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SYNOPSIS

In condensed matter physics, understanding the ground state of an interacting many body
system is one of the most challenging and non-trivial task. In band theory, instead of tak-
ing the interactions explicitly, the electrons are assumed to move in a periodic potential
created by the ions and other electrons. Thus the many body effect is taken as an averaged
background to which a single electron responds. Despite this simple approach, band theory
has been successful in describing the metallic and insulating properties of many real sys-
tems, until the transition-metal oxides, with partially-filled 3d bands, showed significant
disagreement with it. Later on, it was pointed out that the disregard of strong Coulomb
repulsion between the d-electrons caused the failure of band theory. Fermi liquid theory,
one of the most successful theories in condensed matter physics, was based on Landau’s
idea that in a non-interacting Fermi gas, turning on the interactions slowly would trans-
form its ground state into a ground state of an interacting system. However, this theory
failed to explain the low lying excitations of one-dimensional systems, demonstrating the

importance of dimensionality in determining the ground state of a system.

Since then a number of analytical approaches have been applied to tackle systems of

interacting electrons. Due to the non-availability of any analytic solution for most of the
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problems, immense effort has gone into the development of various numerical approaches.
A number of numerical techniques are available, applicable to different types of problems,
but each of them has its own advantages and disadvantages. For example, very large sys-
tem sizes can be accessed using density matrix renormalization group (DMRG) technique;
but the method works well in one dimension. Quantum Monte Carlo (QMC) is a very
powerful method to handle large system sizes; but unfortunately comes with a “sign prob-
lem” in case of fermions. On the other hand, exact diagonalization (ED) methods can give
accurate results; however they can not handle large systems. Therefore, a complete theo-
retical understanding of the ground state properties of a strongly correlated system is still

a challenge.

In strongly correlated systems, the electron-phonon (e-ph) interaction plays an impor-
tant and interesting role. On one hand, at low temperatures, e-ph interaction is the main
reason behind the formation of Cooper pairs which give rise to low temperature supercon-
ductivity; whereas at high temperatures, the same interaction is responsible for electrical
resistivity in metals. Electron-phonon interaction is also responsible for a very peculiar
feature of one-dimensional metals, first pointed out by Rudolf Peierls in 1930 [1]. Even in
the presence of a weak e-ph coupling, a one-dimensional metal undergoes a spontaneous
lattice distortion, thereby opening up a gap in the single particle energy dispersion curve at
Fermi wave vector k. The formation of this gap is associated with the formation of charge
modulation with period 2k, known as the charge-density-wave (CDW). The presence of
the gap in the energy dispersion curve makes the CDW an insulating state.

A new fascinating phenomenon, called supersolidity [2], has intrigued many researchers
since its first theoretical prediction. Supersolidity is defined as the homogeneous coexis-
tence of CDW and superfluidity. The situation may appear puzzling because CDW is an

insulating state of solid phase; whereas superfluidity is a special property of some liquids



where the constituent atoms (or molecules) flow together without any friction. The first
question that then comes to one’s mind is that how can these two order parameters coexist
in a single phase. The basic idea behind this unusual situation can be understood as fol-
lows. The constituent atoms (or molecules) of a classical liquid move in a random fashion,
making the liquid viscous. However, in a superfluid the atoms move coherently forming
a macroscopic wave of matter. As a consequence, a superfluid kept in a slowly rotating
bucket does not rotate with the walls of the bucket, rather stays at rest. In a classical solid,
the particles are localized at different sites. Kept in a rotating box, a classical solid is forced
to rotate with its walls. On the other hand, quantum solids portray quite a different picture.
The particles in a quantum solid fluctuate around their mean positions and vacancies can
be created in the system. Now, these vacancies can eventually exchange positions with
the particles by hopping to neighboring sites. If this exchange does not cost energy, then
the vacancies can flow with the solid maintaining its overall structure. If somehow this
flow becomes a superflow, we can have a solid with a part of it being a superfluid; thus, a

supersolid is realized.

The homogeneous coexistence of superfluidity and crystalline order in continuous space
is referred as continuous-space supersolidity. In this case the lattice constant can be ad-
justed continuously. In 2004, the first experimental claim for the observation of continuous-
space supersolidity in helium-4 was made by Kim and Chan [3]. Despite the contro-
versies created, it certainly enhanced the debate and interest in understanding this new
phase among the researchers. On the other hand, lattice-supersolidity is defined as the the
single-phase coexistence of superconductivity/superfluidity and CDW realized in discrete
lattices. A wide variety of systems in three dimensions (such as doped BaBiO; [4, 5]),
quasi-two dimensions (for example the layered dichalcogenides [6] and molecular crys-

tals [7]) and quasi-one dimension (such as doped trichalcogenide NbSez [8] and doped
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spin ladder Sr14Cus404; [9, 10]) display this novel phenomenon. While phenomenological
pictures exist [4, 1 1] to explain lattice-supersolidity, a microscopic theory that explains the
homogeneous coexistence has been elusive.

As far as the artificially engineered systems are concerned, cold bosonic atoms in op-
tical lattices emerge as potential candidates for realizing lattice-supersolid phases. In fact
only recently, supersolidity was experimentally produced in an optical lattice inside an
optical cavity with effective long-range interactions generated by a vacuum mode of the
cavity [12]. On the theoretical side, a number of bosonic models have produced lattice
supersolidity in two-dimensional (2D) square [13-22], triangular [23-29] and honeycomb
lattices [30,31] as well as in a one-dimensional lattice [32,33].

As suggested by the title, the main purpose of this thesis is to study the possible mani-
festations of long-range orders, including lattice-supersolid phases with differently broken
symmetry in hard-core-boson (HCB) models (which are the effective Hamiltonian for sys-
tems with strong HCB-phonon or e-ph coupling) and understand the underlying mecha-
nism.

Many oxides with the formula ABOj3 assume perovskite structure and involve strong
e-ph interaction. In these systems a common oxygen atom is shared by two adjacent BOg
octahedra. As a result, the octahedral distortions are of cooperative nature rather than be-
ing independent. For example, in barium bismuthate (BaBiO3), only the 6s electrons are
responsible for the transport properties and produce a single normal mode distortion: the
breathing mode. In this mode, the oxygen atoms along all the three axes of the BiOg4 octa-
hedra either move outwards or inwards together, thereby mimicking the breathing process.
Moreover, the evidence of strong e-ph interaction for pure BaBiOj is clear from the ob-
servation of 10% change in the Bi — O bond length [34]. Because the 6s electrons are the

only ones taking part in transport, BaBiO3 can be described as a one-band 3D cooperative
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breathing mode (CBM) model. Furthermore, the lattice vibrations in a copper oxide plane
of a parent cuprate compound can be described as a one-band (with the orbitals centered
on the copper sites) two-dimensional CBM system [35, 36]. In the C-type antiferromag-
netic region of the phase diagram of a two-band Jahn-Teller (JT) manganite system (such
as 0.65 < =z < 0.9 for La;_,Sr,MnOg [37]), each ferromagnetic C-chain can be viewed
as a one-band (d 2 orbital) one-dimensional CBM system, where the neighboring C-chains

are coupled antiferromagnetically.

An important point to note here is that in the case of weak e-ph interaction, a Migdal-
type of perturbative treatment can be used; whereas with strong e-ph interaction, even the
one-band system needs a nonperturbative approach [38]. In the first two problems of this
thesis, we concentrate on the non-adiabatic regime (¢/wy < 1) and strong-coupling region
(large ¢?), where t is the coefficient of NN hopping, wy is the optical-phonon frequency and
g denotes the HCB-phonon interaction strength. To produce an effective polaronic Hamil-
tonian, a duality transformation is employed which transforms the strong-coupling problem
in the original frame of reference [with small parameter & (gwy)/t] into a weak-coupling
problem in a dual frame of reference [with small parameter o t/(gwy), i.e., inverse of the
small parameter in the original frame of reference]. To achieve the above end, we have
modified the Lang-Firsov transformation so as to take into account the cooperative nature
of the distortions. The transformed Hamiltonian can then be written as a sum of the un-
perturbed Hamiltonian and a perturbative term. Using the eigenstates of the unperturbed
Hamiltonian, we perform a non-trivial perturbation theory upto second order and get the

effective Hamiltonian.

In Ref. [39], starting with an one-band one dimensional system of spinless electrons,
where two neighboring electrons are coupled to the in-between oxygen atom via CBM, it

was shown that the dominant transport mechanism of the system changes from nearest-
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neighbor (NN) hopping to the next-nearest-neighbor (NNN) one. Furthermore, due to
incompatibility of distortions produced by cooperative e-ph interaction effects, the NN
repulsion between the particles becomes significant, leading to the £, — V' model as the
effective model. In one dimension, using Jordan-Wigner transformation, one can always
map the spinless electrons in terms of HCBs. In the first problem of this thesis [40], the {5 —
V model in terms of HCBs has been studied using analytical and numerical approaches. We
demonstrate that upon tuning the strength of the NN repulsion, the £ —V model manifests a
dramatic discontinuous transition from a superfluid to either a CDW or a supersolid. Using
Green’s function analysis, the exact critical values of the repulsion V, are obtained for two
limiting cases: the two HCB case and the half-filled system. At intermediate fillings, using
finite-size scaling analysis, we obtain the V, values numerically, where a modified version
of Lanczos method [41] is used. Furthermore in this study, topological inequivalence of
rings with even and odd number of sites is also demonstrated through the differences in
the peak value of the structure factor at the transition. Our study shows that, compared
to the noncooperative situation, cooperative e-ph interaction produces strikingly different
physics. We hope that in the future the Greens function technique used in our study to solve
the two limiting cases of the £, — V' model analytically, will lead to useful approaches to

handle more complex problems.

An important member of the valence disproportionated material class is BaBiO3, where
the Bi ion, with the electronic configuration [Xe]4f'*5d'%6s26p® , displays 31 (6s®) and
57 (6s%) valence states, skipping the intermediate 4™ valence state. Pure BaBiOj is an
insulator with alternate 6s? and 6s” ions forming a CDW, which can be thought of as a
system of HCBs occupying alternate sites and coupled to the CBM [42]. Inspired by the
doped bismuthate systems, in the next problem [43] of this thesis, we study a 2D system

of HCBs in a 2D perovskite lattice, governed by the CBM. At strong HCB-phonon cou-
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pling, the effective Hamiltonian is shown to involve NN, NNN, and next-to-next-nearest
-neighbor (NNNN) hoppings and repulsions in the form of an extended-boson-Hubbard
model t; —ty —t3 — V) — V5, — V5. Using QMC simulation employing the stochastic-series-
expansion (SSE) technique [44], we construct the phase diagram of the system. Our study
shows that with the increase of the coupling strength, the system undergoes a first-order
quantum phase transition from a superfluid to a checkerboard solid at half filling and from
a superfluid to a diagonal striped solid at one-third filling. Away from these commensu-
rate fillings, checkerboard supersolid is observed near half filling; whereas a rare diagonal
striped supersolid is realized in the vicinity of one-third filling. Even though diagonal
stripes have been observed in systems such as Lay_,Sr,NiO4 (LSNO) at x = 1/3 hole
doping [45-51] and predicted theoretically in a lattice gas model with long-range interac-
tions at one-third filling [52], so far the corresponding diagonal striped supersolid (dsSS)
has been elusive on a square lattice (that is not subject to an external potential). In this
study we identify the ¢; — V; — V5, — V3 model as the minimum model for the diagonal
striped supersolid. It is also shown that the charge orders in LSNO can be studied by ex-
tending our cooperative HCB-phonon framework. We demonstrate that the diagonal-stripe
and checkerboard order observed in LSNO at one-third filling and half filling respectively,
can be explained by invoking cooperative Jahn-Teller effect, which resolves a longstanding

controversy.

To understand the interplay of electron-electron (e-e) and e-ph interactions, the well-
known Hubbard-Holstein model has been studied extensively in one, two and infinite di-
mensions at various fillings by employing several approaches. In Refs. [53] and [54],
a controlled analytic approach (taking the dynamical phonons into account) was applied
to the one-dimensional Hubbard-Holstein model in the regimes of strong e-ph coupling

(g > 1) and strong Coulomb coupling (U/t > 1) with U being the onsite Coulomb re-



pulsion between electrons. The model was shown to manifest a correlated singlet phase
over a range of U/t values. Concentrating only on this singlet phase, in the last problem
of this thesis [55], we study the two-dimensional version of the Hubbard-Holstein model.
Now, an important point to note here is that, each NN singlet can be represented as a HCB
located at its center. Thus the system of NN singlets on a periodic square lattice transforms
into a system of HCBs on a checkerboard lattice governed by a Hamiltonian of the form
t; — Vi — V4, — V5. By investigating the checkerboard lattice at various filling fractions of
HCBs, we show (using SSE method) that, in contrast to the one-dimensional results where
CDW and superfluidity occur mutually exclusively, a supersolid phase exists on both sides
of the CDW observed at 1/8 filling fraction. Thus our results portray the importance of
dimensionality in determining the properties of a system. There have been a number of
studies which deal with HCBs on a checkerboard lattice. But the unique feature which dis-
tinguishes our model from the myriad models is that, due to the presence of the correlated
singlet phase, the checkerboard lattice naturally emerges out of a system of electrons on a
periodic square lattice.

Lastly, it is worth mentioning that in our models the parameters [i.e., hopping term,
strength of HCB-phonon (e-ph) coupling, and phonon frequency] either can be determined
from band-structure calculations or can be obtained from experiments; this sets them apart
from the existing lattice models of the extended-boson-Hubbard type. We hope that the
works presented in this thesis will shed some light on the mechanism behind the formation

of different types of CDWs as well as lattice-supersolids.
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CHAPTER 2

ANALYSIS OF THE t9 — VV MODEL

2.1 Introduction

The last few decades have witnessed numerous studies to fathom the tapestry of exotic
phenomena (such as long-range orderings) and interesting functionalities (such as colos-
sal magnetoresistance, multiferroicity, superconductivity, etc.) [81] in bulk transition metal
oxides (such as the manganites, cuprates, etc.) and their interfaces. Of considerable inter-
est is the coexistence of diagonal long-range orders [such as the CDW, spin-density-wave
(SDW) and orbital-density-wave (ODW) in manganites [82]]; also of immense focus is the
coexistence and competition between long-range orders that are diagonal (i.e., CDW or
SDW) and off-diagonal (i.e., superconductivity or superfluidity) such as those reported in

bismuthates [5], cuprates [9, 10], etc.

To model the emergent ordering and functionality in these complex metal oxides (and
guide material synthesis), one needs, as building blocks, effective Hamiltonians for various

interactions. Except for the cooperative electron-phonon interaction (EPI), effective Hamil-
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tonians, that reasonably mimic the physics, have been derived for all other interactions.
For instance, double exchange model approximates infinite Hund’s coupling, Gutzwiller
approximation or dynamical mean-field theory model Hubbard on-site Coulombic inter-
action, superexchange describes localized spin interaction at strong on-site repulsion, etc.
Many oxides such as cuprates [83—85], manganites [86—88], and bismuthates [34] indicate
cooperative strong EPI.

Although definite progress has been made long ago in numerically treating EPI systems
[82], only recently has the effective Hamiltonian been derived for the cooperative EPI
quantum systems in one-dimension; it has been demonstrated analytically that introducing
cooperative effects in the strong EPI limit changes the dominant transport mechanism from
one of nearest-neighbor (NN) hopping to that of next-nearest-neighbor (NNN) hopping
[39]. Additional NN particle repulsion (due to incompatibility of distortions produced by
cooperative EPI effects) leads to the t, — V' model as the effective model.

The purpose of this work is to study the 5 — V" model and elucidate the consequences
of the atypical dominant (NNN) transport mechanism in cooperative strong EPI systems.
We demonstrate that the 72 — V' model, upon tuning repulsion, displays a dramatic discon-
tinuous transition from a superfluid to either a CDW or a supersolid wherein the superfluid
and the CDW coexist instead of compete. Green’s function analysis yields exact critical
repulsion values V, in the two limiting cases; we find V./to = 4 for the two hard-core-
boson (HCB) case and V,/ty = 21/2 for the half-filled system. Using finite size scaling
analysis, we also obtain V, values numerically at intermediate fillings. The symmetry dif-
ference between rings with odd number of sites (o-rings) and rings with even number of
sites (e-rings) is revealed through the ratio of their structure factor peaks at transition being

an irrational number 4/72.
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2.2 Numerical study of the o, — IV model for e-rings

We begin by identifying the Hamiltonian of the ¢, — V' model for HCBs.

N Ns
thV = —1y Z(b;'—lbj-l-l + HC) + VZ ninjy1, (2])
j=1 j=1

where b; is the destruction operator for a HCB, V' > 0, n; = b}bj, and NNV, is the total
number of sites. We assume periodic boundary conditions and first study numerically
(using modified Lanczos algorithm [41]) the quantum phase transition (QPT) in the ¢ — V'
model. We will characterize the transition through the structure factor and the superfluid
density. The structure factor is given by S(k) = S, ™ W (1) where W (l) is the two-
point correlation function for density fluctuations of HCBs at a distance [ apart (when
lattice constant is set to unity): W (l) = 5~ E L [{njnj) — (nj)(n;4)]. The wavevector
k = 2”” = with n = 1,2, ..., Ng; filling-fraction f = (nj) = l]\vj—z with NV, being the total
number of HCBs in the system. For e-rings with N, = 2V sites, from the definition of the

structure factor, for £ = 7 we have
S(k) =Y (-=1)'W (). (2.2)

Substituting the expression for the correlation function TW (1) and recognizing that 37, ™ =

0, we get
4 2N 2N
_ ﬁZ<njznj+,(—1)’>. 2.3)
j=1 =1
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In the above equation, on taking j + [ = m we get

9 2N ' 2N
Stk) = = D (=1 D mu(=1)"). (2.4
j=1 m=1

On defining the number operator which gives the total number of HCBs at even (odd) sites

as N, = 3 n; (N, = 3 n;), we obtain

Jeven Jodd
S(m) = e "o/ / (2.5)

Due to the presence of only next-nearest-neighbor hopping, both N, and N, commute with
the ¢, — V' Hamiltonian; hence we obtain the following result

2(N, — N,)?

S(m) = N

(2.6)

where N, (N, ) are the total number of HCBs at even (odd) sites. Thus the minimum value
of S(m) = 0 corresponds to equal number of particles in both the sublattices whereas the

maximum is given by

IN?  4N?
[S(7)] ax = N =N (2.7)

indicating a single sublattice occupancy. To study the QPT, we rescale the value of S(7)

as S*(m) = [S(i ()7]21&,( with S*(7) representing the order parameter that varies from 0 to 1

during the phase transition.

Next, we will outline our procedure for calculating the superfluid density by threading
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the chain with an infinitesimal magnetic flux 6. The superfluid fraction is given by [21,89]

N2 [19°E(9)
s=—2 | , 2.
P Npteff lQ 06> L} 0 ( 8)

where E(6) is the total energy when threaded by flux ¢ and t.g = h?/2m is the effective

hopping term which for our ¢, — V' model is given by t.q = 4to.

The total energy for the case V' > V., when threaded by a flux 6, is expressed as
E(0) = —2t, » _ cos[2(k + 0/N,)], (2.9)
k

where Ny, = 2N. Then, from the above definition of superfluid density pg, for V- > V., we

have
1
Ps = — Z cos(2k). (2.10)
N, -

Since we consider even values of V,,, the momenta occupied by the HCBs are £ =

(2”;7\,1)” with —% <m < NT” — 1. Summing over these momenta, for the case of single

sublattice occupancy (which occurs when V' > V), we have from expression (2.10)

. 7Np
B 1 Sin (T) (2 11)
PN, s () '

When both the sublattices are equally occupied (i.e., for V' = 0), in each sublattice of N

sites we have % particles. Thus, the superfluid density in this case takes the form

o sin (7;]]\\[;“)

N, sin (%) '

ps = (2.12)
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Figure 2.1: Plots of rescaled structure factor S*(7) and superfluid fraction p at various
filling factors f obtained using modified Lanczos technique. The calculations were at f =
1/2,1/4 with system size Ny = 16 and at f = 1/3 with N, = 12. At a critical repulsion
there is a striking discontinuous transition in both S*(7) and p,; while S*(7) jumps from
its minimum to maximum, there is a significant drop in p;.

When e-rings were used, at all fillings f, we found that the order parameter S*(7) jumps
from O to 1 at a critical value of repulsion V. indicating that the system transits from equally
populated sublattices (i.e., Ising symmetry) case to a single sublattice occupancy, i.e., a
period-doubling CDW state [see Fig. 2.1]. Concomitantly, as can be seen from Fig. 2.1,
there is a sudden drop in the superfluid fraction p, at the same critical repulsion. At half-
filling, where the superfluid fraction vanishes above a critical repulsion because a single
sublattice is completely filled, the transition shows that superfluidity and CDW state are
mutually exclusive. On the other hand, at all non-half-fillings, we see that the system
undergoes a QPT from a superfluid to a supersolid (i.e., a homogeneously coexisting su-
perfluid and CDW) state. In Fig. 2.1, it is of interest to note that the values of p; at V' =0

and V' > V_ are exactly those predicted by Eq. (2.11) and Eq. (2.12), respectively. Next, for
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Figure 2.2: Plot of V,.(o0) (critical repulsion for an infinite system) obtained from Green’s
function analysis for half-filled (f = 1/2) and two HCB systems (f — 0) and from finite
size scaling at various other fillings f.

e-rings at various fillings, we relate V,(2/V) (critical repulsion at Ny = 2N) to V,(oc0) using
finite size scaling analysis (see Appendix A for details) and obtain Fig. 2.2. At half-filling,
from finite size scaling analysis we obtain that V,.(oco) & 2.83; in the next section, we show
(using Green’s function analysis) the exact result V,(oco) = 21/2. For systems with 2 HCB
and Ny = 4,6,8,10,12,14, 16, 18, and 20, we find numerically that V., ~ 4.00; in the
next section, we obtain the exact result (using Green’s functions) that V,.(2N) = 4 for any

system size N, = 2N > 4.
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2.3 Exact instability condition at half-filling in e-rings

We study the following to — V' Hamiltonian in rings with even number of sites (2/V) by

considering two sublattices C' and D and using periodic boundary conditions:

N N

N
H= —t9 Z(CICH_l + HC) — 19 Z(ddeJ + HC) +V Z d:dz(CICl + cz_lci_l),

=1 =1 1=1

(2.13)

where c and d denote destruction operators of HCBs in sublattices C' and D, respectively.

To understand the discontinuous phase transition at half-filling, (i.e., the transition from
equal occupation of both sublattices to occupation of only one sublattice at a critical V)
we begin by recognizing that when the system is on the verge of completing the phase
transition, the system will pass through the state where there is one HCB in one sublattice
and one hole in the other sublattice. Hence, we now consider instability for the case of one
particle in sublattice C' and one hole [with destruction operator denoted by i (= d")] in

sublattice D; we then rearrange the above equation as

N N N

= _tQ Z(C;[Ci_,_l + HC) + tQ Z(hf}-hi—i—l + HC) -V Z(hjhl — 1)(0;[(31' -+ c}_lci_l).

=1 =1 =1

(2.14)

We define the particle-hole Green’s function as follows [90]:
gh = ik, 0|G(w)|k, n), (2.15)
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where G(w) = 1/(w +in — H) and |k, n);, is the particle-hole state

N

(2.16)

with & being the total momentum of the particle-hole system and n the separation between

the particle and the hole. Using the condition

don = wlk,0|G(w)(w +in — H)|k,n)p,

for n = 0, we obtain

(w+in)gy =1+ 1k, 0|G(w)(H)|k, O)n

— 1+ Vgl —i2tysin(k/2)gh + i2tysin(k/2)g"

From Eq. (2.17), for n = 1, we get

(w -+ in)gy = wk, 0|G(w)(H)|k. 1,

= Vgl —i2tysin(k/2)gh + 2ty sin(k/2) gl

Similarly, for n # 0, 1, we derive

(w+in)gy = Kk, 01G(w)(H)|k, n)n

= 2V gl —i2tysin(k/2)g,, + i2tysin(k/2)g_,

(2.17)

(2.18)

(2.19)

(2.20)

As V is increased to the critical repulsion V., the HCB in sublattice C' vacates its sublattice

and enters the sublattice D containing the hole; the energy of the system then becomes O.
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Next, we let

M 1_ 2, (2.21)
z

Fy

where F), = i2t5sin(k/2). Then, Eq. (2.20) takes the simple form

1
(_ - Z) 92 = 92—1 - 92+1» (2.22)
whose solution is of the form

B
(=2

=t

(2.23)

where o (a7) and ;" (8;) correspond to n > 1 (n < 0). The transition occurs at the
critical value of V' that makes the overall energy 0. Let V' = 2ty sin(k/2). The overall
energy is less than —4t, + 2V (for V' > 0). It is important to note that, for the ground state,
k = 7 for any V' < V.. This can be seen by first noting that when V' = 0, total momentum
in the minimum energy state is 7; next, turning on V' does not change the total momentum.
Then for k = m, to get overall energy to be 0, we need the inequality v > 1. The instability
condition corresponds to the case w = 0 because then the Green’s function g diverges

when the energy is zero. It then follows from Eq. (2.21) that
, 1
L (2.24)
z

which implies that

2= i(—y+ VP - 1), (2.25)
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and hence |z| < 1 for v > 1. Let us first consider the case n > 1. From the above Eq.

(2.23), it is clear that, for n — oo, g,}; is finite only for ﬁf’ = 0. Thus forn > 1,
g = z2gt, (2.26)
which implies that g} = zg¢%; then, from Eq. (2.22) it follows that
9 = 291 (2.27)

Next, for the case n < 0, we see that ¢” is finite, for n — —oo, only when oy = 0. Thus

forn < 0,
gh_ = —zgl, (2.28)

which implies that g", = —zg"; then from Eq. (2.22) we obtain

9" = —zgp. (2.29)

From Egs. (2.18), (2.19), (2.27), and (2.29), we obtain

1
g5 = , (2.30)

: 7
(w+in=V+2F) + Gmimy

and

h_ gng
"=

2.31
(wHin—V + 2F)’ 2.31)

g
where w = 0, V = 2tyy, 2 = i(—y + /72 — 1), and F, = i2t,. It then follows that g/
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diverges when (V — 2[})? + F2 = 0, i.e., when v = /2. Thus the instability condition is
V. = 24/2t,. (We now see that the total energy at transition is indeed less than —4ty +2V).
It is important to note [as can be seen from Eq. (2.31)] that, when g2 diverges, g/ also
diverges; consequently, from Egs. (2.26), (2.28), and (2.29) we see that all g,’} diverge (i.e.,

even whenn > 1 and n < 0).

2.4 Exact instability condition for two HCBs in e-rings

We now study the non-trivial case of the two-HCB instability for the 1o — V' Hamilto-
nian [described by Eq. (2.13)] in e-rings. We consider one HCB in sublattice C' and
one HCB in sublattice D; the corresponding two-particle Green’s function is defined as
gn = (k,0|G(w)|k,n) with G(w) being defined as before and the two-particle state |k, n)

being expressed as
Jgtn

N
1 lien
Ik,n>=—N§ e*(t8)ctdt o), (2.32)
=1

with £ representing the total momentum of the two-particle system. Then, the following

equations hold for the Green’s functions g,,:

(w=+in—V)go =1— 2ty cos(k/2)g1 — 2ty cos(k/2)g—1, (2.33)

(w+in —V)gy = —2tycos(k/2)ga — 2t5 cos(k/2)go, (2.34)
and forn # 0, 1

(w+1in)gn = —2tyco8(k/2)gni1 — 2ta cos(k/2)gn—1. (2.35)
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As V increases to the critical V, the energy given by Eq. (2.13) becomes —4t; cos(m/N)
(i.e., the minimum energy of the two HCBs in the same sublattice); this would correspond
to the instability where one HCB quits its sublattice and goes into the sublattice of the
other particle. Here, we make the key observation that £ = 0 for the ground state at any V.
To understand this, we first note for V' = 0, the total momentum is zero in the minimum
energy state; next, we recognize that turning on V' does not change the total momentum.

Now, to obtain the instability, we take

w _ 4tycos(m/N)
ot 2—252—2(/08(7'('/]\/')

— TIN 4 omim/N

_ oLyt (2.36)
z

We set 2z = ¢/N and also take V/(2t5) = 2v.Then, Eqgs. (2.33), (2.34), and (2.35) become

[(z +1/2) 4+ 27]g0 = —1/(2t2) + g1 + g1, (2.37)
[(z +1/2) +27]g1 = g2 + go, (2.38)

and for n # 0,1
[(z + 1/2)]gn = gn+1 T Gn-1- (2.39)

Without loss of generality, we assume

g1 = iz + o)z, (2.40)
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and

Gy = p2® + 52/22. (2.41)

Then using Eqgs. (2.39), (2.40), and (2.41), we obtain for n = 3,4, ..., N the expression

Gn = 22" + Bo/2". (2.42)

It is important to recognize that |z| = 1; hence, the Green’s functions do not decay with

HCB separation n. Next, we note that at k£ = 0,

k,—n) = |k, N — n); consequently, we

im/N

see that gy = go and gy_1 = g_1. Then, using Eq. (2.42) and the relation z = """, we
get
g1 =gn-1= 2" 4 B /2N T = —(an/z2 + Br2), (2.43)
and
go = gy = 2™ + Bo /2N = —(a + f). (2.44)

We are now ready to solve for the Green’s functions g, using Egs. (2.37), (2.38), (2.40),

(2.41),(2.43), and (2.44). We get the following equations:

azlz + 7]+ Bo[l/2 + 7] = 1/(4t2), (2.45)

and

ol + 2]+ Bofl +7/2] = 0. (2.46)
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It then follows from the above two equations that

zZ+y

= 247
a2 dty(22 + 92 — 1 —~222)’ (247)
which diverges when v = +1. We get v = 1 for repulsive V. Furthermore,
1+~2
= —p———, 2.48
R (2.48)

which for v = 1 yields 3y = —ayz. Thus we see that gg = —(ay + B2) = —as(1 — 2)
diverges for v = 1 or V. = 4t,. We also find that for 0 #n < N

imn/N —in(n—l)/N)

Gn = 2" + Po/2" = g (e e , (2.49)

also diverges since 2n—1 # 2N. The instability condition V, = 4t, is independent of N and
hence is valid for large N as well! Another interesting observation based on 5 = —anz is

that

k+1

g—k = gN—k — —wz/zk - ﬁzzk = /32/2 + OézzkH = Jk+1- (2.50)

2.5 Numerical study of the ¢, — IV model for o-rings

We calculate the structure factor at large repulsion so that the CDW would be better defined
(with larger values for the structure factor) even for finite number of sites. Since the allowed

momenta for HCBs in o-rings (with 2N + 1 sites) are k = QQNLL withn=1,2,...,2N+1;
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Analytical Numerical value of [S(Q)]max
N,/N, value of [S(Q)max V =50 V =100 V =500

g 3.6848 3.6836  3.6845 3.6848
% 5.2944 5.2935  5.2942 5.2944
% 6.9095 6.90878  6.9093 6.9095
10 8.5269 8.5263  8.5267 8.5269

21

Table 2.1: At filling fraction f = ﬁ, the numerical value of [S(Q)]max calculated at
large V' agrees quite well with the analytic value obtained from Eq. (2.54).

the structure factor S(k) will have peaks at k = () = 7 4+ 57— in fact 7 is not an allowed

2N+1’
value for the momentum £!. For k = ) = 7 + 5577 we have
2N41 2N+1
= ()i (1) = 3 (—1)le =) (). 2.51)
=1 =1

Substituting the expression for W (l) and ignoring the term (n;)(n;4;) = (n;)* in W(l)
2N+1
(because Z ei(mram)l = 0) we get

2N+1 2N+1

S(Q) 2N+ 1 Z <"ﬂ Z (= ZN“)I> (2.52)

In the above equation, setting j 4+ [ = m yields

2N+1 2N+1
4

50 gy 3o (o tarn) s

J=1

At large repulsion all the particles in o-rings will be confined to N alternate sites similar

to the case of e-rings (with 21V sites). First, we consider the filling f = N/(2N + 1) (i.e.,
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Analytical Numerical value of [S(Q)]max
N,/N, value of [S(Q)]max V =50 V =100 V = 500
6

s 4.4828 4.4574 4.4618 4.4650
1% 3.8866 3.8634 3.8691 3.8734
1% 3.4302 3.4124 3.4183 3.4228
2% 3.0697 3.0566 3.0623 3.0668
1% 6.0982 6.0702 6.0740 6.0766
8 5.4572 5.4264 5.4316 5.4355

21

Table 2.2: At filling fraction f = (2]]\,\’—11) with N, < N, the analytical value of [S(Q)]max

[obtained from Eq. (2.54)] approximates reasonably well the numerical value at large V.

N, = N). Consequently, the maximum value of the structure factor is given by

3

[S(Q)]max = 1 [—p(—l)e_i#“ + %(—1)36_i21\7+1
Np

Mot i

2 [NV 1
_2N+1(N> (1—008(%))’ (&9

with N, = N for f = N/(2N + 1). For the N, = N case, the above expression for

[S(Q)]max is exact at all values of N (see Table 2.1).

In the thermodynamic limit (2N + 1 — 00), the above expression for [S(Q))]max di-

verges as
4 4N} 4 (4N}
[S(Q)]max:§<2N+l> :P(NS ) (2.55)
We rescale S(Q) as
) 5(Q)
S 2.56
D= 5@ 256
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Figure 2.3: Plots of rescaled structure factor S*(Q) = S(Q)/[S(Q)]ax (With @ =
T + 5557) and superfluid fraction p; at various fillings f obtained using modified Lanczos
method. At a critical repulsion there is a sharp rise in S*(Q)) with a concomitant significant
drop in p;.

For N,, < N, all the N sites considered for particle occupation would be connected through
hopping so that the total energy is minimized, i.e., the potential energy is zero and the ki-
netic energy is minimized. Next, we assume that the /V,, particles are uniformly distributed
among these NV alternate sites; such an assumption is valid for large values of N as the end
effects (i.e., at the boundary of the NV alternate sites) is negligible. Then, for N, < N, the
expression (2.54) is approximate at finite /V (see Table 2.2) and exact for N — oc. Fur-
thermore, the expression for the peak value of the structure factor for e-rings [given by Eq.
(2.7)] differs from that for o-rings [given by Eq. (2.55)] due to the phase factor ¢ i(anrr)m
in Eq. (2.54); interestingly the difference is not negligible in the thermodynamic limit (i.e.,

2N +1 — 00).

Next, we will outline our procedure for calculating the superfluid density for o-rings at

V' = 0. From the definition of superfluid density p, it is obvious that, to calculate p, all
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we need is to calculate the total energy F/(6) which is independent of whether the particles
are fermions or hard-core-bosons. So, if we recast our system in terms of fermions, the

boundary condition turns out to be

cHRENAD2 _ 1 pilmAm (2.57)

where m is an integer. The above equation implies that

Cm+m N, N,
k= —7-—"— th ——<m<—=-—-1.
22N +1) o ==
So, for V' = 0, we obtain the superfluid density for o-rings
% . . ; Np
1 (2N+1) (emk + 6—21k) 1 sin <2N+1)
Ps = N 5 = Nowin () (2.58)
p e m(Np—1) p S (2N+1)

T 2(2N+1)

When o-rings are considered, we find that at all fillings f the structure factor S*(()) shows
a sharp increase at a critical value of repulsion V,; concomitantly, there is a sharp drop in
the superfluid fraction p; at the same critical repulsion V, (see Fig. 2.3). For finite systems,
at large V, p, values are the same for e-rings and o-rings at fillings f = N,/(2N) and
f = N,/(2N + 1), respectively. In the thermodynamic limit, we expect a first order CDW
transition, with the structure factor jumping at a critical V' similar to the case in Fig. 2.1
for e-rings (although, magnitude-wise, [S(Q)]max for o-rings is 2 of the structure factor
[S(7)]max for e-rings); simultaneously, at the same critical V' we expect a sudden drop in p;
similar to Fig. 2.1. At filling N/(2N +1) the superfluid fraction decreases to zero, whereas
at all lower fillings [i.e., N,/(2N + 1) with N, < N] it transits to a nonzero value. Thus,

at filling N/(2N + 1), superfluidity and CDW state are mutually exclusive; whereas, at all
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Figure 2.4: Plots of energy E versus repulsion V' for (a) the lowest energy states with (m,6-
m) particles in e-ring with N; = 16 and IV, = 6 (non-half filled case); and (b) the lowest
energy states with (m,8-m) particles in e-ring with Ny = 16 and N,, = 8 (half-filled case).

fillings N,,/ (2N + 1) with N, < N the system undergoes a transition from a superfluid to

a supersolid.

2.6 Comparison between e-rings and o-rings

In our ¢, — V' model, e-rings have two similar homogeneous Fermi seas whose occupational

symmetry is broken at a critical repulsion to populate only one non-interacting Fermi sea
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Figure 2.5: Plots of energy E versus repulsion V' for (a) the lowest energy states with
(m,4 — m) particles in e-ring with Ny = 12 and N, = 4 (non-half filled case); and (b)
the lowest energy states with (m,6 — m) particles in e-ring with Ny = 12 and N, = 6
(half-filled case)

thereby producing a supersolid (CDW) at non-half (half) filling. The situation for o-rings,
corresponds to a single band breaking up into two bands with a midgap state. From the
energy versus V' plots for e-rings (in Figs. 2.4 and 2.5), we note that for different finite
systems with even number of sites (both for half and non-half fillings) the various lowest
energy levels [with particle distribution (1m, N, —m)] cross at a critical V'; from this and our
Green’s function analysis above, we conclude that in the thermodynamic limit the system

will undergo a first order phase transition at all fillings. On the other hand, for o-rings, since

69



-4 +
45 RE
/7 -3.65 ——
/s 37 by,
LU S /. f:6/17 -3.75 r ]
i 38 1
55 FF 38T
3 Ground state — 39 o
Ist excited state -+ 10200 400 600 800 1000
6 2nd excited state —-
2 3 4 5 6 7 8 9 10
0
-0.5
-1 F .
st M 0
-0.05
mo2r f=8/17 0.1
25 ¢ ! -0.15
r’-: Ground state — |
5 Wi Istexcited state -+~ i |
A : _. 025 L
[ 2nd excited state 10200 400 600 800 1000
35/ 3rdexcited state —— ,
4th excited state ---
4 1
2 3 5 \V 6 7 8 9 0

Figure 2.6: Plots of energy E versus repulsion V' for (a) the three lowest energy states in
o-ring with Ny = 17 and N, = 6; and (b) the five lowest energy states in o-ring with
Ng = 17and N, = 8.

the system has all sites connected through NNN hopping (much like a Moebius strip), there
do not exist two sublattices. Consequently, when we plotted the lowest few energy states
for a finite odd number of sites, there is no energy level crossing at any repulsion V' for
various fillings considered; the curves monotonically increase with repulsion [see Fig. 2.6
and 2.7]. For fillings f = N/(2N + 1), we observe that beyond some critical repulsion
(close to the value where levels cross in half-filled e-ring with Ny = 2N) all the energy

levels merge and become degenerate. For filling fractions f = N, /(2N +1) (with N, < N),
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Figure 2.7: Plots of energy E versus repulsion V' for (a) the three lowest energy states in
o-ring with Ny = 13 and N, = 4; and (b) the four lowest energy states in o-ring with
Ng =13 and N, = 6.

the energy levels come close to each other at a critical V' that is close to the point where
levels cross for e-rings with f = N, /(2N ); a little beyond this critical V/, the gap between
any two energy levels becomes constant and remains the same even at large V. The insets
in Figs. 2.6(a), 2.6(b), 2.7(a), and 2.7(b), show that at large V' the graphs remain more or
less unchanged. Thus, for finite systems with odd number of sites, the energy levels never
cross each other. Still, we expect that in the thermodynamic limit the ground state of an

o-ring will be similar to that of an e-ring and thus will have a kink at the same critical
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Figure 2.8: Plots of energy £ versus repulsion V' for ground state at various fillings f =
N,/Ns.

repulsion V.. As a result, in the thermodynamic limit, we expect both the systems to have
a similar kind of phase transition. Another important point to note, as V' — o0, is that the
ground-state energy of o-rings at f = N, /(2N + 1) approaches (from below) the ground-
state energy of e-rings at f = IV,,/(2NV) [see Fig. 2.8]. Consequently, the superfluid fraction

takes the same value for both the cases in the limit of large V' (see Table 2.3).

However, in the macroscopic limit, the energy spectrum is not expected to be the same
for the two cases; for instance, there is a mid-gap state for the odd case which is not there
for the even case . The key difference between the rings with even and odd number of
sites seems to be the difference in the peak value of the structure factor at large V' (above
critical V') for finite (infinite) systems. In the thermodynamic limit we expect the structure
factors for both o-rings and e-rings to diverge, but their ratio will still be %. For finite
e-rings, it is also important to point out our finding that the energy levels cross each other
at approximately the same critical repulsion. From the plots of E versus V' at a fixed filling

fraction f and different system sizes NV, [such as in Figs. 2.4(b) and 2.5(b)], we observe that
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N,/N; Superfluid fraction pj
V=50 V=100| V =500
0.3080 0.3080 0.3080
0.3114 0.3096 0.3080

0.4220 0.4220 0.4220
0.4257 0.4240 0.4226
0.6533 0.6533 0.6533
0.6574 0.6554 0.6537
0.7694 0.7694 0.7694
0.7721 0.7708 0.7698

Rl BBl ~ ok RloEe

Table 2.3: The superfluid fraction p, for o-ring at filling f = N, /(2N + 1) approaches the
value of the superfluid fraction for e-ring with f = N,,/(2N) in the large-V limit.

the crossing points get closer as the system size increases. From this we can expect that, in

the thermodynamic limit, all the energy levels will cross at the same transition point.

2.7 Bose-Einstein condensation

Here, we do not calculate the Bose-Einstein condensate occupation number n because, for
a system of HCBs in a one-dimensional tight-binding lattice, it varies as C'(f )\/N in the
thermodynamic limit with the coefficient C'(f) depending on filling f [91,92]; consequently,
the condensate fraction ng/N, o 1/ V/N — 0. Next, in the presence of repulsion (as argued
in Ref. [54]), we expect the BEC occupation number n to again scale as /N however, the

coefficient of v/ N will be smaller due to the restriction on hopping imposed by repulsion.

2.8 Connection to other models

Our 5 — V model can be mapped onto an extremely anisotropic Heisenberg model (with

next-nearest-neighbor XY interaction and nearest-neighbor Ising interaction) by identify-
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Figure 2.9: Plots of the lowest energy E (obtained using modified Lanczos in a system with
N, = 16 sites) for the extremely anisotropic NNN Heisenberg model at various normalized
magnetizations (N, — 2N,) /N, corresponding to fillings f = N,/ Nj for the ¢, — V' model.

ing ST =bf, S~ =b, and S* = n — 5. The resulting spin Hamiltonian is of the form

N

Ns
—ty Y (S8, +He)+ VY 8787, (2.59)

i=1 i=1

While Heisenberg model was amenable to solution through the Bethe ansatz, the addi-
tion of next-nearest-neighbor interaction (similar to the case of Majumdar-Ghosh model
[93, 94]) requires an alternate route for its solution. Our spin model lends itself to exact
instability solutions (by the Green’s function method) in the two limiting cases of two-
magnons and antiferromagnetic ground state. The energies at various fillings N, /N, for
the £, — V' model correspond to various normalized magnetizations (Ns — 2N,,) /N, for the
spin model. From a plot of the lowest energies at various magnetizations of the spin model,
as depicted in Fig. 2.9, we see that the energy increases as the normalized magnetization

increases with the ground state corresponding to zero magnetization. From the fact that
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the critical repulsion is always V. < 4, it should be clear that the energy at all fillings and
system sizes for V,, > 4 is obtained from a tight-binding model with N, particles in one
sublattice only. Thus at V. > 4, the energy will certainly increase with the normalized
magnetization.

Next, in spite of the fact that the hopping terms are different, we note the semblance
between our £, — V' model and the well-known Su-Schrieffer-Heeger (SSH) model [95,96].
We make the connection that a singlet (formed by two spins on adjacent sites) can be
regarded as a HCB located at the center of the singlet [54]. Thus a system of HCBs in
one sublattice is transformed to a system of singlets with centers located in one sublattice
only. At half-filling, for even number of sites, the ground state of the 2 — V' model at V'
larger than the critical repulsion can be mapped onto a valence-bond ground state of the Su-
Schrieffer-Heeger (SSH) model [95,96]. For an odd number of sites, at filling N/(2N +1),
we can map the ground state at large V' with two holes on adjacent sites (i.e., a kink) in
the to — V" model on to the ground state, with a kink or topological defect (with two single
bonds on adjacent sites), in the SSH model. For even number of sites as well, the kinks
obtained by doping the valence bond state in the SSH model have a counterpart in our

t, — V model.

2.9 Discussion

Our to — V model is the limiting case of the one-dimensional CBM (cooperative breath-
ing mode) model (i.e., t; — to — V' model), which depicts a simpler one-band case that is
expected to be useful in understanding the CBM physics in real systems such as the bis-
muthates, the cuprates, and the manganites [39]. An important purpose of studying the

to — V model is the fact that exact solutions can be obtained analytically for two limiting
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cases of this model. Till now we do not know how to solve the more complex t; — ¢ — V'
model analytically. We hope that in future our way of solving the two limiting cases of the
to,—V model analytically (using Green’s function technique) will lead to useful approaches

to handle more complex problems such as the t; — to — V' model.

In Ref. [39], 2 — V model was studied for spinless fermions in e-rings; structure fac-
tor S(m) and ground-state energy were obtained for some filling fractions to show that
the system undergoes a discontinuous transition from a Luttinger liquid to a conducting
commensurate CDW state away from half filling while at half filling one obtains a Mott
insulator. In the present chapter, we recast the 2 — V' model in terms of HCBs. Here,
along with the structure factor and the ground-state energy, we additionally calculate the
superfluid fraction. In e-rings, we show that the system undergoes a striking discontinuous
transition from a superfluid to either a CDW insulator (at half filling) or a supersolid (at

non-half fillings).

In Ref. [39], only systems with even number of sites was considered, whereas here
we also study systems with odd number of sites; we show that supersolidity is realized
in o-rings at large repulsion and fillings N, /(2N + 1) with N, < N. When o-rings are
considered, at all fillings N,/(2N + 1) with N, < N, the structure factor shows a sharp
increase at a critical value of repulsion; simultaneously, there is a sharp drop (to a non-zero
value) in the superfluid fraction at the same critical repulsion (see Fig. 2.3). AtV =0, we
derived an expression for the superfluid fraction [see Eq. (2.58)] which matches with the
numerical result in Fig. 2.3. The superfluid fraction, in the limit V' — oo, for o-rings [at
fillings N, /(2N + 1)] approaches the value of the superfluid fraction, when V' > V,, for
e-rings [at fillings N,,/2N] — a fact supported by numerical results (see Table 2.3). From
the expression for the superfluid fraction in e-rings when V' > V_ [see Eq. (2.11)], it is

clear that, for all fillings N, /(2N + 1) with N, < N, we will have non-zero superfluid
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fraction in o-rings even in the thermodynamic limit. On the other hand, we have also
shown that the structure factor [S(Q)]max calculated analytically for large V' agrees quite
well with that calculated numerically for sufficiently large systems (see Table 2.2). It is
also shown that in the thermodynamic limit, at large V', the structure factor for o-rings
appears to be 4/7% times the structure factor for e-rings [see Eq. (2.55)]; as a result we
expect the structure factor for o-rings to diverge as N — co. Hence, we can conclude that
in the thermodynamic limit, at all all fillings N,,/(2N + 1) with N, < N, the system for

o-rings exhibits supersolidity (at large V).

As regards relevant work, in Ref. [97] the authors consider nearest-neighbor hopping
(and repulsion) and unfrustrated next-nearest-neighbor hopping (and repulsion) that can be
realized in a zigzag ladder with two legs. As pointed out in this chapter, nearest-neighbor
hopping and next-nearest-neighbor hopping can be tuned independently. Thus this work

also shows that our ¢ — V' model is physically realizable.

Also of relevance is the work by Struck et al. [98] where various values (including
sign change) of nearest-neighbor coupling J and next-nearest-neighbor coupling J’ can be
achieved for hard-core-boson systems. Thus, we feel that our t,—V" model can be simulated

experimentally by introducing repulsions and next-nearest-neighbor coupling J'.

Recently, Mishra et al. [32,99] studied a one-dimensional system of HCBs, with nearest-
neighbor hopping and interaction and next-nearest-neighbor hopping, described by the

Hamiltonian

(2 1

1 1

(2.60)

While Pankaj and Yarlagadda [39] considered unfrustrated next-nearest-neighbor hopping,
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Misra et al. [32,99] focussed on frustrated hopping. In Ref. [99], at half filling the authors
set t; = 1 and varied ¢, from O to —¢; to obtain the total phase diagram containing su-
perfluid, CDW, and bond-ordered phases. At incommensurate densities (non-half fillings)
and with to = —t;, the authors of Ref. [32] found a supersolid phase. In Refs. [32, 99],
the competition between two different hopping processes (i.e., hoppings from one site to
nearest-neighbor site and to next-nearest-neighbor site with different signs of the hopping
terms) gives rise to kinetic frustration in the system. On the other hand, our ¢, — V' model
depicts the strong EPI limit; as a result there is only one kind of hopping process. Conse-

quently, there is no frustration in our t5 — V' system.

2.10 Conclusions

We investigated a model which captures the essential dominant-transport feature of coop-
erative strong EPI in all dimensions (and in even non-cubic geometries). Our study shows
that, compared to the non-cooperative situation, cooperative EPI produces strikingly dif-
ferent physics such as a dramatic superfluid to a supersolid transition with the order param-
eter jumping to its maximum value. Understanding one-dimensional strong EPI systems,
besides being helpful in designing oxide rings, will be of relevance to predicting and con-
trolling the variation of system properties in the direction normal to the interface in oxide
heterostructures; needless to say, oxide rings and oxide heterostructures offer extraordinary

scientific and technological opportunities [100].
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meeeeessssssmmmmm $ CHAPTER 3 S

STUDY OF LONG-RANGE ORDERS OF
HARD-CORE BOSONS COUPLED TO
COOPERATIVE NORMAL MODES IN

TWO-DIMENSIONAL LATTICES

3.1 Introduction

Supersolidity is observed in a variety of lattice systems such as the three-dimensional doped
BaBiOj [4,5]; the layered dichalcogenides [6] and molecular crystals [7]; and the quasi-
one-dimensional doped trichalcogenide NbSes [8] and doped spin ladder Sry4CuoqOqy
[9, 10]. Of importance are the class of materials that display superconductivity and di-
agonal long-range order due to strong e-ph interaction such as K or Pb doped BaBiO;

(where a 10% change in the Bi — O bond length [34] has been observed) and the alkali
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metal fullerides [101-103]. Interestingly, BaBiO3 assumes perovskite structure with two
adjacent oxygen octahedra sharing an oxygen leading to a cooperative breathing mode
(CBM). Furthermore, BaBiO3 displays valence disproportionation with local cooper pairs

[i.e., HCBs] being formed and these HCBs couple to the CBM [42].

As mentioned earlier in Sec. 1.4, a variety of lattice models manifest the existence
of supersolid ground state. However, by using extended boson Hubbard models involv-
ing HCBs, commensurate supersolid has been unobtainable in unfrustrated systems such
as square lattices. On the other hand, supersolids can be realized in square lattices at in-
commensurate fillings by a mechanism where particles (i.e., interstitials) or holes (i.e.,
vacancies) doped into a perfect crystal form a condensate by delocalizing in the crystalline
order. Furthermore, although striped supersolidity has been achieved in Refs. [15,17] on
square lattices, it is nondiagonal and characterized by density ordering wavevector (m, 0)
or (0,7). Even though diagonal stripes [characterized by crystalline ordering wavevec-
tor (27/3,2m/3) or (2w /3,47 /3)] have been observed in systems such as Lay_,Sr,NiOy
(LSNO) at z = 1/3 hole doping [45-51] and predicted theoretically for long-range inter-
actions in a lattice gas model at one-third filling [52], so far the corresponding diagonal
striped supersolid (dsSS) has been elusive on a square lattice (that is not subject to an
external potential). Additionally, whether a cooperative e-ph interaction (that involves co-
operative Jahn-Teller distortions) can explain the observed stripe charge order in LSNO is
a controversial issue [ 104—106].

In the class of extended boson Hubbard models of the type ¢t —to —... —t,, — V1 — V5 —
... — V, [involving hoppings ¢, t2, 13, etc. and interactions Vi, V5, V3, etc. of ranges nearest
neighbor (NN), next-nearest neighbor (NNN), next-to-next-nearest neighbor (NNNN), etc. ]
on a square lattice, the minimum model for realizing a checkerboard supersolid (cSS) is the

to — V1 model [107,108]. It has also been shown that star/stripe supersolid [corresponding
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to crystalline ordering wavevector (7, 0) or (0, )] can be realized in a t; — V; — V5 model;
at one-fourth filling, a star solid results which is asymmetric with respect to doping with
interstitials and vacancies [15]. Identifying the relevant extended boson Hubbard model
for obtaining the dsSS around one-third filling and characterizing the state are still open

problems.

In this chapter, inspired by the doped bismuthate systems, we develop a microscopic
theory of HCBs strongly coupled to the cooperative breathing mode in a 2D perovskite
lattice. The effective Hamiltonian for the HCBs is shown to be an extended boson Hubbard
model of the form t; — ¢, — t3 — Vi3 — Vo — V5. The Vi, V5, and V3 repulsive interac-
tions correspond to the minimum interactions needed to realize the diagonal striped-order
at one-third filling. Unlike many lattice models of the extended boson Hubbard type, the
parameters (i.e., hopping term, strength of HCB-ph coupling, and phonon frequency) in
our t; —to — t3 — V7 — Vo — V3 model either can be determined from band-structure calcu-
lations or can be obtained from experiments. Supersolidity in our model results only away
from one-third filling and is shown to be asymmetric with respect to doping the commen-
surate diagonal-striped solid (dsS) with vacancies and interstitials. Although checkerboard
supersolidity (away from half-filling) and diagonal striped supersolidity (away from one-
third filling) are realized, there is no direct supersolid-supersolid phase transition between
the two phases. We also show that our cooperative HCB-ph framework can be extended
to study charge order in LSNO; we demonstrate that the observed diagonal-stripe order at
one-third filling and the checkerboard order at half filling in LSNO can be explained by

invoking cooperative Jahn-Teller effect.

The chapter is organized as follows. In Sec. 3.2, we derive an effective Hamiltonian
of the system using a non-perturbative treatment. Next, in Sec. 3.3 we briefly describe

the numerical procedure, as well as the quantities/parameters used in our study. Then, we
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Figure 3.1: Two-dimensional cooperative breathing mode (CBM) system with hopping
sites of hard-core-bosons (filled circles), in-plane oxygen atoms (black empty circles) and
out-of-plane oxygen atoms (red empty circle). Only the in-plane oxygens are involved in
cooperative distortions.

discuss the results in Sec. 3.4, followed by a comparison with experimental observations

in Sec. 3.5. Finally, in Sec. 3.6, we conclude.

3.2 Effective Hamiltonian

We start with a 2D model of HCBs depicted in Fig. 3.1. The HCBs interact with the in-
plane (xy) oxygen atoms via CBM, whereas the nature of the interaction is noncooperative

in the case of the out-of-plane oxygen atoms in the 2 direction. The Hamiltonian of such a
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system can be written as [/ = H, + H; + H;, where the hopping term H, is given by
Ho=—tY (djmdi?j +dl i dis+ H.c.) , 3.1)
4,J

with d,-yj(d;j) being the destruction (creation) operator of a HCB at the hopping site (i, )
and ¢ being the hopping integral. The second term H; in the Hamiltonian, which represents

the HCB-ph interaction, has the form

Hy = —gwo Y [(al;i,j + i) (i — niprg) + (O 5 + by (nig — nigin)
i

-+ V(Cl;i,j + CZ;@J')TLZ',J' s (32)

where v = v/2, g is the HCB-ph coupling constant, and wy is the optical-phonon frequency.
The terms (a;m + gy j)/V/2Muw and (b'L;i,j + by )/ V2Muwy denote the displacement
of the oxygen atom that is next to the (4, 7)th hopping site and in the positive x and y
directions, respectively; here, M is the mass of oxygen atom. The relative displacement
of the two out-of-plane oxygens next to the (i, j)th site couples to the HCB at (4, 7)th site
and is denoted by (CLL it Czig)/ 24 wo with M /2 being the reduced mass of the oxygen
pairs. The expressions (n; ; — n;41;) and (n; ; — n;j+1) in the first and second terms of
Eq. (3.2) take care of the cooperative HCB-ph interaction along the x and y directions,
respectively. In the third term, note that we have only n; ; because of the noncooperative
nature of the HCB-ph interaction along the 2 direction. Furthermore, the last term in the

Hamiltonian (i.e., the lattice term H;), representing simple harmonic oscillators, is of the

83



form
Hy = wo Z (al;i,jaﬂ?;m + bj/;i,jby;i,j + nci;i,jcz;m) ’ (3.3)
i?j

with 7 = 1. It is important to note that, the above equation for the lattice term /; treats the
displacements (al;i’j + gy j)/V/2Muwg and (b;zi,j + by.ij)/v/2Muwp as independent vari-
ables; this is justified because these displacements depend on the site-occupancy differ-
ences (n;; — n;+1;) and (n;; — n;;+1) which are independent of each other. A similar
consideration lead to a similar lattice term [given by Eq. (4)] in the treatment of coopera-

tive Jahn-Teller distortions in Ref. [109].

We consider systems in the non-adiabatic regime (¢/wy < 1) and strong-coupling re-
gion (large g*). To produce an effective polaronic Hamiltonian, we employ a duality trans-
formation where the strong-coupling problem in the original frame of reference [with small
parameter o< (gwp)/t] is transformed into a weak-coupling problem in a dual frame of ref-
erence [with small parameter o< t/(gwy), i.e., inverse of the small parameter in the original
frame of reference]. To achieve the above end, we need to modify the Lang-Firsov transfor-
mation [110] so as to take into account the cooperative nature of the distortions along the
and y directions and noncooperative nature in the z direction. This involves the following

canonical transformation H = exp(S)H exp(—S) where S is given by
S=-g)_ [(al;i,j — asig) (i g — Mis1g) + (bl s — by ) (i — nijia)
(2]
+ V(Cl;i,j — cz;i,j)ni,j . (34)
The transformed Hamiltonian can be written as H = Hy + H,, where the unperturbed
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Hamiltonian is given by

Hy=uwo ) (al;i,jax;i,j + b by + nci;i,jcz;m) — B, i
i?j i7j
+ 2V, > (nagnisa g+ nignig) — te Pty (d;r+1,jdi7j +d]jdig + H'C~) 7
i i

(3.5

and the perturbation by

Hy =Y Hy,
4]

— _te—(EptVi)/wo Z |:d;r+1,jdi,j (T%TT?T _ 1) s (TfyTTZ, _ 1) X H.c.],

i,J

(3.6)

where

Tijx = €Xp [i g(zai,j — Q-1 — ai-i—l,j) + g(bi—i-l,j—l + bi,j - bz‘,j—l - bz’+1,j)

+ vg(cij — Cz’+1,j)] ;

and

T4, = exp [i 9(2bij — bij1 = bijr1) £ g(ai1je1 + @iy — aio1j — i)

+ yg(cij — Ci,j+1)]-

Here E, = (4 + 7?)g?wy is the polaronic energy and 2V}, = 2g%wy represents the nearest-

neighbor repulsion for the HCBs.
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The eigenstates of the unperturbed Hamiltonian Hj, relevant for perturbation theory
are [n,m) = |n)pep @ |m)pn, with |0,0) being the ground state with no phonons. The
corresponding eigenenergies of such states are given by F,, ., = E'® + EP'. Similar to
the case of one-dimensional CBM model [39], we also have (n,0|H;|n,0) = 0, which
yields the first-order perturbation term (0, 0| H;]0,0) = 0. In the region of interest in the

(EptVp)/wo < < 1y; we perform second order perturbation

parameter space, we note that te™
theory, as discussed in Sec. 1.6, similar to that in the 1D CBM model [39] and obtain the

effective Hamiltonian to be

Hegr = {0l Hol0)pp + H®, (3.7)
where
H® — (Olpn H i g [m) pn (| pn H ix.110) pn 38
B Z Z Eph . Eph : ( . )
i,j,k, 0 m 0 m

One can easily see that the first term in H is

(Olpn HolO)pn = — Ep > mi +2Vy > (s jmign + nigni o)

i,J i,J
_ te—(Ep-‘er)/WU Z (d;r+1,jd1-j + d;r7j+1d7;_j =+ HC> s (39)
1,3
whereas the simplification of the second term (i.e, H?) requires quite a bit of algebra.
We extend the derivation of the effective Hamiltonian for the 1D CBM case [39] to our
2D case as well. As shown by using Schrieffer-Wolff transformation in Appendix A of
Refs. [53, 54] (also discussed in Sec. 1.6), since te~ (PrtVe)/wo << () H g represents the

exact Hamiltonian up to second order in perturbation. The small parameter here is given by
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1
[%] * whose derivation is similar to that in Ref. [111]. For the second term H?

in Hg, we obtain the terms given in the following subsections.

3.2.1 Nearest-neighbor (NN) repulsion

The NN repulsion term comes from a process where a particle jumps to a neighboring
site and comes back. In 2D, this term further consists of two parts: » [n; ;(1 — 111 ;) +
0,J

nit1;(1 — nij)] and D [n;;(1 —ny 1) + 14 j41(1 — n;;)]. Following a procedure ex-
0,

plained in Appendix B, we get the expression for this process to be
=V Y [ (1= miprg) + nag(1 = nij)], (3.10)
1,3

. —~ 212 . . . .
with V, ~ 55,13V, The denominator 2E,, + 2V}, in V, is the difference of the energy of the
intermediate state (i.e., £, + 2V, corresponding to the particle in the intermediate site) and

the energy of the initial state (—£,). The exact expression for V, is derived in Appendix B.

3.2.2 Next-nearest-neighbor (NNN) and next-to-next-nearest-

neighbor (NNNN) repulsions

We first make an important point while considering a process of a particle hopping to a
neighboring site and coming back. In 2D, excluding the originating site, we must take into
account the occupancy information about all the three remaining NN sites of the intermedi-
ate site of the hopping process. For example, consider a process where a HCB at site (i, j)
hops to its neighboring site (7 + 1, ) and comes back. For this process, we need to keep in

mind the occupancy of the sites (i+2, j), (i+1,j+1) and (i+1, j— 1), which are the three
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relevant neighboring sites of the intermediate site (7 + 1, j) (see Fig. 3.1). Depending on
whether these sites are occupied or empty, the coefficient of the process will be modified
accordingly. Essentially there are four cases: 1) all the three NN sites are empty ; 2) any
one of the three neighboring sites is occupied ; 3) any two of the NN sites are occupied;
and 4) all the three neighboring sites are occupied. Considering all the cases above, we end

up with the following NNN and NNNN repulsion terms in H? as detailed in Appendix C.

A. NNN repulsion along diagonals

The first term is the NNN repulsion which acts along the diagonals of the square lattice; it

is given by
Vo Z (1,511 501 + M j i1 1) 5 3.11)
1,7
where
1 2 2V,
Vo =22 = — L
’ [ <2 m) (B, + Vo) (B, +2V;)
- 1BV,
4 (Ep + Vo) (Ep + 2V)(Ep + 3V3)

(e g2
2 (Ep +2Vp)(Ep +3Vp)(Ey +4V) |

(3.12)

with m being the magnetization of the system.
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B. NNNN repulsion along the = and y axes

We find the second term to be the NNNN repulsion which acts along the x and y axes of

the square lattice; it is given by

V3 Z (M Moy + MijNiji2) (3.13)

1’7‘7

with V3 = % It is important to note that, in the absence of the NN repulsion 2V},, we
obtain expressions for V,, V5, and V3 consistent with the noncooperative treatment of the

e-ph interaction in Refs. [20,21].

3.2.3 NNN and NNNN hoppings

The remaining terms in H? are the hoppings of the HCBs to the NNN and NNNN sites.
Similar to the NNN and NNNN repulsions, the hopping contributions of the HCBs can also
be divided into two types: NNN hopping along the diagonals and NNNN hopping along

the x and y axes (see Appendix D for details).

A. NNN hopping along diagonals

While calculating the coefficient of the NNN hopping, we have to keep in mind the fact
that the HCB passes through an intermediate site while hopping to its NNN site. So the
coefficient must depend on the occupancy of the two neighboring sites of the intermediate
site. For example, if a HCB at site (7, j) is hopping to its right-upper diagonal site, i.c.,
(¢+ 1,7+ 1), it can follow any one of the two possible paths: a) first going along x-axis to
the (741, j)-th site and then along y-axis to the (i+ 1, j+1)-th site; and b) the interchanged

process, i.e., hopping along the y-axis first to the (i, 7 + 1)-th site followed by a hop along
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the x-axis to the (i 4 1, 7 + 1)-th site (see Fig. 3.1). For the first path, the coefficient of the
hopping depends on whether the two sites (¢ + 2,7) and (¢ + 1, j — 1), which are NN of
the intermediate site (¢ + 1, j), are occupied or empty. On the other hand, for the second
path, the hopping coefficient depends on the occupancy of the two neighboring sites of the
intermediate site (¢, 7+ 1), i.e., (i — 1,7+ 1) and (¢, j + 2). To calculate the NNN hopping
coefficient, first we forget about the occupancy of the two neighbors of the intermediate

site; then, the NNN hopping along the diagonals is obtained to be

2t2 —E},/wo
e (d

—E T oV L—l,j—&-ld’id + dz—l,j—i-ld’i»j + HC) s (314)
p P

. 942 ,—Ep/w
where the coefficient 2Ee—2-°

“Ftav, s an approximation with the exact expression being given

in Appendix D.
Now, taking the two neighbors of the intermediate site into account, the NNN hopping

term along the diagonals of the square lattice gets modified to be

—t, Z (dj+17j+1di,j + d;‘f—Lj—i—ldi,j + H-C-) ; (3.15)
2%
where
b=y 3~ 17 — "+ 5 2Pl (3.16
2 E, 12V, (2 m) —|—<4 m)Ep+4V})+<2+m> E, 16V, ( )

B. NNNN hopping along the x and y axes

Next, we consider the hopping of the HCBs to the NNNN sites along the x and y axes
of the square lattice. Similar to the previous case, the coefficient of the hopping in this

case, depends on the occupancy of the two neighboring sites of the intermediate site. For

90



example, if a HCB is hopping from site (7, j) to its NNNN site (i 4 2, 7), it has to pass
through the intermediate site (i + 1, 7) (see Fig. 3.1). So, the coefficient for this process
depends on whether the neighboring sites of site (i + 1,7), i.e., (i + 1,5 + 1) and (i +
1,7 — 1), are occupied or empty. Taking into account all the occupancy possibilities of the

neighboring sites of the intermediate site, we get the NNNN hopping term to be

_tgz( Loy dljadiy + He.) (3.17)

with {3 = 32

Again, it should be pointed out that, in the absence of the NN repulsion 2V}, the expres-
sions for ¢, and ¢3 simplify to be consistent with the results of the noncooperative analysis

of the e-ph interaction in Refs. [20,21].

Finally, taking all the terms present in H(?) into account, Hg in Eq. (3.7) reduces to

Hyp = — (B, +2V2) Y mi;

i?j

— Z (d;'f+1,jdi»j +dl i dig+ H.c.)

i,J

+ VA (nignipa +mignige)
i?j

—t, Z (d;'f+1,j+1di>j T d;f—l,j_i_ldi,j + H.(t.)

1,J

+ Vs 5 (70 j1ig1 1 + i1 j+1)

_t3z<z+2j it ”+2d”+Hc)

i,J
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where t, = te~(ErtVa)/w0 1 = 21/ + V,, and the expressions for all the remaining terms,

V., ta, t3, Vo, and V3, being the same as defined earlier.

3.3 Numerical Calculations

To study the phase diagram of our effective Hamiltonian of HCBs, we use quantum Monte
Carlo (QMC) simulation adopting the stochastic-series-expansion (SSE) technique [44,
112]; furthermore we employ directed loop update [79,80]. We find it convenient to rewrite
the Hamiltonian in terms of spin-1/2 operators. Identifying the relations between the oper-

ators for HCBs and those for spin-1/2 particles as df ;= Sfj, i

=S5, andn; ; = Sf:j—l—l
we recast our effective Hamiltonian for HCBs, in units of 2¢;, as an extended XXZ spin-1/2

Hamiltonian, given by

H = Z[ Sty Sy S Sy ) + Ay (85550, + 55554 |
+Z [ Sz—:-lj—i-lsl_j—i_st 1]+1S +HC) + Ay (SzzJSzZJrler SzZJSZZ 1]+1)]
+Z[ z+2] zy+Sz]+25 +HC)+A3 (SZZ]SZZ+2]+SZJ lz]+2 ]_hozslz]

(3.19)

Looking at Egs. (3.18) and (3.19), one can easily see that Jo, = t9/tq, J3 = t3/t;, A =
Vi/(2t1), Ay = Vo /(2t1), Ay = V3/(2t1) and hy = E, + 2V, — 2V} — 2V, — 2V3; here, J;
and A, are the transverse and longitudinal couplings, respectively.

Now, to figure out the phase diagram of the system, we need to study the Hamiltonian
at various filling-fractions of HCBs. To vary the number of HCBs in the system, or in other

words to tune the magnetization of the spin-1/2 system, we replace the constant hg by a
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Figure 3.2: Dependence of NNN longitudinal coupling As and NNN transverse coupling
Jo on magnetization m as derived from Eqgs. (3.12), (3.16), (3.18), and (3.19) for the
following cases: (a) & (b) at g = 1.4; (¢) & (d) at g = 2.0; (e) & (f) at g = 2.5; and (g) &
(h)at g = 3.0.

variable A in the term —hg ) Si'fj of the Hamiltonian H given by Eq. (3.19); here h is
1,3

taken as the external magnetic field in units of 2¢;. By tuning the external magnetic field h,

we can actually tune the magnetization of the system and study the behavior of the system

at various fillings.

To capture the ground-state properties of a L, x L square lattice using SSE, the simula-
tions should be done at low enough temperatures, i.e., the inverse temperature 5 ~ L [113].
For our Hamiltonian, since the numerical calculations for 5 = 3L/2 and § = 2L produce

same results within the error bars of our calculations, we present the results for 5 = 3L /2.

We use two kinds of order parameter: structure factor S (Q) (to identify diagonal long-
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g A1 (A2)max (JQ)max

1.0 1.7436 0.4757 1.6486
1.5 5.7744 0.7379 0.8760
1.8 16.6463 1.3791 0.7007
2.0 39.2161 2.3887 0.6327
2.25 131.8584 5.4612 0.5818
2.5 907.9968 14.5044 0.5584
3.0 10896.8217 157.5599 0.5744

Table 3.1: Values of NN longitudinal coupling A; and maximum values of NNN longitu-
dinal coupling A, and NNN transverse coupling .J; for different values of g.

range order) and superfluid density p, (to identify off-diagonal long-range order) and con-

struct the phase diagram. The structure factor per site is defined as

N ZZe’Q (Raj=Rom ) (S5 Smn)s (3.20)

1,5 m,n

with (...) being the ensemble average and N, the total number of sites. We study S(Q) at
all values of @ and identify those that produce peaks in the structure factor. Here we would
like to point out that the maximum possible value of S (@) is 0.25.

The superfluid density is expressed in terms of the winding numbers, W, and WW,,, in

the x and y directions as [112]

ps = 6<W2 + W2 (3.21)

The winding number W, along the x direction can be calculated as W, = 7= (N, — N"),
where N,/ and N, denote the total number of operators transporting spin in positive and
negative x directions, respectively and L, denotes the length of the lattice along the x

direction.

We now discuss the values of different parameters in our Hamiltonian given by Eq.
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(a) (b)

Figure 3.3: Two types of honeycomb-like solid depicted by a peak in (a) S(7/2, 7) and (b)
S(m,m/2).

(3.19) and used in our numerical calculations. We concentrate on the case ¢/w, = 1.0 for
the construction of our phase diagram. Since v = /2, we set §> = 7¢? so as to get the
simple expression E, + V,, = g*wy. The coefficients J, (= 2.J3) and A, (= 2A3) depend
on the magnetization m of the system. While Fig. 3.2 depicts that J, and A, values (at
various couplings g) monotonically decreases with increasing magnetization m, Table 4.1
shows the values of A; and the maximum values of A, and .J; for different values of §. As
one can see, Aq/(As)max increases monotonically approximately from 3.665 to 69.159 as
g is varied from 1.0 to 3.0. At larger values of g, when A; and A, assume large values,
our numerical calculations suffer from significant slowing down resembling the situation
in Ref. [20]; with our computational constraints we cannot use exact values when A; and
A, assume large values. We can set a cut-off for the parameters A; and A, above which
the essential physics for our system remains unaltered. Similar to Ref. [20], the upper
cut-off for A; is 16. Furthermore, to identify the cut-off for A,, we need to find out the
lowest value of A; /A, which can be used without changing the essential physics. To this
end, we have calculated the superfluid density and structure factor at half-filling (where
Ay = (As)max) for the following set of values of (A1, (Ag)max): (20,4), (20,5), (20,6),
(16,5), (20,7), (17,6), (16, 7), and (20, 9) with the value of A;/(As)max being 5, 4, 3.33,
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h 5.0 13.0 15.35 29.50 34.0
Tint 279692 95792 147933 192790 o747

Table 3.2: Autocorrelation times measured for § = 2.5 using ¢, = 8, ¢, = 5/4 and
€3 = €/2; chosen magnetic fields are in the vicinity of the transitions as well as away from
the transitions (see Fig. 3.8 for details).

3.2, 2.86, 2.83, 2.29, and 2.22, respectively. Numerical results show that for the first four
cases, where A; > 3(Ay)max, at half-filling the system manifests a checkerboard solid (cS)
with a peak in the structure factor S(7, 7). On the other hand, for the last four cases where
2(Ag)max < A1 < 3(Ag)max, at half-filling the system produces a completely different
type of solid depicted in Fig. 3.3 (which we call honeycomb-like solid), indicated by a
peak in S(m/2,7) or S(m,7/2). The reason can be explained as follows. In the ¢S phase
each particle feels 6(As)max amount repulsion, whereas in the honeycomb-like solid the
repulsion felt by each particle is A; + 3(Ag)max- The checkerboard solid will be favored
over the honeycomb-like solid only if A; + 3(A2)max > 6(A2)maxs 1€, A1 > 3(A2) max-
Therefore to capture the correct physics of our system, the minimum value of A; /A, must
be greater than 3. Keeping all these facts in mind, we set the cut-off values to be A; = 16
and Ay, = 5 (with Az = %), so that the physics of the system still remains the same.

As discussed in Ref. [20], it is important to mention here that the parameter ¢; (see
Appendix D for details), introduced to make the two-spin matrix elements positive, can
affect the autocorrelation time especially for large anisotropies (i.e., large values of Ay, A
and Aj3). To ensure that the autocorrelation time is much smaller than the bin size used
to calculate the observables (in all the cases considered), we compute the autocorrelation

time 7;,; given by the following formula,

N —

Tint [m] =

3 A, (3.22)
t=1
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Figure 3.4: Plots of structure factor S(() and superfluid density p, vs magnetization m for
HCBs on a 18 x 18 lattice with ¢/wy = 1.0 and when (a) ¢ = 1.4 and (b) § = 2.5. Curves
are averaged results from simulations using three different random number seeds.

with

(3.23)

where ¢ and ¢ represent Monte Carlo sweeps and (- --) denotes average over the time 7.
Based on our autocorrelation data, we observe that when A; < 10, taking ¢; = A;/4
is good enough to keep the autocorrelation time much smaller than the bin size. Given

the cut-off values of Ay and Az mentioned above, we always take €3 = Ay/4 and €53 =
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A3z/4. On the other hand, as A; increases from 10 to 16 (i.e., cut-off value of A;), €
is taken to steadily increase from A;/4 (i.e., 2.5) to A;/2 (i.e., 8). To give an estimate
of the autocorrelation time at large A; values, Table 3.2 shows the autocorrelation times
for g = 2.5 at magnetic fields chosen in the vicinity of the phase transitions (where the
autocorrelation time is expected to be large) as well as in regions far from the transitions.
In Table 3.2, the magnetic field & = 5.0 corresponds to a point in the ¢SS region close to
the cSS-SF transition; whereas i = 15.35 and 29.50 represent points in the dsSS region
in the vicinity of the dsSS-SF transition (see Fig. 3.8). On the other hand, » = 13.0 and
34.0 correspond to two points in the SF region away from the transitions. The values of the
autocorrelation time 7;,,; (listed in Table 3.2) clearly show that close to the transitions the
autocorrelation time increases significantly, whereas it remains comparatively small in the
regions away from the transitions. The bin size used for all calculations is 20, 00, 000; this
ensures that 7;,,; is well within the bin size.

All numerical results in Figs. 3.4-3.11 have been obtained on a 18 x 18 lattice with
t/wo = 1.0. Furthermore, along with the 18 x 18 phase diagram, in Fig. 3.6, the phase

boundaries for a 12 x 12 lattice are also plotted.

3.4 Results and Discussions

To determine the various phases of our 2D t; — 5 — t3 — V; — V4, — V5 model, one needs
to understand the interplay between different types of hopping and repulsion. To construct
the phase diagram, we vary the magnetization m from 0 to 0.5; this corresponds to varying
the particle filling p from 1/2 to 1. Due to particle-hole symmetry of the Hamiltonian, the
physics at any filling-fraction for particles is identical to that for holes at the same filling.

Figure 3.4 shows the variation of the structure factor S (Q) and the superfluid density
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(a) (b) ()

Figure 3.5: Different types of CDWs: (a) checkerboard solid (cS) at half-filling with S(Q))
peaking at ) = (m,7); (b) diagonal striped solid (dsS) indicated by peak in S(Q) at
Q) = (27/3,27/3); and (c) dsS characterized by ordering wavevector () = (27/3, 47/3).

ps as a function of the magnetization m, for two different values of g, i.e., 1.4 and 2.5. A
key point to note here is that, in general, larger values of repulsion aid in the formation of a
CDW, whereas larger values of NNN tunneling 5 help a particle hop in the same sublattice.
For g = 1.4, at half-filling, the HCBs form a checkerboard solid shown in Fig. 3.5(a)
and indicated by a peak in the structure factor S(r, 7). Slightly away from half-filling, a
supersolid region develops after which the system retains only its superfluidity. The reason
can be understood by examining the coefficients of different terms in the Hamiltonian in
Eq. (3.19). Since the NN repulsion dominates over the NNN and NNNN repulsions, at half-
filling the system becomes a ¢S phase to avoid NN occupation, even though the particles

experience NNN and NNNN repulsions.

Now, if we add one additional particle to the half-filled system, the extra particle can
be at any one of the empty sites; irrespective of the site it resides on, the particle will
feel the same extra repulsion 4V). This extra particle can hop to its NNN or NNNN sites,
without changing the repulsive interaction in the system which has a checkerboard solid in
the background, resulting in the coexistence of superfluidity and CDW state. If we keep on

increasing the particle number, after a certain filling-fraction, the checkerboard structure is
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lost with the system continuing to be a superfluid.

Now looking at Fig. 3.4(b) for g = 2.5, we see that an additional CDW appears at
fillings p = 1/3 and 2/3. Since the physics pertinent to p = 1/3 is the same as that for
p = 2/3, we will analyze them interchangeably based on our convenience. At p = 1/3, the
HCBs form a diagonal striped solid manifesting spontaneously broken symmetry and char-
acterized by a peak in the structure factor at wavevector d; = (2/3, 27 /3) [corresponding
to Fig. 3.5(b)] or d» = (21/3,47/3) [related to Fig. 3.5(c)]. Although each particle in
the stripe experiences a repulsion 2V5, it is still the minimum energy state of the system
at one-third filling. If we add one extra particle to the system, it occupies any one of the
empty sites between the stripes and experiences a repulsion 2V; + V5 + 2V5. Now, this
extra particle can hop to any of its unoccupied NN, NNN, or NNNN sites without a change
in the potential energy of the system; thus, coexistence of stripe order and superfluidity
is realized on the interstitial side. On the other hand, if we remove one particle from the
system at p = 1/3, the extra hole (residing in the stripes) can hop along the stripes without
altering the potential energy; thus, supersolidity is exhibited on the other (i.e., vacancy)
side of the diagonal striped phase as well. Thus, the mechanism governing the existence of
a supersolid phase away from commensurate fillings 1/2 and 1/3, on our unfrustrated sys-
tem (i.e., the square lattice), is that interstitials or vacancies can move without frustration,
i.e., without a cost in the potential energy.

The complete ground-state phase diagram is depicted in Fig. 3.6 for 12x 12 and 18 x 18
square lattices; we see that the phase diagram is by and large independent of the system
size for 6L x 6L square lattices when L > 2. It should be noted that, for L > 4, the
simulation times are prohibitively large at large repulsions (or anisotropies). We will now
proceed to discuss the phase diagram for the 18 x 18 lattice. The half-filled system shows

the signature of a checkerboard solid (cS) for all g values above 1.37. Next to this CDW,
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Figure 3.6: Phase diagram in terms of filling-fraction p (or magnetization m) for HCBs
ona 12 x 12 and 18 x 18 lattice with t/wy = 1.0. The magenta dashed lines and open
circles represent the phase boundaries for the 12 x 12 system, whereas the boundaries for
the 18 x 18 lattice are depicted by the solid lines and filled circles (i.e., in cyan, blue, black
and green colors). Here ¢S represents checkerboard solid with ¢SS being the correspond-
ing supersolid; dsS stands for diagonal striped solid with dsSS being the related supersolid.
Plots represent averaged results from simulations employing three different random num-
ber seeds.

we have a supersolid region (cSS) where S(, 7) and ps coexist homogeneously. On the
other hand, at filling fraction p = 1/3, the system realizes a dsS beyond § = 2.11. On both
sides of this striped solid, we have a region of supersolid (dsSS) which is a homogeneous
coexistence of the diagonal striped solid and a superfluid. As we increase g beyond 1.37,
the width of the supersolid region ¢SS increases and attains its maximum at g = 2.0.
Further increase in g results in a decrease in the width of the ¢SS region, thereby making
way for diagonal stripe supersolid at higher values of g. However, we should point out that
there is no direct supersolid-supersolid transition. Next, it is interesting to note that there
is an asymmetry in the extent of the dsSS region around one-third filling. Thus, there is
an asymmetry at p = 1/3 with respect to doping with interstitials and vacancies similar to

the asymmetry at one-fourth filling reported in Ref. [15] for a t; — V7 — V5 model when
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is no CDW order.
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Figure 3.7: Plots of S(Q) and ps vs coupling strength g depicting first-order transitions
at two different magnetization values: (a) m = 0 (or half-filling) and (b) m = 1/6 (or
two-third filling).

V1 < 2V,. Itis also worth noting that, at lower fillings such as p = 1/4 and p = 1/5, there

In a recent study of HCBs on a square lattice with NN hopping and NN repulsion (i.e.,
inat; — V) model), when a sizeable external potential is applied along the diagonal stripes
in Figs. 3.5(b) and 3.5(c), the authors obtain the corresponding diagonal striped CDW
at p = 1/3 and a striped supersolid phase away from one-third filling [114]. Similar to

our case, the physics governing the formation of a supersolid phase is that the interstitial



particles or vacancies in the vicinity of the commensurate filling p = 1/3 can hop without

changing the potential energy of the system.

In our simulations using SSE, we cannot tune the magnetization (density) directly. In-
stead, we tune the magnetic field which determines the magnetization of the system. For
a particular value of the magnetic field, the resulting magnetization generally fluctuates
during simulation. As a result, usually it is not possible to study the nature of the phase
transitions by keeping the magnetization (filling-fraction) fixed at a particular value and
varying g. However, when the system is in a CDW state, the magnetization remains con-
stant over a range of magnetic field values; this makes it possible to vary g at a fixed

magnetization.

We see from Fig. 3.7(a) that for the half-filled system (i.e., at m = 0), as we increase the
g value from 1 to 3, the structure factor S(7, ) jumps from 0 to almost its maximum value
and the superfluid density suddenly drops down to zero at g = 1.37. In the phase diagram
(depicted in Fig. 3.6), this indicates a first-order transition at g = 1.37 from a superfluid
to a checkerboard solid at filling-fraction %; since the transition is from a U(1) symmetry
breaking state to a translational symmetry breaking state, the order of the transition is
consistent with Landau’s picture. Furthermore, our observation of discontinuous transition
from a superfluid to checkerboard solid is also consistent with the results of Refs. [30, 115].
Similarly at magnetization m = % corresponding to filling fraction % at g = 2.11, Fig.
3.7(b) shows a dramatic jump in the structure factor S(27 /3,27 /3) + S(27/3, 47 /3) from
0 to its maximum value accompanied by a discontinuous drop in the superfluid density to
zero. This signifies a first-order transition as we move along the g-axis at m = 1/6 in
the phase diagram (shown in Fig. 3.6). Thus, consistent with the literature [15, 17, 116],
no supersolidity is detected at commensurate fillings in our unfrustrated system. Here it

should be pointed out that in Fig. 3.7(a) and 3.7(b), after the transition from superfluid to
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Figure 3.8: Evolution of order parameters S(()), ps and m as the magnetic field / is varied
at a fixed coupling strength g = 2.5. No discontinuous transitions are exhibited.

CDW (cS and dsS) state, the magnetizations can be fixed exactly at m = 0 and m = 1/6,
respectively. But before the transitions, i.e., in the superfluid region, the magnetizations are
given by m = 0 £ 0.0000006 and m = 1/6 4 0.00002.

Next, away from the special points [117] (p = 0.5, = 1.37) and (p = 2/3,§ = 2.11),
we will study the nature of the transitions as a function of the magnetization. As seen in
Fig. 3.4, the order parameters change continuously, upon tuning the magnetization of the
system at a fixed g value, signifying continuous phase transitions between different phases.
A more reliable indicator, to detect the nature of the phase transitions along the p-axis of
the phase diagram, is the behavior of the order parameters (i.e., magnetization, superfluid
density and structure factor) as the magnetic field A is varied. In Fig. 3.8, the continuous
variation of the order parameters as a function of the magnetic field A clearly eliminates
the possibility of a first-order phase transition. Therefore, in the phase diagram displayed
in Fig. 3.6, as we move along the p-axis at any particular g value, all the different phases
are separated from each other via continuous phase transitions, i.e., all supersolid-solid and

superfluid-supersolid transitions are continuous.
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Figure 3.9: Plots of (a) S(m, 7) and (b) p, vs coupling strength g, at density p = 0.61635 +
0.00007, depicting a continuous transition from SF to cSS phase as we increase the g value.

As mentioned earlier, at a fixed magnetization, it is difficult to analyze the transition
between the superfluid and the supersolid phases as a function of g. Now, it is expected
that the nature of the transition between the two phases is independent of whether it is
driven by the coupling or the density. To demonstrate this, we concentrate on the phase
transition between SF and cSS. From the phase diagram in Fig. 3.6, we see that around
p ~ 0.616, a phase transition takes place between SF and ¢SS as g is varied from 1.35
to 1.40. Therefore, for a number of g values ranging from 1.3 to 1.5, we have varied the
magnetic field (in very small steps) so as to obtain the density p as close as possible to
0.616 for each §. Fig. 3.9 shows the behavior of S(m,7) and p, as a function of § at
density p = 0.61635 £ 0.00007. The smooth variation of the order parameters suggest that
the nature of the transition between superfluid (SF) and checkerboard supersolid (cSS) is

continuous as we move along the g-axis in the phase diagram. Similarly, we expect the
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Figure 3.10: Variation of S(()) and ps vs magnetization m in the absence of the NNNN
repulsion V5 along x- and y-axes in the ¢t; — t5 — t3 — V) — V5, — V3 model of Eq. (3.18).

nature of the transition to be also continuous between the superfluid (SF) and diagonal
striped supersolid (dsSS) phases as we tune the g value.

We will now identify the minimum model for the diagonal striped supersolid. Com-
pared to the checkerboard supersolid, the dsSS phase is rarely observed. To determine the
minimum model for the realization of the dsSS phase, we first identify the necessary repul-
sions required to observe the diagonal striped solid phase inthe t; —to —t3— V3 — Vo — V3
model of Eq. (3.18). From Fig. 3.10, we see that, as soon as we tune the NNNN repulsion
V3 along x and y axes to zero, the structure factor corresponding to the dsS phase com-
pletely disappears. This feature can be explained based on Figs. 3.5(b) and 3.5(c). For
instance, when the NNNN repulsion V3 is set to zero in the structure given by Fig. 3.5(b),
the particles at sites (¢,7) and (¢ + 1,7 — 1) can both be shifted to the neighboring sites
(i+1,j) and (i,j-1) without changing the potential energy of the system. This process de-
stroys the striped structure. Thus, it follows that all the three repulsions (i.e., V3, V5, and
V) are necessary to stabilize the dsS structure. A similar argument can be made to destroy

the structure given by Fig. 3.5(c).
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Figure 3.11: Plots of S(Q) and ps vs magnetization m, in the vicinity of striped phase, for
three different cases in the t; — t5 — t3 — V3 — Vo — V5 model of Eq. (3.18): (a) all the
three hoppings t1, t5, and t3 are present; (b) NNNN hopping ¢35 along x- and y-axes is set
to zero; and (c) only NN hopping ¢, is present. The minimum model for diagonal striped
solid (dsS) is showntobe t; — V; — Vo — V3.

Next, in Fig. 3.11, we focus on the region in the vicinity of the striped phase. Compared
to Fig. 3.11(a), in which all the three hopping parameters are non-zero, the superfluid
density reduces slightly when the NNNN hopping t3 is set to zero [as can be seen in Fig.
3.11(b)]. The interesting feature to note is that, even when only NN hopping ¢; is present
with the other two hopping parameters ¢, and ¢3 being zero [as in Fig. 3.11(c)], we have
a diagonal striped supersolid region around m = 1/6 with the width of the dsSS being
almost unaffected. This elucidates the fact that the minimum model to obtain a dsSS phase

isthe t; — V; — V5 — V3 model.

3.5 Comparison with LSNO experimental results

Stripe-like charge order has been reported in a number of layered transition-metal oxides

[45]. Among these compounds, the layered nickelate LSNO is an archetypal system to
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exhibit a firm charge stripe order. In Las ,Sr,NiQOy, static checkerboard charge order
[such as in Fig. 3.5(a)] is expressed at z = 1/2 and static diagonal stripe order [as shown
in Figs. 3.5(b) and 3.5(c)] is manifested at = 1/3 with the transition temperatures at these
dopings showing local maxima [46-51]. The observed lattice constant ratio c/a in LSNO
displays a maximum at x = 1/2, thereby indicating that in the region 0 < = < 1/2 holes
are doped into the d,2_,» orbitals and in the region 1/2 < x < 1 holes are doped into the
d > orbitals [48, 118]. Measurements of Hall coefficient for La, ,Sr,NiO4 by T. Katsufuji
et al. [119], revealed that the charge carriers change from electron-like to hole-like while

going from the hole density z < 1/3 to z > 1/3.

In the undoped La,NiQy, the oxidation state of nickel is Ni®* with the electronic config-
uration [Ar]4s”3d®. Hence, only d» and d,2_, orbitals are relevant in the doped compound

Lay_,Sr,NiOy4. The e-ph interaction term of the Hamiltonian is given by

Ho_ 9% < P ) Goiig + Qg + Az —V30wig + V30| [ g
ep .
J

220,52 —y?i,

4
1,5 _\/gqr;i,j + \/qu/;i,j 3Qm;1l,j + 3Qy;i,j dzz—yQ;i,j
(3.24)
where the distortions ¢,.; ; = (al;i,j + i) — (al;i—u + i)y Quiij = (b;i,j + by ) —
(b;;i,j—l + byij—1), and . ; = (Ci;i,j + ¢..ij). In the undoped compound, since both

d.> and d,2_,2 orbitals are occupied, there are only breathing mode distortions (4¢.; ; +
4qy.i ; + 4q.; ;) and no active Jahn-Teller (JT) distortions. Now, when we introduce holes
in the system (by doping with Sr such that 0 < x < 1/2), the holes occupy the d,2_,2

orbitals; this is because a site with a single electron in d,2 ,» orbital will produce in-

Y
plane distortions (3¢, + 3¢,) which have a greater incompatibility with the breathing mode

distortions (4q, + 4q, + 4q.) on the adjacent sites and thus cost more energy than a singly
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occupied d.» orbital. These d 2_,» holes can hop and are responsible for the transport
properties. Each site with a d,2_,2 hole is JT active.

The Hamiltonian for cooperative Jahn-Teller (CJT) distortions in the two-dimensional
LSNO system involves holes in d,2_,2 orbitals as the active carriers. The starting Hamil-
tonian Hygno, describing Las_,Sr,NiO,4 for 0 < x < 0.5, consists of the following terms
expressed in terms of the creation (destruction) operator h;j(hm) for the holes in d,2_,»
orbitals.

(1) Hopping term

3t
H; = 4 Z(h;rﬂ,jhi»j bty + He): (3-23)

Z?]

(i1) hole-phonon interaction term:

3 13 v 1
Hp = 79%0 Z [(al’;z’,j + arw)(”i] - ”§+1,j) + (b:z;i,j + by;i,j)("ﬁj - névj‘i'l)]; (3.26)
4,3

and (iii) lattice term:

H=wy (a},;ivjam;i,j + b;mbw,j) , (3.27)

i7j

where n!'; = h! h; ;.
The Lang-Firsov transformed Hamiltonian is given by Hysno = exp(S) Hrsno exp(—S)

where S has the form
3
S = 19 Z [(ai‘;i,j - ax;i,j)(n?;j - n?—i—l,j) + (bL;z',j - by;i,j)(”?;j - ”Zjﬂ)]- (3.28)
1,J
Setting t' = —3t/4 and ¢’ = —3g/4, in the non-adiabatic regime (|t'| /wy < 1) and at
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strong coupling (i.e., large ¢’ %), the transformed Hamiltonian can be split into two terms:
the unperturbed Hamiltonian and the perturbation term. These two terms are the same
as the ones given by Egs. (3.5) and (3.6), except that they are written in hole-operator
language; both v and 7 are set to zero value; and ¢ and g are replaced by ¢’ and ¢’, respec-
tively. If the carriers are taken to be HCBs instead of fermionic holes, then after following
the same second-order perturbative procedure as in Sec. 3.2, we end up with an effective
Hamiltonian that is exactly the same as that given by Eq. (3.18) with v = 0 = 7 and
with f and g being replaced by ¢’ and ¢', respectively. It is important to note that the small

1

. . . 12 2 . .
parameter value is again given by 57 and remains unaltered. Now, since we are

E,,+Vp)wo

dealing with fermionic holes and not HCBs, we get the following effective Hamiltonian:

== (B, +2V.)) nl

1,7

h . h h . h
—t Z (h;r+17jhi,j + hzT,thi,j + H-C-> +Vi Z (ni,jnz‘—i-l,j + ni,jni,j-‘rl)

Y] 4,J
f h h i h h
— 1y Z(hi+1,j+1(1 =01y — Mg higthio g (L= — gy )hi + HC)
1]

+ Vo Y (ninii g+ i)
i
i

+Vs Z (i + i1 ) (3.29)

2¥)

with v = 0 = 7 and with ¢ and ¢ being replaced by t' and ¢/, respectively. Since, the
interaction terms for the CJT Hamiltonian of LSNO are the same as those for the ¢; — ¢5 —
ts — Vi — V4, — V3 Hamiltonian in Eq. (3.18), in LSNO also we expect to get the same

charge-ordered phases obtained for the t; — ¢, — ¢35 — Vi — V5, — V3 model. Thus. at hole
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doping 1/2 and 1/3 (i.e., at z = 1/2 and z = 1/3 in Lay_SryNiOy), we will realize
checkerboard solid and diagonal stripes, respectively, which match exactly with the charge

ordering obtained for LSNO experimentally.

Now, if we add one extra hole to the system at one-third hole doping (i.e., at x = 1/3),
then the extra hole will reside in the region between two diagonal stripes. This extra hole
can hop anywhere in the region between the stripes without changing the potential energy
of the system. Thus, the carriers for the hole doping z > 1/3 are holes. On the other hand,
adding one electron to the striped phase so that = < 1/3 will result in the extra electron
occupying any one of the sites along the stripes; this extra electron is free to hop along the
stripes without altering the potential energy of the system. This means that electrons are
the carriers for the doping = < 1/3. Therefore, based on our model we can explain the
hole or electron doping (into the charge-ordered Mott insulator Las /351, /3NiO,) that was

reported by T. Katsufuji et al. [119].

One can obviously ask how a system of HCBs can reproduce some experimental re-
sults of a system of electrons. The reason behind the charge orderings at hole-doping
values 1/2 and 1/3 is repulsion; hopping does not play any role in the ordering. Hence,
for these two CDWs, it does not matter whether the carriers of the system are HCBs or
electrons. Close to one-third doping, only single carrier physics plays a role; consequently,
particle-hole asymmetry is captured. Next, it is important to note that CJT interaction is
needed to generate NNN and NNNN repulsions V5 and V3 which in turn are needed to
explain diagonal stripes. Thus, we see that our work resolves the controversy whether co-
operative Jahn-Teller distortions can explain the observed diagonal-stripe charge order at
one-third doping in LSNO [104-106]. Lastly, it should also be pointed out that, although
experimentally [48] insulating behavior is observed in LSNO for z < 0.9, theoretically we

expect metallic nature; we believe, this discrepancy is due to localization effects produced
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by disorder in real LSNO systems.

3.6 Conclusions and open problems

To conclude, we investigated a 2D system of HCBs, modulated by the cooperative breath-
ing mode, which is important in real materials such as BaBiO3 and nickelates as well as in
artificial cold-atom systems. Using a duality treatment, we obtained the effective Hamilto-
nian and generated the phase diagram employing the SSE technique.

In the phase diagram displayed in Fig. 3.6, a first-order transition occurs from a su-
perfluid to a checkerboard solid at filling-fraction 1/2 and from a superfluid to a diago-
nal striped solid at filling 1/3. We interpreted the nature of the transition by invoking
Landau’s explanation. It would be interesting to verify whether in other unfrustrated lat-
tices, such as the checkerboard lattice, a discontinuous superfluid-solid transition is man-
ifested at commensurate fillings such as 1/4 [116]. Furthermore, at a fixed interaction
strength, our t; — to — t3 — V) — V5 — V3 model realizes only continuous transitions
(i.e., superfluid-supersolid and supersolid-solid transitions) as density is varied. Contrast-
ingly, the ¢t; — t; — t3 — V7 model (pertaining to the strong-coupling case of the Hol-
stein model) manifests a discontinuous superfluid-supersolid transition when density is
varied [20,21]. Thus, more insight is needed to identify which class of models yield what
type of superfluid-supersolid transition.

We have identified the ¢t; — V), — V5 — V3 model as the minimum model for obtaining a
diagonal striped supersolid on a square lattice. It would be exciting to realize this system in
a cold-atom system, thereby adding to the understanding of lattice supersolidity generated
by long-range interactions [12].

The asymmetry of the supersolid phase about a commensurate filling, such as one third
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in our case and one fourth in the case of Ref. [15], in a square lattice occurs possibly
because particle-hole symmetry is not respected by the Hamiltonian about these fillings.
It would be worthwhile to study the nature of such asymmetry in other lattices such as

honeycomb, checkerboard, etc.

We have explained the charge ordering in Lay_,Sr, NiO, at hole-doping z = 1/2 and
1/3 by considering cooperative Jahn-Teller effect. However, studies involving CJT effect
are needed at dopings away from these fillings and particularly in the region z > 1/2
where holes are doped into the d.2 orbitals. Also of interest would the explanation for the

metal-insulator transition observed at z ~ 0.9 [48].

In a different but related system Lay_,Sr,CoO,4, CDWs similar to those in LSNO are
observed. At half doping, there is a signature of checkerboard charge ordering with alter-
nate Co?" and Co®" ions (below Tco =~ 750K) [120]. On the other hand, at the doping
x = 1/3, the holes form a diagonal-stripe pattern similar to the stripes in LSNO at a transi-
tion temperature well above the room temperature [121-124]. Furthermore, the presence of
substantial disorder in these diagonal stripes has been confirmed by the experiment [124]
done by A. T. Boothroyd ef al. The electronic configuration of cobalt is [Ar]3d"4s?. In
Lay_,Sr,CoOy, cobalt shows two different oxidation states: Co?* and Co®>*. The Co?*
ions are found to have the low-spin ground state (S = 0) [125] with the electronic config-
uration [Ar]3d°. In this case, all the six d electrons occupy the to, orbitals and both the
e, orbitals are empty. Therefore, Co** ions do not cause any Jahn-Teller distortion in the
system. On the other hand, in the case of Co*" ions, the electrons are in the high-spin
ground state (S = 3/2) with the electronic configuration [Ar|3d”. This state consists of five
electrons in the t,, orbitals and two in the e, orbitals. Two out of the three t,, orbitals
are completely filled with four electrons, whereas the remaining orbital contains a single

electron. Since both the e, orbitals are occupied by one electron each, JT distortion comes

113



into play due to the singly occupied ¢, orbital only. Owing to the fact that the JT distortion
arising from 4, electrons is weaker than the one arising from e, electrons, it needs to be

examined whether this can explain the disorder in the stripe pattern in Lay_,Sr,CoQOy,.

114



meeeesessssmmmmmm $ CHAPTER 4 S

STUDY OF SUPERSOLIDITY IN THE
TWO-DIMENSIONAL

HUBBARD-HOLSTEIN MODEL

4.1 Introduction

Usually, diverse interactions can enrich the quantum phase diagram of the system by
producing various competing/cooperating orders. Specifically, strong e-e interactions as
well as strong e-ph interactions generate a rich phase diagram in systems such as the
cuprates [83, 84], the manganites [86—88] and the fullerides [103]. In these correlated
systems, a variety of exotic phases, such as superconductivity, CDW, spin-density-wave
(SDW), etc. are manifested as an outcome of the interplay between e-e and e-ph interac-

tions.

A typical and simple model, to study the combined effect of strong e-e and e-ph inter-
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actions, is the well-known Hubbard-Holstein model represented by the following Hamilto-

nian:

Hhh = — Z C;r'-i-égcjﬂ + wo Z a;aj + gwo Z njg(aj + aj) +U Z U (41)
J,0,0 J jo J

where c;a (cjs) denotes the creation (destruction) operator for spin-o electrons at site 7,

t is the hopping integral, and the number operator n;, = c}acﬂ,, Furthermore, a}(aj)

corresponds to the creation (destruction) operator of phonons at site j with dispersion-

less phonon frequency wy, g denotes the strength of the e-ph interaction, U is the onsite

Coulomb repulsion between electrons, and ¢ represents the nearest-neighbors (NN).

The Hubbard-Holstein model has been studied extensively in one, two and infinite
dimensions at various fillings by employing diverse approaches such as quantum Monte
Carlo (QMC) [126—131], exact diagonalization [132—134], density matrix renormaliza-
tion group (DMRG) [135, 136], dynamical mean field theory (DMFT) [137-145], semi-
analytical slave boson approximations [146—150], variational methods based on Lang-
Firsov transformation [151,152], large-N expansion [ 153], Gutzwiller approximation [ 154,

155], cluster approximation [156] and static-auxiliary-field approximation [157, 158].

In this chapter, we follow the approach discussed in Refs. [53] and [54] and study
the two-dimensional Hubbard-Holstein model. In contrast to Ref. [159], our approach in-
volves the non-adiabatic regime (i.e., t/wy < 1). Furthermore, we employ a controlled
analytic treatment of the strong coupling regimes for both the e-ph (¢ > 1) and e-e inter-
actions (U/t > 1) and take into account the dynamical quantum phonons. The effective
Hamiltonian consists of two major competing interactions—antiferromagnetic interaction
between NN spins which favors the formation of singlets and NN repulsion between elec-

trons which encourages CDW formation. Now, Ref. [53] showed that the quarter-filled one-
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dimensional Hubbard-Holstein model manifests a correlated singlet phase over a range of
U/t values, whereas Ref. [54] demonstrated that this phase occurs at other fillings as well.
In this work we concentrate only on the correlated singlet phase in the two-dimensional
version of the Hubbard-Holstein model. On representing a singlet by a HCB at its center,
the system of singlets on a periodic square lattice transforms into a system of HCBs on a
checkerboard lattice. Using quantum Monte Carlo (QMC) simulation involving stochastic-
series-expansion (SSE) method, we study the system at various filling fractions. Our results
for HCBs, at filling 1/8, indicates CDW order and unlike its one-dimensional analogue,
exhibits supersolidity around filling 1/8. We explain the mechanism responsible for the
formation of the CDW as well as the supersolid phase (on the vacancy side and the intersti-
tial side of the CDW). Furthermore, our study at quarter-filling reveals mutually-exclusive

existence of valence bond solid (VBS) and superfluid (SF) phase.

The chapter is organized as follows. In Sec. 4.2, we derive the effective Hamiltonian
and discuss the various terms. In Sec. 4.3, we show that the Hamiltonian of singlets on a
square lattice transforms into a Hamiltonian of HCBs on a checkerboard lattice. Sec. 4.4
deals with the numerical procedure as well as the order parameters used in our study. Next,

the results are discussed in Sec. 4.5 and finally, conclusions are presented in Sec. 4.6.

4.2 Effective Hamiltonian

The first step towards obtaining an effective Hamiltonian is to carry out the Lang-Firsov

(LF) transformation, H}\' = % Hype™ where S = —g > nj,(a; — a;) and get the trans-
jo
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formed Hamiltonian to be

Hiy ==ty X sel 5o Xitwo) ajas+(U—2¢%w0)) njnj—g*wo) (nj+ny,),

76,0 J J J

4.2)

with X; = ¢f (@-4)) In terms of the composite fermionic operator, dT = cJr X, T the LF

transformed Hamiltonian can be expressed as

Z +5Ud]0+w02aa]—|—UeﬁcZnﬁnn gwoz 7T+” ), (4.3)
j

7,0,0

where n dT odje and Ueg = U — 2g%wy. Since, the last term represents a constant
polaronic energy, we can drop it without affecting the physics of the system. This leaves us
with the realization that Eq. (4.3) essentially represents the Hubbard model for composite
fermions where the Hubbard interaction is given by Ueg = U — 2g%wy. In the limit of large
U /t, with the help of a standard canonical transformation, the effective Hamiltonian, upto

second order in the small parameter ¢/Ueg, can be expressed as

ndnd

7,0,0
+ tq Z dJ_HSg j+d'c t’% Z dJ+60' _H;/—dja] P57 (44)
4,040 0 4,040 0
with n = nd it nj 1 = and ts = J/4. In the above expression §]— represents the spin

operator for a fermion at site j and the operator P projects out double occupancy of any

site.

In terms of the original fermionic operator, the effective Hamiltonian can be separated
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into two terms: (i) an unperturbed electronic Hamiltonian H, and (ii) a perturbative term

H; in terms of the composite fermions. Thus,

Ht—J—t3 = HO + Hl ) (45)

where

Hy=—te g ZPS <C;+60'Cj0') Py + wo Z a;aj + B Zps <Sj S5 — ’ 4]+O)Ps
J 7,6

7,0,0
J6_92 J6_92
1 ZPS (c}achr(;chM,ch&) P, — ZPS (c;r.gcﬂ(;,,cj”,&cj(—,) P,
J,67#8" 0 4,048 0
4.6)
and
H, = —te 9 Z P, [C;Jréacjg (Yfo — 1>] P, . 4.7)

j757o.

n the above expression, the electron-phonon interaction is depicted by /{, only through
the term Y/ = e*9(%+5=%)_ One should note that since J/4 < t, we have ignored the

following terms in H;:

Je=9°

4 Z F [C}ECJ+5JC;+5'aCj5 (ZTZZ - 1)} s
j,0#0 o
Je=9” i ; o
== > nr (cltisantlain (72122 1) | P, (4.8)
.66 o

where 7/, = ¢*9(%+5~%+)_ Performing a second order perturbation theory that is similar
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to the one outlined in Ref. [53], the effective Hamiltonian is obtained to be

J
HM = —toahy, + 575 = Viinn = tahoo — (ty + J3) hos + J3h. - (4.9)
where
ht1 :Z PS (C}L-_H;UCJ'J) PS s (410)
7,0,0
< & M1
hs =Y P (5 8o - JTJ) P, @.11)
7,0
J— Z (1 —njpo5) (1 —nj5) njo (1 — njise), (4.12)
7,0,0
heo = (1 —nji55) (1 —n5) (1 = njpes) X |chs (1= 2n0) ¢jpe (4.13)
oo J+00 jo j+o'c j+do jo) Cj+d'o |
048" 0
hoo = (1= njys0) (1= njias) X [c}acﬁaac}%cﬁ] : (4.14)
048 o
and
Moy = Y (L=njp5) (1= njo) (1= njrss) x [C}acjwac;wacja : (4.15)
628 o

The different coefficients for the various terms present in Eq. (4.9) are defined as follows:
tg = te 9", J = (]_42;;%0, V o~ t2/2¢%w0, ty ~ t2e79" /gPwy and J3 = Je 9" /4. Out of
the six terms of the effective Hamiltonian HT, four terms contribute to the kinetic energy
of the system. However, due to the presence of e~9” in the coefficients, the contribution
of the kinetic terms is small compared to that from the remaining two interaction terms.

The first contribution in the kinetic energy is from the NN hopping term —f.gh,, in which

the hopping coefficient is given by a reduced hopping integral f,; = te 9. Next, the
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Figure 4.1: Different hopping processes which contribute to second-order pertur-

: . T A T T T T
bation theory: (a) CiaCit6,0Cj45,0Ci0 (b) Cit6,0CioCioCi—by0s (©) CigCi=6,0Cj45,0Cio

) )y nCioCloCise © cloisoctis oo (B cheisoch s 0 and (2)

C}ch_(;wc; 1o,5Ci5- Empty circles denote sites without electrons; filled blue and red

circles represent sites occupied by electrons with spin ¢ and spin & respectively.

term —t9h,, is represented by the typical processes shown in Figs. 4.1(b), 4.1(c) 4.1(d)
and 4.1(e). Figs. 4.1(b) and 4.1(d) depict double hopping of a single particle to next-to-
next-nearest-neighbor (NNNN) site and next-nearest-neighbor (NNN) site, respectively;
contrastingly, Figs. 4.1(c) and 4.1(e) describe processes where a pair of electrons of spin o
hop sequentially along a straight path and a right-angled path, respectively. The next term
— (ty + J3) hos is represented by the typical hopping processes in Figs. 4.1(f) and 4.1(g)

which are similar to the hopping processes shown in Figs. 4.1(c) and 4.1(e), respectively,
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but with the involved pair of electrons now having opposite spins oc. Lastly, the terms
Jsh. - implies NN spin-pair o0& hopping similar to that depicted in Figs. 4.1(f) and 4.1(g),
respectively, but with the spin-pair o flipping to go. Thus, k.. acting on a singlet state
results in another singlet state displaced by one NN distance and with a negative sign.
Now, the NN spin-spin interaction term .JJhg and NN repulsion term —V h,,,, dominate over
the remaining hopping terms in the effective Hamiltonian. As discussed in the Refs. [53]
and [54], at larger J values, a phase separated single cluster is formed because the spin-
spin interaction dominates over the NN repulsion. As the .J/V value is decreased, the
system undergoes a first order quantum phase transition to a correlated NN singlet phase
where two NN particles pair to form a singlet. This correlated singlet phase persists over
a range of J/V values; at even smaller values, a phase with separated spins is realized. It
was also shown that the window of .J/V/, for which the correlated singlet phase exists, is
broader for larger g values. Even for the case of the two-dimensional Hubbard-Holstein
model, we expect similar results to hold and we present supporting arguments as follows.
In the cluster regime, based on Monte Carlo simulation of a two-dimensional Heisenberg
antiferromagnet [160], the energy/site = —0.672J + 2(2V — 4). On the other hand, for
separated singlets in the correlated singlet phase the energy/site = —0.375J + %(QV — %)
Thus the cluster phase prevails when = —0.672J + 2(2V — Z) < —0.375.J + 1(2V — )
or equivalently, when U < 3.792¢%w,. Next, the transition from the correlated-singlet
phase to the separated-spin phase occurs when singlets dissociate and is independent of the
dimension of the system; this transition occurs when, for the correlated singlet phase, the
energy/site —0.375.J + 3(2V — ) = 0, i.e., U = 6g°wp.

In this work, we concentrate on the region of the parameter space where the correlated

singlet phase is manifested.
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Figure 4.2: Checkerboard lattice constructed by joining the midpoints of the edges of
a square lattice (indicated by the dashed lines). The filled black circles denote the six
NN of the HCB depicted by the white circle, whereas the filled gray circles stand for
next-nearest-neighbor (NNN) sites. The half-filled gray circles are next-to-next-nearest-
neighbor (NNNN) sites for which the repulsion is half of the one felt for the filled gray
sites.

4.3 t;—V; —V, — V35 hard-core-boson model on a checker-

board lattice

In the correlated singlet phase, each NN singlet can be represented as a HCB located at the
center of the singlet. Thus, the system of NN singlets on a periodic square lattice transforms
into a system of HCBs on a checkerboard lattice; the resulting checkerboard lattice is
constructed by joining the midpoints of the edges of the underlying square lattice (see Fig.
4.2). Now, there are two processes by which the singlets can transport in the system. The
first process corresponds to NN hopping of spin-pair o and is represented by A, (without

spins flipping) and A/, (involving flipping the spins). The second process is a consequence
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of the presence of the NN hopping h, in HS¥; this is a second order process which involves
breaking of a bound singlet state (with binding energy Ep = —J + 2V = —J + t2/g°%wp)
and hopping of the constituent spins. Now, the spins can hop in two different ways: (a)

each spin hops to its NN site sequentially [in a manner given by Figs. 4.1(f) and 4.1(g)] and

generating the corresponding term —t,h,5; with ¢, = t2e=297 /|Es|; and (b) any one of the
two constituent spins hops to its NN site (along z or y directions) and comes back [yielding
the corresponding term —t,h,,]. All these processes effectively describe the NN hopping
(t1) of the HCBs in the checkerboard lattice. For example, in Fig. 4.2, a HCB residing at
the site denoted by a white circle can hop to its six NN sites represented by the filled black
circles. Now, no pair of singlets can share a common site. Therefore, the NN repulsion
(V1) between two HCBs in the checkerboard lattice is essentially infinity. Next, the NN
repulsion between two electrons in the square lattice (coming from the terms Jhg and
—V hyy in the expression of HE) gives rise to the NNN repulsion and the NNNN repulsion
between two HCBs in the checkerboard lattice. To understand this, in Fig. 4.2, consider
two HCBs residing at the white and any one of the two filled gray sites. Corresponding to
this situation, in the original square lattice there will be two pairs of electrons which are
NN, thus increasing the energy of the system by an amount 2(2V — .J/4). In other words,
repulsion V, = 2(2V — J/4) is felt between the HCBs residing at the white circle and its

NNN sites denoted by filled gray circles. On the other hand, the repulsion felt between the

white circle and its fourteen NNNN sites, depicted by the half-gray circles, is V3 = V5 /2.

Finally the effective Hamiltonian governing the HCBs in the checkerboard lattice is

given by

Hb = —tl Z (bIbJ + HC) + ‘/1 anj + Vg Z n;n; + V3 Z nin; , (416)
(4,5) (i.5) () ({(2.90))
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where b; (b;) denotes the destruction (creation) operator for a HCB at site j with n; = b; b;
being the number operator. Here, the symbol (i, j) stands for a NN pair of sites, whereas
((i,7)) and (((z,7))) represent NNN pair and NNNN pair, respectively. The coefficients
of the different terms of H,, are given as follows: t; = (to + 2J3 + 1), Vi = o0, Vo =

2(2V — J/4) and V3 = V4 /2.

4.4 Numerical Calculations

To study the system of HCBs in the checkerboard lattice depicted by Fig. 4.2, we em-
ploy quantum Monte Carlo (QMC) simulation involving stochastic-series-expansion (SSE)
technique [44, 112] with directed loop updates [79, 80]. To achieve the above end, first we
rewrite the Hamiltonian Hj, in terms of spin-1/2 operators by identifying b;r- = S;T, by =57
and n; = S + 5. We recast the effective Hamiltonian H;, for HCBs as an extended XXZ

spin-1,/2 Hamiltonian, which, in units of 2¢;, is given by

H=Y" {—% (S5S; +He) + Alsl%s;} 3 MaSES > ASESE 0> 87
(i.7) ((&.5)) S i

(4.17)

where Ay =V /2t1, Ay = V5 /2t1, and Az = V3/2t;. Furthermore, we have introduced the
variable h (a dimensionless external magnetic field); upon tuning /, we can access different
magnetizations (or filling-fractions) of the system.

Due to the presence of a hopping term in the Hamiltonian, superfluidity is expected;
on the other hand, large repulsions indicate the possibility of a CDW. Hence, to study the
competition or coexistence of these two long-range orders, we choose two order parame-

—

ters: structure factor S((Q)) (for diagonal long-range order) and superfluid density p, (for
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off-diagonal long-range order). The expression for the structure factor per site, used in this

chapter, is given as
3 4 iQ-(Ri—R; z Q%
S(Q)=WZ€Q( i R,7)<5i5j> (4.18)
S i,j

where (---) represents ensemble average and N is the total number of sites. We study
S (Q) for all possible values of Q and identify the ones that produce peaks in the structure

factor.

As discussed in Sec. 3.3, the superfluid density, in terms of the fluctuation of winding
numbers, is expressed as

1

ps = 26<ng + W) (4.19)

where W, and W, denote the winding numbers along x and y directions, respectively;
B is the inverse temperature. Furthermore, VW, can be calculated from the total number
of operators transporting spin in the positive and negative « directions (i.e., V,7 and N,)
using the expression W, = L%(Nj — N_), where L, is the linear dimension of the lattice

along the z direction.

Now, due to particle-hole symmetry, Eq. (4.16) corresponds to HCB particles (holes)
for particle density between 0 and 1/2 (1/2 and 1). The NN repulsion between two HCB
particles or holes [i.e., V; in Eq. (4.16)] is infinity. In the filling-fraction range 1/4 and
1/2 (1/2 and 3/4), the HCB particles (holes) cannot be arranged so that no two HCB
particles (holes) are on neighboring sites. In other words, for fillings of HCB particles
(holes) between 1/4 and 1/2 (1/2 and 3/4) on a checkerboard lattice, which corresponds

to fillings of electrons between 1/2 and 1 (1 and 3/2) on a square lattice, our theory of
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h 70.0 75.0 85.25 92.0
Tint | 1154 56182 420361 3747

Table 4.1: Autocorrelation times calculated for A; = 16, Ay = 10 and A3 = 5 with
€1 = 8, €5 = 10/4 and €5 = €5/2; the magnetic fields are chosen close to the transitions as
well as far from the transitions (see Fig. 4.10 for details).

correlated singlet phase of electrons does not hold. Therefore, on a checkerboard lattice of
HCBs, we restrict our interest to particle fillings in the range 0 and 1/4 (or 3/4 and 1). In
this chapter, we vary the magnetization from 1/4 to 1/2 which means decreasing the hole

density from 1/4 to 0.

Next, in the presence of large anisotropy (i.e., large values of A;, A, and Ajz) SSE
suffers from significant slowing down, as we have already seen in Chapter 3. Therefore,
due to numerical restrictions we cannot use the actual values of the longitudinal couplings;
instead, we use large enough cutoff values so that the physics remains unaltered. These
cutoff values must be chosen keeping A; sufficiently larger than the other A;’s so that the
HCBs always avoid NN occupation. On the other hand, A, and A3 must be large compared
to £, but certainly smaller than A;. We will discuss the cutoff values for the longitudinal

couplings in the next section.

As discussed in Ref. [113], simulating at low enough temperatures such that 5 ~ L
with L being the linear dimension of the L x L square lattice, we can capture the ground-
state properties of a system using SSE. Since the values of the measured observables were
the same (within the error bars of our calculations) for both § = 3L/2 and § = 2L, we
report the results for § = 3L/2 in our simulations. From the discussion in Sec. 3.3, one
can recall that, in SSE, a parameter ¢; is introduced to make the matrix elements positive.
This parameter is usually very small. However, in cases with large anisotropy, value of ¢;

can affect the autocorrelation times. Therefore, similar to Chapter 3, we need to use larger
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values of ¢; to take care of the autocorrelation times. To make sure that the bin size is
always much larger than the autocorrelation times, we calculate the autocorrelation time

(Tint) given by the following formula

DN —

Ting [m] =

+ ) An(t) (4.20)
t=1

where

Ap(t) =

(4.21)

with ¢ and ¢ representing the Monte Carlo steps and (- - - ) the average over the time 7. Based
on the autocorrelation times obtained, for A; we use ¢, = A;/2; whereas e = A, /4
(e3 = Ags/4) is good enough to restrict the autocorrelation time within affordable limits.
An estimate of the autocorrelation time for A; = 16, A, = 10 and A3 = 5 is given in Table
4.1. The magnetic fields are chosen close to the transitions, where the autocorrelation time
is expected to be larger, as well as away from them. The bin size used for all numerical
calculations is 16, 00, 000 to make sure that the autocorrelation time is well within the bin

size for all magnetic fields.

4.5 Results and discussions

For numerical simulations, we can consider two types of lattices. A checkerboard lattice,
constructed from an underlying L x L square lattice (see Fig. 4.2), contains 2 x L X L
number of sites. Alternately, an L x L checkerboard lattice, as shown in Fig. 4.3, can be
obtained via a 45° rotation of the lattice of Fig. 4.2. In the thermodynamic limit, either

of the choices is supposed to yield the correct results; we have checked that even for a
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Figure 4.3: Checkerboard lattice of second type which is a part of the original checkerboard
lattice (in Fig. 4.2) and rotated by 45° angle. The filled black circles denote the six NN of
the HCB depicted by the white circle, whereas the filled gray circles stand for NNN sites.
The half-filled gray circles are NNNN sites for which the repulsion is half of the one felt
for the filled gray sites.

small system size with L = 8, both the lattices produce the same results. Thus, at large
anisotropies, simulation time can be lowered by considering a L X L checkerboard lattice.
In this chapter, we present the results for HCBs on a 16 x 16 checkerboard lattice of the

second type, as depicted in Fig. 4.3.

To determine the various phases of the two dimensional Hubbard-Holstein model, we
first set the cutoff values of the anisotropies to be A; = 16, Ay = 10 and Az = 5; we
calculate the order parameters for magnetization m values ranging from 0.25 to 0.5. The
requirement that A; — oo is implemented via a suitable choice of large but finite value of
A so as to avoid computational problems. Fig. 4.4 shows the variation of the structure

factor S(Q) and superfluid density ps as the magnetization of the system is varied from

0.25 to 0.5; this corresponds to the variation of filling fraction of HCBs from 3/4 to 1.
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Figure 4.4: Plots of structure factor S(()) and superfluid density ps vs magnetization m for
HCBs on a 16 x 16 checkerboard lattice with A; = 16, Ay = 10 and Az = 5. The figure
demonstrates the existence of supersolidity in the vicinity of m = 0.375. The results are
obtained by averaging over simulations for three different random number seeds.

Due to the particle-hole symmetry of the Hamiltonian, the physics at filling fraction 3/4
is the same as the one revealed at filling fraction 1/4. Hence, in the text, we use them
interchangeably at our convenience. From Fig. 4.4, at filling 7/8 (i.e., m = 3/8), we see
that the system manifests a CDW state, whereas the superfluid (SF) order ceases to exist. At
filling fraction 1/8, the HCBs arrange themselves so that no repulsion is felt; the resulting
state is an insulating CDW, characterized by a peak in the structure factor at wavevectors
¢y = (7/4, 37 /4) [as shown in Fig. 4.5(a)] or o = (7 /4, 57 /4) [as depicted in Fig. 4.5(b)].
We call this CDW state a diagonal striped solid (dsS). One should note that, unlike the well-
known checkerboard solid identified by the peak in the structure factor S(m, 7) (see Figs.
3.4 and 3.5 of Chapter 3), a single wavevector is inadequate to characterize the two equally
probable CDW states at filling 1/8. Whenever the system manifests a dsS equivalent to that
in Fig. 4.5(a), S(q)) acquires a non-zero value while S(g>) concomitatntly vanishes. On
the other hand, for a dsS corresponding to Fig. 4.5(b), the situation is reversed with S(g)
taking a non-zero value whereas S(¢;) now vanishing. Therefore, to identify the insulating

dsS at filling 1/8, we should plot the sum [S(71) + S(g3)] of these two structure factors.
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(a) (b) () (d)

Figure 4.5: Two different types of CDWs: (a) diagonal striped solid (dsS) indicated by
a peak in the structure factor at wavevector ¢ = (7/4,3m/4); (b) dsS characterized by
ordering wavevector ¢ = (7/4,57/4). (c) A minimum energy configuration obtained
after rearrangement when an extra HCB is added at site 1 in Fig. 4(a). The rearranged
particles are indicated in magenta. (d) A resulting configuration when the pair of HCBs at
sites 4 and 5 in Fig. 4(c) flows through the system.

Now, when we add one extra particle to the system at filling 1/8, one would normally
think of two different possible scenarios. The extra particle can either occupy any empty
site along the half-filled stripes or an empty one between any two stripes. First, let us
assume that the particle occupies site 1 (i.e., a site along one of the half-filled stripes) in Fig.
4.5(a). The repulsion felt by this particle is 2V, + 2V5 = 3V5. Instead of this configuration,
if the particle at site 3 is moved to site 5 and the extra particle occupies site 4, the resulting
configuration [see Fig. 4.5(c)] is energetically favored because the repulsion felt in this
case is HV3 = 2.5V5. Now, by the following third-order process superflow of particles can
take place in the system given by Fig. 4.5(c). First, the particle at site 7 can hop to site 8
which increases the energy of the system by V3. Next, the particle at site 5 can hop to site
6 with the energy of the system being the same as that after the first process. Finally, the
particle at site 4 can hop to site 3 resulting in the configuration depicted in Fig. 4.5(d). The
energy of this final configuration is the same as that of the starting configuration shown in
4.5(c). The energy of this third-order perturbation process is thus proportional to 1% /V2.

There may also be other processes by which the system manifests supersolidity when the
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Figure 4.6: Comparison of the behavior of the order parameters, structure factor S(()) and
superfluid density p;, as functions of magnetization m on an 8 x 8 checkerboard lattice for
two different sets of anisotropy values: (a) A; = 22, A, = 10, A3 = 5 and (b) A; = 16,
Ay = 10, Az = 5. The figures demonstrate that the essential coexistence features are not
altered much when A is increased beyond 16.

dsS is doped with particles. Nevertheless, this particular process is one of the possible
mechanisms which gives rise to supersolidity on the interstitial side of the CDW at filling

1/8.

Next, in the second possible scenario (where the extra particle occupies an empty site
between any two half-filled stripes), let us assume that the extra particle occupies site 2
in Fig. 4.5(a). Then, the repulsion felt by this particle is V3 + 2V5 = Vi + V. It is
important to note that in this case there is no way to avoid NN occupation of HCBs; this
is not allowed because two singlets cannot share an electron. Although the cutoff values
of the repulsions used in our simulation makes the first scenario energetically favorable,
the energy difference between these two situations is marginal. Moreover, in the second
case the extra particle can hop to any of its unoccupied NN sites leading to lower energy
and eventually to supersolidity. Therefore, unless the energy difference between these two
scenarios is reasonable we can not rule out the possibility of the second one. As mentioned

earlier, numerical restrictions do not allow us to use anisotropies larger than the cutoff
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Figure 4.7: Variation of structure factor S(@) and superfluid density ps as functions of
magnetization m in the vicinity of filling fraction 1/8 at three different values of Az (with
Ay = 2A3) and for a fixed A; = 16: (a) Az = 3; (b) A3 = 4; and (c) A3 = 5. The figures
depict evolution of supersolidity around m = 0.375.

values used in our simulations on 16 x 16 lattices. Therefore, to avoid prohibitively large
simulation times, we considered a smaller 8 x 8 system and calculated the order parameters
for two different sets of parameters: A; = 22, A, = 10, and A3 = 5; A} = 16, A, = 10,
and Az = 5. Fig. 4.6 compares the plots of the structure factor .S (Q) and superfluid density
ps as a function of magnetization m for these two different sets of anisotropies. For the first
set of parameters (i.e., A; = 22, Ay = 10, and Az = 5), the energy of the system with
an additional particle at site 2 in Fig. 4.5(a) (with V; + V5, = 64¢1) is much larger than
the energy corresponding to the situation in Fig. 4.5(c) (with 2.5V, = 50t¢;). Hence, we
can definitely rule out the possibility of the second scenario involving the extra particle
occupying any empty site between any two half-filled stripes. Since Fig. 4.6 demonstrates
that both the parameter sets yield similar results, we can capture the essential physics of
the two-dimensional Hubbard-Holstein model by using A; = 16, Ay, = 10 and A3z = 5 as
the cutoff values of the anisotropies in the simulations. It should be noted that, in Fig. 4.6,
the non-zero value of the structure factor S (Cj), below m ~ 0.35 and beyond m ~ 0.4, is

just an artifact of the small system size.
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Figure 4.8: Ground-state phase diagram in terms of filling fraction p (or magnetization m)
for HCBs on a 16 x 16 checkerboard lattice. Here dsS represents diagonal striped solid,
SS stands for the supersolid phase corresponding to dsS, VBS denotes valence-bond solid
and PS represents the phase-separated region.

As regards the vacancy side of the half-filled diagonal striped phase, the mechanism
responsible for supersolidity can be explained as follows. Let us assume that we remove
two HCBs from sites 3 and 7 in the configuration depicted in Fig. 4.5(a). Then, the HCB at
site 9 can hop to site 10 without altering the potential energy of the system; next, this HCB
at site 10 can hop to site 7 by hopping via site 11 and again the overall potential energy of
the system remains unaltered at the end of each hopping process. Similarly, again through
a three-step hopping process, without any additional potential energy cost, the particle at
site 12 can hop to site 3 by sequentially hopping through sites 13 and 14. Effectively, the
pair of holes at sites 3 and 7, moves from one stripe to another one (where they occupy
sites 12 and 9), and thereby the coexistence of superfluidity and CDW is manifested.

Next, we perform a general study of the supersolid phase as a function of NNNN
anisotropy Ag, at a fixed value of A; = 16. We vary Az (with Ay = 2A3) and calculate
the order parameters for magnetization values ranging from 0.25 to 0.5. Fig. 4.7 displays
the variation of the structure factor S(@) and the superfluid density p, as the magnetization

of the system is varied in the vicinity of filling fraction 1/8 for three different values of As.
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Figure 4.9: Plots of the order parameters, structure factor S(()) and superfluid density ps,
as functions of the NNNN anisotropy Aj at magnetization m = 0.375 (corresponding to
7/8 filling), Ay = 2A3 and A; = 16. First order transition is depicted through jumps in
both order parameters at Az ~ 3.865.

For A3 = 3 there is no signature of any CDW at the filling 1/8, instead only superfluidity
exists [as demonstrated in Fig. 4.7(a)]. Fig. 4.7(b) shows that, as we increase the A3 value
to 4.0, a diagonal striped solid (dsS) appears at HCB density p = 1/8 and a supersolid
(SS) region, of small width, grows on both sides of the CDW. As the NNNN anisotropy is
increased further to Az = 5, the width of the supersolid region increases further.

The ground-state phase diagram is displayed in Fig. 4.8 for HCBs on a 16 x 16 checker-
board lattice. At p = 1/8, the system manifests the existence of a dsS when Az > 3.865.
On both sides of this CDW we have a supersolid region (SS), i.e., a homogeneous coexis-
tence of half-filled diagonal striped solid and superfluid; further away from p = 1/8 and
beyond the supersolid region, a superfluid (SF) region exists. For A3 = 3.865, as the value
of NNNN anisotropy is increased, the width of the SS region increases.

In our simulations, since we can not fix the magnetization or density of the system, we
tune the magnetic field / to access various magnetization values. Usually, for a fixed value
of magnetic field, the resulting magnetization fluctuates during the simulation. Therefore,

in the phase diagram we can not usually study the nature of the phase transition by varying
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Figure 4.10: Variation of the order parameters (magnetization m, structure factor S (Cj)
and superfluid density p,) in terms of the magnetic field h for the set of anisotropy values
Ay =16, Ay = 10, and A3 = 5. Plots depict continuous SF-SS and SS-dsS transitions.

the A3 value at a fixed magnetization (or density). However, in the CDW state, we always
have a plateau in the magnetization curve (where the magnetization of the system does not
change) when plotted as a function of the magnetic field; thus, by choosing a magnetic field
in the plateau, we can ensure a constant magnetization of the system for different values of

As.

For the filling 7/8 (corresponding to m = 0.375), as we increase the Az value from 3 to
5, Fig. 4.9 shows that the structure factor S(7/4, 3w /4)+ S (7 /4, 57 /4) jumps dramatically
from 0 to almost its maximum value at A3 ~ 3.865; concomitantly, the superfluid density
ps drops to zero value. In the phase diagram, this signifies a first-order transition from a
superfluid to CDW state as we move along the Az axis at m = 0.375. It is worth men-
tioning here that this transition, from a U (1) symmetry broken SF phase to a translational
symmetry broken CDW phase, is consistent with Landau’s picture of phase transition. An
important point to note is that the magnetization can be fixed exactly at 0.375 only after
the transition to the CDW state; before the transition, i.e., in the superfluid region, the

magnetization can be estimated as m = 0.375 % 0.0001.
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Figure 4.11: Different types of valence bond solids: (a) The ideal plaquette state on the
checkerboard lattice where the red diamonds indicate resonance via the ring-exchange pro-
cess depicted in Fig. 11(b); (c) the ideal columnar state with the black circles representing
the HCBs; and (d) a mixed columnar-plaquette state.

Next, excluding the special point (m = 0.375, A3 ~ 3.865), we study the nature of the
transitions along the m-axis of the phase diagram. Now, Fig. 4.7 indicates that, at a fixed
value of As, the order parameters change continuously as a function of the magnetization
m, thereby depicting continuous phase transitions between various phases. A more reliable
procedure, for detecting the nature of the phase transitions along the magnetization axis of
the phase diagram, is to study the behavior of the order parameters magnetization, struc-
ture factor and superfluid density as a function of the magnetic field ~. In Fig. 4.10, we
demonstrate that the order parameters change continuously as the magnetic field h is var-
ied; this rules out the possibility of a first-order phase transition. Therefore, we conclude
that all superfluid-supersolid and supersolid-solid transitions, encountered while moving
along the m-axis of the phase diagram, are of continuous nature. Here, it is important to
note that, whenever there is a flat region in the magnetization curve, the superfluid density
vanishes. Usually, a magnetization plateau indicates the presence of a gapped phase in the
system [161]. In Fig. 4.10, the first plateau in the magnetization curve signifies the ex-
istence of the insulating CDW state dsS; consequently, the superfluid density drops down

to zero. On the other hand, the second flat portion in the magnetization curve corresponds
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Figure 4.12: Plots of superfluid density p; and the fraction f; (representing the relative
number of singly occupied non-void plaquettes) in terms of the NNNN anisotropy Az at
magnetization m = 0.25 which corresponds to 1/4 filling of HCBs in a 16 x 16 checker-
board lattice. The NN anisotropy is fixed at A; = 16; NNN anisotropy Ay = 2A3. The
figure depicts VBS-SF first-order transition at Az ~ 1.48.

to a fully-filled system (or equivalently an empty lattice) which is not a Mott insulator. In
both the cases, it is not possible for the particles to move, thus producing a zero superfluid

density.

We now concentrate on the filling fraction 1/4 (corresponding to m = 0.25) in the
phase diagram depicted in Fig. 4.8. The quarter-filled checkerboard lattice has been studied
by various authors using different types of Hamiltonians. Sen ef al. [162] and Wessel
[163] considered a Hamiltonian involving NN repulsion between HCBs but omitting the
hopping along the diagonals of the non-void plaquettes . In Ref. [116], Wessel studied
the quarter-filled checkerboard lattice using a Hamiltonian consisting of NN hopping and
NN repulsion. The study showed that beyond some particular repulsion value, the system
goes through a quantum phase transition from a superfluid to an insulating valence bond
solid (VBS). The VBS can be the ideal plaquette type [shown in Fig. 4.11(a)], the ideal
columnar type [depicted in Fig. 4.11(c)], or a mixed columnar-plaquette phase [such as in

Fig. 4.11(d)]. To characterize these VBS states, besides employing superfluid density p;,
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Figure 4.13: Plots of (a) superfluid density ps and fraction f; (representing the relative
number of singly occupied non-void plaquettes) and (b) magnetization 1m vs magnetic field
h at a fixed NNNN anisotropy Az = 0.75 on a 16 x 16 checkerboard lattice. The NN
anisotropy is again fixed at A; = 16, while the NNN anisotropy A, = 2Aj3. The sharp
jump in the magnetization curve indicates the existence of a phase-separated (PS) region
involving superfluid and VBS (identified by f; ~ 1). Furthermore, the plateau corresponds
to a Mott insulating region.

different order parameters were used by various authors. A common feature among all the
VBS states is that each non-void plaquette is occupied by a single HCB. Therefore, along
with the superfluid density, we calculate a fraction f; which denotes the relative number of
non-void plaquettes that are occupied by a single HCB. For the VBS phases this fraction
f1 will have a peak value 1, whereas for any other phase it will assume a smaller non-zero
value.

Fig. 4.12 depicts the variation of the superfluid density p, and the fraction f; on a
16 x 16 checkerboard lattice as the NNNN anisotropy Aj is varied from 0 to 2.5 (with
Ay = 2A3 and A; = 16). For lower values of Aj, at one-fourth filling, the system
manifests a VBS phase demonstrated by the close-to-unity value of the fraction f; and

the zero value of the superfluid density p;. As we increase the value of Ag, a first-order
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phase transition, from VBS to superfluid, is realized beyond A3 = 1.48; the transition is
indicated by a jump in the superfluid density p, and an accompanying sudden drop in the
fraction f; from its maximum value 1 to some smaller non-zero value. In the phase diagram
depicted in Fig. 4.8, this signifies a first-order phase transition, along the A3 axis and at
Aj = 1.48, when the magnetization remains fixed at m = 0.25. Interestingly, while tuning
Ajs, the magnetization remains fixed at 0.25 only in the insulating VBS phase; whereas,
after the transition to the superfluid region, the magnetization fluctuates and is estimated as
m = 0.25 + 0.000051). On the other hand, as magnetization is changed from m = 0.25
while keeping Aj fixed, we can identify a phase-separated (PS) region where a jump in
m as well as in f; and p, occurs. In Fig. 4.13, the superfluid density ps, the fraction fi,
and the magnetization m of the system is shown as a function of the applied magnetic field
h at a fixed NNNN anisotropy A3z = 0.75. The sharp jump in the magnetization clearly
manifests the existence of a PS region in the vicinity of the VBS. The PS window in the

phase diagram becomes narrower as Aj is increased from zero and vanishes at Az ~ 1.48.

4.6 Conclusions

In the present work, we concerned ourselves with understanding the competition and/or
cooperation of various orders within the correlated singlet phases in the two-dimensional
Hubbard-Holstein model. Strictly speaking, correlated-singlet phase requires singlets that
are separated which is only possible at fillings < 1/4 in the Hubbard-Holstein model (i.e.,
fillings < 1/8 of HCBs on a checkerboard lattice). Extending the results of Refs. [53]
and [54], we arrived at the ¢t; — V|, — V5 — V3 Hamiltonian for HCBs on a checkerboard
lattice with the NN repulsion V; being infinity. We showed that the essential physics of the

system can be captured even when cutoff values of the repulsions are used. Unlike the one-
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dimensional Hubbard-Holstein model, the two-dimensional version revealed the existence
of a supersolid region. Around filling fraction 1/8, supersolidity is realized; whereas at
filling 1/8, only CDW order results. This result demonstrates how the dimensionality
plays an important role in stabilizing the supersolid phase. We also provide an intuitive
explanation for the mechanism behind the formation of CDW as well as the occurrence of
supersolidity on the interstitial side as well as on the vacancy side of the CDW.

Next, we performed a general study of the t;, — V; — V5, — V5 model; by varying the
NNNN repulsion V3, we derived the complete phase diagram of the system in terms of the
filling fraction (or magnetization) of the system. At filling fraction 1/8, the system reveals
the existence of a half-filled diagonal striped solid. Contrastingly, a quarter-filled system
manifests the valence bond solid consistent with the literature [116]. We also show that,
in the phase diagram, first-order transitions are realized while going from superfluid to dsS
at filling fraction 1/8 and from VBS to superfluid phase at filling 1/4. On the other hand,
the superfluid-supersolid or the supersolid-solid transition at fixed NNNN repulsions, when
we vary the magnetization of the system around filling 1/8, turned out to be of continuous
nature. Lastly, by varying the magnetization of the system around quarter filling, a PS
region is identified next to the VBS phase.

A unique feature of our model, compared to many other models, is that the checker-
board lattice naturally emerges out of the square lattice governed by the two-dimensional
Hubbard-Holstein Hamiltonian in the parameter regime where correlated singlets are pro-
duced. Furthermore, unlike a number of other checkerboard models studied in the liter-
ature, the parameter values used in our model can be either obtained from first-principle
calculations or determined from experiments.

Lastly, it should be emphasized that the model that we consider (i.e., the Hubbard-

Holstein model) involves a combination of electron-electron and electron-phonon interac-
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tions in their simplest forms. In a restricted parameter regime, this simple model is shown
to manifest lattice supersolidity. Since real materials exhibiting lattice supersolidity gener-
ally involve more complexities, further investigations are needed to figure out the relevance
of our model for such systems. Additionally, with the rapid advancements in artificially en-
gineered systems, we hope that our model can be experimentally realized, thus advancing

the overall understanding of different lattice-supersolid phases.
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SUMMARY

In this thesis, we had started off with three different systems having either strong e-ph or
strong HCB-ph interactions and arrived at three different models of HCBs. Our primary
interest was the study of two long-range orders, namely, CDW and superfluidity. To inves-
tigate the different phases arising out of the competition or coexistence of these two orders
and explain their origin based on the interactions present in the system, constitute the main

goals of this thesis.

Since we are dealing with strong e-ph or HCB-ph couplings, the usual Migdal-type
perturbative treatment was not applicable. To derive the effective Hamiltonian, we adopted
a non-perturbative approach which involves the well-known Lang-Firsov transformation of
the starting Hamiltonian. This transformation, just like a duality transformation, maps the
strong coupling problem to a weak coupling one, in which the small parameter is simply
inversed. While carrying out this transformation, the generator had to be carefully modified
such that the nature of the distortions present in the system was captured by it. By virtue of

this transformation, we could split the transformed Hamiltonian into an unperturbed part
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(Hp) and a perturbative term (/;). It is important to note that, in the two-dimensional
Hubbard-Holstein model, we had two strong-coupling limits; strong e-ph interaction, as
well as strong e-e interaction. Therefore, to arrive at the stage where we could split the
Hamiltonian into H, and /,, we had to further apply a standard canonical transformation
on the Lang-Firsov transformed Hamiltonian, in the large-Hubbard-interaction limit. Once
we have H, and H,, we perform a non-trivial perturbation theory up to second order in the

basis of the unperturbed eigenstates, as described in Sec. 1.6.

In Chapter 2, the one-dimensional ¢, — V" model of HCBs involving NNN hopping and
NN repulsion, which generically depicts the dominant transport mechanism in cooperative
strong e-ph interaction systems, was studied numerically as well as analytically. Employing
modified Lanczos algorithm, we showed that, as the repulsion is tuned, the system under-
goes a first-order transition from superfluid to either a CDW or a checkerboard supersolid.
The highlight of this work was the use of Green’s function technique to exactly obtain the
critical repulsion for two limiting cases, i.e., the two-HCB case (corresponding to zero fill-
ing in the thermodynamic limit) and the half-filled system. However, for the intermediate
filling fractions, a finite-size scaling analysis was done. It would be very interesting to see
if the critical repulsion for these intermediate fillings can as well be obtained using Green’s
function technique. We hope that this technique, whose utility is shown in this work, will
also be useful to solve more complicated problems in the future. Finally, we would like
to emphasize that in 1D, ¢, — V' model is indeed the minimum model to realize checker-
board supersolid phase, thereby adding to the significance of this apparently simple model.
Moreover, with advancements in artificially engineered systems such as optical lattices,

this system is potentially realizable in experiments as well.

In the next chapter, we have studied a two-dimensional square lattice system of HCBs

coupled to archetypal cooperative/coherent normal-mode distortions such as those in per-
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ovskites. At strong HCB-ph coupling, the effective Hamiltonian was obtained to be of the
formt; —ty —t3 — V) — Vo — V3 involving NN, NNN, and NNNN hoppings and repulsions.
Using stochastic series expansion (SSE) quantum Monte Carlo, we constructed the phase
diagram of the system. As the coupling strength was increased, we found that the system
undergoes a first-order quantum phase transition from a superfluid to a checkerboard solid
at half-filling and from a superfluid to a diagonal striped solid [with crystalline ordering
wave vector = (2r/3,2x/3) or (2r/3,4m/3)] at one-third filling without showing any
evidence of supersolidity. On tuning the system away from these commensurate fillings,
checkerboard supersolid was generated near half-filling whereas a rare diagonal striped su-
persolid was realized near one-third filling. Possible mechanisms behind the formation of
the CDWs as well as supersolid regions were also discussed based on the interactions of the
system. We have also showed that ¢; — V; — V5 — V3 is the minimum model for realization
of the diagonal striped supersolid phase on a square lattice. The success of this work lies
in the fact that, based on our HCB model, we could explain the experimentally observed
charge ordering in Lay_,Sr,NiO, (LSNO) for hole doping z = 1/2 and z = 1/3. Con-
sidering cooperative Jahn-Teller (CJT) effect, we showed that the Hamiltonian governing
LSNO involves same interaction terms as those in our model; however, LSNO deals with
electrons instead of HCBs. Since, repulsion was the main reason behind the formation of
the CDWs at those two fillings and hopping did not play any role, our HCB model was
able to reproduce the experimental results of the electronic system. Thus our work led
to the resolution of a prolonged controversy regarding the necessity of CJT distortions to
explain the observed diagonal-stripe charge order at one-third doping in LSNO. Because
of the so-called sign problem of quantum Monte Carlo methods, we could not simulate the
model with electrons. It would be fascinating to examine if the t; — 5 —t5 — V) — Vo — V3

model with electrons could capture the experimental observations of LSNO at other fillings
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as well, including the metal-insulator transition at = ~ 0.9.

Lastly in Chapter 4, we have dealt with the two-dimensional Hubbard-Holstein model
in the regimes of strong e-e and strong e-ph interactions. In the parameter region where
the system manifests the existence of a correlated singlet phase, the effective Hamiltonian
was shown to transform to a t; — V; — V5 — V3 Hamiltonian for HCBs on a checkerboard
lattice. Employing SSE, we observed that for large off-site repulsions, at filling 1/8, the
system manifests a diagonal striped solid with ordering wavevector Q = (w/4,3m/4) or
(w/4,5m/4). In striking contrast to the one-dimensional situation, our results in the two-
dimensional case reveal a supersolid phase (corresponding to the diagonal striped solid)
around filling 1/8. We were able to explain intuitively the mechanism responsible for the
formation of the CDW as well as the supersolid regions, both in the interstitial side and
the vacancy side of the CDW. Varying the NNNN repulsion V3 (where NNN repulsion
V, = 2V35) and the density of particles with a fixed NN repulsion, we also performed a
general study of the model, which does not necessarily correspond to the correlated singlet
phase of the Hubbard-Holstein model, and constructed the ground state phase diagram. We
observed that as the NNNN repulsion is decreased, at filling 1/8, the system undergoes a
first-order transition from a diagonal striped solid to a superfluid phase. Furthermore, for
small off-site repulsions, we witnessed a valence bond solid at one-fourth filling and tiny
phase-separated regions at slightly higher fillings.

In the last two chapters, Chapter 3 and Chapter 4, we have used SSE to investigate the
various properties of the systems. It is widely known that SSE works well for systems
with comparable energy scales of diagonal and off-diagonal terms. In our systems, the
energy scales had large disparity with the repulsions being almost infinity compared to the
hopping terms. If we had to use the exact values of the repulsions, simulation times for

SSE would have been prohibitively large. Therefore, based on physical reasoning, we used
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cutoff values for the repulsions such that the essential physics is still captured. Although
large values of repulsion slows down the simulation, we kept the cutoff values as high as
possible within our time-frame. As discussed in Chapter 3, the small parameter € affects
the autocorrelation times of observables. While increasing the value of € helps in reducing
the autocorrelation, making it larger or comparable to the repulsion values may lead to
unphysical results. Keeping these in mind, we optimized the parameter € to obtain the best

results while handling the large repulsion problem.
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I A PPENDIX A

FINITE SIZE SCALING ANALYSIS FOR

HCBS IN 9 — V. MODEL FOR E-RINGS

In this section, we will outline our approach to carrying out finite size scaling analysis for
a system with even number of sites. Let us first consider a non-interacting system (with
2N sites and N, particles) described by a tight-binding Hamiltonian. For even number

of particles, the ground state has particles occupying momenta % with —N,, /2 <

m < N,/2 — 1; whereas for odd number of particles the ground state is represented by

particle momenta % with —(N, — 1)/2 < m < (N, — 1)/2. Thus the ground state

wavefunction (due to the occupied momenta) is an even function of 1/2N. Now, for the

case corresponding to after the phase transition where all the particles are in the same
sublattice C, the energy of the ground state |¢y) is given by
N

E; = Z<¢0| — tQ(CICH—l + HC)|¢0>, (A.1)

=1
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where c is the destruction operator for a HCB in sublattice C'. Upon taking into account

discrete translational symmetry, we get

E
~ = (@0l = talcler +Hee.)lgo). (A2)

Since |¢o) is even in 1/2N, we note that £ is also even in 1/2N.

Next, consider the interacting system characterized by the following ¢, —V Hamiltonian

in rings with even number of sites (2/V) and with periodic boundary conditions:

N N
H= —t Z(CICiH +H.ec) -t Z(d}dm + H.c.)
=1 i=1
N
+V Y dldi(cle; + ol yein), (A3)

1=1

where c (d) is the destruction operator for HCB in sublattice C' (D) and V' > 0. Upon
invoking reflection symmetry, we note that the ground state will be invariant when the sign
of momenta is reversed; equivalently the ground state |t)g) is an even function of 1/2N.

The ground state energy, before the phase transition, is given by

N
EH = Z<1/)Q| - tg[(C;fC,'Jrl + H.(i.) + (djdlqu + H()”Z/)O)
i=1
N
+ Z(l/)OWdez(cjcz + C;r_lCi_l)W)o). (A4)
i=1

Upon recognizing discrete translational invariance, we see that

— = (tho| — taf(clernr + Heel) + (dldisy + Hee)][tho)

+ <¢0|dedi(cjci + C;r_lci—l)|1/}0>- (A.5)
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Since, |1)) is even in 1/2N, it follows that % is also even in 1/2N.

Now, at the transition point (corresponding to a critical interaction V), % — % = 0;

this implies that

(Wolta[(cleips + Hee.) + (didipr + H.c.)][thy)
(oldidi(cle; + ¢l e 1))
(dolta(cleinr + Hoe))|go)

— . (A.6)
(Woldldi(clei + cl_yei1)|vo)

C

In the above equation, because both numerator and denominator of all the terms on the
right-hand side are even in 1/2N, it follows that V, is also even in 1/2N. Thus, for e-rings

at various fillings, we relate V,(2/NV) (critical repulsion at Ny = 2N) to V,(o0) as follows:

V.(2N) = Vi(00) = <= + — + ..., (A7)

where A, B,... are constants.

It is also important to note that we used general arguments to show that the ground state
energy % is even in 1/2N; these arguments can be extended to show that the ground state
energies of other interacting systems such as the ¢ — V' model are also even functions of

1/2N. The fact that the ground state energy of the ¢ — V' model is an even function of

1/2N has been used in Ref. [41].
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APPENDIX B m—

NEAREST-NEIGHBOR REPULSION

The second order perturbation term is given by

H® — Z Z (Olpn H i [m) pi (| pn H 11| 0) pr

o Eph Eph
Z Z AEph [( it+1,5 l7<0|ph( — 1)|m)pn
m 1,5,k

+df dig1 5 (Olp(T7, — 1) |m)
+df o di g (O](r, — 1) m)pn
]y a (Ol (7, — 1)) )
< (Al ialmlon (72 = 110y
t d} i a(mlpn (7 = 1))[0)
+d} l+1dkl<m‘Ph(T+z/ — 1))[0)pn

+ d i fmln (75 = 1)[0)n) | B
where t, = te~(FrtVo)/wo and AEPM = EPM — EPh.
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As already mentioned in Sec. 3.2.1, the NN repulsion results from a process where a

particle hops to its neighboring site and returns back, which in 2D consists of two terms:

Z (i (1 = niy1j) + nigr,;(1 —ny ;)] and Z [ (1 = 1 j41) + 1 (1 —ni )]
1,] 2y

SiHCC, Z TLL]'(]. — ni-l—l,j) = Z niH,j(l — ni,j) and Z nm-(l — ni,j—i—l) = Z 7’LZ'7]'+1(1 —
ij i.j i.j ij
ni ;). so the process is effectively given by > [n; ;(1 — niy1,5) + n4;(1 — n j+1)] with the
]
coefficient being twice.

Now, we can rewrite the term > n; j(1 — n;11 ;) as
i?j

t t _ t t_ t f
S odldi (V= dl i) =Y dldigdiagdly, = dldigdl dig.
1, ©.J 1,

Looking at the expression of H?), one can figure out that the above term comes from the
multiplication of the terms dZT,jd,;H,j and d,z 414y for k =i and [ = j. So, the coefficient

of this term is given by

ij ij T
(Olpn (e = Dm)pn{mlpn (e — 1)|0)pn
t%z P + ZEglhp + j2 : (B.2)

m

where

fo: exp|g(2a;; — ai—1j — aip1j)+9(biy1j-1 + bij — bijo1 — biy1;)+vg(ciy — Ci+1,j)];
consequently, the coefficient simplifies exactly to be ;—%GQ(ZI, 1,1,1,1,1,1,7%,~4%). Now,

the general form G, (a1, ag, - - - , ;) can be expressed as

!/

Golar, ag, -+ an) = Y

M1,M2,...,My,

(1 g?)™ - (apg®)™

my! - omyl(my + -+ my)’
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where m; = 0, 1,2, ...., 0o and the prime in >’ implies the case m; = my = ... = m,, = 0
is excluded from the summation. It is important to note that for large values of g2, G,, can

be approximately expressed as

Gn(al)@2a”' 7an) ~ (B3)
a;g?
=1

Then, the NN repulsion is given by

—V2 > i (1= nigrz) +nii(1—nij)), (B.4)
N
where
2t2€—2(Ep+Vp)/wo 2t2

V, = Go(4,1,1,1,1,1,1,% /) —— . B.5
z wo 9(7777777777) 2Ep+2‘/p ( )

Now, in arriving at Eq. (B.4), we did not take into account the occupancy of the neigh-
bors of the intermediate site. For example, when the particle hops from site (¢, 7) to NN site
(41, j) and back, we have not considered the occupancy of the sites (i+2, j), (i+1,7+1)
and (i + 1, j — 1), which are the neighboring sites of the intermediate site (¢ 4 1, 7) (as can

be seen from Fig. 3.1). We will consider this occupancy in the next appendix.
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APPENDIX C

NNN REPULSION AND NNNN

REPULSION

In this appendix we first outline the procedure of calculating the coefficient of next-nearest-
neighbor (NNN) repulsion which occurs along the diagonals. Consider the case where a
particle hops to its neighboring site and returns back yielding the term o< Z n;(1 —n;)
with < 4,5 > indicating nearest-neighbor (NN) pairs of sites. In this p;(:z:;s we have
to take into account the occupancy of the neighboring sites of the intermediate site j. For
example, in Fig. C.1, if a particle at site 1 hops to site 2 and comes back, then the coefficient
of this process depends on the occupancy of the sites 3, 4, and 5. If all the three sites
are empty, then this term can be expressed as —V,n;(1 — n3)(1 — ng)(1 — ns) where
V, ~ ﬁ; here, we have omitted the term (1 — ny) because the possibility of NN
occupancy (for particle at site 1) is already excluded from the process due to the large

value of NN repulsion 2V},. Due to numerical difficulties in our simulations using SSE, we

need to simplify the four-operator term into a two-operator one by applying mean field to
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Figure C.1: Pictorial description of the process where a particle at site 1 hops to site 2 and
comes back.

the remaining two operators. One can easily see that this mean-field procedure leaves us
with a term which represents NNN repulsion (which acts along the diagonals) or NNNN

repulsion (which acts along the axes).

We will now calculate the NNN repulsion coefficient which pertains to the diagonals of
the square lattice in Fig. C.1. To this end, we consider all the possible processes yielding
the operator nyn3 and add all the corresponding terms to evaluate its coefficient. The
following are the relevant cases.

Case 1 : NNN interaction, when all the three neighboring sites of the intermediate site are
unoccupied, involves the following.

(i) The contribution of particle hopping from site 1 to site 2 and coming back:

21°

= —mnl(l — ng)(l - n4)(1 - n5)
p p
22

~ —mnl(l - n3)<1 - n4><1 - n5>
2t° 1 ’
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where (...) implies mean value and (1 — ng) = (1 — ns) = (3 — m) with m being the
magnetization of the system.
(i1) The contribution of particle hopping from site 1 to site 7 and returning back involves a

similar situation as (i) and is given as:

2t?
2t° 1 2
P p

(ii1) The contribution of particle hopping from site 3 to site 2 and coming back:

2t
~ —mng(l —n1){1 —ng) (1 —ns)
P »
2t2 1 ?
~ ————n3(1l — - — . C3
(2B, + 2%)713( ") (2 m) €

(iv) The particle hopping from site 3 to site 7 and returning back is similar to (iii) and yields
the same expression as Eq. (C.3).

(v) The contribution of particle hopping from site 4 to site 2 and coming back:

2t?
~ —m(l — n‘;)(]. — n1)<n4><1 — n5>
212 1 L)\

(vi) The contribution of particle hopping from site 5 to site 2 and coming back is similar to
(v) and is given by Eq.(C.4).
(vii) The particle hopping from site 6 to site 7 and returning back is also similar to (v) and

the contribution is again given by Eq.(C.4).
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(viii) The contribution of particle hopping from site 8 to site 7 and coming back is also
similar to (v) and hence is given by Eq.(C.4).

Adding all the contributions for case 1, we get the coefficient of nin3 to be

1 2 1,
4<§—m) —4(Z—m)]. (C.5)

2t?
(2E, 4+ 2V})

Case 2: We consider contribution to NNN interaction when, among the three sites that
are NN to the intermediate site, one of them is occupied and the other two are empty.
Thus, compared to case 1, there is an extra repulsion term 2V}, in the denominator of the
coefficient. Then, NNN interaction involves the following.

(i) The particle hops from site 1 to site 2 and comes back. Any one of the three neighboring

sites of site 2, i.e., 3, 4, or 5, is occupied; then, the contribution is:

2t?

NGB, 1 4 [nmg(l —ng) (1 —ns) +ni(1 —nz)(na)(1 — ns)
(1= ) (1 = ma){ns)|
~ _ﬁf%) nans (% - m>2 T omi(1 — ) (}1 - m2) ] (X5

(i1) The particle hops from site 1 to site 7 and comes back. The situation is similar to (i)

and hence the contribution is given by Eq. (C.6).
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(ii1) The particle hops from site 3 to site 2 and comes back. The resulting contribution is

~ _(QE;#V;,) [ngnl(l — ) {1 —nz) + nz(1 —ny)(ns) {1 — ny)
(1= n) a1 = ns) |
2t* 1 2 1 )
~ _M ning (5 — m) + 2n3(1 —ny) <Z —-m ) ] . (C.7)

(iv) The particle hops from site 3 to site 7 and returns back. Since the situation is similar to
(iii), the contribution is expressed by Eq. (C.7).

(v) The particle hops from site 4 to site 2 and comes back. The contribution is

2t*

g_@Eziﬁgkmxy—mmg1—%y+m@mu—n@a—ng
+ {na) (1= na)(1 = ) ns)]
22 1, 1,
N_M ni(1 —ngz) (Z_m ) +ng(1 —ny) (Z—m>

+a—ngu—ng(%+m>1. (C.8)

(vi) The particle hops from site 5 to site 2 and comes back. The situation being similar to
(v) leads to the contribution being given by Eq. (C.8).

(vii) The particle hops from site 6 to site 7 and comes back; this circumstance is also similar
to (v) and hence contribution same as in Eq. (C.8).

(viii) The particle hops from site 8 to site 7 and comes back. Here too the contribution is
given by Eq. (C.8) since the circumstance is again similar to (v).

Therefore, for case 2, the sum total of the above contributions yields the coefficient of nn3
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to be

1, 1 2 1 ?

Case 3: Contribution to NNN interaction when the intermediate site has any two of the
three NN sites occupied with the other being empty. Then, compared to case 2, the coef-
ficient has an extra repulsion term 2V, in the denominator; consequently, NNN interaction
involves the following.

(1) The particle hops from site 1 to site 2 and comes back; the resulting contribution is:

2t?

~ —m [nlng(n4><1 —ng) + ninz(l —ng)(ns) +ni (1 — n3)<n4><n5>]
~ _ﬁ 2nyn3 (411 — m2> +ni1(1 —ng) (% + m>2] ) (C.10)

(i1) The particle hops from site 1 to site 7 and comes back. This situation is similar to (i)
with the contribution being expressed by Eq. (C.10).

(ii1) The particle hops from site 3 to site 2 and returns; the ensuing contribution is:

212

~ T 2E, 16V [”3”1“ — n4)(ns) + ngni (na) (1 — ns) +ns(l - ”1)<”4><”5>]
”‘ﬁ 2mms (i—mz) T a1 - ) <%+m>2] C.11)

(iv) The particle hops from site 3 to site 7 and comes back. The situation is similar to (iii)

with the contribution being given by Eq. (C.11).
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(v) The particle hops from site 4 to site 2 and returns. This produces the contribution:

T (2Ep24t-2 6V,) [(nahmina(1 = ns) + (na) (1 = na)ng(ns) + (nahms (1 = na) ms)|
~ g s (3= =) (54 m) a1 = (5 4m) ]
(C.12)

(vi) The particle hops from site 5 to site 2 and comes back. The circumstance, being similar
to (v), yields the contribution expressed in Eq. (C.12).

(vii) The particle hops from site 6 to site 7 and comes back. The situation is also similar to
(v) with the contribution being also given by Eq. (C.12).

(viii) The particle hops from site 8 to site 7 and returns. Again the situation is similar to (v)
with the contribution being again given by Eq. (C.12).

Therefore, on adding all the various contributions for case 3, we get the coefficient of 1,1

to be

121 2 12 L 2 C.13
— s+m) - 1m0 (C.13)

Case 4: Contribution to NNN interaction when all of the three neighboring sites of
the intermediate site are occupied. Here, compared to case 3, the coefficient has an extra
repulsion term 2V/, in the denominator. Then, NNN interaction involves the following.

(1) The particle hops from site 1 to site 2 and comes back. Consequently, the contribution
is

N—z—ﬁnn<n><n>~—2—ﬁnn 1—l—m 2 (C.14)
T2E,+8Y) YT (2R, +8V,) T\ 2 | '
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For all the following also the contribution is expressed by Eq. (C.14) because the situation
is similar to (1).

(i1) The particle hops from site 1 to site 7 and comes back. (iii) The particle hops from site
3 to site 2 and returns. (iv) The particle hops from site 3 to site 7 and comes back. (v) The
particle hops from site 4 to site 2 and comes back. (vi) The particle hops from site 5 to
site 2 and returns. (vii) The particle hops from site 6 to site 7 and comes back. (viii) The
particle hops from site 8 to site 7 and returns.

Therefore, for case 4, the coefficient of n n3 is given by

212 1 2
S - . C.15
ag ey <3t m) 19

Combining Egs. (C.5), (C.9), (C.13) and (C.15), we finally get the coefficient of NNN

repulsion (which acts along the diagonals) to be

2
2V,
Vo = 2t2 <— — m) P
’ 2 (By + Vo) (B, +2V,)
+ (1 — m2> 4B,V
4 (Ep + V) (Ep + 2V,) (B, + 3V,)

1 2E,V,
N <_+m A (C.16)

2
2 ) (Ep +2V,)(Ep + 3V,) (B +4V,) |

To calculate the NNNN repulsion along the = axis (y axis), we have to consider all the
processes from which a term nyn4 (n1ng) can appear. Adding all those terms, we can see
that the coefficient of NNNN repulsion is just half of the coefficient of NNN repulsion. The
reason for this is that the relevant contributions are from only half of the eight situations
considered in each of the above four occupancy cases (i.e, the four cases involving different

number of occupied neighbors for the intermediate site).
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APPENDIX D

NNN HOPPING AND NNNN HOPPING

There are two possible hopping paths for a particle to arrive at a NNN site along the diag-
onals of the square lattice. For example, in Fig. D.1, consider a particle hopping from site
1 to site 3. It can either hop to site 2 first and then to site 3 or it can hop to site 4 followed
by a hop to site 3. Now, the coefficient of this process gets modified by the occupancy of
the neighboring sites of the intermediate site. Without taking into account this effect, the

process along any one path [on using Eq. (B.1)] is given exactly by

t2 —2(Ep+Vp)/wo
2L G5(272)171772) Z (dzd] +HC)

o)) .
<<L1,)>>

where << i, j >> denotes NNN pairs of sites along the diagonals. For large values of g2,

we have the following simplification for the coefficient in the above expression:

t2€—2(Ep+Vp)/w0 t2€_Ep/wO
Gs(2,2,1,1,72) 28—
W +(2 ") E, + 2V,

Path 1: The particle hops from site 1 to site 3 via site 2. The coefficient of this process
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Figure D.1: Pictorial depiction of the process where a particle at site 1 hops to site 3 which
is its NNN site along diagonal. The two possible paths for this process are indicated:
hopping to site 3 via site 2 and site 4.

depends on the occupancy of the sites 5 and 6 which are the two neighboring sites of the

intermediate site 2.

Case 1: Contribution to NNN hopping when both the neighboring sites are empty:

t26—Ep/&J()de tze—Ep/wode
L dldi(1— ng) (1 — ng) ~ ——————dld (1 — ng) (1 —
Ep+2‘/p 3 -I-( n )( n6> Ep+2‘/;) 3 -I-< n >< n6>
t2eEr/wo /1] 2
N = — did,. D.1
E, + 2V, (2 m) 301 ©.1)

Case 2: Contribution when any one of the neighboring sites is occupied (giving an extra

repulsion 2V}, in the denominator) and the other site is empty:

tQB—Ep/wo

— 5y, o (s} (1 = me) + (1 = ms))]
2t2eIw/wo (1] )

i did,. D.2
Ep+4%<4 m)“ (b2
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Case 3: Contribution when both the NN sites are occupied:

th—Ep/wo

did ret (1Y da D3
< =g (o) da @3

Therefore, for path 1, we get the coefficient of dgdl to be

A 1 S | 1 )
2o Erlen <_ N m) L (- - mz) 2
[ 2 E, +2V, 4 E, + 4V,

. (D.4)

Path 2: The particle hops from site 1 to site 4 first and then to site 3. The coefficient of this
process gets modified depending on whether the sites 7 and 8 (NN to the intermediate site

4) are occupied or not.

Case 1 : Contribution when both the neighboring sites are empty. This situation is

similar to case 1 of path 1; hence, the contribution is given by Eq. (D.1).

Case 2 : Contribution when any one of the neighboring sites is occupied and the other
one is empty. This is similar to case 2 of path 1; consequently, the contribution is expressed

by Eq. (D.2).

Case 3 : Contribution when both the NN sites are occupied. This circumstance is

similar to case 3 of path 1; thus, the contribution is given by Eq. (D.3).

Thus we see that path 2 yields the same coefficient [given by Eq. (D.4)] for dgdl as
path 1. Combining the contributions from both the paths, a particle hopping to its NNN
along diagonals can be expressed as —t; 3. (did; + H.c.), where the coefficient ¢, is

<<4,j>>
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given by

1 S| 1 2
ty=2% /0N (——m) ———+ - —m? | ———
S [(2 m) Ep+2Vp+(4 ") E W,

+ 1+m 2; (D.5)
2 E,+6V,| '

For the case of NNNN hopping (which occurs along the axes), there is only one possible

path. Hence, the relevant coefficient {5 for NNNN hopping is half of the coefficient for

t

NNN hopping, i.e., t3 = Z.

165



EEEaesssssmmmmmm APPENDIX E  m——

SSE BOND HAMILTONIAN

Our effective Hamiltonian for HCBs, written in units of 2¢;, can be expressed in terms of

bond operators as follows:

H=-

3
i=

> Hg, (E.1)
—

L B

where By, By and B3 represent NN, NNN and NNNN bonds in our system, respectively.
In the above expression Hp, can further be written as a sum of diagonal (H; p,) and off-
diagonal (H, p,) parts, i.e., Hg, = Hy p, + Hs p,. The expressions for the diagonal and

off-diagonal parts are given as

Hi p, = Ci — AiS5i) Sk, + hi (Siis,) + Sisy)

J
Ji _
Hyp =5 (S;?B,)Skz(Bi) + H.c.) , (E.2)

where J; = 1, C; = A;/4+ hg + €, ¢, > 0 and hg = h/Z; the coordination number

Z = 12 for our problem. Furthermore, j(B;) and k(B;) refer to sites connecting the bond
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B;. The parameter ¢; is introduced to ensure that the two-spin matrix elements always stay

positive.
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