2.1.2 Toroidal discharge device

The toroidal vessel of SINP tokamak with a major radius 30 cm and a minor radius
7.5 cm has been used as the discharge chamber. The grounded vessel was evacuated
to a base pressure of 0.01 mbar using a rotary oil pump. The vessel was filled with
hydrogen gas upto a pressure of 0.45 mbar and a discharge voltage of 0.54 kV
was applied to sustain the discharge plasma. A Langmuir probe was inserted at

diametrically opposite position to the electrode along the minor axis of the toroid



23

“\ B
Rotary [
Pump Langmuir Probe Electrode

igh Wattage Resistance

Figure 2.4: Schematic diagram of the experimental setup for glow discharge plasma
in a toroidal assembly

(Br) with 1A current in the coil producing 1.28G By . The direction of B in
the Fig. 2.4 is same as that of vertical magnetic field (By). We have performed
only one experiment in this device under the action of increasing discharge voltage
(DV), vertical, toroidal magnetic field, and increasing vertical magnetic field at a

fixed toroidal magnetic field of 8.5G.

2.2 Diagnostic

e Langmuir probe, Floating Potential Fluctuations
The plasma probe is a device that has been widely used to measure the

temperature and density of a plasma both in the laboratory and in space.
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Figure 2.5: Picture of the glow discharge plasma in a toroidal assembly: 1) Viewing
port 2) Vertical magnetic field coils, 3) Pressure control unit 4) Toroidal magnetic
field coils 5) Constant current source 6) Pressure reading meter 7) Place for insert-
ing Langmuir probe

as shown in Fig. 2.6. The probe when inserted in the plasma is surrounded
by the electron and ions falling on the probe. The imbalance between the
ion and electron current, due to the higher mobility of the electrons than
the ions results in an accumulation of the electrons on the surface of the
probe, setting up an electric field. This electric field repels the electrons and
attracts ions towards the probe so that the net current is zero and hence
the surface acquires a potential, which is called floating potential. Under

these equilibrium conditions the number of electrons reaching the probe per
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Figure 2.6: Picture of the Langmuir probe used in the experiments

2.3 Data analysis techniques

The analysis of the floating potential fluctuations (FPF) has been carried out using
the linear and nonlinear time series analysis. Linear analysis tool deals with the
use of power spectrum, autocorrelation, probability density function, etc. whereas
in nonlinear analysis Lyapunov exponent, correlation dimension, recurrence plot
and recurrence quantification analysis [46, 47|, detrended fluctuation [80, 82] anal-
ysis, surrogate data involving structure function[38], phase coherence index [30],
delay vector variance, Zscore etc., have been used. We will discuss in detail the
aforesaid techniques used for the first time in plasma physics (i.e delay vector vari-

ance, structure function, phase coherence etc) to have a clear understanding of the
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e Look at power spectrum, autocorrelation function [12]

e Estimate the correlation dimension, Lyapunov exponent, entropy [70]

e Compare the original time series with surrogate data sets to verify the exis-
tence of nonlinearity [48, 68].

e Test for stationarity, and look for the recurrence plots [74, 80]

e Estimate phase coherence index to find the correlation between Fourier modes
[31]

e Construct models for validation [9]

2.3.1 Power spectral method

A time series which has a certain periodicity may be represented as a superposi-
tion of periodic components of sine and cosine functions with different frequencies.
Power spectrum analysis deals with the determination of their relative strengths.
When the time series is periodic, the spectrum may be expressed as a linear combi-
nation of oscillations whose frequencies are integer multiples of the basic frequency
which is the Fourier series. A periodic or quasi periodic signal shows sharp spectral

line in power spectrum plot, whereas for a chaotic signal it will show a broadband.
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series has to be described in a suitable phase space reconstruction. The phase space
description provides a powerful tool for describing the behavior of a time series in a
geometric form. According to Takens embedding theorem using a time series data
X; an embedding can be made using the vector V; = X, X .. X, (n_1)r which
represent the original time series embedded into m dimensional phase space with
7, m being the delay and embedding dimension respectively. The time difference
between two consecutive components of the delay vectors in above equation is
referred to as the lag or time delay 7. If the delay time 7 is too small it indicates
the correlation between components whereas large 7 connotes the suppression of
dynamics in a lower time scale. Embedding dimension is calculated using the
method of false nearest neighbourhood (FNN) [50]. The time delay is considered

as the time for auto correlation to reduce to 1/e of the initial value.

2.3.3 Correlation dimension

Dimension of a system is defined as the power of the radius of the hypersphere
(1) with which the volume of the system within the hyper sphere changes. The
correlation dimension (CD) [51, 105, 71] of a time series is defined as the dimen-
sionality of the space occupied by the points of that time series. CD is actually

a measurable parameter similar to the dimension of a system; the only difference
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using the following equation 2.1 where C(I) is the correlation integral in a partic-
ular embedding dimension and || X; — X || is the distance between the ith and jth
point in that embedding space. The scaling of the function C(1,m) can be written
as C(I,m) = r®P with the scaling index CD being called the correlation dimension
given by the equation 2.2. It gives a lower bound to the fractal dimension of the
underlying attractor. For a stochastic or noisy system CD ~ m and for low di-
mensional chaotic system CD saturates to a constant value for m > mgy. It gives

a lower bound to the fractal dimension [72] of the underlying attractor.

1
C(l,m) = ]\}1_13(1)0 W{Number of pairs for which || X; — X, ||< {} (2.1)
logC(l,m)
CD=—— 2.2
logl (2:2)

2.3.4 Dimensionality analysis: Embedding dimension

Many practical methods have been developed for the determination of the minimal
embedding dimension. Here in our work we propose to deploy the method called

false nearest neighbourhood [50, 119] to be able to extract information about min-
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neighbor S; in a m-dimensional space followed by the calculation of the distance

|S; — S;|| . We need to iterate both points and compute the following quantity.

7. = [Sir = i
15 — S;l

(2.3)

When L; exceeds a given heuristic threshold L, the point is marked as con-
taining the false nearest neighbour. In our experimental system we have carried
out FNN method to be able to extract information about minimal embedding di-

mension in the presence of increasing DV. If the fraction of points for which L;)L;

is zero or at least sufficiently small then our criterion is satisfied.
2.3.5 Lyapunov exponent

Lyapunov exponents [53] describe the rate of expansion or contraction of nearby
initial conditions in phase space. If we consider two points on two nearby trajec-
tories of a chaotic attractor, in the phase space, assuming the distance between
them to be dz;(0), and after time t, if the distance between the two trajectories

becomes 0x;(t), then the divergence (separation after time t) can be written as

dx;(t) = 6x;(0)e?? (2.4)
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The nonzero positive value of \;, identifies the chaotic nature of the fluctuations.
As the exponent is the measure of how fast two points in phase space diverges for

a time series so it is a direct estimate of the chaoticity of a system.

2.3.6 Renyi Entropy(Methodology)

Complexity dynamics can be well explored by means of the classical measure of
disorder in a physical system, i.e the entropy [54]. Besides its initial application in
the field of molecular physics, entropy has been used in statistics and information
theory to develop measures of the information content of signals [Shannon, 1948].
Shannon entropy is the classical measure of information content and disorder, and

for an n dimensional Probability density (PD) distribution P(x), it is defined as :

H(P)=— /_OOP(x)logP(x)dx (2.6)

o0

But we restrict ourselves in making the use of the more classical Shannon
information as a measure of complexity due to the presence of logarithm within
the integral in equation 2.6. We rather switch to the use of Renyi entropy[54, 55]
of order m as the measure of complexity. The Renyi number is by definition

an entropy, i.e., a classically used measure of disorder in physical systems, and
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The Shannon entropy can be recovered from the Renyi entropy as

lim HY(P) = H(P) (2.8)

m—1

2.3.7 Autocorrelation

The autocorrelation time of a fluctuating signal is a measure of the temporal
coherence and is obtained from the autocorrelation of the signal. For a time series
of length N, X = [X;,7 = 1,2....n]; the autocorrelation function Cpy,(7) [52] can

be written as

Con(r) = ot iy = X)X = X) (2.9
(G- X)) |

where X, 7 are the mean, and time lag of the time series respectively. Obviously,

if a signal is periodic in time, then the autocorrelation function is periodic in the
time lag 7. Autocorrelations of signals from deterministic chaotic systems typically
also decay exponentially with increasing lag. Stochastic processes have decaying

autocorrelations but the rate of decay depends on the properties of the process.

2.3.8 Recurrence plot

Recurrence plot (RP) analysis of nonlinear time series is a relatively new and ad-
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with ones and zeroes for states X; and X; and find the hidden periodicity in a time

series signal which is not observable by naked eye.

Rij = H(e — || Xi = X(]); (2.10)

where i,j run from 1 to the number of data points (M) in the signal. H is the
Heaviside function and [|.|| is the norm (Euclidean norm), € is the choice of the
threshold with 1 percent of point density in our case. A crucial parameter of RP is
the threshold e. Therefore, special attention has to be required for its choice. If €
is chosen too small, there may be almost no recurrence points and we cannot learn
anything about the recurrence structure of the underlying system. On the other
hand, if € is chosen too large, almost every point is a neighbour of every other
point, which leads to a lot of artefacts. For this case it was proposed to choose €
such that the recurrence point density is selected to be approximately 1 percent
[56] in our case.

According to Takens embedding theorem [69] using a time series data X; an
embedding can be made using the vector Y; = X, X;y,...X;(a—1)r which repre-
sents the original time series embedded into d dimensional phase space with 7

being the delay. RPs are graphical, two dimensional representations showing the
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in such a way that the sphere contains a predefined number of close states. The
diagonal line of length 1 means the segment of the trajectory is rather close during
| time steps to another segment of the trajectory at different time thus relating
these lines to the divergence of the trajectory segments. The average diagonal line

length is

L S IP)
S LPd)

Quantification of the characteristic measure for different structures appearing

(2.11)

in RP form a diagnostic tool known as recurrence quantification analysis (RQA).
For example, the RQA measure determinism (DET) [57] expressed in the following
equation 2.12 gives the ratio of the number of recurrence points in the diagonal

lines to all the recurrence points.

DET(t) = Szt 1P (2.12)
S P '

2.3.9 Bicoherency analysis based on empirical mode de-
composition

e Emperical mode decomposition
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and minima must have zero mean and (2) the number of extrema and the
number of zero crossings differ at most by one. The first condition assures
that the IMF is symmetric, and the second condition assures that no riding
waves of multiple frequency exist in an IMF. These two conditions ensure that
the IMF is monocomponent in frequency. Most of the experimental signals
are multicomponent in nature, i.e., there exist different scales simultaneously.
These signals can be considered as a superposition of fast oscillation with a
slow one at the local level. Therefore, we need to decompose these signals
into their inherent modes for the study of their basic structure. This EMD
approach is based on the local time scales, i.e., the detection of the local

maxima and minima.

Hilbert Huang transform and bicoherency analysis

The Hilbert Huang transform (HHT) proposed by Huang et al. [58] repre-
sents the signal being analyzed in the time-frequency domain by combining
the empirical mode decomposition (EMD) and the Hilbert transform. Hilbert

transform of a time series X(t) is written as
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the basic nonlinear modes of the system and examine their mutual inter-
actions. Since the IMF components are represented as Z(t) = Ae™® the
interaction among the IMF components can be studied by evaluating the

IMF bicoherency factor [123, 125], represented below

v = < Zi*ZH-lZH-? >
< AiAip1Aiyr >

(2.14)

where the angular bracket in equation 2.14 represents the time average.
This definition of EMD based bicoherency is especially suitable for satis-
fying the phase matching or coupling. The phase matching conditions are
such that the value < Z/Z;1Z; 15 > is 0 for random ¢;, ¢; 11, ¢;+2 and equal
to < AjA; 1A o > for ¢; = ¢i11 + ¢iy9 indicating v to be bounded between
0 and 1. Error in the value of bicoherency factor has been estimated by
calculating the number (N) of largest wave in the triplet i.e the number of 2
7. Here it is assumed that each wave period is independent implying N to

represent the number of ensembles with the value of error to be o = \/%N).

In order to reduce the error in estimating bicoherency factor we need more
number of 27 phases as the bicoherency is based on phase coupling. Having

contained very few number of 27 phases, higher no of IMF’s are not statisti-
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N=10000 is the data length in our experiment. Maximum range of i will be

log2(N).

2.3.10 Surrogate data: Delay vector variance, Rank test,
Zscore, Nonlinearity metrics, Structure function,
Phase coherence index

Several algorithms have been proposed to generate the surrogate data [34, 45] in the
literature. The most commonly used methods are: Random shuffled, Phase shuffied
and Iterative Amplitude Adjusted Fourier transform methods [89, 90] (IAAFT).
The method of surrogate data is introduced to test for the evidence of nonlinear
dynamics. Briefly, the idea is to construct, from an experimental time series, one
or more control data sets (surrogate data), which share with the original data
all the linear properties (in particular, the power spectrum and autocorrelation
function), but not the nonlinear properties. The method generally consists in ap-
plying the Fourier transform to the original data, followed by the randomisation
of phases, and then applying an inverse Fourier transform finally. For generating
phase randomised surrogate (PRS) the original data is decomposed into amplitude
and phases using the Fourier transform. The phases are then randomly shuffled and

from these two pieces of information in the Fourier space inverse Fourier transform



37

but are otherwise random. Then a certain measure, or discriminating statistics,
are obtained from both the original time series and for the surrogates. If the result
for the original time series deviates significantly from the distribution of the surro-
gates, the null hypothesis can be rejected. So the goal of generating the surrogate
data only is to establish the presence of nonlinearity by excluding a reasonable
alternative, called the null hypothesis. Nonlinear techniques using surrogate data
have found applications in the analysis of Laser data [91], Biomedical time series
(Heart rate variability, EEG, ECG , Hand Tremor [63]), Functional Magnetic res-
onance imaging time series (fMRI), Real world Signal like Wind data [62], Global

climatic data, Financial time series data [64].
2.3.10.1 Method of analysis: structure function, phase coherence index

When we attempt to obtain phase information from data, the Fourier transforma-
tion has been the starting point for this purpose. The Fourier transformation of a

time series x(t) is defined as

X(w) = /_ T X (et (2.15)

where w is the angular frequency which provides information on amplitude and
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ImX(w)

¢(w) = arctan RealX (@)

(2.16)

Hada et al., Koga [31, 30] introduced a method to evaluate the degree of phase
coherence among the Fourier modes quantitatively. From a given FPF we generate
two surrogate data followed by the decomposition of the original data (ORG) into
the power spectrum and the phases using the Fourier transform. We then randomly
scramble the phases keeping the power spectrum unchanged, and from these two
pieces of information in the Fourier space, we perform the inverse Fourier trans-
form to create the phase-randomized surrogate (PRS) whereas phase-correlated
surrogates(PCS) are generated by making the phases equal without shuffling the
Fourier phases. For a process or time series X = X; : ¢t = 1,2, 3...n the mth-order
structure function S(7,m) is defined in equation 2.17 as the mth moment of the
increments of X(t) following D Koga and Y.H .Su et al.[87] where m is the order
of the path length and 7 is the measure characterising the magnification level of
the curve. When the phases are correlated, the path length of the data tends to

be shorter (for PCS) than the case when the phases are random.

~ 7/ N | x» / . - N < / N\ | LN 4 e\
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_ Sprs(T) — Sora(T)
Sprs(T) — Spcs(T)

Cy(T) (2.18)

2.3.10.2 Delay Vector variance

Although many established methods in the field of nonlinearity already exist, there
is a need for a robust method which is straightforward to interpret and visualize.
The proposed delay vector variance method (DVV) [48, 88] endeavours to char-
acterise a time series by comparing the result to those obtained for the linearised
versions of the signal (surrogates). To be able to perform reasonably well on a wide
variety of signals, it is desirable that the method makes use of some well established
notions from nonlinear dynamics and chaos such as optimal embedding dimension,
phase space geometry. It is based upon the local unpredictability of a time series,
which is analysed in a standardised manner, and allows both for a straightforward
visualisation, and for a quantitative measure of the nonlinearities present in a time
series. Due to the standardization of the distance axis, these plots can be con-
veniently combined in a scatter diagram. The method employed first time in the
analysis of the fluctuations of glow discharge plasma system with the novel inten-

tion of identifying nonlinearity outperforms a number of established nonlinearity

o M s v I 2 i oo Tt e Tdadk A v 4T LT o ccvimcd it T T e ENOT
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time series data X; an embedding x(k) can be made.

For a given embedding dimension m, a measure of unpredictability o2, is

computed over all sets {2

A set Q is generated by grouping those delay Vectors (DV) following the
time delay embedding approach [69, 88] that are within a certain Euclidean
distance to x(k), which is varied in a manner standardised with respect to the
distribution of pairwise distances between DVs such that Q = X (4)|||X (k) — X (9)|| < 74.

This way the threshold scales automatically with embedding dimension m.

The mean, uy , and standard deviation o4 , are computed over all pairwise
Euclidean distance between DVs. For every set of original time series the
corresponding surrogates are generated. The average over all sets normalized
by the variance of the time series (0,) yields the measure of nonlinearity

presented in the following equation 2.19.

0_2 — (1/N) Z?:l 0-13 (219)

2
0%
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2.3.10.3 Traditional nonlinearity metrics

To undertake the performance comparison between the proposed DVV method
and other nonlinearity analysis methods, we have implemented two traditional
measures of nonlinearity, which have also been used in [33], namely the third-order

autocovariance, t“3(7) a higher order extension of the traditional autocovariance:

tCB(T) =< TpTp—7Tl—or > (220)

and a possible measure of the asymmetry due to time reversal ¢+7¢:

tH(1) =< (24 — Ty )® > (2.21)

Any time series is said to be reversible if its probabilistic properties are invariant
with respect to time reversal. 7 is a time lag which for simplicity and convenient

comparison is set to unity in all simulations.

2.3.10.4 Zscore

The surrogate data technique employed to find the presence of nonlinearity in

a time series data uses a discriminating statistics M for instance predictability,
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nonlinearity to estimate Z-score alternatively known as t-test, the expression of
which is given below in equation 2.22. The statistics is sensitive to the nonlinear
structure in the data set. It express how many standard deviation (sigmas) M of

the experimental data deviates from the average M for the ensemble of surrogates.

My~ M,

Os

Z (2.22)

In this formula My is the value of M for the experimental data, M is the mean
of M for the surrogate data and oy is the standard deviation of M for the surrogate

data.

2.3.10.5 Rank test

This is basically an application of the bootstrap method in statistics [14]. This
involves two ingredients: a null hypothesis against which observations are tested,
and a discriminating statistic. In the context of nonlinearity testing, the surro-
gates are a realisation of the null hypothesis of linearity. The null hypothesis is a
potential explanation that we seek to show is inadequate for explaining the data;
and the discriminating statistic is a number which quantifies some aspect of the
time series. Many nonlinearity analysis methods compare metrics obtained for the

original signal to those obtained for an ensemble of surrogates. If the metric of
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2.3.11 The Continuous Wavelet Transform (CWT)

Wavelet transforms (WT) [96, 97] expand time series into time frequency space
and can therefore find localized intermittent periodicity. We can have two classes
of wavelet transformation such as continuous wavelet (CWT) as well as discrete
wavelet transformation (DWT) but CWT is generally used for feature extraction
processes. The DWT is a compact representation of the data and is particularly
useful for noise reduction and data compression.

One particular wavelet, the Morlet [98], is defined as

W(s) = wie0se 2 (2.23)

where wy is the dimensionless frequency and s is the dimensionless time. We
restrict ourselves in using only Morlet wavelet due to its benefit of giving good
balance of time frequency localization. The CWT of the time series d(t) with

respect to the wavelet 1(s) is defined as

Wiap(sty) = d(t) = ¥(t) (2.24)

where t is time and (s) is the wavelet at the scale s (which is linearly related to
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to e=2 of the value at the edge. Here in our case CWT has been proved to be

extremely beneficial in exploring the origin of finite phase coherence index.

2.3.12 Detrended fluctuation analysis

The presence of nonstationarity permits us to carry out detrended fluctuation
analysis (DFA) [83] for the detection of long range correlations embedded in a

nonstationary time series data. Following the approach adapted by Peng et al. [80]

k
1=1

we first integrate the time series y(k) = >_° | [2(2) — Zinean] followed by the dividing
of the time series into boxes of equal length n. A least square line representing the
trend is fitted to the data. A y coordinate of the straight line segment is denoted by
yn (k) in each box. Next we detrend the integrated time series y(k) by subtracting
the local trend, y, (k) in each box. Root mean square fluctuation of this integrated

and detrended time series is calculated using the following

Fin) = | 5 S lk) — yalR)2 (225)
k=1

The process is repeated over all time scales to provide a relationship between

the average fluctuation as a function of F(n) and the box size n. In order to
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to alternate. Power law exponent values greater than 1 indicate the existence
of perfect correlated dynamics. Altogether the exponent can be viewed as the
roughness of the time series, the larger the value of coefficient o the smoother
will be the time series. Moreover by using the technique DFA we can detect the
existence of two scaling regions over two different regimes. The change in the values
of scaling exponent in different scaling region can be characterized as crossover
phenomena [80, 84]. A crossover usually arises due to changes in the correlation
properties of the signal at different temporal or spatial scales. The fairly robust
and powerful technique DFA is used to capture the crossover phenomena for the

first time in the fluctuation acquired from DC glow discharge plasma.



Chapter 3

Investigation of complexity
dynamics of inverse and normal
homoclinic bifurcation in a glow
discharge plasma
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3.1 Introduction

Bifurcation analysis[6] comprises an important part of nonlinear dynamics since it
can elucidate very clearly the behaviour of the system for a small change in the
value of the control parameter. The qualitative changes in the dynamics of the
system with the change in the control parameter values are generally classified as
bifurcation and the parameter values at which they occur are called bifurcation
points. Bifurcations are important scientifically as they provide models of transi-
tions and instabilities when some control parameter is varied. Amongst the several
types of bifurcations, homoclinic bifurcation[101] is one in which the system can
go from a chaotic to a seemingly ordered state, wherein the time period (T) shows
a scaling behaviour with control parameter [100]. Though homoclinic bifurcation
with relaxation oscillations have been observed in chemical[99] and plasma[101]
systems, the inverse homoclinic bifurcation[102] has not been very commonly ob-

served.

In this chapter we report for the first time the experimental observation of in-
verse homoclinic bifurcation in the floating potential fluctuations with increase in
discharge voltage (DV). It continues to stay in this mode for a wide range of DV’s

and later results in a homoclinic bifurcation. In order to comprehend the complex
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FIG. 1. Schematic diagram of the experimental setup.
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Figure 3.1: Experimental setup for glow discharge plasma

A numerical modelling of the experimental observations has been attempted
using a forced nonlinear dynamical equation representing the temporal dynamics
of ion acoustic oscillations in presence of ionization and recombination terms. The
experiments were carried out in a cylindrical hollow cathode (length=10cm, ra-
dius=>5.5cm) DC glow discharge argon plasma as elaborately discussed in chapter
two with a typical density and temperature of ~ 107 /cm? and 2-6 eV respectively.
In our experiment as depicted in Fig. 3.1 keeping the operating neutral pressure
fixed at 0.49 mbar, DV was varied in the range from 412 to 700 volts. An unbiased
Langmuir probe was used to obtain the floating potential fluctuations acquired

with a sampling time of 1075 sec.
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Figure 3.2: Sequential change in the raw signal at 0.490 mbar for different
DV(volts): (a) 412V (b) 429 V (c) 436V (d) 440V (e) 446V (f) 451V (g) 453V
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it is clear that at DV~ 412 volts, there is only one peak and as DV was increased
three peaks were observed at 429 volts. Subsequent raising in the DV increases
the number of spikes until it became chaotic around 495 volts as seen in Fig 3.2n.
This chaotic phase persists upto about 549 volts (Fig 3.3q) disappearing at about
565 volts (Fig 3.3r) leading to relaxation oscillations of increasing time period in-

dicating homoclinic like bifurcation.

A comprehensive analysis of the amplitude bifurcation plotted with the peak
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Figure 3.3: Sequential change in the raw signal at P=0.490 mbar for different
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Figure 3.5: (a) Time period vs discharge voltage and (b) In(T) vs In(DV) showing

the exponents

in region C. This diagram offers a good insight into the mechanism of system dy-

namics going from order-chaos-order.

Fig 3.5a initially shows a decrease, followed by an increase in the time period

(T) with DV, and both of them approximately have an exponential behaviour. In

Fig 3.5b we have plotted In(DV) vs In(T) which follows power law behaviour with

exponents of ~ 2.2 and -24 respectively for the homoclinic and inverse homoclinic

bifurcation. The negative scaling represents the inverse homoclinic while the pos-

6.7
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Figure 3.8: Contour Plot of Fourier spectrum with variation in discharge voltages

3.3 Power Spectral Analysis

Power spectral analysis was carried out on the raw data as shown in the Fig 3.7.

Initially most of the frequencies were concentrated below 100 Hz in Fig 3.7(a-k),

but around DV ~ 514 volt a broad band turbulence is observed with the peak

frequency shifting towards 1.5 kHz. With further increase in DV it shrinks back
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3.3.1 Correlation dimension, Lyapunov exponent, Renyi
Entropy
Correlation dimension which is normally estimated from the Grassberger and Pro-
caccia technique[107] gives some idea of the complexity of the system. The method
of estimating correlation dimension is explained comprehensively in chapter 2 in
equation 2.2. In this paper we have estimated the same using Gaussian Kernel
Algorithm(GKA)[105] developed by Diks[106]. This method has some advantages
that it is computationally faster and useful in handling noisy time series data which
is very common to experiments. As a test case we have shown in Fig 3.10 that a
plot of the correlation dimension for DV~ 549 volt saturates towards an average

value of 2.6 estimated over the embedding dimension m=7-11, suggesting low di-
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Figure 3.12: Amplitudes of the numerical solutions with the variation in A and
their corresponding phase space plots
using Rosenstein’s technique[53] which shows a similar behaviour to the correlation

dimension.

Renyi entropy [8], an explicit measure of the complexity of the fluctuations has
been discussed in detail in chapter 2 of equation 2.7 which is obtained from the
Shannon entropy in equation 2.6. In Fig 3.11c we have plotted the values of the
Renyi entropies (R) of order 3 with the DV. We observe that the ordered states
have low entropy values whereas the chaotic states have higher entropy values. R

values also follow that of CD and LLE indicating order-chaos-order.
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the temporal dynamics is governed by the following second order nonlinear ordinary
differential equation given by equation 3.2 where x denotes the floating potential
fluctuations, and the derivatives are normalized with respect to time by wg where
wop is equal to kcg . k is the wave number and ¢, denotes the ion acoustic speed
with the form given below.

2 _ kBTe

S

(3.1)

my;

T, and m; represent respectively the electron temperature and ion mass. Here
a, b, ¢ and e denote the collisional, the recombination and ionization effects respec-
tively. In the limit a, b, ¢ and e — 0, we recover the usual ion acoustic oscillations
from the equation 3.2 when the forcing terms on right hand side is zero.

In order to investigate the behaviour of the nonlinear oscillations in the presence
of an external discharge voltage, we include an additional term A on the right hand
side of equation 3.2 that is considered to represent the DV. Although there is no
explicit externally applied oscillatory voltage in the present experimental system,
we consider the situation where many normal modes are generated within the
plasma. Therefore, We have also included a harmonic forcing term A - f coswt
along with the term that represents the DV. During the course of variation of

diescharce voltace the plasma modes are alco infAiienced in <uich a wav <o as to
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two-body recombination, three-body recombination term. o, A and p are positive.
w is the frequency of the external forcing and f is the amplitude of the forcing term

(coswt). mg represents the unperturbed electron density.

In this work, we have assumed a = b = ¢ = 0.1, f = 0.55, w = 1, with the
assumption that discharge voltage directly influences the ionization term, so that
we consider e(A) = A. Fig 5.13a shows the relaxation oscillations at various val-
ues of the discharge voltage and the corresponding phase space plots are shown
in Fig 5.13b . At A = —0.6, we observe a limit cycle oscillation, which becomes
chaotic around A = —1.2 as clearly observed from the corresponding phase space
plot. Further increase in the absolute value of A(~ -3.8, -5.4, -6.3) leads to limit
cycle oscillation (relaxation oscillations) whose period increases (i.e the number of
peaks decreases) with increasing A. With f = 0, it is observed that the model ex-
hibits oscillations whose time period increases with increase in A (absolute value).
However, with non-zero values of f, homoclinic bifurcation was observed along
with the occurrence of chaos for a very narrow range of values of A. This is in
agreement with the second regime of experimental results where the increase in
the discharge voltage shows distinct chaotic oscillations followed by the increase

in the time period of relaxation oscillations. As the values of A(—3.8,5.4,—6.3)
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need of incorporating the forcing term which is thought to be mimicked by the
self excited oscillations in the plasma. With the addition of such terms, we obtain
fluctuation that display chaos and our numerical modelling exactly imitates the

experimental findings.

3.5 Conclusion

We have investigated the appearance of inverse and normal homoclinic bifurcation
and the associated complexity dynamics in the fluctuations of the glow discharge
plasma system. The understanding of the role of nonlinearity in the plasma dy-
namics is quite a challenging job as it arises from many degrees of freedom as well
as different sources of free energy, different types of wave-particle interaction, and
growth of instabilities. The complex dynamics in the signals has been explored
by estimating respectively the Lyapunov exponent, correlation dimension, Renyi
entropy etc. Gaussian Kernel Algorithm is not only computationally faster algo-
rithm but also provides a reliable estimation of the correlation dimension. The
estimation of Renyi number conforms well with the observations of complexity in
the fluctuating data. Though results on homoclinic bifurcation showing chaos to

order have been reported before, to the best of our knowledge, this is the first
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sustain the discharge current, and once sufficient current flows in the system, an-
ode glows become smaller in size [22, 23]. The primary phenomena behind the
oscillations are ionization instabilities, which happens to lie in the range of ion
acoustic frequencies. Such frequencies are also observed experimentally. We have
also noted that ordered to chaotic state driven by a driving force (DV) as a form a
input energy to the system tends to be stabilized by homoclinic bifurcation. An-
other way of looking at the transition is that at higher values of DV some modes
get higher energy to become dominant one resulting in the suppression of other
modes so that the chaotic state disappears and the system enters into ordered
state. This is same as saying that energy transfer occurs toward modes which are
linearly stable. Although homoclinic bifurcation could be observed in the numeri-
cal model without the harmonic forcing term, the later was found to be responsible
for driving the system through chaotic oscillations before the system began to dis-
play an increase in the time period of the relaxation oscillations. The study of this
kind of bifurcation can be an useful for understanding the behaviour of bursting

oscillation[24].
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Chapter 4

Investigation and quantification of
nonlinearity using surrogate data
in a DC glow discharge plasma

In this chapter detection of nonlinearity has been carried out in periodic and aperi-
odic floating potential fluctuations of DC glow discharge plasma (GDP) by generat-
ing surrogate data using iterative amplitude adjusted Fourier transform (IAAFT)
method. We introduce ‘delay vector variance’ analysis (DVV) for the first time
which allows reliable detection of nonlinearity and provides some easy to interpret
diagram conveying information about the nature of the experimental floating po-
tential fluctuations (FPF). The method of false nearest neighbourhood (FNN) is

deployed on the FPF’s to find a good embedding so as to be acquainted with the
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4.1 Introduction

In our previous chapter we have explored the complexity dynamics of the floating
potential fluctuation in the two regimes of our observation (normal, inverse homo-
clinic) by estimating some statistical parameters with increasing discharge voltage
(DV). In this chapter we have carried out qualitative and quantitative aspect of
nonlinearity on floating potential fluctuations (FPF’s) acquired under two different
values of pressures (P=0.056, 0.085 mbar) for increase in DV. In the context of
nonlinearity, substantial amount of research work is going on to elucidate the role
of nonlinearity [111], predictability [112] from various areas of science like neu-
roscience, physiology [113] and earth science [3] and especially in plasma physics
[28]. The effect of nonlinearity is manifested as hysteresis[114], wave breaking [115],
chaos and turbulence [116] and different kinds of coherent structures like solitons,
shocks [117]. Hence it becomes important to verify the existence of the underlying
nonlinear processes that convey information concerning the absence or presence of
nonlinearity. Sudeshna et al. [118] have observed the phenomena of hysteresis in
amplitude and frequency bifurcations of floating potential fluctuations in a glow
discharge plasma. In the context of plasma discharges, Flanagan and Goree[27]

identified the nonlinearity resulting from spatial growth of self-excited dust-density
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knowledge of an appropriate embedding dimension of our glow discharge plasma
system is required, which is estimated by means of a well known method called false
nearest neighbour (FNN) [50]. DVV analysis has been introduced in GDP both in
qualitative and quantitative ways to ensure a comprehensive characterisation of a
time series by taking into account different properties namely time delay embed-
ding, phase space geometry [106], surrogate data technique. The application of
this proposed method (DVV) is concerned with detecting and analyzing nonlinear
properties of a time series in order to yield a standardized characterisation of that
time series that examines the local predictability over different scales. As we are
already aware of the artefact of Phase randomised method (PR) for periodic data
[94], we have tried to compare the results produced by IAAFT and PR method.
Our TAAFT method proves to be extremely reliable in producing surrogate data
for DVV analysis.

Experiments were performed under two different pressures (P=0.056, 0.085
mbar) by applying increasing DV. An unbiased Langmuir probe was used to obtain
the floating potential fluctuations acquired with a sampling time of 2 10~7 sec for

P=0.085 mbar as shown in the schematic diagram of 3.1 in the previous chapter.

4.2 Floating potential fluctuation, power spec-

-1 - Y. .
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spectra. The range of frequencies as observed from the power spectrum are seen to
lie from 4.5 kHz to 12 kHz indicating the presence of ionization instabilities. The
fluctuations exhibit two periods for DV=337, 341, 350, 355 volt with the dominant
frequencies being 8.5, 7.5, 1, 5.5 kHz for the above values of DV respectively. Fig
4.2 displays the variation of dominant frequencies (the frequency which has max-
imum power) which seem to vary in the range from 5.5 kHz to 12.5 kHz for the
entire range of DV until the chaotic oscillations set in having frequencies in the

range of 1.5 kHz to 7.5 kHz. Further increase in DV results in 3-period oscillations.

We present in Fig 4.3 a sequential change in FPF at P=0.056 mbar of gas
pressure by varying DV ranging from 320 volt to 410 volt. Initially the oscillations
are observed to be quasi-periodic in nature but the enhancement of DV makes the
oscillations chaotic. Power spectral analysis (in Fig 4.4) carried out on the raw
data shows that at the initial value of DV most of the frequencies are concentrated
below 400 Hz but with the increase in DV, nonlinear interactions between different
frequency components give rise to chaotic fluctuations as seen by the appearance

of broad band of frequencies.

4.3 Dimensionalitv analvsis
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Fig 4.5) and it almost remains at that value upto DV=328V. Further increase
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4.4 Analysis with the surrogate data

Surrogate data as already discussed in chapter two are time series constructed from
an experimental time series in such a way that they share all the linear properties
(power spectrum and autocorrelation function) with the original data.

The goal of generating the surrogate data [71] is to establish the presence of
nonlinearity by excluding a reasonable alternative, called the null hypothesis. We
have shown here in the left and right panels of figure 4.6 the power spectrum and
autocorrelation function given in equation 2.9 of chapter two obtained from both
the original as well as surrogate time series (P=0.085mbar) respectively. Their

identical nature leads to the conclusion that both of them bear the same linear

100
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Figure 4.8: Plot of Renyi entropy of original time series along with its surrogates
for P=0.085 mbar

Left panel of Figure 4.7 shows probability distribution of original data and the
surrogate data generated by Phase randomization technique whereas right panel
of the Figure 4.7 depicts the probability distribution for the original as well as
TAAFT surrogate. Abscissa X in Figure 4.7 denotes the number of bins created
and frequency of X in the ordinate stands for the no of points falling in the bins.

Generally a test statistics is said to be pivotal [34] if it follows the same prob-
ability distribution with that of the surrogate. The histogram obtained from the
IAAFT surrogate, as shown in the right panel produces a distribution identical
with that of the original. So it can be referred to as pivotal whereas the histogram
generated by PR surrogate is known as non-pivotal distribution.

In figure 4.8 we have plotted the Renyi entropy(R)[120, 54] for original as well
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method is more accurate and reliable as compared to PR method.

4.5 Delay vector variance analysis

The method delay vector variance (DVV) is employed for the first time in the
glow discharge plasma system with the novel intention of identifying nonlinearity.
Due to the standardisation within the algorithm, the method is robust to the pres-
ence of noise. The approach for the calculation of DVV is elaborately discussed
in Chapter two. The measure of nonlinearity following this approach is given in

equation 4.1.

02 (1/N) Zévzl 0-13 (41)

= p

where 02 and o2 denote the variance of the surrogate and original time series
respectively . If the DVV plots obtained from surrogate time series are similar with
that of the original series or in other way if the scatter diagram coincides with the
bisector line, the original time series can be supposed to be linear. The deviation
from the bisector line is thus an indication of nonlinearity as already enlightened

in the data analysis procedure under the section delay vector variance (DVV).
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Table 4.1: Results of the rank test of nonlinearity with varying DV for P=0.056

mbar
DV thev DVV
320V 36 31
328V 40 45
344V 46 45
365V 43 44
372V 50 50
384V 50 50
395V 50 50
402V 50 46
410V 48 48
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Figure 4.10: Contribution of the sum of power in different DV (in volt) for P=0.056
mbar

hypothesis for nonlinear quantities like time reversal % [88] (equation 2.21), DVV
[48]. The rejection of null hypothesis for a right tailed test with 49 surrogates is

satisfied when the rank of the original test statistics is computed to be 50.

We see that an increase in the degree of nonlinearity corresponds to the de-
viation from bisector line. Due to the standardisation of the distance axis, these
plots can be conveniently combined in a scatter diagram, where the horizontal axis
corresponds to the DVV plot of the original time series, and the vertical axis cor-
responds to that of the surrogate time series. The error bars indicate one standard

deviation from the mean of o2. Initially at DV=320, 328 V scatter plots almost lie
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which is also corroborated by the rank test.

In a rf dusty plasma experiment, Flanagan and Goree [27] have studied non-
linearity in a naturally occurring dust density wave using neutral gas pressure as
the control parameter, with the nonlinearity indicated by the presence of harmon-
ics and quantified by total harmonic distortion. In the present work involving dc
glow discharge plasma, the measure of nonlinearity is estimated by comparing the
total power present in all frequencies normalized by the power in the frequency
carrying maximum power. For this method we have selected power or energy that
is within 10% of the maximum frequency range and eliminate the power which is
below that range. The accumulation of the power or energy lying in the range of
frequencies other than the power which is carried by the most dominant frequency
(the frequency of maximum power) can be thought to be attributed to the presence
of nonlinearity. We have plotted the normalized power against one of the control
parameters DV in Fig 4.10 and the maximum power occurs at DV=372 volt where
the deviation from the bisector plot becomes maximum in our DVV scatter plot
(Fig 4.9). With further increase in the values of DV, normalized power goes on
decreasing and finally it attains a very small value at DV=410 volt. This is also

confirmed by the DVV analysis as well as by rank test as depicted in Fig 4.9.
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Table 4.2: Results of the rank test of nonlinearity for P=0.085 mbar
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tfev and DVV is far below the expected value for satisfying the criteria for the
rejection of null hypothesis. The power spectrum for this pressure as shown in Fig.
4.1 exhibits a sparse nature in contrast to the spectrum obtained at P=0.056mbar
making it unfavourable for the study of nonlinearity using the total power present

in the different frequencies.

4.6 Conclusion

To summarize, we have been able to explore nonlinearity of two sets of experimen-
tal time series data for increasing DV, by DVV analysis, rank test, and also from
the accumulation of total power or energy within the observed frequency range.
The appearance of nonlinearity in the fluctuations of a glow discharge plasma has
been investigated by producing a number of surrogates that reject null hypothesis.
Presence of nonlinearity is seen to be prominent at low pressure in view of the
decrease in collisional frequencies. Due to nonlinear interactions, different types of
waves inherently present in the glow discharge system such as ionization instabili-
ties give rise to different frequencies that are excited at P=0.056mbar. The DVV
scatter plots for P=0.085 mbar reveal no signature of nonlinearity as also indicated

in the analysis using power spectrum. At this higher pressure, the dominant fre-
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insight in revealing the aspect of nonlinearity. The nonlinear effects obtained from
DVV plots turn out to be almost similar with the analysis based on accumulation
of power and rank test confirming the robustness of the methods. Such statistical
analysis techniques based on delay vector variance, rank test coordinated with con-
ventional data analysis tools in plasma like power spectrum, wavelet analysis can
be immensely beneficial for the quantification of nonlinearity inherently present in

plasmas.



Chapter 5

Evidence of nonlinearity in
presence of external forcing and
magnetic field in a glow discharge
plasma

The previous chapter was devoted to the study of nonlinearity by introducing delay
vector variance method based on the surrogate data technique for increasing DV.
This chapter also investigates the evidence of nonlinearity for externally applied
sinusoidal forcing as well as magnetic field by implementing different statistical
analysis techniques likewise delay vector variance, Zscore. An estimate of the Zs-

core helps in detecting the presence of nonlinearity in a somewhat quantitative
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5.1 Introduction

Plasma effects are finding ever increasing applications in astrophysics, solid state
physics, physics of gas discharge and research on plasma confinement and heating.
Plasmas are intrinsically nonlinear whose effects manifest in the form of various
exotic structures such as double layers [121], solitons, vortices, different types
of waves, instabilities and turbulence [13]. Glow discharge plasma being rich in
high energy, electrons and ions are capable of exhibiting many such nonlinear
phenomenon [122, 118, 8]. GDPs and their counterparts like magnetrons [39]
are widely used in industrial applications and hence characterizing them through

nonlinear techniques can help in improving their performances.

It is for the first time in GDP system that we deploy some new well estab-
lished nonlinear techniques like Zscore[94], bicoherency analysis[123], Delay vector
variance (DVV) method [88] to explore nonlinearity by creating surrogate data.
Delay vector variance analysis resting on the theory of time delay embedding and
discussed also in the previous chapter has been implemented on both experimental
and numerical results. In the context of externally excited system Koepke et al.[18]
have identified a periodic nonlinear interaction between pairs of self-excited, prop-

agating, ionization waves simultaneously present in the positive column of a neon
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a magnetized thermionic plasma discharge have been investigated by Klinger et al.
[26]. Investigation of nonlinearity using harmonic detection method [27, 8, 28] has
been performed in RF discharge and glow discharge plasma respectively. Although
a comparative study of magnetized and unmagnetized plasma oscillations has been
conducted [124] in a direct current (DC) glow discharge plasma, the qualitative
and quantitative measure of nonlinearity has been performed first time in our
work by varying the forcing amplitude, frequency and magnetic field. Through the
study of bicoherency analysis we gain information about the interaction amongst
different modes obtained after performing empirical mode decomposition analysis
[123, 125]. If the characteristic measure of original time series are significantly
different from those for the surrogate data [126], the null hypothesis that the data
can be described by linear stochastic model can be rejected.

The study of nonlinearity was carried out under two different conditions (i)
application of magnetic field (ii) forcing the system by using an external oscillating
electric field (Fig 2.1). An unbiased Langmuir probe was used to obtain the floating
potential fluctuations acquired with a sampling time of 0.2 s, 0.5 s respectively for
1, 1.5 kHz frequency. For two values of w (1, 1.5 kHz), forcing amplitude (A) was
varied from 0.2V (min) to 8V (max) to study the effects of external forcing on

the system. The magnetic field was varied from 15 to 105 Gauss (G) for these
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5.1 keeping discharge voltage (DV) fixed at 343 volt and went on increasing the
amplitude of forcing (A). Initially at low amplitude of forcing (A=2V) the position
of the peaks in power spectrum plot shifts to 4.5 and 8.5 kHz depicted in the right
panel of Fig 5.1 and in Fig 5.2. Subsequent raising in the value of A=5V, the
system undergoes a transition from double period to 3 period fluctuations with
the appearance of a new peak at 1.5kHz frequency. Further increase in the value
of A results in generating new peaks at frequency of 5.5, 9.5kHz. The amplitudes
of the peaks generated donot linearly increase with increase in the value of forcing

amplitude (A).

A three dimensional analog of the Fig 5.1 is also presented in the form of con-
tour plot in figure 5.2 with colour axis representing the power. We have carried
out another set of experiment for P=0.180 mbar by pacing the plasma in the peri-
odic regime with the 1.5 kHz frequency. The amplitudes of the power at different
values of forcing amplitude (A) are plotted in the right panel of figure 5.3. For
initial increase in A upto 3V only the frequencies of the dominant peak (peaks
carrying maximum power) exist with the addition of 1.5 kHz frequency. Subse-
quent increase in A results in adding new frequencies (3, 3.7, 3.1 kHz) for A=4.6,

5.4V apart from the dominant one and the frequency by which we are pacing the

. - P - e~ v —— P P — -
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strengths 0, 15, 30, 60, 90, 105 Gauss

seem to increase as indicated by the appearance of broad band which is thought to
be emerged due to the nonlinear interaction between the frequencies generated .
At a very high value of magnetic field of B=105G, we obtain the frequencies lying

in the range upto 4 kHz.

As already illustrated in chapter 2 by equation 2.1 and 2.2 correlation dimension
(CD) is defined as the dimensionality of the space occupied by the points of that

time series. The estimation of CD requires the proper knowledge of embedding

4000
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Figure 5.5: Correlation dimensions of floating potential fluctuations shown for
increasing magnetic field
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Figure 5.6: Plot of Zscores of Renyi entropy, E, statistics for different values of B
and A

5.3 Nonlinearity analysis with Zscore based on
the surrogate data
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mean of M for the surrogate data and o, is the standard deviation of M for the
surrogate data. The left panel of figure 5.6 displays the Zscore values of renyi
entropy, F, statistics for increasing magnetic field whereas right panel exhibits
Zscores of the same quantity for increasing A. At B=90 Gauss, ZF, and ZRe
surges appreciably followed by the jump to a value 1.88 and 1.16 respectively at
B=105 Gauss. Increase in the values of B is observed to have prominent effect in
increasing ZFE, and ZRe implying the rejection of null hypothesis at B=90, 105
Gauss.

Z E, and ZRe values are observed to be too low initially at A=0 volt i.e without
forcing. Increase in forcing amplitude (A) results in the increase in ZE, and ZRe
values as observed from the right panel of Fig 5.6. Further increase in the values
of A does not enhance the values of ZF, and ZRe indicating the fact that increase

in A has less effect in increasing nonlinearity.

5.4 Nonlinearity analysis with delay Vector Vari-
ance analysis, rank test for increasing forcing
and magnetic field

The proposed DVV method already introduced in the previous chapter nicely

orchestrate the aim of exploring nonlinearity for increasing DV in glow discharge
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an increase in the degree of nonlinearity corresponds to the deviation from bisector
line. Horizontal axis of the DVV scatter diagrams corresponds to the DVV plot of
the original time series, and the vertical axis corresponds to that of the surrogate
time series with the error bars indicating one standard deviation from the mean

2

of 0°. For portraying the DVV scatter plots we put the embedding dimension

computed from the FNN method[49].

DVV scatter diagrams obtained from the figure 5.7 for magnetic field indicates
that initial increase in magnetic field (B) have less effect in increasing nonlinearity
whereas at higher value of B=90 Gauss nonlinearity increases appreciably and at
B=105 Gauss we observe prominent deviation from bisector line. So increase in
magnetic field appears to have significant effect on nonlinearity as ensured from

the quantitative estimation of Zscores in Figure 5.6.

At A=0 i.e without forcing the first DVV scatter plot does not display any
nonlinearity but the application of forcing at A = 2V causes the DVV scatter
plot to deviate from the bisector line. Further increase in the value of A does
not produce more deviation from the bisector line with the deviations remaining

almost same at A = 3,5,6V. The interesting fact is that the maximum value of
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Table 5.1: Results of the rank test of nonlinearity with varying magnetic field (B)
for P=0.085 mbar

B Zscore DVV
0G 32 29
30G 38 42
60G 46 48
90G 50 50
105G 50 50

rank test in order to be enlightened with both the qualitative and quantitative as-
pect respectively. Table 5.1 represents the rank test for detecting the rejection of
null hypothesis for Zscore, DVV. The rejection of null hypothesis for a right tailed
test with 49 surrogates is satisfied when the rank of the original test statistics is
computed to be 50 and the null hypothesis is rejected to satisfy the presence of
nonlinearity at higher value of magnetic field. In a rf dusty plasma experiment,
Flanagan and Goree[27] have studied nonlinearity in a naturally occurring dust
density wave using neutral gas pressure as the control parameter, with the non-
linearity indicated by the presence of harmonics and quantified by total harmonic
distortion. In the present work involving externally excited DC glow discharge
plasma, the measure of nonlinearity is estimated by comparing the total power

present in all frequencies normalized by the power in the frequency carrying max-
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power is seen to increase with B with the maximum power occurring at maximum
value of B where the deviation from the scatter plots also becomes maxima along

with Zscore.

The effect of the external sinusoidal forcing on the plasma lying in the periodic
regime is viewed in terms of the generation of the frequencies and interactions
amongst them. As already discussed above that we have paced the system with
sinusoidal signal (by function generator) of frequency (f)=1 kHz without apply-
ing any magnetic field keeping the plasma in a period 2 regime (P=0.085mbar)
with frequencies of 4, 8 kHz termed as (fo1, fo2). The frequency spectrum shows
peak at frequencies of 4.5 and 8.5 kHz (fo1 + f/2, foo + f/2) for A=2V. When
the perturbation amplitude (A) is changed to 5V, in addition to the frequencies
of (for + f/2, foo + f/2) a new frequency of 3f/2 is generated which is only due
to the external frequency applied by function generator. Subsequent increase in
A generates frequencies of (fo1 +3f/2), foo +3f/2) and the nonlinear interaction
between the frequencies are thought to have attributed to various statistical fea-
tures obtained from DVV plots, Zscore and bicoherency analysis. The amplitude
of the peaks with frequencies does not linearly increase if we keep increasing the

value of our forcing amplitude (A). The plot of the total power divided by power
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Figure 5.9: Contribution of the sum of power with different B (in Gauss)

are perturbing the plasma.

5.5 Results with bicoherency analysis

After performing the emperical mode decomposition a nonlinear technique (de-
scribed in chapter two), introduced by N.E. Huang et al. for the analysis of non
stationary and nonlinear signals on the FPF’s we are left with intrinsic mode func-
tions (IMF’s) represented in the form of Z;(t) = A;eU?®%) where A = /(X2 + Y?2),
¢ = arctan(Y/X) are the amplitude and instantaneous phase angle respectively
and Y is obtained by taking the Hilbert tranformation on the signal X. We then

continue to investigate the interaction between the different modes by estimating
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Figure 5.12: Unwrapped phases of IMFs a) Forcing b) Magnetic Field

to A=2, 3 Volt whereas we have interactions amongest 5-7 IMF's corresponding to
A=4 volt. The triplet interaction between the modes are explored in terms of the
interaction between the frequencies 15, 8.4, 5.09 kHz in figure 5.12a obtained from
the slope of curve as w = %. The interaction between the modes again disappears
at higher value of A=6 volt shown in Figure 5.10e which consolidate our DVV

analysis.

Portrayed in Figures 5.11 a-e are the effect of increasing magnetic field on the
interaction between the modes. The triplet interaction between the modes goes
on increasing as we increase B upto 105G. At the intermediate value of B=60G
Fig 5.11c reveals the interaction amongst 7-9 IMFs. Finally at B=105G 4th-6th

IMFs in Fig. 5.11 d are seen to remain above the error value, so we take into

04
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5.6 Numerical Modelling

In order to understand the experimental observations, i.e the system dynamics in
presence of forcing, we have used the analytical model developed by Kadji et al
[108, 128] based on two fluid equations in the presence of source term representing
the effects of ionization and recombination. In this chapter we include a term rep-
resenting the applied external sinusoidal forcing in the right hand side of equation

5.1 along with the term A which is considered to serve the role of DV .

b
i+ (a+e+br+crt)i 4z +aler + §x2 + §x3) = A+ Fcoswt (5.1)

where = ny/ng; a = v/wy; e = ajwy; b = 2Ang/wo; ¢ = 3und/we; and v, «,

o
g
[

o

o oo

=)
o
o
=
=
w”
[N}
|
-

=)
[
S T
|

—
o1

|

-
o

|

o1
o
v
=
o
=
o1



95

at t=0 . The parameters a, b, ¢, e are assumed to take the following values a=0.10,

b=0.08, c=0.06, e=-4.5.

Fig 5.13a shows the time series obtained by solving equation 5.1 at different
values of F=12.4, 13.2, 13.4, 14.2, 14.6 keeping A, e fixed at the values of 6 and
-4.5 respectively and the corresponding phase space plots are shown in Fig 5.13b.
At F=12.4 time series exhibits two period relaxation oscillation with one of the
period being less dominant than the other. At F=13.2 we can observe prominent
two period oscillation followed by the emergence of three period oscillation at
F=13.4, 14.2. Further increase in F leads to the oscillation having more than 3
periods. This is in agreement with our experimental result where we have obtained
our result by increasing the amplitude of forcing keeping DV fixed. Increase in the
value of F keeping c¢ fixed in our simulation is analogous to the increase in A with

the DV being fixed in our experiment.

5.6.1 DVYV analysis for simulated data

Now we proceed to apply our DVV method on numerically simulated data de-
picted in Figure 5.13 and compare it with our experimentally obtained DVV plots

portrayed in Figure 5.8. DVV scatter plots of the Figure 5.14 are generated by
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that DVV plots at the extreme right will converge to unity since for the maximum
span all DVV’s belong to the same set and o2 of the surrogate will become equal
to that of original time series which is reflected in Fig 5.15 where we have plotted
variance o2 against the standardized distance for F' = 13.4 and the plot is observed
to converge at unity. The convergence of the DVV plots at the extreme right is

ensured by keeping the span parameter in our simulation at appropriate value.

5.7 Conclusion

We have explored the feature of nonlinearity in an experimental time series data
obtained in the FPF’s of GDP for various values of external forcing as well as
magnetic field (B) by DVV, Zscores, bicoherency analysis. The experimental DVV
plots have been compared with those obtained from the numerical model depicting
ion acoustic fluctuation in presence of ionization and recombination effect. Pacing
the plasma kept in the periodic regime with a sinusoidal frequency chosen below
the dominant frequency, we are able to get additional frequencies apart from the
dominant one and the one by which plasma is driven. However, the sparse nature
of power spectrum is thought to contribute less to the emergence of nonlinearity

which is also ensured by the DVV scatter plot applied on experimental as well as
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to interaction and the accumulation of power lying in this frequencies are believed
to contribute to the deviation in DVV scatter plots. Between every collision in
strong magnetic field the plasma particles traverse a distance on the order of Lar-
mor radius. The increase in magnetic field have effect in confining the charged
particles by hindering the random motion with the wall. The diffusion coefficient
can be estimated in terms of the mean free path length and collision frequency.
An increase in the magnetic field strength reduces the collision frequency lead-
ing to an increase in the ionization in the plasma. These effects are thought to
contribute to the emergence of nonlinearity in plasma which are missing in the
absence of the magnetic field. The reason motivates us to explore the feature of
nonlinearity by DVV, Zscore as well as by bicoherency analysis. The complexity
of the system is observed to increase while increasing the magnetic field as verified
from the increase in correlation dimension. The nonlinear effects obtained from
DVYV plots corroborate with the analysis based on accumulation of power and rank
test, bicoherency, and quantitative estimation of Zscore confirming the robustness
of all the methods. The results acquired with the bicoherency analysis featuring
the interaction between the modes with the application of magnetic field are con-
sistent with the DVV scatter plots and the values of the instantaneous frequencies

which eventually fall in the range of some known frequencies of the system like ion
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beyond 1. Here we have considered the limit of 30 as error estimation, hence the
maximum theoretical limit of error can be 3. Thus when the error crosses the value
1 for nth IMF, any IMF beyond the nth IMF is not statistically suitable for per-
forming bicoherency analysis. We have at last carried out numerical modelling for
which resembles the experimentally obtained system dynamics. Nonlinearity of the
numerically obtained solutions have been investigated with the DVV method and
we compare it with our experimental DVV scatter plots ensuring the robustness
of the method. The results obtained using numerical modelling show a qualita-
tive agreement with the experimental observation which is taken in the spirit of

motivation only.



Chapter 7

Quantification of scaling exponent
with crossover type phenomena
for different types of forcing in
DC glow discharge plasma

This chapter covers a detailed study of the scaling region using detrended fluc-
tuation analysis test by applying different forcing such as noise, sinusoidal and
square signals on the floating potential fluctuations (FPF) acquired under two dif-
ferent pressures in a DC glow discharge plasma. The transition in the dynamics
is observed through recurrence plot techniques which is an efficient method to ob-

serve the critical regime transitions in dynamics. The complexity of the nonlinear
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at P=0.12mbar only one dominant scaling region is observed whereas the forc-
ing applied on fluctuation (P=0.04mbar) two prominent scaling regions have been
obtained using different forcing amplitudes indicating the signature of crossover
phenomena. Furthermore a persistence long range behaviour has been observed in
one of these scaling regions. A comprehensive study of the quantification of scal-
ing exponents has been carried out with the increase in amplitude and frequency
of sinusoidal, square type of forcings. The scalings exponent is envisaged to be the
roughness of the time series. The method provides a single quantitative idea of the

scaling exponent to quantify the correlation properties of a signal.
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7.1 Introduction

In recent years there has been a growing evidence that many physical and biologi-
cal system have no characteristic length scale and exhibit a power law correlation.
Traditional approaches such as power spectrum, correlation analysis are suited to
quantify correlations in a stationary signal [77, 78]. However many signals that
are the output of complex physical [79] and biological system are said to contain
nonstationarity. Almost all methods of time series analysis, traditional linear or
nonlinear, must assume some kind of stationarity [61]. In many applications of
linear (frequency based) time series analysis [49], stationarity has to be valid only
up to the second moments (weak stationarity). Then the obvious approach is to
test for changes in second or higher order quantities, like the mean, the variance,
skewness, kurtosis. A number of statistical tests for stationarity [80, 82] in a time
series have been proposed in the literature. Most of the tests we are aware of are
based on ideas similar to the following: Estimate a certain parameter using differ-
ent parts of the sequence. If the observed variations are found to be significant,
that is, outside the expected statistical fluctuations, the time series is regarded as
nonstationary. In case of traces of nonstationarity being detected, we are allowed

to carry out modified root mean square analysis termed as detrended fluctuation
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to have different correlation properties. In the last one decade DFA has emerged
as an important technique to study scaling and long range temporal correlation
in a nonstationary time series [134] which has been extensively studied in litera-
ture. It has been successfully applied to the diverse areas of research such as DNA
[135, 136], neuron spiking [137], heart rate dynamics [138, 139], economical time
series, long time weather report [140] etc. DFA is based on the idea that that if
the time series contains nonstationarities then the variance of the fluctuations can
be studied by successively detrending using linear quadratic, cubic higher order
polynomial in a piecewise manner. Most real time series exhibit persistence i.e
subsequent element of the time series are correlated [86]. The study of the self
similarity and scaling in physics, socio economic sciences in the last several years
has brought in new insights and new ideas for modeling them. For instance one
of the important empirical results of the market dynamics is that the probablity
distribution of price returns r in a typical market displays a power law [141] i.e
P(r) ~ r® where o =3. Similar power laws appear for the cumulative frequency
distribution of earthquake magnitudes [142]. While the spectral analysis (Fourier
method), wavelet transform modulas maxima (WTMM) analyze the time series
directly the DFA is based on the random walk theory, similar to the Hurst rescale

range analysis. Presence of strong trends associated with nonstationarity can lead
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the scaling exponent by applying different forcing amplitude along with the reliable
detection of the change in the value of scaling exponent in different scaling region
characterised as crossover phenomena. In addition to this we have qualitatively
and quantitatively revealed the underlying physics of the complexity dynamics
when the system goes through a transition with the help of recurrence plot (RP)
along with recurrence quantification analysis (RQA) [47] as changes in the dynam-
ics during the measurement period usually constitute an undesired complication
of the analysis and the knowledge of transition between chaotic, laminar or regu-
lar behaviour is essential to understand underlying mechanism behind a complex
system [149]. Such techniques have been extensively used in diverse fields such
as earth science, plasma, earth science, economy to gain understanding about the
nonlinear dynamics of complex system. It has also been utilized as an emerging
tool to analyze simulation data of ion temperature gradient turbulence [150] and
dissipative trapped electron mode turbulence [151] and to characterize transport
dynamics. The experimental setup made use for studies, observations reported in

the previous chapter has been in this chapter also.

7.2 Floating potential fluctuation, Recurrence plot,
Recurrence quantification analysis
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recurrence quantification measures determinism (DET), and entropy (ENT) are
computed for our experimental results and plotted with respect to the forcing
amplitudes of noise, sinusoidal, square forcing respectively in Fig. 7.1a - 7.1d. In
this work, we are studying the dynamics as well as the statistical property of the
plasma fluctuations obtained while applying different types of forcing. Starting
with the noise forcing, increase in amplitude of this forcing lead to the constantly
decreasing trend in the values of DET, entropy. DET expressed by the equation
2.12 in chapter two determines whether a signal is periodic or not whereas Entropy
illustrates the complexity of the system through the statistics of the diagonal lines

lengths in the RP.

DET is very close to 1 for a purely periodic signal. It has been observed
that with increase in the sinusoidal forcing amplitude (Fig. 7.1b) measures of
DET almost shows an increasing trend as the recurrence plots displayed in Fig.
6.4 shows prominent arrangement of uninterrupted diagonal lines indicating the
increase in DET values. In case of square forcing (Fig. 7.1¢) the DET, entropy
values both exhibit same trend showing minima at A=2V corresponding to the
RP plot in Fig. 6.3d where the RP plot displays some prominent uninterrupted

bold diagonal lines with some scattered points. Here increase in A beyond 2V lead
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the underlying physics of the system dynamics.

7.3 Nonstationary, Detrended fluctuation analy-

S1S

Almost all methods of time series analysis, traditional linear or nonlinear, must
assume some kind of stationarity. Therefore, changes in the dynamics during the

measurement period usually constitute an undesired complication of the analysis.
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[48] in different parts of the segments of a time series. If the value of the parameters
of nonlinearity measured reveal significantly different values in different segments
then the time series can be classified as a non-stationary one. In performing this
operation window length of the data containing 1000 points has been chosen to
be 10. Shown in Fig. 7.2 are the estimate of skewness and kurtosis, time reversal

trev, and third autocovariance t“? in different segments of a time series with the
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> [y (k) = ya (k)2 (7.1)

The process is repeated over all time scales to provide a relationship between
the average fluctuation as a function of F(n) and the box size n. In order to
produce more accurate result, the largest box size we use is N/10 where N is the
total no of points in the FPF’s. A linear relationship on a log log graph indicates
the presence of scaling with scaling exponent being « implying that F(n) ~ n®.
Value of a greater than 0.5 and less than or equal to 1.0 indicates persistent long

range correlation and that lying with 0.5 to 1 represent different type of power law
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7.4 Results of DFA analysis with crossover phe-
nomena

We illustrate the results in Fig. 7.4a and 7.4b using the above mentioned tech-
nique on the fluctuations acquired with increasing sinusoidal and square forcing
amplitudes respectively for P=0.12mbar. We can clearly observe only a main scal-
ing region upto n ~ 403 and beyond that there is a saturation region indicating
very small slope. The values of the scaling exponent estimated from the increas-
ing trend of Fig. 7.4a, 7.4b are clearly portrayed in Fig 7.5. Irrespective of the
nature of forcing, the increase in amplitude of the external forcing leads to the
increase in scaling exponent « initially from the value of ~ 1.12. Values of « for
sinusoidal as well as square forcing amplitudes are seen to increase from A=0 to
A=1V followed by the slight increase upto A=3V in Fig. 7.5. Further increase
in A lead to a saturation in the values of a. Shown in the Fig. 7.4c is the DFA
analysis for increasing sinusoidal forcing amplitude applied on some chaotic FPF’s
having maximum lyapunov exponent (LE) of ~ 0.2 acquired at low pressure of
0.04mbar. The slope of the curve allows us to check the scaling exponents for the
values of the external forcing with increasing amplitude. Unlike the Fig. 7.4a,

7.4b here the appearance of two scaling regions are prominently referred to as the
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Meticulous inspection of figure 7.6 reveals a clearly abrupt transition from one
linear regime to another. For forcing amplitude of A=1V, two slopes are very
close to each other. However with increase in voltage this transition becomes more
prominent and abrupt transition is noted with the crossover appearing around n ~
488 as seen from figure 7.6. To clarify this point we have inserted the zoom view of
scaling at higher amplitude of A=4V. In the 2nd scaling region we find the values
of a to remain very close to 1 or greater than 0.5 indicating persistence long range

behaviour.

Fig. 7.7 represents the DFA analysis for four different time series namely the
original data and the rest three generated by applying three different types of
forcing i.e noise, sinusoidal, square forcing. The scaling exponent obtained from
the slope of F(n) vs n in a double log graph depends paramountly on choosing the
value of the box size n. It can be noticed that Fig. 7.7 exhibits mainly one scaling
region or slope for the four curves over the range of n (33 < n < 403) for a fixed
A=2Volt. The values of the slope « estimated for the main scaling region are 1.68
(sinusoidal), 1.09 (noise), 1.39 (square) 1.12(no forcing) indicating the correlated
dynamics. The smaller values of the scaling exponent for increasing square forcing

amplitude than the sinusoidal one are also observed from Fig. 7.5 implying the



132

log F(n)

6 7 8 9

3 4 5

logn
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soidal as well as square forcing for P=0.12mbar



log F(n)

I " Slope
2 ~0.94
O,
S1 i —N=
-2f ~1C.JL;S /. [ Slope A=1V
d s -1.08
e =ty
-6t | | | .
2 4 log r? 8 10

133

Figure 7.6: Shift in the values of o from low n to high n for sinusoidal forcing
applied on fluctuation acquired for P=0.04mbar
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Table 7.1: Results of the quantitative values of the scaling exponent for forcing
applied on FPF’s obtained at low P=0.04 mbar

A (in V) slope(regionl) slope(region2)
0 1.05 0.95
1 1.10 1.08
2 1.39 0.98
3 1.49 0.96
4 1.78 0.94
) 1.81 0.92

Table 7.2: Scaling exponent values for increasing frequencies of square and sinu-
soidal forcing for P=0.12mbar

f (in kHz) slope(sinusoidal) slope(square)
1.11 1.11
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7.5 Conclusion

To summarize we carried out DFA analysis to quantify scaling exponent for dif-
ferent amplitudes of sinusoidal, square forcings. The shift in the values of scaling
exponent from one scaling region to the other indicated as crossover phenomena is
observed when external forcing is added on fluctuation having Lyapunov exponent
(LE ~ 0.2) greater than that acquired at P=0.12mbar (LE ~ 0.03). A crossover
usually arises due to changes in the correlation properties of the signal at different
temporal or spatial scale. The external sinusoidal forcing on the particular type
of floating potential fluctuation is observed to have an impact on changing the
correlation properties of the signal as the fluctuations respond to the driving force.
Generally the findings of crossover also suggest the possibility of multiple scaling
exponents characteristics of multi-fractal signals. The evidence of crossover phe-
nomena is associated with the presence of long range scaling exponent with increase
in A which is also ensured in our work as the values of the scaling exponent in one
of the scaling regions are found to lie greater than 0.5 and very close to 1. Differ-
ent nonlinear parameters are estimated in different segments of the time series to
detect nonstationarity behaviour. Hence we tried to estimate the scaling exponent

with the help of DFA analysis in a non-stationary time series. The emergence of
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transition. The considered recurrence measures exhibit an instantaneous change
which was noticed in both RPs and RQA measures through variables like DET,
Entropy. The estimated scaling exponents is higher in case of sinusoidal forcings
than the square forcing at any value of the amplitude or frequency of applied forc-
ing implying the decreasing roughness of the FPF for sinusoidal forcing than the
square forcing which is reflected also in the entropy values obtained from RQA
analysis. The most striking feature of our observation is how crossovers in the
correlation behavior can be detected reliably and determined quantitatively. A
crossover is due to the change in the correlation properties of a signal at different
time or space scales though it can result from nonstationarity in the signal. It
is the advantage of DFA that it can systematically remove trends embedded in
a nonstationary time series and in this way we can gain insight into the scaling
behaviour. Correlations in the fluctuations physically imply that they do not de-
cay fast enough and the system possesses long memory. This work highlights the
potential of RQA along with the DFA analysis which can be used to explore and
develop the dynamical system theory of plasma oscillation of different plasma sys-
tem like glow discharge, double plasma, dusty plasma. Quantification of scaling
exponents has potential application in case of stock market, econophysics, foreign

exchange rates, neuron spiking, that is in diverse areas of research field. The scal-



Chapter 8

Interplay of transitions between
oscillations with emergence of
fireballs and quantification of
phase coherence, scaling index in
a magnetized glow discharge
plasma in a toroidal assembly

Interplay of transition of floating potential fluctuations in a glow discharge plasma
in the toroidal vacuum vessel of SINP tokamak has been observed in our last chap-
ter. We have studied the evolution of associated anode fireball dynamics under the
action of increasing vertical, toroidal as well as increasing vertical field at a fived

toroidal field (mized field) of different strength. Estimation of phase coherence in-
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scaling exponent has been carried out for increasing values of the parameters. A
persistence long range behaviour associated with the nature of the anode glow has
been investigated in case of higher values of toroidal and mized field whereas in-
creasing the discharge voltage, vertical magnetic field leads to a perfectly correlated

dynamics with values of scaling exponents greater than unity.
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8.1 Introduction

Fireballs [152] are studied in a glow discharge device consisting of cathode biased
negatively with respect to grounded chamber wall. When the positively biased
electrode is immersed in a plasma a glow around the electrode is observed. Anode
fireballs are discharge phenomena near the positively biased electrode. These are
highly nonlinear phenomena involving the physics of sheaths , double layer [121],
ionization beam and possibly external circuit interaction. Fundamental questions
remains with respect to the peculiar shape of the fireballs, the physics of relaxation
oscillation [153] including waves and instabilities created by the non-Maxwellian
distributions both in magnetized and unmagnetized plasma. A steady state double
layer requires a momentum balance [152] or flux ratio i—j = \/:Z:Z . The lack of the
pressure or momentum balance would not lead to a stationary configuration. In
many situations fireball grows but does not reach equilibrium due to unequal ion
production and losses resulting in a repetitively pulsating fireball [154]. Generally
the fireball phenomena occurs when electrons accelerated in the sheath of the
positively biased electrode excite or ionize the neutrals leading to the expansion
of the sheath into a double layer of potential just above the ionization potential.

The common assumption that a fireball can collect as many electrons emitted from
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chaos theory [157]. In this final chapter we have investigated of the dynamics of
the fireball [158], followed by the quantification measure of phase coherence index
[30] and scaling index within the context of surrogate data and using detrended
fluctuation analysis (DFA) [80] respectively in a magnetized glow discharge plasma
in a toroidal assembly [159]. The values are found to be related physically with the
evolution of the glow. Much effort has been endeavoured to study the intricacies
involving the topics like finite nonlinear interactions and its associated phase co-
herence index [32, 31] in magnetohydrodynamic turbulence in solar wind. Here in
our study we address for the first time the evidence of finite nonlinear interaction
by trying to find the correlations among phases for increasing discharge voltage
(DV), vertical, toroidal magnetic field (By, Br) and the mixed field (By,r) in the
toroidal vacuum vessel of SINP tokamak [160]. At last we have carried out the
DFA analysis [82, 141] to estimate the scaling exponent («) associated with the
fireball dynamics for exploring the presence or absence of persistence long range

behaviour [86, 145].

The experiments were carried out in the toroidal vessel of SINP tokamak with



141

8.2 Floating potential fluctuation, power spec-
tral analysis, phase space plot

8.2.1 Increasing DV, vertical and toroidal magnetic field
(Bv, Br)

With increase in DV the nature of the transitions (Fig. 8.1) is observed to be of
homoclinic type upto 0.42 kV. Beyond this value, the FPF’s again become relax-
ation type which is seen to change to regular periodic behaviour at 0.46 kV. This
nature persisted upto 0.50 kV after which some irregularities appear in the regu-
lar sinusoidal behaviour. So the transitions undergo a homoclinic behaviour and
subsequently get modified to regular periodic oscillation followed by the irregular
type at high values of DV. The corresponding phase space plot for homoclinic one
occupies a larger lateral volume as shown in Fig. 8.5A c¢-d. The transitions from
homoclinic type to relaxation oscillation is prominent in Fig. 8.5A d-e whereas at
the higher DV values irregular oscillations are observed in phase space plot of Fig.

8.5A k-1.

Now keeping the DV at a value of 0.44 kV we apply vertical magnetic field upto
By=11.78 Gauss (G). The plasma floating potential fluctuations were found to

show oscillatory features of different type depending on the intensity of the applied
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the shape of almost spherical for By=11.79G. During the change of By from 7.29G
to 10.11G the phase space volume almost remains same as depicted in Fig 8.5B

£,

The transitions with the application of toroidal magnetic field (Br) exhibit
a drastic change. Similar to the observations in presence of By here also the
emergence of relaxation oscillation with slow and fast time scale takes place upto
B7=5.63G and there is gradual increase in the phase space volume (Fig.8.5C a-e).
After that the system undergoes a chaotic behaviour with a sudden emergence of
broadband characteristics which is prominent if we apply vertical field in presence
of a toroidal field that is kept fixed portrayed in Fig. 8.4 h-j. The chaotic nature
of the FPF for increasing Br has been depicted in Fig. 8.3 f-p and is reflected also
in the corresponding phase space plots. At low values of By the amplitudes of the
chaotic oscillation are seen to be very low which get increased with the increase
in Bp(Fig 8.3). When By reaches 11.2G, we can observe the emergence of some
sort of relaxation oscillation having the chaotic nature persisting upto 11.84G as
seen in the right panel of Fig. 8.3. Further change in the nature of the relaxation
oscillations takes place at a high value of By ~ 12.8G. The chaotic attractor volume

is seen to occupy largest region at By ~ 14.4G (Fig 8.5C p). Finally we try to
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increasing By, Br and 2-19 percent for variation in By, 7. So increasing magnetic
field is observed to play an important role in enhancing the noise values in our

experiment.

The frequency carrying maximum power (dominant frequencies) with the vari-
ation in DV, By, By have been plotted in Fig. 8.6. The dominant frequencies with
DV are seen to lie from 150 ~ 900 Hz. A minimum frequency of 250 Hz has been
obtained at DV ~ 450V followed by the increase in dominant frequencies upto
500V where maximum dominant frequency of 850 Hz have been achieved. The ap-
plication of vertical field gradually enhances the frequencies after 6G and a sharp
increase in the value of main frequency is noted at By ~ 11.79 Gauss. Toroidal
magnetic field has impact in changing the frequency values to a large extent in a
quite random way. A range of dominant frequencies(850, 1750, 2200, 2550, 1150)
Hz have been noted with a prominent maxima at 2550 Hz at By=9.6G along with
the presence of a local maxima of 2200 Hz at 11.84G. The values of the main
frequencies with the application of increasing vertical field on a fixed Br(8.56G)
remain from minimum of 450Hz to maximum of 2950 Hz with the maximum fre-
quency being achieved at around By = 7.01 Gauss. Further increase in the values

of (By,7) the frequency with maximum power shows a gradual decreasing trend.
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Figure 8.5: Sequential change in phase space plot for same values of DV, By, Br,
By 7 mentioned in raw signal and power spectral plot for A) Discharge voltage
B) Vertical magnetic field C) Toroidal magnetic field D) Increasing vertical field
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Figure 8.6: Dominant frequency with the variation in a) Discharge voltage(DV)
b) Vertical magnetic field (B,) ¢) Toroidal magnetic field (Br) d) Vertical field at
fixed Br of 8.45G (By 1)

anode is encapsulated, partially or fully, by ions and quasi-neutrality of plasma
leads to the formation of double layers. To start with, when the plasma was
formed a small fireball was found to be attached to the anode at a particular po-
sition (here left side) as depicted in Fig 8.7. With the emergence of relaxation
oscillation the position of the glow was found to rotate along clockwise direction

aligning itself to the back side of the electrode for DV=0.40kV and then shift to
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little elongated corresponding to the time series at By =4.21G showing relaxation
oscillation with increasing rise time in comparison to that observed for By =0,
3.65G at the beginning. When the rise time scale of the relaxation oscillation get
steeper, fireball aligns itself only to the right side of the electrode (Fig 8.8 d). The
anticlockwise rotation of the position of the fireball (Fig. 8.8 e,f,g) is observed when
the slope of the rise time is again slightly changed. Most interestingly, on complete
reversal of the nature of the time scale of the relaxation oscillation (By=11.23G)
(Fig. 8.2k) a comparatively broader shaped fireball near the electrode was observed
in Fig 8.8h which is seen to persist in shape but with slight increase in intensity

when regular periodic oscillation at By =11.79G appears as shown in Fig. 8.8 i.

An elliptical shaped nature of the fireballs was persistent for the relaxation
oscillation generated in presence of low toroidal field upto 5.63G. The size of glow
in Fig 8.9b is observed to occupy larger space than that observed in Fig 8.9a.
With the emergence of chaotic oscillations at intermediate values of toroidal field
(upto Br=8.96G), a self rotation of the glow takes place and finally the fireball
is seen to take position on the back side of the electrode as seen in Fig 8.9d.
The appearance of relaxation oscillation bearing the chaotic nature lead to the

generation of a completely different shaped glow compared to the previous ones(
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Figure 8.7: Photograph of the anode glow with variation in DV a) 390V b) 400V
¢) 420-440V d) 460V ¢) 520V

e f g h o i

Figure 8.8: Sequential change in the anode glow for increasing vertical magnetic
field By a) 3.65G b) 4.21G c¢) 6.18G d) 7.29G e) 8.70G f) 9.54G g) 10.10G h)
11.23G i) 11.79G for DV=0.44kV

Gradual increase in By .1 leads to the slight increase in plasma density along with

the fireball size as checked by visual inspection from Fig. 8.9 c-d.

8.4 Method of analysis: path length, phase co-
herence index
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Figure 8.9: Sequential change in the glow for increasing toroidal magnetic field
Br a) 1.28-2.30G b) 3.07-5.63G c¢) 7.09G d) 8.06-8.98G e) 9.6G f) 10.24G g) 11.2-
11.84G h) 11.84-14.4G for DV=0.44kV
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phase randomised surrogate data while that is seen to remain constant for phase
constant surrogate. If the original data has random phase then Cy(7) would be
0 whereas Cy(7)=1 if the phases are completely correlated. The profile of phase
coherence index with variation in 7 for the FPF’s with By, By,.r is shown in
Fig 8.11. We find that Cy varies over the range from 0.01 to maximum 0.5 for a
wide range of the values of 7 for By r=12.63G whereas C, takes the value from

a minimum of 0.01 to 0.24 for By of 9.6G.

The plot of phase coherence index with the variation in discharge voltage,
vertical, toroidal, mixed magnetic fields has been portrayed in Fig. 8.12. The value
Cy(7) takes it maximum when the phenomena of homoclinic transition occurs for
increasing DV. For initial increase in vertical magnetic field the values of phase
coherence index are shown to lie in a constant range but the higher values of By
has led to the increase in Cy(7) as marked in the figure where the shape of the
glow starts taking some sort of distorted elliptical shape from the original spherical
shape. In the marked portion, the maximum value corresponds to the case where
the toggling of the time scale in relaxation oscillations takes place i.e the rise,
decay time of the relaxation oscillation completely get changed as observed from

Fig 8.2 j-k. Gradual increase in the value of Cy(7) within the region from By, =6G

Ll o~ - o . N - P - - o . N e . Ly
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Figure 8.11: Profile of phase coherence index with 7 for a) By = 9.6G b) By 1 =
12.63G

shaped glow different from the previous ones correspond to the maximum values
of Cy. At a value of Br=9.6G a sudden appearance of very low amplitude FPF
resulted in minimum correlation between the wave phase (lowest values of Cy(7))
followed by the constant values of Cy in high toroidal magnetic field region where
the glow shapes are seen to remain same (Fig. 8.9 f-h). Here also we can observe
that the maximum phase coherence index is associated with the power/energy
occupying in a larger region of frequency band. Finally the application of By at
fixed toroidal field i.e (By,r) leads to the smooth increase in the values of phase

coherence index in a region marked by red rectangle implying the enhancement in
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Figure 8.12: Plot of phase coherence index with variation in a) Discharge volt-
age(DV) b) Vertical magnetic field (By ) ¢) Toroidal magnetic field (Br) d) Vertical
field at fixed BT (BV-i—T)

8.5 Results of detrended fluctuation analysis (DFA)

To illustrate the DFA algorithm we use the time series shown in Fig 7.3 (in chap-
ter seven) as an example along with the integrated time series with the solid red
lines(lower panel of Fig 7.3) indicating the trend estimated in each box by a least
square fit. Chapter seven presents an elaborate description to provide a relation-

ship between the root mean square fluctuation as a function of F(n) expressed in
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acquired with increasing By, By, Byr respectively in Fig. 8.13, Fig. 8.14. The
slope of the curves allows us to check for the scaling exponent after carrying out
DFA analysis. DFA performed on the fluctuations in the left panel of fig 8.13 with
toroidal field upto 8.98G yield the values of a to be 1.28, 1.31, 0.99, 1.24, 1.27, 1.25.
Power law exponent values greater than 1 indicate the existence of perfect corre-
lated dynamics. Altogether the exponent is viewed as the roughness of the time
series, the larger the value of the coefficient o the smoother will be the time series.
The hint of long range correlated dynamics (0.5 < a < 1) is found for By=5.63G
where the corresponding FPF abruptly change its nature of relaxation oscillation.
The prominent signature of the existence of long range behaviour has been observed
from the slope of the curves in right panel of Fig 8.13. The values of the estimated
scaling exponent are found to lie within 0.5 < a < 1 for DFA executed on FPF’s
acquired under high value of By from 9.34G to 14.4G. The application of By p
yield the values of scaling exponents of 1.36, 1.23, 0.91;(1.09,0.54); 0.72,0.78, 0.75
indicating a toggle from perfect correlated dynamics to a long range persistence.
A phenomena worth observing is the prominent region of double scaling (a«=1.09,
0.54) which is observed for By=11.2G followed by the long range behaviour. So
the appearance of long range behaviour is noted only under the application of

high Br or the mixed field By . The values of the scaling exponent can also be
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Table 8.1: Results of the quantitative values of the scaling exponent for increasing
discharge voltage (DV) and vertical magnetic field (By)

DV (in V) slope(a) By (in G) slope(a)
390 1.22 3.64 1.37
410 1.14 6.17 1.39
430 1.40 8.70 1.36
450 1.78 9.54 1.70
460 1.79 10.66 1.53
480 1.81 11.78 1.54

8.6 Conclusion

To summarize, the study of the interplay of oscillations with parameters like DV,
By, Br, By, has been carried out with the simultaneous observation of the dy-
namics of the fireball. Estimation of the phase coherence index to characterise
the correlation between the modes has been accomplished. The change in the dy-
namics of the fireball along with the corresponding phase coherence index values
has been studied in detail. The results of finite Cy demonstrate the existence of
finite phase correlation indicating the nonlinear wave interaction in process. For
the case of increasing DV we found the maximum correlation at the instant of
the occurrence of homoclinic transition. Display of dominant frequencies with the

variation in By, By, By has been carried out (Fig. 8.6) to understand about
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experiment, emergence of inverted pear shaped glow upon the application of By
correspond to the maximum correlation between phases quantified by maximum
Cy and long term persistence. The smooth increase in C, for higher By occurs
during the spreading of glow on both sides of the electrode. When the plasma
production and losses get out of the balance the fireballs can undergo relaxation
oscillation. Growth and collapse of the fireball can be considered runaway pro-
cesses whose time scales are governed by the ion transit time through the fireball.
The recovery process depends on the density replenishment from the background
plasma which may take longer due to the lower density and larger scale. In the
context of the shape of the fireball we know that the fireball structure must be in a
force balance m.n.v.=m;n;v; otherwise it would not be a stationary structure. In a
uniform unmagnetized plasma with all radial forces cancelling each other fireballs
of spherical or cylindrical geometries can be obtained.

Talking about scaling exponents, the evidence of long range correlated dynam-
ics is noted for higher values of By whereas the toggling from perfect correlated
dynamics to long range persistence via double scaling region has been observed for
By 7. The persistence long range behaviour in presence of higher By corresponds
to the pear shaped glow depicted in Fig. 8.9e-h. The shape of this particular

nature of fireballs also indicates the presence of long range correlated dynamics in
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Chapter 9

Overall Conclusion

In this chapter, a quick recapitulation has been made on the works discussed in this
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9.1 A quick recapitulation

Our thesis presents the experimental observation of different nonlinear phenomena
appearing in a glow discharge plasma with the implementation of various non-
linear and statistical analysis techniques. The results acquired with the help of
various techniques nicely orchestrate the aim of our thesis work. Such statistical
analysis techniques based on delay vector variance, rank test, Zscore coordinated
with conventional data analysis tools in plasma like power spectrum, wavelet bico-
herency analysis, can be immensely beneficial for the quantification of nonlinearity
inherently present in plasma devices. The measurement of different dimensions,
statistical quantities, scaling exponents enable us to distinguish different degrees of
complexity of rich phase space structures exhibited by self and externally excited
glow discharge plasma. The observed complexity dynamics presented in our thesis
work is mainly due to nonlinear interaction between the components of complex
system, and arises due to different instabilities in the plasma system. The origin of
these oscillations are due to: 1) Interplay of internal complex system parameters,
called self excited oscillation, 2) External forcing, called forced oscillation. Plasma
is a common example of complex system consisting of electrons, ions and neutral

particles and it contains numerous sources of free energy like energetic electrons
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resulting from the space charge configurations, density and temperature gradients,
velocity shear and the various dynamical processes that are prevalent in a plasma
such as ionization and recombination mechanisms. These form the driving en-
gine for many nonlinear dynamical processes that are observed in the bulk of the
plasma. In our work, a number of parameters e.g., discharge voltage, pressure,
magnetic field, external perturbation (sinusoidal, square, noise forcings), etc. are
identified to control the plasma dynamics of the system. A brief summary of our

obtained results is enumerated below:

e After the introductory part in chapter one, and experimental, data analysis
techniques in chapter two, chapter three presents an experimental observa-
tion of order-chaos-order transitions in the relaxation oscillations of a glow
discharge plasma with variation in the discharge voltage. We report for the
first time the experimental observations of inverse homoclinic bifurcation in
the floating potential fluctuations with increase in DV. It continues to stay
in this mode for a wide range of DVs and later results in a homoclinic bifur-
cation. In order to comprehend the complex dynamics of the observations,

we have carried out a detailed analysis using standard nonlinear techniques



162

frequencies. Such frequencies are also observed experimentally. At last a nu-
merical modelling of the experimental observations has been attempted using
a forced nonlinear dynamical equation representing the temporal dynamics of
ion acoustic oscillations in presence of ionization and recombination terms.
Although there is no explicit externally applied oscillatory voltage in the
present experimental system, we consider the situation where many normal
modes are generated within the plasma which are attributed to the origin
of various self excited relaxation oscillations. Since the plasma can contain
a wide spectrum of frequencies, we feel that they can nonlinearly interact
and give rise to several harmonic terms depending on the plasma conditions.
This leads to the need of incorporating the forcing term in the right hand
side of equation 3.2 which is thought to be mimicked by the self excited oscil-
lations in the plasma. The harmonic forcing term in the numerical modelling
is found to be responsible for driving the system through chaotic oscillations
before the system began to display an increase in the time period of the

relaxation oscillations.

Chapter four deals with aspect of nonlinearity for increasing DV in the float-

ing potential fluctuations of DC glow discharge plasma by generating surro-
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in a plasma systems arises from the most fundamental processes, namely, the
wave-wave and wave particle interactions. In view of the concept of plasma
physics the measure of nonlinearity is estimated by comparing the total power
present in all frequencies normalized by the power in the frequency (domi-
nant frequency) carrying maximum power. Presence of nonlinearity is seen
to be prominent at low pressure in view of the decrease in collisional fre-
quency leading to the increase in ionization. Due to nonlinear interactions,
different types of waves inherently present in the glow discharge system such
as ionization instabilities give rise to different frequencies that are excited
at P=0.056 mbar. The results obtained from DVV plots turn out to be al-
most similar with the analysis based on accumulation of power and rank test

confirming the robustness of the all methods.

In chapter five we study the evidence of nonlinearity in presence of external
forcing and magnetic field using the DVV method in conjunction with Zscore,
bicoherency by providing some easy to interpret diagrams. The analysis
involving DVV has also been implemented to study numerically simulated
results by a second order nonlinear ordinary differential equation derived from

the fluid equations of plasma for the first time. The results show qualitative
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momentum with each other. In our experiment when we paced the system
with sinusoidal signal of frequency f=1 kHz, keeping the plasma in a period 2
regime (P=0.085 mbar) with frequencies of 4, 8 kHz ( fo1, fo2), the frequency
spectrum shows peak at frequencies of 4.5 and 8.5 kHz (fo1 + f/2, foo +
f/2) for A=2V. When the perturbation amplitude (A) is increased to 5V,
in addition to the frequencies (fo1 + f/2, fo2 + f/2) a new frequency of
3f/2 is generated which is only due to the external perturbation frequency.
Subsequent increase in A generates frequencies of (fo1 + 3f/2), foo + 3f/2)
and the nonlinear coupling/interaction amongst the frequencies are thought
to have attributed to various statistical features obtained from DVV plots,
Zscore and bicoherency analysis. The plot of the total power divided by
power in the harmonics is seen to increase with B with the maximum power
occurring at maximum value of B where the deviation from the DVV scatter

plots also becomes maximum.

Next chapter contains the study on the existence of finite phase coherence
index i.e finite correlation by estimating phase coherence index for different
types external forcing techniques likewise noise, sinusoidal, square etc. Finite

nonlinear interaction obtained from phase coherence index values is observed
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revealed by estimating phase coherence index and performing DVV analysis.
The estimate of phase coherence index corroborates our nonlinearity analysis
using DVV. Origin of this type of correlation is illustrated using continuous
wavelet transform. Existence of power/energy concentration in a large re-
gion of frequency band is thought to be attributed to the increase in phase
coherence index values in case of square, sinusoidal forcings which can also
be regarded as one of the physical reasoning for the variation in Cg. The

transition in the dynamics is observed through recurrence plot techniques.

Chapter VII covers a detailed study of scaling region using detrended frac-
tal analysis test in the externally excited GDP by applying different forcing
amplitudes. In case of sinusoidal, noise, square forcing applied on fluctua-
tion acquired at P=0.12 mbar only one dominant scaling region is observed
whereas the forcing applied on fluctuation (P=0.04 mbar) two prominent
scaling regions have been explored reliably using different forcing amplitudes
indicating the signature of crossover phenomena. A persistence long range
behaviour is revealed in one of these scaling regions with « lying in the range
from 0.5 < a < 1. Different nonlinear parameters are estimated in different

segments of the time series to detect nonstationarities. The complexity of the

P - L - - - - P - - - . .
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fireball under the action of increasing DV, vertical, toroidal as well as increas-
ing vertical field at a fixed toroidal field (mixed field) of different strength.
The dynamics of the fireballs and the associated FPF are considered to be
driven by E x B in the direction of the cylindrical symmetry of the electrode.
Existence of power/energy concentration in a large region of frequency band
is attributed to the gradual increase in phase coherence index values for in-
creasing Br, By,r. A comprehensive study of the dynamics of the fireball
has been corroborated with the values of phase coherence, scaling index.
The anode glow or fireball appears when the discharge current is too low
to sustain the discharge. This glow supplies energy, in the form of positive
potential gradient, to the electrons so that additional ionization takes place
and hence discharge current increases. At the initial stages of discharges the
electrons do not have sufficient energy near the anode to reach it, and hence

the anode glow occurs.

In our experiment, emergence of inverted pear shaped glow upon the applica-
tion of Br correspond to the maximum correlation between phases quantified
by maximum Cj and long term persistence. This work is aimed to gain in-

sight about effect of magnetic field in the form of ' x B force in glow discharge
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So the behavior of the nonlinear dynamical phenomena dealing with the self
and externally excited oscillations and its origin are mainly explored in the
framework of basic plasma physics. We have tried to give possible physical as
well as dynamical explanations of the observation of such complex nonlinear
features associated with the plasma dynamics. We believe that all the anal-
ysis presented in our work nicely cooperate with each other and corroborate
with the analysis and concept of basic plasma physics phenomenon executing

perfectly the aim of this thesis work.

9.2 Future prospects and conclusive remarks

The impetus behind the works contained in this thesis is to provide a clear un-
derstanding of the aspect of nonlinearity, complexity dynamics. The thesis also
provides an extensive discussion to reveal the complexity dynamics, nonlinearity
in the self and externally excited glow discharge plasma using different nonlinear,

statistical techniques and associate it with the basic plasma physics.

e In our thesis work we have used the analytical model developed by Kadji
et al.[108] based on two-fluid equations for understanding the observation in

presence of external forcing, DV. We have added a constant term (A) and
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magnetic field to investigate the interaction between the different modes has
been carried out using the EMD based bicoherency method. As mentioned
earlier this method is commonly used for the processing of non-stationary
and nonlinear signals and does not require any predefined basic functions as
in Fourier or Wavelet transform. Fourier based bicoherency method is more
familiar and well known to all where the sinusoidal functions act as a basis.
So in addition to the EMD based bicoherency, the use of Fourier bicoherency

would be a good choice to substantiate our analysis of nonlinearity.

We have studied the nonlinear interactions introducing different types of ex-
ternal forcing by estimating the phase coherence index to characterise the
correlation of phases among Fourier modes in a given time series by employ-
ing surrogate data technique. Existence of phase coherence index has been
demonstrated introducing continuous wavelet transform (CWT). This type
of study is known to bear important implications in various charged particle
transport processes. We also plan to extend our study on phase coherence
by using a combination of wavelet transform and Hilbert Huang transform

in the future.

e Estimation of phase coherence, long range scaling index (using DFA) have
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interactions that is responsible for the emergence of nonlinearity.

e Evolution of associated anode fireball dynamics under the action of vertical,
toroidal magnetic fields as well as the combination of the both the field of
different strength has been observed in the above device. The study reveals
that fireball dynamics is associated with the correlation between phases. So
understanding the dynamics of the oscillation along with the dynamics of
fireballs through the techniques is a crucial step for the characterisation of

the device for application purposes.

e In addition to the aforementioned, the idea of chaos control, synchroniza-
tion and the investigation of non-chaotic attractors by applying two non-
commensurate periodic signals would be a very interesting in challenging

areas of study.

e Finally to validate our experimental observation in the magnetized glow dis-
charge plasma in toroidal assembly, we are planning to develop a numerical
model which is already consummated for the experimental results obtained

from glow discharge plasma on cylindrical geometry. .

Glow discharge plasma (GDP) being rich in high energy electrons and ions
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manufacturing the very large scale integrated circuits (ICs) used by the electronics
industry which are also critical for the aerospace, automotive, steel, biomedical,
and toxic waste management industries. Nonlinear phenomena including nonlin-
ear structures are observed in laboratory plasmas, fusion devices, radio-frequency
plasmas, microwave devices, and in naturally occurring plasmas such as in mag-
netosphere, inter stellar plasma. Devices that have no end with geometries such
that the magnetic field lines close on themselves (toroidal geometry) offer many
advantages for plasma confinement. Generally for the purpose of the confinement
of plasma, poloidal magnetic field is normally superposed on the toroidal field re-
sulting in helical field lines (as in Tokamak) as the most important application of
the man made plasmas is in the control of thermonuclear fusion reactions which
hold a vast potential for the generation of power. Generally the presence of density
gradient in plasma causes the particle to diffuse from dense regions to regions of
lower density. In device like GDP presence of externally applied magnetic field
helps in reducing the diffusion of charged particle across the field lines indicating
that strong magnetic fields are helpful in plasma confinement. In the presence of a
magnetic field, the plasma supports a larger variety of natural modes. So the ap-
plication of magnetic field provides an excellent platform to study and understand

various rich nonlinear phenomenon. Within the realm of physics, nonlinearity is
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different parametric regimes. The investigation on the method of phase coherence
presented in this dissertation is known to have implication in various transport
processes of charged particle. We sincerely hope that the works elaborated in this
thesis can help us to enrich the understanding of the concept of nonlinearity not
only in glow discharge plasma but also in other plasma devices and enlighten our

way to proceed furthermore in this direction.
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Appendix

(Related to Chapter-3,5)

We consider plasma composed of electrons described by Boltzmann distribution
and the cold ions described by continuity and momentum equations. The electron

density distribution, the ion continuity and momentum equations are

ne = noexp(ep/kpT.) (A.1)
on;
'L . . 'L pr— A.-2
5 + V- () =S8 (A.2)
dv;
nimi—v = n;eE — myn;v;v; (A.3)
dt
Since electrostatic modes are considered, £ = —V¢. All the variables are

linearized by considering n.; = no +n1, v; = 04+ vy, ¢ = 0+ ¢;.
From thermodynamic arguments [109, 110] the local macroscopic electric field

E, can be written as
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S

pny +qni +ornd 4+ )

= —an; — An? — un’ (A.5)

Carrying out Fourier decomposition in space and assume that the nonlinearities
arises in time variables only i.e. only temporal variations of the 2nd and 3rd order
terms of n; are taken into consideration and linearizing equations A.1-A.3 we

obtain

d2n1 kBTe 9 d?’ll dsS
- _ (s -y 9o A,
aZ  m v M G (A.6)

The spatial variation of the perturbed quantity n, is taken of the form ei*?

kpTe

where k is the wave vector in the z direction, and utilizing ¢? = =E=< we obtain
T

from equation (A.6) by utilizing equation (A.5) for S,

d2n1
dt?

dn,

+ (a4 2Ang + v; + 3uni) o

+wany +vilan, +And +uni) =0 (A7)

where wy = kcs.
The following normalization of variables is carried out by considering ¢ = wyt;

T = mny/no;a = vi/wo ;b = 2Ang/wy; ¢ = 3und/wy, € = a/wp. On the right hand
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