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SYNOPSIS

In quantum field theories with gauge symmetry, one encounters the problem of gauge re-

dundancy due to the unphysical longitudinal modes of gauge fields. To overcome this, the

most popular method is to fix the gauge using the Fadeev-Popov scheme. With a covariant

gauge-fixing condition, one can define a renormalizable quantum field theory (QFT) with

BRST (Becchi-Rouet-Stora-Tyutin) symmetry and calculate physical observables. How-

ever, this scheme is applicable only in the perturbative regime or in other words, for small

gauge coupling. In the non-perturbative sector, we find numerous solutions to the gauge-

fixing condition and thus the usual approach fails. The question of non-perturbative gauge-

fixing (NPGF) is a vast field of ongoing research.

The lattice is a well-known regulator for QFTs. In the usual Wilson approach in Eu-

clidean spacetime, gauge invariance is manifest at all stages of the calculation and gauge-

fixing is not required in principle. The theory is rigorously defined through a functional

integral with a gauge-invariant (Haar) measure and group-valued gauge links, something

that makes the algebra-valued gauge fields compact. The algebra-valued gauge fields be-

come noncompact, smooth and dimensionful only in the continuum limit. However, gauge-

fixing is sometimes done on the lattice, in retrospect, on a given gauge-field configuration
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to match results with a particular perturbative renormalization scheme. One can now ask

what happens when one tries to fix the gauge as in continuum a la Fadeev-Popov. We will

see that this leads to an impasse since there is a no-go theorem by Neuberger [1] that does

not allow BRST symmetric theories to be formulated on a lattice.

Let us now turn our attention to fermions on the lattice. Naive discretization of fermions

on the lattice leads to the infamous fermion doubling problem. The Nielsen-Ninomiya

theorem points to a possible way out to avoid the doubling by explicitly breaking the chiral

symmetry [2–4]. This leads us to the important issue of achieving chiral gauge symmetry

on the lattice. In a manifestly local formalism of lattice chiral gauge theories, the standard

Wilson method with a gauge-invariant measure leads to various problems. The problems

arise due to the undesired presence, in such theories, of the longitudinal gauge degrees of

freedom (lgdof ) which become manifest as physical degrees of freedom (as scalar fields)

in a gauge-noninvariant theory such as manifestly local proposals of lattice chiral gauge

theory [5,6]. The lgdof couple to the physical degrees of freedom in the terms of the action

that explicitly break gauge invariance. The interactions of the lgdof with the physical

sector can generally be strong since any point on the gauge orbit is as likely as any other

in a gauge-invariant formalism. This is because the functional integration takes place also

along the longitudinal direction or the gauge orbit.

The usual method to tackle such situations is to give the lgdof a dynamics through

a particular gauge-fixing mechanism that is expected to control or tame the lgdof. (In

a different approach to lattice chiral gauge theory that modifies chiral symmetry on lat-

tice according to the Ginsparg-Wilson relation [7], one arrives at a link field dependent

fermion measure and an exact solution to the integrability condition on the space of the

lattice link fields was obtained in the Abelian case [8]. This method is fundamentally dif-

ferent from the gauge-fixing approach and if successful, would not require gauge-fixing.)
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In the usual Fadeev-Popov gauge-fixing procedure, one inserts a constant gauge-fixing

functional integral in the partition function such that gauge-invariant correlation functions

of the gauge-fixed theory are identical to the manifestly gauge-invariant unfixed theory.

However, for a BRST-invariant theory with compact gauge fields on the lattice, one finds

that the gauge-fixing integral is identically zero due to exact cancellation among the lat-

tice Gribov copies [1]. This leads to indeterminate 0/0 form for the expectation values of

gauge-invariant operators. One needs to find a way out to fix the gauge non-perturbatively,

such that manifestly local lattice chiral gauge theories can be constructed. In this thesis, we

discuss the possible ways of gauge-fixing and their implications in both the Abelian (U(1))

and non-Abelian (SU(2)) cases.

In our first problem, we address the issue of gauge-fixing in the Abelian case. Naive

discretization of the covariant gauge-fixing condition on the lattice allow multiple solutions

leading to degenerate minima of the action. A suitable higher derivative (HD) gauge-fixing

term, proposed by Golterman and Shamir [9], avoids multiple solutions, thereby providing

a unique minimum around which a weak coupling perturbation theory can be done. The

theory also explicitly breaks the BRST symmetry, thus evading the no-go theorem. The

pure gauge theory with the HD gauge-fixing term was studied extensively in the past, in

the weak gauge coupling (g) region [10]. For a sufficiently large value of the bare coupling

of the HD term (κ̃), one obtains a novel continuous phase transition (FM-FMD) where

gauge symmetry is restored and lgdof are decoupled, and the usual continuum results are

obtained. It was also shown that a chiral gauge theory could be constructed successfully

[11–14] for weak gauge couplings, by decoupling the lgdof s with this propsal. The success

of the HD gauge-fixing proposal in the weak coupling region raises the important question

about the nature of the theory at strong gauge couplings. We have tried to address this

question in our work [15, 16], by exploring the strong gauge coupling region of the gauge-
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fixed theory.

The main result of our work is that the Lorentz covariant physics emerging in the strong

gauge coupling region, by approaching the FM-FMD transition from the FM-side, is ac-

tually governed by that at the phase transition at g = 0, κ̃ → ∞ and κ ∼ 0, κ being

the coefficient of a dimension-2 mass counter-term required to recover gauge symmetry

(In the weak gauge coupling limit g = 0, the action has a unique global minimum). At

the continuous transition, we find the expected physics with free massless photons and de-

coupled lgdof. We used Hybrid Monte Carlo (HMC), a global algorithm, to develop the

code, which was used to numerically obtain all the results. Our work also establishes the

inadequacy of a local algorithm like Multihit Metropolis (which was used in earlier works)

for larger κ̃ and bigger volumes, by comparing results with the HMC algorithm at different

regions of the coupling parameter space. A novel tricritical line emerges for g > 1 in the

3-dimensional phase diagram (g, κ̃, κ) separating the first order and the continuous FM-

FMD transition surfaces, which indicates a new universality class with non-trivial physics.

However, proper investigation of the properties of the tricritical line is presently beyond

the scope of our work.

Our second problem of investigation is about the non-perturbative gauge-fixing in non-

Abelian theories with the equivariant BRST (eBRST) scheme. It was first devised by

Schaden [17] for SU(2) and later generalized for general SU(N) theories by Golterman

anad Shamir [18]. The basic idea is to gauge-fix in the coset space G/H , where G is

SU(N), leaving the action invariant under the subgroup H ⊂ G, which contains the

maximal Abelian subgroup of G. The action is now eBRST symmetric with a 4-ghost

term, which was previously absent in a BRST symmetric theory. This 4-ghost term helps

to evade the Neuberger’s no-go theorem while maintaining an overall eBRST symmetry.

The nilpotency condition of BRST is now modified and the double variation of an eBRST
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transformation is now a transformation in the H subgroup. The remaining unfixed Abelian

invariance of the theory may now be gauge-fixed to potentially construct a manifestly local

chiral lattice gauge theory. It is also interesting to study the eBRST gauge-fixed theory as

an alternate formulation of lattice gauge theories.

It has been shown that the coupling of the eBRST gauge-fixing term for general SU(N)

is asymptotically free, suggesting that the gauge-fixing coupling grows strong at some scale

Λ̃ [19]. This raises the unusual question which is generally not thought of, that whether the

dynamics of the longitudinal sector can affect the physical sector. Approximate analytical

calculations have shown that such a theory may have non-trivial phase structure in the

sector of lgdof [20,21]. It has been speculated that the gauge-fixing coupling may become

strong while the gauge coupling still remains weak and a new phase may emerge. A very

convenient way to study the dynamics of the longitudinal sector would be to take the gauge

coupling to the extreme weak limit i.e. zero, effectively decoupling the transverse gauge

degrees, resulting in the so-called reduced model. A non-perturbative study of the reduced

model would reveal any non-trivial phenomenon in the lgdof sector. One can then weakly

turn on the gauge coupling to study the implications of the strong lgdof sector on the

physical transverse sector.

However, an invariance theorem [18] establishes that on a finite lattice, the expectation

value of any gauge-invariant observable is the same in both the eBRST gauge-fixed theory

and the unfixed theory, or in other words, the transverse degrees of freedom are unaffected

by the dynamics of the lgdof. This is what one would expect from perturbative physics

where the results are independent of the gauge-fixing coefficient. A corollary of the invari-

ance theorem is that the gauge-fixing partition function does not depend on the gauge link

and the coupling of the gauge-fixing term, thus defining a topological field theory (TFT).

Hence, the reduced model of theory, which is just the theory of the longitudinal degrees
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of freedom and ghost fields, is a TFT. However, it was speculated in [20], that a topolog-

ical field theory with a BRST-like symmetry can have a spontaneous symmetric breaking

(SSB). The idea is to add a explicit symmetry breaking term which when turned off leads to

a vacuum with broken symmetry. The same idea can be applied to the eBRST gauge-fixed

theory. It needs to be seen then that what is the implication of a SSB in the full theory with

both transverse and longitudinal gauge degrees of freedom.

We have studied the pure SU(2) gauge theory, where the only possible way to maintain

eBRST symmetry is by gauge-fixing in the coset SU(2)/U(1), leaving a U(1) subgroup

invariant. We have numerically studied both the full theory and the reduced model using

HMC algorithm. An important part of the numerical problem is the tracking of zero cross-

ing of the small eigenvalues of the real-valued eBRST ghost matrix, which has been studied

using the stochastic tunneling HMC algorithm (sTHMC) [22]. The reduced model of the

theory has a global SU(2) symmetry, which was shown to undergo a SSB from SU(2) to

U(1) [20]. We have strong evidence of such a broken phase in the reduced model. We have

also found the validity of the invariance theorem in the full theory. This is a hard system

to simulate numerically and the canonical algorithms used in our study suffer from various

issues due to the complexity of the problem. As a result, the physics conclusions cannot be

established beyond doubt. We have studied these drawbacks and we hope these would help

us to devise more efficient ways to study the theory in the future. Our work has shed light

on the dynamics of the lgdof in a non-perturbatively gauge-fixed non-Abelian gauge theory

and we hope that it would be very useful in the gauge-fixing formulation of lattice chiral

gauge theories in the future and in our understanding of quantum field theory, in general.

The development of the codes for the numerical simulations was an integral part of

the research work. This is the first-time lattice calculation of the eBRST theory and also

the first-time implementation of sTHMC [22]. Working out the involved analytical cal-
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culations required for the algorithm, the three codes, viz. the full theory with HMC, the

reduced model with HMC and the full theory with sTHMC, were built from scratch. The

codes were parallelized using MPI (Message Passing Interface), partly based on the MILC

collaborations public lattice gauge theory code [23], making it possible to obtain results

from the path integral, with enormous number of degrees of freedom involving gauge fields

and Grassmannian ghost fields, using Monte Carlo calculations in a reasonable time using

a supercomputer.
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5.6 The order parameter 〈|Ã|〉 has been plotted versus h, at different κ̃ =

0.6, 0.8, 1.0 and 5.0, with m2 = 0.0. The results, obtained on a 84 lattice,

clearly show that the order parameter is non-zero, i.e., the reduced model is in

a broken phase for a range of κ̃. . . . . . . . . . . . . . . . . . . . . . . . . . . 148
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CHAPTER 1

INTRODUCTION

Through a strong coupling expansion of a Wilson loop in a space-time (Euclidean) lattice,

Wilson [24] showed evidence for confinement in a pure compact SU(3) gauge theory,

marking the beginning of a new method for non-perturbative investigation of quantum field

theories. A salient feature of the Wilson’s approach is that gauge invariance is manifest at

all stages of the calculation and gauge-fixing is not required. The theory is rigorously

defined through a functional integral with a gauge-invariant Haar measure with group-

valued gauge links. The algebra-valued gauge fields become non-compact, smooth and

dimensionful only in the quantum continuum limit.

However, situations arise where it is necessary to control the unphysical longitudinal

modes of the lattice gauge fields. The formulations of manifestly local chiral gauge theories

on the lattice in the Wilson framework face several issues due to the unavoidable presence

of these unphysical gauge degrees of freedom. It is therefore desirable to control these

modes through gauge-fixing in a non-perturbative set-up.

The Fadeev-Popov gauge-fixing scheme and the resulting the Becchi-Rouet-Stora-Tyutin
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(BRST) formalism is of vital importance in perturbative definitions of gauge theories.

However, this scheme is not directly applicable for non-perturbatively defined gauge the-

ories on the lattice due to a no-go theorem. The proposal for a remedy evading the above

no-go situation, in case of non-Abelian gauge theory, is the so-called equivariant BRST

(eBRST) scheme that gauge-fixes only the coset space, leaving minimally a Cartan sub-

group invariant [17, 18]. For the Abelian case, a non-perturbative gauge-fixing scheme as

proposed by [9, 25] includes a specially engineered higher derivative (HD) gauge-fixing

term in the lattice action breaking BRST invariance. Recovery of gauge symmetry in the

physical sector in the continuum limit is expected to be achieved by tuning appropriate

counter-terms. Apart from their role in constructing lattice chiral gauge theories, these

proposals offer an alternative way of defining gauge theories on the lattice.

This thesis is based on our study of the above-mentioned non-perturbative gauge-fixing

schemes for compact gauge fields on the lattice for both Abelian and non-Abelian cases.

Before the research work is described in the later chapters, we first discuss the basic under-

lying concepts of our research work in this introduction.

We start our discussion by introducing the lattice as a laboratory to study quantum field

theories (QFTs) non-perturbatively using computers. This is followed by the construction

of theories on the lattice with special emphasis on gauge fields. The fermion doubling

problem and Wilson fermions are discussed, followed by the Nielsen-Ninomiya theorem

to motivate the issues of chiral gauge theories on the lattice. After introducing the basic

aspects of the lattice QFTs, we then discuss the necessity of gauge-fixing in the continuum

QFT in the purview of perturbation theory. The basics of BRST gauge-fixing framework is

described in some detail.

After this introduction of the lattice field theories and gauge-fixing in continuum, we

will go into the aspects of gauge-fixing on the lattice. This will then be followed by the
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motivation for non-perturbative gauge-fixing from the viewpoint of chiral gauge theories

on the lattice. Finally, we discuss problems of naive gauge fixing on the lattice.

1.1 Quantum Field Theory on the Lattice

In perturbative QFTs in physical dimensions, calculations are done with an ultraviolet reg-

ulator due to the divergences encountered. Physical results, after the renormalization pro-

cess, are then obtained as finite without a cutoff dependence. Dimensional regularization

and Pauli-Villars regularization are two examples of perturbative regularizations. Lattice is

a general regulator at the action level for QFTs where, by restricting the spacetime in a box

(infrared regularization) with discrete co-ordinates (ultraviolet regularization), the degrees

of freedom become finite. The lattice theory is then quantized by the functional integral

method and infinities are not encountered in calculations. This makes it a very powerful

tool for doing various non-perturbative calculations, using Monte Carlo importance sam-

pling on computers, which otherwise may not be possible. The lattice regularization for

QFTs was developed by Kenneth G. Wilson in his seminal work [24] in 1974, where he

presented the lattice as a tool to understand confinement in non-Abelian gauge theories.

The idea to construct QFTs on lattice was also independently proposed by Jan Smit around

1972 and briefly mentioned in his thesis in 1974.

In lattice QFT, one generally works with 4 dimensional Euclidean spacetime, where all

the coordinates are equivalent. The cutoff is the lattice spacing a which is the same in all

4 directions for a hypercubic lattice. The analytic continuation of Euclidean correlation

functions to the Minkowski spacetime requires the Euclidean theory to satisfy the condi-

tions of the Osterwalder-Schrader theorem [26]. The matter fields are put on the lattice

points and as we shall see, the gauge fields on the links between the lattice points. The
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renormalized physics is obtained in the vicinity of a continuous quantum phase transition

in the parameter space of the theory. The general prescription is as follows:

• Write the action S[φ] on an Euclidean lattice where S[φ] is a functional of the fields

φ defined on all spacetime points.

• Quantize the theory using path integral approach where the partition function is given

as Z =
∫
Dφ e−S[φ].

• Find out expectation value of an operator as

〈Ô〉 =
1

Z

∫
Dφ e−S[φ]O. (1.1)

Lattice gauge theory has also been formulated in Hamiltonian approach where time is

continuous and the fields are canonically quantized. We do not discuss Hamiltonian lattice

gauge theory in this thesis.

Since this thesis deals primarily with gauge fields on the lattice, we shall now proceed

with how to define gauge theories on the lattice.

1.1.1 Gauge Fields on the Lattice

One way of introducing gauge fields on the lattice, or in the continuum as well, is to start

with a theory of free matter fields and elevate an internal global symmetry to a local sym-

metry. Accordingly, action for free Dirac fermions in Euclidean continuum is given by,

S =

∫
d4x ψ̄(/∂ +m)ψ , (1.2)
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where /∂ = γµ∂µ is anti-Hermitian with all Dirac matrices γµ taken as Hermitian, as is

common in Euclidean space-time.

In the lattice regularized theory, the action is discretized on a simple hypercubic lattice

as S =
∫

d4xLE → a4
∑

x LE where LE = ψ̄(/∂ + m)ψ is the Euclidean Lagrangian

density and a is the uniform lattice spacing in all directions. The fermionic matter fields are

defined at each lattice point and the continuous spacetime dependence is now replaced by a

discrete spacetime index, ψ(x)→ ψx where in the latter, x = {x0, x1, x2, x3;xi ∈ Z}. For

the discrete spacetime, the derivatives will now be replaced by finite differences. Therefore,

we have forward and backward differences in place of derivatives as follows

(∆f
µψ)(x) =

1

a
(ψx+µ − ψx) =

1

a
(δy,x+µ − δy,x)ψy ,

(∆b
µψ)(x) =

1

a
(ψx − ψx−µ) =

1

a
(δy,x − δy,x−µ)ψy . (1.3)

where µ is a unit vector pointing along any of the four directions. Considering Hermitian

conjugates, we obtain the useful relations

(∆f
µ)† = −∆b

µ , (∆b
µ)† = −∆f

µ . (1.4)

Constructing the new operator

∆s
µ =

1

2
(∆f

µ + ∆b
µ) , (1.5)
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and using Eq. 1.4, we find,

(∆s
µ)† = −∆s

µ , (1.6)

(γµ∆s
µ)† = −γµ∆s

µ . (1.7)

∆s
µ, being anti-Hermitian appears to be a good choice for the lattice action. Note that, we

could have considered different discretizations of the derivatives but they all are expected to

lead to the same physics in the continuum limit, albeit with different discretization effects.

Incorporating all of the above, the lattice regularized action for free fermions can finally

be written as

S = a4
∑
xµ

1

2a
ψ̄xγµ∆s

µψx + a4
∑
x

mψ̄xψx

= a4
∑
xµ

1

2a
ψ̄xγµ(ψx+µ − ψx−µ) + a4

∑
x

mψ̄xψx . (1.8)

A very important point to note here is that the above action is actually inadequate, as it

gives rise to the infamous species doubling problem. We will discuss more about this in a

later section and mention ways to avoid it.

Under a global vector transformation in its internal degrees of freedom in the represen-

tation of a unitary group, the fermionic fields ψx transform the same way as in continuum,

ψx → eiθψx , ψ̄x → ψ̄xe
−iθ . (1.9)

When the transformation parameter θ is independent of x, the fermionic Lagrangian in

Eq. 1.8 is invariant under the above transformation. However, the terms of following type
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below are no longer invariant when θ is a function of spacetime,

ψ̄xψx+µ → ψ̄xe
−i (θx−θx+µ)ψx+µ . (1.10)

Requirement of local gauge invariance necessitates introduction of a field which has a

vector index µ and should transform covariantly. Hence, this field should transform under

local gauge transformation as

Uxµ → eiθxUxµe
−iθx+µ , (1.11)

such that the quantity ψ̄xUxµψx+µ is gauge invariant. Uxµ is taken as an element of the

special unitary gauge group as a minimal requirement. Hence, Uxµ can be written in general

as eiAxµ whereAxµ is Hermitian. We will see in a short while that the fieldAxµ is essentially

related to the usual gauge fields in the continuum, thus explaining the notation.

We can now rewrite the action as a locally gauge invariant one. Inserting the Uxµ fields,

to be called from now onwards as gauge “link” variables, the kinetic part of the fermionic

lattice action becomes

a4
∑
xµ

ψ̄x
1

2a
γµ(Uxµψx+µ − U †x−µ,µψx−µ) , (1.12)

where

U †x−µ,µ = Ux,−µ. (1.13)

The action is now invariant under the local gauge transformations. We will see now how

the gauge link fields are related to the continuum field.

Writing Uxµ = eiAxµ = eiagAxµ , where Axµ has a mass dimension, g is the dimension-
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Figure 1.1: The smallest square on a lattice in (µ, ν)-plane indicating the sites and the
directional gauge links between them.

less gauge coupling, we have, for small lattice spacing a,

a4
∑
xµ

ψ̄x
1

2a
γµ((1 + iagAxµ)ψx+µ − (1− iagAx−µ,µ)ψx−µ) (1.14)

= a4
∑
xµ

ψ̄xγµ

(
ψx+µ − ψx−µ

2a
+ ig
Axµψx+µ +Ax−µ,µψx−µ

2

)
(1.15)

a→0−−→
∫

d4x
(
ψ̄(x)γµ∂µψ(x) + igψ̄(x)γµAµ(x)ψ(x)

)
, (1.16)

whereAµ(x) and ψ(x) are the gauge and fermion fields in the continuum respectively. This

shows the relation between the dimensionful algebra-valued gauge fields in the continuum

with the group-valued gauge links on the lattice. The field Uxµ lies on the line joining two

lattice points/sites as shown in Fig. 1.1.

The next step is to construct a gauge-invariant kinetic term for the gauge fields. Writing
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eiθ ≡ gx as an element of the gauge group G, we notice the following transformations

Uxµ → gxUxµg
†
x+µ , (1.17)

Ux+µ,ν → gx+µUx+µ,νg
†
x+µ+ν . (1.18)

It is to be noted that, gauge transformations would be denoted by g and the gauge coupling

by g, throughout this thesis. Now taking a directed product in the counterclockwise direc-

tion for an elementary square in the µν plane of the lattice as shown in Fig. 1.1, we see

that, under a gauge transformation g,

UxµUx+µ,νUx+µ+ν,−µUx+ν,−ν → gxUxµUx+µ,νUx+µ+ν,−µUx+ν,−νg
†
x . (1.19)

Denoting the above quantity as Pxµν , we find that TrPxµν is gauge invariant due to the

cyclic property of trace. When the gauge group G is Abelian, Pxµν itself is invariant.

The object Pxµν is called a plaquette, which is the smallest Wilson loop. Wilson loops

are gauge-invariant traces of directed product of U fields on a closed loop, with arbitrary

shapes and not necessarily in the same plane.

The necessity of the plaquette will soon be evident. Let us work in the Abelian theory

for simplicity. Using Eq. 1.13 and 1.3, we have

Pxµν = UxµUx+µ,νU
†
x+ν,µU

†
x,ν

= exp(iag (Axµ +Ax+µ,ν −Ax+ν,µ −Ax,ν))

= exp(ia2g (∆µAxν −∆νAxµ)) ≡ exp(ia2gFxµν) . (1.20)

Taking the real part of the plaquette which is also equivalent to taking sum of the plaquettes
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in both directions,

RePxµν = Pxµν + P †xµν

= eia
2gFxµν + e−ia

2gFxµν for small a−−−−−−−→
F→F, ∆→∂

2− a4g2F 2
µν(x) +O(a6) . (1.21)

Therefore, in the continuum limit, we have

SW =
1

g2

∑
x, µ<ν

(1− RePxµν)
a→0−−→ 1

4

∫
d4xFµνFµν . (1.22)

This clearly shows that the left hand side (LHS) in Eq. 1.22, the so-called Wilson gauge

action for Abelian case, acts as the kinetic energy term of the gauge fields in the limit of

vanishing lattice spacing.

For non-Abelian gauge theories, the Wilson gauge action is similar to the action in Eq.

1.22, except for the introduction of trace for matrix-valued gauge links, and is given as

SW =
2

g2

∑
x, µ<ν

Re tr (1− Pxµν) . (1.23)

1.1.2 Haar measure

As mentioned in Sec. 1.1, the quantum field theory is studied on the lattice regulator in

the path integral approach in Euclidean spacetime (see Eq. 1.1). The partition function Z

contains all the information about the QFT. The integrand of Z, exp(−S), consists of the

lattice action S of the matter and gauge fields, the construction of which has been discussed

in the previous Sec. 1.1.1. In this section, we discuss the measure of the path integral for

gauge fields.
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In the continuum, the path integral integrates over the gauge fields Aµ(x) from −∞ to

∞. We encounter issues with gauge redundancy which needs to be taken care of by gauge-

fixing. This will be discussed in detail in the next section. On the other hand, we have link

variables Uxµ on the lattice which are gauge group elements. Therefore, integrating over

the gauge link amounts to integrating over the gauge transformation parameters which are

bounded. For example, in U(1) gauge theory, the transformation parameter θ is bounded

between 0 and 2π.

An important requirement for the integration measure for gauge fields is gauge invari-

ance. The partition function should be invariant under a gauge transformation,

Z =

∫
DU e−S[U ] =

∫
DU ′ e−S[U ′] , (1.24)

where a gauge transformation has been shown by U → U ′. The other fields have been

suppressed in the above equation for simplicity. We have already seen in the previous

section that the action is invariant under a gauge transformation, i.e. S[U ] = S[U ′]. This

means that the measure should also be gauge invariant. Since DU is a product of the

measures over all links, each measure dU should be individually gauge invariant.

With appropriate normalization factors and gauge invariant structure, we now introduce

the mathematically well-known Haar measure for SU(N) gauge groups, given by,

dU = c
√

det(g(θ))
N2−1∏
a=0

dθa , (1.25)

where θa are the N2 − 1 gauge group parameters of the SU(N) group. g(θ) is the group
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metric defined by the group invariant distance ds as

ds2 = g(θ)ab dθa dθb . (1.26)

The metric dependent factor in Eq. 1.25 ensures the gauge invariance of the measure.

Explicit expressions are available in [27]. The factor c sets the appropriate normalization,

usually,

∫
dU 1 = 1. (1.27)

This ends our discussion of the measure of the path integral, and also the discussion re-

garding the construction of the lattice QFT.

1.1.3 Fermion doubling problem

We now take a detour to discuss about a very important issue of fermions on the lattice -

the infamous fermion doubling problem. This has remarkable consequences for the con-

struction of chiral gauge theories on the lattice. It was previously mentioned in Sec. 1.1.1,

that the action for a single free fermion in Eq. 1.8 is not correct, as it gives rise to several

species of fermions or doublers. Let us see how this happens.

We repeat the Euclidean lattice action for a single free fermion again for convenience,

S = a4
∑
xµ

1

2a
ψ̄xγµ(ψx+µ − ψx−µ) + a4

∑
x

mψ̄xψx . (1.28)

We now take the Fourier transform of the action usingψx =
∫

d4k eik·xψk, ψ̄x =
∫

d4k e−ik·xψ̄k
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and obtain

S = a4

∫
d4k ψ̄k

(∑
µ

iγµ sin kµa

a
+m

)
ψk , (1.29)

where we have used k·µ ≡ k· aµ̂ = kµa, µ̂ being the unit vector along the µ direction. The

propagator in momentum space now reads as

G(k) =
1

iγµ sin kµa

a
+m

. (1.30)

There is a summation over the repeated indices. Taking m = 0, we find 16 poles for the

fermion propagator at

kµ = PD
µ =



(0, 0, 0, 0) D = 0

(π
a
, 0, 0, 0) and 3 other combinations D = 1, 2, 3, 4

(π
a
, π
a
, 0, 0) and 5 other combinations D = 5, . . . , 10

(π
a
, π
a
, π
a
, 0) and 3 other combinations D = 11, . . . , 14

(π
a
, π
a
, π
a
, π
a
) D = 15

.

As a result, we get 16 fermions on a hypercubic lattice at the vertices of the Brillouin zone

in momentum space.

Near the poles PD
µ shown above, let us define kµ ≡ pµ + PD

µ . Now,

sin akµ = sin apµ cos aPD
µ + cos apµ sin aPD

µ

= sin apµ cos aPD
µ (∵ sin aPD

µ = 0)

= ± sin apµ (∵ cos aPD
µ = ±1) . (1.31)
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Further, define γDµ ≡ cos aPD
µ γµ which is a unitarily equivalent representation i.e. γDµ =

(RD)†γµR
D where RD are unitary matrices. Now, for each D, at finite pµ and a → 0, we

have

lim
a→0

G−1(k) = iγDµ pµ +m , (1.32)

which is similar to the inverse fermion propagator in continuum, except the fact that we

have 16 of them now, in the a→ 0 limit!

Ken Wilson proposed an elegant procedure to tackle the problem of multiple fermions

by adding an extra term to the action. He added a näively irrelevant term of mass dimension

5 (relevant terms have mass dimension < 4) to the action in Eq. 1.28,

SWM ∼ −a
∫

d4x ψ̄(x)∂µ∂µψ(x) , (1.33)

which reads on the lattice as (with a coupling strength r
2
)

SWM = −a5 r

2

∑
xµ

ψ̄x∆
b
µ∆f

µψx

= a4 r

2a

∑
xµ

ψ̄x(2ψx − ψx+µ − ψx−µ) . (1.34)

This is a momentum dependent mass term called the Wilson mass term. It breaks chiral

symmetry (as mass terms always do). Rewriting the full action along with the Wilson term,

we have

SWF = a4
∑
xµ

1

2a
ψ̄xγµ(ψx+µ−ψx−µ)+a4

∑
x

mψ̄xψx+a4 r

2a

∑
xµ

ψ̄x(2ψx−ψx+µ−ψx−µ) .

(1.35)
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Taking the Fourier transform, we find the inverse propagator to be

G−1(k) =
∑
µ

iγµ
sin kµa

a
+m+

r

a

∑
µ

(1− cos kµa) . (1.36)

Now, repeating the previous analysis by setting kµ = pµ +PD
µ and so on, we find at a→ 0

limit,

G(k) =
1

iγDµ pµ +M
, where M = m+

2nr

a
, (1.37)

with

n = 0 for D = 0

n = 1 for D = 1, 2, 3, 4

n = 2 for D = 5, . . . , 10

n = 3 for D = 11, . . . , 14

n = 4 for D = 15 .

As a→ 0, except for D = 0, the fifteen other fermions become infinitely heavy, as a result

they do not propagate and get decoupled. Thus, this method does away with the excess

fermions in a very elegant manner just by adding an irrelevant term to the action. However,

the price one pays is the total loss of chiral symmetry which we discuss later.

1.1.4 Nielsen-Ninomiya theorem

This is a general theorem [2, 3] which considers the symmetries of the lattice fermion ac-

tion and investigates the cause for the appearance of the fermion doublers. Under general

assumptions of locality, Hermiticity and translation invariance, the theorem states that the
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lattice fermion propagator contains an equal number of left-handed and right-handed par-

ticles and the proof is done in the Hamiltonian approach, based on homotopy theory. Fol-

lowing Ref. [28], we present a simple way to only show how fermion doubling occurs with

the lattice Euclidean action. There is a more general proof in Euclidean by Karsten [29].

A general lattice fermion action in the Euclidean momentum space is

S =
∑
k

ψ̄kF (k)ψk , (1.38)

where F (k) is the inverse propagator. We now consider the following properties of the

action:

• Reflection positivity: This is required for the existence of a self-adjoint Hamiltonian.

Under this the ψ fields and F (k) transform as

Θψk0,k = ψ̄−k0,kγ0 , (1.39)

Θψ̄k0,k = γ0ψ−k0,k , (1.40)

Θ
(
ψ̄k0,kF (k)ψk0,k

)
= ψ̄−k0,kγ0F (k)γ0ψ−k0,k . (1.41)

Thus, we must have

F (k) = γ0F
†(−k0,k)γ0 . (1.42)

• Invariance under the cubic group: This comes from the hypercubic symmetry of

the lattice. This is basically the previous condition for the rest of the three directions.
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So, we have

F (k) = γ1F
†(k0,−k1, k2, k3)γ1 (1.43)

= γ2F
†(k0, k1,−k2, k3)γ2 (1.44)

= γ3F
†(k0, k1, k2,−k3)γ3 . (1.45)

• Chiral invariance: For the action to be chirally invariant, we must have

F (k) = eiθγ5F (k)eiθγ5 . (1.46)

For an infinitesimal transformation, this becomes

F (k) = (1 + iθγ5)F (k) (1 + iθγ5) +O
(
θ2
)
, (1.47)

which further leads to

F (k) = −γ5F (k)γ5 . (1.48)

Now we start from (1.48) and use the relations (1.45),(1.44),(1.43) and (1.42) pro-

gressively to arrive at the following relation :

F (k) = −γ0γ1γ2γ3F (k)γ0γ1γ2γ3

= γ0γ1γ2F
†(k0, k1, k2,−k3)γ0γ1γ2

= γ0γ1F (k0, k1,−k2,−k3)γ0γ1

= −γ0F
†(k0,−k1,−k2,−k3)γ0 = −F (−k) . (1.49)
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• Locality: For a theory with local interactions, we obtain the inverse propagator F (k)

to be continuous.

F (k) is a periodic function and all momentum components are obtained modulo 2π/a.

From Eq.(1.49), we see that F (k) has to vanish for every akµ = 0,±π, leading to the 16

poles for the propagator. Both reflection positivity and invariance under cubic group are

desirable conditions for a Euclidean lattice Lagrangian. The former leads to a real action

and the latter to a Lorentz covariant theory in Minkowski spacetime. The only option thus

left is to break the chiral symmetry at least partially to get rid of the excess fermions.

Wilson achieved it by introducing the extra term that destroys chiral symmetry completely.

The issue of chiral symmetry is also related to the chiral anomaly on the lattice. The

lattice regulator creates the extra species of fermions so that individual contributions get

cancelled and the total anomaly is zero. Hence chiral symmetry is to be explicitly broken

in the action to avoid doubling and generate the anomaly. It was shown by Karsten & Smit

in [4] how the fermion doubling problem is deeply related to the chiral anomaly.

This concludes our discussion of some of the basics of lattice gauge theory, tailored

for our needs to be used later in this thesis. These concepts will be important when we

motivate the necessity of gauge-fixing for the construction of lattice chiral gauge theories.

1.2 Gauge-fixing in the continuum

The Euclidean Lagrangian density of U(1) gauge theory or the free part of SU(N) gauge

theory (suppressing group indices) in the continuum is given by

LE =
1

4
FµνFµν =

1

4
(∂µAν − ∂νAµ)2 . (1.50)
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One could näively construct a generating functional for the free theory in the following

manner,

Z[J ] =

∫
DAµ e−

∫
d4x(LE−JlGl)∫

DAµ e−
∫
d4x LE

, (1.51)

where the measure is formally gauge invariant and JlGl is a gauge invariant source term

constructed out of Aµ. But, Eq. 1.51 will not work as we shall see now.

The gauge action can be written, after an integration by parts and dropping the surface

term, as

SE =

∫
d4x

1

2
Aµ (−2 δµν + ∂µ∂ν)︸ ︷︷ ︸

Mµν

Aν . (1.52)

We shall see that the quadratic operator Mµν is not invertible. After taking a Fourier trans-

form, we obtain

Mµν −→ k2δµν − kµkν . (1.53)

Now, let us define two projection operators, PL and PT , which satisfy the usual properties

of projection operators (P 2
L = PL, P 2

T = PT , PLPT = 0, PL + PT = 1),

(PL)µν ≡
kµkν
k2

and (PT )µν ≡ δµν −
kµkν
k2

. (1.54)

The inverse of a linear combination H = aPT + bPL of the above operators is simply

H−1 = a−1PT + b−1PL since PLPT = 0. In our case,

Mµν(k) = k2δµν − kµkν = k2PT + 0·PL. (1.55)

Hence, it is clearly seen that the quadratic operator Mµν is not invertible and thus the free

propagator is undefined.

Another way to understand the non-invertibility of Mµν is that it has zero eigenmodes.
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It can be easily seen in Eq. 1.55 that kµ is an eigenvector with zero eigenvalue. Hence, the

determinant of Mµν is zero and it is non-invertible.

Let us look at it from another perspective. In momentum space, the gauge field A can

be broken into longitudinal and transverse modes as A = (PL + PT )A = AL + AT . The

Lagrangian density is essentially

L ∼ AMA = (AL + AT )k2PT (AL + AT ) = ATk
2AT , (1.56)

clearly showing that L does not depend on the longitudinal part of A.

Moreover, from the gauge transformation of Aµ in the momentum space i.e. Aµ →

A′µ = Aµ + kµθ, it is seen that the transformation only affects the longitudinal part of A

since PTkµ = 0. In path integral formalism, we integrate over both the components of

A, but since L does not depend on AL, integration over the longitudinal direction gives

infinity.

A possible remedy to this problem is to fix the gauge and then quantize. Let us address

the method formally. We want to integrate perpendicular to the gauge orbit. Let w be a

n-dimensional vector, y a m-dimensional vector and z = (w, y) a (n + m)-dimensional

vector. Let S(z) = S(w) i.e., the action depends only on w. The partition function is given

as

Z =

∫
dw e−S[w]

=

∫
dw dy δ[m](y) e−S[w],

where we have chosen to integrate along y = 0. But any y will do since S does not depend
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on y. Accordingly, we have

Z =

∫
dw dy︸ ︷︷ ︸
dz

δ[m](y − ŷ(w)) e−S[w]. (1.57)

The integral can be done along any path in z-plane. This can be achieved through an

implicit condition,

Fk(z) = Fk(w, y) = 0 , where k = 1, . . . ,m. (1.58)

We needm such conditions to fix all y. The function F has to be chosen carefully such that

each value of w gives only one y. Let us assume a unique solution : y = ŷ(w). Expanding

Fk(w, y) about y = ŷ we have

Fk(w, y) = Fk���
��:0

(w, ŷ(w)) +
∑
j

∂Fk
∂yj
|y=ŷ(yj − ŷj(w)) + · · · . (1.59)

Define Rkj ≡ ∂Fk
∂yj
|y=ŷ. Near y = ŷ, we have

F (w, y) = R(y − ŷ(w)), (1.60)

where we have suppressed the vector indices. The delta function δ(m)(y − ŷ(w)) is equal

to δ(m)(F (w, y)) upto a factor, as seen below

δ(m)(F (w, y)) =
near y=ŷ

δ(m)(R(y − ŷ)) =
1

|det R|
δ(m)(y − ŷ),

⇒ δ(m)(y − ŷ) = |det R| δ(m)(F (w, y)). (1.61)

This comes from the relation, δ(m)(MX) = 1
|det M |δ

(m)(X), where M is a m ×m matrix
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M and X is a m-vector.

Hence, the partition function becomes

Z =

∫
dz

∣∣∣∣det
∂F

∂y

∣∣∣∣ δ(m)(F (z)) e−S[w]. (1.62)

This is an important result which we will use now in the case of gauge theory to do gauge-

fixing.

Returning to the gauge theory, we have the following correspondence : z = Aµ(x) and

F (z) = F (Aµ(x)) is the gauge-fixing function. Some examples of F (Aµ(x)) are given

below :

• F (Aµ(x)) = ∂µAµ(x) Landau or Lorentz gauge

• F (Aµ(x)) = ∂iAi(x) Coulomb gauge

• F (Aµ(x)) = A3(x), Axial gauge

• F (Aµ(x)) = A0(x), Temporal gauge

The Lorentz gauge is invariant under Euclidean symmetry and is used to prove the renor-

malizability of the gauge theory. In the Abelian case, all the gauge choices are unique,

whereas in non-Abelian case, we find unique solutions only in perturbation theory, where

the gauge fields are small. For large gauge transformations, it was shown by Gribov [30]

that there are multiple solutions (called Gribov copies) to the gauge-fixing condition in non-

Abelian gauge theories. The gauge-fixing procedure described below does not apply in that

case straightforwardly. It does work if the gauge fields are restricted to the fundamental

domain but it is highly non-trivial to achieve that.
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We now have to calculate the determinant of ∂F/∂y. Let us consider a non-Abelian

gauge transformation g = e−iθ, where θ = θaT a. The T a are the gauge group generators,

which satisfy the Lie algebra, [T a, T b] = ifabcT
c, where the structure constants fabc are

totally antisymmetric in the indices. The generators are normalized as tr(T aT b) = 1
2
δab.

Under such transformations of the gauge fieldAµ = AaµT
a, we have, Aµ → A′µ = gAµg

†+

i(∂µg)g†. For infinitesimal gauge transformation (small θ), we have

δAµ = ∂µθ + i[Aµ, θ] = Dµθ, (1.63)

⇒ δAµ
δθ

= Dµ, (1.64)

where Dab
µ = δab∂µ+fabcA

c
µ, is the covariant derivative in the adjoint representation. Now,

we choose the gauge-fixing function to be, F (x) = ∂µAµ(x) − h(x), where, h(x) is any

given function independent of Aµ. It then follows that

δF

δθ
=

δF

δAµ

δAµ
δθ

= ∂µDµ. (1.65)

Following Eq. 1.62, the generating functional for the free gauge theory in Eq. 1.51,

then becomes

Z[J ] =

∫
DAµ |det ∂µDµ| δ(∂µAµ − h) e−

∫
d4x (LE−JlGl)∫

DAµ |det ∂µDµ| δ(∂µAµ − h′) e−
∫
d4x LE

, (1.66)

where δ(∂µAµ − h) is a functional δ-function which contributes only when ∂µAµ(x) −

h(x) = 0 ∀ x. Since the function h is arbitrary, we can integrate over all such func-

tions with a Gaussian measure, which amounts to multiplying a constant factor to both the
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numerator and denominator of the generating functional :

Z[J ] =

∫
Dh e−

1
2α

∫
d4x h2(x)

∫
DAµ(x) |det ∂µDµ| δ(∂µAµ − h) e−

∫
d4x (LE−JlGl)∫

Dh′ e− 1
2α

∫
d4x h′2(x)

∫
DAµ(x) |det ∂µDµ| δ(∂µAµ − h′) e−

∫
d4x LE

,

(1.67)

where α is an arbitrary real parameter. The h, h′ integration can be done now to obtain,

Z[J ] =

∫
DAµ(x) |det ∂µDµ| e−

∫
d4x (L′E−JlGl)∫

DAµ(x) |det ∂µDµ| , e−
∫
d4x L′E

, (1.68)

where L′E = LE + 1
2α

(∂µAµ)2. At this stage, the effective action is non-local due to the

presence of the determinant factor. Hence, we must find a way to express the generating

functional with a local action.

Since the derivatives ∂µ and Dµ are anti-Hermitian, the determinant of ∂µDµ is real.

Moreover in perturbation theory, where the gauge fields are small, the above determinant

(which depends only on gauge fields) does not change sign. The overall sign of the de-

terminant is immaterial as it gets canceled among the numerator and denominator of Eq.

1.68. Therefore, we can replace the modulus of determinant by just the determinant, in Eq.

1.68, to obtain

Z[J ] =

∫
DAµ det(∂µDµ) e−

∫
d4x (L′E−JlGl)∫

DAµ det(∂µDµ) e−
∫
d4x L′E

. (1.69)

We now introduce two new fields η̄, η in the adjoint representation of the gauge group.

They satisfy the following relations :

{η(x), η̄(y)} = 0 , {η(x), η(y)} = 0. (1.70)
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These are called Grassmann variables. From Berezin rules for integration of Grassmann

variables, we know that

det (∂µDµ) =

∫
Dη Dη̄ e−

∫
d4x η̄ ∂µDµ η. (1.71)

Plugging the above in Eq. 1.69, we obtain the generating functional with an effective local

action,

Z[J ] =

∫
DAµ Dη Dη̄ e−

∫
d4x (L′′E−JlGl)∫

DAµ Dη Dη̄ e−
∫
d4x L′′E

, (1.72)

where L′′E = L′E + η̄(∂µDµ)η. The Grassmann fields η̄ and η are called the Fadeev-Popov

ghosts. They do not have spin indices and they are not physical. The ghosts never appear

as asymptotic states. The effective action together with fermions is now given as

Leff =
1

4
F a
µν F

µνa +
1

2α
(∂µA

a
µ)2 + η̄a(∂µDµ)abηb + ψ̄(/∂ + ig /A

a
T a)ψ. (1.73)

It should be stressed that the Fadeev-Popov gauge-fixing procedure explained above is only

valid in weak coupling perturbation theory because of the reasons stated above.

We shall now consider the U(1) case. Here, the transformation parameter θ is just

a number and not a matrix. From Eqs. 1.63 and 1.65, we have δF/δθ = 2, where 2

is the Laplacian in 4-dimensional Euclidean spacetime. The ghost term now becomes

η̄(∂µ∂µ)η = η̄ 2 η, which does not involve gauge fields. As a result, the ghosts are free

and get decoupled from rest of the theory. Thus, ghosts play no role in Abelian theory.
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Let us now consider the gauge-fixed Lagrangian density for pure U(1) gauge theory,

L′E =
1

4
FµνF

µν +
1

2α
(∂µA

a
µ)2

=
1

2
∂µAν(∂µAν − ∂νAµ) +

1

2α
∂µAµ∂νAν . (1.74)

After integrating by parts, we have for the action

S ′E =

∫
d4x L′E

=
1

2

∫
d4x Aµ(−2δµν + ∂µ∂ν −

1

α
∂µ∂ν)Aµ. (1.75)

In contrast to Eq. 1.53, we now have, in momentum space, Mµν = k2δµν − kµkν +

1
α
kµkν . The Lagrangian now depends also on the longitudinal components of the gauge

field, which stops the path integral from diverging. It also follows that there are no zero

eigenmodes of the quadratic operator M . Rewriting using PL and PT as defined earlier, we

obtain

Mµν = k2PT +
k2

α
PL,

⇒M−1 =
1

k2
PT +

α

k2
PL,

⇒M−1
µν =

1

k2

(
δµν −

kµkν
k2

)
+
α

k2

kµkν
k2

,

=
δµν − (1− α)kµkν

k2

k2
. (1.76)

Hence, we now have a well-defined free propagator after gauge-fixing. The gauge propa-

gator in non-Abelian gauge theories can also be obtained in the above manner, after gauge-

fixing. Thus, we see that gauge-fixing is essential in perturbation theory to obtain a well-
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defined gauge theory. The gauge symmetry is now explicitly broken but the Lagrangian

still remains unchanged under a symmetry, the BRST symmetry.

Introducing an auxiliary field Ba, the gauge-fixed Lagrangian density Leff can now be

written as

Leff =
1

4
F a
µν F

µνa + ψ̄(/∂ + ig /A
a
T a)ψ + η̄a(∂µDµ)abηb +

α

2
BaBa − iBa∂µA

a
µ, (1.77)

which gives back (1.73) after a functional integration of B with the measure DB. This

form, known as the off-shell version, is suitable for demonstrating the BRST symmetry of

the above.

1.2.1 BRST symmetry

In this section, we now discuss the BRST symmetry, introduced by Becchi, Rouet, Stora

[31] and independently by Tyutin [32]. The BRST symmetry arises after gauge-fixing both

the Abelian and non-Abelian gauge theories. However, in case of non-Abelian theories,

it is crucial for proving renormalizability and unitarity. It is important to note that the

above modifications to the theory do not change the physics. Using the generalized Ward

identities for the BRST symmetry, it can be shown that the propagator for the longitudinal

component of the gauge field is free to all orders, i.e. the longitudinal components do

not couple to the physical degrees of frededom. The BRST transformations of the various

fields are shown below, in some detail.

Let us now consider the non-Abelian gauge variations of the gauge and fermion fields,

with a parameter θ = θaT a. As previously mentioned in Eq. 1.63, infinitesimal variation

27



of the gauge field, denoted by δθ, is given by

δθAµ = ∂µθ + i[Aµ, θ] = Dµθ. (1.78)

For the fermion fields, the infintesimal gauge variations are as follows

δψ = −iθψ, δψ̄ = iψ̄θ. (1.79)

After gauge-fixing by the Fadeev-Popov procedure and introduction of ghost and aux-

iliary fields, the gauge symmetry is explicitly broken. However, the action is now exactly

invariant under the BRST symmetry transformations. The Fadeev-Popov gauge-fixed La-

grangian density, along with the auxiliary field B, obtained in Eq. 1.77, is once again given

below,

Leff =
1

4
F a
µν F

µνa + ψ̄(/∂ + ig /A
a
T a)ψ + η̄a(∂µDµ)abηb +

α

2
BaBa − iBa∂µA

a
µ. (1.80)

It is to be noted that the ghost fields η and η̄ are not related to each other.

The Becchi-Rouet-Stora-Tyutin or BRST transformation is now defined as follows:

• the BRST variation δB is Grassmann-valued and hence anti-commutes with other

Grassmann fields (fermions and ghosts).

• the BRST variations of the fermion and the gauge fields remain the same as the in-

finitesimal gauge variations, in Eqs. (1.78) and (1.79), with parameter θa(x) replaced

by ηa(x), a real Grassmann field, which is the Fadeev-Popov ghost field.

• the BRST variation satisfies δ2
B = 0 for all fields, i.e., the transformation is nilpotent

(the nilpotency condition plays a vital role in proving the unitarity of the BRST
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symmetric theory).

Hence, the BRST variations for ψ, ψ̄ and A are given as follows

δBψi = −iηaT aijψj , δBψ̄i = iηaψ̄jT
a
ji , (1.81)

δBA
a
µ = (δab∂µ + fabcA

c
µ)ηb = Dab

µ η
b. (1.82)

Under the above transformations, the gauge-invariant part of the Lagrangian density,

LGI =
1

4
F a
µν F

µνa + ψ̄(/∂ + ig /A
a
T a)ψ, (1.83)

is still invariant under BRST, or in other words,

δBLGI = 0. (1.84)

Taking double BRST variation of the fermion field ψ, we find

δB(δBψi) = δB(−iηaT aijψj)

= −i(δBηa)T aijψj + iηaT aij(−iηbT bjkψk)

= −i
(
δBη

c − 1

2
fabcη

aηb
)
T cijψj. (1.85)

where we have used Eq. 1.81, the anti-commutation of Grassmann-valued δB with η,

and the antisymmetry of the indices in the second term. Using the nilpotency condition

(δ2
B = 0), one can now obtain the BRST variation for the ghost field η, from the above as,

δBη
c =

1

2
fabcη

aηb, or, δBη = −iη2. (1.86)
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As a consistency check, we can now verify the nilpotency condition for gauge fields :

δB
(
δBA

a
µ

)
= δB

[(
δab∂µ + fabcA

c
µ

)
ηb
]

=
(
δab∂µ + fabcA

c
µ

)
δBη

b + fabc
(
δBA

c
µ

)
ηb

= Dab
µ

(
δBη

b
)

+ fabc (∂µη
c) ηb + fabcfcdeA

e
µη

dηb. (1.87)

For the 2nd term in the last line above, we should take only the antisymmetric part of

(∂µη
c) ηb, since fabc is completely antisymmetric :

(
∂µη

[c
)
ηb] =

1

2

[
(∂µη

c) ηb −
(
∂µη

b
)
ηc
]

=
1

2
∂µ
(
ηcηb

)
, (1.88)

where we have used the anti-commuting nature of Grassmann variables. Similarly in the

3rd term, the antisymmetry of ηdηb is used to replace fabcfcde by its antisymmetric part,

which is

1

2
(fabcfcde − fadcfcbe) =

1

2
(fabcfcde + fdacfcbe) = −1

2
fbdcfcae, (1.89)

where the Jacobi identity for the structure constants has been used,

fabcfcde + fdacfcbe + fbdcfcae = 0. (1.90)
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Plugging the above results in Eq. 1.87, we find

δB
(
δBA

a
µ

)
= Dab

µ

(
δBη

b
)

+
1

2
fabc∂µ

(
ηcηb

)
− 1

2
fbdcfcaeA

e
µη

dηb

= Dah
µ

(
δBη

h
)
−
(
δah∂µ + faheAeµ

) 1

2
gf cbhηcηb

= Dah
µ

(
δBη

h − 1

2
f cbhηcηb

)
= 0, (1.91)

where we have used the BRST variation of ghost field η, given in Eq. 1.86. The above

exercise shows that the η variation is consistent with the nilpotency condition. The BRST

transformations for the remaining fields are given as

δB η̄
a = −iBa, (1.92)

δBB
a = 0. (1.93)

All the ghost sector fields, η, η̄ and B, also satisfy the nilpotency condition. For the

auxiliary field B, the nilpotency condition is satisfied trivially and for the η̄ field, it can be

seen easily from Eq. 1.93. The nilpotency condition for the ghost field η can be checked

as,

δB (δBη
c) = δB

(
1

2
fabcη

aηb
)

=
1

2
fabc

[
(δBη

a) ηb − ηa
(
δBη

b
)]

=
1

2
fabc

[
1

2
fdeaη

dηeηb − ηa
(

1

2
fdebη

dηe
)]

=
1

4
fabcη

dηe
[
fdeaη

b − fdebηa
]

= 0, (1.94)

from the antisymmetry of the indices of the structure constants and ghost fields. This
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completes the discussion of the BRST transformation of the fields of the theory. It can now

be finally shown that the gauge-fixed Lagrangian is invariant under the BRST symmetry.

Using Eqs. 1.92,1.82 and 1.93, we see that the Lagrangian density in Eq. 1.80 can be

rewritten as,

L = LGI +
α

2
BaBa − δB

(
η̄a∂µA

a
µ

)
= LGI + δB

(
i
α

2
η̄aBa − η̄a∂µAaµ

)
, (1.95)

which is clearly invariant under BRST transformation using Eqs. 1.84 and the nilpotency

condition.

1.3 Gauge-fixing on the lattice

So far, we have discussed the necessity of gauge fixing in the continuum. For non-perturbative

calculations on a lattice, there is no need for gauge-fixing due to the compact nature of the

gauge fields. The functional integral on a finite lattice is well-defined. Gauge-invariant ob-

servables can be calculated on the lattice without resorting to any particular gauge. How-

ever, gauge-fixing is sometimes done in Lattice Quantum Chromodynamics (LQCD) in-

vestigations to match continuum results, obtained in a particular renormalization scheme,

for e.g. MS. The gauge-fixing in this case is usually done on lattice gauge field configura-

tions by numerically extremizing a functional and not at the level of the action. Hence, we

may refer to such gauge-fixings as non-perturbative retrospective gauge-fixing (NPRGF).

NPRGF is also employed to study gauge non-invariant observables and match results with

continuum done in a particular gauge. For a review of NPRGF and problems therein, the

reader is referred to Ref. [33].
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We shall now discuss the non-perturbative gauge-fixing (NPGF) on the lattice, which

is different from NPRGF in the sense that the gauge-fixing now is done at the level of the

action. Since the Wilsonian lattice formulation is manifestly gauge-invariant and does not

require gauge-fixing, it is an interesting question to ask if NPGF offers a valid alternative

formulation of gauge theories on the lattice. The quest to answer this question is one of the

aims of this thesis. There are some important motivations to study NPGF on the lattice, for

example, the formulation of manifestly local lattice chiral gauge theories (ChLGT).

Before going on to a discussion of ChLGT, it is imperative to point out the role of the

longitudinal gauge degrees of freedom (lgdof s), in lattice gauge theories containing gauge

non-invariant terms. Let us consider a pure gauge action S[U ] with gauge invariant SGI [U ]

and non-invariant SNI [U ] terms. Due to the Haar measure, the functional integral is over

all gauge configurations, including the ones related to each other by gauge transforma-

tions. After a gauge transformation g ∈ G, the partition function Z =
∫
DU exp(−S[U ])

becomes

Z ′ =

∫
DU exp(−SGI [U ]− SNI [gxUxµg†x+µ])

=

∫
DUDφ exp(−SGI [U ]− SNI [φ†xUxµφx+µ]), (1.96)

where we have substituted gx = φ†x and multiplied
∫
Dφ = 1.

Thus, we see that the lgdofs become explicitly present in the gauge non-invariant terms

of the action, involving physical degrees of freedom, and thereby, interact with the physical

degrees of freedom. Without gauge-fixing, this interaction is strong irrespective of the

strength of the usual gauge coupling. The reason is that the lgdof s are random fields in the

absence of any gauge-fixing term and any point on the gauge orbit is as likely as any other.

This essentially makes the gauge fields very rough. The lgdof s now act as gauge-group
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valued scalar φ fields which are radially frozen. Depending on the target renormalized

theory, we may want to decouple them in the continuum limit.

1.3.1 Chiral lattice gauge theory

The construction of chiral gauge theories on the lattice (ChLGT) is a long-standing problem

with several difficulties. As discussed in Sec. 1.1.4, the Nielsen-Ninomiya theorem and the

chiral anomaly pose severe constraints for realizing chiral symmetry on the lattice. In order

to avoid the doublers, one has to introduce terms in the action which explicitly break the

chiral symmetry. For a vector-like theory, therefore, the global chiral symmetry is explicitly

broken on the lattice. However, it does not pose much of a problem as it is expected to be

restored in the continuum limit. On the other hand, if we try to gauge the chiral symmetry,

we no longer have gauge invariance.

When we construct chiral gauge theory using manifestly local lattice fermions like the

Wilson fermions, there are gauge non-invariant terms in the lattice action (see Sec. 1.1.3).

As we have seen just in the section above, the lgdof s appear in the gauge non-invariant

terms which thereby, couple to the fermions. This interaction is generally strong leading

to fermion-scalar bound states and the chiral nature of the fermion spectrum is spoiled.

Since the coupling of the lgdof s and fermions is non-perturbative, the lgdof s and their

interactions survive even at small gauge couplings towards the continuum limit. This has

led to the failure of a wide class of manifestly local ChLGT proposals [5, 6, 34–39]. It

should be noted that changing the lattice fermion prescription cannot solve the problem.

A way to address the above problem is to control the dynamics of the unphysical de-

grees of freedom. This amounts to adding a kinetic term for the lgdof s or in other words,

gauge-fixing. Addition of a gauge-fixing term enlarges the parameter space of the theory,
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something that may give rise to a critical point, the continuum limit around which gives us

the desired ChLGT, with the unphysical φ modes (defined in Eq. 1.96) hopefully decou-

pling from the physical spectrum. A renormalizable gauge is required to obtain counter

terms, if necessary, through usual power-counting and Slavnov-Taylor identities can be

used to tune parameters to restore BRST invariance. This approach was first tried in the

context of lattice perturbation theory in [40]. For reviews on the gauge-fixing approach to

ChLGT, the reader is referred to [41, 42].

A different approach of constructing ChLGT is by going around the Nielsen-Ninomiya

theorem, by modifying the definition of chiral symmetry on the lattice. Using fermions

which satisfy the Ginsparg-Wilson relation [7], the modified chiral symmetry is then an

exact symmetry of the action. However, the fermion measure is gauge link-dependent and

leads to an integrability condition on the space of lattice gauge fields. An exact solution

to the integrability condition was obtained in the Abelian case [8]. However, for the non-

Abelian case, no non-perturbative solution is known. A solution was obtained only in

perturbation theory which requires infinite number of irrelevant counter-terms [43]. For a

review, see [44].

We end this part with the comment that it appears to be crucial to control the lgdof s

through gauge-fixing in order to construct manifestly local formulations of ChLGT. How-

ever, one faces some difficulties while trying to do NPGF on the lattice, which we discuss

in the following sections.

1.3.2 Neuberger’s No-Go Theorem

Let us proceed to gauge-fix the lattice gauge action in the BRST scheme, as discussed in

Sec. 1.2. The first step is to multiply the path integral by the gauge-fixing partition function
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Zgf . After gauge fixing, the partition function becomes

Z =

∫
DΞ e−SGIe−SGF , (1.97)

where SGI is the gauge-invariant and SGF is the non-invariant gauge fixing part of the

Fadeev-Popov gauge-fixed action. The new integration measure DΞ = DU DB Dη Dη̄ is

a BRST invariant one. The expectation value of a gauge invariant operator now becomes

< O >=
1

Z

∫
DΞ e−SGIe−SGF O. (1.98)

Being gauge invariant, the operator which contains only physical fields is also BRST invari-

ant. Therefore the full integrand is BRST invariant. The above expectation value should be

equal to the one obtained in the theory without gauge-fixing.

Let us now investigate the new expectation value carefully. From the Fadeev-Popov

gauge-fixed action in Eq. 1.95, the gauge-fixing part SGF can be written as

SGF =
∑
x

[α
2
Ba
xB

a
x − δB (η̄axF

a(Ux))
]
, (1.99)

where F (U) is any gauge-fixing function. Let us define the following

SGF (t) ≡
∑
x

[α
2
BaBa − tδB (η̄aF a)

]
, (1.100)

FO(t) ≡
∫
DΞ e−SGIe−SGF (t)O, (1.101)
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the latter being equal to the numerator of (1.98) when t = 1. Now,

dFO
dt

=

∫
DΞ

[∑
x

δB(η̄F )

]
e−SGIe−SGFO

=

∫
DΞ δB

[
(
∑
x

η̄F )e−SGIe−SGFO

]

= 0, (1.102)

because the integration of a total BRST variation is zero. It is remarked here that, if the B2

term were multiplied by t, the above proof would not have gone through, as the t = 0 limit

is ill-defined due to the divergent B integral in that case.

On the other hand, FO(0) = 0 since
∫
DΞ e−SGF = 0 by rules of Grassmann integra-

tion, as the integrand is devoid of Grassmann variables for t = 0 (
∫
dη α = 0, where α is

a real number and
∫
dη η = 1). By (1.102), we then have FO(1) = 0. Similarly we can

show that Z(1) = 0. To our dismay, < O > takes the indeterminate 0
0

form. This is the

Neuberger’s no-go theorem [1].

The existence of Gribov copies is connected to the no-go theorem. It has been shown in

Ref. [1], that the Gribov copies are always present in even numbers resulting in alternating

signs for the contributions of the functional integrals. Thus, BRST symmetry then ensures

that the contribution to the functional integration with alternating signs cancel with each

other, giving rise to the indeterminate 0
0

form.

1.3.3 Lattice Gribov copies

For U(1) gauge theory in the continuum, the gauge fixing term is SGF = 1
2α

(∂µAµ)2. We

aim to construct a lattice gauge-fixing term SLGF which in the continuum limit should go to
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SGF . Following the discussion in Ref. [25], let us construct a simple gauge-fixing term as

Snäive
GF =

1

2α

∑
x

(∑
µ

(Axµ − Ax−µ,µ)

)2

=
1

2α

∑
x

(∑
µ

∆b
µAxµ

)2

, (1.103)

where Axµ = 1
2i

(
Uxµ − U †xµ

)
= Im(Uxµ). So, the gauge fixing condition is

∑
µ

(Axµ − Ax−µ,µ) = 0. (1.104)

The above condition is satisfied by Uxµ = 1 but this not the only solution. For example, let

us make a gauge transformation

gx = −1 for x = x0,

= 1 for x 6= x0.

This keeps all the gauge fields intact except taking the links touching x0 i.e. Ux0µ → −Ux0µ

and Ux0−µ,µ → −Ux0−µ,µ. This is clearly another solution to the gauge-fixing condition.

These dense set of solutions are called lattice Gribov copies. These have no counterpart

in the continuum and leads to deviations from the expected results. Thinking in terms of

perturbative expansion, no unique expansion is possible due to the presence of multiple

minima. So the näive discretization leads to trouble. One should, therefore, devise a non-

perturbative gauge-fixing mechanism on the lattice in such a manner, that it evades both

the no-go theorem and the occurrence of lattice Gribov copies.

The main goal of this thesis is to study different non-perturbative gauge-fixing schemes

for both Abelian and non-Abelian gauge theories on the lattice.
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CHAPTER 2

NUMERICAL TECHNIQUES

Lattice gauge theory highly makes use of computers to obtain results that are otherwise

impossible to obtain analytically. This requires the development and use of efficient al-

gorithms to calculate observables on the computer. The use of numerical methods and

computational facilities have reached such a level that there is now a devoted lattice gauge

community working together with applied mathematicians and computer scientists in order

to develop cutting-edge algorithms and state-of-the-art machines. For a review of the latest

developments, the reader is referred to Lattice 2018 plenary talk by Meifeng Lin.

In lattice gauge theory, one usually calculates an observable by calculating the path

integral as shown in Eq. 1.1. As discussed in the previous chapter, the path integral on the

lattice is a large integral over all the possible configurations of the finite number of degrees

of freedom on a finite volume. The path integral can be approximately calculated to a high

precision using Monte Carlo importance sampling methods. The Monte Carlo method

basically generates ensembles of the degrees of freedom with a probability distribution.

The measurement of an observable is now done over N number of ensembles and the
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statistical error associated with the mean value is O(1/
√
N). For a detailed introduction to

numerical techniques on the lattice, the reader is referred to the book [27]. Our work was

done using the following Monte Carlo updation algorithms - Multihit Metropolis, Hybrid

Monte Carlo (HMC) and Stochastic Tunneling HMC. These are discussed briefly in the

following sections.

2.1 Multihit Metropolis

The Multihit Metropolis is an extension of the Metropolis algorithm, which is generally

regarded as the “mother of Monte Carlo algorithms”. The Metropolis algorithm is widely

known and in this section, we briefly mention the steps in the context of lattice gauge

theories. The algorithm basically gives a prescription to generate gauge field configurations

with the probability distribution exp(−S[U ]), where S[U ] is the Euclidean lattice gauge

action. The steps of the algorithm are as follows :

1. A gauge link Uxµ at a lattice site x and direction µ is selected randomly or in some

order. A new gauge link U ′xµ is generated by a symmetric selection probability

T (U |U ′) = T (U ′|U).

2. The change in the action ∆S, associated with introducing the new link, is calcu-

lated. The new link U ′xµ is accepted if exp(−∆S) > r, where r is a random number

uniformly distributed in [0, 1). It is rejected otherwise.

3. The above steps are repeated for other sites and directions till the whole lattice has

been updated. The updation of all the links is called a sweep. After each sweep, we

obtain a new configuration over which the observables are measured.
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In practice, the calculation of the sum of staples, required for computing the change

in action ∆S (in step 2 above) for the Wilson gauge action S, is computationally costly.

Hence, it is economical to update a link several times keeping the sum of staples fixed

before moving on to another link. This is an implementation of the so-called Multihit

Metropolis (MM) algorithm for gauge theories. The number of updates or hits at each

site at a time is a tunable parameter. In the limit of infinite number of hits, the MM is

theoretically equivalent to the Heat-bath algorithm.

It is important to note that both the Metropolis and the MM are local algorithms which

update each link individually and therefore, may not be suitable for action densities which

extend several sites beyond nearest neighbors.

2.2 Hybrid Monte Carlo

The Hybrid Monte Carlo (HMC) [45] is perhaps the most popular algorithm to study lat-

tice gauge theories with fermion and gauge fields. The HMC is called “hybrid” since it

combines different algorithms together to make an exact algorithm.

The Molecular Dynamics (MD) algorithm [46–48] is used to update the gauge fields.

A fictitious quadratic momentum term is added to the action S[U ] to give it a look of a

“Hamiltonian” H[U, π] = S[U ] + π2/2 that would evolve the system in ”computer time”.

The conjugate momenta π are initialized by a Gaussian heat bath method. The gauge fields

U and the momenta π are then updated in a MD trajectory by numerically solving the

Hamilton’s equations of motion in discrete steps of the computer time.

The discretization errors arising at the end of the MD trajectory are exactly corrected by

the Metropolis Monte Carlo accept/reject step. This requires the MD trajectory to satisfy

time-reversibility and conservation of the phase space volume. The common choice for the
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numerical method, satisfying the above conditions, is the Störmer-Verlet method, better

known as Leapfrog method. The above steps satisfy the detailed balance condition and

constitute the HMC algorithm for gauge fields. HMC is a global algorithm in the sense

that all degrees of freedom are updated at the Metropolis accept/reject step after a MD

trajectory. A priori this appears better suited for theories with complicated interactions and

action densities spread over more than the nearest neighbors.

The updation of Grassmann-valued fermion fields is incorporated in HMC, using the

pseudofermion method. The Grassmann integration can be done analytically to obtain the

fermion determinant, which can be further converted exactly into an integral representation

with complex-valued scalar fields, known as “pseudofermions”, which have the same num-

ber of degrees of freedom as fermions. The pseudofermions are then updated in a Gaussian

heat bath method. It is to be noted that this method is only applicable for a single fermion

if the fermion determinant is real and positive or for even number of mass-degenerate

fermions with real determinants.

The Hamiltonian for a theory with two mass-degenerate fermions and gauge fields, is

thus

H = S[U,ϕ] +
1

2

∑
xµ

tr(πxµ)2, (2.1)

where S[U, φ] = SW [U ] − ϕ†(DD†)−1ϕ is the effective action, with ϕ being the pseud-

ofermion field, D being the Dirac operator matrix and SW the usual Wilson plaquette

action. π is the fictitious momentum conjugate to gauge fields. The steps of the HMC

algorithm for a single MD trajectory, using leapfrog discretization of the MD trajectories,

are as follows :-

1. Pseudofermions : Define χ = D−1ϕ. This makes exp(−ϕ†(DD†)−1ϕ) = exp(−χ†χ).
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The χ fields are now generated by a Gaussian distribution and the pseudofermion

field is extracted as ϕ = Dχ. The matrix D is obtained from the initial gauge field

configuration U0. The ϕ fields are held fixed for a given MD trajectory.

2. Conjugate momenta : The initial conjugate momenta fields π0 are generated ac-

cording to the Gaussian distribution exp(−π2).

3. Initial half step : The initial Hamiltonian Hi is now computed with the previous

field configuration and the momentum generated in the above step. The gauge fields

are now updated half-step (ε being the step size), using the initial momentum and

gauge configuration.

(Uxµ) 1
2

= exp ((ε/2)(iπxµ)0) (Uxµ)0.

4. Intermediate steps :

Full step updates then follow for k = 1, . . . , n − 1 for both the gauge fields and the

momenta in a leapfrog manner, where n is the total number of steps, in the following

way:

(iπxµ)k = (iπxµ)k−1 − εFxµ[U,ϕ]
∣∣∣
U
k− 1

2

, (Uxµ)k+ 1
2

= exp (ε(iπxµ)k) (Uxµ)k− 1
2
.

F [U,ϕ] is the derivative of the Hamiltonian with respect to the gauge link U , or in

other words, the gauge field force term.

5. Final half step :

(iπxµ)n = (iπxµ)n−1−εFxµ[U,ϕ]
∣∣∣
U
n− 1

2

, (Uxµ)n = exp ((ε/2)(iπxµ)n) (Uxµ)n− 1
2
.

6. Accept/Reject step : The final Hamiltonian Hf at the end of the MD trajectory

is now calculated with the updated gauge and momentum field configuration. The

updated configuration is now accepted or rejected depending upon ∆H = Hf −Hi,

as is done for Metropolis algorithm.
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The force F , which is calculated during each step in a MD trajectory, has a term pro-

portional to the inverse of DD†, the computation of which is the most time-consuming part

of HMC. Different Krylov space solvers, like Conjugate Gradient (CG), Minimal Residue,

etc., are used to achieve this inversion iteratively.An important point to note that is the MD

step size ε and the number of steps can be tuned to control the acceptance rates of the

algorithm. Smaller step sizes and number of steps make the system move slowly in the

configuration space with HMC time, resulting in higher acceptance but larger autocorre-

lations. On the other hand, the system changes too much with larger steps and step sizes,

contributing to poor acceptance rates.

We have used the HMC algorithm extensively throughout this work for both the higher-

derivative (HD) gauge-fixing of the pure U(1) theory and also for the equivariantly gauge-

fixed pure SU(2) theory with ghost fields in the SU(2)/U(1) coset. More details will

be provided at the later chapters for the implementation of the HMC algorithm for these

theories. However, it may be pointed out here that, the ghosts are treated very much like

the fermions as discussed here, except that they are replaced by real-valued scalar fields, to

be called pseudoghosts, with the same internal degrees of freedom as the original ghosts.

2.3 Stochastic Tunneling HMC

Originally proposed by Golterman and Shamir [22] in the context of overlap and domain-

wall fermions, the Tunneling Hybrid Monte Carlo (THMC) is a modification of the HMC

algorithm, to improve its ergodicity in situations where near-zero eigenmodes are present

in the fermion probability weight. As we have mentioned in the previous section, the force

term involves the inverse of the fermion matrix & therefore, near-zero eigenvalues of the

matrix result in blowing up of the force. This leads to poor acceptance, ultimately bringing
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the updation process to a standstill. The exact zero eigenvalues, therefore, act as infinite

barriers in the configuration space. Hence, HMC cannot scan the entire configuration space

properly resulting in poor ergodicity.

The THMC algorithm proposes to factorize the fermion determinant in such a manner

that the near-zero eigenmodes are separated out. The MD evolution then occurs with a

different Hamiltonian HMD, whereas the original Hamiltonian is

H = HMD +Hcorr . (2.2)

The correction term Hcorr, which consists of the contribution from the near-zero modes, is

kept out of the MD evolution. This allows the system to tunnel across the infinite barriers

without encountering difficulties. The error arising due to the exclusion Hcorr, is corrected

by considering the total Hamiltonian H in the accept/reject step.

In [22], the authors put forward both deterministic and stochastic implementations of

THMC. The deterministic approach is computationally expensive, whereas the stochastic

one is a more economical implementation. We have used a modified1 stochastic implemen-

tation of THMC (sTHMC), which we will discuss explicitly for our system, later in Sec.

5.6.2.

1Suggested by the authors of [22], through private correspondence.
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CHAPTER 3

NON-PERTURBATIVE GAUGE-FIXING OF

COMPACT U(1) LATTICE GAUGE THEORY

3.1 Introduction

As motivated in Chapter 1, although the lattice gauge formulation in the Wilson framework

does not require gauge-fixing, there are situations where it is necessary to control the un-

physical longitudinal gauge degrees of freedom (lgdof s). Since we have seen that fermions

on the discrete lattice necessarily break chiral symmetry, [2–4,7], the formulation of lattice

chiral gauge theories in the Wilson approach1 (without gauge-fixing) necessarily means

strong coupling between the physical degrees of freedom and the lgdofs. The rough gauge

problem and the undesired presence of lgdofs led to the failure of a full class of manifestly

local lattice chiral gauge theories [34–37]. These failures gave rise to the understanding

1 In a different approach of constructing lattice chiral gauge theory, the chiral symmetry on lattice is
modified according to the Ginsparg-Wilson relation [7].
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that controlling the dynamics of lgdofs in these theories (in other words, gauge-fixing) is

essential to avoid undesirable results. A general gauge-fixing scheme for compact gauge

fields associated with the lattice link fields, applicable at all strengths of the interaction

including non-perturbative values, is thus very welcome.

However, the BRST scheme (discussed in Sec. 1.2.1), a standard mechanism for taking

care of the redundancy related to the lgdofs, cannot be used in this general non-perturbative

case with compact gauge fields. This is due to the No-Go theorem by Neuberger discussed

in Sec. 1.3.2.

For the general non-Abelian case, the above theorem can be evaded by employing an

equivariant BRST (eBRST) formalism [17,18] where gauge-fixing is done only in the coset

space, leaving minimally a Cartan subgroup gauge-invariant. This is the topic of our study

in this thesis in Chapter 5. This may be taken as a viable alternate non-perturbative scheme

for defining a non-Abelian gauge theory.

Due to the no-go theorem, any BRST-type symmetry cannot also be maintained for the

Abelian theory. As shown in Sec. 1.3.3, a naive lattice transcription of a covariant gauge

fixing term results disastrously in a dense set of lattice Gribov copies. To overcome this

issue, Shamir and Golterman [9, 25] proposed to add, to the standard Wilson lattice gauge

action for the compact U(1) pure gauge case, a higher-derivative (HD) term (involving

physical fields only), breaking gauge invariance explicitly. This term, as a first require-

ment, leads to a covariant gauge fixing term in the naive continuum limit, and, at the same

time, is designed to ensure Uxµ = 1 as a unique absolute minimum for the effective po-

tential, thus avoiding the problem of the lattice Gribov copies and enabling weak-coupling

perturbation theory (WCPT) around the unique vacuum. Counter-terms are possible to

construct because of the emergence of a renormalizable gauge, and are required to restore

gauge symmetry in the continuum limit.
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WCPT analysis and numerical investigations performed earlier [10], only in the weak

gauge coupling region of the above compact Abelian pure gauge theory, confirmed the

existence of a new continuous phase transition between a regular ordered phase and a

spatially modulated ordered phase, for sufficiently large value of the coefficient of the

HD term. At this phase transition, gauge symmetry is restored and the scalar fields (lgdofs)

decouple, leading to the desired emergence of massless free photons only, in the continuum

limit taken from the regular broken phase.

Strong coupling of the lgdof with chiral fermions is what led to the failure of a prevalent

class of non-perturbative chiral gauge theory proposal [5, 6]. With the success of the HD

gauge-fixing model of the compact U(1) lattice gauge theory in decoupling the lgdof, fea-

sibility of manifestly local Abelian chiral gauge theories on lattice was shown for Wilson

fermions [11,12] and also for lattice domain wall fermions [13,14]. It is worth mentioning

here that, in the standard Wilsonian definition of a lattice gauge theory (that is, without

gauge-fixing), the strong coupling of the unphysical lgdof with fermions (or with any phys-

ical degrees of freedom) in a gauge-noninvariant theory like a lattice chiral gauge theory,

is irrespective of the strength of the usual gauge coupling. In fact, almost all studies in this

area have been done in the so-called reduced model (i.e., in the limit of gauge coupling

going to zero) and the basic problems are already present there.

All the success of the HD gauge-fixing approach for the Abelian theory is, so far, mainly

in the reduced limit or in the weak gauge coupling region. The question naturally arises in

a general framework as to what happens when the bare gauge coupling is not necessarily

small. Obviously this question is linked with the issue of short distance behavior of U(1)

gauge theory and possibility of non-trivial physics. A comprehensive knowledge of the HD

gauge-fixing scheme at a broad range of the gauge coupling is also desirable to understand

the phase diagram and possible continuum limits of U(1) chiral gauge theories constructed
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with this gauge-fixing approach.

A first preliminary account in this direction was presented, some time ago, in [49]. The

novel FM-FMD2 transition, that was responsible for the decoupling of the lgdof and the

emergence of the original gauge symmetry, was still found to be present at stronger gauge

couplings, with bare values larger than unity. With large gauge couplings, the FM-FMD

transition was first order for small values of κ̃ (coefficient of the HD gauge-fixing term).

Only at large κ̃, the transition was found to be continuous, with a tricritical point separating

it from the first order transition. However, the nature of the possible continuum limit while

approaching the continuous part of the transition from the FM-side was not studied. As a

result the emerging physics at this transition was not clear.

In this chapter and the next, i.e., Chapter 4, we present results of our investigation

of the HD gauge-fixed compact U(1) lattice gauge theory at strong gauge couplings [15,

16]. In this chapter, in particular, we explore the phase diagram of the above compact

U(1) pure gauge theory with the HD gauge-fixing term and a suitable counter-term, in the

strong gauge coupling region and present only the key findings at one value of strong gauge

coupling (g = 1.3) regarding the nature of the possible continuum limits in that region [15].

A comprehensive account of the strong gauge coupling region, including a discussion of

comparison of algorithms for the HD action [16] is presented in Chapter 4.

The chapter is organized as follows. In Sec. 3.2, the lattice action under investigation

for the compact U(1) gauge theory is presented. The main ideas of the HD gauge fixing

action based on the theory at weak gauge coupling are reviewed. Sec. 3.2 also summarizes

the main results from previous investigations of the theory at weak gauge couplings. Sec.

3.3 presents some of the details of our numerical investigations in the available parameter

2FM and FMD stand respectively for ferromagnetic and ferromagnetic directional phases. The nomen-
clature is derived from the phases of the theory in the so-called reduced limit, i.e., when the gauge coupling
is zero, leaving the theory to be entirely a HD scalar theory.
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space of the action, including the algorithms used in our investigation. The results of

our investigation [15] at g = 1.3 are presented in Sec. 3.4 which identifies the tricritical

point and determines the possible continuum limits. Finally, in Sec. 3.5, we present our

conclusions on the possible continuum physics.

3.2 The Abelian Gauge Fixing Theory on Lattice

In this section, we briefly review the compact U(1) gauge theory with the HD gauge-

fixing term and mention its salient features validated mostly through analytic and numerical

investigations, done earlier, at weak gauge couplings. Detailed accounts are found in [9,

10, 50].

The Euclidean action on a 4-dimensional hypercubic lattice is given by:

S = SW + SGS + Sct. (3.1)

As we shall see in the following, the action S explicitly contains only physical fields

and no ghost fields3. The gauge symmetry of the first term SW is explicitly broken by the

gauge-fixing second term SGS and also by the third term Sct in the above action.

The first term in (3.1), SW, is the gauge-invariant standard Wilson term containing a

summation over all gauge plaquettes Pxµν ,

SW =
1

g2

∑
x, µ<ν

(1− RePxµν) , (3.2)

the plaquette being the smallest Wilson loop around an elementary square at a lattice point

3The compact lattice U(1) gauge fields are self-interacting and in principle the action could include ghost
fields which would then be expected to decouple only in the continuum limit in the standard scenario.
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x on the (µ, ν) plane.

The second term in (3.1), SGS, is the Golterman-Shamir HD gauge-fixing term [9, 25]

and is given by

SGS = κ̃

(∑
xyz

2xy(U)2yz(U)−
∑
x

B2
x

)
, (3.3)

where the gauge-covariant Laplacian 2xy(U) is given by,

2xy(U) =
∑
µ

(δy,x+µUxµ + δy,x−µU
†
x−µ,µ − 2δxy), (3.4)

and,

Bx =
∑
µ

(Ax−µ,µ +Axµ)2/4, with Axµ = ImUxµ. (3.5)

The third term in (3.1), Sct, generally represents a collection of all possible counter-

terms, needed to ensure recovery of gauge symmetry at a desirable continuous phase tran-

sition. The counter-terms are determined by usual power counting which is validated by

the construction of the term SGS leading to a renormalizable (Lorentz covariant) gauge in

the continuum. In principle, Sct contains a dimension-2 gauge field mass counter-term, and

five marginal counter-terms, allowed by the exact lattice symmetries [40]. Three of the five

marginal counter-terms are field renormalization counter-terms for the gauge field, and the

other two counter-terms are to nullify quartic gauge field self-interaction. It has been ar-

gued in [10] that all the marginal counter-terms in this theory can be perturbatively treated.

However, being perturbative, they are not expected to give rise to a new phase transition.
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We consider,

Sct = −κ
∑
xµ

(
Uxµ + U †xµ

)
, (3.6)

which is a dimension-2 mass counter-term, as apparent from expanding the lattice gauge

field Uxµ = exp(iagAµ(x)) for small lattice spacing a. As we shall witness later, the

dimension-2 mass counter-term is the one responsible for the FM-FMD phase transition

giving rise to a new universality class near that transition.

It can be explicitly shown [9] that the action (3.1) with the HD gauge-fixing term has

a unique absolute minimum at Uxµ = 1. In the naive continuum limit (i.e., lattice spacing

a↘ 0 in the action), the HD gauge-fixing term becomes the familiar covariant gauge fixing

term

κ̃g2

∫
d4x(∂µAµ)2 = (1/2ξ)

∫
d4x(∂µAµ)2, (3.7)

where ξ is defined as

ξ = 1/(2κ̃g2). (3.8)

The above considerations validate a weak coupling perturbation theory (WCPT) of the

gauge fixed theory with ξ ∼ 1 around g = 0 and large κ̃→∞.

From Eq. (3.8), it is clear that, to keep κ̃g2 or ξ of O(1), we need to tune κ̃ ↗ ∞

as the gauge coupling g ↘ 0. In practice, for a given gauge coupling g, it needs to be

seen how large the coefficient κ̃ of the HD gauge-fixing term needs to be in order for

the gauge-fixing term to take discernible effect. It can be expected that for weak gauge

couplings, there would be no significant effect of gauge-fixing for very small values of κ̃,
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since the effective coefficient of the gauge-fixing term given in Eq. (3.7) is then really tiny.

With increase of the value of κ̃, but still with weak gauge couplings, gauge fixing can be

expected to take effect, as has been found in investigations. However, what happens at

strong gauge couplings cannot be guessed at all and is a major point of investigation of

this chapter and Chapter 4. Numerical simulations can find out how large κ̃ needs to be for

a given g in order for the gauge-fixing to take effect (to obtain a FM-FMD transition, as

described above).

The theory is defined by the following functional integral for the partition function,

Z =

∫
DU exp(−S[Uxµ]), (3.9)

with S[Uxµ] given by (3.1) and

DU =
∏
xµ

dUxµ, (3.10)

where dUxµ is the gauge invariant Haar measure.

Writing the gauge non-invariant part of the action (3.1) collectively as

SNI[Uxµ] = Sct[Uxµ] + SGS[Uxµ], (3.11)

let us consider a gauge transformation Uxµ → gxUxµg
†
x+µ (gx ∈ U(1)) in the partition
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function (3.9) (remembering that DU and SW are gauge-invariant while SNI[Uxµ] is not),

Z =

∫
DU exp (−SW − SNI[Uxµ]) (3.12)

→
∫
DU exp

(
−SW − SNI[gxUxµg

†
x+µ]

)
(3.13)

=

∫
DgDU exp

(
−SW − SNI[gxUxµg

†
x+µ]

)
(3.14)

=

∫
DφDU exp

(
−SW − SNI[φ

†
xUxµφx+µ]

)
, (3.15)

where in the penultimate step, we multiply each side by
∫
Dg =

∏
x

∫
dgx = 1 (normalized

gauge volume at each site), and in the final step, φx ≡ g†x has been used.

As is apparent from the above steps, under a gauge transformation Uxµ → gxUxµg
†
x+µ,

the gauge non-invariant terms pick up the lgdof, and the theory becomes a scalar-gauge

system with SNI[φ
†
xUxµφx+µ].

The action obtained after the gauge transformation (the so-called Higgs picture) in-

volves both the gauge fields and the lgdof which are essentially radially frozen scalar fields

φx.

The mass counter-term (3.6) takes the following form in the Higgs picture:

Sφct = −κ
∑
xµ

(
φ†xUxµφx+µ + φ†x+µU

†
xµφx

)
∼ −κ

∑
φ†2(U)φ, (3.16)

which is the usual kinetic term for the scalar field.

Similarly, the HD gauge-fixing term (3.3) becomes, in the Higgs picture,

SφGS = κ̃
(∑

φ†22(U)φ−
∑
B2
)
, (3.17)
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where,

Bx =
∑
µ

(Āx−µ,µ + Āxµ)2/4, with Āxµ = Im
(
φ†xUxµφx+µ

)
. (3.18)

The total action, in the Higgs picture, thus assumes the form:

Sφ = SW + SφGS + Sφct (3.19)

where the standard Wilson term SW is gauge invariant and hence does not pick up the lgdof

when the functional integral integrates along the gauge orbit.

The gauge invariance as found in the standard Wilson term SW alone is the target sym-

metry under the gauge transformations:

Uxµ → gxUxµg
†
x+µ, gx ∈ U(1) (3.20)

However, the total action (3.19) in the Higgs picture has enlarged, unphysical symmetry

under the transformations

Uxµ → hxUxµh
†
x+µ, φx → hxφx, hx ∈ U(1). (3.21)

We would call the local symmetries given by (3.20) and (3.21) respectively as the g-

symmetry (target physical symmetry) and the h-symmetry.

Putting φx = 1 in the expression for the action Sφ in the Higgs picture (3.19) recovers

the action (3.1), called the action in the vector picture. Given the Haar measure (3.10) of

the functional integrals, theories given by the two actions (3.1) and (3.19) are completely

equivalent.
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With vanishing κ̃, the theory approaches an Abelian gauge-Higgs system.

With zero gauge coupling g = 0, we have Uxµ = 1 for all the links of the lattice. This

is known as the reduced limit. The reduced model is defined by the functional integral,

Zred =

∫
Dφ exp (−S[φ]), (3.22)

with,

S[φ] = −κ
∑
x

φ†x (2φ)x + κ̃
∑
x

{
φ†x
(
22φ

)
x
− b2

x

}
, (3.23)

where bx is the appropriate modification of Bx of Eq. (3.18) with Uxµ = 1.

The reduced model action is invariant under the global transformations

φx → hφx, (3.24)

where h ∈ U(1)global is independent of the lattice site.

At κ̃ = 0, the reduced model is just the radially frozen scalar field theory in 4 di-

mensions with U(1) global symmetry. This is also known as the XY model, or as the

non-linear sigma model with global U(1) symmetry, in 4 dimensions. The phase diagram

of this theory is well known. At large κ, the system is frozen, i.e., |〈φx〉| = 1 with per-

fect ferromagnetic (FM) ordering. As κ is lowered, due to quantum fluctuations, there is

a continuous phase transition of the system at κ = κFM−PM = 0.15 (numerically deter-

mined) into a paramagnetic (PM) phase where |〈φx〉| = 0. Because of the symmetry under

κ → −κ and φx → φst
x where φst

x = (−1)
∑
µ xµφx, there is also a continuous transition

from the PM phase to an anti-ferromagnetic (AM) phase at κ = −κPM−AM = −0.15.

At non-zero κ̃, the reduced model is still symmetric under κ→ −κ− 32κ̃, κ̃→ κ̃, and

56



φx → φst
x . At small κ̃, it is reasonable to expect the phase structure to remain similar to that

at κ̃ = 0 with continuous FM-PM and PM-AM phase transitions, except that κFM−PM and

κPM−AM would now depend on the value of κ̃. Analytic and numerical methods [50] yield

results that are consistent with this expectation. As one approaches the FM-PM transition

from the FM-side, the dimensionless vacuum expectation value |〈φx〉| = a|〈Φx〉| = v

decreases (where a and Φ are respectively lattice spacing and scalar field, both in physical

units), and as a result, a radial mode (dimensionful) is developed dynamically and the

unphysical lgdof are manifestly present in the continuum limit as usual scalar fields. In

the reduced limit of lattice chiral gauge theories with fermions that break chiral symmetry

explicitly on the lattice (e.g., Wilson fermions), the scalars couple to the fermions at such

a phase transition through an effective Yukawa coupling and essentially spoil the chiral

nature of the theory. The above is an undesirable outcome, and essentially leads to the

failure of a large class of lattice chiral gauge theory proposals [5, 6]. If a lattice chiral

gauge theory fails to produce chiral spectrum in the reduced limit, there is no hope in the

full theory (g 6= 0 ) with the physical gauge fields back in the action.

The key idea of the non-perturbative gauge fixing proposal for the Abelian case (with

the transverse gauge fields in the action) is to give rise to a new universality class where

the unphysical degrees of freedom (lgdof) would decouple from the physical degrees of

freedom in the continuum limit. From the development so far, it appears that the large

κ̃-region is the place to look for such a possibility. For the lgdof to decouple from the

physical sector, the desired new universality class in the large κ̃ region is to be identified

with restoration of the original (target) g-symmetry (3.20). As has been found by WCPT

around g = 0 and large κ̃, and by doing numerical simulations at weak gauge couplings

[10], this happens at the FM-FMD transition and the spectrum of the continuum theory,

achieved by approaching the FM-FMD transition from the FM-side, contains only free
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massless photons.

Following [9], we can gain useful insight into the phase diagram in the region of small

g and large κ̃ by doing a simple-minded calculation. We start from the action (3.1) in the

so-called vector picture, and use the property that the action has an absolute minimum at

Uxµ = exp (iagAµ(x)) = 1. Near this point, the action can be expanded in powers g in the

constant field approximation, i.e., by neglecting derivatives of the gauge field. This leads

to an expression for a classical potential density in powers of the gauge coupling g:

Vcl(Aµ) = κ

(
g2
∑
µ

A2
µ + ...

)
+
g6

2
κ̃

{(∑
µ

A2
µ

)(∑
µ

A4
µ

)
+ ...

}
, (3.25)

where terms with higher powers of g2 are indicated by the ellipses. The classical potential

density is expected to be a reasonable approximation at small g. However, as it turns out

from numerical simulations, the classical potential density (3.25) produces a good qualita-

tive picture of the new universality class in regions of the parameter space where the gauge

coupling g is not very small and κ̃ is only sufficiently large, depending on the value of g.

Inspection of the expression for Vcl (3.25) immediately leads to a critical surface defined

by

κ ≡ κFM−FMD(g, κ̃) = 0, (3.26)

where the gauge boson (photon) is rendered massless.

Minimization of Vcl (3.25) with respect to gAµ shows that the classical potential density

has two different minima at gAµ = 0 for κ ≥ κFM−FMD, and at gAµ = ±
(
|κ−κFM−FMD|

6κ̃

)1/4

for κ < κFM−FMD. Hence, in the quantum theory at small g and large κ̃, it is expected that

tuning κ to κFM−FMD(g, κ̃) signals a new continuous phase transition, within the broken

58



phase, with a vector condensate as an order parameter:

〈gAµ〉 = ±
(
|κ− κFM−FMD|

6κ̃

)1/4

, ∀µ for κ < κFM−FMD (3.27)

〈gAµ〉 = 0, ∀µ for κ ≥ κFM−FMD (3.28)

The phase with the vector condensate is the novel phase and is called Ferromagnetic Di-

rectional (FMD) phase across all versions of the theory, including the theory in the reduced

limit. Obviously the FMD phase breaks the rotational symmetry, and no Lorentz covariant

continuum limit is obtainable from within the FMD phase. Hence, continuum limit is to be

taken by approaching the continuous FM-FMD transition from the so-called Ferromagnetic

(FM) phase.

Earlier investigations done in [10, 50] at weak gauge couplings are consistent with the

above picture. For weak couplings, these studies confirmed a phase diagram with generic

features as given in Fig. 3.1. The nomenclature of the phases in this theory has been taken

as per the phases in the so-called reduced model [10]. The regular broken phase, FM (with

ferromagnetic order) is characterized by a massive photon and a massive scalar, the PM

(for paramagnetic) phase is the disordered (symmetric) phase having massless photons, and

finally the new FMD (ferromagnetic-directional) phase is the spatially modulated ordered

phase that breaks Euclidean rotational symmetry (there is also an anti-ferromagnetic or

AM phase with staggered order, not to be discussed further in this study). Photon and

scalar masses scale by approaching the continuous FM-PM transition from the FM phase,

leading to a continuum gauge-Higgs theory. A sufficiently large κ̃ (and small g) ensures a

satisfactory continuum limit with only the photon mass scaling (thereby recovering gauge

symmetry and decoupling the scalars) at the FM-FMD phase transition by tuning a single

parameter κ from the FM side.
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Figure 3.1: Schematic phase diagram in the (κ̃, κ) plane at a given weak gauge coupling
(g < 1).

Given the above that this new formulation of a compact U(1) gauge theory on lattice

produces a correct continuum limit for weak gauge couplings, it is certainly worthwhile

to ask about the nature of a continuum limit, if at all, for strong gauge couplings and

also explore the possibilities of a non-trivial theory. The strong coupling region was first

explored in [49,51] with speculations of a few novel features. In this chapter, a completely

independent and new investigation, a more careful and precise exercise has been carried

out employing new methods (see Sec. 3.3 below). As a result, a clear picture of the phase

diagram of the theory at strong gauge couplings has emerged. In the following, we present

some of the key findings, principal among them is the existence of FM-FMD transition

even at a strong gauge coupling, and a tricritical point on this transition.

3.3 Numerical simulations

Multihit Metropolis, a local update algorithm that was used in all previous numerical inves-

tigations of the theory (e.g. [10,49,51]), was discarded for the current work because at large

g it produced results unstable against variation of the number of hits and also the particular
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order the lattice was swept. This is understandable, since with such a HD action density,

spread over quite a few lattice sites, a local algorithm is bound to struggle, especially at

large κ̃ (at strong gauge couplings, the FM-FMD transition is obtained at larger κ̃). In this

chapter, we present results of numerical simulation done with Hybrid Monte Carlo (HMC),

a global algorithm, and this marks a major difference with our previous work [49, 51] and

produces new, reliable and numerically stable results at strong gauge couplings so that we

now have a better understanding of the possible continuum limit at the FM-FMD transition

at strong gauge couplings. A more detailed discussion and comparison of performance of

the MM and the HMC algorithms, including a brief discussion on the implementation of

the force terms in the Molecular Dynamics (MD) trajectory of the HMC algorithm, for the

HD gauge-fixing action [16] is presented in Chapter 4.

Numerical simulation was done at gauge couplings g = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6

and 1.8 and also at weaker gauge couplings 0.6 and 0.8 (for comparing with available

results in literature) at a variety of lattice volumes 84, 104, 124, 164, 204, 244, 8324 and

10324 to determine the phase diagrams in the κ − κ̃ plane at each fixed gauge coupling

with κ-scans and κ̃-scans having intervals as fine as ∆κ = 0.001, ∆κ̃ = 0.005 around

the interesting phase transition regions. Each run in the scans typically has 5000 HMC

trajectories for thermalization, and 10000 - 30000 HMC trajectories for measurement. In-

tegrated auto-correlation times were measured and taken into account for error estimates.

Error bars of all data points, wherever not shown explicitly, are smaller than the symbols.

In this chapter we present only a small fraction of our results, namely at one gauge coupling

g = 1.3 on 124, 164, 204 and 8324 lattices. In Chapter 4, in addition, we present results

at gauge couplings g = 0.6, 1.0, 1.1, 1.2, 1.4 and 1.5 and also on 84 and 104 lattices, and

build a comprehensive picture of the phase diagram and the emerging physics for a wide

range of the parameters of the action. As already mentioned, there is also a comparative
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Figure 3.2: (Color online) Phase diagram in the (κ̃, κ) plane at gauge coupling g = 1.3 on
164 lattice.

study of the performance of the MM and the HMC algorithms presented in Chapter 4.

The results presented in this chapter and in Chapter 4 generally have the most statistics.

However, data at gauge coupling g = 0.8 and volumes 10324 and 244, not presented in

these two chapters, while not having the same refinement level as the ones presented here

because of lower statistics, help in some way for double-checking the conclusions made in

this thesis.

Vacuum expectation values of quantities that were measured on equilibrated gauge field

configurations on L4 (or L3T , L 6= T for propagators) lattices, are the average plaquette

EP =
1

6L4

〈∑
x,µ<ν

ReUPµν(x)

〉
, (3.29)

the gauge field mass term

Eκ =
1

4L4

〈∑
x,µ

ReUxµ

〉
, (3.30)
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and the lattice version of the vector condensate 〈Aµ〉

V =

〈√√√√1

4

∑
µ

(
1

L4

∑
x

ImUxµ

)2〉
. (3.31)

The vector condensate V is the order parameter for the FM-FMD transition. It is zero

for all other phases except FMD. For first order FM-FMD transition, the quantity Eκ goes

through a finite jump when plotted against κ. However, for continuous FM-FMD transition,

the finite jump vanishes and Eκ is continuous across the transition.

To locate and determine the order of the phase transitions involving FMD, e.g., FM-

FMD, AM-FMD and PM-FMD, the observables V and Eκ are very useful. To determine

the location on a finite lattice, a suitable criterion has to be set. For all continuous phase

transitions in our investigation, the location with the highest fluctuations in the data is taken

as the approximate position of the phase transition. For all first order transitions, the stan-

dard histogram method, as used by us previously (e.g., look at Fig. 3.3 in Chapter 3), was

employed. The location of the FM-PM and PM-AM phases are harder to determine, stay-

ing within the observables of the theory in the vector picture. However, we find that given

the definition of V strictly as a positive quantity as in (3.31), the increased fluctuations of

the fields around these continuous transitions are captured quite precisely around the phase

transitions by the quantity V even though neither of these phases FM, PM and AM have a

vector condensate. Out of all the phase transitions to be presented in this chapter and the

next, the one of prime importance to us is the FM-FMD, and the location and nature of this

transition including the tricritical points naturally attracted most of our attention.
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In addition, vector propagators

Gµν(p) =
1

g2L3T

〈∑
x, y

ImUxµ ImUyν exp[ip(x− y)]

〉
(3.32)

and effective scalar propagators

Hµν(p) =
1

L3T

〈∑
x, y

ReUxµ ReUyν exp[ip(x− y)]

〉
(3.33)

were computed in momentum space as functions of the allowed momenta p on periodic

lattices of volume L3T with L and T respectively as spatial and temporal extensions. The

operator ReUxµ carries quantum numbers of a scalar field and the expression given in

Eq. (3.33) was used in the past in gauge-Higgs systems to compute Higgs mass [52]. Al-

though we have discussed the operator for the scalar propagator here, the results for this

propagator will be presented in Chapter 4.

No spontaneous chiral symmetry breaking is found in Quantum Electrodynamics (QED).

As a probe for any non-trivial behavior in this gauge-fixed theory, we like to investigate

the chiral condensate at the continuous part of the FM-FMD transition in the strong cou-

pling region. The FM-FMD transition was thus probed with vectorially coupled quenched

Kogut-Susskind fermions having U(1) charge, by measuring the chiral condensate

〈χχ〉m0 =
1

L4

∑
x

〈
M−1

xx

〉
(3.34)

as a function of a vanishing bare fermion mass m0. The fermion matrix M is given by,

Mxy =
1

2

4∑
µ=1

ηµ(x)
(
δy,x+µUxµ − δy,x−µU †x−µ,µ

)
+m0 δx,y, (3.35)
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Figure 3.3: (Color online) Eκ versus κ plot on three different lattice volumes at g = 1.3
and κ̃ = 0.4, showing a first order FM-FMD transition. Inset shows a histogram with a
double peak structure at κ = −1.000.

with ηµ(x) ≡ (−1)x1+...+xµ−1 and η1(x) ≡ 1. Noisy estimator method [53] with four

noise vectors was used to compute the chiral condensate. Anti-periodic boundary con-

ditions were used for the quenched fermions and the fermion matrix M was iteratively

inverted using the standard Conjugate Gradient (CG) inverter. A more modern inverter,

viz., BiCGStab was also tried, with no gains for the number of iterations needed for con-

vergence; however, it had substantial computational overhead compared to CG and hence

not used.

3.4 Results

In Fig. 3.2 we show the phase diagram at a fixed strong coupling g = 1.3 in the κ− κ̃ plane

(with certain criteria, as discussed in the previous section, to determine the transitions on

a finite lattice). Similar phase diagrams were also obtained for g = 1.1, 1.2, 1.3, 1.5.

Contrast the above with that of Fig. 3.1. The FM-FMD phase transition in Fig. 3.1 for
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and κ̃ = 0.5, showing a continuous FM-FMD transition. Inset shows V versus κ plots for
the same parameters.

g < 1 is entirely a continuous transition [10, 49, 51], while for strong g (Fig. 3.2) there is

a tricritical point separating a first order FM-FMD transition from a continuous transition.

Fig. 3.2 shows the tricritical point for g = 1.3 at κ = −0.99 ± 0.01 and κ̃ = 0.45 ± 0.02

for the lattice size 164. The change of location with lattice volumes bigger than 104 is

small. The PM-FMD transition is found to be strongly first order, and ends at a critical end

point [54] where the continuous FM-PM transition terminates at first order transitions. The

first order FM-FMD transition weakens gradually as κ̃ is increased till the tricritical point

where it becomes continuous.

The location of the tricritical point in the κ − κ̃ plane shifts to more negative κ and

also to larger κ̃ with increasing g, evidence to be presented in Chapter 4. It also appears

from our simulation, presented in Chapter 4, that, at a particular gauge coupling g∗ between

g = 1.0 and 1.1, the tricritical point tends to approach the critical end point. For g < g∗,

the FM-FMD transition is fully continuous.

As already remarked, the plots in this chapter are all at g = 1.3.

66



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

<
χ–

χ
>

m0

g = 1.3

κ
~ = 0.40, κ = -0.995

κ
~ = 0.50, κ = -1.010

16
4

12
4

Figure 3.5: (Color online) Quenched chiral condensate in the FM phase near FM-FMD
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Figures 3.3 and 3.4 plot Ek, an observable similar to the entropy for the κ scan. With

increasing volume, Fig. 3.3 shows a more distinct gap at κFM−FMD ∼ −1.00 for κ̃ = 0.4,

while Fig. 3.4 shows no discontinuity at κFM−FMD ∼ −1.01 for κ̃ = 0.5. The inset of

Fig. 3.3 shows a double peaked histogram at the critical κ, confirming the transition to be

first order. The inset of Fig. 3.4 shows the corresponding V versus κ plot illustrating the

FM-FMD transition at κ ∼ −1.01 for κ̃ = 0.5.

To understand the properties of the FM phase around the tricritical point, the region

was further probed with quenched KS fermions. Fig.3.5 shows, for two lattice volumes,

quenched chiral condensates in the FM phase near the FM-FMD transition at κ̃ = 0.4

(where the transition is first order) and at κ̃ = 0.5 (where the transition is continuous).

Extrapolation to zero bare fermion massm0 was done with a phenomenological polynomial

ansatz (keeping upto quadratic terms with five lowest masses fitted) and shows a condensate

consistent with zero on the continuous side of the FM-FMD transition while clearly there is

a non-zero condensate where the transition is first order. As we shall see comprehensively
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in Chapter 4 that the continuous part of the FM-FMD transition is governed by the same

perturbative point as the weak gauge coupling FM-FMD transition, the absence of any

spontaneous chiral symmetry breaking in the continuous part of the FM-FMD transition at

strong gauge coupling is a consistent result. There is a hint of non-zero chiral condensate

as the tricritical point is approached from the FM side. However, confirmation on larger

volumes is required. Probing the universality class of the tricritical point is important

from the point of view of finding any non-trivial short distance property of the U(1) gauge

theory. However, it is outside the scope of the present study. At least, in the context

of the HD gauge-fixed compact (1) lattice gauge theory, we have been able to exclude

almost all regions of the parameter space, except a tricritical point (actually a line, in the 2

dimensional phase diagram, to be seen in Chapter 4), for any possible non-trivial behavior.

68



The inverse of photon propagator (2-point correlator of ImUxµ) in momentum space

was also measured and is plotted against the square of lattice momentum p̂2 (discrete on

a finite box) in Fig. 3.6 for the continuous part of the FM-FMD transition, staying in the

FM phase.4 Inset shows a gradually vanishing photon mass (y-intercept), as κ approaches

κFM−FMD (∼ −1.07) for the given fixed κ̃ (0.6), suggesting an expected scaling of the

photon mass at the transition and recovery of gauge symmetry. The slope of the fitted

straight lines, in the main figure, suggests a field renormalization constant Z that is not

unity. However, the figure shows that the slope increases with increasing κ̃. It seems

reasonable to expect the slope to approach unity at large κ̃, consistent with WCPT at g = 0

or κ̃ = ∞. In addition, the continuous FM-FMD transition line at all strong g is found

in our simulations to be below but roughly parallel to the transition (the dotted line in

Fig.3.2), obtained from 1-loop WCPT in [10]. Of course, the gap between them decreases

as the coupling gets smaller.

3.5 Conclusion

The phase diagram of the compact U(1) pure gauge theory in the non-perturbative gauge-

fixing approach including the HD term and a mass counter-term has turned out to be some-

what more complex in the strong gauge coupling region (g > 1). Numerical simulation is

also more difficult in this region, and local update algorithms struggle, forcing us to use

global update algorithms with some care. However, after the algorithmic issues were sorted

out, a clear picture of the possible continuum limits has emerged which is very relevant for

all the major important issues discussed in Sec. 3.1, e.g., both Abelian and non-Abelian

4It may be mentioned here that the three data lines in the main part of Fig. 3.6 at three κ̃ are each at
a value of κ which is at a fixed small distance away (∆κ = κ − κFM−FMD = 0.03) from the FM-FMD
transition.

69



lattice chiral gauge theories and short distance behavior of U(1) gauge theories.

Existence of the FM-FMD transition at strong gauge couplings is confirmed. Evidence

at gauge coupling g = 1.3 is presented in this chapter. The continuous part of this transi-

tion, away from the tricritical point, appears to produce familiar physics with free massless

photons (and lgdofs decoupled) and zero chiral condensate.

The possibility for a non-trivial continuum limit in this pure compact U(1) lattice gauge

theory at strong gauge couplings rests on the tricritical point with a new universality class.

Details of our study including results at other gauge couplings that help develop the

overall picture in the strong gauge coupling region, will appear in Chapter 4.
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CHAPTER 4

DETAILED PHASE DIAGRAM OF

COMPACT GAUGE-FIXED U(1) LATTICE

GAUGE THEORY AT STRONG COUPLING

4.1 Introduction

In this Chapter, continuing our work from before [15], described in Chapter 3, we present

a comprehensive account of our study of the non-perturbative gauge-fixing for the Abelian

case as proposed in [9, 25]. The chapter is based on the results published in Ref. [16].

As mentioned in Chapter 3, we have realized the limitations of the configuration-

generating algorithm, Multihit Metropolis (MM), used in all earlier studies in the weak

gauge coupling region [10] and also in the earlier work at strong coupling [49]. As we

have seen in the previous chapter in Sec. 3.2, the higher-derivative (HD) gauge-fixing

term involves the square of the gauge-covariant lattice Laplacian, and as a result the action
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density at a lattice site involves significantly more lattice links than the usual Wilson pla-

quette. For a local updating algorithm like the MM, the accept/reject step is incorporated

after each local update of the field. As a result, unless the coefficient κ̃ of the HD-term is

sufficiently small, the algorithm would struggle to generate legitimate field-configurations.

With stronger gauge couplings, the physically interesting continuous FM-FMD phase tran-

sition takes place only at larger values of κ̃, and this leads to the failure of the MM algo-

rithm. In this chapter, we shall give a more detailed account of why we needed to abandon

MM, irrespective of the number of hits and present a comparison with the Hybrid Monte

Carlo (HMC), a global algorithm, generally adopted for generation of field configurations

in this chapter.

In Chapter 3, results of the phase diagram and the emerging physics at the continuous

part of the FM-FMD transition obtained with the newly employed HMC algorithm for the

HD action were presented only at one value of the strong gauge coupling, viz., g = 1.3.

The current chapter aims at a consistent and comprehensive picture applicable in general

for a wide range of parameters to determine especially how the strong gauge coupling phase

diagram gradually emerges from that of the weak gauge coupling region and how the two

regions are related, if at all.

The main result of this chapter is that the Lorentz covariant physics emerging in the

strong gauge coupling region, by approaching the FM-FMD transition from the FM-side,

is actually governed by that at the phase transition at g = 0, κ̃ → ∞ and κ ∼ 0, κ being

the coefficient of a dimension-2 mass counter-term required to recover gauge symmetry

(In the weak gauge coupling limit g = 0, the action has a unique global minimum). The

chapter also establishes the inadequacy of a local algorithm like MM for larger κ̃ and

bigger volumes, by comparing results with the HMC algorithm at different regions of the

coupling parameter space. As remarked above, a tricritical line emerges for g > 1 in
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the 3-dimensional phase diagram separating the first order and the continuous FM-FMD

transition surfaces. A detailed investigation of the universality class of the tricritical line is

outside the scope of the current work.

It is worth mentioning here that the unfixed compact U(1) lattice gauge theory, given

by only the Wilson plaquette term (3.2), is known to produce a phase transition at gauge

coupling g ∼ 1 between a so-called Coulomb phase containing massless free photons

and a phase with non-trivial properties like having confined gauge-balls in the spectrum.

The phase transition, upon precision numerical studies, was revealed as a weak first or-

der [55–57], and hence a quantum continuum limit does not strictly exist only with U(1)

Wilson plaquette action. As we shall find out in Sec 4.4, in the gauge-fixed theory under

investigation with an expanded parameter space, while increasing the gauge coupling from

g < 1 to g > 1, there is an emergence of a tricritical line at g ∼ 1 separating a surface

of continuous FM-FMD transition from a first order FM-FMD transition. The continuum

limit obtained in the FM phase while approaching the continuous part of the FM-FMD tran-

sition even in the large gauge coupling (g > 1) region is found to consist of free massless

photons only (with the lgdof decoupled).

The chapter is organized as follows. After briefly describing, in Sec. 4.2, the implemen-

tation of the force terms during the molecular dynamics trajectory of the HMC algorithm

applied to the gauge-fixed theory with the HD action, we present a comparison in Sec. 4.3

of the MM and the HMC algorithms. In Sec. 4.4, we present results of the phase diagram

at several values of the gauge coupling g including at the end a schematic 3-dimensional

phase diagram covering a wide range of parameters from the weak gauge coupling to the

strong gauge coupling regions. We collect results of various two point functions, and also

the average plaquette value in Sec. 4.5 to understand the physics of the FM phase while

approaching the FM-FMD transition at strong gauge couplings. We present our main con-
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clusions in Sec. 4.6.

4.2 Implementation of the HMC algorithm

As indicated in the Introduction, we have written codes and tried both the MM and the

HMC algorithms for generating the gauge field configurations. The MM was usually tried

with 4 hits; however, various other values of hits were also tried, with very similar outcome.

In the following, we discuss implementation of the HMC algorithm. We skip any dis-

cussion on the Wilson plaquette term of the action, because that part is standard.

Writing the gauge link as Uxµ = exp(iθxµ), where 0 < θxµ ≤ 2π is an angle (dimen-

sionless), the HD gauge-fixing term (3.3) in the action (3.1) is expressed as follows

SGS =
∑
xµν

(
cos(θxµ − θxν) + cos(θx−µ,µ − θx−ν,ν) + 2 cos(θxµ + θx−ν,ν)

)

−
∑
xµ

32 cos θxµ −
1

16

∑
x

(∑
µ

(sin θxµ + sin θx−µ,µ)2

)2

+ constant terms (4.1)

The HMC algorithm, as discussed in Chap 3, employs a molecular dynamics trajectory,

followed by a Metropolis accept/reject step that makes the algorithm exact. The molecu-

lar dynamics trajectory is an evolution in a fictitious time (computer time) of the system

through a Hamiltonian that treats the fields of the action as generalized co-ordinates and in-

cludes quadratic terms for the conjugate momenta corresponding to the fields. The Hamil-

ton’s equations of motion are discretized and the equations for momenta update involves

the force terms which are the derivatives of the action with respect to the corresponding

field variable.

Contribution to the HMC force by the HD gauge-fixing term, calculated from (4.1) for
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the field Ux0ρ, the link field directed from the site x0 towards the neighboring site x0 + ρ

along the direction ρ, is given as

−FGS
x0ρ

=
∂SGS

∂θx0ρ
(4.2)

= 2κ̃
∑
ν

(
sin(θx0ν − θx0ρ) + sin(θx0+ρ−ν,ν − θx0ρ)

− sin(θx0ρ + θx0−ν,ν)− sin(θx0ρ + θx0+ρ,µ)
)

+ 32κ̃ sin θx0ρ

− κ̃

4
cos θx0ρ

∑
ν

(
(sin θx0ρ + sin θx0+ρ,ρ)(sin θx0+ρ−ν,ν + sin θx0+ρ,ν)

2

+ (sin θx0−ρ,ρ + sin θx0,ρ)(sin θx0−ν,ν + sin θx0ν)
2
)

A similar contribution to the force from the dimension-2 mass counter-term is easily

found to be

−F ct
x0ρ

= 2κ sin θxµ. (4.3)

4.2.1 Numerical simulations

Details of all numerical simulations in this HD gauge-fixed compact U(1) lattice gauge

theory, including values of gauge couplings and lattice volumes at which simulations were

performed, were presented in Sec. 3.3 of Chap. 3. In this chapter we present results at

gauge coupling g = 0.6, 1.0, 1.1, 1.2, 1.3 and 1.5 and at lattice volumes 84, 104, 124, 164

and 8324. All observables measured were also enlisted in Sec. 3.3 of Chap. 3. Hence they

will not be repeated here, except to mention that the scalar propagator, given by Eq. 3.33,

the results of which was not shown in Chap. 3, will be presented here in Sec. 4.5.
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Figure 4.1: Comparison of average plaquette value Ep at g = 1.3 on 164 lattice at two
values of κ̃ (= 0.1 and 0.3) in the two figures for a variety of values of κ around the FM-PM
transition, obtained with MM and HMC algorithms.

4.3 Local versus Global Algorithm

In this section, we present results that show that a local algorithm like MM appears to be

unreliable when the coefficient of the HD gauge-fixing term κ̃ is relatively large. Since the

continuous part of the phase transition of interest (FM-FMD) takes place at a larger value

of κ̃ when the gauge coupling is stronger, the problem is more apparent in the current work

since it primarily deals with the fate of the theory at strong gauge couplings. We also show

that the results with the MM algorithm are unstable as the volume increases.

In contrast, the HMC algorithm, a so-called global algorithm, generally appears to be

more reliable and consistent, and undoubtedly a better algorithm for this theory with a HD

term. First, it generally agrees with results in [10] obtained in the weak gauge coupling

region for rather small volumes, mostly 44 and 64 and some data for 84. At larger κ̃, both

for weak and strong gauge couplings, and for larger volumes, 104 and above, HMC gives

stable results, as will be illustrated in the following.

In Fig. 4.1, we have compared average plaquette value Ep at a strong gauge coupling
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Figure 4.2: Comparison of the vector condensate V at g = 0.6 on 104 lattice at two values
of κ̃ (= 0.2 and 0.3) in the two figures for a variety of values of κ around the FMD-FM
transition, obtained with MM and HMC algorithms. The right figure also has values with
MM algorithm on 84 lattices.

g = 1.3 on 164 lattice at two values of κ̃ (= 0.1 on the left and 0.3 on the right) for a variety

of values of κ around the FM-PM transition, obtained with MM and HMC algorithms. The

observableEp does not show any noticeable signal for the transition. However, for κ̃ = 0.1,

the two algorithms produce nearly identical results for all values of κ presented, while for

the larger κ̃ = 0.3, results given by the two algorithms have no agreement anywhere.

Fig. 4.2 shows comparison of the observable V , an estimate of the vector condensate

〈Aµ(x)〉 on the lattice, obtained with MM and HMC algorithms, at a weak gauge coupling

g = 0.6 and two values of the coefficient κ̃ of the HD gauge-fixing term. On 104 lattices,

we see general agreement of the two algorithms at smaller κ̃ in the left figure. However,

for the same 104 lattices, the algorithms clearly give different results (indicating also a

dependence on the initial configuration for the MM) at a slightly larger value of κ̃ = 0.3

(in the right figure), suggesting a first-order-like discrete jump in the quantity V at a shifted

location of the parameter κ, while the MM data on 84 lattices generally agree with the 104

HMC data signalling a smooth transition.
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Figure 4.3: Average action density versus number of sweeps/trajectories just inside the
FMD phase at a weak gauge coupling g = 0.6 with MM and HMC algorithms.

Average action density (value of action divided by volume) achieved after apparent

equilibration is plotted in Fig. 4.3 against number of sweeps/trajectories at a weak gauge

coupling g = 0.6 with both MM and HMC algorithms at a point in the coupling parameter

space just inside the FMD phase. While the system settles at the lowest average action

density with the HMC algorithm, the MM algorithm clearly produces unreliable results

with the average action density above that obtained with HMC and showing instability

with change of volume.

In fine, our findings are that, the MM algorithm struggles to generate reliable gauge

field configurations with the HD action. It produces correct results only for sufficiently

small coefficient κ̃ of the HD gauge-fixing term and on small lattices. The situation gets

particularly worse on larger lattices, and at strong gauge couplings where one needs a large

κ̃ for a continuous transition.

In contrast, the HMC algorithm agrees with the MM results at small values of κ̃ and

small lattice volumes. In addition, the results with the HMC appear more consistent and
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stable with change of lattice volume and parameters of the algorithm. However, at times

even the HMC can struggle with this HD action to move out of a local metastability because

the changes of the fields and the momenta along a molecular dynamics trajectory are tiny

with every differential ‘time’-step. We have found it beneficial to use initially the MM

algorithm for any configuration-generating run at a given point in the parameter space, and

then feed the final configuration of the MM-run as the initial configuration of the HMC run,

to make use of the best of both algorithms. This is because, even though the MM algorithm

is unable to reach the true minima of the action, the changes of the values of the gauge

fields are finite, unlike the differential changes during a trajectory of the HMC algorithm.

4.4 General study of the Phase Diagram at strong gauge

couplings

As already mentioned in Sec. 4.1 the unfixed compact U(1) lattice gauge theory (κ̃ =

0, κ = 0), as formulated by the plaquette action of Wilson and given in (3.2), has been

studied extensively in the past. At g ∼ 1, the theory shows a phase transition from a so-

called Coulomb phase (at weak gauge couplings, g < 1) having massless free photons, to

a phase having non-trivial properties like confinement and existence of gauge-balls etc. at

strong gauge couplings (g > 1). Through careful Monte Carlo simulations, the order of the

transition was determined to be weakly first order. Hence a quantum continuum limit was

not possible at this phase transition.

It is mentioned in Chapter 3 that the phase diagram of the theory (3.1) under inves-

tigation was studied for weak gauge couplings reasonably extensively in the past. From

the point of view of quantum field theory, there are two continuous transitions of interest -
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Figure 4.4: Phase diagram in the (κ̃, κ) plane at gauge coupling g = 1.0 on 164 lattice.

the FM-PM transition and the FM-FMD transition. These transitions are illustrated in the

phase diagram presented in Fig. 4.4 obtained in our numerical simulation at gauge cou-

pling g = 1, approximately the largest gauge coupling exhibiting all the features of the

phase diagram at weak gauge couplings (g < 1). As discussed in Sec. 3.2, a gauge-scalar

(popularly known as gauge-Higgs) theory is expected to emerge in the continuum limit

near the FM-PM transition at small values of κ̃. However, at larger values of κ̃, we find

that, approaching the FM-FMD transition from the FM side makes the scalar fields (lgdof )

decouple as gauge symmetry is recovered at that transition with emergence of massless

free photons. The FMD phase is marked by a vector condensate, and hence approaching

the FM-FMD transition from the FMD side cannot produce a Lorentz covariant theory.

In Fig. 4.4 and all phase diagrams to follow, all data points represented by solid (filled)

symbols signify a continuous phase transition, while all data points represented by empty

(unfilled) symbols signify a first order transition. Accordingly, one would find that FM-PM

and PM-AM phase transitions are continuous and PM-FMD phase transition is first order,

for all gauge couplings investigated in Chap. 3 and 4.
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Figure 4.5: Phase diagram in the (κ̃, κ) plane at gauge coupling g = 1.1, 1.2, 1.3 and 1.5
on 164 lattices. The dotted line shows the FM-FMD continuous transition calculated from
WCPT around g = 0

However, for g = 1.1 and greater values of the gauge coupling g, the FM-FMD phase

transition develops a first order part for smaller values of κ̃, as seen in Figs. 4.5(a), (b),

(c) and (d). At g = 1.1 (Fig. 4.5(a)), in our simulations on 164 lattice, the FM-FMD

phase transition first shows a little glimpse of its first order part for small values of κ̃

and then quickly turns itself into a continuous transition at a tricritical point at (κ̃, κ) ∼

(0.14,−0.33) and remains continuous for larger values of κ̃. As the gauge coupling g is

increased to g = 1.2 (Fig. 4.5(b)), g = 1.3 (Fig. 4.5(c)) and g = 1.5 (Fig. 4.5(d)), the

location of the tricritical point in the (κ̃, κ)-plane shifts to larger κ̃ and more negative κ. In

other words, the first order part of the FM-FMD phase transition extends quite rapidly with
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increase of the gauge coupling. However, it appears from our numerical simulations (which

includes gauge couplings g > 1.5, corresponding data not shown here) that, given a large

gauge coupling there is always a sufficiently large κ̃ beyond which the FM-FMD transition

is continuous. In addition, the FM-FMD transition overall shifts to larger negative κ values

at stronger gauge couplings.

The line joining the discrete data points at the phase transitions in the four plots of

Fig. 4.5 are simple-minded interpolations with a purpose to guide the eye. The exact loca-

tion of the meeting point of the three phases FM, FMD and PM are only roughly determined

for a couple of the plots. However, such points where the continuous FM-PM transition

ends at the joining of two (PM-FMD and FM-FMD) first order lines (for g > 1) have been

described as critical end points in [54].

At weak gauge couplings studied for example in [10], the order of the continuous FM-

FMD transition was expected to be second order from analytic considerations. In our case

at strong gauge couplings, we conclude from numerical evidence of susceptibility peaks

of the vector condensate at different volumes that the continuous part of the FM-FMD

transition is also second order.

At g = 1.1, where in our numerical simulations on 164 lattices, the first order part of

the FM-FMD transition makes an appearance for the first time, the discrete jump in the

quantity Eκ across the transition is small, accordingly we conclude that the order of the

transition is a weak first order. However, as the gauge coupling increases, the discrete jump

in Eκ becomes quite pronounced, making the initial part (for smaller κ̃) of the FM-FMD

transition strongly first order, which then becomes progressively weaker with increase of

κ̃, until the transition line reaches the tricritical point, beyond which the transition is of

course continuous.

The dotted straight line in each of the figures of Fig. 4.5 is obtained in bare WCPT near
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Figure 4.6: Schematic phase diagram in the 3-dimensional (g, κ̃, κ) parameter space at
gauge coupling based on available data on 164 lattice. Surfaces of different phase tran-
sitions are labelled by: I: FM-FMD (continuous), II: FM-FMD (first order), III: FM-PM
(continuous), IV: PM-AM (continuous), V: PM-FMD (first order). A tricritical line separat-
ing the first order and the continuous FM-FMD transitions emerges at g > 1 and continues
to move towards larger κ̃ at stronger gauge coupling g. The arrow at the top right points to
the WCPT corner (g = 0, κ̃→∞).

g = 0 by demanding recovery of gauge symmetry and is representative of the FM-FMD

transition in (κ̃, κ)-plane for a given gauge coupling g [10]. The dotted lines are always

nearly parallel to the continuous parts of the FM-FMD transition for all gauge couplings

in Fig. 4.5. However, the actual transitions run always lower in the (κ̃, κ)-plane, and their

distance from the WCPT lines increase with increasing gauge coupling.

In the next section, at strong bare gauge couplings, we shall explore the physics, achiev-

able by approaching the continuous part of the FM-FMD phase transition from the FM

phase, by computing the gauge field propagator, an effective scalar field propagator and

chiral condensates. However, while the bare WCPT done around the point g = 0 and

κ̃ = ∞ has limited range of applicability, there exists no phase transitions between the

WCPT corner of the 3-dimensional coupling parameter space (viz., g = 0 and κ̃ = ∞)
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and any point on the continuous part of the FM-FMD transition at a strong gauge coupling

and a large enough κ̃. The schematic phase diagram in the 3-dimensional parameter space

(g, κ̃, κ) is displayed in Fig. 4.6. Kindly note that κ = 0 surface is located slightly below

the top surface of the 3-dimensional box presented in the figure. The diagram is drawn

based on available data on phase transitions and interpolations and extrapolations. The

continuity of the entire FM-FMD transition surface (bounded by the tricritical line starting

at g = 1.1) up to the WCPT corner is clearly evident when we look at the 3-dimensional

phase diagram. Hence it is natural to expect that this whole region falls under the same

universality class and the continuum physics obtainable should be no different from that

near the weak gauge coupling region.
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4.5 Vector and Scalar propagators, Chiral Condensates

and the Plaquette

The inverse of the gauge field propagator, as given by Eq. 3.32, for µ = ν, is plot-

ted in Fig. 4.7 against the lattice momentum p̂2 = 2
∑

µ sin2 pµ/2 at g = 1.5 and κ̃ =

1.3, 1.4, 1.5 on 8324 lattices. The κ values are chosen to stay very close to the FM-FMD

transition (continuous for the above κ̃ values). The linear behavior of the fits passing nearly

through the origin clearly indicates a vanishing photon mass at the transition. At each κ̃

value, although not shown in the plot, the photon mass scales with decreasing κ approach-

ing the transition from the FM side. As κ̃ increases from 1.3 to 1.5, there is a small but

monotonic increase of the slope of the fit. The corresponding figure at g = 1.3 in [15],

presented in this thesis in Fig. 3.6 of Chap. 3, also has the same trend with increasing

κ̃. Consistency of this trend in these two figures and in data at other gauge couplings (not
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Figure 4.9: Quenched chiral condensates versus bare fermion mass at four values of κ̃
around the tricritical point at g = 1.3 on two lattice volumes 124 and 164.

shown here) suggests that at larger κ̃ the slope is likely to approach unity, in tune with

theoretical expectations, rendering the photons perfectly free.

The scalar propagator was not presented in Chap. 3. With the expression given in

Eq. 3.33, in Fig. 4.8, we plot its inverse with µ = ν against p̂2 at g = 1.3 in the FM phase

very close to the continuous part of the FM-FMD transition. The scalar propagator is noisy,

consistent with observations made in [10], despite having about 50000 equilibrated field

configurations, far more than our usual number. However, the non-linearity of the inverse

propagator at small momenta suggests absence of a pole. The non-linearity in the inverse

propagator at small momenta was also observed at weak coupling studies in [10], both

through WCPT and numerical studies and was accepted as an indication of the decoupling
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Figure 4.10: Average plaquette near the continuous FM-FMD transition versus κ̃ at gauge
couplings g = 1.1, 1.2 and 1.3 on 164 lattice.

of the lgdof. The smooth curve in Fig. 4.8 is essentially to guide the eye, and not a fit.

However, we have observed that our inverse propagator data for small lattice momentum

p̂2 are roughly consistent with a non-linear behavior like (log p2)−1, as found perturbatively

in [10].

In [15] at g = 1.3, presented in this thesis in Fig. 3.5 of Chap. 3, a chiral transition,

when probed with quenched Kogut-Susskind fermions, was observed roughly around the

tricritical point. While the tricritical point was found to be around κ̃ = 0.45 and κ =

−1.000, the chiral transition around the same values of κ near the FM-FMD transition was

determined to be between κ̃ = 0.40 and 0.50. In this chapter, we have probed the chiral

transition with more precision, and our results are summarized in the four plots of Fig. 4.9.

While we observe that the chiral condensate gradually dips towards zero as κ̃ increases, the

volume dependence of the plots, especially at lower fermion masses, are very different for

the lower two κ̃ values as opposed to the higher κ̃ values. In Fig. 4.9, for κ̃ ≤ 0.44, the 164
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data and their chiral extrapolation always lie above that of the 124 lattice, while the trend

appears to be opposite for data at κ̃ ≥ 0.47. The opposite trend of volume dependence in

the chiral limit is, however, very clearly seen in the corresponding plots in [15] at κ̃ = 0.40

and 0.50 (Fig. 3.5 of Chap. 3 in this thesis). From the numerical evidence, it appears that

the chiral transition takes place very near, if not coincident with, the tricritical point where

the order of the FM-FMD transition changes from first order to continuous (second order).

The vanishing chiral condensate at the continuous part of the FM-FMD transition is taken

as an evidence of absence of non-trivial physics from this transition, although the chiral

condensates do not exactly vanish on our finite lattices.

All our numerical investigations at strong gauge couplings indicate that, given any bare

gauge coupling, there always exists a continuous FM-FMD transition for a sufficiently large

κ̃ and the emerging physics while approaching the transition from the FM-side is governed

by the WCPT point at g = 0 and κ̃ → ∞. Fig. 4.10 shows the average plaquette in the

FM phase near the continuous FM-FMD transition increasing with increasing κ̃ for gauge

couplings g = 1.1, 1.2 and 1.3. It is reasonable to expect that as κ̃ is increased, the average

plaquette eventually would approach unity, the value of the plaquette at the perturbative

point, in a behavior similar to that of the slope of the gauge field propagator.

4.6 Conclusion

A non-perturbatively gauge-fixed compact U(1) lattice gauge theory is an alternate formu-

lation of the pure U(1) gauge theory on lattice. It is not only important because it provides

a quantum continuum limit (unlike the standard Wilson formulation) and a possible probe

at short distance behavior of a perturbatively non-asymptotically free theory (for example,

by examining the universality class of the tricritical line obtained by us), but particularly for
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a manifestly local lattice formulation of Abelian chiral gauge theory with lattice fermions

which explicitly break chiral symmetry. It obviously is very important to know the phase

diagram of the theory for wide range of all its parameters so that all possible continuum

limits and the universality classes can be traced.

We have carried out an extensive numerical investigation of the theory, especially at

strong gauge couplings (g > 1). In the previous chapter (Chapter 3), results were presented

for a single gauge coupling g = 1.3. The approach in this chapter is to scan a wide range of

the 3-dimensional parameter space, generating gauge field configurations for a very large

number of points in that parameter space to locate and determine the nature of the phase

transitions and come up with an overall picture. The results of Chapter 3 and this have been

published in Refs. [15] and [16] respectively, and all the diagrams have been taken from

them.

We find that there is no lack of continuity between the FM-FMD phase transition near

the perturbative point at g = 0 and κ̃ → ∞ and the FM-FMD transition at strong gauge

couplings up to the edge of the tricritical line. The continuous part of the FM-FMD transi-

tion surface (blue surface, marked I in Fig. 4.6) is one continuous surface, and the results

of all our measurements help build the emergence of a single universality class, obtained

by approaching the transition near g = 0, κ̃ → ∞ from the FM side. Hence irrespective

of the bare gauge coupling being weak or strong, at a strong enough coefficient κ̃ of the

HD gauge-fixing term, the physics obtained by approaching the continuous FM-FMD tran-

sition from the FM side is governed by the perturbative point and is a Lorentz covariant

theory of free massless photons, with the redundant lgdof decoupling at that transition.

The tricritical line at strong gauge couplings is potentially the only place where a dif-

ferent universality class with non-trivial physics may appear. However, a detailed investi-

gation in that direction deserves a dedicated study and is outside the scope of the current
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work, given its vast and extensive nature. Precise determination of the critical exponents

near the tricritical line would settle the issue.

The action with the HD gauge-fixing term poses its own problems in the Monte Carlo

importance sampling. We found that a local algorithm like MM is poor in generating gauge

field configurations (corresponding to quantum fluctuations around the global minimum of

the classical action), especially on large values of the coefficient κ̃ of the HD term and at

relatively larger lattices. A global algorithm like HMC was generally found to produce

faithful field configurations and was used to generate the ensembles at the vast number of

points in the 3-dimensional parameter space.
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CHAPTER 5

EQUIVARIANT BRST GAUGE-FIXING OF

NON-ABELIAN THEORIES

5.1 Introduction

The equivariant BRST gauge-fixing scheme, which circumvents the no-go theorem, was

first proposed by Schaden [17] in 1998 for SU(2) gauge theory. It was later extended for

SU(N) gauge theories by Golterman and Shamir [18], who thereby proposed a prescription

for constructing SU(N) chiral lattice gauge theories (ChLGT) for anomaly-free fermion

representations. The eBRST gauge-fixing scheme basically amounts to gauge-fixing in a

coset space G/H of the gauge group G, keeping a subgroup H (consisting of the maximal

Abelian subgroup) invariant. Due to the presence of quartic ghost terms in such a theory,

this scheme successfully evades the no-go theorem. It potentially provides a theoretically

valid alternate formulation of non-Abelian gauge theories on the lattice. For constructing

ChLGT, one then requires to gauge-fix the remaining Abelian subgroup in the scheme
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described in Chapter 3. A critical point can be found in the extended phase diagram of the

gauge-fixed theory, by tuning a finite number of counter-terms, where the desired ChLGT

can be constructed.

Apart from the importance of the eBRST scheme in the construction of ChLGT, it has

been also suggested [20, 21] that the phase diagram of the eBRST gauge-fixed theory can

accommodate a novel Higgs phase with no mass gap, due to strong dynamics in the lgdof

sector. Evidence for the novel phase was provided through a combination of strong cou-

pling and mean field techniques. It was also shown that the eBRST gauge-fixing coupling

is asymptotically free [19], dimensional transmutation takes place in the longitudinal sector

(from large-N calculations [21]), and at an infra-red scale the coupling gets strong.

In this chapter, we embark on the first time numerical study of the eBRST gauge-fixing

method. We have based our study on the pure SU(2) gauge theory, since it is the simplest

case. Our key result has been the verification of the eBRST formalism as a valid alternative

of the Wilsonian approach. We have strong evidence of a phase with a spontaneously

broken global continuous symmetry in the reduced model (the theory with transverse gauge

fields frozen to zero), which is also a topological field theory.

The chapter is organized as follows. In Sec. 5.2, we review the basic theory of the

eBRST gauge-fixing scheme for SU(N) theories in the continuum. The concept of anti-

eBRST is also discussed, which leads to the extended eBRST algebra. We end the section

with a discussion of the eBRST theory for the SU(2) case. Next, the lattice eBRST sym-

metry and the construction of the gauge-fixing action on the lattice is reviewed in Sec. 5.3.

This is followed by a brief sketch of the proof of how the eBRST theory evades the Neu-

berger’s no-go theorem, and a discussion of its consequences, in Sec. 5.4. The eBRST

gauge-fixed action of the pure SU(2) theory and its reduced model is now explicitly stud-

ied in Sec. 5.5. Results of previous analytic work in this theory about the novel Higgs
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phase is also briefly reviewed. With this action, we now proceed to explain in detail about

our numerical implementation of the theory, using Hybrid Monte Carlo (HMC) and the

first-time implementation of stochastic Tunneling HMC [22], in Sec. 5.6. The results in

the reduced model are now discussed in Sec. 5.7, followed by the results obtained in the

full theory, in Sec. 5.8. Finally, we present our conclusions in Sec. 5.9.

5.2 Equivariant BRST Symmetry in the Continuum

In the equivariant BRST (eBRST) prescription of gauge-fixing, the gauge-fixing is done

in the coset of a non-Abelian gauge group of the Yang-Mills theory, keeping minimally a

Cartan subgroup invariant. In this section, we will discuss the eBRST gauge-fixing for a

general SU(N) gauge theory, after which we will construct the action explicitly for the

SU(2) case in the continuum. The following discussion is based on the Refs. [17, 18].

The Lagrangian density for a pure SU(N) gauge theory in Euclidean spacetime is

L(x) =
1

2g2
tr (Fµν(x)Fµν(x)) , (5.1)

where g is the gauge coupling. The field strength tensor is given by,

Fµν = ∂µVν − ∂νVµ + i[Vµ, Vν ] , (5.2)

where Vµ is the SU(N) gauge field. The spacetime dependence of the fields have been

dropped for convenience. The components of the algebra-valued gauge field Vµ are

Vµ = V a
µ Ta, a = 1, 2, . . . , N2 − 1, (5.3)
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where Ta are the generators of the SU(N) group. The generators are traceless Hermitian

matrices and they satisfy the Lie algebra, [Ta, Tb] = ifabcTc, with the normalization condi-

tion tr(TaTb) = 1
2
δab. Note that, the indices a, b, . . . always run over all the generators of

G, if not mentioned otherwise.

Let us now denote the SU(N) group by G and the subgroup by H ⊂ G, with their

corresponding algebras being denoted by G andH respectively. The eBRST gauge-fixing is

now done in the coset G/H . The components of the gauge field are now written separately

as

Vµ = Wα
µ Tα + AiµTi , where Tα ∈ G/H, Ti ∈ H . (5.4)

In our discussion, the H generators will be represented by the indices i, j, . . . , whereas

the Greek indices α, β, . . . will be used to indicate the generators lying in G/H. From the

consistency check that the commutator of two elements in the subgroup H must lie in H

itself, we find the following structure constants to be

fiαj = −fijα = −fαij = 0 . (5.5)

Here, we have used the fact that the structure constants are completely antisymmetric.

Similar to the BRST formalism, the eBRST formalism too involves ghost fields (C,C)

and an auxiliary field B, which now reside in the coset space,

C = CαTα, C = C
α
Tα, B = BαTα. (5.6)

The ghost sector fields are G/H-valued and therefore, tr(CTi) = 0, for example. They

transform under infinitesimal H gauge transformations in the same way as a field in the
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adjoint representation :

δωC = −i[ω,C], ω ∈ H. (5.7)

In order for Eq. 5.7 to be consistent, [ω,C] must belong to G/H, since the ghost fields

belong to G/H. Using Eq. 5.5, we observe that [ω,C] = i ωjCαfjαβTβ ∈ G/H, as it

should be.

5.2.1 eBRST Transformations

We shall now discuss the eBRST variations, denoted by s, of the different fields of the

theory. The physical fields have similar transformations to the ones for BRST (see Eqs.

1.81, 1.82 in Sec. 1.2.1). For the gauge field, we have sVµ = Dµ(V )C = ∂µC + i[Vµ, C].

However, the transformations of the different parts of the gauge field are now different.

From the transformation of Vµ, we have,

sVµ = sAµ + sWµ = ∂µC + i [Aµ, C] + i [Wµ, C] , (5.8)

from which we get,

sAµ = i [Wµ, C]H and sWµ = Dµ(A)C + i [Wµ, C]G/H . (5.9)

Here, we have used [Aµ, C] ∈ G/H as can be seen from Eq. 5.5. Note that, the notations

[· · · ]H and [· · · ]G/H denote the projections of the commutator inH and G/H, respectively.

In case of SU(2), where gauge-fixing is done in the coset SU(2)/U(1), the transformation

rules for the different parts of the gauge field reduce to

sAµ = i [Wµ, C], sWµ = Dµ(A)C. (5.10)
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Such simplifications occur for special cases, where [Wµ, C] is entirely contained inH. We

will discuss about them later. The matter fields ψ and ψ̄ has the same transformation as

BRST,

sψ = −iCψ,

sψ̄ = iψ̄C . (5.11)

The eBRST transformation rule for the ghost field C is obtained by projecting the BRST

transformation rule (Eq. 1.86) onto the coset space G/H. Requiring the eBRST transfor-

mation to have components only in the coset space and since tr(sCTi) = 0, ∀ Ti ∈ H, we

have

sC =
(
− i C2

)
G/H = − i C2 +X, (5.12)

where

X ≡ (− i C2)H = 2 i Tjtr
(
C2Tj

)
. (5.13)

The above modification makes the eBRST nilpotency condition different from the usual

BRST one, δ2
B = 0. For the ghost field C, the eBRST transformation rule is similar to the

BRST rule,

sC = −iB , (5.14)

since the auxiliary field B already belongs to G/H.

For usual BRST variation, we have δ2
BC = 0, but for eBRST, there would be extra

terms for the X part. First, using Eq. 5.12 and the Grassmann nature of s and C, we see
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that

s tr
(
C2Tj

)
= tr ((sC)CTj − C(sC)Tj)

= tr
({

(−iC2 +X)C − C(−iC2 +X)
}
Tj
)

= tr ((XC − CX)Tj)

= X iCαtr ([Ti, Tα]Tj)

= ifiαβX
iCαtr (TβTj) = 0 , (5.15)

where the trace vanishes in the last line. Therefore, putting Eq. 5.15 in Eq. 5.13, we obtain

sX = 0. Using these results, we thus obtain the double eBRST variation of the ghost field

C to be

s2C = −isC2 + sX = −i[X,C] = δXC, (5.16)

which does not vanish and is, instead, equal to an infinitesimal gauge transformation in the

subgroup H , with the parameter X . The gauge transformation is denoted by δω where ω is

the parameter of transformation and an element of the gauge group algebra. Similarly, for

the ghost field C, we require

s2C = δXC, (5.17)

which, using Eq. 5.14, gives us

− isB = − i
[
X,C

]
=⇒ sB =

[
X,C

]
. (5.18)

The above eBRST transformation for the auxiliary field B, is non-vanishing unlike the
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BRST one (compare Eq. 1.93). The double eBRST variation of B now gives

s2B = s
(
XC − CX

)
= X(−iB)− (−iB)X = −i[X,B] = δXB, (5.19)

where we have used sX = 0, and Eq. 5.17. Thus, we see that requiring all the ghost sector

fields to have the same rule for their double variation, i.e. an “equivariant nilpotency”

condition, makes their eBRST transformations consistent.

For the gauge field, the double eBRST variation is also non-vanishing as it has con-

tributions from the X term in the variation of C and is similarly, equal to a H gauge

transformation with parameter X . Explicitly, we have

s2Vµ = s (Dµ(V )C) = ∂µ(sC) + i [Vµ, sC] + i [sVµ, C]

= −i∂µC2 + ∂µX + i
[
Vµ,−iC2 +X

]
+ i [Dµ(V )C,C]

= Dµ(V )X − iDµ(V )C2 + i [Dµ(V )C,C]

= Dµ(V )X = δXVµ, (5.20)

where we have used Eqs. 5.9, 5.12 and the definition of the covariant derivative in section

5.2. In the last line, the two terms were cancelled using the following relation,

∂µC
2 = (∂µC

α)CβTαTβ + Cα(∂µC
β)TαTβ

= (∂µC
α)Cβ[Tα, Tβ] = [∂µC,C] (5.21)

which is derived using the anti-commuting nature of the Grassmann variableC. The double

eBRST variations of theH and G/H components of V can now be easily read off from Eq.
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5.20,

s2Aµ = Dµ(A)X = δXAµ ,

s2Wµ = −i [X,Wµ] = δXWµ. (5.22)

where theAµ andWµ fields transform in the fundamental and adjoint representations ofH ,

respectively.

The physical field ψ also has the similar double eBRST variation as above, i.e. a H

gauge transformation in the fundamental representation,

s2ψ = −i(sC)ψ + iC(sψ) = −
(
− i C2 +X

)
ψ + iC (−iCψ)

= −iXψ = δXψ (5.23)

Thus, it has been consistently established that the eBRST symmetry is equivariantly nilpo-

tent, which means the double variation of eBRST is a gauge transformation in the subgroup

H with a commuting parameter ω = X ∈ H,

s2 = δ|ω→X . (5.24)

An important observation is that eBRST is still nilpotent on any H invariant object.

It is useful to note that the eBRST variation of a polynomial of the fields is given by a

graded Leibnitz rule,

s(A ·B) = (sA) ·B + (−1)n(A)A · (sB) (5.25)

where A and B are polynomials in the fields and n(A) is the number of Grassmann fields
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in A.

Finally, we remark that the eBRST transformation s commutes with the H gauge trans-

formation δω,

[s, δω] = 0. (5.26)

This is an important property which will help us in our construction of the eBRST-invariant

gauge-fixing action in the next section.

5.2.2 eBRST-invariant Action

The first step in the construction of the gauge-fixing action, is to take a local gauge-fixing

condition, which gauge-fixes the coset space G/H and keeps the H-subgroup invariance

of the action. The gauge-fixing condition, F (V ) = 0, should be invariant under H , i.e.,

F (V ) = 0 =⇒ F (V h) = 0, ∀ h ∈ H ⊂ G (5.27)

where V h is the vector potential obtained after a gauge transformation under H . Following

Ref. [17], we choose a gauge-fixing function,

F (V ) = Dµ(A)Wµ = ∂µWµ + i[Aµ,Wµ], (5.28)

which is covariant under H . From the fact that, Wµ ∈ G/H, and by Eq. 5.5, we see that

F (V ) ∈ G/H. It thus transforms in the adjoint representation under H-gauge transforma-

tions, as

δωF (V ) = −i [ω, F (V )]. (5.29)

To construct the gauge-fixing action now, we have to choose a term invariant under both
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the eBRST and local H transformations. The generic form of such an action would be

SGF = sΣGF , (5.30)

where ΣGF isH-invariant. The invariance of the above action under the desired symmetries

can be easily seen as,

sSGF = s2ΣGF = δXΣGF = 0,

δωSGF = sδωΣGF = 0, (5.31)

with X,ω ∈ H. These follow from the fact that ΣGF is invariant under H and from Eq.

5.26. The gauge-fixing action is also eBRST-exact. With these symmetries, a general form

of the gauge-fixing Lagrangian density is

LGF (α, g̃) = s tr
(
2αCF + ig̃2CB

)
= tr

(
−2α(iBF + CsF ) + g̃2(B2 − iC[X,C])

)
, (5.32)

where F ≡ F (V ) is the gauge-fixing function and α and g̃ are two real dimensionless

coefficients. The parameter α can, however, be scaled away by field redefinitions. This can

be easily seen by plugging the following field redefinitions, B → B/α,C → αγ−1C,C →

α−γC, for any γ, in Eq. 5.32, which turns LGF (α, g̃) into LGF (1, g̃/α). So, the parameter

α can be set to 1.

The gauge invariance of the above action under H can be seen explicitly by taking the
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H-variation of ΣGF ,

δωΣGF = δω tr
(
2CF + ig̃2CB

)
= tr

(
−2 i[ω,C]F − 2 iC[ω, F ] + g̃2[ω,C]B + g̃2C[ω,B]

)
= 0, (5.33)

where we have used Eq. 5.7 and the cyclic property of trace to arrive at the last line. It can

be seen that both the terms in the first line of Eq. 5.32 are individually gauge invariant.

The above action in Eq. 5.32 is, however, not the most general action possible. We

will now see how it can be made more general, by making it invariant under the extended

eBRST symmetry.

5.2.3 Anti-eBRST

The usual BRST invariant Lagrangian of Yang-Mills theory can also be shown to be in-

variant under an anti-BRST transformation. This was found out independently by Curci,

Ferrari [58] and Ojima [59]. The anti-BRST transformations are obtained by the ghost flip

operation,

C → C and C → −C. (5.34)

The physical fields are unaffected by this operation. The anti-BRST variation δ̄B is also

nilpotent, i.e. δ̄2
B = 0.

The anti-BRST symmetry can also be incorporated into the equivariant BRST formal-

ism similarly, as done earlier for BRST, by restricting the ghost sector fields to the coset

space and defining an anti-eBRST transformation s̄ [18]. By the ghost flip operation (Eq.

5.34) and keeping in mind thatC,C ∈ G/H, the anti-eBRST transformations for the matter
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and gauge fields can be found to be

s̄ ψ = −iCψ,

s̄ ψ̄ = i ψ̄ C,

s̄ Vµ = Dµ(V )C, (5.35)

s̄ Aµ = i [Wµ, C]H,

s̄Wµ = Dµ(A)C + i [Wµ, C]G/H.

By requiring the equivariant nilpotency condition for anti-eBRST (compare Eq. 5.24) to

be

s̄2 = δ|ω→X , where X = 2 i Tjtr
(
C

2
Tj

)
∈ H, (5.36)

we find the anti-eBRST transformation rules for the ghost sector fields to be

s̄ C = −i(C2
)G/H = −i C2

+X,

s̄ C = iB − i{C,C}G/H = iB − i{C,C}+ X̃, (5.37)

s̄ B = [X̃, C]− i [C,B]G/H,

where

X̃ = 2 i Tj tr
(
{C,C}Tj

)
∈ H (5.38)

The above anti-eBRST and eBRST transformation rules together form the extended

eBRST algebra,

s2 = δX , s̄2 = δX , {s, s̄} = δX̃ , (5.39)

which closes when acting on the physical and ghost sector fields. Denoting the ghost flip
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operation in Eq. 5.34 by f , the extended eBRST algebra also satisfies

fs = s̄f, f s̄ = −sf, (5.40)

for all fields. The anti-eBRST variation s̄ also satisfies the similar Leibnitz rule as in the

case of eBRST, given in Eq. 5.25.

5.2.4 Extended eBRST gauge-fixing action

With the extended eBRST symmetry, we can now construct the most general gauge-fixing

action. The first term in the eBRST invariant Lagrangian, in Eq. 5.32, can now be rewritten

in a way so that, the anti-eBRST invariance becomes explicit :

s tr
(
2αCF

)
= −ss̄ tr

(
W 2
)
. (5.41)

In the above equation, the pre-potential tr (W 2) is invariant under the H gauge symmetry.

The most general extended eBRST-invariant Lagrangian (restricting to terms of engi-

neering dimension 4) with local H gauge symmetry is thus the following,

LeGF = −ss̄ tr
(
W 2 + g̃2CC

)
= s̄s tr

(
W 2 + g̃2CC

)
, (5.42)

where a coefficient for the first term can be similarly scaled away as in Eq. 5.32. The

second line in Eq. 5.42 is obtained using the commutation relation of s and s̄ given in Eq.

5.39, and the H-symmetry of the pre-potential. The above Lagrangian is also invariant

under the discrete ghost flip symmetry f (see Eqs. 5.34, 5.40). In the terminology of [60],
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where the most general BRST and anti-BRST invariant action was constructed, the above

Lagrangian in Eq. 5.42 is “hermitian” under the following operations,

C† = C, C
†

= C, B† = −B + {C,C}G/H, (V a
µ )† = V a

µ . (5.43)

We now apply the eBRST and anti-eBRST transformations explicitly in Eq. 5.42 to

obtain the expanded Lagrangian. Using Eqs. 5.35, 5.14, 5.9, the cyclic property of trace

and an integration by parts, we obtain for the first term,

−ss̄ tr
(
W 2
)

= −2s tr
(
(Dµ(A)C)Wµ + i [Wµ, C]G/HWµ

)
= 2s tr

(
CDµ(A)Wµ

)
= −2 i tr (BDµ(A)Wµ)− 2 tr

(
CDµ(A)Dµ(A)C

)
− 2 i tr

(
CDµ(A)[Wµ, C]G/H

)
+ 2 tr

(
[Wµ, C]H[Wµ, C]H

)
. (5.44)

The second term in Eq. 5.42 expands to the following terms (omitting the coefficient g̃2 for

now),

s̄s tr
(
CC
)

= tr
(
(s̄sC)C

)
+ tr

(
(sC)(s̄C)

)
− tr

(
(s̄C)(sC)

)
+ tr

(
C(s̄sC)

)
(5.45)

using the Leibnitz rule (Eq. 5.25) for both s and s̄. Using the extended eBRST transforma-
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tion rules and a bit of algebra, the above terms can be further expanded to obtain

tr
(
(s̄sC)C

)
= −tr

(
X̃2
)

+ tr
(
B{C,C}

)
,

tr
(
(sC)(s̄C)

)
= tr

(
B2
)
− tr

(
B{C,C

)
,

−tr
(
(s̄C)(sC)

)
= tr

(
(C

2
)G/H(C2)G/H

)
, (5.46)

tr
(
C(s̄sC)

)
= −tr

(
B{C,C

)
+ tr

(
{C,CG/H

)2
,

which together becomes,

s̄s tr
(
CC
)

= tr
(
B2
)
− tr

(
B{C,C}

)
+ tr

(
(C

2
)G/H(C2)G/H

)
+ tr

(
{C,C}G/H

)2 − tr
(
X̃2
)
. (5.47)

The auxiliary field B can now be integrated out to arrive at the on-shell Lagrangian

density. The terms of the action containing B are given as,

g̃2tr(B2)− g̃2tr
(
B{C,C}

)
− 2 i tr (BDµ(A)Wµ)

= tr

(
g̃B − i

g̃
Dµ(A)Wµ −

g̃

2
{C,C}G/H

)2

+
1

g̃2
tr (Dµ(A)Wµ)2

− g̃2

4
tr
(
{C,C}G/H

)2 − i tr
(
(Dµ(A)Wµ){C,C}

)
, (5.48)

where the G/H projection of {C,C} in the last term is unnecessary as Dµ(A)Wµ ∈ G/H.

One can now eliminate B by putting in its equation of motion,

B =
i

g̃2
Dµ(A)Wµ +

1

2
{C,C}G/H. (5.49)

The last term in the second line of Eq. 5.48 can be rewritten after an integration by parts
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and by the cyclic property of trace as,

− i tr
(
(Dµ(A)C)[Wµ, C]

)
+ i tr

(
[Wµ, C](Dµ(A)C)

)
. (5.50)

Collecting all the terms, the total on-shell gauge-fixing Lagrangian density is thus,

Lo.s.GF =
1

g̃2
tr (Dµ(A)Wµ)2 + L(2)

gh + g̃2L(4)
gh , (5.51)

where the terms bilinear in ghost fields, C and C, are

L(2)
gh =− 2 tr

(
CDµ(A)Dµ(A)C

)
+ i tr

(
(Dµ(A)C)[Wµ, C] + [Wµ, C](Dµ(A)C)

)
+ 2 tr

(
[Wµ, C]H[Wµ, C]H

)
, (5.52)

and the 4-ghost terms are

L(4)
gh = −tr

(
X̃2
)

+ tr
(

(C
2
)G/H(C2)G/H

)
+

3

4
tr
(
{C,C}G/H

)2
. (5.53)

Combining all the terms in 5.52 and defining them as CMC, it can be seen that the bilinear

ghost operator M is real and symmetric. The novel 4-ghost interaction terms, which are

not present in the usual BRST gauge-fixing action, are actually responsible for avoiding

the Neuberger’s no-go theorem. This will be described in Sec. 5.4.

Integrating out the auxiliary field modifies the eBRST variation sC (Eq. 5.14) and

anti-eBRST variation s̄C (Eq. 5.37), as

sC = −s̄C =
1

g̃2
Dµ(A)Wµ +

1

2
{C,C}G/H (5.54)
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where we have used the equation of motion for B given in Eq. 5.49.

Although the SU(N) gauge symmetry is explicitly broken by the gauge-fixing terms,

the extended eBRST gauge-fixing action still remains invariant under the skewed permu-

tation group S̃N , which is a discrete subgroup of SU(N). The action is also invariant

under a ghost-SU(2) symmetry, which transform C and C as a doublet. Details of these

symmetries can be found in Refs. [18, 61].

5.2.5 SU(2)/U(1)

For the SU(2) group, the only way of fixing the gauge in an eBRST invariant manner, is

by fixing the coset SU(2)/U(1) and keeping the subgroup U(1) invariant. This belongs to

the special class of gauge-fixed theories for which the structure constants fαβγ are equal to

zero, i.e., the commutator of any two generators in the coset G/H always belong inH. This

leads to several simplifications, for example sC = s̄C = 0, and as a result, the extended

eBRST Lagrangian LeGF in Eq. 5.42 becomes the same as the eBRST one in Eq. 5.32. This

can be seen for the second term in Eq. 5.42, from the following equation,

s̄ tr
(
CC
)

= −itr
(
CB
)
, (5.55)

where we have used the anti-eBRST transformation rule s̄C = iB for the special class.

For the SU(2) Yang-Mills theory, the gauge field is split as in the following,

V a
µ τa = Aiµτi +Wα

µ τα, with a = 1, 2, 3, i = 3 & α = 1, 2. (5.56)

The generators τa = σa/2, where σa are the Pauli matrices. The ghost sector fields are a

linear combination of the generators τ1 and τ2. With the auxiliary field integrated out, the
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total Lagrangian for the gauge-fixing part is

LSU(2)
GF =

1

g̃2
tr (Dµ(A)Wµ)2

−2 tr
(
CDµ(A)Dµ(A)C

)
+ 2 tr

(
[Wµ, C][Wµ, C]

)
−tr

(
X̃
)2

. (5.57)

One may compare the above with Eqs. 5.51, 5.52, 5.53.

This concludes the discussion of eBRST gauge-fixing in the continuum. The eBRST

construction on the lattice for the general case is now described below.

5.3 Equivariant BRST on the lattice

The eBRST and anti-eBRST gauge-fixing action can be formulated on the lattice by re-

specting all the internal symmetries. Following Ref. [18], we review the lattice transcrip-

tion for the choice of eBRST gauge-fixing with G = SU(N) and H = U(1)N−1, which

is the maximal Abelian subgroup containing only diagonal generators. Another choice of

gauge-fixing could be with G = SU(N) and H = SU(N−1)×U(1), where the subgroup

still contains the maximal Abelian subgroup. Note that to evade the no-go theorem, one

needs to have the maximal Abelian subgroup, U(1)N−1 as a subgroup of H .

The gauge link on the lattice Uxµ is, as usual, related to the continuum gauge field Vµ(x)

as

Uxµ = exp(i Vµ(x)). (5.58)

For convenience, it is repeated once again that the gauge field is decomposed as V a
µ Ta =

Wα
µ Tα + AiµTi, where the index a runs over the generators in G, the index i runs over
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generators inH and the Greek index α over the generators in the coset G/H.

The eBRST and the anti-eBRST transformation rules for the lattice gauge links are

sUxµ = i (UxµCx+µ − CxUxµ) ,

s̄Uxµ = i
(
UxµCx+µ − CxUxµ

)
. (5.59)

The ghost sector fields are defined the same way as in the continuum, but with discrete

spacetime indices, and hence have the same eBRST transformations as in the continuum.

The lattice equivalent of the coset gauge field Wµ(x) isWxµ, given as

Wxµ = −i
[
UxµTiU

†
xµ, Ti

]
= −i [(1 + iVxµ)Ti(1− iVxµ), Ti] +O(V 2)

= [[Vxµ, Ti] , Ti] +O(V 2)

= Wxµ +O(V 2). (5.60)

In the last line of the above equation, we have used the following relation, for any element

A ∈ G,

[[A, Ti] , Ti] = ifjikAjH [Tk, Ti] + ifαiβAαG/H [Tβ, Ti]

= −fαiβfβiγAαG/HTγ = AG/H (5.61)

where the first term on the right hand side of the first line vanishes since H is Abelian, and

in the second line, we have used the identity

∑
iα

fiαβfiαγ = δβγ. (5.62)
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With the definition of forward and backward lattice covariant derivatives, for any field

Φ, as

D+
µ Φx = UxµΦx+µU

†
xµ − Φx,

D−µ Φx = Φx − U †x−µ,µΦx−µUx−µ,µ, (5.63)

we can now construct the lattice equivalent of the continuum gauge-fixing function, given

in Eq. 5.28. The lattice gauge-fixing function,

D−µWxµ =Wxµ − U †x−µ,µWxµUx−µ,µ (5.64)

goes to Dµ(A)Wµ in the classical continuum limit. It belongs to the coset G/H and hence,

transforms covariantly under H gauge transformations. The first term in Eq. 5.64 belongs

to the coset, since

tr (WxµTj) = −i tr
(
UxµTiU

†
xµ [Ti, Tj]

)
= 0. (5.65)

The above follows from the general relation, tr([A,B]C) = tr(A[B,C]) and the fact that

the commutator of generators of the maximal Abelian subgroup vanishes. The second term

in Eq. 5.64 also resides in the coset, as seen from

tr(TjU
†
xµ[UxµTiU

†
xµ, Ti]Uxµ) = tr([UxµTjU

†
xµ, UxµTiU

†
xµ]Ti) = tr([Tj, Ti]U

†
xµTiUxµ) = 0 .

(5.66)

The lattice off-shell gauge-fixing Lagrangian, invariant under eBRST and anti-eBRST,
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is now taken as

LLGF = −ss̄ tr
(
−2UxµTiU

†
xµTi + g̃2CC

)
. (5.67)

In the näive continuum limit, it goes to the gauge-fixing Lagrangian, given in Eq. 5.42. An

important relation, used in deriving the continuum limit, is

tr ([Ti, A][Ti, B]) = −tr
(
AG/HBG/H

)
, (5.68)

which uses the relation in Eq. 5.62. The first term in the Lagrangian can be expanded by

applying the s and s̄ variations, to obtain,

2ss̄ tr
(
UxµTiU

†
xµTi

)
=− 2 i tr(BxD

−
µWxµ)

− 2 tr
([
Ti, D

+
µCx

] [
UxµTiU

†
xµ, D

+
µCx

])
− 2 i tr

(
{D+

µCx, Cx}Wxµ

)
. (5.69)

The second term, −ss̄ tr
(
g̃2CC

)
, has the same expansion as in the continuum, given in

Eq. 5.47.

Following the discussion in the continuum, we now obtain the on-shell lattice La-

grangian density, by integrating out the auxiliary field B, to be

LL,o.s.GF =
1

g̃2
tr
(
D−µWxµ

)2

+ 2 tr
([
Ti, D

+
µCx

] [
UxµTiU

†
xµ, D

+
µCx

])
− i tr

(
2{D+

µCx, Cx}Wxµ + {Cx, Cx}D−µWxµ

)
+ g̃2

(
tr
(

(C
2

x)G/H(C2
x)G/H

)
+

3

4
tr
(
{Cx, Cx}G/H

)2 − tr(X̃2)
)
. (5.70)
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Since the quartic ghost terms in the last line of Eq. 5.70 are not amenable to numerical

simulations, we can introduce new set of auxiliary fields through a Hubbard-Stratonovich

transformation to do away with the four-ghost terms.

5.4 Avoiding the No-Go theorem

We discussed the proof of Neuberger’s no-go theorem in Sec. 1.3.2. The partition function

of a BRST-invariant gauge-fixed theory with compact gauge fields vanishes identically,

rendering the expectation value of a gauge-invariant operator to the indeterminate 0/0 form.

A crucial property of the eBRST framework is that it evades the no-go theorem and we shall

now demonstrate how this is achieved.

Introducing a parameter t as earlier, we can define the functional integral,

ZeBRST(t) =

∫
DΞ e−SGI(U)−SLGF (t;U,C,C,B), (5.71)

from which the partition function of the eBRST gauge-fixed theory can be obtained by

setting t = 1. The measure DΞ ≡ DU DBDC DC is eBRST-invariant. The term SGI is

taken to be the gauge-invariant Wilson plaquette action and the eBRST gauge-fixing action

SLGF , corresponding to the Lagrangian density in Eq. 5.67, is found by setting t = 1 in the

function,

SLGF (t) =
∑
x

(
t s tr(2CF (U))− g̃2 ss̄ tr(CC)

)
. (5.72)

For the following discussion, the gauge-fixing function F (U) can be chosen arbitrarily,

given it satisfies the basic requirements discussed in Sec. 5.2.2. One can note that, similar

to as mentioned in Sec. 1.3.2, the parameter t cannot be multiplied to the second term in

113



Eq. 5.72, as it contains the B-dependent terms, and setting t = 0 in that case would be

ill-defined.

Proceeding similarly as in Eq. 1.102, we again find that dZeBRST(t)/dt = 0, due to

integration over a total eBRST variation. Now, setting t = 0, we find that

ZeBRST(0) =

∫
DU e−SGI(U)

∫
DBDC DC exp

[
g̃2
∑
x

ss̄ tr(C̄C)

]
, (5.73)

which shows that ghost fields are present in the integrand, unlike the case for BRST. It

can now be shown that the above partition function does not vanish. The proof of this

statement is technical and the reader is referred to Refs. [17, 18]. An essential ingredient

for the partition function to be non-vanishing, is the presence of the quartic ghost terms in

the eBRST action. An important point to note here is that the proof holds on the condition

that the subgroup H contains the maximal Abelian subgroup of the SU(N) gauge group.

Since dZeBRST(t)/dt = 0, we, finally, have ZeBRST(0) = ZeBRST(1) 6= 0, and as a

result, the eBRST theory successfully circumvents the no-go theorem.

An important corollary of the above exercise is the existence of an invariance theorem

[17,18], which states that the expectation value of a gauge-invariant operator obtained in a

gauge theory without gauge-fixing, is exactly equal to that obtained for the same operator

in an eBRST gauge-fixed theory. This result is rigorous for a finite lattice. The partition

function ZeBRST is equal to the partition function of the unfixed theory up to a non-zero

multiplicative constant, since the lattice gauge fields are decoupled from the ghost sector in

Eq. 5.73 and ZeBRST(0) = ZeBRST(1). We will demonstrate the validity of the invariance

theorem explicitly through our numerical investigation, at least for a region of the parameter

space of the SU(2) eBRST theory.

Another consequence of the above proof is that the reduced model of the theory (ob-
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tained by switching off the transverse degrees of freedom) is a topological field theory, as

it does not depend on the gauge-fixing coupling [17, 18]. It then follows rigorously that,

the eBRST theory is unitary if the underlying unfixed theory is.

For constructing chiral gauge theories with the eBRST prescription, one also needs to

gauge-fix the unfixed Abelian subgroup H . This can now be done in the gauge-fixing ap-

proach described in Chapter 3. The construction of ChLGT for the general SU(N) case is

described in Ref. [18]. It is remarked that gauge-fixing the remaining invariant subgroup

breaks the eBRST invariance explicitly and apparently, unitarity in a finite volume. How-

ever, unitarity in the total gauge-fixed theory was established to all orders in perturbation

theory [18]. The question of non-perturbative unitarity can only be answered through non-

perturbative calculations. Our present work on the lattice is for a pure SU(2) gauge theory

gauge-fixed in the coset SU(2)/U(1), in the eBRST prescription.

5.5 eBRST SU(2) gauge theory on the lattice

The lattice gauge-fixing action for SU(2) simplifies considerably from the general SU(N)

case. As we have seen in Sec. 5.2.5, the extended eBRST algebra reduces to the eBRST

algebra for the special case of SU(2). For the SU(2) theory, the lattice gauge link is

Uxµ = exp (iVµ(x)), where the algebra-valued gauge field is given by Eq. 5.56. Note that

the convention for the indices still remains the same. The on-shell gauge-fixing action is
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given by (cf. Eq. 5.70),

So.s.gf =
1

g̃2

∑
x

tr
(
D−µWxµ

)2

− 2
∑
x

tr
( [
Uxµτ3U

†
xµ, D

+
µCx

] [
τ3, D

+
µCx

]
+ i{Cx, D

+
µCx}Wxµ

)
− g̃2

∑
x

tr(X̃2
x). (5.74)

The four-ghost term can now be traded off for an auxiliary field ρ and a bilinear ghost

term, by the following Hubbard-Stratonovich transformation,

−g̃2
∑
x

tr(X̃2
x) = − g̃

2

2

∑
x,i

(fαβiCxαCxβ)2 →
∑
x,i

( g̃2

2
ρ2
xi + g̃ρxifαβiCxαCxβ

)
, (5.75)

where fαβi are the real antisymmetric structure constants of SU(2) algebra. This transfor-

mation now makes the action suitable for numerical investigation. It is to be noted that, for

our case of SU(2), the auxiliary field has only one component, i.e., ρx = ρx3τ3.

The total eBRST gauge-fixed SU(2) action on the lattice, with the auxiliary field ρ, is

thus given as

S = SW + Sgf , (5.76)

where SW is the usual Wilson plaquette action,

SW =
β

2

∑
x,µ<ν

Re tr [1− Uxµν ] , (5.77)
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where β = 4/g2. The eBRST gauge-fixing term is given as

Sgf =
1

2g̃2

∑
xα

(D−µWxµ)2
α +

1

2g̃2

∑
x

(ρx3)2 +
∑
xyαβ

CxαMxα,yβCyβ

= κ̃
∑
xα

(D−µWxµ)2
α + κ̃

∑
x

(ρx3)2 +
∑
xyαβ

CxαMxα,yβCyβ, (5.78)

where κ̃ ≡ 1/2g̃2 = 1/2ξg2, has been introduced as in the convention of Chap. 3. The

second line in the right hand side above is the starting point of the numerical calculation.

The simulation is done using the parameters β and κ̃. This will be denoted as the full theory

from now onwards, as opposed to the reduced model to be discussed in the next section.

A mass term for the lattice coset gauge fieldWxµ and for the ghost field Cx, together

invariant under on-shell eBRST transformations, can be added in the action in Eq. 5.76, as

Smass = m2
∑
x

[
−4 κ̃ tr(Uxµτ3U

†
xµτ3) + 2 tr(CxCx)

]
. (5.79)

The ghost matrix, M(U, ρ) = Ω(U) + R(ρ), is real, with the gauge-field dependent Ω

being symmetric and Rxα,yβ = δxyρx3f3αβ being antisymmetric in the coset indices. The

matrix element Ωxα,yβ is explicitly given by

Ωxα,yβ = 2δαβδxytr
(
U †y−µ,µτ3Uy−µ,µτ3 + Uyµτ3U

†
yµτ3

)
− 2εαδεβγδx,y−µtr

(
UyµτγU

†
yµτδ

)
− 2εαγεβδδx,y+µtr

(
UyµτγU

†
yµτδ

)
. (5.80)

A parameterization of the SU(2) group-valued gauge link U used later in our numerical
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simulation is

a01 + i ajσj =

 a0 + i a3 a2 + i a1

−a2 + i a1 a0 − i a3

 with a2
0 + a2

1 + a2
2 + a2

3 = 1, (5.81)

where σj are the Pauli matrices and 1 is the 2× 2 identity matrix. This requires 4 numbers

to be stored in the computer for each gauge link Uxµ.

5.5.1 Reduced model

The so-called reduced model is the theory on the orbit, i.e., an interacting theory of the

longitudinal gauge degrees of freedom (lgdof s) and ghost fields. The reduced limit is taken

by setting the gauge coupling g = 0. As a consequence of the invariance theorem, the

reduced model is found to be topological field theory (TFT), as the partition function of the

reduced model is just a number independent of the gauge-fixing coupling g̃.

As described in Chapters 1 and 3, the full theory action S[U ] is given a gauge transfor-

mation to obtain S[φ†Uφ] with lgdof s φ. The gauge fields U are then set to 1 to arrive at

the reduced model action Sred. The action of the reduced model of the eBRST gauge-fixed

SU(2) theory, with lgdof s as group-valued φ fields, is given as follows:

Sred = Sred
gf , (5.82)
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where

Sred
gf = 2κ̃

∑
x

tr
[
− 2

(
φxφ

†
x+µτ3φx+µφ

†
xτ3 + φxφ

†
x−µτ3φx−µφ

†
xτ3

)
× (ν−term)

+
1

2

(
φxφ

†
x+µτ3φx+µφ

†
x + φxφ

†
x−µτ3φx−µφ

†
x

)
× (ν−term)

]
+ κ̃

∑
x

(ρx3)2 +
∑
xyαβ

CxαM
red
xα,yβCyβ, (5.83)

The φ-field version of the eBRST-invariant mass term of the full theory (see Eq. 5.79),

Sred
mass = m2

∑
x

[
−4 κ̃ tr

(
φxφ

†
x+µτ3φx+µφ

†
xτ3

)
+ 2 tr

(
CxCx

)]
. (5.84)

can also be added to the action in Eq. 5.82.

The real and symmetric reduced-model-ghost matrixM red
xα,yβ acting on any coset vector,

such as the ghost field C, produces

C ′xα = M red
xα,yβCyβ. (5.85)

The new vector C ′xα can be written explicitly in several parts, as follows:

Diagonal part :

C ′xα = 2 tr
(
φxφ

†
x−µτ3φx−µφ

†
xτ3 + φxφ

†
x+µτ3φx+µφ

†
xτ3

)
Cxα + ρx3 f3αβ Cxβ , (5.86)
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Off-diagonal part :

C ′x1 =− 2 tr
(
φx+µφ

†
x+2µτ2φx+2µφ

†
x+µτ2

)
Cx+µ,1

+ 2 tr
(
φx+µφ

†
x+2µτ1φx+2µφ

†
x+µτ2

)
Cx+µ,2

− 2 tr
(
φx−µφ

†
xτ2φxφ

†
x−µτ2

)
Cx−µ,1

+ 2 tr
(
φx−µφ

†
xτ2φxφ

†
x−µτ1

)
Cx−µ,2 , (5.87)

C ′x2 = 2 tr
(
φx+µφ

†
x+2µτ2φx+2µφ

†
x+µτ1

)
Cx+µ,1

− 2 tr
(
φx+µφ

†
x+2µτ1φx+2µφ

†
x+µτ1

)
Cx+µ,2

+ 2 tr
(
φx−µφ

†
xτ1φxφ

†
x−µτ2

)
Cx−µ,1

− 2 tr
(
φx−µφ

†
xτ1φxφ

†
x−µτ1

)
Cx−µ,2 . (5.88)

The eBRST transformation rules are modified for the reduced model. In the absence of

the gauge link U , the φ fields now have an eBRST transformation,

sφx = −iCxφx , (5.89)

under which the action is eBRST-invariant.

The reduced model is invariant under the remnant local U(1) symmetry, corresponding

to the unfixed part of the theory. The local U(1) transformation in the reduced model acts

on the φ field from the left, hence denoted here as U(1)L:

φ′x = hxφx, hx = exp(iθxτ3) ∈ U(1)L. (5.90)

The action is also invariant under a global SU(2)R transformation, acting on the φ fields
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from the right, since all the terms have the φ fields present as φφ† combination:

φ′x = φxg, g ∈ SU(2)R. (5.91)

5.5.2 Possible spontaneous symmetry breaking in the re-

duced model

Being a TFT, the partition function of the reduced model is independent of the gauge-

fixing coupling. This raises the question that, whether the effective potential of the reduced

model can develop new minima as a function of the coupling, or in other words, whether

the reduced model can display a spontaneous symmetry breaking (SSB).

To understand why one should even consider the possibility of a SSB in a TFT like

the reduced model, we have to note that it has been shown by analysis of perturbative 1-

loop renormalization group (RG) equations in [19] that the coupling g̃ in the gauge fixing

sector (g̃2 = ξg2 = 1/(2κ̃), where ξ is the gauge fixing parameter) is also asymptotically

free, just like the non-Abelian gauge coupling g. Hence, dimensional transmutation takes

place and both these couplings can effectively become strong at infrared scales Λ and Λ̃

corresponding to g and g̃. According to the findings in [19], two possibilities exist: one

where the Λ parameters are of the same order, the other where the Λ̃ � Λ. Obviously, it

is an interesting question to ask about the nature of the strong coupling theory on the orbit,

i.e., the reduced model. Can strong dynamics of the lgdof lead to a SSB?

It was demonstrated in Ref. [20] through a toy model, that a phase transition can indeed

occur in a TFT through a non-trivial effective potential. A seed is necessary to force the

symmetry breaking. Similarly in the reduced model, the broken phase can be obtained in

a finite volume with a symmetry breaking seed, which is then turned off in the thermo-
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dynamic limit and the system stays in the broken phase. The authors provided evidence

of the existence of a broken phase in the reduced model through a combination of strong

coupling and mean-field techniques: the global SU(2)R symmetry of the action sponta-

neously breaks in the manner, SU(2)R → U(1)R. Although the existence of the SSB can

only be verified through a controlled non-perturbative calculation, this and its effect on the

full theory raises very interesting possibilities. The numerical simulations in this thesis are

aimed at finding the truth about these possibilities.

The quantity Ãx [20] can be used to signal the symmetry breaking of the global SU(2)R →

U(1)R. The expectation value

〈Ãx〉 = 〈φ†xτ3φx〉 (5.92)

transforms in the adjoint representation of SU(2)R and is invariant under the local U(1)L

transformation. It is to be noted that, Ãx is not invariant under the modified eBRST trans-

formation, but since it is not a total eBRST variation, it cannot signal a possible sponta-

neous breaking of eBRST symmetry.

The object Ãx is a 3-vector of norm 0.5 (see Eq. 5.97), defined at every lattice point

x, with components 1
2
tr(Ãxτi), i = 1, 2, 3. In an unbroken SU(2)R symmetric phase, the

Ãx vectors, at the lattice sites, point at random directions in 3 dimensions. As a result,

the average Ã vector (averaged over all the lattice sites), for a single configuration, is a

null vector. On the other hand, in the broken phase, the average Ã is a vector, with non-

zero components, pointing in a certain direction. If the system is frozen, i.e., devoid of

any quantum fluctuations, each and every Ãx vector in a configuration points in the same

direction. As we approach the phase transition from the broken to unbroken phase, some of

the Ãx vectors start to deviate from the direction, in which rest of the vectors are pointing,

and become random. Consequently, the length of the average Ã vector starts to diminish
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from 0.5. Hence, we can characterize the two different phases by studying the length of the

average Ã vector averaged over many ensembles, given for a lattice volume V by

〈|Ã|〉 =

〈√√√√ 3∑
i=1

(
1

V

∑
x

πxi

)2〉
, where πxi =

1

2
tr
(
Ãx τi

)
. (5.93)

The values of 〈|Ã|〉 would be

〈|Ã|〉 = 0 in the unbroken phase,

≤ 0.5 (explained below) in the broken phase. (5.94)

As is usually done in a numerical study, a symmetry breaking seed

Sseed = −h tr
(
τ3Ãx

)
, (5.95)

is introduced in the reduced model action (Eq. 5.82). The term explicitly breaks the

SU(2)R symmetry and forces the Ãx vectors to point along the τ3 direction. It is invariant

under the local U(1) symmetry and breaks the eBRST symmetry. At a fixed lattice vol-

ume, the order parameter is now studied with the seed being tuned to zero. The process

is then ideally repeated at different volumes, to conclusively identify a given phase. If a

seed is used, it is sufficient to compute the expectation value of π3, the τ3 component of the

average Ã for each configuration.

The φx fields can also be parameterized the same way as in Eq. 5.81. In this parame-
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terization, the components πi of Ãx are

π1 = a0a2 + a1a3 ,

π2 = a2a3 − a0a1 ,

π3 =
1

2
(a2

0 − a2
1 − a2

2 + a2
3) . (5.96)

From above, we can see that at each site

|Ã| =
√
π2

1 + π2
2 + π2

3 =
1

2
(a2

0 + a2
1 + a2

2 + a2
3) = 0.5 , (5.97)

since
∑
i

a2
i = 1.

5.5.3 Effect on the Full theory

With the gauge coupling turned on for the full theory, the SU(2)R symmetry becomes

local from global, as it was in the reduced model and therefore, there is no local order

parameter. Point to note here is that, the SU(2)R symmetry of the full theory becomes

explicit only in the Higgs picture, using the language of Chapter 3, i.e., after giving a

gauge transformation to the action and the gauge non-invariant terms thereby picking up

the lgdof s. It is interesting to ask now is whether the SSB in the reduced model has any

effect on the phase diagram of the full theory. This basically amounts to asking whether

the strong dynamics of the lgdof affects physics in any way. From the invariance theorem,

which is a rigorous result on a finite lattice, one can argue that such a scenario is not

possible, since the physical observables of the eBRST gauge-fixed theory are exactly the

same as in the unfixed theory in any finite volume.

However, this may not be the complete answer. By introducing an explicit eBRST
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symmetry breaking term, the invariance theorem ceases to hold in the eBRST theory. If we

now take the thermodynamic limit and then turn off the symmetry breaking term, there can

be two possible outcomes. Either the invariance theorem again becomes applicable and the

system gives the physics of the usual confining phase or, the system enters a new phase dif-

ferent from the previous one. The question of whether the invariance theorem still holds or

not, is a dynamical one and can only be addressed through a non-perturbative calculation.

In Ref. [20], through a combination of strong coupling and mean field techniques, evidence

was shown for the existence of a novel phase in the full theory. In this novel phase denoted

as the Higgs phase, the two Nambu-Goldstone bosons, associated with spontaneous sym-

metry breaking of the global SU(2)R → U(1)R, are eaten up through a Higgs mechanism

to generate two massiveW bosons (gauge bosons in the coset space) and a massless photon

as evidence of the local U(1)-invariance. As seen in Eq. 5.79, the mass of the W bosons is

allowed by the eBRST symmetry, provided an appropriate mass for the ghost fields is also

generated. The existence of the eBRST symmetry is desirable, because it is necessary for

the theory to be unitary.

g∼

β0 ∞

β
∼

0

0
0

∞

∞
∞ g

A B
g∼

β0 ∞

β
∼

0

0
0

∞

∞
∞ g

BA

Figure 5.1: Possible scenarios of phase diagrams [20] of the eBRST gauge-fixed SU(2)
theory. The horizontal axes denote the bare gauge coupling and the vertical axes stand for
the bare gauge-fixing coupling of the theory.
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In Ref. [20], from where Fig. 5.1 has been taken, the authors employed a combina-

tion of strong coupling and mean field methods and speculated the existence of the two

scenarios for the phase diagram of the eBRST gauge-fixed theory. In Fig. 5.1, the phase

A denotes the usual confining phase of the SU(2) theory, and the phase B indicates the

novel Higgs phase. As already introduced, the coupling β is related to the gauge coupling

g as β = 4/g2, whereas β̃ is associated to the gauge-fixing coupling g̃ through the relation

β̃ = 1/g̃2. The phase diagram on the left panel shows that the Higgs phase extends to the

critical point, g = g̃ = 0, where a continuum limit can be taken from within the Higgs

phase. On the other hand, the figure on the right panel shows that the B phase does not

extend to the critical point and ends at some non-zero g̃ for vanishing g, meaning that the

new phase in the right panel is just a lattice artefact. It has been argued that both these

scenarios are possible and the correct one can only be found out through non-perturbative

numerical investigation. It is instructive to note that the reduced model lies along the right

vertical axis in both the panels in the above figure.

5.6 Details of the numerical implementation

In this section, we discuss the numerical implementation of the full theory and the reduced

model. As we will see, there exist serious challenges with regard to simulating the eBRST

theory on the computer, making it a very hard problem. We have used Hybrid Monte

Carlo (HMC) to study both the full theory and the reduced model, including the ghosts

dynamically. For the full theory, the stochastic Tunneling HMC (sTHMC) algorithm has

also been employed, which is a first-time implementation of the algorithm. For the ghost

matrix inversions, we have employed the BiCGStab algorithm. We have used Message

Passing Interface (MPI), to parallelize our algorithms for computational efficiency. Using
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MPI, the lattice is distributed among several computational nodes of the computer and

the local computations in each node are done in parallel. For calculations that require

information of the lattice from neighboring nodes, the instructions for message passing

between different nodes need to be explicitly encoded in the numerical program, which is

a rather non-trivial task. The basic MPI framework of the coding has been partly based on

Ref. [23].

5.6.1 HMC

The ghost fields are Grassmann-valued and are not directly implemented in the computer.

As discussed in Sec. 2.2, they can be replaced by real-valued fields in the pseudofermion

method. The integration of the ghost fields in the partition function can be done as follows,

∫
DCDC exp(−CMC) = detM = |detM | sign(detM). (5.98)

Since elements of M are real, |detM | can be simulated using HMC by introducing a real-

valued scalar (“pseudo-ghost”) field ϕ,

|detM | =
√

det(MMT ) =

∫
Dϕ exp

(
−(1/2)ϕT (MMT )−1ϕ

)
. (5.99)

Note that the notation ϕ has also been used for pseudofermions in Sec. 2.2 and, is different

from the reduced model φ field.
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The partition function of the full theory now becomes

Zfull =

∫
DUDϕDρ exp

(
− [SW + κ̃

∑
xα

(D−µWxµ)2
α + κ̃

∑
x

(ρx3)2

+
1

2

∑
xyαβ

ϕxα(MMT )−1
xα,yβ ϕyβ]

)
sign(detM). (5.100)

From the above, we see that the sign of the determinant ofM can be kept out of the Molecu-

lar Dynamics (MD) evolution but, the sign has to be tracked for calculating any expectation

value. It can be noted that we only need to track the sign-changes, since the overall sign

gets canceled among the numerator and denominator of the expectation value. However,

tracking the sign of the determinant is not an easy task. Calculating the determinant ex-

plicitly is not a solution since the computational cost is outrageously high. Since we have

no prior knowledge about the eigenvalue distribution of the ghost matrix, the question of

effectively applying different sign-tracking numerical methods, is still an open one. More-

over, close to a sign change of the ghost determinant, the ghost matrix will have near-zero

eigenvalues creating problems in the HMC updation process. We have tried the sTHMC

algorithm in the hope that it can address these issues, to be discussed in the next section.

In our HMC code, we use a slightly modified partition function Z ′, the same as (5.100)

except sign(detM),

Z ′ ≡
∫
DUDϕDρ exp

(
−[SW + S ′gf +

1

2
ϕT (MTM)−1ϕ]

)
(5.101)

where S ′gf = κ̃
∑
xα

(D−µWxµ)2
α + κ̃

∑
x

(ρx3)2. If the ghost determinant does not change sign

in a simulation, we will be able to obtain exact results with the above partition function Z ′.

We have used the HMC algorithm ignoring the sign of the ghost determinant, to calculate

expectation value of a gauge-invariant operator, the plaquette, in a reasonably wide region
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of the parameter space of the full theory, and checked if the invariance theorem is satisfied.

If the determinant changes sign, the plaquette value thus computed would be different

from that in the unfixed theory. The above procedure gives us a handle to identify regions

of parameter space where sign changes of the determinant are more likely.

The gauge and the auxiliary fields need to be updated in the HMC algorithm with their

corresponding conjugate momenta. The Hamiltonian used in the HMC algorithm, for the

full theory, is thus

H = S[U, ρ] +
1

2

∑
xµ

tr(πxµ)2 +
1

2

∑
x

(π̃x3)2

= S[U, ρ] +
∑
xµa

(πaxµ)2 +
1

2

∑
x

(π̃x3)2 (5.102)

where S[U, ρ] = SW + S ′gf + 1
2
φT (MTM)−1φ. The momentum, conjugate to the link

variable Uxµ, is a 2 × 2 matrix denoted by πxµ = πaxµσa, which is algebra-valued and

has components for all the generators of SU(2) group. But the auxiliary field ρx has a

conjugate momentum with only one component with respect to τ3, given as π̃x = π̃x3τ3.

Henceforth, by π̃x we will mean π̃x3, and ρx will mean ρx3 unless explicitly mentioned.

The implementation of HMC is done similarly for the reduced model where the φ fields

are updated along with the corresponding momenta in a MD trajectory, instead of the gauge

link U . The ghost fields are updated exactly as described for the full theory. We generally

used quite small time-steps in the MD trajectory, as this was necessary to obtain reasonable

acceptance rates. However, this helped us identify regions of the parameter space in the

reduced model (and also in the full theory) where one or more eigenvalues of the ghost

matrix are approaching zero, since this approach will be signalled by a divergence in the

number of iterations for the matrix inversion during a MD trajectory.
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5.6.2 Stochastic Tunneling HMC

To track the sign of the determinant of the ghost matrix, we have done a first-time imple-

mentation of the stochastic tunneling HMC algorithm (sTHMC) proposed by Golterman

and Shamir in [22]. The basic aspects of the algorithm have been discussed earlier in

Chapter 2 Sec. 2.3.

In the partition function Z, the integration of ghost fields is done as in Eq. 5.98, to

obtain

Z =

∫
DUDρ exp

(
−[SW + S ′gf ]

)
detM

=

∫
DUDρ exp (−S) detM. (5.103)

Following the THMC prescription, the determinant of the ghost matrix M can be decom-

posed as

detM = α−kdetD detA. (5.104)

The matrix D is also a n× n matrix like M , while A is a k × k matrix (k < n), given as

D = M + αPQT , A = α− α2QTD−1P, (5.105)

where P and Q are n× k “blocking” matrices, and α is a constant. For our case of SU(2)

theory, n is equal to 2V , where V is the lattice volume. Rewriting the partition function

Z, by using the split form of the determinant in Eq. 5.104 and a Boltzmann weight for the
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blocking matrices, we get

Z = α−k
∫
DΘ exp

(
− S[U, ρ]− Sker[P,Q]

)
× (detD)× (detA)

= α−k
∫
DΘDϕ exp

(
−[S +

1

2
ϕT (DTD)−1ϕ+ Sker]

)
|detA| sign(detA× detD)

= α−k
∫
DΘDϕ exp

(
−[S +

1

2
ϕT (DTD)−1ϕ− log |detA|+ Sker]

)
× sign(detA× detD), (5.106)

where DΘ = DUDρDP DQ and Sker is explained below.

We aim to decompose the determinant of M in such a way, that the near-zero eigen-

values of the ghost determinant, which are responsible for sign changes, are captured by

A. The deterministic version of THMC [22] is based on the construction of the block-

ing vectors, through explicit determination of the lowest eigenvectors. In that process,

the ghost matrix would be deflated exactly, thereby, lifting the lowest eigenmodes. The

zero-crossings of the near-zero eigenvalues are tracked explicitly to account for the sign

changes. However, the above process requires calculation of the eigenmodes at every MD

step, requiring a heavy computational overhead.

To overcome the above difficulty, a stochastic version of THMC was proposed in

Ref. [22]. Here, the near-zero eigenmodes need to be computed only twice, once before

and once after, in a MD trajectory. The blocking matrices are obtained as a combina-

tion of stochastically generated vectors and the initial computed eigenvectors. However,

the probability distribution of the constituent blocking vectors depends on a parameter γ,

which is of the order of the lattice volume. For the stochastic process to have a reasonable

acceptance, γ should be O(1). Having γ ∝ V , therefore, means vanishing acceptance.
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A way out1 is by simply taking the normalized blocking vectors from a purely Gaussian

distribution. We have used this modified version, denoted by sTHMC, in our work.

The sTHMC algorithm, that we use, implements blocking vectors, independent of the

eigenvalue spectrum of the ghost matrix. Tuning the parameters α and k, we may obtain

non-zero overlap of the Gaussian blocking vectors with the near-zero eigenmodes of the

ghost matrix, thereby deflating the matrix. If all the near-zero eigenvalues are thus captured

by the matrix A, we can explicitly calculate the sign of the determinant of A to determine

the overall sign of the ghost determinant. However, in practical situations, only a fraction

of the eigenvalues would be present inA and the remaining inD. If there are remnant near-

zero modes in D, the zero-crossings would generally be avoided by the MD evolution, due

to the reasons discussed in Sec. 2.3 and would lead to loss of ergodicity. However, we

have the invariance theorem as a check and we can estimate the degree of deviation. Since

we have no idea about the eigenvalue distribution of the ghost matrix, the above procedure

may shed light on the nature of the eigenvalues near zero. Similar to HMC, we simulate

using another partition function,

Z ′′ = α−k
∫
DΘDϕ exp

(
−[S +

1

2
ϕT (DTD)−1ϕ− log |detA|+ Sker]

)
(5.107)

which is Z sans the sign of determinant of A times D. By tracking the sign of determinant

of matrix A, the observable with respect to Z can be calculated by a reweighting procedure

described later.

In sTHMC, the n × k blocking matrices P and Q are composed of k number of unit

norm n-vectors p(x) and q(x) respectively. To generate normalized Gaussian random n-

vector p(x), one needs to pick each element from the distribution exp(−np(x)2/2), which

1Pointed out by the authors of Ref. [22] through private communication.
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has a standard deviation σ = 1/
√
n. The blocking kernel action,

Sker =
n

2

∑
x

(
p(x)2 + q(x)2

)
, (5.108)

in the partition function Z ′′ (and also Z) remains unchanged throughout, in a given MD tra-

jectory since it does not depend on the gauge fields. Hence, it does not affect the acceptance

rate and one ignores the blocking kernel action for the final accept/reject step.

The accept/reject step is finally done with the Hamiltonian, given as

H = HMD − log |detA|, (5.109)

where the Hamiltonian for the MD evolution, HMD, is given by

HMD = S +
1

2
ϕT (DTD)−1ϕ+

1

2

∑
xµ

tr(πxµ)2 +
1

2

∑
x

(π̃x3)2. (5.110)

The fields π and π̃ are the corresponding conjugate momenta of the gauge and auxiliary

field ρ respectively. One, therefore, needs to exactly calculate the determinant of the k × k

matrix, A, twice, once at the start of the MD steps and once at the end. Before calculating

the determinant of A, one also needs to perform k number of matrix inversions of D with

respect to k number of p(x) vectors, as can be seen from equation 5.105. Hence, taking

k too large would mean longer computational time and also, poorer acceptance rate as the

matrix D changes too much from M .

The steps of the sTHMC algorithm for each MD trajectory is as follows (cf. Sec. 2.2):

1. At the beginning of each MD step, the n-vectors, k in number for each blocking ma-

trices P and Q, are generated from a Gaussian distribution, along with the conjugate
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field momenta.

2. The initial Hamiltonian Hi is then computed with the D matrix in the ghost term,

instead of matrixM . The determinant of the initial k×k matrix,A, is calculated. The

blocking matrices remain constant throughout the MD steps and hence, the blocking

kernel action does not require to be computed.

3. The MD steps are now performed with leapfrog update of the fields and conjugate

momenta respectively. All the force calculations are done with D matrix instead of

M .

4. At the end of the MD steps, the final Hamiltonian Hf with the determinant of the

final A matrix is now computed. The accept/reject step is now performed with the

following probability,

exp(−∆H) = exp(Hi,MD −Hf,MD)
detAi
detAf

, (5.111)

with ∆H = Hf −Hi being the change in the Hamiltonian.

The expectation value of an operatorO with respect to the partition function Z can now be

obtained as

〈O〉Z =
〈 sign(detA× detD)O〉Z′′
〈 sign(detA× detD)〉Z′′

' 〈 sign(detA)O〉Z′′
〈 sign(detA)〉Z′′

, (5.112)

where in the second step, we have used the assumption that the sign of detD, whether

positive or negative, does not change over the MD trajectories and therefore, cancels.
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The sign of the determinant of A for each MD step, to be used in Eq. 5.112, can be

extracted as follows. The following steps are implemented only after the simulation has

equilibrated and the measurements of the observable is to be started :

1. At the start of the first MD trajectory, the matrixAi,1 is constructed from the blocking

vectors P1 and Q1 on the initial gauge configuration {Ui,1} and its determinant is

calculated explicitly.

2. At the end of the trajectory, on the final gauge configuration {Uf,1}, the matrix Af,1

is again constructed from the same constant blocking vectors P1 and Q1. The deter-

minant of Af,1 is computed which is required for the accept/reject step (Eq. 5.111).

3. For the first measurement, the sign of the determinantA1 to be used for measurement

is

sign(detA1) ≡ sign(detAi,1)× sign(detAf,1). (5.113)

4. For the nth measurement, if the configurationUf,n at the end of the nth MD trajectory

is accepted, the sign of the determinant An is taken to be

sign(detAn) ≡ sign(detAn−1)× sign(detAi,n)× sign(detAf,n). (5.114)

If rejected, the sign of the last accepted MD step is taken.

5. After N measurements, we obtain the expectation value of gauge-invariant O in Eq.
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5.112 from the following,

〈 sign(detA)O〉Z′′ =
1

N

N∑
l=1

sign(detAl)Ol , (5.115)

〈 sign(detA)〉Z′′ =
1

N

N∑
l=1

sign(detAl) . (5.116)

From the above, we see that the overall sign of the determinant is not taken into con-

sideration and only the change in sign is tracked. The overall sign can be taken out of the

numerator and denominator of the expectation value in Eq. 5.112 and thus can be cancelled.

5.6.3 Force terms in full theory

The force terms of the full theory, used in the MD trajectory (cf. Sec. 2.2), are explicitly

given in the following subsections. The HMC and sTHMC force terms are exactly the

same, except that the ghost matrix M in case of HMC is replaced by the deflated ghost

matrix D for sTHMC.

Gauge field force

The gauge force term F [U,ϕ], obtained by differentiating the MD Hamiltonian by the

gauge fields, is given as the sum of the following terms,

Fzν [U,ϕ] = (FW [U ] + Fgf [U,ϕ] + Fmass[U ])zν , (5.117)

where FW corresponds to the Wilson action and Fgf to the gauge-fixing term in the action.

The force term corresponding to mass term in the action (Eq. 5.79) is also shown here. The
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expression for FW is given as follows

(FW )zν =
β

4

(
(UzνAzν − A†zνU †zν

)
− β

8
tr
(
(UzνAzν − A†zνU †zν

)
, (5.118)

where A is the sum of adjacent staples.

The Fgf term in (5.117) contains two contributions - one from the gauge-fixing term

and another from the ghost term. The contribution from the gauge-fixing term is given as

(Fgf )xµ = 2κ̃
([
Uxµτ3U

†
xµ, (4τ3Ax −Bx)

]
+
[
Uxµ(4τ3Cxµ −Dxµ)U †xµ, τ3

])
, (5.119)

where

Bx =
∑
ν

(
Uxντ3U

†
xν + U †x−ν,ντ3Ux−ν,ν

)
,

Dxµ =
∑
ν

(
Ux+µ,ντ3U

†
x+µ,ν + U †x,ντ3Ux,ν

)
,

Ax = Bxτ3 and Cxµ = Dxµτ3. (5.120)

The contribution to the gauge force from the ghost term is given as

(Fgf )xµ = 2F 33
xµ −

(
F 11 + F 12 + F 21 + F 22

)
xµ
, (5.121)

where

F 33
xµ =

[
Uxµτ3U

†
xµ, τ3

]∑
α

{
(MTX)xαX

T
xα + (MTX)x+µ,αX

T
x+µ,α

}
, (5.122)
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F 11
xµ =

[
Uxµτ1U

†
xµ, τ1

] {
(MTX)x2X

T
x−µ,2 + (MTX)x2X

T
x+µ,2

+Xx2(MTX)Tx−µ,2 +Xx2(MTX)Tx+µ,2

}
, (5.123)

F 22
xµ =

[
Uxµτ2U

†
xµ, τ2

] {
(MTX)x1X

T
x−µ,1 + (MTX)x1X

T
x+µ,1

+Xx1(MTX)Tx−µ,1 +Xx1(MTX)Tx+µ,1

}
, (5.124)

F 12
xµ = −

[
Uxµτ1U

†
xµ, τ2

] {
(MTX)x2X

T
x−µ,1 + (MTX)x1X

T
x+µ,2

+Xx2(MTX)Tx−µ,1 +Xx1(MTX)Tx+µ,2

}
, (5.125)

F 21
xµ = −

[
Uxµτ2U

†
xµ, τ1

] {
(MTX)x1X

T
x−µ,2 + (MTX)x2X

T
x+µ,1

+Xx1(MTX)Tx−µ,2 +Xx2(MTX)Tx+µ,1

}
. (5.126)

In the above, X = (MMT )−1ϕ. The calculation of the vector X requires BiCGStab

inversion of the matrix product (MMT )−1 at every MD step.

The force for the mass term in Eq. 5.79 is given as

(Fmass)xµ = 4κ̃m2
[
Uxµτ3U

†
xµ, τ3

]
. (5.127)

Auxiliary field force

The auxiliary field force term is obtained only from the gauge-fixing term as

F̃z[ρ, ϕ] =
∂

∂ρz
(Sgf )

=
∂

∂ρz

(
κ̃
∑
x

(ρx)
2 +

1

2

∑
xyαβ

ϕxα(MMT )−1
xα,yβ ϕyβ

)

= 2κ̃ρz −
1

2

∑
xy

(
(MMT )−1ϕ

)T
x

(
∂R

∂ρz
MT +M

∂RT

∂ρz

)
xy

(
(MMT )−1ϕ

)
y
.

(5.128)
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The derivative ∂R/∂ρ is given as

∂Rxα;yβ

∂ρz
=

∂

∂ρz
(δxyεαβρx)

= δxyεαβδxz . (5.129)

Using (5.129) and the definition of X from above, we get

F̃z = 2κ̃ρz −
{
Xz1(MTX)z2 −Xz2(MTX)z1

}
. (5.130)

5.6.4 Force terms in Reduced model

In the MD trajectory, the reduced model updation Hamiltonian is

H = Sred[φ, ρ] +
1

2

∑
x

tr(π2
x) +

1

2

∑
x

(π̃x)
2, (5.131)

where πx = πaxσ
a is the conjugate momentum to the φ field and π̃ is that to the ρ field. The

discretized equations of motion in MD time for the fields and conjugate momenta are

φx(t+ ε) = φx(t) + iεφx(t), iπx(t+ ε) = iπx(t)− εFx(t) ,

ρx(t+ ε) = ρx(t) + επ̃x(t), π̃x(t+ ε) = π̃x(t)− εF̃x(t) , (5.132)

where t denotes the MD time index and ε is a small discrete time step.
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φ field force

The force term Fx required for the updation of πx fields in Eq. 5.132 can be written as two

major terms corresponding to the reduced model action in Eq. 5.82,

Fx = (Fgf )x + (Fmass)x. (5.133)

The Fgf term consists of

Fgf = F I
gf + F gh

gf , (5.134)

where F I
gf corresponds to the first term, and F gh

gf to the third term i.e. ghost term, in the

reduced model action in Eq. 5.83. Explicitly, we have

F I
gf = F Ia

gf + F Ib
gf + F Ic

gf , (5.135)

with

(F Ia
gf )x = 8κ̃ [Bx, τ3Bxτ3] ,

(F Ib
gf )x−µ = 2κ̃

∑
µ

[
φx−µφ

†
x(4τ3Bxτ3 −Bx)φxφ

†
x−µ, τ3

]
,

(F Ic
gf )x+µ = 2κ̃

∑
µ

[
φx+µφ

†
x(4τ3Bxτ3 −Bx)φxφ

†
x+µ, τ3

]
, (5.136)

where

Bx =
∑
µ

(
φxφ

†
x+µτ3φx+µφ

†
x + φxφ

†
x−µτ3φx−µφ

†
x

)
, (5.137)
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and for the ghost force term, we have (dropping the subscript gf and superscript gh on the

right hand side for convenience)

F gh
gf = (F Ia + F Ib + F Ic)

+
1

2

(
F IIa + F

IIa
+ F IIb + F

IIb
)

+
1

2

(
F IIIa + F

IIIa
+ F IIIb + F

IIIb
)
, (5.138)

where

F Ia
x = 2

∑
α

[Bx, τ3]XT
xα(MTX)xα ,

F IIa
x = −2

∑
µ,αβγδ

εαδεβγ

[
φxφ

†
x+µτγφx+µφ

†
x, τδ

]
XT
x−µ,α(MTX)xβ ,

F
IIa

x = −2
∑
µ,αβγδ

εαδεβγ

[
φxφ

†
x−µτγφx−µφ

†
x, τδ

]
(MTX)TxαXx−µ,β ,

F IIIa
x = −2

∑
µ,αβγδ

εαδεβγ

[
φxφ

†
x−µτγφx−µφ

†
x, τδ

]
XT
xα(MTX)x−µ,β ,

F
IIIa

x = −2
∑
µ,αβγδ

εαδεβγ

[
φxφ

†
x+µτγφx+µφ

†
x, τδ

]
(MTX)Tx−µ,αXxβ , (5.139)

F Ib
x−µ = 2

∑
α

[
φx−µφ

†
xτ3φxφ

†
x−µ, τ3

]
XT
xα(MTX)xα ,

F
IIb

x−µ = −2
∑
αβγδ

εαδεβγ

[
φx−µφ

†
xτδφxφ

†
x−µ, τγ

]
(MTX)TxαXx−µ,β ,

F IIIb
x−µ = −2

∑
αβγδ

εαδεβγ

[
φx−µφ

†
xτδφxφ

†
x−µ, τγ

]
XT
xα(MTX)x−µ,β , (5.140)
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F Ic
x+µ = 2

∑
α

[
φx+µφ

†
xτ3φxφ

†
x+µ, τ3

]
XT
xα(MTX)xα ,

F IIb
x+µ = −2

∑
αβγδ

εαδεβγ

[
φx+µφ

†
xτδφxφ

†
x+µ, τγ

]
XT
x−µ,α(MTX)xβ ,

F
IIIb

x+µ = −2
∑
αβγδ

εαδεβγ

[
φx+µφ

†
xτδφxφ

†
x+µ, τγ

]
(MTX)Tx−µ,αXxβ , (5.141)

withBx defined in Eq. 5.137,X =
(
MMT

)−1
φ andM is the reduced-model-ghost matrix

M red given in Eq. 5.83. The force terms in Eqs. 5.140 and 5.141 have been written in the

shifted manner which is suitable for coding. Notice that, the second and third force terms

in Eq. 5.141 require next-nearest-neighbor fields to be gathered during coding. This is

non-trivially implemented in the code as an effective gather and scatter of the lattice fields.

The Fmass term corresponding to mass term in the action in Eq. 5.84 is given by

(Fmass)x = 4κ̃m2 [Bx, τ3] . (5.142)

For studying symmetry breaking, the force corresponding to the symmetry breaking

seed action Sseed, given in Eq. 5.95, can be calculated to be

(Fseed)x = h [Bx, τ3] , (5.143)

which is similar to the mass term.

Auxiliary field force

Since the auxiliary field terms are the same in the reduced model as in the full theory, the

auxiliary field force term F̃ is exactly the same as in the full theory, with just the full theory

ghost matrix M being replaced by the reduced-model-ghost matrix M red.
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5.7 Results for the Reduced model

Before we confront the interesting possibility of SSB (SU(2)R → U(1)R) in the reduced

model, it is advisable to perform a few checks regarding the performance of the HMC

algorithm on such a novel system with complicated terms in the action density, especially

when no prior simulations have ever been done in such a theory. Obviously, the same

novelty factor applies also to the HMC and the sTHMC simulations of the full eBRST

theory, discussed next.

For the range of κ̃ between 1.0 and 10.0, the HMC on 84 lattices runs reasonably well

for the reduced model (with no mass terms added), although to get acceptance rates around

50%, we needed to keep the MD step-size∼ 0.005 and the number of MD steps in a trajec-

tory within 10. This already shows that the simulation in these systems is hard. Fortunately,

despite the small step-size and the number of MD steps, the integrated autocorrelation time

is within acceptable limits (< 200 in units of HMC trajectories of length 0.1 − 0.2) and

the system shows the desired fluctuation of the observables in its field configurations, as

we shall show shortly. As we increase the lattice size to 124, the autocorrelation times

increase quite rapidly, however, still within manageable limits of our resources. We have

tried runs even on 164 lattices with smaller statistics (not presented in this thesis), just to

validate our most important conclusions, but a full set of longer runs on 164 becomes too

time-consuming on our resources.

Since the gauge-fixing coupling, g̃ (related to κ̃ as κ̃ = 1/(2g̃2)), is asymptotically free

[19], the HMC algorithm faces critical slowing down as we make g̃ weaker, or equivalently

κ̃ larger. As we increase the coupling κ̃, the acceptance rate of HMC decreases appreciably.

One can tune the MD step size and number of steps to increase the acceptance, but that

inevitably leads to generation of highly correlated configurations. Therefore, limited by
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Figure 5.2: Average number of BiCGStab iterations required for ghost matrix (MMT )
inversions per HMC trajectory contrasted at κ̃ = 0.2 and 1.0. Results obtained on 84 lattice
with m2 = 0.0 and h = 1.0.

our time frame and computational facilities, we could only explore the small g̃ or large κ̃

region of the gauge-fixing coupling upto a limit (κ̃ = 10.0).

On the other hand, in the region where the gauge-fixing coupling g̃ is strong or κ̃ small

(< 1.0), we face problems with ghost matrix inversion using our BiCGStab inverter2. A

typical situation is demonstrated in Fig. 5.2, which contrasts the matrix inversion steps

required at two different values of κ̃. The numerical run at κ̃ = 0.2 struggles and eventually

fails due to the inability of BiCGStab to invert the matrix anymore, while the run at κ̃ =

1.0 keeps going uninterrupted. A point to note here is that, the ghost matrix inversion

problems at small κ̃ in the eBRST reduced model is not associated with a sharp rise of

the force term in the MD trajectory steps, as is usual for lattice Quantum Chromodynamics

(LQCD) investigations when an eigenvalue of the fermion matrix approaches zero. A future

investigation of the eigenvalue distributions in such situations may shed some light. As we

shall see in the next section, the situation is different in the full eBRST theory (with the

2For a review of the BiCGStab algorithm, see Ref. [27]
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transverse gauge degrees of freedom back in action). There the ghost matrix inversion

problems are more severe except in the weak gauge coupling perturbative limit, and the

force term in the MD trajectories rises sharply, resulting in non-acceptance.

The window of κ̃ between 1.0 and 10.0 is a relatively safe zone for the HMC simula-

tions. However, the acceptance rates gradually decrease in this range as κ̃ is raised. If we

assume that there are no sign changes needed to be tracked for κ̃ ≥ 1.0 since we face no

problems with matrix inversion, our HMC implementation is quite adequate to compute

faithfully the expectation values of operators in the reduced model, as long as we do not

make κ̃ too large for low acceptance rates to affect the feasibility of the simulation.

In the following, we shall also present results (see Fig. 5.8) where we have pushed

κ̃ lower than 1.0, actually to 0.5 or so. However, the simulations may not be completely

faithful there since a few restarts of the runs were needed from a previous accepted con-

figuration after the code faced problems with inversion of the ghost matrix during a MD

trajectory. We have also tried HMC runs of the reduced model at these smaller values of κ̃

with an eBRST-invariant mass term (Eq. 5.84), and the problems with inversion reduced to

a significant extent, confirming that the ghost matrix becomes better conditioned with the

introduction of the eBRST-invariant mass term.

The unfixed τ3 component of the SU(2) gauge field maintains the U(1) invariance in

the reduced model as well. This symmetry is a local one and cannot be spontaneously

broken (Elitzur’s theorem). To check this point, we study the following expectation value

φ ≡ 〈 1

V

∑
x

φx〉 , (5.144)

which has four components (φ = a0 + iaiσi). This observable is not invariant under the

U(1) symmetry and hence should be zero everywhere in the reduced model. In Fig. 5.3,
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Figure 5.3: Evolution of components of φ with HMC time. The run in a 84 lattice with
κ̃ = 1.0, h = 0.0 and m2 = 0.0, was started with a “cold” configuration (components
a0 = 1, ai = 0 for φ at all sites).

the evolution of the 4 components of φ with HMC time, at κ̃ = 1.0, is plotted. The

figure shows that, after an initial equilibration period of around 4000 trajectories, all of the

components of φ fluctuate closely around zero. Similar results have been found at other

κ̃ values as well. This verifies the fact that, the local U(1) invariance is unbroken in the

reduced model. One should note that, in Fig. 5.3, the initial starting configuration for

the HMC run, is a0 = 1, ai = 0, for all sites. Therefore, as expected, the a0 component

starts from 1 and goes to fluctuations around zero as the system equilibrates, while the

other components keep fluctuating around zero. Starting from any other configuration,

the system always equilibrates to all the components being around zero, which shows the

consistency of the algorithm. The evolution of φ components with the HMC trajectories

serves as a general check of equilibration and was used for this purpose in all our runs.

As discussed previously, the Ãx vector at each site x points in a direction in the 3

dimensional SU(2) algebra space. In the phase where the global continuous SU(2)R sym-

metry is broken, the average Ã vector in a given configuration is non-zero and points in
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Figure 5.4: Components of average Ã of each configuration with HMC time. Data given
from a run with parameters, κ̃ = 1.0, h = 0.0 and m2 = 0.0, on a 84 lattice.
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Figure 5.5: Length of average Ã of each configuration with HMC time, corresponding to
the run in Fig. 5.4.

a certain direction. However, the direction can be arbitrary from configuration to configu-

ration. In Fig. 5.4, we demonstrate the movement of the average Ã vector in the algebra

space with HMC evolution time. But as one would expect, the length of the average Ã

vector remains the same within small fluctuations, as seen in Fig. 5.5. In Figs. 5.4 and 5.5,

both of which have been computed from the same run, the initial starting configuration is
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Figure 5.6: The order parameter 〈|Ã|〉 has been plotted versus h, at different κ̃ =
0.6, 0.8, 1.0 and 5.0, with m2 = 0.0. The results, obtained on a 84 lattice, clearly show
that the order parameter is non-zero, i.e., the reduced model is in a broken phase for a
range of κ̃.

a0 = ai = 0.5 (components of φ at each site). From Eq. 5.96, this corresponds to π1 = 0.5

and π2 = π3 = 0 at the start, as can be clearly seen in Fig. 5.4.

With these initial checks regarding the faithfulness of the HMC runs, we now present

our most significant result, i.e., evidence for spontaneous breaking of the global SU(2)R

symmetry in the reduced model that is an eBRST theory on the trivial orbit and also a

TFT. In Fig. 5.6, we have plotted the order parameter 〈|Ã|〉, as a function of the coeffi-

cient h of the symmetry-breaking seed term (see Eq. 5.95), for four different values of

κ̃ = 0.6, 0.8, 1.0 and 5.0, in 84 lattices. In the following, the statistical errors, wherever

not indicated, are smaller than the symbol sizes. We observe that, for the range of κ̃ con-

sidered, the order parameter remains non-zero, at all values of h, indicating a phase with

the global SU(2)R symmetry spontaneously broken to U(1)R (see Sec. 5.5.2). As we tune

the coefficient h to zero, we see that the system still remains in the broken phase with a

non-zero value of the order parameter. It should be mentioned here that in the presence of
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the seed, 〈|Ã|〉 and π3 component of 〈Ã〉 become roughly equal on larger lattices (124).

In order to demonstrate that the above broken phase is not a finite lattice artefact, one

needs to simulate in larger volumes. Fig. 5.7 compares the values of the order parameter,

〈|Ã|〉, at κ̃ = 1.0, for two different lattice volumes, 84 and 124, as a function of h. The

slightly sharper bend, as apparent in the figure as h approaches zero for the 124 data, is

because of the blown-up scale used, otherwise this is insignificant. For absolute confirma-

tion, we tried simulations on 164 lattices. The thermalization itself takes a long time and

the code is rather slow on 164 lattices, as already remarked earlier in this section. Hence

the generated statistics is low and the data is not shown here. The preliminary results on

164 lattices show the exact same qualitative trend.

Next, we study the order parameter 〈|Ã|〉 in dependence of the gauge-fixing coupling,

κ̃, in the limit h = 0. Referring to Fig. 5.1 and remembering κ̃ = 1/(2g̃2), this amounts

to moving along the right vertical axis in the phase diagram. Fig. 5.8 explores a region of

κ̃ on 84 lattices. There appears to be a significant downward trend of the order parameter

in the small κ̃ region, consistent with the suggested transition from B to A in the strong g̃
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Figure 5.8: Variation of 〈|Ã|〉 with κ̃ on 84 lattices, with m2 = 0.0 and h = 1.0.

(small κ̃) region in both the diagrams in Fig. 5.1. While there is no doubt about the general

qualitative change of the order parameter at small κ̃ or strong g̃ region, we refrain from

making a quantitative conclusion about the location and the order of what appears to be a

symmetry restoring transition at small κ̃. This is because, the algorithm appears somewhat

unstable in the small κ̃ region, as already pointed out earlier in the section, and the results

are obtained only on 84 lattices. On the other hand, the broken phase appears to continue

to exist all the way to arbitrarily large κ̃, i.e., the perturbative region of g̃.

A general study of the variation of the observable 〈|Ã|〉 with mass m, is shown in Fig.

5.9. The mass term (Eq. 5.84) is eBRST-invariant. One can see that, at κ̃ = 1.0, the system

remains in the broken phase even in the massive theory. Similar results are manifested at

other values of κ̃ as well. Since the mass term (Eq. 5.84) also includes a diagonal ghost

mass term, the inversions of the ghost matrix become easier in the massive theory. We

point out that the 〈|Ã|〉 data goes over to its value at m = 0 smoothly.
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5.8 Results for the Full theory

In this section, we present our results for the full eBRST theory (with the transverse gauge

degrees of freedom back in action) mostly on 84 lattices. We have comprehensively scanned

the region β = 3.0−8.0 and κ̃ = 0.1−10 form2 = 0.0 with the HMC algorithm. Unlike in

the reduced model, there is no region found in the full theory in the scanned β−κ̃ parameter

space where the ghost matrix inversions take place without issues. Generally, the number

of iterations of the BiCGStab inverter blow up or the inversion fails at some point during the

field updation. The severity of the inversion problem increases with decreasing β and/or

decreasing κ̃, i.e., with stronger gauge and gauge-fixing couplings g and g̃ respectively.

At the points of failure, spikes are observed in the change in action, ∆S, at the end of

MD trajectories, which is due to large forces. All these symptoms generally indicate the

presence of near-zero eigenvalues of the ghost matrix. On the other hand, critical slowing

down, in the form of decreasing acceptance rate, is also found with increasing β and/or κ̃,

as also seen in the reduced model for κ̃.
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Figure 5.10: Evolution of the average number of BiCGStab iterations required for the
ghost matrix iterations, per MD trajectory, with HMC time at β = 4.0 and 8.0, for a fixed
κ̃ = 1.0, on 84 lattice.

A typical behavior of the number of BiCGStab iterations for ghost matrix-inversion

(MMT inversion in the HMC MD trajectory, cf. Secs. 5.6, 5.6.3) in the full theory, evolv-

ing in HMC time, is shown in Fig. 5.10. In the figure, results are shown from two HMC

runs at β = 4.0 and 8.0, both of which have been started from unit gauge-field configu-

rations (cold start) and have similar acceptance rates after equilibration. We see that the

number of BiCGStab iterations eventually blows up in each case, but with the larger β,

the algorithm is able to run much longer without facing inversion-related problems. This

trend, observed in runs at all β values, indicates that the system encounters fewer instances

of near-zero eigenvalues with weaker gauge couplings g, i.e. larger β. This is consistent

with the expectation that for perturbative gauge couplings, the ghost matrix determinant

does not suffer from sign changes. We shall see in this section that the invariance theorem

gets increasingly validated at larger β. This further confirms that at larger β, there are fewer

or no sign changes of the ghost determinant, making calculation of the expectation values

progressively more faithful with the HMC algorithm that ignores possible sign changes, .
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The invariance theorem, a consequence of eBRST symmetry for the full theory and a

rigorous result on a finite lattice, ensures the equality of the expectation value of any gauge-

invariant operator between the unfixed gauge theory and the eBRST gauge-fixed theory

at a given coupling β. We have calculated the expectation value of the gauge-invariant

plaquette, the smallest Wilson loop, for both unfixed and gauge-fixed theories on the lattice

to study the validity of the invariance theorem.

Without a symmetry breaking seed, the eBRST symmetry is exact, and on our finite

lattices the invariance theorem is strictly applicable. Hence under these conditions, any

violation of the invariance theorem appears to be an indicator of sign changes of the ghost

determinant, something that our HMC algorithm ignores.

The expectation value of the average plaquette obtained with HMC at various β are

compared in Fig. 5.11, for unfixed and gauge-fixed theories, in 84 and 124 lattices. The

figure indicates that HMC gives increasingly matching results with increasing β, imply-

ing that sign changes become fewer with increasing β. This trend is corroborated by the

BiCGStab inversion trends discussed earlier. These results are consistent with the expec-

tation that in the perturbative regime of the gauge coupling, there are no sign changes of

the ghost determinant. Approximate manifestation of the invariance theorem, at least at

our larger β values, is also a validation for the eBRST gauge fixed theory, an alternate

formulation of non-Abelian gauge theory on the lattice.

Next, we briefly consider the invariance theorem with an eBRST-invariant mass term

(Eq. 5.79) in the action (the proof of the invariance theorem can be extended to this case).

The massive eBRST gauge-fixed theory is compared to the unfixed theory with mass term

for the coset gauge fields Wµ, the action of a such an unfixed gauge theory with massive
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Figure 5.11: Comparison of plaquette expectation values 〈P 〉 of unfixed and eBRST gauge-
fixed theories at different β for a fixed κ̃ = 1.0. Results obtained on 84 and 124 lattice.

Wµs, being given as (cf. Eq. 5.79),

Sunfixed
massive = SW − 4m2

∑
x

tr(Uxµτ3U
†
xµτ3), (5.145)

where SW is the usual Wilson plaquette action. For the massive unfixed and eBRST gauge-

fixed theories, the plaquette expectation values are plotted in Fig. 5.12. As is apparent from

154



 0.81

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 4  4.5  5  5.5  6  6.5  7  7.5  8

m
2
 = 0.5

8
4
 lattice (HMC)

〈P〉

β

unfixed SU(2)

eBRST κ~=1.0

Figure 5.12: Comparison of plaquette expectation values 〈P 〉 of unfixed and eBRST gauge-
fixed theories at m2 = 0.5. Results obtained on 84 lattice.

the figure, the degree of equality of the expectation values for the two theories, is better and

extends more towards relatively smaller β values, indicating that fewer sign changes of the

ghost determinant take place with the introduction of the eBRST-invariant mass term. The

mass term in the eBRST action appears to make the ghost matrix better-conditioned, since

its presence is clearly seen to help in the ghost matrix inversion during the MD trajectories

of the HMC.

Fig. 5.13 shows the variation of the expectation value of the average plaquette as a

function of the gauge-fixing coupling, κ̃, at β = 8.0. According to the invariance theo-

rem, the expectation values of gauge-invariant operators of the eBRST gauge-fixed theory

should be equal to those in the unfixed theory irrespective of the gauge-fixing coupling. In

Fig. 5.13, we see the expected result, i.e., there is no significant variation of the expectation

value of the average plaquette. On the left side of the figure, the value for the unfixed theory

also appears at κ̃ = 0. On a very very fine scale, deliberately chosen, there appears a slight

but noticeable difference of the plaquette expectation values from the eBRST fixed and the

unfixed theories. Statistical errors are within the symbols. However, we have not estimated
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Figure 5.13: Variation of plaquette expectation values 〈P 〉 of eBRST gauge-fixed theory
with κ̃ at a fixed β = 8.0. The unfixed theory plaquette expectation value for β = 8.0 has
been plotted at κ̃ = 0.0 for comparison. Results obtained on 84 lattice.

the size of any systematic errors. We have noticed that, at our largest β (= 8.0), the plaque-

tte values from the eBRST theory with HMC and also sTHMC (shown next in this section)

are very close, but systematically lie slightly below that from the unfixed theory with HMC

algorithm. As we have already remarked, ignoring the occasional sign changes of the ghost

determinant, however infrequent at this large β, may be a reason for the discrepancy, since

the HMC code cannot take the possible sign changes of the ghost matrix determinant into

account. Otherwise, a proper estimation of any possible systematic errors may also wipe

out the tiny differences. It may also be pointed out that, three completely independent

codes producing nearly the same value for the expectation value of the average plaquette is

a good check of the correctness of the codes.

sTHMC results

We did a first-time implementation of the sTHMC algorithm and simulated the theory at

regions of the β − κ̃ parameter space, to check whether we can track the sign changes of
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β α k No.
of
MD
steps

MD
step
size

Average
sTHMC
Plaquette

No. of
sign
changes
in ma-
trix
A

Auto
corre-
lation
τint

Acc.
rate
%

Average
Unfixed
HMC
Plaque-
tte

Average
eBRST
HMC
Plaque-
tte

8 25 8 4 0.004 0.902600
+-
0.000064

0 285 69.7

0.903559
+-
0.000015

0.902667
+-
0.000068

8 25 10 4 0.0035 0.902624
+-
0.000091

0 315 76.2

8 50 4 4 0.004 0.902471
+-
0.000070

0 293 68.1

8 50 6 4 0.003 0.902574
+-
0.000072

0 406 77.1

8 100 4 4 0.002 0.902814
Insufficient
data

0 ∼1000 79.1

Table 5.1: Comparison of sTHMC runs, for different algorithm parameters, with unfixed
HMC and eBRST gauge-fixed HMC.

the ghost determinant for the calculation of observables.

The sTHMC algorithm employs a stochastic sampling method to deflate the ghost ma-

trix. However, it does not guarantee that all the low-lying eigenvalues are raised. The two

sTHMC parameters α and k provide a handle to study the effectiveness of the deflation.

We have so far not been able to optimize the values of the parameters α and k to the

extent that the deflation matrix A is able to pick up all the sign changes, so that the MD

trajectories are devoid of any ill-effects of small eigenvalues of the deflated ghost-matrix

D (effective in the MD trajectories, cf. Sec. 5.6.2).

In Table 5.1, we present results of the sTHMC runs on 84 lattices at β = 8.0 with vari-

ous combinations of the algorithm parameters α and k. The matrixA has not picked up any
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β No.
of
MD
steps

MD
step
size

Average
Plaquette

Auto
corre-
lation
τint

Acc.
rate
%

Unfixed
HMC

8 13 0.04 0.903559
+-
0.000015

2 60.6

eBRST HMC
(κ̃ = 1.0,
m2 = 0.0)

8 4 0.006 0.902667
+-
0.000068

115 57.8

Table 5.2: Details of HMC runs at β = 8.0 in the unfixed SU(2) theory and eBRST gauge-
fixed one.

sign changes, and the plaquette expectation values are roughly equal to those obtained from

the unfixed theory and those obtained from the eBRST theory with HMC algorithm. The

integrated autocorrelation times appear to be on the higher side in comparison to those ob-

tained from HMC in the eBRST theory. For comparison, we also provide in Table 5.2 some

simulation details of the HMC algorithms both in the unfixed theory and in the eBRST the-

ory. It is to be noted that we have tried running sTHMC at smaller β and have observed

sign changes of the ghost determinant, but the inversion issues are still substantial and we

have not shown any data due to lack of statistics.

5.9 Conclusion

The eBRST framework of gauge-fixing provides an alternate formulation of non-Abelian

theories of compact gauge fields on the lattice. Moreover, the eBRST gauge-fixing tech-

nique provides a way to define a local anomaly-free non-Abelian chiral gauge theory on

the lattice, provided the remaining Abelian gauge invariance is taken care of by a higher

derivative gauge-fixing as described in Chaps. 3 and 4. However, it appears that the eBRST
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theory is itself an interesting theory to study for possible novel non-perturbative effects of

the longitudinal gauge degrees of freedom onto the physical sector. Approximate analytic

calculations have shown that the eBRST theory can accommodate non-trivial phase struc-

ture, where a novel Higgs phase, with no mass gap, may exist. In this chapter, we have

initiated a first-time numerical investigation of the eBRST formalism in the SU(2) case.

The lattice eBRST gauge-fixed theory with SU(2) gauge fields, and ghost and aux-

iliary fields in the coset SU(2)/U(1) was successfully implemented numerically in our

work. The reduced model, the theory on the trivial orbit, with only the ghost fields and

the longitudinal gauge degrees of freedom was also numerically investigated. Three field

updation codes suitable for massively parallel computing architecture were written from

scratch - HMC and sTHMC codes for the full eBRST theory and a HMC code for the re-

duced model. The coding was a non-trivial task with the complicated action, as it involved

several effective gather and scatter operations of the lattice fields.

The global SU(2)R symmetry of the reduced model was found to be spontaneously

broken for a wide range of the gauge-fixing coupling κ̃ - evidence of strong dynamics of

the longitudinal degrees of freedom. At small values of κ̃ there was indication of symmetry

restoration. Broken symmetry phase appears to persist for arbitrarily large values of κ̃,

i.e., upto the perturbative region of g̃ = 1/
√

2κ̃. Considering that the reduced model

partition function is independent of κ̃, that is, it is a topological field theory, the spontaneous

symmetry breaking in such a theory is a novel result, supporting claims in the literature

from approximate analytic calculations.

We have investigated the full theory and produced evidence that this is a valid alternate

formulation of an SU(2) gauge theory, through verification of the invariance theorem at

small gauge coupling (large β). We also have a good idea regarding where in the β − κ̃-

plane the system is likely to encounter more sign-changes of the ghost matrix determinant.
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Our results are also consistent with the expectation that in the perturbative region of this

plane, there are no sign changes. However, we have not been able to track the sign changes

and incorporate the sign changes into calculation of expectation values of gauge-invariant

operators. To investigate the effect of the strong dynamics of the longitudinal gauge degrees

of freedom on the full eBRST theory, and conclude about the possibility of a phase with no

mass gap, we need to track the sign changes of the ghost determinant.

The eBRST theory is a very hard problem as it poses several algorithmic challenges.

Due to the complicated actions in both the full theory and reduced model, to maintain

a reasonable acceptance rate, the HMC trajectory had to be kept quite small and thus,

the Monte Carlo simulation moved very slowly. The most important challenge was the

sign changes of the ghost determinant. Since in principle, for small enough step sizes,

HMC does not allow sign changes to occur, there is a possibility that the algorithm is

non-ergodic in regions of the phase diagram where sign changes occur. The stochastic

Tunneling HMC algorithm was implemented for the very first time in our work to study

these sign changes. Through our exploration, we have been able to identify the numerical

problems in the various regions of the theory and we hope that this will be beneficial in the

future to implement a robust algorithm to solve these issues.
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CHAPTER 6

SUMMARY

In this final chapter, we summarize briefly the main results of our work described in this

thesis. Details are provided in the respective previous chapters.

We have studied two different approaches of non-perturbative gauge-fixing on the lat-

tice, one for Abelian and another for non-Abelian gauge theories. The Wilson approach to

lattice gauge theories, with compact gauge fields, is manifestly gauge-invariant and well-

defined without any gauge-fixing. This works very successfully for vector-like gauge theo-

ries like Quantum Chromodynamics (QCD). However, for the construction of chiral gauge

theories on lattice (ChLGT) with manifestly local lattice fermions, the need to tame the

unphysical longitudinal gauge degrees of freedom (lgdof s) arises, since the lgdof s couple

strongly with the physical degrees of freedom. The gauge-fixing technique offers a way

to dynamically control the lgdof s, leading to a possible formulation of manifestly local

ChLGTs. In addition, gauge-fixing provides an alternate way of non-perturbatively defin-

ing gauge theories on the lattice.

However, the standard perturbative Fadeev-Popov gauge-fixing procedure leading to
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the Becchi-Rouet-Stora-Tyutin (BRST) formalism faces an impasse in the form of a no-go

theorem in the non-perturbative set-up with the compact gauge fields on the lattice. Ac-

cording to the no-go theorem [1], the partition function of a BRST-invariant gauge theory

with compact gauge fields becomes zero and the vacuum expectation value of a gauge-

invariant operator is rendered an indeterminate 0/0 form. Obviously, gauge-fixing the

compact gauge fields on the lattice leads to explicit breaking or modifying the BRST sym-

metry.

For the case of compact U(1) gauge theory, a higher-derivative (HD) gauge-fixing

scheme was proposed by Golterman and Shamir [9, 25], which evades the no-go theorem

and the action has a unique absolute minimum around which weak-coupling perturbation

theory can be done. In the classical continuum limit, the HD term goes to the renormaliz-

able Lorentz gauge along with irrelevant terms. Counter-terms can be added through power

counting and can be tuned to restore gauge symmetry in the continuum. It may be pointed

out in this context that, the pure compact U(1) theory, given by just the Wilson plaquette

action on the lattice, displays a weak first-order transition and, therefore, has no quantum

continuum limit. The HD gauge-fixing scheme provides an alternate way of defining U(1)

gauge theories.

The HD gauge-fixing compact U(1) lattice gauge theory was investigated earlier [10]

at weak gauge coupling in perturbation theory and with non-perturbative methods using

numerical simulations. At relatively large values of the coefficient of the HD gauge-fixing

term in the action, a novel continuous phase transition was obtained separating a regular

ordered (FM) phase from a rotationally non-invariant spatially-modulated ordered (FMD)

phase. The scaling region from within the FM phase was obtainable by tuning appropriate

counter-terms. In the scaling region of the FM phase, the gauge symmetry was recovered

with emergence of massless free photons with the lgdof s decoupled. Feasibility of U(1)
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chiral gauge theories with Wilson fermions and lattice domain wall fermions was also

demonstrated in Refs. [11–14] in the quenched approximation.

The question naturally arises about the nature of the theory at strong gauge couplings.

This is interesting for several reasons. Firstly, for an alternate and gauge-fixed version of

the compact lattice U(1) gauge theory suitable for an Abelian chiral gauge theory on the

lattice, it is important to know the behavior of the theory at a wide range of the coupling

parameter space. Secondly, to probe the short distance behavior of the U(1) gauge theory

and any possible non-trivial properties, the theory at strong gauge coupling needs to be

understood. Thirdly, even for the non-Abelian chiral gauge theory with the equivariant

BRST (eBRST) formalism, the invariant Abelian part has to be eventually gauge-fixed

through the HD mechanism, and as a result, a knowledge of the theory at strong gauge

couplings cannot be overlooked.

In our work in Refs. [15,16], we have extensively studied the HD gauge-fixing scheme

in the strong coupling region. The main result we have established is that the novel con-

tinuous FM-FMD transition is also present at strong gauge couplings for suitably large

gauge-fixing coupling κ̃. The gauge symmetry is recovered at the continuous FM-FMD

transition and the same physics as in the weak coupling region, is obtained. Massless free

photons have been obtained in the scaling region of the FM phase near the FM-FMD transi-

tion and the lgdofs are decoupled. Careful studies at various lattice volumes have generated

a clear picture of the entire phase diagram and its features as we go from the weak to strong

coupling region. Investigation at finely separated parameter values reveal the scaling of the

gauge boson mass near the phase transition and the expected approach of the field renor-

malization constant to unity with increasing κ̃. The nature of the phase transitions has been

established through analysis at different lattice volumes and standard methods. The physics

at the strong gauge coupling seems to be governed by the same universality class as in the
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weak gauge coupling region, except for a tricritical line that appears to be the only place for

any possible non-perturbative and non-trivial behavior. However, probing the universality

class at the tricritical line is a separate study by itself and is outside the scope of the present

work.

An important conclusion from ourU(1) study was regarding the use of Multihit Metropo-

lis (MM) algorithm, a local algorithm, for numerical simulations. The MM algorithm was

extensively used in the previous non-perturbative studies of this theory at weak couplings.

However, it has been found to be inadequate at strong gauge and gauge-fixing couplings.

The HD action density is spread over sites further than the nearest neighbors. Hence it is

not surprising that, a local algorithm like MM fails to produce correct results, especially

at strong gauge couplings where larger values of the coefficient κ̃ of the HD gauge-fixing

term is required to access the continuous FM-FMD transition. We have implemented the

Hybrid Monte Carlo (HMC), a global algorithm, to study the strong gauge coupling region

with good results. A comparative study of the two algorithms has been presented in this

thesis to make our point explicit.

The eBRST scheme of gauge-fixing for non-Abelian theories was first proposed by

Schaden [17] for the SU(2) gauge theories and later extended by Golterman and Shamir

[18] for SU(N) case. Basically, in the eBRST scheme, the total gauge group is not gauge-

fixed, instead a coset is fixed leaving a subgroup unfixed (which contains at least a Cartan

subgroup). This method evades the no-go theorem associated with exact BRST symmetry.

An extended eBRST algebra can be constructed with eBRST and anti-eBRST symme-

try for general SU(N) theories and there can be in general several ways to gauge-fix the

gauge group down upto the Cartan subgroup. However, for SU(2), the extended eBRST

algebra reduces to the usual eBRST, where the only way to gauge-fix is by fixing the coset

SU(2)/U(1). In Ref. [18], the authors provided a prescription of constructing ChLGTs us-
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ing the eBRST scheme, where the remaining Abelian subgroup is fixed by the HD gauge-

fixing method described above. We have done a first-time numerical investigation of the

eBRST SU(2) theory where the coset SU(2)/U(1) is gauge-fixed leaving the subgroup

U(1) unfixed.

The pure gauge eBRST theory involves gauge fields and Grassmann-valued ghosts and

the numerical implementation is similar to a gauge theory with fermions, except that the

ghost fields are in the coset and are replaced in the simulation by real scalar pseudo-ghost

fields. The ghost determinant obtained after integrating out the ghost fields is real but can

have both positive and negative values. Thus, an important challenge of the numerical

code is the sign-tracking of the ghost determinant, which requires tracking the near-zero

eigenvalues of the ghost matrix. Considering the absolute value of the determinant, we have

developed two separate parallelized numerical codes using HMC in the full theory and the

reduced model (the theory of lgdof s and ghosts on the trivial orbit). The coding was non-

trivial as it involved many more effective gathers and scatters of the field values than usual,

required during communication among the parallel nodes. To track the sign, we have done

a first-time implementation of the stochastic Tunneling HMC algorithm (sTHMC).

Through a perturbative calculation [19], it was shown that the eBRST gauge-fixing

coupling is also asymptotically free like the non-Abelian gauge coupling and therefore,

becomes strong at an infrared scale [21]. It was argued that the gauge-fixing coupling

can become strong when the gauge coupling is still weak and the strong dynamics of the

longitudinal sector can affect the physics of the transverse sector. This raises an unusual

question seldom asked, that whether the dynamics of the unphysical longitudinal sector

can affect the physical sector. The reduced model of the eBRST gauge-fixed theory, ob-

tained by setting the gauge coupling to zero and containing just the lgdof s and ghost fields,

offers us a system to investigate the strong dynamics of the unphysical sector. It was
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found out through a combination of strong coupling and mean field techniques [20] that

the eBRST SU(2) reduced model can have a spontaneous symmetry breaking (SSB) of a

global SU(2)R symmetry down to U(1)R. The SSB in the reduced model is interesting

in its own right since the reduced model is a topological field theory, the partition func-

tion being independent of the gauge-fixing coupling. With the gauge coupling turned on,

interesting possibilities were discussed as effect of this SSB of the reduced model on the

eBRST gauge theory: the coset gauge fields could become massive through a Higgs mech-

anism with a remaining massless photon, thereby, giving a new phase with no mass gap

in the pure SU(2) theory different from the usual confining phase. Massive coset gauge

fields do not necessarily mean a breaking of the eBRST symmetry, since the eBRST can

be maintained with addition of an appropriate ghost mass.

Through our numerical simulations in the reduced model, we have obtained strong

evidence of the existence of the above-mentioned SSB, SU(2)R → U(1)R, for a range

of the bare gauge-fixing coupling. Our simulations with HMC do not take into account

the sign change of the ghost determinant. However, for the gauge fixing coupling above a

certain small value, the ghost matrix inversion is well behaved in the reduced model, even

with very small step size of the molecular dynamics part of the HMC, suggesting against

presence of small eigenvalues and therefore, a sign change.

The eBRST gauge-fixed theory obeys an invariance theorem which ensures that the ex-

pectation value of gauge-invariant operators obtained in the gauge-fixed theory is exactly

equal to the one obtained in the unfixed theory. This serves as a check for our simulations

with HMC, where we ignore the sign of the ghost determinant. Deviations of the results ob-

tained from the eBRST HMC code with that obtained from the unfixed theory would mean

that sign changes are relevant. Our numerical simulations with HMC have revealed that

the invariance theorem gets increasingly validated as we make the gauge coupling weaker.
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This is consistent with the expectation that sign changes do not occur in the perturbative

regime. The above also validates the eBRST gauge-fixed theory as an alternate formulation

of non-Abelian gauge theories on the lattice. The interesting issue of how a Higgs phase

with massive coset gauge fields can appear despite the invariance theorem, that is a rigor-

ous result from eBRST on a finite system, has not been pursued in this thesis. This is an

issue that can be handled only after finding a proper method of tracking the sign changes

of the ghost matrix determinant.

In order to track the sign of the ghost determinant for accurate calculation of expecta-

tion values, we employed the sTHMC algorithm. It involves a type of stochastic deflation

which aims to ease the numerical difficulties faced due to the presence of near-zero eigen-

values. However, being a stochastic method, it does not guarantee the successful deflation

of the ghost matrix and also the sign-tracking of the determinant. In our simulations at

the weakest gauge coupling of our study (β = 8.0) with several values of the tunable pa-

rameters of sTHMC, we have found no sign changes and the results are very similar to the

ones obtained from the eBRST theory with HMC. At higher values of the gauge coupling,

sTHMC trajectories also suffered from presence of near-zero eigenvalues, indicating that

the driving Hamiltonian in the trajectory was not deflated properly.

Our first-time study of the eBRST gauge-fixed SU(2) theory has produced enough

interesting results. It also leaves us with several issues, both physics related and algorithm

oriented, to be pursued in the future. The first and foremost, would be the faithful tracking

of the sign of the ghost determinant. The eigenvalue distribution of the ghost matrix needs

to be investigated to determine efficient methods for the deflation. The effect of the SSB in

the reduced model on the full eBRST theory is still unclear, and it is to be studied with the

introduction of a symmetry-breaking seed, as discussed in Sec. 5.5.3.
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